input
stringlengths
2.65k
237k
output
stringclasses
1 value
<reponame>Cyberface/nrutils_dev<filename>nrutils/handlers/bam.py # from nrutils.core.basics import * from glob import glob as ls from os.path import getctime from numpy import array,cross,zeros,dot,abs,sqrt,sign from numpy.linalg import inv, norm from numpy import sum as asum # Determine whether the folder containing a metadta file is valid: can it be used to reference waveform data? def validate( metadata_file_location, config = None ): # from os.path import isfile as exist from os.path import abspath,join,basename from os import pardir # run_dir = abspath( join( metadata_file_location, pardir ) )+'/' # The folder is valid if there is l=m=2 mode data in the following dirs status = len( ls( run_dir + '/Psi4ModeDecomp/psi3col*l2.m2.gz' ) ) > 0 # ignore directories with certain tags in filename ignore_tags = ['backup','old'] for tag in ignore_tags: status = status and not ( tag in run_dir ) # a = basename(metadata_file_location).split(config.metadata_id)[0] b = parent(metadata_file_location) status = status and ( a in b ) # return status # Learn the metadta (file) for this type of NR waveform def learn_metadata( metadata_file_location ): # Try to load the related par file as well as the metadata file par_file_location = metadata_file_location[:-3]+'par' raw_metadata = smart_object( [metadata_file_location,par_file_location] ) # shortand y = raw_metadata # # Useful for debugging -- show what's in y # y.show() # standard_metadata = smart_object() # shorthand x = standard_metadata # Keep NOTE of important information x.note = '' # Creation date of metadata file x.date_number = getctime( metadata_file_location ) ''' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Calculate derivative quantities %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ''' # Masses x.m1 = y.mass1 x.m2 = y.mass2 # NOTE that some bbh files may not have after_junkradiation_spin data (i.e. empty). In these cases we will take the initial spin data S1 = array( [ y.after_junkradiation_spin1x, y.after_junkradiation_spin1y, y.after_junkradiation_spin1z ] ) S2 = array( [ y.after_junkradiation_spin2x, y.after_junkradiation_spin2y, y.after_junkradiation_spin2z ] ) #%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%# # NOTE that sometimes the afterjunk spins may not be stored correctely or at all in the bbh files. Therefore an additional validation step is needed here. S1bool = S1.astype(list).astype(bool) S2bool = S2.astype(list).astype(bool) x.isafterjunk = S1bool.all() and S2bool.all() #%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%@%%# # If the data is to be stored using afterjunk parameters: if x.isafterjunk: #-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-# # Use afterjunk information # msg = cyan('Initial parameters corresponding to the bbh file\'s aftrejunktime will be used to populate metadata.') alert(msg,'bam.py') x.note += msg #-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-# # find puncture data locations puncture_data_1_location = ls( parent( metadata_file_location )+ 'moving_puncture_integrate1*' )[0] puncture_data_2_location = ls( parent( metadata_file_location )+ 'moving_puncture_integrate2*' )[0] # load puncture data puncture_data_1,_ = smart_load( puncture_data_1_location ) puncture_data_2,_ = smart_load( puncture_data_2_location ) # Mask away the initial junk region using the after-junk time given in the bbh metadata after_junkradiation_time = y.after_junkradiation_time after_junkradiation_mask = puncture_data_1[:,-1] > after_junkradiation_time puncture_data_1 = puncture_data_1[ after_junkradiation_mask, : ] puncture_data_2 = puncture_data_2[ after_junkradiation_mask, : ] R1 = array( [ puncture_data_1[0,0],puncture_data_1[0,1],puncture_data_1[0,2], ] ) R2 = array( [ puncture_data_2[0,0],puncture_data_2[0,1],puncture_data_2[0,2], ] ) # NOTE that here the shift is actually contained within puncture_data, and NOTE that the shift is -1 times the velocity P1 = x.m1 * -array( [ puncture_data_1[0,3],puncture_data_1[0,4],puncture_data_1[0,5], ] ) P2 = x.m2 * -array( [ puncture_data_2[0,3],puncture_data_2[0,4],puncture_data_2[0,5], ] ) else: #-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-# # Use initial data information # msg = cyan('Warning:')+yellow(' The afterjunk spins appear to have been stored incorrectly. All parameters according to the initial data (as stored in the bbh files) will be stored. ') warning(msg,'bam.py') x.note += msg #-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-# # Spins S1 = array( [ y.initial_bh_spin1x, y.initial_bh_spin1y, y.initial_bh_spin1z ] ) S2 = array( [ y.initial_bh_spin2x, y.initial_bh_spin2y, y.initial_bh_spin2z ] ) # Momenta P1 = array( [ y.initial_bh_momentum1x, y.initial_bh_momentum1y, y.initial_bh_momentum1z ] ) P2 = array( [ y.initial_bh_momentum2x, y.initial_bh_momentum2y, y.initial_bh_momentum2z ] ) # positions R1 = array( [ y.initial_bh_position1x, y.initial_bh_position1y, y.initial_bh_position1z ] ) R2 = array( [ y.initial_bh_position2x, y.initial_bh_position2y, y.initial_bh_position2z ] ) # Estimate the component angular momenta try: L1 = cross(R1,P1) L2 = cross(R2,P2) except: error('There was an insurmountable problem encountered when trying to load initial binary configuration. For example, %s. The guy at the soup shop says "No soup for you!!"'%red('P1 = '+str(P1))) # Extract and store the initial adm energy x.madm = y.initial_ADM_energy # Store the initial linear momenta x.P1 = P1; x.P2 = P2 x.S1 = S1; x.S2 = S2 # Estimate the initial biary separation (afterjunk), and warn the user if this value is significantly different than the bbh file x.b = norm(R1-R2) # float( y.initial_separation ) if abs( y.initial_separation - norm(R1-R2) ) > 1e-1: msg = cyan('Warning:')+' The estimated after junk binary separation is significantly different than the value stored in the bbh file: '+yellow('x from calculation = %f, x from bbh file=%f' % (norm(R1-R2),y.initial_separation) )+'. The user should understand whether this is an erorr or not.' x.note += msg warning(msg,'bam.py') # Let the use know that the binary separation is possibly bad if x.b<4: msg = cyan('Warning:')+' The estimated initial binary separation is very small. This may be due to an error in the puncture data. You may wish to use the initial binary separation from the bbh file which is %f'%y.initial_separation+'. ' warning(msg,'bam.py') x.note += msg # x.R1 = R1; x.R2 = R2 # x.L1 = L1; x.L2 = L2 # x.valid = True # Load irriducible mass data irr_mass_file_list = ls(parent(metadata_file_location)+'hmass_2*gz') if len(irr_mass_file_list)>0: irr_mass_file = irr_mass_file_list[0] irr_mass_data,mass_status = smart_load(irr_mass_file) else: mass_status = False # Load spin data spin_file_list = ls(parent(metadata_file_location)+'hspin_2*gz') if len(spin_file_list)>0: spin_file = spin_file_list[0] spin_data,spin_status = smart_load(spin_file) else: spin_status = False # Estimate final mass and spin if mass_status and spin_status: Sf = spin_data[-1,1:] irrMf = irr_mass_data[-1,1] x.__irrMf__ = irrMf irrMf_squared = irrMf**2 Sf_squared = norm(Sf)**2 x.mf = sqrt( irrMf_squared + Sf_squared / (4*irrMf_squared) ) / (x.m1+x.m2) # x.Sf = Sf x.Xf = x.Sf/(x.mf*x.mf) x.xf = sign(x.Sf[-1])*norm(x.Sf)/(x.mf*x.mf) else: from numpy import nan x.Sf = nan*array([0.0,0.0,0.0]) x.Xf = nan*array([0.0,0.0,0.0]) x.mf = nan x.xf = nan # return standard_metadata, raw_metadata # There are instances when having the extraction radius rather than the extraction paramer is useful. # Here we define a function which maps between extraction_parameter and extraction radius -- IF such # a map can be constructed. def extraction_map( this, # this may be an nrsc object or an gwylm object (it must have a raw_metadata attribute ) extraction_parameter ): # The extraction parameter that will be converted to radius '''Given an extraction parameter, return an extraction radius''' # NOTE that while some BAM runs have extraction radius information stored in the bbh file in various ways, this does not appear to the case for all simulations. The invariants_modes_r field appears to be more reliable. if 'invariants_modes_r' in this.raw_metadata.__dict__: _map_ = [ float(k) for k in this.raw_metadata.invariants_modes_r ] elif 'extraction_radius' in this.raw_metadata.__dict__: # We start from 1 not 0 here becuase the first element should be a string "finite-radius" _map_ = [ float(k) for k in this.raw_metadata.extraction_radius[1:] ] # extraction_radius = _map_[ extraction_parameter-1 ] return extraction_radius # Estimate a good extraction radius and level for an input scentry object from the BAM catalog def infer_default_level_and_extraction_parameter( this, # An scentry object desired_exraction_radius=None, # (Optional) The desired extraction radius in M, where M is the initial ADM mass verbose=None ): # Toggel to let the people know '''Estimate a good extraction radius and level for an input scentry object from the BAM catalog''' # NOTE that input must be scentry object # Import useful things from glob import glob from numpy import array,argmin # Handle the extraction radius input # NOTE that the default value of 90 is chosen to ensure that there is always a ringdown desired_exraction_radius = 90 if desired_exraction_radius is None else desired_exraction_radius # Find all l=m=2 waveforms search_string = this.simdir() + '/Psi4ModeDecomp/*l2.m2*.gz' file_list = glob( search_string ) # For all results exr,lev,rad = [],[],[] for f in file_list: # Split filename string to find level and extraction parameter f.replace('//','/') f = f.split('/')[-1] parts = f.split('.') # e.g. "psi3col.r6.l6.l2.m2.gz".split('.') exr_,lev_ = int(parts[1][-1]),int(parts[2][-1]) # Also get related extraction radius (M) rad_ = extraction_map( this, exr_ ) # Append lists exr.append(exr_);lev.append(lev_);rad.append(rad_) # NOTE that we will use the extraction radius that is closest
0x0d, 2), (IDX_2, 0x0f, 2), (IDX_2, 0x09, 2), (IDX_2, 0x03, 2), (IDX_2, 0x0d, 2), (IDX_2, 0x0a, 2), (IDX_8, 0x24, 8), (IDX_2, 0x08, 2), (IDX_3, 0x06, 3), ] # -------------------------------------------------------------------------------------------------- if __name__ == "__main__": s = Solver() # our z3 solver x_vars, var2xy = { }, { } # ------------------------------------------------------------------------- # Reconstruct equations # ------------------------------------------------------------------------- print '[+] Reconstructing equations...' for fam, rval, n in equations: # for each equation eq = [] for i in range(n): y, x = fam.pop(0), fam.pop(0) # get coordinates from the right family var = 'x_%d_%d' % (y, x) # create 'x' variable if var not in x_vars: # variable already exists? x_vars[var] = BitVec(var, 32) # create a bitvector variable var2xy[ x_vars[var] ] = (y, x) # bitvector --> coordinates eq.append( x_vars[var] ) # add the equation to the constraint set add = eq[0] for i in range(1, n): add += eq[i] s.add( add == rval ) print '[+]', add, '=', str(rval) for i in range(0, n): # all variables must be different for j in range(i+1, n): s.add( And(eq[i] != eq[j]) ) for _, x in x_vars.iteritems(): # all variables are in range [1, 9] s.add( And(x > 0, x <= 9) ) # ------------------------------------------------------------------------- # Solve equations # ------------------------------------------------------------------------- print '[+] Solving equations...' if s.check() == sat: print '[+] There is a solution!' m = s.model() inp = [ [0 for y in range(20)] for x in range(20)] for _, var in x_vars.iteritems(): y, x = var2xy[var] inp[y][x] = m.evaluate(var).as_long() # extract solution print '[+] Dumping array:' for row in inp: print ''.join( [str(r) for r in row]) print print '[+] Packed array:', pack = '' for row in inp: pack += ''.join( [str(r) for r in row]) print pack else: print '[+] No solution found :(' # -------------------------------------------------------------------------------------------------- ''' ispo@nogirl:~/ctf/2017/hitcon_ctf$ ./sakura_crack.py [+] Reconstructing equations... [+] x_1_6 + x_2_6 = 17 [+] x_1_7 + x_2_7 = 3 [+] x_2_1 + x_3_1 = 3 [+] x_2_2 + x_3_2 + x_4_2 = 24 [+] x_2_4 + x_3_4 = 4 [+] x_1_6 + x_1_7 = 11 [+] x_2_5 + x_3_5 + x_4_5 = 24 [+] x_2_8 + x_3_8 = 17 [+] x_2_9 + x_3_9 = 3 [+] x_2_1 + x_2_2 = 8 [+] x_2_4 + x_2_5 + x_2_6 + x_2_7 + x_2_8 + x_2_9 = 30 [+] x_3_3 + x_4_3 + x_5_3 = 23 [+] x_3_1 + x_3_2 + x_3_3 + x_3_4 + x_3_5 = 26 [+] x_4_6 + x_5_6 = 3 [+] x_3_8 + x_3_9 = 9 [+] x_4_2 + x_4_3 = 17 [+] x_4_5 + x_4_6 = 11 [+] x_5_4 + x_6_4 = 4 [+] x_5_7 + x_6_7 + x_7_7 = 6 [+] x_5_3 + x_5_4 = 9 [+] x_5_6 + x_5_7 = 3 [+] x_6_5 + x_7_5 + x_8_5 = 6 [+] x_6_8 + x_7_8 + x_8_8 = 7 [+] x_7_1 + x_8_1 = 4 [+] x_7_2 + x_8_2 = 16 [+] x_6_4 + x_6_5 = 4 [+] x_6_7 + x_6_8 = 3 [+] x_7_6 + x_8_6 = 16 [+] x_7_9 + x_8_9 = 3 [+] x_7_1 + x_7_2 = 10 [+] x_8_3 + x_9_3 = 3 [+] x_7_5 + x_7_6 + x_7_7 + x_7_8 + x_7_9 = 19 [+] x_8_4 + x_9_4 = 17 [+] x_8_1 + x_8_2 + x_8_3 + x_8_4 + x_8_5 + x_8_6 = 30 [+] x_8_8 + x_8_9 = 3 [+] x_9_3 + x_9_4 = 10 [+] x_1_12 + x_2_12 + x_3_12 + x_4_12 + x_5_12 = 16 [+] x_1_13 + x_2_13 = 4 [+] x_1_18 + x_2_18 = 17 [+] x_1_19 + x_2_19 = 4 [+] x_1_12 + x_1_13 = 5 [+] x_2_14 + x_3_14 = 17 [+] x_2_16 + x_3_16 + x_4_16 + x_5_16 = 10 [+] x_1_18 + x_1_19 = 10 [+] x_2_17 + x_3_17 + x_4_17 + x_5_17 + x_6_17 = 35 [+] x_2_12 + x_2_13 + x_2_14 = 17 [+] x_3_11 + x_4_11 + x_5_11 = 24 [+] x_2_16 + x_2_17 + x_2_18 + x_2_19 = 21 [+] x_3_15 + x_4_15 = 17 [+] x_3_11 + x_3_12 = 8 [+] x_3_14 + x_3_15 + x_3_16 + x_3_17 = 27 [+] x_4_13 + x_5_13 + x_6_13 + x_7_13 + x_8_13 = 16 [+] x_4_11 + x_4_12 + x_4_13 = 18 [+] x_4_15 + x_4_16 + x_4_17 = 15 [+] x_5_14 + x_6_14 + x_7_14 + x_8_14 = 30 [+] x_5_18 + x_6_18 + x_7_18 + x_8_18 + x_9_18 = 16 [+] x_5_19 + x_6_19 + x_7_19 = 6 [+] x_5_11 + x_5_12 + x_5_13 + x_5_14 = 17 [+] x_5_16 + x_5_17 + x_5_18 + x_5_19 = 17 [+] x_6_15 + x_7_15 = 17 [+] x_6_13 + x_6_14 + x_6_15 = 21 [+] x_6_17 + x_6_18 + x_6_19 = 13 [+] x_7_16 + x_8_16 = 3 [+] x_8_11 + x_9_11 = 16 [+] x_7_13 + x_7_14 + x_7_15 + x_7_16 = 21 [+] x_8_12 + x_9_12 = 3 [+] x_7_18 + x_7_19 = 8 [+] x_8_17 + x_9_17 = 16 [+] x_8_11 + x_8_12 + x_8_13 + x_8_14 = 18 [+] x_8_16 + x_8_17 + x_8_18 = 10 [+] x_9_11 + x_9_12 = 11 [+] x_9_17 + x_9_18 = 10 [+] x_11_4 + x_12_4 = 9 [+] x_11_5 + x_12_5 + x_13_5 + x_14_5 = 10 [+] x_11_7 + x_12_7 = 13 [+] x_11_8 + x_12_8 + x_13_8 + x_14_8 + x_15_8 + x_16_8 + x_17_8 + x_18_8 = 44 [+] x_12_2 + x_13_2 + x_14_2 + x_15_2 + x_16_2 + x_17_2 + x_18_2 + x_19_2 = 44 [+] x_11_4 + x_11_5 = 5 [+] x_12_3 + x_13_3 = 6 [+] x_11_7 + x_11_8 = 11 [+] x_12_6 + x_13_6 = 8 [+] x_12_9 + x_13_9 = 5 [+] x_12_2 + x_12_3 + x_12_4 + x_12_5 + x_12_6 + x_12_7 + x_12_8 + x_12_9 = 39 [+] x_13_1 + x_14_1 = 8 [+] x_13_1 + x_13_2 + x_13_3 = 8 [+] x_13_5 + x_13_6 = 4 [+] x_14_4 + x_15_4 = 15 [+] x_13_8 + x_13_9 = 10 [+] x_14_7 + x_15_7 = 9 [+] x_14_1 + x_14_2 = 13 [+] x_14_4 + x_14_5 = 9 [+] x_15_3 + x_16_3 = 11 [+] x_14_7 + x_14_8 = 14 [+] x_15_6 + x_16_6 = 13 [+] x_15_2 + x_15_3 + x_15_4 = 21 [+] x_15_6 + x_15_7 + x_15_8 = 8 [+] x_16_5 + x_17_5 + x_18_5 + x_19_5 = 20 [+] x_16_9 + x_17_9 = 14 [+] x_16_2 + x_16_3 = 12 [+] x_17_1 + x_18_1 = 5 [+] x_16_5 + x_16_6 = 9 [+] x_17_4 + x_18_4 = 10 [+] x_16_8 + x_16_9 = 14 [+] x_17_7 + x_18_7 = 14 [+] x_17_1 + x_17_2 = 12 [+] x_17_4 + x_17_5 = 13 [+] x_18_3 + x_19_3 = 9 [+] x_17_7 + x_17_8 + x_17_9 = 16 [+] x_18_6 + x_19_6 = 6 [+] x_18_1 + x_18_2 + x_18_3 + x_18_4 + x_18_5 + x_18_6 + x_18_7 + x_18_8 = 40 [+] x_19_2 + x_19_3 = 4 [+] x_19_5 + x_19_6 = 11 [+] x_11_12 + x_12_12 + x_13_12 + x_14_12 + x_15_12 = 22 [+] x_11_13 + x_12_13 = 16 [+] x_11_14 + x_12_14 = 7 [+] x_11_16 + x_12_16 + x_13_16 + x_14_16 = 10 [+] x_11_17 + x_12_17 = 11 [+] x_11_12 + x_11_13 + x_11_14 = 10 [+] x_11_16 + x_11_17 = 13 [+] x_12_15 + x_13_15 = 9 [+] x_12_18 + x_13_18 = 10 [+] x_12_19 + x_13_19 = 12 [+] x_12_12 + x_12_13 + x_12_14 + x_12_15 + x_12_16 + x_12_17 + x_12_18 + x_12_19 = 42 [+] x_13_11 + x_14_11 = 17 [+] x_13_11 + x_13_12 = 10 [+] x_13_15 + x_13_16 = 8 [+] x_13_18 + x_13_19 = 10 [+] x_14_17 + x_15_17 = 9 [+] x_14_11 + x_14_12 = 14 [+] x_15_13 + x_16_13 = 8 [+] x_14_16 + x_14_17 = 8 [+] x_15_18 + x_16_18 + x_17_18 + x_18_18 + x_19_18 = 26 [+] x_15_12 + x_15_13 = 8 [+] x_16_14 + x_17_14 + x_18_14 + x_19_14 = 14 [+] x_15_17 + x_15_18 = 9 [+] x_16_19 + x_17_19 = 6 [+] x_17_11 + x_18_11 = 15 [+] x_16_13 + x_16_14 = 7 [+] x_17_12 + x_18_12 = 8 [+] x_17_15 + x_18_15 = 14 [+] x_16_18 + x_16_19 = 6 [+] x_17_11 + x_17_12 = 13 [+] x_17_14 + x_17_15 = 15 [+] x_18_13 + x_19_13 = 9 [+] x_18_16 + x_19_16 = 3 [+] x_17_18 + x_17_19 = 13 [+] x_18_17 + x_19_17 = 10 [+] x_18_11 + x_18_12 + x_18_13 + x_18_14 + x_18_15 + x_18_16 + x_18_17 + x_18_18 = 36 [+] x_19_13 + x_19_14 = 8 [+] x_19_16 + x_19_17 + x_19_18 = 6 [+] Solving equations... [+] There is a solution! [+] Dumping array: 00000000000000000000 00000092000041000091 01703781920063804683 02961800810710983700 00890920000936091500 00081012000821602843 00003101200004980931 03700293410003792062 01928370120712801720 00019000000920000910 00000000000000000000 00001406500027104900 00418357920089641275 01250130730910053037 07607208600860002600 00948051200053000360 00570180860005200051 04804905380850690085 01786329400736152840 00310740000003501230 [+] Packed array:
import tensorflow as tf import tensorflow.contrib.slim as slim from tensorflow.contrib.slim.nets import resnet_v1 import numpy as np class MultiModal(object): def __init__(self, mode, learning_rate=0.0001): self.mode = mode self.learning_rate = learning_rate self.hidden_repr_size = 128 self.no_classes = 19 def modDrop(self, layer, is_training, p_mod=.9, keep_prob=.8): ''' As in Neverova et al. 'ModDrop': std dropout + modality dropping on the input ''' layer = slim.dropout(layer, keep_prob=keep_prob, is_training=is_training) on = tf.cast(tf.random_uniform([1]) - p_mod < 0, tf.float32) return tf.cond(is_training, lambda: on * layer, lambda: layer) def single_stream(self, images, modality, is_training, reuse=False): with tf.variable_scope(modality, reuse=reuse): with slim.arg_scope(resnet_v1.resnet_arg_scope()): _, end_points = resnet_v1.resnet_v1_50( images, self.no_classes, is_training=is_training, reuse=reuse) # last bottleneck before logits net = end_points[modality + '/resnet_v1_50/block4'] if 'autoencoder' in self.mode: return net with tf.variable_scope(modality + '/resnet_v1_50', reuse=reuse): bottleneck = slim.conv2d(net, self.hidden_repr_size, [ 7, 7], padding='VALID', activation_fn=tf.nn.relu, scope='f_repr') net = slim.conv2d(bottleneck, self.no_classes, [ 1, 1], activation_fn=None, scope='_logits_') if ('train_hallucination' in self.mode or 'test_disc' in self.mode or 'train_eccv' in self.mode): return net, bottleneck return net def D(self, features, reuse=False): with tf.variable_scope('discriminator', reuse=reuse): with slim.arg_scope([slim.fully_connected], weights_initializer=tf.contrib.layers.xavier_initializer(), biases_initializer=tf.constant_initializer(0.0)): net = slim.fully_connected( features, 1024, activation_fn=tf.nn.relu, scope='disc_fc1') # ~ if self.mode == 'train_hallucination_p2': res = slim.fully_connected( net, 1024, activation_fn=None, scope='disc_res1') net = tf.nn.relu(res + net) res = slim.fully_connected( net, 1024, activation_fn=None, scope='disc_res2') net = tf.nn.relu(res + net) net = slim.fully_connected( net, 2048, activation_fn=tf.nn.relu, scope='disc_fc2') net = slim.fully_connected( net, 3076, activation_fn=tf.nn.relu, scope='disc_fc3') if self.mode == 'train_hallucination_p2': net = slim.fully_connected( net, self.no_classes + 1, activation_fn=None, scope='disc_prob') elif self.mode == 'train_hallucination': net = slim.fully_connected( net, 1, activation_fn=tf.sigmoid, scope='disc_prob') else: print('Unrecognized mode') return net def decoder(self, features, is_training, reuse=False): # input features from the resnet should be (batch_size, 7, 7, 2048) with tf.variable_scope('decoder', reuse=reuse): with slim.arg_scope([slim.conv2d_transpose], padding='SAME', activation_fn=None, stride=2, weights_initializer=tf.contrib.layers.xavier_initializer()): with slim.arg_scope([slim.batch_norm], decay=0.95, center=True, scale=True, activation_fn=tf.nn.relu, is_training=is_training): # (batch_size, 14, 14, channels) net = slim.conv2d_transpose( features, 1024, [3, 3], scope='conv_transpose1') net = slim.batch_norm(net, scope='bn1') # (batch_size, 28, 28, channels) net = slim.conv2d_transpose( net, 512, [3, 3], scope='conv_transpose2') net = slim.batch_norm(net, scope='bn2') # (batch_size, 56, 56, channels) net = slim.conv2d_transpose( net, 256, [5, 5], scope='conv_transpose3') net = slim.batch_norm(net, scope='bn3') # (batch_size, 112, 112, channels) net = slim.conv2d_transpose( net, 128, [5, 5], scope='conv_transpose4') net = slim.batch_norm(net, scope='bn4') net = slim.conv2d_transpose(net, 3, [ 5, 5], activation_fn=tf.nn.tanh, scope='conv_transpose_out') # (batch_size, 224, 224, 3) # normalize output RGB_MEAN = tf.constant([123.68, 116.779, 103.939], dtype=tf.float32, name='rgb_mean') net = 255 * net - RGB_MEAN return net def build_model(self): if '_rgb' in self.mode or '_depth' in self.mode: modality = self.mode.split('_')[-1] self.images = tf.placeholder( tf.float32, [None, 224, 224, 3], modality + '_images') self.labels = tf.placeholder(tf.int64, [None], 'labels') self.is_training = tf.placeholder(tf.bool, name='is_training') self.logits = self.single_stream( self.images, modality=modality, is_training=self.is_training) self.pred = tf.argmax(tf.squeeze(self.logits), 1) self.correct_pred = tf.equal(self.pred, self.labels) self.accuracy = tf.reduce_mean( tf.cast(self.correct_pred, tf.float32)) if 'train_' in self.mode: # training stuff t_vars = tf.trainable_variables() train_vars = t_vars self.loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits( logits=self.logits, labels=tf.one_hot(self.labels, self.no_classes))) gradients = tf.gradients(self.loss, train_vars) gradients = list(zip(gradients, train_vars)) self.optimizer = tf.train.AdamOptimizer(self.learning_rate) # ~ self.optimizer = tf.train.GradientDescentOptimizer(self.learning_rate) self.train_op = self.optimizer.apply_gradients( grads_and_vars=gradients) # summary stuff loss_summary = tf.summary.scalar( 'classification_loss', self.loss) accuracy_summary = tf.summary.scalar('accuracy', self.accuracy) self.summary_op = tf.summary.merge( [loss_summary, accuracy_summary]) elif 'train_double_stream' in self.mode: self.depth_images = tf.placeholder( tf.float32, [None, 224, 224, 3], 'depth_images') self.rgb_images = tf.placeholder( tf.float32, [None, 224, 224, 3], 'rgb_images') self.labels = tf.placeholder(tf.int64, [None], 'labels') self.is_training = tf.placeholder(tf.bool, name='is_training') if self.mode == 'train_double_stream_moddrop': self.depth_images = self.modDrop( self.depth_images, is_training=self.is_training) self.rgb_images = self.modDrop( self.rgb_images, is_training=self.is_training) self.depth_logits = self.single_stream( self.depth_images, modality='depth', is_training=self.is_training) self.rgb_logits = self.single_stream( self.rgb_images, modality='rgb', is_training=self.is_training) self.logits = (self.depth_logits + self.rgb_logits) / 2. self.pred = tf.argmax(tf.squeeze(self.logits), 1) self.correct_pred = tf.equal(self.pred, self.labels) self.accuracy = tf.reduce_mean( tf.cast(self.correct_pred, tf.float32)) # training stuff t_vars = tf.trainable_variables() train_vars = t_vars self.loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits( logits=self.logits, labels=tf.one_hot(self.labels, self.no_classes))) gradients = tf.gradients(self.loss, train_vars) gradients = list(zip(gradients, train_vars)) self.optimizer = tf.train.AdamOptimizer(self.learning_rate) # ~ self.optimizer = tf.train.GradientDescentOptimizer(self.learning_rate) self.train_op = self.optimizer.apply_gradients( grads_and_vars=gradients) # summary stuff loss_summary = tf.summary.scalar('classification_loss', self.loss) accuracy_summary = tf.summary.scalar('accuracy', self.accuracy) self.summary_op = tf.summary.merge( [loss_summary, accuracy_summary]) elif self.mode == 'test_ensemble_baseline': # not used, just to recycle eval function self.depth_images = tf.placeholder( tf.float32, [None, 224, 224, 3], 'depth_images') self.rgb_images = tf.placeholder( tf.float32, [None, 224, 224, 3], 'rgb_images') self.labels = tf.placeholder(tf.int64, [None], 'labels') self.is_training = tf.placeholder(tf.bool, name='is_training') self.rgb1_logits = self.single_stream( self.rgb_images, modality='rgb1', is_training=self.is_training) self.rgb_logits = self.single_stream( self.rgb_images, modality='rgb', is_training=self.is_training) self.logits = (self.rgb1_logits + self.rgb_logits) / 2. self.pred = tf.argmax(tf.squeeze(self.logits), 1) self.correct_pred = tf.equal(self.pred, self.labels) self.accuracy = tf.reduce_mean( tf.cast(self.correct_pred, tf.float32)) elif 'train_hallucination' in self.mode: # depth & hall streams self.depth_images = tf.placeholder( tf.float32, [None, 224, 224, 3], 'depth_images') self.rgb_images = tf.placeholder( tf.float32, [None, 224, 224, 3], 'rgb_images') self.labels = tf.placeholder(tf.int64, [None], 'labels') self.is_training = tf.placeholder(tf.bool, name='is_training') self.depth_logits, self.depth_features = self.single_stream( self.depth_images, modality='depth', is_training=self.is_training) self.hall_logits, self.hall_features = self.single_stream( self.rgb_images, modality='hall', is_training=self.is_training) # overall acc_hall self.pred = tf.argmax(tf.squeeze(self.hall_logits), 1) self.correct_pred = tf.equal(self.pred, self.labels) self.accuracy = tf.reduce_mean( tf.cast(self.correct_pred, tf.float32)) # ~ #hall_acc # ~ self.hall_pred = tf.argmax(tf.squeeze(self.hall_logits), 1) # ~ self.hall_correct_pred = tf.equal(self.hall_pred, self.labels) # ~ self.hall_accuracy = tf.reduce_mean(tf.cast(self.hall_correct_pred, tf.float32)) # ~ #depth_acc # ~ self.depth_pred = tf.argmax(tf.squeeze(self.depth_logits), 1) # ~ self.depth_correct_pred = tf.equal(self.depth_pred, self.labels) # ~ self.depth_accuracy = tf.reduce_mean(tf.cast(self.depth_correct_pred, tf.float32)) # discriminator self.logits_real = self.D(self.depth_features, reuse=False) self.logits_fake = self.D(self.hall_features, reuse=True) # losses if self.mode == 'train_hallucination': self.d_loss_real = tf.reduce_mean( tf.square(self.logits_real - tf.ones_like(self.logits_real))) self.d_loss_fake = tf.reduce_mean( tf.square(self.logits_fake - tf.zeros_like(self.logits_fake))) self.d_loss = self.d_loss_real + self.d_loss_fake self.g_loss = tf.reduce_mean( tf.square(self.logits_fake - tf.ones_like(self.logits_fake))) # ~ self.d_optimizer = tf.train.GradientDescentOptimizer(self.learning_rate) # ~ self.g_optimizer = tf.train.GradientDescentOptimizer(self.learning_rate) elif self.mode == 'train_hallucination_p2': fake_labels = self.labels + self.no_classes - \ self.labels # the last class is the fake one self.d_loss_real = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=self.logits_real, labels=tf.one_hot(self.labels, self.no_classes + 1))) self.d_loss_fake = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=self.logits_fake, labels=tf.one_hot(fake_labels, self.no_classes + 1))) self.d_loss = self.d_loss_real + self.d_loss_fake self.g_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=self.logits_fake, labels=tf.one_hot(self.labels, self.no_classes + 1))) else: print('Error building model') self.d_optimizer = tf.train.AdamOptimizer(self.learning_rate) self.g_optimizer = tf.train.AdamOptimizer(self.learning_rate) t_vars = tf.trainable_variables() d_vars = [var for var in t_vars if 'discriminator' in var.name] g_vars = [var for var in t_vars if 'hall' in var.name] # train ops with tf.variable_scope('train_op', reuse=False): self.d_train_op = slim.learning.create_train_op( self.d_loss, self.d_optimizer, variables_to_train=d_vars) self.g_train_op = slim.learning.create_train_op( self.g_loss, self.g_optimizer, variables_to_train=g_vars) # summaries d_loss_summary = tf.summary.scalar('d_loss', self.d_loss) g_loss_summary = tf.summary.scalar('g_loss', self.g_loss) # hall_acc_summary = tf.summary.scalar('hall_acc', self.accuracy) self.summary_op = tf.summary.merge( [d_loss_summary, g_loss_summary]) elif self.mode == 'finetune_hallucination': # depth & hall streams # not used, just to recycle eval function self.depth_images = tf.placeholder( tf.float32, [None, 224, 224, 3], 'depth_images') self.rgb_images = tf.placeholder( tf.float32, [None, 224, 224, 3], 'rgb_images') self.labels = tf.placeholder(tf.int64, [None], 'labels') self.is_training = tf.placeholder(tf.bool, name='is_training') self.rgb_logits = self.single_stream( self.rgb_images, modality='rgb', is_training=self.is_training) self.hall_logits = self.single_stream( self.rgb_images, modality='hall', is_training=self.is_training) self.logits = (self.rgb_logits + self.hall_logits) / 2. # overall acc_hall self.pred = tf.argmax(tf.squeeze(self.logits), 1) self.correct_pred = tf.equal(self.pred, self.labels) self.accuracy = tf.reduce_mean( tf.cast(self.correct_pred, tf.float32)) # ~ #hall_acc # ~ self.hall_pred = tf.argmax(tf.squeeze(self.hall_logits), 1) # ~ self.hall_correct_pred = tf.equal(self.hall_pred, self.labels) # ~ self.hall_accuracy = tf.reduce_mean(tf.cast(self.hall_correct_pred, tf.float32)) # ~ #rgb_acc # ~ self.rgb_pred = tf.argmax(tf.squeeze(self.rgb_logits), 1) # ~ self.rgb_correct_pred = tf.equal(self.rgb_pred, self.labels) # ~ self.rgb_accuracy = tf.reduce_mean(tf.cast(self.rgb_correct_pred, tf.float32)) # training stuff t_vars = tf.trainable_variables() train_vars = t_vars self.loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits( logits=self.logits, labels=tf.one_hot(self.labels, self.no_classes))) gradients = tf.gradients(self.loss, train_vars) gradients = list(zip(gradients, train_vars)) self.optimizer = tf.train.AdamOptimizer(self.learning_rate) # ~ self.optimizer = tf.train.GradientDescentOptimizer(self.learning_rate) self.train_op = self.optimizer.apply_gradients( grads_and_vars=gradients) # summary stuff loss_summary = tf.summary.scalar('classification_loss', self.loss) accuracy_summary = tf.summary.scalar('accuracy', self.accuracy) self.summary_op = tf.summary.merge( [loss_summary, accuracy_summary]) elif self.mode == 'test_moddrop': # rgb & blank depth streams self.depth_images = tf.placeholder( tf.float32, [None, 224, 224, 3], 'depth_images') # bad trick to blank out depth.... self.blank_depth = self.depth_images - self.depth_images self.rgb_images = tf.placeholder( tf.float32, [None, 224, 224, 3], 'rgb_images') self.labels = tf.placeholder(tf.int64, [None], 'labels') self.is_training = tf.placeholder(tf.bool, name='is_training') self.rgb_logits = self.single_stream( self.rgb_images, modality='rgb', is_training=self.is_training) # swap between the two self.depth_logits = self.single_stream( self.depth_images, modality='depth', is_training=self.is_training) # ~ self.depth_logits = self.single_stream(self.blank_depth, modality='depth', is_training=self.is_training) # overall acc # swap between the two self.logits = (self.rgb_logits + self.depth_logits) / 2. # ~ self.logits = self.rgb_logits self.pred = tf.argmax(tf.squeeze(self.logits), 1) self.correct_pred = tf.equal(self.pred, self.labels) self.accuracy = tf.reduce_mean( tf.cast(self.correct_pred, tf.float32)) elif self.mode == 'test_hallucination': # rgb & hall streams # not used, just to recycle eval function self.depth_images = tf.placeholder( tf.float32, [None, 224, 224, 3], 'depth_images') self.rgb_images = tf.placeholder( tf.float32, [None, 224, 224, 3], 'rgb_images') self.labels = tf.placeholder(tf.int64, [None], 'labels') self.is_training = tf.placeholder(tf.bool, name='is_training') self.rgb_logits
import numpy as np from skimage.draw import line from scipy.interpolate import splprep, splev from skimage.morphology import skeletonize from scipy import ndimage from scipy.ndimage import map_coordinates import random def extractHRFrontsGen(filename, classes, lonOff, latOff): fronts = [[] for _ in range(len(classes))] currentClass = '' for line in open(filename, 'r'): content = line.split() if(len(content)==0): currentClass = '' continue if(content[0] == '48HR'): break # If we encounter a no front class keyword of the format, reset the currentClass and go to next line if(content[0] in ['$$','TROF', 'LOWS', 'HIGHS']): currentClass = '' continue # if we encounter a front class keyword of the format, reset the currentClass and process the line if(content[0] in ["WARM", "COLD", "OCFNT", "STNRY"]): currentClass = '' for idx, className in enumerate(classes): if(content[0] == className): currentClass = className latCoords = np.zeros(len(content)-1) lonCoords = np.zeros(len(content)-1) # HR has no classification in intensity # csb Latitude is in degrees north # csv Longitude is in degrees west for idx2, coord in enumerate(content[1:]): lat = int(coord[:3])/10 - latOff lon = -int(coord[3:])/10 - lonOff latCoords[idx2] = lat#round((latRes)//2-(1/latStep)*(lat))%(latRes) lonCoords[idx2] = lon#round((1/lonStep)*(lon))%(lonRes) fronts[idx].append(latCoords) fronts[idx].append(lonCoords) # Old class continues elif(currentClass == className): latCoords = np.zeros(len(content)+1) lonCoords = np.zeros(len(content)+1) # set start at end of previous line to leave no gaps latCoords[0] = fronts[idx][-2][-1] lonCoords[0] = fronts[idx][-1][-1] # HR has no classification in intensity # csb Latitude is in degrees north # csv Longitude is in degrees west for idx2, coord in enumerate(content): lat = int(coord[:3])/10 - latOff lon = -int(coord[3:])/10 - lonOff latCoords[idx2+1] = lat#round((latRes)//2-(1/latStep)*(lat))%latRes lonCoords[idx2+1] = lon#round((1/lonStep)*(lon))%lonRes fronts[idx].append(latCoords) fronts[idx].append(lonCoords) return fronts def degToRegularGrid(fronts, res): latRes = (np.abs(180/res[0])+1).astype(np.int32) lonRes = int(360/res[1]) for type in fronts: for frontidx in range(0,len(type),2): for pairIdx in range(len(type[frontidx])): lat = type[frontidx][pairIdx] lon = type[frontidx+1][pairIdx] type[frontidx][pairIdx] = round((latRes)//2+(1/res[0])*(lat))%latRes type[frontidx+1][pairIdx] = round((1/res[1])*(lon))%lonRes return fronts def extractFrontsSelfCreatedNoDuplicates(filename, classes, lonOff, latOff): fronts = [[] for x in range(len(classes))] for line in open(filename, 'r'): content = line.split() if(len(content)==0): continue for idx, className in enumerate(classes): if(content[0] == className): latCoords = []#np.zeros((len(content)-1)//2) lonCoords = []#np.zeros((len(content)-1)//2) # basis change such than lat ranges from 180 (bot) to 0 (top) # and lon ranges from 0 left to 360 right lastLat = -1 lastLon = -1 for idx2 in range(1,len(content),2): lat = float(content[idx2][1:-1]) - latOff lon = float(content[idx2+1][:-1]) - lonOff newLat = lat#round(latRes//2-(1/latStep)*(lat))%latRes newLon = lon#round((1/lonStep)*(lon))%lonRes # Only extract a point if it is different from the previous (do not generate duplicates) if(newLat != lastLat or newLon != lastLon): lastLat = newLat lastLon = newLon latCoords.append(lastLat) lonCoords.append(lastLon) fronts[idx].append(np.array(latCoords)) fronts[idx].append(np.array(lonCoords)) return fronts def extractPolyLines(fronts, lonRes, latRes, thickness = 1): pls = np.zeros((latRes, lonRes, len(fronts)+1)) pls[:,:,0] = np.ones((latRes,lonRes)) # for each type of front detected for idx, ft in enumerate(fronts): # for each individual front of the given type for instance in range(0,len(ft),2): latCoords = ft[instance] lonCoords = ft[instance+1] for idx2 in range(len(lonCoords)-1): possWays = np.array([np.linalg.norm(lonCoords[idx2]-lonCoords[idx2+1]), np.linalg.norm(lonCoords[idx2]-(lonCoords[idx2+1]-lonRes)), np.linalg.norm(lonCoords[idx2]-lonRes-lonCoords[idx2+1])]) pos = np.argmin(possWays) if(pos == 1): lonCoords[idx2+1] -= lonRes elif(pos == 2): lonCoords[idx2] -= lonRes rr, cc = line(int(latCoords[idx2]), int(lonCoords[idx2]), int(latCoords[idx2+1]), int(lonCoords[idx2+1]) ) for lt in range(-(thickness//2),thickness//2+1): pls[rr%latRes,(cc+lt)%lonRes, idx+1] = 1 pls[(rr+lt)%latRes,cc%lonRes, idx+1] = 1 pls[rr%latRes,(cc+lt)%lonRes, 0] = 0 pls[(rr+lt)%latRes,cc%lonRes, 0] = 0 return pls def extractFlatPolyLines(fronts, lonRes, latRes, thickness = 1): image = np.zeros((latRes, lonRes, 1)) # for each type of front detected for idx, ft in enumerate(fronts): # for each individual front of the given type for instance in range(0,len(ft),2): latCoords = ft[instance] lonCoords = ft[instance+1] # for each coordinate pair of an instance for idx2 in range(len(lonCoords)-1): possWays = np.array([np.linalg.norm(lonCoords[idx2]-lonCoords[idx2+1]), np.linalg.norm(lonCoords[idx2]-(lonCoords[idx2+1]-lonRes)), np.linalg.norm(lonCoords[idx2]-lonRes-lonCoords[idx2+1])]) pos = np.argmin(possWays) if(pos == 1): lonCoords[idx2+1] -= lonRes elif(pos == 2): lonCoords[idx2] -= lonRes # extract line from [lat,lon] to [lat,lon] rr, cc = line(int(latCoords[idx2]), int(lonCoords[idx2]), int(latCoords[idx2+1]), int(lonCoords[idx2+1]) ) # idx + 1 as the zero label is used to determine the background sigma = 3 if(sigma > 0): norm_fac = 1/(sigma*np.sqrt(2*np.pi)) sigma2 = sigma*sigma for lt in range(-(thickness//2),1): lt2 = lt*lt value = norm_fac * np.exp(-0.5*lt2/sigma2) print("image value is ", value) image[rr,(cc+lt)%lonRes,0] = value image[(rr+lt)%latRes,cc,0] = value image[rr,(cc-lt)%lonRes,0] = value image[(rr-lt)%latRes,cc,0] = value else: for lt in range(-(thickness//2),thickness//2+1): image[rr,(cc+lt)%lonRes,0] = idx+1 image[(rr+lt)%latRes,cc,0] = idx+1 return image def extractLines(fronts, lonRes, latRes): myLines = [] # for each type of front detected for idx, ft in enumerate(fronts): myLines.append([]) # for each individual front of the given type for instance in range(0,len(ft),2): latCoords = ft[instance] lonCoords = ft[instance+1] # for each coordinate pair of an instance for idx2 in range(len(lonCoords)-1): possWays = np.array([np.linalg.norm(lonCoords[idx2]-lonCoords[idx2+1]), np.linalg.norm(lonCoords[idx2]-(lonCoords[idx2+1]-lonRes)), np.linalg.norm(lonCoords[idx2]-lonRes-lonCoords[idx2+1])]) pos = np.argmin(possWays) if(pos == 1): lonCoords[idx2+1] -= lonRes elif(pos == 2): lonCoords[idx2] -= lonRes # extract line from [lat,lon] to [lat,lon] rr, cc = line(int(latCoords[idx2]), int(lonCoords[idx2]), int(latCoords[idx2+1]), int(lonCoords[idx2+1]) ) myLines[idx].append((rr,cc)) return myLines def drawOffsettedLines(image, line, value, thickness, offset , lonRes, latRes): rr, cc = line for lt in range(-(thickness//2),thickness//2+1): image[(rr+offset[0])%latRes,(cc+lt+offset[1])%lonRes,0] = value image[(rr+lt+offset[0])%latRes,((cc+offset[1])%lonRes),0] = value def cropToRange(image, latRange, lonRange, res): latRange = (90-np.arange(latRange[0], latRange[1], res[0]))/np.abs(res[0]) lonRange = np.arange(lonRange[0], lonRange[1], res[1])/np.abs(res[1]) image = image[latRange.astype(np.int32),:,:] image = image[:,lonRange.astype(np.int32),:] return image class extractFlatPolyLinesInRange(): def __init__ (self, labelGrouping = None, thickness = 1, maxOff = (0,0)): self.labelGrouping = labelGrouping self.fieldToNum = {"w":1,"c":2,"o":3,"s":4} if(self.labelGrouping is None): self.labelGrouping = "wcos" groupStrings = self.labelGrouping.split(',') self.groups = [[self.fieldToNum[member] for member in group] for group in groupStrings] #print("fpl",self.labelGrouping, self.groups) self.thickness = thickness self.maxOff = maxOff def __call__(self,fronts, latRange, lonRange, res): latRes = (np.abs(180/res[0])+1).astype(np.int32) lonRes = int(360/res[1]) # Groupings of different frontal types ftypes = len(self.groups) image = np.zeros((latRes, lonRes, 1)) alllines = extractLines(fronts, lonRes, latRes) # draw the lines for idx, lines in enumerate(alllines,1): for grpidx, group in enumerate(self.groups,1): if idx in group: tgtGrp = grpidx for line in lines: drawOffsettedLines(image, line, tgtGrp, self.thickness, self.maxOff, lonRes, latRes) # crop the image image = cropToRange(image, latRange, lonRange, res) return image class extractCoordsInRange(): def __init__(self, labelGrouping = None): self.labelGrouping = labelGrouping self.fieldToNum = {"w":1,"c":2,"o":3,"s":4} if(self.labelGrouping is None): self.labelGrouping = "wcos" groupStrings = self.labelGrouping.split(',') self.groups = [[self.fieldToNum[member] for member in group] for group in groupStrings] self.thickness = 1 self.maxOff = (0,0) def __call__(self, fronts, latRange, lonRange, res): latRes = (np.abs(180/res[0])+1).astype(np.int32) lonRes = int(360/res[1]) # Groupings of different frontal types ftypes = len(self.groups) allGroupedFronts = [[] for _ in range(ftypes)] for grpidx, group in enumerate(self.groups): for member in group: allGroupedFronts[grpidx] += fronts[member-1] # alls fronts are now grouped # Now: Merge connected Fronts of the same type groupedFronts = [[] for _ in range(ftypes)] closeDistance = 3 for grpIdx in range(len(self.groups)): validList = [True for _ in range(len(allGroupedFronts[grpIdx]))] for i in range(0,len(allGroupedFronts[grpIdx]),2): istart = np.array(allGroupedFronts[grpIdx][i:i+2])[:,0] iend = np.array(allGroupedFronts[grpIdx][i:i+2])[:,-1] # empty ranges should be removed if(np.all(istart == iend)): validList[i] = False validList[i+1] = False continue for j in range(i+2,len(allGroupedFronts[grpIdx]),2): jstart = np.array(allGroupedFronts[grpIdx][j:j+2])[:,0] jend = np.array(allGroupedFronts[grpIdx][j:j+2])[:,-1] if(np.all(jstart == jend)): continue # connection type 1 if(np.linalg.norm(istart-jstart)<closeDistance): allGroupedFronts[grpIdx][j] = np.concatenate((np.flip(allGroupedFronts[grpIdx][i], axis=0), allGroupedFronts[grpIdx][j]), axis = 0) allGroupedFronts[grpIdx][j+1] = np.concatenate((np.flip(allGroupedFronts[grpIdx][i+1], axis=0), allGroupedFronts[grpIdx][j+1]), axis = 0) validList[i] = False validList[i+1] = False break elif(np.linalg.norm(istart - jend)< closeDistance): allGroupedFronts[grpIdx][j] = np.concatenate((allGroupedFronts[grpIdx][j], allGroupedFronts[grpIdx][i]), axis = 0) allGroupedFronts[grpIdx][j+1] = np.concatenate((allGroupedFronts[grpIdx][j+1], allGroupedFronts[grpIdx][i+1]), axis = 0) validList[i] = False validList[i+1] = False break elif(np.linalg.norm(iend - jstart)< closeDistance): allGroupedFronts[grpIdx][j] = np.concatenate((allGroupedFronts[grpIdx][i], allGroupedFronts[grpIdx][j]), axis = 0) allGroupedFronts[grpIdx][j+1] = np.concatenate((allGroupedFronts[grpIdx][i+1], allGroupedFronts[grpIdx][j+1]), axis = 0) validList[i] = False validList[i+1] = False break elif(np.linalg.norm(iend - jend)< closeDistance): allGroupedFronts[grpIdx][j] = np.concatenate((allGroupedFronts[grpIdx][j], np.flip(allGroupedFronts[grpIdx][i], axis = 0)), axis = 0) allGroupedFronts[grpIdx][j+1] = np.concatenate((allGroupedFronts[grpIdx][j+1], np.flip(allGroupedFronts[grpIdx][i+1], axis = 0)), axis = 0) validList[i] = False validList[i+1] = False break for i in range(len(validList)): if(validList[i]): groupedFronts[grpIdx].append(allGroupedFronts[grpIdx][i]) # groupedFronts now hold a concatenation of same Type fronts where two ends were in the same spot # Now remove all lines outside the target range # We define a line outside if both vertices are outside the inspected window # If only one vertex is outside, we move the vertex to the next border pixel along the line allGroups = [] # transform from degree range into pixel range (relative to the whole grid) latRange = (((90-latRange[0])/np.abs(res[0]))%latRes,((90-latRange[1])/np.abs(res[0]))%latRes) lonOff = 0 if(lonRange[0]<0 and lonRange[1]>0): lonOff = -180 lonRange = (((lonRange[0]-lonOff)/res[1])%lonRes, ((lonRange[1]-lonOff)/res[1])%lonRes) for grpidx, frontgroup in enumerate(groupedFronts):
<gh_stars>0 import numpy as np import pandas as pd import xarray as xr import matplotlib import matplotlib.pyplot as plt import matplotlib.animation as animation from matplotlib.lines import Line2D from matplotlib.patches import Patch, Ellipse, Circle from matplotlib.legend_handler import HandlerPatch import matplotlib.colors as colors from matplotlib.ticker import FormatStrFormatter import os import itertools import pf_dynamic_cart as pfc import pf_dynamic_sph as pfs import pf_static_sph as pss import Grid import warnings from scipy import interpolate from scipy.optimize import curve_fit, OptimizeWarning, fsolve from scipy.integrate import simps import scipy.stats as ss from timeit import default_timer as timer from copy import copy from matplotlib.ticker import NullFormatter import colors as col if __name__ == "__main__": # # Initialization # matplotlib.rcParams.update({'font.size': 12, 'text.usetex': True}) mpegWriter = animation.writers['ffmpeg'](fps=2, bitrate=1800) # plt.rcParams['animation.ffmpeg_path'] = '/usr/bin/ffmpeg' # Writer = animation.writers['ffmpeg'] # mpegWriter = Writer(fps=20, metadata=dict(artist='Me'), bitrate=1800) matplotlib.rcParams.update({'font.size': 16, 'font.family': 'Times New Roman', 'text.usetex': True, 'mathtext.fontset': 'dejavuserif'}) higherCutoff = False cutoffRat = 1.0 betterResolution = False resRat = 1.0 # ---- INITIALIZE GRIDS ---- (Lx, Ly, Lz) = (60, 60, 60) (dx, dy, dz) = (0.25, 0.25, 0.25) higherCutoff = False cutoffRat = 1.5 betterResolution = True resRat = 0.5 # (Lx, Ly, Lz) = (40, 40, 40) # (dx, dy, dz) = (0.25, 0.25, 0.25) # (Lx, Ly, Lz) = (21, 21, 21) # (dx, dy, dz) = (0.375, 0.375, 0.375) NGridPoints_cart = (1 + 2 * Lx / dx) * (1 + 2 * Ly / dy) * (1 + 2 * Lz / dz) # NGridPoints_cart = 1.37e5 k_max = ((2 * np.pi / dx)**3 / (4 * np.pi / 3))**(1 / 3) linDimMajor = 0.99 * (k_max * np.sqrt(2) / 2) linDimMinor = linDimMajor massRat = 1.0 IRrat = 1 # git test # Toggle parameters toggleDict = {'Dynamics': 'real', 'Interaction': 'on', 'Grid': 'spherical', 'Coupling': 'twophonon', 'noCSAmp': True} # ---- SET OUTPUT DATA FOLDER ---- datapath = '/Users/kis/Dropbox/VariationalResearch/HarvardOdyssey/genPol_data/NGridPoints_{:.2E}'.format(NGridPoints_cart) animpath = '/Users/kis/Dropbox/VariationalResearch/DataAnalysis/figs' if higherCutoff is True: datapath = datapath + '_cutoffRat_{:.2f}'.format(cutoffRat) if betterResolution is True: datapath = datapath + '_resRat_{:.2f}'.format(resRat) datapath = datapath + '/massRatio={:.1f}'.format(massRat) distdatapath = copy(datapath) if toggleDict['noCSAmp'] is True: datapath = datapath + '_noCSAmp' innerdatapath = datapath + '/redyn_spherical' distdatapath = distdatapath + '/redyn_spherical' if toggleDict['Coupling'] == 'frohlich': innerdatapath = innerdatapath + '_froh_new' distdatapath = distdatapath + '_froh' animpath = animpath + '/rdyn_frohlich' else: animpath = animpath + '/rdyn_twophonon' # figdatapath = '/Users/kis/Dropbox/Apps/Overleaf/Quantum Cherenkov Transition in Bose Polaron Systems/figures/figdump' figdatapath = '/Users/kis/Dropbox/Apps/Overleaf/Cherenkov Polaron Paper pt1/figures/figdump' # # Analysis of Total Dataset aIBi = -10 qds = xr.open_dataset(innerdatapath + '/quench_Dataset_aIBi_{:.2f}.nc'.format(aIBi)) qds_aIBi = qds PVals = qds['P'].values tVals = qds['t'].values n0 = qds.attrs['n0'] gBB = qds.attrs['gBB'] mI = qds.attrs['mI'] mB = qds.attrs['mB'] nu = np.sqrt(n0 * gBB / mB) mc = mI * nu aBB = (mB / (4 * np.pi)) * gBB xi = (8 * np.pi * n0 * aBB)**(-1 / 2) tscale = xi / nu Pnorm = PVals / mc kArray = qds.coords['k'].values k0 = kArray[0] kf = kArray[-1] print(aIBi * xi) print(mI / mB, IRrat) IR_lengthscale = 1 / (k0 / (2 * np.pi)) / xi UV_lengthscale = 1 / (kf / (2 * np.pi)) / xi print(k0, 1 / IR_lengthscale, IR_lengthscale) print(kf, 1 / UV_lengthscale, UV_lengthscale) # aIBi_Vals = np.array([-10.0, -5.0, -2.0, -1.0, -0.75, -0.5]) aIBi_Vals = np.array([-10.0, -5.0, -2.0]) kgrid = Grid.Grid("SPHERICAL_2D") kgrid.initArray_premade('k', qds.coords['k'].values) kgrid.initArray_premade('th', qds.coords['th'].values) kVals = kgrid.getArray('k') wk_Vals = pfs.omegak(kVals, mB, n0, gBB) bdiff = 100 * np.abs(wk_Vals - nu * kVals) / (nu * kVals) kind = np.abs(bdiff - 1).argmin().astype(int) klin = kVals[kind] tlin = 2 * np.pi / (nu * kVals[kind]) tlin_norm = tlin / tscale print(klin, tlin_norm) print(90 / tscale, 100 / tscale) print(kVals[-1], kVals[1] - kVals[0]) print(qds.attrs['k_mag_cutoff'] * xi) print('Np: {0}'.format(qds.coords['k'].values.size * qds.coords['th'].values.size)) # # # # # # ############################################################################################################################# # # # # # # FIG 3 - S(t) CURVES - PRL # # # # # ############################################################################################################################# # red = col.red.ashexstring() # green = col.green.ashexstring() # blue = col.blue.ashexstring() # colorList = [red, green, blue] # matplotlib.rcParams.update({'font.size': 12}) # tailFit = True # logScale = True # PimpData_roll = False; PimpData_rollwin = 2 # longTime = True # # tau = 100; tfCutoff = 90; tfstart = 10 # tau = 300; tfCutoff = 200; tfstart = 10 # aIBi_weak = -10.0 # print(aIBi_weak * xi) # if longTime: # innerdatapath_longtime = datapath + '_longtime/redyn_spherical' # qds_w = xr.open_dataset(innerdatapath_longtime + '/quench_Dataset_aIBi_{:.2f}.nc'.format(aIBi_weak)) # else: # qds_w = xr.open_dataset(innerdatapath + '/quench_Dataset_aIBi_{:.2f}.nc'.format(aIBi_weak)) # tVals = qds_w['t'].values # tsVals = tVals[tVals < tau] # qds_aIBi_ts_w = qds_w.sel(t=tsVals) # Pnorm_des = np.array([0.5, 2.2]) # Pinds = np.zeros(Pnorm_des.size, dtype=int) # for Pn_ind, Pn in enumerate(Pnorm_des): # Pinds[Pn_ind] = np.abs(Pnorm - Pn).argmin().astype(int) # fig, ax = plt.subplots() # for ip, indP in enumerate(Pinds): # P = PVals[indP] # DynOv_w = np.abs(qds_aIBi_ts_w.isel(P=indP)['Real_DynOv'].values + 1j * qds_aIBi_ts_w.isel(P=indP)['Imag_DynOv'].values).real.astype(float) # Pph_ds_w = xr.DataArray(qds_aIBi_ts_w.isel(P=indP)['Pph'].values, coords=[tsVals], dims=['t']) # if PimpData_roll: # Pph_ds_w = Pph_ds_w.rolling(t=PimpData_rollwin, center=True).mean().dropna('t') # vImp_Vals_w = (P - Pph_ds_w.values) / mI # tvImp_Vals_w = Pph_ds_w['t'].values # if tailFit is True: # tfmask = tsVals > tfCutoff # tfVals = tsVals[tfmask] # tfLin = tsVals[tsVals > tfstart] # zD = np.polyfit(np.log(tfVals), np.log(DynOv_w[tfmask]), deg=1) # if longTime: # tfLin_plot = tVals[tVals > tfstart] # else: # tfLin_plot = tfLin # fLinD_plot = np.exp(zD[1]) * tfLin_plot**(zD[0]) # ax.plot(tfLin_plot / tscale, fLinD_plot, 'k--', label='') # if longTime: # DynOv_w_plot = np.abs(qds_w.isel(P=indP)['Real_DynOv'].values + 1j * qds_w.isel(P=indP)['Imag_DynOv'].values).real.astype(float) # ax.plot(tVals / tscale, DynOv_w_plot, label='{:.2f}'.format(P / mc), lw=3, color=colorList[ip]) # else: # ax.plot(tsVals / tscale, DynOv_w, label='{:.2f}'.format(P / mc)) # ax.set_ylabel(r'$|S(t)|$', fontsize=18) # ax.set_xlabel(r'$t/(\xi c^{-1})$', fontsize=18) # if logScale is True: # ax.set_xscale('log') # ax.set_yscale('log') # ax.tick_params(which='both', direction='in', right=True, top=True) # ax.tick_params(which='major', length=6, width=1) # ax.tick_params(which='minor', length=3, width=1) # ax.tick_params(axis='x', which='major', pad=10) # ax.tick_params(axis='both', which='major', labelsize=17) # ax.tick_params(axis='both', which='minor', labelsize=17) # # ax.legend(title=r'$v_{\rm imp}(t_{0}) / c$') # handles, labels = ax.get_legend_handles_labels() # # fig.legend(handles, labels, title=r'$\langle v_{\rm imp}(t_{0})\rangle / c$', ncol=1, loc='center right', bbox_to_anchor=(0.11, 0.38))) # fig.subplots_adjust(left=0.2, bottom=0.175, top=0.98, right=0.98) # fig.legend(handles, labels, title=r'$v_{\rm imp}(t_{0}) / c$', loc=3, bbox_to_anchor=(0.25, 0.25), fontsize=18, title_fontsize=18) # fig.set_size_inches(6, 3.9) # filename = '/Fig3_PRL.pdf' # fig.savefig(figdatapath + filename) # # # # # # # ############################################################################################################################# # # # # # # # FIG SM3 - LETTER # # # # # # ############################################################################################################################# # axl = matplotlib.rcParams['axes.linewidth'] # matplotlib.rcParams['axes.linewidth'] = 0.5 * axl # matplotlib.rcParams.update({'font.size': 12}) # labelsize = 13 # legendsize = 12 # red = col.red.ashexstring() # green = col.green.ashexstring() # blue = col.blue.ashexstring() # colorList = [green, red, blue] # matplotlib.rcParams.update({'font.size': 12}) # # fig, ax = plt.subplots() # fig = plt.figure(constrained_layout=False) # gs = fig.add_gridspec(nrows=1, ncols=1, bottom=0.1, top=0.93, left=0.1, right=0.95) # ax = fig.add_subplot(gs[0]) # qds = xr.open_dataset('/Users/kis/Dropbox/VariationalResearch/HarvardOdyssey/genPol_data/NGridPoints_1.11E+08_resRat_0.50/massRatio=1.0_noCSAmp/redyn_spherical' + '/quench_Dataset_aIBi_{:.2f}.nc'.format(aIBi)) # tVals = qds['t'].values # DynOvExp_NegMask = False # DynOvExp_Cut = False # cut = 1e-4 # consecDetection = True # consecSamples = 10 # def powerfunc(t, a, b): # return b * t**(-1 * a) # tmin = 90 # tmax = 100 # tfVals = tVals[(tVals <= tmax) * (tVals >= tmin)] # rollwin = 1 # aIBi_des = np.array([-10.0, -5.0, -3.5, -2.5, -2.0, -1.75]) # massRat_des = np.array([1.0]) # datapath = '/Users/kis/Dropbox/VariationalResearch/HarvardOdyssey/genPol_data/NGridPoints_1.11E+08_resRat_0.50/massRatio=1.0_noCSAmp' # massRat_des = np.array([0.5, 1.0, 2.0]) # mdatapaths = [] # for mR in massRat_des: # if toggleDict['noCSAmp'] is True: # mdatapaths.append(datapath[0:-11] + '{:.1f}_noCSAmp'.format(mR)) # else: # mdatapaths.append(datapath[0:-3] + '{:.1f}_noCSAmp'.format(mR)) # if toggleDict['Dynamics'] != 'real' or toggleDict['Grid'] != 'spherical' or toggleDict['Coupling'] != 'twophonon': # print('SETTING ERROR') # Pcrit_da = xr.DataArray(np.full((massRat_des.size, aIBi_des.size), np.nan, dtype=float), coords=[massRat_des, aIBi_des], dims=['mRatio', 'aIBi']) # for inda, aIBi in enumerate(aIBi_des): # for indm, mRat in enumerate(massRat_des): # mds = xr.open_dataset(mdatapaths[indm] + '/redyn_spherical/quench_Dataset_aIBi_{:.2f}.nc'.format(aIBi)) # Plen = mds.coords['P'].values.size # Pstart_ind = 0 # PVals = mds.coords['P'].values[Pstart_ind:Plen] # n0 = mds.attrs['n0'] # gBB = mds.attrs['gBB'] # mI = mds.attrs['mI'] # mB = mds.attrs['mB'] # nu = np.sqrt(n0 * gBB / mB) # vI0_Vals = (PVals - mds.isel(t=0, P=np.arange(Pstart_ind, Plen))['Pph'].values) / mI # mds_ts = mds.sel(t=tfVals) # DynOv_Exponents = np.zeros(PVals.size) # DynOv_Constants = np.zeros(PVals.size) # for indP, P in enumerate(PVals): # DynOv_raw = np.abs(mds_ts.isel(P=indP)['Real_DynOv'].values + 1j * mds_ts.isel(P=indP)['Imag_DynOv'].values).real.astype(float) #
of priors. Properly initialized, an object of type "FuFPrior" is callable. On call, it expects a dictionary with the names and values of the parameters as first argument and the name of the parameter under consideration as second argument. The return value should be the (natural) logarithm of the associated prior probability distribution. Parameters ---------- lnp : string, {uniform, jeffreyPS, gaussian, limuniform} uniform : improper uniform prior. limuniform: proper uniform prior. 'lower' and 'upper' define the lower and upper bounds of the interval. jeffreyPS: Jeffreys prior for a Poisson scaling parameter. gaussian: A Gaussian prior. The keyswords 'mu' and 'sig' must be specified to define the mean and standard deviation of the Gaussian. """ def _uniform(self, **kwargs): def uniform(ps, n, **rest): return 0.0 return uniform def _uniformLimit(self, **kwargs): if kwargs["upper"] < kwargs["lower"]: raise(PE.PyAValError("upper needs to be larger than lower", where="FuFPrior (limited uniform distribution)", solution="Adapt upper and lower.")) p = np.log(1.0 / (kwargs["upper"] - kwargs["lower"])) def unilimit(ps, n, **rest): if (ps[n] >= kwargs["lower"]) and (ps[n] <= kwargs["upper"]): return p else: return -np.Inf return unilimit def _jeffreyPoissonScale(self, **kwargs): def jps(ps, n, **rest): return -0.5 * np.log(ps[n]) return jps def _gaussian(self, **kwargs): r = -0.5 * np.log(2.0 * np.pi * kwargs["sig"]**2) def gaussianPrior(ps, n, **rest): return r - (ps[n] - kwargs["mu"])**2 / (2.0 * kwargs["sig"]**2) return gaussianPrior def _callDelegator(self, *args, **kwargs): """ Overwritten by the method to represent __call__ """ raise(PE.PyANotImplemented("_callDelegator is not implemented.")) def __call__(self, *args, **kwargs): return self._callDelegator(*args, **kwargs) def __init__(self, lnp, **kwargs): if isinstance(lnp, six.string_types): if lnp == "uniform": self._callDelegator = self._uniform(**kwargs) elif lnp == "limuniform": self._callDelegator = self._uniformLimit(**kwargs) elif lnp == "jeffreyPS": self._callDelegator = self._jeffreyPoissonScale(**kwargs) elif lnp == "gaussian": self._callDelegator = self._gaussian(**kwargs) else: raise(PE.PyAValError("No prior defined for " + str(lnp), where="FuFPrior", solution="Use either of {uniform, limuniform, jeffreyPS, gaussian}")) class OneDFit(_OndeDFitParBase, _PyMCSampler): """ The base class for fitting objects. Parameters ---------- parList : list of strings Contains the names of the properties defining the model. By default, variables of the same name are used to represent them. Attributes ---------- model : array Used by the `updateModel` method to store the evaluated model for current parameter settings. Holds the best-fit model after a call to a fit method. penaltyFactor : float The penalty factor used to apply penalties for enforcing restrictions (default = 10**20). Notes ----- The purpose of the class The purpose of this class is to provide a convenient interface to various fitting algorithms. It provides the functionality, which allows for parameter fitting, but does not implement a particular model. The class can be used to fit any kind of model, which has to be implemented in a class, which inherits from the *OneDFit* class. Management of fitting parameters The fitting parameters are managed by a *Params* class instance, which provides a wealth of possibilities to influence the behavior of the parameters during the fitting process. This includes deciding whether a particular parameter is supposed to be a free fitting parameter, applying restrictions to limit the valid range for a parameters, or the introduction of functional dependencies among different parameters. Properties versus variable names Each model is described by a number of *properties*, such as, for example, mass and radius. These may be represented by arbitrarily named variables. Normally, it is convenient to name the variables according to the properties they describe, which is the default behavior. However, in some cases, for example if a model consists of two equal subcomponents, such a naming scheme leads to nonunique variable names, which has to be avoided. Now it is necessary to distinguish between the *property* and the describing variable. This class uses the `propMap` dictionary, which maps property name to variable name to manage these situations. Combining fitting objects Often, it can be convenient to combine a number of simple models to form a new, more complex one. The *OneDFit* class allows to combine objects using the arithmetic operators +-\*/, and the power (\*\*) operator. Naming scheme for models For simple models it is convenient to use a one-to-one mapping between property and variable name. It may, however, become necessary to deviate from this scheme, for example, to keep variable names unique. This class supports the following naming scheme: Each model has a "root name", which is supposed to be a concise string describing the model (for instance, "Gaussian"). The root name is attached to the property name using an underscore. If a complex model consists of more than one component with the same root name, a component counter, enclosed in parenthesis, is attached to the variable name. A variable name could, for example, look like: "mu_Gaussian(1)". Methods to be implemented in a model class A valid model class inheriting this interface class must provide the following methods - **__init__()** - The constructor. Defines the set of properties describing the model. - **evaluate(x)** - An *evaluate* method. This method takes a single argument, x, which is an array of points at which the model is to be evaluated. To access the current model parameters, this method should use the set/getitem methods. The return value is an array holding the model evaluated at the points given by `x`. """ def __init__(self, parList, **kwargs): _OndeDFitParBase.__init__(self, parList, **kwargs) # Left and right compo(nent) are necessary for combining models self.leftCompo = None self.rightCompo = None self.penaltyFactor = 1e20 self.model = None self._fufDS = None self.fitResult = None # Determines whether steppar can be used self._stepparEnabled = False def _compoWalk(self): """ TBD """ def walk(c, refs): refs.append(c) if c.leftCompo is not None: walk(c.leftCompo, refs) if c.rightCompo is not None: walk(c.rightCompo, refs) refs = [] walk(self, refs) for c in refs: yield c def renameVariable(self, oldName, newName): """ Change name of variable. Parameters ---------- oldName : string Current variable name. newName : string New variable name. Notes ----- Variable names and properties are not the same. """ # First, walk down the left and right components (for combined models) # and change the variable names. if self.leftCompo is not None: try: self.leftCompo.renameVariable(oldName, newName) except PE.PyAValError: pass if self.rightCompo is not None: try: self.rightCompo.renameVariable(oldName, newName) except PE.PyAValError: pass # Now do the same for the "top" component if newName == oldName: # Ignore identical transformations return if newName in list(self.propMap.values()): raise(PE.PyANameClash("A variable named " + newName + " does already exist.", where="OneDFit::renameVariable")) if newName in self.propMap: if self.propMap[newName] != oldName: raise(PE.PyANameClash("You may not assign a name to a variable, which corresponds to the name of another property.", where="OneDFit::renameVariable")) if not oldName in list(self.propMap.values()): raise(PE.PyAValError("A variable named " + oldName + " does not exist.", where="OneDFit::renameVariable")) for k in six.iterkeys(self.propMap): if self.propMap[k] == oldName: self.propMap[k] = newName break # Tell the parameter class about the renaming (if this did not already happen) if not newName in six.iterkeys(self.pars.parameters()): self.pars.renameParameter(oldName, newName) def _isComposed(self): """ Determines whether current model is "composed". A model is composed, if there are left and right components. Returns True if model is composed and False otherwise. """ return ((self.leftCompo is not None) and (self.rightCompo is not None)) def __combineRemapping(self, left, right): """ This member is essentially a renaming machine. When combining models it can easily happen that two variables share the same name. If the models are combined, unique variable names are needed. This method uses the "root name" and "component counter" to assign new, unique names to the variables. Parameters: - `left`, `right` - Two fitting objects (derived from OneDFit). """ def extendCoDat(coDat, c): ident = c.naming.getRoot() if not ident in coDat: coDat[ident] = [c] else: coDat[ident].append(c) return coDat # Build up a dictionary assigning root to a list of corresponding components coDat = {} for c in left._compoWalk(): extendCoDat(coDat, c) for c in right._compoWalk(): extendCoDat(coDat, c) for k in six.iterkeys(coDat): # Loop over all available root names if len(coDat[k]) == 1: # Only a
<reponame>Zadigo/zineb import copy import os import re from collections import OrderedDict from functools import cached_property from itertools import chain from typing import Dict, Generator, List, NoReturn, Tuple, Union from bs4 import BeautifulSoup from bs4.element import ResultSet, Tag from w3lib.html import safe_url_string from w3lib.url import is_url, urljoin from zineb.extractors._mixins import MultipleRowsMixin from zineb.settings import settings as global_settings from zineb.utils.characters import deep_clean from zineb.utils.decoders import decode_email from zineb.utils.iteration import drop_while, keep_while from zineb.utils.paths import is_path from zineb.utils.urls import replace_urls_suffix class Extractor: """ Base class for every extractor class """ def __enter__(self): raise NotImplementedError('__enter__ should be implemented by the subclasses') def __exit__(self, exc_type, exc_val, exc_tb): return False @cached_property def cached_items(self): """ Return the original list of extracted elements on the page """ raise NotImplementedError(('Subclasses should provide a way' ' to return the orginal data')) def _check_response(self, response): from zineb.http.responses import HTMLResponse if isinstance(response, HTMLResponse): return response.html_page return response def resolve(self, soup: BeautifulSoup) -> NoReturn: raise NotImplementedError(('Provide functionnalities for quickly ' 'extracting items from the HTML page')) class TableExtractor(Extractor): """ Quickly extract a table from an HTML page. By default this class retrieves the first table of the page if no additional information is provided on which table to extract. Parameters ---------- - class_or_id_name (str, Optionnal): the class name of the table. Defaults to None - has_headers (bool, Optionnal): indicates if the table has headers. Defaults to False - processors (func, Optionnal): list of functions to process the final result. Defaults to None Example ------- extractor = TableExtractor() extractor.resolve(BeautifulSoup Object) [[a, b, c], [d, ...]] By indicating if the table has a header, the header values which generally corresponds to the first row will be dropped from the final result. Finally, you can also pass a set of processors that will modifiy the values of each rows according to the logic you would have implemented. def drop_empty_values(value): if value != '': return value extractor = TableExtractor(processors=[drop_empty_values]) extractor.resolve(BeautifulSoup Object) """ def __init__(self, class_or_id_name=None, header_position: int=None, base_url: str=None, processors: List=[]): self._table = None self._raw_rows = [] self.values = [] # self.headers = None self.class_or_id_name = class_or_id_name self.attrs = None self.header_position = header_position self.base_url = base_url self.processors = processors def __enter__(self): return self.get_values def __iter__(self): return iter(self.values) def __repr__(self): return f"{self.__class__.__name__}({self.values})" def __call__(self, soup: BeautifulSoup, **kwargs): """ Resolve another table by calling the instance Args: soup (BeautifulSoup): [description] Returns: [type]: [description] """ self.__init__(**kwargs) self.resolve(soup) return self def __getitem__(self, index): return self.values[index] def __len__(self): return len(self.values) # def __add__(self, table_instance): # if not isinstance(table_instance, TableExtractor): # raise TypeError("The table to add should be an instance of TableExtractor") # return pandas.concat( # [table_instance.get_values, self.get_values], # axis=1 # ) @property def first(self) -> Union[Tag, None]: return self._raw_rows[0] @property def get_values(self): import pandas values = self.values.copy() if self.header_position is not None: values.pop(self.header_position) instance = chain(*values) return pandas.Series(data=list(instance)) @classmethod def as_instance(cls, soup, **kwargs): instance = cls(**kwargs) instance.resolve(soup) return instance @staticmethod def _get_rows(element: Tag): return element.find_all('tr') def _extract_values(self, elements: ResultSet, include_links: bool=False): # if self._raw_rows is not None: rows = [] for row in elements: new_row = [] for column in row: if column != '\n': try: new_row.append(deep_clean(column.text)) except: # TODO: For whatever reasons on the # table header values, colum is directly # the value of the row instead of <tr> # which generates an error. # column = 'A' instead of <tr>A</tr> # if isinstance(column, str): # new_row.append(column or None) new_row.append(None) # Find the first link in the column # so that it can be included in the # row -- This is useful in certain # cases where the first row of a table # sometimes has a link to go to a next # page and it can be interesting to catch # these kinds of links e.g. go to profile... if include_links: link = column.find('a') if link or link is not None: href = link.attrs.get('href') # This is a problematic section especially when used # in a Pipeline. When the link is not a link e.g. -1, # this creates an error that is very difficult to resolve # because the Pipe does not give the full stracktrace. # Also, only append a link if something is detected. if is_url(str(href)) or is_path(str(href)): if self.base_url: href = urljoin(self.base_url, href) link = safe_url_string(href) new_row.extend([href]) # else: # # Sometimes, especially on badly coded websites, # # the url/path in the link comes out in a very # # odd manner e.g Players.asp?Tourn=WU202013&Team=CHN&No=133592 # # which does not allow us to collect # # the url. If the user knows about this and has # # provided a root url, we can use that in an # # attempt to reconcile the path with url # if self.base_url is not None: # url = urljoin(self.base_url, href) # if is_url(url): # link = safe_url_string(url) # new_row.extend([url]) rows.append(new_row) # if self.header_position is not None: # self.headers = rows.pop(self.header_position) return rows # else: # return self._raw_rows # def _run_processors(self, rows): # if self.processors: # processed_rows = [] # for row in rows: # for processor in self.processors: # if not callable(processor): # raise TypeError(f"Processor should be a callable. Got {processor}") # row = [processor(value, index=index) for index, value in enumerate(row)] # processed_rows.append(row) # return processed_rows # return rows def _run_processors(self, rows): new_row = [] processed_rows = [] if self.processors: for row in rows: for processor in self.processors: if not callable(processor): raise TypeError(f"Processor should be a callable. Got {processor}.") if not new_row: new_row = processor(row) else: new_row = processor(new_row) processed_rows.append(new_row) new_row = [] return processed_rows else: return rows def get_row(self, index) -> Tag: try: return self._raw_rows[index] except IndexError: return None def resolve(self, soup: BeautifulSoup, include_links=False, limit_to_columns: list=[]): # Sometimes by accident the "soup" object # could be None, for example when an object # was not found on the page. if soup is None: raise ValueError(("The BeautifulSoup object is None certainly " "because the table you were looking for does not exist on the HTML page. " "Inspect the page and ensure the object exists.")) if self.attrs is None: # There might be a case where the user # does not pass the whole HTML page but just # the section that was parsed beforehand (e.g. the table HTML object) # directly and doing a find on that soup object # return None. In that case, we should just test # if the name equals "table" and continue from there if soup.name == 'table': self._table = soup else: self._table = soup.find('table') if self._table is None: # In case the user passes the table itself # as oppposed to the whole HTML page, check # the elements tag and assign it if soup.name == 'table': self._table = soup else: return self._raw_rows self.attrs = self._table.attrs if self.class_or_id_name is not None and self.attrs: # table_class = self.attrs.get('class', []) table_class = self._table.get_attribute_list('class', []) table_class.extend(self._table.get_attribute_list('id', [])) if self.class_or_id_name not in table_class: self._table = self._table.find_next('table') if self._table is None: return self._raw_rows self.resolve(self._table) # If no table, just return # an empty array instead of # raising an error or showing # an error if self._table is None: return self.values if not self._table.is_empty_element: # Option: 1 tbody = self._table.find('tbody') if tbody is None: self._raw_rows = self._get_rows(self._table) else: if tbody.is_empty_element: self._raw_rows = self._get_rows(self._table) else: self._raw_rows = self._get_rows(tbody) extracted_values = self._extract_values( self._raw_rows, include_links=include_links ) self.values = self._run_processors(extracted_values) # Option: 2 # recomposed_table = [] # thead = self._table.find('thead') # raw_headers = thead.find_all('th') # self._raw_rows = self._get_rows(self._table.find('tbody')) # theader_values = self._extract_values(raw_headers) # tbody_values = self._extract_values(self._raw_rows, include_links=include_links) # recomposed_table.extend(theader_values) # recomposed_table.extend(tbody_values) # self.values = self._run_processors(recomposed_table) return self.values def resolve_to_dataframe(self, soup: BeautifulSoup=None, columns: list=[]): import pandas if soup is not None: self.resolve(soup) if columns: return pandas.DataFrame(data=self.values, columns=columns) return pandas.DataFrame(data=self.values) class MultiTablesExtractor(Extractor): """ Extract all the tables on a given page at once """ def __init__(self, with_attrs: list = [], header_position: int = None): self.with_attrs = with_attrs self.tables_list = OrderedDict() self._raw_tables = None def
<gh_stars>0 from .connections import connections from .search import Search from .exceptions import IllegalOperation class Index(object): def __init__(self, name, using='default'): """ :arg name: name of the index :arg using: connection alias to use, defaults to ``'default'`` """ self._name = name self._doc_types = {} self._mappings = {} self._using = using self._settings = {} self._aliases = {} self._analysis = {} def clone(self, name, using=None): """ Create a copy of the instance with another name or connection alias. Useful for creating multiple indices with shared configuration:: i = Index('base-index') i.settings(number_of_shards=1) i.create() i2 = i.clone('other-index') i2.create() :arg name: name of the index :arg using: connection alias to use, defaults to ``'default'`` """ i = Index(name, using=using or self._using) for attr in ('_doc_types', '_mappings', '_settings', '_aliases', '_analysis'): setattr(i, attr, getattr(self, attr).copy()) return i def _get_connection(self): return connections.get_connection(self._using) connection = property(_get_connection) def mapping(self, mapping): """ Associate a mapping (an instance of :class:`~elasticsearch_dsl.Mapping`) with this index. This means that, when this index is created, it will contain the mappings for the document type defined by those mappings. """ self._mappings[mapping.doc_type] = mapping def doc_type(self, doc_type): """ Associate a :class:`~elasticsearch_dsl.DocType` subclass with an index. This means that, when this index is created, it will contain the mappings for the ``DocType``. If the ``DocType`` class doesn't have a default index yet, name of the ``Index`` instance will be used. Can be used as a decorator:: i = Index('blog') @i.doc_type class Post(DocType): title = Text() # create the index, including Post mappings i.create() # .search() will now return a Search object that will return # properly deserialized Post instances s = i.search() """ name = doc_type._doc_type.name self._doc_types[name] = doc_type self._mappings[name] = doc_type._doc_type.mapping if not doc_type._doc_type.index: doc_type._doc_type.index = self._name return doc_type # to use as decorator??? def settings(self, **kwargs): """ Add settings to the index:: i = Index('i') i.settings(number_of_shards=1, number_of_replicas=0) Multiple calls to ``settings`` will merge the keys, later overriding the earlier. """ self._settings.update(kwargs) return self def aliases(self, **kwargs): """ Add aliases to the index definition:: i = Index('blog-v2') i.aliases(blog={}, published={'filter': Q('term', published=True)}) """ self._aliases.update(kwargs) return self def analyzer(self, analyzer): """ Explicitly add an analyzer to an index. Note that all custom analyzers defined in mappings will also be created. This is useful for search analyzers. Example:: from elasticsearch_dsl import analyzer, tokenizer my_analyzer = analyzer('my_analyzer', tokenizer=tokenizer('trigram', 'nGram', min_gram=3, max_gram=3), filter=['lowercase'] ) i = Index('blog') i.analyzer(my_analyzer) """ d = analyzer.get_analysis_definition() # empty custom analyzer, probably already defined out of our control if not d: return # merge the definition # TODO: conflict detection/resolution for key in d: self._analysis.setdefault(key, {}).update(d[key]) def search(self): """ Rteurn a :class:`~elasticsearch_dsl.Search` object searching over this index and its ``DocType``\s. """ return Search( using=self._using, index=self._name, doc_type=[self._doc_types.get(k, k) for k in self._mappings] ) def _get_mappings(self): analysis, mappings = {}, {} for mapping in self._mappings.values(): mappings.update(mapping.to_dict()) a = mapping._collect_analysis() # merge the definition # TODO: conflict detection/resolution for key in a: analysis.setdefault(key, {}).update(a[key]) return mappings, analysis def to_dict(self): out = {} if self._settings: out['settings'] = self._settings if self._aliases: out['aliases'] = self._aliases mappings, analysis = self._get_mappings() if mappings: out['mappings'] = mappings if analysis or self._analysis: for key in self._analysis: analysis.setdefault(key, {}).update(self._analysis[key]) out.setdefault('settings', {})['analysis'] = analysis return out def create(self, **kwargs): """ Creates the index in elasticsearch. Any additional keyword arguments will be passed to ``Elasticsearch.indices.create`` unchanged. """ self.connection.indices.create(index=self._name, body=self.to_dict(), **kwargs) def is_closed(self): state = self.connection.cluster.state(index=self._name, metric='metadata') return state['metadata']['indices'][self._name]['state'] == 'close' def save(self): """ Sync the index definition with elasticsearch, creating the index if it doesn't exist and updating its settings and mappings if it does. Note some settings and mapping changes cannot be done on an open index (or at all on an existing index) and for those this method will fail with the underlying exception. """ if not self.exists(): return self.create() body = self.to_dict() settings = body.pop('settings', {}) analysis = settings.pop('analysis', None) if analysis: if self.is_closed(): # closed index, update away settings['analysis'] = analysis else: # compare analysis definition, if all analysis objects are # already defined as requested, skip analysis update and # proceed, otherwise raise IllegalOperation existing_analysis = self.get_settings()[self._name]['settings']['index'].get('analysis', {}) if any( existing_analysis.get(section, {}).get(k, None) != analysis[section][k] for section in analysis for k in analysis[section] ): raise IllegalOperation( 'You cannot update analysis configuration on an open index, you need to close index %s first.' % self._name) # try and update the settings if settings: self.put_settings(body=settings) # update the mappings, any conflict in the mappings will result in an # exception mappings = body.pop('mappings', {}) if mappings: for doc_type in mappings: self.put_mapping(doc_type=doc_type, body=mappings[doc_type]) def analyze(self, **kwargs): """ Perform the analysis process on a text and return the tokens breakdown of the text. Any additional keyword arguments will be passed to ``Elasticsearch.indices.analyze`` unchanged. """ return self.connection.indices.analyze(index=self._name, **kwargs) def refresh(self, **kwargs): """ Preforms a refresh operation on the index. Any additional keyword arguments will be passed to ``Elasticsearch.indices.refresh`` unchanged. """ return self.connection.indices.refresh(index=self._name, **kwargs) def flush(self, **kwargs): """ Preforms a flush operation on the index. Any additional keyword arguments will be passed to ``Elasticsearch.indices.flush`` unchanged. """ return self.connection.indices.flush(index=self._name, **kwargs) def get(self, **kwargs): """ The get index API allows to retrieve information about the index. Any additional keyword arguments will be passed to ``Elasticsearch.indices.get`` unchanged. """ return self.connection.indices.get(index=self._name, **kwargs) def open(self, **kwargs): """ Opens the index in elasticsearch. Any additional keyword arguments will be passed to ``Elasticsearch.indices.open`` unchanged. """ return self.connection.indices.open(index=self._name, **kwargs) def close(self, **kwargs): """ Closes the index in elasticsearch. Any additional keyword arguments will be passed to ``Elasticsearch.indices.close`` unchanged. """ return self.connection.indices.close(index=self._name, **kwargs) def delete(self, **kwargs): """ Deletes the index in elasticsearch. Any additional keyword arguments will be passed to ``Elasticsearch.indices.delete`` unchanged. """ return self.connection.indices.delete(index=self._name, **kwargs) def exists(self, **kwargs): """ Returns ``True`` if the index already exists in elasticsearch. Any additional keyword arguments will be passed to ``Elasticsearch.indices.exists`` unchanged. """ return self.connection.indices.exists(index=self._name, **kwargs) def exists_type(self, **kwargs): """ Check if a type/types exists in the index. Any additional keyword arguments will be passed to ``Elasticsearch.indices.exists_type`` unchanged. """ return self.connection.indices.exists_type(index=self._name, **kwargs) def put_mapping(self, **kwargs): """ Register specific mapping definition for a specific type. Any additional keyword arguments will be passed to ``Elasticsearch.indices.put_mapping`` unchanged. """ return self.connection.indices.put_mapping(index=self._name, **kwargs) def get_mapping(self, **kwargs): """ Retrieve specific mapping definition for a specific type. Any additional keyword arguments will be passed to ``Elasticsearch.indices.get_mapping`` unchanged. """ return self.connection.indices.get_mapping(index=self._name, **kwargs) def get_field_mapping(self, **kwargs): """ Retrieve mapping definition of a specific field. Any additional keyword arguments will be passed to ``Elasticsearch.indices.get_field_mapping`` unchanged. """ return self.connection.indices.get_field_mapping(index=self._name, **kwargs) def put_alias(self, **kwargs): """ Create an alias for the index. Any additional keyword arguments will be passed to ``Elasticsearch.indices.put_alias`` unchanged. """ return self.connection.indices.put_alias(index=self._name, **kwargs) def exists_alias(self, **kwargs): """ Return a boolean indicating whether given alias exists for this index. Any additional keyword arguments will be passed to ``Elasticsearch.indices.exists_alias`` unchanged. """ return self.connection.indices.exists_alias(index=self._name, **kwargs) def get_alias(self, **kwargs): """ Retrieve a specified alias. Any additional keyword arguments will be passed to ``Elasticsearch.indices.get_alias`` unchanged. """ return self.connection.indices.get_alias(index=self._name, **kwargs) def delete_alias(self, **kwargs): """ Delete specific alias. Any additional keyword arguments will be passed to ``Elasticsearch.indices.delete_alias`` unchanged. """ return self.connection.indices.delete_alias(index=self._name, **kwargs) def get_settings(self, **kwargs): """ Retrieve settings for the index. Any additional keyword arguments will be passed to ``Elasticsearch.indices.get_settings`` unchanged. """ return self.connection.indices.get_settings(index=self._name, **kwargs) def put_settings(self, **kwargs): """ Change specific index level settings in real time. Any additional keyword arguments will be passed to ``Elasticsearch.indices.put_settings`` unchanged. """ return self.connection.indices.put_settings(index=self._name, **kwargs) def stats(self, **kwargs): """ Retrieve statistics on different operations happening on the index. Any additional keyword arguments will be passed to ``Elasticsearch.indices.stats`` unchanged. """ return self.connection.indices.stats(index=self._name, **kwargs) def segments(self, **kwargs): """ Provide low level segments information that a Lucene index (shard level) is built with. Any additional keyword arguments will be passed to ``Elasticsearch.indices.segments`` unchanged. """ return self.connection.indices.segments(index=self._name, **kwargs) def validate_query(self, **kwargs): """ Validate a potentially expensive query without executing it. Any additional keyword arguments will be passed to ``Elasticsearch.indices.validate_query`` unchanged. """ return self.connection.indices.validate_query(index=self._name, **kwargs) def clear_cache(self, **kwargs): """ Clear all caches or specific cached associated with
<reponame>jayvdb/pypi_librarian # coding=utf-8 """ Build tasks """ from __future__ import division from __future__ import print_function from __future__ import unicode_literals import glob import json import os import subprocess import sys from pynt import task from pyntcontrib import execute, safe_cd from semantic_version import Version PROJECT_NAME = "pypi_librarian" SRC = '.' # for multitargeting PYTHON = "python" IS_DJANGO = False IS_TRAVIS = 'TRAVIS' in os.environ if IS_TRAVIS: PIPENV = "" else: PIPENV = "pipenv run" GEM_FURY = "" CURRENT_HASH = None MAC_LIBS = ":" sys.path.append(os.path.join(os.path.dirname(__file__), '.')) from build_utils import check_is_aws, skip_if_no_change, execute_with_environment, get_versions, execute_get_text, \ run_gitleaks, timed # try to stop the "you are already in a pipenv shell noise. os.environ["PIPENV_VERBOSITY"] = "-1" @task() @skip_if_no_change("git_leaks") @timed() def git_leaks(): run_gitleaks() @task() @skip_if_no_change("git_secrets") @timed() def git_secrets(): """ Install git secrets if possible. """ if check_is_aws(): # no easy way to install git secrets on ubuntu. return if IS_TRAVIS: # nothing is edited on travis return try: commands = ["git secrets --install", "git secrets --register-aws"] for command in commands: cp = subprocess.run(command.split(" "), stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=False, check=True) for stream in [cp.stdout, cp.stderr]: if stream: for line in stream.decode().split("\n"): print("*" + line) except subprocess.CalledProcessError as cpe: print(cpe) installed = False for stream in [cpe.stdout, cpe.stderr]: if stream: for line in stream.decode().split("\n"): print("-" + line) if "commit-msg already exists" in line: print("git secrets installed.") installed = True break if not installed: raise execute(*("git secrets --scan".strip().split(" "))) @task() @timed() def clean(): """ Delete all outputs. Blank until I think of a better way to do this. """ return @task() @skip_if_no_change("formatting") @timed() def formatting(): with safe_cd(SRC): if sys.version_info < (3, 6): print("Black doesn't work on python 2") return command = "{0} black {1}".format(PIPENV, PROJECT_NAME).strip() print(command) result = execute_get_text(command) assert result changed = [] for line in result.split("\n"): if "reformatted " in line: file = line[len("reformatted "):].strip() changed.append(file) for change in changed: command = "git add {0}".format(change) print(command) execute(*(command.split(" "))) @task() @skip_if_no_change("compile_py") @timed() def compile_py(): """ Catch on the worst syntax errors """ with safe_cd(SRC): execute(PYTHON, "-m", "compileall", PROJECT_NAME) @task(formatting, compile_py) @skip_if_no_change("prospector") @timed() def prospector(): """ Catch a few things with a non-strict propector run """ with safe_cd(SRC): command = "{0} prospector {1} --profile {1}_style --pylint-config-file=pylintrc.ini --profile-path=.prospector".format( PIPENV, PROJECT_NAME).strip().replace(" ", " ") print(command) execute(*(command .split(" "))) @task() @skip_if_no_change("detect_secrets") @timed() def detect_secrets(): """ Call detect-secrets tool """ # use # blah blah = "foo" # pragma: whitelist secret # to ignore a false posites errors_file = "detect-secrets-results.txt" print(execute_get_text("pwd")) command = "{0} detect-secrets --scan --base64-limit 4 --exclude .idea|.js|.min.js|.html|.xsd|" \ "lock.json|synced_folders|.scss|Pipfile.lock|" \ "lint.txt|{1}".format(PIPENV, errors_file).strip() print(command) bash_process = subprocess.Popen(command.split(" "), # shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) foo = bash_process.wait() out, err = bash_process.communicate() # wait with open(errors_file, "w+") as file_handle: if len(out) == 0: print("Warning- no output from detect secrets. Happens with git hook, but not from ordinary command line.") return file_handle.write(out.decode()) with open(errors_file) as f: try: data = json.load(f) except Exception: print("Can't read json") exit(-1) return if data["results"]: for result in data["results"]: print(result) print("detect-secrets has discovered high entropy strings, possibly passwords?") exit(-1) @task(compile_py, formatting, prospector) @skip_if_no_change("lint") @timed() def lint(): """ Lint """ with safe_cd(SRC): if os.path.isfile("lint.txt"): execute("rm", "lint.txt") with safe_cd(SRC): if IS_DJANGO: django_bits = "--load-plugins pylint_django " else: django_bits = "" # command += "{0}--rcfile=pylintrc.ini {1}".format(django_bits, PROJECT_NAME).split(" ") command = "{0} pylint {1} --rcfile=pylintrc.ini {2}".format(PIPENV, django_bits, PROJECT_NAME) \ .strip() \ .replace(" ", " ") print(command) command = command.split(" ") # keep out of src tree, causes extraneous change detections lint_output_file_name = "lint.txt" with open(lint_output_file_name, "w") as outfile: env = config_pythonpath() subprocess.call(command, stdout=outfile, env=env) fatal_errors = sum(1 for line in open(lint_output_file_name) if "no-member" in line or \ "no-name-in-module" in line or \ "import-error" in line) if fatal_errors > 0: for line in open(lint_output_file_name): if "no-member" in line or \ "no-name-in-module" in line or \ "import-error" in line: print(line) print("Fatal lint errors : {0}".format(fatal_errors)) exit(-1) cutoff = 100 num_lines = sum(1 for line in open(lint_output_file_name) if "*************" not in line and "---------------------" not in line and "Your code has been rated at" not in line) if num_lines > cutoff: raise TypeError("Too many lines of lint : {0}, max {1}".format(num_lines, cutoff)) @task(lint) @skip_if_no_change("nose_tests") @timed() def nose_tests(): """ Nose tests """ # with safe_cd(SRC): if IS_DJANGO: command = "{0} manage.py test -v 2".format(PYTHON) # We'd expect this to be MAC or a build server. my_env = config_pythonpath() execute_with_environment(command, env=my_env) else: my_env = config_pythonpath() if IS_TRAVIS: command = "{0} -m nose {1}".format(PYTHON, "test").strip() else: command = "{0} {1} -m nose {2}".format(PIPENV, PYTHON, "test").strip() print(command) execute_with_environment(command, env=my_env) def config_pythonpath(): """ Add to PYTHONPATH """ if check_is_aws(): env = "DEV" else: env = "MAC" my_env = {'ENV': env, "PIPENV_VERBOSITY": "-1"} for key, value in os.environ.items(): my_env[key] = value my_env["PYTHONPATH"] = my_env.get("PYTHONPATH", "") + MAC_LIBS print(my_env["PYTHONPATH"]) return my_env @task() @timed() def coverage(): """ Coverage, which is a bit redundant with nose test """ print("Coverage tests always re-run") with safe_cd(SRC): my_env = config_pythonpath() command = "{0} py.test {1} --cov={2} --cov-report html:coverage --cov-fail-under 40 --verbose".format( PIPENV, "test", PROJECT_NAME) execute_with_environment(command, my_env) @task() @skip_if_no_change("docs") @timed() def docs(): """ Docs """ with safe_cd(SRC): with safe_cd("docs"): my_env = config_pythonpath() command = "{0} make html".format(PIPENV).strip() print(command) execute_with_environment(command, env=my_env) @task() @timed() def pip_check(): """ Are packages ok? """ execute("pip", "check") execute("twine", "check") if PIPENV and not IS_TRAVIS: execute("pipenv", "check") execute("safety", "check", "-r", "requirements_dev.txt") @task() @timed() def compile_mark_down(): """ Convert MD to RST """ # print("Not compiling README.md because moderately complex MD makes pypi rst parser puke.") with safe_cd(SRC): if IS_TRAVIS: command = "pandoc --from=markdown --to=rst --output=README.rst README.md".strip().split( " ") else: command = "{0} pandoc --from=markdown --to=rst --output=README.rst README.md".format(PIPENV).strip().split( " ") execute(*(command)) @task() @skip_if_no_change("mypy") @timed() def mypy(): """ Are types ok? """ if sys.version_info < (3, 4): print("Mypy doesn't work on python < 3.4") return if IS_TRAVIS: command = "{0} -m mypy {1} --ignore-missing-imports --strict".format(PYTHON, PROJECT_NAME).strip() else: command = "{0} mypy {1} --ignore-missing-imports --strict".format(PIPENV, PROJECT_NAME).strip() bash_process = subprocess.Popen(command.split(" "), # shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) out, err = bash_process.communicate() # wait mypy_file = "mypy_errors.txt" with open(mypy_file, "w+") as lint_file: lines = out.decode().split("\n") for line in lines: if "build_utils.py" in line: continue if "test.py" in line: continue if "tests.py" in line: continue if "/test_" in line: continue if "/tests_" in line: continue else: lint_file.writelines([line + "\n"]) num_lines = sum(1 for line in open(mypy_file) if line and line.strip(" \n")) max_lines = 25 if num_lines > max_lines: raise TypeError("Too many lines of mypy : {0}, max {1}".format(num_lines, max_lines)) @task() @timed() def pin_dependencies(): """ Create requirement*.txt """ with safe_cd(SRC): execute(*("{0} pipenv_to_requirements".format(PIPENV).strip().split(" "))) @task() @timed() def jiggle_version(): with safe_cd(SRC): command = "{0} jiggle_version here --module={1}".format(PIPENV, PROJECT_NAME).strip() execute(*(command.split(" "))) @task() @timed() def check_setup_py(): # deprecated in favor of twine check. return # if # ValueError: ZIP does not support timestamps before 1980 # then run this to ID # find . -mtime +13700 -ls with safe_cd(SRC): if IS_TRAVIS: execute(PYTHON, *("setup.py check -r -s".split(" "))) else: execute(*("{0} {1} setup.py check -r -s".format(PIPENV, PYTHON).strip().split(" "))) @task() @skip_if_no_change("vulture", expect_files="dead_code.txt") @timed() def dead_code(): """ This also finds code you are working on today! """ with safe_cd(SRC): if IS_TRAVIS: command = "{0} vulture {1}".format(PYTHON, PROJECT_NAME).strip().split() else: command = "{0} vulture {1}".format(PIPENV, PROJECT_NAME).strip().split() output_file_name = "dead_code.txt" with open(output_file_name, "w") as outfile: env = config_pythonpath() subprocess.call(command, stdout=outfile, env=env) cutoff = 1000 print("High cutt off for dead code because not even out of beta") num_lines = sum(1 for line in open(output_file_name) if line) if num_lines > cutoff: print("Too many lines of dead code : {0}, max {1}".format(num_lines, cutoff)) exit(-1) @task(compile_mark_down, formatting, mypy, detect_secrets, git_secrets, dead_code, nose_tests, coverage, compile_py, lint, check_setup_py, pin_dependencies, jiggle_version) # docs ... later @skip_if_no_change("package") @timed() def package(): """ package, but don't upload """ with safe_cd(SRC): for folder in ["build", "dist", PROJECT_NAME + ".egg-info"]: execute("rm", "-rf", folder) with safe_cd(SRC): execute(PYTHON, "setup.py", "sdist", "--formats=gztar,zip") with safe_cd(SRC): execute("twine", "check", "dist/*.gz") @task(package) @timed() def gemfury(): """ Push to gem fury, a repo with private options """ # fury login # fury push dist/*.gz --as=YOUR_ACCT # fury push dist/*.whl --as=YOUR_ACCT cp = subprocess.run(("fury login --as={0}".format(GEM_FURY).split(" ")), stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=False, check=True) print(cp.stdout) about = {} with open(os.path.join(SRC, PROJECT_NAME, "__version__.py")) as f: exec(f.read(), about) version = Version(about["__version__"]) print("Have version : " + str(version)) print("Preparing to upload") if version not in get_versions(): for kind in ["gz", "whl"]: try: files = glob.glob("{0}dist/*.{1}".format(SRC.replace(".", ""), kind)) for file_name in files: cp = subprocess.run(("fury push {0} --as={1}".format(file_name, GEM_FURY).split(" ")), stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=False, check=True) print("result of fury push") for stream in [cp.stdout, cp.stderr]: if stream: for line in stream.decode().split("\n"): print(line) except subprocess.CalledProcessError as cpe: print("result of fury push- got error") for stream in [cp.stdout, cp.stderr]: if stream: for line in
<reponame>Bingyan-Liu/DDSC-NET<filename>evaluation_metrics_for_segmentation.py import numpy as np from scipy import misc from os import path, makedirs from utils.file_management import get_filenames, save_csv_mean_segmentation_performance, save_csv_segmentation_table EPS = 1e-7 def dice_coefficient_1(binary_segmentation, binary_gt_label,binary_segmentation_not,binary_gt_label_not): ''' Compute the Dice coefficient between two binary segmentation. Dice coefficient is defined as here: https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient Input: binary_segmentation: binary 2D numpy array representing the region of interest as segmented by the algorithm binary_gt_label: binary 2D numpy array representing the region of interest as provided in the database binary_segmentation_not:binary_segmentation的取反 用来计算TN binary_gt_label_not:binary_gt_label的取反 用来计算TN Output: dice_value: Dice coefficient between the segmentation and the ground truth ''' # turn all variables to booleans, just in case binary_segmentation = np.asarray(binary_segmentation, dtype=np.bool) binary_gt_label = np.asarray(binary_gt_label, dtype=np.bool) # compute the intersection intersection = np.logical_and(binary_segmentation, binary_gt_label) # compute the TP+FP+FN OR_logical = np.logical_or(binary_segmentation, binary_gt_label) #compute the TN TN = np.logical_and(binary_segmentation_not, binary_gt_label_not) # count the number of True pixels in the binary segmentation segmentation_pixels = float(np.sum(binary_segmentation.flatten())) # same for the ground truth gt_label_pixels = float(np.sum(binary_gt_label.flatten())) # same for the intersection intersection = float(np.sum(intersection.flatten())) #same for the TN TN = float(np.sum(TN.flatten())) # same for the tp+fp+fn OR_logical = float(np.sum(OR_logical.flatten())) # count the number of TN+FP pixels in the gt_label gt_label_not_pixels = float(np.sum(binary_gt_label_not.flatten())) # compute the Dice coefficient dice_value = 2 * intersection / (segmentation_pixels + gt_label_pixels) # compute the JACCARD JACCARD = intersection / OR_logical # compute the accuracy Accuracy = (intersection + TN) / (TN + OR_logical) # compute the Sensitibity Sen = intersection / gt_label_pixels # compute the SPC Spc = TN / gt_label_not_pixels # compute the precision Pre = intersection / segmentation_pixels # return it return dice_value,JACCARD,Accuracy,Sen,Pre def evaluate_binary_segmentation_1(segmentation, gt_label): ''' Compute the evaluation metrics of the REFUGE challenge by comparing the segmentation with the ground truth Input: segmentation: binary 2D numpy array representing the segmentation, with 0: optic cup, 128: optic disc, 255: elsewhere. gt_label: binary 2D numpy array representing the ground truth annotation, with the same format Output: cup_dice: Dice coefficient for the optic cup disc_dice: Dice coefficient for the optic disc cdr: absolute error between the vertical cup to disc ratio as estimated from the segmentation vs. the gt_label, in pixels ''' # compute the Dice coefficient for the optic cup cup_dice,cup_jac,cup_acc,cup_sen,cup_pre = dice_coefficient_1(segmentation==0, gt_label==0,segmentation>0,gt_label>0) # compute the Dice coefficient for the optic disc disc_dice,disc_jac,disc_acc,disc_sen,disc_pre = dice_coefficient_1(segmentation<255, gt_label<255,segmentation==255,gt_label==255) # compute the absolute error between the cup to disc ratio estimated from the segmentation vs. the gt label cdr = absolute_error(vertical_cup_to_disc_ratio(segmentation), vertical_cup_to_disc_ratio(gt_label)) return cup_dice,cup_jac,cup_acc,cup_sen,cup_pre,disc_dice,disc_jac,disc_acc,disc_sen,disc_pre,cdr def dice_coefficient(binary_segmentation, binary_gt_label): ''' Compute the Dice coefficient between two binary segmentation. Dice coefficient is defined as here: https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient Input: binary_segmentation: binary 2D numpy array representing the region of interest as segmented by the algorithm binary_gt_label: binary 2D numpy array representing the region of interest as provided in the database Output: dice_value: Dice coefficient between the segmentation and the ground truth ''' # turn all variables to booleans, just in case binary_segmentation = np.asarray(binary_segmentation, dtype=np.bool) binary_gt_label = np.asarray(binary_gt_label, dtype=np.bool) # compute the intersection intersection = np.logical_and(binary_segmentation, binary_gt_label) # count the number of True pixels in the binary segmentation segmentation_pixels = float(np.sum(binary_segmentation.flatten())) # same for the ground truth gt_label_pixels = float(np.sum(binary_gt_label.flatten())) # same for the intersection intersection = float(np.sum(intersection.flatten())) # compute the Dice coefficient dice_value = 2 * intersection / (segmentation_pixels + gt_label_pixels) # return it return dice_value def vertical_diameter(binary_segmentation): ''' Get the vertical diameter from a binary segmentation. The vertical diameter is defined as the "fattest" area of the binary_segmentation parameter. Input: binary_segmentation: a boolean 2D numpy array representing a region of interest. Output: diameter: the vertical diameter of the structure, defined as the largest diameter between the upper and the lower interfaces ''' # turn the variable to boolean, just in case binary_segmentation = np.asarray(binary_segmentation, dtype=np.bool) # get the sum of the pixels in the vertical axis vertical_axis_diameter = np.sum(binary_segmentation, axis=0) # pick the maximum value diameter = np.max(vertical_axis_diameter) # return it return float(diameter) def vertical_cup_to_disc_ratio(segmentation): ''' Compute the vertical cup-to-disc ratio from a given labelling map. The vertical cup to disc ratio is defined as here: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1722393/pdf/v082p01118.pdf Input: segmentation: binary 2D numpy array representing a segmentation, with 0: optic cup, 128: optic disc, 255: elsewhere. Output: cdr: vertical cup to disc ratio ''' # compute the cup diameter cup_diameter = vertical_diameter(segmentation==0) # compute the disc diameter disc_diameter = vertical_diameter(segmentation<255) return cup_diameter / (disc_diameter + EPS) def absolute_error(predicted, reference): ''' Compute the absolute error between a predicted and a reference outcomes. Input: predicted: a float value representing a predicted outcome reference: a float value representing the reference outcome Output: abs_err: the absolute difference between predicted and reference ''' return abs(predicted - reference) def evaluate_binary_segmentation(segmentation, gt_label): ''' Compute the evaluation metrics of the REFUGE challenge by comparing the segmentation with the ground truth Input: segmentation: binary 2D numpy array representing the segmentation, with 0: optic cup, 128: optic disc, 255: elsewhere. gt_label: binary 2D numpy array representing the ground truth annotation, with the same format Output: cup_dice: Dice coefficient for the optic cup disc_dice: Dice coefficient for the optic disc cdr: absolute error between the vertical cup to disc ratio as estimated from the segmentation vs. the gt_label, in pixels ''' # compute the Dice coefficient for the optic cup cup_dice = dice_coefficient(segmentation==0, gt_label==0) # compute the Dice coefficient for the optic disc disc_dice = dice_coefficient(segmentation<255, gt_label<255) # compute the absolute error between the cup to disc ratio estimated from the segmentation vs. the gt label cdr = absolute_error(vertical_cup_to_disc_ratio(segmentation), vertical_cup_to_disc_ratio(gt_label)) return cup_dice, disc_dice, cdr def generate_table_of_results(image_filenames, segmentation_folder, gt_folder, is_training=False): ''' Generates a table with image_filename, cup_dice, disc_dice and cdr values Input: image_filenames: a list of strings with the names of the images. segmentation_folder: a string representing the full path to the folder where the segmentation files are gt_folder: a string representing the full path to the folder where the ground truth annotation files are is_training: a boolean value indicating if the evaluation is performed on training data or not Output: image_filenames: same as the input parameter cup_dices: a numpy array with the same length than the image_filenames list, with the Dice coefficient for each optic cup disc_dices: a numpy array with the same length than the image_filenames list, with the Dice coefficient for each optic disc ae_cdrs: a numpy array with the same length than the image_filenames list, with the absolute error of the vertical cup to disc ratio ''' # initialize an array for the Dice coefficients of the optic cups cup_dices = np.zeros(len(image_filenames), dtype=np.float) # initialize an array for the Dice coefficients of the optic discs disc_dices = np.zeros(len(image_filenames), dtype=np.float) # initialize an array for the absolute errors of the vertical cup to disc ratios ae_cdrs = np.zeros(len(image_filenames), dtype=np.float) # iterate for each image filename for i in range(len(image_filenames)): # read the segmentation segmentation = misc.imread(path.join(segmentation_folder, image_filenames[i])) if len(segmentation.shape) > 2: segmentation = segmentation[:,:,0] # read the gt if is_training: gt_filename = path.join(gt_folder, 'Glaucoma', image_filenames[i]) if path.exists(gt_filename): gt_label = misc.imread(gt_filename) else: gt_filename = path.join(gt_folder, 'Non-Glaucoma', image_filenames[i]) if path.exists(gt_filename): gt_label = misc.imread(gt_filename) else: raise ValueError('Unable to find {} in your training folder. Make sure that you have the folder organized as provided in our website.'.format(image_filenames[i])) else: gt_filename = path.join(gt_folder, image_filenames[i]) if path.exists(gt_filename): gt_label = misc.imread(gt_filename) else: raise ValueError('Unable to find {} in your ground truth folder. If you are using training data, make sure to use the parameter is_training in True.'.format(image_filenames[i])) # evaluate the results and assign to the corresponding row in the table cup_dices[i], disc_dices[i], ae_cdrs[i] = evaluate_binary_segmentation(segmentation, gt_label) # return the colums of the table return image_filenames, cup_dices, disc_dices, ae_cdrs def get_mean_values_from_table(cup_dices, disc_dices, ae_cdrs): ''' Compute the mean evaluation metrics for the segmentation task. Input: cup_dices: a numpy array with the same length than the image_filenames list, with the Dice coefficient for each optic cup disc_dices: a numpy array with the same length than the image_filenames list, with the Dice coefficient for each optic disc ae_cdrs: a numpy array with the same length than the
= ht.ones((m), split=0) b = ht.ones((j, k), split=1) b[0] = ht.arange(1, k + 1) b[:, 0] = ht.arange(1, j + 1) ret00 = ht.matmul(a, b) ret_comp = ht.array(a_torch @ b_torch, split=None) self.assertTrue(ht.equal(ret00, ret_comp)) self.assertIsInstance(ret00, ht.DNDarray) self.assertEqual(ret00.shape, (k,)) self.assertEqual(ret00.dtype, ht.float) self.assertEqual(ret00.split, 0) # b -> vector a_torch = torch.ones((n, m), device=self.device.torch_device) a_torch[0] = torch.arange(1, m + 1, device=self.device.torch_device) a_torch[:, -1] = torch.arange(1, n + 1, device=self.device.torch_device) b_torch = torch.ones((j), device=self.device.torch_device) # splits None None a = ht.ones((n, m), split=None) b = ht.ones((j), split=None) a[0] = ht.arange(1, m + 1) a[:, -1] = ht.arange(1, n + 1) ret00 = ht.matmul(a, b) ret_comp = ht.array(a_torch @ b_torch, split=None) self.assertTrue(ht.equal(ret00, ret_comp)) self.assertIsInstance(ret00, ht.DNDarray) self.assertEqual(ret00.shape, (n,)) self.assertEqual(ret00.dtype, ht.float) self.assertEqual(ret00.split, None) a = ht.ones((n, m), split=None, dtype=ht.int64) b = ht.ones((j), split=None, dtype=ht.int64) a[0] = ht.arange(1, m + 1, dtype=ht.int64) a[:, -1] = ht.arange(1, n + 1, dtype=ht.int64) ret00 = ht.matmul(a, b) ret_comp = ht.array((a_torch @ b_torch), split=None) self.assertTrue(ht.equal(ret00, ret_comp)) self.assertIsInstance(ret00, ht.DNDarray) self.assertEqual(ret00.shape, (n,)) self.assertEqual(ret00.dtype, ht.int64) self.assertEqual(ret00.split, None) # splits 0 None a = ht.ones((n, m), split=0) b = ht.ones((j), split=None) a[0] = ht.arange(1, m + 1) a[:, -1] = ht.arange(1, n + 1) ret00 = ht.matmul(a, b) ret_comp = ht.array((a_torch @ b_torch), split=None) self.assertTrue(ht.equal(ret00, ret_comp)) self.assertIsInstance(ret00, ht.DNDarray) self.assertEqual(ret00.shape, (n,)) self.assertEqual(ret00.dtype, ht.float) self.assertEqual(ret00.split, 0) a = ht.ones((n, m), split=0, dtype=ht.int64) b = ht.ones((j), split=None, dtype=ht.int64) a[0] = ht.arange(1, m + 1, dtype=ht.int64) a[:, -1] = ht.arange(1, n + 1, dtype=ht.int64) ret00 = ht.matmul(a, b) ret_comp = ht.array((a_torch @ b_torch), split=None) self.assertTrue(ht.equal(ret00, ret_comp)) self.assertIsInstance(ret00, ht.DNDarray) self.assertEqual(ret00.shape, (n,)) self.assertEqual(ret00.dtype, ht.int64) self.assertEqual(ret00.split, 0) # splits 1 None a = ht.ones((n, m), split=1) b = ht.ones((j), split=None) a[0] = ht.arange(1, m + 1) a[:, -1] = ht.arange(1, n + 1) ret00 = ht.matmul(a, b) ret_comp = ht.array((a_torch @ b_torch), split=None) self.assertTrue(ht.equal(ret00, ret_comp)) self.assertIsInstance(ret00, ht.DNDarray) self.assertEqual(ret00.shape, (n,)) self.assertEqual(ret00.dtype, ht.float) self.assertEqual(ret00.split, 0) a = ht.ones((n, m), split=1, dtype=ht.int64) b = ht.ones((j), split=None, dtype=ht.int64) a[0] = ht.arange(1, m + 1, dtype=ht.int64) a[:, -1] = ht.arange(1, n + 1, dtype=ht.int64) ret00 = ht.matmul(a, b) ret_comp = ht.array((a_torch @ b_torch), split=None) self.assertTrue(ht.equal(ret00, ret_comp)) self.assertIsInstance(ret00, ht.DNDarray) self.assertEqual(ret00.shape, (n,)) self.assertEqual(ret00.dtype, ht.int64) self.assertEqual(ret00.split, 0) # splits None 0 a = ht.ones((n, m), split=None) b = ht.ones((j), split=0) a[0] = ht.arange(1, m + 1) a[:, -1] = ht.arange(1, n + 1) ret00 = ht.matmul(a, b) ret_comp = ht.array((a_torch @ b_torch), split=None) self.assertTrue(ht.equal(ret00, ret_comp)) self.assertIsInstance(ret00, ht.DNDarray) self.assertEqual(ret00.shape, (n,)) self.assertEqual(ret00.dtype, ht.float) self.assertEqual(ret00.split, 0) a = ht.ones((n, m), split=None, dtype=ht.int64) b = ht.ones((j), split=0, dtype=ht.int64) a[0] = ht.arange(1, m + 1, dtype=ht.int64) a[:, -1] = ht.arange(1, n + 1, dtype=ht.int64) ret00 = ht.matmul(a, b) ret_comp = ht.array((a_torch @ b_torch), split=None) self.assertTrue(ht.equal(ret00, ret_comp)) self.assertIsInstance(ret00, ht.DNDarray) self.assertEqual(ret00.shape, (n,)) self.assertEqual(ret00.dtype, ht.int64) self.assertEqual(ret00.split, 0) # splits 0 0 a = ht.ones((n, m), split=0) b = ht.ones((j), split=0) a[0] = ht.arange(1, m + 1) a[:, -1] = ht.arange(1, n + 1) ret00 = ht.matmul(a, b) ret_comp = ht.array((a_torch @ b_torch), split=None) self.assertTrue(ht.equal(ret00, ret_comp)) self.assertIsInstance(ret00, ht.DNDarray) self.assertEqual(ret00.shape, (n,)) self.assertEqual(ret00.dtype, ht.float) self.assertEqual(ret00.split, 0) a = ht.ones((n, m), split=0, dtype=ht.int64) b = ht.ones((j), split=0, dtype=ht.int64) a[0] = ht.arange(1, m + 1, dtype=ht.int64) a[:, -1] = ht.arange(1, n + 1, dtype=ht.int64) ret00 = ht.matmul(a, b) ret_comp = ht.array((a_torch @ b_torch), split=None) self.assertTrue(ht.equal(ret00, ret_comp)) self.assertIsInstance(ret00, ht.DNDarray) self.assertEqual(ret00.shape, (n,)) self.assertEqual(ret00.dtype, ht.int64) self.assertEqual(ret00.split, 0) # splits 1 0 a = ht.ones((n, m), split=1) b = ht.ones((j), split=0) a[0] = ht.arange(1, m + 1) a[:, -1] = ht.arange(1, n + 1) ret00 = ht.matmul(a, b) ret_comp = ht.array((a_torch @ b_torch), split=None) self.assertTrue(ht.equal(ret00, ret_comp)) self.assertIsInstance(ret00, ht.DNDarray) self.assertEqual(ret00.shape, (n,)) self.assertEqual(ret00.dtype, ht.float) self.assertEqual(ret00.split, 0) a = ht.ones((n, m), split=1, dtype=ht.int64) b = ht.ones((j), split=0, dtype=ht.int64) a[0] = ht.arange(1, m + 1, dtype=ht.int64) a[:, -1] = ht.arange(1, n + 1, dtype=ht.int64) ret00 = ht.matmul(a, b) ret_comp = ht.array((a_torch @ b_torch), split=None) self.assertTrue(ht.equal(ret00, ret_comp)) self.assertIsInstance(ret00, ht.DNDarray) self.assertEqual(ret00.shape, (n,)) self.assertEqual(ret00.dtype, ht.int64) self.assertEqual(ret00.split, 0) with self.assertRaises(NotImplementedError): a = ht.zeros((3, 3, 3), split=2) b = a.copy() a @ b def test_norm(self): a = ht.arange(9, dtype=ht.float32, split=0) - 4 self.assertTrue( ht.allclose(ht.linalg.norm(a), ht.float32(np.linalg.norm(a.numpy())).item(), atol=1e-5) ) a.resplit_(axis=None) self.assertTrue( ht.allclose(ht.linalg.norm(a), ht.float32(np.linalg.norm(a.numpy())).item(), atol=1e-5) ) b = ht.array([[-4.0, -3.0, -2.0], [-1.0, 0.0, 1.0], [2.0, 3.0, 4.0]], split=0) self.assertTrue( ht.allclose(ht.linalg.norm(b), ht.float32(np.linalg.norm(b.numpy())).item(), atol=1e-5) ) b.resplit_(axis=1) self.assertTrue( ht.allclose(ht.linalg.norm(b), ht.float32(np.linalg.norm(b.numpy())).item(), atol=1e-5) ) with self.assertRaises(TypeError): c = np.arange(9) - 4 ht.linalg.norm(c) def test_outer(self): # test outer, a and b local, different dtypes a = ht.arange(3, dtype=ht.int32) b = ht.arange(8, dtype=ht.float32) ht_outer = ht.outer(a, b, split=None) np_outer = np.outer(a.numpy(), b.numpy()) t_outer = torch.einsum("i,j->ij", a.larray, b.larray) self.assertTrue((ht_outer.numpy() == np_outer).all()) self.assertTrue(ht_outer.larray.dtype is t_outer.dtype) # test outer, a and b distributed, no data on some ranks a_split = ht.arange(3, dtype=ht.float32, split=0) b_split = ht.arange(8, dtype=ht.float32, split=0) ht_outer_split = ht.outer(a_split, b_split, split=None) # a and b split 0, outer split 1 ht_outer_split = ht.outer(a_split, b_split, split=1) self.assertTrue(ht_outer_split.split == 1) self.assertTrue((ht_outer_split.numpy() == np_outer).all()) # a and b distributed, outer split unspecified ht_outer_split = ht.outer(a_split, b_split, split=None) self.assertTrue(ht_outer_split.split == 0) self.assertTrue((ht_outer_split.numpy() == np_outer).all()) # a not distributed, outer.split = 1 ht_outer_split = ht.outer(a, b_split, split=1) self.assertTrue(ht_outer_split.split == 1) self.assertTrue((ht_outer_split.numpy() == np_outer).all()) # b not distributed, outer.split = 0 ht_outer_split = ht.outer(a_split, b, split=0) self.assertTrue(ht_outer_split.split == 0) self.assertTrue((ht_outer_split.numpy() == np_outer).all()) # a_split.ndim > 1 and a.split != 0 a_split_3d = ht.random.randn(3, 3, 3, dtype=ht.float64, split=2) ht_outer_split = ht.outer(a_split_3d, b_split) np_outer_3d = np.outer(a_split_3d.numpy(), b_split.numpy()) self.assertTrue(ht_outer_split.split == 0) self.assertTrue((ht_outer_split.numpy() == np_outer_3d).all()) # write to out buffer ht_out = ht.empty((a.gshape[0], b.gshape[0]), dtype=ht.float32) ht.outer(a, b, out=ht_out) self.assertTrue((ht_out.numpy() == np_outer).all()) ht_out_split = ht.empty((a_split.gshape[0], b_split.gshape[0]), dtype=ht.float32, split=1) ht.outer(a_split, b_split, out=ht_out_split, split=1) self.assertTrue((ht_out_split.numpy() == np_outer).all()) # test exceptions t_a = torch.arange(3) with self.assertRaises(TypeError): ht.outer(t_a, b) np_b = np.arange(8) with self.assertRaises(TypeError): ht.outer(a, np_b) a_0d = ht.array(2.3) with self.assertRaises(RuntimeError): ht.outer(a_0d, b) t_out = torch.empty((a.gshape[0], b.gshape[0]), dtype=torch.float32) with self.assertRaises(TypeError): ht.outer(a, b, out=t_out) ht_out_wrong_shape = ht.empty((7, b.gshape[0]), dtype=ht.float32) with self.assertRaises(ValueError): ht.outer(a, b, out=ht_out_wrong_shape) ht_out_wrong_split = ht.empty( (a_split.gshape[0], b_split.gshape[0]), dtype=ht.float32, split=1 ) with self.assertRaises(ValueError): ht.outer(a_split, b_split, out=ht_out_wrong_split, split=0) def test_projection(self): a = ht.arange(1, 4, dtype=ht.float32, split=None) e1 = ht.array([1, 0, 0], dtype=ht.float32, split=None) self.assertTrue(ht.equal(ht.linalg.projection(a, e1), e1)) a.resplit_(axis=0) self.assertTrue(ht.equal(ht.linalg.projection(a, e1), e1)) e2 = ht.array([0, 1, 0], dtype=ht.float32, split=0) self.assertTrue(ht.equal(ht.linalg.projection(a, e2), e2 * 2)) a = ht.arange(1, 4, dtype=ht.float32, split=None) e3 = ht.array([0, 0, 1], dtype=ht.float32, split=0) self.assertTrue(ht.equal(ht.linalg.projection(a, e3), e3 * 3)) a = np.arange(1, 4) with self.assertRaises(TypeError): ht.linalg.projection(a, e1) a = ht.array([[1], [2], [3]], dtype=ht.float32, split=None) with self.assertRaises(RuntimeError): ht.linalg.projection(a, e1) def test_trace(self): # ------------------------------------------------ # UNDISTRIBUTED CASE # ------------------------------------------------ # CASE 2-D # ------------------------------------------------ x = ht.arange(24).reshape((6, 4)) x_np = x.numpy() dtype = ht.float32 result = ht.trace(x) result_np = np.trace(x_np) self.assertIsInstance(result, int) self.assertEqual(result, result_np) # direct call result = x.trace() self.assertIsInstance(result, int) self.assertEqual(result, result_np) # input = array_like (other than DNDarray) result = ht.trace(x.tolist()) self.assertIsInstance(result, int) self.assertEqual(result, result_np) # dtype result = ht.trace(x, dtype=dtype) result_np = np.trace(x_np, dtype=np.float32) self.assertIsInstance(result, float) self.assertEqual(result, result_np) # offset != 0 # negative offset o = -(x.gshape[0] - 1) result = ht.trace(x, offset=o) result_np = np.trace(x_np, offset=o) self.assertIsInstance(result, int) self.assertEqual(result, result_np) # positive offset o = x.gshape[1] - 1 result = ht.trace(x, offset=o) result_np = np.trace(x_np, offset=o) self.assertIsInstance(result, int) self.assertEqual(result, result_np) # offset resulting into empty array # negative o = -x.gshape[0] result = ht.trace(x, offset=o) result_np = np.trace(x_np, offset=o) self.assertIsInstance(result, int) self.assertEqual(result, 0) self.assertEqual(result, result_np) # positive o = x.gshape[1] result = ht.trace(x, offset=o) result_np = np.trace(x_np, offset=o) self.assertIsInstance(result, int) self.assertEqual(result, 0) self.assertEqual(result, result_np) # Exceptions with self.assertRaises(TypeError): x = "[[1, 2], [3, 4]]" ht.trace(x) with self.assertRaises(ValueError): x = ht.arange(24) ht.trace(x) with self.assertRaises(TypeError): x = ht.arange(24).reshape((6, 4)) ht.trace(x, axis1=0.2) with self.assertRaises(TypeError): ht.trace(x, axis2=1.4) with self.assertRaises(ValueError): ht.trace(x, axis1=2) with self.assertRaises(ValueError): ht.trace(x, axis2=2) with self.assertRaises(TypeError): ht.trace(x, offset=1.2) with self.assertRaises(ValueError): ht.trace(x, axis1=1, axis2=1) with self.assertRaises(ValueError): ht.trace(x, dtype="ht.int64") with self.assertRaises(TypeError): ht.trace(x, out=[]) with self.assertRaises(ValueError): # As result is scalar out = ht.array([]) ht.trace(x, out=out) with self.assertRaises(ValueError): ht.trace(x, dtype="ht.float32") # ------------------------------------------------ # CASE > 2-D (4D) # ------------------------------------------------ x = ht.arange(24).reshape((1, 2, 3, 4)) x_np = x.numpy() out = ht.empty((3, 4)) axis1 = 1 axis2 = 3 result = ht.trace(x) result_np = np.trace(x_np) self.assertIsInstance(result, ht.DNDarray)
####################################################################### # This file is part of Pyblosxom. # # Copyright (C) 2003-2011 by the Pyblosxom team. See AUTHORS. # # Pyblosxom is distributed under the MIT license. See the file # LICENSE for distribution details. ####################################################################### """ This module contains the base class for all the Entry classes. The EntryBase class is essentially the API for entries in Pyblosxom. Reading through the comments for this class will walk you through building your own EntryBase derivatives. This module also holds a generic generate_entry function which will generate a BaseEntry with data that you provide for it. """ import time import locale from Pyblosxom import tools BIGNUM = 2000000000 CONTENT_KEY = "body" DOESNOTEXIST = "THISKEYDOESNOTEXIST" DOESNOTEXIST2 = "THISKEYDOESNOTEXIST2" class EntryBase: """ EntryBase is the base class for all the Entry classes. Each instance of an Entry class represents a single entry in the weblog, whether it came from a file, or a database, or even somewhere off the InterWeeb. EntryBase derivatives are dict-like except for one key difference: when doing ``__getitem__`` on a nonexistent key, it returns None by default. For example: >>> entry = EntryBase('some fake request') >>> None == entry["some_nonexistent_key"] True """ def __init__(self, request): self._data = "" self._metadata = dict(tools.STANDARD_FILTERS) self._id = "" self._mtime = BIGNUM self._request = request def __repr__(self): """ Returns a friendly debug-able representation of self. Useful to know on what entry pyblosxom fails on you (though unlikely) :returns: Identifiable representation of object """ return "<Entry instance: %s>\n" % self.getId() def get_id(self): """ This should return an id that's unique enough for caching purposes. Override this. :returns: string id """ return self._id getId = tools.deprecated_function(get_id) def get_data(self): """ Returns the data string. This method should be overridden to provide from pulling the data from other places. Override this. :returns: the data as a string """ return str(self._data) getData = tools.deprecated_function(get_data) def set_data(self, data): """ Sets the data content for this entry. If you are not creating the entry, then you have no right to set the data of the entry. Doing so could be hazardous depending on what EntryBase subclass you're dealing with. Override this. :param data: the data """ self._data = data setData = tools.deprecated_function(set_data) def get_metadata(self, key, default=None): """ Returns a given piece of metadata. Override this. :param key: the key being sought :param default: the default to return if the key does not exist :return: either the default (if the key did not exist) or the value of the key in the metadata dict """ return self._metadata.get(key, default) getMetadata = tools.deprecated_function(get_metadata) def set_metadata(self, key, value): """ Sets a key/value pair in the metadata dict. Override this. :param key: the key string :param value: the value string """ self._metadata[key] = value setMetadata = tools.deprecated_function(set_metadata) def get_metadata_keys(self): """ Returns the list of keys for which we have values in our stored metadata. .. Note:: This list gets modified later downstream. If you cache your list of metadata keys, then this method should return a copy of that list and not the list itself lest it get adjusted. Override this. :returns: list of metadata keys """ return self._metadata.keys() getMetadataKeys = tools.deprecated_function(get_metadata_keys) def get_from_cache(self, entryid): """ Retrieves information from the cache that pertains to this specific entryid. This is a helper method--call this to get data from the cache. Do not override it. :param entryid: a unique key for the information you're retrieving :returns: dict with the values or None if there's nothing for that entryid """ cache = tools.get_cache(self._request) # cache.__getitem__ returns None if the id isn't there if cache.has_key(entryid): return cache[entryid] return None getFromCache = tools.deprecated_function(get_from_cache) def add_to_cache(self, entryid, data): """ Over-writes the cached dict for key entryid with the data dict. This is a helper method--call this to add data to the cache. Do not override it. :param entryid: a unique key for the information you're storing :param data: the data to store--this should probably be a dict """ mycache = tools.get_cache(self._request) if mycache: # This could be extended to cover all keys used by # set_time(), but this is the key most likely to turn # up in metadata. If #date is not blocked from caching # here, the templates will use the raw string value # from the user metadata, rather than the value # derived from mtime. if data.has_key('date'): data.pop('date') mycache[entryid] = data addToCache = tools.deprecated_function(add_to_cache) def set_time(self, timetuple): """ This takes in a given time tuple and sets all the magic metadata variables we have according to the items in the time tuple. :param timetuple: the timetuple to use to set the data with--this is the same thing as the mtime/atime portions of an os.stat. This time is expected to be local time, not UTC. """ self['timetuple'] = timetuple self._mtime = time.mktime(timetuple) gmtimetuple = time.gmtime(self._mtime) self['mtime'] = self._mtime self['ti'] = time.strftime('%H:%M', timetuple) self['mo'] = time.strftime('%b', timetuple) self['mo_num'] = time.strftime('%m', timetuple) self['da'] = time.strftime('%d', timetuple) self['dw'] = time.strftime('%A', timetuple) self['yr'] = time.strftime('%Y', timetuple) self['fulltime'] = time.strftime('%Y%m%d%H%M%S', timetuple) self['date'] = time.strftime('%a, %d %b %Y', timetuple) # YYYY-MM-DDThh:mm:ssZ self['w3cdate'] = time.strftime('%Y-%m-%dT%H:%M:%SZ', gmtimetuple) # Temporarily disable the set locale, so RFC-compliant date is # really RFC-compliant: directives %a and %b are locale # dependent. Technically, we're after english locale, but # only 'C' locale is guaranteed to exist. loc = locale.getlocale(locale.LC_ALL) locale.setlocale(locale.LC_ALL, 'C') self['rfc822date'] = time.strftime('%a, %d %b %Y %H:%M GMT', \ gmtimetuple) # set the locale back locale.setlocale(locale.LC_ALL, loc) setTime = tools.deprecated_function(set_time) # everything below this point involves convenience functions # that work with the above functions. def __getitem__(self, key, default=None): """ Retrieves an item from this dict based on the key given. If the item does not exist, then we return the default. If the item is ``CONTENT_KEY``, it calls ``get_data``, otherwise it calls ``get_metadata``. Don't override this. .. Warning:: There's no reason to override this--override ``get_data`` and ``get_metadata`` instead. :param key: the key being sought :param default: the default to return if the key does not exist :returns: the value of ``get_metadata`` or ``get_data`` """ if key == CONTENT_KEY: return self.get_data() return self.get_metadata(key, default) def get(self, key, default=None): """ Retrieves an item from the internal dict based on the key given. All this does is turn aroun and call ``__getitem__``. .. Warning:: There's no reason to override this--override ``get_data`` and ``get_metadata`` instead. :param key: the key being sought :param default: the default to return if the key does not exist :returns: the value of ``get_metadata`` or ``get_data`` (through ``__getitem__``) """ return self.__getitem__(key, default) def __setitem__(self, key, value): """ Sets the metadata[key] to the given value. This uses ``set_data`` and ``set_metadata``. Don't override this. :param key: the given key name :param value: the given value """ if key == CONTENT_KEY: self.set_data(value) else: self.set_metadata(key, value) def update(self, newdict): """ Updates the contents in this entry with the contents in the dict. It does so by calling ``set_data`` and ``set_metadata``. .. Warning:: There's no reason to override this--override ``set_data`` and ``set_metadata`` instead. :param newdict: the dict we're updating this one with """ for mem in newdict.keys(): if mem == CONTENT_KEY: self.set_data(newdict[mem]) else: self.set_metadata(mem, newdict[mem]) def has_key(self, key): """ Returns whether a given key is in the metadata dict. If the key is the ``CONTENT_KEY``, then we automatically return true. .. Warning:: There's no reason to override this--override ``get_metadata`` instead. :param key: the key to check in the metadata dict for :returns: whether (True) or not (False) the key exists """ if key == CONTENT_KEY or key == CONTENT_KEY + "_escaped": return True value = self.get_metadata(key, DOESNOTEXIST) if value == DOESNOTEXIST: value = self.get_metadata(key, DOESNOTEXIST2) if value == DOESNOTEXIST2: return False return True def keys(self): """ Returns a list of the keys that can be accessed through ``__getitem__``. .. Warning:: There's no reason to override this--override ``get_metadata_keys`` instead. :returns: list of key names """ keys = self.get_metadata_keys() if CONTENT_KEY not in keys: keys.append(CONTENT_KEY) return keys def generate_entry(request, properties, data, mtime=None): """ Takes a properties dict and a data
<gh_stars>0 # Copyright 2018 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """PBA & AutoAugment Train/Eval module. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import contextlib import os import time import numpy as np import tensorflow as tf import pba.data_utils as data_utils import pba.helper_utils as helper_utils from pba.bert_model import build_bert_model from pba.bert_optimization import create_optimizer from pba.augmentation_utils import ContextNeighborStorage import six import json import re import collections class BertConfig(object): """Configuration for `BertModel`.""" def __init__(self, vocab_size, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=32, type_vocab_size=16, initializer_range=0.02): """Constructs BertConfig. Args: vocab_size: Vocabulary size of `inputs_ids` in `BertModel`. hidden_size: Size of the encoder layers and the pooler layer. num_hidden_layers: Number of hidden layers in the Transformer encoder. num_attention_heads: Number of attention heads for each attention layer in the Transformer encoder. intermediate_size: The size of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act: The non-linear activation function (function or string) in the encoder and pooler. hidden_dropout_prob: The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob: The dropout ratio for the attention probabilities. max_position_embeddings: The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size: The vocabulary size of the `token_type_ids` passed into `BertModel`. initializer_range: The sttdev of the truncated_normal_initializer for initializing all weight matrices. """ self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.current_learning_rate = None def from_dict(json_object): """Constructs a `BertConfig` from a Python dictionary of parameters.""" config = BertConfig(vocab_size=None) for (key, value) in six.iteritems(json_object): config.__dict__[key] = value return config def config_from_json_file(json_file, model_dropout): """Constructs a `BertConfig` from a json file of parameters.""" with open(json_file, "r") as reader: text = reader.read() config = from_dict(json.loads(text)) if model_dropout != -1: config.hidden_dropout_prob = model_dropout config.attention_probs_dropout_prob = model_dropout return config def build_model(input_ids, input_mask, token_type_ids, num_classes, is_training, hparams, noise_vector): """Constructs the vision model being trained/evaled. Args: inputs: input features being fed to the model build built. num_classes: number of output classes being predicted. is_training: is the model training or not. hparams: additional hyperparameters associated with the model. Returns: Returns: The logits of the model. """ if hparams.model_name == 'bert': bert_config_file = os.path.join(hparams.data_path + 'pretrained_models/bert_base/bert_config.json') bert_config = config_from_json_file(bert_config_file,-1) logits, embd_output = build_bert_model(input_ids, input_mask, token_type_ids, num_classes, is_training, bert_config, noise_vector) return logits, embd_output def get_assignment_map_from_checkpoint(tvars, init_checkpoint): """Compute the union of the current variables and checkpoint variables.""" assignment_map = {} initialized_variable_names = {} name_to_variable = collections.OrderedDict() for var in tvars: name = var.name m = re.match("^(.*):\\d+$", name) if m is not None: name = m.group(1) name_to_variable[name] = var init_vars = tf.train.list_variables(init_checkpoint) assignment_map = collections.OrderedDict() for x in init_vars: (name, var) = (x[0], x[1]) if name not in name_to_variable: continue assignment_map[name] = name_to_variable[name] initialized_variable_names[name] = 1 initialized_variable_names[name + ":0"] = 1 return (assignment_map, initialized_variable_names) class Model(object): """Builds an model.""" def __init__(self, hparams, num_classes, text_size): self.hparams = hparams self.num_classes = num_classes self.text_size = text_size def build(self, mode): """Construct the model.""" assert mode in ['train', 'eval'] self.mode = mode self._setup_misc(mode) self._setup_texts_and_labels(self.hparams.dataset) # --- create placeholders self._build_graph(self.input_ids, self.input_mask, self.token_type_ids, self.labels, mode, self.noise_vector) def _setup_misc(self, mode): """Sets up miscellaneous in the model constructor.""" self.lr_rate_ph = self.hparams.lr self.current_learning_rate = self.lr_rate_ph self.batch_size = self.hparams.batch_size self.dataset = self.hparams.dataset self.max_seq_length = self.hparams.max_seq_length self.epoch_accuracy = [] self.matthews_corr = [] self.loss_history = [] if mode == 'eval': self.batch_size = self.hparams.test_batch_size def _setup_texts_and_labels(self, dataset): """Sets up text and label placeholders for the model.""" self.input_ids = tf.placeholder(tf.int32, [None, self.text_size]) self.input_mask = tf.placeholder(tf.int32,[None, self.text_size]) self.token_type_ids = tf.placeholder(tf.int32, [None, self.text_size]) if self.num_classes < 100: # --- classification self.labels = tf.placeholder(tf.int32, [None, self.num_classes]) else: # --- regression self.labels = tf.placeholder(tf.float32, [None, 1]) self.noise_vector = tf.placeholder(tf.float32, [None, None, 768]) def assign_epoch(self, session, epoch_value): session.run( self._epoch_update, feed_dict={self._new_epoch: epoch_value}) def _build_graph(self, input_ids, input_mask, token_type_ids, labels, mode, noise_vector): """Constructs the TF graph for the model. Args: texts: A 2-D text Tensor labels: A 2-D labels Tensor. mode: string indicating training mode ( e.g., 'train', 'valid', 'test'). """ is_training = 'train' in mode if is_training: self.global_step = tf.train.get_or_create_global_step() # texts is placeholder set in _setup_texts_and_labels(data set) logits, embd_output = build_model(input_ids, input_mask, token_type_ids, self.num_classes, is_training, self.hparams, noise_vector) self.embedding_output = embd_output if self.dataset == 'stsb': self.predictions = logits self.cost = tf.reduce_mean(tf.square(logits - labels)) else: self.predictions, self.cost = helper_utils.setup_loss(logits, labels) self._calc_num_trainable_params() if is_training: self._build_train_op() with tf.device('/cpu:0'): self.saver = tf.train.Saver(max_to_keep=10) init_checkpoint = os.path.join(self.hparams.data_path,'pretrained_models', 'bert_base', 'bert_model.ckpt') tvars = tf.trainable_variables("bert") (assignment_map, initialized_variable_names) = get_assignment_map_from_checkpoint(tvars, init_checkpoint) self.assignment_map = assignment_map tf.train.init_from_checkpoint(init_checkpoint, assignment_map) self.init = tf.global_variables_initializer() def _calc_num_trainable_params(self): self.num_trainable_params = np.sum([ np.prod(var.get_shape().as_list()) for var in tf.trainable_variables() ]) tf.logging.info('number of trainable params: {}'.format( self.num_trainable_params)) def _build_train_op(self): """Builds the train op for the model.""" hparams = self.hparams clip_norm = hparams.gradient_clipping_by_global_norm num_train_data = hparams.train_size batch_size = hparams.batch_size num_epochs = hparams.num_epochs num_train_steps = int(np.floor(num_train_data/batch_size) * num_epochs * 0.9) num_warmup_steps = int(np.floor(num_train_data/batch_size) * num_epochs * 0.1) self.train_op, self.curr_learning_rate_tensor = create_optimizer(self.cost, self.lr_rate_ph, num_train_steps, num_warmup_steps, False, clip_norm, self.global_step) class ModelTrainer(object): """Trains an instance of the Model class.""" def __init__(self, hparams): self._session = None self.hparams = hparams np.random.seed(0) # --- Set the random seed to be sure the same validation set is used for each model self.data_loader = data_utils.DataSet(hparams) np.random.seed() # --- Put the random seed back to random self.data_loader.reset() # extra stuff for ray self._build_models() self._new_session() self._session.__enter__() self.create_nn_database(self.m, self.session) def save_model(self, checkpoint_dir, step=None): """Dumps model into the backup_dir. Args: step: If provided, creates a checkpoint with the given step number, instead of overwriting the existing checkpoints. """ model_save_name = os.path.join(checkpoint_dir,'model.ckpt') + '-' + str(step) save_path = self.saver.save(self.session, model_save_name) tf.logging.info('Saved child model') return model_save_name def extract_model_spec(self, checkpoint_path): """Loads a checkpoint with the architecture structure stored in the name.""" self.saver.restore(self.session, checkpoint_path) tf.logging.warning( 'Loaded child model checkpoint from {}'.format(checkpoint_path)) def eval_child_model(self, model, data_loader, mode): """Evaluate the child model. Args: model: image model that will be evaluated. data_loader: dataset object to extract eval data from. mode: will the model be evaled on train, val or test. Returns: Accuracy of the model on the specified dataset. """ tf.logging.info('Evaluating child model in mode {}'.format(mode)) while True: try: accuracy, matthews_corrcoef, f1_score, pearson, spearman = helper_utils.eval_child_model( self.session, model, data_loader, mode) tf.logging.info( 'Eval child model accuracy: {}'.format(accuracy)) break except (tf.errors.AbortedError, tf.errors.UnavailableError) as e: tf.logging.info( 'Retryable error caught: {}. Retrying.'.format(e)) return accuracy, matthews_corrcoef, f1_score, pearson, spearman @contextlib.contextmanager def _new_session(self): """Creates a new session for model m. initialize variables, and save / restore from checkpoint.""" sess_cfg = tf.ConfigProto( allow_soft_placement=True, log_device_placement=False) sess_cfg.gpu_options.allow_growth = True self._session = tf.Session('', config=sess_cfg) self._session.run(self.m.init) return self._session def _build_models(self): """Builds the text models for train and eval.""" m = Model(self.hparams, self.data_loader.num_classes, self.data_loader.text_size) m.build('train') self._num_trainable_params = m.num_trainable_params self._saver = m.saver self.m = m self.meval = m def create_nn_database(self, model, session): """Create search index for nearest neighbour augmentation from all samples in the train data""" if type(self.data_loader.train_texts[0]) == str: self.nn_database = ContextNeighborStorage(sentences=self.data_loader.train_texts, n_labels=self.data_loader.train_labels.shape[1], model=model, session=session) elif type(self.data_loader.train_texts[0]) == tuple: all_sentences = [list(sent_pair) for sent_pair in self.data_loader.train_texts] all_sentences_flat = [item for sublist in all_sentences for item in sublist] self.nn_database = ContextNeighborStorage(sentences=all_sentences_flat, n_labels=self.data_loader.train_labels.shape[1], model=model, session=session) self.nn_database.process_sentences() self.nn_database.build_search_index() def _run_training_loop(self, curr_epoch): """Trains the model `m` for one epoch.""" start_time = time.time() while True: try: train_accuracy, train_matthews, train_f1_score, train_pearson, train_spearman = helper_utils.run_epoch_training(self.session, self.m, self.data_loader, self.nn_database, curr_epoch) break except (tf.errors.AbortedError, tf.errors.UnavailableError) as e: tf.logging.info( 'Retryable error caught: {}. Retrying.'.format(e)) tf.logging.info('Finished epoch: {}'.format(curr_epoch)) tf.logging.info('Epoch time(min): {}'.format( (time.time() - start_time) / 60.0)) return train_accuracy, train_matthews, train_f1_score, train_pearson, train_spearman def _compute_final_accuracies(self, iteration): """Run once training is finished to compute final test accuracy.""" if (iteration >= self.hparams.num_epochs - 1): test_accuracy, test_matthews_corrcoef, test_f1_score, test_pearson, test_spearman =
request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_login_theme_css_using_post(async_req=True) >>> result = thread.get() :param async_req bool :param PaletteSettings body: :param bool dark_foreground: Dark foreground enabled flag :return: str If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.get_login_theme_css_using_post_with_http_info(**kwargs) # noqa: E501 else: (data) = self.get_login_theme_css_using_post_with_http_info(**kwargs) # noqa: E501 return data def get_login_theme_css_using_post_with_http_info(self, **kwargs): # noqa: E501 """Get Login Theme CSS # noqa: E501 Generates the login theme CSS based on the provided Palette Settings # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_login_theme_css_using_post_with_http_info(async_req=True) >>> result = thread.get() :param async_req bool :param PaletteSettings body: :param bool dark_foreground: Dark foreground enabled flag :return: str If the method is called asynchronously, returns the request thread. """ all_params = ['body', 'dark_foreground'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_login_theme_css_using_post" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] if 'dark_foreground' in params: query_params.append(('darkForeground', params['dark_foreground'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['text/plain', 'application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/api/noauth/whiteLabel/loginThemeCss{?darkForeground}', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='str', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_login_white_label_params_using_get(self, logo_image_checksum, favicon_checksum, **kwargs): # noqa: E501 """Get Login White Labeling parameters # noqa: E501 Returns login white-labeling parameters based on the hostname from request. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_login_white_label_params_using_get(logo_image_checksum, favicon_checksum, async_req=True) >>> result = thread.get() :param async_req bool :param str logo_image_checksum: Logo image checksum. Expects value from the browser cache to compare it with the value from settings. If value matches, the 'logoImageUrl' will be null. (required) :param str favicon_checksum: Favicon image checksum. Expects value from the browser cache to compare it with the value from settings. If value matches, the 'faviconImageUrl' will be null. (required) :return: LoginWhiteLabelingParams If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.get_login_white_label_params_using_get_with_http_info(logo_image_checksum, favicon_checksum, **kwargs) # noqa: E501 else: (data) = self.get_login_white_label_params_using_get_with_http_info(logo_image_checksum, favicon_checksum, **kwargs) # noqa: E501 return data def get_login_white_label_params_using_get_with_http_info(self, logo_image_checksum, favicon_checksum, **kwargs): # noqa: E501 """Get Login White Labeling parameters # noqa: E501 Returns login white-labeling parameters based on the hostname from request. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_login_white_label_params_using_get_with_http_info(logo_image_checksum, favicon_checksum, async_req=True) >>> result = thread.get() :param async_req bool :param str logo_image_checksum: Logo image checksum. Expects value from the browser cache to compare it with the value from settings. If value matches, the 'logoImageUrl' will be null. (required) :param str favicon_checksum: Favicon image checksum. Expects value from the browser cache to compare it with the value from settings. If value matches, the 'faviconImageUrl' will be null. (required) :return: LoginWhiteLabelingParams If the method is called asynchronously, returns the request thread. """ all_params = ['logo_image_checksum', 'favicon_checksum'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_login_white_label_params_using_get" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'logo_image_checksum' is set if ('logo_image_checksum' not in params or params['logo_image_checksum'] is None): raise ValueError("Missing the required parameter `logo_image_checksum` when calling `get_login_white_label_params_using_get`") # noqa: E501 # verify the required parameter 'favicon_checksum' is set if ('favicon_checksum' not in params or params['favicon_checksum'] is None): raise ValueError("Missing the required parameter `favicon_checksum` when calling `get_login_white_label_params_using_get`") # noqa: E501 collection_formats = {} path_params = {} query_params = [] if 'logo_image_checksum' in params: query_params.append(('logoImageChecksum', params['logo_image_checksum'])) # noqa: E501 if 'favicon_checksum' in params: query_params.append(('faviconChecksum', params['favicon_checksum'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/api/noauth/whiteLabel/loginWhiteLabelParams{?faviconChecksum,logoImageChecksum}', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='LoginWhiteLabelingParams', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_white_label_params_using_get(self, logo_image_checksum, favicon_checksum, **kwargs): # noqa: E501 """Get White Labeling parameters # noqa: E501 Returns white-labeling parameters for the current user. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_white_label_params_using_get(logo_image_checksum, favicon_checksum, async_req=True) >>> result = thread.get() :param async_req bool :param str logo_image_checksum: Logo image checksum. Expects value from the browser cache to compare it with the value from settings. If value matches, the 'logoImageUrl' will be null. (required) :param str favicon_checksum: Favicon image checksum. Expects value from the browser cache to compare it with the value from settings. If value matches, the 'faviconImageUrl' will be null. (required) :return: WhiteLabelingParams If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.get_white_label_params_using_get_with_http_info(logo_image_checksum, favicon_checksum, **kwargs) # noqa: E501 else: (data) = self.get_white_label_params_using_get_with_http_info(logo_image_checksum, favicon_checksum, **kwargs) # noqa: E501 return data def get_white_label_params_using_get_with_http_info(self, logo_image_checksum, favicon_checksum, **kwargs): # noqa: E501 """Get White Labeling parameters # noqa: E501 Returns white-labeling parameters for the current user. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_white_label_params_using_get_with_http_info(logo_image_checksum, favicon_checksum, async_req=True) >>> result = thread.get() :param async_req bool :param str logo_image_checksum: Logo image checksum. Expects value from the browser cache to compare it with the value from settings. If value matches, the 'logoImageUrl' will be null. (required) :param str favicon_checksum: Favicon image checksum. Expects value from the browser cache to compare it with the value from settings. If value matches, the 'faviconImageUrl' will be null. (required) :return: WhiteLabelingParams If the method is called asynchronously, returns the request thread. """ all_params = ['logo_image_checksum', 'favicon_checksum'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_white_label_params_using_get" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'logo_image_checksum' is set if ('logo_image_checksum' not in params or params['logo_image_checksum'] is None): raise ValueError("Missing the required parameter `logo_image_checksum` when calling `get_white_label_params_using_get`") # noqa: E501 # verify the required parameter 'favicon_checksum' is set if ('favicon_checksum' not in params or params['favicon_checksum'] is None): raise ValueError("Missing the required parameter `favicon_checksum` when calling `get_white_label_params_using_get`") # noqa: E501 collection_formats = {} path_params = {} query_params = [] if 'logo_image_checksum' in params: query_params.append(('logoImageChecksum', params['logo_image_checksum'])) # noqa: E501 if 'favicon_checksum' in params: query_params.append(('faviconChecksum', params['favicon_checksum'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['X-Authorization'] # noqa: E501 return self.api_client.call_api( '/api/whiteLabel/whiteLabelParams{?faviconChecksum,logoImageChecksum}', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='WhiteLabelingParams', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def is_customer_white_labeling_allowed_using_get(self, **kwargs): # noqa: E501 """Check Customer White Labeling Allowed # noqa: E501 Check if the White Labeling is enabled for the customers of the current tenant Security check is performed to verify that the user has 'WRITE' permission for the white labeling resource. Available for users with 'TENANT_ADMIN' authority. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>>
''' scriptname = 'eutester_diskpart_script' self.sys('(echo rescan && echo list disk ) > ' + str(scriptname), code=0) self.sys('diskpart /s ' + str(scriptname), code=0, timeout=timeout) def get_diskdrive_for_volume(self, volume): if not self.is_volume_attached_to_this_instance(volume): return None ret_disk = None for disk in self.diskdrives: disk.update_ebs_info() if disk.ebs_volume == volume.id: ret_disk = disk if not ret_disk: ret_disk = self.find_diskdrive_for_volume_by_serial_number(volume, force_check=True) if not ret_disk: if hasattr(volume,'md5') and volume.md5: ret_disk = self.find_diskdrive_for_volume_by_md5(volume, force_check=True) return ret_disk def find_diskdrive_for_volume_by_md5(self, volume, md5=None, length=None, force_check=False): if not force_check and not self.is_volume_attached_to_this_instance(volume): return None if not isinstance(volume, EuVolume): volume = EuVolume.make_euvol_from_vol(volume=volume,tester=self.tester) md5 = md5 or volume.md5 if not md5: return None length = length or volume.md5len for disk in self.diskdrives: if disk.cygwin_scsi_drive: disk_md5 = self.get_dev_md5(disk.cygwin_scsi_drive, length=length) if disk_md5 == md5: volume.guestdev = disk.deviceid volume.md5 = disk_md5 volume.md5len = length disk.ebs_volume = volume.id return disk return None def find_diskdrive_for_volume_by_serial_number(self, volume, serial_number=None, force_check=False): ''' Attempt to iterate through all the diskdrives were aware of. If a diskdrive is found with a serial_number associated with the volume, return that diskdrive obj.. example serial number format: vol-81C13EA4-dev-sdg :param volume: volume obj to use for deriving the serial_number :param serial_number: string. Optional. The string representing the serial # to match. :returns WinInstanceDiskDrive if found, else None ''' if not force_check and not self.is_volume_attached_to_this_instance(volume): return None if not serial_number: serial_number = volume.id + volume.attach_data.device.replace('/','-') for disk in self.diskdrives: if disk.serialnumber == serial_number: return disk return None def is_volume_attached_to_this_instance(self, volume): ''' Attempts to look up volume state per cloud to confirm the cloud believe the state of this volume is attached to this instance. This does not verify the guest/hypervisor also belives the volume is attached. :param volume: volume obj. :returns boolean ''' volume.update() if hasattr(volume, 'attach_data') and volume.attach_data and (volume.attach_data.instance_id == self.id): self.debug('Volume:' + str(volume.id) + " is attached to this instance: " + str(self.id) + " per cloud perspective") return True else: self.debug('Volume:' + str(volume.id) + " is NOT attached to this instance: " + str(self.id) + " per cloud perspective") return False def update_volume_guest_info(self, volume, md5=None, md5len=None, guestdev=None): self.debug("{0} update_volume_guest_info: {1} {2}" .format(get_line(), volume, get_line())) if not self.is_volume_attached_to_this_instance(volume): raise Exception('Volume not attached to this instance') disk = None if not self.get_volume_from_attached_list_by_id(volume.id): self.attached_vols.append(volume) volume.guestdev = guestdev or volume.guestdev if md5: if not md5len: raise Exception('Must provide md5len if providing the md5') volume.md5 = md5 volume.md5len = md5len else: disk = self.get_diskdrive_for_volume(volume) if not disk: raise Exception('Could not find diskdrive for volume when attempting to update volume guest info:' + str(volume)) volume.md5len = md5len or 1024 volume.md5 = self.get_dev_md5(disk.cygwin_scsi_drive, volume.md5len) if not guestdev: volume.guestdev = disk.deviceid disk = disk or self.get_diskdrive_for_volume(volume) disk.update_ebs_info() volume.update_volume_attach_info_tags(md5=volume.md5, md5len=volume.md5len, instance_id=self.id, guestdev=volume.guestdev) return volume def get_unsynced_volumes(self, check_md5=True): ''' Description: Returns list of volumes which are: -in a state the cloud believes the vol is no longer attached -the attached device has changed, or is not found. If all euvols are shown as attached to this instance, and the last known local dev is present and/or a local device is found with matching md5 checksum then the list will return 'None' as all volumes are successfully attached and state is in sync. By default this method will iterate through all the known euvolumes attached to this euinstance. A subset can be provided in the list argument 'euvol_list'. Returns a list of euvolumes for which a corresponding guest device could not be found, or the cloud no longer believes is attached. :param euvol_list: - optional - euvolume object list. Defaults to all self.attached_vols :param md5length: - optional - defaults to the length given in each euvolume. Used to calc md5 checksum of devices :param timerpervolume: -optional - time to wait for device to appear, per volume before failing :param min_polls: - optional - minimum iterations to check guest devs before failing, despite timeout :param check_md5: - optional - find devices by md5 comparision. Default is to only perform this check when virtio_blk is in use. ''' bad_list = [] retdict = self.sync_attached_volumes_with_clouds_view() bad_list.extend(retdict['badvols']) return bad_list def reboot_instance_and_verify(self, waitconnect=60, timeout=600, wait_for_ports=180, connect=True, checkvolstatus=False, pad=5, uptime_retries=3): ''' Attempts to reboot an instance and verify it's state post reboot. waitconnect-optional-integer representing seconds to wait before attempting to connect to instance after reboot timeout-optional-integer, seconds. If a connection has failed, this timer is used to determine a retry connect- optional - boolean to indicate whether an ssh session should be established once the expected state has been reached checkvolstatus - optional -boolean to be used to check volume status post start up ''' msg="" newuptime = None attempt = 0 def get_safe_uptime(): uptime = None try: uptime = self.get_uptime() except: pass return uptime self.debug('Attempting to reboot instance:'+str(self.id)+', check attached volume state first') uptime = self.tester.wait_for_result( get_safe_uptime, None, oper=operator.ne) elapsed = 0 start = time.time() if checkvolstatus: #update the md5sums per volume before reboot bad_vols=self.get_unsynced_volumes() if bad_vols != []: for bv in bad_vols: self.debug(str(self.id)+'Unsynced volume found:'+str(bv.id)) raise Exception(str(self.id)+"Could not reboot using checkvolstatus flag due to unsync'd volumes") self.debug('Rebooting now...') self.reboot() time.sleep(waitconnect) try: self.poll_for_ports_status(ports=[3389,5589], timeout=wait_for_ports) except: self.debug('Failed to poll winrm and rdp ports after ' + str(wait_for_ports) + ' seconds, try to connect anyways...') timeout=timeout - int(time.time()-start) while (elapsed < timeout): self.connect_to_instance(timeout=timeout) #Wait for the system to provide a valid response for uptime, early connections may not newuptime = self.tester.wait_for_result( get_safe_uptime, None, oper=operator.ne) elapsed = int(time.time()-start) #Check to see if new uptime is at least 'pad' less than before, allowing for some pad if (newuptime - (uptime+elapsed)) > pad: err_msg = "Instance uptime does not represent a reboot. Orig:"+str(uptime)+\ ", New:"+str(newuptime)+", elapsed:"+str(elapsed)+"/"+str(timeout) if elapsed > timeout: raise Exception(err_msg) else: self.debug(err_msg) else: self.debug("Instance uptime indicates a reboot. Orig:"+str(uptime)+\ ", New:"+str(newuptime)+", elapsed:"+str(elapsed)) break if checkvolstatus: badvols= self.get_unsynced_volumes() if badvols != []: for vol in badvols: msg = msg+"\nVolume:"+vol.id+" Local Dev:"+vol.guestdev raise Exception("Missing volumes post reboot:"+str(msg)+"\n") self.debug(self.id+" reboot_instance_and_verify Success") def get_uptime(self): if not hasattr(self, 'system_info'): self.update_system_info() if hasattr(self.system_info, 'system_boot_time'): return self._get_uptime_from_system_boot_time() elif hasattr(self.system_info, 'system_up_time'): return self._get_uptime_from_system_up_time() else: tb = self.tester.get_traceback() raise Exception(str(tb) + '\nCould not get system boot or up time from system_info') def _get_uptime_from_system_boot_time(self): #11/18/2013, 3:15:39 PM if not hasattr(self, 'system_info'): self.update_system_info() splitdate = self.system_info.system_boot_time.split() datestring = splitdate[0] timestring = splitdate[1] ampm = splitdate[2] month, day, year = datestring.replace(',',"").split('/') hours, minutes, seconds = timestring.split(':') if ampm == 'PM': hours = int(hours) + 12 datetimestring = str(year) + " " + \ str(month) + " " + \ str(day) + " " + \ str(hours) + " " + \ str(minutes) + " " + \ str(seconds) dt = datetime.strptime(datetimestring, "%Y %m %d %H %M %S") return int(time.time() - time.mktime(dt.timetuple())) def _get_uptime_from_system_up_time(self): #0 Days, 0 Hours, 6 Minutes, 39 Seconds if not hasattr(self, 'system_info'): self.update_system_info() uptime_string = self.system_info.system_up_time days = 0 hours = 0 minutes = 0 seconds = 0 split = uptime_string.split(',') for part in split: time_string = "" if re.search('Days', part, re.IGNORECASE): time_string = str(part.split()[0]).strip() days = int(time_string or 0) elif re.search('Hours', part, re.IGNORECASE): time_string = str(part.split()[0]).strip() hours = int(time_string or 0) elif re.search('Minutes', part, re.IGNORECASE): time_string = str(part.split()[0]).strip() minutes = int(time_string or 0) elif re.search('Seconds', part, re.IGNORECASE): time_string = str(part.split()[0]).strip() seconds = int(time_string or 0) self.debug("Days:" +str(days)+', Hours:'+ str(hours) + ", Minutes:" + str(minutes) + ", Seconds:" + str(seconds)) uptime = (days * 86400) + (hours * 3600) + (minutes * 60) + seconds return uptime def stop_instance_and_verify(self, timeout=200, state='stopped', failstate='terminated', check_vols=True): ''' Attempts to stop instance and verify the state has gone to stopped state :param timeout; -optional-time to wait on instance to go to state 'state' before failing :param state: -optional-the expected state to signify success, default is stopped :param failstate: -optional-a state transition that indicates failure, default is terminated ''' self.debug(self.id+" Attempting to stop instance...") start = time.time() elapsed = 0 self.stop() while (elapsed < timeout): time.sleep(2) self.update() if self.state == state: break if self.state == failstate: raise Exception(str(self.id) + " instance went to state:" + str(self.state) + " while
%.2f +/- %.2f Myr \n'%(np.median(mega_df[w3].age), med_age_sigma3)) f.write('Unassociated median age: %.2f +/- %.2f Myr \n'%(np.median(mega_df[w0].age), med_age_sigma0)) f.write('\n') f.close() """ now do things by environmental mask locations simple environmental masks cheatsheet 1 = center (small bulge, nuclear ring & disk) 2 = bar (excluding bar ends) 3 = bar ends (overlap of bar and spiral) 4 =​ interbar (R_gal < R_bar, but outside bar footprint) 5 = ​spiral arms inside interbar (R_gal < R_bar) 6 = ​spiral arms (R_gal > R_bar) 7 =​ interarm (only the R_gal spanned by spiral arms, and R_gal > R_bar) 8 = ​outer disc (R_gal > spiral arm ends, only for galaxies with identified spirals) 9 = ​disc (R_gal > R_bar) where no spiral arms were identified (e.g. flocculent spirals) simplified further 1 =​ center 2 + 3 =​ bar 4 + 7 + 8 =​ interarm 5 + 6 =​ spiral arms 9 =​ disc in galaxies without spirals """ # get indices for the clusters of each enviro - need np.where so we can get mulitple conditions and can us iloc later wcenter = np.where(mega_df['env_mask_val'] == 1) wbar_idx = np.where((mega_df['env_mask_val'] == 2) | (mega_df['env_mask_val'] == 3) ) winterarm_idx = np.where((mega_df['env_mask_val'] == 4) | (mega_df['env_mask_val'] == 7) | (mega_df['env_mask_val'] == 8)) wspiral_idx = np.where((mega_df['env_mask_val'] == 5) | (mega_df['env_mask_val'] == 6)) wdisk = np.where(mega_df['env_mask_val'] == 9) # list with all the enviro indices wall = [wcenter, wbar_idx[0], winterarm_idx[0], wspiral_idx[0], wdisk] # list of the enviro names names = ['center', 'bar', 'interarm', 'spiralarm', 'disk'] # loop through to each enviro for i in range(len(wall)): # make a temp dataframe with just the clusters of the current enviro df = mega_df.iloc[wall[i]] # make histogram of cluster ages split by association number sc_gmc_assoc_hist(df, filename=data_dir+'sc_gmc_assoc_hist_%s.%s'%(names[i], run_name)) # star cluster ages and errors age_all = df['age'].to_numpy() lage_all = np.log10(age_all) age_err_all = df['age_err'].to_numpy() lage_err_all = age_err_all/age_all/np.log(10) # indices for each association number w0 = df['assoc_num'] == 0 w1 = df['assoc_num'] == 1 w2 = df['assoc_num'] == 2 w3 = df['assoc_num'] == 3 # bootstrap errors on the median ages med_age_sigma_all = bootstrap_median_error(age_all, age_err_all) med_age_sigma1 = bootstrap_median_error(age_all[w1], age_err_all[w1]) med_age_sigma2 = bootstrap_median_error(age_all[w2], age_err_all[w2]) med_age_sigma3 = bootstrap_median_error(age_all[w3], age_err_all[w3]) med_age_sigma0 = bootstrap_median_error(age_all[w0], age_err_all[w0]) # log the stats for each env if i == 0: f = open(data_dir + 'sc_gmc_assoc_stats_env.%s.txt'%run_name, 'w') f.write(names[i] + '\n') f.write('All star clusters median age: %.2f +/- %.2f Myr \n'%(np.median(age_all), med_age_sigma_all) ) f.write('Within 1 R_gmc median age: %.2f +/- %.2f Myr \n'%(np.median(age_all[w1]), med_age_sigma1 ) ) f.write('1 < R_gmc <= 2 median age: %.2f +/- %.2f Myr \n'%(np.median(age_all[w2]), med_age_sigma2 ) ) f.write('2 < R_gmc <= 3 median age: %.2f +/- %.2f Myr \n'%(np.median(age_all[w3]), med_age_sigma3 ) ) f.write('Unassociated median age: %.2f +/- %.2f Myr \n'%(np.median(age_all[w0]), med_age_sigma0 ) ) f.write('\n') f.close() else: f = open(data_dir + 'sc_gmc_assoc_stats_env.%s.txt'%run_name, 'a') f.write(names[i] + '\n') f.write('All star clusters median age: %.2f +/- %.2f Myr \n'%(np.median(age_all), med_age_sigma_all) ) f.write('Within 1 R_gmc median age: %.2f +/- %.2f Myr \n'%(np.median(age_all[w1]), med_age_sigma1 ) ) f.write('1 < R_gmc <= 2 median age: %.2f +/- %.2f Myr \n'%(np.median(age_all[w2]), med_age_sigma2 ) ) f.write('2 < R_gmc <= 3 median age: %.2f +/- %.2f Myr \n'%(np.median(age_all[w3]), med_age_sigma3 ) ) f.write('Unassociated median age: %.2f +/- %.2f Myr \n'%(np.median(age_all[w0]), med_age_sigma0 ) ) f.write('\n') f.close() def auto_corr(df, min_bin=1.1e-5, nbins=10, nbootstraps=50, method='landy-szalay', rseed=222, gmc=False): """ function to calculate the auto-correlation for the given dataframe uses the astroML function bootstrap_two_point_angular Inputs: df pandas DataFrame dataframe which holds the objects to do the correlation function for min_bin float the angular location of the first/minimum bin nbins int the number of radial bins over which to do the correlation nbootstraps int number of bootstraps to perform for the error estimation; default is 50 method str estimator method to use for correlation function; landy-szalay or standard; default is landy-szalay rseed int the seed value which gets used for the numpy.random gmc bool set to true if the df used is the GMC catalog since it has different keywords for ra,dec Outputs: results results[0] == bins list of the bin edges; len(bins) == nbins + 1 results[1] == corr list of the correlation values for each bin results[2] == corr_err list of the bootstrap estimated errors on the correlation values results[3] == bootstraps list of lists of bootstrapped correlation values in each bin; len(bootstraps) == nbootstraps """ np.random.seed(rseed) bins = 10 ** np.linspace(np.log10(min_bin), np.log10(0.1), nbins+1) results = [bins] if gmc: results += bootstrap_two_point_angular(df['XCTR_DEG'], df['YCTR_DEG'], bins=bins, method=method, Nbootstraps=nbootstraps) else: results += bootstrap_two_point_angular(df['ra'], df['dec'], bins=bins, method=method, Nbootstraps=nbootstraps) return results def powerlaw_func(theta, Aw, alpha): """ a powerlaw function of the form f(theta) = Aw * theta^alpha """ return Aw * theta**alpha def tpcf(df, dist, **kwargs): """ runs the bootstrap two point corrrelation function and the power law fit Inputs: df pandas DataFrame dataframe which holds the objects to do the correlation function for dist float distance to galaxy in Mpc kwargs dictionary keyword arguments to pass on to the auto_corr function Outputs: bins_centers_pc list center positions of the bins in parsecs corr list correlation values for each bin; 1 + omega(theta) corr_err list bootstrap estimated errors on the correlation values power_law_fits list the best-fit for powerlaws; [A_w (deg), error, A_w (pc), error, alpha, error ] """ # perform the auto-correlation bins, corr, corr_err, bootstraps = auto_corr(df, **kwargs) # find bin centers [degrees] bin_centers = 0.5 * (bins[1:] + bins[:-1]) # bin centers as in pc bin_centers_pc = dist*1e6 * bin_centers*u.deg.to(u.rad) # add 1 so the correlation is 1 + omega(theta) corr = corr + 1 # need to drop nans for the power law fitting wnnan = np.where(np.isnan(corr)==False) # power-law fit popt_ang, pcov = curve_fit(powerlaw_func, bin_centers[wnnan], corr[wnnan]) perr_ang = np.sqrt(np.diag(pcov)) popt_pc, pcov = curve_fit(powerlaw_func, bin_centers_pc[wnnan], corr[wnnan]) perr_pc = np.sqrt(np.diag(pcov)) # sometimes the error doesn't converge so replace those with 0 (instead of inf) winf = np.where(np.isinf(perr_ang))[0] if len(winf) > 0: perr_ang[winf] = 0 perr_pc[winf] = 0 return bin_centers_pc, corr, corr_err, [popt_ang[0], perr_ang[0], popt_pc[0], perr_pc[0], popt_ang[1], perr_ang[1]] def all_galaxies_tpcf(galaxy_list, data_dir, run_name, assoc_cat_suffix='_cluster_catalog_in_mask_class12_assoc_gmc', sc_class='class12', nbins=10 ): """ function form of tpcf.py - loop through all the galaxies and do the two-point correlation function analysis Inputs: galaxy_list astropy Table table that holds the list of galaxies to perform the analysis on data_dir str path to the data directory; e.g., /cherokee1/turner/phangs/cf/data/ run_name str name of the run/test; e.g., run01 assoc_cat_suffix str suffix of the filename for the csv which holds the star cluster - gmc association dataframe sc_class str which class of clusters to make the catalogs for; class12 or class123 nbins int; list the number of radial bins over which to do the correlation; if a list, it'll loop through all the given nbsins """ gal_id = galaxy_list['id'] gal_dist = galaxy_list['dist'] for i in range(len(galaxy_list)): # galaxy props gal_name = gal_id[i] dist = gal_dist[i] print('') print(gal_name) # read in the star cluster cat in the hst-alma footprint overlap mask sc_df = pd.read_csv(data_dir + '%s/%s/%s%s.csv'%(gal_name, run_name, gal_name, assoc_cat_suffix)) # read in the gmc cat in the hst-alma footprint overlap mask gmc_cat = fits.open(data_dir + '%s/%s/%s_gmc_cat_masked.fits'%(gal_name, run_name, gal_name))[1].data gmc_df = Table(gmc_cat).to_pandas() # check if nbins is a list or int; if int, make it a list of len 1 if type(nbins) == int: nbins = [nbins] # loop through the nbins in the list for j in range(len(nbins)): # two-point correlation function on the all the star clusters bin_centers_pc_all, corr_all, corr_err_all, pl_fit_all = tpcf(sc_df, dist, nbins=nbins[j]) # now for clusters <= 10 Myr wleq10 = sc_df['age'] <= 10 bin_centers_pc_young, corr_young, corr_err_young, pl_fit_young = tpcf(sc_df.loc[wleq10], dist, nbins=nbins[j]) # now for clusters > 10 Myr w10 = sc_df['age'] > 10 bin_centers_pc_old, corr_old, corr_err_old, pl_fit_old = tpcf(sc_df.loc[w10], dist, nbins=nbins[j]) # now gmcs bin_centers_pc_gmc, corr_gmc, corr_err_gmc, pl_fit_gmc = tpcf(gmc_df, dist, nbins=nbins[j], min_bin=3e-4, gmc=True) # write out the power-law best fit parameters for all, young, old f = open(data_dir + '%s/%s/%s_tpcf_fits.nbins%02d.dat'%(gal_name, run_name, gal_name, nbins[j]), 'w') f.write('{:<6} '.format('# bin')) f.write('{:<6} '.format('Aw_deg')) f.write('{:<5} '.format('error')) f.write('{:<6} '.format('Aw_pc')) f.write('{:<6} '.format('error')) f.write('{:<6} '.format('alpha')) f.write('{:<5} '.format('error')) f.write('\n') f.write('{:<6} '.format('all')) f.write('{:>6} '.format('%.3f'%(pl_fit_all[0]))) f.write('{:>5} '.format('%.3f'%(pl_fit_all[1]))) f.write('{:>6} '.format('%.3f'%(pl_fit_all[2]))) f.write('{:>6} '.format('%.3f'%(pl_fit_all[3]))) f.write('{:>6} '.format('%.3f'%(pl_fit_all[4]))) f.write('{:>5} '.format('%.3f'%(pl_fit_all[5]))) f.write('\n') f.write('{:<6} '.format('<= 10')) f.write('{:>6} '.format('%.3f'%(pl_fit_young[0]))) f.write('{:>5} '.format('%.3f'%(pl_fit_young[1]))) f.write('{:>6} '.format('%.3f'%(pl_fit_young[2]))) f.write('{:>6} '.format('%.3f'%(pl_fit_young[3]))) f.write('{:>6} '.format('%.3f'%(pl_fit_young[4]))) f.write('{:>5} '.format('%.3f'%(pl_fit_young[5]))) f.write('\n') f.write('{:<6} '.format('> 10')) f.write('{:>6} '.format('%.3f'%(pl_fit_old[0]))) f.write('{:>5} '.format('%.3f'%(pl_fit_old[1]))) f.write('{:>6} '.format('%.3f'%(pl_fit_old[2]))) f.write('{:>6} '.format('%.3f'%(pl_fit_old[3]))) f.write('{:>6} '.format('%.3f'%(pl_fit_old[4]))) f.write('{:>5} '.format('%.3f'%(pl_fit_old[5]))) f.write('\n') f.write('{:<6} '.format('gmc')) f.write('{:>6} '.format('%.3f'%(pl_fit_gmc[0]))) f.write('{:>5} '.format('%.3f'%(pl_fit_gmc[1]))) f.write('{:>6} '.format('%.3f'%(pl_fit_gmc[2]))) f.write('{:>6} '.format('%.3f'%(pl_fit_gmc[3]))) f.write('{:>6} '.format('%.3f'%(pl_fit_gmc[4]))) f.write('{:>5} '.format('%.3f'%(pl_fit_gmc[5]))) f.close() # create figure fig, ax = plt.subplots(1,1, figsize=(5,5)) ax.set_xscale('log') ax.set_yscale('log') ax.set_xlabel(r'$r$ [pc]') ax.set_ylabel(r'$1 + \omega(\theta)$') # all clusters ax.errorbar(bin_centers_pc_all, corr_all, yerr=corr_err_all, fmt='k-o', ecolor='black', markersize=5, lw=1.5, label=r'All SCs $\alpha=%.2f\pm%.2f$ (%i) '%(pl_fit_all[4], pl_fit_all[5], len(sc_df))) # clusters <= 10 Myr ax.errorbar(bin_centers_pc_young, corr_young, yerr=corr_err_young, fmt='-o', color='#377eb8', ecolor='#377eb8', markersize=5, lw=1.5, label=r'$\leq 10$ Myr $\alpha=%.2f\pm%.2f$ (%i) '%(pl_fit_young[4], pl_fit_young[5], len(sc_df.loc[wleq10]))) # clusters > 10 Myr ax.errorbar(bin_centers_pc_old, corr_old, yerr=corr_err_old, fmt='-o', color='#e41a1c', ecolor='#e41a1c', markersize=5, lw=1.5, label=r'$> 10$ Myr $\alpha=%.2f\pm%.2f$ (%i) '%(pl_fit_old[4], pl_fit_old[5], len(sc_df.loc[w10]))) # gmcs ax.errorbar(bin_centers_pc_gmc, corr_gmc, yerr=corr_err_gmc, fmt='-o', color='#E68310', ecolor='#E68310', markersize=5, lw=1.5, label=r'GMCs $\alpha=%.2f\pm%.2f$ (%i) '%(pl_fit_gmc[4], pl_fit_gmc[5], len(gmc_df))) # plot vertical line at mean GMC radius ax.axvline(gmc_df.mean()['RAD3D_PC'], lw=1.1, c='#999999', zorder=0) plt.legend(loc='upper right', fontsize='x-small') plt.savefig(data_dir + '%s/%s/%s_tpcf.nbins%02d.png'%(gal_name, run_name, gal_name, nbins[j]), bbox_inches='tight') plt.savefig(data_dir + '%s/%s/%s_tpcf.nbins%02d.pdf'%(gal_name, run_name, gal_name, nbins[j]), bbox_inches='tight') plt.close() logbins_sc = np.log10(bin_centers_pc_all) logbins_gmc = np.log10(bin_centers_pc_gmc) # write out the bin centers and correlation values f = open(data_dir + '%s/%s/%s_tpcf.nbins%02d.dat'%(gal_name, run_name, gal_name, nbins[j]), 'w') f.write('# two-point correlation function values (1 + omega(theta)); bin centers in are given in log(pc)\n') f.write('{:<8} '.format('nbins%02d'%nbins[j])) for k in range(nbins[j]): f.write('{:>6} '.format('%.3f'%(logbins_sc[k]))) f.write('\n') f.write('{:<8} '.format('corr_all')) for k in range(nbins[j]): f.write('{:>6} '.format('%.3f'%(corr_all[k]))) f.write('\n') f.write('{:<8} '.format('corr_yng')) for k in
from types import * from types_gc import * import compilerLib, library import symtable import re import numpy as np import inspect from collections import OrderedDict SPDZ = 0 GC = 1 LOCAL = 2 class Params(object): intp = 64 f = 32 k = 64 @classmethod def set_params(cls, int_precision=32, f=32, k=64, parallelism=1): cls.intp = int_precision cls.f = f cls.k = k cfix.set_precision(f, k) sfix.set_precision(f, k) cfix_gc.set_precision(f, k) sfix_gc.set_precision(f, k) class ClearIntegerFactory(object): def __call__(self, value): if mpc_type == SPDZ: return cint(value) elif mpc_type == LOCAL: return int(value) else: return cint_gc(Params.intp, value) class SecretIntegerFactory(object): def __call__(self, value): if mpc_type == SPDZ: return sint(value) elif mpc_type == LOCAL: raise ValueError("Secret integer called for local phase") else: #return sint_gc(Params.intp, input_party=value) raise ValueError("Cannot instantiate secret integers in GC. Secret integers must be read using .read_input") def read_input(self, party): if mpc_type == SPDZ: return sint.get_private_input_from(party) else: return sint_gc(Params.intp, input_party=party) class ClearIntegerMatrixFactory(object): def __call__(self, rows, columns): if not isinstance(rows, int) or not isinstance(columns, int): raise ValueError("Matrix sizes must be publicly known integers") if mpc_type == SPDZ: ret = cintMatrix(rows, columns) return ret else: ret = cintMatrixGC(rows, columns) for i in range(rows): for j in range(columns): ret[i][j] = cint_gc(0) return ret def read_input(self, rows, columns, channel=0): if not isinstance(rows, int) or not isinstance(columns, int): raise ValueError("Matrix sizes must be publicly known integers") if mpc_type == LOCAL: raise ValueError("Shouldn't be local.") if mpc_type == SPDZ: ret = cintMatrix(rows, columns) @library.for_range(ret.rows) def f(i): @library.for_range(ret.columns) def g(j): ret[i][j].public_input(channel) return ret else: raise ValueError("Clear matrix read_input not supported for GC") class ClearFixedPointFactory(object): def __call__(self, value): if mpc_type == SPDZ: return cfix(value) elif mpc_type == LOCAL: return float(value) else: return cfix_gc(v=value, scale=True) class SecretFixedPointFactory(object): def read_input(self, party): if mpc_type == SPDZ: v = sint.get_private_input_from(party) vf = sfix.load_sint(v) return vf else: return sfix_gc(v=None, input_party=party) class ClearFixedPointArrayFactory(object): def __call__(self, length): if not isinstance(length, int): raise ValueError("Array length must be a publicly known integer") if mpc_type == SPDZ: ret = cfixArray(length) return ret else: ret = cfixArrayGC(length) for i in range(length): ret[i] = cfix_gc(0) return ret class ClearIntegerArrayFactory(object): def __call__(self, length): if not isinstance(length, int): raise ValueError("Array length must be a publicly known integer") if mpc_type == SPDZ: ret = cintArray(length) return ret else: ret = cintArrayGC(length) for i in range(length): ret[i] = cint_gc(0) return ret class SecretFixedPointArrayFactory(object): def __call__(self, length): if not isinstance(length, int): raise ValueError("Array length must be a publicly known integer") if mpc_type == SPDZ: ret = sfixArray(length) return ret else: ret = sfixArrayGC(length) for i in range(length): ret[i] = cfix_gc(0) return ret def read_input(self, length, party): if not isinstance(length, int): raise ValueError("Array length must be a publicly known integer") if mpc_type == SPDZ: ret = sfixArray(length) @library.for_range(ret.length) def f(i): v = sint.get_private_input_from(party) ret[i] = sfix.load_sint(v, scale=False) return ret else: ret = sfixArrayGC(length) for i in range(ret.length): ret[i] = sfix_gc(v=None, input_party=party) return ret class SecretIntegerArrayFactory(object): def __call__(self, length): if not isinstance(length, int): raise ValueError("Array length must be a publicly known integer") if mpc_type == SPDZ: ret = sintArray(length) return ret else: ret = sintArrayGC(length) for i in range(length): ret[i] = sint_gc(0) return ret def read_input(self, length, party): if not isinstance(length, int): raise ValueError("Array length must be a publicly known integer") if mpc_type == SPDZ: ret = sintArray(length) @library.for_range(ret.length) def f(i): v = sint.get_private_input_from(party) ret[i] = v return ret else: ret = sintArrayGC(length) for i in range(ret.length): ret[i] = sint_gc(Params.intp, input_party=party) return ret import struct class SecretFixedPointMatrixFactory(object): def __call__(self, rows, columns): if not isinstance(rows, int) or not isinstance(columns, int): raise ValueError("Matrix sizes must be publicly known integers") if mpc_type == LOCAL: raise ValueError("Shouldn't be local.") if mpc_type == SPDZ: ret = sfixMatrix(rows, columns) return ret else: ret = sfixMatrixGC(rows, columns) for i in range(rows): for j in range(columns): ret[i][j] = cfix_gc(0) return ret def read_input(self, rows, columns, party): if not isinstance(rows, int) or not isinstance(columns, int): raise ValueError("Matrix sizes must be publicly known integers") if mpc_type == LOCAL: raise ValueError("Shouldn't be local.") if mpc_type == SPDZ: ret = sfixMatrix(rows, columns) @library.for_range(ret.rows) def f(i): @library.for_range(ret.columns) def g(j): v = sint.get_private_input_from(party) ret[i][j] = sfix.load_sint(v, scale=False) return ret else: ret = sfixMatrixGC(rows, columns) for i in range(ret.rows): for j in range(ret.columns): ret[i][j] = sfix_gc(v=None, input_party=party) return ret # Reads input from file. def read_clear_input(self, rows, columns, party, f, input_file="./Input_Data/f0"): input_type = np.dtype([('f1', np.bool), ('f2', np.int64)]) lst_inputs = np.fromfile(f, input_type, rows * columns) precision = sfix.f assert(len(lst_inputs) >= rows * columns) res = np.zeros((rows, columns)) for i in range(rows): for j in range(columns): entry = lst_inputs[i * columns + j] if entry[0]: factor = -1 else: factor = 1 res[i][j] = factor * entry[1] * 1.0 / (2 ** precision) return res # Read horizontally partitioned data from multiple parties # input config should be of the form: (party_id, rows, columns) def read_input_variable_rows(self, columns, input_config): rows = sum([ic[1] for ic in input_config]) if mpc_type == SPDZ: ret = sfixMatrix(rows, columns) party_config = cintMatrix(len(input_config), 2) rows_offset = 0 for (p, r) in input_config: @library.for_range(r) def a(i): @library.for_range(columns) def b(j): v = sint.get_private_input_from(p) ret[i + rows_offset][j] = sfix.load_sint(v, scale=False) rows_offset += r return ret else: ret = sfixMatrixGC(rows, columns) rows_offset = 0 for (p, r) in input_config: for i in range(r): for j in range(columns): ret[i+rows_offset][j] = sfix_gc(v=None, input_party=p) rows_offset += r return ret class SecretIntegerMatrixFactory(object): def __call__(self, rows, columns): if not isinstance(rows, int) or not isinstance(columns, int): raise ValueError("Matrix sizes must be publicly known integers") if mpc_type == LOCAL: raise ValueError("Shouldn't be local.") if mpc_type == SPDZ: ret = sintMatrix(rows, columns) return ret else: ret = sintMatrixGC(rows, columns) for i in range(rows): for j in range(columns): ret[i][j] = cint_gc(0) #sint_gc(Params.intp, party) return ret def read_input(self, rows, columns, party): if not isinstance(rows, int) or not isinstance(columns, int): raise ValueError("Matrix sizes must be publicly known integers") if mpc_type == LOCAL: raise ValueError("Shouldn't be local.") if mpc_type == SPDZ: ret = sintMatrix(rows, columns) @library.for_range(ret.rows) def f(i): @library.for_range(ret.columns) def g(j): v = sint.get_private_input_from(party) ret[i][j] = v return ret else: ret = sintMatrixGC(rows, columns) for i in range(ret.rows): for j in range(ret.columns): ret[i][j] = sint_gc(Params.intp, input_party=party) return ret class ClearFixedPointMatrixFactory(object): def __call__(self, rows, columns): if mpc_type == SPDZ: return cfixMatrix(rows, columns) elif mpc_type == LOCAL: return np.zeros((rows, columns)) else: ret = cfixMatrixGC(rows, columns, cfix_gc) for i in range(ret.rows): for j in range(ret.columns): ret[i][j] = cfix_gc(0) return ret class PrivateFixedPointMatrix(object): def preprocess(self, precision=36): input_file="./Input_Data/f0" input_type = np.dtype([('f1', np.bool), ('f2', np.int64)]) lst_inputs = np.fromfile(input_file, input_type) data = lst_inputs.flatten().tolist() lst_data = [] for i in range(len(data)): entry = data[i] if entry[0]: factor = -1 else: factor = 1 val = factor * entry[1] * 1.0 / (2 ** precision) lst_data.append(val) self.data = lst_data def read_input(self, rows, columns, party): assert(len(self.data) >= rows * columns) res = np.zeros((rows, columns)) for i in range(rows): for j in range(columns): entry = self.data.pop(0) res[i][j] = entry return res def reveal_all(v, text=""): if mpc_type == SPDZ: if isinstance(v, (sint, sfix)): if text == "": text = "value" library.print_ln("{} = %s".format(text), v.reveal()) elif isinstance(v, Array): if text == "": text = "Array" @library.for_range(v.length) def f(i): library.print_ln("{}[%s] = %s".format(text), i, v[i].reveal()) elif isinstance(v, Matrix): if text == "": text = "Matrix" @library.for_range(v.rows) def f(i): @library.for_range(v.columns) def g(j): library.print_ln("{}[%s][%s] = %s".format(text), i, j, v[i][j].reveal()) elif isinstance(v, (regint, cint, cfix)): if text == "": text = "value" library.print_ln("{} = %s".format(text), v) else: raise NotImplemented else: info = v.reveal(name=text) program_gc.output_objects.append(info) import numpy as np import struct # lst_data is a list of matrices right now, sort of hard coded to the specific program def write_private_data(lst_data): lst_private_data = [] for matrix in lst_data: lst_private_data += matrix.flatten().tolist() # Need to left shift by 36 due to the way SCALE-MAMBA reads in fixed-point input. lst_private_data_pow = [e * pow(2, 36) for e in lst_private_data] f = open("./Input_Data" + "/f0", 'w') for d in lst_private_data_pow: sign = d < 0 output = struct.pack("?", sign) f.write(output) output = struct.pack("Q", abs(int(d))) f.write(output) f.close() data_rev = lst_private_data[::-1] f = open("./Input_Data" + "/agmpc.input", 'w') for d in data_rev: output = struct.pack(">q", int(d)) f.write(output) f.close() ClearInteger = ClearIntegerFactory() ClearIntegerMatrix = ClearIntegerMatrixFactory() ClearIntegerArray = ClearIntegerArrayFactory() SecretInteger = SecretIntegerFactory() SecretIntegerArray = SecretIntegerArrayFactory() SecretIntegerMatrix =
<filename>glance/store/swift.py # vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2010-2011 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Storage backend for SWIFT""" from __future__ import absolute_import import hashlib import httplib import math import urllib import urlparse from oslo.config import cfg from glance.common import auth from glance.common import exception from glance.openstack.common import excutils import glance.openstack.common.log as logging import glance.store import glance.store.base import glance.store.location try: import swiftclient except ImportError: pass LOG = logging.getLogger(__name__) DEFAULT_CONTAINER = 'glance' DEFAULT_LARGE_OBJECT_SIZE = 5 * 1024 # 5GB DEFAULT_LARGE_OBJECT_CHUNK_SIZE = 200 # 200M ONE_MB = 1000 * 1024 swift_opts = [ cfg.BoolOpt('swift_enable_snet', default=False, help=_('Whether to use ServiceNET to communicate with the ' 'Swift storage servers.')), cfg.StrOpt('swift_store_auth_address', help=_('The address where the Swift authentication service ' 'is listening.')), cfg.StrOpt('swift_store_user', secret=True, help=_('The user to authenticate against the Swift ' 'authentication service')), cfg.StrOpt('swift_store_key', secret=True, help=_('Auth key for the user authenticating against the ' 'Swift authentication service.')), cfg.StrOpt('swift_store_auth_version', default='2', help=_('Version of the authentication service to use. ' 'Valid versions are 2 for keystone and 1 for swauth ' 'and rackspace')), cfg.BoolOpt('swift_store_auth_insecure', default=False, help=_('If True, swiftclient won\'t check for a valid SSL ' 'certificate when authenticating.')), cfg.StrOpt('swift_store_region', help=_('The region of the swift endpoint to be used for ' 'single tenant. This setting is only necessary if the ' 'tenant has multiple swift endpoints.')), cfg.StrOpt('swift_store_endpoint_type', default='publicURL', help=_('A string giving the endpoint type of the swift ' 'service to use (publicURL, adminURL or internalURL). ' 'This setting is only used if swift_store_auth_version ' 'is 2.')), cfg.StrOpt('swift_store_service_type', default='object-store', help=_('A string giving the service type of the swift service ' 'to use. This setting is only used if ' 'swift_store_auth_version is 2.')), cfg.StrOpt('swift_store_container', default=DEFAULT_CONTAINER, help=_('Container within the account that the account should ' 'use for storing images in Swift.')), cfg.IntOpt('swift_store_large_object_size', default=DEFAULT_LARGE_OBJECT_SIZE, help=_('The size, in MB, that Glance will start chunking image ' 'files and do a large object manifest in Swift')), cfg.IntOpt('swift_store_large_object_chunk_size', default=DEFAULT_LARGE_OBJECT_CHUNK_SIZE, help=_('The amount of data written to a temporary disk buffer ' 'during the process of chunking the image file.')), cfg.BoolOpt('swift_store_create_container_on_put', default=False, help=_('A boolean value that determines if we create the ' 'container if it does not exist.')), cfg.BoolOpt('swift_store_multi_tenant', default=False, help=_('If set to True, enables multi-tenant storage ' 'mode which causes Glance images to be stored in ' 'tenant specific Swift accounts.')), cfg.ListOpt('swift_store_admin_tenants', default=[], help=_('A list of tenants that will be granted read/write ' 'access on all Swift containers created by Glance in ' 'multi-tenant mode.')), cfg.BoolOpt('swift_store_ssl_compression', default=True, help=_('If set to False, disables SSL layer compression of ' 'https swift requests. Setting to False may improve ' 'performance for images which are already in a ' 'compressed format, eg qcow2.')), ] CONF = cfg.CONF CONF.register_opts(swift_opts) class StoreLocation(glance.store.location.StoreLocation): """ Class describing a Swift URI. A Swift URI can look like any of the following: swift://user:[email protected]/container/obj-id swift://account:user:[email protected]/container/obj-id swift+http://user:[email protected]/container/obj-id swift+https://user:[email protected]/container/obj-id When using multi-tenant a URI might look like this (a storage URL): swift+https://example.com/container/obj-id The swift+http:// URIs indicate there is an HTTP authentication URL. The default for Swift is an HTTPS authentication URL, so swift:// and swift+https:// are the same... """ def process_specs(self): self.scheme = self.specs.get('scheme', 'swift+https') self.user = self.specs.get('user') self.key = self.specs.get('key') self.auth_or_store_url = self.specs.get('auth_or_store_url') self.container = self.specs.get('container') self.obj = self.specs.get('obj') def _get_credstring(self): if self.user and self.key: return '%s:%s@' % (urllib.quote(self.user), urllib.quote(self.key)) return '' def get_uri(self): auth_or_store_url = self.auth_or_store_url if auth_or_store_url.startswith('http://'): auth_or_store_url = auth_or_store_url[len('http://'):] elif auth_or_store_url.startswith('https://'): auth_or_store_url = auth_or_store_url[len('https://'):] credstring = self._get_credstring() auth_or_store_url = auth_or_store_url.strip('/') container = self.container.strip('/') obj = self.obj.strip('/') return '%s://%s%s/%s/%s' % (self.scheme, credstring, auth_or_store_url, container, obj) def parse_uri(self, uri): """ Parse URLs. This method fixes an issue where credentials specified in the URL are interpreted differently in Python 2.6.1+ than prior versions of Python. It also deals with the peculiarity that new-style Swift URIs have where a username can contain a ':', like so: swift://account:user:[email protected]/container/obj """ # Make sure that URIs that contain multiple schemes, such as: # swift://user:pass@http://authurl.com/v1/container/obj # are immediately rejected. if uri.count('://') != 1: reason = _("URI cannot contain more than one occurrence " "of a scheme. If you have specified a URI like " "swift://user:pass@http://authurl.com/v1/container/obj" ", you need to change it to use the " "swift+http:// scheme, like so: " "swift+http://user:[email protected]/v1/container/obj") LOG.debug(_("Invalid store URI: %(reason)s"), {'reason': reason}) raise exception.BadStoreUri(message=reason) pieces = urlparse.urlparse(uri) assert pieces.scheme in ('swift', 'swift+http', 'swift+https') self.scheme = pieces.scheme netloc = pieces.netloc path = pieces.path.lstrip('/') if netloc != '': # > Python 2.6.1 if '@' in netloc: creds, netloc = netloc.split('@') else: creds = None else: # Python 2.6.1 compat # see lp659445 and Python issue7904 if '@' in path: creds, path = path.split('@') else: creds = None netloc = path[0:path.find('/')].strip('/') path = path[path.find('/'):].strip('/') if creds: cred_parts = creds.split(':') if len(cred_parts) != 2: reason = (_("Badly formed credentials in Swift URI.")) LOG.debug(reason) raise exception.BadStoreUri() user, key = cred_parts self.user = urllib.unquote(user) self.key = urllib.unquote(key) else: self.user = None self.key = None path_parts = path.split('/') try: self.obj = path_parts.pop() self.container = path_parts.pop() if not netloc.startswith('http'): # push hostname back into the remaining to build full authurl path_parts.insert(0, netloc) self.auth_or_store_url = '/'.join(path_parts) except IndexError: reason = _("Badly formed Swift URI.") LOG.debug(reason) raise exception.BadStoreUri() @property def swift_url(self): """ Creates a fully-qualified auth url that the Swift client library can use. The scheme for the auth_url is determined using the scheme included in the `location` field. HTTPS is assumed, unless 'swift+http' is specified. """ if self.auth_or_store_url.startswith('http'): return self.auth_or_store_url else: if self.scheme in ('swift+https', 'swift'): auth_scheme = 'https://' else: auth_scheme = 'http://' return ''.join([auth_scheme, self.auth_or_store_url]) def Store(context=None, loc=None): if (CONF.swift_store_multi_tenant and (loc is None or loc.store_location.user is None)): return MultiTenantStore(context, loc) return SingleTenantStore(context, loc) class BaseStore(glance.store.base.Store): CHUNKSIZE = 65536 def get_schemes(self): return ('swift+https', 'swift', 'swift+http') def configure(self): _obj_size = self._option_get('swift_store_large_object_size') self.large_object_size = _obj_size * ONE_MB _chunk_size = self._option_get('swift_store_large_object_chunk_size') self.large_object_chunk_size = _chunk_size * ONE_MB self.admin_tenants = CONF.swift_store_admin_tenants self.region = CONF.swift_store_region self.service_type = CONF.swift_store_service_type self.endpoint_type = CONF.swift_store_endpoint_type self.snet = CONF.swift_enable_snet self.insecure = CONF.swift_store_auth_insecure self.ssl_compression = CONF.swift_store_ssl_compression def get(self, location, connection=None): location = location.store_location if not connection: connection = self.get_connection(location) try: resp_headers, resp_body = connection.get_object( container=location.container, obj=location.obj, resp_chunk_size=self.CHUNKSIZE) except swiftclient.ClientException as e: if e.http_status == httplib.NOT_FOUND: msg = _("Swift could not find image at URI.") raise exception.NotFound(msg) else: raise class ResponseIndexable(glance.store.Indexable): def another(self): try: return self.wrapped.next() except StopIteration: return '' length = int(resp_headers.get('content-length', 0)) return (ResponseIndexable(resp_body, length), length) def get_size(self, location, connection=None): location = location.store_location if not connection: connection = self.get_connection(location) try: resp_headers = connection.head_object( container=location.container, obj=location.obj) return int(resp_headers.get('content-length', 0)) except Exception: return 0 def _option_get(self, param): result = getattr(CONF, param) if not result: reason = (_("Could not find %(param)s in configuration " "options.") % {'param': param}) LOG.error(reason) raise exception.BadStoreConfiguration(store_name="swift", reason=reason) return result def _delete_stale_chunks(self, connection, container, chunk_list): for chunk in chunk_list: LOG.debug(_("Deleting chunk %s") % chunk) try: connection.delete_object(container, chunk) except Exception: msg = _("Failed to delete orphaned chunk %s/%s") LOG.exception(msg, container, chunk) def add(self, image_id, image_file, image_size, connection=None): location = self.create_location(image_id) if not connection: connection = self.get_connection(location) self._create_container_if_missing(location.container, connection) LOG.debug(_("Adding image object '%(obj_name)s' " "to Swift") % dict(obj_name=location.obj)) try: if image_size > 0 and image_size < self.large_object_size: # Image size is known, and is less than large_object_size. # Send to Swift with regular PUT. obj_etag = connection.put_object(location.container, location.obj, image_file, content_length=image_size) else: # Write the image into Swift in chunks. chunk_id = 1 if image_size > 0: total_chunks = str(int( math.ceil(float(image_size) / float(self.large_object_chunk_size)))) else: # image_size == 0 is when we don't know the size # of the image. This can occur with older clients # that don't inspect the payload size. LOG.debug(_("Cannot determine image size. Adding as a " "segmented object to Swift.")) total_chunks = '?' checksum = hashlib.md5() written_chunks = [] combined_chunks_size = 0 while True: chunk_size = self.large_object_chunk_size if image_size ==
provider. :type well_known_open_id_configuration: str """ _attribute_map = { 'authorization_endpoint': {'key': 'authorizationEndpoint', 'type': 'str'}, 'token_endpoint': {'key': 'tokenEndpoint', 'type': 'str'}, 'issuer': {'key': 'issuer', 'type': 'str'}, 'certification_uri': {'key': 'certificationUri', 'type': 'str'}, 'well_known_open_id_configuration': {'key': 'wellKnownOpenIdConfiguration', 'type': 'str'}, } def __init__(self, **kwargs): super(OpenIdConnectConfig, self).__init__(**kwargs) self.authorization_endpoint = kwargs.get('authorization_endpoint', None) self.token_endpoint = kwargs.get('token_endpoint', None) self.issuer = kwargs.get('issuer', None) self.certification_uri = kwargs.get('certification_uri', None) self.well_known_open_id_configuration = kwargs.get('well_known_open_id_configuration', None) class OpenIdConnectLogin(Model): """The configuration settings of the login flow of the custom Open ID Connect provider. :param name_claim_type: The name of the claim that contains the users name. :type name_claim_type: str :param scopes: A list of the scopes that should be requested while authenticating. :type scopes: list[str] """ _attribute_map = { 'name_claim_type': {'key': 'nameClaimType', 'type': 'str'}, 'scopes': {'key': 'scopes', 'type': '[str]'}, } def __init__(self, **kwargs): super(OpenIdConnectLogin, self).__init__(**kwargs) self.name_claim_type = kwargs.get('name_claim_type', None) self.scopes = kwargs.get('scopes', None) class OpenIdConnectRegistration(Model): """The configuration settings of the app registration for the custom Open ID Connect provider. :param client_id: The client id of the custom Open ID Connect provider. :type client_id: str :param client_credential: The authentication credentials of the custom Open ID Connect provider. :type client_credential: ~commondefinitions.models.OpenIdConnectClientCredential :param open_id_connect_configuration: The configuration settings of the endpoints used for the custom Open ID Connect provider. :type open_id_connect_configuration: ~commondefinitions.models.OpenIdConnectConfig """ _attribute_map = { 'client_id': {'key': 'clientId', 'type': 'str'}, 'client_credential': {'key': 'clientCredential', 'type': 'OpenIdConnectClientCredential'}, 'open_id_connect_configuration': {'key': 'openIdConnectConfiguration', 'type': 'OpenIdConnectConfig'}, } def __init__(self, **kwargs): super(OpenIdConnectRegistration, self).__init__(**kwargs) self.client_id = kwargs.get('client_id', None) self.client_credential = kwargs.get('client_credential', None) self.open_id_connect_configuration = kwargs.get('open_id_connect_configuration', None) class OperationDetail(Model): """Operation detail payload. :param name: Name of the operation :type name: str :param is_data_action: Indicates whether the operation is a data action :type is_data_action: bool :param display: Display of the operation :type display: ~commondefinitions.models.OperationDisplay :param origin: Origin of the operation :type origin: str """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'is_data_action': {'key': 'isDataAction', 'type': 'bool'}, 'display': {'key': 'display', 'type': 'OperationDisplay'}, 'origin': {'key': 'origin', 'type': 'str'}, } def __init__(self, **kwargs): super(OperationDetail, self).__init__(**kwargs) self.name = kwargs.get('name', None) self.is_data_action = kwargs.get('is_data_action', None) self.display = kwargs.get('display', None) self.origin = kwargs.get('origin', None) class OperationDisplay(Model): """Operation display payload. :param provider: Resource provider of the operation :type provider: str :param resource: Resource of the operation :type resource: str :param operation: Localized friendly name for the operation :type operation: str :param description: Localized friendly description for the operation :type description: str """ _attribute_map = { 'provider': {'key': 'provider', 'type': 'str'}, 'resource': {'key': 'resource', 'type': 'str'}, 'operation': {'key': 'operation', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, } def __init__(self, **kwargs): super(OperationDisplay, self).__init__(**kwargs) self.provider = kwargs.get('provider', None) self.resource = kwargs.get('resource', None) self.operation = kwargs.get('operation', None) self.description = kwargs.get('description', None) class QueueScaleRule(Model): """Container App container Azure Queue based scaling rule. :param queue_name: Queue name. :type queue_name: str :param queue_length: Queue length. :type queue_length: int :param auth: Authentication secrets for the queue scale rule. :type auth: list[~commondefinitions.models.ScaleRuleAuth] """ _attribute_map = { 'queue_name': {'key': 'queueName', 'type': 'str'}, 'queue_length': {'key': 'queueLength', 'type': 'int'}, 'auth': {'key': 'auth', 'type': '[ScaleRuleAuth]'}, } def __init__(self, **kwargs): super(QueueScaleRule, self).__init__(**kwargs) self.queue_name = kwargs.get('queue_name', None) self.queue_length = kwargs.get('queue_length', None) self.auth = kwargs.get('auth', None) class RegistryCredentials(Model): """Container App Private Registry. :param server: Container Registry Server :type server: str :param username: Container Registry Username :type username: str :param password_secret_ref: The name of the Secret that contains the registry login password :type password_secret_ref: str """ _attribute_map = { 'server': {'key': 'server', 'type': 'str'}, 'username': {'key': 'username', 'type': 'str'}, 'password_secret_ref': {'key': 'passwordSecretRef', 'type': 'str'}, } def __init__(self, **kwargs): super(RegistryCredentials, self).__init__(**kwargs) self.server = kwargs.get('server', None) self.username = kwargs.get('username', None) self.password_secret_ref = kwargs.get('password_secret_ref', None) class RegistryInfo(Model): """Container App registry information. :param registry_url: registry server Url. :type registry_url: str :param registry_user_name: registry username. :type registry_user_name: str :param registry_password: registry secret. :type registry_password: str """ _attribute_map = { 'registry_url': {'key': 'registryUrl', 'type': 'str'}, 'registry_user_name': {'key': 'registryUserName', 'type': 'str'}, 'registry_password': {'key': 'registryPassword', 'type': 'str'}, } def __init__(self, **kwargs): super(RegistryInfo, self).__init__(**kwargs) self.registry_url = kwargs.get('registry_url', None) self.registry_user_name = kwargs.get('registry_user_name', None) self.registry_password = kwargs.get('registry_password', None) class Replica(ProxyResource): """Container App Revision Replica. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource ID for the resource. Ex - /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName} :vartype id: str :ivar name: The name of the resource :vartype name: str :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts" :vartype type: str :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy information. :vartype system_data: ~commondefinitions.models.SystemData :ivar created_time: Timestamp describing when the pod was created by controller :vartype created_time: datetime :param containers: The containers collection under a replica. :type containers: list[~commondefinitions.models.ReplicaContainer] """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'system_data': {'readonly': True}, 'created_time': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'system_data': {'key': 'systemData', 'type': 'SystemData'}, 'created_time': {'key': 'properties.createdTime', 'type': 'iso-8601'}, 'containers': {'key': 'properties.containers', 'type': '[ReplicaContainer]'}, } def __init__(self, **kwargs): super(Replica, self).__init__(**kwargs) self.created_time = None self.containers = kwargs.get('containers', None) class ReplicaCollection(Model): """Container App Revision Replicas collection ARM resource. All required parameters must be populated in order to send to Azure. :param value: Required. Collection of resources. :type value: list[~commondefinitions.models.Replica] """ _validation = { 'value': {'required': True}, } _attribute_map = { 'value': {'key': 'value', 'type': '[Replica]'}, } def __init__(self, **kwargs): super(ReplicaCollection, self).__init__(**kwargs) self.value = kwargs.get('value', None) class ReplicaContainer(Model): """Container object under Container App Revision Replica. :param name: The Name of the Container :type name: str :param container_id: The Id of the Container :type container_id: str :param ready: The container ready status :type ready: bool :param started: The container start status :type started: bool :param restart_count: The container restart count :type restart_count: int """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'container_id': {'key': 'containerId', 'type': 'str'}, 'ready': {'key': 'ready', 'type': 'bool'}, 'started': {'key': 'started', 'type': 'bool'}, 'restart_count': {'key': 'restartCount', 'type': 'int'}, } def __init__(self, **kwargs): super(ReplicaContainer, self).__init__(**kwargs) self.name = kwargs.get('name', None) self.container_id = kwargs.get('container_id', None) self.ready = kwargs.get('ready', None) self.started = kwargs.get('started', None) self.restart_count = kwargs.get('restart_count', None) class Revision(ProxyResource): """Container App Revision. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource ID for the resource. Ex - /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName} :vartype id: str :ivar name: The name of the resource :vartype name: str :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts" :vartype type: str :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy information. :vartype system_data: ~commondefinitions.models.SystemData :ivar created_time: Timestamp describing when the revision was created by controller :vartype created_time: datetime :ivar fqdn: Fully qualified domain name of the revision :vartype fqdn: str :ivar template: Container App Revision Template with all possible settings and the defaults if user did not provide them. The defaults are populated as they were at the creation time :vartype template: ~commondefinitions.models.Template :ivar active: Boolean describing if the Revision is Active :vartype active: bool :ivar replicas: Number of pods currently running for this revision :vartype replicas: int :ivar traffic_weight: Traffic weight assigned to this revision :vartype traffic_weight: int :ivar provisioning_error: Optional Field - Platform Error Message :vartype provisioning_error: str :ivar health_state: Current health State of the revision. Possible values include: 'Healthy', 'Unhealthy', 'None' :vartype health_state: str or ~commondefinitions.models.RevisionHealthState :ivar provisioning_state: Current provisioning State of the revision. Possible values include: 'Provisioning', 'Provisioned', 'Failed', 'Deprovisioning', 'Deprovisioned' :vartype provisioning_state: str or ~commondefinitions.models.RevisionProvisioningState """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'system_data': {'readonly': True}, 'created_time': {'readonly': True}, 'fqdn': {'readonly': True}, 'template': {'readonly': True}, 'active': {'readonly': True}, 'replicas': {'readonly': True}, 'traffic_weight': {'readonly': True}, 'provisioning_error': {'readonly': True}, 'health_state': {'readonly': True}, 'provisioning_state': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'system_data': {'key': 'systemData', 'type': 'SystemData'}, 'created_time': {'key': 'properties.createdTime', 'type': 'iso-8601'}, 'fqdn': {'key': 'properties.fqdn', 'type': 'str'}, 'template': {'key': 'properties.template', 'type': 'Template'}, 'active': {'key': 'properties.active', 'type': 'bool'}, 'replicas': {'key': 'properties.replicas', 'type': 'int'}, 'traffic_weight': {'key': 'properties.trafficWeight', 'type': 'int'}, 'provisioning_error': {'key': 'properties.provisioningError', 'type': 'str'}, 'health_state': {'key': 'properties.healthState', 'type': 'str'}, 'provisioning_state':
<gh_stars>0 # # Project: # glideinWMS # # File Version: # # Description: # This module implements classes to query the condor daemons # and manipulate the results # Please notice that it also converts \" into " # # Author: # <NAME> (Aug 30th 2006) # import condorExe import condorSecurity import os import string import copy import socket import xml.parsers.expat # # Configuration # # Set path to condor binaries def set_path(new_condor_bin_path): global condor_bin_path condor_bin_path = new_condor_bin_path # # Caching classes # # dummy caching class, when you don't want caching # used as base class below, too class NoneScheddCache: #returns (cms arg schedd string,LOCAL_DIR) def getScheddId(self,schedd_name,pool_name): return (self.iGetCmdScheddStr(schedd_name),{}) # INTERNAL and for inheritance def iGetCmdScheddStr(self,schedd_name): if schedd_name is None: schedd_str="" else: schedd_str = "-name %s " % schedd_name return schedd_str # The schedd can be found either through -name attr # or through the local disk lookup # Remember which one to use class LocalScheddCache(NoneScheddCache): def __init__(self): self.enabled=True # dictionary of # (schedd_name,pool_name)=>(cms arg schedd string,env) self.cache={} self.my_ips=socket.gethostbyname_ex(socket.gethostname())[2] try: self.my_ips+=socket.gethostbyname_ex('localhost')[2] except socket.gaierror,e: pass # localhost not defined, ignore def enable(self): self.enabled=True def disable(self): self.enabled=False #returns (cms arg schedd string,env) def getScheddId(self,schedd_name,pool_name): if schedd_name is None: # special case, do not cache return ("",{}) if self.enabled: k=(schedd_name,pool_name) if not self.cache.has_key(k): # not in cache, discover it env=self.iGetEnv(schedd_name, pool_name) if env is None: # self.cache[k]=(self.iGetCmdScheddStr(schedd_name),{}) else: self.cache[k]=("",env) return self.cache[k] else: # not enabled, just return the str return (self.iGetCmdScheddStr(schedd_name),{}) # # PRIVATE # # return None if not found # Can raise exceptions def iGetEnv(self,schedd_name, pool_name): cs=CondorStatus('schedd',pool_name) data=cs.fetch(constraint='Name=?="%s"'%schedd_name,format_list=[('ScheddIpAddr','s'),('SPOOL_DIR_STRING','s'),('LOCAL_DIR_STRING','s')]) if not data.has_key(schedd_name): raise RuntimeError, "Schedd '%s' not found"%schedd_name el=data[schedd_name] if 'SPOOL_DIR_STRING' not in el and 'LOCAL_DIR_STRING' not in el: # not advertising, cannot use disk optimization return None if not el.has_key('ScheddIpAddr'): # This should never happen raise RuntimeError, "Schedd '%s' is not advertising ScheddIpAddr"%schedd_name schedd_ip=el['ScheddIpAddr'][1:].split(':')[0] if schedd_ip in self.my_ips: #seems local, go for the dir l=el.get('SPOOL_DIR_STRING', el.get('LOCAL_DIR_STRING')) if os.path.isdir(l): # making sure the directory exists if 'SPOOL_DIR_STRING' in el: return {'_CONDOR_SPOOL': '%s' %l } else: # LOCAL_DIR_STRING return {'_CONDOR_SPOOL': '%s/spool' %l } else: #dir does not exist, likely not relevant, revert to standard behaviour return None else: # not local return None # default global object local_schedd_cache=LocalScheddCache() def condorq_attrs(q_constraint, attribute_list): """ Retrieves a list of a single item from the all the factory queues. """ attr_str = "" for attr in attribute_list: attr_str += " -attr %s" % attr xml_data = condorExe.exe_cmd("condor_q","-g -l %s -xml -constraint '%s'" % (attr_str, q_constraint)) classads_xml = [] tmp_list = [] for line in xml_data: # look for the xml header if line[:5] == "<?xml": if len(tmp_list) > 0: classads_xml.append(tmp_list) tmp_list = [] tmp_list.append(line) q_proxy_list = [] for ad_xml in classads_xml: cred_list = xml2list(ad_xml) q_proxy_list.extend(cred_list) return q_proxy_list # # Condor monitoring classes # # Generic, you most probably don't want to use these class AbstractQuery: # pure virtual, just to have a minimum set of methods defined # returns the data, will not modify self def fetch(self,constraint=None,format_list=None): raise NotImplementedError,"Fetch not implemented" # will fetch in self.stored_data def load(self,constraint=None,format_list=None): raise NotImplementedError,"Load not implemented" # constraint_func is a boolean function, with only one argument (data el) # same output as fetch, but limited to constraint_func(el)==True # # if constraint_func==None, return all the data def fetchStored(self,constraint_func=None): raise NotImplementedError,"fetchStored not implemented" class StoredQuery(AbstractQuery): # still virtual, only fetchStored defined stored_data = {} def fetchStored(self,constraint_func=None): return applyConstraint(self.stored_data,constraint_func) # # format_list is a list of # (attr_name, attr_type) # where attr_type is one of # "s" - string # "i" - integer # "r" - real (float) # "b" - bool # # # security_obj, if defined, should be a child of condorSecurity.ProtoRequest class QueryExe(StoredQuery): # first fully implemented one, execute commands def __init__(self,exe_name,resource_str,group_attribute,pool_name=None,security_obj=None,env={}): self.exe_name=exe_name self.env=env self.resource_str=resource_str self.group_attribute=group_attribute self.pool_name=pool_name if pool_name is None: self.pool_str="" else: self.pool_str = "-pool %s" % pool_name if security_obj is not None: if security_obj.has_saved_state(): raise RuntimeError, "Cannot use a security object which has saved state." self.security_obj=copy.deepcopy(security_obj) else: self.security_obj=condorSecurity.ProtoRequest() def require_integrity(self,requested_integrity): # if none, dont change, else forse that one if requested_integrity is None: condor_val=None elif requested_integrity: condor_val="REQUIRED" else: # if not required, still should not fail if the other side requires it condor_val='OPTIONAL' self.security_obj.set('CLIENT','INTEGRITY',condor_val) def get_requested_integrity(self): condor_val = self.security_obj.get('CLIENT','INTEGRITY') if condor_val is None: return None return (condor_val=='REQUIRED') def require_encryption(self,requested_encryption): # if none, dont change, else forse that one if requested_encryption is None: condor_val=None elif requested_encryption: condor_val="REQUIRED" else: # if not required, still should not fail if the other side requires it condor_val='OPTIONAL' self.security_obj.set('CLIENT','ENCRYPTION',condor_val) def get_requested_encryption(self): condor_val = self.security_obj.get('CLIENT','ENCRYPTION') if condor_val is None: return None return (condor_val=='REQUIRED') def fetch(self,constraint=None,format_list=None): if constraint is None: constraint_str="" else: constraint_str="-constraint '%s'"%constraint full_xml=(format_list is None) if format_list is not None: format_arr=[] for format_el in format_list: attr_name,attr_type=format_el attr_format={'s':'%s','i':'%i','r':'%f','b':'%i'}[attr_type] format_arr.append('-format "%s" "%s"'%(attr_format,attr_name)) format_str=string.join(format_arr," ") # set environment for security settings self.security_obj.save_state() try: self.security_obj.enforce_requests() if full_xml: xml_data = condorExe.exe_cmd(self.exe_name,"%s -xml %s %s"%(self.resource_str,self.pool_str,constraint_str),env=self.env); else: xml_data = condorExe.exe_cmd(self.exe_name,"%s %s -xml %s %s"%(self.resource_str,format_str,self.pool_str,constraint_str),env=self.env); finally: # restore old values self.security_obj.restore_state() list_data = xml2list(xml_data) del xml_data dict_data = list2dict(list_data, self.group_attribute) return dict_data def load(self, constraint=None, format_list=None): self.stored_data = self.fetch(constraint, format_list) # # Fully usable query functions # # condor_q class CondorQ(QueryExe): def __init__(self,schedd_name=None,pool_name=None,security_obj=None,schedd_lookup_cache=local_schedd_cache): self.schedd_name=schedd_name if schedd_lookup_cache is None: schedd_lookup_cache=NoneScheddCache() schedd_str,env=schedd_lookup_cache.getScheddId(schedd_name, pool_name) QueryExe.__init__(self,"condor_q",schedd_str,["ClusterId","ProcId"],pool_name,security_obj,env) def fetch(self, constraint=None, format_list=None): if format_list is not None: # check that ClusterId and ProcId are present, and if not add them format_list = complete_format_list(format_list, [("ClusterId", 'i'), ("ProcId", 'i')]) return QueryExe.fetch(self, constraint=constraint, format_list=format_list) # condor_q, where we have only one ProcId x ClusterId class CondorQLite(QueryExe): def __init__(self,schedd_name=None,pool_name=None,security_obj=None,schedd_lookup_cache=local_schedd_cache): self.schedd_name=schedd_name if schedd_lookup_cache is None: schedd_lookup_cache=NoneScheddCache() schedd_str,env=schedd_lookup_cache.getScheddId(schedd_name, pool_name) QueryExe.__init__(self,"condor_q",schedd_str,"ClusterId",pool_name,security_obj,env) def fetch(self, constraint=None, format_list=None): if format_list is not None: # check that ClusterId is present, and if not add it format_list = complete_format_list(format_list, [("ClusterId", 'i')]) return QueryExe.fetch(self, constraint=constraint, format_list=format_list) # condor_status class CondorStatus(QueryExe): def __init__(self,subsystem_name=None,pool_name=None,security_obj=None): if subsystem_name is None: subsystem_str="" else: subsystem_str = "-%s" % subsystem_name QueryExe.__init__(self,"condor_status",subsystem_str,"Name",pool_name,security_obj,{}) def fetch(self, constraint=None, format_list=None): if format_list is not None: # check that Name present and if not, add it format_list = complete_format_list(format_list, [("Name",'s')]) return QueryExe.fetch(self, constraint=constraint, format_list=format_list) def __repr__(self): output = "CondorStatus:\n" output += "exe_name = %s\n" % str(self.exe_name) output += "env = %s\n" % str(self.env) output += "resource_str = %s\n" % str(self.resource_str) output += "group_attribute = %s\n" % str(self.group_attribute) output += "pool_str = %s\n" % str(self.pool_str) output += "security_obj = %s\n" % str(self.security_obj) output += "stored_data = %s" % str(self.stored_data) return output # # Subquery classes # # Generic, you most probably don't want to use this class BaseSubQuery(StoredQuery): def __init__(self, query, subquery_func): self.query = query self.subquery_func = subquery_func def fetch(self, constraint=None): indata = self.query.fetch(constraint) return self.subquery_func(self, indata) # # NOTE: You need to call load on the SubQuery object to use fetchStored # and had query.load issued before # def load(self, constraint=None): indata = self.query.fetchStored(constraint) self.stored_data = self.subquery_func(indata) # # Fully usable subquery functions # class SubQuery(BaseSubQuery): def __init__(self, query, constraint_func=None): BaseSubQuery.__init__(self, query, lambda d:applyConstraint(d, constraint_func)) def __repr__(self): output = "SubQuery:\n" #output += "client_name = %s\n" % str(self.client_name) #output += "entry_name = %s\n" % str(self.entry_name) #output += "factory_name = %s\n" % str(self.factory_name) #output += "glidein_name = %s\n" % str(self.glidein_name) #output += "schedd_name = %s\n" % str(self.schedd_name) output += "stored_data = %s" % str(self.stored_data) return output class Group(BaseSubQuery): # group_key_func - Key extraction function # One argument: classad dictionary # Returns: value of the group key # group_data_func - Key extraction function # One argument: list of classad dictionaries # Returns: a summary classad dictionary def __init__(self, query, group_key_func, group_data_func): BaseSubQuery.__init__(self, query, lambda d:doGroup(d, group_key_func, group_data_func)) # # Summarizing classes # class Summarize: # hash_func - Hashing function # One argument: classad dictionary # Returns: hash value # if None, will not be counted # if a list, all elements will be used def __init__(self, query, hash_func=lambda x:1): self.query = query self.hash_func = hash_func # Parameters: # constraint - string to be passed to query.fetch() # hash_func - if !=None, use this instead of the main one # Returns a dictionary of hash values # Elements are counts (or more dictionaries if hash returns lists) def count(self, constraint=None, hash_func=None): data = self.query.fetch(constraint) return fetch2count(data, self.getHash(hash_func)) # Use data pre-stored in query # Same output as count def countStored(self, constraint_func=None, hash_func=None): data = self.query.fetchStored(constraint_func) return fetch2count(data, self.getHash(hash_func)) # Parameters, same as count
code: 200", "Total identifiers registered with this collection: 201", "Entries on this page: 1", " The Green Mouse", ] == test_result.result assert True == test_result.success # Next, test failure. response = mock_response(url, auth, 401, "An error message.") test_result = SelfTestResult("failure") assert False == test_result.success m(test_result, response) assert [ "Request URL: %s" % url, "Request authorization: %s" % auth, "Status code: 401", ] == test_result.result def test_external_integration(self): result = MetadataWranglerOPDSLookup.external_integration(self._db) assert result.protocol == ExternalIntegration.METADATA_WRANGLER assert result.goal == ExternalIntegration.METADATA_GOAL class OPDSImporterTest(OPDSTest): def setup_method(self): super(OPDSImporterTest, self).setup_method() self.content_server_feed = self.sample_opds("content_server.opds") self.content_server_mini_feed = self.sample_opds("content_server_mini.opds") self.audiobooks_opds = self.sample_opds("audiobooks.opds") self.feed_with_id_and_dcterms_identifier = self.sample_opds( "feed_with_id_and_dcterms_identifier.opds", "rb" ) self._default_collection.external_integration.setting( "data_source" ).value = DataSource.OA_CONTENT_SERVER # Set an ExternalIntegration for the metadata_client used # in the OPDSImporter. self.service = self._external_integration( ExternalIntegration.METADATA_WRANGLER, goal=ExternalIntegration.METADATA_GOAL, url="http://localhost", ) class TestOPDSImporter(OPDSImporterTest): def test_constructor(self): # The default way of making HTTP requests is with # Representation.cautious_http_get. importer = OPDSImporter(self._db, collection=None) assert Representation.cautious_http_get == importer.http_get # But you can pass in anything you want. do_get = object() importer = OPDSImporter(self._db, collection=None, http_get=do_get) assert do_get == importer.http_get def test_data_source_autocreated(self): name = "New data source " + self._str importer = OPDSImporter(self._db, collection=None, data_source_name=name) source1 = importer.data_source assert name == source1.name def test_extract_next_links(self): importer = OPDSImporter( self._db, collection=None, data_source_name=DataSource.NYT ) next_links = importer.extract_next_links(self.content_server_mini_feed) assert 1 == len(next_links) assert "http://localhost:5000/?after=327&size=100" == next_links[0] def test_extract_last_update_dates(self): importer = OPDSImporter( self._db, collection=None, data_source_name=DataSource.NYT ) # This file has two <entry> tags and one <simplified:message> tag. # The <entry> tags have their last update dates extracted, # the message is ignored. last_update_dates = importer.extract_last_update_dates( self.content_server_mini_feed ) assert 2 == len(last_update_dates) identifier1, updated1 = last_update_dates[0] identifier2, updated2 = last_update_dates[1] assert "urn:librarysimplified.org/terms/id/Gutenberg%20ID/10441" == identifier1 assert datetime_utc(2015, 1, 2, 16, 56, 40) == updated1 assert "urn:librarysimplified.org/terms/id/Gutenberg%20ID/10557" == identifier2 assert datetime_utc(2015, 1, 2, 16, 56, 40) == updated2 def test_extract_last_update_dates_ignores_entries_with_no_update(self): importer = OPDSImporter( self._db, collection=None, data_source_name=DataSource.NYT ) # Rename the <updated> and <published> tags in the content # server so they don't show up. content = self.content_server_mini_feed.replace("updated>", "irrelevant>") content = content.replace("published>", "irrelevant>") last_update_dates = importer.extract_last_update_dates(content) # No updated dates! assert [] == last_update_dates def test_extract_metadata(self): data_source_name = "Data source name " + self._str importer = OPDSImporter( self._db, collection=None, data_source_name=data_source_name ) metadata, failures = importer.extract_feed_data(self.content_server_mini_feed) m1 = metadata["http://www.gutenberg.org/ebooks/10441"] m2 = metadata["http://www.gutenberg.org/ebooks/10557"] c1 = metadata["http://www.gutenberg.org/ebooks/10441"] c2 = metadata["http://www.gutenberg.org/ebooks/10557"] assert "The Green Mouse" == m1.title assert "A Tale of Mousy Terror" == m1.subtitle assert data_source_name == m1._data_source assert data_source_name == m2._data_source assert data_source_name == c1._data_source assert data_source_name == c2._data_source [failure] = list(failures.values()) assert ( "202: I'm working to locate a source for this identifier." == failure.exception ) def test_use_dcterm_identifier_as_id_with_id_and_dcterms_identifier(self): data_source_name = "Data source name " + self._str collection_to_test = self._default_collection collection_to_test.primary_identifier_source = ( ExternalIntegration.DCTERMS_IDENTIFIER ) importer = OPDSImporter( self._db, collection=collection_to_test, data_source_name=data_source_name, ) metadata, failures = importer.extract_feed_data( self.feed_with_id_and_dcterms_identifier ) # First book doesn't have <dcterms:identifier>, so <id> must be used as identifier book_1 = metadata.get("https://root.uri/1") assert book_1 != None # Second book have <id> and <dcterms:identifier>, so <dcters:identifier> must be used as id book_2 = metadata.get("urn:isbn:9781468316438") assert book_2 != None # Verify if id was add in the end of identifier book_2_identifiers = book_2.identifiers found = False for entry in book_2.identifiers: if entry.identifier == "https://root.uri/2": found = True break assert found == True # Third book has more than one dcterms:identifers, all of then must be present as metadata identifier book_3 = metadata.get("urn:isbn:9781683351993") assert book_2 != None # Verify if id was add in the end of identifier book_3_identifiers = book_3.identifiers expected_identifier = [ "9781683351993", "https://root.uri/3", "9781683351504", "9780312939458", ] result_identifier = [entry.identifier for entry in book_3.identifiers] assert set(expected_identifier) == set(result_identifier) def test_use_id_with_existing_dcterms_identifier(self): data_source_name = "Data source name " + self._str collection_to_test = self._default_collection collection_to_test.primary_identifier_source = None importer = OPDSImporter( self._db, collection=collection_to_test, data_source_name=data_source_name, ) metadata, failures = importer.extract_feed_data( self.feed_with_id_and_dcterms_identifier ) book_1 = metadata.get("https://root.uri/1") assert book_1 != None book_2 = metadata.get("https://root.uri/2") assert book_2 != None book_3 = metadata.get("https://root.uri/3") assert book_3 != None def test_extract_link(self): no_rel = AtomFeed.E.link(href="http://foo/") assert None == OPDSImporter.extract_link(no_rel) no_href = AtomFeed.E.link(href="", rel="foo") assert None == OPDSImporter.extract_link(no_href) good = AtomFeed.E.link(href="http://foo", rel="bar") link = OPDSImporter.extract_link(good) assert "http://foo" == link.href assert "bar" == link.rel relative = AtomFeed.E.link(href="/foo/bar", rel="self") link = OPDSImporter.extract_link(relative, "http://server") assert "http://server/foo/bar" == link.href def test_get_medium_from_links(self): audio_links = [ LinkData( href="url", rel="http://opds-spec.org/acquisition/", media_type="application/audiobook+json;param=value", ), LinkData(href="url", rel="http://opds-spec.org/image"), ] book_links = [ LinkData(href="url", rel="http://opds-spec.org/image"), LinkData( href="url", rel="http://opds-spec.org/acquisition/", media_type=random.choice(MediaTypes.BOOK_MEDIA_TYPES) + ";param=value", ), ] m = OPDSImporter.get_medium_from_links assert m(audio_links) == "Audio" assert m(book_links) == "Book" def test_extract_link_rights_uri(self): # Most of the time, a link's rights URI is inherited from the entry. entry_rights = RightsStatus.PUBLIC_DOMAIN_USA link_tag = AtomFeed.E.link(href="http://foo", rel="bar") link = OPDSImporter.extract_link(link_tag, entry_rights_uri=entry_rights) assert RightsStatus.PUBLIC_DOMAIN_USA == link.rights_uri # But a dcterms:rights tag beneath the link can override this. rights_attr = "{%s}rights" % AtomFeed.DCTERMS_NS link_tag.attrib[rights_attr] = RightsStatus.IN_COPYRIGHT link = OPDSImporter.extract_link(link_tag, entry_rights_uri=entry_rights) assert RightsStatus.IN_COPYRIGHT == link.rights_uri def test_extract_data_from_feedparser(self): data_source = DataSource.lookup(self._db, DataSource.OA_CONTENT_SERVER) importer = OPDSImporter(self._db, None, data_source_name=data_source.name) values, failures = importer.extract_data_from_feedparser( self.content_server_mini_feed, data_source ) # The <entry> tag became a Metadata object. metadata = values["urn:librarysimplified.org/terms/id/Gutenberg%20ID/10441"] assert "The Green Mouse" == metadata["title"] assert "A Tale of Mousy Terror" == metadata["subtitle"] assert "en" == metadata["language"] assert "Project Gutenberg" == metadata["publisher"] circulation = metadata["circulation"] assert DataSource.GUTENBERG == circulation["data_source"] # The <simplified:message> tag did not become a # CoverageFailure -- that's handled by # extract_metadata_from_elementtree. assert {} == failures def test_extract_data_from_feedparser_handles_exception(self): class DoomedFeedparserOPDSImporter(OPDSImporter): """An importer that can't extract metadata from feedparser.""" @classmethod def _data_detail_for_feedparser_entry(cls, entry, data_source): raise Exception("Utter failure!") data_source = DataSource.lookup(self._db, DataSource.OA_CONTENT_SERVER) importer = DoomedFeedparserOPDSImporter( self._db, None, data_source_name=data_source.name ) values, failures = importer.extract_data_from_feedparser( self.content_server_mini_feed, data_source ) # No metadata was extracted. assert 0 == len(list(values.keys())) # There are 2 failures, both from exceptions. The 202 message # found in content_server_mini.opds is not extracted # here--it's extracted by extract_metadata_from_elementtree. assert 2 == len(failures) # The first error message became a CoverageFailure. failure = failures["urn:librarysimplified.org/terms/id/Gutenberg%20ID/10441"] assert isinstance(failure, CoverageFailure) assert True == failure.transient assert "Utter failure!" in failure.exception # The second error message became a CoverageFailure. failure = failures["urn:librarysimplified.org/terms/id/Gutenberg%20ID/10557"] assert isinstance(failure, CoverageFailure) assert True == failure.transient assert "Utter failure!" in failure.exception def test_extract_metadata_from_elementtree(self): data_source = DataSource.lookup(self._db, DataSource.OA_CONTENT_SERVER) data, failures = OPDSImporter.extract_metadata_from_elementtree( self.content_server_feed, data_source ) # There are 76 entries in the feed, and we got metadata for # every one of them. assert 76 == len(data) assert 0 == len(failures) # We're going to do spot checks on a book and a periodical. # First, the book. book_id = "urn:librarysimplified.org/terms/id/Gutenberg%20ID/1022" book = data[book_id] assert Edition.BOOK_MEDIUM == book["medium"] [contributor] = book["contributors"] assert "Thoreau, <NAME>" == contributor.sort_name assert [Contributor.AUTHOR_ROLE] == contributor.roles subjects = book["subjects"] assert ["LCSH", "LCSH", "LCSH", "LCC"] == [x.type for x in subjects] assert ["Essays", "Nature", "Walking", "PS"] == [x.identifier for x in subjects] assert [None, None, None, "American Literature"] == [ x.name for x in book["subjects"] ] assert [1, 1, 1, 10] == [x.weight for x in book["subjects"]] assert [] == book["measurements"] assert datetime_utc(1862, 6, 1) == book["published"] [link] = book["links"] assert Hyperlink.OPEN_ACCESS_DOWNLOAD == link.rel assert "http://www.gutenberg.org/ebooks/1022.epub.noimages" == link.href assert Representation.EPUB_MEDIA_TYPE == link.media_type # And now, the periodical. periodical_id = "urn:librarysimplified.org/terms/id/Gutenberg%20ID/10441" periodical = data[periodical_id] assert Edition.PERIODICAL_MEDIUM == periodical["medium"] subjects = periodical["subjects"] assert [ "LCSH", "LCSH", "LCSH", "LCSH", "LCC", "schema:audience", "schema:typicalAgeRange", ] == [x.type for x in subjects] assert [ "Courtship -- Fiction", "New York (N.Y.) -- Fiction", "Fantasy fiction", "Magic -- Fiction", "PZ", "Children", "7", ] == [x.identifier for x in subjects] assert [1, 1, 1, 1, 1, 1, 1] == [x.weight for x in subjects] r1, r2, r3 = periodical["measurements"] assert Measurement.QUALITY == r1.quantity_measured assert 0.3333 == r1.value assert 1 == r1.weight assert Measurement.RATING == r2.quantity_measured assert 0.6 == r2.value assert 1 == r2.weight assert Measurement.POPULARITY == r3.quantity_measured assert 0.25 == r3.value assert 1 == r3.weight assert "Animal Colors" == periodical["series"] assert "1" == periodical["series_position"] assert datetime_utc(1910, 1, 1) == periodical["published"] def test_extract_metadata_from_elementtree_treats_message_as_failure(self): data_source = DataSource.lookup(self._db, DataSource.OA_CONTENT_SERVER) feed = self.sample_opds("unrecognized_identifier.opds") values, failures = OPDSImporter.extract_metadata_from_elementtree( feed, data_source ) # We have no Metadata objects and one CoverageFailure. assert {} == values # The CoverageFailure contains the information that was
be go to create ? fogapp_name = status['create_fn']['fogapp_name'] fogapp_image = spec['template']['spec']['containers'][0]['image'] fogapp_replicas = spec['replicas'] fogapp_cpu_request = int(spec['template']['spec']['containers'][0]['resources']['requests']['cpu'][:-1]) # fogapp_cpu_limit = spec['template']['spec']['containers']['resources']['limits']['cpu'] fogapp_memory_request = int(spec['template']['spec']['containers'][0]['resources']['requests']['memory'][:-2]) # fogapp_memory_limit = spec['template']['spec']['containers']['resources']['limits']['memory'] # fogapp_type = spec['appType'] # fogapp_type = body['kind'] spec_text = str(spec) fogapp_current_replicas = {} if 'update_fn' in status: fogapp_current_locations = status['update_fn']['fogapp_locations'] for i in range(0, len(fogapp_current_locations)): fogapp_current_replicas[fogapp_current_locations[i]] = status['update_fn']['fogapp_replicas'][i] else: fogapp_current_locations = status['create_fn']['fogapp_locations'] for i in range(0, len(fogapp_current_locations)): fogapp_current_replicas[fogapp_current_locations[i]] = status['create_fn']['fogapp_replicas'][i] total_current_replicas = 0 for cluster in fogapp_current_locations: total_current_replicas += fogapp_current_replicas[cluster] print("Current locations and replicas ............................", fogapp_current_replicas) # if not fogapp_type or 'appType' not in spec: # raise kopf.HandlerFatalError(f"appType needs to be specified.") # Make sure image is provided if not fogapp_image: raise kopf.HandlerFatalError(f"Image must be set. Got {fogapp_image}.") if not fogapp_replicas: raise kopf.HandlerFatalError(f"Number of replicas must be set. Got {fogapp_replicas}.") if 'numberOfLocations' in spec: clusters_qty = spec['numberOfLocations'] else: clusters_qty = 1 # Get namespace if 'namespace' in body['metadata']: fogpapp_namespace = body['metadata']['namespace'] else: fogpapp_namespace = "default" # Placement policy specified by user if 'placementPolicy' in spec: placement_policy = spec['placementPolicy'] else: # Default placement policy is most_traffic placement_policy = 'most_traffic' override_replicas = {} eligible_replicas = [] eligible_clusters = [] if 'locations' not in spec: mode = 'update' fogapp_locations = getFogAppLocations(fogapp_name, fogpapp_namespace, fogapp_cpu_request, fogapp_memory_request, fogapp_replicas, clusters_qty, placement_policy, mode) total_replicas = clusters_qty * fogapp_replicas if len(fogapp_locations) != 0: eligible_clusters = [] for cluster in fogapp_locations: if cluster['max_replicas'] > fogapp_replicas: cluster['replicas'] = fogapp_replicas cluster['overflow'] = 0 else: cluster['replicas'] = cluster['max_replicas'] cluster['overflow'] = fogapp_replicas - cluster['max_replicas'] total_overflow = 0 for cluster in fogapp_locations[:clusters_qty]: dict = {} dict['name'] = cluster['name'] dict['replicas'] = cluster['replicas'] eligible_clusters.append(dict) total_overflow += cluster['overflow'] print("Total overflow ...........", total_overflow) if total_overflow > 0: for cluster in fogapp_locations[clusters_qty:]: if cluster['max_replicas'] > total_overflow: dict = {} dict['name'] = cluster['name'] dict['replicas'] = total_overflow total_overflow = 0 eligible_clusters.append(dict) break else: dict = {} dict['name'] = cluster['name'] dict['replicas'] = cluster['max_replicas'] total_overflow = total_overflow - dict['replicas'] eligible_clusters.append(dict) if total_overflow > 0: for cluster in eligible_clusters: if 'cloud' in cluster['name']: cluster['replicas'] += total_overflow total_overflow = 0 print("Final list of clusters .................", eligible_clusters) print("Final overflow .................", total_overflow) if total_overflow > 0: dict = {} dict['message'] = 'to_cloud' dict['replicas'] = total_overflow patch.status['message'] = dict raise kopf.TemporaryError("Fog clusters not sufficient to run the app. Provisioning cloud cluster.....................", delay=30) else: dict = {} dict['message'] = 'to_cloud' dict['replicas'] = fogapp_replicas patch.status['message'] = dict raise kopf.TemporaryError( "No clusters found at the fog level. Provisioning cloud cluster.....................", delay=30) else: input_clusters = spec['locations'].split(",") fogapp_locations = [] for location in input_clusters: fogapp_locations.append(location.strip()) print("Input list of clusters ....", fogapp_locations) clusters_qty = len(fogapp_locations) if 'replicaOverrides' in spec: replicas_list = [] override_replicas = {} if isinstance(spec['replicaOverrides'], str): replicas = spec['replicaOverrides'].split(",") for i in replicas: replicas_list.append(i.strip()) elif isinstance(spec['replicaOverrides'], list): replicas_list = spec['replicaOverrides'] print("Replica overrides ............", spec['replicaOverrides']) for i in range(0, len(fogapp_locations)): override_replicas[fogapp_locations[i]] = replicas_list[i] else: override_replicas = {} for i in range(0, len(fogapp_locations)): override_replicas[fogapp_locations[i]] = fogapp_replicas print("Replica overrides input ....", override_replicas) total_replicas = 0 for replica in list(override_replicas.values()): total_replicas += int(replica) print("Total number of replicas .....", total_replicas) fog_only_clusters = [] for cluster in fogapp_locations: if 'cloud' not in cluster: fog_only_clusters.append(cluster) # Compute cloud replicas cloud_replicas = 0 for cluster in fogapp_locations: if 'cloud' in cluster: cloud_replicas += int(override_replicas[cluster]) if len(fog_only_clusters) > 0: possible_clusters = findPossibleClusters(fog_only_clusters, fogapp_cpu_request, fogapp_memory_request) else: possible_clusters = [] print("Initial possible clusters list ............", possible_clusters) # if node of the fog clusters have the right sized nodes if len(possible_clusters) == 0: eligible_clusters = [] eligible_replicas = [] cloud_cluster = getCloudCluster() if 'cloud' in cloud_cluster: # eligible_clusters.append(cloud_cluster) # eligible_replicas.append(total_replicas) dict = {} dict['name'] = cloud_cluster dict['replicas'] = total_replicas eligible_clusters.append(dict) else: dict = {} dict['message'] = 'to_cloud' dict['replicas'] = total_replicas patch.status['message'] = dict raise kopf.TemporaryError("The application could not be scheduled on the Fog elevel. Need cloud cluster.", delay=30) print("Initial eligible clusters and replicas 1111", eligible_clusters) else: fogapp_locations.sort() possible_clusters.sort() override_replicas_update = {} # Assign replicas to replacement clusters from input clusters for i in range(0, len(possible_clusters)): if possible_clusters[i] in fogapp_locations: override_replicas_update[possible_clusters[i]] = override_replicas[possible_clusters[i]] else: override_replicas_update[possible_clusters[i]] = list(override_replicas.values())[i] print("Override replicas new .....", override_replicas_update) for cluster in possible_clusters: replicas = int(override_replicas_update[cluster]) #replicas = int(override_replicas_diff[cluster]) # is_eligible = checkClusterEligibility(cluster, app_cpu_request, app_memory_request, replicas) # The maximum number of replicas the cluster can host maximum_replicas = getAllocatableCapacity(cluster, fogapp_cpu_request, fogapp_memory_request, fogapp_name, fogpapp_namespace) if maximum_replicas > replicas: dict = {} dict['name'] = cluster dict['max_replicas'] = maximum_replicas dict['replicas'] = replicas dict['overflow'] = 0 eligible_clusters.append(dict) else: dict = {} dict['name'] = cluster dict['max_replicas'] = maximum_replicas dict['replicas'] = maximum_replicas dict['overflow'] = replicas - maximum_replicas eligible_clusters.append(dict) temp_list = [] for cluster in eligible_clusters: temp_list.append(cluster) print("Possible list of clusters and oveflow ....", temp_list) temp_list_2 = [] for cluster in temp_list: temp_list_2.append(cluster['name']) temp_list_3 = list(set(fogapp_locations + temp_list_2)) total_overflow = 0 for cluster in temp_list: total_overflow += cluster['overflow'] maximum_replicas = {} for cluster in temp_list: nearest_clusters = [] overflow = cluster['overflow'] #leftover = overflow print("Overflow from ", cluster, overflow) if overflow > 0: nearest_clusters = findNearestClusters(cluster, temp_list_3) print("List of nearest clusters ....", nearest_clusters) # else: # print("The cluster doesn't have overflow ....") # break # Distribute overflow to nearest clusters if len(nearest_clusters) > 0: for c in nearest_clusters: # print("Overflow .................", overflow) # if overflow > 0: maximum_replicas[c] = getAllocatableCapacity(c, fogapp_cpu_request, fogapp_memory_request, fogapp_name, fogpapp_namespace) print("Maximum replicas .....", maximum_replicas) for cluster in temp_list: nearest_clusters = [] overflow = cluster['overflow'] if overflow > 0: nearest_clusters = findNearestClusters(cluster, temp_list_3) # else: # break if len(nearest_clusters) > 0: for c in nearest_clusters: if cluster['overflow'] > 0: if maximum_replicas[c] == 0: cluster['overflow'] = cluster['overflow'] #break elif maximum_replicas[c] > cluster['overflow']: dict = {} dict['name'] = c dict['replicas'] = cluster['overflow'] dict['overflow'] = 0 eligible_clusters.append(dict) maximum_replicas[c] = maximum_replicas[c] - cluster['overflow'] cluster['overflow'] = 0 #break else: dict = {} dict['name'] = c dict['replicas'] = maximum_replicas[c] dict['overflow'] = 0 cluster['overflow'] = cluster['overflow'] - maximum_replicas[c] eligible_clusters.append(dict) maximum_replicas[c] = 0 eligible_clusters = (pd.DataFrame(eligible_clusters) .groupby(['name'], as_index=False) .agg({'replicas': 'sum', 'overflow': 'sum'}) .to_dict('r')) # for c in eligible_clusters: # maximum_replicas = getMaximumReplicas(c['name'], fogapp_cpu_request, fogapp_memory_request) # if c['replicas'] > maximum_replicas: # c['overflow'] = c['overflow'] + c['replicas'] - maximum_replicas # c['replicas'] = maximum_replicas print("Preliminary list of eligible clusters ...", eligible_clusters) # Compute leftover to be deployed on cloud cluster leftover = 0 for cluster in eligible_clusters: if cluster['overflow'] > 0: leftover += cluster['overflow'] # Add leftover on top of the number of replicas requested for cloud # for cluster in fogapp_locations: # if 'cloud' in cluster: # leftover += int(override_replicas[cluster]) if leftover > 0: for cluster in fogapp_locations: if 'cloud' in cluster: dict = {} dict['name'] = cluster dict['replicas'] = leftover dict['overflow'] = 0 eligible_clusters.append(dict) leftover = 0 print("Eligible clusters including cloud ...........", eligible_clusters) if len(eligible_clusters) == 0: dict = {} dict['message'] = 'to_cloud' dict['replicas'] = total_replicas patch.status['message'] = dict raise kopf.TemporaryError( "The application could not be scheduled on the Fog level. Need cloud cluster.", delay=30) else: if leftover > 0: cloud_cluster = getCloudCluster() if 'cloud' in cloud_cluster: dict = {} dict['name'] = cloud_cluster dict['replicas'] = leftover dict['overflow'] = 0 eligible_clusters.append(dict) leftover = 0 print("Eligible clusters including cloud ...........", eligible_clusters) else: dict = {} dict['message'] = 'to_cloud' dict['replicas'] = leftover patch.status['message'] = dict raise kopf.TemporaryError( "The application could not be scheduled on the Fog level. Need cloud cluster.", delay=30) for cluster in eligible_clusters: if cluster['replicas'] == 0: eligible_clusters.remove(cluster) print("Final list of eligible clusters ...", eligible_clusters) temp_list = [] for cluster in eligible_clusters: temp_list.append(cluster) eligible_clusters = [] eligible_replicas = [] for cluster in temp_list: eligible_clusters.append(cluster['name']) eligible_replicas.append(cluster['replicas']) # For the spec file deployment_template = "{'apiVersion': 'apps/v1', 'kind': 'Deployment', 'metadata': {'name': '" + fogapp_name + "', 'namespace': '" + fogpapp_namespace + "'}, 'spec': " deployment_json = deployment_template + spec_text + "}" deployment_text = deployment_json.replace("'", "\"") deployment_body = json.loads(deployment_text) # Delete deployment and service from current clusters fogapp_current_locations.sort() eligible_clusters_sorted = [] for cluster in eligible_clusters: eligible_clusters_sorted.append(cluster) eligible_clusters_sorted.sort() if len(eligible_clusters_sorted) == len(fogapp_current_locations) and fogapp_current_locations == eligible_clusters_sorted: print("Same set of clusters .... Patching ......") i = 0 for cluster in eligible_clusters: deployment_body['spec']['replicas'] = eligible_replicas[i] print("Patching fogapp on existing clusters ............") patchDeployment(cluster, fogapp_name, deployment_body, fogpapp_namespace)
1; size: 30; search: " await app(get_example_scope("GET", "/", query=b"page=2"), mock_receive(), mock_send) response = app.response content = await response.text() assert response.status == 200 assert content == "Page: 2; size: 30; search: " await app( get_example_scope("GET", "/", query=b"page=2&size=50"), mock_receive(), mock_send, ) response = app.response content = await response.text() assert response.status == 200 assert content == "Page: 2; size: 50; search: " await app( get_example_scope("GET", "/", query=b"page=2&size=50&search=foo"), mock_receive(), mock_send, ) response = app.response content = await response.text() assert response.status == 200 assert content == "Page: 2; size: 50; search: foo" @pytest.mark.asyncio async def test_handler_normalize_sync_method_from_query_default( app, mock_send, mock_receive ): @app.router.get("/") def get_products( page: FromQuery[int] = FromQuery(1), size: FromQuery[int] = FromQuery(30), search: FromQuery[str] = FromQuery(""), ): return text(f"Page: {page.value}; size: {size.value}; search: {search.value}") app.normalize_handlers() await app(get_example_scope("GET", "/"), mock_receive(), mock_send) response = app.response content = await response.text() assert response.status == 200 assert content == "Page: 1; size: 30; search: " await app(get_example_scope("GET", "/", query=b"page=2"), mock_receive(), mock_send) response = app.response content = await response.text() assert response.status == 200 assert content == "Page: 2; size: 30; search: " await app( get_example_scope("GET", "/", query=b"page=2&size=50"), mock_receive(), mock_send, ) response = app.response content = await response.text() assert response.status == 200 assert content == "Page: 2; size: 50; search: " await app( get_example_scope("GET", "/", query=b"page=2&size=50&search=foo"), mock_receive(), mock_send, ) response = app.response content = await response.text() assert response.status == 200 assert content == "Page: 2; size: 50; search: foo" @pytest.mark.asyncio async def test_handler_normalize_list_sync_method_from_query_default( app, mock_send, mock_receive ): @app.router.get("/") def example( a: FromQuery[List[int]] = FromQuery([1, 2, 3]), b: FromQuery[List[int]] = FromQuery([4, 5, 6]), c: FromQuery[List[str]] = FromQuery(["x"]), ): return text(f"A: {a.value}; B: {b.value}; C: {c.value}") app.normalize_handlers() await app(get_example_scope("GET", "/"), mock_receive(), mock_send) response = app.response content = await response.text() assert response.status == 200 assert content == f"A: {[1, 2, 3]}; B: {[4, 5, 6]}; C: {['x']}" await app(get_example_scope("GET", "/", query=b"a=1349"), mock_receive(), mock_send) response = app.response content = await response.text() assert response.status == 200 assert content == f"A: {[1349]}; B: {[4, 5, 6]}; C: {['x']}" await app( get_example_scope("GET", "/", query=b"a=1349&c=Hello&a=55"), mock_receive(), mock_send, ) response = app.response content = await response.text() assert response.status == 200 assert content == f"A: {[1349, 55]}; B: {[4, 5, 6]}; C: {['Hello']}" await app( get_example_scope("GET", "/", query=b"a=1349&c=Hello&a=55&b=10"), mock_receive(), mock_send, ) response = app.response content = await response.text() assert response.status == 200 assert content == f"A: {[1349, 55]}; B: {[10]}; C: {['Hello']}" @pytest.mark.asyncio async def test_handler_normalize_sync_method_without_arguments( app, mock_send, mock_receive ): @app.router.get("/") def home(): return app.normalize_handlers() await app(get_example_scope("GET", "/"), mock_receive(), mock_send) assert app.response.status == 204 @pytest.mark.asyncio async def test_handler_normalize_sync_method_from_query_optional( app, mock_send, mock_receive ): @app.router.get("/") def home(xx: FromQuery[Optional[int]], yy: FromQuery[Optional[int]]): assert xx.value is None assert yy.value == 20 app.normalize_handlers() await app(get_example_scope("GET", "/", query=b"yy=20"), mock_receive(), mock_send) assert app.response.status == 204 @pytest.mark.asyncio async def test_handler_normalize_optional_binder(app, mock_send, mock_receive): @app.router.get("/1") def home1(xx: Optional[FromQuery[int]], yy: Optional[FromQuery[int]]): assert xx is None assert yy.value == 20 @app.router.get("/2") def home2(xx: Optional[FromQuery[int]]): assert xx is not None assert xx.value == 10 @app.router.get("/3") def home3(xx: Optional[FromQuery[Optional[int]]]): assert xx is not None assert xx.value == 10 app.normalize_handlers() await app(get_example_scope("GET", "/1", query=b"yy=20"), mock_receive(), mock_send) assert app.response.status == 204 await app(get_example_scope("GET", "/2", query=b"xx=10"), mock_receive(), mock_send) assert app.response.status == 204 await app(get_example_scope("GET", "/3", query=b"xx=10"), mock_receive(), mock_send) assert app.response.status == 204 @pytest.mark.asyncio async def test_handler_normalize_sync_method_from_query_optional_list( app, mock_send, mock_receive ): @app.router.get("/") def home(xx: FromQuery[Optional[List[int]]], yy: FromQuery[Optional[List[int]]]): assert xx.value is None assert yy.value == [20, 55, 64] app.normalize_handlers() await app( get_example_scope("GET", "/", query=b"yy=20&yy=55&yy=64"), mock_receive(), mock_send, ) assert app.response.status == 204 @pytest.mark.asyncio @pytest.mark.parametrize( "query,expected_values", [ [b"xx=hello&xx=world&xx=lorem&xx=ipsum", ["hello", "world", "lorem", "ipsum"]], [b"xx=1&xx=2", ["1", "2"]], [b"xx=1&yy=2", ["1"]], ], ) async def test_handler_normalize_sync_method_from_query_default_type( query, expected_values, app, mock_send, mock_receive ): @app.router.get("/") def home(request, xx: FromQuery): assert xx.value == expected_values app.normalize_handlers() await app(get_example_scope("GET", "/", query=query), mock_receive(), mock_send) assert app.response.status == 204 @pytest.mark.asyncio async def test_handler_normalize_method_without_input(app, mock_send, mock_receive): @app.router.get("/") async def home(): pass app.normalize_handlers() await app(get_example_scope("GET", "/"), mock_receive(), mock_send) assert app.response.status == 204 @pytest.mark.asyncio @pytest.mark.parametrize( "value,expected_value", [["dashboard", "dashboard"], ["hello_world", "hello_world"]], ) async def test_handler_from_route(value, expected_value, app, mock_send, mock_receive): @app.router.get("/:area") async def home(request, area: FromRoute[str]): assert area.value == expected_value app.normalize_handlers() await app(get_example_scope("GET", "/" + value), mock_receive(), mock_send) assert app.response.status == 204 @pytest.mark.asyncio @pytest.mark.parametrize( "value_one,value_two,expected_value_one,expected_value_two", [ ["en", "dashboard", "en", "dashboard"], ["it", "hello_world", "it", "hello_world"], ], ) async def test_handler_two_routes_parameters( value_one: str, value_two: str, expected_value_one: str, expected_value_two: str, app, mock_send, mock_receive, ): @app.router.get("/:culture_code/:area") async def home(culture_code: FromRoute[str], area: FromRoute[str]): assert culture_code.value == expected_value_one assert area.value == expected_value_two app.normalize_handlers() await app( get_example_scope("GET", "/" + value_one + "/" + value_two), mock_receive(), mock_send, ) assert app.response.status == 204 @pytest.mark.asyncio @pytest.mark.parametrize( "value_one,value_two,expected_value_one,expected_value_two", [ ["en", "dashboard", "en", "dashboard"], ["it", "hello_world", "it", "hello_world"], ], ) async def test_handler_two_routes_parameters_implicit( value_one: str, value_two: str, expected_value_one: str, expected_value_two: str, app, mock_send, mock_receive, ): @app.router.get("/:culture_code/:area") async def home(culture_code, area): assert culture_code == expected_value_one assert area == expected_value_two app.normalize_handlers() await app( get_example_scope("GET", "/" + value_one + "/" + value_two), mock_receive(), mock_send, ) assert app.response.status == 204 @pytest.mark.asyncio async def test_handler_from_json_parameter(app, mock_send, mock_receive): @app.router.post("/") async def home(item: FromJSON[Item]): assert item is not None value = item.value assert value.a == "Hello" assert value.b == "World" assert value.c == 10 app.normalize_handlers() await app( get_example_scope( "POST", "/", [[b"content-type", b"application/json"], [b"content-length", b"32"]], ), mock_receive([b'{"a":"Hello","b":"World","c":10}']), mock_send, ) assert app.response.status == 204 @pytest.mark.asyncio async def test_handler_from_json_without_annotation(app, mock_send, mock_receive): @app.router.post("/") async def home(item: FromJSON): assert item is not None assert isinstance(item.value, dict) value = item.value assert value == {"a": "Hello", "b": "World", "c": 10} app.normalize_handlers() await app( get_example_scope( "POST", "/", [[b"content-type", b"application/json"], [b"content-length", b"32"]], ), mock_receive([b'{"a":"Hello","b":"World","c":10}']), mock_send, ) assert app.response.status == 204 @pytest.mark.asyncio async def test_handler_from_json_parameter_dict(app, mock_send, mock_receive): @app.router.post("/") async def home(item: FromJSON[dict]): assert item is not None assert isinstance(item.value, dict) value = item.value assert value == {"a": "Hello", "b": "World", "c": 10} app.normalize_handlers() await app( get_example_scope( "POST", "/", [[b"content-type", b"application/json"], [b"content-length", b"32"]], ), mock_receive([b'{"a":"Hello","b":"World","c":10}']), mock_send, ) assert app.response.status == 204 @pytest.mark.asyncio async def test_handler_from_json_parameter_dict_unannotated( app, mock_send, mock_receive ): @app.router.post("/") async def home(item: FromJSON[Dict]): assert item is not None assert isinstance(item.value, dict) value = item.value assert value == {"a": "Hello", "b": "World", "c": 10} app.normalize_handlers() await app( get_example_scope( "POST", "/", [[b"content-type", b"application/json"], [b"content-length", b"32"]], ), mock_receive([b'{"a":"Hello","b":"World","c":10}']), mock_send, ) assert app.response.status == 204 @pytest.mark.asyncio async def test_handler_from_json_parameter_dict_annotated(app, mock_send, mock_receive): @app.router.post("/") async def home(item: FromJSON[Dict[str, Any]]): assert item is not None assert isinstance(item.value, dict) value = item.value assert value == {"a": "Hello", "b": "World", "c": 10} app.normalize_handlers() await app( get_example_scope( "POST", "/", [[b"content-type", b"application/json"], [b"content-length", b"32"]], ), mock_receive([b'{"a":"Hello","b":"World","c":10}']), mock_send, ) assert app.response.status == 204 @pytest.mark.parametrize( "value", [ "Lorem ipsum dolor sit amet", "Hello, World", "Lorem ipsum dolor sit amet\n" * 200, ], ) @pytest.mark.asyncio async def test_handler_from_text_parameter(value: str, app, mock_send, mock_receive): @app.router.post("/") async def home(text: FromText): assert text.value == value app.normalize_handlers() await app( get_example_scope( "POST", "/", [ [b"content-type", b"text/plain; charset=utf-8"], [b"content-length", str(len(value)).encode()], ], ), mock_receive([value.encode("utf8")]), mock_send, ) assert app.response.status == 204 @pytest.mark.parametrize( "value", [ b"Lorem ipsum dolor sit amet", b"Hello, World", b"Lorem ipsum dolor sit amet\n" * 200, ], ) @pytest.mark.asyncio async def test_handler_from_bytes_parameter(value: bytes, app, mock_send, mock_receive): @app.router.post("/") async def home(text: FromBytes): assert text.value == value app.normalize_handlers() await app( get_example_scope( "POST", "/", [ [b"content-type", b"text/plain; charset=utf-8"], [b"content-length", str(len(value)).encode()], ], ), mock_receive([value]), mock_send, ) assert app.response.status == 204 @pytest.mark.asyncio async def test_handler_from_files(app, mock_send, mock_receive): @app.router.post("/") async def home(files: FromFiles): assert files is not None assert files.value is not None assert len(files.value) == 4 file1 = files.value[0] file2 = files.value[1] file3 = files.value[2] file4 = files.value[3] assert file1.name == b"file1" assert file1.file_name == b"a.txt" assert file1.data == b"Content of a.txt.\r\n" assert file2.name == b"file2" assert file2.file_name == b"a.html" assert file2.data == b"<!DOCTYPE html><title>Content of a.html.</title>\r\n" assert file3.name == b"file2" assert file3.file_name == b"a.html" assert file3.data == b"<!DOCTYPE html><title>Content of a.html.</title>\r\n" assert file4.name == b"file3" assert file4.file_name == b"binary" assert file4.data == b"a\xcf\x89b" app.normalize_handlers() boundary = b"---------------------0000000000000000000000001" content = b"\r\n".join( [ boundary, b'Content-Disposition: form-data; name="text1"', b"", b"text default", boundary, b'Content-Disposition: form-data; name="text2"', b"", "aωb".encode("utf8"), boundary, b'Content-Disposition: form-data; name="file1"; filename="a.txt"', b"Content-Type: text/plain", b"", b"Content of a.txt.", b"", boundary, b'Content-Disposition: form-data; name="file2"; filename="a.html"', b"Content-Type: text/html", b"", b"<!DOCTYPE html><title>Content of a.html.</title>", b"", boundary, b'Content-Disposition: form-data; name="file2"; filename="a.html"', b"Content-Type: text/html", b"", b"<!DOCTYPE html><title>Content of a.html.</title>", b"", boundary, b'Content-Disposition: form-data; name="file3"; filename="binary"', b"Content-Type: application/octet-stream", b"", "aωb".encode("utf8"), boundary + b"--", ] ) await app( get_example_scope( "POST", "/", [ [b"content-length", str(len(content)).encode()], [b"content-type", b"multipart/form-data; boundary=" + boundary], ], ), mock_receive([content]), mock_send, ) assert app.response.status == 204 @pytest.mark.asyncio async def test_handler_from_files_handles_empty_body(app, mock_send, mock_receive): @app.router.post("/") async def home(files: FromFiles): assert files.value == [] app.normalize_handlers() await app(
<gh_stars>1-10 # -*- coding: utf-8 -*- """ Created on Fri May 10 13:30:43 2019 @author: Darin """ import numpy as np import matplotlib.pyplot as plt from matplotlib.collections import PolyCollection from mpl_toolkits.mplot3d.art3d import Poly3DCollection import scipy.sparse as sparse import Material import Update class PyOpt: """ Topology optimization object """ def __init__(self, fem=None, update=None, threshold=0.3): """Constructor Parameters ---------- fem : FEM object An object describing the underlying finite element analysis update : Update scheme object Provides functionality to store and update design variables threshold : scalar Minimum density to plot 3D elements """ self.fem = fem self.update = update self.dens_thresh = threshold self.objectives = [] self.constraints = [] self.f = [] self.g = [] def LoadFromFile(self, filename): """ Loads an old run from a file Parameters ---------- filename : string Name of the file that everything will be saved to Returns ------- None """ data = np.load(filename, allow_pickle=True).item() from FEM import FEM self.fem = FEM() self.fem.Load(data['fem']) if data['update']['type'] == 'OC': self.update = Update.OCUpdateScheme(0.2, 0.5, 0.5 * np.ones(self.fem.nElem), np.zeros(self.fem.nElem), np.ones(self.fem.nElem)) elif data['update']['type'] == 'MMA': self.update = Update.MMA(0.5 * np.ones(self.fem.nElem), 1, np.zeros(self.fem.nElem), np.ones(self.fem.nElem)) self.update.Load(data['update']) self.Filter = data['opt']['Filter'] try: self.R = data['opt']['R'] except: pass import Functions as Funcs for objective in data['opt']['objectives']: self.AddFunction(getattr(Funcs, objective['function']), objective['weight'], objective['min'], objective['max'], 'objective') for constraint in data['opt']['constraints']: self.AddFunction(getattr(Funcs, constraint['function']), constraint['constraint'], constraint['min'], constraint['max'], 'constraint') def LoadPetsc(self, folder, appendix=None, Endian='=', update='MMA'): """ Create PyOpt structure from PETSc code results Parameters ---------- folder : str folder containing all of the Petsc results appendix : str Appendix for result values to restart from, if none picks highest penalty Endian : char Indicates byte ordering ('=':default, '<':little Endian, '>':big Endian) update : str Which updte scheme to use (MMA or OC) Returns ------- None """ from os import listdir from os.path import sep from PetscBinaryIO import PetscBinaryRead import Functions_Timing as Funcs # Load FEM data from FEM import FEM self.fem = FEM() self.fem.LoadPetsc(folder, Endian=Endian) # Load update data if update == 'OC': self.update = Update.OCUpdateScheme(0.2, 0.5, 0.5 * np.ones(self.fem.nElem), np.zeros(self.fem.nElem), np.ones(self.fem.nElem)) elif update == 'MMA': self.update = Update.MMA(0.5 * np.ones(self.fem.nElem), 1, np.zeros(self.fem.nElem), np.ones(self.fem.nElem)) self.update.LoadPetsc(folder, appendix=appendix, Endian=Endian) # Load filter matrics self.Filter = PetscBinaryRead(folder + sep + "Filter.bin") try: self.R = PetscBinaryRead(folder + sep + "Max_Filter.bin") edge = PetscBinaryRead(folder + sep + "Void_Edge_Volume.bin") self.R = self.R.tocoo() self.R = sparse.csr_matrix((np.concatenate([self.R.data, edge]), (np.concatenate([self.R.row, np.arange(self.R.shape[0])]), np.concatenate([self.R.col, self.R.shape[0]*np.ones(self.R.shape[0], dtype=int)])))) except: self.R = sparse.dia_matrix((np.ones(self.fem.nElem), np.zeros(self.fem.nElem))) # Set up functions and material properties inputFile = [file for file in listdir(folder) if '_Input' in file][0] active = False name = None fType = None value = None minimum = None maximum = None E0, Nu0, Density = None, None, None with open(folder + sep + inputFile, 'r') as fh: for line in fh: line = line.strip() if line[:3] == 'E0:': E0 = float(line.split(':')[-1]) elif line[:4] == 'Nu0:': Nu0 = float(line.split(':')[-1]) elif line[:8] == 'Density:': Density = float(line.split(':')[-1]) elif '[Functions]' in line: active = True elif '[/Functions]' in line: active = False elif active: if line in ['Compliance', 'Stability', 'Frequencey', 'Volume']: name = line elif line in ['Objective', 'Constraint']: fType = line elif 'Values:' in line: value = [float(val) for val in line.split(':')[-1].split(',')][0] elif 'Range:' in line: minimum, maximum = [float(val) for val in line.split(':')[-1].split(',')] if name is not None and fType is not None and value is not None and minimum is not None: self.AddFunction(getattr(Funcs, name), value, minimum, maximum, fType) name = None fType = None value = None minimum = None maximum = None if self.fem.nDof == 2: self.fem.SetMaterial(Material.PlaneStressElastic(E0, Nu0)) else: self.fem.SetMaterial(Material.Elastic3D(E0, Nu0)) def SetInterpolation(self, interpolation): """ Set the object for interpolating filtered densities to material values Parameters ---------- interpolation : Interpolation object The interpolation object Returns ------- None """ self.MatIntFnc = interpolation.Interpolate def ConstructDensityFilter(self, radius, nElx): """ Sets up the density filter Parameters ---------- radius : scalar Filter radius nElx : list of integer Number of elements in each direction Returns ------- Filter : sparse matrix Filter matrix """ centroids = np.mean(self.fem.nodes[self.fem.elements.reshape( 1,self.fem.nElem,-1)], axis=2).reshape(self.fem.nElem,-1) # Element sizes dx = np.zeros(self.fem.nodes.shape[1]) # Number of elements to check in each direction Nx = np.zeros(self.fem.nodes.shape[1], dtype=int) for i in range(dx.size): dx[i] = (np.max(self.fem.nodes[self.fem.elements[0], i]) - np.min(self.fem.nodes[self.fem.elements[0], i])) Nx[i] = max(np.floor(radius/dx[i]), 1) # Distance of all nearby elements offset = [np.arange(-Nx[0], Nx[0]+1)] for i in range(1, self.fem.nodes.shape[1]): newshape = [1 for j in range(i)] + [2*Nx[i]+1] for j in range(len(offset)): offset[j] = np.tile(np.expand_dims(offset[j], axis=-1), newshape) newshape = [1 for j in range(i)] + [-1] offset.append(np.arange(-Nx[i], Nx[i]+1).reshape(newshape)) newshape = list(offset[0].shape) newshape[-1] = 1 offset[-1] = np.tile(offset[-1], newshape) dist = [dx[i]*d.ravel() for i, d in enumerate(offset)] r = np.sqrt(np.array([d**2 for d in dist]).sum(axis=0)) Nbrhd = r < radius Low_Bnd = np.min(self.fem.nodes, axis=0) Upp_Bnd = np.max(self.fem.nodes, axis=0) sx = [1] for nEl in nElx[:-1]: sx.append(sx[-1] * nEl) Template = sum([sx[i]*d for i, d in enumerate(offset)]).ravel() indi = [0 for i in range(self.fem.nElem)] indj = [0 for i in range(self.fem.nElem)] valk = [0 for i in range(self.fem.nElem)] for el in range(self.fem.nElem): Add = el + Template Valid = [np.logical_and(centroids[el, i]+dist[i] > Low_Bnd[i], centroids[el, i]+dist[i] < Upp_Bnd[i]) for i in range(len(dist))] Valid = np.logical_and.reduce(Valid) Valid = np.logical_and(Valid, Nbrhd) Add = Add[Valid] indi[el] = Add indj[el] = el*np.ones(len(Add), dtype=int) valk[el] = r[Valid] Filter = sparse.csr_matrix((1-np.concatenate(valk)/radius, (np.concatenate(indi),np.concatenate(indj)))) rowsum = Filter.sum(axis=1) return sparse.dia_matrix((1/rowsum.T,0),shape=Filter.shape) * Filter def AddFunction(self, function, value, minimum, maximum, funcType): """ Add an objective or constraint function to the list of functions to be evaluated Parameters ---------- function : OptFunction object The objective function. Returns a function value and design sensitivities value : scalar The objective weight or constraint value. Objective weights should be adjusted so all weights sum to 1. minimum : scalar Mimimum function value for normalization minimum : scalar Mimimum function value for normalization funcType : str 'objective' or 'constraint' Returns ------- None """ if funcType.lower() == 'objective': self.objectives.append({'function':function, 'weight':value, 'min':minimum, 'max':maximum}) else: self.constraints.append({'function':function, 'constraint':value, 'min':minimum, 'max':maximum}) def CallFunctions(self): """ Call all functions to get objective and constraint value as well as all function sensitivities Parameters ---------- None Returns ------- f : scalar Objective value dfdx : array_like Objective gradients g : array_like Constraint values dgdx : array_like Constraint gradients """ matVals = self.MatIntFnc(self.update.x) self.densities = matVals['V'] self.fem.ConstructSystem(matVals['E']) x0 = self.fem.U.copy() self.fem.SolveSystem(sparse.linalg.cg, x0=x0) f = 0 dfdx = np.zeros(self.fem.nElem) g = np.zeros(max(self.update.m, 1)) dgdx = np.zeros((self.fem.nElem, g.size)) for funDict in self.objectives: obj, dobjdE, dobjdV = funDict['function'](self.fem, matVals) dobjdx = self.Filter.T * dobjdV dobjdx += self.Filter.T * (matVals['y'] * dobjdE - matVals['rhoq'] * (matVals['y'] < 1) * (self.R.T[:-1,:] * (matVals['rho'] * dobjdE))) f += funDict['weight'] * (obj - funDict['min']) / (funDict['max'] - funDict['min']) dfdx += funDict['weight'] * dobjdx / (funDict['max'] - funDict['min']) print("\t%s: %f" % (funDict['function'].__name__, funDict['weight'] * (obj - funDict['min']) / (funDict['max'] - funDict['min']))) i = 0 for iiii, funDict in enumerate(self.constraints): con, dcondE, dcondV = funDict['function'](self.fem, matVals) dcondx = self.Filter.T * dcondV dcondx += self.Filter.T * (matVals['y'] * dcondE - matVals['rhoq'] * (matVals['y'] < 1) * (self.R.T[:-1,:] * (matVals['rho'] * dcondE))) g[i] = (con - funDict['constraint']) / (funDict['max'] - funDict['min']) dgdx[:,i] = dcondx / (funDict['max'] - funDict['min']) i += 1 print("\t%s: %f" % (funDict['function'].__name__, g[i-1])) self.f.append(f) self.g.append(g) return f, dfdx, g, dgdx def Plot(self, filename=None, edgeColor='none'): """ Plot the optimized shape Parameters ---------- None Returns ------- None """ fig = plt.figure("Result", figsize=(12,12), clear=True) if self.fem.nDof == 2: collection = PolyCollection(self.fem.nodes[self.fem.elements], edgecolors=edgeColor) collection.set_array(self.densities) collection.set_cmap('gray_r') collection.set_clim(vmin=0, vmax=1) ax = fig.gca() ax.add_collection(collection) ax.set_xlim(self.fem.nodes[:,0].min(), self.fem.nodes[:,0].max()) ax.set_ylim(self.fem.nodes[:,1].min(), self.fem.nodes[:,1].max()) ratio = ((ax.get_ylim()[1] - ax.get_ylim()[0]) / (ax.get_xlim()[1] - ax.get_xlim()[0])) if ratio < 1: fig.set_figheight(ratio * fig.get_figwidth()) else: fig.set_figwidth(fig.get_figheight() / ratio) ax.axis('off') elif self.fem.nDof == 3: if not hasattr(self, 'facePairs'): face = np.array([0, 1, 2, 3, 4, 5,
handles categorical colors / legends better. Parameters ---------- data : array-like, shape=[n_samples, n_features] Input data. Only the first two components will be used. c : list-like or None, optional (default: None) Color vector. Can be a single color value (RGB, RGBA, or named matplotlib colors), an array of these of length n_samples, or a list of discrete or continuous values of any data type. If `c` is not a single or list of matplotlib colors, the values in `c` will be used to populate the legend / colorbar with colors from `cmap` cmap : `matplotlib` colormap, str, dict, list or None, optional (default: None) matplotlib colormap. If None, uses `tab20` for discrete data and `inferno` for continuous data. If a list, expects one color for every unique value in `c`, otherwise interpolates between given colors for continuous data. If a dictionary, expects one key for every unique value in `c`, where values are valid matplotlib colors (hsv, rbg, rgba, or named colors) cmap_scale : {'linear', 'log', 'symlog', 'sqrt'} or `matplotlib.colors.Normalize`, optional (default: 'linear') Colormap normalization scale. For advanced use, see <https://matplotlib.org/users/colormapnorms.html> s : float, optional (default: None) Point size. If `None`, set to 200 / sqrt(n_samples) mask : list-like, optional (default: None) boolean mask to hide data points discrete : bool or None, optional (default: None) If True, the legend is categorical. If False, the legend is a colorbar. If None, discreteness is detected automatically. Data containing non-numeric `c` is always discrete, and numeric data with 20 or less unique values is discrete. ax : `matplotlib.Axes` or None, optional (default: None) axis on which to plot. If None, an axis is created legend : bool, optional (default: None) States whether or not to create a legend. If data is continuous, the legend is a colorbar. If `None`, a legend is created where possible. colorbar : bool, optional (default: None) Synonym for `legend` shuffle : bool, optional (default: True) If True. shuffles the order of points on the plot. figsize : tuple, optional (default: None) Tuple of floats for creation of new `matplotlib` figure. Only used if `ax` is None. ticks : True, False, or list-like (default: True) If True, keeps default axis ticks. If False, removes axis ticks. If a list, sets custom axis ticks {x,y}ticks : True, False, or list-like (default: None) If set, overrides `ticks` ticklabels : True, False, or list-like (default: True) If True, keeps default axis tick labels. If False, removes axis tick labels. If a list, sets custom axis tick labels {x,y}ticklabels : True, False, or list-like (default: None) If set, overrides `ticklabels` label_prefix : str or None (default: None) Prefix for all axis labels. Axes will be labelled `label_prefix`1, `label_prefix`2, etc. Can be overriden by setting `xlabel`, `ylabel`, and `zlabel`. {x,y}label : str or None (default : None) Axis labels. Overrides the automatic label given by label_prefix. If None and label_prefix is None, no label is set unless the data is a pandas Series, in which case the series name is used. Override this behavior with `{x,y,z}label=False` title : str or None (default: None) axis title. If None, no title is set. fontsize : float or None (default: None) Base font size. legend_title : str (default: None) title for the colorbar of legend legend_loc : int or string or pair of floats, default: 'best' Matplotlib legend location. Only used for discrete data. See <https://matplotlib.org/api/_as_gen/matplotlib.pyplot.legend.html> for details. legend_anchor : `BboxBase`, 2-tuple, or 4-tuple Box that is used to position the legend in conjunction with loc. See <https://matplotlib.org/api/_as_gen/matplotlib.pyplot.legend.html> for details. legend_ncol : `int` or `None`, optimal (default: None) Number of columns to show in the legend. If None, defaults to a maximum of entries per column. vmin, vmax : float, optional (default: None) Range of values to use as the range for the colormap. Only used if data is continuous filename : str or None (default: None) file to which the output is saved dpi : int or None, optional (default: None) The resolution in dots per inch. If None it will default to the value savefig.dpi in the matplotlibrc file. If 'figure' it will set the dpi to be the value of the figure. Only used if filename is not None. **plot_kwargs : keyword arguments Extra arguments passed to `matplotlib.pyplot.scatter`. Returns ------- ax : `matplotlib.Axes` axis on which plot was drawn Examples -------- >>> import scprep >>> import numpy as np >>> import matplotlib.pyplot as plt >>> data = np.random.normal(0, 1, [200, 2]) >>> # Continuous color vector >>> colors = data[:, 0] >>> scprep.plot.scatter2d(data, c=colors) >>> # Discrete color vector with custom colormap >>> colors = np.random.choice(['a','b'], data.shape[0], replace=True) >>> data[colors == 'a'] += 10 >>> scprep.plot.scatter2d( data, c=colors, cmap={'a' : [1,0,0,1], 'b' : 'xkcd:sky blue'} ) """ if isinstance(data, list): data = utils.toarray(data) if isinstance(data, np.ndarray): data = np.atleast_2d(data) return scatter( x=select.select_cols(data, idx=0), y=select.select_cols(data, idx=1), c=c, cmap=cmap, cmap_scale=cmap_scale, s=s, mask=mask, discrete=discrete, ax=ax, legend=legend, colorbar=colorbar, shuffle=shuffle, figsize=figsize, ticks=ticks, xticks=xticks, yticks=yticks, ticklabels=ticklabels, xticklabels=xticklabels, yticklabels=yticklabels, label_prefix=label_prefix, xlabel=xlabel, ylabel=ylabel, title=title, fontsize=fontsize, legend_title=legend_title, legend_loc=legend_loc, legend_anchor=legend_anchor, legend_ncol=legend_ncol, filename=filename, dpi=dpi, **plot_kwargs, ) @utils._with_pkg(pkg="matplotlib", min_version=3) def scatter3d( data, c=None, cmap=None, cmap_scale="linear", s=None, mask=None, discrete=None, ax=None, legend=None, colorbar=None, shuffle=True, figsize=None, ticks=True, xticks=None, yticks=None, zticks=None, ticklabels=True, xticklabels=None, yticklabels=None, zticklabels=None, label_prefix=None, xlabel=None, ylabel=None, zlabel=None, title=None, fontsize=None, legend_title=None, legend_loc="best", legend_anchor=None, legend_ncol=None, elev=None, azim=None, filename=None, dpi=None, **plot_kwargs, ): """Create a 3D scatter plot. Builds upon `matplotlib.pyplot.scatter` with nice defaults and handles categorical colors / legends better. Parameters ---------- data : array-like, shape=[n_samples, n_features] Input data. Only the first two components will be used. c : list-like or None, optional (default: None) Color vector. Can be a single color value (RGB, RGBA, or named matplotlib colors), an array of these of length n_samples, or a list of discrete or continuous values of any data type. If `c` is not a single or list of matplotlib colors, the values in `c` will be used to populate the legend / colorbar with colors from `cmap` cmap : `matplotlib` colormap, str, dict, list or None, optional (default: None) matplotlib colormap. If None, uses `tab20` for discrete data and `inferno` for continuous data. If a list, expects one color for every unique value in `c`, otherwise interpolates between given colors for continuous data. If a dictionary, expects one key for every unique value in `c`, where values are valid matplotlib colors (hsv, rbg, rgba, or named colors) cmap_scale : {'linear', 'log', 'symlog', 'sqrt'} or `matplotlib.colors.Normalize`, optional (default: 'linear') Colormap normalization scale. For advanced use, see <https://matplotlib.org/users/colormapnorms.html> s : float, optional (default: None) Point size. If `None`, set to 200 / sqrt(n_samples) mask : list-like, optional (default: None) boolean mask to hide data points discrete : bool or None, optional (default: None) If True, the legend is categorical. If False, the legend is a colorbar. If None, discreteness is detected automatically. Data containing non-numeric `c` is always discrete, and numeric data with 20 or less unique values is discrete. ax : `matplotlib.Axes` or None, optional (default: None) axis on which to plot. If None, an axis is created legend : bool, optional (default: None) States whether or not to create a legend. If data is continuous, the legend is a colorbar. If `None`, a legend is created where possible. colorbar : bool, optional (default: None) Synonym for `legend` shuffle : bool, optional (default: True) If True. shuffles the order of points on the plot. figsize : tuple, optional (default: None) Tuple of floats for creation of new `matplotlib` figure. Only used if `ax` is None. ticks : True, False, or list-like (default: True) If True, keeps default axis ticks. If False, removes axis ticks. If a list, sets custom axis ticks {x,y,z}ticks : True, False, or list-like (default: None) If set, overrides `ticks` ticklabels : True, False, or list-like (default: True) If True, keeps default
Counter(flines) for k in counts.keys(): if k != "N.N.N.N": r = labels.index(k) abmat[r,c] += counts[k] df = pd.DataFrame(abmat, index=labels, columns=samples) fname = os.path.join(aa_dir,'raw_counts.tsv') df.to_csv(fname,sep='\t',index=True,header=True) return 0 # Carnelian features #def translateOne(argument): # '''Subroutine for translating one sample on one cpu using transeq''' # #print("in translate one") # os.system('transeq -frame 6 ' + argument) def translateSeqs(seq_dir, out_dir, fgsp_loc, args): ''' Find genes in the input reads and translate the coding sequences to ORFs using FragGeneScan using n cpus. seq_dir (string): must be a path to a directory with a nucleotide fasta file out_dir (string): must be a path to an output directory where ORFs will be written fgsp_loc(string): must be a path to the directory where FragGeneScan is installed Unpacking args: ncpus (int): number of cpus to be used to parallelize the translation ''' ncpus = args.ncpus #p=Pool(args.ncpus) #my_env["PATH"]=(os.path.dirname(fgsp_loc) + ":" + my_env.get("PATH", "")) os.environ["PATH"]=(fgsp_loc + ":" + my_env.get("PATH", "")) try: fpath = os.path.join(seq_dir,'*fasta') fasta_file = [x for x in glob.glob(fpath)][0] #name_path = [(name, seq_dir + '/' + name) for name in fasta_filelist] first_record = SeqIO.parse(fasta_file, "fasta").next() if not sequtil.check_if_nucl(str(first_record.seq)): print("Could not find nucleotide fasta file in:" + seq_dir) return(1) except IndexError: raise RuntimeError("Could not find fasta file in:" + seq_dir) safe_makedirs(out_dir) out_file = os.path.join(out_dir, os.path.basename(fasta_file).rsplit('.',1)[0]) starttime = datetime.now() print('''================================================ Predicting ORFs from nucleotide fasta file {:%Y-%m-%d %H:%M:%S}'''.format(starttime)) sys.stdout.flush() #cmd = 'FGS+ -s ' + fasta_file + ' -o ' + out_file + ' -w 0 -r ' + os.path.join(fgsp_loc,'train') + ' -t illumina_1 ' + ' -m 20480' print(os.path.join(fgsp_loc,'train/complete')) cmd = 'run_FragGeneScan.pl -genome=' + fasta_file + ' -out='+out_file +' -train=complete'+ ' -complete=0' if ncpus > 1: #cmd += ' -p ' + str(ncpus) cmd += ' -thread=' + str(ncpus) os.system(cmd) outfile = out_file + '.faa' os.system('mv ' + outfile + ' ' + out_file + '.fasta') print('''------------------------------------------------ Total wall clock runtime (sec): {} ================================================'''.format( (datetime.now() - starttime).total_seconds())) sys.stdout.flush() return(0) def frag(test_dir, frag_dir, args): ''' Draw fragments of length l from the fasta file found in the test_dir with coverage c. Note that there must be a label file of the same basename with matching ids for each of the fasta lines. test_dir (string): must be a path to a directory with a single fasta and label file frag_dir (string): must be a path to an output directory Unpacking args: frag_length (int): length of fragments to be drawn coverage (float): fraction of times each location is to be covered by drawn fragments ''' # Unpack args frag_length = args.frag_length coverage = args.coverage # Finish unpacking args fasta, labels = get_fasta_and_label(test_dir) safe_makedirs(frag_dir) fasta_out = os.path.join(frag_dir, 'test.fragments.fasta') gi2label_out = os.path.join(frag_dir, 'test.fragments.gi2label') label_out = os.path.join(frag_dir, 'test.fragments.label') starttime = datetime.now() print('''================================================ Drawing fragments {:%Y-%m-%d %H:%M:%S} '''.format(starttime) + ''' frag_length = {frag_length} coverage = {coverage} ------------------------------------------------ Fasta input: {fasta} labels input: {labels} Fasta output: {fasta_out} gi2label output:{gi2label_out} labels output: {label_out}'''.format( frag_length=frag_length, coverage=coverage, fasta=fasta, labels=labels, fasta_out=fasta_out, gi2label_out=gi2label_out, label_out=label_out) ) sys.stdout.flush() # set seed (for reproducibility) seed = 42 # draw fragments subprocess.check_call(["drawfrag", "-i", fasta, "-t", labels, "-l", str(frag_length), "-c", str(coverage), "-o", fasta_out, "-g", gi2label_out, "-s", str(seed)], env=my_env) # extract labels extract_column_two(gi2label_out, label_out) print('''------------------------------------------------ Total wall clock runtime (sec): {} ================================================'''.format( (datetime.now() - starttime).total_seconds())) sys.stdout.flush() return 0 def train(ref_dir, model_dir, args): '''Draws fragments from the fasta file found in ref_dir. Note that there must be a label file of the same basename with matching ids for each of the fasta lines. ref_dir (string): must be a path to a directory with a single fasta and label file model_dir (string): must be a path to an output directory Unpacking args: frag_length (int): length of fragments to be drawn coverage (float): fraction of times each location is to be covered by drawn fragments kmer_length (int): size of k-mers used rweight (int): how many positions will be randomly chosen in the contiguous k-mer (k-mer length should be multiple of row_weight) num_hash (int): number of hashing functions num_batches (int): number of times to run vowpal_wabbit num_passes (int): number of passes within vowpal_wabbit precise (flag): if set trained model will store probabilities for labels ''' # Unpack args frag_length = args.frag_length coverage = args.coverage kmer = args.kmer_length row_weight = args.rweight hierarchical = args.hweight # only comes into play if > 0 num_hash = args.num_hash num_batches = args.num_batches num_passes = args.num_passes bits = args.bits lambda1 = args.lambda1 lambda2 = args.lambda2 # Finish unpacking args fasta, labels = get_fasta_and_label(ref_dir) starttime = datetime.now() if kmer % row_weight != 0: raise ValueError("Row weight [{}] must divide into k-mer length [{}].".format(row_weight, kmer)) if (hierarchical > 0): if kmer % hierarchical != 0: raise ValueError("Hierarchy middle level [{}] must divide into k-mer length [{}].".format(hierarchical, kmer)) if hierarchical % row_weight != 0: raise ValueError("Row weight[{}] must divide into middle hierarchical structure weight [{}].".format(row_weight, hierarchical)) print( '''================================================ Training using Carnelian + vowpal-wabbit {:%Y-%m-%d %H:%M:%S} '''.format(starttime) + ''' frag_length = {frag_length} coverage: {coverage} k-mer length: {kmer}'''.format( frag_length=frag_length, coverage=coverage, kmer=kmer)) if hierarchical > 0: print('''hierarchical: {}'''.format(hierarchical)) print('''row weight: {row_weight} num hashes: {num_hash} num batches: {num_batches} num passes: {num_passes} ------------------------------------------------ Fasta input: {fasta} labels input: {labels} ------------------------------------------------'''.format( row_weight=row_weight, num_hash=num_hash, num_batches=num_batches, num_passes=num_passes, fasta=fasta, labels=labels) ) sys.stdout.flush() num_labels = unique_lines(labels) print("Number labels: {}".format(num_labels)) sys.stdout.flush() safe_makedirs(model_dir) # define output "dictionary" : label <--> vw classes dico = os.path.join(model_dir, "vw-dico.txt") # define model prefix model_prefix = os.path.join(model_dir, "vw-model") # generate LDPC spaced pattern pattern_file = os.path.join(model_dir, "patterns.txt") ldpc.ldpc_write(k=kmer, t=row_weight, _m=num_hash, d=pattern_file) seed = 42 for i in range(num_batches): seed = seed + 1 batch_prefix = os.path.join(model_dir, "train.batch-{}".format(i)) fasta_batch = batch_prefix + ".fasta" gi2label_batch = batch_prefix + ".gi2label" label_batch = batch_prefix + ".label" # draw fragments subprocess.check_call(["drawfrag", "-i", fasta, "-t", labels, "-l", str(frag_length), "-c", str(coverage), "-o", fasta_batch, "-g", gi2label_batch, "-s", str(seed)], env=my_env) # extract labels extract_column_two(gi2label_batch, label_batch) #cherry = [line.strip() for line in open(label_batch)] #print(len(cherry)) print("calling fasta2skm for batch {}".format(i)) # learn model fasta2skm_param_list = ["fasta2skm", "-i", fasta_batch, "-t", label_batch, "-k", str(kmer), "-d", dico, "-p", pattern_file] print("Getting training set ...") sys.stdout.flush() training_list = subprocess.check_output( fasta2skm_param_list, env=my_env).splitlines() print("Shuffling training set ...") sys.stdout.flush() random.shuffle(training_list) curr_model = model_prefix + "_batch-{}.model".format(i) prev_model = model_prefix + "_batch-{}.model".format(i-1) # May not exist if first run vw_param_base = ["vw", "--random_seed", str(seed), "-f", curr_model, "--cache_file", batch_prefix + ".cache", "--passes", str(num_passes), "--save_resume"] if args.precise: vw_param_base += ["--loss_function=logistic", "--probabilities"] vw_param_firstrun = [ "--oaa", str(num_labels), "--bit_precision", str(bits), "--l1", str(lambda1), "--l2", str(lambda2)] if i > 0: vw_param_list = vw_param_base + ["-i", prev_model] else: vw_param_list = vw_param_base + vw_param_firstrun print(vw_param_list) sys.stdout.flush() vwps = subprocess.Popen(vw_param_list, env=my_env, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) gsp = vwps.communicate(input='\n'.join(training_list)) print(gsp) while vwps.poll() is None: l = vwps.stdout.readline() sys.stdout.write(l) sys.stdout.flush() # thread.join() # This shouldn't be necessary, but just being safe. if i > 0: os.remove(prev_model) if i == num_batches - 1: os.rename(curr_model, model_prefix + "_final.model") os.remove(batch_prefix + ".cache") os.remove(fasta_batch) os.remove(label_batch) os.remove(gi2label_batch) print("Finished batch {}".format(i)) print('''------------------------------------------------ Total wall clock runtime (sec): {} ================================================'''.format( (datetime.now() - starttime).total_seconds())) sys.stdout.flush() return 0 def retrain(old_model_dir, new_model_dir, new_examples_dir, args): '''Draws fragments from the fasta file found in ref_dir. Note that there must be a label file of the same basename with matching ids for each of the fasta lines. old_model_dir (string): must be a path to a directory with old vowpal wabbit model new_model_dir (string): must be a path to a directory that will contain the new model new_examples_dir (string): must be a path to a directory containing the new training samples and labels Unpacking args: frag_length (int): length of fragments to be drawn coverage (float): fraction of times each location is to be covered by drawn fragments kmer_length (int): size of k-mers used row_weight (int): how many positions will be randomly chosen in the contiguous k-mer (k-mer length should be multiple of row_weight) num_hash (int): number of hashing functions num_batches (int): number of times to run vowpal_wabbit num_passes (int): number of passes within vowpal_wabbit precise (flag): if set trained model will store probabilities for labels ''' frag_length = args.frag_length coverage = args.coverage kmer = args.kmer_length num_batches = args.num_batches num_passes = args.num_passes fasta, labels = get_fasta_and_label(new_examples_dir) starttime = datetime.now() print('''================================================ Retraining using Carnelian + vowpal-wabbit {:%Y-%m-%d %H:%M:%S} '''.format(starttime) + '''num batches: {num_batches} num passes: {num_passes} ------------------------------------------------ Fasta input: {fasta} labels input: {labels} ------------------------------------------------'''.format( num_batches=num_batches, num_passes=num_passes, fasta=fasta, labels=labels) ) sys.stdout.flush() num_labels = unique_lines(labels) print("Number labels: {}".format(num_labels)) sys.stdout.flush() safe_makedirs(new_model_dir) old_dico = os.path.join(old_model_dir,"vw-dico.txt") dico = os.path.join(new_model_dir, "vw-dico.txt") # define model prefix prev_model = os.path.join(old_model_dir,"vw-model_final.model") model_prefix = os.path.join(new_model_dir, "vw-model") # copy previously used LDPC spaced pattern old_pattern_file = os.path.join(old_model_dir, "patterns.txt") pattern_file = os.path.join(new_model_dir, "patterns.txt") copyfile(old_pattern_file, pattern_file) seed = 42 for i in range(num_batches): seed = seed + 1 batch_prefix = os.path.join(new_model_dir, "train.batch-{}".format(i)) fasta_batch = batch_prefix + ".fasta" gi2label_batch = batch_prefix + ".gi2label" label_batch = batch_prefix + ".label" # draw fragments subprocess.check_call(["drawfrag", "-i", fasta, "-t", labels, "-l", str(frag_length), "-c", str(coverage), "-o", fasta_batch, "-g", gi2label_batch, "-s", str(seed)], env=my_env) # extract labels extract_column_two(gi2label_batch, label_batch) # learn model fasta2skm_param_list = ["fasta2skm", "-i", fasta_batch, "-t", label_batch, "-k", str(kmer), "-d", dico, "-p", pattern_file] print("Getting new training examples ...") sys.stdout.flush() training_list = subprocess.check_output( fasta2skm_param_list, env=my_env).splitlines() #print(training_list) print("Shuffling training set ...") sys.stdout.flush() random.shuffle(training_list) curr_model = model_prefix + "_batch-{}.model".format(i) if i > 0: prev_model = model_prefix + "_batch-{}.model".format(i-1) # May not exist if first run vw_param_base = ["vw", "--random_seed", str(seed), "-f", curr_model, "--cache_file", batch_prefix + ".cache", "--passes", str(num_passes), "--save_resume"] if args.precise: vw_param_base += ["--loss_function=logistic", "--probabilities"] vw_param_list = vw_param_base + ["-i", prev_model] print(vw_param_list) sys.stdout.flush() vwps = subprocess.Popen(vw_param_list, env=my_env, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) gsp = vwps.communicate(input='\n'.join(training_list)) print(gsp) while vwps.poll() is None: l = vwps.stdout.readline() sys.stdout.write(l) sys.stdout.flush() #thread.join() # This shouldn't be necessary, but just being safe. if i > 0: os.remove(prev_model) if i == num_batches - 1: os.rename(curr_model, model_prefix + "_final.model") os.remove(batch_prefix + ".cache") os.remove(fasta_batch) os.remove(label_batch) os.remove(gi2label_batch) merge_dico(old_dico,dico) print('''------------------------------------------------ Total wall clock runtime (sec): {} ================================================'''.format( (datetime.now() - starttime).total_seconds())) sys.stdout.flush() return 0 def predict(model_dir, test_dir, predict_dir, args): '''Predicts functional
("prop", "1918:397"): "metadataonly", ("prop", "1918:398"): "metadataonly", ("prop", "1918:399"): "metadataonly", ("prop", "1918:4"): "metadataonly", ("prop", "1918:40"): "metadataonly", ("prop", "1918:400"): "metadataonly", ("prop", "1918:401"): "metadataonly", ("prop", "1918:402"): "metadataonly", ("prop", "1918:403"): "metadataonly", ("prop", "1918:404"): "metadataonly", ("prop", "1918:406"): "metadataonly", ("prop", "1918:407"): "metadataonly", ("prop", "1918:408"): "metadataonly", ("prop", "1918:409"): "metadataonly", ("prop", "1918:41"): "metadataonly", ("prop", "1918:410"): "metadataonly", ("prop", "1918:411"): "metadataonly", ("prop", "1918:412"): "metadataonly", ("prop", "1918:413"): "metadataonly", ("prop", "1918:414"): "metadataonly", ("prop", "1918:415"): "metadataonly", ("prop", "1918:416"): "metadataonly", ("prop", "1918:417"): "metadataonly", ("prop", "1918:418"): "metadataonly", ("prop", "1918:419"): "metadataonly", ("prop", "1918:42"): "metadataonly", ("prop", "1918:420"): "metadataonly", ("prop", "1918:421"): "metadataonly", ("prop", "1918:422"): "metadataonly", ("prop", "1918:423"): "metadataonly", ("prop", "1918:424"): "metadataonly", ("prop", "1918:425"): "metadataonly", ("prop", "1918:426"): "metadataonly", ("prop", "1918:427"): "metadataonly", ("prop", "1918:428"): "metadataonly", ("prop", "1918:429"): "metadataonly", ("prop", "1918:43"): "metadataonly", ("prop", "1918:430"): "metadataonly", ("prop", "1918:431"): "metadataonly", ("prop", "1918:432"): "metadataonly", ("prop", "1918:433"): "metadataonly", ("prop", "1918:435"): "metadataonly", ("prop", "1918:436"): "metadataonly", ("prop", "1918:437"): "metadataonly", ("prop", "1918:438"): "metadataonly", ("prop", "1918:439"): "metadataonly", ("prop", "1918:44"): "metadataonly", ("prop", "1918:440"): "metadataonly", ("prop", "1918:441"): "metadataonly", ("prop", "1918:442"): "metadataonly", ("prop", "1918:443"): "metadataonly", ("prop", "1918:444"): "metadataonly", ("prop", "1918:445"): "metadataonly", ("prop", "1918:446"): "metadataonly", ("prop", "1918:448"): "metadataonly", ("prop", "1918:449"): "metadataonly", ("prop", "1918:45"): "metadataonly", ("prop", "1918:450"): "metadataonly", ("prop", "1918:451"): "metadataonly", ("prop", "1918:452"): "metadataonly", ("prop", "1918:453"): "metadataonly", ("prop", "1918:454"): "metadataonly", ("prop", "1918:455"): "metadataonly", ("prop", "1918:456"): "metadataonly", ("prop", "1918:457"): "metadataonly", ("prop", "1918:458"): "metadataonly", ("prop", "1918:459"): "metadataonly", ("prop", "1918:46"): "metadataonly", ("prop", "1918:47"): "metadataonly", ("prop", "1918:48"): "metadataonly", ("prop", "1918:49"): "metadataonly", ("prop", "1918:5"): "metadataonly", ("prop", "1918:50"): "metadataonly", ("prop", "1918:51"): "metadataonly", ("prop", "1918:52"): "metadataonly", ("prop", "1918:53"): "metadataonly", ("prop", "1918:54"): "metadataonly", ("prop", "1918:55"): "metadataonly", ("prop", "1918:56"): "metadataonly", ("prop", "1918:57"): "metadataonly", ("prop", "1918:6"): "metadataonly", ("prop", "1918:60"): "metadataonly", ("prop", "1918:61"): "metadataonly", ("prop", "1918:62"): "metadataonly", ("prop", "1918:63"): "metadataonly", ("prop", "1918:64"): "metadataonly", ("prop", "1918:65"): "metadataonly", ("prop", "1918:66"): "metadataonly", ("prop", "1918:67"): "metadataonly", ("prop", "1918:68"): "metadataonly", ("prop", "1918:69"): "metadataonly", ("prop", "1918:7"): "metadataonly", ("prop", "1918:70"): "metadataonly", ("prop", "1918:71"): "metadataonly", ("prop", "1918:72"): "metadataonly", ("prop", "1918:73"): "metadataonly", ("prop", "1918:74"): "metadataonly", ("prop", "1918:75"): "metadataonly", ("prop", "1918:76"): "metadataonly", ("prop", "1918:77"): "metadataonly", ("prop", "1918:78"): "metadataonly", ("prop", "1918:79"): "metadataonly", ("prop", "1918:8"): "metadataonly", ("prop", "1918:81"): "metadataonly", ("prop", "1918:82"): "metadataonly", ("prop", "1918:83"): "metadataonly", ("prop", "1918:84"): "metadataonly", ("prop", "1918:85"): "metadataonly", ("prop", "1918:86"): "metadataonly", ("prop", "1918:87"): "metadataonly", ("prop", "1918:88"): "metadataonly", ("prop", "1918:89"): "metadataonly", ("prop", "1918:9"): "metadataonly", ("prop", "1918:90"): "metadataonly", ("prop", "1918:91"): "metadataonly", ("prop", "1918:92"): "metadataonly", ("prop", "1918:93"): "metadataonly", ("prop", "1918:94"): "metadataonly", ("prop", "1918:95"): "metadataonly", ("prop", "1918:97"): "metadataonly", ("prop", "1918:98"): "metadataonly", ("prop", "1918:99"): "metadataonly", ("prop", "1919:1"): "metadataonly", ("prop", "1919:10"): "metadataonly", ("prop", "1919:100"): "metadataonly", ("prop", "1919:101"): "metadataonly", ("prop", "1919:102"): "metadataonly", ("prop", "1919:103"): "metadataonly", ("prop", "1919:104"): "metadataonly", ("prop", "1919:105"): "metadataonly", ("prop", "1919:106"): "metadataonly", ("prop", "1919:107"): "metadataonly", ("prop", "1919:108"): "metadataonly", ("prop", "1919:109"): "metadataonly", ("prop", "1919:11"): "metadataonly", ("prop", "1919:110"): "metadataonly", ("prop", "1919:111"): "metadataonly", ("prop", "1919:112"): "metadataonly", ("prop", "1919:113"): "metadataonly", ("prop", "1919:114"): "metadataonly", ("prop", "1919:116"): "metadataonly", ("prop", "1919:117"): "metadataonly", ("prop", "1919:118"): "metadataonly", ("prop", "1919:119"): "metadataonly", ("prop", "1919:12"): "metadataonly", ("prop", "1919:120"): "metadataonly", ("prop", "1919:121"): "metadataonly", ("prop", "1919:122"): "metadataonly", ("prop", "1919:123"): "metadataonly", ("prop", "1919:124"): "metadataonly", ("prop", "1919:125"): "metadataonly", ("prop", "1919:126"): "metadataonly", ("prop", "1919:127"): "metadataonly", ("prop", "1919:128"): "metadataonly", ("prop", "1919:129"): "metadataonly", ("prop", "1919:13"): "metadataonly", ("prop", "1919:130"): "metadataonly", ("prop", "1919:131"): "metadataonly", ("prop", "1919:132"): "metadataonly", ("prop", "1919:133"): "metadataonly", ("prop", "1919:134"): "metadataonly", ("prop", "1919:135"): "metadataonly", ("prop", "1919:136"): "metadataonly", ("prop", "1919:137"): "metadataonly", ("prop", "1919:138"): "metadataonly", ("prop", "1919:139"): "metadataonly", ("prop", "1919:14"): "metadataonly", ("prop", "1919:140"): "metadataonly", ("prop", "1919:141"): "metadataonly", ("prop", "1919:142"): "metadataonly", ("prop", "1919:143"): "metadataonly", ("prop", "1919:144"): "metadataonly", ("prop", "1919:145"): "metadataonly", ("prop", "1919:146"): "metadataonly", ("prop", "1919:147"): "metadataonly", ("prop", "1919:148"): "metadataonly", ("prop", "1919:149"): "metadataonly", ("prop", "1919:15"): "metadataonly", ("prop", "1919:150"): "metadataonly", ("prop", "1919:152"): "metadataonly", ("prop", "1919:153"): "metadataonly", ("prop", "1919:154"): "metadataonly", ("prop", "1919:155"): "metadataonly", ("prop", "1919:156"): "metadataonly", ("prop", "1919:157"): "metadataonly", ("prop", "1919:158"): "metadataonly", ("prop", "1919:159"): "metadataonly", ("prop", "1919:16"): "metadataonly", ("prop", "1919:160"): "metadataonly", ("prop", "1919:162"): "metadataonly", ("prop", "1919:163"): "metadataonly", ("prop", "1919:164"): "metadataonly", ("prop", "1919:165"): "metadataonly", ("prop", "1919:166"): "metadataonly", ("prop", "1919:167"): "metadataonly", ("prop", "1919:168"): "metadataonly", ("prop", "1919:169"): "metadataonly", ("prop", "1919:17"): "metadataonly", ("prop", "1919:170"): "metadataonly", ("prop", "1919:171"): "metadataonly", ("prop", "1919:172"): "metadataonly", ("prop", "1919:173"): "metadataonly", ("prop", "1919:174"): "metadataonly", ("prop", "1919:176"): "metadataonly", ("prop", "1919:178"): "metadataonly", ("prop", "1919:179"): "metadataonly", ("prop", "1919:18"): "metadataonly", ("prop", "1919:180"): "metadataonly", ("prop", "1919:181"): "metadataonly", ("prop", "1919:182"): "metadataonly", ("prop", "1919:183"): "metadataonly", ("prop", "1919:184"): "metadataonly", ("prop", "1919:185"): "metadataonly", ("prop", "1919:186"): "metadataonly", ("prop", "1919:187"): "metadataonly", ("prop", "1919:188"): "metadataonly", ("prop", "1919:189"): "metadataonly", ("prop", "1919:19"): "metadataonly", ("prop", "1919:190"): "metadataonly", ("prop", "1919:191"): "metadataonly", ("prop", "1919:192"): "metadataonly", ("prop", "1919:194"): "metadataonly", ("prop", "1919:195"): "metadataonly", ("prop", "1919:197"): "metadataonly", ("prop", "1919:198"): "metadataonly", ("prop", "1919:199"): "metadataonly", ("prop", "1919:2"): "metadataonly", ("prop", "1919:20"): "metadataonly", ("prop", "1919:200"): "metadataonly", ("prop", "1919:201"): "metadataonly", ("prop", "1919:202"): "metadataonly", ("prop", "1919:203"): "metadataonly", ("prop", "1919:204"): "metadataonly", ("prop", "1919:205"): "metadataonly", ("prop", "1919:206"): "metadataonly", ("prop", "1919:207"): "metadataonly", ("prop", "1919:208"): "metadataonly", ("prop", "1919:209"): "metadataonly", ("prop", "1919:21"): "metadataonly", ("prop", "1919:210"): "metadataonly", ("prop", "1919:211"): "metadataonly", ("prop", "1919:212"): "metadataonly", ("prop", "1919:213"): "metadataonly", ("prop", "1919:214"): "metadataonly", ("prop", "1919:215"): "metadataonly", ("prop", "1919:216"): "metadataonly", ("prop", "1919:217"): "metadataonly", ("prop", "1919:218"): "metadataonly", ("prop", "1919:219"): "metadataonly", ("prop", "1919:22"): "metadataonly", ("prop", "1919:220"): "metadataonly", ("prop", "1919:221"): "metadataonly", ("prop", "1919:222"): "metadataonly", ("prop", "1919:223"): "metadataonly", ("prop", "1919:224"): "metadataonly", ("prop", "1919:225"): "metadataonly", ("prop", "1919:226"): "metadataonly", ("prop", "1919:227"): "metadataonly", ("prop", "1919:228"): "metadataonly", ("prop", "1919:229"): "metadataonly", ("prop", "1919:23"): "metadataonly", ("prop", "1919:231"): "metadataonly", ("prop", "1919:233"): "metadataonly", ("prop", "1919:234"): "metadataonly", ("prop", "1919:235"): "metadataonly", ("prop", "1919:236"): "metadataonly", ("prop", "1919:237"): "metadataonly", ("prop", "1919:238"): "metadataonly", ("prop", "1919:239"): "metadataonly", ("prop", "1919:24"): "metadataonly", ("prop", "1919:240"): "metadataonly", ("prop", "1919:241"): "metadataonly", ("prop", "1919:242"): "metadataonly", ("prop", "1919:244"): "metadataonly", ("prop", "1919:245"): "metadataonly", ("prop", "1919:246"): "metadataonly", ("prop", "1919:248"): "metadataonly", ("prop", "1919:249"): "metadataonly", ("prop", "1919:25"): "metadataonly", ("prop", "1919:250"): "metadataonly", ("prop", "1919:251"): "metadataonly", ("prop", "1919:252"): "metadataonly", ("prop", "1919:253"): "metadataonly", ("prop", "1919:254"): "metadataonly", ("prop", "1919:255"): "metadataonly", ("prop", "1919:256"): "metadataonly", ("prop", "1919:257"): "metadataonly", ("prop", "1919:258"): "metadataonly", ("prop", "1919:26"): "metadataonly", ("prop", "1919:260"): "metadataonly", ("prop", "1919:261"): "metadataonly", ("prop", "1919:262"): "metadataonly", ("prop", "1919:263"): "metadataonly", ("prop", "1919:264"): "metadataonly", ("prop", "1919:265"): "metadataonly", ("prop", "1919:266"): "metadataonly", ("prop", "1919:267"): "metadataonly", ("prop", "1919:268"): "metadataonly", ("prop", "1919:27"): "metadataonly", ("prop", "1919:270"): "metadataonly", ("prop", "1919:271"): "metadataonly", ("prop", "1919:272"): "metadataonly", ("prop", "1919:273"): "metadataonly", ("prop", "1919:274"): "metadataonly", ("prop", "1919:275"): "metadataonly", ("prop", "1919:276"): "metadataonly", ("prop", "1919:277"): "metadataonly", ("prop", "1919:278"): "metadataonly", ("prop", "1919:279"): "metadataonly", ("prop", "1919:28"): "metadataonly", ("prop", "1919:280"): "metadataonly", ("prop", "1919:281"): "metadataonly", ("prop", "1919:283"): "metadataonly", ("prop", "1919:284"): "metadataonly", ("prop", "1919:285"): "metadataonly", ("prop", "1919:286"): "metadataonly", ("prop", "1919:287"): "metadataonly", ("prop", "1919:288"): "metadataonly", ("prop", "1919:289"): "metadataonly", ("prop", "1919:29"): "metadataonly", ("prop", "1919:291"): "metadataonly", ("prop", "1919:292"): "metadataonly", ("prop", "1919:293"): "metadataonly", ("prop", "1919:294"): "metadataonly", ("prop", "1919:295"): "metadataonly", ("prop", "1919:296"): "metadataonly", ("prop", "1919:297"): "metadataonly", ("prop", "1919:298"): "metadataonly", ("prop", "1919:299"): "metadataonly", ("prop", "1919:3"): "metadataonly", ("prop", "1919:30"): "metadataonly", ("prop", "1919:300"): "metadataonly", ("prop", "1919:301"): "metadataonly", ("prop", "1919:302"): "metadataonly", ("prop", "1919:303"): "metadataonly", ("prop", "1919:304"): "metadataonly", ("prop", "1919:305"): "metadataonly", ("prop", "1919:306"): "metadataonly", ("prop", "1919:307"): "metadataonly", ("prop", "1919:308"): "metadataonly", ("prop", "1919:309"): "metadataonly", ("prop", "1919:31"): "metadataonly", ("prop", "1919:311"): "metadataonly", ("prop", "1919:312"): "metadataonly", ("prop", "1919:313"): "metadataonly", ("prop", "1919:314"): "metadataonly", ("prop", "1919:315"): "metadataonly", ("prop", "1919:316"): "metadataonly", ("prop", "1919:317"): "metadataonly", ("prop", "1919:318"): "metadataonly", ("prop", "1919:319"): "metadataonly", ("prop", "1919:320"): "metadataonly", ("prop", "1919:321"): "metadataonly", ("prop", "1919:322"): "metadataonly", ("prop", "1919:323"): "metadataonly", ("prop", "1919:324"): "metadataonly", ("prop", "1919:325"): "metadataonly", ("prop", "1919:326"): "metadataonly", ("prop", "1919:327"): "metadataonly", ("prop", "1919:328"): "metadataonly", ("prop", "1919:329"): "metadataonly", ("prop", "1919:330"): "metadataonly", ("prop", "1919:331"): "metadataonly", ("prop", "1919:332"): "metadataonly", ("prop", "1919:333"): "metadataonly", ("prop", "1919:334"): "metadataonly", ("prop", "1919:335"): "metadataonly", ("prop", "1919:336"): "metadataonly", ("prop", "1919:337"): "metadataonly", ("prop", "1919:338"): "metadataonly", ("prop", "1919:339"): "metadataonly", ("prop", "1919:34"): "metadataonly", ("prop", "1919:340"): "metadataonly", ("prop", "1919:341"): "metadataonly", ("prop", "1919:342"): "metadataonly", ("prop", "1919:343"): "metadataonly", ("prop", "1919:344"): "metadataonly", ("prop", "1919:345"): "metadataonly", ("prop", "1919:346"): "metadataonly", ("prop", "1919:347"): "metadataonly", ("prop", "1919:348"): "metadataonly", ("prop", "1919:349"): "metadataonly", ("prop", "1919:35"): "metadataonly", ("prop", "1919:351"): "metadataonly", ("prop", "1919:352"): "metadataonly", ("prop", "1919:353"): "metadataonly", ("prop", "1919:355"): "metadataonly", ("prop", "1919:356"): "metadataonly", ("prop", "1919:357"): "metadataonly", ("prop", "1919:359"): "metadataonly", ("prop", "1919:36"): "metadataonly", ("prop", "1919:360"): "metadataonly", ("prop", "1919:361"): "metadataonly", ("prop", "1919:362"): "metadataonly", ("prop", "1919:363"): "metadataonly", ("prop", "1919:365"): "metadataonly", ("prop", "1919:366"): "metadataonly", ("prop", "1919:367"): "metadataonly", ("prop", "1919:368"): "metadataonly", ("prop", "1919:369"): "metadataonly", ("prop", "1919:37"): "metadataonly", ("prop", "1919:370"): "metadataonly", ("prop", "1919:371"): "metadataonly", ("prop", "1919:372"): "metadataonly", ("prop", "1919:373"): "metadataonly", ("prop", "1919:374"): "metadataonly", ("prop", "1919:375"): "metadataonly", ("prop", "1919:376"): "metadataonly", ("prop", "1919:377"): "metadataonly", ("prop", "1919:378"): "metadataonly", ("prop", "1919:379"): "metadataonly", ("prop", "1919:38"): "metadataonly", ("prop", "1919:380"): "metadataonly", ("prop", "1919:381"): "metadataonly", ("prop", "1919:382"): "metadataonly", ("prop", "1919:383"): "metadataonly", ("prop", "1919:384"): "metadataonly", ("prop", "1919:385"): "metadataonly", ("prop", "1919:386"): "metadataonly", ("prop", "1919:387"): "metadataonly", ("prop", "1919:388"): "metadataonly", ("prop", "1919:389"): "metadataonly", ("prop", "1919:39"): "metadataonly", ("prop", "1919:390"): "metadataonly", ("prop", "1919:391"): "metadataonly", ("prop", "1919:392"): "metadataonly", ("prop", "1919:393"):
""" Aqualink API documentation The Aqualink public API documentation # noqa: E501 The version of the OpenAPI document: 1.0.0 Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from aqualink_sdk.api_client import ApiClient, Endpoint as _Endpoint from aqualink_sdk.model_utils import ( # noqa: F401 check_allowed_values, check_validations, date, datetime, file_type, none_type, validate_and_convert_types ) from aqualink_sdk.model.create_user_dto import CreateUserDto from aqualink_sdk.model.inline_response404 import InlineResponse404 from aqualink_sdk.model.set_admin_level_dto import SetAdminLevelDto from aqualink_sdk.model.site import Site from aqualink_sdk.model.user import User class UsersApi(object): """NOTE: This class is auto generated by OpenAPI Generator Ref: https://openapi-generator.tech Do not edit the class manually. """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client self.users_controller_create_endpoint = _Endpoint( settings={ 'response_type': (User,), 'auth': [], 'endpoint_path': '/users', 'operation_id': 'users_controller_create', 'http_method': 'POST', 'servers': None, }, params_map={ 'all': [ 'create_user_dto', ], 'required': [ 'create_user_dto', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'create_user_dto': (CreateUserDto,), }, 'attribute_map': { }, 'location_map': { 'create_user_dto': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client ) self.users_controller_delete_endpoint = _Endpoint( settings={ 'response_type': None, 'auth': [ 'bearer' ], 'endpoint_path': '/users/{id}', 'operation_id': 'users_controller_delete', 'http_method': 'DELETE', 'servers': None, }, params_map={ 'all': [ 'id', ], 'required': [ 'id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'id': (float,), }, 'attribute_map': { 'id': 'id', }, 'location_map': { 'id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client ) self.users_controller_get_administered_sites_endpoint = _Endpoint( settings={ 'response_type': ([Site],), 'auth': [ 'bearer' ], 'endpoint_path': '/users/current/administered-sites', 'operation_id': 'users_controller_get_administered_sites', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ ], 'required': [], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { }, 'attribute_map': { }, 'location_map': { }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client ) self.users_controller_get_self_endpoint = _Endpoint( settings={ 'response_type': (User,), 'auth': [ 'bearer' ], 'endpoint_path': '/users/current', 'operation_id': 'users_controller_get_self', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ ], 'required': [], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { }, 'attribute_map': { }, 'location_map': { }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client ) self.users_controller_set_admin_level_endpoint = _Endpoint( settings={ 'response_type': None, 'auth': [ 'bearer' ], 'endpoint_path': '/users/{id}/level', 'operation_id': 'users_controller_set_admin_level', 'http_method': 'PUT', 'servers': None, }, params_map={ 'all': [ 'id', 'set_admin_level_dto', ], 'required': [ 'id', 'set_admin_level_dto', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'id': (float,), 'set_admin_level_dto': (SetAdminLevelDto,), }, 'attribute_map': { 'id': 'id', }, 'location_map': { 'id': 'path', 'set_admin_level_dto': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client ) def users_controller_create( self, create_user_dto, **kwargs ): """Creates a new user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.users_controller_create(create_user_dto, async_req=True) >>> result = thread.get() Args: create_user_dto (CreateUserDto): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (int/float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _content_type (str/None): force body content-type. Default is None and content-type will be predicted by allowed content-types and body. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: User If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_spec_property_naming'] = kwargs.get( '_spec_property_naming', False ) kwargs['_content_type'] = kwargs.get( '_content_type') kwargs['_host_index'] = kwargs.get('_host_index') kwargs['create_user_dto'] = \ create_user_dto return self.users_controller_create_endpoint.call_with_http_info(**kwargs) def users_controller_delete( self, id, **kwargs ): """Deletes specified user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.users_controller_delete(id, async_req=True) >>> result = thread.get() Args: id (float): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (int/float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _content_type (str/None): force body content-type. Default is None and content-type will be predicted by allowed content-types and body. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: None If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_spec_property_naming'] = kwargs.get( '_spec_property_naming', False ) kwargs['_content_type'] = kwargs.get( '_content_type') kwargs['_host_index'] = kwargs.get('_host_index') kwargs['id'] = \ id return self.users_controller_delete_endpoint.call_with_http_info(**kwargs) def users_controller_get_administered_sites( self, **kwargs ): """Returns the administered sites of the signed in user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.users_controller_get_administered_sites(async_req=True) >>> result = thread.get() Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (int/float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _content_type (str/None): force body content-type. Default is None and content-type will be predicted by allowed content-types and body. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [Site] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True )
elif which == 'tick1': # for cartesian projection, this is bottom spine return self.spines['bottom'].get_spine_transform() elif which == 'tick2': # for cartesian projection, this is top spine return self.spines['top'].get_spine_transform() else: raise ValueError('unknown value for which') def get_xaxis_text1_transform(self, pad_points): """ Returns ------- transform : Transform The transform used for drawing x-axis labels, which will add *pad_points* of padding (in points) between the axes and the label. The x-direction is in data coordinates and the y-direction is in axis corrdinates valign : {'center', 'top', 'bottom', 'baseline', 'center_baseline'} The text vertical alignment. halign : {'center', 'left', 'right'} The text horizontal alignment. Notes ----- This transformation is primarily used by the `~matplotlib.axis.Axis` class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. """ labels_align = rcParams["xtick.alignment"] return (self.get_xaxis_transform(which='tick1') + mtransforms.ScaledTranslation(0, -1 * pad_points / 72, self.figure.dpi_scale_trans), "top", labels_align) def get_xaxis_text2_transform(self, pad_points): """ Returns ------- transform : Transform The transform used for drawing secondary x-axis labels, which will add *pad_points* of padding (in points) between the axes and the label. The x-direction is in data coordinates and the y-direction is in axis corrdinates valign : {'center', 'top', 'bottom', 'baseline', 'center_baseline'} The text vertical alignment. halign : {'center', 'left', 'right'} The text horizontal alignment. Notes ----- This transformation is primarily used by the `~matplotlib.axis.Axis` class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. """ labels_align = rcParams["xtick.alignment"] return (self.get_xaxis_transform(which='tick2') + mtransforms.ScaledTranslation(0, pad_points / 72, self.figure.dpi_scale_trans), "bottom", labels_align) def get_yaxis_transform(self, which='grid'): """ Get the transformation used for drawing y-axis labels, ticks and gridlines. The x-direction is in axis coordinates and the y-direction is in data coordinates. .. note:: This transformation is primarily used by the `~matplotlib.axis.Axis` class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. """ if which == 'grid': return self._yaxis_transform elif which == 'tick1': # for cartesian projection, this is bottom spine return self.spines['left'].get_spine_transform() elif which == 'tick2': # for cartesian projection, this is top spine return self.spines['right'].get_spine_transform() else: raise ValueError('unknown value for which') def get_yaxis_text1_transform(self, pad_points): """ Returns ------- transform : Transform The transform used for drawing y-axis labels, which will add *pad_points* of padding (in points) between the axes and the label. The x-direction is in axis coordinates and the y-direction is in data corrdinates valign : {'center', 'top', 'bottom', 'baseline', 'center_baseline'} The text vertical alignment. halign : {'center', 'left', 'right'} The text horizontal alignment. Notes ----- This transformation is primarily used by the `~matplotlib.axis.Axis` class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. """ labels_align = rcParams["ytick.alignment"] return (self.get_yaxis_transform(which='tick1') + mtransforms.ScaledTranslation(-1 * pad_points / 72, 0, self.figure.dpi_scale_trans), labels_align, "right") def get_yaxis_text2_transform(self, pad_points): """ Returns ------- transform : Transform The transform used for drawing secondart y-axis labels, which will add *pad_points* of padding (in points) between the axes and the label. The x-direction is in axis coordinates and the y-direction is in data corrdinates valign : {'center', 'top', 'bottom', 'baseline', 'center_baseline'} The text vertical alignment. halign : {'center', 'left', 'right'} The text horizontal alignment. Notes ----- This transformation is primarily used by the `~matplotlib.axis.Axis` class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. """ labels_align = rcParams["ytick.alignment"] return (self.get_yaxis_transform(which='tick2') + mtransforms.ScaledTranslation(pad_points / 72, 0, self.figure.dpi_scale_trans), labels_align, "left") def _update_transScale(self): self.transScale.set( mtransforms.blended_transform_factory( self.xaxis.get_transform(), self.yaxis.get_transform())) for line in getattr(self, "lines", []): # Not set during init. try: line._transformed_path.invalidate() except AttributeError: pass def get_position(self, original=False): """ Get a copy of the axes rectangle as a `.Bbox`. Parameters ---------- original : bool If ``True``, return the original position. Otherwise return the active position. For an explanation of the positions see `.set_position`. Returns ------- pos : `.Bbox` """ if original: return self._originalPosition.frozen() else: locator = self.get_axes_locator() if not locator: self.apply_aspect() return self._position.frozen() def set_position(self, pos, which='both'): """ Set the axes position. Axes have two position attributes. The 'original' position is the position allocated for the Axes. The 'active' position is the position the Axes is actually drawn at. These positions are usually the same unless a fixed aspect is set to the Axes. See `.set_aspect` for details. Parameters ---------- pos : [left, bottom, width, height] or `~matplotlib.transforms.Bbox` The new position of the in `.Figure` coordinates. which : {'both', 'active', 'original'}, optional Determines which position variables to change. """ self._set_position(pos, which=which) # because this is being called externally to the library we # zero the constrained layout parts. self._layoutbox = None self._poslayoutbox = None def _set_position(self, pos, which='both'): """ private version of set_position. Call this internally to get the same functionality of `get_position`, but not to take the axis out of the constrained_layout hierarchy. """ if not isinstance(pos, mtransforms.BboxBase): pos = mtransforms.Bbox.from_bounds(*pos) for ax in self._twinned_axes.get_siblings(self): if which in ('both', 'active'): ax._position.set(pos) if which in ('both', 'original'): ax._originalPosition.set(pos) self.stale = True def reset_position(self): """ Reset the active position to the original position. This resets the a possible position change due to aspect constraints. For an explanation of the positions see `.set_position`. """ for ax in self._twinned_axes.get_siblings(self): pos = ax.get_position(original=True) ax.set_position(pos, which='active') def set_axes_locator(self, locator): """ Set the axes locator. Parameters ---------- locator : Callable[[Axes, Renderer], Bbox] """ self._axes_locator = locator self.stale = True def get_axes_locator(self): """ Return the axes_locator. """ return self._axes_locator def _set_artist_props(self, a): """set the boilerplate props for artists added to axes""" a.set_figure(self.figure) if not a.is_transform_set(): a.set_transform(self.transData) a.axes = self if a.mouseover: self._mouseover_set.add(a) def _gen_axes_patch(self): """ Returns ------- Patch The patch used to draw the background of the axes. It is also used as the clipping path for any data elements on the axes. In the standard axes, this is a rectangle, but in other projections it may not be. Notes ----- Intended to be overridden by new projection types. """ return mpatches.Rectangle((0.0, 0.0), 1.0, 1.0) def _gen_axes_spines(self, locations=None, offset=0.0, units='inches'): """ Returns ------- dict Mapping of spine names to `Line2D` or `Patch` instances that are used to draw axes spines. In the standard axes, spines are single line segments, but in other projections they may not be. Notes ----- Intended to be overridden by new projection types. """ return OrderedDict((side, mspines.Spine.linear_spine(self, side)) for side in ['left', 'right', 'bottom', 'top']) def cla(self): """Clear the current axes.""" # Note: this is called by Axes.__init__() # stash the current visibility state if hasattr(self, 'patch'): patch_visible = self.patch.get_visible() else: patch_visible = True xaxis_visible = self.xaxis.get_visible() yaxis_visible = self.yaxis.get_visible() self.xaxis.cla() self.yaxis.cla() for name, spine in self.spines.items(): spine.cla() self.ignore_existing_data_limits = True self.callbacks = cbook.CallbackRegistry() if self._sharex is not None: # major and minor are axis.Ticker class instances with # locator and formatter attributes self.xaxis.major = self._sharex.xaxis.major self.xaxis.minor = self._sharex.xaxis.minor x0, x1 = self._sharex.get_xlim() self.set_xlim(x0, x1, emit=False, auto=self._sharex.get_autoscalex_on()) self.xaxis._scale = self._sharex.xaxis._scale else: self.xaxis._set_scale('linear') try: self.set_xlim(0, 1) except TypeError: pass if self._sharey is not None: self.yaxis.major = self._sharey.yaxis.major self.yaxis.minor = self._sharey.yaxis.minor y0, y1 = self._sharey.get_ylim() self.set_ylim(y0, y1, emit=False, auto=self._sharey.get_autoscaley_on()) self.yaxis._scale = self._sharey.yaxis._scale else: self.yaxis._set_scale('linear') try: self.set_ylim(0, 1) except TypeError: pass # update the minor locator for x and y axis based on rcParams if rcParams['xtick.minor.visible']: self.xaxis.set_minor_locator(mticker.AutoMinorLocator()) if rcParams['ytick.minor.visible']: self.yaxis.set_minor_locator(mticker.AutoMinorLocator()) if self._sharex is None: self._autoscaleXon = True if self._sharey is None: self._autoscaleYon = True self._xmargin = rcParams['axes.xmargin'] self._ymargin = rcParams['axes.ymargin'] self._tight = None self._use_sticky_edges = True self._update_transScale() # needed? self._get_lines = _process_plot_var_args(self) self._get_patches_for_fill = _process_plot_var_args(self, 'fill') self._gridOn = rcParams['axes.grid'] self.lines = [] self.patches = [] self.texts = [] self.tables = [] self.artists = [] self.images = [] self._mouseover_set = _OrderedSet() self.child_axes = [] self._current_image = None # strictly for pyplot via _sci, _gci self.legend_ = None self.collections = [] # collection.Collection instances self.containers = [] self.grid(False) # Disable grid on init to
<reponame>iagcl/data_pipeline # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # ############################################################################### # Module: applier # Purpose: Applies CDCs polled from Kafka queue to a target DB # # Notes: # ############################################################################### import confluent_kafka import logging import os import sys import time import yaml import data_pipeline.audit.connection_factory as audit_conn_factory import data_pipeline.constants.const as const import data_pipeline.logger.logging_loader as logging_loader import data_pipeline.sql.utils as sql_utils import data_pipeline.utils.dbuser as dbuser import data_pipeline.utils.filesystem as filesystem_utils import data_pipeline.utils.mailer as mailer from .exceptions import ApplyError from abc import ABCMeta, abstractmethod from data_pipeline.audit.audit_dao import SourceSystemProfile from data_pipeline.audit.factory import AuditFactory, get_audit_db from data_pipeline.common import SignalHandler from data_pipeline.stream.file_writer import FileWriter from data_pipeline.processor.exceptions import UnsupportedSqlError from data_pipeline.utils.args import get_program_args LSN = "lsn" SQL = "sql" OFFSET = "offset" def _is_start_of_batch(message): return message.record_type == const.START_OF_BATCH def _is_end_of_batch(message): return message.record_type == const.END_OF_BATCH def _is_kill(message): return message.record_type == const.KILL def get_inactive_applied_tables(audit_conn_details, argv, logger): sql = """ SELECT profile_name, target_region, object_name FROM {audit_schema}.source_system_profile WHERE 1 = 1 AND profile_name = %s AND version = %s AND COALESCE(applied_ind, 'Y') = 'N' ORDER BY object_seq""".format(audit_schema=argv.auditschema) bind_values = (argv.profilename, argv.profileversion) with get_audit_db(argv) as audit_db: logger.debug("Executing: {sql}\nBind values = {bind_values}" .format(sql=sql, bind_values=bind_values)) result = audit_db.execute_query(sql, argv.arraysize, bind_values) tables = set() for row in result: schema = const.EMPTY_STRING if row[1]: schema = "{schema}.".format(schema=row[1]) if row[2]: tables.add("{schema}{table}" .format(schema=schema, table=row[2]) .lower()) logger.debug("Following tables will not be applied: {tables}" .format(tables=tables)) return tables class CdcApplyRecord: def __init__(self, executor_run_id, executor_status, status): self.executor_run_id = executor_run_id self.executor_status = executor_status self.status = status class BulkOperation(object): def __init__(self): self._buff = {} self.reset() def keys(self): return self._buff.keys() def items(self): return self._buff.items() def empty(self): return self.max_count == 0 def __getitem__(self, key): return self._buff[key] def reset(self): self.max_count = 0 self.max_lsn = 0 self.max_offset = 0 self.start_offset = 0 self.statement_type = None def add(self, statement, commit_lsn, offset): if (self.statement_type and self.statement_type != statement.statement_type): raise Exception("Attempting to add statement with operation: " "{statement_op} but current bulk operation is for " "opertion: {bulk_op}" .format(statement_op=statement.statement_type, bulk_op=self.statement_type)) self.statement_type = statement.statement_type if self.empty(): self.start_offset = offset statements = self._buff.setdefault(statement.table_name, []) statements.append((statement, commit_lsn, offset)) self.max_count = max(self.max_count, len(statements)) self.max_lsn = max(self.max_lsn, commit_lsn) self.max_offset = max(self.max_offset, offset) def __str__(self): return str(self._buff) class Applier(SignalHandler): __metaclass__ = ABCMeta def __init__(self, mode, target_db, argv, audit_factory, source_processor): super(Applier, self).__init__(mode, argv, audit_factory) self._target_db = target_db self._source_processor = source_processor self._output_file = None self._batch_started = False self._target_conn_details = dbuser.get_dbuser_properties( argv.targetuser) self._target_conn_details.sslmode = self._argv.sslmode self._target_conn_details.sslcert = self._argv.sslcert self._target_conn_details.sslrootcert = self._argv.sslrootcert self._target_conn_details.sslkey = self._argv.sslkey self._target_conn_details.sslcrl = self._argv.sslcrl self._init() self._init_auditing() self._init_output_file() self._maxlsns_per_table = {} self._delta_maxlsns_per_table = {} self._get_max_lsn_source_system_profile() self._last_apply_record = None self._get_last_apply_record() self._first_batch_received = False self._skip_batches = int(self._argv.skipbatch) stream = file(argv.datatypemap) self._config = yaml.load(stream) self._stream_message = None self._bulk_ops = BulkOperation() self._committed_state = {} self._last_executed_state = {} self._last_committed_state = None @property def recovery_offset(self): if not self._recovery_offset: return self.current_message_offset return self._recovery_offset @recovery_offset.setter def recovery_offset(self, value): self._logger.debug("Setting recovery offset = {}".format(value)) self._recovery_offset = value @property def at_auditcommitpoint(self): return (self._received_count > 0 and self._received_count % self._argv.auditcommitpoint == 0) @property def at_targetcommitpoint(self): return (self._received_count > 0 and self._received_count % self._argv.targetcommitpoint == 0) @property def next_offset_to_read(self): # No record previous apply records found if self._last_apply_record is None: return None return self._last_apply_record.executor_run_id @property def last_status(self): # No record previous apply records found if self._last_apply_record is None: return None return self._last_apply_record.status @property def current_message_offset(self): return self._stream_message.offset() @property def next_message_offset(self): return self._stream_message.offset() + 1 def apply(self, stream_message): self._stream_message = stream_message message = self._source_processor.deserialise(stream_message.value()) batch_committed = False retries_remaining = self._argv.retry while retries_remaining >= 0: try: if self._can_apply(message): if _is_kill(message): self._log_terminate() return const.KILLED elif _is_start_of_batch(message): self._start_batch(message) elif _is_end_of_batch(message): batch_committed = self._end_batch(message) else: self._apply_data(message) if not batch_committed: self._audit_commit() self._target_commit(message) break except Exception, e: err_message = "{err}\n".format(err=str(e)) self.report_error(err_message) if retries_remaining == 0: return const.ERROR time.sleep(self._argv.retrypause) self._logger.info("Retrying apply... remaining retries = {r}" .format(r=retries_remaining)) retries_remaining -= 1 # Update the next offset to read in case a reassignment is triggered self._last_apply_record.executor_run_id = self.next_message_offset return const.COMMITTED if batch_committed else const.UNCOMMITTED def _log_terminate(self): self._init_auditing() warn_message = ("Termination message received. " "Shutting down consumer.") self._pc.comment = warn_message self._pc.status = const.KILLED self._pc.executor_run_id = self.next_message_offset self._pc.executor_status = const.COMMITTED self._pc.update() self._logger.warn(warn_message) def _can_apply(self, message): t = sql_utils.TableName(self._argv.targetschema.lower(), message.table_name.lower()) if t.fullname in self._inactive_applied_tables: self._logger.warn("Table {t} marked as inactive for applies. " "Message will not be applied." .format(t=t.fullname)) return False if t.fullname in self._maxlsns_per_table: if not message.commit_lsn: self._logger.warn("[{t}] Message LSN is not set for message. " "Allowing message to be applied " "to target: {message}" .format(t=t.fullname, message=str(message))) return True if not self._maxlsns_per_table[t.fullname]: self._logger.warn("[{t}] Max LSN is not set in " "source_system_profile table. Allowing " "message to be applied to target: {message}" .format(t=t.fullname, message=str(message))) return True message_lsn = int(message.commit_lsn) max_lsn = int(self._maxlsns_per_table[t.fullname]) self._logger.debug("[{t}] Making sure message LSN ({msglsn}) > " "Max recorded LSN ({maxlsn})" .format(t=t.fullname, msglsn=message_lsn, maxlsn=max_lsn)) if message_lsn <= max_lsn: self._logger.warn("[{t}] Message LSN ({msglsn}) <= Max " "recorded LSN ({maxlsn}). " "Message will not be applied." .format(msglsn=message_lsn, maxlsn=max_lsn, t=t.fullname)) return False return True def _get_last_apply_record(self): if self._last_apply_record is None: self._last_apply_record = CdcApplyRecord( executor_run_id=None, executor_status=const.SUCCESS, status=const.SUCCESS ) if self._argv.seektoend: self._last_apply_record.executor_run_id = confluent_kafka.OFFSET_END self._last_apply_record.executor_status = const.SUCCESS self._last_apply_record.status = const.SUCCESS return sql = """ SELECT executor_run_id, executor_status, status FROM {audit_schema}.process_control WHERE id = ( SELECT MAX(id) FROM process_control WHERE executor_run_id > 0 AND profile_name = %s AND profile_version = %s AND process_code = %s ) """.format(audit_schema=self._argv.auditschema, committed=const.COMMITTED) bind_variables = (self._argv.profilename, self._argv.profileversion, self._mode) with get_audit_db(self._argv) as audit_db: query_results = audit_db.execute_query( sql, self._argv.arraysize, bind_variables) row = query_results.fetchone() if row: self._last_apply_record.executor_run_id = row[0] self._last_apply_record.executor_status = row[1] self._last_apply_record.status = row[2] self._logger.info("Last committed offset = {offset}" .format(offset=self.next_offset_to_read)) def _get_max_lsn_source_system_profile(self): sql = """ SELECT target_region, object_name, max_lsn FROM {audit_schema}.source_system_profile WHERE profile_name = %s AND version = %s """.format(audit_schema=self._argv.auditschema) bind_variables = (self._argv.profilename, self._argv.profileversion) with get_audit_db(self._argv) as audit_db: query_results = audit_db.execute_query( sql, self._argv.arraysize, bind_variables) for row in query_results: target_region = row[0].lower() table_name = row[1].lower() max_lsn = row[2] t = sql_utils.TableName(target_region, table_name) self._logger.debug("Mapping table->max_lsns from " "source_system_profile: {t}->{l}" .format(t=t.fullname, l=max_lsn)) if max_lsn is not None: self._maxlsns_per_table[t.fullname.lower()] = max_lsn def _apply_data(self, message): if self._skip_batches < 0: raise Exception("Invalid state: Skip batches < 0") elif self._skip_batches == 0: self._received_count += 1 table = sql_utils.TableName(self._argv.targetschema, message.table_name) tablename = table.fullname.lower() self._delta_maxlsns_per_table[tablename] = message.commit_lsn if not self._batch_started: # Insert an implicit start of batch self._start_batch(message) if message.table_name: pcd = self.get_pcd(message.table_name) pcd.source_row_count += 1 else: raise ApplyError("table_name has not been " "specified in message") try: statement = self._source_processor.process(message) if statement: # Create an entry in source_system_profile if the # table_name doesn't already exist self._ensure_table_name_in_ssp( statement.statement_type, message) self.execute_statement(statement, message.commit_lsn) except UnsupportedSqlError, err: self._logger.warn("Unsupported SQL in {msg}: {error}" .format(msg=message, error=str(err))) self._processed_count += 1 else: self._logger.debug("Skipping message...") def _ensure_table_name_in_ssp(self, statement_type, message): if statement_type != const.CREATE: return sql = (""" -- Insert a new source_system_profile record for object -- '{table_name}' if it doesn't already exist for the current profile INSERT INTO {schema}.source_system_profile (profile_name, version, source_system_code, target_region, object_name, min_lsn, max_lsn, active_ind, last_process_code, last_status, last_updated, last_applied, object_seq) SELECT %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, CURRENT_TIMESTAMP, CURRENT_TIMESTAMP, ( -- Compute the next object_seq in the profile SELECT MAX(object_seq)+1 FROM {schema}.source_system_profile WHERE 1 = 1 AND profile_name = %s AND version = %s ) WHERE NOT EXISTS ( -- Make this operation idempotent SELECT * FROM {schema}.source_system_profile WHERE 1 = 1 AND profile_name = %s AND version = %s AND LOWER(target_region) = LOWER(%s) AND LOWER(object_name) = LOWER(%s) )""".format(schema=self._argv.auditschema, table_name=message.table_name)) with get_audit_db(self._argv) as audit_db: bind_values = ( self._argv.profilename, self._argv.profileversion, self._argv.sourcesystem, self._argv.targetschema, message.table_name.lower(), message.commit_lsn, message.commit_lsn, 'Y', const.CDCAPPLY, const.SUCCESS, self._argv.profilename, self._argv.profileversion, self._argv.profilename, self._argv.profileversion, self._argv.targetschema, message.table_name.lower(), ) affected_rows = audit_db.execute(sql, bind_values) audit_db.commit() def report_error(self, err_message): try: self._pc.comment = err_message self._pc.status = const.ERROR self._pc.update() subject = ("{source_system} applier has failed. Partial batch " "(up to error) committed." .format(source_system=self._argv.profilename)) # More detailed error message for email
import random import numpy as np import scipy import time import json import os import pdb import pickle import pandas from progressbar import * from keras.layers import Input, Dense, LSTM, Lambda, concatenate, add, Dot from keras.models import Sequential, load_model, Model from keras.optimizers import RMSprop, Adam, SGD from keras import backend as K from keras import regularizers from keras.utils.np_utils import to_categorical from utils import convnet_vgg, convnet_mod, convnet_ori, convnet_com def softmax(x): e_x = np.exp(x - np.max(x)) return e_x / e_x.sum() #return x / np.linalg.norm(x) def makeFunc(x): return lambda y:y[:,x] class BaseListenerNetwork(object): def __init__(self, modelname, optfilename, lr, entropy_coefficient, config_dict): self.modelname = modelname self.optfilename = optfilename self.lr = lr self.entropy_coefficient = entropy_coefficient assert config_dict, "config_dict does not exist" self.config = config_dict self.initialize_model() self.build_train_fn() def rebuild_train_fn(self, entropy_coefficient=None, lr=None): if entropy_coefficient: self.entropy_coefficient = entropy_coefficient if lr: self.lr = lr self.build_train_fn() def save(self): self.listener_model.save(self.modelname) def load(self): self.listener_model = load_model(self.modelname) def save_weights(self): self.listener_model.save_weights(self.modelname) def load_weights(self): self.listener_model.load_weights(self.modelname) def save_opt(self): symbolic_weights = self.opt.weights weight_values = K.batch_get_value(symbolic_weights) with open(self.optfilename, 'wb') as f: pickle.dump(weight_values, f) def load_opt(self): with open(self.optfilename, 'rb') as f: weight_values = pickle.load(f) self.opt.set_weights(weight_values) def save_memory(self): self.memory_model_weights = self.listener_model.get_weights() def load_memory(self): self.listener_model.set_weights(self.memory_model_weights) class PaperListenerNetwork(BaseListenerNetwork): def __init__(self, modelname, optfilename, lr, entropy_coefficient, config_dict): super(PaperListenerNetwork, self).__init__(modelname, optfilename, lr, entropy_coefficient, config_dict) self.batch_speaker_message = [] self.batch_action = [] self.batch_candidates = [] self.batch_reward = [] def initialize_model(self): """ Batch input and output. """ if not os.path.exists(self.modelname): ## Define model t_input = Input(shape=(self.config['max_message_length'],)) #Speakers Message, shape(bs, max_message_length) c_inputs_all = Input(shape=(self.config['n_classes'], self.config['speaker_input_dim'])) #Candidates, shape(bs, n_class, speaker_input_dim) inputs = [t_input, c_inputs_all] z = Dense(self.config['speaker_input_dim'], activation='sigmoid')(t_input) #shape(bs, speaker_input_dim) ts = [] us = [] for _ in range(self.config['n_classes']): #c_input = Input(shape=(self.config['speaker_input_dim'],)) #shape(bs, speaker_input_dim) c_input = Lambda(makeFunc(_))(c_inputs_all) #shape(bs, speaker_input_dim) #t = Lambda(lambda x: K.expand_dims(K.sum(-K.square(x), axis=1)))(add([t_trans, Lambda(lambda x: -x)(c_input)])) #shape(bs, 1) t = Dot(1, False)([z, c_input]) #shape(bs, 1) ts.append(t) us.append(c_input) U = concatenate(ts) #shape(bs, n_classes) us = concatenate(us) final_output = Lambda(lambda x: K.softmax(x))(U) #shape(bs, n_classes) #final_output = Dense(self.n_classes, activation='softmax', kernel_initializer='identity')(U) #final_output = Dense(self.n_classes, activation='softmax')(U) #f1 = Dense(50)(U) #f2 = Lambda(lambda x: K.square(x))(f1) #final_output = Dense(self.n_classes, activation='softmax')(f2) self.listener_model = Model(inputs=inputs, outputs=[final_output, U, z, us]) #self.listener_model.compile(loss="categorical_crossentropy", optimizer=RMSprop(lr=self.config['listener_lr'])) else: self.load() #check!!! def build_train_fn(self): """ Batch input and output. """ #direct prob input!!! action_prob_placeholder = self.listener_model.output[0] #(bs, n_classes) action_onehot_placeholder = K.placeholder(shape=(None, self.config['n_classes']), name="action_onehot") #(bs, n_classes) reward_placeholder = K.placeholder(shape=(None,), name="reward") #(?) action_prob = K.sum(action_prob_placeholder * action_onehot_placeholder, axis=1) log_action_prob = K.log(action_prob) loss = - log_action_prob * reward_placeholder entropy = K.sum(action_prob_placeholder * K.log(action_prob_placeholder + 1e-10), axis=1) #entropy = K.sum(entropy) loss = loss + self.entropy_coefficient * entropy loss = K.mean(loss) self.opt = Adam(lr=self.lr) self.updates = self.opt.get_updates(params=self.listener_model.trainable_weights, loss=loss) if os.path.exists(self.optfilename): self.load_opt() self.train_fn = K.function( inputs = self.listener_model.input + [action_onehot_placeholder, reward_placeholder], outputs=[loss, loss], updates=self.updates) def reshape_message_candidates(self, speaker_message, candidates): assert len(speaker_message.shape)==1 and speaker_message.shape[0]==self.config['max_message_length'] assert len(candidates.shape)==2 and candidates.shape[0]==self.config['n_classes'] and candidates.shape[1]==self.config['speaker_input_dim'] speaker_message = np.expand_dims(speaker_message, axis=0) #shape(1, max_message_length) #X = [speaker_message] + [c.reshape([1,-1]) for c in candidates] X = [speaker_message, np.expand_dims(candidates, axis=0)] return X def sample_from_listener_policy(self, speaker_message, candidates): """ Input and output are all just one instance. No bs dimensize. """ X = self.reshape_message_candidates(speaker_message, candidates) listener_output= self.listener_model.predict_on_batch(X) y, U, z = listener_output[:3] #us = listener_output[3] listener_probs = y listener_probs = np.squeeze(listener_probs) #shape(n_class) listener_action = np.random.choice(np.arange(self.config['n_classes']), p=listener_probs) #int U = np.squeeze(U) return listener_action, listener_probs, U def infer_from_listener_policy(self, speaker_message, candidates): """ Input and output are all just one instance. No bs dimensize. """ X = self.reshape_message_candidates(speaker_message, candidates) listener_output= self.listener_model.predict_on_batch(X) y, U, z = listener_output[:3] #us = listener_output[3] listener_probs = y listener_probs = np.squeeze(listener_probs) #shape(n_class) listener_action = np.argmax(listener_probs) #int U = np.squeeze(U) return listener_action, listener_probs, U def train_listener_policy_on_batch(self): """ Train as a batch. Loss is an float for a batch """ action_onehot = to_categorical(self.batch_action, num_classes=self.config['n_classes']) #self.batch_candidates = np.array(self.batch_candidates).transpose([1, 0, 2]).tolist() #shape(num_classes, bs, speaker_input_dim) #self.batch_candidates = np.swapaxes(np.array(self.batch_candidates), 0, 1).tolist() #shape(num_classes, bs, speaker_input_dim) #self.batch_candidates = np.swapaxes(np.array(self.batch_candidates), 0, 1).astype('float32').tolist() #shape(num_classes, bs, speaker_input_dim) #self.batch_candidates = [np.array(_) for _ in self.batch_candidates] #_loss, _entropy = self.train_fn([self.batch_speaker_message] + self.batch_candidates + [action_onehot, self.batch_reward] ) _loss, _entropy = self.train_fn([np.array(self.batch_speaker_message), self.batch_candidates, action_onehot, self.batch_reward] ) #print("Listener loss: ", _loss) self.batch_speaker_message = [] #shape(bs, max_message_length) self.batch_action = [] #shape(bs) self.batch_candidates = [] #shape(bs, n_classes, speaker_input_dim) self.batch_reward = [] #shape(bs) def remember_listener_training_details(self, speaker_message, action, action_probs, target, candidates, reward): """ Inputs are just one instance. No bs dimensize. """ self.batch_speaker_message.append(speaker_message) self.batch_action.append(action) self.batch_candidates.append(candidates) self.batch_reward.append(reward) class PaperListenerNetwork_rnn(PaperListenerNetwork): def reshape_message_candidates(self, speaker_message, candidates): #if not self.config['fixed_length']: # assert len(speaker_message.shape)==1 and speaker_message.shape[0]<=self.config['max_message_length'] #else: # assert len(speaker_message.shape)==1 and speaker_message.shape[0]==self.config['max_message_length'] assert len(speaker_message.shape)==1 and speaker_message.shape[0]<=self.config['max_message_length'] assert len(candidates.shape)==2 and candidates.shape[0]==self.config['n_classes'] and candidates.shape[1]==self.config['speaker_input_dim'] speaker_message = np.expand_dims(to_categorical(speaker_message, self.config['alphabet_size']), axis=0) #shape(1, message_length, alphabet_size) #X = [speaker_message] + [c.reshape([1,-1]) for c in candidates] X = [speaker_message, np.expand_dims(candidates, axis=0)] return X def initialize_model(self): """ Batch input and output. """ ## Define model if not os.path.exists(self.modelname): t_input = Input(shape=(None, self.config['alphabet_size'],)) #Speakers Message, shape(bs, message_length, alphabet_size) #c_inputs_all = Input(shape=(self.config['n_classes'], self.config['speaker_input_dim'])) #Candidates, shape(bs, n_classes, speaker_input_dim) c_inputs_all = Input(shape=(None, self.config['speaker_input_dim'])) #Candidates, shape(bs, n_classes, speaker_input_dim) inputs = [t_input, c_inputs_all] lstm = LSTM(self.config['listener_dim'], activation='tanh', return_sequences=False, return_state=True) o, sh, sc = lstm(t_input) z = Dense(self.config['listener_dim'], activation='sigmoid')(o) #shape(bs, listener_dim) ts = [] us = [] u = Dense(self.config['listener_dim'], activation='sigmoid') for _ in range(self.config['n_classes']): #c_input = Input(shape=(self.config['speaker_input_dim'],)) #shape(bs, speaker_input_dim) c_input = Lambda(makeFunc(_))(c_inputs_all) uc = u(c_input) t = Lambda(lambda x: K.expand_dims(K.sum(-K.square(x), axis=1)))(add([z, Lambda(lambda x: -x)(uc)])) #shape(bs, 1) #t = Dot(1, False)([z,uc]) #shape(bs, 1) ts.append(t) us.append(uc) U = concatenate(ts) #shape(bs, n_classes) us = concatenate(us) final_output = Lambda(lambda x: K.softmax(x))(U) #shape(bs, n_classes) self.listener_model = Model(inputs=inputs, outputs=[final_output, U, z, us]) #self.listener_model.compile(loss="categorical_crossentropy", optimizer=RMSprop(lr=self.config['listener_lr'])) else: self.load() #check!!! def set_updates(self): self.opt = Adam(lr=self.lr) #adam = RMSprop(lr=self.lr) self.updates = self.opt.get_updates(params=self.listener_model.trainable_weights, loss=self.loss) if os.path.exists(self.optfilename): self.load_opt() def build_train_fn(self): """ Batch input and output. """ #direct prob input!!! action_prob_placeholder = self.listener_model.output[0] #(bs, n_classes) #action_onehot_placeholder = K.placeholder(shape=(None, self.config['n_classes']), name="action_onehot") #(bs, n_classes) action_onehot_placeholder = K.placeholder(shape=(None, None), name="action_onehot") #(bs, n_classes) reward_placeholder = K.placeholder(shape=(None,), name="reward") #(?) action_prob = K.sum(action_prob_placeholder*action_onehot_placeholder, axis=1) log_action_prob = K.log(action_prob) loss = - log_action_prob*reward_placeholder entropy = K.sum(action_prob_placeholder * K.log(action_prob_placeholder + 1e-10), axis=1) #entropy = K.sum(entropy) loss = loss + self.entropy_coefficient * entropy loss = K.mean(loss) self.loss =loss self.set_updates() self.train_fn = K.function( inputs = self.listener_model.input + [action_onehot_placeholder, reward_placeholder], outputs=[loss, loss], updates=self.updates) def remember_listener_training_details(self, speaker_message, action, action_probs, target, candidates, reward): """ Inputs are just one instance. No bs dimensize. """ #if not self.config['fixed_length']: toadd = self.config['max_message_length'] - len(speaker_message) for _ in range(toadd): speaker_message = np.append(speaker_message, -1) speaker_message = to_categorical(speaker_message, self.config['alphabet_size']) #shape(message_length, alphabet_size) self.batch_speaker_message.append(speaker_message) self.batch_action.append(action) self.batch_candidates.append(candidates) self.batch_reward.append(reward) class PaperListenerNetwork_rnn_conv(PaperListenerNetwork_rnn): def __init__(self, modelname, optfilename, lr, entropy_coefficient, pretrain_convmodel_file, traincnn, config): self.pretrain_convmodel_file = pretrain_convmodel_file self.traincnn = traincnn super(PaperListenerNetwork_rnn_conv, self).__init__(modelname, optfilename, lr, entropy_coefficient, config) def initialize_model(self): """ Batch input and output. """ if not os.path.exists(self.modelname): ## Define model self.conv_model = convnet_com(self.config['speaker_input_w'], self.config['speaker_input_h'], 3, preloadfile=self.pretrain_convmodel_file, name='conv_model_l') t_input = Input(shape=(None, self.config['alphabet_size'],)) #Speakers Message, shape(bs, message_length, alphabet_size) c_inputs_all = Input(shape=(self.config['n_classes'], self.config['speaker_input_w'], self.config['speaker_input_h'], 3), name='image_l') #Candidates, shape(bs, speaker_input_w, speaker_input_h, 3) inputs = [t_input, c_inputs_all] lstm = LSTM(self.config['listener_dim'], activation='tanh', return_sequences=False, return_state=True) o, sh, sc = lstm(t_input) z = Dense(self.config['listener_dim'], activation='sigmoid')(o) #shape(bs, listener_dim) #u = Dense(self.config['listener_dim'], activation='sigmoid',kernel_regularizer=regularizers.l2(0.01)) u = Dense(self.config['listener_dim'], activation='sigmoid') ts = [] us = [] for _ in range(self.config['n_classes']): #c_input = Input(shape=(self.config['speaker_input_w'],self.config['speaker_input_h'],3)) #speaker_model.input[0], shape(bs, speaker_input_w, speaker_input_h, 3) #c_input = Lambda(lambda x: x[:, _])(c_inputs_all) c_input = Lambda(makeFunc(_))(c_inputs_all) conv_outputs = self.conv_model(c_input) uc = u(conv_outputs) t = Lambda(lambda x: K.expand_dims(K.sum(-K.square(x),axis=1)))(add([z, Lambda(lambda x: -x)(uc)])) #shape(bs, 1) #t = Dot(1, False)([z,uc]) #shape(bs, 1) ts.append(t) us.append(uc) U = concatenate(ts) #shape(bs, n_classes) us = concatenate(us) final_output = Lambda(lambda x: K.softmax(x))(U) #shape(bs, n_classes) self.listener_model = Model(inputs=inputs, outputs=[final_output, U, z, us]) #self.listener_model.compile(loss="categorical_crossentropy", optimizer=RMSprop(lr=self.config['listener_lr'])) else: self.load() #check!!! self.conv_model = [l for l in self.listener_model.layers if l.name=='conv_model_l'][0] #self.listener_model.layers[6].kernel_regularizer = None #self.internal_model = Model(inputs=self.listener_model.inputs, outputs=[self.listener_model.layers[7].get_output_at(_) for _ in range(2)] + [self.listener_model.layers[6].output, self.listener_model.layers[-2].output]) #dot #self.internal_model = Model(inputs=self.listener_model.inputs, outputs=[self.listener_model.layers[6].get_output_at(_) for _ in range(2)] + [self.listener_model.layers[7].output, self.listener_model.layers[-2].output]) #euc self.trainable_weights_others = [] self.trainable_weights_conv = [] for layer in self.listener_model.layers: if layer.name!='conv_model_l': self.trainable_weights_others.extend(layer.trainable_weights) else: self.trainable_weights_conv.extend(layer.trainable_weights) def set_updates(self): self.opt = Adam(lr=self.lr) #self.opt = RMSprop(lr=self.lr) #opt = SGD(lr=self.lr, momentum=0.9, decay=1e-6, nesterov=True) if not self.traincnn: #self.updates = self.opt.get_updates(params=self.trainable_weights_others+self.trainable_weights_rnn, loss=self.loss) self.updates = self.opt.get_updates(params=self.trainable_weights_others, loss=self.loss) else: self.updates = self.opt.get_updates(params=self.listener_model.trainable_weights, loss=self.loss) if os.path.exists(self.optfilename): self.load_opt() def reshape_message_candidates(self, speaker_message, candidates): #if not self.config['fixed_length']: # assert len(speaker_message.shape)==1 and speaker_message.shape[0]<=self.config['max_message_length'] #else: # assert len(speaker_message.shape)==1 and speaker_message.shape[0]==self.config['max_message_length'] assert len(speaker_message.shape)==1 and speaker_message.shape[0]<=self.config['max_message_length'] assert len(candidates.shape)==4 and candidates.shape[0]==self.config['n_classes'] and candidates.shape[1]==self.config['speaker_input_w'] and candidates.shape[2]==self.config['speaker_input_h'] speaker_message = np.expand_dims(to_categorical(speaker_message, self.config['alphabet_size']), axis=0) #shape(1, ?, alphabet_size) X = [speaker_message, np.expand_dims(candidates, axis=0)] return X ''' class PaperListenerNetwork_rnn_conv_color(PaperListenerNetwork_rnn): def initialize_model(self): """ Batch input and output. """ if not os.path.exists(self.modelname): ## Define model t_input = Input(shape=(None, self.config['alphabet_size'],)) #Speakers Message, shape(bs, message_length, alphabet_size) c_inputs_all = Input(shape=(self.config['n_classes'], 8)) inputs = [t_input, c_inputs_all] lstm = LSTM(self.config['listener_dim'], activation='tanh', return_sequences=False, return_state=True) o, sh, sc = lstm(t_input) z = Dense(self.config['listener_dim'], activation='sigmoid')(o) #shape(bs, listener_dim) u = Dense(self.config['listener_dim'], activation='sigmoid') ts = [] for _ in range(self.config['n_classes']): #c_input = Input(shape=(self.config['speaker_input_w'],self.config['speaker_input_h'],3)) #speaker_model.input[0], shape(bs, speaker_input_w, speaker_input_h, 3) #c_input = Lambda(lambda x: x[:, _])(c_inputs_all) c_input = Lambda(makeFunc(_))(c_inputs_all) #conv_outputs = conv_model(c_input) #conv_outputs = c_input uc = u(c_input) t = Lambda(lambda x: K.expand_dims(K.sum(-K.square(x),axis=1)))(add([z, Lambda(lambda x: -x)(uc)])) #shape(bs, 1) ts.append(t) U = concatenate(ts) #shape(bs, n_classes) final_output = Lambda(lambda x: K.softmax(x))(U) #shape(bs, n_classes) self.listener_model = Model(inputs=inputs, outputs=[final_output, z, U]) #self.listener_model.compile(loss="categorical_crossentropy", optimizer=RMSprop(lr=self.config['listener_lr'])) else: self.load() #check!!! self.trainable_weights_rnn = self.listener_model.trainable_weights[:3] self.trainable_weights_others = self.listener_model.trainable_weights[3:] def set_updates(self): self.opt = Adam(lr=self.lr) #opt = RMSprop(lr=self.lr) #opt = SGD(lr=self.lr, momentum=0.9, decay=1e-6, nesterov=True) self.updates = self.opt.get_updates(params=self.listener_model.trainable_weights, loss=self.loss) if os.path.exists(self.optfilename): self.load_opt() def reshape_message_candidates(self, speaker_message, candidates): #if not self.config['fixed_length']: # assert len(speaker_message.shape)==1 and speaker_message.shape[0]<=self.config['max_message_length'] #else: # assert len(speaker_message.shape)==1 and speaker_message.shape[0]==self.config['max_message_length'] #pdb.set_trace() assert len(speaker_message.shape)==1 and speaker_message.shape[0]<=self.config['max_message_length'] assert len(candidates.shape)==2 and candidates.shape[0]==self.config['n_classes'] and candidates.shape[1]==8 speaker_message = np.expand_dims(to_categorical(speaker_message, self.config['alphabet_size']), axis=0) #shape(1, ?, alphabet_size) X = [speaker_message, np.expand_dims(candidates, axis=0)] return X class PaperListenerNetwork_direct(BaseListenerNetwork): def __init__(self, modelname, config_dict): assert False #TOMODIFY super(PaperListenerNetwork_direct, self).__init__(modelname, config_dict) self.batch_speaker_message = [] self.batch_action = [] self.batch_candidates = [] self.batch_reward = [] def initialize_model(self): """ Batch input and output. """ if not os.path.exists(self.modelname): ## Define model ## Speakers Message t_input = Input(shape=(self.config['max_message_length'],)) #shape(bs, max_message_length) t_trans = Dense(self.config['speaker_input_dim'], #kernel_initializer=keras.initializers.Identity(gain=1.0), #bias_initializer='zeros', activation='sigmoid')(t_input) #shape(bs, speaker_input_dim) inputs = [t_input] ts = [] for _ in range(self.config['n_classes']): c_input = Input(shape=(self.config['speaker_input_dim'],)) #shape(bs, speaker_input_dim) t = Lambda(lambda x: K.expand_dims(K.sum(-K.square(x),axis=1)))(add([t_trans, Lambda(lambda x: -x)(c_input)])) #shape(bs, 1) inputs.append(c_input) ts.append(t) U = concatenate(ts) #shape(bs, n_classes) listener_probs = U #listener_probs = Lambda(lambda x: K.softmax(x))(U) #shape(bs, n_classes) listener_infer_action = Lambda(lambda x: K.argmax(x))(U) #shape(bs) target_onehot_placeholder = Input(shape=(self.config['n_classes'],), name="action_onehot") #(bs, n_classes) listener_prob_2 = dot([listener_probs, target_onehot_placeholder], axes=1) listener_prob_2 = Lambda(lambda x:K.squeeze(x, axis=1))(listener_prob_2) self.listener_model = Model(inputs=inputs + [target_onehot_placeholder], outputs=[listener_probs, listener_infer_action, t_trans, listener_prob_2]) else: self.load() #check!!! def build_train_fn(self): """ Batch input and output. """ #direct prob input!!! #reward_placeholder = K.placeholder(shape=(None,), name="reward") #(?) action_prob = self.listener_model.output[3] #loss = K.log(-action_prob)*reward_placeholder #loss = - action_prob * reward_placeholder loss = - action_prob loss = K.mean(loss) self.opt = Adam(lr=self.config['listener_lr']) self.updates = self.opt.get_updates(params=self.listener_model.trainable_weights,loss=loss) #if os.path.exists(self.optfilename): # self.load_opt() self.train_fn = K.function( #inputs = self.listener_model.input + [reward_placeholder], inputs = self.listener_model.input, outputs=[loss, loss], updates=self.updates) def sample_from_listener_policy(self, speaker_message, candidates): """ Input and output are all just one instance. No bs dimensize. """ X = self.reshape_message_candidates(speaker_message, candidates) + [np.zeros([1, self.config['n_classes']])] listener_probs, listener_infer_action, _t_trans, _lp2 = self.listener_model.predict_on_batch(X) listener_probs = np.squeeze(listener_probs) #shape(n_class) #listener_probs = scipy.special.softmax(listener_probs) listener_probs = softmax(listener_probs) #pdb.set_trace() #???norm??? listener_action = np.random.choice(np.arange(self.config['n_classes']), p=listener_probs) #int return listener_action, listener_probs def infer_from_listener_policy(self, speaker_message, candidates): """ Input and output are all just one instance. No bs
components[1][:-2] return components[1]; #isConstructorOrDestructor: string, list #A variant of the constructor/ destructor check designed to simplify nesting issues #This requires less strict matching, but I find it difficult to think of non contrived #examples in the data where this will fail. def isConstructorOrDestructorWithList(self, line, classContextList): result = False for nextClass in classContextList: result = result or self.isConstructorOrDestructor(line, nextClass) if(result): return result return result #Given a string of text and a name of a surrounding class, decide if this is a constructor #or destructor for the class. def isConstructorOrDestructor(self, line, classContext): if(not self.langSwitch.isValidClassName(classContext)): return False temp = self.langSwitch.cleanConstructorOrDestructorLine(line) constructPatt = self.langSwitch.getConstructorOrDestructorRegex(classContext) if(self.config_info.DEBUG): print(("Class context: " + classContext)) try: print(("Checking if a constructor/destructor: " + temp)) except: print(("Checking if a constructor/destructor: " + str(temp, 'utf-8', errors='ignore'))) return re.search(constructPatt, temp,flags=re.IGNORECASE) def getBlockPattern(self,line,keywords): for keyword in keywords: (k, matched) = self.keywordMatch(keyword[0], line) if(matched): return k return None #There are many structures that can be mistaken for a function. We'll try to #ignore as many of them as possible. #To start, lets use a regex expression with "<return type> <name> (<0+ parameters>) {" #Also, we should handle template methods like: "template <class type> <return type> <name<type>>(<0+ parameters>) {"" #Returns a string matching the function pattern or "" if no pattern match found. def getFunctionPattern(self, line): #Remove potentially problematic structures temp = self.langSwitch.cleanFunctionLine(line) if(self.config_info.DEBUG): try: print(("Checking if function: \'" + temp + "\'")) except: print(("Checking if function: \'" + str(temp, 'utf-8', errors='ignore') + "\'")) #Select patterns for our language and check against them funcPatterns = self.langSwitch.getFunctionRegexes() if(self.config_info.DEBUG): print(("Checking " + str(len(funcPatterns)) + " patterns.")) for p in funcPatterns: result = re.search(p, temp) if(result != None): if(self.config_info.DEBUG): print(("Found match with pattern: " + p)) return result.group(0) return "" def isFunction(self, line): return (self.getFunctionPattern(line) != "") #Determine if the given line is an assignment block using the { def isAssignment(self, line): return re.search(assignPattern, line) #String -> String #Given a line of code from a diff statement, return the line with any #string literals removed. def removeStrings(self, line): return self.langSwitch.removeStrings(line) #String, Boolean, String, String, String -> (String, String, Boolean, String, String) #Given a line of code from a diff statement, a marker if prior lines were a multiblock #comment, the marker for the type of line, a marker for the type of comment, and #the current running function name, and returns a 5-tuple containing #The modified line, the modified line type, the changed commentFlag, the commentType, #the running function name, and any changes if inside a function (this forces a continue) def removeComments(self, line, commentFlag, lineType, commentType, functionName, phase): #Thoughts: if inside block comment and we've added or deleted that line, it can be ignored #If it exists as code and has been commented out or added back in, it must have a corresponding line. #However, if inside a comment and the line is unmodified, we need to find if /* has been added or removed #When it is removed, we should consider the unmodified code as a block of added code. When it is added #We should consider it as a block of deleted code. (The /* and */ can be ignored, as if they contain code #They must also have a corresponding section of added or deleted code.) fChange = UNMARKED #Remove single line multi block comments... #line = re.sub(commentPattern, "", line) line = self.langSwitch.cleanSingleLineBlockComment(line) if(self.langSwitch.isBlockCommentStart(line)): commentFlag = True #We need to consider the content of the line before the /* line = self.langSwitch.beforeBlockCommentStart(line) commentType = lineType if(line.strip() == ""): if(phase == LOOKFOREND): #Make sure to count this line if inside function before continuing if(lineType == ADD): fChange = COMADD elif(lineType == REMOVE): fChange = COMDEL else: fChange = UNCHANGED else: if(lineType == ADD): fChange = TOTALADD elif(lineType == REMOVE): fChange = TOTALDEL else: fChange = UNCHANGED line = "" elif(self.langSwitch.isBlockCommentEnd(line)): if(commentFlag): #Normal case were whole /* ... */ comment is changed commentFlag = False elif(phase == LOOKFORNAME): #Case where only bottom part of comment is changed and looking for function name. functionName = "" #Clear the function name index = self.langSwitch.getBlockCommentEnd(line) if(len(line) > index + 2): #Case where there is code after comment end. line = line[index + 2:] else: if(phase == LOOKFOREND): #Make sure to count this line if inside function before continuing if(lineType == ADD): fChange = COMADD elif(lineType == REMOVE): fChange = COMDEL else: fChange = UNCHANGED else: if(lineType == ADD): fChange = TOTALADD elif(lineType == REMOVE): fChange = TOTALDEL else: fChange = UNCHANGED line = "" elif(commentFlag): #Inside a block comment if(lineType == ADD): line = "" if(phase == LOOKFOREND): #Make sure to count this line if inside function before continuing fChange = COMADD else: #Otherwise, just add it to the total count of lines seen... fChange = TOTALADD elif(lineType == REMOVE): line = "" if(phase == LOOKFOREND): #Make sure to count this line if inside function before continuing fChange = COMDEL else: fChange = TOTALDEL if(lineType == OTHER): #If the line is unmodified if(commentType == ADD): #This line has been commented out, with no corresponding block lineType = REMOVE elif(commentType == REMOVE): #This line was commented out, but is now part of code again. lineType = ADD else: #Unmodified line in an unmodified comment can be skipped fChange = UNCHANGED line = "" #Remove single line comments #line = re.sub(commentPattern2, "", line) line = self.langSwitch.cleanSingleLineComment(line) return (line,lineType, commentFlag, commentType, functionName, fChange) #If we have made changes to the comment structure, we want to count changes to the current #logChunk, function, and blocks separately so we can skip the rest of the changes. def modifyCountForComment(self, fChange, lineType, keywordDict, keywords, ftotal_add, ftotal_del): includedKeywords = [k for k in keywords if k[1] == INCLUDED] if(fChange == COMADD): if(self.sT.getBlockContext(lineType) != []): keywordDict = self.incrementBlockContext(keywordDict, lineType, includedKeywords, self.sT.getBlockContext(lineType)) if(self.sT.getFuncContext(lineType) != []): ftotal_add += 1 self.total_add += 1 elif(fChange == COMDEL): if(self.sT.getBlockContext(lineType) != []): keywordDict = self.incrementBlockContext(keywordDict, lineType, includedKeywords, self.sT.getBlockContext(lineType)) if(self.sT.getFuncContext(lineType) != []): ftotal_del += 1 self.total_add += 1 elif(fChange == TOTALADD): self.total_add += 1 elif(fChange == TOTALDEL): self.total_del += 1 elif(fChange != UNCHANGED): assert("Not a valid fChange type.") return (keywordDict, ftotal_add, ftotal_del) #Update the counts of the total log chunk and function in the case of a normal, non comment #line. def updateCounts(self, lineType, ftotal_add, ftotal_del, phase, startFlag): if(lineType == ADD): self.total_add += 1 #This tracks + for whole chunks. if(phase == LOOKFOREND): if(startFlag==0): ftotal_add += 1 elif(lineType == REMOVE): self.total_del += 1 if(phase == LOOKFOREND): if(startFlag==0): ftotal_del += 1 else: assert(lineType==OTHER) return (ftotal_add, ftotal_del) #String -> [lineType, String] #Given a line in the diff, return a list of 2 with the first line being ADD/REMOVE/OTHER and the second being #the line with the +/- removed, if applicable def markLine(self, line): if(line.startswith("+")): return [ADD, line[1:]] elif(line.startswith("-")): return [REMOVE, line[1:]] else: if(len(line) > 0 and line[0] == " "): return [OTHER, line[1:]] #Remove whitespace from +/- row, important for languages like python elif(len(line) > 0 and (line[0] == "/" or line[0] == "\\")): return [META, line] else: return [OTHER, line] #A Check to see if our regexes match class name def checkForClassName(self, searchString, classContext): if(self.langSwitch.isObjectOrientedLanguage()): className = self.getClassPattern(searchString) #Would C++ constructors outside class A start with A::? if(className != ""): if(self.config_info.DEBUG): try: print(("Class:" + className)) except: print(("Class:" + str(className, 'utf-8', errors='ignore'))) classContext.append(self.extractClassName(className)) #Push onto the class list return classContext #When we've seen an increase in scope, this function handles the preperation to checking the regex #updates the scope stacks and maintains any additional information necessary (such as if we've entered a class) def checkForFunctionName(self, phase, line, lineType, lineNum, functionName, classContext, funcStart, startFlag, ftotal_add, ftotal_del): if(self.config_info.DEBUG): print("Scope increase while searching for function.") if(self.sT.scopeIncreaseCount(line, lineType) > 1): if(self.config_info.DEBUG): print("Parsing of multiscope increases like: ") print(line) print("is not yet supported.") raise UnsupportedScopeException("This ordering of scope changes is not yet supported.") #Check for class context first in these cases if(self.sT.changeScopeFirst()): classContext
tey ] # # [ 0 0 1 ][ 1 ] = [ 1 ] # # or # # [ x y 1 0 0 0 ] [ A11 ] = [ tex ] # # [ 0 0 0 x y 1 ] [ A12 ] = [ tey ] # # [ A13 ] # # [ A21 ] # # [ A22 ] # # [ A23 ] # # With rows repeated for each point. # # Solve for Axx values from the known coordinates # # Then substitute the 2D intersection coordinates as (x,y) # # and multiply to get (tex,tey), the desired texture coordinates. # numpoints=np.count_nonzero(polysurf.vertexids[polysurf_polynum,:] >= 0) # centroid = np.mean(polysurf.vertices[polysurf.vertexids[polysurf_polynum,:numpoints],:],axis=0) # coordvals = (polysurf.vertices[polysurf.vertexids[polysurf_polynum,:numpoints],:]-centroid.reshape(1,3)).T # coordvals is the coordinates relative to centroid, 3 x numpoints # texcoordvals = self.texcoord[polysurf_polynum,:numpoints].T # texcoordvals is the texture coordinates, 2 rows by numpoints cols... # Note that textures are in range 0...1 by convention # # # calculate SVD # (U,s,Vt)=scipy.linalg.svd(coordvals,full_matrices=True,compute_uv=True) # # # extract columns for 2d coordinate basis vectors # # want columns that correspond to the largest two # # singular values # xcolindex=0 # ycolindex=1 # # if abs(s[0]) < abs(s[1]) and abs(s[0]) < abs(s[2]): # # element 0 is smallest s.v. # xcolindex=2 # pass # if abs(s[1]) < abs(s[2]) and abs(s[1]) < abs(s[0]): # # element 1 is smallest s.v. # ycolindex=2 # pass # # To2D=U[:,np.array((xcolindex,ycolindex))].T # 2x3... Rows of To2D are x and y basis vectors, respectively # # coordvals2d = np.dot(To2D,coordvals) # 2 rows by numpoints cols... in 2D basis relative to centroid # # TexXformMtx=np.zeros((2*numpoints,6),dtype='d') # TexXformMtx[:(2*numpoints):2,0]=coordvals2d[0,:] # assign 'x' elements # TexXformMtx[:(2*numpoints):2,1]=coordvals2d[1,:] # assign 'y' elements # TexXformMtx[:(2*numpoints):2,2]=1 # assign '1' entries # TexXformMtx[1:(2*numpoints):2,3]=coordvals2d[0,:] # assign 'x' elements # TexXformMtx[1:(2*numpoints):2,4]=coordvals2d[1,:] # assign 'y' elements # TexXformMtx[1:(2*numpoints):2,5]=1 # assign '1' entries # # TexCoordVec=np.zeros((2*numpoints),dtype='d') # TexCoordVec[:(2*numpoints):2] = texcoordvals[0,:] # assign tex # TexCoordVec[1:(2*numpoints):2] = texcoordvals[1,:] # assign tey # # (AijVals,residuals,rank,lstsq_s) = np.linalg.lstsq(TexXformMtx,TexCoordVec) # AijMat=AijVals.reshape(2,3) # reshape to 2x3 # AijMatExt = np.concatenate((AijMat,np.array((0.0,0.0,1.0),dtype='d').reshape(1,3)),axis=0) # Add 0.0, 0.0, 1.0 row to bottom of matrix # # AijMatInv=np.linalg.inv(AijMatExt) # # return (centroid,s,xcolindex,ycolindex,To2D, AijMat,AijMatInv) def eval_texcoord_polygonvertex(self,polysurf,polysurf_polynum,polysurf_vertexnum): # Can supply vectors as polysurf_polynum and/or polysurf_vertexnum #texcoords = self.texcoord[polysurf_polynum,polysurf_vertexnum,:] firstidx=polysurf.vertexidx_indices[polysurf_polynum] texcoords = self.texcoord[self.texcoordidx[firstidx+polysurf_vertexnum],:] return texcoords def invalidateprojinfo(self): self.inplane2texcoords = None self.texcoords2inplane = None pass def buildprojinfo(self,polysurf): # See also scope_coin3d.cpp:DetermineTexXform # see also polygonalsurface_intrinsicparameterization.py/_determine_tex_xform() # and preceding steps in polygonalsurface.py:buildprojinfo() # 5. Evaluate a transform # [ A11 A12 A13 ][ x ] = [ tex ] # [ A21 A22 A23 ][ y ] = [ tey ] # [ 0 0 1 ][ 1 ] = [ 1 ] # or # [ x y 1 0 0 0 ] [ A11 ] = [ tex ] # [ 0 0 0 x y 1 ] [ A12 ] = [ tey ] # [ A13 ] # [ A21 ] # [ A22 ] # [ A23 ] # With rows repeated for each point. # Solve for Axx values from the known coordinates # Then substitute the 2D intersection coordinates as (x,y) # and multiply to get (tex,tey), the desired texture coordinates. if self.inplane2texcoords is not None: return # already built numpolys=polysurf.vertexidx_indices.shape[0] self.inplane2texcoords = np.zeros((numpolys,2,3),dtype='d') self.texcoords2inplane = np.zeros((numpolys,3,3),dtype='d') for polynum in range(numpolys): firstidx=polysurf.vertexidx_indices[polynum] numpoints=polysurf.numvertices[polynum] centroid = polysurf.refpoints[polynum,:] coordvals = (polysurf.vertices[polysurf.vertexidx[firstidx:(firstidx+numpoints)],:]-centroid.reshape(1,3)).T # coordvals is the coordinates relative to centroid, 3 x numpoints To2D = polysurf.inplanemats[polynum,:,:] coordvals2d = np.dot(To2D,coordvals) # 2 rows by numpoints cols... in 2D basis relative to centroid texcoordvals = self.texcoord[self.texcoordidx[firstidx:(firstidx+numpoints)],:].T # texcoordvals is the texture coordinates, 2 rows by numpoints cols... # Note that textures are in range 0...1 by convention TexXformMtx=np.zeros((2*numpoints,6),dtype='d') TexXformMtx[:(2*numpoints):2,0]=coordvals2d[0,:] # assign 'x' elements TexXformMtx[:(2*numpoints):2,1]=coordvals2d[1,:] # assign 'y' elements TexXformMtx[:(2*numpoints):2,2]=1 # assign '1' entries TexXformMtx[1:(2*numpoints):2,3]=coordvals2d[0,:] # assign 'x' elements TexXformMtx[1:(2*numpoints):2,4]=coordvals2d[1,:] # assign 'y' elements TexXformMtx[1:(2*numpoints):2,5]=1 # assign '1' entries TexCoordVec=np.zeros((2*numpoints),dtype='d') TexCoordVec[:(2*numpoints):2] = texcoordvals[0,:] # assign tex TexCoordVec[1:(2*numpoints):2] = texcoordvals[1,:] # assign tey (AijVals,residuals,rank,lstsq_s) = np.linalg.lstsq(TexXformMtx,TexCoordVec,rcond=-1) AijMat=AijVals.reshape(2,3) # reshape to 2x3 AijMatExt = np.concatenate((AijMat,np.array((0.0,0.0,1.0),dtype='d').reshape(1,3)),axis=0) # Add 0.0, 0.0, 1.0 row to bottom of matrix # NOTE: Possible bug: This matrix inversion (next line) will # fail if the polygon has zero area in texture space due to # (for example) limited precision in writing down the # texture coordinates in the data file. # # Not sure what to do in this case... AijMatInv=np.linalg.inv(AijMatExt) # Assign AijMat self.inplane2texcoords[polynum,:,:]=AijMat self.texcoords2inplane[polynum,:,:]=AijMatInv pass pass def _evaluate_curvature(self,polysurf,polynum,u,v): # Evaluate the curvature, within polygon # polynum # at (u,v) coordinates... (u,v) in texture coordinate # range [0...1] # ... C accelerated version available if polynum >= polysurf.vertexidx_indices.shape[0]: # This polynum corresponds to a redundant texture polysurf_polynum=self.texcoordredundant_polystartpolynum[polynum] pass else: polysurf_polynum=polynum pass To2D=polysurf.inplanemats[polysurf_polynum,:,:] # To2D is 2x3 #AijMat=self.inplane2texcoords[polynum,:,:] AijMatInv=self.texcoords2inplane[polynum,:,:] # Note Capital UV represent the texture parameterization # of the in-plane 3D space of this facet. TexUVExt = np.inner(AijMatInv,np.array((u,v,1.0))) TexUVExt /= TexUVExt[2] # normalize inhomogeneous coordinates # These coordinates of this (u,v) of this facet are relative to its centroid, # and are in terms of the basis vectors in To2D TexUV = TexUVExt[:2] # Get 3D coordinates relative to centroid Tex3D = np.inner(To2D.T,TexUV) # Need to evaluate 3D vertex coords, relative to centroid, # Use them to weight the vertex curvatures # according to distance from our point. centroid = polysurf.refpoints[polysurf_polynum,:] # Centroied in 3d coords firstidx=polysurf.vertexidx_indices[polysurf_polynum] numpoints=polysurf.numvertices[polysurf_polynum] # Check to see if we have curvatures at all vertices: if np.isnan(polysurf.principal_curvatures[polysurf.vertexidx[firstidx:(firstidx+numpoints)],0]).any(): # abort if we are missing a curvature #curvmat[vcnt,ucnt,:,:]=np.NaN return np.array(((np.NaN,np.NaN),(np.NaN,np.NaN)),dtype='d') # For this facet, the 3D coords of the vertices are coordvals = (polysurf.vertices[polysurf.vertexidx[firstidx:(firstidx+numpoints)],:]-centroid.reshape(1,3)).T # coordvals is the coordinates relative to centroid, 3 x numpoints # Now coordvals is 3 x numvertices, coordinates of the vertices # relative to centroid # Tex3D is 3 vector, coordinates of our (u,v) location # relative to centroid. # # Perform weighted average dists = vecnorm(Tex3D.reshape(3,1) - coordvals,axis=0) eps = np.max(dists)/10000.0 # small number, so we don't divide by 0 rawweights=1.0/(dists+eps) totalweights=np.sum(rawweights) weights=rawweights/totalweights ## The 2D coords of the vertices are #coordvals2d = np.dot(To2D,coordvals) # 2 rows by numpoints cols... in 2D basis relative to centroid # Likewise 2D coords of the curvature_tangent_axes CTA_2D = np.inner(To2D,polysurf.curvature_tangent_axes[polysurf.vertexidx[firstidx:(firstidx+numpoints)],:,:]).transpose(1,0,2) # Transpose to keep broadcast axis to the left. Pre-transpose axes lengths are: 2 (2D axes) by # of vertices by 2 (principal curvature) # CTA_2D axes: # of vertices by 2 (2D axes) by 2 (principal curvature) # Normalize curvature_tangent_axes (should be unit length) CTA_2D /= vecnormkeepshape(CTA_2D,1) # Axis is axis 0 because it came from To2D # Construct curvature matrices ... # Need to construct V*K*V', broadcasting over which vertex curvmatrices=np.einsum('...ij,...j,...jk->...ik', CTA_2D,polysurf.principal_curvatures[polysurf.vertexidx[firstidx:(firstidx+numpoints)],:],CTA_2D.transpose(0,2,1)) # result is # of vertices by 2x2 curvature matrix # Weighting of vertices relative to our point (u,v) weightedcurvmatrices = weights.reshape(numpoints,1,1)*curvmatrices # meancurvmatrix (weighted average) meancurvmatrix = weightedcurvmatrices.sum(axis=0) # meancurvmatrix is a 2x2 which should be close to symmetric asymmetry = meancurvmatrix[1,0]-meancurvmatrix[0,1] if abs(asymmetry) > 0.1*np.linalg.norm(meancurvmatrix): sys.stderr.write("_evaluate_curvature: WARNING Large asymmetry in mean curvature matrix at (u,v) = (%g,%g). Matrix = %s\n" % (u,v,str(meancurvmatrix))) pass # correct asymmetry meancurvmatrix[1,0] -= asymmetry/2.0 meancurvmatrix[0,1] += asymmetry/2.0 ## Determine principal curvatures #(princcurvs,evects) = np.linalg.eig(meancurvmatrix) # curvtangentaxes3d = np.dot(To2D.T,evects) # # # We don't want the eigenframe to be mirrored relative to the (U,V) # # frame, for consistency in interpreting positive vs. negative curvature. # # ... so if the dot/inner product of (UxV) with (TANGENT0xTANGENT1) # is negative, that indicates mirroring # Negating one of the eigenvectors will un-mirror it. #if np.inner(np.cross(To2D[0,:],To2D[1,:]),np.cross(curvtangentaxes[:,0],curvtangentaxes[:,1])) < 0.0: # curvtangentaxes3d[:,0]=-curvtangentaxes3d[:,0] #
#!/usr/bin/env python import struct from .gdsPrimitives import * class Gds2reader: """Class to read in a file in GDSII format and populate a layout class with it""" ## Based on info from http://www.rulabinsky.com/cavd/text/chapc.html global offset offset=0 def __init__(self,layoutObject,debugToTerminal = 0): self.fileHandle = None self.layoutObject = layoutObject self.debugToTerminal=debugToTerminal #do we dump debug data to the screen def print64AsBinary(self,number): for index in range(0,64): print((number>>(63-index))&0x1,eol='') print("\n") def stripNonASCII(self,bytestring): string = bytestring.decode('utf-8') return string def ieeeDoubleFromIbmData(self,ibmData): #the GDS double is in IBM 370 format like this: #(1)sign (7)exponent (56)mantissa #exponent is excess 64, mantissa has no implied 1 #a normal IEEE double is like this: #(1)sign (11)exponent (52)mantissa data = struct.unpack('>q',ibmData)[0] sign = (data >> 63)&0x01 exponent = (data >> 56) & 0x7f mantissa = data<<8 #chop off sign and exponent if mantissa == 0: newFloat = 0.0 else: exponent = ((exponent-64)*4)+1023 #convert to double exponent #re normalize while mantissa & 0x8000000000000000 == 0: mantissa<<=1 exponent-=1 mantissa<<=1 #remove the assumed high bit exponent-=1 #check for underflow error -- should handle these properly! if(exponent<=0): print("Underflow Error") elif(exponent == 2047): print("Overflow Error") #re assemble newFloat=(sign<<63)|(exponent<<52)|((mantissa>>12)&0xfffffffffffff) asciiDouble = struct.pack('>q',newFloat) #convert back to double newFloat = struct.unpack('>d',asciiDouble)[0] return newFloat def ieeeFloatCheck(self,aFloat): asciiDouble = struct.pack('>d',aFloat) data = struct.unpack('>q',asciiDouble)[0] sign = data >> 63 exponent = ((data >> 52) & 0x7ff)-1023 # BINWU: Cleanup #print(exponent+1023) mantissa = data << 12 #chop off sign and exponent # BINWU: Cleanup #self.print64AsBinary((sign<<63)|((exponent+1023)<<52)|(mantissa>>12)) asciiDouble = struct.pack('>q',(sign<<63)|(exponent+1023<<52)|(mantissa>>12)) newFloat = struct.unpack('>d',asciiDouble)[0] print("Check:"+str(newFloat)) def readNextRecord(self): global offset recordLengthAscii = self.fileHandle.read(2) #first 2 bytes tell us the length of the record if len(recordLengthAscii)==0: return recordLength = struct.unpack(">h",recordLengthAscii) #gives us a tuple with a short int inside offset_int = int(recordLength[0]) # extract length offset += offset_int # count offset #print(offset) #print out the record numbers for de-bugging record = self.fileHandle.read(recordLength[0]-2) #read the rest of it (first 2 bytes were already read) return record def readHeader(self): self.layoutObject.info.clear() ## Header record = self.readNextRecord() idBits = record[0:2] if(idBits==b'\x00\x02' and len(record)==4): gdsVersion = struct.unpack(">h",record[2:4])[0] self.layoutObject.info["gdsVersion"]=gdsVersion if(self.debugToTerminal==1): print("GDS II Version "+str(gdsVersion)) else: print("Invalid GDSII Header") return -1 #read records until we hit the UNITS section... this is the last part of the header while 1: record = self.readNextRecord() idBits = record[0:2] ## Modified Date if idBits==b'\x01\x02' and len(record)==26: modYear = struct.unpack(">h",record[2:4])[0] modMonth = struct.unpack(">h",record[4:6])[0] modDay = struct.unpack(">h",record[6:8])[0] modHour = struct.unpack(">h",record[8:10])[0] modMinute = struct.unpack(">h",record[10:12])[0] modSecond = struct.unpack(">h",record[12:14])[0] lastAccessYear = struct.unpack(">h",record[14:16])[0] lastAccessMonth = struct.unpack(">h",record[16:18])[0] lastAccessDay = struct.unpack(">h",record[18:20])[0] lastAccessHour = struct.unpack(">h",record[20:22])[0] lastAccessMinute = struct.unpack(">h",record[22:24])[0] lastAccessSecond = struct.unpack(">h",record[24:26])[0] self.layoutObject.info["dates"]=(modYear,modMonth,modDay,modHour,modMinute,modSecond,\ lastAccessYear,lastAccessMonth,lastAccessDay,lastAccessHour,lastAccessMinute,lastAccessSecond) if(self.debugToTerminal==1): print("Date Modified:"+str(modYear)+","+str(modMonth)+","+str(modDay)+","+str(modHour)+","+str(modMinute)+","+str(modSecond)) print("Date Last Accessed:"+str(lastAccessYear)+","+str(lastAccessMonth)+","+str(lastAccessDay)+\ ","+str(lastAccessHour)+","+str(lastAccessMinute)+","+str(lastAccessSecond)) ## LibraryName elif(idBits==b'\x02\x06'): libraryName = record[2::].decode("utf-8") self.layoutObject.info["libraryName"]=libraryName if(self.debugToTerminal==1): print("Library: "+libraryName) ## reference libraries elif(idBits==b'\x1F\x06'): referenceLibraryA = record[2:46] referenceLibraryB = record[47:91] self.layoutObject.info["referenceLibraries"]=(referenceLibraryA,referenceLibraryB) if(self.debugToTerminal==1): print( "Reference Libraries:"+referenceLibraryA+","+referenceLibraryB) elif(idBits==b'\x20\x06'): fontA = record[2:45] fontB = record[46:89] fontC = record[90:133] fontD = record[134:177] self.layoutObject.info["fonts"]=(fontA,fontB,fontC,fontD) if(self.debugToTerminal==1): print("Fonts:"+fontA+","+fontB+","+fontC+","+fontD) elif(idBits==b'\x23\x06'): attributeTable = record[2:45] self.layoutObject.info["attributeTable"]=attributeTable if(self.debugToTerminal==1): print("Attributes:"+attributeTable) elif(idBits==b'\x22\x02'): generations = struct.unpack(">h",record[2]+record[3]) self.layoutObject.info["generations"]=generations if(self.debugToTerminal==1): print("Generations:"+generations ) elif(idBits==b'\x36\x02'): fileFormat = struct.unpack(">h",record[2]+record[3]) self.layoutObject.info["fileFormat"]=fileFormat if(self.debugToTerminal==1): print("File Format:"+fileFormat) elif(idBits==b'\x37\x06'): mask = record[2::] self.layoutObject.info["mask"] = mask if(self.debugToTerminal==1): print("Mask: "+mask) elif(idBits==b'\x03\x05'): #this is also wrong b/c python doesn't natively have an 8 byte float userUnits=self.ieeeDoubleFromIbmData(record[2:10]) dbUnits=self.ieeeDoubleFromIbmData self.layoutObject.info["units"] = (userUnits,dbUnits) if(self.debugToTerminal==1): print("Units: 1 user unit="+str(userUnits)+" database units, 1 database unit="+str(dbUnits)+" meters.") break; if(self.debugToTerminal==1): print("End of GDSII Header Found") return 1 def readBoundary(self): ##reads in a boundary type structure = a filled polygon thisBoundary=GdsBoundary() while 1: record = self.readNextRecord() idBits = record[0:2] if(idBits==b'\x26\x01'): #ELFLAGS elementFlags = struct.unpack(">h",record[2:4])[0] thisBoundary.elementFlags=elementFlags if(self.debugToTerminal==1): print("\t\tElement Flags: "+str(elementFlags)) elif(idBits==b'\x2F\x03'): #PLEX plex = struct.unpack(">i",record[2:6])[0] thisBoundary.plex=plex if(self.debugToTerminal==1): print("\t\tPLEX: "+str(plex)) elif(idBits==b'\x0D\x02'): #Layer drawingLayer = struct.unpack(">h",record[2:4])[0] thisBoundary.drawingLayer=drawingLayer if drawingLayer not in self.layoutObject.layerNumbersInUse: self.layoutObject.layerNumbersInUse += [drawingLayer] if(self.debugToTerminal==1): print("\t\tDrawing Layer: "+str(drawingLayer)) elif(idBits==b'\x16\x02'): #Purpose purposeLayer = struct.unpack(">h",record[2:4])[0] thisBoundary.purposeLayer=purposeLayer if(self.debugToTerminal==1): print("\t\tPurpose Layer: "+str(purposeLayer)) elif(idBits==b'\x0E\x02'): #DataType dataType = struct.unpack(">h",record[2:4])[0] thisBoundary.dataType=dataType if(self.debugToTerminal==1): print("\t\t\tData Type: "+str(dataType)) elif(idBits==b'\x10\x03'): #XY Data Points numDataPoints = len(record)-2 #packed as XY coordinates 4 bytes each thisBoundary.coordinates=[] for index in range(2,numDataPoints+2,8): #incorporate the 2 byte offset x=struct.unpack(">i",record[index:index+4])[0] y=struct.unpack(">i",record[index+4:index+8])[0] thisBoundary.coordinates+=[(x,y)] if(self.debugToTerminal==1): print("\t\t\tXY Point: "+str(x)+","+str(y)) elif(idBits==b'\x11\x00'): #End Of Element break; return thisBoundary def readPath(self): #reads in a path structure thisPath=GdsPath() while 1: record = self.readNextRecord() idBits = record[0:2] if(idBits==b'\x26\x01'): #ELFLAGS elementFlags = struct.unpack(">h",record[2:4])[0] thisPath.elementFlags=elementFlags if(self.debugToTerminal==1): print("\t\tElement Flags: "+str(elementFlags)) elif(idBits==b'\x2F\x03'): #PLEX plex = struct.unpack(">i",record[2:6])[0] thisPath.plex=plex if(self.debugToTerminal==1): print("\t\tPLEX: "+str(plex)) elif(idBits==b'\x0D\x02'): #Layer drawingLayer = struct.unpack(">h",record[2:4])[0] thisPath.drawingLayer=drawingLayer if drawingLayer not in self.layoutObject.layerNumbersInUse: self.layoutObject.layerNumbersInUse += [drawingLayer] if(self.debugToTerminal==1): print("\t\t\tDrawing Layer: "+str(drawingLayer)) elif(idBits==b'\x16\x02'): #Purpose purposeLayer = struct.unpack(">h",record[2:4])[0] thisPath.purposeLayer=purposeLayer if(self.debugToTerminal==1): print("\t\tPurpose Layer: "+str(purposeLayer)) elif(idBits==b'\x21\x02'): #Path type pathType = struct.unpack(">h",record[2:4])[0] thisPath.pathType=pathType if(self.debugToTerminal==1): print("\t\t\tPath Type: "+str(pathType)) elif(idBits==b'\x0F\x03'): #Path width pathWidth = struct.unpack(">i",record[2:6])[0] thisPath.pathWidth=pathWidth if(self.debugToTerminal==1): print("\t\t\tPath Width: "+str(pathWidth)) elif(idBits==b'\x10\x03'): #XY Data Points numDataPoints = len(record)-2 #packed nas XY coordinates 4 bytes each thisPath.coordinates=[] for index in range(2,numDataPoints+2,8): #incorporate the 2 byte offset x=struct.unpack(">i",record[index:index+4])[0] y=struct.unpack(">i",record[index+4:index+8])[0] thisPath.coordinates+=[(x,y)] if(self.debugToTerminal==1): print("\t\t\tXY Point: "+str(x)+","+str(y)) elif(idBits==b'\x11\x00'): #End Of Element break; return thisPath def readSref(self): #reads in a reference to another structure thisSref=GdsSref() while 1: record = self.readNextRecord() idBits = record[0:2] if(idBits==b'\x26\x01'): #ELFLAGS elementFlags = struct.unpack(">h",record[2:4])[0] thisSref.elementFlags=elementFlags if(self.debugToTerminal==1): print("\t\tElement Flags: "+str(elementFlags)) elif(idBits==b'\x2F\x03'): #PLEX plex = struct.unpack(">i",record[2:6])[0] thisSref.plex=plex if(self.debugToTerminal==1): print("\t\tPLEX: "+str(plex)) elif(idBits==b'\x12\x06'): #Reference Name sName = self.stripNonASCII(record[2::]) thisSref.sName=sName.rstrip() if(self.debugToTerminal==1): print("\t\tReference Name:"+sName) elif(idBits==b'\x1A\x01'): #Transformation transFlags = struct.unpack(">H",record[2:4])[0] mirrorFlag = bool(transFlags&0x8000) ##these flags are a bit sketchy rotateFlag = bool(transFlags&0x0002) magnifyFlag = bool(transFlags&0x0004) thisSref.transFlags=[mirrorFlag,magnifyFlag,rotateFlag] if(self.debugToTerminal==1): print("\t\t\tMirror X:"+str(mirrorFlag)) print( "\t\t\tRotate:"+str(rotateFlag)) print("\t\t\tMagnify:"+str(magnifyFlag)) elif(idBits==b'\x1B\x05'): #Magnify magFactor=self.ieeeDoubleFromIbmData(record[2:10]) thisSref.magFactor=magFactor if(self.debugToTerminal==1): print("\t\t\tMagnification:"+str(magFactor)) elif(idBits==b'\x1C\x05'): #Rotate Angle rotateAngle=self.ieeeDoubleFromIbmData(record[2:10]) thisSref.rotateAngle=rotateAngle if(self.debugToTerminal==1): print("\t\t\tRotate Angle (CCW):"+str(rotateAngle)) elif(idBits==b'\x10\x03'): #XY Data Points index=2 x=struct.unpack(">i",record[index:index+4])[0] y=struct.unpack(">i",record[index+4:index+8])[0] thisSref.coordinates=(x,y) if(self.debugToTerminal==1): print("\t\t\tXY Point: "+str(x)+","+str(y)) elif(idBits==b'\x11\x00'): #End Of Element break; return thisSref def readAref(self): #an array of references thisAref = GdsAref() while 1: record = self.readNextRecord() idBits = record[0:2] if(idBits==b'\x26\x01'): #ELFLAGS elementFlags = struct.unpack(">h",record[2:4])[0] thisAref.elementFlags=elementFlags if(self.debugToTerminal==1): print("\t\tElement Flags: "+str(elementFlags)) elif(idBits==b'\x2F\x03'): #PLEX plex = struct.unpack(">i",record[2:6])[0] thisAref.plex=plex if(self.debugToTerminal==1): print("\t\tPLEX: "+str(plex)) elif(idBits==b'\x12\x06'): #Reference Name aName = record[2::] thisAref.aName=aName if(self.debugToTerminal==1): print("\t\tReference Name:"+aName) elif(idBits==b'\x1A\x01'): #Transformation transFlags = struct.unpack(">H",record[2:4])[0] mirrorFlag = bool(transFlags&0x8000) ##these flags are a bit sketchy rotateFlag = bool(transFlags&0x0002) magnifyFlag = bool(transFlags&0x0004) thisAref.transFlags=[mirrorFlag,magnifyFlag,rotateFlag] if(self.debugToTerminal==1): print("\t\t\tMirror X:"+str(mirrorFlag)) print("\t\t\tRotate:"+str(rotateFlag)) print("\t\t\tMagnify:"+str(magnifyFlag)) elif(idBits==b'\x1B\x05'): #Magnify magFactor=self.ieeeDoubleFromIbmData(record[2:10]) thisAref.magFactor=magFactor if(self.debugToTerminal==1): print("\t\t\tMagnification:"+str(magFactor)) elif(idBits==b'\x1C\x05'): #Rotate Angle rotateAngle=self.ieeeDoubleFromIbmData(record[2:10]) thisAref.rotateAngle=rotateAngle if(self.debugToTerminal==1): print("\t\t\tRotate Angle (CCW):"+str(rotateAngle)) elif(idBits==b'\x10\x03'): #XY Data Points index=2 topLeftX=struct.unpack(">i",record[index:index+4])[0] topLeftY=struct.unpack(">i",record[index+4:index+8])[0] rightMostX=struct.unpack(">i",record[index+8:index+12])[0] bottomMostY=struct.unpack(">i",record[index+12:index+16])[0] thisAref.coordinates=[(topLeftX,topLeftY),(rightMostX,topLeftY),(topLeftX,bottomMostY)] if(self.debugToTerminal==1): print("\t\t\tTop Left Point: "+str(topLeftX)+","+str(topLeftY)) print("\t\t\t\tArray Width: "+str(rightMostX-topLeftX)) print("\t\t\t\tArray Height: "+str(topLeftY-bottomMostY)) elif(idBits==b'\x11\x00'): #End Of Element break; return thisAref def readText(self): ##reads in a text structure thisText=GdsText() while 1: record = self.readNextRecord() idBits = record[0:2] if(idBits==b'\x26\x01'): #ELFLAGS elementFlags = struct.unpack(">h",record[2:4])[0] thisText.elementFlags=elementFlags if(self.debugToTerminal==1): print("\t\tElement Flags: "+str(elementFlags)) elif(idBits==b'\x2F\x03'): #PLEX plex = struct.unpack(">i",record[2:6])[0] thisText.plex=plex if(self.debugToTerminal==1): print("\t\tPLEX: "+str(plex)) elif(idBits==b'\x0D\x02'): #Layer drawingLayer = struct.unpack(">h",record[2:4])[0] thisText.drawingLayer=drawingLayer if drawingLayer not in self.layoutObject.layerNumbersInUse: self.layoutObject.layerNumbersInUse += [drawingLayer] if(self.debugToTerminal==1): print("\t\tDrawing Layer: "+str(drawingLayer)) elif(idBits==b'\x16\x02'): #Purpose purposeLayer = struct.unpack(">h",record[2:4])[0] thisText.purposeLayer=purposeLayer if(self.debugToTerminal==1): print("\t\tPurpose Layer: "+str(purposeLayer)) elif(idBits==b'\x1A\x01'): #Transformation transFlags = struct.unpack(">H",record[2:4])[0] mirrorFlag = bool(transFlags&0x8000) ##these flags are a bit sketchy rotateFlag = bool(transFlags&0x0002) magnifyFlag = bool(transFlags&0x0004) thisText.transFlags=[mirrorFlag,magnifyFlag,rotateFlag] if(self.debugToTerminal==1): print("\t\t\tMirror X:"+str(mirrorFlag)) print("\t\t\tRotate:"+str(rotateFlag)) print("\t\t\tMagnify:"+str(magnifyFlag)) elif(idBits==b'\x1B\x05'): #Magnify magFactor=self.ieeeDoubleFromIbmData(record[2:10]) thisText.magFactor=magFactor if(self.debugToTerminal==1): print("\t\t\tMagnification:"+str(magFactor)) elif(idBits==b'\x1C\x05'): #Rotate Angle rotateAngle=self.ieeeDoubleFromIbmData(record[2:10]) thisText.rotateAngle=rotateAngle if(self.debugToTerminal==1): print("\t\t\tRotate Angle (CCW):"+str(rotateAngle)) elif(idBits==b'\x21\x02'): #Path type pathType = struct.unpack(">h",record[2:4])[0] thisText.pathType=pathType if(self.debugToTerminal==1): print("\t\t\tPath Type: "+str(pathType)) elif(idBits==b'\x0F\x03'): #Path width pathWidth = struct.unpack(">i",record[2:6])[0] thisText.pathWidth=pathWidth if(self.debugToTerminal==1): print("\t\t\tPath Width: "+str(pathWidth)) elif(idBits==b'\x1A\x01'): #Text Presentation presentationFlags = struct.unpack(">H",record[2:4])[0] font = (presentationFlags&0x0030)>>4 ##these flags are a bit sketchy verticalFlags = (presentationFlags&0x000C) horizontalFlags = (presentationFlags&0x0003) thisText.presentationFlags=(font,verticalFlags,horizontalFlags) if(self.debugToTerminal==1): print("\t\t\tFont:"+str(font)) if(verticalFlags==0): if(self.debugToTerminal==1): print("\t\t\tVertical: Top") elif(verticalFlags==1): if(self.debugToTerminal==1): print("\t\t\tVertical: Middle") elif(verticalFlags==2): if(self.debugToTerminal==1): print("\t\t\tVertical: Bottom") if(horizontalFlags==0): if(self.debugToTerminal==1): print("\t\t\tHorizontal: Left") elif(horizontalFlags==1): if(self.debugToTerminal==1): print("\t\t\tHorizontal: Center") elif(horizontalFlags==2): if(self.debugToTerminal==1): print("\t\t\tHorizontal: Right") elif(idBits==b'\x10\x03'): #XY Data Points index=2 x=struct.unpack(">i",record[index:index+4])[0] y=struct.unpack(">i",record[index+4:index+8])[0] thisText.coordinates=[(x,y)] if(self.debugToTerminal==1): print("\t\t\tXY Point: "+str(x)+","+str(y)) elif(idBits==b'\x19\x06'): #Text String - also the last record in this element textString = record[2::].decode('utf-8') thisText.textString=textString if(self.debugToTerminal==1): print("\t\t\tText String: "+textString) elif(idBits==b'\x11\x00'): #End Of Element break; return thisText def readNode(self): ##reads in a node type structure = an electrical net thisNode = GdsNode() while 1: record = self.readNextRecord() idBits = record[0:2] if(idBits==b'\x26\x01'): #ELFLAGS elementFlags = struct.unpack(">h",record[2:4])[0] thisNode.elementFlags=elementFlags if(self.debugToTerminal==1): print("\t\tElement Flags: "+str(elementFlags)) elif(idBits==b'\x2F\x03'): #PLEX plex = struct.unpack(">i",record[2:6])[0] thisNode.plex=plex if(self.debugToTerminal==1): print("\t\tPLEX: "+str(plex)) elif(idBits==b'\x0D\x02'): #Layer drawingLayer = struct.unpack(">h",record[2:4])[0] thisNode.drawingLayer=drawingLayer if drawingLayer not in self.layoutObject.layerNumbersInUse: self.layoutObject.layerNumbersInUse += [drawingLayer] if(self.debugToTerminal==1): print("\t\tDrawing Layer: "+str(drawingLayer)) elif(idBits==b'\x2A\x02'): #Node Type nodeType = struct.unpack(">h",record[2:4])[0]
<reponame>vinc3PO/PubChemPy<filename>pubchempy/compound.py<gh_stars>1-10 import json from .functions import get_json, request, _parse_prop, request_SDS from .decorators import deprecated, memoized_property from .mapper import ELEMENTS, CoordinateType, BondType from .errors import ResponseParseError, NotFoundError from itertools import zip_longest from .logger import createLogger log = createLogger(__name__) class Atom(object): """Class to represent an atom in a :class:`~pubchempy.Compound`.""" def __init__(self, aid, number, x=None, y=None, z=None, charge=0): """Initialize with an atom ID, atomic number, coordinates and optional change. :param int aid: Atom ID :param int number: Atomic number :param float x: X coordinate. :param float y: Y coordinate. :param float z: (optional) Z coordinate. :param int charge: (optional) Formal charge on atom. """ self.aid = aid """The atom ID within the owning Compound.""" self.number = number """The atomic number for this atom.""" self.x = x """The x coordinate for this atom.""" self.y = y """The y coordinate for this atom.""" self.z = z """The z coordinate for this atom. Will be ``None`` in 2D Compound records.""" self.charge = charge """The formal charge on this atom.""" def __repr__(self): return 'Atom(%s, %s)' % (self.aid, self.element) def __eq__(self, other): return (isinstance(other, type(self)) and self.aid == other.aid and self.element == other.element and self.x == other.x and self.y == other.y and self.z == other.z and self.charge == other.charge) @deprecated('Dictionary style access to Atom attributes is deprecated') def __getitem__(self, prop): """Allow dict-style access to attributes to ease transition from when atoms were dicts.""" if prop in {'element', 'x', 'y', 'z', 'charge'}: return getattr(self, prop) raise KeyError(prop) @deprecated('Dictionary style access to Atom attributes is deprecated') def __setitem__(self, prop, val): """Allow dict-style setting of attributes to ease transition from when atoms were dicts.""" setattr(self, prop, val) @deprecated('Dictionary style access to Atom attributes is deprecated') def __contains__(self, prop): """Allow dict-style checking of attributes to ease transition from when atoms were dicts.""" if prop in {'element', 'x', 'y', 'z', 'charge'}: return getattr(self, prop) is not None return False @property def element(self): """The element symbol for this atom.""" return ELEMENTS.get(self.number, None) def to_dict(self): """Return a dictionary containing Atom data.""" data = {'aid': self.aid, 'number': self.number, 'element': self.element} for coord in {'x', 'y', 'z'}: if getattr(self, coord) is not None: data[coord] = getattr(self, coord) if self.charge is not 0: data['charge'] = self.charge return data def set_coordinates(self, x, y, z=None): """Set all coordinate dimensions at once.""" self.x = x self.y = y self.z = z @property def coordinate_type(self): """Whether this atom has 2D or 3D coordinates.""" return '2d' if self.z is None else '3d' class Bond(object): """Class to represent a bond between two atoms in a :class:`~pubchempy.Compound`.""" def __init__(self, aid1, aid2, order=BondType.SINGLE, style=None): """Initialize with begin and end atom IDs, bond order and bond style. :param int aid1: Begin atom ID. :param int aid2: End atom ID. :param int order: Bond order. """ self.aid1 = aid1 """ID of the begin atom of this bond.""" self.aid2 = aid2 """ID of the end atom of this bond.""" self.order = order """Bond order.""" self.style = style """Bond style annotation.""" def __repr__(self): return 'Bond(%s, %s, %s)' % (self.aid1, self.aid2, self.order) def __eq__(self, other): return (isinstance(other, type(self)) and self.aid1 == other.aid1 and self.aid2 == other.aid2 and self.order == other.order and self.style == other.style) @deprecated('Dictionary style access to Bond attributes is deprecated') def __getitem__(self, prop): """Allow dict-style access to attributes to ease transition from when bonds were dicts.""" if prop in {'order', 'style'}: return getattr(self, prop) raise KeyError(prop) @deprecated('Dictionary style access to Bond attributes is deprecated') def __setitem__(self, prop, val): """Allow dict-style setting of attributes to ease transition from when bonds were dicts.""" setattr(self, prop, val) @deprecated('Dictionary style access to Atom attributes is deprecated') def __contains__(self, prop): """Allow dict-style checking of attributes to ease transition from when bonds were dicts.""" if prop in {'order', 'style'}: return getattr(self, prop) is not None return False @deprecated('Dictionary style access to Atom attributes is deprecated') def __delitem__(self, prop): """Delete the property prop from the wrapped object.""" if not hasattr(self.__wrapped, prop): raise KeyError(prop) delattr(self.__wrapped, prop) def to_dict(self): """Return a dictionary containing Bond data.""" data = {'aid1': self.aid1, 'aid2': self.aid2, 'order': self.order} if self.style is not None: data['style'] = self.style return data class Compound(object): """Corresponds to a single record from the PubChem Compound database. The PubChem Compound database is constructed from the Substance database using a standardization and deduplication process. Each Compound is uniquely identified by a CID. """ def __init__(self, record): """Initialize with a record dict from the PubChem PUG REST service. For most users, the ``from_cid()`` class method is probably a better way of creating Compounds. :param dict record: A compound record returned by the PubChem PUG REST service. """ self._record = None self._atoms = {} self._bonds = {} self.record = record @property def record(self): """The raw compound record returned by the PubChem PUG REST service.""" return self._record @record.setter def record(self, record): self._record = record #log.debug('Created %s' % self) self._setup_atoms() self._setup_bonds() def _setup_atoms(self): """Derive Atom objects from the record.""" # Delete existing atoms self._atoms = {} # Create atoms aids = self.record['atoms']['aid'] elements = self.record['atoms']['element'] if not len(aids) == len(elements): raise ResponseParseError('Error parsing atom elements') for aid, element in zip(aids, elements): self._atoms[aid] = Atom(aid=aid, number=element) # Add coordinates if 'coords' in self.record: coord_ids = self.record['coords'][0]['aid'] xs = self.record['coords'][0]['conformers'][0]['x'] ys = self.record['coords'][0]['conformers'][0]['y'] zs = self.record['coords'][0]['conformers'][0].get('z', []) if not len(coord_ids) == len(xs) == len(ys) == len(self._atoms) or (zs and not len(zs) == len(coord_ids)): raise ResponseParseError('Error parsing atom coordinates') for aid, x, y, z in zip_longest(coord_ids, xs, ys, zs): self._atoms[aid].set_coordinates(x, y, z) # Add charges if 'charge' in self.record['atoms']: for charge in self.record['atoms']['charge']: self._atoms[charge['aid']].charge = charge['value'] def _setup_bonds(self): """Derive Bond objects from the record.""" self._bonds = {} if 'bonds' not in self.record: return # Create bonds aid1s = self.record['bonds']['aid1'] aid2s = self.record['bonds']['aid2'] orders = self.record['bonds']['order'] if not len(aid1s) == len(aid2s) == len(orders): raise ResponseParseError('Error parsing bonds') for aid1, aid2, order in zip(aid1s, aid2s, orders): self._bonds[frozenset((aid1, aid2))] = Bond(aid1=aid1, aid2=aid2, order=order) # Add styles if 'coords' in self.record and 'style' in self.record['coords'][0]['conformers'][0]: aid1s = self.record['coords'][0]['conformers'][0]['style']['aid1'] aid2s = self.record['coords'][0]['conformers'][0]['style']['aid2'] styles = self.record['coords'][0]['conformers'][0]['style']['annotation'] for aid1, aid2, style in zip(aid1s, aid2s, styles): self._bonds[frozenset((aid1, aid2))].style = style @classmethod def from_cid(cls, cid, **kwargs): """Retrieve the Compound record for the specified CID. Usage:: c = Compound.from_cid(6819) :param int cid: The PubChem Compound Identifier (CID). """ record = json.loads(request(cid, **kwargs).read().decode())['PC_Compounds'][0] return cls(record) def __repr__(self): return 'Compound(%s)' % self.cid if self.cid else 'Compound()' def __eq__(self, other): return isinstance(other, type(self)) and self.record == other.record def to_dict(self, properties=None): """Return a dictionary containing Compound data. Optionally specify a list of the desired properties. synonyms, aids and sids are not included unless explicitly specified using the properties parameter. This is because they each require an extra request. """ if not properties: skip = {'aids', 'sids', 'synonyms'} properties = [p for p in dir(Compound) if isinstance(getattr(Compound, p), property) and p not in skip] return {p: [i.to_dict() for i in getattr(self, p)] if p in {'atoms', 'bonds'} else getattr(self, p) for p in properties} def to_series(self, properties=None): """Return a pandas :class:`~pandas.Series` containing Compound data. Optionally specify a list of the desired properties. synonyms, aids and sids are not included unless explicitly specified using the properties parameter. This is because they each require an extra request. """ import pandas as pd return pd.Series(self.to_dict(properties)) @property def cid(self): """The PubChem Compound Identifier (CID). .. note:: When searching using a SMILES or InChI query that is not present in the PubChem Compound database, an automatically generated record may be returned that contains properties that have been calculated on the fly. These records will not have a CID property. """ if 'id' in self.record and 'id' in self.record['id'] and 'cid' in self.record['id']['id']: return self.record['id']['id']['cid'] @property def elements(self): """List of element symbols for atoms in this Compound.""" return [a.element for a in self.atoms] @property def atoms(self): """List of :class:`Atoms <pubchempy.Atom>` in this Compound.""" return sorted(self._atoms.values(), key=lambda x: x.aid) @property def bonds(self): """List of :class:`Bonds <pubchempy.Bond>` between :class:`Atoms <pubchempy.Atom>` in this Compound.""" return sorted(self._bonds.values(), key=lambda x: (x.aid1, x.aid2)) @memoized_property def synonyms(self):
<reponame>JacobMSD/ef_python<filename>SpatialMesh.py import sys import h5py import numpy as np from math import ceil from Vec3d import Vec3d from common import production_assert class SpatialMesh(): def __init__( self ): pass @classmethod def init_from_config( cls, conf ): new_obj = cls() new_obj.check_correctness_of_related_config_fields( conf ) new_obj.init_x_grid( conf ) new_obj.init_y_grid( conf ) new_obj.init_z_grid( conf ) new_obj.allocate_ongrid_values() new_obj.fill_node_coordinates() new_obj.set_boundary_conditions( conf ) return new_obj @classmethod def init_from_h5( cls, h5group ): new_obj = cls() new_obj.x_volume_size = h5group.attrs["x_volume_size"] new_obj.y_volume_size = h5group.attrs["y_volume_size"] new_obj.z_volume_size = h5group.attrs["z_volume_size"] new_obj.x_cell_size = h5group.attrs["x_cell_size"] new_obj.y_cell_size = h5group.attrs["y_cell_size"] new_obj.z_cell_size = h5group.attrs["z_cell_size"] new_obj.x_n_nodes = h5group.attrs["x_n_nodes"] new_obj.y_n_nodes = h5group.attrs["y_n_nodes"] new_obj.z_n_nodes = h5group.attrs["z_n_nodes"] # # todo: don't allocate. read into flat arrays. then reshape new_obj.allocate_ongrid_values() # dim = new_obj.node_coordinates.size tmp_x = np.empty( dim, dtype = 'f8' ) tmp_y = np.empty_like( tmp_x ) tmp_z = np.empty_like( tmp_x ) # tmp_x = h5group["./node_coordinates_x"] tmp_y = h5group["./node_coordinates_y"] tmp_z = h5group["./node_coordinates_z"] for global_idx, (vx, vy, vz) in enumerate( zip( tmp_x, tmp_y, tmp_z ) ): # todo: highly nonoptimal; make view or reshape? i, j, k = new_obj.global_idx_to_node_ijk( global_idx ) new_obj.node_coordinates[i][j][k] = Vec3d( vx, vy, vz ) # tmp_rho = h5group["./charge_density"] tmp_phi = h5group["./potential"] for global_idx, (rho, phi) in enumerate( zip( tmp_rho, tmp_phi ) ): i, j, k = new_obj.global_idx_to_node_ijk( global_idx ) new_obj.charge_density[i][j][k] = rho new_obj.potential[i][j][k] = phi # tmp_x = h5group["./electric_field_x"] tmp_y = h5group["./electric_field_y"] tmp_z = h5group["./electric_field_z"] for global_idx, (vx, vy, vz) in enumerate( zip( tmp_x, tmp_y, tmp_z ) ): i, j, k = new_obj.global_idx_to_node_ijk( global_idx ) new_obj.electric_field[i][j][k] = Vec3d( vx, vy, vz ) # return new_obj def allocate_ongrid_values( self ): nx = self.x_n_nodes ny = self.y_n_nodes nz = self.z_n_nodes self.node_coordinates = np.empty( (nx, ny, nz), dtype=object ) self.charge_density = np.zeros( (nx, ny, nz), dtype='f8' ) self.potential = np.zeros( (nx, ny, nz), dtype='f8' ) self.electric_field = np.full( (nx, ny, nz), Vec3d.zero(), dtype=object ) def check_correctness_of_related_config_fields( self, conf ): self.grid_x_size_gt_zero( conf ) self.grid_x_step_gt_zero_le_grid_x_size( conf ) self.grid_y_size_gt_zero( conf ) self.grid_y_step_gt_zero_le_grid_y_size( conf ) self.grid_z_size_gt_zero( conf ) self.grid_z_step_gt_zero_le_grid_z_size( conf ) def init_x_grid( self, conf ): spat_mesh_conf = conf["Spatial mesh"] self.x_volume_size = spat_mesh_conf.getfloat("grid_x_size") self.x_n_nodes = ceil( spat_mesh_conf.getfloat("grid_x_size") / spat_mesh_conf.getfloat("grid_x_step") ) + 1 self.x_cell_size = self.x_volume_size / ( self.x_n_nodes - 1 ) if ( self.x_cell_size != spat_mesh_conf.getfloat("grid_x_step") ): print( "X_step was shrinked to {:.3f} from {:.3f} " "to fit round number of cells".format( self.x_cell_size, spat_mesh_conf.getfloat("grid_x_step") ) ) def init_y_grid( self, conf ): spat_mesh_conf = conf["Spatial mesh"] self.y_volume_size = spat_mesh_conf.getfloat("grid_y_size") self.y_n_nodes = ceil( spat_mesh_conf.getfloat("grid_y_size") / spat_mesh_conf.getfloat("grid_y_step") ) + 1 self.y_cell_size = self.y_volume_size / ( self.y_n_nodes - 1 ) if ( self.y_cell_size != spat_mesh_conf.getfloat("grid_y_step") ): print( "Y_step was shrinked to {:.3f} from {:.3f} " "to fit round number of cells".format( self.y_cell_size, spat_mesh_conf.getfloat("grid_y_step") ) ) def init_z_grid( self, conf ): spat_mesh_conf = conf["Spatial mesh"] self.z_volume_size = spat_mesh_conf.getfloat("grid_z_size") self.z_n_nodes = ceil( spat_mesh_conf.getfloat("grid_z_size") / spat_mesh_conf.getfloat("grid_z_step") ) + 1 self.z_cell_size = self.z_volume_size / ( self.z_n_nodes - 1 ) if ( self.z_cell_size != spat_mesh_conf.getfloat("grid_z_step") ): print( "Z_step was shrinked to {:.3f} from {:.3f} " "to fit round number of cells".format( self.z_cell_size, spat_mesh_conf.getfloat("grid_z_step") ) ) def fill_node_coordinates( self ): for i in range( self.x_n_nodes ): for j in range( self.y_n_nodes ): for k in range( self.z_n_nodes ): self.node_coordinates[i][j][k] = Vec3d( i * self.x_cell_size, j * self.y_cell_size, k * self.z_cell_size ) def clear_old_density_values( self ): self.charge_density.fill( 0 ) def set_boundary_conditions( self, conf ): phi_left = conf["Boundary conditions"].getfloat("boundary_phi_left") phi_right = conf["Boundary conditions"].getfloat("boundary_phi_right") phi_top = conf["Boundary conditions"].getfloat("boundary_phi_top") phi_bottom = conf["Boundary conditions"].getfloat("boundary_phi_bottom") phi_near = conf["Boundary conditions"].getfloat("boundary_phi_near") phi_far = conf["Boundary conditions"].getfloat("boundary_phi_far") # nx = self.x_n_nodes ny = self.y_n_nodes nz = self.z_n_nodes for i in range( nx ): for k in range( nz ): self.potential[i][0][k] = phi_bottom self.potential[i][ny-1][k] = phi_top for j in range( ny ): for k in range( nz ): self.potential[0][j][k] = phi_right self.potential[nx-1][j][k] = phi_left for i in range( nx ): for j in range( ny ): self.potential[i][j][0] = phi_near self.potential[i][j][nz-1] = phi_far def is_potential_equal_on_boundaries( self ): nx = self.x_n_nodes ny = self.y_n_nodes nz = self.z_n_nodes return \ ( self.potential[0][2][2] == self.potential[nx-1][2][2] == \ self.potential[2][0][2] == self.potential[2][ny-1][2] == \ self.potential[2][2][0] == self.potential[2][2][nz-1] ) def print( self ): self.print_grid() self.print_ongrid_values() def print_grid( self ): print( "Grid:" ) print( "Length: x = {:.3f}, y = {:.3f}, z = {:.3f}".format( self.x_volume_size, self.y_volume_size, self.z_volume_size ) ) print( "Cell size: x = {:.3f}, y = {:.3f}, z = {:.3f}".format( self.x_cell_size, self.y_cell_size, self.z_cell_size ) ) print( "Total nodes: x = {:d}, y = {:d}, z = {:d}".format( self.x_n_nodes, self.y_n_nodes, self.z_n_nodes ) ) def print_ongrid_values( self ): nx = self.x_n_nodes ny = self.y_n_nodes nz = self.z_n_nodes print( "x_node y_node z_node | " "charge_density | potential | electric_field(x,y,z)" ) for i in range( nx ): for j in range( ny ): for k in range( nz ): "{:8d} {:8d} {:8d} | " "{:14.3f} | {:14.3f} | " "{:14.3f} {:14.3f} {:14.3f}".format( i, j, k, self.charge_density[i][j][k], self.potential[i][j][k], self.electric_field[i][j][k].x, self.electric_field[i][j][k].y, self.electric_field[i][j][k].z ) def write_to_file( self, h5file ): groupname = "/Spatial_mesh"; h5group = h5file.create_group( groupname ) self.write_hdf5_attributes( h5group ) self.write_hdf5_ongrid_values( h5group ) def write_hdf5_attributes( self, h5group ): h5group.attrs.create( "x_volume_size", self.x_volume_size ) h5group.attrs.create( "y_volume_size", self.y_volume_size ) h5group.attrs.create( "z_volume_size", self.z_volume_size ) h5group.attrs.create( "x_cell_size", self.x_cell_size ) h5group.attrs.create( "y_cell_size", self.y_cell_size ) h5group.attrs.create( "z_cell_size", self.z_cell_size ) h5group.attrs.create( "x_n_nodes", self.x_n_nodes ) h5group.attrs.create( "y_n_nodes", self.y_n_nodes ) h5group.attrs.create( "z_n_nodes", self.z_n_nodes ) def write_hdf5_ongrid_values( self, h5group ): # todo: without compound datasets # there is this copying problem. dim = self.node_coordinates.size tmp_x = np.empty( dim, dtype = 'f8' ) tmp_y = np.empty_like( tmp_x ) tmp_z = np.empty_like( tmp_x ) # todo: make view instead of copy flat_node_coords = self.node_coordinates.ravel( order = 'C' ) print( len( flat_node_coords ), dim ) for i, v in enumerate( flat_node_coords ): tmp_x[i] = v.x tmp_y[i] = v.y tmp_z[i] = v.z h5group.create_dataset( "./node_coordinates_x", data = tmp_x ) h5group.create_dataset( "./node_coordinates_y", data = tmp_y ) h5group.create_dataset( "./node_coordinates_z", data = tmp_z ) # C (C-order): index along the first axis varies slowest # in self.node_coordinates.flat above default order is C flat_phi = self.potential.ravel( order = 'C' ) h5group.create_dataset( "./potential", data = flat_phi ) flat_rho = self.charge_density.ravel( order = 'C' ) h5group.create_dataset( "./charge_density", data = flat_rho ) # flat_field = self.electric_field.ravel( order = 'C' ) for i, v in enumerate( flat_field ): tmp_x[i] = v.x tmp_y[i] = v.y tmp_z[i] = v.z h5group.create_dataset( "./electric_field_x", data = tmp_x ) h5group.create_dataset( "./electric_field_y", data = tmp_y ) h5group.create_dataset( "./electric_field_z", data = tmp_z ) def grid_x_size_gt_zero( self, conf ): production_assert( conf["Spatial mesh"].getfloat("grid_x_size") > 0, "grid_x_size < 0" ) def grid_x_step_gt_zero_le_grid_x_size( self, conf ): production_assert( ( conf["Spatial mesh"].getfloat("grid_x_step") > 0 ) and ( conf["Spatial mesh"].getfloat("grid_x_step") <= conf["Spatial mesh"].getfloat("grid_x_size") ), "grid_x_step < 0 or grid_x_step >= grid_x_size" ) def grid_y_size_gt_zero( self, conf ): production_assert( conf["Spatial mesh"].getfloat("grid_y_size") > 0, "grid_y_size < 0" ) def grid_y_step_gt_zero_le_grid_y_size( self, conf ): production_assert( ( conf["Spatial mesh"].getfloat("grid_y_step") > 0 ) and ( conf["Spatial mesh"].getfloat("grid_y_step") <= conf["Spatial mesh"].getfloat("grid_y_size") ), "grid_y_step < 0 or grid_y_step >= grid_y_size" ) def grid_z_size_gt_zero( self, conf ): production_assert( conf["Spatial mesh"].getfloat("grid_z_size") > 0, "grid_z_size < 0" ) def grid_z_step_gt_zero_le_grid_z_size( self, conf ): production_assert( ( conf["Spatial mesh"].getfloat("grid_z_step") > 0 ) and ( conf["Spatial mesh"].getfloat("grid_z_step") <= conf["Spatial mesh"].getfloat("grid_z_size") ), "grid_z_step < 0 or grid_z_step >= grid_z_size" ) def node_number_to_coordinate_x( self, i ): if i >= 0 and i < self.x_n_nodes: return i * self.x_cell_size else: print( "invalid node number i={:d} " "at node_number_to_coordinate_x".format( i ) ) sys.exit( -1 ) def node_number_to_coordinate_y( self, j ): if j >= 0 and j < self.y_n_nodes: return j * self.y_cell_size else: print( "invalid node number j={:d} " "at node_number_to_coordinate_y".format( j ) ) sys.exit( -1 ) def node_number_to_coordinate_z( self, k ): if k >= 0 and k < self.z_n_nodes: return k * self.z_cell_size else: print( "invalid node number k={:d} " "at node_number_to_coordinate_z".format( k ) ) sys.exit( -1 ) def global_idx_to_node_ijk( self, global_idx ): # In row-major order: (used to save on disk) # global_index = i * nz * ny + # j * nz + # k # nx = self.x_n_nodes
bot = ty[i][0] if top-bot < 0.1: frac = 0.5 else: frac = 0.8 arrowheights.append(top - (top-bot)*frac) for i in range(2*numpops-1): period = lastperiod[i] arrowheight = max(popbox[i][0][1],arrowheights[period] -periodposcount[period]*2*arrowheightinc) head = [confint[i][0],arrowheight] tail = [popbox[i][1][0],arrowheight] arrowa(head,tail,2,color,graylevel) head = [confint[i][1],arrowheight] tail = [popbox[i][1][0],arrowheight] arrowa(head,tail,0, color, graylevel) periodposcount[period] += 1 if scaledpop != [] : ane = scaledpop[rootpop]/1000 anes = fround(ane) dotext([0.15,0.05]," Ancestral Ne (thousands): " + anes,0, False) else : dotext([0.15,0.05]," Ancestral 4Nu: " + str(slist[4][4][rootpop][1]),0, False) if simplecolor: w("0 0 0 setrgbcolor") return popbox def set_tlines(ty,numpops,scaledtime, lastt_lower_y): """ line0y - default height of time 0 eventimes - if True, space split times evenly lastt_lower_y - height of oldest split time, by default is 1/(numpops+1), else can be set by user """ tmax = tlowest = slist[5][4][numpops-2][3] ## bottom of confidence interval of lowest t t = [] for i in range(numpops-1): t.append([slist[5][4][i][1],slist[5][4][i][2],slist[5][4][i][3]]) ## [time, upper ci, lower ci] ty = [] if localyscale == -1: yint = line0y - lastt_lower_y for i in range(numpops-1): ty.append([]) if eventimes == False: for j in range(3): ty[i].append(line0y - (t[i][j]*yint)/tmax) else: ty[i].append(line0y - ((i+1)/float(numpops+1)*yint)/tmax) else : timeumean = slist[7][4][1] scaleumean = slist[7][4][2] for i in range(numpops-1): ty.append([]) for j in range(3): ty[i].append(line0y - (t[i][j] * (scaleumean/timeumean/1e6)* localyscale)) if ty[i][j] < lineINFy : print " time line too low in graph, reduce local y scale (-y value) " lastt_lower_y = ty[numpops-2][2] ## print "ty : ",ty return ty, lastt_lower_y def print_tlines(ty,numpops,scaledtime, farright): """ print the split time lines and confidence interval lines """ xinc = 0.005 if(scaledtime != []): if max(scaledtime)/1e6 < 1.0: yearscaler = 1e3 yearscalestring = " KYR" else: yearscaler = 1e6 yearscalestring = " MYR" if eventimes == False: for i in range(numpops-1): if (ty[i][1] > ty[i][0]): yline(ty[i][1],farright,1,2,graylevel) yline(ty[i][0],farright,1,0,0) if (ty[i][2] < ty[i][0]): yline(ty[i][2],farright,1,2,graylevel) if(scaledtime != []): scaledtime[i] /= yearscaler mtime = round(scaledtime[i],-int(math.log10(scaledtime[i])-2)) nstr = str(mtime) + yearscalestring ## str(int(round(scaledtime[i],-int(math.log10(scaledtime[i])-2)))) + " yrs" dotext([xinc*(i+2),ty[i][0]+0.001],nstr,0, False) else : nstr = fround(slist[5][4][i][1]) + "tu" dotext([xinc*(i+2),ty[i][0]+0.001],nstr,0, False) if (ty[i][1] > ty[i][0]): arrowa([xinc*(i+1),ty[i][1]],[xinc*(i+1),ty[i][0]],1, black, graylevel) if (ty[i][2] < ty[i][0]): arrowa([xinc*(i+1),ty[i][2]],[xinc*(i+1),ty[i][0]],3, black, graylevel) else: for i in range(numpops-1): yline(ty[i][0],farright,1,0,0) if(scaledtime != []): scaledtime[i] /= yearscaler mtime = round(scaledtime[i],-int(math.log10(scaledtime[i])-2)) nstr = str(mtime) + yearscalestring ## str(int(round(scaledtime[i],-int(math.log10(scaledtime[i])-2)))) + " yrs" dotext([xinc*(i+2),ty[i][0]+0.001],nstr,0, False) else : nstr = fround(slist[5][4][i][1]) + "tu" dotext([xinc*(i+2),ty[i][0]+0.001],nstr,0, False) return ty def print_mcurves(slist,numpops, popbox, plist, color): """migration arrows: note - migration arrows are drawn in the forward direction!! likelihood ratio=ratio of the highest probability to the probability at 2NM = 0 Sinficant likelihood ratios: 2.70554 at p=0.05 The ratio of probabilities (as opposed to twice the log ratio) is 3.86813 5.41189 at p = 0.01 the ratio of prbabilities is 14.9685 9.54954 at p = 0.001 the ration of probabilities is 118.483 3.86813 <= ratio <= 14.9685 upper arrow is a dash (0.95 on chi square 50% 0.0 and 50% 1df) 14.9685 <= ratio <= 118.483 upper arrow is a dotted (0.99 on chi square 50% 0.0 and 50% 1df) 118.483 <= ratio upper arrow is a solid line (0.999 on chi square 50% 0.0 and 50% 1df) list of things in miginfo[i] 0 topop 1 frompop 2 direction 3 period 4 the number in this period 5 2NM est 6 log likelihood ratio stat also save # events to print in the period""" def checkm(val2NM, llr): return (moption == 'a' and val2NM > min2NM) or \ (moption == 's' and llr >= 2.74) or \ val2NM > moption mperiodnum = [0]*(numpops-1) if len(slist[6]) > 4: sml = slist[6][4] miginfo = [] mi = 0 for i in range(len(sml)): ## pratio = sml[i][3]/sml[i][2] ## llr = 2*math.log(pratio) ## alternate code to get values from Marginal peak location tables llr = sml[i][2] if checkm(sml[i][1],llr) : miginfo.append([]) c1 = max(sml[i][0].find("M"),sml[i][0].find("m")) ## either upper of lower case c2 = sml[i][0].find(">") miginfo[mi].append(int(sml[i][0][c2+1:len(sml[i][0])])) miginfo[mi].append(int(sml[i][0][c1+1:c2])) found1 = False found2 = False p = 0 while 1 : for j in range(len(plist[p])): if plist[p][j] == miginfo[mi][0]: found1 = True if found2 : direction = 2 else: direction = 0 if plist[p][j] == miginfo[mi][1]: found2 = True if found1 and found2 : break else: p += 1 miginfo[mi].append(direction) miginfo[mi].append(p) miginfo[mi].append(mperiodnum[p]) mperiodnum[p] += 1 miginfo[mi].append(sml[i][1]) miginfo[mi].append(llr) mi += 1 mboxfrac = 0.3 ## set height of curves y = [] for i in range(len(miginfo)): frompop = miginfo[i][0] period = miginfo[i][3] hi = popbox[frompop][1][1] for j in range (len(plist[period])): if hi > popbox[plist[period][j]][1][1] : hi = popbox[plist[period][j]][1][1] lo = 0 for j in range (len(plist[period])): if lo < popbox[plist[period][j]][0][1] : lo = popbox[plist[period][j]][0][1] y.append(hi - (hi - lo)*(miginfo[i][4]+1)/(mperiodnum[miginfo[i][3]]+1)) for i in range(len(miginfo)): frompop = miginfo[i][0] topop = miginfo[i][1] period = miginfo[i][3] direc = miginfo[i][2] val2NM = fround(miginfo[i][5]) if miginfo[i][6] >= 2.70554 and miginfo[i][6] < 5.41189 : val2NM += "*" if miginfo[i][6] >= 5.41189 and miginfo[i][6] < 9.54954 : val2NM += "**" if miginfo[i][6] >= 9.54954 : val2NM += "***" text2NMwidth = textwide(val2NM,2.5) if direc == 0 : tailx = popbox[frompop][1][0] - (popbox[frompop][1][0]-popbox[frompop][0][0])*mboxfrac headx = popbox[topop][0][0] + (popbox[topop][1][0] - popbox[topop][0][0]) * mboxfrac if (text2NMwidth > abs(tailx-headx)): tailx -= (text2NMwidth - abs(tailx-headx))/2 headx += (text2NMwidth - abs(tailx-headx))/2 if direc == 2: tailx = popbox[frompop][0][0] + (popbox[frompop][1][0] - popbox[frompop][0][0]) * mboxfrac headx = popbox[topop][1][0] - (popbox[topop][1][0]-popbox[topop][0][0])* mboxfrac if (text2NMwidth > abs(tailx-headx)): tailx += (text2NMwidth - abs(tailx-headx))/2 headx -= (text2NMwidth - abs(tailx-headx))/2 migrationcurvearrow(val2NM,[headx,y[i]],[tailx,y[i]],direc,red) ##*********************************************************************************** ##////////////// Command line use /////////////////////////////////////////////////// ##*********************************************************************************** def scancommandline(): """ command line consists of flags, each with a dash, '-', followed immediately by a letter some flags should be followed by a value, depending on the flag. The value can be placed immediately after the flag or spaces can be inserted """ def aflag (): global label_a_pops label_a_pops = True def bflag (tempval): global popboxspaceadj popboxspaceadj = float(tempval) def dflag (): global skipdemographicscaling skipdemographicscaling = True def eflag(): global eventimes eventimes = True def iflag (tempname): global imfilename imfilename = tempname def oflag (tempname): global outputfilename outputfilename= tempname def gflag (tempval): global globalscale globalscale = float(tempval) def xflag (tempval): global localxscale localxscale = float(tempval) def yflag (tempval): global localyscale localyscale = float(tempval) def hflag (tempval): global arrowheightadj arrowheightadj = float(tempval) def fflag(tempval): global font, bifont font = tempval bifont = font + "-BoldItalic" def mflag(tempval): global moption if tempval[0].isdigit(): moption = float(tempval) else: moption = tempval def pflag(tempval): global fontsize global fontfixed fontsize = float(tempval) fontfixed = True def tflag(tempval): global lastt_lower_y global set_lastt_lower_y lastt_lower_y = float(tempval) set_lastt_lower_y = False def sflag (): global dosquare global maximumxpoint dosquare = True maximumxpoint = 576.1 def uflag (): global simplecolor simplecolor = True def vflag (): global rgbcolor rgbcolor = True def removewhitespace(temps): return "".join(temps.split()) def cleanarglist(arglist,flags_with_values,flags_without_values): newarg = [] if arglist[0][0] != "-": # skip program name at beginning of list arglist = arglist[1:] ai = 0 while ai < len(arglist): if removewhitespace(arglist[ai]) != "": arglist[ai] = removewhitespace(arglist[ai]) else: print "bad whitespace in command line: ",repr(" ",join(arglist)) sys.exit(1) if arglist[ai][0] == '-' : if arglist[ai][1] in flags_with_values and len(arglist[ai])==2: ## found a space in the command line arglist[ai] = arglist[ai] + arglist[ai+1] newarg.append(arglist[ai]) ai += 1 else: newarg.append(arglist[ai]) else: print "error on command line, \"-\" not found:",arglist[ai] sys.exit(1) ai += 1 return newarg def checkallflags(flags_with_values,flags_withoutvalues,cldic): """ checks that flags_with_values,flags_withoutvalues and cldic all make use of the appropriate flags """ if len(set(flags_with_values).intersection(set(flags_without_values))) > 0: print "error some flags appear in two lists of flags, with and without required values:",set(flags_with_values).intersection(set(flags_without_values)) sys.exit(1) for flag in set(flags_with_values).union(set(flags_withoutvalues)): if flag not in cldic: print "error some flag mismatch between strings of flags and dictionary of flags:",flag sys.exit(1) return cldic = {'a':aflag,'b':bflag,'d':dflag,'e':eflag,'f':fflag,\ 'g':gflag,'h':hflag,'i':iflag,'m':mflag,'o':oflag,\ 'p':pflag, 's':sflag, 't':tflag,'u':uflag,'v':vflag,\ 'x':xflag,'y':yflag} flags_with_values = "bfghimoptxy" flags_without_values = "adesuv" checkallflags(flags_with_values,flags_without_values,cldic) argv = cleanarglist(sys.argv,flags_with_values,flags_without_values) for i in range(0,len(argv)): if argv[i][0] == '-' : flaglet = argv[i][1].lower() ## print i, flaglet if len(argv[i]) == 2 : if i == (len(argv)-1): cldic[flaglet]() else : if argv[i+1][0] == '-' : cldic[flaglet]() else : cldic[flaglet](argv[i+1]) i += 1 else : if (len(argv[i]) < 2): print "problem on command line
<filename>Converse/dialog_tree/tree_manager.py # Copyright (c) 2020, salesforce.com, inc. # All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # For full license text, see the LICENSE file in the repo root # or https://opensource.org/licenses/BSD-3-Clause import logging from collections import deque from Converse.dialog_tree.dial_tree import TaskTree from Converse.config.task_config import TaskConfig log = logging.getLogger(__name__) class TreeManager: """Handles all tree related operations including tree building and traversal. For dial_state_manager.StateManager to take tree related operations. After updating entity info on the tree, StateManager should call TreeManager.traverse() to get the updated cur_node and cur_entity. If there's new task, StateManager should call TreeManager.set_task(task_name) to set the task and call TreeManager.traverse() to initialize the cur_node and cur_entity. If cur_task exceeds max turn, StateManager can force it to finish by calling TreeManager.force_finish_task(). No need to call traverse() again after calling force_finish_task(). StateManager should call reset_prev_task() each time after receiving information from dial_policy.DialPolicy. Attributes: task_config (str): File path to task configuration yaml file. task_tree (dial_tree.TaskTree): Task Tree built by the task file. task_stack (:obj:'list' of :obj: 'str'): List of tasks in the order that they are created. cur_task (str): Current task name. Can be modified by functions set_task, _switch_task, _check_task cur_node (dial_tree.Leaf): Current node under the current task. cur_entity (str): Current entity name under the current node. finish (bool): True if current task tree is finished, false otherwise. Can be modified by by functions _check_task, set_task finished_node (:obj:'set' of :obj: 'dial_tree.AndNode' /'dial_tree.OrNode'/'dial_tree.Leaf'): List of finished tree node. Can be modified by by functions _unfinished_node, _switch_node, _set_entity parent_dicts (:obj:'dict' of :obj: 'dial_tree.AndNode' /'dial_tree.OrNode'/'dial_tree.Leaf'): Key is child node, value is parrent node. prev_tasks (list): Previously finished tasks in the order that they finished in. prev_tasks_success (list): A list that is the same length as self.prev_tasks where an entry is True when the task at the same index in self.prev_tasks finished successfully and False otherwise. """ def __init__(self, task_config: TaskConfig): self.task_path = task_config self.task_tree = TaskTree(task_config) self.task_stack = [] self.cur_task = None self.cur_node = None self.cur_entity = None self.finish = False self.finished_node = set() self.parent_dicts = {} self.prev_node = None self.prev_tasks = [] self.prev_tasks_success = [] def update_entity(self, entity_value, status=True): """ Update entity value for the current entity. """ if not self.cur_node: return self.cur_node.info[self.cur_entity] = entity_value if self.cur_node.cnt: for en in self.cur_node.info: self.cur_node.expand.add(en) else: self.cur_node.expand.add(self.cur_entity) if status: self.cur_node.verified.add(self.cur_entity) if self.cur_entity in self.cur_node.wrong: self.cur_node.wrong.remove(self.cur_entity) elif entity_value is not None: self.cur_node.wrong.add(self.cur_entity) def set_current_entity(self): """For visualization""" if not self.cur_node: return self.update_entity(None, False) if self.prev_node: self.prev_node.current = None self.cur_node.current = self.cur_entity self.prev_node = self.cur_node else: self.cur_node.current = self.cur_entity self.prev_node = self.cur_node @property def prev_task_finished(self): """bool: True if the zeroth element in prev_tasks is in self.finished_node and False otherwise. """ if not self.prev_tasks: return False prev_task = self.prev_tasks[0] return ( prev_task in self.task_tree.root.child and self.task_tree.root.child[prev_task] in self.finished_node ) def reset_states(self): """ Reset all of the states in the tree manager. """ self.task_tree = TaskTree(self.task_path) self.task_stack = [] self.cur_task = None self.cur_node = None self.cur_entity = None self.finish = False self.finished_node = set() self.parent_dicts = {} self.reset_prev_task() def reset_prev_task(self): """ Resets the instance variables associated with the previous task. """ self.prev_tasks = [] self.prev_tasks_success = [] def next(self, asr_out): """ only for unit test """ self.unit_test_leaf_handler(asr_out) res = self.traverse() if res: log.info( "cur_task: %s,cur_node: %s, cur_entity: %s", self.cur_task, self.cur_node, self.cur_entity, ) log.info("task_stack %s", self.task_stack) # print(self.parent_dicts) def unit_test_leaf_handler(self, asr_out): """ only for unit test """ assert self.cur_task assert self.cur_node assert self.cur_entity if asr_out == "yes": self.update_entity("True") if asr_out == "no": self.update_entity("False", False) if asr_out == "new task": pass def traverse(self): """The traversal function for dialogue manager. Must use after setting cur_task. You can use self.set_task to initialize cur_task. Returns: ( dial_tree.Leaf: cur_node, str: cur_entity ) """ assert not self.finish, "current task is finished!" assert self.cur_task, "no current task!" if not self.cur_node: self.cur_node = self.task_tree.root.child[self.cur_task] self._set_entity() self.set_current_entity() return (self.cur_node, self.cur_entity) else: if self._unfinished_node(self.cur_node): self._next_entity() self.set_current_entity() return (self.cur_node, self.cur_entity) else: self._check_task() if self.finish: self._empty_task_handler() return None else: if self.cur_node: self._switch_node() else: self.cur_node = self.task_tree.root.child[self.cur_task] self._set_entity() self.set_current_entity() return (self.cur_node, self.cur_entity) def _switch_node(self): """Switch self.cur_node from a leaf node to another leaf node. In each call, either set self.cur_node to another node under the same parent node, or set self.cur_node to current parent node if there's no avaliable leaf node under the current parent node. After using this function, should use _set_entity to set the first entity under this node. """ self._check_task() assert self.cur_task assert self.cur_node if self.cur_task not in self.parent_dicts: self._parent_helper(self.cur_task) p = self.parent_dicts[self.cur_task][self.cur_node] p_type = p.__class__.__name__ if p_type == self.task_tree.and_node: for c in p.child: c_node = p.child[c] if c_node(): # c_node is successed continue else: # c_node is failed if c_node in self.finished_node: # c_node is seen self.finished_node.add(p) p.success = False self.cur_node = p self._switch_node() return else: # c_node is unseen self.cur_node = c_node return # no avaliable node under current parent node self.finished_node.add(p) p.success = True self.cur_node = p if p.name == self.cur_task: self.task_stack.pop() self._switch_node() if p_type == self.task_tree.or_node: for c in p.child: c_node = p.child[c] if c_node(): self.finished_node.add(p) p.success = True self.cur_node = p self._switch_node() return else: if c_node in self.finished_node: continue else: self.cur_node = c_node return self.finished_node.add(p) p.success = False self.cur_node = p if p.name == self.cur_task: self.task_stack.pop() self._switch_node() def _set_entity(self): """A recursive function to find next leaf node, set the next entity under current node. Use after _switch_node unless initialize cur_entity. If no available node/entity, will return False and add related nodes to self.finished_node. Return: True if set cur_entity successfully; False if there's no available node or entity. """ assert self.cur_node node_type = self.cur_node.__class__.__name__ if ( (self.cur_node.name in self.task_tree.tasks) and (self.task_stack[-1] != self.cur_node.name) and (not self.cur_node()) and self.cur_node not in self.finished_node ): self.task_stack.append(self.cur_node.name) self.cur_task = self.task_stack[-1] # and node if node_type == self.task_tree.and_node: rec_flag = False for c in self.cur_node.child: c_node = self.cur_node.child[c] c_type = self.cur_node.child[c].__class__.__name__ if not c_node(): if c_node not in self.finished_node: # unseen and false if c_type == self.task_tree.leaf_node: self.cur_node = c_node self._next_entity() return True else: # complex structure rec_flag = True self.cur_node = c_node self._set_entity() break else: # seen and false self.cur_node.success = False self.finished_node.add(self.cur_node) return False else: continue if not rec_flag: self.finished_node.add(self.cur_node) return False # or node elif node_type == self.task_tree.or_node: rec_flag = False for c in self.cur_node.child: c_node = self.cur_node.child[c] c_type = self.cur_node.child[c].__class__.__name__ if not c_node(): if c_node not in self.finished_node: # unseen and false if c_type == self.task_tree.leaf_node: self.cur_node = c_node self._next_entity() return True else: # complex structure rec_flag = True self.cur_node = c_node self._set_entity() break else: # seen and false continue else: self.cur_node.success = True self.finished_node.add(self.cur_node) return False if not rec_flag: self.finished_node.add(self.cur_node) return False # leaf node elif node_type == self.task_tree.leaf_node: self._next_entity() return True def _unfinished_node(self, node): """Check whether a leaf node is finished. Used on leaf node. If all the entities are seen: the node is finished, return False if some entities are seen, some entities are wrong, and we need to verify all the entities: the node is finished, return False some entities are wrong, and the wrong count is greater than allowed: the node is finished, return False some entities are wrong, and the wrong count is smaller than allowed: the node is unfinished, stay in the same node and go to next entity, return True if no entity is seen: the node is unfinished, stay in the same node and go to next entity, return True Return: True if should stay in current node; False if should go to next node. """ assert node.__class__.__name__ == self.task_tree.leaf_node # when we have to verify all the entities in the group if node.cnt == 0: for en in node.info: if en in node.wrong: self.finished_node.add(node) return False else: if not self.cur_node.info[en]: return True self.finished_node.add(node) return False # when we don't have to verify all the entities, # we may stay at the current node and go to next entity else: allow_cant_verify = len(self.cur_node.info) - self.cur_node.cnt unseen_entity_flag = False verified_entity = 0 for en in node.info: if not node.info[en]: if en in node.wrong: allow_cant_verify -=
<reponame>hyperion-ml/hyperion """ Copyright 2019 Johns Hopkins University (Author: <NAME>) Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) """ import logging import numpy as np import torch import torch.nn as nn from torch.nn import Conv1d, Linear, BatchNorm1d from ..layers import ActivationFactory as AF from ..layers import NormLayer2dFactory as NLF from ..layer_blocks import ( ResNetInputBlock, ResNetBasicBlock, ResNetBNBlock, SEResNetBasicBlock, SEResNetBNBlock, Res2NetBasicBlock, Res2NetBNBlock, ) from ..layer_blocks import ResNetEndpointBlock from .net_arch import NetArch class ResNet(NetArch): """ResNet2D base class Attributes: block: resnet basic block type in ['basic', 'bn', 'sebasic', 'sebn'], meaning basic resnet block, bottleneck resnet block, basic block with squeeze-excitation, and bottleneck block with squeeze-excitation num_layers: list with the number of layers in each of the 4 layer blocks that we find in resnets, after each layer block feature maps are downsmapled times 2 in each dimension and channels are upsampled times 2. in_channels: number of input channels conv_channels: number of output channels in first conv layer (stem) base_channels: number of channels in the first layer block out_units: number of logits in the output layer, if 0 there is no output layer and resnet is used just as feature extractor, for example for x-vector encoder. in_kernel_size: kernels size of first conv layer hid_act: str or dictionary describing hidden activations. out_act: output activation zero_init_residual: initializes batchnorm weights to zero so each residual block behaves as identitiy at the beggining. We observed worse results when using this option in x-vectors groups: number of groups in convolutions replace_stride_with_dilation: use dialted conv nets instead of downsammpling, we never tested this. dropout_rate: dropout rate norm_layer: norm_layer object or str indicating type layer-norm object, if None it uses BatchNorm2d do_maxpool: if False, removes the maxpooling layer at the stem of the network. in_norm: if True, adds another batch norm layer in the input se_r: squeeze-excitation dimension compression time_se: if True squeeze-excitation embedding is obtaining by averagin only in the time dimension, instead of time-freq dimension or HxW dimensions in_feats: input feature size (number of components in dimension of 2 of input tensor), this is only required when time_se=True to calculcate the size of the squeeze excitation matrices. """ def __init__( self, block, num_layers, in_channels, conv_channels=64, base_channels=64, out_units=0, hid_act={"name": "relu6", "inplace": True}, out_act=None, in_kernel_size=7, in_stride=2, zero_init_residual=False, multilevel=False, endpoint_channels=64, groups=1, replace_stride_with_dilation=None, dropout_rate=0, norm_layer=None, norm_before=True, do_maxpool=True, in_norm=True, se_r=16, time_se=False, in_feats=None, res2net_scale=4, res2net_width_factor=1, ): super().__init__() logging.info("{}".format(locals())) self.block = block self.has_se = False self.is_res2net = False if isinstance(block, str): if block == "basic": self._block = ResNetBasicBlock elif block == "bn": self._block = ResNetBNBlock elif block == "sebasic": self._block = SEResNetBasicBlock self.has_se = True elif block == "sebn": self._block = SEResNetBNBlock self.has_se = True elif block == "res2basic": self._block = Res2NetBasicBlock self.is_res2net = True elif block == "res2bn": self._block = Res2NetBNBlock self.is_res2net = True elif block == "seres2bn" or block == "tseres2bn": self._block = Res2NetBNBlock self.has_se = True self.is_res2net = True else: self._block = block self.num_layers = num_layers self.in_channels = in_channels self.conv_channels = conv_channels self.base_channels = base_channels self.out_units = out_units self.in_kernel_size = in_kernel_size self.in_stride = in_stride self.hid_act = hid_act self.groups = groups self.norm_before = norm_before self.do_maxpool = do_maxpool self.in_norm = in_norm self.dropout_rate = dropout_rate # self.width_per_group = width_per_group self.se_r = se_r self.time_se = time_se self.in_feats = in_feats self.res2net_scale = res2net_scale self.res2net_width_factor = res2net_width_factor self.multilevel = multilevel self.endpoint_channels = endpoint_channels self.norm_layer = norm_layer norm_groups = None if norm_layer == "group-norm": norm_groups = min(base_channels // 2, 32) norm_groups = max(norm_groups, groups) self._norm_layer = NLF.create(norm_layer, norm_groups) self.dilation = 1 if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError( "replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format(replace_stride_with_dilation) ) self.replace_stride_with_dilation = replace_stride_with_dilation self.groups = groups # self.width_per_group = width_per_group if in_norm: self.in_bn = norm_layer(in_channels) self.in_block = ResNetInputBlock( in_channels, conv_channels, kernel_size=in_kernel_size, stride=in_stride, activation=hid_act, norm_layer=self._norm_layer, norm_before=norm_before, do_maxpool=do_maxpool, ) self._context = self.in_block.context self._downsample_factor = self.in_block.downsample_factor self.cur_in_channels = conv_channels self.layer1 = self._make_layer(self._block, base_channels, num_layers[0]) self.layer2 = self._make_layer( self._block, 2 * base_channels, num_layers[1], stride=2, dilate=replace_stride_with_dilation[0], ) self.layer3 = self._make_layer( self._block, 4 * base_channels, num_layers[2], stride=2, dilate=replace_stride_with_dilation[1], ) self.layer4 = self._make_layer( self._block, 8 * base_channels, num_layers[3], stride=2, dilate=replace_stride_with_dilation[2], ) if self.multilevel: self.endpoint2 = ResNetEndpointBlock( 2 * base_channels * self._block.expansion, self.endpoint_channels, 1, activation=self.hid_act, norm_layer=self._norm_layer, norm_before=self.norm_before, ) self.endpoint3 = ResNetEndpointBlock( 4 * base_channels * self._block.expansion, self.endpoint_channels, 2, activation=self.hid_act, norm_layer=self._norm_layer, norm_before=self.norm_before, ) self.endpoint4 = ResNetEndpointBlock( 8 * base_channels * self._block.expansion, self.endpoint_channels, 4, activation=self.hid_act, norm_layer=self._norm_layer, norm_before=self.norm_before, ) self.with_output = False self.out_act = None if out_units > 0: self.with_output = True self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.output = nn.Linear(self.cur_in_channels, out_units) self.out_act = AF.create(out_act) for m in self.modules(): if isinstance(m, nn.Conv2d): act_name = "relu" if isinstance(hid_act, str): act_name = hid_act if isinstance(hid_act, dict): act_name = hid_act["name"] if act_name == "swish": act_name = "relu" try: nn.init.kaiming_normal_( m.weight, mode="fan_out", nonlinearity=act_name ) except: nn.init.kaiming_normal_( m.weight, mode="fan_out", nonlinearity="relu" ) elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 self.zero_init_residual = zero_init_residual if zero_init_residual: for m in self.modules(): if isinstance(m, ResNetBNBlock): nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, ResNetBasicBlock): nn.init.constant_(m.bn2.weight, 0) def _make_layer(self, block, channels, num_blocks, stride=1, dilate=False): norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 kwargs = {} if self.has_se: if self.time_se: num_feats = int(self.in_feats / (self._downsample_factor * stride)) kwargs = {"se_r": self.se_r, "time_se": True, "num_feats": num_feats} else: kwargs = {"se_r": self.se_r} if self.is_res2net: kwargs["scale"] = self.res2net_scale kwargs["width_factor"] = self.res2net_width_factor layers = [] layers.append( block( self.cur_in_channels, channels, activation=self.hid_act, stride=stride, dropout_rate=self.dropout_rate, groups=self.groups, dilation=previous_dilation, norm_layer=self._norm_layer, norm_before=self.norm_before, **kwargs ) ) self._context += layers[0].context * self._downsample_factor self._downsample_factor *= layers[0].downsample_factor self.cur_in_channels = channels * block.expansion for _ in range(1, num_blocks): layers.append( block( self.cur_in_channels, channels, activation=self.hid_act, dropout_rate=self.dropout_rate, groups=self.groups, dilation=self.dilation, norm_layer=self._norm_layer, norm_before=self.norm_before, **kwargs ) ) self._context += layers[-1].context * self._downsample_factor return nn.Sequential(*layers) def _compute_out_size(self, in_size): """Computes output size given input size. Output size is not the same as input size because of downsampling steps. Args: in_size: input size of the H or W dimensions Returns: output_size """ out_size = int((in_size - 1) // self.in_stride + 1) if self.do_maxpool: out_size = int((out_size - 1) // 2 + 1) for i in range(3): if not self.replace_stride_with_dilation[i]: out_size = int((out_size - 1) // 2 + 1) return out_size def in_context(self): """ Returns: Tuple (past, future) context required to predict one frame. """ return (self._context, self._context) def in_shape(self): """ Returns: Tuple describing input shape for the network """ return (None, self.in_channels, None, None) def out_shape(self, in_shape=None): """Computes the output shape given the input shape Args: in_shape: input shape Returns: Tuple describing output shape for the network """ if self.with_output: return (None, self.out_units) if in_shape is None: return (None, self.layer4[-1].out_channels, None, None) assert len(in_shape) == 4 if in_shape[2] is None: H = None else: H = self._compute_out_size(in_shape[2]) if in_shape[3] is None: W = None else: W = self._compute_out_size(in_shape[3]) if self.multilevel: return (in_shape[0], self.endpoint_channels, int(in_shape[2] // 2), None) return (in_shape[0], self.layer4[-1].out_channels, H, W) def forward(self, x, use_amp=False): if use_amp: with torch.cuda.amp.autocast(): return self._forward(x) return self._forward(x) def _forward(self, x): """forward function Args: x: input tensor of size=(batch, Cin, Hin, Win) for image or size=(batch, C, freq, time) for audio Returns: Tensor with output logits of size=(batch, out_units) if out_units>0, otherwise, it returns tensor of represeantions of size=(batch, Cout, Hout, Wout) """ if self.in_norm: x = self.in_bn(x) feats = [] x = self.in_block(x) x = self.layer1(x) x = self.layer2(x) if self.multilevel: feats.append(x) x = self.layer3(x) if self.multilevel: feats.append(x) x = self.layer4(x) if self.multilevel: feats.append(x) if self.multilevel: out2 = self.endpoint2(feats[0]) out3 = self.endpoint3(feats[1]) out4 = self.endpoint4(feats[2]) x = torch.mean(torch.stack([out2, out3, out4]), 0) if self.with_output: x = self.avgpool(x) x = torch.flatten(x, 1) x = self.output(x) if self.out_act is not None: x = self.out_act(x) return x def forward_hid_feats(self, x, layers=None, return_output=False): """forward function which also returns intermediate hidden representations Args: x: input tensor of size=(batch, Cin,
# Monitoring provides basic "is it up?" insight, along with performance data about how an installation is running. # Note: Do NOT return a 'error' state when a 'warning' state would do. # The system is coded to block on errors during starts / restarts. So, if the number of # messages in a queue is astronomically high, but the system is still running, that is a warning. # If an error is returned in this state, then on an upgrade to fix whatever the issue is will block and fail. import copy import datetime import re import socket import string import sys import time import traceback import angel.util.terminal import angel.util.network import angel.stats.mem_stats import angel.settings import angel.constants from devops.stats import * from devops.unix_helpers import set_proc_title def run_status_check(angel_obj, do_all_checks=False, do_state_checks=False, do_service_checks=False, check_only_these_services=None, format=None, interval=None, timeout=None): ''' Performs various status checks on the running system. do_all_checks: flip this on to make sure all checks are run, so that in the future as we add additional check flags, they'll default on. do_state_checks: check that the running services match what should be configured do_service_checks: call status() on each running service, gathering health and performance data check_only_these_services: if defined, and do_service_checks is true, only inspect the named services * Note that checks that this function runs are expected to complete quickly and run as efficiently as possible; * this function is run in a continuous loop by collectd and polled by nagios on every node in production. * Please take care when adding any additional logic that it is as efficient as possible! format: "" / None -- default action is to print human-readable status info "collectd" -- run in continuous mode for collectd with given interval (defaults to 10) "nagios" -- output nagios-formatted output and return a valid nagios exit code "errors-only" -- display only error info; return non-zero if errors or unknown state "silent" -- don't output anything; just return an exit code ''' if do_all_checks: do_state_checks = do_service_checks = True if interval is None: interval = 10 # Used only in collectd currently if format == '': format = None if timeout is None: if format is None: timeout = 10 # Most likely a command-line user else: timeout = 14 # Nagios nrpe is set to 15 seconds if format == 'collectd': try: run_collectd_monitor(angel_obj, check_only_these_services, interval) # Will only return once services are stopped if angel_obj.are_services_running(): print >>sys.stderr, "Error: run_collectd_monitor() unexpectedly returned!" sys.exit(1) sys.exit(0) except KeyboardInterrupt: sys.exit(0) except Exception as e: print >>sys.stderr, "Error: run_collectd_monitor thew an exception(%s)." % e sys.exit(1) # For all other formats, we'll query status and generate output in the requested format. # This function could use some clean-up / refactoring, but conceptually it's simple: # 1) set up some common variables; 2) call status_check on all services; 3) generate the output. # To-do: there's some odd rare network condition that causes a ~30 second delay in the following 3 lines # even when services are stopped -- presumably hostname lookup stuff when DNS is unresolvable? # Wasn't able to trace it further than this before networking resumed; so leaving this note here for now. services_are_running = angel_obj.are_services_running() running_services = sorted(angel_obj.get_running_service_names()) enabled_services = sorted(angel_obj.get_enabled_services()) running_unexpectedly = list(set(running_services) - set(enabled_services)) if not services_are_running: running_unexpectedly = running_services not_running_but_should_be = list(set(enabled_services) - set(running_services)) if 'devops' in not_running_but_should_be: not_running_but_should_be.remove('devops') left_column_width = 10 if len(running_services): # Find the length of the longest service name: left_column_width = max(left_column_width, 1 + max(map(len, running_services))) # Default format (usually command line user) prints some info before checking each service status: if format is None and do_state_checks: _print_status_preamble(angel_obj, left_column_width) if len(running_services) and do_service_checks: print "-" * angel.util.terminal.terminal_width() # Gather data for each service by calling their status() functions: time_exceeded = False stat_structs = {} if do_service_checks: start_time = time.time() unused_ret_val, stat_structs = angel_obj.service_status(services_to_check=check_only_these_services, timeout=timeout) end_time = time.time() check_time = end_time - start_time if check_time > timeout: time_exceeded = True if stat_structs is None: print >>sys.stderr, "Error: service status struct invalid" return angel.constants.STATE_UNKNOWN # Run through the data for each status, checking it: service_info = {} status_seen_by_type = {} status_data = {} state_message = '' if do_state_checks: state_message = "%s %s" % (angel_obj.get_project_code_branch(), angel_obj.get_project_code_version()) if format == 'nagios': if angel_obj.is_multinode_install() or True: public_ip = angel_obj.get_public_ip_addr() private_ip = angel_obj.get_private_ip_addr() if private_ip != public_ip: state_message += " on " + public_ip def _merge_status_data(key_prefix, new_status_data): for k in new_status_data: new_key = "%s_%s" % (key_prefix, k) if new_key in status_data: print >>sys.stderr, "Warning: %s already in status_data?" % new_key status_data[new_key] = new_status_data[k] # Run through the results for each service, building up our results set: for key in sorted(stat_structs): if stat_structs[key] is None or not isinstance(stat_structs[key], dict): # Then the given service failed to return anything from status() -- stub in an entry here: stat_structs[key] = {} stat_structs[key]['state'] = angel.constants.STATE_UNKNOWN stat_structs[key]['message'] = 'Status check failed' if time_exceeded: stat_structs[key]['message'] = 'Status check failed or timed out' try: # Generate a lower-cased name of the service, without the word "service" in it: this_service_name = '-'.join(re.findall('[A-Z][^A-Z]*', string.replace(key, 'Service', ''))).lower() service_info[this_service_name] = {} this_state = stat_structs[key]['state'] if this_state is None: print >>sys.stderr, "Error: service %s failed to return a state code" % this_service_name this_state = angel.constants.STATE_UNKNOWN service_info[this_service_name]['state'] = this_state status_seen_by_type[this_state] = True this_message = 'Unknown' if 'message' in stat_structs[key] and stat_structs[key]['message'] is not None: this_message = stat_structs[key]['message'] if this_state != angel.constants.STATE_RUNNING_OK or do_state_checks is False: if len(state_message): state_message += ", " if not (check_only_these_services is not None and 1 == len(check_only_these_services)): # If we're only checking one service, don't preface the status message with the service name. state_message += "%s: " % this_service_name state_message += this_message.split("\n")[0] try: state_name = angel.constants.STATE_CODE_TO_TEXT[this_state] except: state_name = 'UNKNOWN(%s)' % this_state format_str = "{:>%s}:{:>9} {}" % left_column_width service_info[this_service_name]['message'] = format_str.format(this_service_name, state_name, this_message.split("\n")[0]) service_info[this_service_name]['message_raw'] = this_message.split("\n")[0] if 'data' in stat_structs[key]: _merge_status_data(this_service_name.lower(), stat_structs[key]['data']) except: print >>sys.stderr, "Error in status check %s: %s\n%s" % (key, sys.exc_info()[0], traceback.format_exc(sys.exc_info()[2])) state_message += " error in %s status data" % (str(key)) status_seen_by_type[angel.constants.STATE_UNKNOWN] = True # Reduce multiple status_codes down to one value for our exit_code. This isn't elegant, but it seems to be the cleanest way of managing this. # Order of importance, most important to least important, in general: # Decommissioned > Unknown > Error > Stopped > Starting|Stopping > Warn > Okay # - If we're "ok" but the node is marked as in maintenance mode, we flip the level up one to warning. # - If a service is in starting or stopping state, that masks any Warn level stuff. # - If the single status code is stopped, but services are supposed to be running, then that's a real error. extra_state_message = '' if services_are_running: if do_state_checks: extra_state_message += " Running %s services" % len(running_services) exit_code = angel.constants.STATE_RUNNING_OK else: exit_code = angel.constants.STATE_UNKNOWN else: exit_code = angel.constants.STATE_STOPPED enabled_services_str = copy.copy(enabled_services) try: enabled_services_str.remove('devops') except: pass enabled_services_str = ', '.join(enabled_services_str) if angel_obj.is_decommissioned(): exit_code = angel.constants.STATE_DECOMMISSIONED extra_state_message = ' DECOMMISSIONED' elif angel.constants.STATE_UNKNOWN in status_seen_by_type: exit_code = angel.constants.STATE_UNKNOWN elif angel.constants.STATE_ERROR in status_seen_by_type: exit_code = angel.constants.STATE_ERROR elif angel.constants.STATE_STOPPED in status_seen_by_type: exit_code = angel.constants.STATE_STOPPED elif angel.constants.STATE_STARTING in status_seen_by_type: exit_code = angel.constants.STATE_STARTING elif angel.constants.STATE_STOPPING in status_seen_by_type: exit_code = angel.constants.STATE_STOPPING elif angel.constants.STATE_WARN in status_seen_by_type: exit_code = angel.constants.STATE_WARN elif angel.constants.STATE_RUNNING_OK in status_seen_by_type: exit_code = angel.constants.STATE_RUNNING_OK if services_are_running: extra_state_message = ' ok: running %s' % enabled_services_str else: if do_service_checks: extra_state_message = ' unknown state for services %s' % enabled_services_str if do_state_checks: if services_are_running: if exit_code == angel.constants.STATE_STOPPED: # If all the services are reporting STOPPED state, but we're supposed to be running, that's an error: exit_code = angel.constants.STATE_ERROR if angel_obj.is_in_maintenance_mode(): extra_state_message += ' (in maintenance mode)' if exit_code == angel.constants.STATE_RUNNING_OK: exit_code = angel.constants.STATE_WARN if not services_are_running: if len(running_services) and False: extra_state_message += ' (stopped; running %s; normally runs %s)' % (', '.join(running_services), enabled_services_str) else: extra_state_message += ' (stopped; normally runs %s)' % enabled_services_str if exit_code == angel.constants.STATE_RUNNING_OK or exit_code == angel.constants.STATE_WARN: exit_code = angel.constants.STATE_STOPPED if len(running_unexpectedly): extra_state_message += ' (running unexpected services: %s)'
# -*- coding: utf-8 -*- # # Copyright (C) 2019 <NAME> <<EMAIL>> # All rights reserved. # # This code is licensed under the MIT License. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files(the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and / or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions : # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # To use this plugin, you need to first access https://api.telegram.org # You need to create a bot and acquire it's Token Identifier (bot_token) # # Basically you need to create a chat with a user called the 'BotFather' # and type: /newbot # # Then follow through the wizard, it will provide you an api key # that looks like this:123456789:alphanumeri_characters # # For each chat_id a bot joins will have a chat_id associated with it. # You will need this value as well to send the notification. # # Log into the webpage version of the site if you like by accessing: # https://web.telegram.org # # You can't check out to see if your entry is working using: # https://api.telegram.org/botAPI_KEY/getMe # # Pay attention to the word 'bot' that must be present infront of your # api key that the BotFather gave you. # # For example, a url might look like this: # https://api.telegram.org/bot123456789:alphanumeric_characters/getMe # # Development API Reference:: # - https://core.telegram.org/bots/api import requests import re import os from json import loads from json import dumps from .NotifyBase import NotifyBase from ..common import NotifyType from ..common import NotifyImageSize from ..common import NotifyFormat from ..utils import parse_bool from ..utils import parse_list from ..utils import validate_regex from ..AppriseLocale import gettext_lazy as _ from ..attachment.AttachBase import AttachBase TELEGRAM_IMAGE_XY = NotifyImageSize.XY_256 # Chat ID is required # If the Chat ID is positive, then it's addressed to a single person # If the Chat ID is negative, then it's targeting a group IS_CHAT_ID_RE = re.compile( r'^(@*(?P<idno>-?[0-9]{1,32})|(?P<name>[a-z_-][a-z0-9_-]+))$', re.IGNORECASE, ) class NotifyTelegram(NotifyBase): """ A wrapper for Telegram Notifications """ # The default descriptive name associated with the Notification service_name = 'Telegram' # The services URL service_url = 'https://telegram.org/' # The default secure protocol secure_protocol = 'tgram' # A URL that takes you to the setup/help of the specific protocol setup_url = 'https://github.com/caronc/apprise/wiki/Notify_telegram' # Default Notify Format notify_format = NotifyFormat.HTML # Telegram uses the http protocol with JSON requests notify_url = 'https://api.telegram.org/bot' # Allows the user to specify the NotifyImageSize object image_size = NotifyImageSize.XY_256 # The maximum allowable characters allowed in the body per message body_maxlen = 4096 # Title is to be part of body title_maxlen = 0 # Telegram is limited to sending a maximum of 100 requests per second. request_rate_per_sec = 0.001 # Define object templates templates = ( '{schema}://{bot_token}', '{schema}://{bot_token}/{targets}', ) # Telegram Attachment Support mime_lookup = ( # This list is intentionally ordered so that it can be scanned # from top to bottom. The last entry is a catch-all # Animations are documented to only support gif or H.264/MPEG-4 # Source: https://core.telegram.org/bots/api#sendanimation { 'regex': re.compile(r'^(image/gif|video/H264)', re.I), 'function_name': 'sendAnimation', 'key': 'animation', }, # This entry is intentially placed below the sendAnimiation allowing # it to catch gif files. This then becomes a catch all to remaining # image types. # Source: https://core.telegram.org/bots/api#sendphoto { 'regex': re.compile(r'^image/.*', re.I), 'function_name': 'sendPhoto', 'key': 'photo', }, # Video is documented to only support .mp4 # Source: https://core.telegram.org/bots/api#sendvideo { 'regex': re.compile(r'^video/mp4', re.I), 'function_name': 'sendVideo', 'key': 'video', }, # Voice supports ogg # Source: https://core.telegram.org/bots/api#sendvoice { 'regex': re.compile(r'^(application|audio)/ogg', re.I), 'function_name': 'sendVoice', 'key': 'voice', }, # Audio supports mp3 and m4a only # Source: https://core.telegram.org/bots/api#sendaudio { 'regex': re.compile(r'^audio/(mpeg|mp4a-latm)', re.I), 'function_name': 'sendAudio', 'key': 'audio', }, # Catch All (all other types) # Source: https://core.telegram.org/bots/api#senddocument { 'regex': re.compile(r'.*', re.I), 'function_name': 'sendDocument', 'key': 'document', }, ) # Telegram's HTML support doesn't like having HTML escaped # characters passed into it. to handle this situation, we need to # search the body for these sequences and convert them to the # output the user expected __telegram_escape_html_entries = ( # Comments (re.compile( r'\s*<!.+?-->\s*', (re.I | re.M | re.S)), '', {}), # the following tags are not supported (re.compile( r'\s*<\s*(!?DOCTYPE|p|div|span|body|script|link|' r'meta|html|font|head|label|form|input|textarea|select|iframe|' r'source|script)([^a-z0-9>][^>]*)?>\s*', (re.I | re.M | re.S)), '', {}), # All closing tags to be removed are put here (re.compile( r'\s*<\s*/(span|body|script|meta|html|font|head|' r'label|form|input|textarea|select|ol|ul|link|' r'iframe|source|script)([^a-z0-9>][^>]*)?>\s*', (re.I | re.M | re.S)), '', {}), # Bold (re.compile( r'<\s*(strong)([^a-z0-9>][^>]*)?>', (re.I | re.M | re.S)), '<b>', {}), (re.compile( r'<\s*/\s*(strong)([^a-z0-9>][^>]*)?>', (re.I | re.M | re.S)), '</b>', {}), (re.compile( r'\s*<\s*(h[1-6]|title)([^a-z0-9>][^>]*)?>\s*', (re.I | re.M | re.S)), '{}<b>', {'html': '\r\n'}), (re.compile( r'\s*<\s*/\s*(h[1-6]|title)([^a-z0-9>][^>]*)?>\s*', (re.I | re.M | re.S)), '</b>{}', {'html': '<br/>'}), # Italic (re.compile( r'<\s*(caption|em)([^a-z0-9>][^>]*)?>', (re.I | re.M | re.S)), '<i>', {}), (re.compile( r'<\s*/\s*(caption|em)([^a-z0-9>][^>]*)?>', (re.I | re.M | re.S)), '</i>', {}), # Bullet Lists (re.compile( r'<\s*li([^a-z0-9>][^>]*)?>\s*', (re.I | re.M | re.S)), ' -', {}), # convert pre tags to code (supported by Telegram) (re.compile( r'<\s*pre([^a-z0-9>][^>]*)?>', (re.I | re.M | re.S)), '{}<code>', {'html': '\r\n'}), (re.compile( r'<\s*/\s*pre([^a-z0-9>][^>]*)?>', (re.I | re.M | re.S)), '</code>{}', {'html': '\r\n'}), # New Lines (re.compile( r'\s*<\s*/?\s*(ol|ul|br|hr)\s*/?>\s*', (re.I | re.M | re.S)), '\r\n', {}), (re.compile( r'\s*<\s*/\s*(br|p|hr|li|div)([^a-z0-9>][^>]*)?>\s*', (re.I | re.M | re.S)), '\r\n', {}), # HTML Spaces (&nbsp;) and tabs (&emsp;) aren't supported # See https://core.telegram.org/bots/api#html-style (re.compile(r'\&nbsp;?', re.I), ' ', {}), # Tabs become 3 spaces (re.compile(r'\&emsp;?', re.I), ' ', {}), # Some characters get re-escaped by the Telegram upstream # service so we need to convert these back, (re.compile(r'\&apos;?', re.I), '\'', {}), (re.compile(r'\&quot;?', re.I), '"', {}), # New line cleanup (re.compile(r'\r*\n[\r\n]+', re.I), '\r\n', {}), ) # Define our template tokens template_tokens = dict(NotifyBase.template_tokens, **{ 'bot_token': { 'name': _('Bot Token'), 'type': 'string', 'private': True, 'required': True, # Token required as part of the API request, allow the word 'bot' # infront of it 'regex': (r'^(bot)?(?P<key>[0-9]+:[a-z0-9_-]+)$', 'i'), }, 'target_user': { 'name': _('Target Chat ID'), 'type': 'string', 'map_to': 'targets', 'map_to': 'targets', 'regex': (r'^((-?[0-9]{1,32})|([a-z_-][a-z0-9_-]+))$', 'i'), }, 'targets': { 'name': _('Targets'), 'type': 'list:string', }, }) # Define our template arguments template_args = dict(NotifyBase.template_args, **{ 'image': { 'name': _('Include Image'), 'type': 'bool', 'default': False, 'map_to': 'include_image', }, 'detect': { 'name': _('Detect Bot Owner'), 'type': 'bool', 'default': True, 'map_to': 'detect_owner', }, 'silent': { 'name': _('Silent Notification'), 'type': 'bool', 'default': False, }, 'preview': { 'name': _('Web Page Preview'), 'type': 'bool', 'default': False, }, 'to': { 'alias_of': 'targets', }, }) def __init__(self, bot_token, targets, detect_owner=True, include_image=False, silent=None, preview=None, **kwargs): """ Initialize Telegram Object """ super(NotifyTelegram, self).__init__(**kwargs) self.bot_token = validate_regex( bot_token, *self.template_tokens['bot_token']['regex'], fmt='{key}') if not self.bot_token: err = 'The Telegram Bot Token specified ({}) is invalid.'.format( bot_token) self.logger.warning(err) raise TypeError(err) # Parse our list self.targets = parse_list(targets) # Define whether or not we should make audible alarms self.silent = self.template_args['silent']['default'] \ if silent is None else bool(silent) # Define whether or not we should display a web page preview self.preview = self.template_args['preview']['default'] \ if preview is None else bool(preview) # if detect_owner is set to True, we will attempt to determine who # the bot owner is based on the first person who messaged it. This # is not a fool proof way of doing things as over time Telegram removes # the message history for the bot. So what appears (later on) to be # the first message to it, maybe another user who sent it a message # much later. Users who set this flag should update their Apprise # URL later to directly include the user that we should message. self.detect_owner = detect_owner
= None floor: Optional[float] = None refPeriodStart: Optional[Date] = None refPeriodEnd: Optional[Date] = None dayCounter: Optional[DayCounter] = None isInArrears: Optional[bool] = None exCouponDate: Optional[Date] = None class CmsCoupon(BaseModel): resource_name: Optional[Literal["CmsCoupon"]] = "CmsCoupon" paymentDate: Date nominal: float startDate: Date endDate: Date fixingDays: int index: SwapIndex gearing: Optional[float] = None spread: Optional[float] = None refPeriodStart: Optional[Date] = None refPeriodEnd: Optional[Date] = None dayCounter: Optional[DayCounter] = None isInArrears: Optional[bool] = None exCouponDate: Optional[Date] = None class CmsSpreadCoupon(BaseModel): resource_name: Optional[Literal["CmsSpreadCoupon"]] = "CmsSpreadCoupon" paymentDate: Date nominal: float startDate: Date endDate: Date fixingDays: float index: SwapSpreadIndex gearing: Optional[float] = None spread: Optional[float] = None refPeriodStart: Optional[Date] = None refPeriodEnd: Optional[Date] = None dayCounter: Optional[DayCounter] = None isInArrears: Optional[bool] = None exCouponDate: Optional[Date] = None class AnalyticHaganPricer(BaseModel): resource_name: Optional[Literal["AnalyticHaganPricer"]] = "AnalyticHaganPricer" v: SwaptionVolatilityStructureHandle model: GFunctionFactoryYieldCurveModel meanReversion: QuoteHandle class NumericHaganPricer(BaseModel): resource_name: Optional[Literal["NumericHaganPricer"]] = "NumericHaganPricer" v: SwaptionVolatilityStructureHandle model: GFunctionFactoryYieldCurveModel meanReversion: QuoteHandle lowerLimit: Optional[float] = None upperLimit: Optional[float] = None precision: Optional[float] = None class CappedFlooredCmsCoupon(BaseModel): resource_name: Optional[ Literal["CappedFlooredCmsCoupon"] ] = "CappedFlooredCmsCoupon" paymentDate: Date nominal: float startDate: Date endDate: Date fixingDays: float index: SwapIndex gearing: Optional[float] = None spread: Optional[float] = None cap: Optional[float] = None floor: Optional[float] = None refPeriodStart: Optional[Date] = None refPeriodEnd: Optional[Date] = None dayCounter: Optional[DayCounter] = None isInArrears: Optional[bool] = None exCouponDate: Optional[Date] = None class CappedFlooredCmsSpreadCoupon(BaseModel): resource_name: Optional[ Literal["CappedFlooredCmsSpreadCoupon"] ] = "CappedFlooredCmsSpreadCoupon" paymentDate: Date nominal: float startDate: Date endDate: Date fixingDays: float index: SwapSpreadIndex gearing: Optional[float] = None spread: Optional[float] = None cap: Optional[float] = None floor: Optional[float] = None refPeriodStart: Optional[Date] = None refPeriodEnd: Optional[Date] = None dayCounter: Optional[DayCounter] = None isInArrears: Optional[bool] = None exCouponDate: Optional[Date] = None class LinearTsrPricer(BaseModel): resource_name: Optional[Literal["LinearTsrPricer"]] = "LinearTsrPricer" swaptionVol: SwaptionVolatilityStructureHandle meanReversion: QuoteHandle couponDiscountCurve: Optional[YieldTermStructureHandle] = None settings: Optional[LinearTsrPricerSettings] = None class LognormalCmsSpreadPricer(BaseModel): resource_name: Optional[ Literal["LognormalCmsSpreadPricer"] ] = "LognormalCmsSpreadPricer" cmsPricer: CmsCouponPricer correlation: QuoteHandle couponDiscountCurve: Optional[YieldTermStructureHandle] = None IntegrationPoints: Optional[int] = None volatilityType: Optional[VolatilityType] = None shift1: Optional[float] = None shift2: Optional[float] = None class SwaptionHelper0(BaseModel): resource_name: Optional[Literal["SwaptionHelper"]] = "SwaptionHelper" exerciseDate: Date endDate: Date volatility: QuoteHandle index: IborIndex fixedLegTenor: Period fixedLegDayCounter: DayCounter floatingLegDayCounter: DayCounter termStructure: YieldTermStructureHandle errorType: Optional[BlackCalibrationHelperCalibrationErrorType] = None strike: Optional[float] = None nominal: Optional[float] = None type: Optional[VolatilityType] = None shift: Optional[float] = None class SwaptionHelper1(BaseModel): resource_name: Optional[Literal["SwaptionHelper"]] = "SwaptionHelper" exerciseDate: Date length: Period volatility: QuoteHandle index: IborIndex fixedLegTenor: Period fixedLegDayCounter: DayCounter floatingLegDayCounter: DayCounter termStructure: YieldTermStructureHandle errorType: Optional[BlackCalibrationHelperCalibrationErrorType] = None strike: Optional[float] = None nominal: Optional[float] = None type: Optional[VolatilityType] = None shift: Optional[float] = None class SwaptionHelper2(BaseModel): resource_name: Optional[Literal["SwaptionHelper"]] = "SwaptionHelper" maturity: Period length: Period volatility: QuoteHandle index: IborIndex fixedLegTenor: Period fixedLegDayCounter: DayCounter floatingLegDayCounter: DayCounter termStructure: YieldTermStructureHandle errorType: Optional[BlackCalibrationHelperCalibrationErrorType] = None strike: Optional[float] = None nominal: Optional[float] = None type: Optional[VolatilityType] = None shift: Optional[float] = None class CapHelper(BaseModel): resource_name: Optional[Literal["CapHelper"]] = "CapHelper" length: Period volatility: QuoteHandle index: IborIndex fixedLegFrequency: float fixedLegDayCounter: DayCounter includeFirstSwaplet: bool termStructure: YieldTermStructureHandle errorType: Optional[BlackCalibrationHelperCalibrationErrorType] = None type: Optional[VolatilityType] = None shift: Optional[float] = None class HestonModelHelper(BaseModel): resource_name: Optional[Literal["HestonModelHelper"]] = "HestonModelHelper" maturity: Period calendar: Calendar s0: float strikePrice: float volatility: QuoteHandle riskFreeRate: YieldTermStructureHandle dividendYield: YieldTermStructureHandle errorType: Optional[BlackCalibrationHelperCalibrationErrorType] = None class VanillaOptionBase(BaseModel): resource_name: Optional[Literal["VanillaOption"]] = "VanillaOption" payoff: StrikedTypePayoff exercise: Exercise class EuropeanOption(BaseModel): resource_name: Optional[Literal["EuropeanOption"]] = "EuropeanOption" payoff: StrikedTypePayoff exercise: Exercise class ForwardVanillaOptionBase(BaseModel): resource_name: Optional[Literal["ForwardVanillaOption"]] = "ForwardVanillaOption" moneyness: float resetDate: Date payoff: StrikedTypePayoff exercise: Exercise class QuantoVanillaOption(BaseModel): resource_name: Optional[Literal["QuantoVanillaOption"]] = "QuantoVanillaOption" payoff: StrikedTypePayoff exercise: Exercise class QuantoForwardVanillaOption(BaseModel): resource_name: Optional[ Literal["QuantoForwardVanillaOption"] ] = "QuantoForwardVanillaOption" moneyness: float resetDate: Date payoff: StrikedTypePayoff exercise: Exercise class AnalyticHestonEngineIntegration0(BaseModel): resource_name: Optional[ Literal["AnalyticHestonEngineIntegration"] ] = "AnalyticHestonEngineIntegration" intAlgo: AnalyticHestonEngineIntegrationAlgorithm quadrature: GaussianQuadrature class AnalyticHestonEngineIntegration1(BaseModel): resource_name: Optional[ Literal["AnalyticHestonEngineIntegration"] ] = "AnalyticHestonEngineIntegration" intAlgo: AnalyticHestonEngineIntegrationAlgorithm integrator: Integrator AnalyticHestonEngineIntegration = Union[ AnalyticHestonEngineIntegration0, AnalyticHestonEngineIntegration1 ] class AnalyticPTDHestonEngine0(BaseModel): resource_name: Optional[ Literal["AnalyticPTDHestonEngine"] ] = "AnalyticPTDHestonEngine" model: PiecewiseTimeDependentHestonModel cpxLog: AnalyticPTDHestonEngineComplexLogFormula itg: AnalyticPTDHestonEngineIntegration andersenPiterbargEpsilon: Optional[float] = None class DividendVanillaOption(BaseModel): resource_name: Optional[Literal["DividendVanillaOption"]] = "DividendVanillaOption" payoff: StrikedTypePayoff exercise: Exercise dividendDates: List[Date] dividends: List[float] class BarrierOption(BaseModel): resource_name: Optional[Literal["BarrierOption"]] = "BarrierOption" barrierType: BarrierType barrier: float rebate: float payoff: StrikedTypePayoff exercise: Exercise class FdmSchemeDesc(BaseModel): resource_name: Optional[Literal["FdmSchemeDesc"]] = "FdmSchemeDesc" type: FdmSchemeDescFdmSchemeType theta: float mu: float class FdBlackScholesVanillaEngine0(BaseModel): resource_name: Optional[ Literal["FdBlackScholesVanillaEngine"] ] = "FdBlackScholesVanillaEngine" value: GeneralizedBlackScholesProcess quantoHelper: FdmQuantoHelper tGrid: Optional[int] = None xGrid: Optional[int] = None dampingSteps: Optional[int] = None schemeDesc: Optional[FdmSchemeDesc] = None localVol: Optional[bool] = None illegalLocalVolOverwrite: Optional[float] = None cashDividendModel: Optional[FdBlackScholesVanillaEngineCashDividendModel] = None class FdBlackScholesVanillaEngine1(BaseModel): resource_name: Optional[ Literal["FdBlackScholesVanillaEngine"] ] = "FdBlackScholesVanillaEngine" process: GeneralizedBlackScholesProcess tGrid: Optional[int] = None xGrid: Optional[int] = None dampingSteps: Optional[int] = None schemeDesc: Optional[FdmSchemeDesc] = None localVol: Optional[bool] = None illegalLocalVolOverwrite: Optional[float] = None cashDividendModel: Optional[FdBlackScholesVanillaEngineCashDividendModel] = None class FdOrnsteinUhlenbeckVanillaEngine(BaseModel): resource_name: Optional[ Literal["FdOrnsteinUhlenbeckVanillaEngine"] ] = "FdOrnsteinUhlenbeckVanillaEngine" value: OrnsteinUhlenbeckProcess rTS: YieldTermStructure tGrid: Optional[int] = None xGrid: Optional[int] = None dampingSteps: Optional[int] = None epsilon: Optional[float] = None schemeDesc: Optional[FdmSchemeDesc] = None class FdBatesVanillaEngine(BaseModel): resource_name: Optional[Literal["FdBatesVanillaEngine"]] = "FdBatesVanillaEngine" model: BatesModel tGrid: Optional[int] = None xGrid: Optional[int] = None vGrid: Optional[int] = None dampingSteps: Optional[int] = None schemeDesc: Optional[FdmSchemeDesc] = None class FdHestonVanillaEngine0(BaseModel): resource_name: Optional[Literal["FdHestonVanillaEngine"]] = "FdHestonVanillaEngine" model: HestonModel quantoHelper: FdmQuantoHelper tGrid: Optional[int] = None xGrid: Optional[int] = None vGrid: Optional[int] = None dampingSteps: Optional[int] = None schemeDesc: Optional[FdmSchemeDesc] = None leverageFct: Optional[LocalVolTermStructure] = None class FdHestonVanillaEngine1(BaseModel): resource_name: Optional[Literal["FdHestonVanillaEngine"]] = "FdHestonVanillaEngine" model: HestonModel tGrid: Optional[int] = None xGrid: Optional[int] = None vGrid: Optional[int] = None dampingSteps: Optional[int] = None schemeDesc: Optional[FdmSchemeDesc] = None leverageFct: Optional[LocalVolTermStructure] = None class FdCEVVanillaEngine(BaseModel): resource_name: Optional[Literal["FdCEVVanillaEngine"]] = "FdCEVVanillaEngine" f0: float alpha: float beta: float rTS: YieldTermStructureHandle tGrid: Optional[int] = None xGrid: Optional[int] = None dampingSteps: Optional[int] = None scalingFactor: Optional[float] = None eps: Optional[float] = None schemeDesc: Optional[FdmSchemeDesc] = None class FdSabrVanillaEngine(BaseModel): resource_name: Optional[Literal["FdSabrVanillaEngine"]] = "FdSabrVanillaEngine" f0: float alpha: float beta: float nu: float rho: float rTS: YieldTermStructureHandle tGrid: Optional[int] = None fGrid: Optional[int] = None xGrid: Optional[int] = None dampingSteps: Optional[int] = None scalingFactor: Optional[float] = None eps: Optional[float] = None schemeDesc: Optional[FdmSchemeDesc] = None class FdBlackScholesBarrierEngine(BaseModel): resource_name: Optional[ Literal["FdBlackScholesBarrierEngine"] ] = "FdBlackScholesBarrierEngine" process: GeneralizedBlackScholesProcess tGrid: Optional[int] = None xGrid: Optional[int] = None dampingSteps: Optional[int] = None schemeDesc: Optional[FdmSchemeDesc] = None localVol: Optional[bool] = None illegalLocalVolOverwrite: Optional[float] = None class ContinuousAveragingAsianOption(BaseModel): resource_name: Optional[ Literal["ContinuousAveragingAsianOption"] ] = "ContinuousAveragingAsianOption" averageType: AverageType payoff: StrikedTypePayoff exercise: Exercise class DiscreteAveragingAsianOption(BaseModel): resource_name: Optional[ Literal["DiscreteAveragingAsianOption"] ] = "DiscreteAveragingAsianOption" averageType: AverageType runningAccumulator: float pastFixings: int fixingDates: List[Date] payoff: StrikedTypePayoff exercise: Exercise class DoubleBarrierOptionBase(BaseModel): resource_name: Optional[Literal["DoubleBarrierOption"]] = "DoubleBarrierOption" barrierType: DoubleBarrierType barrier_lo: float barrier_hi: float rebate: float payoff: StrikedTypePayoff exercise: Exercise class QuantoDoubleBarrierOption(BaseModel): resource_name: Optional[ Literal["QuantoDoubleBarrierOption"] ] = "QuantoDoubleBarrierOption" barrierType: DoubleBarrierType barrier_lo: float barrier_hi: float rebate: float payoff: StrikedTypePayoff exercise: Exercise class DeltaVolQuote0(BaseModel): resource_name: Optional[Literal["DeltaVolQuote"]] = "DeltaVolQuote" delta: float vol: QuoteHandle maturity: float deltaType: DeltaVolQuoteDeltaType class DeltaVolQuote1(BaseModel): resource_name: Optional[Literal["DeltaVolQuote"]] = "DeltaVolQuote" vol: QuoteHandle deltaType: DeltaVolQuoteDeltaType maturity: float atmType: DeltaVolQuoteAtmType class DeltaVolQuoteHandle(BaseModel): resource_name: Optional[Literal["DeltaVolQuoteHandle"]] = "DeltaVolQuoteHandle" value: Optional[DeltaVolQuote] = None class RelinkableDeltaVolQuoteHandle(BaseModel): resource_name: Optional[ Literal["RelinkableDeltaVolQuoteHandle"] ] = "RelinkableDeltaVolQuoteHandle" value: Optional[DeltaVolQuote] = None class VannaVolgaBarrierEngine(BaseModel): resource_name: Optional[ Literal["VannaVolgaBarrierEngine"] ] = "VannaVolgaBarrierEngine" atmVol: DeltaVolQuoteHandle vol25Put: DeltaVolQuoteHandle vol25Call: DeltaVolQuoteHandle spotFX: QuoteHandle domesticTS: YieldTermStructureHandle foreignTS: YieldTermStructureHandle adaptVanDelta: Optional[bool] = None bsPriceWithSmile: Optional[float] = None class FdSimpleBSSwingEngine(BaseModel): resource_name: Optional[Literal["FdSimpleBSSwingEngine"]] = "FdSimpleBSSwingEngine" process: GeneralizedBlackScholesProcess tGrid: Optional[int] = None xGrid: Optional[int] = None schemeDesc: Optional[FdmSchemeDesc] = None class GJRGARCHModel(BaseModel): resource_name: Optional[Literal["GJRGARCHModel"]] = "GJRGARCHModel" process: GJRGARCHProcess class AnalyticGJRGARCHEngine(BaseModel): resource_name: Optional[ Literal["AnalyticGJRGARCHEngine"] ] = "AnalyticGJRGARCHEngine" process: GJRGARCHModel class PlainVanillaPayoff(BaseModel): resource_name: Optional[Literal["PlainVanillaPayoff"]] = "PlainVanillaPayoff" type: OptionType strike: float class PercentageStrikePayoff(BaseModel): resource_name: Optional[ Literal["PercentageStrikePayoff"] ] = "PercentageStrikePayoff" type: OptionType moneyness: float class CashOrNothingPayoff(BaseModel): resource_name: Optional[Literal["CashOrNothingPayoff"]] = "CashOrNothingPayoff" type: OptionType strike: float payoff: float class AssetOrNothingPayoff(BaseModel): resource_name: Optional[Literal["AssetOrNothingPayoff"]] = "AssetOrNothingPayoff" type: OptionType strike: float class SuperSharePayoff(BaseModel): resource_name: Optional[Literal["SuperSharePayoff"]] = "SuperSharePayoff" type: OptionType strike: float increment: float class GapPayoff(BaseModel): resource_name: Optional[Literal["GapPayoff"]] = "GapPayoff" type: OptionType strike: float strikePayoff: float class VanillaForwardPayoff(BaseModel): resource_name: Optional[Literal["VanillaForwardPayoff"]] = "VanillaForwardPayoff" type: OptionType strike: float class BasketOption(BaseModel): resource_name: Optional[Literal["BasketOption"]] = "BasketOption" payoff: BasketPayoff exercise: Exercise class Fd2dBlackScholesVanillaEngine(BaseModel): resource_name: Optional[ Literal["Fd2dBlackScholesVanillaEngine"] ] = "Fd2dBlackScholesVanillaEngine" p1: GeneralizedBlackScholesProcess p2: GeneralizedBlackScholesProcess correlation: float xGrid: Optional[int] = None yGrid: Optional[int] = None tGrid: Optional[int] = None dampingSteps: Optional[int] = None schemeDesc: Optional[FdmSchemeDesc] = None localVol: Optional[bool] = None illegalLocalVolOverwrite: Optional[float] = None class EverestOption(BaseModel): resource_name: Optional[Literal["EverestOption"]] = "EverestOption" notional: float guarantee: float exercise: Exercise class BlackDeltaCalculator(BaseModel): resource_name: Optional[Literal["BlackDeltaCalculator"]] = "BlackDeltaCalculator" ot: OptionType dt: DeltaVolQuoteDeltaType spot: float dDiscount: DiscountFactor fDiscount: DiscountFactor stDev: float class CallabilityPrice(BaseModel): resource_name: Optional[Literal["CallabilityPrice"]] = "CallabilityPrice" amount: float type: CallabilityPriceType class CallabilityBase(BaseModel): resource_name: Optional[Literal["Callability"]] = "Callability" price: CallabilityPrice type: CallabilityType date: Date class
%gum %gum\n" % (x1, y1, x2, y2) fout.write(cmd_str) cmd_str = "paint %s \n" % (M1_LAYER) fout.write(cmd_str) x2 = x_center + PITCH/2 - CHANNEL_LENGTH/2 - 0.31 y2 = y_center + PITCH/2 - CHANNEL_LENGTH/2 - 0.31 cmd_str = "box %gum %gum %gum %gum\n" % (x1, y1, x2, y2) fout.write(cmd_str) cmd_str = "erase %s \n" % (M1_LAYER) fout.write(cmd_str) #diagonal runners and contacts for x_index in range(ARRAY_SIZE): for y_index in range(ARRAY_SIZE): #m1 first layer x_center = PITCH * x_index + PITCH/2 y_center = PITCH * y_index + PITCH/2 x1 = x_center - PITCH/2 + CHANNEL_LENGTH/2 + CHANNEL_M1_SPACING + 0.23 y1 = y_center - PITCH/2 + CHANNEL_LENGTH/2 + CHANNEL_M1_SPACING + 0.23 x2 = x_center + PITCH/2 - CHANNEL_LENGTH/2 - CHANNEL_M1_SPACING - 0.23 y2 = y_center + PITCH/2 - CHANNEL_LENGTH/2 - CHANNEL_M1_SPACING - 0.23 cmd_str = "box %gum %gum %gum %gum\n" % (x1, y1, x2, y2) fout.write(cmd_str) cmd_str = "paint %s \n" % (M1_LAYER) fout.write(cmd_str) #m2 second layer x1 = x_center - PITCH/2 + 1 y1 = y_center - PITCH/2 + 1 x2 = x_center + PITCH/2 - 1 y2 = y_center + PITCH/2 - 1 cmd_str = "box %gum %gum %gum %gum\n" % (x1, y1, x2, y2) fout.write(cmd_str) cmd_str = "paint %s \n" % (M2_LAYER) fout.write(cmd_str) #m1 contact x1 = x_center - PITCH/2 + 1.1 y1 = y_center - PITCH/2 + 1.1 x2 = x_center + PITCH/2 - 1.1 y2 = y_center + PITCH/2 - 1.1 cmd_str = "box %gum %gum %gum %gum\n" % (x1, y1, x2, y2) fout.write(cmd_str) cmd_str = "paint %s \n" % (M1_CONTACT_LAYER) fout.write(cmd_str) #place runners x1 = x_center - PITCH/2 y1 = y_center + PITCH/2 x2 = x_center + PITCH/2 y2 = y_center - PITCH/2 cmd_str = "wire segment %s %gum %gum %gum %gum %gum -noendcap \n" % (M3_LAYER, M3_WIDTH, x1, y1, x2, y2) fout.write(cmd_str) cmd_str = "wire segment %s %gum %gum %gum %gum %gum -noendcap \n" % (M4_LAYER, M4_WIDTH, x1, y1, x2, y2) fout.write(cmd_str) cmd_str = "wire segment %s %gum %gum %gum %gum %gum -noendcap \n" % (M5_LAYER, M5_WIDTH, x1, y1, x2, y2) fout.write(cmd_str) #place contacts #m2-m3 contact # x1 = x_center - PITCH/2 + 1 + M2_VIA_SPACE # y1 = y_center + PITCH/2 - 1 - M2_VIA_SPACE # x2 = x_center - PITCH/2 + 1 + M2_VIA_SPACE + round(((M3_WIDTH/2 - M2_VIA_SPACE)**(1/2)),1) # y2 = y_center + PITCH/2 - 1 - M2_VIA_SPACE # x3 = x_center + PITCH/2 - 1 - M2_VIA_SPACE # y3 = y_center - PITCH/2 + 1 + M2_VIA_SPACE + round(((M3_WIDTH/2 - M2_VIA_SPACE)**(1/2)),1) # x4 = x_center + PITCH/2 - 1 - M2_VIA_SPACE # y4 = y_center - PITCH/2 + 1 + M2_VIA_SPACE # x5 = x_center + PITCH/2 - 1 - M2_VIA_SPACE - round(((M3_WIDTH/2 - M2_VIA_SPACE)**(1/2)),1) # y5 = y_center - PITCH/2 + 1 + M2_VIA_SPACE # x6 = x_center - PITCH/2 + 1 + M2_VIA_SPACE # y6 = y_center + PITCH/2 - 1 - M2_VIA_SPACE - round(((M3_WIDTH/2 - M2_VIA_SPACE)**(1/2)),1) # cmd_str = "polygon %s %gum %gum %gum %gum %gum %gum %gum %gum %gum %gum %gum %gum \n" % (M2_CONTACT_LAYER, x1, y1, x2, y2, x3, y3, x4, y4, x5, y5, x6, y6) # fout.write(cmd_str) # #m3-m4 contact # x1 = x_center - PITCH/2 + 1 + M3_VIA_SPACE # y1 = y_center + PITCH/2 - 1 - M3_VIA_SPACE # x2 = x_center - PITCH/2 + 1 + M3_VIA_SPACE + round(((M4_WIDTH/2 - M3_VIA_SPACE)**(1/2)),1) # y2 = y_center + PITCH/2 - 1 - M3_VIA_SPACE # x3 = x_center + PITCH/2 - 1 - M3_VIA_SPACE # y3 = y_center - PITCH/2 + 1 + M3_VIA_SPACE + round(((M4_WIDTH/2 - M3_VIA_SPACE)**(1/2)),1) # x4 = x_center + PITCH/2 - 1 - M3_VIA_SPACE # y4 = y_center - PITCH/2 + 1 + M3_VIA_SPACE # x5 = x_center + PITCH/2 - 1 - M3_VIA_SPACE - round(((M4_WIDTH/2 - M3_VIA_SPACE)**(1/2)),1) # y5 = y_center - PITCH/2 + 1 + M3_VIA_SPACE # x6 = x_center - PITCH/2 + 1 + M3_VIA_SPACE # y6 = y_center + PITCH/2 - 1 - M3_VIA_SPACE - round(((M4_WIDTH/2 - M3_VIA_SPACE)**(1/2)),1) # cmd_str = "polygon %s %gum %gum %gum %gum %gum %gum %gum %gum %gum %gum %gum %gum \n" % (M3_CONTACT_LAYER, x1, y1, x2, y2, x3, y3, x4, y4, x5, y5, x6, y6) # fout.write(cmd_str) # #m4-m5 contact # x1 = x_center - PITCH/2 + 1 + M4_VIA_SPACE # y1 = y_center + PITCH/2 - 1 - M4_VIA_SPACE # x2 = x_center - PITCH/2 + 1 + M4_VIA_SPACE + round(((M5_WIDTH/2 - M4_VIA_SPACE)**(1/2)),1) # y2 = y_center + PITCH/2 - 1 - M4_VIA_SPACE # x3 = x_center + PITCH/2 - 1 - M4_VIA_SPACE # y3 = y_center - PITCH/2 + 1 + M4_VIA_SPACE + round(((M5_WIDTH/2 - M4_VIA_SPACE)**(1/2)),1) # x4 = x_center + PITCH/2 - 1 - M4_VIA_SPACE # y4 = y_center - PITCH/2 + 1 + M4_VIA_SPACE # x5 = x_center + PITCH/2 - 1 - M4_VIA_SPACE - round(((M5_WIDTH/2 - M4_VIA_SPACE)**(1/2)),1) # y5 = y_center - PITCH/2 + 1 + M4_VIA_SPACE # x6 = x_center - PITCH/2 + 1 + M4_VIA_SPACE # y6 = y_center + PITCH/2 - 1 - M4_VIA_SPACE - round(((M5_WIDTH/2 - M4_VIA_SPACE)**(1/2)),1) #cmd_str = "polygon %s %gum %gum %gum %gum %gum %gum %gum %gum %gum %gum %gum %gum \n" % (M4_CONTACT_LAYER, x1, y1, x2, y2, x3, y3, x4, y4, x5, y5, x6, y6) #fout.write(cmd_str) #magic issue prevents correct contact placement. todo: get fixed x1 = x_center - M4_VIA_SIZE/2 y1 = y_center - M4_VIA_SIZE/2 x2 = x_center + M4_VIA_SIZE/2 y2 = y_center + M4_VIA_SIZE/2 cmd_str = "box %gum %gum %gum %gum\n" % (x1, y1, x2, y2) fout.write(cmd_str) cmd_str = "paint %s \n" % (M4_CONTACT_LAYER) fout.write(cmd_str) cmd_str = "paint %s \n" % (M3_CONTACT_LAYER) fout.write(cmd_str) cmd_str = "paint %s \n" % (M2_CONTACT_LAYER) fout.write(cmd_str) #gate interconnect #vertical interconnect for x_index in range(ARRAY_SIZE+1): x_center = PITCH * x_index x1 = x_center - CHANNEL_LENGTH/2 x2 = x_center + CHANNEL_LENGTH/2 y1 = -CHANNEL_LENGTH/2 y2 = PITCH * ARRAY_SIZE + CHANNEL_LENGTH/2 cmd_str = "box %gum %gum %gum %gum\n" % (x1, y1, x2, y2) fout.write(cmd_str) cmd_str = "paint %s \n" % (POLY_LAYER) fout.write(cmd_str) cmd_str = "paint %s \n" % (M2_LAYER) fout.write(cmd_str) #horizontal interconnect for y_index in range (ARRAY_SIZE+1): y_center = PITCH * y_index x1 = -CHANNEL_LENGTH/2 x2 = PITCH * ARRAY_SIZE + CHANNEL_LENGTH/2 y1 = y_center - CHANNEL_LENGTH/2 y2 = y_center + CHANNEL_LENGTH/2 cmd_str = "box %gum %gum %gum %gum\n" % (x1, y1, x2, y2) fout.write(cmd_str) cmd_str = "paint %s \n" % (POLY_LAYER) fout.write(cmd_str) cmd_str = "paint %s \n" % (M2_LAYER) fout.write(cmd_str) # gate vias for x_index in range(ARRAY_SIZE+1): for y_index in range(ARRAY_SIZE+1): #0.5 x 0.5 locali, M1, M2, # 0.4 x 0.4 pcontact, vialocali, M1-M2 via x_center = x_index * PITCH y_center = y_index * PITCH x1 = x_center - CHANNEL_LENGTH/2 y1 = y_center - CHANNEL_LENGTH/2 x2 = x_center + CHANNEL_LENGTH/2 y2 = y_center + CHANNEL_LENGTH/2 cmd_str = "box %gum %gum %gum %gum\n" % (x1, y1, x2, y2) fout.write(cmd_str) cmd_str = "paint %s \n" % (LOCALI_LAYER) fout.write(cmd_str) cmd_str = "paint %s \n" % (M1_LAYER) fout.write(cmd_str) cmd_str = "paint %s \n" % (M2_LAYER) fout.write(cmd_str) x1 = x_center - CHANNEL_LENGTH/2 + 0.08 y1 = y_center - CHANNEL_LENGTH/2 + 0.08 x2 = x_center + CHANNEL_LENGTH/2 - 0.08 y2 = y_center + CHANNEL_LENGTH/2 - 0.08 cmd_str = "box %gum %gum %gum %gum\n" % (x1, y1, x2, y2) fout.write(cmd_str) cmd_str = "paint %s \n" % (POLY_CONTACT_LAYER) fout.write(cmd_str) cmd_str = "paint %s \n" % (LOCALI_CONTACT_LAYER) fout.write(cmd_str) cmd_str = "paint %s \n" % (M1_CONTACT_LAYER) fout.write(cmd_str) #substrate contacts for x_index in range(ARRAY_SIZE): for y_index in range(ARRAY_SIZE): if((x_index+y_index)%2==0): x_center = PITCH * x_index + PITCH/2 y_center = PITCH * y_index + PITCH/2 #fill source area with diff x1 = x_center - PITCH/2 + 0.54 y1 = y_center - PITCH/2 + 0.54 x2 = x_center + PITCH/2 - 0.54 y2 = y_center + PITCH/2 - 0.54 cmd_str = "box %gum %gum %gum %gum\n" % (x1, y1, x2, y2) fout.write(cmd_str) cmd_str = "paint %s \n" % (DIFF_LAYER) fout.write(cmd_str) #contact area x1 = x_center - PITCH/2 + 1.1 y1 = y_center - PITCH/2 + 1.1 x2 = x_center + PITCH/2 - 1.1 y2 = y_center + PITCH/2 - 1.1 cmd_str = "box %gum %gum %gum %gum\n" % (x1, y1, x2, y2) fout.write(cmd_str) cmd_str = "paint %s \n" % (SUBSTRATE_DIFF) fout.write(cmd_str) cmd_str = "paint %s \n" % (LOCALI_CONTACT_LAYER) fout.write(cmd_str) x1 = x_center - PITCH/2 + 1.22 y1 = y_center - PITCH/2 + 1.22 x2 = x_center + PITCH/2 - 1.22 y2 = y_center + PITCH/2 - 1.22 cmd_str = "box %gum %gum %gum %gum\n" % (x1, y1, x2, y2) fout.write(cmd_str) cmd_str = "paint %s \n" % (SUBSTRATE_DIFF_CONTACT) fout.write(cmd_str) x1 = x_center - PITCH/2 + CHANNEL_LENGTH/2 + CHANNEL_LOCALI_SPACING + 0.17 y1 = y_center - PITCH/2 + CHANNEL_LENGTH/2 + CHANNEL_LOCALI_SPACING + 0.17 x2 = x_center + PITCH/2 - CHANNEL_LENGTH/2 - CHANNEL_LOCALI_SPACING - 0.17 y2 = y_center + PITCH/2 - CHANNEL_LENGTH/2 - CHANNEL_LOCALI_SPACING - 0.17 cmd_str = "box %gum %gum %gum %gum\n" % (x1, y1, x2, y2) fout.write(cmd_str) cmd_str = "paint %s \n" % (LOCALI_LAYER) fout.write(cmd_str) # well and inner guard ring (well connected) x1 = -WELL_EXTENTION y1 = -WELL_EXTENTION x2 = PITCH * ARRAY_SIZE + WELL_EXTENTION y2 = PITCH * ARRAY_SIZE + WELL_EXTENTION cmd_str = "box %gum %gum %gum %gum\n" % (x1, y1, x2, y2) fout.write(cmd_str) cmd_str
<gh_stars>1-10 #!/usr/bin/env python import configparser import copy import importlib import logging import re from abc import ABC, abstractmethod from pathlib import Path from typing import List, Optional # import deepdiff from javus.gppw import GlobalPlatformProWrapper from javus.settings import PROJECT_ROOT from javus.utils import SDKVersion, cd from javus.utils import AttackConfigParser # TODO add some log initializer log = logging.getLogger(__file__) # TODO add handler for printing handler = logging.StreamHandler() formatter = logging.Formatter("%(levelname)s:%(asctime)s:%(name)s: %(message)s") handler.setFormatter(formatter) log.addHandler(handler) class AbstractAttackExecutor(ABC): @abstractmethod def execute(self): pass class CommonStage: install = "install" send = "send" uninstall = "uninstall" class BaseAttackExecutor(AbstractAttackExecutor): def __init__( self, card: "Card", gp: GlobalPlatformProWrapper, workdir: Path, sdk: SDKVersion = None, ): self.card = card self.gp = gp self.workdir = Path(workdir).resolve() # FIXME self.attack_name = self.workdir.name self.aids = configparser.ConfigParser() self.uninstall_stages = [] self.config = AttackConfigParser(strict=False) self.installed_applets = [] self.stages = None self._load_config() try: self.sdks = self.config.get_sdk_versions("BUILD", "versions") except KeyError: self.sdks = None def _load_config(self) -> None: self.config.read(self.workdir / "config.ini") def _load_aids(self) -> None: self.aids.read(self.workdir / "aids.ini") def get_stages(self) -> List[dict]: # TODO should we double check the content of th STAGES before # proceeding? e.g. the types of the entries # first load stages from `<attackname>`.py stages = self.import_stages() if stages is not None: return copy.deepcopy(stages) module_file = self.workdir / (self.attack_name + ".py") raise ValueError( "Cannot load Scenario.STAGES from %s. Does it exist?" % module_file ) def import_stages(self) -> Optional[List[dict]]: # the module name can be inferred from the paths # TODO getting the module path feels a bit hackish - wonder if that works from other # folders as well - it does module_name = self.workdir.name relative_module_path = ( str(self.workdir.relative_to(PROJECT_ROOT)).replace("/", ".") + "." + module_name ) try: stages = getattr(importlib.import_module(relative_module_path), "Scenario",) return stages.STAGES except (ModuleNotFoundError, AttributeError): pass return None def _prepare_install(self, *args, **kwargs): pass def _install(self, path: str, sdk_version: SDKVersion, *args, **kwargs): # value is a path/string, that can include {version} for differentiating between # different versions if sdk_version is None: self.sdk_version = self._determine_version() else: self.sdk_version = sdk_version path = path.format(version=self.sdk_version.raw) log.info("Attempt to install applet: %s", path) with cd(self.workdir): result = self.gp.install(path) if result["returncode"] == 0: uninstall_stage = {"name": "uninstall", "path": path, "installed": True} else: # when the installation is not successful we still want to add uninstall stage # and mark it as skipped uninstall_stage = { "name": "uninstall", "path": path, "installed": False, } self.uninstall_stages.append(uninstall_stage) return result def _assess_install(self, result, *args, **kwargs): success = True # FIXME few naive checks, but we can also use --dump on install command # and make sure e.g. the status words are 9000 if result["returncode"] != 0: success = False if "CAP loaded" not in result["stdout"]: success = False # make sure it is in the CardState after the installation result["success"] = success return result def _prepare_uninstall(self, *args, **kwargs): pass def _uninstall(self, path: str, sdk_version: SDKVersion, *args, **kwargs): # result = [] # setting SDKVersion is done in _install, that is kinda weird path = path.format(version=self.sdk_version.raw) # if self.installed_applets is not None: # # attemp to uninstall the installed applets in reversed order # while self.installed_applets: # path = self.installed_applets.pop() with cd(self.workdir): result = self.gp.uninstall(path) return result def _assess_uninstall(self, result, *args, **kwargs): success = True if result["returncode"] != 0: success = False if "deleted" not in result["stdout"]: success = False result["success"] = success return result def construct_aid(self) -> bytes: # FIXME this method is a gimmick to be overriden by the custom Executors rid = bytes.fromhex(self.aids["BUILD"]["pkg.rid"]) pix = bytes.fromhex(self.aids["BUILD"]["applet.pix"]) aid = rid + pix return aid def _prepare_send(self, *args, **kwargs): pass def _send(self, *args, payload: str, **kwargs): # TODO prepare payload aid = self.construct_aid() # TODO payload may be of varying kinds of hexa/int values values payload = self._parse_payload(payload) return self.gp.apdu(payload, aid) def _assess_send(self, result, *args, expected: str = "9000", **kwargs): command_apdu = self._parse_payload(kwargs["payload"]).hex().upper() success = True if result["returncode"] != 0: success = False # TODO verify expected # by default we expect 9000 status word try: if result["communication"][command_apdu]["status"] != expected: success = False except KeyError: success = False result["success"] = success # FIXME maybe adding all kwargs is too much result.update(kwargs) return result def _parse_payload(self, raw: str) -> bytes: clean = self._clean_payload(raw) if not clean: return b"" separated = self._separate_payload(clean) if separated: try: return bytes([int(x, 16) for x in separated]) except ValueError: pass try: return bytes([int(x) for x in separated]) except ValueError: pass else: # first assume it is hexadecimal string without spaces and 0x prefix try: return bytes.fromhex(clean) except ValueError: pass # FIXME should raise some internal error, that it cannot continue with the attack # TODO log it raise RuntimeError("Cannot create a valid payload") @staticmethod def _separate_payload(raw: str) -> list: comma_separated = raw.split(",") if [raw] != comma_separated: return [x.strip() for x in comma_separated] space_separated = raw.split() if [raw] != space_separated: return [x.strip() for x in space_separated] return [] @staticmethod def _clean_payload(raw: str) -> str: # remove excess whitespace stripped = raw.strip() # reduce whitespace reduced = re.sub(r"\s+", " ", stripped) return reduced def possible_versions(self) -> List["SDKVersion"]: """ Returns the intersection of SDKVersions the attack can be build for and the ones supported by the Card """ attack_sdk_versions = SDKVersion.from_list( self.config["BUILD"]["versions"], sep="," ) return list(set(attack_sdk_versions).intersection(set(self.card.sdks))) def _determine_version(self) -> "SDKVersion": # determine the newest SDK version supported both by the card and the attack attack_versions = SDKVersion.from_list(self.config["BUILD"]["versions"]) try: newest = list(set(attack_versions).intersection(set(self.card.sdks)))[-1] except IndexError: newest = attack_versions[0] log.warning( "Could not determine SDK Version, defaulting to '%s'", str(newest) ) return newest def execute(self, sdk_version=None, **kwargs) -> list: self._load_aids() stages = self.get_stages() self.report = [] n_stages = self.get_stages_len(stages) x = 1 # FIXME print successes of stages # FIXME stop on SCARD_NO_TRANSANCT in STDOUT/STDERR for i, stage_data in enumerate(stages): stage = stage_data.pop("name") result = self._run_stage( stage, **stage_data, sdk_version=sdk_version, **kwargs ) try: success = "pass" if result["success"] else "fail" except KeyError: success = "" print(" [%2d/%2d] %s: %s" % (x, n_stages, stage, success)) x += 1 result["name"] = stage result["skipped"] = False # if i: # result["diff-state"] = deepdiff.DeepDiff( # result["state"], self.report[-1]["state"] # ).to_dict() # else: # result["diff-state"] = {} self.report.append(result) if not self.optional_stage(stage, stage_data) and not result["success"]: break # fill in the rest of the stages, that were not executed for stage_data in stages[i + 1 :]: stage = stage_data.pop("name") print(" [%2d/%2d] %s: skip" % (x, n_stages, stage)) x += 1 # print(stage) result = { "name": stage, "success": False, "skipped": True, # "state": None, # "diff-state": None, } try: # in case we skip, we just copy the previous state - assuming, that skipping # a stage cannot change the data on the card result["state"] = self.report[-1]["stage"] except KeyError: result["state"] = None self.report.append(result) while self.uninstall_stages: # FIXME add 'pass' 'fail' to the print stage_data = self.uninstall_stages.pop() stage = stage_data.pop("name") print(" [%2d/%2d] %s" % (x, n_stages, stage), end="") x += 1 if stage_data["installed"]: result = self._run_stage( stage, **stage_data, sdk_version=sdk_version, **kwargs ) result["skipped"] = False if result["success"]: print(" pass") else: print(" fail") else: result = copy.deepcopy(stage_data) result["skipped"] = True print(" skip") result["name"] = stage # if self.report[-1]["state"] is not None: # result["diff-state"] = deepdiff.DeepDiff( # result["state"], self.report[-1]["state"] # ).to_dict() # else: # result["diff-state"] = {} # try: # # in case we skip, we just copy the previous state - assuming, that skipping # # a stage cannot change the data on the card # result["state"] = self.report[-1]["stage"] # except KeyError: # result["state"] = None self.report.append(result) # FIXME add also the short description of the attacks return self.report @staticmethod def optional_stage(stage: str, stage_data: dict) -> bool: try: return stage_data["optional"] except KeyError: if stage == CommonStage.install: # install is required by default return False elif stage == CommonStage.uninstall: # uninstall stage is optional as it makes sense to continue uninstalling # applets even if some cannot be uninstalled return True # any other stage is deemed required return False def _run_stage(self, raw_stage: str, *args, **kwargs): stage = self._create_stage_name(raw_stage) prepare_stage = "_prepare_" + stage try: prepare_method = getattr(self, prepare_stage) except AttributeError: log.info("Cannot find stage method '%s'", prepare_stage) # prepare_method is optional and lambda cannot use *args, **kwargs def prepare_method(*args,
# # Copyright (c) 2008-2015 Citrix Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from nitro.resource.base.base_resource import base_resource from nitro.resource.base.base_resource import base_response from nitro.service.options import options from nitro.exception.nitro_exception import nitro_exception from nitro.util.nitro_util import nitro_util class nstrafficdomain(base_resource) : """Configuration for Traffic Domain resource.""" def __init__(self) : self._td = 0 self._aliasname = "" self._vmac = "" self._state = "" self.___count = 0 @property def td(self) : """Integer value that uniquely identifies a traffic domain.<br/>Minimum length = 1<br/>Maximum length = 4094.""" try : return self._td except Exception as e: raise e @td.setter def td(self, td) : """Integer value that uniquely identifies a traffic domain.<br/>Minimum length = 1<br/>Maximum length = 4094 :param td: """ try : self._td = td except Exception as e: raise e @property def aliasname(self) : """Name of traffic domain being added.<br/>Minimum length = 1<br/>Maximum length = 31.""" try : return self._aliasname except Exception as e: raise e @aliasname.setter def aliasname(self, aliasname) : """Name of traffic domain being added.<br/>Minimum length = 1<br/>Maximum length = 31 :param aliasname: """ try : self._aliasname = aliasname except Exception as e: raise e @property def vmac(self) : """Associate the traffic domain with a VMAC address instead of with VLANs. The NetScaler ADC then sends the VMAC address of the traffic domain in all responses to ARP queries for network entities in that domain. As a result, the ADC can segregate subsequent incoming traffic for this traffic domain on the basis of the destination MAC address, because the destination MAC address is the VMAC address of the traffic domain. After creating entities on a traffic domain, you can easily manage and monitor them by performing traffic domain level operations.<br/>Default value: DISABLED<br/>Possible values = ENABLED, DISABLED.""" try : return self._vmac except Exception as e: raise e @vmac.setter def vmac(self, vmac) : """Associate the traffic domain with a VMAC address instead of with VLANs. The NetScaler ADC then sends the VMAC address of the traffic domain in all responses to ARP queries for network entities in that domain. As a result, the ADC can segregate subsequent incoming traffic for this traffic domain on the basis of the destination MAC address, because the destination MAC address is the VMAC address of the traffic domain. After creating entities on a traffic domain, you can easily manage and monitor them by performing traffic domain level operations.<br/>Default value: DISABLED<br/>Possible values = ENABLED, DISABLED :param vmac: """ try : self._vmac = vmac except Exception as e: raise e @property def state(self) : """The state of TrafficDmain.<br/>Default value: ENABLED<br/>Possible values = ENABLED, DISABLED.""" try : return self._state except Exception as e: raise e def _get_nitro_response(self, service, response) : """converts nitro response into object and returns the object array in case of get request. :param service: :param response: """ try : result = service.payload_formatter.string_to_resource(nstrafficdomain_response, response, self.__class__.__name__) if(result.errorcode != 0) : if (result.errorcode == 444) : service.clear_session(self) if result.severity : if (result.severity == "ERROR") : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) else : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) return result.nstrafficdomain except Exception as e : raise e def _get_object_name(self) : """Returns the value of object identifier argument""" try : if self.td is not None : return str(self.td) return None except Exception as e : raise e @classmethod def add(cls, client, resource) : """Use this API to add nstrafficdomain. :param client: :param resource: """ try : if type(resource) is not list : addresource = nstrafficdomain() addresource.td = resource.td addresource.aliasname = resource.aliasname addresource.vmac = resource.vmac return addresource.add_resource(client) else : if (resource and len(resource) > 0) : addresources = [ nstrafficdomain() for _ in range(len(resource))] for i in range(len(resource)) : addresources[i].td = resource[i].td addresources[i].aliasname = resource[i].aliasname addresources[i].vmac = resource[i].vmac result = cls.add_bulk_request(client, addresources) return result except Exception as e : raise e @classmethod def delete(cls, client, resource) : """Use this API to delete nstrafficdomain. :param client: :param resource: """ try : if type(resource) is not list : deleteresource = nstrafficdomain() if type(resource) != type(deleteresource): deleteresource.td = resource else : deleteresource.td = resource.td return deleteresource.delete_resource(client) else : if type(resource[0]) != cls : if (resource and len(resource) > 0) : deleteresources = [ nstrafficdomain() for _ in range(len(resource))] for i in range(len(resource)) : deleteresources[i].td = resource[i] else : if (resource and len(resource) > 0) : deleteresources = [ nstrafficdomain() for _ in range(len(resource))] for i in range(len(resource)) : deleteresources[i].td = resource[i].td result = cls.delete_bulk_request(client, deleteresources) return result except Exception as e : raise e @classmethod def clear(cls, client, resource) : """Use this API to clear nstrafficdomain. :param client: :param resource: """ try : if type(resource) is not list : clearresource = nstrafficdomain() clearresource.td = resource.td return clearresource.perform_operation(client,"clear") else : if (resource and len(resource) > 0) : clearresources = [ nstrafficdomain() for _ in range(len(resource))] for i in range(len(resource)) : clearresources[i].td = resource[i].td result = cls.perform_operation_bulk_request(client, clearresources,"clear") return result except Exception as e : raise e @classmethod def enable(cls, client, resource) : """Use this API to enable nstrafficdomain. :param client: :param resource: """ try : if type(resource) is not list : enableresource = nstrafficdomain() if type(resource) != type(enableresource): enableresource.td = resource else : enableresource.td = resource.td return enableresource.perform_operation(client,"enable") else : if type(resource[0]) != cls : if (resource and len(resource) > 0) : enableresources = [ nstrafficdomain() for _ in range(len(resource))] for i in range(len(resource)) : enableresources[i].td = resource[i] else : if (resource and len(resource) > 0) : enableresources = [ nstrafficdomain() for _ in range(len(resource))] for i in range(len(resource)) : enableresources[i].td = resource[i].td result = cls.perform_operation_bulk_request(client, enableresources,"enable") return result except Exception as e : raise e @classmethod def disable(cls, client, resource) : """Use this API to disable nstrafficdomain. :param client: :param resource: """ try : if type(resource) is not list : disableresource = nstrafficdomain() if type(resource) != type(disableresource): disableresource.td = resource else : disableresource.td = resource.td return disableresource.perform_operation(client,"disable") else : if type(resource[0]) != cls : if (resource and len(resource) > 0) : disableresources = [ nstrafficdomain() for _ in range(len(resource))] for i in range(len(resource)) : disableresources[i].td = resource[i] else : if (resource and len(resource) > 0) : disableresources = [ nstrafficdomain() for _ in range(len(resource))] for i in range(len(resource)) : disableresources[i].td = resource[i].td result = cls.perform_operation_bulk_request(client, disableresources,"disable") return result except Exception as e : raise e @classmethod def get(cls, client, name="", option_="") : """Use this API to fetch all the nstrafficdomain resources that are configured on netscaler. :param client: :param name: (Default value = "") :param option_: (Default value = "") """ try : if not name : obj = nstrafficdomain() response = obj.get_resources(client, option_) else : if type(name) != cls : if type(name) is not list : obj = nstrafficdomain() obj.td = name response = obj.get_resource(client, option_) else : if name and len(name) > 0 : response = [nstrafficdomain() for _ in range(len(name))] obj = [nstrafficdomain() for _ in range(len(name))] for i in range(len(name)) : obj[i] = nstrafficdomain() obj[i].td = name[i] response[i] = obj[i].get_resource(client, option_) return response except Exception as e : raise e @classmethod def get_filtered(cls, client, filter_) : """Use this API to fetch filtered set of nstrafficdomain resources. filter string should be in JSON format.eg: "port:80,servicetype:HTTP". :param client: :param filter_: """ try : obj = nstrafficdomain() option_ = options() option_.filter = filter_ response = obj.getfiltered(client, option_) return response except Exception as e : raise e @classmethod def count(cls, client) : """Use this API to count the nstrafficdomain resources configured
return _FSO_Comm_swig.Geometric_Loss_ff_sptr_LinkLen(self) def set_Rx_Dia(self, Rx_Dia): """ set_Rx_Dia(Geometric_Loss_ff_sptr self, float Rx_Dia) Set geometric loss receiver aperture diameter. """ return _FSO_Comm_swig.Geometric_Loss_ff_sptr_set_Rx_Dia(self, Rx_Dia) def Rx_Dia(self): """ Rx_Dia(Geometric_Loss_ff_sptr self) -> float Return cyurrent geometric loss receiver aperture diameter. """ return _FSO_Comm_swig.Geometric_Loss_ff_sptr_Rx_Dia(self) def history(self): """history(Geometric_Loss_ff_sptr self) -> unsigned int""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_history(self) def declare_sample_delay(self, *args): """ declare_sample_delay(Geometric_Loss_ff_sptr self, int which, int delay) declare_sample_delay(Geometric_Loss_ff_sptr self, unsigned int delay) """ return _FSO_Comm_swig.Geometric_Loss_ff_sptr_declare_sample_delay(self, *args) def sample_delay(self, which): """sample_delay(Geometric_Loss_ff_sptr self, int which) -> unsigned int""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_sample_delay(self, which) def output_multiple(self): """output_multiple(Geometric_Loss_ff_sptr self) -> int""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_output_multiple(self) def relative_rate(self): """relative_rate(Geometric_Loss_ff_sptr self) -> double""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_relative_rate(self) def start(self): """start(Geometric_Loss_ff_sptr self) -> bool""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_start(self) def stop(self): """stop(Geometric_Loss_ff_sptr self) -> bool""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_stop(self) def nitems_read(self, which_input): """nitems_read(Geometric_Loss_ff_sptr self, unsigned int which_input) -> uint64_t""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_nitems_read(self, which_input) def nitems_written(self, which_output): """nitems_written(Geometric_Loss_ff_sptr self, unsigned int which_output) -> uint64_t""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_nitems_written(self, which_output) def max_noutput_items(self): """max_noutput_items(Geometric_Loss_ff_sptr self) -> int""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_max_noutput_items(self) def set_max_noutput_items(self, m): """set_max_noutput_items(Geometric_Loss_ff_sptr self, int m)""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_set_max_noutput_items(self, m) def unset_max_noutput_items(self): """unset_max_noutput_items(Geometric_Loss_ff_sptr self)""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_unset_max_noutput_items(self) def is_set_max_noutput_items(self): """is_set_max_noutput_items(Geometric_Loss_ff_sptr self) -> bool""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_is_set_max_noutput_items(self) def set_min_noutput_items(self, m): """set_min_noutput_items(Geometric_Loss_ff_sptr self, int m)""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_set_min_noutput_items(self, m) def min_noutput_items(self): """min_noutput_items(Geometric_Loss_ff_sptr self) -> int""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_min_noutput_items(self) def max_output_buffer(self, i): """max_output_buffer(Geometric_Loss_ff_sptr self, int i) -> long""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_max_output_buffer(self, i) def set_max_output_buffer(self, *args): """ set_max_output_buffer(Geometric_Loss_ff_sptr self, long max_output_buffer) set_max_output_buffer(Geometric_Loss_ff_sptr self, int port, long max_output_buffer) """ return _FSO_Comm_swig.Geometric_Loss_ff_sptr_set_max_output_buffer(self, *args) def min_output_buffer(self, i): """min_output_buffer(Geometric_Loss_ff_sptr self, int i) -> long""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_min_output_buffer(self, i) def set_min_output_buffer(self, *args): """ set_min_output_buffer(Geometric_Loss_ff_sptr self, long min_output_buffer) set_min_output_buffer(Geometric_Loss_ff_sptr self, int port, long min_output_buffer) """ return _FSO_Comm_swig.Geometric_Loss_ff_sptr_set_min_output_buffer(self, *args) def pc_noutput_items(self): """pc_noutput_items(Geometric_Loss_ff_sptr self) -> float""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_pc_noutput_items(self) def pc_noutput_items_avg(self): """pc_noutput_items_avg(Geometric_Loss_ff_sptr self) -> float""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_pc_noutput_items_avg(self) def pc_noutput_items_var(self): """pc_noutput_items_var(Geometric_Loss_ff_sptr self) -> float""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_pc_noutput_items_var(self) def pc_nproduced(self): """pc_nproduced(Geometric_Loss_ff_sptr self) -> float""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_pc_nproduced(self) def pc_nproduced_avg(self): """pc_nproduced_avg(Geometric_Loss_ff_sptr self) -> float""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_pc_nproduced_avg(self) def pc_nproduced_var(self): """pc_nproduced_var(Geometric_Loss_ff_sptr self) -> float""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_pc_nproduced_var(self) def pc_input_buffers_full(self, *args): """ pc_input_buffers_full(Geometric_Loss_ff_sptr self, int which) -> float pc_input_buffers_full(Geometric_Loss_ff_sptr self) -> pmt_vector_float """ return _FSO_Comm_swig.Geometric_Loss_ff_sptr_pc_input_buffers_full(self, *args) def pc_input_buffers_full_avg(self, *args): """ pc_input_buffers_full_avg(Geometric_Loss_ff_sptr self, int which) -> float pc_input_buffers_full_avg(Geometric_Loss_ff_sptr self) -> pmt_vector_float """ return _FSO_Comm_swig.Geometric_Loss_ff_sptr_pc_input_buffers_full_avg(self, *args) def pc_input_buffers_full_var(self, *args): """ pc_input_buffers_full_var(Geometric_Loss_ff_sptr self, int which) -> float pc_input_buffers_full_var(Geometric_Loss_ff_sptr self) -> pmt_vector_float """ return _FSO_Comm_swig.Geometric_Loss_ff_sptr_pc_input_buffers_full_var(self, *args) def pc_output_buffers_full(self, *args): """ pc_output_buffers_full(Geometric_Loss_ff_sptr self, int which) -> float pc_output_buffers_full(Geometric_Loss_ff_sptr self) -> pmt_vector_float """ return _FSO_Comm_swig.Geometric_Loss_ff_sptr_pc_output_buffers_full(self, *args) def pc_output_buffers_full_avg(self, *args): """ pc_output_buffers_full_avg(Geometric_Loss_ff_sptr self, int which) -> float pc_output_buffers_full_avg(Geometric_Loss_ff_sptr self) -> pmt_vector_float """ return _FSO_Comm_swig.Geometric_Loss_ff_sptr_pc_output_buffers_full_avg(self, *args) def pc_output_buffers_full_var(self, *args): """ pc_output_buffers_full_var(Geometric_Loss_ff_sptr self, int which) -> float pc_output_buffers_full_var(Geometric_Loss_ff_sptr self) -> pmt_vector_float """ return _FSO_Comm_swig.Geometric_Loss_ff_sptr_pc_output_buffers_full_var(self, *args) def pc_work_time(self): """pc_work_time(Geometric_Loss_ff_sptr self) -> float""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_pc_work_time(self) def pc_work_time_avg(self): """pc_work_time_avg(Geometric_Loss_ff_sptr self) -> float""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_pc_work_time_avg(self) def pc_work_time_var(self): """pc_work_time_var(Geometric_Loss_ff_sptr self) -> float""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_pc_work_time_var(self) def pc_work_time_total(self): """pc_work_time_total(Geometric_Loss_ff_sptr self) -> float""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_pc_work_time_total(self) def pc_throughput_avg(self): """pc_throughput_avg(Geometric_Loss_ff_sptr self) -> float""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_pc_throughput_avg(self) def set_processor_affinity(self, mask): """set_processor_affinity(Geometric_Loss_ff_sptr self, std::vector< int,std::allocator< int > > const & mask)""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_set_processor_affinity(self, mask) def unset_processor_affinity(self): """unset_processor_affinity(Geometric_Loss_ff_sptr self)""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_unset_processor_affinity(self) def processor_affinity(self): """processor_affinity(Geometric_Loss_ff_sptr self) -> std::vector< int,std::allocator< int > >""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_processor_affinity(self) def active_thread_priority(self): """active_thread_priority(Geometric_Loss_ff_sptr self) -> int""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_active_thread_priority(self) def thread_priority(self): """thread_priority(Geometric_Loss_ff_sptr self) -> int""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_thread_priority(self) def set_thread_priority(self, priority): """set_thread_priority(Geometric_Loss_ff_sptr self, int priority) -> int""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_set_thread_priority(self, priority) def name(self): """name(Geometric_Loss_ff_sptr self) -> std::string""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_name(self) def symbol_name(self): """symbol_name(Geometric_Loss_ff_sptr self) -> std::string""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_symbol_name(self) def input_signature(self): """input_signature(Geometric_Loss_ff_sptr self) -> io_signature_sptr""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_input_signature(self) def output_signature(self): """output_signature(Geometric_Loss_ff_sptr self) -> io_signature_sptr""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_output_signature(self) def unique_id(self): """unique_id(Geometric_Loss_ff_sptr self) -> long""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_unique_id(self) def to_basic_block(self): """to_basic_block(Geometric_Loss_ff_sptr self) -> basic_block_sptr""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_to_basic_block(self) def check_topology(self, ninputs, noutputs): """check_topology(Geometric_Loss_ff_sptr self, int ninputs, int noutputs) -> bool""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_check_topology(self, ninputs, noutputs) def alias(self): """alias(Geometric_Loss_ff_sptr self) -> std::string""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_alias(self) def set_block_alias(self, name): """set_block_alias(Geometric_Loss_ff_sptr self, std::string name)""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_set_block_alias(self, name) def _post(self, which_port, msg): """_post(Geometric_Loss_ff_sptr self, swig_int_ptr which_port, swig_int_ptr msg)""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr__post(self, which_port, msg) def message_ports_in(self): """message_ports_in(Geometric_Loss_ff_sptr self) -> swig_int_ptr""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_message_ports_in(self) def message_ports_out(self): """message_ports_out(Geometric_Loss_ff_sptr self) -> swig_int_ptr""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_message_ports_out(self) def message_subscribers(self, which_port): """message_subscribers(Geometric_Loss_ff_sptr self, swig_int_ptr which_port) -> swig_int_ptr""" return _FSO_Comm_swig.Geometric_Loss_ff_sptr_message_subscribers(self, which_port) Geometric_Loss_ff_sptr_swigregister = _FSO_Comm_swig.Geometric_Loss_ff_sptr_swigregister Geometric_Loss_ff_sptr_swigregister(Geometric_Loss_ff_sptr) Geometric_Loss_ff_sptr.__repr__ = lambda self: "<gr_block %s (%d)>" % (self.name(), self.unique_id()) Geometric_Loss_ff = Geometric_Loss_ff.make; class Laser_ff(object): """ FSO Laser Module. The block generate optical power output based on average power and extinction ratio. Constructor Specific Documentation: Make a laser module block. Args: P_avg : average optical power (W) Wavelen : optical beam wavelength (m) ExtRatio : extiction ratio """ thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract") __repr__ = _swig_repr def make(P_avg, Wavelen, ExtRatio): """ make(float P_avg, float Wavelen, float ExtRatio) -> Laser_ff_sptr FSO Laser Module. The block generate optical power output based on average power and extinction ratio. Constructor Specific Documentation: Make a laser module block. Args: P_avg : average optical power (W) Wavelen : optical beam wavelength (m) ExtRatio : extiction ratio """ return _FSO_Comm_swig.Laser_ff_make(P_avg, Wavelen, ExtRatio) make = staticmethod(make) def set_P_avg(self, P_avg): """ set_P_avg(Laser_ff self, float P_avg) Set laser module average optical power. """ return _FSO_Comm_swig.Laser_ff_set_P_avg(self, P_avg) def P_avg(self): """ P_avg(Laser_ff self) -> float Return current laser module average optical power. """ return _FSO_Comm_swig.Laser_ff_P_avg(self) def set_Wavelen(self, Wavelen): """ set_Wavelen(Laser_ff self, float Wavelen) Set laser module wavelength. """ return _FSO_Comm_swig.Laser_ff_set_Wavelen(self, Wavelen) def Wavelen(self): """ Wavelen(Laser_ff self) -> float Return current laser module wavelength. """ return _FSO_Comm_swig.Laser_ff_Wavelen(self) def set_ExtRatio(self, ExtRatio): """ set_ExtRatio(Laser_ff self, float ExtRatio) Set current laser module extinction ratio. """ return _FSO_Comm_swig.Laser_ff_set_ExtRatio(self, ExtRatio) def ExtRatio(self): """ ExtRatio(Laser_ff self) -> float Return current laser module extinction ratio. """ return _FSO_Comm_swig.Laser_ff_ExtRatio(self) __swig_destroy__ = _FSO_Comm_swig.delete_Laser_ff __del__ = lambda self: None Laser_ff_swigregister = _FSO_Comm_swig.Laser_ff_swigregister Laser_ff_swigregister(Laser_ff) def Laser_ff_make(P_avg, Wavelen, ExtRatio): """ Laser_ff_make(float P_avg, float Wavelen, float ExtRatio) -> Laser_ff_sptr FSO Laser Module. The block generate optical power output based on average power and extinction ratio. Constructor Specific Documentation: Make a laser module block. Args: P_avg : average optical power (W) Wavelen : optical beam wavelength (m) ExtRatio : extiction ratio """ return _FSO_Comm_swig.Laser_ff_make(P_avg, Wavelen, ExtRatio) class Laser_ff_sptr(object): """Proxy of C++ boost::shared_ptr<(gr::FSO_Comm::Laser_ff)> class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ __init__(boost::shared_ptr<(gr::FSO_Comm::Laser_ff)> self) -> Laser_ff_sptr __init__(boost::shared_ptr<(gr::FSO_Comm::Laser_ff)> self, Laser_ff p) -> Laser_ff_sptr """ this = _FSO_Comm_swig.new_Laser_ff_sptr(*args) try: self.this.append(this) except __builtin__.Exception: self.this = this def __deref__(self): """__deref__(Laser_ff_sptr self) -> Laser_ff""" return _FSO_Comm_swig.Laser_ff_sptr___deref__(self) __swig_destroy__ = _FSO_Comm_swig.delete_Laser_ff_sptr __del__ = lambda self: None def make(self, P_avg, Wavelen, ExtRatio): """ make(Laser_ff_sptr self, float P_avg, float Wavelen, float ExtRatio) -> Laser_ff_sptr FSO Laser Module. The block generate optical power output based on average power and extinction ratio. Constructor Specific Documentation: Make a laser module block. Args: P_avg : average optical power (W) Wavelen : optical beam wavelength (m) ExtRatio : extiction ratio """ return _FSO_Comm_swig.Laser_ff_sptr_make(self, P_avg, Wavelen, ExtRatio) def set_P_avg(self, P_avg): """ set_P_avg(Laser_ff_sptr self, float P_avg) Set laser module average optical power. """ return _FSO_Comm_swig.Laser_ff_sptr_set_P_avg(self, P_avg) def P_avg(self): """ P_avg(Laser_ff_sptr self) -> float Return current laser module average optical power. """ return _FSO_Comm_swig.Laser_ff_sptr_P_avg(self) def set_Wavelen(self, Wavelen): """ set_Wavelen(Laser_ff_sptr self, float Wavelen) Set laser module wavelength. """ return _FSO_Comm_swig.Laser_ff_sptr_set_Wavelen(self, Wavelen) def Wavelen(self): """ Wavelen(Laser_ff_sptr self) -> float Return current laser module wavelength. """ return _FSO_Comm_swig.Laser_ff_sptr_Wavelen(self) def set_ExtRatio(self, ExtRatio): """ set_ExtRatio(Laser_ff_sptr self, float ExtRatio) Set current laser module extinction ratio. """ return _FSO_Comm_swig.Laser_ff_sptr_set_ExtRatio(self, ExtRatio) def ExtRatio(self): """ ExtRatio(Laser_ff_sptr self) -> float Return current laser module extinction ratio. """ return _FSO_Comm_swig.Laser_ff_sptr_ExtRatio(self) def history(self): """history(Laser_ff_sptr self) -> unsigned int""" return _FSO_Comm_swig.Laser_ff_sptr_history(self) def declare_sample_delay(self, *args): """ declare_sample_delay(Laser_ff_sptr self, int which, int delay) declare_sample_delay(Laser_ff_sptr self, unsigned int delay) """ return _FSO_Comm_swig.Laser_ff_sptr_declare_sample_delay(self, *args) def sample_delay(self, which): """sample_delay(Laser_ff_sptr self, int which) -> unsigned int""" return _FSO_Comm_swig.Laser_ff_sptr_sample_delay(self, which) def output_multiple(self): """output_multiple(Laser_ff_sptr self) -> int""" return _FSO_Comm_swig.Laser_ff_sptr_output_multiple(self) def relative_rate(self): """relative_rate(Laser_ff_sptr self) -> double""" return _FSO_Comm_swig.Laser_ff_sptr_relative_rate(self) def start(self): """start(Laser_ff_sptr self) -> bool""" return _FSO_Comm_swig.Laser_ff_sptr_start(self) def stop(self): """stop(Laser_ff_sptr self) -> bool""" return _FSO_Comm_swig.Laser_ff_sptr_stop(self) def nitems_read(self, which_input): """nitems_read(Laser_ff_sptr self, unsigned int which_input) -> uint64_t""" return _FSO_Comm_swig.Laser_ff_sptr_nitems_read(self, which_input) def nitems_written(self, which_output): """nitems_written(Laser_ff_sptr self, unsigned int which_output) -> uint64_t""" return _FSO_Comm_swig.Laser_ff_sptr_nitems_written(self, which_output) def max_noutput_items(self): """max_noutput_items(Laser_ff_sptr self) -> int""" return _FSO_Comm_swig.Laser_ff_sptr_max_noutput_items(self) def set_max_noutput_items(self, m): """set_max_noutput_items(Laser_ff_sptr self, int
1 # Main part of the encryption algorithm, the number cruncher :) def __des_crypt(self, block, crypt_type): """Crypt the block of data through DES bit-manipulation""" block = self.__permutate(des.__ip, block) Bn = [0] * 32 self.L = block[:32] self.R = block[32:] # Encryption starts from Kn[1] through to Kn[16] if crypt_type == des.ENCRYPT: iteration = 0 iteration_adjustment = 1 # Decryption starts from Kn[16] down to Kn[1] else: iteration = 15 iteration_adjustment = -1 i = 0 while i < 16: # Make a copy of R[i-1], this will later become L[i] tempR = self.R[:] # Permutate R[i - 1] to start creating R[i] self.R = self.__permutate(des.__expansion_table, self.R) # Exclusive or R[i - 1] with K[i], create B[1] to B[8] whilst here self.R = map(lambda x, y: x ^ y, self.R, self.Kn[iteration]) B = [self.R[:6], self.R[6:12], self.R[12:18], self.R[18:24], self.R[24:30], self.R[30:36], self.R[36:42], self.R[42:]] # Optimization: Replaced below commented code with above #j = 0 #B = [] #while j < len(self.R): # self.R[j] = self.R[j] ^ self.Kn[iteration][j] # j += 1 # if j % 6 == 0: # B.append(self.R[j-6:j]) # Permutate B[1] to B[8] using the S-Boxes j = 0 pos = 0 while j < 8: # Work out the offsets m = (B[j][0] << 1) + B[j][5] n = (B[j][1] << 3) + (B[j][2] << 2) + (B[j][3] << 1) + B[j][4] # Find the permutation value v = des.__sbox[j][(m << 4) + n] # Turn value into bits, add it to result: Bn Bn[pos] = (v & 8) >> 3 Bn[pos + 1] = (v & 4) >> 2 Bn[pos + 2] = (v & 2) >> 1 Bn[pos + 3] = v & 1 pos += 4 j += 1 # Permutate the concatination of B[1] to B[8] (Bn) self.R = self.__permutate(des.__p, Bn) # Xor with L[i - 1] self.R = map(lambda x, y: x ^ y, self.R, self.L) # Optimization: This now replaces the below commented code #j = 0 #while j < len(self.R): # self.R[j] = self.R[j] ^ self.L[j] # j += 1 # L[i] becomes R[i - 1] self.L = tempR i += 1 iteration += iteration_adjustment # Final permutation of R[16]L[16] self.final = self.__permutate(des.__fp, self.R + self.L) return self.final # Data to be encrypted/decrypted def crypt(self, data, crypt_type): """Crypt the data in blocks, running it through des_crypt()""" # Error check the data if not data: return '' if len(data) % self.block_size != 0: if crypt_type == des.DECRYPT: # Decryption must work on 8 byte blocks raise ValueError("Invalid data length, data must be a multiple of " + str(self.block_size) + " bytes\n.") if not self.getPadding(): raise ValueError("Invalid data length, data must be a multiple of " + str(self.block_size) + " bytes\n. Try setting the optional padding character") else: data += (self.block_size - (len(data) % self.block_size)) * self.getPadding() # print "Len of data: %f" % (len(data) / self.block_size) if self.getMode() == CBC: if self.getIV(): iv = self.__String_to_BitList(self.getIV()) else: raise ValueError("For CBC mode, you must supply the Initial Value (IV) for ciphering") # Split the data into blocks, crypting each one seperately i = 0 dict = {} result = [] #cached = 0 #lines = 0 while i < len(data): # Test code for caching encryption results #lines += 1 #if dict.has_key(data[i:i+8]): #print "Cached result for: %s" % data[i:i+8] # cached += 1 # result.append(dict[data[i:i+8]]) # i += 8 # continue block = self.__String_to_BitList(data[i:i+8]) # Xor with IV if using CBC mode if self.getMode() == CBC: if crypt_type == des.ENCRYPT: block = map(lambda x, y: x ^ y, block, iv) #j = 0 #while j < len(block): # block[j] = block[j] ^ iv[j] # j += 1 processed_block = self.__des_crypt(block, crypt_type) if crypt_type == des.DECRYPT: processed_block = map(lambda x, y: x ^ y, processed_block, iv) #j = 0 #while j < len(processed_block): # processed_block[j] = processed_block[j] ^ iv[j] # j += 1 iv = block else: iv = processed_block else: processed_block = self.__des_crypt(block, crypt_type) # Add the resulting crypted block to our list #d = self.__BitList_to_String(processed_block) #result.append(d) result.append(self.__BitList_to_String(processed_block)) #dict[data[i:i+8]] = d i += 8 # print "Lines: %d, cached: %d" % (lines, cached) # Return the full crypted string if _pythonMajorVersion < 3: return ''.join(result) else: return bytes.fromhex('').join(result) def encrypt(self, data, pad=None, padmode=None): """encrypt(data, [pad], [padmode]) -> bytes data : Bytes to be encrypted pad : Optional argument for encryption padding. Must only be one byte padmode : Optional argument for overriding the padding mode. The data must be a multiple of 8 bytes and will be encrypted with the already specified key. Data does not have to be a multiple of 8 bytes if the padding character is supplied, or the padmode is set to PAD_PKCS5, as bytes will then added to ensure the be padded data is a multiple of 8 bytes. """ data = self._guardAgainstUnicode(data) if pad is not None: pad = self._guardAgainstUnicode(pad) data = self._padData(data, pad, padmode) return self.crypt(data, des.ENCRYPT) def decrypt(self, data, pad=None, padmode=None): """decrypt(data, [pad], [padmode]) -> bytes data : Bytes to be encrypted pad : Optional argument for decryption padding. Must only be one byte padmode : Optional argument for overriding the padding mode. The data must be a multiple of 8 bytes and will be decrypted with the already specified key. In PAD_NORMAL mode, if the optional padding character is supplied, then the un-encrypted data will have the padding characters removed from the end of the bytes. This pad removal only occurs on the last 8 bytes of the data (last data block). In PAD_PKCS5 mode, the special padding end markers will be removed from the data after decrypting. """ data = self._guardAgainstUnicode(data) if pad is not None: pad = self._guardAgainstUnicode(pad) data = self.crypt(data, des.DECRYPT) return self._unpadData(data, pad, padmode) ############################################################################# # Triple DES # ############################################################################# class triple_des(_baseDes): """Triple DES encryption/decrytpion class This algorithm uses the DES-EDE3 (when a 24 byte key is supplied) or the DES-EDE2 (when a 16 byte key is supplied) encryption methods. Supports ECB (Electronic Code Book) and CBC (Cypher Block Chaining) modes. pyDes.des(key, [mode], [IV]) key -> Bytes containing the encryption key, must be either 16 or 24 bytes long mode -> Optional argument for encryption type, can be either pyDes.ECB (Electronic Code Book), pyDes.CBC (Cypher Block Chaining) IV -> Optional Initial Value bytes, must be supplied if using CBC mode. Must be 8 bytes in length. pad -> Optional argument, set the pad character (PAD_NORMAL) to use during all encrypt/decrpt operations done with this instance. padmode -> Optional argument, set the padding mode (PAD_NORMAL or PAD_PKCS5) to use during all encrypt/decrpt operations done with this instance. """ def __init__(self, key, mode=ECB, IV=None, pad=None, padmode=PAD_NORMAL): _baseDes.__init__(self, mode, IV, pad, padmode) self.setKey(key) def setKey(self, key): """Will set the crypting key for this object. Either 16 or 24 bytes long.""" self.key_size = 24 # Use DES-EDE3 mode if len(key) != self.key_size: if len(key) == 16: # Use DES-EDE2 mode self.key_size = 16 else: raise ValueError("Invalid triple DES key size. Key must be either 16 or 24 bytes long") if self.getMode() == CBC: if not self.getIV(): # Use the first 8 bytes of the key self._iv = key[:self.block_size] if len(self.getIV()) != self.block_size: raise ValueError("Invalid IV, must be 8 bytes in length") self.__key1 = des(key[:8], self._mode, self._iv, self._padding, self._padmode) self.__key2 = des(key[8:16], self._mode, self._iv, self._padding, self._padmode) if self.key_size == 16: self.__key3 = self.__key1 else: self.__key3 = des(key[16:], self._mode, self._iv, self._padding, self._padmode) _baseDes.setKey(self, key) # Override setter methods to work on all 3 keys. def setMode(self, mode): """Sets the type of crypting mode, pyDes.ECB or pyDes.CBC""" _baseDes.setMode(self, mode) for key in (self.__key1, self.__key2, self.__key3): key.setMode(mode) def setPadding(self, pad): """setPadding() -> bytes of length 1. Padding character.""" _baseDes.setPadding(self, pad) for key in (self.__key1, self.__key2, self.__key3): key.setPadding(pad) def setPadMode(self, mode): """Sets the type of padding mode, pyDes.PAD_NORMAL or pyDes.PAD_PKCS5""" _baseDes.setPadMode(self, mode) for key in (self.__key1,
= CFUNCTYPE(None, GLenum, GLenum, POINTER(GLint)) # GL/glext.h:5223 PFNGLPIXELTRANSFORMPARAMETERFVEXTPROC = CFUNCTYPE(None, GLenum, GLenum, POINTER(GLfloat)) # GL/glext.h:5224 # EXT_pixel_transform_color_table (GL/glext.h:5227) GL_EXT_pixel_transform_color_table = 1 # GL/glext.h:5228 # EXT_shared_texture_palette (GL/glext.h:5231) GL_EXT_shared_texture_palette = 1 # GL/glext.h:5232 # EXT_separate_specular_color (GL/glext.h:5235) GL_EXT_separate_specular_color = 1 # GL/glext.h:5236 # EXT_secondary_color (GL/glext.h:5239) GL_EXT_secondary_color = 1 # GL/glext.h:5240 # GL/glext.h:5242 glSecondaryColor3bEXT = _link_function('glSecondaryColor3bEXT', None, [GLbyte, GLbyte, GLbyte], 'EXT_secondary_color') # GL/glext.h:5243 glSecondaryColor3bvEXT = _link_function('glSecondaryColor3bvEXT', None, [POINTER(GLbyte)], 'EXT_secondary_color') # GL/glext.h:5244 glSecondaryColor3dEXT = _link_function('glSecondaryColor3dEXT', None, [GLdouble, GLdouble, GLdouble], 'EXT_secondary_color') # GL/glext.h:5245 glSecondaryColor3dvEXT = _link_function('glSecondaryColor3dvEXT', None, [POINTER(GLdouble)], 'EXT_secondary_color') # GL/glext.h:5246 glSecondaryColor3fEXT = _link_function('glSecondaryColor3fEXT', None, [GLfloat, GLfloat, GLfloat], 'EXT_secondary_color') # GL/glext.h:5247 glSecondaryColor3fvEXT = _link_function('glSecondaryColor3fvEXT', None, [POINTER(GLfloat)], 'EXT_secondary_color') # GL/glext.h:5248 glSecondaryColor3iEXT = _link_function('glSecondaryColor3iEXT', None, [GLint, GLint, GLint], 'EXT_secondary_color') # GL/glext.h:5249 glSecondaryColor3ivEXT = _link_function('glSecondaryColor3ivEXT', None, [POINTER(GLint)], 'EXT_secondary_color') # GL/glext.h:5250 glSecondaryColor3sEXT = _link_function('glSecondaryColor3sEXT', None, [GLshort, GLshort, GLshort], 'EXT_secondary_color') # GL/glext.h:5251 glSecondaryColor3svEXT = _link_function('glSecondaryColor3svEXT', None, [POINTER(GLshort)], 'EXT_secondary_color') # GL/glext.h:5252 glSecondaryColor3ubEXT = _link_function('glSecondaryColor3ubEXT', None, [GLubyte, GLubyte, GLubyte], 'EXT_secondary_color') # GL/glext.h:5253 glSecondaryColor3ubvEXT = _link_function('glSecondaryColor3ubvEXT', None, [POINTER(GLubyte)], 'EXT_secondary_color') # GL/glext.h:5254 glSecondaryColor3uiEXT = _link_function('glSecondaryColor3uiEXT', None, [GLuint, GLuint, GLuint], 'EXT_secondary_color') # GL/glext.h:5255 glSecondaryColor3uivEXT = _link_function('glSecondaryColor3uivEXT', None, [POINTER(GLuint)], 'EXT_secondary_color') # GL/glext.h:5256 glSecondaryColor3usEXT = _link_function('glSecondaryColor3usEXT', None, [GLushort, GLushort, GLushort], 'EXT_secondary_color') # GL/glext.h:5257 glSecondaryColor3usvEXT = _link_function('glSecondaryColor3usvEXT', None, [POINTER(GLushort)], 'EXT_secondary_color') # GL/glext.h:5258 glSecondaryColorPointerEXT = _link_function('glSecondaryColorPointerEXT', None, [GLint, GLenum, GLsizei, POINTER(GLvoid)], 'EXT_secondary_color') PFNGLSECONDARYCOLOR3BEXTPROC = CFUNCTYPE(None, GLbyte, GLbyte, GLbyte) # GL/glext.h:5260 PFNGLSECONDARYCOLOR3BVEXTPROC = CFUNCTYPE(None, POINTER(GLbyte)) # GL/glext.h:5261 PFNGLSECONDARYCOLOR3DEXTPROC = CFUNCTYPE(None, GLdouble, GLdouble, GLdouble) # GL/glext.h:5262 PFNGLSECONDARYCOLOR3DVEXTPROC = CFUNCTYPE(None, POINTER(GLdouble)) # GL/glext.h:5263 PFNGLSECONDARYCOLOR3FEXTPROC = CFUNCTYPE(None, GLfloat, GLfloat, GLfloat) # GL/glext.h:5264 PFNGLSECONDARYCOLOR3FVEXTPROC = CFUNCTYPE(None, POINTER(GLfloat)) # GL/glext.h:5265 PFNGLSECONDARYCOLOR3IEXTPROC = CFUNCTYPE(None, GLint, GLint, GLint) # GL/glext.h:5266 PFNGLSECONDARYCOLOR3IVEXTPROC = CFUNCTYPE(None, POINTER(GLint)) # GL/glext.h:5267 PFNGLSECONDARYCOLOR3SEXTPROC = CFUNCTYPE(None, GLshort, GLshort, GLshort) # GL/glext.h:5268 PFNGLSECONDARYCOLOR3SVEXTPROC = CFUNCTYPE(None, POINTER(GLshort)) # GL/glext.h:5269 PFNGLSECONDARYCOLOR3UBEXTPROC = CFUNCTYPE(None, GLubyte, GLubyte, GLubyte) # GL/glext.h:5270 PFNGLSECONDARYCOLOR3UBVEXTPROC = CFUNCTYPE(None, POINTER(GLubyte)) # GL/glext.h:5271 PFNGLSECONDARYCOLOR3UIEXTPROC = CFUNCTYPE(None, GLuint, GLuint, GLuint) # GL/glext.h:5272 PFNGLSECONDARYCOLOR3UIVEXTPROC = CFUNCTYPE(None, POINTER(GLuint)) # GL/glext.h:5273 PFNGLSECONDARYCOLOR3USEXTPROC = CFUNCTYPE(None, GLushort, GLushort, GLushort) # GL/glext.h:5274 PFNGLSECONDARYCOLOR3USVEXTPROC = CFUNCTYPE(None, POINTER(GLushort)) # GL/glext.h:5275 PFNGLSECONDARYCOLORPOINTEREXTPROC = CFUNCTYPE(None, GLint, GLenum, GLsizei, POINTER(GLvoid)) # GL/glext.h:5276 # EXT_texture_perturb_normal (GL/glext.h:5279) GL_EXT_texture_perturb_normal = 1 # GL/glext.h:5280 # GL/glext.h:5282 glTextureNormalEXT = _link_function('glTextureNormalEXT', None, [GLenum], 'EXT_texture_perturb_normal') PFNGLTEXTURENORMALEXTPROC = CFUNCTYPE(None, GLenum) # GL/glext.h:5284 # EXT_multi_draw_arrays (GL/glext.h:5287) GL_EXT_multi_draw_arrays = 1 # GL/glext.h:5288 # GL/glext.h:5290 glMultiDrawArraysEXT = _link_function('glMultiDrawArraysEXT', None, [GLenum, POINTER(GLint), POINTER(GLsizei), GLsizei], 'EXT_multi_draw_arrays') # GL/glext.h:5291 glMultiDrawElementsEXT = _link_function('glMultiDrawElementsEXT', None, [GLenum, POINTER(GLsizei), GLenum, POINTER(POINTER(GLvoid)), GLsizei], 'EXT_multi_draw_arrays') PFNGLMULTIDRAWARRAYSEXTPROC = CFUNCTYPE(None, GLenum, POINTER(GLint), POINTER(GLsizei), GLsizei) # GL/glext.h:5293 PFNGLMULTIDRAWELEMENTSEXTPROC = CFUNCTYPE(None, GLenum, POINTER(GLsizei), GLenum, POINTER(POINTER(GLvoid)), GLsizei) # GL/glext.h:5294 # EXT_fog_coord (GL/glext.h:5297) GL_EXT_fog_coord = 1 # GL/glext.h:5298 # GL/glext.h:5300 glFogCoordfEXT = _link_function('glFogCoordfEXT', None, [GLfloat], 'EXT_fog_coord') # GL/glext.h:5301 glFogCoordfvEXT = _link_function('glFogCoordfvEXT', None, [POINTER(GLfloat)], 'EXT_fog_coord') # GL/glext.h:5302 glFogCoorddEXT = _link_function('glFogCoorddEXT', None, [GLdouble], 'EXT_fog_coord') # GL/glext.h:5303 glFogCoorddvEXT = _link_function('glFogCoorddvEXT', None, [POINTER(GLdouble)], 'EXT_fog_coord') # GL/glext.h:5304 glFogCoordPointerEXT = _link_function('glFogCoordPointerEXT', None, [GLenum, GLsizei, POINTER(GLvoid)], 'EXT_fog_coord') PFNGLFOGCOORDFEXTPROC = CFUNCTYPE(None, GLfloat) # GL/glext.h:5306 PFNGLFOGCOORDFVEXTPROC = CFUNCTYPE(None, POINTER(GLfloat)) # GL/glext.h:5307 PFNGLFOGCOORDDEXTPROC = CFUNCTYPE(None, GLdouble) # GL/glext.h:5308 PFNGLFOGCOORDDVEXTPROC = CFUNCTYPE(None, POINTER(GLdouble)) # GL/glext.h:5309 PFNGLFOGCOORDPOINTEREXTPROC = CFUNCTYPE(None, GLenum, GLsizei, POINTER(GLvoid)) # GL/glext.h:5310 # REND_screen_coordinates (GL/glext.h:5313) GL_REND_screen_coordinates = 1 # GL/glext.h:5314 # EXT_coordinate_frame (GL/glext.h:5317) GL_EXT_coordinate_frame = 1 # GL/glext.h:5318 # GL/glext.h:5320 glTangent3bEXT = _link_function('glTangent3bEXT', None, [GLbyte, GLbyte, GLbyte], 'EXT_coordinate_frame') # GL/glext.h:5321 glTangent3bvEXT = _link_function('glTangent3bvEXT', None, [POINTER(GLbyte)], 'EXT_coordinate_frame') # GL/glext.h:5322 glTangent3dEXT = _link_function('glTangent3dEXT', None, [GLdouble, GLdouble, GLdouble], 'EXT_coordinate_frame') # GL/glext.h:5323 glTangent3dvEXT = _link_function('glTangent3dvEXT', None, [POINTER(GLdouble)], 'EXT_coordinate_frame') # GL/glext.h:5324 glTangent3fEXT = _link_function('glTangent3fEXT', None, [GLfloat, GLfloat, GLfloat], 'EXT_coordinate_frame') # GL/glext.h:5325 glTangent3fvEXT = _link_function('glTangent3fvEXT', None, [POINTER(GLfloat)], 'EXT_coordinate_frame') # GL/glext.h:5326 glTangent3iEXT = _link_function('glTangent3iEXT', None, [GLint, GLint, GLint], 'EXT_coordinate_frame') # GL/glext.h:5327 glTangent3ivEXT = _link_function('glTangent3ivEXT', None, [POINTER(GLint)], 'EXT_coordinate_frame') # GL/glext.h:5328 glTangent3sEXT = _link_function('glTangent3sEXT', None, [GLshort, GLshort, GLshort], 'EXT_coordinate_frame') # GL/glext.h:5329 glTangent3svEXT = _link_function('glTangent3svEXT', None, [POINTER(GLshort)], 'EXT_coordinate_frame') # GL/glext.h:5330 glBinormal3bEXT = _link_function('glBinormal3bEXT', None, [GLbyte, GLbyte, GLbyte], 'EXT_coordinate_frame') # GL/glext.h:5331 glBinormal3bvEXT = _link_function('glBinormal3bvEXT', None, [POINTER(GLbyte)], 'EXT_coordinate_frame') # GL/glext.h:5332 glBinormal3dEXT = _link_function('glBinormal3dEXT', None, [GLdouble, GLdouble, GLdouble], 'EXT_coordinate_frame') # GL/glext.h:5333 glBinormal3dvEXT = _link_function('glBinormal3dvEXT', None, [POINTER(GLdouble)], 'EXT_coordinate_frame') # GL/glext.h:5334 glBinormal3fEXT = _link_function('glBinormal3fEXT', None, [GLfloat, GLfloat, GLfloat], 'EXT_coordinate_frame') # GL/glext.h:5335 glBinormal3fvEXT = _link_function('glBinormal3fvEXT', None, [POINTER(GLfloat)], 'EXT_coordinate_frame') # GL/glext.h:5336 glBinormal3iEXT = _link_function('glBinormal3iEXT', None, [GLint, GLint, GLint], 'EXT_coordinate_frame') # GL/glext.h:5337 glBinormal3ivEXT = _link_function('glBinormal3ivEXT', None, [POINTER(GLint)], 'EXT_coordinate_frame') # GL/glext.h:5338 glBinormal3sEXT = _link_function('glBinormal3sEXT', None, [GLshort, GLshort, GLshort], 'EXT_coordinate_frame') # GL/glext.h:5339 glBinormal3svEXT = _link_function('glBinormal3svEXT', None, [POINTER(GLshort)], 'EXT_coordinate_frame') # GL/glext.h:5340 glTangentPointerEXT = _link_function('glTangentPointerEXT', None, [GLenum, GLsizei, POINTER(GLvoid)], 'EXT_coordinate_frame') # GL/glext.h:5341 glBinormalPointerEXT = _link_function('glBinormalPointerEXT', None, [GLenum, GLsizei, POINTER(GLvoid)], 'EXT_coordinate_frame') PFNGLTANGENT3BEXTPROC = CFUNCTYPE(None, GLbyte, GLbyte, GLbyte) # GL/glext.h:5343 PFNGLTANGENT3BVEXTPROC = CFUNCTYPE(None, POINTER(GLbyte)) # GL/glext.h:5344 PFNGLTANGENT3DEXTPROC = CFUNCTYPE(None, GLdouble, GLdouble, GLdouble) # GL/glext.h:5345 PFNGLTANGENT3DVEXTPROC = CFUNCTYPE(None, POINTER(GLdouble)) # GL/glext.h:5346 PFNGLTANGENT3FEXTPROC = CFUNCTYPE(None, GLfloat, GLfloat, GLfloat) # GL/glext.h:5347 PFNGLTANGENT3FVEXTPROC = CFUNCTYPE(None, POINTER(GLfloat)) # GL/glext.h:5348 PFNGLTANGENT3IEXTPROC = CFUNCTYPE(None, GLint, GLint, GLint) # GL/glext.h:5349 PFNGLTANGENT3IVEXTPROC = CFUNCTYPE(None, POINTER(GLint)) # GL/glext.h:5350 PFNGLTANGENT3SEXTPROC = CFUNCTYPE(None, GLshort, GLshort, GLshort) # GL/glext.h:5351 PFNGLTANGENT3SVEXTPROC = CFUNCTYPE(None, POINTER(GLshort)) # GL/glext.h:5352 PFNGLBINORMAL3BEXTPROC = CFUNCTYPE(None, GLbyte, GLbyte, GLbyte) # GL/glext.h:5353 PFNGLBINORMAL3BVEXTPROC = CFUNCTYPE(None, POINTER(GLbyte)) # GL/glext.h:5354 PFNGLBINORMAL3DEXTPROC = CFUNCTYPE(None, GLdouble, GLdouble, GLdouble) # GL/glext.h:5355 PFNGLBINORMAL3DVEXTPROC = CFUNCTYPE(None, POINTER(GLdouble)) # GL/glext.h:5356 PFNGLBINORMAL3FEXTPROC = CFUNCTYPE(None, GLfloat, GLfloat, GLfloat) # GL/glext.h:5357 PFNGLBINORMAL3FVEXTPROC = CFUNCTYPE(None, POINTER(GLfloat)) # GL/glext.h:5358 PFNGLBINORMAL3IEXTPROC = CFUNCTYPE(None, GLint, GLint, GLint) # GL/glext.h:5359 PFNGLBINORMAL3IVEXTPROC = CFUNCTYPE(None, POINTER(GLint)) # GL/glext.h:5360 PFNGLBINORMAL3SEXTPROC = CFUNCTYPE(None, GLshort, GLshort, GLshort) # GL/glext.h:5361 PFNGLBINORMAL3SVEXTPROC = CFUNCTYPE(None, POINTER(GLshort)) # GL/glext.h:5362 PFNGLTANGENTPOINTEREXTPROC = CFUNCTYPE(None, GLenum, GLsizei, POINTER(GLvoid)) # GL/glext.h:5363 PFNGLBINORMALPOINTEREXTPROC = CFUNCTYPE(None, GLenum, GLsizei, POINTER(GLvoid)) # GL/glext.h:5364 # EXT_texture_env_combine (GL/glext.h:5367) GL_EXT_texture_env_combine = 1 # GL/glext.h:5368 # APPLE_specular_vector (GL/glext.h:5371) GL_APPLE_specular_vector = 1 # GL/glext.h:5372 # APPLE_transform_hint (GL/glext.h:5375) GL_APPLE_transform_hint = 1 # GL/glext.h:5376 # SGIX_fog_scale (GL/glext.h:5379) GL_SGIX_fog_scale = 1 # GL/glext.h:5380 # SUNX_constant_data (GL/glext.h:5383) GL_SUNX_constant_data = 1 # GL/glext.h:5384 # GL/glext.h:5386 glFinishTextureSUNX = _link_function('glFinishTextureSUNX', None, [], 'SUNX_constant_data') PFNGLFINISHTEXTURESUNXPROC = CFUNCTYPE(None) # GL/glext.h:5388 # SUN_global_alpha (GL/glext.h:5391) GL_SUN_global_alpha = 1 # GL/glext.h:5392 # GL/glext.h:5394 glGlobalAlphaFactorbSUN = _link_function('glGlobalAlphaFactorbSUN', None, [GLbyte], 'SUN_global_alpha') # GL/glext.h:5395 glGlobalAlphaFactorsSUN = _link_function('glGlobalAlphaFactorsSUN', None, [GLshort], 'SUN_global_alpha') # GL/glext.h:5396 glGlobalAlphaFactoriSUN = _link_function('glGlobalAlphaFactoriSUN', None, [GLint], 'SUN_global_alpha') # GL/glext.h:5397 glGlobalAlphaFactorfSUN = _link_function('glGlobalAlphaFactorfSUN', None, [GLfloat], 'SUN_global_alpha') # GL/glext.h:5398 glGlobalAlphaFactordSUN = _link_function('glGlobalAlphaFactordSUN', None, [GLdouble], 'SUN_global_alpha') # GL/glext.h:5399 glGlobalAlphaFactorubSUN = _link_function('glGlobalAlphaFactorubSUN', None, [GLubyte], 'SUN_global_alpha') # GL/glext.h:5400 glGlobalAlphaFactorusSUN = _link_function('glGlobalAlphaFactorusSUN', None, [GLushort], 'SUN_global_alpha') # GL/glext.h:5401 glGlobalAlphaFactoruiSUN = _link_function('glGlobalAlphaFactoruiSUN', None, [GLuint], 'SUN_global_alpha') PFNGLGLOBALALPHAFACTORBSUNPROC = CFUNCTYPE(None, GLbyte) # GL/glext.h:5403 PFNGLGLOBALALPHAFACTORSSUNPROC = CFUNCTYPE(None, GLshort) # GL/glext.h:5404 PFNGLGLOBALALPHAFACTORISUNPROC = CFUNCTYPE(None, GLint) # GL/glext.h:5405 PFNGLGLOBALALPHAFACTORFSUNPROC = CFUNCTYPE(None, GLfloat) # GL/glext.h:5406 PFNGLGLOBALALPHAFACTORDSUNPROC = CFUNCTYPE(None, GLdouble) # GL/glext.h:5407 PFNGLGLOBALALPHAFACTORUBSUNPROC = CFUNCTYPE(None, GLubyte) # GL/glext.h:5408 PFNGLGLOBALALPHAFACTORUSSUNPROC = CFUNCTYPE(None, GLushort) # GL/glext.h:5409 PFNGLGLOBALALPHAFACTORUISUNPROC = CFUNCTYPE(None, GLuint) # GL/glext.h:5410 # SUN_triangle_list (GL/glext.h:5413) GL_SUN_triangle_list = 1 # GL/glext.h:5414 # GL/glext.h:5416 glReplacementCodeuiSUN = _link_function('glReplacementCodeuiSUN', None, [GLuint], 'SUN_triangle_list') # GL/glext.h:5417 glReplacementCodeusSUN = _link_function('glReplacementCodeusSUN', None, [GLushort], 'SUN_triangle_list') # GL/glext.h:5418 glReplacementCodeubSUN = _link_function('glReplacementCodeubSUN', None, [GLubyte], 'SUN_triangle_list') # GL/glext.h:5419 glReplacementCodeuivSUN = _link_function('glReplacementCodeuivSUN', None, [POINTER(GLuint)], 'SUN_triangle_list') # GL/glext.h:5420 glReplacementCodeusvSUN = _link_function('glReplacementCodeusvSUN', None, [POINTER(GLushort)], 'SUN_triangle_list') # GL/glext.h:5421 glReplacementCodeubvSUN = _link_function('glReplacementCodeubvSUN', None, [POINTER(GLubyte)], 'SUN_triangle_list') # GL/glext.h:5422 glReplacementCodePointerSUN = _link_function('glReplacementCodePointerSUN', None, [GLenum, GLsizei, POINTER(POINTER(GLvoid))], 'SUN_triangle_list') PFNGLREPLACEMENTCODEUISUNPROC = CFUNCTYPE(None, GLuint) # GL/glext.h:5424 PFNGLREPLACEMENTCODEUSSUNPROC = CFUNCTYPE(None, GLushort) # GL/glext.h:5425 PFNGLREPLACEMENTCODEUBSUNPROC = CFUNCTYPE(None, GLubyte) # GL/glext.h:5426 PFNGLREPLACEMENTCODEUIVSUNPROC = CFUNCTYPE(None, POINTER(GLuint)) # GL/glext.h:5427 PFNGLREPLACEMENTCODEUSVSUNPROC = CFUNCTYPE(None, POINTER(GLushort)) # GL/glext.h:5428 PFNGLREPLACEMENTCODEUBVSUNPROC = CFUNCTYPE(None, POINTER(GLubyte)) # GL/glext.h:5429 PFNGLREPLACEMENTCODEPOINTERSUNPROC = CFUNCTYPE(None, GLenum, GLsizei, POINTER(POINTER(GLvoid))) # GL/glext.h:5430 # SUN_vertex (GL/glext.h:5433) GL_SUN_vertex = 1 # GL/glext.h:5434 # GL/glext.h:5436 glColor4ubVertex2fSUN = _link_function('glColor4ubVertex2fSUN', None, [GLubyte, GLubyte, GLubyte, GLubyte, GLfloat, GLfloat], 'SUN_vertex') # GL/glext.h:5437 glColor4ubVertex2fvSUN = _link_function('glColor4ubVertex2fvSUN', None, [POINTER(GLubyte), POINTER(GLfloat)], 'SUN_vertex') # GL/glext.h:5438 glColor4ubVertex3fSUN = _link_function('glColor4ubVertex3fSUN', None, [GLubyte, GLubyte, GLubyte, GLubyte, GLfloat, GLfloat, GLfloat], 'SUN_vertex') # GL/glext.h:5439 glColor4ubVertex3fvSUN = _link_function('glColor4ubVertex3fvSUN', None, [POINTER(GLubyte), POINTER(GLfloat)], 'SUN_vertex') # GL/glext.h:5440 glColor3fVertex3fSUN = _link_function('glColor3fVertex3fSUN', None, [GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat], 'SUN_vertex') # GL/glext.h:5441 glColor3fVertex3fvSUN = _link_function('glColor3fVertex3fvSUN', None, [POINTER(GLfloat), POINTER(GLfloat)], 'SUN_vertex') # GL/glext.h:5442 glNormal3fVertex3fSUN = _link_function('glNormal3fVertex3fSUN', None, [GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat], 'SUN_vertex') # GL/glext.h:5443 glNormal3fVertex3fvSUN = _link_function('glNormal3fVertex3fvSUN', None, [POINTER(GLfloat), POINTER(GLfloat)], 'SUN_vertex') # GL/glext.h:5444 glColor4fNormal3fVertex3fSUN = _link_function('glColor4fNormal3fVertex3fSUN', None, [GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat], 'SUN_vertex') # GL/glext.h:5445 glColor4fNormal3fVertex3fvSUN = _link_function('glColor4fNormal3fVertex3fvSUN', None, [POINTER(GLfloat), POINTER(GLfloat), POINTER(GLfloat)], 'SUN_vertex') # GL/glext.h:5446 glTexCoord2fVertex3fSUN = _link_function('glTexCoord2fVertex3fSUN', None, [GLfloat, GLfloat, GLfloat, GLfloat, GLfloat], 'SUN_vertex') # GL/glext.h:5447 glTexCoord2fVertex3fvSUN = _link_function('glTexCoord2fVertex3fvSUN', None, [POINTER(GLfloat), POINTER(GLfloat)], 'SUN_vertex') # GL/glext.h:5448 glTexCoord4fVertex4fSUN = _link_function('glTexCoord4fVertex4fSUN', None, [GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat], 'SUN_vertex') # GL/glext.h:5449 glTexCoord4fVertex4fvSUN = _link_function('glTexCoord4fVertex4fvSUN', None, [POINTER(GLfloat), POINTER(GLfloat)], 'SUN_vertex') # GL/glext.h:5450 glTexCoord2fColor4ubVertex3fSUN = _link_function('glTexCoord2fColor4ubVertex3fSUN', None, [GLfloat, GLfloat, GLubyte, GLubyte, GLubyte, GLubyte, GLfloat, GLfloat, GLfloat], 'SUN_vertex') # GL/glext.h:5451 glTexCoord2fColor4ubVertex3fvSUN = _link_function('glTexCoord2fColor4ubVertex3fvSUN', None, [POINTER(GLfloat), POINTER(GLubyte), POINTER(GLfloat)], 'SUN_vertex') # GL/glext.h:5452 glTexCoord2fColor3fVertex3fSUN = _link_function('glTexCoord2fColor3fVertex3fSUN', None, [GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat], 'SUN_vertex') # GL/glext.h:5453 glTexCoord2fColor3fVertex3fvSUN = _link_function('glTexCoord2fColor3fVertex3fvSUN', None, [POINTER(GLfloat), POINTER(GLfloat), POINTER(GLfloat)], 'SUN_vertex') # GL/glext.h:5454 glTexCoord2fNormal3fVertex3fSUN = _link_function('glTexCoord2fNormal3fVertex3fSUN', None, [GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat], 'SUN_vertex') # GL/glext.h:5455 glTexCoord2fNormal3fVertex3fvSUN = _link_function('glTexCoord2fNormal3fVertex3fvSUN', None, [POINTER(GLfloat), POINTER(GLfloat), POINTER(GLfloat)], 'SUN_vertex') # GL/glext.h:5456 glTexCoord2fColor4fNormal3fVertex3fSUN = _link_function('glTexCoord2fColor4fNormal3fVertex3fSUN', None, [GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat], 'SUN_vertex') # GL/glext.h:5457 glTexCoord2fColor4fNormal3fVertex3fvSUN = _link_function('glTexCoord2fColor4fNormal3fVertex3fvSUN', None, [POINTER(GLfloat), POINTER(GLfloat), POINTER(GLfloat), POINTER(GLfloat)], 'SUN_vertex') # GL/glext.h:5458 glTexCoord4fColor4fNormal3fVertex4fSUN = _link_function('glTexCoord4fColor4fNormal3fVertex4fSUN', None, [GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat], 'SUN_vertex') # GL/glext.h:5459 glTexCoord4fColor4fNormal3fVertex4fvSUN = _link_function('glTexCoord4fColor4fNormal3fVertex4fvSUN', None, [POINTER(GLfloat), POINTER(GLfloat), POINTER(GLfloat), POINTER(GLfloat)], 'SUN_vertex') # GL/glext.h:5460 glReplacementCodeuiVertex3fSUN = _link_function('glReplacementCodeuiVertex3fSUN', None, [GLuint, GLfloat, GLfloat, GLfloat], 'SUN_vertex') # GL/glext.h:5461 glReplacementCodeuiVertex3fvSUN = _link_function('glReplacementCodeuiVertex3fvSUN', None, [POINTER(GLuint), POINTER(GLfloat)], 'SUN_vertex') # GL/glext.h:5462 glReplacementCodeuiColor4ubVertex3fSUN = _link_function('glReplacementCodeuiColor4ubVertex3fSUN', None, [GLuint, GLubyte, GLubyte, GLubyte, GLubyte, GLfloat, GLfloat, GLfloat], 'SUN_vertex') # GL/glext.h:5463 glReplacementCodeuiColor4ubVertex3fvSUN = _link_function('glReplacementCodeuiColor4ubVertex3fvSUN', None, [POINTER(GLuint), POINTER(GLubyte), POINTER(GLfloat)], 'SUN_vertex') # GL/glext.h:5464 glReplacementCodeuiColor3fVertex3fSUN = _link_function('glReplacementCodeuiColor3fVertex3fSUN', None, [GLuint, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat], 'SUN_vertex') # GL/glext.h:5465 glReplacementCodeuiColor3fVertex3fvSUN = _link_function('glReplacementCodeuiColor3fVertex3fvSUN', None, [POINTER(GLuint), POINTER(GLfloat), POINTER(GLfloat)], 'SUN_vertex') # GL/glext.h:5466 glReplacementCodeuiNormal3fVertex3fSUN = _link_function('glReplacementCodeuiNormal3fVertex3fSUN', None, [GLuint, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat], 'SUN_vertex') # GL/glext.h:5467 glReplacementCodeuiNormal3fVertex3fvSUN = _link_function('glReplacementCodeuiNormal3fVertex3fvSUN', None, [POINTER(GLuint), POINTER(GLfloat), POINTER(GLfloat)], 'SUN_vertex') # GL/glext.h:5468 glReplacementCodeuiColor4fNormal3fVertex3fSUN = _link_function('glReplacementCodeuiColor4fNormal3fVertex3fSUN', None, [GLuint, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat], 'SUN_vertex') # GL/glext.h:5469 glReplacementCodeuiColor4fNormal3fVertex3fvSUN = _link_function('glReplacementCodeuiColor4fNormal3fVertex3fvSUN', None, [POINTER(GLuint), POINTER(GLfloat), POINTER(GLfloat), POINTER(GLfloat)], 'SUN_vertex') # GL/glext.h:5470 glReplacementCodeuiTexCoord2fVertex3fSUN = _link_function('glReplacementCodeuiTexCoord2fVertex3fSUN', None, [GLuint, GLfloat, GLfloat, GLfloat, GLfloat, GLfloat],
the string cannot be converted to a numeric value, the Stata system missing value is returned. """ return _stp._st_getrealofstring(s) @staticmethod def getTempFile(): """ Get a valid Stata temporary filename. Returns ------- str The filename, including its path. """ return _stp._st_gettempfile() @staticmethod def getTempName(): """ Get a valid Stata temporary name. Returns ------- str The tempname. """ return _stp._st_gettempname() @staticmethod def getWorkingDir(): """ Get the current Stata working directory. Returns ------- str The path of the current working directory. """ return _stp._st_getworkingdir() @staticmethod def isFmt(fmt): """ Test if a format is a valid Stata format. Parameters ---------- fmt : str The format to test. Returns ------- bool True if the format is a valid Stata format. """ b = _stp._st_getfmttype(fmt) if b=="": return False else: return True @staticmethod def isNumFmt(fmt): """ Test if a format is a valid Stata numeric format. Parameters ---------- fmt : str The format to test. Returns ------- bool True if the format is a valid Stata numeric format. """ b = _stp._st_getfmttype(fmt) if b=="numeric": return True else: return False @staticmethod def isStrFmt(fmt): """ Test if a format is a valid Stata string format. Parameters ---------- fmt : str The format to test. Returns ------- bool True if the format is a valid Stata string format. """ b = _stp._st_getfmttype(fmt) if b=="string": return True else: return False @staticmethod def isValidName(name): """ Check if a string is a valid Stata name. Parameters ---------- name : str Name to test. Returns ------- bool True if the string represents a valid Stata name. """ return _stp._st_isvalidname(name) @staticmethod def isValidVariableName(name): """ Check if a string is a valid Stata variable name. Parameters ---------- name : str Name to test. Returns ------- bool True if the string represents a valid Stata variable name. """ return _stp._st_isvalidvariablename(name) @staticmethod def macroExpand(s): """ Return `s` with any quoted or dollar sign--prefixed macros expanded. Parameters ---------- s : str The string to expand. Returns ------- str A string with macros expanded. """ return _stp._st_macroexpand(s) @staticmethod def makeVarName(s, retainCase=False): """ Attempt to form a valid variable name from a string. Parameters ---------- s : str Source string. retainCase : bool, optional Preserve the case or convert variable name to lowercase. If set to True, the case will not be converted to lowercase. Default is False. Returns ------- str The new variable name. Returns an empty string if a valid name was not created. """ if retainCase is True: rcase = 1 elif retainCase is False: rcase = 0 else: raise TypeError("retainCase must be a boolean value") return _stp._st_makevarname(s, rcase) @staticmethod def pollnow(): """ Request that Stata poll its GUI immediately. Use this method inside a time-consuming task so that the Stata interface is responsive to user inputs. Generally, :meth:`pollstd()` should be used instead. """ return _stp._st_pollnow() @staticmethod def pollstd(): """ Request that Stata poll its GUI at the standard interval. Use this method inside a time-consuming task so that the Stata interface is responsive to user inputs. """ return _stp._st_pollstd() @staticmethod def rclear(): """ Clear Stata's **r()** stored results. """ return _stp._st_rclear() @staticmethod def sclear(): """ Clear Stata's **s()** stored results. """ return _stp._st_sclear() @staticmethod def stata(s, echo=False): """ Execute a Stata command. Parameters ---------- s : str The command to execute. echo : bool, optional Echo the command. Default is False. """ if echo is True: becho = 1 elif echo is False: becho = 0 else: raise TypeError("echo must be a boolean value") return _stp._st_executecommand(s, becho) @staticmethod def strToName(s, prefix=False): """ Convert a string to a Stata name. Each character in `s` that is not allowed in a Stata name is converted to an underscore character, **_**. If the first character in `s` is a numeric character and `prefix` is specified and True, then the result is prefixed with an underscore. The result is truncated to 32 characters. Parameters ---------- s : str The string to convert. prefix : bool, optional Prefix with an underscore. Default is False. Returns ------- str A valid Stata name. """ if prefix is True: bprefix = 1 elif prefix is False: bprefix = 0 else: raise TypeError("prefix must be a boolean value") return _stp._st_strtoname(s, bprefix) class StrLConnector: """ This class facilitates access to Stata's **strL** datatype. The allowed values for the variable index `var` and the observation index `obs` are .. _ref-strlrange: .. centered:: **-nvar** `<=` `var` `<` **nvar** and .. centered:: **-nobs** `<=` `obs` `<` **nobs** Here **nvar** is the number of variables defined in the dataset currently loaded in Stata or in the specified frame, which is returned by :meth:`~Data.getVarCount()`. **nobs** is the number of observations defined in the dataset currently loaded in Stata or in the specified frame, which is returned by :meth:`~Data.getObsTotal()`. Negative values for `var` and `obs` are allowed and are interpreted in the usual way for Python indexing. `var` can be specified either as the variable name or index. Note that passing the variable index will be more efficient because looking up the index for the specified variable name is avoided. There are two ways to create a :class:`StrLConnector` instance: * StrLConnector(`var`, `obs`) Creates a :class:`StrLConnector` and connects it to a specific **strL** in the Stata dataset; see :class:`Data`. **var** : int or str Variable to access. **obs** : int Observation to access. A **ValueError** can be raised if * `var` is out of :ref:`range <ref-strlrange>` or not found. * `obs` is out of :ref:`range <ref-strlrange>`. * StrLConnector(`frame`, `var`, `obs`) Creates a :class:`StrLConnector` and connects it to a specific **strL** in the specified :class:`~Frame`. **frame** : :class:`~Frame` The :class:`Frame` to reference. **var** : int or str Variable to access. **obs** : int Observation to access. A **ValueError** can be raised if * `frame` does not already exist in Stata. * `var` is out of :ref:`range <ref-strlrange>` or not found. * `obs` is out of :ref:`range <ref-strlrange>`. """ def __init__(self, *argv): nargs = len(argv) if nargs != 2 and nargs != 3: raise TypeError("__init__() takes from 2 to 3 positional arguments") f = argv[0] if isinstance(f, Frame): if nargs != 3: raise TypeError("__init__() takes 3 required arguments when a frame is specified") var = argv[1] obs = argv[2] nobs = f.getObsTotal() nvar = f.getVarCount() ovar = _get_df_var_index_single(f.name, f.id, var) if ovar<-nvar or ovar>=nvar: raise ValueError("%d: var out of range" % (var)) if obs<-nobs or obs>=nobs: raise ValueError("%d: obs out of range" % (obs)) if not f.isVarTypeStrL(ovar): raise TypeError("type mismatch; not a strL") self._var = ovar self._obs = obs self._pos = 0 self.frame = f else: if nargs != 2: raise TypeError("__init__() takes 2 required arguments when no frame is specified") var = argv[1] nobs = Data.getObsTotal() nvar = Data.getVarCount() ovar = _get_var_index_single(f) if ovar<-nvar or ovar>=nvar: raise ValueError("%d: var out of range" % (f)) if var<-nobs or var>=nobs: raise ValueError("%d: obs out of range" % (var)) if not Data.isVarTypeStrL(ovar): raise TypeError("type mismatch; not a strL") self._var = ovar self._obs = var self._pos = 0 self.frame = None def close(self): """ Close the connection and release any resources. """ return self.reset() def getPosition(self): """ Get the current access position. Returns ------- int The position. """ return self._pos def getSize(self): """ Get the total number of bytes available in the **strL**. Returns ------- int The total number of bytes available. """ if self.frame is None: return _stp._st_getbytessize(self._var, self._obs) else: return _stp._st_df_getbytessize(self.frame.name, self.frame.id, self._var, self._obs) def isBinary(self): """ Determine if the attached **strL** has been marked as binary. Returns ------- bool True if the **strL** has been marked as binary. """ if self.frame is None: return _stp._st_isstrlbinary(self._var, self._obs) else: return _stp._st_df_isstrlbinary(self.frame.name, self.frame.id, self._var,
elem in lc_result_final], } ) if method == "efficiency": X = result["n"] Y = [ [ [ result[metric][i] - std_coeff * result[metric + "_std"][i] for i in range(len(sizes)) ], result[metric], [ result[metric][i] + std_coeff * result[metric + "_std"][i] for i in range(len(sizes)) ], ], [ [ result[metric + "_train"][i] - std_coeff * result[metric + "_train_std"][i] for i in range(len(sizes)) ], result[metric + "_train"], [ result[metric + "_train"][i] + std_coeff * result[metric + "_train_std"][i] for i in range(len(sizes)) ], ], ] x_label = "n" y_label = metric labels = [ "test", "train", ] elif method == "performance": X = result["time"] Y = [ [ [ result[metric][i] - std_coeff * result[metric + "_std"][i] for i in range(len(sizes)) ], result[metric], [ result[metric][i] + std_coeff * result[metric + "_std"][i] for i in range(len(sizes)) ], ], ] x_label = "time" y_label = metric labels = [] else: X = result["n"] Y = [ [ [ result["time"][i] - std_coeff * result["time_std"][i] for i in range(len(sizes)) ], result["time"], [ result["time"][i] + std_coeff * result["time_std"][i] for i in range(len(sizes)) ], ], ] x_label = "n" y_label = "time" labels = [] range_curve( X, Y, x_label, y_label, ax, labels, **style_kwds, ) return result # ---# def lift_chart( y_true: str, y_score: str, input_relation: Union[str, vDataFrame], cursor=None, pos_label: Union[int, float, str] = 1, nbins: int = 30, ax=None, **style_kwds, ): """ --------------------------------------------------------------------------- Draws the Lift Chart. Parameters ---------- y_true: str Response column. y_score: str Prediction Probability. input_relation: str/vDataFrame Relation to use to do the scoring. The relation can be a view or a table or even a customized relation. For example, you could write: "(SELECT ... FROM ...) x" as long as an alias is given at the end of the relation. cursor: DBcursor, optional Vertica database cursor. pos_label: int/float/str, optional To compute the Lift Chart, one of the response column classes must be the positive one. The parameter 'pos_label' represents this class. nbins: int, optional An integer value that determines the number of decision boundaries. Decision boundaries are set at equally-spaced intervals between 0 and 1, inclusive. ax: Matplotlib axes object, optional The axes to plot on. **style_kwds Any optional parameter to pass to the Matplotlib functions. Returns ------- tablesample An object containing the result. For more information, see utilities.tablesample. """ check_types( [ ("y_true", y_true, [str],), ("y_score", y_score, [str],), ("input_relation", input_relation, [str, vDataFrame],), ("nbins", nbins, [int, float],), ] ) cursor, conn, input_relation = check_cursor(cursor, input_relation) version(cursor=cursor, condition=[8, 0, 0]) query = "SELECT LIFT_TABLE(obs, prob USING PARAMETERS num_bins = {}) OVER() FROM (SELECT (CASE WHEN {} = '{}' THEN 1 ELSE 0 END) AS obs, {}::float AS prob FROM {}) AS prediction_output" query = query.format(nbins, y_true, pos_label, y_score, input_relation) executeSQL(cursor, query, "Computing the Lift Table.") query_result = cursor.fetchall() if conn: conn.close() decision_boundary, positive_prediction_ratio, lift = ( [item[0] for item in query_result], [item[1] for item in query_result], [item[2] for item in query_result], ) decision_boundary.reverse() if not (ax): fig, ax = plt.subplots() if isnotebook(): fig.set_size_inches(8, 6) ax.set_xlabel("Cumulative Data Fraction") max_value = max([0 if elem != elem else elem for elem in lift]) lift = [max_value if elem != elem else elem for elem in lift] param1 = {"color": gen_colors()[0]} ax.plot( decision_boundary, lift, **updated_dict(param1, style_kwds, 0), ) param2 = {"color": gen_colors()[1]} ax.plot( decision_boundary, positive_prediction_ratio, **updated_dict(param2, style_kwds, 1), ) color1, color2 = color_dict(style_kwds, 0), color_dict(style_kwds, 1) if color1 == color2: color2 = gen_colors()[1] ax.fill_between( decision_boundary, positive_prediction_ratio, lift, facecolor=color1, alpha=0.2 ) ax.fill_between( decision_boundary, [0 for elem in decision_boundary], positive_prediction_ratio, facecolor=color2, alpha=0.2, ) ax.set_title("Lift Table") ax.set_axisbelow(True) ax.grid() color1 = mpatches.Patch(color=color1, label="Cumulative Lift") color2 = mpatches.Patch(color=color2, label="Cumulative Capture Rate") ax.legend(handles=[color1, color2], loc="center left", bbox_to_anchor=[1, 0.5]) ax.set_xlim(0, 1) ax.set_ylim(0) return tablesample( values={ "decision_boundary": decision_boundary, "positive_prediction_ratio": positive_prediction_ratio, "lift": lift, }, ) # ---# def parameter_grid(param_grid: dict,): """ --------------------------------------------------------------------------- Generates the list of the different combinations of input parameters. Parameters ---------- param_grid: dict Dictionary of parameters. Returns ------- list of dict List of the different combinations. """ check_types([("param_grid", param_grid, [dict]),]) return [dict(zip(param_grid.keys(), values)) for values in product(*param_grid.values())] # ---# def plot_acf_pacf( vdf: vDataFrame, column: str, ts: str, by: list = [], p: Union[int, list] = 15, **style_kwds, ): """ --------------------------------------------------------------------------- Draws the ACF and PACF Charts. Parameters ---------- vdf: vDataFrame Input vDataFrame. column: str Response column. ts: str vcolumn used as timeline. It will be to use to order the data. It can be a numerical or type date like (date, datetime, timestamp...) vcolumn. by: list, optional vcolumns used in the partition. p: int/list, optional Int equals to the maximum number of lag to consider during the computation or List of the different lags to include during the computation. p must be positive or a list of positive integers. **style_kwds Any optional parameter to pass to the Matplotlib functions. Returns ------- tablesample An object containing the result. For more information, see utilities.tablesample. """ if isinstance(by, str): by = [by] check_types( [ ("column", column, [str],), ("ts", ts, [str],), ("by", by, [list],), ("p", p, [int, float],), ("vdf", vdf, [vDataFrame,],), ] ) tmp_style = {} for elem in style_kwds: if elem not in ("color", "colors"): tmp_style[elem] = style_kwds[elem] if "color" in style_kwds: color = style_kwds["color"] else: color = gen_colors()[0] columns_check([column, ts] + by, vdf) by = vdf_columns_names(by, vdf) column, ts = vdf_columns_names([column, ts], vdf) acf = vdf.acf(ts=ts, column=column, by=by, p=p, show=False) pacf = vdf.pacf(ts=ts, column=column, by=by, p=p, show=False) result = tablesample( { "index": [i for i in range(0, len(acf.values["value"]))], "acf": acf.values["value"], "pacf": pacf.values["value"], "confidence": pacf.values["confidence"], }, ) fig = plt.figure(figsize=(10, 6)) if isnotebook() else plt.figure(figsize=(10, 6)) plt.rcParams["axes.facecolor"] = "#FCFCFC" ax1 = fig.add_subplot(211) x, y, confidence = ( result.values["index"], result.values["acf"], result.values["confidence"], ) plt.xlim(-1, x[-1] + 1) ax1.bar( x, y, width=0.007 * len(x), color="#444444", zorder=1, linewidth=0, ) param = { "s": 90, "marker": "o", "facecolors": color, "edgecolors": "black", "zorder": 2, } ax1.scatter( x, y, **updated_dict(param, tmp_style,), ) ax1.plot( [-1] + x + [x[-1] + 1], [0 for elem in range(len(x) + 2)], color=color, zorder=0, ) ax1.fill_between(x, confidence, color="#FE5016", alpha=0.1) ax1.fill_between(x, [-elem for elem in confidence], color="#FE5016", alpha=0.1) ax1.set_title("Autocorrelation") y = result.values["pacf"] ax2 = fig.add_subplot(212) ax2.bar(x, y, width=0.007 * len(x), color="#444444", zorder=1, linewidth=0) ax2.scatter( x, y, **updated_dict(param, tmp_style,), ) ax2.plot( [-1] + x + [x[-1] + 1], [0 for elem in range(len(x) + 2)], color=color, zorder=0, ) ax2.fill_between(x, confidence, color="#FE5016", alpha=0.1) ax2.fill_between(x, [-elem for elem in confidence], color="#FE5016", alpha=0.1) ax2.set_title("Partial Autocorrelation") plt.show() return result # ---# def prc_curve( y_true: str, y_score: str, input_relation: Union[str, vDataFrame], cursor=None, pos_label: Union[int, float, str] = 1, nbins: int = 30, auc_prc: bool = False, ax=None, **style_kwds, ): """ --------------------------------------------------------------------------- Draws the PRC Curve. Parameters ---------- y_true: str Response column. y_score: str Prediction Probability. input_relation: str/vDataFrame Relation to use to do the scoring. The relation can be a view or a table or even a customized relation. For example, you could write: "(SELECT ... FROM ...) x" as long as an alias is given at the end of the relation. cursor: DBcursor, optional Vertica database cursor. pos_label: int/float/str, optional To compute the PRC Curve, one of the response column classes must be the positive one. The parameter 'pos_label' represents this class. nbins: int, optional An integer value that determines the number of decision boundaries. Decision boundaries are set at equally-spaced intervals between 0 and 1, inclusive. auc_prc: bool, optional If set to True, the function will return the PRC AUC without drawing the curve. ax: Matplotlib axes object, optional The axes to plot on. **style_kwds Any optional parameter to pass to the Matplotlib functions. Returns ------- tablesample An object containing the result. For more information, see utilities.tablesample. """ check_types( [ ("y_true", y_true, [str],), ("y_score", y_score, [str],), ("input_relation", input_relation, [str, vDataFrame],), ("nbins", nbins, [int, float],), ("auc_prc", auc_prc, [bool],), ] ) if nbins < 0: nbins = 999999 cursor, conn, input_relation = check_cursor(cursor, input_relation) version(cursor=cursor, condition=[9, 1, 0]) query = "SELECT PRC(obs, prob USING PARAMETERS num_bins = {}) OVER() FROM (SELECT (CASE WHEN {} = '{}' THEN 1 ELSE 0 END) AS obs, {}::float AS prob FROM {}) AS prediction_output" query = query.format(nbins, y_true, pos_label, y_score, input_relation) executeSQL(cursor, query, "Computing the PRC table.") query_result = cursor.fetchall() if conn: conn.close() threshold, recall, precision = ( [0] + [item[0] for item in query_result] + [1], [1] + [item[1] for item in query_result] + [0],
= self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class BertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BertConfig load_tf_weights = load_tf_weights_in_bert base_model_prefix = "bert" def _init_weights(self, module): """ Initialize the weights """ if isinstance(module, (nn.Linear, nn.Embedding)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, (nn.LayerNorm, BertLayerNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() BERT_START_DOCSTRING = r""" This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config (:class:`~transformers.BertConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ BERT_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using :class:`transformers.BertTokenizer`. See :func:`transformers.PreTrainedTokenizer.encode` and :func:`transformers.PreTrainedTokenizer.encode_plus` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`torch.FloatTensor` of shape :obj:`{0}`, `optional`, defaults to :obj:`None`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. `What are attention masks? <../glossary.html#attention-mask>`__ token_type_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`, defaults to :obj:`None`): Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1`` corresponds to a `sentence B` token `What are token type IDs? <../glossary.html#token-type-ids>`_ position_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`, defaults to :obj:`None`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. `What are position IDs? <../glossary.html#position-ids>`_ head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`, defaults to :obj:`None`): Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: :obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**. inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. """ @add_start_docstrings( "The bare Bert Model transformer outputting raw hidden-states without any specific head on top.", BERT_START_DOCSTRING, ) class BertModel(BertPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in `Attention is all you need`_ by <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME> and <NAME>. To behave as an decoder the model needs to be initialized with the :obj:`is_decoder` argument of the configuration set to :obj:`True`; an :obj:`encoder_hidden_states` is expected as an input to the forward pass. .. _`Attention is all you need`: https://arxiv.org/abs/1706.03762 """ def __init__(self, config): super().__init__(config) self.config = config self.embeddings = BertEmbeddings(config) self.encoder = BertEncoder(config) self.pooler = BertPooler(config) self.init_weights() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, ): r""" Return: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (:obj:`torch.FloatTensor`: of shape :obj:`(batch_size, hidden_size)`): Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pre-training. This output is usually *not* a good summary of the semantic content of the input, you're often better with averaging or pooling the sequence of hidden-states for the whole input sequence. hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: from transformers import BertModel, BertTokenizer import torch tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained('bert-base-uncased') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 outputs = model(input_ids) last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastabe to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) outputs = (sequence_output, pooled_output,) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions) @add_start_docstrings( """Bert Model with two heads on top as done during the pre-training: a `masked language modeling` head and a `next sentence prediction (classification)` head. """, BERT_START_DOCSTRING, ) class BertForPreTraining(BertPreTrainedModel): def __init__(self, config): super().__init__(config) self.bert = BertModel(config) self.cls = BertPreTrainingHeads(config) self.init_weights() def get_output_embeddings(self): return self.cls.predictions.decoder @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, next_sentence_label=None, **kwargs ): r""" labels (``torch.LongTensor`` of shape ``(batch_size, sequence_length)``, `optional`, defaults to :obj:`None`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` next_sentence_label (``torch.LongTensor`` of shape ``(batch_size,)``, `optional`, defaults to :obj:`None`): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see :obj:`input_ids` docstring) Indices should be in ``[0, 1]``. ``0`` indicates sequence B is a continuation of sequence A, ``1`` indicates sequence B is a random sequence. kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`): Used to hide legacy arguments that have been deprecated. Returns: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: loss (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`) Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when :obj:`config.output_hidden_states=True`): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: from transformers import BertTokenizer, BertForPreTraining import torch tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForPreTraining.from_pretrained('bert-base-uncased') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is
<gh_stars>0 from django.test import TestCase, override_settings from django.db.models.signals import pre_delete from unittest.mock import MagicMock from django.apps import apps from django.utils.crypto import get_random_string from django.contrib.auth.models import User from django.core.files.uploadedfile import SimpleUploadedFile import tempfile, shutil # temp dir to test filefields (test_auto_upload_dir_method) from django.utils.text import slugify import random import decimal from photologue import models as photo_models from glyke_back.models import * from glyke_back.views import create_gallery from glyke_back import signals def get_random_temp_file(extension): """"Creates a temporary byte file for testing purposes of given extension. Returns a tuple of (random file, name)""" rnd_file_name = f'{get_random_string(length=10)}.{str(extension)}' return (SimpleUploadedFile(rnd_file_name, b"these are the file contents"), rnd_file_name) MEDIA_ROOT = tempfile.mkdtemp() # temp dir to test filefields (test_auto_upload_dir_method) @override_settings(MEDIA_ROOT=MEDIA_ROOT) # temp dir to test filefields (test_auto_upload_dir_method) class ModelsTest(TestCase): @classmethod def setUpTestData(cls): cls.user_not_staff = User.objects.create(username='user_not_staff', password='password') cls.parent_cat = Category.objects.create(name='Parent cat') cls.sub_parent_cat = Category.objects.create(name='Sub-parent cat', parent = cls.parent_cat) cls.child_cat = Category.objects.create(name='Child cat', parent = cls.sub_parent_cat) cls.product_sub_parent = Product.objects.create(name='Product of sub-parent cat', category = cls.sub_parent_cat) cls.product_child = Product.objects.create(name='Product of child cat', category = cls.child_cat) cls.order = Order.objects.create(number=1, customer=None) cls.order_line = OrderLine.objects.create(parent_order=cls.order, product=cls.product_child) @classmethod def tearDownClass(cls): # delete temp dir on teardown shutil.rmtree(MEDIA_ROOT, ignore_errors=True) super().tearDownClass() def test_pre_delete_signals(self, instance_list=[]): """Assert pre_delete signals are sent with proper arguments""" instance_list = [self.parent_cat, self.sub_parent_cat, self.child_cat, self.product_sub_parent, self.product_child] for instance in reversed(instance_list): handler = MagicMock() # Create handler pre_delete.connect(handler, sender=instance.__class__) instance.delete() instance.save() # Assert the signal was called only once with the args handler.assert_called_once_with(signal=signals.pre_delete, sender=instance.__class__, instance = instance, using='default') def test_switch_parent_category_on_delete(self): """Assert categories of child categories and products switch to its 'grandparents'""" expected_new_parent = self.sub_parent_cat.parent self.sub_parent_cat.delete() self.assertEqual(Category.objects.get(id=self.child_cat.id).parent, expected_new_parent) self.assertEqual(Product.objects.get(id=self.product_sub_parent.id).category, expected_new_parent) def test_set_parent_category_none_on_delete(self): """Assert categories of child categories and products set to None if no parents available""" self.parent_cat.delete() self.sub_parent_cat.delete() # get refreshed instances for assertion self.assertIsNone(Category.objects.get(id=self.child_cat.id).parent) self.assertIsNone(Product.objects.get(id=self.product_sub_parent.id).category) def test_category_child_level_update(self): """Assert categories' child_level update as expected on CRUD""" test_cat = Category.objects.create(name='Parent cat 2') test_cat_2 = Category.objects.create(name='Sub-parent cat 2', parent = self.parent_cat) self.assertEqual(Category.objects.get(id=self.parent_cat.id).child_level, 0) self.assertEqual(Category.objects.get(id=self.sub_parent_cat.id).child_level, 1) self.assertEqual(Category.objects.get(id=self.child_cat.id).child_level, 2) self.assertEqual(test_cat.child_level, 0) self.assertEqual(test_cat_2.child_level, 1) test_cat.parent = self.child_cat test_cat.save() test_cat_2.parent = None test_cat_2.save() self.assertEqual(Category.objects.get(id=self.parent_cat.id).child_level, 0) self.assertEqual(Category.objects.get(id=self.sub_parent_cat.id).child_level, 1) self.assertEqual(Category.objects.get(id=self.child_cat.id).child_level, 2) self.assertEqual(test_cat.child_level, 3) self.assertEqual(test_cat_2.child_level, 0) self.parent_cat.delete() self.assertEqual(Category.objects.get(id=self.sub_parent_cat.id).child_level, 0) self.assertEqual(Category.objects.get(id=self.child_cat.id).child_level, 1) self.assertEqual(Category.objects.get(id=test_cat.id).child_level, 2) self.assertEqual(Category.objects.get(id=test_cat_2.id).child_level, 0) def test_category_ordering_indices_update(self): """Assert categories' ordering_indices update properly""" Category.objects.all().delete() Product.objects.all().delete() category_a = Category.objects.create(name='a') self.assertEqual(Category.objects.get(name='a').ordering_index, 1) Category.objects.create(name='b') self.assertEqual(Category.objects.get(name='a').ordering_index, 1) self.assertEqual(Category.objects.get(name='b').ordering_index, 2) Category.objects.create(name='c') self.assertEqual(Category.objects.get(name='a').ordering_index, 1) self.assertEqual(Category.objects.get(name='b').ordering_index, 2) self.assertEqual(Category.objects.get(name='c').ordering_index, 3) category_a_a = Category.objects.create(name='aa', parent=category_a) self.assertEqual(Category.objects.get(name='a').ordering_index, 1) self.assertEqual(Category.objects.get(name='aa').ordering_index, 2) self.assertEqual(Category.objects.get(name='b').ordering_index, 3) self.assertEqual(Category.objects.get(name='c').ordering_index, 4) Category.objects.create(name='aaa', parent=category_a_a) self.assertEqual(Category.objects.get(name='a').ordering_index, 1) self.assertEqual(Category.objects.get(name='aa').ordering_index, 2) self.assertEqual(Category.objects.get(name='aaa').ordering_index, 3) self.assertEqual(Category.objects.get(name='b').ordering_index, 4) self.assertEqual(Category.objects.get(name='c').ordering_index, 5) Category.objects.create(name='ba') self.assertEqual(Category.objects.get(name='a').ordering_index, 1) self.assertEqual(Category.objects.get(name='aa').ordering_index, 2) self.assertEqual(Category.objects.get(name='aaa').ordering_index, 3) self.assertEqual(Category.objects.get(name='b').ordering_index, 4) self.assertEqual(Category.objects.get(name='ba').ordering_index, 5) self.assertEqual(Category.objects.get(name='c').ordering_index, 6) Category.objects.get(name='a').delete() self.assertEqual(Category.objects.get(name='aa').ordering_index, 1) self.assertEqual(Category.objects.get(name='aaa').ordering_index, 2) self.assertEqual(Category.objects.get(name='b').ordering_index, 3) self.assertEqual(Category.objects.get(name='ba').ordering_index, 4) self.assertEqual(Category.objects.get(name='c').ordering_index, 5) Category.objects.get(name='aaa').delete() self.assertEqual(Category.objects.get(name='aa').ordering_index, 1) self.assertEqual(Category.objects.get(name='b').ordering_index, 2) self.assertEqual(Category.objects.get(name='ba').ordering_index, 3) self.assertEqual(Category.objects.get(name='c').ordering_index, 4) def test_get_deleted_product_instance_on_delete(self): """Assert a deleted instance is created on_delete""" self.assertFalse(Product.objects.filter(name='_deleted_').exists()) self.product_child.delete() deleted_product_auto = Product.objects.get(name='_deleted_') self.assertEqual(OrderLine.objects.get(id=self.order_line.id).product, deleted_product_auto) def test_is_active_switch(self): """Assert is_active attribute switches correctly""" model_list = apps.get_models() for model in model_list: if hasattr(model, 'is_active'): model.objects.all().update(is_active=False) self.assertFalse(model.objects.filter(is_active=True)) model.objects.all().update(is_active=True) self.assertFalse(model.objects.filter(is_active=False)) def test__str__methods(self): """Assert __str__ methods work properly""" rnd_str = get_random_string(length=10) category = Category.objects.create(name=rnd_str) self.assertEqual(str(category), rnd_str) product = Product.objects.create(name=rnd_str) self.assertEqual(str(product), rnd_str) order_no_user = Order.objects.create(number=rnd_str, customer=None) self.assertIn('no_name', str(order_no_user)) order = Order.objects.create(number=rnd_str, customer=self.user_not_staff) self.assertIn(self.user_not_staff.username, str(order)) orderline_no_user = OrderLine.objects.create(parent_order=order_no_user, product=product) self.assertIn('no_name | Line: 1', str(orderline_no_user)) orderline = OrderLine.objects.create(parent_order=order, product=product) self.assertIn(f'{self.user_not_staff.username} | Line: 1', str(orderline)) def test_auto_upload_dir_method(self): """Assert models.get_upload_dir function works properly""" # case: category w/o picture self.assertEqual(str(self.parent_cat.picture), 'category/no_image.png') # case: category w/ temporary random picture rnd_temp_file, rnd_temp_file_name = get_random_temp_file('jpg') self.parent_cat.picture = rnd_temp_file self.parent_cat.save() cat_name_slug = slugify(self.parent_cat.name.lower()) self.assertEqual(str(self.parent_cat.picture), f'category/{cat_name_slug}/{rnd_temp_file_name}') def test_product_create_assign_photo(self): """Assert product save method assigns the main_photo attr on creation""" rnd_product_name = get_random_string(length=20) gallery = create_gallery(title=rnd_product_name) img_file, img_file_name = get_random_temp_file('jpg') photo = photo_models.Photo.objects.create(image=img_file, title=img_file_name, slug=slugify(img_file_name)) gallery.photos.add(photo) product = Product.objects.create(name=rnd_product_name, photos=gallery) self.assertIsNotNone(product.photos) self.assertEqual(gallery.slug, slugify(product.name + "_gallery")) self.assertEqual(product.main_photo, photo) def test_photos_rename_on_product_rename(self): """Checks if product's gallery & photos are renamed properly when the product is renamed""" rnd_product_name = get_random_string(length=20) gallery = create_gallery(title=rnd_product_name) # create 4 random photos and add them to product's gallery for _ in range(4): rnd_photo_name = f'{get_random_string()}_{rnd_product_name}' # this part is usually done in the view img_file = SimpleUploadedFile(rnd_photo_name, b"these are the file contents") photo = photo_models.Photo.objects.create(image=img_file, title=rnd_photo_name, slug=slugify(rnd_photo_name)) gallery.photos.add(photo) product = Product.objects.create(name=rnd_product_name, photos=gallery) self.assertTrue(product.photos.photos.all().exists()) self.assertQuerysetEqual(product.photos.photos.all().order_by('id'), photo_models.Photo.objects.all().order_by('id')) self.assertEqual(gallery.slug, slugify(product.name + "_gallery")) for photo in product.photos.photos.all(): self.assertTrue(photo.title.endswith(f'_{rnd_product_name}')) self.assertTrue(photo.slug.endswith(f'_{slugify(rnd_product_name)}')) # rename the product, all of its photos and gallery has to be renamed on save() as well rnd_product_name = get_random_string(length=20) product.name = rnd_product_name product.save() self.assertQuerysetEqual(product.photos.photos.all().order_by('id'), photo_models.Photo.objects.all().order_by('id')) self.assertEqual(gallery.slug, slugify(product.name + "_gallery")) for photo in product.photos.photos.all(): self.assertTrue(photo.title.endswith(f'_{rnd_product_name}')) self.assertTrue(photo.slug.endswith(f'_{slugify(rnd_product_name)}')) def test_product_save_profit_update(self): """Assert product save method updates profit attr""" def update_check_prices(): product.cost_price = rnd_cost_price product.discount_percent = rnd_discount product.selling_price = rnd_selling_price product.save() test_profit = Decimal(rnd_selling_price*Decimal(1-rnd_discount/100)).quantize(Decimal('0.01'), rounding=ROUND_HALF_UP) - rnd_cost_price self.assertEqual(product.profit, test_profit) self.assertEqual(product.cost_price, rnd_cost_price) self.assertEqual(product.discount_percent, rnd_discount) self.assertEqual(product.selling_price, rnd_selling_price) self.assertEqual(product.profit, product.end_user_price-rnd_cost_price) # case: all 0 product = Product.objects.create(name='test_product') self.assertEqual(product.profit, 0) # case: profit > 0, w/ discount rnd_cost_price = decimal.Decimal(random.randrange(1, 9999))/100 rnd_selling_price = decimal.Decimal(random.randrange((rnd_cost_price*100), 9999))/100 rnd_discount = random.randint(0, int((1-(rnd_cost_price/rnd_selling_price))*100)) update_check_prices() self.assertGreaterEqual(product.profit, 0) # case: profit > 0, no discount rnd_discount = 0 update_check_prices() self.assertGreaterEqual(product.profit, 0) # case: profit < 0, no discount rnd_selling_price = decimal.Decimal(random.randrange(1, 9999))/100 rnd_cost_price = decimal.Decimal(random.randrange((rnd_selling_price*100), 9999))/100 update_check_prices() self.assertLessEqual(product.profit, 0) # case: profit < 0, w/ discount rnd_discount = random.randint(1, 80) update_check_prices() def test_product_save_end_user_price_update(self): """Assert product save method updates end_user_price attr""" def update_check_prices(): product.discount_percent = rnd_discount product.selling_price = rnd_selling_price product.save() test_end_user_price = Decimal(rnd_selling_price*Decimal(1-rnd_discount/100)).quantize(Decimal('0.01'), rounding=ROUND_HALF_UP) self.assertEqual(product.selling_price, rnd_selling_price) self.assertEqual(product.discount_percent, rnd_discount) self.assertEqual(product.end_user_price, test_end_user_price) self.assertEqual(product.profit, test_end_user_price-product.cost_price) # case: all == 0 product = Product.objects.create(name=get_random_string()) self.assertEqual(product.end_user_price, 0) # case: all > 0 rnd_selling_price = decimal.Decimal(random.randrange(100, 9999))/100 rnd_discount = random.randint(1, 99) update_check_prices() # case: selling_price has changed rnd_selling_price = decimal.Decimal(random.randrange(100, 9999))/100 update_check_prices() # case: discount_percent has changed rnd_discount = random.randint(1, 99) update_check_prices() def test_orderline_autoinc(self): """Assert line auto-numering in checks work properly""" order_no_user = Order.objects.create() for _ in range(5): # i'm guessing 5 lines is more than enough product = Product.objects.create(name=get_random_string(length=12)) order_line = OrderLine.objects.create(parent_order=order_no_user, product=product) self.assertEqual(order_line.line_number, order_no_user.order_lines.count()) # deletes all lines one by one, except for the last one # the line_number of each following line has to be decremented by 1 (keeping the initial line order) for _ in range(order_no_user.order_lines.count()-1): order_no_user.order_lines.first().delete() expected_line_number = 1 for order_line in order_no_user.order_lines.all(): self.assertEqual(order_line.line_number, expected_line_number) expected_line_number += 1 def test_orderline_duplicating_avoiding(self): """Checks if an existing order_line instance's quantity is incremented properly, if a new order_line instance of the same product is tried to be created. Also check if a duplicating instance of order_line is not created.""" quantity_1 = random.randint(1, 100) quantity_2 = random.randint(1, 100) OrderLine.objects.all().delete() order = Order.objects.create() self.assertEqual(OrderLine.objects.all().count(), 0) self.assertEqual(order.order_lines.count(), 0) # creating 1 line of product A: 1 created OrderLine.objects.create(parent_order=order, product=self.product_child, quantity=quantity_1) self.assertEqual(OrderLine.objects.all().count(), 1) self.assertEqual(order.order_lines.count(), 1) self.assertEqual(order.order_lines.first().quantity, quantity_1) # creating 2 line of product A: 0 created, line 1 updated OrderLine.objects.create(parent_order=order, product=self.product_child, quantity=quantity_2) self.assertEqual(OrderLine.objects.all().count(), 1) self.assertEqual(order.order_lines.count(), 1) self.assertEqual(order.order_lines.first().quantity, quantity_1+quantity_2) def test_order_calculating(self): """Checks if Order's total prices are calculated properly""" expected_order_cost_price = 0 expected_order_selling_price = 0 expected_order_end_user_price = 0 order = Order.objects.create() for i in range(3): self.assertEqual(order.cost_price, expected_order_cost_price) self.assertEqual(order.selling_price, expected_order_selling_price) self.assertEqual(order.end_user_price, expected_order_end_user_price) # add 3 order_lines # has to be different product each time, because same product lines get summed up product = Product.objects.create(name=get_random_string(), cost_price = decimal.Decimal(random.randrange(100, 9999))/100, selling_price = decimal.Decimal(random.randrange((self.product_child.cost_price*100), 9999))/100, discount_percent = random.randint(0, 4) * 10, ) rnd_quantity = random.randint(1, 4) OrderLine.objects.create(parent_order=order, product=self.product_child, quantity=rnd_quantity) # update expected values expected_order_cost_price += self.product_child.cost_price * rnd_quantity expected_order_selling_price += self.product_child.selling_price * rnd_quantity expected_order_end_user_price += self.product_child.end_user_price * rnd_quantity def test_order_update_on_orderline_save(self): """Checks if Order's save() method is called on any of its orderlines' save() and if its prices are recalculated properly""" initial_selling_price = decimal.Decimal(random.randrange(100, 9999))/100 multiplier = random.randint(1, 5) order = Order.objects.create() self.product_child.selling_price = initial_selling_price self.product_child.save() order_line= OrderLine.objects.create(parent_order=order, product=self.product_child) self.assertEqual(order.selling_price, initial_selling_price) # case: quantity update order_line.quantity = multiplier order_line.save() self.assertEqual(order.selling_price, initial_selling_price*multiplier) # case: price update self.product_child.selling_price = initial_selling_price*multiplier order_line.quantity = 1 order_line.save() self.assertEqual(order.selling_price, initial_selling_price*multiplier) def test_order_update_on_orderline_delete(self): """Checks if Order's save() method is called on any of its orderlines' delete() and if its prices are recalculated properly""" initial_selling_price = decimal.Decimal(random.randrange(100, 9999))/100 order = Order.objects.create() self.product_child.selling_price = initial_selling_price self.product_child.save() order_line = OrderLine.objects.create(parent_order=order, product=self.product_child) self.assertEqual(order.selling_price, initial_selling_price) # case: no orderlines order_line.delete() self.assertEqual(order.selling_price, 0) def test_order_items_total_update(self): """Checks if Order's items_total is calculated properly""" expected_items_total = 0 OrderLine.objects.all().delete() order = Order.objects.create() self.assertEqual(order.items_total, expected_items_total) for i in range(5): expected_order_lines_count = i + 1 rnd_product = Product.objects.create(name=get_random_string(), category = self.child_cat) rnd_quantity = random.randint(1, 100) expected_items_total +=
from dataclasses import dataclass, field from pathlib import Path from typing import Any, Callable, Dict, Iterator, List, Optional, Set, Tuple, Union from darwin.path_utils import construct_full_path Point = Dict[str, float] BoundingBox = Dict[str, float] Polygon = List[Point] ComplexPolygon = List[Polygon] Node = Dict[str, Any] EllipseData = Dict[str, Union[float, Point]] CuboidData = Dict[str, Any] KeyFrame = Dict[str, Any] Segment = List[int] DarwinVersionNumber = Tuple[int, int, int] PathLike = Union[str, Path] ErrorHandler = Callable[[int, str], None] @dataclass class Team: """ Definition of a V7 team. Attributes ---------- default: bool If this is the default Team or not. slug: str This team's slug. datasets_dir: str The path to the directory of all datasets this teams contains. api_key: str The API key used to authenticate for this Team. selected: bool, default: False If this is the currently active Team. Defaults to ``False``. """ default: bool slug: str datasets_dir: str api_key: str selected: bool = False @dataclass(frozen=True) class Feature: """ Structured payload of a Feature record on V7 Darwin. Attributes ---------- name: str The name of this ``Feature``. enabled: bool Whether or not this ``Feature`` is enabled. Disabled ``Feature``s do nothing, as if they didn't exist. """ name: str enabled: bool @dataclass(frozen=True, eq=True) class AnnotationClass: """ Represents an AnnocationClass from an Annotation. Attributes ---------- name: str The name of this ``AnnotationClass``. annotation_type: str The type of this ``AnnotationClass``. annotation_internal_type: Optional[str], default: None The V7 internal type of this ``AnnotationClass``. This is mostly used to convert from types that are known in the outside world by a given name, but then are known inside V7's lingo by another. """ name: str annotation_type: str annotation_internal_type: Optional[str] = None @dataclass(frozen=True, eq=True) class SubAnnotation: """ Represents a subannotation that belongs to an AnnotationClass. Attributes ---------- annotation_type: str The type of this ``SubAnnotation``. data: Any Any external data, in any format, relevant to this ``SubAnnotation``. Used for compatibility purposes with external formats. """ annotation_type: str data: Any @dataclass(frozen=True, eq=True) class Annotation: """ Represents an Annotation from an Image/Video. Attributes ---------- annotation_class: AnnotationClass The ``AnnotationClass`` from this ``Annotation``. data: Any Any external data, in any format, relevant to this ``Annotation``. Used for compatibility purposes with external formats. subs: List[SubAnnotation] List of ``SubAnnotations`` belonging to this ``Annotation``. """ annotation_class: AnnotationClass data: Any subs: List[SubAnnotation] = field(default_factory=list) def get_sub(self, annotation_type: str) -> Optional[SubAnnotation]: """ Returns the first SubAnnotation that matches the given type. Parameters ---------- annotation_type: str The type of the subannotation. Returns ------- Optional[SubAnnotation] A SubAnnotation found, or `None` if none was found. """ for sub in self.subs: if sub.annotation_type == annotation_type: return sub return None @dataclass(frozen=True, eq=True) class VideoAnnotation: """ Represents an Annotation that belongs to a Video. Attributes ---------- annotation_class: AnnotationClass The ``AnnotationClass`` from this ``VideoAnnotation``. frames: Dict[int, Any] A dictionary of frames for this ``VideoAnnotation``. keyframes: Dict[int, bool] The keyframes for this ``VideoAnnotation``. Keyframes are a selection of frames from the ``frames`` attribute. segments: List[Segment] A list of ``Segment``'s. interpolated: bool Whehter this ``VideoAnnotation`` is interpolated or not. """ annotation_class: AnnotationClass frames: Dict[int, Any] keyframes: Dict[int, bool] segments: List[Segment] interpolated: bool def get_data( self, only_keyframes: bool = True, post_processing: Optional[Callable[[Annotation, Any], Any]] = None ) -> Dict[str, Any]: """ Return the post-processed frames and the additional information from this ``VideoAnnotation`` in a dictionary with the format: .. code-block:: python { "frames": { # Post-Processed Frames here }, "segments": [ # Segments here ] "interpolated": True } Parameters ---------- only_keyframes: bool, default: True Whether or not to return only the keyframes. Defaults to ``True``. post_processing: Optional[Callable[[Annotation, Any], Any]], default: None If given, it processes each frame through the given ``Callabale`` before adding it to the returned dictionary. Defaults to ``None``. Returns ------- Dict[str, Any] A dictionary containing the processed frames, the segments of this ``VideoAnnotation`` and whether or not it is interpolated. """ if not post_processing: post_processing = lambda annotation, data: data return { "frames": { frame: { **post_processing( self.frames[frame], {self.frames[frame].annotation_class.annotation_type: self.frames[frame].data}, ), **{"keyframe": self.keyframes[frame]}, } for frame in self.frames if not only_keyframes or self.keyframes[frame] }, "segments": self.segments, "interpolated": self.interpolated, } @dataclass class AnnotationFile: """ Represents a file containing annotations. Mostly useful when trying to import or export annotations to/from darwin V7. Attributes ---------- path: Path Path to the file. filename: str Name of the file containing the annotations. annotation_classes: Set[AnnotationClass] ``Set`` of all ``AnnotationClass``es this file contains. Used as a way to know in advance which ``AnnotationClass``es this file has without having to go through the list of annotations. annotations: Union[List[VideoAnnotation], List[Annotation]] List of ``VideoAnnotation``s or ``Annotation``s. is_video: bool, default: False Whether the annotations in the ``annotations`` attribute are ``VideoAnnotation`` or not. Defaults to ``False``. image_width: Optional[int], default: None Width of the image in this annotation. Defaults to ``None``. image_height: Optional[int], default: None Height of the image in this annotation. Defaults to ``None``. image_url: Optional[str], default: None URL of the image in this annotation. Defaults to ``None``. workview_url: Optional[str], default: None URL of the workview for this annotation. Defaults to ``None``. seq: Optional[int], default: None Sequence for this annotation. Defaults to ``None``. frame_urls: Optional[List[str]], default: None URLs for the frames this ``AnnotationFile`` has. Defautls to ``None``. remote_path: Optional[str], default: None Remote path for this Annoataion file in V7's darwin. Defaults to ``None``. """ path: Path filename: str annotation_classes: Set[AnnotationClass] annotations: Union[List[VideoAnnotation], List[Annotation]] is_video: bool = False image_width: Optional[int] = None image_height: Optional[int] = None image_url: Optional[str] = None workview_url: Optional[str] = None seq: Optional[int] = None frame_urls: Optional[List[str]] = None remote_path: Optional[str] = None @property def full_path(self) -> str: """ Returns the absolute path of this file. Returns ------- str The absolute path of the file. """ return construct_full_path(self.remote_path, self.filename) def make_bounding_box( class_name: str, x: float, y: float, w: float, h: float, subs: Optional[List[SubAnnotation]] = None ) -> Annotation: """ Creates and returns a bounding box annotation. ``x``, ``y``, ``w`` and ``h`` are rounded to 3 decimal places when creating the annotation. Parameters ---------- class_name: str The name of the class for this ``Annotation``. x: float The top left ``x`` value where the bounding box will start. y: float The top left ``y`` value where the bounding box will start. w: float The width of the bounding box. h: float The height of the bounding box. subs: Optional[List[SubAnnotation]], default: None List of ``SubAnnotation``s for this ``Annotation``. Defaults to ``None``. Returns ------- Annotation A bounding box ``Annotation``. """ return Annotation( AnnotationClass(class_name, "bounding_box"), {"x": round(x, 3), "y": round(y, 3), "w": round(w, 3), "h": round(h, 3)}, subs or [], ) def make_tag(class_name: str, subs: Optional[List[SubAnnotation]] = None) -> Annotation: return Annotation(AnnotationClass(class_name, "tag"), {}, subs or []) def make_polygon( class_name: str, point_path: List[Point], bounding_box: Optional[Dict] = None, subs: Optional[List[SubAnnotation]] = None, ) -> Annotation: return Annotation( AnnotationClass(class_name, "polygon"), _maybe_add_bounding_box_data({"path": point_path}, bounding_box), subs or [], ) def make_complex_polygon( class_name: str, point_paths: List[List[Point]], bounding_box: Optional[Dict] = None, subs: Optional[List[SubAnnotation]] = None, ) -> Annotation: return Annotation( AnnotationClass(class_name, "complex_polygon", "polygon"), _maybe_add_bounding_box_data({"paths": point_paths}, bounding_box), subs or [], ) def make_keypoint(class_name: str, x: float, y: float, subs: Optional[List[SubAnnotation]] = None) -> Annotation: return Annotation(AnnotationClass(class_name, "keypoint"), {"x": x, "y": y}, subs or []) def make_line(class_name: str, path: List[Point], subs: Optional[List[SubAnnotation]] = None) -> Annotation: return Annotation(AnnotationClass(class_name, "line"), {"path": path}, subs or []) def make_skeleton(class_name: str, nodes: List[Node], subs: Optional[List[SubAnnotation]] = None) -> Annotation: return Annotation(AnnotationClass(class_name, "skeleton"), {"nodes": nodes}, subs or []) def make_ellipse(class_name: str, parameters: EllipseData, subs: Optional[List[SubAnnotation]] = None) -> Annotation: """ Creates and returns an Ellipse annotation. Data needed to build an Ellipse annotation via ``make_ellipse``. Parameters ---------- class_name: str The name of the class for this ``Annotation``. parameters: EllipseData The data needed to build an Ellipse. This data must be a dictionary with a format simillar to: .. code-block:: javascript { "angle": 0.57, "center": { "x": 2745.69, "y": 2307.46 }, "radius": { "x": 467.02, "y": 410.82 } } Where: - ``angle: float`` is the orientation angle of the ellipse. - ``center: Point`` is the center point of the ellipse. - ``radius: Point`` is the
import functools import struct def compressed_unimplemented_instruction(word, **kwargs): return { 'cmd': 'Undefined', 'word': word, 'size': 2, } def uncompressed_unimplemented_instruction(word, **kwargs): return { 'cmd': 'Undefined', 'word': word, 'size': 4, } def c_j(word, **kwargs): # C.J performs an unconditional control transfer. The offset is # sign-extended and added to the pc to form the jump target address. # C.J can therefore target a ±2 KiB range. C.J expands to jal x0, # offset[11:1]. return { 'cmd': 'JAL', 'imm': kwargs.get('imm'), 'rd': 0, 'word': word, 'size': 2, } def c_jr(word): return { 'cmd': 'JALR', 'imm': 0, 'rs1': compressed_rs1_or_rd(word), 'rd': 0, 'word': word, 'size': 2, } def c_beqz(word, **kwargs): # BEQZ performs conditional control transfers. The offset is # sign-extended and added to the pc to form the branch target address. # It can therefore target a ±256 B range. C.BEQZ takes the branch if # the value in register rs1' is zero. It expands to # beq rs1', x0, offset[8:1]. return { 'cmd': 'BEQ', 'imm': kwargs.get('imm'), 'rs1': compressed_quadrant_01_rs1_prime_or_rd_prime(word), 'rs2': 0, 'taken': None, 'word': word, 'size': 2, } def c_bnez(word, **kwargs): # BEQZ performs conditional control transfers. The offset is # sign-extended and added to the pc to form the branch target address. # It can therefore target a ±256 B range. C.BEQZ takes the branch if # the value in register rs1' is zero. It expands to # beq rs1', x0, offset[8:1]. return { 'cmd': 'BNE', 'imm': kwargs.get('imm'), 'rs1': compressed_quadrant_01_rs1_prime_or_rd_prime(word), 'rs2': 0, 'taken': None, 'word': word, 'size': 2, } def c_mv(word): # C.MV copies the value in register rs2 into register rd. C.MV expands into add rd, x0, rs2; # see: https://riscv.org/wp-content/uploads/2019/06/riscv-spec.pdf (p.106) return { 'cmd': 'ADD', 'rs1': 0, 'rs2': compressed_rs2(word), 'rd': compressed_rs1_or_rd(word), 'word': word, 'size': 2, } def c_lui(word, **kwargs): # C.LUI loads the non-zero 6-bit immediate field into bits 17–12 of the # destination register, clears the bottom 12 bits, and sign-extends bit # 17 into all higher bits of the destination. C.LUI expands into # lui rd, nzimm[17:12]. C.LUI is only valid when rd̸={x0, x2}, and when # the immediate is not equal to zero. # # C.LUI nzimm[17] dest̸={0, 2} nzimm[16:12] C1 # see: https://riscv.org/wp-content/uploads/2019/06/riscv-spec.pdf (p.104) return { 'cmd': 'LUI', 'rd': compressed_rs1_or_rd(word), 'imm': kwargs.get('imm'), 'word': word, 'size': 2, } def c_ldsp(word): # C.LDSP is an RV64C/RV128C-only instruction that loads a 64-bit value from memory # into register rd. It computes its effective address by adding the zero-extended # offset, scaled by 8, to the stack pointer, x2. It expands to ld rd, offset[8:3](x2); # see: https://riscv.org/wp-content/uploads/2019/06/riscv-spec.pdf (p.99) # # 011 uimm[5] rd̸=0 uimm[4:3|8:6] 10 C.LDSP (RV64/128; RES, rd=0); # see: https://riscv.org/wp-content/uploads/2019/06/riscv-spec.pdf (p.111) _b080706 = (word >> 2) & 0b111 _b0403 = (word >> 5) & 0b11 _b05 = (word >> 12) & 0b1 _imm = (_b080706 << 6) | (_b05 << 5) | (_b0403 << 3) return { 'cmd': 'LD', 'rs1': 2, 'imm': _imm, 'rd': compressed_rs1_or_rd(word), 'nbytes': 8, 'word': word, 'size': 2, } def c_lw(word, **kwargs): # C.LW loads a 32-bit value from memory into register rd ′. It computes # an effective address by adding the zero-extended offset, scaled by 4, # to the base address in register rs1 ′. It expands to # lw rd', offset[6:2](rs1'). # see: https://riscv.org/wp-content/uploads/2019/06/riscv-spec.pdf (p.101) return { 'cmd': 'LW', 'rs1': compressed_quadrant_00_rs1_prime(word), 'imm': kwargs.get('imm'), 'rd': compressed_quadrant_00_rs2_prime_or_rd_prime(word), 'nbytes': 4, 'word': word, 'size': 2, } def c_ld(word, **kwargs): # C.LD is an RV64C/RV128C-only instruction that loads a 64-bit value from memory # into register rd'. It computes an effective address by adding the zero-extended # offset, scaled by 8, to the base address in register rs1'. It expands to ld rd', # offset[7:3](rs1'). # see: https://riscv.org/wp-content/uploads/2019/06/riscv-spec.pdf (p.101) return { 'cmd': 'LD', 'rs1': compressed_quadrant_00_rs1_prime(word), 'imm': kwargs.get('imm'), 'rd': compressed_quadrant_00_rs2_prime_or_rd_prime(word), 'nbytes': 8, 'word': word, 'size': 2, } def c_sd(word, **kwargs): # C.SD is an RV64C/RV128C-only instruction that stores a 64-bit value in # register rs2' to memory. It computes an effective address by adding the # zero-extended offset, scaled by 8, to the base address in register rs1'. # It expands to sd rs2', offset[7:3](rs1') # see: https://riscv.org/wp-content/uploads/2019/06/riscv-spec.pdf (p.102) return { 'cmd': 'SD', 'rs1': compressed_quadrant_00_rs1_prime(word), 'rs2': compressed_quadrant_00_rs2_prime_or_rd_prime(word), 'imm': kwargs.get('imm'), 'nbytes': 8, 'word': word, 'size': 2, } def c_sw(word, **kwargs): # C.SW stores a 32-bit value in register rs2' to memory. It computes an # effective address by adding the zero-extended offset, scaled by 4, to # the base address in register rs1'. It expands to sw rs2', offset[6:2](rs1') # see: https://riscv.org/wp-content/uploads/2019/06/riscv-spec.pdf (p.102) return { 'cmd': 'SW', 'rs1': compressed_quadrant_00_rs1_prime(word), 'rs2': compressed_quadrant_00_rs2_prime_or_rd_prime(word), 'imm': kwargs.get('imm'), 'nbytes': 4, 'word': word, 'size': 2, } def c_addi4spn(word, **kwargs): # C.ADDI4SPN is a CIW-format instruction that adds a zero-extended non-zero # immediate, scaledby 4, to the stack pointer, x2, and writes the result to rd'. # This instruction is used to generate pointers to stack-allocated variables, # and expands to addi rd', x2, nzuimm[9:2]. return { 'cmd': 'ADDI', 'imm': kwargs.get('imm'), 'rs1': 2, 'rd': compressed_quadrant_00_rs2_prime_or_rd_prime(word), 'word': word, 'size': 2, } def c_addi16sp(word, **kwargs): # C.ADDI16SP is used to adjust the stack pointer in procedure prologues and # epilogues. It expands into addi x2, x2, nzimm[9:4]. C.ADDI16SP is only # valid when nzimm̸=0; the code point with nzimm=0 is reserved. return { 'cmd': 'ADDI', 'imm': kwargs.get('imm'), 'rs1': 2, 'rd': 2, 'word': word, 'size': 2, } def c_sdsp(word, **kwargs): # C.SDSP is an RV64C/RV128C-only instruction that stores a 64-bit value in # register rs2 to memory. It computes an effective address by adding the # zero-extended offset, scaled by 8, to the stack pointer, x2. It expands to # sd rs2, offset[8:3](x2). return { 'cmd': 'SD', 'imm': kwargs.get('imm'), 'rs1': 2, 'rs2': compressed_rs2(word), 'nbytes': 8, 'word': word, 'size': 2, } def c_addi(word, **kwargs): # C.ADDI adds the non-zero sign-extended 6-bit immediate to the value in # register rd then writes the result to rd. C.ADDI expands into # addi rd, rd, nzimm[5:0]. C.ADDI is only valid when rd̸=x0. The code point # with both rd=x0 and nzimm=0 encodes the C.NOP instruction; the remaining # code points with either rd=x0 or nzimm=0 encode HINTs. return { 'cmd': 'ADDI', 'imm': kwargs.get('imm'), 'rs1': compressed_rs1_or_rd(word), 'rd': compressed_rs1_or_rd(word), 'word': word, 'size': 2, } def c_addiw(word, **kwargs): # C.ADDIW is an RV64C/RV128C-only instruction that performs the same # computation but produces a 32-bit result, then sign-extends result to 64 # bits. C.ADDIW expands into addiw rd, rd, imm[5:0]. The immediate can be # zero for C.ADDIW, where this corresponds to sext.w rd. C.ADDIW is only # valid when rd̸=x0; the code points with rd=x0 are reserved. return { 'cmd': 'ADDIW', 'imm': kwargs.get('imm'), 'rs1': compressed_rs1_or_rd(word), 'rd': compressed_rs1_or_rd(word), 'word': word, 'size': 2, } def c_nop(word): return { 'cmd': 'NOP', 'word': word, 'size': 2, } def c_add(word): # C.ADD adds the values in registers rd and rs2 and writes the result to # register rd. C.ADD expands into add rd, rd, rs2. C.ADD is only valid when # rs2̸=x0; the code points with rs2=x0 correspond to the C.JALR and C.EBREAK # instructions. The code points with rs2̸=x0 and rd=x0 are HINTs. return { 'cmd': 'ADD', 'rs1': compressed_rs1_or_rd(word), 'rs2': compressed_rs2(word), 'rd': compressed_rs1_or_rd(word), 'word': word, 'size': 2, } def c_sub(word): # C.SUB subtracts the value in register rs2 ′ from the value in register rd', # then writes the result to register rd ′. C.SUB expands into # sub rd', rd', rs2'. return { 'cmd': 'SUB', 'rs1': compressed_quadrant_01_rs1_prime_or_rd_prime(word), 'rs2': compressed_quadrant_01_rs2_prime(word), 'rd': compressed_quadrant_01_rs1_prime_or_rd_prime(word), 'word': word, 'size': 2, } def c_xor(word): # C.XOR computes the bitwise XOR of the values in registers rd' # and rs2', then writes the result to register rd'. C.XOR expands # into xor rd', rd', rs2'. return { 'cmd': 'XOR', 'rs1': compressed_quadrant_01_rs1_prime_or_rd_prime(word), 'rs2': compressed_quadrant_01_rs2_prime(word), 'rd': compressed_quadrant_01_rs1_prime_or_rd_prime(word), 'word': word, 'size': 2, } def c_or(word): # C.OR computes the bitwise OR of the values in registers rd' # and rs2', then writes the result to register rd'. C.OR expands # into or rd', rd', rs2'. return { 'cmd': 'OR', 'rs1': compressed_quadrant_01_rs1_prime_or_rd_prime(word), 'rs2': compressed_quadrant_01_rs2_prime(word), 'rd': compressed_quadrant_01_rs1_prime_or_rd_prime(word),
### All utility function to obtain perturbation mask import numpy as np import itertools import random import math from utils import * import os import time import scipy.io as scio import datetime import re import matplotlib.pyplot as plt import pylab import os import csv from skimage import transform, filters from textwrap import wrap import cv2 import sys from PIL import Image def Get_blurred_img(input_img, img_label, model, resize_shape=(224, 224), Gaussian_param = [51, 50], Median_param = 11, blur_type= 'Gaussian', use_cuda = 1): ######################## # Generate blurred images as the baseline # Parameters: # ------------- # input_img: the original input image # img_label: the classification target that you want to visualize (img_label=-1 means the top 1 classification label) # model: the model that you want to visualize # resize_shape: the input size for the given model # Gaussian_param: parameters for Gaussian blur # Median_param: parameters for median blur # blur_type: Gaussian blur or median blur or mixed blur # use_cuda: use gpu (1) or not (0) #################################################### original_img = cv2.imread(input_img, 1) original_img = cv2.resize(original_img, resize_shape) img = np.float32(original_img) / 255 if blur_type =='Gaussian': # Gaussian blur Kernelsize = Gaussian_param[0] SigmaX = Gaussian_param[1] blurred_img = cv2.GaussianBlur(img, (Kernelsize, Kernelsize), SigmaX) elif blur_type == 'Black': blurred_img = img * 0 elif blur_type == 'Median': # Median blur Kernelsize_M = Median_param blurred_img = np.float32(cv2.medianBlur(original_img, Kernelsize_M)) / 255 elif blur_type == 'Mixed': # Mixed blur Kernelsize = Gaussian_param[0] SigmaX = Gaussian_param[1] blurred_img1 = cv2.GaussianBlur(img, (Kernelsize, Kernelsize), SigmaX) Kernelsize_M = Median_param blurred_img2 = np.float32(cv2.medianBlur(original_img, Kernelsize_M)) / 255 blurred_img = (blurred_img1 + blurred_img2) / 2 return img, blurred_img def Integrated_Mask(ups, img, blurred_img, model, category, max_iterations = 15, integ_iter = 20, tv_beta=2, l1_coeff = 0.01*300, tv_coeff = 0.2*300, size_init = 112, use_cuda =1): ######################## # Obtaining perturbation mask using integrated gradient descent to find the smallest and smoothest area that maximally decrease the # output of a deep model # Parameters: # ------------- # ups: upsampling factor # img: the original input image # blurred_img: the baseline for the input image # model: the model that you want to visualize # category: the classification target that you want to visualize (category=-1 means the top 1 classification label) # max_iterations: the max iterations for the integrated gradient descent # integ_iter: how many points you want to use when computing the integrated gradients # tv_beta: which norm you want to use for the total variation term # l1_coeff: parameter for the L1 norm # tv_coeff: parameter for the total variation term # size_init: the resolution of the mask that you want to generate # use_cuda: use gpu (1) or not (0) #################################################### # preprocess the input image and the baseline (low probability) image img = preprocess_image(img, use_cuda, require_grad=False) blurred_img = preprocess_image(blurred_img, use_cuda, require_grad=False) resize_size = img.data.shape resize_wh = (img.data.shape[2], img.data.shape[3]) # initialize the mask mask_init = np.ones((int(resize_wh[0]/ups), int(resize_wh[1]/ups)), dtype=np.float32) mask = numpy_to_torch(mask_init, use_cuda, requires_grad=True) # upsampler if use_cuda: upsample = torch.nn.UpsamplingBilinear2d(size=resize_wh).cuda() else: upsample = torch.nn.UpsamplingBilinear2d(size=resize_wh) # You can choose any optimizer # The optimizer doesn't matter, because we don't need optimizer.step(), we just use it to compute the gradient optimizer = torch.optim.Adam([mask], lr=0.1) # containers for curve metrics curve1 = np.array([]) curve2 = np.array([]) curvetop = np.array([]) curve_total = np.array([]) # Integrated gradient descent # hyperparams alpha = 0.0001 beta = 0.2 for i in range(max_iterations): upsampled_mask = upsample(mask) upsampled_mask = upsampled_mask.expand(1, 3, upsampled_mask.size(2), upsampled_mask.size(3)) # the l1 term and the total variation term loss1 = l1_coeff * torch.mean(torch.abs(1 - mask)) + tv_coeff * tv_norm(mask, tv_beta) loss_all = loss1.clone() # compute the perturbed image perturbated_input_base = img.mul(upsampled_mask) + blurred_img.mul(1 - upsampled_mask) loss2_ori = torch.nn.Softmax(dim=1)(model(perturbated_input_base))[0, category] # masking loss (no integrated) loss_ori = loss1 + loss2_ori if i==0: if use_cuda: curve1 = np.append(curve1, loss1.data.cpu().numpy()) curve2 = np.append(curve2, loss2_ori.data.cpu().numpy()) curvetop = np.append(curvetop, loss2_ori.data.cpu().numpy()) curve_total = np.append(curve_total, loss_ori.data.cpu().numpy()) else: curve1 = np.append(curve1, loss1.data.numpy()) curve2 = np.append(curve2, loss2_ori.data.numpy()) curvetop = np.append(curvetop, loss2_ori.data.numpy()) curve_total = np.append(curve_total, loss_ori.data.numpy()) if use_cuda: loss_oridata = loss_ori.data.cpu().numpy() else: loss_oridata = loss_ori.data.numpy() # calculate integrated gradient for next descent step for inte_i in range(integ_iter): # Use the mask to perturbated the input image. integ_mask = 0.0 + ((inte_i + 1.0) / integ_iter) * upsampled_mask perturbated_input_integ = img.mul(integ_mask) + blurred_img.mul(1 - integ_mask) # add noise noise = np.zeros((resize_wh[0], resize_wh[1], 3), dtype=np.float32) noise = noise + cv2.randn(noise, 0, 0.2) noise = numpy_to_torch(noise, use_cuda, requires_grad=False) perturbated_input = perturbated_input_integ + noise outputs = torch.nn.Softmax(dim=1)(model(perturbated_input)) loss2 = outputs[0, category] loss_all = loss_all + loss2/20.0 # compute the integrated gradients for the given target, # and compute the gradient for the l1 term and the total variation term optimizer.zero_grad() loss_all.backward() whole_grad = mask.grad.data.clone() # integrated gradient # LINE SEARCH with revised Armijo condition step = 200.0 # upper limit of step size MaskClone = mask.data.clone() MaskClone -= step * whole_grad MaskClone = Variable(MaskClone, requires_grad=False) MaskClone.data.clamp_(0, 1) # clamp the value of mask in [0,1] mask_LS = upsample(MaskClone) # Here the direction is the whole_grad Img_LS = img.mul(mask_LS) + blurred_img.mul(1 - mask_LS) outputsLS = torch.nn.Softmax(dim=1)(model(Img_LS)) loss_LS = l1_coeff * torch.mean(torch.abs(1 - MaskClone)) + tv_coeff * tv_norm(MaskClone, tv_beta) + outputsLS[0, category] if use_cuda: loss_LSdata = loss_LS.data.cpu().numpy() else: loss_LSdata = loss_LS.data.numpy() new_condition = whole_grad ** 2 # Here the direction is the whole_grad new_condition = new_condition.sum() new_condition = alpha * step * new_condition # finding best step size using backtracking line search while loss_LSdata > loss_oridata - new_condition.cpu().numpy(): step *= beta MaskClone = mask.data.clone() MaskClone -= step * whole_grad MaskClone = Variable(MaskClone, requires_grad=False) MaskClone.data.clamp_(0, 1) mask_LS = upsample(MaskClone) Img_LS = img.mul(mask_LS) + blurred_img.mul(1 - mask_LS) outputsLS = torch.nn.Softmax(dim=1)(model(Img_LS)) loss_LS = l1_coeff * torch.mean(torch.abs(1 - MaskClone)) + tv_coeff * tv_norm(MaskClone, tv_beta) + outputsLS[0, category] if use_cuda: loss_LSdata = loss_LS.data.cpu().numpy() else: loss_LSdata = loss_LS.data.numpy() new_condition = whole_grad ** 2 # Here the direction is the whole_grad new_condition = new_condition.sum() new_condition = alpha * step * new_condition if step<0.00001: break mask.data -= step * whole_grad # integrated gradient descent step - we have the updated mask at this point if use_cuda: curve1 = np.append(curve1, loss1.data.cpu().numpy()) curve2 = np.append(curve2, loss2_ori.data.cpu().numpy()) # only masking loss curve_total = np.append(curve_total, loss_ori.data.cpu().numpy()) else: curve1 = np.append(curve1, loss1.data.numpy()) curve2 = np.append(curve2, loss2_ori.data.numpy()) curve_total = np.append(curve_total, loss_ori.data.numpy()) mask.data.clamp_(0, 1) if use_cuda: maskdata = mask.data.cpu().numpy() else: maskdata = mask.data.numpy() maskdata = np.squeeze(maskdata) maskdata, imgratio = topmaxPixel(maskdata, 40) maskdata = np.expand_dims(maskdata, axis=0) maskdata = np.expand_dims(maskdata, axis=0) if use_cuda: Masktop = torch.from_numpy(maskdata).cuda() else: Masktop = torch.from_numpy(maskdata) # Use the mask to perturb the input image. Masktop = Variable(Masktop, requires_grad=False) MasktopLS = upsample(Masktop) Img_topLS = img.mul(MasktopLS) + blurred_img.mul(1 - MasktopLS) outputstopLS = torch.nn.Softmax(dim=1)(model(Img_topLS)) loss_top1 = l1_coeff * torch.mean(torch.abs(1 - Masktop)) + tv_coeff * tv_norm(Masktop, tv_beta) loss_top2 = outputstopLS[0, category] if use_cuda: curvetop = np.append(curvetop, loss_top2.data.cpu().numpy()) else: curvetop = np.append(curvetop, loss_top2.data.numpy()) if max_iterations > 3: if i == int(max_iterations / 2): if np.abs(curve2[0] - curve2[i]) <= 0.001: l1_coeff = l1_coeff / 10 elif i == int(max_iterations / 1.25): if np.abs(curve2[0] - curve2[i]) <= 0.01: l1_coeff = l1_coeff / 5 ####################################################################################### upsampled_mask = upsample(mask) if use_cuda: mask = mask.data.cpu().numpy().copy() else: mask = mask.data.numpy().copy() return mask, upsampled_mask def Deletion_Insertion_Comb_withOverlay(max_patches, mask, model, output_path, img_ori, blurred_img_ori, category, use_cuda=1, blur_mask=0, outputfig = 1): ######################## # Compute the deletion and insertion scores # # parameters: # max_patches: number of literals in a root conjunction # mask: the generated mask # model: the model that you want to visualize # output_path: where to save the results # img_ori: the original image # blurred_img_ori: the baseline image # category: the classification target that you want to visualize (category=-1 means the top 1 classification label) # use_cuda: use gpu (1) or not (0) # blur_mask: blur the mask or not # outputfig: save figure or not #################################################### if blur_mask: # invert mask, blur and re-invert mask = (mask - np.min(mask)) / np.max(mask) mask = 1 - mask mask = cv2.GaussianBlur(mask, (51, 51), 50) mask = 1-mask blurred_insert = blurred_img_ori.copy() blurred_insert = preprocess_image(blurred_insert, use_cuda, require_grad=False) img = preprocess_image(img_ori, use_cuda, require_grad=False) blurred_img = preprocess_image(blurred_img_ori, use_cuda, require_grad=False) resize_wh = (img.data.shape[2], img.data.shape[3]) if use_cuda:
<filename>project/apps/salesforce/models.py<gh_stars>10-100 import json # Third-Party from model_utils import Choices from distutils.util import strtobool # Local from apps.bhs.models import Convention, Award, Chart, Group, Person from apps.registration.models import Contest, Session, Assignment, Entry class SfConvention: def parse_sf_notification(n): d = {} # Created if hasattr(n, 'sf_CreatedDate'): d['created'] = n.sf_CreatedDate.cdata # Modified if hasattr(n, 'sf_LastModifiedDate'): d['modified'] = n.sf_LastModifiedDate.cdata # UUID if hasattr(n, 'sf_BS_UUID__c'): d['id'] = n.sf_BS_UUID__c.cdata # Status if hasattr(n, 'sf_BS_Status__c'): d['status'] = int(float(n.sf_BS_Status__c.cdata)) # Name if hasattr(n, 'sf_Name'): d['name'] = str(n.sf_Name.cdata) # District if hasattr(n, 'sf_BS_District__c'): d['district'] = int(float(n.sf_BS_District__c.cdata)) # Season if hasattr(n, 'sf_BS_Season__c'): season = int(float(n.sf_BS_Season__c.cdata)) d['season'] = season # Panel if hasattr(n, 'sf_BS_Panel__c'): d['panel'] = int(float(n.sf_BS_Panel__c.cdata)) # Year if hasattr(n, 'sf_Year__c'): d['year'] = int(n.sf_Year__c.cdata) # Open Date if hasattr(n, 'sf_Open_Date__c'): d['open_date'] = n.sf_Open_Date__c.cdata # Close Date if hasattr(n, 'sf_Close_Date__c'): d['close_date'] = n.sf_Close_Date__c.cdata # Start Date if hasattr(n, 'sf_Start_Date__c'): d['start_date'] = n.sf_Start_Date__c.cdata # End Date if hasattr(n, 'sf_End_Date__c'): d['end_date'] = n.sf_End_Date__c.cdata # Venue if hasattr(n, 'sf_Venue__c'): d['venue_name'] = n.sf_Venue__c.cdata # Location if hasattr(n, 'sf_Location__c'): d['location'] = n.sf_Location__c.cdata # Time Zone if hasattr(n, 'sf_Time_Zone__c'): d['timezone'] = n.sf_Time_Zone__c.cdata # Description d['description'] = n.sf_Description__c.cdata if hasattr(n, 'sf_Description__c') else "" # Divisions if hasattr(n, 'sf_BS_Division__c'): d['divisions'] = n.sf_BS_Division__c.cdata # Kinds if hasattr(n, 'sf_BS_Kind__c'): d['kinds'] = n.sf_BS_Kind__c.cdata # Return parsed dict return d class SfAward: def parse_sf_notification(n): d = {} # Created if hasattr(n, 'sf_CreatedDate'): d['created'] = n.sf_CreatedDate.cdata # Modified if hasattr(n, 'sf_LastModifiedDate'): d['modified'] = n.sf_LastModifiedDate.cdata # UUID if hasattr(n, 'sf_BS_UUID__c'): d['id'] = n.sf_BS_UUID__c.cdata # Name if hasattr(n, 'sf_Name'): d['name'] = n.sf_Name.cdata # Status if hasattr(n, 'sf_BS_Status__c'): d['status'] = int(float(n.sf_BS_Status__c.cdata)) # Kind if hasattr(n, 'sf_BS_Kind__c'): d['kind'] = int(float(n.sf_BS_Kind__c.cdata)) # Gender d['gender'] = int(float(n.sf_BS_Classification__c.cdata)) if hasattr(n, 'sf_BS_Classification__c') else None # Level if hasattr(n, 'sf_BS_Level__c'): d['level'] = int(float(n.sf_BS_Level__c.cdata)) # Season if hasattr(n, 'sf_BS_Season__c'): d['season'] = int(float(n.sf_BS_Season__c.cdata)) # District if hasattr(n, 'sf_BS_District__c'): d['district'] = int(float(n.sf_BS_District__c.cdata)) # Divisions d['division'] = int(float(n.sf_BS_Division__c.cdata)) if hasattr(n, 'sf_BS_Division__c') else None # Is Single if hasattr(n, 'sf_is_single__c'): d['is_single'] = bool(strtobool(n.sf_is_single__c.cdata)) # Threshold d['threshold'] = float(n.sf_Threshold__c.cdata) if hasattr(n, 'sf_Threshold__c') else None # Minimum d['minimum'] = float(n.sf_Minimum__c.cdata) if hasattr(n, 'sf_Minimum__c') else None # advance d['advance'] = float(n.sf_Advance__c.cdata) if hasattr(n, 'sf_Advance__c') else None # spots d['spots'] = int(float(n.sf_Spots__c.cdata)) if hasattr(n, 'sf_Spots__c') else None # Description d['description'] = n.sf_Description__c.cdata if hasattr(n, 'sf_Description__c') else "" # Notes d['notes'] = n.sf_Notes__c.cdata if hasattr(n, 'sf_Notes__c') else "" # Age d['age'] = int(float(n.sf_BS_Age__c.cdata)) if hasattr(n, 'sf_BS_Age__c') else None # Is Novice if hasattr(n, 'sf_is_novice__c'): d['is_novice'] = bool(strtobool(n.sf_is_novice__c.cdata)) # Size d['size'] = int(float(n.sf_BS_Size__c.cdata)) if hasattr(n, 'sf_BS_Size__c') else None # Size Range d['size_range'] = n.sf_Size_Range__c.cdata if hasattr(n, 'sf_Size_Range__c') else None # Scope d['scope'] = int(float(n.sf_BS_Scope__c.cdata)) if hasattr(n, 'sf_BS_Scope__c') else None # Scope Range d['scope_range'] = n.sf_Scope_Range__c.cdata if hasattr(n, 'sf_Scope_Range__c') else None # Tree Sort d['tree_sort'] = int(float(n.sf_Tree_Sort__c.cdata)) if hasattr(n, 'sf_Tree_Sort__c') else None # Return parsed dict return d class SfChart: def parse_sf_notification(n): d = {} # Created if hasattr(n, 'sf_CreatedDate'): d['created'] = n.sf_CreatedDate.cdata # Modified if hasattr(n, 'sf_LastModifiedDate'): d['modified'] = n.sf_LastModifiedDate.cdata # UUID if hasattr(n, 'sf_BS_UUID__c'): d['id'] = n.sf_BS_UUID__c.cdata # Status if hasattr(n, 'sf_BS_Status__c'): d['status'] = int(float(n.sf_BS_Status__c.cdata)) # Name if hasattr(n, 'sf_Name'): d['title'] = n.sf_Name.cdata # Arrangers if hasattr(n, 'sf_Arrangers__c'): d['arrangers'] = n.sf_Arrangers__c.cdata # Composer d['composers'] = n.sf_Composers__c.cdata if hasattr(n, 'sf_Composers__c') else "" # Lyricist d['lyricists'] = n.sf_Lyricists__c.cdata if hasattr(n, 'sf_Lyricists__c') else "" # Holders d['holders'] = n.sf_Holders__c.cdata if hasattr(n, 'sf_Holders__c') else "" # Description d['description'] = n.sf_Description__c.cdata if hasattr(n, 'sf_Description__c') else "" # Notes d['notes'] = n.sf_Notes__c.cdata if hasattr(n, 'sf_Notes__c') else "" # Return parsed dict return d class SfGroup: def parse_sf_notification(n): d = {} # Created if hasattr(n, 'sf_CreatedDate'): d['created'] = n.sf_CreatedDate.cdata # Modified if hasattr(n, 'sf_LastModifiedDate'): d['modified'] = n.sf_LastModifiedDate.cdata # UUID if hasattr(n, 'sf_BS_UUID__c'): d['id'] = n.sf_BS_UUID__c.cdata # Name if hasattr(n, 'sf_Name'): d['name'] = n.sf_Name.cdata # Status if hasattr(n, 'sf_BS_Status__c'): d['status'] = int(float(n.sf_BS_Status__c.cdata)) # Kind if hasattr(n, 'sf_BS_Kind__c'): d['kind'] = int(float(n.sf_BS_Kind__c.cdata)) # Gender if hasattr(n, 'sf_BS_Classification__c'): d['gender'] = int(float(n.sf_BS_Classification__c.cdata)) # District if hasattr(n, 'sf_BS_District__c'): d['district'] = int(float(n.sf_BS_District__c.cdata)) # Divisions d['division'] = int(float(n.sf_BS_Division__c.cdata)) if hasattr(n, 'sf_BS_Division__c') else None # bhs_id if hasattr(n, 'sf_cfg_Member_Id__c') and n.sf_cfg_Member_Id__c.cdata.isalnum(): # Is a Chorus # code d['code'] = n.sf_cfg_Member_Id__c.cdata if hasattr(n, 'sf_cfg_Member_Id__c') else "" elif hasattr(n, 'sf_cfg_Member_Id__c'): # Is a Quartet d['bhs_id'] = int(n.sf_cfg_Member_Id__c.cdata) if hasattr(n, 'sf_cfg_Member_Id__c') else None # Return parsed dict return d class SfPerson: def parse_sf_notification(n): d = {} # Created if hasattr(n, 'sf_CreatedDate'): d['created'] = n.sf_CreatedDate.cdata # Modified if hasattr(n, 'sf_LastModifiedDate'): d['modified'] = n.sf_LastModifiedDate.cdata # UUID if hasattr(n, 'sf_BS_UUID__c'): d['id'] = n.sf_BS_UUID__c.cdata # Status if hasattr(n, 'sf_BS_Status__c'): d['status'] = int(float(n.sf_BS_Status__c.cdata)) # Name if hasattr(n, 'sf_FirstName') and hasattr(n, 'sf_LastName'): d['name'] = n.sf_FirstName.cdata + " " + n.sf_LastName.cdata # First Name d['first_name'] = n.sf_FirstName.cdata if hasattr(n, 'sf_FirstName') else "" # Last Name d['last_name'] = n.sf_LastName.cdata if hasattr(n, 'sf_LastName') else "" # part d['part'] = int(float(n.sf_BS_VoicePart__c.cdata)) if hasattr(n, 'sf_BS_VoicePart__c') else None # Gender d['gender'] = int(float(n.sf_BS_Gender__c.cdata)) if hasattr(n, 'sf_BS_Gender__c') else None # Email d['email'] = n.sf_npe01__HomeEmail__c.cdata if hasattr(n, 'sf_npe01__HomeEmail__c') else "" # Home Phone d['home_phone'] = n.sf_HomePhone.cdata if hasattr(n, 'sf_HomePhone') else "" # Cell Phone d['cell_phone'] = n.sf_MobilePhone.cdata if hasattr(n, 'sf_MobilePhone') else "" # BHS ID d['bhs_id'] = int(n.sf_cfg_Member_Number__c.cdata) if hasattr(n, 'sf_cfg_Member_Number__c') else None # Return parsed dict return d class SfSession: def parse_sf_notification(n): d = {} # Created if hasattr(n, 'sf_CreatedDate'): d['created'] = n.sf_CreatedDate.cdata # Modified if hasattr(n, 'sf_LastModifiedDate'): d['modified'] = n.sf_LastModifiedDate.cdata # UUID if hasattr(n, 'sf_BS_UUID__c'): d['id'] = n.sf_BS_UUID__c.cdata # Status if hasattr(n, 'sf_BS_Status__c'): d['status'] = int(float(n.sf_BS_Status__c.cdata)) # Kind if hasattr(n, 'sf_BS_Kind__c'): d['kind'] = int(float(n.sf_BS_Kind__c.cdata)) # Num Rounds if hasattr(n, 'sf_Num_rounds__c'): d['num_rounds'] = int(float(n.sf_Num_rounds__c.cdata)) # Is Invitational if hasattr(n, 'sf_is_invitational__c'): d['is_invitational'] = bool(strtobool(n.sf_is_invitational__c.cdata)) # Description d['description'] = n.sf_Description__c.cdata if hasattr(n, 'sf_Description__c') else "" # Notes d['notes'] = n.sf_Notes__c.cdata if hasattr(n, 'sf_Notes__c') else "" # Footnotes d['footnotes'] = n.sf_Footnotes__c.cdata if hasattr(n, 'sf_Footnotes__c') else "" if hasattr(n, 'sf_BS_Convention_UUID__c'): d['convention_id'] = n.sf_BS_Convention_UUID__c.cdata # Name if hasattr(n, 'sf_Name'): d['name'] = n.sf_Name.cdata # District if hasattr(n, 'sf_BS_District__c'): d['district'] = int(float(n.sf_BS_District__c.cdata)) # Season if hasattr(n, 'sf_BS_Season__c'): d['season'] = int(float(n.sf_BS_Season__c.cdata)) # Panel if hasattr(n, 'sf_BS_Panel__c'): d['panel'] = int(float(n.sf_BS_Panel__c.cdata)) # Year if hasattr(n, 'sf_Year__c'): d['year'] = int(n.sf_Year__c.cdata) # Open Date if hasattr(n, 'sf_Open_Date__c'): d['open_date'] = n.sf_Open_Date__c.cdata # Close Date if hasattr(n, 'sf_Close_Date__c'): d['close_date'] = n.sf_Close_Date__c.cdata # Start Date if hasattr(n, 'sf_Start_Date__c'): d['start_date'] = n.sf_Start_Date__c.cdata # End Date if hasattr(n, 'sf_End_Date__c'): d['end_date'] = n.sf_End_Date__c.cdata # Venue if hasattr(n, 'sf_Venue__c'): d['venue_name'] = n.sf_Venue__c.cdata # Location if hasattr(n, 'sf_Location__c'): d['location'] = n.sf_Location__c.cdata # Time Zone if hasattr(n, 'sf_Time_Zone__c'): d['timezone'] = n.sf_Time_Zone__c.cdata # Divisions if hasattr(n, 'sf_BS_Division__c'): d['divisions'] = n.sf_BS_Division__c.cdata # Return parsed dict return d class SfContest: def parse_sf_notification(n): d = {} # Created if hasattr(n, 'sf_CreatedDate'): d['created'] = n.sf_CreatedDate.cdata # Modified if hasattr(n, 'sf_LastModifiedDate'): d['modified'] = n.sf_LastModifiedDate.cdata # UUID if hasattr(n, 'sf_BS_UUID__c'): d['id'] = n.sf_BS_UUID__c.cdata # Award ID if hasattr(n, 'sf_BS_Award_UUID__c'): d['award_id'] = n.sf_BS_Award_UUID__c.cdata # Name if hasattr(n, 'sf_Name'): d['name'] = n.sf_Name.cdata # Kind if hasattr(n, 'sf_BS_Kind__c'): d['kind'] = int(float(n.sf_BS_Kind__c.cdata)) # Gender d['gender'] = int(float(n.sf_BS_Classification__c.cdata)) if hasattr(n, 'sf_BS_Classification__c') else None # Level if hasattr(n, 'sf_BS_Level__c'): d['level'] = int(float(n.sf_BS_Level__c.cdata)) # Season if hasattr(n, 'sf_BS_Season__c'): d['season'] = int(float(n.sf_BS_Season__c.cdata)) # Description d['description'] = n.sf_Description__c.cdata if hasattr(n, 'sf_Description__c') else "" # District if hasattr(n, 'sf_BS_District__c'): d['district'] = int(float(n.sf_BS_District__c.cdata)) # Divisions d['division'] = int(float(n.sf_BS_Division__c.cdata)) if hasattr(n, 'sf_BS_Division__c') else None # Age d['age'] = int(float(n.sf_BS_Age__c.cdata)) if hasattr(n, 'sf_BS_Age__c') else None # Is Novice if hasattr(n, 'sf_is_novice__c'): d['is_novice'] = bool(strtobool(n.sf_is_novice__c.cdata)) # Is Single if hasattr(n, 'sf_is_single__c'): d['is_single'] = bool(strtobool(n.sf_is_single__c.cdata)) # Size d['size'] = int(float(n.sf_BS_Size__c.cdata)) if hasattr(n, 'sf_BS_Size__c') else None # Size Range d['size_range'] = n.sf_Size_Range__c.cdata if hasattr(n, 'sf_Size_Range__c') else None # Scope d['scope'] = int(float(n.sf_BS_Scope__c.cdata)) if hasattr(n, 'sf_BS_Scope__c') else None # Scope Range d['scope_range'] = n.sf_Scope_Range__c.cdata if hasattr(n, 'sf_Scope_Range__c') else None # Tree Sort d['tree_sort'] = int(float(n.sf_Tree_Sort__c.cdata)) if hasattr(n, 'sf_Tree_Sort__c') else None # Session ID if hasattr(n, 'sf_BS_Session_UUID__c'): d['session_id'] = n.sf_BS_Session_UUID__c.cdata # Return parsed dict return d class SfAssignment: def parse_sf_notification(n): d = {} # Created if hasattr(n, 'sf_CreatedDate'): d['created'] = n.sf_CreatedDate.cdata # Modified if hasattr(n, 'sf_LastModifiedDate'): d['modified'] = n.sf_LastModifiedDate.cdata # UUID if hasattr(n, 'sf_BS_UUID__c'): d['id'] = n.sf_BS_UUID__c.cdata # Kind if hasattr(n, 'sf_BS_Type__c'): d['kind'] = int(float(n.sf_BS_Type__c.cdata)) # Category if
0.00435488, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage with power gating': 0.00248228, 'Renaming Unit/Peak Dynamic': 3.58947, 'Renaming Unit/Runtime Dynamic': 0.274562, 'Renaming Unit/Subthreshold Leakage': 0.0552466, 'Renaming Unit/Subthreshold Leakage with power gating': 0.0276461, 'Runtime Dynamic': 3.52564, 'Subthreshold Leakage': 6.16288, 'Subthreshold Leakage with power gating': 2.55328}, {'Area': 32.0201, 'Execution Unit/Area': 7.68434, 'Execution Unit/Complex ALUs/Area': 0.235435, 'Execution Unit/Complex ALUs/Gate Leakage': 0.0132646, 'Execution Unit/Complex ALUs/Peak Dynamic': 0.0492287, 'Execution Unit/Complex ALUs/Runtime Dynamic': 0.241355, 'Execution Unit/Complex ALUs/Subthreshold Leakage': 0.20111, 'Execution Unit/Complex ALUs/Subthreshold Leakage with power gating': 0.0754163, 'Execution Unit/Floating Point Units/Area': 4.6585, 'Execution Unit/Floating Point Units/Gate Leakage': 0.0656156, 'Execution Unit/Floating Point Units/Peak Dynamic': 0.260146, 'Execution Unit/Floating Point Units/Runtime Dynamic': 0.304033, 'Execution Unit/Floating Point Units/Subthreshold Leakage': 0.994829, 'Execution Unit/Floating Point Units/Subthreshold Leakage with power gating': 0.373061, 'Execution Unit/Gate Leakage': 0.120359, 'Execution Unit/Instruction Scheduler/Area': 1.66526, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Area': 0.275653, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Gate Leakage': 0.000977433, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Peak Dynamic': 1.04181, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Runtime Dynamic': 0.123302, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage': 0.0143453, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage with power gating': 0.00810519, 'Execution Unit/Instruction Scheduler/Gate Leakage': 0.00568913, 'Execution Unit/Instruction Scheduler/Instruction Window/Area': 0.805223, 'Execution Unit/Instruction Scheduler/Instruction Window/Gate Leakage': 0.00414562, 'Execution Unit/Instruction Scheduler/Instruction Window/Peak Dynamic': 1.6763, 'Execution Unit/Instruction Scheduler/Instruction Window/Runtime Dynamic': 0.198882, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage': 0.0625755, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage with power gating': 0.0355964, 'Execution Unit/Instruction Scheduler/Peak Dynamic': 3.82262, 'Execution Unit/Instruction Scheduler/ROB/Area': 0.584388, 'Execution Unit/Instruction Scheduler/ROB/Gate Leakage': 0.00056608, 'Execution Unit/Instruction Scheduler/ROB/Peak Dynamic': 1.10451, 'Execution Unit/Instruction Scheduler/ROB/Runtime Dynamic': 0.100389, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage': 0.00906853, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage with power gating': 0.00364446, 'Execution Unit/Instruction Scheduler/Runtime Dynamic': 0.422572, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage': 0.0859892, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage with power gating': 0.047346, 'Execution Unit/Integer ALUs/Area': 0.47087, 'Execution Unit/Integer ALUs/Gate Leakage': 0.0265291, 'Execution Unit/Integer ALUs/Peak Dynamic': 0.101137, 'Execution Unit/Integer ALUs/Runtime Dynamic': 0.101344, 'Execution Unit/Integer ALUs/Subthreshold Leakage': 0.40222, 'Execution Unit/Integer ALUs/Subthreshold Leakage with power gating': 0.150833, 'Execution Unit/Peak Dynamic': 4.48232, 'Execution Unit/Register Files/Area': 0.570804, 'Execution Unit/Register Files/Floating Point RF/Area': 0.208131, 'Execution Unit/Register Files/Floating Point RF/Gate Leakage': 0.000232788, 'Execution Unit/Register Files/Floating Point RF/Peak Dynamic': 0.0491471, 'Execution Unit/Register Files/Floating Point RF/Runtime Dynamic': 0.00517184, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage': 0.00399698, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage with power gating': 0.00176968, 'Execution Unit/Register Files/Gate Leakage': 0.000622708, 'Execution Unit/Register Files/Integer RF/Area': 0.362673, 'Execution Unit/Register Files/Integer RF/Gate Leakage': 0.00038992, 'Execution Unit/Register Files/Integer RF/Peak Dynamic': 0.0560611, 'Execution Unit/Register Files/Integer RF/Runtime Dynamic': 0.0382489, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage': 0.00614175, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage with power gating': 0.00246675, 'Execution Unit/Register Files/Peak Dynamic': 0.105208, 'Execution Unit/Register Files/Runtime Dynamic': 0.0434208, 'Execution Unit/Register Files/Subthreshold Leakage': 0.0101387, 'Execution Unit/Register Files/Subthreshold Leakage with power gating': 0.00423643, 'Execution Unit/Results Broadcast Bus/Area Overhead': 0.0390912, 'Execution Unit/Results Broadcast Bus/Gate Leakage': 0.00537402, 'Execution Unit/Results Broadcast Bus/Peak Dynamic': 0.130415, 'Execution Unit/Results Broadcast Bus/Runtime Dynamic': 0.300512, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage': 0.081478, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage with power gating': 0.0305543, 'Execution Unit/Runtime Dynamic': 1.41324, 'Execution Unit/Subthreshold Leakage': 1.79543, 'Execution Unit/Subthreshold Leakage with power gating': 0.688821, 'Gate Leakage': 0.368936, 'Instruction Fetch Unit/Area': 5.85939, 'Instruction Fetch Unit/Branch Predictor/Area': 0.138516, 'Instruction Fetch Unit/Branch Predictor/Chooser/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Chooser/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Chooser/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Chooser/Runtime Dynamic': 0.000679372, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/Gate Leakage': 0.000757657, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Runtime Dynamic': 0.000679372, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Area': 0.0257064, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Gate Leakage': 0.000154548, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Peak Dynamic': 0.0142575, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Runtime Dynamic': 0.000613657, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage': 0.00384344, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage with power gating': 0.00198631, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Area': 0.0151917, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Gate Leakage': 8.00196e-05, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Peak Dynamic': 0.00527447, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Runtime Dynamic': 0.000249548, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage': 0.00181347, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage with power gating': 0.000957045, 'Instruction Fetch Unit/Branch Predictor/Peak Dynamic': 0.0597838, 'Instruction Fetch Unit/Branch Predictor/RAS/Area': 0.0105732, 'Instruction Fetch Unit/Branch Predictor/RAS/Gate Leakage': 4.63858e-05, 'Instruction Fetch Unit/Branch Predictor/RAS/Peak Dynamic': 0.0117602, 'Instruction Fetch Unit/Branch Predictor/RAS/Runtime Dynamic': 0.000549449, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage': 0.000932505, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage with power gating': 0.000494733, 'Instruction Fetch Unit/Branch Predictor/Runtime Dynamic': 0.00252185, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage': 0.0199703, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage with power gating': 0.0103282, 'Instruction Fetch Unit/Branch Target Buffer/Area': 0.64954, 'Instruction Fetch Unit/Branch Target Buffer/Gate Leakage': 0.00272758, 'Instruction Fetch Unit/Branch Target Buffer/Peak Dynamic': 0.177867, 'Instruction Fetch Unit/Branch Target Buffer/Runtime Dynamic': 0.00573042, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage': 0.0811682, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage with power gating': 0.0435357, 'Instruction Fetch Unit/Gate Leakage': 0.0589979, 'Instruction Fetch Unit/Instruction Buffer/Area': 0.0226323, 'Instruction Fetch Unit/Instruction Buffer/Gate Leakage': 6.83558e-05, 'Instruction Fetch Unit/Instruction Buffer/Peak Dynamic': 0.606827, 'Instruction Fetch Unit/Instruction Buffer/Runtime Dynamic': 0.0367697, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage': 0.00151885, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage with power gating': 0.000701682, 'Instruction Fetch Unit/Instruction Cache/Area': 3.14635, 'Instruction Fetch Unit/Instruction Cache/Gate Leakage': 0.029931, 'Instruction Fetch Unit/Instruction Cache/Peak Dynamic': 2.33887, 'Instruction Fetch Unit/Instruction Cache/Runtime Dynamic': 0.0980438, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage': 0.367022, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage with power gating': 0.180386, 'Instruction Fetch Unit/Instruction Decoder/Area': 1.85799, 'Instruction Fetch Unit/Instruction Decoder/Gate Leakage': 0.0222493, 'Instruction Fetch Unit/Instruction Decoder/Peak Dynamic': 1.37404, 'Instruction Fetch Unit/Instruction Decoder/Runtime Dynamic': 0.124886, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage': 0.442943, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage with power gating': 0.166104, 'Instruction Fetch Unit/Peak Dynamic': 4.67089, 'Instruction Fetch Unit/Runtime Dynamic': 0.267952, 'Instruction Fetch Unit/Subthreshold Leakage': 0.932286, 'Instruction Fetch Unit/Subthreshold Leakage with power gating': 0.40843, 'L2/Area': 4.53318, 'L2/Gate Leakage': 0.015464, 'L2/Peak Dynamic': 0.0363631, 'L2/Runtime Dynamic': 0.00744087, 'L2/Subthreshold Leakage': 0.834142, 'L2/Subthreshold Leakage with power gating': 0.401066, 'Load Store Unit/Area': 8.80901, 'Load Store Unit/Data Cache/Area': 6.84535, 'Load Store Unit/Data Cache/Gate Leakage': 0.0279261, 'Load Store Unit/Data Cache/Peak Dynamic': 2.49217, 'Load Store Unit/Data Cache/Runtime Dynamic': 0.612821, 'Load Store Unit/Data Cache/Subthreshold Leakage': 0.527675, 'Load Store Unit/Data Cache/Subthreshold Leakage with power gating': 0.25085, 'Load Store Unit/Gate Leakage': 0.0350888, 'Load Store Unit/LoadQ/Area': 0.0836782, 'Load Store Unit/LoadQ/Gate Leakage': 0.00059896, 'Load Store Unit/LoadQ/Peak Dynamic': 0.0406038, 'Load Store Unit/LoadQ/Runtime Dynamic': 0.0406037, 'Load Store Unit/LoadQ/Subthreshold Leakage': 0.00941961, 'Load Store Unit/LoadQ/Subthreshold Leakage with power gating': 0.00536918, 'Load Store Unit/Peak Dynamic': 2.68391, 'Load Store Unit/Runtime Dynamic': 0.853668, 'Load Store Unit/StoreQ/Area': 0.322079, 'Load Store Unit/StoreQ/Gate Leakage': 0.00329971, 'Load Store Unit/StoreQ/Peak Dynamic': 0.100122, 'Load Store Unit/StoreQ/Runtime Dynamic': 0.200244, 'Load Store Unit/StoreQ/Subthreshold Leakage': 0.0345621, 'Load Store Unit/StoreQ/Subthreshold Leakage with power gating': 0.0197004, 'Load Store Unit/Subthreshold Leakage': 0.591321, 'Load Store Unit/Subthreshold Leakage with power gating': 0.283293, 'Memory Management Unit/Area': 0.4339, 'Memory Management Unit/Dtlb/Area': 0.0879726, 'Memory Management Unit/Dtlb/Gate Leakage': 0.00088729, 'Memory Management Unit/Dtlb/Peak Dynamic': 0.0355336, 'Memory Management Unit/Dtlb/Runtime Dynamic': 0.0360296, 'Memory Management Unit/Dtlb/Subthreshold Leakage': 0.0155699, 'Memory Management Unit/Dtlb/Subthreshold Leakage with power gating': 0.00887485, 'Memory Management Unit/Gate Leakage': 0.00808595, 'Memory Management Unit/Itlb/Area': 0.301552, 'Memory Management Unit/Itlb/Gate Leakage': 0.00393464, 'Memory Management Unit/Itlb/Peak Dynamic': 0.145422, 'Memory Management Unit/Itlb/Runtime Dynamic': 0.0162211, 'Memory Management Unit/Itlb/Subthreshold Leakage': 0.0413758, 'Memory Management Unit/Itlb/Subthreshold Leakage with power gating': 0.0235842, 'Memory Management Unit/Peak Dynamic': 0.362571, 'Memory Management Unit/Runtime Dynamic': 0.0522507, 'Memory Management Unit/Subthreshold Leakage': 0.0766103, 'Memory Management Unit/Subthreshold Leakage with power gating': 0.0398333, 'Peak Dynamic': 15.8255, 'Renaming Unit/Area': 0.303608, 'Renaming Unit/FP Front End RAT/Area': 0.131045, 'Renaming Unit/FP Front End RAT/Gate Leakage': 0.00351123, 'Renaming Unit/FP Front End RAT/Peak Dynamic': 2.51468, 'Renaming Unit/FP Front End RAT/Runtime Dynamic': 0.129283, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage': 0.0308571, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage with power gating': 0.0175885, 'Renaming Unit/Free List/Area': 0.0340654, 'Renaming Unit/Free List/Gate Leakage': 2.5481e-05, 'Renaming Unit/Free List/Peak Dynamic': 0.0306032, 'Renaming Unit/Free List/Runtime Dynamic': 0.0071364, 'Renaming Unit/Free List/Subthreshold Leakage': 0.000370144, 'Renaming Unit/Free List/Subthreshold Leakage with power gating': 0.000201064, 'Renaming Unit/Gate Leakage': 0.00708398, 'Renaming Unit/Int Front End RAT/Area': 0.0941223, 'Renaming Unit/Int Front End RAT/Gate Leakage': 0.000283242, 'Renaming Unit/Int Front End RAT/Peak Dynamic': 0.731965, 'Renaming Unit/Int Front End RAT/Runtime Dynamic': 0.0602474, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage': 0.00435488,
self.cfg["word_embedding"] self.sess, self.saver = None, None # Add placeholder self.words = tf.placeholder(tf.int32, shape=[None, None], name="words") # shape = (batch_size, max_time) self.labels = tf.placeholder(tf.int32, shape=[None, None], name="label") # shape = (batch_size, max_time - 1) self.seq_len = tf.placeholder(tf.int32, shape=[None], name="seq_len") # shape = (batch_size, max_time, max_word_length) self.chars = tf.placeholder(tf.int32, shape=[None, None, None], name="chars") self.char_seq_len = tf.placeholder(tf.int32, shape=[None, None], name="char_seq_len") # hyper-parameters self.is_train = tf.placeholder(tf.bool, shape=[], name="is_train") self.batch_size = tf.placeholder(tf.int32, name="batch_size") self.keep_prob = tf.placeholder(tf.float32, name="keep_probability") self.drop_rate = tf.placeholder(tf.float32, name="dropout_rate") self.lr = tf.placeholder(tf.float32, name="learning_rate") # Build embedding layer with tf.variable_scope("embeddings"): self.word_embeddings = tf.Variable(np.load(self.cfg["word_embedding"])["embeddings"], name="embedding", dtype=tf.float32, trainable=False) word_emb = tf.nn.embedding_lookup(self.word_embeddings, self.words, name="word_emb") print("Word embedding shape: {}".format(word_emb.get_shape().as_list())) self.char_embeddings = tf.get_variable(name="char_embedding", dtype=tf.float32, trainable=True, shape=[self.char_vocab_size, self.cfg["char_emb_dim"]]) char_emb = tf.nn.embedding_lookup(self.char_embeddings, self.chars, name="chars_emb") char_represent = multi_conv1d(char_emb, self.cfg["filter_sizes"], self.cfg["channel_sizes"], drop_rate=self.drop_rate, is_train=self.is_train) print("Chars representation shape: {}".format(char_represent.get_shape().as_list())) word_emb = tf.concat([word_emb, char_represent], axis=-1) self.word_emb = tf.layers.dropout(word_emb, rate=self.drop_rate, training=self.is_train) print("Word and chars concatenation shape: {}".format(self.word_emb.get_shape().as_list())) # Build model ops with tf.name_scope("BiLSTM"): with tf.variable_scope('forward'): lstm_fw_cell = tf.keras.layers.LSTMCell(self.cfg["num_units"]) with tf.variable_scope('backward'): lstm_bw_cell = tf.keras.layers.LSTMCell(self.cfg["num_units"]) rnn_outs, *_ = bidirectional_dynamic_rnn(lstm_fw_cell, lstm_bw_cell, self.word_emb, sequence_length=self.seq_len, dtype=tf.float32) # As we have a Bi-LSTM, we have two outputs which are not connected, so we need to merge them. rnn_outs = tf.concat(rnn_outs, axis=-1) rnn_outs = tf.layers.dropout(rnn_outs, rate=self.drop_rate, training=self.is_train) outputs = rnn_outs print("Output shape: {}".format(outputs.get_shape().as_list())) context = tf.transpose(outputs, [1, 0, 2]) p_context = tf.layers.dense(outputs, units=2 * self.cfg["num_units"], use_bias=False) p_context = tf.transpose(p_context, [1, 0, 2]) attn_cell = AttentionCell(self.cfg["num_units"], context, p_context) # time major based attn_outs, _ = dynamic_rnn(attn_cell, context, sequence_length=self.seq_len, time_major=True, dtype=tf.float32) outputs = tf.transpose(attn_outs, [1, 0, 2]) print("Attention output shape: {}".format(outputs.get_shape().as_list())) self.logits = tf.layers.dense(outputs, units=self.label_vocab_size, use_bias=True) # self.logits = tf.nn.softmax(self.logits) print("Logits shape: {}".format(self.logits.get_shape().as_list())) # Define loss and optimizer losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.logits, labels=self.labels) mask = tf.sequence_mask(self.seq_len) self.loss = tf.reduce_mean(tf.boolean_mask(losses, mask)) # losses = focal_loss(self.gamma,self.alpha) # self.loss = losses(self.labels, self.logits) # self.loss = tf.reduce_mean(self.loss) tf.summary.scalar("loss", self.loss) optimizer = tf.train.AdamOptimizer(learning_rate=self.lr) self.train_op = optimizer.minimize(self.loss) print('Params number: {}'.format(np.sum([np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()]))) sess_config = tf.ConfigProto() sess_config.gpu_options.allow_growth = True self.sess = tf.Session(config=sess_config) self.saver = tf.train.Saver(max_to_keep=self.max_to_keep) self.sess.run(tf.global_variables_initializer()) def restore_last_session(self, ckpt_path=None): if ckpt_path is not None: ckpt = tf.train.get_checkpoint_state(ckpt_path) else: ckpt = tf.train.get_checkpoint_state(self.checkpoint_path) # get checkpoint state if ckpt and ckpt.model_checkpoint_path: # restore session self.saver.restore(self.sess, ckpt.model_checkpoint_path) def save_session(self, epoch): self.saver.save(self.sess, self.checkpoint_path + self.cfg["model_name"], global_step=epoch) def close_session(self): self.sess.close() def _add_summary(self): self.summary = tf.summary.merge_all() self.train_writer = tf.summary.FileWriter(self.summary_path + "train", self.sess.graph) self.test_writer = tf.summary.FileWriter(self.summary_path + "test") def _get_feed_dict(self, batch, keep_prob=1.0, is_train=False, lr=None): feed_dict = {self.words: batch["words"], self.seq_len: batch["seq_len"], self.batch_size: batch["batch_size"]} if "labels" in batch: feed_dict[self.labels] = batch["labels"] feed_dict[self.chars] = batch["chars"] feed_dict[self.char_seq_len] = batch["char_seq_len"] feed_dict[self.keep_prob] = keep_prob feed_dict[self.drop_rate] = 1.0 - keep_prob feed_dict[self.is_train] = is_train if lr is not None: feed_dict[self.lr] = lr return feed_dict def _predict_op(self, data): feed_dict = self._get_feed_dict(data) pred_logits = tf.cast(tf.argmax(self.logits, axis=-1), tf.int32) logits = self.sess.run(pred_logits, feed_dict=feed_dict) return logits def train_epoch(self, train_set,valid_set, epoch): num_batches = len(train_set) prog = Progbar(target=num_batches) for i, batch_data in enumerate(train_set): feed_dict = self._get_feed_dict(batch_data, is_train=True, keep_prob=self.cfg["keep_prob"], lr=self.cfg["lr"]) _, train_loss, summary = self.sess.run([self.train_op, self.loss, self.summary], feed_dict=feed_dict) cur_step = (epoch - 1) * num_batches + (i + 1) prog.update(i + 1, [("Global Step", int(cur_step)), ("Train Loss", train_loss)]) if i % 100 == 0: self.train_writer.add_summary(summary, cur_step) step = cur_step for j, batch_data in enumerate(valid_set): feed_dict = self._get_feed_dict(batch_data) val_summary = self.sess.run(self.summary, feed_dict=feed_dict) self.test_writer.add_summary(val_summary, step) micro_f_val, out_str, micro = self.evaluate_punct(valid_set, "val") return micro_f_val, train_loss def train(self, train_set, valid_set): self.logger.info("Start training...") best_f1, no_imprv_epoch = -np.inf, 0 self._add_summary() for epoch in range(1, self.cfg["epochs"] + 1): self.logger.info('Epoch {}/{}: '.format(epoch, self.cfg["epochs"],)) micro_f_val, train_loss = self.train_epoch(train_set,valid_set, epoch) # train epochs self.logger.info('Train loss: {} - Valid micro average fscore: {}'.format(train_loss, micro_f_val)) cur_f1 = micro_f_val if cur_f1 > best_f1: no_imprv_epoch = 0 best_f1 = cur_f1 # f1_test, out_str = self.evaluate_punct(test_set, "test") # self.logger.info("\nEvaluate on {} dataset:\n{}\n".format("test", out_str)) self.save_session(epoch) else: no_imprv_epoch += 1 if no_imprv_epoch >= self.cfg["no_imprv_tolerance"]: self.logger.info("Early Stopping at epoch - Valid micro average fscore: {:04.2f} - {:04.2f}".format(epoch, best_f1)) break self.train_writer.close() self.test_writer.close() def test(self,test_set): self.logger.info("Start testing...") micro_f, out_str, micro = self.evaluate_punct(test_set, "test") self.logger.info("\nEvaluate on {} dataset:\n{}\n".format("test", out_str)) self.logger.info("\n{}\n".format(micro)) def evaluate_punct(self, dataset, name): PUNCTUATIONS = ['O','PERIOD', 'COMMA', 'EXCLAM', 'COLON', 'QMARK','SEMICOLON'] preds = [] labels = [] TP = 0.0 FP = 0.0 FN = 0.0 num_class = len(PUNCTUATIONS) # cfm = [ [0 for i in range(7)] for j in range(num_class)] for data in dataset: predicts = self._predict_op(data) for pred, tag, seq_len in zip(predicts, data["labels"], data["seq_len"]): preds.append(pred[:seq_len]) # print(preds) labels.append(tag[:seq_len]) for i in range(len(pred)): for l in range(1,7): if (pred[i] == tag[i]) and (tag[i] == l): TP += 1 elif (pred[i] != tag[i]) and (tag[i] == l): FN += 1 elif (pred[i] != tag[i]) and (pred[i] == l): FP += 1 labels = [y for x in labels for y in x] preds = [y for x in preds for y in x] precision = precision_score(labels, preds, average=None) recall = recall_score(labels, preds, average=None) f_score = f1_score(labels, preds, average=None) if (TP + FN) != 0: micro_r = TP / (TP + FN) else: micro_r = 0 ################### if (TP + FP) != 0: micro_p = TP / (TP + FP) else: micro_p = 0 ################ if (micro_r + micro_p) > 0: micro_f = 2*micro_r * micro_p / (micro_r + micro_p) else: micro_f = 0.0 micro = 'MICRO AVERAGE:\n\t Precision: ' + str(100*micro_p) + '%\n\tRecall: ' + str(100*micro_r) + ' %\n\t F_1 score: ' + str(100*micro_f) + ' %\n' out_str = "-" * 46 + "\n" out_str += "{:<16} {:<9} {:<9} {:<9}\n".format("PUNCTUATION", "PRECISION", "RECALL", "F-SCORE") for i in range(1,num_class): out_str += u"{:<16} {:<9} {:<9} {:<9}\n".format(PUNCTUATIONS[i], "{:.4f}".format(100*precision[i]), "{:.4f}".format(100*recall[i]), "{:.4f}".format(100*f_score[i])) return micro_f, out_str, micro class BiLSTM_CRF_model: def __init__(self, config, alpha, gamma): self.cfg = config self.alpha = alpha self.gamma = gamma # Create folders if not os.path.exists(self.cfg["checkpoint_path"]): os.makedirs(self.cfg["checkpoint_path"]) if not os.path.exists(self.cfg["summary_path"]): os.makedirs(self.cfg["summary_path"]) #Create logger self.logger = get_logger(os.path.join(self.cfg["checkpoint_path"], str(self.gamma) + str(self.alpha) + "log.txt")) # Load dictionary dict_data = load_data(self.cfg["vocab"]) self.word_dict, self.char_dict = dict_data["word_dict"], dict_data["char_dict"] self.label_dict = dict_data["label_dict"] del dict_data self.word_vocab_size = len(self.word_dict) self.char_vocab_size = len(self.char_dict) self.label_vocab_size = len(self.label_dict) self.max_to_keep = self.cfg["max_to_keep"] self.checkpoint_path = self.cfg["checkpoint_path"] self.summary_path = self.cfg["summary_path"] self.word_embedding = self.cfg["word_embedding"] self.sess, self.saver = None, None # Add placeholder self.words = tf.placeholder(tf.int32, shape=[None, None], name="words") # shape = (batch_size, max_time) self.labels = tf.placeholder(tf.int32, shape=[None, None], name="label") # shape = (batch_size, max_time) self.seq_len = tf.placeholder(tf.int32, shape=[None], name="seq_len") # shape = (batch_size, max_time, max_word_length) self.chars = tf.placeholder(tf.int32, shape=[None, None, None], name="chars") self.char_seq_len = tf.placeholder(tf.int32, shape=[None, None], name="char_seq_len") # hyper-parameters self.is_train = tf.placeholder(tf.bool, shape=[], name="is_train") self.batch_size = tf.placeholder(tf.int32, name="batch_size") self.keep_prob = tf.placeholder(tf.float32, name="keep_probability") self.drop_rate = tf.placeholder(tf.float32, name="dropout_rate") self.lr = tf.placeholder(tf.float32, name="learning_rate") # Build embedding layer with tf.variable_scope("embeddings"): self.word_embeddings = tf.Variable(np.load(self.cfg["word_embedding"])["embeddings"], name="embedding", dtype=tf.float32, trainable=False) word_emb = tf.nn.embedding_lookup(self.word_embeddings, self.words, name="word_emb") print("Word embedding shape: {}".format(word_emb.get_shape().as_list())) self.char_embeddings = tf.get_variable(name="char_embedding", dtype=tf.float32, trainable=True, shape=[self.char_vocab_size, self.cfg["char_emb_dim"]]) char_emb = tf.nn.embedding_lookup(self.char_embeddings, self.chars, name="chars_emb") char_represent = multi_conv1d(char_emb, self.cfg["filter_sizes"], self.cfg["channel_sizes"], drop_rate=self.drop_rate, is_train=self.is_train) print("Chars representation shape: {}".format(char_represent.get_shape().as_list())) word_emb = tf.concat([word_emb, char_represent], axis=-1) self.word_emb = tf.layers.dropout(word_emb, rate=self.drop_rate, training=self.is_train) print("Word and chars concatenation shape: {}".format(self.word_emb.get_shape().as_list())) # Build model ops with tf.name_scope("BiLSTM"): with tf.variable_scope('forward'): lstm_fw_cell = tf.keras.layers.LSTMCell(self.cfg["num_units"]) with tf.variable_scope('backward'): lstm_bw_cell = tf.keras.layers.LSTMCell(self.cfg["num_units"]) rnn_outs, *_ = bidirectional_dynamic_rnn(lstm_fw_cell, lstm_bw_cell, self.word_emb, sequence_length=self.seq_len, dtype=tf.float32) # As we have a Bi-LSTM, we have two outputs which are not connected, so we need to merge them. rnn_outs = tf.concat(rnn_outs, axis=-1) # rnn_outs = tf.layers.dropout(rnn_outs, rate=self.drop_rate, training=self.is_train) outputs = rnn_outs print("Output shape: {}".format(outputs.get_shape().as_list())) self.logits = tf.layers.dense(outputs, units=self.label_vocab_size, use_bias=True) # self.logits = tf.nn.softmax(self.logits) print("Logits shape: {}".format(self.logits.get_shape().as_list())) # Define loss and optimizer crf_loss, self.trans_params = crf_log_likelihood(self.logits, self.labels, self.seq_len) losses = focal_loss(self.gamma,self.alpha) self.loss = losses(self.labels, self.logits) self.loss = tf.reduce_mean(self.loss) tf.summary.scalar("loss", self.loss) optimizer = tf.train.AdamOptimizer(learning_rate=self.lr) self.train_op = optimizer.minimize(self.loss) print('Params number: {}'.format(np.sum([np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()]))) sess_config = tf.ConfigProto() sess_config.gpu_options.allow_growth = True self.sess = tf.Session(config=sess_config) self.saver = tf.train.Saver(max_to_keep=self.max_to_keep) self.sess.run(tf.global_variables_initializer()) def restore_last_session(self, ckpt_path=None): if ckpt_path is not None: ckpt = tf.train.get_checkpoint_state(ckpt_path) else: ckpt = tf.train.get_checkpoint_state(self.checkpoint_path) # get checkpoint state if ckpt and ckpt.model_checkpoint_path: # restore session self.saver.restore(self.sess, ckpt.model_checkpoint_path) def save_session(self, epoch): self.saver.save(self.sess, self.checkpoint_path + self.cfg["model_name"], global_step=epoch) def close_session(self): self.sess.close() def _add_summary(self): self.summary = tf.summary.merge_all() self.train_writer = tf.summary.FileWriter(self.summary_path + "train", self.sess.graph) self.test_writer = tf.summary.FileWriter(self.summary_path + "test") def _get_feed_dict(self, batch, keep_prob=1.0, is_train=False, lr=None): feed_dict = {self.words: batch["words"], self.seq_len: batch["seq_len"], self.batch_size: batch["batch_size"]} if "labels" in batch: feed_dict[self.labels] = batch["labels"] feed_dict[self.chars] = batch["chars"] feed_dict[self.char_seq_len] = batch["char_seq_len"] feed_dict[self.keep_prob] =
class LeagueRecom: """ A LeagueRecom object holds information about the rankings and results of a couple of seasons from a certain league Parameters ---------- games : list A list with Game objects stored in it rankings : list A list with Ranking objects stored in it w_points : int The amount of points a formation gets when it wins d_points : int The amount of points a formation gets when it plays a draw Attributes ---------- matches_list : list Stores all the Game objects in a list ranking_list : list Stores all the Ranking objects in a list win_points : int Stores the amount of points a winning formation gets draw_points : int Stores the amount of points a formation gets for a draw ranking_dict : dictionary Stores the dictionary of all the rankings of a team per year once it's generated recom_dict : dictionary Stores the recommendation dictionary of the league once it's generated """ def __init__(self, games: list, rankings: list, w_points: int, d_points: int): try: self.matches_list = games self.ranking_list = rankings self.win_points = w_points self.draw_points = d_points self.ranking_dict = None self.recom_dict = None except ValueError as e: print("An incorrect variable type was entered\n", e) def ranking_list_to_dict(self): """ Constructs based on the Ranking a dictionary with per season the rank of a club Raises ---------- AttributeError When the ranking_list doesn't contain objects of the Ranking class TypeError When a wrong type is inserted into the object as ranking_list Exception When an unexpected error happens Returns ------- dictionary A dictionary with per season/year the rank of a certain club """ try: # initialize a dictionary to save the rank info ranking_dict = {} # loop over all objects in the list for rank in self.ranking_list: if rank.get_season() not in ranking_dict: # if the season key doesn't already exist ranking_dict[rank.get_season()] = {} # saves the team as key and its rank as value in a season ranking_dict[rank.get_season()][rank.get_team()] = rank.get_rank() # update the ranking_dict of the object self.ranking_dict = ranking_dict # return the ranking_dict return self.ranking_dict # handle exceptions except AttributeError as e: print("The list does not contain objects of the class Ranking\n", e) except TypeError as e: print("No iterable type is given\n", e) except Exception as e: print("Unexpected error while generating the ranking dictionary\n", e) def formations_info_recom(self): """ Goes over every game object in the matches_list and gives every winning and draw formation a certain amount of points based on the clubs rank in a season Raises ---------- AttributeError When the matches_list doesn't contain objects of the Game class, or the ranking_dict doesn't accord with the Game objects in the matches_list TypeError When a wrong type is inserted into the object as matches_list, or no integer was inserted as points for a win/draw Exception When the ranking dictionary is not (yet) instantiated or an unexpected error happens Returns ------- dictionary A dictionary with per formation the counter-formations with a certain amount of points These points are an indicator how effective a formation is against a counter-formation """ try: if self.ranking_dict is None: raise Exception("The ranking dictionary is not initiated") # initialize a dictionary to save the formations and their points formations_dict = {} # save the win and draw points WIN_POINTS = self.win_points DRAW_POINTS = self.draw_points # loop over all game objects for game in self.matches_list: if game.get_home_score() > game.get_away_score(): # home team wins # check if keys exists in the dictionary self.check_for_keys_in_dict(game.get_home_formation(), game.get_away_formation(), formations_dict) # calculate the amount of points for the home team win points = WIN_POINTS * self.ranking_dict[game.get_season()][game.get_home_team()] # save the points and increment the games played in the array formations_dict[game.get_home_formation()][game.get_away_formation()][0] += points formations_dict[game.get_home_formation()][game.get_away_formation()][1] += 1 elif game.get_home_score() == game.get_away_score(): # draw # check if keys exists in the dictionary self.check_for_keys_in_dict(game.get_home_formation(), game.get_away_formation(), formations_dict) self.check_for_keys_in_dict(game.get_away_formation(), game.get_home_formation(), formations_dict) # calculate the amount of point for a draw points = DRAW_POINTS * ((self.ranking_dict[game.get_season()][game.get_home_team()] + self.ranking_dict[game.get_season()][game.get_away_team()]) / 2) # save the points and increment the games played in the array formations_dict[game.get_home_formation()][game.get_away_formation()][0] += points formations_dict[game.get_home_formation()][game.get_away_formation()][1] += 1 # save the points and increment the games played in the array formations_dict[game.get_away_formation()][game.get_home_formation()][0] += points formations_dict[game.get_away_formation()][game.get_home_formation()][1] += 1 else: # away team wins # check if keys exists in the dictionary self.check_for_keys_in_dict(game.get_away_formation(), game.get_home_formation(), formations_dict) # calculate the amount of points for the away team win points = WIN_POINTS * self.ranking_dict[game.get_season()][game.get_away_team()] # save the points and increment the games played in the array formations_dict[game.get_away_formation()][game.get_home_formation()][0] += points formations_dict[game.get_away_formation()][game.get_home_formation()][1] += 1 # iterate over every formation for key in formations_dict: # iterate over every counter-formation for key_2 in formations_dict[key]: result_list = formations_dict[key][key_2] # divide the total points by the amount of games played and save the result formations_dict[key][key_2] = result_list[0] / result_list[1] # update the recom_dict of the object self.recom_dict = formations_dict # return the recommendation dictionary return formations_dict # handle the exceptions except AttributeError as e: print("The list does not contain objects of the class Game /" "The ranking_dict may not accord with the inserted matches_list\n", e) except TypeError as e: print("No iterable type is given / win/draw points are not of type int\n", e) except Exception as e: print("Unexpected error while generating the recommendation dictionary\n", e) def check_for_keys_in_dict(self, key_1, key_2, chosen_dict): """ Checks if key_1 exists in the chosen_dict hereafter checks if key_2 exists in the dictionary of key_1 Parameters ---------- key_1 : String The first key to be checked key_2 : String The second key to be checked in the dictionary of the first key chosen_dict : dictionary The dictionary that is being checked for the existence of certain keys """ if key_1 not in chosen_dict: # if the key doesn't already exist as key chosen_dict[key_1] = {} if key_2 not in chosen_dict[key_1]: # if the key doesn't exist in the dictionary of the first key as key chosen_dict[key_1][key_2] = [0.0, 0] def create_league_recom(self): """ Calls all the methods of the object in order to build a recommendation dictionary for the Games in the matches_list and the Rankings in the ranking_list Returns ------- Returns the recommendation dictionary """ # build the ranking_dict self.ranking_list_to_dict() self.formations_info_recom() # return the recommendation dictionary return self.recom_dict def validate_recom_dict(self, test_matches): """Per formation the two most promising counter formations are given back Over these counter formations the algorithm is validated The recommendation dictionary is validated and a string with the accuracy is returned Parameters ---------- test_matches : list A list of Game objects to test the recommendation dictionary Raises ------ AttributeError When the test_matches list doesn't contain objects of the Game class TypeError When a wrong type is inserted into as a parameter Exception When the recommendation dictionary is not (yet) instantiated or an unexpected error happens Returns ------- String the function returns a string which gives some information about the accuracy of the recommendation dictionary over the test_matches """ try: if self.recom_dict is None: raise Exception("The recommendation dictionary is not initiated") # a dictionary to save the actual recommendations actual_recom = {} # loop over every key in the recommendation dictionary for first_key in self.recom_dict: # initiate an empty list for storing the recommendations actual_recom[first_key] = [] if len(self.recom_dict[first_key]) == 1: # the formation only has one recom formation actual_recom[first_key].append(list(self.recom_dict[first_key].keys())[0]) elif len(self.recom_dict[first_key]) == 2: # the formation only has two recom formations formations = list(self.recom_dict[first_key].keys()) actual_recom[first_key].append(formations[0]) actual_recom[first_key].append(formations[1]) else: # the formation has more than two recom formations loop_count = 1 first_recom = [] second_recom = [] # loop over every key in the dictionary of the first key for second_key in self.recom_dict[first_key]: if loop_count == 1: # first loop first_recom.append(second_key) first_recom.append(self.recom_dict[first_key][second_key]) elif loop_count == 2: # second loop second_recom.append(second_key) second_recom.append(self.recom_dict[first_key][second_key]) else: # 3rd or higher loop if self.recom_dict[first_key][second_key] > first_recom[1]: # if the new formation is better than the one on first_recom first_recom[0] = second_key first_recom[1] = self.recom_dict[first_key][second_key] else: # the new formation is not better if self.recom_dict[first_key][second_key] > second_recom[1]: # if
""" Connection pooling and host management. """ import logging import time from threading import Lock, RLock, Condition import weakref try: from weakref import WeakSet except ImportError: from cassandra.util import WeakSet # NOQA from cassandra import AuthenticationFailed from cassandra.connection import MAX_STREAM_PER_CONNECTION, ConnectionException log = logging.getLogger(__name__) class NoConnectionsAvailable(Exception): """ All existing connections to a given host are busy, or there are no open connections. """ pass class Host(object): """ Represents a single Cassandra node. """ address = None """ The IP address or hostname of the node. """ monitor = None """ A :class:`.HealthMonitor` instance that tracks whether this node is up or down. """ _datacenter = None _rack = None _reconnection_handler = None def __init__(self, inet_address, conviction_policy_factory): if inet_address is None: raise ValueError("inet_address may not be None") if conviction_policy_factory is None: raise ValueError("conviction_policy_factory may not be None") self.address = inet_address self.monitor = HealthMonitor(conviction_policy_factory(self)) self._reconnection_lock = Lock() @property def datacenter(self): """ The datacenter the node is in. """ return self._datacenter @property def rack(self): """ The rack the node is in. """ return self._rack def set_location_info(self, datacenter, rack): """ Sets the datacenter and rack for this node. Intended for internal use (by the control connection, which periodically checks the ring topology) only. """ self._datacenter = datacenter self._rack = rack def get_and_set_reconnection_handler(self, new_handler): """ Atomically replaces the reconnection handler for this host. Intended for internal use only. """ with self._reconnection_lock: old = self._reconnection_handler self._reconnection_handler = new_handler return old def __eq__(self, other): if not isinstance(other, Host): return False return self.address == other.address def __str__(self): return self.address def __repr__(self): dc = (" %s" % (self._datacenter,)) if self._datacenter else "" return "<%s: %s%s>" % (self.__class__.__name__, self.address, dc) class _ReconnectionHandler(object): """ Abstract class for attempting reconnections with a given schedule and scheduler. """ _cancelled = False def __init__(self, scheduler, schedule, callback, *callback_args, **callback_kwargs): self.scheduler = scheduler self.schedule = schedule self.callback = callback self.callback_args = callback_args self.callback_kwargs = callback_kwargs def start(self): if self._cancelled: return # TODO cancel previous reconnection handlers? That's probably the job # of whatever created this. first_delay = self.schedule.next() self.scheduler.schedule(first_delay, self.run) def run(self): if self._cancelled: self.callback(*(self.callback_args), **(self.callback_kwargs)) try: self.on_reconnection(self.try_reconnect()) except Exception as exc: next_delay = self.schedule.next() if self.on_exception(exc, next_delay): self.scheduler.schedule(next_delay, self.run) else: self.callback(*(self.callback_args), **(self.callback_kwargs)) def cancel(self): self._cancelled = True def try_reconnect(self): """ Subclasses must implement this method. It should attempt to open a new Connection and return it; if a failure occurs, an Exception should be raised. """ raise NotImplementedError() def on_reconnection(self, connection): """ Called when a new Connection is successfully opened. Nothing is done by default. """ pass def on_exception(self, exc, next_delay): """ Called when an Exception is raised when trying to connect. `exc` is the Exception that was raised and `next_delay` is the number of seconds (as a float) that the handler will wait before attempting to connect again. Subclasses should return :const:`False` if no more attempts to connection should be made, :const:`True` otherwise. The default behavior is to always retry unless the error is an :exc:`.AuthenticationFailed` instance. """ if isinstance(exc, AuthenticationFailed): return False else: return True class _HostReconnectionHandler(_ReconnectionHandler): def __init__(self, host, connection_factory, *args, **kwargs): _ReconnectionHandler.__init__(self, *args, **kwargs) self.host = host self.connection_factory = connection_factory def try_reconnect(self): return self.connection_factory() def on_reconnection(self, connection): self.host.monitor.reset() def on_exception(self, exc, next_delay): if isinstance(exc, AuthenticationFailed): return False else: log.warn("Error attempting to reconnect to %s: %s", self.host, exc) log.debug("Reconnection error details", exc_info=True) return True class HealthMonitor(object): """ Monitors whether a particular host is marked as up or down. This class is primarily intended for internal use, although applications may find it useful to check whether a given node is up or down. """ is_up = True """ A boolean representing the current state of the node. """ def __init__(self, conviction_policy): self._conviction_policy = conviction_policy self._host = conviction_policy.host # self._listeners will hold, among other things, references to # Cluster objects. To allow those to be GC'ed (and shutdown) even # though we've implemented __del__, use weak references. self._listeners = WeakSet() self._lock = RLock() def register(self, listener): with self._lock: self._listeners.add(listener) def unregister(self, listener): with self._lock: self._listeners.remove(listener) def set_up(self): if self.is_up: return self._conviction_policy.reset() log.info("Host %s is considered up", self._host) with self._lock: listeners = self._listeners.copy() for listener in listeners: listener.on_up(self._host) self.is_up = True def set_down(self): if not self.is_up: return self.is_up = False log.info("Host %s is considered down", self._host) with self._lock: listeners = self._listeners.copy() for listener in listeners: listener.on_down(self._host) def reset(self): return self.set_up() def signal_connection_failure(self, connection_exc): is_down = self._conviction_policy.add_failure(connection_exc) if is_down: self.set_down() return is_down _MAX_SIMULTANEOUS_CREATION = 1 class HostConnectionPool(object): host = None host_distance = None is_shutdown = False open_count = 0 _scheduled_for_creation = 0 def __init__(self, host, host_distance, session): self.host = host self.host_distance = host_distance self._session = weakref.proxy(session) self._lock = RLock() self._conn_available_condition = Condition() core_conns = session.cluster.get_core_connections_per_host(host_distance) self._connections = [session.cluster.connection_factory(host.address) for i in range(core_conns)] self._trash = set() self.open_count = core_conns def borrow_connection(self, timeout): if self.is_shutdown: raise ConnectionException( "Pool for %s is shutdown" % (self.host,), self.host) conns = self._connections if not conns: # handled specially just for simpler code log.debug("Detected empty pool, opening core conns to %s" % (self.host,)) core_conns = self._session.cluster.get_core_connections_per_host(self.host_distance) with self._lock: # we check the length of self._connections again # along with self._scheduled_for_creation while holding the lock # in case multiple threads hit this condition at the same time to_create = core_conns - (len(self._connections) + self._scheduled_for_creation) for i in range(to_create): self._scheduled_for_creation += 1 self._session.submit(self._create_new_connection) # in_flight is incremented by wait_for_conn conn = self._wait_for_conn(timeout) conn.set_keyspace(self._session.keyspace) return conn else: # note: it would be nice to push changes to these config settings # to pools instead of doing a new lookup on every # borrow_connection() call max_reqs = self._session.cluster.get_max_requests_per_connection(self.host_distance) max_conns = self._session.cluster.get_max_connections_per_host(self.host_distance) least_busy = min(conns, key=lambda c: c.in_flight) # to avoid another thread closing this connection while # trashing it (through the return_connection process), hold # the connection lock from this point until we've incremented # its in_flight count with least_busy.lock: # if we have too many requests on this connection but we still # have space to open a new connection against this host, go ahead # and schedule the creation of a new connection if least_busy.in_flight >= max_reqs and len(self._connections) < max_conns: self._maybe_spawn_new_connection() if least_busy.in_flight >= MAX_STREAM_PER_CONNECTION: # once we release the lock, wait for another connection need_to_wait = True else: need_to_wait = False least_busy.in_flight += 1 if need_to_wait: # wait_for_conn will increment in_flight on the conn least_busy = self._wait_for_conn(timeout) least_busy.set_keyspace(self._session.keyspace) return least_busy def _maybe_spawn_new_connection(self): with self._lock: if self._scheduled_for_creation >= _MAX_SIMULTANEOUS_CREATION: return self._scheduled_for_creation += 1 log.debug("Submitting task for creation of new Connection to %s" % (self.host,)) self._session.submit(self._create_new_connection) def _create_new_connection(self): try: self._add_conn_if_under_max() except Exception: log.exception("Unexpectedly failed to create new connection") finally: with self._lock: self._scheduled_for_creation -= 1 def _add_conn_if_under_max(self): max_conns = self._session.cluster.get_max_connections_per_host(self.host_distance) with self._lock: if self.is_shutdown: return False if self.open_count >= max_conns: return False self.open_count += 1 try: conn = self._session.cluster.connection_factory(self.host.address) with self._lock: new_connections = self._connections[:] + [conn] self._connections = new_connections self._signal_available_conn() return True except ConnectionException as exc: log.exception("Failed to add new connection to pool for host %s" % (self.host,)) with self._lock: self.open_count -= 1 if self.host.monitor.signal_connection_failure(exc): self.shutdown() return False except AuthenticationFailed: with self._lock: self.open_count -= 1 return False def _await_available_conn(self, timeout): with self._conn_available_condition: self._conn_available_condition.wait(timeout) def _signal_available_conn(self): with self._conn_available_condition: self._conn_available_condition.notify() def _signal_all_available_conn(self): with self._conn_available_condition: self._conn_available_condition.notify_all() def _wait_for_conn(self, timeout): start = time.time() remaining = timeout while remaining > 0: # wait on our condition for the possibility that a connection # is useable self._await_available_conn(remaining) # self.shutdown() may trigger the above Condition if self.is_shutdown: raise ConnectionException("Pool is shutdown") conns = self._connections if conns: least_busy = min(conns, key=lambda c: c.in_flight) with least_busy.lock: if least_busy.in_flight < MAX_STREAM_PER_CONNECTION: least_busy.in_flight += 1 return least_busy remaining = timeout - (time.time() - start) raise NoConnectionsAvailable() def return_connection(self, connection): with connection.lock: connection.in_flight -= 1 in_flight = connection.in_flight if connection.is_defunct or connection.is_closed: is_down = self.host.monitor.signal_connection_failure(connection.last_error) if is_down: self.shutdown() else: self._replace(connection) else: if connection in self._trash: with connection.lock: if in_flight == 0: with self._lock: self._trash.remove(connection) connection.close() return core_conns = self._session.cluster.get_core_connections_per_host(self.host_distance) min_reqs = self._session.cluster.get_min_requests_per_connection(self.host_distance) # we can use in_flight here without holding the connection lock # because the fact that in_flight dipped below the min at some
0) m.e98 = Constraint(expr= m.x413 == 0) m.e99 = Constraint(expr= m.x414 == 0) m.e100 = Constraint(expr= m.x127 - m.x397 - m.x400 == 0) m.e101 = Constraint(expr= m.x128 - m.x398 - m.x401 == 0) m.e102 = Constraint(expr= m.x129 - m.x399 - m.x402 == 0) m.e103 = Constraint(expr= m.x133 - m.x409 - m.x412 == 0) m.e104 = Constraint(expr= m.x134 - m.x410 - m.x413 == 0) m.e105 = Constraint(expr= m.x135 - m.x411 - m.x414 == 0) m.e106 = Constraint(expr= m.x397 - 40 * m.b910 <= 0) m.e107 = Constraint(expr= m.x398 - 40 * m.b911 <= 0) m.e108 = Constraint(expr= m.x399 - 40 * m.b912 <= 0) m.e109 = Constraint(expr= m.x400 + 40 * m.b910 <= 40) m.e110 = Constraint(expr= m.x401 + 40 * m.b911 <= 40) m.e111 = Constraint(expr= m.x402 + 40 * m.b912 <= 40) m.e112 = Constraint(expr= m.x409 - 4.45628648004517 * m.b910 <= 0) m.e113 = Constraint(expr= m.x410 - 4.45628648004517 * m.b911 <= 0) m.e114 = Constraint(expr= m.x411 - 4.45628648004517 * m.b912 <= 0) m.e115 = Constraint(expr= m.x412 + 4.45628648004517 * m.b910 <= 4.45628648004517) m.e116 = Constraint(expr= m.x413 + 4.45628648004517 * m.b911 <= 4.45628648004517) m.e117 = Constraint(expr= m.x414 + 4.45628648004517 * m.b912 <= 4.45628648004517) m.e118 = Constraint(expr= -0.75 * m.x415 + m.x439 == 0) m.e119 = Constraint(expr= -0.75 * m.x416 + m.x440 == 0) m.e120 = Constraint(expr= -0.75 * m.x417 + m.x441 == 0) m.e121 = Constraint(expr= m.x418 == 0) m.e122 = Constraint(expr= m.x419 == 0) m.e123 = Constraint(expr= m.x420 == 0) m.e124 = Constraint(expr= m.x442 == 0) m.e125 = Constraint(expr= m.x443 == 0) m.e126 = Constraint(expr= m.x444 == 0) m.e127 = Constraint(expr= m.x145 - m.x415 - m.x418 == 0) m.e128 = Constraint(expr= m.x146 - m.x416 - m.x419 == 0) m.e129 = Constraint(expr= m.x147 - m.x417 - m.x420 == 0) m.e130 = Constraint(expr= m.x157 - m.x439 - m.x442 == 0) m.e131 = Constraint(expr= m.x158 - m.x440 - m.x443 == 0) m.e132 = Constraint(expr= m.x159 - m.x441 - m.x444 == 0) m.e133 = Constraint(expr= m.x415 - 4.45628648004517 * m.b913 <= 0) m.e134 = Constraint(expr= m.x416 - 4.45628648004517 * m.b914 <= 0) m.e135 = Constraint(expr= m.x417 - 4.45628648004517 * m.b915 <= 0) m.e136 = Constraint(expr= m.x418 + 4.45628648004517 * m.b913 <= 4.45628648004517) m.e137 = Constraint(expr= m.x419 + 4.45628648004517 * m.b914 <= 4.45628648004517) m.e138 = Constraint(expr= m.x420 + 4.45628648004517 * m.b915 <= 4.45628648004517) m.e139 = Constraint(expr= m.x439 - 3.34221486003388 * m.b913 <= 0) m.e140 = Constraint(expr= m.x440 - 3.34221486003388 * m.b914 <= 0) m.e141 = Constraint(expr= m.x441 - 3.34221486003388 * m.b915 <= 0) m.e142 = Constraint(expr= m.x442 + 3.34221486003388 * m.b913 <= 3.34221486003388) m.e143 = Constraint(expr= m.x443 + 3.34221486003388 * m.b914 <= 3.34221486003388) m.e144 = Constraint(expr= m.x444 + 3.34221486003388 * m.b915 <= 3.34221486003388) m.e145 = Constraint(expr= (m.x445 / (0.001 + 0.999 * m.b916) - 1.5 * log(m.x421 / (0.001 + 0.999 * m.b916) + 1)) * (0.001 + 0.999 * m.b916) <= 0) m.e146 = Constraint(expr= (m.x446 / (0.001 + 0.999 * m.b917) - 1.5 * log(m.x422 / (0.001 + 0.999 * m.b917) + 1)) * (0.001 + 0.999 * m.b917) <= 0) m.e147 = Constraint(expr= (m.x447 / (0.001 + 0.999 * m.b918) - 1.5 * log(m.x423 / (0.001 + 0.999 * m.b918) + 1)) * (0.001 + 0.999 * m.b918) <= 0) m.e148 = Constraint(expr= m.x424 == 0) m.e149 = Constraint(expr= m.x425 == 0) m.e150 = Constraint(expr= m.x426 == 0) m.e151 = Constraint(expr= m.x451 == 0) m.e152 = Constraint(expr= m.x452 == 0) m.e153 = Constraint(expr= m.x453 == 0) m.e154 = Constraint(expr= m.x148 - m.x421 - m.x424 == 0) m.e155 = Constraint(expr= m.x149 - m.x422 - m.x425 == 0) m.e156 = Constraint(expr= m.x150 - m.x423 - m.x426 == 0) m.e157 = Constraint(expr= m.x160 - m.x445 - m.x451 == 0) m.e158 = Constraint(expr= m.x161 - m.x446 - m.x452 == 0) m.e159 = Constraint(expr= m.x162 - m.x447 - m.x453 == 0) m.e160 = Constraint(expr= m.x421 - 4.45628648004517 * m.b916 <= 0) m.e161 = Constraint(expr= m.x422 - 4.45628648004517 * m.b917 <= 0) m.e162 = Constraint(expr= m.x423 - 4.45628648004517 * m.b918 <= 0) m.e163 = Constraint(expr= m.x424 + 4.45628648004517 * m.b916 <= 4.45628648004517) m.e164 = Constraint(expr= m.x425 + 4.45628648004517 * m.b917 <= 4.45628648004517) m.e165 = Constraint(expr= m.x426 + 4.45628648004517 * m.b918 <= 4.45628648004517) m.e166 = Constraint(expr= m.x445 - 2.54515263975353 * m.b916 <= 0) m.e167 = Constraint(expr= m.x446 - 2.54515263975353 * m.b917 <= 0) m.e168 = Constraint(expr= m.x447 - 2.54515263975353 * m.b918 <= 0) m.e169 = Constraint(expr= m.x451 + 2.54515263975353 * m.b916 <= 2.54515263975353) m.e170 = Constraint(expr= m.x452 + 2.54515263975353 * m.b917 <= 2.54515263975353) m.e171 = Constraint(expr= m.x453 + 2.54515263975353 * m.b918 <= 2.54515263975353) m.e172 = Constraint(expr= -m.x427 + m.x457 == 0) m.e173 = Constraint(expr= -m.x428 + m.x458 == 0) m.e174 = Constraint(expr= -m.x429 + m.x459 == 0) m.e175 = Constraint(expr= -0.5 * m.x433 + m.x457 == 0) m.e176 = Constraint(expr= -0.5 * m.x434 + m.x458 == 0) m.e177 = Constraint(expr= -0.5 * m.x435 + m.x459 == 0) m.e178 = Constraint(expr= m.x430 == 0) m.e179 = Constraint(expr= m.x431 == 0) m.e180 = Constraint(expr= m.x432 == 0) m.e181 = Constraint(expr= m.x436 == 0) m.e182 = Constraint(expr= m.x437 == 0) m.e183 = Constraint(expr= m.x438 == 0) m.e184 = Constraint(expr= m.x460 == 0) m.e185 = Constraint(expr= m.x461 == 0) m.e186 = Constraint(expr= m.x462 == 0) m.e187 = Constraint(expr= m.x151 - m.x427 - m.x430 == 0) m.e188 = Constraint(expr= m.x152 - m.x428 - m.x431 == 0) m.e189 = Constraint(expr= m.x153 - m.x429 - m.x432 == 0) m.e190 = Constraint(expr= m.x154 - m.x433 - m.x436 == 0) m.e191 = Constraint(expr= m.x155 - m.x434 - m.x437 == 0) m.e192 = Constraint(expr= m.x156 - m.x435 - m.x438 == 0) m.e193 = Constraint(expr= m.x163 - m.x457 - m.x460 == 0) m.e194 = Constraint(expr= m.x164 - m.x458 - m.x461 == 0) m.e195 = Constraint(expr= m.x165 - m.x459 - m.x462 == 0) m.e196 = Constraint(expr= m.x427 - 4.45628648004517 * m.b919 <= 0) m.e197 = Constraint(expr= m.x428 - 4.45628648004517 * m.b920 <= 0) m.e198 = Constraint(expr= m.x429 - 4.45628648004517 * m.b921 <= 0) m.e199 = Constraint(expr= m.x430 + 4.45628648004517 * m.b919 <= 4.45628648004517) m.e200 = Constraint(expr= m.x431 + 4.45628648004517 * m.b920 <= 4.45628648004517) m.e201 = Constraint(expr= m.x432 + 4.45628648004517 * m.b921 <= 4.45628648004517) m.e202 = Constraint(expr= m.x433 - 30 * m.b919 <= 0) m.e203 = Constraint(expr= m.x434 - 30 * m.b920 <= 0) m.e204 = Constraint(expr= m.x435 - 30 * m.b921 <= 0) m.e205 = Constraint(expr= m.x436 + 30 * m.b919 <= 30) m.e206 = Constraint(expr= m.x437 + 30 * m.b920 <= 30) m.e207 = Constraint(expr= m.x438 + 30 * m.b921 <= 30) m.e208 = Constraint(expr= m.x457 - 15 * m.b919 <= 0) m.e209 = Constraint(expr= m.x458 - 15 * m.b920 <= 0) m.e210 = Constraint(expr= m.x459 - 15 * m.b921 <= 0) m.e211 = Constraint(expr= m.x460 + 15 * m.b919 <= 15) m.e212 = Constraint(expr= m.x461 + 15 * m.b920 <= 15) m.e213 = Constraint(expr= m.x462 + 15 * m.b921 <= 15) m.e214 = Constraint(expr= (m.x493 / (0.001 + 0.999 * m.b922) - 1.25 * log( m.x463 / (0.001 + 0.999 * m.b922) + 1)) * (0.001 + 0.999 * m.b922) <= 0) m.e215 = Constraint(expr= (m.x494 / (0.001 + 0.999 * m.b923) - 1.25 * log( m.x464 / (0.001 + 0.999 * m.b923) + 1)) * (0.001 + 0.999 * m.b923) <= 0) m.e216 = Constraint(expr= (m.x495 / (0.001 + 0.999 * m.b924) - 1.25 * log( m.x465 / (0.001 + 0.999 * m.b924) + 1)) * (0.001 + 0.999 * m.b924) <= 0) m.e217 = Constraint(expr= m.x466 == 0) m.e218 = Constraint(expr= m.x467 == 0) m.e219 = Constraint(expr= m.x468 == 0) m.e220 = Constraint(expr= m.x499 == 0) m.e221 = Constraint(expr= m.x500 == 0) m.e222 = Constraint(expr= m.x501 == 0) m.e223 = Constraint(expr= m.x166 - m.x463 - m.x466 == 0) m.e224 = Constraint(expr= m.x167 - m.x464 - m.x467 == 0) m.e225 = Constraint(expr= m.x168 - m.x465 - m.x468 == 0) m.e226 = Constraint(expr= m.x181 - m.x493 - m.x499 == 0) m.e227 = Constraint(expr= m.x182 - m.x494 - m.x500 == 0) m.e228 = Constraint(expr= m.x183 - m.x495 - m.x501 == 0) m.e229 = Constraint(expr= m.x463 - 3.34221486003388 * m.b922 <= 0) m.e230 = Constraint(expr= m.x464 - 3.34221486003388 * m.b923 <= 0) m.e231 = Constraint(expr= m.x465 - 3.34221486003388 * m.b924 <= 0) m.e232 = Constraint(expr= m.x466 + 3.34221486003388 * m.b922 <= 3.34221486003388) m.e233 = Constraint(expr= m.x467 + 3.34221486003388 * m.b923 <= 3.34221486003388) m.e234 = Constraint(expr= m.x468 + 3.34221486003388 * m.b924 <= 3.34221486003388) m.e235 = Constraint(expr= m.x493 - 1.83548069293539 * m.b922 <= 0) m.e236 = Constraint(expr= m.x494 - 1.83548069293539 * m.b923 <= 0) m.e237 = Constraint(expr= m.x495 - 1.83548069293539 * m.b924 <= 0) m.e238 = Constraint(expr= m.x499 + 1.83548069293539 * m.b922 <= 1.83548069293539) m.e239 = Constraint(expr= m.x500 + 1.83548069293539 * m.b923 <= 1.83548069293539) m.e240
import argparse import os import shutil import time import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim import torch.utils.data from Utils import load from Models import apolo_resnet import torchvision.transforms as transforms import torchvision.datasets as datasets import resnet import sampler import utils import numpy as np import torchvision.models as models import torch.nn.init as init import time import snip import attack import zenprune import synflow model_names = sorted(name for name in resnet.__dict__ if name.islower() and not name.startswith("__") and name.startswith("resnet") and callable(resnet.__dict__[name])) parser = argparse.ArgumentParser(description='Propert ResNets for CIFAR10 in pytorch') parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet32', # choices=model_names, help='model architecture: ' + ' | '.join(model_names) + ' (default: resnet32)') parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', help='number of data loading workers (default: 4)') parser.add_argument('--epochs', default=160, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)') parser.add_argument('-b', '--batch-size', default=128, type=int, metavar='N', help='mini-batch size (default: 128)') parser.add_argument('--lr', '--learning-rate', default=0.1, type=float, metavar='LR', help='initial learning rate') parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum') parser.add_argument('--dataset', default='cifar10', choices=['cifar10', 'tiny-imagenet', 'cifar100']) parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float, metavar='W', help='weight decay (default: 1e-4)') parser.add_argument('--print-freq', '-p', default=50, type=int, metavar='N', help='print frequency (default: 50)') parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', help='evaluate model on validation set') parser.add_argument('--pretrained', dest='pretrained', action='store_true', help='use pre-trained model') parser.add_argument('--half', dest='half', action='store_true', help='use half-precision(16-bit) ') parser.add_argument('--save-dir', dest='save_dir', help='The directory used to save the trained models', default='save_temp', type=str) parser.add_argument('--save-every', dest='save_every', help='Saves checkpoints at every specified number of epochs', type=int, default=10) parser.add_argument('--sv', dest='compute_sv', action='store_true', help='compute_sv throughout training') parser.add_argument('--ntk', dest='compute_ntk', action='store_true', help='compute ntk eigenvalues throughout training') parser.add_argument('--lrs',dest='compute_lrs',action='store_true', help='compute number of linear regions throughout training') parser.add_argument('--seed', default=1, type=int, help='seed') # Following arguments are for pruning parser.add_argument('--prune_method', type=str, default='NONE', choices=['NONE','RAND', 'SNIP', 'GRASP', 'Zen', 'Mag', 'Synflow'], help='Pruning methods for lottery ticket experiments.') parser.add_argument('--prunesets_num', type=int, default=10, help='Number of datapoints for applying pruning methods.') parser.add_argument('--sparse_iter', type=float, default=0, help='Sparsity level of neural networks.') parser.add_argument('--sparse_lvl', type=float, default=1, help='Sparsity level of neural networks.') parser.add_argument('--ONI', dest='ONI', action='store_true', help='set ONI on') parser.add_argument('--T_iter', type=int, default=5, help='Number of iterations for ONI.') parser.add_argument('--iter_prune', dest='iter_prune', action='store_true') # Following arguments are for projection parser.add_argument('--proj', dest='proj', action='store_true', help='set projection on') parser.add_argument('--proj_freq', type=int, default=5, help='Apply projection every n iterations.') parser.add_argument('--proj_clip_to', type=float, default=0.02, help='Smallest singular values clipped to.') parser.add_argument('--ortho', dest='ortho', action='store_true', help='add orthogonal regularizer on.') parser.add_argument('--pre_epochs', type=int, default=0, help='Number of pretraining epochs.') parser.add_argument('--s_name', type=str, default='saved_sparsity', help='saved_sparsity.') parser.add_argument('--s_value', type=float, default=1, help='given changing sparsity.') parser.add_argument("--layer", nargs="*", type=int, default=[],) parser.add_argument('--structured', dest='structured', action='store_true', help='set structured masks') parser.add_argument('--reduce_ratio', type=float, default=1, help='compact masks into reduce_ratio x 100% number of channels.') parser.add_argument('--shuffle_ratio', type=float, default=0.1, help='shuffle ratio of structured pruning.') parser.add_argument('--rescale', dest='rescale', action='store_true', help='rescale weight after pruning') parser.add_argument('--adv', dest='adv', action='store_true', help='If using adversarial trick') parser.add_argument('--ep_coe', type=float, default=0, help='coefficient for expressivity.') parser.add_argument('--ortho_importance', type=float, default=0, help='orthogonality regularizer importance.') best_prec1 = 0 def main(): global args, best_prec1 args = parser.parse_args() args.sparse_lvl = 0.8 ** args.sparse_iter print(args.sparse_lvl) # Check the save_dir exists or not if not os.path.exists(args.save_dir): os.makedirs(args.save_dir) torch.manual_seed(args.seed) cudnn.benchmark = True if args.dataset =='cifar10': print('Loading {} dataset.'.format(args.dataset)) input_shape, num_classes = load.dimension(args.dataset) train_dataset, train_loader = load.dataloader(args.dataset, args.batch_size, True, args.workers) _, val_loader = load.dataloader(args.dataset, 128, False, args.workers) elif args.dataset == 'tiny-imagenet': args.batch_size = 256 args.lr = 0.2 args.epochs = 200 print('Loading {} dataset.'.format(args.dataset)) input_shape, num_classes = load.dimension(args.dataset) train_dataset, train_loader = load.dataloader(args.dataset, args.batch_size, True, args.workers) _, val_loader = load.dataloader(args.dataset, 128, False, args.workers) elif args.dataset == 'cifar100': args.batch_size = 128 # args.lr = 0.01 args.epochs = 160 # args.weight_decay = 5e-4 input_shape, num_classes = load.dimension(args.dataset) train_dataset, train_loader = load.dataloader(args.dataset, args.batch_size, True, args.workers) _, val_loader = load.dataloader(args.dataset, 128, False, args.workers) if args.arch == 'resnet20': print('Creating {} model.'.format(args.arch)) # model = torch.nn.DataParallel(resnet.__dict__[args.arch](ONI=args.ONI, T_iter=args.T_iter)) model = resnet.__dict__[args.arch](ONI=args.ONI, T_iter=args.T_iter) model.cuda() elif args.arch == 'resnet18': print('Creating {} model.'.format(args.arch)) # Using resnet18 from Synflow # model = load.model(args.arch, 'tinyimagenet')(input_shape, # num_classes, # dense_classifier = True).cuda() # Using resnet18 from torchvision model = models.resnet18() model.fc = nn.Linear(512, num_classes) model.cuda() utils.kaiming_initialize(model) elif args.arch == 'resnet110' or args.arch == 'resnet110full': # Using resnet110 from Apollo # model = apolo_resnet.ResNet(110, num_classes=num_classes) model = load.model(args.arch, 'lottery')(input_shape, num_classes, dense_classifier = True).cuda() elif args.arch in ['vgg16full', 'vgg16full-bn', 'vgg11full', 'vgg11full-bn'] : if args.dataset == 'tiny-imagenet': modeltype = 'tinyimagenet' else: modeltype = 'lottery' # Using resnet110 from Apollo # model = apolo_resnet.ResNet(110, num_classes=num_classes) model = load.model(args.arch, modeltype)(input_shape, num_classes, dense_classifier = True).cuda() # for layer in model.modules(): # if isinstance(layer, nn.Linear): # init.orthogonal_(layer.weight.data) # elif isinstance(layer, (nn.Conv2d, nn.ConvTranspose2d)): # special_init.DeltaOrthogonal_init(layer.weight.data) print('Number of parameters of model: {}.'.format(count_parameters(model))) # define loss function (criterion) and optimizer criterion = nn.CrossEntropyLoss().cuda() if args.compute_sv: print('[*] Will compute singular values throught training.') size_hook = utils.get_hook(model, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)) utils.run_once(train_loader, model) utils.detach_hook([size_hook]) training_sv = [] training_svmax = [] training_sv20 = [] # 50% singular value training_sv50 = [] # 50% singular value training_sv80 = [] # 80% singular value training_kclip = [] # singular values larger than 1e-12 sv, svmax, sv20, sv50, sv80, kclip = utils.get_sv(model, size_hook) training_sv.append(sv) training_svmax.append(svmax) training_sv20.append(sv20) training_sv50.append(sv50) training_sv80.append(sv80) training_kclip.append(kclip) if args.compute_ntk: training_ntk_eig = [] if num_classes>=32: _, ntk_loader = load.dataloader(args.dataset, 32, True, args.workers) grasp_fetch = False else: ntk_loader = train_loader grasp_fetch = True training_ntk_eig.append(utils.get_ntk_eig(ntk_loader, [model], train_mode = True, num_batch=1, num_classes=num_classes, samples_per_class=1, grasp_fetch=grasp_fetch)) if args.compute_lrs: # training_lrs = [] # lrc_model = utils.Linear_Region_Collector(train_loader, input_size=(args.batch_size,*input_shape), sample_batch=300) # lrc_model.reinit(models=[model]) # lrs = lrc_model.forward_batch_sample()[0] # training_lrs.append(lrs) # lrc_model.clear_hooks() # print('[*] Current number of linear regions:{}'.format(lrs)) GAP_zen, output_zen = utils.get_zenscore(model, train_loader, args.arch, num_classes) print('[*] Before pruning: GAP_zen:{:e}, output_zen:{:e}'.format(GAP_zen,output_zen)) if args.half: model.half() criterion.half() optimizer = torch.optim.SGD(model.parameters(), args.lr, momentum=args.momentum, nesterov = True, weight_decay=args.weight_decay) if args.dataset == 'tiny-imagenet': lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[100, 150], last_epoch=args.start_epoch - 1) # milestones=[30, 60, 80], last_epoch=args.start_epoch - 1) elif args.dataset == 'cifar100': lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[60, 120], gamma = 0.2, last_epoch=args.start_epoch - 1) else: lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[80, 120], last_epoch=args.start_epoch - 1) # This part is for training full NN model to obtain Lottery ticket # # First save original network: init_path = os.path.join(args.save_dir, 'init_checkpoint.th') save_checkpoint({ 'state_dict': model.state_dict() }, False, filename=init_path) if args.prune_method == 'NONE': pre_epochs = args.epochs else: pre_epochs = 0 training_loss = [] for epoch in range(pre_epochs): # train for one epoch print('current lr {:.5e}'.format(optimizer.param_groups[0]['lr'])) train(train_loader, model, criterion, optimizer, epoch, track = training_loss) lr_scheduler.step() # evaluate on validation set prec1 = validate(val_loader, model, criterion) # remember best prec@1 and save checkpoint is_best = prec1 > best_prec1 best_prec1 = max(prec1, best_prec1) if epoch > 0 and epoch % args.save_every == 0: save_checkpoint({ 'epoch': epoch + 1, 'state_dict': model.state_dict(), 'best_prec1': best_prec1, }, is_best, filename=os.path.join(args.save_dir, 'densenet_checkpoint.th')) if args.compute_sv and epoch % args.save_every == 0: sv, svmax, sv20, sv50, sv80, kclip= utils.get_sv(model, size_hook) training_sv.append(sv) training_svmax.append(svmax) training_sv20.append(sv20) training_sv50.append(sv50) training_sv80.append(sv80) training_kclip.append(kclip) np.save(os.path.join(args.save_dir, 'sv.npy'), training_sv) np.save(os.path.join(args.save_dir, 'sv_svmax.npy'), training_svmax) np.save(os.path.join(args.save_dir, 'sv_sv20.npy'), training_sv20) np.save(os.path.join(args.save_dir, 'sv_sv50.npy'), training_sv50) np.save(os.path.join(args.save_dir, 'sv_sv80.npy'), training_sv80) np.save(os.path.join(args.save_dir, 'sv_kclip.npy'), training_kclip) if args.compute_ntk and epoch % args.save_every == 0: training_ntk_eig.append(utils.get_ntk_eig(ntk_loader, [model], train_mode = True, num_batch=1, num_classes=num_classes, samples_per_class=1, grasp_fetch=grasp_fetch)) np.save(os.path.join(args.save_dir, 'ntk_eig.npy'), training_ntk_eig) print('[*] {} epochs of dense network pre-training done'.format(pre_epochs)) np.save(os.path.join(args.save_dir, 'trainloss.npy'), training_loss) # densenet_checkpoint = torch.load(os.path.join(args.save_dir, 'densenet_checkpoint.th')) # model.load_state_dict(densenet_checkpoint['state_dict']) # print('Model loaded!') # Obtain lottery ticket by magnitude pruning if args.prune_method == 'NONE': snip.apply_mag_prune(args, model) # reinitialize init_checkpoint = torch.load(init_path) model.load_state_dict(init_checkpoint['state_dict']) print('Model reinitialized!') elif args.prune_method == 'SNIP': init_checkpoint = torch.load(init_path) model.load_state_dict(init_checkpoint['state_dict']) print('Model reinitialized!') snip.apply_snip(args, [model], train_loader, criterion, num_classes=num_classes) # attack.shuffle_mask(model) elif args.prune_method == 'RAND': init_checkpoint = torch.load(init_path) model.load_state_dict(init_checkpoint['state_dict']) print('Model reinitialized!') snip.apply_rand_prune([model], args.sparse_lvl) elif args.prune_method == 'GRASP': init_checkpoint = torch.load(init_path) model.load_state_dict(init_checkpoint['state_dict']) print('Model reinitialized!') snip.apply_grasp(args, [model], train_loader, criterion, num_classes=num_classes) elif args.prune_method == 'Zen': zenprune.apply_zenprune(args, [model], train_loader) # zenprune.apply_cont_zenprune(args, [model], train_loader) # zenprune.apply_zentransfer(args, [model], train_loader) # init_checkpoint = torch.load(init_path) # model.load_state_dict(init_checkpoint['state_dict']) # print('Model reinitialized!') elif args.prune_method == 'Mag': snip.apply_mag_prune(args, model) init_checkpoint = torch.load(init_path) model.load_state_dict(init_checkpoint['state_dict']) print('Model reinitialized!') elif args.prune_method == 'Synflow': synflow.apply_synflow(args, model) print('{} done, sparsity of the current model: {}.'.format(args.prune_method, utils.check_sparsity(model))) if args.compute_lrs: # training_lrs = [] # lrc_model = utils.Linear_Region_Collector(train_loader, input_size=(args.batch_size,*input_shape), sample_batch=300) # lrc_model.reinit(models=[model]) # lrs = lrc_model.forward_batch_sample()[0] # training_lrs.append(lrs) # lrc_model.clear_hooks() # print('[*] Current number of linear regions:{}'.format(lrs)) GAP_zen, output_zen = utils.get_zenscore(model, train_loader, args.arch, num_classes) print('[*] After pruning: GAP_zen:{:e}, output_zen:{:e}'.format(GAP_zen,output_zen)) if args.evaluate: validate(val_loader, model, criterion) return # Recreate optimizer and learning scheduler optimizer = torch.optim.SGD(model.parameters(), args.lr, momentum=args.momentum, nesterov = True, weight_decay=args.weight_decay) if args.dataset == 'tiny-imagenet': lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[100, 150], last_epoch=args.start_epoch - 1) # milestones=[30, 60, 80], last_epoch=args.start_epoch - 1) elif args.dataset == 'cifar100': lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[60, 120], gamma = 0.2, last_epoch=args.start_epoch - 1) else: lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[80, 120], last_epoch=args.start_epoch - 1) for epoch in range(args.epochs): # for epoch in range(args.pre_epochs,
from __future__ import annotations import pyqtgraph as pg from pyqtgraph import colormap as cmap from typing import Generic, Iterator, Sequence, TypeVar, overload, MutableSequence import numpy as np from ._utils import convert_color_code, to_rgba from .components import Legend, Region, ScaleBar, TextItem from .graph_items import BarPlot, Curve, FillBetween, InfLine, LayerItem, Scatter, Histogram, TextGroup from .mouse_event import MouseClickEvent from ._doc import write_docs from ...widgets.utils import FreeWidget BOTTOM = "bottom" LEFT = "left" class LayerList(MutableSequence[LayerItem]): """A napari-like layer list for plot item handling.""" def __init__(self, parent: HasDataItems): self.parent = parent def __getitem__(self, key: int | str) -> LayerItem: if isinstance(key, int): return self.parent._items[key] elif isinstance(key, str): for item in self.parent._items: if item.name == key: return item else: raise ValueError(f"Item '{key}' not found.") else: raise TypeError(f"Cannot use type {type(key)} as a key.") def __setitem__(self, key, value): raise NotImplementedError("Can't set item") def __delitem__(self, key: int | str): return self.parent._remove_item(key) def append(self, item: LayerItem): if not isinstance(item, LayerItem): raise TypeError(f"Cannot append type {type(item)}.") self.parent._add_item(item) def insert(self, pos: int, item: LayerItem): if not isinstance(item, LayerItem): raise TypeError(f"Cannot insert type {type(item)}.") self.parent._insert_item(pos, item) def __len__(self): return len(self.parent._items) def clear(self): for _ in range(len(self)): self.parent._remove_item(-1) def swap(self, pos0: int, pos1: int): return self.parent._swap_items(pos0, pos1) def move(self, source: int, destination: int): return self.parent._move_item(source, destination) class HasDataItems: _items: list[LayerItem] @property def _graphics(self) -> pg.GraphicsWidget: """Target widget to add graphics items.""" raise NotImplementedError() @property def layers(self) -> LayerList: return LayerList(self) @overload def add_curve(self, x: Sequence[float], **kwargs): ... @overload def add_curve(self, x: Sequence[float], y: Sequence[float], **kwargs): ... @write_docs def add_curve(self, x=None, y=None, face_color = None, edge_color = None, color = None, size: float = 7, name: str | None = None, lw: float = 1, ls: str = "-", symbol=None): """ Add a line plot like ``plt.plot(x, y)``. Parameters ---------- {x} {y} {face_color} {edge_color} {color} size: float, default is 7 Symbol size. {name} {lw} {ls} {symbol} Returns ------- Curve A plot item of a curve. """ x, y = _check_xy(x, y) name = self._find_unique_name((name or "Curve")) face_color, edge_color = _check_colors(face_color, edge_color, color) item = Curve(x, y, face_color=face_color, edge_color=edge_color, size=size, name=name, lw=lw, ls=ls, symbol=symbol) self._add_item(item) return item @overload def add_scatter(self, x: Sequence[float], **kwargs): ... @overload def add_scatter(self, x: Sequence[float], y: Sequence[float], **kwargs): ... @write_docs def add_scatter(self, x=None, y=None, face_color = None, edge_color = None, color = None, size: float = 7, name: str | None = None, lw: float = 1, ls: str = "-", symbol="o"): """ Add scatter plot like ``plt.scatter(x, y)``. Parameters ---------- {x} {y} {face_color} {edge_color} {color} size: float, default is 7 Symbol size. {name} {lw} {ls} {symbol} Returns ------- Scatter A plot item of the scatter plot. """ x, y = _check_xy(x, y) name = self._find_unique_name((name or "Scatter")) face_color, edge_color = _check_colors(face_color, edge_color, color) item = Scatter(x, y, face_color=face_color, edge_color=edge_color, size=size, name=name, lw=lw, ls=ls, symbol=symbol) self._add_item(item) return item @write_docs def add_hist(self, data: Sequence[float], bins: int | Sequence | str = 10, range=None, density: bool = False, face_color = None, edge_color = None, color = None, name: str | None = None, lw: float = 1, ls: str = "-", ): """ Add histogram like ``plt.hist(data)``. Parameters ---------- data : array-like Data for histogram constrction. bins : int, sequence of float or str, default is 10 Bin numbers. See ``np.histogram`` for detail. range : two floats, optional Bin ranges. See ``np.histogram`` for detail. density : bool, default is False If true, plot the density instead of the counts. See ``np.histogram`` for detail. {face_color} {edge_color} {color} {name} {lw} {ls} Returns ------- Histogram A plot item of the histogram. """ name = self._find_unique_name((name or "Histogram")) face_color, edge_color = _check_colors(face_color, edge_color, color) item = Histogram(data, bins=bins, range=range, density=density, face_color=face_color, edge_color=edge_color, name=name, lw=lw, ls=ls) self._add_item(item) return item @overload def add_bar(self, x: Sequence[float], **kwargs): ... @overload def add_bar(self, x: Sequence[float], y: Sequence[float], **kwargs): ... @write_docs def add_bar(self, x=None, y=None, width: float = 0.6, face_color = None, edge_color = None, color = None, name: str | None = None, lw: float = 1, ls: str = "-"): """ Add a bar plot like ``plt.bar(x, y)``. Parameters ---------- {x} {y} width : float, default is 0.6 Width of each bar. {face_color} {edge_color} {color} {name} {lw} {ls} Returns ------- BarPlot A plot item of the bar plot. """ x, y = _check_xy(x, y) name = self._find_unique_name((name or "Bar")) face_color, edge_color = _check_colors(face_color, edge_color, color) item = BarPlot(x, y, width=width, face_color=face_color, edge_color=edge_color, name=name, lw=lw, ls=ls) self._add_item(item) return item @overload def add_fillbetween(self, x: Sequence[float], **kwargs): ... @overload def add_fillbetween(self, x: Sequence[float], y: Sequence[float], **kwargs): ... @write_docs def add_fillbetween(self, x=None, y1=None, y2=None, face_color = None, edge_color = None, color = None, name: str | None = None, lw: float = 1, ls: str = "-"): x, y1 = _check_xy(x, y1) name = self._find_unique_name((name or "FillBetween")) face_color, edge_color = _check_colors(face_color, edge_color, color) item = FillBetween(x, y1, y2, face_color=face_color, edge_color=edge_color, name=name, lw=lw, ls=ls) self._add_item(item) @overload def add_infline(self, slope: float, intercept: float, color = None, name: str | None = None, lw: float = 1, ls: str = "-"): ... @overload def add_infline(self, pos: tuple[float, float], degree: float, color = None, name: str | None = None, lw: float = 1, ls: str = "-"): ... def add_infline(self, *args, color = None, name: str | None = None, lw: float = 1, ls: str = "-", **kwargs): if kwargs: if args: raise TypeError("Cannot mix args and kwargs for infinite line parameters.") keys = set(kwargs.keys()) if keys <= {"pos", "angle"}: args = (kwargs.get("pos", (0, 0)), kwargs.get("angle", 0)) elif keys <= {"slope", "intercept"}: args = (kwargs.get("slope", (0, 0)), kwargs.get("intercept", 0)) else: raise ValueError(f"{kwargs} is invalid input.") nargs = len(args) if nargs == 1: arg0 = args[0] if np.isscalar(arg0): angle = np.rad2deg(np.arctan(arg0)) pos = (0, 0) else: pos = arg0 angle = 90 elif nargs == 2: arg0, arg1 = args if np.isscalar(arg0): angle = np.rad2deg(np.arctan(arg0)) pos = (0, arg1) else: pos = arg0 angle = arg1 else: raise TypeError( "Arguments of 'add_infline' should be either 'add_infline(slope, intercept)' " "or 'add_infline(pos, degree)'." ) item = InfLine(pos, angle, edge_color=color, name=name, lw=lw, ls=ls) self._add_item(item) @overload def add_text(self, x: float, y: float, text: str, **kwargs): ... @overload def add_text(self, x: Sequence[float], y: Sequence[float], text: Sequence[str], **kwargs): ... def add_text(self, x, y, text, color=None, name=None): if np.isscalar(x) and np.isscalar(y): x = [x] y = [y] text = [text] item = TextGroup(x, y, text, color, name) self._add_item(item) def _add_item(self, item: LayerItem): item.zorder = len(self._items) self._graphics.addItem(item.native) self._items.append(item) def _insert_item(self, pos: int, item: LayerItem): self._graphics.addItem(item.native) self._items.insert(pos, item) self._reorder() def _swap_items(self, pos0: int, pos1: int): item0 = self._items[pos0] item1 = self._items[pos1] self._items[pos0] = item1 self._items[pos1] = item0 self._reorder() def _move_item(self, source: int, destination: int): if source < destination: destination -= 1 item = self._items.pop(source) self._items.insert(destination, item) self._reorder() def _remove_item(self, item: LayerItem | int | str): if isinstance(item, LayerItem): i = self._items.index(item) elif isinstance(item, int): if item < 0: item += len(self._items) i = item elif isinstance(item, str): for i, each in enumerate(self._items): if each.name == item: break else: raise ValueError(f"No item named {item}") if i < 0: raise ValueError(f"Item {item} not found") item = self._items.pop(i) self._graphics.removeItem(item.native) def _reorder(self): for i, item in enumerate(self._items): item.zorder = i return None def _find_unique_name(self, prefix: str): existing_names = [item.name for item in self._items] name = prefix i = 0 while name in existing_names: name = f"{prefix}-{i}" i += 1 return name class HasViewBox(HasDataItems): def __init__(self, viewbox: pg.ViewBox): self._viewbox = viewbox self._items: list[LayerItem] = [] # prepare mouse event self.mouse_click_callbacks = [] # This ROI is not editable. Mouse click event will use it to determine #
<reponame>verilylifesciences/analysis-py-utils # Copyright 2019 Verily Life Sciences Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Library for interacting with BigQuery. Sample usage: client = bq.Client(project_id) result = client.get_query_results(query) """ # Workaround for https://github.com/GoogleCloudPlatform/google-cloud-python/issues/2366 from __future__ import absolute_import import csv import json import logging import os import time from collections import OrderedDict import six import subprocess from six.moves import cStringIO from google.cloud.exceptions import BadRequest from typing import Any, Dict, List, Optional, Tuple, Union # noqa: F401 from google.api_core.exceptions import NotFound from google.cloud import bigquery, storage from google.cloud.bigquery.dataset import Dataset, DatasetReference from google.cloud.bigquery.job import ExtractJobConfig, LoadJobConfig, QueryJobConfig from google.cloud.bigquery.schema import SchemaField from google.cloud.bigquery.table import Table, TableReference from verily.bigquery_wrapper.bq_base import (MAX_TABLES, BigqueryBaseClient, BQ_PATH_DELIMITER, validate_query_job, DEFAULT_TIMEOUT_SEC, DEFAULT_RETRY_FOR_API_CALLS, _transient_string_in_exception_message, DEFAULT_RETRY_FOR_ASYNC_JOBS) # Bigquery has a limit of max 10000 rows to insert per request MAX_ROWS_TO_INSERT = 10000 # When exporting data to multiple files, BQ pads the shard number to 12 digits. See: # https://cloud.google.com/bigquery/docs/exporting-data#exporting_data_into_one_or_more_files MULTIFILE_EXPORT_PAD_LENGTH = 12 class Client(BigqueryBaseClient): """Stores credentials and pointers to a BigQuery project. Args: project_id: The id of the project to associate with the client. default_dataset: Optional. The default dataset to use for operations if none is specified. maximum_billing_tier: Optional. The maximum billing tier to use for operations. max_wait_secs: Optional. The amount of time to keep retrying operations, or to wait on an operation to finish. If not set, will default to DEFAULT_TIMEOUT_SEC alternate_bq_client_class: Optional. If provided, the client will use this class to create an instance rather than the Google one. """ def __init__(self, project_id, default_dataset=None, maximum_billing_tier=None, max_wait_secs=DEFAULT_TIMEOUT_SEC, alternate_bq_client_class=None): self.gclient = (alternate_bq_client_class or bigquery.Client)(project=project_id) self.max_wait_secs = max_wait_secs # Retry object for errors encountered in making API calls (executing jobs, etc.) self.default_retry_for_api_calls = DEFAULT_RETRY_FOR_API_CALLS.with_deadline(max_wait_secs) # Retry object for errors encountered while polling jobs in progress. # See https://github.com/googleapis/google-cloud-python/issues/6301 self.default_retry_for_async_jobs = DEFAULT_RETRY_FOR_ASYNC_JOBS.with_deadline( max_wait_secs) super(Client, self).__init__(project_id, default_dataset, maximum_billing_tier) def get_delimiter(self): """ Returns the delimiter used to separate project, dataset, and table in a table path. """ return BQ_PATH_DELIMITER @classmethod def _wait_for_job(self, query_job, query, max_wait_secs=DEFAULT_TIMEOUT_SEC): # type: (QueryJob, str, Optional[int]) -> Iterator[Row] """Waits for a query job to finish and returns the result. Surfaces any validation errors along with the offending query. I have filed a feature request that printing the query be the default behavior. https://github.com/GoogleCloudPlatform/google-cloud-python/issues/5408 Args: query_job: The QueryJob to wait for. query: The string query that the QueryJob is querying. max_wait_secs: The maximum time to wait for the job to finish. Returns: The result of the query as an iterator of Row objects. """ # Sleep for 1 second to make sure that the started job has had time to propagate validation # errors. time.sleep(1) validate_query_job(query_job, query) # Block until the job is done and return the result. return query_job.result(timeout=max_wait_secs) def get_query_results(self, query, use_legacy_sql=False, max_wait_secs=None): # type: (str, Optional[bool], Optional[int]) -> List[Tuple[Any]] """Returns a list or rows, each of which is a tuple of values. Args: query: A string with a complete SQL query. use_legacy_sql: Whether to use legacy SQL max_wait_secs: The maximum number of seconds to wait for the query to complete. If not set, the class default will be used. Returns: A list of tuples of values. """ config = QueryJobConfig() if self.maximum_billing_tier: config.maximum_billing_tier = self.maximum_billing_tier config.use_legacy_sql = use_legacy_sql query_job = self._run_async_query(query, job_config=config) rows = self._wait_for_job(query_job, query, max_wait_secs=max_wait_secs or self.max_wait_secs) if query_job.errors: logging.warning('Errors in get_query_results: {}'.format(query_job.errors)) return [x.values() for x in list(rows)] def get_table_reference_from_path(self, table_path): # type: (str) -> TableReference """ Returns a TableReference for a given path to a BigQuery table. Args: table_path: A BigQuery table path in the form project.dataset.table Returns: A TableReference for the table specified by the path """ project, dataset, table = self.parse_table_path(table_path) dataset_ref = DatasetReference(project, dataset) return TableReference(dataset_ref, table) def create_table_from_query(self, query, # type: str table_path, # type: str write_disposition='WRITE_EMPTY', # type: Optional[str] use_legacy_sql=False, # type: Optional[bool] max_wait_secs=None, # type: Optional[int] expected_schema=None # type: Optional[List[SchemaField]] ): # type: (...) -> None """Creates a table in BigQuery from a specified query. Args: query: The query to run. table_path: The path to the table (in the client's project) to write the results to. write_disposition: Specifies behavior if table already exists. See options here: https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs under configuration.query.writeDisposition use_legacy_sql: Whether the query is written in standard or legacy sql. max_wait_secs: Seconds to wait for the query before timing out. If not set, the class default will be used. expected_schema: The expected schema of the resulting table; unused in this implementation """ if write_disposition not in ['WRITE_TRUNCATE', 'WRITE_APPEND', 'WRITE_EMPTY']: raise ValueError('write_disposition must be one of WRITE_TRUNCATE, ' 'WRITE_APPEND, or WRITE_EMPTY') config = QueryJobConfig() if self.maximum_billing_tier: config.maximum_billing_tier = self.maximum_billing_tier config.use_legacy_sql = use_legacy_sql config.write_disposition = write_disposition config.allow_large_results = True config.destination = self.get_table_reference_from_path(table_path) query_job = self._run_async_query(query, job_config=config) return self._wait_for_job(query_job, query, max_wait_secs=max_wait_secs or self.max_wait_secs) def create_tables_from_dict(self, table_names_to_schemas, # type: Dict[str, List[SchemaField]] dataset_id=None, # type: Optional[str] replace_existing_tables=False, # type: Optional[bool] ): # type: (...) -> None """Creates a set of tables from a dictionary of table names to their schemas. Args: table_names_to_schemas: A dictionary of: key: The table name. value: A list of SchemaField objects. dataset_id: The dataset in which to create tables. If not specified, use default dataset. replace_existing_tables: If True, delete and re-create tables. Otherwise, checks to see if any of the requested tables exist. If they do, it will raise a RuntimeError. Raises: RuntimeError if replace_existing_tables is False and any of the tables requested for creation already exist """ dataset_id = dataset_id or self.default_dataset_id dataset_ref = DatasetReference(self.project_id, dataset_id) # If the flag isn't set to replace existing tables, raise an error if any tables we're # trying to create already exist. if not replace_existing_tables: self._raise_if_tables_exist(table_names_to_schemas.keys(), dataset_id) for name, schema in six.iteritems(table_names_to_schemas): table_ref = TableReference(dataset_ref, name) # Use the Table object so it retains its schema. table = bigquery.Table(table_ref, schema=schema) if self.table_exists(table) and replace_existing_tables: self.delete_table(table) self.create_table(table) def create_dataset_by_name(self, name, expiration_hours=None): # type: (str, Optional[float]) -> None """Create a new dataset within the current project. Args: name: The name of the new dataset. expiration_hours: The default expiration time for tables within the dataset. """ if name not in self.get_datasets(): # Initialize the Dataset instead of passing a reference so we can set expiration hours. dataset = Dataset(DatasetReference(self.project_id, str(name))) if expiration_hours: dataset.default_table_expiration_ms = expiration_hours * (60 * 60 * 1000) self.create_dataset(dataset) else: logging.warning('Dataset {} already exists.'.format(name)) def delete_dataset_by_name(self, name, delete_all_tables=False): # type: (str, bool) -> None """Delete a dataset within the current project. Args: name: The name of the dataset to delete. delete_all_tables: If True, will delete all tables in the dataset before attempting to delete the dataset. You can't delete a dataset until it contains no tables. Raises: RuntimeError if there are still tables in the dataset and you try to delete it (with delete_all_tables set to False) """ dataset_id = str(name) dataset_ref = DatasetReference(self.project_id, dataset_id) self.delete_dataset(dataset_ref, delete_all_tables) def delete_table_by_name(self, table_path): # type: (str) -> None """Delete a table. Args: table_path: A string of the form '<dataset id>.<table name>' or '<project id>.<dataset_id>.<table_name>' """ self.delete_table(self.get_table_reference_from_path(table_path)) def dataset_exists_with_name(self, dataset_name): # type: (str) -> bool """Determines whether a dataset exists with the given name. Args: dataset_name: The name of the dataset to check. Returns: True if the dataset exists in this client's project, False otherwise. """ return self.dataset_exists(DatasetReference(self.project_id, dataset_name)) def table_exists_with_name(self, table_path): # type: (str) -> bool """Determines whether a table exists at the given table path. Args: table_path: The table path of the table to check. Uses the default dataset ID if a dataset is not specified as part of the table path. Returns: True if the table exists at the given path, False otherwise. """ return self.table_exists(self.get_table_reference_from_path(table_path)) def tables(self, dataset_id): # type: (str) -> List[str] """Returns a list of
used are:: network_id -- string -- TODO: type description here. Example: profile_id -- string -- TODO: type description here. Example: Returns: mixed: Response from the API. Successful operation Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # Validate required parameters self.validate_parameters(network_id=options.get("network_id"), profile_id=options.get("profile_id")) # Prepare query URL _url_path = '/networks/{networkId}/sm/profile/clarity/{profileId}' _url_path = APIHelper.append_url_with_template_parameters(_url_path, { 'networkId': options.get('network_id', None), 'profileId': options.get('profile_id', None) }) _query_builder = Configuration.base_uri _query_builder += _url_path _query_url = APIHelper.clean_url(_query_builder) # Prepare headers _headers = { 'accept': 'application/json' } # Prepare and execute request _request = self.http_client.delete(_query_url, headers=_headers) CustomHeaderAuth.apply(_request) _context = self.execute_request(_request) self.validate_response(_context) # Return appropriate type return APIHelper.json_deserialize(_context.response.raw_body) def create_network_sm_profile_umbrella(self, options=dict()): """Does a POST request to /networks/{networkId}/sm/profile/umbrella. Create a new profile containing a Cisco Umbrella payload Args: options (dict, optional): Key-value pairs for any of the parameters to this API Endpoint. All parameters to the endpoint are supplied through the dictionary with their names being the key and their desired values being the value. A list of parameters that can be used are:: network_id -- string -- TODO: type description here. Example: create_network_sm_profile_umbrella -- CreateNetworkSmProfileUmbrellaModel -- TODO: type description here. Example: Returns: mixed: Response from the API. Successful operation Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # Validate required parameters self.validate_parameters(network_id=options.get("network_id"), create_network_sm_profile_umbrella=options.get("create_network_sm_profile_umbrella")) # Prepare query URL _url_path = '/networks/{networkId}/sm/profile/umbrella' _url_path = APIHelper.append_url_with_template_parameters(_url_path, { 'networkId': options.get('network_id', None) }) _query_builder = Configuration.base_uri _query_builder += _url_path _query_url = APIHelper.clean_url(_query_builder) # Prepare headers _headers = { 'accept': 'application/json', 'content-type': 'application/json; charset=utf-8' } # Prepare and execute request _request = self.http_client.post(_query_url, headers=_headers, parameters=APIHelper.json_serialize(options.get('create_network_sm_profile_umbrella'))) CustomHeaderAuth.apply(_request) _context = self.execute_request(_request) self.validate_response(_context) # Return appropriate type return APIHelper.json_deserialize(_context.response.raw_body) def update_network_sm_profile_umbrella(self, options=dict()): """Does a PUT request to /networks/{networkId}/sm/profile/umbrella/{profileId}. Update an existing profile containing a Cisco Umbrella payload Args: options (dict, optional): Key-value pairs for any of the parameters to this API Endpoint. All parameters to the endpoint are supplied through the dictionary with their names being the key and their desired values being the value. A list of parameters that can be used are:: network_id -- string -- TODO: type description here. Example: profile_id -- string -- TODO: type description here. Example: update_network_sm_profile_umbrella -- UpdateNetworkSmProfileUmbrellaModel -- TODO: type description here. Example: Returns: mixed: Response from the API. Successful operation Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # Validate required parameters self.validate_parameters(network_id=options.get("network_id"), profile_id=options.get("profile_id")) # Prepare query URL _url_path = '/networks/{networkId}/sm/profile/umbrella/{profileId}' _url_path = APIHelper.append_url_with_template_parameters(_url_path, { 'networkId': options.get('network_id', None), 'profileId': options.get('profile_id', None) }) _query_builder = Configuration.base_uri _query_builder += _url_path _query_url = APIHelper.clean_url(_query_builder) # Prepare headers _headers = { 'accept': 'application/json', 'content-type': 'application/json; charset=utf-8' } # Prepare and execute request _request = self.http_client.put(_query_url, headers=_headers, parameters=APIHelper.json_serialize(options.get('update_network_sm_profile_umbrella'))) CustomHeaderAuth.apply(_request) _context = self.execute_request(_request) self.validate_response(_context) # Return appropriate type return APIHelper.json_deserialize(_context.response.raw_body) def add_network_sm_profile_umbrella(self, options=dict()): """Does a POST request to /networks/{networkId}/sm/profile/umbrella/{profileId}. Add a Cisco Umbrella payload to an existing profile Args: options (dict, optional): Key-value pairs for any of the parameters to this API Endpoint. All parameters to the endpoint are supplied through the dictionary with their names being the key and their desired values being the value. A list of parameters that can be used are:: network_id -- string -- TODO: type description here. Example: profile_id -- string -- TODO: type description here. Example: add_network_sm_profile_umbrella -- AddNetworkSmProfileUmbrellaModel -- TODO: type description here. Example: Returns: mixed: Response from the API. Successful operation Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # Validate required parameters self.validate_parameters(network_id=options.get("network_id"), profile_id=options.get("profile_id"), add_network_sm_profile_umbrella=options.get("add_network_sm_profile_umbrella")) # Prepare query URL _url_path = '/networks/{networkId}/sm/profile/umbrella/{profileId}' _url_path = APIHelper.append_url_with_template_parameters(_url_path, { 'networkId': options.get('network_id', None), 'profileId': options.get('profile_id', None) }) _query_builder = Configuration.base_uri _query_builder += _url_path _query_url = APIHelper.clean_url(_query_builder) # Prepare headers _headers = { 'accept': 'application/json', 'content-type': 'application/json; charset=utf-8' } # Prepare and execute request _request = self.http_client.post(_query_url, headers=_headers, parameters=APIHelper.json_serialize(options.get('add_network_sm_profile_umbrella'))) CustomHeaderAuth.apply(_request) _context = self.execute_request(_request) self.validate_response(_context) # Return appropriate type return APIHelper.json_deserialize(_context.response.raw_body) def get_network_sm_profile_umbrella(self, options=dict()): """Does a GET request to /networks/{networkId}/sm/profile/umbrella/{profileId}. Get details for a Cisco Umbrella payload Args: options (dict, optional): Key-value pairs for any of the parameters to this API Endpoint. All parameters to the endpoint are supplied through the dictionary with their names being the key and their desired values being the value. A list of parameters that can be used are:: network_id -- string -- TODO: type description here. Example: profile_id -- string -- TODO: type description here. Example: Returns: mixed: Response from the API. Successful operation Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # Validate required parameters self.validate_parameters(network_id=options.get("network_id"), profile_id=options.get("profile_id")) # Prepare query URL _url_path = '/networks/{networkId}/sm/profile/umbrella/{profileId}' _url_path = APIHelper.append_url_with_template_parameters(_url_path, { 'networkId': options.get('network_id', None), 'profileId': options.get('profile_id', None) }) _query_builder = Configuration.base_uri _query_builder += _url_path _query_url = APIHelper.clean_url(_query_builder) # Prepare headers _headers = { 'accept': 'application/json' } # Prepare and execute request _request = self.http_client.get(_query_url, headers=_headers) CustomHeaderAuth.apply(_request) _context = self.execute_request(_request) self.validate_response(_context) # Return appropriate type return APIHelper.json_deserialize(_context.response.raw_body) def delete_network_sm_profile_umbrella(self, options=dict()): """Does a DELETE request to /networks/{networkId}/sm/profile/umbrella/{profileId}. Delete a Cisco Umbrella payload. Deletes the entire profile if it's empty after removing the payload Args: options (dict, optional): Key-value pairs for any of the parameters to this API Endpoint. All parameters to the endpoint are supplied through the dictionary with their names being the key and their desired values being the value. A list of parameters that can be used are:: network_id -- string -- TODO: type description here. Example: profile_id -- string -- TODO: type description here. Example: Returns: mixed: Response from the API. Successful operation Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # Validate required parameters self.validate_parameters(network_id=options.get("network_id"), profile_id=options.get("profile_id")) # Prepare query URL _url_path = '/networks/{networkId}/sm/profile/umbrella/{profileId}' _url_path = APIHelper.append_url_with_template_parameters(_url_path, { 'networkId': options.get('network_id', None), 'profileId': options.get('profile_id', None) }) _query_builder = Configuration.base_uri _query_builder += _url_path _query_url = APIHelper.clean_url(_query_builder) # Prepare headers _headers = { 'accept': 'application/json' } # Prepare and execute request _request = self.http_client.delete(_query_url, headers=_headers) CustomHeaderAuth.apply(_request) _context = self.execute_request(_request) self.validate_response(_context) # Return appropriate type return APIHelper.json_deserialize(_context.response.raw_body) def get_network_sm_profiles(self, network_id): """Does a GET request to /networks/{networkId}/sm/profiles. List all the profiles in the network Args: network_id (string): TODO: type description here. Example: Returns: mixed: Response from the API. Successful operation Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # Validate required parameters self.validate_parameters(network_id=network_id) # Prepare query URL _url_path = '/networks/{networkId}/sm/profiles' _url_path = APIHelper.append_url_with_template_parameters(_url_path, { 'networkId': network_id }) _query_builder = Configuration.base_uri _query_builder += _url_path _query_url = APIHelper.clean_url(_query_builder) # Prepare headers _headers = { 'accept': 'application/json' } # Prepare and execute request _request = self.http_client.get(_query_url, headers=_headers) CustomHeaderAuth.apply(_request) _context = self.execute_request(_request) self.validate_response(_context) # Return appropriate type return APIHelper.json_deserialize(_context.response.raw_body) def get_network_sm_user_device_profiles(self, options=dict()): """Does a GET request to /networks/{networkId}/sm/user/{userId}/deviceProfiles. Get the profiles associated with a user Args: options (dict, optional): Key-value pairs for any of the parameters to this API Endpoint. All parameters to the endpoint
<filename>src/isle/h5io.py r"""!\file Routines for working with HDF5. """ from logging import getLogger from pathlib import Path from itertools import chain import yaml import h5py as h5 import numpy as np from . import Vector, isleVersion, pythonVersion, blazeVersion, pybind11Version from .random import readStateH5 from .collection import listToSlice, parseSlice, subslice, normalizeSlice def empty(dtype): return h5.Empty(dtype=dtype) def createH5Group(base, name): r"""! Create a new HDF5 group if it does not yet exist. \param base H5 group in which to create the new group. \param name Name of the new group relative to base. \returns The (potentially newly created) group. """ if name in base: if isinstance(base[name], h5.Group): return base[name] # there is already a group with that name # something else than a group with that name raise ValueError(("Cannot create group '{}', another object with the same"\ +" name already exists in '{}/{}'").format(name, base.filename, base.name)) # does not exists yet return base.create_group(name) def writeDict(h5group, dictionary): """! Write a `dict` into an HDF5 group by storing each dict element as a dataset. """ for key, value in dictionary.items(): h5group[key] = value def loadDict(h5group): """! Load all datasets from an HDF5 group into a dictionary. """ return {key: dset[()] for key, dset in h5group.items()} def loadString(dset): """! Load a string from an HDF5 dataset and return as a Python str object. Since version 3.0, h5py loads UTF8 strings as `bytes` objects. This function provides uniform behavior across h5py 2.0 and h5py 3.0 by always returning `str` objects. """ s = dset[()] if isinstance(s, str): return s return s.decode("utf-8") def writeMetadata(fname, lattice, params, makeActionSrc): """! Write metadata to HDF5 file. Overwrites any existing datasets. """ with h5.File(str(fname), "a") as outf: metaGrp = createH5Group(outf, "meta") metaGrp["lattice"] = yaml.dump(lattice) metaGrp["params"] = yaml.dump(params) metaGrp["action"] = makeActionSrc vgrp = createH5Group(metaGrp, "version") vgrp["isle"] = str(isleVersion) vgrp["python"] = str(pythonVersion) vgrp["blaze"] = str(blazeVersion) vgrp["pybind11"] = str(pybind11Version) def readMetadata(fname): r"""! Read metadata on ensemble from HDF5 file. \returns Lattice, parameters, makeAction (source code of function) """ if isinstance(fname, (tuple, list)): fname = fname[0] with h5.File(str(fname), "r") as inf: try: metaGrp = inf["meta"] lattice = yaml.safe_load(loadString(metaGrp["lattice"])) params = yaml.safe_load(loadString(metaGrp["params"])) makeActionSrc = loadString(metaGrp["action"]) versions = {name: loadString(val) for name, val in metaGrp["version"].items()} except KeyError as exc: getLogger(__name__).error("Cannot read metadata from file %s: %s", str(fname), str(exc)) raise return lattice, params, makeActionSrc, versions def initializeNewFile(fname, overwrite, lattice, params, makeActionSrc, extraGroups=[]): """! Prepare the output file by storing program versions, metadata, and creating groups. If `overwrite==False` the file must not exist. If it is True, the file is removed if it exists. """ fname = Path(fname) if fname.exists(): if overwrite: fname.unlink() getLogger(__name__).info("Output file %s exists -- overwriting", fname) else: getLogger(__name__).error("Output file %s exists and not allowed to overwrite", fname) raise RuntimeError("Output file exists") with h5.File(str(fname), "w-") as h5f: for group in extraGroups: createH5Group(h5f, group) writeMetadata(fname, lattice, params, makeActionSrc) def writeTrajectory(h5group, label, stage): r"""! Write a trajectory (endpoint) to a HDF5 group. Creates a new group with name 'label' and stores the EvolutionStage. \param h5group Base HDF5 group to store trajectory in. \param label Name of the subgroup of `h5group` to write to. The subgroup must not already exist. \param stage EvolutionStage to save. \returns The newly created HDF5 group containing the trajectory. """ grp = h5group.create_group(str(label)) stage.save(grp) return grp def writeCheckpoint(h5group, label, rng, trajGrpName, evolver, evolverManager): r"""! Write a checkpoint to a HDF5 group. Creates a new group with name 'label' and stores RNG state and a soft link to the trajectory for this checkpoint. \param h5group Base HDF5 group to store trajectory in. \param label Name of the subgroup of `h5group` to write to. The subgroup must not already exist. \param rng Random number generator whose state to save in the checkpoint. \param trajGrpName Name of the HDF5 group containing the trajectory this checkpoint corresponds to. \param evolver Evolver used to make the trajectory at this checkpoint. \param evolverManager Instance of EvolverManager to handle saving the evolver. \returns The newly created HDF5 group containing the checkpoint. """ grp = h5group.create_group(str(label)) rng.writeH5(grp.create_group("rngState")) grp["cfg"] = h5.SoftLink(trajGrpName) evolverManager.save(evolver, grp.create_group("evolver")) return grp def loadCheckpoint(h5group, label, evolverManager, action, lattice): r"""! Load a checkpoint from a HDF5 group. \param h5group Base HDF5 group containing checkpoints. \param label Name of the subgroup of `h5group` to read from. \param evolverManager A EvolverManager to load the evolver including its type. \param action Action to construct the evolver with. \param lattice Lattice to construct the evolver with. \returns (RNG, HDF5 group of configuration, evolver) """ grp = h5group[str(label)] rng = readStateH5(grp["rngState"]) cfgGrp = grp["cfg"] evolver = evolverManager.load(grp["evolver"], action, lattice, rng) return rng, cfgGrp, evolver def loadConfiguration(h5group, trajIdx=-1, path="configuration"): r"""! Load a configuration from HDF5. \param h5group Base HDF5 group. Configurations must be located at `h5group[path]`. \param trajIdx Trajectory index of the configuration to load. This is the number under which the configuration is stored, not a plain index into the array of all configurations. \param path Path under `h5group` that contains configurations. \returns (configuration, action value) """ configs = loadList(h5group[path]) # get proper positive index idx = configs[-1][0]+trajIdx+1 if trajIdx < 0 else trajIdx # get the configuration group with the given index cfgGrp = next(pair[1] for pair in loadList(h5group[path]) if pair[0] == idx) return Vector(cfgGrp["phi"][()]), cfgGrp["actVal"][()] def loadList(h5group, convert=int): r"""! Load a list of objects from a HDF5 group. All entries in `h5group` must have names convertible to `int` by `convert`. \param h5group HDF5 group to load from. All elements in that group must be named such that they can be processed by `convert`. \param convert Function that takes a group entry name and returns an int. \returns List of pairs (key, obj) where key is the name of each object converted to `int`. """ return sorted(map(lambda p: (convert(p[0]), p[1]), h5group.items()), key=lambda item: item[0]) def loadActionValuesFrom(h5obj, full=False, base="/"): r"""! Load values of the action from a HDF5 file given via a HDF5 object in that file. Reads the action from dataset `/action/action` if it exists. Otherwise, read action from saved configurations. \param fname An arbitrary HDF5 object in the file to read the action from. \param full If True, always read from saved configurations as `/action/action` might contain only a subset of all actions. \param base Path in HDF5 file under which the action is stored. \returns (action, configRange) where - action: Numpy array of values of the action. - configRange: `slice` indicating the range of configurations the action was loaded for. \throws RuntimeError if neither `/action/action` nor `/configuration` exist in the file. """ grp = h5obj.file[base] action = None if not full and "action" in grp: action = grp["action/action"][()] cRange = normalizeSlice(parseSlice(grp["action"].attrs["configurations"], minComponents=3), 0, action.shape[0]) if not full and "weights" in grp: action = grp["weights/actVal"][()] cRange = normalizeSlice(parseSlice(grp["weights"].attrs["configurations"], minComponents=3), 0, action.shape[0]) if action is None and "configuration" in grp: indices, groups = zip(*loadList(grp["configuration"])) action = np.array([grp["actVal"][()] for grp in groups]) cRange = listToSlice(indices) if action is None: getLogger(__name__).error("Cannot load action, no configurations or " "separate action found in file %s.", grp.file.filename) raise RuntimeError("No action found in file") return action, cRange def loadActionValues(fname, full=False, base="/"): r"""! Load values of the action from a HDF5 file. Reads the action from dataset `/action/action` if it exists. Otherwise, read action from saved configurations. \param fname Name of the file to load action from. \param full If True, always read from saved configurations as `/action/action` might contain only a subset of all actions. \param base Path in HDF5 file under which the action is stored. \returns (action, configRange) where - action: Numpy array of values of the action. - configRange: `slice` indicating the range of configurations the action was loaded for. \throws RuntimeError if neither `/action/action` nor `/configuration` exist in the file. """ with h5.File(fname, "r") as h5f: return loadActionValuesFrom(h5f, full, base) def loadActionWeightsFor(dset, base="/"): r"""! Load the weights from the imaginary part of the action for a measurement result. The weights are loaded based on the 'configurations' attribute stored in the parent group of `dset`. This requires the attribute to be stored properly (no `None`) and the file to
server def test_vsis3_opendir(): if gdaltest.webserver_port == 0: pytest.skip() # Unlimited depth handler = webserver.SequentialHandler() handler.add('GET', '/vsis3_opendir/', 200, {'Content-type': 'application/xml'}, """<?xml version="1.0" encoding="UTF-8"?> <ListBucketResult> <Prefix/> <Marker/> <Contents> <Key>test.txt</Key> <LastModified>1970-01-01T00:00:01.000Z</LastModified> <Size>40</Size> </Contents> <Contents> <Key>subdir/</Key> <LastModified>1970-01-01T00:00:01.000Z</LastModified> <Size>0</Size> </Contents> <Contents> <Key>subdir/test.txt</Key> <LastModified>1970-01-01T00:00:01.000Z</LastModified> <Size>5</Size> </Contents> </ListBucketResult> """) with webserver.install_http_handler(handler): d = gdal.OpenDir('/vsis3/vsis3_opendir') assert d is not None entry = gdal.GetNextDirEntry(d) assert entry.name == 'test.txt' assert entry.size == 40 assert entry.mode == 32768 assert entry.mtime == 1 entry = gdal.GetNextDirEntry(d) assert entry.name == 'subdir' assert entry.mode == 16384 entry = gdal.GetNextDirEntry(d) assert entry.name == 'subdir/test.txt' entry = gdal.GetNextDirEntry(d) assert entry is None gdal.CloseDir(d) # Depth = 0 handler = webserver.SequentialHandler() handler.add('GET', '/vsis3_opendir/?delimiter=%2F', 200, {'Content-type': 'application/xml'}, """<?xml version="1.0" encoding="UTF-8"?> <ListBucketResult> <Prefix/> <Marker/> <Contents> <Key>test.txt</Key> <LastModified>1970-01-01T00:00:01.000Z</LastModified> <Size>40</Size> </Contents> <CommonPrefixes> <Prefix>subdir/</Prefix> </CommonPrefixes> </ListBucketResult> """) with webserver.install_http_handler(handler): d = gdal.OpenDir('/vsis3/vsis3_opendir', 0) assert d is not None entry = gdal.GetNextDirEntry(d) assert entry.name == 'test.txt' assert entry.size == 40 assert entry.mode == 32768 assert entry.mtime == 1 entry = gdal.GetNextDirEntry(d) assert entry.name == 'subdir' assert entry.mode == 16384 entry = gdal.GetNextDirEntry(d) assert entry is None gdal.CloseDir(d) # Depth = 1 handler = webserver.SequentialHandler() handler.add('GET', '/vsis3_opendir/?delimiter=%2F', 200, {'Content-type': 'application/xml'}, """<?xml version="1.0" encoding="UTF-8"?> <ListBucketResult> <Prefix/> <Marker/> <Contents> <Key>test.txt</Key> <LastModified>1970-01-01T00:00:01.000Z</LastModified> <Size>40</Size> </Contents> <CommonPrefixes> <Prefix>subdir/</Prefix> </CommonPrefixes> </ListBucketResult> """) with webserver.install_http_handler(handler): d = gdal.OpenDir('/vsis3/vsis3_opendir', 1) assert d is not None entry = gdal.GetNextDirEntry(d) assert entry.name == 'test.txt' assert entry.size == 40 assert entry.mode == 32768 assert entry.mtime == 1 entry = gdal.GetNextDirEntry(d) assert entry.name == 'subdir' assert entry.mode == 16384 handler = webserver.SequentialHandler() handler.add('GET', '/vsis3_opendir/?delimiter=%2F&prefix=subdir%2F', 200, {'Content-type': 'application/xml'}, """<?xml version="1.0" encoding="UTF-8"?> <ListBucketResult> <Prefix>subdir/</Prefix> <Marker/> <Contents> <Key>subdir/test.txt</Key> <LastModified>1970-01-01T00:00:01.000Z</LastModified> <Size>5</Size> </Contents> </ListBucketResult> """) with webserver.install_http_handler(handler): entry = gdal.GetNextDirEntry(d) assert entry.name == 'subdir/test.txt' entry = gdal.GetNextDirEntry(d) assert entry is None gdal.CloseDir(d) ############################################################################### # Test simple PUT support with a fake AWS server def test_vsis3_4(): if gdaltest.webserver_port == 0: pytest.skip() with webserver.install_http_handler(webserver.SequentialHandler()): with gdaltest.error_handler(): f = gdal.VSIFOpenL('/vsis3/s3_fake_bucket3', 'wb') assert f is None handler = webserver.SequentialHandler() handler.add('GET', '/s3_fake_bucket3/empty_file.bin', 200, {'Connection': 'close'}, 'foo') with webserver.install_http_handler(handler): assert gdal.VSIStatL('/vsis3/s3_fake_bucket3/empty_file.bin').size == 3 # Empty file handler = webserver.SequentialHandler() def method(request): if request.headers['Content-Length'] != '0': sys.stderr.write('Did not get expected headers: %s\n' % str(request.headers)) request.send_response(400) return request.send_response(200) request.send_header('Content-Length', 0) request.end_headers() handler.add('PUT', '/s3_fake_bucket3/empty_file.bin', custom_method=method) with webserver.install_http_handler(handler): f = gdal.VSIFOpenL('/vsis3/s3_fake_bucket3/empty_file.bin', 'wb') assert f is not None gdal.ErrorReset() gdal.VSIFCloseL(f) assert gdal.GetLastErrorMsg() == '' handler = webserver.SequentialHandler() handler.add('GET', '/s3_fake_bucket3/empty_file.bin', 200, {'Connection': 'close'}, '') with webserver.install_http_handler(handler): assert gdal.VSIStatL('/vsis3/s3_fake_bucket3/empty_file.bin').size == 0 # Invalid seek handler = webserver.SequentialHandler() with webserver.install_http_handler(handler): f = gdal.VSIFOpenL('/vsis3/s3_fake_bucket3/empty_file.bin', 'wb') assert f is not None with gdaltest.error_handler(): ret = gdal.VSIFSeekL(f, 1, 0) assert ret != 0 gdal.VSIFCloseL(f) # Invalid read handler = webserver.SequentialHandler() with webserver.install_http_handler(handler): f = gdal.VSIFOpenL('/vsis3/s3_fake_bucket3/empty_file.bin', 'wb') assert f is not None with gdaltest.error_handler(): ret = gdal.VSIFReadL(1, 1, f) assert not ret gdal.VSIFCloseL(f) # Error case handler = webserver.SequentialHandler() handler.add('PUT', '/s3_fake_bucket3/empty_file_error.bin', 403) with webserver.install_http_handler(handler): f = gdal.VSIFOpenL('/vsis3/s3_fake_bucket3/empty_file_error.bin', 'wb') assert f is not None gdal.ErrorReset() with gdaltest.error_handler(): gdal.VSIFCloseL(f) assert gdal.GetLastErrorMsg() != '' # Nominal case gdal.NetworkStatsReset() with gdaltest.config_option('CPL_VSIL_NETWORK_STATS_ENABLED', 'YES'): with webserver.install_http_handler(webserver.SequentialHandler()): f = gdal.VSIFOpenL('/vsis3/s3_fake_bucket3/another_file.bin', 'wb') assert f is not None assert gdal.VSIFSeekL(f, gdal.VSIFTellL(f), 0) == 0 assert gdal.VSIFSeekL(f, 0, 1) == 0 assert gdal.VSIFSeekL(f, 0, 2) == 0 assert gdal.VSIFWriteL('foo', 1, 3, f) == 3 assert gdal.VSIFSeekL(f, gdal.VSIFTellL(f), 0) == 0 assert gdal.VSIFWriteL('bar', 1, 3, f) == 3 handler = webserver.SequentialHandler() def method(request): if request.headers['Content-Length'] != '6': sys.stderr.write('Did not get expected headers: %s\n' % str(request.headers)) request.send_response(400) request.send_header('Content-Length', 0) request.end_headers() return request.wfile.write('HTTP/1.1 100 Continue\r\n\r\n'.encode('ascii')) content = request.rfile.read(6).decode('ascii') if content != 'foobar': sys.stderr.write('Did not get expected content: %s\n' % content) request.send_response(400) request.send_header('Content-Length', 0) request.end_headers() return request.send_response(200) request.send_header('Content-Length', 0) request.end_headers() handler.add('PUT', '/s3_fake_bucket3/another_file.bin', custom_method=method) gdal.ErrorReset() with webserver.install_http_handler(handler): gdal.VSIFCloseL(f) assert gdal.GetLastErrorMsg() == '' j = json.loads(gdal.NetworkStatsGetAsSerializedJSON()) #print(j) assert j == { "methods": { "PUT": { "count": 1, "uploaded_bytes": 6 } }, "handlers": { "vsis3": { "files": { "/vsis3/s3_fake_bucket3/another_file.bin": { "methods": { "PUT": { "count": 1, "uploaded_bytes": 6 } }, "actions": { "Write": { "methods": { "PUT": { "count": 1, "uploaded_bytes": 6 } } } } } }, "methods": { "PUT": { "count": 1, "uploaded_bytes": 6 } } } } } gdal.NetworkStatsReset() # Redirect case with webserver.install_http_handler(webserver.SequentialHandler()): f = gdal.VSIFOpenL('/vsis3/s3_fake_bucket3/redirect', 'wb') assert f is not None assert gdal.VSIFWriteL('foobar', 1, 6, f) == 6 handler = webserver.SequentialHandler() def method(request): request.protocol_version = 'HTTP/1.1' if request.headers['Authorization'].find('us-east-1') >= 0: request.send_response(400) response = '<?xml version="1.0" encoding="UTF-8"?><Error><Message>bla</Message><Code>AuthorizationHeaderMalformed</Code><Region>us-west-2</Region></Error>' response = '%x\r\n%s\r\n0\r\n\r\n' % (len(response), response) request.send_header('Content-type', 'application/xml') request.send_header('Transfer-Encoding', 'chunked') request.end_headers() request.wfile.write(response.encode('ascii')) elif request.headers['Authorization'].find('us-west-2') >= 0: if request.headers['Content-Length'] != '6': sys.stderr.write('Did not get expected headers: %s\n' % str(request.headers)) request.send_response(400) request.send_header('Content-Length', 0) request.end_headers() return request.wfile.write('HTTP/1.1 100 Continue\r\n\r\n'.encode('ascii')) content = request.rfile.read(6).decode('ascii') if content != 'foobar': sys.stderr.write('Did not get expected content: %s\n' % content) request.send_response(400) request.send_header('Content-Length', 0) request.end_headers() return request.send_response(200) request.send_header('Content-Length', 0) request.end_headers() else: sys.stderr.write('Bad headers: %s\n' % str(request.headers)) request.send_response(403) request.send_header('Content-Length', 0) request.end_headers() handler.add('PUT', '/s3_fake_bucket3/redirect', custom_method=method) handler.add('PUT', '/s3_fake_bucket3/redirect', custom_method=method) gdal.ErrorReset() with webserver.install_http_handler(handler): gdal.VSIFCloseL(f) assert gdal.GetLastErrorMsg() == '' ############################################################################### # Test simple PUT support with retry logic def test_vsis3_write_single_put_retry(): if gdaltest.webserver_port == 0: pytest.skip() with gdaltest.config_options({'GDAL_HTTP_MAX_RETRY': '2', 'GDAL_HTTP_RETRY_DELAY': '0.01'}): with webserver.install_http_handler(webserver.SequentialHandler()): f = gdal.VSIFOpenL('/vsis3/s3_fake_bucket3/put_with_retry.bin', 'wb') assert f is not None assert gdal.VSIFWriteL('foo', 1, 3, f) == 3 handler = webserver.SequentialHandler() def method(request): if request.headers['Content-Length'] != '3': sys.stderr.write('Did not get expected headers: %s\n' % str(request.headers)) request.send_response(400) request.send_header('Content-Length', 0) request.end_headers() return request.wfile.write('HTTP/1.1 100 Continue\r\n\r\n'.encode('ascii')) content = request.rfile.read(3).decode('ascii') if content != 'foo': sys.stderr.write('Did not get expected content: %s\n' % content) request.send_response(400) request.send_header('Content-Length', 0) request.end_headers() return request.send_response(200) request.send_header('Content-Length', 0) request.end_headers() handler.add('PUT', '/s3_fake_bucket3/put_with_retry.bin', 502) handler.add('PUT', '/s3_fake_bucket3/put_with_retry.bin', custom_method=method) with gdaltest.error_handler(): with webserver.install_http_handler(handler): gdal.VSIFCloseL(f) ############################################################################### # Test simple DELETE support with a fake AWS server def test_vsis3_5(): if gdaltest.webserver_port == 0: pytest.skip() with webserver.install_http_handler(webserver.SequentialHandler()): with gdaltest.error_handler(): ret = gdal.Unlink('/vsis3/foo') assert ret != 0 handler = webserver.SequentialHandler() handler.add('GET', '/s3_delete_bucket/delete_file', 200, {'Connection': 'close'}, 'foo') with webserver.install_http_handler(handler): assert gdal.VSIStatL('/vsis3/s3_delete_bucket/delete_file').size == 3 handler = webserver.SequentialHandler() with webserver.install_http_handler(handler): assert gdal.VSIStatL('/vsis3/s3_delete_bucket/delete_file').size == 3 handler = webserver.SequentialHandler() handler.add('DELETE', '/s3_delete_bucket/delete_file', 204) with webserver.install_http_handler(handler): ret = gdal.Unlink('/vsis3/s3_delete_bucket/delete_file') assert ret == 0 handler = webserver.SequentialHandler() handler.add('GET', '/s3_delete_bucket/delete_file', 404, {'Connection': 'close'}) handler.add('GET', '/s3_delete_bucket/?delimiter=%2F&max-keys=100&prefix=delete_file%2F', 404, {'Connection': 'close'}) with webserver.install_http_handler(handler): assert gdal.VSIStatL('/vsis3/s3_delete_bucket/delete_file') is None handler = webserver.SequentialHandler() handler.add('GET', '/s3_delete_bucket/delete_file_error', 200) handler.add('DELETE', '/s3_delete_bucket/delete_file_error', 403) with webserver.install_http_handler(handler): with gdaltest.error_handler(): ret = gdal.Unlink('/vsis3/s3_delete_bucket/delete_file_error') assert ret != 0 handler = webserver.SequentialHandler() handler.add('GET', '/s3_delete_bucket/redirect', 200) def method(request): request.protocol_version = 'HTTP/1.1' if request.headers['Authorization'].find('us-east-1') >= 0: request.send_response(400) response = '<?xml version="1.0" encoding="UTF-8"?><Error><Message>bla</Message><Code>AuthorizationHeaderMalformed</Code><Region>us-west-2</Region></Error>' response = '%x\r\n%s\r\n0\r\n\r\n' % (len(response), response) request.send_header('Content-type', 'application/xml') request.send_header('Transfer-Encoding', 'chunked') request.end_headers() request.wfile.write(response.encode('ascii')) elif request.headers['Authorization'].find('us-west-2') >= 0: request.send_response(204) request.send_header('Content-Length', 0) request.end_headers() else: sys.stderr.write('Bad headers: %s\n' % str(request.headers)) request.send_response(403) request.send_header('Content-Length', 0) request.end_headers() handler.add('DELETE', '/s3_delete_bucket/redirect', custom_method=method) handler.add('DELETE', '/s3_delete_bucket/redirect', custom_method=method) with webserver.install_http_handler(handler): ret = gdal.Unlink('/vsis3/s3_delete_bucket/redirect') assert ret == 0 ############################################################################### # Test DeleteObjects with a fake AWS server def test_vsis3_unlink_batch(): if gdaltest.webserver_port == 0: pytest.skip() def method(request): if request.headers['Content-MD5'] != 'Ze0X4LdlTwCsT+WpNxD9FA==': sys.stderr.write('Did not get expected headers: %s\n' % str(request.headers)) request.send_response(403) return content = request.rfile.read(int(request.headers['Content-Length'])).decode('ascii') if content != """<?xml version="1.0" encoding="UTF-8"?> <Delete xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> <Object> <Key>foo</Key> </Object> <Object> <Key>bar/baz</Key> </Object> </Delete> """: sys.stderr.write('Did not get expected content: %s\n' % content) request.send_response(403) return request.protocol_version = 'HTTP/1.1' request.send_response(200) response = """<DeleteResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/"><Deleted><Key>foo</Key></Deleted><Deleted><Key>bar/baz</Key></Deleted></DeleteResult>""" request.send_header('Content-Length', len(response)) request.send_header('Connection', 'close') request.end_headers() request.wfile.write(response.encode('ascii')) handler = webserver.SequentialHandler() handler.add('POST', '/unlink_batch/?delete', custom_method=method) handler.add('POST', '/unlink_batch/?delete', 200, {}, """<DeleteResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/"><Deleted><Key>baw</Key></Deleted></DeleteResult>""") with gdaltest.config_option('CPL_VSIS3_UNLINK_BATCH_SIZE', '2'): with webserver.install_http_handler(handler): ret = gdal.UnlinkBatch(['/vsis3/unlink_batch/foo', '/vsis3/unlink_batch/bar/baz', '/vsis3/unlink_batch/baw']) assert ret handler = webserver.SequentialHandler() handler.add('POST', '/unlink_batch/?delete', 200, {}, """<DeleteResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/"><Failed><Key>foo</Key></Failed></DeleteResult>""") with webserver.install_http_handler(handler): ret = gdal.UnlinkBatch(['/vsis3/unlink_batch/foo']) assert not ret ############################################################################### # Test RmdirRecursive() with a fake AWS server def test_vsis3_rmdir_recursive(): if gdaltest.webserver_port == 0: pytest.skip() handler = webserver.SequentialHandler() handler.add('GET', '/test_rmdir_recursive/?prefix=somedir%2F', 200, {'Content-type': 'application/xml'}, """<?xml version="1.0" encoding="UTF-8"?> <ListBucketResult> <Prefix>somedir/</Prefix> <Marker/> <Contents> <Key>somedir/test.txt</Key> <LastModified>1970-01-01T00:00:01.000Z</LastModified> <Size>40</Size> </Contents> <Contents> <Key>somedir/subdir/</Key> <LastModified>1970-01-01T00:00:01.000Z</LastModified> <Size>0</Size> </Contents> <Contents> <Key>somedir/subdir/test.txt</Key> <LastModified>1970-01-01T00:00:01.000Z</LastModified> <Size>5</Size> </Contents> </ListBucketResult> """) def method(request): content = request.rfile.read(int(request.headers['Content-Length'])).decode('ascii') if content != """<?xml version="1.0" encoding="UTF-8"?> <Delete xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> <Object> <Key>somedir/test.txt</Key> </Object> <Object> <Key>somedir/subdir/</Key> </Object> </Delete> """: sys.stderr.write('Did not get expected content: %s\n' % content) request.send_response(403) return request.protocol_version = 'HTTP/1.1' request.send_response(200) response = """<DeleteResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/"><Deleted><Key>somedir/test.txt</Key></Deleted><Deleted><Key>somedir/subdir/</Key></Deleted></DeleteResult>""" request.send_header('Content-Length', len(response)) request.send_header('Connection', 'close') request.end_headers() request.wfile.write(response.encode('ascii')) handler.add('POST', '/test_rmdir_recursive/?delete', custom_method=method) def method(request): content = request.rfile.read(int(request.headers['Content-Length'])).decode('ascii') if content != """<?xml version="1.0" encoding="UTF-8"?> <Delete xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> <Object> <Key>somedir/subdir/test.txt</Key> </Object> <Object> <Key>somedir/</Key> </Object> </Delete> """: sys.stderr.write('Did not get expected content: %s\n' % content) request.send_response(403) return request.protocol_version = 'HTTP/1.1' request.send_response(200) response = """<DeleteResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/"><Deleted><Key>somedir/subdir/test.txt</Key></Deleted><Deleted><Key>somedir/</Key></Deleted></DeleteResult>""" request.send_header('Content-Length', len(response)) request.send_header('Connection', 'close')
hasattr(self, 'bgp_cer_cidr') and self.bgp_cer_cidr is not None: _dict['bgp_cer_cidr'] = self.bgp_cer_cidr if hasattr(self, 'bgp_ibm_asn') and self.bgp_ibm_asn is not None: _dict['bgp_ibm_asn'] = self.bgp_ibm_asn if hasattr(self, 'bgp_ibm_cidr') and self.bgp_ibm_cidr is not None: _dict['bgp_ibm_cidr'] = self.bgp_ibm_cidr if hasattr(self, 'bgp_status') and self.bgp_status is not None: _dict['bgp_status'] = self.bgp_status if hasattr(self, 'change_request') and self.change_request is not None: _dict['change_request'] = self.change_request if hasattr(self, 'created_at') and self.created_at is not None: _dict['created_at'] = datetime_to_string(self.created_at) if hasattr(self, 'crn') and self.crn is not None: _dict['crn'] = self.crn if hasattr(self, 'customer_account_id') and self.customer_account_id is not None: _dict['customer_account_id'] = self.customer_account_id if hasattr(self, 'id') and self.id is not None: _dict['id'] = self.id if hasattr(self, 'name') and self.name is not None: _dict['name'] = self.name if hasattr(self, 'operational_status') and self.operational_status is not None: _dict['operational_status'] = self.operational_status if hasattr(self, 'port') and self.port is not None: _dict['port'] = self.port.to_dict() if hasattr(self, 'provider_api_managed') and self.provider_api_managed is not None: _dict['provider_api_managed'] = self.provider_api_managed if hasattr(self, 'speed_mbps') and self.speed_mbps is not None: _dict['speed_mbps'] = self.speed_mbps if hasattr(self, 'type') and self.type is not None: _dict['type'] = self.type if hasattr(self, 'vlan') and self.vlan is not None: _dict['vlan'] = self.vlan return _dict def _to_dict(self): """Return a json dictionary representing this model.""" return self.to_dict() def __str__(self) -> str: """Return a `str` version of this ProviderGateway object.""" return json.dumps(self.to_dict(), indent=2) def __eq__(self, other: 'ProviderGateway') -> bool: """Return `true` when self and other are equal, false otherwise.""" if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other: 'ProviderGateway') -> bool: """Return `true` when self and other are not equal, false otherwise.""" return not self == other class BgpStatusEnum(Enum): """ Gateway BGP status. The list of enumerated values for this property may expand in the future. Code and processes using this field must tolerate unexpected values. """ ACTIVE = "active" CONNECT = "connect" ESTABLISHED = "established" IDLE = "idle" class OperationalStatusEnum(Enum): """ Gateway operational status. The list of enumerated values for this property may expand in the future. Code and processes using this field must tolerate unexpected values. """ CONFIGURING = "configuring" CREATE_PENDING = "create_pending" CREATE_REJECTED = "create_rejected" DELETE_PENDING = "delete_pending" PROVISIONED = "provisioned" class ProviderGatewayChangeRequest(): """ ProviderGatewayChangeRequest. """ def __init__(self) -> None: """ Initialize a ProviderGatewayChangeRequest object. """ msg = "Cannot instantiate base class. Instead, instantiate one of the defined subclasses: {0}".format( ", ".join(['ProviderGatewayChangeRequestProviderGatewayCreate', 'ProviderGatewayChangeRequestProviderGatewayDelete', 'ProviderGatewayChangeRequestProviderGatewayUpdateAttributes'])) raise Exception(msg) class ProviderGatewayCollection(): """ A paginated collection of resources. :attr ProviderGatewayCollectionFirst first: A reference to the first page of resources. :attr int limit: The maximum number of resources can be returned by the request. :attr ProviderGatewayCollectionNext next: (optional) A reference to the next page of resources; this reference is included for all pages except the last page. :attr int total_count: The total number of resources across all pages. :attr List[ProviderGateway] gateways: Collection of Direct Link gateways. """ def __init__(self, first: 'ProviderGatewayCollectionFirst', limit: int, total_count: int, gateways: List['ProviderGateway'], *, next: 'ProviderGatewayCollectionNext' = None) -> None: """ Initialize a ProviderGatewayCollection object. :param ProviderGatewayCollectionFirst first: A reference to the first page of resources. :param int limit: The maximum number of resources can be returned by the request. :param int total_count: The total number of resources across all pages. :param List[ProviderGateway] gateways: Collection of Direct Link gateways. :param ProviderGatewayCollectionNext next: (optional) A reference to the next page of resources; this reference is included for all pages except the last page. """ self.first = first self.limit = limit self.next = next self.total_count = total_count self.gateways = gateways @classmethod def from_dict(cls, _dict: Dict) -> 'ProviderGatewayCollection': """Initialize a ProviderGatewayCollection object from a json dictionary.""" args = {} if 'first' in _dict: args['first'] = ProviderGatewayCollectionFirst.from_dict(_dict.get('first')) else: raise ValueError('Required property \'first\' not present in ProviderGatewayCollection JSON') if 'limit' in _dict: args['limit'] = _dict.get('limit') else: raise ValueError('Required property \'limit\' not present in ProviderGatewayCollection JSON') if 'next' in _dict: args['next'] = ProviderGatewayCollectionNext.from_dict(_dict.get('next')) if 'total_count' in _dict: args['total_count'] = _dict.get('total_count') else: raise ValueError('Required property \'total_count\' not present in ProviderGatewayCollection JSON') if 'gateways' in _dict: args['gateways'] = [ProviderGateway.from_dict(x) for x in _dict.get('gateways')] else: raise ValueError('Required property \'gateways\' not present in ProviderGatewayCollection JSON') return cls(**args) @classmethod def _from_dict(cls, _dict): """Initialize a ProviderGatewayCollection object from a json dictionary.""" return cls.from_dict(_dict) def to_dict(self) -> Dict: """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'first') and self.first is not None: _dict['first'] = self.first.to_dict() if hasattr(self, 'limit') and self.limit is not None: _dict['limit'] = self.limit if hasattr(self, 'next') and self.next is not None: _dict['next'] = self.next.to_dict() if hasattr(self, 'total_count') and self.total_count is not None: _dict['total_count'] = self.total_count if hasattr(self, 'gateways') and self.gateways is not None: _dict['gateways'] = [x.to_dict() for x in self.gateways] return _dict def _to_dict(self): """Return a json dictionary representing this model.""" return self.to_dict() def __str__(self) -> str: """Return a `str` version of this ProviderGatewayCollection object.""" return json.dumps(self.to_dict(), indent=2) def __eq__(self, other: 'ProviderGatewayCollection') -> bool: """Return `true` when self and other are equal, false otherwise.""" if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other: 'ProviderGatewayCollection') -> bool: """Return `true` when self and other are not equal, false otherwise.""" return not self == other class ProviderGatewayCollectionFirst(): """ A reference to the first page of resources. :attr str href: The URL for the first page of resources. """ def __init__(self, href: str) -> None: """ Initialize a ProviderGatewayCollectionFirst object. :param str href: The URL for the first page of resources. """ self.href = href @classmethod def from_dict(cls, _dict: Dict) -> 'ProviderGatewayCollectionFirst': """Initialize a ProviderGatewayCollectionFirst object from a json dictionary.""" args = {} if 'href' in _dict: args['href'] = _dict.get('href') else: raise ValueError('Required property \'href\' not present in ProviderGatewayCollectionFirst JSON') return cls(**args) @classmethod def _from_dict(cls, _dict): """Initialize a ProviderGatewayCollectionFirst object from a json dictionary.""" return cls.from_dict(_dict) def to_dict(self) -> Dict: """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'href') and self.href is not None: _dict['href'] = self.href return _dict def _to_dict(self): """Return a json dictionary representing this model.""" return self.to_dict() def __str__(self) -> str: """Return a `str` version of this ProviderGatewayCollectionFirst object.""" return json.dumps(self.to_dict(), indent=2) def __eq__(self, other: 'ProviderGatewayCollectionFirst') -> bool: """Return `true` when self and other are equal, false otherwise.""" if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other: 'ProviderGatewayCollectionFirst') -> bool: """Return `true` when self and other are not equal, false otherwise.""" return not self == other class ProviderGatewayCollectionNext(): """ A reference to the next page of resources; this reference is included for all pages except the last page. :attr str href: The URL for the next page of resources. :attr str start: start token for the next page of resources. """ def __init__(self, href: str, start: str) -> None: """ Initialize a ProviderGatewayCollectionNext object. :param str href: The URL for the next page of resources. :param str start: start token for the next page of resources. """ self.href = href self.start = start @classmethod def from_dict(cls, _dict: Dict) -> 'ProviderGatewayCollectionNext': """Initialize a ProviderGatewayCollectionNext object from a json dictionary.""" args = {} if 'href' in _dict: args['href'] = _dict.get('href') else: raise ValueError('Required property \'href\' not present in ProviderGatewayCollectionNext JSON') if 'start' in _dict: args['start'] = _dict.get('start') else: raise ValueError('Required property \'start\' not present in ProviderGatewayCollectionNext JSON') return cls(**args) @classmethod def _from_dict(cls, _dict): """Initialize a ProviderGatewayCollectionNext object from a json dictionary.""" return cls.from_dict(_dict) def to_dict(self) -> Dict: """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'href') and self.href is not None: _dict['href'] = self.href if hasattr(self, 'start') and self.start is not None: _dict['start'] = self.start return _dict def _to_dict(self): """Return a json dictionary representing this model.""" return self.to_dict() def __str__(self) -> str: """Return a `str` version of this ProviderGatewayCollectionNext object.""" return json.dumps(self.to_dict(), indent=2) def __eq__(self, other: 'ProviderGatewayCollectionNext') -> bool: """Return `true` when self and other are equal, false otherwise.""" if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other: 'ProviderGatewayCollectionNext') -> bool: """Return `true` when self and other are not equal, false otherwise.""" return not self == other class
(delem[profile]['members'] is None): intf["interfaces"][0]["nvPairs"]["MEMBER_INTERFACES"] = "" else: intf["interfaces"][0]["nvPairs"]["MEMBER_INTERFACES"] = ",".join(delem[profile]['members']) intf["interfaces"][0]["nvPairs"]["PC_MODE"] = delem[profile]['pc_mode'] intf["interfaces"][0]["nvPairs"]["INTF_VRF"] = delem[profile]['int_vrf'] intf["interfaces"][0]["nvPairs"]["IP"] = str(delem[profile]['ipv4_addr']) if (delem[profile]['ipv4_addr'] != ''): intf["interfaces"][0]["nvPairs"]["PREFIX"] = str(delem[profile]['ipv4_mask_len']) else: intf["interfaces"][0]["nvPairs"]["PREFIX"] = '' intf["interfaces"][0]["nvPairs"]["ROUTING_TAG"] = delem[profile]['route_tag'] intf["interfaces"][0]["nvPairs"]["PO_ID"] = ifname intf["interfaces"][0]["nvPairs"]["MTU"] = str(delem[profile]['mtu']) if (delem[profile]['mode'] == 'monitor'): intf["interfaces"][0]["nvPairs"]["INTF_NAME"] = ifname if (delem[profile]['mode'] != 'monitor'): intf["interfaces"][0]["nvPairs"]["DESC"] = delem[profile]['description'] if (delem[profile]['cmds'] is None): intf["interfaces"][0]["nvPairs"]["CONF"] = "" else: intf["interfaces"][0]["nvPairs"]["CONF"] = "\n".join(delem[profile]['cmds']) intf["interfaces"][0]["nvPairs"]["ADMIN_STATE"] = str(delem[profile]['admin_state']).lower() def dcnm_intf_get_vpc_payload (self, delem, intf, profile): # Extract port id from the given name, which is of the form 'vpc300' ifname, port_id = self.dcnm_intf_get_if_name (delem['name'], delem['type']) intf["interfaces"][0].update ({"ifName" : ifname}) if (delem[profile]['mode'] == 'trunk'): if (delem[profile]['peer1_members'] is None): intf["interfaces"][0]["nvPairs"]["PEER1_MEMBER_INTERFACES"] = "" else: intf["interfaces"][0]["nvPairs"]["PEER1_MEMBER_INTERFACES"] = ",".join(delem[profile]['peer1_members']) if (delem[profile]['peer2_members'] is None): intf["interfaces"][0]["nvPairs"]["PEER2_MEMBER_INTERFACES"] = "" else: intf["interfaces"][0]["nvPairs"]["PEER2_MEMBER_INTERFACES"] = ",".join(delem[profile]['peer2_members']) intf["interfaces"][0]["nvPairs"]["PC_MODE"] = delem[profile]['pc_mode'] intf["interfaces"][0]["nvPairs"]["BPDUGUARD_ENABLED"] = delem[profile]['bpdu_guard'].lower() intf["interfaces"][0]["nvPairs"]["PORTTYPE_FAST_ENABLED"] = str(delem[profile]['port_type_fast']).lower() intf["interfaces"][0]["nvPairs"]["MTU"] = str(delem[profile]['mtu']) intf["interfaces"][0]["nvPairs"]["PEER1_ALLOWED_VLANS"] = delem[profile]['peer1_allowed_vlans'] intf["interfaces"][0]["nvPairs"]["PEER2_ALLOWED_VLANS"] = delem[profile]['peer2_allowed_vlans'] if (delem[profile]["peer1_pcid"] == 0): intf["interfaces"][0]["nvPairs"]["PEER1_PCID"] = str(port_id) else: intf["interfaces"][0]["nvPairs"]["PEER1_PCID"] = str(delem[profile]["peer1_pcid"]) if (delem[profile]["peer2_pcid"] == 0): intf["interfaces"][0]["nvPairs"]["PEER2_PCID"] = str(port_id) else: intf["interfaces"][0]["nvPairs"]["PEER2_PCID"] = str(delem[profile]["peer2_pcid"]) if (delem[profile]['mode'] == 'access'): if (delem[profile]['peer1_members'] is None): intf["interfaces"][0]["nvPairs"]["PEER1_MEMBER_INTERFACES"] = "" else: intf["interfaces"][0]["nvPairs"]["PEER1_MEMBER_INTERFACES"] = ",".join(delem[profile]['peer1_members']) if (delem[profile]['peer2_members'] is None): intf["interfaces"][0]["nvPairs"]["PEER2_MEMBER_INTERFACES"] = "" else: intf["interfaces"][0]["nvPairs"]["PEER2_MEMBER_INTERFACES"] = ",".join(delem[profile]['peer2_members']) intf["interfaces"][0]["nvPairs"]["PC_MODE"] = delem[profile]['pc_mode'] intf["interfaces"][0]["nvPairs"]["BPDUGUARD_ENABLED"] = delem[profile]['bpdu_guard'].lower() intf["interfaces"][0]["nvPairs"]["PORTTYPE_FAST_ENABLED"] = str(delem[profile]['port_type_fast']).lower() intf["interfaces"][0]["nvPairs"]["MTU"] = str(delem[profile]['mtu']) intf["interfaces"][0]["nvPairs"]["PEER1_ACCESS_VLAN"] = delem[profile]['peer1_access_vlan'] intf["interfaces"][0]["nvPairs"]["PEER2_ACCESS_VLAN"] = delem[profile]['peer2_access_vlan'] if (delem[profile]["peer1_pcid"] == 0): intf["interfaces"][0]["nvPairs"]["PEER1_PCID"] = str(port_id) else: intf["interfaces"][0]["nvPairs"]["PEER1_PCID"] = str(delem[profile]["peer1_pcid"]) if (delem[profile]["peer2_pcid"] == 0): intf["interfaces"][0]["nvPairs"]["PEER2_PCID"] = str(port_id) else: intf["interfaces"][0]["nvPairs"]["PEER2_PCID"] = str(delem[profile]["peer2_pcid"]) intf["interfaces"][0]["nvPairs"]["PEER1_PO_DESC"] = delem[profile]['peer1_description'] intf["interfaces"][0]["nvPairs"]["PEER2_PO_DESC"] = delem[profile]['peer2_description'] if (delem[profile]['peer1_cmds'] is None): intf["interfaces"][0]["nvPairs"]["PEER1_PO_CONF"] = "" else: intf["interfaces"][0]["nvPairs"]["PEER1_PO_CONF"] = "\n".join(delem[profile]['peer1_cmds']) if (delem[profile]['peer2_cmds'] is None): intf["interfaces"][0]["nvPairs"]["PEER2_PO_CONF"] = "" else: intf["interfaces"][0]["nvPairs"]["PEER2_PO_CONF"] = "\n".join(delem[profile]['peer2_cmds']) intf["interfaces"][0]["nvPairs"]["ADMIN_STATE"] = str(delem[profile]['admin_state']).lower() intf["interfaces"][0]["nvPairs"]["INTF_NAME"] = ifname def dcnm_intf_get_sub_intf_payload (self, delem, intf, profile): # Extract port id from the given name, which is of the form 'po300' ifname, port_id = self.dcnm_intf_get_if_name (delem['name'], delem['type']) intf["interfaces"][0].update ({"ifName" : ifname}) intf["interfaces"][0]["nvPairs"]["VLAN"] = str(delem[profile]['vlan']) intf["interfaces"][0]["nvPairs"]["INTF_VRF"] = delem[profile]['int_vrf'] intf["interfaces"][0]["nvPairs"]["IP"] = str(delem[profile]['ipv4_addr']) intf["interfaces"][0]["nvPairs"]["PREFIX"] = str(delem[profile]['ipv4_mask_len']) if (delem[profile]['ipv6_addr']): intf["interfaces"][0]["nvPairs"]["IPv6"] = str(delem[profile]['ipv6_addr']) intf["interfaces"][0]["nvPairs"]["IPv6_PREFIX"] = str(delem[profile]['ipv6_mask_len']) else: intf["interfaces"][0]["nvPairs"]["IPv6"] = "" intf["interfaces"][0]["nvPairs"]["IPv6_PREFIX"] = "" intf["interfaces"][0]["nvPairs"]["MTU"] = str(delem[profile]['mtu']) intf["interfaces"][0]["nvPairs"]["INTF_NAME"] = ifname intf["interfaces"][0]["nvPairs"]["DESC"] = delem[profile]['description'] if (delem[profile]['cmds'] is None): intf["interfaces"][0]["nvPairs"]["CONF"] = "" else: intf["interfaces"][0]["nvPairs"]["CONF"] = "\n".join(delem[profile]['cmds']) intf["interfaces"][0]["nvPairs"]["ADMIN_STATE"] = str(delem[profile]['admin_state']).lower() def dcnm_intf_get_loopback_payload (self, delem, intf, profile): # Extract port id from the given name, which is of the form 'po300' ifname, port_id = self.dcnm_intf_get_if_name (delem['name'], delem['type']) intf["interfaces"][0].update ({"ifName" : ifname}) intf["interfaces"][0]["nvPairs"]["INTF_VRF"] = delem[profile]['int_vrf'] intf["interfaces"][0]["nvPairs"]["IP"] = str(delem[profile]['ipv4_addr']) intf["interfaces"][0]["nvPairs"]["V6IP"] = str(delem[profile]['ipv6_addr']) intf["interfaces"][0]["nvPairs"]["ROUTE_MAP_TAG"] = delem[profile]['route_tag'] intf["interfaces"][0]["nvPairs"]["INTF_NAME"] = ifname intf["interfaces"][0]["nvPairs"]["DESC"] = delem[profile]['description'] if (delem[profile]['cmds'] is None): intf["interfaces"][0]["nvPairs"]["CONF"] = "" else: intf["interfaces"][0]["nvPairs"]["CONF"] = "\n".join(delem[profile]['cmds']) intf["interfaces"][0]["nvPairs"]["ADMIN_STATE"] = str(delem[profile]['admin_state']).lower() def dcnm_intf_get_eth_payload (self, delem, intf, profile): # Extract port id from the given name, which is of the form 'po300' ifname, port_id = self.dcnm_intf_get_if_name (delem['name'], delem['type']) intf["interfaces"][0].update ({"ifName" : ifname}) if (delem[profile]['mode'] == 'trunk'): intf["interfaces"][0]["nvPairs"]["BPDUGUARD_ENABLED"] = delem[profile]['bpdu_guard'].lower() intf["interfaces"][0]["nvPairs"]["PORTTYPE_FAST_ENABLED"] = str(delem[profile]['port_type_fast']).lower() intf["interfaces"][0]["nvPairs"]["MTU"] = str(delem[profile]['mtu']) intf["interfaces"][0]["nvPairs"]["SPEED"] = str(delem[profile]['speed']) intf["interfaces"][0]["nvPairs"]["ALLOWED_VLANS"] = delem[profile]['allowed_vlans'] intf["interfaces"][0]["nvPairs"]["INTF_NAME"] = ifname if (delem[profile]['mode'] == 'access'): intf["interfaces"][0]["nvPairs"]["BPDUGUARD_ENABLED"] = delem[profile]['bpdu_guard'].lower() intf["interfaces"][0]["nvPairs"]["PORTTYPE_FAST_ENABLED"] = str(delem[profile]['port_type_fast']).lower() intf["interfaces"][0]["nvPairs"]["MTU"] = str(delem[profile]['mtu']) intf["interfaces"][0]["nvPairs"]["SPEED"] = str(delem[profile]['speed']) intf["interfaces"][0]["nvPairs"]["ACCESS_VLAN"] = delem[profile]['access_vlan'] intf["interfaces"][0]["nvPairs"]["INTF_NAME"] = ifname if (delem[profile]['mode'] == 'routed'): intf["interfaces"][0]["nvPairs"]["INTF_VRF"] = delem[profile]['int_vrf'] intf["interfaces"][0]["nvPairs"]["IP"] = str(delem[profile]['ipv4_addr']) if (delem[profile]['ipv4_addr'] != ''): intf["interfaces"][0]["nvPairs"]["PREFIX"] = str(delem[profile]['ipv4_mask_len']) else: intf["interfaces"][0]["nvPairs"]["PREFIX"] = '' intf["interfaces"][0]["nvPairs"]["ROUTING_TAG"] = delem[profile]['route_tag'] intf["interfaces"][0]["nvPairs"]["MTU"] = str(delem[profile]['mtu']) intf["interfaces"][0]["nvPairs"]["SPEED"] = str(delem[profile]['speed']) intf["interfaces"][0]["nvPairs"]["INTF_NAME"] = ifname if (delem[profile]['mode'] == 'monitor'): intf["interfaces"][0]["nvPairs"]["INTF_NAME"] = ifname if (delem[profile]['mode'] == 'epl_routed'): intf["interfaces"][0]["nvPairs"]["IP"] = str(delem[profile]['ipv4_addr']) intf["interfaces"][0]["nvPairs"]["PREFIX"] = str(delem[profile]['ipv4_mask_len']) intf["interfaces"][0]["nvPairs"]["IPv6"] = str(delem[profile]['ipv6_addr']) intf["interfaces"][0]["nvPairs"]["IPv6_PREFIX"] = str(delem[profile]['ipv6_mask_len']) intf["interfaces"][0]["nvPairs"]["ROUTING_TAG"] = delem[profile]['route_tag'] intf["interfaces"][0]["nvPairs"]["MTU"] = str(delem[profile]['mtu']) intf["interfaces"][0]["nvPairs"]["SPEED"] = str(delem[profile]['speed']) intf["interfaces"][0]["nvPairs"]["INTF_NAME"] = ifname if (delem[profile]['mode'] != 'monitor'): intf["interfaces"][0]["nvPairs"]["DESC"] = delem[profile]['description'] if (delem[profile]['cmds'] is None): intf["interfaces"][0]["nvPairs"]["CONF"] = "" else: intf["interfaces"][0]["nvPairs"]["CONF"] = "\n".join(delem[profile]['cmds']) intf["interfaces"][0]["nvPairs"]["ADMIN_STATE"] = str(delem[profile]['admin_state']).lower() # New Interfaces def dcnm_get_intf_payload (self, delem, sw): intf = { "deploy": False, "policy": "", "interfaceType": "", "interfaces": [ { "serialNumber": "", "interfaceType": "", "ifName": "", "fabricName": "", "nvPairs": { } } ], "skipResourceCheck": str(True).lower() } # Each interface type will have a different profile name. Set that based on the interface type and use that # below to extract the required parameters # Monitor ports are not put into diff_deploy, since they don't have any # commands to be executed on switch. This will affect the idempotence # check if (delem['profile']['mode'] == 'monitor'): intf.update ({"deploy" : False}) else: intf.update ({"deploy" : delem['deploy']}) # Each type of interface and mode will have a different set of params. # First fill in the params common to all interface types and modes #intf.update ({"interfaceType" : self.int_types[delem['type']]}) if ('vpc' == delem['type']): intf["interfaces"][0].update ({"serialNumber" : str(self.vpc_ip_sn[sw])}) else: intf["interfaces"][0].update ({"serialNumber" : str(self.ip_sn[sw])}) intf["interfaces"][0].update ({"interfaceType" : self.int_types[delem['type']]}) intf["interfaces"][0].update ({"fabricName" : self.fabric}) if ('profile' not in delem.keys()): # for state 'deleted', 'profile' construct is not included. So just update the ifName here # and return. Rest of the code is all 'profile' specific and hence not required for 'deleted' ifname, port_id = self.dcnm_intf_get_if_name (delem['name'], delem['type']) intf["interfaces"][0].update ({"ifName" : ifname}) return intf pol_ind_str = delem['type'] + '_' + delem['profile']['mode'] #intf.update ({"policy" : self.pol_types[delem['profile']['mode']]}) intf.update ({"policy" : self.pol_types[pol_ind_str]}) intf.update ({"interfaceType" : self.int_types[delem['type']]}) # Rest of the data in the dict depends on the interface type and the template if ('pc' == delem['type']): self.dcnm_intf_get_pc_payload(delem, intf, 'profile') if ('sub_int' == delem['type']): self.dcnm_intf_get_sub_intf_payload(delem, intf, 'profile') if ('lo' == delem['type']): self.dcnm_intf_get_loopback_payload (delem, intf, 'profile') if ('vpc' == delem['type']): self.dcnm_intf_get_vpc_payload(delem, intf, 'profile') if ('eth' == delem['type']): self.dcnm_intf_get_eth_payload(delem, intf, 'profile') # Ethernet interface payload does not have interfaceType and skipResourceCheck flags. Pop # them out intf.pop('skipResourceCheck') return intf def dcnm_intf_merge_intf_info (self, intf_info, if_head): if (not if_head): if_head.append(intf_info) return for item in if_head: if (item['policy'] == intf_info['policy']): item['interfaces'].append(intf_info['interfaces'][0]) return if_head.append(intf_info) def dcnm_intf_get_want(self): if (None is self.config): return if not self.intf_info: return # self.intf_info is a list of directories each having config related to a particular interface for delem in self.intf_info: if (any('profile' in key for key in delem)): for sw in delem['switch']: intf_payload = self.dcnm_get_intf_payload (delem, sw) if (intf_payload not in self.want): self.want.append(intf_payload) def dcnm_intf_get_intf_info(self, ifName, serialNumber, ifType): # For VPC interfaces the serialNumber will be a combibed one. But GET on interface cannot # pass this combined serial number. We will have to pass individual ones if (ifType == 'INTERFACE_VPC'): sno = serialNumber.split('~')[0] else: sno = serialNumber path = '/rest/interface?serialNumber=' + sno + '&ifName=' + ifName resp = dcnm_send (self.module, 'GET', path) if ('DATA' in resp and resp['DATA']): return resp['DATA'][0] else: return [] def dcnm_intf_get_intf_info_from_dcnm(self, intf): return self.dcnm_intf_get_intf_info (intf['ifName'], intf['serialNumber'], intf['interfaceType']) def dcnm_intf_get_have_all (self, sw): # Check if you have already got the details for this switch if (sw in self.have_all_list): return # Check if the serial number is a combined one which will be the case for vPC interfaces. # If combined, then split it up and pass one of the serial numbers and not the combined one. if ('~' in self.ip_sn[sw]): sno = self.ip_sn[sw].split('~')[0] else: sno = self.ip_sn[sw] # GET all interfaces path = '/rest/interface/detail?serialNumber=' + sno resp = dcnm_send(self.module, 'GET', path) if ('DATA' in resp and resp['DATA']): self.have_all.extend(resp['DATA']) self.have_all_list.append(sw) else: self.have_all_list.append(sw) return [] # adminStatus in all_int_raw will give the deployed status. For deployed interfaces # adminStatus will be 1 and ifIndex will also be allocated and non zero def dcnm_intf_get_have(self): if (not self.want): return # We have all the requested interface config in self.want. Interfaces are grouped together based on the # policy string and the interface name in a single dict entry. for elem in self.want: for intf in elem['interfaces']: # For each interface present here, get the information that is already available # in DCNM. Based on this information, we will create the required payloads to be sent # to the DCNM controller based on the requested # Fetch the information from DCNM w.r.t to the interafce that we have in self.want intf_payload = self.dcnm_intf_get_intf_info_from_dcnm(intf) if (intf_payload): self.have.append(intf_payload) def dcnm_intf_compare_elements (self, name, sno, fabric, ie1, ie2, k, state): # unicode encoded strings must be decoded to get proper strings which is required # for comparison purposes if sys.version_info[0] >= 3: # Python version 3 onwards trfeats unicode as strings. No special
""" Module: LMR_verify_gridPRCP.py Purpose: Generates spatial verification statistics of LMR gridded precipitation against various gridded historical instrumental precipitation datasets and precipitation from reanalyses. Originator: <NAME>, U. of Washington, March 2016 Revisions: """ import matplotlib # need to do this backend when running remotely or to suppress figures interactively matplotlib.use('Agg') # generic imports import numpy as np import glob, os, sys, calendar from datetime import datetime, timedelta from netCDF4 import Dataset, date2num, num2date import mpl_toolkits.basemap as bm import matplotlib.pyplot as plt from matplotlib import ticker from spharm import Spharmt, getspecindx, regrid # LMR specific imports sys.path.append('../') from LMR_utils import global_hemispheric_means, assimilated_proxies, coefficient_efficiency from load_gridded_data import read_gridded_data_CMIP5_model from LMR_plot_support import * # change default value of latlon kwarg to True. bm.latlon_default = True ################################## # START: set user parameters here ################################## # option to suppress figures iplot = True iplot_individual_years = False # centered time mean (nya must be odd! 3 = 3 yr mean; 5 = 5 year mean; etc 0 = none) nya = 0 # option to print figures fsave = True #fsave = False # set paths, the filename for plots, and global plotting preferences # override datadir #datadir_output = './data/' #datadir_output = '/home/disk/kalman2/wperkins/LMR_output/archive' datadir_output = '/home/disk/kalman3/rtardif/LMR/output' #datadir_output = '/home/disk/ekman4/rtardif/LMR/output' #datadir_output = '/home/disk/kalman3/hakim/LMR' # Directories where precip and reanalysis data can be found datadir_precip = '/home/disk/kalman3/rtardif/LMR/data/verification' datadir_reanl = '/home/disk/kalman3/rtardif/LMR/data/model' # file specification # # current datasets # --- #nexp = 'production_gis_ccsm4_pagesall_0.75' #nexp = 'production_mlost_ccsm4_pagesall_0.75' #nexp = 'production_cru_ccsm4_pagesall_0.75' #nexp = 'production_mlost_era20c_pagesall_0.75' #nexp = 'production_mlost_era20cm_pagesall_0.75' # --- nexp = 'test' # --- # perform verification using all recon. MC realizations ( MCset = None ) # or over a custom selection ( MCset = (begin,end) ) # ex. MCset = (0,0) -> only the first MC run # MCset = (0,10) -> the first 11 MC runs (from 0 to 10 inclusively) # MCset = (80,100) -> the 80th to 100th MC runs (21 realizations) MCset = None #MCset = (0,10) # Definition of variables to verify # kind name variable long name bounds units mult. factor verif_dict = \ { 'pr_sfc_Amon' : ('anom', 'PRCP', 'Precipitation',-400.0,400.0,'(mm/yr)',1.0), \ } # time range for verification (in years CE) #trange = [1979,2000] #works for nya = 0 trange = [1880,2000] #works for nya = 0 #trange = [1900,2000] #works for nya = 0 #trange = [1885,1995] #works for nya = 5 #trange = [1890,1990] #works for nya = 10 # reference period over which mean is calculated & subtracted # from all datasets (in years CE) # NOTE: GPCP and CMAP data cover the 1979-2015 period ref_period = [1979, 1999] valid_frac = 0.0 # number of contours for plots nlevs = 21 # plot alpha transparency alpha = 0.5 # set the default size of the figure in inches. ['figure.figsize'] = width, height; # aspect ratio appears preserved on smallest of the two plt.rcParams['figure.figsize'] = 10, 10 # that's default image size for this interactive session plt.rcParams['axes.linewidth'] = 2.0 # set the value globally plt.rcParams['font.weight'] = 'bold' # set the font weight globally plt.rcParams['font.size'] = 11 # set the font size globally #plt.rc('text', usetex=True) plt.rc('text', usetex=False) ################################## # END: set user parameters here ################################## verif_vars = list(verif_dict.keys()) workdir = datadir_output + '/' + nexp print('working directory = ' + workdir) print('\n getting file system information...\n') # get number of mc realizations from directory count # RT: modified way to determine list of directories with mc realizations # get a listing of the iteration directories dirs = glob.glob(workdir+"/r*") # selecting the MC iterations to keep if MCset: dirset = dirs[MCset[0]:MCset[1]+1] else: dirset = dirs mcdir = [item.split('/')[-1] for item in dirset] niters = len(mcdir) print('mcdir:' + str(mcdir)) print('niters = ' + str(niters)) # Loop over verif. variables for var in verif_vars: # read ensemble mean data print('\n reading LMR ensemble-mean data...\n') first = True k = -1 for dir in mcdir: k = k + 1 ensfiln = workdir + '/' + dir + '/ensemble_mean_'+var+'.npz' npzfile = np.load(ensfiln) print(dir, ':', npzfile.files) tmp = npzfile['xam'] print('shape of tmp: ' + str(np.shape(tmp))) if first: first = False recon_times = npzfile['years'] LMR_time = np.array(list(map(int,recon_times))) lat = npzfile['lat'] lon = npzfile['lon'] nlat = npzfile['nlat'] nlon = npzfile['nlon'] lat2 = np.reshape(lat,(nlat,nlon)) lon2 = np.reshape(lon,(nlat,nlon)) years = npzfile['years'] nyrs = len(years) xam = np.zeros([nyrs,np.shape(tmp)[1],np.shape(tmp)[2]]) xam_all = np.zeros([niters,nyrs,np.shape(tmp)[1],np.shape(tmp)[2]]) xam = xam + tmp xam_all[k,:,:,:] = tmp # this is the sample mean computed with low-memory accumulation xam = xam/len(mcdir) # this is the sample mean computed with numpy on all data xam_check = xam_all.mean(0) # check.. max_err = np.max(np.max(np.max(xam_check - xam))) if max_err > 1e-4: print('max error = ' + str(max_err)) raise Exception('sample mean does not match what is in the ensemble files!') # sample variance xam_var = xam_all.var(0) print(np.shape(xam_var)) print('\n shape of the ensemble array: ' + str(np.shape(xam_all)) +'\n') print('\n shape of the ensemble-mean array: ' + str(np.shape(xam)) +'\n') # Convert units to match verif dataset: from kg m-2 s-1 to mm (per year) rho = 1000.0 for y in range(nyrs): if calendar.isleap(int(years[y])): xam[y,:,:] = 1000.*xam[y,:,:]*366.*86400./rho else: xam[y,:,:] = 1000.*xam[y,:,:]*365.*86400./rho ################################################################# # BEGIN: load verification data # ################################################################# print('\nloading verification data...\n') # GPCP ---------------------------------------------------------- infile = datadir_precip+'/'+'GPCP/'+'GPCPv2.2_precip.mon.mean.nc' verif_data = Dataset(infile,'r') # Time time = verif_data.variables['time'] time_obj = num2date(time[:],units=time.units) time_yrs = np.asarray([time_obj[k].year for k in range(len(time_obj))]) yrs_range = list(set(time_yrs)) # lat/lon verif_lat = verif_data.variables['lat'][:] verif_lon = verif_data.variables['lon'][:] nlat_GPCP = len(verif_lat) nlon_GPCP = len(verif_lon) lon_GPCP, lat_GPCP = np.meshgrid(verif_lon, verif_lat) # Precip verif_precip_monthly = verif_data.variables['precip'][:] [ntime,nlon_v,nlat_v] = verif_precip_monthly.shape # convert mm/day monthly data to mm/year yearly data GPCP_time = np.zeros(shape=len(yrs_range),dtype=np.int) GPCP = np.zeros(shape=[len(yrs_range),nlat_GPCP,nlon_GPCP]) i = 0 for yr in yrs_range: GPCP_time[i] = int(yr) inds = np.where(time_yrs == yr)[0] if calendar.isleap(yr): nbdays = 366. else: nbdays = 365. accum = np.zeros(shape=[nlat_GPCP, nlon_GPCP]) for k in range(len(inds)): days_in_month = calendar.monthrange(time_obj[inds[k]].year, time_obj[inds[k]].month)[1] accum = accum + verif_precip_monthly[inds[k],:,:]*days_in_month GPCP[i,:,:] = accum # precip in mm i = i + 1 # CMAP ---------------------------------------------------------- infile = datadir_precip+'/'+'CMAP/'+'CMAP_enhanced_precip.mon.mean.nc' verif_data = Dataset(infile,'r') # Time time = verif_data.variables['time'] time_obj = num2date(time[:],units=time.units) time_yrs = np.asarray([time_obj[k].year for k in range(len(time_obj))]) yrs_range = list(set(time_yrs)) # lat/lon verif_lat = verif_data.variables['lat'][:] verif_lon = verif_data.variables['lon'][:] nlat_CMAP = len(verif_lat) nlon_CMAP = len(verif_lon) lon_CMAP, lat_CMAP = np.meshgrid(verif_lon, verif_lat) # Precip verif_precip_monthly = verif_data.variables['precip'][:] [ntime,nlon_v,nlat_v] = verif_precip_monthly.shape # convert mm/day monthly data to mm/year yearly data CMAP_time = np.zeros(shape=len(yrs_range),dtype=np.int) CMAP = np.zeros(shape=[len(yrs_range),nlat_CMAP,nlon_CMAP]) i = 0 for yr in yrs_range: CMAP_time[i] = int(yr) inds = np.where(time_yrs == yr)[0] if calendar.isleap(yr): nbdays = 366. else: nbdays = 365. accum = np.zeros(shape=[nlat_CMAP, nlon_CMAP]) for k in range(len(inds)): days_in_month = calendar.monthrange(time_obj[inds[k]].year, time_obj[inds[k]].month)[1] accum = accum + verif_precip_monthly[inds[k],:,:]*days_in_month CMAP[i,:,:] = accum # precip in mm i = i + 1 # ---------- # Reanalyses # ---------- # Define month sequence for the calendar year # (argument needed in upload of reanalysis data) annual = list(range(1,13)) # 20th Century reanalysis (TCR) --------------------------------- vardict = {var: verif_dict[var][0]} vardef = var datadir = datadir_reanl +'/20cr' datafile = vardef +'_20CR_185101-201112.nc' dd = read_gridded_data_CMIP5_model(datadir,datafile,vardict,outtimeavg=annual, anom_ref=ref_period) rtime = dd[vardef]['years'] TCR_time = np.array([d.year for d in rtime]) lats = dd[vardef]['lat'] lons = dd[vardef]['lon'] latshape = lats.shape lonshape = lons.shape if len(latshape) == 2 & len(lonshape) == 2: # stored in 2D arrays lat_TCR = np.unique(lats) lon_TCR = np.unique(lons) nlat_TCR, = lat_TCR.shape nlon_TCR, = lon_TCR.shape else: # stored in 1D arrays lon_TCR = lons lat_TCR = lats nlat_TCR = len(lat_TCR) nlon_TCR = len(lon_TCR) lon2_TCR, lat2_TCR = np.meshgrid(lon_TCR, lat_TCR) TCRfull = dd[vardef]['value'] + dd[vardef]['climo'] # Full field TCR = dd[vardef]['value'] # Anomalies # Conversion from kg m-2 s-1 rho = 1000.0 i = 0 for y in TCR_time: if calendar.isleap(y): TCRfull[i,:,:] = 1000.*TCRfull[i,:,:]*366.*86400./rho TCR[i,:,:] = 1000.*TCR[i,:,:]*366.*86400./rho else: TCRfull[i,:,:] = 1000.*TCRfull[i,:,:]*365.*86400./rho TCR[i,:,:] = 1000.*TCR[i,:,:]*365.*86400./rho i = i + 1 # ERA 20th Century reanalysis (ERA20C) --------------------------------- vardict = {var: verif_dict[var][0]} vardef = var datadir = datadir_reanl +'/era20c' datafile = vardef +'_ERA20C_190001-201012.nc' dd = read_gridded_data_CMIP5_model(datadir,datafile,vardict,outtimeavg=annual, anom_ref=ref_period) rtime = dd[vardef]['years'] ERA_time = np.array([d.year for d in rtime]) lats = dd[vardef]['lat'] lons = dd[vardef]['lon'] latshape = lats.shape lonshape = lons.shape if len(latshape) == 2 & len(lonshape) == 2: # stored in 2D arrays lat_ERA = np.unique(lats) lon_ERA = np.unique(lons) nlat_ERA, = lat_ERA.shape nlon_ERA, = lon_ERA.shape else: # stored in 1D arrays lon_ERA = lons lat_ERA = lats nlat_ERA = len(lat_ERA) nlon_ERA = len(lon_ERA) lon2_ERA, lat2_ERA = np.meshgrid(lon_ERA, lat_ERA) ERAfull = dd[vardef]['value'] + dd[vardef]['climo'] # Full field ERA = dd[vardef]['value'] # Anomalies # Conversion from kg m-2 s-1 rho =
#!/usr/bin/env python3 # -*- coding: utf-8 -*- #======================================================================= # # xchacha.py # ---------- # Simple model of the XChaCha stream cipher. Used as a reference for # the HW implementation. Also used as part of the TRNG Python model. # The code follows the structure of the HW implementation as much # as possible. # # This model is heavily based on the chacha.py model in the # Secworks ChaCha HW implementation. # # # Author: <NAME> # Copyright (c) 2014, Secworks Sweden AB # All rights reserved. # # Redistribution and use in source and binary forms, with or # without modification, are permitted provided that the following # conditions are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, # STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # #======================================================================= #------------------------------------------------------------------- # Python module imports. #------------------------------------------------------------------- import sys #------------------------------------------------------------------- # Constants. #------------------------------------------------------------------- TAU = [0x61707865, 0x3120646e, 0x79622d36, 0x6b206574] SIGMA = [0x61707865, 0x3320646e, 0x79622d32, 0x6b206574] #------------------------------------------------------------------- # XChaCha() #------------------------------------------------------------------- class XChaCha(): #--------------------------------------------------------------- # __init__() #--------------------------------------------------------------- def __init__(self, rounds = 8, verbose = 0): self.state = [0] * 16 self.x = [0] * 16 self.rounds = rounds self.verbose = verbose #--------------------------------------------------------------- # set_key_iv() # # Set key and iv. Basically reinitialize the cipher. # This also resets the block counter. #--------------------------------------------------------------- def set_key_iv(self, key, iv): keyword0 = self._b2w(key[0:4]) keyword1 = self._b2w(key[4:8]) keyword2 = self._b2w(key[8:12]) keyword3 = self._b2w(key[12:16]) if len(key) == 16: self.state[0] = TAU[0] self.state[1] = TAU[1] self.state[2] = TAU[2] self.state[3] = TAU[3] self.state[4] = keyword0 self.state[5] = keyword1 self.state[6] = keyword2 self.state[7] = keyword3 self.state[8] = keyword0 self.state[9] = keyword1 self.state[10] = keyword2 self.state[11] = keyword3 elif len(key) == 32: keyword4 = self._b2w(key[16:20]) keyword5 = self._b2w(key[20:24]) keyword6 = self._b2w(key[24:28]) keyword7 = self._b2w(key[28:32]) self.state[0] = SIGMA[0] self.state[1] = SIGMA[1] self.state[2] = SIGMA[2] self.state[3] = SIGMA[3] self.state[4] = keyword0 self.state[5] = keyword1 self.state[6] = keyword2 self.state[7] = keyword3 self.state[8] = keyword4 self.state[9] = keyword5 self.state[10] = keyword6 self.state[11] = keyword7 else: print("Key length of %d bits, is not supported." % (len(key) * 8)) # Common state init for both key lengths. self.block_counter = [0, 0] self.state[12] = self.block_counter[0] self.state[13] = self.block_counter[1] self.state[14] = self._b2w(iv[0:4]) self.state[15] = self._b2w(iv[4:8]) if self.verbose: print("State after init:") self._print_state() #--------------------------------------------------------------- # next() # # Encyp/decrypt the next block. This also updates the # internal state and increases the block counter. #--------------------------------------------------------------- def next(self, data_in): # Copy the current internal state to the temporary state x. self.x = self.state[:] if self.verbose: print("State before round processing.") self._print_state() if self.verbose: print("X before round processing:") self._print_x() # Update the internal state by performing # (rounds / 2) double rounds. for i in range(int(self.rounds / 2)): if (self.verbose > 1): print("Doubleround 0x%02x:" % i) self._doubleround() if (self.verbose > 1): print("") if self.verbose: print("X after round processing:") self._print_x() # Update the internal state by adding the elements # of the temporary state to the internal state. self.state = [((self.state[i] + self.x[i]) & 0xffffffff) for i in range(16)] if self.verbose: print("State after round processing.") self._print_state() bytestate = [] for i in self.state: bytestate += self._w2b(i) # Create the data out words. data_out = [data_in[i] ^ bytestate[i] for i in range(64)] # Update the block counter. self._inc_counter() return data_out #--------------------------------------------------------------- # _doubleround() # # Perform the two complete rounds that comprises the # double round. #--------------------------------------------------------------- def _doubleround(self): if (self.verbose > 0): print("Start of double round processing.") self._quarterround(0, 4, 8, 12) if (self.verbose > 1): print("X after QR 0") self._print_x() self._quarterround(1, 5, 9, 13) if (self.verbose > 1): print("X after QR 1") self._print_x() self._quarterround(2, 6, 10, 14) if (self.verbose > 1): print("X after QR 2") self._print_x() self._quarterround(3, 7, 11, 15) if (self.verbose > 1): print("X after QR 3") self._print_x() self._quarterround(0, 5, 10, 15) if (self.verbose > 1): print("X after QR 4") self._print_x() self._quarterround(1, 6, 11, 12) if (self.verbose > 1): print("X after QR 5") self._print_x() self._quarterround(2, 7, 8, 13) if (self.verbose > 1): print("X after QR 6") self._print_x() self._quarterround(3, 4, 9, 14) if (self.verbose > 1): print("X after QR 7") self._print_x() if (self.verbose > 0): print("End of double round processing.") #--------------------------------------------------------------- # _quarterround() # # Updates four elements in the state vector x given by # their indices. #--------------------------------------------------------------- def _quarterround(self, ai, bi, ci, di): # Extract four elemenst from x using the qi tuple. a, b, c, d = self.x[ai], self.x[bi], self.x[ci], self.x[di] if (self.verbose > 1): print("Indata to quarterround:") print("X state indices:", ai, bi, ci, di) print("a = 0x%08x, b = 0x%08x, c = 0x%08x, d = 0x%08x" %\ (a, b, c, d)) print("") a0 = (a + b) & 0xffffffff d0 = d ^ a0 d1 = ((d0 << 16) + (d0 >> 16)) & 0xffffffff c0 = (c + d1) & 0xffffffff b0 = b ^ c0 b1 = ((b0 << 12) + (b0 >> 20)) & 0xffffffff a1 = (a0 + b1) & 0xffffffff d2 = d1 ^ a1 d3 = ((d2 << 8) + (d2 >> 24)) & 0xffffffff c1 = (c0 + d3) & 0xffffffff b2 = b1 ^ c1 b3 = ((b2 << 7) + (b2 >> 25)) & 0xffffffff if (self.verbose > 2): print("Intermediate values:") print("a0 = 0x%08x, a1 = 0x%08x" % (a0, a1)) print("b0 = 0x%08x, b1 = 0x%08x, b2 = 0x%08x, b3 = 0x%08x" %\ (b0, b1, b2, b3)) print("c0 = 0x%08x, c1 = 0x%08x" % (c0, c1)) print("d0 = 0x%08x, d1 = 0x%08x, d2 = 0x%08x, d3 = 0x%08x" %\ (d0, d1, d2, d3)) print("") a_prim = a1 b_prim = b3 c_prim = c1 d_prim = d3 if (self.verbose > 1): print("Outdata from quarterround:") print("a_prim = 0x%08x, b_prim = 0x%08x, c_prim = 0x%08x, d_prim = 0x%08x" %\ (a_prim, b_prim, c_prim, d_prim)) print("") # Update the four elemenst in x using the qi tuple. self.x[ai], self.x[bi] = a_prim, b_prim self.x[ci], self.x[di] = c_prim, d_prim #--------------------------------------------------------------- # _inc_counter() # # Increase the 64 bit block counter. #--------------------------------------------------------------- def _inc_counter(self): self.block_counter[0] += 1 & 0xffffffff if not (self.block_counter[0] % 0xffffffff): self.block_counter[1] += 1 & 0xffffffff #--------------------------------------------------------------- # _b2w() # # Given a list of four bytes returns the little endian # 32 bit word representation of the bytes. #--------------------------------------------------------------- def _b2w(self, bytes): return (bytes[0] + (bytes[1] << 8) + (bytes[2] << 16) + (bytes[3] << 24)) & 0xffffffff #--------------------------------------------------------------- # _w2b() # # Given a 32-bit word returns a list of set of four bytes # that is the little endian byte representation of the word. #--------------------------------------------------------------- def _w2b(self, word): return [(word & 0x000000ff), ((word & 0x0000ff00) >> 8), ((word & 0x00ff0000) >> 16), ((word & 0xff000000) >> 24)] #--------------------------------------------------------------- # _print_state() # # Print the internal state. #--------------------------------------------------------------- def _print_state(self): print(" 0: 0x%08x, 1: 0x%08x, 2: 0x%08x, 3: 0x%08x" %\ (self.state[0], self.state[1], self.state[2], self.state[3])) print(" 4: 0x%08x, 5: 0x%08x, 6: 0x%08x, 7: 0x%08x" %\ (self.state[4], self.state[5], self.state[6], self.state[7])) print(" 8: 0x%08x, 9: 0x%08x, 10: 0x%08x, 11: 0x%08x" %\ (self.state[8], self.state[9], self.state[10], self.state[11]))
self.de_acti3(self.de_conv3(self.de_padd3(self.de_upbi3(d3)))) d5 = self.de_conv4(self.de_padd4(d4)) d5_1 = self.de_acti4_1(self.de_conv4_1(self.de_padd4_1(d4))) lr_x = lr2 lr_x2 = lr_x * self.down(msk) + self.down(rimg) * (1.0 - self.down(msk)) compltd_img = d5 compltd_img = compltd_img * msk + rimg * (1.0 - msk) lr_compltd_img = self.down(compltd_img) lr_res = lr_x2 - lr_compltd_img hr_res = self.up(lr_res) out = compltd_img + hr_res * d5_1 return compltd_img, out, lr_x # return compltd_img, reconst_img, lr_x class BlendGenerator(nn.Module): def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3, n_blocks=3, norm_layer=nn.InstanceNorm2d, pad_type='reflect', activation=nn.ELU()): assert (n_blocks >= 0) super(BlendGenerator, self).__init__() if pad_type == 'reflect': self.pad = nn.ReflectionPad2d elif pad_type == 'zero': self.pad = nn.ZeroPad2d # Image encode self.en_padd1 = self.pad(3) self.en_conv1 = nn.Conv2d(input_nc, ngf, kernel_size=7, stride=1, padding=0) self.en_norm1 = norm_layer(ngf) self.en_acti1 = activation self.en_padd2 = self.pad(1) self.en_conv2 = nn.Conv2d(ngf, ngf * 2, kernel_size=3, stride=2, padding=0) self.en_norm2 = norm_layer(ngf * 2) self.en_acti2 = activation self.en_padd3 = self.pad(1) self.en_conv3 = nn.Conv2d(ngf * 2, ngf * 4, kernel_size=3, stride=2, padding=0) self.en_norm3 = norm_layer(ngf * 4) self.en_acti3 = activation self.en_padd4 = self.pad(1) self.en_conv4 = nn.Conv2d(ngf * 4, ngf * 8, kernel_size=3, stride=2, padding=0) self.en_norm4 = norm_layer(ngf * 8) self.en_acti4 = activation # middle resnetblocks self.res_blk1 = ResnetBlock(ngf * 8, kernel_size=3, stride=1, padding=1, pad_type='reflect', norm='instance') self.res_blk2 = ResnetBlock(ngf * 8, kernel_size=3, stride=1, padding=1, pad_type='reflect', norm='instance') self.res_blk3 = ResnetBlock(ngf * 8, kernel_size=3, stride=1, padding=1, pad_type='reflect', norm='instance') # image decoder self.de_conv1 = nn.ConvTranspose2d(ngf * 8, ngf * 4, kernel_size=3, stride=2, padding=1, output_padding=1) self.de_norm1 = norm_layer(ngf * 4) self.de_acti1 = activation self.de_conv2 = nn.ConvTranspose2d(ngf * 4, ngf * 2, kernel_size=3, stride=2, padding=1, output_padding=1) self.de_norm2 = norm_layer(ngf * 2) self.de_acti2 = activation self.de_conv3 = nn.ConvTranspose2d(ngf * 2, ngf, kernel_size=3, stride=2, padding=1, output_padding=1) self.de_norm3 = norm_layer(ngf) self.de_acti3 = activation self.de_padd4 = self.pad(3) self.de_conv4 = nn.Conv2d(ngf, output_nc, kernel_size=7, stride=1, padding=0) self.de_acti4 = nn.Sigmoid() def forward(self, completed_img, msked_img): x = torch.cat((completed_img, msked_img), dim=1) e1 = self.en_acti1(self.en_norm1(self.en_conv1(self.en_padd1(x)))) # 512x512x64 e2 = self.en_acti2(self.en_norm2(self.en_conv2(self.en_padd2(e1)))) # 256x256x128 e3 = self.en_acti3(self.en_norm3(self.en_conv3(self.en_padd3(e2)))) # 128x128x256 e4 = self.en_acti4(self.en_norm4(self.en_conv4(self.en_padd4(e3)))) # 64x64x512 middle1 = self.res_blk1(e4) middle2 = self.res_blk2(middle1) middle3 = self.res_blk3(middle2) d1 = self.de_acti1(self.de_norm1(self.de_conv1(middle3))) # 128x128x256 d2 = self.de_acti2(self.de_norm2(self.de_conv2(d1))) # 256x256x128 d3 = self.de_acti3(self.de_norm3(self.de_conv3(d2))) # 512x512x64 d4 = self.de_acti4(self.de_conv4(self.de_padd4(d3))) # 512x512x1 return completed_img * d4 + msked_img * (1.0 - d4), d4 ############################################################ ### Losses ############################################################ class TVLoss(nn.Module): def forward(self, x): batch_size = x.size()[0] h_x = x.size()[2] w_x = x.size()[3] count_h = self.__tensor__size(x[:, :, 1:, :]) count_w = self.__tensor__size(x[:, :, :, 1:]) h_tv = torch.pow((x[:, :, 1:, :] - x[:, :, :h_x - 1, :]), 2).sum() w_tv = torch.pow((x[:, :, :, 1:] - x[:, :, :, :w_x - 1]), 2).sum() return 2 * (h_tv / count_h + w_tv / count_w) / batch_size def _tensor_size(self, t): return t.size()[1] * t.size()[2] * t.size()[3] class MyWcploss(nn.Module): def __init__(self): super(MyWcploss, self).__init__() self.epsilon = 1e-10 def forward(self, pred, gt): # sigmoid_pred = torch.sigmoid(pred) count_pos = torch.sum(gt) * 1.0 + self.epsilon count_neg = torch.sum(1. - gt) * 1.0 beta = count_neg / count_pos beta_back = count_pos / (count_pos + count_neg) bce1 = nn.BCEWithLogitsLoss(pos_weight=beta) loss = beta_back * bce1(pred, gt) return loss # Lap_criterion = LapLoss(max_levels=5) class LapLoss(nn.Module): def __init__(self, max_levels=5, k_size=5, sigma=2.0): super(LapLoss, self).__init__() self.max_levels = max_levels self.k_size = k_size self.sigma = sigma self._gauss_kernel = None self.L1_loss = nn.L1Loss() def forward(self, input, target): if self._gauss_kernel is None or self._gauss_kernel.shape[1] != input.shape[1]: self._gauss_kernel = build_gauss_kernel(size=self.k_size, sigma=self.sigma, n_channels=input.shape[1], cuda=input.is_cuda) pyr_input = laplacian_pyramid(input, self._gauss_kernel, self.max_levels) pyr_target = laplacian_pyramid(target, self._gauss_kernel, self.max_levels) return sum(self.L1_loss(a, b) for a, b in zip(pyr_input, pyr_target)) class LapMap(nn.Module): def __init__(self, max_levels=5, k_size=5, sigma=2.0): super(LapMap, self).__init__() self.max_levels = max_levels self.k_size = k_size self.sigma = sigma self._gauss_kernel = None def forward(self, input): if self._gauss_kernel is None or self._gauss_kernel.shape[1] != input.shape[1]: self._gauss_kernel = build_gauss_kernel(size=self.k_size, sigma=self.sigma, n_channels=input.shape[1], cuda=input.is_cuda) pyr_input = laplacian_pyramid(input, self._gauss_kernel, self.max_levels) return pyr_input class VGGLoss(nn.Module): # vgg19 perceptual loss def __init__(self, gpu_ids): super(VGGLoss, self).__init__() self.vgg = Vgg19().cuda() self.criterion = nn.L1Loss() self.weights = [1.0 / 32, 1.0 / 16, 1.0 / 8, 1.0 / 4, 1.0] mean = torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).cuda() std = torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).cuda() self.register_buffer('mean', mean) self.register_buffer('std', std) def forward(self, x, y): x = (x - self.mean) / self.std y = (y - self.mean) / self.std x_vgg, y_vgg = self.vgg(x), self.vgg(y) loss = 0 for i in range(len(x_vgg)): loss += self.weights[i] * \ self.criterion(x_vgg[i], y_vgg[i].detach()) return loss class DHingeLoss(nn.Module): # hinge loss for discriminator def forward(self, x, target_is_real): # d_loss = 0 # for input_i in x: # pred = input_i[-1] # one_tensor = torch.FloatTensor(pred.size()).fill_(1) # one_tensor = Variable(one_tensor, requires_grad=False) # if target_is_real: # # d_loss_real # d_loss += torch.nn.ReLU()(one_tensor - pred).mean() # else: # # d_loss_fake # d_loss += torch.nn.ReLU()(one_tensor - pred).mean() # return d_loss zero_tensor = torch.FloatTensor(1).fill_(0) zero_tensor.requires_grad_(False) zero_tensor = zero_tensor.expand_as(x) if target_is_real: minval = torch.min(x - 1, zero_tensor) loss = -torch.mean(minval) else: minval = torch.min(-x - 1, zero_tensor) loss = -torch.mean(minval) class GHingeLoss(nn.Module): # hinge loss for generator # g_loss_fake def forward(self, x): # g_loss = 0 # for input_i in x: # pred = input_i[-1] # one_tensor = torch.FloatTensor(pred.size()).fill_(1) # one_tensor = Variable(one_tensor, requires_grad=False) # g_loss += -torch.mean(x) # return g_loss return -x.mean() class GANLoss(nn.Module): def __init__(self, use_lsgan=True, target_real_label=1.0, target_fake_label=0.0, tensor=torch.FloatTensor): super(GANLoss, self).__init__() self.real_label = target_real_label self.fake_label = target_fake_label self.real_label_var = None self.fake_label_var = None self.Tensor = tensor if use_lsgan: self.loss = nn.MSELoss() else: self.loss = nn.BCEWithLogitsLoss() def get_target_tensor(self, input, target_is_real): target_tensor = None if target_is_real: create_label = ((self.real_label_var is None) or (self.real_label_var.numel() != input.numel())) if create_label: real_tensor = self.Tensor(input.size()).fill_(self.real_label) self.real_label_var = Variable(real_tensor, requires_grad=False) target_tensor = self.real_label_var else: create_label = ((self.fake_label_var is None) or (self.fake_label_var.numel() != input.numel())) if create_label: fake_tensor = self.Tensor(input.size()).fill_(self.fake_label) self.fake_label_var = Variable(fake_tensor, requires_grad=False) target_tensor = self.fake_label_var return target_tensor def __call__(self, input, target_is_real): if isinstance(input[0], list): loss = 0 for input_i in input: pred = input_i[-1] target_tensor = self.get_target_tensor(pred, target_is_real) loss += self.loss(pred, target_tensor) return loss else: target_tensor = self.get_target_tensor(input[-1], target_is_real) return self.loss(input[-1], target_tensor) # Define the PatchGAN discriminator with the specified arguments. class NLayerDiscriminator(nn.Module): def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.InstanceNorm2d, use_sigmoid=False, getIntermFeat=False): super(NLayerDiscriminator, self).__init__() self.getIntermFeat = getIntermFeat self.n_layers = n_layers kw = 4 padw = int(np.ceil((kw - 1.0) / 2)) sequence = [ [SpectralNorm(nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw)), nn.LeakyReLU(0.2, True)]] nf = ndf for n in range(1, n_layers): nf_prev = nf nf = min(nf * 2, 512) sequence += [[ SpectralNorm(nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=2, padding=padw)), # nn.LeakyReLU(0.2, True) # norm_layer(nf), nn.LeakyReLU(0.2, True) ]] nf_prev = nf nf = min(nf * 2, 512) sequence += [[ SpectralNorm(nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=1, padding=padw)), # norm_layer(nf), nn.LeakyReLU(0.2, True) ]] sequence += [[SpectralNorm(nn.Conv2d(nf, nf, kernel_size=kw, stride=1, padding=padw))]] # sequence += [[SpectralNorm(nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw))]] # sequence += [[MultiDilationResnetBlock_v2(nf, kernel_size=3, stride=1, padding=1)]] if use_sigmoid: sequence += [[nn.Sigmoid()]] if getIntermFeat: for n in range(len(sequence)): setattr(self, 'model' + str(n), nn.Sequential(*sequence[n])) else: sequence_stream = [] for n in range(len(sequence)): sequence_stream += sequence[n] self.model = nn.Sequential(*sequence_stream) def forward(self, input): if self.getIntermFeat: res = [input] for n in range(self.n_layers + 2): model = getattr(self, 'model' + str(n)) res.append(model(res[-1])) return res[1:] else: return self.model(input) # Define the Multiscale Discriminator. class MultiscaleDiscriminator(nn.Module): def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, num_D=3, getIntermFeat=False): super(MultiscaleDiscriminator, self).__init__() self.num_D = num_D self.n_layers = n_layers self.getIntermFeat = getIntermFeat for i in range(num_D): netD = NLayerDiscriminator(input_nc, ndf, n_layers, norm_layer, use_sigmoid, getIntermFeat) if getIntermFeat: for j in range(n_layers + 2): setattr(self, 'scale' + str(i) + '_layer' + str(j), getattr(netD, 'model' + str(j))) else: setattr(self, 'layer' + str(i), netD.model) self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False) def singleD_forward(self, model, input): if self.getIntermFeat: result = [input] for i in range(len(model)): result.append(model[i](result[-1])) return result[1:] else: return [model(input)] def forward(self, input): num_D = self.num_D result = [] input_downsampled = input for i in range(num_D): if self.getIntermFeat: model = [getattr(self, 'scale' + str(num_D - 1 - i) + '_layer' + str(j)) for j in range(self.n_layers + 2)] else: model = getattr(self, 'layer' + str(num_D - 1 - i)) result.append(self.singleD_forward(model, input_downsampled)) if i != (num_D - 1): input_downsampled = self.downsample(input_downsampled) return result ### Define Vgg19 for
path == fileobj.name or fd == fileobj.fileno(): break else: self.fail("no file found; files=%s" % repr(p.open_files())) self.assertEqual(path, fileobj.name) if WINDOWS: self.assertEqual(fd, -1) else: self.assertEqual(fd, fileobj.fileno()) # test positions ntuple = p.open_files()[0] self.assertEqual(ntuple[0], ntuple.path) self.assertEqual(ntuple[1], ntuple.fd) # test file is gone self.assertTrue(fileobj.name not in p.open_files()) def compare_proc_sys_cons(self, pid, proc_cons): from psutil._common import pconn sys_cons = [] for c in psutil.net_connections(kind='all'): if c.pid == pid: sys_cons.append(pconn(*c[:-1])) if BSD: # on BSD all fds are set to -1 proc_cons = [pconn(*[-1] + list(x[1:])) for x in proc_cons] self.assertEqual(sorted(proc_cons), sorted(sys_cons)) @skip_on_access_denied(only_if=OSX) def test_connections(self): def check_conn(proc, conn, family, type, laddr, raddr, status, kinds): all_kinds = ("all", "inet", "inet4", "inet6", "tcp", "tcp4", "tcp6", "udp", "udp4", "udp6") check_connection_ntuple(conn) self.assertEqual(conn.family, family) self.assertEqual(conn.type, type) self.assertEqual(conn.laddr, laddr) self.assertEqual(conn.raddr, raddr) self.assertEqual(conn.status, status) for kind in all_kinds: cons = proc.connections(kind=kind) if kind in kinds: self.assertNotEqual(cons, []) else: self.assertEqual(cons, []) # compare against system-wide connections # XXX Solaris can't retrieve system-wide UNIX # sockets. if not SUNOS: self.compare_proc_sys_cons(proc.pid, [conn]) tcp_template = textwrap.dedent(""" import socket, time s = socket.socket($family, socket.SOCK_STREAM) s.bind(('$addr', 0)) s.listen(1) with open('$testfn', 'w') as f: f.write(str(s.getsockname()[:2])) time.sleep(60) """) udp_template = textwrap.dedent(""" import socket, time s = socket.socket($family, socket.SOCK_DGRAM) s.bind(('$addr', 0)) with open('$testfn', 'w') as f: f.write(str(s.getsockname()[:2])) time.sleep(60) """) from string import Template testfile = os.path.basename(TESTFN) tcp4_template = Template(tcp_template).substitute( family=int(AF_INET), addr="127.0.0.1", testfn=testfile) udp4_template = Template(udp_template).substitute( family=int(AF_INET), addr="127.0.0.1", testfn=testfile) tcp6_template = Template(tcp_template).substitute( family=int(AF_INET6), addr="::1", testfn=testfile) udp6_template = Template(udp_template).substitute( family=int(AF_INET6), addr="::1", testfn=testfile) # launch various subprocess instantiating a socket of various # families and types to enrich psutil results tcp4_proc = pyrun(tcp4_template) tcp4_addr = eval(wait_for_file(testfile)) udp4_proc = pyrun(udp4_template) udp4_addr = eval(wait_for_file(testfile)) if supports_ipv6(): tcp6_proc = pyrun(tcp6_template) tcp6_addr = eval(wait_for_file(testfile)) udp6_proc = pyrun(udp6_template) udp6_addr = eval(wait_for_file(testfile)) else: tcp6_proc = None udp6_proc = None tcp6_addr = None udp6_addr = None for p in psutil.Process().children(): cons = p.connections() self.assertEqual(len(cons), 1) for conn in cons: # TCP v4 if p.pid == tcp4_proc.pid: check_conn(p, conn, AF_INET, SOCK_STREAM, tcp4_addr, (), psutil.CONN_LISTEN, ("all", "inet", "inet4", "tcp", "tcp4")) # UDP v4 elif p.pid == udp4_proc.pid: check_conn(p, conn, AF_INET, SOCK_DGRAM, udp4_addr, (), psutil.CONN_NONE, ("all", "inet", "inet4", "udp", "udp4")) # TCP v6 elif p.pid == getattr(tcp6_proc, "pid", None): check_conn(p, conn, AF_INET6, SOCK_STREAM, tcp6_addr, (), psutil.CONN_LISTEN, ("all", "inet", "inet6", "tcp", "tcp6")) # UDP v6 elif p.pid == getattr(udp6_proc, "pid", None): check_conn(p, conn, AF_INET6, SOCK_DGRAM, udp6_addr, (), psutil.CONN_NONE, ("all", "inet", "inet6", "udp", "udp6")) @unittest.skipUnless(hasattr(socket, 'AF_UNIX'), 'AF_UNIX is not supported') @skip_on_access_denied(only_if=OSX) def test_connections_unix(self): def check(type): safe_remove(TESTFN) sock = socket.socket(AF_UNIX, type) with contextlib.closing(sock): sock.bind(TESTFN) cons = psutil.Process().connections(kind='unix') conn = cons[0] check_connection_ntuple(conn) if conn.fd != -1: # != sunos and windows self.assertEqual(conn.fd, sock.fileno()) self.assertEqual(conn.family, AF_UNIX) self.assertEqual(conn.type, type) self.assertEqual(conn.laddr, TESTFN) if not SUNOS: # XXX Solaris can't retrieve system-wide UNIX # sockets. self.compare_proc_sys_cons(os.getpid(), cons) check(SOCK_STREAM) check(SOCK_DGRAM) @unittest.skipUnless(hasattr(socket, "fromfd"), 'socket.fromfd() is not availble') @unittest.skipIf(WINDOWS or SUNOS, 'connection fd not available on this platform') def test_connection_fromfd(self): with contextlib.closing(socket.socket()) as sock: sock.bind(('localhost', 0)) sock.listen(1) p = psutil.Process() for conn in p.connections(): if conn.fd == sock.fileno(): break else: self.fail("couldn't find socket fd") dupsock = socket.fromfd(conn.fd, conn.family, conn.type) with contextlib.closing(dupsock): self.assertEqual(dupsock.getsockname(), conn.laddr) self.assertNotEqual(sock.fileno(), dupsock.fileno()) def test_connection_constants(self): ints = [] strs = [] for name in dir(psutil): if name.startswith('CONN_'): num = getattr(psutil, name) str_ = str(num) assert str_.isupper(), str_ assert str_ not in strs, str_ assert num not in ints, num ints.append(num) strs.append(str_) if SUNOS: psutil.CONN_IDLE psutil.CONN_BOUND if WINDOWS: psutil.CONN_DELETE_TCB @unittest.skipUnless(POSIX, 'posix only') def test_num_fds(self): p = psutil.Process() start = p.num_fds() file = open(TESTFN, 'w') self.addCleanup(file.close) self.assertEqual(p.num_fds(), start + 1) sock = socket.socket() self.addCleanup(sock.close) self.assertEqual(p.num_fds(), start + 2) file.close() sock.close() self.assertEqual(p.num_fds(), start) @skip_on_not_implemented(only_if=LINUX) def test_num_ctx_switches(self): p = psutil.Process() before = sum(p.num_ctx_switches()) for x in range(500000): after = sum(p.num_ctx_switches()) if after > before: return self.fail("num ctx switches still the same after 50.000 iterations") def test_parent_ppid(self): this_parent = os.getpid() sproc = get_test_subprocess() p = psutil.Process(sproc.pid) self.assertEqual(p.ppid(), this_parent) self.assertEqual(p.parent().pid, this_parent) # no other process is supposed to have us as parent for p in psutil.process_iter(): if p.pid == sproc.pid: continue self.assertTrue(p.ppid() != this_parent) def test_children(self): p = psutil.Process() self.assertEqual(p.children(), []) self.assertEqual(p.children(recursive=True), []) sproc = get_test_subprocess() children1 = p.children() children2 = p.children(recursive=True) for children in (children1, children2): self.assertEqual(len(children), 1) self.assertEqual(children[0].pid, sproc.pid) self.assertEqual(children[0].ppid(), os.getpid()) def test_children_recursive(self): # here we create a subprocess which creates another one as in: # A (parent) -> B (child) -> C (grandchild) s = "import subprocess, os, sys, time;" s += "PYTHON = os.path.realpath(sys.executable);" s += "cmd = [PYTHON, '-c', 'import time; time.sleep(60);'];" s += "subprocess.Popen(cmd);" s += "time.sleep(60);" get_test_subprocess(cmd=[PYTHON, "-c", s]) p = psutil.Process() self.assertEqual(len(p.children(recursive=False)), 1) # give the grandchild some time to start stop_at = time.time() + 1.5 while time.time() < stop_at: children = p.children(recursive=True) if len(children) > 1: break self.assertEqual(len(children), 2) self.assertEqual(children[0].ppid(), os.getpid()) self.assertEqual(children[1].ppid(), children[0].pid) def test_children_duplicates(self): # find the process which has the highest number of children table = collections.defaultdict(int) for p in psutil.process_iter(): try: table[p.ppid()] += 1 except psutil.Error: pass # this is the one, now let's make sure there are no duplicates pid = sorted(table.items(), key=lambda x: x[1])[-1][0] p = psutil.Process(pid) try: c = p.children(recursive=True) except psutil.AccessDenied: # windows pass else: self.assertEqual(len(c), len(set(c))) def test_suspend_resume(self): sproc = get_test_subprocess(wait=True) p = psutil.Process(sproc.pid) p.suspend() for x in range(100): if p.status() == psutil.STATUS_STOPPED: break time.sleep(0.01) p.resume() self.assertNotEqual(p.status(), psutil.STATUS_STOPPED) def test_invalid_pid(self): self.assertRaises(TypeError, psutil.Process, "1") self.assertRaises(ValueError, psutil.Process, -1) def test_as_dict(self): p = psutil.Process() d = p.as_dict(attrs=['exe', 'name']) self.assertEqual(sorted(d.keys()), ['exe', 'name']) p = psutil.Process(min(psutil.pids())) d = p.as_dict(attrs=['connections'], ad_value='foo') if not isinstance(d['connections'], list): self.assertEqual(d['connections'], 'foo') def test_halfway_terminated_process(self): # Test that NoSuchProcess exception gets raised in case the # process dies after we create the Process object. # Example: # >>> proc = Process(1234) # >>> time.sleep(2) # time-consuming task, process dies in meantime # >>> proc.name() # Refers to Issue #15 sproc = get_test_subprocess() p = psutil.Process(sproc.pid) p.kill() p.wait() excluded_names = ['pid', 'is_running', 'wait', 'create_time'] if LINUX and not RLIMIT_SUPPORT: excluded_names.append('rlimit') for name in dir(p): if (name.startswith('_') or name in excluded_names): continue try: meth = getattr(p, name) # get/set methods if name == 'nice': if POSIX: meth(1) else: meth(psutil.NORMAL_PRIORITY_CLASS) elif name == 'ionice': meth() meth(2) elif name == 'rlimit': meth(psutil.RLIMIT_NOFILE) meth(psutil.RLIMIT_NOFILE, (5, 5)) elif name == 'cpu_affinity': meth() meth([0]) elif name == 'send_signal': meth(signal.SIGTERM) else: meth() except psutil.ZombieProcess: self.fail("ZombieProcess for %r was not supposed to happen" % name) except psutil.NoSuchProcess: pass except NotImplementedError: pass else: self.fail("NoSuchProcess exception not raised for %r" % name) self.assertFalse(p.is_running()) @unittest.skipUnless(POSIX, 'posix only') def test_zombie_process(self): def succeed_or_zombie_p_exc(fun, *args, **kwargs): try: fun(*args, **kwargs) except (psutil.ZombieProcess, psutil.AccessDenied): pass # Note: in this test we'll be creating two sub processes. # Both of them are supposed to be freed / killed by # reap_children() as they are attributable to 'us' # (os.getpid()) via children(recursive=True). src = textwrap.dedent("""\ import os, sys, time, socket, contextlib child_pid = os.fork() if child_pid > 0: time.sleep(3000) else: # this is the zombie process s = socket.socket(socket.AF_UNIX) with contextlib.closing(s): s.connect('%s') if sys.version_info < (3, ): pid = str(os.getpid()) else: pid = bytes(str(os.getpid()), 'ascii') s.sendall(pid) """ % TESTFN) with contextlib.closing(socket.socket(socket.AF_UNIX)) as sock: try: sock.settimeout(GLOBAL_TIMEOUT) sock.bind(TESTFN) sock.listen(1) pyrun(src) conn, _ = sock.accept() select.select([conn.fileno()], [], [], GLOBAL_TIMEOUT) zpid = int(conn.recv(1024)) zproc = psutil.Process(zpid) call_until(lambda: zproc.status(), "ret == psutil.STATUS_ZOMBIE") # A zombie process should always be instantiable zproc = psutil.Process(zpid) # ...and at least its status always be querable self.assertEqual(zproc.status(), psutil.STATUS_ZOMBIE) # ...and it should be considered 'running' self.assertTrue(zproc.is_running()) # ...and as_dict() shouldn't crash zproc.as_dict() if hasattr(zproc, "rlimit"): succeed_or_zombie_p_exc(zproc.rlimit, psutil.RLIMIT_NOFILE) succeed_or_zombie_p_exc(zproc.rlimit, psutil.RLIMIT_NOFILE, (5, 5)) # set methods succeed_or_zombie_p_exc(zproc.parent) if hasattr(zproc, 'cpu_affinity'): succeed_or_zombie_p_exc(zproc.cpu_affinity, [0]) succeed_or_zombie_p_exc(zproc.nice, 0) if hasattr(zproc, 'ionice'): if LINUX: succeed_or_zombie_p_exc(zproc.ionice, 2, 0) else: succeed_or_zombie_p_exc(zproc.ionice, 0) # Windows if hasattr(zproc, 'rlimit'): succeed_or_zombie_p_exc(zproc.rlimit, psutil.RLIMIT_NOFILE, (5, 5)) succeed_or_zombie_p_exc(zproc.suspend) succeed_or_zombie_p_exc(zproc.resume) succeed_or_zombie_p_exc(zproc.terminate) succeed_or_zombie_p_exc(zproc.kill) # ...its parent should 'see' it # edit: not true on BSD and OSX # descendants = [x.pid for x in psutil.Process().children( # recursive=True)] # self.assertIn(zpid, descendants) # XXX should we also assume ppid be usable? Note: this # would be an important use case as the only way to get # rid of a zombie is to
TX'}, '1512407':{'en': 'Austin, TX'}, '1512414':{'en': 'Austin, TX'}, '1512416':{'en': 'Austin, TX'}, '1512418':{'en': 'Austin, TX'}, '1512419':{'en': 'Austin, TX'}, '1512420':{'en': 'Austin, TX'}, '151244':{'en': 'Austin, TX'}, '1512446':{'en': 'Rockdale, TX'}, '151245':{'en': 'Austin, TX'}, '1512462':{'en': 'Austin, TX'}, '1512463':{'en': 'Austin, TX'}, '1512467':{'en': 'Austin, TX'}, '1512469':{'en': 'Austin, TX'}, '151247':{'en': 'Austin, TX'}, '1512480':{'en': 'Austin, TX'}, '1512481':{'en': 'Austin, TX'}, '1512482':{'en': 'Austin, TX'}, '1512485':{'en': 'Austin, TX'}, '1512491':{'en': 'Austin, TX'}, '1512495':{'en': 'Austin, TX'}, '1512499':{'en': 'Austin, TX'}, '1512502':{'en': 'Austin, TX'}, '1512505':{'en': 'Austin, TX'}, '1512506':{'en': 'Austin, TX'}, '1512509':{'en': 'Round Rock, TX'}, '1512515':{'en': 'Liberty Hill, TX'}, '1512524':{'en': 'Austin, TX'}, '1512527':{'en': 'Austin, TX'}, '1512533':{'en': 'Austin, TX'}, '1512542':{'en': 'Austin, TX'}, '1512551':{'en': 'Austin, TX'}, '1512556':{'en': 'Lampasas, TX'}, '1512581':{'en': 'Bastrop, TX'}, '1512610':{'en': 'Austin, TX'}, '1512614':{'en': 'Austin, TX'}, '1512615':{'en': 'Austin, TX'}, '1512617':{'en': 'Austin, TX'}, '1512628':{'en': 'Austin, TX'}, '1512637':{'en': 'Austin, TX'}, '1512651':{'en': 'Austin, TX'}, '1512671':{'en': 'Round Rock, TX'}, '1512707':{'en': 'Austin, TX'}, '1512708':{'en': 'Austin, TX'}, '1512715':{'en': 'Burnet, TX'}, '1512719':{'en': 'Austin, TX'}, '1512732':{'en': 'Austin, TX'}, '1512746':{'en': 'Jarrell, TX'}, '1512754':{'en': 'San Marcos, TX'}, '1512756':{'en': 'Burnet, TX'}, '1512759':{'en': 'Hutto, TX'}, '1512763':{'en': 'Georgetown, TX'}, '1512778':{'en': 'Liberty Hill, TX'}, '1512794':{'en': 'Austin, TX'}, '1512795':{'en': 'Austin, TX'}, '1512804':{'en': 'Austin, TX'}, '1512805':{'en': 'San Marcos, TX'}, '1512819':{'en': 'Georgetown, TX'}, '1512821':{'en': 'Austin, TX'}, '151283':{'en': 'Austin, TX'}, '1512846':{'en': 'Hutto, TX'}, '1512847':{'en': 'Wimberley, TX'}, '1512854':{'en': 'Austin, TX'}, '1512858':{'en': 'Dripping Springs, TX'}, '1512863':{'en': 'Georgetown, TX'}, '1512864':{'en': 'Georgetown, TX'}, '1512868':{'en': 'Georgetown, TX'}, '1512869':{'en': 'Georgetown, TX'}, '1512873':{'en': 'Austin, TX'}, '1512878':{'en': 'San Marcos, TX'}, '1512891':{'en': 'Austin, TX'}, '1512892':{'en': 'Austin, TX'}, '1512894':{'en': 'Dripping Springs, TX'}, '1512899':{'en': 'Austin, TX'}, '1512901':{'en': 'Austin, TX'}, '1512912':{'en': 'Austin, TX'}, '1512916':{'en': 'Austin, TX'}, '1512918':{'en': 'Austin, TX'}, '1512926':{'en': 'Austin, TX'}, '1512928':{'en': 'Austin, TX'}, '1512929':{'en': 'Austin, TX'}, '1512930':{'en': 'Georgetown, TX'}, '1512931':{'en': 'Georgetown, TX'}, '1512943':{'en': 'Georgetown, TX'}, '1512973':{'en': 'Austin, TX'}, '1512974':{'en': 'Austin, TX'}, '1513':{'en': 'Ohio'}, '1513202':{'en': 'Harrison, OH'}, '1513204':{'en': 'Mason, OH'}, '1513217':{'en': 'Middletown, OH'}, '1513221':{'en': 'Cincinnati, OH'}, '1513228':{'en': 'Lebanon, OH'}, '1513229':{'en': 'Mason, OH'}, '1513231':{'en': 'Cincinnati, OH'}, '1513232':{'en': 'Cincinnati, OH'}, '1513233':{'en': 'Cincinnati, OH'}, '1513234':{'en': 'Mason, OH'}, '1513241':{'en': 'Cincinnati, OH'}, '1513242':{'en': 'Cincinnati, OH'}, '1513244':{'en': 'Cincinnati, OH'}, '1513245':{'en': 'Cincinnati, OH'}, '1513247':{'en': 'Cincinnati, OH'}, '1513248':{'en': 'Milford, OH'}, '1513251':{'en': 'Cincinnati, OH'}, '1513271':{'en': 'Cincinnati, OH'}, '1513272':{'en': 'Cincinnati, OH'}, '1513281':{'en': 'Cincinnati, OH'}, '1513285':{'en': 'Hamilton, OH'}, '1513321':{'en': 'Cincinnati, OH'}, '1513333':{'en': 'Cincinnati, OH'}, '1513336':{'en': 'Mason, OH'}, '1513346':{'en': 'Cincinnati, OH'}, '1513347':{'en': 'Cincinnati, OH'}, '1513351':{'en': 'Cincinnati, OH'}, '1513352':{'en': 'Cincinnati, OH'}, '1513353':{'en': 'Cleves, OH'}, '1513354':{'en': 'Cincinnati, OH'}, '1513357':{'en': 'Cincinnati, OH'}, '1513360':{'en': 'Monroe, OH'}, '1513367':{'en': 'Harrison, OH'}, '1513376':{'en': 'Cincinnati, OH'}, '1513381':{'en': 'Cincinnati, OH'}, '1513385':{'en': 'Cincinnati, OH'}, '1513389':{'en': 'Cincinnati, OH'}, '1513398':{'en': 'Mason, OH'}, '1513407':{'en': 'Cincinnati, OH'}, '1513420':{'en': 'Middletown, OH'}, '1513421':{'en': 'Cincinnati, OH'}, '1513422':{'en': 'Middletown, OH'}, '1513423':{'en': 'Middletown, OH'}, '1513424':{'en': 'Middletown, OH'}, '1513425':{'en': 'Middletown, OH'}, '1513451':{'en': 'Cincinnati, OH'}, '1513459':{'en': 'Mason, OH'}, '1513469':{'en': 'Cincinnati, OH'}, '1513471':{'en': 'Cincinnati, OH'}, '1513474':{'en': 'Cincinnati, OH'}, '1513475':{'en': 'Cincinnati, OH'}, '1513481':{'en': 'Cincinnati, OH'}, '1513489':{'en': 'Cincinnati, OH'}, '1513521':{'en': 'Cincinnati, OH'}, '1513522':{'en': 'Cincinnati, OH'}, '1513523':{'en': 'Oxford, OH'}, '1513524':{'en': 'Oxford, OH'}, '1513528':{'en': 'Cincinnati, OH'}, '1513530':{'en': 'Cincinnati, OH'}, '1513531':{'en': 'Cincinnati, OH'}, '1513533':{'en': 'Cincinnati, OH'}, '1513539':{'en': 'Monroe, OH'}, '1513541':{'en': 'Cincinnati, OH'}, '1513542':{'en': 'Cincinnati, OH'}, '1513553':{'en': 'New Richmond, OH'}, '1513554':{'en': 'Cincinnati, OH'}, '1513557':{'en': 'Cincinnati, OH'}, '1513558':{'en': 'Cincinnati, OH'}, '1513559':{'en': 'Cincinnati, OH'}, '1513561':{'en': 'Cincinnati, OH'}, '1513563':{'en': 'Cincinnati, OH'}, '1513574':{'en': 'Cincinnati, OH'}, '1513575':{'en': 'Milford, OH'}, '1513576':{'en': 'Milford, OH'}, '1513579':{'en': 'Cincinnati, OH'}, '1513584':{'en': 'Cincinnati, OH'}, '1513585':{'en': 'Cincinnati, OH'}, '1513598':{'en': 'Cincinnati, OH'}, '1513621':{'en': 'Cincinnati, OH'}, '1513624':{'en': 'Cincinnati, OH'}, '1513631':{'en': 'Cincinnati, OH'}, '1513636':{'en': 'Cincinnati, OH'}, '1513641':{'en': 'Cincinnati, OH'}, '1513651':{'en': 'Cincinnati, OH'}, '1513661':{'en': 'Cincinnati, OH'}, '1513662':{'en': 'Cincinnati, OH'}, '1513671':{'en': 'Cincinnati, OH'}, '1513672':{'en': 'Cincinnati, OH'}, '1513674':{'en': 'Cincinnati, OH'}, '1513681':{'en': 'Cincinnati, OH'}, '1513683':{'en': 'Loveland, OH'}, '1513686':{'en': 'Cincinnati, OH'}, '1513721':{'en': 'Cincinnati, OH'}, '1513724':{'en': 'Williamsburg, OH'}, '1513727':{'en': 'Middletown, OH'}, '1513729':{'en': 'Cincinnati, OH'}, '1513731':{'en': 'Cincinnati, OH'}, '1513732':{'en': 'Batavia, OH'}, '1513733':{'en': 'Cincinnati, OH'}, '1513734':{'en': 'Bethel, OH'}, '1513735':{'en': 'Batavia, OH'}, '1513737':{'en': 'Hamilton, OH'}, '1513741':{'en': 'Cincinnati, OH'}, '1513742':{'en': 'Cincinnati, OH'}, '1513745':{'en': 'Cincinnati, OH'}, '1513751':{'en': 'Cincinnati, OH'}, '1513752':{'en': 'Cincinnati, OH'}, '1513754':{'en': 'Mason, OH'}, '1513755':{'en': 'West Chester, OH'}, '1513759':{'en': 'West Chester, OH'}, '1513761':{'en': 'Cincinnati, OH'}, '1513762':{'en': 'Cincinnati, OH'}, '1513769':{'en': 'Cincinnati, OH'}, '1513770':{'en': 'Mason, OH'}, '1513771':{'en': 'Cincinnati, OH'}, '1513772':{'en': 'Cincinnati, OH'}, '1513777':{'en': 'West Chester, OH'}, '1513779':{'en': 'West Chester, OH'}, '1513785':{'en': 'Hamilton, OH'}, '1513791':{'en': 'Cincinnati, OH'}, '1513792':{'en': 'Cincinnati, OH'}, '1513793':{'en': 'Cincinnati, OH'}, '1513794':{'en': 'Cincinnati, OH'}, '1513797':{'en': 'Amelia, OH'}, '1513821':{'en': 'Cincinnati, OH'}, '1513825':{'en': 'Cincinnati, OH'}, '1513829':{'en': 'Fairfield, OH'}, '1513831':{'en': 'Milford, OH'}, '1513834':{'en': 'Cincinnati, OH'}, '1513841':{'en': 'Cincinnati, OH'}, '1513844':{'en': 'Hamilton, OH'}, '1513851':{'en': 'Cincinnati, OH'}, '1513852':{'en': 'Cincinnati, OH'}, '1513858':{'en': 'Fairfield, OH'}, '1513861':{'en': 'Cincinnati, OH'}, '1513862':{'en': 'Cincinnati, OH'}, '1513863':{'en': 'Hamilton, OH'}, '1513867':{'en': 'Hamilton, OH'}, '1513868':{'en': 'Hamilton, OH'}, '1513871':{'en': 'Cincinnati, OH'}, '1513872':{'en': 'Cincinnati, OH'}, '1513875':{'en': 'Fayetteville, OH'}, '1513876':{'en': 'Felicity, OH'}, '1513887':{'en': 'Hamilton, OH'}, '1513891':{'en': 'Cincinnati, OH'}, '1513892':{'en': 'Hamilton, OH'}, '1513893':{'en': 'Hamilton, OH'}, '1513894':{'en': 'Hamilton, OH'}, '1513895':{'en': 'Hamilton, OH'}, '1513896':{'en': 'Hamilton, OH'}, '1513897':{'en': 'Waynesville, OH'}, '1513899':{'en': 'Morrow, OH'}, '1513921':{'en': 'Cincinnati, OH'}, '1513922':{'en': 'Cincinnati, OH'}, '1513923':{'en': 'Cincinnati, OH'}, '1513931':{'en': 'Cincinnati, OH'}, '1513932':{'en': 'Lebanon, OH'}, '1513933':{'en': 'Lebanon, OH'}, '1513934':{'en': 'Lebanon, OH'}, '1513939':{'en': 'Fairfield, OH'}, '1513941':{'en': 'Cincinnati, OH'}, '1513943':{'en': 'Cincinnati, OH'}, '1513947':{'en': 'Cincinnati, OH'}, '1513948':{'en': 'Cincinnati, OH'}, '1513961':{'en': 'Cincinnati, OH'}, '1513965':{'en': 'Milford, OH'}, '1513977':{'en': 'Cincinnati, OH'}, '1513984':{'en': 'Cincinnati, OH'}, '1513985':{'en': 'Cincinnati, OH'}, '1513988':{'en': 'Trenton, OH'}, '1514':{'en': 'Quebec'}, '1514223':{'en': 'Montreal, QC'}, '1514227':{'en': 'Montreal, QC'}, '151425':{'en': 'Montreal, QC'}, '151427':{'en': 'Montreal, QC'}, '151428':{'en': 'Montreal, QC'}, '1514303':{'en': 'Montreal, QC'}, '1514313':{'en': 'Montreal, QC'}, '1514315':{'en': 'Montreal, QC'}, '1514333':{'en': 'Saint-Laurent, QC'}, '1514335':{'en': 'Saint-Laurent, QC'}, '1514339':{'en': 'Saint-Laurent, QC'}, '1514340':{'en': 'Montreal, QC'}, '1514342':{'en': 'Montreal, QC'}, '1514345':{'en': 'Montreal, QC'}, '151436':{'en': 'Lasalle, QC'}, '1514369':{'en': 'Montreal, QC'}, '1514374':{'en': 'Montreal, QC'}, '1514376':{'en': 'Montreal, QC'}, '151438':{'en': 'Montreal, QC'}, '151439':{'en': 'Montreal, QC'}, '1514419':{'en': 'Montreal, QC'}, '1514422':{'en': 'Dorval, QC'}, '1514426':{'en': 'Pointe-Claire, QC'}, '1514428':{'en': 'Pointe-Claire, QC'}, '1514439':{'en': 'Montreal, QC'}, '1514461':{'en': 'Montreal, QC'}, '151448':{'en': 'Montreal, QC'}, '1514495':{'en': 'Montreal, QC'}, '1514498':{'en': 'Pointe-aux-Trembles, QC'}, '1514499':{'en': 'Montreal, QC'}, '1514504':{'en': 'Montreal, QC'}, '1514507':{'en': 'Montreal, QC'}, '1514508':{'en': 'Montreal, QC'}, '1514509':{'en': 'Montreal, QC'}, '1514510':{'en': 'Montreal, QC'}, '151452':{'en': 'Montreal, QC'}, '1514543':{'en': 'Montreal, QC'}, '1514544':{'en': 'Montreal, QC'}, '1514564':{'en': 'Montreal, QC'}, '1514593':{'en': 'Montreal, QC'}, '1514595':{'en': 'Lasalle, QC'}, '1514596':{'en': 'Montreal, QC'}, '1514598':{'en': 'Montreal, QC'}, '1514630':{'en': 'Pointe-Claire, QC'}, '1514631':{'en': 'Dorval, QC'}, '1514633':{'en': 'Dorval, QC'}, '1514634':{'en': 'Lachine, QC'}, '1514636':{'en': 'Dorval, QC'}, '1514637':{'en': 'Lachine, QC'}, '1514639':{'en': 'Lachine, QC'}, '1514642':{'en': 'Pointe-aux-Trembles, QC'}, '1514658':{'en': 'Montreal, QC'}, '1514670':{'en': 'Montreal, QC'}, '1514678':{'en': 'Montreal, QC'}, '1514694':{'en': 'Pointe-Claire, QC'}, '1514695':{'en': 'Pointe-Claire, QC'}, '1514697':{'en': 'Pointe-Claire, QC'}, '151472':{'en': 'Montreal, QC'}, '151473':{'en': 'Montreal, QC'}, '1514744':{'en': 'Saint-Laurent, QC'}, '1514747':{'en': 'Saint-Laurent, QC'}, '1514748':{'en': 'Saint-Laurent, QC'}, '1514750':{'en': 'Montreal, QC'}, '1514759':{'en': 'Montreal, QC'}, '1514761':{'en': 'Verdun, QC'}, '1514788':{'en': 'Montreal, QC'}, '1514789':{'en': 'Montreal, QC'}, '1514798':{'en': 'Montreal, QC'}, '1514807':{'en': 'Montreal, QC'}, '151484':{'en': 'Montreal, QC'}, '1514855':{'en': 'Saint-Laurent, QC'}, '1514858':{'en': 'Montreal, QC'}, '1514861':{'en': 'Montreal, QC'}, '1514866':{'en': 'Montreal, QC'}, '1514868':{'en': 'Montreal, QC'}, '151487':{'en': 'Montreal, QC'}, '1514899':{'en': 'Montreal, QC'}, '1514903':{'en': 'Montreal, QC'}, '1514904':{'en': 'Montreal, QC'}, '1514905':{'en': 'Montreal, QC'}, '1514906':{'en': 'Montreal, QC'}, '1514908':{'en': 'Montreal, QC'}, '151493':{'en': 'Montreal, QC'}, '1514940':{'en': 'Montreal, QC'}, '1514948':{'en': 'Montreal, QC'}, '1514954':{'en': 'Montreal, QC'}, '1514956':{'en': 'Saint-Laurent, QC'}, '1514982':{'en': 'Montreal, QC'}, '1514985':{'en': 'Montreal, QC'}, '1514987':{'en': 'Montreal, QC'}, '1514989':{'en': 'Montreal, QC'}, '1515':{'en': 'Iowa'}, '1515221':{'en': 'West Des Moines, IA'}, '1515222':{'en': 'West Des Moines, IA'}, '1515223':{'en': 'West Des Moines, IA'}, '1515224':{'en': 'West Des Moines, IA'}, '1515225':{'en': 'West Des Moines, IA'}, '1515232':{'en': 'Ames, IA'}, '1515233':{'en': 'Ames, IA'}, '1515237':{'en': 'Des Moines, IA'}, '1515239':{'en': 'Ames, IA'}, '151524':{'en': 'Des Moines, IA'}, '1515255':{'en': 'Des Moines, IA'}, '1515256':{'en': 'Des Moines, IA'}, '1515262':{'en': 'Des Moines, IA'}, '1515263':{'en': 'Des Moines, IA'}, '1515264':{'en': 'Des Moines, IA'}, '1515265':{'en': 'Des Moines, IA'}, '1515266':{'en': 'Des Moines, IA'}, '1515267':{'en': 'West Des Moines, IA'}, '1515271':{'en': 'Des Moines, IA'}, '1515274':{'en': 'Des Moines, IA'}, '1515275':{'en': 'Ogden, IA'}, '1515277':{'en': 'Des Moines, IA'}, '1515279':{'en': 'Des Moines, IA'}, '151528':{'en': 'Des Moines, IA'}, '1515289':{'en': 'Ankeny, IA'}, '1515292':{'en': 'Ames, IA'}, '1515294':{'en': 'Ames, IA'}, '1515295':{'en': 'Algona, IA'}, '1515327':{'en': 'West Des Moines, IA'}, '1515332':{'en': 'Humboldt, IA'}, '1515352':{'en': 'Gowrie, IA'}, '1515382':{'en': 'Nevada, IA'}, '1515386':{'en': 'Jefferson, IA'}, '1515432':{'en': 'Boone, IA'}, '1515433':{'en': 'Boone, IA'}, '1515440':{'en': 'West Des Moines, IA'}, '1515448':{'en': 'Eagle Grove, IA'}, '1515453':{'en': 'West Des Moines, IA'}, '1515457':{'en': 'West Des Moines, IA'}, '1515462':{'en': 'Winterset, IA'}, '1515465':{'en': 'Perry, IA'}, '1515523':{'en': 'Stuart, IA'}, '1515532':{'en': 'Clarion, IA'}, '1515573':{'en': 'Fort Dodge, IA'}, '1515574':{'en': 'Fort Dodge, IA'}, '1515576':{'en': 'Fort Dodge, IA'}, '1515597':{'en': 'Huxley, IA'}, '1515643':{'en': 'Des Moines, IA'}, '1515674':{'en': 'Colfax, IA'}, '1515699':{'en': 'Des Moines, IA'}, '1515733':{'en': 'Story City, IA'}, '1515795':{'en': 'Madrid, IA'}, '1515832':{'en': 'Webster City, IA'}, '1515885':{'en': 'Bancroft, IA'}, '1515887':{'en': 'West Bend, IA'}, '1515953':{'en': 'Des Moines, IA'}, '1515955':{'en': 'Fort Dodge, IA'}, '1515957':{'en': 'Altoona, IA'}, '1515961':{'en': 'Indianola,
'node': self._primary_key, 'description_new': self.description, 'description_original': original }, auth=auth, save=False, ) if save: self.save() return None def update_search(self): from website import search try: search.search.update_node(self) except search.exceptions.SearchUnavailableError as e: logger.exception(e) log_exception() def remove_node(self, auth, date=None): """Marks a node as deleted. TODO: Call a hook on addons Adds a log to the parent node if applicable :param auth: an instance of :class:`Auth`. :param date: Date node was removed :type date: `datetime.datetime` or `None` """ # TODO: rename "date" param - it's shadowing a global if self.is_dashboard: raise NodeStateError("Dashboards may not be deleted.") if not self.can_edit(auth): raise PermissionsError('{0!r} does not have permission to modify this {1}'.format(auth.user, self.category or 'node')) #if this is a folder, remove all the folders that this is pointing at. if self.is_folder: for pointed in self.nodes_pointer: if pointed.node.is_folder: pointed.node.remove_node(auth=auth) if [x for x in self.nodes_primary if not x.is_deleted]: raise NodeStateError("Any child components must be deleted prior to deleting this project.") # After delete callback for addon in self.get_addons(): message = addon.after_delete(self, auth.user) if message: status.push_status_message(message) log_date = date or datetime.datetime.utcnow() # Add log to parent if self.node__parent: self.node__parent[0].add_log( NodeLog.NODE_REMOVED, params={ 'project': self._primary_key, }, auth=auth, log_date=log_date, save=True, ) else: self.add_log( NodeLog.PROJECT_DELETED, params={ 'project': self._primary_key, }, auth=auth, log_date=log_date, save=True, ) self.is_deleted = True self.deleted_date = date self.save() auth_signals.node_deleted.send(self) return True def fork_node(self, auth, title='Fork of '): """Recursively fork a node. :param Auth auth: Consolidated authorization :param str title: Optional text to prepend to forked title :return: Forked node """ user = auth.user # Non-contributors can't fork private nodes if not (self.is_public or self.has_permission(user, 'read')): raise PermissionsError('{0!r} does not have permission to fork node {1!r}'.format(user, self._id)) folder_old = os.path.join(settings.UPLOADS_PATH, self._primary_key) when = datetime.datetime.utcnow() original = self.load(self._primary_key) # Note: Cloning a node copies its `files_current` and # `wiki_pages_current` fields, but does not clone the underlying # database objects to which these dictionaries refer. This means that # the cloned node must pass itself to its file and wiki objects to # build the correct URLs to that content. forked = original.clone() forked.logs = self.logs forked.tags = self.tags # Recursively fork child nodes for node_contained in original.nodes: forked_node = None try: # Catch the potential PermissionsError above forked_node = node_contained.fork_node(auth=auth, title='') except PermissionsError: pass # If this exception is thrown omit the node from the result set if forked_node is not None: forked.nodes.append(forked_node) forked.title = title + forked.title forked.is_fork = True forked.is_registration = False forked.forked_date = when forked.forked_from = original forked.creator = user forked.piwik_site_id = None # Forks default to private status forked.is_public = False # Clear permissions before adding users forked.permissions = {} forked.visible_contributor_ids = [] forked.add_contributor(contributor=user, log=False, save=False) forked.add_log( action=NodeLog.NODE_FORKED, params={ 'project': original.parent_id, 'node': original._primary_key, 'registration': forked._primary_key, }, auth=auth, log_date=when, save=False, ) forked.save() # After fork callback for addon in original.get_addons(): _, message = addon.after_fork(original, forked, user) if message: status.push_status_message(message) # TODO: Remove after migration to OSF Storage if settings.COPY_GIT_REPOS and os.path.exists(folder_old): folder_new = os.path.join(settings.UPLOADS_PATH, forked._primary_key) Repo(folder_old).clone(folder_new) return forked def register_node(self, schema, auth, template, data): """Make a frozen copy of a node. :param schema: Schema object :param auth: All the auth information including user, API key. :template: Template name :data: Form data """ # NOTE: Admins can register child nodes even if they don't have write access them if not self.can_edit(auth=auth) and not self.is_admin_parent(user=auth.user): raise PermissionsError( 'User {} does not have permission ' 'to register this node'.format(auth.user._id) ) if self.is_folder: raise NodeStateError("Folders may not be registered") folder_old = os.path.join(settings.UPLOADS_PATH, self._primary_key) template = urllib.unquote_plus(template) template = to_mongo(template) when = datetime.datetime.utcnow() original = self.load(self._primary_key) # Note: Cloning a node copies its `files_current` and # `wiki_pages_current` fields, but does not clone the underlying # database objects to which these dictionaries refer. This means that # the cloned node must pass itself to its file and wiki objects to # build the correct URLs to that content. registered = original.clone() registered.is_registration = True registered.registered_date = when registered.registered_user = auth.user registered.registered_schema = schema registered.registered_from = original if not registered.registered_meta: registered.registered_meta = {} registered.registered_meta[template] = data registered.contributors = self.contributors registered.forked_from = self.forked_from registered.creator = self.creator registered.logs = self.logs registered.tags = self.tags registered.piwik_site_id = None registered.save() # After register callback for addon in original.get_addons(): _, message = addon.after_register(original, registered, auth.user) if message: status.push_status_message(message) # TODO: Remove after migration to OSF Storage if settings.COPY_GIT_REPOS and os.path.exists(folder_old): folder_new = os.path.join(settings.UPLOADS_PATH, registered._primary_key) Repo(folder_old).clone(folder_new) registered.nodes = [] for node_contained in original.nodes: registered_node = node_contained.register_node( schema, auth, template, data ) if registered_node is not None: registered.nodes.append(registered_node) original.add_log( action=NodeLog.PROJECT_REGISTERED, params={ 'project': original.parent_id, 'node': original._primary_key, 'registration': registered._primary_key, }, auth=auth, log_date=when, save=False, ) original.save() registered.save() for node in registered.nodes: node.update_search() return registered def remove_tag(self, tag, auth, save=True): if tag in self.tags: self.tags.remove(tag) self.add_log( action=NodeLog.TAG_REMOVED, params={ 'project': self.parent_id, 'node': self._primary_key, 'tag': tag, }, auth=auth, save=False, ) if save: self.save() def add_tag(self, tag, auth, save=True): if tag not in self.tags: new_tag = Tag.load(tag) if not new_tag: new_tag = Tag(_id=tag) new_tag.save() self.tags.append(new_tag) self.add_log( action=NodeLog.TAG_ADDED, params={ 'project': self.parent_id, 'node': self._primary_key, 'tag': tag, }, auth=auth, save=False, ) if save: self.save() # TODO: Move to NodeFile def read_file_object(self, file_object): folder_name = os.path.join(settings.UPLOADS_PATH, self._primary_key) repo = Repo(folder_name) tree = repo.commit(file_object.git_commit).tree mode, sha = tree_lookup_path(repo.get_object, tree, file_object.path) return repo[sha].data, file_object.content_type def get_file(self, path, version): #folder_name = os.path.join(settings.UPLOADS_PATH, self._primary_key) file_object = self.get_file_object(path, version) return self.read_file_object(file_object) def get_file_object(self, path, version=None): """Return the :class:`NodeFile` object at the given path. :param str path: Path to the file. :param int version: Version number, 0-indexed. """ # TODO: Fix circular imports from website.addons.osffiles.model import NodeFile from website.addons.osffiles.exceptions import ( InvalidVersionError, VersionNotFoundError, ) folder_name = os.path.join(settings.UPLOADS_PATH, self._primary_key) err_msg = 'Upload directory is not a git repo' assert os.path.exists(os.path.join(folder_name, ".git")), err_msg try: file_versions = self.files_versions[path.replace('.', '_')] # Default to latest version version = version if version is not None else len(file_versions) - 1 except (AttributeError, KeyError): raise ValueError('Invalid path: {}'.format(path)) if version < 0: raise InvalidVersionError('Version number must be >= 0.') try: file_id = file_versions[version] except IndexError: raise VersionNotFoundError('Invalid version number: {}'.format(version)) except TypeError: raise InvalidVersionError('Invalid version type. Version number' 'must be an integer >= 0.') return NodeFile.load(file_id) def remove_file(self, auth, path): '''Removes a file from the filesystem, NodeFile collection, and does a git delete ('git rm <file>') :param auth: All the auth informtion including user, API key. :param path: :raises: website.osffiles.exceptions.FileNotFoundError if file is not found. ''' from website.addons.osffiles.model import NodeFile from website.addons.osffiles.exceptions import FileNotFoundError from website.addons.osffiles.utils import urlsafe_filename file_name_key = urlsafe_filename(path) repo_path = os.path.join(settings.UPLOADS_PATH, self._primary_key) # TODO make sure it all works, otherwise rollback as needed # Do a git delete, which also removes from working filesystem. try: subprocess.check_output( ['git', 'rm', path], cwd=repo_path, shell=False ) repo = Repo(repo_path) message = '{path} deleted'.format(path=path) committer = self._get_committer(auth) repo.do_commit(message, committer) except subprocess.CalledProcessError as error: if error.returncode == 128: raise FileNotFoundError('File {0!r} was not found'.format(path)) raise if file_name_key in self.files_current: nf = NodeFile.load(self.files_current[file_name_key]) nf.is_deleted = True nf.save() self.files_current.pop(file_name_key, None) if file_name_key in self.files_versions: for i in self.files_versions[file_name_key]: nf = NodeFile.load(i) nf.is_deleted = True nf.save() self.files_versions.pop(file_name_key) self.add_log( action=NodeLog.FILE_REMOVED, params={ 'project': self.parent_id, 'node': self._primary_key, 'path': path }, auth=auth, log_date=nf.date_modified, save=False, ) # Updates self.date_modified self.save() @staticmethod def _get_committer(auth): user = auth.user api_key = auth.api_key if api_key: commit_key_msg = ':{}'.format(api_key.label) if api_key.user: commit_name = api_key.user.fullname commit_id = api_key.user._primary_key commit_category = 'user' if api_key.node: commit_name = api_key.node.title commit_id = api_key.node._primary_key commit_category = 'node' elif user: commit_key_msg = '' commit_name = user.fullname commit_id = user._primary_key commit_category = 'user' else: raise Exception('Must provide either user or api_key.') committer = u'{name}{key_msg} <{category}-{id}@osf.io>'.format( name=commit_name, key_msg=commit_key_msg, category=commit_category, id=commit_id, ) committer = normalize_unicode(committer) return committer def add_file(self, auth, file_name, content, size, content_type): """ Instantiates a new NodeFile object, and adds it to the current Node as necessary. """ from website.addons.osffiles.model import NodeFile from website.addons.osffiles.exceptions import FileNotModified # TODO: Reading the whole file into memory is not scalable. Fix this. # This node's folder folder_name = os.path.join(settings.UPLOADS_PATH, self._primary_key) # TODO: This should be part of the build phase, not here. # verify the upload root exists if not
<filename>dse_simulation/test/test_information_filter.py #!/usr/bin/env python from __future__ import print_function import roslib import os import sys import unittest import rospy import rostest from optparse import OptionParser import numpy as np import datetime import time from dse_msgs.msg import PoseMarkers from std_msgs.msg import Float64MultiArray from std_msgs.msg import MultiArrayLayout from std_msgs.msg import MultiArrayDimension from dse_msgs.msg import InfFilterPartials from dse_msgs.msg import InfFilterResults from scipy.spatial.transform import Rotation as R import copy sys.path.append(os.path.join(sys.path[0], "../src")) import dse_lib import consensus_lib PKG = 'dse_simulation' roslib.load_manifest(PKG) ############################################################################## ############################################################################## class TestInformationFilterCommon(unittest.TestCase): ############################################################################## ############################################################################## # def set_up(self): ############################################################################## def __init__(self, *args): ############################################################################## # rospy.loginfo("-D- TestRangeFilter __init__") # super(TestRangeFilterCommon, self).__init__(*args) self.set_up() super(TestInformationFilterCommon, self).__init__(*args) ############################################################################## def set_up(self): ############################################################################## rospy.init_node("test_observation_jacobian") # self.coefficient = rospy.get_param("range_filter/coefficient", 266) # self.exponent = rospy.get_param("range_filter/exponent", -1.31) # self.rolling_pts = rospy.get_param("range_filter/rolling_pts", 4) self.test_rate = rospy.get_param("~test_rate", 100) self.results_sub = rospy.Subscriber("/tb3_0/dse/inf/results", InfFilterResults, self.estimator_results_callback) self.inf_pub = rospy.Publisher("/tb3_0/dse/inf/partial", InfFilterPartials, queue_size=10) # self.latest_filtered = 1e10 # self.latest_std = 2e10 self.dim_state = 6 self.dim_obs = 3 self.euler_order = 'zyx' self.got_callback = False ############################################################################## def send_poses(self, poses, rate): ############################################################################## r = rospy.Rate(rate) # rospy.loginfo("-D- sendmsgs: sending %s" % str(msgs)) for pose in poses: rospy.loginfo("-D- publishing %d" % pose) self.pose_pub.publish() r.sleep() # When the information filter sends back results, store them locally def information_callback(self, data): rospy.loginfo("-D- information_filter.py sent back data") inf_id_list = data.ids self.inf_Y_prior = dse_lib.multi_array_2d_output(data.inf_matrix_prior) self.inf_y_prior = dse_lib.multi_array_2d_output(data.inf_vector_prior) self.inf_I = dse_lib.multi_array_2d_output(data.obs_matrix) self.inf_i = dse_lib.multi_array_2d_output(data.obs_vector) # When the direct estimator or consensus returns the combined information variables def estimator_results_callback(self, data): rospy.loginfo("-D- information_filter.py sent back data") self.inf_id_list = np.array(data.ids) self.inf_Y = dse_lib.multi_array_2d_output(data.inf_matrix) self.inf_y = dse_lib.multi_array_2d_output(data.inf_vector) self.got_callback = True ############################################################################## ############################################################################## class TestInformationFilterValid(TestInformationFilterCommon): ############################################################################## ############################################################################## ############################################################################## def test_one_Equal_one(self): ############################################################################## rospy.loginfo("-D- test_one_Equal_one") self.assertEqual(1, 1, "1!=1") def test_theta_2_rotm_zero(self): ############################################################################## rospy.loginfo("-D- test_theta_2_rotm_0") rotm = dse_lib.theta_2_rotm(0) x_0 = np.transpose([1, 2]) x_rotm = rotm.dot(x_0) x_true = x_0 self.assertEqual(True, np.allclose(x_true, x_rotm)) def test_theta_2_rotm_90(self): ############################################################################## rospy.loginfo("-D- test_theta_2_rotm_0") theta = 90 rotm = dse_lib.theta_2_rotm(theta * np.pi / 180.0) x_0 = np.transpose([1, 2]) x_rotm = rotm.dot(x_0) x_true = np.transpose([-2, 1]) self.assertEqual(True, np.allclose(x_true, x_rotm)) def test_theta_2_rotm_45(self): ############################################################################## rospy.loginfo("-D- test_theta_2_rotm_0") theta = 45 rotm = dse_lib.theta_2_rotm(theta * np.pi / 180.0) x_0 = np.transpose([1, 1]) x_rotm = rotm.dot(x_0) x_true = np.transpose([0, np.sqrt(2)]) self.assertEqual(True, np.allclose(x_true, x_rotm)) def test_to_frame_1(self): ############################################################################## rospy.loginfo("-D- test_from_frame_1") agent1_global = np.array([[0], [0], [np.pi]]) agent2_global = np.array([[1], [0], [0]]) agent2_in_frame_agent1_true = np.array([[-1], [0], [np.pi]]) agent1_in_frame_agent2_true = np.array([[-1], [0], [np.pi]]) agent2_in_frame_agent1_est = dse_lib.agent2_to_frame_agent1_3D(agent1_global, agent2_global) agent1_in_frame_agent2_est = dse_lib.agent2_to_frame_agent1_3D(agent2_global, agent1_global) if agent2_in_frame_agent1_est[2, 0] < 0: agent2_in_frame_agent1_est[2, 0] += 2*np.pi if agent1_in_frame_agent2_est[2, 0] < 0: agent1_in_frame_agent2_est[2, 0] += 2*np.pi self.assertEqual(True, np.allclose(agent2_in_frame_agent1_true, agent2_in_frame_agent1_est)) self.assertEqual(True, np.allclose(agent1_in_frame_agent2_true, agent1_in_frame_agent2_est)) def test_to_frame_2(self): ############################################################################## rospy.loginfo("-D- test_from_frame_1") agent1_global = np.array([[0], [0], [0]]) agent2_global = np.array([[-1], [1], [0]]) agent2_in_frame_agent1_true = np.array([[-1], [1], [0]]) agent1_in_frame_agent2_true = np.array([[1], [-1], [0]]) agent2_in_frame_agent1_est = dse_lib.agent2_to_frame_agent1_3D(agent1_global, agent2_global) agent1_in_frame_agent2_est = dse_lib.agent2_to_frame_agent1_3D(agent2_global, agent1_global) if agent2_in_frame_agent1_est[2, 0] < 0: agent2_in_frame_agent1_est[2, 0] += 2*np.pi if agent1_in_frame_agent2_est[2, 0] < 0: agent1_in_frame_agent2_est[2, 0] += 2*np.pi self.assertEqual(True, np.allclose(agent2_in_frame_agent1_true, agent2_in_frame_agent1_est)) self.assertEqual(True, np.allclose(agent1_in_frame_agent2_true, agent1_in_frame_agent2_est)) def test_to_frame_3(self): ############################################################################## rospy.loginfo("-D- test_from_frame_1") agent1_global = np.array([[0], [0], [np.pi]]) agent2_global = np.array([[1], [0], [np.pi/2]]) agent2_in_frame_agent1_true = np.array([[-1], [0], [3*np.pi/2]]) agent1_in_frame_agent2_true = np.array([[0], [1], [np.pi/2]]) agent2_in_frame_agent1_est = dse_lib.agent2_to_frame_agent1_3D(agent1_global, agent2_global) agent1_in_frame_agent2_est = dse_lib.agent2_to_frame_agent1_3D(agent2_global, agent1_global) if agent2_in_frame_agent1_est[2, 0] < 0: agent2_in_frame_agent1_est[2, 0] += 2*np.pi if agent1_in_frame_agent2_est[2, 0] < 0: agent1_in_frame_agent2_est[2, 0] += 2*np.pi self.assertEqual(True, np.allclose(agent2_in_frame_agent1_true, agent2_in_frame_agent1_est)) self.assertEqual(True, np.allclose(agent1_in_frame_agent2_true, agent1_in_frame_agent2_est)) def test_to_frame_4(self): ############################################################################## rospy.loginfo("-D- test_from_frame_1") agent1_global = np.array([[1], [1], [7/4.0*np.pi]]) agent2_global = np.array([[0.4], [-0.6], [5/4.0*np.pi]]) agent2_in_frame_agent1_true = np.array([[0.5*np.sqrt(2)], [-1.1*np.sqrt(2)], [3/2.0*np.pi]]) agent1_in_frame_agent2_true = np.array([[-1.1*np.sqrt(2)], [-0.5*np.sqrt(2)], [1/2.0*np.pi]]) agent2_in_frame_agent1_est = dse_lib.agent2_to_frame_agent1_3D(agent1_global, agent2_global) agent1_in_frame_agent2_est = dse_lib.agent2_to_frame_agent1_3D(agent2_global, agent1_global) if agent2_in_frame_agent1_est[2, 0] < 0: agent2_in_frame_agent1_est[2, 0] += 2*np.pi if agent1_in_frame_agent2_est[2, 0] < 0: agent1_in_frame_agent2_est[2, 0] += 2*np.pi self.assertEqual(True, np.allclose(agent2_in_frame_agent1_true, agent2_in_frame_agent1_est)) self.assertEqual(True, np.allclose(agent1_in_frame_agent2_true, agent1_in_frame_agent2_est)) def test_from_frame_0(self): ############################################################################## rospy.loginfo("-D- test_from_frame_1") agent1_global = np.array([[1], [1], [7/4.0*np.pi]]) agent2_global = np.array([[0.4], [-0.6], [5/4.0*np.pi]]) agent2_in_frame_agent1_true = np.array([[0.5*np.sqrt(2)], [-1.1*np.sqrt(2)], [3/2.0*np.pi]]) agent1_in_frame_agent2_true = np.array([[-1.1*np.sqrt(2)], [-0.5*np.sqrt(2)], [1/2.0*np.pi]]) agent2_in_frame_agent1_est = dse_lib.agent2_to_frame_agent1_3D(agent1_global, agent2_global) agent2_global_est = dse_lib.agent2_from_frame_agent1_3D(agent1_global, agent2_in_frame_agent1_est) if agent2_global_est[2, 0] < 0: agent2_global_est[2, 0] += 2*np.pi self.assertEqual(True, np.allclose(agent2_global, agent2_global_est)) def test_from_frame_1(self): ############################################################################## rospy.loginfo("-D- test_from_frame_1") # 1 is fixed, 2 is this, 3 is object agent1_global = np.array([[1], [1], [7 / 4.0 * np.pi]]) agent2_global = np.array([[0.4], [-0.6], [5 / 4.0 * np.pi]]) agent3_global = np.array([[1], [0], [np.pi/2]]) agent1_in_frame_agent2 = dse_lib.agent2_to_frame_agent1_3D(agent2_global, agent1_global) agent1_in_frame_agent3 = dse_lib.agent2_to_frame_agent1_3D(agent3_global, agent1_global) agent2_in_frame_agent1 = dse_lib.agent2_to_frame_agent1_3D(agent1_global, agent2_global) agent2_in_frame_agent3 = dse_lib.agent2_to_frame_agent1_3D(agent3_global, agent2_global) agent3_in_frame_agent1 = dse_lib.agent2_to_frame_agent1_3D(agent1_global, agent3_global) agent3_in_frame_agent2 = dse_lib.agent2_to_frame_agent1_3D(agent2_global, agent3_global) z_true = agent3_in_frame_agent2 x = agent3_in_frame_agent1 agent2_global_est = dse_lib.agent2_from_frame_agent1_3D(agent1_global, agent2_in_frame_agent1) agent3_global_est = dse_lib.agent2_from_frame_agent1_3D(agent1_global, agent3_in_frame_agent1) z_est = dse_lib.agent2_to_frame_agent1_3D(agent2_global_est, agent3_global_est) z_est_2 = dse_lib.agent2_to_frame_agent1_3D(agent2_in_frame_agent1, agent3_in_frame_agent1) self.assertEqual(True, np.allclose(z_true, z_est)) self.assertEqual(True, np.allclose(z_true, z_est_2)) def test_dual_relative_obs_jacobian_3D_0(self): ############################################################################## rospy.loginfo("-D- test_from_frame_1") # 1 is fixed, 2 is this, 3 is object agent1_global = np.array([[1], [1], [7 / 4.0 * np.pi]]) agent2_global = np.array([[0.4], [-0.6], [5 / 4.0 * np.pi]]) agent3_global = np.array([[1.5], [0321], [np.pi/2]]) agent1_in_frame_agent2 = dse_lib.agent2_to_frame_agent1_3D(agent2_global, agent1_global) agent1_in_frame_agent3 = dse_lib.agent2_to_frame_agent1_3D(agent3_global, agent1_global) agent2_in_frame_agent1 = dse_lib.agent2_to_frame_agent1_3D(agent1_global, agent2_global) agent2_in_frame_agent3 = dse_lib.agent2_to_frame_agent1_3D(agent3_global, agent2_global) agent3_in_frame_agent1 = dse_lib.agent2_to_frame_agent1_3D(agent1_global, agent3_global) agent3_in_frame_agent2 = dse_lib.agent2_to_frame_agent1_3D(agent2_global, agent3_global) z_true = agent3_in_frame_agent2 z_fun = dse_lib.agent2_to_frame_agent1_3D(agent2_global, agent3_global) H = np.array(dse_lib.dual_relative_obs_jacobian_3D(agent2_global, agent3_global)) x = np.append(agent2_global, agent3_global)[:, None] z_h = H.dot(x) z_h = np.array([z_h[0][0][0], z_h[1][0][0], z_h[2][0]])[:, None] self.assertEqual(True, np.allclose(z_true, z_fun)) self.assertEqual(True, np.allclose(z_true, z_h)) def test_jacobian_fixed_to_obs_3D_0(self): ############################################################################## rospy.loginfo("-D- test_from_frame_1") # 1 is fixed, 2 is this, 3 is object agent1_global = np.array([[1], [1], [7 / 4.0 * np.pi]]) agent2_global = np.array([[0.4], [-0.6], [5 / 4.0 * np.pi]]) agent3_global = np.array([[1.5], [0321], [30.1234*np.pi/2]]) agent1_in_frame_agent2 = dse_lib.agent2_to_frame_agent1_3D(agent2_global, agent1_global) agent1_in_frame_agent3 = dse_lib.agent2_to_frame_agent1_3D(agent3_global, agent1_global) agent2_in_frame_agent1 = dse_lib.agent2_to_frame_agent1_3D(agent1_global, agent2_global) agent2_in_frame_agent3 = dse_lib.agent2_to_frame_agent1_3D(agent3_global, agent2_global) agent3_in_frame_agent1 = dse_lib.agent2_to_frame_agent1_3D(agent1_global, agent3_global) agent3_in_frame_agent2 = dse_lib.agent2_to_frame_agent1_3D(agent2_global, agent3_global) z_true = agent3_in_frame_agent2 x = agent3_in_frame_agent1 z_fun = dse_lib.agent2_to_frame_agent1_3D(agent2_in_frame_agent1, agent3_in_frame_agent1) H = np.array(dse_lib.jacobian_fixed_to_obs_3D(agent2_in_frame_agent1, agent3_in_frame_agent1)) x = np.append(agent2_in_frame_agent1, agent3_in_frame_agent1)[:, None] z_h = H.dot(x) z_h = np.array([z_h[0][0][0], z_h[1][0][0], z_h[2][0]])[:, None] self.assertEqual(True, np.allclose(z_true, z_fun)) self.assertEqual(True, np.allclose(z_true, z_h)) def test_observation_jacobian_zeros(self): ############################################################################## rospy.loginfo("-D- test_observation_jacobian_0") agent1 = 0 agent2 = 1 x = np.zeros((12, 1)) H = np.zeros((3, 12)) H = dse_lib.h_camera_3D(H, x, 0, agent1, agent2, self.dim_state, self.dim_obs) z_jac = H.dot(x) agent1_row_min = self.dim_state * agent1 agent1_row_max = agent1_row_min + self.dim_obs agent2_row_min = self.dim_state * agent2 agent2_row_max = agent2_row_min + self.dim_obs x1 = x[agent1_row_min:agent1_row_max] t1 = x1[0:2] R1 = dse_lib.theta_2_rotm(x1[2, 0]) x2 = x[agent2_row_min:agent2_row_max] t2 = x2[0:2] R2 = dse_lib.theta_2_rotm(x2[2, 0]) zt = (np.transpose(R1).dot(t2) - np.transpose(R1).dot(t1))[:, 0] zR = np.transpose(R1).dot(R2) zr = [-np.arccos(zR[0, 0])] z_true = np.concatenate((zt, zr))[:, None] rospy.loginfo("-D- z_jac (%d, %d)" % (np.shape(z_jac)[0], np.shape(z_jac)[1])) rospy.loginfo("-D- z_jac (%d, %d)" % (np.shape(z_true)[0], np.shape(z_true)[1])) self.assertEqual(True, np.allclose(z_true, z_jac)) def test_observation_jacobian_translation(self): ############################################################################## rospy.loginfo("-D- test_observation_jacobian_0") agent1 = 0 agent2 = 1 x = np.transpose([1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])[:, None] H = np.zeros((3, 12)) H = dse_lib.h_camera_3D(H, x, 0, agent1, agent2, self.dim_state, self.dim_obs) z_jac = H.dot(x) agent1_row_min = self.dim_state * agent1 agent1_row_max = agent1_row_min + self.dim_obs agent2_row_min = self.dim_state * agent2 agent2_row_max = agent2_row_min + self.dim_obs x1 = x[agent1_row_min:agent1_row_max] t1 = x1[0:2] R1 = dse_lib.theta_2_rotm(x1[2, 0]) x2 = x[agent2_row_min:agent2_row_max] t2 = x2[0:2] R2 = dse_lib.theta_2_rotm(x2[2, 0]) zt = (np.transpose(R1).dot(t2) - np.transpose(R1).dot(t1))[:, 0] zR = np.transpose(R1).dot(R2) zr = [-np.arccos(zR[0, 0])] z_true = np.concatenate((zt, zr))[:, None] rospy.loginfo("-D- z_jac (%d, %d)" % (np.shape(z_jac)[0], np.shape(z_jac)[1])) rospy.loginfo("-D- z_jac (%d, %d)" % (np.shape(z_true)[0], np.shape(z_true)[1])) self.assertEqual(True, np.allclose(z_true, z_jac)) def test_observation_jacobian_translation_rotation(self): ############################################################################## rospy.loginfo("-D- test_observation_jacobian_0") agent1 = 0 agent2 = 1 x = np.transpose([1, 2, np.pi/2, 0, 0, 0, 0, 0, -np.pi/2, 0, 0, 0])[:, None] H = np.zeros((3, 12)) H = dse_lib.h_camera_3D(H, x, 0, agent1, agent2, self.dim_state, self.dim_obs) z_jac = H.dot(x) agent1_row_min = self.dim_state * agent1 agent1_row_max = agent1_row_min + self.dim_obs agent2_row_min = self.dim_state * agent2 agent2_row_max = agent2_row_min + self.dim_obs x1 = x[agent1_row_min:agent1_row_max] t1 = x1[0:2] R1 = dse_lib.theta_2_rotm(x1[2, 0]) x2 = x[agent2_row_min:agent2_row_max] t2 = x2[0:2] R2 = dse_lib.theta_2_rotm(x2[2, 0]) zt = (np.transpose(R1).dot(t2) - np.transpose(R1).dot(t1))[:, 0] zR = np.transpose(R1).dot(R2) zr = [-np.arccos(zR[0, 0])] z_true = np.concatenate((zt, zr))[:, None] self.assertEqual(True, np.allclose(z_true, z_jac)) def test_extend_arrays_no_extension(self): ############################################################################## rospy.loginfo("-D- test_extend_arrays_0") dim_state = 12 id_list = np.arange(5) observed_ids = id_list n_ids = len(id_list) Y_11 = np.eye((dim_state * n_ids)) y_11 = np.ones((dim_state * n_ids, 1)) x_11 = np.linalg.inv(Y_11).dot(y_11) P_11 = np.linalg.inv(Y_11) id_list_2, Y_11_2, y_11_2, P_11_2, x_11_2 = dse_lib.extend_arrays(observed_ids, id_list, Y_11, y_11, dim_state) self.assertEqual(True, np.allclose(P_11, P_11_2)) self.assertEqual(True, np.allclose(x_11, x_11_2)) self.assertEqual(True, np.allclose(Y_11, Y_11_2)) self.assertEqual(True, np.allclose(y_11, y_11_2)) self.assertEqual(True, np.allclose(id_list, id_list_2)) def test_extend_arrays_add_1(self): ############################################################################## rospy.loginfo("-D- test_extend_arrays_0") dim_state = 12 id_list = np.arange(5) observed_ids = np.arange(6) n_ids = len(id_list) Y_11 = np.eye((dim_state * n_ids)) y_11 = np.ones((dim_state * n_ids, 1)) x_11 = np.linalg.inv(Y_11).dot(y_11) P_11 = np.linalg.inv(Y_11) id_list_2,
other functions to work with the new field. global u, v, arrows, stacks, polar_tracker, dyn_coord # take inputs and globally update them update_variables() # set radial tracker polar_tracker = False # take all these values, and the input from field component bnoxes to set up the field: u, v = eq_to_comps(string_x, string_y, xg, yg) # plot depending on chosen type of vector if tensor.get() == 0: arrows = False stacks = True elif tensor.get() == 1: arrows = True stacks = False elif tensor.get() == 2: arrows = True stacks = True # clear the current axis main_axis.clear() # deal with grids if user is in the LI tab if tab_text == 'Line Integrals': global LI_total, LI_coord, shape_area # first, initialise variables again LI_coord = [] LI_total = 0 flux = 0 shape_area = 0 ratio1 = 0 ratio2 = 0 # update the labels LI_total_label.configure(text=LI_total) flux_label.configure(text=flux) shape_area_label.configure(text=shape_area) ratio1_label.configure(text=ratio1) ratio2_label.configure(text=ratio2) # plot the grid poly_grid_submit() if tab_text == 'Dynamics': if test_for_clearing_dyn == 1: for a in range(len(dyn_coord)): try: exec('global ' + 'xy' + str(a) + '\n' + 'del ' + 'xy' + str(a)) except NameError: pass # then clear coordinates dyn_coord = [] # create a figure and display it stack_plot(xg, yg, main_axis, u, v, s_max, L, pt_den, fract, arrows, stacks, orientation, scale, w_head, h_head, 0, logartmic_scale_bool=logartmic_scale_bool) canvas.draw() # recolour pt_den to white, if it was red from polar plots pt_den_entry.configure(bg='white') # colour the x and y boxes green to show that these plot x_comp_entry.configure(bg='#C0F6BB') y_comp_entry.configure(bg='#C0F6BB') # define a function that will respons to field selection in the drop down menu def field_selection_response(event): global u, v, fract, calculus_form_tracker, polar_tracker, arrows, stacks # clear the x and y component boxes x_comp_entry.delete(0, 'end') y_comp_entry.delete(0, 'end') # get the index at which this entry is selected_index = field_name_list.index(str(field_select_drop.get())) # using that index, get the x and y components from their lists # and insert these into x and y comp. entry boxes x_comp_selected = field_x_list[selected_index] y_comp_selected = field_y_list[selected_index] x_comp_entry.insert(0, x_comp_selected) y_comp_entry.insert(0, y_comp_selected) # colour code to be able to distinguish what is being plotted x_comp_entry.configure(bg='#C0F6BB') y_comp_entry.configure(bg='#C0F6BB') # now call the plot function to finalise all these onto the plot # depending on tab ,use correct 1 form plotting fucntion if tab_text == 'Ext. Alegebra': # this plots 1 form always for these responses form_1_stacks_response() else: # check if the selected field is stricte a 1-form # if so, change representation. if selected_index == 7 or selected_index == 8 or selected_index == 9 or selected_index == 10: # select stacks to be plotted tensor.set(0) # call a function to deal with this change too: vect_type_response(tensor.get()) # respons to this by removing options unavaliable to 1-forms in # main tab: if click_opt_int != 0 and click_opt_int != 1: click_option.set(0) click_option_handler(click_option.get()) click_option_Deriv_btn.configure(state=tk.DISABLED) click_option_Div_btn.configure(state=tk.DISABLED) click_option_Curl_btn.configure(state=tk.DISABLED) component_x_entry_label.configure(text='dx component') component_y_entry_label.configure(text='dy component') field_select_drop_label.configure(text='Select Pre-Defined 1-Form:') # then, with all these set, call the plot function. PLOT_response() ''' CUSTOMISATIONS ''' # define a function to respond to submitting arrohead changes in the new window def custom_submission(): # first, take from entry boxes, wanted parameters and make them global: global w_head, h_head, fract, scale w_head = float(w_entry.get()) h_head = float(h_entry.get()) fract = float(fract_entry.get()) scale = float(arr_scale_entry.get()) # DO not actually replot, just save these as globals # then close the window arrowH_opt_window.destroy() # recolour pt_den to white, if it was red from polar plots pt_den_entry.configure(bg='white') # define a reponse function to open a new window when arrowh_btn is pressed: def custom_btn_reponse(): global w_entry, h_entry, fract_entry, arr_scale_entry, arrowH_opt_window # open a titled new window arrowH_opt_window = tk.Toplevel() arrowH_opt_window.title('optimisation settings') # define and label and first entry, for width tk.Label(arrowH_opt_window, text='arrowhead base width as sheet width fraction:').grid(row=0, column=0) w_entry = tk.Entry(arrowH_opt_window, width=30, borderwidth=1) w_entry.insert(0, w_head) w_entry.grid(row=1, column=0) # define and label second entry, for height tk.Label(arrowH_opt_window, text='arrowhead perp. height as sheet length fraction:').grid(row=2, column=0) h_entry = tk.Entry(arrowH_opt_window, width=30, borderwidth=1) h_entry.insert(0, h_head) h_entry.grid(row=3, column=0) # define an entry for fract update, to change the size of each stack as a frac of graph size L tk.Label(arrowH_opt_window, text='fraction of graph to be set as the stack size:').grid(row=4, column=0) fract_entry = tk.Entry(arrowH_opt_window, width=30, borderwidth=1) fract_entry.insert(0, fract) fract_entry.grid(row=5, column=0) # define an entry for fract update, to change the size of each stack as a frac of graph size L tk.Label(arrowH_opt_window, text='arrow size linear scaling:').grid(row=6, column=0) arr_scale_entry = tk.Entry(arrowH_opt_window, width=30, borderwidth=1) arr_scale_entry.insert(0, scale) arr_scale_entry.grid(row=7, column=0) # define a button to submit those changes: submit_arr_btn = tk.Button(arrowH_opt_window, text='SAVE ALL', padx=20, pady=10, command=custom_submission) submit_arr_btn.grid(row=8, column=0, pady=10) # define a response funcction to autoscale toggle button def scale_toggle_response(): global ascale if ascale.get() == 0: # the burron is off, and has been clicked therefore change the # variable to an and the image to on ascale.set(1) ascale_toggle.configure(image=toggle_image_on) ascale_toggle_LI.configure(image=toggle_image_on) # for it to update, reclick whatever radiobutton is selected # or, if stacks only is chosen, change it to both, to show some change vect_type_response(tensor.get()) else: # the button is on and has been clicked # set it to off and change image ascale.set(0) ascale_toggle.configure(image=toggle_image_off) ascale_toggle_LI.configure(image=toggle_image_off) # for it to update, reclick whatever radiobutton is selected # or, if stacks only is chosen, change it to both, to show some change vect_type_response(tensor.get()) # define a function to respond to toggle for log scaling def log_scale_toggle_response(): global logartmic_scale_bool if logartmic_scale_tk.get() == 0: # the burron is off, and has been clicked therefore change the # variable to an and the image to on logartmic_scale_tk.set(1) logartmic_scale_bool = 1 logartmic_scale_toggle.configure(image=toggle_image_on) else: # the button is on and has been clicked # set it to off and change image logartmic_scale_tk.set(0) logartmic_scale_bool = 0 logartmic_scale_toggle.configure(image=toggle_image_off) ''' POLAR PLOTS ''' # define a function to repond to plotting apolar grid # takes the same field, but plots it on a polar grid def Polar_grid_plot_response(tensor): global xg, yg, u, v, s_max, pt_den_entry, polar_tracker # set the polar tracker polar_tracker = True # set the number of sheets to use from input box s_max = int(s_max_entry.get()) # the polar grid comes from global already defined # to change it, change it in the poalr field window # apart from size, this should be based on L # therefore use it to redefine it with that. L = float(L_entry.get()) # using these redefine the new polar grids r = np.linspace(r_min, L, r_den) theta = np.linspace(360/(theta_den-1), 360, theta_den) * np.pi/180 # mesh into a grid rg, thetag = np.meshgrid(r, theta) # convert grid to cartesian xg = rg*np.cos(thetag) yg = rg*np.sin(thetag) # reevaluate the given fields with these new grids: string_x = str(x_comp_entry.get()) string_y = str(y_comp_entry.get()) u, v = eq_to_comps(string_x, string_y, xg, yg) # clear the plot that is already there: main_axis.clear() # deal with grids if user is in the LI tab if tab_text == 'Line Integrals': global LI_total, LI_coord, shape_area # first, initialise variables again LI_coord = [] LI_total = 0 flux = 0 shape_area = 0 ratio1 = 0 ratio2 = 0 # update the labels LI_total_label.configure(text=LI_total) flux_label.configure(text=flux) shape_area_label.configure(text=shape_area) ratio1_label.configure(text=ratio1) ratio2_label.configure(text=ratio2) # plot the grid poly_grid_submit() # use the selected tensor to determine what to plot: # 0 is just stacks, 1 is for only arrows and 2 is for both if tensor == 0: arrows = False stacks = True elif tensor == 1: arrows = True stacks = False elif tensor == 2: arrows = True stacks = True # using those, create the plot and display it stack_plot(xg, yg, main_axis, u, v, s_max, L, pt_den, fract, arrows, stacks, orientation, scale, w_head, h_head, 0, logartmic_scale_bool=logartmic_scale_bool) canvas.draw() # colour pt_den red to show that it is not approperiate to use it now # need to def # of points along r and theta, in the additional window pt_den_entry.configure(bg='red') # colour the x and y boxes green to show that these plot x_comp_entry.configure(bg='#C0F6BB') y_comp_entry.configure(bg='#C0F6BB') # deifne a response to the SAVE button in the polar grid customisation window def save_polar_grid(): global r_min,
``ResourcePool``. When methods return a value of this class as a return value, the attribute will be an identifier for the resource type: ``ResourcePool``. If attribute is None, the system will use the resource pool of the source virtual machine. If this results in a conflict due to other placement parameters, the virtual machine clone operation will fail. :type host: :class:`str` or ``None`` :param host: Host onto which the cloned virtual machine should be placed. If ``host`` and ``resourcePool`` are both specified, ``resourcePool`` must belong to ``host``. If ``host`` and ``cluster`` are both specified, ``host`` must be a member of ``cluster``.. This attribute was added in vSphere API 7.0.0. When clients pass a value of this class as a parameter, the attribute must be an identifier for the resource type: ``HostSystem``. When methods return a value of this class as a return value, the attribute will be an identifier for the resource type: ``HostSystem``. If this attribute is unset, if ``resourcePool`` is unset, the cloned virtual machine will use the host of the source virtual machine. if ``resourcePool`` is set, and the target is a standalone host, the host is used. if ``resourcePool`` is set, and the target is a DRS cluster, a host will be picked by DRS. if ``resourcePool`` is set, and the target is a cluster without DRS, InvalidArgument will be thrown. :type cluster: :class:`str` or ``None`` :param cluster: Cluster into which the cloned virtual machine should be placed. If ``cluster`` and ``resourcePool`` are both specified, ``resourcePool`` must belong to ``cluster``. If ``cluster`` and ``host`` are both specified, ``host`` must be a member of ``cluster``.. This attribute was added in vSphere API 7.0.0. When clients pass a value of this class as a parameter, the attribute must be an identifier for the resource type: ``ClusterComputeResource``. When methods return a value of this class as a return value, the attribute will be an identifier for the resource type: ``ClusterComputeResource``. If ``resourcePool`` or ``host`` is specified, it is recommended that this attribute be None. :type datastore: :class:`str` or ``None`` :param datastore: Datastore on which the cloned virtual machine's configuration state should be stored. This datastore will also be used for any virtual disks that are created as part of the virtual machine clone operation unless individually overridden. This attribute was added in vSphere API 7.0.0. When clients pass a value of this class as a parameter, the attribute must be an identifier for the resource type: ``Datastore``. When methods return a value of this class as a return value, the attribute will be an identifier for the resource type: ``Datastore``. If attribute is None, the system will use the datastore of the source virtual machine. """ self.folder = folder self.resource_pool = resource_pool self.host = host self.cluster = cluster self.datastore = datastore VapiStruct.__init__(self) ClonePlacementSpec._set_binding_type(type.StructType( 'com.vmware.vcenter.VM.clone_placement_spec', { 'folder': type.OptionalType(type.IdType()), 'resource_pool': type.OptionalType(type.IdType()), 'host': type.OptionalType(type.IdType()), 'cluster': type.OptionalType(type.IdType()), 'datastore': type.OptionalType(type.IdType()), }, ClonePlacementSpec, False, None)) class CloneSpec(VapiStruct): """ Document-based clone spec. This class was added in vSphere API 7.0.0. .. tip:: The arguments are used to initialize data attributes with the same names. """ def __init__(self, source=None, name=None, placement=None, disks_to_remove=None, disks_to_update=None, power_on=None, guest_customization_spec=None, ): """ :type source: :class:`str` :param source: Virtual machine to clone from. This attribute was added in vSphere API 7.0.0. When clients pass a value of this class as a parameter, the attribute must be an identifier for the resource type: ``VirtualMachine``. When methods return a value of this class as a return value, the attribute will be an identifier for the resource type: ``VirtualMachine``. :type name: :class:`str` :param name: Virtual machine name. This attribute was added in vSphere API 7.0.0. :type placement: :class:`VM.ClonePlacementSpec` or ``None`` :param placement: Virtual machine placement information. This attribute was added in vSphere API 7.0.0. If this attribute is None, the system will use the values from the source virtual machine. If specified, each field will be used for placement. If the fields result in disjoint placement the operation will fail. If the fields along with the placement values of the source virtual machine result in disjoint placement the operation will fail. :type disks_to_remove: :class:`set` of :class:`str` or ``None`` :param disks_to_remove: Set of Disks to Remove. This attribute was added in vSphere API 7.0.0. When clients pass a value of this class as a parameter, the attribute must contain identifiers for the resource type: ``com.vmware.vcenter.vm.hardware.Disk``. When methods return a value of this class as a return value, the attribute will contain identifiers for the resource type: ``com.vmware.vcenter.vm.hardware.Disk``. If None, all disks will be copied. If the same identifier is in :attr:`VM.CloneSpec.disks_to_update` InvalidArgument fault will be returned. :type disks_to_update: (:class:`dict` of :class:`str` and :class:`VM.DiskCloneSpec`) or ``None`` :param disks_to_update: Map of Disks to Update. This attribute was added in vSphere API 7.0.0. When clients pass a value of this class as a parameter, the key in the attribute :class:`dict` must be an identifier for the resource type: ``com.vmware.vcenter.vm.hardware.Disk``. When methods return a value of this class as a return value, the key in the attribute :class:`dict` will be an identifier for the resource type: ``com.vmware.vcenter.vm.hardware.Disk``. If None, all disks will copied to the datastore specified in the :attr:`VM.ClonePlacementSpec.datastore` attribute of :attr:`VM.CloneSpec.placement`. If the same identifier is in :attr:`VM.CloneSpec.disks_to_remove` InvalidArgument fault will be thrown. :type power_on: :class:`bool` or ``None`` :param power_on: Attempt to perform a :attr:`VM.CloneSpec.power_on` after clone. This attribute was added in vSphere API 7.0.0. If None, the virtual machine will not be powered on. :type guest_customization_spec: :class:`VM.GuestCustomizationSpec` or ``None`` :param guest_customization_spec: Guest customization spec to apply to the virtual machine after the virtual machine is deployed. This attribute was added in vSphere API 7.0.0. If None, the guest operating system is not customized after clone. """ self.source = source self.name = name self.placement = placement self.disks_to_remove = disks_to_remove self.disks_to_update = disks_to_update self.power_on = power_on self.guest_customization_spec = guest_customization_spec VapiStruct.__init__(self) CloneSpec._set_binding_type(type.StructType( 'com.vmware.vcenter.VM.clone_spec', { 'source': type.IdType(resource_types='VirtualMachine'), 'name': type.StringType(), 'placement': type.OptionalType(type.ReferenceType(__name__, 'VM.ClonePlacementSpec')), 'disks_to_remove': type.OptionalType(type.SetType(type.IdType())), 'disks_to_update': type.OptionalType(type.MapType(type.IdType(), type.ReferenceType(__name__, 'VM.DiskCloneSpec'))), 'power_on': type.OptionalType(type.BooleanType()), 'guest_customization_spec': type.OptionalType(type.ReferenceType(__name__, 'VM.GuestCustomizationSpec')), }, CloneSpec, False, None)) class DiskRelocateSpec(VapiStruct): """ Document-based disk relocate spec. This class was added in vSphere API 7.0.0. .. tip:: The arguments are used to initialize data attributes with the same names. """ def __init__(self, datastore=None, ): """ :type datastore: :class:`str` or ``None`` :param datastore: Destination datastore to relocate disk. This attribute was added in vSphere API 7.0.0. When clients pass a value of this class as a parameter, the attribute must be an identifier for the resource type: ``Datastore``. When methods return a value of this class as a return value, the attribute will be an identifier for the resource type: ``Datastore``. This attribute is currently required. In the future, if this attribute is unset, disk will use the datastore specified in :attr:`VM.RelocatePlacementSpec.datastore` attribute of :attr:`VM.RelocateSpec.placement`. """ self.datastore = datastore VapiStruct.__init__(self) DiskRelocateSpec._set_binding_type(type.StructType( 'com.vmware.vcenter.VM.disk_relocate_spec', { 'datastore': type.OptionalType(type.IdType()), }, DiskRelocateSpec, False, None)) class RelocatePlacementSpec(VapiStruct): """ The ``VM.RelocatePlacementSpec`` class contains information used to change the placement of an existing virtual machine within the vCenter inventory. This class was added in vSphere API 7.0.0. .. tip:: The arguments are used to initialize data attributes with the same names. """ def __init__(self, folder=None, resource_pool=None, host=None, cluster=None, datastore=None, ): """ :type folder: :class:`str` or ``None`` :param folder: Virtual machine folder into which the virtual machine should be placed. This attribute was added in vSphere API 7.0.0. When clients pass a value of this class as a parameter, the attribute must be an identifier for the resource type: ``Folder``. When methods return a value of this class as a return value, the attribute will be an identifier for the resource type: ``Folder``. If this attribute is None, the virtual machine will stay in the current folder. :type resource_pool: :class:`str` or ``None`` :param resource_pool: Resource pool into
p2sec2)) ax.set_title(f"{abf.abfID} Pulse 1 [{timeNote}]") addComments(abf) ax.set_ylabel(abf.sweepLabelY) ax.set_xlabel(abf.sweepLabelX) plotFigSave(abf, tag=f"generic-paired-pulses", labelAxes=False) # RATIO plotFigNew(abf) ax = plt.gcf().add_subplot(1, 1, 1) # pulse2/pulse1 ratio ratioAvg = sweepAvgs2/sweepAvgs1 # how should this be measured? ratioErr = np.sqrt(np.power(sweepErr1, 2)+np.power(sweepErr2, 2)) ratioErr = sweepErr2*np.nan ax.errorbar(sweepTimes, ratioAvg, ratioErr, ms=20, marker='.', ls='-', capsize=5, color='r') ax.set_title(f"{abf.abfID} Paired Pulse Ratio [p2/p1]") addComments(abf) ax.set_ylabel(abf.sweepLabelY) ax.set_xlabel(abf.sweepLabelX) plotFigSave(abf, tag=f"generic-paired-pulse-ratio", labelAxes=False) return def generic_memtest_ramp(abf, msg=False): """analyzes the ramp part of a sweep to calculate Cm""" log.debug("generic plot: Cm ramp") assert(isinstance(abf,pyabf.ABF)) plotFigNew(abf) # plot the memtest ax1 = plt.gcf().add_subplot(121) pyabf.plot.sweeps(abf, axis=ax1) ax1.set_title("All Sweeps (overlay)") if msg: bbox = dict(facecolor='white', edgecolor='black', boxstyle='round,pad=.4') ax1.text(0.96, 0.96, msg, verticalalignment='top', horizontalalignment='right', fontsize=12, bbox=bbox, transform=plt.gca().transAxes, family='monospace') # plot the ramp ax2 = plt.gcf().add_subplot(222) ax2.set_title("Cm Ramp (phase)") for sweepNumber in abf.sweepList: abf.setSweep(sweepNumber) cmInfo = pyabf.memtest._cm_ramp_points_and_voltages(abf) if not cmInfo: continue rampPoints, rampVoltages = cmInfo rampData = abf.sweepY[rampPoints[0]:rampPoints[2]] color = plt.get_cmap("winter")(sweepNumber/abf.sweepCount) trace1 = rampData[:int(len(rampData)/2)][::-1] trace2 = rampData[int(len(rampData)/2):] ax2.plot(trace1, color=color, alpha=.2) ax2.plot(trace2, color=color, alpha=.2) ax2.set_ylabel("current (pA)") ax2.set_xlabel("data point (index)") # plot the cms cms = pyabf.memtest.cm_ramp_valuesBySweep(abf) cmAvg = np.mean(cms) cmErr = np.std(cms) ax4 = plt.gcf().add_subplot(224) ax4.set_title("Cm = %.02f +/- %.02f pF" % (cmAvg, cmErr)) ax4.set_ylabel("capacitance (pA)") ax4.set_xlabel("sweep number") ax4.plot(cms, '.', ms=10, alpha=.8) ax4.axhline(cmAvg, color='r', ls='--', lw=2, alpha=.5) plotFigSave(abf, tag="memtest", labelAxes=False) def generic_ap_freqPerSweep(abf): """ Create a plot showing the AP frequency by sweep. """ log.debug("generic plot: AP Frequency Per Sweep") assert isinstance(abf, pyabf.ABF) apsPerSweep = [0]*abf.sweepCount sweepTimesSec = np.arange(abf.sweepCount)*abf.sweepLengthSec for sweep in abf.sweepList: abf.setSweep(sweep) sweepApPoints = pyabf.ap.ap_points_currentSweep(abf) apsPerSweep[sweep] = len(sweepApPoints) plotFigNew(abf) plt.grid(alpha=.5,ls='--') plt.plot(sweepTimesSec, apsPerSweep, '.-', ms=10) plt.ylabel("Sweep AP Count") plt.xlabel("Experiment Time (seconds)") addComments(abf) plotFigSave(abf, tag="apFreqBySweep", labelAxes=False) def generic_trace_before_after_drug(abf, minAfterDrug = 2, minBeforeDrug = .5, isolateEpoch=3): """create a plot showing the average of n sweeps before and after the first drug.""" assert isinstance(abf, pyabf.ABF) for drugNumber in range(len(abf.tagComments)): # determine ideal drug times for before/after drug applied baselineSweepTimeMin = abf.tagTimesMin[drugNumber] - minBeforeDrug baselineSweep = int(baselineSweepTimeMin*60/abf.sweepLengthSec) baselineSweep = max(0, baselineSweep) drugSweepTimeMin = abf.tagTimesMin[drugNumber] + minAfterDrug drugSweep = int(drugSweepTimeMin*60/abf.sweepLengthSec) drugSweep = min(drugSweep, abf.sweepCount-1) # isolate just the part of the trace we are interested in if (isolateEpoch): i1 = pyabf.stimulus.epochPoints(abf)[isolateEpoch] i2 = pyabf.stimulus.epochPoints(abf)[isolateEpoch+1] else: i1=0 i2=abf.sweepPointCount # load ramp data from ideal times pyabf.filter.gaussian(abf, 3) abf.setSweep(baselineSweep) rampBaseline = abf.sweepY[i1:i2] abf.setSweep(drugSweep) rampDrug = abf.sweepY[i1:i2] rampDiff = rampDrug - rampBaseline # create the plot plotFigNew(abf) ax1 = plt.gcf().add_subplot(211) ax2 = plt.gcf().add_subplot(212) ax1.set_title("Representative traces around drug %d (%s)"%(drugNumber, abf.tagComments[drugNumber])) ax1.plot(abf.sweepX[i1:i2], rampBaseline, label="-%.02f min"%minBeforeDrug, lw=2, alpha=.7) ax1.plot(abf.sweepX[i1:i2], rampDrug, label="+%.02f min"%minAfterDrug, lw=2, alpha=.7) ax1.legend() pyabf.filter.gaussian(abf, 3) # apply lowpass filter ax2.set_title("Ramp Difference") ax2.plot(abf.sweepX[i1:i2], rampDiff, lw=2, alpha=.7, color='C3') ax2.axhline(0,color='k',ls='--') ax2.legend() plotFigSave(abf, tag="ramp-drug%02d"%drugNumber) return # Code defines which routines or generic graphs to use for each protocol def unknown(abf): """unknown protocol.""" log.debug("running method for unknown protocol") assert isinstance(abf, pyabf.ABF) totalLengthSec = abf.sweepCount*abf.sweepLengthSec if abf.sweepLengthSec < 10 and totalLengthSec < 60*2: generic_overlay(abf, unknown=True) else: generic_continuous(abf, unknown=True) generic_average_over_time(abf) def protocol_0111(abf): """0111 continuous ramp.pro""" assert isinstance(abf, pyabf.ABF) msToPlot = 20 ptToPlot = msToPlot*abf.dataPointsPerMs abf.setSweep(0) segY = abf.sweepY[0:ptToPlot] timeAPsec = 0 # isolate the 1st AP we find for sweep in abf.sweepList: abf.setSweep(sweep) apPoints = pyabf.ap.ap_points_currentSweep(abf) # ignore APs close to the start of the sweep apPoints = [x for x in apPoints if x > ptToPlot] if len(apPoints): pt1 = int(apPoints[0]-ptToPlot/2) segY = abf.sweepY[pt1:pt1+ptToPlot] timeAPsec = apPoints[0]/abf.dataRate+sweep*abf.sweepLengthSec break # prepare the first derivative and X units segYd = np.diff(segY) segYd = np.append(segYd, segYd[-1]) segYd = segYd * abf.dataRate / 1000 segX = np.arange(len(segYd))-len(segYd)/2 segX = segX/abf.dataRate*1000 plotFigNew(abf) # plot the first AP (mV) ax1 = plt.gcf().add_subplot(2, 2, 1) pyabf.plot.sweeps(abf, continuous=True, axis=ax1, linewidth=1, color='C0', alpha=1) zoomSec = .25 ax1.set_title("First AP: Voltage") ax1.axis([timeAPsec-zoomSec, timeAPsec+zoomSec, None, None]) # plot the first AP (V/sec) ax2 = plt.gcf().add_subplot(2, 2, 2) ax2.set_title("First AP: Velocity") ax2.set_ylabel("Velocity (mV/ms)") ax2.set_xlabel("time (ms)") ax2.axhline(-100, color='k', ls=':', lw=2, alpha=.2) ax2.plot(segX, segYd, color='r') ax2.margins(0, .05) # plot the whole ABF ax3 = plt.gcf().add_subplot(2, 2, 3) pyabf.plot.sweeps(abf, continuous=True, axis=ax3, linewidth=1, color='C0', alpha=1) zoomSec = .25 ax3.set_title("Full Signal") ax3.margins(0, .05) # plot the first AP (V/sec) ax4 = plt.gcf().add_subplot(2, 2, 4) ax4.set_title("First AP: Phase Plot") ax4.set_xlabel("Membrane Potential (mV)") ax4.set_ylabel("Velocity (mV/ms)") ax4.plot(segY, segYd, '.-', color='C1') ax4.margins(.1, .1) ax4.axis([ax1.axis()[2], ax1.axis()[3], ax2.axis()[2], ax2.axis()[3]]) plotFigSave(abf, tag=f"rampAP", labelAxes=False) def protocol_0101(abf): """0112 0101 tau -10pA""" assert isinstance(abf, pyabf.ABF) generic_overlay_average(abf, baselineSec1=0, baselineSec2=0.1) return def protocol_0102(abf): """0102 IC sine sweep.pro""" assert isinstance(abf, pyabf.ABF) generic_overlay(abf) return def protocol_0112(abf): """0112 steps dual -50 to 150 step 10.pro""" assert isinstance(abf, pyabf.ABF) generic_ap_steps(abf) protocol_0111(abf) return def protocol_0113(abf): """0113 steps dual -100 to 300 step 25.pro""" assert isinstance(abf, pyabf.ABF) generic_ap_steps(abf) protocol_0111(abf) return def protocol_0114(abf): """0114 steps dual -100 to 2000 step 100.pro""" assert isinstance(abf, pyabf.ABF) generic_ap_steps(abf) protocol_0111(abf) return def protocol_0121(abf): """0121 IC sine sweep 0 +- 20 pA.pro""" assert isinstance(abf, pyabf.ABF) generic_overlay(abf) return def protocol_0122(abf): """0122 steps single -50 to 150 step 10.pro""" assert isinstance(abf, pyabf.ABF) generic_ap_steps(abf) return def protocol_0201(abf): """0201 memtest.pro""" assert isinstance(abf, pyabf.ABF) msg = pyabf.memtest.step_summary(abf) if 2 in abf._epochPerDacSection.nEpochType: # there is a ramp and a step generic_memtest_ramp(abf, msg) else: # there is no ramp plotFigNew(abf) ax1 = plt.gcf().add_subplot(111) pyabf.plot.sweeps(abf, axis=ax1) ax1.set_title("MemTest (without ramp)") bbox = dict(facecolor='white', edgecolor='black', boxstyle='round,pad=.4') ax1.text(0.96, 0.96, msg, verticalalignment='top', horizontalalignment='right', transform=plt.gca().transAxes, fontsize=16, bbox=bbox, family='monospace') plotFigSave(abf, tag="memtest") return def protocol_0202(abf): """0202 IV dual""" assert isinstance(abf, pyabf.ABF) generic_iv(abf, .8, 1, 10, -110) return def protocol_0203(abf): """0203 IV fast.pro""" assert isinstance(abf, pyabf.ABF) generic_iv(abf, .8, 1, 5, -110) return def protocol_0204(abf): """0204 Cm ramp.pro""" assert isinstance(abf, pyabf.ABF) generic_memtest_ramp(abf) return def protocol_0221(abf): """0221 VC sine sweep 70 +- 5 mV.pro""" assert isinstance(abf, pyabf.ABF) generic_overlay(abf) return def protocol_0222(abf): """0222 VC sine sweep 70 +- 5 mV.pro""" assert isinstance(abf, pyabf.ABF) generic_overlay(abf) return def protocol_0301(abf): """0301 ic gap free.pro""" assert isinstance(abf, pyabf.ABF) generic_continuous(abf) return def protocol_0302(abf): """0302 IC 10s IC ramp drug.pro""" assert isinstance(abf, pyabf.ABF) generic_ap_freqPerSweep(abf) generic_trace_before_after_drug(abf, isolateEpoch=None) return def protocol_0303(abf): """0303 IC 10s opto.pro""" assert isinstance(abf, pyabf.ABF) plotFigNew(abf) shadeDigitalOutput(abf, 4, color='g') verticalOffset = 0 for sweep in abf.sweepList: abf.setSweep(sweep) if abf.sweepUnitsY == "mV": traceColor = 'b' else: traceColor = 'r' plt.plot(abf.sweepX, abf.sweepY + verticalOffset*sweep, color=traceColor, lw=.5, alpha=.5) plt.margins(0,.1) plt.title(f"OVerlay of {abf.sweepCount} sweeps") plotFigSave(abf, tag="opto-stacked", labelAxes=True) return def protocol_0312(abf): """0312 ic cosine 10s.pro""" assert isinstance(abf, pyabf.ABF) generic_continuous(abf) generic_ap_freqPerSweep(abf) generic_trace_before_after_drug(abf, isolateEpoch=None) return def protocol_0401(abf): """0401 VC 2s MT-70.pro""" assert isinstance(abf, pyabf.ABF) generic_continuous(abf) generic_average_over_time(abf, timeSec1=1) generic_memtest_over_time(abf) return def protocol_0402(abf): """0402 VC 2s MT-50.pro""" assert isinstance(abf, pyabf.ABF) generic_continuous(abf) generic_average_over_time(abf, timeSec1=1) generic_memtest_over_time(abf) return def protocol_0403(abf): """0402 VC 2s MT-70.pro""" assert isinstance(abf, pyabf.ABF) generic_continuous(abf) generic_average_over_time(abf, timeSec1=1) generic_memtest_over_time(abf) return def protocol_0404(abf): """0404 VC 2s MT2-70 ramp -110-50.pro""" assert isinstance(abf, pyabf.ABF) generic_average_over_time(abf, timeSec1=1.5) generic_trace_before_after_drug(abf) generic_memtest_over_time(abf) return def protocol_0405(abf): """0404 VC 2s MT2-70 ramp -110-50.pro""" assert isinstance(abf, pyabf.ABF) generic_first_sweep(abf) generic_continuous(abf) generic_average_over_time(abf, timeSec1=1) generic_memtest_over_time(abf) return def protocol_0406(abf): """0406 VC 10s MT-50.pro""" assert isinstance(abf, pyabf.ABF) generic_continuous(abf) generic_memtest_over_time(abf) return def protocol_0408(abf): """0408 VC 10s two step.pro""" assert isinstance(abf, pyabf.ABF) generic_continuous(abf) generic_memtest_over_time(abf) return def protocol_0409(abf): """0406 VC 10s MT-50.pro""" assert isinstance(abf, pyabf.ABF) generic_continuous(abf) generic_average_over_time(abf, 0, .4) generic_memtest_over_time(abf) return def protocol_0501(abf): """0501 opto -50.pro""" assert isinstance(abf, pyabf.ABF) timeSec1, timeSec2 = 1.10, 1.30 p1, p2 = int(timeSec1*abf.dataRate), int(timeSec2*abf.dataRate) # plot every sweep and the average of all sweeps plotFigNew(abf) shadeDigitalOutput(abf, 4) for sweep in abf.sweepList: abf.setSweep(sweep) abf.sweepY[:p1] = np.nan abf.sweepY[p2:] = np.nan plt.plot(abf.sweepX, abf.sweepY, alpha=.2, color='.5') avg = pyabf.sweep.averageTrace(abf, timeSec1=timeSec1, timeSec2=timeSec2) abf.sweepY *= np.nan abf.sweepY[p1:p2] = avg plt.plot(abf.sweepX, abf.sweepY) plotFigSave(abf, tag="opto-avg", labelAxes=True) # make stacked graph plotFigNew(abf) shadeDigitalOutput(abf, 4) vertOffset = False for sweep in abf.sweepList: abf.setSweep(sweep) if not vertOffset: vertOffset = np.max(abf.sweepY[p1:p2]) - np.min(abf.sweepY[p1:p2]) vertOffset *= 1.2 plt.plot(abf.sweepX[p1:p2], abf.sweepY[p1:p2] + vertOffset*sweep, color='b', alpha=.7) plotFigSave(abf, tag="opto-stacked", labelAxes=True) return def protocol_0502(abf): """0502 opto 0.pro""" assert isinstance(abf, pyabf.ABF) plotFigNew(abf) shadeDigitalOutput(abf, 4, color='g') verticalOffset = 0 for sweep in abf.sweepList: abf.setSweep(sweep) if abf.sweepUnitsY == "mV": traceColor = 'b' else: traceColor = 'r' plt.plot(abf.sweepX, abf.sweepY + verticalOffset*sweep, color=traceColor, lw=.5, alpha=.5) plt.margins(0,.1) plt.title(f"OVerlay of {abf.sweepCount} sweeps") plotFigSave(abf, tag="opto-stacked", labelAxes=True) return def protocol_0912(abf): """0912 VC 20s stim PPR 40ms.pro""" assert isinstance(abf, pyabf.ABF) p1sec = 2.31703 p2sec = p1sec + .05 pulseWidth = .04 generic_continuous(abf) generic_average_over_time(abf, timeSec1=5) generic_first_sweep(abf, 2, 3) generic_paired_pulse(abf, p1sec, p1sec+pulseWidth, p2sec, p2sec+pulseWidth) generic_memtest_over_time(abf) def protocol_0xxx(abf): """Protocols are tagged with this during development.""" assert isinstance(abf, pyabf.ABF) if abf.protocol in ["0xxx VC 10s MT-50 stim", "0xxx VC 10s MT-70 stim"]: protocol_0912(abf) else: unknown(abf) ### These protocol's were made for Kyle and Haley's ABF1 aging project data def protocol_KK01(abf): """Kyle's old experiments: memtest-like
""" Evaluation function of an individual """ from __future__ import division import os import pandas as pd import numpy as np from cea.optimization.master import generation from cea.optimization.master import summarize_network from cea.optimization.constants import * from cea.optimization.master import cost_model from cea.optimization.slave import cooling_main from cea.optimization.slave import heating_main from cea.optimization import supportFn from cea.technologies import substation import check from cea.optimization import slave_data from cea.optimization.slave import electricity_main from cea.optimization.slave.seasonal_storage import storage_main from cea.optimization.slave import natural_gas_main import summarize_individual # +++++++++++++++++++++++++++++++++++++ # Main objective function evaluation # ++++++++++++++++++++++++++++++++++++++ def evaluation_main(individual, building_names, locator, solar_features, network_features, gv, config, prices, lca, ind_num, gen): """ This function evaluates an individual :param individual: list with values of the individual :param building_names: list with names of buildings :param locator: locator class :param solar_features: solar features call to class :param network_features: network features call to class :param gv: global variables class :param optimization_constants: class containing constants used in optimization :param config: configuration file :param prices: class of prices used in optimization :type individual: list :type building_names: list :type locator: string :type solar_features: class :type network_features: class :type gv: class :type optimization_constants: class :type config: class :type prices: class :return: Resulting values of the objective function. costs, CO2, prim :rtype: tuple """ # Check the consistency of the individual or create a new one individual = check_invalid(individual, len(building_names), config) # Initialize objective functions costs, CO2 and primary energy costs_USD = 0 GHG_tonCO2 = 0 PEN_MJoil = 0 Q_heating_uncovered_design_W = 0 Q_heating_uncovered_annual_W = 0 # Create the string representation of the individual DHN_barcode, DCN_barcode, DHN_configuration, DCN_configuration = supportFn.individual_to_barcode(individual, building_names) if DHN_barcode.count("1") == gv.num_tot_buildings: network_file_name_heating = "Network_summary_result_all.csv" Q_DHNf_W = pd.read_csv(locator.get_optimization_network_all_results_summary('all'), usecols=["Q_DHNf_W"]).values Q_heating_max_W = Q_DHNf_W.max() elif DHN_barcode.count("1") == 0: network_file_name_heating = "Network_summary_result_all.csv" Q_heating_max_W = 0 else: network_file_name_heating = "Network_summary_result_" + hex(int(str(DHN_barcode), 2)) + ".csv" if not os.path.exists(locator.get_optimization_network_results_summary(DHN_barcode)): total_demand = supportFn.createTotalNtwCsv(DHN_barcode, locator) building_names = total_demand.Name.values # Run the substation and distribution routines substation.substation_main(locator, total_demand, building_names, DHN_configuration, DCN_configuration, Flag=True) summarize_network.network_main(locator, total_demand, building_names, config, gv, DHN_barcode) Q_DHNf_W = pd.read_csv(locator.get_optimization_network_results_summary(DHN_barcode), usecols=["Q_DHNf_W"]).values Q_heating_max_W = Q_DHNf_W.max() if DCN_barcode.count("1") == gv.num_tot_buildings: network_file_name_cooling = "Network_summary_result_all.csv" if individual[N_HEAT * 2] == 1: # if heat recovery is ON, then only need to satisfy cooling load of space cooling and refrigeration Q_DCNf_W = pd.read_csv(locator.get_optimization_network_all_results_summary('all'), usecols=["Q_DCNf_space_cooling_and_refrigeration_W"]).values else: Q_DCNf_W = pd.read_csv(locator.get_optimization_network_all_results_summary('all'), usecols=["Q_DCNf_space_cooling_data_center_and_refrigeration_W"]).values Q_cooling_max_W = Q_DCNf_W.max() elif DCN_barcode.count("1") == 0: network_file_name_cooling = "Network_summary_result_all.csv" Q_cooling_max_W = 0 else: network_file_name_cooling = "Network_summary_result_" + hex(int(str(DCN_barcode), 2)) + ".csv" if not os.path.exists(locator.get_optimization_network_results_summary(DCN_barcode)): total_demand = supportFn.createTotalNtwCsv(DCN_barcode, locator) building_names = total_demand.Name.values # Run the substation and distribution routines substation.substation_main(locator, total_demand, building_names, DHN_configuration, DCN_configuration, Flag=True) summarize_network.network_main(locator, total_demand, building_names, config, gv, DCN_barcode) if individual[N_HEAT * 2] == 1: # if heat recovery is ON, then only need to satisfy cooling load of space cooling and refrigeration Q_DCNf_W = pd.read_csv(locator.get_optimization_network_results_summary(DCN_barcode), usecols=["Q_DCNf_space_cooling_and_refrigeration_W"]).values else: Q_DCNf_W = pd.read_csv(locator.get_optimization_network_results_summary(DCN_barcode), usecols=["Q_DCNf_space_cooling_data_center_and_refrigeration_W"]).values Q_cooling_max_W = Q_DCNf_W.max() Q_heating_nom_W = Q_heating_max_W * (1 + Q_MARGIN_FOR_NETWORK) Q_cooling_nom_W = Q_cooling_max_W * (1 + Q_MARGIN_FOR_NETWORK) # Modify the individual with the extra GHP constraint try: check.GHPCheck(individual, locator, Q_heating_nom_W, gv) except: print "No GHP constraint check possible \n" # Export to context master_to_slave_vars = calc_master_to_slave_variables(individual, Q_heating_max_W, Q_cooling_max_W, building_names, ind_num, gen) master_to_slave_vars.network_data_file_heating = network_file_name_heating master_to_slave_vars.network_data_file_cooling = network_file_name_cooling master_to_slave_vars.total_buildings = len(building_names) master_to_slave_vars.DHN_barcode = DHN_barcode master_to_slave_vars.DCN_barcode = DCN_barcode if master_to_slave_vars.number_of_buildings_connected_heating > 1: if DHN_barcode.count("0") == 0: master_to_slave_vars.fNameTotalCSV = locator.get_total_demand() else: master_to_slave_vars.fNameTotalCSV = os.path.join(locator.get_optimization_network_totals_folder(), "Total_%(DHN_barcode)s.csv" % locals()) else: master_to_slave_vars.fNameTotalCSV = locator.get_optimization_substations_total_file(DHN_barcode) if master_to_slave_vars.number_of_buildings_connected_cooling > 1: if DCN_barcode.count("0") == 0: master_to_slave_vars.fNameTotalCSV = locator.get_total_demand() else: master_to_slave_vars.fNameTotalCSV = os.path.join(locator.get_optimization_network_totals_folder(), "Total_%(DCN_barcode)s.csv" % locals()) else: master_to_slave_vars.fNameTotalCSV = locator.get_optimization_substations_total_file(DCN_barcode) # Thermal Storage Calculations; Run storage optimization costs_storage_USD, GHG_storage_tonCO2, PEN_storage_MJoil = storage_main.storage_optimization(locator, master_to_slave_vars, lca, prices, config) costs_USD += costs_storage_USD GHG_tonCO2 += GHG_storage_tonCO2 PEN_MJoil += PEN_storage_MJoil # District Heating Calculations if config.district_heating_network: if DHN_barcode.count("1") > 0: (PEN_heating_MJoil, GHG_heating_tonCO2, costs_heating_USD, Q_heating_uncovered_design_W, Q_heating_uncovered_annual_W) = heating_main.heating_calculations_of_DH_buildings(locator, master_to_slave_vars, gv, config, prices, lca) else: GHG_heating_tonCO2 = 0 costs_heating_USD = 0 PEN_heating_MJoil = 0 else: GHG_heating_tonCO2 = 0 costs_heating_USD = 0 PEN_heating_MJoil = 0 costs_USD += costs_heating_USD GHG_tonCO2 += GHG_heating_tonCO2 PEN_MJoil += PEN_heating_MJoil # District Cooling Calculations if gv.ZernezFlag == 1: costs_cooling_USD, GHG_cooling_tonCO2, PEN_cooling_MJoil = 0, 0, 0 elif config.district_cooling_network: reduced_timesteps_flag = False (costs_cooling_USD, GHG_cooling_tonCO2, PEN_cooling_MJoil) = cooling_main.cooling_calculations_of_DC_buildings(locator, master_to_slave_vars, network_features, prices, lca, config, reduced_timesteps_flag) else: costs_cooling_USD, GHG_cooling_tonCO2, PEN_cooling_MJoil = 0, 0, 0 costs_USD += costs_cooling_USD GHG_tonCO2 += GHG_cooling_tonCO2 PEN_MJoil += PEN_cooling_MJoil # District Electricity Calculations (costs_electricity_USD, GHG_electricity_tonCO2, PEN_electricity_MJoil) = electricity_main.electricity_calculations_of_all_buildings(DHN_barcode, DCN_barcode, locator, master_to_slave_vars, network_features, gv, prices, lca, config) costs_USD += costs_electricity_USD GHG_tonCO2 += GHG_electricity_tonCO2 PEN_MJoil += PEN_electricity_MJoil # Natural Gas Import Calculations. Prices, GHG and PEN are already included in the various sections. # This is to save the files for further processing and plots natural_gas_main.natural_gas_imports(master_to_slave_vars, locator, config) # Capex Calculations print "Add extra costs" (costs_additional_USD, GHG_additional_tonCO2, PEN_additional_MJoil) = cost_model.addCosts(building_names, locator, master_to_slave_vars, Q_heating_uncovered_design_W, Q_heating_uncovered_annual_W, solar_features, network_features, gv, config, prices, lca) costs_USD += costs_additional_USD GHG_tonCO2 += GHG_additional_tonCO2 PEN_MJoil += PEN_additional_MJoil summarize_individual.summarize_individual_main(master_to_slave_vars, building_names, individual, solar_features, locator, config) # Converting costs into float64 to avoid longer values costs_USD = np.float64(costs_USD) GHG_tonCO2 = np.float64(GHG_tonCO2) PEN_MJoil = np.float64(PEN_MJoil) print ('Total costs = ' + str(costs_USD)) print ('Total CO2 = ' + str(GHG_tonCO2)) print ('Total prim = ' + str(PEN_MJoil)) # Saving capacity details of the individual return costs_USD, GHG_tonCO2, PEN_MJoil, master_to_slave_vars, individual #+++++++++++++++++++++++++++++++++++ # Boundary conditions #+++++++++++++++++++++++++++++ def check_invalid(individual, nBuildings, config): """ This function rejects individuals out of the bounds of the problem It can also generate a new individual, to replace the rejected individual :param individual: individual sent for checking :param nBuildings: number of buildings :param gv: global variables class :type individual: list :type nBuildings: int :type gv: class :return: new individual if necessary :rtype: list """ valid = True for i in range(N_HEAT): if individual[2 * i] > 0 and individual[2 * i + 1] < 0.01: oldValue = individual[2 * i + 1] shareGain = oldValue - 0.01 individual[2 * i + 1] = 0.01 for rank in range(N_HEAT): if individual[2 * rank] > 0 and i != rank: individual[2 * rank + 1] += individual[2 * rank + 1] / (1 - oldValue) * shareGain elif individual[2*i] == 0: individual[2*i + 1] = 0 frank = N_HEAT * 2 + N_HR for i in range(N_SOLAR): if individual[frank + 2 * i + 1] < 0: individual[frank + 2 * i + 1] = 0 sharePlants = 0 for i in range(N_HEAT): sharePlants += individual[2 * i + 1] if abs(sharePlants - 1) > 1E-3: valid = False shareSolar = 0 nSol = 0 for i in range(N_SOLAR): nSol += individual[frank + 2 * i] shareSolar += individual[frank + 2 * i + 1] if nSol > 0 and abs(shareSolar - 1) > 1E-3: valid = False if config.district_cooling_network: # This is a temporary fix, need to change it in an elaborate method for i in range(N_SOLAR - 1): solar = i + 1 individual[2 * N_HEAT + N_HR + 2*solar] = 0 individual[2 * N_HEAT + N_HR + 2 * solar + 1] = 0 heating_part = 2 * N_HEAT + N_HR + 2 * N_SOLAR + INDICES_CORRESPONDING_TO_DHN for i in range(N_COOL): if individual[heating_part + 2 * i] > 0 and individual[heating_part + 2 * i + 1] < 0.01: oldValue = individual[heating_part + 2 * i + 1] shareGain = oldValue - 0.01 individual[heating_part + 2 * i + 1] = 0.01 for rank in range(N_COOL): if individual[heating_part + 2 * rank] > 0 and i != rank: individual[heating_part + 2 * rank + 1] += individual[heating_part + 2 * rank + 1] / (1 - oldValue) * shareGain elif individual[heating_part + 2*i] == 0: individual[heating_part + 2 * i + 1] = 0 sharePlants = 0 for i in range(N_COOL): sharePlants += individual[heating_part + 2 * i + 1] if abs(sharePlants - 1) > 1E-3: valid = False if not valid: newInd = generation.generate_main(nBuildings, config) L = (N_HEAT + N_SOLAR) * 2 + N_HR for i in range(L): individual[i] = newInd[i] return individual def calc_master_to_slave_variables(individual, Q_heating_max_W, Q_cooling_max_W, building_names, ind_num, gen): """ This function reads the list encoding a configuration and implements the corresponding for the slave routine's to use :param individual: list with inidividual :param Q_heating_max_W: peak heating
"""Module for launching MAPDL locally or connecting to a remote instance with gRPC.""" import platform from glob import glob import re import warnings import os import appdirs import tempfile import socket import time import subprocess from ansys.mapdl import core as pymapdl from ansys.mapdl.core.misc import is_float, random_string, create_temp_dir, threaded from ansys.mapdl.core.errors import ( LockFileException, VersionError, ) from ansys.mapdl.core.mapdl_grpc import MapdlGrpc from ansys.mapdl.core.licensing import LicenseChecker, ALLOWABLE_LICENSES from ansys.mapdl.core.mapdl import _MapdlCore from ansys.mapdl.core import LOG # settings directory SETTINGS_DIR = appdirs.user_data_dir("ansys_mapdl_core") if not os.path.isdir(SETTINGS_DIR): try: os.makedirs(SETTINGS_DIR) except: warnings.warn( "Unable to create settings directory.\n" + "Will be unable to cache MAPDL executable location" ) CONFIG_FILE = os.path.join(SETTINGS_DIR, "config.txt") ALLOWABLE_MODES = ["corba", "console", "grpc"] LOCALHOST = "127.0.0.1" MAPDL_DEFAULT_PORT = 50052 INTEL_MSG = """Due to incompatibilities between 'DMP', Windows and VPN connections, the flat '-mpi INTELMPI' is overwritten by '-mpi msmpi'. If you still want to use 'INTEL', set: launch_mapdl(..., force_intel=True, additional_switches='-mpi INTELMPI') Be aware of possible errors or unexpected behavior with this configuration. """ def _is_ubuntu(): """Determine if running as Ubuntu It's a bit complicated because sometimes the distribution is Ubuntu, but the kernel has been recompiled and no longer has the word "ubuntu" in it. """ # must be running linux for this to be True if os.name != "posix": return False # gcc is installed by default proc = subprocess.Popen("gcc --version", shell=True, stdout=subprocess.PIPE) if 'ubuntu' in proc.stdout.read().decode().lower(): return True # try lsb_release as this is more reliable try: import lsb_release if lsb_release.get_distro_information()["ID"].lower() == "ubuntu": return True except ImportError: # finally, check platform return "ubuntu" in platform.platform().lower() def _version_from_path(path): """Extract ansys version from a path. Generally, the version of ANSYS is contained in the path: C:/Program Files/ANSYS Inc/v202/ansys/bin/win64/ANSYS202.exe /usr/ansys_inc/v211/ansys/bin/mapdl Note that if the MAPDL executable, you have to rely on the version in the path. Parameters ---------- path : str Path to the MAPDL executable Returns ------- int Integer version number (e.g. 211). """ # expect v<ver>/ansys # replace \\ with / to account for possible windows path matches = re.findall(r"v(\d\d\d).ansys", path.replace("\\", "/"), re.IGNORECASE) if not matches: raise RuntimeError(f"Unable to extract Ansys version from {path}") return int(matches[-1]) def close_all_local_instances(port_range=None): """Close all MAPDL instances within a port_range. This function can be used when cleaning up from a failed pool or batch run. Parameters ---------- port_range : list, optional Defaults to ``range(50000, 50200)``. Expand this range if there are many potential instances of MAPDL in gRPC mode. Examples -------- Close all instances on in the range of 50000 and 50199. >>> import ansys.mapdl.core as pymapdl >>> pymapdl.close_all_local_instances() """ if port_range is None: port_range = range(50000, 50200) @threaded def close_mapdl(port, name='Closing mapdl thread.'): try: mapdl = MapdlGrpc(port=port, set_no_abort=False) mapdl.exit() except OSError: pass ports = check_ports(port_range) for port, state in ports.items(): if state: close_mapdl(port) def check_ports(port_range, ip="localhost"): """Check the state of ports in a port range""" ports = {} for port in port_range: ports[port] = port_in_use(port, ip) return ports def port_in_use(port, host=LOCALHOST): """Returns True when a port is in use at the given host. Must actually "bind" the address. Just checking if we can create a socket is insufficient as it's possible to run into permission errors like: - An attempt was made to access a socket in a way forbidden by its access permissions. """ with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock: try: sock.bind((host, port)) return False except: return True def create_ip_file(ip, path): """Create 'mylocal.ip' file required for ansys to change the IP of the gRPC server.""" file_name = os.path.join(path, "mylocal.ip") with open(file_name, "w") as f: f.write(ip) def launch_grpc( exec_file="", jobname="file", nproc=2, ram=None, run_location=None, port=MAPDL_DEFAULT_PORT, ip=LOCALHOST, additional_switches="", override=True, timeout=20, verbose=False, ) -> tuple: """Start MAPDL locally in gRPC mode. Parameters ---------- exec_file : str, optional The location of the MAPDL executable. Will use the cached location when left at the default ``None``. jobname : str, optional MAPDL jobname. Defaults to ``'file'``. nproc : int, optional Number of processors. Defaults to 2. ram : float, optional Fixed amount of memory to request for MAPDL. If ``None``, then MAPDL will use as much as available on the host machine. run_location : str, optional MAPDL working directory. Defaults to a temporary working directory. port : int Port to launch MAPDL gRPC on. Final port will be the first port available after (or including) this port. additional_switches : str, optional Additional switches for MAPDL, for example ``"-p aa_r"``, the academic research license, would be added with: - ``additional_switches="-p aa_r"`` Avoid adding switches like ``"-i"`` ``"-o"`` or ``"-b"`` as these are already included to start up the MAPDL server. See the notes section for additional details. custom_bin : str, optional Path to the MAPDL custom executable. override : bool, optional Attempts to delete the lock file at the run_location. Useful when a prior MAPDL session has exited prematurely and the lock file has not been deleted. verbose : bool, optional Print all output when launching and running MAPDL. Not recommended unless debugging the MAPDL start. Default ``False``. Returns ------- port : int Returns the port number that the gRPC instance started on. Notes ----- These are the MAPDL switch options as of 2020R2 applicable for running MAPDL as a service via gRPC. Excluded switches such as ``"-j"`` either not applicable or are set via keyword arguments. -acc <device> : Enables the use of GPU hardware. See GPU Accelerator Capability in the Parallel Processing Guide for more information. -amfg : Enables the additive manufacturing capability. Requires an additive manufacturing license. For general information about this feature, see AM Process Simulation in ANSYS Workbench. -ansexe <executable> : Activates a custom mechanical APDL executable. In the ANSYS Workbench environment, activates a custom Mechanical APDL executable. -custom <executable> : Calls a custom Mechanical APDL executable See Running Your Custom Executable in the Programmer's Reference for more information. -db value : Initial memory allocation Defines the portion of workspace (memory) to be used as the initial allocation for the database. The default is 1024 MB. Specify a negative number to force a fixed size throughout the run; useful on small memory systems. -dis : Enables Distributed ANSYS See the Parallel Processing Guide for more information. -dvt : Enables ANSYS DesignXplorer advanced task (add-on). Requires DesignXplorer. -l <language> : Specifies a language file to use other than English This option is valid only if you have a translated message file in an appropriately named subdirectory in ``/ansys_inc/v201/ansys/docu`` or ``Program Files\\ANSYS\\Inc\\V201\\ANSYS\\docu`` -m <workspace> : Specifies the total size of the workspace Workspace (memory) in megabytes used for the initial allocation. If you omit the ``-m`` option, the default is 2 GB (2048 MB). Specify a negative number to force a fixed size throughout the run. -machines <IP> : Specifies the distributed machines Machines on which to run a Distributed ANSYS analysis. See Starting Distributed ANSYS in the Parallel Processing Guide for more information. -mpi <value> : Specifies the type of MPI to use. See the Parallel Processing Guide for more information. -mpifile <appfile> : Specifies an existing MPI file Specifies an existing MPI file (appfile) to be used in a Distributed ANSYS run. See Using MPI Files in the Parallel Processing Guide for more information. -na <value>: Specifies the number of GPU accelerator devices Number of GPU devices per machine or compute node when running with the GPU accelerator feature. See GPU Accelerator Capability in the Parallel Processing Guide for more information. -name <value> : Defines Mechanical APDL parameters Set mechanical APDL parameters at program start-up. The parameter name must be at least two characters long. For details about parameters, see the ANSYS Parametric Design Language Guide. -p <productname> : ANSYS session product Defines the ANSYS session product that will run during the session. For more detailed information about the ``-p`` option, see Selecting an ANSYS Product via the Command Line. -ppf <license feature name> : HPC license Specifies which HPC license to use during a parallel processing run. See HPC Licensing in the Parallel Processing Guide for more information. -smp : Enables shared-memory parallelism. See the Parallel Processing Guide for more information. Examples -------- Launch MAPDL using the default
<reponame>jonathanj/mantissa<filename>xmantissa/test/test_interstore.py """ Tests for inter-store messaging module, L{xmantissa.messaging}. This module contains tests for persistent messaging between different accounts. """ import gc from datetime import timedelta from zope.interface import implements from twisted.trial.unittest import TestCase from twisted.internet.defer import Deferred from twisted.protocols.amp import Box, Command, Integer, String from epsilon.extime import Time from axiom.iaxiom import IScheduler from axiom.store import Store from axiom.errors import UnsatisfiedRequirement from axiom.item import Item, POWERUP_BEFORE from axiom.attributes import text, bytes, integer, boolean, inmemory from axiom.userbase import LoginSystem, LoginMethod, LoginAccount from axiom.dependency import installOn from axiom.scheduler import TimedEvent from xmantissa.interstore import ( # Public Names MessageQueue, AMPMessenger, LocalMessageRouter, Value, AMPReceiver, commandMethod, answerMethod, errorMethod, SenderArgument, TargetArgument, # Constants AMP_MESSAGE_TYPE, AMP_ANSWER_TYPE, DELIVERY_ERROR, # Error Types ERROR_REMOTE_EXCEPTION, ERROR_NO_SHARE, ERROR_NO_USER, ERROR_BAD_SENDER, # Private Names _RETRANSMIT_DELAY, _QueuedMessage, _AlreadyAnswered, _FailedAnswer, _AMPExposer, _AMPErrorExposer) from xmantissa.sharing import getEveryoneRole, Identifier from xmantissa.error import ( MessageTransportError, BadSender, UnknownMessageType, RevertAndRespond, MalformedMessage) from xmantissa.ixmantissa import IMessageReceiver, IMessageRouter class SampleException(Exception): """ Something didn't happen because of a problem. """ class StubReceiver(Item): """ This is a message receiver that will store a message sent to it for inspection by tests. """ implements(IMessageReceiver) messageType = text( doc=""" The message type which C{messageReceived} should put into its return value. """) messageData = bytes( doc=""" The message data which C{messageReceived} should put into its return value. """) inconsistent = boolean( doc=""" This value is set to True during the execution of C{messageReceived}, but False afterwards. If everything is properly transactional it should never be observably false by other code. """) buggy = boolean(allowNone=False, default=False, doc=""" C{messageReceived} should raise a L{SampleException}. """) badReturn = boolean(allowNone=False, default=False, doc=""" C{messageReceived} should return L{None}. """) receivedCount = integer(default=0, doc=""" This is a counter of the number of messages received by C{messageReceived}. """) reciprocate = boolean(allowNone=False, default=False, doc=""" C{messageReceived} should respond to its C{sender} parameter with a symmetric message in addition to answering. """) revertType = text(allowNone=True, doc=""" If set, this specifies the type of the L{RevertAndRespond} exception that C{messageReceived} should raise. """) revertData = bytes(allowNone=True, doc=""" If C{revertType} is set, this specifies the data of the L{RevertAndRespond} exception that C{messageReceived} should raise. """) def messageQueue(self): """ This is a temporary workaround; see ticket #2640 for details on the way this method should be implemented in the future. """ return self.store.findUnique(MessageQueue) def messageReceived(self, value, sender, receiver): """ A message was received. Increase the message counter and store its contents. """ self.receivedCount += 1 self.messageType = value.type self.messageData = value.data self.inconsistent = True if self.buggy: raise SampleException("Sample Message") if self.revertType is not None: raise RevertAndRespond(Value(self.revertType, self.revertData)) self.inconsistent = False if self.badReturn: return None if self.reciprocate: self.messageQueue().queueMessage( receiver, sender, Value(value.type + u'.response', value.data + ' response')) return Value(u"custom.message.type", "canned response") class StubSlowRouter(Item): """ Like L{LocalMessageRouter}, but don't actually deliver the messages until the test forces them to be delivered. By way of several parameters to `flushMessages`, this stub implementation allows for all of the arbitrary ways in which a potential networked implementation is allowed to behave - dropping messages, repeating messages, and even failing in buggy ways. Note: this must be kept in memory for the duration of any test using it. @ivar messages: a list of (sender, target, value, messageID) tuples received by routeMessage. @ivar acks: a list of (deferred, (sender, target, value, messageID)) tuples, representing an answer received by routeAnswer and the deferred that was returned to indicate its delivery. """ dummy = integer( doc=""" No state on this item is persistent; this is just to satisfy Axiom's schema requirement. """) messages = inmemory() acks = inmemory() def localRouter(self): """ Return a L{LocalMessageRouter} for this slow router's store. """ return LocalMessageRouter(self.store.findUnique(LoginSystem)) def activate(self): """ Initialize temporary list to queue messages. """ self.messages = [] self.acks = [] def routeMessage(self, sender, target, value, messageID): """ Stub implementation of L{IMessageRouter.routeMessage} that just appends to a list in memory, and later delegates from that list to the local router. """ self.messages.append((sender, target, value, messageID)) def routeAnswer(self, originalSender, originalTarget, value, messageID): """ Stub implementation of L{IMessageRouter.routeAnswer} that just appends to a list in memory. """ D = Deferred() self.acks.append((D, (originalSender, originalTarget, value, messageID))) return D def flushMessages(self, dropAcks=False, dropAckErrorType=MessageTransportError, stallAcks=False, repeatAcks=False): """ Delegate all messages queued in memory with routeMessage to the specified local router. @param dropAcks: a boolean, indicating whether to drop the answers queued by routeAnswer. @param dropAckErrorType: an exception type, indicating what exception to errback the Deferreds returned by routeAnswer with. @param stallAcks: a boolean, indicating whether to keep, but not act, on the answers queued by routeAnswer. @param repeatAcks: a boolean, indicating whether to repeat all of the acks the next time flushMessages is called. """ m = self.messages[:] self.messages = [] for message in m: self.localRouter().routeMessage(*message) if dropAcks: for D, ack in self.acks: D.errback(dropAckErrorType()) self.acks = [] if not stallAcks: for D, ack in self.acks: self.localRouter().routeAnswer(*ack).chainDeferred(D) if repeatAcks: # the Deferreds are used up, so we need a fresh batch for the # next run-through (although these will be ignored) self.acks = [(Deferred(), ack) for (D, ack) in self.acks] else: self.acks = [] def spuriousDeliveries(self): """ Simulate a faulty transport, and deliver all the currently pending messages without paying attention to their results. """ for message in self.messages: self.localRouter().routeMessage(*message) class StubDeliveryConsequence(Item): """ This implements a delivery consequence. @ivar responses: a tuple of (answer-type, answer-data, message-type, message-data, sender, target), listing all the answers received by answerReceived. @ivar bucket: a list which will have this L{StubDeliveryConsequence} appended to it when a successful message is processed. """ responses = inmemory() bucket = inmemory() invocations = integer( """ Counter, keeping track of how many times this consequence has been invoked. """, default=0, allowNone=False) succeeded = boolean( """ Did the action succeed? None if it hasn't completed, True if yes, False if no. """) inconsistent = boolean( """ This should never be set to True. It's set to None by default, False when the callback fully succeeds. """) buggy = boolean( """ Set this to cause 'success' to raise an exception. """, default=False, allowNone=False) def activate(self): """ Initialize the list of received responses. """ self.responses = [] self.bucket = [] def success(self): """ A response was received to the message. This will be executed in a transaction. Raise an exception if this consequence is buggy. """ self.bucket.append(self) self.inconsistent = True self.invocations += 1 self.succeeded = True if self.buggy: raise SampleException() self.inconsistent = False def failure(self): """ The message could not be delivered for some reason. This will be executed in a transaction. Raise an exception if this consequence is buggy. @param reason: an exception. """ self.invocations += 1 self.succeeded = False def answerReceived(self, answerValue, originalValue, originalSender, originalTarget): """ An answer was received. """ if answerValue.type == DELIVERY_ERROR: self.failure() else: self.success() # It's important that this happen after the "application" logic so that # the tests will not see this set if an exception has been raised. self.responses.append((answerValue.type, answerValue.data, originalValue.type, originalValue.data, originalSender, originalTarget)) class TimeFactory(object): """ Make a fake time factory. """ def __init__(self): """ Create a time factory with some default values. """ self.currentSeconds = 0.0 def advance(self): """ Advance the current time by one second. """ self.currentSeconds += 1.0 def next(self): """ Produce the next time in the sequence, then advance. """ self.advance() return Time.fromPOSIXTimestamp(self.currentSeconds) def peek(self): """ Return the value that will come from the next call to 'next'. """ return Time.fromPOSIXTimestamp(self.currentSeconds + 1) class SingleSiteMessagingTests(TestCase): """ These are tests for messaging within a single configured site store. """ def setUp(self): """ Create a site store with two users that can send messages to each other. """ self.siteStore = Store() self.time = TimeFactory() self.loginSystem = LoginSystem(store=self.siteStore) installOn(self.loginSystem, self.siteStore) self.aliceAccount = self.loginSystem.addAccount( u"alice", u"example.com", u"asdf", internal=True) self.bobAccount = self.loginSystem.addAccount( u"bob", u"example.com", u"asdf", internal=True) self.aliceStore, self.aliceQueue = self.accountify( self.aliceAccount.avatars.open()) self.bobStore, self.bobQueue = self.accountify( self.bobAccount.avatars.open()) # I need to make a target object with a message receiver installed on # it. Then I need to share that object. self.receiver = StubReceiver(store=self.bobStore) getEveryoneRole(self.bobStore).shareItem(self.receiver, u"suitcase") self.retransmitDelta = timedelta(seconds=_RETRANSMIT_DELAY) def accountify(self, userStore): """ Add a MessageQueue to the given user
# - *- coding: utf-8 -*- from unittest import TestCase from nose.tools import ok_, eq_ from datetime import date from daynextprev import ( prev_month, next_month, is_less_ym, months, months_backward, is_leapyear, days_of_month, next_day, prev_day, days, days_backward, this_week, next_week, prev_week, W_MONDAY, W_TUESDAY, W_WEDNESDAY, W_THURSDAY, W_FRIDAY, W_SATURDAY, W_SUNDAY ) class DayNextPrevTestCase(TestCase): def test_constants(self): eq_(0, W_MONDAY) eq_(1, W_TUESDAY) eq_(2, W_WEDNESDAY) eq_(3, W_THURSDAY) eq_(4, W_FRIDAY) eq_(5, W_SATURDAY) eq_(6, W_SUNDAY) def test_prev_month(self): eq_((2017, 12), prev_month(2018, 1)) eq_((2018, 1), prev_month(2018, 2)) eq_((2018, 2), prev_month(2018, 3)) eq_((2018, 3), prev_month(2018, 4)) eq_((2018, 4), prev_month(2018, 5)) eq_((2018, 5), prev_month(2018, 6)) eq_((2018, 6), prev_month(2018, 7)) eq_((2018, 7), prev_month(2018, 8)) eq_((2018, 8), prev_month(2018, 9)) eq_((2018, 9), prev_month(2018, 10)) eq_((2018, 10), prev_month(2018, 11)) eq_((2018, 11), prev_month(2018, 12)) def test_next_month(self): eq_((2018, 2), next_month(2018, 1)) eq_((2018, 3), next_month(2018, 2)) eq_((2018, 4), next_month(2018, 3)) eq_((2018, 5), next_month(2018, 4)) eq_((2018, 6), next_month(2018, 5)) eq_((2018, 7), next_month(2018, 6)) eq_((2018, 8), next_month(2018, 7)) eq_((2018, 9), next_month(2018, 8)) eq_((2018, 10), next_month(2018, 9)) eq_((2018, 11), next_month(2018, 10)) eq_((2018, 12), next_month(2018, 11)) eq_((2019, 1), next_month(2018, 12)) def test_is_less_ym(self): # ym1 < ym2 ok_(is_less_ym((2018, 1), (2018, 2))) ok_(is_less_ym((2015, 10), (2017, 3))) # ym1 == ym2 ok_(not is_less_ym((2018, 1), (2018, 1))) ok_(not is_less_ym((2000, 3), (2000, 3))) # ym1 > ym2 ok_(not is_less_ym((2018, 2), (2018, 1))) ok_(not is_less_ym((2015, 10), (2014, 12))) def test_months(self): months1 = months((2018, 1), (2018, 5), include_end=True) months1_1 = [] for ym in months1: months1_1.append(ym) eq_( [ (2018, 1), (2018, 2), (2018, 3), (2018, 4), (2018, 5) ], months1_1 ) months1_2 = [] for ym in months1: months1_2.append(ym) eq_( [ (2018, 1), (2018, 2), (2018, 3), (2018, 4), (2018, 5) ], months1_2 ) months2 = list(months((2018, 1), (2018, 5), include_end=False)) eq_( [ (2018, 1), (2018, 2), (2018, 3), (2018, 4) ], months2 ) months3 = list(months((2018, 2), (2018, 6))) eq_( [ (2018, 2), (2018, 3), (2018, 4), (2018, 5), (2018, 6) ], months3 ) def test_months_backward(self): months1 = months_backward((2018, 2), (2017, 11), include_end=True) months1_1 = [] for ym in months1: months1_1.append(ym) eq_( [ (2018, 2), (2018, 1), (2017, 12), (2017, 11) ], months1_1 ) months1_2 = list(months1) eq_( [ (2018, 2), (2018, 1), (2017, 12), (2017, 11) ], months1_2 ) months2 = list(months_backward((2018, 2), (2017, 11), include_end=False)) eq_( [ (2018, 2), (2018, 1), (2017, 12) ], months2 ) months3 = list(months_backward((2018, 3), (2018 ,1))) eq_( [ (2018, 3), (2018, 2), (2018, 1) ], months3 ) def test_is_leapyear(self): # leap year (y % 400 == 0) ok_(is_leapyear(1600)) ok_(is_leapyear(2000)) ok_(is_leapyear(2400)) # NOT leap year (y % 100 == 0) ok_(not is_leapyear(1700)) ok_(not is_leapyear(1800)) ok_(not is_leapyear(1900)) ok_(not is_leapyear(2100)) ok_(not is_leapyear(2200)) ok_(not is_leapyear(2300)) # leap year (y % 4 == 0) ok_(is_leapyear(1704)) ok_(is_leapyear(1784)) ok_(is_leapyear(1820)) ok_(is_leapyear(1896)) ok_(is_leapyear(1912)) ok_(is_leapyear(1924)) ok_(is_leapyear(2004)) ok_(is_leapyear(2056)) # NOT leap year ok_(not is_leapyear(1711)) ok_(not is_leapyear(1757)) ok_(not is_leapyear(1791)) ok_(not is_leapyear(1805)) ok_(not is_leapyear(1822)) ok_(not is_leapyear(1861)) ok_(not is_leapyear(1918)) ok_(not is_leapyear(1942)) ok_(not is_leapyear(1997)) ok_(not is_leapyear(2035)) ok_(not is_leapyear(2078)) ok_(not is_leapyear(2095)) ok_(not is_leapyear(2101)) ok_(not is_leapyear(2149)) ok_(not is_leapyear(2189)) def test_days_of_month(self): eq_(29, days_of_month(2016, 2)) eq_(28, days_of_month(2015, 2)) eq_(29, days_of_month(2000, 2)) eq_(28, days_of_month(1900, 2)) eq_(31, days_of_month(2017, 1)) eq_(28, days_of_month(2017, 2)) eq_(31, days_of_month(2017, 3)) eq_(30, days_of_month(2017, 4)) eq_(31, days_of_month(2017, 5)) eq_(30, days_of_month(2017, 6)) eq_(31, days_of_month(2017, 7)) eq_(31, days_of_month(2017, 8)) eq_(30, days_of_month(2017, 9)) eq_(31, days_of_month(2017, 10)) eq_(30, days_of_month(2017, 11)) eq_(31, days_of_month(2017, 12)) def test_next_day(self): eq_((2016, 2, 28), next_day(2016, 2, 27)) eq_(date(2016, 2, 28), next_day(date(2016, 2, 27))) eq_((2016, 2, 29), next_day(2016, 2, 28)) eq_(date(2016, 2, 29), next_day(date(2016, 2, 28))) eq_((2016, 3, 1), next_day(2016, 2, 29)) eq_(date(2016, 3, 1), next_day(date(2016, 2, 29))) eq_((2015, 2, 28), next_day(2015, 2, 27)) eq_(date(2015, 2, 28), next_day(date(2015, 2, 27))) eq_((2015, 3, 1), next_day(2015, 2, 28)) eq_(date(2015, 3, 1), next_day(date(2015, 2, 28))) eq_((2000, 2, 28), next_day(2000, 2, 27)) eq_(date(2000, 2, 28), next_day(date(2000, 2, 27))) eq_((2000, 2, 29), next_day(2000, 2, 28)) eq_(date(2000, 2, 29), next_day(date(2000, 2, 28))) eq_((2000, 3, 1), next_day(2000, 2, 29)) eq_(date(2000, 3, 1), next_day(date(2000, 2, 29))) eq_((1900, 2, 28), next_day(1900, 2, 27)) eq_(date(1900, 2, 28), next_day(date(1900, 2, 27))) eq_((1900, 3, 1), next_day(1900, 2, 28)) eq_(date(1900, 3, 1), next_day(date(1900, 2, 28))) eq_((2017, 1, 1), next_day(2016, 12, 31)) eq_(date(2017, 1, 1), next_day(date(2016, 12, 31))) eq_((2017, 2, 1), next_day(2017, 1, 31)) eq_(date(2017, 2, 1), next_day(date(2017, 1, 31))) eq_((2017, 3, 1), next_day(2017, 2, 28)) eq_(date(2017, 3, 1), next_day(date(2017, 2, 28))) eq_((2017, 4, 1), next_day(2017, 3, 31)) eq_(date(2017, 4, 1), next_day(date(2017, 3, 31))) eq_((2017, 5, 1), next_day(2017, 4, 30)) eq_(date(2017, 5, 1), next_day(date(2017, 4, 30))) eq_((2017, 6, 1), next_day(2017, 5, 31)) eq_(date(2017, 6, 1), next_day(date(2017, 5, 31))) eq_((2017, 7, 1), next_day(2017, 6, 30)) eq_(date(2017, 7, 1), next_day(date(2017, 6, 30))) eq_((2017, 7, 31), next_day(2017, 7, 30)) eq_(date(2017, 7, 31), next_day(date(2017, 7, 30))) eq_((2017, 8, 1), next_day(2017, 7, 31)) eq_(date(2017, 8, 1), next_day(date(2017, 7, 31))) eq_((2017, 9, 1), next_day(2017, 8, 31)) eq_(date(2017, 9, 1), next_day(date(2017, 8, 31))) eq_((2017, 10, 1), next_day(2017, 9, 30)) eq_(date(2017, 10, 1), next_day(date(2017, 9, 30))) eq_((2017, 11, 1), next_day(2017, 10, 31)) eq_(date(2017, 11, 1), next_day(date(2017, 10, 31))) eq_((2017, 12, 1), next_day(2017, 11, 30)) eq_(date(2017, 12, 1), next_day(date(2017, 11, 30))) eq_((2017, 12, 31), next_day(2017, 12, 30)) eq_(date(2017, 12, 31), next_day(date(2017, 12, 30))) eq_((2018, 1, 1), next_day(2017, 12, 31)) eq_(date(2018, 1, 1), next_day(date(2017, 12, 31))) eq_((2017, 5, 13), next_day(2017, 5, 12)) eq_(date(2017, 5, 13), next_day(date(2017, 5, 12))) eq_((2017, 5, 14), next_day(2017, 5, 13)) eq_(date(2017, 5, 14), next_day(date(2017, 5, 13))) eq_((2017, 5, 15), next_day(2017, 5, 14)) eq_(date(2017, 5, 15), next_day(date(2017, 5, 14))) eq_((2017, 5, 16), next_day(2017, 5, 15)) eq_(date(2017, 5, 16), next_day(date(2017, 5, 15))) def test_prev_day(self): eq_((2016, 2, 27), prev_day(2016, 2, 28)) eq_(date(2016, 2, 27), prev_day(date(2016, 2, 28))) eq_((2016, 2, 28), prev_day(2016, 2, 29)) eq_(date(2016, 2, 28), prev_day(date(2016, 2, 29))) eq_((2016, 2, 29), prev_day(2016, 3, 1)) eq_(date(2016, 2, 29), prev_day(date(2016, 3, 1))) eq_((2015, 2, 27), prev_day(2015, 2, 28)) eq_(date(2015, 2, 27), prev_day(date(2015, 2, 28))) eq_((2015, 2, 28), prev_day(2015, 3, 1)) eq_(date(2015, 2, 28), prev_day(date(2015, 3, 1))) eq_((2000, 2, 27), prev_day(2000, 2, 28)) eq_(date(2000, 2, 27), prev_day(date(2000, 2, 28))) eq_((2000, 2, 28), prev_day(2000, 2, 29)) eq_(date(2000, 2, 28), prev_day(date(2000, 2, 29))) eq_((2000, 2, 29), prev_day(2000, 3, 1)) eq_(date(2000, 2, 29), prev_day(date(2000, 3, 1))) eq_((1900, 2, 27), prev_day(1900, 2, 28)) eq_(date(1900, 2, 27), prev_day(date(1900, 2, 28))) eq_((1900, 2, 28), prev_day(1900, 3, 1)) eq_(date(1900, 2, 28), prev_day(date(1900, 3, 1))) eq_((2016, 12, 31), prev_day(2017, 1, 1)) eq_(date(2016, 12, 31), prev_day(date(2017, 1, 1))) eq_((2017, 1, 31), prev_day(2017, 2, 1)) eq_(date(2017, 1, 31), prev_day(date(2017, 2, 1))) eq_((2017, 2, 28), prev_day(2017, 3, 1)) eq_(date(2017, 2, 28), prev_day(date(2017, 3, 1))) eq_((2017, 3, 31), prev_day(2017, 4, 1)) eq_(date(2017, 3, 31), prev_day(date(2017, 4, 1))) eq_((2017, 4, 30), prev_day(2017, 5, 1)) eq_(date(2017, 4, 30), prev_day(date(2017, 5, 1))) eq_((2017, 5, 31), prev_day(2017, 6, 1)) eq_(date(2017, 5, 31), prev_day(date(2017, 6, 1))) eq_((2017, 6, 30), prev_day(2017, 7, 1)) eq_(date(2017, 6, 30), prev_day(date(2017, 7, 1))) eq_((2017, 7, 30), prev_day(2017, 7, 31)) eq_(date(2017, 7, 30), prev_day(date(2017, 7, 31))) eq_((2017, 7, 31), prev_day(2017, 8, 1)) eq_(date(2017, 7, 31), prev_day(date(2017, 8, 1))) eq_((2017, 8, 31), prev_day(2017, 9, 1)) eq_(date(2017, 8, 31), prev_day(date(2017, 9, 1))) eq_((2017, 9, 30), prev_day(2017, 10, 1)) eq_(date(2017, 9, 30), prev_day(date(2017, 10, 1))) eq_((2017, 10, 31), prev_day(2017, 11, 1)) eq_(date(2017, 10, 31), prev_day(date(2017, 11, 1))) eq_((2017, 11, 30), prev_day(2017, 12, 1)) eq_(date(2017, 11, 30), prev_day(date(2017, 12, 1))) eq_((2017, 12, 30), prev_day(2017, 12, 31)) eq_(date(2017, 12, 30), prev_day(date(2017, 12, 31))) eq_((2017, 12, 31), prev_day(2018, 1, 1)) eq_(date(2017, 12, 31), prev_day(date(2018, 1, 1))) eq_((2017, 5, 12), prev_day(2017, 5, 13)) eq_(date(2017, 5, 12), prev_day(date(2017, 5, 13))) eq_((2017, 5, 13), prev_day(2017, 5, 14)) eq_(date(2017, 5, 13), prev_day(date(2017, 5, 14))) eq_((2017, 5, 14), prev_day(2017, 5, 15)) eq_(date(2017, 5, 14), prev_day(date(2017, 5, 15))) eq_((2017, 5, 15), prev_day(2017, 5, 16)) eq_(date(2017, 5, 15), prev_day(date(2017, 5, 16))) def test_days(self): days1 = days((2018, 1, 30), (2018, 2, 3), include_end=True) days1_1 = [] for d in days1: days1_1.append(d) eq_( [ (2018, 1, 30), (2018, 1, 31), (2018, 2, 1), (2018, 2, 2), (2018, 2, 3) ], days1_1 ) days1_2 = list(days1) eq_( [ (2018, 1, 30), (2018, 1, 31), (2018, 2, 1), (2018, 2, 2), (2018, 2, 3) ], days1_2 ) days2 = days((2018, 1, 30), (2018, 2, 3))
""" Unit tests for meta/networks/splitting/multi_splitting_base.py. """ import math import random from itertools import product from typing import Dict, Any, List import numpy as np from scipy import stats import torch import torch.nn.functional as F from gym.spaces import Box from meta.networks.utils import init_base from meta.networks.splitting import BaseMultiTaskSplittingNetwork from meta.utils.estimate import alpha_to_threshold from tests.helpers import DEFAULT_SETTINGS, get_obs_batch from tests.networks.splitting import BASE_SETTINGS from tests.networks.splitting.templates import ( TOL, gradients_template, backward_template, grad_diffs_template, grad_stats_template, score_template, ) def test_forward_shared() -> None: """ Test forward() when all regions of the splitting network are fully shared. The function computed by the network should be f(x) = 3 * tanh(2 * tanh(x + 1) + 2) + 3. """ # Set up case. dim = BASE_SETTINGS["obs_dim"] + BASE_SETTINGS["num_tasks"] observation_subspace = Box( low=-np.inf, high=np.inf, shape=(BASE_SETTINGS["obs_dim"],) ) observation_subspace.seed(DEFAULT_SETTINGS["seed"]) hidden_size = dim # Construct network. network = BaseMultiTaskSplittingNetwork( input_size=dim, output_size=dim, num_tasks=BASE_SETTINGS["num_tasks"], num_layers=BASE_SETTINGS["num_layers"], hidden_size=hidden_size, device=BASE_SETTINGS["device"], ) # Set network weights. state_dict = network.state_dict() for i in range(BASE_SETTINGS["num_layers"]): weight_name = "regions.%d.0.0.weight" % i bias_name = "regions.%d.0.0.bias" % i state_dict[weight_name] = torch.Tensor((i + 1) * np.identity(dim)) state_dict[bias_name] = torch.Tensor((i + 1) * np.ones(dim)) network.load_state_dict(state_dict) # Construct batch of observations concatenated with one-hot task vectors. obs, task_indices = get_obs_batch( batch_size=BASE_SETTINGS["num_processes"], obs_space=observation_subspace, num_tasks=BASE_SETTINGS["num_tasks"], ) # Get output of network. output = network(obs, task_indices) # Computed expected output of network. expected_output = 3 * torch.tanh(2 * torch.tanh(obs + 1) + 2) + 3 # Test output of network. assert torch.allclose(output, expected_output) def test_forward_single() -> None: """ Test forward() when all regions of the splitting network are fully shared except one. The function computed by the network should be f(x) = 3 * tanh(2 * tanh(x + 1) + 2) + 3 for tasks 0 and 1 and f(x) = 3 * tanh(-2 * tanh(x + 1) - 2) + 3 for tasks 2 and 3. """ # Set up case. dim = BASE_SETTINGS["obs_dim"] + BASE_SETTINGS["num_tasks"] observation_subspace = Box( low=-np.inf, high=np.inf, shape=(BASE_SETTINGS["obs_dim"],) ) observation_subspace.seed(DEFAULT_SETTINGS["seed"]) hidden_size = dim # Construct network. network = BaseMultiTaskSplittingNetwork( input_size=dim, output_size=dim, num_tasks=BASE_SETTINGS["num_tasks"], num_layers=BASE_SETTINGS["num_layers"], hidden_size=hidden_size, device=BASE_SETTINGS["device"], ) # Split the network at the second layer. Tasks 0 and 1 stay assigned to the original # copy and tasks 2 and 3 are assigned to the new copy. network.split(1, 0, [0, 1], [2, 3]) # Set network weights. state_dict = network.state_dict() for i in range(BASE_SETTINGS["num_layers"]): weight_name = "regions.%d.0.0.weight" % i bias_name = "regions.%d.0.0.bias" % i state_dict[weight_name] = torch.Tensor((i + 1) * np.identity(dim)) state_dict[bias_name] = torch.Tensor((i + 1) * np.ones(dim)) weight_name = "regions.1.1.0.weight" bias_name = "regions.1.1.0.bias" state_dict[weight_name] = torch.Tensor(-2 * np.identity(dim)) state_dict[bias_name] = torch.Tensor(-2 * np.ones(dim)) network.load_state_dict(state_dict) # Construct batch of observations concatenated with one-hot task vectors. obs, task_indices = get_obs_batch( batch_size=BASE_SETTINGS["num_processes"], obs_space=observation_subspace, num_tasks=BASE_SETTINGS["num_tasks"], ) # Get output of network. output = network(obs, task_indices) # Computed expected output of network. expected_output = torch.zeros(obs.shape) for i, (ob, task) in enumerate(zip(obs, task_indices)): if task in [0, 1]: expected_output[i] = 3 * torch.tanh(2 * torch.tanh(ob + 1) + 2) + 3 elif task in [2, 3]: expected_output[i] = 3 * torch.tanh(-2 * torch.tanh(ob + 1) - 2) + 3 else: raise NotImplementedError # Test output of network. assert torch.allclose(output, expected_output) def test_forward_multiple() -> None: """ Test forward() when none of the layers are fully shared. The function computed by the network should be: - f(x) = 3 * tanh(2 * tanh(x + 1) + 2) + 3 for task 0 - f(x) = -3 * tanh(-2 * tanh(x + 1) - 2) - 3 for task 1 - f(x) = -3 * tanh(1/2 * tanh(-x - 1) + 1/2) - 3 for task 2 - f(x) = 3 * tanh(-2 * tanh(-x - 1) - 2) + 3 for task 3 """ # Set up case. dim = BASE_SETTINGS["obs_dim"] + BASE_SETTINGS["num_tasks"] observation_subspace = Box( low=-np.inf, high=np.inf, shape=(BASE_SETTINGS["obs_dim"],) ) observation_subspace.seed(DEFAULT_SETTINGS["seed"]) hidden_size = dim # Construct network. network = BaseMultiTaskSplittingNetwork( input_size=dim, output_size=dim, num_tasks=BASE_SETTINGS["num_tasks"], num_layers=BASE_SETTINGS["num_layers"], hidden_size=hidden_size, device=BASE_SETTINGS["device"], ) # Split the network at the second layer. Tasks 0 and 1 stay assigned to the original # copy and tasks 2 and 3 are assigned to the new copy. network.split(0, 0, [0, 1], [2, 3]) network.split(1, 0, [0, 2], [1, 3]) network.split(1, 0, [0], [2]) network.split(2, 0, [0, 3], [1, 2]) # Set network weights. state_dict = network.state_dict() for i in range(BASE_SETTINGS["num_layers"]): for j in range(3): weight_name = "regions.%d.%d.0.weight" % (i, j) bias_name = "regions.%d.%d.0.bias" % (i, j) if weight_name not in state_dict: continue if j == 0: state_dict[weight_name] = torch.Tensor((i + 1) * np.identity(dim)) state_dict[bias_name] = torch.Tensor((i + 1) * np.ones(dim)) elif j == 1: state_dict[weight_name] = torch.Tensor(-(i + 1) * np.identity(dim)) state_dict[bias_name] = torch.Tensor(-(i + 1) * np.ones(dim)) elif j == 2: state_dict[weight_name] = torch.Tensor(1 / (i + 1) * np.identity(dim)) state_dict[bias_name] = torch.Tensor(1 / (i + 1) * np.ones(dim)) else: raise NotImplementedError network.load_state_dict(state_dict) # Construct batch of observations concatenated with one-hot task vectors. obs, task_indices = get_obs_batch( batch_size=BASE_SETTINGS["num_processes"], obs_space=observation_subspace, num_tasks=BASE_SETTINGS["num_tasks"], ) # Get output of network. output = network(obs, task_indices) # Computed expected output of network. expected_output = torch.zeros(obs.shape) for i, (ob, task) in enumerate(zip(obs, task_indices)): if task == 0: expected_output[i] = 3 * torch.tanh(2 * torch.tanh(ob + 1) + 2) + 3 elif task == 1: expected_output[i] = -3 * torch.tanh(-2 * torch.tanh(ob + 1) - 2) - 3 elif task == 2: expected_output[i] = ( -3 * torch.tanh(1 / 2 * torch.tanh(-ob - 1) + 1 / 2) - 3 ) elif task == 3: expected_output[i] = 3 * torch.tanh(-2 * torch.tanh(-ob - 1) - 2) + 3 else: raise NotImplementedError # Test output of network. assert torch.allclose(output, expected_output) def test_split_single() -> None: """ Test that split() correctly sets new parameters when we perform a single split. """ # Set up case. dim = BASE_SETTINGS["obs_dim"] + BASE_SETTINGS["num_tasks"] observation_subspace = Box( low=-np.inf, high=np.inf, shape=(BASE_SETTINGS["obs_dim"],) ) observation_subspace.seed(DEFAULT_SETTINGS["seed"]) hidden_size = dim # Construct network. network = BaseMultiTaskSplittingNetwork( input_size=dim, output_size=dim, num_tasks=BASE_SETTINGS["num_tasks"], num_layers=BASE_SETTINGS["num_layers"], hidden_size=hidden_size, device=BASE_SETTINGS["device"], ) # Split the network at the last layer, so that tasks 0 and 2 stay assigned to the # original copy and tasks 1 and 3 are assigned to the new copy. network.split(2, 0, [0, 2], [1, 3]) # Check the parameters of the network. param_names = [name for name, param in network.named_parameters()] # Construct expected parameters of network. region_copies = {i: [0] for i in range(BASE_SETTINGS["num_layers"])} region_copies[2].append(1) expected_params = [] for region, copies in region_copies.items(): for copy in copies: expected_params.append("regions.%d.%d.0.weight" % (region, copy)) expected_params.append("regions.%d.%d.0.bias" % (region, copy)) # Test actual parameter names. assert set(param_names) == set(expected_params) def test_split_multiple() -> None: """ Test that split() correctly sets new parameters when we perform multiple splits. """ # Set up case. dim = BASE_SETTINGS["obs_dim"] + BASE_SETTINGS["num_tasks"] observation_subspace = Box( low=-np.inf, high=np.inf, shape=(BASE_SETTINGS["obs_dim"],) ) observation_subspace.seed(DEFAULT_SETTINGS["seed"]) hidden_size = dim # Construct network. network = BaseMultiTaskSplittingNetwork( input_size=dim, output_size=dim, num_tasks=BASE_SETTINGS["num_tasks"], num_layers=BASE_SETTINGS["num_layers"], hidden_size=hidden_size, device=BASE_SETTINGS["device"], ) # Split the network at the first layer once and the last layer twice. network.split(0, 0, [0, 1], [2, 3]) network.split(2, 0, [0, 2], [1, 3]) network.split(2, 1, [1], [3]) # Check the parameters of the network. param_names = [name for name, param in network.named_parameters()] # Construct expected parameters of network. region_copies = {i: [0] for i in range(BASE_SETTINGS["num_layers"])} region_copies[0].extend([1]) region_copies[2].extend([1, 2]) expected_params = [] for region, copies in region_copies.items(): for copy in copies: expected_params.append("regions.%d.%d.0.weight" % (region, copy)) expected_params.append("regions.%d.%d.0.bias" % (region, copy)) # Test actual parameter names. assert set(param_names) == set(expected_params) def test_backward_shared() -> None: """ Test that the backward() function correctly computes gradients in the case of a fully shared network. """ splits_args = [] backward_template(BASE_SETTINGS, splits_args) def test_backward_single() -> None: """ Test that the backward() function correctly computes gradients in the case of a single split. """ splits_args = [ {"region": 1, "copy": 0, "group1": [0, 3], "group2": [1, 2]}, ] backward_template(BASE_SETTINGS, splits_args) def test_backward_multiple() -> None: """ Test that the backward() function correctly computes gradients in the case of multiple splits. """ splits_args = [ {"region": 0, "copy": 0, "group1": [0, 1], "group2": [2, 3]}, {"region": 1, "copy": 0, "group1": [0, 2], "group2": [1, 3]},
"""Test the SSDP integration.""" import asyncio from datetime import timedelta from ipaddress import IPv4Address, IPv6Address from unittest.mock import patch import aiohttp from async_upnp_client.search import SSDPListener from async_upnp_client.utils import CaseInsensitiveDict import pytest from homeassistant import config_entries from homeassistant.components import ssdp from homeassistant.const import ( EVENT_HOMEASSISTANT_STARTED, EVENT_HOMEASSISTANT_STOP, MATCH_ALL, ) from homeassistant.core import CoreState, callback from homeassistant.setup import async_setup_component import homeassistant.util.dt as dt_util from tests.common import async_fire_time_changed, mock_coro def _patched_ssdp_listener(info, *args, **kwargs): listener = SSDPListener(*args, **kwargs) async def _async_callback(*_): await listener.async_callback(info) listener.async_start = _async_callback return listener async def _async_run_mocked_scan(hass, mock_ssdp_response, mock_get_ssdp): def _generate_fake_ssdp_listener(*args, **kwargs): return _patched_ssdp_listener( mock_ssdp_response, *args, **kwargs, ) with patch( "homeassistant.components.ssdp.async_get_ssdp", return_value=mock_get_ssdp, ), patch( "homeassistant.components.ssdp.SSDPListener", new=_generate_fake_ssdp_listener, ), patch.object( hass.config_entries.flow, "async_init", return_value=mock_coro() ) as mock_init: assert await async_setup_component(hass, ssdp.DOMAIN, {ssdp.DOMAIN: {}}) hass.bus.async_fire(EVENT_HOMEASSISTANT_STARTED) await hass.async_block_till_done() await hass.async_block_till_done() return mock_init async def test_scan_match_st(hass, caplog): """Test matching based on ST.""" mock_ssdp_response = { "st": "mock-st", "location": None, "usn": "mock-usn", "server": "mock-server", "ext": "", } mock_get_ssdp = {"mock-domain": [{"st": "mock-st"}]} mock_init = await _async_run_mocked_scan(hass, mock_ssdp_response, mock_get_ssdp) assert len(mock_init.mock_calls) == 1 assert mock_init.mock_calls[0][1][0] == "mock-domain" assert mock_init.mock_calls[0][2]["context"] == { "source": config_entries.SOURCE_SSDP } assert mock_init.mock_calls[0][2]["data"] == { ssdp.ATTR_SSDP_ST: "mock-st", ssdp.ATTR_SSDP_LOCATION: None, ssdp.ATTR_SSDP_USN: "mock-usn", ssdp.ATTR_SSDP_SERVER: "mock-server", ssdp.ATTR_SSDP_EXT: "", } assert "Failed to fetch ssdp data" not in caplog.text async def test_partial_response(hass, caplog): """Test location and st missing.""" mock_ssdp_response = { "usn": "mock-usn", "server": "mock-server", "ext": "", } mock_get_ssdp = {"mock-domain": [{"st": "mock-st"}]} mock_init = await _async_run_mocked_scan(hass, mock_ssdp_response, mock_get_ssdp) assert len(mock_init.mock_calls) == 0 @pytest.mark.parametrize( "key", (ssdp.ATTR_UPNP_MANUFACTURER, ssdp.ATTR_UPNP_DEVICE_TYPE) ) async def test_scan_match_upnp_devicedesc(hass, aioclient_mock, key): """Test matching based on UPnP device description data.""" aioclient_mock.get( "http://1.1.1.1", text=f""" <root> <device> <{key}>Paulus</{key}> </device> </root> """, ) mock_get_ssdp = {"mock-domain": [{key: "Paulus"}]} mock_ssdp_response = { "st": "mock-st", "location": "http://1.1.1.1", } mock_init = await _async_run_mocked_scan(hass, mock_ssdp_response, mock_get_ssdp) # If we get duplicate respones, ensure we only look it up once assert len(aioclient_mock.mock_calls) == 1 assert len(mock_init.mock_calls) == 1 assert mock_init.mock_calls[0][1][0] == "mock-domain" assert mock_init.mock_calls[0][2]["context"] == { "source": config_entries.SOURCE_SSDP } async def test_scan_not_all_present(hass, aioclient_mock): """Test match fails if some specified attributes are not present.""" aioclient_mock.get( "http://1.1.1.1", text=""" <root> <device> <deviceType>Paulus</deviceType> </device> </root> """, ) mock_ssdp_response = { "st": "mock-st", "location": "http://1.1.1.1", } mock_get_ssdp = { "mock-domain": [ { ssdp.ATTR_UPNP_DEVICE_TYPE: "Paulus", ssdp.ATTR_UPNP_MANUFACTURER: "Paulus", } ] } mock_init = await _async_run_mocked_scan(hass, mock_ssdp_response, mock_get_ssdp) assert not mock_init.mock_calls async def test_scan_not_all_match(hass, aioclient_mock): """Test match fails if some specified attribute values differ.""" aioclient_mock.get( "http://1.1.1.1", text=""" <root> <device> <deviceType>Paulus</deviceType> <manufacturer>Paulus</manufacturer> </device> </root> """, ) mock_ssdp_response = { "st": "mock-st", "location": "http://1.1.1.1", } mock_get_ssdp = { "mock-domain": [ { ssdp.ATTR_UPNP_DEVICE_TYPE: "Paulus", ssdp.ATTR_UPNP_MANUFACTURER: "Not-Paulus", } ] } mock_init = await _async_run_mocked_scan(hass, mock_ssdp_response, mock_get_ssdp) assert not mock_init.mock_calls @pytest.mark.parametrize("exc", [asyncio.TimeoutError, aiohttp.ClientError]) async def test_scan_description_fetch_fail(hass, aioclient_mock, exc): """Test failing to fetch description.""" aioclient_mock.get("http://1.1.1.1", exc=exc) mock_ssdp_response = { "st": "mock-st", "usn": "uuid:TIVRTLSR7ANF-D6E-1557809135086-RETAIL::urn:mdx-netflix-com:service:target:3", "location": "http://1.1.1.1", } mock_get_ssdp = { "mock-domain": [ { ssdp.ATTR_UPNP_DEVICE_TYPE: "Paulus", ssdp.ATTR_UPNP_MANUFACTURER: "Paulus", } ] } mock_init = await _async_run_mocked_scan(hass, mock_ssdp_response, mock_get_ssdp) assert not mock_init.mock_calls assert ssdp.async_get_discovery_info_by_st(hass, "mock-st") == [ { "UDN": "uuid:TIVRTLSR7ANF-D6E-1557809135086-RETAIL", "ssdp_location": "http://1.1.1.1", "ssdp_st": "mock-st", "ssdp_usn": "uuid:TIVRTLSR7ANF-D6E-1557809135086-RETAIL::urn:mdx-netflix-com:service:target:3", } ] async def test_scan_description_parse_fail(hass, aioclient_mock): """Test invalid XML.""" aioclient_mock.get( "http://1.1.1.1", text=""" <root>INVALIDXML """, ) mock_ssdp_response = { "st": "mock-st", "location": "http://1.1.1.1", } mock_get_ssdp = { "mock-domain": [ { ssdp.ATTR_UPNP_DEVICE_TYPE: "Paulus", ssdp.ATTR_UPNP_MANUFACTURER: "Paulus", } ] } mock_init = await _async_run_mocked_scan(hass, mock_ssdp_response, mock_get_ssdp) assert not mock_init.mock_calls async def test_invalid_characters(hass, aioclient_mock): """Test that we replace bad characters with placeholders.""" aioclient_mock.get( "http://1.1.1.1", text=""" <root> <device> <deviceType>ABC</deviceType> <serialNumber>\xff\xff\xff\xff</serialNumber> </device> </root> """, ) mock_ssdp_response = { "st": "mock-st", "location": "http://1.1.1.1", } mock_get_ssdp = { "mock-domain": [ { ssdp.ATTR_UPNP_DEVICE_TYPE: "ABC", } ] } mock_init = await _async_run_mocked_scan(hass, mock_ssdp_response, mock_get_ssdp) assert len(mock_init.mock_calls) == 1 assert mock_init.mock_calls[0][1][0] == "mock-domain" assert mock_init.mock_calls[0][2]["context"] == { "source": config_entries.SOURCE_SSDP } assert mock_init.mock_calls[0][2]["data"] == { "ssdp_location": "http://1.1.1.1", "ssdp_st": "mock-st", "deviceType": "ABC", "serialNumber": "ÿÿÿÿ", } @patch("homeassistant.components.ssdp.SSDPListener.async_start") @patch("homeassistant.components.ssdp.SSDPListener.async_search") async def test_start_stop_scanner(async_start_mock, async_search_mock, hass): """Test we start and stop the scanner.""" assert await async_setup_component(hass, ssdp.DOMAIN, {ssdp.DOMAIN: {}}) hass.bus.async_fire(EVENT_HOMEASSISTANT_STARTED) await hass.async_block_till_done() async_fire_time_changed(hass, dt_util.utcnow() + timedelta(seconds=200)) await hass.async_block_till_done() assert async_start_mock.call_count == 1 assert async_search_mock.call_count == 1 hass.bus.async_fire(EVENT_HOMEASSISTANT_STOP) await hass.async_block_till_done() async_fire_time_changed(hass, dt_util.utcnow() + timedelta(seconds=200)) await hass.async_block_till_done() assert async_start_mock.call_count == 1 assert async_search_mock.call_count == 1 async def test_unexpected_exception_while_fetching(hass, aioclient_mock, caplog): """Test unexpected exception while fetching.""" aioclient_mock.get( "http://1.1.1.1", text=""" <root> <device> <deviceType>ABC</deviceType> <serialNumber>\xff\xff\xff\xff</serialNumber> </device> </root> """, ) mock_ssdp_response = { "st": "mock-st", "location": "http://1.1.1.1", } mock_get_ssdp = { "mock-domain": [ { ssdp.ATTR_UPNP_DEVICE_TYPE: "ABC", } ] } with patch( "homeassistant.components.ssdp.descriptions.ElementTree.fromstring", side_effect=ValueError, ): mock_init = await _async_run_mocked_scan( hass, mock_ssdp_response, mock_get_ssdp ) assert len(mock_init.mock_calls) == 0 assert "Failed to fetch ssdp data from: http://1.1.1.1" in caplog.text async def test_scan_with_registered_callback(hass, aioclient_mock, caplog): """Test matching based on callback.""" aioclient_mock.get( "http://1.1.1.1", text=""" <root> <device> <deviceType>Paulus</deviceType> </device> </root> """, ) mock_ssdp_response = { "st": "mock-st", "location": "http://1.1.1.1", "usn": "uuid:TIVRTLSR7ANF-D6E-1557809135086-RETAIL::urn:mdx-netflix-com:service:target:3", "server": "mock-server", "x-rincon-bootseq": "55", "ext": "", } not_matching_intergration_callbacks = [] intergration_match_all_callbacks = [] intergration_match_all_not_present_callbacks = [] intergration_callbacks = [] intergration_callbacks_from_cache = [] match_any_callbacks = [] @callback def _async_exception_callbacks(info): raise ValueError @callback def _async_intergration_callbacks(info): intergration_callbacks.append(info) @callback def _async_intergration_match_all_callbacks(info): intergration_match_all_callbacks.append(info) @callback def _async_intergration_match_all_not_present_callbacks(info): intergration_match_all_not_present_callbacks.append(info) @callback def _async_intergration_callbacks_from_cache(info): intergration_callbacks_from_cache.append(info) @callback def _async_not_matching_intergration_callbacks(info): not_matching_intergration_callbacks.append(info) @callback def _async_match_any_callbacks(info): match_any_callbacks.append(info) def _generate_fake_ssdp_listener(*args, **kwargs): listener = SSDPListener(*args, **kwargs) async def _async_callback(*_): await listener.async_callback(mock_ssdp_response) @callback def _callback(*_): hass.async_create_task(listener.async_callback(mock_ssdp_response)) listener.async_start = _async_callback listener.async_search = _callback return listener with patch( "homeassistant.components.ssdp.SSDPListener", new=_generate_fake_ssdp_listener, ): hass.state = CoreState.stopped assert await async_setup_component(hass, ssdp.DOMAIN, {ssdp.DOMAIN: {}}) await hass.async_block_till_done() ssdp.async_register_callback(hass, _async_exception_callbacks, {}) ssdp.async_register_callback( hass, _async_intergration_callbacks, {"st": "mock-st"}, ) ssdp.async_register_callback( hass, _async_intergration_match_all_callbacks, {"x-rincon-bootseq": MATCH_ALL}, ) ssdp.async_register_callback( hass, _async_intergration_match_all_not_present_callbacks, {"x-not-there": MATCH_ALL}, ) ssdp.async_register_callback( hass, _async_not_matching_intergration_callbacks, {"st": "not-match-mock-st"}, ) ssdp.async_register_callback( hass, _async_match_any_callbacks, ) await hass.async_block_till_done() async_fire_time_changed(hass, dt_util.utcnow() + timedelta(seconds=200)) ssdp.async_register_callback( hass, _async_intergration_callbacks_from_cache, {"st": "mock-st"}, ) await hass.async_block_till_done() hass.bus.async_fire(EVENT_HOMEASSISTANT_STARTED) hass.state = CoreState.running await hass.async_block_till_done() async_fire_time_changed(hass, dt_util.utcnow() + timedelta(seconds=200)) await hass.async_block_till_done() assert hass.state == CoreState.running assert len(intergration_callbacks) == 3 assert len(intergration_callbacks_from_cache) == 3 assert len(intergration_match_all_callbacks) == 3 assert len(intergration_match_all_not_present_callbacks) == 0 assert len(match_any_callbacks) == 3 assert len(not_matching_intergration_callbacks) == 0 assert intergration_callbacks[0] == { ssdp.ATTR_UPNP_DEVICE_TYPE: "Paulus", ssdp.ATTR_SSDP_EXT: "", ssdp.ATTR_SSDP_LOCATION: "http://1.1.1.1", ssdp.ATTR_SSDP_SERVER: "mock-server", ssdp.ATTR_SSDP_ST: "mock-st", ssdp.ATTR_SSDP_USN: "uuid:TIVRTLSR7ANF-D6E-1557809135086-RETAIL::urn:mdx-netflix-com:service:target:3", ssdp.ATTR_UPNP_UDN: "uuid:TIVRTLSR7ANF-D6E-1557809135086-RETAIL", "x-rincon-bootseq": "55", } assert "Failed to callback info" in caplog.text async def test_scan_second_hit(hass, aioclient_mock, caplog): """Test matching on second scan.""" aioclient_mock.get( "http://1.1.1.1", text=""" <root> <device> <deviceType>Paulus</deviceType> </device> </root> """, ) mock_ssdp_response = CaseInsensitiveDict( **{ "ST": "mock-st", "LOCATION": "http://1.1.1.1", "USN": "uuid:TIVRTLSR7ANF-D6E-1557809135086-RETAIL::urn:mdx-netflix-com:service:target:3", "SERVER": "mock-server", "EXT": "", } ) mock_get_ssdp = {"mock-domain": [{"st": "mock-st"}]} intergration_callbacks = [] @callback def _async_intergration_callbacks(info): intergration_callbacks.append(info) def _generate_fake_ssdp_listener(*args, **kwargs): listener = SSDPListener(*args, **kwargs) async def _async_callback(*_): pass @callback def _callback(*_): hass.async_create_task(listener.async_callback(mock_ssdp_response)) listener.async_start = _async_callback listener.async_search = _callback return listener with patch( "homeassistant.components.ssdp.async_get_ssdp", return_value=mock_get_ssdp, ), patch( "homeassistant.components.ssdp.SSDPListener", new=_generate_fake_ssdp_listener, ), patch.object( hass.config_entries.flow, "async_init", return_value=mock_coro() ) as mock_init: assert await async_setup_component(hass, ssdp.DOMAIN, {ssdp.DOMAIN: {}}) await hass.async_block_till_done() remove = ssdp.async_register_callback( hass, _async_intergration_callbacks, {"st": "mock-st"}, ) hass.bus.async_fire(EVENT_HOMEASSISTANT_STARTED) await hass.async_block_till_done() async_fire_time_changed(hass, dt_util.utcnow() + timedelta(seconds=200)) await hass.async_block_till_done() async_fire_time_changed(hass, dt_util.utcnow() + timedelta(seconds=200)) await hass.async_block_till_done() remove() async_fire_time_changed(hass, dt_util.utcnow() + timedelta(seconds=200)) await hass.async_block_till_done() assert len(intergration_callbacks) == 2 assert intergration_callbacks[0] == { ssdp.ATTR_UPNP_DEVICE_TYPE: "Paulus", ssdp.ATTR_SSDP_EXT: "", ssdp.ATTR_SSDP_LOCATION: "http://1.1.1.1", ssdp.ATTR_SSDP_SERVER: "mock-server", ssdp.ATTR_SSDP_ST: "mock-st", ssdp.ATTR_SSDP_USN: "uuid:TIVRTLSR7ANF-D6E-1557809135086-RETAIL::urn:mdx-netflix-com:service:target:3", ssdp.ATTR_UPNP_UDN: "uuid:TIVRTLSR7ANF-D6E-1557809135086-RETAIL", } assert len(mock_init.mock_calls) == 1 assert mock_init.mock_calls[0][1][0] == "mock-domain" assert mock_init.mock_calls[0][2]["context"] == { "source": config_entries.SOURCE_SSDP } assert mock_init.mock_calls[0][2]["data"] == { ssdp.ATTR_UPNP_DEVICE_TYPE: "Paulus", ssdp.ATTR_SSDP_ST: "mock-st", ssdp.ATTR_SSDP_LOCATION: "http://1.1.1.1", ssdp.ATTR_SSDP_SERVER: "mock-server", ssdp.ATTR_SSDP_EXT: "", ssdp.ATTR_SSDP_USN: "uuid:TIVRTLSR7ANF-D6E-1557809135086-RETAIL::urn:mdx-netflix-com:service:target:3", ssdp.ATTR_UPNP_UDN: "uuid:TIVRTLSR7ANF-D6E-1557809135086-RETAIL", } assert "Failed to fetch ssdp data" not in caplog.text udn_discovery_info = ssdp.async_get_discovery_info_by_st(hass, "mock-st") discovery_info = udn_discovery_info[0] assert discovery_info[ssdp.ATTR_SSDP_LOCATION] == "http://1.1.1.1" assert discovery_info[ssdp.ATTR_SSDP_ST] == "mock-st" assert ( discovery_info[ssdp.ATTR_UPNP_UDN] == "uuid:TIVRTLSR7ANF-D6E-1557809135086-RETAIL" ) assert ( discovery_info[ssdp.ATTR_SSDP_USN] == "uuid:TIVRTLSR7ANF-D6E-1557809135086-RETAIL::urn:mdx-netflix-com:service:target:3" ) st_discovery_info = ssdp.async_get_discovery_info_by_udn( hass, "uuid:TIVRTLSR7ANF-D6E-1557809135086-RETAIL" ) discovery_info = st_discovery_info[0] assert discovery_info[ssdp.ATTR_SSDP_LOCATION] == "http://1.1.1.1" assert discovery_info[ssdp.ATTR_SSDP_ST] == "mock-st" assert ( discovery_info[ssdp.ATTR_UPNP_UDN] == "uuid:TIVRTLSR7ANF-D6E-1557809135086-RETAIL" ) assert ( discovery_info[ssdp.ATTR_SSDP_USN] == "uuid:TIVRTLSR7ANF-D6E-1557809135086-RETAIL::urn:mdx-netflix-com:service:target:3" ) discovery_info = ssdp.async_get_discovery_info_by_udn_st( hass, "uuid:TIVRTLSR7ANF-D6E-1557809135086-RETAIL", "mock-st" ) assert discovery_info[ssdp.ATTR_SSDP_LOCATION] == "http://1.1.1.1" assert discovery_info[ssdp.ATTR_SSDP_ST] == "mock-st" assert ( discovery_info[ssdp.ATTR_UPNP_UDN] == "uuid:TIVRTLSR7ANF-D6E-1557809135086-RETAIL" ) assert ( discovery_info[ssdp.ATTR_SSDP_USN] == "uuid:TIVRTLSR7ANF-D6E-1557809135086-RETAIL::urn:mdx-netflix-com:service:target:3" ) assert ssdp.async_get_discovery_info_by_udn_st(hass, "wrong", "mock-st") is None _ADAPTERS_WITH_MANUAL_CONFIG = [ { "auto": True, "default": False, "enabled": True, "ipv4": [], "ipv6": [ { "address": "2001:db8::", "network_prefix": 8, "flowinfo": 1, "scope_id": 1, } ], "name": "eth0", }, { "auto": True, "default": False, "enabled": True, "ipv4": [{"address": "192.168.1.5", "network_prefix": 23}], "ipv6": [], "name": "eth1", }, { "auto": False, "default": False, "enabled": False, "ipv4": [{"address": "169.254.3.2", "network_prefix": 16}], "ipv6": [], "name": "vtun0", }, ] async def test_async_detect_interfaces_setting_empty_route(hass): """Test without default interface config and the route returns nothing.""" mock_get_ssdp = { "mock-domain": [ { ssdp.ATTR_UPNP_DEVICE_TYPE: "ABC", } ] } create_args = [] def _generate_fake_ssdp_listener(*args, **kwargs): create_args.append([args,
<filename>src/skmultiflow/meta/classifier_chains.py import numpy as np import copy from skmultiflow.core.base import StreamModel from sklearn.linear_model import LogisticRegression, SGDClassifier from skmultiflow.utils import check_random_state class ClassifierChain(StreamModel): """ Classifier Chains for multi-label learning. Parameters ---------- base_estimator: StreamModel or sklearn model This is the ensemble classifier type, each ensemble classifier is going to be a copy of the base_estimator. order : str `None` to use default order, 'random' for random order. random_state: int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Examples -------- >>> from skmultiflow.data import make_logical >>> >>> X, Y = make_logical(random_state=1) >>> >>> print("TRUE: ") >>> print(Y) >>> print("vs") >>> >>> print("CC") >>> cc = ClassifierChain(SGDClassifier(max_iter=100, loss='log', random_state=1)) >>> cc.fit(X, Y) >>> print(cc.predict(X)) >>> >>> print("RCC") >>> cc = ClassifierChain(SGDClassifier(max_iter=100, loss='log', random_state=1), order='random', random_state=1) >>> cc.fit(X, Y) >>> print(cc.predict(X)) >>> >>> print("MCC") >>> mcc = MCC(SGDClassifier(max_iter=100, loss='log', random_state=1), M=1000) >>> mcc.fit(X, Y) >>> Yp = mcc.predict(X, M=50) >>> print("with 50 iterations ...") >>> print(Yp) >>> Yp = mcc.predict(X, 'default') >>> print("with default (%d) iterations ..." % 1000) >>> print(Yp) >>> >>> print("PCC") >>> pcc = ProbabilisticClassifierChain(SGDClassifier(max_iter=100, loss='log', random_state=1)) >>> pcc.fit(X, Y) >>> print(pcc.predict(X)) TRUE: [[1. 0. 1.] [1. 1. 0.] [0. 0. 0.] [1. 1. 0.]] vs CC [[1. 0. 1.] [1. 1. 0.] [0. 0. 0.] [1. 1. 0.]] RCC [[1. 0. 1.] [1. 1. 0.] [0. 0. 0.] [1. 1. 0.]] MCC with 50 iterations ... [[1. 0. 1.] [1. 1. 0.] [0. 0. 0.] [1. 1. 0.]] with default (1000) iterations ... [[1. 0. 1.] [1. 1. 0.] [0. 0. 0.] [1. 1. 0.]] PCC [[1. 0. 1.] [1. 1. 0.] [0. 0. 0.] [1. 1. 0.]] Notes ----- Classifier Chains [1]_ is a popular method for multi-label learning. It exploits correlation between labels by incrementally building binary classifiers for each label. scikit-learn also includes 'ClassifierChain'. A difference is probabilistic extensions are included here. References ---------- .. [1] Read, Jesse, <NAME>, <NAME>, and <NAME>. "Classifier chains for multi-label classification." In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 254-269. Springer, Berlin, Heidelberg, 2009. """ # TODO: much of this can be shared with Regressor Chains, probably should use a base class to inherit here. def __init__(self, base_estimator=LogisticRegression(), order=None, random_state=None): super().__init__() self.base_estimator = base_estimator self.order = order self.chain = None self.ensemble = None self.L = None self._init_random_state = random_state self.__configure() def __configure(self): self.ensemble = None self.L = -1 self.random_state = check_random_state(self._init_random_state) def fit(self, X, Y): """ fit """ N, self.L = Y.shape L = self.L N, D = X.shape self.chain = np.arange(L) if self.order == 'random': self.random_state.shuffle(self.chain) # Set the chain order Y = Y[:, self.chain] # Train self.ensemble = [copy.deepcopy(self.base_estimator) for _ in range(L)] XY = np.zeros((N, D + L-1)) XY[:, 0:D] = X XY[:, D:] = Y[:, 0:L-1] for j in range(self.L): self.ensemble[j].fit(XY[:, 0:D + j], Y[:, j]) return self def partial_fit(self, X, Y): """ partial_fit N.B. Assume that fit has already been called (i.e., this is more of an 'update') """ if self.ensemble is None: # This was not the first time that the model is fit self.fit(X, Y) return self N, self.L = Y.shape L = self.L N, D = X.shape # Set the chain order Y = Y[:, self.chain] XY = np.zeros((N, D + L-1)) XY[:, 0:D] = X XY[:, D:] = Y[:, 0:L-1] for j in range(L): self.ensemble[j].partial_fit(XY[:, 0:D + j], Y[:, j]) return self def predict(self, X): """ predict Returns predictions for X """ N, D = X.shape Y = np.zeros((N, self.L)) for j in range(self.L): if j > 0: X = np.column_stack([X, Y[:, j-1]]) Y[:, j] = self.ensemble[j].predict(X) # Unset the chain order (back to default) return Y[:, np.argsort(self.chain)] def predict_proba(self, X): """ predict_proba Returns marginals [P(y_1=1|x),...,P(y_L=1|x,y_1,...,y_{L-1})] i.e., confidence predictions given inputs, for each instance. N.B. This function suitable for multi-label (binary) data only at the moment (may give index-out-of-bounds error if uni- or multi-target (of > 2 values) data is used in training). """ N, D = X.shape Y = np.zeros((N, self.L)) for j in range(self.L): if j > 0: X = np.column_stack([X, Y[:, j-1]]) Y[:, j] = self.ensemble[j].predict_proba(X)[:, 1] return Y def score(self, X, y): raise NotImplementedError def reset(self): self.__configure() def get_info(self): return 'ClassifierChain Classifier:' \ ' - base_estimator: {}'.format(self.base_estimator) + \ ' - order: {}'.format(self.order) + \ ' - random_state: {}'.format(self._init_random_state) def P(y, x, cc, payoff=np.prod): """ Payoff function, P(Y=y|X=x) What payoff do we get for predicting y | x, under model cc. Parameters ---------- x: input instance y: its true labels cc: a classifier chain payoff: payoff function Returns ------- A single number; the payoff of predicting y | x. """ D = len(x) L = len(y) p = np.zeros(L) xy = np.zeros(D + L) xy[0:D] = x.copy() for j in range(L): P_j = cc.ensemble[j].predict_proba(xy[0:D+j].reshape(1, -1))[0] # e.g., [0.9, 0.1] wrt 0, 1 xy[D+j] = y[j] # e.g., 1 p[j] = P_j[y[j]] # e.g., 0.1 # or, y[j] = 0 is predicted with probability p[j] = 0.9 return payoff(p) class ProbabilisticClassifierChain(ClassifierChain): """ Probabilistic Classifier Chains (PCC) Parameters ---------- base_estimator: StreamModel or sklearn model This is the ensemble classifier type, each ensemble classifier is going to be a copy of the base_estimator. order : str `None` to use default order, 'random' for random order. random_state: int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. """ def __init__(self, base_estimator=LogisticRegression(), order=None, random_state=None): super().__init__(base_estimator=base_estimator, order=order, random_state=random_state) def predict(self, X): """ Predict Explores all possible branches of the probability tree. (i.e., all possible 2^L label combinations). Returns ------- Predictions Y. """ N, D = X.shape Yp = np.zeros((N, self.L)) # for each instance for n in range(N): w_max = 0. # for each and every possible label combination for b in range(2**self.L): # put together a label vector y_ = np.array(list(map(int, np.binary_repr(b, width=self.L)))) # ... and gauge a probability for it (given x) w_ = P(y_, X[n], self) # if it performs well, keep it, and record the max if w_ > w_max: Yp[n, :] = y_[:].copy() w_max = w_ return Yp def get_info(self): return 'ProbabilisticClassifierChain Classifier:' \ ' - base_estimator: {}'.format(self.base_estimator) + \ ' - order: {}'.format(self.order) + \ ' - random_state: {}'.format(self._init_random_state) class MCC(ProbabilisticClassifierChain): """ Monte Carlo Sampling Classifier Chains PCC, using Monte Carlo sampling, published as 'MCC'. M samples are taken from the posterior distribution. Therefore we need a probabilistic interpretation of the output, and thus, this is a particular variety of ProbabilisticClassifierChain. N.B. Multi-label (binary) only at this moment. Parameters ---------- base_estimator: StreamModel or sklearn model This is the ensemble classifier type, each ensemble classifier is going to be a copy of the base_estimator. M: int Number of samples to take from the posterior distribution. random_state: int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. """ def __init__(self, base_estimator=LogisticRegression(), M=10, random_state=None): # Do M iterations, unless overridden by M at prediction time ClassifierChain.__init__(self, base_estimator, random_state=random_state) self.M = M def sample(self, x): """ Sample y ~ P(y|x) Returns ------- y: a sampled label vector p: the associated probabilities, i.e., p(y_j=1)=p_j """ D = len(x) p = np.zeros(self.L) y = np.zeros(self.L) xy = np.zeros(D + self.L) xy[0:D] = x.copy() for j in range(self.L): P_j = self.ensemble[j].predict_proba(xy[0:D + j].reshape(1, -1))[0] y_j = self.random_state.choice(2, 1, p=P_j) xy[D+j] = y_j y[j] = y_j p[j] = P_j[y_j] return y, p def predict(self, X, M='default'): """
= self._main_grid.get_mid_point(self.get_grid_coord_from_points_coords(start_point), self.get_grid_coord_from_points_coords(end_point)) return list(filter(lambda x: x > 1, self._main_grid.get_adjacent_values(mid_point))) def get_compartments_for_line_duplicates(self, line): ''' Finding the compartment connected to a specified line. :return: ''' start_point = self._point_dict['point' + str(self._line_dict[line][0])] end_point = self._point_dict['point' + str(self._line_dict[line][1])] mid_point = self._main_grid.get_mid_point(self.get_grid_coord_from_points_coords(start_point), self.get_grid_coord_from_points_coords(end_point)) return list(filter(lambda x: x > 1, self._main_grid.get_adjacent_values_duplicates(mid_point))) def get_point_canvas_coord(self, point_no): ''' Returning the canvas coordinates of the point. This value will change with slider. ''' point_coord_x = self._canvas_draw_origo[0] + self._point_dict[point_no][0] * self._canvas_scale point_coord_y = self._canvas_draw_origo[1] - self._point_dict[point_no][1] * self._canvas_scale return [point_coord_x, point_coord_y] def get_point_actual_coord(self, point_no): ''' Returning actutual (real world coordinates of a point. ''' return [self._point_dict[point_no][0], self._point_dict[point_no][1]] def get_actual_elevation_from_grid_coords(self,grid_col): ''' Converts coordinates :param canv_elevation: :return: ''' y_coord = (self._main_grid.get_grid_height() - grid_col)/self._base_scale_factor self._main_grid.get_grid_height() return y_coord def get_grid_coord_from_points_coords(self, point_coord): ''' Converts coordinates to be used in the grid. Returns (row,col). This value will not change with slider. :param point: :return: ''' row = self._canvas_base_origo[1] - point_coord[1]*self._base_scale_factor col = point_coord[0]*self._base_scale_factor return (row,col) def get_point_coords_from_grid_coords(self, grid_coord): ''' Converts coordinates to be used in the as points. Returns (x,y). This value will not change with slider. :param point: :return: ''' x_coord = grid_coord[1]/self._base_scale_factor y_coord = (self._main_grid.get_grid_height() - grid_coord[0])/self._base_scale_factor self._main_grid.get_grid_height() self._main_grid.get_grid_width() return x_coord,y_coord def get_canvas_coords_from_point_coords(self, actual_coords): ''' Returns tuple of canvas points from actual (x,y) :param actual_coords: :return: ''' canvas_coord_x = self._canvas_draw_origo[0] + actual_coords[0] * self._canvas_scale canvas_coord_y = self._canvas_draw_origo[1] - actual_coords[1] * self._canvas_scale return (canvas_coord_x, canvas_coord_y) def get_line_low_elevation(self,line): ''' Finding elevation of a line. Used to calculate pressures in load combinations. :param line: :return: ''' return min([self._point_dict['point'+str(point)][1] for point in self._line_dict[line]]) def get_line_radial_mid(self,line): ''' Getting the horizontal coordinates in the middle of a line. :param line: :return: ''' return sum([self._point_dict['point' + str(point)][0] for point in self._line_dict[line]])/2 def get_pressures_calc_coord(self, line): ''' Returning coordinates of the pressures calculation basis of a selected line. ''' p1 = self._point_dict['point'+str(self._line_dict[line][0])] p2 = self._point_dict['point'+str(self._line_dict[line][1])] if p1[1] <= p2[1]: start_point = p1 end_point = p2 elif p1[1] == p2[1]: if p1[0] <= p2[0]: start_point = p1 end_point = p2 else: start_point = p2 end_point = p1 else: start_point = p2 end_point = p1 vector = [end_point[0]-start_point[0], end_point[1]-start_point[1]] return start_point[0]+vector[0]*1/3, start_point[1]+vector[1]*1/3 def get_points(self): return self._point_dict def get_closest_point(self,given_point): ''' Finding the closest point to av given value. Real coordinates used (meters). Returning point name, coordinates and distance. :param coordx: :param coordy: :return: ''' current_dist = float('inf') current_point = None for point,coords in self._point_dict.items(): if dist([coords[0],coords[1]], [given_point[0],given_point[1]]) < current_dist: current_dist = dist([coords[0],coords[1]], [given_point[0],given_point[1]]) current_point = point return current_point, self._point_dict[current_point], current_dist def get_lines(self): return self._line_dict def get_unique_plates_and_beams(self): beams, plates = list(), list() if self._line_to_struc != {}: for line, data in self._line_to_struc.items(): this_beam = data[0].get_beam_string() this_plate = data[0].get_pl_thk()*1000 if this_beam not in beams: beams.append(this_beam) if this_plate not in plates: plates.append(this_plate) return {'plates':plates, 'beams': beams} def make_point_point_line_string(self, point1, point2): ''' For a line, this method makes a string 'p1p2' and 'p2p1'. Ensuring that lines are not overwritten. :param point1: :param point2: :return: ''' return ['p' + str(point1) + 'p' + str(point2), 'p' + str(point2) + 'p' + str(point1)] def reset(self): ''' Resetting the script. :return: ''' self._line_dict = {} self._point_dict = {} self._line_to_struc = {} self._line_point_to_point_string = [] self._load_dict = {} self._new_load_comb_dict = {} self._line_is_active = False self._active_line = '' self._point_is_active = False self._active_point = '' self.delete_all_tanks() self._main_canvas.delete('all') self._prop_canvas.delete('all') self._result_canvas.delete('all') self._pending_grid_draw = {} self._p1_p2_select = False self._line_is_active = False # True when a line is clicked self._active_line = '' # Name of the clicked point self._point_is_active = False # True when a point is clicked self._active_point = '' # Name of the clicked point self.controls() # Function to activate mouse clicks self._line_point_to_point_string = [] # This one ensures that a line is not created on top of a line self._accelerations_dict = {'static':9.81, 'dyn_loaded':0, 'dyn_ballast':0} self._multiselect_lines = [] self._PULS_results = None self.update_frame() # Initsializing the calculation grid used for tank definition self._main_grid = grid.Grid(self._grid_dimensions[0], self._grid_dimensions[1]) self._grid_calc = None def controls(self): ''' Specifying the controls to be used. :return: ''' self._main_canvas.bind('<Button-1>', self.button_1_click) self._main_canvas.bind('<Button-2>', self.button_2_click) self._main_canvas.bind('<Button-3>', self.button_3_click) self._main_canvas.bind("<B2-Motion>", self.button_2_click_and_drag) self._main_canvas.bind("<MouseWheel>", self.mouse_scroll) self._parent.bind('<Control-z>', self.undo) #self._parent.bind('<Control-y>', self.redo) #self._parent.bind('<Control-p>', self.delete_point) self._parent.bind('<Control-l>', self.delete_line) self._parent.bind('<Control-p>', self.copy_point) self._parent.bind('<Control-m>', self.move_point) self._parent.bind('<Control-n>', self.move_line) self._parent.bind('<Control-a>', self.select_all_lines) self._parent.bind('<Control-t>', self.select_all_lines) self._parent.bind('<Control-q>', self.new_line) self._parent.bind('<Control-s>', self.new_structure) self._parent.bind('<Delete>', self.delete_key_pressed) self._parent.bind('<Control-Delete>', self.delete_properties_pressed) self._parent.bind('<Control-e>', self.copy_property) self._parent.bind('<Control-d>', self.paste_property) self._parent.bind('<Left>', self.left_arrow) self._parent.bind('<Right>', self.right_arrow) self._parent.bind('<Down>', self.up_arrow) self._parent.bind('<Up>', self.down_arrow) #self._parent.bind('<Enter>', self.enter_key_pressed) def left_arrow(self, event): if self._active_line == '': return else: idx = list(self._line_dict.keys()).index(self._active_line) if idx -1 >= 0: self._active_line =list(self._line_dict.keys())[idx-1] else: self._active_line = list(self._line_dict.keys())[-1] self.update_frame() def right_arrow(self, event): if self._active_line == '': return else: idx = list(self._line_dict.keys()).index(self._active_line) if idx + 1 < len(list(self._line_dict.keys())): self._active_line = list(self._line_dict.keys())[idx+1] else: self._active_line = list(self._line_dict.keys())[0] self.update_frame() def up_arrow(self, event): if self._active_point == '': return else: idx = list(self._point_dict.keys()).index(self._active_point) if idx - 1 >= 0: self._active_point = list(self._point_dict.keys())[idx - 1] else: self._active_point = list(self._point_dict.keys())[-1] self.update_frame() def down_arrow(self, event): if self._active_point == '': return else: idx = list(self._point_dict.keys()).index(self._active_point) if idx + 1 < len(list(self._point_dict.keys())): self._active_point = list(self._point_dict.keys())[idx + 1] else: self._active_point = list(self._point_dict.keys())[0] self.update_frame() def select_all_lines(self, event=None): if self._toggle_btn.config('relief')[-1] == "sunken": for line in self._line_to_struc.keys(): if line not in self._multiselect_lines: if event.keysym == 't': if self._line_to_struc[line][1].get_structure_type() == self._new_stucture_type.get(): self._multiselect_lines.append(line) else: self._multiselect_lines.append(line) else: tk.messagebox.showinfo('CTRL-A and CTRL-T', 'CTRL-A and CTRL-T is used to select all lines \n' 'with the intension to change a single variable in all lines.\n' 'Press the Toggle select multiple button.') self.update_frame() def mouse_scroll(self,event): self._canvas_scale += event.delta/50 self._canvas_scale = 0 if self._canvas_scale < 0 else self._canvas_scale try: state = self.get_color_and_calc_state() except AttributeError: state = None self.update_frame() def button_2_click(self, event): self._previous_drag_mouse = [event.x, event.y] def button_2_click_and_drag(self,event): self._canvas_draw_origo = (self._canvas_draw_origo[0]-(self._previous_drag_mouse[0]-event.x), self._canvas_draw_origo[1]-(self._previous_drag_mouse[1]-event.y)) self._previous_drag_mouse = (event.x,event.y) try: state = self.get_color_and_calc_state() except AttributeError: state = None self.update_frame() #self.draw_canvas(state=state) def button_1_click(self, event = None): ''' When clicking the right button, this method is called. method is referenced in ''' self._previous_drag_mouse = [event.x, event.y] click_x = self._main_canvas.winfo_pointerx() - self._main_canvas.winfo_rootx() click_y = self._main_canvas.winfo_pointery() - self._main_canvas.winfo_rooty() self._prop_canvas.delete('all') stop = False self._active_line = '' self._line_is_active = False if len(self._line_dict) > 0: for key, value in self._line_dict.items(): if stop: break coord1x = self.get_point_canvas_coord('point' + str(value[0]))[0] coord2x = self.get_point_canvas_coord('point' + str(value[1]))[0] coord1y = self.get_point_canvas_coord('point' + str(value[0]))[1] coord2y = self.get_point_canvas_coord('point' + str(value[1]))[1] vector = [coord2x - coord1x, coord2y - coord1y] click_x_range = [ix for ix in range(click_x - 10, click_x + 10)] click_y_range = [iy for iy in range(click_y - 10, click_y + 10)] distance = int(dist([coord1x, coord1y], [coord2x, coord2y])) # checking along the line if the click is witnin +- 10 around the click for dist_mult in range(1, distance - 1): dist_mult = dist_mult / distance x_check = int(coord1x) + int(round(vector[0] * dist_mult, 0)) y_check = int(coord1y) + int(round(vector[1] * dist_mult, 0)) if x_check in click_x_range and y_check in click_y_range: self._line_is_active = True self._active_line = key stop = True break self._new_delete_line.set(get_num(key)) if self._line_is_active and self._active_line not in self._line_to_struc.keys(): p1 = self._point_dict['point'+str(self._line_dict[self._active_line][0])] p2 = self._point_dict['point'+str(self._line_dict[self._active_line][1])] self._new_field_len.set(dist(p1,p2)) if self._toggle_btn.config('relief')[-1] == 'sunken': if self._active_line not in self._multiselect_lines: self._multiselect_lines.append(self._active_line) else: self._multiselect_lines = [] try: state = self.get_color_and_calc_state() except AttributeError: state = None self.update_frame() self._combination_slider.set(1) if self._line_is_active: try: self.gui_load_combinations(self._combination_slider.get()) except (KeyError, AttributeError): pass def button_1_click_comp_box(self,event): ''' Action when clicking the compartment box. :param event: :return: ''' self._selected_tank.config(text='',font = self._text_size['Text 12 bold'],fg='red') self._tank_acc_label.config(text='Accelerations [m/s^2]: ',font = self._text_size['Text 8 bold']) if len(self._tank_dict)!=0: current_comp = self._tank_dict['comp' + str(self._compartments_listbox.get('active'))] self._selected_tank.config(text=str(self._compartments_listbox.get('active'))) self._new_density.set(self._tank_dict['comp' + str(self._compartments_listbox.get('active'))] .get_density()) self._new_overpresure.set(self._tank_dict['comp' + str(self._compartments_listbox.get('active'))] .get_overpressure()) self._new_content_type.set(self._tank_dict['comp' + str(self._compartments_listbox.get('active'))] .get_content()) self._new_max_el.set(self._tank_dict['comp' + str(self._compartments_listbox.get('active'))] .get_highest_elevation()) self._new_min_el.set(self._tank_dict['comp' + str(self._compartments_listbox.get('active'))] .get_lowest_elevation()) acc = (self._tank_dict['comp' + str(self._compartments_listbox.get('active'))].get_accelerations()) self._tank_acc_label.config(text='Accelerations [m/s^2]: \n' +'static: ' + str(acc[0])+' , ' +'dynamic loaded: ' + str(acc[1])+' , ' +'dynamic ballast: ' + str(acc[2]), font = self._text_size['Text 8 bold']) def button_3_click(self, event = None): ''' Identifies enclosed compartments in the canvas. :return: ''' click_x = self._main_canvas.winfo_pointerx() - self._main_canvas.winfo_rootx() click_y = self._main_canvas.winfo_pointery() - self._main_canvas.winfo_rooty() self._pt_frame.place_forget() self._point_is_active = False margin = 10 self._active_point = '' for point, coords in self._point_dict.items(): point_coord = self.get_point_canvas_coord(point) if point_coord[0]-margin < click_x < point_coord[0]+margin and\ point_coord[1]-margin < click_y < point_coord[1]+margin: self._active_point = point self._point_is_active = True self._new_delete_point.set(get_num(point)) if not self._p1_p2_select: self._new_line_p1.set(get_num(point)) self._p1_p2_select = True else: self._new_line_p2.set(get_num(point)) self._p1_p2_select = False self._new_point_x.set(round(self._point_dict[self._active_point][0]*1000, 1)) self._new_point_y.set(round(self._point_dict[self._active_point][1]*1000, 1)) if
<reponame>lkusch/Kratos<filename>applications/SwimmingDEMApplication/python_scripts/daitche_quadrature/quadrature.py import math import cmath import mpmath import matplotlib.pyplot as plt from bigfloat import * import sys # ***************************************************************************************************************************************************************************************** # EXACT EVALUATIONS # ***************************************************************************************************************************************************************************************** def ExactIntegrationOfSinus(t, a = None, b = None): with precision(300): if a == None and b == None: return 0.5 * math.pi * math.sqrt(t) * (mpmath.angerj(0.5, t) - mpmath.angerj(- 0.5, t)) elif a == None and b != None: a = 0 elif a == 'MinusInfinity' and b != None: return math.sqrt(0.5 * math.pi) * (math.sin(b) - math.cos(b)) elif a == 'MinusInfinity' and b == None: return math.sqrt(0.5 * math.pi) * (math.sin(t) - math.cos(t)) elif b == None: b = t mpmath.mp.dps = 50 mpmath.mp.pretty = True pi = mpmath.mp.pi pi = +pi fcos = mpmath.fresnelc fsin = mpmath.fresnels arg_a = mpmath.sqrt(2 * (t - a) / pi) arg_b = mpmath.sqrt(2 * (t - b) / pi) return mpmath.sqrt(2 * mpmath.mp.pi) * ((fsin(arg_b) - fsin(arg_a)) * mpmath.cos(t) + (fcos(arg_a) - fcos(arg_b)) * mpmath.sin(t)) def ExactIntegrationOfSinusWithExponentialKernel(t, ti, alpha = None, beta = None): #print('alpha', alpha) #print('beta', beta) #print('t', t) a = sqrt(exp(1) / ti) b = - 0.5 / ti if alpha == 'MinusInfinity': return - a / (b ** 2 + 1) * exp(b * (t - beta)) * (b * sin(beta) + cos(beta)) else: return a / (b ** 2 + 1) * (exp(b * (t - alpha)) * (b * sin(alpha) + cos(alpha)) - exp(b * (t - beta)) * (b * sin(beta) + cos(beta))) def ExactIntegrationOfTail(end_time, end_time_minus_tw, initial_time, ais, tis): F_tail = 0.0 for i in range(len(ais)): ti = tis[i] F_tail += ais[i] * ExactIntegrationOfSinusWithExponentialKernel(end_time, ti, initial_time, end_time_minus_tw) return F_tail # ***************************************************************************************************************************************************************************************** # QUADRATURES # ***************************************************************************************************************************************************************************************** # Approximate Quadrature BEGINS # ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- def ApproximateQuadrature(times, f): values = [0.0 for t in times] acc_sum = 2 * math.sqrt(times[-1] - times[-2]) * f(times[-1]) for i in range(len(values) - 1): if i == 0: delta_t = times[1] - times[0] else: delta_t = times[i] - times[i - 1] acc_sum += 0.5 * delta_t * (f(times[i]) + f(times[i - 1])) / math.sqrt(times[-1] - times[i]) return acc_sum # ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- # Approximate Quadrature ENDS # Naive Quadrature BEGINS # ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- def NaiveQuadrature(times, f): values = [0.0 for t in times] acc_sum = 0.0 for i in range(len(values) - 1): if i == 0: delta_t = times[1] - times[0] acc_sum += 0.5 * delta_t * (f(times[i]) + f(times[i + 1])) / math.sqrt(times[-1] - times[i]) return acc_sum # ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- # Naive Quadrature ENDS # Daitche BEGINS # ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- def Alpha(n, j): four_thirds = 4. / 3 exponent = 1.5 if 0 < j and j < n: return four_thirds * ((j - 1) ** exponent + (j + 1) ** exponent - 2 * j ** exponent) elif j == 0: return four_thirds else: return four_thirds * ((n - 1) ** exponent - n ** exponent + exponent * sqrt(n)) def Beta(n, j): with precision(200): one = BigFloat(1) sqrt_2 = math.sqrt(one * 2) sqrt_3 = math.sqrt(one * 3) sqrt_n = math.sqrt(one * n) j = one * j if n >= 4: if 2 < j and j < n - 1: return 8. / (one * 15) * ( (j + 2) ** 2.5 - 3 * (j + 1) ** 2.5 + 3 * j ** 2.5 - (j - 1) ** 2.5)\ + 2. / (one * 3) * (- (j + 2) ** 1.5 + 3 * (j + 1) ** 1.5 - 3 * j ** 1.5 + (j - 1) ** 1.5) elif j == 0: return 4. / (one * 5) * sqrt_2 elif j == 1: return 14. / (one * 5) * sqrt_3 - 12. / (one * 5) * sqrt_2 elif j == 2: return 176. / (one * 15) - 42. / 5 * sqrt_3 + 12. / (one * 5) * sqrt_2 elif j == n - 1: return 8. / (one * 15) * (- 2 * n ** 2.5 + 3 * (n - 1) ** 2.5 - (n - 2) ** 2.5)\ + 2. / (one * 3) * ( 4 * n ** 1.5 - 3 * (n - 1) ** 1.5 + (n - 2) ** 1.5) else: return 8. / (one * 15) * (n ** 2.5 - (n - 1) ** 2.5) + 2. / 3 * (- 3 * n ** 1.5 + (n - 1) ** 1.5) + 2 * sqrt_n elif n == 2: if j == 0: return 12. / 15 * sqrt_2 elif j == 1: return 16. / 15 * sqrt_2 else: return 2. / 15 * sqrt_2 else: if j == 0: return 4. / 5 * sqrt_2 elif j == 1: return 14. / 5 * sqrt_3 - 12. / 5 * sqrt_2 elif j == 2: return - 8. / 5 * sqrt_3 + 12. / 5 * sqrt_2 else: return 4. / 5 * sqrt_3 - 4. / 5 * sqrt_2 def Gamma(n, j): with precision(200): one = BigFloat(1) sqrt_2 = sqrt(2 * one) sqrt_3 = sqrt(3 * one) sqrt_5 = sqrt(5 * one) sqrt_6 = sqrt(6 * one) sqrt_n = sqrt(n * one) j = one * j if n >= 7: if 3 < j and j < n - 3: return 16. / (one * 105) * ( (j + 2) ** (one * 3.5) + (j - 2) ** (one * 3.5) - 4 * (j + 1) ** (one * 3.5) - 4 * (j - 1) ** (one * 3.5) + 6 * j ** (one * 3.5))\ + 2. / (one * 9) * (4 * (j + 1) ** (one * 1.5) + 4 * (j - 1) ** (one * 1.5) - (j + 2) ** (one * 1.5) - (j - 2) ** (one * 1.5) - 6 * j ** (one * 1.5)) elif j == 0: return 244. / (one * 315) * sqrt_2 elif j == 1: return 362. / (one * 105) * sqrt_3 - 976. / (one * 315) * sqrt_2 elif j == 2: return 5584. / (one * 315) - 1448. / (one * 105) * sqrt_3 + 488. / (one * 105) * sqrt_2 elif j == 3: return 1130. / (one * 63) * sqrt_5 - 22336. / (one * 315) + 724. / (one * 35) * sqrt_3 - 976. / (one * 315) * sqrt_2 elif j == n - 3: return 16. / (one * 105) * (n ** (one * 3.5) - 4 * (n - 2) ** (one * 3.5) + 6 * (n - 3) ** (one * 3.5) - 4 * (n - 4) ** (one * 3.5) + (n - 5) ** (one * 3.5))\ - 8. / (one * 15) * n ** (one * 2.5) + 4. / (one * 9) * n ** (one * 1.5) + 8. / (one * 9) * (n - 2) ** (one * 1.5) - 4. / (one * 3) * (n - 3) ** (one * 1.5) + 8. / (one * 9) * (n - 4) ** (one * 1.5) - 2. / (one * 9) * (n - 5) ** (one * 1.5) elif j == n - 2: return 16. / (one * 105) * ((n - 4) ** (one * 3.5) - 4 * (n - 3) ** (one * 3.5) + 6 * (n - 2) ** (one * 3.5) - 3 * n ** (one * 3.5))\ + 32. / (one * 15) * n ** (one * 2.5) - 2 * n ** (one * 1.5) - 4. / (one * 3) * (n - 2) ** (one * 1.5) + 8. / (one * 9) * (n - 3) ** (one * 1.5) - 2. / (one * 9) * (n - 4) ** (one * 1.5) elif
#@+leo-ver=5-thin #@+node:ekr.20211021200745.1: * @file ../plugins/picture_viewer.py #@+<< docstring (picture_viewer.py) >> #@+node:ekr.20211021202710.1: ** << docstring (picture_viewer.py) >> """ Display image files in a directory tree as a slide show. This plugin will display all files in a directory tree that have image extensions. By default the recognized extensions are '.jpeg', '.jpg', and '.png'. Other types of image files can be displayed as long as the they are types known by the Qt PixMap class, including '.gif' and '.bmp'. See, for example: https://doc.qt.io/qt-5/qpixmap.html#reading-and-writing-image-files This plugin should be called from a script (or @command or @button node) as follows: from leo.plugins.picture_viewer import Slides Slides().run(c) # See below for defaults. *Note*: do not enable this plugin. It will be loaded by the calling script. **Key bindings** Plain keys control the display of slides: space: show the next slide. backspace: show the previous slide. escape: end the slideshow =: zoom in -: zoom out arrows keys: pan the slide d: prompt to move the slide to the trash h: show the help message m: move the file. r: restart: choose another folder **Defaults** The following keyword arguments may be supplied to the run method: background_color = "black", # Default background color. delay = 100, # Delay between slides, in seconds. extensions = ['.jpeg', '.jpg', '.png'], # List of file extensions. full_screen = True, # True: start in full-screen mode. height = 900, # Window height (pixels) when not in full screen mode. path = None, # If none, display a dialog. reset_zoom = True, # True, reset zoom factor when changing slides. sort_kind = 'random', # 'date', 'name', 'none', 'random', or 'size' width = 1500, # Window width (pixels) when not un full screen mode. """ #@-<< docstring (picture_viewer.py) >> #@+<< imports (picture_viewer.py) >> #@+node:ekr.20211021202633.1: ** << imports (picture_viewer.py) >> import argparse import os import pathlib import sys import random import textwrap # Leo imports from leo.core import leoGlobals as g try: from leo.core.leoQt import isQt5, isQt6, QtCore, QtGui, QtWidgets from leo.core.leoQt import ButtonRole, Information except ImportError: QtWidgets = None #@-<< imports (picture_viewer.py) >> # Globals to retain references to objects. gApp = None gWidget = None #@+others #@+node:ekr.20211021202802.1: ** init (picture_viewer.py) def init(): """Return True if the plugin has loaded successfully.""" return g.app.gui.guiName().lower().startswith('qt') #@+node:tom.20211023221408.1: ** get_args & checkers def get_args(): # Automatically implements the --help option. description = "usage: python -m picture-viewer [options]" parser = argparse.ArgumentParser( description=description, formatter_class=argparse.RawTextHelpFormatter) # Add args. add = parser.add_argument add('--background', dest='background', metavar='COLOR', help='Background color') add('--delay', dest='delay', metavar='DELAY', help='Delay (seconds)') add('--extensions', dest='extensions', nargs='*', metavar='TYPES', help='List of image file extensions.') # Default: .jpeg,.jpg,.png (no spaces allowed) add('--full-screen', dest='fullscreen', action='store_true', help='Start in full-screen mode') add('--height', dest='height', metavar='PIXELS', help='Height of window') add('--path', dest='path', metavar='DIRECTORY', help='Path to root directory') add('--reset-zoom', dest='reset_zoom', action='store_false', help='Reset zoom factor when changing slides') add('--scale', dest='scale', metavar='FLOAT', help='Initial scale (zoom) factor') add('--sort-kind', dest='sort_kind', metavar="KIND", help='Sort kind: (date, name, none, random, or size)') add('--starting-directory', dest='starting_directory', metavar='DIRECTORY', help='Starting directory for file dialogs') add('--verbose', dest='verbose', action='store_true', help='Enable status messages') add('--width', dest='width', metavar='PIXELS', help='Width of window') # Parse the options, and remove them from sys.argv. args = parser.parse_args() # Check and return the args. return { 'background_color': args.background or "black", 'delay': get_delay(args.delay), 'extensions': get_extensions(args.extensions), 'full_screen': args.fullscreen, 'height': get_pixels('height', args.height), 'path': get_path(args.path), 'reset_zoom': args.reset_zoom, 'scale': get_scale(args.scale), 'sort_kind': get_sort_kind(args.sort_kind), 'starting_directory': get_path(args.starting_directory), 'verbose': args.verbose, 'width': get_pixels('width', args.width) } #@+node:ekr.20211101064157.1: *3* get_delay def get_delay(delay): if delay is None: return None try: return float(delay) except ValueError: print(f"Bad delay value: {delay!r}") return None #@+node:ekr.20211024034921.1: *3* get_extensions def get_extensions(aList): # Ensure extensions start with '.' return [ z if z.startswith('.') else f".{z}" for z in aList or [] ] #@+node:ekr.20211024041658.1: *3* get_path def get_path(path): if path and not os.path.exists(path): print(f"--path: not found: {path!r}") path = None return path #@+node:ekr.20211024035501.1: *3* get_pixels def get_pixels(kind, pixels): if pixels is None: return None try: return int(pixels) except ValueError: print(f"Bad --{kind} value: {pixels!r}") return None #@+node:ekr.20211024041359.1: *3* get_scale def get_scale(scale): try: return float(scale or 1.0) except ValueError: print(f"Bad --scale: {scale!r}") return 1.0 #@+node:ekr.20211024040842.1: *3* get_sort_kind def get_sort_kind(kind): if not kind: return None kind = kind.lower() if kind not in ('date', 'name', 'none', 'random', 'size'): print(f"bad --sort-kind: {kind!r}") kind = 'none' return kind #@+node:ekr.20211023201914.1: ** main def main(): global gApp gApp = QtWidgets.QApplication(sys.argv) args = get_args() ok = Slides().run(c = None, **args) if ok: if isQt5: sys.exit(gApp.exec_()) else: sys.exit(gApp.exec()) #@+node:ekr.20211021202356.1: ** class Slides if QtWidgets: class Slides(QtWidgets.QWidget): slide_number = -1 timer = QtCore.QBasicTimer() #@+others #@+node:ekr.20211024030844.1: *3* Slides.closeEvent def closeEvent(self, event): """Override QWidget.closeEvent.""" self.quit() #@+node:ekr.20211021200821.4: *3* Slides.delete send_to_trash_warning_given = False def delete(self): """Issue a prompt and delete the file if the user agrees.""" try: from send2trash import send2trash except Exception: if not self.send_to_trash_warning_given: self.send_to_trash_warning_given = True print("Deleting files requires send2trash") print("pip install Send2Trash") return file_name = self.files_list[self.slide_number] # Create the dialog without relying on g.app.gui. dialog = QtWidgets.QMessageBox(self) dialog.setStyleSheet("background: white;") yes = dialog.addButton('Yes', ButtonRole.YesRole) dialog.addButton('No', ButtonRole.NoRole) dialog.setWindowTitle("Delete File?") dialog.setText( f"Delete file {g.shortFileName(file_name)}?") dialog.setIcon(Information.Warning) dialog.setDefaultButton(yes) dialog.raise_() result = dialog.exec() if isQt6 else dialog.exec_() if result == 0: # Move the file to the trash. send2trash(file_name) del self.files_list[self.slide_number] print(f"Deleted {file_name}") self.slide_number = max(0, self.slide_number - 1) self.next_slide() self.raise_() #@+node:ekr.20211021200821.2: *3* Slides.get_files def get_files(self, path): """Return all files in path, including all subdirectories.""" return [ str(z) for z in pathlib.Path(path).rglob('*') if z.is_file() and os.path.splitext(str(z))[1].lower() in self.extensions ] #@+node:ekr.20211021200821.5: *3* Slides.keyPressEvent def keyPressEvent (self, event): i = event.key() s = event.text() # mods = event.modifiers() if s == 'd': self.delete() elif s == 'f': self.toggle_full_screen() elif s == 'h': self.show_help() elif s == 'm': self.move_to() elif s == 'n' or i == 32: # ' ' self.next_slide() elif s == 'p' or s == '\b': self.prev_slide() elif s == 'q' or s == '\x1b': # ESC. self.quit() elif s == 'r': self.restart() elif s in '=+': self.zoom_in() elif s in '-_': self.zoom_out() elif i == 16777235: self.move_up() elif i == 16777237: self.move_down() elif i == 16777234: self.move_left() elif i == 16777236: self.move_right() else: print(f"picture_viewer.py: ignoring {s!r} {i}") #@+node:ekr.20211021200821.6: *3* Slides.move_up/down/left/right def move_down(self): self.scroll_area.scrollContentsBy(0, -400 * self.scale) def move_left(self): self.scroll_area.scrollContentsBy(400 * self.scale, 0) def move_right(self): self.scroll_area.scrollContentsBy(-400 * self.scale, 0) def move_up(self): self.scroll_area.scrollContentsBy(0, 400 * self.scale) #@+node:ekr.20211021200821.7: *3* Slides.move_to def move_to(self): """Issue a prompt and move the file if the user agrees.""" file_name = self.files_list[self.slide_number] path = QtWidgets.QFileDialog().getExistingDirectory() if path: new_path = os.path.join(path, os.path.basename(file_name)) if os.path.exists(new_path): print("File exists:", new_path) else: pathlib.Path(file_name).rename(new_path) del self.files_list[self.slide_number] self.slide_number = max(0, self.slide_number - 1) self.next_slide() self.raise_() #@+node:ekr.20211021200821.8: *3* Slides.next_slide def next_slide(self): if self.slide_number + 1 < len(self.files_list): self.slide_number += 1 # Don't wrap. if self.reset_zoom: self.scale = 1.0 self.show_slide() #@+node:ekr.20211021200821.9: *3* Slides.prev_slide def prev_slide(self): if self.slide_number > 0: # Don't wrap. self.slide_number -= 1 if self.reset_zoom: self.scale = 1.0 self.show_slide() #@+node:ekr.20211021200821.10: *3* Slides.quit def quit(self): global gApp self.timer.stop() self.destroy() if gApp: # Running externally. gApp.exit() gApp = None if self.verbose: print('picture_viewer: done') #@+node:ekr.20211029020533.1: *3* Slides.restart def restart(self): dialog = QtWidgets.QFileDialog(directory=self.starting_directory) path = dialog.getExistingDirectory() if not path: if self.verbose: print("No path given") self.quit() return self.starting_directory = path os.chdir(path) self.files_list = self.get_files(path) self.slide_number = -1 self.sort(self.sort_kind) self.next_slide() # show_slide resets the timer. #@+node:ekr.20211021200821.11: *3* Slides.run & helper def run(self, c, # Required. The commander for this slideshow. background_color = None, # Default background color. delay = None, # Delay between slides, in seconds. Default 100. extensions = None, # List of file extensions. full_screen = False, # True: start in full-screen mode. height = None, # Window height (default 1500 pixels) when not in full screen mode. path = None, # Root directory. scale = None, # Initial scale factor. Default 1.0 reset_zoom = True, # True: reset zoom factor when changing slides. sort_kind = None, # 'date', 'name', 'none', 'random', or 'size'. Default is 'random'. starting_directory = None, # Starting directory for file dialogs. verbose = False, # True, print info messages. width = None, # Window width (default 1500 pixels) when not in full screen mode. ): """ Create the widgets and run the slideshow. Return True if any pictures were found. """ # Keep a reference to this class! global gWidget gWidget = self # Init ivars. w = self self.c = c self.background_color = background_color or "black" self.delay = delay or 100 self.extensions = extensions or ['.jpeg',
model.item_input: item_input[i][:, None], # model.labels: labels[i][:, None]} # train_loss += sess.run(model.loss, feed_dict) # else: # for i in range(len(labels)): # feed_dict = {model.user_input: user_input[i][:, None], # model.item_input: item_input[i], # model.labels: labels[i][:, None]} # loss = sess.run(model.loss, feed_dict) # # train_loss += sess.run(model.loss, feed_dict) # train_loss += loss # return train_loss / num_batch def init_logging_and_result(args): global filename path_log = 'Log' if not os.path.exists(path_log): os.makedirs(path_log) # define factors F_model = args.model F_dataset = args.dataset F_embedding = args.embed_size F_topK = args.topK F_layer_num = args.layer_num F_num_neg = args.num_neg F_trail_id = args.trial_id F_optimizer = args.optimizer + str(args.lr) F_loss_weight = args.loss_coefficient F_beta = args.beta F_alpha = args.alpha F_en_MC = args.en_MC F_dropout = args.dropout F_reg = args.regs F_b_num = args.b_num F_b_2_type = args.b_2_type F_half = args.half_behave F_buy_loss = args.buy_loss if args.training_type == 'cascade': F_cascade = 'C' F_cascade_mode = args.cascade_mode else: F_cascade = 'X' F_cascade_mode = 'X' if F_model not in ['pure_NCF', 'pure_MLP', 'Multi_NCF', 'Multi_MLP', 'GMF_FC', 'NCF_FC']: F_layer_num = 'X' if F_model not in ['Multi_MLP', 'Multi_NCF', 'Multi_GMF']: F_b_2_type = 'X' if (F_model != 'Multi_BPR'): F_dropout = 'X' if (F_model != 'Multi_BPR') and (F_en_MC != 'yes'): F_beta = 'X' if F_num_neg == 4: F_num_neg = 'D' # if F_optimizer == 'Adagrad0.01': # F_optimizer = 'D' if F_loss_weight == '[1/3,1/3,1/3]': F_loss_weight = 'D' else: F_loss_weight = F_loss_weight.replace('/', '-') if F_model != 'FISM': F_alpha = 'X' if F_b_num == 3: F_b_2_type = 'X' if F_half == 'no': if F_buy_loss == 'no': filename = "log-%s-%s-%s-%s-%s-%s-%s-%s-%s-%s-%s-%s-b-%s-a-%s-%s%s" %( F_model, F_dataset, F_embedding, F_topK, F_layer_num, F_num_neg, F_loss_weight,\ F_optimizer, F_trail_id, F_beta, F_dropout, F_reg, F_b_2_type, F_alpha, F_cascade, F_cascade_mode) else: filename = "log-%s-%s-%s-%s-%s-%s-%s-%s-%s-%s-%s-%s-b-%s-a-%s-bloss-%s%s" %( F_model, F_dataset, F_embedding, F_topK, F_layer_num, F_num_neg, F_loss_weight,\ F_optimizer, F_trail_id, F_beta, F_dropout, F_reg, F_b_2_type, F_alpha, F_cascade, F_cascade_mode) else: filename = "log-%s-%s-%s-%s-%s-%s-%s-%s-%s-%s-%s-%s-b-%s-a-%s-half-%s%s" %( F_model, F_dataset, F_embedding, F_topK, F_layer_num, F_num_neg, F_loss_weight,\ F_optimizer, F_trail_id, F_beta, F_dropout, F_reg, F_b_2_type, F_alpha, F_cascade, F_cascade_mode) logging.basicConfig(filename=path_log+'/'+filename, level=logging.INFO) logging.info('Use Multiprocess to Evaluate: %s' %args.multiprocess) def save_results(args, cascade = False): if args.recover == 'yes': path_result = 'Recover' else: path_result = 'Result' if not os.path.exists(path_result): os.makedirs(path_result) if args.recover == 'yes': with open(path_result+'/'+filename, 'w') as output: output.write('HR:%.4f,NDCG:%.4f' %(hr_recover, ndcg_recover)) else: if cascade: pass else: with open(path_result+'/'+filename, 'w') as output: for i in range(len(loss_list)): output.write('%.4f,%.4f,%.4f\n' %(loss_list[i], hr_list[i], ndcg_list[i])) rank_path = '' if __name__ == '__main__': args = parse_args() dataset = None filename = None hr_recover = None ndcg_recover = None eval_queue = JoinableQueue() job_num = Semaphore(0) job_lock = Lock() rank_result = [] if 'FC' in args.model: loss_list = range(3 * args.epochs) hr_list = range(3 * args.epochs) ndcg_list = range(3 * args.epochs) else: loss_list = range(args.epochs) hr_list = range(args.epochs) ndcg_list = range(args.epochs) # initialize logging and configuration print('------ %s ------' %(args.process_name)) #setproctitle.setproctitle(args.process_name) os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu) init_logging_and_result(args) # load data print('--- data generation start ---') data_gen_begin = time() if args.dataset == 'bb1': print('load bb1 data') path = '../data/Beibei/beibei' elif args.dataset == 'bb2': print('load bb2 data') path = '/data3/gaochen/gandahua/Data/' elif args.dataset == 'bb3': print('load bb3 data') pass elif args.dataset == 'ali': print('load ali data') path = '../data/taobao/taobao' elif args.dataset == 'ali2': print('load ali 2 data') path = '/home/stu/gandahua/MBR/Data/ali' elif args.dataset == 'ali3': print('load ali 3 data') path = '/home/stu/gandahua/MBR/Data_ali/ali' else: pass if ('BPR' in args.model) or (args.en_MC == 'yes') or (args.model == 'FISM') or ('CMF' in args.model): dataset_all = Dataset(path = path, load_type = 'dict') else: dataset_ipv = Dataset(path = path, b_type = 'ipv', en_half=args.half_behave) dataset_cart = Dataset(path = path, b_type = 'cart', en_half=args.half_behave) dataset_buy = Dataset(path = path, b_type = 'buy', en_half=args.half_behave) dataset_all = (dataset_ipv, dataset_cart, dataset_buy) print('data generation [%.1f s]' %(time()-data_gen_begin)) # model training and evaluating if args.model == 'Multi_GMF': model = Multi_GMF(dataset_all[0].num_users, dataset_all[0].num_items, args) print('num_users:%d num_items:%d' %(dataset_ipv.num_users, dataset_ipv.num_items)) model.build_graph() dataset = dataset_all # recover result or not if args.recover == 'yes': eval_from_saved_model(model, args) else: if args.multiprocess == 'yes': print('start multiprocess') train_process = Process(target = training, args = (model, args)) train_process.start() # evaluate # initialize for Evaluate EvalDict = EvalUser.gen_feed_dict(dataset[0]) cpu_num = 3 eval_pool = Pool(cpu_num) for _ in range(cpu_num): eval_pool.apply_async(do_eval_job, (args, EvalDict)) train_process.join() eval_queue.close() eval_queue.join() else: print('start single process') if args.training_type == 'independent': training(model, args) else: training(model, args, behave_type='ipv') rank_result = [] loss_list = range(args.epochs) hr_list = range(args.epochs) ndcg_list = range(args.epochs) model.build_graph() training(model, args, behave_type='cart') rank_result = [] loss_list = range(args.epochs) hr_list = range(args.epochs) ndcg_list = range(args.epochs) model.build_graph() training(model, args, behave_type='buy') rank_result = [] loss_list = range(args.epochs) hr_list = range(args.epochs) ndcg_list = range(args.epochs) elif args.model == 'Multi_MLP': model = Multi_MLP(dataset_all[0].num_users, dataset_all[0].num_items, args) print('num_users:%d num_items:%d' %(dataset_ipv.num_users, dataset_ipv.num_items)) model.build_graph() dataset = dataset_all # recover result or not if args.recover == 'yes': eval_from_saved_model(model, args) else: if args.multiprocess == 'yes': print('start multiprocess') train_process = Process(target = training, args = (model, args)) train_process.start() # evaluate # initialize for Evaluate EvalDict = EvalUser.gen_feed_dict(dataset[0]) cpu_num = 3 eval_pool = Pool(cpu_num) for _ in range(cpu_num): eval_pool.apply_async(do_eval_job, (args, EvalDict)) train_process.join() eval_queue.close() eval_queue.join() else: print('start single process') if args.training_type == 'independent': training(model, args) else: training(model, args, behave_type='ipv') rank_result = [] loss_list = range(args.epochs) hr_list = range(args.epochs) ndcg_list = range(args.epochs) model.build_graph() training(model, args, behave_type='cart') rank_result = [] loss_list = range(args.epochs) hr_list = range(args.epochs) ndcg_list = range(args.epochs) model.build_graph() training(model, args, behave_type='buy') rank_result = [] loss_list = range(args.epochs) hr_list = range(args.epochs) ndcg_list = range(args.epochs) elif args.model == 'Multi_NCF': # model = Multi_NCF(dataset_all[0].num_users, dataset_all[0].num_items, args) model = Multi_NCF_2(dataset_all[0].num_users, dataset_all[0].num_items, args) print('num_users:%d num_items:%d' %(dataset_ipv.num_users, dataset_ipv.num_items)) model.build_graph() dataset = dataset_all # recover result or not if args.recover == 'yes': eval_from_saved_model(model, args) else: if args.multiprocess == 'yes': print('start multiprocess') train_process = Process(target = training, args = (model, args)) train_process.start() # evaluate # initialize for Evaluate EvalDict = EvalUser.gen_feed_dict(dataset[0]) cpu_num = 3 eval_pool = Pool(cpu_num) for _ in range(cpu_num): eval_pool.apply_async(do_eval_job, (args, EvalDict)) train_process.join() eval_queue.close() eval_queue.join() else: print('start single process') if args.training_type == 'independent': training(model, args) else: training(model, args, behave_type='ipv') rank_result = [] loss_list = range(args.epochs) hr_list = range(args.epochs) ndcg_list = range(args.epochs) model.build_graph() training(model, args, behave_type='cart') rank_result = [] loss_list = range(args.epochs) hr_list = range(args.epochs) ndcg_list = range(args.epochs) if args.b_num == 3: model.build_graph() training(model, args, behave_type='buy') rank_result = [] loss_list = range(args.epochs) hr_list = range(args.epochs) ndcg_list = range(args.epochs) elif args.model == 'pure_GMF': if args.en_MC == 'yes': dataset = dataset_all else: dataset = dataset_buy model = pure_GMF(dataset.num_users, dataset.num_items, args) print('num_users:%d num_items:%d' %(dataset.num_users, dataset.num_items)) model.build_graph() # recover result or not if args.recover == 'yes': eval_from_saved_model(model, args) else: if args.multiprocess == 'yes': pass else: print('start single process') training(model, args, behave_type='buy') # training(model, args, behave_type='buy') elif args.model == 'pure_MLP': if args.en_MC == 'yes': dataset = dataset_all else: dataset = dataset_buy model = pure_MLP(dataset.num_users, dataset.num_items, args) print('num_users:%d num_items:%d' %(dataset.num_users, dataset.num_items)) model.build_graph() # recover result or not if args.recover == 'yes': eval_from_saved_model(model, args) else: if args.multiprocess == 'yes': pass else: print('start single process') training(model, args, behave_type='buy') elif args.model == 'pure_NCF': if args.en_MC == 'yes': dataset = dataset_all else: dataset = dataset_buy # model = pure_NCF(dataset.num_users, dataset.num_items, args) model = pure_NCF_2(dataset.num_users, dataset.num_items, args) print('num_users:%d num_items:%d' %(dataset.num_users, dataset.num_items)) model.build_graph() # recover result or not if args.recover == 'yes': eval_from_saved_model(model, args) else: if args.multiprocess == 'yes': pass else: print('start single process') training(model, args, behave_type='buy') elif args.model == 'FISM': model = FISM(dataset_all.num_items, dataset_all.num_users, dataset_all.max_rate, args) print('num_users:%d num_items:%d max_rate:%d' %( dataset_all.num_users, dataset_all.num_items, dataset_all.max_rate)) model.build_graph() dataset = dataset_all # recover result or not if args.recover == 'yes': eval_from_saved_model(model, args) else: if args.multiprocess == 'yes': print('start multiprocess') train_process = Process(target = training, args = (model, args)) train_process.start() # evaluate # initialize for Evaluate EvalDict = EvalUser.gen_feed_dict(dataset) cpu_num = 3 eval_pool = Pool(cpu_num) for _ in range(cpu_num): eval_pool.apply_async(do_eval_job, (args, EvalDict)) train_process.join() eval_queue.close() eval_queue.join() else: print('start single process') training(model, args) elif args.model == 'CMF': model = CMF(dataset_all.num_users, dataset_all.num_items, args) print('num_users:%d num_items:%d' %(dataset_all.num_users, dataset_all.num_items)) model.build_graph() dataset = dataset_all print('start single process') training(model, args) elif 'BPR' in args.model: model = BPR(dataset_all.num_users, dataset_all.num_items, args) print('num_users:%d num_items:%d' %(dataset_all.num_users, dataset_all.num_items)) model.build_graph() dataset = dataset_all # recover result or not if args.recover == 'yes': eval_from_saved_model(model, args) else: if args.multiprocess == 'yes': print('start multiprocess') train_process = Process(target = training, args = (model, args)) train_process.start() # evaluate # initialize for
noqa correct_cb3 = """ {# correct_cb3 #} {% set version = "1.14.5" %} {% set build_number = 1 %} {% set variant = "openblas" %} {% set build_number = build_number + 200 %} package: name: numpy version: {{ version }} source: url: https://github.com/numpy/numpy/releases/download/v{{ version }}/numpy-{{ version }}.tar.gz sha256: 1b4a02758fb68a65ea986d808867f1d6383219c234aef553a8741818e795b529 build: number: {{ build_number }} skip: true # [win32 or (win and py27)] features: - blas_{{ variant }} requirements: build: - {{ compiler('fortran') }} - {{ compiler('c') }} - {{ compiler('cxx') }} host: - python - pip - cython - blas 1.1 {{ variant }} - openblas run: - python - blas 1.1 {{ variant }} - openblas test: requires: - nose commands: - f2py -h - conda inspect linkages -p $PREFIX $PKG_NAME # [not win] - conda inspect objects -p $PREFIX $PKG_NAME # [osx] imports: - numpy - numpy.linalg.lapack_lite about: home: http://numpy.scipy.org/ license: BSD 3-Clause license_file: LICENSE.txt summary: 'Array processing for numbers, strings, records, and objects.' doc_url: https://docs.scipy.org/doc/numpy/reference/ dev_url: https://github.com/numpy/numpy extra: recipe-maintainers: - jakirkham - msarahan - pelson - rgommers - ocefpaf """ # noqa sample_r_base = """ {# sample_r_base #} {% set version = '0.7-1' %} {% set posix = 'm2-' if win else '' %} {% set native = 'm2w64-' if win else '' %} package: name: r-stabledist version: {{ version|replace("-", "_") }} source: fn: stabledist_{{ version }}.tar.gz url: - https://cran.r-project.org/src/contrib/stabledist_{{ version }}.tar.gz - https://cran.r-project.org/src/contrib/Archive/stabledist/stabledist_{{ version }}.tar.gz sha256: 06c5704d3a3c179fa389675c537c39a006867bc6e4f23dd7e406476ed2c88a69 build: number: 1 rpaths: - lib/R/lib/ - lib/ skip: True # [win32] requirements: build: - r-base run: - r-base test: commands: - $R -e "library('stabledist')" # [not win] - "\\"%R%\\" -e \\"library('stabledist')\\"" # [win] """ # noqa updated_r_base = """ {# updated_r_base #} {% set version = '0.7-1' %} {% set posix = 'm2-' if win else '' %} {% set native = 'm2w64-' if win else '' %} package: name: r-stabledist version: {{ version|replace("-", "_") }} source: fn: stabledist_{{ version }}.tar.gz url: - https://cran.r-project.org/src/contrib/stabledist_{{ version }}.tar.gz - https://cran.r-project.org/src/contrib/Archive/stabledist/stabledist_{{ version }}.tar.gz sha256: 06c5704d3a3c179fa389675c537c39a006867bc6e4f23dd7e406476ed2c88a69 build: noarch: generic number: 2 rpaths: - lib/R/lib/ - lib/ requirements: build: - r-base run: - r-base test: commands: - $R -e "library('stabledist')" # [not win] - "\\"%R%\\" -e \\"library('stabledist')\\"" # [win] """ # noqa sample_r_base2 = """ {% set version = '0.7-1' %} {% set posix = 'm2-' if win else '' %} {% set native = 'm2w64-' if win else '' %} package: name: r-stabledist version: {{ version|replace("-", "_") }} source: fn: stabledist_{{ version }}.tar.gz url: - https://cran.r-project.org/src/contrib/stabledist_{{ version }}.tar.gz - https://cran.r-project.org/src/contrib/Archive/stabledist/stabledist_{{ version }}.tar.gz sha256: 06c5704d3a3c179fa389675c537c39a006867bc6e4f23dd7e406476ed2c88a69 build: number: 1 rpaths: - lib/R/lib/ - lib/ skip: True # [win32] requirements: build: - r-base - {{ compiler('c') }} run: - r-base test: commands: - $R -e "library('stabledist')" # [not win] - "\\"%R%\\" -e \\"library('stabledist')\\"" # [win] """ # noqa updated_r_base2 = """ {% set version = '0.7-1' %} {% set posix = 'm2-' if win else '' %} {% set native = 'm2w64-' if win else '' %} package: name: r-stabledist version: {{ version|replace("-", "_") }} source: fn: stabledist_{{ version }}.tar.gz url: - https://cran.r-project.org/src/contrib/stabledist_{{ version }}.tar.gz - https://cran.r-project.org/src/contrib/Archive/stabledist/stabledist_{{ version }}.tar.gz sha256: 06c5704d3a3c179fa389675c537c39a006867bc6e4f23dd7e406476ed2c88a69 build: number: 2 rpaths: - lib/R/lib/ - lib/ skip: True # [win32] requirements: build: - r-base - {{ compiler('c') }} run: - r-base test: commands: - $R -e "library('stabledist')" # [not win] - "\\"%R%\\" -e \\"library('stabledist')\\"" # [win] """ # noqa # Test that filepaths to various licenses are updated for a noarch recipe sample_r_licenses_noarch = """ {% set version = '0.7-1' %} {% set posix = 'm2-' if win else '' %} {% set native = 'm2w64-' if win else '' %} package: name: r-stabledist version: {{ version|replace("-", "_") }} source: fn: stabledist_{{ version }}.tar.gz url: - https://cran.r-project.org/src/contrib/stabledist_{{ version }}.tar.gz - https://cran.r-project.org/src/contrib/Archive/stabledist/stabledist_{{ version }}.tar.gz sha256: 06c5704d3a3c179fa389675c537c39a006867bc6e4f23dd7e406476ed2c88a69 build: number: 1 rpaths: - lib/R/lib/ - lib/ skip: True # [win32] requirements: build: - r-base run: - r-base test: commands: - $R -e "library('stabledist')" # [not win] - "\\"%R%\\" -e \\"library('stabledist')\\"" # [win] about: license_family: GPL3 license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/GPL-3' # [unix] license_file: '{{ environ["PREFIX"] }}\\R\\share\\licenses\\GPL-3' # [win] license_family: MIT license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/MIT' # [unix] license_file: '{{ environ["PREFIX"] }}\\R\\share\\licenses\\MIT' # [win] license_family: LGPL license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/LGPL-2' # [unix] license_file: '{{ environ["PREFIX"] }}\\R\\share\\licenses\\LGPL-2' # [win] license_family: LGPL license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/LGPL-2.1' # [unix] license_file: '{{ environ["PREFIX"] }}\\R\\share\\licenses\\LGPL-2.1' # [win] license_family: BSD license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/BSD_3_clause' # [unix] license_file: '{{ environ["PREFIX"] }}\\R\\share\\licenses\\BSD_3_clause' # [win] license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/GPL-2' # [unix] license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/BSD_3_clause' # [unix] """ # noqa updated_r_licenses_noarch = """ {% set version = '0.7-1' %} {% set posix = 'm2-' if win else '' %} {% set native = 'm2w64-' if win else '' %} package: name: r-stabledist version: {{ version|replace("-", "_") }} source: fn: stabledist_{{ version }}.tar.gz url: - https://cran.r-project.org/src/contrib/stabledist_{{ version }}.tar.gz - https://cran.r-project.org/src/contrib/Archive/stabledist/stabledist_{{ version }}.tar.gz sha256: 06c5704d3a3c179fa389675c537c39a006867bc6e4f23dd7e406476ed2c88a69 build: noarch: generic number: 2 rpaths: - lib/R/lib/ - lib/ requirements: build: - r-base run: - r-base test: commands: - $R -e "library('stabledist')" # [not win] - "\\"%R%\\" -e \\"library('stabledist')\\"" # [win] about: license_family: GPL3 license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/GPL-3' license_family: MIT license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/MIT' license_family: LGPL license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/LGPL-2' license_family: LGPL license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/LGPL-2.1' license_family: BSD license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/BSD_3_clause' license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/GPL-2' license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/BSD_3_clause' """ # noqa # Test that filepaths to various licenses are updated for a compiled recipe sample_r_licenses_compiled = """ {% set version = '0.7-1' %} {% set posix = 'm2-' if win else '' %} {% set native = 'm2w64-' if win else '' %} package: name: r-stabledist version: {{ version|replace("-", "_") }} source: fn: stabledist_{{ version }}.tar.gz url: - https://cran.r-project.org/src/contrib/stabledist_{{ version }}.tar.gz - https://cran.r-project.org/src/contrib/Archive/stabledist/stabledist_{{ version }}.tar.gz sha256: 06c5704d3a3c179fa389675c537c39a006867bc6e4f23dd7e406476ed2c88a69 build: number: 1 rpaths: - lib/R/lib/ - lib/ skip: True # [win32] requirements: build: - r-base - {{ compiler('c') }} run: - r-base test: commands: - $R -e "library('stabledist')" # [not win] - "\\"%R%\\" -e \\"library('stabledist')\\"" # [win] about: license_family: GPL3 license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/GPL-3' # [unix] license_file: '{{ environ["PREFIX"] }}\\R\\share\\licenses\\GPL-3' # [win] license_family: MIT license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/MIT' # [unix] license_file: '{{ environ["PREFIX"] }}\\R\\share\\licenses\\MIT' # [win] license_family: LGPL license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/LGPL-2' # [unix] license_file: '{{ environ["PREFIX"] }}\\R\\share\\licenses\\LGPL-2' # [win] license_family: LGPL license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/LGPL-2.1' # [unix] license_file: '{{ environ["PREFIX"] }}\\R\\share\\licenses\\LGPL-2.1' # [win] license_family: BSD license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/BSD_3_clause' # [unix] license_file: '{{ environ["PREFIX"] }}\\R\\share\\licenses\\BSD_3_clause' # [win] license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/GPL-2' # [unix] license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/BSD_3_clause' # [unix] """ # noqa updated_r_licenses_compiled = """ {% set version = '0.7-1' %} {% set posix = 'm2-' if win else '' %} {% set native = 'm2w64-' if win else '' %} package: name: r-stabledist version: {{ version|replace("-", "_") }} source: fn: stabledist_{{ version }}.tar.gz url: - https://cran.r-project.org/src/contrib/stabledist_{{ version }}.tar.gz - https://cran.r-project.org/src/contrib/Archive/stabledist/stabledist_{{ version }}.tar.gz sha256: 06c5704d3a3c179fa389675c537c39a006867bc6e4f23dd7e406476ed2c88a69 build: number: 2 rpaths: - lib/R/lib/ - lib/ skip: True # [win32] requirements: build: - r-base - {{ compiler('c') }} run: - r-base test: commands: - $R -e "library('stabledist')" # [not win] - "\\"%R%\\" -e \\"library('stabledist')\\"" # [win] about: license_family: GPL3 license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/GPL-3' license_family: MIT license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/MIT' license_family: LGPL license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/LGPL-2' license_family: LGPL license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/LGPL-2.1' license_family: BSD license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/BSD_3_clause' license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/GPL-2' license_file: '{{ environ["PREFIX"] }}/lib/R/share/licenses/BSD_3_clause' """ # noqa sample_noarch = """ {# sample_noarch #} {% set name = "xpdan" %} {% set version = "0.3.3" %} {% set sha256 = "3f1a84f35471aa8e383da3cf4436492d0428da8ff5b02e11074ff65d400dd076" %} package: name: {{ name|lower }} version: {{ version }} source: fn: {{ name }}-{{ version }}.tar.gz url: https://github.com/xpdAcq/{{ name }}/releases/download/{{ version }}/{{ version }}.tar.gz sha256: {{ sha256 }} build: number: 0 script: python -m pip install --no-deps --ignore-installed . requirements: build: - python >=3 - pip run: - python >=3 - numpy - scipy - matplotlib - pyyaml - scikit-beam - pyfai - pyxdameraulevenshtein - xray-vision - databroker - bluesky - streamz_ext - xpdsim - shed - xpdview - ophyd - xpdconf test: imports: - xpdan - xpdan.pipelines about: home: http://github.com/xpdAcq/xpdAn license: BSD-3-Clause license_family: BSD license_file: LICENSE summary: 'Analysis Tools for XPD' doc_url: http://xpdacq.github.io/xpdAn/ dev_url: http://github.com/xpdAcq/xpdAn extra: recipe-maintainers: - CJ-Wright """ # noqa updated_noarch = """ {# updated_noarch #} {% set name = "xpdan" %} {% set version = "0.3.3" %} {% set sha256 = "3f1a84f35471aa8e383da3cf4436492d0428da8ff5b02e11074ff65d400dd076" %} package: name: {{ name|lower }} version: {{ version }} source: fn: {{ name }}-{{ version }}.tar.gz url: https://github.com/xpdAcq/{{ name }}/releases/download/{{ version }}/{{ version }}.tar.gz sha256: {{ sha256 }} build: noarch: python number: 1 script: python -m pip install --no-deps --ignore-installed . requirements: host: - python >=3 - pip run: - python >=3 - numpy - scipy - matplotlib - pyyaml
manager #doc.AddUndo(UNDO_BITS, obj) doc.SetActiveObject(obj, c4d.SELECTION_ADD) def SelectObjects(objs): for obj in objs: Select(obj) def DeselectAll(inObjMngr=False): """ Not the same as ``BaseSelect.DeselectAll()``. :param bool inObjMngr: if True, run the deselect command for the Object Manager, else the general one for the editor viewport. """ if inObjMngr is True: c4d.CallCommand(100004767) # deselect all (Object Manager) else: c4d.CallCommand(12113) # deselect all def GroupObjects(objs, name="Group"): """ CallCommand based grouping of objects from a list. Generally unreliable, because selection state matters. Use insertUnderNull for better effect. """ DeselectAll(True) result = None if objs is None: return result if not isinstance(objs, list): objs = [objs] else: return result for o in objs: Select(o) if DEBUG: print("creating group %s" % name) c4d.CallCommand(100004772) # group objects doc = documents.GetActiveDocument() grp = doc.GetActiveObject() grp.SetName(name) result = grp return result def GroupSelected(name="Group"): """ CallCommand based grouping of selected objects. Generally unreliable, because selection state matters. Use insertUnderNull for better effect. """ if DEBUG: print("creating group %s" % name) c4d.CallCommand(100004772) # group objects doc = documents.GetActiveDocument() grp = doc.GetActiveObject() grp.SetName(name) result = grp return result def RecurseBranch(obj): child = obj.GetDown() while child: child = child.GetNext() return RecurseBranch(child) def GetNextObject(obj, stop_objs=None): """ Return the next object in the hierarchy using a depth-first traversal scheme. If stop_objs is a c4d.BaseObject or a list of c4d.BaseObjects and the next operation would encounter this object (or the first object in the list) None will be returned. This is so that this function can be used in a while loop. """ if stop_objs and not isinstance(stop_objs, list): stop_objs = [stop_objs] elif stop_objs is None: stop_objs = [] if obj == None: return None if obj.GetDown(): if (obj.GetNext() in stop_objs or obj.GetDown() in stop_objs): return None return obj.GetDown() if obj in stop_objs: return None if len(stop_objs) == 0: while not obj.GetNext() and obj.GetUp(): obj = obj.GetUp() else: while (not obj.GetNext() and obj.GetUp() and obj.GetUp() not in stop_objs): if (obj in stop_objs or obj.GetUp() in stop_objs): return None obj = obj.GetUp() if obj.GetNext() and obj.GetNext() in stop_objs: return None else: return obj.GetNext() def GetActiveObjects(doc): """ Same as BaseDocument.GetSelection(), where GetSelection also selects tags and materials. """ lst = list() obj = doc.GetFirstObject() while obj: if obj.GetBit(c4d.BIT_ACTIVE) == True: lst.append(obj) obj = GetNextObject(obj) return lst def FindObject(name, start=None, matchfunc=None, *args, **kwargs): """ Find object with name 'name'. :param start: a c4d.BaseObject or a str representing the name of a c4d.BaseObject from where the search should begin. :type start: ``c4d.BaseObject`` :param matchfunc: can be used to customize the matching logic by providing the name of a custom function. This function will be passed a potential candidate object plus any remaining args. It should return True or False. :type matchfunc: ``function`` """ if name is None: return None if not isinstance(name, (str, unicode)): raise TypeError("E: expected string or unicode, got %s" % type(name)) doc = documents.GetActiveDocument() if not doc: return None result = None if start is None: startop = doc.GetFirstObject() else: if isinstance(start, str): # warning: doesn't distinguish between objects with same name startop = doc.SearchObject(start) elif isinstance(start, c4d.BaseObject): startop = start else: raise TypeError("E: parameter 'start' must be one of " + "[str, c4d.BaseObject], but is %s" % type(start)) if not startop: return None if start: print("Finding %s under %r" % (name, startop.GetName())) curname = startop.GetName() if startop: if matchfunc and matchfunc(startop, *args, **kwargs): return startop elif curname == name: return startop obj = GetNextObject(startop, startop) while obj: curname = obj.GetName() if matchfunc and matchfunc(obj, *args, **kwargs): return obj elif curname == name: return obj obj = GetNextObject(obj, startop) return result def FindObjects(name=None, uip=None): """ Find all objects in the scene, either with the name ``name`` and/or the unique IP ``uip``. """ if name is None and uip is None: return None if not isinstance(name, (str, unicode)): raise TypeError("E: expected string or unicode, got %s" % type(name)) doc = documents.GetActiveDocument() if not doc: return None result = [] obj = doc.GetFirstObject() if not obj: return result while obj: curname = obj.GetName() curip = obj.GetUniqueIP() if name and uip: if curname == name and uip == curip: result.append(obj) elif uip and name is None: if uip == curip: result.append(obj) elif name and uip is None: if name == curname: result.append(obj) obj = GetNextObject(obj) return result def CreateObject(typ, name, undo=True): """ Create a object of type 'typ', with name 'name'. This calls c4d.StopAllThreads() internally. """ obj = None try: doc = documents.GetActiveDocument() if doc is None: return None obj = c4d.BaseObject(typ) obj.SetName(name) c4d.StopAllThreads() doc.InsertObject(obj) if undo is True: doc.AddUndo(c4d.UNDOTYPE_NEW, obj) c4d.EventAdd() except Exception as e: # IGNORE:W0703 print("*** Caught Exception: %r ***" % e) return obj def CreateReplaceObject(typ, name): """ Create object with name 'name' removing and replacing any object with the same name. """ doc = c4d.documents.GetActiveDocument() if doc is None: return False obj = doc.SearchObject(name) if obj is not None: obj.Remove() obj = CreateObject(typ, name) return obj def InsertUnderNull(objs, grp=None, name="Group", copy=False): """ Inserts objects under a group (null) object, optionally creating the group. Note: currently does not reset obj's coordinate frame to that of the new parent. objs BaseObject can be a single object or a list of objects grp BaseObject the group to place the objects under (if None a new null object will be created) name str name for the new group copy bool copy the objects if True Returns the modyfied/created group on success, None on failure. """ if grp is None: grp = CreateObject(c4d.Onull, name) if copy == True: objs = [i.GetClone() for i in objs] if DEBUG: print("inserting objs into group '%s'" % grp.GetName()) if isinstance(objs, list): for obj in objs: obj.Remove() obj.InsertUnder(grp) else: objs.Remove() objs.InsertUnder(grp) c4d.EventAdd() return grp @deprecated(since="0.5") def RecursiveInsertGroups(entry, parent, root, tree, pmatch='90%'): if isinstance(entry, dict): for node in entry: nodeobj = None for op, lvl in ObjectIterator(root.op, root.op): # IGNORE:W0612 #@UnusedVariable if op.GetName() == node.name: nodeobj = op if not nodeobj: nodeobj = CreateObject(c4d.Onull, node.name) nodeobj.InsertUnder(parent.op) return RecursiveInsertGroups(node, node, root, entry, pmatch) elif isinstance(entry, list): for child in entry: # type(child) == <type: TreeEntry> or another dict if isinstance(child, dict): return RecursiveInsertGroups(child, parent, root, tree, pmatch) else: childobj = FindObject(child.name, start=root.op, matchfunc=FuzzyCompareStrings, limit=pmatch) if not childobj: childobj = CreateObject(c4d.Onull, child.name) childobj.InsertUnder(parent.op) else: children = tree[entry] return RecursiveInsertGroups(children, entry, root, tree, pmatch) def UniqueSequentialName(name_base, template=u'%(name)s.%(num)s'): """ Return a new sequential name based on a naming template and a base name such that the name uniquely identifies an object in the scene. By default, mimicks the names generated by CINEMA 4D when multiple objects of the same type are created in quick succession. For example if the scene had the following objects:: Cube Cube.1 Cube.12 the function would return ``Cube.13`` as a new name. """ doc = c4d.documents.GetActiveDocument() if doc is None: return False oh = ObjectHierarchy() objs = oh.Get(r"!" + name_base + r".*?\d*") nums = [] for obj in objs: name = obj.GetName() mat = re.search(ur'(\d+)$', UnescapeUnicode(name), flags=re.UNICODE) if mat and mat.group(1): try: nums.append(int(mat.group(1), 10)) except ValueError: pass new_num = 1 if len(nums) == 0: if doc.SearchObject(name_base) is None: return name_base else: new_num = max(nums) + 1 new_name = template % ({'name': name_base, 'num': new_num}) return EscapeUnicode(new_name) def GetGlobalPosition(obj): return obj.GetMg().off def GetGlobalRotation(obj): return c4d.utils.MatrixToHPB(obj.GetMg()) def GetGlobalScale(obj): m = obj.GetMg() return c4d.Vector(m.v1.GetLength(), m.v2.GetLength(), m.v3.GetLength()) def SetGlobalPosition(obj, pos): m = obj.GetMg() m.off = pos obj.SetMg(m) def SetGlobalRotation(obj, rot): """ Please remember, like most 3D engines CINEMA 4D handles rotation in radians. Example for H=10, P=20, B=30: import c4d from c4d import utils #... hpb = c4d.Vector(utils.Rad(10), utils.Rad(20), utils.Rad(30)) SetGlobalRotation(obj, hpb) #object's rotation is 10, 20, 30 """ m = obj.GetMg() pos = m.off scale = c4d.Vector(m.v1.GetLength(), m.v2.GetLength(), m.v3.GetLength()) m = c4d.utils.HPBToMatrix(rot) m.off = pos m.v1 = m.v1.GetNormalized() * scale.x m.v2
TBI - Shadow projection type? Matrix value? new_projection = MappingProjection(sender=correct_sender, receiver=input_port) self.add_projection(new_projection, sender=correct_sender, receiver=input_port) return original_senders def _update_shadow_projections(self, context=None): for node in self.nodes: for input_port in node.input_ports: if input_port.shadow_inputs: original_senders = self._get_original_senders(input_port, input_port.shadow_inputs.path_afferents) for shadow_projection in input_port.path_afferents: if shadow_projection.sender not in original_senders: self.remove_projection(shadow_projection) # MODIFIED 4/4/20 OLD: # # If the node does not have any roles, it is internal # if len(self.get_roles_by_node(node)) == 0: # self._add_node_role(node, NodeRole.INTERNAL) # MODIFIED 4/4/20 END def _check_for_projection_assignments(self, context=None): """Check that all Projections and Ports with require_projection_in_composition attribute are configured. Validate that all InputPorts with require_projection_in_composition == True have an afferent Projection. Validate that all OuputStates with require_projection_in_composition == True have an efferent Projection. Validate that all Projections have senders and receivers. """ projections = self.projections.copy() for node in self.nodes: if isinstance(node, Projection): projections.append(node) continue if context.source != ContextFlags.INITIALIZING: for input_port in node.input_ports: if input_port.require_projection_in_composition and not input_port.path_afferents: warnings.warn(f'{InputPort.__name__} ({input_port.name}) of {node.name} ' f'doesn\'t have any afferent {Projection.__name__}s') for output_port in node.output_ports: if output_port.require_projection_in_composition and not output_port.efferents: warnings.warn(f'{OutputPort.__name__} ({output_port.name}) of {node.name} ' f'doesn\'t have any efferent {Projection.__name__}s in {self.name}') for projection in projections: if not projection.sender: warnings.warn(f'{Projection.__name__} {projection.name} is missing a sender') if not projection.receiver: warnings.warn(f'{Projection.__name__} {projection.name} is missing a receiver') def get_feedback_status(self, projection): """Return True if **projection** is designated as a `feedback Projection <_Composition_Feedback_Designation>` in the Composition, else False. """ return projection in self.feedback_projections def _check_for_existing_projections(self, projection=None, sender=None, receiver=None, in_composition:bool=True): """Check for Projection with same sender and receiver If **in_composition** is True, return only Projections found in the current Composition If **in_composition** is False, return only Projections that are found outside the current Composition Return Projection or list of Projections that satisfies the conditions, else False """ assert projection or (sender and receiver), \ f'_check_for_existing_projection must be passed a projection or a sender and receiver' if projection: sender = projection.sender receiver = projection.receiver else: if isinstance(sender, Mechanism): sender = sender.output_port elif isinstance(sender, Composition): sender = sender.output_CIM.output_port if isinstance(receiver, Mechanism): receiver = receiver.input_port elif isinstance(receiver, Composition): receiver = receiver.input_CIM.input_port existing_projections = [proj for proj in sender.efferents if proj.receiver is receiver] existing_projections_in_composition = [proj for proj in existing_projections if proj in self.projections] assert len(existing_projections_in_composition) <= 1, \ f"PROGRAM ERROR: More than one identical projection found " \ f"in {self.name}: {existing_projections_in_composition}." if in_composition: if existing_projections_in_composition: return existing_projections_in_composition[0] else: if existing_projections and not existing_projections_in_composition: return existing_projections return False def _check_for_unnecessary_feedback_projections(self): """ Warn if there exist projections in the graph that the user labeled as EdgeType.FEEDBACK (True) but are not in a cycle """ unnecessary_feedback_specs = [] cycles = self.graph.get_strongly_connected_components() for proj in self.projections: try: vert = self.graph.comp_to_vertex[proj] if vert.feedback is EdgeType.FEEDBACK: for c in cycles: if proj in c: break else: unnecessary_feedback_specs.append(proj) except KeyError: pass if unnecessary_feedback_specs: warnings.warn( 'The following projections were labeled as feedback, ' 'but they are not in any cycles: {0}'.format( ', '.join([str(x) for x in unnecessary_feedback_specs]) ) ) # ****************************************************************************************************************** # PATHWAYS # ****************************************************************************************************************** # ----------------------------------------- PROCESSING ----------------------------------------------------------- # FIX: REFACTOR TO TAKE Pathway OBJECT AS ARGUMENT def add_pathway(self, pathway): """Add an existing `Pathway <Composition_Pathways>` to the Composition Arguments --------- pathway : the `Pathway <Composition_Pathways>` to be added """ # identify nodes and projections nodes, projections = [], [] for c in pathway.graph.vertices: if isinstance(c.component, Mechanism): nodes.append(c.component) elif isinstance(c.component, Composition): nodes.append(c.component) elif isinstance(c.component, Projection): projections.append(c.component) # add all nodes first for node in nodes: self.add_node(node) # then projections for p in projections: self.add_projection(p, p.sender.owner, p.receiver.owner) self._analyze_graph() @handle_external_context() def add_linear_processing_pathway(self, pathway, name:str=None, context=None, *args): """Add sequence of Mechanisms and/or Compositions with intercolated Projections. A `MappingProjection` is created for each contiguous pair of `Mechanisms <Mechanism>` and/or Compositions in the **pathway** argument, from the `primary OutputPort <OutputPort_Primary>` of the first one to the `primary InputPort <InputPort_Primary>` of the second. Tuples (Mechanism, `NodeRoles <NodeRole>`) can be used to assign `required_roles <Composition.add_node.required_roles>` to Mechanisms. Note that any specifications of the **monitor_for_control** `argument <ControlMechanism_Monitor_for_Control_Argument>` of a constructor for a `ControlMechanism` or the **monitor** argument specified in the constructor for an ObjectiveMechanism in the **objective_mechanism** `argument <ControlMechanism_ObjectiveMechanism>` of a ControlMechanism supercede any MappingProjections that would otherwise be created for them when specified in the **pathway** argument of add_linear_processing_pathway. Arguments --------- pathway : `Node <Composition_Nodes>`, list or `Pathway` specifies the `Nodes <Composition_Nodes>`, and optionally `Projections <Projection>`, used to construct a processing `Pathway <Pathway>`. Any standard form of `Pathway specification <Pathway_Specification>` can be used, however if a 2-item (Pathway, LearningFunction) tuple is used the `LearningFunction` will be ignored (this should be used with `add_linear_learning_pathway` if a `learning Pathway <Composition_Learning_Pathway>` is desired). A `Pathway` object can also be used; again, however, any learning-related specifications will be ignored, as will its `name <Pathway.name>` if the **name** argument of add_linear_processing_pathway is specified. name : str species the name used for `Pathway`; supercedes `name <Pathway.name>` of `Pathway` object if it is has one. Returns ------- `Pathway` : `Pathway` added to Composition. """ from psyneulink.core.compositions.pathway import Pathway, _is_node_spec, _is_pathway_entry_spec nodes = [] # If called internally, use its pathway_arg_str in error messages (in context.string) if context.source is not ContextFlags.COMMAND_LINE: pathway_arg_str = context.string # Otherwise, refer to call from this method else: pathway_arg_str = f"'pathway' arg for add_linear_procesing_pathway method of {self.name}" context.source = ContextFlags.METHOD context.string = pathway_arg_str # First, deal with Pathway() or tuple specifications if isinstance(pathway, Pathway): # Give precedence to name specified in call to add_linear_processing_pathway pathway_name = name or pathway.name pathway = pathway.pathway else: pathway_name = name if _is_pathway_entry_spec(pathway, ANY): pathway = convert_to_list(pathway) elif isinstance(pathway, tuple): # If tuple is used to specify a sequence of nodes, convert to list (even though not documented): if all(_is_pathway_entry_spec(n, ANY) for n in pathway): pathway = list(pathway) # If tuple is (pathway, LearningFunction), get pathway and ignore LearningFunction elif isinstance(pathway[1],type) and issubclass(pathway[1], LearningFunction): warnings.warn(f"{LearningFunction.__name__} found in specification of {pathway_arg_str}: {pathway[1]}; " f"it will be ignored") pathway = pathway[0] else: raise CompositionError(f"Unrecognized tuple specification in {pathway_arg_str}: {pathway}") else: raise CompositionError(f"Unrecognized specification in {pathway_arg_str}: {pathway}") # Then, verify that the pathway begins with a node if _is_node_spec(pathway[0]): # Use add_nodes so that node spec can also be a tuple with required_roles self.add_nodes(nodes=[pathway[0]], context=context) nodes.append(pathway[0]) else: # 'MappingProjection has no attribute _name' error is thrown when pathway[0] is passed to the error msg raise CompositionError(f"First item in {pathway_arg_str} must be " f"a Node (Mechanism or Composition): {pathway}.") # Next, add all of the remaining nodes in the pathway for c in range(1, len(pathway)): # if the current item is a Mechanism, Composition or (Mechanism, NodeRole(s)) tuple, add it if _is_node_spec(pathway[c]): self.add_nodes(nodes=[pathway[c]], context=context) nodes.append(pathway[c]) # Then, delete any ControlMechanism that has its monitor_for_control attribute assigned # and any ObjectiveMechanism that projects to a ControlMechanism, # as well as any projections to them specified in the pathway; # this is to avoid instantiating projections to them that might conflict with those # instantiated by their constructors or, for a controller, _add_controller() items_to_delete = [] for i, item in enumerate(pathway): if ((isinstance(item, ControlMechanism) and item.monitor_for_control) or (isinstance(item, ObjectiveMechanism) and set(self.get_roles_by_node(item)).intersection({NodeRole.CONTROL_OBJECTIVE, NodeRole.CONTROLLER_OBJECTIVE}))): items_to_delete.append(item) # Delete any projections to the ControlMechanism or ObjectiveMechanism specified in pathway if i>0 and _is_pathway_entry_spec(pathway[i - 1],PROJECTION): items_to_delete.append(pathway[i - 1]) for item in items_to_delete: if isinstance(item, ControlMechanism): arg_name = f'in the {repr(MONITOR_FOR_CONTROL)} of its constructor' else: arg_name = f'either in the {repr(MONITOR)} arg of its constructor, ' \ f'or in the {repr(MONITOR_FOR_CONTROL)} arg of its associated {ControlMechanism.__name__}' warnings.warn(f'No new {Projection.__name__}s were added to {item.name} that was included in ' f'the {pathway_arg_str}, since there were ones already specified {arg_name}.') del pathway[pathway.index(item)] # MODIFIED 8/12/19 END # Then, loop through pathway and validate that the Mechanism-Projection relationships make sense # and add MappingProjection(s) where needed projections = [] for c in range(1, len(pathway)): # if the current item is a Node if _is_node_spec(pathway[c]): if _is_node_spec(pathway[c - 1]): # if the previous item was also a node, add a MappingProjection between them if isinstance(pathway[c - 1], tuple): sender = pathway[c - 1][0] else: sender
# output cif files for incorrect space groups if check is True: if check_struct_group(rand_crystal, sg, dim=3): pass else: t += " xxxxx" # rand_crystal.to_file("poscar", "1.vasp") # import sys # sys.exit() outstructs.append(rand_crystal.to_pymatgen()) outstrings.append(str("3D_Molecular_" + str(sg) + ".vasp")) fprint("\t{}\t|\t{}\t|\t{}\t|\t{}".format(sg, ans1, ans2, t)) else: fprint( "~~~~ Error: Could not generate space group {} after {}".format(sg, t) ) failed.append(sg) if slow != []: fprint("~~~~ The following space groups took more than 60 seconds to generate:") for i in slow: fprint(" " + str(i)) if failed != []: fprint("~~~~ The following space groups failed to generate:") for i in failed: fprint(" " + str(i)) def test_atomic_2D(): global outstructs global outstrings fprint("=== Testing generation of atomic 2D crystals. This may take some time. ===") slow = [] failed = [] fprint(" Layer group # | Symbol | Time Elapsed") skip = [] for sg in range(1, 81): if sg not in skip: g = Group(sg, dim=2) multiplicity = len(g[0]) # multiplicity of the general position start = time() rand_crystal = pyxtal() rand_crystal.from_random(2, sg, ["C"], [multiplicity], 4.0) end = time() timespent = np.around((end - start), decimals=2) t = str(timespent) if len(t) == 3: t += "0" t += " s" if timespent >= 1.0: t += " ~" if timespent >= 3.0: t += "~" if timespent >= 10.0: t += "~" if timespent >= 60.0: t += "~" slow.append(sg) if rand_crystal.valid: if check_struct_group(rand_crystal, sg, dim=2): pass else: t += " xxxxx" outstructs.append(rand_crystal.to_pymatgen()) outstrings.append(str("atomic_2D_" + str(sg) + ".vasp")) symbol = g.symbol fprint("\t{}\t|\t{}\t|\t{}".format(sg, symbol, t)) else: fprint( "~~~~ Error: Could not generate layer group {} after {}".format(sg, t) ) failed.append(sg) if slow != []: fprint("~~~~ The following layer groups took more than 60 seconds to generate:") for i in slow: fprint(" " + str(i)) if failed != []: fprint("~~~~ The following layer groups failed to generate:") for i in failed: fprint(" " + str(i)) def test_molecular_2D(): global outstructs global outstrings fprint( "=== Testing generation of molecular 2D crystals. This may take some time. ===" ) slow = [] failed = [] fprint(" Layer group # | Symbol | Time Elapsed") skip = [] for sg in range(1, 81): if sg not in skip: g = Group(sg, dim=2) multiplicity = len(g[0]) # multiplicity of the general position start = time() rand_crystal = pyxtal(molecular=True) rand_crystal.from_random(2, sg, ["H2O"], [multiplicity], 4.0) end = time() timespent = np.around((end - start), decimals=2) t = str(timespent) if len(t) == 3: t += "0" t += " s" if timespent >= 1.0: t += " ~" if timespent >= 3.0: t += "~" if timespent >= 10.0: t += "~" if timespent >= 60.0: t += "~" slow.append(sg) if rand_crystal.valid: if check_struct_group(rand_crystal, sg, dim=2): pass else: t += " xxxxx" outstructs.append(rand_crystal.to_pymatgen()) outstrings.append(str("molecular_2D_" + str(sg) + ".vasp")) symbol = g.symbol fprint("\t{}\t|\t{}\t|\t{}".format(sg, symbol, t)) else: fprint( "~~~~ Error: Could not generate layer group {} after {}".format(sg, t) ) failed.append(sg) if slow != []: fprint("~~~~ The following layer groups took more than 60 seconds to generate:") for i in slow: fprint(" " + str(i)) if failed != []: fprint("~~~~ The following layer groups failed to generate:") for i in failed: fprint(" " + str(i)) def test_atomic_1D(): global outstructs global outstrings fprint("=== Testing generation of atomic 1D crystals. This may take some time. ===") slow = [] failed = [] fprint(" Rod group | Gen sg. (SPG) | Gen. sg (PMG) |Time Elapsed") skip = [] # slow to generate for num in range(1, 76): if num not in skip: multiplicity = len(get_rod(num)[0]) # multiplicity of the general position start = time() rand_crystal = pyxtal() rand_crystal.from_random(1, num, ["H"], [multiplicity], 4.0) end = time() timespent = np.around((end - start), decimals=2) t = str(timespent) if len(t) == 3: t += "0" t += " s" if timespent >= 1.0: t += " ~" if timespent >= 3.0: t += "~" if timespent >= 10.0: t += "~" if timespent >= 60.0: t += "~" slow.append(num) if rand_crystal.valid: try: ans1 = get_symmetry_dataset(rand_crystal.to_ase(), symprec=1e-1) except: ans1 = "???" if ans1 is None or ans1 == "???": ans1 = "???" else: ans1 = ans1["number"] sga = SpacegroupAnalyzer(rand_crystal.to_pymatgen()) try: ans2 = sga.get_space_group_number() except: ans2 = "???" if ans2 is None: ans2 = "???" check = True # output cif files for incorrect space groups if check is True: if check_struct_group(rand_crystal, num, dim=1): pass else: t += " xxxxx" outstructs.append(rand_crystal.to_pymatgen) outstrings.append(str("1D_Atomic_" + str(num) + ".vasp")) fprint("\t{}\t|\t{}\t|\t{}\t|\t{}".format(num, ans1, ans2, t)) else: fprint( "~~~~ Error: Could not generate layer group {} after {}".format( num, t ) ) failed.append(num) if slow != []: fprint("~~~~ The following layer groups took more than 60 seconds to generate:") for i in slow: fprint(" " + str(i)) if failed != []: fprint("~~~~ The following layer groups failed to generate:") for i in failed: fprint(" " + str(i)) def test_molecular_1D(): global outstructs global outstrings fprint( "=== Testing generation of molecular 1D crystals. This may take some time. ===" ) slow = [] failed = [] fprint(" Rod group | Gen sg. (SPG) | Gen. sg (PMG) |Time Elapsed") skip = [] # slow to generate for num in range(1, 76): if num not in skip: multiplicity = len(get_rod(num)[0]) # multiplicity of the general position start = time() rand_crystal = pyxtal(molecular=True) rand_crystal.from_random(1, num, ["H2O"], [multiplicity], 4.0) end = time() timespent = np.around((end - start), decimals=2) t = str(timespent) if len(t) == 3: t += "0" t += " s" if timespent >= 1.0: t += " ~" if timespent >= 3.0: t += "~" if timespent >= 10.0: t += "~" if timespent >= 60.0: t += "~" slow.append(num) if rand_crystal.valid: try: ans1 = get_symmetry_dataset(rand_crystal.to_ase(), symprec=1e-1) except: ans1 = "???" if ans1 is None or ans1 == "???": ans1 = "???" else: ans1 = ans1["number"] sga = SpacegroupAnalyzer(rand_crystal.to_pymatgen()) try: ans2 = sga.get_space_group_number() except: ans2 = "???" if ans2 is None: ans2 = "???" check = True # output cif files for incorrect space groups if check is True: if check_struct_group(rand_crystal, num, dim=1): pass else: t += " xxxxx" outstructs.append(rand_crystal.to_pymatgen()) outstrings.append(str("1D_Molecular_" + str(num) + ".vasp")) fprint("\t{}\t|\t{}\t|\t{}\t|\t{}".format(num, ans1, ans2, t)) else: fprint( "~~~~ Error: Could not generate layer group {} after {}".format( num, t ) ) failed.append(num) if slow != []: fprint("~~~~ The following layer groups took more than 60 seconds to generate:") for i in slow: fprint(" " + str(i)) if failed != []: fprint("~~~~ The following layer groups failed to generate:") for i in failed: fprint(" " + str(i)) def test_cluster(): global outstructs global outstrings fprint("=== Testing generation of point group clusters. This may take some time. ===") slow = [] failed = [] fprint(" Point group # | Symbol | Time Elapsed") skip = [56] # [32,55,56]#[28,29,30,31,32,55,56] for sg in range(1, 57): if sg not in skip: multiplicity = len( Group(sg, dim=0)[0] ) # multiplicity of the general position start = time() rand_crystal = pyxtal() rand_crystal.from_random(0, sg, ["C"], [multiplicity], 1.0) end = time() timespent = np.around((end - start), decimals=2) t = str(timespent) if len(t) == 3: t += "0" t += " s" if timespent >= 1.0: t += " ~" if timespent >= 3.0: t += "~" if timespent >= 10.0: t += "~" if timespent >= 60.0: t += "~" slow.append(sg) if rand_crystal.valid: if check_struct_group(rand_crystal, sg, dim=0): pass else: t += " xxxxx" outstructs.append(rand_crystal.to_pymatgen()) outstrings.append(str("Cluster_" + str(sg) + ".vasp")) pgsymbol = Group(sg, dim=0).symbol fprint("\t{}\t|\t{}\t|\t{}".format(sg, pgsymbol, t)) else: fprint( "~~~~ Error: Could not generate space group {} after {}".format(sg, t) ) failed.append(sg) if slow != []: fprint("~~~~ The following space groups took more than 60 seconds to generate:") for i in slow: fprint(" " + str(i)) if failed != []: fprint("~~~~ The following space groups failed to generate:") for i in failed: fprint(" " + str(i)) def test_modules(): fprint("====== Testing functionality for pyXtal version 0.1dev ======") global failed_package failed_package = False # Record if errors occur at any level reset()
<filename>zippy/benchmarks/src/benchmarks/whoosh/tests/test_parse_plugins.py from __future__ import with_statement import inspect from datetime import datetime from whoosh import analysis, fields, formats, qparser, query from whoosh.compat import u, text_type, xrange from whoosh.filedb.filestore import RamStorage from whoosh.qparser import dateparse, default, plugins, syntax from whoosh.util.times import adatetime def _plugin_classes(ignore): # Get all the subclasses of Plugin in whoosh.qparser.plugins return [c for _, c in inspect.getmembers(plugins, inspect.isclass) if plugins.Plugin in c.__bases__ and c not in ignore] def test_combos(): qs = ('w:a "hi there"^4.2 AND x:b^2.3 OR c AND (y:d OR e) ' + '(apple ANDNOT bear)^2.3') init_args = {plugins.MultifieldPlugin: (["content", "title"], {"content": 1.0, "title": 1.2}), plugins.FieldAliasPlugin: ({"content": ("text", "body")},), plugins.CopyFieldPlugin: ({"name": "phone"},), plugins.PseudoFieldPlugin: ({"name": lambda x: x}), } pis = _plugin_classes(()) for i, plugin in enumerate(pis): try: pis[i] = plugin(*init_args.get(plugin, ())) except TypeError: raise TypeError("Error instantiating %s" % plugin) count = 0 for i, first in enumerate(pis): for j in xrange(len(pis)): if i == j: continue plist = [p for p in pis[:j] if p is not first] + [first] qp = qparser.QueryParser("text", None, plugins=plist) qp.parse(qs) count += 1 def test_field_alias(): qp = qparser.QueryParser("content", None) qp.add_plugin(plugins.FieldAliasPlugin({"title": ("article", "caption")})) q = qp.parse("alfa title:bravo article:charlie caption:delta") assert text_type(q) == u("(content:alfa AND title:bravo AND title:charlie AND title:delta)") def test_dateparser(): schema = fields.Schema(text=fields.TEXT, date=fields.DATETIME) qp = default.QueryParser("text", schema) errs = [] def cb(arg): errs.append(arg) basedate = datetime(2010, 9, 20, 15, 16, 6, 454000) qp.add_plugin(dateparse.DateParserPlugin(basedate, callback=cb)) q = qp.parse(u("hello date:'last tuesday'")) assert q.__class__ == query.And assert q[1].__class__ == query.DateRange assert q[1].startdate == adatetime(2010, 9, 14).floor() assert q[1].enddate == adatetime(2010, 9, 14).ceil() q = qp.parse(u("date:'3am to 5pm'")) assert q.__class__ == query.DateRange assert q.startdate == adatetime(2010, 9, 20, 3).floor() assert q.enddate == adatetime(2010, 9, 20, 17).ceil() q = qp.parse(u("date:blah")) assert q == query.NullQuery assert errs[0] == "blah" q = qp.parse(u("hello date:blarg")) assert q.__unicode__() == "(text:hello AND <_NullQuery>)" assert q[1].error == "blarg" assert errs[1] == "blarg" q = qp.parse(u("hello date:20055x10")) assert q.__unicode__() == "(text:hello AND <_NullQuery>)" assert q[1].error == "20055x10" assert errs[2] == "20055x10" q = qp.parse(u("hello date:'2005 19 32'")) assert q.__unicode__() == "(text:hello AND <_NullQuery>)" assert q[1].error == "2005 19 32" assert errs[3] == "2005 19 32" q = qp.parse(u("date:'march 24 to dec 12'")) assert q.__class__ == query.DateRange assert q.startdate == adatetime(2010, 3, 24).floor() assert q.enddate == adatetime(2010, 12, 12).ceil() q = qp.parse(u("date:('30 june' OR '10 july') quick")) assert q.__class__ == query.And assert len(q) == 2 assert q[0].__class__ == query.Or assert q[0][0].__class__ == query.DateRange assert q[0][1].__class__ == query.DateRange def test_date_range(): schema = fields.Schema(text=fields.TEXT, date=fields.DATETIME) qp = qparser.QueryParser("text", schema) basedate = datetime(2010, 9, 20, 15, 16, 6, 454000) qp.add_plugin(dateparse.DateParserPlugin(basedate)) q = qp.parse(u("date:['30 march' to 'next wednesday']")) assert q.__class__ == query.DateRange assert q.startdate == adatetime(2010, 3, 30).floor() assert q.enddate == adatetime(2010, 9, 22).ceil() q = qp.parse(u("date:[to 'next wednesday']")) assert q.__class__ == query.DateRange assert q.startdate is None assert q.enddate == adatetime(2010, 9, 22).ceil() q = qp.parse(u("date:['30 march' to]")) assert q.__class__ == query.DateRange assert q.startdate == adatetime(2010, 3, 30).floor() assert q.enddate is None q = qp.parse(u("date:[30 march to next wednesday]")) assert q.__class__ == query.DateRange assert q.startdate == adatetime(2010, 3, 30).floor() assert q.enddate == adatetime(2010, 9, 22).ceil() q = qp.parse(u("date:[to next wednesday]")) assert q.__class__ == query.DateRange assert q.startdate is None assert q.enddate == adatetime(2010, 9, 22).ceil() q = qp.parse(u("date:[30 march to]")) assert q.__class__ == query.DateRange assert q.startdate == adatetime(2010, 3, 30).floor() assert q.enddate is None def test_daterange_multi(): schema = fields.Schema(text=fields.TEXT, start=fields.DATETIME, end=fields.DATETIME) qp = qparser.QueryParser("text", schema) basedate = datetime(2010, 9, 20, 15, 16, 6, 454000) qp.add_plugin(dateparse.DateParserPlugin(basedate)) q = qp.parse("start:[2008 to] AND end:[2011 to 2011]") assert q.__class__ == query.And assert q[0].__class__ == query.DateRange assert q[1].__class__ == query.DateRange assert q[0].startdate == adatetime(2008).floor() assert q[0].enddate is None assert q[1].startdate == adatetime(2011).floor() assert q[1].enddate == adatetime(2011).ceil() def test_daterange_empty_field(): schema = fields.Schema(test=fields.DATETIME) ix = RamStorage().create_index(schema) writer = ix.writer() writer.add_document(test=None) writer.commit() with ix.searcher() as s: q = query.DateRange("test", datetime.fromtimestamp(0), datetime.today()) r = s.search(q) assert len(r) == 0 def test_free_dates(): a = analysis.StandardAnalyzer(stoplist=None) schema = fields.Schema(text=fields.TEXT(analyzer=a), date=fields.DATETIME) qp = qparser.QueryParser("text", schema) basedate = datetime(2010, 9, 20, 15, 16, 6, 454000) qp.add_plugin(dateparse.DateParserPlugin(basedate, free=True)) q = qp.parse(u("hello date:last tuesday")) assert q.__class__ == query.And assert len(q) == 2 assert q[0].__class__ == query.Term assert q[0].text == "hello" assert q[1].__class__ == query.DateRange assert q[1].startdate == adatetime(2010, 9, 14).floor() assert q[1].enddate == adatetime(2010, 9, 14).ceil() q = qp.parse(u("date:mar 29 1972 hello")) assert q.__class__ == query.And assert len(q) == 2 assert q[0].__class__ == query.DateRange assert q[0].startdate == adatetime(1972, 3, 29).floor() assert q[0].enddate == adatetime(1972, 3, 29).ceil() assert q[1].__class__ == query.Term assert q[1].text == "hello" q = qp.parse(u("date:2005 march 2")) assert q.__class__ == query.DateRange assert q.startdate == adatetime(2005, 3, 2).floor() assert q.enddate == adatetime(2005, 3, 2).ceil() q = qp.parse(u("date:'2005' march 2")) assert q.__class__ == query.And assert len(q) == 3 assert q[0].__class__ == query.DateRange assert q[0].startdate == adatetime(2005).floor() assert q[0].enddate == adatetime(2005).ceil() assert q[1].__class__ == query.Term assert q[1].fieldname == "text" assert q[1].text == "march" q = qp.parse(u("date:march 24 to dec 12")) assert q.__class__ == query.DateRange assert q.startdate == adatetime(2010, 3, 24).floor() assert q.enddate == adatetime(2010, 12, 12).ceil() q = qp.parse(u("date:5:10pm")) assert q.__class__ == query.DateRange assert q.startdate == adatetime(2010, 9, 20, 17, 10).floor() assert q.enddate == adatetime(2010, 9, 20, 17, 10).ceil() q = qp.parse(u("(date:30 june OR date:10 july) quick")) assert q.__class__ == query.And assert len(q) == 2 assert q[0].__class__ == query.Or assert q[0][0].__class__ == query.DateRange assert q[0][1].__class__ == query.DateRange def test_prefix_plugin(): schema = fields.Schema(id=fields.ID, text=fields.TEXT) ix = RamStorage().create_index(schema) w = ix.writer() w.add_document(id=u("1"), text=u("alfa")) w.add_document(id=u("2"), text=u("bravo")) w.add_document(id=u("3"), text=u("buono")) w.commit() with ix.searcher() as s: qp = qparser.QueryParser("text", schema) qp.remove_plugin_class(plugins.WildcardPlugin) qp.add_plugin(plugins.PrefixPlugin) q = qp.parse(u("b*")) r = s.search(q, limit=None) assert len(r) == 2 q = qp.parse(u("br*")) r = s.search(q, limit=None) assert len(r) == 1 def test_custom_tokens(): qp = qparser.QueryParser("text", None) qp.remove_plugin_class(plugins.OperatorsPlugin) cp = plugins.OperatorsPlugin(And="&", Or="\\|", AndNot="&!", AndMaybe="&~", Not="-") qp.add_plugin(cp) q = qp.parse("this | that") assert q.__class__ == query.Or assert q[0].__class__ == query.Term assert q[0].text == "this" assert q[1].__class__ == query.Term assert q[1].text == "that" q = qp.parse("this&!that") assert q.__class__ == query.AndNot assert q.a.__class__ == query.Term assert q.a.text == "this" assert q.b.__class__ == query.Term assert q.b.text == "that" q = qp.parse("alfa -bravo NOT charlie") assert len(q) == 4 assert q[1].__class__ == query.Not assert q[1].query.text == "bravo" assert q[2].text == "NOT" def test_copyfield(): qp = qparser.QueryParser("a", None) qp.add_plugin(plugins.CopyFieldPlugin({"b": "c"}, None)) assert text_type(qp.parse("hello b:matt")) == "(a:hello AND b:matt AND c:matt)" qp = qparser.QueryParser("a", None) qp.add_plugin(plugins.CopyFieldPlugin({"b": "c"}, syntax.AndMaybeGroup)) assert text_type(qp.parse("hello b:matt")) == "(a:hello AND (b:matt ANDMAYBE c:matt))" qp = qparser.QueryParser("a", None) qp.add_plugin(plugins.CopyFieldPlugin({"b": "c"}, syntax.RequireGroup)) assert text_type(qp.parse("hello (there OR b:matt)")) == "(a:hello AND (a:there OR (b:matt REQUIRE c:matt)))" qp = qparser.QueryParser("a", None) qp.add_plugin(plugins.CopyFieldPlugin({"a": "c"}, syntax.OrGroup)) assert text_type(qp.parse("hello there")) == "((a:hello OR c:hello) AND (a:there OR c:there))" qp = qparser.QueryParser("a", None) qp.add_plugin(plugins.CopyFieldPlugin({"b": "c"}, mirror=True)) assert text_type(qp.parse("hello c:matt")) == "(a:hello AND (c:matt OR b:matt))" qp = qparser.QueryParser("a", None) qp.add_plugin(plugins.CopyFieldPlugin({"c": "a"}, mirror=True)) assert text_type(qp.parse("hello c:matt")) == "((a:hello OR c:hello) AND (c:matt OR a:matt))" ana = analysis.RegexAnalyzer(r"\w+") | analysis.DoubleMetaphoneFilter() fmt = formats.Frequency() schema = fields.Schema(name=fields.KEYWORD, name_phone=fields.FieldType(fmt, ana, multitoken_query="or")) qp = qparser.QueryParser("name", schema) qp.add_plugin(plugins.CopyFieldPlugin({"name": "name_phone"})) assert text_type(qp.parse(u("spruce view"))) == "((name:spruce OR name_phone:SPRS) AND (name:view OR name_phone:F OR name_phone:FF))" def test_gtlt(): schema = fields.Schema(a=fields.KEYWORD, b=fields.NUMERIC, c=fields.KEYWORD, d=fields.NUMERIC(float), e=fields.DATETIME) qp = qparser.QueryParser("a", schema) qp.add_plugin(plugins.GtLtPlugin()) qp.add_plugin(dateparse.DateParserPlugin()) q = qp.parse(u("a:hello b:>100 c:<=z there")) assert q.__class__ == query.And assert len(q) == 4 assert q[0] == query.Term("a", "hello") assert q[1] == query.NumericRange("b", 100, None, startexcl=True) assert q[2] == query.TermRange("c", None, 'z') assert q[3] == query.Term("a", "there") q = qp.parse(u("hello e:>'29 mar 2001' there")) assert q.__class__ == query.And assert len(q) == 3 assert q[0] == query.Term("a", "hello") # As of this writing, date ranges don't support startexcl/endexcl assert q[1] == query.DateRange("e", datetime(2001, 3, 29, 0, 0), None) assert q[2] == query.Term("a", "there") q = qp.parse(u("a:> alfa c:<= bravo")) assert text_type(q) == "(a:a: AND a:alfa AND a:c: AND a:bravo)" qp.remove_plugin_class(plugins.FieldsPlugin) qp.remove_plugin_class(plugins.RangePlugin) q = qp.parse(u("hello a:>500 there")) assert text_type(q) == "(a:hello AND a:a: AND a:500 AND a:there)" def test_regex(): schema = fields.Schema(a=fields.KEYWORD, b=fields.TEXT) qp = qparser.QueryParser("a", schema) qp.add_plugin(plugins.RegexPlugin()) q = qp.parse(u("a:foo-bar b:foo-bar")) assert q.__unicode__() == '(a:foo-bar AND b:foo AND b:bar)' q = qp.parse(u('a:r"foo-bar" b:r"foo-bar"')) assert q.__unicode__() == '(a:r"foo-bar" AND b:r"foo-bar")' def test_pseudofield(): schema = fields.Schema(a=fields.KEYWORD, b=fields.TEXT) def regex_maker(node): if node.has_text: node =
<reponame>wuli133144/video_parse """ mp4 support parse maintain tools """ import os import sys import math from Mp4.stream_file import * from Mp4.ftypbox import * from Mp4.define import * from Mp4.freebox import * from Mp4.mdatbox import * from Mp4.moovbox import * from Mp4.mvhd_box import * from Mp4.track import * from Mp4.tkhdbox import * from Mp4.edtsbox import * from Mp4.DataBox import * from Mp4.elstbox import * import binascii #CURRENT_DIR=os.path.dirname() VERSION="1.0.0" class mp4_parse(stream_file): def __init__(self,filepath): self.m_boxs =[] self.m_data =None self.isstart =0 super().__init__(filepath) def parse_ftyp_box(self): #ftypbox_ojb=ftypbox() size=int(binascii.b2a_hex(self.readbytes(4)),16) data=self.readbytes(4) ty ="%c%c%c%c" %(data[0],data[1],data[2],data[3]) print(ty) print(size) if size ==0: print("mp4 file format error") return ftypbox_ojb = ftypbox(size,ty) major_branch=self.readbytes(4) major_branch="%c%c%c%c" %(major_branch[0],major_branch[1],major_branch[2],major_branch[3]) minor_branch=int(binascii.b2a_hex(self.readbytes(4)), 16) compatible_branch=self.readbytes(4) compatible_branch = "%c%c%c%c" % (compatible_branch[0], compatible_branch[1], compatible_branch[2], compatible_branch[3]) ftypbox_ojb.set_major_branch(major_branch) ftypbox_ojb.set_minor_version(minor_branch) ftypbox_ojb.set_compatible_brand(compatible_branch) print(ftypbox_ojb) self.m_boxs.append(ftypbox_ojb) self.isstart=1 self.skip(8) self.parse_free_box() self.parse_mdat_box() pass def parse_free_box(self): if self.isstart == 0: print("please parse ftyp box firstly otherwise it's error") exit(-1) return # ftypbox_ojb=ftypbox() size = int(binascii.b2a_hex(self.readbytes(4)), 16) data = self.readbytes(4) ty = "%c%c%c%c" % (data[0], data[1], data[2], data[3]) fbox=freebox(size,ty) #fbox.container.append([]) self.m_boxs.append(fbox) def parse_mdat_box(self): if self.isstart == 0: print("please parse ftyp box firstly otherwise it's error") exit(-1) return # ftypbox_ojb=ftypbox() size = int(binascii.b2a_hex(self.readbytes(4)), 16) data = self.readbytes(4) ty = "%c%c%c%c" % (data[0], data[1], data[2], data[3]) print("##########parse_mdat_box start ##########") data_container=self.readbytes(size-BOX_HEADER_SIZE) print("##########parse_mdat_box end ##########") mdabox=mdatbox(size,ty) mdabox.setdata(data_container) self.m_boxs.append(mdabox) def parse_moov_box(self): if self.isstart ==0: print("please parse ftyp box firstly otherwise it's error") exit( -1) return # ftypbox_ojb=ftypbox() size = int(binascii.b2a_hex(self.readbytes(4)), 16) data = self.readbytes(4) ty = "%c%c%c%c" % (data[0], data[1], data[2], data[3]) print(ty) print(size) mobox=moovbox(size,ty) ########### #todo ############ #moovbox.add() self.parse_mvhd_box(mobox) self.parse_track(mobox) ####### #self.parse_track(mobox) def parse_mvhd_box(self,movbox): if isinstance(movbox,moovbox) is False: print("please make sure moovbox type ") return if self.isstart == 0: print("please parse ftyp box firstly otherwise it's error") exit(-1) return # ftypbox_ojb=ftypbox() size = int(binascii.b2a_hex(self.readbytes(4)), 16) data = self.readbytes(4) type = "%c%c%c%c" % (data[0], data[1], data[2], data[3]) print("###########parse mvlb############") print(size,type) print("###########parse mvlb end############") data_con=self.readbytes(size-BOX_HEADER_SIZE) mvhd=mvhdbox(size,type) mvhd.setdata(data_con) movbox.add(mvhd) def parse_track(self,movbox): if isinstance(movbox,moovbox) is False: print("please make sure moovbox type ") return if self.isstart == 0: print("please parse ftyp box firstly otherwise it's error") exit(-1) return # ftypbox_ojb=ftypbox() size = int(binascii.b2a_hex(self.readbytes(4)), 16) data = self.readbytes(4) type = "%c%c%c%c" % (data[0], data[1], data[2], data[3]) print("###########parse parse_track############") print(size,type) print("###########parse parse_track end############") trabox=trackbox(size,type) ###parse tkhd box self.parse_tkhdbox(trabox) self.parse_edtsbox(trabox) self.parse_mdia(trabox) movbox.add(trabox) #data_con=self.readbytes(size-BOX_HEADER_SIZE) #mvhd=mvhdbox(size,type) #mvhd.setdata(data_con) #movbox.add(mvhd) def parse_mdia(self,trck): if isinstance(trck,trackbox) is False: print("please make sure trackbox type ") return if self.isstart == 0: print("please parse ftyp box firstly otherwise it's error") exit(-1) return # ftypbox_ojb=ftypbox() size = int(binascii.b2a_hex(self.readbytes(4)), 16) data = self.readbytes(4) type = "%c%c%c%c" % (data[0], data[1], data[2], data[3]) print("###########parse_mdia############") print(size,type) print("###########parse_mdia end############") dbox=databox(size,type) self.parse_mdhd(dbox) ##dbox is mdia self.parse_hdlr(dbox) self.parse_minf(dbox) def parse_minf(self,dbox): if isinstance(dbox, databox) is False: print("please make sure databox type ") return if self.isstart == 0: print("please parse ftyp box firstly otherwise it's error") exit(-1) return # ftypbox_ojb=ftypbox() size = int(binascii.b2a_hex(self.readbytes(4)), 16) data = self.readbytes(4) type = "%c%c%c%c" % (data[0], data[1], data[2], data[3]) print("###########parse_mdia############") print(size, type) print("###########parse_mdia end############") dbox_minf = databox(size, type) dbox.add(dbox_minf) self.parse_vmhd(dbox_minf) self.parse_dinf(dbox_minf) self.parse_stbl(dbox_minf) def parse_vmhd(self,dbox_minf): if isinstance(dbox_minf,databox) is False: print("please make sure databox type ") return if self.isstart == 0: print("please parse ftyp box firstly otherwise it's error") exit(-1) return # ftypbox_ojb=ftypbox() size = int(binascii.b2a_hex(self.readbytes(4)), 16) data = self.readbytes(4) type = "%c%c%c%c" % (data[0], data[1], data[2], data[3]) print("###########parse_mdia############") print(size,type) print("###########parse_mdia end############") dbox_vmhd=databox(size,type) data=self.readbytes(size-BOX_HEADER_SIZE) dbox_vmhd.setdata(data) dbox_minf.add(dbox_vmhd) pass def parse_dinf(self,dbox_minf): if isinstance(dbox_minf, databox) is False: print("please make sure databox type ") return if self.isstart == 0: print("please parse ftyp box firstly otherwise it's error") exit(-1) return # ftypbox_ojb=ftypbox() size = int(binascii.b2a_hex(self.readbytes(4)), 16) data = self.readbytes(4) type = "%c%c%c%c" % (data[0], data[1], data[2], data[3]) print("###########parse_mdia############") print(size, type) print("###########parse_mdia end############") dbox_minf = databox(size, type) dbox_minf.add(dbox_minf) self.parse_dref(dbox_minf) self.parse_url(dbox_minf) pass def parse_url(self,dbox_minf): if isinstance(dbox_minf, databox) is False: print("please make sure databox type ") return if self.isstart == 0: print("please parse ftyp box firstly otherwise it's error") exit(-1) return # ftypbox_ojb=ftypbox() size = int(binascii.b2a_hex(self.readbytes(4)), 16) data = self.readbytes(4) type = "%c%c%c%c" % (data[0], data[1], data[2], data[3]) print("###########parse_mdia############") print(size, type) print("###########parse_mdia end############") dbox_hdlr = databox(size, type) data = self.readbytes(size - BOX_HEADER_SIZE) dbox_hdlr.setdata(data) dbox_minf.add(dbox_hdlr) def parse_dref(self,dbox_minf): if isinstance(dbox_minf, databox) is False: print("please make sure databox type ") return if self.isstart == 0: print("please parse ftyp box firstly otherwise it's error") exit(-1) return # ftypbox_ojb=ftypbox() size = int(binascii.b2a_hex(self.readbytes(4)), 16) data = self.readbytes(4) type = "%c%c%c%c" % (data[0], data[1], data[2], data[3]) print("###########parse_mdia############") print(size, type) print("###########parse_mdia end############") dbox_hdlr = databox(size, type) # data = self.readbytes(size - BOX_HEADER_SIZE) # dbox_hdlr.setdata(data) dbox_minf.add(dbox_hdlr) pass def parse_stbl(self,dbox_minf): if isinstance(dbox_minf, databox) is False: print("please make sure databox type ") return if self.isstart == 0: print("please parse ftyp box firstly otherwise it's error") exit(-1) return # ftypbox_ojb=ftypbox() size = int(binascii.b2a_hex(self.readbytes(4)), 16) data = self.readbytes(4) type = "%c%c%c%c" % (data[0], data[1], data[2], data[3]) print("###########parse_mdia############") print(size, type) print("###########parse_mdia end############") dbox_minf = databox(size, type) dbox_minf.add(dbox_minf) self.parse_stsd(dbox_minf) self.parse_stts(dbox_minf) self.parse_stss(dbox_minf) self.parse_stsc(dbox_minf) self.parse_stsz(dbox_minf) self.parse_stco(dbox_minf) def parse_stts(self,dbox): if isinstance(dbox, databox) is False: print("please make sure databox type ") return if self.isstart == 0: print("please parse ftyp box firstly otherwise it's error") exit(-1) return # ftypbox_ojb=ftypbox() size = int(binascii.b2a_hex(self.readbytes(4)), 16) data = self.readbytes(4) type = "%c%c%c%c" % (data[0], data[1], data[2], data[3]) print("###########parse_mdia############") print(size, type) print("###########parse_mdia end############") dbox_minf = databox(size, type) dbox.add(dbox_minf) pass def parse_stss(self,dbox): if isinstance(dbox, databox) is False: print("please make sure databox type ") return if self.isstart == 0: print("please parse ftyp box firstly otherwise it's error") exit(-1) return # ftypbox_ojb=ftypbox() size = int(binascii.b2a_hex(self.readbytes(4)), 16) data = self.readbytes(4) type = "%c%c%c%c" % (data[0], data[1], data[2], data[3]) print("###########parse_mdia############") print(size, type) print("###########parse_mdia end############") dbox_minf = databox(size, type) dbox.add(dbox_minf) pass def parse_stsc(self,dbox): if isinstance(dbox, databox) is False: print("please make sure databox type ") return if self.isstart == 0: print("please parse ftyp box firstly otherwise it's error") exit(-1) return # ftypbox_ojb=ftypbox() size = int(binascii.b2a_hex(self.readbytes(4)), 16) data = self.readbytes(4) type = "%c%c%c%c" % (data[0], data[1], data[2], data[3]) print("###########parse_mdia############") print(size, type) print("###########parse_mdia end############") dbox_minf = databox(size, type) dbox.add(dbox_minf) pass def parse_stsz(self,dbox): if isinstance(dbox, databox) is False: print("please make sure databox type ") return if self.isstart == 0: print("please parse ftyp box firstly otherwise it's error") exit(-1) return # ftypbox_ojb=ftypbox() size = int(binascii.b2a_hex(self.readbytes(4)), 16) data = self.readbytes(4) type = "%c%c%c%c" % (data[0], data[1], data[2], data[3]) print("###########parse_mdia############") print(size, type) print("###########parse_mdia end############") dbox_minf = databox(size, type) dbox.add(dbox_minf) pass def parse_stco(self,dbox): if isinstance(dbox, databox) is False: print("please make sure databox type ") return if self.isstart == 0: print("please parse ftyp box firstly otherwise it's error") exit(-1) return # ftypbox_ojb=ftypbox() size = int(binascii.b2a_hex(self.readbytes(4)), 16) data = self.readbytes(4) type = "%c%c%c%c" % (data[0], data[1], data[2], data[3]) print("###########parse_mdia############") print(size, type) print("###########parse_mdia end############") dbox_minf = databox(size, type) dbox.add(dbox_minf) pass def parse_stsd(self,dbox): if isinstance(dbox, databox) is False: print("please make sure databox type ") return if self.isstart == 0: print("please parse ftyp box firstly otherwise it's error") exit(-1) return # ftypbox_ojb=ftypbox() size = int(binascii.b2a_hex(self.readbytes(4)), 16) data = self.readbytes(4) type = "%c%c%c%c" % (data[0], data[1], data[2], data[3]) print("###########parse_mdia############") print(size, type) print("###########parse_mdia end############") dbox_minf = databox(size, type) dbox.add(dbox_minf) self.parse_mp4v(dbox_minf) def parse_mp4v(self,dbox): if isinstance(dbox, databox) is False: print("please make sure databox type ") return if self.isstart == 0: print("please parse ftyp box firstly otherwise it's error") exit(-1) return # ftypbox_ojb=ftypbox() size = int(binascii.b2a_hex(self.readbytes(4)), 16) data = self.readbytes(4) type = "%c%c%c%c" % (data[0], data[1], data[2], data[3]) print("###########parse_mp4v############") print(size, type) print("###########parse_mp4v end############") dbox_minf = databox(size, type) dbox.add(dbox_minf) self.parse_esds(dbox_minf) self.parse_pasp(dbox_minf) pass def parse_esds(self,dbox): if isinstance(dbox, databox) is False: print("please make sure databox type ") return if self.isstart == 0: print("please parse ftyp box firstly otherwise it's error") exit(-1) return # ftypbox_ojb=ftypbox() size = int(binascii.b2a_hex(self.readbytes(4)), 16) data = self.readbytes(4) type = "%c%c%c%c" % (data[0], data[1], data[2], data[3]) print("###########parse_esds############") print(size, type) print("###########parse_esds end############") dbox_minf = databox(size, type) dbox.add(dbox_minf) pass def parse_pasp(self,dbox): if isinstance(dbox, databox) is False: print("please make sure databox type ") return if self.isstart == 0: print("please parse ftyp box firstly otherwise it's error") exit(-1) return # ftypbox_ojb=ftypbox() size = int(binascii.b2a_hex(self.readbytes(4)), 16) data = self.readbytes(4) type = "%c%c%c%c" % (data[0], data[1], data[2], data[3]) print("###########parse_pasp############") print(size, type) print("###########parse_pasp end############") dbox_minf = databox(size, type) dbox.add(dbox_minf) pass def parse_hdlr(self,dbox): if isinstance(dbox, databox) is False: print("please make sure databox type ") return if self.isstart == 0: print("please parse ftyp box firstly otherwise it's
import numpy as np import os def parse_automesh(file): if os.path.exists(file): lines = open(file, 'r').readlines() return lines def parse_sfo(filename, verbose=False): """ Master parser for the SFO file. Returns the output dict. """ groups = parse_sfo_into_groups(filename) d = { 'wall_segments':[], 'other':{} } segments = [] for g in groups: dat = process_group(g, verbose=verbose) type = dat['type'] if type == 'wall_segment': d['wall_segments'].append(dat) elif type in ['summary','BeamEnergy']: d[type] = dat elif type == 'header': d['header'] = parse_header_lines(dat['lines']) else: d['other'][type] = dat # update Kinetic energy in 'summary' with the right value if 'summary' in d and 'BeamEnergy' in d: d['summary']['data']['kinetic_energy'] = d['BeamEnergy']['data']['BeamEnergy']/1e6 d['summary']['units']['kinetic_energy'] = 'MeV' return d def parse_sfo_into_groups(filename): """ Parses SFO file into groups according to separator that starts with: '-------------------' Returns a list of dicts, with: raw_type: the first line lines: list of lines """ with open(filename, 'r') as f: lines = f.readlines() groups = [] sep = '-------------------' g = {'raw_type':'header', 'lines':[]} groups = [g] new_group = False for line in lines: line = line.strip() # Skip empty lines if not line: continue # Look for new group if line.startswith(sep): new_group = True continue # Check for new group if new_group: gname = line new_group = False g = {'raw_type': gname, 'lines':[]} groups.append(g) continue # regular line g['lines'].append(line) return groups def process_group(group, verbose=False): """ processes a single output group dict into usable data. """ rtype = group['raw_type'] lines = group['lines'] d = {} if rtype.startswith('All calculated values below refer to the mesh geometry only'): d['type'] = 'summary' d['data'], d['units'] = parse_sfo_summary_group(lines) elif rtype.startswith('Power and fields on wall segment') or rtype.startswith('Fields on segment'): d['type'] = 'wall_segment' line1 = rtype # This should be parsed fully d.update(parse_sfo_segment([line1]+lines)) elif rtype.startswith('The field normalization factor ASCALE for this problem is based'): d['type'] = 'BeamEnergy' d['data'], d['units'] = parse_sfo_beam_energy(lines) else: # No parser yet: if verbose: print('No parser for:', rtype) d['type'] = rtype d['lines'] = lines return d #_________________________________ # T7 files def parse_fish_t7(t7file, geometry='cylindrical'): """ Parses a T7 file. The T7 header should have: xmin(cm), xmax(cm), nx-1 freq(MHz) ymin(cm), ymax(cm), ny-1 4 columns of data: Ez, Er, E, Hphi TODO: Poisson problems, detect rectangular or cylindrical coordinates Returns a dict with: rmin rmax nr zmin zmax nz freq: frequency in MHz data: 2D array of shape (nr, nz) """ # Read header # xmin(cm), xmax(cm), nx-1 # freq(MHz) # ymin(cm), ymax(cm), ny-1 with open(t7file, 'r') as f: line1 = f.readline().split() freq_MHz = float(f.readline()) line3 = f.readline().split() # Form output dict d = {} d['geometry'] = geometry d['problem'] = 'fish' d['zmin'], d['zmax'], d['nz'] = float(line1[0]), float(line1[1]), int(line1[2])+1 d['freq'] = freq_MHz d['rmin'], d['rmax'], d['nr'] = float(line3[0]), float(line3[1]), int(line3[2])+1 # These should be the labels labels=['Ez', 'Er', 'E', 'Hphi'] # Read and reshape dat4 = np.loadtxt(t7file, skiprows=3) ncol = len(labels) dat4 = dat4.reshape(d['nr'], d['nz'], ncol) for i, label in enumerate(labels): d[label] = dat4[:,:,i] return d def parse_poisson_t7(t7file, type='electric', geometry='cylindrical'): """ Parses a T7 file. The T7 header should have: xmin(cm), xmax(cm), nx-1 ymin(cm), ymax(cm), ny-1 For type=='electric': 2 columns of data: Er, Ez Units are in V/cm For type=='magnetic': 2 columns of data: Br, Bz Units are G Returns a dict with: rmin rmax nr ymin ymax ny data: 2D array of shape (nx, ny) """ assert geometry == 'cylindrical', 'TODO: other geometries' if type == 'electric': labels = 'Er', 'Ez' elif type == 'magnetic': labels = 'Br', 'Bz' # Read header # xmin(cm), xmax(cm), nx-1 # r in cylindrical geometry # ymin(cm), ymax(cm), ny-1 # z in cylindrical geometry with open(t7file, 'r') as f: xline = f.readline().split() yline = f.readline().split() # Form output dict d = {} d['geometry'] = geometry d['problem'] = 'poisson' d['rmin'], d['rmax'], d['nr'] = float(xline[0]), float(xline[1]), int(xline[2])+1 d['zmin'], d['zmax'], d['nz'] = float(yline[0]), float(yline[1]), int(yline[2])+1 # Read and reshape dat4 = np.loadtxt(t7file, skiprows=2) ncol = len(labels) dat4 = dat4.reshape(d['nz'], d['nr'], ncol) for i, label in enumerate(labels): d[label] = dat4[:,:,i].T return d #_________________________________ #_________________________________ # Individual parsers #_________________________________ # Header def parse_header_variable(line): """ Parses a line that follows: Variable Code Value Description Returns: key, value, description, in_automesh """ x = line.split() key = x[0] if x[1] == 'A': in_automesh = True s = x[2] d = x[3:] else: in_automesh = False s = x[1] d = x[2:] descrip = ' '.join(d) try: val = int(s) except ValueError: val = float(s) return key, val, descrip, in_automesh def parse_header_lines(lines): """ Parses the header lines """ header = 'Variable Code Value Description' d = {} description = {} in_automesh = {} comments = [] in_header=False for line in lines: if line == header: in_header = True continue if not in_header: comments.append(line) continue key, val, descrip, in_am = parse_header_variable(line) d[key] = val description[key] = descrip in_automesh[key] = in_am return {'variable':d, 'description':description, 'in_automesh':in_automesh, 'comments':'\n'.join(comments)} #_________________________________ # Wall segments def parse_wall_segment_line1(line): """ helper parse_sfo_segment """ d = {} ix, x = line.split('segment')[1].split(' K,L =') d['segment_number'] = int(float((ix))) kl0, kl1 = x.split('to') k0, l0 = kl0.split(',') d['K_beg'], d['L_beg'] = int(k0), int(l0) k1, l1 = kl1.split(',') d['K_end'], d['L_end'] = int(k1), int(l1) return d def parse_sfo_segment(lines): """ Parses lines that start with: 'Power and fields on wall segment' """ # key = value lines info = parse_wall_segment_line1(lines[0]) inside = False fields = None units = None for L in lines[1:]: L = L.strip() # Look for key=value if '=' in L: key, val = L.split('=') info[key.strip()] = val continue if L.startswith("K L"): nskip = 2 fields = {name.strip('|'):[] for name in L.split()[nskip:]} continue elif L.startswith( "m K L"): nskip = 3 fields = {name.strip('|'):[] for name in L.split()[nskip:]} continue if not fields: continue # Look for units if fields and not units: unit_labels = L.split() assert len(unit_labels) == len(fields), print(unit_labels) # make dict units = dict(zip(list(fields),unit_labels)) inside = True continue # This might come at the end if L.startswith('Summary'): inside = False # Must be inside. Add data if inside: x = [float(y) for y in L.split()] # Special care if there are blanks for the skip columns if len(x) == len(fields) + nskip: x = x[nskip:] for i, name in enumerate(fields): fields[name].append(x[i]) # Exiting for k, v in fields.items(): fields[k] = np.array(v) return {'wall':fields, 'info':info, 'units':units} #_________________________________ # Summary def parse_sfo_beam_energy(lines): d_vals = {} d_units = {} for line in lines: line = line.strip() if line.startswith('V0'): line = line.split('=')[-1] line = line.strip() line = line.split(' ') data = line[0] data = float(data) unit = line[1] d_vals['BeamEnergy'] = data d_units['BeamEnergy'] = unit return d_vals, d_units def parse_sfo_summary_group(lines): """ """ d_vals = {} d_units = {} for line in lines: if line == "": break else: d_val, d_unit = parse_sfo_summary_group_line(line) d_vals.update(d_val) d_units.update(d_unit) return d_vals, d_units def parse_simple_summary_line(line): # deal with simple line with one key and one value d_val = {} d_unit = {} line = line.split("=") if len(line) == 1: return d_val, d_unit key = line[0].strip() val = line[-1] val = val.strip() val = val.split(" ") d_val[key] = float(val[0]) if len(val) > 1: d_unit[key] = val[1] else: d_unit[key] = "" return d_val, d_unit def parse_sfo_summary_group_line(line): d_val = {} d_unit = {} if line.startswith('Field normalization'): line = line.split("=") val = line[-1] val = val.strip() val = val.split(" ") d_val['Enorm'] = float(val[0]) d_unit['Enorm'] = val[1] return d_val, d_unit # 'for the integration path from point Z1,R1 = 50.50000 cm, 0.00000 cm', if line.startswith('for the integration path'): line = line.split("=") val = line[-1] val = val.strip() val = val.split(",") v1 = val[0].split(" ") v1 = v1[0] v2 = val[1].strip() v2 = v2.split(" ") v2 = v2[0] d_val['integration_Z1'] = float(v1) d_unit['integration_Z1'] = "cm" d_val['integration_R1'] = float(v2) d_unit['integration_R1'] = "cm" return d_val, d_unit # 'to ending point
'spiderwebs', 'spiel', 'spiffy', 'spikan', 'spikanor', 'spike', 'spikes', 'spiko', 'spill', 'spilled', 'spilling', 'spills', 'spin', 'spin-out', 'spin-to-win', 'spinach', 'spines', 'spinner', 'spinning', 'spins', 'spiral', 'spirit', 'spirited', 'spiriting', 'spirits', 'spit', 'spiteful', 'spits', 'spittake', 'splash', 'splashed', 'splasher', 'splashers', 'splashes', 'splashing', 'splashy', 'splat', 'splatoon', 'splatter', 'splatters', 'splendid', 'splice', 'spliced', 'splices', 'splicing', 'splinter', 'splinters', 'splish', 'splish-splash', 'split', 'splitting', 'splurge', 'spoiled', 'spoiler', 'spoke', 'spoken', 'spondee', 'sponge', 'spongy', 'sponsor', 'sponsored', 'sponsoring', 'sponsors', 'spook', 'spooks', 'spooky', 'spookyrandi', 'spoon', 'spoons', 'sport', 'sported', 'sporting', 'sportive', 'sports', 'spot', "spot's", 'spotcheek', 'spotify', 'spotless', 'spotlight', 'spots', 'spotted', 'spotting', 'spotz', 'spout', 'spouts', 'spray', 'sprays', 'spree', 'sprightly', 'spring', 'springer', 'springers', 'springing', 'springs', 'springtime', 'springy', 'sprinkle', 'sprinkled', 'sprinkler', 'sprinkles', 'sprinkling', 'sprint', 'sprinting', 'sprite', 'sprites', 'sprocket', 'sprockets', 'sprouse', 'sprout', 'sprouter', 'spruce', 'spud', 'spuds', 'spunkiness', 'spunky', 'spy', 'spyp.o.d.', 'spypod', 'spyro', 'sqad364', 'squad', 'squall', "squall's", 'squalls', 'square', 'squared', 'squarely', 'squares', 'squaring', 'squash', 'squashed', 'squashing', 'squawk', 'squawks', 'squeak', 'squeaker', 'squeakers', 'squeakity', 'squeaky', 'squeal', 'squeeks', 'squeeze', 'squeezebox', 'squeezed', 'squeezing', 'squid', "squid's", 'squids', 'squidzoid', 'squiggle', 'squigglebee', 'squiggleberry', 'squiggleblabber', 'squigglebocker', 'squiggleboing', 'squiggleboom', 'squigglebounce', 'squigglebouncer', 'squigglebrains', 'squigglebubble', 'squigglebumble', 'squigglebump', 'squigglebumper', 'squiggleburger', 'squigglechomp', 'squigglecorn', 'squigglecrash', 'squigglecrumbs', 'squigglecrump', 'squigglecrunch', 'squiggledoodle', 'squiggledorf', 'squiggleface', 'squigglefidget', 'squigglefink', 'squigglefish', 'squiggleflap', 'squiggleflapper', 'squiggleflinger', 'squiggleflip', 'squiggleflipper', 'squigglefoot', 'squigglefuddy', 'squigglefussen', 'squigglegadget', 'squigglegargle', 'squigglegloop', 'squiggleglop', 'squigglegoober', 'squigglegoose', 'squigglegrooven', 'squigglehoffer', 'squigglehopper', 'squigglejinks', 'squiggleklunk', 'squiggleknees', 'squigglemarble', 'squigglemash', 'squigglemonkey', 'squigglemooch', 'squigglemouth', 'squigglemuddle', 'squigglemuffin', 'squigglemush', 'squigglenerd', 'squigglenoodle', 'squigglenose', 'squigglenugget', 'squigglephew', 'squigglephooey', 'squigglepocket', 'squigglepoof', 'squigglepop', 'squigglepounce', 'squigglepow', 'squigglepretzel', 'squigglequack', 'squiggleroni', 'squigglescooter', 'squigglescreech', 'squigglesmirk', 'squigglesnooker', 'squigglesnoop', 'squigglesnout', 'squigglesocks', 'squigglespeed', 'squigglespinner', 'squigglesplat', 'squigglesprinkles', 'squigglesticks', 'squigglestink', 'squiggleswirl', 'squiggleteeth', 'squigglethud', 'squiggletoes', 'squiggleton', 'squiggletoon', 'squiggletooth', 'squiggletwist', 'squigglewhatsit', 'squigglewhip', 'squigglewig', 'squigglewoof', 'squigglezaner', 'squigglezap', 'squigglezapper', 'squigglezilla', 'squigglezoom', 'squiggly', 'squillace', 'squire', 'squirmy', 'squirrel', 'squirrelfish', 'squirrels', 'squirt', 'squirt gun', 'squirting', 'squirtle', 'squirtless', 'squishy', 'srawhats', 'sri', 'srry', 'sry', 'ssw', 'st', 'st.', 'stabber', 'stack', 'stackable', 'stacker', 'stacking', 'stacks', 'stadium', 'stadiums', 'staff', "staff's", 'staffed', 'staffer', 'staffers', 'staffing', 'staffs', 'stage', 'staged', 'stager', 'stagers', 'stages', 'staging', 'staid', 'stain', 'stained-glass', 'stainless', 'stains', 'stair', "stair's", 'stairs', 'stake', 'stalkers', 'stall', 'stallion', 'stamp', 'stamped', 'stamper', 'stampers', 'stamping', 'stamps', 'stan', 'stanchion', 'stanchions', 'stand', 'stand-up', 'stand-up-and-cheer', 'standard', 'standardly', 'standards', 'stander', 'standing', 'standings', 'stands', 'stanley', "stanley's", 'star', "star's", 'star-chaser', 'star-shaped', 'starboard', 'starbr', 'starcatchers', 'starch', 'stardom', 'stareaston', 'stared', 'starer', 'starfire', 'starfish', 'stargate', 'stargazer', 'staring', 'starlight', 'starmie', 'starring', 'starry', 'stars', 'starscream', 'start', 'started', 'starter', 'starters', 'starting', 'starting-line', 'starts', 'staryu', 'stas', 'stash', 'stat', 'statefarm', 'statement', "statement's", 'statements', 'states', 'station', "station's", 'stationed', 'stationer', 'stationery', 'stationing', 'stations', 'statistic', 'statler', 'stats', 'statuary', 'statue', 'statues', 'statuesque', 'status', 'statuses', 'stay', 'stayed', 'staying', 'stayne', 'stays', 'steadfast', 'steadman', 'steady', 'steak', 'steakhouse', 'steakhouses', 'steal', 'stealer', 'stealing', 'steals', 'stealth', 'steam', 'steamboat', 'steaming', 'steel', 'steelhawk', 'steeple', 'steer', 'steered', 'steerer', 'steering', 'steers', 'steffi', 'stella', 'stem', 'stench', 'stenches', 'stenchy', 'step', "step's", 'stepanek', 'steph', 'stephante', 'stepped', 'stepping', 'steps', 'sterling', 'stern', 'stetson', 'steve', 'steven', 'stew', 'stewart', 'stflush', 'stick', 'sticker', 'stickerbook', 'stickers', 'sticking', 'sticks', 'sticky', "sticky's", 'stickyfeet', 'still', 'stilled', 'stiller', 'stillest', 'stilling', 'stillness', 'stills', 'stillwater', 'sting', 'stinger', 'stingers', 'stings', 'stink', 'stinkbucket', 'stinkbugs', 'stinker', 'stinking', 'stinks', 'stinky', "stinky's", 'stir', 'stitch', "stitch's", 'stitched', 'stitcher', 'stitches', 'stitching', 'stock', 'stocked', 'stockers', 'stockier', 'stocking', 'stockings', 'stockpile', 'stocks', 'stoke', 'stoked', 'stole', 'stolen', 'stomp', 'stomper', 'stone', 'stones', 'stood', 'stool', 'stools', 'stop', "stop's", 'stoped', 'stoppable', 'stopped', 'stopper', 'stopping', 'stops', 'storage', 'store', 'stored', 'stores', 'storied', 'stories', 'storing', 'storm', "storm's", 'storm-sail', 'stormbringers', 'stormed', 'stormers', 'stormfire', 'stormhaw', 'stormhold', 'storming', 'stormlords', 'stormrider', 'storms', 'stormy', 'story', "story's", 'storybook', 'storybookland', 'storybooks', 'storying', 'storylines', 'storytelling', 'stow', 'stowaway', 'str', 'straggler', 'stragglers', 'straight', 'strait', 'strand', 'strands', 'strange', 'strangely', 'stranger', 'strangers', 'strangest', 'strategies', 'strategists', 'strategy', "strategy's", 'straw', 'strawberrie', 'strawberries', 'strawberry', 'strawhats', 'strays', 'stream', 'streamer', 'streamers', 'streaming', 'streams', 'street', 'streeters', 'streetlight', 'streetlights', 'streets', 'streetwise', 'strength', 'strengthen', 'strengthens', 'stress', 'stressed', 'stresses', 'stressful', 'stressing', 'stretch', 'stretched', 'stretcher', 'stretchers', 'stretches', 'stretching', 'strict', 'strictly', 'striders', 'strike', 'striker', 'strikers', 'strikes', 'striking', 'string', 'stringbean', 'stringing', 'strings', 'stringy', 'stripe', 'strive', 'stroll', 'strolling', 'strom', 'strong', 'strong-minded', 'strongbox', 'stronger', 'strongest', 'strongly', 'structure', 'struggle', 'struggled', 'struggling', 'strung', 'strut', 'stu', 'stubborn', 'stubby', 'stuck', 'stud', 'studded', 'studied', 'studier', 'studies', 'studio', "studio's", 'studios', 'study', 'studying', 'stuff', 'stuffed', 'stuffer', 'stuffing', 'stuffings', 'stuffs', 'stuffy', 'stumble', 'stump', 'stumps', 'stumpy', 'stun', 'stunned', 'stunners', 'stunning', 'stuns', 'stunts', 'stupendous', 'sturdy', 'stut', 'stutter', 'stutters', 'style', 'style-talent', 'styled', 'styler', 'stylers', 'styles', "stylin'", 'styling', 'stylish', 'sub', 'subject', "subject's", 'subjected', 'subjecting', 'subjective', 'subjects', 'sublocation', 'submarine', 'submarines', 'submit', 'submits', 'submitted', 'submitting', 'subscribe', 'subscribed', 'subscribers', 'subscribing', 'subscription', 'subscriptions', 'substance', 'substitute', 'subtalent', 'subtalents', 'subtitle', 'subtle', 'subzero', 'succeed', 'succeeded', 'succeeder', 'succeeding', 'succeeds', 'success', 'successes', 'successful', 'successfully', 'successive', 'successor', 'succinct', 'succinctly', 'such', 'sucha', 'sucker', 'suckerpunch', 'suction', 'sudan', 'sudden', 'suddenly', 'sudoku', 'sudoron', 'sue', 'suffice', 'suffix', 'suffixes', 'sufrigate', 'sugar', 'sugarplum', 'sugary', 'suggest', 'suggested', 'suggester', 'suggesting', 'suggestion', "suggestion's", 'suggestions', 'suggestive', 'suggests', 'suit', "suit's", 'suitcase', 'suitcases', 'suite', 'suited', 'suiters', 'suiting', 'suits', 'sulfur', 'sulley', 'sully', 'sultan', 'sum', "sum's", 'sumer', 'sumhajee', 'summary', 'summer', "summer's", 'summered', 'summering', 'summerland', 'summers', 'summit', 'summon', 'summoned', 'summoning', 'summons', 'sumo', 'sums', 'sun', "sun's", 'sunburst', 'sundae', 'sundaes', 'sunday', 'sundays', 'sundown', 'suneroo', 'sunflower-seed', 'sunflowers', 'sung', 'sunk', 'sunken', 'sunnies', 'sunny', "sunny's", 'sunrise', 'suns', 'sunsational', 'sunscreen', 'sunset', 'sunsets', "sunshine's", 'sunshines', 'sunswept', 'suoicodilaipxecitsiligarfilacrepus', 'sup', 'supa-star', 'super', "super's", 'super-cool', 'super-duper', 'super-powerful', 'super-talented', 'super-thoughtful', 'super-toon', 'superb', 'superbee', 'superberry', 'superblabber', 'superbly', 'superbocker', 'superboing', 'superboom', 'superbounce', 'superbouncer', 'superbrains', 'superbubble', 'superbumble', 'superbump', 'superbumper', 'superburger', 'supercalifragilisticexpialidocious', 'superchomp', 'supercool', 'supercorn', 'supercrash', 'supercrumbs', 'supercrump', 'supercrunch', 'superdoodle', 'superdorf', 'superduper', 'superface', 'superficial', 'superficially', 'superfidget', 'superfink', 'superfish', 'superflap', 'superflapper', 'superflinger', 'superflip', 'superflipper', 'superfluous', 'superfoot', 'superfuddy', 'superfussen', 'supergadget', 'supergargle', 'supergloop', 'superglop', 'supergoober', 'supergoose', 'supergrooven', 'superhero', "superhero's", 'superheroes', 'superhoffer', 'superhopper', 'superior', 'superjinks', 'superklunk', 'superknees', 'superman', 'supermarble', 'supermash', 'supermonkey', 'supermooch', 'supermouth', 'supermuddle', 'supermuffin', 'supermush', 'supernatural', 'supernerd', 'supernoodle', 'supernose', 'supernugget', 'superphew', 'superphooey', 'superpocket', 'superpoof', 'superpop', 'superpounce', 'superpow', 'superpretzel', 'superquack', 'superroni', 'supers', 'superscooter', 'superscreech', 'superserpents', 'supersmirk', 'supersnooker', 'supersnoop', 'supersnout', 'supersocks', 'superspeed', 'superspinner', 'supersplat', 'supersprinkles', 'superstar', 'supersticks', 'superstink', 'superstition', 'superstitions', 'superswirl', 'superteeth', 'superthud', 'supertoes', 'superton', 'supertoon', 'supertoons', 'supertooth', 'supertwist', 'supervise', 'supervised', 'supervising', 'supervisor', 'supervisors', 'superwhatsit', 'superwhip', 'superwig', 'superwoof', 'superzaner', 'superzap', 'superzapper', 'superzilla', 'superzoom', 'supplement', 'supplication', 'supplied', 'supplier', 'suppliers', 'supplies', 'supply', "supply's", 'supplying', 'support', 'supported', 'supporter', 'supporters', 'supporting', 'supportive', 'supports', 'suppose', 'supposed', 'supposer', 'supposes', 'supposing', 'supreme', 'supremo', "supremo's", 'sure', 'sured', 'surely', 'surer', 'surest', 'surf', "surf's", 'surface', 'surfaced', 'surfacer', 'surfacers', 'surfaces', 'surfacing', 'surfari', 'surfboard', 'surfer', 'surfers', "surfin'", 'surfing', 'surfs', 'surge', 'surgeon', 'surgeons', 'surges', 'surging', 'surlee', 'surplus', 'surprise', "surprise's", 'surprised', 'surpriser', 'surprises', 'surprising', 'surprize', 'surrender', 'surrendered', 'surrendering', 'surrenders', 'surround', 'surrounded', 'surrounding', 'surroundings', 'surrounds', 'surves', 'survey', 'surveying', 'survival', 'survive', 'survived', 'surviver', 'survives', 'surviving', 'survivor', "survivor's", 'survivors', 'susan', "susan's", 'sushi', 'suspect', 'suspected', 'suspecting', 'suspects', 'suspended', 'suspenders', 'suspense', 'suspicion', 'suspicions', 'suspicious', 'suspiciously', 'svaal', 'svage', 'sven', 'svetlana', 'swab', 'swabbie', "swabbin'", 'swabby', 'swag', 'swaggy', 'swagyolomoneyhaxmlgpro', 'swain', 'swam', 'swamies', 'swamp', 'swamps', 'swan', 'swanky', 'swann', "swann's", 'swans', 'swap', 'swapped', 'swapping', 'swaps', 'swarm', 'swarthy', 'swash', 'swashbuckler', 'swashbucklers', 'swashbuckling', 'swashbucler', 'swashbuculer', 'swat', 'swats', 'swatted', 'swatting', 'sweat', 'sweater', 'sweaters', 'sweatheart', 'sweatshirt', 'sweatshirts', 'sweaty', 'swede', 'sweden', 'swedes', 'swedish', 'sweep', 'sweeping', 'sweeps', 'sweepstakes', 'sweet', 'sweeten', 'sweetens', 'sweeter', 'sweetest', 'sweetgum', 'sweetie', 'sweeting', 'sweetly', 'sweetness', 'sweets', 'sweetums', 'sweetwrap', 'sweety', 'swell', 'swelled', 'swelling', 'swellings', 'swells', 'swept', 'swervy', 'swift', 'swiftness', 'swifty', 'swig', 'swim', 'swimer', 'swimmer', 'swimming', 'swimmingly', 'swims', 'swimwear', 'swindler', 'swindlers', 'swine', 'swing', 'swinger', 'swingers', 'swinging', 'swings', 'swipe', 'swiped', 'swipes', "swipin'", 'swirl', 'swirled', 'swirls', 'swirly', 'swiss', 'switch', "switch's", 'switchbox', 'switched', 'switcher', 'switcheroo', 'switchers', 'switches', 'switching', 'switchings', 'swiveling', 'swoop', 'sword', "sword's", 'swordbreakers', 'swords', 'swordslashers', 'swordsman', 'swordsmen', 'sycamore', 'sydney', 'sylveon', 'sylvia', 'symbiote', 'symbol', 'symbols', 'symmetrical', 'symmetry', 'symphonies', 'symphony', 'symposia', 'symposium', 'symposiums', 'sync', 'syncopation', 'syndicate', 'synergise', 'synergised', 'synergises', 'synergising', 'synergized', 'synergizes', 'synergizing', 'synergy', 'synopsis', 'synthesis', 'syrberus', 'syrup', 'syrupy', 'system', "system's", 'systems', 't-shirt', 't-shirts', 't-squad', "t-squad's", 't.b.', 't.p.', 'ta', 'tab', 'tabatha', 'tabbed', 'tabby', 'tabitha', "tabitha's", 'table', "table's", 'table-setting-talent', 'tabled', 'tables', 'tableset', 'tabling', 'tabs', 'tabulate', 'tack', 'tacked', 'tacking', 'tackle', 'tackled', 'tackles', 'tackling', 'tacks', 'tacky', 'taco', 'tact', 'tactful', 'tactics', 'tad', 'taffy', 'tag', 'tags', 'tailed', 'tailgater', 'tailgaters', 'tailgating', 'tailing', 'tailor', 'tailored', 'tailoring', 'tailors', 'tailpipe', 'tailpipes', 'tails', 'tailswim', 'tainted', 'take', 'taken', 'taker', 'takers', 'takes', 'taketh', "takin'", 'taking', 'takings', 'takion', 'tale', "tale's", 'talent', 'talented', 'talents', 'tales', 'talespin', 'talk', 'talkative', 'talked', 'talker', 'talkers', 'talkin', 'talking', 'talks', 'tall', 'tall-tale-telling-talent', 'taller', 'tallest', 'tally', 'talon', 'talons', 'tam', 'tamazoa', 'tamers', 'tammy', 'tampa', 'tan', 'tandemfrost', 'tangaroa', "tangaroa's", 'tangaroa-ru', "tangaroa-ru's", 'tangela', 'tangerine', 'tangle', 'tango', 'tangoed', 'tangoing', 'tangos', 'tangy', 'tanith', 'tank', 'tanker', 'tankers', 'tanking', 'tanks', 'tanned', 'tanning', 'tanny', 'tans', 'tansy', 'tap', "tap's", 'tape', 'taped', 'taper', 'tapers', 'tapes', 'tapestry', 'taping', 'tapings', 'taps', 'tar', 'tara', 'tarantula', 'target', 'targeted', 'targeting',
at (-1, 1, -1, 1), A vertex at (-1, -1, -1, 1), A vertex at (-1, -1, -1, -1)) You can use the :meth:`~sage.geometry.polyhedron.representation.PolyhedronRepresentation.index` method to enumerate vertices and inequalities:: sage: def get_idx(rep): return rep.index() sage: [get_idx(_) for _ in face.ambient_Hrepresentation()] [4] sage: [get_idx(_) for _ in face.ambient_Vrepresentation()] [8, 9, 10, 11, 12, 13, 14, 15] sage: [ ([get_idx(_) for _ in face.ambient_Vrepresentation()], ....: [get_idx(_) for _ in face.ambient_Hrepresentation()]) ....: for face in p.faces(3) ] [([0, 5, 6, 7, 8, 9, 14, 15], [7]), ([1, 4, 5, 6, 10, 13, 14, 15], [6]), ([1, 2, 6, 7, 8, 10, 11, 15], [5]), ([8, 9, 10, 11, 12, 13, 14, 15], [4]), ([0, 3, 4, 5, 9, 12, 13, 14], [3]), ([0, 2, 3, 7, 8, 9, 11, 12], [2]), ([1, 2, 3, 4, 10, 11, 12, 13], [1]), ([0, 1, 2, 3, 4, 5, 6, 7], [0])] TESTS:: sage: pr = Polyhedron(rays = [[1,0,0],[-1,0,0],[0,1,0]], vertices = [[-1,-1,-1]], lines=[(0,0,1)]) sage: pr.faces(4) () sage: pr.faces(3)[0].ambient_V_indices() (0, 1, 2, 3) sage: pr.facets()[0].ambient_V_indices() (0, 1, 2) sage: pr.faces(1) () sage: pr.faces(0) () sage: pr.faces(-1) (A -1-dimensional face of a Polyhedron in QQ^3,) """ return tuple(self.face_generator(face_dimension)) def facets(self): r""" Return the facets of the polyhedron. Facets are the maximal nontrivial faces of polyhedra. The empty face and the polyhedron itself are trivial. A facet of a `d`-dimensional polyhedron is a face of dimension `d-1`. For `d \neq 0` the converse is true as well. OUTPUT: A tuple of :class:`~sage.geometry.polyhedron.face.PolyhedronFace`. See :mod:`~sage.geometry.polyhedron.face` for details. The order is random but fixed. .. SEEALSO:: :meth:`facets` EXAMPLES: Here we find the eight three-dimensional facets of the four-dimensional hypercube:: sage: p = polytopes.hypercube(4) sage: p.facets() (A 3-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 8 vertices, A 3-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 8 vertices, A 3-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 8 vertices, A 3-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 8 vertices, A 3-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 8 vertices, A 3-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 8 vertices, A 3-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 8 vertices, A 3-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 8 vertices) This is the same result as explicitly finding the three-dimensional faces:: sage: dim = p.dimension() sage: p.faces(dim-1) (A 3-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 8 vertices, A 3-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 8 vertices, A 3-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 8 vertices, A 3-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 8 vertices, A 3-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 8 vertices, A 3-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 8 vertices, A 3-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 8 vertices, A 3-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 8 vertices) The ``0``-dimensional polyhedron does not have facets:: sage: P = Polyhedron([[0]]) sage: P.facets() () """ if self.dimension() == 0: return () return self.faces(self.dimension()-1) @cached_method(do_pickle=True) def f_vector(self): r""" Return the f-vector. OUTPUT: Returns a vector whose `i`-th entry is the number of `i-2`-dimensional faces of the polytope. .. NOTE:: The ``vertices`` as given by :meth:`Polyhedron_base.vertices` do not need to correspond to `0`-dimensional faces. If a polyhedron contains `k` lines they correspond to `k`-dimensional faces. See example below EXAMPLES:: sage: p = Polyhedron(vertices=[[1, 2, 3], [1, 3, 2], ....: [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1], [0, 0, 0]]) sage: p.f_vector() (1, 7, 12, 7, 1) sage: polytopes.cyclic_polytope(4,10).f_vector() (1, 10, 45, 70, 35, 1) sage: polytopes.hypercube(5).f_vector() (1, 32, 80, 80, 40, 10, 1) Polyhedra with lines do not have `0`-faces:: sage: Polyhedron(ieqs=[[1,-1,0,0],[1,1,0,0]]).f_vector() (1, 0, 0, 2, 1) However, the method :meth:`Polyhedron_base.vertices` returns two points that belong to the ``Vrepresentation``:: sage: P = Polyhedron(ieqs=[[1,-1,0],[1,1,0]]) sage: P.vertices() (A vertex at (1, 0), A vertex at (-1, 0)) sage: P.f_vector() (1, 0, 2, 1) TESTS: Check that :trac:`28828` is fixed:: sage: P.f_vector().is_immutable() True The cache of the f-vector is being pickled:: sage: P = polytopes.cube() sage: P.f_vector() (1, 8, 12, 6, 1) sage: Q = loads(dumps(P)) sage: Q.f_vector.is_in_cache() True """ return self.combinatorial_polyhedron().f_vector() def flag_f_vector(self, *args): r""" Return the flag f-vector. For each `-1 < i_0 < \dots < i_n < d` the flag f-vector counts the number of flags `F_0 \subset \dots \subset F_n` with `F_j` of dimension `i_j` for each `0 \leq j \leq n`, where `d` is the dimension of the polyhedron. INPUT: - ``args`` -- integers (optional); specify an entry of the flag-f-vector; must be an increasing sequence of integers OUTPUT: - a dictionary, if no arguments were given - an Integer, if arguments were given EXAMPLES: Obtain the entire flag-f-vector:: sage: P = polytopes.twenty_four_cell() sage: P.flag_f_vector() {(-1,): 1, (0,): 24, (0, 1): 192, (0, 1, 2): 576, (0, 1, 2, 3): 1152, (0, 1, 3): 576, (0, 2): 288, (0, 2, 3): 576, (0, 3): 144, (1,): 96, (1, 2): 288, (1, 2, 3): 576, (1, 3): 288, (2,): 96, (2, 3): 192, (3,): 24, (4,): 1} Specify an entry:: sage: P.flag_f_vector(0,3) 144 sage: P.flag_f_vector(2) 96 Leading ``-1`` and trailing entry of dimension are allowed:: sage: P.flag_f_vector(-1,0,3) 144 sage: P.flag_f_vector(-1,0,3,4) 144 One can get the number of trivial faces:: sage: P.flag_f_vector(-1) 1 sage: P.flag_f_vector(4) 1 Polyhedra with lines, have ``0`` entries accordingly:: sage: P = (Polyhedron(lines=[[1]]) * polytopes.cross_polytope(3)) sage: P.flag_f_vector() {(-1,): 1, (0, 1): 0, (0, 1, 2): 0, (0, 1, 3): 0, (0, 2): 0, (0, 2, 3): 0, (0, 3): 0, (0,): 0, (1, 2): 24, (1, 2, 3): 48, (1, 3): 24, (1,): 6, (2, 3): 24, (2,): 12, (3,): 8, 4: 1} If the arguments are not stricly increasing or out of range, a key error is raised:: sage: P.flag_f_vector(-1,0,3,6) Traceback (most recent call last): ... KeyError: (0, 3, 6) sage: P.flag_f_vector(-1,3,0) Traceback (most recent call last): ... KeyError: (3, 0) """ flag = self._flag_f_vector() if len(args) == 0: return flag elif len(args) == 1: return flag[(args[0],)] else: dim = self.dimension() if args[0] == -1: args = args[1:] if args[-1] == dim: args = args[:-1] return flag[tuple(args)] @cached_method(do_pickle=True) def _flag_f_vector(self): r""" Return the flag-f-vector. See :meth:`flag_f_vector`. TESTS:: sage: polytopes.hypercube(4)._flag_f_vector() {(-1,): 1, (0,): 16, (0, 1): 64, (0, 1, 2): 192, (0, 1, 2, 3): 384, (0, 1, 3): 192, (0, 2): 96, (0, 2, 3): 192, (0, 3): 64, (1,): 32, (1, 2): 96, (1, 2, 3): 192, (1, 3): 96, (2,): 24, (2, 3): 48, (3,): 8, (4,): 1} """ return self.combinatorial_polyhedron()._flag_f_vector() def vertex_graph(self): """ Return a graph in which the vertices correspond to vertices of the polyhedron, and edges to edges. ..NOTE:: The graph of a polyhedron with lines has no vertices, as the polyhedron has no vertices (`0`-faces). The method :meth:`Polyhedron_base:vertices` returns the defining points in this case. EXAMPLES:: sage: g3 = polytopes.hypercube(3).vertex_graph(); g3 Graph on 8 vertices sage: g3.automorphism_group().cardinality() 48 sage: s4 = polytopes.simplex(4).vertex_graph(); s4 Graph on 5 vertices sage: s4.is_eulerian() True The graph of an unbounded polyhedron is the graph of the bounded complex:: sage: open_triangle = Polyhedron(vertices=[[1,0], [0,1]], ....: rays =[[1,1]]) sage: open_triangle.vertex_graph() Graph on 2 vertices The graph of a polyhedron with lines has no vertices:: sage: line = Polyhedron(lines=[[0,1]]) sage: line.vertex_graph() Graph on 0 vertices TESTS: Check for a line segment (:trac:`30545`):: sage: polytopes.simplex(1).graph().edges() [(A vertex
from random import random import subprocess from time import time from random import randint, random from tqdm import trange import matplotlib.pyplot as plt from math import sqrt, exp pattern_num = 5 index_num = 38 ''' translate_raw = [ [0, 1, 2, 3, 4, 5, 6, 7], [8, 9, 10, 11, 12, 13, 14, 15], [16, 17, 18, 19, 20, 21, 22, 23], [24, 25, 26, 27, 28, 29, 30, 31], [32, 33, 34, 35, 36, 37, 38, 39], [40, 41, 42, 43, 44, 45, 46, 47], [48, 49, 50, 51, 52, 53, 54, 55], [56, 57, 58, 59, 60, 61, 62, 63], [0, 8, 16, 24, 32, 40, 48, 56], [1, 9, 17, 25, 33, 41, 49, 57], [2, 10, 18, 26, 34, 42, 50, 58], [3, 11, 19, 27, 35, 43, 51, 59], [4, 12, 20, 28, 36, 44, 52, 60], [5, 13, 21, 29, 37, 45, 53, 61], [6, 14, 22, 30, 38, 46, 54, 62], [7, 15, 23, 31, 39, 47, 55, 63], [5, 14, 23], [4, 13, 22, 31], [3, 12, 21, 30, 39], [2, 11, 20, 29, 38, 47], [1, 10, 19, 28, 37, 46, 55], [0, 9, 18, 27, 36, 45, 54, 63], [8, 17, 26, 35, 44, 53, 62], [16, 25, 34, 43, 52, 61], [24, 33, 42, 51, 60], [32, 41, 50, 59], [40, 49, 58], [2, 9, 16], [3, 10, 17, 24], [4, 11, 18, 25, 32], [5, 12, 19, 26, 33, 40], [6, 13, 20, 27, 34, 41, 48], [7, 14, 21, 28, 35, 42, 49, 56], [15, 22, 29, 36, 43, 50, 57], [23, 30, 37, 44, 51, 58], [31, 38, 45, 52, 59], [39, 46, 53, 60], [47, 54, 61] ] same_param = [0, 1, 2, 3, 3, 2, 1, 0, 0, 1, 2, 3, 3, 2, 1, 0, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4] ''' translate = [] eval_translate = [] each_param_num = [] edge1 = [ [54, 63, 62, 61, 60, 59, 58, 57, 56, 49], [49, 56, 48, 40, 32, 24, 16, 8, 0, 9], [9, 0, 1, 2, 3, 4, 5, 6, 7, 14], [14, 7, 15, 23, 31, 39, 47, 55, 63, 54] ] edge2 = [] for arr in edge1: edge2.append(arr) edge2.append(list(reversed(arr))) translate.append(edge2) eval_translate.append(edge1) each_param_num.append(3 ** 10) corner1= [ [3, 2, 1, 0, 9, 8, 16, 24], [4, 5, 6, 7, 14, 15, 23, 31], [60, 61, 62, 63, 54, 55, 47, 39], [59, 58, 57, 56, 49, 48, 40, 32] ] corner2 = [ [3, 2, 1, 0, 9, 8, 16, 24], [24, 16, 8, 0, 9, 1, 2, 3], [4, 5, 6, 7, 14, 15, 23, 31], [31, 23, 15, 7, 14, 6, 5, 4], [60, 61, 62, 63, 54, 55, 47, 39], [39, 47, 55, 63, 54, 62, 61, 60], [59, 58, 57, 56, 49, 48, 40, 32], [32, 40, 48, 56, 49, 57, 58, 59] ] translate.append(corner2) eval_translate.append(corner1) each_param_num.append(3 ** 8) corner24 = [ [0, 1, 2, 3, 8, 9, 10, 11], [0, 8, 16, 24, 1, 9, 17, 25], [7, 6, 5, 4, 15, 14, 13, 12], [7, 15, 23, 31, 6, 14, 22, 30], [63, 62, 61, 60, 55, 54, 53, 52], [63, 55, 47, 39, 62, 54, 46, 38], [56, 57, 58, 59, 48, 49, 50, 51], [56, 48, 40, 32, 57, 49, 41, 33] ] translate.append(corner24) eval_translate.append(corner24) each_param_num.append(3 ** 8) diagonal1 = [ [0, 9, 18, 27, 36, 45, 54, 63], [7, 14, 21, 28, 35, 42, 49, 56] ] diagonal2 = [] for arr in diagonal1: diagonal2.append(arr) diagonal2.append(list(reversed(arr))) translate.append(diagonal2) eval_translate.append(diagonal1) each_param_num.append(3 ** 8) edge1 = [ [0, 1, 2, 3, 4, 5, 6, 7], [7, 15, 23, 31, 39, 47, 55, 63], [63, 62, 61, 60, 59, 58, 57, 56], [56, 48, 40, 32, 24, 26, 8, 0] ] edge2 = [] for arr in edge1: edge2.append(arr) edge2.append(list(reversed(arr))) translate.append(edge2) eval_translate.append(edge1) each_param_num.append(3 ** 8) pattern_param = [[] for _ in range(pattern_num)] with open('param_pattern.txt', 'r') as f: for i in range(pattern_num): for j in range(each_param_num[i]): pattern_param[i].append(float(f.readline())) weight = [[] for _ in range(pattern_num)] with open('patttern_weight.txt', 'r') as f: for i in range(pattern_num): for j in range(3): weight[i].append(float(f.readline())) win_num = [[0 for _ in range(each_param_num[i])] for i in range(pattern_num)] seen_num = [[0 for _ in range(each_param_num[i])] for i in range(pattern_num)] ans = [[0 for _ in range(each_param_num[i])] for i in range(pattern_num)] seen_grid = [] prospect = [] hw = 8 hw2 = 64 dy = [0, 1, 0, -1, 1, 1, -1, -1] dx = [1, 0, -1, 0, 1, -1, 1, -1] def empty(grid, y, x): return grid[y][x] == -1 or grid[y][x] == 2 def inside(y, x): return 0 <= y < hw and 0 <= x < hw def check(grid, player, y, x): res_grid = [[False for _ in range(hw)] for _ in range(hw)] res = 0 for dr in range(8): ny = y + dy[dr] nx = x + dx[dr] if not inside(ny, nx): continue if empty(grid, ny, nx): continue if grid[ny][nx] == player: continue #print(y, x, dr, ny, nx) plus = 0 flag = False for d in range(hw): nny = ny + d * dy[dr] nnx = nx + d * dx[dr] if not inside(nny, nnx): break if empty(grid, nny, nnx): break if grid[nny][nnx] == player: flag = True break #print(y, x, dr, nny, nnx) plus += 1 if flag: res += plus for d in range(plus): nny = ny + d * dy[dr] nnx = nx + d * dx[dr] res_grid[nny][nnx] = True return res, res_grid class reversi: def __init__(self): self.grid = [[-1 for _ in range(hw)] for _ in range(hw)] self.grid[3][3] = 1 self.grid[3][4] = 0 self.grid[4][3] = 0 self.grid[4][4] = 1 self.player = 0 # 0: 黒 1: 白 self.nums = [2, 2] def move(self, y, x): plus, plus_grid = check(self.grid, self.player, y, x) if (not empty(self.grid, y, x)) or (not inside(y, x)) or not plus: print('Please input a correct move') return 1 self.grid[y][x] = self.player for ny in range(hw): for nx in range(hw): if plus_grid[ny][nx]: self.grid[ny][nx] = self.player self.nums[self.player] += 1 + plus self.nums[1 - self.player] -= plus self.player = 1 - self.player return 0 def check_pass(self): for y in range(hw): for x in range(hw): if self.grid[y][x] == 2: self.grid[y][x] = -1 res = True for y in range(hw): for x in range(hw): if not empty(self.grid, y, x): continue plus, _ = check(self.grid, self.player, y, x) if plus: res = False self.grid[y][x] = 2 if res: #print('Pass!') self.player = 1 - self.player return res def output(self): print(' ', end='') for i in range(hw): print(chr(ord('a') + i), end=' ') print('') for y in range(hw): print(str(y + 1) + ' ', end='') for x in range(hw): print('○' if self.grid[y][x] == 0 else '●' if self.grid[y][x] == 1 else '* ' if self.grid[y][x] == 2 else '. ', end='') print('') def output_file(self): res = '' for y in range(hw): for x in range(hw): res += '*' if self.grid[y][x] == 0 else 'O' if self.grid[y][x] == 1 else '-' res += ' *' return res def end(self): if min(self.nums) == 0: return True res = True for y in range(hw): for x in range(hw): if self.grid[y][x] == -1 or self.grid[y][x] == 2: res = False return res def judge(self): if self.nums[0] > self.nums[1]: #print('Black won!', self.nums[0], '-', self.nums[1]) return 0 elif self.nums[1] > self.nums[0]: #print('White won!', self.nums[0], '-', self.nums[1]) return 1 else: #print('Draw!', self.nums[0], '-', self.nums[1]) return -1 def translate_p(grid, arr): res = [] for i in range(len(arr)): tmp = 0 for j in reversed(range(len(arr[i]))): tmp *= 3 tmp2 = grid[arr[i][j] // hw][arr[i][j] % hw] if tmp2 == 0: tmp += 1 elif tmp2 == 1: tmp += 2 res.append(tmp) return res def translate_o(grid, arr): res = [] for i in range(len(arr)): tmp = 0 for j in reversed(range(len(arr[i]))): tmp *= 3 tmp2 = grid[arr[i][j] // hw][arr[i][j] % hw] if tmp2 == 1: tmp += 1 elif tmp2 == 0: tmp += 2 res.append(tmp) return res def calc_weight(idx, x): x1 = 4.0 / 64 x2 = 32.0 / 64 x3 = 64.0 / 64 y1, y2, y3 =