input
stringlengths
2.65k
237k
output
stringclasses
1 value
"bigquery_options") @bigquery_options.setter def bigquery_options(self, value: Optional[pulumi.Input['OrganizationSinkBigqueryOptionsArgs']]): pulumi.set(self, "bigquery_options", value) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ A description of this exclusion. """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter def destination(self) -> Optional[pulumi.Input[str]]: """ The destination of the sink (or, in other words, where logs are written to). Can be a Cloud Storage bucket, a PubSub topic, a BigQuery dataset or a Cloud Logging bucket. Examples: ```python import pulumi ``` The writer associated with the sink must have access to write to the above resource. """ return pulumi.get(self, "destination") @destination.setter def destination(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "destination", value) @property @pulumi.getter def disabled(self) -> Optional[pulumi.Input[bool]]: """ If set to True, then this exclusion is disabled and it does not exclude any log entries. """ return pulumi.get(self, "disabled") @disabled.setter def disabled(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "disabled", value) @property @pulumi.getter def exclusions(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['OrganizationSinkExclusionArgs']]]]: """ Log entries that match any of the exclusion filters will not be exported. If a log entry is matched by both filter and one of exclusion_filters it will not be exported. Can be repeated multiple times for multiple exclusions. Structure is documented below. """ return pulumi.get(self, "exclusions") @exclusions.setter def exclusions(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['OrganizationSinkExclusionArgs']]]]): pulumi.set(self, "exclusions", value) @property @pulumi.getter def filter(self) -> Optional[pulumi.Input[str]]: """ An advanced logs filter that matches the log entries to be excluded. By using the sample function, you can exclude less than 100% of the matching log entries. See [Advanced Log Filters](https://cloud.google.com/logging/docs/view/advanced_filters) for information on how to write a filter. """ return pulumi.get(self, "filter") @filter.setter def filter(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "filter", value) @property @pulumi.getter(name="includeChildren") def include_children(self) -> Optional[pulumi.Input[bool]]: """ Whether or not to include children organizations in the sink export. If true, logs associated with child projects are also exported; otherwise only logs relating to the provided organization are included. """ return pulumi.get(self, "include_children") @include_children.setter def include_children(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "include_children", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ A client-assigned identifier, such as `load-balancer-exclusion`. Identifiers are limited to 100 characters and can include only letters, digits, underscores, hyphens, and periods. First character has to be alphanumeric. """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter(name="orgId") def org_id(self) -> Optional[pulumi.Input[str]]: """ The numeric ID of the organization to be exported to the sink. """ return pulumi.get(self, "org_id") @org_id.setter def org_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "org_id", value) @property @pulumi.getter(name="writerIdentity") def writer_identity(self) -> Optional[pulumi.Input[str]]: """ The identity associated with this sink. This identity must be granted write access to the configured `destination`. """ return pulumi.get(self, "writer_identity") @writer_identity.setter def writer_identity(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "writer_identity", value) class OrganizationSink(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, bigquery_options: Optional[pulumi.Input[pulumi.InputType['OrganizationSinkBigqueryOptionsArgs']]] = None, description: Optional[pulumi.Input[str]] = None, destination: Optional[pulumi.Input[str]] = None, disabled: Optional[pulumi.Input[bool]] = None, exclusions: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['OrganizationSinkExclusionArgs']]]]] = None, filter: Optional[pulumi.Input[str]] = None, include_children: Optional[pulumi.Input[bool]] = None, name: Optional[pulumi.Input[str]] = None, org_id: Optional[pulumi.Input[str]] = None, __props__=None): """ Manages a organization-level logging sink. For more information see: * [API documentation](https://cloud.google.com/logging/docs/reference/v2/rest/v2/organizations.sinks) * How-to Guides * [Exporting Logs](https://cloud.google.com/logging/docs/export) ## Example Usage ```python import pulumi import pulumi_gcp as gcp log_bucket = gcp.storage.Bucket("log-bucket") my_sink = gcp.logging.OrganizationSink("my-sink", description="some explanation on what this is", org_id="123456789", destination=log_bucket.name.apply(lambda name: f"storage.googleapis.com/{name}"), filter="resource.type = gce_instance AND severity >= WARNING") log_writer = gcp.projects.IAMMember("log-writer", role="roles/storage.objectCreator", member=my_sink.writer_identity) ``` ## Import Organization-level logging sinks can be imported using this format ```sh $ pulumi import gcp:logging/organizationSink:OrganizationSink my_sink organizations/{{organization_id}}/sinks/{{sink_id}} ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[pulumi.InputType['OrganizationSinkBigqueryOptionsArgs']] bigquery_options: Options that affect sinks exporting data to BigQuery. Structure documented below. :param pulumi.Input[str] description: A description of this exclusion. :param pulumi.Input[str] destination: The destination of the sink (or, in other words, where logs are written to). Can be a Cloud Storage bucket, a PubSub topic, a BigQuery dataset or a Cloud Logging bucket. Examples: ```python import pulumi ``` The writer associated with the sink must have access to write to the above resource. :param pulumi.Input[bool] disabled: If set to True, then this exclusion is disabled and it does not exclude any log entries. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['OrganizationSinkExclusionArgs']]]] exclusions: Log entries that match any of the exclusion filters will not be exported. If a log entry is matched by both filter and one of exclusion_filters it will not be exported. Can be repeated multiple times for multiple exclusions. Structure is documented below. :param pulumi.Input[str] filter: An advanced logs filter that matches the log entries to be excluded. By using the sample function, you can exclude less than 100% of the matching log entries. See [Advanced Log Filters](https://cloud.google.com/logging/docs/view/advanced_filters) for information on how to write a filter. :param pulumi.Input[bool] include_children: Whether or not to include children organizations in the sink export. If true, logs associated with child projects are also exported; otherwise only logs relating to the provided organization are included. :param pulumi.Input[str] name: A client-assigned identifier, such as `load-balancer-exclusion`. Identifiers are limited to 100 characters and can include only letters, digits, underscores, hyphens, and periods. First character has to be alphanumeric. :param pulumi.Input[str] org_id: The numeric ID of the organization to be exported to the sink. """ ... @overload def __init__(__self__, resource_name: str, args: OrganizationSinkArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Manages a organization-level logging sink. For more information see: * [API documentation](https://cloud.google.com/logging/docs/reference/v2/rest/v2/organizations.sinks) * How-to Guides * [Exporting Logs](https://cloud.google.com/logging/docs/export) ## Example Usage ```python import pulumi import pulumi_gcp as gcp log_bucket = gcp.storage.Bucket("log-bucket") my_sink = gcp.logging.OrganizationSink("my-sink", description="some explanation on what this is", org_id="123456789", destination=log_bucket.name.apply(lambda name: f"storage.googleapis.com/{name}"), filter="resource.type = gce_instance AND severity >= WARNING") log_writer = gcp.projects.IAMMember("log-writer", role="roles/storage.objectCreator", member=my_sink.writer_identity) ``` ## Import Organization-level logging sinks can be imported using this format ```sh $ pulumi import gcp:logging/organizationSink:OrganizationSink my_sink organizations/{{organization_id}}/sinks/{{sink_id}} ``` :param str resource_name: The name of the resource. :param OrganizationSinkArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(OrganizationSinkArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, bigquery_options: Optional[pulumi.Input[pulumi.InputType['OrganizationSinkBigqueryOptionsArgs']]] = None, description: Optional[pulumi.Input[str]] = None, destination: Optional[pulumi.Input[str]] = None, disabled: Optional[pulumi.Input[bool]] = None, exclusions: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['OrganizationSinkExclusionArgs']]]]] = None, filter: Optional[pulumi.Input[str]] = None, include_children: Optional[pulumi.Input[bool]] = None, name: Optional[pulumi.Input[str]] = None, org_id: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = OrganizationSinkArgs.__new__(OrganizationSinkArgs) __props__.__dict__["bigquery_options"] = bigquery_options __props__.__dict__["description"] = description if destination is None and not opts.urn: raise TypeError("Missing required property 'destination'") __props__.__dict__["destination"] = destination __props__.__dict__["disabled"] = disabled __props__.__dict__["exclusions"] = exclusions __props__.__dict__["filter"] = filter __props__.__dict__["include_children"] = include_children __props__.__dict__["name"] = name if org_id is None and not opts.urn: raise TypeError("Missing required property 'org_id'") __props__.__dict__["org_id"] = org_id __props__.__dict__["writer_identity"] = None super(OrganizationSink, __self__).__init__( 'gcp:logging/organizationSink:OrganizationSink', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, bigquery_options: Optional[pulumi.Input[pulumi.InputType['OrganizationSinkBigqueryOptionsArgs']]] = None, description: Optional[pulumi.Input[str]] = None, destination: Optional[pulumi.Input[str]] = None, disabled: Optional[pulumi.Input[bool]] = None, exclusions: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['OrganizationSinkExclusionArgs']]]]] = None, filter: Optional[pulumi.Input[str]] = None, include_children: Optional[pulumi.Input[bool]] = None, name: Optional[pulumi.Input[str]] = None, org_id: Optional[pulumi.Input[str]] = None, writer_identity: Optional[pulumi.Input[str]] = None) -> 'OrganizationSink': """ Get an existing OrganizationSink resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[pulumi.InputType['OrganizationSinkBigqueryOptionsArgs']] bigquery_options: Options that affect sinks exporting data to BigQuery. Structure documented below. :param pulumi.Input[str] description: A description of this exclusion. :param pulumi.Input[str] destination: The destination of the sink (or, in other words, where logs are written to). Can be a Cloud Storage
pipeline_key.name(), pipeline_record.status) raise db.Rollback() pipeline_record.status = _PipelineRecord.DONE pipeline_record.finalized_time = self._gettime() pipeline_record.put() db.run_in_transaction(txn) def transition_retry(self, pipeline_key, retry_message): """Marks the given pipeline as requiring another retry. Does nothing if all attempts have been exceeded. Args: pipeline_key: db.Key of the _PipelineRecord that needs to be retried. retry_message: User-supplied message indicating the reason for the retry. """ def txn(): pipeline_record = db.get(pipeline_key) if pipeline_record is None: logging.warning( 'Tried to retry pipeline ID "%s" but it does not exist.', pipeline_key.name()) raise db.Rollback() if pipeline_record.status not in ( _PipelineRecord.WAITING, _PipelineRecord.RUN): logging.warning( 'Tried to retry pipeline ID "%s", found bad state: %s', pipeline_key.name(), pipeline_record.status) raise db.Rollback() params = pipeline_record.params offset_seconds = ( params['backoff_seconds'] * (params['backoff_factor'] ** pipeline_record.current_attempt)) pipeline_record.next_retry_time = ( self._gettime() + datetime.timedelta(seconds=offset_seconds)) pipeline_record.current_attempt += 1 pipeline_record.retry_message = retry_message pipeline_record.status = _PipelineRecord.WAITING if pipeline_record.current_attempt >= pipeline_record.max_attempts: root_pipeline_key = ( _PipelineRecord.root_pipeline.get_value_for_datastore( pipeline_record)) logging.warning( 'Giving up on pipeline ID "%s" after %d attempt(s); causing abort ' 'all the way to the root pipeline ID "%s"', pipeline_key.name(), pipeline_record.current_attempt, root_pipeline_key.name()) # NOTE: We do *not* set the status to aborted here to ensure that # this pipeline will be finalized before it has been marked as aborted. pipeline_record.abort_message = ( 'Aborting after %d attempts' % pipeline_record.current_attempt) task = taskqueue.Task( url=self.fanout_abort_handler_path, params=dict(root_pipeline_key=root_pipeline_key)) task.add(queue_name=self.queue_name, transactional=True) else: task = taskqueue.Task( url=self.pipeline_handler_path, eta=pipeline_record.next_retry_time, params=dict(pipeline_key=pipeline_key, purpose=_BarrierRecord.START, attempt=pipeline_record.current_attempt), headers={'X-Ae-Pipeline-Key': pipeline_key}) task.add(queue_name=self.queue_name, transactional=True) pipeline_record.put() db.run_in_transaction(txn) def transition_aborted(self, pipeline_key): """Makes the given pipeline as having aborted. Does nothing if the pipeline is in a bad state. Args: pipeline_key: db.Key of the _PipelineRecord that needs to be retried. """ def txn(): pipeline_record = db.get(pipeline_key) if pipeline_record is None: logging.warning( 'Tried to abort pipeline ID "%s" but it does not exist.', pipeline_key.name()) raise db.Rollback() if pipeline_record.status not in ( _PipelineRecord.WAITING, _PipelineRecord.RUN): logging.warning( 'Tried to abort pipeline ID "%s", found bad state: %s', pipeline_key.name(), pipeline_record.status) raise db.Rollback() pipeline_record.status = _PipelineRecord.ABORTED pipeline_record.finalized_time = self._gettime() pipeline_record.put() db.run_in_transaction(txn) ################################################################################ class _BarrierHandler(webapp.RequestHandler): """Request handler for triggering barriers.""" def post(self): if 'HTTP_X_APPENGINE_TASKNAME' not in self.request.environ: self.response.set_status(403) return context = _PipelineContext.from_environ(self.request.environ) context.notify_barriers( self.request.get('slot_key'), self.request.get('cursor'), use_barrier_indexes=self.request.get('use_barrier_indexes') == 'True') class _PipelineHandler(webapp.RequestHandler): """Request handler for running pipelines.""" def post(self): if 'HTTP_X_APPENGINE_TASKNAME' not in self.request.environ: self.response.set_status(403) return context = _PipelineContext.from_environ(self.request.environ) context.evaluate(self.request.get('pipeline_key'), purpose=self.request.get('purpose'), attempt=int(self.request.get('attempt', '0'))) class _FanoutAbortHandler(webapp.RequestHandler): """Request handler for fanning out abort notifications.""" def post(self): if 'HTTP_X_APPENGINE_TASKNAME' not in self.request.environ: self.response.set_status(403) return context = _PipelineContext.from_environ(self.request.environ) context.continue_abort( self.request.get('root_pipeline_key'), self.request.get('cursor')) class _FanoutHandler(webapp.RequestHandler): """Request handler for fanning out pipeline children.""" def post(self): if 'HTTP_X_APPENGINE_TASKNAME' not in self.request.environ: self.response.set_status(403) return context = _PipelineContext.from_environ(self.request.environ) # Set of stringified db.Keys of children to run. all_pipeline_keys = set() # For backwards compatibility with the old style of fan-out requests. all_pipeline_keys.update(self.request.get_all('pipeline_key')) # Fetch the child pipelines from the parent. This works around the 10KB # task payload limit. This get() is consistent-on-read and the fan-out # task is enqueued in the transaction that updates the parent, so the # fanned_out property is consistent here. parent_key = self.request.get('parent_key') child_indexes = [int(x) for x in self.request.get_all('child_indexes')] if parent_key: parent_key = db.Key(parent_key) parent = db.get(parent_key) for index in child_indexes: all_pipeline_keys.add(str(parent.fanned_out[index])) all_tasks = [] for pipeline_key in all_pipeline_keys: all_tasks.append(taskqueue.Task( url=context.pipeline_handler_path, params=dict(pipeline_key=pipeline_key), headers={'X-Ae-Pipeline-Key': pipeline_key}, name='ae-pipeline-fan-out-' + db.Key(pipeline_key).name())) batch_size = 100 # Limit of taskqueue API bulk add. for i in xrange(0, len(all_tasks), batch_size): batch = all_tasks[i:i+batch_size] try: taskqueue.Queue(context.queue_name).add(batch) except (taskqueue.TombstonedTaskError, taskqueue.TaskAlreadyExistsError): pass class _CleanupHandler(webapp.RequestHandler): """Request handler for cleaning up a Pipeline.""" def post(self): if 'HTTP_X_APPENGINE_TASKNAME' not in self.request.environ: self.response.set_status(403) return root_pipeline_key = db.Key(self.request.get('root_pipeline_key')) logging.debug('Cleaning up root_pipeline_key=%r', root_pipeline_key) # TODO(user): Accumulate all BlobKeys from _PipelineRecord and # _SlotRecord entities and delete them. pipeline_keys = ( _PipelineRecord.all(keys_only=True) .filter('root_pipeline =', root_pipeline_key)) db.delete(pipeline_keys) slot_keys = ( _SlotRecord.all(keys_only=True) .filter('root_pipeline =', root_pipeline_key)) db.delete(slot_keys) barrier_keys = ( _BarrierRecord.all(keys_only=True) .filter('root_pipeline =', root_pipeline_key)) db.delete(barrier_keys) status_keys = ( _StatusRecord.all(keys_only=True) .filter('root_pipeline =', root_pipeline_key)) db.delete(status_keys) barrier_index_keys = ( _BarrierIndex.all(keys_only=True) .filter('root_pipeline =', root_pipeline_key)) db.delete(barrier_index_keys) class _CallbackHandler(webapp.RequestHandler): """Receives asynchronous callback requests from humans or tasks.""" def post(self): self.get() def get(self): try: self.run_callback() except _CallbackTaskError, e: logging.error(str(e)) if 'HTTP_X_APPENGINE_TASKRETRYCOUNT' in self.request.environ: # Silently give up on tasks that have retried many times. This # probably means that the target pipeline has been deleted, so there's # no reason to keep trying this task forever. retry_count = int( self.request.environ.get('HTTP_X_APPENGINE_TASKRETRYCOUNT')) if retry_count > _MAX_CALLBACK_TASK_RETRIES: logging.error('Giving up on task after %d retries', _MAX_CALLBACK_TASK_RETRIES) return # NOTE: The undescriptive error code 400 are present to address security # risks of giving external users access to cause PipelineRecord lookups # and execution. self.response.set_status(400) def run_callback(self): """Runs the callback for the pipeline specified in the request. Raises: _CallbackTaskError if something was wrong with the request parameters. """ pipeline_id = self.request.get('pipeline_id') if not pipeline_id: raise _CallbackTaskError('"pipeline_id" parameter missing.') pipeline_key = db.Key.from_path(_PipelineRecord.kind(), pipeline_id) pipeline_record = db.get(pipeline_key) if pipeline_record is None: raise _CallbackTaskError( 'Pipeline ID "%s" for callback does not exist.' % pipeline_id) params = pipeline_record.params real_class_path = params['class_path'] try: pipeline_func_class = mr_util.for_name(real_class_path) except ImportError, e: raise _CallbackTaskError( 'Cannot load class named "%s" for pipeline ID "%s".' % (real_class_path, pipeline_id)) if 'HTTP_X_APPENGINE_TASKNAME' not in self.request.environ: if pipeline_func_class.public_callbacks: pass elif pipeline_func_class.admin_callbacks: if not users.is_current_user_admin(): raise _CallbackTaskError( 'Unauthorized callback for admin-only pipeline ID "%s"' % pipeline_id) else: raise _CallbackTaskError( 'External callback for internal-only pipeline ID "%s"' % pipeline_id) kwargs = {} for key in self.request.arguments(): if key != 'pipeline_id': kwargs[str(key)] = self.request.get(key) def perform_callback(): stage = pipeline_func_class.from_id(pipeline_id) if stage is None: raise _CallbackTaskError( 'Pipeline ID "%s" deleted during callback' % pipeline_id) return stage._callback_internal(kwargs) # callback_xg_transaction is a 3-valued setting (None=no trans, # False=1-eg-trans, True=xg-trans) if pipeline_func_class._callback_xg_transaction is not None: transaction_options = db.create_transaction_options( xg=pipeline_func_class._callback_xg_transaction) callback_result = db.run_in_transaction_options(transaction_options, perform_callback) else: callback_result = perform_callback() if callback_result is not None: status_code, content_type, content = callback_result self.response.set_status(status_code) self.response.headers['Content-Type'] = content_type self.response.out.write(content) ################################################################################ def _get_timestamp_ms(when): """Converts a datetime.datetime to integer milliseconds since the epoch. Requires special handling to preserve microseconds. Args: when: A datetime.datetime instance. Returns: Integer time since the epoch in milliseconds. If the supplied 'when' is None, the return value will be None. """ if when is None: return None ms_since_epoch = float(time.mktime(when.utctimetuple()) * 1000.0) ms_since_epoch += when.microsecond / 1000.0 return int(ms_since_epoch) def _get_internal_status(pipeline_key=None, pipeline_dict=None, slot_dict=None, barrier_dict=None, status_dict=None): """Gets the UI dictionary of a pipeline from a set of status dictionaries. Args: pipeline_key: The key of the pipeline to lookup. pipeline_dict: Dictionary mapping pipeline db.Key to _PipelineRecord. Default is an empty dictionary. slot_dict: Dictionary mapping slot db.Key to _SlotRecord. Default is an empty dictionary. barrier_dict: Dictionary mapping barrier db.Key to _BarrierRecord. Default is an empty dictionary. status_dict: Dictionary mapping status record db.Key to _StatusRecord. Default is an empty dictionary. Returns: Dictionary with the keys: classPath: The pipeline function being run. args: List of positional argument slot dictionaries. kwargs: Dictionary of keyword argument slot dictionaries. outputs: Dictionary of output slot dictionaries. children: List of child pipeline IDs. queueName: Queue on which this pipeline is running. afterSlotKeys: List of Slot Ids after which this pipeline runs. currentAttempt: Number of the current attempt, starting at 1. maxAttempts: Maximum number of attempts before aborting. backoffSeconds: Constant factor for backoff before retrying. backoffFactor: Exponential factor for backoff before retrying. status: Current status of the pipeline. startTimeMs: When this pipeline ran or will run due to retries, if present. endTimeMs: When this pipeline finalized, if present. lastRetryMessage: Why the pipeline failed during the last retry, if there was a failure; may be empty. abortMessage: For root pipelines, why the pipeline was aborted if it was aborted; may be empty. Dictionary will contain these keys if explicit status is set: statusTimeMs: When the status was set as milliseconds since the epoch. statusMessage: Status message, if present. statusConsoleUrl: The relative URL for the console of this pipeline. statusLinks: Dictionary mapping human-readable names to relative URLs for related URLs to this pipeline. Raises: PipelineStatusError if any input is bad. """ if pipeline_dict is None: pipeline_dict = {} if slot_dict is None: slot_dict = {} if barrier_dict is None: barrier_dict = {} if status_dict is None: status_dict = {} pipeline_record = pipeline_dict.get(pipeline_key) if pipeline_record is None: raise PipelineStatusError( 'Could not find pipeline ID "%s"' %
<reponame>gjkennedy/OpenMDAO """ A console script wrapper for multiple openmdao functions. """ import sys import os import argparse from openmdao import __version__ as version try: import pkg_resources except ImportError: pkg_resources = None from itertools import chain import openmdao.utils.hooks as hooks from openmdao.visualization.n2_viewer.n2_viewer import n2 from openmdao.visualization.connection_viewer.viewconns import view_connections try: import bokeh from openmdao.visualization.meta_model_viewer.meta_model_visualization import view_metamodel except ImportError: bokeh = None from openmdao.components.meta_model_unstructured_comp import MetaModelUnStructuredComp from openmdao.components.meta_model_structured_comp import MetaModelStructuredComp from openmdao.devtools.debug import config_summary, tree from openmdao.devtools.itrace import _itrace_exec, _itrace_setup_parser from openmdao.devtools.iprofile_app.iprofile_app import _iprof_exec, _iprof_setup_parser from openmdao.devtools.iprofile import _iprof_totals_exec, _iprof_totals_setup_parser from openmdao.devtools.iprof_mem import _mem_prof_exec, _mem_prof_setup_parser, \ _mempost_exec, _mempost_setup_parser from openmdao.devtools.iprof_utils import _Options from openmdao.error_checking.check_config import _check_config_cmd, _check_config_setup_parser from openmdao.utils.mpi import MPI from openmdao.utils.find_cite import print_citations from openmdao.utils.code_utils import _calltree_setup_parser, _calltree_exec from openmdao.utils.coloring import _total_coloring_setup_parser, _total_coloring_cmd, \ _partial_coloring_setup_parser, _partial_coloring_cmd, \ _view_coloring_setup_parser, _view_coloring_exec from openmdao.utils.scaffold import _scaffold_setup_parser, _scaffold_exec from openmdao.utils.file_utils import _load_and_exec, _to_filename from openmdao.utils.entry_points import _list_installed_setup_parser, _list_installed_cmd, \ split_ep, _compute_entry_points_setup_parser, _compute_entry_points_exec, \ _find_plugins_setup_parser, _find_plugins_exec from openmdao.core.component import Component def _n2_setup_parser(parser): """ Set up the openmdao subparser for the 'openmdao n2' command. Parameters ---------- parser : argparse subparser The parser we're adding options to. """ parser.add_argument('file', nargs=1, help='Python script or recording containing the model.') parser.add_argument('-o', default='n2.html', action='store', dest='outfile', help='html output file.') parser.add_argument('--no_browser', action='store_true', dest='no_browser', help="don't display in a browser.") parser.add_argument('--embed', action='store_true', dest='embeddable', help="create embeddable version.") parser.add_argument('--title', default=None, action='store', dest='title', help='diagram title.') parser.add_argument('--use_declare_partial_info', action='store_true', dest='use_declare_partial_info', help="use declare partial info for internal connectivity.") def _n2_cmd(options, user_args): """ Process command line args and call n2 on the specified file. Parameters ---------- options : argparse Namespace Command line options. user_args : list of str Command line options after '--' (if any). Passed to user script. """ filename = _to_filename(options.file[0]) if filename.endswith('.py'): # the file is a python script, run as a post_setup hook def _noraise(prob): prob.model._raise_connection_errors = False def _viewmod(prob): n2(prob, outfile=options.outfile, show_browser=not options.no_browser, title=options.title, embeddable=options.embeddable, use_declare_partial_info=options.use_declare_partial_info) exit() # could make this command line selectable later hooks._register_hook('setup', 'Problem', pre=_noraise) hooks._register_hook('final_setup', 'Problem', post=_viewmod) _load_and_exec(options.file[0], user_args) else: # assume the file is a recording, run standalone n2(filename, outfile=options.outfile, title=options.title, show_browser=not options.no_browser, embeddable=options.embeddable, use_declare_partial_info=options.use_declare_partial_info) def _view_connections_setup_parser(parser): """ Set up the openmdao subparser for the 'openmdao view_connections' command. Parameters ---------- parser : argparse subparser The parser we're adding options to. """ parser.add_argument('file', nargs=1, help='Python file containing the model.') parser.add_argument('-o', default='connections.html', action='store', dest='outfile', help='html output file.') parser.add_argument('-t', '--title', action='store', dest='title', help='title of web page.') parser.add_argument('--no_browser', action='store_true', dest='no_browser', help="don't display in a browser.") parser.add_argument('-v', '--show_values', action='store_true', dest='show_values', help="Display values.") parser.add_argument('-p', '--problem', action='store', dest='problem', help='Problem name') def _view_connections_cmd(options, user_args): """ Return the post_setup hook function for 'openmdao view_connections'. Parameters ---------- options : argparse Namespace Command line options. user_args : list of str Args to be passed to the user script. """ def _viewconns(prob): if options.title: title = options.title else: title = "Connections for %s" % os.path.basename(options.file[0]) view_connections(prob, outfile=options.outfile, show_browser=not options.no_browser, show_values=options.show_values, title=title) exit() # register the hook if options.show_values: funcname = 'final_setup' else: funcname = 'setup' hooks._register_hook(funcname, class_name='Problem', inst_id=options.problem, post=_viewconns) _load_and_exec(options.file[0], user_args) def _meta_model_parser(parser): """ Set up the openmdao subparser for the 'openmdao meta_model' command. Parameters ---------- parser : argparse subparser The parser we're adding options to. """ parser.add_argument('file', nargs=1, help='Python file containing the model.') parser.add_argument('-m', '--metamodel_pathname', action='store', dest='pathname', help='pathname of the metamodel component.') parser.add_argument('-r', '--resolution', default=50, type=int, action='store', dest='resolution', help='Number of points to create contour grid') parser.add_argument('-p', '--port_number', default=5007, action='store', dest='port_number', help='Port number to open viewer') parser.add_argument('--no_browser', action='store_false', dest='browser', help='Bokeh server will start server without browser') def _meta_model_cmd(options, user_args): """ Return the post_setup hook function for 'openmdao meta_model'. Parameters ---------- options : argparse Namespace Command line options. user_args : list of str Args to be passed to the user script. """ def _view_metamodel(prob): if bokeh is None: print("bokeh must be installed to view a MetaModel. Use the command:\n", " pip install bokeh") exit() hooks._unregister_hook('final_setup', 'Problem') mm_types = (MetaModelStructuredComp, MetaModelUnStructuredComp) pathname = options.pathname port_number = options.port_number resolution = options.resolution browser = options.browser if pathname: comp = prob.model._get_subsystem(pathname) if comp and isinstance(comp, mm_types): view_metamodel(comp, resolution, port_number, browser) exit() else: comp = None metamodels = {mm.pathname: mm for mm in prob.model.system_iter(include_self=True, typ=mm_types)} mm_names = list(metamodels.keys()) mm_count = len(mm_names) if mm_count == 0: print("No Metamodel components found in model.") elif mm_count == 1 and not pathname: comp = metamodels[mm_names[0]] view_metamodel(comp, resolution, port_number, browser) else: try_str = "Try one of the following: {}.".format(mm_names) if not pathname: print("\nMetamodel not specified. {}".format(try_str)) elif not comp: print("\nMetamodel '{}' not found.\n {}".format(pathname, try_str)) else: print("\n'{}' is not a Metamodel.\n {}".format(pathname, try_str)) exit() hooks._register_hook('final_setup', 'Problem', post=_view_metamodel) _load_and_exec(options.file[0], user_args) def _config_summary_setup_parser(parser): """ Set up the openmdao subparser for the 'openmdao summary' command. Parameters ---------- parser : argparse subparser The parser we're adding options to. """ parser.add_argument('file', nargs=1, help='Python file containing the model.') def _config_summary_cmd(options, user_args): """ Return the post_setup hook function for 'openmdao summary'. Parameters ---------- options : argparse Namespace Command line options. user_args : list of str Args to be passed to the user script. """ def summary(prob): config_summary(prob) sys.exit(0) hooks._register_hook('final_setup', 'Problem', post=summary) _load_and_exec(options.file[0], user_args) def _tree_setup_parser(parser): """ Set up the openmdao subparser for the 'openmdao tree' command. Parameters ---------- parser : argparse subparser The parser we're adding options to. """ parser.add_argument('file', nargs=1, help='Python file containing the model.') parser.add_argument('-o', default=None, action='store', dest='outfile', help='Output file name. By default, output goes to stdout.') parser.add_argument('-c', '--colors', action='store_true', dest='show_colors', help="Display colors if the terminal supports it. Requires 'colorama' " "python package. Use 'pip install colorama' to install it.") parser.add_argument('-d', '--depth', action='store', type=int, dest='depth', default=0, help="Max depth of tree to display.") parser.add_argument('-a', '--attr', action='append', default=[], dest='attrs', help='Add an attribute to search for in tree systems.') parser.add_argument('-v', '--var', action='append', default=[], dest='vecvars', help='Add a variable to search for in vectors of tree components. ' 'Use component relative names.') parser.add_argument('-r', '--rank', action='store', type=int, dest='rank', default=0, help="Display the tree on this rank (if MPI is active).") parser.add_argument('-p', '--problem', action='store', dest='problem', help='Problem name') parser.add_argument('-s', '--sizes', action='store_true', dest='show_sizes', help="Display input and output sizes.") parser.add_argument('--approx', action='store_true', dest='show_approx', help="Show which components compute approximations.") def _get_tree_filter(attrs, vecvars): """ Pull attributes and input/output vector variables out of a tree System. Parameters ---------- attrs : list of str Names of attributes (may contain dots). vecvars : list of str Names of variables contained in the input or output vectors. Use component relative names. Returns ------- function A function that takes a System and returns a list of name value pairs. """ def _finder(system): found = [] for attr in attrs: parts = attr.split('.') # allow attrs with dots try: obj = system for p in parts: obj = getattr(obj, p) found.append((attr, obj)) except AttributeError: pass if isinstance(system, Component): for var in vecvars: if var in system._var_rel2meta: if var in system._outputs: found.append((var, system._outputs[var])) elif var in system._inputs: found.append((var, system._inputs[var])) return found return _finder def _tree_cmd(options, user_args): """ Return the post_setup hook function for 'openmdao tree'. Parameters ---------- options : argparse Namespace Command line options. user_args : list of str Args to be passed to the user script. """ if options.outfile is None: out = sys.stdout else: out = open(options.outfile, 'w') if options.attrs or options.vecvars: filt = _get_tree_filter(options.attrs, options.vecvars) else: filt = None def _tree(prob): tree(prob, show_colors=options.show_colors, show_sizes=options.show_sizes, show_approx=options.show_approx, filter=filt, max_depth=options.depth, rank=options.rank, stream=out) exit() # register the hook if options.vecvars or options.show_sizes or options.show_approx: funcname = 'final_setup' else: funcname = 'setup' hooks._register_hook(funcname, class_name='Problem', inst_id=options.problem, post=_tree) _load_and_exec(options.file[0], user_args) def _cite_setup_parser(parser): """ Set up the openmdao subparser for the 'openmdao cite' command. Parameters ---------- parser : argparse subparser The parser we're adding options to. """ parser.add_argument('file', nargs=1, help='Python file containing the model.') parser.add_argument('-o', default=None, action='store', dest='outfile', help='Name of output file. By default, output goes to stdout.') parser.add_argument('-c', '--class', action='append', default=[], dest='classes', help='Find citation for this class.') def _cite_cmd(options, user_args): """ Run the `openmdao cite` command. Parameters ---------- options : argparse Namespace Command line options. user_args : list of str Args to be passed to the user script. """ if options.outfile is None: out = sys.stdout else: out = open(options.outfile, 'w') if not options.classes: options.classes = None def _cite(prob): if not MPI or MPI.COMM_WORLD.rank == 0: print_citations(prob, classes=options.classes, out_stream=out) exit() hooks._register_hook('setup', 'Problem', post=_cite) _load_and_exec(options.file[0], user_args) # this dict should contain names mapped to tuples of the form: # (setup_parser_func, executor, description) _command_map = { 'call_tree': (_calltree_setup_parser, _calltree_exec, "Display the call tree for the specified
<gh_stars>0 import abc import collections import copy import inspect import itertools import json import re import warnings from datetime import datetime import elasticsearch_dsl as dsl from django.conf import settings from django.contrib import messages from django.forms.forms import Form from django.http import Http404, JsonResponse, QueryDict, StreamingHttpResponse from django.http.response import HttpResponseBadRequest, HttpResponseForbidden from django.shortcuts import redirect, render from django.template import Context, RequestContext, TemplateDoesNotExist, loader from django.utils import timezone from django.utils.encoding import force_text from django.utils.html import escape, format_html from django.utils.http import urlencode from django.views.generic import View from django.views.generic.edit import CreateView, FormView from elasticsearch_dsl import Q from elasticsearch_dsl.utils import AttrList from .facets import TermsFacet, RangeFilter, TextFacet from .mapping import DEFAULT_ANALYZER from .signals import advanced_search_performed, search_complete from .templatetags.seeker import seeker_format from seeker.utils import update_timestamp_index seekerview_field_templates = {} class Column(object): """ """ view = None visible = False def __init__(self, field, label=None, sort=None, value_format=None, template=None, header=None, export=True, highlight=None, field_definition=None): self.field = field self.label = label if label is not None else field.replace('_', ' ').replace('.raw', '').capitalize() self.sort = sort self.template = template self.value_format = value_format self.header_html = escape(self.label) if header is None else header self.export = export self.highlight = highlight self.field_definition = field_definition def __str__(self): return self.label def __repr__(self): return 'Column(%s)' % self.field def bind(self, view, visible): self.view = view self.visible = visible if self.visible: if self.template: self.template_obj = loader.get_template(self.template) else: self.template_obj = self.view.get_field_template(self.field) # Set the model_lower variable on Column to the lowercased name of the model on the mapping once view is set above try: self.model_lower = self.view.document._model except AttributeError: document = self.view.document if hasattr(document, 'model'): self.model_lower = document.model.__name__.lower() elif hasattr(document, 'queryset'): self.model_lower = document.queryset().model.__name__.lower() else: self.model_lower = '' self.view.document._model = self.model_lower return self def header(self): cls = '%s_%s' % (self.view.document._doc_type.name, self.field.replace('.', '_')) cls += ' %s_%s' % (self.model_lower, self.field.replace('.', '_')) if not self.sort: return format_html('<th class="{}">{}</th>', cls, self.header_html) q = self.view.request.GET.copy() field = q.get('s', '') sort = None cls += ' sort' if field.lstrip('-') == self.field: # If the current sort field is this field, give it a class a change direction. sort = 'Descending' if field.startswith('-') else 'Ascending' cls += ' desc' if field.startswith('-') else ' asc' d = '' if field.startswith('-') else '-' q['s'] = '%s%s' % (d, self.field) else: q['s'] = self.field next_sort = 'descending' if sort == 'Ascending' else 'ascending' sr_label = format_html(' <span class="sr-only">({})</span>', sort) if sort else '' if self.field_definition: span = format_html('<span title="{}" class ="fa fa-question-circle"></span>', self.field_definition) else: span = '' html = format_html( '<th class="{}"><a href="?{}" title="Click to sort {}" data-sort="{}">{}{} {}</a></th>', cls, q.urlencode(), next_sort, q['s'], self.header_html, sr_label, span ) return html def context(self, result, **kwargs): return kwargs def render(self, result, **kwargs): value = getattr(result, self.field, None) try: if '*' in self.highlight: # If highlighting was requested for multiple fields, grab any matching fields as a dictionary. r = self.highlight.replace('*', r'\w+').replace('.', r'\.') highlight = {f.replace('.', '_'): result.meta.highlight[f] for f in result.meta.highlight if re.match(r, f)} else: highlight = result.meta.highlight[self.highlight] except Exception: highlight = [] # If the value is a list (AttrList is DSL's custom list) then highlight won't work properly # The "meta.highlight" will only contain the matched item, not the others if highlight and isinstance(value, AttrList): # We are going to modify this copy with the appropriate highlights modified_values = copy.deepcopy(value) for highlighted_value in highlight: # Remove the <em> tags elasticsearch added stripped_value = highlighted_value.replace('<em>', '').replace('</em>', '') index_to_replace = None # Iterate over all of the values and try to find the item that caused the "hit" for index, individual_value in enumerate(value): if stripped_value == individual_value: index_to_replace = index break # Specifically check against None because "0" is falsy (but a valid index) if index_to_replace is not None: modified_values[index_to_replace] = highlighted_value highlight = modified_values if self.value_format: value = self.value_format(value) if highlight: highlight = self.value_format(highlight) params = { 'result': result, 'field': self.field, 'value': value, 'highlight': highlight, 'model_lower': self.model_lower, 'doc_class_name': result.__class__.__name__.lower(), 'view': self.view, 'user': self.view.request.user, 'query': self.view.get_keywords(self.view.request.GET), } params.update(self.context(result, **kwargs)) return self.template_obj.render(params) def export_value(self, result): export_field = self.field if self.export is True else self.export if export_field: value = getattr(result, export_field, '') if isinstance(value, datetime) and timezone.is_aware(value): value = timezone.localtime(value) export_val = ', '.join(force_text(v.to_dict() if hasattr(v, 'to_dict') else v) for v in value) if isinstance(value, AttrList) else seeker_format(value) else: export_val = '' return export_val class SeekerView(View): document = None """ A :class:`elasticsearch_dsl.DocType` class to present a view for. """ using = None """ The ES connection alias to use. """ index = None """ The ES index to use. Will use the index set on the mapping if this is not set. """ template_name = 'seeker/seeker.html' """ The overall seeker template to render. """ search_form_template = 'seeker/form.html' """ The template to render seeker form """ header_template = 'seeker/header.html' """ The template used to render the search results header. """ results_template = 'seeker/results.html' """ The template used to render the search results. """ footer_template = 'seeker/footer.html' """ The template used to render the search results footer. """ columns = None """ A list of Column objects, or strings representing mapping field names. If None, all mapping fields will be available. """ exclude = None """ A list of field names to exclude when generating columns. """ login_required_columns = [] """ A list of field names that will automatically be added to the exclude when generating columns if the user is not authenticated. """ display = None """ A list of field/column names to display by default. """ post_filter_facets = False """ A boolean set to optionally define a dynamic response in the facets and results after a change to the form You will need to set javascript and ajax on the seeker template in order to fully enable these features """ required_display = [] """ A list of tuples, ex. ('field name', 0), representing field/column names that will always be displayed (cannot be hidden by the user). The second value is the index/position of the field (used as the index in list.insert(index, 'field name')). """ @property def required_display_fields(self): return [t[0] for t in self.required_display] sort = None """ A list of field/column names to sort by default, or None for no default sort order. For reverse order prefix the field with '-'. """ search = None """ A list of field names to search. By default, will included all fields defined on the document mapping. """ highlight = True """ A list of field names to highlight, or True/False to enable/disable highlighting for all fields. """ highlight_encoder = 'html' """ An 'encoder' parameter is used when highlighting to define how highlighted text will be encoded. It can be either 'default' (no encoding) or 'html' (will escape html, if you use html highlighting tags). """ number_of_fragments = 0 """ The number of fragments returned by highlighted search, set to 0 by default (which gives all results) """ facets = [] """ A list of :class:`seeker.Facet` objects that are available to facet the results by. """ initial_facets = {} """ A dictionary of initial facets, mapping fields to lists of initial values. """ page_size = 10 """ The number of results to show per page. """ available_page_sizes = [] """ If set allows user to set options for page size to be changed, (must include the default page_size) """ page_spread = 7 """ The number of pages (not including first and last) to show in the paginator widget. """ can_save = True """ Whether searches for this view can be saved. """ export_name = 'seeker' """ The filename (without extension, which will be .csv) to use when exporting data from this view. """ export_timestamp = False """ Whether or not to append a timestamp of the current time to the export filename when exporting data from this view. """ show_rank = True """ Whether or not to show a Rank column when performing keyword searches. """ field_columns = {} """ A dictionary of field column overrides. """ field_labels = {} """ A dictionary of field label overrides. """ field_definitions = {} """ A dictionary of field definitions. These appear in the header of a column.
'' activity_header.paragraphs[0].add_run("Purpose").bold = True activity_header.paragraphs[0].alignment = WD_ALIGN_PARAGRAPH.CENTER role_header = server_table.cell(0, 2) role_header.text = '' role_header.paragraphs[0].add_run("Role").bold = True role_header.paragraphs[0].alignment = WD_ALIGN_PARAGRAPH.CENTER # Loop through the domains to create rows counter = 1 for server in report_json['infrastructure']['servers']['static'].values(): server_table.add_row() name_cell = server_table.cell(counter, 0) name_cell.text = "{}".format(server['ip_address']) name_cell.paragraphs[0].alignment = WD_ALIGN_PARAGRAPH.CENTER activity_cell = server_table.cell(counter, 1) activity_cell.text = "{}".format(server['activity']) activity_cell.paragraphs[0].alignment = WD_ALIGN_PARAGRAPH.CENTER role_cell = server_table.cell(counter, 2) role_cell.text = "{}".format(server['role']) role_cell.paragraphs[0].alignment = WD_ALIGN_PARAGRAPH.CENTER # Increase counter for the next row counter += 1 for server in report_json['infrastructure']['servers']['cloud'].values(): server_table.add_row() name_cell = server_table.cell(counter, 0) name_cell.text = "{}".format(server['ip_address']) name_cell.paragraphs[0].alignment = WD_ALIGN_PARAGRAPH.CENTER activity_cell = server_table.cell(counter, 1) activity_cell.text = "{}".format(server['activity']) activity_cell.paragraphs[0].alignment = WD_ALIGN_PARAGRAPH.CENTER role_cell = server_table.cell(counter, 2) role_cell.text = "{}".format(server['role']) role_cell.paragraphs[0].alignment = WD_ALIGN_PARAGRAPH.CENTER # Increase counter for the next row counter += 1 self.create_newline() # If the style needs to be updated, update it in template.docx connection_table = self.spenny_doc.add_table( rows=1, cols=3, style='Ghostwriter Table') connection_table.allow_autofit = True connection_table.autofit = True server_header = connection_table.cell(0, 0) server_header.text = "" server_header.paragraphs[0].add_run("Domain").bold = True server_header.paragraphs[0].alignment = WD_ALIGN_PARAGRAPH.CENTER domain_header = connection_table.cell(0, 1) domain_header.text = "" domain_header.paragraphs[0].add_run("Server").bold = True domain_header.paragraphs[0].alignment = WD_ALIGN_PARAGRAPH.CENTER domain_header = connection_table.cell(0, 2) domain_header.text = "" domain_header.paragraphs[0].add_run("CDN Endpoint").bold = True domain_header.paragraphs[0].alignment = WD_ALIGN_PARAGRAPH.CENTER # Loop through the domains to create rows counter = 1 for connection in report_json[ 'infrastructure']['domains_and_servers'].values(): connection_table.add_row() server_cell = connection_table.cell(counter, 0) server_cell.text = "{}".format(connection['domain']) server_cell.paragraphs[0].alignment = WD_ALIGN_PARAGRAPH.CENTER domain_cell = connection_table.cell(counter, 1) domain_cell.text = "{}".format(connection['servers']) domain_cell.paragraphs[0].alignment = WD_ALIGN_PARAGRAPH.CENTER domain_cell = connection_table.cell(counter, 2) domain_cell.text = "{}".format(connection['cdn_endpoint']) domain_cell.paragraphs[0].alignment = WD_ALIGN_PARAGRAPH.CENTER # Increase counter for the next row counter += 1 self.spenny_doc.add_page_break() ##################################### # Create the Findings Summary Table # ##################################### # If the style needs to be updated, update it in template.docx finding_table = self.spenny_doc.add_table( rows=1, cols=2, style='Ghostwriter Table') finding_header = finding_table.cell(0, 0) finding_header.text = "" finding_header.paragraphs[0].add_run("Finding").bold = True finding_header.paragraphs[0].alignment = WD_ALIGN_PARAGRAPH.CENTER severity_header = finding_table.cell(0, 1) severity_header.text = "" severity_header.paragraphs[0].add_run("Severity").bold = True severity_header.paragraphs[0].alignment = WD_ALIGN_PARAGRAPH.CENTER # Re-size table headers to provide space for finding name widths = (Inches(5.4), Inches(1.1)) for row in finding_table.rows: for idx, width in enumerate(widths): row.cells[idx].width = width finding_table.allow_autofit = True finding_table.autofit = True # Loop through the findings to create rows counter = 1 for finding in report_json['findings'].values(): finding_table.add_row() finding_cell = finding_table.cell(counter, 0) finding_cell.text = "{}".format(finding['title']) finding_cell.paragraphs[0].alignment = WD_ALIGN_PARAGRAPH.CENTER severity_cell = finding_table.cell(counter, 1) severity_cell.paragraphs[0].alignment = WD_ALIGN_PARAGRAPH.CENTER run = severity_cell.paragraphs[0].add_run( '{}'.format(finding['severity'])) font = run.font font.color.rgb = RGBColor(0x00, 0x00, 0x00) run.bold = False severity_cell.paragraphs[0].alignment = WD_ALIGN_PARAGRAPH.CENTER # Shading a table cell requires parsing some XML and then editing # the cell to be shaded if finding['severity'].lower() == 'informational': shading = parse_xml(r'<w:shd {} w:fill="{}"/>'. format(nsdecls('w'), self.informational_color)) elif finding['severity'].lower() == 'low': shading = parse_xml(r'<w:shd {} w:fill="{}"/>'. format(nsdecls('w'), self.low_color)) elif finding['severity'].lower() == 'medium': shading = parse_xml(r'<w:shd {} w:fill="{}"/>'. format(nsdecls('w'), self.medium_color)) elif finding['severity'].lower() == 'high': shading = parse_xml(r'<w:shd {} w:fill="{}"/>'. format(nsdecls('w'), self.high_color)) else: shading = parse_xml(r'<w:shd {} w:fill="{}"/>'. format(nsdecls('w'), self.critical_color)) # Modify font to white so it contrasts better against dark cell font.color.rgb = RGBColor(0xFF, 0xFF, 0xFF) # Manually append the appropriate shading to the risk rating cell finding_table.rows[counter].cells[1]._tc.get_or_add_tcPr().\ append(shading) # Increase counter for the next row counter += 1 ######################################## # Create the Individual Findings Pages # ######################################## # Add a page break and create each finding's page self.spenny_doc.add_page_break() for finding in report_json['findings'].values(): # There's a special Heading 3 for the finding title so we don't # use `add_heading()` here p = self.spenny_doc.add_paragraph(finding['title']) p.style = 'Heading 3 - Finding' # This is Heading 4 but we want to make severity a run to color it # so we don't use `add_heading()` here p = self.spenny_doc.add_paragraph() p.style = 'Heading 4' run = p.add_run('Severity – ') run = p.add_run('{}'.format(finding['severity'])) font = run.font if finding['severity'].lower() == 'informational': font.color.rgb = RGBColor( self.informational_color_hex[0], self.informational_color_hex[1], self.informational_color_hex[2]) elif finding['severity'].lower() == 'low': font.color.rgb = RGBColor( self.low_color_hex[0], self.low_color_hex[1], self.low_color_hex[2]) elif finding['severity'].lower() == 'medium': font.color.rgb = RGBColor( self.medium_color_hex[0], self.medium_color_hex[1], self.medium_color_hex[2]) elif finding['severity'].lower() == 'high': font.color.rgb = RGBColor( self.high_color_hex[0], self.high_color_hex[1], self.high_color_hex[2]) else: font.color.rgb = RGBColor( self.critical_color_hex[0], self.critical_color_hex[2], self.critical_color_hex[2]) # Add an Affected Entities section self.spenny_doc.add_heading('Affected Entities', 4) if not finding['affected_entities']: finding['affected_entities'] = 'Must Be Provided' all_entities = finding['affected_entities'].split('\n') for entity in all_entities: entity = entity.strip() p = self.spenny_doc.add_paragraph(entity, style='Normal') self.list_number(p, level=0, num=False) p.paragraph_format.left_indent = Inches(0.5) # Add a Description section that may also include evidence figures self.spenny_doc.add_heading('Description', 4) self.process_text(finding['description'], finding, report_json) # Create Impact section self.spenny_doc.add_heading('Impact', 4) self.process_text( finding['impact'], finding, report_json) # Create Recommendations section self.spenny_doc.add_heading('Recommendation', 4) self.process_text( finding['recommendation'], finding, report_json) # Create Replication section self.spenny_doc.add_heading('Replication Steps', 4) self.process_text( finding['replication_steps'], finding, report_json) # Check if techniques are provided before creating a host # detection section if finding['host_detection_techniques']: self.spenny_doc.add_heading( 'Adversary Detection Techniques – Host', 4) self.process_text( finding['host_detection_techniques'], finding, report_json) # Check if techniques are provided before creating a network # detection section if finding['network_detection_techniques']: self.spenny_doc.add_heading( 'Adversary Detection Techniques – Network', 4) self.process_text( finding['network_detection_techniques'], finding, report_json) # Create References section self.spenny_doc.add_heading('References', 4) self.process_text(finding['references'], finding, report_json) # On to the next finding self.spenny_doc.add_page_break() # Finalize document and return it for an HTTP response return self.spenny_doc def generate_excel_xlsx(self, memory_object): """Generate the finding rows and save the document.""" from ghostwriter.reporting.models import Evidence # Generate the JSON for the report report_json = json.loads(self.generate_json()) # Create xlsxwriter spenny_doc = memory_object worksheet = spenny_doc.add_worksheet('Findings') # Create some basic formats # Header format bold_format = spenny_doc.add_format({'bold': True}) bold_format.set_text_wrap() bold_format.set_align('vcenter') # Affected assets format asset_format = spenny_doc.add_format() asset_format.set_text_wrap() asset_format.set_align('vcenter') asset_format.set_align('center') # Remaining cells wrap_format = spenny_doc.add_format() wrap_format.set_text_wrap() wrap_format.set_align('vcenter') # Create header row for findings col = 0 headers = ['Finding', 'Severity', 'Affected Entities', 'Description', 'Impact', 'Recommendation', 'Replication Steps', 'Host Detection Techniques', 'Network Detection Techniques', 'References', 'Supporting Evidence'] for header in headers: worksheet.write(0, col, header, bold_format) col = col + 1 # Width of all columns set to 30 worksheet.set_column(0, 10, 30) # Width of severity columns set to 10 worksheet.set_column(1, 1, 10) # Loop through the dict of findings to create findings worksheet col = 0 row = 1 for finding in report_json['findings'].values(): # Finding Name worksheet.write(row, 0, finding['title'], wrap_format) # Severity severity_format = spenny_doc.add_format() severity_format.set_align('vcenter') severity_format.set_align('center') # Color the cell based on corresponding severity color if finding['severity'].lower() == 'informational': severity_format.set_bg_color(self.informational_color) elif finding['severity'].lower() == "low": severity_format.set_bg_color(self.low_color) elif finding['severity'].lower() == "medium": severity_format.set_bg_color(self.medium_color) elif finding['severity'].lower() == "high": severity_format.set_bg_color(self.high_color) elif finding['severity'].lower() == "critical": severity_format.set_bg_color(self.critical_color) worksheet.write(row, 1, finding['severity'], severity_format) # Affected Asset if finding['affected_entities']: worksheet.write( row, 2, finding['affected_entities'], asset_format) else: worksheet.write( row, 2, 'N/A', asset_format) # Description worksheet.write( row, 3, finding['description'], wrap_format) # Impact worksheet.write( row, 4, finding['impact'], wrap_format) # Recommendation worksheet.write( row, 5, finding['recommendation'], wrap_format) # Replication worksheet.write( row, 6, finding['replication_steps'], wrap_format) # Detection worksheet.write( row, 7, finding['host_detection_techniques'], wrap_format) worksheet.write( row, 8, finding['network_detection_techniques'], wrap_format) # References worksheet.write( row, 9, finding['references'], wrap_format) # Collect the evidence, if any, from the finding's folder and # insert inline with description try: evidence_queryset = Evidence.objects.\ filter(finding=finding['id']) except Exception: evidence_queryset = [] # Loop through any evidence and add it to the evidence column evidence = [f.document.name for f in evidence_queryset if f in self.image_extensions or self.text_extensions] finding_evidence_names = '\r\n'.join(map(str, evidence)) # Evidence List worksheet.write(row, 10, finding_evidence_names, wrap_format) # Increment row counter before moving on to next finding row += 1 # Add a filter to the worksheet worksheet.autofilter('A1:J{}'.format(len(report_json['findings'])+1)) # Finalize document spenny_doc.close() return(spenny_doc) def insert_slide(self): """Shortcut for inserting new ppt slides""" # TO-DO def generate_powerpoint_pptx(self): """Generate the tables and save the PowerPoint presentation.""" # Generate the JSON for the report report_json = json.loads(self.generate_json()) # Create document writer using the specified template if self.template_loc: try: self.spenny_ppt = Presentation(self.template_loc) except Exception: # TODO: Return error on webpage pass else: # TODO: Return error on webpage pass self.ppt_color_info = pptx.dml.color.RGBColor( self.informational_color_hex[0], self.informational_color_hex[1], self.informational_color_hex[2]) self.ppt_color_low = pptx.dml.color.RGBColor( self.low_color_hex[0], self.low_color_hex[1], self.low_color_hex[2]) self.ppt_color_medium = pptx.dml.color.RGBColor( self.medium_color_hex[0], self.medium_color_hex[1], self.medium_color_hex[2]) self.ppt_color_high = pptx.dml.color.RGBColor( self.high_color_hex[0], self.high_color_hex[1], self.high_color_hex[2]) self.ppt_color_critical = pptx.dml.color.RGBColor( self.critical_color_hex[0], self.critical_color_hex[1], self.critical_color_hex[2]) # Loop through the dict of findings to create slides based on findings # Initialize findings stats dict findings_stats = { 'Critical': 0, 'High': 0, 'Medium': 0, 'Low': 0, 'Informational': 0 } # Calculate finding stats for finding in report_json['findings'].values():
<reponame>STARInformatics/kgx<gh_stars>0 from typing import Dict, List, Optional, Any, Callable from sys import stderr import yaml from json import dump from json.encoder import JSONEncoder from kgx import GraphEntityType from kgx.prefix_manager import PrefixManager from kgx.graph.base_graph import BaseGraph """ Generate a knowledge map that corresponds to TRAPI KnowledgeMap. Specification based on TRAPI Draft PR: https://github.com/NCATSTranslator/ReasonerAPI/pull/171 """ #################################################################### # Next Generation Implementation of Graph Summary coding which # leverages the new "Transformer.process()" data stream "Inspector" # design pattern, implemented here as a "Callable" inspection class. #################################################################### def mkg_default(o): """ JSONEncoder 'default' function override to properly serialize 'Set' objects (into 'List') """ if isinstance(o, MetaKnowledgeGraph.Category): return o.json_object() else: try: iterable = iter(o) except TypeError: pass else: return list(iterable) # Let the base class default method raise the TypeError return JSONEncoder.default(o) class MetaKnowledgeGraph: """ Class for generating a TRAPI 1.1 style of "meta knowledge graph" summary. The optional 'progress_monitor' for the validator should be a lightweight Callable which is injected into the class 'inspector' Callable, designed to intercepts node and edge records streaming through the Validator (inside a Transformer.process() call. The first (GraphEntityType) argument of the Callable tags the record as a NODE or an EDGE. The second argument given to the Callable is the current record itself. This Callable is strictly meant to be procedural and should *not* mutate the record. The intent of this Callable is to provide a hook to KGX applications wanting the namesake function of passively monitoring the graph data stream. As such, the Callable could simply tally up the number of times it is called with a NODE or an EDGE, then provide a suitable (quick!) report of that count back to the KGX application. The Callable (function/callable class) should not modify the record and should be of low complexity, so as not to introduce a large computational overhead to validation! Parameters ---------- name: str (Graph) name assigned to the summary. progress_monitor: Optional[Callable[[GraphEntityType, List], None]] Function given a peek at the current record being processed by the class wrapped Callable. error_log: Where to write any graph processing error message (stderr, by default) """ def __init__( self, name='', progress_monitor: Optional[Callable[[GraphEntityType, List], None]] = None, error_log=None, **kwargs ): # formal args self.name = name self.progress_monitor: Optional[Callable[[GraphEntityType, List], None]] = progress_monitor # internal attributes self.node_catalog: Dict[str, List[int]] = dict() self.node_stats: Dict[str, MetaKnowledgeGraph.Category] = dict() self.node_stats['unknown'] = self.Category('unknown') self.edge_record_count: int = 0 self.predicates: Dict = dict() self.association_map: Dict = dict() self.edge_stats = [] self.graph_stats: Dict[str, Dict] = dict() if error_log: self.error_log = open(error_log, 'w') else: self.error_log = stderr def __call__(self, entity_type: GraphEntityType, rec: List): """ Transformer 'inspector' Callable """ if self.progress_monitor: self.progress_monitor(entity_type, rec) if entity_type == GraphEntityType.EDGE: self.analyse_edge(*rec) elif entity_type == GraphEntityType.NODE: self.analyse_node(*rec) else: raise RuntimeError("Unexpected GraphEntityType: " + str(entity_type)) class Category: # The 'category map' just associates a unique int catalog # index ('cid') value as a proxy for the full curie string, # to reduce storage in the main node catalog _category_curie_map: List[str] = list() def __init__(self, category=''): self.category = category if category not in self._category_curie_map: self._category_curie_map.append(category) self.category_stats: Dict[str, Any] = dict() self.category_stats['id_prefixes'] = set() self.category_stats['count'] = 0 self.category_stats['count_by_source'] = {'unknown': 0} def get_cid(self): return self._category_curie_map.index(self.category) @classmethod def get_category_curie(cls, cid: int): return cls._category_curie_map[cid] def get_id_prefixes(self): return self.category_stats['id_prefixes'] def get_count(self): return self.category_stats['count'] def get_count_by_source(self, source: str = None) -> Dict: if source: return {source: self.category_stats['count_by_source'][source]} return self.category_stats['count_by_source'] def analyse_node_category(self, n, data): prefix = PrefixManager.get_prefix(n) self.category_stats['count'] += 1 if prefix not in self.category_stats['id_prefixes']: self.category_stats['id_prefixes'].add(prefix) if 'provided_by' in data: for s in data['provided_by']: if s in self.category_stats['count_by_source']: self.category_stats['count_by_source'][s] += 1 else: self.category_stats['count_by_source'][s] = 1 else: self.category_stats['count_by_source']['unknown'] += 1 def json_object(self): return { 'id_prefixes': list(self.category_stats['id_prefixes']), 'count': self.category_stats['count'], 'count_by_source': self.category_stats['count_by_source'] } def analyse_node(self, n, data): # The TRAPI release 1.1 meta_knowledge_graph format indexes nodes by biolink:Category # the node 'category' field is a list of assigned categories (usually just one...). # However, this may perhaps sometimes result in duplicate counting and conflation of prefixes(?). if n in self.node_catalog: # Report duplications of node records, as discerned from node id. print("Duplicate node identifier '" + n + "' encountered in input node data? Ignoring...", file=self.error_log) return else: self.node_catalog[n] = list() if 'category' not in data: category = self.node_stats['unknown'] category.analyse_node_category(n, data) print( "Node with identifier '" + n + "' is missing its 'category' value? " + "Counting it as 'unknown', but otherwise ignoring in the analysis...", file=self.error_log ) return for category_data in data['category']: # we note here that category_curie may be # a piped '|' set of Biolink category CURIE values categories = category_data.split("|") # analyse them each independently... for category_curie in categories: if category_curie not in self.node_stats: self.node_stats[category_curie] = self.Category(category_curie) category = self.node_stats[category_curie] category_idx: int = category.get_cid() if category_idx not in self.node_catalog[n]: self.node_catalog[n].append(category_idx) category.analyse_node_category(n, data) def analyse_edge(self, u, v, k, data): # we blissfully assume that all the nodes of a # graph stream were analysed first by the MetaKnowledgeGraph # before the edges are analysed, thus we can test for # node 'n' existence internally, by identifier. # # Given the use case of multiple categories being assigned to a given node in a KGX data file, # either by category inheritance (ancestry all the way back up to NamedThing) # or by conflation (i.e. gene == protein id?), then the Cartesian product of # subject/object edges mappings need to be captured here. # self.edge_record_count += 1 predicate = data['predicate'] if predicate not in self.predicates: # just need to track the number # of edge records using this predicate self.predicates[predicate] = 0 self.predicates[predicate] += 1 if u not in self.node_catalog: print("Edge 'subject' node ID '" + u + "' not found in node catalog? Ignoring...", file=self.error_log) # removing from edge count self.edge_record_count -= 1 self.predicates[predicate] -= 1 return else: for subj_cat_idx in self.node_catalog[u]: subject_category = MetaKnowledgeGraph.Category.get_category_curie(subj_cat_idx) if v not in self.node_catalog: print("Edge 'object' node ID '" + v + "' not found in node catalog? Ignoring...", file=self.error_log) self.edge_record_count -= 1 self.predicates[predicate] -= 1 return else: for obj_cat_idx in self.node_catalog[v]: object_category = MetaKnowledgeGraph.Category.get_category_curie(obj_cat_idx) # Process the 'valid' S-P-O triple here... triple = (subject_category, predicate, object_category) if triple not in self.association_map: self.association_map[triple] = { 'subject': triple[0], 'predicate': triple[1], 'object': triple[2], 'relations': set(), 'count': 0, 'count_by_source': {'unknown': 0}, } if data['relation'] not in self.association_map[triple]['relations']: self.association_map[triple]['relations'].add(data['relation']) self.association_map[triple]['count'] += 1 if 'provided_by' in data: for s in data['provided_by']: if s not in self.association_map[triple]['count_by_source']: self.association_map[triple]['count_by_source'][s] = 1 else: self.association_map[triple]['count_by_source'][s] += 1 else: self.association_map[triple]['count_by_source']['unknown'] += 1 def get_name(self): """ Returns ------- str Currently assigned knowledge graph name. """ return self.name def get_category(self, category_curie: str) -> Category: """ Counts the number of distinct (Biolink) categories encountered in the knowledge graph (not including those of 'unknown' category) Parameters ---------- category_curie: str Curie identifier for the (Biolink) category. Returns ------- Category MetaKnowledgeGraph.Category object for a given Biolink category. """ return self.node_stats[category_curie] def get_node_stats(self) -> Dict[str, Category]: if 'unknown' in self.node_stats and not self.node_stats['unknown'].get_count(): self.node_stats.pop('unknown') return self.node_stats def get_number_of_categories(self) -> int: """ Counts the number of distinct (Biolink) categories encountered in the knowledge graph (not including those of 'unknown' category) Returns ------- int Number of distinct (Biolink) categories found in the graph (excluding the 'unknown' category) """ return len([c for c in self.node_stats.keys() if c != 'unknown']) def get_edge_stats(self) -> List: # Not sure if this is "safe" but assume # that edge_stats may be cached once computed? if not self.edge_stats: for k, v in self.association_map.items(): kedge = v relations = list(v['relations']) kedge['relations'] = relations self.edge_stats.append(kedge) return self.edge_stats def get_total_nodes_count(self) -> int: """ Counts the total number of distinct nodes in the knowledge graph (**not** including those ignored due to being of 'unknown' category) Returns ------- int Number of distinct nodes in the knowledge. """ return len(self.node_catalog) def get_node_count_by_category(self, category_curie: str) -> int: """ Counts the number of edges in the graph with the specified (Biolink) category curie. Parameters ---------- category_curie: str Curie identifier for the (Biolink) category. Returns ------- int Number of nodes for the given category. Raises ------ RuntimeError Error if category
to next page of resources. :vartype next_link: str """ _validation = { 'value': {'required': True}, 'next_link': {'readonly': True}, } _attribute_map = { 'value': {'key': 'value', 'type': '[Certificate]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__(self, **kwargs): super(CertificateCollection, self).__init__(**kwargs) self.value = kwargs.get('value', None) self.next_link = None class CertificatePatch(Model): """A certificate to update. :param tags: Application-specific metadata in the form of key-value pairs. :type tags: dict[str, str] """ _attribute_map = { 'tags': {'key': 'tags', 'type': '{str}'}, } def __init__(self, **kwargs): super(CertificatePatch, self).__init__(**kwargs) self.tags = kwargs.get('tags', None) class CertificateProperties(Model): """Certificate resource specific properties. Variables are only populated by the server, and will be ignored when sending a request. :param password: <PASSWORD>. :type password: str :ivar subject_name: Subject name of the certificate. :vartype subject_name: str :param value: PFX or PEM blob :type value: bytearray :ivar issuer: Certificate issuer. :vartype issuer: str :ivar issue_date: Certificate issue Date. :vartype issue_date: datetime :ivar expiration_date: Certificate expiration date. :vartype expiration_date: datetime :ivar thumbprint: Certificate thumbprint. :vartype thumbprint: str :ivar valid: Is the certificate valid?. :vartype valid: bool :ivar public_key_hash: Public key hash. :vartype public_key_hash: str """ _validation = { 'subject_name': {'readonly': True}, 'issuer': {'readonly': True}, 'issue_date': {'readonly': True}, 'expiration_date': {'readonly': True}, 'thumbprint': {'readonly': True}, 'valid': {'readonly': True}, 'public_key_hash': {'readonly': True}, } _attribute_map = { 'password': {'key': 'password', 'type': 'str'}, 'subject_name': {'key': 'subjectName', 'type': 'str'}, 'value': {'key': 'value', 'type': 'bytearray'}, 'issuer': {'key': 'issuer', 'type': 'str'}, 'issue_date': {'key': 'issueDate', 'type': 'iso-8601'}, 'expiration_date': {'key': 'expirationDate', 'type': 'iso-8601'}, 'thumbprint': {'key': 'thumbprint', 'type': 'str'}, 'valid': {'key': 'valid', 'type': 'bool'}, 'public_key_hash': {'key': 'publicKeyHash', 'type': 'str'}, } def __init__(self, **kwargs): super(CertificateProperties, self).__init__(**kwargs) self.password = kwargs.get('password', None) self.subject_name = None self.value = kwargs.get('value', None) self.issuer = None self.issue_date = None self.expiration_date = None self.thumbprint = None self.valid = None self.public_key_hash = None class ClientRegistration(Model): """The configuration settings of the app registration for providers that have client ids and client secrets. :param client_id: The Client ID of the app used for login. :type client_id: str :param client_secret_ref_name: The app secret ref name that contains the client secret. :type client_secret_ref_name: str """ _attribute_map = { 'client_id': {'key': 'clientId', 'type': 'str'}, 'client_secret_ref_name': {'key': 'clientSecretRefName', 'type': 'str'}, } def __init__(self, **kwargs): super(ClientRegistration, self).__init__(**kwargs) self.client_id = kwargs.get('client_id', None) self.client_secret_ref_name = kwargs.get('client_secret_ref_name', None) class Configuration(Model): """Non versioned Container App configuration properties that define the mutable settings of a Container app. :param secrets: Collection of secrets used by a Container app :type secrets: list[~commondefinitions.models.Secret] :param active_revisions_mode: ActiveRevisionsMode controls how active revisions are handled for the Container app: <list><item>Multiple: multiple revisions can be active. If no value if provided, this is the default</item><item>Single: Only one revision can be active at a time. Revision weights can not be used in this mode</item></list>. Possible values include: 'multiple', 'single' :type active_revisions_mode: str or ~commondefinitions.models.ActiveRevisionsMode :param ingress: Ingress configurations. :type ingress: ~commondefinitions.models.Ingress :param dapr: Dapr configuration for the Container App. :type dapr: ~commondefinitions.models.Dapr :param registries: Collection of private container registry credentials for containers used by the Container app :type registries: list[~commondefinitions.models.RegistryCredentials] """ _attribute_map = { 'secrets': {'key': 'secrets', 'type': '[Secret]'}, 'active_revisions_mode': {'key': 'activeRevisionsMode', 'type': 'str'}, 'ingress': {'key': 'ingress', 'type': 'Ingress'}, 'dapr': {'key': 'dapr', 'type': 'Dapr'}, 'registries': {'key': 'registries', 'type': '[RegistryCredentials]'}, } def __init__(self, **kwargs): super(Configuration, self).__init__(**kwargs) self.secrets = kwargs.get('secrets', None) self.active_revisions_mode = kwargs.get('active_revisions_mode', None) self.ingress = kwargs.get('ingress', None) self.dapr = kwargs.get('dapr', None) self.registries = kwargs.get('registries', None) class Container(Model): """Container App container definition. :param image: Container image tag. :type image: str :param name: Custom container name. :type name: str :param command: Container start command. :type command: list[str] :param args: Container start command arguments. :type args: list[str] :param env: Container environment variables. :type env: list[~commondefinitions.models.EnvironmentVar] :param resources: Container resource requirements. :type resources: ~commondefinitions.models.ContainerResources :param probes: List of probes for the container. :type probes: list[~commondefinitions.models.ContainerAppProbe] :param volume_mounts: Container volume mounts. :type volume_mounts: list[~commondefinitions.models.VolumeMount] """ _attribute_map = { 'image': {'key': 'image', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'command': {'key': 'command', 'type': '[str]'}, 'args': {'key': 'args', 'type': '[str]'}, 'env': {'key': 'env', 'type': '[EnvironmentVar]'}, 'resources': {'key': 'resources', 'type': 'ContainerResources'}, 'probes': {'key': 'probes', 'type': '[ContainerAppProbe]'}, 'volume_mounts': {'key': 'volumeMounts', 'type': '[VolumeMount]'}, } def __init__(self, **kwargs): super(Container, self).__init__(**kwargs) self.image = kwargs.get('image', None) self.name = kwargs.get('name', None) self.command = kwargs.get('command', None) self.args = kwargs.get('args', None) self.env = kwargs.get('env', None) self.resources = kwargs.get('resources', None) self.probes = kwargs.get('probes', None) self.volume_mounts = kwargs.get('volume_mounts', None) class ContainerApp(TrackedResource): """Container App. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar id: Fully qualified resource ID for the resource. Ex - /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName} :vartype id: str :ivar name: The name of the resource :vartype name: str :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts" :vartype type: str :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy information. :vartype system_data: ~commondefinitions.models.SystemData :param tags: Resource tags. :type tags: dict[str, str] :param location: Required. The geo-location where the resource lives :type location: str :param identity: managed identities for the Container App to interact with other Azure services without maintaining any secrets or credentials in code. :type identity: ~commondefinitions.models.ManagedServiceIdentity :ivar provisioning_state: Provisioning state of the Container App. Possible values include: 'InProgress', 'Succeeded', 'Failed', 'Canceled' :vartype provisioning_state: str or ~commondefinitions.models.ContainerAppProvisioningState :param managed_environment_id: Resource ID of the Container App's environment. :type managed_environment_id: str :ivar latest_revision_name: Name of the latest revision of the Container App. :vartype latest_revision_name: str :ivar latest_revision_fqdn: Fully Qualified Domain Name of the latest revision of the Container App. :vartype latest_revision_fqdn: str :ivar custom_domain_verification_id: Id used to verify domain name ownership :vartype custom_domain_verification_id: str :param configuration: Non versioned Container App configuration properties. :type configuration: ~commondefinitions.models.Configuration :param template: Container App versioned application definition. :type template: ~commondefinitions.models.Template :ivar outbound_ip_addresses: Outbound IP Addresses for container app. :vartype outbound_ip_addresses: list[str] """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'system_data': {'readonly': True}, 'location': {'required': True}, 'provisioning_state': {'readonly': True}, 'latest_revision_name': {'readonly': True}, 'latest_revision_fqdn': {'readonly': True}, 'custom_domain_verification_id': {'readonly': True}, 'outbound_ip_addresses': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'system_data': {'key': 'systemData', 'type': 'SystemData'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'location': {'key': 'location', 'type': 'str'}, 'identity': {'key': 'identity', 'type': 'ManagedServiceIdentity'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, 'managed_environment_id': {'key': 'properties.managedEnvironmentId', 'type': 'str'}, 'latest_revision_name': {'key': 'properties.latestRevisionName', 'type': 'str'}, 'latest_revision_fqdn': {'key': 'properties.latestRevisionFqdn', 'type': 'str'}, 'custom_domain_verification_id': {'key': 'properties.customDomainVerificationId', 'type': 'str'}, 'configuration': {'key': 'properties.configuration', 'type': 'Configuration'}, 'template': {'key': 'properties.template', 'type': 'Template'}, 'outbound_ip_addresses': {'key': 'properties.outboundIPAddresses', 'type': '[str]'}, } def __init__(self, **kwargs): super(ContainerApp, self).__init__(**kwargs) self.identity = kwargs.get('identity', None) self.provisioning_state = None self.managed_environment_id = kwargs.get('managed_environment_id', None) self.latest_revision_name = None self.latest_revision_fqdn = None self.custom_domain_verification_id = None self.configuration = kwargs.get('configuration', None) self.template = kwargs.get('template', None) self.outbound_ip_addresses = None class ContainerAppCollection(Model): """Container App collection ARM resource. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param value: Required. Collection of resources. :type value: list[~commondefinitions.models.ContainerApp] :ivar next_link: Link to next page of resources. :vartype next_link: str """ _validation = { 'value': {'required': True}, 'next_link': {'readonly': True}, } _attribute_map = { 'value': {'key': 'value', 'type': '[ContainerApp]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__(self, **kwargs): super(ContainerAppCollection, self).__init__(**kwargs) self.value = kwargs.get('value', None) self.next_link = None class ContainerAppPatch(Model): """Container App Patch. :param tags: Application-specific metadata in the form of key-value pairs. :type tags: dict[str, str] """ _attribute_map = { 'tags': {'key': 'tags', 'type': '{str}'}, } def __init__(self, **kwargs): super(ContainerAppPatch, self).__init__(**kwargs) self.tags = kwargs.get('tags', None) class ContainerAppProbe(Model): """Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. :param failure_threshold: Minimum consecutive failures for the probe to be considered failed after having succeeded. Defaults to 3. Minimum value is 1. Maximum value is 10. :type failure_threshold: int :param http_get: HTTPGet specifies the http request to perform. :type http_get: ~commondefinitions.models.ContainerAppProbeHttpGet :param initial_delay_seconds: Number of seconds after the container has started before liveness probes are initiated.
#!/usr/bin/env python2 # -*- coding: utf-8 -*- # # SPDX-License-Identifier: GPL-3.0 # ################################################## # GNU Radio Python Flow Graph # Title: Dtv Sigmf Playback # Generated: Sat Feb 23 23:29:06 2019 # GNU Radio version: 3.7.12.0 ################################################## if __name__ == '__main__': import ctypes import sys if sys.platform.startswith('linux'): try: x11 = ctypes.cdll.LoadLibrary('libX11.so') x11.XInitThreads() except: print "Warning: failed to XInitThreads()" from PyQt4 import Qt from datetime import datetime as dt; import string; import math from gnuradio import analog from gnuradio import blocks from gnuradio import eng_notation from gnuradio import fft from gnuradio import gr from gnuradio import qtgui from gnuradio.eng_option import eng_option from gnuradio.fft import window from gnuradio.filter import firdes from optparse import OptionParser import pmt import sigmf import sip import sys from gnuradio import qtgui class dtv_sigmf_playback(gr.top_block, Qt.QWidget): def __init__(self, mod_order=8, mod_scheme='ATSC_8VSB', rx_ant_model='Decotec Tape Measure Discone', rx_db_ser='na', rx_db_type='na', rx_ser_tag='F50030', rx_ser_uhd='F50030', rx_type='B210', signal_name='DTV', symbol_rate=10.76e6): gr.top_block.__init__(self, "Dtv Sigmf Playback") Qt.QWidget.__init__(self) self.setWindowTitle("Dtv Sigmf Playback") qtgui.util.check_set_qss() try: self.setWindowIcon(Qt.QIcon.fromTheme('gnuradio-grc')) except: pass self.top_scroll_layout = Qt.QVBoxLayout() self.setLayout(self.top_scroll_layout) self.top_scroll = Qt.QScrollArea() self.top_scroll.setFrameStyle(Qt.QFrame.NoFrame) self.top_scroll_layout.addWidget(self.top_scroll) self.top_scroll.setWidgetResizable(True) self.top_widget = Qt.QWidget() self.top_scroll.setWidget(self.top_widget) self.top_layout = Qt.QVBoxLayout(self.top_widget) self.top_grid_layout = Qt.QGridLayout() self.top_layout.addLayout(self.top_grid_layout) self.settings = Qt.QSettings("GNU Radio", "dtv_sigmf_playback") self.restoreGeometry(self.settings.value("geometry").toByteArray()) ################################################## # Parameters ################################################## self.mod_order = mod_order self.mod_scheme = mod_scheme self.rx_ant_model = rx_ant_model self.rx_db_ser = rx_db_ser self.rx_db_type = rx_db_type self.rx_ser_tag = rx_ser_tag self.rx_ser_uhd = rx_ser_uhd self.rx_type = rx_type self.signal_name = signal_name self.symbol_rate = symbol_rate ################################################## # Variables ################################################## self.ts_str = ts_str = dt.strftime(dt.utcnow(), "%Y-%m-%dT%H:%M:%S.%fZ") self.fn = fn = "{:s}_{:s}".format(signal_name, ts_str) self.tune = tune = 0 self.samp_rate = samp_rate = 250e3 self.rx_gain = rx_gain = 45 self.rx_freq = rx_freq = 602.31e6 self.nfft = nfft = 1024 self.fp = fp = "/captures/dtv/{:s}".format(fn) self.avg_len = avg_len = 100.0 ################################################## # Blocks ################################################## self._tune_tool_bar = Qt.QToolBar(self) self._tune_tool_bar.addWidget(Qt.QLabel("tune"+": ")) self._tune_line_edit = Qt.QLineEdit(str(self.tune)) self._tune_tool_bar.addWidget(self._tune_line_edit) self._tune_line_edit.returnPressed.connect( lambda: self.set_tune(eng_notation.str_to_num(str(self._tune_line_edit.text().toAscii())))) self.top_grid_layout.addWidget(self._tune_tool_bar, 8, 2, 1, 2) for r in range(8, 9): self.top_grid_layout.setRowStretch(r, 1) for c in range(2, 4): self.top_grid_layout.setColumnStretch(c, 1) self._samp_rate_tool_bar = Qt.QToolBar(self) self._samp_rate_tool_bar.addWidget(Qt.QLabel("samp_rate"+": ")) self._samp_rate_line_edit = Qt.QLineEdit(str(self.samp_rate)) self._samp_rate_tool_bar.addWidget(self._samp_rate_line_edit) self._samp_rate_line_edit.returnPressed.connect( lambda: self.set_samp_rate(eng_notation.str_to_num(str(self._samp_rate_line_edit.text().toAscii())))) self.top_grid_layout.addWidget(self._samp_rate_tool_bar, 9, 2, 1, 2) for r in range(9, 10): self.top_grid_layout.setRowStretch(r, 1) for c in range(2, 4): self.top_grid_layout.setColumnStretch(c, 1) self._avg_len_tool_bar = Qt.QToolBar(self) self._avg_len_tool_bar.addWidget(Qt.QLabel("avg_len"+": ")) self._avg_len_line_edit = Qt.QLineEdit(str(self.avg_len)) self._avg_len_tool_bar.addWidget(self._avg_len_line_edit) self._avg_len_line_edit.returnPressed.connect( lambda: self.set_avg_len(eng_notation.str_to_num(str(self._avg_len_line_edit.text().toAscii())))) self.top_grid_layout.addWidget(self._avg_len_tool_bar, 8, 4, 1, 2) for r in range(8, 9): self.top_grid_layout.setRowStretch(r, 1) for c in range(4, 6): self.top_grid_layout.setColumnStretch(c, 1) self.sigmf_source_0 = sigmf.source('/captures/dtv/DTV_2019-02-20T18:06:10.sigmf-data', "cf32" + ("_le" if sys.byteorder == "little" else "_be"), True) self._rx_gain_tool_bar = Qt.QToolBar(self) self._rx_gain_tool_bar.addWidget(Qt.QLabel("rx_gain"+": ")) self._rx_gain_line_edit = Qt.QLineEdit(str(self.rx_gain)) self._rx_gain_tool_bar.addWidget(self._rx_gain_line_edit) self._rx_gain_line_edit.returnPressed.connect( lambda: self.set_rx_gain(eng_notation.str_to_num(str(self._rx_gain_line_edit.text().toAscii())))) self.top_grid_layout.addWidget(self._rx_gain_tool_bar, 8, 0, 1, 2) for r in range(8, 9): self.top_grid_layout.setRowStretch(r, 1) for c in range(0, 2): self.top_grid_layout.setColumnStretch(c, 1) self._rx_freq_tool_bar = Qt.QToolBar(self) self._rx_freq_tool_bar.addWidget(Qt.QLabel("rx_freq"+": ")) self._rx_freq_line_edit = Qt.QLineEdit(str(self.rx_freq)) self._rx_freq_tool_bar.addWidget(self._rx_freq_line_edit) self._rx_freq_line_edit.returnPressed.connect( lambda: self.set_rx_freq(eng_notation.str_to_num(str(self._rx_freq_line_edit.text().toAscii())))) self.top_grid_layout.addWidget(self._rx_freq_tool_bar, 9, 0, 1, 2) for r in range(9, 10): self.top_grid_layout.setRowStretch(r, 1) for c in range(0, 2): self.top_grid_layout.setColumnStretch(c, 1) self.qtgui_waterfall_sink_x_0_1 = qtgui.waterfall_sink_c( 1024, #size firdes.WIN_BLACKMAN_hARRIS, #wintype 0, #fc samp_rate, #bw "DTV", #name 1 #number of inputs ) self.qtgui_waterfall_sink_x_0_1.set_update_time(0.010) self.qtgui_waterfall_sink_x_0_1.enable_grid(True) self.qtgui_waterfall_sink_x_0_1.enable_axis_labels(True) if not True: self.qtgui_waterfall_sink_x_0_1.disable_legend() if "complex" == "float" or "complex" == "msg_float": self.qtgui_waterfall_sink_x_0_1.set_plot_pos_half(not True) labels = ['', '', '', '', '', '', '', '', '', ''] colors = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] for i in xrange(1): if len(labels[i]) == 0: self.qtgui_waterfall_sink_x_0_1.set_line_label(i, "Data {0}".format(i)) else: self.qtgui_waterfall_sink_x_0_1.set_line_label(i, labels[i]) self.qtgui_waterfall_sink_x_0_1.set_color_map(i, colors[i]) self.qtgui_waterfall_sink_x_0_1.set_line_alpha(i, alphas[i]) self.qtgui_waterfall_sink_x_0_1.set_intensity_range(-140, -40) self._qtgui_waterfall_sink_x_0_1_win = sip.wrapinstance(self.qtgui_waterfall_sink_x_0_1.pyqwidget(), Qt.QWidget) self.top_grid_layout.addWidget(self._qtgui_waterfall_sink_x_0_1_win, 2, 0, 2, 8) for r in range(2, 4): self.top_grid_layout.setRowStretch(r, 1) for c in range(0, 8): self.top_grid_layout.setColumnStretch(c, 1) self.qtgui_vector_sink_f_0 = qtgui.vector_sink_f( nfft, 0, 1.0, "x-Axis", "y-Axis", "", 1 # Number of inputs ) self.qtgui_vector_sink_f_0.set_update_time(0.010) self.qtgui_vector_sink_f_0.set_y_axis(-140, 10) self.qtgui_vector_sink_f_0.enable_autoscale(False) self.qtgui_vector_sink_f_0.enable_grid(True) self.qtgui_vector_sink_f_0.set_x_axis_units("") self.qtgui_vector_sink_f_0.set_y_axis_units("") self.qtgui_vector_sink_f_0.set_ref_level(-40) labels = ['', '', '', '', '', '', '', '', '', ''] widths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] colors = ["blue", "red", "green", "black", "cyan", "magenta", "yellow", "dark red", "dark green", "dark blue"] alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] for i in xrange(1): if len(labels[i]) == 0: self.qtgui_vector_sink_f_0.set_line_label(i, "Data {0}".format(i)) else: self.qtgui_vector_sink_f_0.set_line_label(i, labels[i]) self.qtgui_vector_sink_f_0.set_line_width(i, widths[i]) self.qtgui_vector_sink_f_0.set_line_color(i, colors[i]) self.qtgui_vector_sink_f_0.set_line_alpha(i, alphas[i]) self._qtgui_vector_sink_f_0_win = sip.wrapinstance(self.qtgui_vector_sink_f_0.pyqwidget(), Qt.QWidget) self.top_grid_layout.addWidget(self._qtgui_vector_sink_f_0_win, 10, 0, 4, 8) for r in range(10, 14): self.top_grid_layout.setRowStretch(r, 1) for c in range(0, 8): self.top_grid_layout.setColumnStretch(c, 1) self.qtgui_freq_sink_x_0 = qtgui.freq_sink_c( 2048, #size firdes.WIN_BLACKMAN_hARRIS, #wintype 0, #fc samp_rate, #bw "DTV", #name 1 #number of inputs ) self.qtgui_freq_sink_x_0.set_update_time(0.01) self.qtgui_freq_sink_x_0.set_y_axis(-140, -40) self.qtgui_freq_sink_x_0.set_y_label('Relative Gain', 'dB') self.qtgui_freq_sink_x_0.set_trigger_mode(qtgui.TRIG_MODE_FREE, 0.0, 0, "") self.qtgui_freq_sink_x_0.enable_autoscale(False) self.qtgui_freq_sink_x_0.enable_grid(True) self.qtgui_freq_sink_x_0.set_fft_average(1.0) self.qtgui_freq_sink_x_0.enable_axis_labels(True) self.qtgui_freq_sink_x_0.enable_control_panel(False) if not False: self.qtgui_freq_sink_x_0.disable_legend() if "complex" == "float" or "complex" == "msg_float": self.qtgui_freq_sink_x_0.set_plot_pos_half(not True) labels = ['', '', '', '', '', '', '', '', '', ''] widths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] colors = ["red", "red", "green", "black", "cyan", "magenta", "yellow", "dark red", "dark green", "dark blue"] alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] for i in xrange(1): if len(labels[i]) == 0: self.qtgui_freq_sink_x_0.set_line_label(i, "Data {0}".format(i)) else: self.qtgui_freq_sink_x_0.set_line_label(i, labels[i]) self.qtgui_freq_sink_x_0.set_line_width(i, widths[i]) self.qtgui_freq_sink_x_0.set_line_color(i, colors[i]) self.qtgui_freq_sink_x_0.set_line_alpha(i, alphas[i]) self._qtgui_freq_sink_x_0_win = sip.wrapinstance(self.qtgui_freq_sink_x_0.pyqwidget(), Qt.QWidget) self.top_grid_layout.addWidget(self._qtgui_freq_sink_x_0_win, 0, 0, 2, 8) for r in range(0, 2): self.top_grid_layout.setRowStretch(r, 1) for c in range(0, 8): self.top_grid_layout.setColumnStretch(c, 1) self.fft_vxx_0 = fft.fft_vcc(nfft, True, (window.blackmanharris(nfft)), True, 4) self.blocks_vector_to_stream_0 = blocks.vector_to_stream(gr.sizeof_float*1, nfft) self.blocks_throttle_0 = blocks.throttle(gr.sizeof_gr_complex*1, samp_rate,True) self.blocks_tagged_stream_to_pdu_0 = blocks.tagged_stream_to_pdu(blocks.float_t, 'fft') self.blocks_stream_to_vector_1 = blocks.stream_to_vector(gr.sizeof_float*1, nfft) self.blocks_stream_to_vector_0 = blocks.stream_to_vector(gr.sizeof_gr_complex*1, nfft) self.blocks_stream_to_tagged_stream_0 = blocks.stream_to_tagged_stream(gr.sizeof_float, 1, nfft, "fft") self.blocks_socket_pdu_0 = blocks.socket_pdu("TCP_SERVER", '0.0.0.0', '52001', 10000, True) self.blocks_nlog10_ff_0 = blocks.nlog10_ff(10, nfft, -10*math.log10(nfft)) self.blocks_multiply_xx_0_0 = blocks.multiply_vcc(1) self.blocks_moving_average_xx_0 = blocks.moving_average_ff(int(avg_len), 1/(avg_len)/nfft, 4000, nfft) self.blocks_message_strobe_0 = blocks.message_strobe(pmt.intern("fft"), 500) self.blocks_complex_to_mag_squared_0 = blocks.complex_to_mag_squared(nfft) self.analog_sig_source_x_0_0 = analog.sig_source_c(samp_rate, analog.GR_COS_WAVE, tune, 1, 0) ################################################## # Connections ################################################## self.msg_connect((self.blocks_message_strobe_0, 'strobe'), (self.blocks_socket_pdu_0, 'pdus')) self.msg_connect((self.blocks_tagged_stream_to_pdu_0, 'pdus'), (self.blocks_message_strobe_0, 'set_msg')) self.connect((self.analog_sig_source_x_0_0, 0), (self.blocks_multiply_xx_0_0, 1)) self.connect((self.blocks_complex_to_mag_squared_0, 0), (self.blocks_moving_average_xx_0, 0)) self.connect((self.blocks_moving_average_xx_0, 0), (self.blocks_nlog10_ff_0, 0)) self.connect((self.blocks_multiply_xx_0_0, 0), (self.blocks_throttle_0, 0)) self.connect((self.blocks_nlog10_ff_0, 0), (self.blocks_vector_to_stream_0, 0)) self.connect((self.blocks_stream_to_tagged_stream_0, 0), (self.blocks_tagged_stream_to_pdu_0, 0)) self.connect((self.blocks_stream_to_vector_0, 0), (self.fft_vxx_0, 0)) self.connect((self.blocks_stream_to_vector_1, 0), (self.qtgui_vector_sink_f_0, 0)) self.connect((self.blocks_throttle_0, 0), (self.blocks_stream_to_vector_0, 0)) self.connect((self.blocks_throttle_0, 0), (self.qtgui_freq_sink_x_0, 0)) self.connect((self.blocks_throttle_0, 0), (self.qtgui_waterfall_sink_x_0_1, 0)) self.connect((self.blocks_vector_to_stream_0, 0), (self.blocks_stream_to_tagged_stream_0, 0)) self.connect((self.blocks_vector_to_stream_0, 0), (self.blocks_stream_to_vector_1, 0)) self.connect((self.fft_vxx_0, 0), (self.blocks_complex_to_mag_squared_0, 0)) self.connect((self.sigmf_source_0, 0), (self.blocks_multiply_xx_0_0, 0)) def closeEvent(self, event): self.settings = Qt.QSettings("GNU Radio", "dtv_sigmf_playback") self.settings.setValue("geometry", self.saveGeometry()) event.accept() def get_mod_order(self): return self.mod_order def set_mod_order(self, mod_order): self.mod_order = mod_order def get_mod_scheme(self): return self.mod_scheme def set_mod_scheme(self, mod_scheme): self.mod_scheme = mod_scheme def get_rx_ant_model(self): return self.rx_ant_model def set_rx_ant_model(self, rx_ant_model): self.rx_ant_model = rx_ant_model def get_rx_db_ser(self): return self.rx_db_ser def set_rx_db_ser(self, rx_db_ser): self.rx_db_ser = rx_db_ser def get_rx_db_type(self): return self.rx_db_type def set_rx_db_type(self, rx_db_type): self.rx_db_type = rx_db_type def get_rx_ser_tag(self): return self.rx_ser_tag def set_rx_ser_tag(self, rx_ser_tag): self.rx_ser_tag = rx_ser_tag def get_rx_ser_uhd(self): return self.rx_ser_uhd def set_rx_ser_uhd(self, rx_ser_uhd): self.rx_ser_uhd = rx_ser_uhd def get_rx_type(self): return self.rx_type def set_rx_type(self, rx_type): self.rx_type = rx_type def get_signal_name(self): return self.signal_name def set_signal_name(self, signal_name): self.signal_name = signal_name self.set_fn("{:s}_{:s}".format(self.signal_name, self.ts_str)) def get_symbol_rate(self): return self.symbol_rate def set_symbol_rate(self, symbol_rate): self.symbol_rate = symbol_rate def get_ts_str(self): return self.ts_str def set_ts_str(self, ts_str): self.ts_str = ts_str self.set_fn("{:s}_{:s}".format(self.signal_name, self.ts_str)) def get_fn(self): return self.fn def set_fn(self, fn): self.fn = fn self.set_fp("/captures/dtv/{:s}".format(self.fn)) def get_tune(self): return self.tune def set_tune(self, tune): self.tune = tune Qt.QMetaObject.invokeMethod(self._tune_line_edit, "setText", Qt.Q_ARG("QString", eng_notation.num_to_str(self.tune))) self.analog_sig_source_x_0_0.set_frequency(self.tune) def get_samp_rate(self): return self.samp_rate def set_samp_rate(self, samp_rate): self.samp_rate = samp_rate Qt.QMetaObject.invokeMethod(self._samp_rate_line_edit, "setText", Qt.Q_ARG("QString", eng_notation.num_to_str(self.samp_rate))) self.qtgui_waterfall_sink_x_0_1.set_frequency_range(0, self.samp_rate) self.qtgui_freq_sink_x_0.set_frequency_range(0, self.samp_rate) self.blocks_throttle_0.set_sample_rate(self.samp_rate) self.analog_sig_source_x_0_0.set_sampling_freq(self.samp_rate) def get_rx_gain(self): return self.rx_gain def set_rx_gain(self, rx_gain): self.rx_gain = rx_gain Qt.QMetaObject.invokeMethod(self._rx_gain_line_edit, "setText", Qt.Q_ARG("QString", eng_notation.num_to_str(self.rx_gain))) def get_rx_freq(self): return self.rx_freq def set_rx_freq(self, rx_freq): self.rx_freq = rx_freq Qt.QMetaObject.invokeMethod(self._rx_freq_line_edit, "setText", Qt.Q_ARG("QString", eng_notation.num_to_str(self.rx_freq))) def get_nfft(self): return self.nfft def set_nfft(self, nfft): self.nfft = nfft self.blocks_stream_to_tagged_stream_0.set_packet_len(self.nfft) self.blocks_stream_to_tagged_stream_0.set_packet_len_pmt(self.nfft) self.blocks_moving_average_xx_0.set_length_and_scale(int(self.avg_len), 1/(self.avg_len)/self.nfft) def get_fp(self): return self.fp def set_fp(self, fp): self.fp = fp def get_avg_len(self): return self.avg_len def set_avg_len(self, avg_len): self.avg_len = avg_len Qt.QMetaObject.invokeMethod(self._avg_len_line_edit, "setText", Qt.Q_ARG("QString", eng_notation.num_to_str(self.avg_len))) self.blocks_moving_average_xx_0.set_length_and_scale(int(self.avg_len), 1/(self.avg_len)/self.nfft) def argument_parser(): parser = OptionParser(usage="%prog: [options]", option_class=eng_option) parser.add_option( "", "--mod-order", dest="mod_order", type="intx", default=8, help="Set mod_order [default=%default]") parser.add_option( "", "--mod-scheme", dest="mod_scheme", type="string", default='ATSC_8VSB', help="Set mod_scheme [default=%default]") parser.add_option( "", "--rx-ant-model", dest="rx_ant_model", type="string", default='Decotec Tape Measure Discone', help="Set rx_ant_model [default=%default]") parser.add_option( "", "--rx-db-ser", dest="rx_db_ser", type="string", default='na', help="Set rx_db_ser [default=%default]") parser.add_option( "", "--rx-db-type", dest="rx_db_type", type="string", default='na', help="Set rx_db_type [default=%default]") parser.add_option( "", "--rx-ser-tag", dest="rx_ser_tag", type="string", default='F50030', help="Set rx_ser_tag [default=%default]") parser.add_option( "", "--rx-ser-uhd", dest="rx_ser_uhd", type="string", default='F50030', help="Set rx_ser_uhd [default=%default]") parser.add_option( "", "--rx-type", dest="rx_type", type="string", default='B210', help="Set rx_type [default=%default]") parser.add_option( "", "--signal-name", dest="signal_name", type="string", default='DTV', help="Set signal_name [default=%default]") parser.add_option( "", "--symbol-rate", dest="symbol_rate", type="eng_float", default=eng_notation.num_to_str(10.76e6), help="Set symbol_rate [default=%default]") return parser def main(top_block_cls=dtv_sigmf_playback, options=None): if options is None: options, _ = argument_parser().parse_args() from distutils.version import StrictVersion if StrictVersion(Qt.qVersion()) >= StrictVersion("4.5.0"):
import numpy as np class lattice(): """Contains functions to help out calculate matrices in the Fermi-Hubbard model""" def __init__(self, xs,ys,zs): '''The dimensions of the grid are given to initialize the lattice. Recommended max of 4 sites, otherwise it can take too long to complete.''' # x, y, and z have the shape of the grid, and contain the # respective (x,y,z) coordinates of the latttic sites: self.x, self.y, self.z = np.mgrid[ 0:xs, 0:ys, 0:zs] self.xs = xs self.ys = ys self.zs = zs def show(self,spins): ''' This prints a particular state to the terminal''' for i in np.ravel(spins): print "%d "%i, print def state(self,m): ''' # Each site can have 4 possible configurations, we have # labeled them as follows: # # 0 = vacuum # 1 = spin up # 2 = spin down # 3 = doubly occupied # # All possible states are numbered with an index m. This function # constructs the m_th state in the lattice. The spin configuration of # the m_th state is stored in the 'spins' matrix and returned. # # Since there are 4 possible states per site (see above) the # convention is that m be represented in base-4 (quaternary) and # each digit can be assigned using the 0,1,2,3 convention above. # ''' spins = np.zeros_like( self.x) i = 0 end = False while m > 0: if i>=spins.size: end =True break spins.flat[i] = (m%4) m = m /4 i = i +1 if end: return None else: return spins def sector(self): # Finds the spin sector for the current state s = 0 for i in self.spins.flat: if i == 0 : s = s+0 elif i == 1 : s = s+1 elif i == 2 : s = s-1 elif i == 3 : s = s+0 return s def filling(self): # Finds the filling for the current state f = 0 for i in self.spins.flat: if i == 0 : f = f+0 elif i == 1 : f = f+1 elif i == 2 : f = f+1 elif i == 3 : f = f+2 return f def defstates(self): '''This function defines the half filling states of the Fermi-Hubbard model in a 3D lattice. It creates a dictionary where the keys correspond to the different spin sectors available, and the values are a list of the states in the spin sector. For a balanced spin mixture one only needs to consider the spin=0 sector. ''' end = False n = 0 self.states = {} while n < 300: self.spins = self.state(n) # ATTENTION: in this code we have changed to HALF-FILLING to # QUARTER-FILLING, in order to explore the 2x2 lattice with only # 2 particles. We use /2 in the filling check: if self.spins is not None and self.filling() == self.spins.size/2: sec = self.sector() if sec in self.states.keys(): self.states[ sec].append(self.spins) else: self.states[ sec]=[self.spins] n = n+1 for k in self.states.keys(): print "Sector %d, %d states:"%(k,len(self.states[k])) for spins in self.states[k]: self.show(spins) def nearest(self): '''This function makes a list of the nearest neighbor pairs in the lattice''' print "\nNearest neighbors:" # First we create a flat list of all the lattice sites. # each element in the list is (x[i], y[i], z[i], i) sites = [] for i in range(self.x.size): sites.append( (self.x.flat[i], self.y.flat[i], self.z.flat[i], i)) # We do a nested iteration over the lists and create a list # of pairs which are nearest neighbors. neighbors = [] for i,s1 in enumerate(sites): for j,s2 in enumerate(sites): if j > i: d2 = (s1[0]-s2[0])**2 + (s1[1]-s2[1])**2 + (s1[2]-s2[2])**2 print s1,"--",s2," = ",d2 if d2 == 1: neighbors.append( (s1[3],s2[3])) print print "Final neighbor list: " print neighbors self.neighbors = neighbors def kinetic0(self): r'''This function calculates the kinetic energy matrix in the spin=0 sector. The matrix is constructed by iterating over the nearest neighbors. As a reminder, the kinertic enrgy is given by K = -t \sum_{\langle i j \rangle} a_{i\sigma}^{\dagger} a_{j\sigma} So in order to find it's matrix elements we need to apply first an annihilation operator and then a creation operator. The tricky part is keeping track of the signs. ''' print msize = len(self.states[0]) kinetic = np.zeros((msize,msize)) for i,s1 in enumerate(self.states[0]): for j,s2 in enumerate(self.states[0]): # We will calculate the matrix element # < s1 | K | s2 > # This matrix element involves a sum over nearest neighbors # and sum over spins, so we go ahead and iterate: t = 0. for n in self.neighbors: PRINT = False for spin in ['up','down']: if PRINT: print print "<", np.ravel(s1)," | K | ", np.ravel(s2),">" # Annihilates 'spin' at site n[0] signA, stateA = annihilate( n[0], spin, s2) # Create 'spin' at site n[1] signC, stateC = create(n[1], spin, stateA) if PRINT: print "annihilate %d,%5s"%(n[0],spin)," -->",stateA print " create %d,%5s"%(n[1],spin)," -->",stateC # If K|s2> has a projecton on <s1| then we add it to # t if np.array_equal(stateC,np.ravel(s1)): if PRINT: print " tmatrix --> % d" % (signA*signC ) t+= signA*signC r''' Notice that sometimes people write the kinetic energy as K = -t \sum_{\langle i j \rangle} a_{i\sigma}^{\dagger} a_{j\sigma} + c.c. where the letters c.c. refer to the complex conjugate. If they do that, then it means that the sum over nearest neighbors must only occur for one ordering of the neighbor pair, for instance just 1-2 whereas the sum over both orderings includes 1-2 and 2-1. Here we just run the sum over both orderings. ''' # We repeat the process with the different neighbor # ordering: signA, stateA = annihilate( n[1], spin, s2) signC, stateC = create(n[0], spin, stateA) if PRINT: print "annihilate %d,%5s"%(n[1],spin)," -->",stateA print " create %d,%5s"%(n[0],spin)," -->",stateC if np.array_equal(stateC,np.ravel(s1)): if PRINT: print " tmatrix --> % d" % (signA*signC ) t+= signA*signC kinetic[i,j] = t print "\nKinetic energy matrix: ",kinetic.shape print kinetic self.kinetic = kinetic def interaction0(self): '''This fuction calculates the interaction energy matrix in the spin=0 sector''' print msize = len(self.states[0]) inter = np.zeros((msize,msize)) # The basis we have chose is of number states, # so the interaction energy is diagonal for i,s1 in enumerate(self.states[0]): for site in s1.flat: if site == 3: # 3=double occupancy inter[i,i] = inter[i,i] + 1 print "\nInteraction energy matrix:i ",inter.shape print inter self.inter = inter def diagonal0(self): '''This fuction calculates a diagonal matrix in the spin=0 sector''' print msize = len(self.states[0]) diag = np.zeros((msize,msize)) # The basis we have chose is of number states, # so the interaction energy is diagonal for i,s1 in enumerate(self.states[0]): for site in s1.flat: diag[i,i] = 1.0 self.diag = diag def annihilate( i, spin, state): # The order for the creation operators is lower site number # to the left, and then spin-up to the left s = np.ravel(state) out = np.copy(s) samespin = {'up':1, 'down':2} flipspin = {'up':2, 'down':1} ncommute = 0. for j in range(i): if s[j] == 3: ncommute +=2 if s[j] == 1 or s[j] == 2: ncommute+=1 sign = (-1)**ncommute if s[i] == 0: out = np.zeros_like(s) if s[i] == flipspin[spin]: out = np.zeros_like(s) if s[i] == 3: out[i] = flipspin[spin] if spin == 'up': sign*= 1 if spin == 'down': sign*=-1 if s[i] == samespin[spin]: out[i] = 0 #print s, ", annihilate %d,%5s"%(i,spin)," --> %+d"%sign, out return sign, out
= int(floor(p[0]/self.ScaleFactor)),int(floor(p[1]/self.ScaleFactor)) w,h = self.Image.shape[-2:] if x >= 0 and x < w and y >= 0 and y < h: if self.Image.ndim == 2: count = self.Image[x,y] elif self.Image.ndim == 3: count = self.Image[:,x,y] self.SetStatusText("(%d,%d) count %s" % (x,y,count)) else: self.SetStatusText("") if self.scale != None: p1,p2 = self.pixel(self.scale[0]),self.pixel(self.scale[1]) else: p1,p2 = ((-100,-100),(-100,-100)) if self.MoveCrosshair: if event.LeftDown(): self.SetFocus() self.set_crosshair(event) self.CaptureMouse() self.dragging = "crosshair" self.Refresh() elif event.Dragging() and self.dragging: self.set_crosshair(event) self.Refresh() elif event.LeftUp() and self.dragging: self.ReleaseMouse() self.dragging = None self.Refresh() elif self.show_scale or self.tool == "measure": if event.LeftDown(): if self.tool == "measure": P = self.point(p) self.scale = [P,P] self.show_scale = True self.dragging = "scale2" self.scale_selected = False else: if point_line_distance(p,(p1,p2)) < 5: self.scale_selected = True else: self.scale_selected = False if point_line_distance(p,(p1,p2)) < 5: self.dragging = (self.point(p),list(self.scale)) if distance(p1,p) < 5: self.dragging = "scale1" if distance(p2,p) < 5: self.dragging = "scale2" if self.dragging: self.SetFocus() self.set_scale(event) self.CaptureMouse() self.Refresh() elif event.Dragging() and self.dragging: self.set_scale(event) self.Refresh() elif event.LeftUp() and self.dragging: self.ReleaseMouse() self.dragging = None self.Refresh() # Update the pointer shape to reflect the mouse function. if self.MoveCrosshair: self.SetCursor (wx.StockCursor(wx.CURSOR_PENCIL)) #self.SetCursor (self.crosshair_cursor) # garbled under Linux # CURSOR_CROSS would be better than CURSOR_PENCIL. # However, under Windows, the cross cursor does not have a white # border and is hard to see on black background. elif self.tool == "measure": self.SetCursor (wx.StockCursor(wx.CURSOR_PENCIL)) elif self.dragging == "scale1" or self.dragging == "scale2": self.SetCursor (wx.StockCursor(wx.CURSOR_SIZENESW)) elif self.dragging: self.SetCursor(wx.StockCursor(wx.CURSOR_SIZING)) elif self.scale_selected and (distance(p1,p) < 5 or distance(p2,p) < 5): self.SetCursor(wx.StockCursor(wx.CURSOR_SIZENESW)) elif point_line_distance(p,(p1,p2)) < 5: self.SetCursor(wx.StockCursor(wx.CURSOR_SIZING)) else: self.SetCursor (wx.StockCursor(wx.CURSOR_DEFAULT)) # CURSOR_SIZENESW would be better when the pointer is hovering over # the and of the end point. # However, under Linux, the pointer shape does not update # to CURSOR_PENCIL while dragging, only after the mouse button is # released. # CURSOR_CROSS would be better than CURSOR_PENCIL. # However, under Windows, the cross cursor does not have a white # border and is hard to see on black background. def set_crosshair (self,event): "Updates the crosshair position based on the last mouse event" x,y = self.cursor_pos(event) self.crosshair = (int(round(x/self.ScaleFactor)),int(round(y/self.ScaleFactor))) def set_scale (self,event): "Updates the scale based on the last mouse event" p = self.cursor_pos(event) if self.dragging == "scale1": self.scale[0] = self.point(p) elif self.dragging == "scale2": self.scale[1] = self.point(p) else: P = self.point(p) P0,(P1,P2) = self.dragging self.scale[0] = translate(P1,vector(P0,P)) self.scale[1] = translate(P2,vector(P0,P)) def cursor_pos (self,event): """cursor position (x,y) during the given event, in virtual pixel coordinates, relative to the top left corner of the image, in units of screen pixels (not image pixels). """ x,y = self.CalcUnscrolledPosition (event.GetX(),event.GetY()) ox,oy = self.origin() return x-ox,y-oy def OnContextMenu (self,event): menu = wx.Menu() menu.Append (10,"Show Mask","",wx.ITEM_CHECK) if self.show_mask: menu.Check(10,True) self.Bind (wx.EVT_MENU,self.OnShowMask,id=10) menu.Append (1,"Show Scale","",wx.ITEM_CHECK) if self.show_scale: menu.Check(1,True) self.Bind (wx.EVT_MENU,self.OnShowScale,id=1) menu.Append (2,"Show Box","",wx.ITEM_CHECK) if self.show_box: menu.Check(2,True) self.Bind (wx.EVT_MENU,self.OnShowBox,id=2) menu.Append (6,"Show Crosshair","",wx.ITEM_CHECK) if self.show_crosshair: menu.Check(6,True) self.Bind (wx.EVT_MENU,self.OnShowCrosshair,id=6) menu.AppendSeparator() menu.Append (7,"Measure","",wx.ITEM_CHECK) self.Bind (wx.EVT_MENU,self.OnMeasure,id=7) if self.tool == "measure": menu.Check(7,True) menu.AppendSeparator() if self.show_scale: menu.Append (8,"Scale...","") self.Bind (wx.EVT_MENU,self.OnScaleProperties,id=8) if self.show_crosshair: menu.Append (4,"Crosshair...","") self.Bind (wx.EVT_MENU,self.OnCrosshairProperties,id=4) if self.show_box: menu.Append (5,"Box...","") self.Bind (wx.EVT_MENU,self.OnBoxProperties,id=5) # Display the menu. If an item is selected then its handler will # be called before 'PopupMenu' returns. self.PopupMenu(menu) menu.Destroy() def OnShowMask (self,event): "Called if 'Show Scale' is selected from the context menu" self.show_mask = not self.show_mask self.Refresh() def OnShowScale (self,event): "Called if 'Show Scale' is selected from the context menu" self.show_scale = not self.show_scale if self.show_scale and self.scale == None: self.set_default_scale() self.Refresh() def set_default_scale(self): "Set default position for scale" w,h = self.ImageSize; x,y = self.ImageOrigin l = 0.4*w; l = round(l,int(round(-log10(l)+0.5))) self.scale = [(x+w*0.5-l/2,y+h*0.05),(x+w*0.5+l/2,y+h*0.05)] def OnShowBox (self,event): "Called if 'Show Box' is selected from the context menu" self.show_box = not self.show_box self.Refresh() def OnShowCrosshair (self,event): "Called if 'Show Crosshair' is selected from the context menu" self.show_crosshair = not self.show_crosshair self.Refresh() def GetMoveCrosshair (self): return (self.tool == "move crosshair") def SetMoveCrosshair (self,value): if value == True: self.tool = "move crosshair" else: self.tool = None MoveCrosshair = property(GetMoveCrosshair,SetMoveCrosshair,doc= "Determines whether the crosshair is movable or locked") def OnMeasure (self,event): "Called if 'Measure' is selected from the context menu" if self.tool != "measure": self.tool = "measure" else: self.tool = None def OnScaleProperties (self,event): dlg = ScaleProperties(self) dlg.CenterOnParent() pos = dlg.GetPosition(); pos.y += 100; dlg.SetPosition(pos) dlg.Show() def OnCrosshairProperties (self,event): dlg = CrosshairProperties(self) dlg.CenterOnParent() pos = dlg.GetPosition(); pos.y += 100; dlg.SetPosition(pos) dlg.Show() def OnBoxProperties (self,event): dlg = BoxProperties(self) dlg.CenterOnParent() pos = dlg.GetPosition(); pos.y += 100; dlg.SetPosition(pos) dlg.Show() class CrosshairProperties (wx.Dialog): """Allows the user to to read the cross position, enter the position numerically and change its color.""" def __init__ (self,parent): wx.Dialog.__init__(self,parent,-1,"Crosshair") # Controls self.Coordinates = wx.TextCtrl (self,size=(75,-1), style=wx.TE_PROCESS_ENTER) self.Bind (wx.EVT_TEXT_ENTER,self.OnEnterCoordinates,self.Coordinates) self.Coordinates.SetValue("%d,%d" % parent.Crosshair) self.Movable = wx.CheckBox(self,label="Movable") self.Bind (wx.EVT_CHECKBOX,self.OnMovable,self.Movable) if parent.MoveCrosshair: self.Movable.SetValue(True) self.CrosshairSize = wx.TextCtrl (self,size=(75,-1), style=wx.TE_PROCESS_ENTER) self.Bind (wx.EVT_TEXT_ENTER,self.OnEnterCrosshairSize, self.CrosshairSize) self.CrosshairSize.SetValue("%.3f,%.3f" % parent.crosshair_size) self.ShowCrosshair = wx.CheckBox(self,label="Show") self.Bind (wx.EVT_CHECKBOX,self.OnShowCrosshair,self.ShowCrosshair) if parent.show_crosshair: self.ShowCrosshair.SetValue(True) h = self.Coordinates.GetSize().y from wx.lib.colourselect import ColourSelect,EVT_COLOURSELECT self.Color = ColourSelect (self,colour=parent.crosshair_color,size=(h,h)) self.Color.Bind (EVT_COLOURSELECT,self.OnSelectColour) # Layout layout = wx.FlexGridSizer (cols=3,hgap=5,vgap=5) label = wx.StaticText (self,label="Position (x,y) [pixels]:") layout.Add (label,flag=wx.ALIGN_CENTER_VERTICAL) layout.Add (self.Coordinates,flag=wx.ALIGN_CENTER_VERTICAL) layout.Add (self.Movable,flag=wx.ALIGN_CENTER_VERTICAL) label = wx.StaticText (self,label="Size (w,h) [mm]:") layout.Add (label,flag=wx.ALIGN_CENTER_VERTICAL) layout.Add (self.CrosshairSize,flag=wx.ALIGN_CENTER_VERTICAL) layout.Add (self.ShowCrosshair,flag=wx.ALIGN_CENTER_VERTICAL) label = wx.StaticText (self,label="Line color:") layout.Add (label,flag=wx.ALIGN_CENTER_VERTICAL) layout.Add (self.Color,flag=wx.ALIGN_CENTER_VERTICAL) self.SetSizer(layout) self.Fit() self.Bind (wx.EVT_CLOSE,self.OnClose) def OnEnterCoordinates(self,event): text = self.Coordinates.GetValue() try: (tx,ty) = text.split(",") self.GetParent().Crosshair = (float(tx),float(ty)) except ValueError: return def OnMovable(self,event): self.GetParent().MoveCrosshair = self.Movable.GetValue() def OnEnterCrosshairSize(self,event): text = self.CrosshairSize.GetValue() try: (tx,ty) = text.split(",") self.GetParent().crosshair_size = (float(tx),float(ty)) except ValueError: return self.GetParent().Refresh() def OnShowCrosshair(self,event): self.GetParent().show_crosshair = self.ShowCrosshair.GetValue() self.GetParent().Refresh() def OnSelectColour(self,event): self.GetParent().crosshair_color = event.GetValue() self.GetParent().Refresh() def OnClose(self,event): """Called when the close button is clocked. When the dialog is closed automatically lock the crosshair.""" self.GetParent().MoveCrosshair = False self.Destroy() class BoxProperties (wx.Dialog): """Allows the user to change the box size and color""" def __init__ (self,parent): wx.Dialog.__init__(self,parent,-1,"Box") # Controls self.BoxSize = wx.TextCtrl (self,size=(75,-1), style=wx.TE_PROCESS_ENTER) self.Bind (wx.EVT_TEXT_ENTER,self.OnEnterBoxSize,self.BoxSize) self.BoxSize.SetValue("%.3f,%.3f" % parent.boxsize) self.ShowBox = wx.CheckBox(self,label="Show") self.Bind (wx.EVT_CHECKBOX,self.OnShowBox,self.ShowBox) if parent.show_box: self.ShowBox.SetValue(True) h = self.BoxSize.GetSize().y from wx.lib.colourselect import ColourSelect,EVT_COLOURSELECT self.Color = ColourSelect (self,colour=parent.box_color,size=(h,h)) self.Color.Bind (EVT_COLOURSELECT,self.OnSelectColour) # Layout layout = wx.FlexGridSizer (cols=3,hgap=5,vgap=5) label = wx.StaticText (self,label="Width,Height [mm]:") layout.Add (label,flag=wx.ALIGN_CENTER_VERTICAL) layout.Add (self.BoxSize,flag=wx.ALIGN_CENTER_VERTICAL) layout.Add (self.ShowBox,flag=wx.ALIGN_CENTER_VERTICAL) label = wx.StaticText (self,label="Line color:") layout.Add (label,flag=wx.ALIGN_CENTER_VERTICAL) layout.Add (self.Color,flag=wx.ALIGN_CENTER_VERTICAL) self.SetSizer(layout) self.Fit() def OnEnterBoxSize(self,event): text = self.BoxSize.GetValue() try: (tx,ty) = text.split(",") self.GetParent().boxsize = (float(tx),float(ty)) except ValueError: return self.GetParent().Refresh() def OnShowBox(self,event): self.GetParent().show_box = self.ShowBox.GetValue() self.GetParent().Refresh() def OnSelectColour(self,event): self.GetParent().box_color = event.GetValue() self.GetParent().Refresh() class ScaleProperties (wx.Dialog): """Allows the user to enter the length of the measurement scale numerically, make the line exactly horizonal or vertical and change its color. """ def __init__ (self,parent): wx.Dialog.__init__(self,parent,-1,"Scale") # Controls self.Length = wx.TextCtrl (self,size=(60,-1),style=wx.TE_PROCESS_ENTER) self.Bind (wx.EVT_TEXT_ENTER,self.OnEnterLength,self.Length) (P1,P2) = parent.scale; length = distance(P1,P2) self.Length.SetValue("%.3f" % length) self.Pixelsize = wx.TextCtrl (self,size=(60,-1), style=wx.TE_PROCESS_ENTER) self.Bind (wx.EVT_TEXT_ENTER,self.OnEnterPixelsize,self.Pixelsize) self.Pixelsize.SetValue("%.3f" % parent.pixelsize) self.Horizontal = wx.CheckBox (self,label="Horizontal") self.Bind (wx.EVT_CHECKBOX,self.OnHorizontal,self.Horizontal) self.Vertical = wx.CheckBox (self,label="Vertical") self.Bind (wx.EVT_CHECKBOX,self.OnVertical,self.Vertical) v = vector(P1,P2) if v[1] == 0: self.Horizontal.SetValue(True) if v[0] == 0: self.Vertical.SetValue(True) h = self.Length.GetSize().y from wx.lib.colourselect import ColourSelect,EVT_COLOURSELECT self.Color = ColourSelect (self,-1,"",parent.scale_color,size=(h,h)) self.Color.Bind (EVT_COLOURSELECT,self.OnSelectColour) # Layout layout = wx.FlexGridSizer (cols=2,hgap=5,vgap=5) label = wx.StaticText (self,label="Length ["+parent.ScaleUnit+"]:") layout.Add (label,flag=wx.ALIGN_CENTER_VERTICAL) layout.Add (self.Length,flag=wx.ALIGN_CENTER_VERTICAL) label = wx.StaticText (self,label="Pixel size [mm]:") layout.Add (label,flag=wx.ALIGN_CENTER_VERTICAL) layout.Add (self.Pixelsize,flag=wx.ALIGN_CENTER_VERTICAL) label = wx.StaticText (self,label="Direction:") layout.Add (label,flag=wx.ALIGN_CENTER_VERTICAL) group = wx.BoxSizer() group.Add (self.Horizontal) group.AddSpacer((5,5)) group.Add (self.Vertical) layout.Add (group) label = wx.StaticText (self,label="Line color:") layout.Add (label,flag=wx.ALIGN_CENTER_VERTICAL) layout.Add (self.Color,flag=wx.ALIGN_CENTER_VERTICAL) self.SetSizer(layout) self.Fit() def OnEnterLength(self,event): text = self.Length.GetValue() try: length = float(text) except ValueError: return parent = self.GetParent() (P1,P2) = parent.scale P2 = translate(P1,scale(direction(vector(P1,P2)),length)) parent.scale = [P1,P2] parent.Refresh() def OnEnterPixelsize(self,event): text = self.Pixelsize.Value try: value = float(text) except ValueError: self.Pixelsize.Value = "1.000"; return parent = self.Parent parent.pixelsize = value parent.Refresh() def OnHorizontal(self,event): self.Horizontal.SetValue(True); self.Vertical.SetValue(False) parent = self.GetParent() (P1,P2) = parent.scale; length = distance(P1,P2) P2 = translate(P1,(length,0)) parent.scale = [P1,P2] parent.Refresh() def OnVertical(self,event): self.Horizontal.SetValue(False); self.Vertical.SetValue(True) parent = self.GetParent() (P1,P2) = parent.scale; length = distance(P1,P2) P2 = translate(P1,(0,length)) parent.scale = [P1,P2] parent.Refresh() def OnSelectColour(self,event): self.GetParent().scale_color = event.GetValue() self.GetParent().Refresh() def distance ((x1,y1),(x2,y2)): "Distance between two points" return sqrt((x2-x1)**2+(y2-y1)**2) def point_line_distance (P,line): "Distance of a point to
not mentioned in docs) axis = kwargs.get("axis", 0) func = self._build_mapreduce_func(pandas.DataFrame.var, **kwargs) return self._full_axis_reduce(axis, func) # END Column/Row partitions reduce operations # Column/Row partitions reduce operations over select indices # # These operations result in a reduced dimensionality of data. # This will return a new QueryCompiler object which the front end will handle. def _full_axis_reduce_along_select_indices(self, func, axis, index): """Reduce Manger along select indices using function that needs full axis. Args: func: Callable that reduces the dimension of the object and requires full knowledge of the entire axis. axis: 0 for columns and 1 for rows. Defaults to 0. index: Index of the resulting QueryCompiler. Returns: A new QueryCompiler object with index or BaseFrameManager object. """ # Convert indices to numeric indices old_index = self.index if axis else self.columns numeric_indices = [i for i, name in enumerate(old_index) if name in index] result = self.data.apply_func_to_select_indices_along_full_axis( axis, func, numeric_indices ) return result def describe(self, **kwargs): """Generates descriptive statistics. Returns: DataFrame object containing the descriptive statistics of the DataFrame. """ # Use pandas to calculate the correct columns new_columns = ( pandas.DataFrame(columns=self.columns) .astype(self.dtypes) .describe(**kwargs) .columns ) def describe_builder(df, internal_indices=[], **kwargs): return df.iloc[:, internal_indices].describe(**kwargs) # Apply describe and update indices, columns, and dtypes func = self._prepare_method(describe_builder, **kwargs) new_data = self._full_axis_reduce_along_select_indices(func, 0, new_columns) new_index = self.compute_index(0, new_data, False) return self.__constructor__(new_data, new_index, new_columns) # END Column/Row partitions reduce operations over select indices # Map across rows/columns # These operations require some global knowledge of the full column/row # that is being operated on. This means that we have to put all of that # data in the same place. def _map_across_full_axis(self, axis, func): return self.data.map_across_full_axis(axis, func) def _cumulative_builder(self, func, **kwargs): axis = kwargs.get("axis", 0) func = self._prepare_method(func, **kwargs) new_data = self._map_across_full_axis(axis, func) return self.__constructor__( new_data, self.index, self.columns, self._dtype_cache ) def cummax(self, **kwargs): if self._is_transposed: kwargs["axis"] = kwargs.get("axis", 0) ^ 1 return self.transpose().cummax(**kwargs).transpose() return self._cumulative_builder(pandas.DataFrame.cummax, **kwargs) def cummin(self, **kwargs): if self._is_transposed: kwargs["axis"] = kwargs.get("axis", 0) ^ 1 return self.transpose().cummin(**kwargs).transpose() return self._cumulative_builder(pandas.DataFrame.cummin, **kwargs) def cumsum(self, **kwargs): if self._is_transposed: kwargs["axis"] = kwargs.get("axis", 0) ^ 1 return self.transpose().cumsum(**kwargs).transpose() return self._cumulative_builder(pandas.DataFrame.cumsum, **kwargs) def cumprod(self, **kwargs): if self._is_transposed: kwargs["axis"] = kwargs.get("axis", 0) ^ 1 return self.transpose().cumprod(**kwargs).transpose() return self._cumulative_builder(pandas.DataFrame.cumprod, **kwargs) def diff(self, **kwargs): if self._is_transposed: kwargs["axis"] = kwargs.get("axis", 0) ^ 1 return self.transpose().diff(**kwargs).transpose() axis = kwargs.get("axis", 0) func = self._prepare_method(pandas.DataFrame.diff, **kwargs) new_data = self._map_across_full_axis(axis, func) return self.__constructor__(new_data, self.index, self.columns) def eval(self, expr, **kwargs): """Returns a new QueryCompiler with expr evaluated on columns. Args: expr: The string expression to evaluate. Returns: A new QueryCompiler with new columns after applying expr. """ columns = self.index if self._is_transposed else self.columns index = self.columns if self._is_transposed else self.index # Make a copy of columns and eval on the copy to determine if result type is # series or not columns_copy = pandas.DataFrame(columns=self.columns) columns_copy = columns_copy.eval(expr, inplace=False, **kwargs) expect_series = isinstance(columns_copy, pandas.Series) def eval_builder(df, **kwargs): # pop the `axis` parameter because it was needed to build the mapreduce # function but it is not a parameter used by `eval`. kwargs.pop("axis", None) df.columns = columns result = df.eval(expr, inplace=False, **kwargs) return result func = self._build_mapreduce_func(eval_builder, axis=1, **kwargs) new_data = self._map_across_full_axis(1, func) if expect_series: new_columns = [columns_copy.name] new_index = index else: new_columns = columns_copy.columns new_index = self.index return self.__constructor__(new_data, new_index, new_columns) def mode(self, **kwargs): """Returns a new QueryCompiler with modes calculated for each label along given axis. Returns: A new QueryCompiler with modes calculated. """ axis = kwargs.get("axis", 0) def mode_builder(df, **kwargs): result = df.mode(**kwargs) # We return a dataframe with the same shape as the input to ensure # that all the partitions will be the same shape if not axis and len(df) != len(result): # Pad columns append_values = pandas.DataFrame( columns=result.columns, index=range(len(result), len(df)) ) result = pandas.concat([result, append_values], ignore_index=True) elif axis and len(df.columns) != len(result.columns): # Pad rows append_vals = pandas.DataFrame( columns=range(len(result.columns), len(df.columns)), index=result.index, ) result = pandas.concat([result, append_vals], axis=1) return pandas.DataFrame(result) func = self._prepare_method(mode_builder, **kwargs) new_data = self._map_across_full_axis(axis, func) new_index = pandas.RangeIndex(len(self.index)) if not axis else self.index new_columns = self.columns if not axis else pandas.RangeIndex(len(self.columns)) new_dtypes = self._dtype_cache if new_dtypes is not None: new_dtypes.index = new_columns return self.__constructor__( new_data, new_index, new_columns, new_dtypes ).dropna(axis=axis, how="all") def fillna(self, **kwargs): """Replaces NaN values with the method provided. Returns: A new QueryCompiler with null values filled. """ axis = kwargs.get("axis", 0) value = kwargs.get("value") method = kwargs.get("method", None) limit = kwargs.get("limit", None) full_axis = method is not None or limit is not None if isinstance(value, dict): value = kwargs.pop("value") if axis == 0: index = self.columns else: index = self.index value = { idx: value[key] for key in value for idx in index.get_indexer_for([key]) } def fillna_dict_builder(df, func_dict={}): # We do this to ensure that no matter the state of the columns we get # the correct ones. func_dict = {df.columns[idx]: func_dict[idx] for idx in func_dict} return df.fillna(value=func_dict, **kwargs) if full_axis: new_data = self.data.apply_func_to_select_indices_along_full_axis( axis, fillna_dict_builder, value, keep_remaining=True ) else: new_data = self.data.apply_func_to_select_indices( axis, fillna_dict_builder, value, keep_remaining=True ) return self.__constructor__(new_data, self.index, self.columns) else: func = self._prepare_method(pandas.DataFrame.fillna, **kwargs) if full_axis: new_data = self._map_across_full_axis(axis, func) return self.__constructor__(new_data, self.index, self.columns) else: return self._map_partitions(func) def quantile_for_list_of_values(self, **kwargs): """Returns Manager containing quantiles along an axis for numeric columns. Returns: QueryCompiler containing quantiles of original QueryCompiler along an axis. """ if self._is_transposed: kwargs["axis"] = kwargs.get("axis", 0) ^ 1 return self.transpose().quantile_for_list_of_values(**kwargs) axis = kwargs.get("axis", 0) q = kwargs.get("q") numeric_only = kwargs.get("numeric_only", True) assert isinstance(q, (pandas.Series, np.ndarray, pandas.Index, list)) if numeric_only: new_columns = self.numeric_columns() else: new_columns = [ col for col, dtype in zip(self.columns, self.dtypes) if (is_numeric_dtype(dtype) or is_datetime_or_timedelta_dtype(dtype)) ] if axis: # If along rows, then drop the nonnumeric columns, record the index, and # take transpose. We have to do this because if we don't, the result is all # in one column for some reason. nonnumeric = [ col for col, dtype in zip(self.columns, self.dtypes) if not is_numeric_dtype(dtype) ] query_compiler = self.drop(columns=nonnumeric) new_columns = query_compiler.index else: query_compiler = self def quantile_builder(df, **kwargs): result = df.quantile(**kwargs) return result.T if axis == 1 else result func = query_compiler._prepare_method(quantile_builder, **kwargs) q_index = pandas.Float64Index(q) new_data = query_compiler._map_across_full_axis(axis, func) # This took a long time to debug, so here is the rundown of why this is needed. # Previously, we were operating on select indices, but that was broken. We were # not correctly setting the columns/index. Because of how we compute `to_pandas` # and because of the static nature of the index for `axis=1` it is easier to # just handle this as the transpose (see `quantile_builder` above for the # transpose within the partition) than it is to completely rework other # internal methods. Basically we are returning the transpose of the object for # correctness and cleanliness of the code. if axis == 1: q_index = new_columns new_columns = pandas.Float64Index(q) result = self.__constructor__(new_data, q_index, new_columns) return result.transpose() if axis == 1 else result def query(self, expr, **kwargs): """Query columns of the QueryCompiler with a boolean expression. Args: expr: Boolean expression to query the columns with. Returns: QueryCompiler containing the rows where the boolean expression is satisfied. """ columns = self.columns def query_builder(df, **kwargs): # This is required because of an Arrow limitation # TODO revisit for Arrow error df = df.copy() df.index = pandas.RangeIndex(len(df)) df.columns = columns df.query(expr, inplace=True, **kwargs) df.columns = pandas.RangeIndex(len(df.columns)) return df func = self._prepare_method(query_builder, **kwargs) new_data = self._map_across_full_axis(1, func) # Query removes rows, so we need to update the index new_index = self.compute_index(0, new_data, True) return self.__constructor__(new_data, new_index, self.columns, self.dtypes) def rank(self, **kwargs): """Computes numerical rank along axis. Equal values are set to the average. Returns: QueryCompiler containing the ranks of the values along an axis. """ axis = kwargs.get("axis", 0) numeric_only = True if axis else kwargs.get("numeric_only", False) func = self._prepare_method(pandas.DataFrame.rank, **kwargs) new_data = self._map_across_full_axis(axis, func) # Since we assume no knowledge of internal state, we get the columns # from the internal partitions.
c in points] dbscan = DBSCAN( eps=eps, min_samples=min_samples).fit(pos) clustered_points = [] for label in range(np.max(dbscan.labels_) + 1): if np.count_nonzero(dbscan.labels_ == label) <= min_points: continue for idx, p in enumerate(points): if dbscan.labels_[idx] == label: clustered_points.append(p) return clustered_points def get_dbscan_core_coords(coords_list, dbscan): idx = tuple(dbscan.core_sample_indices_) if len(idx) == 0: print('No core sample') return coords_list, False core_labels = [int(x) for x in list( filter(lambda x: x != -1, dbscan.labels_))] core_coords_list = itemgetter(*idx)(coords_list) return core_coords_list, core_labels def get_dbscan_label_coords(coords_list, dbscan, label): idx = dbscan.labels_ == label label_coords_list = np.array(coords_list)[(np.array(idx))].tolist() return label_coords_list def align_coords(coords_list, labels, angle_thresh=90., copy_list=True): """Align the x-axis of coords invert coordinates above the threshold. If you do not align, the average value of the rotation map will be incorrect. Parameters ---------- coords_list : list[skrobot.coordinates.base.Coordinates] lables : numpy.ndarray angle_thresh : float, optional invert coordinates above the threshold, by default 135.0 copy_list ; bool, optional If True copy coords_list, by default True Returns ------- coords_list : list[skrobot.coordinates.base.Coordinates] """ aligned_coords_list = [] if copy_list: coords_list = copy.copy(coords_list) for label in range(np.max(labels) + 1): q_base = None for idx, coords in enumerate(coords_list): if labels[idx] == label: if q_base is None: q_base = coords.quaternion q_distance \ = coordinates.math.quaternion_distance( q_base, coords.quaternion) if np.rad2deg(q_distance) > angle_thresh: # coords_list[idx].rotate(np.pi, 'y') aligned_coords_list.append( coords_list[idx].copy_worldcoords().rotate( np.pi, 'y')) else: aligned_coords_list.append( coords_list[idx].copy_worldcoords()) return aligned_coords_list def split_label_coords(coords_list, labels): """Split coords based on label Parameters ---------- coords_list : list[skrobot.coordinates.Coordinates] Returns ------- coords_clusters :list[tuple(skrobot.coordinates.Coordinates)] """ coords_clusters = [] labels = np.array(labels) for label in range(np.max(labels) + 1): idx = tuple(np.where(labels == label)[0]) coords_cluster = itemgetter(*idx)(coords_list) if len(idx) == 1: coords_cluster = (coords_cluster,) coords_clusters.append(coords_cluster) return coords_clusters def make_average_coords_list(coords_list, labels, average_pos=True): """Make average orientation coords list Parameters ---------- coords_list : list[skrobot.coordinates.Coordinates] Returns ------- coords_list : list[skrobot.coordinates.Coordinates] """ average_coords_list = [] coords_clusters = split_label_coords(coords_list, labels) for coords_cluster in coords_clusters: coords_average = average_coords(coords_cluster) if average_pos: average_coords_list.append(coords_average) else: for coords in coords_cluster: coords.rotation = coords_average.rotation average_coords_list.append(coords) return average_coords_list def averageQuaternions(Q): """Calculate average quaternion https://github.com/christophhagen/averaging-quaternions/blob/master/LICENSE Q is a Nx4 numpy matrix and contains the quaternions to average in the rows. The quaternions are arranged as (w,x,y,z), with w being the scalar The result will be the average quaternion of the input. Note that the signs of the output quaternion can be reversed, since q and -q describe the same orientation Parameters ---------- Q : numpy.ndarray or list[float] Returns ------- average quaternion : numpy.ndarray """ Q = np.array(Q) M = Q.shape[0] A = npm.zeros(shape=(4, 4)) for i in range(0, M): q = Q[i, :] A = np.outer(q, q) + A A = (1.0 / M) * A eigenValues, eigenVectors = np.linalg.eig(A) eigenVectors = eigenVectors[:, eigenValues.argsort()[::-1]] # return the real part of the largest eigenvector (has only real part) return np.real(eigenVectors[:, 0].A1) def average_coords(coords_list): """Calculate average coords Parameters ---------- coords_list : list[skrobot.coordinates.Coordinates] Returns ------- coords_average : skrobot.coordinates.Coordinates """ q_list = [c.quaternion for c in coords_list] q_average = averageQuaternions(q_list) pos_average = np.mean([c.worldpos() for c in coords_list], axis=0) coords_average = coordinates.Coordinates(pos_average, q_average) return coords_average def coords_to_dict(coords_list, urdf_file, labels=None): """Cover coords list to dict for json Parameters ---------- coords_list : list[skrobot.coordinates.Coordinates] labels : list[int] Returns ------- contact_points_dict : dict """ contact_points_list = [] contact_points_dict = { 'urdf_file': urdf_file, 'contact_points': [], 'labels': []} for coords in coords_list: pose = np.concatenate( [coords.T()[:3, 3][None, :], coords.T()[:3, :3]]).tolist() contact_points_list.append(pose) contact_points_dict['contact_points'] = contact_points_list if labels is not None: contact_points_dict['labels'] = labels return contact_points_dict def make_aligned_contact_points_coords(contact_points_coords, eps=0.01): """Aligned contact points coords Parameters ---------- contact_points_coords : list[skrobot.coordinates.Coordinates] [description] eps : float, optional eps paramerter of sklearn dbscan, by default 0.01 Returns ------- [type] [description] """ dbscan = dbscan_coords(contact_points_coords, eps=eps) contact_points_coords, labels = get_dbscan_core_coords( contact_points_coords, dbscan) if not labels: return False aligned_contact_points_coords \ = align_coords(contact_points_coords, labels) return aligned_contact_points_coords def make_aligned_contact_points(contact_points_dict): contact_points = contact_points_dict['contact_points'] urdf_file = str(contact_points_dict['urdf_file']) contact_points_coords = make_contact_points_coords(contact_points) aligned_contact_points_coords \ = make_aligned_contact_points_coords(contact_points_coords) if not aligned_contact_points_coords: return False aligned_contact_points_dict = coords_to_dict( aligned_contact_points_coords, urdf_file) return aligned_contact_points_dict def filter_penetration(obj_file, hanging_points, box_size=[0.1, 0.0001, 0.0001], translate=[0, 0.005, 0]): """Filter the penetrating hanging points Parameters ---------- obj_file : srt obj file path (urdf, stl or obj) hanging_points : list[list[list[float], list[float]]] list of hanging points(=contact points) box_size : list[float] penetration check box of size [length, width, width] order translate : list, optional translate a box for penetration check, by default [0, 0.005, 0] Returns ------- penetrating_hanging_points: list[list[list[float], list[float]]] filtered_hanging_points: list[list[list[float], list[float]]] """ filtered_hanging_points = [] penetrating_hanging_points = [] path_without_ext, ext = osp.splitext(obj_file) if ext == '.urdf': obj_file = path_without_ext + '.stl' if not osp.isfile(obj_file): obj_file = path_without_ext + '.obj' obj = skrobot.model.MeshLink(obj_file) collision_manager = trimesh.collision.CollisionManager() collision_manager.add_object('obj', obj.visual_mesh) for hp in hanging_points: penetration_check_box = skrobot.model.Box( box_size, face_colors=[255, 0, 0], pos=hp[0], rot=hp[1:]) penetration_check_box.translate(translate) penetration = collision_manager.in_collision_single( penetration_check_box.visual_mesh, penetration_check_box.T()) if penetration: penetrating_hanging_points.append(hp) else: filtered_hanging_points.append(hp) return filtered_hanging_points, penetrating_hanging_points def sample_contact_points(contact_points, num_samples): """Sampling contact points for the specified number Parameters ---------- contact_points : list[list[list[float], list[float]]] num_samples : int Returns ------- contact_points : list[list[list[float], list[float]]] """ if num_samples > len(contact_points): num_samples = len(contact_points) idx = random.sample(range(0, len(contact_points)), num_samples) return [contact_points[i] for i in idx] def set_contact_points_urdf_path(contact_points_path): """Set contact points urdf path Set base.urdf in same directory Parameters ---------- contact_points_path : str """ urdf_file = osp.join(osp.dirname(contact_points_path), 'base.urdf') contact_points_dict = load_json(contact_points_path) contact_points_dict['urdf_file'] = urdf_file save_contact_points(contact_points_path, contact_points_dict) def filter_contact_points( contact_points_dict, cluster_min_points=-1, min_samples=2, eps=0.03, num_samples=30, use_filter_penetration=False, inf_penetration_check=False, half_inf_penetration_check=False, translate=[0, 0.005, 0]): """Filter contact points by clustering, aligning, averageing This function is similar to check_contact_points so should be merged. Parameters ---------- contact_points_dict : dict{'contact_points' : list[list[list[float], list[float]]] 'urdf_file' : str} cluster_min_points : int, optional if -1, set 1/5 of the nuber all the points. by default -1 min_samples : int, optional dbscan clustering min saples parameter. The number of samples (or total weight) in a neighborhood for a point to be considered as a core point. This includes the point itself. by default 2. eps : float, optional eps paramerter of sklearn dbscan, by default 0.03 num_samples : int, optional sampling contact points with this value. if -1 remain all points. use_filter_penetration : bool, optional by default False inf_penetration_check : bool, optional for hanging. by default False. half_penetration_check : bool, optional for pouring. by default False translate : list, optional translate a box for penetration check, by default [0, 0.005, 0] Returns ------- average_aligned_contact_points_coord_dict : dict{'contact_points' : list[list[list[float], list[float]]] 'urdf_file' : str} """ urdf_file = str(contact_points_dict['urdf_file']) contact_points = contact_points_dict['contact_points'] if len(contact_points) == 0: print('No points') return False if use_filter_penetration \ or inf_penetration_check \ or half_inf_penetration_check: # for hanging if inf_penetration_check: contact_points, _ = filter_penetration( urdf_file, contact_points, box_size=[100, 0.0001, 0.0001], translate=translate) # for pouring elif half_inf_penetration_check: contact_points, _ = filter_penetration( urdf_file, contact_points, box_size=[100, 0.0001, 0.0001], translate=[-50.005, 0, 0]) else: contact_points, _ = filter_penetration( urdf_file, contact_points, box_size=[0.1, 0.0001, 0.0001], translate=translate) print('penetration contact_points :%d' % len(contact_points)) if len(contact_points) == 0: print('No points after penetration check') return False if cluster_min_points or cluster_min_points == -1: contact_points = cluster_contact_points( contact_points, min_points=cluster_min_points, min_samples=min_samples, eps=eps) print('clusterring contact_points :%d' % len(contact_points)) if len(contact_points) == 0: print('No points after clustering') return False contact_points_coords = make_contact_points_coords(contact_points) dbscan = dbscan_coords(contact_points_coords, eps=eps) contact_points_coords, labels = get_dbscan_core_coords( contact_points_coords, dbscan) if not labels: return False aligned_contact_points_coords \ = align_coords(contact_points_coords, labels) average_aligned_contact_points_coords = make_average_coords_list( aligned_contact_points_coords, labels, average_pos=False) if num_samples > 0: average_aligned_contact_points_coords = sample_contact_points( average_aligned_contact_points_coords, num_samples=num_samples) print('sampled points: ', len(average_aligned_contact_points_coords)) average_aligned_contact_points_coord_dict \ = coords_to_dict( average_aligned_contact_points_coords, urdf_file, labels) return average_aligned_contact_points_coord_dict def filter_contact_points_dir( input_dir, cluster_min_points=-1, min_samples=2, eps=0.03, rate_thresh=0.1, num_samples=30, use_filter_penetration=False, inf_penetration_check=False, half_inf_penetration_check=False, points_path_name='contact_points', suffix=''): """Filter all contact points in the directory Parameters ---------- input_dir : str hanging_object of hanging_object/category/contact_points/<fancy_dir>/contact_points.json # noqa cluster_min_points : int, optional minimum number of points required for the cluster if -1, set 1/5 of the nuber all the points. by default -1 min_samples : int, optional dbscan clustering min saples parameter. The number of samples (or total weight) in a neighborhood for a point to be considered as a core point. This includes the point itself. by default 1. eps : float, optional eps paramerter of sklearn dbscan, by default 0.03 rate_thresh : float Objects whose rate of the number of remaining points is greater than this value are skipped. num_samples : int, optional sampling contact points with this value if -1 remain all points.
<gh_stars>0 # coding: utf-8 """ LEIA RESTful API for AI Leia API # noqa: E501 OpenAPI spec version: 1.0.0 Contact: <EMAIL> Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class Model(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'allow_all_applications': 'bool', 'allowed_application_ids': 'list[str]', 'application_id': 'str', 'creation_time': 'datetime', 'description': 'str', 'documentation': 'str', 'id': 'str', 'input_types': 'list[ModelInputTypes]', 'md5sum': 'str', 'model_clazz': 'str', 'model_module': 'str', 'model_type': 'ModelTypes', 'name': 'str', 'output_format': 'object', 'short_name': 'str', 'size': 'float', 'speed': 'Speed', 'tags': 'list[str]', 'ttl': 'float' } attribute_map = { 'allow_all_applications': 'allow_all_applications', 'allowed_application_ids': 'allowed_application_ids', 'application_id': 'application_id', 'creation_time': 'creation_time', 'description': 'description', 'documentation': 'documentation', 'id': 'id', 'input_types': 'input_types', 'md5sum': 'md5sum', 'model_clazz': 'model_clazz', 'model_module': 'model_module', 'model_type': 'model_type', 'name': 'name', 'output_format': 'output_format', 'short_name': 'short_name', 'size': 'size', 'speed': 'speed', 'tags': 'tags', 'ttl': 'ttl' } def __init__(self, allow_all_applications=None, allowed_application_ids=None, application_id=None, creation_time=None, description=None, documentation=None, id=None, input_types=None, md5sum=None, model_clazz=None, model_module=None, model_type=None, name=None, output_format=None, short_name=None, size=None, speed=None, tags=None, ttl=None): # noqa: E501 """Model - a model defined in Swagger""" # noqa: E501 self._allow_all_applications = None self._allowed_application_ids = None self._application_id = None self._creation_time = None self._description = None self._documentation = None self._id = None self._input_types = None self._md5sum = None self._model_clazz = None self._model_module = None self._model_type = None self._name = None self._output_format = None self._short_name = None self._size = None self._speed = None self._tags = None self._ttl = None self.discriminator = None if allow_all_applications is not None: self.allow_all_applications = allow_all_applications if allowed_application_ids is not None: self.allowed_application_ids = allowed_application_ids if application_id is not None: self.application_id = application_id self.creation_time = creation_time if description is not None: self.description = description if documentation is not None: self.documentation = documentation self.id = id self.input_types = input_types if md5sum is not None: self.md5sum = md5sum self.model_clazz = model_clazz self.model_module = model_module self.model_type = model_type self.name = name if output_format is not None: self.output_format = output_format if short_name is not None: self.short_name = short_name self.size = size if speed is not None: self.speed = speed if tags is not None: self.tags = tags if ttl is not None: self.ttl = ttl @property def allow_all_applications(self): """Gets the allow_all_applications of this Model. # noqa: E501 :return: The allow_all_applications of this Model. # noqa: E501 :rtype: bool """ return self._allow_all_applications @allow_all_applications.setter def allow_all_applications(self, allow_all_applications): """Sets the allow_all_applications of this Model. :param allow_all_applications: The allow_all_applications of this Model. # noqa: E501 :type: bool """ self._allow_all_applications = allow_all_applications @property def allowed_application_ids(self): """Gets the allowed_application_ids of this Model. # noqa: E501 :return: The allowed_application_ids of this Model. # noqa: E501 :rtype: list[str] """ return self._allowed_application_ids @allowed_application_ids.setter def allowed_application_ids(self, allowed_application_ids): """Sets the allowed_application_ids of this Model. :param allowed_application_ids: The allowed_application_ids of this Model. # noqa: E501 :type: list[str] """ self._allowed_application_ids = allowed_application_ids @property def application_id(self): """Gets the application_id of this Model. # noqa: E501 :return: The application_id of this Model. # noqa: E501 :rtype: str """ return self._application_id @application_id.setter def application_id(self, application_id): """Sets the application_id of this Model. :param application_id: The application_id of this Model. # noqa: E501 :type: str """ self._application_id = application_id @property def creation_time(self): """Gets the creation_time of this Model. # noqa: E501 :return: The creation_time of this Model. # noqa: E501 :rtype: datetime """ return self._creation_time @creation_time.setter def creation_time(self, creation_time): """Sets the creation_time of this Model. :param creation_time: The creation_time of this Model. # noqa: E501 :type: datetime """ if creation_time is None: raise ValueError("Invalid value for `creation_time`, must not be `None`") # noqa: E501 self._creation_time = creation_time @property def description(self): """Gets the description of this Model. # noqa: E501 :return: The description of this Model. # noqa: E501 :rtype: str """ return self._description @description.setter def description(self, description): """Sets the description of this Model. :param description: The description of this Model. # noqa: E501 :type: str """ self._description = description @property def documentation(self): """Gets the documentation of this Model. # noqa: E501 :return: The documentation of this Model. # noqa: E501 :rtype: str """ return self._documentation @documentation.setter def documentation(self, documentation): """Sets the documentation of this Model. :param documentation: The documentation of this Model. # noqa: E501 :type: str """ self._documentation = documentation @property def id(self): """Gets the id of this Model. # noqa: E501 :return: The id of this Model. # noqa: E501 :rtype: str """ return self._id @id.setter def id(self, id): """Sets the id of this Model. :param id: The id of this Model. # noqa: E501 :type: str """ if id is None: raise ValueError("Invalid value for `id`, must not be `None`") # noqa: E501 self._id = id @property def input_types(self): """Gets the input_types of this Model. # noqa: E501 :return: The input_types of this Model. # noqa: E501 :rtype: list[ModelInputTypes] """ return self._input_types @input_types.setter def input_types(self, input_types): """Sets the input_types of this Model. :param input_types: The input_types of this Model. # noqa: E501 :type: list[ModelInputTypes] """ if input_types is None: raise ValueError("Invalid value for `input_types`, must not be `None`") # noqa: E501 self._input_types = input_types @property def md5sum(self): """Gets the md5sum of this Model. # noqa: E501 The MD5 sum of the model # noqa: E501 :return: The md5sum of this Model. # noqa: E501 :rtype: str """ return self._md5sum @md5sum.setter def md5sum(self, md5sum): """Sets the md5sum of this Model. The MD5 sum of the model # noqa: E501 :param md5sum: The md5sum of this Model. # noqa: E501 :type: str """ self._md5sum = md5sum @property def model_clazz(self): """Gets the model_clazz of this Model. # noqa: E501 The Python class name of the model # noqa: E501 :return: The model_clazz of this Model. # noqa: E501 :rtype: str """ return self._model_clazz @model_clazz.setter def model_clazz(self, model_clazz): """Sets the model_clazz of this Model. The Python class name of the model # noqa: E501 :param model_clazz: The model_clazz of this Model. # noqa: E501 :type: str """ if model_clazz is None: raise ValueError("Invalid value for `model_clazz`, must not be `None`") # noqa: E501 self._model_clazz = model_clazz @property def model_module(self): """Gets the model_module of this Model. # noqa: E501 The Python module ghosting the code for the model # noqa: E501 :return: The model_module of this Model. # noqa: E501 :rtype: str """ return self._model_module @model_module.setter def model_module(self, model_module): """Sets the model_module of this Model. The Python module ghosting the code for the model # noqa: E501 :param model_module: The model_module of this Model. # noqa: E501 :type: str """ if model_module is None: raise ValueError("Invalid value for `model_module`, must not be `None`") # noqa: E501 self._model_module = model_module @property def model_type(self): """Gets the model_type of this Model. # noqa: E501 :return: The model_type of this Model. # noqa: E501 :rtype: ModelTypes """ return self._model_type @model_type.setter def model_type(self, model_type): """Sets the model_type of this Model. :param model_type: The model_type of this Model. # noqa: E501 :type: ModelTypes """ if model_type is None: raise ValueError("Invalid value for `model_type`, must not be `None`") # noqa: E501 self._model_type = model_type @property def name(self): """Gets the name of this Model. # noqa: E501 :return: The name of this Model. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this Model. :param name: The name of this Model. # noqa: E501 :type: str """ if name is None: raise ValueError("Invalid value for `name`, must not be `None`") # noqa: E501 self._name = name @property def output_format(self): """Gets the output_format of this Model. # noqa: E501 :return: The output_format of this Model. # noqa: E501 :rtype: object """ return self._output_format @output_format.setter def output_format(self, output_format): """Sets the output_format of this Model. :param output_format: The output_format of this Model. # noqa: E501 :type: object """ self._output_format = output_format @property def short_name(self): """Gets the short_name of this Model.
<reponame>08saikiranreddy/ipython # encoding: utf-8 """Magic functions for InteractiveShell. """ #----------------------------------------------------------------------------- # Copyright (C) 2001 <NAME> <<EMAIL>> and # Copyright (C) 2001-2007 <NAME> <<EMAIL>> # Copyright (C) 2008-2009 The IPython Development Team # Distributed under the terms of the BSD License. The full license is in # the file COPYING, distributed as part of this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- import __builtin__ import __future__ import bdb import inspect import os import sys import shutil import re import time import textwrap import types from cStringIO import StringIO from getopt import getopt,GetoptError from pprint import pformat # cProfile was added in Python2.5 try: import cProfile as profile import pstats except ImportError: # profile isn't bundled by default in Debian for license reasons try: import profile,pstats except ImportError: profile = pstats = None import IPython from IPython.core import debugger, oinspect from IPython.core.error import TryNext from IPython.core.error import UsageError from IPython.core.fakemodule import FakeModule from IPython.core.macro import Macro from IPython.core import page from IPython.core.prefilter import ESC_MAGIC from IPython.lib.pylabtools import mpl_runner from IPython.external.Itpl import itpl, printpl from IPython.testing import decorators as testdec from IPython.utils.io import file_read, nlprint import IPython.utils.io from IPython.utils.path import get_py_filename from IPython.utils.process import arg_split, abbrev_cwd from IPython.utils.terminal import set_term_title from IPython.utils.text import LSString, SList, StringTypes, format_screen from IPython.utils.timing import clock, clock2 from IPython.utils.warn import warn, error from IPython.utils.ipstruct import Struct import IPython.utils.generics #----------------------------------------------------------------------------- # Utility functions #----------------------------------------------------------------------------- def on_off(tag): """Return an ON/OFF string for a 1/0 input. Simple utility function.""" return ['OFF','ON'][tag] class Bunch: pass def compress_dhist(dh): head, tail = dh[:-10], dh[-10:] newhead = [] done = set() for h in head: if h in done: continue newhead.append(h) done.add(h) return newhead + tail #*************************************************************************** # Main class implementing Magic functionality # XXX - for some odd reason, if Magic is made a new-style class, we get errors # on construction of the main InteractiveShell object. Something odd is going # on with super() calls, Configurable and the MRO... For now leave it as-is, but # eventually this needs to be clarified. # BG: This is because InteractiveShell inherits from this, but is itself a # Configurable. This messes up the MRO in some way. The fix is that we need to # make Magic a configurable that InteractiveShell does not subclass. class Magic: """Magic functions for InteractiveShell. Shell functions which can be reached as %function_name. All magic functions should accept a string, which they can parse for their own needs. This can make some functions easier to type, eg `%cd ../` vs. `%cd("../")` ALL definitions MUST begin with the prefix magic_. The user won't need it at the command line, but it is is needed in the definition. """ # class globals auto_status = ['Automagic is OFF, % prefix IS needed for magic functions.', 'Automagic is ON, % prefix NOT needed for magic functions.'] #...................................................................... # some utility functions def __init__(self,shell): self.options_table = {} if profile is None: self.magic_prun = self.profile_missing_notice self.shell = shell # namespace for holding state we may need self._magic_state = Bunch() def profile_missing_notice(self, *args, **kwargs): error("""\ The profile module could not be found. It has been removed from the standard python packages because of its non-free license. To use profiling, install the python-profiler package from non-free.""") def default_option(self,fn,optstr): """Make an entry in the options_table for fn, with value optstr""" if fn not in self.lsmagic(): error("%s is not a magic function" % fn) self.options_table[fn] = optstr def lsmagic(self): """Return a list of currently available magic functions. Gives a list of the bare names after mangling (['ls','cd', ...], not ['magic_ls','magic_cd',...]""" # FIXME. This needs a cleanup, in the way the magics list is built. # magics in class definition class_magic = lambda fn: fn.startswith('magic_') and \ callable(Magic.__dict__[fn]) # in instance namespace (run-time user additions) inst_magic = lambda fn: fn.startswith('magic_') and \ callable(self.__dict__[fn]) # and bound magics by user (so they can access self): inst_bound_magic = lambda fn: fn.startswith('magic_') and \ callable(self.__class__.__dict__[fn]) magics = filter(class_magic,Magic.__dict__.keys()) + \ filter(inst_magic,self.__dict__.keys()) + \ filter(inst_bound_magic,self.__class__.__dict__.keys()) out = [] for fn in set(magics): out.append(fn.replace('magic_','',1)) out.sort() return out def extract_input_slices(self,slices,raw=False): """Return as a string a set of input history slices. Inputs: - slices: the set of slices is given as a list of strings (like ['1','4:8','9'], since this function is for use by magic functions which get their arguments as strings. Optional inputs: - raw(False): by default, the processed input is used. If this is true, the raw input history is used instead. Note that slices can be called with two notations: N:M -> standard python form, means including items N...(M-1). N-M -> include items N..M (closed endpoint).""" if raw: hist = self.shell.history_manager.input_hist_raw else: hist = self.shell.history_manager.input_hist_parsed cmds = [] for chunk in slices: if ':' in chunk: ini,fin = map(int,chunk.split(':')) elif '-' in chunk: ini,fin = map(int,chunk.split('-')) fin += 1 else: ini = int(chunk) fin = ini+1 cmds.append(''.join(hist[ini:fin])) return cmds def arg_err(self,func): """Print docstring if incorrect arguments were passed""" print 'Error in arguments:' print oinspect.getdoc(func) def format_latex(self,strng): """Format a string for latex inclusion.""" # Characters that need to be escaped for latex: escape_re = re.compile(r'(%|_|\$|#|&)',re.MULTILINE) # Magic command names as headers: cmd_name_re = re.compile(r'^(%s.*?):' % ESC_MAGIC, re.MULTILINE) # Magic commands cmd_re = re.compile(r'(?P<cmd>%s.+?\b)(?!\}\}:)' % ESC_MAGIC, re.MULTILINE) # Paragraph continue par_re = re.compile(r'\\$',re.MULTILINE) # The "\n" symbol newline_re = re.compile(r'\\n') # Now build the string for output: #strng = cmd_name_re.sub(r'\n\\texttt{\\textsl{\\large \1}}:',strng) strng = cmd_name_re.sub(r'\n\\bigskip\n\\texttt{\\textbf{ \1}}:', strng) strng = cmd_re.sub(r'\\texttt{\g<cmd>}',strng) strng = par_re.sub(r'\\\\',strng) strng = escape_re.sub(r'\\\1',strng) strng = newline_re.sub(r'\\textbackslash{}n',strng) return strng def parse_options(self,arg_str,opt_str,*long_opts,**kw): """Parse options passed to an argument string. The interface is similar to that of getopt(), but it returns back a Struct with the options as keys and the stripped argument string still as a string. arg_str is quoted as a true sys.argv vector by using shlex.split. This allows us to easily expand variables, glob files, quote arguments, etc. Options: -mode: default 'string'. If given as 'list', the argument string is returned as a list (split on whitespace) instead of a string. -list_all: put all option values in lists. Normally only options appearing more than once are put in a list. -posix (True): whether to split the input line in POSIX mode or not, as per the conventions outlined in the shlex module from the standard library.""" # inject default options at the beginning of the input line caller = sys._getframe(1).f_code.co_name.replace('magic_','') arg_str = '%s %s' % (self.options_table.get(caller,''),arg_str) mode = kw.get('mode','string') if mode not in ['string','list']: raise ValueError,'incorrect mode given: %s' % mode # Get options list_all = kw.get('list_all',0) posix = kw.get('posix', os.name == 'posix') # Check if we have more than one argument to warrant extra processing: odict = {} # Dictionary with options args = arg_str.split() if len(args) >= 1: # If the list of inputs only has 0 or 1 thing in it, there's no # need to look for options argv = arg_split(arg_str,posix) # Do regular option processing try: opts,args = getopt(argv,opt_str,*long_opts) except GetoptError,e: raise UsageError('%s ( allowed: "%s" %s)' % (e.msg,opt_str, " ".join(long_opts))) for o,a in opts: if o.startswith('--'): o = o[2:] else: o = o[1:] try: odict[o].append(a) except AttributeError: odict[o] = [odict[o],a] except KeyError: if list_all: odict[o] = [a] else: odict[o] = a # Prepare opts,args for return opts = Struct(odict) if mode == 'string': args = ' '.join(args) return opts,args #...................................................................... # And now the actual magic functions # Functions for IPython shell work (vars,funcs, config, etc) def magic_lsmagic(self, parameter_s = ''): """List currently available magic functions.""" mesc = ESC_MAGIC print 'Available magic functions:\n'+mesc+\ (' '+mesc).join(self.lsmagic()) print '\n' + Magic.auto_status[self.shell.automagic] return None def magic_magic(self, parameter_s = ''): """Print information about the magic function system. Supported formats: -latex, -brief, -rest """ mode = '' try: if parameter_s.split()[0] == '-latex': mode = 'latex' if parameter_s.split()[0] == '-brief': mode = 'brief' if parameter_s.split()[0] == '-rest': mode = 'rest' rest_docs = [] except: pass magic_docs = [] for fname in self.lsmagic(): mname = 'magic_' + fname for space in (Magic,self,self.__class__): try: fn = space.__dict__[mname] except KeyError: pass else: break if mode == 'brief': # only first line if fn.__doc__: fndoc = fn.__doc__.split('\n',1)[0] else: fndoc = 'No documentation' else: if fn.__doc__: fndoc = fn.__doc__.rstrip() else: fndoc = 'No documentation'
a negative match :type match: ``boolean`` :raise: ``InvalidArgument`` -- ``to`` is less than ``from`` :raise: ``NullArgument`` -- ``from`` or ``to`` ``null`` *compliance: mandatory -- This method must be implemented.* """ pass @abc.abstractmethod def match_any_fixed_start_offset(self, match): """Matches fixed offset events. :param match: ``true`` for a positive match, ``false`` for a negative match :type match: ``boolean`` *compliance: mandatory -- This method must be implemented.* """ pass @abc.abstractmethod def clear_fixed_start_offset_terms(self): """Clears the fixed offset terms. *compliance: mandatory -- This method must be implemented.* """ pass fixed_start_offset_terms = property(fdel=clear_fixed_start_offset_terms) @abc.abstractmethod def match_relative_weekday_start_offset(self, low, high, match): """Matches a relative weekday offset amount between the given range inclusive. :param low: the start of the range :type low: ``integer`` :param high: the end of the range :type high: ``integer`` :param match: ``true`` for a positive match, ``false`` for a negative match :type match: ``boolean`` *compliance: mandatory -- This method must be implemented.* """ pass @abc.abstractmethod def clear_relative_weekday_start_offset_terms(self): """Clears the relative weekday offset terms. *compliance: mandatory -- This method must be implemented.* """ pass relative_weekday_start_offset_terms = property(fdel=clear_relative_weekday_start_offset_terms) @abc.abstractmethod def match_relative_start_weekday(self, weekday, match): """Matches a relative weekday. :param weekday: the weekday :type weekday: ``cardinal`` :param match: ``true`` for a positive match, ``false`` for a negative match :type match: ``boolean`` *compliance: mandatory -- This method must be implemented.* """ pass @abc.abstractmethod def match_any_relative_start_weekday(self, match): """Matches relative weekday offset events. :param match: ``true`` for a positive match, ``false`` for a negative match :type match: ``boolean`` *compliance: mandatory -- This method must be implemented.* """ pass @abc.abstractmethod def clear_relative_start_weekday_terms(self): """Clears the relative weekday terms. *compliance: mandatory -- This method must be implemented.* """ pass relative_start_weekday_terms = property(fdel=clear_relative_start_weekday_terms) @abc.abstractmethod def match_fixed_duration(self, low, high, match): """Matches a fixed duration between the given range inclusive. :param low: the start of the range :type low: ``osid.calendaring.Duration`` :param high: the end of the range :type high: ``osid.calendaring.Duration`` :param match: ``true`` for a positive match, ``false`` for a negative match :type match: ``boolean`` *compliance: mandatory -- This method must be implemented.* """ pass @abc.abstractmethod def clear_fixed_duration_terms(self): """Clears the fixed duration offset terms. *compliance: mandatory -- This method must be implemented.* """ pass fixed_duration_terms = property(fdel=clear_fixed_duration_terms) @abc.abstractmethod def match_end_reference_event_id(self, event_id, match): """Sets the end reference event ``Id`` for this query. :param event_id: an event ``Id`` :type event_id: ``osid.id.Id`` :param match: ``true`` for a positive match, ``false`` for a negative match :type match: ``boolean`` :raise: ``NullArgument`` -- ``event_id`` is ``null`` *compliance: mandatory -- This method must be implemented.* """ pass @abc.abstractmethod def clear_end_reference_event_id_terms(self): """Clears the end reference event ``Id`` terms. *compliance: mandatory -- This method must be implemented.* """ pass end_reference_event_id_terms = property(fdel=clear_end_reference_event_id_terms) @abc.abstractmethod def supports_end_reference_event_query(self): """Tests if an ``EventQuery`` is available for querying end reference event terms. :return: ``true`` if an event query is available, ``false`` otherwise :rtype: ``boolean`` *compliance: mandatory -- This method must be implemented.* """ return # boolean @abc.abstractmethod def get_end_reference_event_query(self): """Gets the query for the end reference event. Multiple retrievals produce a nested ``OR`` term. :return: the event query :rtype: ``osid.calendaring.EventQuery`` :raise: ``Unimplemented`` -- ``supports_event_reference_event_query()`` is ``false`` *compliance: optional -- This method must be implemented if ``supports_end_reference_event_query()`` is ``true``.* """ return # osid.calendaring.EventQuery end_reference_event_query = property(fget=get_end_reference_event_query) @abc.abstractmethod def match_any_end_reference_event(self, match): """Matches any end reference event events. :param match: ``true`` for a positive match, ``false`` for a negative match :type match: ``boolean`` *compliance: mandatory -- This method must be implemented.* """ pass @abc.abstractmethod def clear_end_reference_event_terms(self): """Clears the end reference event terms. *compliance: mandatory -- This method must be implemented.* """ pass end_reference_event_terms = property(fdel=clear_end_reference_event_terms) @abc.abstractmethod def match_fixed_end_offset(self, from_, to, match): """Matches a fixed offset amount between the given range inclusive. :param from: the start of the range :type from: ``osid.calendaring.Duration`` :param to: the end of the range :type to: ``osid.calendaring.Duration`` :param match: ``true`` for a positive match, ``false`` for a negative match :type match: ``boolean`` :raise: ``InvalidArgument`` -- ``to`` is less than ``from`` :raise: ``NullArgument`` -- ``from`` or ``to`` ``null`` *compliance: mandatory -- This method must be implemented.* """ pass @abc.abstractmethod def match_any_fixed_end_offset(self, match): """Matches fixed offset events. :param match: ``true`` for a positive match, ``false`` for a negative match :type match: ``boolean`` *compliance: mandatory -- This method must be implemented.* """ pass @abc.abstractmethod def clear_fixed_end_offset_terms(self): """Clears the fixed offset terms. *compliance: mandatory -- This method must be implemented.* """ pass fixed_end_offset_terms = property(fdel=clear_fixed_end_offset_terms) @abc.abstractmethod def match_relative_weekday_end_offset(self, low, high, match): """Matches a relative weekday offset amount between the given range inclusive. :param low: the start of the range :type low: ``integer`` :param high: the end of the range :type high: ``integer`` :param match: ``true`` for a positive match, ``false`` for a negative match :type match: ``boolean`` *compliance: mandatory -- This method must be implemented.* """ pass @abc.abstractmethod def clear_relative_weekday_end_offset_terms(self): """Clears the relative weekday offset terms. *compliance: mandatory -- This method must be implemented.* """ pass relative_weekday_end_offset_terms = property(fdel=clear_relative_weekday_end_offset_terms) @abc.abstractmethod def match_relative_end_weekday(self, weekday, match): """Matches a relative weekday. :param weekday: the weekday :type weekday: ``cardinal`` :param match: ``true`` for a positive match, ``false`` for a negative match :type match: ``boolean`` *compliance: mandatory -- This method must be implemented.* """ pass @abc.abstractmethod def match_any_relative_end_weekday(self, match): """Matches relative weekday offset events. :param match: ``true`` for a positive match, ``false`` for a negative match :type match: ``boolean`` *compliance: mandatory -- This method must be implemented.* """ pass @abc.abstractmethod def clear_relative_end_weekday_terms(self): """Clears the relative weekday terms. *compliance: mandatory -- This method must be implemented.* """ pass relative_end_weekday_terms = property(fdel=clear_relative_end_weekday_terms) @abc.abstractmethod def match_location_description(self, location, string_match_type, match): """Matches the location description string. :param location: location string :type location: ``string`` :param string_match_type: string match type :type string_match_type: ``osid.type.Type`` :param match: ``true`` for a positive match, ``false`` for a negative match :type match: ``boolean`` :raise: ``InvalidArgument`` -- ``location`` is not of ``string_match_type`` :raise: ``NullArgument`` -- ``location`` or ``string_match_type`` is ``null`` :raise: ``Unsupported`` -- ``supports_string_match_type(string_match_type)`` is ``false`` *compliance: mandatory -- This method must be implemented.* """ pass @abc.abstractmethod def match_any_location_description(self, match): """Matches an event that has any location description assigned. :param match: ``true`` to match events with any location description, ``false`` to match events with no location description :type match: ``boolean`` *compliance: mandatory -- This method must be implemented.* """ pass @abc.abstractmethod def clear_location_description_terms(self): """Clears the location description terms. *compliance: mandatory -- This method must be implemented.* """ pass location_description_terms = property(fdel=clear_location_description_terms) @abc.abstractmethod def match_location_id(self, location_id, match): """Sets the location ``Id`` for this query. :param location_id: a location ``Id`` :type location_id: ``osid.id.Id`` :param match: ``true`` for a positive match, ``false`` for a negative match :type match: ``boolean`` :raise: ``NullArgument`` -- ``location_id`` is ``null`` *compliance: mandatory -- This method must be implemented.* """ pass @abc.abstractmethod def clear_location_id_terms(self): """Clears the location ``Id`` terms. *compliance: mandatory -- This method must be implemented.* """ pass location_id_terms = property(fdel=clear_location_id_terms) @abc.abstractmethod def supports_location_query(self): """Tests if a ``LocationQuery`` is available for querying locations. :return: ``true`` if a location query is available, ``false`` otherwise :rtype: ``boolean`` *compliance: mandatory -- This method must be implemented.* """ return # boolean @abc.abstractmethod def get_location_query(self): """Gets the query for a location. Multiple retrievals produce a nested ``OR`` term. :return: the location query :rtype: ``osid.mapping.LocationQuery`` :raise: ``Unimplemented`` -- ``supports_location_query()`` is ``false`` *compliance: optional -- This method must be implemented if ``supports_location_query()`` is ``true``.* """ return # osid.mapping.LocationQuery location_query = property(fget=get_location_query) @abc.abstractmethod def match_any_location(self, match): """Matches an event that has any location assigned. :param match: ``true`` to match events with any location, ``false`` to match events with no location :type match: ``boolean`` *compliance: mandatory -- This method must be implemented.* """ pass @abc.abstractmethod def clear_location_terms(self): """Clears the location terms. *compliance: mandatory -- This method must be implemented.* """ pass location_terms = property(fdel=clear_location_terms) @abc.abstractmethod def match_sponsor_id(self, sponsor_id, match): """Sets the sponsor ``Id`` for this query. :param sponsor_id: a sponsor ``Id`` :type sponsor_id: ``osid.id.Id`` :param match: ``true`` for a positive match, ``false`` for a negative match :type match: ``boolean`` :raise: ``NullArgument`` -- ``sponsor_id`` is ``null`` *compliance: mandatory -- This method must be
all steps are complete (default is on) """ kerberos_attributes: pulumi.Output[dict] """ Kerberos configuration for the cluster. Defined below * `adDomainJoinPassword` (`str`) - The Active Directory password for `ad_domain_join_user`. This provider cannot perform drift detection of this configuration. * `adDomainJoinUser` (`str`) - Required only when establishing a cross-realm trust with an Active Directory domain. A user with sufficient privileges to join resources to the domain. This provider cannot perform drift detection of this configuration. * `crossRealmTrustPrincipalPassword` (`str`) - Required only when establishing a cross-realm trust with a KDC in a different realm. The cross-realm principal password, which must be identical across realms. This provider cannot perform drift detection of this configuration. * `kdcAdminPassword` (`str`) - The password used within the cluster for the kadmin service on the cluster-dedicated KDC, which maintains Kerberos principals, password policies, and keytabs for the cluster. This provider cannot perform drift detection of this configuration. * `realm` (`str`) - The name of the Kerberos realm to which all nodes in a cluster belong. For example, `EC2.INTERNAL` """ log_uri: pulumi.Output[str] """ S3 bucket to write the log files of the job flow. If a value is not provided, logs are not created """ master_instance_group: pulumi.Output[dict] """ Configuration block to use an [Instance Group](https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-instance-group-configuration.html#emr-plan-instance-groups) for the [master node type](https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-master-core-task-nodes.html#emr-plan-master). Cannot be specified if `master_instance_type` argument or `instance_group` configuration blocks are set. Detailed below. * `bid_price` (`str`) - Bid price for each EC2 instance in the instance group, expressed in USD. By setting this attribute, the instance group is being declared as a Spot Instance, and will implicitly create a Spot request. Leave this blank to use On-Demand Instances. * `ebs_configs` (`list`) - Configuration block(s) for EBS volumes attached to each instance in the instance group. Detailed below. * `iops` (`float`) - The number of I/O operations per second (IOPS) that the volume supports * `size` (`float`) - The volume size, in gibibytes (GiB). * `type` (`str`) - The volume type. Valid options are `gp2`, `io1`, `standard` and `st1`. See [EBS Volume Types](https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html). * `volumesPerInstance` (`float`) - The number of EBS volumes with this configuration to attach to each EC2 instance in the instance group (default is 1) * `id` (`str`) - The ID of the EMR Cluster * `instance_count` (`float`) - Target number of instances for the instance group. Must be 1 or 3. Defaults to 1. Launching with multiple master nodes is only supported in EMR version 5.23.0+, and requires this resource's `core_instance_group` to be configured. Public (Internet accessible) instances must be created in VPC subnets that have `map public IP on launch` enabled. Termination protection is automatically enabled when launched with multiple master nodes and this provider must have the `termination_protection = false` configuration applied before destroying this resource. * `instance_type` (`str`) - EC2 instance type for all instances in the instance group. * `name` (`str`) - The name of the step. """ master_instance_type: pulumi.Output[str] """ Use the `master_instance_group` configuration block `instance_type` argument instead. The EC2 instance type of the master node. Cannot be specified if `master_instance_group` or `instance_group` configuration blocks are set. """ master_public_dns: pulumi.Output[str] """ The public DNS name of the master EC2 instance. * `core_instance_group.0.id` - Core node type Instance Group ID, if using Instance Group for this node type. """ name: pulumi.Output[str] """ The name of the step. """ release_label: pulumi.Output[str] """ The release label for the Amazon EMR release """ scale_down_behavior: pulumi.Output[str] """ The way that individual Amazon EC2 instances terminate when an automatic scale-in activity occurs or an `instance group` is resized. """ security_configuration: pulumi.Output[str] """ The security configuration name to attach to the EMR cluster. Only valid for EMR clusters with `release_label` 4.8.0 or greater """ service_role: pulumi.Output[str] """ IAM role that will be assumed by the Amazon EMR service to access AWS resources """ step_concurrency_level: pulumi.Output[float] """ The number of steps that can be executed concurrently. You can specify a maximum of 256 steps. Only valid for EMR clusters with `release_label` 5.28.0 or greater. (default is 1) """ steps: pulumi.Output[list] """ List of steps to run when creating the cluster. Defined below. It is highly recommended to utilize [`ignoreChanges`](https://www.pulumi.com/docs/intro/concepts/programming-model/#ignorechanges) if other steps are being managed outside of this provider. * `actionOnFailure` (`str`) - The action to take if the step fails. Valid values: `TERMINATE_JOB_FLOW`, `TERMINATE_CLUSTER`, `CANCEL_AND_WAIT`, and `CONTINUE` * `hadoopJarStep` (`dict`) - The JAR file used for the step. Defined below. * `args` (`list`) - List of command line arguments passed to the JAR file's main function when executed. * `jar` (`str`) - Path to a JAR file run during the step. * `mainClass` (`str`) - Name of the main class in the specified Java file. If not specified, the JAR file should specify a Main-Class in its manifest file. * `properties` (`dict`) - Key-Value map of Java properties that are set when the step runs. You can use these properties to pass key value pairs to your main function. * `name` (`str`) - The name of the step. """ tags: pulumi.Output[dict] """ list of tags to apply to the EMR Cluster """ termination_protection: pulumi.Output[bool] """ Switch on/off termination protection (default is `false`, except when using multiple master nodes). Before attempting to destroy the resource when termination protection is enabled, this configuration must be applied with its value set to `false`. """ visible_to_all_users: pulumi.Output[bool] """ Whether the job flow is visible to all IAM users of the AWS account associated with the job flow. Default `true` """ def __init__(__self__, resource_name, opts=None, additional_info=None, applications=None, autoscaling_role=None, bootstrap_actions=None, configurations=None, configurations_json=None, core_instance_count=None, core_instance_group=None, core_instance_type=None, custom_ami_id=None, ebs_root_volume_size=None, ec2_attributes=None, instance_groups=None, keep_job_flow_alive_when_no_steps=None, kerberos_attributes=None, log_uri=None, master_instance_group=None, master_instance_type=None, name=None, release_label=None, scale_down_behavior=None, security_configuration=None, service_role=None, step_concurrency_level=None, steps=None, tags=None, termination_protection=None, visible_to_all_users=None, __props__=None, __name__=None, __opts__=None): """ Provides an Elastic MapReduce Cluster, a web service that makes it easy to process large amounts of data efficiently. See [Amazon Elastic MapReduce Documentation](https://aws.amazon.com/documentation/elastic-mapreduce/) for more information. To configure [Instance Groups](https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-instance-group-configuration.html#emr-plan-instance-groups) for [task nodes](https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-master-core-task-nodes.html#emr-plan-task), see the `emr.InstanceGroup` resource. > Support for [Instance Fleets](https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-instance-group-configuration.html#emr-plan-instance-fleets) will be made available in an upcoming release. ## Example Usage ```python import pulumi import pulumi_aws as aws cluster = aws.emr.Cluster("cluster", additional_info=\"\"\"{ "instanceAwsClientConfiguration": { "proxyPort": 8099, "proxyHost": "myproxy.example.com" } } \"\"\", applications=["Spark"], bootstrap_actions=[{ "args": [ "instance.isMaster=true", "echo running on master node", ], "name": "runif", "path": "s3://elasticmapreduce/bootstrap-actions/run-if", }], configurations_json=\"\"\" [ { "Classification": "hadoop-env", "Configurations": [ { "Classification": "export", "Properties": { "JAVA_HOME": "/usr/lib/jvm/java-1.8.0" } } ], "Properties": {} }, { "Classification": "spark-env", "Configurations": [ { "Classification": "export", "Properties": { "JAVA_HOME": "/usr/lib/jvm/java-1.8.0" } } ], "Properties": {} } ] \"\"\", core_instance_group={ "autoscaling_policy": \"\"\"{ "Constraints": { "MinCapacity": 1, "MaxCapacity": 2 }, "Rules": [ { "Name": "ScaleOutMemoryPercentage", "Description": "Scale out if YARNMemoryAvailablePercentage is less than 15", "Action": { "SimpleScalingPolicyConfiguration": { "AdjustmentType": "CHANGE_IN_CAPACITY", "ScalingAdjustment": 1, "CoolDown": 300 } }, "Trigger": { "CloudWatchAlarmDefinition": { "ComparisonOperator": "LESS_THAN", "EvaluationPeriods": 1, "MetricName": "YARNMemoryAvailablePercentage", "Namespace": "AWS/ElasticMapReduce", "Period": 300, "Statistic": "AVERAGE", "Threshold": 15.0, "Unit": "PERCENT" } } } ] } \"\"\", "bid_price": "0.30", "ebsConfig": [{ "size": "40", "type": "gp2", "volumesPerInstance": 1, }], "instance_count": 1, "instance_type": "c4.large", }, ebs_root_volume_size=100, ec2_attributes={ "emrManagedMasterSecurityGroup": aws_security_group["sg"]["id"], "emrManagedSlaveSecurityGroup": aws_security_group["sg"]["id"], "instanceProfile": aws_iam_instance_profile["emr_profile"]["arn"], "subnet_id": aws_subnet["main"]["id"], }, keep_job_flow_alive_when_no_steps=True, master_instance_group={ "instance_type": "m4.large", }, release_label="emr-4.6.0", service_role=aws_iam_role["iam_emr_service_role"]["arn"], tags={ "env": "env", "role": "rolename", }, termination_protection=False) ``` ### Enable Debug Logging ```python import pulumi import pulumi_aws as aws example = aws.emr.Cluster("example", lifecycle={ "ignoreChanges": [ "stepConcurrencyLevel", "steps", ], }, steps=[{ "actionOnFailure": "TERMINATE_CLUSTER", "hadoopJarStep": { "args": ["state-pusher-script"], "jar": "command-runner.jar", }, "name": "Setup Hadoop Debugging", }]) ``` ### Multiple Node Master Instance Group ```python import pulumi import pulumi_aws as aws # Map public IP on launch must be enabled for public (Internet accessible) subnets example_subnet = aws.ec2.Subnet("exampleSubnet", map_public_ip_on_launch=True) example_cluster = aws.emr.Cluster("exampleCluster", core_instance_group={}, ec2_attributes={ "subnet_id": example_subnet.id, }, master_instance_group={ "instance_count": 3, }, release_label="emr-5.24.1", termination_protection=True) ``` ## Example bootable config **NOTE:** This configuration demonstrates a minimal configuration needed to boot an example EMR Cluster. It is not meant to display best practices. Please use at
names or ids query param. This will fail with a 412 Precondition failed if the resource was changed and the current version of the resource doesn't match the value in the query param. :param bool async_req: Request runs in separate thread and method returns multiprocessing.pool.ApplyResult. :param bool _return_http_data_only: Returns only data field. :param bool _preload_content: Response is converted into objects. :param int _request_timeout: Total request timeout in seconds. It can also be a tuple of (connection time, read time) timeouts. :return: NfsExportPolicyResponse If the method is called asynchronously, returns the request thread. """ if ids is not None: if not isinstance(ids, list): ids = [ids] if names is not None: if not isinstance(names, list): names = [names] if versions is not None: if not isinstance(versions, list): versions = [versions] params = {k: v for k, v in six.iteritems(locals()) if v is not None} # Convert the filter into a string if params.get('filter'): params['filter'] = str(params['filter']) if params.get('sort'): params['sort'] = [str(_x) for _x in params['sort']] # verify the required parameter 'policy' is set if policy is None: raise TypeError("Missing the required parameter `policy` when calling `api23_nfs_export_policies_patch`") collection_formats = {} path_params = {} query_params = [] if 'ids' in params: query_params.append(('ids', params['ids'])) collection_formats['ids'] = 'csv' if 'names' in params: query_params.append(('names', params['names'])) collection_formats['names'] = 'csv' if 'versions' in params: query_params.append(('versions', params['versions'])) collection_formats['versions'] = 'csv' header_params = {} form_params = [] local_var_files = {} body_params = None if 'policy' in params: body_params = params['policy'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( ['application/json']) # Authentication setting auth_settings = ['AuthorizationHeader'] return self.api_client.call_api( '/api/2.3/nfs-export-policies', 'PATCH', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='NfsExportPolicyResponse', auth_settings=auth_settings, async_req=async_req, _return_http_data_only=_return_http_data_only, _preload_content=_preload_content, _request_timeout=_request_timeout, collection_formats=collection_formats, ) def api23_nfs_export_policies_post_with_http_info( self, names=None, # type: List[str] policy=None, # type: models.NfsExportPolicy async_req=False, # type: bool _return_http_data_only=False, # type: bool _preload_content=True, # type: bool _request_timeout=None, # type: Optional[int] ): # type: (...) -> models.NfsExportPolicyResponse """POST nfs-export-policies Create a new NFS export policy. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.api23_nfs_export_policies_post_with_http_info(names, async_req=True) >>> result = thread.get() :param list[str] names: A comma-separated list of resource names. (required) :param NfsExportPolicy policy: :param bool async_req: Request runs in separate thread and method returns multiprocessing.pool.ApplyResult. :param bool _return_http_data_only: Returns only data field. :param bool _preload_content: Response is converted into objects. :param int _request_timeout: Total request timeout in seconds. It can also be a tuple of (connection time, read time) timeouts. :return: NfsExportPolicyResponse If the method is called asynchronously, returns the request thread. """ if names is not None: if not isinstance(names, list): names = [names] params = {k: v for k, v in six.iteritems(locals()) if v is not None} # Convert the filter into a string if params.get('filter'): params['filter'] = str(params['filter']) if params.get('sort'): params['sort'] = [str(_x) for _x in params['sort']] # verify the required parameter 'names' is set if names is None: raise TypeError("Missing the required parameter `names` when calling `api23_nfs_export_policies_post`") collection_formats = {} path_params = {} query_params = [] if 'names' in params: query_params.append(('names', params['names'])) collection_formats['names'] = 'csv' header_params = {} form_params = [] local_var_files = {} body_params = None if 'policy' in params: body_params = params['policy'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( ['application/json']) # Authentication setting auth_settings = ['AuthorizationHeader'] return self.api_client.call_api( '/api/2.3/nfs-export-policies', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='NfsExportPolicyResponse', auth_settings=auth_settings, async_req=async_req, _return_http_data_only=_return_http_data_only, _preload_content=_preload_content, _request_timeout=_request_timeout, collection_formats=collection_formats, ) def api23_nfs_export_policies_rules_delete_with_http_info( self, ids=None, # type: List[str] names=None, # type: List[str] versions=None, # type: List[str] async_req=False, # type: bool _return_http_data_only=False, # type: bool _preload_content=True, # type: bool _request_timeout=None, # type: Optional[int] ): # type: (...) -> None """DELETE nfs-export-policies/rules Delete one or more NFS export policy rules. One of the following is required: `ids` or `names`. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.api23_nfs_export_policies_rules_delete_with_http_info(async_req=True) >>> result = thread.get() :param list[str] ids: A comma-separated list of resource IDs. If after filtering, there is not at least one resource that matches each of the elements of `ids`, then an error is returned. This cannot be provided together with the `name` or `names` query parameters. :param list[str] names: A comma-separated list of resource names. If there is not at least one resource that matches each of the elements of `names`, then an error is returned. :param list[str] versions: A comma-separated list of versions. This is an optional query param used for concurrency control. The ordering should match the names or ids query param. This will fail with a 412 Precondition failed if the resource was changed and the current version of the resource doesn't match the value in the query param. :param bool async_req: Request runs in separate thread and method returns multiprocessing.pool.ApplyResult. :param bool _return_http_data_only: Returns only data field. :param bool _preload_content: Response is converted into objects. :param int _request_timeout: Total request timeout in seconds. It can also be a tuple of (connection time, read time) timeouts. :return: None If the method is called asynchronously, returns the request thread. """ if ids is not None: if not isinstance(ids, list): ids = [ids] if names is not None: if not isinstance(names, list): names = [names] if versions is not None: if not isinstance(versions, list): versions = [versions] params = {k: v for k, v in six.iteritems(locals()) if v is not None} # Convert the filter into a string if params.get('filter'): params['filter'] = str(params['filter']) if params.get('sort'): params['sort'] = [str(_x) for _x in params['sort']] collection_formats = {} path_params = {} query_params = [] if 'ids' in params: query_params.append(('ids', params['ids'])) collection_formats['ids'] = 'csv' if 'names' in params: query_params.append(('names', params['names'])) collection_formats['names'] = 'csv' if 'versions' in params: query_params.append(('versions', params['versions'])) collection_formats['versions'] = 'csv' header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( ['application/json']) # Authentication setting auth_settings = ['AuthorizationHeader'] return self.api_client.call_api( '/api/2.3/nfs-export-policies/rules', 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, auth_settings=auth_settings, async_req=async_req, _return_http_data_only=_return_http_data_only, _preload_content=_preload_content, _request_timeout=_request_timeout, collection_formats=collection_formats, ) def api23_nfs_export_policies_rules_get_with_http_info( self, continuation_token=None, # type: str filter=None, # type: str ids=None, # type: List[str] limit=None, # type: int names=None, # type: List[str] offset=None, # type: int policy_ids=None, # type: List[str] policy_names=None, # type: List[str] sort=None, # type: List[str] async_req=False, # type: bool _return_http_data_only=False, # type: bool _preload_content=True, # type: bool _request_timeout=None, # type: Optional[int] ): # type: (...) -> models.NfsExportPolicyRuleGetResponse """GET nfs-export-policies/rules Displays a list of NFS export policy rules. The default sort is by policy name, then index. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.api23_nfs_export_policies_rules_get_with_http_info(async_req=True) >>> result = thread.get() :param str continuation_token: An opaque token used to iterate over a collection. The token to use on the next request is returned in the `continuation_token` field of the result. :param str filter: Exclude resources that don't match the specified criteria. :param list[str] ids: A comma-separated list of resource IDs. If after filtering, there is not at least one resource that matches each of the elements of `ids`, then an error is returned. This cannot be provided together with the `name` or `names` query parameters. :param int limit: Limit the size of the response to the specified number of resources. A `limit` of `0` can be used to get the number of resources without getting all of the resources. It will be returned in the `total_item_count` field. If a client asks for a page size larger than the maximum number, the request is still valid. In that case the server just returns the maximum number of items, disregarding the client's page size request. :param list[str] names: A comma-separated list of resource names. If there is not at least
100508, -62995, 166399177, 100507, -62994, 166464543, 100506, -62993, 166529923, 100505, -62992, 166595274, 100504, -62991, 166660594, 100503, -62990, 166725974, 100502, -1, 166791366, 100501, 166988286, 166202243, -1, -62987, 166923910, 100500, -62986, 166989319, 100499, -62985, 167054689, 100498, -62984, 167120073, 100497, -62983, 167185439, 100496, -62982, 167250819, 100495, -62981, 167316170, 100494, -62980, 167381490, 100493, -62979, 167446870, 100492, -1, 167512262, 100491, 167709193, 166922954, -1, -62976, 167644806, 100490, -62975, 167710215, 100489, -62974, 167775585, 100488, -62973, 167840969, 100487, -62972, 167906335, 100486, -62971, 167971715, 100485, -62970, 168037066, 100484, -62969, 168102386, 100483, -62968, 168167766, 100482, -1, 168233158, 100481, 168430100, 167643634, -1, -62965, 168365702, 100480, -62964, 168431111, 100479, -62963, 168496481, 100478, -62962, 168561865, 100477, -62961, 168627231, 100476, -62960, 168692611, 100475, -62959, 168757962, 100474, -62958, 168823282, 100473, -62957, 168888662, 100472, -1, 168954054, 100471, 169151007, 168364374, -1, -62954, 169086598, 100470, -62953, 169152007, 100469, -62952, 169217377, 100468, -62951, 169282761, 100467, -62950, 169348127, 100466, -62949, 169413507, 100465, -62948, 169478858, 100464, -62947, 169544178, 100463, -62946, 169609558, 100462, -1, 169674950, 100461, 169934847, 169085126, -1, -62943, 169807494, 100460, -62942, 169872903, 100459, -62941, 169938273, 100458, -62940, 170003657, 100457, -62939, 170069023, 100456, -62938, 170134403, 100455, -62937, 170199754, 100454, -62936, 170265074, 100453, -62935, 170330454, 100452, -1, 170395846, 100451, 170592920, 163252422, -1, 170658358, 170528390, -1, -62931, 170593926, 100450, -62930, 170659335, 100449, -62929, 170724705, 100448, -62928, 170790089, 100447, -62927, 170855455, 100446, -62926, 170920835, 100445, -62925, 170986186, 100444, -62924, 171051506, 100443, -62923, 171116886, 100442, -1, 171182278, 100441, 171379265, 170593799, -1, -62920, 171314822, 100440, -62919, 171380231, 100439, -62918, 171445601, 100438, -62917, 171510985, 100437, -62916, 171576351, 100436, -62915, 171641731, 100435, -62914, 171707082, 100434, -62913, 171772402, 100433, -62912, 171837782, 100432, -1, 171903174, 100431, 172100172, 171314529, -1, -62909, 172035718, 100430, -62908, 172101127, 100429, -62907, 172166497, 100428, -62906, 172231881, 100427, -62905, 172297247, 100426, -62904, 172362627, 100425, -62903, 172427978, 100424, -62902, 172493298, 100423, -62901, 172558678, 100422, -1, 172624070, 100421, 172821079, 172035273, -1, -62898, 172756614, 100420, -62897, 172822023, 100419, -62896, 172887393, 100418, -62895, 172952777, 100417, -62894, 173018143, 100416, -62893, 173083523, 100415, -62892, 173148874, 100414, -62891, 173214194, 100413, -62890, 173279574, 100412, -1, 173344966, 100411, 173541986, 172755999, -1, -62887, 173477510, 100410, -62886, 173542919, 100409, -62885, 173608289, 100408, -62884, 173673673, 100407, -62883, 173739039, 100406, -62882, 173804419, 100405, -62881, 173869770, 100404, -62880, 173935090, 100403, -62879, 174000470, 100402, -1, 174065862, 100401, 174262893, 173476739, -1, -62876, 174198406, 100400, -62875, 174263815, 100399, -62874, 174329185, 100398, -62873, 174394569, 100397, -62872, 174459935, 100396, -62871, 174525315, 100395, -62870, 174590666, 100394, -62869, 174655986, 100393, -62868, 174721366, 100392, -1, 174786758, 100391, 174983800, 174197450, -1, -62865, 174919302, 100390, -62864, 174984711, 100389, -62863, 175050081, 100388, -62862, 175115465, 100387, -62861, 175180831, 100386, -62860, 175246211, 100385, -62859, 175311562, 100384, -62858, 175376882, 100383, -62857, 175442262, 100382, -1, 175507654, 100381, 175704707, 174918130, -1, -62854, 175640198, 100380, -62853, 175705607, 100379, -62852, 175770977, 100378, -62851, 175836361, 100377, -62850, 175901727, 100376, -62849, 175967107, 100375, -62848, 176032458, 100374, -62847, 176097778, 100373, -62846, 176163158, 100372, -1, 176228550, 100371, 176425614, 175638870, -1, -62843, 176361094, 100370, -62842, 176426503, 100369, -62841, 176491873, 100368, -62840, 176557257, 100367, -62839, 176622623, 100366, -62838, 176688003, 100365, -62837, 176753354, 100364, -62836, 176818674, 100363, -62835, 176884054, 100362, -1, 176949446, 100361, 177209343, 176359622, -1, -62832, 177081990, 100360, -62831, 177147399, 100359, -62830, 177212769, 100358, -62829, 177278153, 100357, -62828, 177343519, 100356, -62827, 177408899, 100355, -62826, 177474250, 100354, -62825, 177539570, 100353, -1, 177604950, 100352, 177864703, 170528097, -1, 177867428, 177736579, -1, -62821, 177802886, 101100, -62820, 177868295, 101099, -62819, 177933665, 101098, -62818, 177999049, 101097, -62817, 178064415, 101096, -62816, 178129795, 101095, -62815, 178195146, 101094, -62814, 178260466, 101093, -62813, 178325846, 101092, -1, 178391238, 101091, 178588335, 177801930, -1, -62810, 178523782, 101090, -62809, 178589191, 101089, -62808, 178654561, 101088, -62807, 178719945, 101087, -62806, 178785311, 101086, -62805, 178850691, 101085, -62804, 178916042, 101084, -62803, 178981362, 101083, -62802, 179046742, 101082, -1, 179112134, 101081, 179309242, 178522610, -1, -62799, 179244678, 101080, -62798, 179310087, 101079, -62797, 179375457, 101078, -62796, 179440841, 101077, -62795, 179506207, 101076, -62794, 179571587, 101075, -62793, 179636938, 101074, -62792, 179702258, 101073, -62791, 179767638, 101072, -1, 179833030, 101071, 180030149, 179243350, -1, -62788, 179965574, 101070, -62787, 180030983, 101069, -62786, 180096353, 101068, -62785, 180161737, 101067, -62784, 180227103, 101066, -62783, 180292483, 101065, -62782, 180357834, 101064, -62781, 180423154, 101063, -62780, 180488534, 101062, -1, 180553926, 101061, 180751056, 179964102, -1, -62777, 180686470, 101060, -62776, 180751879, 101059, -62775, 180817249, 101058, -62774, 180882633, 101057, -62773, 180947999, 101056, -62772, 181013379, 101055, -62771, 181078730, 101054, -62770, 181144050, 101053, -62769, 181209430, 101052, -1, 181274822, 101051, 181534719, 180685855, -1, -62766, 181406751, 101106, -62765, 181472131, 101105, -62764, 181537482, 101104, -62763, 181602802, 101103, -62762, 181668182, 101102, -1, 181733574, 101101, -1, 126830765, 94176, -1, 126759133, 127818, -1, 126685073, 127883, 182127662, 126638489, -1, 182193173, 182092017, -1, 182258461, 182147927, -1, 182323959, 182213463, -1, 182389483, 182278999, -1, 182455011, 182325009, -1, -62751, 182421655, 983864, -62750, 182468701, 983861, -1, 182521617, 983854, 182717157, 182421655, 983857, -1, 182683799, 983858, 182848231, 182673509, 983862, -1, 182804581, 983863, 182979305, 182796381, 983855, -1, 182927453, 983856, 183173119, 182922079, 983859, -1, 183053151, 983860, 183241455, 182325009, -1, -62739, 183208087, 983732, -62738, 183255133, 983729, -1, 183308049, 983722, 183503601, 183208087, 983725, -1, 183470231, 983726, 183634675, 183459941, 983730, -1, 183591013, 983731, 183765749, 183582813, 983723, -1, 183713885, 983724, 183959551, 183708511, 983727, -1, 183839583, 983728, 184027908, 182294189, -1, 184093436, 183963409, -1, -62726, 184060055, 983710, -62725, 184107101, 983707, -1, 184160017, 983700, 184355582, 184060055, 983703, -1, 184322199, 983704, 184486656, 184311909, 983708, -1, 184442981, 983709, 184617730, 184434781, 983701, -1, 184565853, 983702, 184811519, 184560479, 983705, -1, 184691551, 983706, 184879889, 183973801, -1, 184945417, 184815377, -1, -62713, 184912023, 983688, -62712, 184959069, 983685, -1, 185011985, 983678, 185207563, 184912023, 983681, -1, 185174167, 983682, 185338637, 185163877, 983686, -1, 185294949, 983687, 185469711, 185286749, 983679, -1, 185417821, 983680, 185663487, 185412447, 983683, -1, 185543519, 983684, 185731861, 184815377, -1, -62701, 185698455, 983754, -62700, 185745501, 983751, -1, 185798417, 983744, 185994007, 185698455, 983747, -1, 185960599, 983748, 186125081, 185950309, 983752, -1, 186081381, 983753, 186256155, 186073181, 983745, -1, 186204253, 983746, 186449919, 186198879, 983749, -1, 186329951, 983750, 186518341, 182220834, -1, 186583852, 186464967, -1, 186649379, 186519313, -1, -62687, 186615959, 983886, -62686, 186663005, 983883, -1, 186715921, 983876, 186911525, 186615959, 983879, -1, 186878103, 983880, 187042599, 186867813, 983884, -1, 186998885, 983885, 187173673, 186990685, 983877, -1, 187121757, 983878, 187304747, 187116383, 983881, -1, 187247455, 983882, -1, 187266325, 983932, 187501369, 186546210, -1, 187566897, 187436817, -1, -62673, 187533463, 983897, -62672, 187580509, 983894, -1, 187633425, 983887, 187829043, 187533463, 983890, -1, 187795607, 983891, 187960117, 187785317, 983895, -1, 187916389, 983896, 188091191, 187908189, 983888, -1, 188039261, 983889, 188284927, 188033887, 983892, -1, 188164959, 983893, 188353341, 187436817, -1, -62661, 188319895, 983908, -62660, 188366941, 983905, -1, 188419857, 983898, 188615487, 188319895, 983901, -1, 188582039, 983902, 188746561, 188571749, 983906, -1, 188702821, 983907, 188877635, 188694621, 983899, -1, 188825693, 983900, 189071359, 188820319, 983903, -1, 188951391, 983904, 189139820, 186469623, -1, 189205344, 189091063, -1, 189270868, 189156599, -1, 189336396, 189206289, -1, -62646, 189302935, 983831, -62645, 189349981, 983828, -1, 189402897, 983821, 189598542, 189302935, 983824, -1, 189565079, 983825, 189729616, 189554789, 983829, -1, 189685861, 983830, 189860690, 189677661, 983822, -1, 189808733, 983823, 190054399, 189803359, 983826, -1, 189934431, 983827, 190122840, 189206289, -1, -62634, 190089367, 983842, -62633, 190136413, 983839, -1, 190189329, 983832, 190384986, 190089367, 983835, -1, 190351511, 983836, 190516060, 190341221, 983840, -1, 190472293, 983841, 190647134, 190464093, 983833, -1, 190595165, 983834, 190840831, 190589791, 983837, -1, 190720863, 983838, 190909284, 189140753, -1, -62622, 190875799, 983809, -62621, 190922845, 983806, -1, 190975761, 983799, 191171430, 190875799, 983802, -1, 191137943, 983803, 191302504, 191127653, 983807, -1, 191258725, 983808, 191433578, 191250525, 983800, -1, 191381597, 983801, 191627263, 191376223, 983804, -1, 191507295, 983805, 191695750, 189090499, -1, 191761274, 191659715, -1, 191826802, 191696657, 983920, -62608, 191793303, 983931, -62607, 191840349, 983928, -1, 191893265, 983921, 192088948, 191793303, 983924, -1, 192055447, 983925, 192220022, 192045157, 983929, -1, 192176229, 983930, 192351096, 192168029, 983922, -1, 192299101, 983923, 192544767, 192293727, 983926, -1, 192424799, 983927, 192613246, 191696657, -1, -62596, 192579735, 983677, -62595, 192626781, 983674, -1, 192679697, 983667, 192875392, 192579735, 983670, -1, 192841879, 983671, 193006466, 192831589, 983675, -1, 192962661, 983676, 193137540, 192954461, 983668, -1, 193085533, 983669, 193331199, 193080159, 983672, -1, 193211231, 983673, 193399712, 191660366, -1, 193465236, 193364302, -1, 193530764, 193400593, -1, -62582, 193497239, 983721, -62581, 193544285, 983718, -1, 193597201, 983711, 193792910, 193497239, 983714, -1, 193759383, 983715, 193923984, 193749093, 983719, -1, 193880165, 983720, 194055058, 193871965, 983712, -1, 194003037, 983713, 194248703, 193997663, 983716, -1, 194128735, 983717, 194317208, 193400593, -1, -62570, 194283671, 983743, -62569,
# -*- coding: utf-8 -*- """Module implementing the abstract Runner.""" import os import json from .abstract_runner_utils import float2str from .abstract_runner_utils import _add_hp_to_argparse import time import abc import argparse import warnings from copy import deepcopy from deepobs import config as global_config import glob class Runner(abc.ABC): """Abstract base class for all different runners in DeepOBS. Captures everything that is common to both frameworks and every runner type. This includes folder creation amd writing of the output to the folder. Attributes: _optimizer_class: See argument optimizer_class _optimizer_name: The name of the optimizer class _hyperparameter_names: A nested dictionary that lists all hyperparameters of the optimizer, their type and their default values Methods: run: An abstract method that is overwritten by the tensorflow and pytorch specific subclasses. It performs the actual run on a testproblem. training: An abstract method that performs the actual training and is overwritten by the subclasses. create_output_directory: Creates the output folder of the run. write_output: Writes the output of the run to the output directory. """ def __init__(self, optimizer_class, hyperparameter_names): """ Creates a new Runner instance Args: optimizer_class: The optimizer class of the optimizer that is run on \ the testproblems. For PyTorch this must be a subclass of torch.optim.Optimizer. For \ TensorFlow a subclass of tf.train.Optimizer. hyperparameter_names: A nested dictionary that lists all hyperparameters of the optimizer,\ their type and their default values (if they have any). Example ------- >>> optimizer_class = tf.train.MomentumOptimizer >>> hyperparms = {'lr': {'type': float}, >>> 'momentum': {'type': float, 'default': 0.99}, >>> 'uses_nesterov': {'type': bool, 'default': False}} >>> runner = StandardRunner(optimizer_class, hyperparms) """ self._optimizer_class = optimizer_class self._optimizer_name = optimizer_class.__name__ self._hyperparameter_names = hyperparameter_names def run(self, testproblem=None, hyperparams=None, batch_size=None, num_epochs=None, random_seed=None, data_dir=None, output_dir=None, weight_decay=None, no_logs=None, train_log_interval=None, print_train_iter=None, tb_log=None, tb_log_dir=None, skip_if_exists=False, **training_params): """Runs a testproblem with the optimizer_class. Has the following tasks: 1. setup testproblem 2. run the training (must be implemented by subclass) 3. merge and write output Args: testproblem (str): Name of the testproblem. hyperparams (dict): The explizit values of the hyperparameters of the optimizer that are used for training batch_size (int): Mini-batch size for the training data. num_epochs (int): The number of training epochs. random_seed (int): The torch random seed. data_dir (str): The path where the data is stored. output_dir (str): Path of the folder where the results are written to. weight_decay (float): Regularization factor for the testproblem. no_logs (bool): Whether to write the output or not. train_log_interval (int): Mini-batch interval for logging. print_train_iter (bool): Whether to print the training progress at each train_log_interval. tb_log (bool): Whether to use tensorboard logging or not tb_log_dir (str): The path where to save tensorboard events. skip_if_exists (bool): Skip training if the output already exists. training_params (dict): Kwargs for the training method. Returns: dict: {<...meta data...>, \ 'test_losses' : test_losses, \ 'valid_losses': valid_losses \ 'train_losses': train_losses, \ 'test_accuracies': test_accuracies, \ 'valid_accuracies': valid_accuracies \ 'train_accuracies': train_accuracies, \ } \ where <...meta data...> stores the run args. """ exists, matches = self.run_exists( testproblem=testproblem, hyperparams=hyperparams, batch_size=batch_size, num_epochs=num_epochs, random_seed=random_seed, data_dir=data_dir, output_dir=output_dir, weight_decay=weight_decay, no_logs=no_logs, train_log_interval=train_log_interval, print_train_iter=print_train_iter, tb_log=tb_log, tb_log_dir=tb_log_dir, **training_params) require_run = not (exists and skip_if_exists) if require_run: args = self.parse_args( testproblem, hyperparams, batch_size, num_epochs, random_seed, data_dir, output_dir, weight_decay, no_logs, train_log_interval, print_train_iter, tb_log, tb_log_dir, training_params, ) return self._run(**args) else: print("Found output file(s): {}\nSkipping run.".format(matches)) def _run(self, testproblem=None, hyperparams=None, batch_size=None, num_epochs=None, random_seed=None, data_dir=None, output_dir=None, weight_decay=None, no_logs=None, train_log_interval=None, print_train_iter=None, tb_log=None, tb_log_dir=None, **training_params): # Creates a backup copy of the initial parameters. Users might change the dicts during training. hyperparams_before_training = deepcopy(hyperparams) training_params_before_training = deepcopy(training_params) batch_size = self._use_default_batch_size_if_missing( testproblem, batch_size) num_epochs = self._use_default_num_epochs_if_missing( testproblem, num_epochs) if data_dir is not None: global_config.set_data_dir(data_dir) run_directory, file_name = self.generate_output_directory_name( testproblem, batch_size, num_epochs, weight_decay, random_seed, output_dir, hyperparams, **training_params) if tb_log: if tb_log_dir == 'none': print( 'Tensorboard logging: No tb_log_dir specified, using settings folder {0:s} as default.' .format(run_directory)) os.makedirs(run_directory, exist_ok=True) tb_log_dir = run_directory tproblem = self.create_testproblem(testproblem, batch_size, weight_decay, random_seed) output = self.training(tproblem, hyperparams, num_epochs, print_train_iter, train_log_interval, tb_log, tb_log_dir, **training_params) output = self._post_process_output(output, testproblem, batch_size, num_epochs, random_seed, weight_decay, hyperparams_before_training, **training_params_before_training) if not no_logs: os.makedirs(run_directory, exist_ok=True) self.write_output(output, run_directory, file_name) return output def run_exists(self, testproblem=None, hyperparams=None, batch_size=None, num_epochs=None, random_seed=None, data_dir=None, output_dir=None, weight_decay=None, no_logs=None, train_log_interval=None, print_train_iter=None, tb_log=None, tb_log_dir=None, **training_params): """Return whether output file for this run already exists. Args: See `run` method. Returns: bool, list(str): The first parameter is `True` if the `.json` \ output file already exists, else `False`. The list contains \ the paths to the files that match the run. """ args = self.parse_args( testproblem, hyperparams, batch_size, num_epochs, random_seed, data_dir, output_dir, weight_decay, no_logs, train_log_interval, print_train_iter, tb_log, tb_log_dir, training_params, ) return self._run_exists(**args) def _run_exists(self, testproblem=None, hyperparams=None, batch_size=None, num_epochs=None, random_seed=None, data_dir=None, output_dir=None, weight_decay=None, no_logs=None, train_log_interval=None, print_train_iter=None, tb_log=None, tb_log_dir=None, **training_params): batch_size = self._use_default_batch_size_if_missing( testproblem, batch_size) num_epochs = self._use_default_num_epochs_if_missing( testproblem, num_epochs) run_directory, _ = self.generate_output_directory_name( testproblem, batch_size, num_epochs, weight_decay, random_seed, output_dir, hyperparams, **training_params) file_regex = "{}*.json".format(self._filename_no_date(random_seed)) pattern = os.path.join(run_directory, file_regex) matches = glob.glob(pattern) exists = bool(matches) return exists, matches def _use_default_batch_size_if_missing(self, testproblem, batch_size): fall_back_to_default = (batch_size is None) if fall_back_to_default: batch_size = self._use_default(testproblem, 'batch_size') return batch_size def _use_default_num_epochs_if_missing(self, testproblem, num_epochs): fall_back_to_default = (num_epochs is None) if fall_back_to_default: num_epochs = self._use_default(testproblem, 'num_epochs') return num_epochs @staticmethod def _use_default(testproblem, key): return global_config.get_testproblem_default_setting(testproblem)[key] @abc.abstractmethod def training(self, tproblem, hyperparams, num_epochs, print_train_iter, train_log_interval, tb_log, tb_log_dir, **training_params): """Performs the training and stores the metrices. Args: tproblem (deepobs.[tensorflow/pytorch].testproblems.testproblem): The testproblem instance to train on. hyperparams (dict): The optimizer hyperparameters to use for the training. num_epochs (int): The number of training epochs. print_train_iter (bool): Whether to print the training progress at every train_log_interval train_log_interval (int): Mini-batch interval for logging. tb_log (bool): Whether to use tensorboard logging or not tb_log_dir (str): The path where to save tensorboard events. **training_params (dict): Kwargs for additional training parameters that are implemented by subclass. Returns: dict: The logged metrices. Is of the form: \ {'test_losses' : [...], \ 'valid_losses': [...], \ 'train_losses': [...], \ 'test_accuracies': [...], \ 'valid_accuracies': [...], \ 'train_accuracies': [...] \ } \ where the metrices values are lists that were filled during training. """ return @staticmethod @abc.abstractmethod def evaluate(*args, **kwargs): pass @staticmethod @abc.abstractmethod def create_testproblem(*args, **kwargs): pass def _add_training_params_to_argparse(self, parser, args, training_params): """Overwrite this method to specify how your runner should read in additional training_parameters and to add them to argparse. Args: parser (argparse.ArgumentParser): The argument parser object. args (dict): The args that are parsed as locals to the run method. training_params (dict): Training parameters that are to read in. """ pass def _add_hyperparams_to_argparse(self, parser, args, hyperparams): """Overwrite this method to specify how your runner should read in optimizer hyper_parameters and to add them to argparse. Args: parser (argparse.ArgumentParser): The argument parser object. args (dict): The args that are parsed as locals to the run method. hyperparams (dict): Hyperparameters that are to read in. """ if hyperparams is None: # if no hyperparams dict is passed to run() for hp_name, hp_specification in self._hyperparameter_names.items( ): _add_hp_to_argparse(parser, self._optimizer_name, hp_specification, hp_name) else: # if there is one, fill the missing params from command line for hp_name, hp_specification in self._hyperparameter_names.items( ): if hp_name in hyperparams: args[hp_name] = hyperparams[hp_name] else: _add_hp_to_argparse(parser, self._optimizer_name, hp_specification, hp_name) def _add_training_params_to_output_dir_name(self, training_params, run_folder_name): """Overwrite this method to specify how your runner should format additional training_parameters in the run folder name. Args: training_params (dict): The training parameters. run_folder_name (str): The current name of the run folder that the training parameters are added to. Returns: str: The new run folder name. """ for tp_name, tp_value in sorted(training_params.items()): if tp_value is not None: run_folder_name += "__{0:s}".format(tp_name) run_folder_name += "__{0:s}".format( float2str(tp_value) if isinstance(tp_value, float ) else str(tp_value)) return run_folder_name def _add_hyperparams_to_output_dir_name(self, optimizer_hyperparams, run_folder_name): """Overwrite this method to specify how your runner should format optimizer hyper_parameters in the run folder name. Args: optimizer_hyperparams (dict): The optimizer hyperparameters. run_folder_name (str): The current name of the run folder that the hyperparameters are added to. Returns: str: The new run folder name. """ for hp_name, hp_value in sorted(optimizer_hyperparams.items()): run_folder_name += "__{0:s}".format(hp_name) run_folder_name += "__{0:s}".format( float2str(hp_value) if isinstance(hp_value, float ) else str(hp_value)) return run_folder_name def parse_args(self, testproblem, hyperparams, batch_size, num_epochs, random_seed, data_dir, output_dir, weight_decay,
<reponame>schemacs/supervisor import unittest from supervisor.tests.base import DummySupervisor from supervisor.tests.base import DummyRequest from supervisor.tests.base import DummySupervisorRPCNamespace from supervisor.compat import xmlrpclib from supervisor.compat import httplib class GetFaultDescriptionTests(unittest.TestCase): def test_returns_description_for_known_fault(self): from supervisor import xmlrpc desc = xmlrpc.getFaultDescription(xmlrpc.Faults.SHUTDOWN_STATE) self.assertEqual(desc, 'SHUTDOWN_STATE') def test_returns_unknown_for_unknown_fault(self): from supervisor import xmlrpc desc = xmlrpc.getFaultDescription(999999) self.assertEqual(desc, 'UNKNOWN') class RPCErrorTests(unittest.TestCase): def _getTargetClass(self): from supervisor.xmlrpc import RPCError return RPCError def _makeOne(self, code, extra=None): return self._getTargetClass()(code, extra) def test_sets_text_with_fault_name_only(self): from supervisor import xmlrpc e = self._makeOne(xmlrpc.Faults.FAILED) self.assertEqual(e.text, 'FAILED') def test_sets_text_with_fault_name_and_extra(self): from supervisor import xmlrpc e = self._makeOne(xmlrpc.Faults.FAILED, 'oops') self.assertEqual(e.text, 'FAILED: oops') class XMLRPCMarshallingTests(unittest.TestCase): def test_xmlrpc_marshal(self): from supervisor import xmlrpc data = xmlrpc.xmlrpc_marshal(1) self.assertEqual(data, xmlrpclib.dumps((1,), methodresponse=True)) fault = xmlrpclib.Fault(1, 'foo') data = xmlrpc.xmlrpc_marshal(fault) self.assertEqual(data, xmlrpclib.dumps(fault)) class XMLRPCHandlerTests(unittest.TestCase): def _getTargetClass(self): from supervisor.xmlrpc import supervisor_xmlrpc_handler return supervisor_xmlrpc_handler def _makeOne(self, supervisord, subinterfaces): return self._getTargetClass()(supervisord, subinterfaces) def test_ctor(self): supervisor = DummySupervisor() subinterfaces = [('supervisor', DummySupervisorRPCNamespace())] handler = self._makeOne(supervisor, subinterfaces) self.assertEqual(handler.supervisord, supervisor) from supervisor.xmlrpc import RootRPCInterface self.assertEqual(handler.rpcinterface.__class__, RootRPCInterface) def test_match(self): class DummyRequest2: def __init__(self, uri): self.uri = uri supervisor = DummySupervisor() subinterfaces = [('supervisor', DummySupervisorRPCNamespace())] handler = self._makeOne(supervisor, subinterfaces) self.assertEqual(handler.match(DummyRequest2('/RPC2')), True) self.assertEqual(handler.match(DummyRequest2('/nope')), False) def test_continue_request_nosuchmethod(self): supervisor = DummySupervisor() subinterfaces = [('supervisor', DummySupervisorRPCNamespace())] handler = self._makeOne(supervisor, subinterfaces) data = xmlrpclib.dumps(('a', 'b'), 'supervisor.noSuchMethod') request = DummyRequest('/what/ever', None, None, None) handler.continue_request(data, request) logdata = supervisor.options.logger.data self.assertEqual(len(logdata), 2) self.assertEqual(logdata[-2], 'XML-RPC method called: supervisor.noSuchMethod()') self.assertEqual(logdata[-1], ('XML-RPC method supervisor.noSuchMethod() returned fault: ' '[1] UNKNOWN_METHOD')) self.assertEqual(len(request.producers), 1) xml_response = request.producers[0] self.assertRaises(xmlrpclib.Fault, xmlrpclib.loads, xml_response) def test_continue_request_methodsuccess(self): supervisor = DummySupervisor() subinterfaces = [('supervisor', DummySupervisorRPCNamespace())] handler = self._makeOne(supervisor, subinterfaces) data = xmlrpclib.dumps((), 'supervisor.getAPIVersion') request = DummyRequest('/what/ever', None, None, None) handler.continue_request(data, request) logdata = supervisor.options.logger.data self.assertEqual(len(logdata), 2) self.assertEqual(logdata[-2], 'XML-RPC method called: supervisor.getAPIVersion()') self.assertEqual(logdata[-1], 'XML-RPC method supervisor.getAPIVersion() returned successfully') self.assertEqual(len(request.producers), 1) xml_response = request.producers[0] response = xmlrpclib.loads(xml_response) from supervisor.rpcinterface import API_VERSION self.assertEqual(response[0][0], API_VERSION) self.assertEqual(request._done, True) self.assertEqual(request.headers['Content-Type'], 'text/xml') self.assertEqual(request.headers['Content-Length'], len(xml_response)) def test_continue_request_no_params_in_request(self): supervisor = DummySupervisor() subinterfaces = [('supervisor', DummySupervisorRPCNamespace())] handler = self._makeOne(supervisor, subinterfaces) data = '<?xml version="1.0" encoding="UTF-8"?>' \ '<methodCall>' \ '<methodName>supervisor.getAPIVersion</methodName>' \ '</methodCall>' request = DummyRequest('/what/ever', None, None, None) handler.continue_request(data, request) logdata = supervisor.options.logger.data self.assertEqual(len(logdata), 2) self.assertEqual(logdata[-2], 'XML-RPC method called: supervisor.getAPIVersion()') self.assertEqual(logdata[-1], 'XML-RPC method supervisor.getAPIVersion() returned successfully') self.assertEqual(len(request.producers), 1) xml_response = request.producers[0] response = xmlrpclib.loads(xml_response) from supervisor.rpcinterface import API_VERSION self.assertEqual(response[0][0], API_VERSION) self.assertEqual(request._done, True) self.assertEqual(request.headers['Content-Type'], 'text/xml') self.assertEqual(request.headers['Content-Length'], len(xml_response)) def test_continue_request_400_if_method_name_is_empty(self): supervisor = DummySupervisor() subinterfaces = [('supervisor', DummySupervisorRPCNamespace())] handler = self._makeOne(supervisor, subinterfaces) data = '<?xml version="1.0" encoding="UTF-8"?>' \ '<methodCall><methodName></methodName></methodCall>' request = DummyRequest('/what/ever', None, None, None) handler.continue_request(data, request) logdata = supervisor.options.logger.data self.assertEqual(len(logdata), 1) self.assertEqual(logdata[-1], 'XML-RPC request received with no method name') self.assertEqual(len(request.producers), 0) self.assertEqual(request._error, 400) def test_continue_request_500(self): supervisor = DummySupervisor() subinterfaces = [('supervisor', DummySupervisorRPCNamespace())] handler = self._makeOne(supervisor, subinterfaces) data = xmlrpclib.dumps((), 'supervisor.raiseError') request = DummyRequest('/what/ever', None, None, None) handler.continue_request(data, request) logdata = supervisor.options.logger.data self.assertEqual(len(logdata), 2) self.assertEqual(logdata[-2], 'XML-RPC method called: supervisor.raiseError()') self.assertTrue(logdata[-1].startswith('Traceback')) self.assertTrue(logdata[-1].endswith('ValueError: error\n')) self.assertEqual(len(request.producers), 0) self.assertEqual(request._error, 500) def test_continue_request_value_is_function(self): class DummyRPCNamespace(object): def foo(self): def inner(self): return 1 inner.delay = .05 return inner supervisor = DummySupervisor() subinterfaces = [('supervisor', DummySupervisorRPCNamespace()), ('ns1', DummyRPCNamespace())] handler = self._makeOne(supervisor, subinterfaces) data = xmlrpclib.dumps((), 'ns1.foo') request = DummyRequest('/what/ever', None, None, None) handler.continue_request(data, request) logdata = supervisor.options.logger.data self.assertEqual(len(logdata), 2) self.assertEqual(logdata[-2], 'XML-RPC method called: ns1.foo()') self.assertEqual(logdata[-1], 'XML-RPC method ns1.foo() returned successfully') self.assertEqual(len(request.producers), 0) self.assertEqual(request._done, False) def test_iterparse_loads_methodcall(self): s = """<?xml version="1.0"?> <methodCall> <methodName>examples.getStateName</methodName> <params> <param> <value><i4>41</i4></value> </param> <param> <value><string>foo</string></value> </param> <param> <value><string></string></value> </param> <param> <!-- xml-rpc spec allows strings without <string> tag --> <value>bar</value> </param> <param> <value></value> </param> <param> <value><boolean>1</boolean></value> </param> <param> <value><double>-12.214</double></value> </param> <param> <value> <dateTime.iso8601>19980717T14:08:55</dateTime.iso8601> </value> </param> <param> <value><base64>eW91IGNhbid0IHJlYWQgdGhpcyE=</base64></value> </param> <param> <struct> <member><name>j</name><value><i4>5</i4></value></member> <member><name>k</name><value>abc</value></member> </struct> </param> <param> <array> <data> <value><i4>12</i4></value> <value><string>abc</string></value> <value>def</value> <value><i4>34</i4></value> </data> </array> </param> <param> <struct> <member> <name>k</name> <value><array><data> <value><i4>1</i4></value> <struct></struct> </data></array></value> </member> </struct> </param> </params> </methodCall> """ supervisor = DummySupervisor() subinterfaces = [('supervisor', DummySupervisorRPCNamespace())] handler = self._makeOne(supervisor, subinterfaces) result = handler.loads(s) params, method = result import datetime self.assertEqual(method, 'examples.getStateName') self.assertEqual(params[0], 41) self.assertEqual(params[1], 'foo') self.assertEqual(params[2], '') self.assertEqual(params[3], 'bar') self.assertEqual(params[4], '') self.assertEqual(params[5], True) self.assertEqual(params[6], -12.214) self.assertEqual(params[7], datetime.datetime(1998, 7, 17, 14, 8, 55)) self.assertEqual(params[8], "you can't read this!") self.assertEqual(params[9], {'j': 5, 'k': 'abc'}) self.assertEqual(params[10], [12, 'abc', 'def', 34]) self.assertEqual(params[11], {'k': [1, {}]}) class TraverseTests(unittest.TestCase): def test_underscore(self): from supervisor import xmlrpc self.assertRaises(xmlrpc.RPCError, xmlrpc.traverse, None, '_', None) def test_notfound(self): from supervisor import xmlrpc self.assertRaises(xmlrpc.RPCError, xmlrpc.traverse, None, 'foo', None) def test_badparams(self): from supervisor import xmlrpc self.assertRaises(xmlrpc.RPCError, xmlrpc.traverse, self, 'test_badparams', (1, 2, 3)) def test_success(self): from supervisor import xmlrpc L = [] class Dummy: def foo(self, a): L.append(a) dummy = Dummy() xmlrpc.traverse(dummy, 'foo', [1]) self.assertEqual(L, [1]) class SupervisorTransportTests(unittest.TestCase): def _getTargetClass(self): from supervisor.xmlrpc import SupervisorTransport return SupervisorTransport def _makeOne(self, *arg, **kw): return self._getTargetClass()(*arg, **kw) def test_ctor_unix(self): from supervisor import xmlrpc transport = self._makeOne('user', 'pass', 'unix:///foo/bar') conn = transport._get_connection() self.assertTrue(isinstance(conn, xmlrpc.UnixStreamHTTPConnection)) self.assertEqual(conn.host, 'localhost') self.assertEqual(conn.socketfile, '/foo/bar') def test_ctor_unknown(self): self.assertRaises(ValueError, self._makeOne, 'user', 'pass', 'unknown:///foo/bar' ) def test__get_connection_http_9001(self): transport = self._makeOne('user', 'pass', 'http://127.0.0.1:9001/') conn = transport._get_connection() self.assertTrue(isinstance(conn, httplib.HTTPConnection)) self.assertEqual(conn.host, '127.0.0.1') self.assertEqual(conn.port, 9001) def test__get_connection_http_80(self): transport = self._makeOne('user', 'pass', 'http://127.0.0.1/') conn = transport._get_connection() self.assertTrue(isinstance(conn, httplib.HTTPConnection)) self.assertEqual(conn.host, '127.0.0.1') self.assertEqual(conn.port, 80) def test_request_non_200_response(self): transport = self._makeOne('user', 'pass', 'http://127.0.0.1/') dummy_conn = DummyConnection(400, '') def getconn(): return dummy_conn transport._get_connection = getconn self.assertRaises(xmlrpclib.ProtocolError, transport.request, 'localhost', '/', '') self.assertEqual(transport.connection, None) self.assertEqual(dummy_conn.closed, True) def test_request_400_response(self): transport = self._makeOne('user', 'pass', 'http://127.0.0.1/') dummy_conn = DummyConnection(400, '') def getconn(): return dummy_conn transport._get_connection = getconn self.assertRaises(xmlrpclib.ProtocolError, transport.request, 'localhost', '/', '') self.assertEqual(transport.connection, None) self.assertEqual(dummy_conn.closed, True) self.assertEqual(dummy_conn.requestargs[0], 'POST') self.assertEqual(dummy_conn.requestargs[1], '/') self.assertEqual(dummy_conn.requestargs[2], '') self.assertEqual(dummy_conn.requestargs[3]['Content-Length'], '0') self.assertEqual(dummy_conn.requestargs[3]['Content-Type'], 'text/xml') self.assertEqual(dummy_conn.requestargs[3]['Authorization'], 'Basic dXNlcjpwYXNz') self.assertEqual(dummy_conn.requestargs[3]['Accept'], 'text/xml') def test_request_200_response(self): transport = self._makeOne('user', 'pass', 'http://127.0.0.1/') response = """<?xml version="1.0"?> <methodResponse> <params> <param> <value><string>South Dakota</string></value> </param> </params> </methodResponse>""" dummy_conn = DummyConnection(200, response) def getconn(): return dummy_conn transport._get_connection = getconn result = transport.request('localhost', '/', '') self.assertEqual(transport.connection, dummy_conn) self.assertEqual(dummy_conn.closed, False) self.assertEqual(dummy_conn.requestargs[0], 'POST') self.assertEqual(dummy_conn.requestargs[1], '/') self.assertEqual(dummy_conn.requestargs[2], '') self.assertEqual(dummy_conn.requestargs[3]['Content-Length'], '0') self.assertEqual(dummy_conn.requestargs[3]['Content-Type'], 'text/xml') self.assertEqual(dummy_conn.requestargs[3]['Authorization'], 'Basic dXNlcjpwYXNz') self.assertEqual(dummy_conn.requestargs[3]['Accept'], 'text/xml') self.assertEqual(result, ('South Dakota',)) class TestDeferredXMLRPCResponse(unittest.TestCase): def _getTargetClass(self): from supervisor.xmlrpc import DeferredXMLRPCResponse return DeferredXMLRPCResponse def _makeOne(self, request=None, callback=None): if request is None: request = DummyRequest(None, None, None, None, None) if callback is None: callback = Dummy() callback.delay = 1 return self._getTargetClass()(request, callback) def test_ctor(self): callback = Dummy() callback.delay = 1 inst = self._makeOne(request='request', callback=callback) self.assertEqual(inst.callback, callback) self.assertEqual(inst.delay, 1.0) self.assertEqual(inst.request, 'request') self.assertEqual(inst.finished, False) def test_more_finished(self): inst = self._makeOne() inst.finished = True result = inst.more() self.assertEqual(result, '') def test_more_callback_returns_not_done_yet(self): from supervisor.http import NOT_DONE_YET def callback(): return NOT_DONE_YET callback.delay = 1 inst = self._makeOne(callback=callback) self.assertEqual(inst.more(), NOT_DONE_YET) def test_more_callback_raises_RPCError(self): from supervisor.xmlrpc import RPCError, Faults def callback(): raise RPCError(Faults.UNKNOWN_METHOD) callback.delay = 1 inst = self._makeOne(callback=callback) self.assertEqual(inst.more(), None) self.assertEqual(len(inst.request.producers), 1) self.assertTrue('UNKNOWN_METHOD' in inst.request.producers[0]) self.assertTrue(inst.finished) def test_more_callback_returns_value(self): def callback(): return 'abc' callback.delay = 1 inst = self._makeOne(callback=callback) self.assertEqual(inst.more(), None) self.assertEqual(len(inst.request.producers), 1) self.assertTrue('abc' in inst.request.producers[0]) self.assertTrue(inst.finished) def test_more_callback_raises_unexpected_exception(self): def callback(): raise ValueError('foo') callback.delay = 1 inst = self._makeOne(callback=callback) inst.traceback = Dummy() called = [] inst.traceback.print_exc = lambda: called.append(True) self.assertEqual(inst.more(), None) self.assertEqual(inst.request._error, 500) self.assertTrue(inst.finished) self.assertTrue(called) def test_getresponse_http_10_with_keepalive(self): inst = self._makeOne() inst.request.version = '1.0' inst.request.header.append('Connection: keep-alive') inst.getresponse('abc') self.assertEqual(len(inst.request.producers), 1) self.assertEqual(inst.request.headers['Connection'], 'Keep-Alive') def test_getresponse_http_10_no_keepalive(self): inst = self._makeOne() inst.request.version = '1.0' inst.getresponse('abc') self.assertEqual(len(inst.request.producers), 1) self.assertEqual(inst.request.headers['Connection'], 'close') def test_getresponse_http_11_without_close(self): inst = self._makeOne() inst.request.version = '1.1' inst.getresponse('abc') self.assertEqual(len(inst.request.producers), 1) self.assertTrue('Connection' not in inst.request.headers) def test_getresponse_http_11_with_close(self): inst = self._makeOne() inst.request.header.append('Connection: close') inst.request.version = '1.1' inst.getresponse('abc') self.assertEqual(len(inst.request.producers), 1) self.assertEqual(inst.request.headers['Connection'], 'close') def test_getresponse_http_unknown(self): inst = self._makeOne() inst.request.version = None inst.getresponse('abc') self.assertEqual(len(inst.request.producers), 1) self.assertEqual(inst.request.headers['Connection'], 'close') class TestSystemNamespaceRPCInterface(unittest.TestCase): def _makeOne(self, namespaces=()): from supervisor.xmlrpc import SystemNamespaceRPCInterface return SystemNamespaceRPCInterface(namespaces) def test_listMethods_gardenpath(self): inst = self._makeOne() result = inst.listMethods() self.assertEqual( result, ['system.listMethods', 'system.methodHelp', 'system.methodSignature', 'system.multicall', ] ) def test_listMethods_omits_underscore_attrs(self): class DummyNamespace(object): def foo(self): pass def _bar(self): pass ns1 = DummyNamespace() inst = self._makeOne([('ns1', ns1)]) result = inst.listMethods() self.assertEqual( result, ['ns1.foo', 'system.listMethods', 'system.methodHelp', 'system.methodSignature', 'system.multicall' ] ) def test_methodHelp_known_method(self): inst = self._makeOne() result = inst.methodHelp('system.listMethods') self.assertTrue('array' in result) def test_methodHelp_unknown_method(self): from supervisor.xmlrpc import RPCError inst = self._makeOne() self.assertRaises(RPCError, inst.methodHelp, 'wont.be.found') def test_methodSignature_known_method(self): inst = self._makeOne() result = inst.methodSignature('system.methodSignature') self.assertEqual(result, ['array', 'string']) def test_methodSignature_unknown_method(self): from supervisor.xmlrpc import RPCError inst = self._makeOne() self.assertRaises(RPCError, inst.methodSignature, 'wont.be.found') def test_methodSignature_with_bad_sig(self): from supervisor.xmlrpc import RPCError class DummyNamespace(object): def foo(self): """ @param string name The thing""" ns1 = DummyNamespace() inst = self._makeOne([('ns1', ns1)]) self.assertRaises(RPCError, inst.methodSignature, 'ns1.foo') def test_multicall_recursion_forbidden(self): inst = self._makeOne() call = {'methodName':'system.multicall'} multiproduce = inst.multicall([call]) result = multiproduce() self.assertEqual( result, [{'faultCode': 2, 'faultString': 'INCORRECT_PARAMETERS'}] ) def test_multicall_other_exception(self): inst = self._makeOne() call =
0, 1, 2, 2, 0, 3, 2, 0, 0] divinatory 1.6 1.42829 [4, 1, 0, 0, 1, 3, 3, 0, 1, 3] divine 2.6 0.8 [3, 3, 3, 2, 1, 2, 3, 4, 2, 3] divined 0.8 1.16619 [1, 0, 3, 0, 0, 1, 0, 3, 0, 0] divinely 2.9 0.7 [3, 2, 3, 3, 2, 4, 3, 2, 4, 3] diviner 0.3 0.9 [0, 0, 3, 0, 0, 0, 0, 0, 0, 0] diviners 1.2 1.16619 [0, 1, 0, 2, 2, 0, 3, 1, 3, 0] divines 0.8 1.249 [0, 0, 3, 0, 0, 0, 3, 2, 0, 0] divinest 2.7 0.78102 [3, 4, 2, 4, 2, 2, 2, 3, 2, 3] diving 0.3 0.45826 [1, 0, 0, 0, 0, 1, 0, 1, 0, 0] divining 0.9 1.37477 [0, -1, 2, 0, 1, 0, 2, 4, 1, 0] divinise 0.5 1.36015 [0, 2, 0, 0, 0, 0, 0, -2, 2, 3] divinities 1.8 1.46969 [1, 3, 3, 4, 0, 0, 1, 0, 3, 3] divinity 2.7 1.00499 [4, 4, 2, 3, 3, 1, 2, 4, 2, 2] divinize 2.3 1.00499 [4, 2, 2, 3, 4, 1, 1, 2, 2, 2] dizzy -0.9 0.3 [-1, -1, -1, -1, -1, -1, -1, -1, 0, -1] dodging -0.4 0.8 [-1, -1, 0, 1, 0, -1, 0, 0, -2, 0] dodgy -0.9 0.9434 [-1, -1, -1, -3, -1, 1, -1, -1, -1, 0] dolorous -2.2 0.6 [-2, -2, -2, -3, -3, -3, -2, -2, -1, -2] dominance 0.8 0.87178 [2, 0, 0, 2, 1, 0, 0, 1, 2, 0] dominances -0.1 0.9434 [-1, 0, 1, 1, 0, -1, 0, 1, 0, -2] dominantly 0.2 1.16619 [-2, 0, 0, -1, 2, 1, 2, 0, 0, 0] dominants 0.2 1.16619 [0, 2, -1, 0, -1, -1, -1, 1, 1, 2] dominate -0.5 0.92195 [0, -1, 1, -1, 1, -1, -2, 0, -1, -1] dominates 0.2 1.249 [1, 0, -2, -1, 1, -1, 2, 0, 0, 2] dominating -1.2 1.98997 [-4, -1, -4, -1, -3, -1, -1, 2, 2, -1] domination -0.2 0.9798 [0, 1, 0, -1, -1, -1, 0, 2, -1, -1] dominations -0.3 0.45826 [0, 0, 0, 0, 0, -1, 0, -1, -1, 0] dominative -0.7 1.18743 [-1, -1, -2, -2, -1, -1, -1, 2, 1, -1] dominators -0.4 1.8 [-1, -2, -2, -2, 0, 2, 2, -3, 2, 0] dominatrices -0.2 1.6 [-3, 0, 2, 0, -2, -2, 0, 1, 2, 0] dominatrix -0.5 0.92195 [0, 0, -1, 0, 0, 1, 0, -1, -2, -2] dominatrixes 0.6 1.35647 [0, 4, 0, -1, 0, 2, 1, 0, 0, 0] doom -1.7 1.26886 [-2, -1, -1, -4, -2, -2, 1, -3, -1, -2] doomed -3.2 0.74833 [-3, -3, -4, -4, -4, -2, -4, -3, -3, -2] doomful -2.1 0.7 [-3, -2, -3, -1, -2, -3, -2, -1, -2, -2] dooming -2.8 0.4 [-2, -3, -2, -3, -3, -3, -3, -3, -3, -3] dooms -1.1 1.57797 [1, -3, -1, -3, -2, -1, -3, 1, 1, -1] doomsayer -0.7 1.41774 [2, -1, -2, -1, 1, -2, -2, -1, 1, -2] doomsayers -1.7 0.78102 [-1, -2, -3, 0, -2, -2, -2, -1, -2, -2] doomsaying -1.5 1.28452 [-3, -2, -2, 0, 1, 0, -3, -2, -2, -2] doomsayings -1.5 0.92195 [-2, -1, -1, -2, -2, 0, 0, -2, -3, -2] doomsday -2.8 1.249 [-3, -1, -3, -4, -3, -4, 0, -4, -3, -3] doomsdayer -2.2 1.249 [-3, -1, -4, -3, -4, -3, -1, -1, -1, -1] doomsdays -2.4 1.85472 [-3, -2, -4, 1, -4, -3, -2, -4, 1, -4] doomster -2.2 0.87178 [-2, -1, -2, -3, -1, -3, -1, -3, -3, -3] doomsters -1.6 0.8 [-3, -1, -2, -2, 0, -2, -2, -1, -1, -2] doomy -1.1 1.37477 [2, -2, -1, -2, -2, -2, -2, 1, -1, -2] dork -1.4 0.66332 [-1, -2, -2, -1, -1, -1, -3, -1, -1, -1] dorkier -1.1 0.53852 [-1, -1, -1, -1, -2, 0, -1, -2, -1, -1] dorkiest -1.2 0.74833 [-1, -2, -1, -3, -1, 0, -1, -1, -1, -1] dorks -0.5 0.67082 [-1, 1, -1, -1, -1, -1, 0, 0, -1, 0] dorky -1.1 1.04403 [-1, 0, -1, 1, -1, -1, -3, -2, -2, -1] doubt -1.5 0.5 [-1, -1, -2, -2, -1, -1, -2, -1, -2, -2] doubtable -1.5 0.5 [-1, -1, -2, -1, -2, -1, -2, -2, -1, -2] doubted -1.1 1.22066 [-1, -2, -2, 2, -1, -1, -2, -2, -2, 0] doubter -1.6 0.91652 [-1, -3, -2, -1, -1, -1, -2, -2, -3, 0] doubters -1.3 0.45826 [-1, -1, -1, -1, -1, -2, -1, -2, -2, -1] doubtful -1.4 0.4899 [-1, -1, -2, -1, -2, -2, -1, -1, -2, -1] doubtfully -1.2 0.4 [-1, -1, -1, -1, -1, -1, -2, -1, -1, -2] doubtfulness -1.2 0.4 [-2, -1, -1, -1, -1, -1, -1, -1, -1, -2] doubting -1.4 0.4899 [-1, -1, -1, -2, -2, -1, -1, -1, -2, -2] doubtingly -1.4 0.4899 [-2, -2, -1, -1, -1, -1, -1, -2, -2, -1] doubtless 0.9 1.51327 [2, 2, 1, 2, -2, 2, -2, 1, 1, 2] doubtlessly 1.2 0.9798 [2, 1, 1, 2, 0, -1, 2, 1, 2, 2] doubtlessness 0.8 0.9798 [2, 1, 2, 0, 0, 0, 2, -1, 1, 1] doubts -1.2 0.6 [-2, -1, -1, -1, -2, -2, -1, 0, -1, -1] douche -1.5 1.68819 [-3, -2, -3, 1, 1, -2, -3, -2, 1, -3] douchebag -3.0 0.44721 [-3, -3, -3, -3, -3, -3, -2, -3, -4, -3] downcast -1.8 0.74833 [-1, -1, -1, -2, -2, -2, -1, -3, -3, -2] downhearted -2.3 0.78102 [-1, -2, -2, -4, -2, -2, -2, -3, -3, -2] downside -1.0 0.7746 [-1, -1, -1, -1, -1, -1, -2, 1, -2, -1] drag -0.9 0.83066 [-1, -2, -1, -1, -2, -1, -1, 1, 0, -1] dragged -0.2 1.07703 [-2, -1, 0, 0, -1, 0, 0, 1, 2, -1] drags -0.7 0.64031 [0, -1, 0, -1, -1, -2, -1, 0, 0, -1] drained -1.5 0.5 [-1, -1, -2, -2, -1, -2, -1, -2, -1, -2] dread -2.0 0.63246 [-2, -3, -2, -2, -2, -2, -3, -1, -1, -2] dreaded -2.7 0.64031 [-2, -3, -3, -3, -4, -3, -2, -2, -2, -3] dreadful -1.9 1.86815 [-4, -2, -2, 2, -1, -4, -1, 0, -3, -4] dreadfully -2.7 1.26886 [-4, -4, -3, -4, -3, -1, -2, -1, -1, -4] dreadfulness -3.2 0.87178 [-3, -4, -2, -3, -4, -4, -2, -2, -4, -4] dreadfuls -2.4 1.2 [-4, -3, -3, -2, -3, -2, -4, 0, -1, -2] dreading -2.4 0.8 [-3, -2, -2, -2, -2, -2, -3, -4, -3, -1] dreadlock -0.4 0.66332 [0, 0, 0, 0, 0, -1, -2, 0, -1, 0] dreadlocks -0.2 0.9798 [0, 0, 0, 0, 0, -1, -2, 2, 0, -1] dreadnought -0.6 1.35647 [-2, 0, 0, 0, -3, 0, -1, -2, 0, 2] dreadnoughts -0.4 0.66332 [0, -1, -1, 0, 0, 0, 0, 0, -2, 0] dreads -1.4 1.42829 [0, -1, 0, 0, -3, -3, 0, -4, -2, -1] dream 1.0 1.18322 [0, 1, 2, 0, 0, 3, 0, 3, 1, 0] dreams 1.7 1.1 [2, 2, 3, 0, 1, 1, 1, 4, 1, 2] dreary -1.4 0.4899 [-1, -1, -2, -1, -1, -2, -2, -1, -2, -1] droopy -0.8 0.74833 [-1, -1, 0, -1, -2, 0, 0, -1, 0, -2] drop -1.1 0.53852 [0, -1, -1, -1, -2, -1, -2, -1, -1, -1] drown -2.7 1.00499 [-4, -2, -2, -4, -4, -2, -3, -1, -3, -2] drowned -2.9 0.7 [-2, -3, -3, -3, -2, -4, -4, -2, -3, -3] drowns -2.2 1.6 [-3, -3, -3, -4, -2, -3, -1, -2, 2, -3] drunk -1.4 0.91652 [-3, -1, 0, -2, 0, -1, -1, -2, -2, -2] dubious -1.5 0.5 [-1, -2, -2, -1, -1, -2, -1, -1, -2, -2] dud -1.0 0.89443 [-1, -1, -1, 0, -3, 0, -1, 0, -1, -2] dull -1.7 0.45826 [-2, -2, -2, -1, -2, -2, -2, -1, -1, -2] dullard -1.6 0.66332 [-2, -1, -1, -2, -2, -1, -1, -2, -1, -3] dullards -1.8 0.87178 [-1, -3, -1, -1, -3, -1, -1, -2, -3, -2] dulled -1.5 0.5 [-2, -1, -2, -1, -1, -1, -2, -2, -1, -2] duller -1.7 0.64031 [-3, -1, -2, -2, -2, -1, -2, -1, -1, -2] dullest -1.7 1.00499 [-1, -4, -1, -1, -2, -3, -2, -1, -1, -1] dulling -1.1 0.7 [-1, -2, 0, -1, -2, -2, 0, -1, -1, -1] dullish -1.1 0.53852 [-2, -1, -1, -1, -1, -1, -1, -1, 0, -2] dullness -1.4 0.8 [-1, -1, -1, -1, -1, -1, -3, -1, -3, -1] dullnesses -1.9 1.04403 [-3, -2, -1, -1, -3, -1, -4, -1, -2, -1] dulls -1.0 0.44721 [-1, -1, -1, -1, -1, -1, 0, -1, -1, -2] dullsville -2.4 0.8 [-2, -2, -4, -3, -2, -2, -3, -2, -3, -1] dully -1.1 0.3 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -2] dumb -2.3 0.9 [-4, -2, -2, -2, -2, -2, -4, -2, -2, -1] dumbass -2.6 1.0198 [-3, -3, -4, -4, -1, -2, -3, -3, -1, -2] dumbbell -0.8 0.9798 [0, -1, -3, -2, 0, -1, 0, 0, -1, 0] dumbbells -0.2 0.4 [0, -1, 0, 0, 0, 0, 0, -1, 0, 0] dumbcane -0.3 0.45826 [0, 0, 0, 0, 0, -1, -1, 0, -1, 0] dumbcanes -0.6 1.2 [0, 0, -1, -1, -1, 2, 0, -1, -3, -1] dumbed -1.4 0.4899 [-2, -1, -2, -2, -2, -1, -1, -1, -1, -1] dumber -1.5 0.5 [-2, -1, -2, -1, -2, -1, -1, -2, -2, -1] dumbest -2.3 1.00499 [-3, -1, -3, -4, -2, -1, -2, -3, -1, -3] dumbfound -0.1 1.92094 [3, -2, -1, -1, 1, 1, -3, 3, -1, -1] dumbfounded -1.6 1.11355 [-2, 0, -2, 0, -2, -1, -4, -1, -2, -2] dumbfounder -1.0 0.89443 [-2, 0, 0, 0, -2, -1, -2, 0, -2, -1] dumbfounders -1.0 0.89443 [-1, -3, -1, 0, -2, 0, -1, 0, -1, -1] dumbfounding -0.8 0.74833 [-1, -2, 0, -1, -1, 0, 0, -1, 0, -2] dumbfounds -0.3 1.26886 [0, -1, -1, 0, 0, -1, -1, -2, 0, 3] dumbhead -2.6 0.66332 [-3, -4, -3, -2, -2, -3, -3, -2, -2, -2] dumbheads -1.9 0.83066 [-2, -2, -2, -1, -2, -1, -2, -4, -1, -2] dumbing -0.5 1.0247 [-1, 2, -1, 0, -1, -2, -1, 0, 0, -1] dumbly -1.3 1.00499 [-2, -1, -2, -3, 1, -2, -1, -1, -1, -1] dumbness -1.9 0.53852 [-2, -2, -2, -2, -2, -3, -2, -2, -1, -1] dumbs -1.5 0.67082 [-1, -1, -1, -3, -2, -1, -2, -1, -2, -1] dumbstruck -1.0 1.34164 [-1, -2, 0, 0, -2, 1, -3, 1, -2, -2] dumbwaiter 0.2 1.07703 [0, 0, 0, 0, 2, 0, 2, 0, -2, 0] dumbwaiters -0.1 0.3 [0, 0, 0, 0, 0, 0, -1, 0, 0, 0] dump -1.6 0.91652 [-3, -2, -1, -2, -1, -3, -2, -1, -1, 0] dumpcart -0.6 0.8 [0, -2, -1, 0, 0, 0, -1, 0, -2, 0] dumped -1.7 0.78102 [-2, -3, -2, -1, -1, -1, -3, -2, -1, -1] dumper -1.2 0.87178 [-2, -3, -1, -1, -1, -2, 0, -1, 0, -1] dumpers -0.8 0.6 [0, 0, -2, -1, -1, 0, -1, -1, -1, -1] dumpier -1.4 0.66332 [-2, -1, -2, -1, -1, -2, 0, -2, -1, -2] dumpiest -1.6 1.35647 [-1, -2, -2,
<gh_stars>0 """ # Zero Knowledge Proofs in Python Examples of discrete-log zero-knowledge proofs implemented in Python More specifically, these are non-interactive, zero-knowledge, proofs of knowledge. They can be analyzed and proven secure in the random oracle model (the random oracle here is instantiated with the SHA2 hash function). Lecture notes: https://www.cs.jhu.edu/~susan/600.641/scribes/lecture10.pdf https://www.cs.jhu.edu/~susan/600.641/scribes/lecture11.pdf You must fill in the portions labelled #TODO. See the README.md in this directory for submission instructions. Points are awarded as marked. Total possible points: 100 """ """ ## Import Elliptic Curves The zero-knowledge proof schemes we work through here can work with any DLog group. This implementation makes use of the secp256k1 elliptic curve group. We call an element of this group (i.e., a point on the curve), simply a Point. The order of this group, p, is a 256-bit prime number. Furthermore, p happens to be extremely close to 2^256. Because of this, we can sample exponents easily by choosing a random 32-byte number, and with high probability, will be within [0,p). uint256_from_str(rnd_bytes(32)) is an exponent. Sometimes this will be represented by the object Fp, which automatically handles arithmetic modulo p. The underlying 'long' value can be extracted as `p.n` if `type(p) is Fp`. """ import secp256k1 from secp256k1 import Point, q, Fq, order, p, Fp, G, curve, ser, deser, uint256_from_str, uint256_to_str import os, random # p is the order (the # of elements in) the group, i.e., the number of points on the curve # order = p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 print(order) print(Fp) # Fp is the group of exponents (integers mod p) # ser/deser: convert Point -> string and vice versa # ser : Point -> str, deser : str -> Point """ """ print(repr(G)) print(repr(p * G)) print(deser(ser(G))) Hx = Fq(0xbc4f48d7a8651dc97ae415f0b47a52ef1a2702098202392b88bc925f6e89ee17) Hy = Fq(0x361b27b55c10f94ec0630b4c7d28f963221a0031632092bf585825823f6e27df) H = Point(curve, Hx,Hy) # H = random_point(seed=sha2("H")) # An alternate generator ## Pick a random point on the curve (given a seed) def random_point(seed=None, rnd_bytes=os.urandom): def sha2_to_long(x): from Crypto.Hash import SHA256 return int(SHA256.new(x).hexdigest(),16) if seed is None: seed = rnd_bytes(32) # assert type(seed) == str and len(seed) == 32 x = sha2_to_long(seed) while True: try: p = secp256k1.solve(Fq(x)) except ValueError: seed = sha2(('random_point:' + str(seed))) x = sha2_to_long(seed) continue break return p """ ## Honest verifier model In our three-round interactive proof protocols, we will always have the verifier choose a random challenge. In practice, it's more convenient to use the Random Oracle model and instantiate this with a hash function. This codebase allows the use of either option. The Prover function takes in a "getChallenge" method, which it can invoke after generating its Commit message. The Verifier takes in a "getTranscript" message, which it can use to check that the commitment was chosen before the challenge. """ ## Interactive challenger def make_honest_verifier_challenger(): """ Returns: - a function "getChallenge(Commit)" that returns a 32-byte string This function can be passed to the Prover, which it can use to request the challenge from the verifier. - a function "getTranscript(Commit)" that checks the right commitment was queried and returns the same 32-byte string This function can be passed to the Verifier, which it can use to inspect the Commit message. """ transcript = [] def getChallenge(Commit): assert transcript == [] assert type(Commit) is str result = os.urandom(32) transcript.extend((Commit, result)) return result def getTranscript(Commit): assert transcript != [] assert transcript[0] == Commit return transcript[1] return getChallenge, getTranscript ## Random Oracle Model # Find sha2 hash of a string def sha2(x): from Crypto.Hash import SHA256 return SHA256.new(x.encode("utf-8")).digest() """ ## Preliminary example: Proof of knowledge of discrete logarithm In this part, we provide a scheme offers a discrete log proof of `ZKP{ (a): A = a*G }`. Note that the statement `A` is a parameter to the scheme, as it must be known to both the prover and verifier. The Prover takes several additional arguments: - `rnd_bytes`, such that `rnd_bytes(n)` returns an `n`-byte random string. By default, will use the operating system os.urandom. (Note: as this function is non-blocking, may be a poor choice if the OS runs out of entropy) - getChallenge, a function that requests the challenge from the verifier. This takes in `Commit`, an arbitrary length string, and returns a randomly chosen value. By default, we will use the sha2 hash as a heuristic Random Oracle, giving us the Non-Interactive version of this protocol. These can be overridden in later section as part of the security proof constructions. """ def dlog_prover(A, a, getChallenge=sha2, rnd_bytes=os.urandom): assert a*G == A # blinding factor k = uint256_from_str(rnd_bytes(32)) % order # commitment K = k*G # Invoke the random oracle to receive a challenge c = uint256_from_str(getChallenge(ser(K))) # response s = Fp(k + c*a) return (K,s) def dlog_verifier(A, prf, getTranscript=sha2): (K,s) = prf assert type(A) is type(K) is Point assert type(s) is Fp # Recompute c w/ the information given c = uint256_from_str(getTranscript(ser(K))) # Check the verification condition assert s.n *G == K + c*A return True def dlog_test(): a = uint256_from_str(os.urandom(32)) A = a*G getChallenge, getTranscript = make_honest_verifier_challenger() prf = dlog_prover(A, a, getChallenge) assert dlog_verifier(A, prf, getTranscript) print('Dlog correctness test complete!') dlog_test() """ ## Part 1: Make a Pedersen commitment to your secret key. Provide a ZK proof that your commitment is correct. Zk{ (x,r): X = x*G, C = x*G + r*H } By completing this proof, you prove you still have knowledge of your key! The verifier is provided for you. (Since we will publicly verify the proofs). You must complete the prover. """ def make_pedersen_commitment(x, rnd_bytes=os.urandom): r = uint256_from_str(rnd_bytes(32)) C = x * G + r * H return C, r def pedersen_prover(C, X, x, r, getChallenge=sha2, rnd_bytes=os.urandom): """ Params: x and r are elements of Fp C,X are Points Returns: prf, of the form (KX,KC,sx,sr) """ assert X == x * G assert C == x * G + r * H # TODO: fill in your code here (10 points) # blinding factor t_1 = uint256_from_str(rnd_bytes(32)) % order t_2 = uint256_from_str(rnd_bytes(32)) % order # commitment KX = t_1*G KC = t_1*G + t_2*H # Invoke the random oracle to receive a challenge c = uint256_from_str(getChallenge(ser(KX) + ser(KC))) # response sx = Fp(t_1 + c*x) sr = Fp(t_2 + c*r) return (KX,KC,sx,sr) def pedersen_verifier(C, X, prf, getTranscript=sha2): (KX,KC,sx,sr) = prf assert type(KX) == type(KC) == Point assert type(sx) == type(sr) == Fp # Recompute c w/ the information given c = uint256_from_str(getTranscript(ser(KX) + ser(KC))) assert sx.n *G == KX + c*X assert sx.n *G + sr.n *H == KC + c*C return True def pedersen_test(): getChallenge, getTranscript = make_honest_verifier_challenger() x = uint256_from_str(os.urandom(32)) X = x * G C,r = make_pedersen_commitment(x) prf = pedersen_prover(C, X, x, r, getChallenge) (KX, KC, sx, sr) = prf print(repr((ser(C), ser(KX),ser(KC),uint256_to_str(sx.n).hex(),uint256_to_str(sr.n).hex()))) assert pedersen_verifier(C, X, prf, getTranscript) print("Pedersen correctness test complete!") pedersen_test() """ ## Part 1 b): Make a single Pedersen commitment to a vector of secrets Zk{ (x1...xn,r1...rn): C1 = x1*G + r1*H, C2 = x2*G + r2*H, .. Cn = xn*G + rn*H } The verifier is provided for you. (Since we will publicly verify the proofs). You must complete the prover. """ def pedersen_vector_prover(C_arr, x_arr, r_arr, getChallenge=sha2, rnd_bytes=os.urandom): """ Params: x_arr, r_arr are arrays of elements in Fp C_arr are arrays of Points Returns: prf, of the form (K,sx,sr) where K is points and sx and sr are points in Fp Note that here you are able to prove that knowledge of n points with only communicating 1 ppints and 2 scalars. """ # Make sure all commitments are correct for C_elem, x_elem, r_elem in zip(C_arr,x_arr,r_arr): assert C_elem == x_elem*G + r_elem*H # TODO: Your code goes here: 10 points assert len(C_arr) == len(x_arr) == len(r_arr) # blinding factor t = uint256_from_str(rnd_bytes(32)) % order # commitment C0 = t*G # Invoke the random oracle to receive a challenge c = uint256_from_str(getChallenge(ser(C0))) # response sx, sr = t, 0 e = c for _, x_elem, r_elem in zip(C_arr, x_arr, r_arr): sx += Fp(e*x_elem) sr += Fp(e*r_elem) e *= c return (C0, sx, sr) def pedersen_vector_verifier(C_arr, prf, getTranscript=sha2, rnd_bytes=os.urandom): (C0, sx, sr) = prf assert type(C0) == Point assert type(sx) == type(sr) == Fp c = Fp(uint256_from_str(getTranscript(ser(C0)))) e = c C_final = C0 for C_elem in C_arr: C_final = C_final + e.n*C_elem e
Optional[pulumi.Input[str]]: """ Description of the security group. """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter(name="fromPort") def from_port(self) -> Optional[pulumi.Input[int]]: return pulumi.get(self, "from_port") @from_port.setter def from_port(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "from_port", value) @property @pulumi.getter def id(self) -> Optional[pulumi.Input[str]]: """ Id of the rule. """ return pulumi.get(self, "id") @id.setter def id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "id", value) @property @pulumi.getter def labels(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ Labels to assign to this security group. """ return pulumi.get(self, "labels") @labels.setter def labels(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "labels", value) @property @pulumi.getter def port(self) -> Optional[pulumi.Input[int]]: return pulumi.get(self, "port") @port.setter def port(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "port", value) @property @pulumi.getter(name="predefinedTarget") def predefined_target(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "predefined_target") @predefined_target.setter def predefined_target(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "predefined_target", value) @property @pulumi.getter(name="securityGroupId") def security_group_id(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "security_group_id") @security_group_id.setter def security_group_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "security_group_id", value) @property @pulumi.getter(name="toPort") def to_port(self) -> Optional[pulumi.Input[int]]: return pulumi.get(self, "to_port") @to_port.setter def to_port(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "to_port", value) @property @pulumi.getter(name="v4CidrBlocks") def v4_cidr_blocks(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: return pulumi.get(self, "v4_cidr_blocks") @v4_cidr_blocks.setter def v4_cidr_blocks(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "v4_cidr_blocks", value) @property @pulumi.getter(name="v6CidrBlocks") def v6_cidr_blocks(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: return pulumi.get(self, "v6_cidr_blocks") @v6_cidr_blocks.setter def v6_cidr_blocks(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "v6_cidr_blocks", value) @pulumi.input_type class VpcSubnetDhcpOptionsArgs: def __init__(__self__, *, domain_name: Optional[pulumi.Input[str]] = None, domain_name_servers: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, ntp_servers: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None): """ :param pulumi.Input[str] domain_name: Domain name. :param pulumi.Input[Sequence[pulumi.Input[str]]] domain_name_servers: Domain name server IP addresses. :param pulumi.Input[Sequence[pulumi.Input[str]]] ntp_servers: NTP server IP addresses. """ if domain_name is not None: pulumi.set(__self__, "domain_name", domain_name) if domain_name_servers is not None: pulumi.set(__self__, "domain_name_servers", domain_name_servers) if ntp_servers is not None: pulumi.set(__self__, "ntp_servers", ntp_servers) @property @pulumi.getter(name="domainName") def domain_name(self) -> Optional[pulumi.Input[str]]: """ Domain name. """ return pulumi.get(self, "domain_name") @domain_name.setter def domain_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "domain_name", value) @property @pulumi.getter(name="domainNameServers") def domain_name_servers(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ Domain name server IP addresses. """ return pulumi.get(self, "domain_name_servers") @domain_name_servers.setter def domain_name_servers(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "domain_name_servers", value) @property @pulumi.getter(name="ntpServers") def ntp_servers(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ NTP server IP addresses. """ return pulumi.get(self, "ntp_servers") @ntp_servers.setter def ntp_servers(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "ntp_servers", value) @pulumi.input_type class YdbDatabaseDedicatedLocationArgs: def __init__(__self__, *, region: Optional[pulumi.Input['YdbDatabaseDedicatedLocationRegionArgs']] = None): """ :param pulumi.Input['YdbDatabaseDedicatedLocationRegionArgs'] region: Region for the Yandex Database cluster. The structure is documented below. """ if region is not None: pulumi.set(__self__, "region", region) @property @pulumi.getter def region(self) -> Optional[pulumi.Input['YdbDatabaseDedicatedLocationRegionArgs']]: """ Region for the Yandex Database cluster. The structure is documented below. """ return pulumi.get(self, "region") @region.setter def region(self, value: Optional[pulumi.Input['YdbDatabaseDedicatedLocationRegionArgs']]): pulumi.set(self, "region", value) @pulumi.input_type class YdbDatabaseDedicatedLocationRegionArgs: def __init__(__self__, *, id: pulumi.Input[str]): """ :param pulumi.Input[str] id: Region ID for the Yandex Database cluster. """ pulumi.set(__self__, "id", id) @property @pulumi.getter def id(self) -> pulumi.Input[str]: """ Region ID for the Yandex Database cluster. """ return pulumi.get(self, "id") @id.setter def id(self, value: pulumi.Input[str]): pulumi.set(self, "id", value) @pulumi.input_type class YdbDatabaseDedicatedScalePolicyArgs: def __init__(__self__, *, fixed_scale: pulumi.Input['YdbDatabaseDedicatedScalePolicyFixedScaleArgs']): """ :param pulumi.Input['YdbDatabaseDedicatedScalePolicyFixedScaleArgs'] fixed_scale: Fixed scaling policy for the Yandex Database cluster. The structure is documented below. """ pulumi.set(__self__, "fixed_scale", fixed_scale) @property @pulumi.getter(name="fixedScale") def fixed_scale(self) -> pulumi.Input['YdbDatabaseDedicatedScalePolicyFixedScaleArgs']: """ Fixed scaling policy for the Yandex Database cluster. The structure is documented below. """ return pulumi.get(self, "fixed_scale") @fixed_scale.setter def fixed_scale(self, value: pulumi.Input['YdbDatabaseDedicatedScalePolicyFixedScaleArgs']): pulumi.set(self, "fixed_scale", value) @pulumi.input_type class YdbDatabaseDedicatedScalePolicyFixedScaleArgs: def __init__(__self__, *, size: pulumi.Input[int]): """ :param pulumi.Input[int] size: Number of instances for the Yandex Database cluster. """ pulumi.set(__self__, "size", size) @property @pulumi.getter def size(self) -> pulumi.Input[int]: """ Number of instances for the Yandex Database cluster. """ return pulumi.get(self, "size") @size.setter def size(self, value: pulumi.Input[int]): pulumi.set(self, "size", value) @pulumi.input_type class YdbDatabaseDedicatedStorageConfigArgs: def __init__(__self__, *, group_count: pulumi.Input[int], storage_type_id: pulumi.Input[str]): """ :param pulumi.Input[int] group_count: Amount of storage groups of selected type for the Yandex Database cluster. :param pulumi.Input[str] storage_type_id: Storage type ID for the Yandex Database cluster. Available presets can be obtained via `yc ydb storage-type list` command. """ pulumi.set(__self__, "group_count", group_count) pulumi.set(__self__, "storage_type_id", storage_type_id) @property @pulumi.getter(name="groupCount") def group_count(self) -> pulumi.Input[int]: """ Amount of storage groups of selected type for the Yandex Database cluster. """ return pulumi.get(self, "group_count") @group_count.setter def group_count(self, value: pulumi.Input[int]): pulumi.set(self, "group_count", value) @property @pulumi.getter(name="storageTypeId") def storage_type_id(self) -> pulumi.Input[str]: """ Storage type ID for the Yandex Database cluster. Available presets can be obtained via `yc ydb storage-type list` command. """ return pulumi.get(self, "storage_type_id") @storage_type_id.setter def storage_type_id(self, value: pulumi.Input[str]): pulumi.set(self, "storage_type_id", value) @pulumi.input_type class GetAlbBackendGroupGrpcBackendArgs: def __init__(__self__, *, healthcheck: 'GetAlbBackendGroupGrpcBackendHealthcheckArgs', load_balancing_config: 'GetAlbBackendGroupGrpcBackendLoadBalancingConfigArgs', name: str, port: int, target_group_ids: Sequence[str], tls: 'GetAlbBackendGroupGrpcBackendTlsArgs', weight: int): """ :param 'GetAlbBackendGroupGrpcBackendHealthcheckArgs' healthcheck: Healthcheck specification that will be used by this backend. Structure is documented below. :param 'GetAlbBackendGroupGrpcBackendLoadBalancingConfigArgs' load_balancing_config: Load Balancing Config specification that will be used by this backend. Structure is documented below. :param str name: - Name of the Backend Group. :param int port: Port for incoming traffic. :param Sequence[str] target_group_ids: References target groups for the backend. :param 'GetAlbBackendGroupGrpcBackendTlsArgs' tls: Tls specification that will be used by this backend. Structure is documented below. :param int weight: Weight of the backend. Traffic will be split between backends of the same BackendGroup according to their weights. """ pulumi.set(__self__, "healthcheck", healthcheck) pulumi.set(__self__, "load_balancing_config", load_balancing_config) pulumi.set(__self__, "name", name) pulumi.set(__self__, "port", port) pulumi.set(__self__, "target_group_ids", target_group_ids) pulumi.set(__self__, "tls", tls) pulumi.set(__self__, "weight", weight) @property @pulumi.getter def healthcheck(self) -> 'GetAlbBackendGroupGrpcBackendHealthcheckArgs': """ Healthcheck specification that will be used by this backend. Structure is documented below. """ return pulumi.get(self, "healthcheck") @healthcheck.setter def healthcheck(self, value: 'GetAlbBackendGroupGrpcBackendHealthcheckArgs'): pulumi.set(self, "healthcheck", value) @property @pulumi.getter(name="loadBalancingConfig") def load_balancing_config(self) -> 'GetAlbBackendGroupGrpcBackendLoadBalancingConfigArgs': """ Load Balancing Config specification that will be used by this backend. Structure is documented below. """ return pulumi.get(self, "load_balancing_config") @load_balancing_config.setter def load_balancing_config(self, value: 'GetAlbBackendGroupGrpcBackendLoadBalancingConfigArgs'): pulumi.set(self, "load_balancing_config", value) @property @pulumi.getter def name(self) -> str: """ - Name of the Backend Group. """ return pulumi.get(self, "name") @name.setter def name(self, value: str): pulumi.set(self, "name", value) @property @pulumi.getter def port(self) -> int: """ Port for incoming traffic. """ return pulumi.get(self, "port") @port.setter def port(self, value: int): pulumi.set(self, "port", value) @property @pulumi.getter(name="targetGroupIds") def target_group_ids(self) -> Sequence[str]: """ References target groups for the backend. """ return pulumi.get(self, "target_group_ids") @target_group_ids.setter def target_group_ids(self, value: Sequence[str]): pulumi.set(self, "target_group_ids", value) @property @pulumi.getter def tls(self) -> 'GetAlbBackendGroupGrpcBackendTlsArgs': """ Tls specification that will be used by this backend. Structure is documented below. """ return pulumi.get(self, "tls") @tls.setter def tls(self, value: 'GetAlbBackendGroupGrpcBackendTlsArgs'): pulumi.set(self, "tls", value) @property @pulumi.getter def weight(self) -> int: """ Weight of the backend. Traffic will be split between backends of the same BackendGroup according to their weights. """ return pulumi.get(self, "weight") @weight.setter def weight(self, value: int): pulumi.set(self, "weight", value) @pulumi.input_type class GetAlbBackendGroupGrpcBackendHealthcheckArgs: def __init__(__self__, *, grpc_healthcheck: 'GetAlbBackendGroupGrpcBackendHealthcheckGrpcHealthcheckArgs', healthcheck_port: int, healthy_threshold: int, http_healthcheck: 'GetAlbBackendGroupGrpcBackendHealthcheckHttpHealthcheckArgs', interval: str, interval_jitter_percent: float, stream_healthcheck: 'GetAlbBackendGroupGrpcBackendHealthcheckStreamHealthcheckArgs', timeout: str, unhealthy_threshold: int): """ :param 'GetAlbBackendGroupGrpcBackendHealthcheckGrpcHealthcheckArgs' grpc_healthcheck: Grpc Healthcheck specification that will be used by this healthcheck. Structure is documented below. :param int healthcheck_port: Optional alternative port for health checking. :param int healthy_threshold: Number of consecutive successful health checks required to promote endpoint into the healthy state. 0 means 1. Note that during startup, only a single successful health check is required to mark a host healthy. :param 'GetAlbBackendGroupGrpcBackendHealthcheckHttpHealthcheckArgs' http_healthcheck: Http Healthcheck specification that will be used by this healthcheck. Structure is documented below. :param str interval: Interval between health checks. :param float interval_jitter_percent: An optional jitter amount as a percentage of interval. If specified, during every interval value of (interval_ms * interval_jitter_percent / 100) will be added to the wait time. :param 'GetAlbBackendGroupGrpcBackendHealthcheckStreamHealthcheckArgs' stream_healthcheck: Stream Healthcheck specification that will be used by this healthcheck. Structure is documented below. :param str timeout: Time to wait for a health check response. :param int unhealthy_threshold: Number of consecutive failed health checks required to demote endpoint into the unhealthy state. 0 means 1. Note that for HTTP health checks, a single 503 immediately makes endpoint unhealthy. """ pulumi.set(__self__, "grpc_healthcheck", grpc_healthcheck) pulumi.set(__self__, "healthcheck_port", healthcheck_port) pulumi.set(__self__, "healthy_threshold", healthy_threshold) pulumi.set(__self__, "http_healthcheck", http_healthcheck) pulumi.set(__self__, "interval", interval) pulumi.set(__self__, "interval_jitter_percent", interval_jitter_percent) pulumi.set(__self__, "stream_healthcheck", stream_healthcheck) pulumi.set(__self__, "timeout", timeout) pulumi.set(__self__, "unhealthy_threshold", unhealthy_threshold) @property @pulumi.getter(name="grpcHealthcheck") def grpc_healthcheck(self) -> 'GetAlbBackendGroupGrpcBackendHealthcheckGrpcHealthcheckArgs': """ Grpc Healthcheck specification that will be used by this healthcheck. Structure is documented below. """ return pulumi.get(self, "grpc_healthcheck") @grpc_healthcheck.setter def grpc_healthcheck(self, value: 'GetAlbBackendGroupGrpcBackendHealthcheckGrpcHealthcheckArgs'): pulumi.set(self, "grpc_healthcheck", value) @property @pulumi.getter(name="healthcheckPort") def healthcheck_port(self) -> int: """ Optional alternative port for health checking. """
import numpy as np import random import itertools import sys from lattice_mc import atom, jump, transitions, cluster from lattice_mc.error import BlockedLatticeError from collections import Counter class Lattice: """ Lattice class """ def __init__( self, sites, cell_lengths ): """ Initialise a Lattice instance. Args: sites (List(Site)): List of sites contained in the lattice. cell_lengths (np.array(x,y,z)): Vector of cell lengths for the simulation cell. Returns: None """ self.cell_lengths = cell_lengths self.sites = sites self.number_of_sites = len( self.sites ) self.site_labels = set( [ site.label for site in self.sites ] ) self.site_populations = Counter( [ site.label for site in self.sites ] ) self.enforce_periodic_boundary_conditions() self.initialise_site_lookup_table() self.nn_energy = False self.cn_energies = False self.site_energies = False self.jump_lookup_table = False for site in self.sites: site.p_neighbours = [ self.site_with_id( i ) for i in site.neighbours ] self.reset() def enforce_periodic_boundary_conditions( self ): """ Ensure that all lattice sites are within the central periodic image of the simulation cell. Sites that are outside the central simulation cell are mapped back into this cell. Args: None Returns: None """ for s in self.sites: for i in range(3): if s.r[i] < 0.0: s.r[i] += self.cell_lengths[i] if s.r[i] > self.cell_lengths[i]: s.r[i] -= self.cell_lengths[i] def reset( self ): """ Reset all time-dependent counters for this lattice and its constituent sites Args: None Returns: None """ self.time = 0.0 for site in self.sites: site.time_occupied = 0.0 def initialise_site_lookup_table( self ): """ Create a lookup table allowing sites in this lattice to be queried using `self.site_lookup[n]` where `n` is the identifying site numbe. Args: None Returns: None """ self.site_lookup = {} for site in self.sites: self.site_lookup[ site.number ] = site def site_with_id( self, number ): """ Select the site with a specific id number. Args: number (Int): The identifying number for a specific site. Returns: (Site): The site with id number equal to `number` """ return self.site_lookup[ number ] def vacant_sites( self ): """ The set of sites not occupied by atoms. Args: None Returns: List(Site): List of sites that are vacant. """ return ( site for site in self.sites if not site.is_occupied ) def occupied_sites( self ): """ The set of sites occupied by atoms. Args: None Returns: List(Site): List of sites that are occupied. """ return ( site for site in self.sites if site.is_occupied ) def vacant_site_numbers( self ): """ List of site id numbers for all sites that are vacant. Args: None Returns: List(Int): List of site id numbers for vacant sites. """ return [ site.number for site in self.sites if not site.is_occupied ] def occupied_site_numbers( self ): """ List of site id numbers for all sites that are occupied. Args: None Returns: List(Int): List of site id numbers for occupied sites. """ return [ site.number for site in self.sites if site.is_occupied ] def potential_jumps( self ): """ All nearest-neighbour jumps not blocked by volume exclusion (i.e. from occupied to neighbouring unoccupied sites). Args: None Returns: (List(Jump)): List of possible jumps. """ jumps = [] if self.number_of_occupied_sites <= self.number_of_sites / 2: for occupied_site in self.occupied_sites(): unoccupied_neighbours = [ site for site in [ self.site_with_id( n ) for n in occupied_site.neighbours ] if not site.is_occupied ] for vacant_site in unoccupied_neighbours: jumps.append( jump.Jump( occupied_site, vacant_site, self.nn_energy, self.cn_energies, self.jump_lookup_table ) ) else: for vacant_site in self.vacant_sites(): occupied_neighbours = [ site for site in [ self.site_with_id( n ) for n in vacant_site.neighbours ] if site.is_occupied ] for occupied_site in occupied_neighbours: jumps.append( jump.Jump( occupied_site, vacant_site, self.nn_energy, self.cn_energies, self.jump_lookup_table ) ) return jumps def update( self, jump ): """ Update the lattice state by accepting a specific jump Args: jump (Jump): The jump that has been accepted. Returns: None. """ atom = jump.initial_site.atom dr = jump.dr( self.cell_lengths ) #print( "atom {} jumped from site {} to site {}".format( atom.number, jump.initial_site.number, jump.final_site.number ) ) jump.final_site.occupation = atom.number jump.final_site.atom = atom jump.final_site.is_occupied = True jump.initial_site.occupation = 0 jump.initial_site.atom = None jump.initial_site.is_occupied = False # TODO: updating atom counters could be contained in an atom.move_to( site ) method atom.site = jump.final_site atom.number_of_hops += 1 atom.dr += dr atom.summed_dr2 += np.dot( dr, dr ) def populate_sites( self, number_of_atoms, selected_sites=None ): """ Populate the lattice sites with a specific number of atoms. Args: number_of_atoms (Int): The number of atoms to populate the lattice sites with. selected_sites (:obj:List, optional): List of site labels if only some sites are to be occupied. Defaults to None. Returns: None """ if number_of_atoms > self.number_of_sites: raise ValueError if selected_sites: atoms = [ atom.Atom( initial_site = site ) for site in random.sample( [ s for s in self.sites if s.label in selected_sites ], number_of_atoms ) ] else: atoms = [ atom.Atom( initial_site = site ) for site in random.sample( self.sites, number_of_atoms ) ] self.number_of_occupied_sites = number_of_atoms return atoms def jump( self ): """ Select a jump at random from all potential jumps, then update the lattice state. Args: None Returns: None """ potential_jumps = self.potential_jumps() if not potential_jumps: raise BlockedLatticeError('No moves are possible in this lattice') all_transitions = transitions.Transitions( self.potential_jumps() ) random_jump = all_transitions.random() delta_t = all_transitions.time_to_jump() self.time += delta_t self.update_site_occupation_times( delta_t ) self.update( random_jump ) return( all_transitions.time_to_jump() ) def update_site_occupation_times( self, delta_t ): """ Increase the time occupied for all occupied sites by delta t Args: delta_t (Float): Timestep. Returns: None """ for site in self.occupied_sites(): site.time_occupied += delta_t def site_occupation_statistics( self ): """ Average site occupation for each site type Args: None Returns: (Dict(Str:Float)): Dictionary of occupation statistics, e.g.:: { 'A' : 2.5, 'B' : 25.3 } """ if self.time == 0.0: return None occupation_stats = { label : 0.0 for label in self.site_labels } for site in self.sites: occupation_stats[ site.label ] += site.time_occupied for label in self.site_labels: occupation_stats[ label ] /= self.time return occupation_stats def set_site_energies( self, energies ): """ Set the energies for every site in the lattice according to the site labels. Args: energies (Dict(Str:Float): Dictionary of energies for each site label, e.g.:: { 'A' : 1.0, 'B', 0.0 } Returns: None """ self.site_energies = energies for site_label in energies: for site in self.sites: if site.label == site_label: site.energy = energies[ site_label ] def set_nn_energy( self, delta_E ): """ Set the lattice nearest-neighbour energy. Args: delta_E (Float): The nearest-neighbour energy E_nn. Returns: None """ self.nn_energy = delta_E def set_cn_energies( self, cn_energies ): """ Set the coordination number dependent energies for this lattice. Args: cn_energies (Dict(Str:Dict(Int:Float))): Dictionary of dictionaries specifying the coordination number dependent energies for each site type. e.g.:: { 'A' : { 0 : 0.0, 1 : 1.0, 2 : 2.0 }, 'B' : { 0 : 0.0, 1 : 2.0 } } Returns: None """ for site in self.sites: site.set_cn_occupation_energies( cn_energies[ site.label ] ) self.cn_energies = cn_energies def site_coordination_numbers( self ): """ Returns a dictionary of the coordination numbers for each site label. e.g.:: { 'A' : { 4 }, 'B' : { 2, 4 } } Args: none Returns: coordination_numbers (Dict(Str:Set(Int))): dictionary of coordination numbers for each site label. """ coordination_numbers = {} for l in self.site_labels: coordination_numbers[ l ] = set( [ len( site.neighbours ) for site in self.sites if site.label is l ] ) return coordination_numbers def max_site_coordination_numbers( self ): """ Returns a dictionary of the maximum coordination number for each site label. e.g.:: { 'A' : 4, 'B' : 4 } Args: none Returns: max_coordination_numbers (Dict(Str:Int)): dictionary of maxmimum coordination number for each site label. """ return { l : max( c ) for l, c in self.site_coordination_numbers().items() } def site_specific_coordination_numbers( self ): """ Returns a dictionary of coordination numbers for each site type. Args: None Returns: (Dict(Str:List(Int))) : Dictionary of coordination numbers for each site type, e.g.:: { 'A' : [ 2, 4 ], 'B' : [ 2 ] } """ specific_coordination_numbers = {} for site in self.sites: specific_coordination_numbers[ site.label ] = site.site_specific_neighbours() return specific_coordination_numbers def connected_site_pairs( self ): """ Returns
__author__ = 'calvin' import configparser import datetime import glob import json import logging import os import re import shutil import smtplib import sys import time from email import encoders from email.mime.base import MIMEBase from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from threading import Thread import jinja2 from api import upload_report, upload_many_reports, HQ_DEFAULT_TIMEOUT, SMTP_DEFAULT_TIMEOUT from process import CrashReportingProcess from tools import analyze_traceback, repr as safe_repr class CrashReporter(object): """ Create a context manager that emails or uploads a report to a webserver (HQ) with the traceback on a crash. It can be setup to do both, or just one of the upload methods. If a crash report fails to upload, the report is saved locally to the `report_dir` directory. The next time the CrashReporter starts up, it will attempt to upload all offline reports every `check_interval` seconds. After a successful upload the offline reports are deleted. A maximum of `offline_report_limit` reports are saved at any time. Reports are named crashreport01, crashreport02, crashreport03 and so on. The most recent report is always crashreport01. Report Customizing Attributes: application_name: Application name as a string to be included in the report application_version: Application version as a string to be included in the report user_identifier: User identifier as a string to add to the report offline_report_limit: Maximum number of offline reports to save. recursion_depth_limit: Maximum number of tracebacks to record in the case of RunetimeError: maximum recursion depth exceeded max_string_length: Maximum string length for values returned in variable inspection. This prevents reports which contain array data from becoming too large. inspection_level: The number of traceback objects (from most recent) to inspect for source code, local variables etc :param report_dir: Directory to save offline reports. :param watcher: Enable a thread that periodically checks for any stored offline reports and attempts to send them. :param check_interval: How often the watcher will attempt to send offline reports. :param logger: Optional logger to use. :param config: Path to configuration file that defines the arguments to setup_smtp and setup_hq. The file has the format of a ConfigParser file with sections [SMTP] and [HQ] """ _report_name = "crash_report_%d" html_template = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'email_report.html') active = False application_name = None application_version = None user_identifier = None offline_report_limit = 10 recursion_depth_limit = 10 send_at_most = 3 # max number of offline reports to send in batch max_string_length = 1000 obj_ref_regex = re.compile("[A-z]+[0-9]*\.(?:[A-z]+[0-9]*\.?)+(?!\')") def __init__(self, report_dir=None, config='', logger=None, activate=True, watcher=True, check_interval=5*60): self.logger = logger if logger else logging.getLogger('CrashReporter') # Setup the directory used to store offline crash reports self.report_dir = report_dir self.check_interval = check_interval self.watcher_enabled = watcher self._watcher = None self._watcher_running = False self.etype = None self.evalue = None self.tb = None self._recursion_error = False self.analyzed_traceback = None self.payload = None self._excepthook = None self.inspection_level = 1 self._smtp = None self._hq = None # Load the configuration from a file if specified if os.path.isfile(config): self.load_configuration(config) if activate: self.enable() def setup_smtp(self, host, port, user, passwd, recipients, **kwargs): """ Set up the crash reporter to send reports via email using SMTP :param host: SMTP host :param port: SMTP port :param user: sender email address :param passwd: sender email password :param recipients: list or comma separated string of recipients """ self._smtp = kwargs self._smtp.update({'host': host, 'port': port, 'user': user, 'passwd': <PASSWORD>, 'recipients': recipients}) try: self._smtp['timeout'] = int(kwargs.get('timeout', SMTP_DEFAULT_TIMEOUT)) except Exception as e: logging.error(e) self._smtp['timeout'] = None self._smtp['from'] = kwargs.get('from', user) def setup_hq(self, server, **kwargs): self._hq = kwargs try: self._hq['timeout'] = int(kwargs.get('timeout', HQ_DEFAULT_TIMEOUT)) except Exception as e: logging.error(e) self._hq['timeout'] = None self._hq.update({'server': server}) def enable(self): """ Enable the crash reporter. CrashReporter is defaulted to be enabled on creation. """ if not CrashReporter.active: CrashReporter.active = True # Store this function so we can set it back if the CrashReporter is deactivated self._excepthook = sys.excepthook sys.excepthook = self.exception_handler self.logger.info('CrashReporter: Enabled') if self.report_dir: if os.path.exists(self.report_dir): if self.get_offline_reports(): # First attempt to send the reports, if that fails then start the watcher self.submit_offline_reports() remaining_reports = len(self.get_offline_reports()) if remaining_reports and self.watcher_enabled: self.start_watcher() else: os.makedirs(self.report_dir) def disable(self): """ Disable the crash reporter. No reports will be sent or saved. """ if CrashReporter.active: CrashReporter.active = False # Restore the original excepthook sys.excepthook = self._excepthook self.stop_watcher() self.logger.info('CrashReporter: Disabled') def start_watcher(self): """ Start the watcher that periodically checks for offline reports and attempts to upload them. """ if self._watcher and self._watcher.is_alive: self._watcher_running = True else: self.logger.info('CrashReporter: Starting watcher.') self._watcher = Thread(target=self._watcher_thread, name='offline_reporter') self._watcher.setDaemon(True) self._watcher_running = True self._watcher.start() def stop_watcher(self): """ Stop the watcher thread that tries to send offline reports. """ if self._watcher: self._watcher_running = False self.logger.info('CrashReporter: Stopping watcher.') def interprocess_exception_handler(self, err_name, err_msg, analyzed_tb): payload = self.generate_payload(err_name, err_msg, analyzed_tb) self.handle_payload(payload) def _analyze_traceback(self, traceback): # To prevent recording a large amount of potentially redundant tracebacks, limit the trace back for the case of # infinite recursion errors. limit = CrashReporter.recursion_depth_limit if self._recursion_error else None analyzed_tb = analyze_traceback(traceback, limit=limit) self.custom_inspection(analyzed_tb) # Perform serialization check on the possibly user-altered traceback overriden = self.__class__.custom_inspection.im_func is not CrashReporter.custom_inspection.im_func if overriden: for tb in analyzed_tb: for key, value in tb['Custom Inspection'].items(): try: json.dumps(value) except TypeError: tb['Custom Inspection'][key] = {k: safe_repr(v) for k, v in value.items()} return analyzed_tb def custom_inspection(self, analyzed_traceback): """ Define this function so that users can override it and add their own custom information to the payload in the 'Custom Inspection' key. """ return analyzed_traceback def exception_handler(self, etype, evalue, tb): """ Exception hook. Catches crashes / un-caught exceptions and passes them to handle_payload() :param etype: Exception type :param evalue: Exception value :param tb: Traceback :return: """ self.etype = etype self.evalue = evalue self.tb = tb self._recursion_error = "maximum recursion depth exceeded" in str(self.evalue) if etype: self.logger.info('CrashReporter: Crashes detected!') self.analyzed_traceback = self._analyze_traceback(tb) self.handle_payload(self.generate_payload(etype.__name__, '%s' % evalue, self.analyzed_traceback)) else: self.logger.info('CrashReporter: No crashes detected.') self.forward_exception(etype, evalue, tb) def forward_exception(self, etype, evalue, tb): """ Forward the exception onto the backup copy that was made of the sys.__excepthook__ :param etype: Exceoption type :param evalue: Exception value :param tb: Traceback :return: """ self._excepthook(etype, evalue, tb) def handle_payload(self, payload): """ Given a crash report (JSON represented payload), attempts to upload the crash reports. Calls the default exception handler (sys.__except_hook__) upon completion. :param payload: JSON structure containing crash report along with metadata :return: """ self.payload = payload if CrashReporter.active: # Attempt to upload the report hq_success = smtp_success = False if self._hq is not None: hq_success = self.hq_submit(self.payload) if hq_success: self.payload['HQ Submission'] = 'Sent' if self._smtp is not None: # Send the report via email smtp_success = self.smtp_submit(self.subject(), self.body(self.payload), self.attachments()) if smtp_success: self.payload['SMTP Submission'] = 'Sent' if not CrashReporter.active or (self._smtp and not smtp_success) or (self._hq and not hq_success): # Only store the offline report if any of the upload methods fail, or if the Crash Reporter was disabled report_path = self.store_report(self.payload) self.logger.info('Offline Report stored %s' % report_path) def generate_payload(self, err_name, err_msg, analyzed_tb): dt = datetime.datetime.now() payload = {'Error Type': err_name, 'Error Message': err_msg + self._recursion_error * " (Not all tracebacks are shown)", 'Application Name': self.application_name, 'Application Version': self.application_version, 'User': self.user_identifier, 'Date': dt.strftime('%d %B %Y'), 'Time': dt.strftime('%I:%M %p'), 'Traceback': analyzed_tb, 'HQ Submission': 'Not sent' if self._hq else 'Disabled', 'SMTP Submission': 'Not sent' if self._smtp else 'Disabled' } return payload def load_configuration(self, config): cfg = configparser.ConfigParser() with open(config, 'r') as _f: cfg.readfp(_f) if cfg.has_section('General'): general = dict(cfg.items('General')) self.application_name = general.get('application_name', CrashReporter.application_name) self.application_version = general.get('application_version', CrashReporter.application_version) self.user_identifier = general.get('user_identifier', CrashReporter.user_identifier) self.offline_report_limit = general.get('offline_report_limit', CrashReporter.offline_report_limit) self.max_string_length = general.get('max_string_length', CrashReporter.max_string_length) if cfg.has_section('SMTP'): self.setup_smtp(**dict(cfg.items('SMTP'))) if 'port' in self._smtp: self._smtp['port'] = int(self._smtp['port']) if 'recipients' in self._smtp: self._smtp['recipients'] = self._smtp['recipients'].split(',') if cfg.has_section('HQ'): self.setup_hq(**dict(cfg.items('HQ'))) def subject(self): """ Return a string to be used as the email subject line. """ if self.application_name and self.application_version: return 'Crash Report - {name} (v{version})'.format(name=self.application_name, version=self.application_version) else: return 'Crash Report' def body(self, payload): return self.render_report(payload, inspection_level=self.inspection_level) def render_report(self, payload, inspection_level=1): with open(self.html_template, 'r') as _f: template = jinja2.Template(_f.read()) return template.render(info=payload, inspection_level=inspection_level) def attachments(self): """ Generate and return a list of attachments to send with the report. :return: List of strings containing the paths to the files. """ return [] def delete_offline_reports(self): """ Delete all stored offline
from __future__ import unicode_literals import datetime import os import unittest from django import get_version from django.db import models from django.template import Template, Context from django.test import SimpleTestCase from django.test.utils import override_settings from six.moves import range try: from django.utils.encoding import python_2_unicode_compatible except ImportError: # Django > 2 def python_2_unicode_compatible(klass): """ A decorator that defines __unicode__ and __str__ methods under Python 2. Under Python 3 it does nothing. To support Python 2 and 3 with a single code base, define a __str__ method returning text and apply this decorator to the class. """ return klass from .models import ( SingleBrick, ListBrick, BaseWall, Criterion, SORTING_DESC, SORTING_ASC, BaseWallFactory, wall_factory, ) from djangobricks.exceptions import TemplateNameNotFound CURRENT_DIR = os.path.abspath(os.path.dirname(__file__)) # Define a noop skipIf for python 2.6 def _skipIf(test, message=''): def wrapper(method): if test: return lambda *args, **kwargs: None else: return method return wrapper if hasattr(unittest, 'skipIf'): skipIf = unittest.skipIf else: skipIf = _skipIf def default(): return 1 def callback_filter_a(brick): return brick.item._meta.model_name == 'testmodela' def callback_filter_b(brick): return brick.item._meta.model_name == 'testmodelb' def callback_filter_always_true(brick): return True class TestSingleBrick(SingleBrick): template_name = 'single_brick.html' class TestListBrick(ListBrick): template_name = 'list_brick.html' class TestNoTemplateSingleBrick(SingleBrick): pass class NotABrick(object): pass class TestBrickWall(BaseWall): pass @python_2_unicode_compatible class TestModelA(models.Model): name = models.CharField(max_length=8) popularity = models.PositiveIntegerField() pub_date = models.DateTimeField() is_sticky = models.BooleanField(default=False) def __str__(self): return self.name def callable_popularity(self): return self.popularity @python_2_unicode_compatible class TestModelB(models.Model): name = models.CharField(max_length=8) date_add = models.DateTimeField() popularity = models.PositiveIntegerField() is_sticky = models.BooleanField(default=False) def __str__(self): return self.name def pub_date(self): return self.date_add @python_2_unicode_compatible class TestModelC(models.Model): name = models.CharField(max_length=8) pub_date = models.DateTimeField() popularity = models.PositiveIntegerField() is_sticky = models.BooleanField(default=False) def __str__(self): return self.name class TestWallFactory(BaseWallFactory): def get_content(self): return ( (TestSingleBrick, TestModelA.objects.all()), (TestSingleBrick, TestModelB.objects.all()), ) class TestWallFactoryNoCriteria(BaseWallFactory): def get_content(self): return ( (TestSingleBrick, TestModelA.objects.all()), (TestSingleBrick, TestModelB.objects.all()), ) class TestWrongContentWallFactory(BaseWallFactory): def get_content(self): return ( (NotABrick, TestModelA.objects.all()), ) @override_settings(TEMPLATE_DIRS=['%s/../tests/templates' % CURRENT_DIR]) class BrickTest(SimpleTestCase): allow_database_queries = True def setUp(self): self.bricks = [] def tearDown(self): TestModelA.objects.all().delete() TestModelB.objects.all().delete() TestModelC.objects.all().delete() self.bricks = [] def _create_model_a_objects_and_bricks(self): objectA1 = TestModelA.objects.create(name='objectA1', popularity=5, pub_date=datetime.datetime(2010, 1, 1, 12, 0), is_sticky=False) objectA2 = TestModelA.objects.create(name='objectA2', popularity=4, pub_date=datetime.datetime(2011, 1, 1, 12, 0), is_sticky=False) objectA3 = TestModelA.objects.create(name='objectA3', popularity=3, pub_date=datetime.datetime(2012, 1, 1, 12, 0), is_sticky=True) objectA4 = TestModelA.objects.create(name='objectA4', popularity=2, pub_date=datetime.datetime(2013, 1, 1, 12, 0), is_sticky=False) self.brickA1 = SingleBrick(objectA1) self.brickA2 = SingleBrick(objectA2) self.brickA3 = SingleBrick(objectA3) self.brickA4 = SingleBrick(objectA4) for i in range(1, 5): self.bricks.append(getattr(self, 'brickA%s' % i)) def _create_model_b_objects_and_bricks(self): objectB1 = TestModelB.objects.create(name='objectB1', popularity=10, date_add=datetime.datetime(2006, 1, 1, 12, 0), is_sticky=False) objectB2 = TestModelB.objects.create(name='objectB2', popularity=9, date_add=datetime.datetime(2007, 1, 1, 12, 0), is_sticky=False) objectB3 = TestModelB.objects.create(name='objectB3', popularity=8, date_add=datetime.datetime(2008, 1, 1, 12, 0), is_sticky=True) objectB4 = TestModelB.objects.create(name='objectB4', popularity=7, date_add=datetime.datetime(2009, 1, 1, 12, 0), is_sticky=False) self.brickB1 = SingleBrick(objectB1) self.brickB2 = SingleBrick(objectB2) self.brickB3 = SingleBrick(objectB3) self.brickB4 = SingleBrick(objectB4) for i in range(1, 5): self.bricks.append(getattr(self, 'brickB%s' % i)) def _create_model_c_objects_and_bricks(self): objectC1 = TestModelC.objects.create(name='objectC1', popularity=20, pub_date=datetime.datetime(2002, 1, 1, 12, 0), is_sticky=False) objectC2 = TestModelC.objects.create(name='objectC2', popularity=19, pub_date=datetime.datetime(2003, 1, 1, 12, 0), is_sticky=False) objectC3 = TestModelC.objects.create(name='objectC3', popularity=18, pub_date=datetime.datetime(2004, 1, 1, 12, 0), is_sticky=True) objectC4 = TestModelC.objects.create(name='objectC4', popularity=17, pub_date=datetime.datetime(2005, 1, 1, 12, 0), is_sticky=False) self.brickC1 = ListBrick([objectC1, objectC2]) self.brickC2 = ListBrick([objectC3, objectC4]) for i in range(1, 3): self.bricks.append(getattr(self, 'brickC%s' % i)) # Slicing, iteration, length def test_slicing(self): self._create_model_a_objects_and_bricks() wall = TestBrickWall(self.bricks) self.assertEqual(wall[0], self.brickA1) self.assertEqual(wall[:1], [self.brickA1]) self.assertEqual(wall[1:3], [self.brickA2, self.brickA3]) def test_iteration(self): self._create_model_a_objects_and_bricks() wall = TestBrickWall(self.bricks) for i, brick in enumerate(wall): i += 1 self.assertEqual(brick, getattr(self, 'brickA%s' % i)) def test_length(self): self._create_model_a_objects_and_bricks() wall = TestBrickWall(self.bricks) self.assertEqual(len(wall), 4) # Instantiation def test_single_brick_init(self): objectA1 = TestModelA.objects.create(name='objectA1', popularity=5, pub_date=datetime.datetime(2010, 1, 1, 12, 0), is_sticky=False) objectA2 = TestModelA.objects.create(name='objectA2', popularity=4, pub_date=datetime.datetime(2011, 1, 1, 12, 0), is_sticky=False) objectA3 = TestModelA.objects.create(name='objectA3', popularity=3, pub_date=datetime.datetime(2012, 1, 1, 12, 0), is_sticky=True) objectA4 = TestModelA.objects.create(name='objectA4', popularity=2, pub_date=datetime.datetime(2013, 1, 1, 12, 0), is_sticky=False) bricks = SingleBrick.get_bricks_for_queryset(TestModelA.objects.all()) wall = TestBrickWall(bricks) self.assertEqual(wall[0].item, objectA1) self.assertEqual(wall[1].item, objectA2) self.assertEqual(wall[2].item, objectA3) self.assertEqual(wall[3].item, objectA4) def test_list_brick_init(self): objectA1 = TestModelA.objects.create(name='objectA1', popularity=5, pub_date=datetime.datetime(2010, 1, 1, 12, 0), is_sticky=False) objectA2 = TestModelA.objects.create(name='objectA2', popularity=4, pub_date=datetime.datetime(2011, 1, 1, 12, 0), is_sticky=False) objectA3 = TestModelA.objects.create(name='objectA3', popularity=3, pub_date=datetime.datetime(2012, 1, 1, 12, 0), is_sticky=True) objectA4 = TestModelA.objects.create(name='objectA4', popularity=2, pub_date=datetime.datetime(2013, 1, 1, 12, 0), is_sticky=False) bricks = ListBrick.get_bricks_for_queryset(TestModelA.objects.all()) wall = TestBrickWall(bricks) self.assertEqual(wall[0].items, [objectA1, objectA2, objectA3, objectA4]) # Missing criterion attribute def test_missing_criterion_attribute(self): objectA1 = TestModelA.objects.create(name='objectA1', popularity=5, pub_date=datetime.datetime(2010, 1, 1, 12, 0), is_sticky=False) criterion = Criterion('i_dont_exist') self.assertIsNone(criterion.get_value_for_item(objectA1)) # Callable criterion def test_callable_criterion(self): objectA1 = TestModelA.objects.create(name='objectA1', popularity=5, pub_date=datetime.datetime(2010, 1, 1, 12, 0), is_sticky=False) criterion = Criterion('callable_popularity') self.assertEqual(criterion.get_value_for_item(objectA1), 5) def test_callable_criterion_in_wall(self): self._create_model_a_objects_and_bricks() wall = TestBrickWall(self.bricks, criteria=( (Criterion('callable_popularity'), SORTING_DESC), )) expected = [self.brickA1, self.brickA2, self.brickA3, self.brickA4] self.assertEqual(list(wall), expected) # Callable default criterion def test_callable_default_criterion(self): objectA1 = TestModelA.objects.create(name='objectA1', popularity=5, pub_date=datetime.datetime(2010, 1, 1, 12, 0), is_sticky=False) criterion = Criterion('i_dont_exist', default=default) self.assertEqual(criterion.get_value_for_item(objectA1), 1) def test_callable_default_criterion_in_wall(self): self._create_model_a_objects_and_bricks() wall = TestBrickWall(self.bricks, criteria=( (Criterion('i_dont_exist', default=default), SORTING_DESC), )) expected = [self.brickA1, self.brickA2, self.brickA3, self.brickA4] self.assertEqual(list(wall), expected) # Callback criterion def test_callback_criterion(self): objectA1 = TestModelA.objects.create(name='objectA1', popularity=5, pub_date=datetime.datetime(2010, 1, 1, 12, 0), is_sticky=False) objectA2 = TestModelA.objects.create(name='objectA2', popularity=4, pub_date=datetime.datetime(2011, 1, 1, 12, 0), is_sticky=False) objectA3 = TestModelA.objects.create(name='objectA3', popularity=3, pub_date=datetime.datetime(2012, 1, 1, 12, 0), is_sticky=True) objectA4 = TestModelA.objects.create(name='objectA4', popularity=2, pub_date=datetime.datetime(2013, 1, 1, 12, 0), is_sticky=False) item_list = [objectA1, objectA2, objectA3, objectA4] criterion = Criterion('popularity', max) self.assertEqual(criterion.get_value_for_list(item_list), 5) def test_custom_callback_criterion(self): objectA1 = TestModelA.objects.create(name='objectA1', popularity=5, pub_date=datetime.datetime(2010, 1, 1, 12, 0), is_sticky=False) objectA2 = TestModelA.objects.create(name='objectA2', popularity=4, pub_date=datetime.datetime(2011, 1, 1, 12, 0), is_sticky=False) objectA3 = TestModelA.objects.create(name='objectA3', popularity=3, pub_date=datetime.datetime(2012, 1, 1, 12, 0), is_sticky=True) objectA4 = TestModelA.objects.create(name='objectA4', popularity=4, pub_date=datetime.datetime(2013, 1, 1, 12, 0), is_sticky=False) item_list = [objectA1, objectA2, objectA3, objectA4] criterion = Criterion('popularity', lambda x:sum(x)/len(x)) self.assertEqual(criterion.get_value_for_list(item_list), 4) def test_callback_criterion_in_wall(self): self._create_model_c_objects_and_bricks() wall = TestBrickWall(self.bricks, criteria=( (Criterion('popularity', callback=min), SORTING_ASC), )) expected = [self.brickC2, self.brickC1] self.assertEqual(list(wall), expected) # Callback default criterion def test_callback_default_criterion(self): objectA1 = TestModelA.objects.create(name='objectA1', popularity=5, pub_date=datetime.datetime(2010, 1, 1, 12, 0), is_sticky=False) objectA2 = TestModelA.objects.create(name='objectA2', popularity=4, pub_date=datetime.datetime(2011, 1, 1, 12, 0), is_sticky=False) objectA3 = TestModelA.objects.create(name='objectA3', popularity=3, pub_date=datetime.datetime(2012, 1, 1, 12, 0), is_sticky=True) objectA4 = TestModelA.objects.create(name='objectA4', popularity=2, pub_date=datetime.datetime(2013, 1, 1, 12, 0), is_sticky=False) item_list = [objectA1, objectA2, objectA3, objectA4] criterion = Criterion('i_dont_exist', max, default=10) self.assertEqual(criterion.get_value_for_list(item_list), 10) def test_callback_default_empty_list_criterion(self): criterion = Criterion('_', max, default=10) self.assertEqual(criterion.get_value_for_list([]), 10) # Callback callable default criterion def test_callback_callable_default_criterion(self): objectA1 = TestModelA.objects.create(name='objectA1', popularity=5, pub_date=datetime.datetime(2010, 1, 1, 12, 0), is_sticky=False) objectA2 = TestModelA.objects.create(name='objectA2', popularity=4, pub_date=datetime.datetime(2011, 1, 1, 12, 0), is_sticky=False) objectA3 = TestModelA.objects.create(name='objectA3', popularity=3, pub_date=datetime.datetime(2012, 1, 1, 12, 0), is_sticky=True) objectA4 = TestModelA.objects.create(name='objectA4', popularity=2, pub_date=datetime.datetime(2013, 1, 1, 12, 0), is_sticky=False) item_list = [objectA1, objectA2, objectA3, objectA4] criterion = Criterion('i_dont_exist', max, default=default) self.assertEqual(criterion.get_value_for_list(item_list), 1) def test_callback_callable_default_empty_list_criterion(self): criterion = Criterion('_', max, default=default) self.assertEqual(criterion.get_value_for_list([]), 1) # Wrong call def test_callback_value_error_criterion(self): criterion = Criterion('_') with self.assertRaises(ValueError): criterion.get_value_for_list('im_wrong') # Single keys - Single bricks- Single models def test_single_key_desc_sorting_single_bricks_single_models(self): self._create_model_a_objects_and_bricks() wall = TestBrickWall(self.bricks, criteria=( (Criterion('popularity'), SORTING_DESC), )) expected = [self.brickA1, self.brickA2, self.brickA3, self.brickA4] self.assertEqual(list(wall), expected) def test_single_key_asc_sorting_single_bricks_single_models(self): self._create_model_a_objects_and_bricks() wall = TestBrickWall(self.bricks, criteria=( (Criterion('popularity'), SORTING_ASC), )) expected = [self.brickA4, self.brickA3, self.brickA2, self.brickA1] self.assertEqual(list(wall), expected) # Multi keys - Single bricks - Single Models def test_multi_key_1_sorting_single_bricks_single_models(self): self._create_model_a_objects_and_bricks() wall = TestBrickWall(self.bricks, criteria=( (Criterion('is_sticky'), SORTING_DESC), (Criterion('popularity'), SORTING_DESC), )) expected = [self.brickA3, self.brickA1, self.brickA2, self.brickA4] self.assertEqual(list(wall), expected) def test_multi_key_2_sorting_single_bricks_single_models(self): self._create_model_a_objects_and_bricks() wall = TestBrickWall(self.bricks, criteria=( (Criterion('is_sticky'), SORTING_ASC), (Criterion('popularity'), SORTING_DESC), )) expected = [self.brickA1, self.brickA2, self.brickA4, self.brickA3] self.assertEqual(list(wall), expected) # Single keys - Single bricks - Multi models def test_single_key_desc_sorting_single_bricks_multi_models(self): self._create_model_a_objects_and_bricks() self._create_model_b_objects_and_bricks() wall = TestBrickWall(self.bricks, criteria=( (Criterion('popularity'), SORTING_DESC), )) expected = [self.brickB1, self.brickB2, self.brickB3, self.brickB4, self.brickA1, self.brickA2, self.brickA3, self.brickA4] self.assertEqual(list(wall), expected) def test_single_key_asc_sorting_single_bricks_multi_models(self): self._create_model_a_objects_and_bricks() self._create_model_b_objects_and_bricks() wall = TestBrickWall(self.bricks, criteria=( (Criterion('popularity'), SORTING_ASC), )) expected = [self.brickA4, self.brickA3, self.brickA2, self.brickA1, self.brickB4, self.brickB3, self.brickB2, self.brickB1] self.assertEqual(list(wall), expected) # Multi keys - Single bricks - Multi models def test_multi_key_1_sorting_single_bricks_multi_models(self): self._create_model_a_objects_and_bricks() self._create_model_b_objects_and_bricks() wall = TestBrickWall(self.bricks, criteria=( (Criterion('is_sticky'), SORTING_DESC), (Criterion('popularity'), SORTING_DESC), )) expected = [self.brickB3, self.brickA3, self.brickB1, self.brickB2, self.brickB4, self.brickA1, self.brickA2, self.brickA4] self.assertEqual(list(wall), expected) def test_multi_key_2_sorting_single_bricks_multi_models(self): self._create_model_a_objects_and_bricks() self._create_model_b_objects_and_bricks() wall = TestBrickWall(self.bricks, criteria=( (Criterion('is_sticky'), SORTING_ASC), (Criterion('popularity'), SORTING_DESC), )) expected = [self.brickB1, self.brickB2, self.brickB4, self.brickA1, self.brickA2, self.brickA4, self.brickB3, self.brickA3] self.assertEqual(list(wall), expected) # Single keys - Multi bricks - Single models def test_single_key_1_sorting_multi_bricks_single_models(self): self._create_model_c_objects_and_bricks() wall = TestBrickWall(self.bricks, criteria=( (Criterion('popularity', callback=max), SORTING_DESC), )) expected = [self.brickC1, self.brickC2] self.assertEqual(list(wall), expected) def test_single_key_2_sorting_multi_bricks_single_models(self): self._create_model_c_objects_and_bricks() wall = TestBrickWall(self.bricks, criteria=( (Criterion('popularity', callback=min), SORTING_DESC), )) expected = [self.brickC1, self.brickC2] self.assertEqual(list(wall), expected) def test_single_key_3_sorting_multi_bricks_single_models(self): self._create_model_c_objects_and_bricks() wall = TestBrickWall(self.bricks, criteria=( (Criterion('popularity', callback=max), SORTING_ASC), )) expected = [self.brickC2, self.brickC1] self.assertEqual(list(wall), expected) def test_single_key_4_sorting_multi_bricks_single_models(self): self._create_model_c_objects_and_bricks() wall = TestBrickWall(self.bricks, criteria=( (Criterion('popularity', callback=min), SORTING_ASC), )) expected = [self.brickC2, self.brickC1] self.assertEqual(list(wall), expected) # Multi keys - Multi bricks - Single models def test_multi_key_1_sorting_multi_bricks_single_models(self): self._create_model_c_objects_and_bricks() wall =
= None class LaunchTemplateBlockDeviceMapping(BaseModel): DeviceName: Optional[String] = None VirtualName: Optional[String] = None Ebs: Optional[LaunchTemplateEbsBlockDevice] = None NoDevice: Optional[String] = None class LaunchTemplateBlockDeviceMappingList(BaseModel): __root__: list[LaunchTemplateBlockDeviceMapping] class LaunchTemplateEbsBlockDeviceRequest(BaseModel): Encrypted: Optional[Boolean] = None DeleteOnTermination: Optional[Boolean] = None Iops: Optional[Integer] = None KmsKeyId: Optional[KmsKeyId] = None SnapshotId: Optional[SnapshotId4] = None VolumeSize: Optional[Integer] = None VolumeType: Optional[VolumeType] = None Throughput: Optional[Integer] = None class LaunchTemplateBlockDeviceMappingRequest(BaseModel): DeviceName: Optional[String] = None VirtualName: Optional[String] = None Ebs: Optional[LaunchTemplateEbsBlockDeviceRequest] = None NoDevice: Optional[String] = None class LaunchTemplateCapacityReservationSpecificationResponse(BaseModel): CapacityReservationPreference: Optional[CapacityReservationPreference] = None CapacityReservationTarget: Optional[CapacityReservationTargetResponse] = None class LaunchTemplateCpuOptions(BaseModel): CoreCount: Optional[Integer] = None ThreadsPerCore: Optional[Integer] = None class LaunchTemplateElasticInferenceAcceleratorCount(BaseModel): __root__: conint(ge=1) class LaunchTemplateElasticInferenceAccelerator(BaseModel): Type: String Count: Optional[LaunchTemplateElasticInferenceAcceleratorCount] = None class LaunchTemplateElasticInferenceAcceleratorResponse(BaseModel): Type: Optional[String] = None Count: Optional[Integer] = None class LaunchTemplateElasticInferenceAcceleratorResponseList(BaseModel): __root__: list[LaunchTemplateElasticInferenceAcceleratorResponse] class LaunchTemplateEnclaveOptions(BaseModel): Enabled: Optional[Boolean] = None class LaunchTemplateErrorCode(Enum): launchTemplateIdDoesNotExist = 'launchTemplateIdDoesNotExist' launchTemplateIdMalformed = 'launchTemplateIdMalformed' launchTemplateNameDoesNotExist = 'launchTemplateNameDoesNotExist' launchTemplateNameMalformed = 'launchTemplateNameMalformed' launchTemplateVersionDoesNotExist = 'launchTemplateVersionDoesNotExist' unexpectedError = 'unexpectedError' class LaunchTemplateHibernationOptions(BaseModel): Configured: Optional[Boolean] = None class LaunchTemplateHttpTokensState(Enum): optional = 'optional' required = 'required' class LaunchTemplateIamInstanceProfileSpecification(BaseModel): Arn: Optional[String] = None Name: Optional[String] = None class LaunchTemplateInstanceMetadataEndpointState(Enum): disabled = 'disabled' enabled = 'enabled' class LaunchTemplateInstanceMetadataOptionsState(Enum): pending = 'pending' applied = 'applied' class LaunchTemplateInstanceMetadataProtocolIpv6(Enum): disabled = 'disabled' enabled = 'enabled' class LaunchTemplateInstanceMetadataOptions(BaseModel): State: Optional[LaunchTemplateInstanceMetadataOptionsState] = None HttpTokens: Optional[LaunchTemplateHttpTokensState] = None HttpPutResponseHopLimit: Optional[Integer] = None HttpEndpoint: Optional[LaunchTemplateInstanceMetadataEndpointState] = None HttpProtocolIpv6: Optional[LaunchTemplateInstanceMetadataProtocolIpv6] = None class LaunchTemplateInstanceNetworkInterfaceSpecification(BaseModel): AssociateCarrierIpAddress: Optional[Boolean] = None AssociatePublicIpAddress: Optional[Boolean] = None DeleteOnTermination: Optional[Boolean] = None Description: Optional[String] = None DeviceIndex: Optional[Integer] = None Groups: Optional[GroupIdStringList] = None InterfaceType: Optional[String] = None Ipv6AddressCount: Optional[Integer] = None Ipv6Addresses: Optional[InstanceIpv6AddressList] = None NetworkInterfaceId: Optional[NetworkInterfaceId2] = None PrivateIpAddress: Optional[String] = None PrivateIpAddresses: Optional[PrivateIpAddressSpecificationList] = None SecondaryPrivateIpAddressCount: Optional[Integer] = None SubnetId: Optional[SubnetId1] = None NetworkCardIndex: Optional[Integer] = None Ipv4Prefixes: Optional[Ipv4PrefixListResponse] = None Ipv4PrefixCount: Optional[Integer] = None Ipv6Prefixes: Optional[Ipv6PrefixListResponse] = None Ipv6PrefixCount: Optional[Integer] = None class LaunchTemplateInstanceNetworkInterfaceSpecificationList(BaseModel): __root__: list[LaunchTemplateInstanceNetworkInterfaceSpecification] class LaunchTemplateInstanceNetworkInterfaceSpecificationRequest(BaseModel): AssociateCarrierIpAddress: Optional[Boolean] = None AssociatePublicIpAddress: Optional[Boolean] = None DeleteOnTermination: Optional[Boolean] = None Description: Optional[String] = None DeviceIndex: Optional[Integer] = None Groups: Optional[SecurityGroupIdStringList] = None InterfaceType: Optional[String] = None Ipv6AddressCount: Optional[Integer] = None Ipv6Addresses: Optional[InstanceIpv6AddressListRequest] = None NetworkInterfaceId: Optional[NetworkInterfaceId2] = None PrivateIpAddress: Optional[String] = None PrivateIpAddresses: Optional[PrivateIpAddressSpecificationList] = None SecondaryPrivateIpAddressCount: Optional[Integer] = None SubnetId: Optional[SubnetId1] = None NetworkCardIndex: Optional[Integer] = None Ipv4Prefixes: Optional[Ipv4PrefixList] = None Ipv4PrefixCount: Optional[Integer] = None Ipv6Prefixes: Optional[Ipv6PrefixList] = None Ipv6PrefixCount: Optional[Integer] = None class LaunchTemplateLicenseConfiguration(BaseModel): LicenseConfigurationArn: Optional[String] = None class LaunchTemplateLicenseConfigurationRequest(BaseModel): LicenseConfigurationArn: Optional[String] = None class LaunchTemplateLicenseList(BaseModel): __root__: list[LaunchTemplateLicenseConfiguration] class LaunchTemplateOverrides(BaseModel): InstanceType: Optional[InstanceType] = None SpotPrice: Optional[String] = None SubnetId: Optional[String] = None AvailabilityZone: Optional[String] = None WeightedCapacity: Optional[Double] = None Priority: Optional[Double] = None class LaunchTemplatePlacement(BaseModel): AvailabilityZone: Optional[String] = None Affinity: Optional[String] = None GroupName: Optional[String] = None HostId: Optional[String] = None Tenancy: Optional[Tenancy] = None SpreadDomain: Optional[String] = None HostResourceGroupArn: Optional[String] = None PartitionNumber: Optional[Integer] = None class LaunchTemplateSpecification4(BaseModel): LaunchTemplateId: Optional[LaunchTemplateId] = None LaunchTemplateName: Optional[String] = None Version: Optional[String] = None class SpotInstanceType(Enum): one_time = 'one-time' persistent = 'persistent' class ResourceType(Enum): capacity_reservation = 'capacity-reservation' client_vpn_endpoint = 'client-vpn-endpoint' customer_gateway = 'customer-gateway' carrier_gateway = 'carrier-gateway' dedicated_host = 'dedicated-host' dhcp_options = 'dhcp-options' egress_only_internet_gateway = 'egress-only-internet-gateway' elastic_ip = 'elastic-ip' elastic_gpu = 'elastic-gpu' export_image_task = 'export-image-task' export_instance_task = 'export-instance-task' fleet = 'fleet' fpga_image = 'fpga-image' host_reservation = 'host-reservation' image = 'image' import_image_task = 'import-image-task' import_snapshot_task = 'import-snapshot-task' instance = 'instance' instance_event_window = 'instance-event-window' internet_gateway = 'internet-gateway' ipv4pool_ec2 = 'ipv4pool-ec2' ipv6pool_ec2 = 'ipv6pool-ec2' key_pair = 'key-pair' launch_template = 'launch-template' local_gateway = 'local-gateway' local_gateway_route_table = 'local-gateway-route-table' local_gateway_virtual_interface = 'local-gateway-virtual-interface' local_gateway_virtual_interface_group = 'local-gateway-virtual-interface-group' local_gateway_route_table_vpc_association = ( 'local-gateway-route-table-vpc-association' ) local_gateway_route_table_virtual_interface_group_association = ( 'local-gateway-route-table-virtual-interface-group-association' ) natgateway = 'natgateway' network_acl = 'network-acl' network_interface = 'network-interface' network_insights_analysis = 'network-insights-analysis' network_insights_path = 'network-insights-path' placement_group = 'placement-group' prefix_list = 'prefix-list' replace_root_volume_task = 'replace-root-volume-task' reserved_instances = 'reserved-instances' route_table = 'route-table' security_group = 'security-group' security_group_rule = 'security-group-rule' snapshot = 'snapshot' spot_fleet_request = 'spot-fleet-request' spot_instances_request = 'spot-instances-request' subnet = 'subnet' traffic_mirror_filter = 'traffic-mirror-filter' traffic_mirror_session = 'traffic-mirror-session' traffic_mirror_target = 'traffic-mirror-target' transit_gateway = 'transit-gateway' transit_gateway_attachment = 'transit-gateway-attachment' transit_gateway_connect_peer = 'transit-gateway-connect-peer' transit_gateway_multicast_domain = 'transit-gateway-multicast-domain' transit_gateway_route_table = 'transit-gateway-route-table' volume = 'volume' vpc = 'vpc' vpc_endpoint = 'vpc-endpoint' vpc_endpoint_service = 'vpc-endpoint-service' vpc_peering_connection = 'vpc-peering-connection' vpn_connection = 'vpn-connection' vpn_gateway = 'vpn-gateway' vpc_flow_log = 'vpc-flow-log' class LaunchTemplatesMonitoring(BaseModel): Enabled: Optional[Boolean] = None class LicenseConfiguration(BaseModel): LicenseConfigurationArn: Optional[String] = None class LicenseSpecificationListRequest(BaseModel): __root__: list[LicenseConfigurationRequest] class ListingStatus(Enum): active = 'active' pending = 'pending' cancelled = 'cancelled' closed = 'closed' class LoadPermission(BaseModel): UserId: Optional[String] = None Group: Optional[PermissionGroup] = None class LoadPermissionRequest(BaseModel): Group: Optional[PermissionGroup] = None UserId: Optional[String] = None class LocalGatewayRouteType(Enum): static = 'static' propagated = 'propagated' class LocalGatewayRouteState(Enum): pending = 'pending' active = 'active' blackhole = 'blackhole' deleting = 'deleting' deleted = 'deleted' class PrefixListState(Enum): create_in_progress = 'create-in-progress' create_complete = 'create-complete' create_failed = 'create-failed' modify_in_progress = 'modify-in-progress' modify_complete = 'modify-complete' modify_failed = 'modify-failed' restore_in_progress = 'restore-in-progress' restore_complete = 'restore-complete' restore_failed = 'restore-failed' delete_in_progress = 'delete-in-progress' delete_complete = 'delete-complete' delete_failed = 'delete-failed' class MaxIpv4AddrPerInterface(BaseModel): __root__: int class MaxIpv6AddrPerInterface(BaseModel): __root__: int class MaxNetworkInterfaces(BaseModel): __root__: int class MaxResults108(BaseModel): __root__: int class MaximumNetworkCards(BaseModel): __root__: int class MembershipType(Enum): static = 'static' igmp = 'igmp' class MemorySize(BaseModel): __root__: int class ModifyAddressAttributeRequest(BaseModel): AllocationId: AllocationId1 DomainName: Optional[String] = None DryRun: Optional[Boolean] = None class ModifyAvailabilityZoneOptInStatus(Enum): opted_in = 'opted-in' not_opted_in = 'not-opted-in' class ModifyAvailabilityZoneGroupRequest(BaseModel): GroupName: String OptInStatus: ModifyAvailabilityZoneOptInStatus DryRun: Optional[Boolean] = None class ModifyCapacityReservationRequest(BaseModel): CapacityReservationId: CapacityReservationId InstanceCount: Optional[Integer] = None EndDate: Optional[DateTime] = None EndDateType: Optional[EndDateType] = None Accept: Optional[Boolean] = None DryRun: Optional[Boolean] = None class ModifyClientVpnEndpointRequest(BaseModel): ClientVpnEndpointId: ClientVpnEndpointId1 ServerCertificateArn: Optional[String] = None ConnectionLogOptions: Optional[ConnectionLogOptions1] = None DnsServers: Optional[DnsServersOptionsModifyStructure] = None VpnPort: Optional[Integer] = None Description: Optional[String] = None SplitTunnel: Optional[Boolean] = None DryRun: Optional[Boolean] = None SecurityGroupIds: Optional[ClientVpnSecurityGroupIdSet] = None VpcId: Optional[VpcId2] = None SelfServicePortal: Optional[SelfServicePortal] = None ClientConnectOptions: Optional[ClientConnectOptions] = None class ModifyDefaultCreditSpecificationRequest(BaseModel): DryRun: Optional[Boolean] = None InstanceFamily: UnlimitedSupportedInstanceFamily CpuCredits: String class ModifyEbsDefaultKmsKeyIdRequest(BaseModel): KmsKeyId: KmsKeyId DryRun: Optional[Boolean] = None class OperationType(Enum): add = 'add' remove = 'remove' class UserIdStringList(BaseModel): __root__: list[String] class UserGroupStringList(BaseModel): __root__: list[String] class ProductCodeStringList(BaseModel): __root__: list[String] class ModifyHostsRequest(BaseModel): AutoPlacement: Optional[AutoPlacement] = None HostIds: RequestHostIdList HostRecovery: Optional[HostRecovery] = None InstanceType: Optional[String] = None InstanceFamily: Optional[String] = None class ModifyIdFormatRequest(BaseModel): Resource: String UseLongIds: Boolean class ModifyIdentityIdFormatRequest(BaseModel): PrincipalArn: String Resource: String UseLongIds: Boolean class ModifyInstanceCapacityReservationAttributesRequest(BaseModel): InstanceId: InstanceId CapacityReservationSpecification: CapacityReservationSpecification DryRun: Optional[Boolean] = None class ModifyInstanceCreditSpecificationRequest(BaseModel): DryRun: Optional[Boolean] = None ClientToken: Optional[String] = None InstanceCreditSpecifications: InstanceCreditSpecificationListRequest class ModifyInstanceEventStartTimeRequest(BaseModel): DryRun: Optional[Boolean] = None InstanceId: InstanceId InstanceEventId: String NotBefore: DateTime class ModifyInstanceMetadataOptionsRequest(BaseModel): InstanceId: InstanceId HttpTokens: Optional[HttpTokensState] = None HttpPutResponseHopLimit: Optional[Integer] = None HttpEndpoint: Optional[InstanceMetadataEndpointState] = None DryRun: Optional[Boolean] = None HttpProtocolIpv6: Optional[InstanceMetadataProtocolState] = None class ModifyInstancePlacementRequest(BaseModel): Affinity: Optional[Affinity2] = None GroupName: Optional[PlacementGroupName] = None HostId: Optional[DedicatedHostId] = None InstanceId: InstanceId Tenancy: Optional[HostTenancy] = None PartitionNumber: Optional[Integer] = None HostResourceGroupArn: Optional[String] = None class ModifyLaunchTemplateRequest(BaseModel): DryRun: Optional[Boolean] = None ClientToken: Optional[String] = None LaunchTemplateId: Optional[LaunchTemplateId] = None LaunchTemplateName: Optional[LaunchTemplateName] = None DefaultVersion: Optional[String] = None class RemovePrefixListEntries(BaseModel): __root__: list[RemovePrefixListEntry] = Field(..., max_items=100, min_items=0) class ModifyManagedPrefixListRequest(BaseModel): DryRun: Optional[Boolean] = None PrefixListId: PrefixListResourceId CurrentVersion: Optional[Long] = None PrefixListName: Optional[String] = None AddEntries: Optional[AddPrefixListEntries] = None RemoveEntries: Optional[RemovePrefixListEntries] = None MaxEntries: Optional[Integer] = None class NetworkInterfaceAttachmentChanges(BaseModel): AttachmentId: Optional[NetworkInterfaceAttachmentId] = None DeleteOnTermination: Optional[Boolean] = None class ModifyNetworkInterfaceAttributeRequest(BaseModel): Attachment: Optional[NetworkInterfaceAttachmentChanges] = None Description: Optional[AttributeValue] = None DryRun: Optional[Boolean] = None Groups: Optional[SecurityGroupIdStringList] = None NetworkInterfaceId: NetworkInterfaceId2 SourceDestCheck: Optional[AttributeBooleanValue] = None class ModifySubnetAttributeRequest(BaseModel): AssignIpv6AddressOnCreation: Optional[AttributeBooleanValue] = None MapPublicIpOnLaunch: Optional[AttributeBooleanValue] = None SubnetId: SubnetId1 MapCustomerOwnedIpOnLaunch: Optional[AttributeBooleanValue] = None CustomerOwnedIpv4Pool: Optional[CoipPoolId] = None class TrafficMirrorNetworkServiceList(BaseModel): __root__: list[TrafficMirrorNetworkService] class ModifyTrafficMirrorFilterNetworkServicesRequest(BaseModel): TrafficMirrorFilterId: TrafficMirrorFilterId1 AddNetworkServices: Optional[TrafficMirrorNetworkServiceList] = None RemoveNetworkServices: Optional[TrafficMirrorNetworkServiceList] = None DryRun: Optional[Boolean] = None class TrafficMirrorFilterRuleFieldList(BaseModel): __root__: list[TrafficMirrorFilterRuleField] class ModifyTrafficMirrorFilterRuleRequest(BaseModel): TrafficMirrorFilterRuleId: TrafficMirrorFilterRuleId2 TrafficDirection: Optional[TrafficDirection] = None RuleNumber: Optional[Integer] = None RuleAction: Optional[TrafficMirrorRuleAction] = None DestinationPortRange: Optional[TrafficMirrorPortRangeRequest] = None SourcePortRange: Optional[TrafficMirrorPortRangeRequest] = None Protocol: Optional[Integer] = None DestinationCidrBlock: Optional[String] = None SourceCidrBlock: Optional[String] = None Description: Optional[String] = None RemoveFields: Optional[TrafficMirrorFilterRuleFieldList] = None DryRun: Optional[Boolean] = None class TrafficMirrorSessionFieldList(BaseModel): __root__: list[TrafficMirrorSessionField] class ModifyTrafficMirrorSessionRequest(BaseModel): TrafficMirrorSessionId: TrafficMirrorSessionId1 TrafficMirrorTargetId: Optional[TrafficMirrorTargetId1] = None TrafficMirrorFilterId: Optional[TrafficMirrorFilterId1] = None PacketLength: Optional[Integer] = None SessionNumber: Optional[Integer] = None VirtualNetworkId: Optional[Integer] = None Description: Optional[String] = None RemoveFields: Optional[TrafficMirrorSessionFieldList] = None DryRun: Optional[Boolean] = None class ModifyTransitGatewayOptions(BaseModel): AddTransitGatewayCidrBlocks: Optional[TransitGatewayCidrBlockStringList] = None RemoveTransitGatewayCidrBlocks: Optional[TransitGatewayCidrBlockStringList] = None VpnEcmpSupport: Optional[VpnEcmpSupportValue] = None DnsSupport: Optional[DnsSupportValue] = None AutoAcceptSharedAttachments: Optional[AutoAcceptSharedAttachmentsValue] = None DefaultRouteTableAssociation: Optional[DefaultRouteTableAssociationValue] = None AssociationDefaultRouteTableId: Optional[TransitGatewayRouteTableId] = None DefaultRouteTablePropagation: Optional[DefaultRouteTablePropagationValue] = None PropagationDefaultRouteTableId: Optional[TransitGatewayRouteTableId] = None class ModifyTransitGatewayPrefixListReferenceRequest(BaseModel): TransitGatewayRouteTableId: TransitGatewayRouteTableId PrefixListId: PrefixListResourceId TransitGatewayAttachmentId: Optional[TransitGatewayAttachmentId] = None Blackhole: Optional[Boolean] = None DryRun: Optional[Boolean] = None class ModifyTransitGatewayRequest(BaseModel): TransitGatewayId: TransitGatewayId Description: Optional[String] =
tuple Set of parameters. """ # Current shape H, W, D = X.shape # Reshape arrays X = X.reshape((H*W, D)) if self.init_params == 'random': # Dirichlet concentration hyperparameters at = np.ones((self.K,))*(H*W)/2 # Normal precision-scale hyperparameters bt = np.ones((self.K,))*(H*W)/2 # Wishart degrees of freedom nt = np.ones((self.K,))*(H*W)/2 mt = np.zeros((self.K, D)) Wt = np.zeros((D, D, self.K)) for k in range(self.K): # Hypermeans mt[k, :] = np.mean(X, axis=0) + rnd.randn(1, D)*.1 # Hyperprecisions Wt[:, :, k] = np.eye(D) # Initialize variational posterior responsibilities rho = np.ones((H, W, self.K)) / self.K elif self.init_params in ('kmeans', 'k-means'): # Fit k-means to data and obtain cluster assignment label = KMeans(n_clusters=self.K, n_init=1).fit(X).labels_ # Set rho based on cluster labels rho = np.zeros((H*W, self.K)) rho[np.arange(H*W), label] = 1 # Dirichlet concentration hyperparameters at = np.sum(rho, axis=0) # Normal precision-scale hyperparameters bt = np.sum(rho, axis=0) # Wishart degrees of freedom nt = np.sum(rho, axis=0) mt = np.zeros((self.K, D)) Wt = np.zeros((D, D, self.K)) for k in range(self.K): # Hypermeans mt[k, :] = np.sum(rho[:, [k]] * X, axis=0) / np.sum(rho[:, k]) # Hyperprecisions Wt[:, :, k] = np.eye(D) else: raise ValueError('Provided method not recognized.') return (at, bt, nt, mt, Wt), rho def free_energy(self, X, rho, thetat, report=True): """ Compute free energy term to monitor progress. Parameters ---------- X : array Observed image (height by width by channels). rho : array Array of variational parameters (height by width by channels). thetat : array Parameters of variational posteriors. theta0 : array Parameters of variational priors. report : bool Print value of free energy function. Returns ------- rho : array Updated array of variational parameters. """ # Shapes H, W, D = X.shape # Reshape arrays X = X.reshape((H*W, D)) rho = rho.reshape((H*W, self.K)) # Unpack parameter sets a0, b0, n0, m0, W0 = self.theta0 at, bt, nt, mt, Wt = thetat # Preallocate terms for energy function E1 = 0 E2 = 0 E3 = 0 E4 = 0 E5 = 0 E6 = 0 E7 = 0 # Loop over classes for k in range(self.K): ''' Convenience variables ''' # Proportion assigned to each component Nk = np.sum(rho[:, k], axis=0) # Responsibility-weighted mean xk = np.sum(rho[:, [k]] * X, axis=0) / Nk # Reponsibility-weighted variance Sk = ((X - xk) * rho[:, [k]]).T @ (X - xk) / Nk # Mahalanobis distance from hypermean mWm = (mt[k, :] - m0[k, :]).T @ Wt[:, :, k] @ (mt[k, :] - m0[k, :]) # Mahalanobis distance from responsibility-weighted mean xWx = (xk - mt[k, :]) @ Wt[:, :, k] @ (xk - mt[k, :]).T # Entropy-based terms Elog_pik = digamma(at[k]) - digamma(np.sum(at)) Elog_Lak = (D*np.log(2) + self.log_det(Wt[:, :, k]) + self.multivariate_digamma(nt[k], D)) ''' Energy function ''' # First term E1 += Nk/2*(Elog_Lak - D / bt[k] - nt[k]*(np.trace(Sk @ Wt[:, :, k]) + xWx) - D*np.log(2*np.pi)) # Second term E2 += np.sum(rho[:, k] * Elog_pik, axis=0) # Third term E3 += (a0[k] - 1)*Elog_pik + (gammaln(np.sum(a0)) - np.sum(gammaln(a0))) / self.K # Fourth term E4 += 1/2*(D*np.log(b0[k] / (2*np.pi)) + Elog_Lak - D*b0[k]/bt[k] - b0[k]*nt[k]*mWm + (n0[k] - D - 1)*Elog_Lak - 2*self.log_partition_Wishart(Wt[:, :, k], nt[k]) + nt[k]*np.trace(inv(W0[:, :, k])*Wt[:, :, k])) # Ignore underflow error from log rho with np.errstate(under='ignore') and np.errstate(divide='ignore'): # Set -inf to most negative number lrho = np.maximum(np.log(rho[:, k]), np.finfo(rho.dtype).min) # Fifth term E5 += np.sum(rho[:, k] * lrho, axis=0) # Sixth term E6 += (at[k] - 1)*Elog_pik + (gammaln(np.sum(at)) - np.sum(gammaln(at))) / self.K # Seventh term E7 += (Elog_Lak/2 + D/2*np.log(bt[k] / (2*np.pi)) - D/2 - self.entropy_Wishart(Wt[:, :, k], nt[k])) # Compute free energy term F = E1 + E2 + E3 + E4 - E5 - E6 - E7 # Print free energy if report: print('Free energy = ' + str(F)) return F def expectation_step(self, X, thetat, savefn=''): """ Perform expectation step. Parameters ---------- X : array Observed image (height by width by channels). thetat : array Current iteration of parameters of variational posteriors. Returns ------- rho : array Updated array of variational parameters / responsibilities. """ # Shape of variational parameter array H, W, D = X.shape # Reshape arrays X = X.reshape((H*W, D)) # Unpack tuple of hyperparameters at, bt, nt, mt, Wt = thetat # Initialize logarithmic rho log_rho = np.zeros((H*W, self.K)) for k in range(self.K): # Compute expected log mixing coefficient E1 = digamma(at[k]) - digamma(np.sum(at)) # Compute exponentiated expected log precision E2 = (D*np.log(2) + self.log_det(Wt[:, :, k]) + self.multivariate_digamma(nt[k], D)) # Compute expected hypermean and hyperprecision E3 = D/bt[k] + self.distW(X - mt[k, :], nt[k]*Wt[:, :, k]) # Update variational parameter at current pixels log_rho[:, k] = E1 + E2/2 - E3/2 # Subtract largest number from log_rho log_rho = log_rho - np.max(log_rho, axis=1)[:, np.newaxis] # Exponentiate and normalize rho = np.exp(log_rho) / np.sum(np.exp(log_rho), axis=1)[:, np.newaxis] # Check for underflow problems if np.any(np.sum(rho, axis=1) == 0.0): raise RuntimeError('Variational parameter underflow.') return rho.reshape((H, W, self.K)) def maximization_step(self, X, rho, thetat): """ Perform maximization step from variational-Bayes-EM. Parameters ---------- X : array Observed image (height by width by channels). rho : array Array of variational parameters (height by width by classes). thetat : array Current iteration of hyperparameters of posteriors. Returns ------- thetat : array Next iteration of hyperparameters of posteriors. """ # Shape of image H, W, D = X.shape # Reshape arrays X = X.reshape((H*W, D)) rho = rho.reshape((H*W, self.K)) # Unpack parameter sets a0, b0, n0, m0, W0 = self.theta0 at, bt, nt, mt, Wt = thetat # Iterate over classes for k in range(self.K): # Total responsibility for class k Nk = np.sum(rho[:, k], axis=0) # Responsibility-weighted mean for class k xk = np.sum(rho[:, [k]] * X, axis=0) / Nk # Responsibility-weighted covariance for class k Sk = ((X - xk) * rho[:, [k]]).T @ (X - xk) / Nk # Update alpha at[k] = a0[k] + Nk # Update nu nt[k] = n0[k] + Nk # Update beta bt[k] = b0[k] + Nk # Update hypermean mt[k, :] = (b0[k]*m0[k, :] + Nk*xk) / (b0[k] + Nk) # Update hyperprecision Wt[:, :, k] = inv(inv(W0[:, :, k]) + Nk*Sk + (b0[k]*Nk) / bt[k] * (xk - m0[k, :]).T @ (xk - m0[k, :])) return at, bt, nt, mt, Wt def expectation_maximization(self, X): """ Perform Variational Bayes Expectation-Maximization. Parameters ---------- X : array (instances by features) Data array. Returns ------- rho : array (instances by components) Variational parameters of posterior for label image. """ # Get shape of image H, W, D = X.shape # Initialize posterior hyperparameters thetat, rho = self.initialize_posteriors(X) # Initialize old energy variable F_ = np.inf for t in range(self.max_iter): # Monitor progress every tenth iteration if t % (self.max_iter/10) == 0: # Report progress print('Iteration ' + '{0:03}'.format(t+1) + '/' + str(self.max_iter) + '\t', end='') # Compute free energy to monitor progress F = self.free_energy(X, rho, thetat, report=True) if np.abs(F - F_) <= self.tol: print('Step size is below tolerance threshold.') break # Update old energy F_ = F # Expectation step rho = self.expectation_step(X, thetat, savefn=('rho_t' + str(t))) # Expectation step thetat = self.maximization_step(X, rho, thetat) # Return segmentation along with estimated parameters return rho, thetat def segment(self, X): """ Fit model to data and segment image. Parameters ---------- X : array. Observed image (height by width by channels). Returns ------- pred : array Segmentation produced by the model. post : array Posterior indicator distributions. theta : tuple of arrays Posterior hyperparameters of parameter distributions. """ # Check shape of image H, W, D = X.shape # Check if dimensionality of given data matches prior dimensionality. if not self.D == D: # Report print('Re-setting priors.') # Set dimensionality attribute self.D = D # Set prior hyperparameters self.set_prior_hyperparameters(D=D, K=self.K) # Perform VB-EM for segmenting the image post, params = self.expectation_maximization(X) # Compute most likely
= b'c' else: state = b'o' f.write(b"%s %s %s\n" % (hex(node), state, label)) f.close() repo.ui.log( b'branchcache', b'wrote %s with %d labels and %d nodes\n', _branchcachedesc(repo), len(self._entries), nodecount, ) except (IOError, OSError, error.Abort) as inst: # Abort may be raised by read only opener, so log and continue repo.ui.debug( b"couldn't write branch cache: %s\n" % stringutil.forcebytestr(inst) ) def update(self, repo, revgen): """Given a branchhead cache, self, that may have extra nodes or be missing heads, and a generator of nodes that are strictly a superset of heads missing, this function updates self to be correct. """ starttime = util.timer() cl = repo.changelog # collect new branch entries newbranches = {} getbranchinfo = repo.revbranchcache().branchinfo for r in revgen: branch, closesbranch = getbranchinfo(r) newbranches.setdefault(branch, []).append(r) if closesbranch: self._closednodes.add(cl.node(r)) # new tip revision which we found after iterating items from new # branches ntiprev = self.tiprev # Delay fetching the topological heads until they are needed. # A repository without non-continous branches can skip this part. topoheads = None # If a changeset is visible, its parents must be visible too, so # use the faster unfiltered parent accessor. parentrevs = repo.unfiltered().changelog.parentrevs for branch, newheadrevs in pycompat.iteritems(newbranches): # For every branch, compute the new branchheads. # A branchhead is a revision such that no descendant is on # the same branch. # # The branchheads are computed iteratively in revision order. # This ensures topological order, i.e. parents are processed # before their children. Ancestors are inclusive here, i.e. # any revision is an ancestor of itself. # # Core observations: # - The current revision is always a branchhead for the # repository up to that point. # - It is the first revision of the branch if and only if # there was no branchhead before. In that case, it is the # only branchhead as there are no possible ancestors on # the same branch. # - If a parent is on the same branch, a branchhead can # only be an ancestor of that parent, if it is parent # itself. Otherwise it would have been removed as ancestor # of that parent before. # - Therefore, if all parents are on the same branch, they # can just be removed from the branchhead set. # - If one parent is on the same branch and the other is not # and there was exactly one branchhead known, the existing # branchhead can only be an ancestor if it is the parent. # Otherwise it would have been removed as ancestor of # the parent before. The other parent therefore can't have # a branchhead as ancestor. # - In all other cases, the parents on different branches # could have a branchhead as ancestor. Those parents are # kept in the "uncertain" set. If all branchheads are also # topological heads, they can't have descendants and further # checks can be skipped. Otherwise, the ancestors of the # "uncertain" set are removed from branchheads. # This computation is heavy and avoided if at all possible. bheads = self._entries.setdefault(branch, []) bheadset = {cl.rev(node) for node in bheads} uncertain = set() for newrev in sorted(newheadrevs): if not bheadset: bheadset.add(newrev) continue parents = [p for p in parentrevs(newrev) if p != nullrev] samebranch = set() otherbranch = set() for p in parents: if p in bheadset or getbranchinfo(p)[0] == branch: samebranch.add(p) else: otherbranch.add(p) if otherbranch and not (len(bheadset) == len(samebranch) == 1): uncertain.update(otherbranch) bheadset.difference_update(samebranch) bheadset.add(newrev) if uncertain: if topoheads is None: topoheads = set(cl.headrevs()) if bheadset - topoheads: floorrev = min(bheadset) ancestors = set(cl.ancestors(newheadrevs, floorrev)) bheadset -= ancestors bheadrevs = sorted(bheadset) self[branch] = [cl.node(rev) for rev in bheadrevs] tiprev = bheadrevs[-1] if tiprev > ntiprev: ntiprev = tiprev if ntiprev > self.tiprev: self.tiprev = ntiprev self.tipnode = cl.node(ntiprev) if not self.validfor(repo): # cache key are not valid anymore self.tipnode = nullid self.tiprev = nullrev for heads in self.iterheads(): tiprev = max(cl.rev(node) for node in heads) if tiprev > self.tiprev: self.tipnode = cl.node(tiprev) self.tiprev = tiprev self.filteredhash = scmutil.filteredhash(repo, self.tiprev) duration = util.timer() - starttime repo.ui.log( b'branchcache', b'updated %s in %.4f seconds\n', _branchcachedesc(repo), duration, ) self.write(repo) class remotebranchcache(branchcache): """Branchmap info for a remote connection, should not write locally""" def write(self, repo): pass # Revision branch info cache _rbcversion = b'-v1' _rbcnames = b'rbc-names' + _rbcversion _rbcrevs = b'rbc-revs' + _rbcversion # [4 byte hash prefix][4 byte branch name number with sign bit indicating open] _rbcrecfmt = b'>4sI' _rbcrecsize = calcsize(_rbcrecfmt) _rbcnodelen = 4 _rbcbranchidxmask = 0x7FFFFFFF _rbccloseflag = 0x80000000 class revbranchcache(object): """Persistent cache, mapping from revision number to branch name and close. This is a low level cache, independent of filtering. Branch names are stored in rbc-names in internal encoding separated by 0. rbc-names is append-only, and each branch name is only stored once and will thus have a unique index. The branch info for each revision is stored in rbc-revs as constant size records. The whole file is read into memory, but it is only 'parsed' on demand. The file is usually append-only but will be truncated if repo modification is detected. The record for each revision contains the first 4 bytes of the corresponding node hash, and the record is only used if it still matches. Even a completely trashed rbc-revs fill thus still give the right result while converging towards full recovery ... assuming no incorrectly matching node hashes. The record also contains 4 bytes where 31 bits contains the index of the branch and the last bit indicate that it is a branch close commit. The usage pattern for rbc-revs is thus somewhat similar to 00changelog.i and will grow with it but be 1/8th of its size. """ def __init__(self, repo, readonly=True): assert repo.filtername is None self._repo = repo self._names = [] # branch names in local encoding with static index self._rbcrevs = bytearray() self._rbcsnameslen = 0 # length of names read at _rbcsnameslen try: bndata = repo.cachevfs.read(_rbcnames) self._rbcsnameslen = len(bndata) # for verification before writing if bndata: self._names = [ encoding.tolocal(bn) for bn in bndata.split(b'\0') ] except (IOError, OSError): if readonly: # don't try to use cache - fall back to the slow path self.branchinfo = self._branchinfo if self._names: try: data = repo.cachevfs.read(_rbcrevs) self._rbcrevs[:] = data except (IOError, OSError) as inst: repo.ui.debug( b"couldn't read revision branch cache: %s\n" % stringutil.forcebytestr(inst) ) # remember number of good records on disk self._rbcrevslen = min( len(self._rbcrevs) // _rbcrecsize, len(repo.changelog) ) if self._rbcrevslen == 0: self._names = [] self._rbcnamescount = len(self._names) # number of names read at # _rbcsnameslen def _clear(self): self._rbcsnameslen = 0 del self._names[:] self._rbcnamescount = 0 self._rbcrevslen = len(self._repo.changelog) self._rbcrevs = bytearray(self._rbcrevslen * _rbcrecsize) util.clearcachedproperty(self, b'_namesreverse') @util.propertycache def _namesreverse(self): return {b: r for r, b in enumerate(self._names)} def branchinfo(self, rev): """Return branch name and close flag for rev, using and updating persistent cache.""" changelog = self._repo.changelog rbcrevidx = rev * _rbcrecsize # avoid negative index, changelog.read(nullrev) is fast without cache if rev == nullrev: return changelog.branchinfo(rev) # if requested rev isn't allocated, grow and cache the rev info if len(self._rbcrevs) < rbcrevidx + _rbcrecsize: return self._branchinfo(rev) # fast path: extract data from cache, use it if node is matching reponode = changelog.node(rev)[:_rbcnodelen] cachenode, branchidx = unpack_from( _rbcrecfmt, util.buffer(self._rbcrevs), rbcrevidx ) close = bool(branchidx & _rbccloseflag) if close: branchidx &= _rbcbranchidxmask if cachenode == b'\0\0\0\0': pass elif cachenode == reponode: try: return self._names[branchidx], close except IndexError: # recover from invalid reference to unknown branch self._repo.ui.debug( b"referenced branch names not found" b" - rebuilding revision branch cache from scratch\n" ) self._clear() else: # rev/node map has changed, invalidate the cache from here up self._repo.ui.debug( b"history modification detected - truncating " b"revision branch cache to revision %d\n" % rev ) truncate = rbcrevidx + _rbcrecsize del self._rbcrevs[truncate:] self._rbcrevslen = min(self._rbcrevslen, truncate) # fall back to slow path and make sure it will be written
<reponame>lhorne-gavant/OpenPubArchive-Content-Server-1 import re import sys from datetime import datetime from optparse import OptionParser from configLib.opasCoreConfig import solr_docs, solr_authors, solr_gloss, solr_docs_term_search, solr_authors_term_search import logging logger = logging.getLogger(__name__) from namesparser import HumanNames rx_space_req = "(\s+|\s*)" rx_space_opt = "(\s*|\s*)" rx_space_end_opt = "(\s*|\s*)$" rx_space_start_opt = "^(\s*|\s*)?" rx_year = "\(?\s*(?P<yr>(18|19|20)[0-9]{2,2})\s*\)?" rx_title = ".*?" rx_space_or_colon = "((\s*\:\s*)|\s+)" rx_vol = "((?P<vol>([\(]?[12]?[0-9][0-9]?[\)]?))\:)" # rx_pgrg = f"(pp\.?\s+)|{rx_vol}(?P<pgrg>[1-9][0-9]{0,3}([-][1-9][0-9]{0,3})?)" rx_pgrg = "(?P<pgrg>[1-9][0-9]{0,3}([-][1-9][0-9]{0,3})?)" rx_vol_pgrg = "(.*?(\s|,)|^)" + rx_vol + rx_pgrg + ".*" rx_year_pgrg = rx_space_start_opt + rx_year + rx_space_or_colon + rx_pgrg + rx_space_end_opt rx_year_vol_pgrg = rx_year + rx_vol_pgrg + rx_space_end_opt rx_author_name = "(?P<author>[A-Z][a-z]+)(\,\s+(([A-Z]\.?\s?){0,2})\s*)?" rx_author_connector = "(and|,)" rx_front_junk = "(\[|\()?[0-9]+(\]|\))?" # rx_author_and_year = rx_space_start_opt + rx_author_name + rx_space_req + rx_year + rx_space_end_opt # rx_author_year_pgrg = rx_author_and_year + ".*?" + rx_pgrg rx_author_name_list = "(?P<author_list>([A-Z][A-z]+\,?\s+?(([A-Z]\.?\s?){0,2})((\,\s+)|(\s*and\s+))?)+)" # rx_author_name_list_year = rx_author_name_list + rx_space_req + rx_year rx_author_list_and_year = "(?P<author_list>[A-Z][A-z\s\,\.\-]+?)" + rx_space_req + rx_year rx_series_of_author_last_names = "(?P<author_list>([A-Z][a-z]+((\,\s+)|(\s*and\s+))?)+)" rx_doi = "((h.*?://)?(.*?/))?(?P<doi>(10\.[0-9]{4,4}/[A-z0-9\.\-/]+)|(doi.org/[A-z0-9\-\./]+))" # schema fields must have a _ in them to use. rx_solr_field = "(?P<schema_field>([a-z]+_[a-z_]{2,13})|text|authors)\:(?P<schema_value>(.*$))" rx_syntax = "(?P<syntax>^[a-z]{3,9})\:\:(?P<query>.+$)" rx_pepdoi = "(?P<prefix>PEP\/\.)(?P<locator>[A-Z\-]{2,10}\.[0-9]{3,3}\.[0-9]{4,4}([PN]{1,2}[0-9]{4,4})?" pat_prefix_amps = re.compile("^\s*&& ") def cleanup_solr_query(solrquery): """ Clean up whitespace and extra symbols that happen when building up query or solr query filter """ ret_val = solrquery.strip() ret_val = ' '.join(ret_val.split()) #solrquery = re.sub("\s+", " ", solrquery) ret_val = re.sub("\(\s+", "(", ret_val) ret_val = re.sub("\s+\)", ")", ret_val) if ret_val is not None: # no need to start with '*:* && '. Remove it. ret_val = ret_val.replace("*:* && ", "") ret_val = ret_val.replace("*:* {", "{") # if it's before a solr join for level 2 queries ret_val = pat_prefix_amps.sub("", ret_val) ret_val = re.sub("\s+(AND)\s+", " && ", ret_val, flags=re.IGNORECASE) ret_val = re.sub("\s+(OR)\s+", " || ", ret_val, flags=re.IGNORECASE) return ret_val #----------------------------------------------------------------------------- def is_value_in_field(value, field="title", core="docs", match_type="exact", # exact, ordered, proximate, or bool limit=10): """ Returns True if the value is found in the field specified in the docs core. Args: value (str): String prefix of term to check. field (str): Where to look for term match_type (str): exact, ordered, or bool limit (int, optional): Paging mechanism, return is limited to this number of items. Returns: True if the value is in the specified field Docstring Tests: >>> is_value_in_field("Object Relations Theories and the Developmental Tilt", "title") True >>> is_value_in_field("Contemporary Psychoanalysis", "art_sourcetitlefull") True >>> is_value_in_field("Contemporary Psych", "art_sourcetitlefull") False >>> is_value_in_field("Contemp. Psychoanal.", "art_sourcetitleabbr") True >>> is_value_in_field("Tuckett, D", "title") False """ ret_val = False cores = { "docs": solr_docs, "authors": solr_authors, } try: solr_core = cores[core] except Exception as e: logger.warning(f"Core selection: {core}. 'docs' is default {e}") solr_core = solr_docs if match_type == "exact": q = f'{field}:"{value}"' elif match_type == "ordered": q = f'{field}:"{value}"~10' elif match_type == "proximate": q = f'{field}:"{value}"~25' else: q = f'{field}:({value})' try: results = solr_core.query(q=q, fields = f"{field}", rows = limit, ) except Exception as e: logger.warning(f"Solr query: {q} fields {field} {e}") results = [] if len(results) > 0: ret_val = True return ret_val #----------------------------------------------------------------------------- def is_term_in_index(term_partial, term_field="art_authors", core="docs", limit=10, order="index"): """ Returns True if the term_partial matches the index specified Args: term_partial (str): String prefix of term to check. term_field (str): Where to look for term limit (int, optional): Paging mechanism, return is limited to this number of items. offset (int, optional): Paging mechanism, start with this item in limited return set, 0 is first item. order (str, optional): Return the list in this order, per Solr documentation. Defaults to "index", which is the Solr determined indexing order. Returns: True if the term is in the specified field Docstring Tests: >>> is_term_in_index("Tuckett, D.", term_field="art_author_id", core="authors") True >>> is_term_in_index("Tuckett", term_field="art_author_id", core="authors") True >>> is_term_in_index("Tuckett", limit=5) True >>> is_term_in_index("Tucke*") True """ ret_val = False core_term_indexers = { "docs": solr_docs_term_search, "authors": solr_authors_term_search, } try: term_index = core_term_indexers[core] except: # error logger.error("Specified core does not have a term index configured") else: if "*" in term_partial or "?" in term_partial: # or "." in term_partial: # Wildcard expected, not RE term_partial = term_partial.lower().replace("*", ".*") results = term_index( terms_fl=term_field, terms_regex=term_partial, terms_limit=limit, terms_sort=order # index or count ) for n in results.terms[term_field].keys(): m = re.match(term_partial, n) if m is not None: ret_val = True break else: results = term_index( terms_fl=term_field, terms_prefix=term_partial.lower(), terms_sort=order, # index or count terms_limit=limit ) for n in results.terms[term_field].keys(): n_partial = re.split("[\s,]+", n) term_adj = term_partial.lower() if term_adj == n or term_adj == n_partial[0]: ret_val = True break return ret_val def name_id_list(names_mess): ret_val = [] names = HumanNames(names_mess) try: for n in names.human_names: if n.last != "": name_id = n.last + f", {n.first[0]}." ret_val.append(name_id) else: ret_val.append(n.first) except Exception as e: logger.warning(f"name parse: {names_mess} {e}") print (e) return ret_val def author_name_to_wildcard(author_list_str: str): ret_val = re.sub(" and ", " && ", author_list_str, re.IGNORECASE) ret_val = re.sub(",(\s[A-Z]\.){1,2}([\s,]?)", '* ', ret_val, flags=re.IGNORECASE) return ret_val def dict_clean_none_terms(d: dict): return { k:v.strip() for k, v in d.items() if v is not None } def smart_search(smart_search_text): """ Function to take an input string and parse out information to do a search against the DOCS core schema. Some simple syntax is implemented to help identify certain functionality. schema_field:terms = Solr field from schema, search terms against it. (Will be presented to solr as field:(terms). Multiple terms are permitted, but currently, only one field specification is permitted. Field names are converted to lower case automatically. art_doi:10.1111/j.1745-8315.2012.00606.x art_authors_text:[tuckett and fonagy] doi = Just enter a DOI 10.1111/j.1745-8315.2012.00606.x AuthorName Year = One or more names (initial capital), followed by a year Tuckett and Fonagy 1972 Tuckett and Fonagy (1972) >>> smart_search("<NAME>. & <NAME>. (1978)") {'schema_field': 'art_authors_citation', 'schema_value': "'<NAME>.' && '<NAME>.'"} >>> smart_search("authors:<NAME>.") {'schema_field': 'authors', 'schema_value': 'Tuckett, D.'} >>> smart_search("Tuckett 1982") {'author_list': 'Tuckett', 'yr': '1982'} >>> smart_search("solr::art_authors_text:[tuckett and fonagy]") {'syntax': 'solr', 'query': 'art_authors_text:[tuckett and fonagy]'} >>> smart_search("009:0015") >>> smart_search("<NAME>. ( 1938), Some elementary lessons in psycho-analysis, Standard Edition. 23:279-286. pp. London: Hogarth Press, 1964.") {'author_list': '<NAME>.', 'yr': '1938', 'vol': '23', 'pgrg': '279-286'} >>> smart_search("Tuckett") {'author': 'Tuckett'} >>> tst = [] >>> tst.append("<NAME>. (1836), An essay on nature. In: The Selected Writings of <NAME>, ed. <NAME>. New York: New American Library, 1965, pp. 186-187.") >>> tst.append("<NAME>. and <NAME>. ( 1959). The Points of View and Assumptions of Metapsychology. Int. J. Psycho-Anal.40:153-162") >>> tst.append("<NAME>. ( 1938), Some elementary lessons in psycho-analysis, Standard Edition. 23:279-286. pp. London: Hogarth Press, 1964.") >>> tst.append("<NAME>. ( 1962). Psychoanalysis, Scientific Method, and Philosophy. J. Amer. Psychoanal. Assn.10:617-637") >>> for n in tst: smart_search(n) {'author_list': '<NAME>.', 'yr': '1836'} {'author_list': '<NAME>. and <NAME>.', 'yr': '1959'} {'author_list': '<NAME>.', 'yr': '1938', 'vol': '23', 'pgrg': '279-286'} {'author_list': '<NAME>.', 'yr': '1962'} """ # recognize Smart Search inputs ret_val = {} # get rid of leading spaces and zeros smart_search_text = smart_search_text.lstrip(" 0") if re.match("[A-Z\-]{2,9}\.[0-9]{3,3}[A-Z]?\.[0-9]{4,4}[A-Z]?", smart_search_text, flags=re.IGNORECASE): loc_corrected = smart_search_text.upper() if is_value_in_field(loc_corrected, "art_id"): ret_val = {"art_id": loc_corrected} if ret_val == {}: patterns1 = { rx_author_list_and_year : "author_list_and_year", rx_year_pgrg : "rx_year_pgrg", ".*?" + rx_vol_pgrg : "rx_vol_pgrg", rx_doi : "rx_doi", rx_solr_field: "rx_solr_field", rx_syntax: "rx_syntax", } #patterns2 = { #rx_series_of_author_last_names: "author_list", #rx_author_name_list: "author_list", #rx_author_name: "author_list", #} for rx_str, label in patterns1.items(): m = re.match(rx_str, smart_search_text) if m is not None: ret_val = {**ret_val, **m.groupdict()} #for rx_str, label in patterns2.items(): #m = re.match(rx_str, smart_search_text) #if m is not None: #if ret_val.get(label) is None: # Pass 2 - if not already found #ret_val = {**ret_val, **m.groupdict()} if ret_val == {}: # nothing found yet. # see if it's a title words = smart_search_text.split(" ") word_count = len(words) words = [re.sub('\"|\\\:', "", n) for n in words] words = " ".join(words) words = cleanup_solr_query(words) if word_count == 1 and len(words) > 3: # could still be an author name if is_value_in_field(words, core="authors", field="authors"): ret_val["schema_field"] = "art_authors_citation" ret_val["schema_value"] = f"{words}" elif is_value_in_field(words, "title", match_type="ordered"): ret_val["title"] = words elif is_value_in_field(words, core="doc", field="art_authors_citation"): # see if it's a list of names ret_val["schema_field"] = "art_authors_citation" ret_val["schema_value"] = f"{words}" elif is_value_in_field(words, core="doc", field="text", match_type="proximate"): ret_val["wordsearch"] = re.sub(":", "\:", smart_search_text) else: # try to build a list of names, and check them individually new_q = "" names = name_id_list(smart_search_text) for name in names:
np.sort(np.append(addindexes,index)) subindexes = np.sort(np.append(subindexes,index)) changes[index] = -changecount ind[index] += changecount for index in np.where(np.abs(changes)>1)[0]: if changes[index] < 0: for i in range(np.abs(changes[index])-1): subindexes = np.sort(np.append(subindexes,index)) else: for i in range(np.abs(changes[index])-1): addindexes = np.sort(np.append(addindexes,index)) truefrags = len(subindexes) if len(subindexes) < len(addindexes): subindexes = np.append(subindexes, (np.ones((len(addindexes)-len(subindexes)))*(len(truetime)-1)).astype(int)) fragmentspertraj.append(len(subindexes)) for m in range(min(len(subindexes),len(addindexes))): traj = solutions[k][:, addindexes[m]:subindexes[m]+1] traj_ind = changes[addindexes[m]:subindexes[m]+1] startind = ind[addindexes[m]] minusloc = [0] + np.where(traj_ind < 0)[0].astype(int).tolist() fragment = np.array([]) iterind = startind if subindexes[m]-addindexes[m] > 0: if len(minusloc) > 1: if m <= truefrags: for n in range(len(minusloc)-1): iterind = iterind + min(0,traj_ind[minusloc[n]]) fragment = np.append(fragment, traj[iterind, minusloc[n]+1:minusloc[n+1]+1].flatten()) fragment = np.append(fragment, traj[0, minusloc[-1]+1:].flatten()) else: for n in range(len(minusloc)-1): iterind = iterind + min(0,traj_ind[minusloc[n]]) fragment = np.append(fragment, traj[iterind, minusloc[n]+1:minusloc[n+1]+1].flatten()) fragment = np.append(fragment, traj[m-truefrags, minusloc[-1]+1:].flatten()) else: fragment = solutions[k][startind][addindexes[m]:subindexes[m]+1].flatten() fragtimes.append(addindexes[m]+1) fragmented_trajectories.append(fragment) #if m <= truefrags: #kes.append(genelength/truetime[len(fragment)]) if len(fragment) > maxlen: maxlen = len(fragment) fragarray = np.zeros((len(fragmented_trajectories), maxlen)) for i in range(len(fragmented_trajectories)): fragarray[i][0:len(fragmented_trajectories[i])] = fragmented_trajectories[i] ssa_obj.fragments = fragarray ssa_obj.fragtimes = fragtimes ssa_obj.frag_per_traj = fragmentspertraj ssa_obj.full_frags = truefrags ssa_obj.all_results = all_results if probePosition.shape[0] > 1: for i in range(probePosition.shape[0]): if i > 0: autocorr_vec2, mean_autocorr2, error_autocorr2, dwelltime2, ke_sim2 = self.get_autocorr(intensity_vec[i], truetime, 0, genelength) autocorr_vec = np.vstack((autocorr_vec,autocorr_vec2)) mean_autocorr = np.vstack((mean_autocorr,mean_autocorr2)) error_autocorr = np.vstack((error_autocorr,error_autocorr2)) dwelltime.append(dwelltime2) ke_sim.append(ke_sim2) else: autocorr_vec, mean_autocorr, error_autocorr, dwelltime, ke_sim = self.get_autocorr(intensity_vec[i], truetime, 0, genelength) autocorr_vec_norm, mean_autocorr_norm, error_autocorr_norm, dwelltime, ke_sim = self.get_autocorr_norm(intensity_vec[i], truetime, 0, genelength) dwelltime = [dwelltime] ke_sim = [ke_sim] else: autocorr_vec, mean_autocorr, error_autocorr, dwelltime, ke_sim = self.get_autocorr(intensity_vec, truetime, 0, genelength) autocorr_vec_norm, mean_autocorr_norm, error_autocorr_norm, dwelltime, ke_sim = self.get_autocorr_norm(intensity_vec, truetime, 0, genelength) acov,nacov = self.get_all_autocovariances(intensity_vec,truetime,genelength ) ssa_obj.autocorr_vec = autocorr_vec ssa_obj.mean_autocorr = mean_autocorr ssa_obj.error_autocorr = error_autocorr ssa_obj.autocorr_vec_norm = autocorr_vec_norm ssa_obj.mean_autocorr_norm = mean_autocorr_norm ssa_obj.error_autocorr_norm = error_autocorr_norm ssa_obj.dwelltime = dwelltime ssa_obj.ke_sim = ke_sim ssa_obj.ke_true = float(genelength)/np.mean(ssa_obj.ribtimes) ssa_obj.probe = probePosition try: ssa_obj.autocovariance_dict = acov ssa_obj.autocovariance_norm_dict = nacov except: pass return ssa_obj def get_negative_intensity(self,solution,gene_length,pv,tvec,ti,stop_frap): startindex = np.where(tvec >= ti)[0][0] stop_frap = np.where(tvec >= stop_frap)[0][0] solution = solution.T fragmented_trajectories = [] fragtimes = [] endfragtimes = [] maxlen = 0 fragmentspertraj= [] ind = np.array([next(j for j in range(0,solution.shape[0]) if int(solution[j, i]) == 0 or int(solution[j, i]) == -1) for i in range(0, solution.shape[1])]) changes = ind[1:] - ind[:-1] addindexes = np.where(changes > 0)[0] subindexes = np.where(changes < 0)[0] sub = solution[:,1:] - solution[:,:-1] neutralindexes = np.unique(np.where(sub < 0)[1]) neutralindexes = np.setxor1d(neutralindexes, subindexes) for index in neutralindexes: pre = solution[:,index] post = solution[:,index+1] changecount = 0 while len(np.where(post - pre < 0)[0]) > 0: post = np.append([gene_length],post) pre = np.append(pre,0) changecount+=1 for i in range(changecount): addindexes = np.sort(np.append(addindexes,index)) subindexes = np.sort(np.append(subindexes,index)) changes[index] = -changecount ind[index] += changecount for index in np.where(np.abs(changes)>1)[0]: if changes[index] < 0: for i in range(np.abs(changes[index])-1): subindexes = np.sort(np.append(subindexes,index)) else: for i in range(np.abs(changes[index])-1): addindexes = np.sort(np.append(addindexes,index)) truefrags = len(subindexes) if len(subindexes) < len(addindexes): subindexes = np.append(subindexes, (np.ones((len(addindexes)-len(subindexes)))*(len(tvec)-1)).astype(int)) fragmentspertraj.append(len(subindexes)) for m in range(min(len(subindexes),len(addindexes))): traj = solution[:, addindexes[m]:subindexes[m]+1] traj_ind = changes[addindexes[m]:subindexes[m]+1] startind = ind[addindexes[m]] minusloc = [0] + np.where(traj_ind < 0)[0].astype(int).tolist() fragment = np.array([]) iterind = startind if subindexes[m]-addindexes[m] > 0: if len(minusloc) > 1: if m <= truefrags: for n in range(len(minusloc)-1): iterind = iterind + min(0,traj_ind[minusloc[n]]) fragment = np.append(fragment, traj[iterind, minusloc[n]+1:minusloc[n+1]+1].flatten()) fragment = np.append(fragment, traj[0, minusloc[-1]+1:].flatten()) else: for n in range(len(minusloc)-1): iterind = iterind + min(0,traj_ind[minusloc[n]]) fragment = np.append(fragment, traj[iterind, minusloc[n]+1:minusloc[n+1]+1].flatten()) fragment = np.append(fragment, traj[m-truefrags, minusloc[-1]+1:].flatten()) else: fragment = solution[startind][addindexes[m]:subindexes[m]+1].flatten() fragtimes.append(addindexes[m]+1) if addindexes[m]+1 + len(fragment) > len(tvec): endfragtimes.append(len(tvec)) else: endfragtimes.append(addindexes[m]+1 + len(fragment)) fragmented_trajectories.append(fragment) #if m <= truefrags: #kes.append(genelength/truetime[len(fragment)]) if len(fragment) > maxlen: maxlen = len(fragment) fragarray = np.zeros((len(fragmented_trajectories), maxlen)) for i in range(len(fragmented_trajectories)): fragarray[i][0:len(fragmented_trajectories[i])] = fragmented_trajectories[i] affected_frags = [] fragindexes = [] for i in range(len(fragtimes)): if np.sum([fragtimes[i]> np.array([startindex, stop_frap]), endfragtimes[i] > np.array([startindex, stop_frap])]) in [1,2,3]: affected_frags.append(i) fragindexes.append([fragtimes[i],endfragtimes[i]]) #affected_frags = np.intersect1d(np.where(np.array(fragtimes) >= startindex), np.where(np.array(fragtimes)<= stop_frap)) if len(fragindexes)> 0: findexes = np.array(fragindexes) frange = findexes[:,1]-stop_frap afterfrapribs = findexes[np.where(frange > 0 )] relevantfrags = np.array(affected_frags)[np.where(frange > 0 )] if len(relevantfrags) > 0: cooked_ribs = 0#(len(affected_frags) - len(relevantfrags))*max(pv) stopfrapindex = stop_frap - afterfrapribs[:,0] rfrags = fragarray[relevantfrags] np.diag(rfrags[:,stopfrapindex]) laglen = afterfrapribs[:,1] - stop_frap posistions_at_end_of_FRAP = np.diag(rfrags[:,stopfrapindex]) offset = pv[posistions_at_end_of_FRAP.astype(int)] trailing_intensity = np.zeros((max(laglen))) for i in range(len(laglen)): trailing_intensity[:laglen[i]] -= offset[i] trailing_intensity= trailing_intensity-cooked_ribs else: trailing_intensity = np.array([0]) else: trailing_intensity = np.array([0]) return trailing_intensity def ssa_solver_append(self, ssa_obj, n=100): nRepetitions = ssa_obj.n_traj all_k = ssa_obj.k no_ribosomes_per_mrna = ssa_obj.no_rib_per_mrna ribosome_density = ssa_obj.rib_density ribosome_means = ssa_obj.rib_means rib_vec = ssa_obj.rib_vec intensity_vec = ssa_obj.intensity_vec time_vec_fixed = ssa_obj.time_vec_fixed non_consider_time = ssa_obj.start_time evaluating_inhibitor = ssa_obj.evaluating_inhibitor evaluating_frap = ssa_obj.evaluating_frap time_inhibit = ssa_obj.time_inhibit truetime = ssa_obj.time tstep = len(ssa_obj.time) npoints = tstep #non_consider_time + tstep rib_vec = [] solutions = [] pv = ssa_obj.probe genelength = len(pv[0])-1 evf = int(evaluating_frap) evi = int(evaluating_inhibitor) try: intime = float(time_inhibit) except: intime = 0 solutionssave = [] st = time.time() n_traj = n force_python = False try: if force_python == True: st[0] rib_vec = [] solutions = [] solutionssave = [] N_rib = 200 all_results = np.zeros((n_traj, N_rib*len(time_vec_fixed)), dtype=np.int32) all_ribtimes = np.zeros((n_traj,int(1.3*all_k[0]*truetime[-1])),dtype=np.float64) result = np.zeros((len(time_vec_fixed)*N_rib), dtype=np.int32) nribs = np.array([0],dtype=np.int32) k = np.array(all_k) seeds = np.random.randint(0, 0x7FFFFFF, n_traj) all_frapresults = np.zeros((n_traj,N_rib*len(time_vec_fixed)),dtype=np.int32) all_collisions = np.zeros((n_traj,int(1.3*all_k[0]*truetime[-1])),dtype=np.int32) all_nribs = np.zeros((n_traj,1)) all_col_points = [] for i in range(n_traj): result = np.zeros((len(time_vec_fixed)*N_rib), dtype=np.int32) ribtimes = np.zeros((int(1.3*k[0]*truetime[-1])),dtype=np.float64) frapresult = np.zeros((len(time_vec_fixed)*N_rib),dtype=np.int32) coltimes = np.zeros((int(1.3*k[0]*truetime[-1])),dtype=np.int32) colpointsx = np.zeros(len(k[1:-1])*(int(1.3*k[0]*truetime[-1])),dtype=np.int32) colpointst = np.zeros(len(k[1:-1])*(int(1.3*k[0]*truetime[-1])),dtype=np.float64) nribs = np.array([0],dtype=np.int32) ssa_translation.run_SSA(result, ribtimes, coltimes, colpointsx,colpointst, k[1:-1],frapresult, truetime, k[0], k[-1], evf, evi, intime, seeds[i],nribs) #ssa_translation.run_SSA(result, ribtimes, coltimes, k[1:-1],frapresult, truetime, k[0], k[-1], evf, evi, intime, seeds[i],nribs) all_results[i, :] = result all_frapresults[i,:] = frapresult all_ribtimes[i,:] = ribtimes all_collisions[i,:] = coltimes all_nribs[i,:] = nribs endcolrec = np.where(colpointsx == 0)[0][0] colpoints = np.vstack((colpointsx[:endcolrec],colpointst[:endcolrec])) all_col_points.append(colpoints.T) for i in range(n_traj): soln = all_results[i, :].reshape((N_rib, len(time_vec_fixed))) validind = np.where(np.sum(soln,axis=1)!=0)[0] if np.max(validind) != N_rib-1: validind = np.append(np.where(np.sum(soln,axis=1)!=0)[0],np.max(validind)+1) so = soln[(validind,)] solutionssave.append(so) solutions.append(soln) collisions = np.array([[]]) watched_ribs = [] for i in range(n_traj): totalrib = all_nribs[i] if totalrib > all_collisions.shape[1]: collisions = np.append(collisions, all_collisions[i][:]) watched_ribs.append(int(all_collisions.shape[1])) else: collisions = np.append(collisions, all_collisions[i][:int(totalrib[0])]) watched_ribs.append(int(totalrib[0])) sttime = time.time() - st except: print('C++ library failed, Using Python Implementation') rib_vec = [] solutions = [] solutionssave = [] N_rib = 200 collisions = np.array([[]]) all_results = np.zeros((n_traj, N_rib*len(time_vec_fixed)), dtype=np.int32) all_col_points = [] watched_ribs = [] for i in range(n_traj): soln,all_ribtimes,Ncol,col_points = self.SSA(all_k, truetime, inhibit_time=time_inhibit+non_consider_time, FRAP=evaluating_frap, Inhibitor=evaluating_inhibitor) #soln = soln.reshape((1, (len(time_vec_fixed)*N_rib))) collisions = np.append(collisions,Ncol) watched_ribs.append(int(len(collisions))) validind = np.where(np.sum(soln,axis=1)!=0)[0] all_col_points.append(np.array(col_points)) if np.max(validind) != N_rib-1: validind = np.append(np.where(np.sum(soln,axis=1)!=0)[0],np.max(validind)+1) so = soln[(validind,)] solutionssave.append(so) solutions.append(soln) result = soln.reshape((1, (len(time_vec_fixed)*N_rib))) all_results[i, :] = result sttime = time.time() - st #rb = sparse.lil_matrix((len(time_vec_fixed),genelength),dtype=int) #for j in range(soln.shape[1]): #if len(np.where(soln[:,j]!=0)[0]) !=0: #print(np.where(soln[:,j]!=0)[0]) #rb[j,np.where(soln[:,j]!=0)[0]] = 1 #for value in soln[:,j][np.where(soln[:,j]!=0)[0]].astype(int): #rb[j, value-1] = 1 #rib_vec.append(rb) no_ribosomes = np.zeros((n_traj, (genelength+1))) startindex = np.where(truetime >= non_consider_time)[0][0] #all_results = all_results[:,startindex*N_rib:] for i in range(len(solutions)): for j in range(len(solutions[0][0][startindex:])): rib_pos = solutions[i][startindex:, j][np.nonzero(solutions[i][startindex:, j])] no_ribosomes[i, rib_pos.astype(int)] += 1 no_ribosomes = no_ribosomes[:, 1:] ribosome_means = np.mean(no_ribosomes, axis=0) ribosome_density = ribosome_means/npoints no_ribosomes_per_mrna = np.mean(no_ribosomes) if pv.shape[0] <=1: I = np.zeros((n_traj, len(time_vec_fixed[startindex:]))) else: I = np.zeros((int(pv.shape[0]),n_traj, len(time_vec_fixed[startindex:]))) #I = np.zeros((1,tstep+1)) if evaluating_frap == False: if pv.shape[0] <=1: for i
rows become None instead of NaN # (aggregation sum of int + NaN = float, but we want int, so we use # int + None = int to stop decimals from appearing in the size sums) # - re-sort by price based on side # - bids: high to low # - asks: low to high # - Re-index the frame by current sorted positions so the concat joins correctly. # - 'drop=True' means don't add a new column with the previous index value # condition dataframe reorganization on the input list existing. # for some smaller symbols, bids or asks may not get returned # by the flaky ibkr depth APIs if t.domBids: fixedBids = ( pd.DataFrame(t.domBids) .groupby("price", as_index=False) .agg({"size": sum, "marketMaker": list}) .convert_dtypes() .sort_values(by=["price"], ascending=False) .reset_index(drop=True) ) # format floats as currency strings with proper cent padding fixedBids["price"] = fixedBids["price"].apply(lambda x: f"{x:,.2f}") fixedBids["marketMaker"] = sorted(fixedBids["marketMaker"]) else: fixedBids = pd.DataFrame() if t.domAsks: fixedAsks = ( pd.DataFrame(t.domAsks) .groupby("price", as_index=False) .agg({"size": sum, "marketMaker": list}) .convert_dtypes() .sort_values(by=["price"], ascending=True) .reset_index(drop=True) ) fixedAsks["price"] = fixedAsks["price"].apply(lambda x: f"{x:,.2f}") fixedAsks["marketMaker"] = sorted(fixedAsks["marketMaker"]) else: fixedAsks = pd.DataFrame() fmtJoined = {"Bids": fixedBids, "Asks": fixedAsks} # Create an order book with high bids and low asks first. # Note: due to the aggregations above, the bids and asks # may have different row counts. Extra rows will be # marked as <NA> by pandas (and we can't fill them # as blank because the cols have been coerced to # specific data types via 'convert_dtypes()') both = pd.concat(fmtJoined, axis=1) printFrame( both, f"{contract.symbol} :: {contract.localSymbol} Grouped by Price", ) # Note: the 't.domTicks' field is just the "update feed" # which ib_insync merges into domBids/domAsks # automatically, so we don't need to care about # the values inside t.domTicks if i < self.count - 1: await asyncio.sleep(3) self.ib.cancelMktDepth(contract, isSmartDepth=useSmart) del self.depthState[contract] @dataclass class IOpRID(IOp): """Retrieve ib_insync request ID and server Next Request ID""" def argmap(self): # rid has no args! return [] async def run(self): logger.info("CLI Request ID: {}", self.ib.client._reqIdSeq) logger.info( "Server Next Request ID: {} (see server log)", self.ib.client.reqIds(0) ) @dataclass class IOpOrderModify(IOp): """Modify an existing order using interactive prompts.""" def argmap(self): # No args, we just use interactive prompts for now return [] async def run(self): # "openTrades" include the contract, order, and order status. # "openOrders" only includes the order objects with no contract or status. ords = self.ib.openTrades() # logger.info("current orderS: {}", pp.pformat(ords)) promptOrder = [ Q( "Current Order", choices=[ Choice( f"{o.order.action:<4} {o.order.totalQuantity:<6} {o.contract.localSymbol or o.contract.symbol:<21} {o.order.orderType} {o.order.tif} lmt:${fmtPrice(o.order.lmtPrice):<7} aux:${fmtPrice(o.order.auxPrice):<7}", o, ) for o in sorted(ords, key=tradeOrderCmp) ], ), Q("New Limit Price"), Q("New Stop Price"), Q("New Quantity"), ] pord = await self.state.qask(promptOrder) try: trade = pord["Current Order"] lmt = pord["New Limit Price"] stop = pord["New Stop Price"] qty = pord["New Quantity"] contract = trade.contract ordr = trade.order if not (lmt or stop or qty): # User didn't provide new data, so stop processing return None if lmt: ordr.lmtPrice = float(lmt) if stop: ordr.auxPrice = float(stop) if qty: ordr.totalQuantity = float(qty) except: return None trade = self.ib.placeOrder(contract, ordr) logger.info("Updated: {}", pp.pformat(trade)) @dataclass class IOpOrder(IOp): """Quick order entry with full order described on command line.""" def argmap(self): # TODO: write a parser for this language instead of requiring fixed orders for each parameter # allow symbol on command line, optionally # BUY IWM QTY 500 PRICE 245 ORD LIMIT/LIM/LMT AF AS REL MP AMF AMS MOO MOC return [ DArg("bs", verify=lambda x: x.lower() in {"b", "s", "buy", "sell"}), DArg("symbol"), DArg("q", verify=lambda x: x.lower() in {"q", "qty"}), DArg("qty", convert=float, verify=lambda x: x != 0), DArg("p", verify=lambda x: x.lower() in {"p", "price"}), DArg("price", convert=float, verify=lambda x: x >= 0), DArg("a", verify=lambda x: x.lower() in {"a", "algo"}), DArg( "algo", convert=lambda x: x.upper(), verify=lambda x: x in ALGOMAP.keys(), errmsg=f"Available algos: {pp.pformat(ALGOMAP)}", ), ] async def run(self): if " " in self.symbol: # is spread, so do bag isSpread = True orderReq = self.state.ol.parse(bOrder) contract = await self.state.bagForSpread(orderReq) else: # else, is symbol isSpread = False contract = contractForName(self.symbol) if contract is None: logger.error("Not submitting order because contract can't be formatted!") return None if not isSpread: # spreads are qualified when they are initially populated await self.state.qualify(contract) # B BUY is Long # S SELL is Short isLong = self.bs.lower().startswith("b") # send the order to IBKR # Note: negative quantity is parsed as a WHOLE DOLLAR AMOUNT to use, # then price is irrelevant since it runs a midpoint of spread order. am = ALGOMAP[self.algo] placed = await self.state.placeOrderForContract( self.symbol, isLong, contract, self.qty, self.price, am, ) if not placed: logger.error("Order can't continue!") return # if this is a market order, don't run the algo loop if {"MOO", "MOC", "MKT"} & set(am.split()): logger.warning("Not running price algo because this is a market order...") return order, trade = placed quoteKey = lookupKey(contract) checkedTimes = 0 # while (unfilled quantity) AND (order NOT canceled or rejected or broken) while (rem := trade.orderStatus.remaining) > 0 or ( "Pending" in trade.orderStatus.status ): if ("Cancel" in trade.orderStatus.status) or ( trade.orderStatus.status in {"Filled", "Inactive"} ): logger.error( "[{} :: {}] Order was canceled or rejected! Status: {}", trade.orderStatus.status, trade.contract.localSymbol, pp.pformat(trade.orderStatus), ) return if rem == 0: logger.warning( "Quantity Remaining is zero, but status is Pending. Waiting for update..." ) # sleep 75 ms and check again await asyncio.sleep(0.075) continue logger.info("Quantity remaining: {}", rem) checkedTimes += 1 # if this is the first check after the order was placed, don't # run the algo (i.e. give the original limit price a chance to work) if checkedTimes == 1: logger.info("Skipping adjust so original limit has a chance to fill...") continue # get current qty/value of trade both remaining and already executed ( remainingAmount, totalAmount, currentPrice, currentQty, ) = self.state.amountForTrade(trade) # get current quote for order bidask = self.state.currentQuote(quoteKey) if bidask: logger.info("Adjusting price for more aggressive fills...") bid, ask = bidask if isLong: # if is buy, chase the ask newPrice = round((currentPrice + ask) / 2, 2) # reduce qty to remain in expected total spend constraint newQty = amount / newPrice # only crypto supports fractional values over the API, # so all non-crypto contracts get floor'd if not isinstance(trade.contract, Crypto): newQty = math.floor(newQty) else: # else if is sell, chase the bid newPrice = round((currentPrice + bid) / 2, 2) newQty = currentQty # don't change quantities on shorts / sells # TODO: this needs to be aware of CLOSING instead of OPEN SHORT. # i.e. on OPENING orders we can grow/shrink qty, but on CLOSING # we DO NOT want to shrink or grow our qty. logger.info( "Price changing from {} to {} ({})", currentPrice, newPrice, (newPrice - currentPrice), ) logger.info( "Qty changing from {} to {} ({})", currentQty, newQty, (newQty - currentQty), ) logger.info("Submitting order update...") order.lmtPrice = newPrice order.totalQuantity = newQty self.ib.placeOrder(contract, order) waitDuration = 3 logger.info( "[{} :: {}] Waiting for {} seconds to check for new executions...", trade.orderStatus.orderId, checkedTimes, waitDuration, ) try: await asyncio.sleep(waitDuration) except: # catches CTRL-C during sleep logger.warning( "[{}] User canceled automated limit updates! Order still live.", trade.orderStatus.orderId, ) break @dataclass class IOpOrderFast(IOp): """Place a momentum order for scalping using multiple strikes and active price tracking. For a 'symbol' at total dollar spend of 'amount' and 'direction'. For ATR calcuation, requires a custom endpoint running with a REST API capable of returning multiple ATR periods for any symbol going back multiple timeframes. Maximum strikes attempted are based on the recent ATR for the underlying, so we don't try to grab a +$50 OTM strike with recent historical movement was only $2.50. (TODO: if running against, 2-4 week out chains allow higher than ATR maximum because the vol will smile). The buying algo is: - use current underlying bid/ask midpoint (requires live quote) - set price cap to maximum of 3 day or 20 day ATR (requires external API) - buy 1
P = _multirice3dfun(r,nu,sig,a) return P # ================================================================= # ================================================================= @metadata( parameters = ('Location of 1st Rician', 'Spread of 1st Rician', 'Amplitude of 1st Rician', 'Location of 2nd Rician', 'Spread of 2nd Rician', 'Amplitude of 2nd Rician', 'Location of 3rd Rician', 'Spread of 3rd Rician', 'Amplitude of 3rd Rician'), units = ('nm','nm','','nm','nm','','nm','nm',''), start = np.asarray([2.5, 0.7, 0.3, 3.5, 0.7, 0.3, 5, 0.7, 0.3]), lower = np.asarray([1, 0.1, 0, 1, 0.1, 0, 1, 0.1, 0]), upper = np.asarray([10, 5, 1, 10, 5, 1, 10, 5, 1])) @docstring() def dd_rice3(r,param): r""" Sum of three 3D-Rice distributions Notes ----- **Model:** :math:`P(r) = a_1 R(r,\nu_1,\sigma_1) + a_2 R(r,\nu_2,\sigma_2) + a_3 R(r,\nu_3,\sigma_3)` :math:`R(r,\nu,\sigma) = \frac{\nu^{n/2-1}}{\sigma^2}r^{n/2}\exp\left(-\frac{(r^2+\nu^2)}{2\sigma^2}\right)I_{n/2-1}\left(\frac{r\nu}{\sigma^2} \right)` where :math:`n=3` and :math:`I_{n/2-1}(x)` is the modified Bessel function of the first kind with order :math:`n/2-1`. This is a three-dimensional non-central chi distribution, the 3D generalization of the 2D Rice distribution. ============== ======================== ============= ============= ============= ======================================= Variable Symbol Start Value Lower bound Upper bound Description ============== ======================== ============= ============= ============= ======================================= ``param[0]`` :math:`\nu_1` 2.5 1.0 10 1st Rician location (nm) ``param[1]`` :math:`\sigma_1` 0.7 0.1 5 1st Rician spread (nm) ``param[2]`` :math:`a_1` 0.3 0 1 1st Rician amplitude ``param[3]`` :math:`\nu_2` 4.0 1.0 10 2nd Rician location (nm) ``param[4]`` :math:`\sigma_2` 0.7 0.1 5 2nd Rician spread (nm) ``param[5]`` :math:`a_2` 0.3 0 1 2nd Rician amplitude ``param[6]`` :math:`\nu_3` 5.0 1.0 10 3rd Rician location (nm) ``param[7]`` :math:`\sigma_3` 0.7 0.1 5 3rd Rician spread (nm) ``param[8]`` :math:`a_3` 0.3 0 1 3rd Rician amplitude ============== ======================== ============= ============= ============= ======================================= """ r,param = _parsparam(r,param,npar=9) nu = [param[0], param[3], param[6]] sig = [param[1], param[4], param[7]] a = [param[2], param[5], param[8]] P = _multirice3dfun(r,nu,sig,a) return P # ================================================================= # ================================================================= @metadata( parameters = ('Number of residues','Segment length','Scaling exponent'), units = ('','nm',''), start = np.asarray([50, 0.2, 0.602]), lower = np.asarray([2, 0.1, 0.33 ]), upper = np.asarray([1000, 0.4, 1 ])) @docstring() def dd_randcoil(r,param): r""" Random-coil model for an unfolded peptide/protein Notes ----- **Model:** .. image:: ../images/model_scheme_dd_randcoil.png :width: 25% :math:`P(r) = \frac{3}{(2\pi\nu_0)^{3/2}}4\pi r^2\exp(-\frac{3 r^2}{\nu_0})` where :math:`\nu_0 = 3/(12\pi r_0 N \nu)^{3/2}` ============== ============= ============= ============= ============= ======================================= Variable Symbol Start Value Lower bound Upper bound Description ============== ============= ============= ============= ============= ======================================= ``param[0]`` :math:`N` 50 2 1000 Number of residues ``param[1]`` :math:`R_0` 0.20 0.10 0.40 Segment length (nm) ``param[2]`` :math:`\nu` 0.602 0.33 1.00 Scaling exponent ============== ============= ============= ============= ============= ======================================= """ r,param = _parsparam(r,param,npar=3) N = param[0] # number of residues nu = param[1] # scaling exponent R0 = param[2] # residue length rsq = 6*(R0*N**nu)**2 # mean square end-to-end distance from radius of gyration normFact = 3/(2*np.pi*rsq)**(3/2) # normalization prefactor ShellSurf = 4*np.pi*r**2 # spherical shell surface Gaussian = np.exp(-3*r**2/(2*rsq)) P = normFact*ShellSurf*Gaussian P = _normalize(r,P) return P # ================================================================= # ================================================================= @metadata( parameters = ('Center','Radius'), units = ('nm','nm'), start = np.asarray([3, 0.5]), lower = np.asarray([1, 0.1]), upper = np.asarray([20, 5 ])) @docstring() def dd_circle(r,param): r""" Semicircle distribution model Notes ----- **Model:** This provides a `semi-circle distribution <https://en.wikipedia.org/wiki/Wigner_semicircle_distribution>`_, defined by :math:`P(r) = 2\pi\sqrt{(r-r_0)^2/R^2+1}` for :math:`r_0-R\le r\le r_0+R` and zero otherwise. ============== ================= ============= ============= ============= ================================= Variable Symbol Start Value Lower bound Upper bound Description ============== ================= ============= ============= ============= ================================= ``param[0]`` :math:`r_0` 3.0 1 20 Center (nm) ``param[1]`` :math:`R` 0.5 0.1 5 Radius (nm) ============== ================= ============= ============= ============= ================================= """ r,param = _parsparam(r,param,npar=2) r0 = param[0] R = abs(param[1]) dr = r - r0 idx = abs(dr)<R P = np.zeros(len(r)) P[idx] = 2/np.pi/R**2*np.sqrt(R**2 - dr[idx]**2) P = _normalize(r,P) return P # ================================================================= # ================================================================= @metadata( parameters = ('Center','FWHM'), units = ('nm','nm'), start = np.asarray([3, 0.5]), lower = np.asarray([1, 0.1]), upper = np.asarray([20, 5 ])) @docstring() def dd_cos(r,param): r""" Raised-cosine parametric model Notes ----- **Model:** This provides a `raised-cosine distribution <https://en.wikipedia.org/wiki/Raised_cosine_distribution>`_, defined by :math:`P(r) = \frac{1}{2w}\cos\left(\frac{r-r_0}{w}\pi\right)` for :math:`r_0-w \le r \le r_0+w`, and zero otherwise. ============== ================= ============= ============= ============= ================================= Variable Symbol Start Value Lower bound Upper bound Description ============== ================= ============= ============= ============= ================================= ``param[0]`` :math:`r_0` 3.0 1 20 Center (nm) ``param[1]`` :math:`w` 0.5 0.1 5 FWHM (nm) ============== ================= ============= ============= ============= ================================= """ r,param = _parsparam(r,param,npar=2) r0 = param[0] fwhm = param[1] phi = (r-r0)/fwhm*np.pi P = (1 + np.cos(phi))/2/fwhm P[(r<(r0-fwhm)) | (r>(r0+fwhm))] = 0 P = _normalize(r,P) return P # ================================================================= def _pb(r,R): # ================================================================= P = np.zeros(len(r)) idx = (r >= 0) & (r <= 2*R) P[idx] = 3*r[idx]**5/(16*R**6) - 9*r[idx]**3/(4*R**4) + 3*r[idx]**2/(R**3) return P # ================================================================= def _pbs(r,R1,R2): # ================================================================= P = np.zeros(len(r)) # Case1 idx = (r >= 0) & (r < np.minimum(2*R1,R2 - R1)) P[idx] = 12*r[idx]**3*R1**2 - r[idx]**5 # Case2 idx = (r >= R2 - R1) & (r < 2*R1) P[idx] = 8*r[idx]**2*(R2**3 - R1**3) - 3*r[idx]*(R2**2 - R1**2)**2 - 6*r[idx]**3*(R2 - R1)*(R2 + R1) # Case3 idx = (r >= 2*R1) & (r < R2 - R1) P[idx] = 16*r[idx]**2*R1**3 # Case4 idx = (r >= np.maximum(R2 - R1,2*R1)) & (r < R1 + R2) P[idx] = r[idx]**5 - 6*r[idx]**3*(R2**2 + R1**2) + 8*r[idx]**2*(R2**3 + R1**3) - 3*r[idx]*(R2**2 - R1**2)**2 P = P*3/(16*R1**3*(R2**3 - R1**3)) return P # ================================================================= # ================================================================= @metadata( parameters = ('Inner shell radius','Shell thickness'), units = ('nm','nm'), lower = np.asarray([0.1, 0.1]), upper = np.asarray([20, 20 ]), start = np.asarray([1.5, 0.5])) @docstring() def dd_shell(r,param): r""" Uniform spherical shell Notes ----- **Model:** .. image:: ../images/model_scheme_dd_shell.png :width: 25% :math:`P(r) = \left(R_2^6 P_\mathrm{B}(r|R_2) - R_1^6 P_\mathrm{B}(r|R_1) - 2(r_2^3 - r_1^3)P_\mathrm{BS}(r|R_1,R_2)\right)/(R_2^3 - R_1^3)^2` with :math:`P_\mathrm{BS}(r|R_i,R_j) = \frac{3}{16R_i^3(R_j^3 - R_i^3)}\begin{cases} 12r^3R_i^2 - r^5 \quad \text{for} \quad 0\leq r < \min(2R_i,R_j - R_i) \\ 8r^2(R_j^3 - R_i^3) - 3r(R_j^2 - R_i^2)^2 - 6r^3(R_j - R_i)(R_j + R_i) \quad \text{for} \quad R_j-R_i \leq r < 2R_i \\ 16r^2R_i^3 \quad \text{for} \quad 2R_i\leq r < R_j - R_i \\ r^5 - 6r^3(R_j^2 + R_i^2) + 8r^2(R_j^3 + R_i^3) - 3r(R_j^2 - R1_2)^2 \quad \text{for} \quad \max(R_j-R_i,2R_i) \leq r < R_i+R_j \\ 0 \quad \text{for} \quad \text{otherwise} \end{cases}` :math:`P_\mathrm{B}(r|R_i) = \begin{cases} \frac{3r^5}{16R_i^6} - \frac{9r^3}{4R_i^4} + \frac{3r^2}{R_i^3} \quad \text{for} \quad 0 \leq r < 2R_i \\ 0 \quad \text{for} \quad \text{otherwise} \end{cases}` and :math:`R_1 = R` :math:`R_2 = R + w` ============== ============== ============= ============= ============= ======================================= Variable Symbol Start Value Lower bound Upper bound Description ============== ============== ============= ============= ============= ======================================= ``param[0]`` :math:`R` 1.5 0.1 20 Inner shell radius (nm) ``param[1]`` :math:`w` 0.5 0.1 20 Shell thickness (nm) ============== ============== ============= ============= ============= ======================================= References ---------- .. [1] <NAME>, <NAME>, Analytical distance distributions in systems of spherical symmetry with applications to double electron-electron resonance, JMR, 230, 50-63, 2013 """ r,param = _parsparam(r,param,npar=2) R1 = float(param[0]) w = float(param[1]) R2 = R1 + w P = np.zeros(len(r)) P = R2**6*_pb(r,R2) - R1**6*_pb(r,R1) - 2*(R2**3 - R1**3)*_pbs(r,R1,R2) P = P/(R2**3 - R1**3)**2 P = _normalize(r,P) return P # ================================================================= # ================================================================= @metadata( parameters = ('Sphere radius','Distance to point'), units = ('nm','nm'), lower = np.asarray([0.1, 0.1]), upper = np.asarray([20, 20 ]), start = np.asarray([1.5, 3.5])) @docstring() def dd_spherepoint(r,param): r""" One particle distanced from particles distributed on a sphere Notes ----- **Model:** .. image:: ../images/model_scheme_dd_spherepoint.png :width: 25% :math:`P(r) = \begin{cases} \frac{3r(R^2-(d-r)^2)}{4dR^3} \quad \text{for} \quad d-R \leq r < d+R \\ 0 \quad \text{for} \quad \text{otherwise} \end{cases}` ============== ============== ============= ============= ============= ========================= Variable Symbol Start Value Lower bound Upper bound Description ============== ============== ============= ============= ============= ========================= ``param[0]`` :math:`R` 1.5 0.1 20 Sphere radius (nm) ``param[1]`` :math:`d` 3.5 0.1 20 Distance to point (nm) ============== ============== ============= ============= ============= ========================= References ---------- .. [1] <NAME>, <NAME>, Analytical distance distributions in systems of spherical symmetry with applications to double electron-electron resonance, JMR, 230, 50-63, 2013 """ r,param = _parsparam(r,param,npar=2) R = float(param[0]) d = float(param[1]) P = np.zeros(len(r)) idx = (r >= d - R) & (r<= d + R) P[idx] = 3*r[idx]*(R**2 - (d - r[idx])**2)/(4*d*R**3) P = _normalize(r,P) return P # ================================================================= # ================================================================= @metadata( parameters = ('Sphere radius',), units = ('nm',), lower = np.asarray([0.1]), upper = np.asarray([20]), start = np.asarray([2.5])) @docstring() def dd_spheresurf(r,param): r""" Particles distributed on a sphere's surface Notes ----- **Model:** .. image:: ../images/model_scheme_dd_spheresurf.png :width: 25% :math:`P(r) = \begin{cases} \frac{r}{2R^2} \quad \text{for} \quad 0 \leq r < 2R \\ 0 \quad \text{for} \quad \text{otherwise} \end{cases}` ============== ============== ============= ============= ============= ========================= Variable Symbol Start Value Lower bound Upper bound Description ============== ============== ============= ============= ============= ========================= ``param[0]`` :math:`R` 2.5 0.1 20 Sphere radius (nm) ============== ============== ============= ============= ============= ========================= References ---------- .. [1] <NAME>, <NAME>, Analytical distance distributions in systems of spherical symmetry with applications to double electron-electron resonance, JMR, 230, 50-63, 2013 """ r,param = _parsparam(r,param,npar=1) R = float(param[0]) P = np.zeros(len(r)) idx = (r >= 0) & (r<= 2*R) P[idx] = r[idx]/R**2 P = _normalize(r,P) return P #================================================================= # ================================================================= @metadata( parameters = ('Inner shell radius','1st Shell thickness','2nd Shell thickness'), units = ('nm','nm','nm'), lower = np.asarray([0.1, 0.1, 0.1]), upper = np.asarray([20, 20, 20 ]), start = np.asarray([1.5, 0.5, 0.5])) @docstring() def
<reponame>SofiaBadini/estimagic import functools import json import warnings from pathlib import Path import numpy as np import pandas as pd from scipy.optimize._numdiff import approx_derivative from estimagic.decorators import expand_criterion_output from estimagic.decorators import handle_exceptions from estimagic.decorators import log_evaluation from estimagic.decorators import log_gradient from estimagic.decorators import log_gradient_status from estimagic.decorators import negative_criterion from estimagic.decorators import numpy_interface from estimagic.logging.create_database import prepare_database from estimagic.optimization.process_constraints import process_constraints from estimagic.optimization.reparametrize import reparametrize_to_internal from estimagic.optimization.utilities import propose_algorithms def transform_problem( criterion, params, algorithm, criterion_kwargs, constraints, general_options, algo_options, gradient, gradient_options, logging, log_options, dashboard, dash_options, ): """Transform the user supplied problem. The transformed optimization problem is converted from the original problem which consists of the user supplied criterion, params DataFrame, criterion_kwargs, constraints and gradient (if supplied). In addition, the transformed optimization problem provides sophisticated logging tools if activated by the user. The transformed problem can be solved by almost any optimizer package: 1. The only constraints are bounds on the parameters. 2. The internal_criterion function takes an one dimensional np.array as input. 3. The internal criterion function returns a scalar value (except for the case of the tao_pounders algorithm). Note that because of the reparametrizations done by estimagic to implement constraints on behalf of the user the internal params cannot be interpreted without reparametrizing it to the full params DataFrame. Args: criterion (callable or list of callables): Python function that takes a pandas DataFrame with parameters as the first argument. Supported outputs are: - scalar floating point - np.ndarray: contributions for the tao Pounders algorithm. - tuple of a scalar floating point and a pd.DataFrame: In this case the first output is the criterion value. The second output are the comparison_plot_data. See :ref:`comparison_plot`. .. warning:: This feature is not implemented in the dashboard yet. params (pd.DataFrame or list of pd.DataFrames): See :ref:`params`. algorithm (str or list of strings): Name of the optimization algorithm. See :ref:`list_of_algorithms`. criterion_kwargs (dict or list of dict): Additional criterion keyword arguments. constraints (list or list of lists): List with constraint dictionaries. See :ref:`constraints` for details. general_options (dict): Additional configurations for the optimization. Keys can include: - keep_dashboard_alive (bool): if True and dashboard is True the process in which the dashboard is run is not terminated when maximize or minimize finish. algo_options (dict or list of dicts): Algorithm specific configurations. gradient_options (dict): Options for the gradient function. logging (str or pathlib.Path or list thereof): Path to an sqlite3 file which typically has the file extension ``.db``. If the file does not exist, it will be created. See :ref:`logging` for details. log_options (dict or list of dict): Keyword arguments to influence the logging. See :ref:`logging` for details. dashboard (bool): Whether to create and show a dashboard, default is False. See :ref:`dashboard` for details. dash_options (dict or list of dict, optional): Options passed to the dashboard. Supported keys are: - port (int): port where to display the dashboard - no_browser (bool): whether to display the dashboard in a browser - rollover (int): how many iterations to keep in the monitoring plots Returns: optim_kwargs (dict): Dictionary collecting all arguments that are going to be passed to _internal_minimize. database_path (str or pathlib.Path or None): Path to the database. result_kwargs (dict): Arguments needed to reparametrize back from the internal paramater array to the params DataFrame of the user supplied problem. In addition it contains whether the dashboard process should be kept alive after the optimization(s) terminate(s). """ optim_kwargs, params, dash_options, database_path = _pre_process_arguments( params=params, algorithm=algorithm, algo_options=algo_options, logging=logging, dashboard=dashboard, dash_options=dash_options, ) # harmonize criterion interface is_maximization = general_options.pop("_maximization", False) criterion = expand_criterion_output(criterion) criterion = negative_criterion(criterion) if is_maximization else criterion # first criterion evaluation for the database and the pounders algorithm fitness_eval, comparison_plot_data = _evaluate_criterion( criterion=criterion, params=params, criterion_kwargs=criterion_kwargs ) general_options = general_options.copy() general_options["start_criterion_value"] = fitness_eval with warnings.catch_warnings(): warnings.simplefilter(action="ignore", category=pd.errors.PerformanceWarning) # transform the user supplied inputs into the internal inputs. constraints, params = process_constraints(constraints, params) internal_params = reparametrize_to_internal(params, constraints) bounds = _get_internal_bounds(params) # setup the database to pass it to the internal functions for logging if logging: database = prepare_database( path=logging, params=params, comparison_plot_data=comparison_plot_data, dash_options=dash_options, constraints=constraints, **log_options, ) else: database = False # transform the user supplied criterion and gradient function into their # internal counterparts that use internal inputs. # this must be passed to _create_internal_criterion because the internal # gradient creates its own internal criterion function whose calls are # logged differently by the database. logging_decorator = functools.partial( log_evaluation, database=database, tables=["params_history", "criterion_history", "comparison_plot", "timestamps"], ) internal_criterion = _create_internal_criterion( criterion=criterion, params=params, constraints=constraints, criterion_kwargs=criterion_kwargs, logging_decorator=logging_decorator, general_options=general_options, database=database, ) internal_gradient = _create_internal_gradient( gradient=gradient, gradient_options=gradient_options, criterion=criterion, params=params, constraints=constraints, criterion_kwargs=criterion_kwargs, general_options=general_options, database=database, ) internal_kwargs = { "internal_criterion": internal_criterion, "internal_params": internal_params, "bounds": bounds, "internal_gradient": internal_gradient, "database": database, "general_options": general_options, } optim_kwargs.update(internal_kwargs) result_kwargs = { "params": params, "constraints": constraints, "keep_dashboard_alive": general_options.pop("keep_dashboard_alive", False), } return optim_kwargs, database_path, result_kwargs def _pre_process_arguments( params, algorithm, algo_options, logging, dashboard, dash_options ): """Process user supplied arguments without affecting the optimization problem. Args: params (pd.DataFrame or list of pd.DataFrames): See :ref:`params`. algorithm (str or list of strings): Identifier of the optimization algorithm. See :ref:`list_of_algorithms` for supported values. algo_options (dict or list of dicts): algorithm specific configurations for the optimization dashboard (bool): Whether to create and show a dashboard, default is False. See :ref:`dashboard` for details. dash_options (dict or list of dict, optional): Options passed to the dashboard. Supported keys are: - port (int): port where to display the dashboard - no_browser (bool): whether to display the dashboard in a browser - rollover (int): how many iterations to keep in the monitoring plots Returns: optim_kwargs (dict): dictionary collecting the arguments that are going to be passed to _internal_minimize params (pd.DataFrame): The expanded params DataFrame with all needed columns. See :ref:`params`. database_path (str or pathlib.Path or None): path to the database. """ standard_dash_options = {"no_browser": False, "port": None, "rollover": 500} # important for dash_options to be last for standards to be overwritten dash_options = {**standard_dash_options, **dash_options} origin, algo_name = _process_algorithm(algorithm) optim_kwargs = { "origin": origin, "algo_name": algo_name, "algo_options": algo_options, } params = _set_params_defaults_if_missing(params) _check_params(params) database_path = logging if dashboard else None return optim_kwargs, params, dash_options, database_path def _process_algorithm(algorithm): """Identify the algorithm from the user-supplied string. Args: algorithm (str): Package and name of the algorithm. It should be of the format {pkg}_{name}. Returns: origin (str): Name of the package. algo_name (str): Name of the algorithm. """ current_dir_path = Path(__file__).resolve().parent with open(current_dir_path / "algo_dict.json") as j: algos = json.load(j) origin, algo_name = algorithm.split("_", 1) try: assert algo_name in algos[origin], "Invalid algorithm requested: {}".format( algorithm ) except (AssertionError, KeyError): proposals = propose_algorithms(algorithm, algos) raise NotImplementedError( f"{algorithm} is not a valid choice. Did you mean one of {proposals}?" ) return origin, algo_name def _set_params_defaults_if_missing(params): """Set defaults and run checks on the user-supplied params. Args: params (pd.DataFrame): See :ref:`params`. Returns: params (pd.DataFrame): With defaults expanded params DataFrame. """ params = params.copy() if "lower" not in params.columns: params["lower"] = -np.inf else: params["lower"].fillna(-np.inf, inplace=True) if "upper" not in params.columns: params["upper"] = np.inf else: params["upper"].fillna(np.inf, inplace=True) if "group" not in params.columns: params["group"] = "All Parameters" if "name" not in params.columns: names = [_index_element_to_string(tup) for tup in params.index] params["name"] = names return params def _index_element_to_string(element, separator="_"): if isinstance(element, (tuple, list)): as_strings = [str(entry).replace("-", "_") for entry in element] res_string = separator.join(as_strings) else: res_string = str(element) return res_string def _check_params(params): """Check params has a unique index and contains no columns to be created internally. Args: params (pd.DataFrame or list of pd.DataFrames): See :ref:`params`. Raises: AssertionError: The index contains duplicates. ValueError: The DataFrame contains internal columns. """ assert ( not params.index.duplicated().any() ), "No duplicates allowed in the index of params." invalid_names = [ "_fixed", "_fixed_value", "_is_fixed_to_value", "_is_fixed_to_other", ] invalid_present_columns = [] for col in params.columns: if col in invalid_names or col.startswith("_internal"): invalid_present_columns.append(col) if len(invalid_present_columns) > 0: msg = ( "Column names starting with '_internal' and as well as any other of the " f"following columns are not allowed in params:\n{invalid_names}." f"This is violated for:\n{invalid_present_columns}." ) raise ValueError(msg) def _evaluate_criterion(criterion, params, criterion_kwargs): """Evaluate the criterion function for the first time. The comparison_plot_data output is needed to initialize the database. The criterion value
"unhailed", "unhaired", "unhairer", "unhallow", "unhalved", "unhanded", "unhanged", "unhatted", "unhealed", "unhedged", "unheeded", "unhelmed", "unhelped", "unheroic", "unhinges", "unholier", "unholily", "unhooded", "unhooked", "unhorsed", "unhorses", "unhoused", "unhouses", "unhusked", "unialgal", "unicolor", "unideaed", "unifaces", "unifiers", "unifilar", "unilobed", "unimbued", "unionise", "unionize", "uniquest", "unironed", "unironic", "unisexes", "unisonal", "unitages", "unitards", "unitedly", "unitized", "unitizer", "unitizes", "univalve", "univocal", "unjammed", "unjoined", "unjoints", "unjoyful", "unjudged", "unkeeled", "unkenned", "unkennel", "unkinder", "unkindly", "unkingly", "unkinked", "unkissed", "unkosher", "unlacing", "unlading", "unlashed", "unlashes", "unlaying", "unlearns", "unlearnt", "unleased", "unlethal", "unletted", "unlevels", "unlevied", "unlicked", "unlimber", "unlively", "unliving", "unloader", "unloosed", "unloosen", "unlooses", "unlovely", "unloving", "unmailed", "unmakers", "unmaking", "unmanful", "unmapped", "unmarred", "unmasker", "unmatted", "unmeetly", "unmellow", "unmelted", "unmended", "unmeshed", "unmeshes", "unmewing", "unmilled", "unmingle", "unmiters", "unmitred", "unmitres", "unmixing", "unmodish", "unmolded", "unmolten", "unmoored", "unmoving", "unmuffle", "unmuzzle", "unnailed", "unnerved", "unnerves", "unornate", "unpacker", "unpadded", "unparted", "unpaying", "unpeeled", "unpegged", "unpenned", "unpeople", "unperson", "unpicked", "unpiling", "unpinned", "unpitied", "unpitted", "unplaced", "unplaits", "unpliant", "unplowed", "unpoetic", "unpoised", "unpolite", "unpolled", "unposted", "unpotted", "unpretty", "unpriced", "unprimed", "unprized", "unprobed", "unproved", "unpruned", "unpucker", "unpurely", "unpurged", "unpuzzle", "unquiets", "unquotes", "unraised", "unreally", "unreason", "unreeled", "unreeler", "unreeved", "unreeves", "unrented", "unrepaid", "unrepair", "unrested", "unretire", "unrhymed", "unribbed", "unriddle", "unrifled", "unrigged", "unrinsed", "unripely", "unripest", "unripped", "unrobing", "unrolled", "unroofed", "unrooted", "unrounds", "unrulier", "unrushed", "unrusted", "unsaddle", "unsafely", "unsafety", "unsaying", "unscaled", "unscrews", "unseamed", "unseared", "unseated", "unseeded", "unseeing", "unseized", "unserved", "unsettle", "unsewing", "unsexing", "unsexual", "unshaded", "unshaken", "unshamed", "unshaped", "unshapen", "unshared", "unshells", "unshifts", "unshrunk", "unsicker", "unsifted", "unsights", "unsilent", "unsinful", "unslaked", "unsliced", "unslings", "unsmoked", "unsnarls", "unsoaked", "unsocial", "unsoiled", "unsolder", "unsonsie", "unsought", "unsoured", "unspeaks", "unsphere", "unspools", "unsprung", "unstably", "unstacks", "unstates", "unstayed", "unsteels", "unsticks", "unstitch", "unstoned", "unstraps", "unstress", "unstring", "unstuffy", "unsubtle", "unsubtly", "unsurely", "unswathe", "unswayed", "unswears", "untacked", "untanned", "untasted", "untaught", "untended", "untented", "untether", "unthawed", "unthinks", "unthread", "unthrone", "untidied", "untidier", "untidies", "untidily", "untieing", "untilled", "untilted", "untinged", "untipped", "untiring", "untraced", "untracks", "untreads", "untrendy", "untruest", "untrusty", "untruths", "untucked", "untufted", "untuning", "untwined", "untwines", "untwists", "ununbium", "ununited", "unvalued", "unvaried", "unveined", "unversed", "unvested", "unviable", "unvoiced", "unvoices", "unwalled", "unwaning", "unwarier", "unwarily", "unwarmed", "unwarned", "unwarped", "unwasted", "unweaned", "unweaves", "unwedded", "unweeded", "unweight", "unwelded", "unwetted", "unwifely", "unwilled", "unwinder", "unwisdom", "unwisely", "unwisest", "unwished", "unwishes", "unwitted", "unwonted", "unwooded", "unworked", "unyeaned", "unyoking", "upbearer", "upboiled", "upbraids", "upbuilds", "upchucks", "upclimbs", "upcoiled", "upcurled", "upcurved", "upcurves", "updarted", "updaters", "updiving", "updrafts", "updrying", "upending", "upflings", "upflowed", "upfolded", "upgather", "upgazing", "upgirded", "upgrowth", "upheaped", "upheaved", "upheaver", "upheaves", "uphoards", "upholder", "upleaped", "uplifter", "uplights", "uppiling", "uppishly", "upraised", "upraiser", "upraises", "uprating", "upreared", "uprisers", "uprivers", "uprootal", "uprooter", "uproused", "uprouses", "uprushed", "uprushes", "upscaled", "upscales", "upsetter", "upshifts", "upshoots", "upsilons", "upsizing", "upsoared", "upsprang", "upspring", "upsprung", "upstaged", "upstager", "upstages", "upstands", "upstared", "upstares", "upstater", "upstates", "upstroke", "upsurged", "upsurges", "upsweeps", "upswells", "upswings", "uptalked", "uptempos", "upthrown", "upthrows", "upthrust", "uptilted", "uptossed", "uptosses", "uptowner", "uptrends", "upwafted", "upwelled", "uraemias", "uraeuses", "uralites", "uralitic", "uranides", "uranisms", "uranites", "uranitic", "uraniums", "uranylic", "urbanely", "urbanest", "urbanise", "urbanist", "urbanite", "urbanity", "urbanize", "uredinia", "ureteric", "urethans", "urethrae", "urethras", "urgingly", "uridines", "urinated", "urinates", "urinator", "urinemia", "urinemic", "urochord", "urodeles", "uroliths", "uropodal", "uropygia", "uroscopy", "urostyle", "ursiform", "urticant", "urticate", "urushiol", "usaunces", "usquabae", "usquebae", "ustulate", "usufruct", "usurious", "usurpers", "uteruses", "utilidor", "utilizer", "utopians", "utopisms", "utopists", "utricles", "utriculi", "utterers", "uvularly", "uvulitis", "uxorious", "vacantly", "vaccinal", "vaccinas", "vaccinee", "vacuumed", "vagility", "vaginate", "vagotomy", "vagrancy", "vagrants", "vainness", "valanced", "valences", "valerate", "valguses", "valiance", "valiancy", "valiants", "valleyed", "valonias", "valorise", "valorize", "valorous", "valuably", "valuated", "valuates", "valuator", "valvelet", "valvulae", "valvules", "vambrace", "vamoosed", "vamooses", "vamosing", "vampiest", "vampiric", "vanadate", "vanadous", "vandalic", "vandyked", "vandykes", "vanillas", "vanillic", "vanillin", "vanisher", "vanitied", "vanitory", "vanloads", "vanpools", "vantages", "vapidity", "vaporers", "vaporing", "vaporise", "vaporish", "vaporize", "vaporous", "vapoured", "vapourer", "vaqueros", "varactor", "variated", "variates", "variedly", "variform", "variolar", "variolas", "varioles", "variorum", "varistor", "varletry", "varments", "varmints", "varnishy", "varoomed", "vasculum", "vaselike", "vasiform", "vasotomy", "vastiest", "vaticide", "vaulters", "vaultier", "vaunters", "vauntful", "vaunting", "vavasors", "vavasour", "vavassor", "vealiest", "vectored", "vedalias", "vedettes", "vegetant", "vegetate", "vegetist", "vegetive", "veiledly", "veilings", "veillike", "veiniest", "veinings", "veinless", "veinlets", "veinlike", "veinules", "veinulet", "velamina", "velarium", "velarize", "veligers", "velleity", "veloutes", "veluring", "velveret", "velveted", "venality", "venation", "vendable", "vendaces", "vendeuse", "vendible", "vendibly", "veneered", "veneerer", "venenate", "venenose", "venerate", "veneries", "venially", "venisons", "venogram", "venology", "venomers", "venoming", "venosity", "venously", "ventages", "ventails", "ventless", "ventrals", "venturis", "venulose", "venulous", "verandas", "veratria", "veratrin", "veratrum", "verbenas", "verbiles", "verbless", "verdancy", "verderer", "verderor", "verditer", "verdured", "verdures", "verecund", "vergence", "verismos", "veristic", "verities", "verjuice", "vermeils", "vermoulu", "vermuths", "vernacle", "vernally", "vernicle", "verniers", "vernixes", "verrucae", "verrucas", "versants", "verseman", "versemen", "versicle", "versines", "vertexes", "verticil", "vertigos", "vervains", "vesicant", "vesicate", "vesicula", "vesperal", "vespiary", "vesseled", "vestally", "vestiary", "vestigia", "vestings", "vestless", "vestlike", "vestment", "vestries", "vestural", "vestured", "vestures", "vesuvian", "vetivers", "vetivert", "vexation", "vexillar", "vexillum", "vexingly", "viaducts", "vialling", "viaticum", "viatores", "vibrance", "vibrants", "vibrated", "vibratos", "vibrioid", "vibrions", "vibrissa", "vibronic", "vicarate", "vicarial", "viceless", "vicenary", "viceroys", "vicinage", "vicomtes", "victress", "victuals", "vicugnas", "videotex", "videttes", "vidicons", "viewdata", "viewiest", "viewless", "vigneron", "vigoroso", "vilayets", "vileness", "vilifier", "vilifies", "vilipend", "villadom", "villatic", "villeins", "vinasses", "vincible", "vincibly", "vinculum", "vindaloo", "vinegary", "vineries", "vinifera", "vinified", "vinifies", "vinosity", "vinously", "vintager", "violable", "violably", "violater", "violists", "violones", "viomycin", "viperine", "viperish", "viperous", "viragoes", "virelais", "virelays", "viremias", "virgates", "virgules", "viricide", "viridity", "virilely", "virilism", "virilize", "virtuosa", "virtuose", "virtuosi", "virucide", "virusoid", "viscacha", "viscidly", "viscoses", "viselike", "visional", "visioned", "visitant", "visiters", "visoring", "vitalise", "vitalism", "vitalist", "vitalize", "vitamers", "vitellin", "vitellus", "vitesses", "vitiable", "vitiated", "vitiates", "vitiator", "vitrains", "vitrines", "vitriols", "vittling", "vituline", "vivacity", "vivaries", "vivarium", "viverrid", "vividest", "vivified", "vivifier", "vivifies", "vivipara", "vivisect", "vixenish", "vizarded", "vizcacha", "vizirate", "vizirial", "vizoring", "vocables", "vocalese", "vocalics", "vocalise", "vocalism", "vocality", "vocalize", "vocative", "vocoders", "vogueing", "voguings", "voiceful", "voicings", "voidable", "voidance", "voidness", "volcanos", "voleries", "volitant", "volitive", "volleyed", "volleyer", "volplane", "voltaism", "voluming", "volutins", "volution", "volvoxes", "volvulus", "vomerine", "vomiters", "vomitive", "vomitory", "vomitous", "voodooed", "voracity", "vorlages", "vortexes", "vortical", "votaress", "votaries", "votarist", "voteable", "voteless", "votively", "vouchees", "vouching", "voudouns", "voussoir", "vouvrays", "vowelize", "voyaging", "vrooming", "vuggiest", "vulcanic", "vulgarer", "vulgarly", "vulgates", "vulguses", "vulvitis", "wabblers", "wabblier", "wabbling", "wackiest", "waddings", "waddlers", "waddling", "waddying", "wadeable", "wadmaals", "wadmolls", "waesucks", "wafering", "wafflers", "wafflier", "waffling", "waftages", "waftures", "wageless", "wagerers", "wagglier", "waggling", "waggoned", "wagonage", "wagoners", "wagoning", "wagtails", "wahconda", "waiflike", "wailsome", "wainscot", "waisters", "waisting", "waitered", "waitings", "waitrons", "wakandas", "wakeless", "wakeners", "wakening", "wakerife", "walkaway", "walkings", "walkouts", "walkover", "walkyrie", "wallaroo", "walleyed", "walleyes", "walloped", "walloper", "wallowed", "wallower", "walruses", "waltzers", "wamblier", "wambling", "wamefous", "wamefuls", "wammuses", "wampuses", "wanderoo", "wanglers", "wangling", "wanigans", "wannabee", "wannigan", "wantages", "wantoned", "wantoner", "wantonly", "warbling", "wardenry", "wardless", "wardress", "wardroom", "wardship", "wareroom", "warfares", "warhorse", "wariness", "warisons", "warmaker", "warmness", "warmouth", "warpages", "warpaths", "warplane", "warpower", "warpwise", "warragal", "warrener", "warrigal", "warslers", "warsling", "warstled", "warstler", "warstles", "warthogs", "wartiest", "wartimes", "wartless", "wartlike", "warworks", "washbowl", "washdays", "washiest", "washings", "washouts", "washrags", "washtubs", "waspiest", "wasplike", "wassails", "wastable", "wastages", "wastelot", "wasterie", "wasteway", "wastrels", "wastries", "watchcry", "watcheye", "watchout", "waterage", "waterbus", "waterdog", "waterers", "waterhen", "waterier", "waterily", "waterish", "waterlog", "watermen", "waterski", "wattages", "wattapes", "watthour", "wattless", "wattling", "wauchted", "waughted", "waveband", "waveless", "wavelike", "waveoffs", "waverers", "wavicles", "waviness", "waxberry", "waxbills", "waxiness", "waxplant", "waxweeds", "waxwings", "waxworks", "waxworms", "waybills", "waygoing", "waylayer", "waysides", "weakener", "weakfish", "weaklier", "weakling", "weakside", "weanling", "weaponed", "weariest", "weariful", "wearying", "weasands", "weaseled", "weaselly", "weazands", "webbiest", "webbings", "webworms", "wedeling", "wedgiest", "wedlocks", "weediest", "weedless", "weedlike", "weeniest", "weensier", "weepiest", "weepings", "weeviled", "weevilly", "weftwise", "weigelas", "weigelia", "weighers", "weighman", "weighmen", "weighter", "weirdies", "weirding", "weirdoes", "welchers", "welching", "welcomer", "weldable", "weldless", "weldment", "welfares", "welladay", "wellaway", "wellborn", "wellcurb", "welldoer", "wellhole", "wellsite", "welshers", "welshing", "weltered", "weltings", "wenchers", "wenching", "wendigos", "wenniest", "weregild", "wergelds", "wergelts", "wergilds", "wessands", "westered", "westings", "westmost", "wetbacks", "wetproof", "wettable", "wettings", "wetwares", "whackers", "whackier", "whaleman", "whalemen", "whalings", "whammies", "whamming", "whangees", "whanging", "whappers", "whapping", "wharfage", "wharfing", "whatness", "whatnots", "whatsits", "wheatear", "wheatens", "wheedled", "wheedler", "wheedles", "wheelies", "wheelman", "wheelmen", "wheeping", "wheepled", "wheeples", "wheezers", "wheezier", "wheezily", "whelkier", "whelming", "whelping", "wherried", "wherries", "whetters", "whetting", "wheyface", "wheylike", "whickers", "whidding", "whiffers", "whiffets", "whiffing", "whiffled", "whiffler", "whiffles", "whimbrel", "whimpers", "whimseys", "whimsied", "whimsies", "whinchat", "whingers", "whinging", "whiniest", "whinnied", "whinnier", "whinnies", "whipcord", "whiplike", "whippers", "whippets", "whippier", "whiprays", "whipsawn", "whipsaws", "whiptail", "whipworm", "whirlers", "whirlier", "whirlies", "whirried", "whirries", "whirring", "whishing", "whishted", "whiskery", "whiskeys", "whisking", "whispery", "whisting", "whitecap", "whitefly", "whitened", "whiteout", "whitiest", "whitings", "whitlows", "whitrack", "whitters", "whittled", "whittler", "whittles", "whittret", "whizbang", "whizzers", "whizzier", "whizzing", "wholisms", "whomping", "whoofing", "whoopees", "whoopers", "whoopies", "whooplas", "whooshed", "whooshes", "whoredom", "whoreson", "whortles", "whosever", "whosises", "whumping", "whupping", "wickapes", "wickeder", "wickings", "wickiups", "wickless", "wickyups", "wicopies", "widdling", "widebody", "wideners", "wideness", "wideouts", "widgeons", "widowing", "widthway", "wielders", "wieldier", "wifedoms", "wifehood", "wifeless", "wifelier", "wifelike", "wiftiest", "wiggiest", "wiggings", "wigglers", "wigglier", "wigmaker", "wildered", "wildings", "wildling", "wiliness", "willable", "williwau", "williwaw", "willowed", "willower", "willyard", "willyart", "willying", "willywaw", "wimbling", "wimpiest", "wimpling", "winchers", "winching", "windable", "windages", "windbags", "windbell", "windburn", "windflaw", "windgall", "windiest", "windigos", "windless", "windling", "windpipe", "windrows", "windsock", "windways", "wineless", "winesaps", "wineshop", "wineskin", "winesops", "wingback", "wingbows", "wingding", "wingedly", "wingiest", "winglets", "winglike", "wingover", "wingtips", "winkling", "winnable", "winnocks", "winnowed", "winnower", "winsomer", "wintered", "winterer", "winterly",
<filename>sportsbetting/user_functions.py #!/usr/bin/env python3 """ Fonctions principales d'assistant de paris """ import colorama import copy import inspect import socket import sqlite3 import sys import termcolor import time import traceback import urllib import urllib.error import urllib.request from itertools import combinations, permutations from pprint import pprint import numpy as np import selenium import selenium.common import unidecode import urllib3 from bs4 import BeautifulSoup from multiprocessing.pool import ThreadPool import sports_betting.sportsbetting as sportsbetting from sports_betting.sportsbetting import selenium_init from sports_betting.sportsbetting.database_functions import (get_id_formatted_competition_name, get_competition_by_id, import_teams_by_url, import_teams_by_sport, import_teams_by_competition_id_thesportsdb) from sports_betting.sportsbetting.parser_functions import parse from sports_betting.sportsbetting.auxiliary_functions import (valid_odds, format_team_names, merge_dict_odds, afficher_mises_combine, cotes_combine_all_sites, defined_bets, binomial, best_match_base, filter_dict_dates, get_nb_issues, best_combine_reduit, filter_dict_minimum_odd) from sports_betting.sportsbetting.basic_functions import (gain2, mises2, gain, mises, mises_freebet, cotes_freebet, gain_pari_rembourse_si_perdant, gain_freebet2, mises_freebet2, mises_pari_rembourse_si_perdant, gain_promo_gain_cote, mises_promo_gain_cote, gain_gains_nets_boostes, mises_gains_nets_boostes, gain3, mises3) from sports_betting.sportsbetting.lambda_functions import get_best_odds, get_profit def parse_competition(competition, sport="football", *sites): """ Retourne les cotes d'une competition donnée pour un ou plusieurs sites de paris. Si aucun site n'est choisi, le parsing se fait sur l'ensemble des bookmakers reconnus par l'ARJEL """ if sportsbetting.ABORT: raise sportsbetting.AbortException try: _id, formatted_name = get_id_formatted_competition_name(competition, sport) except TypeError: print("Competition inconnue") return print(formatted_name, *sites) if not sites: sites = ['betclic', 'betstars', 'bwin', 'france_pari', 'joa', 'netbet', 'parionssport', 'pasinobet', 'pmu', 'unibet', 'winamax', 'zebet'] res_parsing = {} for site in sites: if len(sites) > 1: print(site) url = get_competition_by_id(_id, site) try: if url: try: res_parsing[site] = parse(site, url) except urllib3.exceptions.MaxRetryError: selenium_init.DRIVER[site].quit() print("Redémarrage de selenium") selenium_init.start_selenium(site, timeout=20) res_parsing[site] = parse(site, url) except sqlite3.OperationalError: print("Erreur dans la base de données, redémarrage en cours") res_parsing[site] = parse(site, url) except urllib.error.URLError: print("{} non accessible sur {} (délai écoulé)".format(competition, site)) except KeyboardInterrupt: res_parsing[site] = {} except selenium.common.exceptions.TimeoutException: print("Element non trouvé par selenium ({} sur {})".format(competition, site)) except sportsbetting.UnavailableCompetitionException: print("{} non disponible sur {}".format(competition, site)) except socket.timeout: print("{} non accessible sur {} (timeout socket)".format(competition, site)) except selenium.common.exceptions.StaleElementReferenceException: print("StaleElement non trouvé par selenium ({} sur {})".format(competition, site)) except selenium.common.exceptions.WebDriverException: print("Connection closed ({} sur {})".format(competition, site)) res = format_team_names(res_parsing, sport, competition) out = valid_odds(merge_dict_odds(res), sport) if inspect.currentframe().f_back.f_code.co_name != "<module>": return out return out def parse_competitions_site(competitions, sport, site): list_odds = [] if len(competitions) > 40 and site == "winamax": # to avoid being blocked by winamax competitions = competitions[:40] sportsbetting.SITE_PROGRESS[site] = 0 try: for competition in competitions: list_odds.append(parse_competition(competition, sport, site)) sportsbetting.PROGRESS += 100 / (len(competitions) * sportsbetting.SUB_PROGRESS_LIMIT) sportsbetting.SITE_PROGRESS[site] += 100 / len(competitions) except sportsbetting.UnavailableSiteException: print("{} non accessible".format(site)) sportsbetting.SITE_PROGRESS[site] = 100 except sportsbetting.AbortException: print("Interruption", site) except sqlite3.OperationalError: print("Database is locked", site) if site in sportsbetting.SELENIUM_SITES: selenium_init.DRIVER[site].quit() return merge_dict_odds(list_odds) def parse_competitions(competitions, sport="football", *sites): sites_order = ['bwin', 'parionssport', 'betstars', 'pasinobet', 'joa', 'unibet', 'betclic', 'pmu', 'france_pari', 'netbet', 'winamax', 'zebet'] if not sites: sites = sites_order sportsbetting.EXPECTED_TIME = 28 + len(competitions) * 12.5 selenium_sites = sportsbetting.SELENIUM_SITES.intersection(sites) selenium_required = ((inspect.currentframe().f_back.f_code.co_name in ["<module>", "parse_thread"] or 'test' in inspect.currentframe().f_back.f_code.co_name) and (selenium_sites or not sites)) sportsbetting.SELENIUM_REQUIRED = selenium_required sites = [site for site in sites_order if site in sites] sportsbetting.PROGRESS = 0 if selenium_required: for site in selenium_sites: while True: headless = sport != "handball" or site != "bwin" if sportsbetting.ABORT or selenium_init.start_selenium(site, headless, timeout=15): break colorama.init() print(termcolor.colored('Restarting', 'yellow')) colorama.Style.RESET_ALL colorama.deinit() sportsbetting.PROGRESS += 100/len(selenium_sites) sportsbetting.PROGRESS = 0 sportsbetting.SUB_PROGRESS_LIMIT = len(sites) for competition in competitions: if competition == sport or "Tout le" in competition: import_teams_by_sport(sport) else: id_competition = get_id_formatted_competition_name(competition, sport)[0] if id_competition < 0: import_teams_by_competition_id_thesportsdb(id_competition) else: import_teams_by_url("http://www.comparateur-de-cotes.fr/comparateur/" + sport + "/a-ed" + str(id_competition)) list_odds = [] try: sportsbetting.IS_PARSING = True list_odds = ThreadPool(7).map(lambda x: parse_competitions_site(competitions, sport, x), sites) sportsbetting.ODDS[sport] = merge_dict_odds(list_odds) except Exception: print(traceback.format_exc(), file=sys.stderr) sportsbetting.IS_PARSING = False if selenium_required: colorama.init() print(termcolor.colored('Drivers closed', 'green')) colorama.Style.RESET_ALL colorama.deinit() sportsbetting.ABORT = False def odds_match(match, sport="football"): """ Retourne les cotes d'un match donné sur tous les sites de l'ARJEL """ match = unidecode.unidecode(match) all_odds = sportsbetting.ODDS[sport] opponents = match.split('-') for match_name in all_odds: if (opponents[0].lower().strip() in unidecode.unidecode(match_name.split("-")[0].lower()) and opponents[1].lower().strip() in unidecode.unidecode(match_name.split("-")[1].lower())): break else: for match_name in all_odds: if (opponents[0].lower().strip() in unidecode.unidecode(match_name.lower()) and opponents[1].lower().strip() in unidecode.unidecode(match_name.lower())): break else: return None, None print(match_name) return match_name, copy.deepcopy(all_odds[match_name]) def best_stakes_match(match, site, bet, minimum_odd, sport="football"): """ Pour un match, un bookmaker, une somme à miser sur ce bookmaker et une cote minimale donnés, retourne la meilleure combinaison de paris à placer """ best_match, all_odds = odds_match(match, sport) if not all_odds: print("No match found") return pprint(all_odds) odds_site = all_odds['odds'][site] best_odds = copy.deepcopy(odds_site) best_profit = -float("inf") n = len(all_odds['odds'][site]) best_sites = [site for _ in range(n)] best_i = 0 best_overall_odds = None bets = None sites = None for odds in all_odds['odds'].items(): for i in range(n): if odds[1][i] > best_odds[i] and (odds[1][i] >= 1.1 or odds[0] == "pmu"): best_odds[i] = odds[1][i] best_sites[i] = odds[0] for i in range(n): if odds_site[i] >= minimum_odd: odds_to_check = (best_odds[:i] + [odds_site[i]] + best_odds[i + 1:]) profit = gain2(odds_to_check, i, bet) if profit > best_profit: best_profit = profit best_overall_odds = odds_to_check sites = best_sites[:i] + [site] + best_sites[i + 1:] bets = mises2(odds_to_check, bet, i) best_i = i if best_overall_odds: mises2(best_overall_odds, bet, best_i, True) afficher_mises_combine(best_match.split(" / "), [sites], [bets], all_odds["odds"], sport) else: print("No match found") def best_match_under_conditions(site, minimum_odd, bet, sport="football", date_max=None, time_max=None, date_min=None, time_min=None, one_site=False, live=False): """ Retourne le meilleur match sur lequel miser lorsqu'on doit miser une somme donnée à une cote donnée. Cette somme peut-être sur seulement une issue (one_site=False) ou bien répartie sur plusieurs issues d'un même match (one_site=True), auquel cas, chacune des cotes du match doivent respecter le critère de cote minimale. """ odds_function = get_best_odds(one_site) profit_function = get_profit(bet, one_site) criteria = lambda odds_to_check, i: ((not one_site and odds_to_check[i] >= minimum_odd) or (one_site and all(odd >= minimum_odd for odd in odds_to_check))) display_function = lambda best_overall_odds, best_rank: (mises2(best_overall_odds, bet, best_rank, True) if not one_site else mises(best_overall_odds, bet, True)) result_function = lambda best_overall_odds, best_rank: (mises2(best_overall_odds, bet, best_rank, False) if not one_site else mises(best_overall_odds, bet, False)) best_match_base(odds_function, profit_function, criteria, display_function, result_function, site, sport, date_max, time_max, date_min, time_min, one_site=one_site) def best_match_under_conditions2(site, minimum_odd, stake, sport="football", date_max=None, time_max=None, date_min=None, time_min=None): all_odds = filter_dict_dates(sportsbetting.ODDS[sport], date_max, time_max, date_min, time_min) best_profit = -float("inf") best_match = None best_overall_odds = None sites = None nb_matches = len(all_odds) n = get_nb_issues(sport) for match in all_odds: sportsbetting.PROGRESS += 100 / nb_matches if site in all_odds[match]['odds']: odds_site = all_odds[match]['odds'][site] best_odds = copy.deepcopy(odds_site) best_sites = [site for _ in range(n)] for odds in all_odds[match]['odds'].items(): for i in range(n): if odds[1][i] > best_odds[i] and (odds[1][i] >= 1.1 or odds[0] == "pmu"): best_odds[i] = odds[1][i] best_sites[i] = odds[0] for odd_i, site_i in zip(best_odds, best_sites): if odd_i < 1.1 and site_i != "pmu": break else: profit = gain3(odds_site, best_odds, stake, minimum_odd) if profit > best_profit: best_profit = profit best_odds_site = copy.deepcopy(odds_site) best_best_odds = copy.deepcopy(best_odds) best_match = match stakes, best_indices = mises3(odds_site, best_odds, stake, minimum_odd) sites = [site if i in best_indices else best_sites[i] for i in range(n)] if best_match: print(best_match) pprint(all_odds[best_match]) mises3(best_odds_site, best_best_odds, stake, minimum_odd, True) afficher_mises_combine([best_match], [sites], [stakes], all_odds[best_match]["odds"], sport) else: print("No match found") def best_match_pari_gagnant(site, minimum_odd, bet, sport="football", date_max=None, time_max=None, date_min=None, time_min=None, nb_matches_combine=1): """ Retourne le meilleur match sur lequel miser lorsqu'on doit gagner un pari à une cote donnée sur un site donné. """ stakes = [] n = 2 + (sport not in ["tennis", "volleyball", "basketball", "nba"]) for _ in range(n**nb_matches_combine): stakes.append([bet, site, minimum_odd]) best_match_stakes_to_bet(stakes, nb_matches_combine, sport, date_max, time_max, True) def best_match_freebet(site, freebet, sport="football", live=False, date_max=None, time_max=None, date_min=None, time_min=None): """ Retourne le match qui génère le meilleur gain pour un unique freebet placé, couvert avec de l'argent réel. """ fact_live = 1 - 0.2 * live odds_function = lambda best_odds, odds_site, i: (best_odds[:i] + [odds_site[i] * fact_live - 1] + best_odds[i + 1:]) profit_function = lambda odds_to_check, i: gain2(odds_to_check, i) + 1 criteria = lambda odds_to_check, i: True display_function = lambda x, i: mises_freebet(x[:i] + [x[i] + 1] + x[i + 1:], freebet, i, True) result_function = lambda x, i: mises_freebet(x[:i] + [x[i] + 1] + x[i + 1:], freebet, i, False) best_match_base(odds_function, profit_function, criteria, display_function, result_function, site, sport, date_max, time_max, date_min, time_min, freebet=True) def best_match_freebet2(site, freebet, sport="football", live=False, date_max=None, time_max=None, date_min=None, time_min=None): """ Retourne le match qui génère le meilleur gain pour un unique freebet placé, couvert avec de l'argent réel. """ fact_live = 1 - 0.2 * live odds_function = lambda best_odds, odds_site, i: (best_odds[:i] + [odds_site[i] * fact_live - 1] + best_odds[i + 1:]) profit_function = lambda
sage: RowStandardTableauTuple([[[4]],[[2,3],[1]]]).residue_sequence(3,(0,1)).row_standard_tableaux().residue_sequence() 3-residue sequence (0,1,2,0) with multicharge (0,1) sage: StandardTableauTuple([[[4]],[[1,3],[2]]]).residue_sequence(3,(0,1)).row_standard_tableaux().residue_sequence() 3-residue sequence (1,0,2,0) with multicharge (0,1) """ return self._residue def an_element(self): r""" Return a particular element of ``self``. EXAMPLES:: sage: RowStandardTableau([[2,3],[1]]).residue_sequence(3).row_standard_tableaux().an_element() [[2, 3], [1]] sage: StandardTableau([[1,3],[2]]).residue_sequence(3).row_standard_tableaux().an_element() [[1, 3], [2]] sage: RowStandardTableauTuple([[[4]],[[2,3],[1]]]).residue_sequence(3,(0,1)).row_standard_tableaux().an_element() sage: StandardTableauTuple([[[4]],[[1,3],[2]]]).residue_sequence(3,(0,1)).row_standard_tableaux().an_element() ([[4], [3], [1], [2]], []) """ try: return self.unrank(0) except ValueError: return None class RowStandardTableauTuples_residue_shape(RowStandardTableauTuples_residue): """ All row standard tableau tuples with a fixed residue and shape. INPUT: - ``shape`` -- the shape of the partitions or partition tuples - ``residue`` -- the residue sequence of the label EXAMPLES:: sage: res = RowStandardTableauTuple([[[3,6],[1]],[[5,7],[4],[2]]]).residue_sequence(3,(0,0)) sage: tabs = res.row_standard_tableaux([[2,1],[2,1,1]]); tabs Row standard (2,1|2,1^2)-tableaux with 3-residue sequence (2,1,0,2,0,1,1) and multicharge (0,0) sage: tabs.shape() ([2, 1], [2, 1, 1]) sage: tabs.level() 2 sage: tabs[:6] [([[5, 7], [4]], [[3, 6], [1], [2]]), ([[5, 7], [1]], [[3, 6], [4], [2]]), ([[3, 7], [4]], [[5, 6], [1], [2]]), ([[3, 7], [1]], [[5, 6], [4], [2]]), ([[5, 6], [4]], [[3, 7], [1], [2]]), ([[5, 6], [1]], [[3, 7], [4], [2]])] """ def __init__(self, residue, shape): r""" Initialize ``self``. .. WARNING:: Input is not checked; please use :class:`RowStandardTableauTuples` to ensure the options are properly parsed. TESTS:: sage: res = RowStandardTableauTuple([[[1,3]],[[4,5],[2,6]]]).residue_sequence(3,(0,0)) sage: tabs = res.row_standard_tableaux([[2],[2,2]]) sage: TestSuite(tabs).run() """ if residue.size() != shape.size(): raise ValueError('the size of the shape and the length of the residue defence must coincide!') super(RowStandardTableauTuples_residue_shape, self).__init__(residue) self._shape = shape # The _standard_tableaux attribute below is used to generate the # tableaux in this class. The key observation is that any row standard # tableau is standard if we stretch it out to a tableau with one row in # each component multicharge = residue.multicharge() if shape.level() == 1: standard_shape = [[r] for r in shape] charge = [multicharge[0] - r for r in range(len(shape))] else: standard_shape = [[r] for mu in shape for r in mu] charge = [multicharge[c] - r for c in range(len(shape)) for r in range(len(shape[c]))] from sage.combinat.tableau_residues import ResidueSequence res = ResidueSequence(residue.quantum_characteristic(), charge, residue.residues()) self._standard_tableaux = res.standard_tableaux(standard_shape) # to convert the tableaux in self._standard_tableaux to row standard # tableau we use the list _cumulative_lengths, which keeps track of the # cumulative lengths of each component if shape.level() == 1: self._cumulative_lengths = [0, len(shape)] else: self._cumulative_lengths = [0]*(shape.level()+1) for c in range(len(shape)): self._cumulative_lengths[c+1] = self._cumulative_lengths[c] + len(shape[c]) def __contains__(self, t): """ Check containment of ``t`` in ``self``. EXAMPLES:: sage: tabs = RowStandardTableauTuple([[[1,3]],[[4],[2]]]).residue_sequence(3,(0,1)).row_standard_tableaux([[2],[1,1]]) sage: [ [[1,2,3,4]], [[]] ] in tabs False sage: ([[1, 3]], [[4], [2]]) in tabs True """ if not isinstance(t, self.element_class): try: t = RowStandardTableauTuple(t) except ValueError: return False return (t.shape() == self._shape and t.residue_sequence(self._quantum_characteristic,self._multicharge) == self._residue) def _repr_(self): """ Return the string representation of ``self``. EXAMPLES:: sage: RowStandardTableau([[1,3],[2,4]]).residue_sequence(3).row_standard_tableaux([2,2]) Row standard (2^2)-tableaux with 3-residue sequence (0,2,1,0) and multicharge (0) """ return 'Row standard ({})-tableaux with {}'.format(self._shape._repr_compact_high(), self._residue.__str__('and')) def __iter__level_one(self): r""" Iterate through the row standard tableaux in ``self``. We construct this sequence of tableaux recursively, as it is easier (and more useful for applications to graded Specht modules). EXAMPLES:: sage: RowStandardTableau([[2,4],[1,3]]).residue_sequence(3).row_standard_tableaux([2,2])[:] # indirect doctest [[[3, 4], [1, 2]], [[2, 4], [1, 3]]] """ if self._size == 0: yield RowStandardTableau([]) for t in self._standard_tableaux: yield RowStandardTableau([s[0] for s in t]) def __iter__higher_levels(self): r""" Iterate through the row standard tableaux in ``self``. We construct this sequence of tableaux recursively, as it is easier (and more useful for applications to graded Specht modules). EXAMPLES:: sage: RowStandardTableauTuple([[[2,4]],[[3,5],[1]]]).residue_sequence(3,[0,1]).row_standard_tableaux([[2],[2,1]])[:] # indirect doctest [([[2, 4]], [[3, 5], [1]]), ([[1, 4]], [[3, 5], [2]]), ([[2, 3]], [[4, 5], [1]]), ([[1, 3]], [[4, 5], [2]])] """ if self._size == 0: yield self.element_class(self, [[] for l in range(self._level)], check=False) # the empty tableaux return for t in self._standard_tableaux: yield self.element_class(self, [ [ t[r][0] for r in range(self._cumulative_lengths[c], self._cumulative_lengths[c+1])] for c in range(self._level)], check=False) @lazy_attribute def __iter__(self): r""" Iterate through the row standard tableaux in ``self``. We construct this sequence of tableaux recursively, as it is easier (and more useful for applications to graded Specht modules). EXAMPLES:: sage: RowStandardTableau([[2,4],[1,3]]).residue_sequence(3).row_standard_tableaux([1,1,1,1])[:] # indirect doctest [[[3], [1], [4], [2]], [[2], [1], [4], [3]]] sage: RowStandardTableauTuple([[[2,4]],[[3,5],[1]]]).residue_sequence(3,[0,1]).row_standard_tableaux([[3],[1,1]])[:] # indirect doctest [([[2, 4, 5]], [[3], [1]]), ([[1, 4, 5]], [[3], [2]]), ([[2, 3, 5]], [[4], [1]]), ([[1, 3, 5]], [[4], [2]])] """ if self._level == 1: return self.__iter__level_one else: return self.__iter__higher_levels #-------------------------------------------------- # Standard tableau tuples - parent classes #-------------------------------------------------- class StandardTableauTuples(RowStandardTableauTuples): """ A factory class for the various classes of tuples of standard tableau. INPUT: There are three optional arguments: - ``level`` -- the :meth:`~TableauTuples.level` of the tuples of tableaux - ``size`` -- the :meth:`~TableauTuples.size` of the tuples of tableaux - ``shape`` -- a list or a partition tuple specifying the :meth:`shape` of the standard tableau tuples It is not necessary to use the keywords. If they are not used then the first integer argument specifies the :meth:`~TableauTuples.level` and the second the :meth:`~TableauTuples.size` of the tableau tuples. OUTPUT: The appropriate subclass of :class:`StandardTableauTuples`. A tuple of standard tableau is a tableau whose entries are positive integers which increase from left to right along the rows, and from top to bottom down the columns, in each component. The entries do NOT need to increase from left to right along the components. .. NOTE:: Sage uses the English convention for (tuples of) partitions and tableaux: the longer rows are displayed on top. As with :class:`PartitionTuple`, in sage the cells, or nodes, of partition tuples are 0-based. For example, the (lexicographically) first cell in any non-empty partition tuple is `[0,0,0]`. EXAMPLES:: sage: tabs=StandardTableauTuples([[3],[2,2]]); tabs Standard tableau tuples of shape ([3], [2, 2]) sage: tabs.cardinality() 70 sage: tabs[10:16] [([[1, 2, 3]], [[4, 6], [5, 7]]), ([[1, 2, 4]], [[3, 6], [5, 7]]), ([[1, 3, 4]], [[2, 6], [5, 7]]), ([[2, 3, 4]], [[1, 6], [5, 7]]), ([[1, 2, 5]], [[3, 6], [4, 7]]), ([[1, 3, 5]], [[2, 6], [4, 7]])] sage: tabs=StandardTableauTuples(level=3); tabs Standard tableau tuples of level 3 sage: tabs[100] ([[1, 2], [3]], [], [[4]]) sage: StandardTableauTuples()[0] () TESTS:: sage: TestSuite( StandardTableauTuples() ).run() sage: TestSuite( StandardTableauTuples(level=1) ).run() sage: TestSuite( StandardTableauTuples(level=4) ).run() sage: TestSuite( StandardTableauTuples(size=0) ).run(max_runs=50) # recursion depth exceeded with default max_runs sage: TestSuite( StandardTableauTuples(size=6) ).run() sage: TestSuite( StandardTableauTuples(level=1, size=0) ).run() sage: TestSuite( StandardTableauTuples(level=1, size=0) ).run() sage: TestSuite( StandardTableauTuples(level=1, size=10) ).run() sage: TestSuite( StandardTableauTuples(level=4, size=0) ).run() sage: TestSuite( StandardTableauTuples(level=4, size=0) ).run() .. SEEALSO:: - :class:`TableauTuples` - :class:`Tableau` - :class:`StandardTableau` - :class:`StandardTableauTuples` """ Element = StandardTableauTuple level_one_parent_class = StandardTableaux_all # used in element_constructor @staticmethod def __classcall_private__(cls, *args, **kwargs): r""" This is a factory class which returns the appropriate parent based on arguments. See the documentation for :class:`StandardTableauTuples` for more information. EXAMPLES:: sage: StandardTableauTuples() Standard tableau tuples sage: StandardTableauTuples(4) Standard tableau tuples of level 4 sage: StandardTableauTuples(4,3) Standard tableau tuples of level 4 and size 3 sage: StandardTableauTuples([ [2,1],[1],[1,1,1],[3,2] ]) Standard tableau tuples of shape ([2, 1], [1], [1, 1, 1], [3, 2]) TESTS:: sage: StandardTableauTuples([ [2,1],[1],[1,1,1],[3,2,3] ]) Traceback (most recent call last): ... ValueError: the shape must be a partition tuple sage: P = PartitionTuples() sage: pt = P([[1]]); pt ([1]) sage: StandardTableauTuples(pt) Standard tableaux of shape [1] """ from sage.combinat.partition_tuple import PartitionTuple # first check the keyword arguments level = kwargs.get('level', None) shape = kwargs.get('shape', None) size = kwargs.get('size', None) for key in kwargs: if key not in ['level','shape','size']: raise ValueError('%s is not a valid argument for StandardTableauTuples' % key) # now process the positional arguments if args: #the first argument could be either the level or the shape if isinstance(args[0], (int, Integer)): if level is not None: raise ValueError('the level was specified more than once') else: level = args[0] else: if shape is not None: raise ValueError('the shape was specified more than once') else: shape = args[0] # we check that it is a PartitionTuple below if len(args) == 2: # both the level and size were specified if level is not None and size is not None: raise ValueError('the level or
9 * m.b683 <= 0) m.e918 = Constraint(expr= m.x591 - 9 * m.b684 <= 0) m.e919 = Constraint(expr= m.x592 + 9 * m.b682 <= 9) m.e920 = Constraint(expr= m.x593 + 9 * m.b683 <= 9) m.e921 = Constraint(expr= m.x594 + 9 * m.b684 <= 9) m.e922 = Constraint(expr= 5 * m.b685 + m.x775 == 0) m.e923 = Constraint(expr= 4 * m.b686 + m.x776 == 0) m.e924 = Constraint(expr= 6 * m.b687 + m.x777 == 0) m.e925 = Constraint(expr= 8 * m.b688 + m.x778 == 0) m.e926 = Constraint(expr= 7 * m.b689 + m.x779 == 0) m.e927 = Constraint(expr= 6 * m.b690 + m.x780 == 0) m.e928 = Constraint(expr= 6 * m.b691 + m.x781 == 0) m.e929 = Constraint(expr= 9 * m.b692 + m.x782 == 0) m.e930 = Constraint(expr= 4 * m.b693 + m.x783 == 0) m.e931 = Constraint(expr= 10 * m.b694 + m.x784 == 0) m.e932 = Constraint(expr= 9 * m.b695 + m.x785 == 0) m.e933 = Constraint(expr= 5 * m.b696 + m.x786 == 0) m.e934 = Constraint(expr= 6 * m.b697 + m.x787 == 0) m.e935 = Constraint(expr= 10 * m.b698 + m.x788 == 0) m.e936 = Constraint(expr= 6 * m.b699 + m.x789 == 0) m.e937 = Constraint(expr= 7 * m.b700 + m.x790 == 0) m.e938 = Constraint(expr= 7 * m.b701 + m.x791 == 0) m.e939 = Constraint(expr= 4 * m.b702 + m.x792 == 0) m.e940 = Constraint(expr= 4 * m.b703 + m.x793 == 0) m.e941 = Constraint(expr= 3 * m.b704 + m.x794 == 0) m.e942 = Constraint(expr= 2 * m.b705 + m.x795 == 0) m.e943 = Constraint(expr= 5 * m.b706 + m.x796 == 0) m.e944 = Constraint(expr= 6 * m.b707 + m.x797 == 0) m.e945 = Constraint(expr= 7 * m.b708 + m.x798 == 0) m.e946 = Constraint(expr= 2 * m.b709 + m.x799 == 0) m.e947 = Constraint(expr= 5 * m.b710 + m.x800 == 0) m.e948 = Constraint(expr= 2 * m.b711 + m.x801 == 0) m.e949 = Constraint(expr= 4 * m.b712 + m.x802 == 0) m.e950 = Constraint(expr= 7 * m.b713 + m.x803 == 0) m.e951 = Constraint(expr= 4 * m.b714 + m.x804 == 0) m.e952 = Constraint(expr= 3 * m.b715 + m.x805 == 0) m.e953 = Constraint(expr= 9 * m.b716 + m.x806 == 0) m.e954 = Constraint(expr= 3 * m.b717 + m.x807 == 0) m.e955 = Constraint(expr= 7 * m.b718 + m.x808 == 0) m.e956 = Constraint(expr= 2 * m.b719 + m.x809 == 0) m.e957 = Constraint(expr= 9 * m.b720 + m.x810 == 0) m.e958 = Constraint(expr= 3 * m.b721 + m.x811 == 0) m.e959 = Constraint(expr= m.b722 + m.x812 == 0) m.e960 = Constraint(expr= 9 * m.b723 + m.x813 == 0) m.e961 = Constraint(expr= 2 * m.b724 + m.x814 == 0) m.e962 = Constraint(expr= 6 * m.b725 + m.x815 == 0) m.e963 = Constraint(expr= 3 * m.b726 + m.x816 == 0) m.e964 = Constraint(expr= 4 * m.b727 + m.x817 == 0) m.e965 = Constraint(expr= 8 * m.b728 + m.x818 == 0) m.e966 = Constraint(expr= m.b729 + m.x819 == 0) m.e967 = Constraint(expr= 2 * m.b730 + m.x820 == 0) m.e968 = Constraint(expr= 5 * m.b731 + m.x821 == 0) m.e969 = Constraint(expr= 2 * m.b732 + m.x822 == 0) m.e970 = Constraint(expr= 3 * m.b733 + m.x823 == 0) m.e971 = Constraint(expr= 4 * m.b734 + m.x824 == 0) m.e972 = Constraint(expr= 3 * m.b735 + m.x825 == 0) m.e973 = Constraint(expr= 5 * m.b736 + m.x826 == 0) m.e974 = Constraint(expr= 7 * m.b737 + m.x827 == 0) m.e975 = Constraint(expr= 6 * m.b738 + m.x828 == 0) m.e976 = Constraint(expr= 2 * m.b739 + m.x829 == 0) m.e977 = Constraint(expr= 8 * m.b740 + m.x830 == 0) m.e978 = Constraint(expr= 4 * m.b741 + m.x831 == 0) m.e979 = Constraint(expr= m.b742 + m.x832 == 0) m.e980 = Constraint(expr= 4 * m.b743 + m.x833 == 0) m.e981 = Constraint(expr= m.b744 + m.x834 == 0) m.e982 = Constraint(expr= 2 * m.b745 + m.x835 == 0) m.e983 = Constraint(expr= 5 * m.b746 + m.x836 == 0) m.e984 = Constraint(expr= 2 * m.b747 + m.x837 == 0) m.e985 = Constraint(expr= 9 * m.b748 + m.x838 == 0) m.e986 = Constraint(expr= 2 * m.b749 + m.x839 == 0) m.e987 = Constraint(expr= 9 * m.b750 + m.x840 == 0) m.e988 = Constraint(expr= 5 * m.b751 + m.x841 == 0) m.e989 = Constraint(expr= 8 * m.b752 + m.x842 == 0) m.e990 = Constraint(expr= 4 * m.b753 + m.x843 == 0) m.e991 = Constraint(expr= 2 * m.b754 + m.x844 == 0) m.e992 = Constraint(expr= 3 * m.b755 + m.x845 == 0) m.e993 = Constraint(expr= 8 * m.b756 + m.x846 == 0) m.e994 = Constraint(expr= 10 * m.b757 + m.x847 == 0) m.e995 = Constraint(expr= 6 * m.b758 + m.x848 == 0) m.e996 = Constraint(expr= 3 * m.b759 + m.x849 == 0) m.e997 = Constraint(expr= 4 * m.b760 + m.x850 == 0) m.e998 = Constraint(expr= 8 * m.b761 + m.x851 == 0) m.e999 = Constraint(expr= 7 * m.b762 + m.x852 == 0) m.e1000 = Constraint(expr= 7 * m.b763 + m.x853 == 0) m.e1001 = Constraint(expr= 3 * m.b764 + m.x854 == 0) m.e1002 = Constraint(expr= 9 * m.b765 + m.x855 == 0) m.e1003 = Constraint(expr= 4 * m.b766 + m.x856 == 0) m.e1004 = Constraint(expr= 8 * m.b767 + m.x857 == 0) m.e1005 = Constraint(expr= 6 * m.b768 + m.x858 == 0) m.e1006 = Constraint(expr= 2 * m.b769 + m.x859 == 0) m.e1007 = Constraint(expr= m.b770 + m.x860 == 0) m.e1008 = Constraint(expr= 3 * m.b771 + m.x861 == 0) m.e1009 = Constraint(expr= 8 * m.b772 + m.x862 == 0) m.e1010 = Constraint(expr= 3 * m.b773 + m.x863 == 0) m.e1011 = Constraint(expr= 4 * m.b774 + m.x864 == 0) m.e1012 = Constraint(expr= m.b595 - m.b596 <= 0) m.e1013 = Constraint(expr= m.b595 - m.b597 <= 0) m.e1014 = Constraint(expr= m.b596 - m.b597 <= 0) m.e1015 = Constraint(expr= m.b598 - m.b599 <= 0) m.e1016 = Constraint(expr= m.b598 - m.b600 <= 0) m.e1017 = Constraint(expr= m.b599 - m.b600 <= 0) m.e1018 = Constraint(expr= m.b601 - m.b602 <= 0) m.e1019 = Constraint(expr= m.b601 - m.b603 <= 0) m.e1020 = Constraint(expr= m.b602 - m.b603 <= 0) m.e1021 = Constraint(expr= m.b604 - m.b605 <= 0) m.e1022 = Constraint(expr= m.b604 - m.b606 <= 0) m.e1023 = Constraint(expr= m.b605 - m.b606 <= 0) m.e1024 = Constraint(expr= m.b607 - m.b608 <= 0) m.e1025 = Constraint(expr= m.b607 - m.b609 <= 0) m.e1026 = Constraint(expr= m.b608 - m.b609 <= 0) m.e1027 = Constraint(expr= m.b610 - m.b611 <= 0) m.e1028 = Constraint(expr= m.b610 - m.b612 <= 0) m.e1029 = Constraint(expr= m.b611 - m.b612 <= 0) m.e1030 = Constraint(expr= m.b613 - m.b614 <= 0) m.e1031 = Constraint(expr= m.b613 - m.b615 <= 0) m.e1032 = Constraint(expr= m.b614 - m.b615 <= 0) m.e1033 = Constraint(expr= m.b616 - m.b617 <= 0) m.e1034 = Constraint(expr= m.b616 - m.b618 <= 0) m.e1035 = Constraint(expr= m.b617 - m.b618 <= 0) m.e1036 = Constraint(expr= m.b619 - m.b620 <= 0) m.e1037 = Constraint(expr= m.b619 - m.b621 <= 0) m.e1038 = Constraint(expr= m.b620 - m.b621 <= 0) m.e1039 = Constraint(expr= m.b622 - m.b623 <= 0) m.e1040 = Constraint(expr= m.b622 - m.b624 <= 0) m.e1041 = Constraint(expr= m.b623 - m.b624 <= 0) m.e1042 = Constraint(expr= m.b625 - m.b626 <= 0) m.e1043 = Constraint(expr= m.b625 - m.b627 <= 0) m.e1044 = Constraint(expr= m.b626 - m.b627 <= 0) m.e1045 = Constraint(expr= m.b628 - m.b629 <= 0) m.e1046 = Constraint(expr= m.b628 - m.b630 <= 0) m.e1047 = Constraint(expr= m.b629 - m.b630 <= 0) m.e1048 = Constraint(expr= m.b631 - m.b632 <= 0) m.e1049 = Constraint(expr= m.b631 - m.b633 <= 0) m.e1050 = Constraint(expr= m.b632 - m.b633 <= 0) m.e1051 = Constraint(expr= m.b634 - m.b635 <= 0) m.e1052 = Constraint(expr= m.b634 - m.b636 <= 0) m.e1053 = Constraint(expr= m.b635 - m.b636 <= 0) m.e1054 = Constraint(expr= m.b637 - m.b638 <= 0) m.e1055 = Constraint(expr= m.b637 - m.b639 <= 0) m.e1056 = Constraint(expr= m.b638 - m.b639 <= 0) m.e1057 = Constraint(expr= m.b640 - m.b641 <= 0) m.e1058 = Constraint(expr= m.b640 - m.b642 <= 0) m.e1059 = Constraint(expr= m.b641 - m.b642 <= 0) m.e1060 = Constraint(expr= m.b643 - m.b644 <= 0) m.e1061 = Constraint(expr= m.b643 - m.b645 <= 0) m.e1062 = Constraint(expr= m.b644 - m.b645 <= 0) m.e1063 = Constraint(expr= m.b646 - m.b647 <= 0) m.e1064 = Constraint(expr= m.b646 - m.b648 <= 0) m.e1065 = Constraint(expr= m.b647 - m.b648 <= 0) m.e1066 = Constraint(expr= m.b649 - m.b650 <= 0) m.e1067 = Constraint(expr= m.b649 - m.b651 <= 0) m.e1068 = Constraint(expr= m.b650 - m.b651 <= 0) m.e1069 = Constraint(expr= m.b652 - m.b653 <= 0) m.e1070 = Constraint(expr= m.b652 - m.b654 <= 0) m.e1071 = Constraint(expr= m.b653 - m.b654 <= 0) m.e1072 = Constraint(expr= m.b655 - m.b656 <= 0) m.e1073 = Constraint(expr= m.b655 - m.b657 <= 0) m.e1074 = Constraint(expr= m.b656 - m.b657
encountered an EXE/SGATE overlap error.', 147: 'Formatter Correction Buffer underrun error.', 148: 'Formatter Correction Buffer overrun error.', 149: 'Formatted detected NRZ interface protocol error.', 150: 'Media Manager\xe2\x80\x99s MX Overrun error.', 151: 'Media Manager\xe2\x80\x99s NX Overrun error.', 152: 'Media Manager\xe2\x80\x99s TDT Request error.', 153: 'Media Manager\xe2\x80\x99s SST Overrun error.', 154: 'Servo PZT calibration failed.', 155: 'Fast I/O- Servo Data Update Timeout error.', 156: 'Fast I/O- First wedge Servo data Timeout error.', 157: 'Fast I/O- Max samples per collection exceeded.', 158: 'CR memory EDC error', 159: 'SP block detected an EDC error', 160: 'Preamp heater open/short fault.', 161: 'RW Channel fault- Memory buffer overflow or underflow or parity error during write.', 162: 'RW Channel fault- Memory buffer overflow or read data path FIFO underflow in legacy NRZ mode.', 163: 'RW Channel fault- Preamp fault during R/W.', 164: 'RW Channel fault- SGATE, RGATE, or WGATE overlap.', 165: 'RW Channel fault- Mismatch in split sector controls or sector size controls.', 166: 'RW Channel fault- Write clock or NRZ clock is not running.', 167: 'RW Channel fault- SGATE, RGATE, or WGATE asserted during calibration.', 168: 'RW Channel fault- RWBI changed during a read or write event.', 169: 'RW Channel fault- Mode overlap flag.', 170: 'RW Channel fault- Inappropriate WPLO or RPLO behavior.', 171: 'RW Channel fault- Write aborted.', 172: 'RW Channel fault- Bit count late.', 173: 'RW Channel fault- Servo overlap error', 174: 'RW Channel fault- Last data fault', 176: 'PES threshold in field is too far from the same value calculated in the factory.', 177: 'Not enough Harmonic Ratio samples were gathered', 178: 'Sigma of Harmonic Ratio samples after all discards exceeded the limit', 179: 'No EBMS contact fault, even at lowest threshold value', 180: 'EBMS fault still detected at highest threshold value', 181: 'Formatter detected BFI error.', 182: 'Formatter FIFO Interface error.', 183: 'Media sequencer- Disc sequencer Data transfer size mismatch.', 184: 'Correction buffer active while disc sequencer timeout error (this error code is used to fix the hardware skip mask read transfer issue).', 185: 'Seagate Iterative Decoder \xe2\x80\x93 Channel RSM fault', 186: 'Seagate Iterative Decoder \xe2\x80\x93 Channel WSM fault', 187: 'Seagate Iterative Decoder \xe2\x80\x93 Channel BCI fault', 188: 'Seagate Iterative Decoder \xe2\x80\x93 Channel SRC fault', 189: 'Seagate Iterative Decoder \xe2\x80\x93 Channel SAB fault', 190: 'Seagate Iterative Decoder \xe2\x80\x93 Channel read gate overflow error', 192: 'Seagate Iterative Decoder \xe2\x80\x93 Channel SMB Bus B parity error', 193: 'Seagate Iterative Decoder \xe2\x80\x93 Channel SMB buffer error on write', 194: 'Seagate Iterative Decoder \xe2\x80\x93 Channel SOB buffer error on write', 195: 'Seagate Iterative Decoder \xe2\x80\x93 Channel SOB parity error', 196: 'Seagate Iterative Decoder \xe2\x80\x93 Channel SAB buffer error', 197: 'Seagate Iterative Decoder \xe2\x80\x93 Channel SAB bend error', 198: 'Seagate Iterative Decoder \xe2\x80\x93 Channel LLI buffer sync error', 199: 'Seagate Iterative Decoder \xe2\x80\x93 Channel LLI data length error on write', 200: 'Seagate Iterative Decoder \xe2\x80\x93 Channel LLI framing error on write', 201: 'Seagate Iterative Decoder \xe2\x80\x93 Channel LLI write status error', 202: 'Seagate Iterative Decoder \xe2\x80\x93 Channel LLI pipe state error (Bonanza), - Channel RSM Gross Error (Caribou- Luxor)', 203: 'Seagate Iterative Decoder \xe2\x80\x93 Channel decoder microcode error', 204: 'Seagate Iterative Decoder \xe2\x80\x93 Channel encoder microcode error', 205: 'Seagate Iterative Decoder \xe2\x80\x93 Channel NRZ parity error', 206: 'Seagate Iterative Decoder \xe2\x80\x93 Symbols per Sector mismatch error', 207: 'Seagate Iterative Decoder \xe2\x80\x93 Channel SMB Bus A parity error', 208: 'Seagate Iterative Decoder \xe2\x80\x93 Channel SMB NRZ parity error', 209: 'Seagate Iterative Decoder \xe2\x80\x93 Channel SOB Buffer error on read', 210: 'Seagate Iterative Decoder \xe2\x80\x93 Channel SMB Buffer error on read', 211: 'Seagate Iterative Decoder \xe2\x80\x93 Channel LLI data length error on read', 212: 'Seagate Iterative Decoder \xe2\x80\x93 Channel LLI framing error on read', 217: 'Seagate Iterative Decoder \xe2\x80\x93 Channel WSM Gross error', 218: 'Seagate Iterative Decoder \xe2\x80\x93 Channel ERF buffer error', 224: 'Preamp low voltage error', 225: 'Preamp low write data frequency at common point error', 226: 'Preamp write head open error', 227: 'Preamp write head shorted to ground error', 228: 'Preamp TA sensor open error', 229: 'Preamp temperature error', 230: 'Preamp write without heat error', 231: 'Preamp writer off in write error', 232: 'Preamp writer output buffer error', 233: 'Preamp low write data frequency at the head error', 234: 'Preamp FOS error', 235: 'Preamp TA or contact detect error', 236: 'Preamp SWOT error', 237: 'Preamp serial port communication error', 238: 'HSC magnitude overflow error', 240: 'RW Channel \xe2\x80\x93 RDATA valid overlap fault', 241: 'RW Channel \xe2\x80\x93 RD valid gap fault', 244: 'RW Channel \xe2\x80\x93 W Parity not ready', 247: 'RW Channel \xe2\x80\x93 Wrong sector length', 248: 'RW Channel \xe2\x80\x93 Encoder overflow error', 249: 'RW Channel \xe2\x80\x93 Encoder early termination fault', 250: 'RW Channel \xe2\x80\x93 Iteration parameter error', 251: 'RW Channel \xe2\x80\x93 MXP write fault', 252: 'RW Channel \xe2\x80\x93 Symbol count error', 253: 'RW Channel \xe2\x80\x93 RD Incomplete error', 254: 'RW Channel \xe2\x80\x93 RD Data VGA error', 255: 'RW Channel \xe2\x80\x93 RD Data TA error', 'L1': 'Hardware Error', 'L2': 'Internal Target Failure'}, 1: {2: 'RW Channel \xe2\x80\x93 RFM Wrong sector length', 3: 'RW Channel \xe2\x80\x93 RFM FIFO underflow', 4: 'RW Channel \xe2\x80\x93 RFM FIFO Overflow', 5: 'RW Channel \xe2\x80\x93 Vector flow errors', 32: 'HSC - An error occurred when attempting to open the file to be used for Harmonic Sensor Circuitry data collection.', 33: 'HSC - The Standard Deviation of the VGAS data collected by the Harmonic Sensor Circuitry was zero.', 34: 'HSC - The Standard Deviation of the 3rd Harmonic data collected by the Harmonic Sensor Circuitry was zero.', 35: 'HSC - The Servo Loop Code returned at the completion of Harmonic Sensor Circuitry data collection was not 0.', 36: 'HSC - An invalid write pattern was specified Harmonic Sensor Circuitry data collection.', 37: 'AR Sensor - The AR Sensor DAC to Target calculation encountered the need to take the square root of a negative value.', 38: 'AR Sensor - The AR Sensor encountered an error when attempting to open the Background Task file.', 39: 'AR Sensor - The AR Sensor encountered an error when attempting to open the General Purpose Task file.', 40: "AR Sensor - The size of the Background Task file is inadequate to satisfy the AR Sensor's requirements.", 41: "AR Sensor - The size of the General Purpose Task file is inadequate to satisfy the AR Sensor's requirements.", 42: 'AR Sensor - The FAFH Parameter File revision is incompatible with the AR Sensor.', 43: 'AR Sensor - The AR Sensor Descriptor in the FAFH Parameter File is invalid.', 44: 'AR Sensor - The Iterative Call Index specified when invoking the AR Sensor exceeds the maximum supported value.', 45: 'AR Sensor - The AR Sensor encountered an error when performing a Track Position request.', 46: 'AR Sensor - The Servo Data Sample Count specified when invoking the AR Sensor exceeds the maximum supported value.', 47: 'AR Sensor - The AR Sensor encountered an error when attempting to set the read channel frequency.', 48: 'AR Sensor - The 3rd Harmonic value measured by the AR Sensor was 0.', 96: 'RW Channel - LOSSLOCKR fault', 97: 'RW Channel - BLICNT fault', 98: 'RW Channel - LLI ABORT fault', 99: 'RW Channel - WG FILLR fault', 100: 'RW Channel - WG FILLW fault', 101: 'RW Channel - CHAN fault', 102: 'RW Channel - FRAG NUM fault', 103: 'RW Channel - WTG fault', 104: 'RW Channel - CTG fault', 105: 'RW Channel -\xc2\xa0NZRCLR fault', 106: 'RW Channel - \xc2\xa0Read synthesizer prechange fail fault', 107: 'RW Channel -\xc2\xa0Servo synthesizer prechange fail fault', 108: 'RW Channel - Servo Error detected prior to halting Calibration Processor', 109: 'RW Channel -\xc2\xa0Unable to Halt Calibration Processor', 110: 'RW Channel -\xc2\xa0ADC Calibrations already disabled', 111: 'RW Channel -\xc2\xa0Calibration Processor Registers have already been saved', 112: 'RW Channel -\xc2\xa0Address where Calibration Processor Registers are to
can also be a pair (tuple) of (connection, read) timeouts. :param _request_auth: set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request. :type _request_auth: dict, optional :return: Returns the result object, the HTTP status code, and the headers. If the method is called asynchronously, returns the request thread. :rtype: (ResourceListOfProcessedCommand, int, HTTPHeaderDict) """ local_var_params = locals() all_params = [ 'scope', 'code', 'from_as_at', 'to_as_at', 'filter', 'page', 'limit' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout', '_request_auth' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method get_portfolio_commands" % key ) local_var_params[key] = val del local_var_params['kwargs'] if self.api_client.client_side_validation and ('scope' in local_var_params and # noqa: E501 len(local_var_params['scope']) > 64): # noqa: E501 raise ApiValueError("Invalid value for parameter `scope` when calling `get_portfolio_commands`, length must be less than or equal to `64`") # noqa: E501 if self.api_client.client_side_validation and ('scope' in local_var_params and # noqa: E501 len(local_var_params['scope']) < 1): # noqa: E501 raise ApiValueError("Invalid value for parameter `scope` when calling `get_portfolio_commands`, length must be greater than or equal to `1`") # noqa: E501 if self.api_client.client_side_validation and 'scope' in local_var_params and not re.search(r'^[a-zA-Z0-9\-_]+$', local_var_params['scope']): # noqa: E501 raise ApiValueError("Invalid value for parameter `scope` when calling `get_portfolio_commands`, must conform to the pattern `/^[a-zA-Z0-9\-_]+$/`") # noqa: E501 if self.api_client.client_side_validation and ('code' in local_var_params and # noqa: E501 len(local_var_params['code']) > 64): # noqa: E501 raise ApiValueError("Invalid value for parameter `code` when calling `get_portfolio_commands`, length must be less than or equal to `64`") # noqa: E501 if self.api_client.client_side_validation and ('code' in local_var_params and # noqa: E501 len(local_var_params['code']) < 1): # noqa: E501 raise ApiValueError("Invalid value for parameter `code` when calling `get_portfolio_commands`, length must be greater than or equal to `1`") # noqa: E501 if self.api_client.client_side_validation and 'code' in local_var_params and not re.search(r'^[a-zA-Z0-9\-_]+$', local_var_params['code']): # noqa: E501 raise ApiValueError("Invalid value for parameter `code` when calling `get_portfolio_commands`, must conform to the pattern `/^[a-zA-Z0-9\-_]+$/`") # noqa: E501 if self.api_client.client_side_validation and ('filter' in local_var_params and # noqa: E501 len(local_var_params['filter']) > 16384): # noqa: E501 raise ApiValueError("Invalid value for parameter `filter` when calling `get_portfolio_commands`, length must be less than or equal to `16384`") # noqa: E501 if self.api_client.client_side_validation and ('filter' in local_var_params and # noqa: E501 len(local_var_params['filter']) < 0): # noqa: E501 raise ApiValueError("Invalid value for parameter `filter` when calling `get_portfolio_commands`, length must be greater than or equal to `0`") # noqa: E501 if self.api_client.client_side_validation and 'filter' in local_var_params and not re.search(r'^[\s\S]*$', local_var_params['filter']): # noqa: E501 raise ApiValueError("Invalid value for parameter `filter` when calling `get_portfolio_commands`, must conform to the pattern `/^[\s\S]*$/`") # noqa: E501 if self.api_client.client_side_validation and ('page' in local_var_params and # noqa: E501 len(local_var_params['page']) > 500): # noqa: E501 raise ApiValueError("Invalid value for parameter `page` when calling `get_portfolio_commands`, length must be less than or equal to `500`") # noqa: E501 if self.api_client.client_side_validation and ('page' in local_var_params and # noqa: E501 len(local_var_params['page']) < 1): # noqa: E501 raise ApiValueError("Invalid value for parameter `page` when calling `get_portfolio_commands`, length must be greater than or equal to `1`") # noqa: E501 if self.api_client.client_side_validation and 'page' in local_var_params and not re.search(r'^[a-zA-Z0-9\+\/]*={0,3}$', local_var_params['page']): # noqa: E501 raise ApiValueError("Invalid value for parameter `page` when calling `get_portfolio_commands`, must conform to the pattern `/^[a-zA-Z0-9\+\/]*={0,3}$/`") # noqa: E501 if self.api_client.client_side_validation and 'limit' in local_var_params and local_var_params['limit'] > 5000: # noqa: E501 raise ApiValueError("Invalid value for parameter `limit` when calling `get_portfolio_commands`, must be a value less than or equal to `5000`") # noqa: E501 if self.api_client.client_side_validation and 'limit' in local_var_params and local_var_params['limit'] < 1: # noqa: E501 raise ApiValueError("Invalid value for parameter `limit` when calling `get_portfolio_commands`, must be a value greater than or equal to `1`") # noqa: E501 collection_formats = {} path_params = {} if 'scope' in local_var_params: path_params['scope'] = local_var_params['scope'] # noqa: E501 if 'code' in local_var_params: path_params['code'] = local_var_params['code'] # noqa: E501 query_params = [] if 'from_as_at' in local_var_params and local_var_params['from_as_at'] is not None: # noqa: E501 query_params.append(('fromAsAt', local_var_params['from_as_at'])) # noqa: E501 if 'to_as_at' in local_var_params and local_var_params['to_as_at'] is not None: # noqa: E501 query_params.append(('toAsAt', local_var_params['to_as_at'])) # noqa: E501 if 'filter' in local_var_params and local_var_params['filter'] is not None: # noqa: E501 query_params.append(('filter', local_var_params['filter'])) # noqa: E501 if 'page' in local_var_params and local_var_params['page'] is not None: # noqa: E501 query_params.append(('page', local_var_params['page'])) # noqa: E501 if 'limit' in local_var_params and local_var_params['limit'] is not None: # noqa: E501 query_params.append(('limit', local_var_params['limit'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['text/plain', 'application/json', 'text/json']) # noqa: E501 header_params['Accept-Encoding'] = "gzip, deflate, br" # set the LUSID header header_params['X-LUSID-SDK-Language'] = 'Python' header_params['X-LUSID-SDK-Version'] = '0.11.3923' # Authentication setting auth_settings = ['oauth2'] # noqa: E501 response_types_map = { 200: "ResourceListOfProcessedCommand", 400: "LusidValidationProblemDetails", } return self.api_client.call_api( '/api/portfolios/{scope}/{code}/commands', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_types_map=response_types_map, auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats, _request_auth=local_var_params.get('_request_auth')) def get_portfolio_metadata(self, scope, code, **kwargs): # noqa: E501 """[EARLY ACCESS] GetPortfolioMetadata: Get access metadata rules for a portfolio # noqa: E501 Pass the scope and portfolio code parameters to retrieve the AccessMetadata associated with a portfolio # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_portfolio_metadata(scope, code, async_req=True) >>> result = thread.get() :param scope: The scope of the Portfolio Access Metadata Rule to retrieve. (required) :type scope: str :param code: Portfolio code (required) :type code: str :param effective_at: The effectiveAt datetime at which to retrieve the access metadata rule. :type effective_at: str :param as_at: The asAt datetime at which to retrieve the portfolio access metadata. :type as_at: datetime :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: dict(str, list[AccessMetadataValue]) """ kwargs['_return_http_data_only'] = True return self.get_portfolio_metadata_with_http_info(scope, code, **kwargs) # noqa: E501 def get_portfolio_metadata_with_http_info(self, scope, code, **kwargs): # noqa: E501 """[EARLY ACCESS] GetPortfolioMetadata: Get access metadata rules for a portfolio # noqa: E501 Pass the scope and portfolio code parameters to retrieve the AccessMetadata associated with a portfolio # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_portfolio_metadata_with_http_info(scope, code, async_req=True) >>> result = thread.get() :param scope: The scope of the Portfolio Access Metadata Rule to retrieve. (required) :type scope: str :param code: Portfolio code (required) :type code: str :param effective_at: The effectiveAt datetime at which to retrieve the access metadata rule. :type effective_at: str :param as_at: The asAt datetime at which to retrieve the portfolio access metadata. :type as_at: datetime :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _return_http_data_only: response data without head status code and headers :type _return_http_data_only: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :param _request_auth: set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request. :type _request_auth: dict, optional :return: Returns the result object, the HTTP status code, and the headers. If the method is called asynchronously, returns the request thread. :rtype: (dict(str, list[AccessMetadataValue]), int, HTTPHeaderDict) """ local_var_params = locals() all_params = [ 'scope', 'code', 'effective_at', 'as_at'
# coding=utf-8 # Copyright 2021 The Google Flax Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Callable, Optional, Tuple import numpy as np import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from ...modeling_flax_outputs import ( FlaxBaseModelOutputWithPastAndCrossAttentions, FlaxBaseModelOutputWithPooling, FlaxBaseModelOutputWithPoolingAndCrossAttentions, FlaxCausalLMOutputWithCrossAttentions, FlaxMaskedLMOutput, FlaxMultipleChoiceModelOutput, FlaxNextSentencePredictorOutput, FlaxQuestionAnsweringModelOutput, FlaxSequenceClassifierOutput, FlaxTokenClassifierOutput, ) from ...modeling_flax_utils import ( ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring, append_replace_return_docstrings, overwrite_call_docstring, ) from ...utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_bert import BertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "bert-base-uncased" _CONFIG_FOR_DOC = "BertConfig" _TOKENIZER_FOR_DOC = "BertTokenizer" @flax.struct.dataclass class FlaxBertForPreTrainingOutput(ModelOutput): """ Output type of [`BertForPreTraining`]. Args: prediction_logits (`jnp.ndarray` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (`jnp.ndarray` of shape `(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ prediction_logits: jnp.ndarray = None seq_relationship_logits: jnp.ndarray = None hidden_states: Optional[Tuple[jnp.ndarray]] = None attentions: Optional[Tuple[jnp.ndarray]] = None BERT_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models) This model is also a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module) subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`BertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ BERT_INPUTS_DOCSTRING = r""" Args: input_ids (`numpy.ndarray` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`BertTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`numpy.ndarray` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`numpy.ndarray` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`numpy.ndarray` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. head_mask (`numpy.ndarray` of shape `({0})`, `optional): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class FlaxBertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" config: BertConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.word_embeddings = nn.Embed( self.config.vocab_size, self.config.hidden_size, embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) self.position_embeddings = nn.Embed( self.config.max_position_embeddings, self.config.hidden_size, embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) self.token_type_embeddings = nn.Embed( self.config.type_vocab_size, self.config.hidden_size, embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) def __call__(self, input_ids, token_type_ids, position_ids, attention_mask, deterministic: bool = True): # Embed inputs_embeds = self.word_embeddings(input_ids.astype("i4")) position_embeds = self.position_embeddings(position_ids.astype("i4")) token_type_embeddings = self.token_type_embeddings(token_type_ids.astype("i4")) # Sum all embeddings hidden_states = inputs_embeds + token_type_embeddings + position_embeds # Layer Norm hidden_states = self.LayerNorm(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) return hidden_states class FlaxBertSelfAttention(nn.Module): config: BertConfig causal: bool = False dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.head_dim = self.config.hidden_size // self.config.num_attention_heads if self.config.hidden_size % self.config.num_attention_heads != 0: raise ValueError( "`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads`\ : {self.config.num_attention_heads}" ) self.query = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.key = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.value = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) if self.causal: self.causal_mask = make_causal_mask( jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool" ) def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.config.num_attention_heads, self.head_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.config.hidden_size,)) @nn.compact # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention._concatenate_to_cache def _concatenate_to_cache(self, key, value, query, attention_mask): """ This function takes projected key, value states from a single input token and concatenates the states to cached states from previous steps. This function is slighly adapted from the official Flax repository: https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 """ # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = lax.dynamic_update_slice(cached_key.value, key, indices) value = lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask def __call__( self, hidden_states, attention_mask, layer_head_mask, key_value_states: Optional[jnp.array] = None, init_cache: bool = False, deterministic=True, output_attentions: bool = False, ): # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None batch_size = hidden_states.shape[0] # get query proj query_states = self.query(hidden_states) # get key, value proj if is_cross_attention: # cross_attentions key_states = self.key(key_value_states) value_states = self.value(key_value_states) else: # self_attention key_states = self.key(hidden_states) value_states = self.value(hidden_states) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) # handle cache prepare causal attention mask if self.causal: query_length, key_length
<gh_stars>0 import numpy as np import random from collections import namedtuple, deque from dqn.data_structures import SumSegmentTree, MinSegmentTree, MaxPriorityQueue Experience = namedtuple("Experience", ["state_t", "action_t", "reward_tn", "state_tpn", "gamma_n"]) class Simple: def __init__(self, capacity): self._memories = deque(maxlen=capacity) def store(self, state_t, action_t, reward_tn, state_tpn, gamma_n): experience = Experience(state_t, action_t, reward_tn, state_tpn, gamma_n) self._memories.append(experience) def sample(self, batch_size): # TODO: Perhaps ensure len(self._memories) >= batch_size # Note: random.sample does not allow repeats. Do we want to allow them ? return random.sample(self._memories, batch_size) def __len__(self): return len(self._memories) # TODO: Think about storing the data directly in the segment trees, similar to how we do it for rank based class Proportional: def __init__(self, capacity, alpha_scheduler, beta_scheduler, epsilon=1e-5): self._capacity = capacity # NOTE: The capacity here might be different than the segment trees' (the next power of 2). Does this cause any issues ? (I don't believe so) self._alpha_scheduler = alpha_scheduler self._beta_scheduler = beta_scheduler self._sum_tree = SumSegmentTree(capacity) self._min_tree = MinSegmentTree(capacity) # Is it more efficient to use a Min Priority Queue with a cap similar to the one in RankBased ? self._epsilon = epsilon self._memories = [] self._oldest_index = 0 self._max_priority = 1 def store(self, state_t, action_t, reward_tn, state_tpn, gamma_n): experience = Experience(state_t, action_t, reward_tn, state_tpn, gamma_n) if len(self._memories) < self._capacity: self._memories.append(experience) else: self._memories[self._oldest_index] = experience self._sum_tree[self._oldest_index] = self._max_priority self._min_tree[self._oldest_index] = self._max_priority self._oldest_index = (self._oldest_index + 1) % self._capacity def sample(self, t, batch_size): if len(self._memories) < batch_size: raise RuntimeError("Not enough stored memories (" + str(len(self._memories)) + ") for batch_size of size " + str(batch_size)) total_priority_sum = self._sum_tree.sum() segment_indexes = np.linspace(self._epsilon, total_priority_sum, batch_size + 1) # The smallest possible priority is of size |0| + eps = eps indexes = [] for i in range(batch_size): prefix_sum = np.random.uniform(low=segment_indexes[i], high=segment_indexes[i + 1]) indexes.append(self._sum_tree.prefix_sum_index(prefix_sum)) total_sum = self._sum_tree.sum() sampled_probs = np.zeros(batch_size) experiences = [] for i, index in enumerate(indexes): prob = self._sum_tree[index] / total_sum sampled_probs[i] = prob experiences.append(self._memories[index]) min_prob = self._min_tree.min() / total_sum beta = self._beta_scheduler.value(t) max_weight = np.power(len(self._memories) * min_prob, -beta) weights = np.power(len(self._memories) * sampled_probs, -beta) / max_weight states_t, actions_t, rewards_tn, stats_tpn, gammas_n = zip(*experiences) return states_t, actions_t, rewards_tn, stats_tpn, gammas_n, weights, indexes def update_priorities(self, t, indexes, priorities): alpha = self._alpha_scheduler.value(t) priorities = np.abs(priorities) + self._epsilon # Note: Our implementation may not really be effected by removing an epsilon (uniform sampling from bounds.. unless a priority of 0 is on the end bounds and so prefix_sum never goes that far) for index, priority in zip(indexes, priorities): self._sum_tree[index] = priority**alpha self._min_tree[index] = priority**alpha self._max_priority = max(priority**alpha, self._max_priority) def __len__(self): return len(self._memories) class RankBased: # TODO: Precompute segments (requires a known batch_size = num_segments) # Note the segments change based on N AND alpha def __init__(self, capacity, alpha_scheduler, beta_scheduler, epsilon=1e-5, num_stores_until_sort=float('inf')): self._alpha_scheduler = alpha_scheduler self._beta_scheduler = beta_scheduler self._priority_queue = MaxPriorityQueue(capacity) self.num_stores_until_sort = num_stores_until_sort self._stores_since_sort = 0 def _experience_probs(self, alpha): # Returns probability of each experience in the priority queue by index (ordered) <-- make this clearer ranks = np.arange(1, len(self._priority_queue) + 1) priorities = 1 / ranks powers = np.power(priorities, alpha) probabilities = powers / np.sum(powers) return probabilities def _segment(self, probs, num_segments): ## TODO: Explain extra segment at end in doc-string (and says N + 1 numbers) ## TODO: Talk about how this algorithm isn't perfect: Note the addition of cdf part (either way) makes it strange cdf = 0 prob_per_segment = 1 / num_segments next_prob_boundary = prob_per_segment segment_starts = [0] for i in range(len(probs)): if cdf >= next_prob_boundary: segment_starts.append(i) next_prob_boundary += prob_per_segment cdf += probs[i] segment_starts.append(len(self._priority_queue)) return segment_starts def store(self, state_t, action_t, reward_tn, state_tpn, gamma_n): experience = Experience(state_t, action_t, reward_tn, state_tpn, gamma_n) max_priority = self._priority_queue.max_priority() self._priority_queue.insert(max_priority, experience) if self._stores_since_sort >= self.num_stores_until_sort: self.sort() self._stores_since_sort = 0 else: self._stores_since_sort += 1 def sample(self, t, batch_size): ### TODO: Error when sampling without enough memories in storage experiences = [] order_ids = [] sampled_probs = np.zeros(batch_size) alpha = self._alpha_scheduler.value(t) all_probs = self._experience_probs(alpha) prob_segments = self._segment(all_probs, batch_size) # Sample one transition from each segment (with each segment being of nearly equal probability) for i in range(len(prob_segments) - 1): index = random.randint(prob_segments[i], prob_segments[i + 1] - 1) # sample in range [start, next_start) _, order_id, experience = self._priority_queue[index] experiences.append(experience) order_ids.append(order_id) sampled_probs[i] = all_probs[index] min_prob = all_probs[-1] # Note: This should eventually become a constant.. might be a faster method beta = self._beta_scheduler.value(t) max_weight = (len(self._priority_queue) * min_prob)**(-beta) weights = np.power(len(self._priority_queue) * sampled_probs, -beta) / max_weight states_t, actions_t, rewards_tn, stats_tpn, gammas_n = zip(*experiences) return states_t, actions_t, rewards_tn, stats_tpn, gammas_n, weights, order_ids def update_priorities(self, t, indexes, priorities): priorities = np.abs(priorities) self._priority_queue.update_priorities(indexes, priorities) def sort(self): self._priority_queue.sort() def __len__(self): return len(self._priority_queue) ##if __name__ == '__main__': ## test = Standard(capacity=5) ## test.store(1, 2, 3, 4, 0) ## test.store(4, 5, 6, 7, 0) ## test.store(8, 9, 10, 11, 0) ## test.store(12, 13, 14, 15, 0) ## test.store(16, 17, 18, 19, 0) ## print(test._memories) ## print(test.sample(3)) ##if __name__ == '__main__': ## import annealing_schedules ## from data_structures import SumSegmentTree, MinSegmentTree, MaxPriorityQueue ## ## alpha_scheduler = annealing_schedules.Constant(0.7) ## beta_scheduler = annealing_schedules.Constant(0.5) ## test = RankBased(8, alpha_scheduler, beta_scheduler) #### test = Proportional(8, alpha_scheduler, beta_scheduler) ## test.store(1, 2, 3, 4, 0) ## test.store(4, 5, 6, 7, 0) ## test.store(8, 9, 10, 11, 0) ## samples = test.sample(0, 3) ## test.update_priorities(2, samples[-1], [0.67, 1.23, 0.23]) ## print(test.sample(1, 3)) ## #print(test._max_priority) ###### The below (and remaining text) are notes on the rank based algorithm implementation and some commented out tests ##### ## Notes on algorithm implementation: ## Two paragraphs from the paper: https://arxiv.org/pdf/1511.05952.pdf TODO: Put in name of paper ## For the rank-based variant, we can approximate the cumulative density function with a piecewise ## linear function with k segments of equal probability. The segment boundaries can be precomputed ## (they change only when N or α change). At runtime, we sample a segment, and then sample uniformly ## among the transitions within it. This works particularly well in conjunction with a minibatchbased ## learning algorithm: choose k to be the size of the minibatch, and sample exactly one transition ## from each segment – this is a form of stratified sampling that has the added advantage of balancing ## out the minibatch (there will always be exactly one transition with high magnitude δ, one with ## medium magnitude, etc). ## Our final ## solution was to store transitions in a priority queue implemented with an array-based binary heap. ## The heap array was then directly used as an approximation of a sorted array, which is infrequently ## sorted once every 10^6 ## steps to prevent the heap becoming too unbalanced. This is an unconventional ## use of a binary heap, however our tests on smaller environments showed learning was unaffected ## compared to using a perfectly sorted array. This is likely due to the last-seen TD-error only being a ## proxy for the usefulness of a transition and our use of stochastic prioritized sampling. A small improvement ## in running time came from avoiding excessive recalculation of partitions for the sampling ## distribution. We reused the same partition for values of N that are close together and by updating ## α and β infrequently. Our final implementation for rank-based prioritization produced an additional ## 2%-4% increase in running time and negligible additional memory usage. This could be reduced ## further in a number of ways, e.g. with a more efficient heap implementation, but it was good enough ## for our experiments. # Understanding the first paragraph: TODO: Perhaps put this right under the first paragraph ## The CDF can be used with a uniform distribution for sampling from a discrete "pdf" # For example: X can be {1, 2, 3}. P(X = x) = [0.1, 0.4, 0.5] (i.e. P(X = 2) = 0.4) # We sample from a uniform distribution u = U[0, 1] # We then use the CDF and u to sample from our discrete distribution: # if u < 0.1: return 1 # if u < 0.1 + 0.4: return 2 # if u < 0.1 + 0.4 + 0.5: return 3 # Note: The CDF is P(X < x) = [0.1, 0.1 + 0.4, 0.1 + 0.4 + 0.5] = [0.1, 0.5, 1] # "we can approximate the cumulative density
which allow to enter the expression. """ description = _messages.StringField(1) expression = _messages.StringField(2) location = _messages.StringField(3) title = _messages.StringField(4) class GetClusterConfigDownloadUrlResponse(_messages.Message): r"""Response which contains a source location of the backup's cluster configuration. Fields: signedUrl: Required. signed_url which will be used by the agent to download cluster config. """ signedUrl = _messages.StringField(1) class GetClusterConfigUploadUrlResponse(_messages.Message): r"""Response which contains a target location for the backup's cluster configuration. Fields: signedUrl: Required. signed_url which will be used by the agent to upload cluster config. """ signedUrl = _messages.StringField(1) class GkebackupProjectsLocationsBackupPlansBackupsCreateRequest(_messages.Message): r"""A GkebackupProjectsLocationsBackupPlansBackupsCreateRequest object. Fields: backup: A Backup resource to be passed as the request body. backupId: The client provided name when a Backup resource is created. The name MUST satisfy ALL requirements listed below: a. be unique within the BackupPlan to which the Backup is created. b. be 1-63 characters long c. comply with [RFC1035](https://www.ietf.org/rfc/rfc1035.txt) . d. matches the regular expression `[a-z]([-a-z0-9]*[a-z0-9])?` parent: Required. Parent BackupPlan container to create Backup in. Format: projects/{project}/locations/{location}/backupPlans/{backup_plan} """ backup = _messages.MessageField('Backup', 1) backupId = _messages.StringField(2) parent = _messages.StringField(3, required=True) class GkebackupProjectsLocationsBackupPlansBackupsDeleteRequest(_messages.Message): r"""A GkebackupProjectsLocationsBackupPlansBackupsDeleteRequest object. Fields: etag: etag, if provided, it must match the server's etag for the delete to happen. force: If set to true, any volumeBackups from this backup will also be deleted. Otherwise, the request will only succeed if the backup has no volumeBackup. (Per API guideline https://google.aip.dev/135#cascading- delete) name: Required. Name of the Backup resource. Format: projects/{project}/lo cations/{location}/backupPlans/{backup_plan}/backups/{backup} The {backup} field can either be the user specified Backup name or the server generated UID for this backup. """ etag = _messages.StringField(1) force = _messages.BooleanField(2) name = _messages.StringField(3, required=True) class GkebackupProjectsLocationsBackupPlansBackupsGetClusterConfigDownloadUrlRequest(_messages.Message): r"""A GkebackupProjectsLocationsBackupPlansBackupsGetClusterConfigDownloadUr lRequest object. Fields: backup: Required. Full name of the Backup resource. Format: projects/{proj ect}/locations/{location}/backupPlans/{backup_plan}/backups/{backup} The {backup} field can either be the user specified Backup name or the server generated UID for this backup. """ backup = _messages.StringField(1, required=True) class GkebackupProjectsLocationsBackupPlansBackupsGetClusterConfigUploadUrlRequest(_messages.Message): r"""A GkebackupProjectsLocationsBackupPlansBackupsGetClusterConfigUploadUrlRequest object. Fields: backup: Required. Full name of the Backup resource. Format: projects/{proj ect}/locations/{location}/backupPlans/{backup_plan}/backups/{backup} The {backup} field can either be the user specified Backup name or the server generated UID for this backup. """ backup = _messages.StringField(1, required=True) class GkebackupProjectsLocationsBackupPlansBackupsGetIamPolicyRequest(_messages.Message): r"""A GkebackupProjectsLocationsBackupPlansBackupsGetIamPolicyRequest object. Fields: options_requestedPolicyVersion: Optional. The policy format version to be returned. Valid values are 0, 1, and 3. Requests specifying an invalid value will be rejected. Requests for policies with any conditional bindings must specify version 3. Policies without any conditional bindings may specify any valid value or leave the field unset. To learn which resources support conditions in their IAM policies, see the [IAM documentation](https://cloud.google.com/iam/help/conditions/resource- policies). resource: REQUIRED: The resource for which the policy is being requested. See the operation documentation for the appropriate value for this field. """ options_requestedPolicyVersion = _messages.IntegerField(1, variant=_messages.Variant.INT32) resource = _messages.StringField(2, required=True) class GkebackupProjectsLocationsBackupPlansBackupsGetRequest(_messages.Message): r"""A GkebackupProjectsLocationsBackupPlansBackupsGetRequest object. Fields: name: Required. Full name of the Backup resource. Format: projects/{projec t}/locations/{location}/backupPlans/{backup_plan}/backups/{backup} The {backup} field can either be the user specified Backup name or the server generated UID for this backup. """ name = _messages.StringField(1, required=True) class GkebackupProjectsLocationsBackupPlansBackupsListRequest(_messages.Message): r"""A GkebackupProjectsLocationsBackupPlansBackupsListRequest object. Fields: filter: List filter. orderBy: Sort results. pageSize: If not specified, a default value will be chosen by the service. Regardless of the page_size value, the response may include a partial list and a caller should only rely on response's next_page_token to determine if there are more instances left to be queried. pageToken: Token returned by previous call to `ListBackupsRequest` which specifies the position in the list from where to continue listing the resources. parent: Required. Parent BackupPlan container. Format: projects/{project}/locations/{location}/backupPlans/{backup_plan} """ filter = _messages.StringField(1) orderBy = _messages.StringField(2) pageSize = _messages.IntegerField(3, variant=_messages.Variant.INT32) pageToken = _messages.StringField(4) parent = _messages.StringField(5, required=True) class GkebackupProjectsLocationsBackupPlansBackupsPatchRequest(_messages.Message): r"""A GkebackupProjectsLocationsBackupPlansBackupsPatchRequest object. Fields: backup: A Backup resource to be passed as the request body. etag: etag, if provided, it must match the server's etag for the update to happen. name: Output only. The fully qualified name of the Backup. projects/*/locations/*/backupPlans/*/backups/* updateMask: Fields to be updated. """ backup = _messages.MessageField('Backup', 1) etag = _messages.StringField(2) name = _messages.StringField(3, required=True) updateMask = _messages.StringField(4) class GkebackupProjectsLocationsBackupPlansBackupsSetIamPolicyRequest(_messages.Message): r"""A GkebackupProjectsLocationsBackupPlansBackupsSetIamPolicyRequest object. Fields: resource: REQUIRED: The resource for which the policy is being specified. See the operation documentation for the appropriate value for this field. setIamPolicyRequest: A SetIamPolicyRequest resource to be passed as the request body. """ resource = _messages.StringField(1, required=True) setIamPolicyRequest = _messages.MessageField('SetIamPolicyRequest', 2) class GkebackupProjectsLocationsBackupPlansBackupsSubmitClusterConfigRequest(_messages.Message): r"""A GkebackupProjectsLocationsBackupPlansBackupsSubmitClusterConfigRequest object. Fields: backup: Required. Full name of the Backup resource. Format: projects/{proj ect}/locations/{location}/backupPlans/{backup_plan}/backups/{backup} The {backup} field can either be the user specified Backup name or the server generated UID for this backup. submitClusterConfigRequest: A SubmitClusterConfigRequest resource to be passed as the request body. """ backup = _messages.StringField(1, required=True) submitClusterConfigRequest = _messages.MessageField('SubmitClusterConfigRequest', 2) class GkebackupProjectsLocationsBackupPlansBackupsTestIamPermissionsRequest(_messages.Message): r"""A GkebackupProjectsLocationsBackupPlansBackupsTestIamPermissionsRequest object. Fields: resource: REQUIRED: The resource for which the policy detail is being requested. See the operation documentation for the appropriate value for this field. testIamPermissionsRequest: A TestIamPermissionsRequest resource to be passed as the request body. """ resource = _messages.StringField(1, required=True) testIamPermissionsRequest = _messages.MessageField('TestIamPermissionsRequest', 2) class GkebackupProjectsLocationsBackupPlansBackupsVolumeBackupsCreateRequest(_messages.Message): r"""A GkebackupProjectsLocationsBackupPlansBackupsVolumeBackupsCreateRequest object. Fields: parent: Required. The Backup to create VolumeBackup in. Format: projects/{ project}/locations/{location}/backupPlans/{backup_plan}/backups/{backup} The {backup} field can either be the user specified Backup name or the server generated UID for this backup. volumeBackup: A VolumeBackup resource to be passed as the request body. volumeBackupId: Required. The client provided name when a VolumeBackup resource is created. The name MUST satisfy ALL requirements listed below: a. be unique within the Backup to which the VolumeBackup is created. b. be 1-63 characters long c. comply with [RFC1035](https://www.ietf.org/rfc/rfc1035.txt) . d. matches the regular expression `[a-z]([-a-z0-9]*[a-z0-9])?` """ parent = _messages.StringField(1, required=True) volumeBackup = _messages.MessageField('VolumeBackup', 2) volumeBackupId = _messages.StringField(3) class GkebackupProjectsLocationsBackupPlansBackupsVolumeBackupsGetIamPolicyRequest(_messages.Message): r"""A GkebackupProjectsLocationsBackupPlansBackupsVolumeBackupsGetIamPolicyRequest object. Fields: options_requestedPolicyVersion: Optional. The policy format version to be returned. Valid values are 0, 1, and 3. Requests specifying an invalid value will be rejected. Requests for policies with any conditional bindings must specify version 3. Policies without any conditional bindings may specify any valid value or leave the field unset. To learn which resources support conditions in their IAM policies, see the [IAM documentation](https://cloud.google.com/iam/help/conditions/resource- policies). resource: REQUIRED: The resource for which the policy is being requested. See the operation documentation for the appropriate value for this field. """ options_requestedPolicyVersion = _messages.IntegerField(1, variant=_messages.Variant.INT32) resource = _messages.StringField(2, required=True) class GkebackupProjectsLocationsBackupPlansBackupsVolumeBackupsGetRequest(_messages.Message): r"""A GkebackupProjectsLocationsBackupPlansBackupsVolumeBackupsGetRequest object. Fields: name: Required. Full name of the VolumeBackup resource. Format: projects/{ project}/locations/{location}/backupPlans/{backup_plan}/backups/{backup} /volumeBackups/{volume_backup} The {volume_backup} field can either be the user specified Backup name or the server generated UID for this volume backup. """ name = _messages.StringField(1, required=True) class GkebackupProjectsLocationsBackupPlansBackupsVolumeBackupsListRequest(_messages.Message): r"""A GkebackupProjectsLocationsBackupPlansBackupsVolumeBackupsListRequest object. Fields: filter: List filter. orderBy: Sort results. pageSize: If not specified, a default value will be chosen by the service. Regardless of the page_size value, the response may include a partial list and a caller should only rely on response's next_page_token to determine if there are more instances left to be queried. pageToken: Token returned by previous call to ListVolumeBackupsRequest`which specifies the position in the list from where to continue listing the resources. parent: Required. Format: projects/{project}/locations/{location}/backupPl ans/{backup_plan}/backups/{backup} The {backup} field can either be the user specified Backup name or the server generated UID for this backup. """ filter = _messages.StringField(1) orderBy = _messages.StringField(2) pageSize = _messages.IntegerField(3, variant=_messages.Variant.INT32) pageToken = _messages.StringField(4) parent = _messages.StringField(5, required=True) class GkebackupProjectsLocationsBackupPlansBackupsVolumeBackupsPatchRequest(_messages.Message): r"""A GkebackupProjectsLocationsBackupPlansBackupsVolumeBackupsPatchRequest object. Fields: etag: etag, if provided, it must match the server's etag for the update to happen. name: Output only. Full name of the volume backup which should be unique within the Backup. The name will have a format: projects/*/locations/*/backupPlans/*/backups/*/volumeBackups/* The last segment of the name will have a format: 'pvc-'. updateMask: Optional. Field mask is used to specify the fields to be overwritten in the volume backup resource by this update. The fields specified in the update_mask are relative to the resource, not the full request. A field will be overwritten if it is in the mask. If the user does not provide a mask then all fields will be overwritten. Fields to
import torch import torch.nn as nn class Resnet50_256(nn.Module): def __init__(self): super(Resnet50_256, self).__init__() self.meta = {'mean': [131.0912, 103.8827, 91.4953], 'std': [1, 1, 1], 'imageSize': [224, 224, 3]} self.conv1_7x7_s2 = nn.Conv2d(3, 64, kernel_size=[7, 7], stride=(2, 2), padding=(3, 3), bias=False) self.conv1_7x7_s2_bn = nn.BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv1_relu_7x7_s2 = nn.ReLU(inplace=True) self.pool1_3x3_s2 = nn.MaxPool2d(kernel_size=[3, 3], stride=[2, 2], padding=(0, 0), dilation=1, ceil_mode=True) self.conv2_1_1x1_reduce = nn.Conv2d(64, 64, kernel_size=[1, 1], stride=(1, 1), bias=False) self.conv2_1_1x1_reduce_bn = nn.BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv2_1_1x1_reduce_relu = nn.ReLU(inplace=True) self.conv2_1_3x3 = nn.Conv2d(64, 64, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1), bias=False) self.conv2_1_3x3_bn = nn.BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv2_1_3x3_relu = nn.ReLU(inplace=True) self.conv2_1_1x1_increase = nn.Conv2d(64, 256, kernel_size=[1, 1], stride=(1, 1), bias=False) self.conv2_1_1x1_increase_bn = nn.BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv2_1_1x1_proj = nn.Conv2d(64, 256, kernel_size=[1, 1], stride=(1, 1), bias=False) self.conv2_1_1x1_proj_bn = nn.BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv2_1_relu = nn.ReLU(inplace=True) self.conv2_2_1x1_reduce = nn.Conv2d(256, 64, kernel_size=[1, 1], stride=(1, 1), bias=False) self.conv2_2_1x1_reduce_bn = nn.BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv2_2_1x1_reduce_relu = nn.ReLU(inplace=True) self.conv2_2_3x3 = nn.Conv2d(64, 64, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1), bias=False) self.conv2_2_3x3_bn = nn.BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv2_2_3x3_relu = nn.ReLU(inplace=True) self.conv2_2_1x1_increase = nn.Conv2d(64, 256, kernel_size=[1, 1], stride=(1, 1), bias=False) self.conv2_2_1x1_increase_bn = nn.BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv2_2_relu = nn.ReLU(inplace=True) self.conv2_3_1x1_reduce = nn.Conv2d(256, 64, kernel_size=[1, 1], stride=(1, 1), bias=False) self.conv2_3_1x1_reduce_bn = nn.BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv2_3_1x1_reduce_relu = nn.ReLU(inplace=True) self.conv2_3_3x3 = nn.Conv2d(64, 64, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1), bias=False) self.conv2_3_3x3_bn = nn.BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv2_3_3x3_relu = nn.ReLU(inplace=True) self.conv2_3_1x1_increase = nn.Conv2d(64, 256, kernel_size=[1, 1], stride=(1, 1), bias=False) self.conv2_3_1x1_increase_bn = nn.BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv2_3_relu = nn.ReLU(inplace=True) self.conv3_1_1x1_reduce = nn.Conv2d(256, 128, kernel_size=[1, 1], stride=(2, 2), bias=False) self.conv3_1_1x1_reduce_bn = nn.BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv3_1_1x1_reduce_relu = nn.ReLU(inplace=True) self.conv3_1_3x3 = nn.Conv2d(128, 128, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1), bias=False) self.conv3_1_3x3_bn = nn.BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv3_1_3x3_relu = nn.ReLU(inplace=True) self.conv3_1_1x1_increase = nn.Conv2d(128, 512, kernel_size=[1, 1], stride=(1, 1), bias=False) self.conv3_1_1x1_increase_bn = nn.BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv3_1_1x1_proj = nn.Conv2d(256, 512, kernel_size=[1, 1], stride=(2, 2), bias=False) self.conv3_1_1x1_proj_bn = nn.BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv3_1_relu = nn.ReLU(inplace=True) self.conv3_2_1x1_reduce = nn.Conv2d(512, 128, kernel_size=[1, 1], stride=(1, 1), bias=False) self.conv3_2_1x1_reduce_bn = nn.BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv3_2_1x1_reduce_relu = nn.ReLU(inplace=True) self.conv3_2_3x3 = nn.Conv2d(128, 128, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1), bias=False) self.conv3_2_3x3_bn = nn.BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv3_2_3x3_relu = nn.ReLU(inplace=True) self.conv3_2_1x1_increase = nn.Conv2d(128, 512, kernel_size=[1, 1], stride=(1, 1), bias=False) self.conv3_2_1x1_increase_bn = nn.BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv3_2_relu = nn.ReLU(inplace=True) self.conv3_3_1x1_reduce = nn.Conv2d(512, 128, kernel_size=[1, 1], stride=(1, 1), bias=False) self.conv3_3_1x1_reduce_bn = nn.BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv3_3_1x1_reduce_relu = nn.ReLU(inplace=True) self.conv3_3_3x3 = nn.Conv2d(128, 128, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1), bias=False) self.conv3_3_3x3_bn = nn.BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv3_3_3x3_relu = nn.ReLU(inplace=True) self.conv3_3_1x1_increase = nn.Conv2d(128, 512, kernel_size=[1, 1], stride=(1, 1), bias=False) self.conv3_3_1x1_increase_bn = nn.BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv3_3_relu = nn.ReLU(inplace=True) self.conv3_4_1x1_reduce = nn.Conv2d(512, 128, kernel_size=[1, 1], stride=(1, 1), bias=False) self.conv3_4_1x1_reduce_bn = nn.BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv3_4_1x1_reduce_relu = nn.ReLU(inplace=True) self.conv3_4_3x3 = nn.Conv2d(128, 128, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1), bias=False) self.conv3_4_3x3_bn = nn.BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv3_4_3x3_relu = nn.ReLU(inplace=True) self.conv3_4_1x1_increase = nn.Conv2d(128, 512, kernel_size=[1, 1], stride=(1, 1), bias=False) self.conv3_4_1x1_increase_bn = nn.BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv3_4_relu = nn.ReLU(inplace=True) self.conv4_1_1x1_reduce = nn.Conv2d(512, 256, kernel_size=[1, 1], stride=(2, 2), bias=False) self.conv4_1_1x1_reduce_bn = nn.BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv4_1_1x1_reduce_relu = nn.ReLU(inplace=True) self.conv4_1_3x3 = nn.Conv2d(256, 256, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1), bias=False) self.conv4_1_3x3_bn = nn.BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv4_1_3x3_relu = nn.ReLU(inplace=True) self.conv4_1_1x1_increase = nn.Conv2d(256, 1024, kernel_size=[1, 1], stride=(1, 1), bias=False) self.conv4_1_1x1_increase_bn = nn.BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv4_1_1x1_proj = nn.Conv2d(512, 1024, kernel_size=[1, 1], stride=(2, 2), bias=False) self.conv4_1_1x1_proj_bn = nn.BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv4_1_relu = nn.ReLU(inplace=True) self.conv4_2_1x1_reduce = nn.Conv2d(1024, 256, kernel_size=[1, 1], stride=(1, 1), bias=False) self.conv4_2_1x1_reduce_bn = nn.BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv4_2_1x1_reduce_relu = nn.ReLU(inplace=True) self.conv4_2_3x3 = nn.Conv2d(256, 256, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1), bias=False) self.conv4_2_3x3_bn = nn.BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv4_2_3x3_relu = nn.ReLU(inplace=True) self.conv4_2_1x1_increase = nn.Conv2d(256, 1024, kernel_size=[1, 1], stride=(1, 1), bias=False) self.conv4_2_1x1_increase_bn = nn.BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv4_2_relu = nn.ReLU(inplace=True) self.conv4_3_1x1_reduce = nn.Conv2d(1024, 256, kernel_size=[1, 1], stride=(1, 1), bias=False) self.conv4_3_1x1_reduce_bn = nn.BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv4_3_1x1_reduce_relu = nn.ReLU(inplace=True) self.conv4_3_3x3 = nn.Conv2d(256, 256, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1), bias=False) self.conv4_3_3x3_bn = nn.BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv4_3_3x3_relu = nn.ReLU(inplace=True) self.conv4_3_1x1_increase = nn.Conv2d(256, 1024, kernel_size=[1, 1], stride=(1, 1), bias=False) self.conv4_3_1x1_increase_bn = nn.BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv4_3_relu = nn.ReLU(inplace=True) self.conv4_4_1x1_reduce = nn.Conv2d(1024, 256, kernel_size=[1, 1], stride=(1, 1), bias=False) self.conv4_4_1x1_reduce_bn = nn.BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv4_4_1x1_reduce_relu = nn.ReLU(inplace=True) self.conv4_4_3x3 = nn.Conv2d(256, 256, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1), bias=False) self.conv4_4_3x3_bn = nn.BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv4_4_3x3_relu = nn.ReLU(inplace=True) self.conv4_4_1x1_increase = nn.Conv2d(256, 1024, kernel_size=[1, 1], stride=(1, 1), bias=False) self.conv4_4_1x1_increase_bn = nn.BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv4_4_relu = nn.ReLU(inplace=True) self.conv4_5_1x1_reduce = nn.Conv2d(1024, 256, kernel_size=[1, 1], stride=(1, 1), bias=False) self.conv4_5_1x1_reduce_bn = nn.BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv4_5_1x1_reduce_relu = nn.ReLU(inplace=True) self.conv4_5_3x3 = nn.Conv2d(256, 256, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1), bias=False) self.conv4_5_3x3_bn = nn.BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv4_5_3x3_relu = nn.ReLU(inplace=True) self.conv4_5_1x1_increase = nn.Conv2d(256, 1024, kernel_size=[1, 1], stride=(1, 1), bias=False) self.conv4_5_1x1_increase_bn = nn.BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv4_5_relu = nn.ReLU(inplace=True) self.conv4_6_1x1_reduce = nn.Conv2d(1024, 256, kernel_size=[1, 1], stride=(1, 1), bias=False) self.conv4_6_1x1_reduce_bn = nn.BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv4_6_1x1_reduce_relu = nn.ReLU(inplace=True) self.conv4_6_3x3 = nn.Conv2d(256, 256, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1), bias=False) self.conv4_6_3x3_bn = nn.BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv4_6_3x3_relu = nn.ReLU(inplace=True) self.conv4_6_1x1_increase = nn.Conv2d(256, 1024, kernel_size=[1, 1], stride=(1, 1), bias=False) self.conv4_6_1x1_increase_bn = nn.BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv4_6_relu = nn.ReLU(inplace=True) self.conv5_1_1x1_reduce = nn.Conv2d(1024, 512, kernel_size=[1, 1], stride=(2, 2), bias=False) self.conv5_1_1x1_reduce_bn = nn.BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv5_1_1x1_reduce_relu = nn.ReLU(inplace=True) self.conv5_1_3x3 = nn.Conv2d(512, 512, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1), bias=False) self.conv5_1_3x3_bn = nn.BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv5_1_3x3_relu = nn.ReLU(inplace=True) self.conv5_1_1x1_increase = nn.Conv2d(512, 2048, kernel_size=[1, 1], stride=(1, 1), bias=False) self.conv5_1_1x1_increase_bn = nn.BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv5_1_1x1_proj = nn.Conv2d(1024, 2048, kernel_size=[1, 1], stride=(2, 2), bias=False) self.conv5_1_1x1_proj_bn = nn.BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv5_1_relu = nn.ReLU(inplace=True) self.conv5_2_1x1_reduce = nn.Conv2d(2048, 512, kernel_size=[1, 1], stride=(1, 1), bias=False) self.conv5_2_1x1_reduce_bn = nn.BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv5_2_1x1_reduce_relu = nn.ReLU(inplace=True) self.conv5_2_3x3 = nn.Conv2d(512, 512, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1), bias=False) self.conv5_2_3x3_bn = nn.BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv5_2_3x3_relu = nn.ReLU(inplace=True) self.conv5_2_1x1_increase = nn.Conv2d(512, 2048, kernel_size=[1, 1], stride=(1, 1), bias=False) self.conv5_2_1x1_increase_bn = nn.BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv5_2_relu = nn.ReLU(inplace=True) self.conv5_3_1x1_reduce = nn.Conv2d(2048, 512, kernel_size=[1, 1], stride=(1, 1), bias=False) self.conv5_3_1x1_reduce_bn = nn.BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv5_3_1x1_reduce_relu = nn.ReLU(inplace=True) self.conv5_3_3x3 = nn.Conv2d(512, 512, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1), bias=False) self.conv5_3_3x3_bn = nn.BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv5_3_3x3_relu = nn.ReLU(inplace=True) self.conv5_3_1x1_increase = nn.Conv2d(512, 2048, kernel_size=[1, 1], stride=(1, 1), bias=False) self.conv5_3_1x1_increase_bn = nn.BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.conv5_3_relu = nn.ReLU(inplace=True) self.pool5_7x7_s1 = nn.AdaptiveAvgPool2d(1) self.feat_extract = nn.Conv2d(2048, 256, kernel_size=[1, 1], stride=(1, 1)) self.classifier_8631_f = nn.Conv2d(256, 8631, kernel_size=[1, 1], stride=(1, 1)) def forward(self, data): conv1_7x7_s2 = self.conv1_7x7_s2(data) conv1_7x7_s2_bn = self.conv1_7x7_s2_bn(conv1_7x7_s2) conv1_7x7_s2_bnxx = self.conv1_relu_7x7_s2(conv1_7x7_s2_bn) pool1_3x3_s2 = self.pool1_3x3_s2(conv1_7x7_s2_bnxx) conv2_1_1x1_reduce = self.conv2_1_1x1_reduce(pool1_3x3_s2) conv2_1_1x1_reduce_bn = self.conv2_1_1x1_reduce_bn(conv2_1_1x1_reduce) conv2_1_1x1_reduce_bnxx = self.conv2_1_1x1_reduce_relu(conv2_1_1x1_reduce_bn) conv2_1_3x3 = self.conv2_1_3x3(conv2_1_1x1_reduce_bnxx) conv2_1_3x3_bn = self.conv2_1_3x3_bn(conv2_1_3x3) conv2_1_3x3_bnxx = self.conv2_1_3x3_relu(conv2_1_3x3_bn) conv2_1_1x1_increase = self.conv2_1_1x1_increase(conv2_1_3x3_bnxx) conv2_1_1x1_increase_bn = self.conv2_1_1x1_increase_bn(conv2_1_1x1_increase) conv2_1_1x1_proj = self.conv2_1_1x1_proj(pool1_3x3_s2) conv2_1_1x1_proj_bn = self.conv2_1_1x1_proj_bn(conv2_1_1x1_proj) conv2_1 = torch.add(conv2_1_1x1_proj_bn, 1, conv2_1_1x1_increase_bn) conv2_1x = self.conv2_1_relu(conv2_1) conv2_2_1x1_reduce = self.conv2_2_1x1_reduce(conv2_1x) conv2_2_1x1_reduce_bn = self.conv2_2_1x1_reduce_bn(conv2_2_1x1_reduce) conv2_2_1x1_reduce_bnxx = self.conv2_2_1x1_reduce_relu(conv2_2_1x1_reduce_bn) conv2_2_3x3 = self.conv2_2_3x3(conv2_2_1x1_reduce_bnxx) conv2_2_3x3_bn = self.conv2_2_3x3_bn(conv2_2_3x3) conv2_2_3x3_bnxx = self.conv2_2_3x3_relu(conv2_2_3x3_bn) conv2_2_1x1_increase = self.conv2_2_1x1_increase(conv2_2_3x3_bnxx) conv2_2_1x1_increase_bn = self.conv2_2_1x1_increase_bn(conv2_2_1x1_increase) conv2_2 = torch.add(conv2_1x, 1, conv2_2_1x1_increase_bn) conv2_2x = self.conv2_2_relu(conv2_2) conv2_3_1x1_reduce = self.conv2_3_1x1_reduce(conv2_2x) conv2_3_1x1_reduce_bn = self.conv2_3_1x1_reduce_bn(conv2_3_1x1_reduce) conv2_3_1x1_reduce_bnxx = self.conv2_3_1x1_reduce_relu(conv2_3_1x1_reduce_bn) conv2_3_3x3 = self.conv2_3_3x3(conv2_3_1x1_reduce_bnxx) conv2_3_3x3_bn = self.conv2_3_3x3_bn(conv2_3_3x3) conv2_3_3x3_bnxx = self.conv2_3_3x3_relu(conv2_3_3x3_bn) conv2_3_1x1_increase = self.conv2_3_1x1_increase(conv2_3_3x3_bnxx) conv2_3_1x1_increase_bn = self.conv2_3_1x1_increase_bn(conv2_3_1x1_increase) conv2_3 = torch.add(conv2_2x, 1, conv2_3_1x1_increase_bn) conv2_3x = self.conv2_3_relu(conv2_3) conv3_1_1x1_reduce = self.conv3_1_1x1_reduce(conv2_3x) conv3_1_1x1_reduce_bn = self.conv3_1_1x1_reduce_bn(conv3_1_1x1_reduce) conv3_1_1x1_reduce_bnxx = self.conv3_1_1x1_reduce_relu(conv3_1_1x1_reduce_bn) conv3_1_3x3 = self.conv3_1_3x3(conv3_1_1x1_reduce_bnxx) conv3_1_3x3_bn = self.conv3_1_3x3_bn(conv3_1_3x3) conv3_1_3x3_bnxx = self.conv3_1_3x3_relu(conv3_1_3x3_bn) conv3_1_1x1_increase = self.conv3_1_1x1_increase(conv3_1_3x3_bnxx) conv3_1_1x1_increase_bn = self.conv3_1_1x1_increase_bn(conv3_1_1x1_increase) conv3_1_1x1_proj = self.conv3_1_1x1_proj(conv2_3x) conv3_1_1x1_proj_bn = self.conv3_1_1x1_proj_bn(conv3_1_1x1_proj) conv3_1 = torch.add(conv3_1_1x1_proj_bn, 1, conv3_1_1x1_increase_bn) conv3_1x = self.conv3_1_relu(conv3_1) conv3_2_1x1_reduce = self.conv3_2_1x1_reduce(conv3_1x) conv3_2_1x1_reduce_bn = self.conv3_2_1x1_reduce_bn(conv3_2_1x1_reduce) conv3_2_1x1_reduce_bnxx = self.conv3_2_1x1_reduce_relu(conv3_2_1x1_reduce_bn) conv3_2_3x3 = self.conv3_2_3x3(conv3_2_1x1_reduce_bnxx) conv3_2_3x3_bn = self.conv3_2_3x3_bn(conv3_2_3x3) conv3_2_3x3_bnxx = self.conv3_2_3x3_relu(conv3_2_3x3_bn) conv3_2_1x1_increase = self.conv3_2_1x1_increase(conv3_2_3x3_bnxx) conv3_2_1x1_increase_bn = self.conv3_2_1x1_increase_bn(conv3_2_1x1_increase) conv3_2 = torch.add(conv3_1x, 1, conv3_2_1x1_increase_bn) conv3_2x = self.conv3_2_relu(conv3_2) conv3_3_1x1_reduce = self.conv3_3_1x1_reduce(conv3_2x) conv3_3_1x1_reduce_bn = self.conv3_3_1x1_reduce_bn(conv3_3_1x1_reduce) conv3_3_1x1_reduce_bnxx = self.conv3_3_1x1_reduce_relu(conv3_3_1x1_reduce_bn) conv3_3_3x3 =
GROUP (ORDER BY mytable.name DESC) " "OVER (PARTITION BY mytable.name ORDER BY mytable.myid " "ROWS BETWEEN :param_1 FOLLOWING AND :param_2 FOLLOWING) " "AS anon_1 FROM mytable", ) def test_date_between(self): import datetime table = Table("dt", metadata, Column("date", Date)) self.assert_compile( table.select( table.c.date.between( datetime.date(2006, 6, 1), datetime.date(2006, 6, 5) ) ), "SELECT dt.date FROM dt WHERE dt.date BETWEEN :date_1 AND :date_2", checkparams={ "date_1": datetime.date(2006, 6, 1), "date_2": datetime.date(2006, 6, 5), }, ) self.assert_compile( table.select( sql.between( table.c.date, datetime.date(2006, 6, 1), datetime.date(2006, 6, 5), ) ), "SELECT dt.date FROM dt WHERE dt.date BETWEEN :date_1 AND :date_2", checkparams={ "date_1": datetime.date(2006, 6, 1), "date_2": datetime.date(2006, 6, 5), }, ) def test_delayed_col_naming(self): my_str = Column(String) sel1 = select([my_str]) assert_raises_message( exc.InvalidRequestError, "Cannot initialize a sub-selectable with this Column", lambda: sel1.c, ) # calling label or as_scalar doesn't compile # anything. sel2 = select([func.substr(my_str, 2, 3)]).label("my_substr") assert_raises_message( exc.CompileError, "Cannot compile Column object until its 'name' is assigned.", sel2.compile, dialect=default.DefaultDialect(), ) sel3 = select([my_str]).as_scalar() assert_raises_message( exc.CompileError, "Cannot compile Column object until its 'name' is assigned.", sel3.compile, dialect=default.DefaultDialect(), ) my_str.name = "foo" self.assert_compile(sel1, "SELECT foo") self.assert_compile( sel2, "(SELECT substr(foo, :substr_2, :substr_3) AS substr_1)" ) self.assert_compile(sel3, "(SELECT foo)") def test_naming(self): # TODO: the part where we check c.keys() are not "compile" tests, they # belong probably in test_selectable, or some broken up # version of that suite f1 = func.hoho(table1.c.name) s1 = select( [ table1.c.myid, table1.c.myid.label("foobar"), f1, func.lala(table1.c.name).label("gg"), ] ) eq_(list(s1.c.keys()), ["myid", "foobar", str(f1), "gg"]) meta = MetaData() t1 = Table("mytable", meta, Column("col1", Integer)) exprs = ( table1.c.myid == 12, func.hoho(table1.c.myid), cast(table1.c.name, Numeric), literal("x"), ) for col, key, expr, lbl in ( (table1.c.name, "name", "mytable.name", None), (exprs[0], str(exprs[0]), "mytable.myid = :myid_1", "anon_1"), (exprs[1], str(exprs[1]), "hoho(mytable.myid)", "hoho_1"), ( exprs[2], str(exprs[2]), "CAST(mytable.name AS NUMERIC)", "anon_1", ), (t1.c.col1, "col1", "mytable.col1", None), ( column("some wacky thing"), "some wacky thing", '"some wacky thing"', "", ), (exprs[3], exprs[3].key, ":param_1", "anon_1"), ): if getattr(col, "table", None) is not None: t = col.table else: t = table1 s1 = select([col], from_obj=t) assert list(s1.c.keys()) == [key], list(s1.c.keys()) if lbl: self.assert_compile( s1, "SELECT %s AS %s FROM mytable" % (expr, lbl) ) else: self.assert_compile(s1, "SELECT %s FROM mytable" % (expr,)) s1 = select([s1]) if lbl: self.assert_compile( s1, "SELECT %s FROM (SELECT %s AS %s FROM mytable)" % (lbl, expr, lbl), ) elif col.table is not None: # sqlite rule labels subquery columns self.assert_compile( s1, "SELECT %s FROM (SELECT %s AS %s FROM mytable)" % (key, expr, key), ) else: self.assert_compile( s1, "SELECT %s FROM (SELECT %s FROM mytable)" % (expr, expr), ) def test_hints(self): s = select([table1.c.myid]).with_hint(table1, "test hint %(name)s") s2 = ( select([table1.c.myid]) .with_hint(table1, "index(%(name)s idx)", "oracle") .with_hint(table1, "WITH HINT INDEX idx", "sybase") ) a1 = table1.alias() s3 = select([a1.c.myid]).with_hint(a1, "index(%(name)s hint)") subs4 = ( select([table1, table2]) .select_from( table1.join(table2, table1.c.myid == table2.c.otherid) ) .with_hint(table1, "hint1") ) s4 = ( select([table3]) .select_from( table3.join(subs4, subs4.c.othername == table3.c.otherstuff) ) .with_hint(table3, "hint3") ) t1 = table("QuotedName", column("col1")) s6 = ( select([t1.c.col1]) .where(t1.c.col1 > 10) .with_hint(t1, "%(name)s idx1") ) a2 = t1.alias("SomeName") s7 = ( select([a2.c.col1]) .where(a2.c.col1 > 10) .with_hint(a2, "%(name)s idx1") ) mysql_d, oracle_d, sybase_d = ( mysql.dialect(), oracle.dialect(), sybase.dialect(), ) for stmt, dialect, expected in [ (s, mysql_d, "SELECT mytable.myid FROM mytable test hint mytable"), ( s, oracle_d, "SELECT /*+ test hint mytable */ mytable.myid FROM mytable", ), ( s, sybase_d, "SELECT mytable.myid FROM mytable test hint mytable", ), (s2, mysql_d, "SELECT mytable.myid FROM mytable"), ( s2, oracle_d, "SELECT /*+ index(mytable idx) */ mytable.myid FROM mytable", ), ( s2, sybase_d, "SELECT mytable.myid FROM mytable WITH HINT INDEX idx", ), ( s3, mysql_d, "SELECT mytable_1.myid FROM mytable AS mytable_1 " "index(mytable_1 hint)", ), ( s3, oracle_d, "SELECT /*+ index(mytable_1 hint) */ mytable_1.myid FROM " "mytable mytable_1", ), ( s3, sybase_d, "SELECT mytable_1.myid FROM mytable AS mytable_1 " "index(mytable_1 hint)", ), ( s4, mysql_d, "SELECT thirdtable.userid, thirdtable.otherstuff " "FROM thirdtable " "hint3 INNER JOIN (SELECT mytable.myid, mytable.name, " "mytable.description, myothertable.otherid, " "myothertable.othername FROM mytable hint1 INNER " "JOIN myothertable ON mytable.myid = myothertable.otherid) " "ON othername = thirdtable.otherstuff", ), ( s4, sybase_d, "SELECT thirdtable.userid, thirdtable.otherstuff " "FROM thirdtable " "hint3 JOIN (SELECT mytable.myid, mytable.name, " "mytable.description, myothertable.otherid, " "myothertable.othername FROM mytable hint1 " "JOIN myothertable ON mytable.myid = myothertable.otherid) " "ON othername = thirdtable.otherstuff", ), ( s4, oracle_d, "SELECT /*+ hint3 */ thirdtable.userid, thirdtable.otherstuff " "FROM thirdtable JOIN (SELECT /*+ hint1 */ mytable.myid," " mytable.name, mytable.description, myothertable.otherid," " myothertable.othername FROM mytable JOIN myothertable ON" " mytable.myid = myothertable.otherid) ON othername =" " thirdtable.otherstuff", ), # TODO: figure out dictionary ordering solution here # (s5, oracle_d, # "SELECT /*+ hint3 */ /*+ hint1 */ thirdtable.userid, " # "thirdtable.otherstuff " # "FROM thirdtable JOIN (SELECT mytable.myid," # " mytable.name, mytable.description, myothertable.otherid," # " myothertable.othername FROM mytable JOIN myothertable ON" # " mytable.myid = myothertable.otherid) ON othername =" # " thirdtable.otherstuff"), ( s6, oracle_d, """SELECT /*+ "QuotedName" idx1 */ "QuotedName".col1 """ """FROM "QuotedName" WHERE "QuotedName".col1 > :col1_1""", ), ( s7, oracle_d, """SELECT /*+ "SomeName" idx1 */ "SomeName".col1 FROM """ """"QuotedName" "SomeName" WHERE "SomeName".col1 > :col1_1""", ), ]: self.assert_compile(stmt, expected, dialect=dialect) def test_statement_hints(self): stmt = ( select([table1.c.myid]) .with_statement_hint("test hint one") .with_statement_hint("test hint two", "mysql") ) self.assert_compile( stmt, "SELECT mytable.myid FROM mytable test hint one" ) self.assert_compile( stmt, "SELECT mytable.myid FROM mytable test hint one test hint two", dialect="mysql", ) def test_literal_as_text_fromstring(self): self.assert_compile(and_(text("a"), text("b")), "a AND b") def test_literal_as_text_nonstring_raise(self): assert_raises(exc.ArgumentError, and_, ("a",), ("b",)) class BindParameterTest(AssertsCompiledSQL, fixtures.TestBase): __dialect__ = "default" def test_binds(self): for ( stmt, expected_named_stmt, expected_positional_stmt, expected_default_params_dict, expected_default_params_list, test_param_dict, expected_test_params_dict, expected_test_params_list, ) in [ ( select( [table1, table2], and_( table1.c.myid == table2.c.otherid, table1.c.name == bindparam("mytablename"), ), ), "SELECT mytable.myid, mytable.name, mytable.description, " "myothertable.otherid, myothertable.othername FROM mytable, " "myothertable WHERE mytable.myid = myothertable.otherid " "AND mytable.name = :mytablename", "SELECT mytable.myid, mytable.name, mytable.description, " "myothertable.otherid, myothertable.othername FROM mytable, " "myothertable WHERE mytable.myid = myothertable.otherid AND " "mytable.name = ?", {"mytablename": None}, [None], {"mytablename": 5}, {"mytablename": 5}, [5], ), ( select( [table1], or_( table1.c.myid == bindparam("myid"), table2.c.otherid == bindparam("myid"), ), ), "SELECT mytable.myid, mytable.name, mytable.description " "FROM mytable, myothertable WHERE mytable.myid = :myid " "OR myothertable.otherid = :myid", "SELECT mytable.myid, mytable.name, mytable.description " "FROM mytable, myothertable WHERE mytable.myid = ? " "OR myothertable.otherid = ?", {"myid": None}, [None, None], {"myid": 5}, {"myid": 5}, [5, 5], ), ( text( "SELECT mytable.myid, mytable.name, " "mytable.description FROM " "mytable, myothertable WHERE mytable.myid = :myid OR " "myothertable.otherid = :myid" ), "SELECT mytable.myid, mytable.name, mytable.description FROM " "mytable, myothertable WHERE mytable.myid = :myid OR " "myothertable.otherid = :myid", "SELECT mytable.myid, mytable.name, mytable.description FROM " "mytable, myothertable WHERE mytable.myid = ? OR " "myothertable.otherid = ?", {"myid": None}, [None, None], {"myid": 5}, {"myid": 5}, [5, 5], ), ( select( [table1], or_( table1.c.myid == bindparam("myid", unique=True), table2.c.otherid == bindparam("myid", unique=True), ), ), "SELECT mytable.myid, mytable.name, mytable.description FROM " "mytable, myothertable WHERE mytable.myid = " ":myid_1 OR myothertable.otherid = :myid_2", "SELECT mytable.myid, mytable.name, mytable.description FROM " "mytable, myothertable WHERE mytable.myid = ? " "OR myothertable.otherid = ?", {"myid_1": None, "myid_2": None}, [None, None], {"myid_1": 5, "myid_2": 6}, {"myid_1": 5, "myid_2": 6}, [5, 6], ), ( bindparam("test", type_=String, required=False) + text("'hi'"), ":test || 'hi'", "? || 'hi'", {"test": None}, [None], {}, {"test": None}, [None], ), ( # testing select.params() here - bindparam() objects # must get required flag set to False select( [table1], or_( table1.c.myid == bindparam("myid"), table2.c.otherid == bindparam("myotherid"), ), ).params({"myid": 8, "myotherid": 7}), "SELECT mytable.myid, mytable.name, mytable.description FROM " "mytable, myothertable WHERE mytable.myid = " ":myid OR myothertable.otherid = :myotherid", "SELECT mytable.myid, mytable.name, mytable.description FROM " "mytable, myothertable WHERE mytable.myid = " "? OR myothertable.otherid = ?", {"myid": 8, "myotherid": 7}, [8, 7], {"myid": 5}, {"myid": 5, "myotherid": 7}, [5, 7], ), ( select( [table1], or_( table1.c.myid == bindparam("myid", value=7, unique=True), table2.c.otherid == bindparam("myid", value=8, unique=True), ), ), "SELECT mytable.myid, mytable.name, mytable.description FROM " "mytable, myothertable WHERE mytable.myid = " ":myid_1 OR myothertable.otherid = :myid_2", "SELECT mytable.myid, mytable.name, mytable.description FROM " "mytable,
<filename>backend/portal/summoners/views.py import boto import json import random import string from boto.sqs.connection import SQSConnection from boto.sqs.message import RawMessage from cassiopeia.type.api.exception import APIError from datetime import datetime from django.contrib.auth import hashers from django.core.cache import cache from django.core.mail import EmailMessage from django.db.utils import IntegrityError from django.http import HttpResponse from django.views.decorators.http import require_POST from portal.errors import FRIEND_ALREADY_LISTED from portal.errors import FRIEND_EQUALS_USER from portal.errors import FRIEND_LIMIT_REACHED from portal.errors import INTERNAL_PROCESSING_ERROR from portal.errors import INVALID_CREDENTIALS from portal.errors import INVALID_REQUEST_FORMAT from portal.errors import INVALID_RIOT_RESPONSE from portal.errors import RUNE_PAGE_CODE_NOT_FOUND from portal.errors import SUMMONER_ALREADY_REGISTERED from portal.errors import SUMMONER_DOES_NOT_EXIST from portal.errors import SUMMONER_NOT_IN_DATABASE from portal.errors import SUMMONER_NOT_RANKED from portal.errors import SUMMONER_NOT_REGISTERED from portal.keys import AWS_ACCESS_KEY_ID from portal.keys import AWS_SECRET_ACCESS_KEY from portal.riot import format_key from portal.riot import riot_request from summoners.models import Summoner from summoners.models import User from summoners.serializers import summoner_serializer @require_POST def add_friend(request): # extract data data = json.loads(request.body.decode('utf-8')) region = data.get("region") user_key = data.get("user_key") friend_key = data.get("friend_key") # ensure the data is valid if None in (region, user_key, friend_key): return HttpResponse(json.dumps(INVALID_REQUEST_FORMAT)) # ensure proper key format user_key = format_key(user_key) friend_key = format_key(friend_key) # make sure friend is not the user if user_key == friend_key: return HttpResponse(json.dumps(FRIEND_EQUALS_USER)) try: # get the users summoner object user_o = cache.get(region + user_key + "summoner") if user_o is None: user_o = Summoner.objects.get(region=region, key=user_key) cache.set(region + user_key + "summoner", user_o, None) Summoner.objects.filter(pk=user_o.pk).update(accessed=datetime.now()) except Summoner.DoesNotExist: return HttpResponse(json.dumps(SUMMONER_NOT_IN_DATABASE)) # check if user is at friend limit or if friend is already listed if user_o.friends is not None: friends = user_o.friends.split(",") if len(friends) >= 20: return HttpResponse(json.dumps(FRIEND_LIMIT_REACHED)) for friend in friends: if friend == friend_key: return HttpResponse(json.dumps(FRIEND_ALREADY_LISTED)) try: # get the friends summoner object friend_o = cache.get(region + friend_key + "summoner") if friend_o is None: friend_o = Summoner.objects.get(region=region, key=friend_key) cache.set(region + friend_key + "summoner", friend_o, None) Summoner.objects.filter(pk=friend_o.pk).update(accessed=datetime.now()) except Summoner.DoesNotExist: try: # summoner not in database, request summoner data from riot args = {"request": 1, "key": friend_key} riot_response = riot_request(region, args) except APIError as e: if e.error_code == 404: return HttpResponse(json.dumps(SUMMONER_DOES_NOT_EXIST)) else: return HttpResponse(json.dumps(INVALID_RIOT_RESPONSE)) try: # extract the summoner friend = riot_response.get(friend_key) except AttributeError: return HttpResponse(json.dumps(INVALID_RIOT_RESPONSE)) try: # use the summoner id to get the friends league information args = {"request": 4, "summoner_ids": friend.id} riot_response = riot_request(region, args) except APIError as e: if e.error_code == 404: return HttpResponse(json.dumps(SUMMONER_NOT_RANKED)) else: return HttpResponse(json.dumps(INVALID_RIOT_RESPONSE)) try: # extract the league data leagues = riot_response.get(str(friend.id)) # iterate over the leagues looking for the dynamic queue league league = None for item in leagues: if item.queue == "RANKED_SOLO_5x5": league = item # ensure the dynamic queue league was found if league is None: return HttpResponse(json.dumps(SUMMONER_NOT_RANKED)) # iterate over the league entries to get more detailed information division, lp, wins, losses, series = None, None, None, None, "" for entry in league.entries: if entry.playerOrTeamId == str(friend.id): division = entry.division lp = entry.leaguePoints wins = entry.wins losses = entry.losses if entry.miniSeries is not None: series = entry.miniSeries.progress except AttributeError: return HttpResponse(json.dumps(INVALID_RIOT_RESPONSE)) try: # use the gathered information to create a summoner object friend_o = Summoner.objects.create( region=region, key=friend_key, name=friend.name, summoner_id=friend.id, tier=league.tier, division=division, lp=lp, wins=wins, losses=losses, series=series, profile_icon=friend.profileIconId) except IntegrityError: return HttpResponse(json.dumps(INTERNAL_PROCESSING_ERROR)) # update the newly created summoner conn = SQSConnection(AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) queue = conn.get_queue("portal") message = RawMessage() message.set_body(json.dumps({"region": region, "keys": [friend_key]})) queue.write(message) # add the friends key to the users friend list if user_o.friends != "": user_o.friends += "," + friend_key else: user_o.friends = friend_key Summoner.objects.filter(pk=user_o.pk).update(friends=user_o.friends) cache.set(region + user_key + "summoner", user_o, None) # return the friends summoner object return HttpResponse(summoner_serializer(friend_o, None, False)) @require_POST def add_friend_1_1(request): # extract data data = json.loads(request.body.decode('utf-8')) region = data.get("region") key = data.get("key") # ensure the data is valid if None in (region, key): return HttpResponse(json.dumps(INVALID_REQUEST_FORMAT)) # ensure proper key format key = format_key(key) try: # get the summoner object summoner_o = cache.get(region + key + "summoner") if summoner_o is None: summoner_o = Summoner.objects.get(region=region, key=key) cache.set(region + key + "summoner", summoner_o, None) Summoner.objects.filter(pk=summoner_o.pk).update(accessed=datetime.now()) # return the summoner object return HttpResponse(summoner_serializer(summoner_o, None, False)) except Summoner.DoesNotExist: pass try: # summoner not in database, request summoner data from riot args = {"request": 1, "key": key} riot_response = riot_request(region, args) except APIError as e: if e.error_code == 404: return HttpResponse(json.dumps(SUMMONER_DOES_NOT_EXIST)) else: return HttpResponse(json.dumps(INVALID_RIOT_RESPONSE)) try: # extract the summoner summoner = riot_response.get(key) # extract summoner fields summoner_id = summoner.id name = summoner.name profile_icon = summoner.profileIconId except AttributeError: return HttpResponse(json.dumps(INVALID_RIOT_RESPONSE)) try: # use summoner id to get league information args = {"request": 4, "summoner_ids": summoner_id} riot_response = riot_request(region, args) except APIError as e: if e.error_code == 404: return HttpResponse(json.dumps(SUMMONER_NOT_RANKED)) else: return HttpResponse(json.dumps(INVALID_RIOT_RESPONSE)) try: # extract the league data leagues = riot_response.get(str(summoner_id)) # iterate over the leagues looking for the dynamic queue league league = None for item in leagues: if item.queue == "RANKED_SOLO_5x5": league = item # ensure the dynamic queue league was found if league is None: return HttpResponse(json.dumps(SUMMONER_NOT_RANKED)) # iterate over the league entries to get more detailed information division, lp, wins, losses, series = None, None, None, None, "" for entry in league.entries: if entry.playerOrTeamId == str(summoner_id): division = entry.division lp = entry.leaguePoints wins = entry.wins losses = entry.losses if entry.miniSeries is not None: series = entry.miniSeries.progress # extract the tier information tier = league.tier except AttributeError: return HttpResponse(json.dumps(INVALID_RIOT_RESPONSE)) try: # use the gathered information to create a summoner object summoner_o = Summoner.objects.create( region=region, key=key, name=name, summoner_id=summoner_id, tier=tier, division=division, lp=lp, wins=wins, losses=losses, series=series, profile_icon=profile_icon) except IntegrityError: return HttpResponse(json.dumps(INTERNAL_PROCESSING_ERROR)) # update the newly created summoner conn = SQSConnection(AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) queue = conn.get_queue("portal") message = RawMessage() message.set_body(json.dumps({"region": region, "keys": [key]})) queue.write(message) # return the summoner object return HttpResponse(summoner_serializer(summoner_o, None, False)) @require_POST def change_email(request): # extract data data = json.loads(request.body.decode('utf-8')) region = data.get("region") key = data.get("key") password = data.get("password") new_email = data.get("new_email") # ensure the data is valid if None in (region, key, password, new_email): return HttpResponse(json.dumps(INVALID_REQUEST_FORMAT)) # ensure proper key format key = format_key(key) try: # get summoner object summoner_o = cache.get(region + key + "summoner") if summoner_o is None: summoner_o = Summoner.objects.get(region=region, key=key) cache.set(region + key + "summoner", summoner_o, None) Summoner.objects.filter(pk=summoner_o.pk).update(accessed=datetime.now()) except Summoner.DoesNotExist: return HttpResponse(json.dumps(SUMMONER_NOT_IN_DATABASE)) # make sure user object exists if summoner_o.user is None: return HttpResponse(json.dumps(SUMMONER_NOT_REGISTERED)) # ensure password is correct if not hashers.check_password(password, summoner_o.user.password): return HttpResponse(json.dumps(INVALID_CREDENTIALS)) # change email User.objects.filter(pk=summoner_o.user.pk).update(email=new_email) # return the users summoner object with the email included return HttpResponse(summoner_serializer(summoner_o, new_email, False)) @require_POST def change_password(request): # extract data data = json.loads(request.body.decode('utf-8')) region = data.get("region") key = data.get("key") current_password = data.get("current_password") new_password = data.get("new_password") # ensure the data is valid if None in (region, key, current_password, new_password): return HttpResponse(json.dumps(INVALID_REQUEST_FORMAT)) # ensure proper key format key = format_key(key) try: # get summoner object summoner_o = cache.get(region + key + "summoner") if summoner_o is None: summoner_o = Summoner.objects.get(region=region, key=key) cache.set(region + key + "summoner", summoner_o, None) Summoner.objects.filter(pk=summoner_o.pk).update(accessed=datetime.now()) except Summoner.DoesNotExist: return HttpResponse(json.dumps(SUMMONER_NOT_IN_DATABASE)) # make sure user object exists if summoner_o.user is None: return HttpResponse(json.dumps(SUMMONER_NOT_REGISTERED)) # make sure entered password is correct password if not hashers.check_password(current_password, summoner_o.user.password): return HttpResponse(json.dumps(INVALID_CREDENTIALS)) # change password User.objects.filter(pk=summoner_o.user.pk).update(password=<PASSWORD>(<PASSWORD>)) # return the users summoner object return HttpResponse(summoner_serializer(summoner_o, None, False)) @require_POST def get_summoners(request): # extract data data = json.loads(request.body.decode('utf-8')) region = data.get("region") keys = data.get("keys") # ensure the data is valid if None in (region, keys): return HttpResponse(json.dumps(INVALID_REQUEST_FORMAT)) # initialize empty list for requested summoner objects summoners_o = [] # iterate over each key for key in keys: # ensure proper key format key = format_key(key) try: # get summoner object summoner_o = cache.get(region + key + "summoner") if summoner_o is None: summoner_o = Summoner.objects.get(region=region, key=key) cache.set(region + key + "summoner", summoner_o, None) Summoner.objects.filter(pk=summoner_o.pk).update(accessed=datetime.now()) # append summoner object to list summoners_o.append(summoner_o) except Summoner.DoesNotExist: return HttpResponse(json.dumps(SUMMONER_NOT_IN_DATABASE)) # remove duplicates summoners_o = set(summoners_o) # return the requested summoner objects return HttpResponse(summoner_serializer(summoners_o, None, True)) @require_POST def login_user(request): # extract data data = json.loads(request.body.decode('utf-8')) region = data.get("region") key = data.get("key") password = data.get("password") # ensure the data is valid if None in (region, key, password): return HttpResponse(json.dumps(INVALID_REQUEST_FORMAT)) # ensure proper key format key = format_key(key) try: # get the summoner object summoner_o = cache.get(region + key + "summoner") if summoner_o is None: summoner_o = Summoner.objects.get(region=region, key=key) cache.set(region + key + "summoner", summoner_o, None) Summoner.objects.filter(pk=summoner_o.pk).update(accessed=datetime.now()) except Summoner.DoesNotExist: return HttpResponse(json.dumps(SUMMONER_NOT_IN_DATABASE)) # make sure user object exists if summoner_o.user
Adv.' ], ylim: (0, 100), xlim: (0, 0.05), is_log: False, } robust_non_adaptive2 = {ylabel: "Test Accuracy (%)", file_name: "distortion_robust_net_non_adaptive2", title: "C&W L$_2$ non-adaptive", # legend_pos: "lower left", legend_pos: "upper right", # bbox: (0.0, 0.0), column_nr: 8, legend_cols: 1, labels: ['PlainNet', 'RobustNet', 'FC', 'BandLimit'], xlim: (-0.05, 1.15), ylim: (0, 100), xlabel: '$L_2$ distortion', is_log: False} robust_adaptive2 = {ylabel: "Test Accuracy (%)", file_name: "distortion_robust_net2", title: "C&W L$_2$ adaptive", # legend_pos: "lower left", legend_pos: "upper right", # bbox: (0.0, 0.0), column_nr: 6, legend_cols: 1, # labels: ['plain', 'robust\n0.2 0.1', 'fft 50%'], labels: ['PlainNet', 'RobustNet', 'FC'], xlim: (-0.05, 1.15), ylim: (0, 100), xlabel: '$L_2$ distortion', is_log: False} robust_non_adaptive3 = {ylabel: "Test Accuracy (%)", file_name: "distortion_robust_net_non_adaptive3", title: "C&W L$_2$ non-adaptive", # legend_pos: "lower left", legend_pos: "upper right", # bbox: (0.0, 0.0), column_nr: 8, legend_cols: 1, labels: ['PlainNet', 'RobustNet', 'FC', 'BandLimit'], xlim: (-0.05, 1.15), ylim: (0, 100), xlabel: '$L_2$ distortion', is_log: False} robust_adaptive3 = {ylabel: "Test Accuracy (%)", file_name: "distortion_robust_net3", title: "C&W L$_2$ adaptive", # legend_pos: "lower left", legend_pos: "upper right", # bbox: (0.0, 0.0), column_nr: 8, legend_cols: 1, # labels: ['plain', 'robust\n0.2 0.1', 'fft 50%'], labels: ['PlainNet', 'RobustNet', 'FC', 'BandLimit'], xlim: (-0.05, 1.15), ylim: (0, 100), xlabel: '$L_2$ distortion', is_log: False} train_vs_inference = { ylabel: "Test Accuracy (%)", file_name: "train_vs_test_perturbation2", # title: "C&W L$_2$ adaptive", title: "ParamNet", # legend_pos: "lower left", legend_pos: "upper right", # bbox: (0.0, 0.0), column_nr: 8, legend_cols: 1, labels: ['test 0.01', 'train 0.01', 'test 0.02', 'train 0.02'], # xlim: (0, 1.15), ylim: (0, 100), xlabel: '$L_2$ distortion', is_log: False, # legend_title: 'ParamNet:', } train_vs_inference3 = { ylabel: "Test Accuracy (%)", file_name: "train_vs_test_perturbation3", # title: "C&W L$_2$ adaptive", title: "ParamNet", # legend_pos: "lower left", legend_pos: "upper right", # bbox: (0.0, 0.0), column_nr: 12, legend_cols: 1, labels: ['test 0.01', 'train 0.01', 'test 0.02', 'train 0.02', 'test 0.07', 'train 0.07'], # xlim: (0, 1.15), ylim: (0, 100), xlabel: '$L_2$ distortion', is_log: False, # legend_title: 'ParamNet:', } robust_layers_dp = { ylabel: "Test Accuracy (%)", file_name: "distortion_robust_net_layers", # title: "C&W L$_2$ adaptive", title: "RobustNet", # legend_pos: "lower left", legend_pos: "upper right", # bbox: (0.0, 0.0), column_nr: 8, legend_cols: 1, labels: ['0.0 0.0', '0.2 0.1', '0.2 0.0', '0.3 0.0'], xlim: (-0.05, 1.15), ylim: (0, 100), xlabel: '$L_2$ distortion', is_log: False, # legend_title: 'RobustNet:', } four_cw_c_40_iters_pgd_adv_train = { ylabel: "Test Accuracy (%)", xlabel: 'C&W c parameter', file_name: "distortion_cw_c_40_iters_pgd_adv_train", # title: "PGD L$_{\infty}$ adaptive", title: "CW L$_2$ adaptive", legend_pos: "lower left", # legend_pos: "upper right", bbox: (-1.0, 0.0), column_nr: 8, legend_cols: 1, labels: [ 'Adv. Train', 'PNI-W Adv.', 'RobustNet', 'RobustNet Adv.' ], ylim: (0, 100), is_log: True, } four_cw_l2_distance_40_iters_pgd_adv_train = { ylabel: "Test Accuracy (%)", xlabel: 'L$_2$ distortion', file_name: "distortion_cw_l2_distance_40_iters_pgd_adv_train", # title: "PGD L$_{\infty}$ adaptive", title: "CW L$_2$ adaptive", legend_pos: "lower left", # legend_pos: "upper right", bbox: (-1.0, 0.0), column_nr: 8, legend_cols: 1, labels: [ 'Adv. Train', 'PNI-W Adv.', 'RobustNet', 'RobustNet Adv.' ], ylim: (0, 100), is_log: False, } four_pgd_many_iters_attack_40_iters_pgd_adv_train = { ylabel: "Test Accuracy (%)", xlabel: '# of PGD iterations', file_name: "distortion_pgd_many_iters_attack_train_40_iters_pgd_adv_train", # title: "PGD L$_{\infty}$ adaptive", title: "PGD L$_\infty$ adaptive", legend_pos: "lower left", # legend_pos: "upper right", bbox: (-1.0, 0.0), column_nr: 8, legend_cols: 1, labels: [ 'Adv. Train', 'PNI-W Adv.', 'RobustNet', 'RobustNet Adv.' ], ylim: (0, 100), is_log: True, } four_pgd_linf_distance_40_iters_pgd_adv_train = { ylabel: "Test Accuracy (%)", xlabel: '$L_\infty$ distortion x $10^{-6}$', file_name: "distortion_pgd_linf_distance_40_iters_pgd_adv_train", # title: "PGD L$_{\infty}$ adaptive", title: "PGD L$_\infty$ adaptive", legend_pos: "lower left", # legend_pos: "upper right", bbox: (-1.0, 0.0), column_nr: 8, legend_cols: 1, labels: [ 'Adv. Train', 'PNI-W Adv.', 'RobustNet', 'RobustNet Adv.' ], ylim: (0, 100), is_log: False, } svhn_cw_c = { ylabel: "Test Accuracy (%)", xlabel: 'C&W c parameter', file_name: 'svhn_cw_c', # title: "PGD L$_{\infty}$ adaptive", title: "CW L$_2$ adaptive", legend_pos: "lower left", # legend_pos: "upper right", bbox: (-1.0, 0.0), column_nr: 8, legend_cols: 1, labels: [ 'Adv. Train', 'PNI-W Adv.', 'RobustNet', 'RobustNet Adv.' ], ylim: (0, 100), is_log: True, } svhn_cw_dist = { ylabel: "Test Accuracy (%)", xlabel: 'L$_2$ distortion', file_name: 'svhn_cw_dist', # title: "PGD L$_{\infty}$ adaptive", title: "CW L$_2$ adaptive", legend_pos: "upper right", # legend_pos: "lower left", # legend_pos: "upper right", bbox: (-1.0, 0.0), column_nr: 8, legend_cols: 1, labels: [ 'Adv. Train', 'PNI-W Adv.', 'RobustNet', 'RobustNet Adv.' ], ylim: (0, 100), is_log: False, } svhn_pgd_iters = { ylabel: "Test Accuracy (%)", xlabel: '# of PGD iterations', file_name: "svhn_pgd_iters", # title: "PGD L$_{\infty}$ adaptive", title: "PGD L$_\infty$ adaptive", # legend_pos: "lower left", legend_pos: "center right", # legend_pos: "upper right", bbox: (-1.0, 0.0), column_nr: 8, legend_cols: 1, labels: [ 'Adv. Train', 'PNI-W Adv.', 'RobustNet', 'RobustNet Adv.' ], ylim: (0, 100), is_log: True, } svhn_pgd_dist = { ylabel: "Test Accuracy (%)", xlabel: '$L_\infty$ distortion x $10^{-6}$', file_name: "svhn_pgd_dist", # title: "PGD L$_{\infty}$ adaptive", title: "PGD L$_\infty$ adaptive", # legend_pos: "lower left", legend_pos: "upper right", # legend_pos: "center", bbox: (-1.0, 0.0), column_nr: 8, legend_cols: 1, labels: [ 'Adv. Train', 'PNI-W Adv.', 'RobustNet', 'RobustNet Adv.' ], ylim: (0, 100), is_log: False, } cw_c_40_iters_pgd_adv = { ylabel: "Test Accuracy (%)", xlabel: 'C&W c parameter', file_name: "distortion_cw_c_40_iters_pgd_adv_train2", # title: "PGD L$_{\infty}$ adaptive", title: "CW L$_2$ adaptive", legend_pos: "lower left", # legend_pos: "upper right", bbox: (-1.0, 0.0), column_nr: 8, legend_cols: 1, labels: [ 'Adv. Train', 'PNI-W Adv.', 'RobustNet', 'RobustNet Adv.' ], ylim: (0, 100), is_log: True, } cw_dist_40_iters_pgd_adv = { ylabel: "Test Accuracy (%)", xlabel: 'L$_2$ distortion', file_name: "distortion_cw_l2_distance_40_iters_pgd_adv_train2", # title: "PGD L$_{\infty}$ adaptive", title: "CW L$_2$ adaptive", legend_pos: "lower left", # legend_pos: "upper right", bbox: (-1.0, 0.0), column_nr: 8, legend_cols: 1, labels: [ 'Adv. Train', 'PNI-W Adv.', 'RobustNet', 'RobustNet Adv.' ], ylim: (0, 100), is_log: False, } pgd_iters_40_iters_pgd_adv_train = { ylabel: "Test Accuracy (%)", xlabel: '# of PGD iterations', file_name: "distortion_pgd_many_iters_attack_train_40_iters_pgd_adv_train2", # title: "PGD L$_{\infty}$ adaptive", title: "PGD L$_\infty$ adaptive", legend_pos: "lower left", # legend_pos: "upper right", bbox: (-1.0, 0.0), column_nr: 8, legend_cols: 1, labels: [ 'Adv. Train', 'PNI-W Adv.', 'RobustNet', 'RobustNet Adv.' ], ylim: (0, 100), is_log: True, } pgd_dist_40_iters_pgd_adv_train = { ylabel: "Test Accuracy (%)", xlabel: '$L_\infty$ distortion x $10^{-6}$', file_name: "distortion_pgd_linf_distance_40_iters_pgd_adv_train2", # title: "PGD L$_{\infty}$ adaptive", title: "PGD L$_\infty$ adaptive", legend_pos: "lower left", # legend_pos: "upper right", bbox: (-1.0, 0.0), column_nr: 8, legend_cols: 1, labels: [ 'Adv. Train', 'PNI-W Adv.', 'RobustNet', 'RobustNet Adv.' ], ylim: (0, 100), is_log: False, } svhn_cw_c2 = { ylabel: "Test Accuracy (%)", xlabel: 'C&W c parameter', file_name: 'svhn_cw_c4', # title: "PGD L$_{\infty}$ adaptive", title: "CW L$_2$ adaptive", legend_pos: "lower left", # legend_pos: "upper right", bbox: (-1.0, 0.0), column_nr: 8, legend_cols: 1, labels: [ 'Adv. Train', 'PNI-W Adv.', 'RobustNet', 'RobustNet Adv.' ], ylim: (0, 100), is_log: True, } svhn_cw_dist2 = { ylabel: "Test Accuracy (%)", xlabel: 'L$_2$ distortion', file_name: 'svhn_cw_dist4', # title: "PGD L$_{\infty}$ adaptive", title: "CW L$_2$ adaptive", legend_pos: "upper right", # legend_pos: "lower left", # legend_pos: "upper right", bbox: (-1.0, 0.0), column_nr: 8, legend_cols: 1, labels: [ 'Adv. Train', 'PNI-W Adv.', 'RobustNet', 'RobustNet Adv.' ], ylim: (0, 100), is_log: False, } svhn_pgd_iters2 = { ylabel: "Test Accuracy (%)", xlabel: '# of PGD iterations', file_name: "svhn_pgd_iters4", # title: "PGD L$_{\infty}$ adaptive", title: "PGD L$_\infty$ adaptive", # legend_pos: "lower left", # legend_pos: "center right", legend_pos: "upper right", bbox: (-1.0, 0.0), column_nr: 8, legend_cols: 1, labels: [ 'Adv. Train', 'PNI-W Adv.', 'RobustNet', 'RobustNet Adv.' ], ylim: (0, 100), is_log: False, is_symlog: True, } svhn_pgd_dist2 = { ylabel: "Test Accuracy (%)", xlabel: '$L_\infty$ distortion', file_name: "svhn_pgd_dist4", # title: "PGD L$_{\infty}$ adaptive", title: "PGD L$_\infty$ adaptive", # legend_pos: "lower left", legend_pos: "upper right", # legend_pos: "center", bbox: (-1.0, 0.0), column_nr: 8, legend_cols: 1, labels: [ 'Adv. Train', 'PNI-W Adv.', 'RobustNet', 'RobustNet Adv.' ], ylim: (0, 100), xlim: (0, 0.05), is_symlog: False, } boundary_attack_linf = { ylabel: "Test Accuracy (%)", xlabel: '$L_\infty$ distortion', file_name: "boundary_attack1", # title: "PGD L$_{\infty}$ adaptive", title: "Boundary (25K iters)", # legend_pos: "lower left", legend_pos: "center right", # legend_pos: "center", bbox: (-1.0, 0.0), column_nr: 10, legend_cols: 1, labels: [ 'Plain', 'Adv. Train', 'PNI-W Adv.', 'RobustNet', 'RobustNet Adv.' ], ylim: (0, 100), xlim: (0, 1.0), is_symlog: False, } boundary_attack_L2 = { ylabel: "Test Accuracy (%)", xlabel: 'max $L_2$ distortion', file_name: "boundary_attack_L2_25K_iters2", # title: "PGD L$_{\infty}$ adaptive", title: "Boundary (25K iters)", # legend_pos: "lower left", legend_pos: "center right", # legend_pos: "center", bbox: (-1.0, 0.0), column_nr: 10, legend_cols: 1,
""" Unit and regression test for the reference_handler package. """ # Import package, test suite, and other packages as needed import reference_handler # noqa: F401 from reference_handler import decode_latex from reference_handler import encode_latex import sys alphabet = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz' def test_latex_utf8_imported(): """Sample test, will always pass so long as import statement worked""" assert 'reference_handler' in sys.modules def test_latex_umlauts(): """LaTex command for an umlaut on a character, e.g. \"{a}""" answer = 'ÄB̈C̈D̈ËF̈G̈ḦÏJ̈K̈L̈M̈N̈ÖP̈Q̈R̈S̈T̈ÜV̈ẄẌŸZ̈äb̈c̈d̈ëf̈g̈ḧïj̈k̈l̈m̈n̈öp̈q̈r̈s̈ẗüv̈ẅẍÿz̈ı̈ȷ̈' # noqa: E501 text = '' for char in list(alphabet): text += r'\"{' + char + '}' text += r'\"{\i}' # dotless i text += r'\"{\j}' # dotless j result = decode_latex(text) check = encode_latex(result) assert (result == answer and check == text) def test_latex_acute_accents(): """LaTex command for an acute accent character, e.g. \'{a}""" answer = 'ÁB́ĆD́ÉF́ǴH́ÍJ́ḰĹḾŃÓṔQ́ŔŚT́ÚV́ẂX́ÝŹáb́ćd́éf́ǵh́íj́ḱĺḿńóṕq́ŕśt́úv́ẃx́ýźı́ȷ́' # noqa: E501 text = '' for char in list(alphabet): text += r"\'{" + char + '}' text += r"\'{\i}" # dotless i text += r"\'{\j}" # dotless j result = decode_latex(text) check = encode_latex(result) assert (result == answer and check == text) result = decode_latex(text) check = encode_latex(result) assert (result == answer and check == text) def test_latex_dot_above(): r"""LaTex command for a dot above the character, e.g. \.{a}""" answer = 'ȦḂĊḊĖḞĠḢİJ̇K̇L̇ṀṄȮṖQ̇ṘṠṪU̇V̇ẆẊẎŻȧḃċḋėḟġḣi̇j̇k̇l̇ṁṅȯṗq̇ṙṡṫu̇v̇ẇẋẏżı̇ȷ̇' # noqa: E501 text = '' for char in list(alphabet): text += r'\.{' + char + '}' text += r'\.{\i}' # dotless i text += r'\.{\j}' # dotless j result = decode_latex(text) check = encode_latex(result) assert (result == answer and check == text) def test_latex_macron_above(): r"""LaTex command for a macron above the character, e.g. \={a}""" answer = 'ĀB̄C̄D̄ĒF̄ḠH̄ĪJ̄K̄L̄M̄N̄ŌP̄Q̄R̄S̄T̄ŪV̄W̄X̄ȲZ̄āb̄c̄d̄ēf̄ḡh̄īj̄k̄l̄m̄n̄ōp̄q̄r̄s̄t̄ūv̄w̄x̄ȳz̄ı̄ȷ̄' # noqa: E501 text = '' for char in list(alphabet): text += r'\={' + char + '}' text += r'\={\i}' # dotless i text += r'\={\j}' # dotless j result = decode_latex(text) check = encode_latex(result) assert (result == answer and check == text) def test_latex_circumflex_above(): r"""LaTex command for a circumflex above the character, e.g. \^{a}""" answer = 'ÂB̂ĈD̂ÊF̂ĜĤÎĴK̂L̂M̂N̂ÔP̂Q̂R̂ŜT̂ÛV̂ŴX̂ŶẐâb̂ĉd̂êf̂ĝĥîĵk̂l̂m̂n̂ôp̂q̂r̂ŝt̂ûv̂ŵx̂ŷẑı̂ȷ̂' # noqa: E501 text = '' for char in list(alphabet): text += r'\^{' + char + '}' text += r'\^{\i}' # dotless i text += r'\^{\j}' # dotless j result = decode_latex(text) check = encode_latex(result) assert (result == answer and check == text) def test_latex_grave_accent(): r"""LaTex command for a grave accent on the character, e.g. \`{a}""" answer = 'ÀB̀C̀D̀ÈF̀G̀H̀ÌJ̀K̀L̀M̀ǸÒP̀Q̀R̀S̀T̀ÙV̀ẀX̀ỲZ̀àb̀c̀d̀èf̀g̀h̀ìj̀k̀l̀m̀ǹòp̀q̀r̀s̀t̀ùv̀ẁx̀ỳz̀ı̀ȷ̀' # noqa: E501 text = '' for char in list(alphabet): text += r'\`{' + char + '}' text += r'\`{\i}' # dotless i text += r'\`{\j}' # dotless j result = decode_latex(text) check = encode_latex(result) assert (result == answer and check == text) def test_latex_vertical_line_above(): r"""LaTex command for a vertical line above the character, e.g. \|{a}""" answer = 'A̍B̍C̍D̍E̍F̍G̍H̍I̍J̍K̍L̍M̍N̍O̍P̍Q̍R̍S̍T̍U̍V̍W̍X̍Y̍Z̍a̍b̍c̍d̍e̍f̍g̍h̍i̍j̍k̍l̍m̍n̍o̍p̍q̍r̍s̍t̍u̍v̍w̍x̍y̍z̍ı̍ȷ̍' # noqa: E501 text = '' for char in list(alphabet): text += r'\|{' + char + '}' text += r'\|{\i}' # dotless i text += r'\|{\j}' # dotless j result = decode_latex(text) check = encode_latex(result) assert (result == answer and check == text) def test_latex_tilde_above(): r"""LaTex command for a tilde above the character, e.g. \~{a}""" answer = 'ÃB̃C̃D̃ẼF̃G̃H̃ĨJ̃K̃L̃M̃ÑÕP̃Q̃R̃S̃T̃ŨṼW̃X̃ỸZ̃ãb̃c̃d̃ẽf̃g̃h̃ĩj̃k̃l̃m̃ñõp̃q̃r̃s̃t̃ũṽw̃x̃ỹz̃ı̃ȷ̃' # noqa: E501 text = '' for char in list(alphabet): text += r'\~{' + char + '}' text += r'\~{\i}' # dotless i text += r'\~{\j}' # dotless j result = decode_latex(text) check = encode_latex(result) assert (result == answer and check == text) def test_latex_macron_below(): r"""LaTex command for a macron below the character, e.g. \b{a}""" answer = 'A̱ḆC̱ḎE̱F̱G̱H̱I̱J̱ḴḺM̱ṈO̱P̱Q̱ṞS̱ṮU̱V̱W̱X̱Y̱Ẕa̱ḇc̱ḏe̱f̱g̱ẖi̱j̱ḵḻm̱ṉo̱p̱q̱ṟs̱ṯu̱v̱w̱x̱y̱ẕı̱ȷ̱' # noqa: E501 text = '' for char in list(alphabet): text += r'\b{' + char + '}' text += r'\b{\i}' # dotless i text += r'\b{\j}' # dotless j result = decode_latex(text) check = encode_latex(result) assert (result == answer and check == text) def test_latex_cedilla(): r"""LaTex command for a cedilla on the character, e.g. \c{a}""" answer = 'A̧B̧ÇḐȨF̧ĢḨI̧J̧ĶĻM̧ŅO̧P̧Q̧ŖŞŢU̧V̧W̧X̧Y̧Z̧a̧b̧çḑȩf̧ģḩi̧j̧ķļm̧ņo̧p̧q̧ŗşţu̧v̧w̧x̧y̧z̧ı̧ȷ̧' # noqa: E501 text = '' for char in list(alphabet): text += r'\c{' + char + '}' text += r'\c{\i}' # dotless i text += r'\c{\j}' # dotless j result = decode_latex(text) check = encode_latex(result) assert (result == answer and check == text) def test_latex_double_grave_accent(): r"""LaTex command for a double grave accent on the character, e.g. \C{a}""" answer = 'ȀB̏C̏D̏ȄF̏G̏H̏ȈJ̏K̏L̏M̏N̏ȌP̏Q̏ȐS̏T̏ȔV̏W̏X̏Y̏Z̏ȁb̏c̏d̏ȅf̏g̏h̏ȉj̏k̏l̏m̏n̏ȍp̏q̏ȑs̏t̏ȕv̏w̏x̏y̏z̏ı̏ȷ̏' # noqa: E501 text = '' for char in list(alphabet): text += r'\C{' + char + '}' text += r'\C{\i}' # dotless i text += r'\C{\j}' # dotless j result = decode_latex(text) check = encode_latex(result) assert (result == answer and check == text) def test_latex_dot_below(): r"""LaTex command for a dot below the character, e.g. \d{a}""" answer = 'ẠḄC̣ḌẸF̣G̣ḤỊJ̣ḲḶṂṆỌP̣Q̣ṚṢṬỤṾẈX̣ỴẒạḅc̣ḍẹf̣g̣ḥịj̣ḳḷṃṇọp̣q̣ṛṣṭụṿẉx̣ỵẓı̣ȷ̣' # noqa: E501 text = '' for char in list(alphabet): text += r'\d{' + char + '}' text += r'\d{\i}' # dotless i text += r'\d{\j}' # dotless j result = decode_latex(text) check = encode_latex(result) assert (result == answer and check == text) def test_latex_inverted_breve(): r"""LaTex command for an inverted breve above the character, e.g. \f{a}""" answer = 'ȂB̑C̑D̑ȆF̑G̑H̑ȊJ̑K̑L̑M̑N̑ȎP̑Q̑ȒS̑T̑ȖV̑W̑X̑Y̑Z̑ȃb̑c̑d̑ȇf̑g̑h̑ȋj̑k̑l̑m̑n̑ȏp̑q̑ȓs̑t̑ȗv̑w̑x̑y̑z̑ı̑ȷ̑' # noqa: E501 text = '' for char in list(alphabet): text += r'\f{' + char + '}' text += r'\f{\i}' # dotless i text += r'\f{\j}' # dotless j result = decode_latex(text) check = encode_latex(result) assert (result == answer and check == text) def test_latex_hook_above(): r"""LaTex command for a hook above the character, e.g. \h{a}""" answer = 'ẢB̉C̉D̉ẺF̉G̉H̉ỈJ̉K̉L̉M̉N̉ỎP̉Q̉R̉S̉T̉ỦV̉W̉X̉ỶZ̉ảb̉c̉d̉ẻf̉g̉h̉ỉj̉k̉l̉m̉n̉ỏp̉q̉r̉s̉t̉ủv̉w̉x̉ỷz̉ı̉ȷ̉' # noqa: E501 text = '' for char in list(alphabet): text += r'\h{' + char + '}' text += r'\h{\i}' # dotless i text += r'\h{\j}' # dotless j result = decode_latex(text) check = encode_latex(result) assert (result == answer and check == text) def test_latex_double_acute_accent(): r"""LaTex command for a double acute accent on the character, e.g. \H{a}""" answer = 'A̋B̋C̋D̋E̋F̋G̋H̋I̋J̋K̋L̋M̋N̋ŐP̋Q̋R̋S̋T̋ŰV̋W̋X̋Y̋Z̋a̋b̋c̋d̋e̋f̋g̋h̋i̋j̋k̋l̋m̋n̋őp̋q̋r̋s̋t̋űv̋w̋x̋y̋z̋ı̋ȷ̋' # noqa: E501 text = '' for char in list(alphabet): text += r'\H{' + char + '}' text += r'\H{\i}' # dotless i text += r'\H{\j}' # dotless j result = decode_latex(text) check = encode_latex(result) assert (result == answer and check == text) def test_latex_ogonek(): r"""LaTex command for a ogonek on the character, e.g. \k{a}""" answer = 'ĄB̨C̨D̨ĘF̨G̨H̨ĮJ̨K̨L̨M̨N̨ǪP̨Q̨R̨S̨T̨ŲV̨W̨X̨Y̨Z̨ąb̨c̨d̨ęf̨g̨h̨įj̨k̨l̨m̨n̨ǫp̨q̨r̨s̨t̨ųv̨w̨x̨y̨z̨ı̨ȷ̨' # noqa: E501 text = '' for char in list(alphabet): text += r'\k{' + char + '}' text += r'\k{\i}' # dotless i text += r'\k{\j}' # dotless j result = decode_latex(text) check = encode_latex(result) assert (result == answer and check == text) def test_latex_ring_above(): r"""LaTex command for a ring above the character, e.g. \r{a}""" answer = 'ÅB̊C̊D̊E̊F̊G̊H̊I̊J̊K̊L̊M̊N̊O̊P̊Q̊R̊S̊T̊ŮV̊W̊X̊Y̊Z̊åb̊c̊d̊e̊f̊g̊h̊i̊j̊k̊l̊m̊n̊o̊p̊q̊r̊s̊t̊ův̊ẘx̊ẙz̊ı̊ȷ̊' # noqa: E501 text = '' for char in list(alphabet): text += r'\r{' + char + '}' text += r'\r{\i}' # dotless i text += r'\r{\j}' # dotless j result = decode_latex(text) check = encode_latex(result) assert (result == answer and check == text) def test_latex_double_inverted_breve(): r"""LaTex command for a double inverted breve on the character, e.g. \t{a}""" answer = 'A͡AB͡BC͡CD͡DE͡EF͡FG͡GH͡HI͡IJ͡JK͡KL͡LM͡MN͡NO͡OP͡PQ͡QR͡RS͡ST͡TU͡UV͡VW͡WX͡XY͡YZ͡Za͡ab͡bc͡cd͡de͡ef͡fg͡gh͡hi͡ij͡jk͡kl͡lm͡mn͡no͡op͡pq͡qr͡rs͡st͡tu͡uv͡vw͡wx͡xy͡yz͡zı͡ıȷ͡ȷ' # noqa: E501 text = '' for char in list(alphabet): text += r'\t{' + char + '}' + char text += r'\t{\i}\i' # dotless i text += r'\t{\j}\j' # dotless j result = decode_latex(text) check = encode_latex(result) assert (result == answer and check == text) def test_latex_breve(): r"""LaTex command for a breve on the character, e.g. \u{a}""" answer = 'ĂB̆C̆D̆ĔF̆ĞH̆ĬJ̆K̆L̆M̆N̆ŎP̆Q̆R̆S̆T̆ŬV̆W̆X̆Y̆Z̆ăb̆c̆d̆ĕf̆ğh̆ĭj̆k̆l̆m̆n̆ŏp̆q̆r̆s̆t̆ŭv̆w̆x̆y̆z̆ı̆ȷ̆' # noqa: E501 text = '' for char in list(alphabet): text += r'\u{' + char + '}' text += r'\u{\i}' # dotless i text += r'\u{\j}' # dotless j result = decode_latex(text) check = encode_latex(result) assert (result == answer and check == text) def test_latex_double_vertical_line_above(): r"""LaTex command for a double vertical line above the character, e.g. \b{a}""" answer = 'A̎B̎C̎D̎E̎F̎G̎H̎I̎J̎K̎L̎M̎N̎O̎P̎Q̎R̎S̎T̎U̎V̎W̎X̎Y̎Z̎a̎b̎c̎d̎e̎f̎g̎h̎i̎j̎k̎l̎m̎n̎o̎p̎q̎r̎s̎t̎u̎v̎w̎x̎y̎z̎ı̎ȷ̎' # noqa: E501 text = '' for char in list(alphabet): text += r'\U{' + char + '}' text += r'\U{\i}' # dotless i text += r'\U{\j}' # dotless j result = decode_latex(text) check = encode_latex(result) assert (result == answer and check == text) def test_latex_caron(): r"""LaTex command for a caron on the character, e.g. \v{a}""" answer = 'ǍB̌ČĎĚF̌ǦȞǏJ̌ǨĽM̌ŇǑP̌Q̌ŘŠŤǓV̌W̌X̌Y̌Žǎb̌čďěf̌ǧȟǐǰǩľm̌ňǒp̌q̌řšťǔv̌w̌x̌y̌žı̌ȷ̌' # noqa: E501 text = '' for char in list(alphabet): text += r'\v{' + char + '}' text += r'\v{\i}' # dotless i text += r'\v{\j}' # dotless j result = decode_latex(text) check = encode_latex(result) assert (result == answer and check == text) def test_latex_symbols(): r"""LaTex command for symbols, e.g. \i""" answer = 'ıȷłŁøØ' #
= getattr(classified_domain, 'cert_info', None) if cert_info is None: domains_certificate_status[ classified_domain.domain] = ( "create_in_progress") continue else: edge_host_name = ( classified_domain.cert_info. get_edge_host_name()) domain_access_url = service_obj.provider_details[ self.driver.provider_name ].get_domain_access_url(classified_domain.domain) old_operator_url = ( None if domain_access_url is None else domain_access_url.get('old_operator_url', None) ) domains_certificate_status[ classified_domain.domain] = ( classified_domain.cert_info.get_cert_status()) if edge_host_name is None: continue provider_access_url = self._get_provider_access_url( classified_domain, dp, edge_host_name) links.append({ 'href': provider_access_url, 'rel': 'access_url', 'domain': dp, 'certificate': classified_domain.certificate, 'old_operator_url': old_operator_url }) except Exception: LOG.exception("Failed to Update Service - {0}". format(provider_service_id)) return self.responder.failed("failed to update service") # check to see if a domain was upgraded from http -> https+san # and keep the policy if it was an upgrade try: for policy in policies: is_upgrade = False for link_id in ids: if ( link_id['policy_name'] == policy['policy_name'] and link_id['protocol'] == 'https' and policy['protocol'] == 'http' ): is_upgrade = True configuration_number = self._get_configuration_number( util.dict2obj(policy)) # when an upgrade is detected, keep track of the # old http policy. the old http policy will be deleted # later. if is_upgrade is True: LOG.info( "{0} was upgraded from http to https san. " "Queuing old http policy for delete.".format( policy['policy_name'])) self.http_policy_queue.enqueue_http_policy( json.dumps({ 'configuration_number': configuration_number, 'policy_name': policy['policy_name'], 'project_id': service_obj.project_id }) ) continue LOG.info('Starting to delete old policy %s' % policy['policy_name']) resp = self.policy_api_client.delete( self.policy_api_base_url.format( configuration_number=configuration_number, policy_name=policy['policy_name'])) LOG.info('akamai response code: %s' % resp.status_code) LOG.info('akamai response text: %s' % resp.text) if resp.status_code != 200: raise RuntimeError(resp.text) LOG.info('Delete old policy %s complete' % policy['policy_name']) except Exception: LOG.exception("Failed to Update Service - {0}". format(provider_service_id)) return self.responder.failed("failed to update service") LOG.info("ids : {0} for service_id {1}".format(json.dumps(ids), service_obj.service_id)) LOG.info("links : {0} for service_id {1}".format(links, service_obj.service_id)) LOG.info("domain certificate status : {0} " "for service_id {1}".format(domains_certificate_status, service_obj.service_id)) return self.responder.updated( json.dumps(ids), links, domains_certificate_status=domains_certificate_status) except Exception as e: LOG.exception("Failed to Update Service - {0}". format(provider_service_id)) LOG.exception('Updating policy failed: %s', traceback.format_exc()) return self.responder.failed( "failed to update service - %s" % str(e)) def delete(self, project_id, provider_service_id): # delete needs to provide a list of policy id/domains # then delete them accordingly try: policies = json.loads(provider_service_id) except Exception: # raise a more meaningful error for debugging info try: msg = 'Mal-formed Akamai ' \ 'policy ids: {0}'.format(provider_service_id) LOG.exception(msg) raise RuntimeError(msg) except Exception as e: return self.responder.failed(str(e)) try: for policy in policies: LOG.info('Starting to delete policy %s' % policy) # TODO(tonytan4ever): needs to look at if service # domain is an https domain, if it is then a different # base url is needed configuration_number = self._get_configuration_number( util.dict2obj(policy)) resp = self.policy_api_client.delete( self.policy_api_base_url.format( configuration_number=configuration_number, policy_name=policy['policy_name'])) LOG.info('akamai response code: %s' % resp.status_code) LOG.info('akamai response text: %s' % resp.text) if resp.status_code != 200: raise RuntimeError(resp.text) except Exception as e: LOG.exception("Failed to Delete Service - {0}". format(provider_service_id)) return self.responder.failed(str(e)) else: LOG.info("Successfully Deleted Service - {0}". format(provider_service_id)) return self.responder.deleted(provider_service_id) def purge(self, provider_service_id, service_obj, hard=True, purge_url='/*', network='production'): try: if not purge_url.startswith('/'): purge_url = ('/' + purge_url) if not hard: return self._policy(provider_service_id, service_obj, invalidate=True, invalidate_url=purge_url) if purge_url == '/*': raise RuntimeError('Akamai purge-all functionality has not' ' been implemented') purge_type = 'delete' try: policies = json.loads(provider_service_id) except Exception: # raise a more meaningful error for debugging info msg = 'Mal-formed Akamai ' \ 'policy ids: {0}'.format(provider_service_id) LOG.exception(msg) raise RuntimeError(msg) for policy in policies: url_scheme = None if policy['protocol'] == 'http': url_scheme = 'http://' elif policy['protocol'] == 'https': url_scheme = 'https://' actual_purge_url = ''.join([url_scheme, policy['policy_name'], purge_url]) data = { 'objects': [ actual_purge_url ] } resp = self.ccu_api_client.post(self.ccu_api_base_url.format( purge_type=purge_type, network=network), data=json.dumps(data), headers=( self.request_header )) if resp.status_code != 201: raise RuntimeError(resp.text) LOG.info("purge response: %s for project id: %s, " "on: %s, purge_url: %s" % (resp.text, service_obj.project_id, provider_service_id, actual_purge_url)) return self.responder.purged(provider_service_id, purge_url=purge_url) except Exception as e: LOG.exception("Failed to Purge/Invalidate Service - {0}". format(provider_service_id)) return self.responder.failed(str(e)) def get_subcustomer_id(self, project_id, domain): # subcustomer_id now just set for project_id return ''.join([str(project_id)]) def _get_subcustomer_id_region(self, configuration_number, project_id, domain): LOG.info("Starting to get " "Sub-Customer ID " "region for domain: {0}".format(domain)) resp = self.subcustomer_api_client.get( self.akamai_subcustomer_api_base_url.format( configuration_number=configuration_number, subcustomer_id=self.get_subcustomer_id(project_id, domain))) if resp.ok: region = json.loads(resp.content)["geo"] LOG.info("Sub-Customer ID region: {0} for domain: {1}".format( region, domain)) return (region, self.get_subcustomer_id(project_id, domain)) else: LOG.info("Sub-Customer ID region retrieval for " "domain: {0} failed!".format(domain)) LOG.info("Response Code: {0}".format(resp.status_code)) msg = "Response Text: {0}".format(resp.text) LOG.info(msg) raise RuntimeError(msg) def _put_subcustomer_id_region(self, configuration_number, project_id, domain, region='US'): LOG.info("Starting to put Sub-Customer ID " "region for domain: {0}".format(domain)) resp = self.subcustomer_api_client.put( self.akamai_subcustomer_api_base_url.format( configuration_number=configuration_number, subcustomer_id=self.get_subcustomer_id(project_id, domain)), data=json.dumps({"geo": region})) if resp.ok: LOG.info("Sub-Customer ID region " "set to : {0} " "for domain: {1}".format(region, domain)) else: msg = "Setting Sub-Customer ID region for " \ "domain: {0} failed!".format(domain) LOG.info(msg) raise RuntimeError(msg) def _delete_subcustomer_id_region(self, configuration_number, project_id, domain): LOG.info("Starting to delete " "Sub-Customer ID for " "domain: {0}".format(domain)) resp = self.subcustomer_api_client.delete( self.akamai_subcustomer_api_base_url.format( configuration_number=configuration_number, subcustomer_id=self.get_subcustomer_id(project_id, domain))) if resp.ok: LOG.info("Sub-Customer ID deleted for domain: {0}".format( domain)) else: msg = "Deleting Sub-Customer ID for " \ "domain: {0} failed!".format(domain) LOG.info(msg) raise RuntimeError(msg) @decorators.lazy_property(write=False) def current_customer(self): return None def _classify_domains(self, domains_list): # classify domains into different categories based on first two level # of domains, group them together # for right now we just use the whole domain as the digital property return domains_list def _process_new_origin(self, origin, rules_list): # NOTE(TheSriram): ensure that request_url starts with a '/' for rule in origin.rules: if rule.request_url: if not rule.request_url.startswith('/'): rule.request_url = ('/' + rule.request_url) rule_dict_template = { 'matches': [], 'behaviors': [] } origin_behavior_dict = { 'name': 'origin', 'value': '-', 'params': { # missing digitalProperty(domain) for now 'originDomain': '', 'hostHeaderType': 'digital_property', 'cacheKeyType': 'digital_property', 'hostHeaderValue': '-', 'cacheKeyValue': '-' } } if origin.hostheadertype == 'custom': origin_behavior_dict['params']['hostHeaderType'] = 'fixed' origin_behavior_dict['params']['hostHeaderValue'] = \ origin.hostheadervalue elif origin.hostheadertype == 'origin': origin_behavior_dict['params']['hostHeaderType'] = 'origin' origin_behavior_dict['params']['hostHeaderValue'] = \ origin.hostheadervalue wildcards = [] # this is the global 'url-wildcard' rule if origin.rules == []: wildcards.append("/*") else: for rule in origin.rules: wildcards.append(rule.request_url) if len(wildcards) > 0: match_rule = { 'name': 'url-wildcard', 'value': " ".join(wildcards) } rule_dict_template['matches'].append( match_rule) origin_behavior_dict['params']['originDomain'] = ( origin.origin ) rule_dict_template['behaviors'].append( origin_behavior_dict ) # Append the new generated rules rules_list.append(rule_dict_template) def _process_new_domain(self, domain, rules_list): dp = domain.domain for rule in rules_list: for behavior in rule['behaviors']: if 'params' in behavior: behavior['params']['digitalProperty'] = dp return dp def _process_restriction_rules(self, restriction_rules, rules_list): # NOTE(TheSriram): ensure that request_url starts with a '/' for restriction_rule in restriction_rules: for rule_entry in restriction_rule.rules: if rule_entry.request_url: if not rule_entry.request_url.startswith('/'): rule_entry.request_url = ( '/' + rule_entry.request_url) # restriction implementation for akamai # for each restriction rule # restriction entities include: referrer, geography, client_ip restriction_entities = ['referrer', 'geography', 'client_ip'] class entityRequestUrlMappingList(dict): """A dictionary with a name attribute""" def __init__(self, name, orig_dict): self.name = name self.update(orig_dict) # classify restriction/rules based on their white/black-list white_list_entities = entityRequestUrlMappingList( 'whitelist', {entity: {} for entity in restriction_entities}) black_list_entities = entityRequestUrlMappingList( 'blacklist', {entity: {} for entity in restriction_entities}) for restriction_rule in restriction_rules: entity_rule_mapping = {} if restriction_rule.access == 'whitelist': entity_rule_mapping = white_list_entities elif restriction_rule.access == 'blacklist': entity_rule_mapping = black_list_entities for rule_entry in restriction_rule.rules: # classify rules based on their entities, then request_urls if getattr(rule_entry, "referrer", None) is not None: if (rule_entry.request_url not in entity_rule_mapping['referrer']): entity_rule_mapping['referrer'][rule_entry.request_url]\ = [rule_entry] else: entity_rule_mapping['referrer'][rule_entry.request_url]\ .append(rule_entry) elif getattr(rule_entry, "client_ip", None) is not None: if (rule_entry.request_url not in entity_rule_mapping['client_ip']): entity_rule_mapping['client_ip'][rule_entry.request_url]\ = [rule_entry] else: entity_rule_mapping['client_ip'][rule_entry.request_url]\ .append(rule_entry) elif getattr(rule_entry, "geography", None) is not None: if (rule_entry.request_url not in entity_rule_mapping['geography']): entity_rule_mapping['geography'][rule_entry.request_url]\ = [rule_entry] else: entity_rule_mapping['geography'][rule_entry.request_url]\ .append(rule_entry) for entity_request_url_rule_mapping in [white_list_entities, black_list_entities]: for entity in entity_request_url_rule_mapping: for request_url in entity_request_url_rule_mapping[entity]: found_match = False # need to write up a function gets the value of behavior behavior_name = self._get_behavior_name( entity, entity_request_url_rule_mapping.name) behavior_value = self._get_behavior_value( entity, entity_request_url_rule_mapping[entity][request_url]) behavior_dict = { 'name': behavior_name, 'value': behavior_value } if entity == 'geography': behavior_dict['type'] = 'country' # if we have a matches rule already for rule in rules_list: for match in rule['matches']: if request_url == match['value']: # we found an existing matching rule. # add the whitelist/blacklist behavior to it found_match = True rule['behaviors'].append(behavior_dict) # if there is no matches entry yet for this rule if not found_match: # create an akamai rule rule_dict_template = { 'matches': [], 'behaviors': [] } # add the match and behavior to this new rule if rule_entry.request_url is not
message['status'] = 'READY' message['error'] = None message['timestamp'] = time.time() message['sla_id'] = self.services[serv_id]['sla_id'] message['policy_id'] = self.services[serv_id]['policy_id'] message['nsr'] = self.services[serv_id]['nsr'] message['vnfrs'] = [] for function in self.services[serv_id]['function']: message['vnfrs'].append(function['vnfr']) LOG.debug("Payload of message " + str(message)) orig_corr_id = self.services[serv_id]['original_corr_id'] self.manoconn.notify(t.GK_CREATE, yaml.dump(message), correlation_id=orig_corr_id) def inform_gk(self, serv_id): """ This method informs the gatekeeper. """ topic = self.services[serv_id]['topic'] LOG.info("Service " + serv_id + ": Reporting result on " + topic) message = {} message['status'] = 'READY' message['workflow'] = self.services[serv_id]['current_workflow'] message['error'] = None message['timestamp'] = time.time() message['nsr'] = self.services[serv_id]['nsr'] message['vnfrs'] = [] for function in self.services[serv_id]['function']: message['vnfrs'].append(function['vnfr']) if 'start_time' in self.services[serv_id]: start_time = self.services[serv_id]['start_time'] message['duration'] = time.time() - start_time LOG.debug("Payload of message " + str(message)) orig_corr_id = self.services[serv_id]['original_corr_id'] self.manoconn.notify(topic, yaml.dump(message), correlation_id=orig_corr_id) ########### # SLM tasks ########### def add_service_to_ledger(self, payload, corr_id): """ This method adds new services with their specifics to the ledger, so other functions can use this information. :param payload: the payload of the received message :param corr_id: the correlation id of the received message """ # Generate an istance uuid for the service serv_id = str(uuid.uuid4()) # Add the service to the ledger and add instance ids self.services[serv_id] = {} self.services[serv_id]['nsd'] = payload['NSD'] self.services[serv_id]['id'] = serv_id self.services[serv_id]['cnf'] = False msg = ": NSD uuid is " + str(payload['NSD']['uuid']) LOG.info("Service " + serv_id + msg) msg = ": NSD name is " + str(payload['NSD']['name']) LOG.info("Service " + serv_id + msg) nsd = self.services[serv_id]['nsd'] # Adjust for flavour self.services[serv_id]['flavour'] = None if 'flavor' in payload.keys(): if payload['flavor']: self.services[serv_id]['flavour'] = payload['flavor'] elif 'flavour' in payload.keys(): if payload['flavour']: self.services[serv_id]['flavour'] = payload['flavour'] msg = str(self.services[serv_id]['flavour']) LOG.info("The selected flavour is: " + msg) if self.services[serv_id]['flavour']: flavour_dict = {} for flavour in nsd['deployment_flavours']: if flavour['name'] == self.services[serv_id]['flavour']: flavour_dict = flavour break for key in flavour_dict.keys(): if key != 'name': nsd[key] = flavour_dict[key] if 'deployment_flavours' in nsd: del nsd['deployment_flavours'] self.services[serv_id]['function'] = [] for key in payload.keys(): if key[:4] == 'VNFD': vnf_id = str(uuid.uuid4()) msg = "VNFD instance id generated: " + vnf_id LOG.info("Service " + serv_id + msg) vnfd = payload[key] vnf_base = {'start': {'trigger': True, 'payload': {}}, 'stop': {'trigger': True, 'payload': {}}, 'configure': {'trigger': True, 'payload': {}}, 'scale': {'trigger': True, 'payload': {}}, 'vnfd': vnfd, 'id': vnf_id, 'flavour':None} for vnf_nsd in nsd['network_functions']: if vnf_nsd['vnf_name'] == vnfd['name'] and \ vnf_nsd['vnf_vendor'] == vnfd['vendor'] and \ vnf_nsd['vnf_version'] == vnfd['version']: if vnf_nsd.get('vnf_flavour'): vnf_base['flavour'] = vnf_nsd['vnf_flavour'] flavour_dict = {} for flavour in vnfd['deployment_flavours']: if flavour['name'] == vnf_base['flavour']: flavour_dict = flavour break for key in flavour_dict.keys(): if key != 'name': vnfd[key] = flavour_dict[key] if 'virtual_deployment_units' in vnf_base['vnfd'].keys(): for vdu in vnf_base['vnfd']['virtual_deployment_units']: vdu['id'] = vdu['id'] + '-' + vnf_id if 'cloudnative_deployment_units' in vnf_base['vnfd'].keys(): self.services[serv_id]['cnf'] = True for vdu in vnf_base['vnfd']['cloudnative_deployment_units']: vdu['id'] = vdu['id'] + '-' + vnf_id self.services[serv_id]['function'].append(vnf_base) # Add to correlation id to the ledger self.services[serv_id]['original_corr_id'] = corr_id # Add payload to the ledger self.services[serv_id]['payload'] = payload self.services[serv_id]['infrastructure'] = {} # Create the service schedule self.services[serv_id]['schedule'] = [] # Create the SSM dict if SSMs are defined in NSD ssm_dict = tools.get_sm_from_descriptor(payload['NSD']) self.services[serv_id]['ssm'] = ssm_dict print(self.services[serv_id]['ssm']) # Create counter for vnfs self.services[serv_id]['vnfs_to_resp'] = 0 self.services[serv_id]['vims_to_resp'] = 0 # Create the chain pause and kill flag self.services[serv_id]['pause_chain'] = False self.services[serv_id]['kill_chain'] = False # Create IP Mapping self.services[serv_id]['ip_mapping'] = [] # Add ingress and egress fields self.services[serv_id]['ingress'] = None self.services[serv_id]['egress'] = None if 'ingresses' in payload.keys(): if payload['ingresses']: if payload['ingresses'] != '[]': self.services[serv_id]['ingress'] = payload['ingresses'] if 'egresses' in payload.keys(): if payload['egresses']: if payload['ingresses'] != '[]': self.services[serv_id]['egress'] = payload['egresses'] # Add params self.services[serv_id]['params'] = payload.get('params') # Add user data to ledger self.services[serv_id]['user_data'] = payload['user_data'] # Add user defined mapping input to ledger self.services[serv_id]['input_mapping'] = {'vnfs':[], 'vls':[]} int_map = self.services[serv_id]['input_mapping'] if 'mapping' in payload.keys(): ext_map = payload['mapping'] if 'network_functions' in ext_map.keys(): int_map['vnfs'] = ext_map['network_functions'] if 'virtual_links' in ext_map.keys(): int_map['vls'] = ext_map['virtual_links'] # Add keys to ledger try: keys = payload['user_data']['customer']['keys'] self.services[serv_id]['public_key'] = keys['public'] self.services[serv_id]['private_key'] = keys['private'] except: msg = ": extracting keys failed " + str(payload['user_data']) LOG.info("Service " + serv_id + msg) self.services[serv_id]['public_key'] = None self.services[serv_id]['private_key'] = None LOG.info("Public key: " + str(self.services[serv_id]['public_key'])) # Add customer constraints to ledger if 'policies' in payload['user_data']['customer'].keys(): policies = payload['user_data']['customer']['policies'] self.services[serv_id]['customer_policies'] = policies else: self.services[serv_id]['customer_policies'] = {} # Add policy and sla id self.services[serv_id]['sla_id'] = None self.services[serv_id]['policy_id'] = None customer = payload['user_data']['customer'] if 'sla_id' in customer.keys(): if customer['sla_id'] != '': self.services[serv_id]['sla_id'] = customer['sla_id'] if 'policy_id' in customer.keys(): if customer['policy_id'] != '': self.services[serv_id]['policy_id'] = customer['policy_id'] return serv_id def recreate_ledger(self, corr_id, serv_id): """ This method recreates an entry in the ledger for a service based on the service instance id. :param corr_id: the correlation id of the received message :param serv_id: the service instance id """ def request_returned_with_error(request, file_type): code = str(request['error']) err = str(request['content']) msg = "Retrieving of " + file_type + ": " + code + " " + err LOG.info("Service " + serv_id + ': ' + msg) self.services[serv_id]['error'] = msg # base of the ledger self.services[serv_id] = {} self.services[serv_id]['original_corr_id'] = corr_id self.services[serv_id]['schedule'] = [] self.services[serv_id]['kill_chain'] = False self.services[serv_id]['infrastructure'] = {} self.services[serv_id]['vnfs_to_resp'] = 0 self.services[serv_id]['vims_to_resp'] = 0 self.services[serv_id]['pause_chain'] = False self.services[serv_id]['error'] = None self.services[serv_id]['ip_mapping'] = [] self.services[serv_id]['ingress'] = None self.services[serv_id]['egress'] = None self.services[serv_id]['public_key'] = None self.services[serv_id]['private_key'] = None self.services[serv_id]['cnf'] = False self.services[serv_id]['user_data'] = {} self.services[serv_id]['user_data']['customer'] = {} self.services[serv_id]['user_data']['developer'] = {} self.services[serv_id]['user_data']['customer']['email'] = None self.services[serv_id]['user_data']['customer']['phone'] = None self.services[serv_id]['user_data']['developer']['email'] = None self.services[serv_id]['user_data']['developer']['phone'] = None self.services[serv_id]['customer_policies'] = {} self.services[serv_id]['input_mapping'] = {'vnfs':[], 'vls':[]} # Retrieve the service record based on the service instance id base = t.nsr_path + "/" LOG.info("Requesting NSR for: " + str(base) + str(serv_id)) request = tools.getRestData(base, serv_id) if request['error'] is not None: request_returned_with_error(request, 'NSR') return None self.services[serv_id]['nsr'] = request['content'] del self.services[serv_id]['nsr']["uuid"] del self.services[serv_id]['nsr']["updated_at"] del self.services[serv_id]['nsr']["created_at"] LOG.info("Service " + serv_id + ": Recreating ledger: NSR retrieved.") # Retrieve the NSD nsr = self.services[serv_id]['nsr'] self.services[serv_id]['nsr']['id'] = serv_id nsd_uuid = nsr['descriptor_reference'] head = {'content-type': 'application/x-yaml'} LOG.info("Request NSD for: " + str(t.nsd_path + '/') + str(nsd_uuid)) request = tools.getRestData(t.nsd_path + '/', nsd_uuid, header=head) if request['error'] is not None: request_returned_with_error(request, 'NSD') return None self.services[serv_id]['nsd'] = request['content']['nsd'] self.services[serv_id]['nsd']['uuid'] = nsd_uuid LOG.info("Service " + serv_id + ": Recreating ledger: NSD retrieved.") nsd = self.services[serv_id]['nsd'] # adjust for flavour self.services[serv_id]['flavour'] = nsr.get('flavour') if self.services[serv_id]['flavour']: flavour_dict = {} for flavour in nsd['deployment_flavours']: if flavour['name'] == self.services[serv_id]['flavour']: flavour_dict = flavour break for key in flavour_dict.keys(): if key != 'name': nsd[key] = flavour_dict[key] if 'deployment_flavours' in nsd: del nsd['deployment_flavours'] # Retrieve the function records based on the service record self.services[serv_id]['function'] = [] nsr = self.services[serv_id]['nsr'] for vnf in nsr['network_functions']: base = t.vnfr_path + "/" request = tools.getRestData(base, vnf['vnfr_id']) if request['error'] is not None: request_returned_with_error(request, 'VNFR') return None if 'virtual_deployment_units' in request['content'].keys(): vdu = request['content']['virtual_deployment_units'][0] vim_id = vdu['vnfc_instance'][0]['vim_id'] if 'cloudnative_deployment_units' in request['content'].keys(): self.services[serv_id]['cnf'] = True vdu = request['content']['cloudnative_deployment_units'][0] vim_id = vdu['vim_id'] new_function = {'id': vnf['vnfr_id'], 'start': {'trigger': False, 'payload': {}}, 'stop': {'trigger': True, 'payload': {}}, 'configure': {'trigger': True, 'payload': {}}, 'scale': {'trigger': True, 'payload': {}}, 'vnfr': request['content'], 'vim_uuid': vim_id, 'flavour': request['content'].get('flavour')} del new_function['vnfr']['updated_at'] del new_function['vnfr']['created_at'] del new_function['vnfr']['uuid'] new_function['vnfr']['id'] = vnf['vnfr_id'] self.services[serv_id]['function'].append(new_function) msg = ": Recreating ledger: VNFR retrieved." LOG.info("Service " + serv_id + msg) # Retrieve the VNFDS based on the function records for vnf in self.services[serv_id]['function']: vnfd_id = vnf['vnfr']['descriptor_reference'] req = tools.getRestData(t.vnfd_path + '/', vnfd_id, header=head) if req['error'] is not None: request_returned_with_error(req, 'VNFD') return None vnf['vnfd'] = req['content']['vnfd'] vnf['vnfd']['uuid'] = vnfd_id if 'virtual_deployment_units' in vnf['vnfd'].keys(): for vdu in vnf['vnfd']['virtual_deployment_units']: vdu['id'] = vdu['id'] + '-' + vnf['id'] if 'cloudnative_deployment_units' in vnf['vnfd'].keys(): for vdu in vnf['vnfd']['cloudnative_deployment_units']: vdu['id'] = vdu['id'] + '-' + vnf['id'] LOG.info("Service " + serv_id + ": Recreate: VNFD retrieved.") if vnf['flavour']: flavour_dict = {} for flavour in vnf['vnfd']['deployment_flavours']: if flavour['name'] == vnf['flavour']: flavour_dict = flavour break for key in flavour_dict.keys(): if key != 'name': vnf['vnfd'][key] = flavour_dict[key] LOG.info("Serice " + serv_id + ": Recreating ledger: VNFDs retrieved.") # Retrieve the params self.services[serv_id]['params'] = nsr.get('params') # Retrieve the deployed SSMs based on the NSD nsd = self.services[serv_id]['nsd'] ssm_dict = tools.get_sm_from_descriptor(nsd) self.services[serv_id]['ssm'] = ssm_dict # Recreate connection
import re import os import numpy as np import tensorflow as tf import json from tqdm import * from math import sqrt from PIL import Image from time import sleep from keras import backend as K from keras.preprocessing.image import Iterator from keras.preprocessing.image import ImageDataGenerator from keras.utils.generic_utils import Progbar from keras.models import model_from_json import img_utils def fit_flow_from_directory(config, fit_sample_size, directory, max_samples, target_size=None, color_mode='grayscale', batch_size=32, shuffle=True, seed=None, follow_links=False, nb_windows=25, sample_shape=(255, 340, 1)): stats_file_path = "statistics.txt" drone_data_gen = DroneDataGenerator() fit_drone_data_gen = DroneDataGenerator(**config) print("[*] Generating statistically representative samples...") batches = drone_data_gen.flow_from_directory(directory, max_samples, target_size, color_mode, batch_size, shuffle, seed, follow_links, nb_windows) print("[*] Fitting the generator on the samples...") for i in tqdm(range(int(batches.samples/batch_size))): imgs, labels = next(batches) if fit_sample_size < 1: index = np.random.choice(imgs.shape[0], int(batch_size*fit_sample_size), replace=False) fit_drone_data_gen.fit(imgs[index]) else: fit_drone_data_gen.fit(imgs[:]) del drone_data_gen del batches print("[*] Done! Mean: {} - STD: {}".format(fit_drone_data_gen.mean, fit_drone_data_gen.std)) with open(os.path.join(directory, stats_file_path), "w") as stats_file: stats_file.write("mean: {}".format(fit_drone_data_gen.mean)) stats_file.write("std: {}".format(fit_drone_data_gen.std)) print("[*] Saved mean and std as {}".format(stats_file_path)) return fit_drone_data_gen.flow_from_directory(directory, max_samples, target_size, color_mode, batch_size, shuffle, seed, follow_links, nb_windows), fit_drone_data_gen.mean, fit_drone_data_gen.std class DroneDataGenerator(ImageDataGenerator): """ Generate minibatches of images and labels with real-time augmentation. The only function that changes w.r.t. parent class is the flow that generates data. This function needed in fact adaptation for different directory structure and labels. All the remaining functions remain unchanged. For an example usage, see the evaluate.py script """ def __init__(self, *args, **kwargs): if 'channel_shift_range' in kwargs: self.channelShiftFactor = kwargs['channel_shift_range'] del kwargs['channel_shift_range'] else: self.channelShiftFactor = 0 if 'shading_factor' in kwargs: self.shadingFactor = kwargs['shading_factor'] del kwargs['shading_factor'] else: self.shadingFactor = 0 if 'salt_and_pepper_factor' in kwargs: self.saltAndPepperFactor = kwargs['salt_and_pepper_factor'] del kwargs['salt_and_pepper_factor'] else: self.saltAndPepperFactor = 0 super(DroneDataGenerator, self).__init__(*args, **kwargs) def flow_from_directory(self, directory, max_samples, target_size=None, color_mode='grayscale', batch_size=32, shuffle=True, seed=None, follow_links=False, nb_windows=25, mean=None, std=None): return DroneDirectoryIterator( directory, max_samples, self, target_size=target_size, color_mode=color_mode, batch_size=batch_size, shuffle=shuffle, seed=seed, follow_links=follow_links, nb_windows=nb_windows, mean=None, std=None) class DroneDirectoryIterator(Iterator): ''' Class for managing data loading of images and labels. The assumed folder structure is: root_folder/ dataset_1/ images/ img_01.png ... annotations.csv dataset_2/ images/ img_01.png ... annotations.csv ... # Arguments directory: Path to the root directory to read data from. image_data_generator: Image Generator. target_size: tuple of integers, dimensions to resize input images to. crop_size: tuple of integers, dimensions to crop input images. color_mode: One of `"rgb"`, `"grayscale"`. Color mode to read images. batch_size: The desired batch size shuffle: Whether to shuffle data or not seed : numpy seed to shuffle data follow_links: Bool, whether to follow symbolic links or not # TODO: Add functionality to save images to have a look at the augmentation ''' def __init__(self, directory, max_samples, image_data_generator, target_size=None, color_mode='grayscale', batch_size=32, shuffle=True, seed=None, follow_links=False, nb_windows=25, mean=None, std=None): self.samples = 0 self.max_samples = max_samples self.formats = {'png', 'jpg'} self.directory = directory self.image_data_generator = image_data_generator # self.target_size = tuple(target_size) self.nb_windows = nb_windows self.follow_links = follow_links if color_mode not in {'rgb', 'grayscale'}: raise ValueError('Invalid color mode:', color_mode, '; expected "rgb" or "grayscale".') self.color_mode = color_mode if self.color_mode == 'rgb': self.image_shape = target_size + (3,) else: self.image_shape = target_size + (1,) # Idea = associate each filename with a corresponding steering or label self.filenames = [] self.ground_truth_loc = dict() self.gt_coord = dict() self.ground_truth_rot = [] # For featurewise standardization self.mean = mean self.std = std self.saved_transforms = 0 if self.image_data_generator.channelShiftFactor > 0: print("[*] Saving transformed images to {}".format(os.path.join(self.directory, "img_transforms"))) if not os.path.isdir(os.path.join(self.directory, "img_transforms")): os.mkdir(os.path.join(self.directory, "img_transforms")) self._walk_dir(directory) # Conversion of list into array # self.ground_truth_loc = np.array(self.ground_truth_loc, dtype = K.floatx()) self.ground_truth_rot = np.array(self.ground_truth_rot, dtype = K.floatx()) assert self.samples > 0, "Empty dataset!" super(DroneDirectoryIterator, self).__init__(self.samples, batch_size, shuffle, seed) def _walk_dir(self, path): for root, dirs, files in os.walk(path): if "annotations.csv" in files: sub_dirs = os.path.relpath(root, path).split('/') sub_dirs = ''.join(sub_dirs) self._parse_dir(root, sub_dirs) def _parse_dir(self, path, sub_dirs): annotations_path = os.path.join(path, "annotations.csv") images_path = os.path.join(path, "images") rot_annotations = [] with open(annotations_path, 'r') as annotations_file: annotations_file.readline() # Skip the header for line in annotations_file: line = line.split(',') frame_no = int(line[0].split('.')[0]) key = "{}_{}".format(sub_dirs, frame_no) gate_center = [int(line[1]), int(line[2])] on_screen = (gate_center[0] >= 0 and gate_center[0] <= self.image_shape[0]) and (gate_center[1] >= 0 and gate_center[1] <= self.image_shape[1]) self.ground_truth_loc[key] =\ self._compute_location_labels(line[1:3], on_screen) # self._compute_location_labels(line[1:3], bool(int(float(line[-1])))) self.gt_coord[key] = "{}x{}".format(line[1], line[2]) rot_annotations.append(line[3]) if len(self.ground_truth_loc) == 0 or len(rot_annotations) == 0: print("[!] Annotations could not be loaded!") raise Exception("Annotations not found") n = 0 for filename in sorted(os.listdir(images_path)): if self.max_samples and n == self.max_samples: break is_valid = False for extension in self.formats: if filename.lower().endswith('.' + extension): is_valid = True break if is_valid: self.filenames.append(os.path.relpath(os.path.join(images_path, filename), self.directory)) self.samples += 1 n += 1 def _compute_location_labels(self, coordinates, visible): ''' Computes the gate location window from the given pixel coordinates, and returns a list of binary labels corresponding to the N + 1 windows (+1 because a special window is defined for the case where the gate is not visible). ''' # TODO: Use keras.utils.to_categorical(y, num_classes=None, dtype='float32') # which does this automatically! sqrt_win = sqrt(self.nb_windows) windows_width = [int(i * self.image_shape[0] / sqrt_win) for i in range(1, int(sqrt_win) + 1)] windows_height = [int(i * self.image_shape[1] / sqrt_win) for i in range(1, int(sqrt_win) + 1)] i, j = 0, 0 if not visible: labels = [0 for i in range(self.nb_windows + 1)] labels[0] = 1 return labels for index, window_i in enumerate(windows_width): if int(float(coordinates[0])) < window_i: i = index + 1 # Start at 1 break for index, window_h in enumerate(windows_height): if int(float(coordinates[1])) < window_h: j = index + 1 # Start at 1 break labels = [0 for i in range(self.nb_windows + 1)] labels[int(i + ((j-1)*sqrt_win))] = 1 return labels def next(self): """ Public function to fetch next batch. # Returns The next batch of images and labels. """ with self.lock: index_array = next(self.index_generator) # The transformation of images is not under thread lock # so it can be done in parallel return self._get_batches_of_transformed_samples(index_array) # TODO: Batch orientation def _get_batches_of_transformed_samples(self, index_array) : current_batch_size = index_array.shape[0] # Image transformation is not under thread lock, so it can be done in # parallel batch_x = np.zeros((current_batch_size,) + (self.image_shape[1], self.image_shape[0], self.image_shape[2]), dtype=K.floatx()) batch_localization = np.zeros((current_batch_size, self.nb_windows + 1,), dtype=K.floatx()) batch_orientation = np.zeros((current_batch_size, 2,), dtype=K.floatx()) grayscale = self.color_mode == 'grayscale' # Build batch of image data for i, j in enumerate(index_array): fname = self.filenames[j] x = img_utils.load_img(os.path.join(self.directory, fname), grayscale=grayscale) # 50% chances of transforming the image shifting = np.random.rand() <= 0.5 if shifting and self.image_data_generator.channelShiftFactor > 0: shifted_x = img_utils.random_channel_shift(x, self.image_data_generator.channelShiftFactor) else: shifted_x = x shading = np.random.rand() <= 0.5 if shading and self.image_data_generator.shadingFactor > 0: shaded_x = img_utils.add_shade(shifted_x, weight=self.image_data_generator.shadingFactor) else: shaded_x = shifted_x salting = np.random.rand() <= 0.5 if salting and self.image_data_generator.saltAndPepperFactor > 0: salted_x = img_utils.add_salt_and_pepper(shaded_x, amount=self.image_data_generator.saltAndPepperFactor) else: salted_x = shaded_x if shifting and self.image_data_generator.channelShiftFactor > 0 and self.saved_transforms < 50: Image.fromarray(x.astype(np.uint8), "RGB").save(os.path.join(self.directory, "img_transforms", "original_{}.jpg".format(self.saved_transforms))) Image.fromarray(shifted_x.astype(np.uint8), "RGB").save(os.path.join(self.directory, "img_transforms", "transformed{}.jpg".format(self.saved_transforms))) self.saved_transforms += 1 self.image_data_generator.standardize(salted_x) batch_x[i] = salted_x # Build batch of localization and orientation data # Get rid of the filename and images/ folder sub_dirs_str = os.path.split(os.path.split(fname)[0])[0] sub_dirs_str = sub_dirs_str.replace('/', '') frame_no = int(os.path.split(fname)[-1].split('.')[0]) key = "{}_{}".format(sub_dirs_str, frame_no) # batch_localization[i, 0] = 1.0 if key in self.ground_truth_loc: batch_localization[i, :] = self.ground_truth_loc[key] else: batch_localization[i, 0] = 0 batch_orientation[i, 0] = 0.0 # batch_orientation[i, 1] = self.ground_truth_rot[fname] if self.mean and self.std: batch_x = (batch_x - self.mean)/(self.std + 1e-6) # Epsilum batch_y = batch_localization # TODO: add batch_orientation return batch_x, batch_y def compute_predictions_and_gt(model, generator, steps, max_q_size=10, pickle_safe=False, verbose=0): """ Generate predictions and associated ground truth for the input samples from a data generator. The generator should return the same kind of data as accepted by `predict_on_batch`. Function adapted from keras `predict_generator`. # Arguments generator: Generator yielding batches of input samples. steps: Total number of steps (batches of samples) to yield from `generator` before stopping. max_q_size: Maximum size for the generator queue. pickle_safe: If `True`, use process based threading. Note that because this implementation relies on multiprocessing, you should not pass non picklable arguments to the generator as they can't be passed easily to children processes. verbose: verbosity mode, 0 or 1. # Returns Numpy array(s) of predictions and associated ground truth. # Raises ValueError: In case the generator yields data in an invalid format. """
result = sot._prepare_request(requires_id=False, prepend_key=True) self.assertEqual("/something", result.url) self.assertEqual({key: {"x": body_value}}, result.body) self.assertEqual({"y": header_value}, result.headers) def test__prepare_request_with_patch(self): class Test(resource.Resource): commit_jsonpatch = True base_path = "/something" x = resource.Body("x") y = resource.Body("y") the_id = "id" sot = Test.existing(id=the_id, x=1, y=2) sot.x = 3 result = sot._prepare_request(requires_id=True, patch=True) self.assertEqual("something/id", result.url) self.assertEqual([{'op': 'replace', 'path': '/x', 'value': 3}], result.body) def test__prepare_request_with_patch_not_synchronized(self): class Test(resource.Resource): commit_jsonpatch = True base_path = "/something" x = resource.Body("x") y = resource.Body("y") the_id = "id" sot = Test.new(id=the_id, x=1) result = sot._prepare_request(requires_id=True, patch=True) self.assertEqual("something/id", result.url) self.assertEqual([{'op': 'add', 'path': '/x', 'value': 1}], result.body) def test__prepare_request_with_patch_params(self): class Test(resource.Resource): commit_jsonpatch = True base_path = "/something" x = resource.Body("x") y = resource.Body("y") the_id = "id" sot = Test.existing(id=the_id, x=1, y=2) sot.x = 3 params = [('foo', 'bar'), ('life', 42)] result = sot._prepare_request(requires_id=True, patch=True, params=params) self.assertEqual("something/id?foo=bar&life=42", result.url) self.assertEqual([{'op': 'replace', 'path': '/x', 'value': 3}], result.body) def test__translate_response_no_body(self): class Test(resource.Resource): attr = resource.Header("attr") response = FakeResponse({}, headers={"attr": "value"}) sot = Test() sot._translate_response(response, has_body=False) self.assertEqual(dict(), sot._header.dirty) self.assertEqual("value", sot.attr) def test__translate_response_with_body_no_resource_key(self): class Test(resource.Resource): attr = resource.Body("attr") body = {"attr": "value"} response = FakeResponse(body) sot = Test() sot._filter_component = mock.Mock(side_effect=[body, dict()]) sot._translate_response(response, has_body=True) self.assertEqual("value", sot.attr) self.assertEqual(dict(), sot._body.dirty) self.assertEqual(dict(), sot._header.dirty) def test__translate_response_with_body_with_resource_key(self): key = "key" class Test(resource.Resource): resource_key = key attr = resource.Body("attr") body = {"attr": "value"} response = FakeResponse({key: body}) sot = Test() sot._filter_component = mock.Mock(side_effect=[body, dict()]) sot._translate_response(response, has_body=True) self.assertEqual("value", sot.attr) self.assertEqual(dict(), sot._body.dirty) self.assertEqual(dict(), sot._header.dirty) def test_cant_do_anything(self): class Test(resource.Resource): allow_create = False allow_fetch = False allow_commit = False allow_delete = False allow_head = False allow_list = False sot = Test() # The first argument to all of these operations is the session, # but we raise before we get to it so just pass anything in. self.assertRaises(exceptions.MethodNotSupported, sot.create, "") self.assertRaises(exceptions.MethodNotSupported, sot.fetch, "") self.assertRaises(exceptions.MethodNotSupported, sot.delete, "") self.assertRaises(exceptions.MethodNotSupported, sot.head, "") # list is a generator so you need to begin consuming # it in order to exercise the failure. the_list = sot.list("") self.assertRaises(exceptions.MethodNotSupported, next, the_list) # Update checks the dirty list first before even trying to see # if the call can be made, so fake a dirty list. sot._body = mock.Mock() sot._body.dirty = mock.Mock(return_value={"x": "y"}) self.assertRaises(exceptions.MethodNotSupported, sot.commit, "") def test_unknown_attrs_under_props_create(self): class Test(resource.Resource): properties = resource.Body("properties") _store_unknown_attrs_as_properties = True sot = Test.new(**{ 'dummy': 'value', }) self.assertDictEqual({'dummy': 'value'}, sot.properties) self.assertDictEqual( {'dummy': 'value'}, sot.to_dict()['properties'] ) self.assertDictEqual( {'dummy': 'value'}, sot['properties'] ) self.assertEqual('value', sot['properties']['dummy']) sot = Test.new(**{ 'dummy': 'value', 'properties': 'a,b,c' }) self.assertDictEqual( {'dummy': 'value', 'properties': 'a,b,c'}, sot.properties ) self.assertDictEqual( {'dummy': 'value', 'properties': 'a,b,c'}, sot.to_dict()['properties'] ) sot = Test.new(**{'properties': None}) self.assertIsNone(sot.properties) self.assertIsNone(sot.to_dict()['properties']) def test_unknown_attrs_not_stored(self): class Test(resource.Resource): properties = resource.Body("properties") sot = Test.new(**{ 'dummy': 'value', }) self.assertIsNone(sot.properties) def test_unknown_attrs_not_stored1(self): class Test(resource.Resource): _store_unknown_attrs_as_properties = True sot = Test.new(**{ 'dummy': 'value', }) self.assertRaises(KeyError, sot.__getitem__, 'properties') def test_unknown_attrs_under_props_set(self): class Test(resource.Resource): properties = resource.Body("properties") _store_unknown_attrs_as_properties = True sot = Test.new(**{ 'dummy': 'value', }) sot['properties'] = {'dummy': 'new_value'} self.assertEqual('new_value', sot['properties']['dummy']) sot.properties = {'dummy': 'new_value1'} self.assertEqual('new_value1', sot['properties']['dummy']) def test_unknown_attrs_prepare_request_unpacked(self): class Test(resource.Resource): properties = resource.Body("properties") _store_unknown_attrs_as_properties = True # Unknown attribute given as root attribute sot = Test.new(**{ 'dummy': 'value', 'properties': 'a,b,c' }) request_body = sot._prepare_request(requires_id=False).body self.assertEqual('value', request_body['dummy']) self.assertEqual('a,b,c', request_body['properties']) # properties are already a dict sot = Test.new(**{ 'properties': { 'properties': 'a,b,c', 'dummy': 'value' } }) request_body = sot._prepare_request(requires_id=False).body self.assertEqual('value', request_body['dummy']) self.assertEqual('a,b,c', request_body['properties']) def test_unknown_attrs_prepare_request_no_unpack_dict(self): # if props type is not None - ensure no unpacking is done class Test(resource.Resource): properties = resource.Body("properties", type=dict) sot = Test.new(**{ 'properties': { 'properties': 'a,b,c', 'dummy': 'value' } }) request_body = sot._prepare_request(requires_id=False).body self.assertDictEqual( {'dummy': 'value', 'properties': 'a,b,c'}, request_body['properties']) def test_unknown_attrs_prepare_request_patch_unpacked(self): class Test(resource.Resource): properties = resource.Body("properties") _store_unknown_attrs_as_properties = True commit_jsonpatch = True sot = Test.existing(**{ 'dummy': 'value', 'properties': 'a,b,c' }) sot._update(**{'properties': {'dummy': 'new_value'}}) request_body = sot._prepare_request(requires_id=False, patch=True).body self.assertDictEqual( { u'path': u'/dummy', u'value': u'new_value', u'op': u'replace' }, request_body[0]) def test_unknown_attrs_under_props_translate_response(self): class Test(resource.Resource): properties = resource.Body("properties") _store_unknown_attrs_as_properties = True body = {'dummy': 'value', 'properties': 'a,b,c'} response = FakeResponse(body) sot = Test() sot._translate_response(response, has_body=True) self.assertDictEqual( {'dummy': 'value', 'properties': 'a,b,c'}, sot.properties ) class TestResourceActions(base.TestCase): def setUp(self): super(TestResourceActions, self).setUp() self.service_name = "service" self.base_path = "base_path" class Test(resource.Resource): service = self.service_name base_path = self.base_path resources_key = 'resources' allow_create = True allow_fetch = True allow_head = True allow_commit = True allow_delete = True allow_list = True self.test_class = Test self.request = mock.Mock(spec=resource._Request) self.request.url = "uri" self.request.body = "body" self.request.headers = "headers" self.response = FakeResponse({}) self.sot = Test(id="id") self.sot._prepare_request = mock.Mock(return_value=self.request) self.sot._translate_response = mock.Mock() self.session = mock.Mock(spec=adapter.Adapter) self.session.create = mock.Mock(return_value=self.response) self.session.get = mock.Mock(return_value=self.response) self.session.put = mock.Mock(return_value=self.response) self.session.patch = mock.Mock(return_value=self.response) self.session.post = mock.Mock(return_value=self.response) self.session.delete = mock.Mock(return_value=self.response) self.session.head = mock.Mock(return_value=self.response) self.session.session = self.session self.session._get_connection = mock.Mock(return_value=self.cloud) self.session.default_microversion = None self.session.retriable_status_codes = None self.endpoint_data = mock.Mock(max_microversion='1.99', min_microversion=None) self.session.get_endpoint_data.return_value = self.endpoint_data def _test_create(self, cls, requires_id=False, prepend_key=False, microversion=None, base_path=None, params=None, id_marked_dirty=True): id = "id" if requires_id else None sot = cls(id=id) sot._prepare_request = mock.Mock(return_value=self.request) sot._translate_response = mock.Mock() params = params or {} result = sot.create(self.session, prepend_key=prepend_key, base_path=base_path, **params) id_is_dirty = ('id' in sot._body._dirty) self.assertEqual(id_marked_dirty, id_is_dirty) sot._prepare_request.assert_called_once_with( requires_id=requires_id, prepend_key=prepend_key, base_path=base_path) if requires_id: self.session.put.assert_called_once_with( self.request.url, json=self.request.body, headers=self.request.headers, microversion=microversion, params=params) else: self.session.post.assert_called_once_with( self.request.url, json=self.request.body, headers=self.request.headers, microversion=microversion, params=params) self.assertEqual(sot.microversion, microversion) sot._translate_response.assert_called_once_with(self.response, has_body=sot.has_body) self.assertEqual(result, sot) def test_put_create(self): class Test(resource.Resource): service = self.service_name base_path = self.base_path allow_create = True create_method = 'PUT' self._test_create(Test, requires_id=True, prepend_key=True) def test_put_create_exclude_id(self): class Test(resource.Resource): service = self.service_name base_path = self.base_path allow_create = True create_method = 'PUT' create_exclude_id_from_body = True self._test_create(Test, requires_id=True, prepend_key=True, id_marked_dirty=False) def test_put_create_with_microversion(self): class Test(resource.Resource): service = self.service_name base_path = self.base_path allow_create = True create_method = 'PUT' _max_microversion = '1.42' self._test_create(Test, requires_id=True, prepend_key=True, microversion='1.42') def test_put_create_with_params(self): class Test(resource.Resource): service = self.service_name base_path = self.base_path allow_create = True create_method = 'PUT' self._test_create(Test, requires_id=True, prepend_key=True, params={'answer': 42}) def test_post_create(self): class Test(resource.Resource): service = self.service_name base_path = self.base_path allow_create = True create_method = 'POST' self._test_create(Test, requires_id=False, prepend_key=True) def test_post_create_base_path(self): class Test(resource.Resource): service = self.service_name base_path = self.base_path allow_create = True create_method = 'POST' self._test_create(Test, requires_id=False, prepend_key=True, base_path='dummy') def test_post_create_with_params(self): class Test(resource.Resource): service = self.service_name base_path = self.base_path allow_create = True create_method = 'POST' self._test_create(Test, requires_id=False, prepend_key=True, params={'answer': 42}) def test_fetch(self): result = self.sot.fetch(self.session) self.sot._prepare_request.assert_called_once_with( requires_id=True, base_path=None) self.session.get.assert_called_once_with( self.request.url, microversion=None, params={}) self.assertIsNone(self.sot.microversion) self.sot._translate_response.assert_called_once_with(self.response) self.assertEqual(result, self.sot) def test_fetch_with_params(self): result = self.sot.fetch(self.session, fields='a,b') self.sot._prepare_request.assert_called_once_with( requires_id=True, base_path=None) self.session.get.assert_called_once_with( self.request.url, microversion=None, params={'fields': 'a,b'}) self.assertIsNone(self.sot.microversion) self.sot._translate_response.assert_called_once_with(self.response) self.assertEqual(result, self.sot) def test_fetch_with_microversion(self): class Test(resource.Resource): service = self.service_name base_path = self.base_path allow_fetch = True _max_microversion = '1.42' sot = Test(id='id') sot._prepare_request = mock.Mock(return_value=self.request) sot._translate_response = mock.Mock() result = sot.fetch(self.session) sot._prepare_request.assert_called_once_with( requires_id=True, base_path=None) self.session.get.assert_called_once_with( self.request.url, microversion='1.42', params={}) self.assertEqual(sot.microversion, '1.42') sot._translate_response.assert_called_once_with(self.response) self.assertEqual(result, sot) def test_fetch_not_requires_id(self): result = self.sot.fetch(self.session, False) self.sot._prepare_request.assert_called_once_with( requires_id=False, base_path=None) self.session.get.assert_called_once_with( self.request.url, microversion=None, params={}) self.sot._translate_response.assert_called_once_with(self.response) self.assertEqual(result, self.sot) def test_fetch_base_path(self): result = self.sot.fetch(self.session, False, base_path='dummy') self.sot._prepare_request.assert_called_once_with( requires_id=False, base_path='dummy') self.session.get.assert_called_once_with( self.request.url, microversion=None, params={}) self.sot._translate_response.assert_called_once_with(self.response) self.assertEqual(result, self.sot) def test_head(self): result = self.sot.head(self.session) self.sot._prepare_request.assert_called_once_with(base_path=None) self.session.head.assert_called_once_with( self.request.url, microversion=None) self.assertIsNone(self.sot.microversion) self.sot._translate_response.assert_called_once_with( self.response, has_body=False) self.assertEqual(result, self.sot) def test_head_base_path(self): result = self.sot.head(self.session, base_path='dummy') self.sot._prepare_request.assert_called_once_with(base_path='dummy') self.session.head.assert_called_once_with( self.request.url, microversion=None) self.assertIsNone(self.sot.microversion) self.sot._translate_response.assert_called_once_with( self.response, has_body=False) self.assertEqual(result, self.sot) def test_head_with_microversion(self): class Test(resource.Resource): service = self.service_name base_path = self.base_path allow_head = True _max_microversion = '1.42' sot = Test(id='id') sot._prepare_request = mock.Mock(return_value=self.request) sot._translate_response = mock.Mock() result = sot.head(self.session) sot._prepare_request.assert_called_once_with(base_path=None) self.session.head.assert_called_once_with( self.request.url, microversion='1.42') self.assertEqual(sot.microversion, '1.42') sot._translate_response.assert_called_once_with( self.response, has_body=False) self.assertEqual(result, sot) def _test_commit(self, commit_method='PUT', prepend_key=True, has_body=True, microversion=None, commit_args=None, expected_args=None, base_path=None): self.sot.commit_method = commit_method # Need to make sot look dirty so we can attempt an update self.sot._body = mock.Mock() self.sot._body.dirty = mock.Mock(return_value={"x": "y"}) self.sot.commit(self.session, prepend_key=prepend_key, has_body=has_body, base_path=base_path, **(commit_args or {})) self.sot._prepare_request.assert_called_once_with( prepend_key=prepend_key, base_path=base_path) if commit_method == 'PATCH': self.session.patch.assert_called_once_with( self.request.url, json=self.request.body, headers=self.request.headers, microversion=microversion, **(expected_args or {})) elif commit_method == 'POST': self.session.post.assert_called_once_with( self.request.url, json=self.request.body, headers=self.request.headers, microversion=microversion, **(expected_args or {})) elif commit_method == 'PUT': self.session.put.assert_called_once_with( self.request.url, json=self.request.body, headers=self.request.headers, microversion=microversion, **(expected_args or {})) self.assertEqual(self.sot.microversion, microversion) self.sot._translate_response.assert_called_once_with( self.response, has_body=has_body) def test_commit_put(self): self._test_commit(commit_method='PUT', prepend_key=True, has_body=True) def test_commit_patch(self): self._test_commit( commit_method='PATCH', prepend_key=False, has_body=False) def test_commit_base_path(self): self._test_commit(commit_method='PUT', prepend_key=True, has_body=True, base_path='dummy') def test_commit_patch_retry_on_conflict(self): self._test_commit( commit_method='PATCH', commit_args={'retry_on_conflict': True}, expected_args={'retriable_status_codes': {409}}) def test_commit_put_retry_on_conflict(self): self._test_commit( commit_method='PUT', commit_args={'retry_on_conflict': True}, expected_args={'retriable_status_codes': {409}}) def test_commit_patch_no_retry_on_conflict(self): self.session.retriable_status_codes = {409, 503} self._test_commit( commit_method='PATCH', commit_args={'retry_on_conflict': False}, expected_args={'retriable_status_codes': {503}}) def test_commit_put_no_retry_on_conflict(self): self.session.retriable_status_codes = {409, 503} self._test_commit( commit_method='PATCH', commit_args={'retry_on_conflict': False}, expected_args={'retriable_status_codes': {503}}) def test_commit_not_dirty(self): self.sot._body = mock.Mock() self.sot._body.dirty = dict() self.sot._header = mock.Mock() self.sot._header.dirty
1 / Fs) if len_x is not None: x = x[:len_x] # get the stimulus frequencies, defaulting to None fstims = [Fs / fstim for fstim in fstims] # get the constants, default to calculated values if NFFT_density is None: NFFT_density_real = 256 elif NFFT_density < 0: NFFT_density_real = NFFT_density = 100 else: NFFT_density_real = NFFT_density if nover_density is None: nover_density_real = 0 elif nover_density < 0: nover_density_real = nover_density = NFFT_density_real // 2 else: nover_density_real = nover_density if pad_to_density is None: pad_to_density_real = NFFT_density_real elif pad_to_density < 0: pad_to_density = int(2**np.ceil(np.log2(NFFT_density_real))) pad_to_density_real = pad_to_density else: pad_to_density_real = pad_to_density if pad_to_spectrum is None: pad_to_spectrum_real = len(x) elif pad_to_spectrum < 0: pad_to_spectrum_real = pad_to_spectrum = len(x) else: pad_to_spectrum_real = pad_to_spectrum if pad_to_spectrum is None: NFFT_spectrum_real = NFFT_spectrum = pad_to_spectrum_real else: NFFT_spectrum_real = NFFT_spectrum = len(x) nover_spectrum = 0 NFFT_specgram = NFFT_density nover_specgram = nover_density pad_to_specgram = pad_to_density NFFT_specgram_real = NFFT_density_real nover_specgram_real = nover_density_real if sides == 'onesided' or (sides == 'default' and not iscomplex): # frequencies for specgram, psd, and csd # need to handle even and odd differently if pad_to_density_real % 2: freqs_density = np.linspace(0, Fs / 2, num=pad_to_density_real, endpoint=False)[::2] else: freqs_density = np.linspace(0, Fs / 2, num=pad_to_density_real // 2 + 1) # frequencies for complex, magnitude, angle, and phase spectrums # need to handle even and odd differently if pad_to_spectrum_real % 2: freqs_spectrum = np.linspace(0, Fs / 2, num=pad_to_spectrum_real, endpoint=False)[::2] else: freqs_spectrum = np.linspace(0, Fs / 2, num=pad_to_spectrum_real // 2 + 1) else: # frequencies for specgram, psd, and csd # need to handle even and odd differentl if pad_to_density_real % 2: freqs_density = np.linspace(-Fs / 2, Fs / 2, num=2 * pad_to_density_real, endpoint=False)[1::2] else: freqs_density = np.linspace(-Fs / 2, Fs / 2, num=pad_to_density_real, endpoint=False) # frequencies for complex, magnitude, angle, and phase spectrums # need to handle even and odd differently if pad_to_spectrum_real % 2: freqs_spectrum = np.linspace(-Fs / 2, Fs / 2, num=2 * pad_to_spectrum_real, endpoint=False)[1::2] else: freqs_spectrum = np.linspace(-Fs / 2, Fs / 2, num=pad_to_spectrum_real, endpoint=False) freqs_specgram = freqs_density # time points for specgram t_start = NFFT_specgram_real // 2 t_stop = len(x) - NFFT_specgram_real // 2 + 1 t_step = NFFT_specgram_real - nover_specgram_real t_specgram = x[t_start:t_stop:t_step] if NFFT_specgram_real % 2: t_specgram += 1 / Fs / 2 if len(t_specgram) == 0: t_specgram = np.array([NFFT_specgram_real / (2 * Fs)]) t_spectrum = np.array([NFFT_spectrum_real / (2 * Fs)]) t_density = t_specgram y = np.zeros_like(x) for i, fstim in enumerate(fstims): y += np.sin(fstim * x * np.pi * 2) * 10**i if iscomplex: y = y.astype('complex') # Interestingly, the instance on which this fixture is called is not # the same as the one on which a test is run. So we need to modify the # class itself when using a class-scoped fixture. cls = request.cls cls.Fs = Fs cls.sides = sides cls.fstims = fstims cls.NFFT_density = NFFT_density cls.nover_density = nover_density cls.pad_to_density = pad_to_density cls.NFFT_spectrum = NFFT_spectrum cls.nover_spectrum = nover_spectrum cls.pad_to_spectrum = pad_to_spectrum cls.NFFT_specgram = NFFT_specgram cls.nover_specgram = nover_specgram cls.pad_to_specgram = pad_to_specgram cls.t_specgram = t_specgram cls.t_density = t_density cls.t_spectrum = t_spectrum cls.y = y cls.freqs_density = freqs_density cls.freqs_spectrum = freqs_spectrum cls.freqs_specgram = freqs_specgram cls.NFFT_density_real = NFFT_density_real def check_freqs(self, vals, targfreqs, resfreqs, fstims): assert resfreqs.argmin() == 0 assert resfreqs.argmax() == len(resfreqs)-1 assert_allclose(resfreqs, targfreqs, atol=1e-06) for fstim in fstims: i = np.abs(resfreqs - fstim).argmin() assert vals[i] > vals[i+2] assert vals[i] > vals[i-2] def check_maxfreq(self, spec, fsp, fstims): # skip the test if there are no frequencies if len(fstims) == 0: return # if twosided, do the test for each side if fsp.min() < 0: fspa = np.abs(fsp) zeroind = fspa.argmin() self.check_maxfreq(spec[:zeroind], fspa[:zeroind], fstims) self.check_maxfreq(spec[zeroind:], fspa[zeroind:], fstims) return fstimst = fstims[:] spect = spec.copy() # go through each peak and make sure it is correctly the maximum peak while fstimst: maxind = spect.argmax() maxfreq = fsp[maxind] assert_almost_equal(maxfreq, fstimst[-1]) del fstimst[-1] spect[maxind-5:maxind+5] = 0 def test_spectral_helper_raises(self): # We don't use parametrize here to handle ``y = self.y``. for kwargs in [ # Various error conditions: {"y": self.y+1, "mode": "complex"}, # Modes requiring ``x is y``. {"y": self.y+1, "mode": "magnitude"}, {"y": self.y+1, "mode": "angle"}, {"y": self.y+1, "mode": "phase"}, {"mode": "spam"}, # Bad mode. {"y": self.y, "sides": "eggs"}, # Bad sides. {"y": self.y, "NFFT": 10, "noverlap": 20}, # noverlap > NFFT. {"NFFT": 10, "noverlap": 10}, # noverlap == NFFT. {"y": self.y, "NFFT": 10, "window": np.ones(9)}, # len(win) != NFFT. ]: with pytest.raises(ValueError): mlab._spectral_helper(x=self.y, **kwargs) @pytest.mark.parametrize('mode', ['default', 'psd']) def test_single_spectrum_helper_unsupported_modes(self, mode): with pytest.raises(ValueError): mlab._single_spectrum_helper(x=self.y, mode=mode) @pytest.mark.parametrize("mode, case", [ ("psd", "density"), ("magnitude", "specgram"), ("magnitude", "spectrum"), ]) def test_spectral_helper_psd(self, mode, case): freqs = getattr(self, f"freqs_{case}") spec, fsp, t = mlab._spectral_helper( x=self.y, y=self.y, NFFT=getattr(self, f"NFFT_{case}"), Fs=self.Fs, noverlap=getattr(self, f"nover_{case}"), pad_to=getattr(self, f"pad_to_{case}"), sides=self.sides, mode=mode) assert_allclose(fsp, freqs, atol=1e-06) assert_allclose(t, getattr(self, f"t_{case}"), atol=1e-06) assert spec.shape[0] == freqs.shape[0] assert spec.shape[1] == getattr(self, f"t_{case}").shape[0] def test_csd(self): freqs = self.freqs_density spec, fsp = mlab.csd(x=self.y, y=self.y+1, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=self.nover_density, pad_to=self.pad_to_density, sides=self.sides) assert_allclose(fsp, freqs, atol=1e-06) assert spec.shape == freqs.shape def test_csd_padding(self): """Test zero padding of csd().""" if self.NFFT_density is None: # for derived classes return sargs = dict(x=self.y, y=self.y+1, Fs=self.Fs, window=mlab.window_none, sides=self.sides) spec0, _ = mlab.csd(NFFT=self.NFFT_density, **sargs) spec1, _ = mlab.csd(NFFT=self.NFFT_density*2, **sargs) assert_almost_equal(np.sum(np.conjugate(spec0)*spec0).real, np.sum(np.conjugate(spec1/2)*spec1/2).real) def test_psd(self): freqs = self.freqs_density spec, fsp = mlab.psd(x=self.y, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=self.nover_density, pad_to=self.pad_to_density, sides=self.sides) assert spec.shape == freqs.shape self.check_freqs(spec, freqs, fsp, self.fstims) @pytest.mark.parametrize( 'make_data, detrend', [(np.zeros, mlab.detrend_mean), (np.zeros, 'mean'), (np.arange, mlab.detrend_linear), (np.arange, 'linear')]) def test_psd_detrend(self, make_data, detrend): if self.NFFT_density is None: return ydata = make_data(self.NFFT_density) ydata1 = ydata+5 ydata2 = ydata+3.3 ydata = np.vstack([ydata1, ydata2]) ydata = np.tile(ydata, (20, 1)) ydatab = ydata.T.flatten() ydata = ydata.flatten() ycontrol = np.zeros_like(ydata) spec_g, fsp_g = mlab.psd(x=ydata, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=0, sides=self.sides, detrend=detrend) spec_b, fsp_b = mlab.psd(x=ydatab, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=0, sides=self.sides, detrend=detrend) spec_c, fsp_c = mlab.psd(x=ycontrol, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=0, sides=self.sides) assert_array_equal(fsp_g, fsp_c) assert_array_equal(fsp_b, fsp_c) assert_allclose(spec_g, spec_c, atol=1e-08) # these should not be almost equal with pytest.raises(AssertionError): assert_allclose(spec_b, spec_c, atol=1e-08) def test_psd_window_hanning(self): if self.NFFT_density is None: return ydata = np.arange(self.NFFT_density) ydata1 = ydata+5 ydata2 = ydata+3.3 ycontrol1, windowVals = _apply_window(ydata1, mlab.window_hanning, return_window=True) ycontrol2 = mlab.window_hanning(ydata2) ydata = np.vstack([ydata1, ydata2]) ycontrol = np.vstack([ycontrol1, ycontrol2]) ydata = np.tile(ydata, (20, 1)) ycontrol = np.tile(ycontrol, (20, 1)) ydatab = ydata.T.flatten() ydataf = ydata.flatten() ycontrol = ycontrol.flatten() spec_g, fsp_g = mlab.psd(x=ydataf, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=0, sides=self.sides, window=mlab.window_hanning) spec_b, fsp_b = mlab.psd(x=ydatab, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=0, sides=self.sides, window=mlab.window_hanning) spec_c, fsp_c = mlab.psd(x=ycontrol, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=0, sides=self.sides, window=mlab.window_none) spec_c *= len(ycontrol1)/(np.abs(windowVals)**2).sum() assert_array_equal(fsp_g, fsp_c) assert_array_equal(fsp_b, fsp_c) assert_allclose(spec_g, spec_c, atol=1e-08) # these should not be almost equal with pytest.raises(AssertionError): assert_allclose(spec_b, spec_c, atol=1e-08) def test_psd_window_hanning_detrend_linear(self): if self.NFFT_density is None: return ydata = np.arange(self.NFFT_density) ycontrol = np.zeros(self.NFFT_density) ydata1 = ydata+5 ydata2 = ydata+3.3 ycontrol1 = ycontrol ycontrol2 = ycontrol ycontrol1, windowVals = _apply_window(ycontrol1, mlab.window_hanning, return_window=True) ycontrol2 = mlab.window_hanning(ycontrol2) ydata = np.vstack([ydata1, ydata2]) ycontrol = np.vstack([ycontrol1, ycontrol2]) ydata = np.tile(ydata, (20, 1)) ycontrol = np.tile(ycontrol, (20, 1)) ydatab = ydata.T.flatten() ydataf = ydata.flatten() ycontrol = ycontrol.flatten() spec_g, fsp_g = mlab.psd(x=ydataf, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=0, sides=self.sides, detrend=mlab.detrend_linear, window=mlab.window_hanning) spec_b, fsp_b = mlab.psd(x=ydatab, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=0, sides=self.sides, detrend=mlab.detrend_linear, window=mlab.window_hanning) spec_c, fsp_c = mlab.psd(x=ycontrol, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=0, sides=self.sides, window=mlab.window_none) spec_c *= len(ycontrol1)/(np.abs(windowVals)**2).sum() assert_array_equal(fsp_g, fsp_c) assert_array_equal(fsp_b, fsp_c) assert_allclose(spec_g, spec_c, atol=1e-08) # these should not be almost equal with pytest.raises(AssertionError): assert_allclose(spec_b, spec_c, atol=1e-08) def test_psd_windowarray(self): freqs = self.freqs_density spec, fsp = mlab.psd(x=self.y, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=self.nover_density, pad_to=self.pad_to_density, sides=self.sides, window=np.ones(self.NFFT_density_real)) assert_allclose(fsp, freqs, atol=1e-06) assert spec.shape == freqs.shape def test_psd_windowarray_scale_by_freq(self): win = mlab.window_hanning(np.ones(self.NFFT_density_real)) spec, fsp = mlab.psd(x=self.y, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=self.nover_density, pad_to=self.pad_to_density, sides=self.sides, window=mlab.window_hanning) spec_s, fsp_s = mlab.psd(x=self.y, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=self.nover_density, pad_to=self.pad_to_density, sides=self.sides, window=mlab.window_hanning, scale_by_freq=True) spec_n, fsp_n = mlab.psd(x=self.y, NFFT=self.NFFT_density, Fs=self.Fs, noverlap=self.nover_density, pad_to=self.pad_to_density, sides=self.sides, window=mlab.window_hanning, scale_by_freq=False) assert_array_equal(fsp, fsp_s) assert_array_equal(fsp, fsp_n) assert_array_equal(spec, spec_s) assert_allclose(spec_s*(win**2).sum(), spec_n/self.Fs*win.sum()**2, atol=1e-08) @pytest.mark.parametrize( "kind", ["complex", "magnitude", "angle", "phase"]) def test_spectrum(self, kind): freqs = self.freqs_spectrum spec, fsp = getattr(mlab, f"{kind}_spectrum")( x=self.y, Fs=self.Fs, sides=self.sides, pad_to=self.pad_to_spectrum) assert_allclose(fsp, freqs, atol=1e-06) assert spec.shape == freqs.shape if kind == "magnitude": self.check_maxfreq(spec, fsp, self.fstims) self.check_freqs(spec, freqs, fsp, self.fstims) @pytest.mark.parametrize( 'kwargs', [{}, {'mode': 'default'}, {'mode': 'psd'}, {'mode': 'magnitude'}, {'mode':
<reponame>francaracuel/UGR-GII-CCIA-4-VC-Vision_por_computador-17-18-Practicas # -*- coding: utf-8 -*- """ <NAME> VC - Visión por Computador 4º - GII - CCIA - ETSIIT - UGR Curso 2017/2018 """ import cv2 import numpy as np import math import copy from matplotlib import pyplot as plt ############################################################################### # Configuración general # # Ruta hacia las imágenes path = "imagenes/" # Texto que se muestra para continuar ejecutando el fichero continue_text = "Pulsa \"Enter\" para continuar..." # Título para las imágenes img_title = "" # Número de columnas que tendrá la tabla con la salida de las imágenes num_cols = 3 # Esquema de color que se utiliza por defecto para convertir las imágenes cmap = cv2.COLOR_RGB2GRAY # Esquema de color que se utiliza por defecto en plt.imshow() plt.rcParams['image.cmap'] = 'gray' # ################################################################################ ################################################################################ # Utils # def set_c_map(imgs, cmap = cv2.COLOR_RGB2BGR): """ Asigna un esquema de color a todas las imágenes que se reciben. Si se recibe una lista, las imágenes verán reflejadas su nuevo esquema de color directamente. Si se recibe una imagen, es necesario hacer una asignación con el resultado de aplicar esta función. ------------ Para aplicar el color se puede utilizar: - cv2.COLOR_RGB2BGR (color) - cv2.COLOR_RGB2GRAY (escala de grises) - ... """ # Se comprueba si el elemento que se recibe es una imagen o es una lista # con imágenes. if isinstance(imgs, list): # Se guarda la longitud de la lista de imágenes length = len(imgs) # Es una lista de imágenes, por lo que se recorre cada una para cambiar # el esquema de color for i in range(length): imgs[i] = cv2.cvtColor(imgs[i], cmap) else: # Si es una imagen se le aplica el esquema de color imgs = cv2.cvtColor(imgs, cmap) return imgs def power_two(n): """ Calcula el logaritmo en base 2 de un número, truncando los decimales """ return int(math.log(n, 2)) def next_power_two(n): """ Calcula el siguiente número potencia de 2 de otro número recibido por parámetro. """ return pow(2, power_two(n)+1) # ################################################################################ ################################################################################ # Apartado 1 # ######## # Sección A # def show_images(imgs, names = list(), cols = num_cols, title = ""): """ Dada una lista de imágenes (imgs) y una lista de nombres (names), muestra en una tabla todas estas imágenes con su nombre correspondiente. Por defecto, el número de columnas que se van a mostrar es 3. Por defecto, el título que acompaña a cada imagen es "". """ # Se guarda la cantidad de imágenes que se van a mostrar imgs_length = len(imgs) # Si la lista está vacía, se crea una con el tamaño de imágenes y rellena de # espacios en blanco para que no haya ningún error al mostrarlo if not names: names = [""]*imgs_length # Si hay menos imágenes que número de columnas se ha establecido, se # disminuye el número de columnas al número de imágenes y el número de filas # a 1. if imgs_length <= cols: cols = imgs_length rows = 1 # Si hay más imágenes, el número de filas viene determinado por el número de # imágenes. Se debe redondear siempre al alza para poder colocar las # imágenes en la última fila else: rows = math.ceil(imgs_length/cols) # Se recorren todas las imágenes para colocarlas una a una en la posición # que les corresponde en la tabla for i, img in enumerate(imgs): # La imagen se recibe con flotantes, por lo que se hace el cambio a # enteros img = copy.deepcopy(img).astype(int) # Se indica el número de filas y columnas y la posición que ocupa la # imagen actual en esa tabla plt.subplot(rows, cols, i+1) # Se cambia el esquema de color de la imagen #img = cv2.cvtColor(img, cmap) # Se indica el título que tendrá la imagen plt.title(title+names[i]) # Se indica el valor que se mostrará en el eje X #plt.xlabel(i) # Se eliminan las marcas de los ejes X e Y plt.xticks([]) plt.yticks([]) # Se muestra la imagen en su lugar correspondiente plt.imshow(img) # Se visualiza la tabla con todas las imágenes plt.show() # ######## ######## # Sección B # def convolution_b(img, sigma, mask = -1, border = -1): """ Dada una imagen (img), realiza una convolución con máscara gaussiana. El tamaño de la máscara por defecto se calcula a partir del sigma recibido, como 6*sigma+1. Esto es debido a que la medida más óptima es crear un intervalo de 3*sigma por cada lado, lo que hace que se tenga 6*sigma. Para no dejar sin contar el punto intermedio se suma 1, lo que termina resultando 6*sigma+1. Se permite especificar una máscara determinada. Se puede indicar un borde, que por defecto está deshabilitado. ------------------- Opciones para el borde: - cv2.BORDER_REPLICATE - cv2.BORDER_REFLECT - cv2.BORDER_REFLECT_101 - cv2.BORDER_WRAP - cv2.BORDER_CONSTANT ------------------- Devuelve la imagen con la transformación realizada. """ # Opciones para el borde: # - BORDER_REPLICATE # - BORDER_REFLECT # - BORDER_REFLECT_101 # - BORDER_WRAP # - BORDER_CONSTANT # Se comprueba si no se ha recibido la máscara. En el caso de no recibirla # se le asigna el valor por defecto 6*sigma+1 if mask == -1: mask = 6*sigma+1 # Si no se recibe ningún borde, la convolución será por defecto. En caso de # recibirlo, se le indica por parámetro el especificado if border == -1: img = cv2.GaussianBlur(img, (mask, mask), sigma) else: img = cv2.GaussianBlur(img, (mask, mask), sigma, borderType = border) # Se devuelve la imagen con la convolución realizada return img # ######## ######## # Sección C # def convolution_c(img , kernel_x = None, kernel_y = None, sigma = 0, border = cv2.BORDER_DEFAULT, normalize = True, own = False): """ Dada una imagen (img) y dos núcleos (kernel_x, kernel_y) realiza una convolución de la imagen utilizando dichos núcleos. Se aplicará sucesivamente el núcleo por todas las filas de la imagen y con esta transformación se vuelve a aplicar a todas las columnas. Si se recibe un kernel_x "None", se extrae el kernel a través de la función cv2.getGaussianKernel(). Si se recibe un kernel_y "None", será el mismo kernel ya calculado en kernel_x. Se puede indicar un borde, que por defecto está deshabilitado. Nota: si se utiliza la propia función de convolución añadida a partir del Bonus 2, la opción de borde no se contempla al utilizarse por defecto un borde reflejado. Permite la opción de normalizar, que por defecto está activa. Se le puede enviar el parámetro normalize = False para que no la haga. En el Bonus 2 se desarrolla la propia función de convolución y se adapta en este apartado (ya que se utiliza para el resto de práctica) para poder utilizarla. El parámetro "own" indica si se utiliza o no la propia función de convolución. Por defecto no se utiliza. ------------------- Opciones para el borde: - cv2.BORDER_REPLICATE - cv2.BORDER_REFLECT - cv2.BORDER_REFLECT_101 - cv2.BORDER_WRAP - cv2.BORDER_CONSTANT ------------------- Devuelve la imagen con la transformación realizada. """ # Si se modifican los valores de img, se verán reflejados en el resto de # imágenes que hagan uso de la imagen base. Para evitar esto, se hace un # copiado en el que no es por referencia img = copy.deepcopy(img) # Se comprueba si se calcula el kernel if kernel_x is None: kernel_x = cv2.getGaussianKernel(6*sigma+1, sigma) # Se comprueba si se calcula el kernel_y if kernel_y is None: kernel_y = kernel_x # Se obtiene el número de filas y columnas que tiene la imagen. La función # shape devuelve también los canales siempre que la imagen no esté en # escala de grises, por lo que se comprueba cuantos valores devuelve la # función y en base a ello se guardan en dos o en tres variables (para # evitar errores de ejecución) shape = img.shape # Para no tener error en el ámbito de las filas y las columnas se declaran # en este punto # También se pueden obtener las filas como len(img) y las columnas como # len(img[0]) rows = 0 cols = 0 # Si la imagen está en escala de grises devuelve dos valores if len(shape) == 2: rows, cols = shape # Si la imagen tiene un esquema de color
#!/usr/bin/env python # -*- coding: utf-8 -*- # # webapp.py # # Copyright 2018 <NAME> <<EMAIL>> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ============================================================================== # This code was inspired by and contains code snippets from Pradeep Singh: # https://github.com/pradeesi/Incoming_Call_Detail_Logger # https://iotbytes.wordpress.com/incoming-call-details-logger-with-raspberry-pi/ # ============================================================================== from __future__ import division import logging import os import random import string import _thread from datetime import datetime, timedelta from pprint import pformat import sqlite3 from flask import Flask, request, g, current_app, render_template, redirect, \ jsonify, flash from flask_paginate import Pagination, get_page_args from pygments import highlight from pygments.lexers import PythonLexer from pygments.formatters import HtmlFormatter from screening.query_db import query_db from screening.blacklist import Blacklist from screening.whitelist import Whitelist from messaging.voicemail import Message # Create the Flask micro web-framework application app = Flask(__name__) app.config.from_pyfile('webapp.cfg') @app.before_request def before_request(): """ Establish a database connection for the current request """ master_config = current_app.config.get("MASTER_CONFIG") g.conn = sqlite3.connect(master_config.get("DB_FILE")) g.conn.row_factory = sqlite3.Row g.cur = g.conn.cursor() @app.teardown_request def teardown(error): """ Closes the database connection for the last request """ if hasattr(g, 'conn'): g.conn.close() @app.route('/') def dashboard(): """ Display the dashboard, i.e,, the home page """ # Count totals calls sql = "SELECT COUNT(*) FROM CallLog" g.cur.execute(sql) total_calls = g.cur.fetchone()[0] # Count blocked calls sql = "SELECT COUNT(*) FROM CallLog WHERE `Action` = 'Blocked'" g.cur.execute(sql) total_blocked = g.cur.fetchone()[0] # Compute percentage blocked percent_blocked = 0 if total_calls > 0: percent_blocked = total_blocked / total_calls * 100 # Get the number of unread messages sql = "SELECT COUNT(*) FROM Message WHERE Played = 0" g.cur.execute(sql) new_messages = g.cur.fetchone()[0] # Get the Recent Calls subset max_num_rows = 10 sql = """SELECT a.CallLogID, CASE WHEN b.PhoneNo is not null then b.Name WHEN c.PhoneNo is not null then c.Name ELSE a.Name END Name, a.Number, a.Date, a.Time, a.Action, a.Reason, CASE WHEN b.PhoneNo is null THEN 'N' ELSE 'Y' END Whitelisted, CASE WHEN c.PhoneNo is null THEN 'N' ELSE 'Y' end Blacklisted, d.MessageID, d.Played, d.Filename, a.SystemDateTime FROM CallLog as a LEFT JOIN Whitelist AS b ON a.Number = b.PhoneNo LEFT JOIN Blacklist AS c ON a.Number = c.PhoneNo LEFT JOIN Message AS d ON a.CallLogID = d.CallLogID ORDER BY a.SystemDateTime DESC LIMIT {}""".format(max_num_rows) g.cur.execute(sql) result_set = g.cur.fetchall() recent_calls = [] for row in result_set: # Flask pages use the static folder to get resources. # In the static folder we have created a soft-link to the # data/messsages folder containing the actual messages. # We'll use the static-based path for the wav-file urls # in the web app filepath = row[11] if filepath is not None: basename = os.path.basename(filepath) filepath = os.path.join("../static/messages", basename) # Create a date object from the date time string date_time = datetime.strptime(row[12][:19], '%Y-%m-%d %H:%M:%S') recent_calls.append(dict( call_no=row[0], name=row[1], phone_no=format_phone_no(row[2]), date=date_time.strftime('%d-%b-%y'), time=date_time.strftime('%I:%M %p'), action=row[5], reason=row[6], whitelisted=row[7], blacklisted=row[8], msg_no=row[9], msg_played=row[10], wav_file=filepath)) # Get top permitted callers sql = """SELECT COUNT(Number), Number, Name FROM CallLog WHERE Action IN ('Permitted', 'Screened') GROUP BY Number ORDER BY COUNT(Number) DESC LIMIT 10""" g.cur.execute(sql) result_set = g.cur.fetchall() top_permitted = [] for row in result_set: top_permitted.append(dict( count=row[0], phone_no=format_phone_no(row[1]), name=row[2])) # Get top blocked callers sql = """SELECT COUNT(Number), Number, Name FROM CallLog WHERE Action = 'Blocked' GROUP BY Number ORDER BY COUNT(Number) DESC LIMIT 10""" g.cur.execute(sql) result_set = g.cur.fetchall() top_blocked = [] for row in result_set: top_blocked.append(dict( count=row[0], phone_no=format_phone_no(row[1]), name=row[2])) # Get num calls per day for graphing num_days = current_app.config.get("GRAPH_NUM_DAYS", 30) # Query num blocked calls sql = """SELECT COUNT(DATE(SystemDateTime)) Count, DATE(SystemDateTime) CallDate FROM CallLog WHERE SystemDateTime > DATETIME('now','-{} day') AND Action = 'Blocked' GROUP BY CallDate ORDER BY CallDate""".format(num_days) g.cur.execute(sql) result_set = g.cur.fetchall() blocked_per_day = {} for row in result_set: # key value = date, count blocked_per_day[row[1]] = row[0] # Query number of allowed calls sql = """SELECT COUNT(DATE(SystemDateTime)) Count, DATE(SystemDateTime) CallDate FROM CallLog WHERE SystemDateTime > DATETIME('now','-{} day') AND Action = 'Permitted' GROUP BY CallDate ORDER BY CallDate""".format(num_days) g.cur.execute(sql) result_set = g.cur.fetchall() allowed_per_day = {} for row in result_set: # key value = date, count allowed_per_day[row[1]] = row[0] # Query number of screened calls sql = """SELECT COUNT(DATE(SystemDateTime)) Count, DATE(SystemDateTime) CallDate FROM CallLog WHERE SystemDateTime > DATETIME('now','-{} day') AND Action = 'Screened' GROUP BY CallDate ORDER BY CallDate""".format(num_days) g.cur.execute(sql) result_set = g.cur.fetchall() screened_per_day = {} for row in result_set: # key value = date, count screened_per_day[row[1]] = row[0] # Conflate the results base_date = datetime.today() date_list = [base_date - timedelta(days=x) for x in range(num_days)] date_list.reverse() calls_per_day = [] for date in date_list: date_key = date.strftime("%Y-%m-%d") calls_per_day.append(dict( date=date_key, blocked=blocked_per_day.get(date_key, 0), allowed=allowed_per_day.get(date_key, 0), screened=screened_per_day.get(date_key, 0))) if not current_app.config.get("MASTER_CONFIG").get("MODEM_ONLINE", True): flash('The modem is not online. Calls will not be screened or blocked. Check the logs and restart the CallAttendant.') # Render the resullts return render_template( 'dashboard.html', active_nav_item="dashboard", recent_calls=recent_calls, top_permitted=top_permitted, top_blocked=top_blocked, calls_per_day=calls_per_day, new_messages=new_messages, total_calls='{:,}'.format(total_calls), blocked_calls='{:,}'.format(total_blocked), percent_blocked='{0:.0f}%'.format(percent_blocked)) @app.route('/calls', methods=['GET']) def calls(): """ Display the call history from the call log table. """ # Get GET request args, if available number = request.args.get('number') search_text = request.args.get('search') search_type = request.args.get('submit') # Get search criteria, if applicable search_criteria = "" if search_text: if search_type == "phone": number = transform_number(search_text) # override GET arg if we're searching search_criteria = "WHERE Number='{}'".format(number) else: search_criteria = "WHERE Caller LIKE '%{}%'".format(search_text) # Get values used for pagination of the call log sql = "SELECT COUNT(*), Number, Name Caller FROM CallLog {}".format(search_criteria) g.cur.execute(sql) total = g.cur.fetchone()[0] page, per_page, offset = get_page_args( page_parameter="page", per_page_parameter="per_page") # Get the call log subset, limited to the pagination settings sql = """SELECT a.CallLogID, CASE WHEN b.PhoneNo is not null then b.Name WHEN c.PhoneNo is not null then c.Name ELSE a.Name END Caller, a.Number Number, a.Date, a.Time, a.Action, a.Reason, CASE WHEN b.PhoneNo is null THEN 'N' ELSE 'Y' END Whitelisted, CASE WHEN c.PhoneNo is null THEN 'N' ELSE 'Y' end Blacklisted, d.MessageID, d.Played, d.Filename, a.SystemDateTime FROM CallLog as a LEFT JOIN Whitelist AS b ON a.Number = b.PhoneNo LEFT JOIN Blacklist AS c ON a.Number = c.PhoneNo LEFT JOIN Message AS d ON a.CallLogID = d.CallLogID {} ORDER BY a.SystemDateTime DESC LIMIT {}, {}""".format(search_criteria, offset, per_page) g.cur.execute(sql) result_set = g.cur.fetchall() # Create a formatted list of records including some derived values calls = [] for row in result_set: number = row[2] phone_no = format_phone_no(number) # Flask pages use the static folder to get resources. # In the static folder we have created a soft-link to the # data/messsages folder containing the actual messages. # We'll use the static-based path for the wav-file urls filepath = row[11] if filepath is not None: basename = os.path.basename(filepath) filepath = os.path.join("../static/messages", basename) # Create a date object from the date time string date_time = datetime.strptime(row[12][:19], '%Y-%m-%d %H:%M:%S') calls.append(dict( call_no=row[0], phone_no=phone_no, name=row[1], date=date_time.strftime('%d-%b-%y'), time=date_time.strftime('%I:%M %p'), action=row[5], reason=row[6], whitelisted=row[7], blacklisted=row[8], msg_no=row[9], msg_played=row[10], wav_file=filepath)) # Create a pagination object for the page pagination = get_pagination( page=page, per_page=per_page, total=total, record_name="calls", format_total=True, format_number=True) # Render the resullts with pagination return render_template( 'calls.html', active_nav_item='calls', calls=calls, search_criteria=search_criteria, page=page, per_page=per_page, pagination=pagination) @app.route('/calls/view/<int:call_no>', methods=['GET']) def calls_view(call_no): """ Display the call details """ # Get the call log subset, limited to the pagination settings sql = """SELECT a.CallLogID, CASE WHEN b.PhoneNo is not null then b.Name WHEN c.PhoneNo is not null then c.Name ELSE a.Name END Name, a.Number Number, a.Date, a.Time, a.Action, a.Reason, CASE
data.get("_id", data.get("mongo_id")) if mongo_id is None: raise KeyError("Missing `_id` or `mongo_id` on the data, it's needed to update the database!") if not isinstance(mongo_id, ObjectId): mongo_id = ObjectId(mongo_id) new_cls = cls(id, parsed_servers) new_cls.mongo_id = mongo_id return new_cls def serialize(self): return { "_id": self._mongo_id, "id": self._id, "servers": list(map(str, self._servers)), } class ShowtimesLock: def __init__(self, server_id: Union[str, int]): self._id = str(server_id) self._lock = False self._log = logging.getLogger(f"ShowtimesLock[{server_id}]") async def __aenter__(self, *args, **kwargs): await self.hold() return self._id async def __aexit__(self, *args, **kwargs): await self.release() async def hold(self): timeout_max = 10 # In seconds current_time = 0 increment = 0.2 while self._lock: if not self._lock: break if current_time > timeout_max: self._log.warning("Waiting timeout occured, relocking!") break await asyncio.sleep(increment) current_time += increment self._log.info("Holding access to lock!") self._lock = True async def release(self): self._log.info("Releasing lock...") self._lock = False ##################### # FansubRSS # ##################### class FansubRSSEmbed: def __init__( self, title: str, description: str, url: str, thumbnail: str, image: str, footer: str, footer_img: str, color: int = None, timestamp: bool = False, ): self._title = title self._description = description self._url = url self._thumbnail = thumbnail self._image = image self._footer = footer self._footer_img = footer_img self._color = color self._timestamp = timestamp def __getitem__(self, name: str): if not name.startswith("_"): name = "_" + name return getattr(self, name, None) def __setitem__(self, name: str, value: Union[str, bool, int]): if not name.startswith("_"): name = "_" + name if not hasattr(self, name): return setattr(self, name, value) @property def title(self): return self._title @title.setter def title(self, data: str): self._title = data @property def description(self): return self._description @description.setter def description(self, data: str): self._description = data @property def url(self): return self._url @url.setter def url(self, data: str): self._url = data @property def thumbnail(self): return self._thumbnail @thumbnail.setter def thumbnail(self, data: str): self._thumbnail = data @property def image(self): return self._image @image.setter def image(self, data: str): self._image = data @property def footer(self): return self._footer @footer.setter def footer(self, data: str): self._footer = data @property def footer_img(self): return self._footer_img @footer_img.setter def footer_img(self, data: str): self._footer_img = data @property def color(self): return self._color @color.setter def color(self, data: Union[discord.Color, int]): if isinstance(data, int): self._color = data elif isinstance(data, discord.Color): self._color = data.value @property def timestamp(self): return self._timestamp @timestamp.setter def timestamp(self, data: bool): self._timestamp = data @classmethod def from_dict(cls, data: dict): return cls( data.get("title"), data.get("description"), data.get("url"), data.get("thumbnail"), data.get("image"), data.get("footer"), data.get("footer_img"), data.get("color", 0x525252), data.get("timestamp", False), ) def serialize(self): return { "title": self._title, "description": self._description, "url": self._url, "thumbnail": self._thumbnail, "image": self._image, "footer": self._footer, "footer_img": self._footer_img, "color": self._color, "timestamp": self._timestamp, } @property def is_valid(self): # A minimum of title and description must be available if not self._title or not self._description: return False return True def generate(self, entry_data: dict, template_mode=False) -> Optional[discord.Embed]: if not self.is_valid and not template_mode: return None regex_embed = re.compile(r"(?P<data>{[^{}]+})", re.MULTILINE | re.IGNORECASE) filtered = {} for key, value in self.serialize().items(): if not value: continue if isinstance(value, bool): continue if isinstance(value, int): filtered[key] = value continue matched = re.findall(regex_embed, value) formatted = list(map(lambda x: x.replace("{", "").replace("}", ""), matched)) for fmt in formatted: try: if isinstance(entry_data[fmt], (tuple, list)): joined = ", ".join(map(str, entry_data[fmt])) entry_data[fmt] = joined value = value.replace("{" + fmt + "}", entry_data[fmt]) except KeyError: pass filtered[key] = value embedded = discord.Embed() title = filtered.get("title") description = filtered.get("description") url: str = filtered.get("url") if title is not None: embedded.title = title elif template_mode: embedded.title = "Tidak ada judul" if description is not None: embedded.description = description elif template_mode: embedded.description = "*Tidak ada deskripsi*" if url is not None and url.startswith("http"): embedded.url = url embedded.colour = discord.Color(self.color) thumbnail: str = filtered.get("thumbnail") image: str = filtered.get("image") if thumbnail is not None and thumbnail.startswith("http"): embedded.set_thumbnail(url=thumbnail) if image is not None and image.startswith("http"): embedded.set_image(url=image) if self.timestamp: try: _, dt_data = time_struct_dt(entry_data["published_parsed"]) except (AttributeError, KeyError, ValueError): dt_data = arrow.utcnow().datetime embedded.timestamp = dt_data footer = filtered.get("footer") if footer is not None: kwargs_footer = {"text": footer} footer_img = filtered.get("footer_img") if footer_img is not None: kwargs_footer["icon_url"] = footer_img embedded.set_footer(**kwargs_footer) elif template_mode: embedded.set_footer(text="*Tidak ada footer*") return embedded class FansubRSSPremium: def __init__( self, start: int, duration: int, ): self._start = start self._duration = duration @property def start(self): return self._start @start.setter def start(self, data: int): self._start = data def set_now(self): self._start = arrow.utcnow().int_timestamp @property def duration(self): return self._duration @duration.setter def duration(self, data: int): self._duration = data def add_duration(self, data: int): self._duration += data @property def is_infinite(self): if self._start < 0 or self._duration < 0: return True return False @property def is_valid(self): if self.is_infinite: return True now = arrow.utcnow().int_timestamp max_time = self._start + self._duration return now < max_time @property def time_left(self): now = arrow.utcnow().int_timestamp max_time = self._start + self._duration time_left = int(round(max_time - now)) if time_left < 0: return None return time_left def is_intersecting(self, target: Union[int, arrow.Arrow]): if isinstance(target, arrow.Arrow): target = target.int_timestamp max_time = self._start + self._duration return self._start <= target < max_time def exhaust(self): self._duration = 0 @classmethod def from_dict(cls, data: Union[bool, int, dict]): if isinstance(data, (bool, int)): data = bool(data) if data: return cls(-1, -1) else: return None return cls( data.get("start"), data.get("duration"), ) def serialize(self): irnd = lambda x: int(round(x)) # noqa: E731 return { "start": irnd(self._start), "duration": irnd(self._duration), } class FansubRSSFeed: def __init__( self, id: Union[str, int], channel: Union[str, int], feed_url: str, message: Optional[str] = None, embed: Optional[FansubRSSEmbed] = None, last_etag: str = None, last_modified: str = None, ): self._id = str(id) self._channel = str(channel) self._feed_url = feed_url self._message = message self._embed = embed self._last_etag = last_etag self._last_modified = last_modified def __eq__(self, other: Union["FansubRSSFeed", str, int]): if isinstance(other, (int, str)): return self._id == str(other) elif isinstance(other, FansubRSSFeed): return self.id == other.id return False def __repr__(self): _attr = [ f"id={self._id!r}", f"channel={self._channel!r}", f"url={self._feed_url!r}", ] return f"<FansubRSSFeed {' '.join(_attr)}>" @property def id(self): return self._id @id.setter def id(self, data: Union[str, int]): self._id = str(data) @property def channel(self): return int(self._channel) @channel.setter def channel(self, data: Union[str, int, discord.TextChannel]): if isinstance(data, (int, str)): self._channel = str(data) elif isinstance(data, discord.TextChannel): self._channel = str(data.id) @property def feed_url(self): return self._feed_url @feed_url.setter def feed_url(self, data: str): self._feed_url = str(data) @property def message(self): return self._message @message.setter def message(self, data: str): self._message = data @property def embed(self): return self._embed @embed.setter def embed(self, data: Union[dict, FansubRSSEmbed]): if isinstance(data, dict): self._embed = FansubRSSEmbed.from_dict(data) elif isinstance(data, FansubRSSEmbed): self._embed = data elif data is None: self._embed = FansubRSSEmbed.from_dict({}) @property def last_etag(self): return self._last_etag or "" @last_etag.setter def last_etag(self, data: str): self._last_etag = data @property def last_modified(self): return self._last_modified or "" @last_modified.setter def last_modified(self, data: str): self._last_modified = data @classmethod def from_dict(cls, data: dict): return cls( id=data.get("id"), channel=data.get("channel"), feed_url=data.get("feedUrl"), message=data.get("message"), embed=FansubRSSEmbed.from_dict(data.get("embed", {})), last_etag=data.get("lastEtag", ""), last_modified=data.get("lastModified", ""), ) def serialize(self): return { "id": self.id, "channel": self.channel, "feedUrl": self.feed_url, "message": self.message, "embed": self.embed.serialize(), "lastEtag": self.last_etag, "lastModified": self.last_modified, } def __parse_message(self, entry_data: dict): message = self.message if not message: return "" matches = re.findall(r"(?P<data>{[^{}]+})", message, re.MULTILINE | re.IGNORECASE) msg_fmt_data = [m.strip(r"{}") for m in matches] for fmt in msg_fmt_data: try: message = message.replace("{" + fmt + "}", entry_data[fmt]) except KeyError: pass return message.replace("\\n", "\n") def generate(self, entry_data: dict) -> Tuple[Optional[str], Optional[discord.Embed]]: parsed_message = None if self.message: parsed_message = self.__parse_message(entry_data) parsed_embed = None if self.embed and self.embed.is_valid: parsed_embed = self.embed.generate(entry_data) return parsed_message, parsed_embed class FansubRSS: def __init__(self, id: int, feeds: List[FansubRSSFeed] = [], premiums: List[FansubRSSPremium] = []): self._id = id self._feeds = feeds self._premiums = premiums def __eq__(self, other: Union["FansubRSS", int]): if isinstance(other, int): return self._id == other elif isinstance(other, FansubRSS): return self.id == other.id return False def __repr__(self): return f"<FansubRSS id={self._id!r} feeds={len(self._feeds)!r} premium={self.has_premium!r}>" @property def id(self): return self._id @property def feeds(self): return self._feeds @feeds.setter def feeds(self, data: Union[FansubRSSFeed, List[FansubRSSFeed]]): if isinstance(data, list): self._feeds = data elif isinstance(data, FansubRSSFeed): self.update_feed(data) def get_feed(self, id: Union[str, int]) -> Optional[FansubRSSFeed]: for feed in self.feeds: if feed == id: return feed return None def add_feed(self, feed: FansubRSSFeed): self.update_feed(feed) def remove_feed(self, data: Union[FansubRSSFeed, str, int]): feed_idx = -1 for idx, feed in enumerate(self._feeds): if feed == data: feed_idx = idx break if feed_idx >= 0: self._feeds.pop(feed_idx) def update_feed(self, data: FansubRSSEmbed): feed_idx = -1 for idx, feed in enumerate(self._feeds): if feed == data: feed_idx =
# document_retrieval functions import math import string import collections from gensim.models import KeyedVectors import numpy as np def change_dict_structure(dict_list): """Takes list of dicts from db_query and changes to dict with key=id, value = text (used for metrices). Args: dict_list (list): List of dictionaries from db_query. Returns: texts (dictionary): Dictionary with document IDs as keys and document text as values. """ texts = {} for dict in dict_list: doc_id = dict.get('document_id') text = dict.get('fulltext_cleaned') texts.update({doc_id: text}) return texts def similarity(token, token_list, wv): """Calculates similarity between token and list of tokens. Args: token (str): String for wich we are calculating similarity. token_list (list): List of tokens to which we are calculating similarity. wv (Word2VecKeyedVectors): Word embeddings. Returns: avreage_similarity (float): Number that signifes the similarity of token to token_list words. """ similarity = 0 num_of_tokens = 0 for toks in token_list: # check if the token is in the vocabulary if toks in wv.vocab.keys(): num_of_tokens += 1 similarity += wv.similarity(toks, token) avreage_similarity = similarity/num_of_tokens return avreage_similarity def probability_multiply(probability, token_frequency, n): """Assigns score to document based on multiplication of probabilities. Probability is token frequency devided by length of document. In this metric only documents containing all query words have positive probability. Args: probability (float): Previously calculated probability. token_frequency (float): Number of appearances of token in text. n (int): Length of text. Returns: probability_value (float): New caclculated probability. """ probability_value = probability*(token_frequency/n) return probability_value def probability_sum(probability, token_frequency, n): """Assigns score to document based on summation of probabilities. Args: probability (float): Previously calculated probability. token_frequency (float): Number of appearances of token in text. n (int): Length of text. Returns: probability_value (float): New caclculated probability. """ probability_value = probability+(token_frequency/n) return probability_value def word_value(word, alpha, original_tokens, top_expansion, wv): """values word based on whether is in original token set or expanded, if alpha -1 value equals to cosine similarity Args: word (string): Word or token for which we are calculating value. alpha (float): Number between 0 and 1. Weight that emphasizes the difference between original query words and expansions. Usually between 0.5 (all words are treated equal) and 1 (expansion words have value 0). For alpha -1 values equal to cosine similarity to query words. original_tokens(list): List of strings. Tokenized original query. Usually also extension (extension by summation of 2 consecutive words). top_expansion (list): List of expanded words. Usually candidates (kNN expansion). wv (Word2VecKeyedVectors): Word embeddings. Returns: value (float): Value of the word based on whether is in original token set or expanded set. """ only_expanded = [] for token in top_expansion: if token not in original_tokens: only_expanded.append(token) sum_similarity = 0 for exp_token in only_expanded: sum_similarity += similarity(exp_token, original_tokens, wv) if alpha == -1: if word in original_tokens: value = 1 else: value = similarity(word, original_tokens, wv)/sum_similarity else: if word in original_tokens: value = alpha else: value = (1-alpha)*similarity(word, original_tokens, wv)/sum_similarity return value def probability_sum_weight(probability, token_frequency, n, word, alpha, original_tokens, top_expansion, wv): """Assigns weighted score to document based on summation of probabilities. Args: probability (float): Previously calculated probability. token_frequency (float): Number of appearances of token in text. n (int): Length of text. word (string): Word or token for which we are calculating value. alpha (float): Number between 0 and 1. Weight that emphasizes the difference between original query words and expansions. Usually between 0.5 (all words are treated equal) and 1 (expansion words have value 0). For alpha -1 values equal to cosine similarity to query words. original_tokens(list): List of strings. Tokenized original query. Usually also extension (extension by summation of 2 consecutive words) top_expansion (list): List of expanded words. Usually candidates (kNN expansion). wv (Word2VecKeyedVectors): Word embeddings. Returns: probability_value (float): New caclculated probability. """ probability_value = probability+(token_frequency/n)*word_value(word, alpha, original_tokens, top_expansion, wv) return probability_value def top_positives(dictionary, n): """Takes dict and returns first n tuples of key,values sorted by values descending, returns only items with positive values. Args: dictionary (dict): Dictionary we want to sort by values. n (int): Number of returned items. If there are less than n items in dictonary or less than n items with positive values, returns all items (with positive valuses) sorted. Returns: sorted_positives_top (list): List of n tuples. If there are less than n items in dictonary or less than n items with positive values, returns all items (with positive valuses) sorted. """ positives = {} for k,v in dictionary.items(): if v > 0: positives.update({k: v}) sorted_positives = sorted(positives.items(), key=lambda x: x[1], reverse=True) if len(sorted_positives) > n: sorted_positives_top = sorted_positives[0:n] else: sorted_positives_top = sorted_positives return sorted_positives_top def probability_score(tokens, texts, probability_function, m, *args): # final function, takes also probability_function probability_sum_weight, but doesnt give final result (used in probability_score_sum_weights) """Assigns score to documents based on probability_function metric. Args: tokens (list): List of tokens (tokenized query). If needed also extension (extension by summation of 2 consecutive words). texts (dict): Keys represent document ids, values are document text. probability_function (function): Metric function that calculates document relavance. Functions: probability_multiply, probability_sum. Require only first 4 arguments. m (int): Number of returned tuples (positive scores), sorted by highest scores. If m=0 returns all. top_expansion (list): List of expanded words. Usually candidates (kNN expansion). alpha (float): Number between 0 and 1. Weight that emphasizes the difference between original query words and expansions. For alpha 0.5 all words have same weights (but not same values!), for alpha 1 expansion words have value 0. For alpha -1 values equal to cosine similarity to query words. wv (Word2VecKeyedVectors): Word embeddings. Returns: document_probability (list): Tuples of document ids and scores that measure document relavance. Returns n tuples with highest score. """ document_probability = {} for k, v in texts.items(): n = len(v) if probability_function == probability_multiply: probability = 1 else: probability = 0 if probability_function == probability_sum_weight: if len(args) == 3: for i in range(len(tokens)): token_frequency = v.count(tokens[i]) probability = probability_sum_weight(probability, token_frequency, n,tokens[i], args[1], tokens, args[0], args[2]) document_probability.update({k: probability}) else: raise Exception("Error, number of arguments does not match.") elif probability_function == probability_sum or probability_function == probability_multiply: if len(args) == 0: for i in range(len(tokens)): token_frequency = v.count(tokens[i]) probability = probability_function(probability, token_frequency, n) document_probability.update({k: probability}) else: raise Exception("Error, number of arguments does not match.") else: raise Exception("Error, metric function not defined.") if m == 0: return [(k, v) for k, v in document_probability.items()] else: document_probability = top_positives(document_probability ,m) return document_probability def probability_score_sum_weights(original_tokens, top_expansion, texts, m, alpha, wv): """As probability_score only weighted. Args: original_tokens(list): List of strings. Tokenized original query. Usually also extension (extension by summation of 2 consecutive words) top_expansion (list): List of expanded words. Usually candidates (kNN expansion). texts (dict): Keys represent document ids, values are document text. m (int): Number of returned tuples (positive scores), sorted by highest scores. If m=0 returns all. alpha (float): Number between 0 and 1. Weight that emphasizes the difference between original query words and expansions. For alpha 0.5 all words have same weights (but not same values!), for alpha 1 expansion words have value 0. For alpha -1 values equal to cosine similarity to query words. wv (Word2VecKeyedVectors): Word embeddings. Returns: document_score (list): Tuples of document ids and scores that measure document relavance. Returns n tuples with highest score. """ tokens = original_tokens+top_expansion document_score = probability_score(tokens, texts, probability_sum_weight, m, top_expansion, alpha, wv) return document_score def number_documents_tokens_appear(tokens, texts): """For each token in tokens counts the number of documents in which token has appeared. Args: tokens (list): List of tokens. texts (dict): Keys represent document ids, values are document text. Returns: documents_per_token (list): List of numbers that count number of documnets in which certain token appears. Index of element in tokens list is the same as index in documents_per_token list for that element value. """ documents_per_token = [] for i in range(len(tokens)): documents_per_token.append(0) for text in texts.values(): for i in range(len(tokens)): token = tokens[i] if token in text: documents_per_token[i] = documents_per_token[i]+1 return documents_per_token def tfidf_sum(probability, token_frequency, n, idf): """Assigns score to document based on TF-IDF metric. Args: probability (float): Previously calculated tfidf score. token_frequency (float): Number of
<reponame>MaayanLab/creeds<gh_stars>1-10 ''' ORMs for signature, signatures in the MongoDB and collection of signatures. ''' import os, sys, json import hashlib from collections import Counter import numpy as np import pandas as pd import scipy.sparse as sp import requests from joblib import Parallel, delayed from .gene_converter import * from .matrix_ops import (fast_jaccard, fast_signed_jaccard) ## connect to mongodb via pymongo.MongoClient imported from the module from creeds import conn ################################ Global variables ################################ COLL = conn['microtask_signatures'].signatures COLL_GENES = conn['microtask_signatures'].genes COLL_USER_SIGS = conn['microtask_signatures'].userSignatures COLL_USER_SIGS.create_index('id', unique=True, sparse=False) ALL_GENES = COLL_GENES.find_one({'case_sensitive': {'$exists':True}})['case_sensitive'] ALL_GENES = np.array(ALL_GENES) ALL_GENES_I = COLL_GENES.find_one({'case_insensitive': {'$exists':True}})['case_insensitive'] ALL_GENES_I = np.array(ALL_GENES_I) ALL_UIDS = COLL.find( {'$and': [ {'chdir_sva_exp2': {'$exists': True}}, {'version': {'$in':['1.0', '1.1', '1.2', '2.0']}}, {"incorrect": {"$ne": True}} ]}, {'id': True}).distinct('id') ## load gene symbol to gene ID conversion dict GENE_SYMBOLS = load_gene_symbol_dict() ## Fields in the mongodb for interal use only FIELDS_EXCLUDE = ['_id', 'time', 'limma', 'limma_sva', 'limma_norm', 'limma_combat', 'fold_changes', 'log2FC_norm', 'chdir', 'chdir_combat_exp2', 'pvca', 'pvca_sva', 'pvca_combat'] PROJECTION_EXCLUDE = dict(zip(FIELDS_EXCLUDE, [False] * len(FIELDS_EXCLUDE))) ################################ Util functions ################################ def find_name(doc): ## find the name for a doc in the mongodb based on uid uid = doc['id'] prefix = uid.split(':')[0] if prefix == 'gene': if doc['organism'] == 'human': name = doc.get('hs_gene_symbol', None) if name is None: name = doc.get('mm_gene_symbol', None) else: name = doc.get('mm_gene_symbol', None) if name is None: name = doc.get('hs_gene_symbol', None) elif prefix == 'dz': name = doc.get('disease_name', None) else: name = doc.get('drug_name', None) if type(name) == list: # predicted signatures # extract name fields and convert to string name = [item['name'] for item in name] return name def sparse_matrix_size(mat): ## get size of a sparse matrix if type(mat) == sp.csr_matrix: nbytes = mat.data.nbytes + mat.indptr.nbytes + mat.indices.nbytes elif type(mat) == sp.lil_matrix: nbytes = mat.data.nbytes + mat.rows.nbytes return nbytes ################################ Classes ################################ class Signature(object): def __init__(self, name=None, meta=None, up_genes=None, dn_genes=None, query_params={'direction': 'similar', 'db_version':'v1.0'}): ## defaults: if name is None: name = '' if meta is None: meta = {} if up_genes is None: up_genes = [] if dn_genes is None: dn_genes = [] self.name = name self.meta = meta self.up_genes = up_genes self.dn_genes = dn_genes self.query_params = query_params def save(self): '''Hash the attributes associate with self as well as query params, and save to COLL_USER_SIGS ''' d = {'name': self.name, 'meta': self.meta, 'up_genes': self.up_genes, 'dn_genes': self.dn_genes, 'query_params': self.query_params} h = hashlib.md5(json.dumps(d)).hexdigest() d['id'] = h COLL_USER_SIGS.update_one({'id': h}, {'$set': d}, upsert=True) return h def init_vectors(self): '''Init binary vectors representing of the siganture, for fast computation of jaccard.''' v_up = np.zeros(len(ALL_GENES_I), dtype=np.int8) up_genes_i = map(lambda x: x.upper(), self.up_genes) v_up[np.in1d(ALL_GENES_I, up_genes_i)] = 1 v_dn = np.zeros(len(ALL_GENES_I), dtype=np.int8) dn_genes_i = map(lambda x: x.upper(), self.dn_genes) v_dn[np.in1d(ALL_GENES_I, dn_genes_i)] = 1 self.v_up = v_up self.v_dn = v_dn def calc_all_scores(self, db_sig_collection): ''' Calcuated signed jaccard score for this signatures against a DBSignatureCollection instance or a list of DBSignatureCollection instances. ''' uid_scores = [] if type(db_sig_collection) != list: # a single DBSignatureCollection instance scores = fast_signed_jaccard(db_sig_collection.mat_up, db_sig_collection.mat_dn, self.v_up, self.v_dn) uids = db_sig_collection.uids else: # a list of DBSignatureCollection instances # stack sparse matrices first mat_up = sp.vstack([dbsc.mat_up for dbsc in db_sig_collection]) mat_dn = sp.vstack([dbsc.mat_dn for dbsc in db_sig_collection]) scores = fast_signed_jaccard(mat_up, mat_dn, self.v_up, self.v_dn) uids = [] for dbsc in db_sig_collection: uids.extend(dbsc.uids) uid_scores = zip(uids, scores) return dict(uid_scores) def _get_query_results(self, db_sig_collection): ''' Handle querying signatures from the DB with custom up/down genes, return a list of objects ''' direction = self.query_params['direction'] d_uid_score = self.calc_all_scores(db_sig_collection) scores = np.array(d_uid_score.values()) uids = np.array(d_uid_score.keys()) uid_data = [] # a list of meta data {} sorted by score # mask for signs of scores if direction == 'similar': score_sign_mask = scores > 0 elif direction == 'opposite': score_sign_mask = scores < 0 # sort uids by abs(scores) in descending order srt_idx = np.abs(scores[score_sign_mask]).argsort()[::-1] scores = scores[score_sign_mask][srt_idx] uids = uids[score_sign_mask][srt_idx] # retrieve meta-data for all uids projection ={'geo_id':True, 'id':True, '_id':False, 'hs_gene_symbol':True, 'mm_gene_symbol':True, 'organism':True, 'disease_name':True, 'drug_name':True, 'do_id':True, 'drugbank_id':True, 'pubchem_cid':True} uid_docs = COLL.find({'id': {'$in': uids.tolist()}}, projection) uid_docs = list(uid_docs) # make uid_docs have the same order of id with uids uids = uids.tolist() uid_docs_ = [None] * len(uid_docs) for uid_doc in uid_docs: idx = uids.index(uid_doc['id']) uid_docs_[idx] = uid_doc uid_docs = uid_docs_ for doc, score in zip(uid_docs, scores): sig_ = DBSignature(None, doc=doc) meta = { 'id': sig_.meta['id'], 'geo_id': sig_.meta['geo_id'], 'name': [sig_.name, sig_.get_url()], # [name, url] 'signed_jaccard': float('%.5f'%score) } uid_data.append(meta) return uid_data def get_query_results(self, d_dbsc): '''Wrapper for _get_query_results handling db_version ''' db_version = self.query_params['db_version'] if type(db_version) != list: uid_data = self._get_query_results(d_dbsc[db_version]) else: uid_data = self._get_query_results([d_dbsc[v] for v in db_version]) return uid_data @classmethod def from_hash(cls, h): '''To retrieve a Signature using a hash''' if h is None: return None else: doc = COLL_USER_SIGS.find_one({'id': h}, {'_id': False, 'id': False}) signature = Signature(**doc) return signature class DBSignature(Signature): ''' Signature instance from the mongodb. ''' chdir_field = 'chdir_sva_exp2' def __init__(self, uid, projection=PROJECTION_EXCLUDE, doc=None): ## the constructor also act as a way to query mongodb using ## the id and return desirable fields by specifying projection if doc is None: ## if doc is given, do not retrieve from DB doc = COLL.find_one({'id':uid}, projection) name = find_name(doc) if self.chdir_field in doc: chdir = doc[self.chdir_field] del doc[self.chdir_field] self.chdir = chdir Signature.__init__(self, name, doc) def has_chdir(self): ## assert if a signature has the chdir field if hasattr(self, 'chdir'): return True else: return False def get_vectors_and_clear(self, cutoff=600): v_cs = np.zeros(len(ALL_GENES), dtype=np.float32) genes = self.chdir['genes'][:cutoff] genes, uniq_idx = np.unique(genes, return_index=True) vals = np.array(self.chdir['vals'][:cutoff])[uniq_idx] v_cs[np.in1d(ALL_GENES, genes)] = vals self.v_cs = sp.lil_matrix(v_cs) up_genes_i = map(lambda x: x.upper(), genes[vals > 0]) dn_genes_i = map(lambda x: x.upper(), genes[vals < 0]) up_idx = np.in1d(ALL_GENES_I, up_genes_i, assume_unique=True) dn_idx = np.in1d(ALL_GENES_I, dn_genes_i, assume_unique=True) del self.chdir return up_idx, dn_idx def get_vector_indexes(self, cutoff=600): ''' Get indexes of up and down genes in ALL_GENES_I Used for construction of sparse matices in DBSignatureCollection.mat_* ''' genes_i = np.array(map(lambda x:x.upper(), self.chdir['genes'][:cutoff])) genes_i, uniq_idx = np.unique(genes_i, return_index=True) vals = np.array(self.chdir['vals'][:cutoff])[uniq_idx] up_genes_i = genes_i[vals > 0] dn_genes_i = genes_i[vals < 0] up_idx = np.in1d(ALL_GENES_I, up_genes_i, assume_unique=True) dn_idx = np.in1d(ALL_GENES_I, dn_genes_i, assume_unique=True) return up_idx, dn_idx def init_cs_vectors(self, cutoff=600): '''Init case sensitive vectors with CD values. This vector is intended to for exporting purpose used in to_json, to_dict. ''' if not hasattr(self, 'v_cs'): v_cs = np.zeros(len(ALL_GENES), dtype=np.float32) genes = self.chdir['genes'][:cutoff] genes, uniq_idx = np.unique(genes, return_index=True) vals = np.array(self.chdir['vals'][:cutoff])[uniq_idx] v_cs[np.in1d(ALL_GENES, genes)] = vals self.v_cs = sp.lil_matrix(v_cs) def fill_top_genes(self): '''Get top up/dn genes from `v_cs` ''' # get mask of non zero index mask_non_zero = (self.v_cs != 0).toarray().ravel() # retrieve CD vals and genes vals = self.v_cs[0, mask_non_zero].toarray().ravel() genes = ALL_GENES[mask_non_zero] # sort CD vals on abs(vals) srt_idx = np.abs(vals).argsort()[::-1] up_genes = [] dn_genes = [] for gene, val in zip(genes[srt_idx].tolist(), vals[srt_idx].tolist()): if val > 0: up_genes.append( (gene, val) ) else: dn_genes.append( (gene, val) ) return up_genes, dn_genes def clear(self, cutoff=600): '''Clear unnecessary fields to reduce RAM usage. ''' self.init_cs_vectors(cutoff=cutoff) del self.chdir def __sizeof__(self): size = sum(map(sys.getsizeof, [self.name, self.meta])) size += sparse_matrix_size(self.v_cs) return size def to_json(self, meta_only=False): ## to export the document into json json_data = self.meta if not meta_only: up_genes, dn_genes = self.fill_top_genes() json_data['up_genes'] = up_genes json_data['down_genes'] = dn_genes return json.dumps(json_data) def to_dict(self, format='gmt'): ## method to generate files for downloading if format == 'gmt': dict_data = {'name': self.name, 'id': self.meta['id']} else: dict_data = self.meta up_genes, dn_genes = self.fill_top_genes() dict_data['up_genes'] = up_genes dict_data['down_genes'] = dn_genes return dict_data def post_to_paea(self, cutoff=2000): ## post top n genes to PAEA and return a PAEA url ## return None if instance has no chdir post_url = 'http://amp.pharm.mssm.edu/Enrichr/addList' base_url = 'http://amp.pharm.mssm.edu/PAEA?id=' paea_url = None if self.has_chdir(): up_genes, dn_genes = self.fill_top_genes() gene_list = [] for gene, coef in up_genes + dn_genes: gene_list.append( '%s,%s\n'% (gene, coef) ) gene_list = ''.join(gene_list) data = {'list': gene_list, 'inputMethod': "PAEA", 'description': self.name} r = requests.post(post_url, files=data) paea_url = base_url + str(json.loads(r.text)['userListId']) return paea_url def post_to_cds2(self, cutoff=2000): ## post top n genes to L1000CDS2 API and return a CDS2 url url = 'http://amp.pharm.mssm.edu/L1000CDS2/query' cds2_url = None if self.has_chdir(): up_genes, dn_genes = self.fill_top_genes() data = { "genes": map(lambda x: x[0].upper(), up_genes + dn_genes), "vals": map(lambda x: x[1], up_genes + dn_genes) } config = {"aggravate":False,"searchMethod":"CD","share":True,"combination":True,"db-version":"latest"} metadata = [{"key":"name","value": self.name}] for key, val in self.meta.items(): if key not in ['pert_ids', 'ctrl_ids', 'curator']: metadata.append({"key":key, "value":val}) payload = {"data":data,"config":config,"meta":metadata} headers = {'content-type':'application/json'} r = requests.post(url,data=json.dumps(payload),headers=headers) resCD = r.json() shareId = resCD['shareId'] cds2_url = 'http://amp.pharm.mssm.edu/L1000CDS2/#/result/' + shareId return cds2_url def get_url(self): ## get the url of the signature's gene, disease or drug url = '' meta = self.meta uid = meta['id'] if ':P' not in uid: # not v2.0 signature if uid.startswith('gene:'): organism = meta['organism'] if organism == 'human': gene_symbol = meta['hs_gene_symbol'] if gene_symbol is None: gene_symbol = meta['mm_gene_symbol'] else: gene_symbol = meta['mm_gene_symbol'] if gene_symbol is None: gene_symbol = meta['hs_gene_symbol'] gene_id = GENE_SYMBOLS.get(gene_symbol, '') url = 'http://www.ncbi.nlm.nih.gov/gene/%s' % gene_id elif uid.startswith('dz:'): do_id = meta.get('do_id', None) if do_id is not None: url = 'http://disease-ontology.org/term/%s' % do_id else: url = 'https://www.google.com/search?q=%s' % self.name.replace(' ', '+') else: db_id = meta.get('drugbank_id', None) pubchem_cid = meta.get('pubchem_cid', None) if db_id is not None: url = 'http://www.drugbank.ca/drugs/%s' % db_id elif pubchem_cid is not None: url = 'https://pubchem.ncbi.nlm.nih.gov/compound/%s' % pubchem_cid else: url = 'https://www.google.com/search?q=%s' % self.name.replace(' ', '+') else: # v2.0 signature if uid.startswith('gene:'): key = 'hs_gene_symbol' elif uid.startswith('dz:'): key = 'disease_name' else: key = 'drug_name' # becas concept ids cids = [':'.join(item.get('cid', ':').split(':')[:2]) for item in meta.get(key, [])] url_root = 'http://bioinformatics.ua.pt/becas/api/concept/redirect/' url = [url_root + cid for cid in cids] return url def wrapper_func(i, doc): sig = DBSignature(None, doc=doc) # sig.fill_top_genes() # fill the sparse matrices # up_idx, dn_idx = sig.get_vector_indexes() # mat_up[i, up_idx] = 1 # mat_dn[i, dn_idx] = 1 # clear `chdir` field and add `v_cs` for exporting # sig.clear(cutoff=600) # if i % 5 == 0: # print i up_idx, dn_idx = sig.get_vectors_and_clear() uid = doc['id'] return uid, sig, up_idx, dn_idx class DBSignatureCollection(dict): ''' A collection of DBSignature from the mongodb ''' formats = ['csv', 'json', 'gmt'] category2name = { 'gene': 'single_gene_perturbations', 'dz': 'disease_signatures', 'drug': 'single_drug_perturbations', } outfn_path = os.path.dirname(os.path.realpath(__file__)) + '/static/downloads/' def __init__(self, filter_=None, name=None, limit=None, name_prefix=None): ''' `filter_` should be a mongo query ''' self.filter_ = filter_ self.name = name # 'v1.0', 'v1.1', 'p1.0' self.name_prefix = name_prefix # 'Mannual', 'Drug Matrix', 'Automatated' if not limit: cur = COLL.find(self.filter_, PROJECTION_EXCLUDE) else: cur = COLL.find(self.filter_, PROJECTION_EXCLUDE).limit(limit) # to preserve orders self.uids = cur.distinct('id') # sparse matrices sparse_mat_shape = (len(self.uids), len(ALL_GENES_I)) mat_up = sp.lil_matrix(sparse_mat_shape, dtype=np.int8) mat_dn = sp.lil_matrix(sparse_mat_shape, dtype=np.int8) # Load signatures tuple_list = Parallel(n_jobs=-1, backend='threading', verbose=10)( delayed(wrapper_func)(i,
# This file is part of Flask-Multipass-CERN. # Copyright (C) 2020 - 2021 CERN # # Flask-Multipass-CERN is free software; you can redistribute # it and/or modify it under the terms of the MIT License; see # the LICENSE file for more details. import logging from datetime import datetime from functools import wraps from importlib import import_module from inspect import getcallargs from authlib.integrations.requests_client import OAuth2Session from flask import current_app, g, has_request_context from flask_multipass import IdentityRetrievalFailed from flask_multipass.data import IdentityInfo from flask_multipass.exceptions import MultipassException from flask_multipass.group import Group from flask_multipass.identity import IdentityProvider from flask_multipass.providers.authlib import AuthlibAuthProvider, _authlib_oauth from requests.adapters import HTTPAdapter from requests.exceptions import RequestException from urllib3 import Retry CACHE_LONG_TTL = 86400 * 2 CACHE_TTL = 1800 CERN_OIDC_WELLKNOWN_URL = 'https://auth.cern.ch/auth/realms/cern/.well-known/openid-configuration' HTTP_RETRY_COUNT = 5 retry_config = HTTPAdapter(max_retries=Retry(total=HTTP_RETRY_COUNT, status_forcelist=[503, 504], allowed_methods=frozenset(['GET']), raise_on_status=False)) _cache_miss = object() class ExtendedCache: def __init__(self, cache): self.cache = self._init_cache(cache) def _init_cache(self, cache): if cache is None: return None elif callable(cache): return cache() elif isinstance(cache, str): module_path, class_name = cache.rsplit('.', 1) module = import_module(module_path) return getattr(module, class_name) else: return cache def get(self, key, default=None): if self.cache is None: return default return self.cache.get(key, default) def set(self, key, value, timeout=0, refresh_timeout=None): if self.cache is None: return self.cache.set(key, value, timeout) if refresh_timeout: self.cache.set(f'{key}:timestamp', datetime.now(), refresh_timeout) def should_refresh(self, key): if self.cache is None: return True return self.cache.get(f'{key}:timestamp') is None def memoize_request(f): @wraps(f) def memoizer(*args, **kwargs): if not has_request_context() or current_app.config['TESTING'] or current_app.config.get('REPL'): # No memoization outside request context return f(*args, **kwargs) try: cache = g._cern_multipass_memoize except AttributeError: g._cern_multipass_memoize = cache = {} key = (f.__module__, f.__name__, make_hashable(getcallargs(f, *args, **kwargs))) if key not in cache: cache[key] = f(*args, **kwargs) return cache[key] return memoizer def make_hashable(obj): if isinstance(obj, (list, set)): return tuple(obj) elif isinstance(obj, dict): return frozenset((k, make_hashable(v)) for k, v in obj.items()) return obj def normalize_cern_person_id(value): """Normalize the CERN person ID. We always want a string or None if it's missing. """ if value is None: return None elif isinstance(value, int): return str(value) elif not value: return None else: return value class CERNAuthProvider(AuthlibAuthProvider): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.include_token = True @property def authlib_settings(self): settings = dict(self.settings['authlib_args']) settings.setdefault('server_metadata_url', CERN_OIDC_WELLKNOWN_URL) # XXX should we request any other scopes? settings.setdefault('client_kwargs', {'scope': 'openid'}) return settings class CERNGroup(Group): supports_member_list = True def get_members(self): assert '/' not in self.name with self.provider._get_api_session() as api_session: group_data = self.provider._get_group_data(self.name) if group_data is None: return gid = group_data['id'] params = { 'limit': 5000, 'field': [ 'upn', 'firstName', 'lastName', 'instituteName', 'telephone1', 'primaryAccountEmail', 'cernPersonId', ], 'recursive': 'true' } results = self.provider._fetch_all(api_session, f'/api/v1.0/Group/{gid}/memberidentities', params)[0] for res in results: del res['id'] # id is always included self.provider._fix_phone(res) identifier = res.pop('upn') extra_data = self.provider._extract_extra_data(res) yield IdentityInfo(self.provider, identifier, extra_data, **res) def has_member(self, identifier): cache = self.provider.cache logger = self.provider.logger cache_key = f'flask-multipass-cern:{self.provider.name}:groups:{identifier}' all_groups = cache.get(cache_key) if all_groups is None or cache.should_refresh(cache_key): try: all_groups = {g.name.lower() for g in self.provider.get_identity_groups(identifier)} cache.set(cache_key, all_groups, CACHE_LONG_TTL, CACHE_TTL) except RequestException: logger.warning('Refreshing user groups failed for %s', identifier) if all_groups is None: logger.error('Getting user groups failed for %s, access will be denied', identifier) return False if self.provider.settings['cern_users_group'] and self.name.lower() == 'cern users': return self.provider.settings['cern_users_group'].lower() in all_groups return self.name.lower() in all_groups class CERNIdentityProvider(IdentityProvider): supports_refresh = True supports_get = False supports_search = True supports_search_ex = True supports_groups = True supports_get_identity_groups = True group_class = CERNGroup def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.authlib_client = _authlib_oauth.register(self.name + '-idp', **self.authlib_settings) self.settings.setdefault('cache', None) self.settings.setdefault('extra_search_filters', []) self.settings.setdefault('authz_api', 'https://authorization-service-api.web.cern.ch') self.settings.setdefault('phone_prefix', '+412276') self.settings.setdefault('cern_users_group', None) self.settings.setdefault('logger_name', 'multipass.cern') self.logger = logging.getLogger(self.settings['logger_name']) self.cache = ExtendedCache(self.settings['cache']) if not self.settings.get('mapping'): # usually mapping is empty, in that case we set some defaults self.settings['mapping'] = { 'first_name': 'firstName', 'last_name': 'lastName', 'affiliation': 'instituteName', 'phone': 'telephone1', 'email': 'primaryAccountEmail', } @property def authlib_settings(self): settings = dict(self.settings['authlib_args']) settings.setdefault('server_metadata_url', CERN_OIDC_WELLKNOWN_URL) return settings @property def authz_api_base(self): return self.settings['authz_api'].rstrip('/') def refresh_identity(self, identifier, multipass_data): data = self._get_identity_data(identifier) self._fix_phone(data) identifier = data.pop('upn') extra_data = self._extract_extra_data(data) return IdentityInfo(self, identifier, extra_data, **data) def _fix_phone(self, data): phone = data.get('telephone1') if not phone or phone.startswith('+'): return data['telephone1'] = self.settings['phone_prefix'] + phone def _extract_extra_data(self, data, default=None): return {'cern_person_id': normalize_cern_person_id(data.pop('cernPersonId', default))} def get_identity_from_auth(self, auth_info): upn = auth_info.data.get('sub') groups = auth_info.data.get('groups') cache_key_prefix = f'flask-multipass-cern:{self.name}' if groups is not None: groups = {x.lower() for x in groups} cache_key = f'{cache_key_prefix}:groups:{upn}' self.cache.set(cache_key, groups, CACHE_LONG_TTL, CACHE_TTL) try: data = self._fetch_identity_data(auth_info) # check for data mismatches between our id token and authz self._compare_data(auth_info.data, data) phone = data.get('telephone1') affiliation = data.get('instituteName') self.cache.set(f'{cache_key_prefix}:phone:{upn}', phone, CACHE_LONG_TTL) self.cache.set(f'{cache_key_prefix}:affiliation:{upn}', affiliation, CACHE_LONG_TTL) except RequestException: self.logger.warning('Getting identity data for %s failed', upn) phone = self.cache.get(f'{cache_key_prefix}:phone:{upn}', _cache_miss) affiliation = self.cache.get(f'{cache_key_prefix}:affiliation:{upn}', _cache_miss) if phone is _cache_miss or affiliation is _cache_miss: self.logger.error('Getting identity data for %s failed without cache fallback', upn) raise IdentityRetrievalFailed('Retrieving identity information from CERN SSO failed', provider=self) data = { 'firstName': auth_info.data['given_name'], 'lastName': auth_info.data['family_name'], 'displayName': auth_info.data['name'], 'telephone1': phone, 'instituteName': affiliation, 'primaryAccountEmail': auth_info.data['email'], } self._fix_phone(data) data.pop('upn', None) extra_data = self._extract_extra_data(data, normalize_cern_person_id(auth_info.data.get('cern_person_id'))) return IdentityInfo(self, upn, extra_data, **data) def search_identities(self, criteria, exact=False): return iter(self.search_identities_ex(criteria, exact=exact)[0]) @memoize_request def search_identities_ex(self, criteria, exact=False, limit=None): emails_key = '-'.join(sorted(x.lower() for x in criteria['primaryAccountEmail'])) cache_key = f'flask-multipass-cern:{self.name}:email-identities:{emails_key}' use_cache = exact and limit is None and len(criteria) == 1 and 'primaryAccountEmail' in criteria if use_cache: cached_data = self.cache.get(cache_key) if cached_data: cached_results = [] for res in cached_data[0]: identifier = res.pop('upn') extra_data = self._extract_extra_data(res) cached_results.append(IdentityInfo(self, identifier, extra_data, **res)) if not self.cache.should_refresh(cache_key): return cached_results, cached_data[1] if any(len(x) != 1 for x in criteria.values()): # Unfortunately the API does not support OR filters (yet?). # Fortunately we never search for more than one value anyway, except for emails when # looking up identities based on the user's email address. if len(criteria) != 1: raise MultipassException('This provider does not support multiple values for a search criterion', provider=self) field, values = dict(criteria).popitem() seen = set() total = 0 all_identities = [] for value in values: identities = self.search_identities_ex({field: [value]}, exact=exact, limit=limit)[0] for identity in identities: if identity.identifier not in seen: seen.add(identity.identifier) all_identities.append(identity) total += 1 return all_identities, total criteria = {k: next(iter(v)) for k, v in criteria.items()} op = 'eq' if exact else 'contains' api_criteria = [f'{k}:{op}:{v}' for k, v in criteria.items()] api_criteria.append('type:eq:Person') api_criteria += self.settings['extra_search_filters'] params = { 'limit': limit or 5000, 'filter': api_criteria, 'field': [ 'upn', 'firstName', 'lastName', 'displayName', 'instituteName', 'telephone1', 'primaryAccountEmail', 'cernPersonId', ], } with self._get_api_session() as api_session: results = [] total = 0 try: results, total = self._fetch_all(api_session, '/api/v1.0/Identity', params, limit=limit) except RequestException: self.logger.warning('Refreshing identities failed for criteria %s', criteria) if use_cache and cached_data: return cached_results, cached_data[1] else: self.logger.error('Getting identities failed for criteria %s', criteria) raise identities = [] cache_data = [] for res in results: if not res['upn']: total -= 1 continue del res['id'] self._fix_phone(res) res_copy = dict(res) identifier = res_copy.pop('upn') extra_data = self._extract_extra_data(res_copy) identities.append(IdentityInfo(self, identifier, extra_data, **res_copy)) if use_cache: cache_data.append(res) if use_cache: self.cache.set(cache_key, (cache_data, total), CACHE_LONG_TTL, CACHE_TTL * 2) return identities, total def get_identity_groups(self, identifier): with self._get_api_session() as api_session: resp = api_session.get(f'{self.authz_api_base}/api/v1.0/IdentityMembership/{identifier}/precomputed') if resp.status_code == 404 or resp.status_code == 500: return set() resp.raise_for_status() results = resp.json()['data'] return {self.group_class(self, res['groupIdentifier']) for res in results} def get_group(self, name): return self.group_class(self, name) def search_groups(self, name, exact=False): op = 'eq' if exact else 'contains' params = { 'limit': 5000, 'filter': [f'groupIdentifier:{op}:{name}'], 'field': ['groupIdentifier'], } with self._get_api_session() as api_session: results = self._fetch_all(api_session, '/api/v1.0/Group', params)[0] rv = {self.group_class(self, res['groupIdentifier']) for res in results} if ( self.settings['cern_users_group'] and (name.lower() == 'cern users' or (not exact and name.lower() in 'cern users')) ): rv.add(self.group_class(self, 'CERN Users')) return rv @memoize_request def _get_api_session(self): cache_key = f'flask-multipass-cern:{self.name}:api-token' token = self.cache.get(cache_key) if token: oauth_session = OAuth2Session(token=token) oauth_session.mount(self.authz_api_base, retry_config) return oauth_session meta = self.authlib_client.load_server_metadata() token_endpoint = meta['token_endpoint'].replace('protocol/openid-connect', 'api-access') oauth_session = OAuth2Session( self.authlib_client.client_id, self.authlib_client.client_secret, token_endpoint=token_endpoint, grant_type='client_credentials', ) oauth_session.mount(self.authz_api_base, retry_config) oauth_session.fetch_access_token( audience='authorization-service-api', headers={'Content-Type': 'application/x-www-form-urlencoded;charset=UTF-8'}, ) self.cache.set(cache_key, oauth_session.token, oauth_session.token['expires_in'] - 30) return oauth_session def _fetch_identity_data(self, auth_info): # Exchange the user token to one for the authorization API user_api_token = self.authlib_client.fetch_access_token( grant_type='urn:ietf:params:oauth:grant-type:token-exchange', subject_token_type='urn:ietf:params:oauth:token-type:access_token', audience='authorization-service-api', subject_token=auth_info.data['token']['access_token'], ) params = { 'field': [ 'upn', 'firstName', 'lastName', 'instituteName', 'telephone1', 'primaryAccountEmail', 'cernPersonId', ], } resp = self.authlib_client.get(f'{self.authz_api_base}/api/v1.0/Identity/current', token=user_api_token, params=params) resp.raise_for_status() data = resp.json()['data'] del data['id'] # id is always included return data def _fetch_all(self, api_session, endpoint, params, limit=None): results = [] resp = api_session.get(self.authz_api_base + endpoint, params=params) resp.raise_for_status() data = resp.json() total = data['pagination']['total'] while True: results += data['data'] if not data['pagination']['next']
<gh_stars>0 import numpy as np import pickle as pkl import networkx as nx import scipy.sparse as sp from scipy.sparse.linalg.eigen.arpack import eigsh import sys from gcn.input_data import pollute_data import json import os from networkx.readwrite import json_graph as jg import sys sys.path.insert(1, '/Users/april/Downloads/GCN_detection_benchmarkFinal/GCN_detection_benchmark/gcn/Preprocessing/') def create_G_idM_classM(adjacency, features, testMask, valMask, labels): # 1. Create Graph print("Creating graph...") # Create graph from adjacency matrix G = nx.from_numpy_matrix(adjacency) num_nodes = G.number_of_nodes() # Change labels to int from numpy.int64 labels = labels.tolist() for arr in labels: for integer in arr: integer = int(integer) # Iterate through each node, adding the features i = 0 for n in list(G): G.node[i]['feature'] = list(map(float, list(features[i]))) G.node[i]['test'] = bool(testMask[i]) G.node[i]['val'] = bool(valMask[i]) G.node[i]['labels'] = list(map(int, list(labels[i]))) i += 1 # 2. Create id-Map and class-Map print("Creating id-Map and class-Map...") # Initialize the dictionarys idM = {} classM = {} # Populate the dictionarys i = 0 while i < num_nodes: idStr = str(i) idM[idStr] = i classM[idStr] = list(labels[i]) i += 1 return G, idM, classM def parse_index_file(filename): """Parse index file.""" index = [] for line in open(filename): index.append(int(line.strip())) return index def sample_mask(idx, l): """Create mask.""" mask = np.zeros(l) mask[idx] = 1 return np.array(mask, dtype=np.bool) def load_data(dataset_str): """ Loads input data from gcn/data directory ind.dataset_str.x => the feature vectors of the training instances as scipy.sparse.csr.csr_matrix object; ind.dataset_str.tx => the feature vectors of the test instances as scipy.sparse.csr.csr_matrix object; ind.dataset_str.allx => the feature vectors of both labeled and unlabeled training instances (a superset of ind.dataset_str.x) as scipy.sparse.csr.csr_matrix object; ind.dataset_str.y => the one-hot labels of the labeled training instances as numpy.ndarray object; ind.dataset_str.ty => the one-hot labels of the test instances as numpy.ndarray object; ind.dataset_str.ally => the labels for instances in ind.dataset_str.allx as numpy.ndarray object; ind.dataset_str.graph => a dict in the format {index: [index_of_neighbor_nodes]} as collections.defaultdict object; ind.dataset_str.test.index => the indices of test instances in graph, for the inductive setting as list object. All objects above must be saved using python pickle module. :param dataset_str: Dataset name :return: All data input files loaded (as well the training/test data). """ #Use mask to translate a fully supervised setting to a semi-supervised setting names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'graph'] objects = [] for i in range(len(names)): with open("data/ind.{}.{}".format(dataset_str, names[i]), 'rb') as f: if sys.version_info > (3, 0): objects.append(pkl.load(f, encoding='latin1')) else: objects.append(pkl.load(f)) x, y, tx, ty, allx, ally, graph = tuple(objects) test_idx_reorder = parse_index_file("data/ind.{}.test.index".format(dataset_str)) test_idx_range = np.sort(test_idx_reorder) if dataset_str == 'citeseer': # Fix citeseer dataset (there are some isolated nodes in the graph) # Find isolated nodes, add them as zero-vecs into the right position test_idx_range_full = range(min(test_idx_reorder), max(test_idx_reorder)+1) tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1])) tx_extended[test_idx_range-min(test_idx_range), :] = tx tx = tx_extended ty_extended = np.zeros((len(test_idx_range_full), y.shape[1])) ty_extended[test_idx_range-min(test_idx_range), :] = ty ty = ty_extended #combine all training and testing features as sparse matrix features = sp.vstack((allx, tx)).tolil() #change the testing features' order, the testing instances will follow training instances features[test_idx_reorder, :] = features[test_idx_range, :] #change graph adjacency matrix to sparse matrix format adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph)) #correspondingly adjust testing labels labels = np.vstack((ally, ty)) labels[test_idx_reorder, :] = labels[test_idx_range, :] #attributes, labels = pollute_data_2(labels, features) idx_test = test_idx_range.tolist() idx_train = range(len(y)) #Just choose another 500 training instances as validation set idx_val = range(len(y), len(y)+500) ''' idx_train = range(1208) idx_val = range(1208, 1208+ 500) attributes, labels = pollute_data(labels, features, idx_train, idx_val, idx_test) ''' #testing the label rate of cora dataset if dataset_str == 'cora': num_train = len(y) total_num = len(ally)+len(ty) label_ratio_cora = num_train *1.0/total_num print(label_ratio_cora) if dataset_str == 'citeseer': num_train = len(y) total_num = len(ally) + len(ty) label_ratio_citeseer = num_train * 1.0 / total_num print(label_ratio_citeseer) #vector of size 2708, idx_train as true train_mask = sample_mask(idx_train, labels.shape[0]) val_mask = sample_mask(idx_val, labels.shape[0]) test_mask = sample_mask(idx_test, labels.shape[0]) y_train = np.zeros(labels.shape) y_val = np.zeros(labels.shape) y_test = np.zeros(labels.shape) #only assign label value when the train_mask as true y_train[train_mask, :] = labels[train_mask, :] y_val[val_mask, :] = labels[val_mask, :] #testing instance starts from 1708 y_test[test_mask, :] = labels[test_mask, :] #Translate adj to numpy arrays adj_np = adj.toarray() #translate features to numpy arrays features_np = features.toarray() #generate the graph and id_map, class_map G, IDMap, classMap =create_G_idM_classM(adj_np, features_np, test_mask, val_mask, labels) #at this stage, for all validation nodes, test nodes we have their labels but use mask tp make them #all [0 0 0 0 0 0 0] num_edges =len(G.edges()) print(num_edges) print(G.number_of_edges()) #Dump everything into .json files and one .npy if dataset_str == 'cora': graphFile_prefix = '/Users/april/Downloads/GraphSAGE_Benchmark-master/processed/cora' dataset_name = 'cora_process' dumpJSON(graphFile_prefix, dataset_name, G, IDMap, classMap, features_np) if dataset_str == 'citeseer': graphFile_prefix = '/Users/april/Downloads/GraphSAGE_Benchmark-master/processed/citeseer' dataset_name = 'citeseer_process' dumpJSON(graphFile_prefix, dataset_name, G, IDMap, classMap, features_np) return adj, features, y_train, y_val, y_test, train_mask, val_mask, test_mask def sparse_to_tuple(sparse_mx): """Convert sparse matrix to tuple representation.""" def to_tuple(mx): if not sp.isspmatrix_coo(mx): mx = mx.tocoo() coords = np.vstack((mx.row, mx.col)).transpose() values = mx.data shape = mx.shape return coords, values, shape if isinstance(sparse_mx, list): for i in range(len(sparse_mx)): sparse_mx[i] = to_tuple(sparse_mx[i]) else: sparse_mx = to_tuple(sparse_mx) return sparse_mx def preprocess_features(features): """Row-normalize feature matrix and convert to tuple representation""" rowsum = np.array(features.sum(1)) r_inv = np.power(rowsum, -1).flatten() r_inv[np.isinf(r_inv)] = 0. r_mat_inv = sp.diags(r_inv) features = r_mat_inv.dot(features) return sparse_to_tuple(features) def normalize_adj(adj): """Symmetrically normalize adjacency matrix.""" adj = sp.coo_matrix(adj) rowsum = np.array(adj.sum(1)) d_inv_sqrt = np.power(rowsum, -0.5).flatten() d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0. d_mat_inv_sqrt = sp.diags(d_inv_sqrt) return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).tocoo() def preprocess_adj(adj): """Preprocessing of adjacency matrix for simple GCN model and conversion to tuple representation.""" adj_normalized = normalize_adj(adj + sp.eye(adj.shape[0])) return sparse_to_tuple(adj_normalized) def construct_feed_dict(features, support, labels, labels_mask, placeholders): """Construct feed dictionary.""" feed_dict = dict() feed_dict.update({placeholders['labels']: labels}) feed_dict.update({placeholders['labels_mask']: labels_mask}) feed_dict.update({placeholders['features']: features}) feed_dict.update({placeholders['support'][i]: support[i] for i in range(len(support))}) feed_dict.update({placeholders['num_features_nonzero']: features[1].shape}) return feed_dict def chebyshev_polynomials(adj, k): """Calculate Chebyshev polynomials up to order k. Return a list of sparse matrices (tuple representation).""" print("Calculating Chebyshev polynomials up to order {}...".format(k)) adj_normalized = normalize_adj(adj) laplacian = sp.eye(adj.shape[0]) - adj_normalized largest_eigval, _ = eigsh(laplacian, 1, which='LM') scaled_laplacian = (2. / largest_eigval[0]) * laplacian - sp.eye(adj.shape[0]) t_k = list() t_k.append(sp.eye(adj.shape[0])) t_k.append(scaled_laplacian) def chebyshev_recurrence(t_k_minus_one, t_k_minus_two, scaled_lap): s_lap = sp.csr_matrix(scaled_lap, copy=True) return 2 * s_lap.dot(t_k_minus_one) - t_k_minus_two for i in range(2, k+1): t_k.append(chebyshev_recurrence(t_k[-1], t_k[-2], scaled_laplacian)) return sparse_to_tuple(t_k) def load_bsbm_data(path,prefix, normalize=True): G_data = json.load(open(path+prefix + "-G.json")) G = json_graph.node_link_graph(G_data) # change graph adjacency matrix to sparse matrix format adj = nx.adjacency_matrix(nx.from_dict_of_lists(G.adj)) print("The number of edges") edge_num = G.number_of_edges() print(edge_num) print("The number of nodes") nodes_num = G.number_of_nodes() print(nodes_num) # print G.nodes()[0] # check G.nodes()[0] is an integer or not if isinstance(G.nodes()[0], int): conversion = lambda n: int(n) else: conversion = lambda n: n if os.path.exists(path+prefix + "-feats.npy"): feats = np.load(path+prefix + "-feats.npy") else: print("No features present.. Only identity features will be used.") feats = None id_map = json.load(open(path+prefix + "-id_map.json")) id_map = {conversion(k): int(v) for k, v in id_map.items()} # just print the id_map keys range: # id_map_range = np.sort(id_map.keys()) walks = [] class_map = json.load(open(path+prefix + "-class_map.json")) if isinstance(list(class_map.values())[0], list): lab_conversion = lambda n: n else: lab_conversion = lambda n: int(n) class_map = {conversion(k): lab_conversion(v) for k, v in class_map.items()} # just print the class_map keys range: class_map_int_list = [] for j in class_map.keys(): class_map_int_list.append(int(j)) class_map_range = np.sort(class_map_int_list) #generate y_train, y_val, y_test ndarray y_train =np.array([0,0]) y_val = np.array([0,0]) y_test =np.array([0,0]) idx_train =[] idx_val=[] idx_test=[] for node in G.nodes(): if G.node[node]['test'] == False and G.node[node]['val']==False: print("Train,currrent n is %d" % node) train_label = G.node[node]['label'] train_label = np.array(train_label) y_train = np.vstack((y_train, train_label)) y_val = np.vstack((y_val,[0,0])) y_test = np.vstack((y_test,[0,0])) idx_train.append(node) elif G.node[node]['test'] == False and G.node[node]['val']==True: print("Validation, current n is %d" %node) validation_label = G.node[node]['label'] validation_label = np.array(validation_label) y_val = np.vstack((y_val,validation_label)) y_train = np.vstack((y_train, [0, 0])) y_test = np.vstack((y_test,[0,0])) idx_val.append(node) elif G.node[node]['test'] == True and G.node[node]['val']==False: print("Test, current n is %d" %node) test_label = G.node[node]['label'] test_label = np.array(test_label) y_test = np.vstack((y_test,test_label)) y_train = np.vstack((y_train, [0, 0])) y_val = np.vstack((y_val, [0, 0])) idx_test.append(node) print("training label shape is") #print(y_train.shape) y_train = np.delete(y_train,0,axis=0) y_val = np.delete(y_val,0,axis=0) y_test = np.delete(y_test,0,axis=0) print(y_train.shape) #generate train_mask, val_mask and test_mask train_mask = sample_mask(idx_train, len(G.node)) val_mask = sample_mask(idx_val, len(G.node)) test_mask = sample_mask(idx_test, len(G.node)) #check how many train_mask is true: train_true_num = np.count_nonzero(train_mask) #Similarly for val_mask, test_mask val_true_num = np.count_nonzero(val_mask) test_true_num = np.count_nonzero(test_mask) # print the
""" █▀▀ █▀▀ █▄░█ █▀▀ █▀ █ █▀   █░░ █▀▀ █▀ █▀ █▀█ █▄░█ █▀   █░█ █▀█ █░░ ░ ▄█ █▄█ ██▄ █░▀█ ██▄ ▄█ █ ▄█   █▄▄ ██▄ ▄█ ▄█ █▄█ █░▀█ ▄█   ▀▄▀ █▄█ █▄▄ ▄ ░█ Welcome to the Genesis Gir lesson tutorials Volume 1! Genesis Chit Chat bot is a program that gathers info on the user and displays all the cool info at the end of the program as shock value that the bot could remember all of users fun little facts. Chit Chat bot will ask the user questions than display its results at the end of the program really fun to make and trying to get out of writers block right now so if its not as immersive im sorry' but this will be fun to make and learn from in the long run with functionalities like print, input() and even using multiline strings and much more! Thanks for downloading! 山尺讠〸〸🝗𝓝 & ⼕ㄖᗪ🝗ᗪ ⻏丫 Ꮆ🝗𝓝🝗丂讠丂 Ꮆ讠尺 """ # Loading screen print() print() print('initializing bot! ') print('(loading. . .)') print('(press enter)') input() # T/I print('Tidying up mainframes!') print('(loading. . . )') print('(press enter)') input() # T/I print('Making things pretty for you!') print('(loading. . . )') print('(press enter)') input() print('picking up data Blocks!') print('(loading. . . )') print('(press enter)') input() print('Data Blocks loading in!') print('(loading. . .)') print('(press enter)') input() print('Letting things fall into place!') print('(loading. . .)') print('(press enter)') input() """ █░█ ▄▀█ █▀█ █ ▄▀█ █▄▄ █░░ █▀▀ █▀ ▀▄▀ █▀█ █▀▄ █ █▀█ █▄█ █▄▄ ██▄ ▄█ variables are like tiny little safes or storage units you can store values and data types inside to later use them in your program ofr ease of use! variables are really useful if you want to store data inside them from integers , floats, string data types and even Boolean values like True and false can be used and stored within them. In this program the varaible 'prompt' is storing '(press enter)' so that way we dont have to type it all the time or at least thats why im using it. variables are created using assignment statements that contain the variable name the assignment operator and the value or data type to be stored within the variable whatever you named the variable it must have valid names or you will get a syntax error, again a variable cant have any spaces or begin with a number or contain special characters in it like '!@#$%' etc. so make sure to name your variables something in the valid formats. Pick the right variable name that has to do with the item or variable to begin with like the automatetheboring stuff if you label all of your moving boxes stuff you wont ever find anything to picking the right now that will suit your project or program will best interest your organization later down the road! ██████ ▓▓▓▓ ▓▓░░ ░░░░ ▓▓▓▓ ████ 𝕧𝕒𝕣𝕚𝕒𝕓𝕝𝕖𝕤 ████ ████ ████ ████ True ████ ████ ████ ██ ████ False ████ ▓▓ ██ ▓▓▓▓ ▓▓▓▓ ▓▓ ██ ▓▓▓▓ ▓▓▓▓ ▓▓ ██ ▓▓▒▒ ▓▓▓▓ ▓▓ ██ ▓▓▓▓ ▓▓▒▒ 78 ▓▓ ██ 'strings' ██████ ▓▓ ██ ▓▓ 1 ▓▓ ██ ▓▓ integers ▓▓ ██ ▓▓ ▓▓ ██ DATA ▓▓ ▓▓ ██ ▓▓ 500.1 ▓▓ ██ 'Cat' ▓▓▓▓▓▓ (floats) ▓▓ ██ ▓▓▓▓ ▓▓ ▓▓▒▒ ▓▓ ██ ▓▓▒▒ ▓▓ ▓▓▓▓ ▓▓ ██ ▓▓▓▓ ▓▓ ▓▓▓▓ ▓▓ ██ ▒▒▒▒░░░░ ▓▓ 2.1 ░░▒▒▒▒ ▓▓ ██ ▒▒▒▒░░░░ ▓▓ ░░░░▒▒▒▒ ▓▓ ████ Your Mind ▓▓ ██▓▓ ████ ▓▓ 95 ████ 𝙏𝙞𝙥: 𝙡𝙖𝙗𝙚𝙡 𝙮𝙤𝙪𝙧 𝙫𝙖𝙧𝙞𝙖𝙗𝙡𝙚𝙨 𝙨𝙤𝙢𝙚𝙩𝙝𝙞𝙣𝙜 𝙩𝙝𝙖𝙩 𝙝𝙖𝙨 𝙩𝙤 𝙙𝙤 𝙬𝙞𝙩𝙝 𝙩𝙝𝙚 𝙩𝙤𝙥𝙞𝙘 ▓▓▓▓ ▓▓ ▓▓▓▓ ▓▓▓▓ ▓▓ ▓▓▓▓ 𝙏𝙞𝙥: 𝙫𝙖𝙧𝙞𝙖𝙗𝙡𝙚𝙨 𝙘𝙖𝙣𝙣𝙤𝙩 𝙗𝙚𝙜𝙞𝙣 𝙬𝙞𝙩𝙝 𝙖 𝙣𝙪𝙢𝙗𝙚𝙧 ▓▓▓▓ ▓▓ ▓▓▓▓ ▓▓▓▓ ▓▓ ▓▓▓▓ ▓▓▓▓▓▓ """ #Bot variable bot = '[Chit-Chat Bot]' # prompt variable shortcuts prompt = '(press enter)' #T This program asks the user questions and gives the results from the variables at the end print()#(ELOC) print()#(ELOC) print()#(ELOC) print(' █▀▀ █▀▀ █▄░█   █▀▀ █░█ █ ▀█▀   █▀▀ █░█ ▄▀█ ▀█▀   █▄▄ █▀█ ▀█▀ ') print(' █▄█ ██▄ █░▀█   █▄▄ █▀█ █ ░█░   █▄▄ █▀█ █▀█ ░█░   █▄█ █▄█ ░█░ ') print()#(ELOC) print(' ') print(' ░░░░░░░▄█▄▄▄█▄ ') print(' ▄▀░░░░▄▌─▄─▄─▐▄░░░░▀▄ ') print(' █▄▄█░░▀▌─▀─▀─▐▀░░█▄▄█ ') print(' ░▐▌░░░░▀▀███▀▀░░░░▐▌ ') print(' ████░▄█████████▄░████ ') print()#(ELOC) print()#(ELOC) print(""" Welcome to the Genesis Chit-Chat Bot! Ever felt bored or lonely and have nobody to talk to? well designed by Genesis Gir this bot will hold converstations with you and remember all the facts you told it so what are you waiting for it uses simple functions like input() to gather users inputs! The bot will ask you various questions that you will have to answer to gather data! Goodluck on your journey with your questions lets get started! """) input('(press enter to begin chatting!)')# waits for user to type than press enter and function call evaluates to standard input() print() # Question 1 print(bot+': Hello whats your name? ')# asking a question name = input('(enter your name) ') # user creates variable using the input functionalities! print()#(ELOC) print(bot+': Nice to meet you '+name+' im glad to have you here today!') # speech dialog from (Gen Chit-Chat Bot) print(prompt) # prompts user to press enter input() # Takes input w/input() # Question 2 print(bot+': So whats your favorite thing to do '+name+'?')# asking a question hobby = input('(enter Hobby) ') # user creates variable using the input functionalities! print()#(ELOC) print(bot+':Nice that sounds interesting mine is to talk with people like you and gather data!') # speech dialog from (Gen Chit-Chat Bot) print(prompt) # prompts user to press enter input()# Takes input w/input() # Question 3 print(bot+': Whats your mood like right now?')# asking a question mood = input('(enter your mood) ')# user creates variable using the input functionalities! print()#(ELOC) print(bot+': Sometimes feeling '+mood+' is okay! But when i find myself feeling unhappy') # speech dialog from (Gen Chit-Chat Bot) print('I just talk with someone about it and I feel a lot better in the end!') #speech dialog continues from line '57' print('(press enter)') # prompts user to press enter input()# Takes input w/input() # Question 4 print(bot+': Whats your favorite game to play?')# asking a question game = input('(enter your favorite game) ')# user creates variable using the input functionalities! print()#(ELOC) print(bot+': '+game+'? I never heard of it than again Im a bot!') # speech dialog from (Gen Chit-Chat Bot) input(prompt) print() #Bot Color variable bot_color = 'purple' # Question 5 print(bot+': Whats your favorite color?')# asking a question color = input('(enter your favorite color) ')# user creates variable using the input functionalities! print()#(ELOC) print(bot+':'+color+'? My favorite color is '+bot_color+'!') # speech dialog from (Gen Chit-Chat Bot) print(prompt) # prompts user to press enter input()# Takes input w/input() """ 🅶🅴🅽🅴🆂🅸🆂 🅶🅴🅽🅴🆂🅸🆂 🅶🅴🅽🅴🆂🅸🆂 🅶🅴🅽🅴🆂🅸🆂 █░█ █▀█ █░█░█   ▀█▀ █▀█   █░█ █▀ █▀▀   █▀█ █▀█ █ █▄░█ ▀█▀ █▀█ █▄█ ▀▄▀▄▀   ░█░ █▄█   █▄█ ▄█ ██▄   █▀▀ █▀▄ █ █░▀█ ░█░ The print function always comes with two parentheses and any function in that matter and we enter what data types we want inside of them and everything inside of it is called an argument and the print is called a function and in this case im using a (stir) or better known as a string to make a storyline! so print( ) and anything inside it will be printed onto stream(screen) just make sure its a correct data type: interger , float or a string value. 🅶🅴🅽🅴🆂🅸🆂 🅶🅴🅽🅴🆂🅸🆂 🅶🅴🅽🅴🆂🅸🆂 🅶🅴🅽🅴🆂🅸🆂 """ # Question 6 print(bot+': Where are you from im curious!')# asking a question location = input('(enter your location) ')# user creates variable using the input functionalities! print() print(bot+': I never been to '+location+' but it sounds pretty nice!') # speech dialog from (Gen Chit-Chat Bot) input('(press enter)') # prompts user to talk some more than press enter print() """ █░░█ █▀▀█ █░░░█   ▀▀█▀▀ █▀▀█   █▀▀ █▀▀█ █▀▄▀█ █▀▄▀█ █▀▀ █▀▀▄ ▀▀█▀▀ █▀▀█ █░░█ █▄█▄█   ░░█░░ █░░█   █░░ █░░█ █░▀░█ █░▀░█ █▀▀ █░░█ ░░█░░ ✎ ▀░░▀ ▀▀▀▀ ░▀░▀░   ░░▀░░ ▀▀▀▀   ▀▀▀ ▀▀▀▀ ▀░░░▀ ▀░░░▀ ▀▀▀ ▀░░▀ ░░▀░░ First things first you need to learn how to make single line comments and multi line comments so you can add little reminders or give insight on what that line of code does! Comments are fun great ways to just add notes to a line so you can reflect on them later. They wont show up in the program its specifically for the developer(you) to look at! So single line comments start with a hashtag (#) and anything after that will be comments in a greyish tone. Great! Now you know how to make single line comments but what about multi line comments like this one bro? Easy all you need to do is start the line with (3 quotes) and than anything after that will be
<filename>paths_cli/wizard/wizard.py<gh_stars>1-10 import shutil import os import textwrap from paths_cli.wizard.tools import yes_no, a_an from paths_cli.wizard.core import get_object from paths_cli.wizard.errors import ( FILE_LOADING_ERROR_MSG, RestartObjectException ) from paths_cli.wizard.joke import name_joke from paths_cli.wizard.helper import Helper, QuitWizard from paths_cli.compiling.tools import custom_eval from paths_cli.wizard import pause class Console: # no-cov """Manage actual I/O for the Wizard. All direct interaction with the user is performed in this class. """ # TODO: add logging so we can output the session def print(self, *content): """Write content to screen""" print(*content) def input(self, content): """Read user input. Parameters ---------- content : str input prompt """ return input(content) @property def width(self): """Terminal width in columns""" return shutil.get_terminal_size((80, 24)).columns def draw_hline(self, char='═'): """Draw a separator line. Parameters ---------- char : str string to use for line separator """ n_chars = self.width // len(char) self.print(char * n_chars) class Wizard: """Friendly interactive Wizard This class handles most of the user-facing interaction with the wizard, including various conveniences for asking for certain user selections (such as selecting between a number of possible choices.) An instance of this class includes information about how the Wizard will guide the user through various stages of simulation set-up. The main method, ``Wizard.run_wizard()``, performs an entire simulation set-up for that instance. Parameters ---------- steps : List[:class:`.WizardStep`] ordered list of steps in this particular simulation set-up process """ def __init__(self, steps): self.steps = steps self.requirements = { step.display_name: (step.store_name, step.minimum, step.maximum) for step in steps } self.engines = {} self.cvs = {} self.states = {} self.networks = {} self.schemes = {} self.last_used_file = None # for loading self.console = Console() self.default = {} self._patched = False # if we've done the monkey-patching def _patch(self): # no-cov import openpathsampling as paths from openpathsampling.experimental.storage import monkey_patch_all from paths_cli.param_core import StorageLoader if not self._patched: paths = monkey_patch_all(paths) paths.InterfaceSet.simstore = True self._patched = True StorageLoader.has_simstore_patch = True def debug(self, content): # no-cov """Print to console without pretty-printing""" # debug does no pretty-printing self.console.print(content) def _speak(self, content, preface): # we do custom wrapping here # TODO: move this to the console class; should also wrap on `input` width = self.console.width - len(preface) statement = preface + content lines = statement.split("\n") wrapped = textwrap.wrap(lines[0], width=width, subsequent_indent=" "*3) for line in lines[1:]: if line == "": wrapped.append("") continue wrap_line = textwrap.wrap(line, width=width, initial_indent=" "*3, subsequent_indent=" "*3) wrapped.extend(wrap_line) self.console.print("\n".join(wrapped)) @get_object def ask(self, question, options=None, default=None, helper=None, autohelp=False): """Ask the user a question.""" if helper is None: helper = Helper(None) if isinstance(helper, str): helper = Helper(helper) result = self.console.input("🧙 " + question + " ") self.console.print() if result == "": if not autohelp: return None result = "?" # autohelp in this case if helper and result[0] in ["?", "!"]: self.say(helper(result)) return None return result def say(self, content, preface="🧙 "): """Let the wizard make a statement. Parameters ---------- content : str or List[str] Content to be presented to user. Input will be wrapped to fit the user's terminal. If a list of strings, each element is printed with a blank line separating them. preface : str preface, used only on the first line of the first element of the ``content``. """ self._speak(content, preface) self.console.print() # adds a blank line def start(self, content): """Specialized version of :method:`.say` for starting an object""" # eventually, this will tweak so that we preface with a line and use # green text here TODO: possibly remove? self.say(content) def bad_input(self, content, preface="👺 "): """Specialized version of :method:`.say` for printing errors""" # just changes the default preface; maybe print 1st line red? self.say(content, preface) @get_object def ask_enumerate_dict(self, question, options, helper=None, autohelp=False): """Ask the user to select from a set of options. Parameters ---------- question : str the question to ask the user (asked before the options are listed) options: Dict[str, Any] mapping of the string name (shown to the user in the list of options) to the object to return Returns ------- Any : the object the user selected by either name or number """ self.say(question) opt_string = "\n".join([f" {(i+1):>3}. {opt}" for i, opt in enumerate(options)]) self.say(opt_string, preface=" "*3) choice = self.ask("Please select an option:", helper=helper) # select by string if choice in options: return options[choice] # select by number try: num = int(choice) - 1 result = list(options.values())[num] except Exception: self.bad_input(f"Sorry, '{choice}' is not a valid option.") result = None return result def ask_enumerate(self, question, options): """Ask the user to select from a list of options""" # NOTE: new code should use ask_enumerate_dict. If we were past the # beta stage, this would probably issue a PendingDeprecationWarning self.say(question) opt_string = "\n".join([f" {(i+1):>3}. {opt}" for i, opt in enumerate(options)]) self.say(opt_string, preface=" "*3) result = None while result is None: choice = self.ask("Please select a number:", options=[str(i+1) for i in range(len(options))]) if choice in options: return choice try: num = int(choice) - 1 result = options[num] except Exception: self.bad_input(f"Sorry, '{choice}' is not a valid option.") result = None return result @get_object def ask_load(self, question, loader, helper=None, autohelp=False): """Load from user input according to ``loader`` method Parameters ---------- question : str string to ask the user loader : Callable[str] -> Any method that converts user input into the desired format for the object helper : :class:`.Helper` object to handle user requests for help """ as_str = self.ask(question, helper=helper) try: result = loader(as_str) except Exception as e: self.exception(f"Sorry, I couldn't understand the input " f"'{as_str}'.", e) return None return result @get_object def ask_custom_eval(self, question, options=None, default=None, helper=None, type_=float): """Get user input and convert using custom_eval. .. note:: New code should use ask_load. If we were past beta, this would have a PendingDeprecationWarning. """ as_str = self.ask(question, options=options, default=default, helper=helper) try: result = type_(custom_eval(as_str)) except Exception as e: self.exception(f"Sorry, I couldn't understand the input " f"'{as_str}'", e) return None return result def obj_selector(self, store_name, text_name, create_func): """Select an object from the wizard's pseudo-storage """ # TODO: this seems like something that might be possible to refactor # out opts = {name: lambda wiz, o=obj: o for name, obj in getattr(self, store_name).items()} create_new = f"Create a new {text_name}" opts[create_new] = create_func sel = self.ask_enumerate(f"Which {text_name} would you like to " "use?", list(opts.keys())) obj = opts[sel](self) if sel == create_new: obj = self.register(obj, text_name, store_name) return obj def exception(self, msg, exception): """Specialized version of :method:`.bad_input` for exceptions""" self.bad_input(f"{msg}\nHere's the error I got:\n" f"{exception.__class__.__name__}: {exception}") def name(self, obj, obj_type, store_name): """Name a newly created object. Parameters ---------- obj : Any the new object obj_type : str user-facing name of the object type store_name : str name of the OPS store in which to save this object type Returns ------- Any : named object """ self.say(f"Now let's name your {obj_type}.") name = None while name is None: name_help = ("Objects in OpenPathSampling can be named. You'll " "use these names to refer back to these objects " "or to load them from a storage file.") name = self.ask("What do you want to call it?", helper=name_help) if name in getattr(self, store_name): self.bad_input(f"Sorry, you already have {a_an(obj_type)} " f"named {name}. Please try another name.") name = None obj = obj.named(name) self.say(f"'{name}' is a good name for {a_an(obj_type)} {obj_type}. " + name_joke(name, obj_type)) return obj def register(self, obj, obj_type, store_name): """Register a newly-created object in the storage Parameters ---------- obj : Any the new object obj_type : str user-facing name of the object type store_name : str name of the OPS store in which to save this object type Returns ------- Any : input object, possibly after being named """ if not obj.is_named: obj = self.name(obj, obj_type, store_name) store_dict = getattr(self, store_name) store_dict[obj.name] = obj return obj @get_object def get_storage(self): """Create a file to store the object database to. Returns ------- :class:`openpathsampling.experimental.storage.Storage` : the storage file object """ from openpathsampling.experimental.storage import Storage filename = self.ask("Where would you like to save your setup " "database?") if not filename.endswith(".db"): self.bad_input("Files produced by this wizard must end in " "'.db'.") return None if os.path.exists(filename): overwrite
<filename>autoarray/structures/arrays/two_d/abstract_array_2d.py import logging import numpy as np from typing import List, Tuple, Union from autoconf import conf from autoarray.structures.abstract_structure import AbstractStructure2D from autoarray.structures.arrays.one_d.array_1d import Array1D from autoarray.mask.mask_2d import Mask2D from autoarray import exc from autoarray.structures.arrays import abstract_array from autoarray.structures.arrays.two_d import array_2d_util from autoarray.layout import layout_util logging.basicConfig() logger = logging.getLogger(__name__) def check_array_2d(array_2d: np.ndarray): if len(array_2d.shape) != 1: raise exc.ArrayException( "An array input into the Array2D.__new__ method is not of shape 1." ) def convert_array_2d(array_2d: Union[np.ndarray, List], mask_2d: Mask2D) -> np.ndarray: """ The `manual` classmethods in the `Array2D` object take as input a list or ndarray which is returned as an Array2D. This function performs the following and checks and conversions on the input: 1) If the input is a list, convert it to an ndarray. 2) Check that the number of sub-pixels in the array is identical to that of the mask. 3) Map the input ndarray to its `slim` or `native` representation, depending on the `general.ini` config file entry `store_slim`. For an Array2D, `slim` refers to a 1D NumPy array of shape [total_values] and `native` a 2D NumPy array of shape [total_y_values, total_values]. Parameters ---------- array_2d The input structure which is converted to an ndarray if it is a list. mask_2d The mask of the output Array2D. """ array_2d = abstract_array.convert_array(array=array_2d) if conf.instance["general"]["structures"]["store_slim"]: return convert_array_2d_to_slim(array_2d=array_2d, mask_2d=mask_2d) return convert_array_2d_to_native(array_2d=array_2d, mask_2d=mask_2d) def convert_array_2d_to_slim(array_2d: np.ndarray, mask_2d: Mask2D) -> np.ndarray: """ The `manual` classmethods in the `Array2D` object take as input a list or ndarray which is returned as an Array2D. This function checks the dimensions of the input `array_2d` and maps it to its `slim` representation. For an Array2D, `slim` refers to a 1D NumPy array of shape [total_values]. Parameters ---------- array_2d The input structure which is converted to its slim representation. mask_2d The mask of the output Array2D. """ if len(array_2d.shape) == 1: array_2d_slim = array_2d if array_2d_slim.shape[0] != mask_2d.sub_pixels_in_mask: raise exc.ArrayException( "The input 1D array does not have the same number of entries as sub-pixels in" "the mask." ) return array_2d_slim if array_2d.shape != mask_2d.sub_shape_native: raise exc.ArrayException( "The input array is 2D but not the same dimensions as the sub-mask " "(e.g. the mask 2D shape multipled by its sub size.)" ) return array_2d_util.array_2d_slim_from( array_2d_native=array_2d, mask_2d=mask_2d, sub_size=mask_2d.sub_size ) def convert_array_2d_to_native(array_2d: np.ndarray, mask_2d: Mask2D) -> np.ndarray: """ The `manual` classmethods in the `Array2D` object take as input a list or ndarray which is returned as an Array2D. This function checks the dimensions of the input `array_2d` and maps it to its `native` representation. For an Array2D, `native` a 2D NumPy array of shape [total_y_values, total_values]. Parameters ---------- array_2d The input structure which is converted to an ndarray if it is a list. mask_2d : Mask2D The mask of the output Array2D. """ if len(array_2d.shape) == 2: array_2d_native = array_2d * np.invert(mask_2d) if array_2d.shape != mask_2d.sub_shape_native: raise exc.ArrayException( "The input array is 2D but not the same dimensions as the sub-mask " "(e.g. the mask 2D shape multipled by its sub size.)" ) return array_2d_native if array_2d.shape[0] != mask_2d.sub_pixels_in_mask: raise exc.ArrayException( "The input 1D array does not have the same number of entries as sub-pixels in" "the mask." ) return array_2d_util.array_2d_native_from( array_2d_slim=array_2d, mask_2d=mask_2d, sub_size=mask_2d.sub_size ) class AbstractArray2D(AbstractStructure2D): header = None def _new_structure( self, array: "AbstractArray2D", mask: Mask2D ) -> "AbstractArray2D": return self.__class__(array=array, mask=mask, header=self.header) @property def slim(self) -> Union["AbstractArray2D", "Array2D"]: """ Return an `Array2D` where the data is stored its `slim` representation, which is an ndarray of shape [total_unmasked_pixels * sub_size**2]. If it is already stored in its `slim` representation it is returned as it is. If not, it is mapped from `native` to `slim` and returned as a new `Array2D`. """ if len(self.shape) == 1: return self sub_array_1d = array_2d_util.array_2d_slim_from( array_2d_native=self, mask_2d=self.mask, sub_size=self.mask.sub_size ) return self._new_structure(array=sub_array_1d, mask=self.mask) @property def native(self) -> Union["AbstractArray2D", "Array2D"]: """ Return a `Array2D` where the data is stored in its `native` representation, which is an ndarray of shape [sub_size*total_y_pixels, sub_size*total_x_pixels]. If it is already stored in its `native` representation it is return as it is. If not, it is mapped from `slim` to `native` and returned as a new `Array2D`. """ if len(self.shape) != 1: return self sub_array_2d = array_2d_util.array_2d_native_from( array_2d_slim=self, mask_2d=self.mask, sub_size=self.mask.sub_size ) return self._new_structure(array=sub_array_2d, mask=self.mask) @property def binned(self) -> Union["AbstractArray2D", "Array2D"]: """ Convenience method to access the binned-up array in its 1D representation, which is a Grid2D stored as an ndarray of shape [total_unmasked_pixels, 2]. The binning up process converts a array from (y,x) values where each value is a coordinate on the sub-array to (y,x) values where each coordinate is at the centre of its mask (e.g. a array with a sub_size of 1). This is performed by taking the mean of all (y,x) values in each sub pixel. If the array is stored in 1D it is return as is. If it is stored in 2D, it must first be mapped from 2D to 1D. """ array_2d_slim = self.slim binned_array_1d = np.multiply( self.mask.sub_fraction, array_2d_slim.reshape(-1, self.mask.sub_length).sum(axis=1), ) return self._new_structure(array=binned_array_1d, mask=self.mask.mask_sub_1) @property def extent(self) -> np.ndarray: return self.mask.extent @property def in_counts(self) -> "AbstractArray2D": return self.header.array_eps_to_counts(array_eps=self) @property def in_counts_per_second(self) -> "AbstractArray2D": return self.header.array_counts_to_counts_per_second( array_counts=self.in_counts ) @property def original_orientation(self) -> Union[np.ndarray, "AbstractArray2D"]: return layout_util.rotate_array_via_roe_corner_from( array=self, roe_corner=self.header.original_roe_corner ) @property def readout_offsets(self) -> Tuple[int, int]: if self.header is not None: if self.header.readout_offsets is not None: return self.header.readout_offsets return (0, 0) @property def binned_across_rows(self) -> Array1D: binned_array = np.mean(np.ma.masked_array(self.native, self.mask), axis=0) return Array1D.manual_native(array=binned_array, pixel_scales=self.pixel_scale) @property def binned_across_columns(self) -> Array1D: binned_array = np.mean(np.ma.masked_array(self.native, self.mask), axis=1) return Array1D.manual_native(array=binned_array, pixel_scales=self.pixel_scale) def zoomed_around_mask(self, buffer: int = 1) -> "AbstractArray2D": """ Extract the 2D region of an array corresponding to the rectangle encompassing all unmasked values. This is used to extract and visualize only the region of an image that is used in an analysis. Parameters ---------- buffer The number pixels around the extracted array used as a buffer. """ extracted_array_2d = array_2d_util.extracted_array_2d_from( array_2d=self.native, y0=self.mask.zoom_region[0] - buffer, y1=self.mask.zoom_region[1] + buffer, x0=self.mask.zoom_region[2] - buffer, x1=self.mask.zoom_region[3] + buffer, ) mask = Mask2D.unmasked( shape_native=extracted_array_2d.shape, pixel_scales=self.pixel_scales, sub_size=self.sub_size, origin=self.mask.mask_centre, ) array = convert_array_2d(array_2d=extracted_array_2d, mask_2d=mask) return self._new_structure(array=array, mask=mask) def extent_of_zoomed_array(self, buffer: int = 1) -> np.ndarray: """ For an extracted zoomed array computed from the method *zoomed_around_mask* compute its extent in scaled coordinates. The extent of the grid in scaled units returned as an ndarray of the form [x_min, x_max, y_min, y_max]. This is used visualize zoomed and extracted arrays via the imshow() method. Parameters ---------- buffer The number pixels around the extracted array used as a buffer. """ extracted_array_2d = array_2d_util.extracted_array_2d_from( array_2d=self.native, y0=self.mask.zoom_region[0] - buffer, y1=self.mask.zoom_region[1] + buffer, x0=self.mask.zoom_region[2] - buffer, x1=self.mask.zoom_region[3] + buffer, ) mask = Mask2D.unmasked( shape_native=extracted_array_2d.shape, pixel_scales=self.pixel_scales, sub_size=self.sub_size, origin=self.mask.mask_centre, ) return mask.extent def resized_from( self, new_shape: Tuple[int, int], mask_pad_value: int = 0.0 ) -> "AbstractArray2D": """ Resize the array around its centre to a new input shape. If a new_shape dimension is smaller than the current dimension, the data at the edges is trimmed and removed. If it is larger, the data is padded with zeros. If the array has even sized dimensions, the central pixel around which data is trimmed / padded is chosen as the top-left pixel of the central quadrant of pixels. Parameters ----------- new_shape The new 2D shape of the array. """ resized_array_2d = array_2d_util.resized_array_2d_from( array_2d=self.native, resized_shape=new_shape ) resized_mask = self.mask.resized_mask_from( new_shape=new_shape, pad_value=mask_pad_value ) array = convert_array_2d(array_2d=resized_array_2d, mask_2d=resized_mask) return self._new_structure(array=array, mask=resized_mask) def padded_before_convolution_from( self, kernel_shape: Tuple[int, int], mask_pad_value: int = 0.0 ) -> "AbstractArray2D": """ When the edge pixels of a mask are unmasked and a convolution is to occur, the signal of edge pixels will be 'missing' if the grid is used to evaluate the signal via an analytic function. To ensure this signal is included the array can be padded, where it is 'buffed' such that it includes all pixels whose signal will be convolved into the unmasked pixels given the 2D kernel shape. The values of these pixels are zeros. Parameters ---------- kernel_shape The 2D shape of the kernel
""" Copyright (C) <2010> Aut<NAME>. TSRI This file git_upy/houdini/houdiniHelper.py is part of upy. upy is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. upy is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with upy. If not, see <http://www.gnu.org/licenses/gpl-3.0.html>. """ # -*- coding: utf-8 -*- """ Created on Tue Jul 20 23:03:07 2010 @author: <NAME> @copyright: <NAME>in TSRI 2010 Library of houdini helper function to permit the communication and synchronisation between houdini and a pmv cession. """ #base helper class from pyubic import hostHelper #host software import import hou import toolutils #Houdini : name problem as maya does..not : or " " etc... #GLOBAL VARIABLE VERBOSE=0 DEBUG=1 #houdini is special as they froze geometry, and made it only readable. #turn around is to trigger the sop cooking. The helper function will toggle #hou.pyubic[objname][parmas] and #feed it by data. for instance createMesh and updateMesh... #need to have the python sope in the custom library class houMesh: def __init__(self,name,vertices=[],faces=[],colors=[],sopnode=None, for_instance=False): self.name = name self.verts=vertices self.faces=faces self.colors=colors self.sop = sopnode self.for_instance = for_instance class houdiniHelper(hostHelper.Helper): """ The DejaVu helper abstract class ============================ This is the DejaVu helper Object. The helper give access to the basic function need for create and edit a host 3d object and scene. """ #this id can probably found in c4d.symbols #TAG ID SPLINE = "kNurbsCurve" INSTANCE = "kTransform" EMPTY = "kTransform" #msutil = om.MScriptUtil() pb = False VERBOSE=0 DEBUG=0 viewer = None host = "houdini" def __init__(self,master=None): hostHelper.Helper.__init__(self) #we can define here some function alias self.updateAppli = self.update self.Cube = self.box self.setInstance = self.newInstance self.getCurrentScene = toolutils.sceneViewer self.mesh={}#all geom in hou from helper self.reParent = self.reparent def addObjectToScene(self,sc,obj,parent=None): if parent is not None: self.reParent(obj,parent) def loadIntoAsset(self,otl_file_path,node_type_name, source): # Find the asset definition in the otl file. definitions = [definition for definition in hou.hda.definitionsInFile(otl_file_path) if definition.nodeTypeName() == node_type_name] assert(len(definitions) == 1) definition = definitions[0] # Store the source code into the PythonCook section of the asset. definition.addSection("PythonCook", source) def loadPythonSourceIntoAsset(self,otl_file_path, node_type_name, source_file_path): #usually CustomOtl ,"geom or obj",pyubic/houdini/sop.py # Load the Python source code., source_file = open(source_file_path, "rb") source = source_file.read() source_file.close() self.loadIntoAsset(otl_file_path, node_type_name, source) def update(self): """ Update the host viewport, ui or gl draw This function can't be call in a thread. """ hou.ui.triggerUpdate() def checkName(self,name): """ Check the name of the molecule/filename to avoid invalid caracter for the host. ie maya didnt support object name starting with number. If a invalid caracter is found, the caracter is removed. @type name: string @param name: name of the molecule. @rtype: string @return: corrected name of the molecule. """ # invalid=[] # for i in range(9): # invalid.append(str(i)) name = name.replace(":",".") name = name.replace(" ","") # nonecar=[" ",":"] # for n in nonecar: # if name.find(n) != -1 : # name.replace(n,".") # if name[0] in invalid: # name= name[1:] return name def getName(self,o): """ Return the name of an host object @type o: hostObject @param o: an host object @rtype: string @return: the name of the host object """ if type(o) is str : return o return o.name() def getObjectName(self,o): """ Return the name of an host object @type o: hostObject @param o: an host object @rtype: string @return: the name of the host object """ if type(o) is str : return o return o.name() def getType(self,object): return object.type().name() def getMesh(self,m): if type(m) is str: m = self.getObject(m) if m is not None : if self.getType(m) == "null" : return m else : return m else : return None def getObject(self,name): """ retrieve an object from his name. @type name: string @param name: request name of an host object @rtype: hostObject @return: the object with the requested name or None """ if type(name) is str : return hou.node('/obj/'+self.checkName(name)) else : return name def getTranslation(self,name): return self.getObject(name).parmTuple('t').eval() def setTranslation(self,name,pos=[0.,0.,0.]): self.getObject(name).parmTuple('t').set(pos) def translateObj(self,obj,position,use_parent=True): pass # if len(position) == 1 : c = position[0] # else : c = position # #print "upadteObj" # newPos=self.FromVec(c) # if use_parent : # parentPos = self.GetAbsPosUntilRoot(obj)#parent.GetAbsPos() # newPos = newPos - parentPos # obj.SetAbsPos(newPos) # else : # pmx = obj.GetMg() # mx = c4d.Matrix() # mx.off = pmx.off + self.FromVec(position) # obj.SetMg(mx) def scaleObj(self,obj,sc): if type(obj) is str : obj = self.getObject(obj) if type(sc) is float : sc = [sc,sc,sc] if type(sc) is int: sc = [sc,sc,sc] obj.parmTuple('s').set(sc) def rotateObj(self,obj,rot): #take radians, give degrees if type(obj) is str : obj = self.getObject(obj) obj.parmTuple('r').set(rot) #Rx Ry Rz def newEmpty(self,name,location=None,parentCenter=None,**kw): """ Create a new Null Object @type name: string @param name: name of the empty @type location: list @param location: position of the null object @type parentCenter: list @param parentCenter: position of the parent object @type kw: dictionary @param kw: you can add your own keyword @rtype: hostObject @return: the null object """ #null or subnet? typ='null' #null subnet empty=hou.node('/obj').createNode(typ,self.checkName(name), run_init_scripts=False) #empty.setName(checkName(name)) # delete default file node # empty.node('file1').destroy() if location != None : if parentCenter != None : location = location - parentCenter empty.parmTuple("t").set(location) #set the position of the object to location return empty def newInstance(self,name,object,location=None,hostmatrice=None,matrice=None): """ Create a new Instance from another Object @type name: string @param name: name of the instance @type object: hostObject @param object: the object to herit from @type location: list/Vector @param location: position of the null object @type hostmatrice: list/Matrix @param hostmatrice: transformation matrix in host format @type matrice: list/Matrix @param matrice: transformation matrix in epmv/numpy format @rtype: hostObject @return: the instance object """ #actualy create a geom and then change to isntance, so we can have the MAterial tab instance = hou.node('/obj').createNode('geo',self.checkName(name), run_init_scripts=True) #need to delete the file #instance.children()[0].destroy() instance = instance.changeNodeType("instance") instance.setParms({"instancepath":object.path()}) #instance parent = object #instance name = name if location != None : #set the position of instance with location instance.parmTuple("t").set(location) #set the instance matrice self.setObjectMatrix(instance,matrice=matrice,hostmatrice=hostmatrice) return instance #alias def CopyAlonPoints(self,name,object,points=None,colors=None,location=None, hostmatrice=None,matrice=None): """ Create a new Instances from another Object along points. Main problem, appear only at rendering time. @type name: string @param name: name of the instance @type object: hostObject @param object: the object to herit from @type location: list/Vector @param location: position of the null object @type hostmatrice: list/Matrix @param hostmatrice: transformation matrix in host format @type matrice: list/Matrix @param matrice: transformation matrix in epmv/numpy format @rtype: hostObject @return: the instance object """ if points is None : inst = self.newInstance(name,object,location=location, hostmatrice=hostmatrice,matrice=matrice) return inst name = self.checkName(name) instance = hou.node('/obj').createNode('instance',name, run_init_scripts=True) instance.setParms({"instancepath":'/obj/'+object.name()}) instance.parmTuple("ptinstance").set(1) addPtNode = instance.allSubChildren()[0] mesh = instance.createNode('mesh',"mesh_"+name) houmesh = houMesh("mesh_"+name,vertices=vertices,faces=faces, colors=color,sopnode = mesh,for_instance=True) self.mesh["mesh_"+name] = houmesh #need to connect to addPoint node and mesh addPtNode.insertInput(0,mesh) #should be able to overwrite material for each instance appearly return instance def newInstances(self,name,object,points=None,colors=None,location=None, hostmatrice=None,matrice=None): """ Create a new Instances from another Object along points. Main problem, appear only at rendering time. @type name: string @param name: name of the instance @type object: hostObject @param object: the object to herit from @type location: list/Vector @param location: position of the null object @type hostmatrice: list/Matrix @param hostmatrice: transformation matrix in host format @type matrice: list/Matrix @param matrice: transformation matrix in epmv/numpy format @rtype: hostObject @return: the instance object """ if points is None : inst = self.newInstance(name,object,location=location, hostmatrice=hostmatrice,matrice=matrice) return inst name = self.checkName(name) instance = hou.node('/obj').createNode('instance',name, run_init_scripts=True) instance.setParms({"instancepath":'/obj/'+object.name()}) instance.parmTuple("ptinstance").set(1) addPtNode = instance.allSubChildren()[0] mesh = instance.createNode('mesh',"mesh_"+name) houmesh = houMesh("mesh_"+name,vertices=vertices,faces=faces, colors=color,sopnode = mesh,for_instance=True) self.mesh["mesh_"+name] = houmesh #need to connect to addPoint node and
<reponame>pd3d/magneto ''' * This version has been reduced to support the Finexus setup, in an attempt to replicate their reported accurate Z positioning. * * Position tracking of magnet based on Finexus * https://ubicomplab.cs.washington.edu/pdfs/finexus.pdf * * VERSION: 0.2.2.c * - MODIFIED: 4 sensors in operation. * * * AUTHOR : <NAME> * DATE : Oct. 18th, 2017 Year of Our Lord * * AUTHOR : <NAME> * DATE : Oct. 17th, 2017 Year of Our Lord * ''' # Import Modules import numpy as np # Import Numpy import matplotlib.pyplot as plt # Plot data import Queue as qu # Queue for multithreading sync import argparse # Feed in arguments to the program import os, platform # To open and write to a file from threading import Thread # Multithreading from time import sleep, time, clock # Sleep for stability from scipy.optimize import root # Solve System of Eqns for (x, y, z) from scipy.linalg import norm # Calculate vector norms (magnitude) from usbProtocol import createUSBPort # Create USB port (serial comm. w\ Arduino) # ************************************************************************ # =====================> CONSTRUCT ARGUMENT PARSER <=====================* # ************************************************************************ ap = argparse.ArgumentParser() ap.add_argument("-d", "--debug", action='store_true', help="invoke flag to enable debugging") ap.add_argument("-vp", "--visualize-position", action='store_true', help="invoke flag to visualize position") ap.add_argument("-plt", "--plot", action='store_true', help="invoke flag to visualize position") args = vars( ap.parse_args() ) args["debug"] = False args["plot"] = False args["visualize-position"] = True # ************************************************************************ # =====================> DEFINE NECESSARY FUNCTIONS <====================* # ************************************************************************ # **************************************************** # Define function to sort from lowest->highest value * # -------------------------------------------------- * # INPUT : - A list * # OUTPUT: - A list containing the indices of the * # given list's elements arranged from * # the index of the element with the * # smallest value to the index of the * # element with the largest value * # **************************************************** def argsort(seq): # http://stackoverflow.com/questions/3071415/efficient-method-to-calculate-the-rank-vector-of-a-list-in-python return sorted(range(len(seq)), key=seq.__getitem__) # **************************************************** # Sort a list's elements from smallest to largest * # -------------------------------------------------- * # INPUT : - List to be sorted * # - Number of elements in said list that * # you want to sort * # OUTPUT: - A sorted list of size (N) * # **************************************************** def bubbleSort(arr, N): data = [] for i in range(0, N): data.append( arr[i] ) for i in range(0, len(data)): for j in range(0, len(data)-i-1): if (data[j] > data[j+1]): temp = data[j] data[j] = data[j+1] data[j+1] = temp else: continue return (data) # **************************************************** # Define function to pool & return data from Arduino * # **************************************************** def getData(ser, Q_getData): global CALIBRATING ##Synchronization issues are evident. May need to look into parallelizations, or threading. ## samplerate = 0.015 ## sleep(samplerate) while (True): try: # Flush buffer ser.reset_input_buffer() ser.reset_output_buffer() # Read incoming data and seperate line = ser.readline()[:-1] col = line.split(", ") # Wait for the sensor to calibrate itself to ambient fields. while( not( len(col) == 18 ) ): line = ser.readline()[:-1] col = line.split(", ") if(CALIBRATING == True): print( "Calibrating...\n" ) CALIBRATING = False # Construct magnetic field array else: # Sensor 1 Bx = float(col[0]) By = float(col[1]) Bz = float(col[2]) B1 = np.array( ([Bx],[By],[Bz]), dtype='float64') # Units { G } # Sensor 2 Bx = float(col[3]) By = float(col[4]) Bz = float(col[5]) B2 = np.array( ([Bx],[By],[Bz]), dtype='float64') # Units { G } # Sensor 3 Bx = float(col[6]) By = float(col[7]) Bz = float(col[8]) B3 = np.array( ([Bx],[By],[Bz]), dtype='float64') # Units { G } # Sensor 4 Bx = float(col[9] ) By = float(col[10]) Bz = float(col[11]) B4 = np.array( ([Bx],[By],[Bz]), dtype='float64') # Units { G } # Sensor 5 Bx = float(col[12]) By = float(col[13]) Bz = float(col[14]) B5 = np.array( ([Bx],[By],[Bz]), dtype='float64') # Units { G } # Sensor 6 Bx = float(col[15]) By = float(col[16]) Bz = float(col[17]) B6 = np.array( ([Bx],[By],[Bz]), dtype='float64') # Units { G } # Put the data in the Queue, no matter what. "Pipelining". Q_getData.put( (B1, B2, B3, B4, B5, B6) ) except Exception as e: print( "Caught error in getData()" ) print( "Error type %s" %str(type(e)) ) print( "Error Arguments " + str(e.args) ) # **************************************************** # Define function to construct equations to solve for # **************************************************** def LHS( root, K, norms ): global PRINT # Extract x, y, and z x, y, z = root # Construct the (r) terms for each sensor # NOTE: Relative distance terms are in meters # : Standing on sensor(n), how many units in # the x/y/z direction should I march to get # back to sensor1 (origin)? r1 = float( ( (x+0.000)**2. + (y+0.050)**2. + (z-0.100)**2. )**(1/2.) ) # Sensor 1 r2 = float( ( (x+0.000)**2. + (y-0.075)**2. + (z-0.100)**2. )**(1/2.) ) # Sensor 2 r3 = float( ( (x+0.000)**2. + (y+0.050)**2. + (z+0.100)**2. )**(1/2.) ) # Sensor 3 r4 = float( ( (x+0.000)**2. + (y-0.075)**2. + (z+0.100)**2. )**(1/2.) ) # Sensor 4 r5 = float( ( (x+0.000)**2. + (y+0.000)**2. + (z+0.000)**2. )**(1/2.) ) # Sensor 5 (Origin) r6 = float( ( (x+0.062)**2. + (y+0.000)**2. + (z+0.000)**2. )**(1/2.) ) # Sensor 6 (Had to measure it with a caliper! The Standoff is meant to be on the ground, not on another sensor!) # Construct the equations Eqn1 = ( K*( r1 )**(-6.) * ( 3.*( z/r1 )**2. + 1 ) ) - norms[0]**2. # Sensor 1 Eqn2 = ( K*( r2 )**(-6.) * ( 3.*( z/r2 )**2. + 1 ) ) - norms[1]**2. # Sensor 2 Eqn3 = ( K*( r3 )**(-6.) * ( 3.*( z/r3 )**2. + 1 ) ) - norms[2]**2. # Sensor 3 Eqn4 = ( K*( r4 )**(-6.) * ( 3.*( z/r4 )**2. + 1 ) ) - norms[3]**2. # Sensor 4 Eqn5 = ( K*( r5 )**(-6.) * ( 3.*( z/r5 )**2. + 1 ) ) - norms[4]**2. # Sensor 5 Eqn6 = ( K*( r6 )**(-6.) * ( 3.*( z/r6 )**2. + 1 ) ) - norms[5]**2. # Sensor 6 # Construct a vector of the equations Eqns = [Eqn1, Eqn2, Eqn3, Eqn4, Eqn5, Eqn6] # Determine which sensors to use based on magnetic field value (smallValue==noBueno!) sort = argsort(norms) # Auxiliary function sorts norms from smallest to largest, by index. sort.reverse() # Python built-in function reverses elements of list. f=[] # Declare vector to hold relevant functions. for i in range(0, 3): # Fill functions' array with the equations that correspond to f.append(Eqns[sort[i]]) # the sensors with the highest norm, thus closest to magnet # Return vector return ( f ) # **************************************************** # Determine initial guess based on magnitude of * # magnetic field relative to all the sensors * # **************************************************** def findIG(magFields): # Define IMU positions on the grid # / sensor 1: (x, y, z) # / sensor 2: (x, y, z) # Mat= : : # \ : : # \ sensor 6: (x, y, z) IMU_pos = np.array(((0.000 , -0.050 , 0.100) , (0.000 , 0.075 , 0.100) , (0.000 , -0.050 , 0.100) , (0.000 , 0.075 , 0.100) , (0.000 , 0.000 , 0.000) , (0.062 , 0.000 , 0.000)), dtype='float64') # Read current magnetic field from MCU (H1, H2, H3, H4, H5, H6) = magFields # Compute L2 vector norms HNorm = [ float(norm(H1)), float(norm(H2)), float(norm(H3)), float(norm(H4)), float(norm(H5)), float(norm(H6)) ] # Determine which sensors to use based on magnetic field value (smallValue==noBueno!) sort = argsort(HNorm) # Auxiliary function sorts norms from smallest to largest sort.reverse() # Python built-in function reverses elements of list IMUS = bubbleSort(sort, 3) # Return the initial guess as the centroid of the detected triangle return ( np.array(((IMU_pos[IMUS[0]][0]+IMU_pos[IMUS[1]][0]+IMU_pos[IMUS[2]][0])/3., (IMU_pos[IMUS[0]][1]+IMU_pos[IMUS[1]][1]+IMU_pos[IMUS[2]][1])/3., (IMU_pos[IMUS[0]][2]+IMU_pos[IMUS[1]][2]+IMU_pos[IMUS[2]][2])/3. ), dtype='float64') ) # ************************************************************************ # ===========================> SETUP PROGRAM <=========================== # ************************************************************************ # Useful variables global CALIBRATING CALIBRATING = True # Boolean to indicate that device is calibrating READY = False # Give time for user to place magnet ##This measurement was redone to reflect the changes on the imposed C.S. for LMA K = 4.24e-7 # Magnet's constant (K) || Units { G^2.m^6} #K = 1.09e-6 dx = 1e-7 # Differential step size (Needed for solver) calcPos = [] # Empty array to hold calculated positions # Create a queue for retrieving data from the thread. Q_getData = qu.Queue( maxsize=0 ) # Establish connection with Arduino DEVC = "Arduino" # Device Name (not
<filename>utils/saveHdf5ToAedat2.py import sys, argparse import numpy as np from numpy import uint32, int32, int64, int16 from tqdm import tqdm import logging from pathlib import Path import easygui import locale import h5py MAX_ADC = 1023 GYRO_FULL_SCALE_DEG_PER_SEC_DEFAULT=1000 # default hardware values in jAER for Davis cameras; see ImuControl.loadPreferences, line 178 in jAER ACCEL_FULL_SCALE_M_PER_S_SQ_DEFAULT=8 locale.setlocale(locale.LC_ALL, '') # print numbers with thousands separators class CustomFormatter(logging.Formatter): """Logging Formatter to add colors and count warning / errors""" grey = "\x1b[38;21m" yellow = "\x1b[33;21m" red = "\x1b[31;21m" bold_red = "\x1b[31;1m" reset = "\x1b[0m" format = "%(asctime)s - %(name)s - %(levelname)s - %(message)s (%(filename)s:%(lineno)d)" FORMATS = { logging.DEBUG: grey + format + reset, logging.INFO: grey + format + reset, logging.WARNING: yellow + format + reset, logging.ERROR: red + format + reset, logging.CRITICAL: bold_red + format + reset } def format(self, record): log_fmt = self.FORMATS.get(record.levelno) formatter = logging.Formatter(log_fmt) return formatter.format(record) def my_logger(name): logger = logging.getLogger(name) # create console handler with a higher log level ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) ch.setFormatter(CustomFormatter()) logger.addHandler(ch) return logger log = my_logger(__name__) tot_len_jaer_events = 0 ldvs = 0 limu = 0 nfr = 0 class Struct: pass def main(argv=None): """ Process command line arguments :param argv: list of files to convert, or :return: """ if argv is None: argv = sys.argv inputfile = None outputfile = None filelist = None po=None parser = argparse.ArgumentParser( description='Convert files from hpf5 to AEDAT-2 format. Either provide a single -i input_file -o output_file, ' 'or a list of .h5 input files.') parser.add_argument('-o', help='output .aedat2 file name') parser.add_argument('-i', help='input .hpf5 file name') parser.add_argument('-q', dest='quiet', action='store_true', help='Turn off all output other than warnings and errors') parser.add_argument('-v', dest='verbose', action='store_true', help='Turn on verbose output') parser.add_argument('--overwrite', dest='overwrite', action='store_true', help='Overwrite existing output files') parser.add_argument('--no_imu', dest='no_imu', action='store_true', help='Do not process IMU samples (which are very slow to extract)') parser.add_argument('--imu', nargs='+', type=int, default=[GYRO_FULL_SCALE_DEG_PER_SEC_DEFAULT, ACCEL_FULL_SCALE_M_PER_S_SQ_DEFAULT], help='Use IMU full scale values GYRO ACCEL, e.g. 1000 8 for 1000 deg/s ' 'and 8 gravities to encode AEDAT-2.0 values') parser.add_argument('--no_frame', dest='no_frame', action='store_true', help='Do not process APS sample frames (which are very slow to extract)') parser.add_argument('--chunk_size', type=int, default=100000000, help='Specify how many events read per step (the hdf5 might have too many events and ' 'cannot be finished reading in one time)') args, filelist = parser.parse_known_args() # filelist is list [] of files to be converted if args.verbose: log.setLevel(logging.DEBUG) elif args.quiet: log.setLevel(logging.WARNING) else: log.setLevel(logging.INFO) if args.i is not None: inputfile = args.i if args.o is not None: outputfile = args.o multiple = outputfile is None if inputfile is not None: filelist = [inputfile] for file in filelist: p = Path(file) if not p.exists(): log.error(f'{p.absolute()} does not exist or is not readable') continue if p.suffix == '.aedat2': log.error(f'skipping AEDAT-2.0 {p.absolute()} as input') continue log.debug(f'reading input {p}') if multiple: p = Path(file) po = p.with_name(p.stem + '.aedat2') # output is input with .aedat2 extension else: po = Path(outputfile) if not args.overwrite and po.is_file(): overwrite = query_yes_no(f'{po.absolute()} exists, overwrite it?') if not overwrite: log.info(f'{po.absolute()} exists, will not overwrite') continue else: try: log.debug(f'overwriting existing {po}') po.unlink() except Exception as e: log.error(f'could not delete {po} (maybe it is open in jAER?): {e}') quit(1) if po.is_file(): try: with open(outputfile, 'wb') as f: pass except IOError as x: log.error(f'cannot open {po.absolute()} for output; maybe it is open in jAER?') continue log.info(f'overwriting {po.absolute()}') if po.suffix is None or (not po.suffix == '.aedat' and not po.suffix == '.aedat2'): log.warning( f'output file {po} does not have .aedat or .aedat2 extension; are you sure this is what you want?') # Define output struct out = Struct() out.data = Struct() out.data.dvs = Struct() out.data.frame = Struct() out.data.imu6 = Struct() # Events out.data.dvs.polarity = [] out.data.dvs.timeStamp = [] out.data.dvs.x = [] out.data.dvs.y = [] # Frames out.data.frame.samples = [] # np ndarray, [y,x,frame_num], with x=y=0 the UL corner using CV/DV convention out.data.frame.position = [] out.data.frame.sizeAll = [] out.data.frame.timeStamp = [] out.data.frame.frameStart = [] # start of readout out.data.frame.frameEnd = [] # end of readout out.data.frame.expStart = [] # exposure start (before readout) out.data.frame.expEnd = [] out.data.frame.numDiffImages = 0 out.data.frame.size = [] out.data.imu6.accelX = [] out.data.imu6.accelY = [] out.data.imu6.accelZ = [] out.data.imu6.gyroX = [] out.data.imu6.gyroY = [] out.data.imu6.gyroZ = [] out.data.imu6.temperature = [] out.data.imu6.timeStamp = [] # Initialize statics variable for every new file global tot_len_jaer_events global ldvs global limu global nfr tot_len_jaer_events = 0 ldvs = 0 limu = 0 nfr = 0 data = {'aedat': out} # loop through the "events" stream log.debug(f'loading events to memory') # https://gitlab.com/inivation/dv/dv-python events = dict() h5f = h5py.File(str(file), 'r') events_in_total = len(h5f['events']['t']) file_start_timestamp = h5f['events']['t'][0] events_num_section_step = args.chunk_size # events_in_total = events_num_section_step * 5 for events_num_section_start in range(0, events_in_total, events_num_section_step): events_num_section_end = events_num_section_start + events_num_section_step for dset_str in ['p', 'x', 'y', 't']: events[dset_str] = h5f['events/{}'.format(dset_str)][events_num_section_start:events_num_section_end] # events = np.hstack([packet for packet in f['events'].numpy()]) # load events to np array out.data.dvs.timeStamp = events['t'] # int64 out.data.dvs.x = events['x'] # int16 out.data.dvs.y = events['y'] # int16 out.data.dvs.polarity = events['p'] # int8 log.info(f'Read {len(out.data.dvs.timeStamp)} DVS events') log.info(f'{events_in_total - events_num_section_start - len(out.data.dvs.timeStamp)} DVS events left') def generator(): while True: yield # loop through the "frames" stream if not args.no_frame: log.debug(f'loading frames to memory') with tqdm(generator(), desc='frames', unit=' fr', maxinterval=1) as pbar: for frame in (f['frames']): out.data.frame.samples.append( np.array(frame.image, dtype=np.uint8)) # frame.image is ndarray(h,w,1) with 0-255 values ?? ADC has larger range, maybe clipped out.data.frame.position.append(frame.position) out.data.frame.sizeAll.append(frame.size) out.data.frame.timeStamp.append(frame.timestamp) out.data.frame.frameStart.append(frame.timestamp_start_of_frame) out.data.frame.frameEnd.append(frame.timestamp_end_of_frame) out.data.frame.expStart.append(frame.timestamp_start_of_exposure) out.data.frame.expEnd.append(frame.timestamp_end_of_exposure) pbar.update(1) # Permute images via numpy tmp = np.transpose(np.squeeze(np.array(out.data.frame.samples)), (1, 2, 0)) # make the frames x,y,frames out.data.frame.numDiffImages = tmp.shape[2] out.data.frame.size = out.data.frame.sizeAll[0] out.data.frame.samples = tmp # leave frames as numpy array log.info(f'{out.data.frame.numDiffImages} frames with size {out.data.frame.size}') # # loop through the "imu" stream if not args.no_imu: log.debug(f'loading IMU samples to memory') with tqdm(generator(), desc='IMU', unit=' sample') as pbar: for i in (f['imu']): if not imu_scale_warning_printed and imu_gyro_scale == GYRO_FULL_SCALE_DEG_PER_SEC_DEFAULT and imu_accel_scale == ACCEL_FULL_SCALE_M_PER_S_SQ_DEFAULT: log.warning( f'IMU sample found: IMU samples will be converted to jAER AEDAT-2.0 assuming default full scale {GYRO_FULL_SCALE_DEG_PER_SEC_DEFAULT} deg/s rotation and {ACCEL_FULL_SCALE_M_PER_S_SQ_DEFAULT}g acceleration. Use --imu option to change output scaling.') imu_scale_warning_printed = True a = i.accelerometer g = i.gyroscope m = i.magnetometer out.data.imu6.accelX.append(a[0]) out.data.imu6.accelY.append(a[1]) out.data.imu6.accelZ.append(a[2]) out.data.imu6.gyroX.append(g[0]) out.data.imu6.gyroY.append(g[1]) out.data.imu6.gyroZ.append(g[2]) out.data.imu6.temperature.append(i.temperature) out.data.imu6.timeStamp.append(i.timestamp) pbar.update(1) log.info(f'{len(out.data.imu6.accelX)} IMU samples') # Add counts of jAER events width = 640 height = 480 out.data.dvs.numEvents = len(out.data.dvs.x) out.data.imu6.numEvents = len(out.data.imu6.accelX) * 7 if not args.no_imu else 0 out.data.frame.numEvents = (2 * width * height) * (out.data.frame.numDiffImages) if not args.no_frame else 0 if(events_num_section_start == 0): export_aedat_2(args, out, po, height=height, starttimestamp=file_start_timestamp) else: export_aedat_2(args, out, po, height=height, appendevents=True, starttimestamp=file_start_timestamp) log.debug('done') def export_aedat_2(args, out, filename, starttimestamp, height=260, gyro_scale=GYRO_FULL_SCALE_DEG_PER_SEC_DEFAULT, accel_scale=ACCEL_FULL_SCALE_M_PER_S_SQ_DEFAULT, appendevents=False): """ This function exports data to a .aedat file. The .aedat file format is documented here: http://inilabs.com/support/software/fileformat/ @param out: the data structure from above @param filename: the full path to write to, .aedat2 output file @param height: the size of the chip, to flip y coordinate for jaer compatibility @param gyro_scale: the full scale value of gyro in deg/s @param accel_scale: the full scale value of acceleratometer in m/s^2 """ global tot_len_jaer_events global ldvs global limu global nfr num_total_events = out.data.dvs.numEvents + out.data.imu6.numEvents + out.data.frame.numEvents printed_stats_first_frame=False file_path=Path(filename) try: f=open(filename, 'ab') except IOError as x: log.error(f'could not open {file_path.absolute()} for output (maybe opened in jAER already?): {str(x)}') else: with f: if(appendevents == False): # Simple - events only - assume DAVIS log.debug(f'saving {file_path.absolute()}') # CRLF \r\n is needed to not break header parsing in jAER f.write(b'#!AER-DAT2.0\r\n') f.write(b'# This is a raw AE data file created from hdf5 (DSEC dataset)\r\n') f.write(b'# Data format is int32 address, int32 timestamp (8 bytes total), repeated for each event\r\n') f.write(b'# Timestamps tick is 1 us\r\n') # Put the source in NEEDS DOING PROPERLY f.write(b'# AEChip: Prophese Gen 3.1 (VGA)\r\n') f.write(b'# End of ASCII Header\r\n') else: log.debug(f'appending events to {file_path.absolute()}') # DAVIS # In the 32-bit address: # bit 32 (1-based) being 1 indicates an APS sample # bit 11 (1-based) being 1 indicates a special event # bits 11 and 32 (1-based) both being zero signals a polarity event # see https://inivation.github.io/inivation-docs/Software%20user%20guides/AEDAT_file_formats#bit-31 apsDvsImuTypeShift=31 dvsType=0 apsImuType=1 imuTypeShift = 28 imuSampleShift = 12 imuSampleSubtype =
# -*- coding: utf-8 -*- from copy import deepcopy from datetime import timedelta from itertools import combinations from typing import Tuple, Sequence import numpy as np from ..base import Property from ..models.transition.base import TransitionModel from ..models.transition.linear import ConstantTurn, ConstantVelocity, \ CombinedLinearGaussianTransitionModel from ..types.array import StateVector from ..types.state import State def create_smooth_transition_models(initial_state, x_coords, y_coords, times, turn_rate): r"""Generate a list of constant-turn and constant acceleration transition models alongside a list of transition times to provide smooth transitions between 2D cartesian coordinates and time pairs. An assumption is that the initial_state's x, y coordinates are the first elements of x_ccords and y_coords respectively. Ie. The platform starts at the first coordinates. Parameters ---------- initial_state: :class:`~.State` The initial state of the platform. x_coords: A list of int/float x-coordinates (cartesian) in the order that the target must follow. y_coords: A list of int/float y-coordinates (cartesian) in the order that the target must follow. times: A list of :class:`~.datetime.datetime` dictating the times at which the target must be at each corresponding coordinate. turn_rate: Float Angular turn rate (radians/second) measured anti-clockwise from positive x-axis. Returns ------- transition_models: A list of :class:`~.ConstantTurn` and :class:`~.Point2PointConstantAcceleration` transition models. transition_times: A list of :class:`~.datetime.timedelta` dictating the transition time for each corresponding transition model in transition_models. Notes ----- x_coords, y_coords and times must be of same length. This method assumes a cartesian state space with velocities eg. :math:`(x, \dot{x}, y, \dot{y})`. It returns transition models for 2 cartesian coordinates and their corresponding velocities. """ state = deepcopy(initial_state) # don't alter platform state with calculations if not len(x_coords) == len(y_coords) == len(times): raise ValueError('x_coords, y_coords and times must be same length') transition_models = [] transition_times = [] for x_coord, y_coord, time in zip(x_coords[1:], y_coords[1:], times[1:]): dx = x_coord - state.state_vector[0] # distance to next x-coord dy = y_coord - state.state_vector[2] # distance to next y-coord if dx == 0 and dy == 0: a = 0 # if initial and second target coordinates are same, set arbitrary bearing of 0 vx = state.state_vector[1] # initial x-speed vy = state.state_vector[3] # initial y-speed if vx != 0 or vy != 0: # if velocity is 0, keep previous bearing a = np.arctan2(vy, vx) # initial bearing if dx == 0 and dy == 0 and vx == 0 and vy == 0: # if at destination with 0 speed, stay transition_times.append(time - times[times.index(time) - 1]) transition_models.append(CombinedLinearGaussianTransitionModel((ConstantVelocity(0), ConstantVelocity(0)))) continue d = np.sqrt(dx**2 + dy**2) # distance to next coord v = np.sqrt(vx**2 + vy**2) # initial speed b = np.arctan2(dy, dx) - a # bearing to next coord (anti-clockwise from positive x-axis) w = turn_rate # turn rate (anti-clockwise from positive x-axis) if b > np.radians(180): b -= 2*np.pi # get bearing in (0, 180) instead elif b <= np.radians(-180): b += 2*np.pi # get bearing in (-180, 0] instead if b < 0: w = -w # if bearing is in [-180, 0), turn right instead r = v / np.abs(w) # radius of turn if b >= 0: p = d * np.cos(b) q = r - d*np.sin(b) else: p = -d*np.cos(b) q = r + d*np.sin(b) alpha = np.arctan2(p, q) beta = np.arccos(r / np.sqrt(p**2 + q**2)) angle = (alpha + beta + np.pi) % (2*np.pi) - np.pi # actual angle turned if w > 0: angle = (alpha - beta + np.pi) % (2*np.pi) - np.pi # quadrant adjustment t1 = angle / w # turn time if t1 > 0: # make turn model and add to list turn_model = ConstantTurn(turn_noise_diff_coeffs=(0, 0), turn_rate=w) state.state_vector = turn_model.function(state=state, time_interval=timedelta( seconds=t1)) # move platform through turn state.timestamp += timedelta(seconds=t1) transition_times.append(timedelta(seconds=t1)) transition_models.append(turn_model) dx = x_coord - state.state_vector[0] # get remaining distance to next x-coord dy = y_coord - state.state_vector[2] # get remaining distance to next y-coord d = np.sqrt(dx**2 + dy**2) # remaining distance to next coord t2 = (time - state.timestamp).total_seconds() # time remaining before platform should # be at next coord if d > 0: # if platform is not already at target coord, add linear acceleration model try: accel_model = Point2PointConstantAcceleration(state=deepcopy(state), destination=(x_coord, y_coord), duration=timedelta(seconds=t2)) except OvershootError: # if linear accel leads to overshoot, apply model to stop at target coord instead accel_model = Point2PointStop(state=deepcopy(state), destination=(x_coord, y_coord)) state.state_vector = accel_model.function(state=state, time_interval=timedelta(seconds=t2)) state.timestamp += timedelta(seconds=t2) transition_times.append(timedelta(seconds=t2)) transition_models.append(accel_model) return transition_models, transition_times class OvershootError(Exception): pass class Point2PointConstantAcceleration(TransitionModel): r"""Constant acceleration transition model for 2D cartesian coordinates The platform is assumed to move with constant acceleration between two given cartesian coordinates. Motion is determined by the kinematic formulae: .. math:: v &= u + at \\ s &= ut + \frac{1}{2} at^2 Where :math:`u, v, a, t, s` are initial speed, final speed, acceleration, transition time and distance travelled respectively. """ state: State = Property(doc="The initial state, assumed to have x and y cartesian position and" "velocities") destination: Tuple[float, float] = Property(doc="Destination coordinates in 2D cartesian" "coordinates (x, y)") duration: timedelta = Property(doc="Duration of transition in seconds") def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) dx = self.destination[0] - self.state.state_vector[0] # x-distance to destination dy = self.destination[1] - self.state.state_vector[2] # y-distance to destination ux = self.state.state_vector[1] # initial x-speed uy = self.state.state_vector[3] # initial y-speed t = self.duration.total_seconds() # duration of acceleration self.ax = 2*(dx - ux*t) / t**2 # x-acceleration self.ay = 2*(dy - uy*t) / t**2 # y-acceleration vx = ux + self.ax*t # final x-speed vy = uy + self.ay*t # final y-speed if np.sign(ux) != np.sign(vx) or np.sign(uy) != np.sign(vy): raise OvershootError() @property def ndim_state(self): return 4 def covar(self, **kwargs): raise NotImplementedError('Covariance not defined') def pdf(self, state1, state2, **kwargs): raise NotImplementedError('pdf not defined') def rvs(self, num_samples=1, **kwargs): raise NotImplementedError('rvs not defined') def function(self, state, time_interval, **kwargs): x = state.state_vector[0] y = state.state_vector[2] t = time_interval.total_seconds() ux = state.state_vector[1] # initial x-speed uy = state.state_vector[3] # initial y-speed dx = ux*t + 0.5*self.ax*(t**2) # x-distance travelled dy = uy*t + 0.5*self.ay*(t**2) # y-distance travelled vx = ux + self.ax*t # resultant x-speed vy = uy + self.ay*t # resultant y-speed return StateVector([x+dx, vx, y+dy, vy]) class Point2PointStop(TransitionModel): r"""Constant acceleration transition model for 2D cartesian coordinates The platform is assumed to move with constant acceleration between two given cartesian coordinates. Motion is determined by the kinematic formulae: .. math:: v &= u + at \\ v^2 &= u^2 + 2as Where :math:`u, v, a, t, s` are initial speed, final speed, acceleration, transition time and distance travelled respectively. The platform is decelerated to 0 velocity at the destination point and waits for the remaining duration. """ state: State = Property(doc="The initial state, assumed to have x and y cartesian position and" "velocities") destination: Tuple[float, float] = Property(doc="Destination coordinates in 2D cartesian" "coordinates (x, y)") def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) dx = self.destination[0] - self.state.state_vector[0] # x-distance to destination dy = self.destination[1] - self.state.state_vector[2] # y-distance to destination ux = self.state.state_vector[1] # initial x-speed uy = self.state.state_vector[3] # initial y-speed if dx == 0: self.ax = 0 # x-acceleration (0 if already at destination x-coord) else: self.ax = -(ux**2) / (2*dx) if dy == 0: self.ay = 0 # y-acceleration (0 if already at destination y-coord) else: self.ay = -(uy**2) / (2*dy) if self.ax != 0: self.t = -ux / self.ax # deceleration time elif self.ay != 0: self.t = -uy / self.ay # deceleration time (if already at x-coord) else: self.t = 0 # at destination so acceleration time is 0 self.start_time = self.state.timestamp @property def ndim_state(self): return 4 def covar(self, **kwargs): raise NotImplementedError('Covariance not defined') def pdf(self, state1, state2, **kwargs): raise NotImplementedError('pdf not defined') def rvs(self, num_samples=1, **kwargs): raise NotImplementedError('rvs not defined') def function(self, state, time_interval, **kwargs): t = time_interval.total_seconds() decel_time_remaining = self.t - (state.timestamp - self.start_time).total_seconds() x = state.state_vector[0] y = state.state_vector[2] ux = state.state_vector[1] # initial x-speed uy = state.state_vector[3] # initial y-speed if t < decel_time_remaining: # still some deceleration needed dx = ux*t + (0.5*self.ax)*t**2
<filename>ot/gromov.py # -*- coding: utf-8 -*- """ Gromov-Wasserstein transport method """ # Author: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # # License: MIT License import numpy as np from .bregman import sinkhorn from .utils import dist, UndefinedParameter from .optim import cg def init_matrix(C1, C2, p, q, loss_fun='square_loss'): """Return loss matrices and tensors for Gromov-Wasserstein fast computation Returns the value of \mathcal{L}(C1,C2) \otimes T with the selected loss function as the loss function of Gromow-Wasserstein discrepancy. The matrices are computed as described in Proposition 1 in [12] Where : * C1 : Metric cost matrix in the source space * C2 : Metric cost matrix in the target space * T : A coupling between those two spaces The square-loss function L(a,b)=|a-b|^2 is read as : L(a,b) = f1(a)+f2(b)-h1(a)*h2(b) with : * f1(a)=(a^2) * f2(b)=(b^2) * h1(a)=a * h2(b)=2*b The kl-loss function L(a,b)=a*log(a/b)-a+b is read as : L(a,b) = f1(a)+f2(b)-h1(a)*h2(b) with : * f1(a)=a*log(a)-a * f2(b)=b * h1(a)=a * h2(b)=log(b) Parameters ---------- C1 : ndarray, shape (ns, ns) Metric cost matrix in the source space C2 : ndarray, shape (nt, nt) Metric costfr matrix in the target space T : ndarray, shape (ns, nt) Coupling between source and target spaces p : ndarray, shape (ns,) Returns ------- constC : ndarray, shape (ns, nt) Constant C matrix in Eq. (6) hC1 : ndarray, shape (ns, ns) h1(C1) matrix in Eq. (6) hC2 : ndarray, shape (nt, nt) h2(C) matrix in Eq. (6) References ---------- .. [12] Peyré, Gabriel, <NAME>, and <NAME>, "Gromov-Wasserstein averaging of kernel and distance matrices." International Conference on Machine Learning (ICML). 2016. """ if loss_fun == 'square_loss': def f1(a): return (a**2) def f2(b): return (b**2) def h1(a): return a def h2(b): return 2 * b elif loss_fun == 'kl_loss': def f1(a): return a * np.log(a + 1e-15) - a def f2(b): return b def h1(a): return a def h2(b): return np.log(b + 1e-15) constC1 = np.dot(np.dot(f1(C1), p.reshape(-1, 1)), np.ones(len(q)).reshape(1, -1)) constC2 = np.dot(np.ones(len(p)).reshape(-1, 1), np.dot(q.reshape(1, -1), f2(C2).T)) constC = constC1 + constC2 hC1 = h1(C1) hC2 = h2(C2) return constC, hC1, hC2 def tensor_product(constC, hC1, hC2, T): """Return the tensor for Gromov-Wasserstein fast computation The tensor is computed as described in Proposition 1 Eq. (6) in [12]. Parameters ---------- constC : ndarray, shape (ns, nt) Constant C matrix in Eq. (6) hC1 : ndarray, shape (ns, ns) h1(C1) matrix in Eq. (6) hC2 : ndarray, shape (nt, nt) h2(C) matrix in Eq. (6) Returns ------- tens : ndarray, shape (ns, nt) \mathcal{L}(C1,C2) \otimes T tensor-matrix multiplication result References ---------- .. [12] Peyré, Gabriel, <NAME>, and <NAME>, "Gromov-Wasserstein averaging of kernel and distance matrices." International Conference on Machine Learning (ICML). 2016. """ A = -np.dot(hC1, T).dot(hC2.T) tens = constC + A # tens -= tens.min() return tens def gwloss(constC, hC1, hC2, T): """Return the Loss for Gromov-Wasserstein The loss is computed as described in Proposition 1 Eq. (6) in [12]. Parameters ---------- constC : ndarray, shape (ns, nt) Constant C matrix in Eq. (6) hC1 : ndarray, shape (ns, ns) h1(C1) matrix in Eq. (6) hC2 : ndarray, shape (nt, nt) h2(C) matrix in Eq. (6) T : ndarray, shape (ns, nt) Current value of transport matrix T Returns ------- loss : float Gromov Wasserstein loss References ---------- .. [12] Peyré, Gabriel, <NAME>, and <NAME>, "Gromov-Wasserstein averaging of kernel and distance matrices." International Conference on Machine Learning (ICML). 2016. """ tens = tensor_product(constC, hC1, hC2, T) return np.sum(tens * T) def gwggrad(constC, hC1, hC2, T): """Return the gradient for Gromov-Wasserstein The gradient is computed as described in Proposition 2 in [12]. Parameters ---------- constC : ndarray, shape (ns, nt) Constant C matrix in Eq. (6) hC1 : ndarray, shape (ns, ns) h1(C1) matrix in Eq. (6) hC2 : ndarray, shape (nt, nt) h2(C) matrix in Eq. (6) T : ndarray, shape (ns, nt) Current value of transport matrix T Returns ------- grad : ndarray, shape (ns, nt) Gromov Wasserstein gradient References ---------- .. [12] Peyré, Gabriel, <NAME>, and <NAME>, "Gromov-Wasserstein averaging of kernel and distance matrices." International Conference on Machine Learning (ICML). 2016. """ return 2 * tensor_product(constC, hC1, hC2, T) # [12] Prop. 2 misses a 2 factor def update_square_loss(p, lambdas, T, Cs): """ Updates C according to the L2 Loss kernel with the S Ts couplings calculated at each iteration Parameters ---------- p : ndarray, shape (N,) Masses in the targeted barycenter. lambdas : list of float List of the S spaces' weights. T : list of S np.ndarray of shape (ns,N) The S Ts couplings calculated at each iteration. Cs : list of S ndarray, shape(ns,ns) Metric cost matrices. Returns ---------- C : ndarray, shape (nt, nt) Updated C matrix. """ tmpsum = sum([lambdas[s] * np.dot(T[s].T, Cs[s]).dot(T[s]) for s in range(len(T))]) ppt = np.outer(p, p) return np.divide(tmpsum, ppt) def update_kl_loss(p, lambdas, T, Cs): """ Updates C according to the KL Loss kernel with the S Ts couplings calculated at each iteration Parameters ---------- p : ndarray, shape (N,) Weights in the targeted barycenter. lambdas : list of the S spaces' weights T : list of S np.ndarray of shape (ns,N) The S Ts couplings calculated at each iteration. Cs : list of S ndarray, shape(ns,ns) Metric cost matrices. Returns ---------- C : ndarray, shape (ns,ns) updated C matrix """ tmpsum = sum([lambdas[s] * np.dot(T[s].T, Cs[s]).dot(T[s]) for s in range(len(T))]) ppt = np.outer(p, p) return np.exp(np.divide(tmpsum, ppt)) def gromov_wasserstein(C1, C2, p, q, loss_fun, log=False, armijo=False, **kwargs): """ Returns the gromov-wasserstein transport between (C1,p) and (C2,q) The function solves the following optimization problem: .. math:: GW = \min_T \sum_{i,j,k,l} L(C1_{i,k},C2_{j,l})*T_{i,j}*T_{k,l} Where : - C1 : Metric cost matrix in the source space - C2 : Metric cost matrix in the target space - p : distribution in the source space - q : distribution in the target space - L : loss function to account for the misfit between the similarity matrices Parameters ---------- C1 : ndarray, shape (ns, ns) Metric cost matrix in the source space C2 : ndarray, shape (nt, nt) Metric costfr matrix in the target space p : ndarray, shape (ns,) Distribution in the source space q : ndarray, shape (nt,) Distribution in the target space loss_fun : str loss function used for the solver either 'square_loss' or 'kl_loss' max_iter : int, optional Max number of iterations tol : float, optional Stop threshold on error (>0) verbose : bool, optional Print information along iterations log : bool, optional record log if True armijo : bool, optional If True the steps of the line-search is found via an armijo research. Else closed form is used. If there is convergence issues use False. **kwargs : dict parameters can be directly passed to the ot.optim.cg solver Returns ------- T : ndarray, shape (ns, nt) Doupling between the two spaces that minimizes: \sum_{i,j,k,l} L(C1_{i,k},C2_{j,l})*T_{i,j}*T_{k,l} log : dict Convergence information and loss. References ---------- .. [12] <NAME>, <NAME>, and <NAME>, "Gromov-Wasserstein averaging of kernel and distance matrices." International Conference on Machine Learning (ICML). 2016. .. [13] <NAME>. Gromov–Wasserstein distances and the metric approach to object matching. Foundations of computational mathematics 11.4 (2011): 417-487. """ constC, hC1, hC2 = init_matrix(C1, C2, p, q, loss_fun) G0 = p[:, None] * q[None, :] def f(G): return gwloss(constC, hC1, hC2, G) def df(G): return gwggrad(constC, hC1, hC2, G) if log: res, log = cg(p, q, 0, 1, f, df, G0, log=True, armijo=armijo, C1=C1, C2=C2, constC=constC, **kwargs) log['gw_dist'] = gwloss(constC, hC1, hC2, res) return res, log else: return cg(p, q, 0, 1, f, df, G0, armijo=armijo, C1=C1, C2=C2, constC=constC, **kwargs) def gromov_wasserstein2(C1, C2, p, q, loss_fun, log=False, armijo=False, **kwargs): """ Returns the gromov-wasserstein discrepancy between (C1,p) and (C2,q) The function solves the following optimization problem: .. math:: GW = \min_T \sum_{i,j,k,l} L(C1_{i,k},C2_{j,l})*T_{i,j}*T_{k,l} Where : - C1 : Metric cost matrix in the source space - C2 : Metric cost matrix in the
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright 2019 SAP SE or an SAP affiliate company. All rights reserved # ============================================================================ """ Abstract Writer """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from abc import ABC, abstractmethod from typing import Tuple, Dict, List import numpy from xai.data import explorer from xai.formatter.report.section import OverviewSection, DetailSection ################################################################################ ### Writer Visitor ################################################################################ class Writer(ABC): """ The Strategy interface declares operations common to all supported report output. """ def __init__(self, *values) -> None: """ Abstract Writer """ self._values = values @property def values(self): """Returns keyword-ed variable.""" return self._values def __str__(self): return 'Writer:(' + str(self.values) + ')' @abstractmethod def out(self): """ Output Report """ pass @abstractmethod def build(self, title: str, overview: OverviewSection, detail: DetailSection, *, content_table=False): """ Build Report Args: title(str): header title overview(OverviewSection): Cover Section of report detail(DetailSection): Details Section of report content_table (bool): is content table enabled default False """ pass ################################################################################ ### Base Section ################################################################################ @abstractmethod def add_new_page(self): """ Add new page """ pass @abstractmethod def draw_header(self, text: str, level: int, *, link=None): """ Draw Header Args: text(str): header text in the report level(int): header level link: header link """ pass @abstractmethod def draw_title(self, text: str, level: int, *, link=None): """ Draw Title Args: text(str): title in the report level(int): title type (section or paragraph) link: title link """ pass @abstractmethod def draw_paragraph(self, text: str): """ Draw Paragraph Args: text(str): html text to render in the report """ pass ################################################################################ ### Basic/Reusable Section ################################################################################ @abstractmethod def draw_basic_key_value_pairs(self, notes: str, *, info: list): """ Draw key-value pairs information to the report Args: notes(str): Explain the block info (list): list of tuple / list of (list of tuple)) multi-level rendering, e.g. to display `model_info` """ pass @abstractmethod def draw_basic_table(self, notes: str, *, table_header: list, table_data: list, col_width: list): """ Draw table to the report Args: notes(str): Explain the block table_header (list): list of str table_data (list): list of str col_width: list of float, default: None (evenly divided for the whole page width) """ pass @abstractmethod def draw_basic_images_with_grid_spec(self, notes: str, *, image_list, grid_spec): """ Draw image blocks with formatted grid specification Args notes(str): Explain the block image_list (list): the list of image_paths grid_spec (dict): indicate image size and position - key: image_name, or index if image_set is a list - value: (x,y,w,h) position and weight/height of image, with left top corner of the block as (0,0), unit in mm """ pass ################################################################################ ### Summary Section ################################################################################ @abstractmethod def draw_training_time(self, notes: str, *, timing: List[Tuple[str, int]]): """ Draw information of timing to the report Args: notes(str): Explain the block timing (:obj:`list` of :obj:`tuple`): list of tuple (name, time in second) """ pass @abstractmethod def draw_data_set_summary(self, notes: str, *, data_summary: List[Tuple[str, int]]): """ Draw information of dataset summary to the report Args: notes(str): Explain the block data_summary (:obj:`list` of :obj:`tuple`): list of tuple (dataset_name, dataset_sample_number) """ pass @abstractmethod def draw_evaluation_result_summary(self, notes: str, *, evaluation_result: dict): """ Draw information of training performance to the result Args: evaluation_result (dict): evaluation metric - key: metric_name - value: metric_value: single float value for average/overall metric, list for class metrics sample input 1: {'precision': 0.5}, report value directly sample input 2: {'precision': {'class':[0.5,0.4,0.3],'average':0.5}}, report "average" value sample input 3: {'precision': {'class':[0.5,0.4,0.3]}, report unweighted average for "class" value notes (str, Optional): explain the block """ pass @abstractmethod def draw_model_info_summary(self, notes: str, *, model_info: list): """ Draw information of model info to the result Args: model_info (:obj:`list` of :obj: `tuple`, Optional): list of tuple (model info attribute, model info value). Default information include `use case name`, `version`, `use case team`. notes (str, Optional): explain the block """ pass ################################################################################ ### Data Section ################################################################################ @abstractmethod def draw_data_missing_value(self, notes: str, *, missing_count: dict, total_count: dict, ratio=False): """ Draw Missing Data Value Summary Table Args: notes(str): Explain the block missing_count(dict): Missing Count total_count(list): Total Count ratio(bool): True if `missing_value` is the percentage """ pass @abstractmethod def draw_data_set_distribution(self, notes: str, *, data_set_distribution: Tuple[str, explorer.CategoricalStats], max_class_shown=20): """ Draw information of distribution on data set Args: notes(str): Explain the block data_set_distribution (tuple: (str,dict)): - tuple[0] str: label/split name - tuple[1] CategoricalStats object: `frequency_count` attribute key - class_name/split_name, value - class_count/split_count max_class_shown (int, Optional): maximum number of classes shown in the figure, default is 20 notes (str, Optional): explain the block """ pass @abstractmethod def draw_data_attributes(self, notes: str, *, data_attribute: Dict): """ Draw information of data attribute for data fields to the report Args: notes(str): Explain the block data_attribute (:dict of :dict): -key: data field name -value: attributes (dict) - key: attribute name - value: attribute value """ pass @abstractmethod def draw_categorical_field_distribution(self, notes: str, *, field_name: str, field_distribution: Dict[str, explorer.CategoricalStats], max_values_display=20, colors=None): """ Draw information of field value distribution for categorical type to the report. Args: notes(str): Explain the block field_name (str): data field name field_distribution (:dict of :CategoricalStats): -key: label_name -value: CategoricalStats object max_values_display (int): maximum number of values displayed colors (list): the list of color code for rendering different class """ pass @abstractmethod def draw_numeric_field_distribution(self, notes: str, *, field_name: str, field_distribution: Dict[str, explorer.NumericalStats], force_no_log=False, x_limit=False, colors=None): """ Draw information of field value distribution for numerical type to the report. Args: notes(str): Explain the block field_name (str): data field name field_distribution (:dict of :NumericalStats): -key: label_name -value: NumericalStats object force_no_log (bool): whether to change y-scale to logrithmic scale for a more balanced view x_limit (list:): whether x-axis only display the required percentile range. If True, field_distribution should have a key "x_limit" and value of [x_min, x_max]. colors (list): the list of color code for rendering different class """ pass @abstractmethod def draw_text_field_distribution(self, notes: str, *, field_name: str, field_distribution: Dict[str,explorer.TextStats]): """ Draw information of field value distribution for text type to the report. Args: notes(str): Explain the block field_name (str): data field name field_distribution (:dict of :TextStats): -key: label_name -value: TextStats object """ pass @abstractmethod def draw_datetime_field_distribution(self, notes: str, *, field_name: str, field_distribution: Dict[str, explorer.DatetimeStats]): """ Draw information of field value distribution for datetime type to the report. Args: notes(str): Explain the block field_name (str): data field name field_distribution (:dict of :dict): -key: label_name -value (:dict of :DatetimeStats): Note that in order to render it in 2D diagram, the resolution has to be ['YEAR','MONTH']. - 1st level key: year_X(int) - 1st level value: - 2nd level key: month_X(int) - 2nd level value: count of sample in month_X of year_X """ pass ################################################################################ ### Feature Section ################################################################################ @abstractmethod def draw_feature_importance(self, notes: str, *, importance_ranking: List[List], importance_threshold: float, maximum_number_feature=20): """ Add information of feature importance to the report. Args: notes(str): Explain the block importance_ranking(:list of :list): a list of 2-item lists, item[0]: score, item[1] feature_name importance_threshold(float): threshold for displaying the feature name and score in tables maximum_number_feature(int): maximum number of features shown in bar-chart diagram """ pass ################################################################################ ### Feature Shap Values ################################################################################ @abstractmethod def draw_feature_shap_values(self, notes: str, *, mode: str, feature_shap_values: List[Tuple[str, List]], class_id: int, train_data: numpy.ndarray = None): """ Add information of feature shap values to the report. Args: notes(str): Explain the block mode (str): Model Model - classification/regression model feature_shap_values(:list of :tuple): a list of 2-item tuple, item[0]: feature name, item[1] shap values on each training samples class_id(int): the class id for visualization. train_data(numpy.dnarray): Optional, training data, row is for samples, column is for features. """ pass ################################################################################ ### Training Section ################################################################################ @abstractmethod def draw_hyperparameter_tuning(self, notes: str, *, history: dict, best_idx: str, search_space=None, benchmark_metric=None, benchmark_threshold=None, non_hyperopt_score=None): """ Add information of hyperparameter tuning to the report. Args: notes(str): Explain the block history(:dict of dict): a dict of training log dict. key: iteration index value: hyperparameter tuning information Each dict has two keys: - params: a dict of which key is the parameter name and value is parameter value - val_scores: a dict of which key is the metric name and value is metric value best_idx(str): - the best idx based on benchmark metric, corresponding the `history` dict key search_space(:dict): parameter name and
token should be considered as an @ref entity_reference, `False` if the pattern is not recognised. @note This call should not verify an entity exits, just that the format of the string is recognised. @see @ref entityExists @see @ref resolveEntityReference """ raise NotImplementedError @abc.abstractmethod def entityExists(self, entityRefs, context, hostSession): """ Called to determine if each @ref entity_reference supplied points to an entity that exists in the @ref asset_management_system, and that they can be resolved into a meaningful string or otherwise queried. By 'exist' we mean 'is ready to be read'. For example, entityExists may be called before attempting to read from a reference that is believed to point to an image sequence, so that alternatives can be found. In the future, this may need to be extended to cover a more complex definition of 'existence' (for example, known to the system, but not yet finalized). For now however, it should be assumed to simply mean, 'ready to be consumed', and if only a placeholder or un-finalized asset is available, `False` should be returned. The supplied context's locale may contain information pertinent to disambiguating this subtle definition of 'exists' in some cases too, as it better explains the use-case of the call. @param entityRefs `List[str]` Entity references to query. @param context Context The calling context. @param hostSession HostSession The API session. @return `List[bool]` `True` if the corresponding element in entityRefs points to an existing entity, `False` if the entity is not known or ready yet. """ raise NotImplementedError ## @} ## # @name Entity Reference Resolution # # The concept of resolution is turning an @ref entity_reference into a # 'finalized' string. This, ultimately, is anything meaningful to the # situation. It could be a color space, a directory, a script or image # sequence. A rule of thumb is that a resolved @ref entity_reference # should be the string that the application would have anyway, in a # unmanaged environment. For some kind of Entity - such as a 'Shot', for # example, there may not be a meaningful string, though often some sensible # value can be returned. # # @{ @abc.abstractmethod def resolveEntityReference(self, entityRefs, context, hostSession): """ Returns the @ref primary_string represented by each given @ref entity_reference. If a primary string points to some data, then it should always be in the form of a valid URL. File paths should be returned as a `file` scheme URL. When an @ref entity_reference points to a sequence of files, the frame, view, etc substitution tokens should be preserved, and in the sprintf compatible syntax. This function should attempt to take into account the current host/Context to ensure that any other substitution tokens are presented in a suitable form. The Context should also be carefully considered to ensure that the access does not violate any rules of the system - for example, resolving an existing entity reference for write. The caller will have first called isEntityReference() on the supplied strings. @note You may need to call finalizedEntityVersion() within this function to ensure any @ref meta_version "meta-versions" are resolved prior to resolution. @param entityRefs `List[str]` Entity references to query. @param context Context The calling context. @param hostSession HostSession The API session. @return `List[Union[str,` exceptions.EntityResolutionError, exceptions.InvalidEntityReference `]]` A list containing either the primary string for each reference; `EntityResolutionError` if a supplied entity reference does not have a meaningful string representation, or it is a valid reference format that doesn't exist; or `InvalidEntityReference` if a supplied entity reference should not be resolved for that context, for example, if the context access is `kWrite` and the entity is an existing version. @see @ref entityExists @see @ref isEntityReference """ raise NotImplementedError def defaultEntityReference(self, specifications, context, hostSession): """ Returns an @ref entity_reference considered to be a sensible default for each of the given specifications and Context. This is often used in a host to ensure dialogs, prompts or publish locations default to some sensible value, avoiding the need for a user to re-enter such information when a Host is being run in some known environment. For example, a host may request the default ref for 'ShotSpecification/kWriteMultiple'. If the Manager has some concept of the 'current sequence' it may wish to return this so that a 'Create Shots' starts somewhere meaningful. @param specifications `List[` specifications.EntitySpecification `]` The relevant specifications for the type of entities a host is about to work with. These should be interpreted in conjunction with the context to determine the most sensible default. @param context Context The context the resulting reference will be used in. When determining a suitable reference to return, it is important to pay particular attention to the access pattern. It differentiates between a reference that will be used for reading or writing, and critically single or multiple entities. @param hostSession openassetio.managerAPI.HostSession The host session that maps to the caller, this should be used for all logging and provides access to the openassetio.managerAPI.Host object representing the process that initiated the API session. @return `List[str]` An @ref entity_reference or empty string for each given specification. """ return ["" for _ in specifications] ## @} ## # @name Entity information # # There are several common requests for basic, generic information about # an entity that is assumed to be valid for all entity types. # # This suite of methods query information for a supplied @ref # entity_reference. # # @see @ref attributes # # @{ @abc.abstractmethod def entityName(self, entityRefs, context, hostSession): """ Returns the name of each entity itself, not including any hierarchy or classification. For example: @li `"Cuttlefish v1"` - for a version of an asset @li `"seq003"` - for a sequence in a hierarchy @param entityRefs `List[str]` Entity references to query. @param context Context The calling context. @param hostSession openassetio.managerAPI.HostSession The host session that maps to the caller, this should be used for all logging and provides access to the openassetio.managerAPI.Host object representing the process that initiated the API session. @return `List[str]` Strings containing any valid characters for the manager's implementation. """ raise NotImplementedError @abc.abstractmethod def entityDisplayName(self, entityRefs, context, hostSession): """ Returns an unambiguous, humanised display name for each entity. The display name may want to consider the host, and any other relevant Context information to form a display name for an entity that can uniquely identify the entity in that context. For example: @li `"dive / build / cuttlefish / model / v1"` - for a version of an asset in an 'open recent' menu. @li `"Sequence 003 [ Dive / Episode 1 ]"` - for a sequence in an hierarchy as a window title. @param entityRefs `List[str]` Entity references to query. @param context Context The calling context. @param hostSession openassetio.managerAPI.HostSession The host session that maps to the caller, this should be used for all logging and provides access to the openassetio.managerAPI.Host object representing the process that initiated the API session. @return `List[Union[str,` exceptions.InvalidEntityReference `]]` For each given entity, either a string containing any valid characters for the @ref asset_management_system's implementation; or an `InvalidEntityReference` if the supplied reference is not recognised by the asset management system. """ raise NotImplementedError @abc.abstractmethod def getEntityAttributes(self, entityRefs, context, hostSession): """ Retrieve @ref attributes for each given entity. It may be required to bridge between certain 'first-class' properties of your asset management system and the well-known OpenAssetIO attributes. For example, if the asset system represents a 'Shot' with 'cutIn' and 'cutOut' properties or accessors, these should be remapped to the @ref openassetio.constants.kField_FrameIn and Out attributes as appropriate. @warning See @ref setEntityAttributes for important notes on attributes and its role in the system. @param entityRefs `List[str]` Entity references to query. @param context Context The calling context. @param hostSession openassetio.managerAPI.HostSession The host session that maps to the caller, this should be used for all logging and provides
is of type OvalDefinition Returns None if no definitions could be found @rtype: List @return: All definitions in the OVAL document or None if none were found """ root = self.getDocumentRoot() if not root: return None defroot = root.find("def:definitions", OvalDocument.NS_DEFAULT) if defroot is None: return None element_list = list(defroot) if not element_list: return None return [OvalDefinition(element) for element in element_list] def getTests(self): """ Returns a list of all tests in this OvalDocument where each list item is of type OvalTest Returns None if no tests could be found @rtype: List @return: All tests in the OVAL document or None if none were found """ root = self.getDocumentRoot() if not root: return None testroot = root.find("def:tests", OvalDocument.NS_DEFAULT) if testroot is None: return None element_list = list(testroot) if not element_list: return None return [OvalTest(element) for element in element_list] def getObjects(self): """ Returns a list of all objects in this OvalDocument where each list item is of type OvalObject Returns None if no objects could be found @rtype: List @return: All objects in the OVAL document or None if none were found """ root = self.getDocumentRoot() if not root: return None objectroot = root.find("def:objects", OvalDocument.NS_DEFAULT) if objectroot is None: return None element_list = list(objectroot) if not element_list: return None return [OvalObject(element) for element in element_list] def getStates(self): """ Returns a list of all states in this OvalDocument where each list item is of type OvalState Returns None if no states could be found @rtype: List @return: All states in the OVAL document or None if none were found """ root = self.getDocumentRoot() if not root: return None stateroot = root.find("def:states", OvalDocument.NS_DEFAULT) if stateroot is None: return None element_list = list(stateroot) if not element_list: return None return [OvalState(element) for element in element_list] def getVariables(self): """ Returns a list of all variables in this OvalDocument where each list item is of type OvalVariable Returns None if no variables could be found @rtype: List @return: All variables in the OVAL document or None if none were found """ root = self.getDocumentRoot() if not root: return None varroot = root.find("def:variables", OvalDocument.NS_DEFAULT) if varroot is None: return None element_list = list(varroot) if not element_list: return None return [OvalVariable(element) for element in element_list] def getElementByID(self, ovalid): """ Uses the ovalid argument to determine what type of element is being referenced and locate that element in the OVAL ElementTree. Returns an OvalElement of the appropriate class (OvalDefinition, OvalTest, ...) or None if there is no ElementTree or if a matching item could not be found @rtype: OvalElement @return: The located element as the appropriate OvalElement subclass, or None if no matching element was found. """ if not ovalid: return None root = self.getDocumentRoot() if not root: return None try: oval_type = OvalElement.getElementTypeFromOvalID(ovalid) except Exception: return None if oval_type == OvalDefinition.DEFINITION: return self.id_to_definition[ovalid] elif oval_type == OvalDefinition.TEST: return self.id_to_test[ovalid] elif oval_type == OvalDefinition.OBJECT: return self.id_to_object[ovalid] elif oval_type == OvalDefinition.STATE: return self.id_to_state[ovalid] elif oval_type == OvalDefinition.VARIABLE: return self.id_to_variable[ovalid] else: return None def addElement(self, element, replace=True): """ Adds the element to the ElementTree for this OVAL document The element argument must be of type OvalElement This method uses the OVALID of the element to determine what type of element it is and if an existing element with that OVALID already exists. This method will also create the necessary structure (id est, adding <definitions>, <tests>, etc) if the ElementTree does not already contain it. By default this method will replace an existing item with the same OVALID, but this behavior can be overridden by changing the option second argument to a value of "False" Returns True on success, otherwise False @rtype: boolean @return: True if the element was added to the document, otherwise False """ if not element or element is None: return False if not self.tree or self.tree is None: return False ovalid = element.getId() if not ovalid: return False root = self.tree.getroot() if not root: root = Element("{" + OvalDocument.NS_DEFAULT.get("def") + "}oval_definitions") self.tree._setroot(root) # If replace has been set to False, then we want to exit with no changes # when an element with this OVALID already appears in the document if not replace: existing = self.getElementByID(ovalid) if existing: return False try: oval_type = OvalElement.getElementTypeFromOvalID(ovalid) except Exception: return False # Depending on the ID type, find the parent for it or create that parent if it doesn't exist # Then append the current element if oval_type == OvalDefinition.DEFINITION: parent = root.find("def:definitions", OvalDocument.NS_DEFAULT) if parent is None: parent = Element("{" + OvalDocument.NS_DEFAULT.get("def") + "}definitions") root.append(parent) parent.append(element.getElement()) self.id_to_definition[ovalid] = element return True elif oval_type == OvalDefinition.TEST: parent = root.find("def:tests", OvalDocument.NS_DEFAULT) if parent is None: parent = Element("{" + OvalDocument.NS_DEFAULT.get("def") + "}tests") root.append(parent) parent.append(element.getElement()) self.id_to_test[ovalid] = element return True elif oval_type == OvalDefinition.OBJECT: parent = root.find("def:objects", OvalDocument.NS_DEFAULT) if parent is None: parent = Element("{" + OvalDocument.NS_DEFAULT.get("def") + "}objects") root.append(parent) parent.append(element.getElement()) self.id_to_object[ovalid] = element return True elif oval_type == OvalDefinition.STATE: parent = root.find("def:states", OvalDocument.NS_DEFAULT) if parent is None: parent = Element("{" + OvalDocument.NS_DEFAULT.get("def") + "}states") root.append(parent) parent.append(element.getElement()) self.id_to_state[ovalid] = element return True elif oval_type == OvalDefinition.VARIABLE: parent = root.find("def:variables", OvalDocument.NS_DEFAULT) if parent is None: parent = Element("{" + OvalDocument.NS_DEFAULT.get("def") + "}variables") root.append(parent) self.id_to_variable[ovalid] = element parent.append(element.getElement()) return True else: return False # --------------------- END OF OvalDocument class ---------------------------- class OvalGenerator(object): """ Contains information about this OvalDocument, such as the schema version, the product that produced it, and when it was produced """ def __init__(self, element): self.element = element def getProduct(self): """ Gets the value of the product element """ if self.element is None: return None # child = self.element.find("{http://oval.mitre.org/XMLSchema/oval-common-5}product_name") child = self.element.find("oval:product_name", OvalDocument.NS_OVAL) if child is None: return None else: return child.text def get_element(self): return self.element def setProduct(self, product): """ Sets a value for the product element. If a product element does not already exist, one will be created """ if self.element is None: return False if product is None: return False child = self.element.find("oval:product_name", OvalDocument.NS_OVAL) if child is not None: child.text = product else: child = Element("{" + OvalDocument.NS_DEFAULT.get("def") + "}product_name") child.text = product self.element.append(child) def getSchemaVersion(self): """ Gets the value of the schema_version element """ if self.element is None: return None child = self.element.find("oval:schema_version", OvalDocument.NS_OVAL) if child is not None: return child.text else: return None def setSchemaVersion(self, version): """ Sets a value for the schema_version element. If that element does not exist, one will be created. """ if self.element is None: return False if version is None: return False child = self.element.find("oval:schema_version", OvalDocument.NS_OVAL) if child is not None: child.text = version else: child = Element("{" + OvalDocument.NS_DEFAULT.get("def") + "}schema_version") child.text = version self.element.append(child) def getTimestamp(self): """ Gets the value of the timestamp element """ if self.element is None: return None child = self.element.find("oval:timestamp", OvalDocument.NS_OVAL) if child is not None: return child.text else: return None def setTimestamp(self, timestamp): """ Sets a value for the timestamp element. If that elememtn does not exist, one will be created. If the timestamp argument is set to None, the timestamp will be set to the current time. """ if self.element is None: return False if not timestamp or timestamp is None: now = datetime.date.today() timestamp = now.strftime(OvalDocument.TIME_FORMAT) child = self.element.find("oval:timestamp", OvalDocument.NS_OVAL) if child is not None: child.text = timestamp else: child = Element("{" + OvalDocument.NS_OVAL.get("oval") + "}timestamp") child.text = timestamp self.element.append(child) def getExtra(self, name, namespace=None): """ Gets the value of the first child element of the generator where the tag name matches 'name' If the namespace argument is not provided, it will be assumed that the child element does not have a namespace. """ if self.element is None: return None if not name: return None if namespace is not None: child = self.element.find(name, namespace) else: child = self.element.find(name) if child is not None: return child.text else: return None def setExtra(self, name, value, namespace=None): """ Sets the value if the first child
from tkinter import * from tkinter import ttk from tkinter import filedialog from tkinter import messagebox import turtle import time from PIL import Image from tkinter import tix class App: s="""self.screen.clearscreen() self.screen.listen() self.draw = turtle.RawTurtle(self.screen) self.draw.pu() self.screen.onclick(self.listen) self.draw.ondrag(self.dragging) self.k="" self.sav=0 self.bh="" self.file="" self.i=0 self.jj=1 self.jj1=0 self.fgh=0 self.func="" self.func_name="" self.functions=[] self.keylinks={} self.headings={"Object1":0} self.objects={"Object1":self.draw} self.index=1 self.stam=0 self.redos=[]# """ s1=s k="" sav=1 bh="" file="" i=0 jj=1 jj1=0 fgh=0 func="" func_name="" functions=[] keylinks={} headings={"Object1":0} index=1 stam=0 redos=[] COLOURS =['snow', 'ghost white', 'white smoke', 'gainsboro', 'floral white', 'old lace', 'linen', 'antique white', 'papaya whip', 'blanched almond', 'bisque', 'peach puff', 'navajo white', 'lemon chiffon', 'mint cream', 'azure', 'alice blue', 'lavender', 'lavender blush', 'misty rose', 'dark slate gray', 'dim gray', 'slate gray', 'light slate gray', 'gray', 'light grey', 'midnight blue', 'navy', 'cornflower blue', 'dark slate blue', 'slate blue', 'medium slate blue', 'light slate blue', 'medium blue', 'royal blue', 'blue', 'dodger blue', 'deep sky blue', 'sky blue', 'light sky blue', 'steel blue', 'light steel blue', 'light blue', 'powder blue', 'pale turquoise', 'dark turquoise', 'medium turquoise', 'turquoise', 'cyan', 'light cyan', 'cadet blue', 'medium aquamarine', 'aquamarine', 'dark green', 'dark olive green', 'dark sea green', 'sea green', 'medium sea green', 'light sea green', 'pale green', 'spring green', 'lawn green', 'medium spring green', 'green yellow', 'lime green', 'yellow green', 'forest green', 'olive drab', 'dark khaki', 'khaki', 'pale goldenrod', 'light goldenrod yellow', 'light yellow', 'yellow', 'gold', 'light goldenrod', 'goldenrod', 'dark goldenrod', 'rosy brown', 'indian red', 'saddle brown', 'sandy brown', 'dark salmon', 'salmon', 'light salmon', 'orange', 'dark orange', 'coral', 'light coral', 'tomato', 'orange red', 'red', 'hot pink', 'deep pink', 'pink', 'light pink', 'pale violet red', 'maroon', 'medium violet red', 'violet red', 'medium orchid', 'dark orchid', 'dark violet', 'blue violet', 'purple', 'medium purple', 'thistle', 'snow2', 'snow3', 'snow4', 'seashell2', 'seashell3', 'seashell4', 'AntiqueWhite1', 'AntiqueWhite2', 'AntiqueWhite3', 'AntiqueWhite4', 'bisque2', 'bisque3', 'bisque4', 'PeachPuff2', 'PeachPuff3', 'PeachPuff4', 'NavajoWhite2', 'NavajoWhite3', 'NavajoWhite4', 'LemonChiffon2', 'LemonChiffon3', 'LemonChiffon4', 'cornsilk2', 'cornsilk3', 'cornsilk4', 'ivory2', 'ivory3', 'ivory4', 'honeydew2', 'honeydew3', 'honeydew4', 'LavenderBlush2', 'LavenderBlush3', 'LavenderBlush4', 'MistyRose2', 'MistyRose3', 'MistyRose4', 'azure2', 'azure3', 'azure4', 'SlateBlue1', 'SlateBlue2', 'SlateBlue3', 'SlateBlue4', 'RoyalBlue1', 'RoyalBlue2', 'RoyalBlue3', 'RoyalBlue4', 'blue2', 'blue4', 'DodgerBlue2', 'DodgerBlue3', 'DodgerBlue4', 'SteelBlue1', 'SteelBlue2', 'SteelBlue3', 'SteelBlue4', 'DeepSkyBlue2', 'DeepSkyBlue3', 'DeepSkyBlue4', 'SkyBlue1', 'SkyBlue2', 'SkyBlue3', 'SkyBlue4', 'LightSkyBlue1', 'LightSkyBlue2', 'LightSkyBlue3', 'LightSkyBlue4', 'SlateGray1', 'SlateGray2', 'SlateGray3', 'SlateGray4', 'LightSteelBlue1', 'LightSteelBlue2', 'LightSteelBlue3', 'LightSteelBlue4', 'LightBlue1', 'LightBlue2', 'LightBlue3', 'LightBlue4', 'LightCyan2', 'LightCyan3', 'LightCyan4', 'PaleTurquoise1', 'PaleTurquoise2', 'PaleTurquoise3', 'PaleTurquoise4', 'CadetBlue1', 'CadetBlue2', 'CadetBlue3', 'CadetBlue4', 'turquoise1', 'turquoise2', 'turquoise3', 'turquoise4', 'cyan2', 'cyan3', 'cyan4', 'DarkSlateGray1', 'DarkSlateGray2', 'DarkSlateGray3', 'DarkSlateGray4', 'aquamarine2', 'aquamarine4', 'DarkSeaGreen1', 'DarkSeaGreen2', 'DarkSeaGreen3', 'DarkSeaGreen4', 'SeaGreen1', 'SeaGreen2', 'SeaGreen3', 'PaleGreen1', 'PaleGreen2', 'PaleGreen3', 'PaleGreen4', 'SpringGreen2', 'SpringGreen3', 'SpringGreen4', 'green2', 'green3', 'green4', 'chartreuse2', 'chartreuse3', 'chartreuse4', 'OliveDrab1', 'OliveDrab2', 'OliveDrab4', 'DarkOliveGreen1', 'DarkOliveGreen2', 'DarkOliveGreen3', 'DarkOliveGreen4', 'khaki1', 'khaki2', 'khaki3', 'khaki4', 'LightGoldenrod1', 'LightGoldenrod2', 'LightGoldenrod3', 'LightGoldenrod4', 'LightYellow2', 'LightYellow3', 'LightYellow4', 'yellow2', 'yellow3', 'yellow4', 'gold2', 'gold3', 'gold4', 'goldenrod1', 'goldenrod2', 'goldenrod3', 'goldenrod4', 'DarkGoldenrod1', 'DarkGoldenrod2', 'DarkGoldenrod3', 'DarkGoldenrod4', 'RosyBrown1', 'RosyBrown2', 'RosyBrown3', 'RosyBrown4', 'IndianRed1', 'IndianRed2', 'IndianRed3', 'IndianRed4', 'sienna1', 'sienna2', 'sienna3', 'sienna4', 'burlywood1', 'burlywood2', 'burlywood3', 'burlywood4', 'wheat1', 'wheat2', 'wheat3', 'wheat4', 'tan1', 'tan2', 'tan4', 'chocolate1', 'chocolate2', 'chocolate3', 'firebrick1', 'firebrick2', 'firebrick3', 'firebrick4', 'brown1', 'brown2', 'brown3', 'brown4', 'salmon1', 'salmon2', 'salmon3', 'salmon4', 'LightSalmon2', 'LightSalmon3', 'LightSalmon4', 'orange2', 'orange3', 'orange4', 'DarkOrange1', 'DarkOrange2', 'DarkOrange3', 'DarkOrange4', 'coral1', 'coral2', 'coral3', 'coral4', 'tomato2', 'tomato3', 'tomato4', 'OrangeRed2', 'OrangeRed3', 'OrangeRed4', 'red2', 'red3', 'red4', 'DeepPink2', 'DeepPink3', 'DeepPink4', 'HotPink1', 'HotPink2', 'HotPink3', 'HotPink4', 'pink1', 'pink2', 'pink3', 'pink4', 'LightPink1', 'LightPink2', 'LightPink3', 'LightPink4', 'PaleVioletRed1', 'PaleVioletRed2', 'PaleVioletRed3', 'PaleVioletRed4', 'maroon1', 'maroon2', 'maroon3', 'maroon4', 'VioletRed1', 'VioletRed2', 'VioletRed3', 'VioletRed4', 'magenta2', 'magenta3', 'magenta4', 'orchid1', 'orchid2', 'orchid3', 'orchid4', 'plum1', 'plum2', 'plum3', 'plum4', 'MediumOrchid1', 'MediumOrchid2', 'MediumOrchid3', 'MediumOrchid4', 'DarkOrchid1', 'DarkOrchid2', 'DarkOrchid3', 'DarkOrchid4', 'purple1', 'purple2', 'purple3', 'purple4', 'MediumPurple1', 'MediumPurple2', 'MediumPurple3', 'MediumPurple4', 'thistle1', 'thistle2', 'thistle3', 'thistle4', 'gray1', 'gray2', 'gray3', 'gray4', 'gray5', 'gray6', 'gray7', 'gray8', 'gray9', 'gray10', 'gray11', 'gray12', 'gray13', 'gray14', 'gray15', 'gray16', 'gray17', 'gray18', 'gray19', 'gray20', 'gray21', 'gray22', 'gray23', 'gray24', 'gray25', 'gray26', 'gray27', 'gray28', 'gray29', 'gray30', 'gray31', 'gray32', 'gray33', 'gray34', 'gray35', 'gray36', 'gray37', 'gray38', 'gray39', 'gray40', 'gray42', 'gray43', 'gray44', 'gray45', 'gray46', 'gray47', 'gray48', 'gray49', 'gray50', 'gray51', 'gray52', 'gray53', 'gray54', 'gray55', 'gray56', 'gray57', 'gray58', 'gray59', 'gray60', 'gray61', 'gray62', 'gray63', 'gray64', 'gray65', 'gray66', 'gray67', 'gray68', 'gray69', 'gray70', 'gray71', 'gray72', 'gray73', 'gray74', 'gray75', 'gray76', 'gray77', 'gray78', 'gray79', 'gray80', 'gray81', 'gray82', 'gray83', 'gray84', 'gray85', 'gray86', 'gray87', 'gray88', 'gray89', 'gray90', 'gray91', 'gray92', 'gray93', 'gray94', 'gray95', 'gray97', 'gray98', 'gray99'] def __init__(self,master): self.master=master b=tix.Balloon(self.master) self.tabcon=ttk.Notebook(self.master) self.pw=Frame(self.tabcon) self.tabcon.add(self.pw,text="Actions") self.pl=Frame(self.tabcon) self.tabcon.add(self.pl,text="Time") self.nb=Frame(self.tabcon) self.tabcon.add(self.nb,text="Loop") self.ia=Frame(self.tabcon) self.tabcon.add(self.ia,text="Objects") self.fg=Frame(self.tabcon) self.tabcon.add(self.fg,text="functions") self.df=Frame(self.tabcon) self.tabcon.add(self.df,text="key links") self.yu=Frame(self.tabcon) self.tabcon.add(self.yu,text="Screen") self.tabcon.grid(row=0,column=0,sticky="n") self.canvas = turtle.ScrolledCanvas(master = self.master) self.canvas.grid(row=0,column=1) self.screen=turtle.TurtleScreen(self.canvas) self.draw = turtle.RawTurtle(self.screen) self.screen.listen() self.draw.pu() self.objects={"Object1":self.draw} self.screen.onclick(self.listen) self.draw.ondrag(self.dragging) Button(self.pw,text="move upwards",command=self.up).grid() Button(self.pw,text="move downwards",command=self.down).grid() Button(self.pw,text="move right",command=self.right).grid() Button(self.pw,text="move left",command=self.left).grid() Button(self.pw,text="move forward",command=self.fwd).grid(row=4,column=0) Button(self.pw,text="move backward",command=self.bwd).grid(row=5,column=0) self.deg=Entry(self.pw) self.deg.grid(row=6,column=1) Button(self.pw,text="Rotate left",command=self.rotlt).grid(row=6,column=0) self.deg1=Entry(self.pw) self.deg1.grid(row=7,column=1) Button(self.pw,text="Rotate right",command=self.rotrt).grid(row=7,column=0) Button(self.pw,text="Show object",command=self.show).grid(row=8,column=0) Button(self.pw,text="Hide object",command=self.hide).grid(row=9,column=0) Button(self.pw,text="stamp",command=self.stamp).grid(row=10,column=0) Button(self.pw,text="clear previous stamp",command=self.clprestmp).grid(row=11) Button(self.pw,text="clear all stamps",command=self.clallstmp).grid(row=12) self.gotopos=Entry(self.pw) self.gotopos.grid(row=13,column=1) Button(self.pw,text="goto position",command=self.goto).grid(row=13,column=0) self.circpar=Entry(self.pw) self.circpar.grid(row=14,column=1) Button(self.pw,text="circle",command=self.circ).grid(row=14,column=0) b.bind_widget(self.circpar, msg="""Draw a circle with given radius. The center is radius units left of the turtle; extent – an angle – determines which part of the circle is drawn. If extent is not given, draw the entire circle. If extent is not a full circle, one endpoint of the arc is the current pen position. Draw the arc in counterclockwise direction if radius is positive, otherwise in clockwise direction. Finally the direction of the turtle is changed by the amount of extent. As the circle is approximated by an inscribed regular polygon, steps determines the number of steps to use. If not given, it will be calculated automatically. May be used to draw regular polygons. Enter the three parameters one after the other separated by commas. radius is compulsory.""") Button(self.pw,text="pen down",command=self.pendown).grid() Button(self.pw,text="pen up",command=self.penup).grid() Button(self.pw,text="Choose pen colour",command=lambda:self.colourchoose("pencolour")).grid() self.wo=Entry(self.pl) self.wo.grid(row=0,column=1) Button(self.pl,text="Wait for",command=self.wa).grid(row=0,column=0) self.delay=Entry(self.pl) self.delay.grid(row=1,column=1) Button(self.pl,text="set animation delay",command=self.dela).grid(row=1,column=0) self.speed=Entry(self.pl) self.speed.grid(row=2,column=1) Button(self.pl,text="set object speed",command=self.spee).grid(row=2,column=0) b.bind_widget(self.speed,msg="enter integer from 0 to 10. 0 means no animation.") self.lo=Entry(self.nb) self.lo.grid(row=0,column=1) Label(self.nb,text="Loop length").grid(row=0,column=0) Button(self.nb,text="Start loop",command=self.lop).grid(row=1,column=0) Button(self.nb,text="End loop",command=self.loz).grid(row=2,column=0) Button(self.ia,text="Object"+str(self.index),command=lambda:self.chobj("Object1")).grid(row=0,column=0) self.chs=Button(self.ia,text="Change shape of current object",command=lambda:self.chsh()) self.chs.grid(row=1,column=0) self.addt=Button(self.ia,text="Add object",command=lambda:self.addobj()) self.addt.grid(row=self.jj+1,column=0) self.curob=Label(self.ia,text="current object is Object1") self.curob.grid(row=self.jj+2) self.stf=Button(self.fg,text="Start Creating Function",command=lambda:self.stafunc()) self.stf.grid(row=self.jj1) self.stf1=Button(self.fg,text="Stop Creating Function",command=lambda:self.stofunc()) self.stf1.grid(row=self.jj1+1) func_name="" func="" self.keymenu=Menubutton(self.df,text="keys",relief=RAISED) self.keymenu.grid(row=self.fgh) self.keymenu.menu = Menu(self.keymenu,tearoff=0) self.keymenu["menu"]= self.keymenu.menu keys=['space','enter','<KEY>y','z','Up','Down','Left','Right','1','2','3','4','5','6','7','8','9','0','Shift'] for j in keys: self.keymenu.menu.add_command(label=j,command=lambda j=j:self.key(j)) self.fulk=Entry(self.df) self.fulk.grid(row=self.fgh,column=1) self.keylink=Button(self.df,text="add keylink",command=lambda:self.addkeylink()) self.keylink.grid(row=self.fgh,column=2) Button(self.yu,text="Stop animating",command=self.stoani).grid() Button(self.yu,text="Start animating",command=self.staani).grid() Button(self.yu,text="choose bgpic",command=self.bgpic).grid() Button(self.yu,text="choose bgcolour",command=lambda:self.colourchoose("bgcolour")).grid() self.menubar=Menu(self.master) self.file = Menu(self.menubar, tearoff=0) self.file.add_command(label="New",command=lambda:self.new()) self.file.add_command(label="Open",command=lambda:self.ope()) self.file.add_command(label="Save",command=lambda:self.save()) self.file.add_command(label="Exit", command=self.master.quit) self.menubar.add_cascade(label="File", menu=self.file) self.edit = Menu(self.menubar, tearoff=0) self.edit.add_command(label="Undo",command=lambda:self.undo()) self.menubar.add_cascade(label="Edit", menu=self.edit) self.helpa = Menu(self.menubar, tearoff=0) self.helpa.add_command(label="About") self.menubar.add_cascade(label="Help", menu=self.helpa) self.run=Menu(self.menubar,tearoff=0) self.run.add_command(label="Run",command=lambda:self.starun()) self.menubar.add_cascade(label="Run",menu=self.run) self.master.config(menu=self.menubar) def listen(self,x,y): self.screen.listen() print(x,y) def dragging(self,x, y): if(self.k!=""): self.bh+=self.k+f"self.draw.ondrag(None)\n{self.k}self.draw.goto({x},{y})\n{self.k}self.draw.ondrag(self.dragging)\n" elif(self.func!=""): self.func+=f" self.draw.goto({x},{y})\n" else: self.draw.ondrag(None) self.s+=f"self.draw.goto({x},{y})#\n" self.draw.goto(x, y) self.draw.ondrag(self.dragging) self.sav=0 def up(self): if(self.k!=""): self.bh+=self.k+"self.draw.sety(self.draw.ycor()+15)\n" elif(self.func!=""): self.func+=" self.draw.sety(self.draw.ycor()+15)\n" else: self.draw.sety(self.draw.ycor()+15) self.s+="self.draw.sety(self.draw.ycor()+15)#\n" self.sav=0 def down(self): if(self.k!=""): self.bh+=self.k+"self.draw.sety(self.draw.ycor()-15)\n" elif(self.func!=""): self.func+=" self.draw.sety(self.draw.ycor()-15)\n" else: self.draw.sety(self.draw.ycor()-15) self.s+="self.draw.sety(self.draw.ycor()-15)#\n" self.sav=0 def right(self): if(self.k!=""): self.bh+=self.k+"self.draw.setx(self.draw.xcor()+15)\n" elif(self.func!=""): self.func+=" self.draw.setx(self.draw.xcor()+15)\n" else: self.draw.setx(self.draw.xcor()+15) self.s+="self.draw.setx(self.draw.xcor()+15)#\n" self.sav=0 def left(self): if(self.k!=""): self.bh+=self.k+"self.draw.setx(self.draw.xcor()-15)\n" elif(self.func!=""): self.func+=" self.draw.setx(self.draw.xcor()-15)\n" else: self.draw.setx(self.draw.xcor()-15) self.s+="self.draw.setx(self.draw.xcor()-15)#\n" self.sav=0 def fwd(self): if(self.k!=""): self.bh+=self.k+"self.draw.fd(15)\n" elif(self.func!=""): self.func+=" self.draw.fd(15)\n" else: self.draw.fd(15) self.s+="self.draw.fd(15)#\n" self.sav=0 def bwd(self): if(self.k!=""): self.bh+=self.k+"self.draw.bk(15)\n" elif(self.func!=""): self.func+=" self.draw.bk(15)\n" else: self.draw.bk(15) self.s+="self.draw.bk(15)#\n" self.sav=0 def rotlt(self): try: int(self.deg.get()) if(self.i==0): if(self.k!=""): self.bh+=self.k+"self.draw.lt(int("+self.deg.get()+"))\n"+self.k+"self.angle+=int("+self.deg.get()+")\n" elif(self.func!=""): self.func+=" self.draw.lt(int("+self.deg.get()+"))\n"+" self.angle+=int("+self.deg.get()+")\n" else: self.s+="self.draw.lt(int("+self.deg.get()+"))#\n" self.draw.lt(int(self.deg.get())) self.headings[self.curob["text"][18:]]+=int(self.deg.get()) else: if(self.k!=""): self.bh+=f"""{self.k}im=Image.open('"""+self.file+f"""') {self.k}im=im.convert('RGBA') {self.k}self.headings[self.curob["text"][18:]]+=int("""+self.deg.get()+f""") {self.k}im=im.rotate(self.headings[self.curob["text"][18:]],expand=1) {self.k}dst_im = Image.new("RGBA",im.size,"white") {self.k}dst_im.paste( im, (0,0),im) {self.k}dst_im.save("a.gif",transparency=0) {self.k}self.screen.addshape("a.gif") {self.k}self.draw.shape("a.gif") """ self.bh+=self.k+"self.draw.lt(int("+self.deg.get()+"))\n" elif(self.func_name!=""): self.func+=""" im=Image.open('"""+self.file+"""') im=im.convert('RGBA') self.headings[self.curob["text"][18:]]+=int("""+self.deg.get()+""") im=im.rotate("""+str(self.headings[self.curob["text"][18:]])+""",expand=1) dst_im = Image.new("RGBA",im.size,"white") dst_im.paste( im, (0,0),im) dst_im.save("a.gif",transparency=0) self.screen.addshape("a.gif") self.draw.shape("a.gif") """ self.func+=" self.draw.lt(int("+self.deg.get()+"))\n" else: im=Image.open(self.file) im=im.convert('RGBA') self.headings[self.curob["text"][18:]]+=int(self.deg.get()) im=im.rotate(self.headings[self.curob["text"][18:]],expand=1) dst_im = Image.new("RGBA",im.size,"white") dst_im.paste( im, (0,0),im) dst_im.save("a.gif",transparency=0) self.screen.addshape("a.gif") self.draw.shape("a.gif") self.s+="""im=Image.open('"""+self.file+"""') im=im.convert('RGBA') self.headings[self.curob["text"][18:]]+=int("""+self.deg.get()+""") im=im.rotate("""+str(self.headings[self.curob["text"][18:]])+""",expand=1) dst_im = Image.new("RGBA",im.size,"white") dst_im.paste( im, (0,0),im) dst_im.save("a.gif",transparency=0) self.screen.addshape("a.gif") self.draw.shape("a.gif") """ self.s+="self.draw.lt(int("+self.deg.get()+"))#\n" self.draw.lt(int(self.deg.get())) self.sav=0 except: pass def rotrt(self): try: int(self.deg1.get()) if(self.i==0): if(self.k!=""): self.bh+=self.k+"self.draw.rt(int("+self.deg1.get()+"))\n"+self.k+"self.angle+=int("+self.deg.get()+")\n" elif(self.func!=""): self.func+=" self.draw.rt(int("+self.deg1.get()+"))\n"+" self.angle+=int("+self.deg.get()+")\n" else: self.s+="self.draw.rt(int("+self.deg1.get()+"))\n" self.draw.rt(int(self.deg1.get())) self.headings[self.curob["text"][18:]]+=360-int(self.deg.get()) else: if(self.k!=""): self.bh+=f"""{self.k}im=Image.open('"""+self.file+f"""') {self.k}im=im.convert('RGBA') {self.k}self.headings[self.curob["text"][18:]]+=360-int("""+self.deg1.get()+f""") {self.k}im=im.rotate(self.headings[self.curob["text"][18:]],expand=1) {self.k}dst_im = Image.new("RGBA",im.size,"white") {self.k}dst_im.paste( im, (0,0),im) {self.k}dst_im.save("a.gif",transparency=0) {self.k}self.screen.addshape("a.gif") {self.k}self.draw.shape("a.gif") """ self.bh+=self.k+"self.draw.rt(int("+self.deg1.get()+"))\n" elif(self.func_name!=""): self.func+=""" im=Image.open('"""+self.file+"""') im=im.convert('RGBA') self.headings[self.curob["text"][18:]]+=360-int("""+self.deg1.get()+""") im=im.rotate("""+str(self.headings[self.curob["text"][18:]])+""",expand=1) dst_im = Image.new("RGBA",im.size,"white") dst_im.paste( im, (0,0),im) dst_im.save("a.gif",transparency=0) self.screen.addshape("a.gif") self.draw.shape("a.gif") """ self.func+=" self.draw.rt(int("+self.deg1.get()+"))\n" else: im=Image.open(self.file) im=im.convert('RGBA') self.headings[self.curob["text"][18:]]+=360-int(self.deg1.get()) im=im.rotate(self.headings[self.curob["text"][18:]],expand=1) dst_im = Image.new("RGBA",im.size,"white") dst_im.paste( im, (0,0),im) dst_im.save("a.gif",transparency=0) self.screen.addshape("a.gif") self.draw.shape("a.gif") self.s+="""im=Image.open('"""+self.file+"""') im=im.convert('RGBA') self.headings[self.curob["text"][18:]]+=360-int("""+self.deg1.get()+""") im=im.rotate("""+str(self.headings[self.curob["text"][18:]])+""",expand=1) dst_im = Image.new("RGBA",im.size,"white") dst_im.paste( im, (0,0),im) dst_im.save("a.gif",transparency=0) self.screen.addshape("a.gif") self.draw.shape("a.gif") """ self.s+="self.draw.rt(int("+self.deg1.get()+"))#\n" self.draw.rt(int(self.deg1.get())) self.sav=0 except: raise def show(self): if(self.k!=""): self.bh+=self.k+"self.draw.st()\n" elif(self.func!=""): self.func+=" self.draw.st()\n" else: self.draw.st() self.s+="self.draw.st()#\n" self.sav=0 def hide(self): if(self.k!=""): self.bh+=self.k+"self.draw.ht()\n" elif(self.func!=""): self.func+=" self.draw.st()\n" else: self.draw.ht() self.s+="self.draw.ht()#\n" self.sav=0 def stamp(self): if(self.k!=""): self.bh+=self.k+"self.stam=self.draw.stamp()\n" elif(self.func!=""): self.func+=" self.stam=self.draw.stamp()\n" else: self.stam=self.draw.stamp() self.s+="self.stam=self.draw.stamp()#\n" self.sav=0 def clprestmp(self): if(self.k!=""): self.bh+=self.k+"self.draw.clearstamp(self.stam)\n" elif(self.func!=""): self.func+=" self.draw.clearstamp(self.stam)\n" else: self.draw.clearstamp(self.stam) self.s+="self.draw.clearstamp(self.stam)#\n" self.sav=0 def clallstmp(self): if(self.k!=""): self.bh+=self.k+"self.draw.clearstamps()\n" elif(self.func!=""): self.func+=" self.draw.clearstamps()\n" else: self.draw.clearstamps() self.s+="self.draw.clearstamps()#\n" self.sav=0 def goto(self): import random try: float(self.gotopos.get().split(',')[0]) if(self.k!=""): if(self.gotopos.get()=="random"): x=random.randint(0,list(self.screen.screensize())[0]) y=random.randint(0,list(self.screen.screensize())[1]) self.bh+=self.k+f"self.draw.goto({x},{y})\n" else: self.bh+=self.k+f"self.draw.goto(float({self.gotopos.get().split(',')[0]}),float({self.gotopos.get().split(',')[1]}))\n" elif(self.func!=""): if(self.gotopos.get()=="random"): x=random.randint(0,list(self.screen.screensize())[0]) y=random.randint(0,list(self.screen.screensize())[1]) self.func+=f" self.draw.goto({x},{y})\n" else: self.func+=f" self.draw.goto(float({self.gotopos.get().split(',')[0]}),float({self.gotopos.get().split(',')[1]}))\n" else: if(self.gotopos.get()=="random"): x=random.randint(0,list(self.screen.screensize())[0]) y=random.randint(0,list(self.screen.screensize())[1]) self.draw.goto(x,y) self.s+=f"self.draw.goto({x},{y})#\n" else: self.draw.goto(float(self.gotopos.get().split(",")[0]),float(self.gotopos.get().split(",")[1])) self.s+=f"self.draw.goto(float({self.gotopos.get().split(',')[0]}),float({self.gotopos.get().split(',')[1]}))#\n" self.sav=0 except: pass def circ(self): try: int(self.circpar.get().split(',')[0]) if(self.k!=""): if(len(self.circpar.get().split(','))==3): self.bh+=self.k+f"self.draw.circle(int({self.circpar.get().split(',')[0]}),int({self.circpar.get().split(',')[1]}),int({self.circpar.get().split(',')[2]}))\n" elif(len(self.circpar.get().split(','))==2): self.bh+=self.k+f"self.draw.circle(int({self.circpar.get().split(',')[0]}),int({self.circpar.get().split(',')[1]}))\n" elif(len(self.circpar.get().split(','))==1): self.bh+=self.k+f"self.draw.circle(int({self.circpar.get().split(',')[0]}))\n" elif(self.func!=""): if(len(self.circpar.get().split(','))==3): self.func+=f" self.draw.circle(int({self.circpar.get().split(',')[0]}),int({self.circpar.get().split(',')[1]}),int({self.circpar.get().split(',')[2]}))\n" elif(len(self.circpar.get().split(','))==2): self.func+=f" self.draw.circle(int({self.circpar.get().split(',')[0]}),int({self.circpar.get().split(',')[1]}))\n"
Here we can choose different algorithms # _get_split_mse _get_split_info for split in unique), key=lambda x: x[0]) return mse, feature, split, split_avg def _choose_category_point(self, X: List[List[str]], y: List[Num], idx: List[int], feature: int): """Iterate each xi and classify x, y into two parts, and the best category point is the xi when we get minimum info or mse. Parameters: X {list} -- 2d list with str y {list} -- 1d list object with int or float idx {list} -- indexes, 1d list object with int feature {int} -- Feature number Returns: tuple -- The best choice of mse, feature, category point and average could be None """ # Feature cannot be splitted if there's only one unique element. unique = set([X[i][feature] for i in idx]) if len(unique) == 1: return None # If there is only one category left, None should be returned # In case of empty split # unique.remove(min(unique)) # We don't need this for categorical situation # Get split point which has min mse mse, category_idx, split_avg = min( (self._get_category_mse(X, y, idx, feature, category) # Here we can choose different algorithms # _get_category_mse _get_category_info for category in unique), key=lambda x: x[0]) # logger.debug(split_avg) return mse, feature, category_idx, split_avg def _detect_feature_type(self, x: list) -> int: """ To determine the type of the feature :param x: 1d list with int, float or str :return: 0 or 1, 0 represents continuous, 1 represents discrete """ for item in x: if item is not None: return 1 if type(item) == str else 0 def _get_column(self, x: list, i: int) -> list: return [item[i] for item in x] def _choose_feature(self, X: list, y: List[Num], idx: List[int]): """Choose the feature which has minimum mse or minimal info. Parameters: X {list} -- 2d list with int, float or str y {list} -- 1d list with int or float idx {list} -- indexes, 1d list object with int Returns: tuple -- (feature number, classify point or split point, average, idx_classify) could be None """ m = len(X[0]) # x[0] selects the first row # Compare the mse of each feature and choose best one. split_rets = [] for i in range(m): if self.feature_types[i]: item = self._choose_category_point(X, y, idx, i) else: item = self._choose_split_point(X, y, idx, i) if item is not None: split_rets.append(item) # If it is None, it will not be considered as the chosen feature # Terminate if no feature can be splitted if not split_rets: # split_rets == [] return None _, feature, split, split_avg = min(split_rets, key=lambda x: x[0]) # Get split idx into two pieces and empty the idx. idx_split = [[], []] # it contains different groups, and produces idx for next step while idx: i = idx.pop() # logger.debug(i) xi = X[i][feature] if self.feature_types[feature]: if xi == split: idx_split[0].append(i) else: idx_split[1].append(i) else: if xi < split: idx_split[0].append(i) else: idx_split[1].append(i) return feature, split, split_avg, idx_split def _expr2literal(self, expr: list) -> str: """Auxiliary function of print_rules. Parameters: expr {list} -- 1D list like [Feature, op, split] Op: In continuos situation, -1 means less than, 1 means equal or more than In discrete situation, -1 means equal, 1 means not equal Returns: str """ feature, op, split = expr if type(split) == float or type(split) == int: op = ">=" if op == 1 else "<" return "Feature%d %s %.4f" % (feature, op, split) if type(split) == str: op = "!=" if op == 1 else "==" return "Feature%d %s %s" % (feature, op, split) def _get_rules(self): """Get the rules of all the decision tree leaf nodes. Print the rules with breadth-first search for a tree first print the leaves in shallow postions, then print from left to right 广度有限搜索,先打印的是比较浅的叶子,然后从左往右打印 Expr: 1D list like [Feature, op, split] Rule: 2D list like [[Feature, op, split], score] """ que = [[self.root, []]] self.rules = [] # Breadth-First Search while que: nd, exprs = que.pop(0) # Generate a rule when the current node is leaf node if not(nd.left or nd.right): # Convert expression to text literals = list(map(self._expr2literal, exprs)) self.rules.append([literals, nd.score]) # Expand when the current node has left child if nd.left: rule_left = copy.copy(exprs) rule_left.append([nd.feature, -1, nd.split]) que.append([nd.left, rule_left]) # Expand when the current node has right child if nd.right: rule_right = copy.copy(exprs) rule_right.append([nd.feature, 1, nd.split]) que.append([nd.right, rule_right]) # logger.debug(self.rules) def fit(self, X: list, y: list, max_depth: int =5, min_samples_split: int =2): """Build a regression decision tree. Note: At least there's one column in X has more than 2 unique elements y cannot be all the same value Parameters: X {list} -- 2d list object with int, float or str y {list} -- 1d list object with int or float max_depth {int} -- The maximum depth of the tree. (default: {2}) min_samples_split {int} -- The minimum number of samples required to split an internal node (default: {2}) """ # max_depth reflects the height of the tree, at most how many steps # will we take to make decisions # max_depth反映的是树的高度,最多决策多少步 # min_samples_split determines how many times we could split in a # feture, the smaller min_samples_split is, the more times # min_samples_split决定了在一个feature上可以反复split多少次, # min_samples_split越小,可以split的次数越多 # Initialize with depth, node, indexes self.root = Node() que = [[0, self.root, list(range(len(y)))]] # logger.debug(que) # Breadth-First Search # 决策树是一层一层构建起来的,所以要用广度优先算法 depth = 0 m = len(X[0]) self.feature_types = [self._detect_feature_type(self._get_column(X, i)) for i in range(m)] logger.debug(self.feature_types) while que: depth, nd, idx = que.pop(0) # Terminate loop if tree depth is more than max_depth # At first, que is a list with only one element, if there is no new # elements added to que, the loop can only run once # que开始是只有一个元素的list,如果没有新的元素加入,就只能循环一次,下一次que就为空了 if depth == max_depth: break # Stop split when number of node samples is less than # min_samples_split or Node is 100% pure. if len(idx) < min_samples_split or set( map(lambda i: y[i], idx)) == 1: continue # Stop split if no feature has more than 2 unique elements feature_rets = self._choose_feature(X, y, idx) if feature_rets is None: continue # if feature_rets is None, it means that for X's with these idx, # the split should be stopped # Split nd.feature, nd.split, split_avg, idx_split = feature_rets nd.left = Node(split_avg[0]) nd.right = Node(split_avg[1]) que.append([depth+1, nd.left, idx_split[0]]) que.append([depth+1, nd.right, idx_split[1]]) # Update tree depth and rules self.height = depth self._get_rules() def print_rules(self): """Print the rules of all the regression decision tree leaf nodes. """ for i, rule in enumerate(self.rules): literals, score = rule print("Rule %d: " % i, ' | '.join( literals) + ' => split_hat %.4f' % score) def _predict(self, row: list) -> float: """Auxiliary function of predict. Arguments: row {list} -- 1D list with int, float or str Returns: int or float -- prediction of yi """ nd = self.root while nd.left and nd.right: if self.feature_types[nd.feature]: # categorical split if row[nd.feature] == nd.split: nd = nd.left else: nd = nd.right else: # continuous split if row[nd.feature] < nd.split: nd = nd.left else: nd = nd.right return nd.score # nd.score must be float? def predict(self, X: list) -> List[float]: """Get the prediction of y. Prediction in batch, 批量预测 Arguments: X {list} -- 2d list object with int, float or str Returns: list -- 1d list object with int or float """ return [self._predict(Xi) for Xi in X] @run_time def test_continuous_continuous(): """test: x is continous, and y is continuous""" print("Tesing the accuracy of RegressionTree...") # Load data X, y = load_boston_house_prices() # Split data randomly, train set rate 70% X_train, X_test, y_train, y_test = train_test_split( X, y, random_state=10) # Train model reg = RegressionTree() reg.fit(X=X_train, y=y_train, max_depth=4) # Show rules reg.print_rules() # Model accuracy get_r2(reg, X_test, y_test) @run_time def test_arbitrary_continuous(): """test: x is continuous or categorical, and y is continuous""" print("Tesing the accuracy of RegressionTree...") # Load data X, y = load_bike_sharing_data() logger.debug(X[0]) logger.debug([max(y), sum(y)/len(y), min(y)]) # Split data randomly, train set rate 70% X_train, X_test, y_train,
(isClassification == False): if (((n1*n2) != 0)): newAcurracyValueToAdd = (1-(abs(n2-n1)/abs(n2))) if (newAcurracyValueToAdd < 0): newAcurracyValueToAdd = 0 predictionAcurracy = predictionAcurracy + newAcurracyValueToAdd if (isClassification == True): if (abs(n1) > abs(n2)): # n2 has to be the one with the highest value with respect to n1 n2 = predictedData[row][0] n1 = self.y_samplesList[row][0] if ((n1==0) and (n2>=-1 and n2<=1) and (n2!=0)): predictionAcurracy = predictionAcurracy + ((1-abs(n2))/(1-n1)) if (n1==n2): predictionAcurracy = predictionAcurracy + 1 predictionAcurracy = predictionAcurracy/numberOfDataPoints*100 # We save the current the modeling results bestModelingResults = [] bestModelingResults.append(matrix_b) bestModelingResults.append(predictionAcurracy) bestModelingResults.append(predictedData) bestModelingResults.append("Coefficients distribution is as follows: y = bo + b1*x + b2*x^2 + b3*x^3 + ... + bn*x^n") allAccuracies = [] temporalRow = [] temporalRow.append(bestModelingResults[1]) temporalRow.append(bestModelingResults[0]) temporalRow.append(self.x_samplesList) allAccuracies.append(temporalRow) bestModelingResults.append(allAccuracies) # We recreate some things to apply the Matrix method in the permutation # section rowLengthOfBothMatrixes = len(self.y_samplesList) currentMatrix_x = [] for row in range(0, rowLengthOfBothMatrixes): temporalRow = [] temporalRow.append(1) for currentIndependentVariable in range(0, numberOfIndependentVariables): temporalRow.append(self.x_samplesList[row][0]**(currentIndependentVariable+1)) currentMatrix_x.append(temporalRow) originalMatrix_x = currentMatrix_x from .MortrackML_Library import Combinations possibleCombinations = [] for n in range (0, len(originalMatrix_x[0])): possibleCombinations.append(n) combinations = Combinations(possibleCombinations) if (evtfbmip == True): # ----------------------------------------------------------------------------------------------- # # ----- We now get all possible combinations/permutations with the elements of our equation ----- # # ----------------------------------------------------------------------------------------------- # customizedPermutations = combinations.getCustomizedPermutationList() customizedPermutations.pop(0) # We remove the null value customizedPermutations.pop(len(customizedPermutations)-1) # We remove the last one because we already did it for actualPermutation in range(0, len(customizedPermutations)): newOriginalMatrix_x = [] for row in range(0, rowLengthOfBothMatrixes): temporalRow = [] for column in range(0, len(customizedPermutations[actualPermutation])): temporalRow.append(originalMatrix_x[row][customizedPermutations[actualPermutation][column]]) newOriginalMatrix_x.append(temporalRow) # ----- WE START SEARCHING FOR THE BEST MODELING RESULTS USING CURRENT PERMUTATION ----- # # We define a variable to save the search patterns in original matrix x possibleCombinations = [] for n in range (0, len(newOriginalMatrix_x[0])): possibleCombinations.append(n) combinations = Combinations(possibleCombinations) searchPatterns = combinations.getPositionCombinationsList() # We start to search for the coefficients that give us the best accuracy for currentSearchPattern in range(0, len(searchPatterns)): currentMatrix_x = [ [ 0 for i in range(len(newOriginalMatrix_x[0])) ] for j in range(rowLengthOfBothMatrixes) ] # We assign the current distribution that we want to study of the # variables of the matrix x, to evaluate its resulting regression # coefficients for currentColumnOfMatrix_x in range(0, len(newOriginalMatrix_x[0])): for column in range(0, len(newOriginalMatrix_x[0])): if (customizedPermutations[actualPermutation][searchPatterns[currentSearchPattern][currentColumnOfMatrix_x]] == column): for row in range(0, rowLengthOfBothMatrixes): currentMatrix_x[row][currentColumnOfMatrix_x] = originalMatrix_x[row][column] # We get the Transposed matrix of matrix X. NOTE: We create a temporal # variable to save matrix x because remember that in python, children # and parent inheritance is ignored when using clases temporalMatrix1 = currentMatrix_x transposedMatrix_X = matrixMath.getTransposedMatrix(temporalMatrix1) # WE GET MATRIX A. NOTE: We create a temporal # variable to save matrix x because remember that in python, children # and parent inheritance is ignored when using clases temporalMatrix1 = transposedMatrix_X temporalMatrix2 = currentMatrix_x matrix_A = matrixMath.getMultiplication(temporalMatrix1, temporalMatrix2) # WE GET MATRIX g. NOTE: We create a temporal # variable to save matrix x because remember that in python, children # and parent inheritance is ignored when using clases temporalMatrix1 = transposedMatrix_X temporalMatrix2 = self.y_samplesList matrix_g = matrixMath.getMultiplication(temporalMatrix1, temporalMatrix2) # We get inverse matrix of matrix A. inversedMatrix_A = matrixMath.getInverse(matrix_A) # We get matrix b, which will contain the coeficient values matrix_b = matrixMath.getMultiplication(inversedMatrix_A, matrix_g) # ----- WE DETERMINE THE ACCURACY OF THE OBTAINED COEFFICIENTS ----- # # We re-arrange the obtained coefficients to then evaluate this # model currentMatrix_b = [ [ 0 for i in range(1) ] for j in range(len(originalMatrix_x[0])) ] for row in range(0, len(newOriginalMatrix_x[0])): trueRowOfCoefficient = customizedPermutations[actualPermutation][searchPatterns[currentSearchPattern][row]] currentMatrix_b[trueRowOfCoefficient][0] = matrix_b[row][0] # We obtain the predicted data through the current obtained # coefficients newNumberOfIndependentVariables = len(currentMatrix_x[0]) predictedData = [] for row in range(0, len(self.y_samplesList)): temporalRow = [] actualIc = currentMatrix_b[0][0] for currentIndependentVariable in range(0, (newNumberOfIndependentVariables-1)): actualIc = actualIc + currentMatrix_b[currentIndependentVariable+1][0]*self.x_samplesList[row][0]**(currentIndependentVariable+1) temporalRow.append(actualIc) predictedData.append(temporalRow) predictionAcurracy = 0 numberOfDataPoints = len(self.y_samplesList) for row in range(0, numberOfDataPoints): n2 = self.y_samplesList[row][0] n1 = predictedData[row][0] if (isClassification == False): if (((n1*n2) != 0)): newAcurracyValueToAdd = (1-(abs(n2-n1)/abs(n2))) if (newAcurracyValueToAdd < 0): newAcurracyValueToAdd = 0 predictionAcurracy = predictionAcurracy + newAcurracyValueToAdd if (isClassification == True): if (abs(n1) > abs(n2)): # n2 has to be the one with the highest value with respect to n1 n2 = predictedData[row][0] n1 = self.y_samplesList[row][0] if ((n1==0) and (n2>=-1 and n2<=1) and (n2!=0)): predictionAcurracy = predictionAcurracy + ((1-abs(n2))/(1-n1)) if (n1==n2): predictionAcurracy = predictionAcurracy + 1 predictionAcurracy = predictionAcurracy/numberOfDataPoints*100 temporalRow = [] temporalRow.append(predictionAcurracy) temporalRow.append(currentMatrix_b) temporalRow.append(currentMatrix_x) allAccuracies.append(temporalRow) # We save the current the modeling results if they are better than # the actual best currentBestAccuracy = bestModelingResults[1] if (predictionAcurracy > currentBestAccuracy): bestModelingResults = [] bestModelingResults.append(currentMatrix_b) bestModelingResults.append(predictionAcurracy) bestModelingResults.append(predictedData) bestModelingResults.append("Coefficients distribution is as follows: y = bo + b1*x + b2*x^2 + b3*x^3 + ... + bn*x^n") # We include all the reports of all the models studied to the reporting # variable that contains the report of the best fitting model and we # then return it bestModelingResults.append(allAccuracies) return bestModelingResults """ getMultiplePolynomialRegression( orderOfThePolynomial = "whole number to represent the desired order of the polynomial model to find", evtfbmip="True to indicate to Eliminate Variables To Find Better Model If Possible. False if the contrary is desired", isClassification="set to True if you are solving a classification problem. False if otherwise") This method returns the best fitting model of a dataset to predict its behavior through a Multiple Polynomial Regression that may have any number of independent variables (x). This method gets a model by through the following equation format: y = bo + b1*x1 + b2*x1^2 + ... + bn*x1^n + b3*x2 + b4*x2^2 + ... + bn*x2^n + b5*x3 + b6*x3^2 + ... + bn*xn^n CODE EXAMPLE: matrix_y = [ [14.05], [10.55], [7.55], [14.93], [9.48], [6.59], [16.56], [13.63], [9.23], [15.85], [11.75], [8.78], [22.41], [18.55], [15.93], [21.66], [17.98], [16.44] ] matrix_x = [ [75, 15], [100, 15], [125, 15], [75, 17.5], [100, 17.5], [125, 17.5], [75, 20], [100, 20], [125, 20], [75, 22.5], [100, 22.5], [125, 22.5], [75, 25], [100, 25], [125, 25], [75, 27.5], [100, 27.5], [125, 27.5] ] from MortrackLibrary.machineLearning import MortrackML_Library as mSL regression = mSL.Regression(matrix_x, matrix_y) # "orderOfThePolynomial" = "whole number to represent the desired order of the polynomial model to find" # "evtfbmip" stands for "Eliminate Variables To Find Better Model If Possible" modelingResults = regression.getMultiplePolynomialRegression(orderOfThePolynomial=4, evtfbmip=True, isClassification=False) modelCoefficients = modelingResults[0] accuracyFromTraining = modelingResults[1] predictedData = modelingResults[2] coefficientDistribution = modelingResults[3] allModeledAccuracies = modelingResults[4] RESULT OF CODE: modelCoefficients = [[-1.745717777706403e-08], [0], [0.07581354676648289], [-0.00104662847289827], [3.942075523087618e-06], [-14.202436859894078], [0.670002091817878], [-0.009761974914994198], [-5.8006065221068606e-15]] accuracyFromTraining = 91.33822971744071 predictedData = [[14.401799310251064], [10.481799480368835], [7.578466505722503], [13.96195814877683], [10.041958318894615], [7.1386253442482825], [15.490847097061135], [11.57084726717892], [8.667514292532587], [18.073281006823265], [14.15328117694105], [11.249948202294718], [20.794074729782523], [16.874074899900307], [13.970741925253975], [22.73804311765818], [18.818043287775964], [15.914710313129632]] coefficientDistribution = 'Coefficients distribution is as follows: y = bo + b1*x1 + b2*x1^2 + ... + bn*x1^n + b3*x2 + b4*x2^2 + ... + bn*x2^n + b5*x3 + b6*x3^2 + ... + bn*xn^n' allModeledAccuracies["independent variable distribution used to get a model"]["model accuracy", "model coefficients obtained but with original distribution", "matrix x data"] = # NOTE: since this variable contains large amounts of information, it # will not be displayed but only described on how to use it. """ def getMultiplePolynomialRegression(self, orderOfThePolynomial, evtfbmip=False, isClassification=True): # We import the libraries we want to use and we create the class we # use from it from ..linearAlgebra import MortrackLinearAlgebraLibrary as mLAL matrixMath = mLAL.MatrixMath() # We define the variables to use within our code numberOfIndependentVariables = len(self.x_samplesList[0]) rowLengthOfBothMatrixes = len(self.y_samplesList) matrix_x = [] # MATRIX X MATHEMATICAL PROCEDURE to add the 1's in the first column of # each row and to add the additional columns that will represent the # polynomials that we want to get according to the input value of # this method's argument "orderOfThePolynomial" for row in range(0, rowLengthOfBothMatrixes): temporalRow = [] temporalRow.append(1) for actualIndependentVariable in range(0, numberOfIndependentVariables): xMultiplicationsResult = 1 for actualOrder in range(0,
<reponame>LaGauffre/SMCCompoMo<gh_stars>1-10 # -*- coding: utf-8 -*- """ Created on Wed Sep 2 15:42:14 2020 @author: pierr """ import scipy.special as sp import math as ma import pandas as pd import numpy as np import scipy.stats as st from scipy.optimize import minimize def sim_gam_par(n, k, α, θ): """ Sample from a Gamma-Pareto model. Parameters ---------- n : int sample size. k : float shape parameter of the Gamma distribution. α : float Tail index of the Pareto distribution. Returns ------- array A sample drawn from the Weibull-Pareto distribution. Example ------- k, α, θ = 1/2, 1/2, 5 X = sim_gam_par(1000, k, α, θ) """ β = θ / (k + α) r = α*sp.gamma(k)* sp.gammainc(k, θ / β) * np.exp(k+α)*(k+α)**(-k) / \ (1+ α*sp.gamma(k) * sp.gammainc(k, θ / β) * np.exp(k+α)*(k+α)**(-k)) gamma_rv = st.gamma(k) par_rv = st.pareto(α) binom_rv = st.binom(1, r) par_rvs = θ * par_rv.rvs(size = n) binom_rvs = binom_rv.rvs(size = n) gamma_rvs = β * gamma_rv.ppf(sp.gammainc(k, θ / β) *\ np.random.uniform(size = n)) return(binom_rvs * gamma_rvs + (1 - binom_rvs) * par_rvs) def logp_gam_par(X): """ Likelihood function of the Gamma-Pareto model. Parameters ---------- X : Array Insurance losses. Returns ------- function Allows the evaluation of the likelihood in the parameters provided the data. Example ------- k, α, θ = 1/2, 1/2, 5 X = sim_gam_par(100, k, α, θ) logp = logp_gam_par(X) logp(np.array([k, α, θ])) costFn = lambda parms: -logp(parms) bnds = ((0, None), (0, None), (0, None)) θ0 = (1, 1, 1) minRes = minimize(costFn, θ0,bounds=bnds) minRes """ # parms = particles.to_numpy()[4] def logp(parms): k, α, θ = tuple(parms) if np.all(parms > 0): β = θ / (k + α) r = α*sp.gamma(k)* sp.gammainc(k,θ / β) * np.exp(k+α)*(k+α)**(-k) / \ (1+ α*sp.gamma(k) * sp.gammainc(k, θ / β) * np.exp(k+α)*(k+α)**(-k)) if β > 0 and r > 0 and r < 1: X1 = X[X < θ] X2 = X[X >= θ] F1 = sp.gammainc(k, θ / β) return(len(X1) * (np.log(r) - np.log(F1) - np.log(sp.gamma(k)) - \ k * np.log(β)) - sum(X1) / β +\ (k-1) * sum(np.log(X1)) + len(X2) *(np.log(1-r) +\ np.log(α) + α * np.log(θ)) - (α + 1) * sum(np.log(X2)) ) else: return(-np.inf) else: return(-np.inf) return logp def logd_gam_par(parms): """ density function of the Gamma-Pareto model. Parameters ---------- parms : ndArray particles. Returns ------- function Allows the evaluation of the density functions for multiple parameter values. """ k, α, θ = parms[:,0], parms[:,1], parms[:,2] β = θ / (k + α) r = α*sp.gamma(k)* sp.gammainc(k,θ / β) * np.exp(k+α)*(k+α)**(-k) / \ (1+ α*sp.gamma(k) * sp.gammainc(k, θ / β) * np.exp(k+α)*(k+α)**(-k)) F1 = sp.gammainc(k, θ / β) def logd(x): res = np.zeros(len(α)) s = np.logical_and(β > 0, r > 0, r < 1) s1 = np.logical_and(s, x < θ) s2 = np.logical_and(s, x >= θ) res1 = np.log(r[s1]) - np.log(F1[s1]) - np.log(sp.gamma(k[s1])) - \ k[s1] * np.log(β[s1]) - x / β[s1] + (k[s1]-1) * np.log(x) res2 = (np.log(1-r[s2]) + np.log(α[s2]) + α[s2] * \ np.log(θ[s2])) - (α[s2] + 1) * np.log(x) res[np.where(s1)] = res1 res[np.where(s2)] = res2 res[np.where(np.invert(s))] = -np.inf return(res) return logd def sim_wei_par(n, k, α, θ): """ Sample from a Weibull-Pareto model. Parameters ---------- n : int sample size. k : float shape parameter of the Weibull distribution. α : float Tail index of the Pareto distribution. Returns ------- array A sample drawn from the Weibull-Pareto distribution. Example ------- k, α, θ = 1/2, 1/2, 5 X = sim_wei_par(1000, k, α, θ) """ β = (k / (k + α))**(1 / k) * θ r = (α / θ)*(1 - np.exp(-(k + α) / k))\ / (α / θ + (k / θ)*np.exp(-(k + α) / k)) weib_rv = st.weibull_min(k) par_rv = st.pareto(α) binom_rv = st.binom(1, r) par_rvs = θ * par_rv.rvs(size = n) binom_rvs = binom_rv.rvs(size = n) weib_rvs = β * weib_rv.ppf(weib_rv.cdf(θ / β) *\ np.random.uniform(size = n)) return(binom_rvs * weib_rvs + (1 - binom_rvs) * par_rvs) def logp_wei_par(X): """ Likelihood function of the Weibull-Pareto model. Parameters ---------- X : Array Insurance losses. Returns ------- function Allows the evaluation of the likelihood in the parameters provided the data. Example ------- k, α, θ = 1/2, 1/2, 5 X = sim_wei_par(1000, k, α, θ) logp = logp_wei_par(X) logp(np.array([k, α, θ)]) costFn = lambda parms: -logp(parms) bnds = ((0, None), (0, None), (0, None)) θ0 = (1, 1, 1) minRes = minimize(costFn, θ0,bounds=bnds) minRes """ # parms = particles.to_numpy()[4] def logp(parms): k, α, θ = tuple(parms) if np.all(parms > 0): β = (k / (k + α))**(1 / k) * θ r = (α / θ)*(1 - np.exp(-(k + α) / k)) / (α / θ + (k / θ) *\ np.exp(-(k+α)/k)) if β > 0 and r > 0 and r < 1: X1 = X[X < θ] X2 = X[X >= θ] F1 = 1 - np.exp(-(θ / β)**k) return(len(X1) * \ ( np.log(r) + np.log(k) - k * np.log(β) ) + \ (k-1) * sum(np.log(X1)) - sum( (X1/ β)**k ) -\ len(X1) * np.log(F1) + len(X2) *(np.log(1-r) +\ np.log(α) + α * np.log(θ)) - (α + 1) * sum(np.log(X2)) ) else: return(-np.inf) else: return(-np.inf) return logp def logd_wei_par(parms): """ density function of the Weibull-Pareto model. Parameters ---------- parms : ndArray particles. Returns ------- function Allows the evaluation of the density functions for multiple parameter values. """ k, α, θ = parms[:,0], parms[:,1], parms[:,2] β = (k / (k + α))**(1 / k) * θ r = (α / θ)*(1 - np.exp(-(k + α) / k)) / (α / θ + (k / θ) * \ np.exp(-(k+α)/k)) F1 = 1 - np.exp(-(θ / β)**k) def logd(x): res = np.zeros(len(α)) s = np.logical_and(β > 0, r > 0, r < 1) s1 = np.logical_and(s, x < θ) s2 = np.logical_and(s, x >= θ) res1 = (np.log(r[s1]) + np.log(k[s1]) - k[s1] * np.log(β[s1])) + \ (k[s1]-1) * np.log(x) - (x/ β[s1]) ** k[s1] - \ np.log(F1[s1]) res2 = (np.log(1-r[s2]) + np.log(α[s2]) + α[s2] * \ np.log(θ[s2])) - (α[s2] + 1) * np.log(x) res[np.where(s1)] = res1 res[np.where(s2)] = res2 res[np.where(np.invert(s))] = - np.inf return(res) return logd def phi(z): """ Cdf of unit normal distribution Parameters ---------- z : Float Returns ------- CDF of unit normal distribution """ return( 1 / 2 * (1 + sp.erf(z /np.sqrt(2)))) def sim_lnorm_par(n, σ, α, θ): """ Sample from a lognormal-Pareto model. Parameters ---------- n : int sample size. σ : float shape parameter of the lognormal distribution. α : float Tail index of the Pareto distribution. θ: float Threshold parameter Returns ------- array A sample drawn from the lognormal-Pareto distribution. Example ------- n, σ, α, θ =10, 1/2, 1/2, 5 X = sim_lnorm_par(n, σ, α, θ) """ μ = np.log(θ) - α * σ**2 r = (α * σ *np.sqrt(2* ma.pi) *phi(α * σ) ) / \ (α * σ *np.sqrt(2* ma.pi) *phi(α * σ) + np.exp(-(α*σ)**2 / 2)) lnorm_rv = st.lognorm(s = σ, scale = np.exp(μ)) par_rv = st.pareto(α) binom_rv = st.binom(1, r) par_rvs = θ * par_rv.rvs(size = n) binom_rvs = binom_rv.rvs(size = n) lnorm_rvs = lnorm_rv.ppf(lnorm_rv.cdf(θ) *\ np.random.uniform(size = n)) return(binom_rvs * lnorm_rvs + (1 - binom_rvs) * par_rvs) def logp_lnorm_par(X): """ Likelihood function of the lognormal-Pareto model. Parameters ---------- X : Array Insurance losses. Returns ------- function Allows the evaluation of the likelihood in the parameters provided the data. Example ------- n, σ, α, θ =100, 1/2, 1/2, 5 X = sim_lnorm_par(n, σ, α, θ) logp = logp_lnorm_par(X) logp(np.array([σ, α, θ])) costFn = lambda parms: -logp(parms) bnds = ((0, None), (0, None), (0, None)) θ0 = (1, 1, 3) minRes = minimize(costFn, θ0,bounds=bnds) minRes """ def logp(parms): σ, α, θ = tuple(parms) if np.all(parms > 0):
<reponame>daccordeon/CEonlyPony<gh_stars>0 """Calculates the same set of injections for a set of networks. Based on the old calculate_injections.py and gwbench's multi_network.py example script, this processes the injections (e.g. in data_raw_injections/) in union for each network in a set and saves the results (e.g. in data_processed_injections/). This is faster than the previous implementation if detectors are shared between the networks because the detector responses are only calculated once. Usage: See the example in run_unified_injections.py. License: BSD 3-Clause License Copyright (c) 2022, <NAME>. All rights reserved except for those for the gwbench code which remain reserved by <NAME>; the gwbench code is included in this repository for convenience. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ from typing import List, Set, Dict, Tuple, Optional, Union from numpy.typing import NDArray import os import numpy as np from gwbench import network from gwbench.basic_relations import f_isco_Msolar from useful_functions import ( without_rows_w_nan, parallel_map, HiddenPrints, PassEnterExit, ) from generate_injections import filter_bool_for_injection, fisco_obs_from_Mc_eta from network_subclass import NetworkExtended def multi_network_results_for_injection( network_specs: List[List[str]], inj: NDArray[np.float64], base_params: Dict[str, Union[int, float]], wf_dict: Dict[str, Union[str, Optional[Dict[str, str]], bool, int]], deriv_dict: Dict[ str, Union[ str, Tuple[str, ...], List[Set[str]], bool, Optional[Dict[str, Union[float, str, int]]], ], ], misc_settings_dict: Dict[str, Optional[int]], debug: bool = False, ) -> Dict[str, Tuple[float, ...]]: """Returns the benchmark as a dict of tuples for a single injection using the inj and base_params and the settings dicts through the networks in network_specs. If a single network fails an injection, then the unified results will save it as a np.nan in all networks so that the universe of injections is the same between each network. TODO: check that this doesn't bias the results away from loud sources that we care about. Args: network_specs: Networks to pass to gwbench's multi-network pipeline. inj: Injection parameters for each injection, e.g. chirp mass and luminosity distance. base_params: Common parameters among injections, e.g. time of coalesence. wf_dict: Waveform dictionary of model name and options, also contains the science case string. deriv_dict: Derivative options dictionary. misc_settings_dict: Options for gwbench, e.g. whether to account for Earth's rotation about its axis. debug: Whether to debug. Returns: Dict[str, Tuple[float]]: Keys are repr(network_spec). Each value is (redshift, SNR, logMc err, logDL err, eta err, iota err, 90%-credible sky-area in sqr degrees) or a tuple of seven np.nan's if the injection failed in any network. """ output_if_injection_fails = dict( ( (repr(network_spec), tuple(np.nan for _ in range(7))) for network_spec in network_specs ) ) varied_keys = [ "Mc", "eta", "chi1x", "chi1y", "chi1z", "chi2x", "chi2y", "chi2z", "DL", "iota", "ra", "dec", "psi", "z", ] varied_params = dict(zip(varied_keys, inj)) z = varied_params.pop("z") inj_params = dict(**base_params, **varied_params) # subtlety, if V+ (or aLIGO) is present in any network, then f is truncated for V+ for all networks (since f is shared below). TODO: figure out how common this is aLIGO_or_Vplus_used = ("aLIGO" in deriv_dict["unique_tecs"]) or ( "V+" in deriv_dict["unique_tecs"] ) if not filter_bool_for_injection( inj, misc_settings_dict["redshifted"], wf_dict["coeff_fisco"], wf_dict["science_case"], aLIGO_or_Vplus_used=aLIGO_or_Vplus_used, debug=debug, ): return output_if_injection_fails fmin, fmax = 5.0, wf_dict["coeff_fisco"] * fisco_obs_from_Mc_eta( inj_params["Mc"], inj_params["eta"], redshifted=misc_settings_dict["redshifted"], z=z, ) if aLIGO_or_Vplus_used: fmax_bounds = (11, 1024) else: fmax_bounds = (6, 1024) fmax = float(max(min(fmax, fmax_bounds[1]), fmax_bounds[0])) # df linearly transitions from 1/16 Hz (fine from B&S2022) to 10 Hz (coarse to save computation time) df = ((fmax - fmax_bounds[0]) / (fmax_bounds[1] - fmax_bounds[0])) * 10 + ( (fmax_bounds[1] - fmax) / (fmax_bounds[1] - fmax_bounds[0]) ) * 1 / 16 f = np.arange(fmin, fmax + df, df) # passing parameters to gwbench, hide stdout (i.e. prints) if not debugging, stderr should still show up if not debug: entry_class = HiddenPrints else: entry_class = PassEnterExit with entry_class(): # precalculate the unique components (detector derivatives and PSDs) common among all networks # calculate the unique detector response derivatives loc_net_args = ( network_specs, f, inj_params, deriv_dict["deriv_symbs_string"], wf_dict["wf_model_name"], wf_dict["wf_other_var_dic"], deriv_dict["conv_cos"], deriv_dict["conv_log"], misc_settings_dict["use_rot"], misc_settings_dict["num_cores"], ) if not deriv_dict["numerical_over_symbolic_derivs"]: unique_loc_net = network.unique_locs_det_responses(*loc_net_args) else: # update eta if too close to its maximum value for current step size, https://en.wikipedia.org/wiki/Chirp_mass#Definition_from_component_masses eta_max = 0.25 deriv_dict["numerical_deriv_settings"]["step"] = min( deriv_dict["numerical_deriv_settings"]["step"], (eta_max - inj_params["eta"]) / 10, ) unique_loc_net = network.unique_locs_det_responses( *loc_net_args, deriv_dict["numerical_deriv_settings"]["step"], deriv_dict["numerical_deriv_settings"]["method"], deriv_dict["numerical_deriv_settings"]["order"], deriv_dict["numerical_deriv_settings"]["n"], ) # get the unique PSDs for the various detector technologies unique_tec_net = network.unique_tecs(network_specs, f) # perform the analysis of each network from the unique components multi_network_results_dict = dict() for i, network_spec in enumerate(network_specs): # if net only exists here, then the subclass is pointless. re-factor to justify using subclass net = network.Network(network_spec) # get the correct network from the unique components calculated above. this avoids the need to .set_net_vars, .set_wf_vars, .setup_ant_pat_lpf_psds, .calc_det_responses, .calc_det_responses_derivs_num/sym, net.get_det_responses_psds_from_locs_tecs(unique_loc_net, unique_tec_net) # calculate the network SNRs net.calc_snrs(only_net=misc_settings_dict["only_net"]) # calculate the Fisher and covariance matrices, then error estimates net.calc_errors(only_net=misc_settings_dict["only_net"]) # calculate the 90%-credible sky area (in [deg]^2) net.calc_sky_area_90(only_net=misc_settings_dict["only_net"]) # TODO: if using gwbench 0.7, still introduce a limit on net.cond_num based on machine precision errors that mpmath is blind to # if the FIM is zero, then the condition number is NaN and matrix is ill-conditioned (according to gwbench). TODO: try catching this by converting warnings to errors following <https://stackoverflow.com/questions/5644836/in-python-how-does-one-catch-warnings-as-if-they-were-exceptions#30368735> --> 54 and 154 converged in a second run if not net.wc_fisher: # unified injection rejection so that cosmological resampling can be uniform across networks, this now means that the number of injections is equal to that of the weakest network in the set but leads to a better comparison if debug: print( f"Rejected injection for {network_spec} and, therefore, all networks in the multi-network because of ill-conditioned FIM ({net.fisher}) with condition number ({net.cond_num}) greater than 1e15" ) return dict( (repr(network_spec_2), tuple(np.nan for _ in range(7))) for network_spec_2 in network_specs ) # multi_network_results_dict[repr(network_spec)] = tuple( # np.nan for _ in range(7) # ) else: # convert sigma_cos(iota) into sigma_iota abs_err_iota = abs(net.errs["cos_iota"] / np.sin(inj_params["iota"])) multi_network_results_dict[repr(network_spec)] = ( z, net.snr, net.errs["log_Mc"], net.errs["log_DL"], net.errs["eta"], abs_err_iota, net.errs["sky_area_90"], ) return multi_network_results_dict def multi_network_results_for_injections_file( results_file_name: str, network_specs: List[List[str]], injections_file: str, num_injs_per_redshift_bin: int, process_injs_per_task: Optional[int], base_params: Dict[str, Union[int, float]], wf_dict: Dict[str, Union[str, Optional[Dict[str, str]], bool, int]], deriv_dict: Dict[ str, Union[ str, Tuple[str, ...], List[Set[str]], bool, Optional[Dict[str, Union[float, str, int]]], ], ], misc_settings_dict: Dict[str, Optional[int]], data_path: str = "./data_processed_injections/task_files/", debug: int = False, ) -> None: """Runs the injections in the given file through the given set of networks and saves them as a .npy file. Benchmarks the first process_injs_per_task number of injections from injections_file + base_params for each of the networks in network_specs for the science_case and other settings in the three dict.'s provided, saves the results as a .npy file in results_file_name at data_path in the form (number of surviving injections, 7) with the columns of (redshift, SNR, logMc err, logDL err, eta err, iota err, 90%-credible sky-area in sqr degrees). Args: results_file_name: Output .npy filename template for
widgets.MenuBox( "menu_funcionario_vinculado_{0}".format(doce[2]), I(_class="fas fa-ellipsis-v"), widgets.MenuOption("Visualizar", **{ "_class": "botao_visualizar_funcionario wave_on_click", "_data-id_funcionario": doce[2], }), onOpen=self.bind_menu_docente ), **{"drag_and_drop": False} ) ) html_botao_falta = A( I(_class="fas fa-calendar-check"), **{ "_class": "botao_faltas icon_button", "_title": "Faltas dos Alunos", "_data-id_escola": self.id_escola, "_data-id_ano_letivo": self.ano_letivo, "_data-id_turma": data_turma.id, "_href": window.PhanterPWA.XWAY("registro-de-faltas", self.id_escola, self.ano_letivo, data_turma.id, **{"_retornar": "turma-especifica"}) } ) self.lista_de_disciplinas = None if data_turma.lista_de_disciplinas is not None: self.lista_de_disciplinas = data_turma.lista_de_disciplinas if "Educação Infantil" in data_turma.ensinos: if len(data_turma.ensinos) > 1: html_botao_falta = DIV( I(_class="fas fa-calendar-check"), **{ "_class": "botao_faltas_modal icon_button", "_title": "Faltas dos Alunos", "_data-id_escola": self.id_escola, "_data-id_ano_letivo": self.ano_letivo, "_data-id_turma": data_turma.id, "_data-tem_educacao_infantil": True, "_href": window.PhanterPWA.XWAY("registro-de-faltas", self.id_escola, self.ano_letivo, data_turma.id, **{"_retornar": "turma-especifica"}) } ) else: html_botao_falta = DIV( I(_class="fas fa-calendar-check"), **{ "_class": "botao_faltas_modal icon_button", "_title": "Faltas dos Alunos", "_data-id_escola": self.id_escola, "_data-id_ano_letivo": self.ano_letivo, "_data-id_turma": data_turma.id, "_data-tem_educacao_infantil": False, "_href": window.PhanterPWA.XWAY("registro-de-faltas", self.id_escola, self.ano_letivo, data_turma.id, **{"_retornar": "turma-especifica"}) } ) card = DIV( LABEL(data_turma.turma, " (", data_turma.quant_alunos, " Alunos)", _for="phanterpwa-card-panel-control-{0}".format(data_turma.id)), DIV( DIV( DIV( DIV( H3("Corpo Discente"), table, _class="p-row" ), corpo_docente, _class="phanterpwa-card-panel-control-content" ), DIV( DIV( I(_class="fas fa-user-graduate"), **{ "_class": "botao_alunos icon_button actived", "_title": "Adicione alunos à turma", "_data-id_escola": self.id_escola, "_data-id_ano_letivo": self.ano_letivo, "_data-id_turma": data_turma.id } ), A( I(_class="fas fa-table"), **{ "_class": "botao_diario_notas icon_button", "_title": "Diário de Notas da Turma", "_data-id_escola": self.id_escola, "_data-id_ano_letivo": self.ano_letivo, "_data-id_turma": data_turma.id, "_disabled": disabled, "_href": window.PhanterPWA.XWAY("diario-de-notas", self.id_escola, self.ano_letivo, data_turma.id, **{"_retornar": "turma-especifica"}) } ), A( I(_class="fas fa-clipboard-list"), **{ "_class": "botao_ficha_avaliativa icon_button", "_title": "Ficha Avaliativa", "_data-id_escola": self.id_escola, "_data-id_ano_letivo": self.ano_letivo, "_data-id_turma": data_turma.id, "_disabled": disabled, "_href": window.PhanterPWA.XWAY("ficha-avaliativa", self.id_escola, self.ano_letivo, data_turma.id, **{"_retornar": "turma-especifica"}) } ), html_botao_falta, A( I(_class="fas fa-calculator"), **{ "_class": "icon_button", "_title": "Total de Faltas", "_href": window.PhanterPWA.XWAY("frequencia", "total-de-faltas", self.id_escola, self.ano_letivo, data_turma.id, **{"_retornar": "turma-especifica"}) } ), DIV( I(_class="fas fa-chalkboard-teacher"), **{ "_class": "botao_professores icon_button", "_title": "Disciplinas e seus respectivos professores", "_data-id_escola": self.id_escola, "_data-id_ano_letivo": self.ano_letivo, "_data-id_turma": data_turma.id } ), DIV( I(_class="fas fa-clock"), **{ "_class": "botao_horario icon_button", "_title": "Horário da Turma", "_data-id_escola": self.id_escola, "_data-id_ano_letivo": self.ano_letivo, "_data-id_turma": data_turma.id, "_disabled": "disabled" } ), DIV( I(_class="fas fa-sort-alpha-up"), **{ "_class": "botao_auto_ordernar icon_button", "_title": "Ordenar alunos automaticamente", "_data-id_escola": self.id_escola, "_data-id_ano_letivo": self.ano_letivo, "_data-id_turma": data_turma.id, } ), DIV( I(_class="fas fa-award"), **{ "_class": "botao_definir_resultados icon_button", "_title": "Definir os resultados finais dos alunos", "_data-id_escola": self.id_escola, "_data-id_ano_letivo": self.ano_letivo, "_data-id_turma": data_turma.id, } ), A( I(_class="fas fa-print"), **{ "_class": "botao_imprimir_lista_alunos_turma icon_button", "_title": "Imprimir lista de alunos", "_href": window.PhanterPWA.XWAY("imprimir", "turma", self.id_escola, self.ano_letivo, data_turma.id, **{"_retornar": "turma-especifica"}) } ), _class="phanterpwa-card-panel-control-buttons" ), _class="phanterpwa-card-panel-control-wrapper has_buttons" ), _class="phanterpwa-card-panel-control-container" ), _id="phanterpwa-card-panel-control-{0}".format(data_turma.id), _class="phanterpwa-card-panel-control" ) return card def bind_menu_docente(self): jQuery( ".botao_visualizar_funcionario" ).off( "click.botao_visualizar_funcionario" ).on( "click.botao_visualizar_funcionario", lambda: self.get_visualizar_funcionario(this) ) def binds_menu_aluno(self): jQuery( ".botao_visualizar_aluno" ).off( "click.botao_visualizar_aluno" ).on( "click.botao_visualizar_aluno", lambda: self.get_visualizar_aluno(this) ) jQuery( ".botao_remover_matricula_da_turma" ).off( "click.botao_remover_matricula" ).on( "click.botao_remover_matricula", lambda: self.modal_confirmar_remover_matricula_da_turma(this) ) jQuery( ".botao_deletar_matricula" ).off( "click.botao_revogar_matricula" ).on( "click.botao_revogar_matricula", lambda: self.modal_confirmar_deletar_matricula(this) ) jQuery( ".botao_aluno_desistente" ).off( "click.botao_aluno_desistente" ).on( "click.botao_aluno_desistente", lambda: self.abrir_modal_desistencia(this) ) jQuery( ".botao_transferir_aluno" ).off( "click.botao_transferir_aluno" ).on( "click.botao_transferir_aluno", lambda: self.abrir_modal_transferencia(this) ) jQuery( ".botao_documentos" ).off( "click.botao_documentos" ).on( "click.botao_documentos", lambda: self.abrir_modal_documentos(this) ) def binds_painel_da_turma(self): jQuery( ".botao_alunos" ).off( "click.add_alunos" ).on( "click.add_alunos", lambda: self.get_alunos_remanejar(this) ) jQuery( ".botao_professores" ).off( "click.modal_disciplinas_professores" ).on( "click.modal_disciplinas_professores", lambda: self.get_disciplinas_professores(this) ) jQuery( ".botao_auto_ordernar" ).off( "click.botao_auto_ordernar" ).on( "click.botao_auto_ordernar", lambda: self.ordenagem_automatica(this) ) jQuery( ".botao_definir_resultados" ).off( "click.botao_definir_resultados" ).on( "click.botao_definir_resultados", lambda: self.modal_definir_resultados(this) ) jQuery( ".botao_faltas_modal" ).off( "click.botao_faltas_modal" ).on( "click.botao_faltas_modal", lambda: self.abrir_modal_faltas(this) ) def ordenagem_automatica(self, widget_instance): id_turma = jQuery(widget_instance).data("id_turma") window.PhanterPWA.ApiServer.PUT( "api", "turma", self.id_escola, self.ano_letivo, "auto-ordenar", id_turma, onComplete=lambda: self.get_dados_turma() ) def after_drop(self, ev, el): t_ordem = list() id_turma = jQuery(el).data("id_turma") id_matricula = jQuery(el).data("id_matricula") jQuery( "#phanterpwa-card-panel-control-{0}".format(id_turma) ).find( ".phanterpwa-widget-table-data" ).each(lambda: t_ordem.append( jQuery(this).data("id_matricula") )) lista_ordem = [] for li in t_ordem: if li not in lista_ordem: lista_ordem.append(li) window.PhanterPWA.GET( "api", "signforms", "phanterpwa-form-turma", onComplete=lambda data, ajax_status: self.depois_de_assinar_ordenacao_aluno( data, ajax_status, id_turma, id_matricula, lista_ordem) ) def update_turma(self, data, ajax_status, id_turma, json): json = data.responseJSON if ajax_status == "success": for x in json.data.turmas: card = self.xml_card(x, x.id) card.html_to("#turma_e_turmas_{0}".format(x.id)) self.binds_painel_da_turma() def depois_de_assinar_ordenacao_aluno(self, data, ajax_status, id_turma, id_matricula, lista_de_matriculas): json = data.responseJSON if ajax_status == "success": formdata = __new__(FormData()) formdata.append( "csrf_token", json.csrf ) formdata.append( "matriculas", JSON.stringify(lista_de_matriculas) ) window.PhanterPWA.ApiServer.PUT(**{ 'url_args': ["api", "turma", self.id_escola, self.ano_letivo, "ordenar", id_turma, id_matricula], 'form_data': formdata, 'onComplete': lambda: self.get_dados_turma() }) def get_alunos_remanejar(self, widget_instance): id_turma = jQuery(widget_instance).data("id_turma") window.PhanterPWA.GET( "api", "turma", self.id_escola, self.ano_letivo, "remanejar", id_turma, onComplete=lambda data, ajax_status: self.modal_add_alunos(data, ajax_status, id_turma) ) def modal_add_alunos(self, data, ajax_status, id_turma): json = data.responseJSON if ajax_status == "success": data_turma = json.data table = XTABLE( "remanejar-table-{0}".format(data_turma.id_turma), XTRH( "remanejar-table-head-{0}".format(data_turma.id_turma), "Foto", "Nome", "Data de Nascimento", "Turma Atual", "Endereço" ) ) cont_alunos = 0 titulo_adc = False for x in data_turma.alunos_sem_turmas: cont_alunos += 1 data_de_nascimento_formated = "" if x.alunos.data_nasc is not None and x.alunos.data_nasc is not js_undefined: data_de_nascimento_formated = validations.format_iso_date_datetime( x.alunos.data_nasc, "dd/MM/yyyy", "date" ) endereco_imagem_aluno = "/static/{0}/images/user.png".format( window.PhanterPWA.VERSIONING ) if x.alunos.foto3x4 is not None and x.alunos.foto3x4 is not js_undefined: endereco_imagem_aluno = "{0}/api/alunos/{1}/image".format( window.PhanterPWA.ApiServer.remote_address, x.alunos.foto3x4 ) if not titulo_adc: table.append(TR(TD("ALUNOS SEM TURMA", _colspan=5, _style="text-align: center; background-color: #d5d5d5;"))) titulo_adc = True table.append( XTRD( "turma-table-data-remaneja-sem_turma-{0}".format(x.alunos.id), TD( DIV(IMG(_src=endereco_imagem_aluno, _style="width:25px; height:25px; border-radius: 100%;")), ), TD( x.alunos.aluno, ), TD( data_de_nascimento_formated, ), I(_class="fas fa-times-circle", _style="color: red;"), TD( x.alunos.endereco, ), **{ "drag_and_drop": False, "_class": "linha_add_aluno_remanejar link", "_data-id_escola": self.id_escola, "_data-id_ano_letivo": self.ano_letivo, "_data-id_turma": data_turma.id_turma, "_data-id_aluno": x.alunos.id, "_data-id_serie": x.series.id, "_data-id_matricula": x.matriculas.id } ) ) titulo_alun = False for x in data_turma.alunos_outras_turmas: cont_alunos += 1 data_de_nascimento_formated = "" if x.alunos.data_nasc is not None and x.alunos.data_nasc is not js_undefined: data_de_nascimento_formated = validations.format_iso_date_datetime( x.alunos.data_nasc, "dd/MM/yyyy", "date" ) endereco_imagem_aluno = "/static/{0}/images/user.png".format( window.PhanterPWA.VERSIONING ) if x.alunos.foto3x4 is not None and x.alunos.foto3x4 is not js_undefined: endereco_imagem_aluno = "{0}/api/alunos/{1}/image".format( window.PhanterPWA.ApiServer.remote_address, x.alunos.foto3x4 ) if not titulo_alun: table.append(TR(TD("ALUNOS EM OUTRA TURMA", _colspan=5, _style="text-align: center; background-color: #d5d5d5;"))) titulo_alun = True table.append( XTRD( "turma-table-data-remanejar-tem_turma-{0}".format(x.alunos.id), TD( DIV(IMG(_src=endereco_imagem_aluno, _style="width:25px; height:25px; border-radius: 100%;")), ), TD( x.alunos.aluno, ), TD( data_de_nascimento_formated, ), TD( x.turmas.turma ), TD( x.alunos.endereco, ), **{ "drag_and_drop": False, "_class": "linha_add_aluno_remanejar link", "_data-id_escola": self.id_escola, "_data-id_ano_letivo": self.ano_letivo, "_data-id_turma": data_turma.id_turma, "_data-id_aluno": x.alunos.id, "_data-id_serie": x.series.id, "_data-id_matricula": x.matriculas.id } ) ) if cont_alunos > 0: content = DIV( table, forms.FormWidget( "turma", "id_turma", **{ "value": data_turma.id_turma, "type": "hidden", "form": "turma", } ), _class="p-row" ) self.modal_remanejar = modal.Modal( "#modal_turma_case", **{ "title": CONCATENATE( DIV("REMANEJAR ALUNOS PARA A TURMA ", STRONG(str(data_turma.turma).upper())), DIV("Basta clicar sobre o(a) aluno(a) para ele(a) ser remanejado(a)", _style="color: red; font-size: 0.7em;"), ), "content": content, "form": "turma", "header_height": 65, } ) self.modal_remanejar.open() jQuery(".linha_add_aluno_remanejar").off( "click.adicionar_aluno_na_turma" ).on( "click.adicionar_aluno_na_turma", lambda: self._on_click_add_aluno_turma(this) ) forms.SignForm("#form-turma", after_sign=lambda: forms.ValidateForm("#form-turma")) else: window.PhanterPWA.flash("Não há alunos matriculados para a série da turma") def _on_click_add_aluno_turma(self, widget_instance): id_matricula = jQuery(widget_instance).data("id_matricula") id_turma = jQuery(widget_instance).data("id_turma") jQuery(widget_instance).fadeOut() form_remanejar = jQuery("#form-turma")[0] form_remanejar = __new__(FormData(form_remanejar)) window.PhanterPWA.ApiServer.PUT(**{ 'url_args': ["api", "turma", self.id_escola, self.ano_letivo, "remanejar", id_turma, id_matricula], 'form_data': form_remanejar, 'onComplete': lambda data, ajax_status: self.update_turma(data, ajax_status, id_turma) }) def modal_confirmar_remover_matricula_da_turma(self, el): id_matricula = jQuery(el).data("id_matricula") content = DIV( P("Atenção, o(a) aluno(a) sairá da turma permanentemente." " Se ele possuir notas, faltas, pareceres, etc. Ou seja, ", "informações dele vinculados a esta turma, tudo será perdido."), P("Tem certeza que deseja remover esta matrícula?"), _class="p-row" ) footer = DIV( forms.FormButton( "remover_matricula_da_turma_sim", "Sim", _class="btn-autoresize wave_on_click waves-phanterpwa" ), forms.FormButton( "remover_matricula_da_turma_nao", "Não", _class="btn-autoresize wave_on_click waves-phanterpwa" ), _class='phanterpwa-form-buttons-container' ) self.modal_remover_matricula_da_turma = modal.Modal( "#modal_remover_matricula_da_turma_detalhe_container", **{ "title": "Retirar aluno da turma", "content": content, "footer": footer, "header_height": 50, "footer_height": 65, "form": "remover_matricula_da_turma" } ) self.modal_remover_matricula_da_turma.open() jQuery("#phanterpwa-widget-form-form_button-remover_matricula_da_turma_sim").off( "click.adicionar_remover_matricula_da_turma_sim" ).on( "click.adicionar_remover_matricula_da_turma_sim", lambda: self._on_click_remover_matricula_da_turma(id_matricula) ) jQuery("#phanterpwa-widget-form-form_button-remover_matricula_da_turma_nao").off( "click.adicionar_remover_matricula_da_turma_nao" ).on( "click.adicionar_remover_matricula_da_turma_nao", lambda: self.modal_remover_matricula_da_turma.close() ) def _on_click_remover_matricula_da_turma(self, id_matricula): window.PhanterPWA.PUT( "api", "matricula", "remover-da-turma", self.id_escola, self.ano_letivo, id_matricula, onComplete=self.depois_de_deletar_ou_retirar ) self.modal_remover_matricula_da_turma.close() def modal_confirmar_deletar_matricula(self, el): id_matricula = jQuery(el).data("id_matricula") content = DIV( P("Atenção, a matrícula do aluno será deletada permanentemente, se ", "o mesmo possuir notas, faltas, ficha individual, boletim, etc." " Tudo isto será perdido, inclusive o mesmo sairá da turma permanentemente."), P("Tem certeza que deseja deletar esta matrícula?"), _class="p-row" ) footer = DIV( forms.FormButton( "deletar_matricula_sim", "Sim", _class="btn-autoresize wave_on_click waves-phanterpwa" ), forms.FormButton( "deletar_matricula_nao", "Não", _class="btn-autoresize wave_on_click waves-phanterpwa" ), _class='phanterpwa-form-buttons-container' ) self.modal_deletar_matricula = modal.Modal( "#modal_deletar_matricula_detalhe_container", **{ "title": "Deletar Matrícula do(a) aluno(a)", "content": content, "footer": footer, "header_height": 50, "footer_height": 65, "form": "deletar_matricula" } ) self.modal_deletar_matricula.open() jQuery("#phanterpwa-widget-form-form_button-deletar_matricula_sim").off( "click.adicionar_deletar_matricula_sim" ).on( "click.adicionar_deletar_matricula_sim", lambda: self._on_click_deletar_matricula(id_matricula) ) jQuery("#phanterpwa-widget-form-form_button-deletar_matricula_nao").off( "click.adicionar_deletar_matricula_nao" ).on( "click.adicionar_deletar_matricula_nao", lambda: self.modal_deletar_matricula.close() ) def _on_click_deletar_matricula(self, id_matricula): window.PhanterPWA.DELETE( "api", "matricula", "deletar", self.id_escola, self.ano_letivo, id_matricula, onComplete=self.depois_de_deletar_ou_retirar ) self.modal_deletar_matricula.close() def depois_de_deletar_ou_retirar(self, data, ajax_status): if ajax_status == "success": self.get_dados_turma() def get_disciplinas_professores(self, widget_instance): id_turma = jQuery(widget_instance).data("id_turma") window.PhanterPWA.GET( "api", "turma", self.id_escola, self.ano_letivo, "disciplinas-professores", id_turma, onComplete=lambda data, ajax_status: self.modal_disciplinas_professores(data, ajax_status, id_turma) ) def modal_disciplinas_professores(self, data, ajax_status, id_turma): json = data.responseJSON if ajax_status == "success": disciplinas_turmas = json.data if disciplinas_turmas.disciplinas is not None: table = XTABLE( "disciplinas-professores-table-{0}".format(id_turma),
<reponame>jmm-montiel/Auto-PyTorch<gh_stars>1-10 import numpy as np import os import time import shutil import netifaces import traceback import logging from hpbandster.core.nameserver import NameServer, nic_name_to_host from hpbandster.core.result import logged_results_to_HBS_result from autoPyTorch.pipeline.base.sub_pipeline_node import SubPipelineNode from autoPyTorch.pipeline.base.pipeline import Pipeline from autoPyTorch.pipeline.nodes import MetricSelector from autoPyTorch.utils.config.config_option import ConfigOption, to_bool from autoPyTorch.utils.config.config_condition import ConfigCondition from autoPyTorch.core.hpbandster_extensions.bohb_ext import BOHBExt from autoPyTorch.core.hpbandster_extensions.hyperband_ext import HyperBandExt from autoPyTorch.core.worker import AutoNetWorker from autoPyTorch.components.training.budget_types import BudgetTypeTime, BudgetTypeEpochs, BudgetTypeTrainingTime import copy class OptimizationAlgorithm(SubPipelineNode): def __init__(self, optimization_pipeline_nodes): """OptimizationAlgorithm pipeline node. It will run either the optimization algorithm (BOHB, Hyperband - defined in config) or start workers Each worker will run the provided optimization_pipeline and will return the output of the pipeline_result_node to the optimization algorithm Train: The optimization_pipeline will get the following inputs: {hyperparameter_config, pipeline_config, X_train, Y_train, X_valid, Y_valid, budget, budget_type} The pipeline_result_node has to provide the following outputs: - 'loss': the optimization value (minimize) - 'info': dict containing info for the respective training process Predict: The optimization_pipeline will get the following inputs: {pipeline_config, X} The pipeline_result_node has to provide the following outputs: - 'Y': result of prediction for 'X' Note: predict will not call the optimization algorithm Arguments: optimization_pipeline {Pipeline} -- pipeline that will be optimized (hyperparamter) pipeline_result_node {PipelineNode} -- pipeline node that provides the results of the optimization_pieline """ super(OptimizationAlgorithm, self).__init__(optimization_pipeline_nodes) self.algorithms = {"bohb": BOHBExt, "hyperband": HyperBandExt} self.budget_types = dict() self.budget_types["time"] = BudgetTypeTime self.budget_types["epochs"] = BudgetTypeEpochs self.budget_types["training_time"] = BudgetTypeTrainingTime def fit(self, pipeline_config, X_train, Y_train, X_valid, Y_valid, result_loggers, dataset_info, shutdownables, refit=None): """Run the optimization algorithm. Arguments: pipeline_config {dict} -- The configuration of the pipeline. X_train {array} -- The data Y_train {array} -- The data X_valid {array} -- The data Y_valid {array} -- The data result_loggers {list} -- List of loggers that log the result dataset_info {DatasetInfo} -- Object with information about the dataset shutdownables {list} -- List of objects that need to shutdown when optimization is finished. Keyword Arguments: refit {dict} -- dict containing information for refitting. None if optimization run should be started. (default: {None}) Returns: dict -- Summary of optimization run. """ logger = logging.getLogger('autonet') res = None run_id, task_id = pipeline_config['run_id'], pipeline_config['task_id'] # Use tensorboard logger if pipeline_config['use_tensorboard_logger'] and not refit: import tensorboard_logger as tl directory = os.path.join(pipeline_config['result_logger_dir'], "worker_logs_" + str(task_id)) os.makedirs(directory, exist_ok=True) tl.configure(directory, flush_secs=5) # Only do refitting if (refit is not None): logger.info("Start Refitting") loss_info_dict = self.sub_pipeline.fit_pipeline( hyperparameter_config=refit["hyperparameter_config"], pipeline_config=pipeline_config, X_train=X_train, Y_train=Y_train, X_valid=X_valid, Y_valid=Y_valid, budget=refit["budget"], rescore=refit["rescore"], budget_type=self.budget_types[pipeline_config['budget_type']], optimize_start_time=time.time(), refit=True, hyperparameter_config_id=None, dataset_info=dataset_info) logger.info("Done Refitting") return {'optimized_hyperparameter_config': refit["hyperparameter_config"], 'budget': refit['budget'], 'loss': loss_info_dict['loss'], 'info': loss_info_dict['info']} # Start Optimization Algorithm try: ns_credentials_dir, tmp_models_dir, network_interface_name = self.prepare_environment(pipeline_config) # start nameserver if not on cluster or on master node in cluster if task_id in [1, -1]: NS = self.get_nameserver(run_id, task_id, ns_credentials_dir, network_interface_name) ns_host, ns_port = NS.start() if task_id != 1 or pipeline_config["run_worker_on_master_node"]: self.run_worker(pipeline_config=pipeline_config, run_id=run_id, task_id=task_id, ns_credentials_dir=ns_credentials_dir, network_interface_name=network_interface_name, X_train=X_train, Y_train=Y_train, X_valid=X_valid, Y_valid=Y_valid, dataset_info=dataset_info, shutdownables=shutdownables) # start BOHB if not on cluster or on master node in cluster res = None if task_id in [1, -1]: self.run_optimization_algorithm(pipeline_config=pipeline_config, run_id=run_id, ns_host=ns_host, ns_port=ns_port, nameserver=NS, task_id=task_id, result_loggers=result_loggers, dataset_info=dataset_info, logger=logger) res = self.parse_results(pipeline_config) except Exception as e: print(e) traceback.print_exc() finally: self.clean_up(pipeline_config, ns_credentials_dir, tmp_models_dir) if res: return res return {'optimized_hyperparameter_config': dict(), 'budget': 0, 'loss': float('inf'), 'info': dict()} def predict(self, pipeline_config, X): """Run the predict pipeline. Arguments: pipeline_config {dict} -- The configuration of the pipeline X {array} -- The data Returns: dict -- The predicted values in a dictionary """ result = self.sub_pipeline.predict_pipeline(pipeline_config=pipeline_config, X=X) return {'Y': result['Y']} # OVERRIDE def get_pipeline_config_options(self): options = [ ConfigOption("run_id", default="0", type=str, info="Unique id for each run."), ConfigOption("task_id", default=-1, type=int, info="ID for each worker, if you run AutoNet on a cluster. Set to -1, if you run it locally."), ConfigOption("algorithm", default="bohb", type=str, choices=list(self.algorithms.keys()), info="Algorithm to use for config sampling."), ConfigOption("budget_type", default="time", type=str, choices=list(self.budget_types.keys())), ConfigOption("min_budget", default=lambda c: self.budget_types[c["budget_type"]].default_min_budget, type=float, depends=True, info="Min budget for fitting configurations."), ConfigOption("max_budget", default=lambda c: self.budget_types[c["budget_type"]].default_max_budget, type=float, depends=True, info="Max budget for fitting configurations."), ConfigOption("max_runtime", default=lambda c: ((-int(np.log(c["min_budget"] / c["max_budget"]) / np.log(c["eta"])) + 1) * c["max_budget"]) if c["budget_type"] == "time" else float("inf"), type=float, depends=True, info="Total time for the run."), ConfigOption("num_iterations", default=lambda c: (-int(np.log(c["min_budget"] / c["max_budget"]) / np.log(c["eta"])) + 1) if c["budget_type"] == "epochs" else float("inf"), type=float, depends=True, info="Number of successive halving iterations."), ConfigOption("eta", default=3, type=float, info='eta parameter of Hyperband.'), ConfigOption("min_workers", default=1, type=int), ConfigOption("working_dir", default=".", type="directory"), ConfigOption("network_interface_name", default=self.get_default_network_interface_name(), type=str), ConfigOption("memory_limit_mb", default=1000000, type=int), ConfigOption("use_tensorboard_logger", default=False, type=to_bool), ConfigOption("run_worker_on_master_node", default=True, type=to_bool), ConfigOption("use_pynisher", default=True, type=to_bool) ] return options # OVERRIDE def get_pipeline_config_conditions(self): def check_runtime(pipeline_config): return pipeline_config["budget_type"] != "time" or pipeline_config["max_runtime"] >= pipeline_config["max_budget"] return [ ConfigCondition.get_larger_equals_condition("max budget must be greater than or equal to min budget", "max_budget", "min_budget"), ConfigCondition("When time is used as budget, the max_runtime must be larger than the max_budget", check_runtime) ] def get_default_network_interface_name(self): """Get the default network interface name Returns: str -- The default network interface name """ try: return netifaces.gateways()['default'][netifaces.AF_INET][1] except: return 'lo' def prepare_environment(self, pipeline_config): """Create necessary folders and get network interface name Arguments: pipeline_config {dict} -- The configuration of the pipeline Returns: tuple -- path to created directories and network interface namei """ if not os.path.exists(pipeline_config["working_dir"]) and pipeline_config['task_id'] in [1, -1]: try: os.mkdir(pipeline_config["working_dir"]) except: pass tmp_models_dir = os.path.join(pipeline_config["working_dir"], "tmp_models_" + str(pipeline_config['run_id'])) ns_credentials_dir = os.path.abspath(os.path.join(pipeline_config["working_dir"], "ns_credentials_" + str(pipeline_config['run_id']))) network_interface_name = self.get_nic_name(pipeline_config) if os.path.exists(tmp_models_dir) and pipeline_config['task_id'] in [1, -1]: shutil.rmtree(tmp_models_dir) # not used right now if os.path.exists(ns_credentials_dir) and pipeline_config['task_id'] in [1, -1]: shutil.rmtree(ns_credentials_dir) return ns_credentials_dir, tmp_models_dir, network_interface_name def clean_up(self, pipeline_config, tmp_models_dir, ns_credentials_dir): """Remove created folders Arguments: pipeline_config {dict} -- The pipeline config tmp_models_dir {[type]} -- The path to the temporary models (not used right now) ns_credentials_dir {[type]} -- The path to the nameserver credentials """ if pipeline_config['task_id'] in [1, -1]: # Delete temporary files if os.path.exists(tmp_models_dir): shutil.rmtree(tmp_models_dir) if os.path.exists(ns_credentials_dir): shutil.rmtree(ns_credentials_dir) def get_nameserver(self, run_id, task_id, ns_credentials_dir, network_interface_name): """Get the namesever object Arguments: run_id {str} -- The id of the run task_id {int} -- An id for the worker ns_credentials_dir {str} -- Path to ns credentials network_interface_name {str} -- The network interface name Returns: NameServer -- The NameServer object """ if not os.path.isdir(ns_credentials_dir): try: os.mkdir(ns_credentials_dir) except: pass return NameServer(run_id=run_id, nic_name=network_interface_name, working_directory=ns_credentials_dir) def get_optimization_algorithm_instance(self, config_space, run_id, pipeline_config, ns_host, ns_port, loggers, previous_result=None): """Get an instance of the optimization algorithm Arguments: config_space {ConfigurationSpace} -- The config space to optimize. run_id {str} -- An Id for the current run. pipeline_config {dict} -- The configuration of the pipeline. ns_host {str} -- Nameserver host. ns_port {int} -- Nameserver port. loggers {list} -- Loggers to log the results. Keyword Arguments: previous_result {Result} -- A previous result to warmstart the search (default: {None}) Returns: Master -- An optimization algorithm. """ optimization_algorithm = self.algorithms[pipeline_config["algorithm"]] kwargs = {"configspace": config_space, "run_id": run_id, "eta": pipeline_config["eta"], "min_budget": pipeline_config["min_budget"], "max_budget": pipeline_config["max_budget"], "host": ns_host, "nameserver": ns_host, "nameserver_port": ns_port, "result_logger": combined_logger(*loggers), "ping_interval": 10**6, "working_directory": pipeline_config["working_dir"], "previous_result": previous_result} hb = optimization_algorithm(**kwargs) return hb def parse_results(self, pipeline_config): """Parse the results of the optimization run Arguments: pipeline_config {dict} -- The configuration of the pipeline. Raises: RuntimeError: An Error occurred when parsing the results. Returns: dict -- Dictionary summarizing the results """ try: res = logged_results_to_HBS_result(pipeline_config["result_logger_dir"]) id2config = res.get_id2config_mapping() incumbent_trajectory = res.get_incumbent_trajectory(bigger_is_better=False, non_decreasing_budget=False) except Exception as e: raise RuntimeError("Error parsing results. Check results.json and output for more details. An empty results.json is usually caused by a misconfiguration of AutoNet.") if (len(incumbent_trajectory['config_ids']) == 0): return dict() final_config_id = incumbent_trajectory['config_ids'][-1] final_budget = incumbent_trajectory['budgets'][-1] best_run = [r for r in res.get_runs_by_id(final_config_id) if r.budget == final_budget][0] return {'optimized_hyperparameter_config': id2config[final_config_id]['config'], 'budget': final_budget, 'loss': best_run.loss, 'info': best_run.info} def run_worker(self, pipeline_config, run_id, task_id, ns_credentials_dir, network_interface_name, X_train, Y_train, X_valid, Y_valid, dataset_info, shutdownables): """ Run the AutoNetWorker Arguments: pipeline_config {dict} -- The configuration of the pipeline run_id {str} -- An id for the run task_id {int} -- An id for the worker ns_credentials_dir {str} -- path to nameserver credentials network_interface_name {str} -- the name of the network interface X_train {array} -- The data Y_train {array} -- The data X_valid {array} -- The data Y_valid {array} -- The data dataset_info
batch_shape=(num_batches,)) else: raise ValueError('Unknown rotation augmentation : ' + cfg.augment_rotation) # Scale # Choose random scales for each example min_s = cfg.augment_scale_min max_s = cfg.augment_scale_max if cfg.augment_scale_anisotropic: s = tf.random.uniform((num_batches, 3), minval=min_s, maxval=max_s) else: s = tf.random.uniform((num_batches, 1), minval=min_s, maxval=max_s) symmetries = [] for i in range(3): if cfg.augment_symmetries[i]: symmetries.append( tf.round(tf.random.uniform((num_batches, 1))) * 2 - 1) else: symmetries.append(tf.ones([num_batches, 1], dtype=tf.float32)) s *= tf.concat(symmetries, 1) # Create N x 3 vector of scales to multiply with stacked_points stacked_scales = tf.gather(s, batch_inds) # Apply scales and Noise if not is_test: stacked_points = stacked_points * stacked_scales noise = tf.random.normal(tf.shape(stacked_points), stddev=cfg.augment_noise) stacked_points = stacked_points + noise return stacked_points, s, R def segmentation_inputs(self, stacked_points, stacked_features, point_labels, stacks_lengths, batch_inds, object_labels=None): cfg = self.cfg # Batch weight at each point for loss (inverse of stacks_lengths for each point) min_len = tf.reduce_min(stacks_lengths, keepdims=True) batch_weights = tf.cast(min_len, tf.float32) / tf.cast( stacks_lengths, tf.float32) stacked_weights = tf.gather(batch_weights, batch_inds) # Starting radius of convolutions r_normal = cfg.first_subsampling_dl * cfg.conv_radius # Starting layer layer_blocks = [] # Lists of inputs input_points = [] input_neighbors = [] input_pools = [] input_upsamples = [] input_batches_len = [] # Loop over the blocks for block_i, block in enumerate(cfg.architecture): # Get all blocks of the layer if not ('pool' in block or 'strided' in block or 'global' in block or 'upsample' in block): layer_blocks += [block] continue # Convolution neighbors indices deform_layer = False if layer_blocks: # Convolutions are done in this layer, compute the neighbors with the good radius if np.any(['deformable' in blck for blck in layer_blocks]): r = r_normal * cfg.deform_radius / cfg.conv_radius deform_layer = True else: r = r_normal conv_i = tf_batch_neighbors(stacked_points, stacked_points, stacks_lengths, stacks_lengths, r) else: # This layer only perform pooling, no neighbors required conv_i = tf.zeros((0, 1), dtype=tf.int32) # Pooling neighbors indices # If end of layer is a pooling operation if 'pool' in block or 'strided' in block: # New subsampling length dl = 2 * r_normal / cfg.conv_radius # Subsampled points pool_p, pool_b = tf_batch_subsampling(stacked_points, stacks_lengths, dl) # Radius of pooled neighbors if 'deformable' in block: r = r_normal * cfg.deform_radius / cfg.conv_radius deform_layer = True else: r = r_normal # Subsample indices pool_i = tf_batch_neighbors(pool_p, stacked_points, pool_b, stacks_lengths, r) # Upsample indices (with the radius of the next layer to keep wanted density) up_i = tf_batch_neighbors(stacked_points, pool_p, stacks_lengths, pool_b, 2 * r) else: # No pooling in the end of this layer, no pooling indices required pool_i = tf.zeros((0, 1), dtype=tf.int32) pool_p = tf.zeros((0, 3), dtype=tf.float32) pool_b = tf.zeros((0,), dtype=tf.int32) up_i = tf.zeros((0, 1), dtype=tf.int32) # Reduce size of neighbors matrices by eliminating furthest point # TODO : conv_i = self.big_neighborhood_filter(conv_i, len(input_points)) pool_i = self.big_neighborhood_filter(pool_i, len(input_points)) up_i = self.big_neighborhood_filter(up_i, len(input_points) + 1) # Updating input lists input_points += [stacked_points] input_neighbors += [conv_i] input_pools += [pool_i] input_upsamples += [up_i] input_batches_len += [stacks_lengths] # New points for next layer stacked_points = pool_p stacks_lengths = pool_b # Update radius and reset blocks r_normal *= 2 layer_blocks = [] # Stop when meeting a global pooling or upsampling if 'global' in block or 'upsample' in block: break # Return inputs # Batch unstacking (with last layer indices for optionnal classif loss) stacked_batch_inds_0 = self.stack_batch_inds(input_batches_len[0]) # Batch unstacking (with last layer indices for optionnal classif loss) stacked_batch_inds_1 = self.stack_batch_inds(input_batches_len[-1]) if object_labels is None: # list of network inputs li = input_points + input_neighbors + input_pools + input_upsamples li += [ stacked_features, stacked_weights, stacked_batch_inds_0, stacked_batch_inds_1 ] li += [point_labels] return li else: # Object class ind for each point stacked_object_labels = tf.gather(object_labels, batch_inds) # list of network inputs li = input_points + input_neighbors + input_pools + input_upsamples li += [ stacked_features, stacked_weights, stacked_batch_inds_0, stacked_batch_inds_1 ] li += [point_labels, stacked_object_labels] return li def transform(self, stacked_points, stacked_colors, point_labels, stacks_lengths, point_inds, cloud_inds, is_test=False): """ [None, 3], [None, 3], [None], [None] """ cfg = self.cfg # Get batch indice for each point batch_inds = self.get_batch_inds(stacks_lengths) # Augment input points stacked_points, scales, rots = self.augment_input( stacked_points, batch_inds, is_test) # First add a column of 1 as feature for the network to be able to learn 3D shapes stacked_features = tf.ones((tf.shape(stacked_points)[0], 1), dtype=tf.float32) # Get coordinates and colors stacked_original_coordinates = stacked_colors[:, :3] stacked_colors = stacked_colors[:, 3:] # Augmentation : randomly drop colors if cfg.in_features_dim in [4, 5]: num_batches = batch_inds[-1] + 1 s = tf.cast( tf.less(tf.random.uniform((num_batches,)), cfg.augment_color), tf.float32) stacked_s = tf.gather(s, batch_inds) stacked_colors = stacked_colors * tf.expand_dims(stacked_s, axis=1) # Then use positions or not if cfg.in_features_dim == 1: pass elif cfg.in_features_dim == 2: stacked_features = tf.concat( (stacked_features, stacked_original_coordinates[:, 2:]), axis=1) elif cfg.in_features_dim == 3: stacked_features = stacked_colors elif cfg.in_features_dim == 4: stacked_features = tf.concat((stacked_features, stacked_colors), axis=1) elif cfg.in_features_dim == 5: stacked_features = tf.concat( (stacked_features, stacked_original_coordinates[:, 2:], stacked_colors), axis=1) elif cfg.in_features_dim == 7: stacked_features = tf.concat( (stacked_features, stacked_original_coordinates, stacked_colors), axis=1) else: raise ValueError( 'Only accepted input dimensions are 1, 3, 4 and 7 (without and with rgb/xyz)' ) # Get the whole input list input_list = self.segmentation_inputs(stacked_points, stacked_features, point_labels, stacks_lengths, batch_inds) # Add scale and rotation for testing input_list += [scales, rots] input_list += [point_inds, cloud_inds] return input_list def inference_begin(self, data): attr = {'split': 'test'} self.inference_data = self.preprocess(data, attr) num_points = self.inference_data['search_tree'].data.shape[0] self.possibility = np.random.rand(num_points) * 1e-3 self.test_probs = np.zeros(shape=[num_points, self.cfg.num_classes], dtype=np.float16) self.pbar = tqdm(total=self.possibility.shape[0]) self.pbar_update = 0 def inference_preprocess(self): flat_inputs, point_inds, stacks_lengths = self.transform_inference( self.inference_data) self.test_meta = {} self.test_meta['inds'] = point_inds self.test_meta['lens'] = stacks_lengths return flat_inputs def inference_end(self, results): results = tf.reshape(results, (-1, self.cfg.num_classes)) results = tf.nn.softmax(results, axis=-1) results = results.cpu().numpy() test_smooth = 0.98 inds = self.test_meta['inds'] l = 0 r = 0 for len in self.test_meta['lens']: r += len self.test_probs[inds[l:r]] = self.test_probs[ inds[l:r]] * test_smooth + (1 - test_smooth) * results[l:r] l += len self.pbar.update(self.possibility[self.possibility > 0.5].shape[0] - self.pbar_update) self.pbar_update = self.possibility[self.possibility > 0.5].shape[0] if np.min(self.possibility) > 0.5: self.pbar.close() reproj_inds = self.inference_data['proj_inds'] predict_scores = self.test_probs[reproj_inds] inference_result = { 'predict_labels': np.argmax(predict_scores, 1), 'predict_scores': predict_scores } self.inference_result = inference_result return True else: return False def transform_inference(self, data): cfg = self.cfg p_list = [] c_list = [] pl_list = [] pi_list = [] ci_list = [] n_points = 0 points = np.array(data['search_tree'].data) while (n_points < cfg.batch_limit): cloud_ind = 0 point_ind = int(np.argmin(self.possibility)) center_point = points[point_ind, :].reshape(1, -1) pick_point = center_point.copy() input_inds = data['search_tree'].query_radius(pick_point, r=cfg.in_radius)[0] n = input_inds.shape[0] n_points += n dists = np.sum(np.square( (points[input_inds] - pick_point).astype(np.float32)), axis=1) tuckeys = np.square(1 - dists / np.square(cfg.in_radius)) tuckeys[dists > np.square(cfg.in_radius)] = 0 self.possibility[input_inds] += tuckeys input_points = points[input_inds].copy() - pick_point feat = data['feat'] t_normalize = self.cfg.get('t_normalize', {}) input_points, feat = trans_normalize(input_points, feat, t_normalize) if feat is None: coords = input_points else: coords = np.hstack((input_points, feat[input_inds])) coords[:, 2] += pick_point[:, 2] if len(data['label'][input_inds].shape) == 2: input_labels = data['label'][input_inds][:, 0] else: input_labels = data['label'][input_inds] if n > 0: p_list += [input_points] c_list += [coords] pl_list += [input_labels] pi_list += [input_inds] ci_list += [cloud_ind] stacked_points = np.concatenate(p_list, axis=0), stacked_colors = np.concatenate(c_list, axis=0), point_labels = np.concatenate(pl_list, axis=0), stacks_lengths = np.array([tp.shape[0] for tp in p_list], dtype=np.int32), point_inds = np.concatenate(pi_list, axis=0), cloud_inds = np.array(ci_list, dtype=np.int32) input_list = self.transform( tf.convert_to_tensor(np.array(stacked_points[0], dtype=np.float32)), tf.convert_to_tensor(np.array(stacked_colors[0], dtype=np.float32)), tf.convert_to_tensor(np.array(point_labels[0], dtype=np.int32)), tf.convert_to_tensor(np.array(stacks_lengths[0], dtype=np.int32)), tf.convert_to_tensor(np.array(point_inds[0], dtype=np.int32)), tf.convert_to_tensor(np.array(cloud_inds, dtype=np.int32)), is_test=True) return input_list, np.array(point_inds[0]), np.array(stacks_lengths[0]) def preprocess(self, data, attr): cfg = self.cfg points = data['point'][:, 0:3] if 'label' not in data.keys() or data['label'] is None: labels = np.zeros((points.shape[0],), dtype=np.int32) else: labels = np.array(data['label'], dtype=np.int32).reshape((-1,)) split = attr['split'] if 'feat' not in data.keys() or data['feat'] is None: feat = None else: feat = np.array(data['feat'], dtype=np.float32) data = dict() if (feat is None): sub_points, sub_labels = DataProcessing.grid_subsampling( points, labels=labels, grid_size=cfg.first_subsampling_dl) sub_feat = None else: sub_points, sub_feat, sub_labels = DataProcessing.grid_subsampling( points, features=feat, labels=labels, grid_size=cfg.first_subsampling_dl) search_tree = KDTree(sub_points) data['point'] = sub_points data['feat'] = sub_feat data['label'] = sub_labels data['search_tree'] = search_tree if split in ["test", "testing"]: proj_inds = np.squeeze( search_tree.query(points, return_distance=False)) proj_inds = proj_inds.astype(np.int32) data['proj_inds'] = proj_inds return data def get_batch_gen(self, dataset, steps_per_epoch=None, batch_size=1): cfg = self.cfg if dataset.read_data(0)[0]['feat'] is None: dim_features = 3 else: dim_features
<filename>img_utils.py #------------------------------------------------------------------------------- # Name: Image functions # Purpose: Car damage analysis project # # Author: kol # # Created: 17.01.2020 # Copyright: (c) kol 2020 # Licence: MIT #------------------------------------------------------------------------------- import cv2 import numpy as np from pathlib import Path from imutils.perspective import order_points from skimage import measure from skimage import draw from copy import deepcopy from scipy.ndimage.filters import gaussian_filter from matplotlib import colors as plt_colors from scipy.spatial import distance from random import randint from gr.utils import get_image_area def random_colors(n): """Returns n random colors""" rr = [] for i in range(n): r = randint(0,255) g = randint(0,255) b = randint(0,255) rr.extend([(r,g,b)]) return rr def gradient_colors(colors, n): """Returns color gradient of length n from colors[0] to colors[1]""" if len(colors) < 2: raise ValueError("Two colors required to compute gradient") if n < 2: raise ValueError("Gradient length must be greater than 1") c = np.linspace(0, 1, n)[:, None, None] x = np.array([colors[0]]) y = np.array([colors[1]]) g = y + (x - y) * c return g.astype(x.dtype) def color_to_cv_color(name): """Convert color with given name to OpenCV color""" mp_rgb = plt_colors.to_rgb(name) cv_bgr = [c * 255 for c in reversed(mp_rgb)] return cv_bgr def rgba_to_rgb(rgba): """Convert RGBA color to RGB color and mask""" assert rgba.shape[-1] == 4 rgb = np.empty((rgba.shape[0], rgba.shape[1], 3), dtype=rgba.dtype) r, g, b, m = rgba[:,:,0], rgba[:,:,1], rgba[:,:,2], rgba[:,:,3] rgb[:,:,0] = r rgb[:,:,1] = g rgb[:,:,2] = b return [rgb, m] def rgb_to_rgba(rgb, fill=1): """Convert RGB color to RGBA color""" assert rgb.shape[-1] == 3 rgba = np.full((rgb.shape[0], rgb.shape[1], 4), fill, dtype=rgb.dtype) r, g, b = rgb[:,:,0], rgb[:,:,1], rgb[:,:,2] rgba[:,:,0] = r rgba[:,:,1] = g rgba[:,:,2] = b return rgba def ensure_numeric_color(color, gradients=None, max_colors=None): """Ensures color is numeric and, if a vector requested, have specified length. The function performs the following conversions: if 'random' color name is specified, generates requred number of random colors, if 'gradient' color name is speciefied, computes a gradient vector, translates color from textual name ('red') to RGB value, if a list is provided, performs checks on its elements and guarantees it has required number of elements. Parameters: color Either a color name, RGB value or special 'random' and 'gradient' strings Could also be a list of names or RGB values gradients Array-like of 2 colors to generate a gradient from. Requred if `color` == `gradient` max_color Requested number of colors (see return value). Required if `color` == `gradient` or `random`. Returns: If `color` is a name or RGB value, result will be a vector of this color with `max_color` length or single value if `max_color` is None If `color` is `random`, result will be a list of colors with `max_color` length If `color` is `gradient`, result will be a list of colors for computed gradient If `color` is list, result will be a list with `max_colors` or original length with all elements converted as they are single values """ ret_color = None if color is None: raise ValueError("Color not specified") if type(color) == list: # List of colors # Assume all items are of the same type # Make up a list of required length if len(color) == 0: raise ValueError("Empty color list") if max_colors is None: ret_color = color else: ret_color = color * int(np.ceil(max_colors / len(color))) ret_color = ret_color[0:max_colors] elif color == 'random': # Random color ret_color = random_colors(max_colors if max_colors is not None else 1) if max_colors is None: ret_color = ret_color[0] elif color == "gradient": # Gradient color if gradients is None or max_colors is None: raise ValueError("Cannot determine gradient of a single color") else: if len(gradients) < 2: raise ValueError("Two colors required to compute gradient") gc = (ensure_numeric_color(gradients[0]), ensure_numeric_color(gradients[1])) ret_color = gradient_colors(gc, max_colors) elif type(color) == str: # Named color ret_color = color_to_cv_color(color) if max_colors is not None: ret_color = [ret_color] else: # Should be a color ret_color = color if max_colors is not None: ret_color = [ret_color] return ret_color # Modified version of imutils.four_point_transform() function # author: <NAME> # website: http://www.pyimagesearch.com def four_point_transform(image, pts, inverse=False): """Perform 4-point transformation or reverses it""" # obtain a consistent order of the points and unpack them # individually rect = order_points(pts) d = np.min(rect) if d >= 0: (tl, tr, br, bl) = rect else: # Correct all rectangle points to be greater than or equal to 0 corrected_rect = deepcopy(rect) d = abs(d) for r in corrected_rect: r[0] += d r[1] += d (tl, tr, br, bl) = corrected_rect # compute the width of the new image, which will be the # maximum distance between bottom-right and bottom-left # x-coordiates or the top-right and top-left x-coordinates widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2)) widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2)) maxWidth = max(int(widthA), int(widthB)) # compute the height of the new image, which will be the # maximum distance between the top-right and bottom-right # y-coordinates or the top-left and bottom-left y-coordinates heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2)) heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2)) maxHeight = max(int(heightA), int(heightB)) # now that we have the dimensions of the new image, construct # the set of destination points to obtain a "birds eye view", # (i.e. top-down view) of the image, again specifying points # in the top-left, top-right, bottom-right, and bottom-left # order dst = np.array([ [0, 0], [maxWidth - 1, 0], [maxWidth - 1, maxHeight - 1], [0, maxHeight - 1]], dtype="float32") # compute the perspective transform matrix and then apply it M = cv2.getPerspectiveTransform(rect, dst) if inverse: M = np.linalg.pinv(M) warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight)) # return the warped image return warped def clahe(img): """Apply CLAHE filter for luminocity equalization""" # Convert to LAB color space lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB) # Split channels l, a, b = cv2.split(lab) # Apply CLAHE to l_channel clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8)) cl = clahe.apply(l) # Merge back and convert to RGB color space merged = cv2.merge((cl,a,b)) final = cv2.cvtColor(merged, cv2.COLOR_LAB2BGR) return final def gauss_filter(img): """Apply Gaussian filter""" s = 2 w = 5 t = (((w - 1)/2)-0.5)/s return gaussian_filter(img, sigma=s, truncate=t) # Align two images # Taken from https://www.learnopencv.com/image-alignment-ecc-in-opencv-c-python/ # Author <NAME> def align_images(im1, im2, warp_mode=cv2.MOTION_TRANSLATION, debug=False): """Algin two images. warp_mode is either cv2.MOTION_TRANSLATION for affine transformation or cv2.MOTION_HOMOGRAPHY for perspective one. Note that under OpenCV < 3.4.0 if images cannot be aligned, the function fails crashing the calling program (unless it uses global exception hook)""" # Convert images to grayscale im1_gray = cv2.cvtColor(im1,cv2.COLOR_BGR2GRAY) im2_gray = cv2.cvtColor(im2,cv2.COLOR_BGR2GRAY) if debug: cv2.imshow("Image 1 gray", im1_gray) cv2.imshow("Image 2 gray", im2_gray) # Find size of image1 sz = im1.shape # Define 2x3 or 3x3 matrices and initialize the matrix to identity if warp_mode == cv2.MOTION_HOMOGRAPHY: warp_matrix = np.eye(3, 3, dtype=np.float32) else : warp_matrix = np.eye(2, 3, dtype=np.float32) # Specify the number of iterations. number_of_iterations = 1000; # Specify the threshold of the increment # in the correlation coefficient between two iterations termination_eps = 1e-10; # Define termination criteria criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, number_of_iterations, termination_eps) # Run the ECC algorithm. The results are stored in warp_matrix. (cc, warp_matrix) = cv2.findTransformECC(im1_gray, im2_gray, warp_matrix, motionType=warp_mode, criteria=criteria) try: if warp_mode == cv2.MOTION_HOMOGRAPHY : # Use warpPerspective for Homography im2_aligned = cv2.warpPerspective(im2, warp_matrix, (sz[1],sz[0]), flags=cv2.INTER_LINEAR + cv2.WARP_INVERSE_MAP) else : # Use warpAffine for Translation, Euclidean and Affine im2_aligned = cv2.warpAffine(im2, warp_matrix, (sz[1],sz[0]), flags=cv2.INTER_LINEAR + cv2.WARP_INVERSE_MAP) if debug: cv2.imshow('Aligned image', im2_aligned) return im2_aligned except: # Alignment unsuccessfull return im2 def get_diff(im1, im2, align=False, debug=False): """Get difference of two images""" # Algin images if align: im2 = align_images(im1, im2, cv2.MOTION_HOMOGRAPHY, debug) # Make up grays gray1 = cv2.cvtColor(im1, cv2.COLOR_BGR2GRAY) gray2 = cv2.cvtColor(im2, cv2.COLOR_BGR2GRAY) # Calculate scrore and difference (score, diff) = measure.compare_ssim(gray1, gray2, full=True, gaussian_weights=True) return score, diff def draw_contour(contour_img, contour, color, gradient_colors=("red", "blue"), min_size=10, filled=True, compute_mask=False): """ Draw a contour as optionally fill it with color. Parameters: contour_img An image to draw on contour A list of contour points as returned by cv2.findContour() or measure.find_contours() color A color to draw contour
'can_be_none'], "['fortnite']['exec']['friend_remove']": [list, str, 'can_be_none'], "['fortnite']['exec']['party_member_join']": [list, str, 'can_be_none'], "['fortnite']['exec']['party_member_leave']": [list, str, 'can_be_none'], "['fortnite']['exec']['party_member_confirm']": [list, str, 'can_be_none'], "['fortnite']['exec']['party_member_kick']": [list, str, 'can_be_none'], "['fortnite']['exec']['party_member_promote']": [list, str, 'can_be_none'], "['fortnite']['exec']['party_update']": [list, str, 'can_be_none'], "['fortnite']['exec']['party_member_update']": [list, str, 'can_be_none'], "['fortnite']['exec']['party_member_disconnect']": [list, str, 'can_be_none'], "['discord']": [dict], "['discord']['enabled']": [bool, 'select_bool'], "['discord']['token']": [str], "['discord']['owner']": [list, str, 'can_be_none'], "['discord']['channels']": [list, str], "['discord']['status']": [str], "['discord']['status_type']": [str, 'select_status'], "['discord']['chat_max']": [int, 'can_be_none'], "['discord']['chat_max_for']": [list, str, 'multiple_select_user_type', 'can_be_none'], "['discord']['command_enable_for']": [list, str, 'multiple_select_user_type', 'can_be_none'], "['discord']['blacklist']": [list, str], "['discord']['whitelist']": [list, str], "['discord']['prefix']": [list, str, 'can_be_none'], "['discord']['exec']": [dict], "['discord']['exec']['ready']": [list, str, 'can_be_none'], "['ng_words']": [list, dict, 'ng_words_config'], "['ng_word_for']": [list, str, 'multiple_select_user_type', 'can_be_none'], "['ng_word_operation']": [list, str, 'multiple_select_user_operation', 'can_be_none'], "['ng_word_reply']": [str, 'can_be_none'], "['relogin_in']": [int, 'can_be_none'], "['search_max']": [int, 'can_be_none'], "['no_logs']": [bool, 'select_bool'], "['loglevel']": [str, 'select_loglevel'], "['discord_log']": [str, 'can_be_none'], "['omit_over2000']": [bool, 'select_bool'], "['skip_if_overflow']": [bool, 'select_bool'], "['case_insensitive']": [bool, 'select_bool'], "['convert_kanji']": [bool, 'select_bool'] } self.ng_names_config_tags = { "['matchmethod']": [str, 'select_matchmethod'], "['word']": [str] } self.ng_words_config_tags = { "['count']": [int], "['matchmethod']": [str, 'select_matchmethod'], "['words']": [list, str] } self.commands = None tags = [list, str, 'can_be_multiple'] tags2 = [list, str, 'can_be_multiple', 'lambda x: len(x) > 0'] self.commands_tags = { **{ "['whitelist_commands']": tags, "['user_commands']": tags, "['prefix_to_item_search']": [bool, 'select_bool'], "['command']": tags2, "['ng_word']": tags2, "['most']": tags2, "['user']": tags2, "['whitelist']": tags2, "['blacklist']": tags2, "['owner']": tags2, "['bot']": tags2, "['null']": tags2, "['operation_kick']": tags2, "['operation_chatban']": tags2, "['operation_remove']": tags2, "['operation_block']": tags2, "['operation_blacklist']": tags2, "['add']": tags2, "['remove']": tags2, "['true']": tags2, "['false']": tags2, "['accept']": tags2, "['decline']": tags2, "['me']": tags2, "['public']": tags2, "['friends_allow_friends_of_friends']": tags2, "['friends']": tags2, "['private_allow_friends_of_friends']": tags2, "['private']": tags2, "['outfit']": tags2, "['backpack']": tags2, "['pickaxe']": tags2, "['save']": tags2, "['load']": tags2, "['commands']": [dict] }, **{ f"['commands']['{command}']": tags for command in self.all_commands.keys() } } self.custom_commands = None self.custom_commands_tags = { "['run_when']": [str, 'select_run_when'], "['commands']": [list, dict, 'custom_commands_config'] } self.custom_commands_config_tags = { "['word']": [str], "['allow_for']": [list, str, 'multiple_select_user_type', 'can_be_none'], "['run']": [list, str, 'can_be_multiple'] } self.replies = None self.replies_tags = { "['run_when']": [str, 'select_run_when'], "['prefix_to_replies']": [bool, 'select_bool'], "['replies']": [list, dict, 'replies_config'] } self.replies_config_tags = { "['matchmethod']": [str, 'select_matchmethod'], "['word']": [str], "['reply']": [list, str, 'can_be_multiple', 'accept_empty'], "['ct']": [int, 'can_be_none'] } self.cosmetic_presets = None self.config_item_pattern = re.compile( r"<Item name='(?P<name>.+)' " r"id='(?P<id>.+)' " r"path='(?P<path>.+)'>" ) self.config_playlist_pattern = re.compile( r"<Playlist name='(?P<name>.+)' " r"id='(?P<id>.+)'>" ) self.config_variant_pattern = re.compile( r"<Variant name='(?P<name>.+)' " r"channel='(?P<channel>.+)' " r"tag='(?P<tag>.+)'>" ) self.http = HTTPClient(aiohttp.ClientSession()) self.webhook = None self.discord_client = None @property def loaded_clients(self) -> List[Client]: return [client for client in self.clients if client.is_ready()] @property def loaded_client_ids(self) -> List[Client]: return [client.user.id for client in self.loaded_clients] def add_command(self, command: Command) -> None: if not isinstance(command, Command): raise TypeError(f'command argument must be instance of {Command.__name__}') if command.name in self.all_commands: raise ValueError(f"Command '{command.name}' is already registered") self.all_commands[command.name] = command for client in self.clients: client.add_command(command) def is_error(self) -> bool: return ( self.error_config or self.error_commands or self.error_custom_commands or self.error_replies ) def get_device_auth_details(self) -> dict: if self.isfile('device_auths'): return self.load_json('device_auths') else: return {} def store_device_auth_details(self, email: str, details: dict) -> None: existing = self.get_device_auth_details() existing[email.lower()] = details self.save_json('device_auths', existing) def get_refresh_tokens(self) -> dict: if self.isfile('refresh_tokens'): return self.load_json('refresh_tokens') else: return {} def store_refresh_token(self, email: str, refresh_token: str) -> None: existing = self.get_refresh_tokens() existing[email.lower()] = refresh_token self.save_json('refresh_tokens', existing) def get_cosmetic_presets(self) -> dict: if self.isfile('cosmetic_presets'): return self.load_json('cosmetic_presets') else: return {} async def store_cosmetic_presets(self, account_id: str, details: dict) -> None: existing = self.get_cosmetic_presets() existing[account_id] = details self.save_json('cosmetic_presets', existing) def get_command_stats(self) -> dict: if self.isfile('command_stats'): return self.load_json('command_stats') else: return {} def store_command_stats(self) -> None: self.save_json('command_stats', self.command_stats) def convert_td(self, td: datetime.timedelta) -> Tuple[int, int, int, int]: m, s = divmod(td.seconds, 60) h, m = divmod(m, 60) return td.days, h, m, s def isfile(self, key: str, force_file: Optional[bool] = False) -> bool: if self.mode == 'repl' and not force_file: if db.get(key) is None: return False else: if not os.path.isfile(f'{key}.json'): return False return True def remove(self, key: str, force_file: Optional[bool] = False) -> None: if self.mode == 'repl' and not force_file: try: del db[key] except KeyError as e: raise FileNotFoundError from e else: os.remove(f'{key}.json') async def aremove(self, key: str, force_file: Optional[bool] = False) -> None: if self.mode == 'repl' and not force_file: try: del db[key] except KeyError as e: raise FileNotFoundError from e else: await aremove(f'{key}.json') def rename(self, key_src: str, key_dst: str, force_file: Optional[bool] = False) -> None: if self.mode == 'repl' and not force_file: try: db[key_dst] = db[key_src] del db[key_src] except KeyError as e: raise FileNotFoundError from e else: os.rename(f'{key_src}.json', f'{key_dst}.json') def load_json(self, key: str, force_file: Optional[bool] = False) -> Union[dict, list]: if self.mode == 'repl' and not force_file: data = db[key]['value'] if isinstance(data, str): return json.loads(db[key]['value']) return data else: try: with open(f'{key}.json', encoding='utf-8') as f: data = f.read() except UnicodeDecodeError: try: with open(f'{key}.json', encoding='utf-8-sig') as f: data = f.read() except UnicodeDecodeError: with open(f'{key}.json', encoding='shift_jis') as f: data = f.read() return json.loads(data) async def aload_json(self, key: str, force_file: Optional[bool] = False) -> Union[dict, list]: if self.mode == 'repl' and not force_file: data = db[key]['value'] if isinstance(data, str): return json.loads(db[key]['value']) return data else: try: async with aopen(f'{key}.json', encoding='utf-8') as f: data = await f.read() except UnicodeDecodeError: try: async with aopen(f'{key}.json', encoding='utf-8-sig') as f: data = await f.read() except UnicodeDecodeError: async with aopen(f'{key}.json', encoding='shift_jis') as f: data = await f.read() return json.loads(data) def save_json(self, key: str, value: Union[dict, list], force_file: Optional[bool] = False, compact: Optional[bool] = False) -> None: if self.mode == 'repl' and not force_file: db[key] = { 'last_edited': self.utcnow(), 'value': json.dumps( value, ensure_ascii=False, cls=MyJSONEncoder ) } else: with open(f'{key}.json', 'w', encoding='utf-8') as f: if compact: json.dump( value, f, ensure_ascii=False, cls=MyJSONEncoder ) else: json.dump( value, f, indent=4, ensure_ascii=False, cls=MyJSONEncoder ) def dumps(self, data: Union[dict, list]) -> str: return json.dumps( data, ensure_ascii=False, cls=MyJSONEncoder ) def get_last_edited(self, key: str, force_file: Optional[bool] = False) -> datetime.datetime: if self.mode == 'repl' and not force_file: return datetime.datetime.fromisoformat(db[key]['last_edited']) else: stat = os.stat(f'{key}.json') return datetime.datetime.fromtimestamp(stat.st_mtime) def is_not_edited_for(self, key: str, td: datetime.timedelta, force_file: Optional[bool] = False) -> bool: last_edited = self.get_last_edited(key, force_file=force_file) if last_edited < (datetime.datetime.utcnow() - td): return True return False def l(self, key: str, *args: tuple, default: Optional[str] = '', **kwargs: dict) -> LocalizedText: return LocalizedText(self, ['main', key], default, *args, **kwargs) def send(self, content: Any, user_name: Optional[str] = None, color: Optional[Callable] = None, add_p: Optional[Union[Callable, List[Callable]]] = None, add_d: Optional[Union[Callable, List[Callable]]] = None, file: Optional[io.IOBase] = None) -> Optional[str]: file = file or sys.stdout content = str(content) color = color or (lambda x: x) add_p = (add_p if isinstance(add_p, list) else [add_p or (lambda x: x)]) add_d = (add_d if isinstance(add_d, list) else [add_d or (lambda x: x)]) if file == sys.stderr: add_d.append(self.discord_error) if not self.config['no_logs'] if self.config else True: text = content for func in add_p: text = func(text) print(color(text), file=file) if self.webhook: content = discord.utils.escape_markdown(content) name = user_name or 'Fortnite-LobbyBot' text = content for func in add_d: text = func(text) self.webhook.send(text, name) def time(self, text: str) -> str: return f'[{self.now()}] {text}' def discord_error(self, text: str) -> str: texts = [] for line in text.split('\n'): texts.append(f'> {line}') return '\n'.join(texts) def debug_message(self, text: str) -> str: return f'```\n{text}\n```' def format_exception(self, exc: Optional[Exception] = None) -> str: if exc is not None: return ''.join(list(traceback.TracebackException.from_exception(exc).format())) return traceback.format_exc() def print_exception(self, exc: Optional[Exception] = None) -> None: if exc is not None: self.send( ''.join(['Ignoring exception\n'] + list(traceback.TracebackException.from_exception(exc).format())), file=sys.stderr ) else: self.send( traceback.format_exc(), file=sys.stderr ) def debug_print_exception(self, exc: Optional[Exception] = None) -> None: if self.config is not None and self.config['loglevel'] == 'debug': self.print_exception(exc) def now(self) -> str: return datetime.datetime.now().strftime('%H:%M:%S') def utcnow(self) -> str: return datetime.datetime.utcnow().strftime('%H:%M:%S') def strftime(self, dt: datetime.datetime) -> str: dt = dt.astimezone(get_localzone()) if dt.hour >= 12 and self.config['lang'] == 'en': dt -= datetime.timedelta(hours=12) return f"{dt.strftime('%H:%M PM')}" return f"{dt.strftime('%H:%M')}" def str_to_bool(self, text: str) -> bool: if text.lower() == 'true': return True elif text.lower() == 'false': return False raise ValueError(f"{text!r} does not match to any of True, False") def get_list_index(self, data: list, index: int, default: Optional[Any] = None) -> Any: return data[index] if data[index:index + 1] else default def eval_format(self, text: str, variables: dict) -> str: return self.formatter.format(text, **variables) def eval_dict(self, data: dict, keys: list) -> str: text = '' for key in keys: text += f"[{repr(key)}]" return text def
# Add the list of possible values to the field som_nature map_predefined_vals_to_fld(self.l_vertex, "som_typologie_nature", self.typo_nature_som) # Add the list of possible values to the field som_precision_rattachement map_predefined_vals_to_fld(self.l_vertex, "som_precision_rattachement", self.precision_class, 0, 1) # Add the list of possible values to the field som_precision_rattachement map_predefined_vals_to_fld(self.l_vertex, "som_representation_plane", self.ellips_acronym, 0, 2) # Add the list of possible values to the field lim_typologie_nature map_predefined_vals_to_fld(self.l_edge, "lim_typologie_nature", self.typo_nature_lim) # Add the list of possible values to the field som_delimitation_publique false_true_lst = [('False', 'Faux'), ('True', 'Vrai')] map_predefined_vals_to_fld(self.l_vertex, "som_delimitation_publique", false_true_lst, 0, 1) # Add the list of possible values to the field lim_delimitation_publique map_predefined_vals_to_fld(self.l_edge, "lim_delimitation_publique", false_true_lst, 0, 1) # >> # Then, start editing mode.. for idx, layer in enumerate(self.layers): if not layer.isEditable(): layer.startEditing() if idx == 0: self.iface.setActiveLayer(layer) self.projComboBox.setDisabled(False) self.permalinkCmb.setDisabled(True) self.downloadPushButton.setDisabled(True) self.resetPushButton.setDisabled(False) self.uploadPushButton.setDisabled(False) self.downloadPushButton.clicked.disconnect(self.on_downloaded) # self.permalinkLineEdit.returnPressed.disconnect(self.on_downloaded) self.resetPushButton.clicked.connect(self.on_reset) self.uploadPushButton.clicked.connect(self.on_uploaded) # Activate the scale limitation for the canvas self.canvas.scaleChanged.connect(self.limit_cvs_scale) self.downloaded.emit() return True def reset(self): """Remove RFU layers.""" # Save (virtually) the changes in the layers # (to avoid alert messages when removing the layers) for layer in self.layers : if isinstance(layer, QgsVectorLayer): if layer.isEditable(): self.iface.setActiveLayer(layer) layer.commitChanges() # Remove RFU layers try: self.project.removeMapLayers([ self.l_vertex.id(), self.l_edge.id(), self.l_bbox.id()]) except: return # Remove eliminated lines layer if self.project.mapLayersByName(elimedge_lname): el_lyr = self.project.mapLayersByName(elimedge_lname)[0] self.iface.setActiveLayer(el_lyr) el_lyr.commitChanges() self.project.removeMapLayers([el_lyr.id()]) # Reset variable self.precision_class = [] self.ellips_acronym = [] self.dflt_ellips_acronym = None self.nature = [] self.typo_nature_lim = [] self.typo_nature_som = [] self.auth_creator = [] self.l_vertex = None self.l_edge = None self.layers = [self.l_vertex, self.l_edge] self.edges_added = {} self.vertices_added = {} self.edges_removed = {} self.vertices_removed = {} self.edges_modified = {} self.vertices_modified = {} self.tol_same_pt = 0.0 # Reset ComboBox which contains projections authorized self.projComboBox.clear() self.projComboBox.setDisabled(True) # Loads permalinks into the permalink combox self.load_permalinks() self.permalinkCmb.setDisabled(False) # self.permalinkLineEdit.returnPressed.connect(self.on_downloaded) self.downloadPushButton.setDisabled(False) self.downloadPushButton.clicked.connect(self.on_downloaded) self.resetPushButton.setDisabled(True) self.resetPushButton.clicked.disconnect(self.on_reset) self.uploadPushButton.setDisabled(True) self.uploadPushButton.clicked.disconnect(self.on_uploaded) return True def upload(self, enr_api_dossier=None, commentaire=None): """Upload data to Géofoncier REST API. On success returns the log messages (Array). """ # Set XML document root = EltTree.Element(r"rfu") first_vtx_kept = True first_edge_kept = True # Add to our XML document datasets which have been changed if self.vertices_added: for fid in self.vertices_added: # Check if vertex is out of the bbox to_export = check_vtx_outofbbox(self.vertices_added_ft[fid], self.ft_bbox) if to_export: tools.xml_subelt_creator(root, "sommet", data=self.vertices_added[fid], action=r"create") # If vertex is out of the bbox else: # Create a new layer to store the vertices non exported if first_vtx_kept: if layer_exists(vtx_outofbbox_lname, self.project): vtx_outofbbox_lyr = self.project.mapLayersByName(vtx_outofbbox_lname)[0] else: vtx_outofbbox_lyr = create_vtx_outofbbox_lyr() # Add the vertex to this layer if not vtx_outofbbox_lyr.isEditable(): vtx_outofbbox_lyr.startEditing() vtx_outofbbox_lyr.addFeature(self.vertices_added_ft[fid]) first_vtx_kept = False if self.edges_added: for fid in self.edges_added: # Check if edge is out of the bbox to_export = check_edge_outofbbox(self.edges_added_ft[fid], self.ft_bbox) if to_export: tools.xml_subelt_creator(root, "limite", data=self.edges_added[fid], action=r"create") # If edge is out of the bbox else: # Create a new layer to store the edges non exported if first_edge_kept: if layer_exists(edge_outofbbox_lname, self.project): edge_outofbbox_lyr = self.project.mapLayersByName(edge_outofbbox_lname)[0] else: edge_outofbbox_lyr = create_edge_outofbbox_lyr() # Add the edge to this layer if not edge_outofbbox_lyr.isEditable(): edge_outofbbox_lyr.startEditing() edge_outofbbox_lyr.addFeature(self.edges_added_ft[fid]) first_edge_kept = False if self.vertices_removed: for fid in self.vertices_removed: tools.xml_subelt_creator(root, "sommet", data=self.vertices_removed[fid], action=r"delete") if self.edges_removed: for fid in self.edges_removed: tools.xml_subelt_creator(root, "limite", data=self.edges_removed[fid], action=r"delete") if self.vertices_modified: for fid in self.vertices_modified: tools.xml_subelt_creator(root, "sommet", data=self.vertices_modified[fid], action=r"update") if self.edges_modified: for fid in self.edges_modified: tools.xml_subelt_creator(root, "limite", data=self.edges_modified[fid], action=r"update") # Create a new changeset Id changeset_id = self.create_changeset(enr_api_dossier=enr_api_dossier, commentaire=commentaire) # Add changeset value in our XML document root.attrib[r"changeset"] = changeset_id # Send data edit = self.conn.edit(self.zone, EltTree.tostring(root)) if edit.code != 200: edit_read = edit.read() # DEBUG # urlresp_to_file(edit_read) err_tree = EltTree.fromstring(edit_read) msgs_log = [] for log in err_tree.iter(r"log"): msgs_log.append("%s: %s" % (log.attrib["type"], log.text)) raise Exception(msgs_log) tree = EltTree.fromstring(edit.read()) err = tree.find(r"./erreur") if err: debug_msg('DEBUG', "erreur: %s" , (str(err))) err_tree = EltTree.fromstring(err) msgs_log = [] for log in err_tree.iter(r"log"): msgs_log.append("%s: %s" % (log.attrib["type"], log.text)) raise Exception(msgs_log) # Returns log info msgs_log = [] for log in tree.iter(r"log"): msgs_log.append("%s: %s" % (log.attrib["type"], log.text)) # Close the changeset self.destroy_changeset(changeset_id) # Reset all self.edges_added = {} self.edges_added_ft = {} self.vertices_added = {} self.vertices_added_ft = {} self.edges_removed = {} self.vertices_removed = {} self.edges_modified = {} self.vertices_modified = {} # Alert message if elements out of bbox msg_outbbox = "" if not first_vtx_kept: msg_outbbox = msg_outbbox_vtx.format(vtx_outofbbox_lname) if not first_edge_kept: if msg_outbbox != "": msg_outbbox += "<br>" msg_outbbox += msg_outbbox_edge.format(edge_outofbbox_lname) if msg_outbbox != "": self.canvas.refresh() m_box = mbox_w_params(tl_atn, txt_msg_outbbox, msg_outbbox) m_box.exec_() return msgs_log def create_changeset(self, enr_api_dossier=None, commentaire=None): """Open a new changeset from Géofoncier API. On success, returns the new changeset id. """ opencs = self.conn.open_changeset(self.zone, enr_api_dossier=enr_api_dossier, commentaire=commentaire) if opencs.code != 200: raise Exception(opencs.read()) tree = EltTree.fromstring(opencs.read()) err = tree.find(r"./log") if err: raise Exception(err.text) # treeterator = list(tree.getiterator(tag=r"changeset")) # Python 3.9 -> getiterator deprecated treeterator = list(tree.iter(tag=r"changeset")) # We should get only one changeset if len(treeterator) != 1: raise Exception("Le nombre de \'changeset\' est incohérent.\n" "Merci de contacter l'administrateur Géofoncier.") return treeterator[0].attrib[r"id"] def destroy_changeset(self, id): """Close a changeset.""" closecs = self.conn.close_changeset(self.zone, id) if closecs.code != 200: raise Exception(closecs.read()) tree = EltTree.fromstring(closecs.read()) err = tree.find(r"./log") if err: raise Exception(err.text) return True def abort_action(self, msg=None): for layer in self.layers: if layer and not layer.isEditable(): layer.startEditing() # Clear message bar self.iface.messageBar().clearWidgets() if msg: return QMessageBox.warning(self, r"Attention", msg) return def extract_layers(self, tree): """Return a list of RFU layers.""" # Create vector layers.. l_vertex = QgsVectorLayer(r"Point?crs=epsg:4326&index=yes", "Sommet RFU", r"memory") l_edge = QgsVectorLayer(r"LineString?crs=epsg:4326&index=yes", "Limite RFU", r"memory") p_vertex = l_vertex.dataProvider() p_edge = l_edge.dataProvider() # Define default style renderer.. renderer_vertex = QgsRuleBasedRenderer(QgsMarkerSymbol()) vertex_root_rule = renderer_vertex.rootRule() # Modified in v2.1 (som_nature replaced by som_typologie_nature) >> vertex_rules = ( ( ("Borne, borne à puce, pierre, piquet, clou ou broche"), ("$id >= 0 AND \"som_typologie_nature\" IN ('Borne'," "'Borne à puce', 'Pierre', 'Piquet', 'Clou ou broche')"), r"#EC0000", 2.2 ), ( ("Axe cours d'eau, axe fossé, haut de talus, pied de talus"), ("$id >= 0 AND \"som_typologie_nature\" IN ('Axe cours d\'\'eau'," "'Axe fossé', 'Haut de talus', 'Pied de talus')"), r"#EE8012", 2.2 ), ( ("Angle de bâtiment, axe de mur, angle de mur, " "angle de clôture, pylône et toute autre valeur"), ("$id >= 0 AND \"som_typologie_nature\" NOT IN ('Borne'," "'Borne à puce', 'Pierre', 'Piquet', 'Clou ou broche'," "'Axe cours d\'\'eau', 'Axe fossé', 'Haut de talus'," "'Pied de talus')"), r"#9784EC", 2.2 ), ( "Temporaire", r"$id < 0", "cyan", 2.4 ), ( "Point nouveau à traiter car proche d'un existant", r"point_rfu_proche is not null", "#bcff03", 3 )) # >> for label, expression, color, size in vertex_rules: rule = vertex_root_rule.children()[0].clone() rule.setLabel(label) rule.setFilterExpression(expression) rule.symbol().setColor(QColor(color)) rule.symbol().setSize(size) vertex_root_rule.appendChild(rule) vertex_root_rule.removeChildAt(0) l_vertex.setRenderer(renderer_vertex) renderer_edge = QgsRuleBasedRenderer(QgsLineSymbol()) edge_root_rule = renderer_edge.rootRule() # Modified in v2.1 (lim_typologie_nature added) << edge_rules = ( ( "Limite privée", "$id >= 0 AND \"lim_typologie_nature\" = '" + lim_typo_nat_vals[0] + "'", "#0A0AFF", 0.5 ), ( "Limite naturelle", "$id >= 0 AND \"lim_typologie_nature\" = '" + lim_typo_nat_vals[1] + "'", "#aa876d", 0.5 ), ( "Temporaire", "$id < 0", "cyan", 1 ) ) # >> for label, expression, color, width in edge_rules: rule = edge_root_rule.children()[0].clone() rule.setLabel(label) rule.setFilterExpression(expression) rule.symbol().setColor(QColor(color)) rule.symbol().setWidth(width) edge_root_rule.appendChild(rule) edge_root_rule.removeChildAt(0) l_edge.setRenderer(renderer_edge) # Add fields.. p_vertex.addAttributes(vtx_atts) p_edge.addAttributes(edge_atts) # Add features from xml tree.. # ..to vertex layer.. fts_vertex = [] for e in tree.findall(r"sommet"): ft_vertex = QgsFeature() ft_vertex.setGeometry(QgsGeometry.fromWkt(e.attrib[r"geometrie"])) _id_noeud = int(e.attrib[r"id_noeud"]) _version = int(e.attrib[r"version"]) som_ge_createur = str(e.find(r"./som_ge_createur").text) som_nature = str(e.find(r"./som_nature").text) som_prec_rattcht = int(e.find(r"./som_precision_rattachement").text) som_coord_est = float(e.find(r"./som_coord_est").text) som_coord_nord = float(e.find(r"./som_coord_nord").text) som_repres_plane = str(e.find(r"./som_representation_plane").text) som_tolerance = float(e.find(r"./som_tolerance").text) # Field used to store the attestation_qualite value # when modifying a vertex ("false" or "true") attestation_qualite = "false" som_delim_pub = str(e.find(r"./som_delimitation_publique").text) som_typo_nature = str(e.find(r"./som_typologie_nature").text) ft_vertex.setAttributes([ _id_noeud, _version, som_ge_createur, som_delim_pub, som_typo_nature, som_nature, som_prec_rattcht, som_coord_est, som_coord_nord, som_repres_plane, som_tolerance, attestation_qualite, NULL ]) fts_vertex.append(ft_vertex) # ..to edge layer.. fts_edge = [] for e in tree.findall(r"limite"): ft_edge = QgsFeature() ft_edge.setGeometry(QgsGeometry.fromWkt(e.attrib[r"geometrie"])) _id_arc = int(e.attrib[r"id_arc"]) _version = int(e.attrib[r"version"]) lim_ge_createur = str(e.find(r"./lim_ge_createur").text) lim_typo_nature = str(e.find(r"./lim_typologie_nature").text) lim_delim_pub = str(e.find(r"./lim_delimitation_publique").text) ft_edge.setAttributes([ _id_arc, _version, lim_ge_createur, lim_delim_pub, lim_typo_nature ]) fts_edge.append(ft_edge) # Add features to layers.. p_vertex.addFeatures(fts_vertex) p_edge.addFeatures(fts_edge) # Update fields.. l_vertex.updateFields() l_edge.updateFields() # Update layer's extent.. l_vertex.updateExtents() l_edge.updateExtents() # Check
matric datums in the stream, regardless of unit, which is recommended in nearly all cases. CloudWatch does not honor this property for graphs. Default: - All metric datums in the given metric stream ''' props = aws_cdk.aws_cloudwatch.MetricOptions( account=account, color=color, dimensions=dimensions, dimensions_map=dimensions_map, label=label, period=period, region=region, statistic=statistic, unit=unit, ) return typing.cast(aws_cdk.aws_cloudwatch.Metric, jsii.invoke(self, "metric", [metric_name, props])) @jsii.member(jsii_name="metricGetRecords") def metric_get_records( self, *, account: typing.Optional[builtins.str] = None, color: typing.Optional[builtins.str] = None, dimensions: typing.Optional[typing.Mapping[builtins.str, typing.Any]] = None, dimensions_map: typing.Optional[typing.Mapping[builtins.str, builtins.str]] = None, label: typing.Optional[builtins.str] = None, period: typing.Optional[aws_cdk.core.Duration] = None, region: typing.Optional[builtins.str] = None, statistic: typing.Optional[builtins.str] = None, unit: typing.Optional[aws_cdk.aws_cloudwatch.Unit] = None, ) -> aws_cdk.aws_cloudwatch.Metric: '''The number of records retrieved from the shard, measured over the specified time period. Minimum, Maximum, and Average statistics represent the records in a single GetRecords operation for the stream in the specified time period. average The metric defaults to average over 5 minutes, it can be changed by passing ``statistic`` and ``period`` properties. :param account: Account which this metric comes from. Default: - Deployment account. :param color: The hex color code, prefixed with '#' (e.g. '#00ff00'), to use when this metric is rendered on a graph. The ``Color`` class has a set of standard colors that can be used here. Default: - Automatic color :param dimensions: (deprecated) Dimensions of the metric. Default: - No dimensions. :param dimensions_map: Dimensions of the metric. Default: - No dimensions. :param label: Label for this metric when added to a Graph in a Dashboard. Default: - No label :param period: The period over which the specified statistic is applied. Default: Duration.minutes(5) :param region: Region which this metric comes from. Default: - Deployment region. :param statistic: What function to use for aggregating. Can be one of the following: - "Minimum" | "min" - "Maximum" | "max" - "Average" | "avg" - "Sum" | "sum" - "SampleCount | "n" - "pNN.NN" Default: Average :param unit: Unit used to filter the metric stream. Only refer to datums emitted to the metric stream with the given unit and ignore all others. Only useful when datums are being emitted to the same metric stream under different units. The default is to use all matric datums in the stream, regardless of unit, which is recommended in nearly all cases. CloudWatch does not honor this property for graphs. Default: - All metric datums in the given metric stream ''' props = aws_cdk.aws_cloudwatch.MetricOptions( account=account, color=color, dimensions=dimensions, dimensions_map=dimensions_map, label=label, period=period, region=region, statistic=statistic, unit=unit, ) return typing.cast(aws_cdk.aws_cloudwatch.Metric, jsii.invoke(self, "metricGetRecords", [props])) @jsii.member(jsii_name="metricGetRecordsBytes") def metric_get_records_bytes( self, *, account: typing.Optional[builtins.str] = None, color: typing.Optional[builtins.str] = None, dimensions: typing.Optional[typing.Mapping[builtins.str, typing.Any]] = None, dimensions_map: typing.Optional[typing.Mapping[builtins.str, builtins.str]] = None, label: typing.Optional[builtins.str] = None, period: typing.Optional[aws_cdk.core.Duration] = None, region: typing.Optional[builtins.str] = None, statistic: typing.Optional[builtins.str] = None, unit: typing.Optional[aws_cdk.aws_cloudwatch.Unit] = None, ) -> aws_cdk.aws_cloudwatch.Metric: '''The number of bytes retrieved from the Kinesis stream, measured over the specified time period. Minimum, Maximum, and Average statistics represent the bytes in a single GetRecords operation for the stream in the specified time period. The metric defaults to average over 5 minutes, it can be changed by passing ``statistic`` and ``period`` properties. :param account: Account which this metric comes from. Default: - Deployment account. :param color: The hex color code, prefixed with '#' (e.g. '#00ff00'), to use when this metric is rendered on a graph. The ``Color`` class has a set of standard colors that can be used here. Default: - Automatic color :param dimensions: (deprecated) Dimensions of the metric. Default: - No dimensions. :param dimensions_map: Dimensions of the metric. Default: - No dimensions. :param label: Label for this metric when added to a Graph in a Dashboard. Default: - No label :param period: The period over which the specified statistic is applied. Default: Duration.minutes(5) :param region: Region which this metric comes from. Default: - Deployment region. :param statistic: What function to use for aggregating. Can be one of the following: - "Minimum" | "min" - "Maximum" | "max" - "Average" | "avg" - "Sum" | "sum" - "SampleCount | "n" - "pNN.NN" Default: Average :param unit: Unit used to filter the metric stream. Only refer to datums emitted to the metric stream with the given unit and ignore all others. Only useful when datums are being emitted to the same metric stream under different units. The default is to use all matric datums in the stream, regardless of unit, which is recommended in nearly all cases. CloudWatch does not honor this property for graphs. Default: - All metric datums in the given metric stream ''' props = aws_cdk.aws_cloudwatch.MetricOptions( account=account, color=color, dimensions=dimensions, dimensions_map=dimensions_map, label=label, period=period, region=region, statistic=statistic, unit=unit, ) return typing.cast(aws_cdk.aws_cloudwatch.Metric, jsii.invoke(self, "metricGetRecordsBytes", [props])) @jsii.member(jsii_name="metricGetRecordsIteratorAgeMilliseconds") def metric_get_records_iterator_age_milliseconds( self, *, account: typing.Optional[builtins.str] = None, color: typing.Optional[builtins.str] = None, dimensions: typing.Optional[typing.Mapping[builtins.str, typing.Any]] = None, dimensions_map: typing.Optional[typing.Mapping[builtins.str, builtins.str]] = None, label: typing.Optional[builtins.str] = None, period: typing.Optional[aws_cdk.core.Duration] = None, region: typing.Optional[builtins.str] = None, statistic: typing.Optional[builtins.str] = None, unit: typing.Optional[aws_cdk.aws_cloudwatch.Unit] = None, ) -> aws_cdk.aws_cloudwatch.Metric: '''The age of the last record in all GetRecords calls made against a Kinesis stream, measured over the specified time period. Age is the difference between the current time and when the last record of the GetRecords call was written to the stream. The Minimum and Maximum statistics can be used to track the progress of Kinesis consumer applications. A value of zero indicates that the records being read are completely caught up with the stream. The metric defaults to maximum over 5 minutes, it can be changed by passing ``statistic`` and ``period`` properties. :param account: Account which this metric comes from. Default: - Deployment account. :param color: The hex color code, prefixed with '#' (e.g. '#00ff00'), to use when this metric is rendered on a graph. The ``Color`` class has a set of standard colors that can be used here. Default: - Automatic color :param dimensions: (deprecated) Dimensions of the metric. Default: - No dimensions. :param dimensions_map: Dimensions of the metric. Default: - No dimensions. :param label: Label for this metric when added to a Graph in a Dashboard. Default: - No label :param period: The period over which the specified statistic is applied. Default: Duration.minutes(5) :param region: Region which this metric comes from. Default: - Deployment region. :param statistic: What function to use for aggregating. Can be one of the following: - "Minimum" | "min" - "Maximum" | "max" - "Average" | "avg" - "Sum" | "sum" - "SampleCount | "n" - "pNN.NN" Default: Average :param unit: Unit used to filter the metric stream. Only refer to datums emitted to the metric stream with the given unit and ignore all others. Only useful when datums are being emitted to the same metric stream under different units. The default is to use all matric datums in the stream, regardless of unit, which is recommended in nearly all cases. CloudWatch does not honor this property for graphs. Default: - All metric datums in the given metric stream ''' props = aws_cdk.aws_cloudwatch.MetricOptions( account=account, color=color, dimensions=dimensions, dimensions_map=dimensions_map, label=label, period=period, region=region, statistic=statistic, unit=unit, ) return typing.cast(aws_cdk.aws_cloudwatch.Metric, jsii.invoke(self, "metricGetRecordsIteratorAgeMilliseconds", [props])) @jsii.member(jsii_name="metricGetRecordsLatency") def metric_get_records_latency( self, *, account: typing.Optional[builtins.str] = None, color: typing.Optional[builtins.str] = None, dimensions: typing.Optional[typing.Mapping[builtins.str, typing.Any]] = None, dimensions_map: typing.Optional[typing.Mapping[builtins.str, builtins.str]] = None, label: typing.Optional[builtins.str] = None, period: typing.Optional[aws_cdk.core.Duration] = None, region: typing.Optional[builtins.str] = None, statistic: typing.Optional[builtins.str] = None, unit: typing.Optional[aws_cdk.aws_cloudwatch.Unit] = None, ) -> aws_cdk.aws_cloudwatch.Metric: '''The number of successful GetRecords operations per stream, measured over the specified time period. The metric defaults to average over 5 minutes, it can be changed by passing ``statistic`` and ``period`` properties. :param account: Account which this metric comes from. Default: - Deployment account. :param color: The hex color code, prefixed with '#' (e.g. '#00ff00'), to use when this metric is rendered on a graph. The ``Color`` class has a set of standard colors that can be used here. Default: - Automatic color :param dimensions:
'zh': u('\u6cb3\u5317\u7701\u6ca7\u5dde\u5e02')}, '861386650':{'en': 'Tongling, Anhui', 'zh': u('\u5b89\u5fbd\u7701\u94dc\u9675\u5e02')}, '861386651':{'en': 'Tongling, Anhui', 'zh': u('\u5b89\u5fbd\u7701\u94dc\u9675\u5e02')}, '861386652':{'en': 'Chuzhou, Anhui', 'zh': u('\u5b89\u5fbd\u7701\u6ec1\u5dde\u5e02')}, '861386653':{'en': 'Chuzhou, Anhui', 'zh': u('\u5b89\u5fbd\u7701\u6ec1\u5dde\u5e02')}, '861386654':{'en': 'Suzhou, Anhui', 'zh': u('\u5b89\u5fbd\u7701\u5bbf\u5dde\u5e02')}, '861386655':{'en': 'Suzhou, Anhui', 'zh': u('\u5b89\u5fbd\u7701\u5bbf\u5dde\u5e02')}, '861386656':{'en': 'Chizhou, Anhui', 'zh': u('\u5b89\u5fbd\u7701\u6c60\u5dde\u5e02')}, '861386657':{'en': 'Chizhou, Anhui', 'zh': u('\u5b89\u5fbd\u7701\u6c60\u5dde\u5e02')}, '861386658':{'en': 'Suzhou, Anhui', 'zh': u('\u5b89\u5fbd\u7701\u5bbf\u5dde\u5e02')}, '861386659':{'en': 'Suzhou, Anhui', 'zh': u('\u5b89\u5fbd\u7701\u5bbf\u5dde\u5e02')}, '861383392':{'en': 'Xingtai, Hebei', 'zh': u('\u6cb3\u5317\u7701\u90a2\u53f0\u5e02')}, '861383393':{'en': 'Xingtai, Hebei', 'zh': u('\u6cb3\u5317\u7701\u90a2\u53f0\u5e02')}, '861383390':{'en': 'Xingtai, Hebei', 'zh': u('\u6cb3\u5317\u7701\u90a2\u53f0\u5e02')}, '861383391':{'en': 'Xingtai, Hebei', 'zh': u('\u6cb3\u5317\u7701\u90a2\u53f0\u5e02')}, '861383396':{'en': 'Xingtai, Hebei', 'zh': u('\u6cb3\u5317\u7701\u90a2\u53f0\u5e02')}, '861383397':{'en': 'Cangzhou, Hebei', 'zh': u('\u6cb3\u5317\u7701\u6ca7\u5dde\u5e02')}, '861397270':{'en': 'Huanggang, Hubei', 'zh': u('\u6e56\u5317\u7701\u9ec4\u5188\u5e02')}, '861397271':{'en': 'Huanggang, Hubei', 'zh': u('\u6e56\u5317\u7701\u9ec4\u5188\u5e02')}, '861397272':{'en': 'Huanggang, Hubei', 'zh': u('\u6e56\u5317\u7701\u9ec4\u5188\u5e02')}, '861397273':{'en': 'Huanggang, Hubei', 'zh': u('\u6e56\u5317\u7701\u9ec4\u5188\u5e02')}, '861397274':{'en': 'Huanggang, Hubei', 'zh': u('\u6e56\u5317\u7701\u9ec4\u5188\u5e02')}, '861383394':{'en': 'Xingtai, Hebei', 'zh': u('\u6cb3\u5317\u7701\u90a2\u53f0\u5e02')}, '861378958':{'en': 'Bayannur, Inner Mongolia', 'zh': u('\u5185\u8499\u53e4\u5df4\u5f66\u6dd6\u5c14\u5e02')}, '861378959':{'en': 'Chifeng, Inner Mongolia', 'zh': u('\u5185\u8499\u53e4\u8d64\u5cf0\u5e02')}, '861378956':{'en': 'Chifeng, Inner Mongolia', 'zh': u('\u5185\u8499\u53e4\u8d64\u5cf0\u5e02')}, '861378957':{'en': 'Ordos, Inner Mongolia', 'zh': u('\u5185\u8499\u53e4\u9102\u5c14\u591a\u65af\u5e02')}, '861378954':{'en': 'Ulanqab, Inner Mongolia', 'zh': u('\u5185\u8499\u53e4\u4e4c\u5170\u5bdf\u5e03\u5e02')}, '861383395':{'en': 'Xingtai, Hebei', 'zh': u('\u6cb3\u5317\u7701\u90a2\u53f0\u5e02')}, '861378952':{'en': 'Baotou, Inner Mongolia', 'zh': u('\u5185\u8499\u53e4\u5305\u5934\u5e02')}, '861378953':{'en': 'Chifeng, Inner Mongolia', 'zh': u('\u5185\u8499\u53e4\u8d64\u5cf0\u5e02')}, '861378950':{'en': 'Hulun, Inner Mongolia', 'zh': u('\u5185\u8499\u53e4\u547c\u4f26\u8d1d\u5c14\u5e02')}, '861378951':{'en': 'Hohhot, Inner Mongolia', 'zh': u('\u5185\u8499\u53e4\u547c\u548c\u6d69\u7279\u5e02')}, '861390666':{'en': 'Wenzhou, Zhejiang', 'zh': u('\u6d59\u6c5f\u7701\u6e29\u5dde\u5e02')}, '861379346':{'en': 'Dezhou, Shandong', 'zh': u('\u5c71\u4e1c\u7701\u5fb7\u5dde\u5e02')}, '86138542':{'en': 'Qingdao, Shandong', 'zh': u('\u5c71\u4e1c\u7701\u9752\u5c9b\u5e02')}, '861379347':{'en': 'Dezhou, Shandong', 'zh': u('\u5c71\u4e1c\u7701\u5fb7\u5dde\u5e02')}, '86138017':{'en': 'Shanghai', 'zh': u('\u4e0a\u6d77\u5e02')}, '86138540':{'en': 'Heze, Shandong', 'zh': u('\u5c71\u4e1c\u7701\u83cf\u6cfd\u5e02')}, '861452139':{'en': 'Xingtai, Hebei', 'zh': u('\u6cb3\u5317\u7701\u90a2\u53f0\u5e02')}, '861452138':{'en': 'Xingtai, Hebei', 'zh': u('\u6cb3\u5317\u7701\u90a2\u53f0\u5e02')}, '861379349':{'en': 'Dezhou, Shandong', 'zh': u('\u5c71\u4e1c\u7701\u5fb7\u5dde\u5e02')}, '861452135':{'en': 'Cangzhou, Hebei', 'zh': u('\u6cb3\u5317\u7701\u6ca7\u5dde\u5e02')}, '86138011':{'en': 'Beijing', 'zh': u('\u5317\u4eac\u5e02')}, '861452137':{'en': 'Cangzhou, Hebei', 'zh': u('\u6cb3\u5317\u7701\u6ca7\u5dde\u5e02')}, '861452136':{'en': 'Cangzhou, Hebei', 'zh': u('\u6cb3\u5317\u7701\u6ca7\u5dde\u5e02')}, '861452131':{'en': 'Zhangjiakou, Hebei', 'zh': u('\u6cb3\u5317\u7701\u5f20\u5bb6\u53e3\u5e02')}, '861452130':{'en': 'Zhangjiakou, Hebei', 'zh': u('\u6cb3\u5317\u7701\u5f20\u5bb6\u53e3\u5e02')}, '861452133':{'en': 'Qinhuangdao, Hebei', 'zh': u('\u6cb3\u5317\u7701\u79e6\u7687\u5c9b\u5e02')}, '86138010':{'en': 'Beijing', 'zh': u('\u5317\u4eac\u5e02')}, '86145387':{'en': 'Kunming, Yunnan', 'zh': u('\u4e91\u5357\u7701\u6606\u660e\u5e02')}, '86145386':{'en': 'Kunming, Yunnan', 'zh': u('\u4e91\u5357\u7701\u6606\u660e\u5e02')}, '86138013':{'en': 'Beijing', 'zh': u('\u5317\u4eac\u5e02')}, '86138012':{'en': 'Beijing', 'zh': u('\u5317\u4eac\u5e02')}, '86139544':{'en': '<NAME>', 'zh': u('\u5c71\u4e1c\u7701\u4e34\u6c82\u5e02')}, '86139545':{'en': 'Yantai, Shandong', 'zh': u('\u5c71\u4e1c\u7701\u70df\u53f0\u5e02')}, '86138549':{'en': '<NAME>', 'zh': u('\u5c71\u4e1c\u7701\u4e34\u6c82\u5e02')}, '86139547':{'en': '<NAME>', 'zh': u('\u5c71\u4e1c\u7701\u6d4e\u5b81\u5e02')}, '86139540':{'en': '<NAME>', 'zh': u('\u5c71\u4e1c\u7701\u83cf\u6cfd\u5e02')}, '86139541':{'en': '<NAME>', 'zh': u('\u5c71\u4e1c\u7701\u6d4e\u5357\u5e02')}, '861452683':{'en': '<NAME>', 'zh': u('\u9655\u897f\u7701\u6e2d\u5357\u5e02')}, '861452682':{'en': '<NAME>', 'zh': u('\u9655\u897f\u7701\u5ef6\u5b89\u5e02')}, '861452681':{'en': 'Xianyang, Shaanxi', 'zh': u('\u9655\u897f\u7701\u54b8\u9633\u5e02')}, '861452680':{'en': 'Xianyang, Shaanxi', 'zh': u('\u9655\u897f\u7701\u54b8\u9633\u5e02')}, '861452687':{'en': 'XiAn, Shaanxi', 'zh': u('\u9655\u897f\u7701\u897f\u5b89\u5e02')}, '861399731':{'en': 'Xining, Qinghai', 'zh': u('\u9752\u6d77\u7701\u897f\u5b81\u5e02')}, '861452685':{'en': 'Yulin, Shaanxi', 'zh': u('\u9655\u897f\u7701\u6986\u6797\u5e02')}, '861452684':{'en': 'Weinan, Shaanxi', 'zh': u('\u9655\u897f\u7701\u6e2d\u5357\u5e02')}, '861452689':{'en': 'XiAn, Shaanxi', 'zh': u('\u9655\u897f\u7701\u897f\u5b89\u5e02')}, '861399730':{'en': 'Haidong, Qinghai', 'zh': u('\u9752\u6d77\u7701\u6d77\u4e1c\u5730\u533a')}, '86139250':{'en': 'Guangzhou, Guangdong', 'zh': u('\u5e7f\u4e1c\u7701\u5e7f\u5dde\u5e02')}, '86139251':{'en': 'Guangzhou, Guangdong', 'zh': u('\u5e7f\u4e1c\u7701\u5e7f\u5dde\u5e02')}, '86139252':{'en': 'Shenzhen, Guangdong', 'zh': u('\u5e7f\u4e1c\u7701\u6df1\u5733\u5e02')}, '86139253':{'en': 'Zhongshan, Guangdong', 'zh': u('\u5e7f\u4e1c\u7701\u4e2d\u5c71\u5e02')}, '86139254':{'en': 'Foshan, Guangdong', 'zh': u('\u5e7f\u4e1c\u7701\u4f5b\u5c71\u5e02')}, '86139255':{'en': 'Dongguan, Guangdong', 'zh': u('\u5e7f\u4e1c\u7701\u4e1c\u839e\u5e02')}, '86139256':{'en': 'Jieyang, Guangdong', 'zh': u('\u5e7f\u4e1c\u7701\u63ed\u9633\u5e02')}, '86139257':{'en': 'Dongguan, Guangdong', 'zh': u('\u5e7f\u4e1c\u7701\u4e1c\u839e\u5e02')}, '86139258':{'en': 'Dongguan, Guangdong', 'zh': u('\u5e7f\u4e1c\u7701\u4e1c\u839e\u5e02')}, '86139259':{'en': '<NAME>', 'zh': u('\u5e7f\u4e1c\u7701\u4f5b\u5c71\u5e02')}, '86139708':{'en': '<NAME>', 'zh': u('\u6c5f\u897f\u7701\u5357\u660c\u5e02')}, '86139709':{'en': '<NAME>', 'zh': u('\u6c5f\u897f\u7701\u5357\u660c\u5e02')}, '861390424':{'en': '<NAME>', 'zh': u('\u8fbd\u5b81\u7701\u672c\u6eaa\u5e02')}, '861452229':{'en': 'Hangzhou, Zhejiang', 'zh': u('\u6d59\u6c5f\u7701\u676d\u5dde\u5e02')}, '861452228':{'en': 'Wenzhou, Zhejiang', 'zh': u('\u6d59\u6c5f\u7701\u6e29\u5dde\u5e02')}, '861390425':{'en': '<NAME>', 'zh': u('\u8fbd\u5b81\u7701\u4e39\u4e1c\u5e02')}, '861380722':{'en': 'Wuhan, Hubei', 'zh': u('\u6e56\u5317\u7701\u6b66\u6c49\u5e02')}, '861380723':{'en': 'Huangshi, Hubei', 'zh': u('\u6e56\u5317\u7701\u9ec4\u77f3\u5e02')}, '861380720':{'en': 'Yichang, Hubei', 'zh': u('\u6e56\u5317\u7701\u5b9c\u660c\u5e02')}, '861380721':{'en': 'Jingzhou, Hubei', 'zh': u('\u6e56\u5317\u7701\u8346\u5dde\u5e02')}, '861380726':{'en': 'Jingmen, Hubei', 'zh': u('\u6e56\u5317\u7701\u8346\u95e8\u5e02')}, '861380727':{'en': '<NAME>i', 'zh': u('\u6e56\u5317\u7701\u8944\u6a0a\u5e02')}, '861380724':{'en': 'Xianning, Hubei', 'zh': u('\u6e56\u5317\u7701\u54b8\u5b81\u5e02')}, '861380725':{'en': 'Huanggang, Hubei', 'zh': u('\u6e56\u5317\u7701\u9ec4\u5188\u5e02')}, '861380098':{'en': 'Xining, Qinghai', 'zh': u('\u9752\u6d77\u7701\u897f\u5b81\u5e02')}, '861380099':{'en': '<NAME>', 'zh': u('\u65b0\u7586\u514b\u62c9\u739b\u4f9d\u5e02')}, '861380728':{'en': '<NAME>', 'zh': u('\u6e56\u5317\u7701\u5341\u5830\u5e02')}, '861380729':{'en': '<NAME>', 'zh': u('\u6e56\u5317\u7701\u5b5d\u611f\u5e02')}, '861453628':{'en': '<NAME>', 'zh': u('\u6c5f\u82cf\u7701\u6cf0\u5dde\u5e02')}, '861453629':{'en': '<NAME>', 'zh': u('\u6c5f\u82cf\u7701\u6cf0\u5dde\u5e02')}, '861453622':{'en': '<NAME>', 'zh': u('\u6c5f\u82cf\u7701\u76d0\u57ce\u5e02')}, '861453623':{'en': '<NAME>', 'zh': u('\u6c5f\u82cf\u7701\u76d0\u57ce\u5e02')}, '861453620':{'en': '<NAME>', 'zh': u('\u6c5f\u82cf\u7701\u76d0\u57ce\u5e02')}, '861453621':{'en': '<NAME>', 'zh': u('\u6c5f\u82cf\u7701\u76d0\u57ce\u5e02')}, '861453626':{'en': '<NAME>', 'zh': u('\u6c5f\u82cf\u7701\u6cf0\u5dde\u5e02')}, '861453627':{'en': '<NAME>', 'zh': u('\u6c5f\u82cf\u7701\u6cf0\u5dde\u5e02')}, '861453624':{'en': '<NAME>', 'zh': u('\u6c5f\u82cf\u7701\u5e38\u5dde\u5e02')}, '861453625':{'en': 'Changzhou, Jiangsu', 'zh': u('\u6c5f\u82cf\u7701\u5e38\u5dde\u5e02')}, '861380898':{'en': 'Qingdao, Shandong', 'zh': u('\u5c71\u4e1c\u7701\u9752\u5c9b\u5e02')}, '861380899':{'en': 'Qingdao, Shandong', 'zh': u('\u5c71\u4e1c\u7701\u9752\u5c9b\u5e02')}, '861380890':{'en': 'Yantai, Shandong', 'zh': u('\u5c71\u4e1c\u7701\u70df\u53f0\u5e02')}, '861380891':{'en': 'Yantai, Shandong', 'zh': u('\u5c71\u4e1c\u7701\u70df\u53f0\u5e02')}, '861380892':{'en': '<NAME>', 'zh': u('\u5c71\u4e1c\u7701\u6d4e\u5357\u5e02')}, '861380893':{'en': '<NAME>', 'zh': u('\u5c71\u4e1c\u7701\u6d4e\u5357\u5e02')}, '861380894':{'en': 'Zibo, Shandong', 'zh': u('\u5c71\u4e1c\u7701\u6dc4\u535a\u5e02')}, '861380895':{'en': 'Qingdao, Shandong', 'zh': u('\u5c71\u4e1c\u7701\u9752\u5c9b\u5e02')}, '861380896':{'en': 'Qingdao, Shandong', 'zh': u('\u5c71\u4e1c\u7701\u9752\u5c9b\u5e02')}, '861380897':{'en': 'Qingdao, Shandong', 'zh': u('\u5c71\u4e1c\u7701\u9752\u5c9b\u5e02')}, '861394864':{'en': 'Chifeng, Inner Mongolia', 'zh': u('\u5185\u8499\u53e4\u8d64\u5cf0\u5e02')}, '861380547':{'en': 'Jining, Shandong', 'zh': u('\u5c71\u4e1c\u7701\u6d4e\u5b81\u5e02')}, '861394866':{'en': 'Chifeng, Inner Mongolia', 'zh': u('\u5185\u8499\u53e4\u8d64\u5cf0\u5e02')}, '861380545':{'en': 'Yantai, Shandong', 'zh': u('\u5c71\u4e1c\u7701\u70df\u53f0\u5e02')}, '861380542':{'en': 'Qingdao, Shandong', 'zh': u('\u5c71\u4e1c\u7701\u9752\u5c9b\u5e02')}, '861380543':{'en': 'Binzhou, Shandong', 'zh': u('\u5c71\u4e1c\u7701\u6ee8\u5dde\u5e02')}, '861380540':{'en': 'Jinan, Shandong', 'zh': u('\u5c71\u4e1c\u7701\u6d4e\u5357\u5e02')}, '861394863':{'en': 'Chifeng, Inner Mongolia', 'zh': u('\u5185\u8499\u53e4\u8d64\u5cf0\u5e02')}, '861452226':{'en': 'Wenzhou, Zhejiang', 'zh': u('\u6d59\u6c5f\u7701\u6e29\u5dde\u5e02')}, '861394868':{'en': 'Chifeng, Inner Mongolia', 'zh': u('\u5185\u8499\u53e4\u8d64\u5cf0\u5e02')}, '861394869':{'en': 'Chifeng, Inner Mongolia', 'zh': u('\u5185\u8499\u53e4\u8d64\u5cf0\u5e02')}, '861380548':{'en': '<NAME>', 'zh': u('\u5c71\u4e1c\u7701\u6cf0\u5b89\u5e02')}, '861380549':{'en': '<NAME>', 'zh': u('\u5c71\u4e1c\u7701\u4e34\u6c82\u5e02')}, '861453565':{'en': '<NAME>', 'zh': u('\u8d35\u5dde\u7701\u8d35\u9633\u5e02')}, '861396624':{'en': '<NAME>', 'zh': u('\u5b89\u5fbd\u7701\u516d\u5b89\u5e02')}, '86138071':{'en': '<NAME>', 'zh': u('\u6e56\u5317\u7701\u6b66\u6c49\u5e02')}, '86138076':{'en': 'Haikou, Hainan', 'zh': u('\u6d77\u5357\u7701\u6d77\u53e3\u5e02')}, '86138075':{'en': 'Haikou, Hainan', 'zh': u('\u6d77\u5357\u7701\u6d77\u53e3\u5e02')}, '861396648':{'en': 'Huainan, Anhui', 'zh': u('\u5b89\u5fbd\u7701\u6dee\u5357\u5e02')}, '861396649':{'en': 'Huainan, Anhui', 'zh': u('\u5b89\u5fbd\u7701\u6dee\u5357\u5e02')}, '861396642':{'en': 'Anqing, Anhui', 'zh': u('\u5b89\u5fbd\u7701\u5b89\u5e86\u5e02')}, '861396643':{'en': 'Anqing, Anhui', 'zh': u('\u5b89\u5fbd\u7701\u5b89\u5e86\u5e02')}, '861396640':{'en': 'Anqing, Anhui', 'zh': u('\u5b89\u5fbd\u7701\u5b89\u5e86\u5e02')}, '861396641':{'en': 'Anqing, Anhui', 'zh': u('\u5b89\u5fbd\u7701\u5b89\u5e86\u5e02')}, '861396646':{'en': 'Huainan, Anhui', 'zh': u('\u5b89\u5fbd\u7701\u6dee\u5357\u5e02')}, '861396647':{'en': 'Huainan, Anhui', 'zh': u('\u5b89\u5fbd\u7701\u6dee\u5357\u5e02')}, '861396644':{'en': 'Anqing, Anhui', 'zh': u('\u5b89\u5fbd\u7701\u5b89\u5e86\u5e02')}, '861396645':{'en': 'Huainan, Anhui', 'zh': u('\u5b89\u5fbd\u7701\u6dee\u5357\u5e02')}, '86138469':{'en': 'Shuangyashan, Heilongjiang', 'zh': u('\u9ed1\u9f99\u6c5f\u7701\u53cc\u9e2d\u5c71\u5e02')}, '861379778':{'en': 'Huangshi, Hubei', 'zh': u('\u6e56\u5317\u7701\u9ec4\u77f3\u5e02')}, '861379775':{'en': '<NAME>', 'zh': u('\u6e56\u5317\u7701\u8944\u6a0a\u5e02')}, '861379774':{'en': 'Xiangfan, Hubei', 'zh': u('\u6e56\u5317\u7701\u8944\u6a0a\u5e02')}, '861379777':{'en': '<NAME>', 'zh': u('\u6e56\u5317\u7701\u9ec4\u77f3\u5e02')}, '861379776':{'en': '<NAME>', 'zh': u('\u6e56\u5317\u7701\u8944\u6a0a\u5e02')}, '861379771':{'en': '<NAME>', 'zh': u('\u6e56\u5317\u7701\u8944\u6a0a\u5e02')}, '861379770':{'en': '<NAME>', 'zh': u('\u6e56\u5317\u7701\u8944\u6a0a\u5e02')}, '861379773':{'en': '<NAME>', 'zh': u('\u6e56\u5317\u7701\u8944\u6a0a\u5e02')}, '861379772':{'en': '<NAME>', 'zh': u('\u6e56\u5317\u7701\u8944\u6a0a\u5e02')}, '86138617':{'en': '<NAME>', 'zh': u('\u6c5f\u82cf\u7701\u65e0\u9521\u5e02')}, '86138612':{'en': '<NAME>', 'zh': u('\u6c5f\u82cf\u7701\u5e38\u5dde\u5e02')}, '86138611':{'en': 'Changzhou, Jiangsu', 'zh': u('\u6c5f\u82cf\u7701\u5e38\u5dde\u5e02')}, '86138610':{'en': 'Changzhou, Jiangsu', 'zh': u('\u6c5f\u82cf\u7701\u5e38\u5dde\u5e02')}, '86138619':{'en': 'Nantong, Jiangsu', 'zh': u('\u6c5f\u82cf\u7701\u5357\u901a\u5e02')}, '86138618':{'en': '<NAME>', 'zh': u('\u6c5f\u82cf\u7701\u65e0\u9521\u5e02')}, '861383019':{'en': '<NAME>', 'zh': u('\u7518\u8083\u7701\u9152\u6cc9\u5e02')}, '861383018':{'en': '<NAME>', 'zh': u('\u7518\u8083\u7701\u9152\u6cc9\u5e02')}, '861380253':{'en': 'Guangzhou, Guangdong', 'zh': u('\u5e7f\u4e1c\u7701\u5e7f\u5dde\u5e02')}, '861383011':{'en': '<NAME>', 'zh': u('\u7518\u8083\u7701\u4e34\u590f\u56de\u65cf\u81ea\u6cbb\u5dde')}, '861383010':{'en': '<NAME>', 'zh': u('\u7518\u8083\u7701\u4e34\u590f\u56de\u65cf\u81ea\u6cbb\u5dde')}, '861383013':{'en': '<NAME>', 'zh': u('\u7518\u8083\u7701\u4e34\u590f\u56de\u65cf\u81ea\u6cbb\u5dde')}, '861383012':{'en': '<NAME>', 'zh': u('\u7518\u8083\u7701\u4e34\u590f\u56de\u65cf\u81ea\u6cbb\u5dde')}, '861383015':{'en': '<NAME>', 'zh': u('\u7518\u8083\u7701\u9152\u6cc9\u5e02')}, '861383014':{'en': '<NAME>', 'zh': u('\u7518\u8083\u7701\u9152\u6cc9\u5e02')}, '861383017':{'en': '<NAME>', 'zh': u('\u7518\u8083\u7701\u9152\u6cc9\u5e02')}, '861383016':{'en': '<NAME>', 'zh': u('\u7518\u8083\u7701\u9152\u6cc9\u5e02')}, '861379591':{'en': 'De<NAME>', 'zh': u('\u56db\u5ddd\u7701\u5fb7\u9633\u5e02')}, '861379590':{'en': 'De<NAME>', 'zh': u('\u56db\u5ddd\u7701\u5fb7\u9633\u5e02')}, '861379593':{'en': 'Bazhong, Sichuan', 'zh': u('\u56db\u5ddd\u7701\u5df4\u4e2d\u5e02')}, '861379592':{'en': 'Yibin, Sichuan', 'zh': u('\u56db\u5ddd\u7701\u5b9c\u5bbe\u5e02')}, '861379595':{'en': 'Mianyang, Sichuan', 'zh': u('\u56db\u5ddd\u7701\u7ef5\u9633\u5e02')}, '861379594':{'en': 'Bazhong, Sichuan', 'zh': u('\u56db\u5ddd\u7701\u5df4\u4e2d\u5e02')}, '861379597':{'en': '<NAME>', 'zh': u('\u56db\u5ddd\u7701\u6cf8\u5dde\u5e02')}, '861379596':{'en': 'Dazhou, Sichuan', 'zh': u('\u56db\u5ddd\u7701\u8fbe\u5dde\u5e02')}, '861379599':{'en': '<NAME>', 'zh': u('\u56db\u5ddd\u7701\u5357\u5145\u5e02')}, '861379598':{'en': '<NAME>', 'zh': u('\u56db\u5ddd\u7701\u5b9c\u5bbe\u5e02')}, '861380257':{'en': 'Shenzhen, Guangdong', 'zh': u('\u5e7f\u4e1c\u7701\u6df1\u5733\u5e02')}, '861380254':{'en': 'Guangzhou, Guangdong', 'zh': u('\u5e7f\u4e1c\u7701\u5e7f\u5dde\u5e02')}, '861382498':{'en': 'Yangjiang, Guangdong', 'zh': u('\u5e7f\u4e1c\u7701\u9633\u6c5f\u5e02')}, '861382499':{'en': 'Yangjiang, Guangdong', 'zh': u('\u5e7f\u4e1c\u7701\u9633\u6c5f\u5e02')}, '861382496':{'en': 'Yangjiang, Guangdong', 'zh': u('\u5e7f\u4e1c\u7701\u9633\u6c5f\u5e02')}, '861382497':{'en': 'Yangjiang, Guangdong', 'zh': u('\u5e7f\u4e1c\u7701\u9633\u6c5f\u5e02')}, '861382494':{'en': 'Qingyuan, Guangdong', 'zh': u('\u5e7f\u4e1c\u7701\u6e05\u8fdc\u5e02')}, '861382495':{'en': 'Yangjiang, Guangdong', 'zh': u('\u5e7f\u4e1c\u7701\u9633\u6c5f\u5e02')}, '861382492':{'en': 'Qingyuan, Guangdong', 'zh': u('\u5e7f\u4e1c\u7701\u6e05\u8fdc\u5e02')}, '861382493':{'en': 'Qingyuan, Guangdong', 'zh': u('\u5e7f\u4e1c\u7701\u6e05\u8fdc\u5e02')}, '861382490':{'en': 'Qingyuan, Guangdong', 'zh': u('\u5e7f\u4e1c\u7701\u6e05\u8fdc\u5e02')}, '861382491':{'en': 'Qingyuan, Guangdong', 'zh': u('\u5e7f\u4e1c\u7701\u6e05\u8fdc\u5e02')}, '861452919':{'en': 'Maoming, Guangdong', 'zh': u('\u5e7f\u4e1c\u7701\u8302\u540d\u5e02')}, '861452918':{'en': 'Yangjiang, Guangdong', 'zh': u('\u5e7f\u4e1c\u7701\u9633\u6c5f\u5e02')}, '861452913':{'en': 'Guangzhou, Guangdong', 'zh': u('\u5e7f\u4e1c\u7701\u5e7f\u5dde\u5e02')}, '861452912':{'en': 'Guangzhou, Guangdong', 'zh': u('\u5e7f\u4e1c\u7701\u5e7f\u5dde\u5e02')}, '861452911':{'en': 'Guangzhou, Guangdong', 'zh': u('\u5e7f\u4e1c\u7701\u5e7f\u5dde\u5e02')}, '861452910':{'en': 'Guangzhou, Guangdong', 'zh': u('\u5e7f\u4e1c\u7701\u5e7f\u5dde\u5e02')}, '861452917':{'en': 'Shanwei, Guangdong', 'zh': u('\u5e7f\u4e1c\u7701\u6c55\u5c3e\u5e02')}, '861452916':{'en': 'Guangzhou, Guangdong', 'zh': u('\u5e7f\u4e1c\u7701\u5e7f\u5dde\u5e02')}, '861452915':{'en': 'Guangzhou, Guangdong', 'zh': u('\u5e7f\u4e1c\u7701\u5e7f\u5dde\u5e02')}, '861452914':{'en': 'Guangzhou, Guangdong', 'zh': u('\u5e7f\u4e1c\u7701\u5e7f\u5dde\u5e02')}, '861450964':{'en': 'Bortala, Xinjiang', 'zh': u('\u65b0\u7586\u535a\u5c14\u5854\u62c9\u8499\u53e4\u81ea\u6cbb\u5dde')}, '861450965':{'en': 'Kizilsu, Xinjiang', 'zh': u('\u65b0\u7586\u514b\u5b5c\u52d2\u82cf\u67ef\u5c14\u514b\u5b5c\u81ea\u6cbb\u5dde')}, '861450966':{'en': 'Kizilsu, Xinjiang', 'zh': u('\u65b0\u7586\u514b\u5b5c\u52d2\u82cf\u67ef\u5c14\u514b\u5b5c\u81ea\u6cbb\u5dde')}, '861450967':{'en': 'Kizilsu, Xinjiang', 'zh': u('\u65b0\u7586\u514b\u5b5c\u52d2\u82cf\u67ef\u5c14\u514b\u5b5c\u81ea\u6cbb\u5dde')}, '861450960':{'en': 'Bortala, Xinjiang', 'zh': u('\u65b0\u7586\u535a\u5c14\u5854\u62c9\u8499\u53e4\u81ea\u6cbb\u5dde')}, '861450961':{'en': 'Bortala, Xinjiang', 'zh': u('\u65b0\u7586\u535a\u5c14\u5854\u62c9\u8499\u53e4\u81ea\u6cbb\u5dde')}, '861450962':{'en': 'Bortala, Xinjiang', 'zh': u('\u65b0\u7586\u535a\u5c14\u5854\u62c9\u8499\u53e4\u81ea\u6cbb\u5dde')}, '861450963':{'en': 'Bortala, Xinjiang', 'zh': u('\u65b0\u7586\u535a\u5c14\u5854\u62c9\u8499\u53e4\u81ea\u6cbb\u5dde')}, '861450968':{'en': 'Kizilsu, Xinjiang', 'zh': u('\u65b0\u7586\u514b\u5b5c\u52d2\u82cf\u67ef\u5c14\u514b\u5b5c\u81ea\u6cbb\u5dde')}, '861450969':{'en': 'Urumchi, Xinjiang', 'zh': u('\u65b0\u7586\u4e4c\u9c81\u6728\u9f50\u5e02')}, '861452519':{'en': 'Weifang, Shandong', 'zh': u('\u5c71\u4e1c\u7701\u6f4d\u574a\u5e02')}, '861452518':{'en': '<NAME>', 'zh': u('\u5c71\u4e1c\u7701\u6f4d\u574a\u5e02')}, '861390943':{'en': '<NAME>', 'zh': u('\u7518\u8083\u7701\u767d\u94f6\u5e02')}, '861390942':{'en': '<NAME>', 'zh': u('\u7518\u8083\u7701\u5170\u5dde\u5e02')}, '861390941':{'en': '<NAME>', 'zh': u('\u7518\u8083\u7701\u7518\u5357\u85cf\u65cf\u81ea\u6cbb\u5dde')}, '861390940':{'en': '<NAME>', 'zh': u('\u7518\u8083\u7701\u5170\u5dde\u5e02')}, '861390947':{'en': '<NAME>', 'zh': u('\u7518\u8083\u7701\u9152\u6cc9\u5e02')}, '861390946':{'en': '<NAME>', 'zh': u('\u7518\u8083\u7701\u5170\u5dde\u5e02')}, '861390945':{'en': '<NAME>', 'zh': u('\u7518\u8083\u7701\u6b66\u5a01\u5e02')}, '861390944':{'en': 'Lanzhou, Gansu', 'zh': u('\u7518\u8083\u7701\u5170\u5dde\u5e02')}, '861390949':{'en': 'Lanzhou, Gansu', 'zh': u('\u7518\u8083\u7701\u5170\u5dde\u5e02')}, '861390948':{'en': 'Lanzhou, Gansu', 'zh': u('\u7518\u8083\u7701\u5170\u5dde\u5e02')}, '861452511':{'en': 'Zibo, Shandong', 'zh': u('\u5c71\u4e1c\u7701\u6dc4\u535a\u5e02')}, '861452510':{'en': 'Zibo, Shandong', 'zh': u('\u5c71\u4e1c\u7701\u6dc4\u535a\u5e02')}, '861389149':{'en': 'Xianyang, Shaanxi', 'zh': u('\u9655\u897f\u7701\u54b8\u9633\u5e02')}, '861389148':{'en': 'Xianyang, Shaanxi', 'zh': u('\u9655\u897f\u7701\u54b8\u9633\u5e02')}, '861389145':{'en': 'Weinan, Shaanxi', 'zh': u('\u9655\u897f\u7701\u6e2d\u5357\u5e02')}, '861389144':{'en': '<NAME>', 'zh': u('\u9655\u897f\u7701\u6e2d\u5357\u5e02')}, '861389147':{'en': 'Xianyang, Shaanxi', 'zh': u('\u9655\u897f\u7701\u54b8\u9633\u5e02')}, '861389146':{'en': 'Weinan, Shaanxi', 'zh': u('\u9655\u897f\u7701\u6e2d\u5357\u5e02')}, '861389141':{'en': 'Shangluo, Shaanxi', 'zh': u('\u9655\u897f\u7701\u5546\u6d1b\u5e02')}, '861389140':{'en': 'Shangluo, Shaanxi', 'zh': u('\u9655\u897f\u7701\u5546\u6d1b\u5e02')}, '861389143':{'en': 'XiAn, Shaanxi', 'zh': u('\u9655\u897f\u7701\u897f\u5b89\u5e02')}, '861389142':{'en': 'Shangluo, Shaanxi', 'zh': u('\u9655\u897f\u7701\u5546\u6d1b\u5e02')}, '861453437':{'en': '<NAME>', 'zh': u('\u8fbd\u5b81\u7701\u76d8\u9526\u5e02')}, '861453436':{'en': '<NAME>', 'zh': u('\u8fbd\u5b81\u7701\u9526\u5dde\u5e02')}, '861453435':{'en': '<NAME>', 'zh': u('\u8fbd\u5b81\u7701\u4e39\u4e1c\u5e02')}, '861453434':{'en': '<NAME>', 'zh': u('\u8fbd\u5b81\u7701\u5927\u8fde\u5e02')}, '861453433':{'en': '<NAME>', 'zh': u('\u8fbd\u5b81\u7701\u94c1\u5cad\u5e02')}, '861453432':{'en': '<NAME>oning', 'zh': u('\u8fbd\u5b81\u7701\u978d\u5c71\u5e02')}, '861453431':{'en': '<NAME>oning', 'zh': u('\u8fbd\u5b81\u7701\u978d\u5c71\u5e02')}, '861453430':{'en': '<NAME>', 'zh': u('\u8fbd\u5b81\u7701\u978d\u5c71\u5e02')}, '861453439':{'en': '<NAME>', 'zh': u('\u8fbd\u5b81\u7701\u8fbd\u9633\u5e02')}, '861453438':{'en': '<NAME>', 'zh': u('\u8fbd\u5b81\u7701\u76d8\u9526\u5e02')}, '861390411':{'en': '<NAME>', 'zh': u('\u8fbd\u5b81\u7701\u5927\u8fde\u5e02')}, '861390410':{'en': '<NAME>', 'zh': u('\u8fbd\u5b81\u7701\u94c1\u5cad\u5e02')}, '861395133':{'en': '<NAME>', 'zh': u('\u6c5f\u82cf\u7701\u5357\u901a\u5e02')}, '861390412':{'en': '<NAME>', 'zh': u('\u8fbd\u5b81\u7701\u978d\u5c71\u5e02')}, '861390415':{'en': '<NAME>', 'zh': u('\u8fbd\u5b81\u7701\u4e39\u4e1c\u5e02')}, '861390414':{'en': '<NAME>', 'zh': u('\u8fbd\u5b81\u7701\u672c\u6eaa\u5e02')}, '861395137':{'en': '<NAME>iangsu', 'zh': u('\u6c5f\u82cf\u7701\u5bbf\u8fc1\u5e02')}, '861395136':{'en': 'Suqian, Jiangsu', 'zh': u('\u6c5f\u82cf\u7701\u5bbf\u8fc1\u5e02')}, '861395139':{'en': 'Suqian, Jiangsu', 'zh': u('\u6c5f\u82cf\u7701\u5bbf\u8fc1\u5e02')}, '861395138':{'en': 'Nantong, Jiangsu', 'zh': u('\u6c5f\u82cf\u7701\u5357\u901a\u5e02')}, '861395685':{'en': 'Suzhou, Anhui', 'zh': u('\u5b89\u5fbd\u7701\u5bbf\u5dde\u5e02')}, '861395684':{'en': 'Suzhou, Anhui', 'zh': u('\u5b89\u5fbd\u7701\u5bbf\u5dde\u5e02')}, '861395683':{'en': 'Suzhou, Anhui', 'zh': u('\u5b89\u5fbd\u7701\u5bbf\u5dde\u5e02')}, '861395682':{'en': 'Fuyang, Anhui', 'zh': u('\u5b89\u5fbd\u7701\u961c\u9633\u5e02')}, '861395681':{'en': 'Fuyang, Anhui', 'zh': u('\u5b89\u5fbd\u7701\u961c\u9633\u5e02')}, '861395680':{'en': '<NAME>', 'zh': u('\u5b89\u5fbd\u7701\u961c\u9633\u5e02')}, '861450604':{'en': '<NAME>', 'zh': u('\u5409\u6797\u7701\u677e\u539f\u5e02')}, '861385729':{'en': 'Huzhou, Zhejiang', 'zh': u('\u6d59\u6c5f\u7701\u6e56\u5dde\u5e02')}, '861385728':{'en': 'Huzhou, Zhejiang', 'zh': u('\u6d59\u6c5f\u7701\u6e56\u5dde\u5e02')}, '861385725':{'en': 'Huzhou, Zhejiang', 'zh': u('\u6d59\u6c5f\u7701\u6e56\u5dde\u5e02')}, '861385724':{'en': 'Huzhou, Zhejiang', 'zh': u('\u6d59\u6c5f\u7701\u6e56\u5dde\u5e02')}, '861385727':{'en': 'Huzhou, Zhejiang', 'zh': u('\u6d59\u6c5f\u7701\u6e56\u5dde\u5e02')}, '861385726':{'en': 'Huzhou, Zhejiang', 'zh':
vertical position [m] for calculation of power density distribution vs horizontal and vertical position'], ['pw_ry', 'f', 0.015, 'range of vertical position [m] for calculation of power density distribution vs horizontal and vertical position'], ['pw_ny', 'i', 100, 'number of points vs vertical position for calculation of power density distribution'], ['pw_pr', 'f', 1.0, 'precision factor for calculation of power density distribution'], ['pw_meth', 'i', 1, 'power density computation method (1- "near field", 2- "far field")'], ['pw_zst', 'f', 0., 'initial longitudinal position along electron trajectory of power density distribution (effective if pow_sst < pow_sfi)'], ['pw_zfi', 'f', 0., 'final longitudinal position along electron trajectory of power density distribution (effective if pow_sst < pow_sfi)'], ['pw_mag', 'i', 1, 'magnetic field to be used for power density calculation: 1- approximate, 2- accurate'], ['pw_fn', 's', 'res_pow.dat', 'file name for saving calculated power density distribution'], ['pw_pl', 's', '', 'plot the resulting power density distribution in a graph: ""- dont plot, "x"- vs horizontal position, "y"- vs vertical position, "xy"- vs horizontal and vertical position'], #Single-Electron Intensity distribution vs horizontal and vertical position ['si', '', '', 'calculate single-e intensity distribution (without wavefront propagation through a beamline) vs horizontal and vertical position', 'store_true'], #Single-Electron Wavefront Propagation ['ws', '', '', 'calculate single-electron (/ fully coherent) wavefront propagation', 'store_true'], #Multi-Electron (partially-coherent) Wavefront Propagation ['wm', '', '', 'calculate multi-electron (/ partially coherent) wavefront propagation', 'store_true'], ['w_e', 'f', 9000.0, 'photon energy [eV] for calculation of intensity distribution vs horizontal and vertical position'], ['w_ef', 'f', -1.0, 'final photon energy [eV] for calculation of intensity distribution vs horizontal and vertical position'], ['w_ne', 'i', 1, 'number of points vs photon energy for calculation of intensity distribution'], ['w_x', 'f', 0.0, 'central horizontal position [m] for calculation of intensity distribution'], ['w_rx', 'f', 0.002, 'range of horizontal position [m] for calculation of intensity distribution'], ['w_nx', 'i', 2048, 'number of points vs horizontal position for calculation of intensity distribution'], ['w_y', 'f', 0.0, 'central vertical position [m] for calculation of intensity distribution vs horizontal and vertical position'], ['w_ry', 'f', 0.002, 'range of vertical position [m] for calculation of intensity distribution vs horizontal and vertical position'], ['w_ny', 'i', 2048, 'number of points vs vertical position for calculation of intensity distribution'], ['w_smpf', 'f', 0, 'sampling factor for calculation of intensity distribution vs horizontal and vertical position'], ['w_meth', 'i', 2, 'method to use for calculation of intensity distribution vs horizontal and vertical position: 0- "manual", 1- "auto-undulator", 2- "auto-wiggler"'], ['w_prec', 'f', 0.01, 'relative precision for calculation of intensity distribution vs horizontal and vertical position'], ['w_u', 'i', 1, 'electric field units: 0- arbitrary, 1- sqrt(Phot/s/0.1%bw/mm^2), 2- sqrt(J/eV/mm^2) or sqrt(W/mm^2), depending on representation (freq. or time)'], ['si_pol', 'i', 6, 'polarization component to extract after calculation of intensity distribution: 0- Linear Horizontal, 1- Linear Vertical, 2- Linear 45 degrees, 3- Linear 135 degrees, 4- Circular Right, 5- Circular Left, 6- Total'], ['si_type', 'i', 0, 'type of a characteristic to be extracted after calculation of intensity distribution: 0- Single-Electron Intensity, 1- Multi-Electron Intensity, 2- Single-Electron Flux, 3- Multi-Electron Flux, 4- Single-Electron Radiation Phase, 5- Re(E): Real part of Single-Electron Electric Field, 6- Im(E): Imaginary part of Single-Electron Electric Field, 7- Single-Electron Intensity, integrated over Time or Photon Energy'], ['w_mag', 'i', 1, 'magnetic field to be used for calculation of intensity distribution vs horizontal and vertical position: 1- approximate, 2- accurate'], ['si_fn', 's', 'res_int_se.dat', 'file name for saving calculated single-e intensity distribution (without wavefront propagation through a beamline) vs horizontal and vertical position'], ['si_pl', 's', '', 'plot the input intensity distributions in graph(s): ""- dont plot, "x"- vs horizontal position, "y"- vs vertical position, "xy"- vs horizontal and vertical position'], ['ws_fni', 's', 'res_int_pr_se.dat', 'file name for saving propagated single-e intensity distribution vs horizontal and vertical position'], ['ws_pl', 's', '', 'plot the resulting intensity distributions in graph(s): ""- dont plot, "x"- vs horizontal position, "y"- vs vertical position, "xy"- vs horizontal and vertical position'], ['wm_nm', 'i', 1000, 'number of macro-electrons (coherent wavefronts) for calculation of multi-electron wavefront propagation'], ['wm_na', 'i', 5, 'number of macro-electrons (coherent wavefronts) to average on each node for parallel (MPI-based) calculation of multi-electron wavefront propagation'], ['wm_ns', 'i', 5, 'saving periodicity (in terms of macro-electrons / coherent wavefronts) for intermediate intensity at multi-electron wavefront propagation calculation'], ['wm_ch', 'i', 0, 'type of a characteristic to be extracted after calculation of multi-electron wavefront propagation: #0- intensity (s0); 1- four Stokes components; 2- mutual intensity cut vs x; 3- mutual intensity cut vs y; 40- intensity(s0), mutual intensity cuts and degree of coherence vs X & Y'], ['wm_ap', 'i', 0, 'switch specifying representation of the resulting Stokes parameters: coordinate (0) or angular (1)'], ['wm_x0', 'f', 0, 'horizontal center position for mutual intensity cut calculation'], ['wm_y0', 'f', 0, 'vertical center position for mutual intensity cut calculation'], ['wm_ei', 'i', 0, 'integration over photon energy is required (1) or not (0); if the integration is required, the limits are taken from w_e, w_ef'], ['wm_rm', 'i', 1, 'method for generation of pseudo-random numbers for e-beam phase-space integration: 1- standard pseudo-random number generator, 2- Halton sequences, 3- LPtau sequences (to be implemented)'], ['wm_am', 'i', 0, 'multi-electron integration approximation method: 0- no approximation (use the standard 5D integration method), 1- integrate numerically only over e-beam energy spread and use convolution to treat transverse emittance'], ['wm_fni', 's', 'res_int_pr_me.dat', 'file name for saving propagated multi-e intensity distribution vs horizontal and vertical position'], #to add options ['op_r', 'f', 20.0, 'longitudinal position of the first optical element [m]'], # Former appParam: ['rs_type', 's', 'g', 'source type, (u) idealized undulator, (t), tabulated undulator, (m) multipole, (g) gaussian beam'], #---Beamline optics: # VFM: ellipsoidMirror ['op_VFM_hfn', 's', 'None', 'heightProfileFile'], ['op_VFM_dim', 's', 'x', 'orientation'], ['op_VFM_p', 'f', 50.0, 'firstFocusLength'], ['op_VFM_q', 'f', 0.4, 'focalLength'], ['op_VFM_ang', 'f', 0.003, 'grazingAngle'], ['op_VFM_amp_coef', 'f', 1.0, 'heightAmplification'], ['op_VFM_size_tang', 'f', 0.2, 'tangentialSize'], ['op_VFM_size_sag', 'f', 0.01, 'sagittalSize'], ['op_VFM_nvx', 'f', 0.0, 'normalVectorX'], ['op_VFM_nvy', 'f', 0.999995500003375, 'normalVectorY'], ['op_VFM_nvz', 'f', -0.002999995500002025, 'normalVectorZ'], ['op_VFM_tvx', 'f', 0.0, 'tangentialVectorX'], ['op_VFM_tvy', 'f', -0.002999995500002025, 'tangentialVectorY'], ['op_VFM_x', 'f', 0.0, 'horizontalOffset'], ['op_VFM_y', 'f', 0.0, 'verticalOffset'], # VFM_HFM: drift ['op_VFM_HFM_L', 'f', 0.20000000000000284, 'length'], # HFM: ellipsoidMirror ['op_HFM_hfn', 's', 'None', 'heightProfileFile'], ['op_HFM_dim', 's', 'x', 'orientation'], ['op_HFM_p', 'f', 50.0, 'firstFocusLength'], ['op_HFM_q', 'f', 0.2, 'focalLength'], ['op_HFM_ang', 'f', 0.003, 'grazingAngle'], ['op_HFM_amp_coef', 'f', 1.0, 'heightAmplification'], ['op_HFM_size_tang', 'f', 0.2, 'tangentialSize'], ['op_HFM_size_sag', 'f', 0.01, 'sagittalSize'], ['op_HFM_nvx', 'f', 0.999995500003375, 'normalVectorX'], ['op_HFM_nvy', 'f', 0.0, 'normalVectorY'], ['op_HFM_nvz', 'f', -0.002999995500002025, 'normalVectorZ'], ['op_HFM_tvx', 'f', -0.002999995500002025, 'tangentialVectorX'], ['op_HFM_tvy', 'f', 0.0, 'tangentialVectorY'], ['op_HFM_x', 'f', 0.0, 'horizontalOffset'], ['op_HFM_y', 'f', 0.0, 'verticalOffset'], # HFM_Watchpoint: drift ['op_HFM_Watchpoint_L', 'f', 0.19999999999999574, 'length'], # Watchpoint_Mask: drift ['op_Watchpoint_Mask_L', 'f', 0.20000000000000284, 'length'], # Mask: mask ['op_Mask_delta', 'f', 1.0, 'refractiveIndex'], ['op_Mask_atten_len', 'f', 1.0, 'attenuationLength'], ['op_Mask_thick', 'f', 1.0, 'maskThickness'], ['op_Mask_grid_sh', 'f', 0, 'gridShape'], ['op_Mask_grid_dx', 'f', 5e-06, 'horizontalGridDimension'], ['op_Mask_grid_dy', 'f', 5e-06, 'verticalGridDimension'], ['op_Mask_pitch_x', 'f', 2e-05, 'horizontalGridPitch'], ['op_Mask_pitch_y', 'f', 2e-05, 'verticalGridPitch'], ['op_Mask_gridTiltAngle', 'f', 0.4363323129985824, 'gridTiltAngle'], ['op_Mask_hx', 'f', 7.319999999999999e-07, 'horizontalSamplingInterval'], ['op_Mask_hy', 'f', 7.319999999999999e-07, 'verticalSamplingInterval'], ['op_Mask_mask_x0', 'f', 0.0, 'horizontalMaskCoordinate'], ['op_Mask_mask_y0', 'f', 0.0, 'verticalMaskCoordinate'], ['op_Mask_mask_Nx', 'i', 1024, 'horizontalPixelsNumber'], ['op_Mask_mask_Ny', 'i', 1024, 'verticalPixelsNumber'], ['op_Mask_grid_nx', 'i', 21, 'horizontalGridsNumber'], ['op_Mask_grid_ny', 'i', 21, 'verticalGridsNumber'], #---Propagation parameters ['op_VFM_pp', 'f', [0, 0, 1.0, 0, 0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 'VFM'], ['op_VFM_HFM_pp', 'f', [0, 0, 1.0, 1, 0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 'VFM_HFM'], ['op_HFM_pp', 'f', [0, 0, 1.0, 0, 0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 'HFM'], ['op_HFM_Watchpoint_pp', 'f', [0, 0, 1.0, 1, 0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 'HFM_Watchpoint'], ['op_Watchpoint_Mask_pp', 'f', [0, 0, 1.0, 1, 0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 'Watchpoint_Mask'], ['op_Mask_pp', 'f', [0, 0, 1.0, 0, 0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 'Mask'], ['op_fin_pp', 'f', [0, 0, 1.0, 0, 0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 'final post-propagation (resize) parameters'], #[ 0]: Auto-Resize (1) or not (0) Before propagation #[ 1]: Auto-Resize (1)
<gh_stars>1-10 import numpy as np import copy import math import scipy from susi import props from susi import sampling from .result import result_obj, strurel_result from scipy.stats import norm class strurel(object): ''' ################################################################### Description: The strurel object - is defined by the properties in susi.props (stochastic attributes and limit states) - we apply sampling methods (susi.sampling) on it - all results from the sampling are collected in it and saved in the strurel_result class, this yields a discrete set of results in the strurel_result class - a continuous result is created by the given interpolation methods ################################################################### Parameters: attrs: object of class col_attr (see /props/attrs), no default stochastic properties of the structure, related to the given limit state equation (ls) e.g. props.col_attr([props.attr(name="x{0}".format(i),rtype="n",mx=1e-10,vx=1e10) for i in range(3)]) ls: object of limitstate class (see /props/limitst), no default limit state function of the stochastic reliability formulation e.g. ls=props.limitstate(name="ls1" ,f_str='-(np.sum([x[0],x[1],x[2]]))/math.sqrt(3)+4.7534243088229' ,argslist=["x2","x0","x1"] ,prob=None) corrX: matrix (type: numpy array), default=independent correlation matrix of stochastic properties, default is np.eye (independence), e.g. np.array([[1,0,0],[0,1,0.2],[0,0.2,1]]) ################################################################### Returns: Creates strurel object for further analysis by e.g. SuS or SuSI ''' def __init__(self,attrs,ls,corrX=None): self.attrs=attrs self.ls=ls self.corr_z=0 if corrX is None: #default set independent variables self.corrX=np.identity(len(self.ls.argslist)) else: self.corrX=corrX self.rvs=props.col_rv(rvs=self.attrs.get_rvs(),corrX=corrX) if ls!=None: self.match=props.limitstate_match(attrs,ls.argslist) self.results=list() self.result=None self.ls.prob=self def get_result(self ,method="sus" ,Nlist=[500],plist=[0.1],bstar=0.0 ,fixcsteps=10,palist=[0.2],reuse=1,vers="b",saveU=0 ,choose_seedN=0,dropbi=0,seedplist=[1.0],i0=0.0 ,boundpf=1e-15 ,xk="x0",mono="i",max_error=1e-10,bi=0.0 ,Npred=100,predict_by_prev=0,prevNpredict=1,prob_b=0.8 ,pl=0.2,pu=0.4,firstvalsampling=0,firstvalsamplingN=20,Nbound=15000,raise_err=1 ,fixNpred=0,testmc=0,maxsteps=5,q=0): ''' ################################################################### #Description: Use Subset Simulation or Subset Simulation Interpolation to compute the reliability of the strurel_object. Note that there are many option parameters for scientific analysis of the properties of the algorithms. By default, they are set to values that provide good efficiency in most cases. #Important Remark: SuSI also uses the SuS parameters as it is based on and utilizes ordinary SuS ################################################################### Parameters: ######## #general method: str, "sus" or "susi", default="sus" choose method Subset Simulation or Subset Simulation Interpolation ######## #SuS parameters - obligatory (note these are lists to allow adaptiveness with respect to the subset level) Nlist: list of integer values, default=[500] defines the sample number in each subset, starting with the first list element Nlist[0] for Monte Carlo, then taking Nlist[i] samples in subset i, if last list element is reached, last element is taken for all higher level subsets e.g. [500,400] (500 samples for Monte Carlo, then 400 for all higher level subsets) plist: list of float values in (0,1), default=0.1 defines the intermediate subset probability as in Nlist, the list allows to select different values for different subsets e.g. [0.1,0.3,0.5] bstar: float, default=0.0 defines the threshold for failure of the structure ######## #SuS parameters - optional (alteration for scientific examination mostly, default settings provide good efficiency) fixcsteps: integer, default=10 defines the steps made to create the single MCMC chains, for creation of new samples in function acs (see /sampling/acs) palist: list of float values in (0,1), default=[0.2] defines the percentage of chains in MCMC sampling after which the proposal spread is updated reuse: int in {0,1}, default=1 decide wheter to reuse sample seeds (1) or not reuse sample seeds (0) vers: str in {"a","b"}, default="b" version "a" results in equally updated proposal spreads for all variables in acs (see /sampling/acs), version "b" weights according to the importance of specific variables saveU: int in {0,1}, default=0 decide wheter samples in Uspace and corresponding limitstates in Xspace are saved (1) or not (0) choose_seedN: integer>=0, default=0 if set zero, the parameter remains unused, if >0, then we select choose_seedN seeds for MCMC so the number of seeds is explicitly stated then e.g. 10 dropbi: int in {0,1,2}, default=0 decide whether we drop sample seeds that are related to the limit state threshold, these are not in the stationary distribution, if 0 then nothing is dropped, if 1 then samples with limit state value equal to the threshold are dropped if 2 also MCMC chain elements close to samples with limit state value equal to the threshold are dropped, samples are dropped up to distance "rem_s_samps=5" from such samples within chains seedplist: float (0,1], default=[1.0] list of percentage of seeds used for MCMC sampling note that fixcsteps overwrites this if set !=0 i0: float, default=0.0 changes the way we update the proposal spread e_iter=1.0/math.sqrt(i0+chain/Na) ####### #SuS parameters for parameter state model like results: specify a probability where SuS stops calculation otherwise SuS would not terminate (R>0) boundpf: float value in (0,1) sets the minimum of considered failure probabilities, if it is reached, the algorithm terminates e.g. 1e-12 ####### #SuSI parameters obligatory (+SuS parameters obligatory) xk: str in names of strurel variables name of dynamic variable e.g. "x0" mono: str in {"i","d"} monotonicity of the conditional failure function if "i", then we assume the failure probability is increasing if xk is increased if "d", then we assume the failure probability is decreasing if xk is increased max_error: float in (0,1) the maximum error allowed by approximation/extrapolation this refers to the sum of both errors by extrapolation, extrapolation above the maximum xk evaluated and extrapolation below the minimum xk value evaluated these parts of the domain are evaluated under the safety principle by default e.g. 1e-10,bi=0.0 #prediction step Npred: positive integer, default=100 number of samples used to evaluate in the prediction step predict_by_prev: int in {0,1},default=0 if 0, the prediction step is normally performed by extrapolation if 1, previous results are used to select the next grid point for xk prevNpredict: positive integer, default=1 only activate if predict_by_prev=1, then we use the average of the results by interpolating with the prevNpredict last results for selecting the optimal value for the next grid point for xk prob_b: float in (0,1), default=0.8 this is the probability that sets the stopping criterion for the prediction step, if we have a probability higher than prob_b (by prediction) to have found a grid point that yields an intermediate failure probability in [pl,pu], then we stop and take it pl: float in (0,pu), default=0.2 lower boundary for admissible intermediate probability note that (pl+pu)*0.5 as an intermediate probability should refer to the desired grid point selection pu: float in (pl,1), default=0.4 upper boundary for admissible intermediate probability ####### #SuSI parameters optional firstvalsampling: int in {0,1}, default=0 decide whether to start with interval search or SuS to initialize SuSI, if 0 start by SuS firstvalsamplingN: positive integer, default=20 defines the number of samples used for interval sampling, only active in use if firstvalsampling=1 Nbound: positive integer, default=15000 this is a maximum number of samples used for evaluation of intermediate probabilities, because we adapt the sample number so that effort is distributed equally among all subsets, depending on their predicted intermediate probability, we can get very high values here if the interemdiate probability is close to zero raise_err: int in {0,1}, default=1 raise an error if an intermediate probability is zero or 1 if set 1, an error is raised, otherwise p=1 is set to a value close to 1 and if p=0 it is set to a value very close to zero fixNpred: positive integer, default=0 If fixNpred=0, we use only available samples in the given subset otherwise we create fixNpred new ones, meaning that we guarantee fixNpred samples for prediction (however this is more expensive than fixNpred=0) testmc: int in {0,1}, default=0 if activated (1) then we only do one Monte Carlo simulation to check for failures given a specific xk value maxsteps: positive integer, default=5 maximum steps for the prediction step, if there is no satisfying candidate for a grid point found after this number of preditions we stop anyhow and take the currently best value q: float in (0,1), default=0 quantile of
<gh_stars>1-10 #!/usr/bin/env python # Copyright 2014-2020 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: <NAME> <<EMAIL>> # '''Multigrid to compute DFT integrals''' import ctypes import copy import numpy import scipy.linalg from pyscf import lib from pyscf.lib import logger from pyscf.gto import ATOM_OF, ANG_OF, NPRIM_OF, PTR_EXP, PTR_COEFF from pyscf.dft.numint import libdft from pyscf.pbc import tools from pyscf.pbc import gto from pyscf.pbc.gto import pseudo from pyscf.pbc.dft import numint, gen_grid from pyscf.pbc.df.df_jk import _format_dms, _format_kpts_band, _format_jks from pyscf.pbc.lib.kpts_helper import gamma_point from pyscf.pbc.df import fft from pyscf.pbc.df import ft_ao from pyscf import __config__ #sys.stderr.write('WARN: multigrid is an experimental feature. It is still in ' # 'testing\nFeatures and APIs may be changed in the future.\n') BLKSIZE = numint.BLKSIZE EXTRA_PREC = getattr(__config__, 'pbc_gto_eval_gto_extra_precision', 1e-2) TO_EVEN_GRIDS = getattr(__config__, 'pbc_dft_multigrid_to_even', False) RMAX_FACTOR_ORTH = getattr(__config__, 'pbc_dft_multigrid_rmax_factor_orth', 1.1) RMAX_FACTOR_NONORTH = getattr(__config__, 'pbc_dft_multigrid_rmax_factor_nonorth', 0.5) RMAX_RATIO = getattr(__config__, 'pbc_dft_multigrid_rmax_ratio', 0.7) R_RATIO_SUBLOOP = getattr(__config__, 'pbc_dft_multigrid_r_ratio_subloop', 0.6) INIT_MESH_ORTH = getattr(__config__, 'pbc_dft_multigrid_init_mesh_orth', (12,12,12)) INIT_MESH_NONORTH = getattr(__config__, 'pbc_dft_multigrid_init_mesh_nonorth', (32,32,32)) KE_RATIO = getattr(__config__, 'pbc_dft_multigrid_ke_ratio', 1.3) TASKS_TYPE = getattr(__config__, 'pbc_dft_multigrid_tasks_type', 'ke_cut') # 'rcut' # RHOG_HIGH_ORDER=True will compute the high order derivatives of electron # density in real space and FT to reciprocal space. Set RHOG_HIGH_ORDER=False # to approximate the density derivatives in reciprocal space (without # evaluating the high order derivatives in real space). RHOG_HIGH_ORDER = getattr(__config__, 'pbc_dft_multigrid_rhog_high_order', False) PTR_EXPDROP = 16 EXPDROP = getattr(__config__, 'pbc_dft_multigrid_expdrop', 1e-12) IMAG_TOL = 1e-9 def eval_mat(cell, weights, shls_slice=None, comp=1, hermi=0, xctype='LDA', kpts=None, mesh=None, offset=None, submesh=None): assert(all(cell._bas[:,NPRIM_OF] == 1)) atm, bas, env = gto.conc_env(cell._atm, cell._bas, cell._env, cell._atm, cell._bas, cell._env) env[PTR_EXPDROP] = min(cell.precision*EXTRA_PREC, EXPDROP) ao_loc = gto.moleintor.make_loc(bas, 'cart') if shls_slice is None: shls_slice = (0, cell.nbas, 0, cell.nbas) i0, i1, j0, j1 = shls_slice j0 += cell.nbas j1 += cell.nbas naoi = ao_loc[i1] - ao_loc[i0] naoj = ao_loc[j1] - ao_loc[j0] if cell.dimension > 0: Ls = numpy.asarray(cell.get_lattice_Ls(), order='C') else: Ls = numpy.zeros((1,3)) nimgs = len(Ls) if mesh is None: mesh = cell.mesh weights = numpy.asarray(weights, order='C') assert(weights.dtype == numpy.double) xctype = xctype.upper() n_mat = None if xctype == 'LDA': if weights.ndim == 1: weights = weights.reshape(-1, numpy.prod(mesh)) else: n_mat = weights.shape[0] elif xctype == 'GGA': if hermi == 1: raise RuntimeError('hermi=1 is not supported for GGA functional') if weights.ndim == 2: weights = weights.reshape(-1, 4, numpy.prod(mesh)) else: n_mat = weights.shape[0] else: raise NotImplementedError a = cell.lattice_vectors() b = numpy.linalg.inv(a.T) if offset is None: offset = (0, 0, 0) if submesh is None: submesh = mesh # log_prec is used to estimate the gto_rcut. Add EXTRA_PREC to count # other possible factors and coefficients in the integral. log_prec = numpy.log(cell.precision * EXTRA_PREC) if abs(a-numpy.diag(a.diagonal())).max() < 1e-12: lattice_type = '_orth' else: lattice_type = '_nonorth' eval_fn = 'NUMINTeval_' + xctype.lower() + lattice_type drv = libdft.NUMINT_fill2c def make_mat(weights): if comp == 1: mat = numpy.zeros((nimgs,naoj,naoi)) else: mat = numpy.zeros((nimgs,comp,naoj,naoi)) drv(getattr(libdft, eval_fn), weights.ctypes.data_as(ctypes.c_void_p), mat.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(comp), ctypes.c_int(hermi), (ctypes.c_int*4)(i0, i1, j0, j1), ao_loc.ctypes.data_as(ctypes.c_void_p), ctypes.c_double(log_prec), ctypes.c_int(cell.dimension), ctypes.c_int(nimgs), Ls.ctypes.data_as(ctypes.c_void_p), a.ctypes.data_as(ctypes.c_void_p), b.ctypes.data_as(ctypes.c_void_p), (ctypes.c_int*3)(*offset), (ctypes.c_int*3)(*submesh), (ctypes.c_int*3)(*mesh), atm.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(len(atm)), bas.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(len(bas)), env.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(len(env))) return mat out = [] for wv in weights: if cell.dimension == 0: mat = numpy.rollaxis(make_mat(wv)[0], -1, -2) elif kpts is None or gamma_point(kpts): mat = numpy.rollaxis(make_mat(wv).sum(axis=0), -1, -2) if getattr(kpts, 'ndim', None) == 2: mat = mat.reshape((1,)+mat.shape) else: mat = make_mat(wv) mat_shape = mat.shape expkL = numpy.exp(1j*kpts.reshape(-1,3).dot(Ls.T)) mat = numpy.dot(expkL, mat.reshape(nimgs,-1)) mat = numpy.rollaxis(mat.reshape((-1,)+mat_shape[1:]), -1, -2) out.append(mat) if n_mat is None: out = out[0] return out def eval_rho(cell, dm, shls_slice=None, hermi=0, xctype='LDA', kpts=None, mesh=None, offset=None, submesh=None, ignore_imag=False, out=None): '''Collocate the *real* density (opt. gradients) on the real-space grid. ''' assert(all(cell._bas[:,NPRIM_OF] == 1)) atm, bas, env = gto.conc_env(cell._atm, cell._bas, cell._env, cell._atm, cell._bas, cell._env) env[PTR_EXPDROP] = min(cell.precision*EXTRA_PREC, EXPDROP) ao_loc = gto.moleintor.make_loc(bas, 'cart') if shls_slice is None: shls_slice = (0, cell.nbas, 0, cell.nbas) i0, i1, j0, j1 = shls_slice if hermi: assert(i0 == j0 and i1 == j1) j0 += cell.nbas j1 += cell.nbas naoi = ao_loc[i1] - ao_loc[i0] naoj = ao_loc[j1] - ao_loc[j0] dm = numpy.asarray(dm, order='C') assert(dm.shape[-2:] == (naoi, naoj)) if cell.dimension > 0: Ls = numpy.asarray(cell.get_lattice_Ls(), order='C') else: Ls = numpy.zeros((1,3)) if cell.dimension == 0 or kpts is None or gamma_point(kpts): nkpts, nimgs = 1, Ls.shape[0] dm = dm.reshape(-1,1,naoi,naoj).transpose(0,1,3,2) else: expkL = numpy.exp(1j*kpts.reshape(-1,3).dot(Ls.T)) nkpts, nimgs = expkL.shape dm = dm.reshape(-1,nkpts,naoi,naoj).transpose(0,1,3,2) n_dm = dm.shape[0] a = cell.lattice_vectors() b = numpy.linalg.inv(a.T) if mesh is None: mesh = cell.mesh if offset is None: offset = (0, 0, 0) if submesh is None: submesh = mesh log_prec = numpy.log(cell.precision * EXTRA_PREC) if abs(a-numpy.diag(a.diagonal())).max() < 1e-12: lattice_type = '_orth' else: lattice_type = '_nonorth' xctype = xctype.upper() if xctype == 'LDA': comp = 1 elif xctype == 'GGA': if hermi == 1: raise RuntimeError('hermi=1 is not supported for GGA functional') comp = 4 else: raise NotImplementedError('meta-GGA') if comp == 1: shape = (numpy.prod(submesh),) else: shape = (comp, numpy.prod(submesh)) eval_fn = 'NUMINTrho_' + xctype.lower() + lattice_type drv = libdft.NUMINT_rho_drv def make_rho_(rho, dm): drv(getattr(libdft, eval_fn), rho.ctypes.data_as(ctypes.c_void_p), dm.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(comp), ctypes.c_int(hermi), (ctypes.c_int*4)(i0, i1, j0, j1), ao_loc.ctypes.data_as(ctypes.c_void_p), ctypes.c_double(log_prec), ctypes.c_int(cell.dimension), ctypes.c_int(nimgs), Ls.ctypes.data_as(ctypes.c_void_p), a.ctypes.data_as(ctypes.c_void_p), b.ctypes.data_as(ctypes.c_void_p), (ctypes.c_int*3)(*offset), (ctypes.c_int*3)(*submesh), (ctypes.c_int*3)(*mesh), atm.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(len(atm)), bas.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(len(bas)), env.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(len(env))) return rho rho = [] for i, dm_i in enumerate(dm): if out is None: rho_i = numpy.zeros(shape) else: rho_i = out[i] assert(rho_i.size == numpy.prod(shape)) if cell.dimension == 0: # make a copy because the dm may be overwritten in the # NUMINT_rho_drv inplace make_rho_(rho_i, numpy.array(dm_i, order='C', copy=True)) elif kpts is None or gamma_point(kpts): make_rho_(rho_i, numpy.repeat(dm_i, nimgs, axis=0)) else: dm_i = lib.dot(expkL.T, dm_i.reshape(nkpts,-1)).reshape(nimgs,naoj,naoi) dmR = numpy.asarray(dm_i.real, order='C') if ignore_imag: has_imag = False else: dmI = numpy.asarray(dm_i.imag, order='C') has_imag = (hermi == 0 and abs(dmI).max() > 1e-8) if (has_imag and xctype == 'LDA' and naoi == naoj and # For hermitian density matrices, the anti-symmetry character of the imaginary # part of the density matrices can be found by rearranging the repeated images. abs(dmI + dmI[::-1].transpose(0,2,1)).max() < 1e-8): has_imag = False dm_i = None if has_imag: if out is None: rho_i = make_rho_(rho_i, dmI)*1j rho_i += make_rho_(numpy.zeros(shape), dmR) else: out[i] = make_rho_(numpy.zeros(shape), dmI)*1j out[i] += make_rho_(numpy.zeros(shape), dmR) else: assert(rho_i.dtype == numpy.double) make_rho_(rho_i, dmR) dmR = dmI = None rho.append(rho_i) if n_dm == 1: rho = rho[0] return rho def get_nuc(mydf, kpts=None): cell = mydf.cell if kpts is None: kpts_lst = numpy.zeros((1,3)) else: kpts_lst = numpy.reshape(kpts, (-1,3)) mesh = mydf.mesh charge = -cell.atom_charges() Gv = cell.get_Gv(mesh) SI = cell.get_SI(Gv) rhoG = numpy.dot(charge, SI) coulG = tools.get_coulG(cell, mesh=mesh, Gv=Gv) vneG = rhoG * coulG vne = _get_j_pass2(mydf, vneG, kpts_lst)[0] if kpts is None or numpy.shape(kpts) == (3,): vne = vne[0] return numpy.asarray(vne) def get_pp(mydf, kpts=None): '''Get the periodic pseudotential nuc-el AO matrix, with G=0 removed. ''' from pyscf import gto cell = mydf.cell if kpts is None: kpts_lst = numpy.zeros((1,3)) else: kpts_lst = numpy.reshape(kpts, (-1,3)) mesh = mydf.mesh SI = cell.get_SI() Gv = cell.get_Gv(mesh) vpplocG = pseudo.get_vlocG(cell, Gv) vpplocG = -numpy.einsum('ij,ij->j', SI, vpplocG) # from get_jvloc_G0 function vpplocG[0] = numpy.sum(pseudo.get_alphas(cell)) ngrids = len(vpplocG) vpp = _get_j_pass2(mydf, vpplocG, kpts_lst)[0] # vppnonloc evaluated in reciprocal space fakemol = gto.Mole() fakemol._atm = numpy.zeros((1,gto.ATM_SLOTS), dtype=numpy.int32) fakemol._bas = numpy.zeros((1,gto.BAS_SLOTS), dtype=numpy.int32) ptr = gto.PTR_ENV_START fakemol._env = numpy.zeros(ptr+10) fakemol._bas[0,gto.NPRIM_OF ] = 1 fakemol._bas[0,gto.NCTR_OF ] = 1 fakemol._bas[0,gto.PTR_EXP ] = ptr+3 fakemol._bas[0,gto.PTR_COEFF] = ptr+4 # buf for SPG_lmi upto l=0..3 and nl=3 buf = numpy.empty((48,ngrids), dtype=numpy.complex128) def vppnl_by_k(kpt): Gk = Gv + kpt G_rad = lib.norm(Gk, axis=1) aokG = ft_ao.ft_ao(cell, Gv, kpt=kpt) * (ngrids/cell.vol) vppnl = 0 for ia in range(cell.natm): symb = cell.atom_symbol(ia) if symb not in cell._pseudo: continue pp = cell._pseudo[symb] p1 = 0 for l, proj in enumerate(pp[5:]): rl, nl, hl = proj if nl > 0: fakemol._bas[0,gto.ANG_OF] = l fakemol._env[ptr+3] = .5*rl**2 fakemol._env[ptr+4] = rl**(l+1.5)*numpy.pi**1.25 pYlm_part = fakemol.eval_gto('GTOval', Gk) p0, p1 = p1, p1+nl*(l*2+1) # pYlm is real, SI[ia] is complex pYlm = numpy.ndarray((nl,l*2+1,ngrids), dtype=numpy.complex128, buffer=buf[p0:p1]) for k in range(nl):
<filename>openfold/model/primitives.py # Copyright 2021 AlQuraishi Laboratory # Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import Optional, Callable, List, Tuple, Sequence import numpy as np import torch import torch.nn as nn from scipy.stats import truncnorm from openfold.utils.tensor_utils import ( permute_final_dims, flatten_final_dims, _chunk_slice, ) def _prod(nums): out = 1 for n in nums: out = out * n return out def _calculate_fan(linear_weight_shape, fan="fan_in"): fan_out, fan_in = linear_weight_shape if fan == "fan_in": f = fan_in elif fan == "fan_out": f = fan_out elif fan == "fan_avg": f = (fan_in + fan_out) / 2 else: raise ValueError("Invalid fan option") return f def trunc_normal_init_(weights, scale=1.0, fan="fan_in"): shape = weights.shape f = _calculate_fan(shape, fan) scale = scale / max(1, f) a = -2 b = 2 std = math.sqrt(scale) / truncnorm.std(a=a, b=b, loc=0, scale=1) size = _prod(shape) samples = truncnorm.rvs(a=a, b=b, loc=0, scale=std, size=size) samples = np.reshape(samples, shape) with torch.no_grad(): weights.copy_(torch.tensor(samples, device=weights.device)) def lecun_normal_init_(weights): trunc_normal_init_(weights, scale=1.0) def he_normal_init_(weights): trunc_normal_init_(weights, scale=2.0) def glorot_uniform_init_(weights): nn.init.xavier_uniform_(weights, gain=1) def final_init_(weights): with torch.no_grad(): weights.fill_(0.0) def gating_init_(weights): with torch.no_grad(): weights.fill_(0.0) def normal_init_(weights): torch.nn.init.kaiming_normal_(weights, nonlinearity="linear") def ipa_point_weights_init_(weights): with torch.no_grad(): softplus_inverse_1 = 0.541324854612918 weights.fill_(softplus_inverse_1) class Linear(nn.Linear): """ A Linear layer with built-in nonstandard initializations. Called just like torch.nn.Linear. Implements the initializers in 1.11.4, plus some additional ones found in the code. """ def __init__( self, in_dim: int, out_dim: int, bias: bool = True, init: str = "default", init_fn: Optional[Callable[[torch.Tensor, torch.Tensor], None]] = None, ): """ Args: in_dim: The final dimension of inputs to the layer out_dim: The final dimension of layer outputs bias: Whether to learn an additive bias. True by default init: The initializer to use. Choose from: "default": LeCun fan-in truncated normal initialization "relu": He initialization w/ truncated normal distribution "glorot": Fan-average Glorot uniform initialization "gating": Weights=0, Bias=1 "normal": Normal initialization with std=1/sqrt(fan_in) "final": Weights=0, Bias=0 Overridden by init_fn if the latter is not None. init_fn: A custom initializer taking weight and bias as inputs. Overrides init if not None. """ super(Linear, self).__init__(in_dim, out_dim, bias=bias) if bias: with torch.no_grad(): self.bias.fill_(0) if init_fn is not None: init_fn(self.weight, self.bias) else: if init == "default": lecun_normal_init_(self.weight) elif init == "relu": he_normal_init_(self.weight) elif init == "glorot": glorot_uniform_init_(self.weight) elif init == "gating": gating_init_(self.weight) if bias: with torch.no_grad(): self.bias.fill_(1.0) elif init == "normal": normal_init_(self.weight) elif init == "final": final_init_(self.weight) else: raise ValueError("Invalid init string.") class Attention(nn.Module): """ Standard multi-head attention using AlphaFold's default layer initialization. Allows multiple bias vectors. """ def __init__( self, c_q: int, c_k: int, c_v: int, c_hidden: int, no_heads: int, gating: bool = True, ): """ Args: c_q: Input dimension of query data c_k: Input dimension of key data c_v: Input dimension of value data c_hidden: Per-head hidden dimension no_heads: Number of attention heads gating: Whether the output should be gated using query data """ super(Attention, self).__init__() self.c_q = c_q self.c_k = c_k self.c_v = c_v self.c_hidden = c_hidden self.no_heads = no_heads self.gating = gating # DISCREPANCY: c_hidden is not the per-head channel dimension, as # stated in the supplement, but the overall channel dimension. self.linear_q = Linear( self.c_q, self.c_hidden * self.no_heads, bias=False, init="glorot" ) self.linear_k = Linear( self.c_k, self.c_hidden * self.no_heads, bias=False, init="glorot" ) self.linear_v = Linear( self.c_v, self.c_hidden * self.no_heads, bias=False, init="glorot" ) self.linear_o = Linear( self.c_hidden * self.no_heads, self.c_q, init="final" ) if self.gating: self.linear_g = Linear( self.c_q, self.c_hidden * self.no_heads, init="gating" ) self.sigmoid = nn.Sigmoid() self.softmax = nn.Softmax(dim=-1) def forward( self, q_x: torch.Tensor, k_x: torch.Tensor, v_x: torch.Tensor, biases: Optional[List[torch.Tensor]] = None, ) -> torch.Tensor: """ Args: q_x: [*, Q, C_q] query data k_x: [*, K, C_k] key data v_x: [*, V, C_v] value data Returns [*, Q, C_q] attention update """ # [*, Q/K/V, H * C_hidden] q = self.linear_q(q_x) k = self.linear_k(k_x) v = self.linear_v(v_x) # [*, Q/K, H, C_hidden] q = q.view(q.shape[:-1] + (self.no_heads, -1)) k = k.view(k.shape[:-1] + (self.no_heads, -1)) v = v.view(v.shape[:-1] + (self.no_heads, -1)) # [*, H, Q, C_hidden] q = permute_final_dims(q, (1, 0, 2)) # [*, H, C_hidden, K] k = permute_final_dims(k, (1, 2, 0)) # [*, H, Q, K] a = torch.matmul(q, k) del q, k norm = 1 / math.sqrt(self.c_hidden) # [1] a *= norm if biases is not None: for b in biases: a += b a = self.softmax(a) # [*, H, V, C_hidden] v = permute_final_dims(v, (1, 0, 2)) # [*, H, Q, C_hidden] o = torch.matmul(a, v) # [*, Q, H, C_hidden] o = o.transpose(-2, -3) if self.gating: g = self.sigmoid(self.linear_g(q_x)) # [*, Q, H, C_hidden] g = g.view(g.shape[:-1] + (self.no_heads, -1)) o = o * g # [*, Q, H * C_hidden] o = flatten_final_dims(o, 2) # [*, Q, C_q] o = self.linear_o(o) return o class GlobalAttention(nn.Module): def __init__(self, c_in, c_hidden, no_heads, inf, eps): super(GlobalAttention, self).__init__() self.c_in = c_in self.c_hidden = c_hidden self.no_heads = no_heads self.inf = inf self.eps = eps self.linear_q = Linear( c_in, c_hidden * no_heads, bias=False, init="glorot" ) self.linear_k = Linear( c_in, c_hidden, bias=False, init="glorot", ) self.linear_v = Linear( c_in, c_hidden, bias=False, init="glorot", ) self.linear_g = Linear(c_in, c_hidden * no_heads, init="gating") self.linear_o = Linear(c_hidden * no_heads, c_in, init="final") self.sigmoid = nn.Sigmoid() self.softmax = nn.Softmax(dim=-1) def forward(self, m: torch.Tensor, mask: torch.Tensor) -> torch.Tensor: # [*, N_res, C_in] q = torch.sum(m * mask.unsqueeze(-1), dim=-2) / ( torch.sum(mask, dim=-1)[..., None] + self.eps ) # [*, N_res, H * C_hidden] q = self.linear_q(q) q = q * (self.c_hidden ** (-0.5)) # [*, N_res, H, C_hidden] q = q.view(q.shape[:-1] + (self.no_heads, -1)) # [*, N_res, N_seq, C_hidden] k = self.linear_k(m) v = self.linear_v(m) # [*, N_res, H, N_seq] a = torch.matmul( q, k.transpose(-1, -2), # [*, N_res, C_hidden, N_seq] ) bias = (self.inf * (mask - 1))[..., :, None, :] a = a + bias a = self.softmax(a) # [*, N_res, H, C_hidden] o = torch.matmul( a, v, ) # [*, N_res, N_seq, C_hidden] g = self.sigmoid(self.linear_g(m)) # [*, N_res, N_seq, H, C_hidden] g = g.view(g.shape[:-1] + (self.no_heads, -1)) # [*, N_res, N_seq, H, C_hidden] o = o.unsqueeze(-3) * g # [*, N_res, N_seq, H * C_hidden] o = o.reshape(o.shape[:-2] + (-1,)) # [*, N_res, N_seq, C_in] m = self.linear_o(o) return m @torch.jit.script def _lma( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, biases: List[torch.Tensor], q_chunk_size: int, kv_chunk_size: int ): no_q, no_kv = q.shape[-3], k.shape[-3] # [*, Q, H, C_hidden] o = q.new_zeros(q.shape) for q_s in range(0, no_q, q_chunk_size): q_chunk = q[..., q_s: q_s + q_chunk_size, :, :] big_bias_chunks = [ b[..., q_s: q_s + q_chunk_size, :] for b in biases ] maxes = [] weights = [] values = [] for kv_s in range(0, no_kv, kv_chunk_size): k_chunk = k[..., kv_s: kv_s + kv_chunk_size, :, :] v_chunk = v[..., kv_s: kv_s + kv_chunk_size, :, :] small_bias_chunks = [ b[..., kv_s: kv_s + kv_chunk_size] for b in big_bias_chunks ] a = torch.einsum( "...qhd,...khd->...hqk", q_chunk, k_chunk ) for b in small_bias_chunks: a += b a = a.transpose(-2, -3) max_a = torch.max(a, dim=-1, keepdim=True)[0].detach() exp_a = torch.exp(a - max_a) exp_v = torch.einsum("...vhf,...qhv->...qhf", v_chunk, exp_a) maxes.append(max_a.squeeze(-1)) weights.append(torch.sum(exp_a, dim=-1)) values.append(exp_v) chunk_max = torch.stack(maxes, dim=-3) chunk_weights = torch.stack(weights, dim=-3) chunk_values = torch.stack(values, dim=-4) global_max = torch.max(chunk_max, dim=-3, keepdim=True)[0] max_diffs = torch.exp(chunk_max - global_max) chunk_values *= max_diffs.unsqueeze(-1) chunk_weights *= max_diffs all_values = torch.sum(chunk_values, dim=-4) all_weights = torch.sum(chunk_weights.unsqueeze(-1), dim=-4) q_chunk_out = all_values / all_weights o[..., q_s: q_s + q_chunk_size, :, :] = q_chunk_out return o class LowMemoryAttention(nn.Module): """ Standard multi-head attention using AlphaFold's default layer initialization. Allows multiple bias vectors. Implements Rabe and Staats' low-memory self-attention algorithm. """ def __init__( self, c_q: int, c_k: int, c_v: int, c_hidden:
Parameters ---------- row : int Row number to modify col_name : str Name of the Column to modify val : col.info.dtype Value to insert at specified row of col ''' self.remove_row(row, reorder=False) key = [c[row] for c in self.columns] key[self.col_position(col_name)] = val self.data.add(tuple(key), row) def replace_rows(self, col_slice): ''' Modify rows in this index to agree with the specified slice. For example, given an index {'5': 1, '2': 0, '3': 2} on a column ['2', '5', '3'], an input col_slice of [2, 0] will result in the relabeling {'3': 0, '2': 1} on the sliced column ['3', '2']. Parameters ---------- col_slice : list Indices to slice ''' row_map = dict((row, i) for i, row in enumerate(col_slice)) self.data.replace_rows(row_map) def sort(self): ''' Make row numbers follow the same sort order as the keys of the index. ''' self.data.sort() def sorted_data(self): ''' Returns a list of rows in sorted order based on keys; essentially acts as an argsort() on columns. ''' return self.data.sorted_data() def __getitem__(self, item): ''' Returns a sliced version of this index. Parameters ---------- item : slice Input slice Returns ------- SlicedIndex A sliced reference to this index. ''' return SlicedIndex(self, item) def __str__(self): return str(self.data) def __repr__(self): return str(self) def __deepcopy__(self, memo): ''' Return a deep copy of this index. Notes ----- The default deep copy must be overridden to perform a shallow copy of the index columns, avoiding infinite recursion. Parameters ---------- memo : dict ''' # Bypass Index.__new__ to create an actual Index, not a SlicedIndex. index = super().__new__(self.__class__) index.__init__(None, engine=self.engine) index.data = deepcopy(self.data, memo) index.columns = self.columns[:] # new list, same columns memo[id(self)] = index return index class SlicedIndex: ''' This class provides a wrapper around an actual Index object to make index slicing function correctly. Since numpy expects array slices to provide an actual data view, a SlicedIndex should retrieve data directly from the original index and then adapt it to the sliced coordinate system as appropriate. Parameters ---------- index : Index The original Index reference index_slice : slice The slice to which this SlicedIndex corresponds original : bool Whether this SlicedIndex represents the original index itself. For the most part this is similar to index[:] but certain copying operations are avoided, and the slice retains the length of the actual index despite modification. ''' def __init__(self, index, index_slice, original=False): self.index = index self.original = original self._frozen = False if isinstance(index_slice, tuple): self.start, self._stop, self.step = index_slice else: # index_slice is an actual slice num_rows = len(index.columns[0]) self.start, self._stop, self.step = index_slice.indices(num_rows) @property def length(self): return 1 + (self.stop - self.start - 1) // self.step @property def stop(self): ''' The stopping position of the slice, or the end of the index if this is an original slice. ''' return len(self.index) if self.original else self._stop def __getitem__(self, item): ''' Returns another slice of this Index slice. Parameters ---------- item : slice Index slice ''' if self.length <= 0: # empty slice return SlicedIndex(self.index, slice(1, 0)) start, stop, step = item.indices(self.length) new_start = self.orig_coords(start) new_stop = self.orig_coords(stop) new_step = self.step * step return SlicedIndex(self.index, (new_start, new_stop, new_step)) def sliced_coords(self, rows): ''' Convert the input rows to the sliced coordinate system. Parameters ---------- rows : list Rows in the original coordinate system Returns ------- sliced_rows : list Rows in the sliced coordinate system ''' if self.original: return rows else: rows = np.array(rows) row0 = rows - self.start if self.step != 1: correct_mod = np.mod(row0, self.step) == 0 row0 = row0[correct_mod] if self.step > 0: ok = (row0 >= 0) & (row0 < self.stop - self.start) else: ok = (row0 <= 0) & (row0 > self.stop - self.start) return row0[ok] // self.step def orig_coords(self, row): ''' Convert the input row from sliced coordinates back to original coordinates. Parameters ---------- row : int Row in the sliced coordinate system Returns ------- orig_row : int Row in the original coordinate system ''' return row if self.original else self.start + row * self.step def find(self, key): return self.sliced_coords(self.index.find(key)) def where(self, col_map): return self.sliced_coords(self.index.where(col_map)) def range(self, lower, upper): return self.sliced_coords(self.index.range(lower, upper)) def same_prefix(self, key): return self.sliced_coords(self.index.same_prefix(key)) def sorted_data(self): return self.sliced_coords(self.index.sorted_data()) def replace(self, row, col, val): if not self._frozen: self.index.replace(self.orig_coords(row), col, val) def copy(self): if not self.original: # replace self.index with a new object reference self.index = deepcopy(self.index) return self.index def insert_row(self, pos, vals, columns): if not self._frozen: self.copy().insert_row(self.orig_coords(pos), vals, columns) def get_row_specifier(self, row_specifier): return [self.orig_coords(x) for x in self.index.get_row_specifier(row_specifier)] def remove_rows(self, row_specifier): if not self._frozen: self.copy().remove_rows(row_specifier) def replace_rows(self, col_slice): if not self._frozen: self.index.replace_rows([self.orig_coords(x) for x in col_slice]) def sort(self): if not self._frozen: self.copy().sort() def __repr__(self): if self.original: return repr(self.index) return 'Index slice {} of\n{}'.format( (self.start, self.stop, self.step), self.index) def __str__(self): return repr(self) def replace_col(self, prev_col, new_col): self.index.replace_col(prev_col, new_col) def reload(self): self.index.reload() def col_position(self, col_name): return self.index.col_position(col_name) def get_slice(self, col_slice, item): ''' Return a newly created index from the given slice. Parameters ---------- col_slice : Column object Already existing slice of a single column item : list or ndarray Slice for retrieval ''' from .table import Table if len(self.columns) == 1: return Index([col_slice], engine=self.data.__class__) t = Table(self.columns, copy_indices=False) with t.index_mode('discard_on_copy'): new_cols = t[item].columns.values() return Index(new_cols, engine=self.data.__class__) @property def columns(self): return self.index.columns @property def data(self): return self.index.data def get_index(table, table_copy=None, names=None): """ Inputs a table and some subset of its columns as table_copy. List or tuple containing names of columns as names,and returns an index corresponding to this subset or list or None if no such index exists. Parameters ---------- table : `Table` Input table table_copy : `Table`, optional Subset of the columns in the ``table`` argument names : list, tuple, optional Subset of column names in the ``table`` argument Returns ------- Index of columns or None """ if names is not None and table_copy is not None: raise ValueError('one and only one argument from "table_copy" or' ' "names" is required') if names is None and table_copy is None: raise ValueError('one and only one argument from "table_copy" or' ' "names" is required') if names is not None: names = set(names) else: names = set(table_copy.colnames) if not names <= set(table.colnames): raise ValueError(f'{names} is not a subset of table columns') for name in names: for index in table[name].info.indices: if set([col.info.name for col in index.columns]) == names: return index return None def get_index_by_names(table, names): ''' Returns an index in ``table`` corresponding to the ``names`` columns or None if no such index exists. Parameters ---------- table : `Table` Input table nmaes : tuple, list Column names ''' names = list(names) for index in table.indices: index_names = [col.info.name for col in index.columns] if index_names == names: return index else: return None class _IndexModeContext: ''' A context manager that allows for special indexing modes, which are intended to improve performance. Currently the allowed modes are "freeze", in which indices are not modified upon column modification, "copy_on_getitem", in which indices are copied upon column slicing, and "discard_on_copy", in which indices are discarded upon table copying/slicing. ''' _col_subclasses = {} def __init__(self, table, mode): ''' Parameters ---------- table : Table The table to which the mode should be applied mode : str Either 'freeze', 'copy_on_getitem', or 'discard_on_copy'. In 'discard_on_copy' mode, indices are not copied whenever columns or tables are copied. In 'freeze' mode, indices are not modified whenever columns are modified; at the exit of the context, indices refresh themselves based on column values. This mode is intended for scenarios in which one intends to make many additions or modifications on an indexed column. In 'copy_on_getitem' mode, indices are copied when taking column slices as well as table slices, so col[i0:i1] will preserve indices. ''' self.table = table self.mode = mode # Used by copy_on_getitem self._orig_classes = [] if mode not in ('freeze', 'discard_on_copy', 'copy_on_getitem'): raise ValueError("Expected a mode of either 'freeze', " "'discard_on_copy', or 'copy_on_getitem', got " "'{}'".format(mode)) def __enter__(self): if self.mode == 'discard_on_copy': self.table._copy_indices = False elif
= np.sum(~wall) weight[:] = 0 if nnotwall > 0: weight[~wall] = (1 / nnotwall) else: raise RuntimeError('No non-wall cells surrounding cell. ' 'Please report error.') weight = weight / np.sum(weight) else: raise RuntimeError('Water sum(weight) less than 0. ' 'Please report error.') # final sanity check if np.any(np.isnan(weight)): raise RuntimeError('NaN encountered in return from water weighting. ' 'Please report error.') return weight # @njit('(float32[:,:], float32[:,:], int64[:,:], float32[:,:], float32[:,:],' # 'float32[:], float32[:], float32[:],' # 'float64, float64, float64)') @njit def _get_water_weight_array(depth, stage, mod_water_weight, cell_type, qx, qy, ivec_flat, jvec_flat, distances_flat, dry_depth, gamma, theta_water): """Worker for :obj:`_get_water_weight_array`. This is a jitted function which handles the actual computation of looping through locations of the model domain and determining the water weighting. See :meth:`get_water_weight_array` for more information. .. note:: If you are trying to change water weighting behavior, consider reimplementing this method, which calls a custom version of :func:`_get_weight_at_cell_water`. """ L, W = depth.shape pad_stage = shared_tools.custom_pad(stage) pad_depth = shared_tools.custom_pad(depth) mod_pad_water_weight = shared_tools.custom_pad(mod_water_weight) pad_cell_type = shared_tools.custom_pad(cell_type) water_weights = np.zeros((L, W, 9)) for i in range(L): for j in range(W): stage_nbrs = pad_stage[i - 1 + 1:i + 2 + 1, j - 1 + 1:j + 2 + 1] depth_nbrs = pad_depth[i - 1 + 1:i + 2 + 1, j - 1 + 1:j + 2 + 1] mod_water_weight_nbrs = mod_pad_water_weight[i - 1 + 1:i + 2 + 1, j - 1 + 1:j + 2 + 1] ct_nbrs = pad_cell_type[i - 1 + 1:i + 2 + 1, j - 1 + 1:j + 2 + 1] weight_sfc, weight_int = shared_tools.get_weight_sfc_int( stage[i, j], stage_nbrs.ravel(), qx[i, j], qy[i, j], ivec_flat, jvec_flat, distances_flat) water_weights[i, j] = _get_weight_at_cell_water( (i, j), weight_sfc, weight_int, depth_nbrs.ravel(), mod_water_weight_nbrs.ravel(), ct_nbrs.ravel(), dry_depth, gamma, theta_water) return water_weights @njit('int64[:](int64[:], float64[:,:])') def _choose_next_directions(inds: np.ndarray, water_weights: np.ndarray) -> np.ndarray: """Get new cell locations, based on water weights. Algorithm is to: 1. loop through each parcel, which is described by a pair in the `inds` array. 2. determine the water weights for that location (from `water_weights`) 3. choose a new cell based on the probabilities of the weights (using the `random_pick` function) Parameters ---------- inds : :obj:`ndarray` Current unraveled indices of the parcels. ``(N,)`` `ndarray` containing the unraveled indices. water_weights : :obj:`ndarray` Weights of every water cell. ``(LxW, 9)`` `ndarray`, uses unraveled indicies along 0th dimension; 9 cells represent self and 8 neighboring cells. Returns ------- next_direction : :obj:`ndarray` The direction to move towards the new cell for water parcels, relative to the current location. I.e., this is the D8 direction the parcel is going to travel in the next stage, :obj:`pyDeltaRCM.shared_tools._calculate_new_ind`. """ next_direction = np.zeros_like(inds) for p in range(inds.shape[0]): ind = inds[p] if ind != 0: weight = water_weights[ind, :] next_direction[p] = shared_tools.random_pick(weight) else: next_direction[p] = 4 return next_direction @njit('int64[:](int64[:], int64[:], int64[:])') def _calculate_new_inds(current_inds: np.ndarray, new_direction, ravel_walk): """Calculate the new location (current_inds) of parcels. Use the information of the current parcel (`current_inds`) in conjunction with the D8 direction the parcel needs to travel (`new_direction`) to determine the new current_inds of each parcel. In implementation, we use the flattened `ravel_walk` array, but the result is identical to unraveling the index, adding `iwalk` and `jwalk` to the location and then raveling the index back. .. code:: ind_tuple = shared_tools.custom_unravel(ind, domain_shape) new_ind = (ind_tuple[0] + jwalk[newd], ind_tuple[1] + iwalk[newd]) new_inds[p] = shared_tools.custom_ravel(new_ind, domain_shape) """ # preallocate return array new_inds = np.zeros_like(current_inds) # loop through every parcel for p in range(current_inds.shape[0]): # extract current_ind and direction ind = current_inds[p] newd = new_direction[p] # check if the parcel moves if newd != 4: # if moves, compute new ind for parcel new_inds[p] = ind + ravel_walk[newd] else: # if not moves, set new ind to 0 # (should be only those already at 0) new_inds[p] = 0 return new_inds @njit def _check_for_loops(free_surf_walk_inds: np.ndarray, new_inds, _step: int, L0: int, CTR: int, stage_above_SL: np.ndarray): """Check for loops in water parcel pathways. Look for looping random walks. I.e., this function checks for where a parcel will return on its :obj:`new_inds` to somewhere it has already been in :obj:`free_surf_walk_inds`. If the loop is found, the parcel is relocated along the mean transport vector of the parcel, which is computed as the vector from the cell `(0, CTR)` to the new location in `new_inds`. This implementation of loop checking will relocate any parcel that has looped, but only disqualifies a parcel `p` from contributing to the free surface in :obj:`_accumulate_free_surf_walks` (i.e., `looped[p] == 1`) if the stage at the looped location is above the sea level in the domain. Parameters ---------- free_surf_walk_inds Array recording the walk of parcels. Shape is `(:obj:`Np_water`, ...)`, where the second dimension will depend on the step number, but records each step of the parcel. Each element in the array records the *flat* index into the domain. new_inds Array recording the new index for each water parcel, if the step is taken. Shape is `(Np_water, 1)`, with each element recording the *flat* index into the domain shape. _step Step number of water parcels. L0 Domain shape parameter, number of cells inlet length. CTR Domain shape parameter, index along inlet wall making the center of the domain. I.e., `(0, CTR)` is the midpoint across the inlet, along the inlet domain edge. stage_above_SL Water surface elevation minus the domain sea level. Returns ------- new_inds An updated array of parcel indicies, where the index of a parcel has been changed, if and only if, that parcel was looped. looped A binary integer array indicating whether a parcel was determined to have been looped, and should be disqualified from the free surface computation. Examples -------- The following shows an example of how water parcels that looped along their paths would be relocated. Note than in this example, the parcels are artificially forced to loop, just for the sake of demonstration. .. plot:: water_tools/_check_for_loops.py """ nparcels = free_surf_walk_inds.shape[0] domain_shape = stage_above_SL.shape domain_min_x = domain_shape[0] - 2 domain_min_y = domain_shape[1] - 2 L0_ind_cut = ((L0) * domain_shape[1])-1 looped = np.zeros_like(new_inds) stage_v_SL = np.abs(stage_above_SL) < 1e-1 # true if they are same # if the _step number is larger than the inlet length if (_step > L0): # loop though every parcel walk for p in np.arange(nparcels): new_ind = new_inds[p] # the new index of the parcel full_walk = free_surf_walk_inds[p, :] # the parcel's walk nonz_walk = full_walk[full_walk > 0] # where non-zero relv_walk = nonz_walk[nonz_walk > L0_ind_cut] if (new_ind > 0): # determine if has a repeat ind has_repeat_ind = False for _, iind in enumerate(relv_walk): if iind == new_ind: has_repeat_ind = True break if has_repeat_ind: # handle when a loop is detected px0, py0 = shared_tools.custom_unravel( new_ind, domain_shape) # compute a new location for the parcel along the # mean-transport vector Fx = px0 - 1 Fy = py0 - CTR Fw = np.sqrt(Fx**2 + Fy**2) # relocate the parcel along mean-transport vector if Fw != 0: px = px0 + int(np.round(Fx / Fw * 5.)) py = py0 + int(np.round(Fy / Fw * 5.)) # limit the new px and py to beyond the inlet, and # away from domain edges px = np.minimum(domain_min_x, np.maximum(px, L0)) py = np.minimum(domain_min_y, np.maximum(1, py)) # ravel the index for return nind = shared_tools.custom_ravel((px, py), domain_shape) new_inds[p] = nind # only disqualify the parcel if it has not reached sea # level by the time it loops if not stage_v_SL[px0, py0]: looped[p] = 1 # this parcel is looped return new_inds, looped @njit def _update_dirQfield(qfield, dist, inds, astep, dirstep): """Update unit vector of water flux in x or y.""" for i, ii in enumerate(inds): if astep[i]: qfield[ii] += dirstep[i] / dist[i] return qfield @njit def _update_absQfield(qfield, dist, inds, astep, Qp_water, dx): """Update norm of water flux vector.""" for i, ii in enumerate(inds): if astep[i]: qfield[ii] += Qp_water / dx / 2 return qfield @njit def _accumulate_free_surface_walks(free_surf_walk_inds: np.ndarray, free_surf_flag: np.ndarray, cell_type: np.ndarray, uw: np.ndarray, ux: np.ndarray, uy: np.ndarray, depth: np.ndarray,
"""Specifies that no values are allowed for this parameter or quantity.""" subclass = None superclass = None def __init__(self, valueOf_=None): self.valueOf_ = valueOf_ def factory(*args_, **kwargs_): if NoValues.subclass: return NoValues.subclass(*args_, **kwargs_) else: return NoValues(*args_, **kwargs_) factory = staticmethod(factory) def get_valueOf_(self): return self.valueOf_ def set_valueOf_(self, valueOf_): self.valueOf_ = valueOf_ def export(self, outfile, level, namespace_='', name_='NoValues', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='NoValues') if self.hasContent_(): outfile.write('>') outfile.write(self.valueOf_.encode(ExternalEncoding)) self.exportChildren(outfile, level + 1, namespace_, name_) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='NoValues'): pass def exportChildren(self, outfile, level, namespace_='', name_='NoValues', fromsubclass_=False): pass def hasContent_(self): if ( self.valueOf_ ): return True else: return False def exportLiteral(self, outfile, level, name_='NoValues'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) showIndent(outfile, level) outfile.write('valueOf_ = """%s""",\n' % (self.valueOf_,)) def exportLiteralAttributes(self, outfile, level, already_processed, name_): pass def exportLiteralChildren(self, outfile, level, name_): pass def build(self, node): self.buildAttributes(node, node.attrib, []) self.valueOf_ = get_all_text_(node) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): pass # end class NoValues class ValuesReference(GeneratedsSuper): """Reference to externally specified list of all the valid values and/or ranges of values for this quantity. (Informative: This element was simplified from the metaDataProperty element in GML 3.0.) Human-readable name of the list of values provided by the referenced document. Can be empty string when this list has no name.""" subclass = None superclass = None def __init__(self, reference=None, valueOf_=None): self.reference = _cast(None, reference) self.valueOf_ = valueOf_ def factory(*args_, **kwargs_): if ValuesReference.subclass: return ValuesReference.subclass(*args_, **kwargs_) else: return ValuesReference(*args_, **kwargs_) factory = staticmethod(factory) def get_reference(self): return self.reference def set_reference(self, reference): self.reference = reference def get_valueOf_(self): return self.valueOf_ def set_valueOf_(self, valueOf_): self.valueOf_ = valueOf_ def export(self, outfile, level, namespace_='', name_='ValuesReference', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='ValuesReference') if self.hasContent_(): outfile.write('>') outfile.write(self.valueOf_.encode(ExternalEncoding)) self.exportChildren(outfile, level + 1, namespace_, name_) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='ValuesReference'): if self.reference is not None and 'reference' not in already_processed: already_processed.append('reference') outfile.write(' reference=%s' % (self.gds_format_string(quote_attrib(self.reference).encode(ExternalEncoding), input_name='reference'), )) def exportChildren(self, outfile, level, namespace_='', name_='ValuesReference', fromsubclass_=False): pass def hasContent_(self): if ( self.valueOf_ ): return True else: return False def exportLiteral(self, outfile, level, name_='ValuesReference'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) showIndent(outfile, level) outfile.write('valueOf_ = """%s""",\n' % (self.valueOf_,)) def exportLiteralAttributes(self, outfile, level, already_processed, name_): if self.reference is not None and 'reference' not in already_processed: already_processed.append('reference') showIndent(outfile, level) outfile.write('reference = "%s",\n' % (self.reference,)) def exportLiteralChildren(self, outfile, level, name_): pass def build(self, node): self.buildAttributes(node, node.attrib, []) self.valueOf_ = get_all_text_(node) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): value = find_attr_value_('reference', node) if value is not None and 'reference' not in already_processed: already_processed.append('reference') self.reference = value def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): pass # end class ValuesReference class AllowedValues(GeneratedsSuper): """List of all the valid values and/or ranges of values for this quantity. For numeric quantities, signed values should be ordered from negative infinity to positive infinity.""" subclass = None superclass = None def __init__(self, Value=None, Range=None): if Value is None: self.Value = [] else: self.Value = Value if Range is None: self.Range = [] else: self.Range = Range def factory(*args_, **kwargs_): if AllowedValues.subclass: return AllowedValues.subclass(*args_, **kwargs_) else: return AllowedValues(*args_, **kwargs_) factory = staticmethod(factory) def get_Value(self): return self.Value def set_Value(self, Value): self.Value = Value def add_Value(self, value): self.Value.append(value) def insert_Value(self, index, value): self.Value[index] = value def get_Range(self): return self.Range def set_Range(self, Range): self.Range = Range def add_Range(self, value): self.Range.append(value) def insert_Range(self, index, value): self.Range[index] = value def export(self, outfile, level, namespace_='', name_='AllowedValues', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='AllowedValues') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='AllowedValues'): pass def exportChildren(self, outfile, level, namespace_='', name_='AllowedValues', fromsubclass_=False): for Value_ in self.Value: Value_.export(outfile, level, namespace_, name_='Value') for Range_ in self.Range: Range_.export(outfile, level, namespace_, name_='Range') def hasContent_(self): if ( self.Value or self.Range ): return True else: return False def exportLiteral(self, outfile, level, name_='AllowedValues'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): pass def exportLiteralChildren(self, outfile, level, name_): showIndent(outfile, level) outfile.write('Value=[\n') level += 1 for Value_ in self.Value: showIndent(outfile, level) outfile.write('model_.Value(\n') Value_.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') showIndent(outfile, level) outfile.write('Range=[\n') level += 1 for Range_ in self.Range: showIndent(outfile, level) outfile.write('model_.Range(\n') Range_.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'Value': obj_ = ValueType.factory() obj_.build(child_) self.Value.append(obj_) elif nodeName_ == 'Range': obj_ = RangeType.factory() obj_.build(child_) self.Range.append(obj_) # end class AllowedValues class ValueType(GeneratedsSuper): """A single value, encoded as a string. This type can be used for one value, for a spacing between allowed values, or for the default value of a parameter.""" subclass = None superclass = None def __init__(self, valueOf_=None): self.valueOf_ = valueOf_ def factory(*args_, **kwargs_): if ValueType.subclass: return ValueType.subclass(*args_, **kwargs_) else: return ValueType(*args_, **kwargs_) factory = staticmethod(factory) def get_valueOf_(self): return self.valueOf_ def set_valueOf_(self, valueOf_): self.valueOf_ = valueOf_ def export(self, outfile, level, namespace_='', name_='ValueType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='ValueType') if self.hasContent_(): outfile.write('>') outfile.write(self.valueOf_.encode(ExternalEncoding)) self.exportChildren(outfile, level + 1, namespace_, name_) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='ValueType'): pass def exportChildren(self, outfile, level, namespace_='', name_='ValueType', fromsubclass_=False): pass def hasContent_(self): if ( self.valueOf_ ): return True else: return False def exportLiteral(self, outfile, level, name_='ValueType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) showIndent(outfile, level) outfile.write('valueOf_ = """%s""",\n' % (self.valueOf_,)) def exportLiteralAttributes(self, outfile, level, already_processed, name_): pass def exportLiteralChildren(self, outfile, level, name_): pass def build(self, node): self.buildAttributes(node, node.attrib, []) self.valueOf_ = get_all_text_(node) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): pass # end class ValueType class RangeType(GeneratedsSuper): """A range of values of a numeric parameter. This range can be continuous or discrete, defined by a fixed spacing between adjacent valid values. If the MinimumValue or MaximumValue is not included, there is no value limit in that direction. Inclusion of the specified minimum and maximum values in the range shall be defined by the rangeClosure. Shall be included unless the default value applies.""" subclass = None superclass = None def __init__(self, rangeClosure=None, MinimumValue=None, MaximumValue=None, Spacing=None): self.rangeClosure = _cast(None, rangeClosure) self.MinimumValue = MinimumValue self.MaximumValue = MaximumValue self.Spacing = Spacing def factory(*args_, **kwargs_): if RangeType.subclass: return RangeType.subclass(*args_, **kwargs_) else: return RangeType(*args_, **kwargs_) factory = staticmethod(factory) def get_MinimumValue(self): return self.MinimumValue def set_MinimumValue(self, MinimumValue): self.MinimumValue = MinimumValue def get_MaximumValue(self): return self.MaximumValue def set_MaximumValue(self, MaximumValue): self.MaximumValue = MaximumValue def get_Spacing(self): return self.Spacing def set_Spacing(self, Spacing): self.Spacing = Spacing def get_rangeClosure(self): return self.rangeClosure def set_rangeClosure(self, rangeClosure): self.rangeClosure = rangeClosure def export(self, outfile, level, namespace_='', name_='RangeType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='RangeType') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='RangeType'): if self.rangeClosure is not None and 'rangeClosure' not in already_processed: already_processed.append('rangeClosure') outfile.write(' rangeClosure=%s' % (self.gds_format_string(quote_attrib(self.rangeClosure).encode(ExternalEncoding), input_name='rangeClosure'), )) def exportChildren(self, outfile, level, namespace_='', name_='RangeType', fromsubclass_=False): if self.MinimumValue: self.MinimumValue.export(outfile, level, namespace_, name_='MinimumValue') if self.MaximumValue: self.MaximumValue.export(outfile, level, namespace_, name_='MaximumValue') if self.Spacing: self.Spacing.export(outfile, level, namespace_, name_='Spacing') def hasContent_(self): if ( self.MinimumValue is not None or self.MaximumValue is not None or self.Spacing
# coding: utf-8 """ ELEMENTS API The version of the OpenAPI document: 2 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from elements_sdk.configuration import Configuration class FilePartialUpdate(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'name': 'str', 'files': 'list[BasicFile]', 'parent': 'str', 'mode': 'str', 'uid': 'int', 'gid': 'int', 'user': 'str', 'group': 'str', 'recursive': 'bool', 'affinity': 'str', 'mode_setuid': 'bool', 'mode_setgid': 'bool', 'mode_setvfx': 'bool', 'mode_user_read': 'bool', 'mode_user_write': 'bool', 'mode_user_execute': 'bool', 'mode_group_read': 'bool', 'mode_group_write': 'bool', 'mode_group_execute': 'bool', 'mode_others_read': 'bool', 'mode_others_write': 'bool', 'mode_others_execute': 'bool' } attribute_map = { 'name': 'name', 'files': 'files', 'parent': 'parent', 'mode': 'mode', 'uid': 'uid', 'gid': 'gid', 'user': 'user', 'group': 'group', 'recursive': 'recursive', 'affinity': 'affinity', 'mode_setuid': 'mode_setuid', 'mode_setgid': 'mode_setgid', 'mode_setvfx': 'mode_setvfx', 'mode_user_read': 'mode_user_read', 'mode_user_write': 'mode_user_write', 'mode_user_execute': 'mode_user_execute', 'mode_group_read': 'mode_group_read', 'mode_group_write': 'mode_group_write', 'mode_group_execute': 'mode_group_execute', 'mode_others_read': 'mode_others_read', 'mode_others_write': 'mode_others_write', 'mode_others_execute': 'mode_others_execute' } def __init__(self, name=None, files=None, parent=None, mode=None, uid=None, gid=None, user=None, group=None, recursive=None, affinity=None, mode_setuid=None, mode_setgid=None, mode_setvfx=None, mode_user_read=None, mode_user_write=None, mode_user_execute=None, mode_group_read=None, mode_group_write=None, mode_group_execute=None, mode_others_read=None, mode_others_write=None, mode_others_execute=None, local_vars_configuration=None): # noqa: E501 """FilePartialUpdate - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._name = None self._files = None self._parent = None self._mode = None self._uid = None self._gid = None self._user = None self._group = None self._recursive = None self._affinity = None self._mode_setuid = None self._mode_setgid = None self._mode_setvfx = None self._mode_user_read = None self._mode_user_write = None self._mode_user_execute = None self._mode_group_read = None self._mode_group_write = None self._mode_group_execute = None self._mode_others_read = None self._mode_others_write = None self._mode_others_execute = None self.discriminator = None if name is not None: self.name = name self.files = files if parent is not None: self.parent = parent if mode is not None: self.mode = mode if uid is not None: self.uid = uid if gid is not None: self.gid = gid if user is not None: self.user = user if group is not None: self.group = group if recursive is not None: self.recursive = recursive self.affinity = affinity if mode_setuid is not None: self.mode_setuid = mode_setuid if mode_setgid is not None: self.mode_setgid = mode_setgid if mode_setvfx is not None: self.mode_setvfx = mode_setvfx if mode_user_read is not None: self.mode_user_read = mode_user_read if mode_user_write is not None: self.mode_user_write = mode_user_write if mode_user_execute is not None: self.mode_user_execute = mode_user_execute if mode_group_read is not None: self.mode_group_read = mode_group_read if mode_group_write is not None: self.mode_group_write = mode_group_write if mode_group_execute is not None: self.mode_group_execute = mode_group_execute if mode_others_read is not None: self.mode_others_read = mode_others_read if mode_others_write is not None: self.mode_others_write = mode_others_write if mode_others_execute is not None: self.mode_others_execute = mode_others_execute @property def name(self): """Gets the name of this FilePartialUpdate. # noqa: E501 :return: The name of this FilePartialUpdate. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this FilePartialUpdate. :param name: The name of this FilePartialUpdate. # noqa: E501 :type: str """ if (self.local_vars_configuration.client_side_validation and name is not None and len(name) < 1): raise ValueError("Invalid value for `name`, length must be greater than or equal to `1`") # noqa: E501 self._name = name @property def files(self): """Gets the files of this FilePartialUpdate. # noqa: E501 :return: The files of this FilePartialUpdate. # noqa: E501 :rtype: list[BasicFile] """ return self._files @files.setter def files(self, files): """Sets the files of this FilePartialUpdate. :param files: The files of this FilePartialUpdate. # noqa: E501 :type: list[BasicFile] """ self._files = files @property def parent(self): """Gets the parent of this FilePartialUpdate. # noqa: E501 :return: The parent of this FilePartialUpdate. # noqa: E501 :rtype: str """ return self._parent @parent.setter def parent(self, parent): """Sets the parent of this FilePartialUpdate. :param parent: The parent of this FilePartialUpdate. # noqa: E501 :type: str """ if (self.local_vars_configuration.client_side_validation and parent is not None and len(parent) < 1): raise ValueError("Invalid value for `parent`, length must be greater than or equal to `1`") # noqa: E501 self._parent = parent @property def mode(self): """Gets the mode of this FilePartialUpdate. # noqa: E501 :return: The mode of this FilePartialUpdate. # noqa: E501 :rtype: str """ return self._mode @mode.setter def mode(self, mode): """Sets the mode of this FilePartialUpdate. :param mode: The mode of this FilePartialUpdate. # noqa: E501 :type: str """ if (self.local_vars_configuration.client_side_validation and mode is not None and len(mode) < 1): raise ValueError("Invalid value for `mode`, length must be greater than or equal to `1`") # noqa: E501 self._mode = mode @property def uid(self): """Gets the uid of this FilePartialUpdate. # noqa: E501 :return: The uid of this FilePartialUpdate. # noqa: E501 :rtype: int """ return self._uid @uid.setter def uid(self, uid): """Sets the uid of this FilePartialUpdate. :param uid: The uid of this FilePartialUpdate. # noqa: E501 :type: int """ self._uid = uid @property def gid(self): """Gets the gid of this FilePartialUpdate. # noqa: E501 :return: The gid of this FilePartialUpdate. # noqa: E501 :rtype: int """ return self._gid @gid.setter def gid(self, gid): """Sets the gid of this FilePartialUpdate. :param gid: The gid of this FilePartialUpdate. # noqa: E501 :type: int """ self._gid = gid @property def user(self): """Gets the user of this FilePartialUpdate. # noqa: E501 :return: The user of this FilePartialUpdate. # noqa: E501 :rtype: str """ return self._user @user.setter def user(self, user): """Sets the user of this FilePartialUpdate. :param user: The user of this FilePartialUpdate. # noqa: E501 :type: str """ if (self.local_vars_configuration.client_side_validation and user is not None and len(user) < 1): raise ValueError("Invalid value for `user`, length must be greater than or equal to `1`") # noqa: E501 self._user = user @property def group(self): """Gets the group of this FilePartialUpdate. # noqa: E501 :return: The group of this FilePartialUpdate. # noqa: E501 :rtype: str """ return self._group @group.setter def group(self, group): """Sets the group of this FilePartialUpdate. :param group: The group of this FilePartialUpdate. # noqa: E501 :type: str """ if (self.local_vars_configuration.client_side_validation and group is not None and len(group) < 1): raise ValueError("Invalid value for `group`, length must be greater than or equal to `1`") # noqa: E501 self._group = group @property def recursive(self): """Gets the recursive of this FilePartialUpdate. # noqa: E501 :return: The recursive of this FilePartialUpdate. # noqa: E501 :rtype: bool """ return self._recursive @recursive.setter def recursive(self, recursive): """Sets the recursive of this FilePartialUpdate. :param recursive: The recursive of this FilePartialUpdate. # noqa: E501 :type: bool """ self._recursive = recursive @property def affinity(self): """Gets the affinity of this FilePartialUpdate. # noqa: E501 :return: The affinity of this FilePartialUpdate. # noqa: E501 :rtype: str """ return self._affinity @affinity.setter def affinity(self, affinity): """Sets the affinity of this FilePartialUpdate. :param affinity: The affinity of this FilePartialUpdate. # noqa: E501 :type: str """ if (self.local_vars_configuration.client_side_validation and affinity is not None and len(affinity) < 1): raise ValueError("Invalid value for `affinity`, length must be greater than or equal to `1`") # noqa: E501 self._affinity = affinity @property def mode_setuid(self): """Gets the mode_setuid of this FilePartialUpdate. # noqa: E501 :return: The mode_setuid of this FilePartialUpdate. # noqa: E501 :rtype: bool """ return self._mode_setuid @mode_setuid.setter def mode_setuid(self, mode_setuid): """Sets the mode_setuid of this FilePartialUpdate. :param mode_setuid: The mode_setuid of this FilePartialUpdate. # noqa: E501 :type: bool """ self._mode_setuid = mode_setuid @property def mode_setgid(self): """Gets the mode_setgid of this FilePartialUpdate. # noqa: E501 :return: The mode_setgid of this FilePartialUpdate. # noqa: E501 :rtype: bool """ return self._mode_setgid @mode_setgid.setter def mode_setgid(self, mode_setgid): """Sets the mode_setgid of this FilePartialUpdate. :param mode_setgid: The mode_setgid of this FilePartialUpdate. # noqa: E501 :type: bool """ self._mode_setgid = mode_setgid @property def mode_setvfx(self): """Gets the mode_setvfx of this FilePartialUpdate. # noqa: E501 :return: The mode_setvfx of this FilePartialUpdate. # noqa: E501 :rtype: bool """ return self._mode_setvfx @mode_setvfx.setter def mode_setvfx(self, mode_setvfx): """Sets the mode_setvfx of this
xmm15, xmmword ptr [r8]') Buffer = b'\xc4\x01\x81\xc2\x00\x0c\x11\x11\x11\x11\x11\x11\x11\x11\x11' myDisasm = DISASM() myDisasm.Archi = 64 Target = create_string_buffer(Buffer,len(Buffer)) myDisasm.EIP = addressof(Target) InstrLength = Disasm(addressof(myDisasm)) assert_equal(myDisasm.Argument1.ArgType, REGISTER_TYPE + SSE_REG + REG8) assert_equal(myDisasm.Argument1.ArgSize, 128) assert_equal(myDisasm.Argument1.AccessMode, READ) assert_equal(myDisasm.Argument2.ArgType, REGISTER_TYPE + SSE_REG + REG15) assert_equal(myDisasm.Argument2.ArgSize, 128) assert_equal(myDisasm.Argument2.AccessMode, READ) assert_equal(myDisasm.Argument3.ArgType, + MEMORY_TYPE) assert_equal(myDisasm.Argument3.ArgSize, 128) assert_equal(myDisasm.Argument3.AccessMode, READ) assert_equal(myDisasm.Argument4.ArgType, + CONSTANT_TYPE+ABSOLUTE_) assert_equal(myDisasm.Argument4.ArgSize, 8) assert_equal(myDisasm.Argument4.AccessMode, READ) assert_equal(myDisasm.CompleteInstr, 'vcmpneq_oqpd xmm8, xmm15, xmmword ptr [r8]') Buffer = b'\xc4\x01\x81\xc2\x00\x0d\x11\x11\x11\x11\x11\x11\x11\x11\x11' myDisasm = DISASM() myDisasm.Archi = 64 Target = create_string_buffer(Buffer,len(Buffer)) myDisasm.EIP = addressof(Target) InstrLength = Disasm(addressof(myDisasm)) assert_equal(myDisasm.Argument1.ArgType, REGISTER_TYPE + SSE_REG + REG8) assert_equal(myDisasm.Argument1.ArgSize, 128) assert_equal(myDisasm.Argument1.AccessMode, READ) assert_equal(myDisasm.Argument2.ArgType, REGISTER_TYPE + SSE_REG + REG15) assert_equal(myDisasm.Argument2.ArgSize, 128) assert_equal(myDisasm.Argument2.AccessMode, READ) assert_equal(myDisasm.Argument3.ArgType, + MEMORY_TYPE) assert_equal(myDisasm.Argument3.ArgSize, 128) assert_equal(myDisasm.Argument3.AccessMode, READ) assert_equal(myDisasm.Argument4.ArgType, + CONSTANT_TYPE+ABSOLUTE_) assert_equal(myDisasm.Argument4.ArgSize, 8) assert_equal(myDisasm.Argument4.AccessMode, READ) assert_equal(myDisasm.CompleteInstr, 'vcmpgepd xmm8, xmm15, xmmword ptr [r8]') Buffer = b'\xc4\x01\x81\xc2\x00\x0e\x11\x11\x11\x11\x11\x11\x11\x11\x11' myDisasm = DISASM() myDisasm.Archi = 64 Target = create_string_buffer(Buffer,len(Buffer)) myDisasm.EIP = addressof(Target) InstrLength = Disasm(addressof(myDisasm)) assert_equal(myDisasm.Argument1.ArgType, REGISTER_TYPE + SSE_REG + REG8) assert_equal(myDisasm.Argument1.ArgSize, 128) assert_equal(myDisasm.Argument1.AccessMode, READ) assert_equal(myDisasm.Argument2.ArgType, REGISTER_TYPE + SSE_REG + REG15) assert_equal(myDisasm.Argument2.ArgSize, 128) assert_equal(myDisasm.Argument2.AccessMode, READ) assert_equal(myDisasm.Argument3.ArgType, + MEMORY_TYPE) assert_equal(myDisasm.Argument3.ArgSize, 128) assert_equal(myDisasm.Argument3.AccessMode, READ) assert_equal(myDisasm.Argument4.ArgType, + CONSTANT_TYPE+ABSOLUTE_) assert_equal(myDisasm.Argument4.ArgSize, 8) assert_equal(myDisasm.Argument4.AccessMode, READ) assert_equal(myDisasm.CompleteInstr, 'vcmpgtpd xmm8, xmm15, xmmword ptr [r8]') Buffer = b'\xc4\x01\x81\xc2\x00\x0f\x11\x11\x11\x11\x11\x11\x11\x11\x11' myDisasm = DISASM() myDisasm.Archi = 64 Target = create_string_buffer(Buffer,len(Buffer)) myDisasm.EIP = addressof(Target) InstrLength = Disasm(addressof(myDisasm)) assert_equal(myDisasm.Argument1.ArgType, REGISTER_TYPE + SSE_REG + REG8) assert_equal(myDisasm.Argument1.ArgSize, 128) assert_equal(myDisasm.Argument1.AccessMode, READ) assert_equal(myDisasm.Argument2.ArgType, REGISTER_TYPE + SSE_REG + REG15) assert_equal(myDisasm.Argument2.ArgSize, 128) assert_equal(myDisasm.Argument2.AccessMode, READ) assert_equal(myDisasm.Argument3.ArgType, + MEMORY_TYPE) assert_equal(myDisasm.Argument3.ArgSize, 128) assert_equal(myDisasm.Argument3.AccessMode, READ) assert_equal(myDisasm.Argument4.ArgType, + CONSTANT_TYPE+ABSOLUTE_) assert_equal(myDisasm.Argument4.ArgSize, 8) assert_equal(myDisasm.Argument4.AccessMode, READ) assert_equal(myDisasm.CompleteInstr, 'vcmptruepd xmm8, xmm15, xmmword ptr [r8]') Buffer = b'\xc4\x01\x81\xc2\x00\x10\x11\x11\x11\x11\x11\x11\x11\x11\x11' myDisasm = DISASM() myDisasm.Archi = 64 Target = create_string_buffer(Buffer,len(Buffer)) myDisasm.EIP = addressof(Target) InstrLength = Disasm(addressof(myDisasm)) assert_equal(myDisasm.Argument1.ArgType, REGISTER_TYPE + SSE_REG + REG8) assert_equal(myDisasm.Argument1.ArgSize, 128) assert_equal(myDisasm.Argument1.AccessMode, READ) assert_equal(myDisasm.Argument2.ArgType, REGISTER_TYPE + SSE_REG + REG15) assert_equal(myDisasm.Argument2.ArgSize, 128) assert_equal(myDisasm.Argument2.AccessMode, READ) assert_equal(myDisasm.Argument3.ArgType, + MEMORY_TYPE) assert_equal(myDisasm.Argument3.ArgSize, 128) assert_equal(myDisasm.Argument3.AccessMode, READ) assert_equal(myDisasm.Argument4.ArgType, + CONSTANT_TYPE+ABSOLUTE_) assert_equal(myDisasm.Argument4.ArgSize, 8) assert_equal(myDisasm.Argument4.AccessMode, READ) assert_equal(myDisasm.CompleteInstr, 'vcmpeq_ospd xmm8, xmm15, xmmword ptr [r8]') Buffer = b'\xc4\x01\x81\xc2\x00\x11\x11\x11\x11\x11\x11\x11\x11\x11\x11' myDisasm = DISASM() myDisasm.Archi = 64 Target = create_string_buffer(Buffer,len(Buffer)) myDisasm.EIP = addressof(Target) InstrLength = Disasm(addressof(myDisasm)) assert_equal(myDisasm.Argument1.ArgType, REGISTER_TYPE + SSE_REG + REG8) assert_equal(myDisasm.Argument1.ArgSize, 128) assert_equal(myDisasm.Argument1.AccessMode, READ) assert_equal(myDisasm.Argument2.ArgType, REGISTER_TYPE + SSE_REG + REG15) assert_equal(myDisasm.Argument2.ArgSize, 128) assert_equal(myDisasm.Argument2.AccessMode, READ) assert_equal(myDisasm.Argument3.ArgType, + MEMORY_TYPE) assert_equal(myDisasm.Argument3.ArgSize, 128) assert_equal(myDisasm.Argument3.AccessMode, READ) assert_equal(myDisasm.Argument4.ArgType, + CONSTANT_TYPE+ABSOLUTE_) assert_equal(myDisasm.Argument4.ArgSize, 8) assert_equal(myDisasm.Argument4.AccessMode, READ) assert_equal(myDisasm.CompleteInstr, 'vcmplt_oqpd xmm8, xmm15, xmmword ptr [r8]') Buffer = b'\xc4\x01\x81\xc2\x00\x12\x11\x11\x11\x11\x11\x11\x11\x11\x11' myDisasm = DISASM() myDisasm.Archi = 64 Target = create_string_buffer(Buffer,len(Buffer)) myDisasm.EIP = addressof(Target) InstrLength = Disasm(addressof(myDisasm)) assert_equal(myDisasm.Argument1.ArgType, REGISTER_TYPE + SSE_REG + REG8) assert_equal(myDisasm.Argument1.ArgSize, 128) assert_equal(myDisasm.Argument1.AccessMode, READ) assert_equal(myDisasm.Argument2.ArgType, REGISTER_TYPE + SSE_REG + REG15) assert_equal(myDisasm.Argument2.ArgSize, 128) assert_equal(myDisasm.Argument2.AccessMode, READ) assert_equal(myDisasm.Argument3.ArgType, + MEMORY_TYPE) assert_equal(myDisasm.Argument3.ArgSize, 128) assert_equal(myDisasm.Argument3.AccessMode, READ) assert_equal(myDisasm.Argument4.ArgType, + CONSTANT_TYPE+ABSOLUTE_) assert_equal(myDisasm.Argument4.ArgSize, 8) assert_equal(myDisasm.Argument4.AccessMode, READ) assert_equal(myDisasm.CompleteInstr, 'vcmple_oqpd xmm8, xmm15, xmmword ptr [r8]') Buffer = b'\xc4\x01\x81\xc2\x00\x13\x11\x11\x11\x11\x11\x11\x11\x11\x11' myDisasm = DISASM() myDisasm.Archi = 64 Target = create_string_buffer(Buffer,len(Buffer)) myDisasm.EIP = addressof(Target) InstrLength = Disasm(addressof(myDisasm)) assert_equal(myDisasm.Argument1.ArgType, REGISTER_TYPE + SSE_REG + REG8) assert_equal(myDisasm.Argument1.ArgSize, 128) assert_equal(myDisasm.Argument1.AccessMode, READ) assert_equal(myDisasm.Argument2.ArgType, REGISTER_TYPE + SSE_REG + REG15) assert_equal(myDisasm.Argument2.ArgSize, 128) assert_equal(myDisasm.Argument2.AccessMode, READ) assert_equal(myDisasm.Argument3.ArgType, + MEMORY_TYPE) assert_equal(myDisasm.Argument3.ArgSize, 128) assert_equal(myDisasm.Argument3.AccessMode, READ) assert_equal(myDisasm.Argument4.ArgType, + CONSTANT_TYPE+ABSOLUTE_) assert_equal(myDisasm.Argument4.ArgSize, 8) assert_equal(myDisasm.Argument4.AccessMode, READ) assert_equal(myDisasm.CompleteInstr, 'vcmpunord_spd xmm8, xmm15, xmmword ptr [r8]') Buffer = b'\xc4\x01\x81\xc2\x00\x14\x11\x11\x11\x11\x11\x11\x11\x11\x11' myDisasm = DISASM() myDisasm.Archi = 64 Target = create_string_buffer(Buffer,len(Buffer)) myDisasm.EIP = addressof(Target) InstrLength = Disasm(addressof(myDisasm)) assert_equal(myDisasm.Argument1.ArgType, REGISTER_TYPE + SSE_REG + REG8) assert_equal(myDisasm.Argument1.ArgSize, 128) assert_equal(myDisasm.Argument1.AccessMode, READ) assert_equal(myDisasm.Argument2.ArgType, REGISTER_TYPE + SSE_REG + REG15) assert_equal(myDisasm.Argument2.ArgSize, 128) assert_equal(myDisasm.Argument2.AccessMode, READ) assert_equal(myDisasm.Argument3.ArgType, + MEMORY_TYPE) assert_equal(myDisasm.Argument3.ArgSize, 128) assert_equal(myDisasm.Argument3.AccessMode, READ) assert_equal(myDisasm.Argument4.ArgType, + CONSTANT_TYPE+ABSOLUTE_) assert_equal(myDisasm.Argument4.ArgSize, 8) assert_equal(myDisasm.Argument4.AccessMode, READ) assert_equal(myDisasm.CompleteInstr, 'vcmpneq_uspd xmm8, xmm15, xmmword ptr [r8]') Buffer = b'\xc4\x01\x81\xc2\x00\x15\x11\x11\x11\x11\x11\x11\x11\x11\x11' myDisasm = DISASM() myDisasm.Archi = 64 Target = create_string_buffer(Buffer,len(Buffer)) myDisasm.EIP = addressof(Target) InstrLength = Disasm(addressof(myDisasm)) assert_equal(myDisasm.Argument1.ArgType, REGISTER_TYPE + SSE_REG + REG8) assert_equal(myDisasm.Argument1.ArgSize, 128) assert_equal(myDisasm.Argument1.AccessMode, READ) assert_equal(myDisasm.Argument2.ArgType, REGISTER_TYPE + SSE_REG + REG15) assert_equal(myDisasm.Argument2.ArgSize, 128) assert_equal(myDisasm.Argument2.AccessMode, READ) assert_equal(myDisasm.Argument3.ArgType, + MEMORY_TYPE) assert_equal(myDisasm.Argument3.ArgSize, 128) assert_equal(myDisasm.Argument3.AccessMode, READ) assert_equal(myDisasm.Argument4.ArgType, + CONSTANT_TYPE+ABSOLUTE_) assert_equal(myDisasm.Argument4.ArgSize, 8) assert_equal(myDisasm.Argument4.AccessMode, READ) assert_equal(myDisasm.CompleteInstr, 'vcmpnlt_uqpd xmm8, xmm15, xmmword ptr [r8]') Buffer = b'\xc4\x01\x81\xc2\x00\x16\x11\x11\x11\x11\x11\x11\x11\x11\x11' myDisasm = DISASM() myDisasm.Archi = 64 Target = create_string_buffer(Buffer,len(Buffer)) myDisasm.EIP = addressof(Target) InstrLength = Disasm(addressof(myDisasm)) assert_equal(myDisasm.Argument1.ArgType, REGISTER_TYPE + SSE_REG + REG8) assert_equal(myDisasm.Argument1.ArgSize, 128) assert_equal(myDisasm.Argument1.AccessMode, READ) assert_equal(myDisasm.Argument2.ArgType, REGISTER_TYPE + SSE_REG + REG15) assert_equal(myDisasm.Argument2.ArgSize, 128) assert_equal(myDisasm.Argument2.AccessMode, READ) assert_equal(myDisasm.Argument3.ArgType, + MEMORY_TYPE) assert_equal(myDisasm.Argument3.ArgSize, 128) assert_equal(myDisasm.Argument3.AccessMode, READ) assert_equal(myDisasm.Argument4.ArgType, + CONSTANT_TYPE+ABSOLUTE_) assert_equal(myDisasm.Argument4.ArgSize, 8) assert_equal(myDisasm.Argument4.AccessMode, READ) assert_equal(myDisasm.CompleteInstr, 'vcmpnle_uqpd xmm8, xmm15, xmmword ptr [r8]') Buffer = b'\xc4\x01\x81\xc2\x00\x17\x11\x11\x11\x11\x11\x11\x11\x11\x11' myDisasm = DISASM() myDisasm.Archi = 64 Target = create_string_buffer(Buffer,len(Buffer)) myDisasm.EIP = addressof(Target) InstrLength = Disasm(addressof(myDisasm)) assert_equal(myDisasm.Argument1.ArgType, REGISTER_TYPE + SSE_REG + REG8) assert_equal(myDisasm.Argument1.ArgSize, 128) assert_equal(myDisasm.Argument1.AccessMode, READ) assert_equal(myDisasm.Argument2.ArgType, REGISTER_TYPE + SSE_REG + REG15) assert_equal(myDisasm.Argument2.ArgSize, 128) assert_equal(myDisasm.Argument2.AccessMode, READ) assert_equal(myDisasm.Argument3.ArgType, + MEMORY_TYPE) assert_equal(myDisasm.Argument3.ArgSize, 128) assert_equal(myDisasm.Argument3.AccessMode, READ) assert_equal(myDisasm.Argument4.ArgType, + CONSTANT_TYPE+ABSOLUTE_) assert_equal(myDisasm.Argument4.ArgSize, 8) assert_equal(myDisasm.Argument4.AccessMode, READ) assert_equal(myDisasm.CompleteInstr, 'vcmpord_spd xmm8, xmm15, xmmword ptr [r8]') Buffer = b'\xc4\x01\x81\xc2\x00\x18\x11\x11\x11\x11\x11\x11\x11\x11\x11' myDisasm = DISASM() myDisasm.Archi = 64 Target = create_string_buffer(Buffer,len(Buffer)) myDisasm.EIP = addressof(Target) InstrLength = Disasm(addressof(myDisasm)) assert_equal(myDisasm.Argument1.ArgType, REGISTER_TYPE + SSE_REG + REG8) assert_equal(myDisasm.Argument1.ArgSize, 128) assert_equal(myDisasm.Argument1.AccessMode, READ) assert_equal(myDisasm.Argument2.ArgType, REGISTER_TYPE + SSE_REG + REG15) assert_equal(myDisasm.Argument2.ArgSize, 128) assert_equal(myDisasm.Argument2.AccessMode, READ) assert_equal(myDisasm.Argument3.ArgType, + MEMORY_TYPE) assert_equal(myDisasm.Argument3.ArgSize, 128) assert_equal(myDisasm.Argument3.AccessMode, READ) assert_equal(myDisasm.Argument4.ArgType, + CONSTANT_TYPE+ABSOLUTE_) assert_equal(myDisasm.Argument4.ArgSize, 8) assert_equal(myDisasm.Argument4.AccessMode, READ) assert_equal(myDisasm.CompleteInstr, 'vcmpeq_uspd xmm8, xmm15, xmmword ptr [r8]') Buffer = b'\xc4\x01\x81\xc2\x00\x19\x11\x11\x11\x11\x11\x11\x11\x11\x11' myDisasm = DISASM() myDisasm.Archi = 64 Target = create_string_buffer(Buffer,len(Buffer)) myDisasm.EIP = addressof(Target) InstrLength = Disasm(addressof(myDisasm)) assert_equal(myDisasm.Argument1.ArgType, REGISTER_TYPE + SSE_REG + REG8) assert_equal(myDisasm.Argument1.ArgSize, 128) assert_equal(myDisasm.Argument1.AccessMode, READ) assert_equal(myDisasm.Argument2.ArgType, REGISTER_TYPE + SSE_REG + REG15) assert_equal(myDisasm.Argument2.ArgSize, 128) assert_equal(myDisasm.Argument2.AccessMode, READ) assert_equal(myDisasm.Argument3.ArgType, + MEMORY_TYPE) assert_equal(myDisasm.Argument3.ArgSize, 128) assert_equal(myDisasm.Argument3.AccessMode, READ) assert_equal(myDisasm.Argument4.ArgType, + CONSTANT_TYPE+ABSOLUTE_) assert_equal(myDisasm.Argument4.ArgSize, 8) assert_equal(myDisasm.Argument4.AccessMode, READ) assert_equal(myDisasm.CompleteInstr, 'vcmpnge_uqpd xmm8, xmm15, xmmword ptr [r8]') Buffer = b'\xc4\x01\x81\xc2\x00\x1a\x11\x11\x11\x11\x11\x11\x11\x11\x11' myDisasm = DISASM() myDisasm.Archi = 64 Target = create_string_buffer(Buffer,len(Buffer)) myDisasm.EIP = addressof(Target) InstrLength = Disasm(addressof(myDisasm)) assert_equal(myDisasm.Argument1.ArgType, REGISTER_TYPE + SSE_REG + REG8) assert_equal(myDisasm.Argument1.ArgSize, 128) assert_equal(myDisasm.Argument1.AccessMode, READ) assert_equal(myDisasm.Argument2.ArgType, REGISTER_TYPE + SSE_REG + REG15) assert_equal(myDisasm.Argument2.ArgSize, 128) assert_equal(myDisasm.Argument2.AccessMode, READ) assert_equal(myDisasm.Argument3.ArgType, + MEMORY_TYPE) assert_equal(myDisasm.Argument3.ArgSize, 128) assert_equal(myDisasm.Argument3.AccessMode, READ) assert_equal(myDisasm.Argument4.ArgType, + CONSTANT_TYPE+ABSOLUTE_) assert_equal(myDisasm.Argument4.ArgSize, 8) assert_equal(myDisasm.Argument4.AccessMode, READ) assert_equal(myDisasm.CompleteInstr, 'vcmpngt_uqpd xmm8, xmm15, xmmword ptr [r8]') Buffer = b'\xc4\x01\x81\xc2\x00\x1b\x11\x11\x11\x11\x11\x11\x11\x11\x11' myDisasm = DISASM() myDisasm.Archi = 64 Target = create_string_buffer(Buffer,len(Buffer)) myDisasm.EIP = addressof(Target) InstrLength = Disasm(addressof(myDisasm)) assert_equal(myDisasm.Argument1.ArgType, REGISTER_TYPE + SSE_REG + REG8) assert_equal(myDisasm.Argument1.ArgSize, 128) assert_equal(myDisasm.Argument1.AccessMode, READ) assert_equal(myDisasm.Argument2.ArgType, REGISTER_TYPE + SSE_REG + REG15) assert_equal(myDisasm.Argument2.ArgSize, 128) assert_equal(myDisasm.Argument2.AccessMode, READ) assert_equal(myDisasm.Argument3.ArgType, + MEMORY_TYPE) assert_equal(myDisasm.Argument3.ArgSize, 128) assert_equal(myDisasm.Argument3.AccessMode, READ) assert_equal(myDisasm.Argument4.ArgType, + CONSTANT_TYPE+ABSOLUTE_) assert_equal(myDisasm.Argument4.ArgSize, 8) assert_equal(myDisasm.Argument4.AccessMode, READ) assert_equal(myDisasm.CompleteInstr, 'vcmpfalse_ospd xmm8, xmm15, xmmword ptr [r8]') Buffer = b'\xc4\x01\x81\xc2\x00\x1c\x11\x11\x11\x11\x11\x11\x11\x11\x11' myDisasm = DISASM() myDisasm.Archi = 64 Target = create_string_buffer(Buffer,len(Buffer)) myDisasm.EIP = addressof(Target) InstrLength = Disasm(addressof(myDisasm)) assert_equal(myDisasm.Argument1.ArgType, REGISTER_TYPE + SSE_REG + REG8) assert_equal(myDisasm.Argument1.ArgSize, 128) assert_equal(myDisasm.Argument1.AccessMode, READ) assert_equal(myDisasm.Argument2.ArgType, REGISTER_TYPE + SSE_REG + REG15) assert_equal(myDisasm.Argument2.ArgSize, 128) assert_equal(myDisasm.Argument2.AccessMode, READ) assert_equal(myDisasm.Argument3.ArgType, + MEMORY_TYPE) assert_equal(myDisasm.Argument3.ArgSize, 128) assert_equal(myDisasm.Argument3.AccessMode, READ) assert_equal(myDisasm.Argument4.ArgType, + CONSTANT_TYPE+ABSOLUTE_) assert_equal(myDisasm.Argument4.ArgSize, 8) assert_equal(myDisasm.Argument4.AccessMode, READ) assert_equal(myDisasm.CompleteInstr, 'vcmpneq_ospd xmm8, xmm15, xmmword ptr [r8]') Buffer = b'\xc4\x01\x81\xc2\x00\x1d\x11\x11\x11\x11\x11\x11\x11\x11\x11' myDisasm = DISASM() myDisasm.Archi = 64 Target = create_string_buffer(Buffer,len(Buffer)) myDisasm.EIP = addressof(Target) InstrLength = Disasm(addressof(myDisasm)) assert_equal(myDisasm.Argument1.ArgType, REGISTER_TYPE + SSE_REG + REG8) assert_equal(myDisasm.Argument1.ArgSize, 128) assert_equal(myDisasm.Argument1.AccessMode, READ) assert_equal(myDisasm.Argument2.ArgType, REGISTER_TYPE + SSE_REG + REG15) assert_equal(myDisasm.Argument2.ArgSize, 128) assert_equal(myDisasm.Argument2.AccessMode, READ) assert_equal(myDisasm.Argument3.ArgType, + MEMORY_TYPE) assert_equal(myDisasm.Argument3.ArgSize, 128) assert_equal(myDisasm.Argument3.AccessMode, READ) assert_equal(myDisasm.Argument4.ArgType, + CONSTANT_TYPE+ABSOLUTE_) assert_equal(myDisasm.Argument4.ArgSize, 8) assert_equal(myDisasm.Argument4.AccessMode, READ) assert_equal(myDisasm.CompleteInstr, 'vcmpge_oqpd xmm8, xmm15, xmmword ptr [r8]') Buffer = b'\xc4\x01\x81\xc2\x00\x1e\x11\x11\x11\x11\x11\x11\x11\x11\x11' myDisasm = DISASM() myDisasm.Archi = 64 Target = create_string_buffer(Buffer,len(Buffer)) myDisasm.EIP = addressof(Target) InstrLength = Disasm(addressof(myDisasm)) assert_equal(myDisasm.Argument1.ArgType, REGISTER_TYPE + SSE_REG + REG8) assert_equal(myDisasm.Argument1.ArgSize, 128) assert_equal(myDisasm.Argument1.AccessMode, READ) assert_equal(myDisasm.Argument2.ArgType, REGISTER_TYPE + SSE_REG + REG15) assert_equal(myDisasm.Argument2.ArgSize, 128) assert_equal(myDisasm.Argument2.AccessMode, READ) assert_equal(myDisasm.Argument3.ArgType, + MEMORY_TYPE) assert_equal(myDisasm.Argument3.ArgSize, 128) assert_equal(myDisasm.Argument3.AccessMode, READ) assert_equal(myDisasm.Argument4.ArgType, + CONSTANT_TYPE+ABSOLUTE_) assert_equal(myDisasm.Argument4.ArgSize, 8) assert_equal(myDisasm.Argument4.AccessMode, READ) assert_equal(myDisasm.CompleteInstr, 'vcmpgt_oqpd xmm8, xmm15, xmmword ptr [r8]') Buffer = b'\xc4\x01\x81\xc2\x00\x1f\x11\x11\x11\x11\x11\x11\x11\x11\x11' myDisasm = DISASM() myDisasm.Archi = 64 Target = create_string_buffer(Buffer,len(Buffer)) myDisasm.EIP = addressof(Target) InstrLength = Disasm(addressof(myDisasm)) assert_equal(myDisasm.Argument1.ArgType, REGISTER_TYPE + SSE_REG + REG8) assert_equal(myDisasm.Argument1.ArgSize, 128) assert_equal(myDisasm.Argument1.AccessMode, READ) assert_equal(myDisasm.Argument2.ArgType, REGISTER_TYPE + SSE_REG + REG15) assert_equal(myDisasm.Argument2.ArgSize, 128) assert_equal(myDisasm.Argument2.AccessMode, READ) assert_equal(myDisasm.Argument3.ArgType, + MEMORY_TYPE) assert_equal(myDisasm.Argument3.ArgSize, 128) assert_equal(myDisasm.Argument3.AccessMode, READ) assert_equal(myDisasm.Argument4.ArgType, + CONSTANT_TYPE+ABSOLUTE_) assert_equal(myDisasm.Argument4.ArgSize, 8) assert_equal(myDisasm.Argument4.AccessMode, READ) assert_equal(myDisasm.CompleteInstr, 'vcmptrue_uspd xmm8, xmm15, xmmword ptr [r8]') Buffer = b'\xc4\x01\x05\xc2\x00\x1f\x11\x11\x11\x11\x11\x11\x11\x11\x11' myDisasm = DISASM() myDisasm.Archi = 64 Target = create_string_buffer(Buffer,len(Buffer)) myDisasm.EIP = addressof(Target) InstrLength = Disasm(addressof(myDisasm)) assert_equal(myDisasm.Argument1.ArgType, REGISTER_TYPE + AVX_REG + REG8) assert_equal(myDisasm.Argument1.ArgSize, 256) assert_equal(myDisasm.Argument1.AccessMode, READ) assert_equal(myDisasm.Argument2.ArgType, REGISTER_TYPE + AVX_REG + REG15) assert_equal(myDisasm.Argument2.ArgSize, 256) assert_equal(myDisasm.Argument2.AccessMode, READ) assert_equal(myDisasm.Argument3.ArgType, + MEMORY_TYPE) assert_equal(myDisasm.Argument3.ArgSize, 256) assert_equal(myDisasm.Argument3.AccessMode, READ) assert_equal(myDisasm.Argument4.ArgType, + CONSTANT_TYPE+ABSOLUTE_) assert_equal(myDisasm.Argument4.ArgSize, 8) assert_equal(myDisasm.Argument4.AccessMode, READ) assert_equal(myDisasm.CompleteInstr, 'vcmptrue_uspd ymm8, ymm15, ymmword ptr [r8]') def test_cmpps(self): Buffer = b'\x0F\xC2\x00\x00\x11\x11\x11\x11\x11\x11\x11\x11\x11\x11' myDisasm = DISASM() myDisasm.Archi = 64 Target = create_string_buffer(Buffer,len(Buffer)) myDisasm.EIP = addressof(Target) InstrLength = Disasm(addressof(myDisasm)) assert_equal(myDisasm.Argument1.ArgType, REGISTER_TYPE + SSE_REG + REG0) assert_equal(myDisasm.Argument1.ArgSize, 128) assert_equal(myDisasm.Argument1.AccessMode, READ) assert_equal(myDisasm.Argument2.ArgType, MEMORY_TYPE) assert_equal(myDisasm.Argument2.ArgSize, 128) assert_equal(myDisasm.Argument2.AccessMode, READ) assert_equal(myDisasm.Argument3.ArgType,
# Copyright 2021 D-Wave Systems Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections.abc import Callable from copy import deepcopy from numbers import Number from typing import Any, Dict, Iterator, Iterable, Mapping, Optional, Sequence, Tuple, Union from typing import TYPE_CHECKING import numpy as np try: from numpy.typing import ArrayLike, DTypeLike except ImportError: ArrayLike = Any DTypeLike = Any from dimod.decorators import forwarding_method from dimod.quadratic.cyqm import cyQM_float32, cyQM_float64 from dimod.typing import Variable, Bias, VartypeLike from dimod.variables import Variables from dimod.vartypes import Vartype from dimod.views.quadratic import QuadraticViewsMixin if TYPE_CHECKING: # avoid circular imports from dimod import BinaryQuadraticModel __all__ = ['QuadraticModel', 'QM', 'Integer'] Vartypes = Union[Mapping[Variable, Vartype], Iterable[Tuple[Variable, VartypeLike]]] class QuadraticModel(QuadraticViewsMixin): _DATA_CLASSES = { np.dtype(np.float32): cyQM_float32, np.dtype(np.float64): cyQM_float64, } DEFAULT_DTYPE = np.float64 """The default dtype used to construct the class.""" def __init__(self, linear: Optional[Mapping[Variable, Bias]] = None, quadratic: Optional[Mapping[Tuple[Variable, Variable], Bias]] = None, offset: Bias = 0, vartypes: Optional[Vartypes] = None, *, dtype: Optional[DTypeLike] = None): dtype = np.dtype(self.DEFAULT_DTYPE) if dtype is None else np.dtype(dtype) self.data = self._DATA_CLASSES[np.dtype(dtype)]() if vartypes is not None: if isinstance(vartypes, Mapping): vartypes = vartypes.items() for v, vartype in vartypes: self.add_variable(vartype, v) self.set_linear(v, 0) # todo: in the future we can support more types for construction, but # let's keep it simple for now if linear is not None: for v, bias in linear.items(): self.add_linear(v, bias) if quadratic is not None: for (u, v), bias in quadratic.items(): self.add_quadratic(u, v, bias) self.offset += offset def __deepcopy__(self, memo: Dict[int, Any]) -> 'QuadraticModel': new = type(self).__new__(type(self)) new.data = deepcopy(self.data, memo) memo[id(self)] = new return new def __repr__(self): vartypes = {v: self.vartype(v).name for v in self.variables} return (f"{type(self).__name__}({self.linear}, {self.quadratic}, " f"{self.offset}, {vartypes}, dtype={self.dtype.name!r})") def __add__(self, other: Union['QuadraticModel', Bias]) -> 'QuadraticModel': # in python 3.8+ we could do this is functools.singledispatchmethod if isinstance(other, QuadraticModel): new = self.copy() new.update(other) return new if isinstance(other, Number): new = self.copy() new.offset += other return new return NotImplemented def __iadd__(self, other: Union['QuadraticModel', Bias]) -> 'QuadraticModel': # in python 3.8+ we could do this is functools.singledispatchmethod if isinstance(other, QuadraticModel): self.update(other) return self if isinstance(other, Number): self.offset += other return self return NotImplemented def __radd__(self, other: Bias) -> 'QuadraticModel': # should only miss on number if isinstance(other, Number): new = self.copy() new.offset += other return new return NotImplemented def __mul__(self, other: Union['QuadraticModel', Bias]) -> 'QuadraticModel': if isinstance(other, QuadraticModel): if not (self.is_linear() and other.is_linear()): raise TypeError( "cannot multiply QMs with interactions") # todo: performance new = type(self)(dtype=self.dtype) for v in self.variables: new.add_variable(self.vartype(v), v) for v in other.variables: new.add_variable(other.vartype(v), v) self_offset = self.offset other_offset = other.offset for u, ubias in self.linear.items(): for v, vbias in other.linear.items(): if u == v: u_vartype = self.vartype(u) if u_vartype is Vartype.BINARY: new.add_linear(u, ubias*vbias) elif u_vartype is Vartype.SPIN: new.offset += ubias * vbias elif u_vartype is Vartype.INTEGER: new.add_quadratic(u, v, ubias*vbias) else: raise RuntimeError("unexpected vartype") else: new.add_quadratic(u, v, ubias * vbias) new.add_linear(u, ubias * other_offset) for v, bias in other.linear.items(): new.add_linear(v, bias*self_offset) return new if isinstance(other, Number): new = self.copy() new.scale(other) return new return NotImplemented def __imul__(self, other: Bias) -> 'QuadraticModel': # in-place multiplication is only defined for numbers if isinstance(other, Number): raise NotImplementedError return NotImplemented def __rmul__(self, other: Bias) -> 'QuadraticModel': # should only miss on number if isinstance(other, Number): return self * other # communative return NotImplemented def __neg__(self: 'QuadraticModel') -> 'QuadraticModel': new = self.copy() new.scale(-1) return new def __sub__(self, other: Union['QuadraticModel', Bias]) -> 'QuadraticModel': if isinstance(other, QuadraticModel): new = self.copy() new.scale(-1) new.update(other) new.scale(-1) return new if isinstance(other, Number): new = self.copy() new.offset -= other return new return NotImplemented def __isub__(self, other: Union['QuadraticModel', Bias]) -> 'QuadraticModel': if isinstance(other, QuadraticModel): self.scale(-1) self.update(other) self.scale(-1) return self if isinstance(other, Number): self.offset -= other return self return NotImplemented def __rsub__(self, other: Bias) -> 'QuadraticModel': # should only miss on a number if isinstance(other, Number): new = self.copy() new.scale(-1) new += other return new return NotImplemented @property def dtype(self) -> np.dtype: """Data-type of the model's biases.""" return self.data.dtype @property def num_interactions(self) -> int: """Number of interactions in the model. The complexity is linear in the number of variables. """ return self.data.num_interactions() @property def num_variables(self) -> int: """Number of variables in the model.""" return self.data.num_variables() @property def offset(self) -> np.number: """Constant energy offset associated with the model.""" return self.data.offset @offset.setter def offset(self, offset): self.data.offset = offset @property def shape(self) -> Tuple[int, int]: """A 2-tuple of :attr:`num_variables` and :attr:`num_interactions`.""" return self.num_variables, self.num_interactions @property def variables(self) -> Variables: """The variables of the quadratic model""" return self.data.variables @forwarding_method def add_linear(self, v: Variable, bias: Bias): """Add a quadratic term.""" return self.data.add_linear @forwarding_method def add_quadratic(self, u: Variable, v: Variable, bias: Bias): return self.data.add_quadratic @forwarding_method def add_variable(self, vartype: VartypeLike, v: Optional[Variable] = None, bias: Bias = 0) -> Variable: """Add a quadratic term.""" return self.data.add_variable def copy(self): """Return a copy.""" return deepcopy(self) @forwarding_method def degree(self, v: Variable) -> int: """Return the degree of variable `v`. The degree is the number of interactions that contain `v`. """ return self.data.degree @classmethod def from_bqm(cls, bqm: 'BinaryQuadraticModel') -> 'QuadraticModel': obj = cls(dtype=bqm.dtype) # this can be improved a great deal with c++, but for now let's use # the python fallback for everything for v in bqm.variables: obj.set_linear(obj.add_variable(bqm.vartype, v), bqm.get_linear(v)) for u, v, bias in bqm.iter_quadratic(): obj.set_quadratic(u, v, bias) obj.offset = bqm.offset return obj @forwarding_method def get_linear(self, v: Variable) -> Bias: """Get the linear bias of `v`.""" return self.data.get_linear @forwarding_method def get_quadratic(self, u: Variable, v: Variable, default: Optional[Bias] = None) -> Bias: return self.data.get_quadratic def is_equal(self, other): """Return True if the given model has the same variables, vartypes and biases.""" if isinstance(other, Number): return not self.num_variables and self.offset == other # todo: performance try: return (self.shape == other.shape # redundant, fast to check and self.offset == other.offset and self.linear == other.linear and all(self.vartype(v) == other.vartype(v) for v in self.variables) and self.adj == other.adj) except AttributeError: return False def is_linear(self) -> bool: """Return True if the model has no quadratic interactions.""" return self.data.is_linear() @forwarding_method def iter_neighborhood(self, v: Variable) -> Iterator[Tuple[Variable, Bias]]: """Iterate over the neighbors and quadratic biases of a variable.""" return self.data.iter_neighborhood @forwarding_method def iter_quadratic(self) -> Iterator[Tuple[Variable, Variable, Bias]]: return self.data.iter_quadratic @forwarding_method def reduce_linear(self, function: Callable, initializer: Optional[Bias] = None) -> Any: """Apply function of two arguments cumulatively to the linear biases. """ return self.data.reduce_linear @forwarding_method def reduce_neighborhood(self, v: Variable, function: Callable, initializer: Optional[Bias] = None) -> Any: """Apply function of two arguments cumulatively to the quadratic biases associated with a single variable. """ return self.data.reduce_neighborhood @forwarding_method def reduce_quadratic(self, function: Callable, initializer: Optional[Bias] = None) -> Any: """Apply function of two arguments cumulatively to the quadratic biases. """ return self.data.reduce_quadratic def remove_interaction(self, u: Variable, v: Variable): # This is needed for the views, but I am not sure how often users are # removing variables/interactions. For now let's leave it here so # we satisfy the ABC and see if it comes up. If not, in the future we # can consider removing __delitem__ from the various views. raise NotImplementedError("not yet implemented - please open a feature request") def remove_variable(self, v: Optional[Variable] = None) -> Variable: # see note in remove_interaction raise NotImplementedError("not yet implemented - please open a feature request") @forwarding_method def scale(self, scalar: Bias): return self.data.scale @forwarding_method def set_linear(self, v: Variable, bias: Bias): """Set the linear bias of `v`. Raises: TypeError: If `v` is not hashable. """ return self.data.set_linear @forwarding_method def set_quadratic(self, u: Variable, v: Variable, bias: Bias): """Set the quadratic bias of `(u, v)`. Raises: TypeError: If `u` or `v` is not hashable. """ return self.data.set_quadratic def update(self, other: 'QuadraticModel'): # this can be improved a
<reponame>PatrickKoss/BettingPrediction<filename>BettingRestAPI/csgo_api/views.py<gh_stars>0 import json from datetime import datetime, timedelta from threading import Thread import numpy as np from django.conf import settings from django.db import connection from rest_framework import status from rest_framework.response import Response from rest_framework.views import APIView from BettingRestAPI.Helper.CSGOHelper import check_authorization from BettingRestAPI.Serializer.CSGOSerializer import MatchSerializer, TeamSerializer, TeamsPredictionSerializer from BettingRestAPI.Serializer.Encoder import ComplexEncoder from BettingRestAPI.utils.Message import Message from csgo_api.models import Match, Team class GetUpcomingMatches(APIView): def get(self, request): """return all upcoming matches. Matches need to start later than now""" check, json_message, response_status = check_authorization(request) if check: message = Message("success", f"CSGO Upcoming Matches") upcoming_matches = Match.objects.filter( date__range=(datetime.now(), datetime.now() + timedelta(days=15))).order_by("date") upcoming_matches = MatchSerializer(upcoming_matches, context={'request': request}, many=True).data for match in upcoming_matches: match.update({ "nnPickedTeam": match["Team_1"]["name"] if match["team_1_confidence"] >= match["team_2_confidence"] else match["Team_2"]["name"]}) match.update({ "svmPickedTeam": match["Team_1"]["name"] if float(match["prediction_svm"]) == 0 else match["Team_2"][ "name"]}) json_rep = json.dumps({'message': message.repr_json(), 'upcoming_matches': upcoming_matches}, cls=ComplexEncoder) json_rep = json.loads(json_rep) return Response(json_rep, status=response_status) else: return Response(json_message, status=response_status) class GetMatchResult(APIView): def get(self, request): """return the result of the matches""" check, json_message, response_status = check_authorization(request) if check: with connection.cursor() as cursor: cursor.execute(f"select m.Team_1_id, m.Team_2_id, DATE(m.date) as date , m.team_1_win, m.team_2_win, " f"m.odds_team_1, m.odds_team_2, m.team_1_confidence, m.team_2_confidence, m.prediction_svm, " f"m.name as Team1, t.name as Team2, m.mode, " f"CASE m.team_1_confidence >= m.team_2_confidence WHEN TRUE THEN m.name ELSE t.name END AS nnPickedTeam, " f"CASE m.prediction_svm = 0 WHEN TRUE THEN m.name ELSE t.name END AS svmPickedTeam, " f"CASE m.team_1_win = 1 WHEN TRUE THEN m.name ELSE t.name END AS winningTeam " f"FROM (SELECT name, id FROM csgo_api_team) as t INNER JOIN (" f"select m.Team_1_id, m.Team_2_id, m.date, m.team_1_win, m.team_2_win, " f"m.odds_team_1, m.odds_team_2, m.team_1_confidence, m.team_2_confidence, m.prediction_svm, t.name, m.mode " f"FROM (SELECT name, id FROM csgo_api_team) as t INNER JOIN (" f"select m.Team_1_id, m.Team_2_id, m.date, mr.team_1_win, mr.team_2_win, " f"m.odds_team_1, m.odds_team_2, m.team_1_confidence, m.team_2_confidence, m.prediction_svm, m.mode " f"From csgo_api_matchResult as mr " f"INNER JOIN csgo_api_match as m " f"ON mr.Team_1_id = m.Team_1_id AND mr.Team_2_id = m.Team_2_id AND m.date = mr.date" f") as m " f"ON t.id = m.Team_1_id" f") as m " f"ON t.id = m.Team_2_id") columns = [col[0] for col in cursor.description] res = [dict(zip(columns, row)) for row in cursor.fetchall()] return Response({'message': {"message": "fine", "messageType": "success"}, 'matchResult': res}, status=response_status) else: return Response(json_message, status=response_status) class GetMatchResultStats(APIView): def get(self, request): """return json of stats that the model produces""" check, json_message, response_status = check_authorization(request) if check: result_list = [] # multi threading is about 4 times faster than single threaded threads = [None] * 9 results = [None] * 54 threads_all = [None] * 9 results_all = [None] * 18 index_threads = 0 index_results = 0 index_threads_all = 0 index_results_all = 0 for odd in np.arange(1, 1.9, 0.1): odd = round(odd, 2) threads[index_threads] = Thread(target=self.get_query_dict_groups, args=(odd, results, index_results)) threads[index_threads].start() index_threads += 1 index_results += 6 threads_all[index_threads_all] = Thread(target=self.get_query_dict_all, args=(odd, results_all, index_results_all)) threads_all[index_threads_all].start() index_threads_all += 1 index_results_all += 2 for i in range(len(threads)): threads[i].join() for i in range(len(threads_all)): threads_all[i].join() results = results + results_all if None not in results: results = sorted(results, key=lambda k: k["odds"]) return Response({'message': {"message": "fine", "messageType": "success"}, 'stats': results}, status=response_status) else: return Response(json_message, status=response_status) def get_query_dict_groups(self, odd, results, index): with connection.cursor() as cursor: cursor.execute("select COUNT(id) as sampleSize, round(SUM(NN_Money)/COUNT(id),2) as roi_nn, " "round(SUM(SVM_Money)/COUNT(id),2) as roi_svm, mode, " "round(SUM(odds)/COUNT(id),2) as average_odds, " "round(SUM(CASE NN_Money > 0 WHEN TRUE THEN NN_Money END)/COUNT(CASE NN_Money > 0 WHEN TRUE THEN NN_Money END)+1,2) as nn_winning_odds, " "round(SUM(CASE SVM_Money > 0 WHEN TRUE THEN SVM_Money END)/COUNT(CASE SVM_Money > 0 WHEN TRUE THEN SVM_Money END)+1,2) as svm_winning_odds, " "round(CAST(COUNT(CASE NN_Money > 0 WHEN TRUE THEN NN_Money END) as double)/CAST(COUNT(id) as double),2) as nn_accuracy, " "round(CAST(COUNT(CASE SVM_Money > 0 WHEN TRUE THEN SVM_Money END) as double)/CAST(COUNT(id) as double),2) as svm_accuracy " "FROM (" f"select mr.id as id, m.mode as mode, " f"CASE " f"WHEN mr.team_1_win = 1 AND m.team_1_confidence >= m.team_2_confidence THEN m.odds_team_1 - 1 " f"WHEN mr.team_2_win = 1 AND m.team_1_confidence < m.team_2_confidence THEN m.odds_team_2 - 1 " f"ELSE -1 END AS NN_Money," f"CASE " f"WHEN mr.team_1_win = 1 AND m.prediction_svm = 0 THEN m.odds_team_1 - 1 " f"WHEN mr.team_2_win = 1 AND m.prediction_svm = 1 THEN m.odds_team_2 - 1 " f"ELSE -1 END AS SVM_Money, " f"CASE " f"WHEN mr.team_1_win = 1 THEN m.odds_team_1 " f"WHEN mr.team_2_win = 1 THEN m.odds_team_2 " f"ELSE 1 END AS odds " f"From csgo_api_matchResult as mr " f"INNER JOIN csgo_api_match as m " f"ON mr.Team_1_id = m.Team_1_id AND mr.Team_2_id = m.Team_2_id AND m.date = mr.date " f"WHERE m.odds_team_1 >= %s and m.odds_team_2 >= %s) " f"GROUP BY mode", [odd, odd]) columns = [col[0] for col in cursor.description] res = [dict(zip(columns, row)) for row in cursor.fetchall()] for r in res: results[index] = {'accuracy': r["svm_accuracy"], 'roi': r["roi_svm"], 'sampleSize': r["sampleSize"], 'averageOdds': r["average_odds"], 'svm': "SVM", 'mode': r["mode"], 'odds': odd, 'average_winning_odds': r["svm_winning_odds"]} results[index + 1] = {'accuracy': r["nn_accuracy"], 'roi': r["roi_nn"], 'sampleSize': r["sampleSize"], 'averageOdds': r["average_odds"], 'svm': "NN", 'mode': r["mode"], 'odds': odd, 'average_winning_odds': r["nn_winning_odds"]} index += 2 def get_query_dict_all(self, odd, results, index): with connection.cursor() as cursor: cursor.execute("select COUNT(id) as sampleSize, round(SUM(NN_Money)/COUNT(id),2) as roi_nn, " "round(SUM(SVM_Money)/COUNT(id),2) as roi_svm, mode, " "round(SUM(odds)/COUNT(id),2) as average_odds, " "round(SUM(CASE NN_Money > 0 WHEN TRUE THEN NN_Money END)/COUNT(CASE NN_Money > 0 WHEN TRUE THEN NN_Money END)+1,2) as nn_winning_odds, " "round(SUM(CASE SVM_Money > 0 WHEN TRUE THEN SVM_Money END)/COUNT(CASE SVM_Money > 0 WHEN TRUE THEN SVM_Money END)+1,2) as svm_winning_odds, " "round(CAST(COUNT(CASE NN_Money > 0 WHEN TRUE THEN NN_Money END) as double)/CAST(COUNT(id) as double),2) as nn_accuracy, " "round(CAST(COUNT(CASE SVM_Money > 0 WHEN TRUE THEN SVM_Money END) as double)/CAST(COUNT(id) as double),2) as svm_accuracy " "FROM (" f"select mr.id as id, m.mode as mode, " f"CASE " f"WHEN mr.team_1_win = 1 AND m.team_1_confidence >= m.team_2_confidence THEN m.odds_team_1 - 1 " f"WHEN mr.team_2_win = 1 AND m.team_1_confidence < m.team_2_confidence THEN m.odds_team_2 - 1 " f"ELSE -1 END AS NN_Money," f"CASE " f"WHEN mr.team_1_win = 1 AND m.prediction_svm = 0 THEN m.odds_team_1 - 1 " f"WHEN mr.team_2_win = 1 AND m.prediction_svm = 1 THEN m.odds_team_2 - 1 " f"ELSE -1 END AS SVM_Money, " f"CASE " f"WHEN mr.team_1_win = 1 THEN m.odds_team_1 " f"WHEN mr.team_2_win = 1 THEN m.odds_team_2 " f"ELSE 1 END AS odds " f"From csgo_api_matchResult as mr " f"INNER JOIN csgo_api_match as m " f"ON mr.Team_1_id = m.Team_1_id AND mr.Team_2_id = m.Team_2_id AND m.date = mr.date " f"WHERE m.odds_team_1 >= %s and m.odds_team_2 >= %s) " f"", [odd, odd]) columns = [col[0] for col in cursor.description] res = [dict(zip(columns, row)) for row in cursor.fetchall()] for r in res: results[index] = {'accuracy': r["svm_accuracy"], 'roi': r["roi_svm"], 'sampleSize': r["sampleSize"], 'averageOdds': r["average_odds"], 'svm': "SVM", 'mode': "all games", 'odds': odd, 'average_winning_odds': r["svm_winning_odds"]} results[index + 1] = {'accuracy': r["nn_accuracy"], 'roi': r["roi_nn"], 'sampleSize': r["sampleSize"], 'averageOdds': r["average_odds"], 'svm': "NN", 'mode': "all games", 'odds': odd, 'average_winning_odds': r["nn_winning_odds"]} index += 2 class GetTeam(APIView): def get(self, request, id): """return the team given by an id""" check, json_message, response_status = check_authorization(request) if check: message = Message("success", f"Here is the Team") team = Team.objects.filter(id=id) if not team.exists(): message = Message("error", f"No team found") json_rep = json.dumps({'message': message.repr_json()}, cls=ComplexEncoder) return Response(json_rep, status=response_status) team = team.first() team = TeamSerializer(team, context={'request': request}).data json_rep = json.dumps({'message': message.repr_json(), 'team': team}, cls=ComplexEncoder) json_rep = json.loads(json_rep) return Response(json_rep, status=response_status) else: return Response(json_message, status=response_status) class GetTeams(APIView): def get(self, request): """return all teams""" check, json_message, response_status = check_authorization(request) if check: message = Message("success", f"Here are the teams") teams = Team.objects.all().order_by("end_date") team_set = list({team.name: team for team in teams}.values()) team_set.sort(key=lambda x: x.name) teams = TeamsPredictionSerializer(team_set, context={'request': request}, many=True).data json_rep = json.dumps({'message': message.repr_json(), 'teams': teams}, cls=ComplexEncoder) json_rep = json.loads(json_rep) return Response(json_rep, status=response_status) else: return Response(json_message, status=response_status) class CreatePrediction(APIView): def post(self, request): """make a prediction on two given teams""" check, json_message, response_status = check_authorization(request) if check: data = json.loads(request.body or "{}") # check if the teams are correct check_teams, response = self.check_teams(data) if not check_teams: return response # check if the players are correct check_player_team_1, response = self.check_players_in_team(data, "team_1") if not check_player_team_1: return response check_player_team_2, response = self.check_players_in_team(data, "team_1") if not check_player_team_2: return response # check if a single player is correct check_players, response = self.check_players(data) if not check_players: return response # check if the values are correct
self.dummy_logger, verify=False) self.assertEqual(self.processed_prometheus_data_example, actual_output) @mock.patch("src.monitors.node.chainlink.get_prometheus_metrics_data") def test_get_prom_data_does_not_change_last_prom_sourced_used_if_online( self, mock_get_prometheus_metrics_data) -> None: mock_get_prometheus_metrics_data.return_value = \ self.processed_prometheus_data_example old_last_prometheus_source_used = \ self.test_monitor.last_prometheus_source_used self.test_monitor._get_prometheus_data() self.assertEqual(old_last_prometheus_source_used, self.test_monitor.last_prometheus_source_used) @parameterized.expand([ (IncompleteRead, IncompleteRead('test'),), (ChunkedEncodingError, ChunkedEncodingError('test'),), (ProtocolError, ProtocolError('test'),), (InvalidURL, InvalidURL('test'),), (InvalidSchema, InvalidSchema('test'),), (MissingSchema, MissingSchema('test'),), (MetricNotFoundException, MetricNotFoundException('test', 'test'),), (Exception, Exception('test'),), ]) @mock.patch("src.monitors.node.chainlink.get_prometheus_metrics_data") def test_get_prom_data_raises_non_conn_err_if_last_source_used_on_and_errs( self, exception_class, exception_instance, mock_get_prometheus_metrics_data) -> None: mock_get_prometheus_metrics_data.side_effect = exception_instance old_last_prometheus_source_used = \ self.test_monitor.last_prometheus_source_used self.assertRaises(exception_class, self.test_monitor._get_prometheus_data) mock_get_prometheus_metrics_data.assert_called_once_with( old_last_prometheus_source_used, self.prometheus_metrics, self.dummy_logger, verify=False) @parameterized.expand([ (IncompleteRead, IncompleteRead('test'),), (ChunkedEncodingError, ChunkedEncodingError('test'),), (ProtocolError, ProtocolError('test'),), (InvalidURL, InvalidURL('test'),), (InvalidSchema, InvalidSchema('test'),), (MissingSchema, MissingSchema('test'),), (MetricNotFoundException, MetricNotFoundException('test', 'test'),), (Exception, Exception('test'),), ]) @mock.patch("src.monitors.node.chainlink.get_prometheus_metrics_data") def test_get_prom_data_no_change_last_source_used_if_online_and_it_errors( self, exception_class, exception_instance, mock_get_prometheus_metrics_data) -> None: # Here we are assuming that the error is not connection related mock_get_prometheus_metrics_data.side_effect = exception_instance old_last_prometheus_source_used = \ self.test_monitor.last_prometheus_source_used try: self.test_monitor._get_data() except exception_class: pass self.assertEqual(old_last_prometheus_source_used, self.test_monitor.last_prometheus_source_used) @parameterized.expand([ (ReadTimeout('test'),), (ReqConnectionError('test'),), ]) @mock.patch("src.monitors.node.chainlink.get_prometheus_metrics_data") def test_get_prom_data_gets_data_from_online_source_if_last_source_used_off( self, exception_instance, mock_get_prometheus_metrics_data) -> None: # In this case we are setting the final source to be online mock_get_prometheus_metrics_data.side_effect = [ exception_instance, exception_instance, exception_instance, self.processed_prometheus_data_example] old_last_prometheus_source_used = \ self.test_monitor.last_prometheus_source_used actual_output = self.test_monitor._get_prometheus_data() actual_calls = mock_get_prometheus_metrics_data.call_args_list self.assertEqual(4, len(actual_calls)) # In this case there are two calls to # self.test_monitor.node_config._node_prometheus_urls[0] because # initially this url was also the last prometheus source used. expected_calls = [call(old_last_prometheus_source_used, self.prometheus_metrics, self.dummy_logger, verify=False)] for i in range(0, len(self.node_prometheus_urls)): expected_calls.append(call( self.test_monitor.node_config.node_prometheus_urls[i], self.prometheus_metrics, self.dummy_logger, verify=False)) self.assertEqual(expected_calls, actual_calls) self.assertEqual(self.processed_prometheus_data_example, actual_output) @parameterized.expand([ (ReadTimeout('test'),), (ReqConnectionError('test'),), ]) @mock.patch("src.monitors.node.chainlink.get_prometheus_metrics_data") def test_get_prom_data_changes_last_source_if_last_source_off_other_node_on( self, exception_instance, mock_get_prometheus_metrics_data) -> None: # In this case we are setting the final source to be online mock_get_prometheus_metrics_data.side_effect = [ exception_instance, exception_instance, exception_instance, self.processed_prometheus_data_example] self.test_monitor._get_prometheus_data() self.assertEqual(self.test_monitor.node_config.node_prometheus_urls[-1], self.test_monitor.last_prometheus_source_used) @parameterized.expand([ (IncompleteRead, IncompleteRead('test'),), (ChunkedEncodingError, ChunkedEncodingError('test'),), (ProtocolError, ProtocolError('test'),), (InvalidURL, InvalidURL('test'),), (InvalidSchema, InvalidSchema('test'),), (MissingSchema, MissingSchema('test'),), (MetricNotFoundException, MetricNotFoundException('test', 'test'),), (Exception, Exception('test'),), ]) @mock.patch("src.monitors.node.chainlink.get_prometheus_metrics_data") def test_get_prom_data_raises_non_connection_err_if_online_source_errors( self, exception_class, exception_instance, mock_get_prometheus_metrics_data) -> None: # Here we will assume that the last prometheus source used was deemed as # offline as we have already tested the online case in a previous test. # We will also assume that the second source is online but it errors. mock_get_prometheus_metrics_data.side_effect = [ ReqConnectionError('test'), ReqConnectionError('test'), exception_instance] old_last_prometheus_source_used = \ self.test_monitor.last_prometheus_source_used self.assertRaises(exception_class, self.test_monitor._get_prometheus_data) actual_calls = mock_get_prometheus_metrics_data.call_args_list self.assertEqual(3, len(actual_calls)) self.assertEqual([ call(old_last_prometheus_source_used, self.prometheus_metrics, self.dummy_logger, verify=False), call(self.test_monitor.node_config._node_prometheus_urls[0], self.prometheus_metrics, self.dummy_logger, verify=False), call(self.test_monitor.node_config._node_prometheus_urls[1], self.prometheus_metrics, self.dummy_logger, verify=False)], actual_calls) @parameterized.expand([ (IncompleteRead, IncompleteRead('test'),), (ChunkedEncodingError, ChunkedEncodingError('test'),), (ProtocolError, ProtocolError('test'),), (InvalidURL, InvalidURL('test'),), (InvalidSchema, InvalidSchema('test'),), (MissingSchema, MissingSchema('test'),), (MetricNotFoundException, MetricNotFoundException('test', 'test'),), (Exception, Exception('test'),), ]) @mock.patch("src.monitors.node.chainlink.get_prometheus_metrics_data") def test_get_prom_data_changes_last_prom_source_used_if_online_source_errs( self, exception_class, exception_instance, mock_get_prometheus_metrics_data) -> None: # Here we will assume that the last prometheus source used was deemed as # offline as we have already tested when it is online in a previous # test. We will also assume that the second source is online but it # errors. mock_get_prometheus_metrics_data.side_effect = [ ReqConnectionError('test'), ReqConnectionError('test'), exception_instance] try: self.test_monitor._get_prometheus_data() except exception_class: pass self.assertEqual(self.test_monitor.node_config.node_prometheus_urls[1], self.test_monitor.last_prometheus_source_used) @parameterized.expand([ (ReadTimeout('test'),), (ReqConnectionError('test'),), ]) @mock.patch("src.monitors.node.chainlink.get_prometheus_metrics_data") def test_get_prom_data_raises_NodeIsDownException_if_all_prom_sources_down( self, exception_instance, mock_get_prometheus_metrics_data) -> None: mock_get_prometheus_metrics_data.side_effect = [ exception_instance, exception_instance, exception_instance, exception_instance] old_last_prometheus_source_used = \ self.test_monitor.last_prometheus_source_used self.assertRaises(NodeIsDownException, self.test_monitor._get_prometheus_data) actual_calls = mock_get_prometheus_metrics_data.call_args_list self.assertEqual(4, len(actual_calls)) # In this case there are two calls to # self.test_monitor.node_config._node_prometheus_urls[0] because # initially this url was also the last prometheus source used. expected_calls = [call(old_last_prometheus_source_used, self.prometheus_metrics, self.dummy_logger, verify=False)] for i in range(0, len(self.node_prometheus_urls)): expected_calls.append(call( self.test_monitor.node_config.node_prometheus_urls[i], self.prometheus_metrics, self.dummy_logger, verify=False)) self.assertEqual(expected_calls, actual_calls) @parameterized.expand([ (ReadTimeout('test'),), (ReqConnectionError('test'),), ]) @mock.patch("src.monitors.node.chainlink.get_prometheus_metrics_data") def test_get_prom_data_does_not_change_last_prom_source_used_if_all_down( self, exception_instance, mock_get_prometheus_metrics_data) -> None: mock_get_prometheus_metrics_data.side_effect = [ exception_instance, exception_instance, exception_instance, exception_instance] old_last_prometheus_source_used = \ self.test_monitor.last_prometheus_source_used try: self.test_monitor._get_prometheus_data() except NodeIsDownException: pass self.assertEqual(old_last_prometheus_source_used, self.test_monitor.last_prometheus_source_used) @parameterized.expand([ ('self.received_retrieval_info_prometheus_disabled', [], False,), ('self.received_retrieval_info_all_source_types_enabled', ['self.retrieved_prometheus_data_example'], True,), ]) @mock.patch("src.monitors.node.chainlink.get_prometheus_metrics_data") def test_get_data_return_if_no_errors_raised( self, expected_return, retrieved_prometheus_data, monitor_prometheus, mock_get_prometheus_metrics_data) -> None: get_prometheus_metrics_data_return = list(map( eval, retrieved_prometheus_data)) mock_get_prometheus_metrics_data.side_effect = \ get_prometheus_metrics_data_return self.test_monitor._node_config._monitor_prometheus = monitor_prometheus actual_ret = self.test_monitor._get_data() expected_ret = eval(expected_return) self.assertEqual(expected_ret, actual_ret) @parameterized.expand([ ("IncompleteRead('test')", "DataReadingException(self.test_monitor.monitor_name, " "self.test_monitor.last_prometheus_source_used)", 'self.received_retrieval_info_all_source_types_enabled_err', True, 'prometheus'), ("ChunkedEncodingError('test')", "DataReadingException(self.test_monitor.monitor_name, " "self.test_monitor.last_prometheus_source_used)", 'self.received_retrieval_info_all_source_types_enabled_err', True, 'prometheus'), ("ProtocolError('test')", "DataReadingException(self.test_monitor.monitor_name, " "self.test_monitor.last_prometheus_source_used)", 'self.received_retrieval_info_all_source_types_enabled_err', True, 'prometheus'), ("InvalidURL('test')", "InvalidUrlException(self.test_monitor.last_prometheus_source_used)", 'self.received_retrieval_info_all_source_types_enabled_err', True, 'prometheus'), ("InvalidSchema('test')", "InvalidUrlException(self.test_monitor.last_prometheus_source_used)", 'self.received_retrieval_info_all_source_types_enabled_err', True, 'prometheus'), ("MissingSchema('test')", "InvalidUrlException(self.test_monitor.last_prometheus_source_used)", 'self.received_retrieval_info_all_source_types_enabled_err', True, 'prometheus'), ("MetricNotFoundException('test_metric', 'test_endpoint')", "MetricNotFoundException('test_metric', 'test_endpoint')", 'self.received_retrieval_info_all_source_types_enabled_err', True, 'prometheus'), ('NodeIsDownException(self.node_name)', 'NodeIsDownException(self.node_name)', 'self.received_retrieval_info_all_source_types_enabled_err', True, 'prometheus'), ]) @mock.patch("src.monitors.node.chainlink.get_prometheus_metrics_data") def test_get_data_return_if_recognised_error_raised( self, raised_err, returned_err, expected_return, monitor_prometheus, errored_source_type, mock_get_prometheus_metrics_data) -> None: # This test will be expanded when adding more source types to cater for # when monitor_prometheus is False mock_get_prometheus_metrics_data.side_effect = \ eval(raised_err) if errored_source_type == "prometheus" else None self.test_monitor._node_config._monitor_prometheus = monitor_prometheus actual_ret = self.test_monitor._get_data() expected_ret = eval(expected_return) expected_ret[errored_source_type][ 'data_retrieval_exception'] = eval(returned_err) self.assertEqual(expected_ret, actual_ret) @mock.patch("src.monitors.node.chainlink.get_prometheus_metrics_data") def test_get_data_raises_unrecognised_error_if_raised( self, mock_get_prometheus_metrics_data) -> None: mock_get_prometheus_metrics_data.side_effect = self.test_exception self.assertRaises(PANICException, self.test_monitor._get_data) @parameterized.expand([ ("self.test_monitor.last_prometheus_source_used",), ]) @freeze_time("2012-01-01") def test_process_error_returns_expected_data(self, last_source_used) -> None: # We will add more parameters to this test as the source types increase expected_output = { 'error': { 'meta_data': { 'monitor_name': self.test_monitor.monitor_name, 'node_name': self.test_monitor.node_config.node_name, 'last_source_used': eval(last_source_used), 'node_id': self.test_monitor.node_config.node_id, 'node_parent_id': self.test_monitor.node_config.parent_id, 'time': datetime(2012, 1, 1).timestamp() }, 'message': self.test_exception.message, 'code': self.test_exception.code, } } actual_output = self.test_monitor._process_error(self.test_exception, eval(last_source_used)) self.assertEqual(actual_output, expected_output) @parameterized.expand([ ("self.processed_prometheus_data_example", "self.retrieved_prometheus_data_example"), ("self.processed_prometheus_data_example_optionals_none", "self.retrieved_prometheus_data_example_optionals_none"), ]) @freeze_time("2012-01-01") def test_process_retrieved_prometheus_data_returns_expected_data( self, expected_data_output, retrieved_data) -> None: expected_output = { 'result': { 'meta_data': { 'monitor_name': self.test_monitor.monitor_name, 'node_name': self.test_monitor.node_config.node_name, 'last_source_used': self.test_monitor.last_prometheus_source_used, 'node_id': self.test_monitor.node_config.node_id, 'node_parent_id': self.test_monitor.node_config.parent_id, 'time': datetime(2012, 1, 1).timestamp() }, 'data': eval(expected_data_output), } } actual_output = self.test_monitor._process_retrieved_prometheus_data( eval(retrieved_data)) self.assertEqual(expected_output, actual_output) def test_process_retrieved_data_returns_the_correct_dict(self) -> None: def test_fn(x: Dict): return x actual_ret = self.test_monitor._process_retrieved_data( test_fn, self.test_data_dict) expected_ret = test_fn(self.test_data_dict) self.assertEqual(expected_ret, actual_ret) def test_send_data_sends_data_correctly(self) -> None: # This test creates a queue which receives messages with the same # routing key as the ones sent by send_data, and checks that the # data is received self.test_monitor._initialise_rabbitmq() # Delete the queue before to avoid messages in the queue on error. self.test_monitor.rabbitmq.queue_delete(self.test_queue_name) res = self.test_monitor.rabbitmq.queue_declare( queue=self.test_queue_name, durable=True, exclusive=False, auto_delete=False, passive=False ) self.assertEqual(0, res.method.message_count) self.test_monitor.rabbitmq.queue_bind( queue=self.test_queue_name, exchange=RAW_DATA_EXCHANGE, routing_key=CHAINLINK_NODE_RAW_DATA_ROUTING_KEY) self.test_monitor._send_data(self.processed_prometheus_data_example) # By re-declaring the queue again we can get the number of messages # in the queue. res = self.test_monitor.rabbitmq.queue_declare( queue=self.test_queue_name, durable=True, exclusive=False, auto_delete=False, passive=True ) self.assertEqual(1, res.method.message_count) # Check that the message received is actually the processed data _, _, body = self.test_monitor.rabbitmq.basic_get(self.test_queue_name) self.assertEqual(self.processed_prometheus_data_example, json.loads(body)) @freeze_time("2012-01-01") @mock.patch.object(ChainlinkNodeMonitor, "_get_data") def test_monitor_sends_data_and_hb_if_data_retrieve_and_processing_success( self, mock_get_data) -> None: # Here we are assuming that all sources are enabled. expected_output_data = { 'prometheus': { 'result': { 'meta_data': { 'monitor_name': self.test_monitor.monitor_name, 'node_name': self.test_monitor.node_config.node_name, 'last_source_used': self.test_monitor.last_prometheus_source_used, 'node_id': self.test_monitor.node_config.node_id, 'node_parent_id': self.test_monitor.node_config.parent_id, 'time': datetime(2012, 1, 1).timestamp() }, 'data': self.processed_prometheus_data_example, } } } expected_output_hb = { 'component_name': self.test_monitor.monitor_name, 'is_alive': True, 'timestamp': datetime(2012, 1, 1).timestamp() } mock_get_data.return_value = \ self.received_retrieval_info_all_source_types_enabled self.test_monitor._initialise_rabbitmq() # Delete the queue before to avoid messages in the queue on error. self.test_monitor.rabbitmq.queue_delete(self.test_queue_name) res = self.test_monitor.rabbitmq.queue_declare( queue=self.test_queue_name, durable=True, exclusive=False, auto_delete=False, passive=False ) self.assertEqual(0, res.method.message_count) self.test_monitor.rabbitmq.queue_bind( queue=self.test_queue_name, exchange=RAW_DATA_EXCHANGE, routing_key=CHAINLINK_NODE_RAW_DATA_ROUTING_KEY) self.test_monitor.rabbitmq.queue_bind( queue=self.test_queue_name, exchange=HEALTH_CHECK_EXCHANGE, routing_key=HEARTBEAT_OUTPUT_WORKER_ROUTING_KEY) self.test_monitor._monitor() # By re-declaring the queue again we can get the number of messages # in the queue. res = self.test_monitor.rabbitmq.queue_declare( queue=self.test_queue_name, durable=True, exclusive=False, auto_delete=False, passive=True ) # There must be 2 messages in the queue, the heartbeat and the # processed data self.assertEqual(2, res.method.message_count) # Check that the message received is actually the processed data _, _, body = self.test_monitor.rabbitmq.basic_get( self.test_queue_name) self.assertEqual(expected_output_data, json.loads(body)) # Check that the message received is actually the HB _, _, body = self.test_monitor.rabbitmq.basic_get( self.test_queue_name) self.assertEqual(expected_output_hb, json.loads(body)) @parameterized.expand([ (False, ['prometheus'],) ]) @freeze_time("2012-01-01") @mock.patch.object(ChainlinkNodeMonitor, "_get_data") def test_monitor_sends_empty_dict_for_disabled_source( self, monitor_prometheus, disabled_sources, mock_get_data) -> None: # Once more sources are added this test will make more sense. self.test_monitor.node_config._monitor_prometheus = monitor_prometheus expected_output_data = { 'prometheus': { 'result': { 'meta_data': { 'monitor_name': self.test_monitor.monitor_name, 'node_name': self.test_monitor.node_config.node_name, 'last_source_used': self.test_monitor.last_prometheus_source_used, 'node_id': self.test_monitor.node_config.node_id, 'node_parent_id': self.test_monitor.node_config.parent_id, 'time': datetime(2012, 1, 1).timestamp() }, 'data': self.processed_prometheus_data_example, } } } for disabled_source in disabled_sources: expected_output_data[disabled_source] = {} expected_output_hb = { 'component_name': self.test_monitor.monitor_name, 'is_alive': True, 'timestamp': datetime(2012, 1, 1).timestamp() } # We can get all data since that won't effect how _monitor() works mock_get_data.return_value = \ self.received_retrieval_info_all_source_types_enabled self.test_monitor._initialise_rabbitmq() # Delete the queue before to avoid messages in the queue on error. self.test_monitor.rabbitmq.queue_delete(self.test_queue_name) res = self.test_monitor.rabbitmq.queue_declare( queue=self.test_queue_name, durable=True, exclusive=False, auto_delete=False, passive=False ) self.assertEqual(0, res.method.message_count) self.test_monitor.rabbitmq.queue_bind( queue=self.test_queue_name, exchange=RAW_DATA_EXCHANGE, routing_key=CHAINLINK_NODE_RAW_DATA_ROUTING_KEY) self.test_monitor.rabbitmq.queue_bind( queue=self.test_queue_name, exchange=HEALTH_CHECK_EXCHANGE, routing_key=HEARTBEAT_OUTPUT_WORKER_ROUTING_KEY) self.test_monitor._monitor() # By re-declaring the queue again we can get the number of messages # in the queue. res = self.test_monitor.rabbitmq.queue_declare( queue=self.test_queue_name, durable=True, exclusive=False, auto_delete=False, passive=True ) # There must be 2 messages in the queue, the heartbeat and the # processed data self.assertEqual(2, res.method.message_count) # Check that the message received is actually the processed data
buf.write("\2\u0f99\u029e\3\2\2\2\u0f9a\u0f9b\5\u03f1\u01f9\2\u0f9b") buf.write("\u0f9c\5\u03d7\u01ec\2\u0f9c\u0f9d\5\u03ef\u01f8\2\u0f9d") buf.write("\u0f9e\5\u03df\u01f0\2\u0f9e\u02a0\3\2\2\2\u0f9f\u0fa0") buf.write("\5\u03f1\u01f9\2\u0fa0\u0fa1\5\u03df\u01f0\2\u0fa1\u0fa2") buf.write("\5\u03fb\u01fe\2\u0fa2\u0fa3\5\u03fd\u01ff\2\u0fa3\u0fa4") buf.write("\5\u03df\u01f0\2\u0fa4\u0fa5\5\u03dd\u01ef\2\u0fa5\u0fa6") buf.write("\7a\2\2\u0fa6\u0fa7\5\u03fd\u01ff\2\u0fa7\u0fa8\5\u03f9") buf.write("\u01fd\2\u0fa8\u0fa9\5\u03e7\u01f4\2\u0fa9\u0faa\5\u03e3") buf.write("\u01f2\2\u0faa\u0fab\5\u03e3\u01f2\2\u0fab\u0fac\5\u03df") buf.write("\u01f0\2\u0fac\u0fad\5\u03f9\u01fd\2\u0fad\u0fae\5\u03fb") buf.write("\u01fe\2\u0fae\u02a2\3\2\2\2\u0faf\u0fb0\5\u03f1\u01f9") buf.write("\2\u0fb0\u0fb1\5\u03df\u01f0\2\u0fb1\u0fb2\5\u0403\u0202") buf.write("\2\u0fb2\u0fb3\7a\2\2\u0fb3\u0fb4\5\u03d9\u01ed\2\u0fb4") buf.write("\u0fb5\5\u03f9\u01fd\2\u0fb5\u0fb6\5\u03f3\u01fa\2\u0fb6") buf.write("\u0fb7\5\u03eb\u01f6\2\u0fb7\u0fb8\5\u03df\u01f0\2\u0fb8") buf.write("\u0fb9\5\u03f9\u01fd\2\u0fb9\u02a4\3\2\2\2\u0fba\u0fbb") buf.write("\5\u03f1\u01f9\2\u0fbb\u0fbc\5\u03f3\u01fa\2\u0fbc\u0fbd") buf.write("\5\u03db\u01ee\2\u0fbd\u0fbe\5\u03f3\u01fa\2\u0fbe\u0fbf") buf.write("\5\u03ff\u0200\2\u0fbf\u0fc0\5\u03f1\u01f9\2\u0fc0\u0fc1") buf.write("\5\u03fd\u01ff\2\u0fc1\u02a6\3\2\2\2\u0fc2\u0fc3\5\u03f1") buf.write("\u01f9\2\u0fc3\u0fc4\5\u03f3\u01fa\2\u0fc4\u0fc5\5\u03dd") buf.write("\u01ef\2\u0fc5\u0fc6\5\u03df\u01f0\2\u0fc6\u0fc7\5\u03fb") buf.write("\u01fe\2\u0fc7\u02a8\3\2\2\2\u0fc8\u0fc9\5\u03f1\u01f9") buf.write("\2\u0fc9\u0fca\5\u03f3\u01fa\2\u0fca\u0fcb\5\u03df\u01f0") buf.write("\2\u0fcb\u0fcc\5\u0405\u0203\2\u0fcc\u0fcd\5\u03f5\u01fb") buf.write("\2\u0fcd\u0fce\5\u03d7\u01ec\2\u0fce\u0fcf\5\u03f1\u01f9") buf.write("\2\u0fcf\u0fd0\5\u03dd\u01ef\2\u0fd0\u02aa\3\2\2\2\u0fd1") buf.write("\u0fd2\5\u03f1\u01f9\2\u0fd2\u0fd3\5\u03f3\u01fa\2\u0fd3") buf.write("\u0fd4\5\u03f1\u01f9\2\u0fd4\u0fd5\7a\2\2\u0fd5\u0fd6") buf.write("\5\u03fd\u01ff\2\u0fd6\u0fd7\5\u03f9\u01fd\2\u0fd7\u0fd8") buf.write("\5\u03d7\u01ec\2\u0fd8\u0fd9\5\u03f1\u01f9\2\u0fd9\u0fda") buf.write("\5\u03fb\u01fe\2\u0fda\u0fdb\5\u03d7\u01ec\2\u0fdb\u0fdc") buf.write("\5\u03db\u01ee\2\u0fdc\u0fdd\5\u03fd\u01ff\2\u0fdd\u0fde") buf.write("\5\u03df\u01f0\2\u0fde\u0fdf\5\u03dd\u01ef\2\u0fdf\u0fe0") buf.write("\7a\2\2\u0fe0\u0fe1\5\u03d7\u01ec\2\u0fe1\u0fe2\5\u03db") buf.write("\u01ee\2\u0fe2\u0fe3\5\u03db\u01ee\2\u0fe3\u0fe4\5\u03df") buf.write("\u01f0\2\u0fe4\u0fe5\5\u03fb\u01fe\2\u0fe5\u0fe6\5\u03fb") buf.write("\u01fe\2\u0fe6\u02ac\3\2\2\2\u0fe7\u0fe8\5\u03f1\u01f9") buf.write("\2\u0fe8\u0fe9\5\u03f3\u01fa\2\u0fe9\u0fea\5\u03f9\u01fd") buf.write("\2\u0fea\u0feb\5\u03df\u01f0\2\u0feb\u0fec\5\u03db\u01ee") buf.write("\2\u0fec\u0fed\5\u03f3\u01fa\2\u0fed\u0fee\5\u03ef\u01f8") buf.write("\2\u0fee\u0fef\5\u03f5\u01fb\2\u0fef\u0ff0\5\u03ff\u0200") buf.write("\2\u0ff0\u0ff1\5\u03fd\u01ff\2\u0ff1\u0ff2\5\u03df\u01f0") buf.write("\2\u0ff2\u02ae\3\2\2\2\u0ff3\u0ff4\5\u03f1\u01f9\2\u0ff4") buf.write("\u0ff5\5\u03f3\u01fa\2\u0ff5\u0ff6\7a\2\2\u0ff6\u0ff7") buf.write("\5\u0403\u0202\2\u0ff7\u0ff8\5\u03d7\u01ec\2\u0ff8\u0ff9") buf.write("\5\u03e7\u01f4\2\u0ff9\u0ffa\5\u03fd\u01ff\2\u0ffa\u02b0") buf.write("\3\2\2\2\u0ffb\u0ffc\5\u03f1\u01f9\2\u0ffc\u0ffd\5\u03fd") buf.write("\u01ff\2\u0ffd\u0ffe\5\u03e7\u01f4\2\u0ffe\u0fff\5\u03ed") buf.write("\u01f7\2\u0fff\u1000\5\u03df\u01f0\2\u1000\u02b2\3\2\2") buf.write("\2\u1001\u1002\5\u03f1\u01f9\2\u1002\u1003\5\u03ff\u0200") buf.write("\2\u1003\u1004\5\u03ef\u01f8\2\u1004\u1005\5\u03d9\u01ed") buf.write("\2\u1005\u1006\5\u03df\u01f0\2\u1006\u1007\5\u03f9\u01fd") buf.write("\2\u1007\u02b4\3\2\2\2\u1008\u1009\5\u03f1\u01f9\2\u1009") buf.write("\u100a\5\u03ff\u0200\2\u100a\u100b\5\u03ef\u01f8\2\u100b") buf.write("\u100c\5\u03df\u01f0\2\u100c\u100d\5\u03f9\u01fd\2\u100d") buf.write("\u100e\5\u03e7\u01f4\2\u100e\u100f\5\u03db\u01ee\2\u100f") buf.write("\u1010\7a\2\2\u1010\u1011\5\u03f9\u01fd\2\u1011\u1012") buf.write("\5\u03f3\u01fa\2\u1012\u1013\5\u03ff\u0200\2\u1013\u1014") buf.write("\5\u03f1\u01f9\2\u1014\u1015\5\u03dd\u01ef\2\u1015\u1016") buf.write("\5\u03d7\u01ec\2\u1016\u1017\5\u03d9\u01ed\2\u1017\u1018") buf.write("\5\u03f3\u01fa\2\u1018\u1019\5\u03f9\u01fd\2\u1019\u101a") buf.write("\5\u03fd\u01ff\2\u101a\u02b6\3\2\2\2\u101b\u101c\5\u03f3") buf.write("\u01fa\2\u101c\u101d\5\u03e1\u01f1\2\u101d\u101e\5\u03e1") buf.write("\u01f1\2\u101e\u101f\5\u03ed\u01f7\2\u101f\u1020\5\u03e7") buf.write("\u01f4\2\u1020\u1021\5\u03f1\u01f9\2\u1021\u1022\5\u03df") buf.write("\u01f0\2\u1022\u02b8\3\2\2\2\u1023\u1024\5\u03f3\u01fa") buf.write("\2\u1024\u1025\5\u03e1\u01f1\2\u1025\u1026\5\u03e1\u01f1") buf.write("\2\u1026\u1027\5\u03fb\u01fe\2\u1027\u1028\5\u03df\u01f0") buf.write("\2\u1028\u1029\5\u03fd\u01ff\2\u1029\u02ba\3\2\2\2\u102a") buf.write("\u102b\5\u03f3\u01fa\2\u102b\u102c\5\u03f1\u01f9\2\u102c") buf.write("\u102d\5\u03ed\u01f7\2\u102d\u102e\5\u03e7\u01f4\2\u102e") buf.write("\u102f\5\u03f1\u01f9\2\u102f\u1030\5\u03df\u01f0\2\u1030") buf.write("\u02bc\3\2\2\2\u1031\u1032\5\u03f3\u01fa\2\u1032\u1033") buf.write("\5\u03f1\u01f9\2\u1033\u1034\5\u03ed\u01f7\2\u1034\u1035") buf.write("\5\u0407\u0204\2\u1035\u02be\3\2\2\2\u1036\u1037\5\u03f3") buf.write("\u01fa\2\u1037\u1038\5\u03f5\u01fb\2\u1038\u1039\5\u03fd") buf.write("\u01ff\2\u1039\u103a\5\u03e7\u01f4\2\u103a\u103b\5\u03ef") buf.write("\u01f8\2\u103b\u103c\5\u03e7\u01f4\2\u103c\u103d\5\u03fb") buf.write("\u01fe\2\u103d\u103e\5\u03fd\u01ff\2\u103e\u103f\5\u03e7") buf.write("\u01f4\2\u103f\u1040\5\u03db\u01ee\2\u1040\u02c0\3\2\2") buf.write("\2\u1041\u1042\5\u03f3\u01fa\2\u1042\u1043\5\u03f5\u01fb") buf.write("\2\u1043\u1044\5\u03fd\u01ff\2\u1044\u1045\5\u03e7\u01f4") buf.write("\2\u1045\u1046\5\u03ef\u01f8\2\u1046\u1047\5\u03e7\u01f4") buf.write("\2\u1047\u1048\5\u0409\u0205\2\u1048\u1049\5\u03df\u01f0") buf.write("\2\u1049\u02c2\3\2\2\2\u104a\u104b\5\u03f3\u01fa\2\u104b") buf.write("\u104c\5\u03ff\u0200\2\u104c\u104d\5\u03fd\u01ff\2\u104d") buf.write("\u02c4\3\2\2\2\u104e\u104f\5\u03f3\u01fa\2\u104f\u1050") buf.write("\5\u03ff\u0200\2\u1050\u1051\5\u03fd\u01ff\2\u1051\u1052") buf.write("\5\u03f5\u01fb\2\u1052\u1053\5\u03ff\u0200\2\u1053\u1054") buf.write("\5\u03fd\u01ff\2\u1054\u02c6\3\2\2\2\u1055\u1056\5\u03f3") buf.write("\u01fa\2\u1056\u1057\5\u0403\u0202\2\u1057\u1058\5\u03f1") buf.write("\u01f9\2\u1058\u1059\5\u03df\u01f0\2\u1059\u105a\5\u03f9") buf.write("\u01fd\2\u105a\u02c8\3\2\2\2\u105b\u105c\5\u03f5\u01fb") buf.write("\2\u105c\u105d\5\u03d7\u01ec\2\u105d\u105e\5\u03e3\u01f2") buf.write("\2\u105e\u105f\5\u03df\u01f0\2\u105f\u1060\7a\2\2\u1060") buf.write("\u1061\5\u0401\u0201\2\u1061\u1062\5\u03df\u01f0\2\u1062") buf.write("\u1063\5\u03f9\u01fd\2\u1063\u1064\5\u03e7\u01f4\2\u1064") buf.write("\u1065\5\u03e1\u01f1\2\u1065\u1066\5\u0407\u0204\2\u1066") buf.write("\u02ca\3\2\2\2\u1067\u1068\5\u03f5\u01fb\2\u1068\u1069") buf.write("\5\u03d7\u01ec\2\u1069\u106a\5\u03f9\u01fd\2\u106a\u106b") buf.write("\5\u03d7\u01ec\2\u106b\u106c\5\u03ef\u01f8\2\u106c\u106d") buf.write("\5\u03df\u01f0\2\u106d\u106e\5\u03fd\u01ff\2\u106e\u106f") buf.write("\5\u03df\u01f0\2\u106f\u1070\5\u03f9\u01fd\2\u1070\u1071") buf.write("\5\u03e7\u01f4\2\u1071\u1072\5\u0409\u0205\2\u1072\u1073") buf.write("\5\u03d7\u01ec\2\u1073\u1074\5\u03fd\u01ff\2\u1074\u1075") buf.write("\5\u03e7\u01f4\2\u1075\u1076\5\u03f3\u01fa\2\u1076\u1077") buf.write("\5\u03f1\u01f9\2\u1077\u02cc\3\2\2\2\u1078\u1079\5\u03f5") buf.write("\u01fb\2\u1079\u107a\5\u03d7\u01ec\2\u107a\u107b\5\u03f9") buf.write("\u01fd\2\u107b\u107c\5\u03fb\u01fe\2\u107c\u107d\5\u03df") buf.write("\u01f0\2\u107d\u02ce\3\2\2\2\u107e\u107f\5\u03f5\u01fb") buf.write("\2\u107f\u1080\5\u03d7\u01ec\2\u1080\u1081\5\u03f9\u01fd") buf.write("\2\u1081\u1082\5\u03fd\u01ff\2\u1082\u1083\5\u03e7\u01f4") buf.write("\2\u1083\u1084\5\u03fd\u01ff\2\u1084\u1085\5\u03e7\u01f4") buf.write("\2\u1085\u1086\5\u03f3\u01fa\2\u1086\u1087\5\u03f1\u01f9") buf.write("\2\u1087\u02d0\3\2\2\2\u1088\u1089\5\u03f5\u01fb\2\u1089") buf.write("\u108a\5\u03d7\u01ec\2\u108a\u108b\5\u03fd\u01ff\2\u108b") buf.write("\u108c\5\u03e5\u01f3\2\u108c\u02d2\3\2\2\2\u108d\u108e") buf.write("\5\u03f5\u01fb\2\u108e\u108f\5\u03df\u01f0\2\u108f\u1090") buf.write("\5\u03f9\u01fd\2\u1090\u1091\5\u03db\u01ee\2\u1091\u1092") buf.write("\5\u03df\u01f0\2\u1092\u1093\5\u03f1\u01f9\2\u1093\u1094") buf.write("\5\u03fd\u01ff\2\u1094\u1095\5\u03e7\u01f4\2\u1095\u1096") buf.write("\5\u03ed\u01f7\2\u1096\u1097\5\u03df\u01f0\2\u1097\u1098") buf.write("\7a\2\2\u1098\u1099\5\u03db\u01ee\2\u1099\u109a\5\u03f3") buf.write("\u01fa\2\u109a\u109b\5\u03f1\u01f9\2\u109b\u109c\5\u03fd") buf.write("\u01ff\2\u109c\u02d4\3\2\2\2\u109d\u109e\5\u03f5\u01fb") buf.write("\2\u109e\u109f\5\u03f3\u01fa\2\u109f\u10a0\5\u0403\u0202") buf.write("\2\u10a0\u10a1\5\u03df\u01f0\2\u10a1\u10a2\5\u03f9\u01fd") buf.write("\2\u10a2\u02d6\3\2\2\2\u10a3\u10a4\5\u03f5\u01fb\2\u10a4") buf.write("\u10a5\5\u03f9\u01fd\2\u10a5\u10a6\5\u03df\u01f0\2\u10a6") buf.write("\u10a7\5\u03db\u01ee\2\u10a7\u10a8\5\u03df\u01f0\2\u10a8") buf.write("\u10a9\5\u03dd\u01ef\2\u10a9\u10aa\5\u03e7\u01f4\2\u10aa") buf.write("\u10ab\5\u03f1\u01f9\2\u10ab\u10ac\5\u03e3\u01f2\2\u10ac") buf.write("\u02d8\3\2\2\2\u10ad\u10ae\5\u03f5\u01fb\2\u10ae\u10af") buf.write("\5\u03f9\u01fd\2\u10af\u10b0\5\u03e7\u01f4\2\u10b0\u10b1") buf.write("\5\u03f3\u01fa\2\u10b1\u10b2\5\u03f9\u01fd\2\u10b2\u02da") buf.write("\3\2\2\2\u10b3\u10b4\5\u03f5\u01fb\2\u10b4\u10b5\5\u03f9") buf.write("\u01fd\2\u10b5\u10b6\5\u03e7\u01f4\2\u10b6\u10b7\5\u0401") buf.write("\u0201\2\u10b7\u10b8\5\u03e7\u01f4\2\u10b8\u10b9\5\u03ed") buf.write("\u01f7\2\u10b9\u10ba\5\u03df\u01f0\2\u10ba\u10bb\5\u03e3") buf.write("\u01f2\2\u10bb\u10bc\5\u03df\u01f0\2\u10bc\u10bd\5\u03fb") buf.write("\u01fe\2\u10bd\u02dc\3\2\2\2\u10be\u10bf\5\u03f7\u01fc") buf.write("\2\u10bf\u10c0\5\u03ff\u0200\2\u10c0\u10c1\5\u03df\u01f0") buf.write("\2\u10c1\u10c2\5\u03f9\u01fd\2\u10c2\u10c3\5\u0407\u0204") buf.write("\2\u10c3\u02de\3\2\2\2\u10c4\u10c5\5\u03f7\u01fc\2\u10c5") buf.write("\u10c6\5\u03ff\u0200\2\u10c6\u10c7\5\u03f3\u01fa\2\u10c7") buf.write("\u10c8\5\u03fd\u01ff\2\u10c8\u10c9\5\u03df\u01f0\2\u10c9") buf.write("\u10ca\5\u03dd\u01ef\2\u10ca\u10cb\7a\2\2\u10cb\u10cc") buf.write("\5\u03e7\u01f4\2\u10cc\u10cd\5\u03dd\u01ef\2\u10cd\u10ce") buf.write("\5\u03df\u01f0\2\u10ce\u10cf\5\u03f1\u01f9\2\u10cf\u10d0") buf.write("\5\u03fd\u01ff\2\u10d0\u10d1\5\u03e7\u01f4\2\u10d1\u10d2") buf.write("\5\u03e1\u01f1\2\u10d2\u10d3\5\u03e7\u01f4\2\u10d3\u10d4") buf.write("\5\u03df\u01f0\2\u10d4\u10d5\5\u03f9\u01fd\2\u10d5\u02e0") buf.write("\3\2\2\2\u10d6\u10d7\5\u03f9\u01fd\2\u10d7\u10d8\5\u03d7") buf.write("\u01ec\2\u10d8\u10d9\5\u03f1\u01f9\2\u10d9\u10da\5\u03e3") buf.write("\u01f2\2\u10da\u10db\5\u03df\u01f0\2\u10db\u02e2\3\2\2") buf.write("\2\u10dc\u10dd\5\u03f9\u01fd\2\u10dd\u10de\5\u03d7\u01ec") buf.write("\2\u10de\u10df\5\u03f1\u01f9\2\u10df\u10e0\5\u03eb\u01f6") buf.write("\2\u10e0\u02e4\3\2\2\2\u10e1\u10e2\5\u03f9\u01fd\2\u10e2") buf.write("\u10e3\5\u03df\u01f0\2\u10e3\u10e4\5\u03d7\u01ec\2\u10e4") buf.write("\u10e5\5\u03dd\u01ef\2\u10e5\u10e6\5\u03f3\u01fa\2\u10e6") buf.write("\u10e7\5\u03f1\u01f9\2\u10e7\u10e8\5\u03ed\u01f7\2\u10e8") buf.write("\u10e9\5\u0407\u0204\2\u10e9\u02e6\3\2\2\2\u10ea\u10eb") buf.write("\5\u03f9\u01fd\2\u10eb\u10ec\5\u03df\u01f0\2\u10ec\u10ed") buf.write("\5\u03d7\u01ec\2\u10ed\u10ee\5\u03dd\u01ef\2\u10ee\u10ef") buf.write("\7a\2\2\u10ef\u10f0\5\u03db\u01ee\2\u10f0\u10f1\5\u03f3") buf.write("\u01fa\2\u10f1\u10f2\5\u03ef\u01f8\2\u10f2\u10f3\5\u03ef") buf.write("\u01f8\2\u10f3\u10f4\5\u03e7\u01f4\2\u10f4\u10f5\5\u03fd") buf.write("\u01ff\2\u10f5\u10f6\5\u03fd\u01ff\2\u10f6\u10f7\5\u03df") buf.write("\u01f0\2\u10f7\u10f8\5\u03dd\u01ef\2\u10f8\u10f9\7a\2") buf.write("\2\u10f9\u10fa\5\u03fb\u01fe\2\u10fa\u10fb\5\u03f1\u01f9") buf.write("\2\u10fb\u10fc\5\u03d7\u01ec\2\u10fc\u10fd\5\u03f5\u01fb") buf.write("\2\u10fd\u10fe\5\u03fb\u01fe\2\u10fe\u10ff\5\u03e5\u01f3") buf.write("\2\u10ff\u1100\5\u03f3\u01fa\2\u1100\u1101\5\u03fd\u01ff") buf.write("\2\u1101\u02e8\3\2\2\2\u1102\u1103\5\u03f9\u01fd\2\u1103") buf.write("\u1104\5\u03df\u01f0\2\u1104\u1105\5\u03d7\u01ec\2\u1105") buf.write("\u1106\5\u03dd\u01ef\2\u1106\u1107\7a\2\2\u1107\u1108") buf.write("\5\u03f3\u01fa\2\u1108\u1109\5\u03f1\u01f9\2\u1109\u110a") buf.write("\5\u03ed\u01f7\2\u110a\u110b\5\u0407\u0204\2\u110b\u02ea") buf.write("\3\2\2\2\u110c\u110d\5\u03f9\u01fd\2\u110d\u110e\5\u03df") buf.write("\u01f0\2\u110e\u110f\5\u03d7\u01ec\2\u110f\u1110\5\u03dd") buf.write("\u01ef\2\u1110\u1111\7a\2\2\u1111\u1112\5\u0403\u0202") buf.write("\2\u1112\u1113\5\u03f9\u01fd\2\u1113\u1114\5\u03e7\u01f4") buf.write("\2\u1114\u1115\5\u03fd\u01ff\2\u1115\u1116\5\u03df\u01f0") buf.write("\2\u1116\u02ec\3\2\2\2\u1117\u1118\5\u03f9\u01fd\2\u1118") buf.write("\u1119\5\u03df\u01f0\2\u1119\u111a\5\u03db\u01ee\2\u111a") buf.write("\u111b\5\u03f3\u01fa\2\u111b\u111c\5\u03ef\u01f8\2\u111c") buf.write("\u111d\5\u03f5\u01fb\2\u111d\u111e\5\u03e7\u01f4\2\u111e") buf.write("\u111f\5\u03ed\u01f7\2\u111f\u1120\5\u03df\u01f0\2\u1120") buf.write("\u02ee\3\2\2\2\u1121\u1122\5\u03f9\u01fd\2\u1122\u1123") buf.write("\5\u03df\u01f0\2\u1123\u1124\5\u03db\u01ee\2\u1124\u1125") buf.write("\5\u03f3\u01fa\2\u1125\u1126\5\u0401\u0201\2\u1126\u1127") buf.write("\5\u03df\u01f0\2\u1127\u1128\5\u03f9\u01fd\2\u1128\u1129") buf.write("\5\u0407\u0204\2\u1129\u02f0\3\2\2\2\u112a\u112b\5\u03f9") buf.write("\u01fd\2\u112b\u112c\5\u03df\u01f0\2\u112c\u112d\5\u03db") buf.write("\u01ee\2\u112d\u112e\5\u03ff\u0200\2\u112e\u112f\5\u03f9") buf.write("\u01fd\2\u112f\u1130\5\u03fb\u01fe\2\u1130\u1131\5\u03e7") buf.write("\u01f4\2\u1131\u1132\5\u0401\u0201\2\u1132\u1133\5\u03df") buf.write("\u01f0\2\u1133\u1134\7a\2\2\u1134\u1135\5\u03fd\u01ff") buf.write("\2\u1135\u1136\5\u03f9\u01fd\2\u1136\u1137\5\u03e7\u01f4") buf.write("\2\u1137\u1138\5\u03e3\u01f2\2\u1138\u1139\5\u03e3\u01f2") buf.write("\2\u1139\u113a\5\u03df\u01f0\2\u113a\u113b\5\u03f9\u01fd") buf.write("\2\u113b\u113c\5\u03fb\u01fe\2\u113c\u02f2\3\2\2\2\u113d") buf.write("\u113e\5\u03f9\u01fd\2\u113e\u113f\5\u03df\u01f0\2\u113f") buf.write("\u1140\5\u03ed\u01f7\2\u1140\u1141\5\u03d7\u01ec\2\u1141") buf.write("\u1142\5\u03fd\u01ff\2\u1142\u1143\5\u03e7\u01f4\2\u1143") buf.write("\u1144\5\u0401\u0201\2\u1144\u1145\5\u03df\u01f0\2\u1145") buf.write("\u02f4\3\2\2\2\u1146\u1147\5\u03f9\u01fd\2\u1147\u1148") buf.write("\5\u03df\u01f0\2\u1148\u1149\5\u03ef\u01f8\2\u1149\u114a") buf.write("\5\u03f3\u01fa\2\u114a\u114b\5\u03fd\u01ff\2\u114b\u114c") buf.write("\5\u03df\u01f0\2\u114c\u02f6\3\2\2\2\u114d\u114e\5\u03f9") buf.write("\u01fd\2\u114e\u114f\5\u03df\u01f0\2\u114f\u1150\5\u03f5") buf.write("\u01fb\2\u1150\u1151\5\u03df\u01f0\2\u1151\u1152\5\u03d7") buf.write("\u01ec\2\u1152\u1153\5\u03fd\u01ff\2\u1153\u1154\5\u03d7") buf.write("\u01ec\2\u1154\u1155\5\u03d9\u01ed\2\u1155\u1156\5\u03ed") buf.write("\u01f7\2\u1156\u1157\5\u03df\u01f0\2\u1157\u02f8\3\2\2") buf.write("\2\u1158\u1159\5\u03f9\u01fd\2\u1159\u115a\5\u03df\u01f0") buf.write("\2\u115a\u115b\5\u03fb\u01fe\2\u115b\u115c\5\u03fd\u01ff") buf.write("\2\u115c\u115d\5\u03f9\u01fd\2\u115d\u115e\5\u03e7\u01f4") buf.write("\2\u115e\u115f\5\u03db\u01ee\2\u115f\u1160\5\u03fd\u01ff") buf.write("\2\u1160\u1161\5\u03df\u01f0\2\u1161\u1162\5\u03dd\u01ef") buf.write("\2\u1162\u1163\7a\2\2\u1163\u1164\5\u03ff\u0200\2\u1164") buf.write("\u1165\5\u03fb\u01fe\2\u1165\u1166\5\u03df\u01f0\2\u1166") buf.write("\u1167\5\u03f9\u01fd\2\u1167\u02fa\3\2\2\2\u1168\u1169") buf.write("\5\u03f9\u01fd\2\u1169\u116a\5\u03f3\u01fa\2\u116a\u116b") buf.write("\5\u03d9\u01ed\2\u116b\u116c\5\u03ff\u0200\2\u116c\u116d") buf.write("\5\u03fb\u01fe\2\u116d\u116e\5\u03fd\u01ff\2\u116e\u02fc") buf.write("\3\2\2\2\u116f\u1170\5\u03f9\u01fd\2\u1170\u1171\5\u03f3") buf.write("\u01fa\2\u1171\u1172\5\u03ed\u01f7\2\u1172\u1173\5\u03ed") buf.write("\u01f7\2\u1173\u1174\5\u03ff\u0200\2\u1174\u1175\5\u03f5") buf.write("\u01fb\2\u1175\u02fe\3\2\2\2\u1176\u1177\5\u03f9\u01fd") buf.write("\2\u1177\u1178\5\u03f3\u01fa\2\u1178\u1179\5\u03f3\u01fa") buf.write("\2\u1179\u117a\5\u03fd\u01ff\2\u117a\u0300\3\2\2\2\u117b") buf.write("\u117c\5\u03f9\u01fd\2\u117c\u117d\5\u03f3\u01fa\2\u117d") buf.write("\u117e\5\u03ff\u0200\2\u117e\u117f\5\u03f1\u01f9\2\u117f") buf.write("\u1180\5\u03dd\u01ef\2\u1180\u0302\3\2\2\2\u1181\u1182") buf.write("\5\u03f9\u01fd\2\u1182\u1183\5\u03f3\u01fa\2\u1183\u1184") buf.write("\5\u0403\u0202\2\u1184\u0304\3\2\2\2\u1185\u1186\5\u03f9") buf.write("\u01fd\2\u1186\u1187\5\u03f3\u01fa\2\u1187\u1188\5\u0403") buf.write("\u0202\2\u1188\u1189\5\u03e3\u01f2\2\u1189\u118a\5\u03ff") buf.write("\u0200\2\u118a\u118b\5\u03e7\u01f4\2\u118b\u118c\5\u03dd") buf.write("\u01ef\2\u118c\u0306\3\2\2\2\u118d\u118e\5\u03f9\u01fd") buf.write("\2\u118e\u118f\5\u03f3\u01fa\2\u118f\u1190\5\u0403\u0202") buf.write("\2\u1190\u1191\5\u03fb\u01fe\2\u1191\u0308\3\2\2\2\u1192") buf.write("\u1193\5\u03f9\u01fd\2\u1193\u1194\5\u03f3\u01fa\2\u1194") buf.write("\u1195\5\u0403\u0202\2\u1195\u1196\7a\2\2\u1196\u1197") buf.write("\5\u03f1\u01f9\2\u1197\u1198\5\u03ff\u0200\2\u1198\u1199") buf.write("\5\u03ef\u01f8\2\u1199\u119a\5\u03d9\u01ed\2\u119a\u119b") buf.write("\5\u03df\u01f0\2\u119b\u119c\5\u03f9\u01fd\2\u119c\u030a") buf.write("\3\2\2\2\u119d\u119e\5\u03fb\u01fe\2\u119e\u119f\5\u03d7") buf.write("\u01ec\2\u119f\u11a0\5\u03ef\u01f8\2\u11a0\u11a1\5\u03f5") buf.write("\u01fb\2\u11a1\u11a2\5\u03ed\u01f7\2\u11a2\u11a3\5\u03df") buf.write("\u01f0\2\u11a3\u030c\3\2\2\2\u11a4\u11a5\5\u03fb\u01fe") buf.write("\2\u11a5\u11a6\5\u03db\u01ee\2\u11a6\u11a7\5\u03e5\u01f3") buf.write("\2\u11a7\u11a8\5\u03df\u01f0\2\u11a8\u11a9\5\u03ef\u01f8") buf.write("\2\u11a9\u11aa\5\u03d7\u01ec\2\u11aa\u11ab\5\u03d9\u01ed") buf.write("\2\u11ab\u11ac\5\u03e7\u01f4\2\u11ac\u11ad\5\u03f1\u01f9") buf.write("\2\u11ad\u11ae\5\u03dd\u01ef\2\u11ae\u11af\5\u03e7\u01f4") buf.write("\2\u11af\u11b0\5\u03f1\u01f9\2\u11b0\u11b1\5\u03e3\u01f2") buf.write("\2\u11b1\u030e\3\2\2\2\u11b2\u11b3\5\u03fb\u01fe\2\u11b3") buf.write("\u11b4\5\u03db\u01ee\2\u11b4\u11b5\5\u03f9\u01fd\2\u11b5") buf.write("\u11b6\5\u03f3\u01fa\2\u11b6\u11b7\5\u03ed\u01f7\2\u11b7") buf.write("\u11b8\5\u03ed\u01f7\2\u11b8\u0310\3\2\2\2\u11b9\u11ba") buf.write("\5\u03fb\u01fe\2\u11ba\u11bb\5\u03db\u01ee\2\u11bb\u11bc") buf.write("\5\u03f9\u01fd\2\u11bc\u11bd\5\u03f3\u01fa\2\u11bd\u11be") buf.write("\5\u03ed\u01f7\2\u11be\u11bf\5\u03ed\u01f7\2\u11bf\u11c0") buf.write("\7a\2\2\u11c0\u11c1\5\u03ed\u01f7\2\u11c1\u11c2\5\u03f3") buf.write("\u01fa\2\u11c2\u11c3\5\u03db\u01ee\2\u11c3\u11c4\5\u03eb") buf.write("\u01f6\2\u11c4\u11c5\5\u03fb\u01fe\2\u11c5\u0312\3\2\2") buf.write("\2\u11c6\u11c7\5\u03fb\u01fe\2\u11c7\u11c8\5\u03df\u01f0") buf.write("\2\u11c8\u11c9\5\u03db\u01ee\2\u11c9\u11ca\5\u03f3\u01fa") buf.write("\2\u11ca\u11cb\5\u03f1\u01f9\2\u11cb\u11cc\5\u03dd\u01ef") buf.write("\2\u11cc\u11cd\5\u03fb\u01fe\2\u11cd\u0314\3\2\2\2\u11ce") buf.write("\u11cf\5\u03fb\u01fe\2\u11cf\u11d0\5\u03df\u01f0\2\u11d0") buf.write("\u11d1\5\u03ed\u01f7\2\u11d1\u11d2\5\u03e1\u01f1\2\u11d2") buf.write("\u0316\3\2\2\2\u11d3\u11d4\5\u03fb\u01fe\2\u11d4\u11d5") buf.write("\5\u03df\u01f0\2\u11d5\u11d6\5\u03f9\u01fd\2\u11d6\u11d7") buf.write("\5\u03e7\u01f4\2\u11d7\u11d8\5\u03d7\u01ec\2\u11d8\u11d9") buf.write("\5\u03ed\u01f7\2\u11d9\u11da\5\u03e7\u01f4\2\u11da\u11db") buf.write("\5\u0409\u0205\2\u11db\u11dc\5\u03d7\u01ec\2\u11dc\u11dd") buf.write("\5\u03d9\u01ed\2\u11dd\u11de\5\u03ed\u01f7\2\u11de\u11df") buf.write("\5\u03df\u01f0\2\u11df\u0318\3\2\2\2\u11e0\u11e1\5\u03fb") buf.write("\u01fe\2\u11e1\u11e2\5\u03df\u01f0\2\u11e2\u11e3\5\u03fd") buf.write("\u01ff\2\u11e3\u11e4\5\u03fb\u01fe\2\u11e4\u031a\3\2\2") buf.write("\2\u11e5\u11e6\5\u03fb\u01fe\2\u11e6\u11e7\5\u03e5\u01f3") buf.write("\2\u11e7\u11e8\5\u03f3\u01fa\2\u11e8\u11e9\5\u0403\u0202") buf.write("\2\u11e9\u11ea\5\u03f5\u01fb\2\u11ea\u11eb\5\u03ed\u01f7") buf.write("\2\u11eb\u11ec\5\u03d7\u01ec\2\u11ec\u11ed\5\u03f1\u01f9") buf.write("\2\u11ed\u031c\3\2\2\2\u11ee\u11ef\5\u03fb\u01fe\2\u11ef") buf.write("\u11f0\5\u03e7\u01f4\2\u11f0\u11f1\5\u03ef\u01f8\2\u11f1") buf.write("\u11f2\5\u03f5\u01fb\2\u11f2\u11f3\5\u03ed\u01f7\2\u11f3") buf.write("\u11f4\5\u03df\u01f0\2\u11f4\u031e\3\2\2\2\u11f5\u11f6") buf.write("\5\u03fb\u01fe\2\u11f6\u11f7\5\u03e7\u01f4\2\u11f7\u11f8") buf.write("\5\u03f1\u01f9\2\u11f8\u0320\3\2\2\2\u11f9\u11fa\5\u03fb") buf.write("\u01fe\2\u11fa\u11fb\5\u03e7\u01f4\2\u11fb\u11fc\5\u03f1") buf.write("\u01f9\2\u11fc\u11fd\5\u03e3\u01f2\2\u11fd\u11fe\5\u03ed") buf.write("\u01f7\2\u11fe\u11ff\5\u03df\u01f0\2\u11ff\u1200\7a\2") buf.write("\2\u1200\u1201\5\u03ff\u0200\2\u1201\u1202\5\u03fb\u01fe") buf.write("\2\u1202\u1203\5\u03df\u01f0\2\u1203\u1204\5\u03f9\u01fd") buf.write("\2\u1204\u0322\3\2\2\2\u1205\u1206\5\u03fb\u01fe\2\u1206") buf.write("\u1207\5\u03e7\u01f4\2\u1207\u1208\5\u0409\u0205\2\u1208") buf.write("\u1209\5\u03df\u01f0\2\u1209\u0324\3\2\2\2\u120a\u120b") buf.write("\5\u03fb\u01fe\2\u120b\u120c\5\u03ef\u01f8\2\u120c\u120d") buf.write("\5\u03d7\u01ec\2\u120d\u120e\5\u03ed\u01f7\2\u120e\u120f") buf.write("\5\u03ed\u01f7\2\u120f\u1210\5\u03e7\u01f4\2\u1210\u1211") buf.write("\5\u03f1\u01f9\2\u1211\u1212\5\u03fd\u01ff\2\u1212\u0326") buf.write("\3\2\2\2\u1213\u1214\5\u03fb\u01fe\2\u1214\u1215\5\u03f1") buf.write("\u01f9\2\u1215\u1216\5\u03d7\u01ec\2\u1216\u1217\5\u03f5") buf.write("\u01fb\2\u1217\u1218\5\u03fb\u01fe\2\u1218\u1219\5\u03e5") buf.write("\u01f3\2\u1219\u121a\5\u03f3\u01fa\2\u121a\u121b\5\u03fd") buf.write("\u01ff\2\u121b\u0328\3\2\2\2\u121c\u121d\5\u03fb\u01fe") buf.write("\2\u121d\u121e\5\u03f5\u01fb\2\u121e\u121f\5\u03d7\u01ec") buf.write("\2\u121f\u1220\5\u03fd\u01ff\2\u1220\u1221\5\u03e7\u01f4") buf.write("\2\u1221\u1222\5\u03d7\u01ec\2\u1222\u1223\5\u03ed\u01f7") buf.write("\2\u1223\u1224\7a\2\2\u1224\u1225\5\u0403\u0202\2\u1225") buf.write("\u1226\5\u03e7\u01f4\2\u1226\u1227\5\u03f1\u01f9\2\u1227") buf.write("\u1228\5\u03dd\u01ef\2\u1228\u1229\5\u03f3\u01fa\2\u1229") buf.write("\u122a\5\u0403\u0202\2\u122a\u122b\7a\2\2\u122b\u122c") buf.write("\5\u03ef\u01f8\2\u122c\u122d\5\u03d7\u01ec\2\u122d\u122e") buf.write("\5\u0405\u0203\2\u122e\u122f\7a\2\2\u122f\u1230\5\u03db") buf.write("\u01ee\2\u1230\u1231\5\u03df\u01f0\2\u1231\u1232\5\u03ed") buf.write("\u01f7\2\u1232\u1233\5\u03ed\u01f7\2\u1233\u1234\5\u03fb") buf.write("\u01fe\2\u1234\u032a\3\2\2\2\u1235\u1236\5\u03fb\u01fe") buf.write("\2\u1236\u1237\5\u03fd\u01ff\2\u1237\u1238\5\u03d7\u01ec") buf.write("\2\u1238\u1239\5\u03fd\u01ff\2\u1239\u123a\5\u03e7\u01f4") buf.write("\2\u123a\u123b\5\u03db\u01ee\2\u123b\u032c\3\2\2\2\u123c") buf.write("\u123d\5\u03fb\u01fe\2\u123d\u123e\5\u03fd\u01ff\2\u123e") buf.write("\u123f\5\u03d7\u01ec\2\u123f\u1240\5\u03fd\u01ff\2\u1240") buf.write("\u1241\5\u03fb\u01fe\2\u1241\u1242\7a\2\2\u1242\u1243") buf.write("\5\u03fb\u01fe\2\u1243\u1244\5\u03fd\u01ff\2\u1244\u1245") buf.write("\5\u03f9\u01fd\2\u1245\u1246\5\u03df\u01f0\2\u1246\u1247") buf.write("\5\u03d7\u01ec\2\u1247\u1248\5\u03ef\u01f8\2\u1248\u032e") buf.write("\3\2\2\2\u1249\u124a\5\u03fb\u01fe\2\u124a\u124b\5\u03fd") buf.write("\u01ff\2\u124b\u124c\5\u03dd\u01ef\2\u124c\u124d\5\u03df") buf.write("\u01f0\2\u124d\u124e\5\u0401\u0201\2\u124e\u0330\3\2\2") buf.write("\2\u124f\u1250\5\u03fb\u01fe\2\u1250\u1251\5\u03fd\u01ff") buf.write("\2\u1251\u1252\5\u03dd\u01ef\2\u1252\u1253\5\u03df\u01f0") buf.write("\2\u1253\u1254\5\u0401\u0201\2\u1254\u1255\5\u03f5\u01fb") buf.write("\2\u1255\u0332\3\2\2\2\u1256\u1257\5\u03fb\u01fe\2\u1257") buf.write("\u1258\5\u03fd\u01ff\2\u1258\u1259\5\u03f9\u01fd\2\u1259") buf.write("\u125a\5\u03e7\u01f4\2\u125a\u125b\5\u03f1\u01f9\2\u125b") buf.write("\u125c\5\u03e3\u01f2\2\u125c\u125d\7a\2\2\u125d\u125e") buf.write("\5\u03d7\u01ec\2\u125e\u125f\5\u03e3\u01f2\2\u125f\u1260") buf.write("\5\u03e3\u01f2\2\u1260\u0334\3\2\2\2\u1261\u1262\5\u03fb") buf.write("\u01fe\2\u1262\u1263\5\u03fd\u01ff\2\u1263\u1264\5\u03f9") buf.write("\u01fd\2\u1264\u1265\5\u03e7\u01f4\2\u1265\u1266\5\u03f1") buf.write("\u01f9\2\u1266\u1267\5\u03e3\u01f2\2\u1267\u1268\7a\2") buf.write("\2\u1268\u1269\5\u03fb\u01fe\2\u1269\u126a\5\u03f5\u01fb") buf.write("\2\u126a\u126b\5\u03ed\u01f7\2\u126b\u126c\5\u03e7\u01f4") buf.write("\2\u126c\u126d\5\u03fd\u01ff\2\u126d\u0336\3\2\2\2\u126e") buf.write("\u126f\5\u03fb\u01fe\2\u126f\u1270\5\u03ff\u0200\2\u1270") buf.write("\u1271\5\u03ef\u01f8\2\u1271\u0338\3\2\2\2\u1272\u1273") buf.write("\5\u03fb\u01fe\2\u1273\u1274\5\u03f7\u01fc\2\u1274\u1275") buf.write("\5\u03f9\u01fd\2\u1275\u1276\5\u03fd\u01ff\2\u1276\u033a") buf.write("\3\2\2\2\u1277\u1278\5\u03fb\u01fe\2\u1278\u1279\5\u03f7") buf.write("\u01fc\2\u1279\u127a\5\u03ff\u0200\2\u127a\u127b\5\u03d7") buf.write("\u01ec\2\u127b\u127c\5\u03f9\u01fd\2\u127c\u127d\5\u03df") buf.write("\u01f0\2\u127d\u033c\3\2\2\2\u127e\u127f\5\u03fd\u01ff") buf.write("\2\u127f\u1280\5\u03d7\u01ec\2\u1280\u1281\5\u03eb\u01f6") buf.write("\2\u1281\u1282\5\u03df\u01f0\2\u1282\u033e\3\2\2\2\u1283") buf.write("\u1284\5\u03fd\u01ff\2\u1284\u1285\5\u03d7\u01ec\2\u1285") buf.write("\u1286\5\u03f1\u01f9\2\u1286\u0340\3\2\2\2\u1287\u1288") buf.write("\5\u03fd\u01ff\2\u1288\u1289\5\u03d7\u01ec\2\u1289\u128a") buf.write("\5\u03f9\u01fd\2\u128a\u128b\5\u03e3\u01f2\2\u128b\u128c") buf.write("\5\u03df\u01f0\2\u128c\u128d\5\u03fd\u01ff\2\u128d\u128e") buf.write("\7a\2\2\u128e\u128f\5\u03f9\u01fd\2\u128f\u1290\5\u03df") buf.write("\u01f0\2\u1290\u1291\5\u03db\u01ee\2\u1291\u1292\5\u03f3") buf.write("\u01fa\2\u1292\u1293\5\u0401\u0201\2\u1293\u1294\5\u03df") buf.write("\u01f0\2\u1294\u1295\5\u03f9\u01fd\2\u1295\u1296\5\u0407") buf.write("\u0204\2\u1296\u1297\7a\2\2\u1297\u1298\5\u03fd\u01ff") buf.write("\2\u1298\u1299\5\u03e7\u01f4\2\u1299\u129a\5\u03ef\u01f8") buf.write("\2\u129a\u129b\5\u03df\u01f0\2\u129b\u0342\3\2\2\2\u129c") buf.write("\u129d\5\u03fd\u01ff\2\u129d\u129e\5\u03d9\u01ed\2\u129e") buf.write("\u0344\3\2\2\2\u129f\u12a0\5\u03fd\u01ff\2\u12a0\u12a1") buf.write("\5\u03df\u01f0\2\u12a1\u12a2\5\u0405\u0203\2\u12a2\u12a3") buf.write("\5\u03fd\u01ff\2\u12a3\u12a4\5\u03e7\u01f4\2\u12a4\u12a5") buf.write("\5\u03ef\u01f8\2\u12a5\u12a6\5\u03d7\u01ec\2\u12a6\u12a7") buf.write("\5\u03e3\u01f2\2\u12a7\u12a8\5\u03df\u01f0\2\u12a8\u12a9") buf.write("\7a\2\2\u12a9\u12aa\5\u03f3\u01fa\2\u12aa\u12ab\5\u03f1") buf.write("\u01f9\2\u12ab\u0346\3\2\2\2\u12ac\u12ad\5\u03fd\u01ff") buf.write("\2\u12ad\u12ae\5\u03e5\u01f3\2\u12ae\u12af\5\u03f9\u01fd") buf.write("\2\u12af\u12b0\5\u03f3\u01fa\2\u12b0\u12b1\5\u0403\u0202") buf.write("\2\u12b1\u0348\3\2\2\2\u12b2\u12b3\5\u03fd\u01ff\2\u12b3") buf.write("\u12b4\5\u03e7\u01f4\2\u12b4\u12b5\5\u03df\u01f0\2\u12b5") buf.write("\u12b6\5\u03fb\u01fe\2\u12b6\u034a\3\2\2\2\u12b7\u12b8") buf.write("\5\u03fd\u01ff\2\u12b8\u12b9\5\u03e7\u01f4\2\u12b9\u12ba") buf.write("\5\u03ef\u01f8\2\u12ba\u12bb\5\u03df\u01f0\2\u12bb\u034c") buf.write("\3\2\2\2\u12bc\u12bd\5\u03fd\u01ff\2\u12bd\u12be\5\u03e7") buf.write("\u01f4\2\u12be\u12bf\5\u03f1\u01f9\2\u12bf\u12c0\5\u0407") buf.write("\u0204\2\u12c0\u12c1\5\u03e7\u01f4\2\u12c1\u12c2\5\u03f1") buf.write("\u01f9\2\u12c2\u12c3\5\u03fd\u01ff\2\u12c3\u034e\3\2\2") buf.write("\2\u12c4\u12c5\5\u03fd\u01ff\2\u12c5\u12c6\5\u03f3\u01fa") buf.write("\2\u12c6\u12c7\5\u03f9\u01fd\2\u12c7\u12c8\5\u03f1\u01f9") buf.write("\2\u12c8\u12c9\7a\2\2\u12c9\u12ca\5\u03f5\u01fb\2\u12ca") buf.write("\u12cb\5\u03d7\u01ec\2\u12cb\u12cc\5\u03e3\u01f2\2\u12cc") buf.write("\u12cd\5\u03df\u01f0\2\u12cd\u12ce\7a\2\2\u12ce\u12cf") buf.write("\5\u03dd\u01ef\2\u12cf\u12d0\5\u03df\u01f0\2\u12d0\u12d1") buf.write("\5\u03fd\u01ff\2\u12d1\u12d2\5\u03df\u01f0\2\u12d2\u12d3") buf.write("\5\u03db\u01ee\2\u12d3\u12d4\5\u03fd\u01ff\2\u12d4\u12d5") buf.write("\5\u03e7\u01f4\2\u12d5\u12d6\5\u03f3\u01fa\2\u12d6\u12d7") buf.write("\5\u03f1\u01f9\2\u12d7\u0350\3\2\2\2\u12d8\u12d9\5\u03fd") buf.write("\u01ff\2\u12d9\u12da\5\u03f9\u01fd\2\u12da\u12db\5\u03d7") buf.write("\u01ec\2\u12db\u12dc\5\u03f1\u01f9\2\u12dc\u12dd\5\u03fb") buf.write("\u01fe\2\u12dd\u12de\5\u03e1\u01f1\2\u12de\u12df\5\u03f3") buf.write("\u01fa\2\u12df\u12e0\5\u03f9\u01fd\2\u12e0\u12e1\5\u03ef") buf.write("\u01f8\2\u12e1\u12e2\7a\2\2\u12e2\u12e3\5\u03f1\u01f9") buf.write("\2\u12e3\u12e4\5\u03f3\u01fa\2\u12e4\u12e5\5\u03e7\u01f4") buf.write("\2\u12e5\u12e6\5\u03fb\u01fe\2\u12e6\u12e7\5\u03df\u01f0") buf.write("\2\u12e7\u12e8\7a\2\2\u12e8\u12e9\5\u0403\u0202\2\u12e9") buf.write("\u12ea\5\u03f3\u01fa\2\u12ea\u12eb\5\u03f9\u01fd\2\u12eb") buf.write("\u12ec\5\u03dd\u01ef\2\u12ec\u12ed\5\u03fb\u01fe\2\u12ed") buf.write("\u0352\3\2\2\2\u12ee\u12ef\5\u03fd\u01ff\2\u12ef\u12f0") buf.write("\5\u03f9\u01fd\2\u12f0\u12f1\5\u03ff\u0200\2\u12f1\u12f2") buf.write("\5\u03fb\u01fe\2\u12f2\u12f3\5\u03fd\u01ff\2\u12f3\u12f4") buf.write("\5\u0403\u0202\2\u12f4\u12f5\5\u03f3\u01fa\2\u12f5\u12f6") buf.write("\5\u03f9\u01fd\2\u12f6\u12f7\5\u03fd\u01ff\2\u12f7\u12f8") buf.write("\5\u03e5\u01f3\2\u12f8\u12f9\5\u0407\u0204\2\u12f9\u0354") buf.write("\3\2\2\2\u12fa\u12fb\5\u03fd\u01ff\2\u12fb\u12fc\5\u03f9") buf.write("\u01fd\2\u12fc\u12fd\5\u0407\u0204\2\u12fd\u0356\3\2\2") buf.write("\2\u12fe\u12ff\5\u03fd\u01ff\2\u12ff\u1300\5\u0403\u0202") buf.write("\2\u1300\u1301\5\u03f3\u01fa\2\u1301\u1302\7a\2\2\u1302") buf.write("\u1303\5\u03dd\u01ef\2\u1303\u1304\5\u03e7\u01f4\2\u1304") buf.write("\u1305\5\u03e3\u01f2\2\u1305\u1306\5\u03e7\u01f4\2\u1306") buf.write("\u1307\5\u03fd\u01ff\2\u1307\u1308\7a\2\2\u1308\u1309") buf.write("\5\u0407\u0204\2\u1309\u130a\5\u03df\u01f0\2\u130a\u130b") buf.write("\5\u03d7\u01ec\2\u130b\u130c\5\u03f9\u01fd\2\u130c\u130d") buf.write("\7a\2\2\u130d\u130e\5\u03db\u01ee\2\u130e\u130f\5\u03ff") buf.write("\u0200\2\u130f\u1310\5\u03fd\u01ff\2\u1310\u1311\5\u03f3") buf.write("\u01fa\2\u1311\u1312\5\u03e1\u01f1\2\u1312\u1313\5\u03e1") buf.write("\u01f1\2\u1313\u0358\3\2\2\2\u1314\u1315\5\u03fd\u01ff") buf.write("\2\u1315\u1316\5\u0407\u0204\2\u1316\u1317\5\u03f5\u01fb") buf.write("\2\u1317\u1318\5\u03df\u01f0\2\u1318\u035a\3\2\2\2\u1319") buf.write("\u131a\5\u03fd\u01ff\2\u131a\u131b\5\u0407\u0204\2\u131b") buf.write("\u131c\5\u03f5\u01fb\2\u131c\u131d\5\u03df\u01f0\2\u131d") buf.write("\u131e\7a\2\2\u131e\u131f\5\u0403\u0202\2\u131f\u1320") buf.write("\5\u03d7\u01ec\2\u1320\u1321\5\u03f9\u01fd\2\u1321\u1322") buf.write("\5\u03f1\u01f9\2\u1322\u1323\5\u03e7\u01f4\2\u1323\u1324") buf.write("\5\u03f1\u01f9\2\u1324\u1325\5\u03e3\u01f2\2\u1325\u035c") buf.write("\3\2\2\2\u1326\u1327\5\u03ff\u0200\2\u1327\u1328\5\u03f1") buf.write("\u01f9\2\u1328\u1329\5\u03d9\u01ed\2\u1329\u132a\5\u03f3") buf.write("\u01fa\2\u132a\u132b\5\u03ff\u0200\2\u132b\u132c\5\u03f1") buf.write("\u01f9\2\u132c\u132d\5\u03dd\u01ef\2\u132d\u132e\5\u03df") buf.write("\u01f0\2\u132e\u132f\5\u03dd\u01ef\2\u132f\u035e\3\2\2") buf.write("\2\u1330\u1331\5\u03ff\u0200\2\u1331\u1332\5\u03f1\u01f9") buf.write("\2\u1332\u1333\5\u03db\u01ee\2\u1333\u1334\5\u03f3\u01fa") buf.write("\2\u1334\u1335\5\u03ef\u01f8\2\u1335\u1336\5\u03ef\u01f8") buf.write("\2\u1336\u1337\5\u03e7\u01f4\2\u1337\u1338\5\u03fd\u01ff") buf.write("\2\u1338\u1339\5\u03fd\u01ff\2\u1339\u133a\5\u03df\u01f0") buf.write("\2\u133a\u133b\5\u03dd\u01ef\2\u133b\u0360\3\2\2\2\u133c") buf.write("\u133d\5\u03ff\u0200\2\u133d\u133e\5\u03f1\u01f9\2\u133e") buf.write("\u133f\5\u03eb\u01f6\2\u133f\u1340\5\u03f1\u01f9\2\u1340") buf.write("\u1341\5\u03f3\u01fa\2\u1341\u1342\5\u0403\u0202\2\u1342") buf.write("\u1343\5\u03f1\u01f9\2\u1343\u0362\3\2\2\2\u1344\u1345") buf.write("\5\u03ff\u0200\2\u1345\u1346\5\u03f1\u01f9\2\u1346\u1347") buf.write("\5\u03ed\u01f7\2\u1347\u1348\5\u03e7\u01f4\2\u1348\u1349") buf.write("\5\u03ef\u01f8\2\u1349\u134a\5\u03e7\u01f4\2\u134a\u134b") buf.write("\5\u03fd\u01ff\2\u134b\u134c\5\u03df\u01f0\2\u134c\u134d") buf.write("\5\u03dd\u01ef\2\u134d\u0364\3\2\2\2\u134e\u134f\5\u03ff") buf.write("\u0200\2\u134f\u1350\5\u03fb\u01fe\2\u1350\u1351\5\u03e7") buf.write("\u01f4\2\u1351\u1352\5\u03f1\u01f9\2\u1352\u1353\5\u03e3") buf.write("\u01f2\2\u1353\u0366\3\2\2\2\u1354\u1355\5\u0401\u0201") buf.write("\2\u1355\u1356\5\u03d7\u01ec\2\u1356\u1357\5\u03f9\u01fd") buf.write("\2\u1357\u0368\3\2\2\2\u1358\u1359\5\u0401\u0201\2\u1359") buf.write("\u135a\5\u03d7\u01ec\2\u135a\u135b\5\u03f9\u01fd\2\u135b") buf.write("\u135c\5\u03f5\u01fb\2\u135c\u036a\3\2\2\2\u135d\u135e") buf.write("\5\u0401\u0201\2\u135e\u135f\5\u03e7\u01f4\2\u135f\u1360") buf.write("\5\u03df\u01f0\2\u1360\u1361\5\u0403\u0202\2\u1361\u1362") buf.write("\5\u03fb\u01fe\2\u1362\u036c\3\2\2\2\u1363\u1364\5\u0401") buf.write("\u0201\2\u1364\u1365\5\u03e7\u01f4\2\u1365\u1366\5\u03df") buf.write("\u01f0\2\u1366\u1367\5\u0403\u0202\2\u1367\u1368\7a\2") buf.write("\2\u1368\u1369\5\u03ef\u01f8\2\u1369\u136a\5\u03df\u01f0") buf.write("\2\u136a\u136b\5\u03fd\u01ff\2\u136b\u136c\5\u03d7\u01ec") buf.write("\2\u136c\u136d\5\u03dd\u01ef\2\u136d\u136e\5\u03d7\u01ec") buf.write("\2\u136e\u136f\5\u03fd\u01ff\2\u136f\u1370\5\u03d7\u01ec") buf.write("\2\u1370\u036e\3\2\2\2\u1371\u1372\5\u0403\u0202\2\u1372") buf.write("\u1373\5\u03f3\u01fa\2\u1373\u1374\5\u03f9\u01fd\2\u1374") buf.write("\u1375\5\u03eb\u01f6\2\u1375\u0370\3\2\2\2\u1376\u1377") buf.write("\5\u0405\u0203\2\u1377\u1378\5\u03ef\u01f8\2\u1378\u1379") buf.write("\5\u03ed\u01f7\2\u1379\u0372\3\2\2\2\u137a\u137b\5\u0405") buf.write("\u0203\2\u137b\u137c\5\u03ef\u01f8\2\u137c\u137d\5\u03ed") buf.write("\u01f7\2\u137d\u137e\5\u03f1\u01f9\2\u137e\u137f\5\u03d7") buf.write("\u01ec\2\u137f\u1380\5\u03ef\u01f8\2\u1380\u1381\5\u03df") buf.write("\u01f0\2\u1381\u1382\5\u03fb\u01fe\2\u1382\u1383\5\u03f5") buf.write("\u01fb\2\u1383\u1384\5\u03d7\u01ec\2\u1384\u1385\5\u03db") buf.write("\u01ee\2\u1385\u1386\5\u03df\u01f0\2\u1386\u1387\5\u03fb") buf.write("\u01fe\2\u1387\u0374\3\2\2\2\u1388\u1389\5\u0409\u0205") buf.write("\2\u1389\u138a\5\u03f3\u01fa\2\u138a\u138b\5\u03f1\u01f9") buf.write("\2\u138b\u138c\5\u03df\u01f0\2\u138c\u0376\3\2\2\2\u138d") buf.write("\u138e\7&\2\2\u138e\u138f\5\u03d7\u01ec\2\u138f\u1390") buf.write("\5\u03db\u01ee\2\u1390\u1391\5\u03fd\u01ff\2\u1391\u1392") buf.write("\5\u03e7\u01f4\2\u1392\u1393\5\u03f3\u01fa\2\u1393\u1394") buf.write("\5\u03f1\u01f9\2\u1394\u0378\3\2\2\2\u1395\u1397\t\2\2") buf.write("\2\u1396\u1395\3\2\2\2\u1397\u1398\3\2\2\2\u1398\u1396") buf.write("\3\2\2\2\u1398\u1399\3\2\2\2\u1399\u139a\3\2\2\2\u139a") buf.write("\u139b\b\u01bd\2\2\u139b\u037a\3\2\2\2\u139c\u139d\7\61") buf.write("\2\2\u139d\u139e\7,\2\2\u139e\u13a2\3\2\2\2\u139f\u13a1") buf.write("\13\2\2\2\u13a0\u139f\3\2\2\2\u13a1\u13a4\3\2\2\2\u13a2") buf.write("\u13a3\3\2\2\2\u13a2\u13a0\3\2\2\2\u13a3\u13a5\3\2\2\2") buf.write("\u13a4\u13a2\3\2\2\2\u13a5\u13a6\7,\2\2\u13a6\u13a7\7") buf.write("\61\2\2\u13a7\u13a8\3\2\2\2\u13a8\u13a9\b\u01be\3\2\u13a9") buf.write("\u037c\3\2\2\2\u13aa\u13ab\7/\2\2\u13ab\u13ac\7/\2\2\u13ac") buf.write("\u13b0\3\2\2\2\u13ad\u13af\n\3\2\2\u13ae\u13ad\3\2\2\2") buf.write("\u13af\u13b2\3\2\2\2\u13b0\u13ae\3\2\2\2\u13b0\u13b1\3") buf.write("\2\2\2\u13b1\u13b3\3\2\2\2\u13b2\u13b0\3\2\2\2\u13b3\u13b4") buf.write("\b\u01bf\3\2\u13b4\u037e\3\2\2\2\u13b5\u13b7\7$\2\2\u13b6") buf.write("\u13b8\n\4\2\2\u13b7\u13b6\3\2\2\2\u13b8\u13b9\3\2\2\2") buf.write("\u13b9\u13b7\3\2\2\2\u13b9\u13ba\3\2\2\2\u13ba\u13bb\3") buf.write("\2\2\2\u13bb\u13bc\7$\2\2\u13bc\u0380\3\2\2\2\u13bd\u13bf") buf.write("\7]\2\2\u13be\u13c0\n\5\2\2\u13bf\u13be\3\2\2\2\u13c0") buf.write("\u13c1\3\2\2\2\u13c1\u13bf\3\2\2\2\u13c1\u13c2\3\2\2\2") buf.write("\u13c2\u13c3\3\2\2\2\u13c3\u13c4\7_\2\2\u13c4\u0382\3") buf.write("\2\2\2\u13c5\u13c8\7B\2\2\u13c6\u13c9\t\6\2\2\u13c7\u13c9") buf.write("\5\u040b\u0206\2\u13c8\u13c6\3\2\2\2\u13c8\u13c7\3\2\2") buf.write("\2\u13c9\u13ca\3\2\2\2\u13ca\u13c8\3\2\2\2\u13ca\u13cb") buf.write("\3\2\2\2\u13cb\u0384\3\2\2\2\u13cc\u13ce\5\u03d5\u01eb") buf.write("\2\u13cd\u13cc\3\2\2\2\u13ce\u13cf\3\2\2\2\u13cf\u13cd") buf.write("\3\2\2\2\u13cf\u13d0\3\2\2\2\u13d0\u0386\3\2\2\2\u13d1") buf.write("\u13d4\t\7\2\2\u13d2\u13d4\5\u040b\u0206\2\u13d3\u13d1") buf.write("\3\2\2\2\u13d3\u13d2\3\2\2\2\u13d4\u13d9\3\2\2\2\u13d5") buf.write("\u13d8\t\6\2\2\u13d6\u13d8\5\u040b\u0206\2\u13d7\u13d5") buf.write("\3\2\2\2\u13d7\u13d6\3\2\2\2\u13d8\u13db\3\2\2\2\u13d9") buf.write("\u13d7\3\2\2\2\u13d9\u13da\3\2\2\2\u13da\u0388\3\2\2\2") buf.write("\u13db\u13d9\3\2\2\2\u13dc\u13de\5\u03f1\u01f9\2\u13dd") buf.write("\u13dc\3\2\2\2\u13dd\u13de\3\2\2\2\u13de\u13df\3\2\2\2") buf.write("\u13df\u13e5\7)\2\2\u13e0\u13e4\n\b\2\2\u13e1\u13e2\7") buf.write(")\2\2\u13e2\u13e4\7)\2\2\u13e3\u13e0\3\2\2\2\u13e3\u13e1") buf.write("\3\2\2\2\u13e4\u13e7\3\2\2\2\u13e5\u13e3\3\2\2\2\u13e5") buf.write("\u13e6\3\2\2\2\u13e6\u13e8\3\2\2\2\u13e7\u13e5\3\2\2\2") buf.write("\u13e8\u13e9\7)\2\2\u13e9\u038a\3\2\2\2\u13ea\u13eb\7") buf.write("\62\2\2\u13eb\u13ef\5\u0405\u0203\2\u13ec\u13ee\5\u03d3") buf.write("\u01ea\2\u13ed\u13ec\3\2\2\2\u13ee\u13f1\3\2\2\2\u13ef") buf.write("\u13ed\3\2\2\2\u13ef\u13f0\3\2\2\2\u13f0\u038c\3\2\2\2") buf.write("\u13f1\u13ef\3\2\2\2\u13f2\u13f3\5\u03d1\u01e9\2\u13f3") buf.write("\u038e\3\2\2\2\u13f4\u13f7\5\u03d1\u01e9\2\u13f5\u13f7") buf.write("\5\u03d5\u01eb\2\u13f6\u13f4\3\2\2\2\u13f6\u13f5\3\2\2") buf.write("\2\u13f7\u1401\3\2\2\2\u13f8\u13fa\5\u03df\u01f0\2\u13f9") buf.write("\u13fb\t\t\2\2\u13fa\u13f9\3\2\2\2\u13fa\u13fb\3\2\2\2") buf.write("\u13fb\u13fd\3\2\2\2\u13fc\u13fe\5\u03d5\u01eb\2\u13fd") buf.write("\u13fc\3\2\2\2\u13fe\u13ff\3\2\2\2\u13ff\u13fd\3\2\2\2") buf.write("\u13ff\u1400\3\2\2\2\u1400\u1402\3\2\2\2\u1401\u13f8\3") buf.write("\2\2\2\u1401\u1402\3\2\2\2\u1402\u0390\3\2\2\2\u1403\u1404") buf.write("\7?\2\2\u1404\u0392\3\2\2\2\u1405\u1406\7@\2\2\u1406\u0394") buf.write("\3\2\2\2\u1407\u1408\7>\2\2\u1408\u0396\3\2\2\2\u1409") buf.write("\u140a\7#\2\2\u140a\u0398\3\2\2\2\u140b\u140c\7-\2\2\u140c") buf.write("\u140d\7?\2\2\u140d\u039a\3\2\2\2\u140e\u140f\7/\2\2\u140f") buf.write("\u1410\7?\2\2\u1410\u039c\3\2\2\2\u1411\u1412\7,\2\2\u1412") buf.write("\u1413\7?\2\2\u1413\u039e\3\2\2\2\u1414\u1415\7\61\2\2") buf.write("\u1415\u1416\7?\2\2\u1416\u03a0\3\2\2\2\u1417\u1418\7") buf.write("\'\2\2\u1418\u1419\7?\2\2\u1419\u03a2\3\2\2\2\u141a\u141b") buf.write("\7(\2\2\u141b\u141c\7?\2\2\u141c\u03a4\3\2\2\2\u141d\u141e") buf.write("\7`\2\2\u141e\u141f\7?\2\2\u141f\u03a6\3\2\2\2\u1420\u1421") buf.write("\7~\2\2\u1421\u1422\7?\2\2\u1422\u03a8\3\2\2\2\u1423\u1424") buf.write("\7\60\2\2\u1424\u03aa\3\2\2\2\u1425\u1426\7a\2\2\u1426") buf.write("\u03ac\3\2\2\2\u1427\u1428\7B\2\2\u1428\u03ae\3\2\2\2") buf.write("\u1429\u142a\7%\2\2\u142a\u03b0\3\2\2\2\u142b\u142c\7") buf.write("&\2\2\u142c\u03b2\3\2\2\2\u142d\u142e\7*\2\2\u142e\u03b4") buf.write("\3\2\2\2\u142f\u1430\7+\2\2\u1430\u03b6\3\2\2\2\u1431") buf.write("\u1432\7.\2\2\u1432\u03b8\3\2\2\2\u1433\u1434\7=\2\2\u1434") buf.write("\u03ba\3\2\2\2\u1435\u1436\7<\2\2\u1436\u03bc\3\2\2\2") buf.write("\u1437\u1438\7,\2\2\u1438\u03be\3\2\2\2\u1439\u143a\7") buf.write("\61\2\2\u143a\u03c0\3\2\2\2\u143b\u143c\7\'\2\2\u143c") buf.write("\u03c2\3\2\2\2\u143d\u143e\7-\2\2\u143e\u03c4\3\2\2\2") buf.write("\u143f\u1440\7/\2\2\u1440\u03c6\3\2\2\2\u1441\u1442\7") buf.write("\u0080\2\2\u1442\u03c8\3\2\2\2\u1443\u1444\7~\2\2\u1444") buf.write("\u03ca\3\2\2\2\u1445\u1446\7(\2\2\u1446\u03cc\3\2\2\2") buf.write("\u1447\u1448\7`\2\2\u1448\u03ce\3\2\2\2\u1449\u144a\t") buf.write("\n\2\2\u144a\u03d0\3\2\2\2\u144b\u144d\5\u03d5\u01eb\2") buf.write("\u144c\u144b\3\2\2\2\u144d\u144e\3\2\2\2\u144e\u144c\3") buf.write("\2\2\2\u144e\u144f\3\2\2\2\u144f\u1450\3\2\2\2\u1450\u1452") buf.write("\7\60\2\2\u1451\u1453\5\u03d5\u01eb\2\u1452\u1451\3\2") buf.write("\2\2\u1453\u1454\3\2\2\2\u1454\u1452\3\2\2\2\u1454\u1455") buf.write("\3\2\2\2\u1455\u1464\3\2\2\2\u1456\u1458\5\u03d5\u01eb") buf.write("\2\u1457\u1456\3\2\2\2\u1458\u1459\3\2\2\2\u1459\u1457") buf.write("\3\2\2\2\u1459\u145a\3\2\2\2\u145a\u145b\3\2\2\2\u145b") buf.write("\u145c\7\60\2\2\u145c\u1464\3\2\2\2\u145d\u145f\7\60\2") buf.write("\2\u145e\u1460\5\u03d5\u01eb\2\u145f\u145e\3\2\2\2\u1460") buf.write("\u1461\3\2\2\2\u1461\u145f\3\2\2\2\u1461\u1462\3\2\2\2") buf.write("\u1462\u1464\3\2\2\2\u1463\u144c\3\2\2\2\u1463\u1457\3") buf.write("\2\2\2\u1463\u145d\3\2\2\2\u1464\u03d2\3\2\2\2\u1465\u1466") buf.write("\t\13\2\2\u1466\u03d4\3\2\2\2\u1467\u1468\t\f\2\2\u1468") buf.write("\u03d6\3\2\2\2\u1469\u146a\t\r\2\2\u146a\u03d8\3\2\2\2") buf.write("\u146b\u146c\t\16\2\2\u146c\u03da\3\2\2\2\u146d\u146e") buf.write("\t\17\2\2\u146e\u03dc\3\2\2\2\u146f\u1470\t\20\2\2\u1470") buf.write("\u03de\3\2\2\2\u1471\u1472\t\21\2\2\u1472\u03e0\3\2\2") buf.write("\2\u1473\u1474\t\22\2\2\u1474\u03e2\3\2\2\2\u1475\u1476") buf.write("\t\23\2\2\u1476\u03e4\3\2\2\2\u1477\u1478\t\24\2\2\u1478") buf.write("\u03e6\3\2\2\2\u1479\u147a\t\25\2\2\u147a\u03e8\3\2\2") buf.write("\2\u147b\u147c\t\26\2\2\u147c\u03ea\3\2\2\2\u147d\u147e") buf.write("\t\27\2\2\u147e\u03ec\3\2\2\2\u147f\u1480\t\30\2\2\u1480") buf.write("\u03ee\3\2\2\2\u1481\u1482\t\31\2\2\u1482\u03f0\3\2\2") buf.write("\2\u1483\u1484\t\32\2\2\u1484\u03f2\3\2\2\2\u1485\u1486") buf.write("\t\33\2\2\u1486\u03f4\3\2\2\2\u1487\u1488\t\34\2\2\u1488") buf.write("\u03f6\3\2\2\2\u1489\u148a\t\35\2\2\u148a\u03f8\3\2\2") buf.write("\2\u148b\u148c\t\36\2\2\u148c\u03fa\3\2\2\2\u148d\u148e") buf.write("\t\37\2\2\u148e\u03fc\3\2\2\2\u148f\u1490\t \2\2\u1490") buf.write("\u03fe\3\2\2\2\u1491\u1492\t!\2\2\u1492\u0400\3\2\2\2") buf.write("\u1493\u1494\t\"\2\2\u1494\u0402\3\2\2\2\u1495\u1496\t") buf.write("#\2\2\u1496\u0404\3\2\2\2\u1497\u1498\t$\2\2\u1498\u0406") buf.write("\3\2\2\2\u1499\u149a\t%\2\2\u149a\u0408\3\2\2\2\u149b") buf.write("\u149c\t&\2\2\u149c\u040a\3\2\2\2\u149d\u149e\t\'\2\2") buf.write("\u149e\u040c\3\2\2\2\34\2\u05f6\u1398\u13a2\u13b0\u13b9") buf.write("\u13c1\u13c8\u13ca\u13cf\u13d3\u13d7\u13d9\u13dd\u13e3") buf.write("\u13e5\u13ef\u13f6\u13fa\u13ff\u1401\u144e\u1454\u1459") buf.write("\u1461\u1463\4\b\2\2\2\3\2") return buf.getvalue() class tsqlLexer(Lexer): atn = ATNDeserializer().deserialize(serializedATN()) decisionsToDFA = [ DFA(ds, i) for i, ds in enumerate(atn.decisionToState) ] HADR_options = 1 ADD = 2 ALL = 3 ALTER = 4 AND = 5 ANY = 6 AS = 7 ASC = 8 AUTHORIZATION = 9 BACKUP = 10 BEGIN = 11 BETWEEN = 12 BREAK = 13 BROWSE = 14 BULK = 15 BY = 16 CALLED = 17 CASCADE = 18 CASE = 19 CHANGETABLE = 20 CHANGES = 21 CHECK = 22 CHECKPOINT = 23 CLOSE = 24 CLUSTERED = 25 COALESCE = 26 COLLATE = 27 COLUMN = 28 COMMIT = 29 COMPUTE = 30 CONSTRAINT = 31 CONTAINMENT = 32 CONTAINS = 33 CONTAINSTABLE = 34 CONTINUE = 35 CONVERT = 36 CREATE = 37 CROSS = 38 CURRENT = 39 CURRENT_DATE = 40 CURRENT_TIME = 41 CURRENT_TIMESTAMP = 42 CURRENT_USER = 43 CURSOR = 44 DATABASE = 45 DBCC = 46 DEALLOCATE = 47 DECLARE = 48 DEFAULT = 49 DELETE = 50 DENY = 51 DESC = 52 DISK = 53 DISTINCT = 54 DISTRIBUTED = 55 DOUBLE = 56 DROP = 57 DUMP = 58 ELSE = 59 END = 60 ERRLVL = 61 ESCAPE = 62 EXCEPT = 63 EXECUTE = 64 EXISTS = 65 EXIT = 66 EXP = 67 EXTERNAL = 68 FETCH = 69 FILE = 70 FILENAME = 71 FILLFACTOR = 72 FOR = 73 FORCESEEK = 74 FOREIGN = 75 FREETEXT = 76 FREETEXTTABLE = 77 FROM = 78 FULL = 79 FUNCTION = 80 GOTO = 81 GRANT = 82 GROUP = 83 HAVING = 84 IDENTITY = 85 IDENTITYCOL = 86 IDENTITY_INSERT = 87 IIF = 88 IF = 89 IN = 90 INDEX = 91 INCLUDE = 92 INNER = 93 INSERT = 94 INTERSECT = 95 INTO = 96 IS = 97 JOIN = 98 KEY = 99 KILL = 100 LEFT = 101 LIKE = 102 LINENO = 103 LOAD = 104 LOG = 105 LOG10 = 106 MERGE = 107 NATIONAL = 108 NEXT = 109 NOCHECK = 110 NONCLUSTERED = 111 NONE = 112 NOT = 113 NULL = 114 NULLIF = 115 NUMERIC = 116 OF = 117 OFF = 118 OFFSETS = 119 ON = 120 OPEN = 121 OPENDATASOURCE = 122 OPENQUERY = 123 OPENROWSET = 124 OPENXML = 125 OPTION = 126 OR = 127 ORDER = 128 OUTER = 129 OVER = 130 PARTIAL = 131 PERCENT = 132 PIVOT = 133 PLAN = 134 PRECISION = 135 PRIMARY = 136 PRINT = 137 PROC = 138 PROCEDURE = 139 PUBLIC = 140 RAISERROR = 141 READ = 142 READTEXT = 143 RECONFIGURE = 144 REFERENCES = 145 REPLICATION = 146 RESTORE = 147 RESTRICT = 148 RETURN = 149 RETURNS = 150 REVERT = 151 REVOKE = 152 RIGHT = 153 ROLLBACK = 154 ROWCOUNT = 155 ROWGUIDCOL = 156 RULE = 157 SAVE = 158 SCHEMA = 159 SECURITYAUDIT = 160 SELECT = 161 SEMANTICKEYPHRASETABLE = 162 SEMANTICSIMILARITYDETAILSTABLE = 163 SEMANTICSIMILARITYTABLE = 164 SESSION_USER = 165 SET = 166 SETUSER = 167 SHUTDOWN = 168 SIGN = 169 SOME = 170 STATISTICS = 171 SYNONYM = 172 SYSTEM = 173 SYSTEM_USER = 174 TABLE = 175 TABLESAMPLE = 176 TEXTSIZE = 177 THEN = 178 TO = 179 TOP = 180 TRAN = 181 TRANSACTION = 182 TRIGGER = 183 TRUNCATE = 184 TRY_CAST = 185 TRY_CONVERT = 186 TRY_PARSE = 187 TSEQUAL = 188 UNION = 189 UNIQUE = 190 UNPIVOT = 191 UPDATE = 192 UPDATETEXT = 193 USE = 194 USER = 195 VALUES = 196 VALUE = 197 VARYING = 198 VIEW = 199 WAITFOR = 200 WHEN = 201 WHERE = 202 WHILE = 203 WITH = 204 WITHIN = 205 WRITETEXT = 206 ABSOLUTE = 207 AFTER = 208 ALLOWED = 209 ALLOW_SNAPSHOT_ISOLATION = 210 ANSI_NULLS = 211 ANSI_NULL_DEFAULT = 212 ANSI_PADDING = 213 ANSI_WARNINGS = 214 APPLY = 215 ARITHABORT = 216 AT = 217 AUTO = 218 AUTO_CLEANUP = 219 AUTO_CLOSE
% name.lower(), 'return 0;', ]) elif type in [ FieldDescriptor.TYPE_DOUBLE, FieldDescriptor.TYPE_FLOAT ]: lines.extend([ 'if (!lua_isnumber(L, 2)) return luaL_error(L, "passed value cannot be converted to a number");', 'lua_Number n = lua_tonumber(L, 2);', 'm->set_%s(n);' % name.lower(), 'return 0;', ]) elif type in [ FieldDescriptor.TYPE_INT32, FieldDescriptor.TYPE_FIXED32, FieldDescriptor.TYPE_UINT32, FieldDescriptor.TYPE_SFIXED32, FieldDescriptor.TYPE_SINT32 ]: lines.extend([ 'lua_Integer v = luaL_checkinteger(L, 2);', 'm->set_%s(v);' % name.lower(), 'return 0;', ]) elif type in [ FieldDescriptor.TYPE_INT64, FieldDescriptor.TYPE_UINT64, FieldDescriptor.TYPE_FIXED64, FieldDescriptor.TYPE_SFIXED64, FieldDescriptor.TYPE_SINT64]: lines.extend([ 'lua_Integer i = luaL_checkinteger(L, 2);', 'm->set_%s(i);' % name.lower(), 'return 0;', ]) elif type == FieldDescriptor.TYPE_BOOL: lines.extend([ 'bool b = !!lua_toboolean(L, 2);', 'm->set_%s(b);' % name.lower(), 'return 0;', ]) elif type == FieldDescriptor.TYPE_ENUM: lines.extend([ 'lua_Integer i = luaL_checkinteger(L, 2);', 'm->set_%s((%s)i);' % ( name.lower(), type_name.replace('.', '::') ), 'return 0;', ]) elif type == FieldDescriptor.TYPE_MESSAGE: lines.append('return luaL_error(L, "to manipulate embedded messages, obtain the embedded message and manipulate it");') else: lines.append('return luaL_error(L, "field type is not yet supported");') lines.append('}\n') return lines def new_message(package, message): '''Returns function definition for creating a new protocol buffer message''' lines = [] lines.append('int %snew(lua_State *L)' % message_function_prefix(package, message)) lines.append('{') c = cpp_class(package, message) lines.append('msg_udata * ud = (msg_udata *)lua_newuserdata(L, sizeof(msg_udata));') lines.append('ud->lua_owns = true;') lines.append('ud->msg = new %s();' % c) lines.append('ud->gc_callback = NULL;') lines.append('ud->callback_data = NULL;') lines.append('luaL_getmetatable(L, "%s");' % metatable(package, message)) lines.append('lua_setmetatable(L, -2);') lines.append('return 1;') lines.append('}\n') return lines def message_pushcopy_function(package, message): '''Returns function definition for pushing a copy of a message to the stack''' return [ 'bool %spushcopy(lua_State *L, const %s &from)' % ( message_function_prefix(package, message), cpp_class(package, message) ), '{', 'msg_udata * ud = (msg_udata *)lua_newuserdata(L, sizeof(msg_udata));', 'ud->lua_owns = true;', 'ud->msg = new %s(from);' % cpp_class(package, message), 'ud->gc_callback = NULL;', 'ud->callback_data = NULL;', 'luaL_getmetatable(L, "%s");' % metatable(package, message), 'lua_setmetatable(L, -2);', 'return true;', '}', ] def message_getcopy_function(package, message): '''Returns function definition for getting a copy of a message from the stack''' return [ 'void %sgetcopy(lua_State *L, int index, %s &to)' % ( message_function_prefix(package, message), cpp_class(package, message) ), '{', 'msg_udata * ud = (msg_udata *)luaL_checkudata(L, index, "%s")' % ( metatable(package, message) ), 'to->CopyFrom(*ud->msg);', '}', ] def message_pushreference_function(package, message): '''Returns function definition for pushing a reference of a message on the stack''' return [ 'bool %spushreference(lua_State *L, %s *msg, lua_protobuf_gc_callback f, void *data)' % ( message_function_prefix(package, message), cpp_class(package, message) ), '{', 'msg_udata * ud = (msg_udata *)lua_newuserdata(L, sizeof(msg_udata));', 'ud->lua_owns = false;', 'ud->msg = msg;', 'ud->gc_callback = f;', 'ud->callback_data = data;', 'luaL_getmetatable(L, "%s");' % metatable(package, message), 'lua_setmetatable(L, -2);', 'return true;', '}', ] def parsefromstring_message_function(package, message): '''Returns function definition for parsing a message from a serialized string''' lines = [] lines.append('int %sparsefromstring(lua_State *L)' % message_function_prefix(package, message)) c = cpp_class(package, message) lines.extend([ '{', 'if (lua_gettop(L) != 1) {', 'return luaL_error(L, "parsefromstring() requires a string argument. none given");', '}', 'size_t len;', 'const char *s = luaL_checklstring(L, -1, &len);', '%s * msg = new %s();' % ( c, c ), 'if (!msg->ParseFromArray((const void *)s, len)) {', 'return luaL_error(L, "error deserializing message");', '}', 'msg_udata * ud = (msg_udata *)lua_newuserdata(L, sizeof(msg_udata));', 'ud->lua_owns = true;', 'ud->msg = msg;', 'ud->gc_callback = NULL;', 'ud->callback_data = NULL;', 'luaL_getmetatable(L, "%s");' % metatable(package, message), 'lua_setmetatable(L, -2);', 'return 1;', '}', ]) return lines def label_to_string(label_value): if label_value == FieldDescriptor.LABEL_OPTIONAL: return "optional" if label_value == FieldDescriptor.LABEL_REPEATED: return "repeated" if label_value == FieldDescriptor.LABEL_REQUIRED: return "required" def type_to_string(type_value): if type_value == FieldDescriptor.TYPE_BOOL:# = 8 return "bool" if type_value == FieldDescriptor.TYPE_BYTES:# = 12 return "bytes" if type_value == FieldDescriptor.TYPE_DOUBLE:# = 1 return "double" if type_value == FieldDescriptor.TYPE_ENUM:# = 14 return "enum" if type_value == FieldDescriptor.TYPE_FIXED32:# = 7 return "fixed32" if type_value == FieldDescriptor.TYPE_FIXED64:# = 6 return "fixed64" if type_value == FieldDescriptor.TYPE_FLOAT:# = 2 return "float" if type_value == FieldDescriptor.TYPE_GROUP:# = 10 return "group" if type_value == FieldDescriptor.TYPE_INT32:# = 5 return "int32" if type_value == FieldDescriptor.TYPE_INT64:# = 3 return "int64" if type_value == FieldDescriptor.TYPE_MESSAGE:# = 11 return "message" if type_value == FieldDescriptor.TYPE_SFIXED32:# = 15 return "sfixed32" if type_value == FieldDescriptor.TYPE_SFIXED64:# = 16 return "sfixed64" if type_value == FieldDescriptor.TYPE_SINT32:# = 17 return "sint32" if type_value == FieldDescriptor.TYPE_SINT64:# = 18 return "sint64" if type_value == FieldDescriptor.TYPE_STRING:# = 9 return "string" if type_value == FieldDescriptor.TYPE_UINT32:# = 13 return "uint32" if type_value == FieldDescriptor.TYPE_UINT64:# = 4 return "uint64" def descriptor_message_function(package, message, descriptor): ''' Return a function that builds a table that describes message. Returns table to Lua for inspection''' lines = [] lines.extend([ 'int %sdescriptor(lua_State* L)' % message_function_prefix(package, message), '{', ' lua_newtable(L);', ' ', ]); for fields_descriptor in descriptor.field: lines.extend([ ' // Field: default_value = %s' % fields_descriptor.default_value, ' lua_newtable(L);', ' lua_pushstring(L, "%s");' % fields_descriptor.name, ' lua_setfield(L, -2, "name");', ' lua_pushstring(L, "%s");' % label_to_string(fields_descriptor.label), ' lua_setfield(L, -2, "label");', ' lua_pushnumber(L, %s);' % fields_descriptor.number, ' lua_setfield(L, -2, "number");', ' lua_pushstring(L, "%s");' % type_to_string(fields_descriptor.type), ' lua_setfield(L, -2, "type");', ' lua_pushstring(L, "%s");' % (fields_descriptor.type_name) if fields_descriptor.type_name else '', ' lua_setfield(L, -2, "type_name");' if fields_descriptor.type_name else '', ' lua_setfield(L, -2, "%s");' % fields_descriptor.name, ]); lines.extend([ '', ' return 1;', '}', ]) return lines def gc_message_function(package, message): '''Returns function definition for garbage collecting a message''' lines = [ 'int %sgc(lua_State *L)' % message_function_prefix(package, message), '{', ] lines.extend(obtain_message_from_udata(package, message, 1)) # if Lua "owns" the message, we delete it # else, we delete only if a callback exists and it says it is OK lines.extend([ 'if (mud->lua_owns) {', 'delete mud->msg;', 'mud->msg = NULL;', 'return 0;', '}', 'if (mud->gc_callback && mud->gc_callback(m, mud->callback_data)) {', 'delete mud->msg;', 'mud->msg = NULL;', 'return 0;', '}', 'return 0;', '}', ]) return lines def clear_message_function(package, message): '''Returns the function definition for clearing a message''' lines = [ 'int %sclear(lua_State *L)' % message_function_prefix(package, message), '{' ] lines.extend(obtain_message_from_udata(package, message, 1)) lines.extend([ 'm->Clear();', 'return 0;', '}', ]) return lines def serialized_message_function(package, message): '''Returns the function definition for serializing a message and its length''' lines = [ 'int %sserialized(lua_State *L)' % message_function_prefix(package, message), '{' ] lines.extend(obtain_message_from_udata(package, message, 1)) lines.extend([ 'string s;', 'if (!m->SerializeToString(&s)) {', 'return luaL_error(L, "error serializing message");', '}', 'lua_pushlstring(L, s.c_str(), s.length());', 'lua_pushnumber(L, s.length());', 'return 2;', '}', ]) return lines def message_function_array(package, message): '''Defines functions for Lua object type These are defined on the Lua metatable for the message type. These are basically constructors and static methods in Lua land. ''' return [ 'static const struct luaL_Reg %s_functions [] = {' % message, '{"new", %snew},' % message_function_prefix(package, message), '{"parsefromstring", %sparsefromstring},' % message_function_prefix(package, message), '{"descriptor", %sdescriptor},' % message_function_prefix(package, message), '{NULL, NULL}', '};\n', ] def message_method_array(package, descriptor): '''Defines functions for Lua object instances These are functions available to each instance of a message. They take the object userdata as the first parameter. ''' message = descriptor.name fp = message_function_prefix(package, message) lines = [] lines.append('static const struct luaL_Reg %s_methods [] = {' % message) lines.append('{"serialized", %sserialized},' % fp) lines.append('{"clear", %sclear},' % fp) lines.append('{"__gc", %sgc},' % message_function_prefix(package, message)) for fd in descriptor.field: name = fd.name label = fd.label type = fd.type lines.append('{"clear_%s", %s},' % ( name.lower(), field_function_name(package, message, 'clear', name.lower()) )) lines.append('{"get_%s", %s},' % ( name.lower(), field_function_name(package, message, 'get', name.lower()) )) lines.append('{"set_%s", %s},' % ( name.lower(), field_function_name(package, message, 'set', name.lower()) )) if label in [ FieldDescriptor.LABEL_REQUIRED, FieldDescriptor.LABEL_OPTIONAL ]: lines.append('{"has_%s", %s},' % ( name.lower(), field_function_name(package, message, 'has', name.lower()) )) if label == FieldDescriptor.LABEL_REPEATED: lines.append('{"size_%s", %s},' % ( name.lower(), field_function_name(package, message, 'size', name.lower()) )) if type == FieldDescriptor.TYPE_MESSAGE: lines.append('{"add_%s", %s},' % ( name.lower(), field_function_name(package, message, 'add', name.lower()) )) lines.append('{NULL, NULL},') lines.append('};\n') return lines def message_open_function(package, descriptor): '''Function definition for opening/registering a message type''' message = descriptor.name lines = [ 'int %s(lua_State *L)' % message_open_function_name(package, message), '{', 'luaL_checktype(L, -1, LUA_TTABLE);', # 'luaL_newmetatable(L, "%s");' % metatable(package, message), 'lua_pushvalue(L, -1);', 'lua_setfield(L, -2, "__index");', 'luaL_setfuncs(L, %s_methods, 0);' % message, ##'luaL_register(L, NULL, %s_methods);' % message, 'lua_pop(L, 1); // remove the metatable', # 'if (luaEXT_findtable(L, "%s", -1, 1)) { ' % package, # ' return luaL_error(L, "Error finding correct table");', '}', 'luaL_newlib(L, %s_functions);' % message, ##'luaL_register(L, "%s", %s_functions);' % (lua_libname(package, message), message), 'lua_setfield(L, -2, "%s");' % message, # 'lua_pop(L, 1); //remove the returned table from findtable' # ] for enum_descriptor in descriptor.enum_type: lines.extend(enum_source(enum_descriptor)) lines.extend([ # this is wrong if we are calling through normal Lua module load means #'lua_pop(L, 1);', 'return 0;',#'return 1;', '}',
<reponame>mabrahamdevops/python_notebooks import glob from ipywidgets import widgets import os import re import shutil from collections import defaultdict from IPython.core.display import HTML from IPython.display import display import pandas as pd import subprocess from __code.file_handler import make_ascii_file_from_string from __code.file_handler import read_ascii from __code.ipywe.myfileselector import MyFileSelectorPanel from __code.utilities import ListRunsParser from __code.topaz_config import topaz_python_script, topaz_reduction_path class ConfigLoader(object): config_dict = {} def __init__(self, working_dir=''): self.working_dir = working_dir def select_config_file(self): hbox = widgets.HBox([widgets.Label("Configuration File Selected:", layout=widgets.Layout(width='20%')), widgets.Label("N/A", layout=widgets.Layout(width='80%'))]) self.config_selected_label = hbox.children[1] display(hbox) self.config_file_ui = MyFileSelectorPanel(instruction='Select Configuration File (*.config)', next=self.load_config, start_dir=self.working_dir, filters={'config': ['*.config']}, default_filter='config', stay_alive=True) self.config_file_ui.show() def load_config(self, config_file_name): self.config_selected_label.value = config_file_name #try: #pd_config = pd.read_csv(config_file_name, sep=' ', comment='#') full_config = read_ascii(config_file_name) config_array = full_config.split('\n') config_dict = dict() for _line in config_array: if (not (_line.startswith('#'))) and (not (_line == '')): _new_line = re.sub('\s+', ',', _line) my_split = _new_line.split(',') _key = my_split[0] _value = my_split[1] config_dict[_key] = _value [config_dict['config_name'], _] = os.path.splitext(os.path.basename(config_file_name)) self.config_dict = config_dict # except: # display(HTML("Error loading config file {}!".format(config_file_name))) # return display(HTML("Configuration file has been loaded with success!")) # list_para_name = pd_config['instrument_name'] # list_para_value = pd_config['TOPAZ'] # config_dict = dict(zip(list_para_name, list_para_value)) # adding config_name tag that contains the name of the loaded config name class ConfigParser(object): def __init__(self, config_file=''): if config_file: self.parse_config(config_file = config_file) def parse_config(self, config_file=''): pass class ConfigDict(object): # for config file output config = {'instrument_name': 'TOPAZ', 'calibration_file_1': '', 'calibration_file_2': 'None', 'z_offset': 0.0, 'x_offset': 0.0, 'data_directory': '', 'output_directory': '', 'use_monitor_counts': False, 'min_tof': 1000, 'max_tof': 16600, 'monitor_index': 0, 'min_monitor_tof': 800, 'max_monitor_tof': 12500, 'read_UB': True, 'UB_filename': '', 'cell_type': 'Monoclinic', 'centering': 'P', 'num_peaks_to_find': 300, 'min_d': 5, 'max_d': 25, 'tolerance': 0.12, 'integrate_predicted_peaks': True, 'min_pred_wl': 0.5, 'max_pred_wl': 3.4, 'min_pred_dspacing': 0.5, 'max_pred_dspacing': 11.0, 'use_sphere_integration': False, 'use_ellipse_integration': False, 'use_fit_peaks_integration': False, 'use_cylindrical_integration': False, 'peak_radius': 0.130, 'bkg_inner_radius': 0.14, 'bkg_outer_radius': 0.15, 'integrate_if_edge_peak': True, 'ellipse_region_radius': 0.20, 'ellipse_size_specified': True, 'rebin_step': -0.004, 'preserve_events': True, 'use_ikeda_carpenter': False, 'n_bad_edge_pixels': 0, 'cylinder_radius': 0.05, 'cylinder_length': 0.30, 'exp_name': '', 'reduce_one_run_script': '/SNS/TOPAZ/shared/calibrations/Reduction/ReduceSCD_OneRun_xz_offset.py', 'run_nums': '', 'slurm_queue_name': 'None', 'max_processes': 8, 'config_name': 'tmp.config', } def __init__(self, config_dict={}): self.config_dict = config_dict def get_parameter_value(self, parameter): para_type = type(self.config[parameter]) if self.config_dict == {}: return self.config[parameter] if not (parameter in self.config_dict.keys()): return self.config[parameter] if self.config_dict[parameter]: config_para = self.config_dict[parameter] if isinstance(self.config[parameter], bool): if self.config_dict[parameter] in ["True", "true"]: return True else: return False return para_type(config_para) else: return self.config[parameter] class TopazConfigGenerator(object): ikeda_flag_ui = None v_box = None fit_peaks_vertical_layout = None reduce_ui = None reduce_label_ui = None reduce_one_run_script = 'N/A' left_column_width = '15%' # for config file output config = {'instrument_name': 'TOPAZ', 'calibration_file_1': '', 'calibration_file_2': 'None', 'z_offset': 0.0, 'x_offset': 0.0, 'data_directory': '', 'output_directory': '', 'use_monitor_counts': False, 'min_tof': 1000, 'max_tof': 16600, 'monitor_index': 0, 'min_monitor_tof': 800, 'max_monitor_tof': 12500, 'read_UB': True, 'UB_filename': '', 'cell_type': 'Monoclinic', 'centering': 'P', 'num_peaks_to_find': 300, 'min_d': 5, 'max_d': 25, 'tolerance': 0.12, 'integrate_predicted_peaks': True, 'min_pred_wl': 0.5, 'max_pred_wl': 3.4, 'min_pred_dspacing': 0.5, 'max_pred_dspacing': 11.0, 'use_sphere_integration': False, 'use_ellipse_integration': False, 'use_fit_peaks_integration': False, 'use_cylindrical_integration': False, 'peak_radius': 0.130, 'bkg_inner_radius': 0.14, 'bkg_outer_radius': 0.15, 'integrate_if_edge_peak': True, 'ellipse_region_radius': 0.20, 'ellipse_size_specified': True, 'rebin_step': -0.004, 'preserve_events': True, 'use_ikeda_carpenter': False, 'n_bad_edge_pixels': 0, 'cylinder_radius': 0.05, 'cylinder_length': 0.30, 'exp_name': '', 'reduce_one_run_script': '/SNS/TOPAZ/shared/calibrations/Reduction/ReduceSCD_OneRun_xz_offset.py', 'run_nums': '', 'slurm_queue_name': 'None', 'max_processes': 8, } cell_type = ['Triclinic', 'Monoclinic', 'Orthorhombic', 'Tetragonal', 'Rhombohedral', 'Hexagonal', 'Cubic', 'None'] centering_mode = {'P': cell_type[:-1], 'I': ['Tetragonal', 'Monoclinic', 'Cubic'], 'A': ['Monoclinic', 'Orthorhombic'], 'B': ['Monoclinic', 'Orthorhombic'], 'C': ['Monoclinic', 'Orthorhombic'], 'F': ['Orthorhombic', 'Cubic'], 'Robv': ['Rhombohedral'], 'Rrev': ['Rhombohedral'], 'None': ['None'] } cell_type_dict = {} o_config_dict = None display_config_to_super_user = False def __init__(self, working_dir='', config_dict_loaded={}): self.working_dir = working_dir self.config_dict_loaded = config_dict_loaded self.o_config_dict = ConfigDict(config_dict=config_dict_loaded) self.init_css() self.__create_cell_type_centering_dict() self.run_all() def init_css(self): display(HTML(""" <style> .mylabel_key { font-style: bold; color: black; font-size: 18px; } </style> """)) def __create_cell_type_centering_dict(self): self.cell_type_dict = defaultdict() for _key in self.centering_mode.keys(): _list = self.centering_mode[_key] for _item in _list: self.cell_type_dict.setdefault(_item, []).append(_key) def __get_dict_parameter_value(self, parameter): if self.config_dict[parameter]: return self.config_dict[parameter] else: return self.config[parameter] def run_all(self): self.define_config_file_name() self.select_input_data_folder() self.select_output_folder() self.parameters_1() self.parameters_2() self.advanced_options() def define_config_file_name(self): _default_config = self.o_config_dict.get_parameter_value('config_name') [_name_config, _] = os.path.splitext(_default_config) display(HTML("<h2>Define Config File Name</h2>")) config_file_ui = widgets.HBox([widgets.Label("Config File Name:", layout=widgets.Layout(width='20%')), widgets.Text(_name_config, layout=widgets.Layout(width='75%')), widgets.Label(".config", layout=widgets.Layout(width='5%'))]) self.config_file_ui = config_file_ui.children[1] display(config_file_ui) def select_input_data_folder(self): def update_list_of_runs(list_of_runs): self.full_list_of_runs_ui.options = list_of_runs if list_of_runs == []: self.run_numbers_error_ui.value = ">> Format Error! <<" self.full_run_numbers_layout.layout.visibility = 'hidden' else: self.run_numbers_error_ui.value = "" self.full_run_numbers_layout.layout.visibility = 'visible' # ****** Select Input Data Folder ******** display(HTML("<h2 id='input_directory'>Select Input Data Folder</h2>")) _input_data_folder = self.o_config_dict.get_parameter_value('data_directory') select_input_data_folder_ui = None def _select_input_data_folder(selection): select_input_data_folder_ui.children[1].value = selection # update the list of runs display at the bottom of the page if user select new input data folder _path_to_look_for = os.path.abspath(os.path.join(self.input_data_folder_ui.value, 'TOPAZ_*_event.nxs')) list_of_event_nxs = glob.glob(_path_to_look_for) list_of_runs = [] if list_of_event_nxs: re_string = r"^TOPAZ_(?P<run>\d+)_event.nxs$" for _nexus in list_of_event_nxs: _short_nexus = os.path.basename(_nexus) m = re.match(re_string, _short_nexus) if m: _run = m.group('run') list_of_runs.append(_run) list_of_runs.sort() update_list_of_runs(list_of_runs) self.list_of_runs = list_of_runs select_input_data_folder_ui = widgets.HBox([widgets.Label("Input Data Folder Selected:", layout=widgets.Layout(width='25%')), widgets.Label(_input_data_folder, layout=widgets.Layout(width='70%'))]) select_input_data_folder_ui.children[0].add_class("mylabel_key") self.input_data_folder_ui = select_input_data_folder_ui.children[1] display(select_input_data_folder_ui) if not (_input_data_folder == 'N/A') and os.path.exists(_input_data_folder): start_dir = _input_data_folder else: start_dir = os.path.join(self.working_dir, 'data') if not os.path.exists(start_dir): start_dir = self.working_dir if not os.path.exists(start_dir): start_dir = '/' input_folder_ui = MyFileSelectorPanel(instruction='', start_dir=start_dir, next=_select_input_data_folder, type='directory', stay_alive=True) input_folder_ui.show() display(widgets.Label("")) def select_output_folder(self): # ****** Select or Create Output Folder ******** display(HTML("<h2 id='output_directory'>Select or Create Output Folder</h2>")) _output_data_folder = self.o_config_dict.get_parameter_value('output_directory') select_output_data_folder_ui = None def select_output_data_folder(selection): select_output_data_folder_ui.children[1].value = selection if not (_output_data_folder == 'N/A') and os.path.exists(_output_data_folder): start_dir = _output_data_folder else: start_dir = os.path.join(self.working_dir, 'shared') if not os.path.exists(start_dir): start_dir = self.working_dir if not os.path.exists(start_dir): start_dir = '/' select_output_data_folder_ui = widgets.HBox([widgets.Label("Output Data Folder Selected:", layout=widgets.Layout(width='25%')), widgets.Label(start_dir, layout=widgets.Layout(width='70%'))]) select_output_data_folder_ui.children[0].add_class("mylabel_key") self.output_data_folder_ui = select_output_data_folder_ui.children[1] display(select_output_data_folder_ui) output_folder_ui = MyFileSelectorPanel(instruction='Location of Output Folder', start_dir=start_dir, type='directory', next=select_output_data_folder, newdir_toolbar_button=True, stay_alive=True) output_folder_ui.show() def parameters_1(self): # def cell_type_changed(value): # centering_ui.children[1].options = self.cell_type_dict[value['new']] # centering_ui.children[1].value = self.cell_type_dict[value['new']][0] # # def centering_changed(value): # pass # calibration files working_dir = self.working_dir calib_folder = os.path.dirname(working_dir) list_of_calibration_file = glob.glob(os.path.join(calib_folder, 'shared/calibrations') + '/2017C/*.DetCal') list_of_calibration_file.append('None') _calibration_file = self.o_config_dict.get_parameter_value('calibration_file_1') if not (_calibration_file is None) and os.path.exists(_calibration_file): list_of_calibration_file = [_calibration_file] + list_of_calibration_file # ****** Specify calibration file(s) ******** display(HTML("<h2 id='calibration_file'>Specify calibration file(s)</h2><br>SNAP requires two calibration files, one for each bank. \ If the default detector position is to be used, specify <strong>None</strong> as the calibration file name.")) calibration1_ui = widgets.HBox([widgets.Label("Calibration File:", layout=widgets.Layout(width='15%')), widgets.Dropdown(options=list_of_calibration_file, layout=widgets.Layout(width='85%'))]) self.calibration_file_ui = calibration1_ui.children[1] display(calibration1_ui) # ****** Goniometer z Offset correction ******** display(HTML("<h2>Goniometer z Offset Correction</h2><br>Test correction for Goniometer z offset")) _z_offset = self.o_config_dict.get_parameter_value('z_offset') _x_offset = self.o_config_dict.get_parameter_value('x_offset') offset_min_value = -10.0 offset_max_value = +10.0 if not (offset_min_value <= _x_offset <= offset_max_value): _x_offset = 0.0 if not (offset_min_value <= _z_offset <= offset_max_value): _z_offset = 0.0 zoffset_ui = widgets.HBox([widgets.Label("z_offset:", layout=widgets.Layout(width='5%')), widgets.FloatSlider(value=_z_offset, min=offset_min_value, max=offset_max_value, readout_format='.2f', continuous_update=False, layout=widgets.Layout(width='30%'))]) xoffset_ui = widgets.HBox([widgets.Label("x_offset:", layout=widgets.Layout(width='5%')), widgets.FloatSlider(value=_x_offset, min=offset_min_value, max=offset_max_value, readout_format='.2f', continuous_update=False, layout=widgets.Layout(width='30%'))]) self.zoffset_ui = zoffset_ui.children[1] self.xoffset_ui = xoffset_ui.children[1] offset_ui = widgets.VBox([zoffset_ui, xoffset_ui]) display(offset_ui) # ****** Use Monitor Counts ?******** display(HTML("<h2>Use Monitor Counts ?</h2><br> If use_monitor_counts is True, then the integrated beam monitor \ counts will be used for scaling. <br>If use_monitor_counts is False, \ then the integrated proton charge will be used for scaling. <br><br>These \ values will be listed under MONCNT in the integrate file.")) _monitor_flag = self.o_config_dict.get_parameter_value('use_monitor_counts') monitor_counts_flag_ui = widgets.Checkbox(value=_monitor_flag, description='Use Monitor Counts') self.monitor_counts_flag_ui = monitor_counts_flag_ui display(monitor_counts_flag_ui) # ****** TOF and Monitor ******** display(HTML("<h2>TOF and Monitor</h2><br>Min & max tof determine the range of events loaded.<br> Min & max monitor tof \ determine the range of tofs integrated in the monitor data to get the \ total monitor counts. <br>You need these even if Use Monitor Counts is False.")) _min_tof = self.o_config_dict.get_parameter_value('min_tof') _max_tof = self.o_config_dict.get_parameter_value('max_tof') tof_ui = widgets.HBox([widgets.Label("TOF Range", layout=widgets.Layout(width=self.left_column_width)), widgets.IntRangeSlider(value=[_min_tof, _max_tof], min=500, max=16600, step=1, continuous_update=False, readout_format='d', layout=widgets.Layout(width='50%')), widgets.Label("\u00B5s", layout=widgets.Layout(width='20%'))]) self.tof_ui = tof_ui.children[1] _monitor_index = self.o_config_dict.get_parameter_value('monitor_index') monitor_index_ui = widgets.HBox([widgets.Label("Monitor Index", layout=widgets.Layout(width=self.left_column_width)), widgets.Dropdown(options=['0', '1'], value=str(_monitor_index), layout=widgets.Layout(width='10%'))]) self.monitor_index_ui = monitor_index_ui.children[1] _min_monitor_tof = self.o_config_dict.get_parameter_value('min_monitor_tof') _max_monitor_tof = self.o_config_dict.get_parameter_value('max_monitor_tof') monitor_ui = widgets.HBox([widgets.Label("Monitor TOF Range", layout=widgets.Layout(width=self.left_column_width)), widgets.IntRangeSlider(value=[_min_monitor_tof, _max_monitor_tof], min=500, max=16600, step=1, continuous_update=False, readout_format='d', layout=widgets.Layout(width='50%')), widgets.Label("\u00B5s", layout=widgets.Layout(width='20%'))]) self.monitor_tof_ui = monitor_ui.children[1] tof_ui = widgets.VBox([tof_ui, monitor_index_ui, monitor_ui]) display(tof_ui) # ****** UB ******** display(HTML("<h2 id='ub_filename'>UB</h2><br>Read the UB matrix from file. This option will be applied to each run and used for \ combined file. This option is especially helpful for 2nd frame TOPAZ data.")) _ub_flag = self.o_config_dict.get_parameter_value('read_UB') ub_flag_ui = widgets.Checkbox(value=_ub_flag, description='Read UB') _ub_file = self.o_config_dict.get_parameter_value('UB_filename') if _ub_file == '': _ub_file = 'N/A' ub_file_selected_ui = widgets.HBox([widgets.Label("UB File Selected:", layout=widgets.Layout(width='20%')), widgets.Label(_ub_file, layout=widgets.Layout(width='80%'))]) ub_file_selected_ui.children[0].add_class("mylabel_key") self.ub_file_selected_ui = ub_file_selected_ui def ub_flag_changed(value): display_file_selection_flag = value['new'] if display_file_selection_flag: self.ub_ui.enable() else: self.ub_ui.disable() #
name): try: inf_attr = getattr(_cl.image_info, name.upper()) except AttributeError: raise AttributeError("%s has no attribute '%s'" % (type(self), name)) else: return self.event.get_image_info(inf_attr) def image_shape(self): if self.type == mem_object_type.IMAGE2D: return (self.width, self.height) elif self.type == mem_object_type.IMAGE3D: return (self.width, self.height, self.depth) else: raise LogicError("only images have shapes") Image.__init__ = image_init Image.image = property(_ImageInfoGetter) Image.shape = property(image_shape) # }}} # {{{ Error def error_str(self): val = self.what try: val.routine except AttributeError: return str(val) else: result = "" if val.code() != status_code.SUCCESS: result = status_code.to_string( val.code(), "<unknown error %d>") routine = val.routine() if routine: result = "%s failed: %s" % (routine, result) what = val.what() if what: if result: result += " - " result += what return result def error_code(self): return self.args[0].code() def error_routine(self): return self.args[0].routine() def error_what(self): return self.args[0] Error.__str__ = error_str Error.code = property(error_code) Error.routine = property(error_routine) Error.what = property(error_what) # }}} # {{{ MemoryMap def memory_map_enter(self): return self def memory_map_exit(self, exc_type, exc_val, exc_tb): self.release() MemoryMap.__doc__ = """ This class may also be used as a context manager in a ``with`` statement. The memory corresponding to this object will be unmapped when this object is deleted or :meth:`release` is called. .. automethod:: release """ MemoryMap.__enter__ = memory_map_enter MemoryMap.__exit__ = memory_map_exit # }}} # {{{ SVMAllocation if get_cl_header_version() >= (2, 0): SVMAllocation.__doc__ = """An object whose lifetime is tied to an allocation of shared virtual memory. .. note:: Most likely, you will not want to use this directly, but rather :func:`svm_empty` and related functions which allow access to this functionality using a friendlier, more Pythonic interface. .. versionadded:: 2016.2 .. automethod:: __init__(self, ctx, size, alignment, flags=None) .. automethod:: release .. automethod:: enqueue_release """ if get_cl_header_version() >= (2, 0): svmallocation_old_init = SVMAllocation.__init__ def svmallocation_init(self, ctx, size, alignment, flags, _interface=None): """ :arg ctx: a :class:`Context` :arg flags: some of :class:`svm_mem_flags`. """ svmallocation_old_init(self, ctx, size, alignment, flags) read_write = ( flags & mem_flags.WRITE_ONLY != 0 or flags & mem_flags.READ_WRITE != 0) _interface["data"] = ( int(self._ptr_as_int()), not read_write) self.__array_interface__ = _interface if get_cl_header_version() >= (2, 0): SVMAllocation.__init__ = svmallocation_init # }}} # {{{ SVM if get_cl_header_version() >= (2, 0): SVM.__doc__ = """Tags an object exhibiting the Python buffer interface (such as a :class:`numpy.ndarray`) as referring to shared virtual memory. Depending on the features of the OpenCL implementation, the following types of objects may be passed to/wrapped in this type: * coarse-grain shared memory as returned by (e.g.) :func:`csvm_empty` for any implementation of OpenCL 2.0. This is how coarse-grain SVM may be used from both host and device:: svm_ary = cl.SVM( cl.csvm_empty(ctx, 1000, np.float32, alignment=64)) assert isinstance(svm_ary.mem, np.ndarray) with svm_ary.map_rw(queue) as ary: ary.fill(17) # use from host prg.twice(queue, svm_ary.mem.shape, None, svm_ary) * fine-grain shared memory as returned by (e.g.) :func:`fsvm_empty`, if the implementation supports fine-grained shared virtual memory. This memory may directly be passed to a kernel:: ary = cl.fsvm_empty(ctx, 1000, np.float32) assert isinstance(ary, np.ndarray) prg.twice(queue, ary.shape, None, cl.SVM(ary)) queue.finish() # synchronize print(ary) # access from host Observe how mapping (as needed in coarse-grain SVM) is no longer necessary. * any :class:`numpy.ndarray` (or other Python object with a buffer interface) if the implementation supports fine-grained *system* shared virtual memory. This is how plain :mod:`numpy` arrays may directly be passed to a kernel:: ary = np.zeros(1000, np.float32) prg.twice(queue, ary.shape, None, cl.SVM(ary)) queue.finish() # synchronize print(ary) # access from host Objects of this type may be passed to kernel calls and :func:`enqueue_copy`. Coarse-grain shared-memory *must* be mapped into host address space using :meth:`map` before being accessed through the :mod:`numpy` interface. .. note:: This object merely serves as a 'tag' that changes the behavior of functions to which it is passed. It has no special management relationship to the memory it tags. For example, it is permissible to grab a :mod:`numpy.array` out of :attr:`SVM.mem` of one :class:`SVM` instance and use the array to construct another. Neither of the tags need to be kept alive. .. versionadded:: 2016.2 .. attribute:: mem The wrapped object. .. automethod:: __init__ .. automethod:: map .. automethod:: map_ro .. automethod:: map_rw .. automethod:: as_buffer """ if get_cl_header_version() >= (2, 0): svm_old_init = SVM.__init__ def svm_init(self, mem): svm_old_init(self, mem) self.mem = mem def svm_map(self, queue, flags, is_blocking=True, wait_for=None): """ :arg is_blocking: If *False*, subsequent code must wait on :attr:`SVMMap.event` in the returned object before accessing the mapped memory. :arg flags: a combination of :class:`pyopencl.map_flags`, defaults to read-write. :returns: an :class:`SVMMap` instance |std-enqueue-blurb| """ return SVMMap( self, queue, _cl._enqueue_svm_map(queue, is_blocking, flags, self, wait_for)) def svm_map_ro(self, queue, is_blocking=True, wait_for=None): """Like :meth:`map`, but with *flags* set for a read-only map.""" return self.map(queue, map_flags.READ, is_blocking=is_blocking, wait_for=wait_for) def svm_map_rw(self, queue, is_blocking=True, wait_for=None): """Like :meth:`map`, but with *flags* set for a read-only map.""" return self.map(queue, map_flags.READ | map_flags.WRITE, is_blocking=is_blocking, wait_for=wait_for) def svm__enqueue_unmap(self, queue, wait_for=None): return _cl._enqueue_svm_unmap(queue, self, wait_for) def svm_as_buffer(self, ctx, flags=None): """ :arg ctx: a :class:`Context` :arg flags: a combination of :class:`pyopencl.map_flags`, defaults to read-write. :returns: a :class:`Buffer` corresponding to *self*. The memory referred to by this object must not be freed before the returned :class:`Buffer` is released. """ if flags is None: flags = mem_flags.READ_WRITE return Buffer(ctx, flags, size=self.mem.nbytes, hostbuf=self.mem) if get_cl_header_version() >= (2, 0): SVM.__init__ = svm_init SVM.map = svm_map SVM.map_ro = svm_map_ro SVM.map_rw = svm_map_rw SVM._enqueue_unmap = svm__enqueue_unmap SVM.as_buffer = svm_as_buffer # }}} # ORDER DEPENDENCY: Some of the above may override get_info, the effect needs # to be visible through the attributes. So get_info attr creation needs to happen # after the overriding is complete. cls_to_info_cls = { _cl.Platform: (_cl.Platform.get_info, _cl.platform_info, []), _cl.Device: (_cl.Device.get_info, _cl.device_info, ["PLATFORM", "MAX_WORK_GROUP_SIZE", "MAX_COMPUTE_UNITS"]), _cl.Context: (_cl.Context.get_info, _cl.context_info, []), _cl.CommandQueue: (_cl.CommandQueue.get_info, _cl.command_queue_info, ["CONTEXT", "DEVICE"]), _cl.Event: (_cl.Event.get_info, _cl.event_info, []), _cl.MemoryObjectHolder: (MemoryObjectHolder.get_info, _cl.mem_info, []), Image: (_cl.Image.get_image_info, _cl.image_info, []), Program: (Program.get_info, _cl.program_info, []), Kernel: (Kernel.get_info, _cl.kernel_info, []), _cl.Sampler: (Sampler.get_info, _cl.sampler_info, []), } def to_string(cls, value, default_format=None): for name in dir(cls): if (not name.startswith("_") and getattr(cls, name) == value): return name if default_format is None: raise ValueError("a name for value %d was not found in %s" % (value, cls.__name__)) else: return default_format % value for cls in CONSTANT_CLASSES: cls.to_string = classmethod(to_string) # {{{ get_info attributes ------------------------------------------------- def make_getinfo(info_method, info_name, info_attr): def result(self): return info_method(self, info_attr) return property(result) def make_cacheable_getinfo(info_method, info_name, cache_attr, info_attr): def result(self): try: return getattr(self, cache_attr) except AttributeError: pass result = info_method(self, info_attr) setattr(self, cache_attr, result) return result return property(result) for cls, (info_method, info_class, cacheable_attrs) \ in six.iteritems(cls_to_info_cls): for info_name, info_value in six.iteritems(info_class.__dict__): if info_name == "to_string" or info_name.startswith("_"): continue info_lower = info_name.lower() info_constant = getattr(info_class, info_name) if info_name in cacheable_attrs: cache_attr = intern("_info_cache_"+info_lower) setattr(cls, info_lower, make_cacheable_getinfo( info_method, info_lower, cache_attr, info_constant)) else: setattr(cls, info_lower, make_getinfo( info_method, info_name, info_constant)) # }}} if _cl.have_gl(): def gl_object_get_gl_object(self): return self.get_gl_object_info()[1] GLBuffer.gl_object = property(gl_object_get_gl_object) GLTexture.gl_object = property(gl_object_get_gl_object) _add_functionality() # }}} # {{{ create_some_context def create_some_context(interactive=None, answers=None): import os if answers is None: if "PYOPENCL_CTX" in os.environ: ctx_spec = os.environ["PYOPENCL_CTX"] answers = ctx_spec.split(":") if "PYOPENCL_TEST" in os.environ: from pyopencl.tools import get_test_platforms_and_devices for plat, devs in get_test_platforms_and_devices(): for dev in devs: return Context([dev]) if answers is not None: pre_provided_answers = answers answers = answers[:] else: pre_provided_answers = None user_inputs = [] if interactive is None: interactive = True try: import sys if not sys.stdin.isatty(): interactive = False except Exception: interactive = False def cc_print(s): if interactive: print(s) def get_input(prompt): if answers: return str(answers.pop(0)) elif not interactive: return '' else: user_input = input(prompt) user_inputs.append(user_input) return user_input # {{{ pick a platform platforms = get_platforms() if not platforms: raise Error("no platforms found") else: if not answers: cc_print("Choose platform:") for i, pf in enumerate(platforms): cc_print("[%d] %s" % (i, pf)) answer = get_input("Choice [0]:") if not answer: platform = platforms[0] else: platform = None try: int_choice = int(answer) except ValueError: pass else: if 0 <= int_choice < len(platforms): platform = platforms[int_choice] if platform is None: answer = answer.lower() for i, pf in enumerate(platforms): if answer in pf.name.lower(): platform = pf if platform is None: raise RuntimeError("input did not match any platform") # }}} #