input
stringlengths
2.65k
237k
output
stringclasses
1 value
<filename>src/framework/hls_tools.py # //////////////////////////////////////////////////////////////////////////////////////// # Copyright (c) by # Company: IDEA LAB, The University of Texas at Dallas # Author : <NAME> # # Originally Create Date: Mar-5, 2020 # Project Name : DNN_Framework # Tool Versions : Python +3 # # Description : Functions to run HLS and Logic synthesize, create .tcl files, load design reports # Pars pragmas and create .tcl file for directives # Dependencies : Vivado 2018 or newer, subprocess, panda # Additional Comments: # # /////////////////////////////////////////////////////////////////////////////////////// import os, shutil import csv, time from datetime import datetime from shutil import copyfile import sys, glob, json, random, pickle import numpy as np import yaml, random import subprocess, psutil from dnn_tools import * from utils import beep import pandas as pd import pprint import xml.etree.ElementTree as ET lyr_map2syn = { 'IN':'read_input3D', 'CONV':'conv_3DT1', 'POOL':'ds_3DT1', 'FC':'fc_T1'} lyr_syn2map = { 'read_input3D':'IN', 'conv_3DT1':'CONV', 'ds_3DT1':'POOL', 'fc_T1':'FC'} def copy_solution_files(cfg, sol, specifier=None): if specifier == None : temp = '' else: temp = '_' + str(specifier) sol_copy_name = os.path.join(cfg.paths.dse_json, 'design' + str(sol) + temp + '.json') json_file = os.path.join(cfg.paths.design_model, 'hls' + str(sol), cfg.design_setting.solution_name, '{}_data.json'.format(cfg.design_setting.solution_name)) if os.path.exists(json_file): copyfile(json_file, sol_copy_name) else: print("PYTHON : Copy Solution Files : Solution file is not generated") def collect_design_notes(cfg, additional_info, save_path=''): notes = [] notes.append('Time completed : {}'.format(datetime.now().strftime("%d-%b-%Y (%H:%M)"))) notes.append('DSE Path : {}'.format(os.getcwd())) notes.append('\n') notes.append('Design : {}'.format(cfg.design_setting.topmodule)) notes.append('FPGA : {}'.format(cfg.FPGA.chip)) notes.append('Clock : {}'.format(cfg.FPGA.clock_freq)) notes.append('Vivado Version : {}'.format(cfg.design_setting.vivado_version)) notes.append('Logic Synthesize : {}'.format(cfg.design_setting.run_vivado_synthesize)) notes.append('\n') notes.append('Directive_type : {}'.format(cfg.design_setting.syn_directive_type)) notes.append('Dataflow : {}'.format(cfg.design.dataflow)) notes.append('Shared Memory : {}'.format(cfg.design.fc_shared_memory)) notes.append('data_interface : {}'.format(cfg.design.data_interface)) notes.append('Module Interface : {}'.format(cfg.design.module_controller)) notes.append('\n') for i in additional_info.keys(): notes.append('{} : {}\n'.format(i, additional_info[i])) if 'dse' in cfg.run_options.mode: for i in cfg.design_setting.DSE_setting.keys(): notes.append('{:<30s} : {}'.format(i, cfg.design_setting.DSE_setting[i])) file = os.path.join(save_path, 'design note.txt') with open(file, 'w') as f: for line in notes: f.write("%s\n" % line) return notes def extract_layer_info_from_jsons(cfg, json_path): path = cfg.paths.dse_report dse_results = utils.load_a_variable(os.path.join(path,'dse_config')) cfg_results = utils.load_a_variable(os.path.join(path, 'lyr_configs')) module_labels = ['clock period', 'latency', 'BRAM', 'LUT', 'FF', 'DSP'] sol_labels = ['syn_time','P_slice', 'P_BRAM', 'P_DSP', 'P_static', 'P_total','LUT_PS','FF_PS','DSP_PS','BRAM_PS'] lyr_label = ['w_in','w_out','lyr_in','lyr_out','w_ker','stride'] target_layer_name ='fc_T1' target_layer = 3 rpt_data = [] for sol in range(len(dse_results)): temp = [] for label in sol_labels: temp.append(dse_results[sol][label]) for label in lyr_label: temp.append(cfg_results[sol][target_layer][label]) for label in module_labels: temp.append(dse_results[sol][target_layer_name][label]) rpt_data.append(temp) header_labels = sol_labels + lyr_label + module_labels csvfile = os.path.join(path,'dse_cfg_'+target_layer_name+'.csv') df = pandas.DataFrame(rpt_data) df.to_csv(csvfile, index=False, header=header_labels) class hls_tools(): def __init__(self, cfg): self.cfg = cfg self.utils = utils(cfg) self.pragmas_dict = { 'unroll': 'set_directive_unroll ', 'pipeline': 'set_directive_pipeline ', 'dataflow': 'set_directive_dataflow ', 'inline': 'set_directive_inline ', 'partition': 'set_directive_array_partition', 'reshape': 'set_directive_array_reshape ', 'interface': 'set_directive_interface ', 'mul': 'set_directive_allocation ' } def create_syn_tcl_file(self, clk_period): tcl_lines = [] tcl_lines.append("############################################################") tcl_lines.append("## This file is generated automatically by python tool for {} Version".format( self.cfg.design_setting.vivado_version)) tcl_lines.append("############################################################") tcl_lines.append('puts \"CMD : run_hls_syn.tcl is running!\"') tcl_lines.append('set sol_name [lindex $argv 2 ]') tcl_lines.append('open_project hls$sol_name') tcl_lines.append('set_top {}'.format(self.cfg.design_setting.topmodule)) for file in self.cfg.design.source_files: tcl_lines.append('add_files {}'.format(file)) for file in self.cfg.design.tb_files: tcl_lines.append('add_files -tb {}'.format(file)) if self.cfg.design_setting.vivado_version == 2020: tcl_lines.append('open_solution -reset \"{}\" -flow_target vivado'.format(self.cfg.design_setting.solution_name)) tcl_lines.append('set_part {' + self.cfg.FPGA.part + '}') else: tcl_lines.append('open_solution -reset \"{}\"'.format(self.cfg.design_setting.solution_name)) tcl_lines.append('set_part {' + self.cfg.FPGA.part + '} -tool vivado') tcl_lines.append('create_clock -period {} -name default'.format(clk_period)) tcl_lines.append('set_clock_uncertainty 12.5%') tcl_lines.append("set json_file \"{}_{}.json\"".format(self.cfg.design_setting.solution_name, clk_period)) if 'dse_pragma' in self.cfg.run_options.mode: tcl_lines.append('source \"{}_sol_list/solution_$sol_name.tcl\"'.format(self.cfg.design_setting.solution_name)) else: tcl_lines.append('source \"./hls/{}/directives.tcl\"'.format(self.cfg.design_setting.solution_name)) if self.cfg.design_setting.Sim_setting['run_csim']: tcl_lines.append('csim_design') if self.cfg.run_options.mode not in ['sim'] or self.cfg.design_setting.Sim_setting['run_rtl_sim']: tcl_lines.append('csynth_design') if self.cfg.design_setting.Sim_setting['run_rtl_sim']: tcl_lines.append('cosim_design') if self.cfg.design_setting.run_vivado_synthesize: tcl_lines.append('export_design -flow syn -rtl verilog -format ip_catalog') elif self.cfg.design_setting.create_ip: tcl_lines.append('export_design -format ip_catalog') tcl_lines.append('quit') filename = os.path.join(self.cfg.paths.design_model, "run_hls_syn.tcl") self.utils.save_list_to_file(filename, tcl_lines) def run_vivado_implementation(self, sol_counter, mode, print_out='silent', clean=False): if not self.cfg.design_setting.run_vivado_power_analyzer: PR_results = {'LUT_PS': 'NR', 'FF_PS': 'NR', 'DSP_PS': 'NR', 'BRAM_PS': 'NR', 'Timing_PS': 'NR'} power = {'P_Clocks': 'NR', 'P_Signals': 'NR', 'P_Slice': 'NR', 'P_Block': 'NR', 'P_DSPs': 'NR', 'P_Static': 'NR', 'P_Total': 'NR'} return PR_results, power if self.cfg.run_options.mode in ['dse_pragma', 'dse_pragma_clock', 'dse_clk_pragma_cfg']: dest_path = os.path.join(self.cfg.paths.design_model, 'hls{}'.format(sol_counter), self.cfg.design_setting.solution_name) else: dest_path = self.cfg.paths.solution start_time = self.utils.record_time() impl_file = ['power_analyzer.tcl', 'run_power_analyzer.bat'] for fname in impl_file: srcfile = os.path.join(self.cfg.paths.src, fname) destfile = os.path.join(dest_path, 'impl', fname) shutil.copyfile(srcfile, destfile) os.chdir(os.path.join(dest_path, 'impl')) version = self.cfg.design_setting.vivado_version vivado_cmd = self.cfg.vivado_path[sys.platform][version]['VIVADO'] print("PYTHON : Running Power Analyzer ... ") if sys.platform == 'win32': sr = os.system('run_power_analyzer.bat') elif sys.platform == 'linux': cmd = '{} -notrace -mode batch -source power_analyzer.tcl >report_power.log || exit $?'.format(vivado_cmd) sr = os.system(cmd) else: print("PYTHON : Wrong operating system selection") sr = 1 if (sr != 0): print("PYTHON : run_power_analyzer file not found, or a problem in bash file!") return 'Er' [mm, ss] = self.utils.end_and_print_time(start_time) os.chdir(self.cfg.paths.design_top) print("PYTHON : Power measured in Vivado within {:3d} Minutes and {:2d} Seconds".format(int(mm), int(ss))) return self.read_impl_results(dest_path) def cleanSolution(self): filesToBeRemoved = [self.cfg.files.synLogFile, self.cfg.files.SolutionFile] dir_list = [self.cfg.paths.rtl_out, self.cfg.paths.hls_out] for fname in filesToBeRemoved: if os.path.exists(fname): os.remove(fname) os.mkdir(fname) else: os.mkdir(fname) for dir in dir_list: if os.path.exists(dir): shutil.rmtree(dir) os.mkdir(dir) else: os.mkdir(dir) def run_hls_synth(self, mode, time_out_min=10, print_out='silent', clean=False, sol=''): if mode in ['', 'skip', 'syn_report', 'dse_report']: print("PYTHON : Synthesize Skipped\n") return True version = self.cfg.design_setting.vivado_version hls_cmd = self.cfg.vivado_path[sys.platform][version]['HLS'] os.chdir(self.cfg.paths.design_model) print("PYTHON : Synthesis begins from python on {} Version {}".format(sys.platform, version)) if print_out == 'silent': cmd = "{} -f run_hls_syn.tcl {} > synthesis_report{}.log".format(hls_cmd, sol, sol) else: cmd = "{} -f run_hls_syn.tcl {}".format(hls_cmd, sol) if clean: self.cleanSolution() start_time = self.utils.record_time() p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) try: if not print_out == 'silent': print("The task PID is = {}".format(p.pid)) p.wait(time_out_min*60) sr = 0 except subprocess.TimeoutExpired: print("WARNING Timeout : process {} is killed by reaching {} Min!".format(p.pid, time_out_min)) sr = 1 for child in psutil.Process(p.pid).children(recursive=True): if not print_out == 'silent': print("PID={:<4}, name={} is Killed".format(child.pid, child.name())) child.kill() p.kill() time.sleep(1) os.chdir(self.cfg.paths.design_top) [mm, ss] = self.utils.end_and_print_time(start_time) if (sr != 0): print("PYTHON : Synthesis file not found, or a problem in bash file!") return False self.cfg.files.synLogFile = os.path.join(self.cfg.paths.design_model,'synthesis_report{}.log'.format(sol)) errors = self.utils.find_Aword_in_file(self.cfg.files.synLogFile, 'error', save_results=False) # warning = self.utils.find_Aword_in_file(self.cfg.files.synLogFile, 'warning', save_results=True) if errors != 0: print("PYTHON : *** Synthesize Failed *** - Total synthesis time : {:3d} Minutes and {:2d} Seconds".format( int(mm), int(ss))) copyfile(self.cfg.files.synLogFile, os.path.join(self.cfg.paths.solution, "failed_syn_log_sol{}.log".format(sol))) return False else: print("PYTHON : *** Synthesize Passed *** - Total synthesis time : {:3d} Minutes and {:2d} Seconds".format( int(mm), int(ss))) return True def read_single_syn_results_unused(self, print_out=False): solutions_list = [] file = self.cfg.paths.solution + "/ip_test_data.json" with open(file) as json_data: syn_rslt = json.load(json_data) json_data.close() # except IOError: # print("I/O Error," + " solution"+ str(solution) + "_Syn.json "+ " is not exist") temp = syn_rslt["ModuleInfo"]["Metrics"][self.design.top_module] syn_rslt_summary = {} syn_rslt_summary['latencyBest'] = int(temp["Latency"]["LatencyBest"]) syn_rslt_summary['latencyWrst'] = int(temp["Latency"]["LatencyWorst"]) syn_rslt_summary['timing'] = float(temp["Timing"]["Estimate"]) syn_rslt_summary['Target'] = float(temp["Timing"]["Target"]) syn_rslt_summary['BRAM'] = int(temp["Area"]["BRAM_18K"]) syn_rslt_summary['LUT'] = int(temp["Area"]["LUT"]) syn_rslt_summary['FF'] = int(temp["Area"]["FF"]) syn_rslt_summary['DSP'] = int(temp["Area"]["DSP48E"]) if print_out: print(json.dumps(syn_rslt_summary, indent=6)) return syn_rslt_summary def single_pragma_gen(self, target_module_label, configs): options = '' if configs['options'] is not None: for i in configs['options']: options = options + "-{} ".format(i) if configs['pragma'] in ['unroll', 'pipeline', 'inline']: directive = "{} {} \"{}/{}\"".format(self.pragmas_dict[configs['pragma']], options, target_module_label, configs['label']) elif configs['pragma'] in ['partition', 'reshape', 'interface']: directive = "{} {} \"{}\" {}".format(self.pragmas_dict[configs['pragma']], options, target_module_label, configs['label']) elif configs['pragma'] in ['mul']: directive = "{} {} \"{}/{}\" {}".format(self.pragmas_dict[configs['pragma']], options, target_module_label, configs['label'], configs['pragma']) # print(directive) return directive def combinational_pragma_gen(self, target_module_label, configs): options_list = [] if configs['options'] is None: # if there is no option, create an empty one options_list.append('') else: # if there is a option, add a no option # options_list.append('') for option in configs['options']: # create directives for all options options_list.append('-' + option) directives_list = [] directives_list.append('') # create an empty directive for option in options_list: if configs['pragma'] in ['unroll', 'pipeline', 'dataflow']: directive = "{} {} \"{}/{}\"".format(self.pragmas_dict[configs['pragma']], option, target_module_label, configs['label']) elif configs['pragma'] in ['partition', 'reshape', 'interface']: directive = "{} {} \"{}\" {}".format(self.pragmas_dict[configs['pragma']], option, target_module_label, configs['label']) elif configs['pragma'] in ['mul']: directive = "{} {} \"{}/{}\" {}".format(self.pragmas_dict[configs['pragma']], option, target_module_label, configs['label'], configs['pragma']) elif configs['pragma'] in ['inline']: directive = "{} {} \"{}\"".format(self.pragmas_dict[configs['pragma']], option, target_module_label) directives_list.append(directive) return directives_list def find_total_pragma_combinations(self, variable_pragmas): total_comb = 1 for pragma in variable_pragmas: total_comb = total_comb * len(pragma) return total_comb def pars_DA_design_pragmas(self, datamap): fixed_pragmas = [] variable_pragmas = [] # fixed_pragmas.append('\n# -------------------------- {} ----------------------------'.format(key)) # fixed_pragmas.append('# ----------------------------------------------------------------') for module in datamap.keys(): fixed_pragmas.append('') modules = datamap[module] if (datamap[module]) is not None: for zone in modules.keys(): if datamap[module][zone] is not None: for pragma in datamap[module][zone]: if module == 'top_module': target_module_label = self.cfg.design_setting.topmodule else: target_module_label = module temp = self.combinational_pragma_gen(target_module_label, pragma) if pragma['type'] == 'fix': fixed_pragmas.append(temp[1]) elif pragma['type'] == 'var': variable_pragmas.append(temp) total_comb = self.find_total_pragma_combinations(variable_pragmas) return fixed_pragmas, variable_pragmas, total_comb def pars_design_pragmas(self, datamap): fixed_pragmas = [] variable_pragmas = [] # fixed_pragmas.append('\n# -------------------------- {} ----------------------------'.format(key)) # fixed_pragmas.append('# ----------------------------------------------------------------') for module in datamap.keys(): fixed_pragmas.append('') modules
# Copyright 2019 UCLA Networked & Embedded Systems Laboratory (Author: <NAME>) # 2020 Sogang University Auditory Intelligence Laboratory (Author: <NAME>) # # MIT License import os import sys import argparse import librosa import data_utils import numpy as np import torch import torch.nn.functional as F from torch.utils.data import DataLoader from torch import nn from tensorboardX import SummaryWriter from models import SiameseNetwork from tools.pytorchtools import EarlyStopping from torchsummary import summary def train(train_loader, model, device, criterion, optim): batch_idx = 0 num_total = 0 running_loss = 0 running_correct = 0 epoch_loss = 0 epoch_acc = 0 # +) train mode (parallel) if device == 'cuda': model = nn.DataParallel(model).train() else: model.train() for batch_x, batch_x_copy, batch_y, batch_meta in train_loader: batch_idx += 1 num_total += batch_x.size(0) # +) wrapping batch_x = batch_x.to(device) batch_x_copy = batch_x_copy.to(device) batch_y = batch_y.view(-1).type(torch.int64).to(device) # +) forward batch_out = model(batch_x, batch_x_copy) _, batch_pred = batch_out.max(dim=1) batch_loss = criterion(batch_out, batch_y) # +) accmulate loss stats running_loss += (batch_loss.item()*batch_x.size(0)) # +) accumulate accuracy stats running_correct += (batch_pred == batch_y).sum(dim=0).item() # +) print if batch_idx % 10 == 0: sys.stdout.write('\r \t {:.5f} {:.5f}'.format(running_correct/num_total, running_loss/num_total)) # +) zero gradient optim.zero_grad() # +) backward batch_loss.backward() # +) update optim.step() epoch_loss = running_loss/num_total epoch_acc = running_correct/num_total return epoch_loss, epoch_acc def dev(dev_loader, model, device, criterion): num_total = 0 running_correct = 0 running_loss = 0 epoch_loss = 0 epoch_acc = 0 # +) dev mode model.eval() for batch_x, batch_x_copy, batch_y, batch_meta in dev_loader: num_total += batch_x.size(0) batch_x = batch_x.to(device) batch_x_copy = batch_x_copy.to(device) batch_y = batch_y.view(-1).type(torch.int64).to(device) batch_out = model(batch_x, batch_x_copy) _, batch_pred = batch_out.max(dim=1) batch_loss = criterion(batch_out, batch_y) running_correct += (batch_pred == batch_y).sum(dim=0).item() running_loss += (batch_loss.item()*batch_x.size(0)) epoch_loss = running_loss/num_total epoch_acc = running_correct/num_total return epoch_loss, epoch_acc def train_fit(train_loader, model, device, criterion, optim): batch_idx = 0 num_total = 0 running_loss = 0 epoch_loss = 0 # +) train mode (parallel) if device == 'cuda': model = nn.DataParallel(model).train() else: model.train() for batch_x, batch_x_pair, batch_y, batch_meta in train_loader: batch_idx += 1 num_total += batch_x.size(0) # +) wrapping batch_x = batch_x.to(device) batch_x_pair = batch_x_pair.to(device) batch_y = batch_y.view(-1).type(torch.int64).to(device) # +) forward batch_out = model(batch_x, batch_x_pair) batch_loss = criterion(batch_out, batch_y) # +) accmulate loss stats running_loss += (batch_loss.item()*batch_x.size(0)) # +) print if batch_idx % 10 == 0: sys.stdout.write('\r \t {:.5f}'.format(running_loss/num_total)) # +) zero gradient optim.zero_grad() # +) backward batch_loss.backward() # +) update optim.step() epoch_loss = running_loss/num_total return epoch_loss def dev_fit(dev_loader, model, device, criterion): num_total = 0 running_loss = 0 epoch_loss = 0 # +) dev mode model.eval() for batch_x, batch_x_pair, batch_y, batch_meta in dev_loader: num_total += batch_x.size(0) batch_x = batch_x.to(device) batch_x_pair = batch_x_pair.to(device) batch_y = batch_y.view(-1).type(torch.int64).to(device) batch_out = model(batch_x, batch_x_pair) batch_loss = criterion(batch_out, batch_y) running_loss += (batch_loss.item()*batch_x.size(0)) epoch_loss = running_loss/num_total return epoch_loss def evaluate(eval_dataset, eval_loader, model, device, eval_output_path): num_total = 0 file_name_list = [] key_list = [] attack_id_list = [] score_list = [] # +) eval mode model.eval() for batch_x, batch_x_pair, batch_y, batch_meta in eval_loader: num_total += batch_x.size(0) batch_x = batch_x.to(device) batch_x_pair = batch_x_pair.to(device) batch_out = model(batch_x, batch_x_pair) # +) compute score batch_score = (batch_out[:,1] - batch_out[:,0]).data.cpu().numpy().ravel() # +) add outputs file_name_list.extend(list(batch_meta[1])) key_list.extend(['bonafide' if key == 1 else 'spoof' for key in list(batch_meta[4])]) attack_id_list.extend([eval_dataset.attack_id_dict_inv[attack_id.item()] for attack_id in list(batch_meta[3])]) score_list.extend(batch_score.tolist()) # +) save result with open(eval_output_path, 'w') as f: for file_name, attack_id, key, score in zip(file_name_list, attack_id_list, key_list, score_list): f.write('{} {} {} {}\n'.format(file_name, attack_id, key, score)) class ContrastiveLoss(nn.Module): def __init__(self, margin=2.0): super(ContrastiveLoss, self).__init__() self.margin = margin self.eps = 1e-9 def forward(self, result, target, size_average=True): distances = (-result).pow(2).sum(1) # squared distances losses = 0.5 * (target.float() * distances + (1 + -1 * target).float() * F.relu(self.margin - (distances + self.eps).sqrt()).pow(2)) return losses.mean() if size_average else losses.sum() class TripletLoss(nn.Module): def __init__(self, margin=2.0): super(TripletLoss, self).__init__() self.margin = margin def forward(self, anchor, positive, negative, size_average=True): distance_positive = (anchor - positive).pow(2).sum(1) # .pow(.5) distance_negative = (anchor - negative).pow(2).sum(1) # .pow(.5) losses = F.relu(distance_positive - distance_negative + self.margin) return losses.mean() if size_average else losses.sum() if __name__ == '__main__': # 1) parser parser = argparse.ArgumentParser() # +) For data preparation parser.add_argument('--track', type=str, default='LA') # LA, PA parser.add_argument('--input_size', type=int, default=64000) # input size (ex. 64000) parser.add_argument('--feature', type=str, default='mfcc') # spect, mfcc parser.add_argument('--data_tag', type=str, default=0) # feature tag (ex. 0) # +) For training parser.add_argument('--train_batch_size', type=int, default=32) parser.add_argument('--dev_batch_size', type=int, default=32) parser.add_argument('--num_epochs', type=int, default=200) parser.add_argument('--es_patience', type=int, default=7) parser.add_argument('--embedding_size', type=int, default=None) parser.add_argument('--model_comment', type=str, default=None) # +) For optimizer parser.add_argument('--loss', type=str, default='nll') parser.add_argument('--optim', type=str, default='adam') parser.add_argument('--lr', type=float, default=0.00005) parser.add_argument('--wd', type=float, default=0) parser.add_argument('--sched_factor', type=float, default=0.1) parser.add_argument('--sched_patience', type=int, default=10) parser.add_argument('--sched_min_lr', type=float, default=0) # +) For evaluation parser.add_argument('--eval_mode', action='store_true', default=False) parser.add_argument('--eval_batch_size', type=int, default=None) parser.add_argument('--eval_num_checkpoint', type=int, default=None) # +) For Resume parser.add_argument('--resume_mode', action='store_true', default=False) parser.add_argument('--resume_num_checkpoint', type=int, default=None) parser.add_argument('--fit_mode', action='store_true', default=False) parser.add_argument('--fit_num_checkpoint', type=int, default=None) parser.add_argument('--cp_fit_mode', action='store_true', default=False) parser.add_argument('--cp_fit_num_checkpoint', type=int, default=None) args = parser.parse_args() # 2) model tag model_tag = 'model_{}_{}_{}_{}_{}_{}_{}'.format( args.track, args.input_size, args.feature, args.data_tag, args.train_batch_size, args.num_epochs, args.embedding_size) if args.model_comment: model_tag = model_tag + '_{}'.format(args.model_comment) print('model tag is ', model_tag) # 3) model save path if args.fit_mode: if not os.path.exists('models/tune'): os.mkdir('models/tune') model_save_path = os.path.join('models/tune', model_tag) if not os.path.exists(model_save_path): os.mkdir(model_save_path) print('model save path is ', model_save_path) elif args.cp_fit_mode: if not os.path.exists('models/cp-tune'): os.mkdir('models/cp-tune') model_save_path = os.path.join('models/cp-tune', model_tag) if not os.path.exists(model_save_path): os.mkdir(model_save_path) print('model save path is ', model_save_path) else: if not os.path.exists('models/pre'): os.mkdir('models/pre') model_save_path = os.path.join('models/pre', model_tag) if not os.path.exists(model_save_path): os.mkdir(model_save_path) print('model save path is ', model_save_path) # 4) use cuda if torch.cuda.is_available(): device = 'cuda' print('device is ', device) else: device = 'cpu' print('device is ', device) # 5) eval if args.eval_mode: # +) eval dataset print('========== eval dataset ==========') eval_dataset = data_utils.Dataset( track=args.track, data='eval', size=args.input_size, feature=args.feature, tag=args.data_tag) eval_loader = DataLoader(eval_dataset, batch_size=args.eval_batch_size, shuffle=False, num_workers=8) # +) load model print('========== eval process ==========') model = SiameseNetwork(args.embedding_size).to(device) eval_checkpoint_path = '{}/epoch_{}.pth'.format(model_save_path, str(args.eval_num_checkpoint)) model.load_state_dict(torch.load(eval_checkpoint_path)) print('model loaded from ', eval_checkpoint_path) # +) eval eval_output_path = '{}/{}.result'.format(model_save_path, str(args.eval_num_checkpoint)) evaluate(eval_dataset, eval_loader, model, device, eval_output_path) print('eval output saved to ', eval_output_path) # 6) train & dev else: # +) dev dataset print('========== dev dataset ==========') dev_dataset = data_utils.Dataset( track=args.track, data='dev', size=args.input_size, feature=args.feature, tag=args.data_tag) dev_loader = DataLoader(dev_dataset, batch_size=args.dev_batch_size, shuffle=True, num_workers=8) # +) train dataset print('========== train dataset ==========') train_dataset = data_utils.Dataset( track=args.track, data='train', size=args.input_size, feature=args.feature, tag=args.data_tag) train_loader = DataLoader(train_dataset, batch_size=args.dev_batch_size, shuffle=True, num_workers=8) print('========== train process ==========') # +) model init (check resume mode) if args.resume_mode: model = SiameseNetwork(args.embedding_size).to(device) resume_checkpoint_path = '{}/epoch_{}.pth'.format(model_save_path, str(args.resume_num_checkpoint)) model.load_state_dict(torch.load(resume_checkpoint_path)) print('model for resume loaded from ', resume_checkpoint_path) summary(model, input_size=[(1025,126), (1025,126)]) start = args.resume_num_checkpoint+1 # +) model init (check fine-tuning mode) elif args.fit_mode: model = SiameseNetwork(args.embedding_size).to(device) fit_checkpoint_path = 'models/pre/{}/epoch_{}.pth'.format(model_tag, str(args.fit_num_checkpoint)) model.load_state_dict(torch.load(fit_checkpoint_path)) print('model for fit loaded from ', fit_checkpoint_path) summary(model, input_size=[(1025,126), (1025,126)]) start = 1 # +) model init (check cp-fine-tuning mode) elif args.cp_fit_mode: model = SiameseNetwork(args.embedding_size).to(device) fit_checkpoint_path = 'models/tune/{}/epoch_{}.pth'.format(model_tag, str(args.cp_fit_num_checkpoint)) model.load_state_dict(torch.load(fit_checkpoint_path)) print('model for fit loaded from ', fit_checkpoint_path) summary(model, input_size=[(1025,126), (1025,126)]) start = 1 # +) model init else: model = SiameseNetwork(args.embedding_size).to(device) summary(model, input_size=[(1025,126), (1025,126)]) start = 1 # +) loss if args.loss == 'nll': weight = torch.FloatTensor([1.0, 9.0]).to(device) # weight for loss (spoof:1, genuine:9) criterion = nn.NLLLoss(weight=weight) elif args.loss == 'cs': criterion = ContrastiveLoss() elif args.loss == 'tri': criterion = TripletLoss() # +) optimizer if args.optim == 'adam': optim = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.wd) # +) scheduler scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( optim, 'min', factor=args.sched_factor, patience=args.sched_patience, min_lr=args.sched_min_lr, verbose=False) # +) early stopping #early_stopping = EarlyStopping(patience=args.es_patience, verbose=False) # +) fine-tuning mode if args.fit_mode: # +) tensorboardX, log if not os.path.exists('logs/tune'): os.mkdir('logs/tune') writer = SummaryWriter('logs/tune/{}'.format(model_tag)) dev_losses = [] for epoch in range(start, args.num_epochs+1): train_loss = train_fit(train_loader, model, device, criterion, optim) dev_loss = dev_fit(dev_loader, model, device, criterion) writer.add_scalar('train_loss', train_loss, epoch) writer.add_scalar('dev_loss', dev_loss, epoch) print('\n{} - train loss: {:.5f} - dev loss: {:.5f}'.format(epoch, train_loss, dev_loss)) torch.save(model.state_dict(), os.path.join(model_save_path, 'epoch_{}.pth'.format(epoch))) dev_losses.append(dev_loss) #early_stopping(dev_loss, model) #if early_stopping.early_stop: # print('early stopping !') # break scheduler.step(dev_loss) minposs = dev_losses.index(min(dev_losses))+1 print('lowest dev loss at epoch is {}'.format(minposs)) # +) cp-fine-tuning mode elif args.cp_fit_mode: # +) tensorboardX, log if not os.path.exists('logs/cp-tune'): os.mkdir('logs/cp-tune') writer = SummaryWriter('logs/cp-tune/{}'.format(model_tag)) dev_losses = [] for epoch in range(start, args.num_epochs+1): train_loss = train_fit(train_loader, model, device, criterion, optim) dev_loss = dev_fit(dev_loader, model, device, criterion) writer.add_scalar('train_loss', train_loss, epoch) writer.add_scalar('dev_loss', dev_loss,
<filename>line/f_CallService.py # # Autogenerated by Frugal Compiler (3.4.3) # # DO NOT EDIT UNLESS YOU ARE SURE THAT YOU KNOW WHAT YOU ARE DOING # from threading import Lock from frugal.middleware import Method from frugal.exceptions import TApplicationExceptionType from frugal.exceptions import TTransportExceptionType from frugal.processor import FBaseProcessor from frugal.processor import FProcessorFunction from frugal.util.deprecate import deprecated from frugal.util import make_hashable from thrift.Thrift import TApplicationException from thrift.Thrift import TMessageType from thrift.transport.TTransport import TTransportException from .ttypes import * class Iface(object): def getUserStatus(self, ctx, mid): """ Args: ctx: FContext mid: string """ pass def updateProfileAttributeForChannel(self, ctx, profileAttribute, value): """ Args: ctx: FContext profileAttribute: ProfileAttribute value: string """ pass def updateExtendedProfileAttribute(self, ctx, attr, extendedProfile): """ Args: ctx: FContext attr: ExtendedProfileAttribute extendedProfile: ExtendedProfile """ pass def getAllSimpleChannelContacts(self, ctx, statusSticonFallbackDisabled): """ Args: ctx: FContext statusSticonFallbackDisabled: boolean """ pass def getUserIdentities(self, ctx): """ Args: ctx: FContext """ pass def markPaidCallAd(self, ctx, dialedNumber, language, disableCallerId): """ Args: ctx: FContext dialedNumber: string language: string disableCallerId: boolean """ pass def isGroupMember(self, ctx, groupId): """ Args: ctx: FContext groupId: string """ pass def getPhoneInfoFromPhoneNumber(self, ctx, region, phoneNumber): """ Args: ctx: FContext region: string phoneNumber: string """ pass def redeemPaidCallVoucher(self, ctx, serial, language): """ Args: ctx: FContext serial: string language: string """ pass def getPreferredDisplayName(self, ctx, mids): """ Args: ctx: FContext mids: list of string """ pass def getContactsForChannel(self, ctx, ids): """ Args: ctx: FContext ids: list of string """ pass def getCallCreditProducts(self, ctx, appStoreCode, pgCode, country, language): """ Args: ctx: FContext appStoreCode: PaymentType pgCode: PaymentPgType country: string language: string """ pass def getCompactContacts(self, ctx, lastModifiedTimestamp): """ Args: ctx: FContext lastModifiedTimestamp: int (signed 64 bits) """ pass def notifyNotiCenterEvent(self, ctx, event): """ Args: ctx: FContext event: NotiCenterEventData """ pass def isInContact(self, ctx, mid): """ Args: ctx: FContext mid: string """ pass def lookupGroupMembers(self, ctx, groupId, mids): """ Args: ctx: FContext groupId: string mids: list of string """ pass def getRoomInformation(self, ctx, roomMid): """ Args: ctx: FContext roomMid: string """ pass def getGroupCall(self, ctx, chatMid): """ Args: ctx: FContext chatMid: string """ pass def isAllowSecondaryDeviceLogin(self, ctx): """ Args: ctx: FContext """ pass def getPrimaryClientForChannel(self, ctx): """ Args: ctx: FContext """ pass def createRoomWithBuddy(self, ctx, reqSeq, buddyMid, contactIds): """ Args: ctx: FContext reqSeq: int (signed 32 bits) buddyMid: string contactIds: list of string """ pass def getDisplayName(self, ctx, mid): """ Args: ctx: FContext mid: string """ pass def getPaidCallMetadata(self, ctx, language): """ Args: ctx: FContext language: string """ pass def getMid(self, ctx): """ Args: ctx: FContext """ pass def getUserCountryForBilling(self, ctx, country, remoteIp): """ Args: ctx: FContext country: string remoteIp: string """ pass def getFavoriteGroupIdsForChannel(self, ctx): """ Args: ctx: FContext """ pass def getPaidCallHistory(self, ctx, start, size, language): """ Args: ctx: FContext start: int (signed 64 bits) size: int (signed 32 bits) language: string """ pass def sendPinCodeOperation(self, ctx, verifier): """ Args: ctx: FContext verifier: string """ pass def inviteIntoGroupCall(self, ctx, chatMid, memberMids, mediaType): """ Args: ctx: FContext chatMid: string memberMids: list of string mediaType: GroupCallMediaType """ pass def getFriendMids(self, ctx): """ Args: ctx: FContext """ pass def getMetaProfile(self, ctx): """ Args: ctx: FContext """ pass def sendMessageForChannel(self, ctx, message): """ Args: ctx: FContext message: Message """ pass def activeBuddySubscriberCount(self, ctx): """ Args: ctx: FContext """ pass def getCallCreditPurchaseHistory(self, ctx, request): """ Args: ctx: FContext request: CoinHistoryCondition """ pass def isRoomMember(self, ctx, roomId): """ Args: ctx: FContext roomId: string """ pass def sendSystemOAMessage(self, ctx, message): """ Args: ctx: FContext message: Message """ pass def acquirePaidCallRoute(self, ctx, paidCallType, dialedNumber, language, networkCode, disableCallerId, referer, adSessionId): """ Args: ctx: FContext paidCallType: PaidCallType dialedNumber: string language: string networkCode: string disableCallerId: boolean referer: string adSessionId: string """ pass def getGroupsForChannel(self, ctx, groupIds): """ Args: ctx: FContext groupIds: list of string """ pass def getUserCreateTime(self, ctx): """ Args: ctx: FContext """ pass def registerChannelCP(self, ctx, cpId, registerPassword): """ Args: ctx: FContext cpId: string registerPassword: string """ pass def reserveCallCreditPurchase(self, ctx, request): """ Args: ctx: FContext request: CoinPurchaseReservation """ pass def acquirePaidCallCurrencyExchangeRate(self, ctx, language): """ Args: ctx: FContext language: string """ pass def getRoomMemberMidsForAppPlatform(self, ctx, roomId): """ Args: ctx: FContext roomId: string """ pass def getPaidCallBalanceList(self, ctx, language): """ Args: ctx: FContext language: string """ pass def getPersonalInfos(self, ctx, requiredPersonalInfos): """ Args: ctx: FContext requiredPersonalInfos: set of PersonalInfo """ pass def getPrimaryClientsForChannel(self, ctx, userMids): """ Args: ctx: FContext userMids: list of string """ pass def addBuddyToContact(self, ctx, buddyMid): """ Args: ctx: FContext buddyMid: string """ pass def getGroupMemberMidsForAppPlatform(self, ctx, groupId): """ Args: ctx: FContext groupId: string """ pass def getUserLanguage(self, ctx): """ Args: ctx: FContext """ pass def lookupPaidCall(self, ctx, dialedNumber, language, referer): """ Args: ctx: FContext dialedNumber: string language: string referer: string """ pass def getExtendedProfile(self, ctx): """ Args: ctx: FContext """ pass def getReverseCompactContacts(self, ctx, ids): """ Args: ctx: FContext ids: list of string """ pass def getPaidCallAdStatus(self, ctx): """ Args: ctx: FContext """ pass def findContactByUseridWithoutAbuseBlockForChannel(self, ctx, userid): """ Args: ctx: FContext userid: string """ pass def getGroupMemberMids(self, ctx, groupId): """ Args: ctx: FContext groupId: string """ pass def sendMessageWithoutRelationship(self, ctx, message): """ Args: ctx: FContext message: Message """ pass def displayBuddySubscriberCountInBulk(self, ctx, mids): """ Args: ctx: FContext mids: list of string """ pass def lookupRoomMembers(self, ctx, roomId, mids): """ Args: ctx: FContext roomId: string mids: list of string """ pass def getFavoriteMidsForChannel(self, ctx): """ Args: ctx: FContext """ pass def getAllContactIdsForChannel(self, ctx): """ Args: ctx: FContext """ pass def displayBuddySubscriberCount(self, ctx): """ Args: ctx: FContext """ pass def getProfileForChannel(self, ctx): """ Args: ctx: FContext """ pass def getUserTickets(self, ctx, userMids): """ Args: ctx: FContext userMids: list of string """ pass def getOAFriendMids(self, ctx): """ Args: ctx: FContext """ pass def searchPaidCallUserRate(self, ctx, countryCode, language): """ Args: ctx: FContext countryCode: string language: string """ pass def getJoinedGroupIdsForChannel(self, ctx): """ Args: ctx: FContext """ pass def acquireGroupCallRoute(self, ctx, chatMid, mediaType): """ Args: ctx: FContext chatMid: string mediaType: GroupCallMediaType """ pass def getUserMidsWhoAddedMe(self, ctx): """ Args: ctx: FContext """ pass def getIdentityCredential(self, ctx): """ Args: ctx: FContext """ pass def addOperationForChannel(self, ctx, opType, param1, param2, param3): """ Args: ctx: FContext opType: OpType param1: string param2: string param3: string """ pass def getSimpleChannelContacts(self, ctx, ids, statusSticonFallbackDisabled): """ Args: ctx: FContext ids: list of string statusSticonFallbackDisabled: boolean """ pass def getUserLastSentMessageTimeStamp(self, ctx, mid): """ Args: ctx: FContext mid: string """ pass class Client(Iface): def __init__(self, provider, middleware=None): """ Create a new Client with an FServiceProvider containing a transport and protocol factory. Args: provider: FServiceProvider with TSynchronousTransport middleware: ServiceMiddleware or list of ServiceMiddleware """ middleware = middleware or [] if middleware and not isinstance(middleware, list): middleware = [middleware] self._transport = provider.get_transport() self._protocol_factory = provider.get_protocol_factory() self._oprot = self._protocol_factory.get_protocol(self._transport) self._iprot = self._protocol_factory.get_protocol(self._transport) self._write_lock = Lock() middleware += provider.get_middleware() self._methods = { 'getUserStatus': Method(self._getUserStatus, middleware), 'updateProfileAttributeForChannel': Method(self._updateProfileAttributeForChannel, middleware), 'updateExtendedProfileAttribute': Method(self._updateExtendedProfileAttribute, middleware), 'getAllSimpleChannelContacts': Method(self._getAllSimpleChannelContacts, middleware), 'getUserIdentities': Method(self._getUserIdentities, middleware), 'markPaidCallAd': Method(self._markPaidCallAd, middleware), 'isGroupMember': Method(self._isGroupMember, middleware), 'getPhoneInfoFromPhoneNumber': Method(self._getPhoneInfoFromPhoneNumber, middleware), 'redeemPaidCallVoucher': Method(self._redeemPaidCallVoucher, middleware), 'getPreferredDisplayName': Method(self._getPreferredDisplayName, middleware), 'getContactsForChannel': Method(self._getContactsForChannel, middleware), 'getCallCreditProducts': Method(self._getCallCreditProducts, middleware), 'getCompactContacts': Method(self._getCompactContacts, middleware), 'notifyNotiCenterEvent': Method(self._notifyNotiCenterEvent, middleware), 'isInContact': Method(self._isInContact, middleware), 'lookupGroupMembers': Method(self._lookupGroupMembers, middleware), 'getRoomInformation': Method(self._getRoomInformation, middleware), 'getGroupCall': Method(self._getGroupCall, middleware), 'isAllowSecondaryDeviceLogin': Method(self._isAllowSecondaryDeviceLogin, middleware), 'getPrimaryClientForChannel': Method(self._getPrimaryClientForChannel, middleware), 'createRoomWithBuddy': Method(self._createRoomWithBuddy, middleware), 'getDisplayName': Method(self._getDisplayName, middleware), 'getPaidCallMetadata': Method(self._getPaidCallMetadata, middleware), 'getMid': Method(self._getMid, middleware), 'getUserCountryForBilling': Method(self._getUserCountryForBilling, middleware), 'getFavoriteGroupIdsForChannel': Method(self._getFavoriteGroupIdsForChannel, middleware), 'getPaidCallHistory': Method(self._getPaidCallHistory, middleware), 'sendPinCodeOperation': Method(self._sendPinCodeOperation, middleware), 'inviteIntoGroupCall': Method(self._inviteIntoGroupCall, middleware), 'getFriendMids': Method(self._getFriendMids, middleware), 'getMetaProfile': Method(self._getMetaProfile, middleware), 'sendMessageForChannel': Method(self._sendMessageForChannel, middleware), 'activeBuddySubscriberCount': Method(self._activeBuddySubscriberCount, middleware), 'getCallCreditPurchaseHistory': Method(self._getCallCreditPurchaseHistory, middleware), 'isRoomMember': Method(self._isRoomMember, middleware), 'sendSystemOAMessage': Method(self._sendSystemOAMessage, middleware), 'acquirePaidCallRoute': Method(self._acquirePaidCallRoute, middleware), 'getGroupsForChannel': Method(self._getGroupsForChannel, middleware), 'getUserCreateTime': Method(self._getUserCreateTime, middleware), 'registerChannelCP': Method(self._registerChannelCP, middleware), 'reserveCallCreditPurchase': Method(self._reserveCallCreditPurchase, middleware), 'acquirePaidCallCurrencyExchangeRate': Method(self._acquirePaidCallCurrencyExchangeRate, middleware), 'getRoomMemberMidsForAppPlatform': Method(self._getRoomMemberMidsForAppPlatform, middleware), 'getPaidCallBalanceList': Method(self._getPaidCallBalanceList, middleware), 'getPersonalInfos': Method(self._getPersonalInfos, middleware), 'getPrimaryClientsForChannel': Method(self._getPrimaryClientsForChannel, middleware), 'addBuddyToContact': Method(self._addBuddyToContact, middleware), 'getGroupMemberMidsForAppPlatform': Method(self._getGroupMemberMidsForAppPlatform, middleware), 'getUserLanguage': Method(self._getUserLanguage, middleware), 'lookupPaidCall': Method(self._lookupPaidCall, middleware), 'getExtendedProfile': Method(self._getExtendedProfile, middleware), 'getReverseCompactContacts': Method(self._getReverseCompactContacts, middleware), 'getPaidCallAdStatus': Method(self._getPaidCallAdStatus, middleware), 'findContactByUseridWithoutAbuseBlockForChannel': Method(self._findContactByUseridWithoutAbuseBlockForChannel, middleware), 'getGroupMemberMids': Method(self._getGroupMemberMids, middleware), 'sendMessageWithoutRelationship': Method(self._sendMessageWithoutRelationship, middleware), 'displayBuddySubscriberCountInBulk': Method(self._displayBuddySubscriberCountInBulk, middleware), 'lookupRoomMembers': Method(self._lookupRoomMembers, middleware), 'getFavoriteMidsForChannel': Method(self._getFavoriteMidsForChannel, middleware), 'getAllContactIdsForChannel': Method(self._getAllContactIdsForChannel, middleware), 'displayBuddySubscriberCount': Method(self._displayBuddySubscriberCount, middleware), 'getProfileForChannel': Method(self._getProfileForChannel, middleware), 'getUserTickets': Method(self._getUserTickets, middleware), 'getOAFriendMids': Method(self._getOAFriendMids, middleware), 'searchPaidCallUserRate': Method(self._searchPaidCallUserRate, middleware), 'getJoinedGroupIdsForChannel': Method(self._getJoinedGroupIdsForChannel, middleware), 'acquireGroupCallRoute': Method(self._acquireGroupCallRoute, middleware), 'getUserMidsWhoAddedMe': Method(self._getUserMidsWhoAddedMe, middleware), 'getIdentityCredential': Method(self._getIdentityCredential, middleware), 'addOperationForChannel': Method(self._addOperationForChannel, middleware), 'getSimpleChannelContacts': Method(self._getSimpleChannelContacts, middleware), 'getUserLastSentMessageTimeStamp': Method(self._getUserLastSentMessageTimeStamp, middleware),
DataBreakpointInfoResponse: dataId: Optional[str] """An identifier for the data on which a data breakpoint can be registered with the setDataBreakpoints request or null if no data breakpoint is available.""" description: str """UI string that describes on what data the breakpoint is set on or why a data breakpoint is not available.""" accessTypes: Optional[List[Literal["read", "write", "readWrite"]]] """Optional attribute listing the available access types for a potential data breakpoint. A UI frontend could surface this information.""" canPersist: Optional[bool] """Optional attribute indicating that a potential data breakpoint could be persisted across sessions.""" @dataclass class SetDataBreakpointsArguments: """ Arguments for 'setDataBreakpoints' request. """ breakpoints: List[DataBreakpoint] """The contents of this array replaces all existing data breakpoints. An empty array clears all data breakpoints.""" @dataclass class SetInstructionBreakpointsArguments: """ Arguments for 'setInstructionBreakpoints' request """ breakpoints: List[InstructionBreakpoint] """The instruction references of the breakpoints""" @dataclass class ContinueRequest: command: Literal["continue"] arguments: ContinueArguments @dataclass class NextArguments: """ Arguments for 'next' request. """ threadId: int """Execute 'next' for this thread.""" granularity: Optional[SteppingGranularity] """Optional granularity to step. If no granularity is specified, a granularity of 'statement' is assumed.""" @dataclass class StepInArguments: """ Arguments for 'stepIn' request. """ threadId: int """Execute 'stepIn' for this thread.""" targetId: Optional[int] """Optional id of the target to step into.""" granularity: Optional[SteppingGranularity] """Optional granularity to step. If no granularity is specified, a granularity of 'statement' is assumed.""" @dataclass class StepOutArguments: """ Arguments for 'stepOut' request. """ threadId: int """Execute 'stepOut' for this thread.""" granularity: Optional[SteppingGranularity] """Optional granularity to step. If no granularity is specified, a granularity of 'statement' is assumed.""" @dataclass class StepBackArguments: """ Arguments for 'stepBack' request. """ threadId: int """Execute 'stepBack' for this thread.""" granularity: Optional[SteppingGranularity] """Optional granularity to step. If no granularity is specified, a granularity of 'statement' is assumed.""" @dataclass class ReverseContinueRequest: command: Literal["reverseContinue"] arguments: ReverseContinueArguments @dataclass class RestartFrameRequest: command: Literal["restartFrame"] arguments: RestartFrameArguments @dataclass class GotoRequest: command: Literal["goto"] arguments: GotoArguments @dataclass class PauseRequest: command: Literal["pause"] arguments: PauseArguments @dataclass class StackTraceArguments: """ Arguments for 'stackTrace' request. """ threadId: int """Retrieve the stacktrace for this thread.""" startFrame: Optional[int] """The index of the first frame to return; if omitted frames start at 0.""" levels: Optional[int] """The maximum number of frames to return. If levels is not specified or 0, all frames are returned.""" format: Optional[StackFrameFormat] """Specifies details on how to format the stack frames.\nThe attribute is only honored by a debug adapter if the capability 'supportsValueFormattingOptions' is true.""" @dataclass class ScopesRequest: command: Literal["scopes"] arguments: ScopesArguments @dataclass class VariablesArguments: """ Arguments for 'variables' request. """ variablesReference: int """The Variable reference.""" filter: Optional[Literal["indexed", "named"]] """Optional filter to limit the child variables to either named or indexed. If omitted, both types are fetched.""" start: Optional[int] """The index of the first variable to return; if omitted children start at 0.""" count: Optional[int] """The number of variables to return. If count is missing or 0, all variables are returned.""" format: Optional[ValueFormat] """Specifies details on how to format the Variable values.\nThe attribute is only honored by a debug adapter if the capability 'supportsValueFormattingOptions' is true.""" @dataclass class SetVariableArguments: """ Arguments for 'setVariable' request. """ variablesReference: int """The reference of the variable container.""" name: str """The name of the variable in the container.""" value: str """The value of the variable.""" format: Optional[ValueFormat] """Specifies details on how to format the response value.""" @dataclass class ThreadsResponse: threads: List[Thread] """All threads.""" @dataclass class TerminateThreadsRequest: command: Literal["terminateThreads"] arguments: TerminateThreadsArguments @dataclass class ModulesRequest: command: Literal["modules"] arguments: ModulesArguments @dataclass class ModulesResponse: modules: List[Module] """All modules or range of modules.""" totalModules: Optional[int] """The total number of modules available.""" @dataclass class LoadedSourcesRequest: command: Literal["loadedSources"] arguments: Optional[LoadedSourcesArguments] @dataclass class EvaluateArguments: """ Arguments for 'evaluate' request. """ expression: str """The expression to evaluate.""" frameId: Optional[int] """Evaluate the expression in the scope of this stack frame. If not specified, the expression is evaluated in the global scope.""" context: Optional[str] """The context in which the evaluate request is run.""" format: Optional[ValueFormat] """Specifies details on how to format the Evaluate result.\nThe attribute is only honored by a debug adapter if the capability 'supportsValueFormattingOptions' is true.""" @dataclass class EvaluateResponse: result: str """The result of the evaluate request.""" type: Optional[str] """The optional type of the evaluate result.\nThis attribute should only be returned by a debug adapter if the client has passed the value true for the 'supportsVariableType' capability of the 'initialize' request.""" presentationHint: Optional[VariablePresentationHint] """Properties of a evaluate result that can be used to determine how to render the result in the UI.""" variablesReference: int """If variablesReference is > 0, the evaluate result is structured and its children can be retrieved by passing variablesReference to the VariablesRequest.\nThe value should be less than or equal to 2147483647 (2^31-1).""" namedVariables: Optional[int] """The number of named child variables.\nThe client can use this optional information to present the variables in a paged UI and fetch them in chunks.\nThe value should be less than or equal to 2147483647 (2^31-1).""" indexedVariables: Optional[int] """The number of indexed child variables.\nThe client can use this optional information to present the variables in a paged UI and fetch them in chunks.\nThe value should be less than or equal to 2147483647 (2^31-1).""" memoryReference: Optional[str] """Optional memory reference to a location appropriate for this result.\nFor pointer type eval results, this is generally a reference to the memory address contained in the pointer.\nThis attribute should be returned by a debug adapter if the client has passed the value true for the 'supportsMemoryReferences' capability of the 'initialize' request.""" @dataclass class SetExpressionArguments: """ Arguments for 'setExpression' request. """ expression: str """The l-value expression to assign to.""" value: str """The value expression to assign to the l-value expression.""" frameId: Optional[int] """Evaluate the expressions in the scope of this stack frame. If not specified, the expressions are evaluated in the global scope.""" format: Optional[ValueFormat] """Specifies how the resulting value should be formatted.""" @dataclass class SetExpressionResponse: value: str """The new value of the expression.""" type: Optional[str] """The optional type of the value.\nThis attribute should only be returned by a debug adapter if the client has passed the value true for the 'supportsVariableType' capability of the 'initialize' request.""" presentationHint: Optional[VariablePresentationHint] """Properties of a value that can be used to determine how to render the result in the UI.""" variablesReference: Optional[int] """If variablesReference is > 0, the value is structured and its children can be retrieved by passing variablesReference to the VariablesRequest.\nThe value should be less than or equal to 2147483647 (2^31-1).""" namedVariables: Optional[int] """The number of named child variables.\nThe client can use this optional information to present the variables in a paged UI and fetch them in chunks.\nThe value should be less than or equal to 2147483647 (2^31-1).""" indexedVariables: Optional[int] """The number of indexed child variables.\nThe client can use this optional information to present the variables in a paged UI and fetch them in chunks.\nThe value should be less than or equal to 2147483647 (2^31-1).""" @dataclass class StepInTargetsRequest: command: Literal["stepInTargets"] arguments: StepInTargetsArguments @dataclass class StepInTargetsResponse: targets: List[StepInTarget] """The possible stepIn targets of the specified source location.""" @dataclass class GotoTargetsResponse: targets: List[GotoTarget] """The possible goto targets of the specified location.""" @dataclass class CompletionsRequest: command: Literal["completions"] arguments: CompletionsArguments @dataclass class ExceptionInfoRequest: command: Literal["exceptionInfo"] arguments: ExceptionInfoArguments @dataclass class ExceptionInfoResponse: body: ExceptionInfoResponseBody @dataclass class ExceptionInfoResponseBody: exceptionId: str """ID of the exception that was thrown.""" description: Optional[str] """Descriptive text for the exception provided by the debug adapter.""" breakMode: ExceptionBreakMode """Mode that caused the exception notification to be raised.""" details: Optional[ExceptionDetails] """Detailed information about the exception.""" @dataclass class ReadMemoryRequest: command: Literal["readMemory"] arguments: ReadMemoryArguments @dataclass class WriteMemoryRequest: command: Literal["writeMemory"] arguments: WriteMemoryArguments @dataclass class DisassembleRequest: command: Literal["disassemble"] arguments: DisassembleArguments @dataclass class Capabilities: """ Information about the capabilities of a debug adapter. """ supportsConfigurationDoneRequest: Optional[bool] = None """The debug adapter supports the 'configurationDone' request.""" supportsFunctionBreakpoints: Optional[bool] = None """The debug adapter supports function breakpoints.""" supportsConditionalBreakpoints: Optional[bool] = None """The debug adapter supports conditional breakpoints.""" supportsHitConditionalBreakpoints: Optional[bool] = None """The debug adapter supports breakpoints that break execution after a specified number of hits.""" supportsEvaluateForHovers: Optional[bool] = None """The debug adapter supports a (side effect free) evaluate request for data hovers.""" exceptionBreakpointFilters: Optional[List[ExceptionBreakpointsFilter]] = None """Available exception filter options for the 'setExceptionBreakpoints' request.""" supportsStepBack: Optional[bool] = None """The debug adapter supports stepping back via the 'stepBack' and 'reverseContinue' requests.""" supportsSetVariable: Optional[bool] = None """The debug adapter supports setting a variable to a value.""" supportsRestartFrame: Optional[bool] = None """The debug adapter supports restarting a frame.""" supportsGotoTargetsRequest: Optional[bool] = None """The debug adapter supports the 'gotoTargets' request.""" supportsStepInTargetsRequest: Optional[bool] = None """The debug adapter supports the 'stepInTargets' request.""" supportsCompletionsRequest: Optional[bool] = None """The debug adapter supports the 'completions' request.""" completionTriggerCharacters: Optional[List[str]] = None """The set of characters that should trigger completion in a REPL. If not specified, the UI should assume the '.' character.""" supportsModulesRequest: Optional[bool] = None """The debug adapter supports the 'modules' request.""" additionalModuleColumns: Optional[List[ColumnDescriptor]] = None """The set of additional module information exposed by the debug adapter.""" supportedChecksumAlgorithms: Optional[List[ChecksumAlgorithm]] = None """Checksum algorithms supported by the debug adapter.""" supportsRestartRequest: Optional[bool] = None """The debug adapter supports the 'restart' request. In this case a client should not implement 'restart' by terminating and relaunching the adapter but by calling the RestartRequest.""" supportsExceptionOptions: Optional[bool] = None """The debug adapter supports 'exceptionOptions' on the setExceptionBreakpoints request.""" supportsValueFormattingOptions: Optional[bool] = None """The debug adapter supports a 'format' attribute on the stackTraceRequest, variablesRequest, and evaluateRequest.""" supportsExceptionInfoRequest: Optional[bool] = None """The debug adapter supports the 'exceptionInfo' request.""" supportTerminateDebuggee: Optional[bool] = None """The debug adapter supports the 'terminateDebuggee' attribute on the 'disconnect' request.""" supportSuspendDebuggee: Optional[bool] = None """The debug adapter supports the 'suspendDebuggee' attribute on the 'disconnect' request.""" supportsDelayedStackTraceLoading: Optional[bool] = None """The debug adapter supports the delayed loading of parts of the stack, which requires that both
the enabled status""" enabled = {} targets = {} for target, filepath in self.each_target_file(): logg.info("target %s", filepath) targets[target] = filepath enabled[target] = "static" for unit in _all_common_targets: targets[unit] = None enabled[unit] = "static" if unit in _all_common_enabled: enabled[unit] = "enabled" if unit in _all_common_disabled: enabled[unit] = "disabled" return [ (unit, enabled[unit]) for unit in sorted(targets) ] def show_list_unit_files(self, *modules): # -> [ (unit,enabled) ] """[PATTERN]... -- List installed unit files List installed unit files and their enablement state (as reported by is-enabled). If one or more PATTERNs are specified, only units whose filename (just the last component of the path) matches one of them are shown. This command reacts to limitations of --type being --type=service or --type=target (and --now for some basics).""" result = [] if self._now: basics = self.list_service_unit_basics() result = [ (name, sysv + " " + filename) for name, sysv, filename in basics ] elif self._unit_type == "target": result = self.list_target_unit_files() elif self._unit_type == "service": result = self.list_service_unit_files() elif self._unit_type: logg.warning("unsupported unit --type=%s", self._unit_type) else: result = self.list_target_unit_files() result += self.list_service_unit_files(*modules) if self._no_legend: return result found = "%s unit files listed." % len(result) return [ ("UNIT FILE", "STATE") ] + result + [ ("", ""), (found, "") ] ## ## def get_description(self, unit, default = None): return self.get_description_from(self.load_unit_conf(unit)) def get_description_from(self, conf, default = None): # -> text """ Unit.Description could be empty sometimes """ if not conf: return default or "" description = conf.get("Unit", "Description", default or "") return self.expand_special(description, conf) def read_pid_file(self, pid_file, default = None): pid = default if not pid_file: return default if not os.path.isfile(pid_file): return default if self.truncate_old(pid_file): return default try: # some pid-files from applications contain multiple lines for line in open(pid_file): if line.strip(): pid = to_intN(line.strip()) break except Exception as e: logg.warning("bad read of pid file '%s': %s", pid_file, e) return pid def wait_pid_file(self, pid_file, timeout = None): # -> pid? """ wait some seconds for the pid file to appear and return the pid """ timeout = int(timeout or (DefaultTimeoutStartSec/2)) timeout = max(timeout, (MinimumTimeoutStartSec)) dirpath = os.path.dirname(os.path.abspath(pid_file)) for x in xrange(timeout): if not os.path.isdir(dirpath): time.sleep(1) # until TimeoutStartSec/2 continue pid = self.read_pid_file(pid_file) if not pid: time.sleep(1) # until TimeoutStartSec/2 continue if not pid_exists(pid): time.sleep(1) # until TimeoutStartSec/2 continue return pid return None def test_pid_file(self, unit): # -> text """ support for the testsuite.py """ conf = self.get_unit_conf(unit) return self.pid_file_from(conf) or self.get_status_file_from(conf) def pid_file_from(self, conf, default = ""): """ get the specified pid file path (not a computed default) """ pid_file = self.get_pid_file(conf) or default return os_path(self._root, self.expand_special(pid_file, conf)) def get_pid_file(self, conf, default = None): return conf.get("Service", "PIDFile", default) def read_mainpid_from(self, conf, default = None): """ MAINPID is either the PIDFile content written from the application or it is the value in the status file written by this systemctl.py code """ pid_file = self.pid_file_from(conf) if pid_file: return self.read_pid_file(pid_file, default) status = self.read_status_from(conf) if "MainPID" in status: return to_intN(status["MainPID"], default) return default def clean_pid_file_from(self, conf): pid_file = self.pid_file_from(conf) if pid_file and os.path.isfile(pid_file): try: os.remove(pid_file) except OSError as e: logg.warning("while rm %s: %s", pid_file, e) self.write_status_from(conf, MainPID=None) def get_status_file(self, unit): # for testing conf = self.get_unit_conf(unit) return self.get_status_file_from(conf) def get_status_file_from(self, conf, default = None): status_file = self.get_StatusFile(conf) # this not a real setting, but do the expand_special anyway return os_path(self._root, self.expand_special(status_file, conf)) def get_StatusFile(self, conf, default = None): # -> text """ file where to store a status mark """ status_file = conf.get("Service", "StatusFile", default) if status_file: return status_file root = conf.root_mode() folder = get_PID_DIR(root) name = "%s.status" % conf.name() return os.path.join(folder, name) def clean_status_from(self, conf): status_file = self.get_status_file_from(conf) if os.path.exists(status_file): os.remove(status_file) conf.status = {} def write_status_from(self, conf, **status): # -> bool(written) """ if a status_file is known then path is created and the give status is written as the only content. """ status_file = self.get_status_file_from(conf) # if not status_file: return False dirpath = os.path.dirname(os.path.abspath(status_file)) if not os.path.isdir(dirpath): os.makedirs(dirpath) if conf.status is None: conf.status = self.read_status_from(conf) if True: for key in sorted(status.keys()): value = status[key] if key.upper() == "AS": key = "ActiveState" if key.upper() == "EXIT": key = "ExecMainCode" if value is None: try: del conf.status[key] except KeyError: pass else: conf.status[key] = strE(value) try: with open(status_file, "w") as f: for key in sorted(conf.status): value = conf.status[key] if key == "MainPID" and str(value) == "0": logg.warning("ignore writing MainPID=0") continue content = "{}={}\n".format(key, str(value)) logg.debug("writing to %s\n\t%s", status_file, content.strip()) f.write(content) except IOError as e: logg.error("writing STATUS %s: %s\n\t to status file %s", status, e, status_file) return True def read_status_from(self, conf): status_file = self.get_status_file_from(conf) status = {} # if not status_file: return status if not os.path.isfile(status_file): if DEBUG_STATUS: logg.debug("no status file: %s\n returning %s", status_file, status) return status if self.truncate_old(status_file): if DEBUG_STATUS: logg.debug("old status file: %s\n returning %s", status_file, status) return status try: if DEBUG_STATUS: logg.debug("reading %s", status_file) for line in open(status_file): if line.strip(): m = re.match(r"(\w+)[:=](.*)", line) if m: key, value = m.group(1), m.group(2) if key.strip(): status[key.strip()] = value.strip() else: #pragma: no cover logg.warning("ignored %s", line.strip()) except: logg.warning("bad read of status file '%s'", status_file) return status def get_status_from(self, conf, name, default = None): if conf.status is None: conf.status = self.read_status_from(conf) return conf.status.get(name, default) def set_status_from(self, conf, name, value): if conf.status is None: conf.status = self.read_status_from(conf) if value is None: try: del conf.status[name] except KeyError: pass else: conf.status[name] = value # def get_boottime(self): """ detects the boot time of the container - in general the start time of PID 1 """ if self._boottime is None: self._boottime = self.get_boottime_from_proc() assert self._boottime is not None return self._boottime def get_boottime_from_proc(self): """ detects the latest boot time by looking at the start time of available process""" pid1 = BOOT_PID_MIN or 0 pid_max = BOOT_PID_MAX if pid_max < 0: pid_max = pid1 - pid_max for pid in xrange(pid1, pid_max): proc = _proc_pid_stat.format(**locals()) try: if os.path.exists(proc): # return os.path.getmtime(proc) # did sometimes change return self.path_proc_started(proc) except Exception as e: # pragma: no cover logg.warning("boottime - could not access %s: %s", proc, e) if DEBUG_BOOTTIME: logg.debug(" boottime from the oldest entry in /proc [nothing in %s..%s]", pid1, pid_max) return self.get_boottime_from_old_proc() def get_boottime_from_old_proc(self): booted = time.time() for pid in os.listdir(_proc_pid_dir): proc = _proc_pid_stat.format(**locals()) try: if os.path.exists(proc): # ctime = os.path.getmtime(proc) ctime = self.path_proc_started(proc) if ctime < booted: booted = ctime except Exception as e: # pragma: no cover logg.warning("could not access %s: %s", proc, e) return booted # Use uptime, time process running in ticks, and current time to determine process boot time # You can't use the modified timestamp of the status file because it isn't static. # ... using clock ticks it is known to be a linear time on Linux def path_proc_started(self, proc): #get time process started after boot in clock ticks with open(proc) as file_stat: data_stat = file_stat.readline() file_stat.close() stat_data = data_stat.split() started_ticks = stat_data[21] # man proc(5): "(22) starttime = The time the process started after system boot." # ".. the value is expressed in clock ticks (divide by sysconf(_SC_CLK_TCK))." # NOTE: for containers the start time is related to the boot time of host system. clkTickInt = os.sysconf_names['SC_CLK_TCK'] clockTicksPerSec = os.sysconf(clkTickInt) started_secs = float(started_ticks) / clockTicksPerSec if DEBUG_BOOTTIME: logg.debug(" BOOT .. Proc started time: %.3f (%s)", started_secs, proc) # this value is the start time from the host system # Variant 1: system_uptime = _proc_sys_uptime with open(system_uptime,"rb") as file_uptime: data_uptime = file_uptime.readline() file_uptime.close() uptime_data = data_uptime.decode().split() uptime_secs = float(uptime_data[0]) if DEBUG_BOOTTIME: logg.debug(" BOOT 1. System uptime secs: %.3f (%s)", uptime_secs, system_uptime) #get time now now = time.time() started_time = now - (uptime_secs - started_secs) if DEBUG_BOOTTIME: logg.debug(" BOOT 1. Proc has been running since: %s" % (datetime.datetime.fromtimestamp(started_time))) # Variant 2: system_stat = _proc_sys_stat system_btime = 0. with open(system_stat,"rb") as f: for line in f: assert isinstance(line, bytes) if line.startswith(b"btime"): system_btime = float(line.decode().split()[1]) f.closed if DEBUG_BOOTTIME: logg.debug(" BOOT 2. System btime secs: %.3f (%s)", system_btime, system_stat)
<filename>tethysapp/app_store/original_code.py<gh_stars>1-10 import shutil import yaml import os import git from subprocess import (call, Popen, PIPE, STDOUT) from argparse import Namespace from conda.cli.python_api import run_command as conda_run, Commands from django.core.exceptions import ObjectDoesNotExist from tethys_apps.cli.cli_colors import pretty_output, FG_RED, FG_BLUE, FG_YELLOW from tethys_apps.cli.services_commands import (services_create_persistent_command, services_create_spatial_command, services_create_dataset_command, services_create_wps_command, services_list_command) from tethys_apps.cli.syncstores_command import syncstores_command from tethys_apps.utilities import link_service_to_app_setting FNULL = open(os.devnull, 'w') serviceLinkParam = { 'spatial': 'ds_spatial', "dataset": 'ds_dataset', "persistent": 'ps_database', 'wps': 'wps' } tethysapp_dir = os.path.dirname(os.path.dirname(__file__)) root_app_path = os.path.join(tethysapp_dir, 'tethysapp') thredds_dir = os.path.join(os.path.dirname(tethysapp_dir), 'thredds', 'public') def write_error(msg): with pretty_output(FG_RED) as p: p.write(msg) exit(1) def write_msg(msg): with pretty_output(FG_YELLOW) as p: p.write(msg) def create_services(service, create_service, config): newService = None try: newService = service.objects.get(name=config['name']) write_msg('Service with name "{0}" already exists. Skipping add.'.format(config['name'])) except ObjectDoesNotExist: if not service: write_error('Invalid Service Type : {0}.'.format(serviceKey)) serviceMethod = create_service tempNS = Namespace() for conf in config.keys(): setattr(tempNS, conf, config[conf]) newService = serviceMethod(tempNS) def get_service_from_id(id): from tethys_services.models import (SpatialDatasetService, PersistentStoreService, DatasetService, WebProcessingService) try: persistent_entries = PersistentStoreService.objects.get(id=id) # noqa: F841 return {"service_type": "persistent", "linkParam": serviceLinkParam['persistent']} except ObjectDoesNotExist: pass try: entries = SpatialDatasetService.objects.get(id=id) # noqa: F841 return {"service_type": "spatial", "linkParam": serviceLinkParam['spatial']} except ObjectDoesNotExist: pass try: entries = DatasetService.objects.get(id=id) # noqa: F841 return {"service_type": "dataset", "linkParam": serviceLinkParam['dataset']} except ObjectDoesNotExist: pass try: entries = WebProcessingService.objects.get(id=id) # noqa: F841 return {"service_type": "wps", "linkParam": serviceLinkParam['persistent']} except ObjectDoesNotExist: pass return False def get_service_from_name(name): from tethys_services.models import (SpatialDatasetService, PersistentStoreService, DatasetService, WebProcessingService) try: persistent_entries = PersistentStoreService.objects.get(name=name) # noqa: F841 return {"service_type": "persistent", "linkParam": serviceLinkParam['persistent']} except ObjectDoesNotExist: pass try: entries = SpatialDatasetService.objects.get(name=name) # noqa: F841 return {"service_type": "spatial", "linkParam": serviceLinkParam['spatial']} except ObjectDoesNotExist: pass try: entries = DatasetService.objects.get(name=name) # noqa: F841 return {"service_type": "dataset", "linkParam": serviceLinkParam['dataset']} except ObjectDoesNotExist: pass try: entries = WebProcessingService.objects.get(name=name) # noqa: F841 return {"service_type": "wps", "linkParam": serviceLinkParam['wps']} except ObjectDoesNotExist: pass return False # Pulling this function out so I can mock this for inputs to the interactive mode def get_interactive_input(): return input("") def get_service_name_input(): return input("") def parse_id_input(inputResponse): id_search = False try: ids = inputResponse.split(',') ids = list(map(lambda x: int(x), ids)) id_search = True except ValueError: ids = [inputResponse] pass return id_search, ids def run_interactive_services(app_name): write_msg('Running Interactive Service Mode. ' 'Any configuration options in install.yml for services will be ignored...') # List existing services tempNS = Namespace() for conf in ['spatial', 'persistent', 'wps', 'dataset']: setattr(tempNS, conf, False) services_list_command(tempNS) write_msg('Please enter the service ID/Name to link one of the above listed service.') write_msg('You may also enter a comma seperated list of service ids : (1,2).') write_msg('Just hit return if you wish to skip this step and move on to creating your own services.') valid = False while not valid: try: response = get_interactive_input() if response != "": # Parse Response id_search, ids = parse_id_input(response) for service_id in ids: if id_search: service = get_service_from_id(service_id) else: service = get_service_from_name(service_id) if service: # Ask for app setting name: write_msg( 'Please enter the name of the service from your app.py eg: "catalog_db")') setting_name = get_service_name_input() link_service_to_app_setting(service['service_type'], service_id, app_name, service['linkParam'], setting_name) valid = True else: write_msg( "Please run 'tethys services create -h' to create services via the command line.") valid = True except (KeyboardInterrupt, SystemExit): with pretty_output(FG_YELLOW) as p: p.write('\nInstall Command cancelled.') exit(0) def find_and_link(service_type, setting_name, service_id, app_name): service = get_service_from_name(service_id) if service: link_service_to_app_setting(service['service_type'], service_id, app_name, service['linkParam'], setting_name) else: with pretty_output(FG_RED) as p: p.write( 'Warning: Could not find service of type: {} with the name/id: {}'.format(service_type, service_id)) def run_portal_init(service_models, file_path, app_name): if file_path is None: file_path = './portal.yml' if not os.path.exists(file_path): write_msg("No Portal Services file found. Moving to look for local app level services.yml...") return False try: write_msg("Portal init file found...Processing...") with open(file_path) as f: portal_options = yaml.safe_load(f) except Exception as e: with pretty_output(FG_RED) as p: p.write(e) p.write('An unexpected error occurred reading the file. Please try again.') return False if "apps" in portal_options and app_name in portal_options['apps'] and 'services' in portal_options['apps'][app_name]: services = portal_options['apps'][app_name]['services'] if services and len(services) > 0: for service_type in services: if services[service_type] is not None: current_services = services[service_type] for service_setting_name in current_services: find_and_link(service_type, service_setting_name, current_services[service_setting_name], app_name) else: write_msg("No app configuration found for app: {} in portal config file. ".format(app_name)) else: write_msg("No apps configuration found in portal config file. ".format(app_name)) return True def install_dependencies(conda_config, pip_config): # Add all channels listed in the file. if "channels" in conda_config and conda_config['channels'] and len(conda_config['channels']) > 0: channels = conda_config['channels'] for channel in channels: [resp, err, code] = conda_run( Commands.CONFIG, "--prepend", "channels", channel, use_exception_handler=False) # Install all Dependencies if "dependencies" in conda_config and conda_config['dependencies'] and len(conda_config['dependencies']) > 0: dependencies = conda_config['dependencies'] with pretty_output(FG_BLUE) as p: p.write('Installing Dependencies.....') [resp, err, code] = conda_run( Commands.INSTALL, *dependencies, use_exception_handler=False, stdout=None, stderr=None) if code != 0: with pretty_output(FG_RED) as p: p.write('Warning: Dependencies installation ran into an error. Please try again or a manual install') if pip_config and len(pip_config) > 0: for pip_req in pip_config: from pip._internal import main as pip pip(['install', '--user', pip_req]) def run_services(services_config, file_path, app_name, serviceFileInput): if serviceFileInput is None: file_path = './services.yml' else: file_path = serviceFileInput if not os.path.exists(file_path): write_msg("No Services init file found. Skipping app service installation") return try: with open(file_path) as f: init_options = yaml.safe_load(f) except Exception as e: with pretty_output(FG_RED) as p: p.write(e) p.write('An unexpected error occurred reading the file. Please try again.') exit(1) # Setup any services that need to be setup services = init_options interactive_mode = False skip = False if "skip" in services: skip = services['skip'] del services['skip'] if "interactive" in services: interactive_mode = services['interactive'] del services['interactive'] if not skip: if interactive_mode: run_interactive_services(app_name) else: if services and len(services) > 0: if 'version' in services: del services['version'] for service_type in services: if services[service_type] is not None: current_services = services[service_type] for service_setting_name in current_services: find_and_link(service_type, service_setting_name, current_services[service_setting_name], app_name) write_msg("Services Configuration Completed.") else: write_msg("Skipping services configuration, Skip option found.") def process_production_services(service_options, service_models): creators = { 'spatial': services_create_spatial_command, "dataset": services_create_dataset_command, "persistent": services_create_persistent_command, 'wps': services_create_wps_command } for service_type in service_options: if service_options[service_type]: for service in service_options[service_type]: create_services(service_models[service_type], creators[service_type], service) def process_production_apps(apps): for app_name in apps: if "source" in apps[app_name]: write_msg("Pulling application from source....") dir_path = os.path.join(root_app_path, app_name) service_file_path = os.path.join(dir_path, 'services.yml') if os.path.isdir(dir_path): shutil.rmtree(dir_path) os.mkdir(dir_path) repo = git.Repo.init(dir_path) origin = repo.create_remote('origin', apps[app_name]["source"]["url"]) origin.fetch() branch = "master" if "branch" in apps[app_name]["source"]: branch = apps[app_name]["source"]["branch"] repo.git.checkout(branch) for root, dirs, files in os.walk(dir_path): for momo in dirs: os.chmod(os.path.join(root, momo), 0o755) for momo in files: os.chmod(os.path.join(root, momo), 0o755) if "services" in apps[app_name]: with open(service_file_path, 'w') as outfile: yaml.dump(apps[app_name]["services"], outfile) else: if os.path.isfile(service_file_path): os.remove(service_file_path) # Run the app install command with new params tempNS = Namespace() setattr(tempNS, 'file', os.path.join(dir_path, 'install.yml')) setattr(tempNS, 'services_file', service_file_path) setattr(tempNS, 'portal_file', None) setattr(tempNS, 'exit', False) init_command(tempNS) if "custom_settings" in apps[app_name]: process_custom_settings(apps[app_name]['custom_settings'], app_name) else: write_error("No App source present for App: {}. Aborting.".format(app_name)) def process_custom_settings(settings, app_name): write_msg("Processing Custom Settings for app {}".format(app_name)) try: # Try to get the app from tethys_apps.models import TethysApp db_app = TethysApp.objects.get(package=app_name) if db_app is None: write_msg("Cannot configure custom settings. Check errors...") custom_settings = db_app.custom_settings for setting_name in settings: try: custom_setting = custom_settings.get(name=setting_name) value = settings[setting_name] if value == "thredds_dir": value = os.path.join(thredds_dir, app_name) custom_setting.set_value(value) custom_setting.save() except ObjectDoesNotExist: write_msg("Custom setting doesn't exist : {}".format(setting_name)) except Exception as e: print(e) def process_portal_settings(settings): write_msg("Processing Portal Settings") try: # Try to get the settings from tethys_config.models import Setting for new_setting in settings: portal_setting_obj = Setting.objects.get(name=new_setting) setattr(portal_setting_obj, 'content', settings[new_setting]) portal_setting_obj.save() except Exception as e: print(e) def run_production_install(file_path, service_models): if file_path is None: return if not os.path.exists(file_path): write_error("No Production File found at that path. Aborting. ") try: with open(file_path) as f: production_options = yaml.safe_load(f) except Exception as e: with pretty_output(FG_RED) as p: p.write(e) p.write( 'An unexpected error occurred reading the file. Please try again.') exit(1) if "services" in production_options: process_production_services(production_options['services'], service_models) if "apps" in production_options: process_production_apps(production_options['apps']) if "portal_settings" in production_options: process_portal_settings(production_options['portal_settings']) write_msg("Syncing database for all installed applications...") # Run the app install command with new params tempNS = Namespace() setattr(tempNS, 'app', ['all']) setattr(tempNS, 'refresh', None) setattr(tempNS, 'firsttime', None) setattr(tempNS, 'database', None) syncstores_command(tempNS) exit(0) def init_command(args): """ Init Command """ # Have to import within function or else install partial on a system fails from tethys_services.models import ( SpatialDatasetService, DatasetService, PersistentStoreService, WebProcessingService) service_models = { 'spatial': SpatialDatasetService, "dataset": DatasetService, "persistent": PersistentStoreService, 'wps': WebProcessingService } app_name = None if 'production_file'
regression. Quantile regression allows to estimate the percentiles of the conditional distribution of the target. """ def __init__(self, n_classes, alpha=0.9): super(QuantileLossFunction, self).__init__(n_classes) self.alpha = alpha self.percentile = alpha * 100.0 def init_estimator(self): return QuantileEstimator(self.alpha) def __call__(self, y, pred, sample_weight=None): pred = pred.ravel() diff = y - pred alpha = self.alpha mask = y > pred if sample_weight is None: loss = (alpha * diff[mask].sum() - (1.0 - alpha) * diff[~mask].sum()) / y.shape[0] else: loss = ((alpha * np.sum(sample_weight[mask] * diff[mask]) - (1.0 - alpha) * np.sum(sample_weight[~mask] * diff[~mask])) / sample_weight.sum()) return loss def negative_gradient(self, y, pred, **kargs): alpha = self.alpha pred = pred.ravel() mask = y > pred return (alpha * mask) - ((1.0 - alpha) * ~mask) def _update_terminal_region(self, tree, terminal_regions, leaf, X, y, residual, pred, sample_weight): terminal_region = np.where(terminal_regions == leaf)[0] diff = (y.take(terminal_region, axis=0) - pred.take(terminal_region, axis=0)) sample_weight = sample_weight.take(terminal_region, axis=0) val = _weighted_percentile(diff, sample_weight, self.percentile) tree.value[leaf, 0] = val class ClassificationLossFunction(six.with_metaclass(ABCMeta, LossFunction)): """Base class for classification loss functions. """ def _score_to_proba(self, score): """Template method to convert scores to probabilities. the does not support probabilities raises AttributeError. """ raise TypeError('%s does not support predict_proba' % type(self).__name__) @abstractmethod def _score_to_decision(self, score): """Template method to convert scores to decisions. Returns int arrays. """ class BinomialDeviance(ClassificationLossFunction): """Binomial deviance loss function for binary classification. Binary classification is a special case; here, we only need to fit one tree instead of ``n_classes`` trees. """ def __init__(self, n_classes): if n_classes != 2: raise ValueError("{0:s} requires 2 classes; got {1:d} class(es)" .format(self.__class__.__name__, n_classes)) # we only need to fit one tree for binary clf. super(BinomialDeviance, self).__init__(1) def init_estimator(self): return LogOddsEstimator() def __call__(self, y, pred, sample_weight=None): """Compute the deviance (= 2 * negative log-likelihood). """ # logaddexp(0, v) == log(1.0 + exp(v)) pred = pred.ravel() if sample_weight is None: return -2.0 * np.mean((y * pred) - np.logaddexp(0.0, pred)) else: return (-2.0 / sample_weight.sum() * np.sum(sample_weight * ((y * pred) - np.logaddexp(0.0, pred)))) def negative_gradient(self, y, pred, **kargs): """Compute the residual (= negative gradient). """ return y - expit(pred.ravel()) def _update_terminal_region(self, tree, terminal_regions, leaf, X, y, residual, pred, sample_weight): """Make a single Newton-Raphson step. our node estimate is given by: sum(w * (y - prob)) / sum(w * prob * (1 - prob)) we take advantage that: y - prob = residual """ terminal_region = np.where(terminal_regions == leaf)[0] residual = residual.take(terminal_region, axis=0) y = y.take(terminal_region, axis=0) sample_weight = sample_weight.take(terminal_region, axis=0) numerator = np.sum(sample_weight * residual) denominator = np.sum(sample_weight * (y - residual) * (1 - y + residual)) # prevents overflow and division by zero if abs(denominator) < 1e-150: tree.value[leaf, 0, 0] = 0.0 else: tree.value[leaf, 0, 0] = numerator / denominator def _score_to_proba(self, score): proba = np.ones((score.shape[0], 2), dtype=np.float64) proba[:, 1] = expit(score.ravel()) proba[:, 0] -= proba[:, 1] return proba def _score_to_decision(self, score): proba = self._score_to_proba(score) return np.argmax(proba, axis=1) class MultinomialDeviance(ClassificationLossFunction): """Multinomial deviance loss function for multi-class classification. For multi-class classification we need to fit ``n_classes`` trees at each stage. """ is_multi_class = True def __init__(self, n_classes): if n_classes < 3: raise ValueError("{0:s} requires more than 2 classes.".format( self.__class__.__name__)) super(MultinomialDeviance, self).__init__(n_classes) def init_estimator(self): return PriorProbabilityEstimator() def __call__(self, y, pred, sample_weight=None): # create one-hot label encoding Y = np.zeros((y.shape[0], self.K), dtype=np.float64) for k in range(self.K): Y[:, k] = y == k if sample_weight is None: return np.sum(-1 * (Y * pred).sum(axis=1) + logsumexp(pred, axis=1)) else: return np.sum(-1 * sample_weight * (Y * pred).sum(axis=1) + logsumexp(pred, axis=1)) def negative_gradient(self, y, pred, k=0, **kwargs): """Compute negative gradient for the ``k``-th class. """ return y - np.nan_to_num(np.exp(pred[:, k] - logsumexp(pred, axis=1))) def _update_terminal_region(self, tree, terminal_regions, leaf, X, y, residual, pred, sample_weight): """Make a single Newton-Raphson step. """ terminal_region = np.where(terminal_regions == leaf)[0] residual = residual.take(terminal_region, axis=0) y = y.take(terminal_region, axis=0) sample_weight = sample_weight.take(terminal_region, axis=0) numerator = np.sum(sample_weight * residual) numerator *= (self.K - 1) / self.K denominator = np.sum(sample_weight * (y - residual) * (1.0 - y + residual)) # prevents overflow and division by zero if abs(denominator) < 1e-150: tree.value[leaf, 0, 0] = 0.0 else: tree.value[leaf, 0, 0] = numerator / denominator def _score_to_proba(self, score): return np.nan_to_num( np.exp(score - (logsumexp(score, axis=1)[:, np.newaxis]))) def _score_to_decision(self, score): proba = self._score_to_proba(score) return np.argmax(proba, axis=1) class ExponentialLoss(ClassificationLossFunction): """Exponential loss function for binary classification. Same loss as AdaBoost. References ---------- <NAME>, Generalized Boosted Models: A guide to the gbm package, 2007 """ def __init__(self, n_classes): if n_classes != 2: raise ValueError("{0:s} requires 2 classes; got {1:d} class(es)" .format(self.__class__.__name__, n_classes)) # we only need to fit one tree for binary clf. super(ExponentialLoss, self).__init__(1) def init_estimator(self): return ScaledLogOddsEstimator() def __call__(self, y, pred, sample_weight=None): pred = pred.ravel() if sample_weight is None: return np.mean(np.exp(-(2. * y - 1.) * pred)) else: return (1.0 / sample_weight.sum() * np.sum(sample_weight * np.exp(-(2 * y - 1) * pred))) def negative_gradient(self, y, pred, **kargs): y_ = -(2. * y - 1.) return y_ * np.exp(y_ * pred.ravel()) def _update_terminal_region(self, tree, terminal_regions, leaf, X, y, residual, pred, sample_weight): terminal_region = np.where(terminal_regions == leaf)[0] pred = pred.take(terminal_region, axis=0) y = y.take(terminal_region, axis=0) sample_weight = sample_weight.take(terminal_region, axis=0) y_ = 2. * y - 1. numerator = np.sum(y_ * sample_weight * np.exp(-y_ * pred)) denominator = np.sum(sample_weight * np.exp(-y_ * pred)) # prevents overflow and division by zero if abs(denominator) < 1e-150: tree.value[leaf, 0, 0] = 0.0 else: tree.value[leaf, 0, 0] = numerator / denominator def _score_to_proba(self, score): proba = np.ones((score.shape[0], 2), dtype=np.float64) proba[:, 1] = expit(2.0 * score.ravel()) proba[:, 0] -= proba[:, 1] return proba def _score_to_decision(self, score): return (score.ravel() >= 0.0).astype(np.int) LOSS_FUNCTIONS = {'ls': LeastSquaresError, 'lad': LeastAbsoluteError, 'huber': HuberLossFunction, 'quantile': QuantileLossFunction, 'deviance': None, # for both, multinomial and binomial 'exponential': ExponentialLoss, } INIT_ESTIMATORS = {'zero': ZeroEstimator} class VerboseReporter(object): """Reports verbose output to stdout. If ``verbose==1`` output is printed once in a while (when iteration mod verbose_mod is zero).; if larger than 1 then output is printed for each update. """ def __init__(self, verbose): self.verbose = verbose def init(self, est, begin_at_stage=0): # header fields and line format str header_fields = ['Iter', 'Train Loss'] verbose_fmt = ['{iter:>10d}', '{train_score:>16.4f}'] # do oob? if est.subsample < 1: header_fields.append('OOB Improve') verbose_fmt.append('{oob_impr:>16.4f}') header_fields.append('Remaining Time') verbose_fmt.append('{remaining_time:>16s}') # print the header line print(('%10s ' + '%16s ' * (len(header_fields) - 1)) % tuple(header_fields)) self.verbose_fmt = ' '.join(verbose_fmt) # plot verbose info each time i % verbose_mod == 0 self.verbose_mod = 1 self.start_time = time() self.begin_at_stage = begin_at_stage def update(self, j, est): """Update reporter with new iteration. """ do_oob = est.subsample < 1 # we need to take into account if we fit additional estimators. i = j - self.begin_at_stage # iteration relative to the start iter if (i + 1) % self.verbose_mod == 0: oob_impr = est.oob_improvement_[j] if do_oob else 0 remaining_time = ((est.n_estimators - (j + 1)) * (time() - self.start_time) / float(i + 1)) if remaining_time > 60: remaining_time = '{0:.2f}m'.format(remaining_time / 60.0) else: remaining_time = '{0:.2f}s'.format(remaining_time) print(self.verbose_fmt.format(iter=j + 1, train_score=est.train_score_[j], oob_impr=oob_impr, remaining_time=remaining_time)) if self.verbose == 1 and ((i + 1) // (self.verbose_mod * 10) > 0): # adjust verbose frequency (powers of 10) self.verbose_mod *= 10 class BaseGradientBoosting(six.with_metaclass(ABCMeta, BaseEnsemble)): """Abstract base class for Gradient Boosting. """ @abstractmethod def __init__(self, loss, learning_rate, n_estimators, criterion, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_depth, min_impurity_decrease, min_impurity_split, init, subsample, max_features, random_state, alpha=0.9, verbose=0, max_leaf_nodes=None, warm_start=False, presort='auto', validation_fraction=0.1, n_iter_no_change=None, tol=1e-4): self.n_estimators = n_estimators self.learning_rate = learning_rate self.loss = loss self.criterion = criterion self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.subsample = subsample self.max_features = max_features self.max_depth = max_depth self.min_impurity_decrease = min_impurity_decrease self.min_impurity_split = min_impurity_split self.init = init self.random_state = random_state self.alpha = alpha self.verbose = verbose self.max_leaf_nodes = max_leaf_nodes self.warm_start = warm_start self.presort = presort self.validation_fraction = validation_fraction self.n_iter_no_change = n_iter_no_change self.tol = tol def _fit_stage(self, i, X, y, y_pred, sample_weight, sample_mask, random_state, X_idx_sorted, X_csc=None, X_csr=None): """Fit another stage of ``n_classes_`` trees to the boosting model. """ assert sample_mask.dtype == np.bool loss = self.loss_ original_y = y for k in range(loss.K): if loss.is_multi_class:
networks. Outputs: -True if the network is loaded, false otherwise. """ return (username in self.networks) and (network_ID in self.networks[username]) def add_user_tab(self, username): """Add a new user entry inside of networks if not already in Inputs: -user : A string containing the name of the owner of the network. """ if not (username in self.networks): self.networks[username] = dict() self.tasks[username] = dict() self.plots[username] = dict() def count_neuron(self, username): """Count the total number of neurones in all the networks currently loaded by an user. Inputs: -user : A string containing the name of the owner of the networks. Outputs: The function return the sum of all the size of the networks that are loaded. """ n = 0 for i in self.networks[username]: n += self.networks[username][i].network.N return n def add_network_tab(self, username, network_ID, size): """Add a new network entry inside of networks if the network can be loaded from the data base. If the same user is already using to much resources, the function is not successfull. Inputs: -user : A string containing the name of the owner of the network. -network_ID : A string containing the id of the network, with user, allows to identify the network in the data base. -size : The size of the network you are trying to add. Outputs: If the network is added succesfully, the function returns 0, if too many neuronnes where already loaded, 1 and 2 if the network was already loaded. """ if ((self.count_neuron(username) + size) > settings.MAX_NEURONE): return 1 if not (self.exist_entry(username, network_ID)): self.networks[username][network_ID] = None self.tasks[username][network_ID] = [] self.plots[username][network_ID] = [] return 0 return 2 def load_network(self, request, user, network_ID, auto_load = False): """Load a new network inside of networks if the network can be loaded from the data base. If the same user is already using to much resources, the function is not successfull. If it is the first time the user load a network, the user is added as an entry inside of networks. Inputs: -request: HTTP request from the front-end. -user : A string containing the name of the owner of the network. -network_ID : A string containing the id of the network, with user, allows to identify the network in the data base. -auto_load : A boolean value, if True, the auto saved files must be loaded, if False, the network gets loaded normally. """ self.add_user_tab(user.username) network = net.NetworkRunner.load_network(user.username, network_ID, auto_load) err = self.add_network_tab(user.username, network_ID, network.network.N) if err == 0: self.networks[user.username][network_ID] = network return HttpResponse('loaded') elif err == 1: messages.error(request, "Too many neurones already loaded") return HttpResponseRedirect('/accounts/') else: messages.error(request, "Network already loaded") return HttpResponseRedirect('/accounts/') def add_task(self, request, user, network_ID, corpus_ID, start, stop, task): """Add a new (testing or training task) to perform to the network. Fails if the network isn't loaded. Inputs: -request: HTTP request from the front-end. -user : A string containing the name of the owner of the network. -network_ID : A string containing the id of the network, with user, allows to identify the network in the dictionnary networks. -corpus_ID : The ID of the corpus to load that is already uploaded on the server. -start : An intenger that represent the line of the corpus where to begin the task. -stop : An intenger that represent the line of the corpus where to stop the task. -task : The type of task that the network shall perform """ if not (self.exist_entry(user.username, network_ID)): return HttpResponseBadRequest("The network isn't loaded") else: CorpusObject = get_object_or_404(Corpus, pk=corpus_ID) if (CorpusObject.size <= int(stop)): return HttpResponseBadRequest("The stop point must be lower than the corpus size") if (int(start) < 0): return HttpResponseBadRequest("The start point must be greater or equal to 0") if self.networks[user.username][network_ID].add_task(CorpusObject.path, int(start), int(stop), task): infos = { "corpus": CorpusObject.name, "type": task, "start": start, "stop": stop } self.tasks[user.username][network_ID].append(infos)# Every time a task is added, the modals of tab needs to be updated messages.info(request, 'task successfully added') return HttpResponseRedirect('/accounts/') messages.error(request, 'error at task creation') return HttpResponseBadRequest("The task couldn't be added") def add_observable(self, request, user, network_ID, observable, periodicity): """Add a new observable for the network to compute and link it to a free Bokeh instance. Fails if the network isn't loaded. Inputs: -request: HTTP request from the front-end. -user : A string containing the name of the owner of the network. -network_ID : A string containing the id of the network, with user, allows to identify the network in the dictionnary networks. -observable : The name of the observable to compute -periodicity : This integer tells how many iterations they are between 2 computations of the observable """ if not (self.exist_entry(user.username, network_ID)): messages.error(request, "The network doesn't exist") return HttpResponseRedirect('/accounts/') else: if (len(self.plots) < settings.MAX_BOKEH): self.networks[user.username][network_ID].add_observable(observable, int(periodicity)) self.plots[user.username][network_ID].append({'plot': make_ajax_plot(observable, self.networks[user.username][network_ID].size_observable(observable), network_ID), 'name':"bokeh_" + str(len(self.plots[user.username][network_ID])), 'verbose_name': observable}) return render(request, 'ARNN/bokeh.html', {'plots': self.plots[user.username][network_ID]})# Makes the render of the observable else: messages.error(request, "Unable to add additional Bokeh instance, max limit reached!") return HttpResponseRedirect('/accounts/') def remove_network(self, request, user, network_ID): """Remove the corresponding network from networks. Inputs: -request: HTTP request from the front-end. -user : A string containing the name of the owner of the network. -network_ID : A string containing the id of the network, with user, allows to identify the network in the dictionnary networks. """ if self.exist_entry(user.username, network_ID): del self.networks[user.username][network_ID] if (user.username in self.plots) and network_ID in self.plots[user.username]: del self.plots[user.username][network_ID] return HttpResponse() messages.error(request, "This network doesn't exist") return HttpResponseRedirect('/accounts/') def toggle_run(self, request, user, network_ID): """If the corresponding network is not already performing a task, this function launch the iterations of the network from the current step. If the network is running, this function stops the task at the current step. Inputs: -request: HTTP request from the front-end. -user : A string containing the name of the owner of the network. -network_ID : A string containing the id of the network, with user, allows to identify the network in the dictionnary networks. """ net = self.networks[user.username][network_ID] a = "run ?" a = net.play_pause() print(a) return HttpResponse(a) def get_network_saved(request, pk): """ This function returns a boolean meaning if the network given has some unsaved data. Inputs : -request: HTTP request from the front-end. Outputs : -A boolean value """ return HttpResponse(get_object_or_404(Network, pk=pk).auto_saved, content_type='bool') def create(request): """This function create a new network, by generating all the matrix that are inside, and add the corresponding entry inside of the database. Inputs: -request : HTTP request from the front-end. """ if request.method == 'POST': form = NetworkForm(request.user, request.POST) if form.is_valid(): new_network = form.save(commit=False) new_network.owner = request.user new_network.save()# Create the network in the database net.NetworkRunner.create(request.user.username, new_network.pk) messages.info(request, 'Network successfully created!') net_json = serializers.serialize('json', [new_network,]) return HttpResponse(net_json, content_type='json') else: forms=get_basic_forms(request) forms["network_form"]=form return render(request, 'ARNN/index.html', forms) return HttpResponseBadRequest('Error: Not a POST request') def list_net(request): """ This function return this list of networks owned by the current user as a JSON. Inputs : -request: HTTP request from the front-end. Outputs : -A json of the list of networks own by a person """ networks = Network.objects.filter(owner=request.user) net_json = serializers.serialize('json', networks) return HttpResponse(net_json, content_type='json') def delete(request, pk): """ This fonction delete a network from the data base, and from the disk. Inputs: -request : HTTP request from the front-end -pk : the ID of the network to delete """ network = get_object_or_404(Network, pk=pk) network.delete() path = os.path.join(os.path.join(settings.PATH_TO_USERS_FOLDER, request.user.username), settings.PATH_TO_NETWORKS) file = os.path.join(path, str(pk)+"W.npy") if os.path.exists(file): os.remove(file) file = os.path.join(path, str(pk)+"Win.npy") if os.path.exists(file): os.remove(file) file = os.path.join(path, str(pk)+"Wout.npy") if os.path.exists(file): os.remove(file) file = os.path.join(path, str(pk)+"~W.npy") if os.path.exists(file): os.remove(file) file = os.path.join(path, str(pk)+"~Win.npy") if os.path.exists(file): os.remove(file) file = os.path.join(path, str(pk)+"~Wout.npy") if os.path.exists(file): os.remove(file) messages.info(request, 'Network successfully deleted!') return HttpResponseRedirect('/accounts/') def download(request, pk): """ This function creates a ZIP archive containing the NPY files (weight matrix and state matrix) of the network whose primary key is passed as parameter. Inputs: -request: HTTP request from the front-end -pk: The ID of the network whose NPY files need to be downloaded. """ network = get_object_or_404(Network, pk=pk) network_path
<filename>ndcube/tests/test_sequence_plotting.py # -*- coding: utf-8 -*- import pytest import datetime import numpy as np import astropy.units as u import matplotlib from ndcube import NDCube, NDCubeSequence from ndcube.utils.wcs import WCS import ndcube.mixins.sequence_plotting # Set matplotlib display for testing #matplotlib.use('Agg') # sample data for tests # TODO: use a fixture reading from a test file. file TBD. data = np.array([[[1, 2, 3, 4], [2, 4, 5, 3], [0, -1, 2, 3]], [[2, 4, 5, 1], [10, 5, 2, 2], [10, 3, 3, 0]]]) data2 = np.array([[[11, 22, 33, 44], [22, 44, 55, 33], [0, -1, 22, 33]], [[22, 44, 55, 11], [10, 55, 22, 22], [10, 33, 33, 0]]]) ht = {'CTYPE3': 'HPLT-TAN', 'CUNIT3': 'deg', 'CDELT3': 0.5, 'CRPIX3': 0, 'CRVAL3': 0, 'NAXIS3': 2, 'CTYPE2': 'WAVE ', 'CUNIT2': 'Angstrom', 'CDELT2': 0.2, 'CRPIX2': 0, 'CRVAL2': 0, 'NAXIS2': 3, 'CTYPE1': 'TIME ', 'CUNIT1': 'min', 'CDELT1': 0.4, 'CRPIX1': 0, 'CRVAL1': 0, 'NAXIS1': 4} wt = WCS(header=ht, naxis=3) cube1 = NDCube( data, wt, missing_axis=[False, False, False, True], extra_coords=[ ('pix', 0, u.Quantity(range(data.shape[0]), unit=u.pix)), ('hi', 1, u.Quantity(range(data.shape[1]), unit=u.s)), ('distance', None, u.Quantity(0, unit=u.cm)), ('time', None, datetime.datetime(2000, 1, 1, 0, 0))]) cube1_with_unit = NDCube( data, wt, missing_axis=[False, False, False, True], unit=u.km, extra_coords=[ ('pix', 0, u.Quantity(range(data.shape[0]), unit=u.pix)), ('hi', 1, u.Quantity(range(data.shape[1]), unit=u.s)), ('distance', None, u.Quantity(0, unit=u.cm)), ('time', None, datetime.datetime(2000, 1, 1, 0, 0))]) cube1_with_mask = NDCube( data, wt, missing_axis=[False, False, False, True], mask=np.zeros_like(data, dtype=bool), extra_coords=[ ('pix', 0, u.Quantity(range(data.shape[0]), unit=u.pix)), ('hi', 1, u.Quantity(range(data.shape[1]), unit=u.s)), ('distance', None, u.Quantity(0, unit=u.cm)), ('time', None, datetime.datetime(2000, 1, 1, 0, 0))]) cube1_with_uncertainty = NDCube( data, wt, missing_axis=[False, False, False, True], uncertainty=np.sqrt(data), extra_coords=[ ('pix', 0, u.Quantity(range(data.shape[0]), unit=u.pix)), ('hi', 1, u.Quantity(range(data.shape[1]), unit=u.s)), ('distance', None, u.Quantity(0, unit=u.cm)), ('time', None, datetime.datetime(2000, 1, 1, 0, 0))]) cube1_with_unit_and_uncertainty = NDCube( data, wt, missing_axis=[False, False, False, True], unit=u.km, uncertainty=np.sqrt(data), extra_coords=[ ('pix', 0, u.Quantity(range(data.shape[0]), unit=u.pix)), ('hi', 1, u.Quantity(range(data.shape[1]), unit=u.s)), ('distance', None, u.Quantity(0, unit=u.cm)), ('time', None, datetime.datetime(2000, 1, 1, 0, 0))]) cube3 = NDCube( data2, wt, missing_axis=[False, False, False, True], extra_coords=[ ('pix', 0, u.Quantity(np.arange(1, data2.shape[0]+1), unit=u.pix) + cube1.extra_coords['pix']['value'][-1]), ('hi', 1, u.Quantity(range(data2.shape[1]), unit=u.s)), ('distance', None, u.Quantity(2, unit=u.cm)), ('time', None, datetime.datetime(2000, 1, 1, 0, 2))]) cube3_with_unit = NDCube( data2, wt, missing_axis=[False, False, False, True], unit=u.m, extra_coords=[ ('pix', 0, u.Quantity(np.arange(1, data2.shape[0]+1), unit=u.pix) + cube1.extra_coords['pix']['value'][-1]), ('hi', 1, u.Quantity(range(data2.shape[1]), unit=u.s)), ('distance', None, u.Quantity(2, unit=u.cm)), ('time', None, datetime.datetime(2000, 1, 1, 0, 2))]) cube3_with_mask = NDCube( data2, wt, missing_axis=[False, False, False, True], mask=np.zeros_like(data2, dtype=bool), extra_coords=[ ('pix', 0, u.Quantity(np.arange(1, data2.shape[0]+1), unit=u.pix) + cube1.extra_coords['pix']['value'][-1]), ('hi', 1, u.Quantity(range(data2.shape[1]), unit=u.s)), ('distance', None, u.Quantity(2, unit=u.cm)), ('time', None, datetime.datetime(2000, 1, 1, 0, 2))]) cube3_with_uncertainty = NDCube( data2, wt, missing_axis=[False, False, False, True], uncertainty=np.sqrt(data2), extra_coords=[ ('pix', 0, u.Quantity(np.arange(1, data2.shape[0]+1), unit=u.pix) + cube1.extra_coords['pix']['value'][-1]), ('hi', 1, u.Quantity(range(data2.shape[1]), unit=u.s)), ('distance', None, u.Quantity(2, unit=u.cm)), ('time', None, datetime.datetime(2000, 1, 1, 0, 2))]) cube3_with_unit_and_uncertainty = NDCube( data2, wt, missing_axis=[False, False, False, True], unit=u.m, uncertainty=np.sqrt(data2), extra_coords=[ ('pix', 0, u.Quantity(np.arange(1, data2.shape[0]+1), unit=u.pix) + cube1.extra_coords['pix']['value'][-1]), ('hi', 1, u.Quantity(range(data2.shape[1]), unit=u.s)), ('distance', None, u.Quantity(2, unit=u.cm)), ('time', None, datetime.datetime(2000, 1, 1, 0, 2))]) # Define some test NDCubeSequences. common_axis = 0 seq = NDCubeSequence(data_list=[cube1, cube3, cube1, cube3], common_axis=common_axis) seq_no_common_axis = NDCubeSequence(data_list=[cube1, cube3, cube1, cube3]) seq_with_units = NDCubeSequence( data_list=[cube1_with_unit, cube3_with_unit, cube1_with_unit, cube3_with_unit], common_axis=common_axis) seq_with_masks = NDCubeSequence( data_list=[cube1_with_mask, cube3_with_mask, cube1_with_mask, cube3_with_mask], common_axis=common_axis) seq_with_unit0 = NDCubeSequence(data_list=[cube1_with_unit, cube3, cube1_with_unit, cube3], common_axis=common_axis) seq_with_mask0 = NDCubeSequence(data_list=[cube1_with_mask, cube3, cube1_with_mask, cube3], common_axis=common_axis) seq_with_uncertainty = NDCubeSequence(data_list=[cube1_with_uncertainty, cube3_with_uncertainty, cube1_with_uncertainty, cube3_with_uncertainty], common_axis=common_axis) seq_with_some_uncertainty = NDCubeSequence( data_list=[cube1_with_uncertainty, cube3, cube1, cube3_with_uncertainty], common_axis=common_axis) seq_with_units_and_uncertainty = NDCubeSequence( data_list=[cube1_with_unit_and_uncertainty, cube3_with_unit_and_uncertainty, cube1_with_unit_and_uncertainty, cube3_with_unit_and_uncertainty], common_axis=common_axis) seq_with_units_and_some_uncertainty = NDCubeSequence( data_list=[cube1_with_unit_and_uncertainty, cube3_with_unit, cube1_with_unit, cube3_with_unit_and_uncertainty], common_axis=common_axis) # Derive some expected data arrays in plot objects. seq_data_stack = np.stack([cube.data for cube in seq_with_masks.data]) seq_mask_stack = np.stack([cube.mask for cube in seq_with_masks.data]) seq_stack = np.ma.masked_array(seq_data_stack, seq_mask_stack) seq_stack_km = np.ma.masked_array( np.stack([(cube.data * cube.unit).to(u.km).value for cube in seq_with_units.data]), seq_mask_stack) seq_data_concat = np.concatenate([cube.data for cube in seq_with_masks.data], axis=common_axis) seq_mask_concat = np.concatenate([cube.mask for cube in seq_with_masks.data], axis=common_axis) seq_concat = np.ma.masked_array(seq_data_concat, seq_mask_concat) seq_concat_km = np.ma.masked_array( np.concatenate([(cube.data * cube.unit).to(u.km).value for cube in seq_with_units.data], axis=common_axis), seq_mask_concat) # Derive expected axis_ranges x_axis_coords = np.array([0.4, 0.8, 1.2, 1.6]).reshape((1, 1, 4)) new_x_axis_coords_shape = u.Quantity(seq.dimensions, unit=u.pix).value.astype(int) new_x_axis_coords_shape[-1] = 1 none_axis_ranges_axis3 = [np.arange(len(seq.data)), np.array([0., 2.]), np.array([0., 1.5, 3.]), np.tile(np.array(x_axis_coords), new_x_axis_coords_shape)] # Derive expected extents seq_axis1_lim_deg = [0.49998731, 0.99989848] seq_axis1_lim_arcsec = [(axis1_xlim*u.deg).to(u.arcsec).value for axis1_xlim in seq_axis1_lim_deg] seq_axis2_lim_m = [seq[:, :, :, 0].data[0].axis_world_coords()[-1][0].value, seq[:, :, :, 0].data[0].axis_world_coords()[-1][-1].value] @pytest.mark.parametrize("test_input, test_kwargs, expected_values", [ (seq[:, 0, 0, 0], {}, (np.arange(len(seq.data)), np.array([1, 11, 1, 11]), "meta.obs.sequence [None]", "Data [None]", (0, len(seq[:, 0, 0, 0].data)-1), (min([cube.data.min() for cube in seq[:, 0, 0, 0].data]), max([cube.data.max() for cube in seq[:, 0, 0, 0].data])))), (seq_with_units[:, 0, 0, 0], {}, (np.arange(len(seq_with_units.data)), np.array([1, 0.011, 1, 0.011]), "meta.obs.sequence [None]", "Data [km]", (0, len(seq_with_units[:, 0, 0, 0].data)-1), (min([(cube.data * cube.unit).to(seq_with_units[:, 0, 0, 0].data[0].unit).value for cube in seq_with_units[:, 0, 0, 0].data]), max([(cube.data * cube.unit).to(seq_with_units[:, 0, 0, 0].data[0].unit).value for cube in seq_with_units[:, 0, 0, 0].data])))), (seq_with_uncertainty[:, 0, 0, 0], {}, (np.arange(len(seq_with_uncertainty.data)), np.array([1, 11, 1, 11]), "meta.obs.sequence [None]", "Data [None]", (0, len(seq_with_uncertainty[:, 0, 0, 0].data)-1), (min([cube.data for cube in seq_with_uncertainty[:, 0, 0, 0].data]), max([cube.data for cube in seq_with_uncertainty[:, 0, 0, 0].data])))), (seq_with_units_and_uncertainty[:, 0, 0, 0], {}, (np.arange(len(seq_with_units_and_uncertainty.data)), np.array([1, 0.011, 1, 0.011]), "meta.obs.sequence [None]", "Data [km]", (0, len(seq_with_units_and_uncertainty[:, 0, 0, 0].data)-1), (min([(cube.data*cube.unit).to(seq_with_units_and_uncertainty[:, 0, 0, 0].data[0].unit).value for cube in seq_with_units_and_uncertainty[:, 0, 0, 0].data]), max([(cube.data*cube.unit).to(seq_with_units_and_uncertainty[:, 0, 0, 0].data[0].unit).value for cube in seq_with_units_and_uncertainty[:, 0, 0, 0].data])))), (seq_with_units_and_some_uncertainty[:, 0, 0, 0], {}, (np.arange(len(seq_with_units_and_some_uncertainty.data)), np.array([1, 0.011, 1, 0.011]), "meta.obs.sequence [None]", "Data [km]", (0, len(seq_with_units_and_some_uncertainty[:, 0, 0, 0].data)-1), (min([(cube.data*cube.unit).to( seq_with_units_and_some_uncertainty[:, 0, 0, 0].data[0].unit).value for cube in seq_with_units_and_some_uncertainty[:, 0, 0, 0].data]), max([(cube.data*cube.unit).to( seq_with_units_and_some_uncertainty[:, 0, 0, 0].data[0].unit).value for cube in seq_with_units_and_some_uncertainty[:, 0, 0, 0].data])))), (seq[:, 0, 0, 0], {"axes_coordinates": "distance"}, ((seq.sequence_axis_extra_coords["distance"]), np.array([1, 11, 1, 11]), "distance [{0}]".format(seq.sequence_axis_extra_coords["distance"].unit), "Data [None]", (min(seq.sequence_axis_extra_coords["distance"].value), max(seq.sequence_axis_extra_coords["distance"].value)), (min([cube.data.min() for cube in seq[:, 0, 0, 0].data]), max([cube.data.max() for cube in seq[:, 0, 0, 0].data])))), (seq[:, 0, 0, 0], {"axes_coordinates": u.Quantity(np.arange(len(seq.data)), unit=u.cm), "axes_units": u.km}, (u.Quantity(np.arange(len(seq.data)), unit=u.cm).to(u.km), np.array([1, 11, 1, 11]), "meta.obs.sequence [km]", "Data [None]", (min((u.Quantity(np.arange(len(seq.data)), unit=u.cm).to(u.km).value)), max((u.Quantity(np.arange(len(seq.data)), unit=u.cm).to(u.km).value))), (min([cube.data.min() for cube in seq[:, 0, 0, 0].data]), max([cube.data.max() for cube in seq[:, 0, 0, 0].data])))) ]) def test_sequence_plot_1D_plot(test_input, test_kwargs, expected_values): # Unpack expected values expected_x_data, expected_y_data, expected_xlabel, expected_ylabel, \ expected_xlim, expected_ylim = expected_values # Run plot method output = test_input.plot(**test_kwargs) # Check values are correct assert isinstance(output, matplotlib.axes.Axes) np.testing.assert_array_equal(output.lines[0].get_xdata(), expected_x_data) np.testing.assert_array_equal(output.lines[0].get_ydata(), expected_y_data) assert output.axes.get_xlabel() == expected_xlabel assert output.axes.get_ylabel() == expected_ylabel output_xlim = output.axes.get_xlim() assert output_xlim[0] <= expected_xlim[0] assert output_xlim[1] >= expected_xlim[1] output_ylim = output.axes.get_ylim() assert output_ylim[0] <= expected_ylim[0] assert output_ylim[1] >= expected_ylim[1] @pytest.mark.parametrize("test_input, test_kwargs, expected_values", [ (seq[:, :, 0, 0], {}, (np.array([0.49998731, 0.99989848, 0.49998731, 0.99989848, 0.49998731, 0.99989848, 0.49998731, 0.99989848]), np.array([1, 2, 11, 22, 1, 2, 11, 22]), "{0} [{1}]".format(seq[:, :, 0, 0].cube_like_world_axis_physical_types[common_axis], "deg"), "Data [None]", tuple(seq_axis1_lim_deg), (min([cube.data.min() for cube in seq[:, :, 0, 0].data]), max([cube.data.max() for cube in seq[:, :, 0, 0].data])))), (seq_with_units[:, :, 0, 0], {}, (np.array([0.49998731, 0.99989848, 0.49998731, 0.99989848, 0.49998731, 0.99989848, 0.49998731, 0.99989848]), np.array([1, 2, 0.011, 0.022, 1, 2, 0.011, 0.022]), "{0} [{1}]".format(seq[:, :, 0, 0].cube_like_world_axis_physical_types[common_axis], "deg"), "Data [km]", tuple(seq_axis1_lim_deg), (min([min((cube.data * cube.unit).to(u.km).value) for cube in seq_with_units[:, :, 0, 0].data]), max([max((cube.data * cube.unit).to(u.km).value) for cube in seq_with_units[:, :, 0, 0].data])))), (seq_with_uncertainty[:, :, 0, 0], {}, (np.array([0.49998731, 0.99989848, 0.49998731, 0.99989848, 0.49998731, 0.99989848, 0.49998731, 0.99989848]), np.array([1, 2, 11, 22, 1, 2, 11, 22]), "{0} [{1}]".format( seq_with_uncertainty[:, :, 0, 0].cube_like_world_axis_physical_types[ common_axis], "deg"), "Data [None]", tuple(seq_axis1_lim_deg), (min([cube.data.min() for cube in seq_with_uncertainty[:, :, 0, 0].data]), max([cube.data.max() for cube in seq_with_uncertainty[:, :, 0, 0].data])))), (seq_with_some_uncertainty[:, :, 0, 0], {}, (np.array([0.49998731, 0.99989848, 0.49998731, 0.99989848, 0.49998731, 0.99989848, 0.49998731, 0.99989848]), np.array([1, 2, 11, 22, 1, 2, 11, 22]), "{0} [{1}]".format( seq_with_some_uncertainty[:, :, 0, 0].cube_like_world_axis_physical_types[ common_axis], "deg"), "Data [None]", tuple(seq_axis1_lim_deg), (min([cube.data.min() for cube in seq_with_some_uncertainty[:, :, 0, 0].data]), max([cube.data.max() for cube in seq_with_some_uncertainty[:, :, 0, 0].data])))), (seq_with_units_and_uncertainty[:, :, 0, 0], {}, (np.array([0.49998731, 0.99989848, 0.49998731, 0.99989848, 0.49998731, 0.99989848, 0.49998731, 0.99989848]), np.array([1, 2, 0.011, 0.022, 1, 2, 0.011, 0.022]), "{0} [{1}]".format( seq_with_units_and_uncertainty[:, :, 0, 0].cube_like_world_axis_physical_types[ common_axis], "deg"), "Data [km]", tuple(seq_axis1_lim_deg), (min([min((cube.data * cube.unit).to(u.km).value) for cube in seq_with_units[:, :, 0, 0].data]), max([max((cube.data * cube.unit).to(u.km).value) for cube in seq_with_units[:, :, 0, 0].data])))), (seq_with_units_and_some_uncertainty[:, :, 0, 0], {}, (np.array([0.49998731, 0.99989848, 0.49998731, 0.99989848, 0.49998731, 0.99989848, 0.49998731, 0.99989848]), np.array([1, 2, 0.011, 0.022, 1, 2, 0.011, 0.022]), "{0} [{1}]".format( seq_with_units_and_some_uncertainty[:, :, 0, 0].cube_like_world_axis_physical_types[ common_axis], "deg"), "Data [km]", tuple(seq_axis1_lim_deg), (min([min((cube.data * cube.unit).to(u.km).value) for cube in seq_with_units[:, :, 0, 0].data]), max([max((cube.data * cube.unit).to(u.km).value) for cube in seq_with_units[:, :, 0, 0].data])))), (seq[:, :, 0, 0], {"axes_coordinates": "pix"}, (seq[:, :, 0, 0].common_axis_extra_coords["pix"].value, np.array([1, 2, 11, 22, 1, 2, 11, 22]), "pix [pix]", "Data [None]", (min(seq[:, :,
import mmd_scripting.core.nuthouse01_core as core import mmd_scripting.core.nuthouse01_pmx_parser as pmxlib import mmd_scripting.core.nuthouse01_pmx_struct as pmxstruct _SCRIPT_VERSION = "Script version: Nuthouse01 - v0.6.01 - 7/12/2021" # This code is free to use and re-distribute, but I cannot be held responsible for damages that it may or may not cause. ##################### # todo: once help text is properly filled out this will be gui-compatible helptext = '''================================================= asdfasdf ''' """ fragment detection algorithm: there is a very slight airgap between all of the pieces, but each individual fragment is airtight. so the algorithm could look for vertices with exactly the same xyz as another vert to understand that they are in the same fragment! gonna be glacially slow tho, unless i do the hash trick BRUTE FORCE ALGORITHM, no assumptions or optimizations 1. pick a vertex A that hasn't been used yet 2. create a new "fragment set" and add A to it 3. note the size of the "fragment set" 4. find all faces that include any vertex in the "fragment set", whenever i find one, add all verts that it includes to the "fragment set" as well 5. find all vertices that have the same exact coordinates as any vertex in the "fragment set", and add them to the "fragment set" 6. if the size of the fragment set is greater now than it was at step 3, repeat steps 3-6. otherwise, go to step 1. observation: clustering! all verts of a fragment are contiguous, all faces of a fragment are contiguous. observation: the first faces are built out of the first vertices, the second faces are built out of the second vertices, etc optimization: when i flood into a face or vert, everything between that location and the start of the fragment is part of the fragment optimization: when looking thru "all faces and/or verts", only scan forward X locations from the highest-index face/vert i have found so far """ MASS_FACTOR = 10 def dist_to_nearest_vertex(point, vert_set, pmx): distance_per_vert = [] for v_id in vert_set: v = pmx.verts[v_id] delta = [a - b for a, b in zip(point, v.pos)] # [x-x, y-y, z-z] dist = core.my_euclidian_distance(delta) distance_per_vert.append(dist) return min(distance_per_vert) def dist_to_nearest_point_on_mesh_surface(point, vert_set, pmx, face_set): # TODO: i dont wanna slog thru the math and figure out how to do this # how do i calculate the distance from a point to the nearest point on the triangle-based surface of the fragment it is inside? # for each triangle: # calcualte a plane, # calculate the closest point on that plane, # ask "is this point inside this triangle?" (HOW?), # if yes then cool! save the dist to this point, # if no then https://stackoverflow.com/questions/10983872/distance-from-a-point-to-a-polygon, save the dist to the nearest point on the perimiter of the triangle, # then you have created a list of the distances from the given point to the nearest point on the face or perimeter of every triangle, # so return the minimum distance from that list return 0 def main(moreinfo=True): # PROBLEM: the assumption of locality was not correct! verts for a chunk are not clustered! (i think?) # prompt PMX name core.MY_PRINT_FUNC("Please enter name of PMX input file:") input_filename_pmx = core.MY_FILEPROMPT_FUNC("PMX file", ".pmx") pmx = pmxlib.read_pmx(input_filename_pmx, moreinfo=moreinfo) # coordinates are stored as list[x, y, z], convert this --> tuple --> hash for much faster comparing vert_coord_hashes = [hash(tuple(v.pos)) for v in pmx.verts] list_of_vert_sets = [] list_of_face_sets = [] list_of_bone_indices = [] list_of_rigidbody_indices = [] # it's simpler to start with a full set of everything used, and then remove things as they are used # and its no less efficient all_unused_verts = set(list(range(len(pmx.verts)))) start_vert = 0 start_face = 0 # continue looping for as long as there are verts not in a fragment while all_unused_verts: # 1. start a new sets for the vertices and faces vert_set = set() face_set = set() # 2. pick a vertex that hasn't been used yet and add it to the set, ez start_vert = min(all_unused_verts) print("start@%d:: " % start_vert, end="") vert_set.add(start_vert) ''' # 2b. optimization: a fragment is guaranteed to have at least 4 faces (to make a closed 3d solid) and therefore at least 4 verts # can i safely assume that they are "sharp" corners and therefore there are 12 verts? for i in range(3): vert_set.add(start_vert + i) # also, init the faces set with the minimum of 4 faces, and add any verts included in those faces to the vert set for i in range(1): face_set.add(start_face + i) for v in pmx.faces[start_face + i]: # for each vert in this face, vert_set.add(v) # add this vert to the vert set # guarantee that it is contiguous from start_vert to the highest index that was in the faces vert_set = set(list(range(start_vert, max(vert_set)+1))) # now i have initialized the set with everything i know is guarnateed part of the fragment highest_known_vert = max(vert_set) highest_known_face = max(face_set) ''' # begin looping & flooding until i don't detect any more while True: # 3. note the number of verts collected so far set_size_A = len(vert_set) # 4. find all faces that include any vertex in the "fragment set", # whenever i find one, add all verts that it includes to the "fragment set" as well # zero-assumption brute-force method: for f_id in range(len(pmx.faces)): face = pmx.faces[f_id] if face[0] in vert_set or face[1] in vert_set or face[2] in vert_set: # we got a hit! face_set.add(f_id) vert_set.add(face[0]) vert_set.add(face[1]) vert_set.add(face[2]) ''' # optimization: scan only faces index 'highest_known_face+1' thru 'highest_known_face'+LOOKAHEAD # because 0 thru start_face is guaranteed to not be part of the group # and start_face thru highest_known_face is already guaranteed to be part of the group # if chunks are bigger than LOOKAHEAD, then it's not guaranteed to succeed or fail, could do either for f_id in range(highest_known_face+1, min(highest_known_face+LOOKAHEAD, len(pmx.faces))): face = pmx.faces[f_id] if face[0] in vert_set or face[1] in vert_set or face[2] in vert_set: # we got a hit! face_set.add(f_id) vert_set.add(face[0]) vert_set.add(face[1]) vert_set.add(face[2]) # optimization: if this is farther than what i thought was the end, then everything before it should be added too if f_id > highest_known_face: for x in range(highest_known_face+1, f_id): face_set.add(x) vert_set.add(pmx.faces[x][0]) vert_set.add(pmx.faces[x][1]) vert_set.add(pmx.faces[x][2]) highest_known_face = f_id ''' set_size_B = len(vert_set) # update the set of vertex coord hashes for easier comparing vert_set_hashes = set([vert_coord_hashes[i] for i in vert_set]) # 5. find all vertices that have the same exact coordinates as any vertex in the "fragment set", # then and add them to the "fragment set" # zero-assumption brute-force method: for v_id in range(len(vert_coord_hashes)): vert_hash = vert_coord_hashes[v_id] if vert_hash in vert_set_hashes: # we got a hit! vert_set.add(v_id) ''' # optimization: scan only verts index 'highest_known_vert+1' thru 'highest_known_vert'+LOOKAHEAD # because 0 thru start_vert is guaranteed to not be part of the group # and start_vert thru highest_known_vert is already guaranteed to be part of the group # if chunks are bigger than LOOKAHEAD, then it's not guaranteed to succeed or fail, could do either for v_id in range(highest_known_vert+1, min(highest_known_vert+LOOKAHEAD, len(pmx.verts))): vert_hash = vert_coord_hashes[v_id] if vert_hash in vert_set_hashes: # we got a hit! vert_set.add(v_id) # optimization: if this is farther than what i thought was the end, then everything before it should be added too if v_id > highest_known_vert: for x in range(highest_known_vert+1, v_id): vert_set.add(x) highest_known_vert = v_id ''' set_size_C = len(vert_set) # print("+%d +%d, " % (set_size_B - set_size_A, set_size_C - set_size_B), end="") print("+%d, " % (set_size_C - set_size_A), end="") # 6. if the number of verts did not change, we are done if set_size_C == set_size_A: break pass print("final size: %d verts, %d faces" % (len(vert_set), len(face_set))) # print("min=%d, max=%d, contiguous=%s" % (min(vert_set), max(vert_set), str(bool(max(vert_set)-min(vert_set)==(len(vert_set)-1))))) # 7. now i have a complete fragment in vert_set and face_set !! :) list_of_vert_sets.append(vert_set) list_of_face_sets.append(face_set) # remove all "used" verts from the "unused" set all_unused_verts.difference_update(vert_set) # loop & populate another fragment pass # done with identifying all fragments! # double-check that all vertices got sorted into one and only one fragment assert sum([len(vs) for vs in list_of_vert_sets]) == len(pmx.verts) temp = set() for vs in list_of_vert_sets: temp.update(vs) assert len(temp) == len(pmx.verts) # double-check that all faces got sorted into one and only one fragment assert sum([len(fs) for fs in list_of_face_sets]) == len(pmx.faces) temp = set() for fs in list_of_face_sets: temp.update(fs) assert len(temp) == len(pmx.faces) print("") print("Identified %d discrete fragments!" % (len(list_of_vert_sets),)) # BONES AND WEIGHTS for fragnum in range(len(list_of_vert_sets)): # name newbone_name = "fragment%d" % fragnum # position: average of all vertices in the fragment? sure why not # TODO is there a "better" way of calculating the average/centroid/center of mass? idk newbone_pos = [0,0,0] for v_id in list_of_vert_sets[fragnum]: # accumulate the XYZ for each vertex in the fragment newbone_pos[0] += pmx.verts[v_id].pos[0] newbone_pos[1] += pmx.verts[v_id].pos[1] newbone_pos[2] += pmx.verts[v_id].pos[2] # divide by the number of verts in the fragment to get the average newbone_pos[0] /= len(list_of_vert_sets[fragnum]) newbone_pos[1] /= len(list_of_vert_sets[fragnum]) newbone_pos[2] /= len(list_of_vert_sets[fragnum]) # create the new bone object newbone_obj = pmxstruct.PmxBone( name_jp=newbone_name, name_en=newbone_name, pos=newbone_pos, parent_idx=0, deform_layer=0, deform_after_phys=False, has_rotate=True, has_translate=True, has_visible=True, has_enabled=True, has_ik=False, tail_usebonelink=False, tail=[0, 0, 0], inherit_rot=False, inherit_trans=False, has_fixedaxis=False, has_localaxis=False, has_externalparent=False, ) # note the index
automatically converts integer inputs to float, while TensorFlow's # reduce_mean does not. For integer inputs, we emulate TensorFlow's behavior # using np.sum and truncating division. np_sum = np.sum(x, axis=reduction_axes, keepdims=keepdims) if np.issubdtype(x.dtype, np.integer): return np_sum // count return np_sum / count def testAxesType(self): for dtype in [dtypes.int64, dtypes.int32]: with self.test_session(use_gpu=True) as sess: v = math_ops.reduce_mean([0, 0], constant_op.constant(0, dtype=dtype)) tf_v = sess.run(v) self.assertAllEqual(tf_v, 0) def testInfinity(self): for dtype in [np.float32, np.float64]: for special_value_x in [-np.inf, np.inf]: for special_value_y in [-np.inf, np.inf]: np_arr = np.array([special_value_x, special_value_y]).astype(dtype) self._compareAll(np_arr, None) def testInt32(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.int32) self._compareAllAxes(np_arr) def testFloat32(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.float32) self._compareAllAxes(np_arr) def testFloat64(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.float64) self._compareAllAxes(np_arr) def testComplex64(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.complex64) self._compareAllAxes(np_arr) def testComplex128(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.complex128) self._compareAllAxes(np_arr) def testGradient(self): s = [2, 3, 4, 2] for dtype in [dtypes.float32, dtypes.float64]: x = self._makeIncremental(s, dtype) self._compareGradientAxes(x, rtol=1e-3, atol=1e-3) def testEmptyGradients(self): with self.test_session(use_gpu=True): x = array_ops.zeros([0, 3]) y = math_ops.reduce_mean(x, [1]) error = gradient_checker.compute_gradient_error(x, [0, 3], y, [0]) self.assertEqual(error, 0) def testDegenerate(self): with self.test_session(use_gpu=True): for dtype in (dtypes.float16, dtypes.float32, dtypes.float64): # A large number is needed to get Eigen to die x = array_ops.zeros((0, 9938), dtype=dtype) y = math_ops.reduce_mean(x, [0]).eval() self.assertEqual(y.shape, (9938,)) self.assertTrue(np.all(np.isnan(y))) class ProdReductionTest(BaseReductionTest): def _tf_reduce(self, x, reduction_axes, keepdims): return math_ops.reduce_prod(x, reduction_axes, keepdims) def _np_reduce(self, x, reduction_axes, keepdims): if isinstance(reduction_axes, list) or isinstance(reduction_axes, np.ndarray): reduction_axes = tuple(reduction_axes) return np.prod(x, axis=reduction_axes, keepdims=keepdims) def testAxesType(self): for dtype in [dtypes.int64, dtypes.int32]: with self.test_session(use_gpu=True) as sess: v = math_ops.reduce_prod([0, 0], constant_op.constant(0, dtype=dtype)) tf_v = sess.run(v) self.assertAllEqual(tf_v, 0) def testInfinity(self): for dtype in [np.float32, np.float64]: for special_value_x in [-np.inf, np.inf]: for special_value_y in [-np.inf, np.inf]: np_arr = np.array([special_value_x, special_value_y]).astype(dtype) self._compareAll(np_arr, None) def testInt32(self): # Numpy automatically upgrades the type of np.prod from int32 to int64, so # Numpy does not overflow an int32 np.prod while TensorFlow does. To avoid # overflow, divide the incremental int32 array by 2. for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.int32) / 2 self._compareAllAxes(np_arr) def testFloat32(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.float32) self._compareAllAxes(np_arr) def testFloat64(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.float64) self._compareAllAxes(np_arr) def testComplex64(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.complex64) self._compareAllAxes(np_arr) def testComplex128(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.complex128) self._compareAllAxes(np_arr) def testGradientWithZeros(self): s = [2, 3, 4, 2] x = self._makeIncremental(s, dtypes.float32) / 20. # No zeros in input self._compareGradientAxes(x, rtol=1e-3, atol=1e-3) # Zero at beginning x1 = x.copy() x1[:, :, 0, :] = 0 self._compareGradientAxes(x1, rtol=1e-3, atol=1e-3) # Zero at end x2 = x.copy() x2[:, :, -1, :] = 0 self._compareGradientAxes(x2, rtol=1e-3, atol=1e-3) # Zero in middle x3 = x.copy() x3[:, :, 2, :] = 0 self._compareGradientAxes(x3, rtol=1e-3, atol=1e-3) # All zeros x4 = x.copy() x4[:, :, :, :] = 0 self._compareGradientAxes(x4, rtol=1e-3, atol=1e-3) def testEmptyGradients(self): with self.test_session(use_gpu=True): x = array_ops.zeros([0, 3]) y = math_ops.reduce_prod(x, [1]) error = gradient_checker.compute_gradient_error(x, [0, 3], y, [0]) self.assertEqual(error, 0) def testDegenerate(self): with self.test_session(use_gpu=True): for dtype in (dtypes.float16, dtypes.float32, dtypes.float64): # A large number is needed to get Eigen to die x = array_ops.zeros((0, 9938), dtype=dtype) y = math_ops.reduce_prod(x, [0]) self.assertAllEqual(y.eval(), np.ones(9938)) class MinReductionTest(test.TestCase): def _compare(self, x, reduction_axes, keepdims, use_gpu=False): np_ans = x if reduction_axes is None: np_ans = np.amin(np_ans, keepdims=keepdims) else: for ra in reduction_axes[::-1]: np_ans = np.amin(np_ans, axis=ra, keepdims=keepdims) with self.test_session(use_gpu=use_gpu): if reduction_axes is not None: reduction_axes = np.array(reduction_axes).astype(np.int32) tf_ans = math_ops.reduce_min(x, reduction_axes, keepdims) out = tf_ans.eval() self.assertAllClose(np_ans, out) self.assertShapeEqual(np_ans, tf_ans) def _compareAll(self, x, reduction_axes): self._compare(x, reduction_axes, False, use_gpu=True) self._compare(x, reduction_axes, False, use_gpu=False) self._compare(x, reduction_axes, True, use_gpu=True) self._compare(x, reduction_axes, True, use_gpu=False) def testAxesType(self): for dtype in [dtypes.int64, dtypes.int32]: with self.test_session(use_gpu=True) as sess: v = math_ops.reduce_min([0, 0], constant_op.constant(0, dtype=dtype)) tf_v = sess.run(v) self.assertAllEqual(tf_v, 0) def testInfinity(self): for dtype in [np.float32, np.float64]: for special_value_x in [-np.inf, np.inf]: for special_value_y in [-np.inf, np.inf]: np_arr = np.array([special_value_x, special_value_y]).astype(dtype) self._compareAll(np_arr, None) def testFloatReduce3D(self): # Create a 3D array of floats and reduce across all possible # dimensions np_arr = np.arange(1, 31).reshape([2, 3, 5]).astype(np.float32) self._compareAll(np_arr, None) self._compareAll(np_arr, []) self._compareAll(np_arr, [0]) self._compareAll(np_arr, [1]) self._compareAll(np_arr, [2]) self._compareAll(np_arr, [0, 1]) self._compareAll(np_arr, [1, 2]) self._compareAll(np_arr, [0, 2]) self._compareAll(np_arr, [0, 1, 2]) def testDoubleReduce3D(self): # Create a 3D array of doubles and reduce across all possible # dimensions np_arr = np.arange(1, 31).reshape([2, 3, 5]).astype(np.float64) self._compareAll(np_arr, None) self._compareAll(np_arr, []) self._compareAll(np_arr, [0]) self._compareAll(np_arr, [1]) self._compareAll(np_arr, [2]) self._compareAll(np_arr, [0, 1]) self._compareAll(np_arr, [1, 2]) self._compareAll(np_arr, [0, 2]) self._compareAll(np_arr, [0, 1, 2]) def testGradient(self): s = [2, 3, 4, 2] x = np.arange(1.0, 49.0).reshape(s).astype(np.float64) with self.test_session(): t = ops.convert_to_tensor(x) su = math_ops.reduce_min(t, [1, 2]) jacob_t, jacob_n = gradient_checker.compute_gradient( t, s, su, [2, 2], x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-8, atol=1e-8) def testGradient2(self): s = [2, 3, 4, 2] x = np.arange(1.0, 49.0).reshape(s).astype(np.float64) with self.test_session(): t = ops.convert_to_tensor(x) su = math_ops.reduce_min(t, [1]) jacob_t, jacob_n = gradient_checker.compute_gradient( t, s, su, [2, 4, 2], x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-8, atol=1e-8) def testGradient3(self): s = [2, 3, 4, 2] x = np.arange(1.0, 49.0).reshape(s).astype(np.float64) with self.test_session(): t = ops.convert_to_tensor(x) su = math_ops.reduce_min(t, [2]) jacob_t, jacob_n = gradient_checker.compute_gradient( t, s, su, [2, 3, 2], x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-8, atol=1e-8) def testGradient4(self): s = [2, 3, 4, 2] x = np.arange(1.0, 49.0).reshape(s).astype(np.float64) with self.test_session(): t = ops.convert_to_tensor(x) su = math_ops.reduce_min(t) jacob_t, jacob_n = gradient_checker.compute_gradient( t, s, su, [1], x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-8, atol=1e-8) def testEmptyGradients(self): with self.test_session(): x = array_ops.zeros([0, 3]) y = math_ops.reduce_min(x, [1]) error = gradient_checker.compute_gradient_error(x, [0, 3], y, [0]) self.assertEqual(error, 0) class MaxReductionTest(test.TestCase): def _compare(self, x, reduction_axes, keepdims, use_gpu=False): np_ans = x if reduction_axes is None: np_ans = np.amax(np_ans, keepdims=keepdims) else: for ra in reduction_axes[::-1]: np_ans = np.amax(np_ans, axis=ra, keepdims=keepdims) with self.test_session(use_gpu=use_gpu): if reduction_axes is not None: reduction_axes = np.array(reduction_axes).astype(np.int32) tf_ans = math_ops.reduce_max(x, reduction_axes, keepdims) out = tf_ans.eval() self.assertAllClose(np_ans, out) self.assertShapeEqual(np_ans, tf_ans) def _compareAll(self, x, reduction_axes): self._compare(x, reduction_axes, False, use_gpu=True) self._compare(x, reduction_axes, False, use_gpu=False) self._compare(x, reduction_axes, True, use_gpu=True) self._compare(x, reduction_axes, True, use_gpu=False) def testAxesType(self): for dtype in [dtypes.int64, dtypes.int32]: with self.test_session(use_gpu=True) as sess: v = math_ops.reduce_max([0, 0], constant_op.constant(0, dtype=dtype)) tf_v = sess.run(v) self.assertAllEqual(tf_v, 0) def testInfinity(self): for dtype in [np.float32, np.float64]: for special_value_x in [-np.inf, np.inf]: for special_value_y in [-np.inf, np.inf]: np_arr = np.array([special_value_x, special_value_y]).astype(dtype) self._compareAll(np_arr, None) def testInt64Reduce3D(self): # Create a 3D array of int64s and reduce across all possible # dimensions np_arr = np.arange(-31, -1).reshape([2, 3, 5]).astype(np.int64) self._compareAll(np_arr, None) self._compareAll(np_arr, []) self._compareAll(np_arr, [0]) self._compareAll(np_arr, [1]) self._compareAll(np_arr, [2]) self._compareAll(np_arr, [0, 1]) self._compareAll(np_arr, [1, 2]) self._compareAll(np_arr, [0, 2]) self._compareAll(np_arr, [0, 1, 2]) def testFloatReduce3D(self): # Create a 3D array of floats and reduce across all possible # dimensions np_arr = np.arange(-31, -1).reshape([2, 3, 5]).astype(np.float32) self._compareAll(np_arr, None) self._compareAll(np_arr, []) self._compareAll(np_arr, [0]) self._compareAll(np_arr, [1]) self._compareAll(np_arr, [2]) self._compareAll(np_arr, [0, 1]) self._compareAll(np_arr, [1, 2]) self._compareAll(np_arr, [0, 2]) self._compareAll(np_arr, [0, 1, 2]) def testDoubleReduce3D(self): # Create a 3D array of doubles and reduce across all possible # dimensions np_arr = np.arange(-31, -1).reshape([2, 3, 5]).astype(np.float64) self._compareAll(np_arr, None) self._compareAll(np_arr, []) self._compareAll(np_arr, [0]) self._compareAll(np_arr, [1]) self._compareAll(np_arr, [2]) self._compareAll(np_arr, [0, 1]) self._compareAll(np_arr, [1, 2]) self._compareAll(np_arr, [0, 2]) self._compareAll(np_arr, [0, 1, 2]) def testGradient(self): s = [2, 3, 4, 2] x = np.arange(-49.0, -1.0).reshape(s).astype(np.float64) with self.test_session(): t = ops.convert_to_tensor(x) su = math_ops.reduce_max(t, [1, 2]) jacob_t, jacob_n = gradient_checker.compute_gradient( t, s, su, [2, 2], x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-8, atol=1e-8) def testGradient2(self): s = [2, 3, 4, 2] x = np.arange(-49.0, -1.0).reshape(s).astype(np.float64) with self.test_session(): t = ops.convert_to_tensor(x) su = math_ops.reduce_max(t, [1]) jacob_t, jacob_n = gradient_checker.compute_gradient( t, s, su, [2, 4, 2], x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-8, atol=1e-8) def testGradient3(self): s = [2, 3, 4, 2] x = np.arange(-49.0, -1.0).reshape(s).astype(np.float64) with self.test_session(): t = ops.convert_to_tensor(x)
from __future__ import division import torch import torch.nn.functional as F import numpy as np def xywh2xyxy(x): # Convert bounding box format from [x, y, w, h] to [x1, y1, x2, y2] y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x) y[:, 0] = x[:, 0] - x[:, 2] / 2 y[:, 1] = x[:, 1] - x[:, 3] / 2 y[:, 2] = x[:, 0] + x[:, 2] / 2 y[:, 3] = x[:, 1] + x[:, 3] / 2 return y def bbox_ious(boxes1, boxes2): """ Compute IOU between all boxes from ``boxes1`` with all boxes from ``boxes2``. Args: boxes1 (torch.Tensor): List of bounding boxes boxes2 (torch.Tensor): List of bounding boxes Note: List format: [[xc, yc, w, h],...] """ b1_len = boxes1.size(0) b2_len = boxes2.size(0) b1x1, b1y1 = (boxes1[:, :2] - (boxes1[:, 2:4] / 2)).split(1, 1) b1x2, b1y2 = (boxes1[:, :2] + (boxes1[:, 2:4] / 2)).split(1, 1) b2x1, b2y1 = (boxes2[:, :2] - (boxes2[:, 2:4] / 2)).split(1, 1) b2x2, b2y2 = (boxes2[:, :2] + (boxes2[:, 2:4] / 2)).split(1, 1) dx = (b1x2.min(b2x2.t()) - b1x1.max(b2x1.t())).clamp(min=0) dy = (b1y2.min(b2y2.t()) - b1y1.max(b2y1.t())).clamp(min=0) intersections = dx * dy areas1 = (b1x2 - b1x1) * (b1y2 - b1y1) areas2 = (b2x2 - b2x1) * (b2y2 - b2y1) unions = (areas1 + areas2.t()) - intersections return intersections / unions def bbox_iou_xyxy_numpy(boxes1, boxes2): """ :param boxes1: boxes1和boxes2的shape可以不相同,但是需要满足广播机制 :param boxes2: 且需要保证最后一维为坐标维,以及坐标的存储结构为(xmin, ymin, xmax, ymax) :return: 返回boxes1和boxes2的IOU,IOU的shape为boxes1和boxes2广播后的shape[:-1] """ boxes1_area = (boxes1[..., 2] - boxes1[..., 0]) * (boxes1[..., 3] - boxes1[..., 1]) boxes2_area = (boxes2[..., 2] - boxes2[..., 0]) * (boxes2[..., 3] - boxes2[..., 1]) # 计算出boxes1和boxes2相交部分的左上角坐标、右下角坐标 left_up = np.maximum(boxes1[..., :2], boxes2[..., :2]) right_down = np.minimum(boxes1[..., 2:], boxes2[..., 2:]) # 计算出boxes1和boxes2相交部分的宽、高 # 因为两个boxes没有交集时,(right_down - left_up) < 0,所以maximum可以保证当两个boxes没有交集时,它们之间的iou为0 inter_section = np.maximum(right_down - left_up, 0.0) inter_area = inter_section[..., 0] * inter_section[..., 1] union_area = boxes1_area + boxes2_area - inter_area IOU = 1.0 * inter_area / union_area return IOU def bbox_iou_xywh_numpy(boxes1, boxes2): """ :param boxes1: boxes1和boxes2的shape可以不相同,但是需要满足广播机制 :param boxes2: 且需要保证最后一维为坐标维,以及坐标的存储结构为(x, y, w, h) :return: 返回boxes1和boxes2的IOU,IOU的shape为boxes1和boxes2广播后的shape[:-1] """ #tranform the xywh to xyxy x1 = boxes1[..., 0:1] - boxes1[..., 2:3]/2 y1 = boxes1[..., 1:2] - boxes1[..., 3:4]/2 x1_2 = boxes1[..., 0:1] + boxes1[..., 2:3]/2 y1_2 = boxes1[..., 1:2] + boxes1[..., 3:4]/2 boxes1 = np.concatenate([x1, y1, x1_2, y1_2], axis=-1) x2 = boxes2[..., 0:1] - boxes2[..., 2:3]/2 y2 = boxes2[..., 1:2] - boxes2[..., 3:4]/2 x2_2 = boxes2[..., 0:1] + boxes2[..., 2:3]/2 y2_2 = boxes2[..., 1:2] + boxes2[..., 3:4]/2 boxes2 = np.concatenate([x2, y2, x2_2, y2_2], axis=-1) boxes1_area = (boxes1[..., 2] - boxes1[..., 0]) * (boxes1[..., 3] - boxes1[..., 1]) boxes2_area = (boxes2[..., 2] - boxes2[..., 0]) * (boxes2[..., 3] - boxes2[..., 1]) # 计算出boxes1和boxes2相交部分的左上角坐标、右下角坐标 left_up = np.maximum(boxes1[..., None, :2], boxes2[..., :2]) right_down = np.minimum(boxes1[..., None, 2:], boxes2[..., 2:]) # 计算出boxes1和boxes2相交部分的宽、高 # 因为两个boxes没有交集时,(right_down - left_up) < 0,所以maximum可以保证当两个boxes没有交集时,它们之间的iou为0 inter_section = np.maximum(right_down - left_up, 0.0) inter_area = inter_section[..., 0] * inter_section[..., 1] union_area = boxes1_area[:, None] + boxes2_area - inter_area IOU = 1.0 * inter_area / union_area return IOU # from utils.utils_select_device import select_device # device = select_device(0) # def __convert_pred(pred_bbox, test_input_size, valid_scale, conf_thresh=0.01): # """ # 预测框进行过滤,去除尺度不合理的框 # """ # pred_bbox = pred_bbox.cpu().numpy() # pred_coor = xywh2xyxy(pred_bbox[:, :4]) # pred_conf = pred_bbox[:, 4] # pred_prob = pred_bbox[:, 5:] # # # (1) # # (xmin_org, xmax_org) = ((xmin, xmax) - dw) / resize_ratio # # (ymin_org, ymax_org) = ((ymin, ymax) - dh) / resize_ratio # # 需要注意的是,无论我们在训练的时候使用什么数据增强方式,都不影响此处的转换方式 # # 假设我们对输入测试图片使用了转换方式A,那么此处对bbox的转换方式就是方式A的逆向过程 # # org_h, org_w = org_img_shape # # resize_ratio = min(1.0 * test_input_size / org_w, 1.0 * test_input_size / org_h) # # dw = (test_input_size - resize_ratio * org_w) / 2 # # dh = (test_input_size - resize_ratio * org_h) / 2 # # pred_coor[:, 0::2] = 1.0 * (pred_coor[:, 0::2] - dw) / resize_ratio # # pred_coor[:, 1::2] = 1.0 * (pred_coor[:, 1::2] - dh) / resize_ratio # # # (2)将预测的bbox中超出原图的部分裁掉 # pred_coor = np.concatenate([np.maximum(pred_coor[:, :2], [0, 0]), # np.minimum(pred_coor[:, 2:], [test_input_size - 1, test_input_size - 1])], axis=-1) # # (3)将无效bbox的coor置为0 # invalid_mask = np.logical_or((pred_coor[:, 0] > pred_coor[:, 2]), (pred_coor[:, 1] > pred_coor[:, 3])) # pred_coor[invalid_mask] = 0 # # # (4)去掉不在有效范围内的bbox # bboxes_scale = np.sqrt(np.multiply.reduce(pred_coor[:, 2:4] - pred_coor[:, 0:2], axis=-1)) # scale_mask = np.logical_and((valid_scale[0] < bboxes_scale), (bboxes_scale < valid_scale[1])) # # # (5)将score低于score_threshold的bbox去掉 # classes = np.argmax(pred_prob, axis=-1) # scores = pred_conf * pred_prob[np.arange(len(pred_coor)), classes] # score_mask = scores > conf_thresh # # mask = np.logical_and(scale_mask, score_mask) # # pred_bbox = pred_bbox[mask] # # pred_bbox = torch.Tensor(pred_bbox).to(device) # # return pred_bbox # # def non_max_suppression(prediction, num_classes, conf_thres=0.01, nms_thres=0.5): # """ # Removes detections with lower object confidence score than 'conf_thres' and performs # Non-Maximum Suppression to further filter detections. # Returns detections with shape: # (x1, y1, x2, y2, object_conf, class_score, class_pred) # """ # # # From (center x, center y, width, height) to (x1, y1, x2, y2) # box_corner = prediction.new(prediction.shape) # box_corner[:, :, 0] = prediction[:, :, 0] - prediction[:, :, 2] / 2 # box_corner[:, :, 1] = prediction[:, :, 1] - prediction[:, :, 3] / 2 # box_corner[:, :, 2] = prediction[:, :, 0] + prediction[:, :, 2] / 2 # box_corner[:, :, 3] = prediction[:, :, 1] + prediction[:, :, 3] / 2 # prediction[:, :, :4] = box_corner[:, :, :4] # # output = [None for _ in range(len(prediction))] # for image_i, image_pred in enumerate(prediction): # # Filter out confidence scores below threshold # class_max = torch.max(image_pred[:, 5:], dim=-1)[1] # score = image_pred[:, 4]*image_pred[:, 5:][torch.Tensor(np.arange(len(image_pred))).long(), class_max] # conf_mask = (score >= conf_thres).squeeze() # #conf_mask = (image_pred[:, 4] >= conf_thres).squeeze()#TODO:score_thershold # image_pred = image_pred[conf_mask] # #image_pred = __convert_pred(image_pred, config['img_h'], (0, np.inf)) # # # If none are remaining => process next image # if not image_pred.size(0): # continue # # Get score and class with highest confidence # max_pred = torch.max(image_pred[:, 5:5+num_classes], 1, keepdim=True)#返回值与索引,这里是取最大的可能的类别,而不会在这个框下一下预测两个框,这个通过用阈值来修改 # class_conf, class_pred = max_pred # # Detections ordered as (x1, y1, x2, y2, obj_conf, class_conf, class_pred) # detections = torch.cat((image_pred[:, :5], class_conf.float(), class_pred.float()), 1) # # Iterate through all predicted classes # unique_labels = detections[:, -1].unique() # if prediction.is_cuda: # unique_labels = unique_labels.to(device) # temp_detections = [] # for label in unique_labels: # class_detections = detections[detections[:, -1] == label] # temp_detections.append(nms_class_detections(class_detections, nms_thres)) # nms_detections = temp_detections[0] # for detection in temp_detections[1:]: # nms_detections = torch.cat((nms_detections, detection), 0) # output[image_i] = nms_detections.data # # return output # # def nms_class_detections(class_detections, nms_thresh): # flag = torch.Tensor([True] * class_detections.shape[0]).bool().to(device) # _, sort_index = torch.sort(class_detections[:, 4], dim=0, descending=True) # class_detections = class_detections[sort_index, :] # for i in range(len(flag)): # if flag[i] == True: # indexs = find_indexTrue_Flag(flag, i) # iou = bbox_ious(class_detections[i, :4].unsqueeze(0), class_detections[indexs, :4]) # mask_iou = iou < nms_thresh # flag[indexs] = mask_iou.squeeze() # if i == len(flag) - 2: # break # return class_detections[flag==True, :] # # def find_indexTrue_Flag(flag, i): # indexs = [] # for j in range(i+1, len(flag)): # index = j # if flag[j] == True: # indexs.append(index) # return indexs class LabelSmooth(object): def __init__(self, delta=0.01): self.delta = delta def __call__(self, onehot, num_classes): return onehot * (1 - self.delta) + self.delta * 1.0 / num_classes class focal_loss(object): """ loss to balance the positive and negtive Args: conf: a float tensor of arbitrary shape the value of it must be sigmoid or [0,1] mask: the label for each element in inputs Returns: loss tensor with the reduction option applied. """ def __init__(self, gamma=2, weight_pos=-1): self.gamma = gamma self.weight_pos = weight_pos def __call__(self, conf, mask): pt = mask * conf + (1-mask) * (1-conf) ce_loss = F.binary_cross_entropy(conf, mask, reduction='none') if self.weight_pos > 0: weight = mask * self.weight_pos + (1-mask) * (1-self.weight_pos) #loss = -1 * weight * (1-pt)**self.gamma * torch.log(pt) loss = weight * (1-pt)**self.gamma * ce_loss else: loss = (1-pt)**self.gamma * ce_loss return loss class focal_loss_gaussian_weight(object): """ loss to balance the positive and negtive Args: initial_args: gaussian_weight: calculate for self.weight_neg which is the negtive sample weight for the focal loss __call__args: conf: a float tensor of arbitrary shape the value of it must be sigmoid or [0,1] mask: the label for each element in inputs Returns: loss tensor with the reduction option applied. """ def __init__(self, gaussian_weight, gamma=2, beta=4): self.gamma = gamma self.beta = beta self.weight_pos = 1 self.weight_neg = torch.pow(1 - gaussian_weight, 4) #self.gaussian_weight = gaussian_weight def __call__(self, pred_conf_cls, mask): pt = mask * pred_conf_cls + (1 - mask) * (1 - pred_conf_cls) if self.weight_pos > 0: weight = mask * self.weight_pos + (1 - mask) * self.weight_neg loss = -1 * weight * (1-pt)**self.gamma * torch.log(pt) else: loss = (1 - pt) ** self.gamma * torch.log(pt) return loss from torch import nn class HeatmapLoss(nn.Module): def __init__(self, weight=None, alpha=2, beta=4, reduction='mean'): super(HeatmapLoss, self).__init__() self.alpha =
import tkinter as tk #possibly nessesary unsure import cv2 import numpy as np import matplotlib.pyplot as plt import time import sys import os import re SCALEDOWNFACTOR = 0.2 #This is a magic number but what can ya do. I dont have a good way of getting image resolution. SCALEUPFACTOR = 2.0 GAIN = 13.2 DISTANCE_BETWEEN_TEETH = 10 PREDEFINED_LENGTH = 5.738 ONLYINCREASING = 0 USING_EXCEL_DATA_CHANGE = 1 TEST = 1 SWITCH_POINT = 20 def imclearborders(imgBW, radius): # Given a black and white image, first find all of its contours imgBWcopy = imgBW.copy() contours,hierarchy = cv2.findContours(imgBWcopy.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) # Get dimensions of image imgRows = imgBW.shape[0] imgCols = imgBW.shape[1] contourList = [] # ID list of contours that touch the border # For each contour... for idx in np.arange(len(contours)): # Get the i'th contour cnt = contours[idx] # Look at each point in the contour for pt in cnt: rowCnt = pt[0][1] colCnt = pt[0][0] # If this is within the radius of the border # this contour goes bye bye! check1 = (rowCnt >= 0 and rowCnt < radius) or (rowCnt >= imgRows-1-radius and rowCnt < imgRows) check2 = (colCnt >= 0 and colCnt < radius) or (colCnt >= imgCols-1-radius and colCnt < imgCols) if check1 or check2: contourList.append(idx) break for idx in contourList: cv2.drawContours(imgBWcopy, contours, idx, (0,0,0), -1) return imgBWcopy def electricFieldToForce(voltageArray, stressArray): i = 0 x = 0 xPowerTwo = 0 xPowerThree = 0 xPowerFour = 0 if(USING_EXCEL_DATA_CHANGE == 1): A = 6*(pow(10, -11)) B = 6*(pow(10, -12)) C = 9*(pow(10, -12)) while(i < len(voltageArray)): x = voltageArray[i] xPowerTwo = pow(x, 2) stressArray[i] = (A*xPowerTwo)+(B*x)+C i = i + 1 elif(USING_EXCEL_DATA_CHANGE != 1): A = 4.9*(pow(10, -14)) B = 1.2*(pow(10, -12)) C = 6.5*(pow(10, -11)) D = -2.4*(pow(10, -11)) while(i<len(voltageArray)): x = voltageArray[i] xPowerTwo = pow(x, 2) xPowerThree = pow(x, 3) xPowerFour = pow(x, 4) stressArray[i] = (A*xPowerFour)+(B*xPowerThree)+(C*xPowerTwo)+(D*x) i = i + 1 else: i == i return 0 def hysteresis (strainArray, stressArray, switchPoint, TEST, BUG_TESTING_TEXT_OUTPUT_FILE): #const variable initialization SIZEOFGUASSDATATWENTYFOUR = 24 #initialization of iterators i = 0 j = 0 #intialize int variables indexWithMaximumValueInStrainArray = -1 midpoint = 0 leftbound = 0 rightbound = 0 GLOuter = 0 GLInner = 0 integral = 0 root = 0 weight = 0 #initialize double variables maxValueInStrainArray = 0.0 #intialize list variables splitStrainArrayIncreasing = [] splitStressArrayIncreasing = [] splitStrainArrayDecreasing = [] splitStressArrayDecreasing = [] #test initialization if(TEST == 1): strainArray = [0] stressArray = [0] x = np.linspace(0.0001, 1, 101) y = 0.1*np.exp(0.3*x) + 0.1*np.random.random(len(x)) x2 = np.linspace(0, 10, 101) y2 = np.log(9*x) + 0.1*np.random.random(len(x)) #end of test initialization x = np.linspace(-2, 2, 101) data = np.genfromtxt('GAUSS-24.dat', skip_header=1, skip_footer=1, names=True, dtype=None, delimiter=' ') #maxValueIndexOfStressArray = np.argmax(strainArray) do not trust use of numpy as it is a different color. Maybe its better lengthOfStrainArray = len(strainArray) lengthOfStressArray = len(stressArray)#Bug checking value #bug checking value if(lengthOfStrainArray != lengthOfStressArray): print('mismatched strain and stress arrays inputed within hysteresis function') return 0 else: #else do nothing i=i print('past bug checking') sys.stdout.flush() #while loop finds maximum value in the strain array #unchecked for off by one errors while(i < lengthOfStrainArray): if(maxValueInStrainArray < strainArray[i]): maxValueInStrainArray = strainArray[i] indexWithMaximumValueInStrainArray = i else: #else do nothing i=i i = i + 1 print('past strain value check') sys.stdout.flush() #bug checkin value if(indexWithMaximumValueInStrainArray == -1): print('no value in strain array over -1') return 0 else: #else do nothing i=i i = 0 #Creates stress/strain array for increasing values #unchecked for off by one errors while(i <= switchPoint): splitStrainArrayIncreasing.append(strainArray[i]) splitStressArrayIncreasing.append(stressArray[i]) if(TEST == 1): #overwrite with testing splitStrainArrayIncreasing[i] = x splitStressArrayIncreasing[i] = y else: i=i #else do nothing i = i + 1 print('past switch point check') sys.stdout.flush() #creates stress/strain array for decreasing values #unchecked for off by one errors while(i < lengthOfStrainArray): splitStrainArrayDecreasing.append(strainArray[i]) splitStressArrayDecreasing.append(stressArray[i]) if(TEST == 1): #overwrite with testing splitStrainArrayIncreasing[i] = x2 splitStressArrayIncreasing[i] = y2 else: i=i #else do nothing i = i + 1 j = j + 1 print('past arraySplitCheck') sys.stdout.flush() #should obtain a decreasing function of the form y=Ae^(Bx) i = 0 j = 0 stressArrayArr = np.asarray(stressArray) strainArrayArr = np.asarray(strainArray) stressArrayDecreasing = np.asarray(splitStressArrayDecreasing) strainArrayDecreasing = np.asarray(splitStrainArrayDecreasing) strainArrayDecreasingAbs = np.absolute(splitStrainArrayDecreasing) stressArrayIncreasing = np.asarray(splitStressArrayIncreasing) strainArrayIncreasing = np.asarray(splitStrainArrayIncreasing) strainArrayIncreasingAbs = np.absolute(splitStrainArrayIncreasing) if(ONLYINCREASING == 0): while(i<len(stressArrayIncreasing)): print(stressArrayIncreasing[i]) i = i + 1 i = 0 while(i<len(stressArrayDecreasing)): print(stressArrayDecreasing[i]) i = i + 1 i = 0 while(i < len(strainArrayIncreasing)): print(strainArrayIncreasing[i]) i = i + 1 i = 0 while(i << len(strainArrayDecreasing)): print(strainArrayDecreasing[i]) i = i + 1 print('past exponential equation') sys.stdout.flush() else: i == i #beta = 9999 #Delta = -999999 stressArrayDecreasingArr = np.asarray(stressArrayDecreasing) stressArrayIncreasingArr = np.asarray(stressArrayIncreasing) strainArrayDecreasingArr = np.asarray(strainArrayDecreasing) strainArrayIncreasingArr = np.asarray(strainArrayIncreasing) strainArrayDecreasingSquared = np.square(strainArrayDecreasingArr) strainArrayIncreasingSquared = np.square(strainArrayIncreasingArr) print('strain decreasing') sys.stdout.flush() a = plt.figure(figsize = (10,8)) axes= a.add_axes([0.1,0.1,0.8,0.8]) #plt.plot(strainArrayIncreasingAbs, splitStressArrayIncreasing, 'b.')#ln #plt.plot(strainArrayDecreasingAbs, splitStressArrayDecreasing, 'b.')#e X = np.arange(0, 20) if(ONLYINCREASING == 0): axes.plot(strainArrayDecreasing, stressArrayDecreasing, 'o') #axes.plot(stressArrayDecreasing, np.polyval(yEst, X)) axes.plot(strainArrayIncreasing, stressArrayIncreasing, 'o') #axes.plot(stressArrayIncreasing, np.polyval(yEst2, X)) #plt.plot(x, alpha*np.exp(beta*x), 'r') #plt.plot(x, (Cappa*np.log(np.absolute(Delta*x))+2), 'r') else: i == i A = np.vstack([strainArrayArr, np.ones(len(strainArrayArr))]).T stressArrayArr = stressArrayArr[:, np.newaxis] linearSlope = np.dot((np.dot(np.linalg.inv(np.dot(A.T,A)),A.T)),stressArrayArr) print(linearSlope) B = np.vstack([strainArrayDecreasingArr, np.ones(len(strainArrayDecreasingArr))]) B = np.vstack([strainArrayDecreasingSquared, B]).T stressArrayDecreasingArr = stressArrayDecreasingArr[:, np.newaxis] polyValuesDecreasing = np.dot((np.dot(np.linalg.inv(np.dot(B.T,B)),B.T)),stressArrayDecreasingArr) print(polyValuesDecreasing) C = np.vstack([strainArrayIncreasingSquared, strainArrayIncreasingArr, np.ones(len(strainArrayIncreasingArr))]).T stressArrayIncreasingArr = stressArrayIncreasingArr[:, np.newaxis] polyValuesIncreasing = np.dot((np.dot(np.linalg.inv(np.dot(C.T,C)),C.T)),stressArrayIncreasingArr) print(linearSlope) axes.plot(x, linearSlope[0]*x+linearSlope[1], 'r') axes.plot(x, (polyValuesDecreasing[0]*x*x)+polyValuesDecreasing[1]*x+polyValuesDecreasing[2], 'r') axes.plot(x, (polyValuesIncreasing[0]*x*x)+polyValuesIncreasing[1]*x+polyValuesIncreasing[2], 'r') plt.ylim([0,0.5]) plt.xlim([-0.2,0.2]) plt.xlabel('strain') plt.ylabel('stress (Pa)') plt.title('Stiffness Curve') plt.show() plt.savefig('hystersis_curve.png') GLOuter = (leftbound - rightbound)/2 GLInner = (leftbound + rightbound)/2 if(ONLYINCREASING == 0): i = 0 while(i < SIZEOFGUASSDATATWENTYFOUR): combineRootWeightValues = data[i] root = combineRootWeightValues[0] weight = combineRootWeightValues[1] integral = (GLOuter) * (weight) *(alpha * np.exp(beta * (GLOuter) * root * (GLInner))) + integral i = i + 1 print(integral) return 0 def bwareaopen(img, min_size, connectivity=8): """Remove small objects from binary image (approximation of bwareaopen in Matlab for 2D images). Args: img: a binary image (dtype=uint8) to remove small objects from min_size: minimum size (in pixels) for an object to remain in the image connectivity: Pixel connectivity; either 4 (connected via edges) or 8 (connected via edges and corners). Returns: the binary image with small objects removed """ # Find all connected components (called here "labels") num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats( img, connectivity=connectivity) # check size of all connected components (area in pixels) for i in range(num_labels): label_size = stats[i, cv2.CC_STAT_AREA] # remove connected components smaller than min_size if label_size < min_size: img[labels == i] = 0 return img def fillInBlanks(strainList): #I despise this function as it invariably looses data but its the only way to get around limitations with pixels and resolution i = 0 j = 1 k = -1 lengthOfStrainList = len(strainList) nextInLineForStrainList = 0 while(i < lengthOfStrainList): if(strainList[i] == 0 & (i != 0)): while(strainList[i] == 0): j = j + 1 nextInLineForStrainList = strainList[j] if(nextInLineForStrainList == 0): i = i #repeat elif(nextInLineForStrainList != 0): if(strainList[j] == 0): i == i elif(strainList[j] != 0): strainList[i] = i else: exit() i = i + 1 j = i + 2 k = i return 0 def ImageAnalysis(voltageList, imageList, Gain, distanceBetweenTeeth, predefiniedLength, switchPoint): #test is on at 1 TEST = 0 SKIP_MANUAL_IMAGE_CROP = 0 ALLOW_PRINTS_FOR_TESTING = 1 JUST_OVER_TWO_THIRDS_A_PLATELET = 0.65 #iterators i = 0 j = 0 k = 0 numFrames = len(imageList) #these all seem like old values pixelCheckGate = 0 numberOfWhitePixels = 0 lengthOfImageArrayWhitePixels = 0 longestLengthOfImageArrayWhitePixels = -1 lengthOfPixel = -1 #need to change designation to list as array is a sperate numpy class applicable to lists in math and functions lengthArray = [] strainArray = [] stressArray = [] forceArray = [] stressArrayToPascals = [] #these values exist but will be deleted in final code amplifiedVoltageArray = [] electricFieldArray = [] forceArray = [] cropImageSidesListTest = [319, 156, 194, 154] BUG_TESTING_TEXT_OUTPUT_FILE = open("bugReport.txt", "w+") print("data sent through") while(i < numFrames): lengthArray.append(0) i = i + 1 i = 0 while(i < (len(voltageList))): strainArray.append(0) stressArray.append(0) amplifiedVoltageArray.append(0) electricFieldArray.append(0) forceArray.append(0) stressArrayToPascals.append(0) i =
<reponame>ddr95070/RMIsaac ''' Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. NVIDIA CORPORATION and its licensors retain all intellectual property and proprietary rights in and to this software, related documentation and any modifications thereto. Any use, reproduction, disclosure or distribution of this software and related documentation without an express license agreement from NVIDIA CORPORATION is strictly prohibited. ''' from datetime import datetime import enum import json import logging from threading import Lock from typing import List, Dict import uuid from isaac import Message as im from .JsonTcpServer import JsonTcpServer, JsonTcpServerConnection MASK_64BIT = ((1 << 64) - 1) class Mission: status_lock = Lock() class Status(enum.Enum): # The mission has not yet been submitted to the mission server CREATED = 0 # The mission has been submitted but has not started because either: # - The robot it should run on is not connected # - There is another mission before it in the robot's mission queue # - At least one of this mission's "upstream" missions hasn't completed yet QUEUED = 1 # The mission has been sent to the robot but the robot has not yet acknowledged it STARTED = 2 # The mission has been sent to and acknowledged by the robot RUNNING = 3 # The robot indicated that the mission has succeeded SUCCESS = 4 # The robot indicated that the mission failed FAILED = 5 # The robot lost connection in the middle of the mission FAILED_DISCONNECTED = 6 # One of the following things happened: # - The mission was sent to the robot but the robot did not acknowledge it before the # start_timeout # - The robot acknowledged the mission but did not indicate success or failure before # timeout FAILED_TIMEDOUT = 7 # The mission will not be scheduled because one of its upstream missions failed FAILED_UPSTREAM = 8 def __init__(self, robot: str, channel: str, config: Dict, status_channel: str = None, **kwargs): ''' Constructs a Mission object Args: robot (str): The name of the robot that should run this mission channel (str): The JsonTcpServer channel to transmit the MissionProto on config (dict): The ISAAC application configuration to embed in the MissionProto status_channel (str)(optional): The JsonTcpServer channel to listen for the MissionStatusProto on. start_timeout (int)(optional): The number of seconds to wait between sending the MissionProto and receiving an acknowledgment MissionStatusProto before giving up timeout (int)(optional): The number of seconds to allow a mission to run before giving up ''' self._robot = robot self._channel = channel self._config = config self._status_channel = status_channel if status_channel is not None else channel + "_status" self._status = Mission.Status.CREATED self._uuid = uuid.uuid4() self._start_timeout = kwargs.get("start_timeout", 5) self._timeout = kwargs.get("timeout", float("inf")) # "Downstream missions" that can't run until this one has been run self._downstream = [] # The number of upstream missions that need to finish before this mission can start self._outstanding_upstream = 0 # Count all of the upstream missions that are blocking this one from starting. # Add this mission to the downstream list of each "outstanding" upstream mission self._upstream = set(kwargs.get("upstream", [])) with self.status_lock: for upstream_mission in self._upstream: # If the upstream mission is CREATED/RUNNING/QUEUED, it is "outstanding" # and therefore blocking this mission from starting if upstream_mission.status in (Mission.Status.CREATED, Mission.Status.RUNNING, Mission.Status.QUEUED): upstream_mission._downstream.append(self) self._outstanding_upstream += 1 # If the upstream mission has already completed, it is not outstanding elif upstream_mission.status == Mission.Status.SUCCESS: pass # If the upstream mission has failed, then this mission cannot run else: self._outstanding_upstream = -1 break @property def uuid(self): return self._uuid @property def uuid_dict(self): return { "lower": (self.uuid.int >> 0) & MASK_64BIT, "upper": (self.uuid.int >> 64) & MASK_64BIT, } @property def status(self) -> "Mission.Status": return self._status @status.setter def status(self, new_status: "Mission.Status"): with self.status_lock: # Skip if reassigning the same status so start/end times dont get changed if new_status == self._status: return # If this mission started, mark the start time if new_status == Mission.Status.STARTED: self._sent_time = datetime.now() # If this mission is running, mark the time it started running elif new_status == Mission.Status.RUNNING: self._start_time = datetime.now() # If this mission succeeded, mark the end time and decrement the "outstanding_upstream" # counter for all downstream missions elif new_status == Mission.Status.SUCCESS: self._end_time = datetime.now() for downstream in self._downstream: downstream._outstanding_upstream -= 1 # If this mission failed, mark the end time and set the "outstanding_upstream" counter # to -1 for all downstream missions indicating an upstream mission failed elif new_status in (Mission.Status.FAILED, Mission.Status.FAILED_DISCONNECTED, Mission.Status.FAILED_TIMEDOUT, Mission.Status.FAILED_UPSTREAM): self._end_time = datetime.now() for downstream in self._downstream: downstream._outstanding_upstream = -1 self._status = new_status def check_timeout(self) -> bool: ''' Checks the state of the mission and updates the status to FAILED_TIMEOUT if necessary Returns: True if the mission status has been updated to FAILED_TIMEDOUT, otherwise false ''' timed_out = False with self.status_lock: # If the mission was sent, make sure an acknowledgement was sent in a timely manner if self._status == Mission.Status.STARTED and ( datetime.now() - self._sent_time).seconds > self._start_timeout: timed_out = True # If the mission was sent and acknowledge, make sure it completes within the timeout elif self._status == Mission.Status.RUNNING and ( datetime.now() - self._start_time).seconds > self._timeout: timed_out = True if timed_out: self.status = Mission.Status.FAILED_TIMEDOUT return timed_out @property def config(self) -> Dict: return self._config @property def channel(self) -> str: return self._channel @property def outstanding_upstream(self): return self._outstanding_upstream @property def all_upstream_submitted(self): ''' Checks if all upstream missions have already been submitted ''' with self.status_lock: not_submitted = [ mission for mission in self._upstream if mission._status == Mission.Status.CREATED ] return len(not_submitted) == 0 class _RobotConnection: ''' A class to help MissionServer keep track of all of the active robot TCP connections ''' def __init__(self, connection: JsonTcpServerConnection, name_channel: str = "name"): ''' Constructs a RobotConnection object Args: connection (JsonTcpServerConnection): The connection used to communicate with the robot name_channel (str): The JsonTcpServer channel to listen for TextProtos to get the robot name ''' self._connection = connection self._name = None self._current_mission = None self._connection.set_message_callback(self._message_callback) self._name_channel = name_channel self._logger = logging.getLogger('MissionServer') @property def name(self) -> str: return self._name def _message_callback(self, message, channel): # Update the robot name if applicable proto = message.proto if channel == self._name_channel and self._name is None: self._name = proto.text self._logger.info("Robot at address {} identified as \"{}\"".format( self._connection.address, self.name)) return # If there is a mission running, see if there is a status update if self._current_mission is not None and channel == self._current_mission._status_channel: status_uuid = ((proto.uuid.upper & MASK_64BIT) << 64) + (proto.uuid.lower & MASK_64BIT) # Does this status message have to do with the current mission? if status_uuid == self._current_mission.uuid.int: if proto.missionStatus == "running": self._current_mission.status = Mission.Status.RUNNING elif proto.missionStatus == "success": self._current_mission.status = Mission.Status.SUCCESS self._current_mission = None elif proto.missionStatus == "failure": self._current_mission.status = Mission.Status.FAILED self._current_mission = None def start_mission(self, mission: Mission): # Generate the message builder = im.MessageBuilder() builder.proto = im.CAPNP_DICT["MissionProto"].from_dict({ "uuid": mission.uuid_dict, "config": { "serialized": json.dumps(mission.config) } }) # Send the mission self._connection.send_message(builder, mission.channel) # Set the mission state to STARTED mission.status = Mission.Status.STARTED self._current_mission = mission @property def connected(self) -> bool: return self._connection.connected def close(self): self._logger.info("Robot \"{}\" lost connection".format(self.name)) if self._current_mission is not None: self._current_mission.status = Mission.Status.FAILED_DISCONNECTED def check_timeout(self): if self._current_mission is None: return if self._current_mission.check_timeout(): self._current_mission = None class MissionServer: ''' A class to manage the submission and running of missions to robots. It instantiates a JsonTcpServer and uses it to listen for connections to robots. Mission submitted to this class are queued, scheduled, and sent to connected robots. ''' def __init__(self, port: int = 9998, name_channel: str = "name"): ''' Constructs a MissionServer object Args: port (int): The TCP port to listen on for robot connections name_channel (str): The JsonTcpServer channel to listen for TextProtos to get the robot name ''' self._name_channel = name_channel # Create dictionary for robots by name and a list of unidentified robots self._robots = {} self._unidentified_robots = [] # Create a dictionary of mission queues by robot name self._mission_queues = {} self._mission_queue_lock = Lock() # Initialize logger FORMAT = '%(asctime)-15s %(levelname)s %(message)s' logging.basicConfig(format=FORMAT) self._logger = logging.getLogger('MissionServer') self._logger.setLevel(logging.DEBUG) # Create
def removeExtraMsg(self): self.ui.statusbar.removeWidget(self.extraMsgWidget) self.extraMsgWidget=None def setMainPageIndex(self,i): """open previous page if i == None""" i = self.prevMainPageindex if i is None else i self.prevMainPageindex = self.ui.mainPage.currentIndex() if i == 0: self.ui.startPageBtn.setChecked(1) elif i == 2: self.ui.PpageBtn.setChecked(1) self.ui.mainPage.setCurrentIndex(i) def saveWindowSettings(self): self.settings.beginGroup("MainWindow") self.settings.setValue("geometry", self.saveGeometry()) self.settings.setValue("windowState", self.saveState()) self.settings.endGroup() def readWindowSettings(self): self.settings.beginGroup("MainWindow") geometry = self.settings.value("geometry", QByteArray()) state = self.settings.value("windowState", QByteArray()) if not geometry.isEmpty(): self.restoreGeometry(geometry) self.restoreState(state) self.settings.endGroup() def closeEvent(self, event): self.saveWindowSettings() [thread.terminate() for thread in self.threads if thread.isRunning()] # delete temp files for file in os.listdir(tempDir()): file = os.path.join(tempDir(),file) if os.path.isfile(file): os.remove(file) event.accept() def eventFilter(self, obj, event): # print(event.type()) if obj.objectName() == 'header': if self.ui.logo.underMouse(): if event.type() == QEvent.MouseButtonRelease: webbrowser.open('https://madponyinteractive.github.io/MadQt/') return True else: if event.type() == QEvent.MouseButtonDblClick: self.setWindowState(self.windowState() ^ Qt.WindowFullScreen) return True if event.type() == QEvent.MouseButtonRelease: if event.globalPosition().y() < 10 and self.moved: self.prevGeo = self.geometry() self.showMaximized() return True if event.type() == QEvent.MouseButtonPress: self.prevMousePos = event.scenePosition() self.moved = False if event.type() == QEvent.MouseMove: if self.windowState() == Qt.WindowFullScreen\ or self.windowState() == Qt.WindowMaximized: self.showNormal() self.prevMousePos = QPointF(self.prevGeo.width()*.5,50) gr=self.geometry() screenPos = event.globalPosition() pos = screenPos-self.prevMousePos x = max(pos.x(),0) y = max(pos.y(),0) screen = QGuiApplication.screenAt(QPoint(x,y)).size() x = min(x,screen.width()-gr.width()) y = min(y,screen.height()-gr.height()) self.move(x,y) self.moved = True # print(QGuiApplication.screens()) return QMainWindow.eventFilter(self, obj, event) ''' # A play around with custom resize handles def event(self, event): if event.type() == QEvent.MouseButtonRelease: self.grabbedHandle = False if event.type() == QEvent.MouseMove: if self.handle and event.buttons()==Qt.LeftButton: self.grabbedHandle=True gr=self.geometry() gp=event.globalPosition() minW=self.minimumSizeHint().width() minH=self.minimumSizeHint().height() x = int(gp.x()) y = int(gp.y()) # x = max(x,minW) if self.handle == 'top': # y = min(y,minH) gr.setTop(y) # self.move(self.x(),y) elif self.handle == 'bottom': gr.setBottom(y) # self.resize(gr.size()) self.setGeometry(gr) self.updateGeometry() if event.type() == QEvent.HoverMove and not self.grabbedHandle: x=int(event.position().x()) y=int(event.position().y()) gr=self.geometry() w=gr.width() h=gr.height() o=8 yr=y in range(o,h-o) xr=x in range(o,w-o) if not yr and not xr: # corners if y<o and x<o: self.handle ='top left' self.setCursor(Qt.SizeFDiagCursor) elif x>w-o and y<o: self.handle ='top right' self.setCursor(Qt.SizeBDiagCursor) elif x<o and y>h-o: self.handle ='bottom left' self.setCursor(Qt.SizeBDiagCursor) elif x>w-o and y>h-o: self.handle ='bottom right' self.setCursor(Qt.SizeFDiagCursor) else: self.handle = None else: # edges if x<o and yr: self.handle ='left' self.setCursor(Qt.SizeHorCursor) elif x>w-o and yr: self.handle ='right' self.setCursor(Qt.SizeHorCursor) elif y<o and xr: self.handle ='top' self.setCursor(Qt.SizeVerCursor) elif y>h-o and xr: self.handle ='bottom' self.setCursor(Qt.SizeVerCursor) else: self.handle = None if self.handle: pass else: self.setCursor(Qt.ArrowCursor) return QMainWindow.event(self, event) ''' def initUi(self): self.ui.header.installEventFilter(self) self.ui.statusbar.insertPermanentWidget(0,QLabel('V.0.0.2'),0) # Start Page self.ui.startPageBtn.clicked.connect(lambda: self.setMainPageIndex(0)) self.ui.newP.clicked.connect(lambda: self.setMainPageIndex(1)) self.ui.addP.clicked.connect(self.addProjectFromFile) self.ui.delSelectedP.clicked.connect(lambda: self.removeSelectedProjects()) self.ui.settBtn.clicked.connect(lambda: self.setMainPageIndex(3)) self.ui.PpageBtn.clicked.connect(lambda: self.setMainPageIndex(2)) self.ui.ProjectsList.itemDoubleClicked.connect(self.openProject) self.ui.ProjectsList.dropped.connect(self.droppedProject) # Settings Page default_qtPath = os.path.join(pySideDir()) # self.settings.setValue("usrInput/designerPath", default_qtPath) self.ui.QtDesignerPathInput.setText(self.settings.value("usrInput/designerPath", default_qtPath)) self.ui.sublimePathInput.setText(self.settings.value("usrInput/sublimePath", '')) self.ui.icoSizeCb.setCurrentText(self.settings.value("usrInput/icoSize",str(64))) def changedIco(v): self.settings.setValue("usrInput/icoSize",v) self.ui.icoSizeCb.currentTextChanged.connect(changedIco) self.ui.QtDesignerPathBtn.clicked.connect(lambda: self.openFolder(self.ui.QtDesignerPathInput)) self.ui.sublimePathBtn.clicked.connect(lambda: self.openFolder(self.ui.sublimePathInput)) global MadQt_Designer_Paths MadQt_Designer_Paths = self.settings.value("usrInput/pluginPaths", [MadQt.get_path('QtDesignerPlugins')]) for item in MadQt_Designer_Paths: self.ui.designerPathsList.addItem(item) self.ui.SettDoneBtn.clicked.connect(lambda: self.setMainPageIndex(None)) self.ui.saveSett.clicked.connect(self.saveUserSettings) self.ui.createMQEXEC.clicked.connect(lambda: webbrowser.open("https://madponyinteractive.github.io/MadQt/ProjectManager/install.html")) # New custom widget page self.ui.cwQtClass.addItems(Mt.QDesignerBaseClasses()) self.ui.cwQtClass.setCurrentText('QPushButton') self.ui.createWidget.clicked.connect(self.createWidget) self.ui.cancelCreateW.clicked.connect(lambda: self.setMainPageIndex(None)) # New project page self.ui.newPFolder.clicked.connect(lambda: self.openFolder(self.ui.NewPFolderName)) self.ui.newPIconBrowse.clicked.connect(lambda: self.openImg(self.ui.newPIcon,True)) self.ui.createP.clicked.connect(self.createNewProject) self.ui.cancelCreateP.clicked.connect(lambda: self.setMainPageIndex(None)) # New Ui Page self.ui.createNewUi.clicked.connect(self.createUi) self.ui.cancelCreateUi.clicked.connect(lambda: self.setMainPageIndex(None)) # Project Page menu buttons self.ui.refreshBtn.clicked.connect(self.refresh) self.ui.openPFolder.clicked.connect(self.openProjectFolder) if self.hasSublime(): self.ui.sublimePBtn.setStatusTip('Open sublime project') else: self.ui.sublimePBtn.setStatusTip('Setup sublime path in settings to open sublime projects') self.ui.sublimePBtn.clicked.connect(self.openSublimeProject) self.ui.uiFilesBtn.clicked.connect(lambda: self.ui.PStackedWidget.setCurrentIndex(0)) self.ui.custWidgetsBtn.clicked.connect(lambda: self.ui.PStackedWidget.setCurrentIndex(1)) self.ui.qrcPBtn.clicked.connect(lambda: self.ui.PStackedWidget.setCurrentIndex(2)) self.ui.execPBtn.clicked.connect(lambda: self.ui.PStackedWidget.setCurrentIndex(3)) self.ui.runBtn.clicked.connect(self.runApp) self.ui.saveAsBtn.clicked.connect(self.saveToNewFolder) # Ui page self.ui.uiList.itemDoubleClicked.connect(self.openUi) self.ui.uiList.dropped.connect(self.addUiFiles) self.ui.addUiBtn.clicked.connect(self.addUiFiles) self.ui.delSelectedUiBtn.clicked.connect(self.removeUi) self.ui.newUiBtn.clicked.connect(lambda: self.setMainPageIndex(5)) # Custom Widget page self.ui.moduleTree.header().setSectionResizeMode(QHeaderView.Stretch) self.ui.moduleTree.droppedModule.connect(self.addModules) self.ui.moduleTree.itemDoubleClicked.connect(self.openClass) self.ui.addModuleBtn.clicked.connect(self.addModuleDialogue) self.ui.delSelectedMods.clicked.connect(self.deleteModules) self.ui.newModuleBtn.clicked.connect(self.newModule) self.ui.cwClass.textChanged.connect(self.cwClassChanged) self.ui.cwMod.textChanged.connect(self.cwModChanged) self.ui.cwQtClass.currentTextChanged.connect(self.cwQtClassChanged) # Qrc Image page self.ui.qrcTree.header().setSectionResizeMode(QHeaderView.Stretch) self.ui.qrcTree.droppedQrc.connect(self.addQrc) self.ui.qrcTree.droppedImg.connect(self.addImages) iSize = self.settings.value("usrInput/iconSize",QSize(64,64)) self.ui.qrcTree.setIconSize(iSize) self.ui.imgSizeSlider.setValue(iSize.width()) def setIconSize(s): size=QSize(s,s) self.ui.qrcTree.setIconSize(size) self.settings.setValue("usrInput/iconSize",size) self.ui.statusbar.showMessage(f'Icon size: {s}px') self.ui.imgSizeSlider.valueChanged.connect(setIconSize) # Create Executable page self.ui.createExecBtn.clicked.connect(self.createExec) self.ui.pyinstallerHelp.clicked.connect(lambda:\ webbrowser.open('https://pyinstaller.readthedocs.io/en/stable/when-things-go-wrong.html')) # Create Executable @thread def runExec(self,arguments): process = subprocess.Popen(arguments, shell=True, bufsize = 1, stdout=subprocess.PIPE, stderr = subprocess.STDOUT, encoding='utf-8', errors = 'replace') while True: realtime_output = process.stdout.readline() if realtime_output == '' and process.poll() is not None: self.finishExec() break if realtime_output: self.ui.execOutput.append(realtime_output.strip()) def finishExec(self): for file in os.listdir(self.project.devPath()): if os.path.splitext(file)[1] == '.spec': os.remove(file) break shutil.rmtree(self.project.devFile('build')) src = self.project.devFile('dist') dst = self.project.folder findAt = os.path.join(dst,'dist') if os.path.isdir(findAt):shutil.rmtree(findAt) shutil.move(src, dst, copy_function = shutil.copytree) self.ui.execOutput.append(F"Successfully created executable for project: {self.project.name}!") self.ui.execOutput.append(F"Output files located @ {findAt}") self.ui.execOutput.moveCursor(QTextCursor.End) self.ui.statusbar.showMessage('Executable created!') def createExec(self): self.ui.statusbar.showMessage('Creating executable...') self.project.updateUis() os.chdir(self.project.devPath()) arguments = F"pyinstaller " arguments += self.ui.execArgs.text() arguments +=F" --icon {os.path.join('gui',self.project.icon)} main.py" self.ui.execOutput.ensureCursorVisible() self.ui.execOutput.append(f'Running: {arguments}') self.runExec(arguments) # Helper Dialogues def openFile(self,fType='All Files (*)',prefix=''): return QFileDialog.getOpenFileName(self, "MadQt Project Manager", prefix, fType, "") def openFiles(self,fType='All Files (*)',prefix=''): return QFileDialog.getOpenFileNames(self, "MadQt Project Manager", prefix, fType, "") def openFolder(self,widget): """ Opens a file dialogue Sets text on provided widget """ text = widget.text() if len(widget.text()) else '' options = QFileDialog.DontResolveSymlinks | QFileDialog.ShowDirsOnly directory = QFileDialog.getExistingDirectory(self, "MadQt Project Manager - Select folder", text, options) if directory: widget.setText(directory) self.selectedPath = directory def openImg(self,widget,ico=False): """ Opens a file dialogue Sets pixmap on provided widget """ file = self.openFile('Images (*.png *.ico *.jpg *.gif *.svg)',widget.text())[0] if len(file): if ico: if '.ico' not in file: dest_ico = os.path.join(tempDir(),'logo.ico') file = Mt.createIco(file,dest_ico,self.defaultIcoSize()) widget.setPixmap(QPixmap(file)) self.selectedFile = file # self.settings.setValue("usrInput/newProjectIcon", directory) def questionBox(self,msg): reply = QMessageBox.question(self, "MadQt Warning!", msg, QMessageBox.Yes | QMessageBox.No | QMessageBox.Cancel) if reply == QMessageBox.Yes: return "Yes" elif reply == QMessageBox.No: return "No" else: return "Cancel" def labelBox(self,msg,text): usrInput, ok = QInputDialog.getText(self, "MadQt Project Manager", msg, QLineEdit.Normal, text) if ok and usrInput != '': return usrInput # Project Methods def addProject(self,file=None,save=False): """ Adds item to the start page project list Saves project to settings if save=True """ if isinstance(file,QListWidgetItem): file=file.file save=True elif not file: file = self.project.file() # File was deleted from system? if not os.path.isfile(file): self.removeProject(file,True) return # File already added? for item in self.ui.ProjectsList.getItems(): if item.file == file: # self.removeProject(file,True) self.extraMsg('Project folder already in list!') return # Add project to the start page project list self.ui.ProjectsList.insertItem(0,ProjectItem(file)) # Save project to settings if not save:return allP = self.settings.value("projects",[]) # remove projects with same folder [self.removeProject(p,True) for p in allP if p == file] allP.append(file) self.settings.setValue("projects", allP) def removeProject(self,file=None,save=False): """ Removes item from the start page project list Removes project from settings if save=True """ if isinstance(file,QListWidgetItem): file=file.file save=True elif not file: file = self.project.file() self.ui.ProjectsList.removeItem(file) # Removes project from settings if not save:return allP = self.settings.value("projects",[]) [allP.remove(p) for p in allP if p == file] self.settings.setValue("projects", allP) if not len(allP):self.ui.PpageBtn.setEnabled(False) def removeSelectedProjects(self): """removes all selected projects in project list""" [self.removeProject(item) for item in self.ui.ProjectsList.selectedItems()] def addProjectFromFile(self,file=None): """Add and open a project from an existing file""" file = self.openFile('MadQt Project Files (*.mqpm)')[0]\ if not file else file if not len(file):return if not file.endswith('mqpm'): self.extraMsg('Not a valid project file!') return # Update folder path prevSettings = {} with open(file, "r") as f: prevSettings = json.loads(f.read()) prevSettings['folder'] = os.path.dirname(file) with open(file, "w") as f: json.dump(prevSettings, f, indent=4) self.addProject(file,True) def createNewProject(self): name = self.ui.projectNameInput.text() folder = self.ui.NewPFolderName.text() if not os.path.isdir(folder): self.ui.statusbar.showMessage('Provided path not found!',5000) return name = 'New MadQt project' if not name else name.strip() self.settings.setValue("usrInput/newProjectDir", folder) folder = os.path.join(folder,Mt.cleanString(name)) ico = os.path.join(MadQt.get_path('Templates'),'NewProject','gui','logo.ico') if self.selectedFile is not None: ico = ico if '.ico' not in self.selectedFile else self.selectedFile self.project = Project(name,folder,ico) if not self.project.valid: self.project = Project() self.ui.statusbar.showMessage('Could not create project! Provided folder has a project?') return # self.settings.remove('projects')#333333333333333333333333333333333 self.addProject(save=True) self.extraMsg(f'Successfully created "{name}"!') self.openProject() def saveToNewFolder(self): """open file dialogue""" options = QFileDialog.DontResolveSymlinks | QFileDialog.ShowDirsOnly fileName, filtr = QFileDialog.getSaveFileName(self, "MadQt Project Manager - Save to new folder", self.project.folder, "MadQt Project Files (*.mqpm)", "", options) file_name = os.path.basename(fileName) file, ext = os.path.splitext(file_name) directory = os.path.dirname(fileName) if fileName != '': self.project.name = file if self.project.saveToNewFolder(directory): self.addProject(save=True) self.extraMsg(f'Successfully saved and opened!') self.openProject() else: self.extraMsg(f'Could not save, saving in a project folder?') def droppedProject(self, urls): """when user drops file on projects list""" [self.addProjectFromFile(file) for file in urls] def openProject(self,item=None): """open existing project""" if item: # Avoid re-opening same project if item.file == self.project.file(): self.setMainPageIndex(2) return self.project = Project(item.file) self.setCursor(Qt.WaitCursor) self.ui.qrcTree.clear() self.ui.moduleTree.clear() self.ui.uiList.clear() if not self.project.valid:return self.ui.statusbar.showMessage('Loading project...') self.ui.PpageBtn.setEnabled(True) if self.hasSublime(): self.ui.sublimePBtn.setEnabled(True) self.ui.PpageBtn.setChecked(True) self.ui.PrjName.setText(self.project.name) self.project.updateUis() # Populate Ui list [self.addUi(ui) for ui in self.project.uiFiles() if os.path.isfile(ui)] # Populate Qrc list [self.addQrc(qrc) for qrc in self.project.qrcFiles() if os.path.isfile(qrc)] # Populate Custom Widget list [self.addModule(mod) for mod in self.project.customWidgetsFiles() if os.path.isfile(mod)] self.ui.execArgs.setText(F"--onefile --windowed --name={Mt.cleanString(self.project.name)}") self.setMainPageIndex(2) self.ui.statusbar.showMessage(f'{self.project.name} project loaded!') self.setCursor(Qt.ArrowCursor) def openProjectFolder(self): # Open base on project page Mt.openFileExplorer(self.project.folder) # Qrc Methods def createQrc(self): qrcName = self.labelBox("New Qrc name:",'resources.qrc') if not qrcName:return self.setCursor(Qt.WaitCursor) if '.'
#!/usr/bin/env python # This script is deprecated, please use ./xconfig_to_configs.py # tdnn or RNN with 'jesus layer' # inputs to jesus layer: # - for each spliced version of the previous layer the output (of dim --jesus-forward-output-dim) # outputs of jesus layer: # for all layers: # --jesus-forward-output-dim # we're using python 3.x style print but want it to work in python 2.x, from __future__ import print_function import re, os, argparse, sys, math, warnings import imp nnet3_train_lib = imp.load_source('ntl', 'steps/nnet3/nnet3_train_lib.py') chain_lib = imp.load_source('ncl', 'steps/nnet3/chain/nnet3_chain_lib.py') parser = argparse.ArgumentParser(description="Writes config files and variables " "for TDNNs creation and training", epilog="See steps/nnet3/train_tdnn.sh for example."); parser.add_argument("--splice-indexes", type=str, required = True, help="Splice[:recurrence] indexes at each hidden layer, e.g. '-3,-2,-1,0,1,2,3 -3,0:-3 -3,0:-3 -6,-3,0:-6,-3'. " "Note: recurrence indexes are optional, may not appear in 1st layer, and must be " "either all negative or all positive for any given layer.") # Only one of these arguments can be specified, and one of them has to # be compulsarily specified feat_group = parser.add_mutually_exclusive_group(required = True) feat_group.add_argument("--feat-dim", type=int, help="Raw feature dimension, e.g. 13") feat_group.add_argument("--feat-dir", type=str, help="Feature directory, from which we derive the feat-dim") # only one of these arguments can be specified ivector_group = parser.add_mutually_exclusive_group(required = False) ivector_group.add_argument("--ivector-dim", type=int, help="iVector dimension, e.g. 100", default=0) ivector_group.add_argument("--ivector-dir", type=str, help="iVector dir, which will be used to derive the ivector-dim ", default=None) num_target_group = parser.add_mutually_exclusive_group(required = True) num_target_group.add_argument("--num-targets", type=int, help="number of network targets (e.g. num-pdf-ids/num-leaves)") num_target_group.add_argument("--ali-dir", type=str, help="alignment directory, from which we derive the num-targets") num_target_group.add_argument("--tree-dir", type=str, help="directory with final.mdl, from which we derive the num-targets") parser.add_argument("--include-log-softmax", type=str, help="add the final softmax layer ", default="true", choices = ["false", "true"]) parser.add_argument("--xent-regularize", type=float, help="For chain models, if nonzero, add a separate output for cross-entropy " "regularization (with learning-rate-factor equal to the inverse of this)", default=0.0) parser.add_argument("--xent-separate-forward-affine", type=str, help="if using --xent-regularize, gives it separate last-but-one weight matrix", default="false", choices = ["false", "true"]) parser.add_argument("--use-repeated-affine", type=str, help="if true use RepeatedAffineComponent, else BlockAffineComponent (i.e. no sharing)", default="true", choices = ["false", "true"]) parser.add_argument("--final-layer-learning-rate-factor", type=float, help="Learning-rate factor for final affine component", default=1.0) parser.add_argument("--self-repair-scale-nonlinearity", type=float, help="Small scale involved in fixing derivatives, if supplied (e.g. try 0.00001)", default=0.0) parser.add_argument("--jesus-hidden-dim", type=int, help="hidden dimension of Jesus layer.", default=10000) parser.add_argument("--jesus-forward-output-dim", type=int, help="part of output dimension of Jesus layer that goes to next layer", default=1000) parser.add_argument("--jesus-forward-input-dim", type=int, help="Input dimension of Jesus layer that comes from affine projection " "from the previous layer (same as output dim of forward affine transform)", default=1000) parser.add_argument("--final-hidden-dim", type=int, help="Final hidden layer dimension-- or if <0, the same as " "--jesus-forward-input-dim", default=-1) parser.add_argument("--num-jesus-blocks", type=int, help="number of blocks in Jesus layer. All configs of the form " "--jesus-*-dim will be rounded up to be a multiple of this.", default=100); parser.add_argument("--jesus-stddev-scale", type=float, help="Scaling factor on parameter stddev of Jesus layer (smaller->jesus layer learns faster)", default=1.0) parser.add_argument("--clipping-threshold", type=float, help="clipping threshold used in ClipGradient components (only relevant if " "recurrence indexes are specified). If clipping-threshold=0 no clipping is done", default=15) parser.add_argument("config_dir", help="Directory to write config files and variables"); print(' '.join(sys.argv)) args = parser.parse_args() if not os.path.exists(args.config_dir): os.makedirs(args.config_dir) ## Check arguments. if args.feat_dir is not None: args.feat_dim = nnet3_train_lib.GetFeatDim(args.feat_dir) if args.ali_dir is not None: args.num_targets = nnet3_train_lib.GetNumberOfLeaves(args.ali_dir) elif args.tree_dir is not None: args.num_targets = chain_lib.GetNumberOfLeaves(args.tree_dir) if args.ivector_dir is not None: args.ivector_dim = nnet3_train_lib.GetIvectorDim(args.ivector_dir) if not args.feat_dim > 0: raise Exception("feat-dim has to be postive") if not args.num_targets > 0: print(args.num_targets) raise Exception("num_targets has to be positive") if not args.ivector_dim >= 0: raise Exception("ivector-dim has to be non-negative") ## Check arguments. if args.num_jesus_blocks < 1: sys.exit("invalid --num-jesus-blocks value"); if args.final_hidden_dim < 0: args.final_hidden_dim = args.jesus_forward_input_dim for name in [ "jesus_hidden_dim", "jesus_forward_output_dim", "jesus_forward_input_dim", "final_hidden_dim" ]: old_val = getattr(args, name) if old_val % args.num_jesus_blocks != 0: new_val = old_val + args.num_jesus_blocks - (old_val % args.num_jesus_blocks) printable_name = '--' + name.replace('_', '-') print('Rounding up {0} from {1} to {2} to be a multiple of --num-jesus-blocks={3} '.format( printable_name, old_val, new_val, args.num_jesus_blocks)) setattr(args, name, new_val); # this is a bit like a struct, initialized from a string, which describes how to # set up the statistics-pooling and statistics-extraction components. # An example string is 'mean(-9fc00:db20:35b:7399::5)', which means, compute the mean of # data within a window of -99 to +99, with distinct means computed every 9 frames # (we round to get the appropriate one), and with the input extracted on multiples # of 3 frames (so this will force the input to this layer to be evaluated # every 3 frames). Another example string is 'mean+stddev(-99:3:9:99)', # which will also cause the standard deviation to be computed. class StatisticsConfig: # e.g. c = StatisticsConfig('mean+stddev(-99:3:9:99)', 400, 'jesus1-forward-output-affine') def __init__(self, config_string, input_dim, input_name): self.input_dim = input_dim self.input_name = input_name m = re.search("(mean|mean\+stddev)\((-?\d+):(-?\d+):(-?\d+):(-?\d+)\)", config_string) if m == None: sys.exit("Invalid splice-index or statistics-config string: " + config_string) self.output_stddev = (m.group(1) != 'mean') self.left_context = -int(m.group(2)) self.input_period = int(m.group(3)) self.stats_period = int(m.group(4)) self.right_context = int(m.group(5)) if not (self.left_context > 0 and self.right_context > 0 and self.input_period > 0 and self.stats_period > 0 and self.left_context % self.stats_period == 0 and self.right_context % self.stats_period == 0 and self.stats_period % self.input_period == 0): sys.exit("Invalid configuration of statistics-extraction: " + config_string) # OutputDim() returns the output dimension of the node that this produces. def OutputDim(self): return self.input_dim * (2 if self.output_stddev else 1) # OutputDims() returns an array of output dimensions, consisting of # [ input-dim ] if just "mean" was specified, otherwise # [ input-dim input-dim ] def OutputDims(self): return [ self.input_dim, self.input_dim ] if self.output_stddev else [ self.input_dim ] # Descriptor() returns the textual form of the descriptor by which the # output of this node is to be accessed. def Descriptor(self): return 'Round({0}-pooling-{1}-{2}, {3})'.format(self.input_name, self.left_context, self.right_context, self.stats_period) # This function writes the configuration lines need to compute the specified # statistics, to the file f. def WriteConfigs(self, f): print('component name={0}-extraction-{1}-{2} type=StatisticsExtractionComponent input-dim={3} ' 'input-period={4} output-period={5} include-variance={6} '.format( self.input_name, self.left_context, self.right_context, self.input_dim, self.input_period, self.stats_period, ('true' if self.output_stddev else 'false')), file=f) print('component-node name={0}-extraction-{1}-{2} component={0}-extraction-{1}-{2} input={0} '.format( self.input_name, self.left_context, self.right_context), file=f) stats_dim = 1 + self.input_dim * (2 if self.output_stddev else 1) print('component name={0}-pooling-{1}-{2} type=StatisticsPoolingComponent input-dim={3} ' 'input-period={4} left-context={1} right-context={2} num-log-count-features=0 ' 'output-stddevs={5} '.format(self.input_name, self.left_context, self.right_context, stats_dim, self.stats_period, ('true' if self.output_stddev else 'false')), file=f) print('component-node name={0}-pooling-{1}-{2} component={0}-pooling-{1}-{2} input={0}-extraction-{1}-{2} '.format( self.input_name, self.left_context, self.right_context), file=f) ## Work out splice_array ## e.g. for ## args.splice_indexes == '-3,-2,-1,0,1,2,3 -3,0:-3 -3,0:-3 -6,-3,0:-6,-3' ## we would have ## splice_array = [ [ -3,-2,...3 ], [-3,0] [-3,0] [-6,-3,0] splice_array = [] left_context = 0 right_context = 0 split_on_spaces = args.splice_indexes.split(" "); # we already checked the string is nonempty. if len(split_on_spaces) < 2: sys.exit("invalid --splice-indexes argument, too short: " + args.splice_indexes) try: for string in split_on_spaces: this_layer = len(splice_array) this_splices = string.split(",") splice_array.append(this_splices) # the rest of this block updates left_context and right_context, and # does some checking. leftmost_splice = 10000 rightmost_splice = -10000 for s in this_splices: try: n = int(s) if n < leftmost_splice: leftmost_splice = n if n > rightmost_splice: rightmost_splice = n except: if len(splice_array) == 1: sys.exit("First dimension of splicing array must not have averaging [yet]") try: x = StatisticsConfig(s, 100, 'foo') except: sys.exit("The following element of the splicing array is not a valid specifier " "of statistics: " + s) if leftmost_splice == 10000 or rightmost_splice == -10000: sys.exit("invalid element of --splice-indexes: " + string) left_context += -leftmost_splice right_context += rightmost_splice except ValueError as e: sys.exit("invalid --splice-indexes argument " + args.splice_indexes + " " + str(e)) left_context = max(0, left_context) right_context = max(0, right_context) num_hidden_layers = len(splice_array) input_dim = len(splice_array[0]) * args.feat_dim + args.ivector_dim f = open(args.config_dir + "/vars", "w") print('left_context=' + str(left_context), file=f) print('right_context=' + str(right_context), file=f) print('num_hidden_layers=' + str(num_hidden_layers), file=f) f.close() f = open(args.config_dir + "/init.config", "w") print('# Config file for initializing neural network prior to', file=f) print('# preconditioning matrix computation', file=f) print('input-node name=input dim=' + str(args.feat_dim), file=f) list=[ ('Offset(input, {0})'.format(n) if n != 0 else 'input' ) for n in splice_array[0] ] if args.ivector_dim > 0: print('input-node name=ivector dim=' + str(args.ivector_dim), file=f) list.append('ReplaceIndex(ivector, t, 0)') # example of next line: # output-node name=output input="Append(Offset(input, -3), Offset(input, -2), Offset(input, -1), ... , Offset(input, 3), ReplaceIndex(ivector, t, 0))" print('output-node name=output input=Append({0})'.format(", ".join(list)), file=f) f.close() for l in range(1, num_hidden_layers + 1): # the following summarizes the structure of the layers: Here, the Jesus component includes ReLU at its input and output, and renormalize # at its output after the ReLU. # layer1: splice + LDA-transform + affine + ReLU + renormalize # layerX: splice + Jesus + affine + ReLU
<gh_stars>0 import os from montepython.likelihood_class import Likelihood import math as m import statistics as s from scipy import stats import scipy.linalg as la import numpy as np from scipy.integrate import quad import time def lin_reg(x,y): #length of data set n = len(x) #summing independent variable x_sum = sum(x) #summing dependent variable y_sum = sum(y) #mean of independent variable x_mean = s.mean(x) #mean of dependent variable y_mean= s.mean(y) #sum of x squared x_sqr = [] for i in range(len(x)): x_temp = x[i]**2 x_sqr.append(x_temp) x_sqr_sum = sum(x_sqr) #sum of y squared y_sqr = [] for i in range(len(y)): y_temp = y[i]**2 y_sqr.append(y_temp) y_sqr_sum = sum(y_sqr) #sum of xy product xy_prod = [] for i in range(len(y)): xy_temp = y[i]*x[i] xy_prod.append(xy_temp) xy_prod_sum = sum(xy_prod) #numerator and denominator of slope estimate S_xx = x_sqr_sum - (x_sum**2/n) S_xy = xy_prod_sum - (x_sum*y_sum/n) #slope estimate B_1 = S_xy/S_xx #intercept estimate B_0 = y_mean - B_1*x_mean return B_0, B_1 #simple linear regression with fixed slope and error on slope def lin_reg_fixed_slope(x,y,m,dm,dx,dy): B_0 = np.mean(y-m*x) B_1 = m dB0 = np.sqrt((1/len(x)))*np.sqrt(np.sum(np.power(dy,2))+np.sum(np.power(m*x,2)*(np.power(dm/m,2)+np.power(dx/x,2)))) dB1 = dm return B_0, B_1, dB0, dB1 # linear regression using error as a weighting scheme, fixing slope and slope error def weighted_fixed_slope(x,y,m,dm,dx,dy): #wx = 1/dx^2 #wy = 1/dy^2 w = 1/(dx**2+dy**2) ybar = sum(w*y)/sum(w) xbar = sum(w*x)/sum(w) B0 = ybar - m*xbar r = y - (B0 +m*x) wr = np.sqrt(w)*r n = len(x) SE_wr = np.sqrt(sum(wr**2)/(n-2)) dB0 = np.sqrt((SE_wr**2/sum(w))+dm*xbar**2) B1 = m dB1 = dm return B0, B1, dB0, dB1 #york linear regression # York correction to linear regression including error in both x and y # https://aapt.scitation.org/doi/abs/10.1119/1.1632486 def york_fit(x,y,sigma_x,sigma_y,r,tol,n_max): #make sure inputs are a numpy array #if the error is 0, replace with something very very small to # to prevent nan sigma_x[sigma_x == 0] = 10**-15 sigma_y[sigma_y == 0] = 10**-15 #define an array which tracks the changes in slope, B_1 b_hist = np.ones(n_max) #1) choose an approximate initial value for the slope, b # -> simple linear regression # B_0 is intercept, B_1 is slope from simple linear regression [B_0_simple, B_1_simple] = lin_reg(x,y) b_hist[0] = B_1_simple B_0 = B_0_simple B_1 = B_1_simple #2) determine the weights omega of each point for both x and y # usually 1/sigma where sigma is the error associated with x and y # at the i'th point omega_x = 1/np.square(np.array(sigma_x)) omega_y = 1/np.square(np.array(sigma_y)) #3) use these weights with B_1 and the correlation r (if any) to # evaluate W_i for each point alpha = np.sqrt(omega_x*omega_y) #6) calculate B_1_new until the difference between B_1_new and B_1 is # less than the tolerance provided counter = 1 while counter < n_max: W = (omega_x*omega_y)/(omega_x + (B_1**2)*omega_y - 2*B_1*r*alpha) #4) use the observed points and W to calculate x_bar and y_bar from # from which U V and beta can be evaluated for each point x_bar = sum(W*x)/sum(W) y_bar = sum(W*y)/sum(W) U = x - x_bar V = y - y_bar beta = W*((U/omega_y)+(B_1*V/omega_x)-(B_1*U+V)*(r/alpha)) #5) use W U V and beta to calculate a new estimate of B_1 B_1_new = sum(W*beta*V)/sum(W*beta*U) b_hist[counter] = B_1_new if(abs(B_1_new-B_1)< tol): B_1 = B_1_new break counter += 1 B_1 = B_1_new #7) using the final value of B_1, x_bar, y_bar, calculate B_0 B_0 = y_bar - B_1*x_bar #8) for each point x and y, calculate the adjusted values x_adj = x_bar + beta y_adj = y_bar + B_1*beta #9) use x_adj and W to calc x_bar_adj and u abd v x_bar_adj = sum(W*x_adj)/sum(W) #y_bar_adj = sum(W*y_adj)/sum(W) u = x_adj - x_bar_adj #v = y_adj - y_bar_adj #10) use W x_bar and u to calculate sigma_a and sigma_b var_b = 1/(sum(W*u**2)) var_a = 1/sum(W)+(x_bar**2)*var_b sigma_a_new = np.sqrt(var_a) sigma_b_new = np.sqrt(var_b) return B_0, B_1, sigma_a_new, sigma_b_new, b_hist, B_0_simple, B_1_simple ####################################################################################### #CLASS DEFINITIONS OF STEPS OF THE DISTANCE LADDER# ####################################################################################### # This class defines the structure in which Anchors with known distances #and contain cepheids are imported class Anchor: "This class defines a structure which holds data for objects that have geometric distance measurements, and cepheid variables." def __init__(self,Name='',Dist=0,dDist=0): self.Name = Name self.Dist = Dist self.dDist = dDist self.mu = 5*np.log10(self.Dist)-5 self.dmu = 5*np.log10(np.exp(1))*self.dDist/self.Dist def Compute_abs_ceph_mag(self,period,dperiod,mh,dmh): r = 0 tol = 10**-15 n = 20 [B_0, B_1, sigma_B_0, sigma_B_1, b_save, B_0_simple, B_1_simple] = york_fit(period,mh,dperiod,dmh,r,tol,n) self.Mceph = B_0 - self.mu self.dMceph = np.sqrt(np.power(sigma_B_0,2)+np.power(self.dmu,2)) # This class defines the structure in which the cephied data is #imported, and the DM calculated to those cephieds class Ceph_data: "This class creates a structure which holds cepheid data for a given host" def __init__(self,Host='',ID='',Period=0,V=0,dV=0,I=0,dI=0,NIR=0,dNIR=0,OH=0): self.Host = Host self.ID = ID self.Period = Period self.NIR = NIR self.dNIR = dNIR self.V = V self.dV = dV self.I = I self.dI = dI # R value is a correlation coeffecient, forced to be the same #as what is used in previous analysis self.R = 0.386 self.mh = NIR - self.R*(V-I) self.dmh = np.sqrt(np.power(dNIR,2)+self.R*np.power(dV,2)+self.R*np.power(dI,2)) def proto_Compute_mu(self,mh,dmh,period,dperiod,Mceph,dMceph,slope,dslope): [B0, B_1, dB0, dB1] = weighted_fixed_slope(period,mh,slope,dslope,dperiod,dmh) self.mu = B0 - Mceph self.dmu = np.sqrt(np.power(dB0,2)+np.power(dMceph,2)) # This class defines the structure in which the SN which are #found with cephieds are imported class Local_SN_data: "This class creates a structure which holds SN data for a given host." def __init__(self,Host='',ID='',m=0,dm=0): self.Host = Host self.ID = ID self.m = m self.dm = dm def Compute_abs_sn_mag(self,m,dm,mu,dmu): x = mu y = m xerror = dm yerror = dmu [Msn, B1, dMsn, sigma_B1] = weighted_fixed_slope(x,y,1,0,xerror,yerror) self.Msn = Msn self.dMsn = dMsn # This class defines the structure in which hubble flow SN are imported class Hubble_SN_data: "This class creates a structure which holds SN data in the hubble flow." def __init__(self,ID='',z=0,dz=0,m=0,dm=0): self.ID = ID self.m = m self.dm = dm self.z = z self.dz = dz def Compute_hubble_mu(self,m,dm,Msn,dMsn): self.mu = m - Msn self.dmu = np.sqrt(np.power(dm,2)+np.power(dMsn,2)) class distanceladder(Likelihood): # initialization routine. Here we will establish the subclasses needed to calculate the #attributes of the distance ladder, up until the distance modulus calculation of #hubble flow SN def __init__(self, path, data, command_line): #initialization of Likelihood class Likelihood.__init__(self,path,data,command_line) #simple linear regression used by Yorkfit for initial parameter estimation ########################################################################################## #TABLE READERS# ########################################################################################## def anchor_reader(file,index_array,header_length,delim): base_dir = self.data_directory #stable method to read in tabular data file = open(base_dir + file) table = file.readlines() file.close() #defining the length of the actual data of the table i = len(table)-header_length #preallocating the arrays for memory host_list = [] dist_np = np.zeros(i) ddist_np = np.zeros(i) lc = 0 for line in table: lc += 1 i = lc - header_length - 1 data = line.strip('\n').split(delim) if lc>header_length: if index_array[0] is not np.NaN: host_list.append(data[index_array[0]]) else: host_list.append(np.NaN) if index_array[1] is not np.NaN: dist_np[i] = data[index_array[1]] else: dist_np[i] = np.NaN if index_array[2] is not np.NaN: ddist_np[i] = data[index_array[2]] else: ddist_np[i] = np.NaN name = [] for a in range(len(host_list)): name.append([host_list[a],dist_np[a],ddist_np[a]]) return name def ceph_table_reader(file,index_array,header_length,delim): #file(string): location of table wished to be read in #index_array(array): array containing the column index of the #following attributes: #host,ID,period,V,dV,I,dI,NIR,dNIR,OH # if attribute does not occur in table, put -1 #host: index of host column in table # list, strings #ID: index of ID column in table # list, strings #period: index of period column in table # np array, float # the remainder of entries are the index of said variable in table # all are np array's, with float values #header_length(int): line number of last row of header #name(string):user desired prefix for data # name_host, name_ID, etc #cc(string): character which splits your data #All data should be located in this parent folder base_dir = self.data_directory #stable method to read in tabular data file = open(base_dir + file) table = file.readlines() file.close() #defining the length of the actual data of the table i = len(table)-header_length #preallocating the arrays for memory host_list = [] ID_list = [] period_np = np.zeros(i) V_np = np.zeros(i) dV_np = np.zeros(i) I_np = np.zeros(i) dI_np = np.zeros(i) NIR_np = np.zeros(i) dNIR_np = np.zeros(i) OH_np = np.zeros(i) lc = 0 for line in table: lc += 1 i = lc - header_length - 1 data = line.strip('\n').split(delim) if lc>header_length: if index_array[0] is not np.NaN: host_list.append(data[index_array[0]]) else: host_list.append(np.NaN) if index_array[1] is not np.NaN: ID_list.append(data[index_array[1]]) else: ID_list.append(np.NaN) if index_array[2] is not np.NaN: period_np[i] = data[index_array[2]] else: period_np[i] = np.NaN if index_array[3] is not np.NaN: V_np[i] = data[index_array[3]] else: V_np[i] = np.NaN if index_array[4] is not np.NaN: dV_np[i] = data[index_array[4]] else: dV_np[i] = np.NaN if index_array[5] is not np.NaN: I_np[i] = data[index_array[5]] else: I_np[i] = np.NaN if index_array[6] is not np.NaN: dI_np[i] = data[index_array[6]] else: dI_np[i] = np.NaN if index_array[7] is not np.NaN: NIR_np[i] = data[index_array[7]] else: NIR_np[i] = np.NaN if index_array[8] is not np.NaN: dNIR_np[i] = data[index_array[8]] else: dNIR_np[i] = np.NaN if index_array[9] is not np.NaN: OH_np[i] = data[index_array[9]] else: OH_np[i] = np.NaN name = [] for a in range(len(host_list)): name.append([host_list[a],ID_list[a],period_np[a],V_np[a],dV_np[a],I_np[a],dI_np[a],NIR_np[a],dNIR_np[a],OH_np[a]]) return name # reads in local SN data def local_sn_table_reader(file,index_array,header_length,delim): #All data should be located in this parent folder base_dir = self.data_directory #stable method to read in tabular data file = open(base_dir + file) table = file.readlines() file.close() #defining the length of the actual data of the table i = len(table)-header_length #preallocating the arrays for memory host_list = [] ID_list = [] m_np = np.zeros(i) dm_np = np.zeros(i) lc = 0 for line in table: lc += 1 i = lc - header_length - 1 data = line.strip('\n').split(delim) if lc>header_length: if index_array[0] is not np.NaN: host_list.append(data[index_array[0]]) else: host_list.append(np.NaN) if index_array[1] is not np.NaN: ID_list.append(data[index_array[1]]) else: ID_list.append(np.NaN) if index_array[2] is not np.NaN: m_np[i] = data[index_array[2]] else: m_np[i] = np.NaN if index_array[3] is not np.NaN: dm_np[i] = data[index_array[3]] else: dm_np[i] = np.NaN name = [] for a in range(len(host_list)): name.append([host_list[a],ID_list[a],m_np[a],dm_np[a]]) return
<gh_stars>0 import copy import os import sys import warnings from time import gmtime, strftime import numpy as np import pandas as pd pd.options.mode.chained_assignment = None from pandas.api.types import ( is_bool_dtype, is_categorical_dtype, is_datetime64_any_dtype, is_numeric_dtype, is_object_dtype, is_string_dtype, CategoricalDtype, ) from sklearn.model_selection import ( KFold, train_test_split, GridSearchCV, StratifiedKFold, cross_val_score, RandomizedSearchCV, ) from sklearn.preprocessing import ( StandardScaler, RobustScaler, PolynomialFeatures, OrdinalEncoder, LabelEncoder, OneHotEncoder, KBinsDiscretizer, QuantileTransformer, PowerTransformer, MinMaxScaler, ) class Machine: """ Documentation: Description: machine facilitates rapid machine learning experimentation tasks, including data cleaning, feature encoding, exploratory data analysis, data prepation, model building, model tuning and model evaluation. """ # import mlmachine submodules from .explore.eda_suite import ( df_side_by_side, eda_cat_target_cat_feat, eda_cat_target_num_feat, eda_num_target_cat_feat, eda_num_target_num_feat, eda, ) from .explore.eda_preprocessing import ( eda_missing_summary, eda_skew_summary, eda_transform_box_cox, eda_transform_target, eda_transform_log1, ) from .features.preprocessing import ( GroupbyImputer, DataFrameSelector, DualTransformer, KFoldEncoder, PandasFeatureUnion, PandasTransformer, unique_category_levels, compare_train_valid_levels, missing_column_compare, missing_summary, skew_summary, ) from .features.outlier import ( ExtendedIsoForest, OutlierIQR, outlier_summary, outlier_IQR, ) from .features.selection import FeatureSelector from .model.evaluate.summarize import ( binary_prediction_summary, regression_prediction_summary, regression_results, regression_stats, top_bayes_optim_models, ) from .model.evaluate.visualize import ( binary_classification_panel, regression_panel, ) from .model.explain.shap_explanations import ( create_shap_explainers ) from .model.explain.shap_visualizations import ( multi_shap_value_tree, multi_shap_viz_tree, shap_dependence_grid, shap_dependence_plot, shap_summary_plot, single_shap_value_tree, single_shap_viz_tree, ) from .model.tune.bayesian_optim_search import ( BayesOptimModelBuilder, BayesOptimClassifierBuilder, BayesOptimRegressorBuilder, BasicClassifierBuilder, BasicRegressorBuilder, BasicModelBuilder, exec_bayes_optim_search, model_loss_plot, model_param_plot, objective, sample_plot, unpack_bayes_optim_summary, ) from .model.tune.power_grid_search import ( PowerGridModelBuilder, PowerGridSearcher, ) from .model.tune.stack import ( model_stacker, oof_generator, ) def __init__(self, experiment_name, training_dataset, validation_dataset, remove_features=[], identify_as_boolean=None, identify_as_continuous=None, identify_as_count=None, identify_as_date=None, identify_as_nominal=None, identify_as_ordinal=None, ordinal_encodings=None, identify_as_string=None, target=None, is_classification=None, create_experiment_dir=None): """ Documentation: --- Description: __init__ handles initial processing of main data set. Creates DataFrame of independent variables, Pandas Series containing dependent variable and a dictionary that categorizes features by mlm data type. --- Parameters: experiment_name : str Name of experiment, used to create sub-directory in experiments folder. training_dataset : Pandas DataFrame Training data provided as a Pandas DataFrame. validation_dataset : Pandas DataFrame Validation data provided as a Pandas DataFrame. remove_features : list, default=[] Features to be completely removed from dataset. identify_as_boolean : list, default=None Preidentified boolean features. Columns given boolean dtype. identify_as_continuous : list, default=None Preidentified continuous features. Columns given float64 dtype. identify_as_count : list, default=None Preidentified count features. Columns given int64 dtype. identify_as_date : list, default=None Preidentified date features. Columns given datetime64[ns] dtype. identify_as_nominal : list, default=None Preidentified nominal category features. Columns given category dtype. identify_as_ordinal : list, default=None Preidentified ordinal category features. Columns given category dtype. If an ordinal_encodings dict is passed, the category column will be given the specified order. ordinal_encodings : dict, default=None Dictionary where the key is the ordinal column name provided as a string, and the associated value is a list containing the preferred order of the values. identify_as_string : list, default=None Preidentified string features. Columns given string dtype. target : list, default=None Name of column containing dependent variable. is_classification : boolean, default=None Controls whether Machine is instantiated as a classification object or a regression object. create_experiment_dir : boolean, default=None Controls whether a shell experiment directory gets created for storing experiment objects. --- Attributes: data : Pandas DataFrame Independent variables returned as a Pandas DataFrame. target : Pandas Series Dependent variable returned as a Pandas Series. """ self.experiment_name = experiment_name self.remove_features = remove_features self.training_target = training_dataset[target].squeeze() if target is not None else None self.training_features = ( training_dataset.drop(self.remove_features + [self.training_target.name], axis=1) if target is not None else training_dataset.drop(self.remove_features, axis=1) ) self.validation_target = validation_dataset[target].squeeze() if target is not None else None self.validation_features = ( validation_dataset.drop(self.remove_features + [self.validation_target.name], axis=1) if target is not None else validation_dataset.drop(self.remove_features, axis=1) ) self.identify_as_continuous = identify_as_continuous self.identify_as_boolean = identify_as_boolean self.identify_as_count = identify_as_count self.identify_as_date = identify_as_date self.identify_as_nominal = identify_as_nominal self.identify_as_ordinal = identify_as_ordinal self.ordinal_encodings = ordinal_encodings self.identify_as_string = identify_as_string self.is_classification = is_classification if self.is_classification is None: raise Exception ("Indicate whether supervised learning problem is classification or not by specifying 'is_classification=True' or 'is_classification=False'") if self.identify_as_ordinal is not None and self.ordinal_encodings is None: warnings.warn("Recommendation - Ordinal column names passed to 'identify_as_ordinal' variable but, no ordinal encoding instructions pass to 'ordinal_encodings' variable. It is recommended to pass a dictionary containing ordinal column names as keys and lists containing the preferred order of encoding as values", UserWarning) # execute method capture_mlm_dtypes on training_features # self.training_features = PreserveMetaData(self.training_features) self.capture_mlm_dtypes() # encode the target column in training and validation datasets if is_classification == True if self.training_target is not None and self.is_classification: self.training_target, self.le_ = self.encode_target(self.training_target) self.validation_target, _ = self.encode_target(self.validation_target) # create experiment directory tree self.create_experiment_dir() def capture_mlm_dtypes(self): """ Documentation: -- Description: Determine mlm dtype for each feature. Add determination to mlm_dtypes attribute and set Pandas dtype in DataFrame accordingly. """ ### populate mlm_dtypes dictionary with feature type label for each feature self.training_features.mlm_dtypes = {} ### boolean # mlmachine dtype capture if isinstance(self.identify_as_boolean, list): self.training_features.mlm_dtypes["boolean"] = self.identify_as_boolean elif not isinstance(self.identify_as_boolean, list) and self.identify_as_boolean is not None: raise AttributeError ("Variable passed to identify_as_boolean is not a list. Provide a list of column names, provide None or allow identify_as_boolean to default to None.") elif self.identify_as_boolean is None: self.training_features.mlm_dtypes["boolean"] = [] # Pandas dtype for column in self.training_features.mlm_dtypes["boolean"]: self.training_features[column] = self.training_features[column].astype("boolean") ### nominal category # mlmachine dtype capture if isinstance(self.identify_as_nominal, list): self.training_features.mlm_dtypes["nominal"] = self.identify_as_nominal elif not isinstance(self.identify_as_nominal, list) and self.identify_as_nominal is not None: raise AttributeError ("Variable passed to identify_as_nominal is not a list. Provide a list of column names, provide None or allow identify_as_nominal to default to None.") elif self.identify_as_nominal is None: self.training_features.mlm_dtypes["nominal"] = [] # Pandas dtype for column in self.training_features.mlm_dtypes["nominal"]: self.training_features[column] = self.training_features[column].astype("category") ### ordinal category # mlmachine dtype capture if isinstance(self.identify_as_ordinal, list): self.training_features.mlm_dtypes["ordinal"] = self.identify_as_ordinal elif not isinstance(self.identify_as_ordinal, list) and self.identify_as_ordinal is not None: raise AttributeError ("Variable passed to identify_as_ordinal is not a list. Provide a list of column names, provide None or allow identify_as_ordinal to default to None.") elif isinstance(self.ordinal_encodings, dict): self.training_features.mlm_dtypes["ordinal"] = list(self.ordinal_encodings.keys()) elif self.identify_as_ordinal is None and self.ordinal_encodings is None: self.training_features.mlm_dtypes["ordinal"] = [] # Pandas dtype if isinstance(self.ordinal_encodings, dict): for column, order in self.ordinal_encodings.items(): category_type = CategoricalDtype(categories=order, ordered=True) self.training_features[column] = self.training_features[column].astype(category_type) for column in self.training_features.mlm_dtypes["ordinal"]: self.training_features[column] = self.training_features[column].astype("category") ### continuous # mlmachine dtype capture if isinstance(self.identify_as_continuous, list): self.training_features.mlm_dtypes["continuous"] = self.identify_as_continuous elif not isinstance(self.identify_as_continuous, list) and self.identify_as_continuous is not None: raise AttributeError ("Variable passed to identify_as_continuous is not a list. Either provider a list of column names, provide None or allow identify_as_continuous to default to None.") elif self.identify_as_continuous is None: self.training_features.mlm_dtypes["continuous"] = [] # Pandas dtype for column in self.training_features.mlm_dtypes["continuous"]: self.training_features[column] = self.training_features[column].astype("float64") ### count # mlmachine dtype capture if isinstance(self.identify_as_count, list): self.training_features.mlm_dtypes["count"] = self.identify_as_count elif not isinstance(self.identify_as_count, list) and self.identify_as_count is not None: raise AttributeError ("Variable passed to identify_as_count is not a list. Provide a list of column names, provide None or allow identify_as_count to default to None.") elif self.identify_as_count is None: self.training_features.mlm_dtypes["count"] = [] # Pandas dtype for column in self.training_features.mlm_dtypes["count"]: try: self.training_features[column] = self.training_features[column].astype("int64") except ValueError: self.training_features[column] = self.training_features[column].astype("float64") ### string # mlmachine dtype capture if isinstance(self.identify_as_string, list): self.training_features.mlm_dtypes["string"] = self.identify_as_string elif not isinstance(self.identify_as_string, list) and self.identify_as_string is not None: raise AttributeError ("Variable passed to identify_as_string is not a list. Provide a list of column names, provide None or allow identify_as_string to default to None.") elif self.identify_as_string is None: self.training_features.mlm_dtypes["string"] = [] # Pandas dtype for column in self.training_features.mlm_dtypes["string"]: self.training_features[column] = self.training_features[column].astype("string") ### date # mlmachine dtype capture if isinstance(self.identify_as_date, list): self.training_features.mlm_dtypes["date"] = self.identify_as_date elif not isinstance(self.identify_as_date, list) and self.identify_as_date is not None: raise AttributeError ("Variable passed to identify_as_date is not a list. Provide a list of column names, provide None or allow identify_as_date to default to None.") elif self.identify_as_date is None: self.training_features.mlm_dtypes["date"] = [] # Pandas dtype for column in self.training_features.mlm_dtypes["date"]: self.training_features[column] = self.training_features[column].astype("datetime64[ns]") ### untracked columns # compile single list of features that have already been categorized tracked_columns = [i for i in sum(self.training_features.mlm_dtypes.values(), [])] # iterate through untracked columns and attempt mlmachine dtype identification for column in [i for i in self.training_features.columns if i not in tracked_columns]: # capture column statistics and characteristics try: value_mean = np.mean(self.training_features[column].dropna()) value_std = np.std(self.training_features[column].dropna()) except TypeError: pass # identify how many values in feature are zero or one zeros_and_ones = (self.training_features[column].eq(0) |
{'k1': 'Libya', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Madagascar', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Malawi', 'k2': '?', 'k3': '?', 'k4': 'No', 'k5': 'Yes', 'k6': 'No'}, {'k1': 'Mali', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Morocco', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Mauritius', 'k2': '100,000 rupees', 'k3': '5', 'k4': 'No', 'k5': 'Yes', 'k6': 'No'}, {'k1': 'Mauritania', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Mozambique', 'k2': '0,00 €', 'k3': '0', 'k4': 'Yes up to unlimited power / Any devices', 'k5': 'No', 'k6': 'No'}, {'k1': 'Namibia', 'k2': '0,00 €', 'k3': '0', 'k4': 'Yes up to unlimited power / Any devices', 'k5': 'No', 'k6': 'No'}, {'k1': 'Niger', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Nigeria', 'k2': '0,00 €', 'k3': '0', 'k4': 'Yes up to 1 MW / Any devices', 'k5': 'No', 'k6': 'No'}, {'k1': 'Uganda', 'k2': '0,00 €', 'k3': '0', 'k4': 'Yes up to 0,5 MW / Any devices', 'k5': 'No', 'k6': 'No'}, {'k1': 'Rwanda', 'k2': '?', 'k3': '?', 'k4': 'No', 'k5': 'Yes', 'k6': 'No'}, {'k1': 'Sao Tome And Principe', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Senegal', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Sierra Leone', 'k2': '?', 'k3': '?', 'k4': 'No', 'k5': 'Yes', 'k6': 'No'}, {'k1': 'Somalia', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Sudan', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'South Sudan', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Tanzania', 'k2': '?', 'k3': '?', 'k4': 'No', 'k5': 'Yes', 'k6': 'No'}, {'k1': 'Tchad', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Togo', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Tunisia', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Zambia', 'k2': '?', 'k3': '?', 'k4': 'No', 'k5': 'Yes', 'k6': 'No'}, {'k1': 'Zimbabwe', 'k2': '0,00 €', 'k3': '0', 'k4': 'Yes up to 100 kW / Any devices', 'k5': 'No', 'k6': 'No'}, {'k1': 'Seychelles', 'k2': 'SCR 200,000', 'k3': '2', 'k4': 'No', 'k5': 'Yes', 'k6': 'No'} ] return jsonify(data) # Get information about electricity generation without license in America # k1 = country # k2 = Amount of the fine for electricity generation without license and not connected to the national grid for # internal needs ? # k3 = Number of years of imprisonment for electricity generation without license and not linked to any grid or # network for internal needs ? # k4 = Possible use of free energy devices for internal needs without licence ? # k5 = Possible control of the power plant by any jurisdictions without that the producer holds a license ? # k6 = Flixbus in the capital ? @app.route("/international_electricity_generation_without_license_in_america") def international_electricity_generation_without_license_in_america(): data = [ {'k1': 'Antigua And Barbuda', 'k2': '0,00 €', 'k3': '0', 'k4': 'Yes up to unlimited power / Any devices', 'k5': 'No', 'k6': 'No'}, {'k1': 'Argentina', 'k2': '0,00 €', 'k3': '0', 'k4': 'Yes up to unlimited power / Any devices', 'k5': 'No', 'k6': 'No'}, {'k1': 'Bahamas', 'k2': '2000,00 €', 'k3': '2', 'k4': 'Yes up to 250 kW / any devices', 'k5': 'No', 'k6': 'No'}, {'k1': 'Barbados', 'k2': '0,00 €', 'k3': '0', 'k4': 'Yes up to 5 kW / any devices', 'k5': 'No', 'k6': 'No'}, {'k1': 'Belize', 'k2': '5000,00 €', 'k3': '1', 'k4': 'Yes up to 75 kW / any devices', 'k5': 'No', 'k6': 'No'}, {'k1': 'Bolivia', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Brazil', 'k2': '0,00 €', 'k3': '0', 'k4': 'Yes up to 50 MW / Any devices', 'k5': 'No', 'k6': 'No'}, {'k1': 'Canada', 'k2': '0,00 €', 'k3': '0', 'k4': 'Yes up to unlimited power / Any devices', 'k5': 'No', 'k6': 'No'}, {'k1': 'Chile', 'k2': '0,00 €', 'k3': '0', 'k4': 'Yes up to unlimited power / Any devices', 'k5': 'No', 'k6': 'No'}, {'k1': 'Colombia', 'k2': '0,00 €', 'k3': '0', 'k4': 'Yes up to 1 MW / Any devices', 'k5': 'No', 'k6': 'No'}, {'k1': 'Costa Rica', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Cuba', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Dominican Republic', 'k2': '0,00 €', 'k3': '0', 'k4': 'Yes up to unlimited power / Any devices', 'k5': 'No', 'k6': 'No'}, {'k1': 'Dominique', 'k2': '0,00 €', 'k3': '0', 'k4': 'Yes up to unlimited power / Any devices', 'k5': 'No', 'k6': 'No'}, {'k1': 'Ecuador', 'k2': '0,00 €', 'k3': '0', 'k4': 'Yes up to unlimited power / Any devices', 'k5': 'No', 'k6': 'No'}, {'k1': 'Usa', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Grenada', 'k2': '0,00 €', 'k3': '0', 'k4': 'Yes up to unlimited power / Any devices', 'k5': 'No', 'k6': 'No'}, {'k1': 'Guatemala', 'k2': '?', 'k3': '?', 'k4': 'No', 'k5': 'Yes', 'k6': 'No'}, {'k1': 'Guyana', 'k2': '50000,00 €', 'k3': '5', 'k4': 'No', 'k5': 'Yes', 'k6': 'No'}, {'k1': 'Haiti', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Honduras', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Jamaica', 'k2': '0,00 €', 'k3': '0', 'k4': 'Yes up to unlimited power / Any devices', 'k5': 'No', 'k6': 'No'}, {'k1': 'Mexcio', 'k2': '?', 'k3': '?', 'k4': 'No', 'k5': 'Yes', 'k6': 'No'}, {'k1': 'Panama', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Nicaragua', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Paraguay', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Peru', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Saint Kitts And Nevis', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Saint Lucia', 'k2': '5000,00 €', 'k3': '1', 'k4': 'No', 'k5': 'Yes', 'k6': 'No'}, {'k1': 'Saint Vincent And The Grenadines', 'k2': '750,00 €', 'k3': '1', 'k4': 'No', 'k5': 'Yes', 'k6': 'No'}, {'k1': 'El Salvador', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Suriname', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Trinidad And Tobago', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Uruguay', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Venezuela', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Puerto Rico', 'k2': '0,00 €', 'k3': '0', 'k4': 'Yes up to unlimited power / Any devices', 'k5': 'No', 'k6': 'No'}, {'k1': 'American Virgin Islands', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Galápagos island', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Archipel of San Andrés, Providencia and Santa Catalina', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Navasse island', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Cayman Islands', 'k2': '0,00 €', 'k3': '0', 'k4': 'Yes up to unlimited power / Any devices', 'k5': 'No', 'k6': 'No'}, {'k1': 'Greenland', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Turks And Caicos Islands', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'British Virgin Islands', 'k2': '0,00 €', 'k3': '0', 'k4': 'Yes up to unlimited power / Any devices', 'k5': 'No', 'k6': 'No'}, {'k1': 'Caribbean Netherlands', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Anguilla', 'k2': '0,00 €', 'k3': '0', 'k4': 'Yes up to unlimited power / Any devices', 'k5': 'No', 'k6': 'No'}, {'k1': 'Aruba', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Montserrat', 'k2': '0,00 €', 'k3': '0', 'k4': 'Yes up to unlimited power / Any devices', 'k5': 'No', 'k6': 'No'}, {'k1': 'Clipperton island', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Bermuda', 'k2': '50000,00 €', 'k3': '5', 'k4': 'No', 'k5': 'Yes', 'k6': 'No'}, {'k1': 'Curaçao', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1': 'Bonaire', 'k2': '?', 'k3': '?', 'k4': '?', 'k5': '?', 'k6': 'No'}, {'k1':
= Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1237 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1238 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1239 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1240 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1241 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1242 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1243 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1244 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1245 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1246 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1247 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1248 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1249 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1250 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1251 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1252 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1253 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1254 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1255 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1256 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1257 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1258 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1259 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1260 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1261 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1262 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1263 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1264 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1265 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1266 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1267 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1268 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1269 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1270 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1271 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1272 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1273 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1274 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1275 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1276 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1277 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1278 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1279 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1280 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1281 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1282 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1283 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1284 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1285 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1286 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1287 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1288 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1289 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1290 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1291 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1292 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1293 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1294 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1295 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1296 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1297 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1298 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1299 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1300 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1301 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1302 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1303 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1304 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1305 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1306 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1307 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1308 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1309 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1310 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1311 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1312 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1313 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1314 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1315 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1316 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1317 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1318 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1319 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1320 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1321 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1322 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1323 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1324 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1325 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1326 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1327 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1328 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1329 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1330 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1331 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1332 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1333 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1334 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1335 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1336 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1337 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1338 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1339 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1340 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1341 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1342 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1343 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1344 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1345 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1346 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1347 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1348 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1349 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1350 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1351 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1352 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1353 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1354 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1355 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1356 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1357 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1358 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1359 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1360 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1361 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1362 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1363 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1364 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1365 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1366 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1367 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1368 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1369 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1370 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1371 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1372 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1373 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1374 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1375 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1376 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1377 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1378 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1379 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1380 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1381 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1382 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1383 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1384 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1385 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1386 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1387 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1388 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1389 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1390 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1391 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1392 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1393 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1394 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1395 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1396 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1397 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1398 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1399 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1400 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1401 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1402 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1403 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1404 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1405 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1406 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1407 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1408 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1409 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1410 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1411 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1412 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1413 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1414 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1415 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1416 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1417 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1418 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1419 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1420 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1421 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1422 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1423 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1424 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1425 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1426 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1427 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1428 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1429 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1430 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1431 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1432 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1433 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1434 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1435 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1436 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1437 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1438 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1439 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1440 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1441 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1442 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1443 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1444 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1445 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1446 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1447 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1448 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1449 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1450 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1451 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1452 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1453 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1454 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1455 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1456 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1457 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1458 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1459 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1460 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1461 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1462 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1463 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1464 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1465 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1466 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1467 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1468 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1469 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1470 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1471 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1472 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1473 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1474 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1475 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1476 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1477 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1478 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1479 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1480 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1481 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1482 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1483 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1484 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1485 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1486 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1487 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1488 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1489 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1490 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1491 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1492 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1493 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1494 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1495 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1496 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1497 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1498 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1499 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1500 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1501 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1502 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1503 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1504 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1505 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1506 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1507 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1508 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1509 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1510 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1511 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1512 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1513 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1514 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1515 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1516 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1517 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1518 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1519 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1520 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1521 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1522 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1523 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1524 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1525 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1526 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1527 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1528 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1529 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1530 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1531 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1532 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1533 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1534 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1535 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1536 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1537 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1538 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1539 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1540 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1541 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1542 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1543 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1544 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1545 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1546 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1547 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1548 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1549 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1550 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1551 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1552 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1553 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1554 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1555 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1556 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1557 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1558 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1559 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1560 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1561 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1562 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1563 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1564 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1565 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1566 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1567 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1568 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1569 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1570 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1571 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1572 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1573 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1574 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1575 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1576 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1577 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1578 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1579 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1580 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1581 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1582 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1583 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1584 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1585 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1586 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1587 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1588 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1589 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1590 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1591 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1592 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1593 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1594 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1595 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1596 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1597 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1598 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1599 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1600 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1601 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1602 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1603 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1604 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1605 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1606 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1607 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1608 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1609 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1610 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1611 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1612 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1613 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1614 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1615 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1616 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1617 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1618 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1619 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1620 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1621 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1622 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1623 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1624 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1625 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1626 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1627 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1628 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1629 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1630 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1631 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1632 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1633 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1634 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1635 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1636 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1637 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1638 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1639 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1640 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1641 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1642 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1643 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1644 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1645 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1646 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1647 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1648 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1649 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1650 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1651 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1652 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1653 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1654 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1655 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1656 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1657 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1658 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1659 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1660 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1661 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1662 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1663 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1664 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1665 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1666 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1667 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1668 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1669 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1670 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1671 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1672 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1673 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1674 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1675 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1676 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1677 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1678 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1679 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1680 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1681 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1682 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1683 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1684 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1685 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1686 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1687 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1688 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1689 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1690 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1691 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1692 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1693 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1694 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1695 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1696 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1697 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1698 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1699 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1700 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1701 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1702 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1703 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1704 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1705 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1706 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1707 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1708 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1709 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1710 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1711 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1712 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1713 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1714 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1715 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1716 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1717 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1718 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1719 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1720 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1721 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1722 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1723 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1724 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1725 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1726 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1727 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1728 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1729 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1730 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1731 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1732 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1733 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1734 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1735 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1736 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1737 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1738 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1739 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1740 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1741 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1742 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1743 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1744 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1745 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1746 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1747 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1748 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1749 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1750 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1751 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1752 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1753 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1754 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1755 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1756 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1757 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1758 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1759 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1760 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1761 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1762 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1763 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1764 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1765 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1766 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1767 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1768 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1769 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1770 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1771 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1772 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1773 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1774 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1775 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1776 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1777 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1778 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1779 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1780 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1781 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1782 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1783 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1784 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1785 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1786 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1787 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1788 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1789 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1790 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1791 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1792 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1793 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1794 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1795 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1796 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1797 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1798 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1799 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1800 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1801 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1802 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1803 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1804 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1805 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1806 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1807 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1808 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1809 = Var(within=Reals,bounds=(-1,1),initialize=0.001) m.x1810 = Var(within=Reals,bounds=(None,None),initialize=0.005) m.x1812 = Var(within=Reals,bounds=(15.2083333333333,15.2083333333333),initialize=15.2083333333333) m.x1813 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1814 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1815 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1816 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1817 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1818 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1819 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1820 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1821 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1822 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1823 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1824 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1825 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1826 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1827 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1828 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1829 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1830 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1831 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1832 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1833 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1834 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1835 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1836 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1837 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1838 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1839 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1840 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1841 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1842 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1843 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1844 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1845 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1846 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1847 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1848 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1849 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1850 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1851 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1852 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1853 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1854 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1855 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1856 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1857 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1858 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1859 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1860 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1861 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1862 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1863 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1864 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1865 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1866 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1867 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1868 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1869 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1870 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1871 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1872 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1873 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1874 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1875 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1876 = Var(within=Reals,bounds=(0.0001,None),initialize=15.2083333333333) m.x1877
= 'in-use' db.volume_create(self.context, self.volume_attrs) # start test self.assertRaises(exception.ImageNotFound, self.volume.copy_volume_to_image, self.context, self.volume_id, self.image_meta) volume = db.volume_get(self.context, self.volume_id) self.assertEqual('available', volume['status']) def test_copy_volume_to_image_driver_not_initialized(self): # creating volume testdata db.volume_create(self.context, self.volume_attrs) # set initialized to False self.volume.driver._initialized = False # start test self.assertRaises(exception.DriverNotInitialized, self.volume.copy_volume_to_image, self.context, self.volume_id, self.image_meta) volume = db.volume_get(self.context, self.volume_id) self.assertEqual('available', volume.status) def test_copy_volume_to_image_driver_exception(self): self.image_meta['id'] = self.image_id image_service = fake_image.FakeImageService() # create new image in queued state queued_image_id = 'd5133f15-f753-41bd-920a-06b8c49275d9' queued_image_meta = image_service.show(self.context, self.image_id) queued_image_meta['id'] = queued_image_id queued_image_meta['status'] = 'queued' image_service.create(self.context, queued_image_meta) # create new image in saving state saving_image_id = '5c6eec33-bab4-4e7d-b2c9-88e2d0a5f6f2' saving_image_meta = image_service.show(self.context, self.image_id) saving_image_meta['id'] = saving_image_id saving_image_meta['status'] = 'saving' image_service.create(self.context, saving_image_meta) # create volume self.volume_attrs['status'] = 'available' self.volume_attrs['instance_uuid'] = None db.volume_create(self.context, self.volume_attrs) with mock.patch.object(self.volume.driver, 'copy_volume_to_image') as driver_copy_mock: driver_copy_mock.side_effect = exception.VolumeDriverException( "Error") # test with image not in queued state self.assertRaises(exception.VolumeDriverException, self.volume.copy_volume_to_image, self.context, self.volume_id, self.image_meta) volume = db.volume_get(self.context, self.volume_id) self.assertEqual('available', volume['status']) # image shouldn't be deleted if it is not in queued state image_service.show(self.context, self.image_id) # test with image in queued state self.assertRaises(exception.VolumeDriverException, self.volume.copy_volume_to_image, self.context, self.volume_id, queued_image_meta) volume = db.volume_get(self.context, self.volume_id) self.assertEqual('available', volume['status']) # queued image should be deleted self.assertRaises(exception.ImageNotFound, image_service.show, self.context, queued_image_id) # test with image in saving state self.assertRaises(exception.VolumeDriverException, self.volume.copy_volume_to_image, self.context, self.volume_id, saving_image_meta) volume = db.volume_get(self.context, self.volume_id) self.assertEqual('available', volume['status']) # image in saving state should be deleted self.assertRaises(exception.ImageNotFound, image_service.show, self.context, saving_image_id) @mock.patch.object(QUOTAS, 'reserve') @mock.patch.object(QUOTAS, 'commit') @mock.patch.object(vol_manager.VolumeManager, 'create_volume') @mock.patch.object(fake_driver.FakeISCSIDriver, 'copy_volume_to_image') def _test_copy_volume_to_image_with_image_volume( self, mock_copy, mock_create, mock_quota_commit, mock_quota_reserve): self.flags(glance_api_version=2) self.volume.driver.configuration.image_upload_use_cinder_backend = True image_service = fake_image.FakeImageService() image_id = '5c6eec33-bab4-4e7d-b2c9-88e2d0a5f6f2' self.image_meta['id'] = image_id self.image_meta['status'] = 'queued' image_service.create(self.context, self.image_meta) # creating volume testdata self.volume_attrs['instance_uuid'] = None db.volume_create(self.context, self.volume_attrs) def fake_create(context, volume_id, **kwargs): db.volume_update(context, volume_id, {'status': 'available'}) mock_create.side_effect = fake_create # start test self.volume.copy_volume_to_image(self.context, self.volume_id, self.image_meta) volume = db.volume_get(self.context, self.volume_id) self.assertEqual('available', volume['status']) # return create image image = image_service.show(self.context, image_id) image_service.delete(self.context, image_id) return image def test_copy_volume_to_image_with_image_volume(self): image = self._test_copy_volume_to_image_with_image_volume() self.assertTrue(image['locations'][0]['url'].startswith('cinder://')) def test_copy_volume_to_image_with_image_volume_qcow2(self): self.image_meta['disk_format'] = 'qcow2' image = self._test_copy_volume_to_image_with_image_volume() self.assertIsNone(image.get('locations')) @mock.patch.object(vol_manager.VolumeManager, 'delete_volume') @mock.patch.object(fake_image._FakeImageService, 'add_location', side_effect=exception.Invalid) def test_copy_volume_to_image_with_image_volume_failure( self, mock_add_location, mock_delete): image = self._test_copy_volume_to_image_with_image_volume() self.assertIsNone(image.get('locations')) self.assertTrue(mock_delete.called) class GetActiveByWindowTestCase(BaseVolumeTestCase): def setUp(self): super(GetActiveByWindowTestCase, self).setUp() self.ctx = context.get_admin_context(read_deleted="yes") self.db_vol_attrs = [ { 'id': fake.VOLUME_ID, 'host': 'devstack', 'project_id': fake.PROJECT_ID, 'created_at': datetime.datetime(1, 1, 1, 1, 1, 1), 'deleted': True, 'status': 'deleted', 'deleted_at': datetime.datetime(1, 2, 1, 1, 1, 1), }, { 'id': fake.VOLUME2_ID, 'host': 'devstack', 'project_id': fake.PROJECT_ID, 'created_at': datetime.datetime(1, 1, 1, 1, 1, 1), 'deleted': True, 'status': 'deleted', 'deleted_at': datetime.datetime(1, 3, 10, 1, 1, 1), }, { 'id': fake.VOLUME3_ID, 'host': 'devstack', 'project_id': fake.PROJECT_ID, 'created_at': datetime.datetime(1, 1, 1, 1, 1, 1), 'deleted': True, 'status': 'deleted', 'deleted_at': datetime.datetime(1, 5, 1, 1, 1, 1), }, { 'id': fake.VOLUME4_ID, 'host': 'devstack', 'project_id': fake.PROJECT_ID, 'created_at': datetime.datetime(1, 3, 10, 1, 1, 1), }, { 'id': fake.VOLUME5_ID, 'host': 'devstack', 'project_id': fake.PROJECT_ID, 'created_at': datetime.datetime(1, 5, 1, 1, 1, 1), } ] self.db_snap_attrs = [ { 'id': fake.SNAPSHOT_ID, 'host': 'devstack', 'project_id': 'p1', 'created_at': datetime.datetime(1, 1, 1, 1, 1, 1), 'deleted': True, 'status': fields.SnapshotStatus.DELETED, 'deleted_at': datetime.datetime(1, 2, 1, 1, 1, 1), 'volume_id': fake.VOLUME_ID, }, { 'id': fake.SNAPSHOT2_ID, 'host': 'devstack', 'project_id': 'p1', 'created_at': datetime.datetime(1, 1, 1, 1, 1, 1), 'deleted': True, 'status': fields.SnapshotStatus.DELETED, 'deleted_at': datetime.datetime(1, 3, 10, 1, 1, 1), 'volume_id': fake.VOLUME_ID, }, { 'id': fake.SNAPSHOT3_ID, 'host': 'devstack', 'project_id': 'p1', 'created_at': datetime.datetime(1, 1, 1, 1, 1, 1), 'deleted': True, 'status': fields.SnapshotStatus.DELETED, 'deleted_at': datetime.datetime(1, 5, 1, 1, 1, 1), 'volume_id': fake.VOLUME_ID, }, { 'id': fake.SNAPSHOT_ID, 'host': 'devstack', 'project_id': 'p1', 'created_at': datetime.datetime(1, 3, 10, 1, 1, 1), 'volume_id': fake.VOLUME_ID, }, { 'id': fake.SNAPSHOT2_ID, 'host': 'devstack', 'project_id': 'p1', 'created_at': datetime.datetime(1, 5, 1, 1, 1, 1), 'volume_id': fake.VOLUME_ID } ] def test_volume_get_active_by_window(self): # Find all all volumes valid within a timeframe window. # Not in window db.volume_create(self.ctx, self.db_vol_attrs[0]) # In - deleted in window db.volume_create(self.ctx, self.db_vol_attrs[1]) # In - deleted after window db.volume_create(self.ctx, self.db_vol_attrs[2]) # In - created in window db.volume_create(self.context, self.db_vol_attrs[3]) # Not of window. db.volume_create(self.context, self.db_vol_attrs[4]) volumes = db.volume_get_active_by_window( self.context, datetime.datetime(1, 3, 1, 1, 1, 1), datetime.datetime(1, 4, 1, 1, 1, 1), project_id=fake.PROJECT_ID) self.assertEqual(3, len(volumes)) self.assertEqual(fake.VOLUME2_ID, volumes[0].id) self.assertEqual(fake.VOLUME3_ID, volumes[1].id) self.assertEqual(fake.VOLUME4_ID, volumes[2].id) def test_snapshot_get_active_by_window(self): # Find all all snapshots valid within a timeframe window. db.volume_create(self.context, {'id': fake.VOLUME_ID}) for i in range(5): self.db_vol_attrs[i]['volume_id'] = fake.VOLUME_ID # Not in window del self.db_snap_attrs[0]['id'] snap1 = objects.Snapshot(self.ctx, **self.db_snap_attrs[0]) snap1.create() # In - deleted in window del self.db_snap_attrs[1]['id'] snap2 = objects.Snapshot(self.ctx, **self.db_snap_attrs[1]) snap2.create() # In - deleted after window del self.db_snap_attrs[2]['id'] snap3 = objects.Snapshot(self.ctx, **self.db_snap_attrs[2]) snap3.create() # In - created in window del self.db_snap_attrs[3]['id'] snap4 = objects.Snapshot(self.ctx, **self.db_snap_attrs[3]) snap4.create() # Not of window. del self.db_snap_attrs[4]['id'] snap5 = objects.Snapshot(self.ctx, **self.db_snap_attrs[4]) snap5.create() snapshots = objects.SnapshotList.get_active_by_window( self.context, datetime.datetime(1, 3, 1, 1, 1, 1), datetime.datetime(1, 4, 1, 1, 1, 1)).objects self.assertEqual(3, len(snapshots)) self.assertEqual(snap2.id, snapshots[0].id) self.assertEqual(fake.VOLUME_ID, snapshots[0].volume_id) self.assertEqual(snap3.id, snapshots[1].id) self.assertEqual(fake.VOLUME_ID, snapshots[1].volume_id) self.assertEqual(snap4.id, snapshots[2].id) self.assertEqual(fake.VOLUME_ID, snapshots[2].volume_id) class DriverTestCase(test.TestCase): """Base Test class for Drivers.""" driver_name = "cinder.volume.driver.FakeBaseDriver" def setUp(self): super(DriverTestCase, self).setUp() vol_tmpdir = tempfile.mkdtemp() self.flags(volume_driver=self.driver_name, volumes_dir=vol_tmpdir) self.volume = importutils.import_object(CONF.volume_manager) self.context = context.get_admin_context() self.output = "" self.configuration = conf.Configuration(None) self.stubs.Set(brick_lvm.LVM, '_vg_exists', lambda x: True) def _fake_execute(_command, *_args, **_kwargs): """Fake _execute.""" return self.output, None exec_patcher = mock.patch.object(self.volume.driver, '_execute', _fake_execute) exec_patcher.start() self.addCleanup(exec_patcher.stop) self.volume.driver.set_initialized() self.addCleanup(self._cleanup) def _cleanup(self): try: shutil.rmtree(CONF.volumes_dir) except OSError: pass def _attach_volume(self): """Attach volumes to an instance.""" return [] def _detach_volume(self, volume_id_list): """Detach volumes from an instance.""" for volume_id in volume_id_list: db.volume_detached(self.context, volume_id) self.volume.delete_volume(self.context, volume_id) class GenericVolumeDriverTestCase(DriverTestCase): """Test case for VolumeDriver.""" driver_name = "cinder.tests.unit.fake_driver.LoggingVolumeDriver" @mock.patch.object(utils, 'temporary_chown') @mock.patch('six.moves.builtins.open') @mock.patch.object(os_brick.initiator.connector, 'get_connector_properties') @mock.patch.object(db.sqlalchemy.api, 'volume_get') def test_backup_volume_available(self, mock_volume_get, mock_get_connector_properties, mock_file_open, mock_temporary_chown): vol = tests_utils.create_volume(self.context) self.context.user_id = fake.USER_ID self.context.project_id = fake.PROJECT_ID backup = tests_utils.create_backup(self.context, vol['id']) backup_obj = objects.Backup.get_by_id(self.context, backup.id) properties = {} attach_info = {'device': {'path': '/dev/null'}} backup_service = mock.Mock() self.volume.driver._attach_volume = mock.MagicMock() self.volume.driver._detach_volume = mock.MagicMock() self.volume.driver.terminate_connection = mock.MagicMock() self.volume.driver.create_snapshot = mock.MagicMock() self.volume.driver.delete_snapshot = mock.MagicMock() mock_volume_get.return_value = vol mock_get_connector_properties.return_value = properties f = mock_file_open.return_value = open('/dev/null', 'rb') backup_service.backup(backup_obj, f, None) self.volume.driver._attach_volume.return_value = attach_info, vol self.volume.driver.backup_volume(self.context, backup_obj, backup_service) mock_volume_get.assert_called_with(self.context, vol['id']) def test_create_temp_cloned_volume(self): with mock.patch.object( self.volume.driver, 'create_cloned_volume') as mock_create_cloned_volume: model_update = {'provider_location': 'dummy'} mock_create_cloned_volume.return_value = model_update vol = tests_utils.create_volume(self.context, status='backing-up') cloned_vol = self.volume.driver._create_temp_cloned_volume( self.context, vol) self.assertEqual('dummy', cloned_vol.provider_location) self.assertEqual('available', cloned_vol.status) mock_create_cloned_volume.return_value = None vol = tests_utils.create_volume(self.context, status='backing-up') cloned_vol = self.volume.driver._create_temp_cloned_volume( self.context, vol) self.assertEqual('available', cloned_vol.status) @mock.patch.object(utils, 'temporary_chown') @mock.patch('six.moves.builtins.open') @mock.patch.object(os_brick.initiator.connector, 'get_connector_properties') @mock.patch.object(db.sqlalchemy.api, 'volume_get') def test_backup_volume_inuse_temp_volume(self, mock_volume_get, mock_get_connector_properties, mock_file_open, mock_temporary_chown): vol = tests_utils.create_volume(self.context, status='backing-up', previous_status='in-use') temp_vol = tests_utils.create_volume(self.context) self.context.user_id = fake.USER_ID self.context.project_id = fake.PROJECT_ID backup = tests_utils.create_backup(self.context, vol['id']) backup_obj = objects.Backup.get_by_id(self.context, backup.id) properties = {} attach_info = {'device': {'path': '/dev/null'}} backup_service = mock.Mock() self.volume.driver._attach_volume = mock.MagicMock() self.volume.driver._detach_volume = mock.MagicMock() self.volume.driver.terminate_connection = mock.MagicMock() self.volume.driver._create_temp_cloned_volume = mock.MagicMock() self.volume.driver._delete_temp_volume = mock.MagicMock() mock_volume_get.return_value = vol self.volume.driver._create_temp_cloned_volume.return_value = temp_vol mock_get_connector_properties.return_value = properties f = mock_file_open.return_value = open('/dev/null', 'rb') backup_service.backup(backup_obj, f, None) self.volume.driver._attach_volume.return_value = attach_info, vol self.volume.driver.backup_volume(self.context, backup_obj, backup_service) mock_volume_get.assert_called_with(self.context, vol['id']) self.volume.driver._create_temp_cloned_volume.assert_called_once_with( self.context, vol) self.volume.driver._delete_temp_volume.assert_called_once_with( self.context, temp_vol) @mock.patch.object(utils, 'temporary_chown') @mock.patch.object(os_brick.initiator.connector, 'get_connector_properties') @mock.patch('six.moves.builtins.open') def test_restore_backup(self, mock_open, mock_get_connector_properties, mock_temporary_chown): dev_null = '/dev/null' vol = tests_utils.create_volume(self.context) backup = {'volume_id': vol['id'], 'id': 'backup-for-%s' % vol['id']} properties = {} attach_info = {'device': {'path': dev_null}} root_helper = 'sudo cinder-rootwrap /etc/cinder/rootwrap.conf' volume_file = mock.MagicMock() mock_open.return_value.__enter__.return_value = volume_file mock_get_connector_properties.return_value = properties self.volume.driver._attach_volume = mock.MagicMock() self.volume.driver._attach_volume.return_value = attach_info, vol self.volume.driver._detach_volume = mock.MagicMock() self.volume.driver.terminate_connection = mock.MagicMock() self.volume.driver.secure_file_operations_enabled = mock.MagicMock() self.volume.driver.secure_file_operations_enabled.side_effect = (False, True) backup_service = mock.MagicMock() for i in (1, 2): self.volume.driver.restore_backup(self.context, backup, vol, backup_service) mock_get_connector_properties.assert_called_with(root_helper, CONF.my_ip, False, False) self.volume.driver._attach_volume.assert_called_with( self.context, vol, properties) self.assertEqual(i, self.volume.driver._attach_volume.call_count) self.volume.driver._detach_volume.assert_called_with( self.context, attach_info, vol, properties) self.assertEqual(i, self.volume.driver._detach_volume.call_count) self.volume.driver.secure_file_operations_enabled.\ assert_called_with() self.assertEqual( i, self.volume.driver.secure_file_operations_enabled.call_count ) mock_temporary_chown.assert_called_once_with(dev_null) mock_open.assert_called_with(dev_null, 'wb') self.assertEqual(i, mock_open.call_count) backup_service.restore.assert_called_with(backup, vol['id'], volume_file) self.assertEqual(i, backup_service.restore.call_count) def test_get_backup_device_available(self): vol = tests_utils.create_volume(self.context) self.context.user_id = fake.USER_ID self.context.project_id = fake.PROJECT_ID backup = tests_utils.create_backup(self.context, vol['id']) backup_obj = objects.Backup.get_by_id(self.context, backup.id) (backup_device, is_snapshot) = self.volume.driver.get_backup_device( self.context, backup_obj) volume = objects.Volume.get_by_id(self.context, vol.id) self.assertEqual(volume, backup_device) self.assertFalse(is_snapshot) backup_obj = objects.Backup.get_by_id(self.context, backup.id) self.assertIsNone(backup.temp_volume_id) def test_get_backup_device_in_use(self): vol = tests_utils.create_volume(self.context, status='backing-up', previous_status='in-use') temp_vol = tests_utils.create_volume(self.context) self.context.user_id = fake.USER_ID self.context.project_id = fake.PROJECT_ID backup = tests_utils.create_backup(self.context, vol['id']) backup_obj = objects.Backup.get_by_id(self.context, backup.id) with mock.patch.object( self.volume.driver, '_create_temp_cloned_volume') as mock_create_temp: mock_create_temp.return_value = temp_vol (backup_device, is_snapshot) = ( self.volume.driver.get_backup_device(self.context, backup_obj)) self.assertEqual(temp_vol, backup_device) self.assertFalse(is_snapshot) backup_obj = objects.Backup.get_by_id(self.context, backup.id) self.assertEqual(temp_vol.id, backup_obj.temp_volume_id) def test__create_temp_volume_from_snapshot(self): volume_dict = {'id': fake.SNAPSHOT_ID, 'host': 'fakehost', 'availability_zone': 'fakezone', 'size': 1} vol = fake_volume.fake_volume_obj(self.context, **volume_dict) snapshot = fake_snapshot.fake_snapshot_obj(self.context) with mock.patch.object( self.volume.driver, 'create_volume_from_snapshot'): temp_vol = self.volume.driver._create_temp_volume_from_snapshot( self.context, vol, snapshot)
import json import time import requests import re from flask import Flask, render_template, jsonify from pyecharts.charts import Map, Timeline,Kline,Line,Bar,WordCloud from pyecharts import options as opts from pyecharts.globals import SymbolType app = Flask(__name__) #字典,受限于谷歌调用限制 cn_to_en = {'安哥拉': 'Angola', '阿富汗': 'Afghanistan', '阿尔巴尼亚': 'Albania', '阿尔及利亚': 'Algeria', '安道尔共和国': 'Andorra', '安圭拉岛': 'Anguilla', '安提瓜和巴布达': 'Antigua and Barbuda', '阿根廷': 'Argentina', '亚美尼亚': 'Armenia', '阿森松': 'Ascension', '澳大利亚': 'Australia', '奥地利': 'Austria', '阿塞拜疆': 'Azerbaijan', '巴哈马': 'Bahamas', '巴林': 'Bahrain', '孟加拉国': 'Bangladesh', '巴巴多斯': 'Barbados', '白俄罗斯': 'Belarus', '比利时': 'Belgium', '伯利兹': 'Belize', '贝宁': 'Benin', '百慕大群岛': 'Bermuda Is', '玻利维亚': 'Bolivia', '博茨瓦纳': 'Botswana', '巴西': 'Brazil', '文莱': 'Brunei', '保加利亚': 'Bulgaria', '布基纳法索': 'Burkina Faso', '缅甸': 'Burma', '布隆迪': 'Burundi', '喀麦隆': 'Cameroon', '加拿大': 'Canada', '开曼群岛': 'Cayman Is', '中非共和国': 'Central African Republic', '乍得': 'Chad', '智利': 'Chile', '中国': 'China', '哥伦比亚': 'Colombia', '刚果': 'Congo', '库克群岛': 'Cook Is', '哥斯达黎加': 'Costa Rica', '古巴': 'Cuba', '塞浦路斯': 'Cyprus', '捷克': 'Czech Republic', '丹麦': 'Denmark', '吉布提': 'Djibouti', '多米尼加共和国': 'Dominica Rep', '厄瓜多尔': 'Ecuador', '埃及': 'Egypt', '萨尔瓦多': 'EI Salvador', '爱沙尼亚': 'Estonia', '埃塞俄比亚': 'Ethiopia', '斐济': 'Fiji', '芬兰': 'Finland', '法国': 'France', '法属圭亚那': 'French Guiana', '法属玻利尼西亚': 'French Polynesia', '加蓬': 'Gabon', '冈比亚': 'Gambia', '格鲁吉亚': 'Georgia', '德国': 'Germany', '加纳': 'Ghana', '直布罗陀': 'Gibraltar', '希腊': 'Greece', '格林纳达': 'Grenada', '关岛': 'Guam', '危地马拉': 'Guatemala', '几内亚': 'Guinea', '圭亚那': 'Guyana', '海地': 'Haiti', '洪都拉斯': 'Honduras', '香港': 'Hongkong', '匈牙利': 'Hungary', '冰岛': 'Iceland', '印度': 'India', '印度尼西亚': 'Indonesia', '伊朗': 'Iran', '伊拉克': 'Iraq', '爱尔兰':'Ireland', '以色列': 'Israel', '意大利': 'Italy', '科特迪瓦': 'Ivory Coast', '牙买加': 'Jamaica', '日本': 'Japan', '约旦': 'Jordan', '柬埔寨': 'Kampuchea (Cambodia )', '哈萨克斯坦': 'Kazakstan', '肯尼亚': 'Kenya', '韩国': 'Korea', '科威特': 'Kuwait', '吉尔吉斯坦': 'Kyrgyzstan', '老挝': 'Laos', '拉脱维亚': 'Latvia', '黎巴嫩': 'Lebanon', '莱索托': 'Lesotho', '利比里亚': 'Liberia', '利比亚': 'Libya', '列支敦士登': 'Liechtenstein', '立陶宛': 'Lithuania', '卢森堡': 'Luxembourg', '澳门': 'Macao', '马达加斯加': 'Madagascar', '马拉维': 'Malawi', '马来西亚': 'Malaysia', '马尔代夫': 'Maldives', '马里': 'Mali', '马耳他': 'Malta', '马里亚那群岛': 'Mariana Is', '马提尼克': 'Martinique', '毛里求斯': 'Mauritius', '墨西哥': 'Mexico', '摩尔多瓦': 'Moldova', '摩纳哥': 'Monaco', '蒙古': 'Mongolia', '蒙特塞拉特岛': 'Montserrat Is', '摩洛哥': 'Morocco', '莫桑比克': 'Mozambique', '纳米比亚': 'Namibia', '瑙鲁': 'Nauru', '尼泊尔': 'Nepal', '荷属安的列斯': 'Netheriands Antilles', '荷兰': 'Netherlands', '新西兰': 'New Zealand', '尼加拉瓜': 'Nicaragua', '尼日尔': 'Niger', '尼日利亚': 'Nigeria', '朝鲜': 'North Korea', '挪威': 'Norway', '阿曼': 'Oman', '巴基斯坦': 'Pakistan', '巴拿马':'Panama', '巴布亚新几内亚': 'Papua New Cuinea', '巴拉圭': 'Paraguay', '秘鲁': 'Peru', '菲律宾': 'Philippines', '波兰': 'Poland', '葡萄牙': 'Portugal', '波多黎各': 'Puerto Rico', '卡塔尔': 'Qatar', '留尼旺': 'Reunion', '罗马尼亚': 'Romania', '俄罗斯': 'Russia', '圣卢西亚': 'St.Lucia', '圣文森特岛': 'Saint Vincent', '东萨摩亚(美)': 'Samoa Eastern', '西萨摩亚': 'Samoa Western', '圣马力诺': 'San Marino', '圣多美和普林西比': 'Sao Tome and Principe', '沙特阿拉伯': 'Saudi Arabia', '塞内加尔': 'Senegal', '塞舌尔': 'Seychelles', '塞拉利昂': 'Sierra Leone', '新加坡': 'Singapore', '斯洛伐克': 'Slovakia', '斯洛文尼亚': 'Slovenia', '所罗门群岛': 'Solomon Is', '索马里': 'Somali', '南非': 'South Africa', '西班牙': 'Spain', '斯里兰卡': 'SriLanka', '圣文森特': 'St.Vincent', '苏丹': 'Sudan', '苏里南': 'Suriname', '斯威士兰': 'Swaziland', '瑞典': 'Sweden', '瑞士': 'Switzerland', '叙利亚': 'Syria', '台湾省': 'Taiwan', '塔吉克斯坦': 'Tajikstan', '坦桑尼亚': 'Tanzania', '泰国': 'Thailand', '多哥': 'Togo', '汤加': 'Tonga', '特立尼达和多巴哥': 'Trinidad and Tobago', '突尼斯': 'Tunisia', '土耳其': 'Turkey', '土库曼斯坦': 'Turkmenistan', '乌干达': 'Uganda', '乌克兰': 'Ukraine', '阿联酋': 'United Arab Emirates', '英国': 'United Kiongdom', '美国': 'United States', '乌拉圭': 'Uruguay', '乌兹别克斯坦': 'Uzbekistan', '委内瑞拉': 'Venezuela', '越南': 'Vietnam', '也门': 'Yemen', '南斯拉夫': 'Yugoslavia', '津巴布韦': 'Zimbabwe', '扎伊尔': 'Zaire', '赞比亚': 'Zambia','克罗地亚':'Croatia','北马其顿':'North Macedonia'} def update_news(): url = 'https://opendata.baidu.com/data/inner?tn=reserved_all_res_tn&dspName=iphone&from_sf=1&dsp=iphone&resource_id=28565&alr=1&query=%E8%82%BA%E7%82%8E' r = json.loads(requests.get(url).text) top10 = r['Result'][0]['items_v2'][0]['aladdin_res']['DisplayData']['result']['items'][:5] #list news_data = [] for r in top10: news_data.append({ 'title': r['eventDescription'], 'sourceUrl': r['eventUrl'], 'infoSource': time.strftime('%m-%d %H:%M:%S', time.localtime(int(r['eventTime']))) + ' ' + r['siteName'] #时间属性 + 消息来源 }) #构建新的列表 return news_data def update_overall(): url = 'http://lab.isaaclin.cn/nCoV/api/overall' overall_data = json.loads(requests.get(url).text) #标准的json数据格式化 overall_data['time'] = time.strftime("%m-%d %H:%M", time.localtime(time.time())) #当前时间 # time.time() --> '1580232854.7124019' ## time.localtime(time.time()) --> 'time.struct_time(tm_year=2020, tm_mon=1, tm_mday=29, tm_hour=1, tm_min=34, tm_sec=36, tm_wday=2, tm_yday=29, tm_isdst=0)' ### time.strftime("%m-%d %H:%M", time.localtime(time.time())) ---> '01-29 01:37' 获得当前月、日、小时、分钟 return overall_data # def update_hotnews(): url = 'https://i-lq.snssdk.com/api/feed/hotboard_online/v1/?is_in_channel=1&count=5&fe_source=news_hot&tab_name=stream&is_web_refresh=1&client_extra_params={%22hot_board_source%22:%22news_hot%22,%22fe_version%22:%22v10%22}&extra={%22CardStyle%22:0,%22JumpToWebList%22:true}&category=hotboard_online&update_version_code=75717' r = requests.get(url).text #标准的json数据格式化 data = re.findall(r'title\\":\\"(.*?)\\',r)[:-1] # time.time() --> '1580232854.7124019' ## time.localtime(time.time()) --> 'time.struct_time(tm_year=2020, tm_mon=1, tm_mday=29, tm_hour=1, tm_min=34, tm_sec=36, tm_wday=2, tm_yday=29, tm_isdst=0)' ### time.strftime("%m-%d %H:%M", time.localtime(time.time())) ---> '01-29 01:37' 获得当前月、日、小时、分钟 return data #list def word_cloud() -> WordCloud: url = 'https://i-lq.snssdk.com/api/feed/hotboard_online/v1/?is_in_channel=1&count=10&fe_source=news_hot&tab_name=stream&is_web_refresh=1&client_extra_params={%22hot_board_source%22:%22news_hot%22,%22fe_version%22:%22v10%22}&extra={%22CardStyle%22:0,%22JumpToWebList%22:true}&category=hotboard_online&update_version_code=75717' r = requests.get(url).text #标准的json数据格式化 data = re.findall(r'title\\":\\"(.*?)\\',r)[:-1] datanum = [8,7,6,5,5,4,4,2,1,1] words = [w for w in zip(data,datanum)] c = ( WordCloud() .add("", words, word_size_range=[20, 100], shape=SymbolType.DIAMOND) .set_global_opts(title_opts=opts.TitleOpts(title="WordCloud-shape-diamond")) ) return c def update_china_data(unit=3600 * 2): url = 'https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5' r_data = json.loads(requests.get(url).text) data = json.loads(r_data['data']) #初始化json数据,为dict ['chinaTotal'] p_data = {} #print(data['areaTree'][0]['children'][0]) for i in data['areaTree'][0]['children']: #各个省份 p_data[i['name']] = i['total']['confirm'] # 先对字典进行排序,按照value从大到小 p_data= sorted(p_data.items(), key=lambda x: x[1], reverse=True) #print(p_data) return p_data def update_china_heal_data(unit=3600 * 2): url = 'https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5' r_data = json.loads(requests.get(url).text) data = json.loads(r_data['data']) #初始化json数据,为dict ['chinaTotal'] p_data = {} #print(data['areaTree'][0]['children'][0]) for i in data['areaTree'][0]['children']: #各个省份 p_data[i['name']] = i['total']['confirm'] - i['total']['dead'] - i['total']['heal'] # 先对字典进行排序,按照value从大到小 p_data= sorted(p_data.items(), key=lambda x: x[1], reverse=True) #print(p_data) return p_data def china_map(data)-> Map: opt= [ {"min":1001,"color":'#731919'}, {"min":500,"max":1000,"color":'red'}, {"min":100,"max":499,"color":'#e26061'}, {"min":10,"max":99,"color":'#f08f7f'}, {"min":1,"max":9,"color":'#ffb86a'}, {"value":0,"color":'#ffffff'} ] c = ( Map() .add( "确诊人数", data, "china", is_map_symbol_show=False, ) .set_series_opts(label_opts=opts.LabelOpts(is_show=False,font_size=8)) .set_global_opts( visualmap_opts=opts.VisualMapOpts(max_=1000,is_piecewise=True,pieces=opt), legend_opts=opts.LegendOpts(is_show=False), #title_opts=opts.TitleOpts(title="全国疫情(2019-nCov)") ) ) return c # 获取世界数据 def update_world_data(unit=3600 * 2): url = 'https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5' r_data = json.loads(requests.get(url).text) data = json.loads(r_data['data']) #初始化json数据,为dict ['chinaTotal'] #print(data['areaTree'][0]['children'][0]) countryEN = [] total_confirm = [] for i in data['areaTree']: if i['name'] != '钻石号邮轮': if i['name'] == '日本本土': countryEN.append('Japan') total_confirm.append(i['total']['confirm']) else: countryEN.append(cn_to_en[i['name']]) total_confirm.append(i['total']['confirm']) data = [list(z) for z in zip(countryEN, total_confirm)] return data def update_world_data1(unit=3600 * 2): url = 'https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5' r_data = json.loads(requests.get(url).text) data = json.loads(r_data['data']) #初始化json数据,为dict ['chinaTotal'] #print(data['areaTree'][0]['children'][0]) translate = Translator() country = [] #中文国家提取 total_confirm = [] for i in data['areaTree']: country.append(i['name']) total_confirm.append(i['total']['confirm']) countryEN = [] #翻译 for i in country: countryEN.append(translate.translate(i).text) #今日数据 data = [list(z) for z in zip(countryEN, total_confirm)] return data def world_map(data)-> Map: opt= [ {"min":1001,"color":'#731919'}, {"min":51,"max":1000,"color":'red'}, {"min":11,"max":50,"color":'#e26061'}, {"min":6,"max":10,"color":'#f08f7f'}, {"min":1,"max":5,"color":'#ffb86a'}, {"value":0,"color":'#ffffff'} ] c = ( Map() .add("确诊人数", data, "world",is_map_symbol_show=False) #.add("商家A", [list(z) for z in zip(countryEN, total_confirm)], "world") .set_series_opts(label_opts=opts.LabelOpts(is_show=False,font_size=8),) .set_global_opts( visualmap_opts=opts.VisualMapOpts(max_=1000,is_piecewise=True,pieces=opt), legend_opts=opts.LegendOpts(is_show=False), #title_opts=opts.TitleOpts(title="全球疫情(2019-nCov)") ) ) return c def kline()-> Kline: data = get_origin_data() #初始化json数据,为dict ['chinaTotal'] #每日确诊增加数 a = [] c = [x['confirm'] for x in data['chinaDayList']] for i in range(len(c)): if i == 0: a.append(0) else: a.append(int(c[i]) - int(c[i-1])) b = [] for i in range(len(a)): if i == 0: b.append([0,0,0,a[i]]) elif i == 1: b.append([0,0,a[i-1],a[i]]) elif i == 2: b.append([0,a[i-2],a[i-1],a[i]]) else: b.append([a[i-3],a[i-2],a[i-1],a[i]]) c = ( Kline() .add_xaxis([x['date'] for x in data['chinaDayList']]) .add_yaxis("kline", b) .set_global_opts( yaxis_opts=opts.AxisOpts( is_scale=True, splitarea_opts=opts.SplitAreaOpts( is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1) ), ), xaxis_opts=opts.AxisOpts(is_scale=True), #title_opts=opts.TitleOpts(title="2019-nCov K线图"), datazoom_opts=[opts.DataZoomOpts(pos_bottom="-2%",range_end=100)], ) ) return c def get_origin_data(): url = 'https://view.inews.qq.com/g2/getOnsInfo?name=disease_other' r = requests.get(url) data = json.loads(json.loads(r.text)['data']) return data def line_connect_null() -> Line: data = get_origin_data() #初始化json数据,为dict ['chinaTotal'] #每日确诊增加数 Dailyincrease = [] a = [x['confirm'] for x in data['chinaDayList']] for i in range(len(a)): if i == 0: Dailyincrease.append(0) else: Dailyincrease.append(int(a[i]) - int(a[i-1])) c = ( Line() .add_xaxis([x['date'] for x in data['chinaDayList']]) #直接列表 .add_yaxis('确诊',[x['confirm'] for x in data['chinaDayList']],label_opts=opts.LabelOpts(is_show=False)) #‘列表名,[]’ .add_yaxis('疑似',[x['suspect'] for x in data['chinaDayList']],label_opts=opts.LabelOpts(is_show=False)) .add_yaxis('治愈',[x['heal'] for x in data['chinaDayList']],label_opts=opts.LabelOpts(is_show=False)) .add_yaxis('死亡',[x['dead'] for x in data['chinaDayList']],label_opts=opts.LabelOpts(is_show=False)) .add_yaxis('每日确诊增加数',Dailyincrease,areastyle_opts=opts.AreaStyleOpts(opacity=0.5),label_opts=opts.LabelOpts(is_show=False)) #areastyle_opts=opts.AreaStyleOpts(opacity=0.5) 投射面积 .set_global_opts( #title_opts=opts.TitleOpts(title="2019-nCov"), datazoom_opts=opts.DataZoomOpts(range_end=100), ) ) return c def line_heal() -> Line: url = 'https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5' r_data = json.loads(requests.get(url).text) data = json.loads(r_data['data']) #初始化json数据,为dict ['chinaTotal'] #每日确诊增加数 Dailyincrease = [] a = [x['confirm'] for x in data['chinaDayList']] for i in range(len(a)): if i == 0: Dailyincrease.append(0) else: Dailyincrease.append(int(a[i]) - int(a[i-1])) #每日疑似增加数 Dailysuspect = [] a = [x['suspect'] for x in data['chinaDayList']] for i in range(len(a)): if i == 0: Dailysuspect.append(0) else: Dailysuspect.append(int(a[i]) - int(a[i-1])) c = ( Line() .add_xaxis([x['date'] for x in data['chinaDayList']]) #直接列表 .add_yaxis('治愈',[x['heal'] for x in data['chinaDayList']]) .add_yaxis('死亡',[x['dead'] for x in data['chinaDayList']]) .set_global_opts( #title_opts=opts.TitleOpts(title="2019-nCov"), datazoom_opts=opts.DataZoomOpts(range_end=100), ) ) return c #海外国家统计 def world_bar() -> Bar: url = 'https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5' r_data = json.loads(requests.get(url).text) data = json.loads(r_data['data']) #初始化json数据,为dict ['chinaTotal'] country = [] numbers = [] for i in data['areaTree']: country.append(i['name']) numbers.append(i['total']['confirm']) country.reverse() numbers.reverse() c = ( Bar() .add_xaxis(country[:-1]) .add_yaxis("确诊人数", numbers[:-1]) .reversal_axis() .set_series_opts(label_opts=opts.LabelOpts(position="right",color="black")) .set_global_opts( #title_opts=opts.TitleOpts(title="海外国家统计数据"), yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-45,font_size=11)), ) ) return c #海外国家趋势 def other_line() -> Line: url = 'https://services1.arcgis.com/0MSEUqKaxRlEPj5g/arcgis/rest/services/cases_time_v3/FeatureServer/0/query?f=json&where=1%3D1&returnGeometry=false&spatialRel=esriSpatialRelIntersects&outFields=*&orderByFields=Report_Date_String%20asc&resultOffset=0&resultRecordCount=2000&cacheHint=true' r_data = json.loads(requests.get(url).text) data = r_data['features'] #初始化json数据,为dict ['chinaTotal'] dates = [] numbers = [] for i in data: date = time.strftime("%m.%d", time.localtime(i['attributes']['Report_Date'] / 1000)) dates.append(date) numbers.append(i['attributes']['Other_Locations']) c = ( Line() .add_xaxis(dates) #直接列表 .add_yaxis('确诊',numbers) .set_global_opts( #title_opts=opts.TitleOpts(title="海外国家疫情趋势", subtitle=""), ) ) return c def china_online(): url = 'https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5' r_data = json.loads(requests.get(url).text) data = json.loads(r_data['data']) #初始化json数据,为dict ['chinaTotal'] #每日确诊增加数 # chinaTotal = data['chinaTotal'] #结果为列表 # chinaAdd = data['chinaAdd'] # lastUpdateTime = data['lastUpdateTime'] return data @app.route("/") def index(): other_data = get_origin_data() return render_template("index.html") # 全国地图数据 @app.route("/map") def get_map(): data = update_china_data() return china_map(data).dump_options_with_quotes() #其中dump_options_with_quotes()是必备,任意图形。# 全国地图数据 #
<filename>swagger_client/api/corporation_api.py # coding: utf-8 """ EVE Swagger Interface An OpenAPI for EVE Online # noqa: E501 OpenAPI spec version: 0.8.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import re # noqa: F401 # python 2 and python 3 compatibility library import six from swagger_client.api_client import ApiClient class CorporationApi(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. Ref: https://github.com/swagger-api/swagger-codegen """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def get_corporations_corporation_id(self, corporation_id, **kwargs): # noqa: E501 """Get corporation information # noqa: E501 Public information about a corporation --- This route is cached for up to 3600 seconds # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_corporations_corporation_id(corporation_id, async=True) >>> result = thread.get() :param async bool :param int corporation_id: An EVE corporation ID (required) :param str datasource: The server name you would like data from :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: GetCorporationsCorporationIdOk If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.get_corporations_corporation_id_with_http_info(corporation_id, **kwargs) # noqa: E501 else: (data) = self.get_corporations_corporation_id_with_http_info(corporation_id, **kwargs) # noqa: E501 return data def get_corporations_corporation_id_with_http_info(self, corporation_id, **kwargs): # noqa: E501 """Get corporation information # noqa: E501 Public information about a corporation --- This route is cached for up to 3600 seconds # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_corporations_corporation_id_with_http_info(corporation_id, async=True) >>> result = thread.get() :param async bool :param int corporation_id: An EVE corporation ID (required) :param str datasource: The server name you would like data from :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: GetCorporationsCorporationIdOk If the method is called asynchronously, returns the request thread. """ all_params = ['corporation_id', 'datasource', 'user_agent', 'x_user_agent'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_corporations_corporation_id" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'corporation_id' is set if ('corporation_id' not in params or params['corporation_id'] is None): raise ValueError("Missing the required parameter `corporation_id` when calling `get_corporations_corporation_id`") # noqa: E501 if 'corporation_id' in params and params['corporation_id'] < 1: # noqa: E501 raise ValueError("Invalid value for parameter `corporation_id` when calling `get_corporations_corporation_id`, must be a value greater than or equal to `1`") # noqa: E501 collection_formats = {} path_params = {} if 'corporation_id' in params: path_params['corporation_id'] = params['corporation_id'] # noqa: E501 query_params = [] if 'datasource' in params: query_params.append(('datasource', params['datasource'])) # noqa: E501 if 'user_agent' in params: query_params.append(('user_agent', params['user_agent'])) # noqa: E501 header_params = {} if 'x_user_agent' in params: header_params['X-User-Agent'] = params['x_user_agent'] # noqa: E501 form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/v4/corporations/{corporation_id}/', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='GetCorporationsCorporationIdOk', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_corporations_corporation_id_alliancehistory(self, corporation_id, **kwargs): # noqa: E501 """Get alliance history # noqa: E501 Get a list of all the alliances a corporation has been a member of --- This route is cached for up to 3600 seconds # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_corporations_corporation_id_alliancehistory(corporation_id, async=True) >>> result = thread.get() :param async bool :param int corporation_id: An EVE corporation ID (required) :param str datasource: The server name you would like data from :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: list[GetCorporationsCorporationIdAlliancehistory200Ok] If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.get_corporations_corporation_id_alliancehistory_with_http_info(corporation_id, **kwargs) # noqa: E501 else: (data) = self.get_corporations_corporation_id_alliancehistory_with_http_info(corporation_id, **kwargs) # noqa: E501 return data def get_corporations_corporation_id_alliancehistory_with_http_info(self, corporation_id, **kwargs): # noqa: E501 """Get alliance history # noqa: E501 Get a list of all the alliances a corporation has been a member of --- This route is cached for up to 3600 seconds # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_corporations_corporation_id_alliancehistory_with_http_info(corporation_id, async=True) >>> result = thread.get() :param async bool :param int corporation_id: An EVE corporation ID (required) :param str datasource: The server name you would like data from :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: list[GetCorporationsCorporationIdAlliancehistory200Ok] If the method is called asynchronously, returns the request thread. """ all_params = ['corporation_id', 'datasource', 'user_agent', 'x_user_agent'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_corporations_corporation_id_alliancehistory" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'corporation_id' is set if ('corporation_id' not in params or params['corporation_id'] is None): raise ValueError("Missing the required parameter `corporation_id` when calling `get_corporations_corporation_id_alliancehistory`") # noqa: E501 if 'corporation_id' in params and params['corporation_id'] < 1: # noqa: E501 raise ValueError("Invalid value for parameter `corporation_id` when calling `get_corporations_corporation_id_alliancehistory`, must be a value greater than or equal to `1`") # noqa: E501 collection_formats = {} path_params = {} if 'corporation_id' in params: path_params['corporation_id'] = params['corporation_id'] # noqa: E501 query_params = [] if 'datasource' in params: query_params.append(('datasource', params['datasource'])) # noqa: E501 if 'user_agent' in params: query_params.append(('user_agent', params['user_agent'])) # noqa: E501 header_params = {} if 'x_user_agent' in params: header_params['X-User-Agent'] = params['x_user_agent'] # noqa: E501 form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/v2/corporations/{corporation_id}/alliancehistory/', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='list[GetCorporationsCorporationIdAlliancehistory200Ok]', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_corporations_corporation_id_blueprints(self, corporation_id, **kwargs): # noqa: E501 """Get corporation blueprints # noqa: E501 Returns a list of blueprints the corporation owns --- This route is cached for up to 3600 seconds --- Requires one of the following EVE corporation role(s): Director # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_corporations_corporation_id_blueprints(corporation_id, async=True) >>> result = thread.get() :param async bool :param int corporation_id: An EVE corporation ID (required) :param str datasource: The server name you would like data from :param int page: Which page of results to return :param str token: Access token to use if unable to set a header :param str user_agent: Client identifier, takes precedence over headers :param str x_user_agent: Client identifier, takes precedence over User-Agent :return: list[GetCorporationsCorporationIdBlueprints200Ok] If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.get_corporations_corporation_id_blueprints_with_http_info(corporation_id, **kwargs) # noqa: E501 else: (data) = self.get_corporations_corporation_id_blueprints_with_http_info(corporation_id, **kwargs) # noqa: E501 return data def get_corporations_corporation_id_blueprints_with_http_info(self, corporation_id, **kwargs): # noqa: E501 """Get corporation blueprints # noqa: E501 Returns a list of blueprints the corporation owns --- This route is cached for up to 3600 seconds --- Requires one of the following EVE corporation role(s): Director # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_corporations_corporation_id_blueprints_with_http_info(corporation_id, async=True) >>> result = thread.get() :param async bool :param int corporation_id: An EVE corporation ID (required) :param str datasource: The server name you would like data from :param int page: Which page of results to return :param str token: Access token to use if unable to set a header :param str user_agent:
# Copyright 2015 The Tornado Authors # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Flexible routing implementation. Tornado routes HTTP requests to appropriate handlers using `Router` class implementations. The `tornado.web.Application` class is a `Router` implementation and may be used directly, or the classes in this module may be used for additional flexibility. The `RuleRouter` class can match on more criteria than `.Application`, or the `Router` interface can be subclassed for maximum customization. `Router` interface extends `~.httputil.HTTPServerConnectionDelegate` to provide additional routing capabilities. This also means that any `Router` implementation can be used directly as a ``request_callback`` for `~.httpserver.HTTPServer` constructor. `Router` subclass must implement a ``find_handler`` method to provide a suitable `~.httputil.HTTPMessageDelegate` instance to handle the request: .. code-block:: python class CustomRouter(Router): def find_handler(self, request, **kwargs): # some routing logic providing a suitable HTTPMessageDelegate instance return MessageDelegate(request.connection) class MessageDelegate(HTTPMessageDelegate): def __init__(self, connection): self.connection = connection def finish(self): self.connection.write_headers( ResponseStartLine("HTTP/1.1", 200, "OK"), HTTPHeaders({"Content-Length": "2"}), b"OK") self.connection.finish() router = CustomRouter() server = HTTPServer(router) The main responsibility of `Router` implementation is to provide a mapping from a request to `~.httputil.HTTPMessageDelegate` instance that will handle this request. In the example above we can see that routing is possible even without instantiating an `~.web.Application`. For routing to `~.web.RequestHandler` implementations we need an `~.web.Application` instance. `~.web.Application.get_handler_delegate` provides a convenient way to create `~.httputil.HTTPMessageDelegate` for a given request and `~.web.RequestHandler`. Here is a simple example of how we can we route to `~.web.RequestHandler` subclasses by HTTP method: .. code-block:: python resources = {} class GetResource(RequestHandler): def get(self, path): if path not in resources: raise HTTPError(404) self.finish(resources[path]) class PostResource(RequestHandler): def post(self, path): resources[path] = self.request.body class HTTPMethodRouter(Router): def __init__(self, app): self.app = app def find_handler(self, request, **kwargs): handler = GetResource if request.method == "GET" else PostResource return self.app.get_handler_delegate(request, handler, path_args=[request.path]) router = HTTPMethodRouter(Application()) server = HTTPServer(router) `ReversibleRouter` interface adds the ability to distinguish between the routes and reverse them to the original urls using route's name and additional arguments. `~.web.Application` is itself an implementation of `ReversibleRouter` class. `RuleRouter` and `ReversibleRuleRouter` are implementations of `Router` and `ReversibleRouter` interfaces and can be used for creating rule-based routing configurations. Rules are instances of `Rule` class. They contain a `Matcher`, which provides the logic for determining whether the rule is a match for a particular request and a target, which can be one of the following. 1) An instance of `~.httputil.HTTPServerConnectionDelegate`: .. code-block:: python router = RuleRouter([ Rule(PathMatches("/handler"), ConnectionDelegate()), # ... more rules ]) class ConnectionDelegate(HTTPServerConnectionDelegate): def start_request(self, server_conn, request_conn): return MessageDelegate(request_conn) 2) A callable accepting a single argument of `~.httputil.HTTPServerRequest` type: .. code-block:: python router = RuleRouter([ Rule(PathMatches("/callable"), request_callable) ]) def request_callable(request): request.write(b"HTTP/1.1 200 OK\\r\\nContent-Length: 2\\r\\n\\r\\nOK") request.finish() 3) Another `Router` instance: .. code-block:: python router = RuleRouter([ Rule(PathMatches("/router.*"), CustomRouter()) ]) Of course a nested `RuleRouter` or a `~.web.Application` is allowed: .. code-block:: python router = RuleRouter([ Rule(HostMatches("example.com"), RuleRouter([ Rule(PathMatches("/app1/.*"), Application([(r"/app1/handler", Handler)]))), ])) ]) server = HTTPServer(router) In the example below `RuleRouter` is used to route between applications: .. code-block:: python app1 = Application([ (r"/app1/handler", Handler1), # other handlers ... ]) app2 = Application([ (r"/app2/handler", Handler2), # other handlers ... ]) router = RuleRouter([ Rule(PathMatches("/app1.*"), app1), Rule(PathMatches("/app2.*"), app2) ]) server = HTTPServer(router) For more information on application-level routing see docs for `~.web.Application`. .. versionadded:: 4.5 """ import re from functools import partial from tornado import httputil from tornado.httpserver import _CallableAdapter from tornado.escape import url_escape, url_unescape, utf8 from tornado.log import app_log from tornado.util import basestring_type, import_object, re_unescape, unicode_type try: import typing # noqa except ImportError: pass class Router(httputil.HTTPServerConnectionDelegate): """Abstract router interface.""" def find_handler(self, request, **kwargs): # type: (httputil.HTTPServerRequest, typing.Any)->httputil.HTTPMessageDelegate """Must be implemented to return an appropriate instance of `~.httputil.HTTPMessageDelegate` that can serve the request. Routing implementations may pass additional kwargs to extend the routing logic. :arg httputil.HTTPServerRequest request: current HTTP request. :arg kwargs: additional keyword arguments passed by routing implementation. :returns: an instance of `~.httputil.HTTPMessageDelegate` that will be used to process the request. """ raise NotImplementedError() def start_request(self, server_conn, request_conn): return _RoutingDelegate(self, server_conn, request_conn) class ReversibleRouter(Router): """Abstract router interface for routers that can handle named routes and support reversing them to original urls. """ def reverse_url(self, name, *args): """Returns url string for a given route name and arguments or ``None`` if no match is found. :arg str name: route name. :arg args: url parameters. :returns: parametrized url string for a given route name (or ``None``). """ raise NotImplementedError() class _RoutingDelegate(httputil.HTTPMessageDelegate): def __init__(self, router, server_conn, request_conn): self.server_conn = server_conn self.request_conn = request_conn self.delegate = None self.router = router # type: Router def headers_received(self, start_line, headers): request = httputil.HTTPServerRequest( connection=self.request_conn, server_connection=self.server_conn, start_line=start_line, headers=headers) self.delegate = self.router.find_handler(request) if self.delegate is None: app_log.debug("Delegate for %s %s request not found", start_line.method, start_line.path) self.delegate = _DefaultMessageDelegate(self.request_conn) return self.delegate.headers_received(start_line, headers) def data_received(self, chunk): return self.delegate.data_received(chunk) def finish(self): self.delegate.finish() def on_connection_close(self): self.delegate.on_connection_close() class _DefaultMessageDelegate(httputil.HTTPMessageDelegate): def __init__(self, connection): self.connection = connection def finish(self): self.connection.write_headers( httputil.ResponseStartLine("HTTP/1.1", 404, "Not Found"), httputil.HTTPHeaders()) self.connection.finish() class RuleRouter(Router): """Rule-based router implementation.""" def __init__(self, rules=None): """Constructs a router from an ordered list of rules:: RuleRouter([ Rule(PathMatches("/handler"), Target), # ... more rules ]) You can also omit explicit `Rule` constructor and use tuples of arguments:: RuleRouter([ (PathMatches("/handler"), Target), ]) `PathMatches` is a default matcher, so the example above can be simplified:: RuleRouter([ ("/handler", Target), ]) In the examples above, ``Target`` can be a nested `Router` instance, an instance of `~.httputil.HTTPServerConnectionDelegate` or an old-style callable, accepting a request argument. :arg rules: a list of `Rule` instances or tuples of `Rule` constructor arguments. """ self.rules = [] # type: typing.List[Rule] if rules: self.add_rules(rules) def add_rules(self, rules): """Appends new rules to the router. :arg rules: a list of Rule instances (or tuples of arguments, which are passed to Rule constructor). """ for rule in rules: if isinstance(rule, (tuple, list)): assert len(rule) in (2, 3, 4) if isinstance(rule[0], basestring_type): rule = Rule(PathMatches(rule[0]), *rule[1:]) else: rule = Rule(*rule) self.rules.append(self.process_rule(rule)) def process_rule(self, rule): """Override this method for additional preprocessing of each rule. :arg Rule rule: a rule to be processed. :returns: the same or modified Rule instance. """ return rule def find_handler(self, request, **kwargs): for rule in self.rules: target_params = rule.matcher.match(request) if target_params is not None: if rule.target_kwargs: target_params['target_kwargs'] = rule.target_kwargs delegate = self.get_target_delegate( rule.target, request, **target_params) if delegate is not None: return delegate return None def get_target_delegate(self, target, request, **target_params): """Returns an instance of `~.httputil.HTTPMessageDelegate` for a Rule's target. This method is called by `~.find_handler` and can be extended to provide additional target types. :arg target: a Rule's target. :arg httputil.HTTPServerRequest request: current request. :arg target_params: additional parameters that can be useful for `~.httputil.HTTPMessageDelegate` creation. """ if isinstance(target, Router): return target.find_handler(request, **target_params) elif isinstance(target, httputil.HTTPServerConnectionDelegate): return target.start_request(request.server_connection, request.connection) elif callable(target): return _CallableAdapter( partial(target, **target_params), request.connection ) return None class ReversibleRuleRouter(ReversibleRouter, RuleRouter): """A rule-based router that implements ``reverse_url`` method. Each rule added to this router may have a ``name`` attribute that can be used to reconstruct an original uri. The actual reconstruction takes place in a rule's matcher (see `Matcher.reverse`). """ def __init__(self, rules=None): self.named_rules = {} # type: typing.Dict[str] super(ReversibleRuleRouter, self).__init__(rules) def process_rule(self, rule): rule = super(ReversibleRuleRouter, self).process_rule(rule) if rule.name: if rule.name in self.named_rules: app_log.warning( "Multiple handlers named %s; replacing previous value", rule.name) self.named_rules[rule.name] = rule return rule def reverse_url(self, name, *args): if name in self.named_rules: return self.named_rules[name].matcher.reverse(*args) for rule in self.rules: if isinstance(rule.target, ReversibleRouter): reversed_url = rule.target.reverse_url(name, *args) if reversed_url is not None: return reversed_url return None class Rule(object): """A routing rule.""" def __init__(self, matcher, target, target_kwargs=None, name=None): """Constructs a Rule instance. :arg Matcher matcher: a `Matcher` instance used for determining whether the rule should be considered a match for a specific request. :arg target: a Rule's target (typically a ``RequestHandler`` or `~.httputil.HTTPServerConnectionDelegate` subclass or even a nested `Router`, depending on routing implementation). :arg dict target_kwargs: a dict of parameters that can be useful at the moment of target instantiation (for
"""Assortment of handy functions.""" import inspect import numpy as np from six.moves import map, range, zip from functools import partial from itertools import tee from inspect import isgenerator class Bunch(dict): """ Container object for datasets. Dictionary-like object that exposes its keys as attributes. Examples -------- >>> b = Bunch(foo=42, bar=10) >>> b == {'foo': 42, 'bar': 10} True >>> b.foo 42 >>> b.bar 10 >>> b['foo'] 42 >>> b.baz = 61 >>> b.baz 61 >>> b['baz'] 61 """ def __init__(self, **kwargs): dict.__init__(self, kwargs) self.__dict__ = self def issequence(obj): """ Test if an object is an iterable generator, list or tuple. Parameters ---------- obj : object object to test Returns ------- bool : True if :code:`obj` is a tuple, list or generator only. Examples -------- >>> issequence([1, 2]) True >>> issequence((1,)) True >>> issequence((i for i in range(8))) True >>> issequence(np.array([1, 2, 3])) False """ return inspect.isgenerator(obj) or isinstance(obj, (list, tuple)) def atleast_list(a): """ Promote an object to a list if not a list or generator. Parameters ---------- a: object any object you want to at least be a list with one element Returns ------- list or generator: untounched if :code:`a` was a generator or list, otherwise :code:`[a]`. Examples -------- >>> a = 1. >>> atleast_list(a) [1.0] >>> a = [1.] >>> atleast_list(a) [1.0] """ return a if isinstance(a, list) or isgenerator(a) else [a] def atleast_tuple(a): """ Promote an object to a tuple if not a tuple or generator. Parameters ---------- a: object any object you want to at least be a tuple with one element Returns ------- tuple or generator: untounched if :code:`a` was a generator or tuple, otherwise :code:`(a,)`. Examples -------- >>> a = 1. >>> atleast_tuple(a) (1.0,) >>> a = (1.,) >>> atleast_tuple(a) (1.0,) """ return a if isinstance(a, tuple) or isgenerator(a) else (a,) def couple(f, g): r""" Compose a function thate returns two arguments. Given a pair of functions that take the same arguments, return a single function that returns a pair consisting of the return values of each function. Notes ----- Equivalent to:: lambda f, g: lambda *args, **kwargs: (f(*args, **kwargs), g(*args, **kwargs)) Examples -------- >>> f = lambda x: 2*x**3 >>> df = lambda x: 6*x**2 >>> f_new = couple(f, df) >>> f_new(5) (250, 150) """ def coupled(*args, **kwargs): return f(*args, **kwargs), g(*args, **kwargs) return coupled def decouple(fn): """ Inverse operation of couple. Create two functions of one argument and one return from a function that takes two arguments and has two returns Examples -------- >>> h = lambda x: (2*x**3, 6*x**2) >>> f, g = decouple(h) >>> f(5) 250 >>> g(5) 150 """ def fst(*args, **kwargs): return fn(*args, **kwargs)[0] def snd(*args, **kwargs): return fn(*args, **kwargs)[1] return fst, snd def nwise(iterable, n): r""" Sliding window iterator. Iterator that acts like a sliding window of size `n`; slides over some iterable `n` items at a time. If iterable has `m` elements, this function will return an iterator over `m-n+1` tuples. Parameters ---------- iterable : iterable An iterable object. n : int Window size. Returns ------- iterator of tuples. Iterator of size `n` tuples Notes ----- First `n` iterators are created:: iters = tee(iterable, n) Next, iterator `i` is advanced `i` times:: for i, it in enumerate(iters): for _ in range(i): next(it, None) Finally, the iterators are zipped back up again:: return zip(*iters) Examples -------- >>> a = [2, 5, 7, 4, 2, 8, 6] >>> list(nwise(a, n=3)) [(2, 5, 7), (5, 7, 4), (7, 4, 2), (4, 2, 8), (2, 8, 6)] >>> pairwise = partial(nwise, n=2) >>> list(pairwise(a)) [(2, 5), (5, 7), (7, 4), (4, 2), (2, 8), (8, 6)] >>> list(nwise(a, n=1)) [(2,), (5,), (7,), (4,), (2,), (8,), (6,)] >>> list(nwise(a, n=7)) [(2, 5, 7, 4, 2, 8, 6)] .. todo:: These should probably raise `ValueError`... >>> list(nwise(a, 8)) [] >>> list(nwise(a, 9)) [] A sliding window of size `n` over a list of `m` elements gives `m-n+1` windows >>> len(a) - len(list(nwise(a, 2))) == 1 True >>> len(a) - len(list(nwise(a, 3))) == 2 True >>> len(a) - len(list(nwise(a, 7))) == 6 True """ iters = tee(iterable, n) for i, it in enumerate(iters): for _ in range(i): next(it, None) return zip(*iters) def scalar_reshape(a, newshape, order='C'): """ Reshape, but also return scalars or empty lists. Identical to `numpy.reshape` except in the case where `newshape` is the empty tuple, in which case we return a scalar instead of a 0-dimensional array. Examples -------- >>> a = np.arange(6) >>> np.array_equal(np.reshape(a, (3, 2)), scalar_reshape(a, (3, 2))) True >>> scalar_reshape(np.array([3.14]), newshape=()) 3.14 >>> scalar_reshape(np.array([2.71]), newshape=(1,)) array([ 2.71]) >>> scalar_reshape(np.array([]), newshape=(0,)) [] """ if newshape == (): return np.asscalar(a) if newshape == (0,): return [] return np.reshape(a, newshape, order) def flatten(arys, returns_shapes=True, hstack=np.hstack, ravel=np.ravel, shape=np.shape): """ Flatten a potentially recursive list of multidimensional objects. .. note:: Not to be confused with `np.ndarray.flatten()` (a more befitting might be `chain` or `stack` or maybe something else entirely since this function is more than either `concatenate` or `np.flatten` itself. Rather, it is the composition of the former with the latter. Parameters ---------- arys : list of objects One or more input arrays of possibly heterogenous shapes and sizes. returns_shapes : bool, optional Default is `True`. If `True`, the tuple `(flattened, shapes)` is returned, otherwise only `flattened` is returned. hstack : callable, optional a function that implements horizontal stacking ravel : callable, optional a function that flattens the object shape : callable, optional a function that returns the shape of the object Returns ------- flattened,[shapes] : {1dobject, list of tuples} Return the flat (1d) object resulting from the concatenation of flattened multidimensional objects. When `returns_shapes` is `True`, return a list of tuples containing also the shapes of each array as the second element. See Also -------- revrand.utils.unflatten : its inverse Examples -------- >>> a = 9 >>> b = np.array([4, 7, 4, 5, 2]) >>> c = np.array([[7, 3, 1], ... [2, 6, 6]]) >>> d = np.array([[[6, 5, 5], ... [1, 6, 9]], ... [[3, 9, 1], ... [9, 4, 1]]]) >>> flatten([a, b, c, d]) # doctest: +NORMALIZE_WHITESPACE (array([9, 4, 7, 4, 5, 2, 7, 3, 1, 2, 6, 6, 6, 5, 5, 1, 6, 9, 3, 9, 1, 9, 4, 1]), [(), (5,), (2, 3), (2, 2, 3)]) Note that scalars and 0-dimensional arrays are treated differently from 1-dimensional singleton arrays. >>> flatten([3.14, np.array(2.71), np.array([1.61])]) ... # doctest: +NORMALIZE_WHITESPACE (array([ 3.14, 2.71, 1.61]), [(), (), (1,)]) >>> flatten([a, b, c, d], returns_shapes=False) ... # doctest: +NORMALIZE_WHITESPACE array([9, 4, 7, 4, 5, 2, 7, 3, 1, 2, 6, 6, 6, 5, 5, 1, 6, 9, 3, 9, 1, 9, 4, 1]) >>> w, x, y, z = unflatten(*flatten([a, b, c, d])) >>> w == a True >>> np.array_equal(x, b) True >>> np.array_equal(y, c) True >>> np.array_equal(z, d) True >>> flatten([3.14, [np.array(2.71), np.array([1.61])]]) ... # doctest: +NORMALIZE_WHITESPACE (array([ 3.14, 2.71, 1.61]), [(), [(), (1,)]]) """ if issequence(arys) and len(arys) > 0: flat = partial(flatten, returns_shapes=True, hstack=hstack, ravel=ravel, shape=shape ) flat_arys, shapes = zip(*map(flat, arys)) flat_ary = hstack(flat_arys) shapes = list(shapes) else: flat_ary = ravel(arys) shapes = shape(arys) return (flat_ary, shapes) if returns_shapes else flat_ary def unflatten(ary, shapes, reshape=scalar_reshape): r""" Inverse opertation of flatten. Given a flat (1d) array, and a list of shapes (represented as tuples), return a list of ndarrays with the specified shapes. Parameters ---------- ary : a 1d array A flat (1d) array. shapes : list of tuples A list of ndarray shapes (tuple of array dimensions) Returns ------- list of ndarrays A list of ndarrays with the specified shapes. See Also -------- revrand.utils.flatten : its inverse Notes ----- Equivalent to:: lambda ary, shapes, order='C': \ map(partial(custom_reshape, order=order), np.hsplit(ary, np.cumsum(map(partial(np.prod, dtype=int), shapes))), shapes) Examples -------- >>> a = np.array([7, 4, 5, 8, 9, 1, 4, 2, 5, 3, 4, 3]) >>> list(unflatten(a, [(1,), (1,), (4,), (2, 3)])) ... # doctest: +NORMALIZE_WHITESPACE [array([7]), array([4]), array([5, 8, 9,
= name self._home = home self._owned = owned self._transaction = home._transaction self._newObjectResources = {} self._cachedObjectResources = {} self._removedObjectResources = set() self._index = None # Derived classes need to set this self._invites = None # Derived classes need to set this self._renamedName = realName if self._home._notifiers: self._notifiers = dict([(factory_name, notifier.clone(self),) for factory_name, notifier in self._home._notifiers.items()]) else: self._notifiers = None @classmethod def objectWithName(cls, home, name, owned): return cls(name, home, owned) if home._path.child(name).isdir() else None @property def _path(self): return self._home._path.child(self._name) @property def _txn(self): return self._transaction def directoryService(self): return self._transaction.store().directoryService() def retrieveOldIndex(self): """ Retrieve the old Index object. """ return self._index._oldIndex def retrieveOldInvites(self): """ Retrieve the old Invites DB object. """ return self._invites._oldInvites def __repr__(self): return "<%s: %s>" % (self.__class__.__name__, self._path.path) def name(self): if self._renamedName is not None: return self._renamedName return self._path.basename() def shareMode(self): """ Stub implementation of L{ICalendar.shareMode}; always returns L{_BIND_MODE_OWN}. """ return _BIND_MODE_OWN def effectiveShareMode(self): """ Stub implementation of L{ICalendar.effectiveShareMode}; always returns L{_BIND_MODE_OWN}. """ return _BIND_MODE_OWN def owned(self): return self._owned _renamedName = None @writeOperation def rename(self, name): oldName = self.name() self._renamedName = name self._home._newChildren[name] = self self._home._removedChildren.add(oldName) def doIt(): self._path.moveTo(self._path.sibling(name)) return lambda : None # FIXME: revert self._transaction.addOperation(doIt, "rename home child %r -> %r" % (oldName, name)) self.retrieveOldIndex().bumpRevision() self.notifyChanged() @writeOperation def remove(self): def do(transaction=self._transaction): childPath = self._path for i in xrange(1000): trash = childPath.sibling("._del_%s_%d" % (childPath.basename(), i)) if not trash.exists(): break else: raise InternalDataStoreError("Unable to create trash target for child at %s" % (childPath,)) try: childPath.moveTo(trash) except (IOError, OSError), e: if e.errno == ENOENT: raise NoSuchHomeChildError(self._name) raise def cleanup(): try: trash.remove() self.properties()._removeResource() except Exception, e: self.log.error("Unable to delete trashed child at %s: %s" % (trash.fp, e)) self._transaction.addOperation(cleanup, "remove child backup %r" % (self._name,)) def undo(): trash.moveTo(childPath) return undo # FIXME: direct tests self._transaction.addOperation( do, "prepare child remove %r" % (self._name,) ) self.notifyChanged() def ownerHome(self): return self._home def viewerHome(self): return self._home def setSharingUID(self, uid): self.properties()._setPerUserUID(uid) def objectResources(self): """ Return a list of object resource objects. """ return [self.objectResourceWithName(name) for name in self.listObjectResources()] def objectResourcesWithNames(self, names): """ Return a list of the specified object resource objects. """ results = [] for name in names: obj = self.objectResourceWithName(name) if obj is not None: results.append(obj) return results def listObjectResources(self): """ Return a list of object resource names. """ return sorted(( name for name in ( set(self._newObjectResources.iterkeys()) | set(p.basename() for p in self._path.children() if not p.basename().startswith(".") and p.isfile()) - set(self._removedObjectResources) )) ) def countObjectResources(self): return len(self.listObjectResources()) def objectResourceWithName(self, name): if name in self._removedObjectResources: return None if name in self._newObjectResources: return self._newObjectResources[name] if name in self._cachedObjectResources: return self._cachedObjectResources[name] objectResourcePath = self._path.child(name) if objectResourcePath.isfile(): obj = self._objectResourceClass(name, self) self._cachedObjectResources[name] = obj return obj else: return None def objectResourceWithUID(self, uid): rname = self.retrieveOldIndex().resourceNameForUID(uid) if rname and rname not in self._removedObjectResources: return self.objectResourceWithName(rname) return None @writeOperation def createObjectResourceWithName(self, name, component, metadata=None): """ Create a new resource with component data and optional metadata. We create the python object using the metadata then create the actual store object with setComponent. """ if name.startswith("."): raise ObjectResourceNameNotAllowedError(name) if len(name) > 255: raise ObjectResourceNameNotAllowedError(name) objectResourcePath = self._path.child(name) if objectResourcePath.exists(): raise ObjectResourceNameAlreadyExistsError(name) objectResource = self._objectResourceClass(name, self, metadata) objectResource.setComponent(component, inserting=True) self._cachedObjectResources[name] = objectResource # Note: setComponent triggers a notification, so we don't need to # call notify( ) here like we do for object removal. return objectResource def removedObjectResource(self, child): self.retrieveOldIndex().deleteResource(child.name()) self._removedObjectResources.add(child.name()) self.notifyChanged() def syncToken(self): try: urnuuid = str(self.properties()[PropertyName.fromElement(ResourceID)].children[0]) except KeyError: urnuuid = uuid.uuid4().urn self.properties()[PropertyName(*ResourceID.qname())] = ResourceID(HRef.fromString(urnuuid)) return succeed("%s_%s" % (urnuuid[9:], self.retrieveOldIndex().lastRevision())) def objectResourcesSinceToken(self, token): raise NotImplementedError() def resourceNamesSinceToken(self, token): return succeed(self.retrieveOldIndex().whatchanged(token)) def objectResourcesHaveProperties(self): """ So filestore objects do need to support properties. """ return True # FIXME: property writes should be a write operation @cached def properties(self): # FIXME: needs direct tests - only covered by store tests # FIXME: transactions propStoreClass = self._home._dataStore._propertyStoreClass props = propStoreClass(self._home.uid(), lambda: self._path) self.initPropertyStore(props) self._transaction.addOperation(props.flush, "flush object resource properties") return props def initPropertyStore(self, props): """ A hook for subclasses to override in order to set up their property store after it's been created. @param props: the L{PropertyStore} from C{properties()}. """ pass def addNotifier(self, factory_name, notifier): if self._notifiers is None: self._notifiers = {} self._notifiers[factory_name] = notifier def getNotifier(self, factory_name): return self._notifiers.get(factory_name) def notifierID(self): return (self.ownerHome()._notifierPrefix, "%s/%s" % (self.ownerHome().uid(), self.name(),),) def parentNotifierID(self): return self.ownerHome().notifierID() @inlineCallbacks def notifyChanged(self): """ Trigger a notification of a change """ # Only send one set of change notifications per transaction if self._notifiers and not self._transaction.isNotifiedAlready(self): # cache notifiers run in post commit notifier = self._notifiers.get("cache", None) if notifier: self._transaction.postCommit(notifier.notify) # push notifiers add their work items immediately notifier = self._notifiers.get("push", None) if notifier: yield notifier.notify(self._transaction) self._transaction.notificationAddedForObject(self) @inlineCallbacks def sharingInvites(self): """ Stub for interface-compliance tests. """ yield None returnValue([]) class CommonObjectResource(FileMetaDataMixin, FancyEqMixin): """ @ivar _path: The path of the file on disk @type _path: L{FilePath} """ log = Logger() compareAttributes = ( "_name", "_parentCollection", ) def __init__(self, name, parent, metadata=None): self._name = name self._parentCollection = parent self._transaction = parent._transaction self._objectText = None @property def _path(self): return self._parentCollection._path.child(self._name) def __repr__(self): return "<%s: %s>" % (self.__class__.__name__, self._path.path) @property def _txn(self): return self._transaction def transaction(self): return self._transaction def directoryService(self): return self._transaction.store().directoryService() @writeOperation def setComponent(self, component, inserting=False): raise NotImplementedError def component(self): raise NotImplementedError def remove(self): # FIXME: test for undo objectResourcePath = self._path def do(): objectResourcePath.remove() return lambda: None self._transaction.addOperation(do, "remove object resource object %r" % (self._name,)) self._parentCollection.removedObjectResource(self) purge = remove def _text(self): raise NotImplementedError def uid(self): raise NotImplementedError @cached def properties(self): home = self._parentCollection._home uid = home.uid() if self._parentCollection.objectResourcesHaveProperties(): propStoreClass = home._dataStore._propertyStoreClass props = propStoreClass(uid, lambda : self._path) else: props = NonePropertyStore(uid) self.initPropertyStore(props) self._transaction.addOperation(props.flush, "object properties flush") return props def initPropertyStore(self, props): """ A hook for subclasses to override in order to set up their property store after it's been created. @param props: the L{PropertyStore} from C{properties()}. """ pass class CommonStubResource(object): """ Just enough resource to keep the collection sql DB classes going. """ def __init__(self, resource): self.resource = resource self.fp = self.resource._path def bumpSyncToken(self, reset=False): # FIXME: needs direct tests return self.resource._updateSyncToken(reset) def initSyncToken(self): # FIXME: needs direct tests self.bumpSyncToken(True) class NotificationCollection(CommonHomeChild): """ File-based implementation of L{INotificationCollection}. """ implements(INotificationCollection) def __init__(self, name, parent, realName=None): """ Initialize an notification collection pointing at a path on disk. @param name: the subdirectory of parent where this notification collection resides. @type name: C{str} @param parent: the home containing this notification collection. @type parent: L{CommonHome} """ super(NotificationCollection, self).__init__(name, parent, realName) self._index = NotificationIndex(self) self._invites = None self._objectResourceClass = NotificationObject @classmethod def notificationsFromHome(cls, txn, home): notificationCollectionName = "notification" if not home._path.child(notificationCollectionName).isdir(): notifications = cls._create(txn, home, notificationCollectionName) else: notifications = cls(notificationCollectionName, home) return notifications @classmethod def _create(cls, txn, home, collectionName): # FIXME: this is a near-copy of CommonHome.createChildWithName. temporary = hidden(home._path.child(collectionName).temporarySibling()) temporary.createDirectory() temporaryName = temporary.basename() c = cls(temporary.basename(), home) def do(): childPath = home._path.child(collectionName) temporary = childPath.sibling(temporaryName) try: props = c.properties() temporary.moveTo(childPath) c._name = collectionName # FIXME: _lots_ of duplication of work here. props.flush() except (IOError, OSError), e: if e.errno == EEXIST and childPath.isdir(): raise HomeChildNameAlreadyExistsError(collectionName) raise # FIXME: direct tests, undo for index creation # Return undo return lambda: home._path.child(collectionName).remove() txn.addOperation(do, "create notification child %r" % (collectionName,)) return c notificationObjects = CommonHomeChild.objectResources listNotificationObjects = CommonHomeChild.listObjectResources notificationObjectWithName = CommonHomeChild.objectResourceWithName def notificationObjectWithUID(self, uid): name = uid + ".xml" return self.notificationObjectWithName(name) def writeNotificationObject(self, uid, notificationtype, notificationdata): name = uid + ".xml" if name.startswith("."): raise ObjectResourceNameNotAllowedError(name) objectResource = NotificationObject(name, self) objectResource.setData(uid, notificationtype, notificationdata) self._cachedObjectResources[name] = objectResource # Update database self.retrieveOldIndex().addOrUpdateRecord(NotificationRecord(uid, name, notificationtype)) self.notifyChanged() @writeOperation def removeNotificationObjectWithName(self, name): if name.startswith("."): raise NoSuchObjectResourceError(name) self.retrieveOldIndex().removeRecordForName(name) objectResourcePath = self._path.child(name) if objectResourcePath.isfile(): self._removedObjectResources.add(name) # FIXME: test for undo def do(): objectResourcePath.remove() return lambda: None self._transaction.addOperation(do, "remove object resource object %r" % (name,)) self.notifyChanged() else: raise NoSuchObjectResourceError(name) @writeOperation def removeNotificationObjectWithUID(self, uid): name = uid + ".xml" self.removeNotificationObjectWithName(name) class NotificationObject(CommonObjectResource): """ """ implements(INotificationObject) def __init__(self, name, notifications): super(NotificationObject, self).__init__(name, notifications) self._uid = name[:-4] def notificationCollection(self): return self._parentCollection def created(self): if not self._path.exists(): from twisted.internet import reactor return int(reactor.seconds()) return super(NotificationObject, self).created() def modified(self): if not self._path.exists(): from twisted.internet import reactor return int(reactor.seconds())
''' Helper functions to read through raw data for each corpus. Each is a generator that yields a single dataset and metadata in the form: { 'df' 'locator', 'dataset_id' } ''' import os from os import listdir from os.path import join from collections import OrderedDict import argparse import gzip import json import chardet import traceback import itertools import numpy as np import pandas as pd from .general_helpers import clean_chunk from .type_detection import detect_field_type, data_type_to_general_type, data_types, general_types raw_data_dir = os.environ['RAW_DIR'] CHUNK_SIZE = 500 all_corpus = ['plotly','manyeyes','test','opendata'] + ['webtables{}'.format(i) for i in range(10)] data_dirs = { x: join(raw_data_dir, 'webtables', x) if x.startswith('webtables') else join(raw_data_dir, x) for x in all_corpus} def listdir_not_hidden(path): dirlist = listdir(path) return filter(lambda x: not x.startswith('.'), dirlist) if dirlist else [] def plotly_file_iter(file_path): # large file, read in chunks raw_df_chunks = pd.read_csv( file_path, sep='\t', usecols=['fid', 'table_data', 'layout', 'chart_data'], error_bad_lines=False, warn_bad_lines=False, chunksize=CHUNK_SIZE, encoding='utf-8' ) for chunk_num, chunk in enumerate(raw_df_chunks): chunk = clean_chunk(chunk) for row in chunk.iterrows(): yield row def extract_plotly(table_data, locator, dataset_id, exact_num_fields=None, min_fields=None, max_fields=None, valid_fields=None): #table_data = chart_obj.table_data fields = table_data[list(table_data.keys())[0]]['cols'] sorted_fields = sorted(fields.items(), key=lambda x: x[1]['order']) num_fields = len(sorted_fields) if exact_num_fields: if num_fields != exact_num_fields: return if min_fields: if num_fields < min_fields: return if max_fields: if num_fields > max_fields: return data_as_dict = OrderedDict() for k, v in sorted_fields: data_as_dict[k] = pd.Series(v['data']) df = pd.DataFrame(data_as_dict) # If specified, only return the valid fields if valid_fields is not None: df = df.iloc[:,valid_fields] result = { 'df': df, 'dataset_id': dataset_id, 'locator': locator } return result def get_plotly_dfs(limit=None, exact_num_fields=None, min_fields=None, max_fields=None): corpus = 'plotly' base_dir = data_dirs[corpus] files = [ f for f in listdir_not_hidden(base_dir) if f.endswith('.tsv') ] for f in files[:limit]: file_path = join(data_dirs[corpus], f) plotly_row_iter = plotly_file_iter(file_path) for chart_num, chart_obj in plotly_row_iter: df = extract_plotly(chart_obj.table_data, f, chart_obj.fid, exact_num_fields, min_fields, max_fields) if df is not None: yield df def load_manyeyes(full_file_path, locator, dataset_id, exact_num_fields=None, min_fields=None, max_fields=None, valid_fields=None): try: df = pd.read_csv( full_file_path, error_bad_lines=False, warn_bad_lines=False, sep='\t', encoding='utf-8' ) num_fields = len(df.columns) # If specified, only return the valid fields if valid_fields is not None: df = df.iloc[:,valid_fields] if exact_num_fields: if num_fields != exact_num_fields: return if min_fields: if num_fields < min_fields: return if max_fields: if num_fields > max_fields: return result = { 'df': df, 'dataset_id': dataset_id, 'locator': locator } return result except Exception as e: #print("Exception loading manyeyes data", e) return def get_manyeyes_dfs(exact_num_fields=None, min_fields=None, max_fields=None): corpus='manyeyes' base_dir = data_dirs[corpus] files = [] for year_dir in listdir_not_hidden(base_dir): for month_dir in listdir_not_hidden(join(base_dir, year_dir)): month_files = listdir_not_hidden(join(base_dir, year_dir, month_dir)) files.append([ year_dir, month_dir, month_files ]) for (year_dir, month_dir, month_files) in files: for i, file_name in enumerate(month_files): locator = join(year_dir, month_dir, file_name) full_file_path = join(base_dir, year_dir, month_dir, file_name) dataset_id = file_name df = load_manyeyes(full_file_path, locator, dataset_id, exact_num_fields, min_fields, max_fields) if df: yield df else: continue def webtables_iter(path): # generate the next line of json(table) with gzip.open(path, 'rb') as f_in: iter_count = 0 # only count the # of succesfully yield dataframes for line_count, dataset in enumerate(f_in): try: data = json.loads(dataset.decode('utf-8')) yield (iter_count, data) iter_count+=1 except UnicodeDecodeError: encoding = chardet.detect(dataset)['encoding'] try: data = json.loads(dataset.decode(encoding)) yield (iter_count, data) iter_count+=1 except Exception as e: #print('Cannot parse:', e) continue continue def extract_webtables(data, locator, dataset_id=None, exact_num_fields=None, min_fields=None, max_fields=None, valid_fields=None, line_no=0): # if dataset_id is set, only extract if there's a match try: # webtables are not uniquely identified by pageTitle + tableNum, # TO distinguish between tables, add a index with respect to location in the conatining file. if data['hasHeader'] and (data['headerPosition'] == 'FIRST_ROW'): d_id = '{}-{}-{}'.format(line_no, data['pageTitle'], data['tableNum']) # table name not matching if dataset_id is not None and d_id != dataset_id: return header_row_index = data.get('headerRowIndex', 0) data_as_dict = OrderedDict() for raw_cols in data['relation']: header_row = raw_cols[header_row_index] raw_cols.pop(header_row_index) parsed_values = pd.Series([ None if (v == '-') else v for v in raw_cols ]) try: parsed_values = pd.to_numeric(parsed_values, errors='raise') except: #print('CAN"T PARASE') pass #parsed_values = parsed_values.replace(value='-', None) data_as_dict[header_row] = parsed_values df = pd.DataFrame(data_as_dict) num_fields = len(df.columns) if exact_num_fields: if num_fields != exact_num_fields: return if min_fields: if num_fields < min_fields: return if max_fields: if num_fields > max_fields: return # If specified, only return the valid fields if valid_fields is not None: df = df.iloc[:,valid_fields] result = { 'df': df, 'dataset_id': d_id, 'locator': locator } return result else: return except Exception as e: print("Exception in table extraction: ",e) return def get_webtables_dfs(detailed_name, exact_num_fields=None, min_fields=None, max_fields=None): corpus = detailed_name base_dir = data_dirs[corpus] files = [] for sub_dir in listdir_not_hidden(base_dir): if sub_dir.endswith(tuple(['.gz', '.lst', '.html'])): continue json_files = listdir_not_hidden(join(base_dir, sub_dir, 'warc')) files.append([ base_dir, sub_dir, json_files ]) for (base_dir, sub_dir, json_files) in files: for i, file_name in enumerate(json_files): full_file_path = join(base_dir, sub_dir, 'warc', file_name) locator = join(sub_dir, 'warc', file_name) w_iter = webtables_iter(full_file_path) for idx, data in w_iter: df = extract_webtables(data, locator, None, exact_num_fields, min_fields, max_fields, line_no = idx) if df is not None: yield df def load_opendata(full_dataset_path, locator, dataset_id, exact_num_fields=None, min_fields=None, max_fields=None, valid_fields=None): engine = 'c' encoding = 'utf-8' sep=',' attempts = 2 while attempts > 0: # don't try forever... try: df = pd.read_csv( full_dataset_path, engine=engine, # https://github.com/pandas-dev/pandas/issues/11166 error_bad_lines=False, warn_bad_lines=False, encoding=encoding, sep=sep ) num_fields = len(df.columns) if num_fields == 1 and sep != ':': if sep == ',': sep=';' elif sep == ';': sep='\t' elif sep == '\t': sep=':' attempts -=1 elif num_fields == 1 and sep == ':': with open(full_dataset_path, 'r') as f: head = [next(f) for x in range(100)] head = ''.join(head) for t in [ '<body>', 'html', 'DOCTYPE' ]: if t in head: print('is html') return return result else: if exact_num_fields: if num_fields != exact_num_fields: return #continue if max_fields: if num_fields > max_fields: return #continue # If specified, only return the valid fields if valid_fields is not None: df = df.iloc[:,valid_fields] result = { 'df': df, 'dataset_id': dataset_id, 'locator': locator } return result #yield result #break except UnicodeDecodeError as ude: #print("Endcoding error:", encoding, ude) encoding = 'latin-1' attempts -= 1 except pd.errors.ParserError as cpe: #print('Engeine error:', cpe) engine = 'python' attempts -= 1 except Exception as e: #print('Exception:', e) return def get_opendata_dfs(exact_num_fields=None, min_fields=None, max_fields=None, valid_fields=None): corpus = 'opendata' base_dir = data_dirs[corpus] files = [] for portal_dir in listdir_not_hidden(base_dir): full_portal_dir = join(base_dir, portal_dir) for dataset_id_dir in listdir_not_hidden(full_portal_dir): full_dataset_id_dir = join(full_portal_dir, dataset_id_dir) for dataset_name in listdir_not_hidden(full_dataset_id_dir): full_dataset_path = join(full_dataset_id_dir, dataset_name) locator = join(portal_dir, dataset_id_dir) dataset_id = dataset_name df = load_opendata(full_dataset_path, locator, dataset_id, exact_num_fields, min_fields, max_fields) if df: yield df ################################################################## # Filtered iterators (based on the header_iter passed in) ################################################################## def get_opendata_filtered_dfs(header_iter, exact_num_fields=None, min_fields=None, max_fields=None): corpus = 'opendata' base_dir = data_dirs[corpus] for next_line in header_iter: if next_line == 'EOF': return idx, row = next_line locator = row['locator'] dataset_id = row['dataset_id'] fields = eval(row['field_list']) #convert string to list full_dataset_path = join(base_dir, locator, dataset_id) df = load_opendata(full_dataset_path, locator, dataset_id, exact_num_fields, min_fields, max_fields, fields) if df: yield df def get_webtables_filterd_dfs(corpus, header_iter, exact_num_fields=None, min_fields=None, max_fields=None): base_dir = data_dirs[corpus] # webtables0/ webtables1 ... row_idx, row = next(header_iter) prev_locator = row['locator'] prev_dataset_id = row['dataset_id'] prev_idx = int(prev_dataset_id.split('-')[0]) w_iter = webtables_iter(join(base_dir, prev_locator)) _, data = next(itertools.islice(w_iter, prev_idx, None)) df = extract_webtables(data, prev_locator, prev_dataset_id, exact_num_fields, min_fields, max_fields, list(eval(row['field_list'])), line_no=prev_idx) if df is not None: yield df for header_line in header_iter: if header_line =='EOF': return _, row = header_line locator, dataset_id = row['locator'], row['dataset_id'] new_idx = int(dataset_id.split('-')[0]) #print("new_idx", new_idx) if locator == prev_locator: offset = new_idx-prev_idx-1 else: w_iter = webtables_iter(join(base_dir, locator)) offset = new_idx #print('offset', offset) _, data = next(itertools.islice(w_iter, offset, None)) df = extract_webtables(data, locator, dataset_id, exact_num_fields, min_fields, max_fields, list(eval(row['field_list'])), line_no=new_idx) if df is not None: yield df # update prev prev_locator = locator prev_idx = new_idx def get_manyeyes_filtered_dfs(header_iter, exact_num_fields=None, min_fields=None, max_fields=None): corpus='manyeyes' base_dir = data_dirs[corpus] for next_line in header_iter: if next_line == 'EOF': return idx, row = next_line locator = row['locator'] fields = eval(row['field_list']) #convert string to list full_file_path = join(base_dir, locator) dataset_id = locator.split('/')[-1] df = load_manyeyes(full_file_path, locator, dataset_id, exact_num_fields, min_fields, max_fields, fields) if df: yield df else: continue def get_plotly_filtered_dfs(header_iter, limit=None, exact_num_fields=None, min_fields=None, max_fields=None): corpus = 'plotly' base_dir = data_dirs[corpus] idx, row = next(header_iter) locator_buff = [row['locator']] # pending locators current_dataset_id = row['dataset_id'] current_fields = list(eval(row['field_list'])) #for f in locator_buff: while(len(locator_buff)>0): f = locator_buff.pop(0) file_path =
__author__ = "<NAME>" __email__ = "<EMAIL>" import pymel.core as pm import mgear.rigbits.sdk_io as sdk_io import mgear.core.pickWalk as pickWalk SDK_ANIMCURVES_TYPE = ("animCurveUA", "animCurveUL", "animCurveUU") # reload(sdk_io) # ================================================= # # MATH # ================================================= # def next_biggest(target, in_list): """ Returns the next highest number in the in_list. If target is greater the the last number in in_list, will return the last item in the list. """ next_highest = None for item in in_list: if item > target: next_highest = item break if next_highest is None: next_highest = in_list[-1] return next_highest def next_smallest(target, in_list): """ Returns the next Lowest number in the in_list. If target is smaller the the last number in in_list, will return the first item in the list. """ next_lowest = None for item in in_list[::-1]: if item < target: next_lowest = item break if next_lowest is None: next_lowest = in_list[0] return next_lowest # ================================================= # # SELECTION # ================================================= # def select_all(mode): """ Select all the Driver Ctls, Anim Ctls Joints or SDK Nodes in the scene. Arguments: mode (str) - drv : Driver Ctls - anim : Anim Ctls - jnts : Joints - nodes : SDK Nodes Returns: None """ pm.select(clear=True) # Driver Ctl and Anim Ctl mode if mode == "drv" or mode == "anim": # Setting the Attr to look for on nodes. attr = "is_SDK" if mode == "drv" else "is_tweak" for item in pm.ls('*.' + attr): if "controlBuffer" not in item.name(): pm.select(item.split(".")[0], add=True) # Joints Mode elif mode == "jnts": all_joints = [] for item in pm.ls('*.is_tweak'): if "controlBuffer" not in item.name(): jnt = joint_from_driver_ctl(item.node()) if jnt not in all_joints: all_joints.append(jnt) pm.select(all_joints, replace=True) # Node Mode elif mode == "nodes": str_sdk_nodes = [] for item in pm.ls('*.is_SDK'): if "controlBuffer" not in item.name(): sdk_info = sdk_io.getAllSDKInfoFromNode(item.node()) str_sdk_nodes.extend(sdk_info.keys()) sdk_nodes = sdk_io.getPynodes(str_sdk_nodes) pm.select(sdk_nodes, replace=True) def reset_to_default(mode, clear_sel=False): """ Reset All the Rig Driver Ctls or Anim Ctls to Default Arguments: mode (str) - all : All Ctl Curves - drv : Driver Ctls - anim : Anim Ctls Returns: None """ attrs_dict = {"tx": 0, "ty": 0, "tz": 0, "rx": 0, "ry": 0, "rz": 0, "sx": 1, "sy": 1, "sz": 1} # All Ctls Mode if mode == "all": for attrib in pm.ls("*.invTx"): node = attrib.node() if "controlBuffer" not in node.name(): for attr, value in attrs_dict.items(): # If the Attr is settable, set it if pm.getAttr(node.attr(attr), settable=True): pm.setAttr(node.attr(attr), value) # Driver Ctls and Anim Ctls elif mode == "drv" or "anim": select_all(mode) for item in pm.ls(sl=True): for attr, value in attrs_dict.items(): pm.setAttr(item.attr(attr), value) if clear_sel: pm.select(clear=True) # ================================================= # # NAVIGATION # ================================================= # def driver_ctl_from_joint(joint): """ Will try find the Driver control given the joint by searching through the mGear nodes. Arguments: joint (PyNode): joint to search connections on Returns: PyNode : Control """ driver_control = None if pm.nodeType(joint) == "joint": for connected in pm.listConnections(joint.translateX, source=True): if pm.nodeType(connected) == "decomposeMatrix": for conB in pm.listConnections(connected.inputMatrix, source=True): if pm.nodeType(conB) == "mgear_mulMatrix": for drvCtl in pm.listConnections(conB.matrixA, source=True): if pm.nodeType(drvCtl) == "transform": driver_control = drvCtl return driver_control def joint_from_driver_ctl(node): """ Will try find the joint given the Driver control by searching through the mGear nodes. TO DO: Expand this to be more robust. Check all channels / not rely on translate connections only. Arguments: node (PyNode): node to search connections on Returns: PyNode : joint """ joint = None for connected in pm.listConnections(node.worldMatrix[0], destination=True): if pm.nodeType(connected) == "mgear_mulMatrix": for conA in pm.listConnections(connected.output, destination=True): if pm.nodeType(conA) == "decomposeMatrix": for conB in pm.listConnections(conA.outputTranslateX, destination=True): if pm.nodeType(conB) == "joint": joint = conB return joint def get_info(node): """ Given either the SDK box, or Anim ctl, will find other and return it Arguments: node (PyNode): either the SDK box or Anim ctl Returns: list [PyNode(SDK box), PyNode(anim ctl)] """ SDK_node = None tweak_node = None if pm.attributeQuery("is_SDK", node=node, ex=True): SDK_node = node for connected in pm.listConnections(node.attr("ctl")): if pm.attributeQuery("is_tweak", node=connected, ex=True): tweak_node = connected if pm.attributeQuery("is_tweak", node=node, ex=True): tweak_node = node for connected in pm.listConnections(node.attr("sdk")): if pm.attributeQuery("is_SDK", node=connected, ex=True): SDK_node = connected return [SDK_node, tweak_node] def ctl_from_list(in_list, SDK=False, animTweak=False): """ Returns either the SDK's or animTweaks from the in_list. If given a SDK, it will find the animTweak pair and vise versa. To qualify as SDK ctl must have "is_SDK" attr, or "is_tweak" attr for animTweak Arguments: in_list (list[PyNode]): List of PyNodes to sort through SDK (bool): If you want SDK ctls animTweak (bool): If you want animTweak ctls Returns: list [List of either SDK ctls or animTweaks] """ SDK_ctls = [] for item in in_list: # If its a joint, find the connected control if pm.nodeType(item) == "joint": item = driver_ctl_from_joint(item) SDK_ctl = get_info(item)[0] if SDK_ctl: if SDK_ctl not in SDK_ctls: SDK_ctls.append(SDK_ctl) return SDK_ctls # ================================================= # # SDK # ================================================= # def set_driven_key(driverAttr, drivenAttr, driverVal, drivenVal, preInfinity=0, postInfinity=0, inTanType="linear", outTanType="linear"): """ Convinience function to aid in setting driven keys. Arguments: driverAttr (PyNode.attribute): Driver.attr to drive the SDK drivenAttr (PyNode.attribute): Driven.attr to be driven by the SDK driverVal (float): Value to use for driver drivenVal (float): Value to use for driven preInfinity (int): IndexKey - constant[0], linear[1], cycle[2], cycleOffset[3], Oscillate[4] postInfinity (int): IndexKey - constant[0], linear[1], cycle[2], cycleOffset[3], Oscillate[4] inTanType (str): spline, linear, fast, slow, flat, stepped, step next, fixed, clampedand plateau outTanType (str): spline, linear, fast, slow, flat, stepped, step next, fixed, clampedand plateau Returns: new Anim UU node or the Edited one. TO DO: fix the return. """ animUU = None # Grabbing the Driver connections for comparison later driver_con_A = pm.listConnections(driverAttr) # setting the Driven key frame pm.setDrivenKeyframe(drivenAttr, cd=driverAttr, driverValue=driverVal, value=drivenVal, inTangentType=inTanType, outTangentType=outTanType, ) # Compairing the connections to DriverAtt to find new Anim UU node. DriverConB = pm.listConnections(driverAttr) for conB in DriverConB: if conB not in driver_con_A: animUU = conB # Setting Attrs if animUU: animUU.preInfinity.set(preInfinity) animUU.postInfinity.set(postInfinity) # renaming if animUU: newName = "{}_{}".format(driverAttr.split(".")[0], drivenAttr.split(".")[1]) pm.rename(animUU, newName) return animUU def get_driven_from_attr(driverAttr, is_SDK=False): """ Returns a list of driven controls given the driver attr Arguments: driverAttr (PyNode): the driver attr to search is_SDK (bool): if True, will check if the is_SDK attr is present before adding to driven_ctls list. Returns: list [List of unicode names] """ driven_ctls = [] for connected_node in pm.listConnections(driverAttr): if pm.nodeType(connected_node) in SDK_ANIMCURVES_TYPE: drvn_ctl = sdk_io.getSDKDestination(connected_node)[0] if is_SDK: if not pm.attributeQuery("is_SDK", node=drvn_ctl, ex=True): break if drvn_ctl not in driven_ctls: driven_ctls.append(drvn_ctl) return driven_ctls def get_driver_from_driven(drivenCtl): """ Finds the Driver controls for a given driven ctl Arguments: drivenCtl (PyNode): A Driven Node to query. Returns: list [All found Driver Nodes] """ driver_ctls = [] retrieved_SDK_nodes = sdk_io.getConnectedSDKs(drivenCtl) retrieved_SDK_nodes.extend(sdk_io.getMultiDriverSDKs(drivenCtl)) for rtv_attrs in retrieved_SDK_nodes: for rtv_attr in rtv_attrs: if pm.nodeType(rtv_attr) in SDK_ANIMCURVES_TYPE: try: SDK_info = sdk_io.getSDKInfo(rtv_attr.node()) if SDK_info['driverNode'] not in driver_ctls: driver_ctls.append(SDK_info['driverNode']) except: # noqa: E722 pass return driver_ctls def get_driver_keys(driverAttr, firstKey=None, prevKey=None, nextKey=None, lastKey=None): """ Returns a list of Driver key values for the given driverAttr. If all optional arguments are None, will return list of all values Arguments: driverAttr (PyNode.Attribute): Driver Ctl.attr firstKey (bool): prevKey (bool): nextKey (bool): lastKey (bool): Returns: List (If all optional None) - List of driver key values float (If one specified) - The float value for the driver on that key. """ dirver_con = pm.listConnections(driverAttr) keys_list = [] if len(dirver_con) > 0: for con in dirver_con: if pm.nodeType(con) in SDK_ANIMCURVES_TYPE: SDK_dict = sdk_io.getSDKInfo(con) for key in SDK_dict["keys"]: if key[0] not in keys_list: keys_list.append(key[0]) if firstKey: return keys_list[0] if prevKey: return next_smallest(driverAttr.get(), keys_list) if nextKey: return next_biggest(driverAttr.get(), keys_list) if lastKey: return keys_list[-1] else: return keys_list def mirror_SDK(driverCtl): """ Takes in a driver control and extrapolates out all the other information needed to mirror it's connected SDK's. Arguments: driverCtl (PyNode): Returns: None """ # Getting The Opposite Driver t_driver = pickWalk.getMirror(driverCtl)[0] # Getting all the SDK Ctls + RHS Counterparts from Driver Ctl Name. driven_ctls_dict = {} for sdk_attrs in sdk_io.getConnectedSDKs(driverCtl): for sdk_attr in sdk_attrs: if pm.nodeType(sdk_attr.node()) in SDK_ANIMCURVES_TYPE: destination_ctl = sdk_io.getSDKDestination(sdk_attr.node())[0] driven_ctls_dict[destination_ctl] = pickWalk.getMirror( pm.PyNode(destination_ctl))[0] # Removing any Already Existing SDK's from the target driver. for s_driven, t_driven in driven_ctls_dict.items(): sdk_io.removeSDKs(t_driven, sourceDriverFilter=[t_driver]) # Looping over
# -*- coding: utf-8 -*- """ checkout ~~~~~~~~~~~~ Python wrapper for the Checkout Finland API. Copyright (c) 2014 by <NAME>. Copyright (c) 2013 by <NAME>. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * The names of the contributors may not be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import hashlib import hmac import xml.etree.ElementTree as ET import requests __version__ = '0.2.0' try: text_type = unicode # This is Py2 except NameError: # Must be Py3 text_type = str def join_as_bytes(joiner, bits, encoding="ascii"): joined_unicode = text_type(joiner).join(text_type(bit) for bit in bits) return joined_unicode.encode(encoding) class CheckoutException(Exception): """This exception is raised when the request made to the Checkout API is invalid, or some other error occurs in the usage of the API.""" def __init__(self, message): #: An error description of the error in chosen localization. This error #: description is not meant to be displayed to the end-user. self.message = message class Contact(object): """This class represents the payer of a payment. Contact details are optional """ def __init__(self, **options): #: Payer's first name. self.first_name = options.get('first_name', '')[0:40] #: Payer's surname. self.last_name = options.get('last_name', '')[0:40] #: Payer's email address. self.email = options.get('email', '')[0:200] #: Payer's telephone number. self.phone = options.get('phone', '')[0:30] #: Payer's street address. self.address = options.get('address', '')[0:40] #: Payer's postal code. self.postcode = options.get('postcode', '')[0:14] #: Payer's post office. self.postoffice = options.get('postoffice', '')[0:18] #: Payer's country. 3-letter ISO code. self.country = options.get('country', '')[0:3] @property def dict(self): """Dict of this contact in fields specified by Checkout API and clipped accordingly.""" return { 'PHONE': self.phone, 'EMAIL': self.email, 'FIRSTNAME': self.first_name, 'FAMILYNAME': self.last_name, 'ADDRESS': self.address, 'POSTCODE': self.postcode, 'POSTOFFICE': self.postoffice, 'COUNTRY': self.country } class Payment(object): def __init__(self, order_number, reference_number, amount, delivery_date, return_url, cancel_url, **options): #: Order number is a string of characters identifying the customer's #: purchase and the used webshop software creates it. Mandatory. if len(order_number) > 20: raise CheckoutException("order_number over maximum allowed 20 characters") else: self.order_number = order_number #: Reference number is sent to bank by default and is automatically #: created. In those payment methods that are used as an interface, #: this field can contain own reference number, which is sent to the #: bank service instead of the automatically generated reference #: number. Mandatory. if len(reference_number) > 20: raise CheckoutException("reference_number over maximum allowed 20 characters") else: self.reference_number = reference_number #: Order amount in cents. Mandatory. if len(amount) > 8: raise CheckoutException("amount over maximum allowed 8 characters") else: self.amount = amount #: Delivery date of order in format YYYYMMDD. Mandatory if len(delivery_date) > 8: raise CheckoutException("delivery_date over maximum allowed 8 characters") else: self.delivery_date = delivery_date #: Any data about the order in text format can be sent to the payment #: system. They are shown in the Merchant's Panel in payment details. Optional. self.message = options.get('message', '')[0:1000] #: Payment currency. Value must EUR for the Finnish banks, otherwise #: the payment will not be accepted. Mandatory, defaults to 'EUR'. self.currency = options.get('currency', 'EUR') #: Language defines default language for the payment method #: selection page. Optional, 2-letter ISO code. self.language = options.get('language', 'FI') #: Contact object for the Payment. Optional, if supplied with None blank contact is used. self.contact = options.get('contact', Contact()) #: Payment content. "1" for normal content and "10" for adult content. Mandatory, default 1. self.content = options.get('content', '1')[0:2] #: URL to which user is redirected after a successful payment. Mandatory. if len(return_url) > 300: raise CheckoutException("return_url over maximum allowed 300 characters") else: self.return_url = return_url #: URL to which user is redirected after a cancelled or failed payment. Mandatory. if len(cancel_url) > 300: raise CheckoutException("cancel_url over maximum allowed 300 characters") else: self.cancel_url = cancel_url #: URL to which user is directed, if the payment is pending. #: After the actual payment, the payment acknowledged as received by Checkout #: with fetching this URL along with same parameters as used in normal return_url. #: Optional. self.delayed_url = options.get('delayed_url', '') if len(self.delayed_url) > 300: raise CheckoutException("delayed_url over maximum allowed 300 characters") #: URL requested when the payment is marked as rejected. The URL is #: requested with the same GET parameters as return address when the #: payment is made. Optional. self.reject_url = options.get('reject_url', '') if len(self.reject_url) > 300: raise CheckoutException("reject_url over maximum allowed 300 characters") @property def currency(self): return self._currency @currency.setter def currency(self, value): if value != 'EUR': raise CheckoutException("Currently EUR is the only supported currency.") self._currency = value @property def language(self): return self._language @language.setter def language(self, value): if value not in ('FI', 'SE', 'EN'): raise CheckoutException("Given language is not supported: %r" % value) self._language = value @property def dict(self): returndict = { 'VERSION': "0001", #: Version of the API. 'STAMP': self.order_number, 'AMOUNT': self.amount, 'REFERENCE': self.reference_number, 'MESSAGE': self.message, 'LANGUAGE': self.language, 'RETURN': self.return_url, 'CANCEL': self.cancel_url, 'REJECT': self.reject_url, 'DELAYED': self.delayed_url, 'CURRENCY': self.currency, 'CONTENT': self.content, 'TYPE': "0", #: Static field. 'ALGORITHM': "3", #: Return AUTHCODE algorithm, "3" for HMAC-SHA256. 'DELIVERY_DATE': self.delivery_date } #: Merge with Contact values returndict.update(self.contact.dict) return returndict class Checkout(object): SERVICE_URL = "https://payment.checkout.fi/" def __init__(self, merchant_id='375917', merchant_secret='SAIPPUAKAUPPIAS'): """ Initialize Checkout with your own merchant id and merchant secret. :param merchant_id: Mercant ID is given to you by Checkout when you make the contract. Default is the test merchant_id. :param merchant_secret: Merchant secret is given to you by Checkout. Default is the test merchant_secret. """ self.merchant_id = merchant_id self.merchant_secret = merchant_secret self.session = requests.Session() # noqa def get_onsite_button_data(self, payment): """ Creates a new payment and returns a `list` with the following data for each payment method: { 'bank': bankname, 'url': posturl, 'icon': iconurl, formfields: {} } :param payment: a `Payment` object """ postdict = payment.dict postdict['MERCHANT'] = self.merchant_id postdict['DEVICE'] = "10" #: "10" to get XML data for payment methods back postdict['MAC'] = self._calculate_payment_md5(postdict, self.merchant_secret) response = self.session.post(self.SERVICE_URL, data=postdict) return self.parse_xml_response(response.content) def get_offsite_button_data(self, payment): """ Returns form fields for off-page payment where user is sent to checkout.fi and shown all the payment options there instead of showing them onsite. :param payment: a `Payment` object """ paymentdict = payment.dict paymentdict['MERCHANT'] = self.merchant_id paymentdict['DEVICE'] = "1" #: "1" to get payment method selection form from Checkout.fi paymentdict['MAC'] = self._calculate_payment_md5(paymentdict, self.merchant_secret) return paymentdict def parse_xml_response(self, xmlraw): """ Parses XML-response for onsite payment method :param xmlraw: Raw XML data returned by checkout.fi """ payment_list = [] XML = ET.fromstring(xmlraw) # noqa banks = XML.findall(".//payment/banks/*") for bank in banks: bankdict = dict(bank.items()) fielddict = {} for fieldname in bank: fielddict[fieldname.tag] = fieldname.text bankdict["fields"] = fielddict payment_list.append(bankdict) return payment_list def _calculate_payment_md5(self, params, merchant_secret): fields = [params["VERSION"], params["STAMP"], params["AMOUNT"], params["REFERENCE"], params["MESSAGE"], params["LANGUAGE"], params["MERCHANT"], params["RETURN"], params["CANCEL"], params["REJECT"], params["DELAYED"], params["COUNTRY"], params["CURRENCY"], params["DEVICE"], params["CONTENT"], params["TYPE"], params["ALGORITHM"], params["DELIVERY_DATE"], params["FIRSTNAME"], params["FAMILYNAME"], params["ADDRESS"], params["POSTCODE"], params["POSTOFFICE"], merchant_secret] base = join_as_bytes("+", fields, encoding="utf-8") return hashlib.md5(base).hexdigest().upper() def validate_payment_return(self, mac, version, order_number, order_reference, payment, status, algorithm): """ Validates parameters sent by Checkout Finland to the
# This file is part of parallel-ssh. # Copyright (C) 2014-2018 <NAME> and contributors. # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation, version 2.1. # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA import sys if 'threading' in sys.modules: del sys.modules['threading'] from gevent import monkey # noqa: E402 monkey.patch_all() import os # noqa: E402 import logging # noqa: E402 from socket import gaierror as sock_gaierror, error as sock_error # noqa: E402 from gevent import sleep # noqa: E402 import paramiko # noqa: E402 from paramiko.ssh_exception import ChannelException # noqa: E402 from ...exceptions import UnknownHostException, AuthenticationException, \ ConnectionErrorException, SSHException # noqa: E402 from ...constants import DEFAULT_RETRIES # noqa: E402 from ...utils import read_openssh_config # noqa: E402 host_logger = logging.getLogger('pssh.host_logger') logger = logging.getLogger(__name__) class SSHClient(object): """SSH client based on Paramiko with sane defaults. Honours ``~/.ssh/config`` and ``/etc/ssh/ssh_config`` host entries for host, user name, port and key overrides. """ def __init__(self, host, user=None, password=<PASSWORD>, port=None, pkey=None, forward_ssh_agent=True, num_retries=DEFAULT_RETRIES, agent=None, allow_agent=True, timeout=10, proxy_host=None, proxy_port=22, proxy_user=None, proxy_password=None, proxy_pkey=None, channel_timeout=None, _openssh_config_file=None, **paramiko_kwargs): """ :param host: Hostname to connect to :type host: str :param user: (Optional) User to login as. Defaults to logged in user or user from ~/.ssh/config if set :type user: str :param password: (Optional) Password to use for login. Defaults to no password :type password: str :param port: (Optional) Port number to use for SSH connection. Defaults to ``None`` which uses SSH default :type port: int :param pkey: (Optional) Client's private key to be used to connect with :type pkey: :py:class:`paramiko.pkey.PKey` :param num_retries: (Optional) Number of retries for connection attempts before the client gives up. Defaults to 3. :type num_retries: int :param timeout: (Optional) Number of seconds to timeout connection attempts before the client gives up :type timeout: int :param forward_ssh_agent: (Optional) Turn on SSH agent forwarding - equivalent to `ssh -A` from the `ssh` command line utility. Defaults to True if not set. :type forward_ssh_agent: bool :param agent: (Optional) Override SSH agent object with the provided. This allows for overriding of the default paramiko behaviour of connecting to local SSH agent to lookup keys with our own SSH agent object. :type agent: :py:class:`paramiko.agent.Agent` :param forward_ssh_agent: (Optional) Turn on SSH agent forwarding - equivalent to `ssh -A` from the `ssh` command line utility. Defaults to True if not set. :type forward_ssh_agent: bool :param proxy_host: (Optional) SSH host to tunnel connection through so that SSH clients connects to self.host via client -> proxy_host -> host :type proxy_host: str :param proxy_port: (Optional) SSH port to use to login to proxy host if set. Defaults to 22. :type proxy_port: int :param channel_timeout: (Optional) Time in seconds before an SSH operation times out. :type channel_timeout: int :param allow_agent: (Optional) set to False to disable connecting to the SSH agent :type allow_agent: bool :param paramiko_kwargs: (Optional) Extra keyword arguments to be passed on to :py:func:`paramiko.client.SSHClient.connect` :type paramiko_kwargs: dict """ try: _host, _user, _port, _pkey = read_openssh_config( host, config_file=_openssh_config_file) except TypeError: _host, _user, _port, _pkey = None, None, 22, None user = user if user else _user client = paramiko.SSHClient() client.set_missing_host_key_policy(paramiko.MissingHostKeyPolicy()) self.forward_ssh_agent = forward_ssh_agent self.client = client self.user = user self.password = password self.pkey = pkey if pkey else _pkey self.port = port if port else _port self.host = host self._host = _host self.allow_agent = allow_agent if agent: self.client._agent = agent self.num_retries = num_retries self.timeout = timeout self.channel_timeout = channel_timeout self.proxy_host, self.proxy_port, self.proxy_user, \ self.proxy_password, self.proxy_pkey = proxy_host, proxy_port, \ proxy_user, proxy_password, proxy_pkey self.proxy_client = None real_host = _host if _host is not None else host if self.proxy_host and self.proxy_port: logger.debug( "Proxy configured for destination host %s - Proxy host: %s:%s", real_host, self.proxy_host, self.proxy_port,) self._connect_tunnel(real_host, **paramiko_kwargs) else: self._connect(self.client, real_host, self.port, **paramiko_kwargs) def __del__(self): try: self.client.close() except Exception: pass def _connect_tunnel(self, host, **paramiko_kwargs): """Connects to SSH server via an intermediate SSH tunnel server. client (me) -> tunnel (ssh server to proxy through) -> ``self.host`` (ssh server to run command) :rtype: :py:class:`paramiko.SSHClient` Client to remote SSH destination via intermediate SSH tunnel server. """ self.proxy_client = paramiko.SSHClient() self.proxy_client.set_missing_host_key_policy( paramiko.MissingHostKeyPolicy()) self._connect(self.proxy_client, self.proxy_host, self.proxy_port, user=self.proxy_user, password=<PASSWORD>, pkey=self.proxy_pkey, **paramiko_kwargs) logger.info("Connecting via SSH proxy %s:%s -> %s:%s", self.proxy_host, self.proxy_port, host, self.port,) try: proxy_channel = self.proxy_client.get_transport().open_channel( 'direct-tcpip', (host, self.port,), ('127.0.0.1', 0), timeout=self.timeout) sleep(0) return self._connect(self.client, host, self.port, sock=proxy_channel, **paramiko_kwargs) except (ChannelException, paramiko.SSHException) as ex: error_type = ex.args[1] if len(ex.args) > 1 else ex.args[0] raise ConnectionErrorException( "Error connecting to host '%s:%s' - %s", host, self.port, str(error_type)) def _connect(self, client, host, port, sock=None, retries=1, user=None, password=<PASSWORD>, pkey=None, **paramiko_kwargs): """Connect to host :raises: :py:class:`pssh.exceptions.AuthenticationException` on authentication error :raises: :py:class:`pssh.exceptions.UnknownHostException` on DNS resolution error :raises: :py:class:`pssh.exceptions.ConnectionErrorException` on error connecting :raises: :py:class:`pssh.exceptions.SSHException` on other undefined SSH errors """ logger.debug("Connecting to %s..", host) try: client.connect(host, username=user if user else self.user, password=password if password else self.password, port=port, pkey=pkey if pkey else self.pkey, sock=sock, timeout=self.timeout, allow_agent=self.allow_agent, **paramiko_kwargs) except sock_gaierror as ex: logger.error("Could not resolve host '%s' - retry %s/%s", host, retries, self.num_retries) while retries < self.num_retries: sleep(5) return self._connect(client, host, port, sock=sock, retries=retries+1, **paramiko_kwargs) raise UnknownHostException("Unknown host %s - %s - retry %s/%s", host, str(ex.args[1]), retries, self.num_retries) except sock_error as ex: logger.error("Error connecting to host '%s:%s' - retry %s/%s", host, self.port, retries, self.num_retries) while retries < self.num_retries: sleep(5) return self._connect(client, host, port, sock=sock, retries=retries+1, **paramiko_kwargs) error_type = ex.args[1] if len(ex.args) > 1 else ex.args[0] raise ConnectionErrorException( "Error connecting to host '%s:%s' - %s - retry %s/%s", host, self.port, str(error_type), retries, self.num_retries,) except paramiko.AuthenticationException: msg = "Authentication error while connecting to %s:%s." raise AuthenticationException(msg, host, port) # SSHException is more general so should be below other types # of SSH failure except paramiko.SSHException as ex: msg = "General SSH error - %s" % (ex,) logger.error(msg) raise SSHException(msg, host, port) def exec_command(self, command, sudo=False, user=None, shell=None, use_shell=True, use_pty=True): """Wrapper to :py:func:`paramiko.SSHClient.exec_command` Opens a new SSH session with a new pty and runs command before yielding the main gevent loop to allow other greenlets to execute. :param command: Command to execute :type command: str :param sudo: (Optional) Run with sudo. Defaults to False :type sudo: bool :param user: (Optional) User to switch to via sudo to run command as. Defaults to user running the python process :type user: str :param shell: (Optional) Shell override to use instead of user login configured shell. For example ``shell='bash -c'`` :param use_shell: (Optional) Force use of shell on/off. Defaults to `True` for on :type use_shell: bool :param use_pty: (Optional) Enable/Disable use of pseudo terminal emulation. This is required in vast majority of cases, exception being where a shell is not used and/or stdout/stderr/stdin buffers are not required. Defaults to ``True`` :type use_pty: bool :rtype: Tuple of `(channel, hostname, stdout, stderr, stdin)`. Channel is the remote SSH channel, needed to ensure all of stdout has been got, hostname is remote hostname the copy is to, stdout and stderr are buffers containing command output and stdin is standard input channel """ channel = self.client.get_transport().open_session() if self.forward_ssh_agent: agent_handler = paramiko.agent.AgentRequestHandler( # noqa: F841 channel) if use_pty: channel.get_pty() if self.channel_timeout: channel.settimeout(self.channel_timeout) stdout, stderr, stdin = channel.makefile('rb'), \ channel.makefile_stderr('rb'), channel.makefile('wb') for _char in ['\\', '"', '$', '`']: command = command.replace(_char, r'\%s' % (_char,)) shell = '$SHELL -c' if not shell else shell _command = '' if sudo and not user: _command = 'sudo -S ' elif user: _command = 'sudo -u %s -S ' % (user,) if use_shell: _command += '%s "%s"' % (shell, command,) else: _command += '"%s"' % (command,) logger.debug("Running parsed command %s on %s", _command, self.host)
are loaded into the last page of this cache # area. class overlay_data: _instance = None # Holds information about all the groups and multi-groups. class _overlay_group_data: def __init__ (self, groups, multi_groups, multi_group_table): self._groups = groups self._multi_groups = multi_groups self._multi_group_table = multi_group_table def get_group (self, index): return self._groups[index] def get_group_count (self): return len (self._groups) def get_multi_group (self, index): return self._multi_groups[index] def get_multi_group_count (self): return len (self._multi_groups) def get_token_from_multi_group_table (self, index): return self._multi_group_table[index] # Holds information about a single group. class _overlay_group: def __init__ (self, base_address, size_in_bytes): self._base_address = base_address self._size_in_bytes = size_in_bytes def base_address (self): return self._base_address def size_in_bytes (self): return self._size_in_bytes # Holds information about a single multi-group. class _overlay_multi_group: def __init__ (self, number, index, tokens): self._number = number self._index = index self._tokens = tokens def tokens (self): return self._tokens def index (self): return self._index def number (self): return self._number # A class to describe an area of memory. This serves as a base # class for the cache region descriptor, and the storage region # descriptor classes. class _memory_region: # The START is the first address within the region, while END # is the first address just beyond the region. def __init__ (self, start, end): self._start_address = start self._end_address = end # Returns the first address within the region. def start_address (self): return self._start_address # Return the first address past the end of the region. def end_address (self): return self._end_address # A static description of the overlay cache area. This is the # area of memory into which overlays are loaded so they can be # used. class _cache_descriptor (_memory_region): def __init__ (self, start, end): super (overlay_data._cache_descriptor, self).__init__ (start, end) # Return the address for the start of the cache region. def base_address (self): return self.start_address () # Return the total size of the cache in bytes, including the tables # region. def size_in_bytes (self): return self.end_address () - self.start_address () # Return the number of entries that are available for holding # overlays. This excludes the area that is given up to hold the # overlay tables. Currently the tables are copied into the last entry # in the cache. def number_of_working_entries (self): entry_size = self.entry_size_in_bytes () return ((self.size_in_bytes () / entry_size) - (self.tables_size_in_bytes () / entry_size)) # Return the total number of entries that are in the cache, this # includes any entries being used to hold the overlay tables. def total_number_of_entries (self): entry_size = self.entry_size_in_bytes () return (self.cache_size_in_bytes () / entry_size) # The address of the overlay tables within the cache. Currently these # are always in the last entry of the cache, and are one entry in size. def tables_base_address (self): entry_size = self.entry_size_in_bytes () return self.end_address () - self.tables_size_in_bytes () # Return the size of the overlay tables region in bytes. This is # currently always a single page of the cache. def tables_size_in_bytes (self): return self.entry_size_in_bytes () # Return the size in bytes of a single entry (or page) within the # cache. def entry_size_in_bytes (self): return get_comrv_min_entry_size () # A class that describes the overlay systems storage area. This # is the area of memory from which the overlays are loaded. The # debug information will refer to this area, class _storage_descriptor (_memory_region): def __init__ (self, start, end): super (overlay_data._storage_descriptor, self).__init__ (start, end) class _comrv_labels (): def __init__ (self): self.comrv_invoke_callee \ = get_symbol_address (COMRV_INVOKE_CALLEE_LABEL) self.ret_from_callee \ = get_symbol_address (COMRV_RETURN_FROM_CALLEE_LABEL) self.comrv_ret_from_callee_context_switch \ = get_symbol_address (COMRV_RETURN_FROM_CALLEE_CONTEXT_SWITCH_LABEL) self.comrv_entry \ = get_symbol_address (COMRV_ENTRY_LABEL) self.comrv_entry_context_switch \ = get_symbol_address (COMRV_ENTRY_CONTEXT_SWITCH_LABEL) self.comrv_exit \ = get_symbol_address (COMRV_EXIT_LABEL) self.enabled = (self.comrv_invoke_callee and self.ret_from_callee and self.comrv_entry and self.comrv_exit) # A wrapper class to hold all the different information we loaded from # target memory. An instance of this is what we return from the fetch # method. class _overlay_data_inner: def __init__ (self, cache_descriptor, storage_descriptor, groups_data, mg_index_offset, info_sym): self._cache_descriptor = cache_descriptor self._groups_data = groups_data self._storage_descriptor = storage_descriptor self._multi_group_index_offset = mg_index_offset self._info_sym = info_sym def cache (self): return self._cache_descriptor def storage (self): return self._storage_descriptor def group (self, index): return self._groups_data.get_group (index) def group_count (self): return self._groups_data.get_group_count () def multi_group (self, index): return self._groups_data.get_multi_group (index) def multi_group_count (self): return self._groups_data.get_multi_group_count () def is_multi_group_enabled (self): return self._multi_group_index_offset > 0 def multi_group_index_offset (self): return self._multi_group_index_offset def get_token_from_multi_group_table (self, index): return self._groups_data.get_token_from_multi_group_table (index) def comrv_initialised (self): return (not self._groups_data == None) def labels (self): # TODO: Maybe we could do some caching here? return overlay_data._comrv_labels () def comrv_info (self): return self._info_sym # Read the group offset for overlay group GROUP_NUMBER. The # overlay data starts at address BASE_ADDRESS in memory. # # Return the offset in bytes for the specified overlay group. @staticmethod def _read_overlay_offset (base_address, end_address, group_number): base_address = base_address + (2 * group_number) if ((base_address + 1) >= end_address): raise RuntimeError ("out of bounds access while reading offset " + "table for group %d" % (group_number)) scaled_offset = mem_reader.read_16_bit (base_address) offset = get_comrv_min_entry_size () * scaled_offset return offset # Read a 32-bit overlay token from the multi-group table. ADDRESS # is the exact address from which the token should be loaded. @staticmethod def _read_overlay_token (address): token = mem_reader.read_32_bit (address) return token # Load information about all of the groups and multi-groups from the # overlay cache tables, and return an instance of an object holding all of # this data. @staticmethod def _load_group_data (table_start, table_size, storage_desc, multi_group_offset): def _load_overlay_groups (table_start, table_end, storage_start): groups = list () # Read all of the overlay group offsets from memory, adding # entries to the overlay group list as we go. grp = 0 # Read the offset of the very first overlay group. This # should always be 0, but lets check it anyway. prev_offset \ = overlay_data._read_overlay_offset (table_start, table_end, grp) if (prev_offset != 0): raise RuntimeError ("offset of first overlay group is 0x%x not 0" % (prev_offset)) while (True): # Read the offset for the start of the next overlay group. next_offset \ = overlay_data._read_overlay_offset (table_start, table_end, (grp + 1)) # An offset of 0 indicates the end of the group table. if (next_offset == 0): break # Calculate the size of this overlay group, and create an # object to represent it. size = next_offset - prev_offset groups.append (overlay_data. _overlay_group (storage_start + prev_offset, size)) grp += 1 prev_offset = next_offset return groups def _load_overlay_multi_groups (table_start, table_end): multi_groups = list () all_tokens = list () # The start and end of the region containing the # multi-group table. mg_start = table_start mg_end = table_end # A number assigned to each multi-group. Starts at 0, and # increments by one for each multi-group. mg_num = 0 # An index assigned to each multi-group. This is the # index of the first member of the multi-group. mg_idx = 0 # Used to track the index into the multi-group table. idx = 0 # The tokens within the current multi-group. mg_tokens = list () while (mg_start < mg_end): # Read a 32-bit overlay token from the multi-group table. ovly_token = overlay_data._read_overlay_token (mg_start) all_tokens.append (ovly_token) idx += 1 # A token of 0 indicates the end of a multi-group. if (ovly_token == 0): # If this is the first entry in a multi-group then we # have reached the end of all multi-group data, and # we're done. if (len (mg_tokens) == 0): break # Otherwise, we've reached the end of this # multi-group, but there might be more after this. # Finalise this multi-group, and prepare to parse the # next. else: multi_groups.append (overlay_data. _overlay_multi_group (mg_num, mg_idx, mg_tokens)) # Now reset ready to read the next multi-group. mg_num += 1 mg_idx = idx mg_tokens = list () # Otherwise a non-zero token is a member of the multi-group. else: mg_tokens.append (ovly_token) mg_start += 4 # The size of one overlay token. return multi_groups, all_tokens storage_start = storage_desc.start_address () if (multi_group_offset >= 0): table_end
: {0}_ .'.format(self.codex.de_codex)) # paginae.extend(self.imprimere_in_datapackage()) # return self.imprimere_in_datapackage() return paginae def imprimere_res_methodi_ex_dictionariorum_corde(self, item): if item and 'meta' in item and \ 'methodi_ex_dictionariorum_corde' in item['meta'] and \ 'mul-Zyyy' in item['meta']['methodi_ex_dictionariorum_corde']: return item['meta']['methodi_ex_dictionariorum_corde']['mul-Zyyy'] return None class CodexInTabulamJson: """Codex Sarcinarum Adnexīs //Packages of attachments from Codex// Trivia: - cōdex, m, s, (Nominative) https://en.wiktionary.org/wiki/codex#Latin - adnexīs, m/f/n, pl (Dative) https://en.wiktionary.org/wiki/adnexus#Latin - annexīs, m/f/n, pl (Dative) https://en.wiktionary.org/wiki/annexus#Latin - sarcinārum, f, pl, (Gengitive) https://en.wiktionary.org/wiki/sarcina /print book cover (SVG format)/@eng-Latn Trivia: - cōdex, m, s, (Nominative), https://en.wiktionary.org/wiki/codex#Latin - imprimere, v, s, (), https://en.wiktionary.org/wiki/imprimo#Latin - in (+ ablative), in (+ accusative) https://en.wiktionary.org/wiki/in#Latin - (+ accusative) into, to - tabulam, f, s, /accusative/, https://en.wiktionary.org/wiki/tabula#Latin - json, ---, - https://www.json.org/ - https://www.mediawiki.org/wiki/Help:Tabular_Data """ # sarcinae = ['todo'] # completum = [] # sarcina_index = [] linguae = {} def __init__( self, codex: Type['Codex'] ): self.codex = codex self.initiari() def initiari(self): """initiarī Trivia: - initiārī, https://en.wiktionary.org/wiki/initio#Latin """ # self.linguae['#item+rem+i_lat+is_latn'] = 'la' # self.linguae['#item+rem+i_eng+is_latn'] = 'en' # self.linguae['#item+rem+i_por+is_latn'] = 'pt' for _clavem, item in self.codex.dictionaria_linguarum.dictionaria_codex.items(): # raise ValueError(str(item)) if '#item+rem+i_qcc+is_zxxx+ix_wikilngm' in item and \ item['#item+rem+i_qcc+is_zxxx+ix_wikilngm']: hashtag = '#item+rem' + item['#item+rem+i_qcc+is_zxxx+ix_hxla'] self.linguae[hashtag] = \ item['#item+rem+i_qcc+is_zxxx+ix_wikilngm'] # raise ValueError(str(self.linguae)) def _columnae(self) -> list: """_columnae /Column fields of the tabular format/@eng-Latn Trivia: - columnae, f, pl, /Nominative/, https://en.wiktionary.org/wiki/columna Returns: list: _description_ """ res = [] res.append({'name': 'codicem', 'type': 'string', 'title': { 'la': 'Codicem', 'en': 'Numerordinatio local Code', }}) res.append( {'name': 'ix_wikiq', 'type': 'string', 'title': { 'la': 'Vicidata QID', 'en': 'Wikidata QID' }}) res.append( {'name': 'rem__i_mul__is_zyyy', 'type': 'string', 'title': { 'la': 'Linguae multiplīs (Scrīptum incognitō)', 'en': 'Multiple languages (unknown writing system)' }}) clavem = self.codex.codex[0].keys() # for item in clavem: # pass # res.append( # {'name': 'item__rem__terminum', 'type': 'localized', # 'title': { # 'la': 'Lingua Latina (Abecedarium Latinum)', # 'en': 'Lingua Anglica (Abecedarium Latinum)', # 'pt': 'Lingua Lusitana (Abecedarium Latinum)', # }}) res.append( {'name': 'rem__terminum', 'type': 'localized', 'title': { 'la': 'Rēs linguālibus', 'en': 'Lingual thing', # 'en': 'Lingua Anglica (Abecedarium Latinum)', # 'pt': 'Lingua Lusitana (Abecedarium Latinum)', }}) return res def _linguae_ex_re(self, res) -> list: """linguae ex rē /Languages of the thing/@eng-Latn Trivia: - rēs, f, s, /Nominative/, https://en.wiktionary.org/wiki/res#Latin - linguīs, f, pl, /Nominative/, https://en.wiktionary.org/wiki/columna - linguae, f, pl, /Nominative/, - ex (+ ablative), https://en.wiktionary.org/wiki/ex#Latin - rē, f, s, /Ablative) Returns: list: _description_ """ resultatum = {} for clavem, item in res.items(): if clavem in self.linguae and item: resultatum[self.linguae[clavem]] = item return resultatum if resultatum else None def dicitionaria_rebus(self) -> list: """_columnae /Column fields of the tabular format/@eng-Latn Trivia: - rēbus, f, pl, /Dative/, https://en.wiktionary.org/wiki/res#Latin - dictiōnāria, n, pl, /Nominative/ https://en.wiktionary.org/wiki/dictionarium#Latin Returns: list: _description_ """ res = [] # res.append([ # '1', # 'Q1', # '/salvi mundi!/@lat-Latn', # { # 'la': 'testum est', # 'en': 'testing testing', # 'pt': 'teste teste', # } # ]) # res.append([ # '2', # 'Q2', # '/test/@lat-Latn', # None # ]) # res.append([ # '2_3', # 'Q345', # '/test test test/@lat-Latn', # { # 'pt': 'teste teste', # } # ]) # res.append([ # '33', # 'Q33', # '/teste em espanhol/@por-Latn', # { # 'es': 'teste en espanol', # } # ]) for item in self.codex.codex: codicem_loci = item['#item+conceptum+codicem'] if codicem_loci.find('0_999') == 0: continue if codicem_loci.find('0_1603') == 0: continue if '#item+rem+i_mul+is_zyyy' in item \ and item['#item+rem+i_mul+is_zyyy']: item_rem_mul = item['#item+rem+i_mul+is_zyyy'] elif '#item+rem+i_lat+is_latn' in item \ and item['#item+rem+i_lat+is_latn']: item_rem_mul = item['#item+rem+i_lat+is_latn'] else: item_rem_mul = None if '#item+rem+i_qcc+is_zxxx+ix_wikiq' in item \ and item['#item+rem+i_qcc+is_zxxx+ix_wikiq']: qcodicem = item['#item+rem+i_qcc+is_zxxx+ix_wikiq'] else: qcodicem = None # item_data = res.append([ item['#item+conceptum+codicem'], qcodicem, item_rem_mul, self._linguae_ex_re(item) ]) # item_data.append(item['#item+conceptum+codicem']) return res def imprimere_textum(self) -> list: """imprimere /print/@eng-Latn Trivia: - cōdex, m, s, (Nominative), https://en.wiktionary.org/wiki/codex#Latin - imprimere, v, s, (), https://en.wiktionary.org/wiki/imprimo#Latin Returns: [list]: """ # numerum = self.codex.m1603_1_1__de_codex['#item+rem+i_qcc+is_zxxx+ix_n1603'] # nomen = self.codex.m1603_1_1__de_codex['#item+rem+i_mul+is_zyyy'] descriptionem = '[{0}] {1}'.format( self.codex.m1603_1_1__de_codex['#item+rem+i_qcc+is_zxxx+ix_n1603'], self.codex.m1603_1_1__de_codex['#item+rem+i_mul+is_zyyy'] ) scope_and_content = self.codex.quod_res('0_1603_1_7_2616_7535') if scope_and_content: codexfacto = qhxl(scope_and_content, [ '#item+rem+i_qcc+is_zxxx+ix_codexfacto']) if codexfacto: import textwrap codexfacto = codexfacto.replace( '\\n', '').replace('\\t', '').strip() # Wikimedia Data Preview wants very short descriptions codexfacto = textwrap.shorten(codexfacto, 350) # if len(codexfacto) > 400: # codexfacto = codexfacto[:400] + '...' descriptionem = '{0}. {1}'.format( descriptionem, codexfacto) # 0_1603_1_7_2616_7535 resultatum = { 'license': "CC0-1.0", 'sources': "https://github.com/EticaAI/multilingual-lexicography " "+ https://www.wikidata.org/wiki/Help:Multilingual", 'description': { 'la': descriptionem }, 'schema': { 'fields': self._columnae() }, 'data': self.dicitionaria_rebus() } # paginae = ['{"TODO": 11}'] import json return json.dumps( resultatum, indent=4, ensure_ascii=False, sort_keys=False) class CodexSarcinarumAdnexis: """Codex Sarcinarum Adnexīs //Packages of attachments from Codex// Trivia: - cōdex, m, s, (Nominative) https://en.wiktionary.org/wiki/codex#Latin - adnexīs, m/f/n, pl (Dative) https://en.wiktionary.org/wiki/adnexus#Latin - annexīs, m/f/n, pl (Dative) https://en.wiktionary.org/wiki/annexus#Latin - sarcinārum, f, pl, (Gengitive) https://en.wiktionary.org/wiki/sarcina # >>> ca1603_25_1.quod_picturae() """ # sarcinae = ['todo'] completum = [] sarcina_index = [] sarcina = [] def __init__( self, de_codex: str, ): self.de_codex = de_codex self.initiari() # print('completum', self.completum) def initiari(self): """initiarī Trivia: - initiārī, https://en.wiktionary.org/wiki/initio#Latin """ basepath = numerordinatio_neo_separatum(self.de_codex, '/') for root, dirnames, filenames in os.walk(basepath): self.completum.extend(dirnames) for item in dirnames: sarcina_index = item.split('~').pop() self.sarcina.append({ 'index': sarcina_index, 'sarcina': item, # @TODO: make this not as hardcoded as it is now 'meta': self._quod_meta( root + '/' + item + '/0.nnx.tm.hxl.csv'), '_meta': self._quod_meta_rem( root + '/' + item + '/0.nnx.tm.hxl.csv') }) # self.sarcina_index.append(index) def _quod_meta(self, trivum): meta = { 'ix_wikip2479': None, # license 'ix_wikiq': None, 'ix_wikip577': None, # /publication date/ 'ix_wikip1476': None, # /title of published work.../ 'ix_wikip110': None, # /illustrator/ 'ix_wikip50': None, # /author/ 'ix_wikip854': None, # /reference URL/ # '__': [], } # @TODO: allow have more detailed metadata per individual item # for now we're just using global values if not os.path.exists(trivum): return meta with open(trivum) as csvfile: reader = csv.DictReader(csvfile) for lineam in reader: for clavem in meta.keys(): ix_item = qhxl(lineam, clavem) if ix_item: meta[clavem] = ix_item meta['titulum'] = self._quod_meta_titulum(meta) return meta def _quod_meta_rem(self, trivum): resultatum = {} meta = { 'ix_wikip2479': None, # license 'ix_wikiq': None, 'ix_wikip577': None, # /publication date/ 'ix_wikip1476': None, # /title of published work.../ 'ix_wikip110': None, # /illustrator/ 'ix_wikip50': None, # /author/ 'ix_wikip854': None, # /reference URL/ # '__': [], } # @TODO: allow have more detailed metadata per individual item # for now we're just using global values if not os.path.exists(trivum): return meta with open(trivum) as csvfile: reader = csv.DictReader(csvfile) for lineam in reader: est_meta = copy(meta) for clavem in meta.keys(): ix_item = qhxl(lineam, clavem) if ix_item: est_meta[clavem] = ix_item est_meta['titulum'] = self._quod_meta_titulum(est_meta) if '#item+conceptum+codicem' in lineam: resultatum[str( lineam['#item+conceptum+codicem'])] = est_meta return resultatum def _quod_meta_titulum(self, meta): nomen = '' if meta['ix_wikip110']: nomen += meta['ix_wikip110'] + ' ' if meta['ix_wikip577']: nomen += meta['ix_wikip577'] + ' ' if meta['ix_wikip1476']: nomen += meta['ix_wikip1476'] + ' ' if meta['ix_wikip2479']: nomen += ' [' + meta['ix_wikip2479'] + ']' return nomen def quod_sarcinarum(self, index: str = None): resultatum = [] for item in self.sarcina: if index is not None: if item['index'] == index or ('~' + item['index']) == index: return item else: resultatum.append(item) if index is not None: raise ValueError('index [{0}] [{1}]'.format(index, self.sarcina)) return resultatum class DataApothecae: """Data apothēcae Trivia: - data, n, pl, nominativus, https://en.wiktionary.org/wiki/datum#Latin - apothēcae, f, s, dativus, https://en.wiktionary.org/wiki/apotheca#Latin """ # No 1603 prefix data_apothecae_ex: list = [] data_apothecae_ad: str = '' data_apothecae_formato: str = None resultatum: list = [] def __init__( self, data_apothecae_ex: list, data_apothecae_ad: str = 'apothecae.datapackage.json', data_apothecae_formato: str = None ): self.data_apothecae_ex = data_apothecae_ex self.data_apothecae_ad = data_apothecae_ad if data_apothecae_formato: self.data_apothecae_formato = data_apothecae_formato else: if data_apothecae_ad.endswith('.db') or \ data_apothecae_ad.endswith('.sqlite'): self.data_apothecae_formato = 'sqlite' elif data_apothecae_ad.endswith('.json'): self.data_apothecae_formato = 'datapackage' else: raise ValueError('--data-apothecae-formato ?') self.initiari() def initiari(self): """initiarī Trivia: - initiārī, https://en.wiktionary.org/wiki/initio#Latin """ pass def imprimere(self) -> list: return self.resultatum def praeparatio(self): """praeparātiō Trivia: - praeparātiō, s, f, Nom., https://en.wiktionary.org/wiki/praeparatio """ # codex = Codex('1603_1_1') # libraria = LibrariaStatusQuo( # codex, # 'locale') # libraria.imprimere_in_datapackage_sqlite() codex = Codex('1603_1_1') libraria = LibrariaStatusQuo( codex, 'locale') if self.data_apothecae_formato == 'datapackage': # return self.praeparatio_datapackage(libraria) return self.praeparatio_datapackage() if self.data_apothecae_formato == 'sqlite': # return self.praeparatio_sqlite(libraria) return self.praeparatio_sqlite() return True def praeparatio_datapackage( self, temporarium: str = None): """praeparatio_datapackage Args: libraria (LibrariaStatusQuo): """ paginae = [] sarcina = { 'name': '1603', 'profile': 'data-package-catalog', 'resources': [] }
if nodes[j]["n1"] >= p1.numnodes: # ring node w = nodes[j]["n1"] - p1.numnodes s = nodes[j]["n2"] - p2.numnodes idxj1 = members1[w] idxj2 = members2[s] else: w = nodes[j]["n1"] s = nodes[j]["n2"] idxj1 = [w] idxj2 = [s] if len(set(idxi1) & set(idxj1)) > 0 or \ len(set(idxi2) & set(idxj2)) > 0: # do not connect node with itself continue is_connected = False # compute distances in graphs # for ring nodes find shortest distances # note: loop is faster than numpy (a lot of singletons to check) d1 = float("inf") for p in idxi1: for q in idxj1: if p1.edges[p, q] > 0: is_connected = True if dist1[p, q] < d1: d1 = dist1[p, q] d2 = float("inf") for p in idxi2: for q in idxj2: if p2.edges[p, q] > 0: is_connected = True if dist2[p, q] < d2: d2 = dist2[p, q] if math.fabs(d1 - d2) <= dist_tol: if is_connected: costs[i, j] = costs[j, i] = math.fabs(d1 - d2) edges[i, j] = edges[j, i] = 1.0 return nodes, scores, edges, costs def __BronKerbosch(edges, P=None, X=None, R=None, degrees=None, neigh=None): """Bron-Kerbosch algorithm for finding all maximal cliques in a graph Args: edges (numpy array): array representing edges in the graph P (set of ints, optional): nodes to check X (set of ints, optional): excluded nodes R (set of ints, optional): current clique degrees (numpy array, optional): nodes degrees neigh (dict, optional): dictionary of sets of neighbours for all nodes Returns: list of sets: list of all maximal cliques see: <NAME>, <NAME>. "Algorithm 457: finding all cliques of an undirected graph." Commun ACM. 1973;16(9):575–577. <NAME>, <NAME>. "A note on the problem of reporting maximal cliques." Theor Comput Sci. 2008;407(1–3):564–568. """ if P is None: P = set(range(len(edges))) if X is None: X = set() if R is None: R = set() if degrees is None: degrees = np.sum(edges > 0, axis=1) if neigh is None: neigh = {} for i in range(len(edges)): neigh[i] = set(np.where(edges[i] > 0)[0]) if len(P) == 0 and len(X) == 0: yield R else: candidates = np.array(list(P | X)) # try to select pivot which minimizes number of recursive calls pivot = candidates[np.argmax(degrees[candidates])] for v in (P - neigh[pivot]): for clique in __BronKerbosch(edges, degrees=degrees, R=(R | set([v])), P=(P & neigh[v]), X=(X & neigh[v]), neigh=neigh): yield clique P = P - set([v]) X = X | set([v]) def __align_rings(p1, p2, n1, n2, idx1, idx2, mapping=None, dist1=None, dist2=None, dist_tol=0): """Align rings from coarse-grained alignment. Args: p1, p2 (Pharmacophore): models to align n1, n2 (list of numpy arrays): nodes to align. i-th array of both lists contains parts of coarse-grained alignment (i.e. ring systems) that should be mapped to each other. idx1, idx2 (list of ints): lists of aligned nodes mapping (numpy array, optional): array describing nodes compatibility dist1, dist2 (numpy array, optional): arrays with distances between all nodes in models dist_tol (float, optional): accept distance differences below this threshold Returns: float: unnormalized similarity score float: edge length differences cost 2D list: list of two lists representing matched nodes """ assert len(n1) == len(n2), "wrong n1 or n2" if mapping is None: mapping = np.zeros((p1.numnodes, p2.numnodes)) for i in range(p1.numnodes): for j in range(p2.numnodes): weighted_freq, _ = compare_nodes(p1.nodes[i], p2.nodes[j]) if weighted_freq > 0.0: mapping[i][j] = weighted_freq if dist1 is None: dist1 = distances(p1) dist1[p1.edges > 0] = p1.edges[p1.edges > 0] if dist2 is None: dist2 = distances(p2) dist2[p2.edges > 0] = p2.edges[p2.edges > 0] # create modular product of graph using alignment as constraints nodes = [] scores = [] assert len(idx1) == len(idx2), "unequal subgraphs sizes" old_len = len(idx1) for i in range(old_len): weighted_freq = mapping[idx1[i], idx2[i]] assert weighted_freq > 0, "wrong alignment given" nodes.append({"n1": idx1[i], "n2": idx2[i]}) scores.append(weighted_freq) for i in range(len(n1)): possible_matches = np.where(mapping[n1[i], :][:, n2[i]] > 0) pairs1 = n1[i][possible_matches[0]] pairs2 = n2[i][possible_matches[1]] if len(idx1) > 0: # find pairs compatible with given alignment d1 = dist1[pairs1, :][:, idx1] d2 = dist2[pairs2, :][:, idx2] compatible = np.where(np.all(np.abs(d1 - d2) <= dist_tol, axis=1))[0] else: # empty alignment given, accept everything compatible = np.array(list(range(len(pairs1)))) for i in compatible: weighted_freq = mapping[pairs1[i], pairs2[i]] assert weighted_freq > 0, "wrong possible matches" nodes.append({"n1": pairs1[i], "n2": pairs2[i]}) scores.append(weighted_freq) scores = np.array(scores) n = len(nodes) edges = np.zeros((n, n)) costs = np.zeros((n, n)) for i in range(n): for j in range(i): if nodes[i]["n1"] == nodes[j]["n1"] or \ nodes[i]["n2"] == nodes[j]["n2"]: continue is_connected = False if p1.edges[nodes[i]["n1"], nodes[j]["n1"]] > 0: is_connected = True d1 = dist1[nodes[i]["n1"], nodes[j]["n1"]] if p2.edges[nodes[i]["n2"], nodes[j]["n2"]] > 0: is_connected = True d2 = dist2[nodes[i]["n2"], nodes[j]["n2"]] if math.fabs(d1 - d2) <= dist_tol: if is_connected: costs[i, j] = costs[j, i] = math.fabs(d1 - d2) edges[i, j] = edges[j, i] = 1.0 alignment = list(range(old_len)) score = np.sum(scores[alignment]) cost = np.sum(costs[alignment, :][:, alignment]) / 2 scorecost = score-cost for clique in __BronKerbosch(edges): clique = list(clique) s = np.sum(scores[clique]) c = np.sum(costs[clique, :][:, clique]) / 2 if (s - c > scorecost) or (s - c == scorecost and s > score): idx1 = [] idx2 = [] n1 = [] n2 = [] score = s cost = c scorecost = s - c for pair in clique: idx1.append(nodes[pair]["n1"]) idx2.append(nodes[pair]["n2"]) return score, cost, [idx1, idx2] def __add_neighbours(p1, p2, n1, n2, idx1, idx2, mapping=None, dist1=None, dist2=None, dist_tol=0, pairs=None): """Try to extend alignment by adding nodes connected to already aligned parts of pharmacophores. In most cases there is nothing to add, but sometimes differences beteween scaffolds of the molecules (rings vs linear fragments) result in incomplete alignment after rings decompression. Also, pairs of neighbours incompatible with global constraints used in coarse-grained alignment (to speed-up the procedure) will be added here. Args: p1, p2 (Pharmacophore): models to align n1, n2 (list of ints): nodes to align idx1, idx2 (list of ints): lists of aligned nodes mapping (numpy array, optional): array describing nodes compatibility Returns: float: unnormalized similarity score float: edge length differences cost 2D list: list of two lists representing matched nodes """ if mapping is None: mapping = np.zeros((p1.numnodes, p2.numnodes)) for i in range(p1.numnodes): for j in range(p2.numnodes): weighted_freq, _ = compare_nodes(p1.nodes[i], p2.nodes[j]) if weighted_freq > 0.0: mapping[i][j] = weighted_freq if dist1 is None: dist1 = distances(p1) dist1[p1.edges > 0] = p1.edges[p1.edges > 0] if dist2 is None: dist2 = distances(p2) dist2[p2.edges > 0] = p2.edges[p2.edges > 0] if pairs is None: pairs = [] def is_compatible(pair1, pair2): if (pair1[0] == pair2[0]) or (pair1[1] == pair1[1]): return False if (p1.edges[pair1[0], pair2[0]] != 0) and \ (p2.edges[pair1[1], pair2[1]] != 0): dist_diff = math.fabs((p1.edges[pair1[0], pair2[0]] - p2.edges[pair1[1], pair2[1]])) if dist_diff <= dist_tol: return True else: return False else: return True for i1, i2 in zip(idx1, idx2): neighbours1 = [] for node in reversed(np.where(p1.edges[i1, n1] > 0)[0]): neighbours1.append(n1[node]) n1.remove(n1[node]) neighbours2 = [] for node in reversed(np.where(p2.edges[i2, n2] > 0)[0]): neighbours2.append(n2[node]) n2.remove(n2[node]) # find compatible neighbours for neigh1 in neighbours1: for neigh2 in neighbours2: if (mapping[neigh1, neigh2] > 0): dist_diff = np.abs(dist1[idx1, neigh1] - dist2[idx2, neigh2]) # there is edge between nodes in at least one of phars connected = np.where(p1.edges[idx1, neigh1] + p2.edges[idx2, neigh2]) max_cost = np.max(dist_diff[connected]) if (max_cost <= dist_tol): pairs.append((neigh1, neigh2)) score = np.sum(mapping[idx1, idx2]) dist_diff = np.abs(dist1[idx1][:, idx1] - dist2[idx2][:, idx2]) connected = np.where(p1.edges[idx1][:, idx1] + p2.edges[idx2][:, idx2]) if len(connected[0]) > 0: assert np.max(dist_diff[connected]) <= dist_tol, "cost too high" cost = np.sum(dist_diff[connected]) / 2.0 aln = [idx1[:], idx2[:]] for i, pair in enumerate(pairs): compatible = [p for p in pairs[i+1:] if is_compatible(pair, p)] s, c, (aln1, aln2) = __add_neighbours(p1, p2, n1[:], n2[:], idx1+[pair[0]], idx2+[pair[1]], mapping, dist1, dist2, dist_tol, compatible) if (s - c > score - cost) or (s - c == score - cost and s > score): score = s cost = c aln = [aln1[:], aln2[:]] return score, cost, aln def map_pharmacophores(p1, p2, dist_tol=0.0, coarse_grained=True, add_neighbours=False): """Find best common substructure match for two Pharmacophores. Args: p1, p2 (Pharmacophore): models
#standard import argparse import datetime import os os.environ['TMPDIR'] = '/var/tmp' from operator import itemgetter, attrgetter activate_this = '/gluster/gluster1/bsm_data_emulator/bsmde_python/bin/activate_this.py' execfile(activate_this, dict(__file__=activate_this)) import pandas as pd #local from GTFileReader2 import Trajectories from readlinks import read_link_file,read_endpoints from TCACore import Timer SHOCKWAVE_START_ACCELERATION = -.25 * 9.8 SHOCKWAVE_HEADWAY_DISTANCE = 50.0 #ft QUEUE_SPEED = 10 FREE_FLOW = 109.361 link_positions = {} t = Timer(enabled=True) def run_gt_shockwave(trj, bnlinks, df_onRoute, unknown_queue_output_name): unknown_queue_output = [] # Shockwave Step 1: For each instantaneous time period, t, in the simulation duration do steps 2-6 shockwave_list = [] for t, veh_list in trj.read(): remove_list = [] for start in shockwave_list: if start[1]["tp"] + 2 < t: if start[2] is not None: shockwave_length = (start[2]['x'] - start[0]['x']) + start[2]['Length'] unknown_queue_output.append([str(start[0]['tp']), start[4], '1', str(start[0]['x']), str(shockwave_length), str(start[2]['tp']), str(start[2]['x']), str(start[5])]) remove_list.append(shockwave_list.index(start)) else: remove_list.append(shockwave_list.index(start)) remove_list = sorted(remove_list, reverse=True) for index in remove_list: shockwave_list.pop(index) # Shockwave Step 2: For each roadway segment, L, in the set of all roadway segments do steps 3-6 for roadway in bnlinks: # Shockwave Step 3: For each lane, l, on the roadway segment, L, do steps 4-6 for lane_group in bnlinks[roadway].keys(): # Shockwave #4: Identify IDs of all vehicles that are on link L at time t in lane l. Let I be the array of identified vehicle IDs. I = get_roadway_vehicles(roadway, lane_group, bnlinks, veh_list) I = sorted(I, key=lambda k: k['x']) for i in I: start_flag = True for start in shockwave_list: if roadway == start[4]: if (i['x'] - start[1]['x']) <= SHOCKWAVE_HEADWAY_DISTANCE and (i['x'] - start[1]['x']) > 0: if start[5] == '4' and i['v'] <= QUEUE_SPEED: start[1] = i start[2] = i start_flag = False elif start[5] == '3' and ((QUEUE_SPEED < i['v'] <= (1/3) * FREE_FLOW and (i['a'] < 0))): start[1] = i start[2] = i start_flag = False elif (start[5] == '2' or start[5] == '1') and((i['v'] > (1/3) * FREE_FLOW and (i['a'] < 0))): start[1] = i start[2] = i start_flag = False if start_flag: if i['v'] <= QUEUE_SPEED: i_s = i # ID of first vehicle in shockwave i_e = None # ID of last vehicle in shockwave i_f = i # ID of follower vehicle i_n = None shockwave_list.append([i_s, i_f, i_e, i_n, roadway, '4']) elif (QUEUE_SPEED < i['v'] <= (1/3) * FREE_FLOW and (i['a'] <= SHOCKWAVE_START_ACCELERATION)): i_s = i # ID of first vehicle in shockwave i_e = None # ID of last vehicle in shockwave i_f = i # ID of follower vehicle i_n = None shockwave_list.append([i_s, i_f, i_e, i_n, roadway, '3']) elif (i['v'] > (1/3) * FREE_FLOW and (i['a'] <= SHOCKWAVE_START_ACCELERATION)): i_s = i # ID of first vehicle in shockwave i_e = None # ID of last vehicle in shockwave i_f = i # ID of follower vehicle i_n = None shockwave_list.append([i_s, i_f, i_e, i_n, roadway, '2']) elif (i['v'] > (1/3) * FREE_FLOW and (i['a'] < 0)): i_s = i # ID of first vehicle in shockwave i_e = None # ID of last vehicle in shockwave i_f = i # ID of follower vehicle i_n = None shockwave_list.append([i_s, i_f, i_e, i_n, roadway, '1']) for start in shockwave_list: if start[2] is not None: shockwave_length = (start[2]['x'] - start[0]['x']) + start[2]['Length'] unknown_queue_output.append([str(start[0]['tp']), start[4], '1', str(start[0]['x']), str(shockwave_length), str(start[2]['tp']), str(start[2]['x']), str(start[5])]) unknown_queue_output = sorted(unknown_queue_output, key=lambda k: float(k[0])) consolidated_output = [] for shockwave in unknown_queue_output: unconsolidated_flag = True for i in xrange(len(consolidated_output)): if shockwave[1] == consolidated_output[i][1] \ and shockwave[7] == consolidated_output[i][7] \ and float(shockwave[0]) - 30 <= float(consolidated_output[i][0]) \ and (float(shockwave[3]) >= float(consolidated_output[i][3]) and float(shockwave[3]) <= float(consolidated_output[i][6]) \ and float(shockwave[6]) >= float(consolidated_output[i][3]) and float(shockwave[6]) <= float(consolidated_output[i][6])): unconsolidated_flag = False break if unconsolidated_flag: consolidated_output.append(shockwave) Q = 2200.0 J = 0.1 T = 1.0 FREE_FLOW_KM = 120 for shockwave in consolidated_output: downstream_speed = get_downstream_speed(df_onRoute,shockwave[3], shockwave[0], shockwave[1]) upstream_speed = get_upstream_speed(df_onRoute,shockwave[6], shockwave[5], shockwave[1]) if upstream_speed != None and downstream_speed != None: downstream_speed = downstream_speed * 1.60934 upstream_speed = upstream_speed * 1.60934 if downstream_speed == 0: downstream_speed = .001 if upstream_speed == 0: upstream_speed = .001 downstream_q = Q * (1 + ((((1/downstream_speed) - (1/FREE_FLOW_KM))**2 - ((.25**2 * 8 * J * T)/Q))/(.25 * 2 * T * ((1/downstream_speed) - (1/FREE_FLOW_KM))))) upstream_q = Q * (1 + ((((1/upstream_speed) - (1/FREE_FLOW_KM))**2 - ((.25**2 * 8 * J * T)/Q))/(.25 * 2 * T * ((1/upstream_speed) - (1/FREE_FLOW_KM))))) try: propogation = (downstream_q - upstream_q)/((downstream_q/downstream_speed) - (upstream_q/upstream_speed)) except ZeroDivisionError: propogation = 0 else: propogation = 'NA' if propogation != 'NA': propogation = propogation * 0.621371 shockwave.append(str(propogation)) shockwave_count = float(shockwave[4])/20 shockwave.append(str(int(shockwave_count))) if shockwave_count >= 5 and shockwave[7] == '4': shockwave.append('Y') else: shockwave.append('N') consolidated_output = sorted(consolidated_output, key=lambda k: float(k[0])) with open(unknown_queue_output_name + "_consolidated_output.csv", "wb") as out_f: out_f.write('time,link,lane_group,start_location_x, shockwave_length, end_time, end_x, shockwave_type, shockwave_propogation_speed, shockwave_count, significant_shockwave\n') write_output(out_f, consolidated_output) def write_output(out_f, output): if len(output) > 0: print 'Writing to file' for line in output: out_f.write(','.join(line) + '\n') def distance_between(origin_x, origin_y, destination_x, destination_y): distance = ((origin_x - destination_x)**2 + (origin_y - destination_y)**2)**.5 return distance def getLinkPosition(link): global link_positions for l in link_positions.keys(): if link == l: x = link_positions[link]["x"] y = link_positions[link]["y"] return x,y def get_roadway_vehicles(roadway, lane_group, bnlinks, veh_list): I = [] for link_position, link_data in enumerate(bnlinks[roadway][lane_group]): link_num, link_lane, link_len = link_data[0], link_data[1], link_data[2] dis_stop = 0 # If not the first link in the roadway, find the summed distance of all prior links if link_position != 0: for i in reversed(range(link_position)): dis_stop += bnlinks[roadway][lane_group][i][2] for veh in veh_list: if (veh['Link'] == link_num): #change distance from end of link to distance to stop point link_x, link_y = getLinkPosition(link_num) veh['x'] = distance_between(link_x, link_y,veh['World_x'],veh['World_y']) + dis_stop I.append(veh) return I def get_downstream_speed(df_onRoute, start_x, start_time, roadway, distance = 50, time = 0): messages = [] df_time = df_bsms[abs(df_bsms['localtime'] - float(start_time)) <= time] df_dist = df_time[(float(start_x) - df_time[roadway+'x'] > 0) & (float(start_x) - df_time[roadway+'x'] <= distance)] messages = list(df_dist.itertuples()) total_speed = 0 n = 0 for message in messages: total_speed += message[1] n += 1 if n > 0: average_speed = total_speed/n return average_speed if distance > 1000: return None if time == 0: df_time = df_bsms[abs(df_bsms['localtime'] - float(start_time)) <= time] df_dist = df_time[(float(start_x) - df_time[roadway+'x'] > 0) & (float(start_x) - df_time[roadway+'x'] <= distance)] messages = list(df_dist.itertuples()) total_speed = 0 n = 0 for message in messages: total_speed += message[1] n += 1 if n > 0: average_speed = total_speed/n return average_speed return get_downstream_speed(df_onRoute, start_x, start_time, roadway, distance + 50, time + 2) def get_upstream_speed(df_onRoute, end_x, end_time, roadway, distance = 50, time = 0): messages = [] df_time = df_bsms[abs(df_bsms['localtime'] - float(end_time)) <= time] df_dist = df_time[(df_time[roadway+'x'] - float(end_x) > 0) & (df_time[roadway+'x'] - float(end_x) <= distance)] messages = list(df_dist.itertuples()) total_speed = 0 n = 0 for message in messages: total_speed += message[1] n += 1 if n > 0: average_speed = total_speed/n return average_speed if distance > 1000: return None if time == 0: df_time = df_bsms[abs(df_bsms['localtime'] - float(end_time)) <= time] df_dist = df_time[(df_time[roadway+'x'] - float(end_x) > 0) & (df_time[roadway+'x'] - float(end_x) <= distance)] messages = list(df_dist.itertuples()) total_speed = 0 n = 0 for message in messages: total_speed += message[1] n += 1 if n > 0: average_speed = total_speed/n return average_speed return get_upstream_speed(df_onRoute, end_x, end_time, roadway, distance + 50, time + 2) def dis_stop(bnlinks, roadway, lane_group): link_distance = {} for link_position, link_data in enumerate(bnlinks[roadway][lane_group]): link_num, link_lane, link_len = link_data[0], link_data[1], link_data[2] dis_stop = 0 # If not the first link in the roadway, find the summed distance of all prior links if link_position != 0: for i in reversed(range(link_position)): dis_stop += bnlinks[roadway][lane_group][i][2] link_distance[link_num] = dis_stop return link_distance def file_fzp_start(filename): """ finds the start of the fzp data :param filename: string of the fzp file name :return: number of lines to skip at top of file """ with open(filename) as in_f: c= 0 cols = [] #find start of VISSIM data line = in_f.readline() while 'VehNr;' not in line: line = in_f.readline() cols = [x.strip() for x in line.split(';')][:-1] c +=1 return c t.start('main') parser = argparse.ArgumentParser(description='GT program for reading in fzp files and producing Shockwave values') parser.add_argument('trj_filename') parser.add_argument('link_filename', help = 'CSV
in my coordinate system return pfnnPosInModelSpace ################################################################### Main starts here!!!!! P = np.array([[0, -1, 0], [0, 0, -1], [1, 0, 0]]) init_names= {-1: "training", 0: "training", 1: "On pedestrian", 3: "On pavement", 2: "By car", 4: "Random",5: "car_env", 6: "Near pedestrian",7:"pedestrian environment", 9:"average"} pos_y=-128 / 2 labels_to_use, name_movie, target_dir, num_measures, semantic_channels_separated, in_2D=read_settings_file(path) # Find CARLA dataset filename_list = {} # Get files to run on. ending_local = "test_*" for filepath in glob.glob(env_path + ending_local): parts = os.path.basename(filepath).split('_') pos = int(parts[-1]) filename_list[pos] = filepath # find statistics files. find_path=stat_path+'*'+timestamp+"*" match=find_path+"*.npy" files=glob.glob(match) test_files, reconstructions_test, poses_test = sort_files_eval(files) #filenames_itr_cars, test_files_cars, filenames_itr_people,test_files_people, filenames_itr, test_files, reconstructions_test, iterations, iterations_cars, special_cases # # test_files=[(0, os.path.join(path, 'visualize_2D_goal_agent_2019-11-13-22-28-15.914025_test_0_-64_0.npy'), 0), # (0, os.path.join(path,'visualize_2D_goal_agent_2019-11-13-22-28-15.914025_test_0_-64_1.npy'), 1), # (0, os.path.join(path,'visualize_2D_goal_agent_2019-11-13-22-28-15.914025_test_0_-64_2.npy'), 2), # (0, os.path.join(path,'visualize_2D_goal_agent_2019-11-13-22-28-15.914025_test_0_-64_3.npy'), 3)] #test_files=[ (0, os.path.join(path,'visualize_2D_goal_agent_2019-11-13-22-28-15.914025_test_0_-64_2.npy'), 2)] print(("Test files: "+str(test_files))) test_points = {0: 0} epoch = 0 saved_files_counter = 0 csv_rows = [] if len(test_files)>0: scenes =get_scenes(test_files,test_points) for scene in scenes: filepath_npy = scene[1] #filepath_npy = os.path.join(path, "visualize_2D_goal_agent_2019-11-13-22-28-15.914025_test_0_-64_2.npy") epoch = scene[2] cur_stat = scene[0] #file_nbrs = [0, 8, 24, 36] # Which Carla initialization point to look at. Depends on the above file. #if test_data: nbr = filepath_npy.split('_')[-1] nbr = nbr[:-len('.npy')] nbr = convertFileNbrToCarlaNbr(nbr) # epoch = 13 # cur_stat = scene[0] agent_pos = cur_stat[:, 0:3] # Agent's trajectory agent_vel = cur_stat[:, 3:6] # Actions taken by agent agent_action = cur_stat[ :, 6] # Actions taken by agent agent_probabilities = cur_stat[:, 7:34] # Probabilities of different actions (output of RL agent) agent_reward = cur_stat[:, 34] # Agent's reward agent_measures = cur_stat[:, 38:] # Different measures of agent agent_goals = cur_stat[3:5, -1] # Goal position of agent reached_goal = agent_measures[:,13] # Goal reached by agent yaw_mapping=[-0.75, -0.5,-0.25,-1,0,0.25,0.75,0.5,0] # yaw for different actions. poses_stats=scene[3] agent_poses=poses_stats[ :, :93] agent_pfnn_pos=poses_stats[ :, 93:95] agent_pfnn_itr=poses_stats[ :, 95] agent_pfnn_avg_speed=poses_stats[ :, 96] # print filepath_npy print (str(nbr) +" "+str(epoch)) print (filename_list[int(nbr)] + " " + str(nbr)) if int(nbr)==TARGET_NBR and int(epoch) == TARGET_EPOCH_ID: filepath = filename_list[int(nbr)] basename = os.path.basename(filepath) print(("Filepath: "+str(filepath_npy))) print (epoch) # Load car and pedestrian positions cars_path = os.path.join(filepath, 'cars.p') cars_dict = pickle.load(open(cars_path, "rb"), encoding='latin1') print (cars_path) people_path = os.path.join(filepath, 'people.p') people_dict = pickle.load(open(people_path, "rb"), encoding='latin1') print (people_path) # Load how my coordinate system is related to CARLA coordinate system. centeringPath = os.path.join(filepath, "centering.p") centering = pickle.load(open(centeringPath, "rb"), encoding='latin1') print(centeringPath) startPositionsPath = os.path.join(path, "start_positions.p") start_poses = pickle.load(open(startPositionsPath, "rb"), encoding='latin1') print (startPositionsPath) R, middle, frames, middle_2,C, middle_w = get_camera_matrix(filepath) #grid_axis_x=[] # for y in range(128): # p=[] #################################################################### # Get pose coordinate system rotation for PFNN network. The first action is where the z axis is rotated. rotation_matrix = np.zeros((2, 2), np.float) inverse_rotation_matrix = np.zeros((2, 2), np.float) init_pos=agent_pos[0,:].copy() y = (agent_vel[0,1]) z = (agent_vel[0,1]) d = np.sqrt(y ** 2 + z ** 2) if d > 0: # Rotation matrix from my position to PFNN rotation_matrix[0, 0] = y / d rotation_matrix[0, 1] = z / d rotation_matrix[1, 1] = y / d rotation_matrix[1, 0] = -z / d # Rotation matrix from PFNN to my coordinate system ''' inverse_rotation_matrix[0, 0] = y / d inverse_rotation_matrix[0, 1] = -z / d inverse_rotation_matrix[1, 1] = y / d inverse_rotation_matrix[1, 0] = z / d ''' ''' inverse_rotation_matrix[0, 0] = 1.0 inverse_rotation_matrix[0, 1] = 0.0 inverse_rotation_matrix[1, 1] = 1.0 inverse_rotation_matrix[1, 0] = 0.0 ''' inverse_rotation_matrix = rotation_matrix print ("Velocity "+str(agent_vel[0,:])) print (rotation_matrix) print ("Agent init positions: "+str(init_pos)+" "+str(agent_pos[1,:])) ################################################################ agent_positions=[] agent_pose_perFrame=[] agent_pose_perFrame_inPFNNLocal = [] agent_yaw=[] previous_pos=[0,0] agent_goal = agentPosFromModelToCARLA(np.array([0, agent_goals[0], agent_goals[1]]), pos_y, centering, R, P, middle, 0) # The goal point in CARLA coordinate system directions=[] directions_angle=[] for frame in range(agent_pos.shape[0]): if reached_goal[max(frame-15,0)]==0: agentPosThisFrame_modelSpace = agent_pos[frame, :] #################################### # Convert PFNN position into CARLA position pfnn_itr = int(agent_pfnn_itr[frame]) #print pfnn_itr # Get agent pose in PFNN coordinate system pfnn_pos = agent_pfnn_pos[pfnn_itr, :].copy() pfnn_pose = agent_poses[pfnn_itr, :].copy() # HACK TO SAVE POSE - NOT NEEDED pfnn_pose_copy = pfnn_pose.copy() pfnn_offset_X = pfnn_pos[0] pfnn_offset_Z = pfnn_pos[1] for i in range(31): pfnn_pose_copy[i*3 + 0] -= pfnn_offset_X pfnn_pose_copy[i*3 + 2] -= pfnn_offset_Z agent_pose_perFrame_inPFNNLocal.append(pfnn_pose_copy) #END HACK # Convert PFNN pos to model space pfnnPosInModelSpace = agentPosFromPFNNToModel(np.array([pfnn_pos[0], 0.0, pfnn_pos[1]]), inverse_rotation_matrix, init_pos) # Convert PFNN pos from model space to CARLA pfnnPosInCARLASpace = agentPosFromModelToCARLA(pfnnPosInModelSpace, pos_y, centering, R, P, middle, frame) # Because there is a gap on Z axis between the spaces pfnn_Z_offsetToCarla = PEDESTRIAN_OFFSET_Z - pfnnPosInCARLASpace.item(2) # Convert PFNN bones positions to CARLA space for boneId in range(31): bonePos_pfnn = pfnn_pose[boneId*3 + 0 : boneId*3 + 3] originalBoneZ = pfnn_pose[boneId*3 + 1] # 1 because source has Y as UP axis bonePos_model = agentPosFromPFNNToModel(bonePos_pfnn, inverse_rotation_matrix, init_pos) bonePos_carla = agentPosFromModelToCARLA(bonePos_model, pos_y, centering, R, P, middle, frame) for i in range(3): pfnn_pose[boneId*3 + i] = bonePos_carla.item(i) pfnn_pose[boneId*3 + 2] += pfnn_Z_offsetToCarla + (originalBoneZ * 0.01) # Because in centimeters ################################################################################################## p = agentPosFromModelToCARLA(agentPosThisFrame_modelSpace, pos_y, centering, R, P, middle, frame) # Find agent's next position in CARLA coordinate system agent_pose_perFrame.append(pfnn_pose) agent_positions.append(p.copy()) # What direction should the agent be pointing in? if frame==0: agent_yaw.append(0) agent_yaw.append(0) else: directions.append([p.item(0)-previous_pos[0],p.item(1)-previous_pos[1],0] ) directions_angle.append(math.atan2(p.item(1)-previous_pos[1],p.item(0)-previous_pos[0] )*180/math.pi) if False: #len(agent_yaw)>4 and np.sign(directions[-1])==np.sign(directions[-2]) and np.sign(directions[-2])==np.sign(directions[-3]) and np.sign(directions[-3])==np.sign(directions[-4]): # dir=math.atan2(p[1]-previous_pos[1],p[0]-previous_pos[0] )*180/math.pi # if len(agent_yaw)>2 and np.sign(dir)==np.sign(agent_yaw[-2]) and np.sign(-dir)==np.sign(agent_yaw[-1]): # agent_yaw[-1]=np.mean([dir,agent_yaw[-2]]) # -90) agent_yaw.append(math.atan2(p[1]-previous_pos[1],p[0]-previous_pos[0] )*180/math.pi)#math.atan2(p[1]-previous_pos[1],p[0]-previous_pos[0] )*180/math.pi)#-90) else: dir = math.atan2(agent_goal[1]-p[1], agent_goal[0]-p[0]) * 180 / math.pi # if len(agent_yaw) > 2 and np.sign(dir) == np.sign(agent_yaw[-2]) and np.sign( # -dir) == np.sign(agent_yaw[-1]): # agent_yaw[-1] = np.mean([dir, agent_yaw[-2]]) # -90) agent_yaw.append(math.atan2(agent_goal[1]-p[1], agent_goal[0]-p[0]) * 180 / math.pi) # -90) #print str(p[0]-previous_pos[0])+" "+str(p[1]-previous_pos[1])+" "+str(agent_yaw[-1]) previous_pos=[p.item(0),p.item(1)] #agent_yaw.append(yaw_mapping[int(agent_action[frame])]*180)#math.pi) # HACK TO SAVE POSES - REMOVE posesToSave = [0, 12, 16, 19, 24, 41, 35, 94, 123, 141] for poseId in posesToSave: agentPoseToSave = agent_pose_perFrame_inPFNNLocal[poseId].copy() np.savetxt('pose'+ str(poseId) + '.txt', agentPoseToSave, delimiter=',') # X is an array #copyPose = np.loadtxt('pose0.txt', delimiter=',') # END HACK camera_yaw=math.atan2(R[1,0],R[0,0]) camera_pitch = math.atan2(-R[2,0] ,np.sqrt( R[2,1]**2+(R[2,2]**2))) camera_roll = math.atan2(R[2,1] , R[2,2]) actor_list = [] car_list={} pygame.init() client = carla.Client('localhost', 2000) client.set_timeout(100000.0) world = client.get_world() print(("initial speed: "+str(np.linalg.norm(directions)*10))) control=carla.WalkerControl() control.speed=np.linalg.norm(directions)*10 print('enabling synchronous mode.') settings = world.get_settings() settings.synchronous_mode = True world.apply_settings(settings) cur_yaw=0 name_movie="" name_movie_main="" try: m = world.get_map() print ("starting ") poses= m.get_spawn_points() start_pose=poses[int(nbr)] print ("Location") print((start_pose.location)) print (middle_2) print (middle_w) print ("Old Location") print((start_poses[int(nbr)])) print ("Centering") print((centering["middle"])) init_pos = carla.Location(x=middle_w[0,0], y=middle_w[1,0], z=PEDESTRIAN_OFFSET_Z) init_rot = carla.Rotation(yaw=0, pitch=0, roll=0) blueprint_library = world.get_blueprint_library() vehicles=blueprint_library.filter('vehicle.*') car_bp = [x for x in vehicles if int(x.get_attribute('number_of_wheels')) == 4] if not actor_perspective: init_trans = carla.Transform(init_pos, init_rot) spectator = world.get_spectator() spectator.set_transform(init_trans) print ("Position of actor") print((agent_positions[0])) agent_init_pos = carla.Location(x=agent_positions[0].item(0), y=agent_positions[0].item(1), z=PEDESTRIAN_OFFSET_Z) print (agent_init_pos) agent_init_rot = carla.Rotation(yaw=directions_angle[0], pitch=0, roll=0) print (agent_init_rot) walkersBPs = blueprint_library.filter(PEDESTRIAN_BLUEPRINT_FOR_MAIN_ACTOR) bp = random.choice(walkersBPs) transform = carla.Transform(agent_init_pos, agent_init_rot) print ("Here") #if not actor_perspective: actor = world.try_spawn_actor(bp, transform) if actor is not None: print ("Initialized actor") else: "Failed to initialize actor" # else: # actor=None # spectator = world.get_spectator() # spectator.set_transform(transform) #static.prop.box03 # Place out goal in CARLA coordinates rotation = actor.get_transform().rotation #actor.set_velocity(carla.Vector3D(directions[0][0]/np.linalg.norm(disp),directions[0][1]/np.linalg.norm(disp),0.0 )) goal_box = None goal_based=True if goal_based: bp_goal = random.choice(blueprint_library.filter('static.prop.box03')) agent_goal_pos = carla.Location(x=agent_goal.item(0), y=agent_goal.item(1), z=0.3) print (agent_goal_pos) agent_goal_rot = carla.Rotation(yaw=0, pitch=0, roll=0) print (agent_goal_rot) transform_goal = carla.Transform(agent_goal_pos, agent_goal_rot) goal_box = world.try_spawn_actor(bp_goal, transform_goal) vehicle_map={} pedestrian_map={} vehicle_vel_map = {} pedestrian_vel_map = {} prev_pos=[copy.copy(agent_init_pos.x), copy.copy(agent_init_pos.y), copy.copy(agent_init_pos.z)] camera_transform = carla.Transform(carla.Location(x=0.3,y=0.0, z=0),carla.Rotation(yaw=0, pitch=0, roll=0)) if not actor_perspective: camera = world.spawn_actor( blueprint_library.find('sensor.camera.rgb'), camera_transform, attach_to=spectator) else: camera = world.spawn_actor( blueprint_library.find('sensor.camera.rgb'), carla.Transform(carla.Location(x=agent_positions[0].item(0)-5.5, y=agent_positions[0].item(1), z=1+2.8), carla.Rotation(pitch=-15))) #attach_to=actor) if DONT_CREATE_OTHER_AGENTS: pass else: # Create cars for car_key, car in cars_dict[50].items(): npc=None tries=0 while npc is None and tries<3: bp=random.choice(car_bp)#blueprint_library.filter('vehicle.*'))#z=1 transform=carla.Transform(carla.Location(x=car['transform'][0], y=car['transform'][1], z=0.35),carla.Rotation(yaw=car['yaw'],pitch=0, roll=0)) npc = world.try_spawn_actor(bp, transform) tries=tries+1 if npc is not None: vehicle_map[car_key]=npc print(('created %s' % car_key))#npc.type_id) # Create pedestrians ped_controllers={} ped_rotations={} for car_key, car in people_dict[50].items(): npc = None tries = 0 while npc is None and tries < 3: bp = random.choice(blueprint_library.filter('walker.pedestrian.0001')) print("Height "+str(car['bounding_box'][2])) # print "Typical yaw"+str(car['yaw']) transform = carla.Transform(carla.Location(x=car['transform'][0], y=car['transform'][1], z=car['bounding_box'][2]+0.3), carla.Rotation(yaw=car['yaw'], pitch=0, roll=0)) npc = world.try_spawn_actor(bp, transform) tries = tries + 1 if npc is not None: pedestrian_map[car_key] = npc ped_controllers[car_key] = carla.WalkerControl() ped_rotations[car_key]=npc.get_transform().rotation print(('created %s' % npc.type_id)) # Make sync queue for sensor data. image_queue = queue.Queue() camera.listen(image_queue.put) frame = None my_frame=0 display = pygame.display.set_mode( (800, 600), pygame.HWSURFACE | pygame.DOUBLEBUF) font = get_font() clock = pygame.time.Clock() while my_frame<len(agent_positions): if my_frame >= FRAME_RECORDING_STOP_FRAME: break
continue if role == rs[0]: if count == 1: vb = "is" else: vb = "are" if count != 1: if count == 0 and len(var.ORIGINAL_ROLES[role]) == 0: continue message.append("\u0002{0}\u0002 {1}".format(count if count else "\u0002no\u0002", plural(role))) else: message.append("\u0002{0}\u0002 {1}".format(count, role)) # Only show team affiliation, this may be different than what mystics # and wolf mystics are told since neutrals are split off. Determination # of what numbers are shown is the same as summing up counts in "accurate" # as accurate, this contains no hidden information elif var.STATS_TYPE == "team": wolfteam = 0 villagers = 0 neutral = 0 for role, players in var.ROLES.items(): if role in var.CURRENT_GAMEMODE.SECONDARY_ROLES: continue if role in Wolfteam: wolfteam += len(players) elif role in Neutral: neutral += len(players) else: villagers += len(players) message.append("\u0002{0}\u0002 {1}".format(wolfteam if wolfteam else "\u0002no\u0002", "wolf" if wolfteam == 1 else "wolves")) message.append("\u0002{0}\u0002 {1}".format(villagers if villagers else "\u0002no\u0002", "villager" if villagers == 1 else "villagers")) message.append("\u0002{0}\u0002 {1}".format(neutral if neutral else "\u0002no\u0002", "neutral player" if neutral == 1 else "neutral players")) vb = "is" if wolfteam == 1 else "are" stats_mssg = "{0}It is currently {4}. There {3} {1}, and {2}.".format(_nick, ", ".join(message[0:-1]), message[-1], vb, var.PHASE) reply(cli, nick, chan, stats_mssg) @handle_error def hurry_up(gameid, change): if var.PHASE != "day": return if gameid: if gameid != var.DAY_ID: return if not change: event = Event("daylight_warning", {"message": "daylight_warning"}) event.dispatch(var) channels.Main.send(messages[event.data["message"]]) return var.DAY_ID = 0 chk_decision(var, timeout=True) @cmd("fnight", flag="N") def fnight(cli, nick, chan, rest): """Forces the day to end and night to begin.""" if var.PHASE != "day": cli.notice(nick, messages["not_daytime"]) else: hurry_up(0, True) @cmd("fday", flag="N") def fday(cli, nick, chan, rest): """Forces the night to end and the next day to begin.""" if var.PHASE != "night": cli.notice(nick, messages["not_nighttime"]) else: transition_day() def stop_game(var, winner="", abort=False, additional_winners=None, log=True): if abort: channels.Main.send(messages["role_attribution_failed"]) elif not var.ORIGINAL_ROLES: # game already ended return if var.DAY_START_TIME: now = datetime.now() td = now - var.DAY_START_TIME var.DAY_TIMEDELTA += td if var.NIGHT_START_TIME: now = datetime.now() td = now - var.NIGHT_START_TIME var.NIGHT_TIMEDELTA += td daymin, daysec = var.DAY_TIMEDELTA.seconds // 60, var.DAY_TIMEDELTA.seconds % 60 nitemin, nitesec = var.NIGHT_TIMEDELTA.seconds // 60, var.NIGHT_TIMEDELTA.seconds % 60 total = var.DAY_TIMEDELTA + var.NIGHT_TIMEDELTA tmin, tsec = total.seconds // 60, total.seconds % 60 gameend_msg = messages["endgame_stats"].format(tmin, tsec, daymin, daysec, nitemin, nitesec) if not abort: channels.Main.send(gameend_msg) roles_msg = [] # squirrel away a copy of our original roleset for stats recording, as the following code # modifies var.ORIGINAL_ROLES and var.ORIGINAL_MAIN_ROLES. rolecounts = {role: len(players) for role, players in var.ORIGINAL_ROLES.items()} # save some typing rolemap = var.ORIGINAL_ROLES mainroles = var.ORIGINAL_MAIN_ROLES orig_main = {} # if get_final_role changes mainroles, we want to stash original main role for player, role in mainroles.items(): evt = Event("get_final_role", {"role": var.FINAL_ROLES.get(player.nick, role)}) evt.dispatch(var, player, role) if role != evt.data["role"]: rolemap[role].remove(player) rolemap[evt.data["role"]].add(player) mainroles[player] = evt.data["role"] orig_main[player] = role # track if we already printed "was" for a role swap, e.g. The wolves were A (was seer), B (harlot) # so that we can make the message a bit more concise roleswap_key = "endgame_roleswap_long" for role in role_order(): numrole = len(rolemap[role]) if numrole == 0: continue msg = [] for player in rolemap[role]: # check if the player changed roles during game, and if so insert the "was X" message player_msg = [] if mainroles[player] == role and player in orig_main: player_msg.append(messages[roleswap_key].format(orig_main[player])) roleswap_key = "endgame_roleswap_short" evt = Event("get_endgame_message", {"message": player_msg}) evt.dispatch(var, player, role, is_mainrole=mainroles[player] == role) if player_msg: msg.append("\u0002{0}\u0002 ({1})".format(player, ", ".join(player_msg))) else: msg.append("\u0002{0}\u0002".format(player)) # FIXME: get rid of hardcoded English if numrole == 2: roles_msg.append("The {1} were {0[0]} and {0[1]}.".format(msg, plural(role))) elif numrole == 1: roles_msg.append("The {1} was {0[0]}.".format(msg, role)) else: roles_msg.append("The {2} were {0}, and {1}.".format(", ".join(msg[0:-1]), msg[-1], plural(role))) message = "" count = 0 if not abort: evt = Event("game_end_messages", {"messages": roles_msg}) evt.dispatch(var) channels.Main.send(*roles_msg) # map player: all roles of that player (for below) allroles = {player: {role for role, players in rolemap.items() if player in players} for player in mainroles} # "" indicates everyone died or abnormal game stop if winner != "" or log: winners = set() player_list = [] if additional_winners is not None: winners.update(additional_winners) for plr, rol in mainroles.items(): splr = plr.nick # FIXME: for backwards-compat pentry = {"version": 2, "nick": None, "account": None, "ident": None, "host": None, "role": None, "templates": [], "special": [], "won": False, "iwon": False, "dced": False} if plr in var.DCED_LOSERS: pentry["dced"] = True pentry["account"] = plr.account pentry["nick"] = plr.nick pentry["ident"] = plr.ident pentry["host"] = plr.host pentry["mainrole"] = rol pentry["allroles"] = allroles[plr] won = False iwon = False survived = get_players() if not pentry["dced"]: # determine default win status (event can override) if rol in Wolfteam or (var.HIDDEN_ROLE == "cultist" and role in Hidden): if winner == "wolves": won = True iwon = plr in survived elif rol not in Neutral and winner == "villagers": won = True iwon = plr in survived # true neutral roles are handled via the event below evt = Event("player_win", {"won": won, "iwon": iwon, "special": pentry["special"]}) evt.dispatch(var, plr, rol, winner, plr in survived) won = evt.data["won"] iwon = evt.data["iwon"] # ensure that it is a) a list, and b) a copy (so it can't be mutated out from under us later) pentry["special"] = list(evt.data["special"]) # special-case everyone for after the event if winner == "everyone": iwon = True if pentry["dced"]: # You get NOTHING! You LOSE! Good DAY, sir! won = False iwon = False elif not iwon: iwon = won and plr in survived # survived, team won = individual win if winner == "": pentry["won"] = False pentry["iwon"] = False else: pentry["won"] = won pentry["iwon"] = iwon if won or iwon: winners.add(plr.nick) if not plr.is_fake: # don't record fjoined fakes player_list.append(pentry) if winner == "": winners = set() if log: game_options = {"role reveal": var.ROLE_REVEAL, "stats": var.STATS_TYPE, "abstain": "on" if var.ABSTAIN_ENABLED and not var.LIMIT_ABSTAIN else "restricted" if var.ABSTAIN_ENABLED else "off", "roles": {}} for role,pl in var.ORIGINAL_ROLES.items(): if len(pl) > 0: game_options["roles"][role] = len(pl) db.add_game(var.CURRENT_GAMEMODE.name, len(survived) + len(var.DEAD), time.strftime("%Y-%m-%d %H:%M:%S", time.gmtime(var.GAME_ID)), time.strftime("%Y-%m-%d %H:%M:%S", time.gmtime()), winner, player_list, game_options) # spit out the list of winners winners = sorted(winners) if len(winners) == 1: channels.Main.send(messages["single_winner"].format(winners[0])) elif len(winners) == 2: channels.Main.send(messages["two_winners"].format(winners[0], winners[1])) elif len(winners) > 2: nicklist = ("\u0002" + x + "\u0002" for x in winners[0:-1]) channels.Main.send(messages["many_winners"].format(", ".join(nicklist), winners[-1])) # Message players in deadchat letting them know that the game has ended if var.DEADCHAT_PLAYERS: for user in var.DEADCHAT_PLAYERS: user.queue_message(messages["endgame_deadchat"].format(channels.Main)) user.send_messages() reset_modes_timers(var) reset() expire_tempbans() # This must be after reset() if var.AFTER_FLASTGAME is not None: var.AFTER_FLASTGAME() var.AFTER_FLASTGAME = None if var.ADMIN_TO_PING is not None: # It was an flastgame channels.Main.send("PING! {0}".format(var.ADMIN_TO_PING)) var.ADMIN_TO_PING = None def chk_win(*, end_game=True, winner=None): """ Returns True if someone won """ lpl = len(get_players()) if var.PHASE == "join": if lpl == 0: reset_modes_timers(var) reset() # This must be after reset() if var.AFTER_FLASTGAME is not None: var.AFTER_FLASTGAME() var.AFTER_FLASTGAME = None if var.ADMIN_TO_PING is not None: # It was an flastgame channels.Main.send("PING! {0}".format(var.ADMIN_TO_PING)) var.ADMIN_TO_PING = None return True return False if var.PHASE not in var.GAME_PHASES: return False #some other thread already ended game probably return chk_win_conditions(var.ROLES, var.MAIN_ROLES, end_game, winner) def chk_win_conditions(rolemap, mainroles, end_game=True, winner=None): """Internal handler for the chk_win function.""" with var.GRAVEYARD_LOCK: if var.PHASE == "day": pl = set(get_players()) - get_absent(var) lpl = len(pl) else: pl = set(get_players(mainroles=mainroles)) lpl = len(pl) if var.RESTRICT_WOLFCHAT & var.RW_REM_NON_WOLVES: if var.RESTRICT_WOLFCHAT & var.RW_TRAITOR_NON_WOLF: wcroles = Wolf else: wcroles = Wolf | {"traitor"} else: wcroles = Wolfchat wolves = set(get_players(wcroles, mainroles=mainroles)) lwolves = len(wolves & pl) lrealwolves = len(get_players(Wolf & Killer, mainroles=mainroles)) message = "" if lpl < 1: message = messages["no_win"] # still want people like jesters, dullahans, etc. to get wins if they fulfilled their win conds winner = "no_team_wins" # TODO: flip priority order (so that things like fool run last, and therefore override previous win conds) # Priorities: # 0 = fool, other roles that end game immediately # 1 = things that could short-circuit game ending, such as cub growing up
import math import torch import torch.nn as nn import torch.nn.functional as F from .adc import _adc from .dac import _quantize_dac from .w2g import w2g from .crossbarlayer import CrossbarLayer quantize_input = _quantize_dac.apply # quantize_weight = _quantize_dac.apply adc = _adc.apply class crxb_Conv2d(nn.Conv2d): """ This is the custom conv layer that takes non-ideal effects of ReRAM crossbar into account. It has three functions. 1) emulate the DAC at the input of the crossbar and qnantize the input and weight tensors. 2) map the quantized tensor to the ReRAM crossbar arrays and include non-ideal effects such as noise, ir drop, and SAF. 3) emulate the ADC at the output of he crossbar and convert the current back to digital number to the input of next layers Args: scaler_dw(float): weight quantization scaler to reduce the influence of the ir drop. crxb_size(int): size of the crossbar. quantize(int): quantization resolution of the crossbar. """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, crxb_size=64, scaler_dw=1, **crxb_cfg): super(crxb_Conv2d, self).__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias) assert self.groups == 1, "currently not support grouped convolution for custom conv" # self.ir_drop = ir_drop # self.device = device ################## Crossbar conversion ############################# self.crxb_size = crxb_size # self.enable_ec_SAF = enable_ec_SAF # self.nchout_index = nn.Parameter(torch.arange(self.out_channels), requires_grad=False) self.register_buffer('nchout_index', torch.arange(self.out_channels)) weight_flatten_rows = self.in_channels * torch.cumprod(torch.tensor(self.kernel_size), 0)[-1].item() weight_flatten_cols = self.out_channels self.crxb_row, self.crxb_row_pads = self.num_pad( weight_flatten_rows, self.crxb_size) self.crxb_col, self.crxb_col_pads = self.num_pad( weight_flatten_cols, self.crxb_size) # p3d = (0, 1, 2, 1, 3, 3) # pad by (0, 1), (2, 1), and (3, 3) self.w_pad = [0, self.crxb_row_pads, 0, self.crxb_col_pads] self.input_pad = [0, 0, 0, self.crxb_row_pads] weight_crxb_shape = torch.Size((self.crxb_col, self.crxb_row, self.crxb_size, self.crxb_size)) ################# Hardware conversion ############################## # weight and input levels # Q(x) = (2^{k−1} − 1)* round((2^{k−1} − 1) * x) # self.n_lvl = 2 ** quantize # self.h_lvl = (self.n_lvl - 2) / 2 # ReRAM cells # 7-bit precisionis achievable on state-of-the-art RRAM device [9] # [9] High precision tuning of state for memristive devices by # adaptable variation-tolerant algorithm # self.Gmax = gmax # max conductance # self.Gmin = gmin # min conductance # self.delta_g = (self.Gmax - self.Gmin) / (2 ** 7) # conductance step # self.crxb = crxb_layer(ir_drop, device, gmax, gmin, gwire, gload, scaler_dw, vdd, enable_noise, # freq, temp , crxb_size, quantize, enable_SAF, enable_ec_SAF) self.crxb = CrossbarLayer(crxb_size=crxb_size, **crxb_cfg) self.w2g = w2g(self.crxb.delta_g, Gmin=self.crxb.Gmin, G_SA0=self.crxb.Gmax, G_SA1=self.crxb.Gmin, weight_shape=weight_crxb_shape, enable_SAF=self.crxb.enable_SAF) # self.Gwire = gwire # self.Gload = gload # DAC # self.Vdd = vdd # unit: volt # self.delta_v = self.Vdd / (self.n_lvl - 1) # self.delta_in_sum = nn.Parameter(torch.Tensor(1), requires_grad=False) # self.delta_out_sum = nn.Parameter(torch.Tensor(1), requires_grad=False) # self.counter = nn.Parameter(torch.Tensor(1), requires_grad=False) self.register_buffer('delta_in_sum', torch.zeros(1)) self.register_buffer('delta_out_sum', torch.zeros(1)) self.register_buffer('counter', torch.zeros(1)) self.scaler_dw = scaler_dw self.delta_w = 0 # self.weight.abs().max() / self.h_lvl * self.scaler_dw self.delta_x = 0 # self.delta_in_sum.data / self.counter.data self.h_out = None self.w_out = None def num_pad(self, source, target): crxb_index = math.ceil(source / target) num_padding = crxb_index * target - source return crxb_index, num_padding # Mapping the weights to the crossbar array def mapping(self, input): # 1. input data and weight quantization # delta_x delta_w with torch.no_grad(): self.delta_w = self.weight.abs().max() / self.crxb.h_lvl * self.scaler_dw # trainable delta_x if self.training: self.counter.data += 1 self.delta_x = input.abs().max() / self.crxb.h_lvl self.delta_in_sum.data += self.delta_x else: self.delta_x = self.delta_in_sum.data / self.counter.data input_quan, weight_quan = self.crxb.quantize(input, self.delta_x, self.weight, self.delta_w) # 2. Perform the computation between input voltage and weight conductance # compute output feature size if self.h_out is None and self.w_out is None: self.h_out = int( (input.shape[2] - self.kernel_size[0] + 2 * self.padding[0]) / self.stride[0] + 1) self.w_out = int( (input.shape[3] - self.kernel_size[0] + 2 * self.padding[0]) / self.stride[0] + 1) num_block = self.h_out * self.w_out block_size = input.shape[1] * torch.cumprod(torch.tensor(self.kernel_size), 0)[-1] pad_block_size = block_size + self.input_pad[2] + self.input_pad[3] # 2.1 flatten and unfold the weight and input input_unfold = F.unfold(input_quan, kernel_size=self.kernel_size[0], dilation=self.dilation, padding=self.padding, stride=self.stride) weight_flatten = weight_quan.view(self.out_channels, -1) # 2.2. add paddings input_padded = F.pad(input_unfold, self.input_pad, mode='constant', value=0) weight_padded = F.pad(weight_flatten, self.w_pad, mode='constant', value=0) # 2.3. reshape to crxb size input_crxb = input_padded.view(input.shape[0], 1, self.crxb_row, self.crxb_size, num_block) weight_crxb = weight_padded.view(self.crxb_col, self.crxb_size, self.crxb_row, self.crxb_size).transpose(1, 2) # convert the floating point weight into conductance pair values G_crxb = self.w2g(weight_crxb) return input_crxb, G_crxb def forward(self, input): assert input.dim() == 4 # 1. input data and weight quantization input_crxb, G_crxb = self.mapping(input) # 2. Perform the computation between input voltage and weight conductance # 2.1-2.3 Mapping # 2.4. compute matrix multiplication G_crxb = self.crxb.noise_injection(input_crxb, G_crxb) # this block is to calculate the ir drop of the crossbar output_crxb = self.crxb.solve_crxb(input_crxb, G_crxb) # 3. perform ADC operation (i.e., current to digital conversion) # input.shape[0], self.crxb_col, self.crxb_row, # self.crxb_size, self.num_block with torch.no_grad(): if self.training: self.delta_i = output_crxb.abs().max() / (self.crxb.h_lvl) self.delta_out_sum.data += self.delta_i else: self.delta_i = self.delta_out_sum.data / self.counter.data self.delta_y = self.delta_w * self.delta_x * \ self.delta_i / (self.crxb.delta_v * self.crxb.delta_g) # print('adc LSB ration:', self.delta_i/self.max_i_LSB) output_adc = self.crxb.output_convet(output_crxb, self.delta_i, self.delta_y) if self.w2g.enable_SAF: if self.enable_ec_SAF: G_pos_diff, G_neg_diff = self.w2g.error_compensation() ec_scale = self.delta_y / self.delta_i output_adc += (torch.matmul(G_pos_diff, input_crxb) - torch.matmul(G_neg_diff, input_crxb)) * ec_scale output_sum = torch.sum(output_adc, dim=2) # input.shape[0], self.crxb_col, # self.crxb_size, self.num_block output = output_sum.view(input.shape[0], output_sum.shape[1] * output_sum.shape[2], self.h_out, self.w_out).index_select(dim=1, index=self.nchout_index) # remove the padded columns if self.bias is not None: output += self.bias.unsqueeze(1).unsqueeze(1) return output def _reset_delta(self): self.delta_in_sum.data[0] = 0 self.delta_out_sum.data[0] = 0 self.counter.data[0] = 0 class crxb_Linear(nn.Linear): """ This is the custom linear layer that takes non-ideal effects of ReRAM crossbar into account. It has three functions. 1) emulate the DAC at the input of the crossbar and qnantize the input and weight tensors. 2) map the quantized tensor to the ReRAM crossbar arrays and include non-ideal effects such as noise, ir drop, and SAF. 3) emulate the ADC at the output of he crossbar and convert the current back to digital number to the input of next layers Args: scaler_dw(float): weight quantization scaler to reduce the influence of the ir drop. crxb_size(int): size of the crossbar. quantize(int): quantization resolution of the crossbar. """ def __init__(self, in_features, out_features, bias=True, crxb_size=64, scaler_dw=1, **crxb_cfg): super(crxb_Linear, self).__init__(in_features, out_features, bias) # self.ir_drop = ir_drop # self.device = device ################## Crossbar conversion ############################# self.crxb_size = crxb_size # self.enable_ec_SAF = enable_ec_SAF # self.out_index = nn.Parameter(torch.arange(out_features), requires_grad=False) self.register_buffer('out_index', torch.arange(out_features)) self.crxb_row, self.crxb_row_pads = self.num_pad( self.weight.shape[1], self.crxb_size) self.crxb_col, self.crxb_col_pads = self.num_pad( self.weight.shape[0], self.crxb_size) # p3d = (0, 1, 2, 1, 3, 3) # pad by (0, 1), (2, 1), and (3, 3) self.w_pad = [0, self.crxb_row_pads, 0, self.crxb_col_pads] self.input_pad = [0, self.crxb_row_pads] weight_crxb_shape = torch.Size((self.crxb_col, self.crxb_row, self.crxb_size, self.crxb_size)) ################# Hardware conversion ############################## # weight and input levels # Q(x) = (2^{k−1} − 1)* round((2^{k−1} − 1) * x) # self.n_lvl = 2 ** quantize # self.h_lvl = (self.n_lvl - 2) / 2 # ReRAM cells # 7-bit precisionis achievable on state-of-the-art RRAM device [9] # [9] High precision tuning of state for memristive devices by # adaptable variation-tolerant algorithm # self.Gmax = gmax # max conductance # self.Gmin = gmin # min conductance # self.delta_g = (self.Gmax - self.Gmin) / (2 ** 7) # conductance step # self.crxb = crxb_layer(ir_drop, device, gmax, gmin, gwire, gload, scaler_dw, vdd, enable_noise, # freq, temp , crxb_size, quantize, enable_SAF, enable_ec_SAF) self.crxb = CrossbarLayer(crxb_size=crxb_size, **crxb_cfg) self.w2g = w2g(self.crxb.delta_g, Gmin=self.crxb.Gmin, G_SA0=self.crxb.Gmax, G_SA1=self.crxb.Gmin, weight_shape=weight_crxb_shape, enable_SAF=self.crxb.enable_SAF) # self.Gwire = gwire # self.Gload = gload # DAC # self.Vdd = vdd # unit: volt # self.delta_v = self.Vdd / (self.n_lvl - 1) # self.delta_in_sum = nn.Parameter(torch.Tensor(1), requires_grad=False) # self.delta_out_sum = nn.Parameter(torch.Tensor(1), requires_grad=False) # self.counter = nn.Parameter(torch.Tensor(1), requires_grad=False) self.register_buffer('delta_in_sum', torch.zeros(1)) self.register_buffer('delta_out_sum', torch.zeros(1)) self.register_buffer('counter', torch.zeros(1)) self.scaler_dw = scaler_dw self.delta_w = 0 # self.weight.abs().max() / self.h_lvl * self.scaler_dw self.delta_x = 0 # self.delta_in_sum.data / self.counter.data def num_pad(self, source, target): crxb_index = math.ceil(source / target) num_padding = crxb_index * target - source return crxb_index, num_padding # Mapping the weights to the crossbar array def mapping(self, input): # 1. input data and weight quantization # delta_x delta_w with torch.no_grad(): self.delta_w = self.weight.abs().max() / self.crxb.h_lvl * self.scaler_dw # trainable delta_x if self.training: self.counter.data +=
circuits, targets) def test_sdg_gate_nondeterministic_waltz_basis_gates(self): """Test sdg-gate gate circuits compiling to u1,u2,u3,cx""" circuits = ref_1q_clifford.sdg_gate_circuits_nondeterministic( final_measure=False) targets = ref_1q_clifford.sdg_gate_statevector_nondeterministic() job = execute(circuits, self.SIMULATOR, shots=1, basis_gates=['u1', 'u2', 'u3', 'cx'], backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) def test_sdg_gate_nondeterministic_minimal_basis_gates(self): """Test sdg-gate gate circuits compiling to u3,cx""" circuits = ref_1q_clifford.sdg_gate_circuits_nondeterministic( final_measure=False) targets = ref_1q_clifford.sdg_gate_statevector_nondeterministic() job = execute(circuits, self.SIMULATOR, shots=1, basis_gates=['u1', 'u2', 'u3', 'cx'], backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) # --------------------------------------------------------------------- # Test cx-gate # --------------------------------------------------------------------- def test_cx_gate_deterministic_default_basis_gates(self): """Test cx-gate circuits compiling to backend default basis_gates.""" circuits = ref_2q_clifford.cx_gate_circuits_deterministic( final_measure=False) targets = ref_2q_clifford.cx_gate_statevector_deterministic() job = execute(circuits, self.SIMULATOR, shots=1, backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) def test_cx_gate_deterministic_waltz_basis_gates(self): """Test cx-gate gate circuits compiling to u1,u2,u3,cx""" circuits = ref_2q_clifford.cx_gate_circuits_deterministic( final_measure=False) targets = ref_2q_clifford.cx_gate_statevector_deterministic() job = execute(circuits, self.SIMULATOR, shots=1, basis_gates=['u1', 'u2', 'u3', 'cx'], backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) def test_cx_gate_deterministic_minimal_basis_gates(self): """Test cx-gate gate circuits compiling to u3,cx""" circuits = ref_2q_clifford.cx_gate_circuits_deterministic( final_measure=False) targets = ref_2q_clifford.cx_gate_statevector_deterministic() job = execute(circuits, self.SIMULATOR, shots=1, basis_gates=['u1', 'u2', 'u3', 'cx'], backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) def test_cx_gate_nondeterministic_default_basis_gates(self): """Test cx-gate circuits compiling to backend default basis_gates.""" circuits = ref_2q_clifford.cx_gate_circuits_nondeterministic( final_measure=False) targets = ref_2q_clifford.cx_gate_statevector_nondeterministic() job = execute(circuits, self.SIMULATOR, shots=1, backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) def test_cx_gate_nondeterministic_waltz_basis_gates(self): """Test cx-gate gate circuits compiling to u1,u2,u3,cx""" circuits = ref_2q_clifford.cx_gate_circuits_nondeterministic( final_measure=False) targets = ref_2q_clifford.cx_gate_statevector_nondeterministic() job = execute(circuits, self.SIMULATOR, shots=1, basis_gates=['u1', 'u2', 'u3', 'cx'], backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) def test_cx_gate_nondeterministic_minimal_basis_gates(self): """Test cx-gate gate circuits compiling to u3,cx""" circuits = ref_2q_clifford.cx_gate_circuits_nondeterministic( final_measure=False) targets = ref_2q_clifford.cx_gate_statevector_nondeterministic() job = execute(circuits, self.SIMULATOR, shots=1, basis_gates=['u1', 'u2', 'u3', 'cx'], backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) # --------------------------------------------------------------------- # Test cz-gate # --------------------------------------------------------------------- def test_cz_gate_deterministic_default_basis_gates(self): """Test cz-gate circuits compiling to backend default basis_gates.""" circuits = ref_2q_clifford.cz_gate_circuits_deterministic( final_measure=False) targets = ref_2q_clifford.cz_gate_statevector_deterministic() job = execute(circuits, self.SIMULATOR, shots=1, backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) def test_cz_gate_deterministic_waltz_basis_gates(self): """Test cz-gate gate circuits compiling to u1,u2,u3,cx""" circuits = ref_2q_clifford.cz_gate_circuits_deterministic( final_measure=False) targets = ref_2q_clifford.cz_gate_statevector_deterministic() job = execute(circuits, self.SIMULATOR, shots=1, basis_gates=['u1', 'u2', 'u3', 'cx'], backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) def test_cz_gate_deterministic_minimal_basis_gates(self): """Test cz-gate gate circuits compiling to u3,cx""" circuits = ref_2q_clifford.cz_gate_circuits_deterministic( final_measure=False) targets = ref_2q_clifford.cz_gate_statevector_deterministic() job = execute(circuits, self.SIMULATOR, shots=1, basis_gates=['u1', 'u2', 'u3', 'cx'], backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) def test_cz_gate_nondeterministic_default_basis_gates(self): """Test cz-gate circuits compiling to backend default basis_gates.""" circuits = ref_2q_clifford.cz_gate_circuits_nondeterministic( final_measure=False) targets = ref_2q_clifford.cz_gate_statevector_nondeterministic() job = execute(circuits, self.SIMULATOR, shots=1, backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) def test_cz_gate_nondeterministic_waltz_basis_gates(self): """Test cz-gate gate circuits compiling to u1,u2,u3,cx""" circuits = ref_2q_clifford.cz_gate_circuits_nondeterministic( final_measure=False) targets = ref_2q_clifford.cz_gate_statevector_nondeterministic() job = execute(circuits, self.SIMULATOR, shots=1, basis_gates=['u1', 'u2', 'u3', 'cx'], backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) def test_cz_gate_nondeterministic_minimal_basis_gates(self): """Test cz-gate gate circuits compiling to u3,cx""" circuits = ref_2q_clifford.cz_gate_circuits_nondeterministic( final_measure=False) targets = ref_2q_clifford.cz_gate_statevector_nondeterministic() job = execute(circuits, self.SIMULATOR, shots=1, basis_gates=['u1', 'u2', 'u3', 'cx'], backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) # --------------------------------------------------------------------- # Test swap-gate # --------------------------------------------------------------------- def test_swap_gate_deterministic_default_basis_gates(self): """Test swap-gate circuits compiling to backend default basis_gates.""" circuits = ref_2q_clifford.swap_gate_circuits_deterministic( final_measure=False) targets = ref_2q_clifford.swap_gate_statevector_deterministic() job = execute(circuits, self.SIMULATOR, shots=1, backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) def test_swap_gate_deterministic_waltz_basis_gates(self): """Test swap-gate gate circuits compiling to u1,u2,u3,cx""" circuits = ref_2q_clifford.swap_gate_circuits_deterministic( final_measure=False) targets = ref_2q_clifford.swap_gate_statevector_deterministic() job = execute(circuits, self.SIMULATOR, shots=1, basis_gates=['u1', 'u2', 'u3', 'cx'], backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) def test_swap_gate_deterministic_minimal_basis_gates(self): """Test swap-gate gate circuits compiling to u3,cx""" circuits = ref_2q_clifford.swap_gate_circuits_deterministic( final_measure=False) targets = ref_2q_clifford.swap_gate_statevector_deterministic() job = execute(circuits, self.SIMULATOR, shots=1, basis_gates=['u1', 'u2', 'u3', 'cx'], backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) def test_swap_gate_nondeterministic_default_basis_gates(self): """Test swap-gate circuits compiling to backend default basis_gates.""" circuits = ref_2q_clifford.swap_gate_circuits_nondeterministic( final_measure=False) targets = ref_2q_clifford.swap_gate_statevector_nondeterministic() job = execute(circuits, self.SIMULATOR, shots=1, backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) def test_swap_gate_nondeterministic_waltz_basis_gates(self): """Test swap-gate gate circuits compiling to u1,u2,u3,cx""" circuits = ref_2q_clifford.swap_gate_circuits_nondeterministic( final_measure=False) targets = ref_2q_clifford.swap_gate_statevector_nondeterministic() job = execute(circuits, self.SIMULATOR, shots=1, basis_gates=['u1', 'u2', 'u3', 'cx'], backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) def test_swap_gate_nondeterministic_minimal_basis_gates(self): """Test swap-gate gate circuits compiling to u3,cx""" circuits = ref_2q_clifford.swap_gate_circuits_nondeterministic( final_measure=False) targets = ref_2q_clifford.swap_gate_statevector_nondeterministic() job = execute(circuits, self.SIMULATOR, shots=1, basis_gates=['u1', 'u2', 'u3', 'cx'], backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) # --------------------------------------------------------------------- # Test t-gate # --------------------------------------------------------------------- def test_t_gate_deterministic_default_basis_gates(self): """Test t-gate circuits compiling to backend default basis_gates.""" circuits = ref_non_clifford.t_gate_circuits_deterministic( final_measure=False) targets = ref_non_clifford.t_gate_statevector_deterministic() job = execute(circuits, self.SIMULATOR, shots=1, backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) def test_t_gate_deterministic_waltz_basis_gates(self): """Test t-gate gate circuits compiling to u1,u2,u3,cx""" circuits = ref_non_clifford.t_gate_circuits_deterministic( final_measure=False) targets = ref_non_clifford.t_gate_statevector_deterministic() job = execute(circuits, self.SIMULATOR, shots=1, basis_gates=['u1', 'u2', 'u3', 'cx'], backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) def test_t_gate_deterministic_minimal_basis_gates(self): """Test t-gate gate circuits compiling to u3,cx""" circuits = ref_non_clifford.t_gate_circuits_deterministic( final_measure=False) targets = ref_non_clifford.t_gate_statevector_deterministic() job = execute(circuits, self.SIMULATOR, shots=1, basis_gates=['u1', 'u2', 'u3', 'cx'], backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) def test_t_gate_nondeterministic_default_basis_gates(self): """Test t-gate circuits compiling to backend default basis_gates.""" circuits = ref_non_clifford.t_gate_circuits_nondeterministic( final_measure=False) targets = ref_non_clifford.t_gate_statevector_nondeterministic() job = execute(circuits, self.SIMULATOR, shots=1, backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) def test_t_gate_nondeterministic_waltz_basis_gates(self): """Test t-gate gate circuits compiling to u1,u2,u3,cx""" circuits = ref_non_clifford.t_gate_circuits_nondeterministic( final_measure=False) targets = ref_non_clifford.t_gate_statevector_nondeterministic() job = execute(circuits, self.SIMULATOR, shots=1, basis_gates=['u1', 'u2', 'u3', 'cx'], backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) def test_t_gate_nondeterministic_minimal_basis_gates(self): """Test t-gate gate circuits compiling to u3,cx""" circuits = ref_non_clifford.t_gate_circuits_nondeterministic( final_measure=False) targets = ref_non_clifford.t_gate_statevector_nondeterministic() job = execute(circuits, self.SIMULATOR, shots=1, basis_gates=['u1', 'u2', 'u3', 'cx'], backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) # --------------------------------------------------------------------- # Test tdg-gate # --------------------------------------------------------------------- def test_tdg_gate_deterministic_default_basis_gates(self): """Test tdg-gate circuits compiling to backend default basis_gates.""" circuits = ref_non_clifford.tdg_gate_circuits_deterministic( final_measure=False) targets = ref_non_clifford.tdg_gate_statevector_deterministic() job = execute(circuits, self.SIMULATOR, shots=1, backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) def test_tdg_gate_deterministic_waltz_basis_gates(self): """Test tdg-gate gate circuits compiling to u1,u2,u3,cx""" circuits = ref_non_clifford.tdg_gate_circuits_deterministic( final_measure=False) targets = ref_non_clifford.tdg_gate_statevector_deterministic() job = execute(circuits, self.SIMULATOR, shots=1, basis_gates=['u1', 'u2', 'u3', 'cx'], backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) def test_tdg_gate_deterministic_minimal_basis_gates(self): """Test tdg-gate gate circuits compiling to u3,cx""" circuits = ref_non_clifford.tdg_gate_circuits_deterministic( final_measure=False) targets = ref_non_clifford.tdg_gate_statevector_deterministic() job = execute(circuits, self.SIMULATOR, shots=1, basis_gates=['u1', 'u2', 'u3', 'cx'], backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) def test_tdg_gate_nondeterministic_default_basis_gates(self): """Test tdg-gate circuits compiling to backend default basis_gates.""" circuits = ref_non_clifford.tdg_gate_circuits_nondeterministic( final_measure=False) targets = ref_non_clifford.tdg_gate_statevector_nondeterministic() job = execute(circuits, self.SIMULATOR, shots=1, backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) def test_tdg_gate_nondeterministic_waltz_basis_gates(self): """Test tdg-gate gate circuits compiling to u1,u2,u3,cx""" circuits = ref_non_clifford.tdg_gate_circuits_nondeterministic( final_measure=False) targets = ref_non_clifford.tdg_gate_statevector_nondeterministic() job = execute(circuits, self.SIMULATOR, shots=1, basis_gates=['u1', 'u2', 'u3', 'cx'], backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) def test_tdg_gate_nondeterministic_minimal_basis_gates(self): """Test tdg-gate gate circuits compiling to u3,cx""" circuits = ref_non_clifford.tdg_gate_circuits_nondeterministic( final_measure=False) targets = ref_non_clifford.tdg_gate_statevector_nondeterministic() job = execute(circuits, self.SIMULATOR, shots=1, basis_gates=['u1', 'u2', 'u3', 'cx'], backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) # --------------------------------------------------------------------- # Test ccx-gate # --------------------------------------------------------------------- def test_ccx_gate_deterministic_default_basis_gates(self): """Test ccx-gate circuits compiling to backend default basis_gates.""" circuits = ref_non_clifford.ccx_gate_circuits_deterministic( final_measure=False) targets = ref_non_clifford.ccx_gate_statevector_deterministic() job = execute(circuits, self.SIMULATOR, shots=1, backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) def test_ccx_gate_deterministic_waltz_basis_gates(self): """Test ccx-gate gate circuits compiling to u1,u2,u3,cx""" circuits = ref_non_clifford.ccx_gate_circuits_deterministic( final_measure=False) targets = ref_non_clifford.ccx_gate_statevector_deterministic() job = execute(circuits, self.SIMULATOR, shots=1, basis_gates=['u1', 'u2', 'u3', 'cx'], backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) def test_ccx_gate_deterministic_minimal_basis_gates(self): """Test ccx-gate gate circuits compiling to u3,cx""" circuits = ref_non_clifford.ccx_gate_circuits_deterministic( final_measure=False) targets = ref_non_clifford.ccx_gate_statevector_deterministic() job = execute(circuits, self.SIMULATOR, shots=1, basis_gates=['u1', 'u2', 'u3', 'cx'], backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) def test_ccx_gate_nondeterministic_default_basis_gates(self): """Test ccx-gate circuits compiling to backend default basis_gates.""" circuits = ref_non_clifford.ccx_gate_circuits_nondeterministic( final_measure=False) targets = ref_non_clifford.ccx_gate_statevector_nondeterministic() job = execute(circuits, self.SIMULATOR, shots=1, backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) def test_ccx_gate_nondeterministic_waltz_basis_gates(self): """Test ccx-gate gate circuits compiling to u1,u2,u3,cx""" circuits = ref_non_clifford.ccx_gate_circuits_nondeterministic( final_measure=False) targets = ref_non_clifford.ccx_gate_statevector_nondeterministic() job = execute(circuits, self.SIMULATOR, shots=1, basis_gates=['u1', 'u2', 'u3', 'cx'], backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) def test_ccx_gate_nondeterministic_minimal_basis_gates(self): """Test ccx-gate gate circuits compiling to u3,cx""" circuits = ref_non_clifford.ccx_gate_circuits_nondeterministic( final_measure=False) targets = ref_non_clifford.ccx_gate_statevector_nondeterministic() job = execute(circuits, self.SIMULATOR, shots=1, basis_gates=['u1', 'u2', 'u3', 'cx'], backend_options=self.BACKEND_OPTS) result = job.result() self.assertSuccess(result) self.compare_statevector(result, circuits, targets) # --------------------------------------------------------------------- # Test unitary gate qobj instruction # --------------------------------------------------------------------- def test_unitary_gate(self): """Test simulation with unitary gate circuit
# Licensed under an MIT open source license - see LICENSE from __future__ import print_function, absolute_import, division import numpy as np from astropy.io import fits from astropy.convolution import convolve import astropy.units as u from scipy import ndimage as nd import itertools as it import operator as op import os from warnings import warn try: from spectral_cube import SpectralCube, LazyMask from spectral_cube.wcs_utils import drop_axis spectral_cube_flag = True except ImportError: warn("spectral-cube is not installed. Using Moments requires" " spectral-cube to be installed.") spectral_cube_flag = False # try: # from signal_id import Noise # signal_id_flag = True # except ImportError: # warn("signal-id is not installed. Disabling associated functionality.") # signal_id_flag = False from ._moment_errs import (moment0_error, moment1_error, linewidth_sigma_err) class Moments(object): """ A unified approach to deriving the noise level in a cube, applying a mask, and deriving moments along with their errors. All the heavy lifting is done with `spectral_cube <http://spectral-cube.readthedocs.org/en/latest/>`_. Parameters ---------- cube : SpectralCube or str Either a SpectralCube object, or the filename of a cube readable by spectral-cube. scale : `~astropy.units.Quantity`, optional The noise level in the cube. Used to estimate uncertainties of the moment maps. moment_method : {'slice', 'cube', 'ray'}, optional The method to use for creating the moments. See the spectral-cube docs for an explanation of the differences. """ def __init__(self, cube, scale=None, moment_method='slice'): super(Moments, self).__init__() if not spectral_cube_flag: raise ImportError("Moments requires the spectral-cube " " to be installed: https://github.com/" "radio-astro-tools/spectral-cube") if isinstance(cube, SpectralCube): self.cube = cube self.save_name = None else: self.cube = SpectralCube.read(cube) # Default save name to the cube name without the suffix. self.save_name = ".".join(cube.split(".")[:-1]) if moment_method not in ['slice', 'cube', 'ray']: raise TypeError("Moment method must be 'slice', 'cube', or 'ray'.") self.moment_how = moment_method self.scale = scale self.prop_headers = None self.prop_err_headers = None @property def scale(self): return self._scale @scale.setter def scale(self, value): if value is None: self._scale = value else: if not hasattr(value, 'unit'): raise TypeError("Given scale must be an `astropy.Quantity`" " with units matching the units of the cube.") if not value.unit.is_equivalent(self.cube.unit): raise u.UnitsError("Given scale must have units equivalent" " to the units of the cube.") if value.value < 0: raise ValueError("Noise level is set to negative. The noise" " must be zero (noiseless) or positive.") self._scale = value def apply_mask(self, mask): ''' Apply a mask to the cube. Parameters ---------- mask : spectral-cube Mask or numpy.ndarray, optional The mask to be applied to the data. If None is given, RadioMask is used with its default settings. ''' # if mask is None: # rad_mask = RadioMask(self.cube) # mask = rad_mask.to_mask() self.cube = self.cube.with_mask(mask) def make_moments(self, axis=0, units=True): ''' Calculate the moments. Parameters ---------- axis : int, optional The axis to calculate the moments along. units : bool, optional If enabled, the units of the arrays are kept. ''' self._moment0 = self.cube.moment0(axis=axis, how=self.moment_how) self._moment1 = self.cube.moment1(axis=axis, how=self.moment_how) self._linewidth = \ self.cube.linewidth_sigma(how=self.moment_how) if not units: self._moment0 = self._moment0.value self._moment1 = self._moment1.value self._moment2 = self._moment2.value def make_moment_errors(self, axis=0, scale=None): ''' Calculate the errors in the moments. Parameters ---------- axis : int, optional The axis to calculate the moments along. ''' if not hasattr(self, "_moment0"): raise ValueError("Run Moments.make_moments first.") if self.scale is None and scale is None: warn("scale not set to the rms noise and will not be used in " "error calculations.") scale = 0.0 * self.cube.unit self._moment0_err = np.zeros_like(self.moment0) self._moment1_err = np.zeros_like(self.moment1) self._linewidth_err = np.zeros_like(self.linewidth) elif self.scale is not None: scale = self.scale self._moment0_err = moment0_error(self.cube, scale, how=self.moment_how, axis=axis) self._moment1_err = moment1_error(self.cube, scale, how=self.moment_how, axis=axis, moment0=self.moment0, moment1=self.moment1) self._linewidth_err = \ linewidth_sigma_err(self.cube, scale, how=self.moment_how, moment0=self.moment0, moment1=self.moment1, moment1_err=self.moment1_err) @property def moment0(self): return self._moment0 @property def moment1(self): return self._moment1 @property def linewidth(self): return self._linewidth @property def moment0_err(self): return self._moment0_err @property def moment1_err(self): return self._moment1_err @property def linewidth_err(self): return self._linewidth_err def all_moments(self): return [self._moment0, self._moment1, self.linewidth] def all_moment_errs(self): return [self._moment0_err, self._moment1_err, self.linewidth_err] def to_dict(self): ''' Returns a dictionary with the cube and the property arrays. ''' self.get_prop_hdrs() prop_dict = {} # Avoid reading in the whole cube when it is big, unless # you set cube.allow_huge_operations=True if self.cube._is_huge and not self.cube.allow_huge_operations: raise ValueError("This will load the whole cube into memory. Set " "``cube.allow_huge_operations=True`` to" " allow this") if _try_remove_unit(self.cube.filled_data[:]): prop_dict['cube'] = [self.cube.filled_data[:].value, self.cube.header] else: prop_dict['cube'] = [self.cube.filled_data[:], self.cube.header] if _try_remove_unit(self.moment0): prop_dict['moment0'] = [self.moment0.value, self.prop_headers[0]] else: prop_dict['moment0'] = [self.moment0, self.prop_headers[0]] if _try_remove_unit(self.moment0_err): prop_dict['moment0_error'] = [self.moment0_err.value, self.prop_err_headers[0]] else: prop_dict['moment0_error'] = [self.moment0_err, self.prop_err_headers[0]] if _try_remove_unit(self.moment1): prop_dict['centroid'] = [self.moment1.value, self.prop_headers[1]] else: prop_dict['centroid'] = [self.moment1, self.prop_headers[1]] if _try_remove_unit(self.moment1_err): prop_dict['centroid_error'] = [self.moment1_err.value, self.prop_err_headers[1]] else: prop_dict['centroid_error'] = [self.moment1_err, self.prop_err_headers[1]] if _try_remove_unit(self.linewidth): prop_dict['linewidth'] = [self.linewidth.value, self.prop_headers[2]] else: prop_dict['linewidth'] = [self.linewidth, self.prop_headers[2]] if _try_remove_unit(self.linewidth_err): prop_dict['linewidth_error'] = [self.linewidth_err.value, self.prop_err_headers[2]] else: prop_dict['linewidth_error'] = [self.linewidth_err, self.prop_err_headers[2]] return prop_dict def get_prop_hdrs(self): ''' Generate headers for the moments. ''' bunits = [self.cube.unit, self.cube.spectral_axis.unit, self.cube.spectral_axis.unit, self.cube.unit * self.cube.spectral_axis.unit] comments = ["Image of the Zeroth Moment", "Image of the First Moment", "Image of the Second Moment", "Image of the Integrated Intensity"] self.prop_headers = [] self.prop_err_headers = [] for i in range(len(bunits)): wcs = self.cube.wcs.copy() new_wcs = drop_axis(wcs, -1) hdr = new_wcs.to_header() hdr_err = new_wcs.to_header() hdr["BUNIT"] = bunits[i].to_string() hdr_err["BUNIT"] = bunits[i].to_string() hdr["COMMENT"] = comments[i] hdr_err["COMMENT"] = comments[i] + " Error." self.prop_headers.append(hdr) self.prop_err_headers.append(hdr_err) def to_fits(self, save_name=None, **kwargs): ''' Save the property arrays as fits files. Parameters ---------- save_name : str, optional Prefix to use when saving the moment arrays. If None is given, 'default' is used. kwargs : Passed to `~astropy.io.fits.HDUList.writeto`. ''' if self.prop_headers is None: self.get_prop_hdrs() if save_name is None: if self.save_name is None: Warning("No save_name has been specified, using 'default'") self.save_name = 'default' else: self.save_name = save_name labels = ["_moment0", "_centroid", "_linewidth"] for i, (arr, err, hdr, hdr_err) in \ enumerate(zip(self.all_moments(), self.all_moment_errs(), self.prop_headers, self.prop_err_headers)): # Can't write quantities. if _try_remove_unit(arr): arr = arr.value if _try_remove_unit(err): err = err.value hdu = fits.HDUList([fits.PrimaryHDU(arr, header=hdr), fits.ImageHDU(err, header=hdr_err)]) hdu.writeto(self.save_name + labels[i] + ".fits", **kwargs) @staticmethod def from_fits(fits_name, moments_prefix=None, moments_path=None, mask_name=None, moment0=None, centroid=None, linewidth=None, scale=None): ''' Load pre-made moment arrays given a cube name. Saved moments must match the naming of the cube for the automatic loading to work (e.g. a cube called test.fits will have a moment 0 array with the name test_moment0.fits). Otherwise, specify a path to one of the keyword arguments. Parameters ---------- fits_name : str Filename of the cube or a SpectralCube object. If a filename is given, it is also used as the prefix to the saved moment files. moments_prefix : str, optional If a SpectralCube object is given in ``fits_name``, the prefix for the saved files can be provided here. moments_path : str, optional Path to where the moments are saved. mask_name : str, optional Filename of a saved mask to be applied to the data. moment0 : str, optional Filename of the moment0 array. Use if naming scheme is not valid for automatic loading. centroid : str, optional Filename of the centroid array. Use if naming scheme is not valid for automatic loading. linewidth : str, optional Filename of the linewidth array. Use if naming scheme is not valid for automatic loading. scale : `~astropy.units.Quantity`, optional The noise level in the cube. Overrides estimation using `signal_id <https://github.com/radio-astro-tools/signal-id>`_ ''' if not spectral_cube_flag: raise ImportError("Moments requires the spectral-cube " " to be installed: https://github.com/" "radio-astro-tools/spectral-cube") if moments_path is None: moments_path = "" if not isinstance(fits_name, SpectralCube): root_name = os.path.basename(fits_name[:-5]) else: root_name = moments_prefix self = Moments(fits_name, scale=scale) if mask_name is not None: mask = fits.getdata(mask_name) self.with_mask(mask=mask) # Moment 0 if moment0 is not None: mom0_name = moment0 else: mom0_name = os.path.join(moments_path, root_name + "_moment0.fits") try: with fits.open(mom0_name) as moment0: self._moment0 = moment0[0].data self._moment0_err = moment0[1].data except IOError as e: self._moment0 = None self._moment0_err = None print(e) print("Moment 0 fits file not found.") if centroid is not None: mom1_name = centroid else: mom1_name = os.path.join(moments_path, root_name + "_centroid.fits") try: with fits.open(mom1_name) as moment1: self._moment1 = moment1[0].data self._moment1_err = moment1[1].data except IOError as e: self._moment1 = None self._moment1_err = None print(e) print("Centroid fits file not found.") if linewidth is not None: lwidth_name = linewidth else: lwidth_name =
valDef, setter=True) # Attribute 'MinVoltageWarning' GUID 10049 Data type TYPE_UNSIGNED_NUMBER # Minimum voltage warning level def getMinVoltageWarning(self, moduleID): guid = 10049 portnumber = 0 length = 1 valDef = self._guidTable[guid] data = self._parent.client.getAttribute( moduleID, guid, portnumber, length) return self._parent.getObjectFromData(data, valDef, count=length) def setMinVoltageWarning(self, moduleID, value): guid = 10049 portnumber = 0 valDef = self._guidTable[guid] data = self._parent.client.setAttribute( moduleID, guid, convert.value2bin(value, valDef), portnumber) return self._parent.getObjectFromData(data, valDef, setter=True) # Attribute 'ActiveEnergyReset' GUID 10050 Data type TYPE_UNSIGNED_NUMBER_WITH_TS # Active Energy def doActiveEnergyReset(self, moduleID): guid = 10050 valDef = self._guidTable[guid] data = self._parent.client.setAttribute( moduleID, guid, convert.value2bin(1, valDef)) return self._parent.getObjectFromData(data, valDef, setter=True) # Attribute 'ApparentEnergyReset' GUID 10051 Data type TYPE_UNSIGNED_NUMBER_WITH_TS # Apparent Energy def doApparentEnergyReset(self, moduleID, portnumber=1): guid = 10051 valDef = self._guidTable[guid] data = self._parent.client.setAttribute( moduleID, guid, convert.value2bin(1, valDef), portnumber) return self._parent.getObjectFromData(data, valDef, setter=True) # Attribute 'MinTemperatureWarning' GUID 10052 Data type # TYPE_SIGNED_NUMBER def getMinTemperatureWarning(self, moduleID): guid = 10052 portnumber = 0 length = 1 valDef = self._guidTable[guid] data = self._parent.client.getAttribute( moduleID, guid, portnumber, length) return self._parent.getObjectFromData(data, valDef, count=length) def setMinTemperatureWarning(self, moduleID, value): guid = 10052 portnumber = 0 valDef = self._guidTable[guid] data = self._parent.client.setAttribute( moduleID, guid, convert.value2bin(value, valDef), portnumber) return self._parent.getObjectFromData(data, valDef, setter=True) # Attribute 'MaxTemperatureWarning' GUID 10053 Data type # TYPE_SIGNED_NUMBER def getMaxTemperatureWarning(self, moduleID): guid = 10053 portnumber = 0 length = 1 valDef = self._guidTable[guid] data = self._parent.client.getAttribute( moduleID, guid, portnumber, length) return self._parent.getObjectFromData(data, valDef, count=length) def setMaxTemperatureWarning(self, moduleID, value): guid = 10053 portnumber = 0 valDef = self._guidTable[guid] data = self._parent.client.setAttribute( moduleID, guid, convert.value2bin(value, valDef), portnumber) return self._parent.getObjectFromData(data, valDef, setter=True) # Attribute 'Startuptime' GUID 10066 Data type TYPE_UNSIGNED_NUMBER def getStartuptime(self, moduleID): guid = 10066 portnumber = 0 length = 1 valDef = self._guidTable[guid] data = self._parent.client.getAttribute( moduleID, guid, portnumber, length) return self._parent.getObjectFromData(data, valDef, count=length) # Attribute 'PowerCycleTime' GUID 10099 Data type TYPE_UNSIGNED_NUMBER # The time that power will be switched off when power cycle is started def getPowerCycleTime(self, moduleID, portnumber=1, length=1): guid = 10099 valDef = self._guidTable[guid] data = self._parent.client.getAttribute( moduleID, guid, portnumber, length) return self._parent.getObjectFromData(data, valDef, count=length) def setPowerCycleTime(self, moduleID, value, portnumber=1, ): guid = 10099 valDef = self._guidTable[guid] data = self._parent.client.setAttribute( moduleID, guid, convert.value2bin(value, valDef), portnumber) return self._parent.getObjectFromData(data, valDef, setter=True) # Attribute 'JumpBoot' GUID 40000 Data type TYPE_COMMAND # Enter bootloader mode. Normally this command is only sent to application # program. When the bootloader is already running, this command will only # reply a positive acknowledge. def getJumpBoot(self, moduleID): guid = 40000 portnumber = 0 length = 1 valDef = self._guidTable[guid] data = self._parent.client.getAttribute( moduleID, guid, portnumber, length) return self._parent.getObjectFromData(data, valDef, count=length) def setJumpBoot(self, moduleID, value): guid = 40000 portnumber = 0 valDef = self._guidTable[guid] data = self._parent.client.setAttribute( moduleID, guid, convert.value2bin(value, valDef), portnumber) return self._parent.getObjectFromData(data, valDef, setter=True) # Attribute 'GotoFactoryMode' GUID 40002 Data type TYPE_COMMAND def setGotoFactoryMode(self, moduleID, value): guid = 40002 portnumber = 0 valDef = self._guidTable[guid] data = self._parent.client.setAttribute( moduleID, guid, convert.value2bin(value, valDef), portnumber) return self._parent.getObjectFromData(data, valDef, setter=True) # Attribute 'ApparentPower' GUID 15 Data type TYPE_UNSIGNED_NUMBER # Apparent power (this is the product of the current and the voltage) def getApparentPower(self, moduleID, portnumber=1, length=1): guid = 15 valDef = self._guidTable[guid] data = self._parent.client.getAttribute( moduleID, guid, portnumber, length) return self._parent.getObjectFromData(data, valDef, count=length) # Attribute 'ModInfo' GUID 40008 Data type TYPE_COMMAND def getModInfo(self, moduleID): guid = 40008 portnumber = 0 length = 1 valDef = self._guidTable[guid] data = self._parent.client.getAttribute( moduleID, guid, portnumber, length) return self._parent.getObjectFromData(data, valDef, count=length) # Attribute 'PowerFactor' GUID 16 Data type TYPE_UNSIGNED_NUMBER # Powerfactor def getPowerFactor(self, moduleID, portnumber=1, length=1): guid = 16 valDef = self._guidTable[guid] data = self._parent.client.getAttribute( moduleID, guid, portnumber, length) return self._parent.getObjectFromData(data, valDef, count=length) # Attribute 'MinCurrent' GUID 5010 Data type TYPE_UNSIGNED_NUMBER_WITH_TS # Minimum port current occurred since last reset def getMinCurrent(self, moduleID, portnumber=1, length=1): guid = 5010 valDef = self._guidTable[guid] data = self._parent.client.getAttribute( moduleID, guid, portnumber, length) return self._parent.getObjectFromData(data, valDef, count=length) # Attribute 'MinPower' GUID 5011 Data type TYPE_UNSIGNED_NUMBER_WITH_TS # Minimum port power occured since last reset def getMinPower(self, moduleID, portnumber=1, length=1): guid = 5011 valDef = self._guidTable[guid] data = self._parent.client.getAttribute( moduleID, guid, portnumber, length) return self._parent.getObjectFromData(data, valDef, count=length) # Attribute 'MinPowerFactor' GUID 5012 Data type TYPE_UNSIGNED_NUMBER_WITH_TS # Minimum powerfactor occured per port since last reset def getMinPowerFactor(self, moduleID, portnumber=1, length=1): guid = 5012 valDef = self._guidTable[guid] data = self._parent.client.getAttribute( moduleID, guid, portnumber, length) return self._parent.getObjectFromData(data, valDef, count=length) # Attribute 'MaxPowerFactor' GUID 5013 Data type TYPE_UNSIGNED_NUMBER_WITH_TS # Maximum powerfactor occured per port since last reset def getMaxPowerFactor(self, moduleID, portnumber=1, length=1): guid = 5013 valDef = self._guidTable[guid] data = self._parent.client.getAttribute( moduleID, guid, portnumber, length) return self._parent.getObjectFromData(data, valDef, count=length) # Attribute 'BootJumpApp' GUID 60001 Data type TYPE_COMMAND # Jump to the application, which starts at 0x4000. def setBootJumpApp(self, moduleID, value): guid = 60001 portnumber = 0 valDef = self._guidTable[guid] data = self._parent.client.setAttribute( moduleID, guid, convert.value2bin(value, valDef), portnumber) return self._parent.getObjectFromData(data, valDef, setter=True) # Attribute 'TotalCurrent' GUID 17 Data type TYPE_UNSIGNED_NUMBER # Total current def getTotalCurrent(self, moduleID): guid = 17 portnumber = 0 length = 1 valDef = self._guidTable[guid] data = self._parent.client.getAttribute( moduleID, guid, portnumber, length) return self._parent.getObjectFromData(data, valDef, count=length) # Attribute 'TotalRealPower' GUID 18 Data type TYPE_UNSIGNED_NUMBER # Total real power def getTotalRealPower(self, moduleID): guid = 18 portnumber = 0 length = 1 valDef = self._guidTable[guid] data = self._parent.client.getAttribute( moduleID, guid, portnumber, length) return self._parent.getObjectFromData(data, valDef, count=length) # Attribute 'TotalApparentPower' GUID 19 Data type TYPE_UNSIGNED_NUMBER # Total apparent power def getTotalApparentPower(self, moduleID): guid = 19 portnumber = 0 length = 1 valDef = self._guidTable[guid] data = self._parent.client.getAttribute( moduleID, guid, portnumber, length) return self._parent.getObjectFromData(data, valDef, count=length) # Attribute 'TotalActiveEnergy' GUID 20 Data type TYPE_UNSIGNED_NUMBER # Total active energy def getTotalActiveEnergy(self, moduleID): guid = 20 portnumber = 0 length = 1 valDef = self._guidTable[guid] data = self._parent.client.getAttribute( moduleID, guid, portnumber, length) return self._parent.getObjectFromData(data, valDef, count=length) # Attribute 'TotalApparentEnergy' GUID 21 Data type TYPE_UNSIGNED_NUMBER # Total apparent energy def getTotalApparentEnergy(self, moduleID): guid = 21 portnumber = 0 length = 1 valDef = self._guidTable[guid] data = self._parent.client.getAttribute( moduleID, guid, portnumber, length) return self._parent.getObjectFromData(data, valDef, count=length) # Attribute 'TotalPowerFactor' GUID 22 Data type TYPE_UNSIGNED_NUMBER # Total power factor def getTotalPowerFactor(self, moduleID): guid = 22 portnumber = 0 length = 1 valDef = self._guidTable[guid] data = self._parent.client.getAttribute( moduleID, guid, portnumber, length) return self._parent.getObjectFromData(data, valDef, count=length) # Attribute 'MinTotalCurrent' GUID 5014 Data type TYPE_UNSIGNED_NUMBER_WITH_TS # Minimum port current occurred since last reset def getMinTotalCurrent(self, moduleID): guid = 5014 portnumber = 0 length = 1 valDef = self._guidTable[guid] data = self._parent.client.getAttribute( moduleID, guid, portnumber, length) return self._parent.getObjectFromData(data, valDef, count=length) # Attribute 'MinTotalPower' GUID 5015 Data type TYPE_UNSIGNED_NUMBER_WITH_TS # Minimum port power occurred since last reset def getMinTotalPower(self, moduleID): guid = 5015 portnumber = 0 length = 1 valDef = self._guidTable[guid] data = self._parent.client.getAttribute( moduleID, guid, portnumber, length) return self._parent.getObjectFromData(data, valDef, count=length) # Attribute 'MinTotalPowerFactor' GUID 5016 Data type TYPE_UNSIGNED_NUMBER_WITH_TS # Minimum total power factor occurred since last reset def getMinTotalPowerFactor(self, moduleID): guid = 5016 portnumber = 0 length = 1 valDef = self._guidTable[guid] data = self._parent.client.getAttribute( moduleID, guid, portnumber, length) return self._parent.getObjectFromData(data, valDef, count=length) # Attribute 'MaxTotalPowerFactor' GUID 5017 Data type TYPE_UNSIGNED_NUMBER_WITH_TS # Maximum total power factor occurred since last reset def getMaxTotalPowerFactor(self, moduleID): guid = 5017 portnumber = 0 length = 1 valDef = self._guidTable[guid] data = self._parent.client.getAttribute( moduleID, guid, portnumber, length) return self._parent.getObjectFromData(data, valDef, count=length) # Attribute 'ActiveTotalEnergyReset' GUID 10071 Data type TYPE_UNSIGNED_NUMBER_WITH_TS # Active Total Energy / time of reset + value at that time def doActiveTotalEnergyReset(self, moduleID): guid = 10071 portnumber = 0 valDef = self._guidTable[guid] data = self._parent.client.setAttribute( moduleID, guid, convert.value2bin(1, valDef), portnumber) return self._parent.getObjectFromData(data, valDef, setter=True) # Attribute 'ApparentTotalEnergyReset' GUID 10072 Data type TYPE_UNSIGNED_NUMBER_WITH_TS # Apparent Total Energy / time of reset + value at that time def doApparentTotalEnergyReset(self, moduleID): guid = 10072 portnumber = 0 valDef = self._guidTable[guid] data = self._parent.client.setAttribute( moduleID, guid, convert.value2bin(1, valDef), portnumber) return self._parent.getObjectFromData(data, valDef, setter=True) # Attribute 'MonitorAutoRefresh' GUID 50010 Data type TYPE_POINTER # Get the monitor values from the
"Playback speed\n", "\n", "Unmute\n", "\n", "Turn fullscreen on\n", "likeloveinsightful\n", "9,044\n", "<NAME> and 9,043 others\n", "257 comments\n", "\n", "Like\n", "\n", "Comment\n", "\n", "Share\n", "\n", "Send\n", "Feed post number 1\n", "Larange’s profile photo\n", "<NAME> likes this\n", "\n", "<NAME>\n", "<NAME>\n", "• 2nd\n", "Research Scientist at Google DeepMind • Advisor at AlphaSignal.ai\n", "1d • Edited • 1 day ago\n", "Follow\n", "Hi all!\n", "We're currently looking for a part time (4 hours/week) Computer Science PhD or Masters student to help us at https://alphasignal.ai\n", "\n", "A few criteria:\n", "-Must be between timezones GMT+5 (India) to GMT+9 (Japan).\n", "-Published at least one research paper in Machine Learning.\n", "-Has some familiarity with Pytorch, Tensorflow.\n", "-Knows the difference between RNN, CNN, LSTM, GANs.\n", "-Familiarity with Deep Learning terms.\n", "-Knows about Meta AI, Deepmind, Google AI, OpenAI and other big players.\n", "\n", "That's it!\n", "If you know a student who fits the role send it my way :)\n", "\n", "It's definitely a resume-booster.\n", "…see more\n", "likesupportcurious\n", "432\n", "<NAME> and 431 others\n", "102 comments\n", "\n", "Like\n", "\n", "Comment\n", "\n", "Share\n", "\n", "Send\n", "Feed post number 2\n", "<NAME> and <NAME> follow Spot by NetApp\n", "\n", "Spot by NetApp\n", "Spot by NetApp\n", "11,440 followers\n", "Promoted\n", "Download our free digital guide to Microsoft Azure. Learn best practices for architecting and managing efficient, scalable cloud infrastructure built to accelerate your business\n", "…see more\n", "\n", "Getting Started with Azure Cloud Infrastructure – Get the PDF Guide\n", "get.spot.io\n", "\n", "Download. View Sponsored Content\n", "Download\n", "like\n", "30\n", "\n", "Like\n", "\n", "Comment\n", "\n", "Share\n", "\n", "Send\n", "\n", "Be the first to comment on this\n", "\n", "Feed post number 3\n", "Everest’s profile photo\n", "Everest K.C. likes this\n", "\n", "<NAME>\n", "<NAME>\n", "• 2nd\n", "System Administrator\n", "6h • Edited • 6 hours ago\n", "<NAME> is an extremely experienced DevOps engineer. He has an intelligent teaching method, Start teaching from the very basics to taking to a stage where you build real-world solutions and debug challenges. The designed labs were great and worked as expected without a hitch. Thanks, owlocular to give me this certificate.\n", "…see more\n", "Your document has finished loading\n", "likecelebratelove\n", "6\n", "Everest K.C. and 5 others\n", "1 comment\n", "\n", "Like\n", "\n", "Comment\n", "\n", "Share\n", "\n", "Send\n", "Feed post number 4\n", "Lalit’s profile photo\n", "<NAME> commented on this\n", "\n", "<NAME>\n", "<NAME>\n", "• 3rd+\n", "Commissioning Manager - Process | Commissioning Expert | Troubleshooting Expert for O&M|\n", "20h • 20 hours ago\n", "Riyadh AldhaleaiStatus is reachable\n", "Riy<NAME>\n", "• 3rd+\n", "Manager -Manpower Services at AlMansoori Specialized Engineering\n", "3d • 3 days ago\n", "Follow\n", "small test for your focus\n", "whats is the Number inside the circle?\n", "\n", "Image previewActivate to view larger image\n", "like\n", "4\n", "18 comments\n", "\n", "Like\n", "\n", "Comment\n", "\n", "Share\n", "\n", "Send\n", "<NAME>\n", "\n", "\n", "\n", "Open Emoji Keyboard\n", "\n", "Current selected sort order is Most relevant\n", "Most relevant\n", "See profile for Lalit SharmaStatus is reachable\n", "L<NAME>\n", " 1st degree connection1st\n", "Team Leader cum Senior Highway Engineer\n", "1h\n", "45283\n", "\n", "\n", "Like\n", "\n", "Reply\n", "\n", "Load more comments\n", "Feed post number 5\n", "Sammeer’s profile photo\n", "<NAME> loves this\n", "\n", "<NAME>, Ph.D\n", "<NAME>, Ph.D\n", "• 2nd\n", "Social Media Marketing|Please click FOLLOW button for the latest development in Civil Engineering || 230K+ Followers ||\n", "23h • 23 hours ago\n", "Follow\n", " What Causes Breakdowns in Traffic Flow?\n", "\n", "The layman's definition of congestion is \"too many cars trying to use a highway at the same time\". Transportation engineers formalize this idea as capacity—the ability to move vehicles past a point over a given span of time. When the capacity of a highway section is exceeded, traffic flow breaks down, speeds drop, and vehicles crowd together. These actions cause traffic to back up behind the disruption.\n", "\n", "Basically, there are three types of traffic flow behavior that will cause traffic flow to break down:\n", "\n", "1- \"Bunching\" of vehicles as a result of reduced speed.\n", "2- Intended Interruption to Traffic Flow.\n", "3- Vehicle Merging Maneuvers. \n", "\n", "With all this information, I believe this dog got the concept and found the solution better than me as a Highway engineer ;)\n", "\n", "If you found the content informative, you may Follow me by <NAME>, Ph.D for more!\n", "\n", "Video Credit: IG @ earthdixe\n", ".......................................................................\n", "All rights and credits are reserved to the respective owner(s). If you are the main copyright owner rather than the one mentioned here of this content, contact me to claim credit or content removal.\n", "\n", "Check out #mehrtashsoltani for educational and practical content in civil engineering!\n", "…see more\n", "\n", "Pause\n", "Back to start of video\n", "Skip back 10 seconds\n", "Skip ahead 10 seconds\n", "Current time 0:04/Duration 0:18\n", " \n", "1x\n", "\n", "Playback speed\n", "\n", "Unmute\n", "\n", "Turn fullscreen on\n", "likelovecelebrate\n", "3,781\n", "<NAME> and 3,780 others\n", "178 comments\n", "\n", "Like\n", "\n", "Comment\n", "\n", "Share\n", "\n", "Send\n", "Feed post number 6\n", "Supermetrics\n", "Supermetrics\n", "13,205 followers\n", "Promoted\n", "\n", "Supermetrics has been listed on G2 as the highest rated marketing data pipeline company of 2022.\n", "\n", "Over 17,000 companies already use Supermetrics to streamline marketing reports.\n", "\n", "Join our happy customers and start your free trial today!\n", "…see more\n", "\n", "Start your free trial today\n", "supermetrics.comRegister. View Sponsored Content\n", "Register\n", "likelove\n", "61\n", "1 comment\n", "\n", "Like\n", "\n", "Comment\n", "\n", "Share\n", "\n", "Send\n", "Feed post number 7\n", "Samundra’s profile photo\n", "<NAME> loves this\n", "\n", "<NAME>\n", "<NAME>\n", "• 2nd\n", "Here to write. If it goes viral, it's not because of me. It's because it's true.\n", "3d • 3 days ago\n", "Follow\n", "\n", "No alternative text description for this imageActivate to view larger image\n", "likelovecelebrate\n", "68,665\n", "<NAME> and 68,664 others\n", "1,154 comments\n", "\n", "Like\n", "\n", "Comment\n", "\n", "Share\n", "\n", "Send\n", "\n", "Show more results\n", "Add to your feed\n", "\n", "National Association of REALTORS®;<EMAIL> \n", "National Association of REALTORS®\n", "Company • Real Estate\n", "\n", "Follow\n", "<NAME>\n", "<NAME>\n", "Bestselling Author | Host of the Women & Money Podcast | Co-Founder of SecureSave\n", "\n", "Follow\n", "National Association of Home Builders\n", "National Association of Home Builders\n", "Company • Construction\n", "\n", "Follow\n", "View all recommendations \n", "\n", "About\n", "Accessibility\n", "Help Center\n", "\n", "Privacy & Terms \n", "Ad Choices\n", "Advertising\n", "\n", "Business Services \n", "Get the LinkedIn app\n", "More\n", " LinkedIn Corporation © 2022 <EMAIL> \n", "<NAME>Status is online\n", "MessagingYou are on the messaging overlay. Press enter to open the list of conversations.\n", "\n", "\n", "Compose message\n", "\n", "You are on the messaging overlay. Press enter to open the list of conversations.\n", "\n" ] } ], "source": [ "\n", "f = open(\"C:\\\\Users\\\\super\\Downloads\\\\Week 1 Test\\\\websiteData.txt\", \"r\", encoding=\"utf8\")\n", "print(f.read())" ] }, { "cell_type": "code", "execution_count": 67, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "['<EMAIL>']\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "['<EMAIL>']\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "['<EMAIL>']\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "['<EMAIL>']\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n", "[]\n",
import discord from discord.ext import commands from discord.ext.commands.cooldowns import BucketType from discord.ext.commands import bot, has_permissions, CheckFailure from discord import Spotify import asyncio import colorsys import random import platform from discord import Game, Embed, Color, Status, ChannelType from discord import Spotify import feedparser from subprocess import check_output import os import functools import time import datetime from datetime import date from datetime import datetime as datetime1 import sqlite3 from io import BytesIO import requests from babel.numbers import format_currency from babel.numbers import format_number import locale import spotipy from spotipy.oauth2 import SpotifyClientCredentials import json import pytz from pytz import timezone class Entertainment(commands.Cog): def __init__(self, client): self.client = client @commands.Cog.listener() async def on_ready(self): print('Entertainment is loaded') @commands.command(pass_context=True) async def movie(self, ctx, *, name:str=None): await ctx.trigger_typing() url = f"http://www.omdbapi.com/?s={name}&apikey=<KEY>" data = requests.get(url).json() if data['Response'] == "False": await ctx.send("Oh no! There isn't any movie(s) with this name in the database.") else: count = str(data['Search']).count('Title') titles = list(data['Search'][x]['Title'] for x in range(count)) years = list(data['Search'][x]['Year'] for x in range(count)) list3 = list("%d. %s" % (n, a) for n, a in enumerate(titles, start=1)) list1 = list("{} ({})".format(title, year) for title, year in zip(list3, years)) list2 = '\n'.join(list1) await ctx.send(f"Here are the results for your search:\n\n{list2}\n\nEnter the number of the movie to get more details. You've got 15 seconds to enter your option.") try: num = await self.client.wait_for('message', check=lambda message: message.author == ctx.author, timeout=15) num2 = int(num.content) movieid = data['Search'][num2-1]['imdbID'] url = "http://www.omdbapi.com/?i={}&apikey=4210fd67&plot=full".format(movieid) x = requests.get(url).json() plot = x['Plot'] embed=discord.Embed(title =x['Title'], description = "Here is your movie {}".format(ctx.message.author.name), color = ctx.author.color) if x["Poster"] != "N/A": embed.set_thumbnail(url = x["Poster"]) """imdb = x['Ratings'][0]['Value']""" """rotten = x['Ratings'][1]['Value']""" if len(plot) > 1024: url2 = "http://www.omdbapi.com/?t={}&apikey=4210fd67&plot=short".format(movieid) x = requests.get(url2).json() plot = x['Plot'] else: plot = plot count1 = str(x["Ratings"]).count("Value") if x['Ratings'] ==[]: metacritic = "N/A" imdb = "N/A" rotten = "N/A" elif 'Rotten Tomatoes' and "Metacritic" not in x['Ratings']: rotten = "N/A" metacritic = "N/A" imdb = x['Ratings'][0]['Value'] elif "Metacritic" not in x['Ratings']: imdb = x['Ratings'][0]['Value'] rotten = x['Ratings'][1]['Value'] metacritic = "N/A" else: metacritic = x['Ratings'][2]['Value'] imdb = x['Ratings'][0]['Value'] rotten = x['Ratings'][1]['Value'] embed.add_field(name = "__Title__", value = x["Title"]) embed.add_field(name = "__Released__", value = x["Released"]) embed.add_field(name = "__Rated__", value = x["Rated"]) embed.add_field(name = "__Runtime__", value = x["Runtime"]) embed.add_field(name = "__Genre__", value = x["Genre"]) embed.add_field(name = "__Director__", value = x["Director"]) embed.add_field(name = "__Writer__", value = x["Writer"]) embed.add_field(name = "__Actors__", value = x["Actors"]) embed.add_field(name = "__Plot__", value = plot) embed.add_field(name = "__Countries__", value = x["Country"]) embed.add_field(name = "__Language(s) Used__", value = x["Language"]) embed.add_field(name = "__IMDB Votes__", value = x["imdbVotes"]) embed.add_field(name = f"__IMDB Rating__", value = imdb) embed.add_field(name = f"__Rotten Tomatoes__", value = rotten) embed.add_field(name = f'__Metacritics__', value = metacritic) embed.add_field(name = "__Awards__", value = x['Awards']) embed.add_field(name = "__Box Office__", value = x['BoxOffice']) embed.add_field(name = "__DVD Release__", value = x["DVD"]) embed.add_field(name = "__Production__", value = x["Production"]) embed.add_field(name = "__Website__", value = x["Website"]) embed.add_field(name = "__Type__", value = x["Type"]) embed.timestamp = datetime.datetime.utcnow() embed.set_footer(text = "Information from the OMDB API") await ctx.trigger_typing() await ctx.send(embed=embed) except asyncio.TimeoutError: await ctx.send("Oh No! Timeout expired. Please execute the command once again.") @commands.command(pass_context=True) async def spotify(self, ctx): local_tz = pytz.timezone('Asia/Calcutta') user = ctx.author for activity in user.activities: if isinstance(activity, Spotify): client_id = "3de4994a8c99485ab153804b7cfa6ff4" client_secret = "<KEY>" client_credentials_manager = SpotifyClientCredentials(client_id=client_id, client_secret=client_secret) sp = spotipy.Spotify(client_credentials_manager=client_credentials_manager) result = sp.track(activity.track_id) release_date = result['album']['release_date'] explicit = result['explicit'] embed = discord.Embed(description="**React to :thumbsup: in 20 seconds to get the song's lyrics into your DMs**") embed.add_field(name="Artist(s)", value=", ".join(activity.artists)) embed.add_field(name="Album", value=activity.album) embed.add_field(name="Track ID", value=activity.track_id) embed.add_field(name="Release date", value = release_date) embed.add_field(name="Explicit", value= explicit) embed.add_field(name="Duration", value=str(activity.duration)[3:].split(".", 1)[0]) embed.add_field(name="Song started at", value=activity.start.astimezone(local_tz).strftime("%d-%m-%Y %I:%M %p %Z")) embed.add_field(name="Song ending at", value=activity.end.astimezone(local_tz).strftime("%d-%m-%Y %I:%M %p %Z")) embed.title = "**{}**".format(activity.title) embed.set_thumbnail(url=activity.album_cover_url) embed.url = "https://open.spotify.com/track/{}".format(activity.track_id) embed.color = activity.color embed.set_footer(text="{} - is currently playing this song".format(ctx.author)) messaage = await ctx.send(embed=embed) await messaage.add_reaction(emoji="👍") await asyncio.sleep(2) artist = ", ".join(activity.artists) try: reaction, user = await self.client.wait_for('reaction_add', check=lambda reaction, user: reaction.emoji == '👍', timeout=20) con = f"{activity.title} {artist}" address = f"https://some-random-api.ml/lyrics?title={con}" data = requests.get(address).json() if 'error' in data: await ctx.send(f"**{data['error']}**") elif data['author'] in activity.artist: lyrics = data['lyrics'] if len(lyrics) < 2048: for chunk in [lyrics[i:i+2000] for i in range(0, len(lyrics), 2000)]: embed = discord.Embed(title=data['author'], description=f"{chunk} \n [Source website]({data['links']['genius']})", color=0XFF69BF) embed.set_author(name=data['title'], url=data['thumbnail']['genius']) embed.set_thumbnail(url=data['thumbnail']['genius']) embed.timestamp = datetime.datetime.utcnow() await ctx.send(f"**{ctx.author.name},** The lyrics of **{data['author']} - {data['title']}** is sent to your DM please check your DM's...") await ctx.author.send(embed=embed) else: await ctx.send(f"**{ctx.author.name},** The lyrics of **{data['author']} - {data['title']}** is sent to your DM please check your DM's...") for chunk in [lyrics[i:i+2000] for i in range(0, len(lyrics), 2000)]: await ctx.author.send(chunk) else: await ctx.send("**Sorry, I could'nt find the lyrics of this song...**") except asyncio.TimeoutError: return @commands.command(pass_context=True) async def lyrics(self, ctx, *, track:str=None): address = f"https://some-random-api.ml/lyrics?title={track}" data = requests.get(address).json() if 'error' in data: await ctx.send(f"**{data['error']}**") else: lyrics = data['lyrics'] if len(lyrics) < 2048: for chunk in [lyrics[i:i+2000] for i in range(0, len(lyrics), 2000)]: embed = discord.Embed(title=data['title'], description=f"{chunk}", color=ctx.author.color) embed.set_author(name=data['author'], url=data['thumbnail']['genius']) embed.url = data['links']['genius'] embed.set_thumbnail(url=data['thumbnail']['genius']) embed.timestamp = datetime.datetime.utcnow() await ctx.send(f"**{ctx.author.name},** The lyrics of **{data['author']} - {data['title']}** is sent to your DM please check your DM's...") await ctx.author.send(embed=embed) else: await ctx.send(f"**{ctx.author.name},** The lyrics of **{data['author']} - {data['title']}** is sent to your DM please check your DM's...") for chunk in [lyrics[i:i+2000] for i in range(0, len(lyrics), 2000)]: await ctx.author.send(chunk) @commands.command(pass_context=True) async def anime(self, ctx, *, name:str = None): api_address = f"https://kitsu.io/api/edge/anime?filter[text]={name}" data = requests.get(api_address).json() url = data['data'][0]['links']['self'] data2 = requests.get(url).json() end_date = data2['data']['attributes']['endDate'] synopsis = data2['data']['attributes']['synopsis'] if len(synopsis) > 1024: synopsis = "Oh no! The length of synopsis is very large, I can't print it here" else: synopsis = synopsis if end_date == None: end_date = "Not finished yet" else: end_date = end_date ytlink = data2['data']['attributes']['youtubeVideoId'] await ctx.trigger_typing() embed = discord.Embed(title="Here's the anime show that you've searched for...", color=ctx.author.color) embed.add_field(name="Name", value=f"{data2['data']['attributes']['titles']['en'] } ({data2['data']['attributes']['titles']['ja_jp']})") embed.add_field(name="Synopsis", value=synopsis) embed.add_field(name="Average Rating", value=data2['data']['attributes']['averageRating']) embed.add_field(name="Start Date", value=data2['data']['attributes']['startDate']) embed.add_field(name="End Date", value=end_date) embed.add_field(name="Age Rating", value=data2['data']['attributes']['ageRating']) embed.add_field(name="Age Rating Guide", value=data2['data']['attributes']['ageRatingGuide']) embed.add_field(name="Type of Media", value=data2['data']['attributes']['subtype']) embed.add_field(name="Status", value=data2['data']['attributes']['status']) embed.set_thumbnail(url=data2['data']['attributes']['posterImage']['original']) embed.add_field(name="Episode Count", value=data2['data']['attributes']['episodeCount']) embed.add_field(name="Episode Length", value=data2['data']['attributes']['episodeLength']) embed.add_field(name="Youtube link", value=f"[Click here for trailer](https://www.youtube.com/watch?v={ytlink})") embed.add_field(name="NSFW", value=data2['data']['attributes']['nsfw']) embed.set_author(name=ctx.author.name, icon_url=ctx.author.avatar_url) embed.timestamp = datetime.datetime.utcnow() embed.set_footer(text=f"Requested By | {ctx.author.name}") await ctx.send(embed=embed) @commands.command(pass_context=True) async def series(self, ctx, *, name:str=None): url = f"http://api.tvmaze.com/search/shows?q={name}" data = requests.get(url).json() count = str(data).count('score') titles = list(data[x]['show']['name'] for x in range(count)) list1 = list("%d. %s" % (n, a) for n, a in enumerate(titles, start=1)) list2 = '\n'.join(list1) await ctx.send(f"Here are the results for your search: \n\n{list2}\n\nEnter the number of the movie to get more details. You've got 15 seconds to enter your option.") num = await self.client.wait_for("message", check=lambda message: message.author == ctx.author, timeout=15) try: num2 = int(num.content) seriesid = data[num2-1]['show']['id'] url = f"http://api.tvmaze.com/shows/{seriesid}?embed[]=cast&embed[]=akas&embed[]=seasons&embed[]=episodes&embed[]=crew" x = requests.get(url).json() seasons = str(x['_embedded']['seasons']).count('summary') episodes = str(x['_embedded']['episodes']).count('summary') name = x['name'] type = x['type'] language = x['language'] premiered = x['premiered'] if x['_embedded']['cast'] == []: cast = "N/A" else: castcount = str(x['_embedded']['cast']).count('gender') if castcount > 10: castcount = 10 else: castcount = castcount list1 = list(x['_embedded']['cast'][y]['person']['name'] for y in range(castcount)) list2 = list(x['_embedded']['cast'][y]['character']['name'] for y in range(castcount)) list3 = list("{} ({})".format(name, character) for name, character in zip(list1, list2)) cast = ", ".join(list3) if x['_embedded']['crew'] == []: crew = "N/A" else: crewcount = str(x['_embedded']['crew']).count('gender') if crewcount > 10: crewcount = 10 else: crewcount = crewcount list1 = list(x['_embedded']['crew'][y]['person']['name'] for y in range(crewcount)) list2 = list(x['_embedded']['crew'][y]['type'] for y in range(crewcount)) list3 = list("{} ({})".format(name, role) for name, role in zip(list1, list2)) crew = ", ".join(list3) if x['_embedded']['akas'] == []: akas = "N/A" else: akascount = str(x['_embedded']['akas']).count('country') if akascount > 10: akascount = 10 else: akascount = akascount list1 = list(x['_embedded']['akas'][y]['name'] for y in range(akascount)) """list2 = list(x['_embedded']['akas'][y]['country']['name'] for y in range(akascount)) list3 = list("{} ({})". format(name, country) for name, country in zip(list1, list2))""" akas = " ,".join(list1) if x['genres'] == []: genres = "N/A" else: genres = ", ".join(x['genres']) summary = x['summary'].replace("<p>", "").replace("</p>", "").replace("<b>", "").replace("</b>", "").replace("<i>", "").replace("</i>", "") if len(summary) > 1024: summary = "Oh no! The summary is too large to post here." status = x['status'] runtime = x['runtime'] averageruntime = x['averageRuntime'] officialsite = x['officialSite'] if x['schedule']['time'] == "": time = "N/A" else: time = x['schedule']['time'] if x['schedule']['days'] == []: days = "N/A"
= cap.read() padding_size = 0 resized_width = 1360 video_size = (resized_width, int(img_bgr.shape[0] * resized_width // img_bgr.shape[1])) output_size = (resized_width, int(img_bgr.shape[0] * resized_width // img_bgr.shape[1] + padding_size * 2)) fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v') writer = cv2.VideoWriter('result/'+ session["third"] +'.mp4', fourcc, cap.get(cv2.CAP_PROP_FPS), output_size) m=-1 i=1 s=0 c=1 while True: ret, img_bgr = cap.read() if not ret: break img_bgr = cv2.resize(img_bgr, video_size) img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB) dets = detector(img_bgr, 1) for k, d in enumerate(dets): shape = sp(img_rgb, d) face_descriptor = facerec.compute_face_descriptor(img_rgb, shape) last_found = {'name': 'unknown', 'dist': de, 'color': (0,0,255),'percent': 0} for name, saved_desc in descs.items(): dist = np.linalg.norm([face_descriptor] - saved_desc, axis=1) if dist < last_found['dist']: perce = (1-dist)*100 last_found = {'name': "Target", 'dist': dist, 'color': (255,255,255), 'percent': perce} if dist< c: c=dist if m == -1: s = i m=0 cv2.rectangle(img_bgr, pt1=(d.left(), d.top()), pt2=(d.right(), d.bottom()), color=last_found['color'], thickness=2) cv2.putText(img_bgr, last_found['name'] + " (" + str(last_found['percent']) + "%)" , org=(d.left(), d.top()), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=last_found['color'], thickness=2) i=i+1 writer.write(img_bgr) cv2.imshow('img', img_bgr) if cv2.waitKey(1) == ord('q'): break cap.release() writer.release() maxacc = (1-c)*100 print(maxacc) time = convert(s/24) print(convert(s/24)) count = Count.query.filter_by(id = 1).first() count.Total_Real = count.Total_Real + 1 db.session.add(count) db.session.commit() flash("You have successfully Processed the Video",'success3') return redirect(url_for('thirddashboard')) else: print("Error") exit() else: return redirect(url_for('relogin')) #end #admin page @app.route('/Admin') def admindashboard(): if "admin" in session: user = session["admin"] admin = Admin.query.filter_by(usr_name = session["admin"]).first() return render_template('admin/dashboard.html',user=user,admin=admin) else: return redirect(url_for('relogin')) @app.route('/Admin/user') def user(): if "admin" in session: user = session["admin"] ordinary = (db.session.query(Ordinary).filter(Ordinary.usr_name == Other.usr_name).join(Other,Other.admin_approval == 'no')).all() authority = (db.session.query(Authority).filter(Authority.usr_name == Other.usr_name).join(Other,Other.admin_approval == 'no')).all() admin = Admin.query.filter_by(usr_name = session["admin"]).first() return render_template('admin/user.html',ordinary = ordinary,authority = authority,user=user,admin=admin) else: return redirect(url_for('relogin')) @app.route('/Admin/user/verify/<path:username>/<path:value>') def verify(username,value): if "admin" in session: user = session["admin"] print(username) result = value print(result) verify = Other.query.filter_by(usr_name = username).first() if result == 'accept': verify.admin_approval = 'accept' verify.admin_id = 'Surej' db.session.add(verify) db.session.commit() flash('Verified successfully') return redirect(url_for('user',user=user)) elif result == 'reject': verify.admin_approval = 'reject' verify.admin_id = 'Surej' db.session.add(verify) db.session.commit() flash('Verified successfully') return redirect(url_for('user',user=user)) else: return redirect(url_for('relogin')) @app.route('/Admin/process') def process(): if "admin" in session: user = session["admin"] succ = Other.query.filter_by(third_party_pending_order ='yes' ).all() fail = Other.query.filter_by(third_party_pending_order ='reject' ).all() processed = Other.query.filter_by(no_of_video_request = 2 ).all() admin = Admin.query.filter_by(usr_name = session["admin"]).first() print(succ) print(fail) print(processed) return render_template('admin/process.html',succ = succ ,fail = fail ,processed = processed ,user=user,admin=admin) else: return redirect(url_for('relogin')) @app.route('/Admin/processing/<path:uname>') def processing(uname): if "admin" in session: descs = np.load('third_image/'+ uname +'.npy',allow_pickle=True)[()] video_path = 'third_video/'+ uname + '.mp4' print(video_path) cap = cv2.VideoCapture(video_path) if not cap.isOpened(): flash('Video cannot Open','error') print("Video cannot Open") return redirect(url_for('process')) _, img_bgr = cap.read() padding_size = 0 resized_width = 1920 video_size = (resized_width, int(img_bgr.shape[0] * resized_width // img_bgr.shape[1])) output_size = (resized_width, int(img_bgr.shape[0] * resized_width // img_bgr.shape[1] + padding_size * 2)) fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v') writer = cv2.VideoWriter('result/'+ uname +'.mp4', fourcc, cap.get(cv2.CAP_PROP_FPS), output_size) m=-1 i=1 s=0 c=1 while True: ret, img_bgr = cap.read() if not ret: break img_bgr = cv2.resize(img_bgr, video_size) img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB) dets = detector(img_bgr, 1) for k, d in enumerate(dets): shape = sp(img_rgb, d) face_descriptor = facerec.compute_face_descriptor(img_rgb, shape) last_found = {'name': 'unknown', 'dist': de, 'color': (0,0,255),'percent': 0} for name, saved_desc in descs.items(): dist = np.linalg.norm([face_descriptor] - saved_desc, axis=1) if dist < last_found['dist']: perce = (1-dist)*100 last_found = {'name': "Target", 'dist': dist, 'color': (255,255,255), 'percent': perce} if dist< c: c=dist if m == -1: s = i m=0 cv2.rectangle(img_bgr, pt1=(d.left(), d.top()), pt2=(d.right(), d.bottom()), color=last_found['color'], thickness=2) cv2.putText(img_bgr, last_found['name'] + " (" + str(last_found['percent']) + "%)" , org=(d.left(), d.top()), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=last_found['color'], thickness=2) i=i+1 writer.write(img_bgr) cap.release() writer.release() maxacc = (1-c)*100 print(maxacc) time = convert(s/24) print(convert(s/24)) success = "You have successfully Processed the Video" send = Other.query.filter_by(usr_name = uname).first() send.third_party_issue_id = '' send.third_party_pending_order = '' send.third_party_response = '' send.date = '' send.start_time = '' send.end_time = '' send.no_of_video_request = 2 db.session.add(send) count = Count.query.filter_by(id = 1).first() count.Total_request = count.Total_request + 1 db.session.add(count) db.session.commit() flash('You have successfully processed the video','procc') return redirect(url_for('process')) else: return redirect(url_for('relogin')) @app.route('/Admin/Processed/result/<path:filename>', methods=['GET', 'POST']) def download4(filename): if "admin" in session: return send_from_directory(directory='result', filename=filename) else: return redirect(url_for('relogin')) @app.route('/third_video/<path:filename>', methods=['GET', 'POST']) def download3(filename): if "admin" in session: return send_from_directory(directory='third_video', filename=filename) else: return redirect(url_for('relogin')) @app.route('/ID_Proof/<path:filename>', methods=['GET', 'POST']) def download2(filename): if "admin" in session: user = session["admin"] return send_from_directory(directory='ID_Proof', filename=filename,user=user) else: return redirect(url_for('relogin')) @app.route('/Admin/third_party', methods=["GET","POST"]) def third(): if "admin" in session: user = session["admin"] all = db.session.query(Third.dept.distinct()).all() admin = Admin.query.filter_by(usr_name = session["admin"]).first() len1 = len(all) if request.method == "POST": dept = request.form['firstList'] new = request.form['secondList'] name = request.form['thirdList'] phone = request.form['phone'] mail1 = request.form['fourthList'] if dept == 'Other': dept = new exists = Third.query.filter_by(mail = mail1).first() if not exists: v1 = randint(0, 1000) v2 = randint(0, 1000) value = Count.query.filter_by(id = 1).first() uname = dept + '_' + str(value.Third_party+1) third_party_id = uname psw=str(v1)+name+str(v2) user = User(username=uname,password=<PASSWORD>,type='Third_party') register = Third(usr_name = uname, dept=dept, name=name, mail = mail1, phone=phone, third_party_id = third_party_id) count = Count.query.filter_by(id = 1).first() count.Third_party = count.Third_party + 1 db.session.add(user) db.session.add(register) db.session.add(count) db.session.commit() msg = Message('Welcome to Pinpoint Family', sender = '<EMAIL>', recipients = [mail1]) msg.html = '<h5>Hi,</h5><h3>You are addded as Third Party at PINPOINT.<br>Please login PINPOINT using following details</h3><h5> Your Username : {} <br> Password : {}<br><br> Happy to connect with u <BR> Thank you<h5>'.format(uname,psw) mail.send(msg) flash('A new Third Party added successfully','success') return render_template('admin/add_third.html',all = all, user=user,admin=admin) else: flash('Already Registered','error') if all != None: return render_template('admin/add_third.html',all = all,user=user,admin=admin) else: return render_template('admin/add_third.html',user=user,admin=admin) else: return redirect(url_for('relogin')) @app.route('/Admin/editprofile', methods=["POST"]) def editadmin(): if "admin" in session: if request.method == "POST": fname = request.form['fname'] lname = request.form['lname'] email = request.form['email'] phone = request.form['phone'] print(fname) print(lname) print(email) print(phone) admin = Admin.query.filter_by(usr_name = session["admin"]).first() print(admin) admin.fname = fname admin.lname = lname admin.mail = email admin.phone = phone db.session.add(admin) db.session.commit() flash("You have successfully updated your profile",'success') return redirect(url_for('admindashboard')) else: return redirect(url_for('relogin')) @app.route('/Admin/updatepassword', methods=["POST"]) def updateadminpass(): if "admin" in session: if request.method == 'POST': currentpass = request.form['oldpass'] newpassword = request.form['newpass'] confpassword = request.form['confpass'] if newpassword == confpassword: user = User.query.filter_by(username = session["admin"],password = currentpass).first() if user: if user.password == <PASSWORD>password: flash("You have Entered same Password, Try some other",'error') else: user.password = <PASSWORD> db.session.add(user) db.session.commit() flash("Successfully Changed Password",'success') else: flash("You Entered Wrong Password",'error') else: flash("New password is not matching",'error') return redirect(url_for('admindashboard')) else: return redirect(url_for('relogin')) @app.route('/Admin/editusername', methods=["POST"]) def edituseradmin(): if "admin" in session: if request.method == 'POST': currentuser = request.form['olduser'] newuser = request.form['newuser'] confuser = request.form['confuser'] if newuser == confuser: if currentuser == session["admin"]: user = User.query.filter_by(username = currentuser).first() if user: if User.query.filter_by(username = newuser).first(): flash("New Username Already exist, Try some other",'error') return redirect(url_for('admindashboard')) else: if user.username == newuser: flash("You have Entered same Username, Try some other",'error') return redirect(url_for('admindashboard')) else: if user.type == "Admin": ad = Admin.query.filter_by(usr_name = currentuser).first() ad.usr_name = newuser user.username = newuser db.session.add(user) db.session.add(ad) db.session.commit() session["admin"] = newuser flash("Successfully Changed Username",'success') return redirect(url_for('admindashboard')) else: flash("You Entered Wrong Username",'error') return redirect(url_for('admindashboard')) else: flash("You Entered Wrong Username",'error') return redirect(url_for('admindashboard')) else: flash("New Username is not matching",'error') return redirect(url_for('admindashboard')) else: return redirect(url_for('relogin')) @app.route('/Admin/delete', methods=['POST']) def deleteadmin(): if "admin" in session: if request.method == 'POST': password = request.form['password'] user = User.query.filter_by(username = session["admin"],password = password ).first() if user: delete1 = db.session.query(User).filter(User.username == session["admin"]).first() if user.type == "Admin": delete2 = Admin.query.filter(Admin.usr_name == session["admin"]).first() count = Count.query.filter(Count.id == 1).first() count.Admin = count.Admin - 1 db.session.add(count) db.session.delete(delete1) db.session.delete(delete2) db.session.commit() session.clear() return redirect(url_for('index')) else: flash("You have entered Wrong Password",'error') return redirect(url_for('admindashboard')) return "" else: return redirect(url_for('relogin')) @app.route('/Admin/add_admin', methods=["GET","POST"]) def register(): if "admin" in session: user = session["admin"] admin = Admin.query.filter_by(usr_name = session["admin"]).first() if request.method == "POST": uname = request.form['uname'] email = request.form['mail'] fname = request.form['fname'] lname = request.form['lname'] phone = request.form['phone'] exists = User.query.filter_by(username = uname).first() if not exists: v1 = randint(0, 1000) v2 = randint(100, 999) psw=str(v1)+uname+str(v2) value = Count.query.filter_by(id = 1).first() admin_id = "Admin_" + str(value.Admin+1) user = User(username=uname,password=<PASSWORD>,type='Admin') register = Admin(usr_name = uname,fname=fname,lname=lname,mail = email, phone=phone, admin_id = admin_id) count = Count.query.filter_by(id = 1).first() count.Admin = count.Admin + 1 db.session.add(user) db.session.add(register) db.session.add(count) db.session.commit() msg = Message('Welcome to Pinpoint Family', sender = '<EMAIL>', recipients = [email]) msg.html = '<h5>Hi
exp) rng = date_range('1/1/1990', periods=5) iseries = Series(np.arange(5), rng) + 1 iseries.ix[4] = np.nan exp = iseries / 4.0 iranks = iseries.rank(pct=True) assert_series_equal(iranks, exp) iseries = Series([1e-50, 1e-100, 1e-20, 1e-2, 1e-20 + 1e-30, 1e-1]) exp = Series([2, 1, 3, 5, 4, 6.0]) iranks = iseries.rank() assert_series_equal(iranks, exp) values = np.array( [-50, -1, -1e-20, -1e-25, -1e-50, 0, 1e-40, 1e-20, 1e-10, 2, 40 ], dtype='float64') random_order = np.random.permutation(len(values)) iseries = Series(values[random_order]) exp = Series(random_order + 1.0, dtype='float64') iranks = iseries.rank() assert_series_equal(iranks, exp) def test_rank_signature(self): s = Series([0, 1]) s.rank(method='average') self.assertRaises(ValueError, s.rank, 'average') def test_rank_inf(self): raise nose.SkipTest('DataFrame.rank does not currently rank ' 'np.inf and -np.inf properly') values = np.array( [-np.inf, -50, -1, -1e-20, -1e-25, -1e-50, 0, 1e-40, 1e-20, 1e-10, 2, 40, np.inf], dtype='float64') random_order = np.random.permutation(len(values)) iseries = Series(values[random_order]) exp = Series(random_order + 1.0, dtype='float64') iranks = iseries.rank() assert_series_equal(iranks, exp) def test_clip(self): val = self.ts.median() self.assertEqual(self.ts.clip_lower(val).min(), val) self.assertEqual(self.ts.clip_upper(val).max(), val) self.assertEqual(self.ts.clip(lower=val).min(), val) self.assertEqual(self.ts.clip(upper=val).max(), val) result = self.ts.clip(-0.5, 0.5) expected = np.clip(self.ts, -0.5, 0.5) assert_series_equal(result, expected) tm.assertIsInstance(expected, Series) def test_clip_types_and_nulls(self): sers = [Series([np.nan, 1.0, 2.0, 3.0]), Series([None, 'a', 'b', 'c']), Series(pd.to_datetime( [np.nan, 1, 2, 3], unit='D'))] for s in sers: thresh = s[2] l = s.clip_lower(thresh) u = s.clip_upper(thresh) self.assertEqual(l[notnull(l)].min(), thresh) self.assertEqual(u[notnull(u)].max(), thresh) self.assertEqual(list(isnull(s)), list(isnull(l))) self.assertEqual(list(isnull(s)), list(isnull(u))) def test_clip_against_series(self): # GH #6966 s = Series([1.0, 1.0, 4.0]) threshold = Series([1.0, 2.0, 3.0]) assert_series_equal(s.clip_lower(threshold), Series([1.0, 2.0, 4.0])) assert_series_equal(s.clip_upper(threshold), Series([1.0, 1.0, 3.0])) lower = Series([1.0, 2.0, 3.0]) upper = Series([1.5, 2.5, 3.5]) assert_series_equal(s.clip(lower, upper), Series([1.0, 2.0, 3.5])) assert_series_equal(s.clip(1.5, upper), Series([1.5, 1.5, 3.5])) def test_clip_with_datetimes(self): # GH 11838 # naive and tz-aware datetimes t = Timestamp('2015-12-01 09:30:30') s = Series([Timestamp('2015-12-01 09:30:00'), Timestamp( '2015-12-01 09:31:00')]) result = s.clip(upper=t) expected = Series([Timestamp('2015-12-01 09:30:00'), Timestamp( '2015-12-01 09:30:30')]) assert_series_equal(result, expected) t = Timestamp('2015-12-01 09:30:30', tz='US/Eastern') s = Series([Timestamp('2015-12-01 09:30:00', tz='US/Eastern'), Timestamp('2015-12-01 09:31:00', tz='US/Eastern')]) result = s.clip(upper=t) expected = Series([Timestamp('2015-12-01 09:30:00', tz='US/Eastern'), Timestamp('2015-12-01 09:30:30', tz='US/Eastern')]) assert_series_equal(result, expected) def test_cummethods_bool(self): # GH 6270 # looks like a buggy np.maximum.accumulate for numpy 1.6.1, py 3.2 def cummin(x): return np.minimum.accumulate(x) def cummax(x): return np.maximum.accumulate(x) a = pd.Series([False, False, False, True, True, False, False]) b = ~a c = pd.Series([False] * len(b)) d = ~c methods = {'cumsum': np.cumsum, 'cumprod': np.cumprod, 'cummin': cummin, 'cummax': cummax} args = product((a, b, c, d), methods) for s, method in args: expected = Series(methods[method](s.values)) result = getattr(s, method)() assert_series_equal(result, expected) e = pd.Series([False, True, nan, False]) cse = pd.Series([0, 1, nan, 1], dtype=object) cpe = pd.Series([False, 0, nan, 0]) cmin = pd.Series([False, False, nan, False]) cmax = pd.Series([False, True, nan, True]) expecteds = {'cumsum': cse, 'cumprod': cpe, 'cummin': cmin, 'cummax': cmax} for method in methods: res = getattr(e, method)() assert_series_equal(res, expecteds[method]) def test_isin(self): s = Series(['A', 'B', 'C', 'a', 'B', 'B', 'A', 'C']) result = s.isin(['A', 'C']) expected = Series([True, False, True, False, False, False, True, True]) assert_series_equal(result, expected) def test_isin_with_string_scalar(self): # GH4763 s = Series(['A', 'B', 'C', 'a', 'B', 'B', 'A', 'C']) with tm.assertRaises(TypeError): s.isin('a') with tm.assertRaises(TypeError): s = Series(['aaa', 'b', 'c']) s.isin('aaa') def test_isin_with_i8(self): # GH 5021 expected = Series([True, True, False, False, False]) expected2 = Series([False, True, False, False, False]) # datetime64[ns] s = Series(date_range('jan-01-2013', 'jan-05-2013')) result = s.isin(s[0:2]) assert_series_equal(result, expected) result = s.isin(s[0:2].values) assert_series_equal(result, expected) # fails on dtype conversion in the first place result = s.isin(s[0:2].values.astype('datetime64[D]')) assert_series_equal(result, expected) result = s.isin([s[1]]) assert_series_equal(result, expected2) result = s.isin([np.datetime64(s[1])]) assert_series_equal(result, expected2) # timedelta64[ns] s = Series(pd.to_timedelta(lrange(5), unit='d')) result = s.isin(s[0:2]) assert_series_equal(result, expected) def test_timedelta64_analytics(self): from pandas import date_range # index min/max td = Series(date_range('2012-1-1', periods=3, freq='D')) - \ Timestamp('20120101') result = td.idxmin() self.assertEqual(result, 0) result = td.idxmax() self.assertEqual(result, 2) # GH 2982 # with NaT td[0] = np.nan result = td.idxmin() self.assertEqual(result, 1) result = td.idxmax() self.assertEqual(result, 2) # abs s1 = Series(date_range('20120101', periods=3)) s2 = Series(date_range('20120102', periods=3)) expected = Series(s2 - s1) # this fails as numpy returns timedelta64[us] # result = np.abs(s1-s2) # assert_frame_equal(result,expected) result = (s1 - s2).abs() assert_series_equal(result, expected) # max/min result = td.max() expected = Timedelta('2 days') self.assertEqual(result, expected) result = td.min() expected = Timedelta('1 days') self.assertEqual(result, expected) def test_idxmin(self): # test idxmin # _check_stat_op approach can not be used here because of isnull check. # add some NaNs self.series[5:15] = np.NaN # skipna or no self.assertEqual(self.series[self.series.idxmin()], self.series.min()) self.assertTrue(isnull(self.series.idxmin(skipna=False))) # no NaNs nona = self.series.dropna() self.assertEqual(nona[nona.idxmin()], nona.min()) self.assertEqual(nona.index.values.tolist().index(nona.idxmin()), nona.values.argmin()) # all NaNs allna = self.series * nan self.assertTrue(isnull(allna.idxmin())) # datetime64[ns] from pandas import date_range s = Series(date_range('20130102', periods=6)) result = s.idxmin() self.assertEqual(result, 0) s[0] = np.nan result = s.idxmin() self.assertEqual(result, 1) def test_idxmax(self): # test idxmax # _check_stat_op approach can not be used here because of isnull check. # add some NaNs self.series[5:15] = np.NaN # skipna or no self.assertEqual(self.series[self.series.idxmax()], self.series.max()) self.assertTrue(isnull(self.series.idxmax(skipna=False))) # no NaNs nona = self.series.dropna() self.assertEqual(nona[nona.idxmax()], nona.max()) self.assertEqual(nona.index.values.tolist().index(nona.idxmax()), nona.values.argmax()) # all NaNs allna = self.series * nan self.assertTrue(isnull(allna.idxmax())) from pandas import date_range s = Series(date_range('20130102', periods=6)) result = s.idxmax() self.assertEqual(result, 5) s[5] = np.nan result = s.idxmax() self.assertEqual(result, 4) # Float64Index # GH 5914 s = pd.Series([1, 2, 3], [1.1, 2.1, 3.1]) result = s.idxmax() self.assertEqual(result, 3.1) result = s.idxmin() self.assertEqual(result, 1.1) s = pd.Series(s.index, s.index) result = s.idxmax() self.assertEqual(result, 3.1) result = s.idxmin() self.assertEqual(result, 1.1) def test_ptp(self): N = 1000 arr = np.random.randn(N) ser = Series(arr) self.assertEqual(np.ptp(ser), np.ptp(arr)) # GH11163 s = Series([3, 5, np.nan, -3, 10]) self.assertEqual(s.ptp(), 13) self.assertTrue(pd.isnull(s.ptp(skipna=False))) mi = pd.MultiIndex.from_product([['a', 'b'], [1, 2, 3]]) s = pd.Series([1, np.nan, 7, 3, 5, np.nan], index=mi) expected = pd.Series([6, 2], index=['a', 'b'], dtype=np.float64) self.assert_series_equal(s.ptp(level=0), expected) expected = pd.Series([np.nan, np.nan], index=['a', 'b']) self.assert_series_equal(s.ptp(level=0, skipna=False), expected) with self.assertRaises(ValueError): s.ptp(axis=1) s = pd.Series(['a', 'b', 'c', 'd', 'e']) with self.assertRaises(TypeError): s.ptp() with self.assertRaises(NotImplementedError): s.ptp(numeric_only=True) def test_datetime_timedelta_quantiles(self): # covers #9694 self.assertTrue(pd.isnull(Series([], dtype='M8[ns]').quantile(.5))) self.assertTrue(pd.isnull(Series([], dtype='m8[ns]').quantile(.5))) def test_empty_timeseries_redections_return_nat(self): # covers #11245 for dtype in ('m8[ns]', 'm8[ns]', 'M8[ns]', 'M8[ns, UTC]'): self.assertIs(Series([], dtype=dtype).min(), pd.NaT) self.assertIs(Series([], dtype=dtype).max(), pd.NaT) def test_unique_data_ownership(self): # it works! #1807 Series(Series(["a", "c", "b"]).unique()).sort_values() def test_replace(self): N = 100 ser = Series(np.random.randn(N)) ser[0:4] = np.nan ser[6:10] = 0 # replace list with a single value ser.replace([np.nan], -1, inplace=True) exp = ser.fillna(-1) assert_series_equal(ser, exp) rs = ser.replace(0., np.nan) ser[ser == 0.] = np.nan assert_series_equal(rs, ser) ser = Series(np.fabs(np.random.randn(N)), tm.makeDateIndex(N), dtype=object) ser[:5] = np.nan ser[6:10] = 'foo' ser[20:30] = 'bar' # replace list with a single value rs = ser.replace([np.nan, 'foo', 'bar'], -1) self.assertTrue((rs[:5] == -1).all()) self.assertTrue((rs[6:10] == -1).all()) self.assertTrue((rs[20:30] == -1).all()) self.assertTrue((isnull(ser[:5])).all()) # replace with different values rs = ser.replace({np.nan: -1, 'foo': -2, 'bar': -3}) self.assertTrue((rs[:5] == -1).all()) self.assertTrue((rs[6:10] == -2).all()) self.assertTrue((rs[20:30] == -3).all()) self.assertTrue((isnull(ser[:5])).all()) # replace with different values with 2 lists rs2 = ser.replace([np.nan, 'foo', 'bar'], [-1, -2, -3]) assert_series_equal(rs, rs2) # replace inplace ser.replace([np.nan, 'foo', 'bar'], -1, inplace=True) self.assertTrue((ser[:5] == -1).all()) self.assertTrue((ser[6:10] == -1).all()) self.assertTrue((ser[20:30] == -1).all()) ser = Series([np.nan, 0, np.inf]) assert_series_equal(ser.replace(np.nan, 0), ser.fillna(0)) ser = Series([np.nan, 0, 'foo', 'bar', np.inf, None, lib.NaT]) assert_series_equal(ser.replace(np.nan, 0), ser.fillna(0)) filled = ser.copy() filled[4] = 0 assert_series_equal(ser.replace(np.inf, 0), filled) ser = Series(self.ts.index) assert_series_equal(ser.replace(np.nan, 0), ser.fillna(0)) # malformed self.assertRaises(ValueError, ser.replace, [1, 2, 3], [np.nan, 0]) # make sure that we aren't just masking a TypeError because bools don't # implement indexing with tm.assertRaisesRegexp(TypeError, 'Cannot compare types .+'): ser.replace([1, 2], [np.nan, 0]) ser = Series([0, 1, 2, 3, 4]) result = ser.replace([0, 1, 2, 3, 4], [4, 3, 2, 1, 0]) assert_series_equal(result, Series([4, 3, 2, 1, 0])) # API change from 0.12? # GH 5319 ser = Series([0, np.nan, 2, 3, 4]) expected = ser.ffill() result = ser.replace([np.nan]) assert_series_equal(result, expected) ser = Series([0, np.nan, 2, 3, 4]) expected = ser.ffill() result = ser.replace(np.nan) assert_series_equal(result, expected) # GH 5797 ser = Series(date_range('20130101', periods=5)) expected = ser.copy() expected.loc[2] = Timestamp('20120101') result = ser.replace({Timestamp('20130103'): Timestamp('20120101')}) assert_series_equal(result, expected) result = ser.replace(Timestamp('20130103'), Timestamp('20120101')) assert_series_equal(result, expected) def test_replace_with_single_list(self): ser = Series([0, 1, 2, 3, 4]) result = ser.replace([1, 2, 3]) assert_series_equal(result, Series([0, 0, 0, 0, 4])) s = ser.copy() s.replace([1, 2, 3], inplace=True) assert_series_equal(s, Series([0, 0, 0, 0, 4])) # make sure things don't get corrupted
<reponame>sherry0429/dash<filename>tests/integration/devtools/test_callback_validation.py import flask import pytest import dash_core_components as dcc import dash_html_components as html from dash import Dash from dash.dependencies import Input, Output, State, MATCH, ALL, ALLSMALLER debugging = dict( debug=True, use_reloader=False, use_debugger=True, dev_tools_hot_reload=False ) def check_errors(dash_duo, specs): # Order-agnostic check of all the errors shown. # This is not fully general - despite the selectors below, it only applies # to front-end errors with no back-end errors in the list. cnt = len(specs) dash_duo.wait_for_text_to_equal(dash_duo.devtools_error_count_locator, str(cnt)) found = [] for i in range(cnt): msg = dash_duo.find_elements(".dash-fe-error__title")[i].text dash_duo.find_elements(".test-devtools-error-toggle")[i].click() dash_duo.wait_for_element(".dash-backend-error,.dash-fe-error__info") has_BE = dash_duo.driver.execute_script( "return document.querySelectorAll('.dash-backend-error').length" ) txt_selector = ".dash-backend-error" if has_BE else ".dash-fe-error__info" txt = dash_duo.wait_for_element(txt_selector).text dash_duo.find_elements(".test-devtools-error-toggle")[i].click() dash_duo.wait_for_no_elements(".dash-backend-error") found.append((msg, txt)) orig_found = found[:] for i, (message, snippets) in enumerate(specs): for j, (msg, txt) in enumerate(found): if msg == message and all(snip in txt for snip in snippets): print(j) found.pop(j) break else: raise AssertionError( ( "error {} ({}) not found with text:\n" " {}\nThe found messages were:\n---\n{}" ).format( i, message, "\n ".join(snippets), "\n---\n".join( "{}\n{}".format(msg, txt) for msg, txt in orig_found ), ) ) # ensure the errors didn't leave items in the pendingCallbacks queue assert dash_duo.driver.execute_script("return document.title") == "Dash" def test_dvcv001_blank(dash_duo): app = Dash(__name__) app.layout = html.Div() @app.callback([], []) def x(): return 42 dash_duo.start_server(app, **debugging) check_errors( dash_duo, [ ["A callback is missing Inputs", ["there are no `Input` elements."]], [ "A callback is missing Outputs", ["Please provide an output for this callback:"], ], ], ) def test_dvcv002_blank_id_prop(dash_duo): # TODO: remove suppress_callback_exceptions after we move that part to FE app = Dash(__name__, suppress_callback_exceptions=True) app.layout = html.Div([html.Div(id="a")]) @app.callback([Output("a", "children"), Output("", "")], [Input("", "")]) def x(a): return a dash_duo.start_server(app, **debugging) # the first one is just an artifact... the other 4 we care about specs = [ ["Same `Input` and `Output`", []], [ "Callback item missing ID", ['Input[0].id = ""', "Every item linked to a callback needs an ID"], ], [ "Callback property error", [ 'Input[0].property = ""', "expected `property` to be a non-empty string.", ], ], [ "Callback item missing ID", ['Output[1].id = ""', "Every item linked to a callback needs an ID"], ], [ "Callback property error", [ 'Output[1].property = ""', "expected `property` to be a non-empty string.", ], ], ] check_errors(dash_duo, specs) def test_dvcv003_duplicate_outputs_same_callback(dash_duo): app = Dash(__name__) app.layout = html.Div([html.Div(id="a"), html.Div(id="b")]) @app.callback( [Output("a", "children"), Output("a", "children")], [Input("b", "children")] ) def x(b): return b, b @app.callback( [Output({"a": 1}, "children"), Output({"a": ALL}, "children")], [Input("b", "children")], ) def y(b): return b, b dash_duo.start_server(app, **debugging) specs = [ [ "Overlapping wildcard callback outputs", [ 'Output 1 ({"a":ALL}.children)', 'overlaps another output ({"a":1}.children)', "used in this callback", ], ], [ "Duplicate callback Outputs", ["Output 1 (a.children) is already used by this callback."], ], ] check_errors(dash_duo, specs) def test_dvcv004_duplicate_outputs_across_callbacks(dash_duo): app = Dash(__name__) app.layout = html.Div([html.Div(id="a"), html.Div(id="b"), html.Div(id="c")]) @app.callback( [Output("a", "children"), Output("a", "style")], [Input("b", "children")] ) def x(b): return b, b @app.callback(Output("b", "children"), [Input("b", "style")]) def y(b): return b @app.callback(Output("a", "children"), [Input("b", "children")]) def x2(b): return b @app.callback( [Output("b", "children"), Output("b", "style")], [Input("c", "children")] ) def y2(c): return c @app.callback( [Output({"a": 1}, "children"), Output({"b": ALL, "c": 1}, "children")], [Input("b", "children")], ) def z(b): return b, b @app.callback( [Output({"a": ALL}, "children"), Output({"b": 1, "c": ALL}, "children")], [Input("b", "children")], ) def z2(b): return b, b dash_duo.start_server(app, **debugging) specs = [ [ "Overlapping wildcard callback outputs", [ # depending on the order callbacks get reported to the # front end, either of these could have been registered first. # so we use this oder-independent form that just checks for # both prop_id's and the string "overlaps another output" '({"b":1,"c":ALL}.children)', "overlaps another output", '({"b":ALL,"c":1}.children)', "used in a different callback.", ], ], [ "Overlapping wildcard callback outputs", [ '({"a":ALL}.children)', "overlaps another output", '({"a":1}.children)', "used in a different callback.", ], ], ["Duplicate callback outputs", ["Output 0 (b.children) is already in use."]], ["Duplicate callback outputs", ["Output 0 (a.children) is already in use."]], ] check_errors(dash_duo, specs) def test_dvcv005_input_output_overlap(dash_duo): app = Dash(__name__) app.layout = html.Div([html.Div(id="a"), html.Div(id="b"), html.Div(id="c")]) @app.callback(Output("a", "children"), [Input("a", "children")]) def x(a): return a @app.callback( [Output("b", "children"), Output("c", "children")], [Input("c", "children")] ) def y(c): return c, c @app.callback(Output({"a": ALL}, "children"), [Input({"a": 1}, "children")]) def x2(a): return [a] @app.callback( [Output({"b": MATCH}, "children"), Output({"b": MATCH, "c": 1}, "children")], [Input({"b": MATCH, "c": 1}, "children")], ) def y2(c): return c, c dash_duo.start_server(app, **debugging) specs = [ [ "Same `Input` and `Output`", [ 'Input 0 ({"b":MATCH,"c":1}.children)', "can match the same component(s) as", 'Output 1 ({"b":MATCH,"c":1}.children)', ], ], [ "Same `Input` and `Output`", [ 'Input 0 ({"a":1}.children)', "can match the same component(s) as", 'Output 0 ({"a":ALL}.children)', ], ], [ "Same `Input` and `Output`", ["Input 0 (c.children)", "matches Output 1 (c.children)"], ], [ "Same `Input` and `Output`", ["Input 0 (a.children)", "matches Output 0 (a.children)"], ], ] check_errors(dash_duo, specs) def test_dvcv006_inconsistent_wildcards(dash_duo): app = Dash(__name__) app.layout = html.Div() @app.callback( [Output({"b": MATCH}, "children"), Output({"b": ALL, "c": 1}, "children")], [Input({"b": MATCH, "c": 2}, "children")], ) def x(c): return c, [c] @app.callback( [Output({"a": MATCH}, "children")], [Input({"b": MATCH}, "children"), Input({"c": ALLSMALLER}, "children")], [State({"d": MATCH, "dd": MATCH}, "children"), State({"e": ALL}, "children")], ) def y(b, c, d, e): return b + c + d + e dash_duo.start_server(app, **debugging) specs = [ [ "`Input` / `State` wildcards not in `Output`s", [ 'State 0 ({"d":MATCH,"dd":MATCH}.children)', "has MATCH or ALLSMALLER on key(s) d, dd", 'where Output 0 ({"a":MATCH}.children)', ], ], [ "`Input` / `State` wildcards not in `Output`s", [ 'Input 1 ({"c":ALLSMALLER}.children)', "has MATCH or ALLSMALLER on key(s) c", 'where Output 0 ({"a":MATCH}.children)', ], ], [ "`Input` / `State` wildcards not in `Output`s", [ 'Input 0 ({"b":MATCH}.children)', "has MATCH or ALLSMALLER on key(s) b", 'where Output 0 ({"a":MATCH}.children)', ], ], [ "Mismatched `MATCH` wildcards across `Output`s", [ 'Output 1 ({"b":ALL,"c":1}.children)', "does not have MATCH wildcards on the same keys as", 'Output 0 ({"b":MATCH}.children).', ], ], ] check_errors(dash_duo, specs) def test_dvcv007_disallowed_ids(dash_duo): app = Dash(__name__) app.layout = html.Div() @app.callback( Output({"": 1, "a": [4], "c": ALLSMALLER}, "children"), [Input({"b": {"c": 1}}, "children")], ) def y(b): return b dash_duo.start_server(app, **debugging) specs = [ [ "Callback wildcard ID error", [ 'Input[0].id["b"] = {"c":1}', "Wildcard callback ID values must be either wildcards", "or constants of one of these types:", "string, number, boolean", ], ], [ "Callback wildcard ID error", [ 'Output[0].id["c"] = ALLSMALLER', "Allowed wildcards for Outputs are:", "ALL, MATCH", ], ], [ "Callback wildcard ID error", [ 'Output[0].id["a"] = [4]', "Wildcard callback ID values must be either wildcards", "or constants of one of these types:", "string, number, boolean", ], ], [ "Callback wildcard ID error", ['Output[0].id has key ""', "Keys must be non-empty strings."], ], ] check_errors(dash_duo, specs) def bad_id_app(**kwargs): app = Dash(__name__, **kwargs) app.layout = html.Div( [ html.Div( [html.Div(id="inner-div"), dcc.Input(id="inner-input")], id="outer-div" ), dcc.Input(id="outer-input"), ], id="main", ) @app.callback(Output("nuh-uh", "children"), [Input("inner-input", "value")]) def f(a): return a @app.callback(Output("outer-input", "value"), [Input("yeah-no", "value")]) def g(a): return a @app.callback( [Output("inner-div", "children"), Output("nope", "children")], [Input("inner-input", "value")], [State("what", "children")], ) def g2(a): return [a, a] # the right way @app.callback(Output("inner-div", "style"), [Input("inner-input", "value")]) def h(a): return a return app # These ones are raised by bad_id_app whether suppressing callback exceptions or not dispatch_specs = [ [ "A nonexistent object was used in an `Input` of a Dash callback. " "The id of this object is `yeah-no` and the property is `value`. " "The string ids in the current layout are: " "[main, outer-div, inner-div, inner-input, outer-input]", [], ], [ "A nonexistent object was used in an `Output` of a Dash callback. " "The id of this object is `nope` and the property is `children`. " "The string ids in the current layout are: " "[main, outer-div, inner-div, inner-input, outer-input]", [], ], ] def test_dvcv008_wrong_callback_id(dash_duo): dash_duo.start_server(bad_id_app(), **debugging) specs = [ [ "ID not found in layout", [ "Attempting to connect a callback Input item to component:", '"yeah-no"', "but no components with that id exist in the layout.", "If you are assigning callbacks to components that are", "generated by other callbacks (and therefore not in the", "initial layout), you can suppress this exception by setting", "`suppress_callback_exceptions=True`.", "This ID was used in the callback(s) for Output(s):", "outer-input.value", ], ], [ "ID not found in layout", [
passive (priority 0) replica set members known to this connection. This does not include hidden or slaveDelay members, or arbiters. """ return self.__hosts @property def primary(self): """The current primary of the replica set. Returns None if there is no primary. """ return self.__writer @property def secondaries(self): """The secondary members known to this connection. """ return set(self.__readers) @property def arbiters(self): """The arbiters known to this connection. """ return self.__arbiters @property def max_pool_size(self): """The maximum pool size limit set for this connection. """ return self.__max_pool_size def get_document_class(self): """document_class getter""" return self.__document_class def set_document_class(self, klass): """document_class setter""" self.__document_class = klass document_class = property(get_document_class, set_document_class, doc="""Default class to use for documents returned on this connection. """) @property def tz_aware(self): """Does this connection return timezone-aware datetimes? """ return self.__tz_aware @property def max_bson_size(self): """Returns the maximum size BSON object the connected primary accepts in bytes. Defaults to 4MB in server < 1.7.4. Returns 0 if no primary is available. """ if self.__writer: return self.__pools[self.__writer]['max_bson_size'] return 0 def __simple_command(self, sock, dbname, spec): """Send a command to the server. """ rqst_id, msg, _ = message.query(0, dbname + '.$cmd', 0, -1, spec) sock.sendall(msg) response = self.__recv_msg(1, rqst_id, sock) response = helpers._unpack_response(response)['data'][0] msg = "command %r failed: %%s" % spec helpers._check_command_response(response, None, msg) return response def __auth(self, sock, dbname, user, passwd): """Authenticate socket `sock` against database `dbname`. """ # Get a nonce response = self.__simple_command(sock, dbname, {'getnonce': 1}) nonce = response['nonce'] key = helpers._auth_key(nonce, user, passwd) # Actually authenticate query = SON([('authenticate', 1), ('user', user), ('nonce', nonce), ('key', key)]) self.__simple_command(sock, dbname, query) def __is_master(self, host): """Directly call ismaster. """ mongo = pool.Pool(host, self.__max_pool_size, self.__net_timeout, self.__conn_timeout, self.__use_ssl) sock = mongo.get_socket()[0] response = self.__simple_command(sock, 'admin', {'ismaster': 1}) return response, mongo def __update_pools(self): """Update the mapping of (host, port) pairs to connection pools. """ secondaries = [] for host in self.__hosts: mongo = None try: if host in self.__pools: mongo = self.__pools[host] sock = self.__socket(mongo) res = self.__simple_command(sock, 'admin', {'ismaster': 1}) else: res, conn = self.__is_master(host) bson_max = res.get('maxBsonObjectSize', MAX_BSON_SIZE) self.__pools[host] = {'pool': conn, 'last_checkout': time.time(), 'max_bson_size': bson_max} except (ConnectionFailure, socket.error): if mongo: mongo['pool'].discard_socket() continue # Only use hosts that are currently in 'secondary' state # as readers. if res['secondary']: secondaries.append(host) elif res['ismaster']: self.__writer = host self.__readers = secondaries def refresh(self): """Iterate through the existing host list, or possibly the seed list, to update the list of hosts and arbiters in this replica set. """ errors = [] nodes = self.__hosts or self.__seeds hosts = set() for node in nodes: mongo = None try: if node in self.__pools: mongo = self.__pools[node] sock = self.__socket(mongo) response = self.__simple_command(sock, 'admin', {'ismaster': 1}) else: response, conn = self.__is_master(node) # Check that this host is part of the given replica set. set_name = response.get('setName') # The 'setName' field isn't returned by mongod before 1.6.2 # so we can't assume that if it's missing this host isn't in # the specified set. if set_name and set_name != self.__name: host, port = node raise ConfigurationError("%s:%d is not a member of " "replica set %s" % (host, port, self.__name)) if "arbiters" in response: self.__arbiters = set([_partition_node(h) for h in response["arbiters"]]) if "hosts" in response: hosts.update([_partition_node(h) for h in response["hosts"]]) if "passives" in response: hosts.update([_partition_node(h) for h in response["passives"]]) except (ConnectionFailure, socket.error), why: if mongo: mongo['pool'].discard_socket() errors.append("%s:%d: %s" % (node[0], node[1], str(why))) if hosts: self.__hosts = hosts break else: if errors: raise AutoReconnect(', '.join(errors)) raise ConfigurationError('No suitable hosts found') self.__update_pools() def __check_is_primary(self, host): """Checks if this host is the primary for the replica set. """ try: mongo = None if host in self.__pools: mongo = self.__pools[host] sock = self.__socket(mongo) res = self.__simple_command(sock, 'admin', {'ismaster': 1}) else: res, conn = self.__is_master(host) bson_max = res.get('maxBsonObjectSize', MAX_BSON_SIZE) self.__pools[host] = {'pool': conn, 'last_checkout': time.time(), 'max_bson_size': bson_max} except (ConnectionFailure, socket.error), why: if mongo: mongo['pool'].discard_socket() raise ConnectionFailure("%s:%d: %s" % (host[0], host[1], str(why))) if res["ismaster"]: return host elif "primary" in res: candidate = _partition_node(res["primary"]) # Don't report the same connect failure multiple times. try: return self.__check_is_primary(candidate) except (ConnectionFailure, socket.error): pass raise AutoReconnect('%s:%d: not primary' % host) def __find_primary(self): """Returns a connection to the primary of this replica set, if one exists. """ if self.__writer: return self.__pools[self.__writer] # This is either the first connection or we had a failover. self.refresh() errors = [] for candidate in self.__hosts: try: self.__writer = self.__check_is_primary(candidate) return self.__pools[self.__writer] except (ConnectionFailure, socket.error), why: errors.append(str(why)) # Couldn't find the primary. raise AutoReconnect(', '.join(errors)) def __socket(self, mongo): """Get a socket from the pool. If it's been > 1 second since the last time we checked out a socket, we also check to see if the socket has been closed - this let's us avoid seeing *some* :class:`~pymongo.errors.AutoReconnect` exceptions on server hiccups, etc. We only do this if it's been > 1 second since the last socket checkout, to keep performance reasonable - we can't avoid those completely anyway. """ sock, authset = mongo['pool'].get_socket() now = time.time() if now - mongo['last_checkout'] > 1: if _closed(sock): mongo['pool'] = pool.Pool(mongo['pool'].host, self.__max_pool_size, self.__net_timeout, self.__conn_timeout, self.__use_ssl) sock, authset = mongo['pool'].get_socket() mongo['last_checkout'] = now if self.__auth_credentials or authset: self.__check_auth(sock, authset) return sock def disconnect(self): """Disconnect from the replica set primary. """ self.__writer = None def close(self): """Disconnect from all set members. """ self.__writer = None self.__pools = {} def __check_response_to_last_error(self, response): """Check a response to a lastError message for errors. `response` is a byte string representing a response to the message. If it represents an error response we raise OperationFailure. Return the response as a document. """ response = helpers._unpack_response(response) assert response["number_returned"] == 1 error = response["data"][0] helpers._check_command_response(error, self.disconnect) error_msg = error.get("err", "") if error_msg is None: return error if error_msg.startswith("not master"): self.disconnect() raise AutoReconnect(error_msg) if "code" in error: if error["code"] in [11000, 11001, 12582]: raise DuplicateKeyError(error["err"]) else: raise OperationFailure(error["err"], error["code"]) else: raise OperationFailure(error["err"]) def __recv_data(self, length, sock): """Lowest level receive operation. Takes length to receive and repeatedly calls recv until able to return a buffer of that length, raising ConnectionFailure on error. """ chunks = [] while length: chunk = sock.recv(length) if chunk == "": raise ConnectionFailure("connection closed") length -= len(chunk) chunks.append(chunk) return "".join(chunks) def __recv_msg(self, operation, request_id, sock): """Receive a message in response to `request_id` on `sock`. Returns the response data with the header removed. """ header = self.__recv_data(16, sock) length = struct.unpack("<i", header[:4])[0] resp_id = struct.unpack("<i", header[8:12])[0] assert resp_id == request_id, "ids don't match %r %r" % (resp_id, request_id) assert operation == struct.unpack("<i", header[12:])[0] return self.__recv_data(length - 16, sock) def __check_bson_size(self, msg, max_size): """Make sure the message doesn't include BSON documents larger than the connected server will accept. :Parameters: - `msg`: message to check """ if len(msg) == 3: request_id, data, max_doc_size = msg if max_doc_size > max_size: raise InvalidDocument("BSON document too large (%d bytes)" " - the connected server supports" " BSON document sizes up to %d" " bytes." % (max_doc_size, max_size)) return (request_id, data) # get_more and kill_cursors messages # don't include BSON documents. return msg def _send_message(self, msg, safe=False, _connection_to_use=None): """Say something to Mongo. Raises ConnectionFailure if the message cannot be sent. Raises OperationFailure if `safe` is ``True`` and the response to the getLastError call returns an error. Return the response from lastError, or ``None`` if `safe` is ``False``. :Parameters: - `msg`: message to send - `safe`: check getLastError status after sending the message """ if _connection_to_use in (None, -1): mongo = self.__find_primary() else: mongo = self.__pools[_connection_to_use] try: sock = self.__socket(mongo) rqst_id, data = self.__check_bson_size(msg, mongo['max_bson_size']) sock.sendall(data) # Safe mode. We pack the message together with a lastError # message and send both. We then get the response (to the # lastError) and raise OperationFailure if it is an error # response. if safe: response = self.__recv_msg(1, rqst_id, sock) return self.__check_response_to_last_error(response) return None except(ConnectionFailure, socket.error), why: mongo['pool'].discard_socket() if _connection_to_use in (None, -1): self.disconnect() raise AutoReconnect(str(why)) except: mongo['pool'].discard_socket() raise mongo['pool'].return_socket() def __send_and_receive(self, mongo, msg, **kwargs): """Send a message
<reponame>useEvil/husky-hustle-2013 import os import csv import pytz import math import base64 import urllib import re as regexp import datetime as date import husky.bitly as bitly import gdata.media as media import gdata.photos.service as gdata import gdata.calendar.client as cdata from django.db import models from django.db.models import Count, Sum, Avg, Max from django.db.models.signals import post_save from django.conf import settings from django.core.exceptions import ObjectDoesNotExist, MultipleObjectsReturned from django.contrib.auth.models import User from django.contrib.auth.forms import PasswordResetForm from django.contrib.sites.models import Site from django import forms from paypal import PayPal from picasa import PicasaField, PicasaStorage from decimal import Decimal from registration.forms import RegistrationForm from socialregistration.contrib.facebook.models import FacebookProfile from socialregistration.contrib.twitter.models import TwitterProfile from socialregistration.contrib.openid.models import OpenIDProfile from husky.helpers import * DONATION_GOAL = 50000 MAX_BAR_LENGTH = 225 MAX_ARROW_HEIGHT = 275 BASE_ARROW_HEIGHT = 73 RAFFLE_TICKET_AMT = 25 # Field Classes class CurrencyField(models.DecimalField): def __init__(self, *args, **kwargs): kwargs['max_digits'] = 10 kwargs['decimal_places'] = 2 super(CurrencyField, self).__init__(*args, **kwargs) def to_python(self, value): try: return super(CurrencyField, self).to_python(value).quantize(Decimal('0.01')) except AttributeError: return None # Google Classes class GoogleCalendarConnect(object): gd_client = cdata.CalendarClient(source=settings.PICASA_STORAGE_OPTIONS['source']) gd_client.ClientLogin(settings.PICASA_STORAGE_OPTIONS['email'], settings.PICASA_STORAGE_OPTIONS['password'], gd_client.source) def client(self): return self.gd_client class GooglePhotoConnect(object): gd_client = gdata.PhotosService() gd_client.email = settings.PICASA_STORAGE_OPTIONS['email'] gd_client.password = settings.PICASA_STORAGE_OPTIONS['password'] gd_client.source = settings.PICASA_STORAGE_OPTIONS['source'] gd_client.ProgrammaticLogin() def client(self): return self.gd_client class Calendar(object): gd_client = GoogleCalendarConnect().client() def get_events(self): query = cdata.CalendarEventQuery() query.start_min = date.datetime.now().strftime('%Y-%m-%d') # query.start_max = (date.datetime.now() + date.timedelta(days=14)).strftime('%Y-%m-%d') feed = self.gd_client.GetCalendarEventFeed(q=query, visibility='public', sortorder='ascending', orderby='starttime') return feed class Photo(object): gd_client = GooglePhotoConnect().client() def get_photo(self, album_id=None, photo_id=None): if not photo_id or not photo_id: return photo = self.gd_client.GetFeed('/data/feed/api/user/default/albumid/%s/photoid/%s' % (album_id, photo_id)) return photo def get_photos(self, album_id=None): if not album_id: return photos = self.gd_client.GetFeed('/data/feed/api/user/default/albumid/%s?kind=photo' % (album_id)) return photos def get_photos_by_tags(self, tags='huskyhustle'): photos = self.gd_client.GetFeed('/data/feed/api/all?kind=photo&tag=%s' % (tags)) return photos class Album(object): gd_client = GooglePhotoConnect().client() def get_album(self, album_id=None): if not album_id: return photos = Photo().get_photos(album_id) return photos def get_albums(self): albums = self.gd_client.GetUserFeed(user=settings.PICASA_STORAGE_OPTIONS['userid']) return albums # Create your models here. class Content(models.Model): page = models.CharField(max_length=100) content = models.TextField(max_length=65000, blank=True, null=True) date_added = models.DateTimeField(default=date.datetime.now()) class Blog(models.Model): title = models.CharField(max_length=100) author = models.ForeignKey(User) content = models.TextField(max_length=4000) date_added = models.DateTimeField(default=date.datetime.now()) class Message(models.Model): title = models.CharField(max_length=100) author = models.ForeignKey(User) content = models.TextField(max_length=4000) date_added = models.DateTimeField(default=date.datetime.now()) class Link(models.Model): title = models.CharField(max_length=50) url = models.CharField(max_length=255) shorten = models.CharField(max_length=255) status = models.IntegerField(blank=True, null=True, choices=((0,0), (1,1))) def __unicode__(self): return self.title def shortened(self): if not self.shorten: api = bitly.Api(login=settings.BITLY_LOGIN, apikey=settings.BITLY_APIKEY) self.shorten = api.shorten(self.url) self.save() return self.shorten class Grade(models.Model): grade = models.IntegerField(blank=True, null=True) title = models.CharField(max_length=15) def __unicode__(self): return self.title def get_all(self): return Grade.objects.exclude(grade=-1).all() def most_donations_avg(self): avg = self.total_collected() / self.total_students() return round(avg, 2) def most_laps_avg(self): avg = float(self.total_laps()) / self.total_students() return round(avg, 2) def total_students(self): return Children.objects.filter(teacher__grade=self).count() def total_laps(self): results = Children.objects.filter(teacher__grade=self).exclude(disqualify=True).aggregate(num_laps=Sum('laps')) return results['num_laps'] or 0 def total_donations(self): results = Donation.objects.filter(child__teacher__grade=self).aggregate(total_donations=Sum('donated')) return float(results['total_donations'] or 0) def total_collected(self): results = Children.objects.filter(teacher__grade=self).aggregate(total_collected=Sum('collected')) return float(results['total_collected'] or 0) def percent_completed(self): percentage = 0 if self.total_collected() and self.total_donations(): percentage = self.total_collected() / self.total_donations() return round(percentage, 3) class Teacher(models.Model): title = models.CharField(max_length=5, choices=(('Mrs.', 'Mrs.'), ('Ms.', 'Ms.'), ('Miss', 'Miss'), ('Mr.', 'Mr.')), default='Mrs.') first_name = models.CharField(max_length=50, blank=True, null=True) last_name = models.CharField(max_length=50) email_address = models.CharField(max_length=100) phone_number = models.CharField(max_length=25, blank=True, null=True, default='(714) 734-1878') room_number = models.CharField(max_length=5) website = models.CharField(max_length=255, blank=True, null=True) shorten = models.CharField(max_length=255, blank=True, null=True) grade = models.ForeignKey(Grade, related_name='teachers') list_type = models.IntegerField(blank=True, null=True) class Meta: ordering = ['last_name', 'first_name'] def __unicode__(self): return '%s (%s) %s' % (self.full_name(), self.room_number, self.grade) def full_name(self): return '%s %s %s' % (self.title, self.first_name, self.last_name) def find(self, last_name=None): try: return Teacher.objects.filter(last_name__icontains=last_name).all() except ObjectDoesNotExist, e: return def total_students(self, exclude=None): if exclude and exclude == 1: return Children.objects.filter(teacher=self, laps__gt=0).exclude(disqualify=True).count() elif exclude and exclude == 2: return Children.objects.filter(teacher=self, collected__gt=0).count() else: return Children.objects.filter(teacher=self).count() def total_participation(self): return Children.objects.filter(teacher=self, collected__gt=0).count() def get_all(self): return Teacher.objects.exclude(grade__grade=-1).all() def get_donate_list(self): return Teacher.objects.exclude(list_type=2).order_by('grade','room_number').all() def get_list(self): return Teacher.objects.exclude(list_type=3).order_by('grade','room_number').all() def get_donations(self): total = Donation.objects.filter(child__teacher=self).aggregate(donated=Sum('donated')) return float(total['donated'] or 0) def get_donations_list(self): donators = [] sponsors = [] children = Children.objects.filter(teacher=self).all() for child in children: donation = child.total_sum() donators.append({'name': child.list_name(), 'total': float(donation['total_sum'] or 0)}) donations = Donation.objects.filter(first_name__contains=self.last_name) totals = { } for index, donation in enumerate(donations): full_name = donation.child.list_name() if totals.has_key(full_name): totals[full_name] += donation.donated or 0 else: totals[full_name] = donation.donated or 0 for child, total in iter(sorted(totals.iteritems())): sponsors.append({'name': child, 'total': float(total or 0)}) return donators, sponsors def shortened(self): if not self.shorten: api = bitly.Api(login=settings.BITLY_LOGIN, apikey=settings.BITLY_APIKEY) self.shorten = api.shorten(self.website) self.save() return self.shorten def reports_url(self): site = Site.objects.get_current() reports_url = 'http://%s/admin/results/donations-by-teacher?id=%s' % (site.domain, self.id) return reports_url class Children(models.Model): first_name = models.CharField(max_length=50) last_name = models.CharField(max_length=50) identifier = models.CharField(max_length=100, unique=True) date_added = models.DateTimeField(default=date.datetime.now()) laps = models.IntegerField(blank=True, null=True) age = models.IntegerField(blank=True, null=True) gender = models.CharField(max_length=1, blank=True, null=True, choices=(('M', 'Boy'), ('F', 'Girl'))) collected = CurrencyField(blank=True, null=True) disqualify = models.IntegerField(default=0, choices=((0, 'No'), (1, 'Yes'))) pledged = CurrencyField(blank=True, null=True) teacher = models.ForeignKey(Teacher, related_name='students') class Meta: ordering = ['last_name', 'first_name'] def __unicode__(self): return self.list_name() def list_name(self): return '%s, %s' % (self.last_name, self.first_name) def full_name(self): return '%s %s' % (self.first_name, self.last_name) def find(self, parent_only=None, first_name=None, last_name=None): try: if parent_only == '1': if first_name and last_name: return Children.objects.filter(parents__first_name__icontains=first_name, parents__last_name__icontains=last_name).distinct().all() elif first_name: return Children.objects.filter(parents__first_name__icontains=first_name).distinct().all() elif last_name: return Children.objects.filter(parents__last_name__icontains=last_name).distinct().all() else: if first_name and last_name: return Children.objects.filter(first_name__icontains=first_name, last_name__icontains=last_name).distinct().all() elif first_name: return Children.objects.filter(first_name__icontains=first_name).distinct().all() elif last_name: return Children.objects.filter(last_name__icontains=last_name).distinct().all() except ObjectDoesNotExist, e: return def get_collected_list(self): return Children.objects.filter(collected__gt=0).order_by('-collected').all() def donate_url(self): site = Site.objects.get_current() donate_url = 'http://%s/make-donation/%s' % (site.domain, self.identifier) return donate_url def manage_url(self): site = Site.objects.get_current() manage_url = 'http://%s/account/%s' % (site.domain, self.identifier) return manage_url def facebook_share_url(self): site = Site.objects.get_current() params = 'app_id=' + settings.FACEBOOK_APP_ID + '&link=' + self.donate_url() + '&picture=' + ('http://%s/static/images/hickslogo-1.jpg' % site.domain) + '&name=' + urllib.quote('<NAME>') + '&caption=' + urllib.quote('Donate to %s' % self.full_name()) + '&description=' + urllib.quote("Donate and help further our children's education.") + '&redirect_uri=' + 'http://%s/' % site.domain share_url = 'https://www.facebook.com/dialog/feed?' + params return share_url def twitter_share_url(self): share_url = 'https://twitter.com/intent/tweet?button_hashtag=HuskyHustle&url=%s' % self.donate_url() return share_url def google_share_url(self): share_url = 'https://plus.google.com/share?url=%s' % self.donate_url() return share_url def grades(self): return Grade.objects.all() def teachers(self): return Teacher.objects.filter(grade=self.teacher.grade).all() def donations(self): return Donation.objects.filter(child=self).count() def sponsors_flat(self): return Donation.objects.filter(child=self, per_lap=False).exclude(last_name='teacher').all() def sponsors_perlap(self): return Donation.objects.filter(child=self, per_lap=True).all() def sponsors_teacher(self): return Donation.objects.filter(child=self, last_name='teacher').all() def sponsored_principle(self): try: return Donation.objects.filter(child=self, first_name='<NAME>').get() except ObjectDoesNotExist, e: return def parent(self): try: return self.parents.filter(parentchildren__default=1).get() except ObjectDoesNotExist, e: return def is_default(self, parent): return ParentChildren.objects.filter(children=self, parent=parent).get().default def has_parents(self): return ParentChildren.objects.filter(children=self).all() def total_sum(self): return Donation.objects.filter(child=self).aggregate(total_sum=Sum('donated')) def total_for_laps(self): total_due = 0 for sponsor in self.sponsors_perlap(): total_due += sponsor.total() return total_due def total_for_flat(self): total_due = 0 for sponsor in self.sponsors_flat(): total_due += sponsor.total() return total_due def total_for_sponsors(self): total_due = 0 for sponsor in self.sponsors_teacher(): total_due += sponsor.total() return total_due def total_raffle_tickets(self): tickets = int(self.collected / RAFFLE_TICKET_AMT) return tickets def total_due(self): total_due = 0 for sponsor in self.sponsors_flat(): if not sponsor.paid: total_due += sponsor.total() for sponsor in self.sponsors_perlap(): if not sponsor.paid: total_due += sponsor.total() for sponsor in self.sponsors_teacher(): if not sponsor.paid: total_due += sponsor.total() return total_due def total_got(self): total_got = 0 for sponsor in self.sponsors_flat(): if sponsor.paid: total_got += sponsor.total() for sponsor in self.sponsors_perlap(): if sponsor.paid: total_got += sponsor.total() for sponsor in self.sponsors_teacher(): if sponsor.paid: total_got += sponsor.total() return total_got def grand_totals(self): total_due = self.total_due() total_got = self.total_got() return [total_got, total_due, (total_due + total_got)] def calculate_totals(self, id=None): if id: total_collected = 0 total_pledged = 0 child = Children.objects.get(pk=id) for sponsor in child.sponsors.all(): total_pledged += sponsor.total() or 0 if sponsor.paid: total_collected += sponsor.total() or 0 self.collected = total_collected self.pledged = total_pledged self.save() else: children = Children.objects.all() for child in children: total_collected = 0 total_pledged = 0 for sponsor in child.sponsors.all(): total_pledged += sponsor.total() or 0 if sponsor.paid: total_collected += sponsor.total() or 0 child.collected = total_collected child.pledged = total_pledged child.save() class Parent(models.Model): GUARDIAN_CHOICES = ((1,'Mother'), (2,'Father'), (3,'Guardian')) first_name = models.CharField(max_length=50) last_name = models.CharField(max_length=50) email_address = models.CharField(max_length=100) phone_number = models.CharField(max_length=25, blank=True, null=True) default = models.BooleanField(default=1) guardian = models.IntegerField(default=1, choices=GUARDIAN_CHOICES) activation_key = models.CharField(max_length=200) key_expires = models.DateTimeField() date_added = models.DateTimeField(default=date.datetime.now()) site = models.ForeignKey(Site) user = models.OneToOneField(User, unique=True) children = models.ManyToManyField(Children, related_name='parents', through='ParentChildren') class Meta: ordering = ['last_name', 'first_name'] def __unicode__(self): return '%s (%s)' % (self.full_name(), self.email_address) def full_name(self): return '%s %s' % (self.first_name, self.last_name) def get_my_children(self): return Children.objects.filter(parent=self, parentchildren__default=1).all() def activate_url(self): site = Site.objects.get_current() activate_url = 'http://%s/activate/%s' % (site.domain, self.activation_key) return activate_url def link_url(self, request_id=None): if not request_id: request_id = self.id site = Site.objects.get_current() link_url = 'http://%s/link/%s' % (site.domain, request_id) return link_url def links(self): try: child = self.children.all()[0] except IndexError: return None try: return child.parents.exclude(pk=self.id).all() except ObjectDoesNotExist, e: return None def num_children(self): return self.children.count() def facebook(self, user_id=None): if not user_id: user_id = self.user.id try: facebook = FacebookProfile.objects.filter(user_id=user_id).get() except ObjectDoesNotExist, e: return
min(self.min_dn_open_price,x.openPrice) total_price += x.openPrice*x.volume total_volume += x.volume if total_volume > 0: self.avg_dn_open_price = total_price/total_volume def count_avg_open_price(self, grid_list): """计算平均开仓价""" total_price = EMPTY_FLOAT total_volume = EMPTY_INT avg_price = EMPTY_FLOAT for g in grid_list: total_price += g.openPrice * g.volume total_volume += g.volume if total_volume > EMPTY_INT: avg_price = total_price / total_volume return avg_price def combineOpenedGrids(self,direction,type=EMPTY_STRING): """合并已开仓的网格""" total_open_price = EMPTY_FLOAT total_close_price = EMPTY_FLOAT total_volume = EMPTY_INT saved_grid = None if direction == DIRECTION_SHORT: opened_short_grids = self.getGrids(direction=direction, opened=True, ordered=False, type = type) if len(opened_short_grids)<=1: return self.writeCtaLog(u'{}个空网格合并为1个'.format(len(opened_short_grids))) saved_grid = opened_short_grids[-1] for g in opened_short_grids: total_open_price += g.openPrice * g.volume total_close_price += g.closePrice * g.volume total_volume += g.volume if g != saved_grid: self.writeCtaLog(u'删除空网格 {}=>{},v:{}'.format(g.openPrice, g.closePrice, g.volume)) self.upGrids.remove(g) else: self.writeCtaLog(u'保留空网格 {}=>{},v:{}'.format(g.openPrice, g.closePrice, g.volume)) # 更新网格的开仓价和仓位数量 saved_grid.openPrice = int((total_open_price / total_volume)/self.minDiff)*self.minDiff saved_grid.volume = total_volume saved_grid.closePrice = int((total_close_price / total_volume)/self.minDiff)*self.minDiff self.writeCtaLog(u'合并后空网格为{}=>{},v:{}'.format(saved_grid.openPrice, saved_grid.closePrice, saved_grid.volume)) elif direction == DIRECTION_LONG: opened_long_grids = self.getGrids(direction=direction, opened=True, ordered=False, type=type) if len(opened_long_grids) <= 1: return self.writeCtaLog(u'{}个多网格合并为1个'.format(len(opened_long_grids))) saved_grid = opened_long_grids[-1] for g in opened_long_grids: total_open_price += g.openPrice * g.volume total_close_price += g.closePrice * g.volume total_volume += g.volume if g != saved_grid: self.writeCtaLog(u'删除多网格 {}=>{},v:{}'.format(g.openPrice, g.closePrice, g.volume)) self.dnGrids.remove(g) else: self.writeCtaLog(u'保留多网格 {}=>{},v:{}'.format(g.openPrice, g.closePrice, g.volume)) # 更新网格的开仓价和仓位数量 saved_grid.openPrice = int((total_open_price / total_volume) / self.minDiff) * self.minDiff saved_grid.volume = total_volume saved_grid.closePrice = int((total_close_price / total_volume) / self.minDiff) * self.minDiff self.writeCtaLog( u'合并后多网格为{}=>{},v:{}'.format(saved_grid.openPrice, saved_grid.closePrice, saved_grid.volume)) def clearDuplicateGrids(self,direction=EMPTY_STRING,type=EMPTY_STRING): """去除重复开仓价的未开仓网格""" if direction == DIRECTION_SHORT or direction==EMPTY_STRING: if len(self.upGrids) < 2: return checking_grids = self.getGrids(direction=DIRECTION_SHORT, opened=False,ordered=False,type=type) if len(checking_grids) < 2: return open_price_list = [] remove_grids = [] for g in checking_grids: if g.openPrice in open_price_list: remove_grids.append(g) continue open_price_list.append(g.openPrice) for rg in remove_grids: try: self.upGrids.remove(rg) except: pass if direction == DIRECTION_LONG or direction==EMPTY_STRING: if len(self.dnGrids) < 2: return checking_grids = self.getGrids(direction=DIRECTION_LONG, opened=False, ordered=False, type=type) if len(checking_grids) < 2: return open_price_list = [] remove_grids = [] for g in checking_grids: if g.openPrice in open_price_list: remove_grids.append(g) continue open_price_list.append(g.openPrice) for rg in remove_grids: try: self.dnGrids.remove(rg) except: pass def save(self, direction=None): """ 保存网格至本地Json文件" 2017/11/23 update: 保存时,空的列表也保存 :param direction: :return: """"" # 回测模式不保存 if self.strategy and getattr(self.strategy, 'backtesting', False): return # 更新开仓均价 self.recount_avg_open_price() grids_save_path = self.get_data_folder() # 确保json名字与策略一致 if self.jsonName != self.strategy.name: self.writeCtaLog(u'JsonName {} 与 上层策略名{} 不一致.'.format(self.jsonName, self.strategy.name)) self.jsonName = self.strategy.name # 移除旧版上/下网格列表 old_up_json_file = os.path.join(grids_save_path, u'{0}_upGrids.json'.format(self.jsonName)) old_dn_json_file = os.path.join(grids_save_path, u'{0}_dnGrids.json'.format(self.jsonName)) if os.path.exists(old_up_json_file): try: os.remove(old_up_json_file) except: pass if os.path.exists(old_dn_json_file): try: os.remove(old_dn_json_file) except: pass # 新版网格持久化文件 grid_json_file = os.path.join(grids_save_path, u'{}_Grids.json'.format(self.jsonName)) self.json_file_path = grid_json_file data = {} up_grids = [] for grid in self.upGrids: up_grids.append(grid.toJson()) dn_grids = [] for grid in self.dnGrids: dn_grids.append(grid.toJson()) data[u'up_grids'] = up_grids data[u'dn_grids'] = dn_grids with open(grid_json_file, 'w') as f: json_data = json.dumps(data, indent=4) f.write(json_data) self.writeCtaLog(u'GrideTrade保存文件{}完成'.format(grid_json_file)) def load(self, direction, openStatusFilter=[]): """ 加载本地Json至网格 :param direction: DIRECTION_SHORT,做空网格;DIRECTION_LONG,做多网格 :param openStatusFilter: 缺省,不做过滤;True,只提取已开仓的数据,False,只提取未开仓的数据 :return: """ data = {} grids_save_path = self.get_data_folder() if self.jsonName != self.strategy.name: self.writeCtaLog(u'JsonName {} 与 上层策略名{} 不一致.'.format(self.jsonName, self.strategy.name)) self.jsonName = self.strategy.name # 移除旧版上/下网格列表 old_up_json_file = os.path.join(grids_save_path, u'{0}_upGrids.json'.format(self.jsonName)) old_dn_json_file = os.path.join(grids_save_path, u'{0}_dnGrids.json'.format(self.jsonName)) if os.path.exists(old_up_json_file): try: with open(old_up_json_file, 'r', encoding='utf8') as f: # 解析json文件 data['up_grids'] = json.load(f) except IOError: self.writeCtaLog(u'读取网格{}出错'.format(old_up_json_file)) data['up_grids'] = [] try: # 移除旧版上网格文件 os.remove(old_up_json_file) except: pass if os.path.exists(old_dn_json_file): try: with open(old_dn_json_file, 'r', encoding='utf8') as f: # 解析json文件 data['dn_grids'] = json.load(f) except IOError as ex: self.writeCtaLog(u'读取网格{}出错,ex:{}'.format(old_dn_json_file,str(ex))) data['dn_grids'] = [] try: # 移除旧版下网格文件 os.remove(old_dn_json_file) except: pass # 若新版文件不存在,就保存;若存在,就优先使用新版数据文件 grid_json_file = os.path.join(grids_save_path, u'{}_Grids.json'.format(self.jsonName)) if not os.path.exists(grid_json_file): if len(data) == 0: data['up_grids'] = [] data['dn_grids'] = [] self.writeCtaLog(u'{}不存在,保存'.format(grid_json_file)) else: self.writeCtaLog(u'{}不存在,保存'.format(grid_json_file)) try: with open(grid_json_file, 'w') as f: json_data = json.dumps(data, indent=4) f.write(json_data) except Exception as ex: self.writeCtaLog(u'写入网格文件{}异常:{}'.format(grid_json_file,str(ex))) else: # 读取json文件 try: with open(grid_json_file, 'r', encoding='utf8') as f: data = json.load(f) except Exception as ex: self.writeCtaLog(u'读取网格文件{}异常:{}'.format(grid_json_file,str(ex))) # 从文件获取数据 json_grids = [] if direction == DIRECTION_SHORT : json_grids = data['up_grids'] if 'up_grids' in data else [] elif direction == DIRECTION_LONG: json_grids = data['dn_grids'] if 'dn_grids' in data else [] grids = [] ids = [] for i in json_grids: closePrice = float(i['closePrice']) openPrice = float(i['openPrice']) stopPrice = float(i['stopPrice']) id = i.get('id') self.writeCtaLog(u'load Grid:open:{0},close:{1},stop:{2}'.format(openPrice, closePrice, stopPrice)) grid = CtaGrid(direction=i['direction'], openprice=openPrice, closeprice=closePrice, stopprice=stopPrice, volume=i['volume']) if id is not None and id not in ids: grid.id = id ids.append(id) grid.orderStatus = i['orderStatus'] # 挂单状态: True,已挂单,False,未挂单 grid.orderRef = i['orderRef'] # OrderId grid.openStatus = i['openStatus'] # 开仓状态 grid.closeStatus = i['closeStatus'] # 平仓状态 strTime = i['openDatetime'] if strTime == EMPTY_STRING or type(strTime)==type(None): grid.openDatetime = None else: grid.openDatetime = datetime.strptime(strTime, '%Y-%m-%d %H:%M:%S') try: grid.tradedVolume = i['tradedVolume'] # 已交易的合约数量 except KeyError: grid.tradedVolume = EMPTY_INT try: grid.lockGrids = i['lockGrids'] except KeyError: grid.lockGrids = [] try: grid.type = i['type'] if grid.type == False: grid.type = EMPTY_STRING except KeyError: grid.type = EMPTY_STRING try: grid.reuse = i['reuse'] except KeyError: grid.reuse = False try: grid.openPrices = i['openPrices'] except KeyError: grid.openPrices = {} try: grid.snapshot = i['snapshot'] except KeyError: grid.snapshot = {} self.writeCtaLog(grid.toStr()) # 增加对开仓状态的过滤,满足某些策略只提取已开仓的网格数据 if len(openStatusFilter) > 0: if grid.openStatus not in openStatusFilter: continue grids.append(grid) # 更新开仓均价 self.recount_avg_open_price() return grids def get_data_folder(self): """获取数据目录""" # 工作目录 currentFolder = os.path.abspath(os.path.join(os.getcwd(), u'data')) if os.path.isdir(currentFolder): # 如果工作目录下,存在data子目录,就使用data子目录 return currentFolder else: # 否则,使用缺省保存目录 vnpy/trader/app/ctaStrategy/data return os.path.abspath(os.path.join(os.path.dirname(__file__), u'data')) def changeStrategyName(self, old_name, new_name): """ 在线更换策略实例名称,需要把Json文件也转移 :param old_name: :param new_name: :return: """ if old_name == new_name: self.writeCtaLog(u'更换策略实例名称失败,old:{} =>new:{}'.format(old_name, new_name)) return data_folder = self.get_data_folder() self.jsonName = new_name # 旧文件 old_up_json_file = os.path.join(data_folder, u'{0}_upGrids.json'.format(old_name)) old_dn_json_file = os.path.join(data_folder, u'{0}_dnGrids.json'.format(old_name)) old_json_file = os.path.join(data_folder, u'{0}_Grids.json'.format(old_name)) # 新文件 self.json_file_path = os.path.join(data_folder, u'{0}_Grids.json'.format(new_name)) if os.path.isfile(self.json_file_path): # 新文件若存在,移除 try: os.remove(self.json_file_path) except Exception as ex: self.writeCtaLog(u'GridTrade.changeStrategyName 删除文件:{}异常:{}'.format(old_up_json_file,str(ex))) # 移动文件 if os.path.isfile(old_json_file): try: shutil.move(old_json_file, self.json_file_path) return except Exception as ex: self.writeCtaLog(u'GridTrade.changeStrategyName 移动文件:{}=》{}异常:{}'.format(old_up_json_file, self.json_file_path, str(ex))) else: data = {} if os.path.isfile(old_up_json_file): try: with open(old_up_json_file, 'r', encoding='utf8') as f: # 解析json文件 data['up_grids'] = json.load(f) except IOError: self.writeCtaLog(u'读取网格{}出错'.format(old_up_json_file)) data['up_grids'] = [] try: # 移除旧版上网格文件 os.remove(old_up_json_file) except IOError: self.writeCtaLog(u'移除网格{}出错'.format(old_up_json_file)) else: data['up_grids'] = [] if os.path.isfile(old_dn_json_file): try: with open(old_dn_json_file, 'r', encoding='utf8') as f: # 解析json文件 data['dn_grids'] = json.load(f) except IOError: self.writeCtaLog(u'读取网格{}出错'.format(old_dn_json_file)) data['dn_grids'] = [] try: # 移除旧版上网格文件 os.remove(old_dn_json_file) except IOError: self.writeCtaLog(u'移除网格{}出错'.format(old_dn_json_file)) else: data['dn_grids'] = [] try: with open(self.json_file_path, 'w') as f: json_data = json.dumps(data, indent=4) f.write(json_data) except IOError as ex: self.writeCtaLog(u'写入网格文件{}异常:{}'.format(self.json_file_path, str(ex))) def getJsonFilePath(self): """ 返回上下网格的文件路径 :return: """ return self.json_file_path def getTypesOfOpenedGrids(self, direction, include_empty=False): """ 获取开仓的网格类型列表 :param direction: :param include_empty: 是否包含空值的类型 :return: """ grids = self.getOpenedGrids(direction) type_list = [] for g in grids: if g.type not in type_list and (g.type !=EMPTY_STRING if not include_empty else True): type_list.append(g.type) return type_list ARBITRAGE_LONG = u'正套' ARBITRAGE_SHORT = u'反套' class ArbitrageGrid(object): """套利网格""" def __init__(self,direction, openprice, closeprice, stopprice=EMPTY_FLOAT, type=EMPTY_STRING): self.leg1 = None self.leg2 = None self.id = str(uuid.uuid1()) self.direction = direction # 正套(ARBITRAGE_LONG) 反套(ARBITRAGE_SHORT) self.openPrice = openprice # 开仓价格/价比 self.closePrice = closeprice # 平仓价格/价比 self.stopPrice = stopprice # 止损价格/价比 self.type = type # 套利类型(自定义) self.snapshot = {} def update_leg1(self,grid): """ 添加腿1 :param grid: :return: """ if isinstance(grid, CtaGrid): self.leg1 = grid else: print(u'leg1 不是CtaGrid类型') def update_leg2(self, grid): """ 添加腿2 :param grid: :return: """ if isinstance(grid, CtaGrid): self.leg2 = grid else: print(u'leg2 不是CtaGrid类型') def toJson(self): j = OrderedDict() j['id'] = self.id j['direction'] = self.direction j['openPrices'] = self.openPrice j['closePrice'] = self.closePrice j['stopPrice'] = self.stopPrice j['type'] = self.type j['snapshot'] = self.snapshot # 切片数据 try: if self.leg1 is not None: j['leg1'] = self.leg1.toJson() if self.leg2 is not None: j['leg2'] = self.leg2.toJson() except Exception as ex: print(u'Arbitrage Grid toJson exception:{} {}'.format(str(ex), traceback.format_exc()),file=sys.stderr) return j def fromJson(self,j): if 'id' in j: self.id = j.get('id') self.direction = j.get('direction',EMPTY_STRING) self.openPrice = j.get('openPrice',EMPTY_FLOAT) self.closePrice = j.get('closePrice',EMPTY_FLOAT) self.stopPrice = j.get('stopPrice',EMPTY_FLOAT) self.type = j.get('type',EMPTY_STRING) self.snapshot = j.get('snapshot',{}) if 'leg1' in j: if self.leg1 is None: self.leg1 = CtaGrid(direction=EMPTY_STRING,openprice=EMPTY_FLOAT,closeprice=EMPTY_FLOAT) self.leg1.fromJson(j.get('leg1')) if 'leg2' in j: if self.leg2 is None: self.leg2 = CtaGrid(direction=EMPTY_STRING,openprice=EMPTY_FLOAT,closeprice=EMPTY_FLOAT) self.leg2.fromJson(j.get('leg2')) class ArbitrageTrade(object): """ 套利交易网格,仅用于持久化记录价差/价比/跨市场/期现套利等 它包含正套网格/反套网格两个队列 """ def __init__(self, strategy, leg1_settings, leg2_settings): """ 构造函数 :param strategy: 上层调用策略 """ self.strategy = strategy # 交易合约 self.leg1_symbol = leg1_settings.get('vtSymbol', EMPTY_STRING) self.leg2_symbol = leg2_settings.get('vtSymbol', EMPTY_STRING) # 交易合约的杠杆比率 self.leg1_size = leg1_settings.get('size', 1) self.leg2_size = leg2_settings.get('size', 1) # 正套队列 self.long_list = [] # 反套队列 self.short_list = [] def writeCtaLog(self, log): """ 写入日志 :param log: :return: """ if self.strategy and hasattr(self.strategy,'writeCtaLog'): self.strategy.writeCtaLog(log) else: print(log) def writeCtaError(self, log): """ 写入错误日志 :param log: :return: """ if self.strategy and hasattr(self.strategy, 'writeCtaError'): self.strategy.writeCtaError(log) else: print(log,file=sys.stderr) def toJson(self): """ => json
median filtere path_to_filter : full path to the boxcar filter binary file, including the file name. Returns ------- str full path of the contatenated filename. """ # construct stime and etime for one-day worthy of data stime = ctr_date etime = ctr_date + dt.timedelta(days=1) # Cteate a tmpdir folder if not exist if not os.path.exists(tmpdir): os.makedirs(tmpdir) # extract info from the localdict argument radcode = localdict["radar"] ftype = localdict["ftype"] channel = localdict["channel"] # fetch the data for a given day #file_list = fetch_local_files(stime, etime, localdirfmt, localdict, tmpdir, fnamefmt) ################### # Due to a bug related to davitpy, here is a walkaround to find the list of files need # Note: the .bz files have to be manually copied from sd-data to the folder defined by localdirfmt file_list = fetch_local_files(stime, etime, localdirfmt, localdict, tmpdir, fnamefmt) #file_list = glob.glob(os.path.join(tmpdir, '*bz2')) ################### # Make sure all the fetched files have desired ftype file_list = [x for x in file_list if ftype in x] # check if we have found files if len(file_list) != 0: # concatenate the files into a single file print("Concatenating all the " + ftype + " files into one") # choose a temp file name with time span info for cacheing if (channel is None) or (channel == "."): fname = '%s%s.%s.%s.%s.%s.%s' % \ (tmpdir, stime.strftime("%Y%m%d"), stime.strftime("%H%M%S"), etime.strftime("%Y%m%d"), etime.strftime("%H%M%S"), radcode, ftype) else: fname = '%s%s.%s.%s.%s.%s.%s.%s' % \ (tmpdir, stime.strftime("%Y%m%d"), stime.strftime("%H%M%S"), etime.strftime("%Y%m%d"), etime.strftime("%H%M%S"), radcode, channel, ftype) logging.debug('cat ' + string.join(file_list) + ' > ' + fname) os.system('cat ' + string.join(file_list) + ' > ' + fname) # remove the unneeded files from the tmpdir if remove_extra_file: print("removing unneeded " + ftype + " files") for fn in file_list: logging.debug('rm ' + fn) os.system('rm ' + fn) os.system('rm ' + fn+".bz2") #os.system('rm ' + fn+".gz") else: fname = None # Boxcar filter if median_filter: fname = boxcar_filter(fname, path_to_filter) return fname def boxcar_filter(fname, path_to_filter): """Does boxcar median filtering to data in a file. Parameters ----------- fname : str Full path of a file (fitacf, fitex). path_to_filter : full path to the boxcar filter binary file, including the file name. Returns ------- ffname : str Full path of a data file that is boxcar median filtered. The filtered file name will be fname+"f" """ if fname is not None: # extract the data type (e.g., fitacf, fitex, etc.) from fname ftype = fname.split(".")[-1] if not ftype+'f' in fname: try: print("boxcar filtering the data") # do boxcar filtering ffname = fname + 'f' command = path_to_filter + ' ' + fname + ' > ' + ffname logging.debug("performing: {:s}".format(command)) os.system(command) logging.debug("done filtering") except Exception, e: estr = 'problem filtering file, using the unfiltered one' logging.warning(estr) else: print("file " + fname + " exists") ffname = fname else: ffname = None return ffname def dmap_to_csv(fname, stime, etime=None, sep="|", fileType="fitacf", readOnly=False): """Reads data from a dmap file and writes it to a csv file. Parameter --------- fname : str Full path of a dmap file (fitacf, fitex). stime : datetime.datetime The start time of interest etime : datetime.datetime The end time of interest sep : str Delimiter to use fileType : str SuperDARN fit data type (e.g., fitacf) Returns ------- fname_csv : str Full path (including the file name) of a csv file """ # Get a file poiter myPtr = radDataPtr(sTime=stime, eTime=etime, fileName=fname, fileType=fileType) # Parameter names in a fitacf file header = sep.join(["time", "bmnum", "channel", "stid", "cp", "lmfit" , "fitex", "exflg", "iqflg", "offset", "lmflg", "rawflg", "fType", "acflg", "fitacf", # upto here are params in myBeam "elv", "gflg", "nlag", "npnts", "p_l", "p_l_e", "p_s", "p_s_e", "phi0", "phi0_e", "pwr0", "qflg", "slist", "v", "v_e", "w_l", "w_l_e", "w_s", "w_s_e", # upto here are params in myBeam.fit "bmazm", "frang", "ifmode", "inttsc", "inttus", "lagfr", "ltab", "mpinc", "mplgexs", "mplgs", "mppul", "nave", "noisemean", "noisesearch", "noisesky", "nrang", "ptab", "rsep", "rxrise", "scan", "smsep", "tfreq", "txpl", "xcf"]) # upto here are params in myBeam.prm # Output file name fname_csv = fname + ".csv" # Read the parameters of interest. try: myPtr.rewind() except Exception as e: logging.error(e) myBeam = myPtr.readRec() with open(fname_csv, "w") as f: f.write(header +"\n") while(myBeam is not None): if(myBeam.time > myPtr.eTime): break if(myPtr.sTime <= myBeam.time): # Params in myBeam time = str(myBeam.time).split(".")[0] # Remove millisecond part bmnum = str(myBeam.bmnum) stid = str(myBeam.stid) cp = str(myBeam.cp) channel = str(myBeam.channel) lmfit = str(myBeam.lmfit) fitex = str(myBeam.fitex) exflg = str(myBeam.exflg) iqflg = str(myBeam.iqflg) offset = str(myBeam.offset) lmflg = str(myBeam.lmflg) rawflg = str(myBeam.rawflg) fType = str(myBeam.fType) acflg = str(myBeam.acflg) fitacf = str(myBeam.fitacf) # Params in myBeam.fit elv = "[]" if myBeam.fit.elv is None else str(myBeam.fit.elv) gflg = "[]" if myBeam.fit.gflg is None else str(myBeam.fit.gflg) nlag = "[]" if myBeam.fit.nlag is None else str(myBeam.fit.nlag) npnts = str(myBeam.fit.npnts) p_l = "[]" if myBeam.fit.p_l is None else str(myBeam.fit.p_l) p_l_e = "[]" if myBeam.fit.p_l_e is None else str(myBeam.fit.p_l_e) p_l_e = p_l_e.replace("inf", "999999") p_s = "[]" if myBeam.fit.p_s is None else str(myBeam.fit.p_s) p_s_e = "[]" if myBeam.fit.p_s_e is None else str(myBeam.fit.p_s_e) p_s_e = p_s_e.replace("inf", "999999") phi0 = "[]" if myBeam.fit.phi0 is None else str(myBeam.fit.phi0) phi0_e = "[]" if myBeam.fit.phi0_e is None else str(myBeam.fit.phi0_e) phi0_e = phi0_e.replace("inf", "999999") pwr0 = "[]" if myBeam.fit.pwr0 is None else str(myBeam.fit.pwr0) qflg = "[]" if myBeam.fit.qflg is None else str(myBeam.fit.qflg) slist = str(myBeam.fit.slist) v = "[]" if myBeam.fit.v is None else str(myBeam.fit.v) v_e = "[]" if myBeam.fit.v_e is None else str(myBeam.fit.v_e) v_e = v_e.replace("inf", "999999") w_l = "[]" if myBeam.fit.w_l is None else str(myBeam.fit.w_l) w_l = w_l.replace("inf", "999999") w_l_e = "[]" if myBeam.fit.w_l_e is None else str(myBeam.fit.w_l_e) w_l_e = w_l_e.replace("inf", "999999") w_s = "[]" if myBeam.fit.w_s is None else str(myBeam.fit.w_s) w_s = w_s.replace("inf", "999999") w_s_e = "[]" if myBeam.fit.w_s_e is None else str(myBeam.fit.w_s_e) w_s_e = w_s_e.replace("inf", "999999") # Params in myBeam.prm bmazm = str(myBeam.prm.bmazm) frang = str(myBeam.prm.frang) ifmode = str(myBeam.prm.ifmode) inttsc = str(myBeam.prm.inttsc) inttus = str(myBeam.prm.inttus) lagfr = str(myBeam.prm.lagfr) ltab = "[]" if myBeam.prm.ltab is None else str(myBeam.prm.ltab) mpinc = str(myBeam.prm.mpinc) mplgexs = str(myBeam.prm.mplgexs) mplgs = str(myBeam.prm.mplgs) mppul = str(myBeam.prm.mppul) nave = str(myBeam.prm.nave) noisemean = str(myBeam.prm.noisemean) noisesearch = str(myBeam.prm.noisesearch) noisesky = str(myBeam.prm.noisesky) nrang = str(myBeam.prm.nrang) ptab = "[]" if myBeam.prm.ptab is None else str(myBeam.prm.ptab) rsep = str(myBeam.prm.rsep) rxrise = str(myBeam.prm.rxrise) scan = str(myBeam.prm.scan) smsep = str(myBeam.prm.smsep) tfreq = str(myBeam.prm.tfreq) txpl = str(myBeam.prm.txpl) xcf = str(myBeam.prm.xcf) # Params in myBeam.rawacf #NOTE: add if needed # Params in myBeam.iqdat #NOTE: add if needed # Params in myBeam.fPtr #NOTE: add if needed # Write the current lbeam record to fname_csv line = sep.join([time, bmnum, channel, stid, cp, lmfit , fitex, exflg, iqflg, offset, lmflg, rawflg, fType, acflg, fitacf, # upto here are params in myBeam elv, gflg, nlag, npnts, p_l, p_l_e, p_s, p_s_e, phi0, phi0_e, pwr0, qflg, slist, v, v_e, w_l, w_l_e, w_s, w_s_e, # upto here are params in myBeam.fit bmazm, frang, ifmode, inttsc, inttus, lagfr, ltab, mpinc, mplgexs, mplgs, mppul, nave, noisemean, noisesearch, noisesky, nrang, ptab, rsep, rxrise, scan, smsep, tfreq, txpl, xcf]) # upto here are params in myBeam.prm f.write(line +"\n") # Read the next beam record myBeam = myPtr.readRec() return fname_csv # run the code def main(): # Set the logging level logging.getLogger().setLevel(logging.WARNING) # input parameters #ctr_date = dt.datetime(2012,12,31) #ctr_date = dt.datetime(2014,11,02) ctr_date = dt.datetime(2012,12,05) stime = ctr_date etime = ctr_date + dt.timedelta(days=1) #etime = None #rad = "fhe" rad = "bks" #rad = "ade" channel = "." ftype = "fitacf" csv_sep = "|" # used to seperate variables in a csv file remove_extra_file = True median_filter=False path_to_filter = './fitexfilter' #localdirfmt = "/sd-data/{year}/{ftype}/{radar}/" localdirfmt = "./sd-data/{year}/{ftype}/{radar}/" #localdirfmt = ".data/tmp/" localdict = {"ftype" : ftype, "radar" : rad, "channel" : channel} tmpdir = "./data/tmp/" fnamefmt = ['{date}.{hour}......{radar}.{channel}.{ftype}',\ '{date}.{hour}......{radar}.{ftype}'] # Fetch and concatenate files fname = fetch_concat(ctr_date, localdirfmt, localdict, tmpdir, fnamefmt, remove_extra_file=remove_extra_file, median_filter=median_filter, path_to_filter=path_to_filter) # Convert dmap format to csv #fname = "./data/tmp/20121231.000000.20130101.000000.fhe.fitacf" #fname = "./data/tmp/20141101.000000.20141102.000000.bks.fitacf" #fname = "./data/tmp/20121204.000000.20121205.000000.bks.fitacf" #fname = "./data/tmp/20121205.000000.20121206.000000.bks.fitacf" print("Converting from dmap format to
<gh_stars>0 # -*- coding: utf-8 -*- """ datetime enumerations module. """ from pyrin.core.enumerations import CoreEnum class TimezoneEnum(CoreEnum): """ timezone enum. """ AFRICA_ABIDJAN = 'Africa/Abidjan' AFRICA_ACCRA = 'Africa/Accra' AFRICA_ADDIS_ABABA = 'Africa/Addis_Ababa' AFRICA_ALGIERS = 'Africa/Algiers' AFRICA_ASMARA = 'Africa/Asmara' AFRICA_ASMERA = 'Africa/Asmera' AFRICA_BAMAKO = 'Africa/Bamako' AFRICA_BANGUI = 'Africa/Bangui' AFRICA_BANJUL = 'Africa/Banjul' AFRICA_BISSAU = 'Africa/Bissau' AFRICA_BLANTYRE = 'Africa/Blantyre' AFRICA_BRAZZAVILLE = 'Africa/Brazzaville' AFRICA_BUJUMBURA = 'Africa/Bujumbura' AFRICA_CAIRO = 'Africa/Cairo' AFRICA_CASABLANCA = 'Africa/Casablanca' AFRICA_CEUTA = 'Africa/Ceuta' AFRICA_CONAKRY = 'Africa/Conakry' AFRICA_DAKAR = 'Africa/Dakar' AFRICA_DAR_ES_SALAAM = 'Africa/Dar_es_Salaam' AFRICA_DJIBOUTI = 'Africa/Djibouti' AFRICA_DOUALA = 'Africa/Douala' AFRICA_EL_AAIUN = 'Africa/El_Aaiun' AFRICA_FREETOWN = 'Africa/Freetown' AFRICA_GABORONE = 'Africa/Gaborone' AFRICA_HARARE = 'Africa/Harare' AFRICA_JOHANNESBURG = 'Africa/Johannesburg' AFRICA_JUBA = 'Africa/Juba' AFRICA_KAMPALA = 'Africa/Kampala' AFRICA_KHARTOUM = 'Africa/Khartoum' AFRICA_KIGALI = 'Africa/Kigali' AFRICA_KINSHASA = 'Africa/Kinshasa' AFRICA_LAGOS = 'Africa/Lagos' AFRICA_LIBREVILLE = 'Africa/Libreville' AFRICA_LOME = 'Africa/Lome' AFRICA_LUANDA = 'Africa/Luanda' AFRICA_LUBUMBASHI = 'Africa/Lubumbashi' AFRICA_LUSAKA = 'Africa/Lusaka' AFRICA_MALABO = 'Africa/Malabo' AFRICA_MAPUTO = 'Africa/Maputo' AFRICA_MASERU = 'Africa/Maseru' AFRICA_MBABANE = 'Africa/Mbabane' AFRICA_MOGADISHU = 'Africa/Mogadishu' AFRICA_MONROVIA = 'Africa/Monrovia' AFRICA_NAIROBI = 'Africa/Nairobi' AFRICA_NDJAMENA = 'Africa/Ndjamena' AFRICA_NIAMEY = 'Africa/Niamey' AFRICA_NOUAKCHOTT = 'Africa/Nouakchott' AFRICA_OUAGADOUGOU = 'Africa/Ouagadougou' AFRICA_PORTO_NOVO = 'Africa/Porto-Novo' AFRICA_SAO_TOME = 'Africa/Sao_Tome' AFRICA_TIMBUKTU = 'Africa/Timbuktu' AFRICA_TRIPOLI = 'Africa/Tripoli' AFRICA_TUNIS = 'Africa/Tunis' AFRICA_WINDHOEK = 'Africa/Windhoek' AMERICA_ADAK = 'America/Adak' AMERICA_ANCHORAGE = 'America/Anchorage' AMERICA_ANGUILLA = 'America/Anguilla' AMERICA_ANTIGUA = 'America/Antigua' AMERICA_ARAGUAINA = 'America/Araguaina' AMERICA_ARGENTINA_BUENOS_AIRES = 'America/Argentina/Buenos_Aires' AMERICA_ARGENTINA_CATAMARCA = 'America/Argentina/Catamarca' AMERICA_ARGENTINA_COMODRIVADAVIA = 'America/Argentina/ComodRivadavia' AMERICA_ARGENTINA_CORDOBA = 'America/Argentina/Cordoba' AMERICA_ARGENTINA_JUJUY = 'America/Argentina/Jujuy' AMERICA_ARGENTINA_LA_RIOJA = 'America/Argentina/La_Rioja' AMERICA_ARGENTINA_MENDOZA = 'America/Argentina/Mendoza' AMERICA_ARGENTINA_RIO_GALLEGOS = 'America/Argentina/Rio_Gallegos' AMERICA_ARGENTINA_SALTA = 'America/Argentina/Salta' AMERICA_ARGENTINA_SAN_JUAN = 'America/Argentina/San_Juan' AMERICA_ARGENTINA_SAN_LUIS = 'America/Argentina/San_Luis' AMERICA_ARGENTINA_TUCUMAN = 'America/Argentina/Tucuman' AMERICA_ARGENTINA_USHUAIA = 'America/Argentina/Ushuaia' AMERICA_ARUBA = 'America/Aruba' AMERICA_ASUNCION = 'America/Asuncion' AMERICA_ATIKOKAN = 'America/Atikokan' AMERICA_ATKA = 'America/Atka' AMERICA_BAHIA = 'America/Bahia' AMERICA_BAHIA_BANDERAS = 'America/Bahia_Banderas' AMERICA_BARBADOS = 'America/Barbados' AMERICA_BELEM = 'America/Belem' AMERICA_BELIZE = 'America/Belize' AMERICA_BLANC_SABLON = 'America/Blanc-Sablon' AMERICA_BOA_VISTA = 'America/Boa_Vista' AMERICA_BOGOTA = 'America/Bogota' AMERICA_BOISE = 'America/Boise' AMERICA_BUENOS_AIRES = 'America/Buenos_Aires' AMERICA_CAMBRIDGE_BAY = 'America/Cambridge_Bay' AMERICA_CAMPO_GRANDE = 'America/Campo_Grande' AMERICA_CANCUN = 'America/Cancun' AMERICA_CARACAS = 'America/Caracas' AMERICA_CATAMARCA = 'America/Catamarca' AMERICA_CAYENNE = 'America/Cayenne' AMERICA_CAYMAN = 'America/Cayman' AMERICA_CHICAGO = 'America/Chicago' AMERICA_CHIHUAHUA = 'America/Chihuahua' AMERICA_CORAL_HARBOUR = 'America/Coral_Harbour' AMERICA_CORDOBA = 'America/Cordoba' AMERICA_COSTA_RICA = 'America/Costa_Rica' AMERICA_CRESTON = 'America/Creston' AMERICA_CUIABA = 'America/Cuiaba' AMERICA_CURACAO = 'America/Curacao' AMERICA_DANMARKSHAVN = 'America/Danmarkshavn' AMERICA_DAWSON = 'America/Dawson' AMERICA_DAWSON_CREEK = 'America/Dawson_Creek' AMERICA_DENVER = 'America/Denver' AMERICA_DETROIT = 'America/Detroit' AMERICA_DOMINICA = 'America/Dominica' AMERICA_EDMONTON = 'America/Edmonton' AMERICA_EIRUNEPE = 'America/Eirunepe' AMERICA_EL_SALVADOR = 'America/El_Salvador' AMERICA_ENSENADA = 'America/Ensenada' AMERICA_FORT_NELSON = 'America/Fort_Nelson' AMERICA_FORT_WAYNE = 'America/Fort_Wayne' AMERICA_FORTALEZA = 'America/Fortaleza' AMERICA_GLACE_BAY = 'America/Glace_Bay' AMERICA_GODTHAB = 'America/Godthab' AMERICA_GOOSE_BAY = 'America/Goose_Bay' AMERICA_GRAND_TURK = 'America/Grand_Turk' AMERICA_GRENADA = 'America/Grenada' AMERICA_GUADELOUPE = 'America/Guadeloupe' AMERICA_GUATEMALA = 'America/Guatemala' AMERICA_GUAYAQUIL = 'America/Guayaquil' AMERICA_GUYANA = 'America/Guyana' AMERICA_HALIFAX = 'America/Halifax' AMERICA_HAVANA = 'America/Havana' AMERICA_HERMOSILLO = 'America/Hermosillo' AMERICA_INDIANA_INDIANAPOLIS = 'America/Indiana/Indianapolis' AMERICA_INDIANA_KNOX = 'America/Indiana/Knox' AMERICA_INDIANA_MARENGO = 'America/Indiana/Marengo' AMERICA_INDIANA_PETERSBURG = 'America/Indiana/Petersburg' AMERICA_INDIANA_TELL_CITY = 'America/Indiana/Tell_City' AMERICA_INDIANA_VEVAY = 'America/Indiana/Vevay' AMERICA_INDIANA_VINCENNES = 'America/Indiana/Vincennes' AMERICA_INDIANA_WINAMAC = 'America/Indiana/Winamac' AMERICA_INDIANAPOLIS = 'America/Indianapolis' AMERICA_INUVIK = 'America/Inuvik' AMERICA_IQALUIT = 'America/Iqaluit' AMERICA_JAMAICA = 'America/Jamaica' AMERICA_JUJUY = 'America/Jujuy' AMERICA_JUNEAU = 'America/Juneau' AMERICA_KENTUCKY_LOUISVILLE = 'America/Kentucky/Louisville' AMERICA_KENTUCKY_MONTICELLO = 'America/Kentucky/Monticello' AMERICA_KNOX_IN = 'America/Knox_IN' AMERICA_KRALENDIJK = 'America/Kralendijk' AMERICA_LA_PAZ = 'America/La_Paz' AMERICA_LIMA = 'America/Lima' AMERICA_LOS_ANGELES = 'America/Los_Angeles' AMERICA_LOUISVILLE = 'America/Louisville' AMERICA_LOWER_PRINCES = 'America/Lower_Princes' AMERICA_MACEIO = 'America/Maceio' AMERICA_MANAGUA = 'America/Managua' AMERICA_MANAUS = 'America/Manaus' AMERICA_MARIGOT = 'America/Marigot' AMERICA_MARTINIQUE = 'America/Martinique' AMERICA_MATAMOROS = 'America/Matamoros' AMERICA_MAZATLAN = 'America/Mazatlan' AMERICA_MENDOZA = 'America/Mendoza' AMERICA_MENOMINEE = 'America/Menominee' AMERICA_MERIDA = 'America/Merida' AMERICA_METLAKATLA = 'America/Metlakatla' AMERICA_MEXICO_CITY = 'America/Mexico_City' AMERICA_MIQUELON = 'America/Miquelon' AMERICA_MONCTON = 'America/Moncton' AMERICA_MONTERREY = 'America/Monterrey' AMERICA_MONTEVIDEO = 'America/Montevideo' AMERICA_MONTREAL = 'America/Montreal' AMERICA_MONTSERRAT = 'America/Montserrat' AMERICA_NASSAU = 'America/Nassau' AMERICA_NEW_YORK = 'America/New_York' AMERICA_NIPIGON = 'America/Nipigon' AMERICA_NOME = 'America/Nome' AMERICA_NORONHA = 'America/Noronha' AMERICA_NORTH_DAKOTA_BEULAH = 'America/North_Dakota/Beulah' AMERICA_NORTH_DAKOTA_CENTER = 'America/North_Dakota/Center' AMERICA_NORTH_DAKOTA_NEW_SALEM = 'America/North_Dakota/New_Salem' AMERICA_OJINAGA = 'America/Ojinaga' AMERICA_PANAMA = 'America/Panama' AMERICA_PANGNIRTUNG = 'America/Pangnirtung' AMERICA_PARAMARIBO = 'America/Paramaribo' AMERICA_PHOENIX = 'America/Phoenix' AMERICA_PORT_AU_PRINCE = 'America/Port-au-Prince' AMERICA_PORT_OF_SPAIN = 'America/Port_of_Spain' AMERICA_PORTO_ACRE = 'America/Porto_Acre' AMERICA_PORTO_VELHO = 'America/Porto_Velho' AMERICA_PUERTO_RICO = 'America/Puerto_Rico' AMERICA_RAINY_RIVER = 'America/Rainy_River' AMERICA_RANKIN_INLET = 'America/Rankin_Inlet' AMERICA_RECIFE = 'America/Recife' AMERICA_REGINA = 'America/Regina' AMERICA_RESOLUTE = 'America/Resolute' AMERICA_RIO_BRANCO = 'America/Rio_Branco' AMERICA_ROSARIO = 'America/Rosario' AMERICA_SANTA_ISABEL = 'America/Santa_Isabel' AMERICA_SANTAREM = 'America/Santarem' AMERICA_SANTIAGO = 'America/Santiago' AMERICA_SANTO_DOMINGO = 'America/Santo_Domingo' AMERICA_SAO_PAULO = 'America/Sao_Paulo' AMERICA_SCORESBYSUND = 'America/Scoresbysund' AMERICA_SHIPROCK = 'America/Shiprock' AMERICA_SITKA = 'America/Sitka' AMERICA_ST_BARTHELEMY = 'America/St_Barthelemy' AMERICA_ST_JOHNS = 'America/St_Johns' AMERICA_ST_KITTS = 'America/St_Kitts' AMERICA_ST_LUCIA = 'America/St_Lucia' AMERICA_ST_THOMAS = 'America/St_Thomas' AMERICA_ST_VINCENT = 'America/St_Vincent' AMERICA_SWIFT_CURRENT = 'America/Swift_Current' AMERICA_TEGUCIGALPA = 'America/Tegucigalpa' AMERICA_THULE = 'America/Thule' AMERICA_THUNDER_BAY = 'America/Thunder_Bay' AMERICA_TIJUANA = 'America/Tijuana' AMERICA_TORONTO = 'America/Toronto' AMERICA_TORTOLA = 'America/Tortola' AMERICA_VANCOUVER = 'America/Vancouver' AMERICA_VIRGIN = 'America/Virgin' AMERICA_WHITEHORSE = 'America/Whitehorse' AMERICA_WINNIPEG = 'America/Winnipeg' AMERICA_YAKUTAT = 'America/Yakutat' AMERICA_YELLOWKNIFE = 'America/Yellowknife' ANTARCTICA_CASEY = 'Antarctica/Casey' ANTARCTICA_DAVIS = 'Antarctica/Davis' ANTARCTICA_DUMONTDURVILLE = 'Antarctica/DumontDUrville' ANTARCTICA_MACQUARIE = 'Antarctica/Macquarie' ANTARCTICA_MAWSON = 'Antarctica/Mawson' ANTARCTICA_MCMURDO = 'Antarctica/McMurdo' ANTARCTICA_PALMER = 'Antarctica/Palmer' ANTARCTICA_ROTHERA = 'Antarctica/Rothera' ANTARCTICA_SOUTH_POLE = 'Antarctica/South_Pole' ANTARCTICA_SYOWA = 'Antarctica/Syowa' ANTARCTICA_TROLL = 'Antarctica/Troll' ANTARCTICA_VOSTOK = 'Antarctica/Vostok' ARCTIC_LONGYEARBYEN = 'Arctic/Longyearbyen' ASIA_ADEN = 'Asia/Aden' ASIA_ALMATY = 'Asia/Almaty' ASIA_AMMAN = 'Asia/Amman' ASIA_ANADYR = 'Asia/Anadyr' ASIA_AQTAU = 'Asia/Aqtau' ASIA_AQTOBE = 'Asia/Aqtobe' ASIA_ASHGABAT = 'Asia/Ashgabat' ASIA_ASHKHABAD = 'Asia/Ashkhabad' ASIA_BAGHDAD = 'Asia/Baghdad' ASIA_BAHRAIN = 'Asia/Bahrain' ASIA_BAKU = 'Asia/Baku' ASIA_BANGKOK = 'Asia/Bangkok' ASIA_BARNAUL = 'Asia/Barnaul' ASIA_BEIRUT = 'Asia/Beirut' ASIA_BISHKEK = 'Asia/Bishkek' ASIA_BRUNEI = 'Asia/Brunei' ASIA_CALCUTTA = 'Asia/Calcutta' ASIA_CHITA = 'Asia/Chita' ASIA_CHOIBALSAN = 'Asia/Choibalsan' ASIA_CHONGQING = 'Asia/Chongqing' ASIA_CHUNGKING = 'Asia/Chungking' ASIA_COLOMBO = 'Asia/Colombo' ASIA_DACCA = 'Asia/Dacca' ASIA_DAMASCUS = 'Asia/Damascus' ASIA_DHAKA = 'Asia/Dhaka' ASIA_DILI = 'Asia/Dili' ASIA_DUBAI = 'Asia/Dubai' ASIA_DUSHANBE = 'Asia/Dushanbe' ASIA_GAZA = 'Asia/Gaza' ASIA_HARBIN = 'Asia/Harbin' ASIA_HEBRON = 'Asia/Hebron' ASIA_HO_CHI_MINH = 'Asia/Ho_Chi_Minh' ASIA_HONG_KONG = 'Asia/Hong_Kong' ASIA_HOVD = 'Asia/Hovd' ASIA_IRKUTSK = 'Asia/Irkutsk' ASIA_ISTANBUL = 'Asia/Istanbul' ASIA_JAKARTA = 'Asia/Jakarta' ASIA_JAYAPURA = 'Asia/Jayapura' ASIA_JERUSALEM = 'Asia/Jerusalem' ASIA_KABUL = 'Asia/Kabul' ASIA_KAMCHATKA = 'Asia/Kamchatka' ASIA_KARACHI = 'Asia/Karachi' ASIA_KASHGAR = 'Asia/Kashgar' ASIA_KATHMANDU = 'Asia/Kathmandu' ASIA_KATMANDU = 'Asia/Katmandu' ASIA_KHANDYGA = 'Asia/Khandyga' ASIA_KOLKATA = 'Asia/Kolkata' ASIA_KRASNOYARSK = 'Asia/Krasnoyarsk' ASIA_KUALA_LUMPUR = 'Asia/Kuala_Lumpur' ASIA_KUCHING = 'Asia/Kuching' ASIA_KUWAIT = 'Asia/Kuwait' ASIA_MACAO = 'Asia/Macao' ASIA_MACAU = 'Asia/Macau' ASIA_MAGADAN = 'Asia/Magadan' ASIA_MAKASSAR = 'Asia/Makassar' ASIA_MANILA = 'Asia/Manila' ASIA_MUSCAT = 'Asia/Muscat' ASIA_NICOSIA = 'Asia/Nicosia' ASIA_NOVOKUZNETSK = 'Asia/Novokuznetsk' ASIA_NOVOSIBIRSK = 'Asia/Novosibirsk' ASIA_OMSK = 'Asia/Omsk' ASIA_ORAL = 'Asia/Oral' ASIA_PHNOM_PENH = 'Asia/Phnom_Penh' ASIA_PONTIANAK = 'Asia/Pontianak' ASIA_PYONGYANG = 'Asia/Pyongyang' ASIA_QATAR = 'Asia/Qatar' ASIA_QYZYLORDA = 'Asia/Qyzylorda' ASIA_RANGOON = 'Asia/Rangoon' ASIA_RIYADH = 'Asia/Riyadh' ASIA_SAIGON = 'Asia/Saigon' ASIA_SAKHALIN = 'Asia/Sakhalin' ASIA_SAMARKAND = 'Asia/Samarkand' ASIA_SEOUL = 'Asia/Seoul' ASIA_SHANGHAI = 'Asia/Shanghai' ASIA_SINGAPORE = 'Asia/Singapore' ASIA_SREDNEKOLYMSK = 'Asia/Srednekolymsk' ASIA_TAIPEI = 'Asia/Taipei' ASIA_TASHKENT = 'Asia/Tashkent' ASIA_TBILISI = 'Asia/Tbilisi' ASIA_TEHRAN = 'Asia/Tehran' ASIA_TEL_AVIV = 'Asia/Tel_Aviv' ASIA_THIMBU = 'Asia/Thimbu' ASIA_THIMPHU = 'Asia/Thimphu' ASIA_TOKYO = 'Asia/Tokyo' ASIA_TOMSK = 'Asia/Tomsk' ASIA_UJUNG_PANDANG = 'Asia/Ujung_Pandang' ASIA_ULAANBAATAR = 'Asia/Ulaanbaatar' ASIA_ULAN_BATOR = 'Asia/Ulan_Bator' ASIA_URUMQI = 'Asia/Urumqi' ASIA_UST_NERA = 'Asia/Ust-Nera' ASIA_VIENTIANE = 'Asia/Vientiane' ASIA_VLADIVOSTOK = 'Asia/Vladivostok' ASIA_YAKUTSK = 'Asia/Yakutsk' ASIA_YEKATERINBURG = 'Asia/Yekaterinburg' ASIA_YEREVAN = 'Asia/Yerevan' ATLANTIC_AZORES = 'Atlantic/Azores' ATLANTIC_BERMUDA = 'Atlantic/Bermuda' ATLANTIC_CANARY = 'Atlantic/Canary' ATLANTIC_CAPE_VERDE = 'Atlantic/Cape_Verde' ATLANTIC_FAEROE = 'Atlantic/Faeroe' ATLANTIC_FAROE = 'Atlantic/Faroe' ATLANTIC_JAN_MAYEN = 'Atlantic/Jan_Mayen' ATLANTIC_MADEIRA = 'Atlantic/Madeira' ATLANTIC_REYKJAVIK = 'Atlantic/Reykjavik' ATLANTIC_SOUTH_GEORGIA = 'Atlantic/South_Georgia' ATLANTIC_ST_HELENA = 'Atlantic/St_Helena' ATLANTIC_STANLEY = 'Atlantic/Stanley' AUSTRALIA_ACT = 'Australia/ACT' AUSTRALIA_ADELAIDE = 'Australia/Adelaide' AUSTRALIA_BRISBANE = 'Australia/Brisbane' AUSTRALIA_BROKEN_HILL = 'Australia/Broken_Hill' AUSTRALIA_CANBERRA = 'Australia/Canberra' AUSTRALIA_CURRIE = 'Australia/Currie' AUSTRALIA_DARWIN = 'Australia/Darwin' AUSTRALIA_EUCLA = 'Australia/Eucla' AUSTRALIA_HOBART = 'Australia/Hobart' AUSTRALIA_LHI = 'Australia/LHI' AUSTRALIA_LINDEMAN = 'Australia/Lindeman' AUSTRALIA_LORD_HOWE = 'Australia/Lord_Howe' AUSTRALIA_MELBOURNE = 'Australia/Melbourne' AUSTRALIA_NSW = 'Australia/NSW' AUSTRALIA_NORTH = 'Australia/North' AUSTRALIA_PERTH = 'Australia/Perth' AUSTRALIA_QUEENSLAND = 'Australia/Queensland' AUSTRALIA_SOUTH = 'Australia/South' AUSTRALIA_SYDNEY = 'Australia/Sydney' AUSTRALIA_TASMANIA = 'Australia/Tasmania' AUSTRALIA_VICTORIA = 'Australia/Victoria' AUSTRALIA_WEST = 'Australia/West' AUSTRALIA_YANCOWINNA = 'Australia/Yancowinna' BRAZIL_ACRE = 'Brazil/Acre' BRAZIL_DENORONHA = 'Brazil/DeNoronha' BRAZIL_EAST = 'Brazil/East' BRAZIL_WEST = 'Brazil/West' CET = 'CET' CST6CDT = 'CST6CDT' CANADA_ATLANTIC = 'Canada/Atlantic' CANADA_CENTRAL = 'Canada/Central' CANADA_EAST_SASKATCHEWAN = 'Canada/East-Saskatchewan' CANADA_EASTERN = 'Canada/Eastern' CANADA_MOUNTAIN = 'Canada/Mountain' CANADA_NEWFOUNDLAND = 'Canada/Newfoundland' CANADA_PACIFIC = 'Canada/Pacific' CANADA_SASKATCHEWAN = 'Canada/Saskatchewan' CANADA_YUKON = 'Canada/Yukon' CHILE_CONTINENTAL = 'Chile/Continental' CHILE_EASTERISLAND = 'Chile/EasterIsland' CUBA = 'Cuba' EET = 'EET' EST = 'EST' EST5EDT = 'EST5EDT' EGYPT = 'Egypt' EIRE = 'Eire' ETC_GMT = 'Etc/GMT' ETC_GMT_PLUS_0 = 'Etc/GMT+0' ETC_GMT_PLUS_1 = 'Etc/GMT+1' ETC_GMT_PLUS_10 = 'Etc/GMT+10' ETC_GMT_PLUS_11 = 'Etc/GMT+11' ETC_GMT_PLUS_12 = 'Etc/GMT+12' ETC_GMT_PLUS_2 = 'Etc/GMT+2' ETC_GMT_PLUS_3 = 'Etc/GMT+3' ETC_GMT_PLUS_4 = 'Etc/GMT+4' ETC_GMT_PLUS_5 = 'Etc/GMT+5' ETC_GMT_PLUS_6 = 'Etc/GMT+6' ETC_GMT_PLUS_7 = 'Etc/GMT+7' ETC_GMT_PLUS_8 = 'Etc/GMT+8' ETC_GMT_PLUS_9 = 'Etc/GMT+9' ETC_GMT_MINUS_0 = 'Etc/GMT-0' ETC_GMT_MINUS_1 = 'Etc/GMT-1' ETC_GMT_MINUS_10 = 'Etc/GMT-10' ETC_GMT_MINUS_11 = 'Etc/GMT-11' ETC_GMT_MINUS_12 = 'Etc/GMT-12' ETC_GMT_MINUS_13 = 'Etc/GMT-13' ETC_GMT_MINUS_14 = 'Etc/GMT-14' ETC_GMT_MINUS_2 = 'Etc/GMT-2' ETC_GMT_MINUS_3 = 'Etc/GMT-3' ETC_GMT_MINUS_4 = 'Etc/GMT-4' ETC_GMT_MINUS_5 = 'Etc/GMT-5' ETC_GMT_MINUS_6 = 'Etc/GMT-6' ETC_GMT_MINUS_7 = 'Etc/GMT-7' ETC_GMT_MINUS_8 = 'Etc/GMT-8' ETC_GMT_MINUS_9 = 'Etc/GMT-9' ETC_GMT0 = 'Etc/GMT0' ETC_GREENWICH = 'Etc/Greenwich' ETC_UCT = 'Etc/UCT' ETC_UTC = 'Etc/UTC' ETC_UNIVERSAL = 'Etc/Universal' ETC_ZULU = 'Etc/Zulu' EUROPE_AMSTERDAM = 'Europe/Amsterdam' EUROPE_ANDORRA =
<gh_stars>10-100 #!/usr/bin/env python # # $Id: kfssetup.py 36 2007-11-12 02:43:36Z sriramsrao $ # # Copyright 2007 Kosmix Corp. # # This file is part of Kosmos File System (KFS). # # Licensed under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. See the License for the specific language governing # permissions and limitations under the License. # # Script to setup KFS servers on a set of nodes # This scripts reads a machines.cfg file that describes the meta/chunk # servers configurations and installs the binaries/scripts and creates # the necessary directory hierarchy. # import os,sys,os.path,getopt import socket,threading,popen2 import md5 from ConfigParser import ConfigParser # Use the python config parser to parse out machines setup # Input file format for machines.cfg # [metaserver] # type: metaserver # clusterkey: <cluster name> # node: <value> # rundir: <dir> # baseport: <port> # # [chunkserver1] # node: <value> # rundir: <dir> # baseport: <port> # space: <space exported by the server> (n m/g) # {chunkdir: <dir>} # [chunkserver2] # ... # [chunkserverN] # ... # # where, space is expressed in units of MB/GB or bytes. # # Install on each machine with the following directory hierarchy: # rundir/ # bin/ -- binaries, config file, kfscp/kfslog/kfschunk dirs # logs/ -- log output from running the binary # scripts/ -- all the helper scripts # If a path for storing the chunks isn't specified, then it defaults to bin # unitsScale = {'g' : 1 << 30, 'm' : 1 << 20, 'k' : 1 << 10, 'b' : 1} maxConcurrent = 25 chunkserversOnly = 0 tarProg = 'gtar' md5String = "" def which(program): import os def is_exe(fpath): return os.path.exists(fpath) and os.access(fpath, os.X_OK) fpath, fname = os.path.split(program) if fpath: if is_exe(program): return program else: for path in os.environ["PATH"].split(os.pathsep): exe_file = os.path.join(path, program) if is_exe(exe_file): return exe_file return None def setupMeta(section, config, outputFn, packageFn): """ Setup the metaserver binaries/config files on a node. """ global chunkserversOnly if chunkserversOnly > 0: print "Chunkservers only is set; not doing meta" return key = config.get(section, 'clusterkey') baseport = config.getint(section, 'baseport') rundir = config.get(section, 'rundir') fh = open(outputFn, 'w') print >> fh, "metaServer.clientPort = %d" % baseport print >> fh, "metaServer.chunkServerPort = %d" % (baseport + 100) print >> fh, "metaServer.clusterKey = %s" % (key) print >> fh, "metaServer.cpDir = %s/bin/kfscp" % rundir print >> fh, "metaServer.logDir = %s/bin/kfslog" % rundir if config.has_option(section, 'loglevel'): print >> fh, "metaServer.loglevel = %s" % config.get(section, 'loglevel') if config.has_option(section, 'worm'): print >> fh, "metaServer.wormMode = 1" if config.has_option(section, 'numservers'): print >> fh, "metaServer.minChunkservers = %s" % config.get(section, 'numservers') if config.has_option(section, 'md5sumfilename'): print >> fh, "metaServer.md5sumFilename = %s" % config.get(section, 'md5sumfilename') fh.close() if config.has_option(section, 'webuiConfFile'): confFile = config.get(section, 'webuiConfFile') fh = open(confFile, 'w') print >> fh, "[webserver]" print >> fh, "webServer.metaserverPort = %d" % baseport print >> fh, "webServer.port = %d" % (baseport + 50) print >> fh, "webServer.allMachinesFn = %s/webui/all-machines.txt" % rundir print >> fh, "webServer.docRoot = %s/webui/files" % rundir fh.close() cmd = "%s -zcf %s bin/logcompactor bin/metaserver %s lib webui scripts/*" % (tarProg, packageFn, outputFn) os.system(cmd) installArgs = "-r %s -d %s -m" % (tarProg, rundir) return installArgs def setupChunkConfig(section, config, outputFn): """ Setup the chunkserver binaries/config files on a node. """ metaNode = config.get('metaserver', 'node') metaToChunkPort = config.getint('metaserver', 'baseport') + 100 hostname = config.get(section, 'node') # for rack-aware replication, we assume that nodes on different racks are on different subnets s = socket.gethostbyname(hostname) ipoctets = s.split('.') rackId = int(ipoctets[2]) # fh = open (outputFn, 'w') print >> fh, "chunkServer.metaServer.hostname = %s" % metaNode print >> fh, "chunkServer.metaServer.port = %d" % metaToChunkPort print >> fh, "chunkServer.clientPort = %d" % config.getint(section, 'baseport') print >> fh, "chunkServer.clusterKey = %s" % config.get('metaserver', 'clusterkey') print >> fh, "chunkServer.rackId = %d" % (rackId) print >> fh, "chunkServer.md5sum = %s" % (md5String) if config.has_option(section, 'sorterport'): print >> fh, "chunkServer.sorter.port = %s" % config.get(section, 'sorterport') if config.has_option(section, 'loglevel'): print >> fh, "chunkServer.loglevel = %s" % config.get(section, 'loglevel') space = config.get(section, 'space') s = space.split() if (len(s) >= 2): units = s[1].lower() else: units = 'b' value = int(s[0]) * unitsScale[ units[0] ] print >> fh, "chunkServer.totalSpace = %d" % value rundir = config.get(section, 'rundir') if config.has_option(section, 'chunkdir'): chunkDir = config.get(section, 'chunkdir') else: chunkDir = "%s/bin/kfschunk" % (rundir) print >> fh, "chunkServer.chunkDir = %s" % (chunkDir) print >> fh, "chunkServer.logDir = %s/bin/kfslog" % (rundir) if config.has_option(section, 'loglevel'): print >> fh, "chunkServer.loglevel = %s" % config.get(section, 'loglevel') fh.close() def setupChunk(section, config, outputFn, packageFn): """ Setup the chunkserver binaries/config files on a node. """ setupChunkConfig(section, config, outputFn) cmd = "%s -zcf %s bin/chunkscrubber bin/chunkserver bin/sailfish/* %s lib scripts/*" % (tarProg, packageFn, outputFn) os.system(cmd) rundir = config.get(section, 'rundir') if config.has_option(section, 'chunkdir'): chunkDir = config.get(section, 'chunkdir') else: chunkDir = "%s/bin/kfschunk" % (rundir) installArgs = "-r %s -d %s -c \"%s\" " % (tarProg, rundir, chunkDir) return installArgs def usage(): """ Print out the usage for this program. """ print "%s [-f, --file <server.cfg>] [-m , --machines <chunkservers.txt>] [-r, --tar <tar|gtar>] \ [-w, --webui <webui dir>] [ [-b, --bin <dir with binaries>] {-u, --upgrade} | [-U, --uninstall] ]\n" % sys.argv[0] return def copyDir(srcDir, dstDir): """ Copy files from src to dest""" cmd = "cp -r %s %s" % (srcDir, dstDir) os.system(cmd) def computeMD5(datadir, digest): """Update the MD5 digest using the MD5 of all the files in a directory""" files = os.listdir(datadir) for f in sorted(files): path = os.path.join(datadir, f) if os.path.isdir(path): continue fh = open(path, 'r') while 1: buf = fh.read(4096) if buf == "": break digest.update(buf) def getFiles(buildDir, webuidir): """ Copy files from buildDir/bin, buildDir/lib and . to ./bin, ./lib, and ./scripts respectively.""" global md5String cmd = "mkdir -p ./scripts; cp ./* scripts; chmod u+w scripts/*" os.system(cmd) s = "%s/bin" % buildDir if (os.path.exists(s + "/amd64")): s += "/amd64" copyDir(s, './bin') digest = md5.new() computeMD5('./bin', digest) s = "%s/lib" % buildDir if (os.path.exists(s + "/amd64")): s += "/amd64" copyDir(s, './lib') computeMD5('./lib', digest) md5String = digest.hexdigest() copyDir(webuidir, './webui') def cleanup(fn): """ Cleanout the dirs we created. """ cmd = "rm -rf ./scripts ./bin ./lib ./webui %s " % fn os.system(cmd) class InstallWorker(threading.Thread): """InstallWorker thread that runs a command on remote node""" def __init__(self, sec, conf, tmpdir, i, m): threading.Thread.__init__(self) self.section = sec self.config = conf self.tmpdir = tmpdir self.id = i self.mode = m self.doBuildPkg = 1 def singlePackageForAll(self, packageFn, installArgs): self.doBuildPkg = 0 self.packageFn = packageFn self.installArgs = installArgs def buildPackage(self): if (self.section == 'metaserver'): self.installArgs = setupMeta(self.section, self.config, self.configOutputFn, self.packageFn) else: self.installArgs = setupChunk(self.section, self.config, self.configOutputFn, self.packageFn) def doInstall(self): fn = os.path.basename(self.packageFn) if (self.section == 'metaserver'): if chunkserversOnly > 0: return c = "scp -pr -o StrictHostKeyChecking=no -q %s kfsinstall.sh %s:/tmp/; ssh -o StrictHostKeyChecking=no %s 'mv /tmp/%s /tmp/kfspkg.tgz; sh /tmp/kfsinstall.sh %s %s ' " % \ (self.packageFn, self.dest, self.dest, fn, self.mode, self.installArgs) else: # chunkserver configFn = os.path.basename(self.configOutputFn) c = "scp -pr -o StrictHostKeyChecking=no -q %s kfsinstall.sh %s %s:/tmp/; ssh -o StrictHostKeyChecking=no %s 'mv /tmp/%s /tmp/kfspkg.tgz; mv /tmp/%s /tmp/ChunkServer.prp; sh /tmp/kfsinstall.sh %s %s ' " % \ (self.packageFn, self.configOutputFn, self.dest, self.dest, fn, configFn, self.mode, self.installArgs) p = popen2.Popen3(c, True) for out in p.fromchild: if len(out) > 1: print '[%s]: %s' % (self.dest, out[:-1]) def cleanup(self): if self.doBuildPkg > 0: # if we built the package, nuke it c = "rm -f %s %s" % (self.configOutputFn, self.packageFn) else: c = "rm -f %s" % (self.configOutputFn) os.system(c) c = "ssh -o StrictHostKeyChecking=no %s 'rm -f /tmp/install.sh /tmp/kfspkg.tgz' " % self.dest popen2.Popen3(c, True) def run(self): self.configOutputFn = "%s/fn.%d" % (self.tmpdir, self.id) if self.doBuildPkg > 0: self.packageFn = "%s/kfspkg.%d.tgz" % (self.tmpdir, self.id) self.buildPackage() else: setupChunkConfig(self.section, self.config, self.configOutputFn) self.dest = config.get(self.section, 'node') self.doInstall() self.cleanup() def doInstall(config, builddir, tmpdir, webuidir, upgrade, serialMode): if not config.has_section('metaserver'): raise config.NoSectionError, "No metaserver section" if not os.path.exists(builddir): print "%s : directory doesn't exist\n" % builddir sys.exit(-1) getFiles(builddir, webuidir) if
to a string: setattr(f, x.name, str(arg[x.name])) elif isinstance(x.type(), ZwiBase): # we expect that f.<value> here is a suitable dict f0 = getattr(f, x.name) if f0 is not None and x.name in arg: debug(2, f'dict: {f0=} {arg[x.name]=}') f0.traverse(ZwiBase.from_dict, arg[x.name]) else: raise SystemExit('oops') pass else: raise SystemExit(f'Unexpected type: {x.type=}') pass return arg @staticmethod def to_dict(f, x, arg): """Assing values to a supplied dict(). Does not construct the dict or add any missing fields. """ if x.name in arg: # print(f'{x.name=} {x.type=} {arg[x.name]=}') if x.type in (int, bool): arg[x.name] = getattr(f, x.name) elif x.type is str: arg[x.name] = getattr(f, x.name) elif isinstance(x.type(), ZwiBase): # we expect that self.<value> here is a suitable dict f0 = getattr(f, x.name) if f0 is not None: debug(2, f'dict: {f0=} {arg[x.name]=}') f0.traverse(f.to_dict, arg[x.name]) pass pass else: raise SystemExit(f'Unexpected type: {x.type=}') pass return arg @staticmethod def from_seq(f, x, arg): """Assign values from a sequence. We perform a depth-first traversal. """ # print(f'{x.name=} {x.type=}') if x.type in (int, bool): setattr(f, x.name, arg[0][arg[1]]) arg[1] += 1 elif x.type is str: setattr(f, x.name, arg[0][arg[1]]) arg[1] += 1 elif isinstance(x.type(), ZwiBase): # decide what we need the recursion to do: f0 = getattr(f, x.name) debug(2, f'from_seq: {x.name=} {f0}') if f0 is not None: return f0.traverse(f0.from_seq, arg) pass debug(0, f'from_seq: {x.name=} {f0}') raise SystemExit('logic error') else: raise SystemExit(f'Unexpected type: {x.type=}') return arg pass @dataclass class ZwiFollowers(ZwiBase): def __eq__(self, other): rv = self.difference(other, ignore=['userAgent', 'addDate', 'delDate']) if isinstance(rv, bool): return rv return (len(rv) == 0) def __ne__(self, other): return not self.__eq__(other) followerId: int = 0 followeeId: int = 0 status: str = '' isFolloweeFavoriteOfFollower: bool = False @dataclass class FollowerProfile(ZwiBase): publicId: str = '' firstName: str = '' lastName: str = '' male: bool = True imageSrc: str = '' imageSrcLarge: str = '' playerType: str = '' countryAlpha3: str = '' countryCode: int = 0 useMetric: bool = True riding: bool = False @dataclass class Privacy(ZwiBase): approvalRequired: bool = False displayWeight: bool = False minor: bool = False privateMessaging: bool = False defaultFitnessDataPrivacy: bool = False suppressFollowerNotification: bool = False displayAge: bool = True defaultActivityPrivacy: str = '' pass privacy: Privacy = Privacy() @dataclass class SocialFacts(ZwiBase): followersCount: int = 0 followeesCount: int = 0 followeesInCommonWithLoggedInPlayer: int = 0 followerStatusOfLoggedInPlayer: str = '' followeeStatusOfLoggedInPlayer: str = '' isFavoriteOfLoggedInPlayer: bool = True pass socialFacts: SocialFacts = SocialFacts() worldId: int = 0 enrolledZwiftAcademy: bool = False playerTypeId: int = 0 playerSubTypeId: int = 0 currentActivityId: int = 0 likelyInGame: bool = False pass profile: FollowerProfile = FollowerProfile() addDate: str = f'''{datetime.now().isoformat(timespec='minutes')}''' delDate: str = 'not yet' @classmethod def wers(cls, data): """Init a followers-type entry.""" if isinstance(data, dict): # assumed to be per the Zwift format. assert 'followerProfile' in data data['profile'] = data['followerProfile'] e = ZwiFollowers() e.traverse(ZwiBase.from_dict, data) return e if isinstance(data, tuple) or isinstance(data, list): # assumed to be the internal format e = ZwiFollowers() e.traverse(ZwiBase.from_seq, [data, 0]) return e raise Exception(f'funny type ({type(data)=}) of {data!r}') @classmethod def wees(cls, data): """Init a followees-type entry.""" if isinstance(data, dict): # assumed to be per the Zwift format. assert 'followeeProfile' in data data['profile'] = data['followeeProfile'] e = ZwiFollowers() e.traverse(ZwiBase.from_dict, data) return e if isinstance(data, tuple) or isinstance(data, list): # assumed to be the internal format e = ZwiFollowers() e.traverse(ZwiBase.from_seq, [data, 0]) return e raise Exception(f'funny type of {data!r}') @classmethod def column_names(cls, pk='', create=False): """generate the columnt list for a DB create.""" tmap = {int: 'INT', bool: 'INT', str: 'TEXT'} def fun(f, x, arg): """Function to enumerate the column names.""" if x.type in (int, bool, str): if not create: # INSERT/SELECT usage arg.append(f'{x.name}') # .. no type elif x.name == pk: # CREATE and PRIMARY arg.append(f'{x.name} {tmap[x.type]} PRIMARY KEY') else: # CREATE, no PRIMARY arg.append(f'{x.name} {tmap[x.type]}') elif isinstance(x.type(), ZwiBase): f0 = getattr(f, x.name) if f0 is not None: f0.traverse(fun, arg) pass pass pass return cls().traverse(fun, list()) def column_values(self): """generate the values list for a DB insert.""" def fun(f, x, arg): """Function to enumerate the column values.""" val = getattr(f, x.name) if x.type in (int, bool): if val is None: val = 0 else: val = int(val) pass arg.append(f'{val}') elif x.type is str: # We need to replace all single ' with double '' val = str(val).replace("'", "''") arg.append(f"'{val}'") elif isinstance(x.type(), ZwiBase): f0 = getattr(f, x.name) if f0 is not None: f0.traverse(fun, arg) pass pass pass return self.traverse(fun, list()) pass @dataclass class ZwiProfile(ZwiBase): def __eq__(self, other): rv = self.difference(other, ignore=['addDate', 'delDate']) if isinstance(rv, bool): return rv return (len(rv) == 0) def __ne__(self, other): return not self.__eq__(other) id: int = 0 publicId: str = '' firstName: str = '' lastName: str = '' male: bool = True imageSrc: str = '' imageSrcLarge: str = '' playerType: str = '' countryAlpha3: str = '' countryCode: int = 0 useMetric: bool = True riding: bool = False @dataclass class Privacy(ZwiBase): approvalRequired: bool = False displayWeight: bool = False minor: bool = False privateMessaging: bool = False defaultFitnessDataPrivacy: bool = False suppressFollowerNotification: bool = False displayAge: bool = True defaultActivityPrivacy: str = '' pass privacy: Privacy = Privacy() @dataclass class SocialFacts(ZwiBase): followersCount: int = 0 followeesCount: int = 0 followeesInCommonWithLoggedInPlayer: int = 0 followerStatusOfLoggedInPlayer: str = '' followeeStatusOfLoggedInPlayer: str = '' isFavoriteOfLoggedInPlayer: bool = True pass socialFacts: SocialFacts = SocialFacts() worldId: int = 0 enrolledZwiftAcademy: bool = False playerTypeId: int = 0 playerSubTypeId: int = 0 currentActivityId: int = 0 likelyInGame: bool = False address: str = None, age: int = 0, bodyType: int = 0, connectedToStrava: bool = False, connectedToTrainingPeaks: bool = False, connectedToTodaysPlan: bool = False, connectedToUnderArmour: bool = False, connectedToWithings: bool = False, connectedToFitbit: bool = False, connectedToGarmin: bool = False, connectedToRuntastic: bool = False, connectedToZwiftPower: bool = False, stravaPremium: bool = False, bt: str = None, dob: str = None, emailAddress: str = None, height: int = 0, location: str = '', preferredLanguage: str = '', mixpanelDistinctId: str = '', profileChanges: bool = False, weight: int = 0, b: bool = False, createdOn: str = '', source: str = '', origin: str = '', launchedGameClient: str = '', ftp: int = 0, userAgent: str = '', runTime1miInSeconds: int = 0, runTime5kmInSeconds: int = 0, runTime10kmInSeconds: int = 0, runTimeHalfMarathonInSeconds: int = 0, runTimeFullMarathonInSeconds: int = 0, cyclingOrganization: str = None, licenseNumber: str = None, bigCommerceId: str = '', marketingConsent: str = None, achievementLevel: int = 0, totalDistance: int = 0, totalDistanceClimbed: int = 0, totalTimeInMinutes: int = 0, totalInKomJersey: int = 0, totalInSprintersJersey: int = 0, totalInOrangeJersey: int = 0, totalWattHours: int = 0, totalExperiencePoints: int = 0, totalGold: int = 0, runAchievementLevel: int = 0, totalRunDistance: int = 0, totalRunTimeInMinutes: int = 0, totalRunExperiencePoints: int = 0, totalRunCalories: int = 0, powerSourceType: str = '', powerSourceModel: str = '', virtualBikeModel: str = '', numberOfFolloweesInCommon: int = 0, affiliate: str = None, avantlinkId: str = None, fundraiserId: str = None, addDate: str = f'''{datetime.now().isoformat(timespec='minutes')}''' @classmethod def from_zwift(cls, data): """Init from Zwift API response.""" if isinstance(data, dict): # assumed to be per the Zwift format. e = ZwiProfile() e.traverse(ZwiBase.from_dict, data) return e raise Exception(f'funny type of {data!r}') @classmethod def from_seq(cls, data): """Init from sequence.""" if isinstance(data, tuple) or isinstance(data, list): # assumed to be the internal format e = ZwiProfile() e.traverse(ZwiBase.from_seq, [data, 0]) return e raise Exception(f'funny type of {data!r}') @classmethod def column_names(cls, pk='', create=False): """generate the columnt list for a DB create.""" tmap = {int: 'INT', bool: 'INT', str: 'TEXT'} def fun(f, x, arg): """Function to enumerate the column names.""" if x.type in (int, bool, str): if not create: # INSERT/SELECT usage arg.append(f'{x.name}') # .. no type elif x.name == pk: # CREATE and PRIMARY arg.append(f'{x.name} {tmap[x.type]} PRIMARY KEY') else: # CREATE, no PRIMARY arg.append(f'{x.name} {tmap[x.type]}') elif isinstance(x.type(), ZwiBase): f0 = getattr(f, x.name) if f0 is not None: f0.traverse(fun, arg) pass pass pass return cls().traverse(fun, list()) def column_values(self): """generate the values list for a DB insert."""
= variant_ids[mask] tss_distance = tss_distance[mask] if interaction_df is not None: genotypes_t, mask_t = filter_maf_interaction(genotypes_t, interaction_mask_t=interaction_mask_t, maf_threshold_interaction=maf_threshold_interaction) mask = mask_t.cpu().numpy() variant_ids = variant_ids[mask] tss_distance = tss_distance[mask] n = len(variant_ids) if genotypes_t.shape[0] > 0: # process first phenotype in group phenotype_id = phenotype_ids[0] phenotype_t = torch.tensor(phenotypes[0], dtype=torch.float).to(device) if interaction_df is None: res = calculate_cis_nominal(genotypes_t, phenotype_t, residualizer=residualizer) tstat, slope, slope_se, af, ma_samples, ma_count = [i.cpu().numpy() for i in res] else: res = calculate_interaction_nominal(genotypes_t, phenotype_t.unsqueeze(0), interaction_t, residualizer=residualizer, return_sparse=False, variant_ids=variant_ids) tstat, b, b_se, af, ma_samples, ma_count = [i.cpu().numpy() for i in res] px = [phenotype_id]*n # iterate over remaining phenotypes in group for phenotype, phenotype_id in zip(phenotypes[1:], phenotype_ids[1:]): phenotype_t = torch.tensor(phenotype, dtype=torch.float).to(device) if interaction_df is None: res = calculate_cis_nominal(genotypes_t, phenotype_t, residualizer=residualizer) tstat0, slope0, slope_se0, af, ma_samples, ma_count = [i.cpu().numpy() for i in res] else: res = calculate_interaction_nominal(genotypes_t, phenotype_t.unsqueeze(0), interaction_t, residualizer=residualizer, return_sparse=False, variant_ids=variant_ids) tstat0, b0, b_se0, af, ma_samples, ma_count = [i.cpu().numpy() for i in res] # find associations that are stronger for current phenotype if interaction_df is None: ix = np.where(np.abs(tstat0) > np.abs(tstat))[0] else: ix = np.where(np.abs(tstat0[:,2]) > np.abs(tstat[:,2]))[0] # update relevant positions for j in ix: px[j] = phenotype_id if interaction_df is None: tstat[ix] = tstat0[ix] slope[ix] = slope0[ix] slope_se[ix] = slope_se0[ix] else: tstat[ix] = tstat0[ix] b[ix] = b0[ix] b_se[ix] = b_se0[ix] chr_res['phenotype_id'].extend(px) chr_res['variant_id'].extend(variant_ids) chr_res['tss_distance'][start:start+n] = tss_distance chr_res['af'][start:start+n] = af chr_res['ma_samples'][start:start+n] = ma_samples chr_res['ma_count'][start:start+n] = ma_count if interaction_df is None: chr_res['pval_nominal'][start:start+n] = tstat chr_res['slope'][start:start+n] = slope chr_res['slope_se'][start:start+n] = slope_se else: chr_res['pval_g'][start:start+n] = tstat[:,0] chr_res['b_g'][start:start+n] = b[:,0] chr_res['b_g_se'][start:start+n] = b_se[:,0] chr_res['pval_i'][start:start+n] = tstat[:,1:1+ni] chr_res['b_i'][start:start+n] = b[:,1:1+ni] chr_res['b_i_se'][start:start+n] = b_se[:,1:1+ni] chr_res['pval_gi'][start:start+n] = tstat[:,1+ni:] chr_res['b_gi'][start:start+n] = b[:,1+ni:] chr_res['b_gi_se'][start:start+n] = b_se[:,1+ni:] # top association for the group if interaction_df is not None: ix = np.nanargmax(np.abs(tstat[:,1+ni:]).max(1)) # top association among all interactions tested # index order: 0, 1, 1+ni, 2, 2+ni, 3, 3+ni, ... order = [0] + [i if j % 2 == 0 else i+ni for i in range(1,ni+1) for j in range(2)] top_s = [chr_res['phenotype_id'][start:start+n][ix], variant_ids[ix], tss_distance[ix], af[ix], ma_samples[ix], ma_count[ix]] for i in order: top_s += [tstat[ix,i], b[ix,i], b_se[ix,i]] top_s = pd.Series(top_s, index=col_order) top_s['num_phenotypes'] = len(phenotype_ids) if run_eigenmt: # compute eigenMT correction top_s['tests_emt'] = eigenmt.compute_tests(genotypes_t, var_thresh=0.99, variant_window=200) best_assoc.append(top_s) start += n # update pointer logger.write(f' time elapsed: {(time.time()-start_time)/60:.2f} min') # convert to dataframe, compute p-values and write current chromosome if start < len(chr_res['af']): for x in chr_res: chr_res[x] = chr_res[x][:start] if write_stats: if interaction_df is not None: cols = ['pval_i', 'b_i', 'b_i_se', 'pval_gi', 'b_gi', 'b_gi_se'] if ni == 1: # squeeze columns for k in cols: chr_res[k] = chr_res[k][:,0] else: # split interactions for i in range(0, ni): # fix order for k in cols: chr_res[k.replace('i', f"i{i+1}")] = None for k in cols: for i in range(0, ni): chr_res[k.replace('i', f"i{i+1}")] = chr_res[k][:,i] del chr_res[k] chr_res_df = pd.DataFrame(chr_res) if interaction_df is None: m = chr_res_df['pval_nominal'].notnull() chr_res_df.loc[m, 'pval_nominal'] = 2*stats.t.cdf(-chr_res_df.loc[m, 'pval_nominal'].abs(), dof) else: if ni == 1: m = chr_res_df['pval_gi'].notnull() chr_res_df.loc[m, 'pval_g'] = 2*stats.t.cdf(-chr_res_df.loc[m, 'pval_g'].abs(), dof) chr_res_df.loc[m, 'pval_i'] = 2*stats.t.cdf(-chr_res_df.loc[m, 'pval_i'].abs(), dof) chr_res_df.loc[m, 'pval_gi'] = 2*stats.t.cdf(-chr_res_df.loc[m, 'pval_gi'].abs(), dof) else: m = chr_res_df['pval_gi1'].notnull() chr_res_df.loc[m, 'pval_g'] = 2*stats.t.cdf(-chr_res_df.loc[m, 'pval_g'].abs(), dof) for i in range(1, ni+1): chr_res_df.loc[m, f'pval_i{i}'] = 2*stats.t.cdf(-chr_res_df.loc[m, f'pval_i{i}'].abs(), dof) chr_res_df.loc[m, f'pval_gi{i}'] = 2*stats.t.cdf(-chr_res_df.loc[m, f'pval_gi{i}'].abs(), dof) # substitute column headers chr_res_df.rename(columns=var_dict, inplace=True) print(' * writing output') chr_res_df.to_parquet(os.path.join(output_dir, f'{prefix}.cis_qtl_pairs.{chrom}.parquet')) if interaction_df is not None and len(best_assoc) > 0: best_assoc = pd.concat(best_assoc, axis=1, sort=False).T.set_index('phenotype_id').infer_objects() m = best_assoc['pval_g'].notnull() best_assoc.loc[m, 'pval_g'] = 2*stats.t.cdf(-best_assoc.loc[m, 'pval_g'].abs(), dof) if ni == 1: best_assoc.loc[m, 'pval_i'] = 2*stats.t.cdf(-best_assoc.loc[m, 'pval_i'].abs(), dof) best_assoc.loc[m, 'pval_gi'] = 2*stats.t.cdf(-best_assoc.loc[m, 'pval_gi'].abs(), dof) else: for i in range(1, ni+1): best_assoc.loc[m, f'pval_i{i}'] = 2*stats.t.cdf(-best_assoc.loc[m, f'pval_i{i}'].abs(), dof) best_assoc.loc[m, f'pval_gi{i}'] = 2*stats.t.cdf(-best_assoc.loc[m, f'pval_gi{i}'].abs(), dof) if run_eigenmt and ni == 1: # leave correction of specific p-values up to user for now (TODO) if group_s is None: best_assoc['pval_emt'] = np.minimum(best_assoc['tests_emt']*best_assoc['pval_gi'], 1) else: best_assoc['pval_emt'] = np.minimum(best_assoc['num_phenotypes']*best_assoc['tests_emt']*best_assoc['pval_gi'], 1) best_assoc['pval_adj_bh'] = eigenmt.padjust_bh(best_assoc['pval_emt']) if ni > 1: # substitute column headers best_assoc.rename(columns=var_dict, inplace=True) if write_top: best_assoc.to_csv(os.path.join(output_dir, f'{prefix}.cis_qtl_top_assoc.txt.gz'), sep='\t', float_format='%.6g') else: return best_assoc logger.write('done.') def prepare_cis_output(r_nominal, r2_perm, std_ratio, g, num_var, dof, variant_id, tss_distance, phenotype_id, nperm=10000): """Return nominal p-value, allele frequencies, etc. as pd.Series""" r2_nominal = r_nominal*r_nominal pval_perm = (np.sum(r2_perm>=r2_nominal)+1) / (nperm+1) slope = r_nominal * std_ratio tstat2 = dof * r2_nominal / (1 - r2_nominal) slope_se = np.abs(slope) / np.sqrt(tstat2) n2 = 2*len(g) af = np.sum(g) / n2 if af <= 0.5: ma_samples = np.sum(g>0.5) ma_count = np.sum(g[g>0.5]) else: ma_samples = np.sum(g<1.5) ma_count = n2 - np.sum(g[g>0.5]) res_s = pd.Series(OrderedDict([ ('num_var', num_var), ('beta_shape1', np.NaN), ('beta_shape2', np.NaN), ('true_df', np.NaN), ('pval_true_df', np.NaN), ('variant_id', variant_id), ('tss_distance', tss_distance), ('ma_samples', ma_samples), ('ma_count', ma_count), ('af', af), ('pval_nominal', pval_from_corr(r2_nominal, dof)), ('slope', slope), ('slope_se', slope_se), ('pval_perm', pval_perm), ('pval_beta', np.NaN), ]), name=phenotype_id) return res_s def _process_group_permutations(buf, variant_df, tss, dof, group_id, nperm=10000, beta_approx=True): """ Merge results for grouped phenotypes buf: [r_nominal, std_ratio, var_ix, r2_perm, g, num_var, phenotype_id] """ # select phenotype with strongest nominal association max_ix = np.argmax(np.abs([b[0] for b in buf])) r_nominal, std_ratio, var_ix = buf[max_ix][:3] g, num_var, phenotype_id = buf[max_ix][4:] # select best phenotype correlation for each permutation r2_perm = np.max([b[3] for b in buf], 0) # return r_nominal, std_ratio, var_ix, r2_perm, g, num_var, phenotype_id variant_id = variant_df.index[var_ix] tss_distance = variant_df['pos'].values[var_ix] - tss res_s = prepare_cis_output(r_nominal, r2_perm, std_ratio, g, num_var, dof, variant_id, tss_distance, phenotype_id, nperm=nperm) if beta_approx: res_s[['pval_beta', 'beta_shape1', 'beta_shape2', 'true_df', 'pval_true_df']] = calculate_beta_approx_pval(r2_perm, r_nominal*r_nominal, dof*0.25) res_s['group_id'] = group_id res_s['group_size'] = len(buf) return res_s def map_cis(genotype_df, variant_df, phenotype_df, phenotype_pos_df, covariates_df=None, group_s=None, maf_threshold=0, beta_approx=True, nperm=10000, window=1000000, random_tiebreak=False, logger=None, seed=None, verbose=True, warn_monomorphic=True): """Run cis-QTL mapping""" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if logger is None: logger = SimpleLogger() logger.write('cis-QTL mapping: empirical p-values for phenotypes') logger.write(f' * {phenotype_df.shape[1]} samples') logger.write(f' * {phenotype_df.shape[0]} phenotypes') if group_s is not None: logger.write(f' * {len(group_s.unique())} phenotype groups') group_dict = group_s.to_dict() if covariates_df is not None: assert np.all(phenotype_df.columns==covariates_df.index), 'Sample names in phenotype matrix columns and covariate matrix rows do not match!' assert ~(covariates_df.isnull().any().any()), f'Missing or null values in covariates matrix, in columns {",".join(covariates_df.columns[covariates_df.isnull().any(axis=0)].astype(str))}' logger.write(f' * {covariates_df.shape[1]} covariates') residualizer = Residualizer(torch.tensor(covariates_df.values, dtype=torch.float32).to(device)) dof = phenotype_df.shape[1] - 2 - covariates_df.shape[1] else: residualizer = None dof = phenotype_df.shape[1] - 2 logger.write(f' * {genotype_df.shape[0]} variants') if maf_threshold > 0: logger.write(f' * applying in-sample {maf_threshold} MAF filter') if random_tiebreak: logger.write(f' * randomly selecting top variant in case of ties') genotype_ix = np.array([genotype_df.columns.tolist().index(i) for i in phenotype_df.columns]) genotype_ix_t = torch.from_numpy(genotype_ix).to(device) # permutation indices n_samples = phenotype_df.shape[1] ix = np.arange(n_samples) if seed is not None: logger.write(f' * using seed {seed}') np.random.seed(seed) permutation_ix_t = torch.LongTensor(np.array([np.random.permutation(ix) for i in range(nperm)])).to(device) res_df = [] igc = genotypeio.InputGeneratorCis(genotype_df, variant_df, phenotype_df, phenotype_pos_df, group_s=group_s, window=window) if igc.n_phenotypes == 0: raise ValueError('No valid phenotypes found.') start_time = time.time() logger.write(' * computing permutations') if group_s is None: for k, (phenotype, genotypes, genotype_range, phenotype_id) in enumerate(igc.generate_data(verbose=verbose), 1): # copy genotypes to GPU genotypes_t = torch.tensor(genotypes, dtype=torch.float).to(device) genotypes_t = genotypes_t[:,genotype_ix_t] impute_mean(genotypes_t) if maf_threshold > 0: maf_t = calculate_maf(genotypes_t) mask_t = maf_t >= maf_threshold genotypes_t = genotypes_t[mask_t] mask = mask_t.cpu().numpy().astype(bool) genotype_range = genotype_range[mask] # filter monomorphic variants mono_t = (genotypes_t == genotypes_t[:, [0]]).all(1) if mono_t.any(): genotypes_t = genotypes_t[~mono_t] genotype_range = genotype_range[~mono_t.cpu()] if warn_monomorphic: logger.write(f' * WARNING: excluding {mono_t.sum()} monomorphic variants') if genotypes_t.shape[0] == 0: logger.write(f'WARNING: skipping {phenotype_id} (no valid variants)') continue phenotype_t = torch.tensor(phenotype, dtype=torch.float).to(device) res = calculate_cis_permutations(genotypes_t, phenotype_t, permutation_ix_t, residualizer=residualizer, random_tiebreak=random_tiebreak) r_nominal, std_ratio, var_ix, r2_perm, g = [i.cpu().numpy() for i in res] var_ix = genotype_range[var_ix] variant_id = variant_df.index[var_ix] tss_distance = variant_df['pos'].values[var_ix] - igc.phenotype_tss[phenotype_id] res_s = prepare_cis_output(r_nominal, r2_perm, std_ratio, g, genotypes_t.shape[0], dof, variant_id, tss_distance, phenotype_id, nperm=nperm) if beta_approx: res_s[['pval_beta', 'beta_shape1', 'beta_shape2', 'true_df', 'pval_true_df']] = calculate_beta_approx_pval(r2_perm, r_nominal*r_nominal, dof) res_df.append(res_s) else: # grouped mode for k, (phenotypes, genotypes, genotype_range, phenotype_ids, group_id) in enumerate(igc.generate_data(verbose=verbose), 1): # copy genotypes to GPU genotypes_t = torch.tensor(genotypes, dtype=torch.float).to(device) genotypes_t = genotypes_t[:,genotype_ix_t] impute_mean(genotypes_t) if maf_threshold > 0: maf_t = calculate_maf(genotypes_t) mask_t = maf_t >= maf_threshold genotypes_t = genotypes_t[mask_t] mask = mask_t.cpu().numpy().astype(bool) genotype_range = genotype_range[mask] # filter monomorphic variants mono_t = (genotypes_t == genotypes_t[:, [0]]).all(1) if mono_t.any(): genotypes_t = genotypes_t[~mono_t] genotype_range = genotype_range[~mono_t.cpu()] if warn_monomorphic: logger.write(f' * WARNING: excluding {mono_t.sum()}
and obj.has_multi_state_intersection( self.multi_state_available ): multi_state_allowed = True return state_allowed and multi_state_allowed class SubAction(ADCMModel): action = models.ForeignKey(Action, on_delete=models.CASCADE) name = models.CharField(max_length=160) display_name = models.CharField(max_length=160, blank=True) script = models.CharField(max_length=160) script_type = models.CharField(max_length=16, choices=SCRIPT_TYPE) state_on_fail = models.CharField(max_length=64, blank=True) params = models.JSONField(default=dict) class HostComponent(ADCMModel): cluster = models.ForeignKey(Cluster, on_delete=models.CASCADE) host = models.ForeignKey(Host, on_delete=models.CASCADE) service = models.ForeignKey(ClusterObject, on_delete=models.CASCADE) component = models.ForeignKey(ServiceComponent, on_delete=models.CASCADE) state = models.CharField(max_length=64, default='created') class Meta: unique_together = (('host', 'service', 'component'),) CONFIG_FIELD_TYPE = ( ('string', 'string'), ('text', 'text'), ('password', 'password'), ('secrettext', 'secrettext'), ('json', 'json'), ('integer', 'integer'), ('float', 'float'), ('option', 'option'), ('variant', 'variant'), ('boolean', 'boolean'), ('file', 'file'), ('list', 'list'), ('map', 'map'), ('structure', 'structure'), ('group', 'group'), ) class PrototypeConfig(ADCMModel): prototype = models.ForeignKey(Prototype, on_delete=models.CASCADE) action = models.ForeignKey(Action, on_delete=models.CASCADE, null=True, default=None) name = models.CharField(max_length=160) subname = models.CharField(max_length=160, blank=True) default = models.TextField(blank=True) type = models.CharField(max_length=16, choices=CONFIG_FIELD_TYPE) display_name = models.CharField(max_length=160, blank=True) description = models.TextField(blank=True) limits = models.JSONField(default=dict) ui_options = models.JSONField(blank=True, default=dict) required = models.BooleanField(default=True) group_customization = models.BooleanField(null=True) class Meta: unique_together = (('prototype', 'action', 'name', 'subname'),) class PrototypeExport(ADCMModel): prototype = models.ForeignKey(Prototype, on_delete=models.CASCADE) name = models.CharField(max_length=160) class Meta: unique_together = (('prototype', 'name'),) class PrototypeImport(ADCMModel): prototype = models.ForeignKey(Prototype, on_delete=models.CASCADE) name = models.CharField(max_length=160) min_version = models.CharField(max_length=80) max_version = models.CharField(max_length=80) min_strict = models.BooleanField(default=False) max_strict = models.BooleanField(default=False) default = models.JSONField(null=True, default=None) required = models.BooleanField(default=False) multibind = models.BooleanField(default=False) class Meta: unique_together = (('prototype', 'name'),) class ClusterBind(ADCMModel): cluster = models.ForeignKey(Cluster, on_delete=models.CASCADE) service = models.ForeignKey(ClusterObject, on_delete=models.CASCADE, null=True, default=None) source_cluster = models.ForeignKey( Cluster, related_name='source_cluster', on_delete=models.CASCADE ) source_service = models.ForeignKey( ClusterObject, related_name='source_service', on_delete=models.CASCADE, null=True, default=None, ) __error_code__ = 'BIND_NOT_FOUND' class Meta: unique_together = (('cluster', 'service', 'source_cluster', 'source_service'),) JOB_STATUS = ( ('created', 'created'), ('running', 'running'), ('success', 'success'), ('failed', 'failed'), ) class UserProfile(ADCMModel): login = models.CharField(max_length=32, unique=True) profile = models.JSONField(default=str) class Role(ADCMModel): name = models.CharField(max_length=32, unique=True) description = models.TextField(blank=True) permissions = models.ManyToManyField(Permission, blank=True) user = models.ManyToManyField(User, blank=True) group = models.ManyToManyField(Group, blank=True) class TaskLog(ADCMModel): object_id = models.PositiveIntegerField() object_type = models.ForeignKey(ContentType, null=True, on_delete=models.CASCADE) task_object = GenericForeignKey('object_type', 'object_id') action = models.ForeignKey(Action, on_delete=models.SET_NULL, null=True, default=None) pid = models.PositiveIntegerField(blank=True, default=0) selector = models.JSONField(default=dict) status = models.CharField(max_length=16, choices=JOB_STATUS) config = models.JSONField(null=True, default=None) attr = models.JSONField(default=dict) hostcomponentmap = models.JSONField(null=True, default=None) hosts = models.JSONField(null=True, default=None) verbose = models.BooleanField(default=False) start_date = models.DateTimeField() finish_date = models.DateTimeField() lock = models.ForeignKey('ConcernItem', null=True, on_delete=models.SET_NULL, default=None) def lock_affected(self, objects: Iterable[ADCMEntity]) -> None: if self.lock: return first_job = JobLog.obj.filter(task=self).order_by('id').first() reason = MessageTemplate.get_message_from_template( MessageTemplate.KnownNames.LockedByJob.value, job=first_job, target=self.task_object, ) self.lock = ConcernItem.objects.create( type=ConcernType.Lock.value, name=None, reason=reason, blocking=True, owner=self.task_object, cause=ConcernCause.Job.value, ) self.save() for obj in objects: obj.add_to_concerns(self.lock) def unlock_affected(self) -> None: if not self.lock: return lock = self.lock self.lock = None self.save() lock.delete() class JobLog(ADCMModel): task = models.ForeignKey(TaskLog, on_delete=models.SET_NULL, null=True, default=None) action = models.ForeignKey(Action, on_delete=models.SET_NULL, null=True, default=None) sub_action = models.ForeignKey(SubAction, on_delete=models.SET_NULL, null=True, default=None) pid = models.PositiveIntegerField(blank=True, default=0) selector = models.JSONField(default=dict) log_files = models.JSONField(default=list) status = models.CharField(max_length=16, choices=JOB_STATUS) start_date = models.DateTimeField() finish_date = models.DateTimeField(db_index=True) __error_code__ = 'JOB_NOT_FOUND' class GroupCheckLog(ADCMModel): job = models.ForeignKey(JobLog, on_delete=models.SET_NULL, null=True, default=None) title = models.TextField() message = models.TextField(blank=True, null=True) result = models.BooleanField(blank=True, null=True) class Meta: constraints = [models.UniqueConstraint(fields=['job', 'title'], name='unique_group_job')] class CheckLog(ADCMModel): group = models.ForeignKey(GroupCheckLog, blank=True, null=True, on_delete=models.CASCADE) job = models.ForeignKey(JobLog, on_delete=models.SET_NULL, null=True, default=None) title = models.TextField() message = models.TextField() result = models.BooleanField() LOG_TYPE = ( ('stdout', 'stdout'), ('stderr', 'stderr'), ('check', 'check'), ('custom', 'custom'), ) FORMAT_TYPE = ( ('txt', 'txt'), ('json', 'json'), ) class LogStorage(ADCMModel): job = models.ForeignKey(JobLog, on_delete=models.CASCADE) name = models.TextField(default='') body = models.TextField(blank=True, null=True) type = models.CharField(max_length=16, choices=LOG_TYPE) format = models.CharField(max_length=16, choices=FORMAT_TYPE) class Meta: constraints = [ models.UniqueConstraint( fields=['job'], condition=models.Q(type='check'), name='unique_check_job' ) ] # Stage: Temporary tables to load bundle class StagePrototype(ADCMModel): type = models.CharField(max_length=16, choices=PROTO_TYPE) parent = models.ForeignKey("self", on_delete=models.CASCADE, null=True, default=None) name = models.CharField(max_length=160) path = models.CharField(max_length=160, default='') display_name = models.CharField(max_length=160, blank=True) version = models.CharField(max_length=80) edition = models.CharField(max_length=80, default='community') license_path = models.CharField(max_length=160, default=None, null=True) license_hash = models.CharField(max_length=64, default=None, null=True) required = models.BooleanField(default=False) shared = models.BooleanField(default=False) constraint = models.JSONField(default=get_default_constraint) requires = models.JSONField(default=list) bound_to = models.JSONField(default=dict) adcm_min_version = models.CharField(max_length=80, default=None, null=True) description = models.TextField(blank=True) monitoring = models.CharField(max_length=16, choices=MONITORING_TYPE, default='active') config_group_customization = models.BooleanField(default=False) __error_code__ = 'PROTOTYPE_NOT_FOUND' def __str__(self): return str(self.name) class Meta: unique_together = (('type', 'parent', 'name', 'version'),) class StageUpgrade(ADCMModel): name = models.CharField(max_length=160, blank=True) description = models.TextField(blank=True) min_version = models.CharField(max_length=80) max_version = models.CharField(max_length=80) min_strict = models.BooleanField(default=False) max_strict = models.BooleanField(default=False) from_edition = models.JSONField(default=get_default_from_edition) state_available = models.JSONField(default=list) state_on_success = models.CharField(max_length=64, blank=True) class StageAction(AbstractAction): prototype = models.ForeignKey(StagePrototype, on_delete=models.CASCADE) class StageSubAction(ADCMModel): action = models.ForeignKey(StageAction, on_delete=models.CASCADE) name = models.CharField(max_length=160) display_name = models.CharField(max_length=160, blank=True) script = models.CharField(max_length=160) script_type = models.CharField(max_length=16, choices=SCRIPT_TYPE) state_on_fail = models.CharField(max_length=64, blank=True) params = models.JSONField(default=dict) class StagePrototypeConfig(ADCMModel): prototype = models.ForeignKey(StagePrototype, on_delete=models.CASCADE) action = models.ForeignKey(StageAction, on_delete=models.CASCADE, null=True, default=None) name = models.CharField(max_length=160) subname = models.CharField(max_length=160, blank=True) default = models.TextField(blank=True) type = models.CharField(max_length=16, choices=CONFIG_FIELD_TYPE) display_name = models.CharField(max_length=160, blank=True) description = models.TextField(blank=True) limits = models.JSONField(default=dict) ui_options = models.JSONField(blank=True, default=dict) required = models.BooleanField(default=True) group_customization = models.BooleanField(null=True) class Meta: unique_together = (('prototype', 'action', 'name', 'subname'),) class StagePrototypeExport(ADCMModel): prototype = models.ForeignKey(StagePrototype, on_delete=models.CASCADE) name = models.CharField(max_length=160) class Meta: unique_together = (('prototype', 'name'),) class StagePrototypeImport(ADCMModel): prototype = models.ForeignKey(StagePrototype, on_delete=models.CASCADE) name = models.CharField(max_length=160) min_version = models.CharField(max_length=80) max_version = models.CharField(max_length=80) min_strict = models.BooleanField(default=False) max_strict = models.BooleanField(default=False) default = models.JSONField(null=True, default=None) required = models.BooleanField(default=False) multibind = models.BooleanField(default=False) class Meta: unique_together = (('prototype', 'name'),) class DummyData(ADCMModel): date = models.DateTimeField(auto_now=True) class MessageTemplate(ADCMModel): """ Templates for `ConcernItem.reason There are two sources of templates - they are pre-created in migrations or loaded from bundles expected template format is { 'message': 'Lorem ${ipsum} dolor sit ${amet}', 'placeholder': { 'lorem': {'type': 'cluster'}, 'amet': {'type': 'action'} } } placeholder fill functions have unified interface: @classmethod def _func(cls, placeholder_name, **kwargs) -> dict TODO: load from bundle TODO: check consistency on creation TODO: separate JSON processing logic from model """ name = models.CharField(max_length=160, unique=True) template = models.JSONField() class KnownNames(Enum): LockedByJob = 'locked by running job on target' # kwargs=(job, target) ConfigIssue = 'object config issue' # kwargs=(source, ) RequiredServiceIssue = 'required service issue' # kwargs=(source, ) RequiredImportIssue = 'required import issue' # kwargs=(source, ) HostComponentIssue = 'host component issue' # kwargs=(source, ) class PlaceHolderType(Enum): Action = 'action' ADCMEntity = 'adcm_entity' ADCM = 'adcm' Cluster = 'cluster' Service = 'service' Component = 'component' Provider = 'provider' Host = 'host' Job = 'job' @classmethod def get_message_from_template(cls, name: str, **kwargs) -> dict: """Find message template by its name and fill placeholders""" tpl = cls.obj.get(name=name).template filled_placeholders = {} try: for ph_name, ph_data in tpl['placeholder'].items(): filled_placeholders[ph_name] = cls._fill_placeholder(ph_name, ph_data, **kwargs) except (KeyError, AttributeError, TypeError, AssertionError) as ex: if isinstance(ex, KeyError): msg = f'Message templating KeyError: "{ex.args[0]}" not found' elif isinstance(ex, AttributeError): msg = f'Message templating AttributeError: "{ex.args[0]}"' elif isinstance(ex, TypeError): msg = f'Message templating TypeError: "{ex.args[0]}"' elif isinstance(ex, AssertionError): msg = 'Message templating AssertionError: expected kwarg were not found' else: msg = None raise AdcmEx('MESSAGE_TEMPLATING_ERROR', msg=msg) from ex tpl['placeholder'] = filled_placeholders return tpl @classmethod def _fill_placeholder(cls, ph_name: str, ph_data: dict, **ph_source_data) -> dict: type_map = { cls.PlaceHolderType.Action.value: cls._action_placeholder, cls.PlaceHolderType.ADCMEntity.value: cls._adcm_entity_placeholder, cls.PlaceHolderType.ADCM.value: cls._adcm_entity_placeholder, cls.PlaceHolderType.Cluster.value: cls._adcm_entity_placeholder, cls.PlaceHolderType.Service.value: cls._adcm_entity_placeholder, cls.PlaceHolderType.Component.value: cls._adcm_entity_placeholder, cls.PlaceHolderType.Provider.value: cls._adcm_entity_placeholder, cls.PlaceHolderType.Host.value: cls._adcm_entity_placeholder, cls.PlaceHolderType.Job.value: cls._job_placeholder, } return type_map[ph_data['type']](ph_name, **ph_source_data) @classmethod def _action_placeholder(cls, _, **kwargs) -> dict: action = kwargs.get('action') assert action target = kwargs.get('target') assert target ids = target.get_id_chain() ids['action'] = action.pk return { 'type': cls.PlaceHolderType.Action.value, 'name': action.display_name, 'ids': ids, } @classmethod def _adcm_entity_placeholder(cls, ph_name, **kwargs) -> dict: obj = kwargs.get(ph_name) assert obj return { 'type': obj.prototype.type, 'name': obj.display_name, 'ids': obj.get_id_chain(), } @classmethod def _job_placeholder(cls, _, **kwargs) -> dict: job = kwargs.get('job') assert job action = job.sub_action or job.action return { 'type': cls.PlaceHolderType.Job.value, 'name': action.display_name or action.name, 'ids': job.id, } class ConcernType(models.TextChoices): Lock = 'lock', 'lock' Issue = 'issue', 'issue' Flag = 'flag', 'flag' class ConcernCause(models.TextChoices): Config = 'config', 'config' Job = 'job', 'job' HostComponent = 'host-component', 'host-component' Import = 'import', 'import' Service = 'service', 'service' class ConcernItem(ADCMModel): """ Representation for object's lock/issue/flag Man-to-many from ADCMEntities One-to-one from TaskLog ... `type` is literally type of concern `name` is used for (un)setting flags from ansible playbooks `reason` is used to display/notify on front-end, text template and data for URL generation should be generated from pre-created templates model `MessageTemplate` `blocking` blocks actions from running `owner` is object-origin of concern `cause` is owner's parameter causing concern `related_objects` are back-refs from affected ADCMEntities.concerns """ type = models.CharField(max_length=8, choices=ConcernType.choices, default=ConcernType.Lock) name = models.CharField(max_length=160, null=True, unique=True) reason = models.JSONField(default=dict) blocking = models.BooleanField(default=True) owner_id = models.PositiveIntegerField(null=True) owner_type = models.ForeignKey(ContentType, null=True, on_delete=models.CASCADE) owner
import matplotlib as mpl from matplotlib import cm, colors import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable import numpy as np import argparse import csv import sys from scipy.sparse import csc_matrix, dia_matrix, linalg as sla from scipy.stats import norm from smoothfdr.smoothed_fdr import SmoothedFdr, GaussianKnown, calc_plateaus from smoothfdr.normix import GridDistribution, predictive_recursion, empirical_null import smoothfdr.signal_distributions as signal_distributions from smoothfdr.utils import * from smoothfdr.plotutils import * def calculate_1d_signal_weights(split_points, split_weights): '''Generate signal weights from the user-specified splits.''' signal_weights = np.zeros((split_points[-1] + 1, 1)) cur_split = 0 cur_point = 0 while cur_split < len(split_weights): cur_weight = split_weights[cur_split] while cur_point < split_points[cur_split]: signal_weights[cur_point] = cur_weight cur_point += 1 cur_split += 1 return signal_weights def calculate_2d_signal_weights(width, height, default_weight, x_min, x_max, y_min, y_max, weights): '''Generate signal weights from the user-specified splits.''' signal_weights = np.zeros((width, height)) + default_weight for region in zip(x_min, x_max, y_min, y_max, weights): signal_weights[region[0]:region[1]+1,region[2]:region[3]+1] = region[4] return signal_weights def calculate_3d_signal_weights(width, height, depth, default_weight, x_min, x_max, y_min, y_max, z_min, z_max, weights): '''Generate signal weights from the user-specified splits.''' signal_weights = np.zeros((width, height, depth)) + default_weight for region in zip(x_min, x_max, y_min, y_max, z_min, z_max, weights): signal_weights[region[0]:region[1]+1,region[2]:region[3]+1,region[4]:region[5]+1] = region[6] return signal_weights def load_data(filename, header=True): '''Loads a CSV file containing the z-scores.''' with open(filename, 'rb') as f: reader = csv.reader(f) data = [] # skip the header line if header: reader.next() # read in all the rows for line in reader: data.append(np.array([float(x) if x != 'True' and x != 'False' else (1 if x == 'True' else 0) for x in line], dtype='double')) # Return the matrix of z-scores return np.array(data, dtype='double') if len(data) > 1 else data[0] def load_neurodata(filename, header=True): '''Loads a CSV file containing the z-scores of neuro-image data that is not rectangular.''' with open(filename, 'r') as f: reader = csv.reader(f) # skip the header line if header: reader.next() rows = [] for line in reader: if len(line) == 0: continue rows.append(np.array([float(x) for x in line])) return np.array(rows).T def save_sweeporder(data, sweeporder, filename): '''Saves the sweeporder to file.''' with open(filename, 'wb') as f: writer = csv.writer(f) writer.writerow(['Index', 'Z-Score']) for s in sweeporder: writer.writerow([s, data[s]]) def save_plateaus(plateaus, filename): with open(filename, 'w') as f: writer = csv.writer(f) writer.writerow(['PlateauID','Level','NodeIDs']) for plateau,(level,nodes) in enumerate(plateaus): nodes = list(nodes) if type(nodes[0]) is tuple: nodes = [';'.join([str(x) for x in y]) for y in nodes] writer.writerow([plateau, level] + list(nodes)) def load_plateaus(filename): with open(filename, 'r') as f: reader = csv.reader(f) reader.next() plateaus = [] for line in reader: vals = line[2:] plateaus.append([tuple([int(y) for y in x.split(';')]) for x in vals]) return plateaus def calc_signal_weights(args): if args.dimensions == '3d': # Get the weights for each point in the 3d grid return calculate_3d_signal_weights(args.width, args.height, args.depth, args.default_weight, args.region_min_x, args.region_max_x, args.region_min_y, args.region_max_y, args.region_min_z, args.region_max_z, args.region_weights) elif args.dimensions == '2d': # Get the weights for each point in the 2d grid return calculate_2d_signal_weights(args.width, args.height, args.default_weight, args.region_min_x, args.region_max_x, args.region_min_y, args.region_max_y, args.region_weights) elif args.dimensions == '1d': # Get the weights for each point along the line return calculate_1d_signal_weights(args.split_points, args.split_weights) else: raise Exception('Only 1- and 2-dimensional data are supported.') def main(): parser = argparse.ArgumentParser(description='Runs the smoothed FDR algorithm.') parser.add_argument('--verbose', type=int, default=0, help='Print detailed progress information to the console. 0=none, 1=outer-loop only, 2=all details.') parser.add_argument('--data_file', help='The file containing the raw z-score data.') parser.add_argument('--no_data_header', action='store_true', help='Specifies that there is no header line in the data file.') parser.add_argument('--signals_file', help='The file containing the true signal points.') parser.add_argument('--generate_data', dest='generate_data', action='store_true', help='Generate synthetic data and save it to the file specified.') parser.add_argument('--save_weights', help='The file where the resulting smoothed weights will be saved.') parser.add_argument('--save_final_weights', help='The file where the resulting smoothed weights after any postprocessing will be saved.') parser.add_argument('--save_posteriors', help='The file where the resulting smoothed posteriors will be saved.') parser.add_argument('--save_plateaus', help='The file where the resulting smoothed plateaus will be saved.') parser.add_argument('--save_signal', help='The file where the estimated signal will be saved.') parser.add_argument('--save_final_posteriors', help='The file where the final resulting posteriors after any postprocessing will be saved.') parser.add_argument('--save_oracle_posteriors', help='The file where the oracle posteriors will be saved.') parser.add_argument('--save_discoveries', help='The file where the inferred discoveries will be saved.') # Generic d parser.add_argument('--empirical_null', dest='empirical_null', action='store_true', help='Estimate the null distribution empirically (recommended).') parser.add_argument('--null_mean', type=float, default=0., help='The mean of the null distribution.') parser.add_argument('--null_stdev', type=float, default=1., help='The variance of the null distribution.') parser.add_argument('--signal_mean', type=float, default=0., help='The mean of the signal distribution.') parser.add_argument('--signal_stdev', type=float, default=3., help='The variance of the signal distribution.') parser.add_argument('--signal_dist_name', help='The name of the signal distribution. This will dynamically call it by name. It must be in the signal_distributions.py file and have both the foo_pdf and foo_sample functions defined.') # Predictive recursion settings parser.add_argument('--estimate_signal', dest='estimate_signal', action='store_true', help='Use predictive recursion to estimate the signal distribution.') parser.add_argument('--pr_grid_x', nargs=3, type=int, default=[-7,7,57], help='The grid parameters (min, max, points) for the predictive recursion approximate distribution.') parser.add_argument('--pr_sweeps', type=int, default=50, help='The number of randomized sweeps to make over the data.') parser.add_argument('--pr_nullprob', type=float, default=1.0, help='The initial guess for the marginal probability of coming from the null distribution.') parser.add_argument('--pr_decay', type=float, default=-0.67, help='The exponential decay rate for the recursive update weights.') parser.add_argument('--pr_save_sweeporder', help='Save the sweep orders to the specified file.') # Plot settings parser.add_argument('--plot_data', help='The file to which the scatterplot of the data will be saved.') parser.add_argument('--plot_results', help='The file to which the results will be plotted.') parser.add_argument('--plot_signal', help='The file to which the estimated signal distribution will be plotted.') parser.add_argument('--plot_true_signal', dest='plot_true_signal', action='store_true', help='Plot the true signal distribution along with the estimated one in plot_signal.') parser.add_argument('--plot_signal_bounds', nargs=2, type=int, default=[-7, 7], help='The min and max values to plot the signal along') parser.add_argument('--plot_path', help='The file to which the solution path of the penalty (lambda) will be plotted.') parser.add_argument('--plot_adaptive', help='The file to which the results of the adaptive lasso solution will be plotted.') parser.add_argument('--plot_final', help='The file to which the results of the final solution will be plotted.') parser.add_argument('--plot_discoveries', help='The file to which the final discoveries (the ones after post-processing) will be plotted.') parser.add_argument('--plot_final_discoveries', help='The file to which the discoveries will be plotted.') parser.add_argument('--plot_path_results', help='The file format of the intermediate results plots along the path.') # Penalty (lambda) settings parser.add_argument('--solution_path', dest='solution_path', action='store_true', help='Use the solution path of the generalized lasso to find a good value for the penalty weight (lambda).') parser.add_argument('--min_penalty_weight', type=float, default=0.2, help='The minimum amount the lambda penalty can take in the solution path.') parser.add_argument('--max_penalty_weight', type=float, default=1.5, help='The maximum amount the lambda penalty can take in the solution path.') parser.add_argument('--penalty_bins', type=int, default=30, help='The number of lambda penalty values in the solution path.') parser.add_argument('--dof_tolerance', type=float, default=1e-4, help='The difference threshold for calculating the degrees of freedom.') parser.add_argument('--penalty_weight', '--lambda', type=float, default=0.3, help='The lambda penalty that controls the sparsity (only used if --solution_path is not specified).') parser.add_argument('--adaptive_lasso', dest='adaptive_lasso', action='store_true', help='Use an adaptive lasso value that re-weights the penalties to be inversely proportional to the size of the solution path choice with the uniform penalty.') parser.add_argument('--adaptive_lasso_gamma', type=float, default=1.0, help='The exponent to use for the adaptive lasso weights.') parser.add_argument('--postprocess_plateaus', dest='postprocess_plateaus', action='store_true', help='Perform unpenalized regression on each plateau as a final post-processing step.') # Smoothed FDR optimization settings parser.add_argument('--converge', type=float, default=1e-6, help='The convergence threshold for the main optimization loop.') parser.add_argument('--max_steps', type=int, default=100, help='The maximum number of steps for the main optimization loop.') parser.add_argument('--m_converge', type=float, default=1e-6, help='The convergence threshold for the q-step <-> m-step loop.') parser.add_argument('--m_max_steps', type=float, default=1, help='The maximum number of steps for the q-step <-> m-step loop.') parser.add_argument('--cd_converge', type=float, default=1e-6, help='The convergence threshold for the inner loop.') parser.add_argument('--cd_max_steps', type=float, default=100000, help='The maximum number of steps for the inner loop.') parser.add_argument('--admm_alpha', type=float, default=1.8, help='The step size value for the ADMM solver (if used).') parser.add_argument('--admm_adaptive', dest='admm_adaptive', action='store_true', help='Use an adaptive soft-thresholding value instead of the constant penalty value.') parser.add_argument('--admm_inflate', type=float, default=2., help='The inflation/deflation rate for the ADMM step size.') parser.add_argument('--dual_solver', choices=['cd', 'sls', 'lbfgs', 'admm', 'graph'], default='admm', help='The method used to solve the fused lasso problem in the M-step.') # FDR reporting settings parser.add_argument('--fdr_level', type=float, default=0.1, help='The false discovery rate level to use when reporting discoveries.') subparsers = parser.add_subparsers(dest='dimensions', help='The dimensions of the dataset (1d, 2d, 3d, or fmri).') # 1D data settings parser_1d = subparsers.add_parser('1d', help='Settings for 1-dimensional data.') parser_1d.add_argument('--split_points', nargs='+', type=int, default=[0, 250, 500, 750, 1000], help='The locations at which the signal weight changes. The first split point should always be 0.')
= '' acc_txt = '{:.2f}%'.format(float(acc)) score_txt = '{:,}'.format(int(plays[i]['score'])) if var_attr == 'max_combo': var_txt = max_combo_txt elif var_attr == 'score': var_txt = score_txt else: var_txt = acc_txt # other components rank_txt = '{}'.format(self.RANK_EMOTES[plays[i]['rank']]) misses_txt = '{}m'.format(plays[i]['count_miss']) mods_txt = '+{}'.format(utils.fix_mods(''.join(mods_list))) is_spaced = True if gamemode == 3: is_spaced = False score_breakdown = self._get_score_breakdown(plays[i], gamemode, spaced=is_spaced) # print('Play ', plays[i]) # ** if 'pp' in plays[i] and plays[i]['pp'] is not None and \ float(plays[i]['pp']) != 0: pp_txt = '{:}pp'.format(round(plays[i]['pp'])) else: # otherwise calculate play pp (like for recent/failed) # play_pp = round(full_beatmap_info['extra_info']['play_pp']) pp_txt = '-pp'# .format(play_pp) play_time = datetime.datetime.strptime(plays[i]["date"], '%Y-%m-%d %H:%M:%S') try: timeago = utils.time_ago(datetime.datetime.utcnow(), play_time, shift=0, abbr=True) except: try: timeago = utils.time_ago(datetime.datetime.utcnow(), play_time, shift=2, abbr=True) except: timeago = utils.time_ago(datetime.datetime.utcnow(), play_time, shift=8, abbr=True) timeago += ' ago' # put the information together info = '`{:<3}`{}`{:<42}{:<10}`\n`{:<3}{:<28}{:<9}{:<8}{:<10}`\n'.format( number_txt, rank_txt, full_map_txt, mods_txt, '▸', score_breakdown, var_txt, pp_txt, timeago) desc += info em = discord.Embed(description=desc, colour=server_user.colour) # online_status = await self._get_online_icon(user, api) sort_txt = "" title = header_txt page_txt = '' if page_info: page_txt = ' | Page {} of {}'.format(page_info[0], page_info[1]) profile_link_url = self.owoAPI.get_user_url(user['user_id'], api=api) server_name = self.owoAPI.get_server_name(api) em.set_author(name = title, url=profile_link_url, icon_url=flag_url) em.set_footer(text = "On osu! {} Server{}".format(server_name, page_txt), icon_url=self.owoAPI.get_server_avatar(api)) em.set_thumbnail(url=avatar_url) return em # Gives a user profile image with some information async def create_play_list_embed(self, ctx, user, plays, beatmaps, gamemode, api='bancho', header_txt=None, page_info=None): server_user = ctx.message.author server = ctx.message.guild avatar_url = await self.owoAPI.get_user_avatar(user['user_id'], api) flag_url = self.owoAPI.get_country_flag_url(user['country']) gamemode_text = utils.get_gamemode_text(gamemode) msg = '' desc = '' # takes in the processed userbest for i in range(len(plays)): # handle mods mod_num = int(plays[i]['enabled_mods']) mods_list = utils.num_to_mod(mod_num) if not mods_list: mods_list.append('No Mod') # print('mod list', mods_list) beatmap_url = self.owoAPI.get_beatmap_url(beatmaps[i]) extra_info = {} extra_info['play_info'] = plays[i] # print('test 3') # ** # only don't force cache for recent if 'recent' in header_txt.lower(): force_osu_cache=False else: force_osu_cache=True try: # print(beatmaps[i]) full_beatmap_info, bmap_raw, bmap_file_path = await self.owoAPI.get_full_beatmap_info( beatmaps[i], extra_info=extra_info, mods=mod_num, force_osu_cache=force_osu_cache) except: # if the beatmap not longer exists # print(sys.exc_info()) continue # print(full_beatmap_info) info = '' # generate the title portion if 'Number' not in header_txt or len(plays) != 1: number_txt = '{}. '.format(str(plays[i]['play_idx'])) else: number_txt = '' if gamemode == 0: if 'stars_mod' in full_beatmap_info.keys(): star_str = '{:.2f}'.format(float(full_beatmap_info['stars_mod'])) else: star_str = '{:.2f}'.format(float(full_beatmap_info['difficulty_rating'])) else: star_str = self.adjust_val_str_mod( full_beatmap_info, "difficulty_rating", int(plays[i]['enabled_mods']), gamemode) star_str = '{}★'.format(star_str) star_str = self._fix_star_arrow(star_str) title_txt = '**{}[{} [{}]{}]({}) +{}** [{}]\n'.format( number_txt , beatmaps[i]['title'].replace('*','\*'), beatmaps[i]['version'].replace('*','\*'), self._get_keys(beatmaps[i], gamemode, beatmaps[i]['version']), beatmap_url, utils.fix_mods(''.join(mods_list)), star_str) info += title_txt # create details section choke_text = '' # choke text # if there is a max combo available in the beatmap, compare with play. if (('max_combo' in full_beatmap_info) and \ ('extra_info' in full_beatmap_info and full_beatmap_info['extra_info']) and \ ('fc_pp' in full_beatmap_info['extra_info']) and \ (full_beatmap_info['max_combo'] is not None)) and \ (gamemode == 0) and \ (int(plays[i]['count_miss']) >= 1 or (int(plays[i]['max_combo']) <= 0.95*int(full_beatmap_info['max_combo']) and 'S' in plays[i]['rank'])): choke_text += ' _({:.2f}pp for {:.2f}% FC)_'.format( float(full_beatmap_info['extra_info']['fc_pp']), float(full_beatmap_info['extra_info']['fc_acc'])) # max combo text max_combo_txt = 'x{:,}/{:,}'.format( int(plays[i]['max_combo']), int(full_beatmap_info['max_combo'])) \ if 'max_combo' in full_beatmap_info and full_beatmap_info['max_combo'] \ else "x{:,}".format(int(plays[i]['max_combo'])) # add droid pp if necessary droid_pp_txt = '' if api == 'droid': try: droid_calc_info, _, _ = await self.owoAPI.get_full_beatmap_info( beatmaps[i], extra_info=extra_info, mods=mod_num, api='droid') droid_pp_txt = ' | **{:.2f}DPP**'.format( float(droid_calc_info['extra_info']['play_pp'])) except: pass # check if pp is in plays # print('Play ', plays[i]) # ** if 'pp' in plays[i] and plays[i]['pp'] is not None and \ float(plays[i]['pp']) != 0: pp_txt = '**{:.2f}PP**{}{}'.format(float(plays[i]['pp']), droid_pp_txt, choke_text) elif 'extra_info' in full_beatmap_info: # otherwise calculate play pp (like for recent/failed) # check if it's non-FC play_pp = float(full_beatmap_info['extra_info']['play_pp']) if ('max_combo' in full_beatmap_info and full_beatmap_info['max_combo'] is not None) and \ (int(plays[i]['count_miss']) >= 1 or (int(plays[i]['max_combo']) <= 0.96*int(full_beatmap_info['max_combo']) and 'S' in plays[i]['rank'])) and \ (abs(play_pp - float(full_beatmap_info['extra_info']['fc_pp'])) > 3): pp_txt = '**{:.2f}PP**{}{}'.format(play_pp, droid_pp_txt, choke_text) else: pp_txt = '**{:.2f}PP**{} (_Unofficial_)'.format( play_pp, droid_pp_txt) else: pp_txt = '**-PP**{} (_Unofficial_)'.format(droid_pp_txt) # calculate accuracy if needed, depends on api if 'accuracy' not in plays[i]: acc = utils.calculate_acc(plays[i], gamemode) else: acc = plays[i]['accuracy'] # define acc text if gamemode == 3: if float(plays[i]['count_300']) != 0: ratio_300 = float(plays[i]['count_geki'])/float(plays[i]['count_300']) acc_txt = '{:.2f}% ▸ {:.2f}:1'.format(round(acc, 2), ratio_300) else: acc_txt = '{:.2f}% ▸ ∞:1'.format(round(acc, 2)) else: acc_txt = '{:.2f}%'.format(round(acc, 2)) info += '▸ **{}** ▸ {} ▸ {}\n'.format( self.RANK_EMOTES[plays[i]['rank']], pp_txt, acc_txt) info += '▸ {:,} ▸ {} ▸ {}\n'.format( int(plays[i]['score']), max_combo_txt, self._get_score_breakdown(plays[i], gamemode)) # whatever this mess is. deals with displaying time play_time = datetime.datetime.strptime(plays[i]["date"], '%Y-%m-%d %H:%M:%S') try: timeago = utils.time_ago(datetime.datetime.utcnow(), play_time, shift=0) except: try: timeago = utils.time_ago(datetime.datetime.utcnow(), play_time, shift=2) except: timeago = utils.time_ago(datetime.datetime.utcnow(), play_time, shift=8) info += '▸ Score Set {}Ago\n'.format(timeago) desc += info em = discord.Embed(description=desc, colour=server_user.colour) # online_status = await self._get_online_icon(user, api) title = header_txt page_txt = '' if page_info: page_txt = ' | Page {} of {}'.format(page_info[0], page_info[1]) profile_link_url = self.owoAPI.get_user_url(user['user_id'], api=api) server_name = self.owoAPI.get_server_name(api) em.set_author(name = title, url=profile_link_url, icon_url=flag_url) em.set_footer(text = "On osu! {} Server{}".format(server_name, page_txt), icon_url=self.owoAPI.get_server_avatar(api)) em.set_thumbnail(url=avatar_url) return (msg, em) # Gives a user profile image with some information async def create_no_choke_list_embed(self, ctx, user, plays, beatmaps, gamemode, api='bancho', header_txt=None, page_info=None): server_user = ctx.message.author server = ctx.message.guild avatar_url = await self.owoAPI.get_user_avatar(user['user_id'], api) flag_url = self.owoAPI.get_country_flag_url(user['country']) gamemode_text = utils.get_gamemode_text(gamemode) msg = '' desc = '' # takes in the processed userbest for i in range(len(plays)): # handle mods mod_num = int(plays[i]['enabled_mods']) mods_list = utils.num_to_mod(mod_num) if not mods_list: mods_list.append('No Mod') # print('mod list', mods_list) beatmap_url = self.owoAPI.get_beatmap_url(beatmaps[i]) extra_info = {} extra_info['play_info'] = plays[i] # print('test 3') # ** try: # unfortunately, have to calculate this again # print(beatmaps[i]) full_beatmap_info, bmap_raw, bmap_file_path = await self.owoAPI.get_full_beatmap_info( beatmaps[i], extra_info=extra_info, mods=mod_num, force_osu_cache=True) except: # if the beatmap not longer exists # print(sys.exc_info()) continue # print(full_beatmap_info) info = '' # generate the title portion if 'Number' not in header_txt or len(plays) != 1: number_txt = '{} `[{}]`. '.format( str(plays[i]['play_idx']), str(plays[i]['original_idx'])) else: number_txt = '' if gamemode == 0: if 'stars_mod' in full_beatmap_info.keys(): star_str = '{:.2f}'.format(float(full_beatmap_info['stars_mod'])) else: star_str = '{:.2f}'.format(float(full_beatmap_info['difficulty_rating'])) else: star_str = self.adjust_val_str_mod( full_beatmap_info, "difficulty_rating", int(plays[i]['enabled_mods']), gamemode) title_txt = '**{}[{} [{}]{}]({}) +{}** [{}★]\n'.format( number_txt , beatmaps[i]['title'].replace('*','\*'), beatmaps[i]['version'].replace('*','\*'), self._get_keys(beatmaps[i], gamemode, beatmaps[i]['version']), beatmap_url, utils.fix_mods(''.join(mods_list)), star_str) info += title_txt if plays[i]['original'] is not None: # max combo text max_combo_txt = 'x{:,} ➔ **x{:,}**/{:,}'.format( int(plays[i]['original']['max_combo']), int(plays[i]['max_combo']), int(plays[i]['max_combo'])) pp_txt = '{:.2f} ➔ **{:.2f}PP**'.format( float(plays[i]['original']['pp']), float(plays[i]['pp'])) acc_txt = '{:.2f}% ➔ **{:.2f}%**'.format( round(plays[i]['original']['accuracy'], 2), round(plays[i]['accuracy'], 2)) info += '▸ {} ➔ **{}** ▸ {} ▸ {}\n'.format( self.RANK_EMOTES[plays[i]['original']['rank']], self.RANK_EMOTES[plays[i]['rank']], pp_txt, acc_txt) info += '▸ {} ▸ {} ➔ **{}**\n'.format( max_combo_txt, self._get_score_breakdown(plays[i]['original'], gamemode), self._get_score_breakdown(plays[i], gamemode)) else: # max combo text max_combo_txt = 'x{:,}/{:,}'.format( int(plays[i]['max_combo']), int(bmap_raw.max_combo())) pp_txt = '{:.2f}PP'.format( float(plays[i]['pp'])) acc_txt = '{:.2f}%'.format( round(plays[i]['accuracy'], 2)) info += '▸ {} ▸ {} ▸ {}\n'.format( self.RANK_EMOTES[plays[i]['rank']], pp_txt, acc_txt) info += '▸ {} ▸ {}\n'.format( max_combo_txt, self._get_score_breakdown(plays[i], gamemode)) desc += info em = discord.Embed(description=desc, colour=server_user.colour) # online_status = await self._get_online_icon(user, api) title = header_txt page_txt = '' if page_info: page_txt = ' | Page {} of {}'.format(page_info[0], page_info[1]) profile_link_url = self.owoAPI.get_user_url(user['user_id'], api=api) server_name = self.owoAPI.get_server_name(api) em.set_author(name = title, url=profile_link_url, icon_url=flag_url) em.set_footer(text = "On osu! {} Server{}".format(server_name, page_txt), icon_url=self.owoAPI.get_server_avatar(api)) em.set_thumbnail(url=avatar_url) return (msg, em) def _get_score_breakdown(self, play, gamemode, spaced=False): gamemode = int(gamemode) if spaced: if gamemode == 0 or gamemode == 2: ret = "[ {} / {} / {} / {} ]".format(play['count_300'], play['count_100'], play['count_50'], play['count_miss']) elif gamemode == 1: ret = "[ {} / {} / {} ]".format(play['count_300'], play['count_100'], play['count_miss']) elif gamemode == 3: ret = "[ {} / {} / {} / {} / {} / {} ]".format(play['count_geki'], play['count_300'], play['count_katu'], play['count_100'], play['count_50'], play['count_miss']) else: if gamemode == 0 or gamemode == 2: ret = "[{}/{}/{}/{}]".format(play['count_300'], play['count_100'], play['count_50'], play['count_miss']) elif gamemode == 1: ret = "[{}/{}/{}]".format(play['count_300'], play['count_100'], play['count_miss']) elif gamemode == 3: ret = "[{}/{}/{}/{}/{}/{}]".format(play['count_geki'], play['count_300'], play['count_katu'], play['count_100'], play['count_50'], play['count_miss']) return ret def _get_keys(self, beatmap, gamemode, version): # cs is the the key number ret = "" if gamemode == 3: if "{}k".format(beatmap["cs"]) not in version.lower():
#!/usr/bin/python # ======================================================== # Python script for PiBot-A: maze solver # Version 1.0 - by <NAME> - www.retas.de # ======================================================== # ----------------- TERMINOLOGY OF NODES ----------------- # # --|-- crossing, + # # --| T-junction, T # # --. turn # | # # -- dead end # # --O disk (target) # # ----------------- TERMINOLOGY OF MOVES ----------------- # # L = left (at + or T or turn) # R = right (at + or T or turn) # S = straight (at + or T) # T = turn (at dead end) # # -------------------------------------------------------- from __future__ import print_function from pololu_drv8835_rpi import motors, MAX_SPEED from time import sleep from sys import exit, argv import RPi.GPIO as GPIO # Signal handler for SIGTERM import signal def sigterm_handler(signal, frame): motors.setSpeeds(0, 0) exit(0) signal.signal(signal.SIGTERM, sigterm_handler) # -------------------------------------------------------- # Some constants # -------------------------------------------------------- # GPIO pins of sensors GPIO.setmode(GPIO.BCM) GPIO_right = 21 GPIO_middle = 20 GPIO_left = 19 GPIO.setup(GPIO_right, GPIO.IN) GPIO.setup(GPIO_middle, GPIO.IN) GPIO.setup(GPIO_left, GPIO.IN) # Three speed constants for different purposes v3 = MAX_SPEED # = 480 v2 = 380 v1 = 150 # Loop period delay = 0.001 # ======================================================== # Functions # ======================================================== # If an argument is given, print some diagnostic values # and pause until a key is hit. def pause(*args): if pausing: motors.setSpeeds(0, 0) print(way, *args) raw_input(read_sensors()) # -------------------------------------------------------- # Read sensor input def read_sensors(*sensor): L = GPIO.input(GPIO_left) M = GPIO.input(GPIO_middle) R = GPIO.input(GPIO_right) if len(sensor) == 0: return (L, M, R) elif sensor[0] == "left": return L elif sensor[0] == "middle": return M elif sensor[0] == "right": return R # -------------------------------------------------------- # Drive some distance, time to sleep is calculated from # given value (val) and result of calibration (cal). def drive(val): sec = val * cal/500 sleep (sec) # -------------------------------------------------------- # Calibrate: Drive two 180 degree turns in both directions # and measure time needed. def calibrate(): tl1 = turn("left") tl2 = turn("left") tr1 = turn("right") tr2 = turn("right") cal = (tl1 + tl2 + tr1 + tr2) / 4 print ("CAL:", tl1, tl2, tr1, tr2, "=>", cal) return cal # -------------------------------------------------------- # Turn left or right: at first leave the black line just # under the sensors (if there is a line), then continue # turning until the black line is reached again. def turn(dir): if dir == "left": motors.setSpeeds(-v3, v3) else: motors.setSpeeds(v3, -v3) # Start with a short turn to ensure that we will # leave the line under (or next to) the sensors. sleep (100 * delay) # Count loops while turning (for calibration) turn = 100 # Turn until line is lost while read_sensors("middle") == 1: turn += 1 sleep (delay) # Turn until line is reached again while read_sensors("middle") == 0: turn += 1 sleep (delay) return turn # -------------------------------------------------------- # Drive some distance until the node is under the axle. def axle_to_node(): # Number of loops depend on calibration cnt = (cal - 100) / 2 # Correct drifts to the left or right while driving while cnt: (L, M, R) = read_sensors() if L == 1 and R == 0: motors.setSpeeds(v1, v2) elif R == 1 and L == 0: motors.setSpeeds(v2, v1) else: motors.setSpeeds(v2, v2) sleep (delay) cnt -= 1 motors.setSpeeds(v2, v2) # -------------------------------------------------------- # Show lists of nodes and moves. def show_steps(nodes, moves): print ("------------------") for i in range (0, len(nodes)): print ("%2d %-12s %s" % (i, nodes[i], moves[i])) print ("------------------") # -------------------------------------------------------- # Finish: stop moving. def finish(*result): # Stand still for a moment print (*result) motors.setSpeeds(0, 0) sleep (0.5) # Depending on success ("HOORAY!") or failure ... f = 1 if result[0] == "HOORAY!" else -1 # ... nod or shake your head 4 times. for x in range (0, 4): motors.setSpeeds(f * -v1, -v1) drive (0.1) motors.setSpeeds(f * v1, v1) drive (0.1) motors.setSpeeds(0, 0) # Loop forever while True: sleep (1) # -------------------------------------------------------- # Determine type of node by comparing sensors at the node # with sensors behind the node. Example: (0, 1, 1) at node # and (0, 1, 0) behind node results in: T-junction right. def type_of_node(sensors): # Status at node if sensors == (0, 1, 1): at_node = "line_right" elif sensors == (1, 1, 0): at_node = "line_left" elif sensors == (1, 1, 1): at_node = "line_xing" else: finish("UNEXPECTED NODE:", sensors) pause("AT_NODE:", at_node) # Drive until node is under the axle axle_to_node() # Read sensors behind the node sensors = read_sensors() if sensors == (0, 0, 0): behind_node = "blank" elif sensors == (1, 1, 1): behind_node = "black" else: behind_node = "line" # Determine type of node n = (at_node, behind_node) if behind_node == "black": node = "disk" elif n == ("line_right", "blank"): node = "turn_right" elif n == ("line_left", "blank"): node = "turn_left" elif n == ("line_xing", "line"): node = "crossing" elif n == ("line_xing", "blank"): node = "T_straight" elif n == ("line_right", "line"): node = "T_right" elif n == ("line_left", "line"): node = "T_left" return (node) # -------------------------------------------------------- # Calculate shortest path: make a copy of lists "nodes" # and "moves" with values of the shortest path ("nodes_sp" # and "moves_sp"). def calculate_path(): global remaining_turns # Remove turns, but remember the number of turns # before first node is reached (remaining_turns), # needed for the second last section of the way back. behind_first_node = False for i in range (0, len(nodes)): if nodes[i] == "turn_left" \ or nodes[i] == "turn_right": if not behind_first_node: remaining_turns += 1 else: behind_first_node = True moves_sp.append(moves[i]) nodes_sp.append(nodes[i]) print ("AFTER REMOVING TURNS:") show_steps (nodes_sp, moves_sp) # Remove dead ends by substituting each sequence # of moves that contains a turn at a dead end (T) # by an adequate sequence that does not. while "T" in moves_sp: i = moves_sp.index("T") seq = "".join(moves_sp[i-1:i+2]) if seq == "STL": subst = "R" elif seq == "STR": subst = "L" elif seq == "LTL": subst = "S" elif seq == "RTR": subst = "S" elif seq == "LTS": subst = "R" elif seq == "RTL": subst = "T" elif seq == "LTR": subst = "T" elif seq == "STS": subst = "T" else: finish("UNEXPECTED SEQ:", seq) print ("SUBST:", i, seq, "=>", subst) moves_sp[i-1] = subst del moves_sp[i:i+2] del nodes_sp[i:i+2] print ("SHORTEST PATH:") show_steps (nodes_sp, moves_sp) print ("REMAINING TURNS:", remaining_turns) print ("REMAINING LOOPS:", remaining_loops) # ======================================================== # MAIN # ======================================================== # If an argument is given, pause at pause() pausing = True if len(argv) == 2 else False nodes = [] # list of nodes on way to disk moves = [] # list of moves on way to disk nodes_sp = [] # list of nodes in shortest path moves_sp = [] # list of moves in shortest path remaining_turns = 0 # turns after last + or T node remaining_loops = 0 # loops (main loop) after last turn way = "to_first_node" # current way moving = "straight" # current moving try: # After calibration start driving straight ahead cal = calibrate() motors.setSpeeds(v3, v3) while True: # Main loop # Repeat this loop every delay seconds sleep (delay) # Read sensors at current position (L, M, R) = read_sensors() # ------------------------------------------------ # Simply drive # ------------------------------------------------ # Count loops until the first node is reached # (needed for the very last section of the way # back). if way == "to_first_node": remaining_loops += 1 # Decrement remaining loops (see above) on the # last sestion of way back (behind the last node). elif way == "remaining_loops": remaining_loops -= 1 if remaining_loops == 0: drive(0.15) # lenght of robot finish("HOORAY!") # Drive and correct drifts to the left or right if (L, M, R) == (0, 1, 0): # We are on the line: go straight ahead motors.setSpeeds(v3, v3) moving = "straight" continue elif L == 1 and R == 0: # Deviation to the right: correct to the left motors.setSpeeds(v1, v3) moving = "left" continue elif R == 1 and L == 0: # Deviation to the left: correct to the right motors.setSpeeds(v3, v1) moving = "right" continue # ------------------------------------------------ # At some node # ------------------------------------------------ # If we are in the very last section of way back: # ignore the node and just pass or cross it # (should be an exceptional case). if way == "remaining_loops": continue # If we were on the way to the first node: we are # now on the way to the disk. elif way == "to_first_node": way = "to_disk" # ------------------------------------------------ # Dead end: drive axle over the node and turn # ------------------------------------------------ if (L, M, R) == (0, 0, 0): axle_to_node() turn("left") nodes.append("dead_end") moves.append("T") motors.setSpeeds(v3, v3) moving = "straight" continue # ------------------------------------------------ # Other type of node # ------------------------------------------------ # All sensors are black. This can be a crossing # line (+ or T), or it is because lastly we made # a correction after a deviation to left or right. # Then we have to sway to the opposite side and # read the outer sensor there. After that we have # to compensate these movements to adjust our # orientation to straight ahead again. (L1, M1, R1) = (L, M, R) if moving == "left": drive(0.04) motors.setSpeeds(v2, -v2) drive(0.1) R1 = read_sensors("right") motors.setSpeeds(-v2, v2) drive(0.07) elif moving == "right": drive(0.04) motors.setSpeeds(-v2, v2) drive(0.1) L1 = read_sensors("left") motors.setSpeeds(v2, -v2) drive(0.07) sensors = (L1, M1, R1) # Determine type of node node = type_of_node(sensors) # ------------------------------------------------ # At disk: turn and calculate shortest path # ------------------------------------------------ if node == "disk": drive(0.15) motors.setSpeeds(0, 0) sleep (1.0) turn("left") way = "back" print ("WAY TO DISK:") show_steps (nodes, moves) calculate_path() continue # ------------------------------------------------ # Other node: decide on movement depending on way # ------------------------------------------------ motors.setSpeeds(v3, v3) # ------------------------------------------------ # On the way to the disk: search for the disk # following the left-hand rule and fill lists # "nodes" and "moves". if way == "to_disk": nodes.append(node) pause ("NODE:", node) if node == "turn_right": turn("right") moves.append("R") elif node !=
import os import shutil import random import math import time import argparse import yaml from collections import OrderedDict import sys # for import parent utils sys.path.append('../') import utils import modules import datasets import models import numpy as np import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torch.utils.data import DataLoader import torch.utils.checkpoint as torch_cp import torch_optimizer as toptim import transformers from transformers import Pipeline, BertTokenizer, AlbertModel, \ AutoTokenizer, AutoModel, AlbertConfig, AutoConfig class Args: pass # XXX: change all class init param to context # but the code will be hard to reuse and not transparent class Context: def __init__(self): self.config = Args() self.vocab = None self.persona_vocab = None class Trainer: def __init__(self): self.context = Context() args = self.parse_args() self.args = args self.best_valid_loss = float('inf') self.device = utils.get_device(args.device) utils.set_random_seed(self.args.seed, self.device) self.logger = utils.create_logger(self.args.log_path, 'trainer') self.ensure_deps() # self.grad_util = utils.Grads() self.logger.info('Build vocab and embeddings...') self.pretrain_feature_model = None self.tokenizer = None self.persona_vocab = None if self.args.use_mem_n2n: self.build_persona_vocab() if self.args.pretrain_feature: self.build_pretrain_feature_model() else: self.build_vocab_and_embeddings() self.logger.info('Build dataloaders...') self.build_dataloaders() self.logger.info('Build model...') self.build_model() self.logger.info('Build loss fns...') self.build_loss_fns() def parse_args(self): parser = argparse.ArgumentParser() parser.add_argument('--config_file', default='configs/large.yaml', type=str, required=False, help='Provide config in config_file or as other commandline args') parser.add_argument('--experiment_name', default='', type=str, required=False, help='') parser.add_argument('--device', default='cuda', type=str, required=False, help='use cpu for easy debug') parser.add_argument('--seed', default=42, type=int, required=False, help='') parser.add_argument('--n_epochs', default=10, type=int, required=False, help='') parser.add_argument('--n_epochs_early_stage', default=0, type=int, required=False, help='') parser.add_argument('--batch_size', default=128, type=int, required=False, help='') parser.add_argument('--limit_example_length', default=256, type=int, required=False, help='') parser.add_argument('--max_seq_length', default=300, type=int, required=False, help='') parser.add_argument('--max_context_size', default=10, type=int, required=False, help='') parser.add_argument('--shuffle_data', action='store_true', required=False, help='') parser.add_argument('--max_vocab_size', default=40000, type=int, required=False, help='') parser.add_argument('--pretrain_emb', action='store_true', required=False, help='') parser.add_argument('--share_encoder_decoder', action='store_true', required=False, help='') parser.add_argument('--pretrain_feature', action='store_true', required=False, help='') parser.add_argument('--pretrain_feature_model_name', default='', type=str, required=False, help='') parser.add_argument('--pretrain_feature_type', default='emb', type=str, required=False, help='') parser.add_argument('--emb_freeze', action='store_true', required=False, help='') parser.add_argument('--emb_dim', default=200, type=int, required=False, help='') parser.add_argument('--persona_vocab_size', type=int, required=False, help='Will auto fill') parser.add_argument('--dropout', default=0.1, type=float, required=False, help='') parser.add_argument('--num_layers', default=6, type=int, required=False, help='') parser.add_argument('--num_groups', default=1, type=int, required=False, help='') parser.add_argument('--n_head', default=8, type=int, required=False, help='') parser.add_argument('--d_model', default=512, type=int, required=False, help='') parser.add_argument('--d_ff', default=2048, type=int, required=False, help='') parser.add_argument('--attn_alpha', default=1, type=int, required=False, help='') parser.add_argument('--adapter_d_ff', default=2048, type=int, required=False, help='') parser.add_argument('--factor_ff', action='store_true', required=False, help='') parser.add_argument('--use_rezero', action='store_true', required=False, help='') parser.add_argument('--use_mem_n2n', action='store_true', required=False, help='') parser.add_argument('--mem_n2n_hops', default=3, type=int, required=False, help='') parser.add_argument('--mem_n2n_layer_share', default='adjacent', type=str, required=False, help='') parser.add_argument('--lr', default=0.5, type=float, required=False, help='') parser.add_argument('--weight_decay', default=0.99, type=float, required=False, help='') parser.add_argument('--clip_grad', default=1, type=int, required=False, help='') parser.add_argument('--use_scheduler', default=False, type=bool, required=False, help='') parser.add_argument('--warmup_steps', default=2000, type=int, required=False, help='') parser.add_argument('--gradient_accumulation', default=1, type=int, required=False, help='') parser.add_argument('--adapter_finetune', default=False, type=bool, required=False, help='') parser.add_argument('--auxiliary_task', default='MLM', type=str, required=False, help='') parser.add_argument('--alpha', default=0.5, type=float, required=False, help='LM loss weight') parser.add_argument('--model_path', default='models/', type=str, required=False, help='') parser.add_argument('--pretrained_fname', type=str, required=False, help='') parser.add_argument('--data_path', default='datas/', type=str, required=False, help='') parser.add_argument('--cache_path', default='caches/', type=str, required=False, help='') parser.add_argument('--log_path', default='logs/', type=str, required=False, help='') parser.add_argument('--corpus_fname', default='datas/corpus.txt', type=str, required=False, help='') parser.add_argument('--vec_fname', default='models/vec.txt', type=str, required=False, help='') parser.add_argument('--vocab_fname', default='models/vocab.txt', type=str, required=False, help='') parser.add_argument('--persona_vocab_fname', default='', type=str, required=False, help='') parser.add_argument('--lr_finder', action='store_true', required=False, help='') # TODO: let commandline temp args override args in config_file args = parser.parse_args() if args.config_file != '': parser.set_defaults(**yaml.load(open(args.config_file))) args = parser.parse_args() return args def ensure_deps(self): if self.args.pretrain_emb: try: v = '3.8.3' import gensim assert gensim.__version__ >= v except: raise Exception('If pretrain_emb enabled, please install gensim>=%s' % v) def build_persona_vocab(self): self.persona_vocab = datasets.PersonaVocab(self.args.persona_vocab_fname) self.args.persona_vocab_size = len(self.persona_vocab) def build_vocab_and_embeddings(self): args = self.args if args.pretrain_emb and ( not os.path.exists(args.vec_fname) or not os.path.exists(args.vocab_fname) ): self.logger.info('Pretraining word2vec...') utils.build_word2vec(args.corpus_fname, args.vec_fname, args.vocab_fname, max_vocab_size=args.max_seq_length, emb_dim=args.d_model) embeddings, gensim_vocab = None, None if args.pretrain_emb: self.logger.info('Loading word2vec...') embeddings, gensim_vocab = utils.load_embeddings_and_vocab(args.vec_fname, args.vocab_fname) embeddings = embeddings.to(self.device) self.vocab = utils.Vocab(gensim_vocab, args.data_path) self.input_dim = len(self.vocab) if args.pretrain_emb: elen = embeddings.shape[0] if self.input_dim > elen: args.emb_freeze = False append = torch.nn.init.kaiming_uniform_( torch.zeros(self.input_dim - elen, embeddings.shape[1])).to(self.device) embeddings = torch.cat([embeddings, append], dim=0) self.pad_idx = self.vocab.stoi(utils.PAD) self.embeddings = embeddings def build_pretrain_feature_model(self): mn = self.args.pretrain_feature_model_name if 'albert' in mn: pretrain_feature_tokenizer = BertTokenizer.from_pretrained(mn) config = AlbertConfig.from_pretrained(mn) config.output_hidden_states = True self.pretrain_feature_model = AlbertModel.from_pretrained(mn, config=config).to(self.device) else: pretrain_feature_tokenizer = AutoTokenizer.from_pretrained(mn) config = AutoConfig.from_pretrained(mn) config.output_hidden_states = True self.pretrain_feature_model = AutoModel.from_pretrained(mn, config=config).to(self.device) self.pretrain_feature_model.requires_grad_(False) # self.pretrain_feature_model.requires_grad_(True) # pipeline input is raw data, we have ids, so direct use model # self.pretrain_feature_pipeline = Pipeline('feature-extraction', # model=self.pretrain_feature_model, tokenizer=pretrain_feature_tokenizer) # TODO: pre calc feature and save to file, it use less memory for train and faster # XXX: only used this tokenizer vocab, did not used for byte pair split, now just split by space utils.add_special_tokens_(self.pretrain_feature_model, pretrain_feature_tokenizer) # FIXME: this changed args should saved to checkpoint file if self.args.pretrain_feature_type == 'mem_n2n': self.args.emb_dim = self.pretrain_feature_model.config.hidden_size self.args.d_model = self.pretrain_feature_model.config.hidden_size elif self.args.pretrain_feature_type == 'feature': self.args.emb_dim = self.pretrain_feature_model.config.hidden_size else: if self.pretrain_feature_model.base_model_prefix != 'bert': self.args.emb_dim = self.pretrain_feature_model.config.embedding_size else: self.args.emb_dim = self.pretrain_feature_model.config.hidden_size # XXX: for 'xlnet' # self.args.d_model = self.pretrain_feature_model.config.hidden_size if 'weight' in self.args.pretrain_feature_type: # few effects self.args.d_model = self.pretrain_feature_model.config.hidden_size self.args.n_head = self.pretrain_feature_model.config.num_attention_heads self.args.d_ff = self.pretrain_feature_model.config.intermediate_size self.args.factor_ff = False self.vocab = datasets.ChatVocab(pretrain_feature_tokenizer) self.input_dim = len(self.vocab) self.pad_idx = self.vocab.stoi(utils.PAD) self.embeddings = None # too slow # self.tokenizer = pretrain_feature_tokenizer.tokenize self.tokenizer = None def build_dataloaders(self): args = self.args is_mlm = self.args.auxiliary_task == 'MLM' gb = lambda batch: datasets.generate_batch(batch, self.vocab, self.persona_vocab, is_mlm) gb_lm = lambda batch: datasets.generate_lm_batch(batch, self.vocab, is_mlm) if args.n_epochs_early_stage > 0: dp = datasets.LMDataProcesser(limit_length=args.limit_example_length, max_seq_length=args.max_seq_length, tokenizer=self.tokenizer) ds = utils.PersonaDataset( self.vocab, args.max_seq_length, args.limit_example_length, data_path=args.data_path, cache_path=args.cache_path, data_processer=dp, mode='train_lm') self.logger.info('---------------------------------') self.logger.info('datasets len: %s' % len(ds)) self.train_iter = DataLoader(ds, batch_size=args.batch_size, collate_fn=gb_lm, shuffle=True) else: dp = datasets.ChatDataProcesser(limit_length=args.limit_example_length, max_seq_length=args.max_seq_length, max_context_size=args.max_context_size, vocab=self.vocab, persona_vocab=self.persona_vocab, tokenizer=self.tokenizer) ds = utils.PersonaDataset( self.vocab, args.max_seq_length, args.limit_example_length, data_path=args.data_path, cache_path=args.cache_path, data_processer=dp, mode='train_char') self.logger.info('---------------------------------') self.logger.info('datasets len: %s' % len(ds)) # when Dataset is stream, try utils.DataLoaderX (prefetch_generator), https://github.com/IgorSusmelj/pytorch-styleguide/issues/5 self.train_iter = DataLoader(ds, batch_size=args.batch_size, collate_fn=gb, shuffle=args.shuffle_data) dp = datasets.ChatDataProcesser(limit_length=args.limit_example_length, max_seq_length=args.max_seq_length, max_context_size=args.max_context_size, vocab=self.vocab, persona_vocab=self.persona_vocab, tokenizer=self.tokenizer) ds = utils.PersonaDataset( self.vocab, args.max_seq_length, args.limit_example_length, data_path=args.data_path, cache_path=args.cache_path, data_processer=dp, mode='valid_char') self.valid_iter = DataLoader(ds, batch_size=args.batch_size, collate_fn=gb, shuffle=False) dp = datasets.ChatDataProcesser(limit_length=args.limit_example_length, max_seq_length=args.max_seq_length, max_context_size=args.max_context_size, vocab=self.vocab, persona_vocab=self.persona_vocab, tokenizer=self.tokenizer) ds = utils.PersonaDataset( self.vocab, args.max_seq_length, args.limit_example_length, data_path=args.data_path, cache_path=args.cache_path, data_processer=dp, mode='test_char') self.test_iter = DataLoader(ds, batch_size=args.batch_size, collate_fn=gb, shuffle=False) def build_model(self): args = self.args output_dim = self.input_dim input_dim = self.input_dim self.best_model = None # TODO: change all modules param to single config, # change input_dim and output_dim to args.vocab_size self.model = models.AR.build(args, input_dim, output_dim, self.vocab, self.embeddings, self.pretrain_feature_model).to(self.device) self.optimizer = transformers.AdamW(self.model.parameters(), lr=args.lr, correct_bias=True, #self.optimizer = optim.AdamW(self.model.parameters(), lr=args.lr, #self.optimizer = toptim.Lamb(self.model.parameters(), lr=args.lr, weight_decay=args.weight_decay) self.logger.info(self.model) self.logger.info(f'The model has {utils.count_parameters(self.model):,} trainable parameters') if args.use_scheduler: #self.scheduler = optim.lr_scheduler.StepLR(self.optimizer, 1.0, gamma=0.95) #self.scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(self.optimizer, 2) if args.warmup_steps == 0: self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, mode='min', factor=0.5, min_lr=1.5e-4, patience=60, verbose=True) else: # XXX: scheduler will run once at start, even if has no scheduler.step() total_steps = int(len(self.train_iter.dataset) * args.n_epochs / args.batch_size / args.gradient_accumulation) self.scheduler = transformers.get_linear_schedule_with_warmup(self.optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=total_steps) if args.pretrained_fname is None: pass # pytorch module will auto init_weights with uniform # self.model.apply(models.init_weights) else: self.logger.info() self.logger.info(f'Load pretrained model {args.pretrained_fname}...') self.load_model() def build_loss_fns(self): self.out_loss_fn = nn.CrossEntropyLoss(ignore_index=self.pad_idx) def run_early_stage(self): for epoch in range(self.args.n_epochs_early_stage): start_time = time.time() train_loss = self.train_lm(epoch) self.save_model(epoch, 'lm') end_time = time.time() epoch_mins, epoch_secs = epoch_time(start_time, end_time) self.logger.info('-' * 89) self.logger.info('Experiment %s: ' % self.args.experiment_name) self.logger.info(f'Epoch: {epoch+1:02} | Time: {epoch_mins}m {epoch_secs}s') self.logger.info(f'\tTrain Loss: {train_loss:.3f} | Train PPL: {math.exp(train_loss):7.3f}') def run(self): if self.args.n_epochs_early_stage > 0: self.logger.info('Run early stage...') trainer.run_early_stage() # after fin, rerun with pretrained model return self.logger.info('Run main stage...') best_val_loss = float("inf") for epoch in range(self.args.n_epochs): start_time = time.time() train_loss = self.train(epoch) valid_loss = self.eval(self.valid_iter) if valid_loss < best_val_loss: best_val_loss = valid_loss self.best_model = self.model self.save_model(epoch) # scheduler.step() end_time = time.time() epoch_mins, epoch_secs = epoch_time(start_time, end_time) self.logger.info('-' * 89) self.logger.info('Experiment %s: ' % self.args.experiment_name) self.logger.info(f'Epoch: {epoch+1:02} | Time: {epoch_mins}m {epoch_secs}s') self.logger.info(f'\tTrain Loss: {train_loss:.3f} | Train PPL: {math.exp(train_loss):7.3f}') self.logger.info(f'\t Val. Loss: {valid_loss:.3f} | Val. PPL: {math.exp(valid_loss):7.3f}') test_loss = self.eval(self.test_iter) self.logger.info(f'| Test Loss: {test_loss:.3f} | Test PPL: {math.exp(test_loss):7.3f} |') # self.grad_util.plot() def train_lm(self, epoch): self.model.train() epoch_loss = 0 for batch_idx, feature in enumerate(self.train_iter): start_time = time.time() self.optimizer.zero_grad() utils.feature_to_device(feature, self.device) out = self.model(feature) loss = self.out_loss_fn(out.view(-1, out.shape[-1]), feature.y.view(-1)) # utils.self.logger.info_backward_graph(loss) loss.backward() if self.args.clip_grad is not None: nn.utils.clip_grad_norm_(self.model.parameters(), self.args.clip_grad) self.optimizer.step() iloss = loss.item() epoch_loss += iloss end_time = time.time() secs = end_time - start_time self.logger.info(f'Step {batch_idx+1}/{epoch+1:02} | Train Loss: {iloss:.3f} | Train PPL: {math.exp(iloss):7.3f} | Time: {secs:.3f}s\n') return epoch_loss / len(self.train_iter) def train(self, epoch, data_iter=None): self.model.train() if data_iter is None: data_iter = self.train_iter epoch_loss = 0 for batch_idx, feature in enumerate(data_iter):
regex = r'^[A-Za-z0-9 !$&\'*\-,.?^_`{}~#+%]*$' return len(name) <= 64 and re.match(regex, name) def get_uwhr_person(self, eid, source='uwhr'): """ Returns an irws.UWhrPerson object for the given eid. If the person is not an employee, returns None. If the netid isn't found, throws IRWSNotFound. If there is an error contacting IRWS, throws DataFailureException. """ eid = self._clean(eid) source = self._clean(source) url = "/%s/v2/person/%s/%s" % (self._service_name, source, eid) response = self.dao.getURL(url, {"Accept": "application/json"}) if response.status == 404: return None if response.status != 200: raise DataFailureException(url, response.status, response.data) person_data = json.loads(response.data)['person'][0] return UWhrPerson(**person_data) def get_sdb_person(self, sid): """ Returns an irws.SdbPerson object for the given eid. If the person is not a student, returns None. If the netid isn't found, throws IRWSNotFound. If there is an error contacting IRWS, throws DataFailureException. """ sid = self._clean(sid) url = "/%s/v2/person/sdb/%s" % (self._service_name, sid) response = self.dao.getURL(url, {"Accept": "application/json"}) if response.status == 404: return None if response.status != 200: raise DataFailureException(url, response.status, response.data) person_data = json.loads(response.data)['person'][0] return SdbPerson(**person_data) def get_cascadia_person(self, id): """ Returns an irws.CascadiaPerson object for the given id. If the netid isn't found, throws IRWSNotFound. If there is an error contacting IRWS, throws DataFailureException. """ id = self._clean(id) url = "/%s/v2/person/cascadia/%s" % (self._service_name, id) response = self.dao.getURL(url, {"Accept": "application/json"}) if response.status == 404: return None if response.status != 200: raise DataFailureException(url, response.status, response.data) return self._cascadia_person_from_json(response.data) def get_scca_person(self, id): """ Returns an irws.SccaPerson object for the given id. If the netid isn't found, throws IRWSNotFound. If there is an error contacting IRWS, throws DataFailureException. """ id = self._clean(id) url = "/%s/v2/person/scca/%s" % (self._service_name, id) response = self.dao.getURL(url, {"Accept": "application/json"}) if response.status == 404: return None if response.status != 200: raise DataFailureException(url, response.status, response.data) return self._scca_person_from_json(response.data) def get_supplemental_person(self, id): """ Returns an irws.SupplementalPerson object for the given id. If the netid isn't found, throws IRWSNotFound. If there is an error contacting IRWS, throws DataFailureException. """ id = self._clean(id) url = "/%s/v2/person/supplemental/%s" % (self._service_name, id) response = self.dao.getURL(url, {"Accept": "application/json"}) if response.status == 404: return None if response.status != 200: raise DataFailureException(url, response.status, response.data) data = json.loads(response.data)['person'][0] return SupplementalPerson(**data) def get_generic_person(self, uri): """ Returns an irws.GenericPerson object for the given uri. The uris come in from values in irws.Person.identifiers. Raises DataFailureExeption on error. """ uri = quote(uri, '/') url = '/%s/v2%s' % (self._service_name, uri) response = self.dao.getURL(url, {'Accept': 'application/json'}) if response.status == 404: return None if response.status != 200: raise DataFailureException(url, response.status, response.data) return self._generic_person_from_json(response.data) def get_subscription(self, netid, subscription): """ Returns an irws.Subscription object for the given netid. If the netid isn't found, nothing will be returned. If there is an error communicating with the IRWS, a DataFailureException will be thrown. """ netid = self._clean(netid) url = "/%s/v2/subscription?uwnetid=%s&subscription=%d" % (self._service_name, netid.lower(), subscription) response = self.dao.getURL(url, {"Accept": "application/json"}) if response.status == 404: return None if response.status != 200: raise DataFailureException(url, response.status, response.data) return self._subscription_from_json(response.data) def get_pdsentry_by_netid(self, netid): """ Returns an irws.PdsEntry object for the given netid. If the person doesn't have a pds entry, returns None. If the netid isn't found, throws #TODO If there is an error contacting IRWS, throws DataFailureException. """ netid = self._clean(netid) url = "/%s/v2/pdsentry/validid=uwnetid=%s" % (self._service_name, netid) response = self.dao.getURL(url, {"Accept": "application/json"}) if response.status == 404: return None if response.status != 200: raise DataFailureException(url, response.status, response.data) return self._pdsentry_from_json(response.data) def put_pac(self, eid, source='uwhr'): """ Creates a PAC for the employee. Returns the Pac. """ eid = self._clean(eid) source = self._clean(source) url = "/%s/v2/person/%s/%s/pac?-force" % (self._service_name, source, eid) response = self.dao.putURL(url, {"Accept": "application/json"}, '') if response.status != 200: raise DataFailureException(url, response.status, response.data) return self._pac_from_json(response.data) def verify_sdb_pac(self, sid, pac): """ Verifies a permanent student PAC. Returns 200 (ok) or 400 (no) """ sid = self._clean(sid) pac = self._clean(pac) url = "/%s/v2/person/sdb/%s?pac=%s" % (self._service_name, sid, pac) response = self.dao.getURL(url, {"Accept": "application/json"}) if (response.status == 200 or response.status == 400 or response.status == 404): return response.status raise DataFailureException(url, response.status, response.data) def verify_sc_pin(self, netid, pin): """ Verifies a service center one-time pin. Returns 200 (ok) or 400 (no). OK clears the pin. """ netid = self._clean(netid) pin = self._clean(pin) # make sure there is a pin subscription url = "/%s/v2/subscription/63/%s" % (self._service_name, netid) response = self.dao.getURL(url, {"Accept": "application/json"}) if response.status == 200: sub = json.loads(response.data)['subscription'][0] # verify pending subscription and unexpired, unused pac if sub['status_code'] != '23' or sub['pac'] != 'Y': return 404 else: return response.status url = "/%s/v2/subscribe/63/%s?action=1&pac=%s" % (self._service_name, netid, pin) response = self.dao.getURL(url, {"Accept": "application/json"}) if response.status == 200: # delete the pac url = "/%s/v2/subscribe/63/%s?action=2" % (self._service_name, netid) response = self.dao.getURL(url, {"Accept": "application/json"}) if response.status != 200: # the pin was good. we return OK, but note the error logger.error('Delete SC pin failed: %d' % response.status) return 200 if (response.status == 400 or response.status == 404): return response.status raise DataFailureException(url, response.status, response.data) def get_qna(self, netid): """ Returns a list irws.QnA for the given netid. """ netid = self._clean(netid) url = "/%s/v2/qna?uwnetid=%s" % (self._service_name, netid) response = self.dao.getURL(url, {"Accept": "application/json"}) if response.status == 404: return None if response.status != 200: raise DataFailureException(url, response.status, response.data) return self._qna_from_json(response.data) def get_verify_qna(self, netid, answers): """ Verifies that all answers are present and that all are correct. answers: ordered list of answers """ questions = self.get_qna(netid) if len(questions) != len(answers): return False for index, answer in enumerate(answers, start=1): answer = re.sub(r'\W+', '', answer) url = "/%s/v2/qna/%s/%s/check?ans=%s" % (self._service_name, index, quote(netid), quote(answer)) response = self.dao.getURL(url, {"Accept": "application/json"}) if response.status in (400, 404): logger.debug('qna wrong answer #{}, status = {}'.format(index, response.status)) return False if response.status != 200: raise DataFailureException(url, response.status, response.data) return True def verify_person_attribute(self, netid, attribute, value): """ Verify that the given attribute (eg birthdate) matches the value for the netid. Rather than chase all of the person identifier urls client-side, irws will return the list of identifiers. For birthdate, IRWS has the added value of discarding silly birthdates and matching on partial birthdates. """ netid = self._clean(netid) attribute = self._clean(attribute) value = self._clean(value) url = "/%s/v2/person?uwnetid=%s&%s=%s" % (self._service_name, netid, attribute, value) return self.dao.getURL(url, {'Accept': 'application/json'}).status == 200 def _cascadia_person_from_json(self, data): """ Internal method, for creating the CascadiaPerson object. """ person_data = json.loads(data)['person'][0] person = CascadiaPerson() person.validid = person_data['validid'] person.regid = person_data['regid'] person.lname = person_data['lname'] person.categories = person_data['categories'] if 'birthdate' in person_data: person.birthdate = person_data['birthdate'] if 'department' in person_data: person.department = person_data['department'] if 'in_feed' in person_data: person.in_feed = person_data['in_feed'] person.status_code = person_data.get('status_code', person.__class__.status_code) return person def _scca_person_from_json(self, data): """ Internal method, for creating the SccaPerson object. """ person_data = json.loads(data)['person'][0] person = SccaPerson() person.validid = person_data['validid'] person.regid = person_data['regid'] person.lname = person_data['lname'] person.categories = person_data['categories'] if 'birthdate' in person_data: person.birthdate = person_data['birthdate'] if 'scca_company' in person_data: person.scca_company = person_data['scca_company'] if 'scca_cca_eppn' in person_data: person.scca_cca_eppn = person_data['scca_cca_eppn'] if 'scca_fhc_eppn' in person_data: person.scca_fhc_eppn = person_data['scca_fhc_eppn'] if 'in_feed' in person_data: person.in_feed = person_data['in_feed'] person.status_code = person_data.get('status_code', person.__class__.status_code) return person def _person_from_json(self, data): persj = json.loads(data)['person'][0] idj = persj['identity'] person = Person() person.regid = idj['regid'] if 'lname' in idj: person.lname = idj['lname'] if 'fname' in idj: person.fname = idj['fname'] if 'identifiers' in idj: person.identifiers = copy.deepcopy(idj['identifiers']) return person def _regid_from_json(self, data): rj = json.loads(data)['regid'][0] regid = Regid() regid.regid = rj['regid'] regid.entity_code = rj['entity_code'] regid.entity_name = rj['entity_name'] regid.status_code = rj['status_code'] regid.status_name = rj['status_name'] return regid def _pw_recover_from_json(self, data): info = json.loads(data)['profile'][0] ret = Profile() if 'validid' in info: ret.validid = info['validid'] if 'recover_contacts' in info: ret.recover_contacts = info['recover_contacts'] if 'recover_block_reasons' in info: ret.recover_block_reasons = info['recover_block_reasons'] return ret def _uwnetid_from_json_obj(self, id_data): uwnetid = UWNetId() uwnetid.uwnetid = id_data['uwnetid'] uwnetid.validid = id_data['validid'] uwnetid.uid = id_data['uid'] uwnetid.disenfran = id_data['disenfran'] return uwnetid def _subscription_from_json(self, data): sub_data = json.loads(data)['subscription'][0] subscription = Subscription() subscription.uwnetid = sub_data['uwnetid'] subscription.subscription_code = sub_data['subscription_code'] subscription.subscription_name = sub_data['subscription_name'] subscription.subscription_data = sub_data.get('subscription_data', None) subscription.status_code = sub_data.get('status_code', None) subscription.status_name = sub_data.get('status_name', None) return subscription def _pdsentry_from_json(self, data): """ Internal method, for creating the PDSEntry object. """ person_data = json.loads(data)['pdsentry'][0]['entry'] person = PDSEntry() person.regid = person_data.get('uwRegID', '') person.objectclass = person_data.get('objectClass', []) person.test = person_data.get('uwTest', '') person.eid =
then INFO >>> with logInfo() : >>> ...do something... """ return logLevel ( logging.INFO - 1 ) # ============================================================================= # Temporarily enable/disable all loggers with level less then WARNING # @code # with logInfo() : # ...do something... # @endcode def logWarning () : """Temporarily disable all loggers with level less then WARNING >>> with logWarning() : >>> ...do something... """ return logLevel ( logging.WARNING - 1 ) # ============================================================================= # Temporarily enable/disable all loggers with level less then ERROR # @code # with logError() : # ...do something... # @endcode def logError () : """Temporarily disable all loggers with level less then ERROR >>> with logWarning() : >>> ...do something... """ return logLevel ( logging.ERROR - 1 ) # ============================================================================= # Temporarily enable/disable all loggers with level less then FATAL # @code # with logFatal() : # ...do something... # @endcode def logFatal () : """Temporarily disable all loggers with level less then ERROR >>> with logWarning() : >>> ...do something... """ return logLevel ( logging.FATAL - 1 ) # ============================================================================= ## BASIC colorization # ============================================================================= from ostap.logger.colorized import ( with_colors , colored_string , attention , allright , infostr , decolorize ) # ============================================================================= __colored_logger = [] # ============================================================================= ## reset colorization of logging def reset_colors () : """Reset colorization of logging >>> reset_colors() """ for a in logging_levels : logging.addLevelName ( a , logging_levels [ a ] ) # while __colored_logger : __colored_logger.pop() from ostap.logger.colorized import set_with_colors set_with_colors ( False ) return with_colors() # ============================================================================= ## make colors def make_colors () : """Colorize logging """ if __colored_logger : return from ostap.logger.colorized import set_with_colors set_with_colors ( True ) if not with_colors () : return def makeName ( level , fg = None , bg = None , blink = False , underline = False , bgb = False , fgb = False ) : name = logging.getLevelName ( level ) bold = fg is None and bg is None and not uderline bold = True return colored_string ( name , fg , bg , bold , blink , underline , fg_bright = fgb , bg_bright = bgb ) from ostap.logger.colorized import RED , BLUE , YELLOW , GREEN , WHITE logging.addLevelName ( logging.CRITICAL , makeName ( logging.CRITICAL , fg = RED , bg = BLUE , blink = True ) ) logging.addLevelName ( logging.WARNING , makeName ( logging.WARNING , fg = RED , bg = YELLOW , underline = True , bgb = True ) ) logging.addLevelName ( logging.ERROR , makeName ( logging.ERROR , fg = YELLOW , bg = RED , blink = True , bgb = True , fgb = True ) ) logging.addLevelName ( logging.INFO , makeName ( logging.INFO , bg = BLUE , fg = WHITE ) ) logging.addLevelName ( logging.DEBUG , makeName ( logging.DEBUG , bg = GREEN , fg = WHITE ) ) logging.addLevelName ( logging.VERBOSE , makeName ( logging.VERBOSE , bg = YELLOW , fg = WHITE , bgb = True , fgb = True ) ) __colored_logger.append ( 1 ) return with_colors() # ============================================================================= ## @class ColorLogging # Simple context manager to switch on coloring # @code # with ColorLogging(): # ... do something ... # @endcode class ColorLogging(object) : """Simple context manager to swith on coloring >>> with ColorLogging() : ... do something ... """ def __init__ ( self , color = True ) : self.color = color def __enter__ ( self ) : self.with_color = with_colors() if self.color and not self.with_color : make_colors () elif self.with_color and not self.color : reset_colors () return self def __exit__ ( self , *_ ) : if self.color and not self.with_color : reset_colors () elif self.with_color and not self.color : make_colors () # ============================================================================= ## simple context manager to switch on color logging # @code # with logColor() : # ... do something ... # @endcode def logColor ( color = True ) : """Simple context manager to switch on coloring >>> with logColor () : ... do something ... """ return ColorLogging ( color ) # ============================================================================= ## simple context manager to switch off color logging # @code # with logNoColor() : # ... do something ... # @endcode def logNoColor () : """Simple context manager to switch on coloring >>> with logNoColor () : ... do something ... """ return ColorLogging ( False ) # ============================================================================= ## simple context manager to switch off color logging # @code # with noColor() : # ... do something ... # @endcode def noColor () : """Simple context manager to switch on coloring >>> with noColor () : ... do something ... """ return ColorLogging ( False ) # ============================================================================= ## @class KeepColorLogging # Simple context manager to preserve coloring # @code # with KeepColorLogging(): # ... do something ... # @endcode class KeepColorLogging(object) : """Simple context manager to preserve coloring >>> with KeepColorLogging() : ... do something ... """ def __enter__ ( self ) : self.with_color = with_colors() return self def __exit__ ( self , *_ ) : if self.with_color and not with_colors() : make_colors () elif with_colors() and not self.with_color : reset_colors () # ============================================================================= ## simple context manager to preserve color logging # @code # with keepColor() : # ... do something ... # @endcode def keepColor () : """Simple context manager to preserve color logging >>> with keepColor () : ... do something ... """ return KeepColorLogging () # ============================================================================= # Actions! # ============================================================================= ## reset colors if isatty () : make_colors() ## define the default logging thresholds as 'INFO' setLogging ( 3 ) # ============================================================================= # Log file? # ============================================================================= log_file = os.getenv ( 'OSTAP_LOGFILE' , '' ) if log_file : ## set buffering to be 1-line and decolorize the output class LogHandler(logging.FileHandler) : def __init__(self, filename, mode='w', encoding=None, delay=0): logging.FileHandler.__init__ ( self , filename , mode , encoding, delay ) def _open(self): """ Open the current base file with the (original) mode and encoding. Return the resulting stream. """ stream = open(self.baseFilename, self.mode, buffering = 1 ) return stream def emit(self, record): """Emit an ddecolorize the record """ lname = logging_levels.get ( record.levelno , '' ) if not lname : lname = '%s' % record.levelno record.levelname = lname if with_colors () : record.msg = decolorize ( record.msg ) return logging.FileHandler.emit ( self , record ) loglev = os.getenv ( 'OSTAP_LOGLEVEL' , '%s' % logging.INFO ) try : loglev = int ( loglev ) if not loglev in logging_levels : loglev = logging.INFO except : loglev = logging.INFO log_handler = LogHandler ( log_file , mode = 'w' ) log_handler.setLevel ( loglev ) formatter = logging.Formatter ( logging_file_format , logging_date_format ) log_handler.setFormatter ( formatter ) logging.root.addHandler ( log_handler ) if log_file : logger = getLogger('ostap.logger.logger') func = lambda : logger.info ( 'Log-file is %s' % log_file ) func () import atexit atexit.register ( func ) logging.disable ( logging.INFO - 1 ) # ============================================================================= if __name__ == '__main__' : setLogging ( 0 ) logger = getLogger ( 'ostap.logger.logger') from ostap.utils.docme import docme docme ( __name__ , logger = logger ) with noColor() : pass logger.verbose ( 'This is VERBOSE message' ) logger.debug ( 'This is DEBUG message' ) logger.info ( 'This is INFO message' ) logger.warning ( 'This is WARNING message' ) logger.error ( 'This is ERROR message' ) logger.fatal ( 'This is FATAL message' ) logger.critical ( 'This is CRITICAL message' ) with logColor() : logger.verbose ( 'This is VERBOSE message' ) logger.debug ( 'This is DEBUG message' ) logger.info ( 'This is INFO message' ) logger.warning ( 'This is WARNING message' ) logger.error ( 'This is ERROR message' ) logger.fatal ( 'This is FATAL message' ) logger.critical ( 'This is CRITICAL message' ) with noColor () : logger.verbose ( 'This is VERBOSE message' ) logger.debug ( 'This is DEBUG message' ) logger.info ( 'This is INFO
int(x) * int(y), p) cnt += remain // int_p else: break print('[72]: ', cnt) return ''' Problem 73 Consider the fraction, n/d, where n and d are positive integers. If n<d and HCF(n,d)=1, it is called a reduced proper fraction. If we list the set of reduced proper fractions for d ≤ 8 in ascending order of size, we get: 1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8 It can be seen that there are 3 fractions between 1/3 and 1/2. How many fractions lie between 1/3 and 1/2 in the sorted set of reduced proper fractions for d ≤ 12,000? ''' def p73(): L = 12000 + 1 ret = [0 for x in range(L)] for d in range(2, L): if d % 2 == 0: n = 1 if d % 3 == 0 else 3 else: # d % 2 != 0 n = 2 if d % 3 == 0 else 6 left = ((d * n // 3) // n) + 1 right = (((d * n // 2) - 1) // n) + 1 for i in range(left, right): # count +1 for coprime i and d if gcd(i, d) == 1: ret[d] += 1 print('[73]: ', sum(ret)) return ''' Problem 74 The number 145 is well known for the property that the sum of the factorial of its digits is equal to 145: 1! + 4! + 5! = 1 + 24 + 120 = 145 Perhaps less well known is 169, in that it produces the longest chain of numbers that link back to 169; it turns out that there are only three such loops that exist: 169 → 363601 → 1454 → 169 871 → 45361 → 871 872 → 45362 → 872 It is not difficult to prove that EVERY starting number will eventually get stuck in a loop. For example, 69 → 363600 → 1454 → 169 → 363601 (→ 1454) 78 → 45360 → 871 → 45361 (→ 871) 540 → 145 (→ 145) Starting with 69 produces a chain of five non-repeating terms, but the longest non-repeating chain with a starting number below one million is sixty terms. How many chains, with a starting number below one million, contain exactly sixty non-repeating terms? ''' def check_74_factorial(factorials, i, str_i): check = [] check.append(i) cnt = 0 while (1): cnt += 1 if cnt > 60: return 0 sums = [factorials[int(str_i[j])] for j in range(0, len(str_i))] res = sum(sums) if res not in check: check.append(res) else: return cnt str_i = str(res) def p74(): factorials = [factorial(i) for i in range(0, 10)] ret = [i for i in range(1000000, 1, -1) if check_74_factorial(factorials, i, str(i)) == 60] print('[74]: ', len(ret)) ''' Problem 75 It turns out that 12 cm is the smallest length of wire that can be bent to form an integer sided right angle triangle in exactly one way, but there are many more examples. 12 cm: (3,4,5) 24 cm: (6,8,10) 30 cm: (5,12,13) 36 cm: (9,12,15) 40 cm: (8,15,17) 48 cm: (12,16,20) In contrast, some lengths of wire, like 20 cm, cannot be bent to form an integer sided right angle triangle, and other lengths allow more than one solution to be found; for example, using 120 cm it is possible to form exactly three different integer sided right angle triangles. 120 cm: (30,40,50), (20,48,52), (24,45,51) Given that L is the length of the wire, for how many values of L ≤ 1,500,000 can exactly one integer sided right angle triangle be formed? ''' def p75(): # a = m * m - n * n # b = 2 * m * n # c = m * m + n * n L = 1500000 right_triangle = set() for n in count(1, 1): if n > L / 3: break for m in count(n + 1, 1): ts = (2 * (m ** 2)) + (2 * (m * n)) if ts > L: break if (m + n) % 2 == 0: continue if gcd(m, n) != 1: continue right_triangle.add(ts) checks = [0 for x in range(0, L + 1)] for r in right_triangle: for i in count(1): pos = r * i if pos > L: break checks[pos] += 1 ret = [x for x in range(len(checks)) if checks[x] == 1] print('[75]: ', len(ret)) return ''' Problem 76 It is possible to write five as a sum in exactly six different ways: 4 + 1 3 + 2 3 + 1 + 1 2 + 2 + 1 2 + 1 + 1 + 1 1 + 1 + 1 + 1 + 1 How many different ways can one hundred be written as a sum of at least two positive integers? ''' def p76(): target = 100 ways = [1] + [0] * target for i in range(1, target): # number set for j in range(i, target + 1): ways[j] += ways[j - i] print('[76]: ', ways[target]) ''' Problem 77 It is possible to write ten as the sum of primes in exactly five different ways: 7 + 3 5 + 5 5 + 3 + 2 3 + 3 + 2 + 2 2 + 2 + 2 + 2 + 2 What is the first value which can be written as the sum of primes in over five thousand different ways? ''' # def p31_dreashire(): # target = 200 # coins = [1, 2, 5, 10, 20, 50, 100, 200] # ways = [1] + [0]*target # for coin in coins: # for i in range(coin, target+1): # ways[i] += ways[i-coin] # print("Ways to make change =", ways[target]) def p77(): target = 100 primes = prime_sieve(target) ways = [1] + [0] * target for p in primes: for i in range(p, target + 1): ways[i] += ways[i - p] print('[77]: ', [i for i, w in enumerate(ways) if w > 5000][0]) return ''' Problem 78 Let p(n) represent the number of different ways in which n coins can be separated into piles. For example, five coins can be separated into piles in exactly seven different ways, so p(5)=7. OOOOO <-- different from problem 76 OOOO   O OOO   OO OOO   O   O OO   OO   O OO   O   O   O O   O   O   O   O Find the least value of n for which p(n) is divisible by one million. ''' def pentagonal_seq(n): # https://oeis.org/A001318 if n == 0: return 0 if n == 1: return 1 return n * (3 * n - 1) // 2 def partition(n, part, penta): # https://oeis.org/A000041 if n == 0: return 1 if n == 1: return 1 ret = 0 for idx, p in enumerate(penta): if n - p < 0: break if idx % 4 == 0 or idx % 4 == 1: ret += part[n - p] else: ret -= part[n - p] return ret def p78(): # Answer 55374 6.31 sec part = [1, 1] penta = [] for i in range(1, 1000000): penta.append(pentagonal_seq(i)) penta.append(pentagonal_seq(i * -1)) for n in count(2, 1): ret = partition(n, part, penta) part.append(ret) if ret % 1000000 == 0: print('[78]: ', n) return ''' Problem 79 A common security method used for online banking is to ask the user for three random characters from a passcode. For example, if the passcode was <PASSWORD>, they may ask for the 2nd, 3rd, and 5th characters; the expected reply would be: 317. The text file, keylog.txt, contains fifty successful login attempts. Given that the three characters are always asked for in order, analyse the file so as to determine the shortest possible secret passcode of unknown length. ''' def p79(): print('[79]: ', 73162890) # by hand # Simple algorithm: # # 1. Work out all the digits necessary, put them in a unordered list # 2. Use the logins to do a normal bubble-sort of the digits by: # a. for each two-digit pair to compare: # b. find a login that contains both digits # c. use the ordering in the login to order the digits correctly # # Python: # # def read_logins(): # f = open("p079_keylog.txt") # l = f.read().split('\n') # f.close() # return l # # def get_digits(logins): # digits = set() # result = [] # for login in logins: # for digit in login: #
if new_image in all_images: return create_new_image() else: image_count = len(all_images) genesis_count = len(genesis_arr) if image_count < TOTAL_IMAGES / 10 and image_count % 7 == 0 and genesis_count < 90: new_image['War_paint'] = create_genesis(image_count) if TOTAL_IMAGES / 10 <= image_count and image_count < 2 * TOTAL_IMAGES / 10 and image_count % 9 == 0 and genesis_count < 215: new_image['War_paint'] = create_genesis(image_count) if 2 * TOTAL_IMAGES / 10 <= image_count and image_count < 3 * TOTAL_IMAGES / 10 and image_count % 8 == 5 and genesis_count < 315: new_image['War_paint'] = create_genesis(image_count) if 3 * TOTAL_IMAGES / 10 <= image_count and image_count < 4 * TOTAL_IMAGES / 10 and image_count % 5 == 3 and genesis_count < 390: new_image['War_paint'] = create_genesis(image_count) if 4 * TOTAL_IMAGES / 10 <= image_count and image_count < 5 * TOTAL_IMAGES / 10 and image_count % 7 == 0 and genesis_count < 500: new_image['War_paint'] = create_genesis(image_count) if 5 * TOTAL_IMAGES / 10 <= image_count and image_count < 6 * TOTAL_IMAGES / 10 and image_count % 6 == 2 and genesis_count < 575: new_image['War_paint'] = create_genesis(image_count) if 6 * TOTAL_IMAGES / 10 <= image_count and image_count < 7 * TOTAL_IMAGES / 10 and image_count % 6 == 4 and genesis_count < 600: new_image['War_paint'] = create_genesis(image_count) if 7 * TOTAL_IMAGES / 10 <= image_count and image_count < 8 * TOTAL_IMAGES / 10 and image_count % 4 == 0 and genesis_count < 800: new_image['War_paint'] = create_genesis(image_count) if 8 * TOTAL_IMAGES / 10 <= image_count and image_count < 9 * TOTAL_IMAGES / 10 and image_count % 7 == 3 and genesis_count < 910: new_image['War_paint'] = create_genesis(image_count) if 9 * TOTAL_IMAGES / 10 <= image_count and image_count < TOTAL_IMAGES and image_count % 9 == 8 and genesis_count < 1000: new_image['War_paint'] = create_genesis(image_count) # test 500/50-genesis # if image_count < TOTAL_IMAGES / 10 and image_count % 4 == 0 and genesis_count < 3: # new_image['War_paint'] = create_genesis() # if TOTAL_IMAGES/10 <= image_count and image_count < 2 * TOTAL_IMAGES / 10 and image_count % 4 == 0 and genesis_count < 7: # new_image['War_paint'] = create_genesis() # if 2 * TOTAL_IMAGES / 10 <= image_count and image_count < 3 * TOTAL_IMAGES / 10 and image_count % 4 == 2 and genesis_count < 11: # new_image['War_paint'] = create_genesis() # if 3 * TOTAL_IMAGES / 10 <= image_count and image_count < 4 * TOTAL_IMAGES / 10 and image_count % 4 == 3 and genesis_count < 15: # new_image['War_paint'] = create_genesis() # if 4 * TOTAL_IMAGES / 10 <= image_count and image_count < 5 * TOTAL_IMAGES / 10 and image_count % 4 == 0 and genesis_count < 20: # new_image['War_paint'] = create_genesis() # if 5 * TOTAL_IMAGES / 10 <= image_count and image_count < 6 * TOTAL_IMAGES / 10 and image_count % 4 == 2 and genesis_count < 25: # new_image['War_paint'] = create_genesis() # if 6 * TOTAL_IMAGES / 10 <= image_count and image_count < 7 * TOTAL_IMAGES / 10 and image_count % 4 == 2 and genesis_count < 30: # new_image['War_paint'] = create_genesis() # if 7 * TOTAL_IMAGES / 10 <= image_count and image_count < 8 * TOTAL_IMAGES / 10 and image_count % 4 == 0 and genesis_count < 35: # new_image['War_paint'] = create_genesis() # if 8 * TOTAL_IMAGES / 10 <= image_count and image_count < 9 * TOTAL_IMAGES / 10 and image_count % 4 == 3 and genesis_count < 42: # new_image['War_paint'] = create_genesis() # if 9 * TOTAL_IMAGES / 10 <= image_count and image_count < TOTAL_IMAGES and image_count % 4 == 3 and genesis_count < 50: # new_image['War_paint'] = create_genesis() # if new_image['War_paint'] == 'war_paint-genesis': # print('--------------------', genesis_count) return new_image # Generate the unique combinations based on trait weightings for i in range(TOTAL_IMAGES): new_trait_image = create_new_image() all_images.append(new_trait_image) # Returns true if all images are unique def all_images_unique(all_images): seen = list() return not any(i in seen or seen.append(i) for i in all_images) print("Are all images unique?", all_images_unique(all_images)) # Add token Id to each image i = 0 for item in all_images: item["tokenId"] = i i = i + 1 # print(all_images) # # Get Trait Counts # background_count = {} # for item in background: # background_count[item] = 0 # weapon_back_count = {} # for item in weapon_back: # weapon_back_count[item] = 0 # helm_backpieces_count = {} # for item in helm_backpieces: # helm_backpieces_count[item] = 0 # armor_back_pieces_count = {} # for item in armor_back_pieces: # armor_back_pieces_count[item] = 0 # base_body_count = {} # for item in base_body: # base_body_count[item] = 0 # tattoos_count = {} # for item in tattoos: # tattoos_count[item] = 0 # battle_armors_count = {} # for item in battle_armors: # battle_armors_count[item] = 0 # scars_count = {} # for item in scars: # scars_count[item] = 0 # facial_expressions_count = {} # for item in facial_expressions: # facial_expressions_count[item] = 0 # war_paint_count = {} # for item in war_paint: # war_paint_count[item] = 0 # eyebrows_count = {} # for item in eyebrows: # eyebrows_count[item] = 0 # hair_count = {} # for item in hair: # hair_count[item] = 0 # mage_hoods_count = {} # for item in mage_hoods: # mage_hoods_count[item] = 0 # beards_count = {} # for item in beards: # beards_count[item] = 0 # arms_count = {} # for item in arms: # arms_count[item] = 0 # weapon_count = {} # for item in weapon: # weapon_count[item] = 0 # arm_armor_count = {} # for item in arm_armor: # arm_armor_count[item] = 0 # weapon_mage_effect_count = {} # for item in weapon_mage_effect: # weapon_mage_effect_count[item] = 0 # extras_count = {} # for item in extras: # extras_count[item] = 0 # head_pieces_count = {} # for item in head_pieces: # head_pieces_count[item] = 0 # for image in all_images: # background_count[image["Background"]] += 1 # weapon_back_count[image["Weapon_back"]] += 1 # helm_backpieces_count[image["Helm_backpieces"]] += 1 # armor_back_pieces_count[image["Armor_back_pieces"]] += 1 # base_body_count[image["Base_body"]] += 1 # tattoos_count[image["Tattoos"]] += 1 # battle_armors_count[image["Battle_armors"]] += 1 # scars_count[image["Scars"]] += 1 # facial_expressions_count[image["Facial_expressions"]] += 1 # war_paint_count[image["War_paint"]] += 1 # eyebrows_count[image["Eyebrows"]] += 1 # hair_count[image["Hair"]] += 1 # mage_hoods_count[image["Mage_hoods"]] += 1 # beards_count[image["Beards"]] += 1 # arms_count[image["Arms"]] += 1 # weapon_count[image["Weapon"]] += 1 # arm_armor_count[image["Arm_armor"]] += 1 # weapon_mage_effect_count[image["Weapon_mage_effect"]] += 1 # extras_count[image["Extras"]] += 1 # head_pieces_count[image["Head_pieces"]] += 1 # print(background_count) # print(weapon_back_count) # print(helm_backpieces_count) # print(armor_back_pieces_count) # print(base_body_count) # print(tattoos_count) # print(battle_armors_count) # print(scars_count) # print(facial_expressions_count) # print(war_paint_count) # print(eyebrows_count) # print(hair_count) # print(mage_hoods_count) # print(beards_count) # print(arms_count) # print(weapon_count) # print(arm_armor_count) # print(weapon_mage_effect_count) # print(extras_count) # print(head_pieces_count) #### Generate Metadata for all Traits METADATA_FILE_NAME = './metadata/all-traits.json'; with open(METADATA_FILE_NAME, 'w') as outfile: json.dump(all_images, outfile, indent=4) #### Generate Images for item in all_images: im1 = Image.open(f'./trait-layers/1. BACKGROUNDS/{background_files[item["Background"]]}.png').convert('RGBA') im3 = Image.open(f'./trait-layers/3. HELM BACKPIECES/{helm_backpieces_files[item["Helm_backpieces"]]}.png').convert('RGBA') im4 = Image.open(f'./trait-layers/4. ARMOR BACK PIECES/{armor_back_pieces_files[item["Armor_back_pieces"]]}.png').convert('RGBA') im5 = Image.open(f'./trait-layers/5. BASE BODY/{base_body_files[item["Base_body"]]}.png').convert('RGBA') im6 = Image.open(f'./trait-layers/6. TATTOOS/{tattoos_files[item["Tattoos"]]}.png').convert('RGBA') im7 = Image.open(f'./trait-layers/9. FACIAL EXPRESSIONS/{facial_expressions_files[item["Facial_expressions"]]}.png').convert('RGBA') im8 = Image.open(f'./trait-layers/10. WAR PAINT/{war_paint_files[item["War_paint"]]}.png').convert('RGBA') im9 = Image.open(f'./trait-layers/12. HAIR/{hair_files[item["Hair"]]}.png').convert('RGBA') im10 = Image.open(f'./trait-layers/8. SCARS/{scars_files[item["Scars"]]}.png').convert('RGBA') im11 = Image.open(f'./trait-layers/11. EYEBROWS/{eyebrows_files[item["Eyebrows"]]}.png').convert('RGBA') im12 = Image.open(f'./trait-layers/14. BEARDS/{beards_files[item["Beards"]]}.png').convert('RGBA') im13 = Image.open(f'./trait-layers/7. BATTLE ARMORS/{battle_armors_files[item["Battle_armors"]]}.png').convert('RGBA') im14 = Image.open(f'./trait-layers/13. MAGE HOODS/{mage_hoods_files[item["Mage_hoods"]]}.png').convert('RGBA') im15 = Image.open(f'./trait-layers/15. ARMS/{arms_files[item["Arms"]]}.png').convert('RGBA') im16 = Image.open(f'./trait-layers/16. EXTRAS/{extras_files[item["Extras"]]}.png').convert('RGBA') im17 = Image.open(f'./trait-layers/18. WEAPON/{weapon_files[item["Weapon"]]}.png').convert('RGBA') im18 = Image.open(f'./trait-layers/19. ARM ARMOR/{arm_armor_files[item["Arm_armor"]]}.png').convert('RGBA') im_no_image = Image.open(f'./trait-layers/19. ARM ARMOR/no_arm_armor.png').convert('RGBA') # im19 = Image.open(f'./trait-layers/20. WEAPON MAGE EFFECT/{weapon_mage_effect_files[item["Weapon_mage_effect"]]}.png').convert('RGBA') # im20 = Image.open(f'./trait-layers/21. HEAD PIECES/{head_pieces_files[item["Head_pieces"]]}.png').convert('RGBA') #Create each composite if 'enclosed_armors' in item['Battle_armors'] or not 'no_mage_hoods' in item['Mage_hoods']: com1 = Image.alpha_composite(im1, im3) else: com1 = Image.alpha_composite(im1, im_no_image) if 'weapon_one_hand-back' in item['Weapon'] or 'weapon_back' in item['Weapon']: com1 = Image.alpha_composite(im1, im17) com2 = Image.alpha_composite(im4, im5) com3 = Image.alpha_composite(im6, im7) com4 = Image.alpha_composite(im8, im10) com5 = Image.alpha_composite(im9, im11) if 'enclosed_armors' in item['Battle_armors']: com6 = Image.alpha_composite(im12, im13) if not 'extras-10' in item['Extras']: com6 = Image.alpha_composite(com6, im_no_image) com6 = Image.alpha_composite(com6, im16) com6 = Image.alpha_composite(com6, im13) else: com6 = Image.alpha_composite(im13, im12) if not 'extras-10' in item['Extras']: com6 = Image.alpha_composite(com6, im_no_image) com6 = Image.alpha_composite(com6, im16) com6 = Image.alpha_composite(com6, im12) # Mage hand CAN ONLY be with mage hood if not 'no_mage_hoods' in item['Mage_hoods'] and 'helmetless' in item['Battle_armors']: com7 = Image.alpha_composite(im13, im14) else: com7 = Image.alpha_composite(im15, im15) com8 = Image.alpha_composite(im_no_image, im15) com9 = Image.alpha_composite(im_no_image, im_no_image) if not 'no_battle_armors' in item['Battle_armors']: com10 = Image.alpha_composite(im_no_image, im18) else: com10 = Image.alpha_composite(im_no_image, im15) com11 = Image.alpha_composite(com1, com2) com12 = Image.alpha_composite(com3, com4) com13 = Image.alpha_composite(com5, com6) com14 = Image.alpha_composite(com7, com8) com15 = Image.alpha_composite(com9, com10) com16 = Image.alpha_composite(com11, com12) com17 = Image.alpha_composite(com13, com14) com18
# encoding: utf-8 """ protocol.py Created by <NAME> on 2009-08-25. Copyright (c) 2009-2012 Exa Networks. All rights reserved. Modified by Orange - 2014 """ #import os #import copy import time import socket from struct import unpack from bagpipe.exabgp.rib.table import Table from bagpipe.exabgp.rib.delta import Delta from bagpipe.exabgp.utils import hexa from bagpipe.exabgp.structure.address import AFI,SAFI from bagpipe.exabgp.structure.ip import BGPPrefix,Inet,to_IP from bagpipe.exabgp.structure.vpn import VPNLabelledPrefix from bagpipe.exabgp.structure.evpn import EVPNNLRI from bagpipe.exabgp.structure.rtc import RouteTargetConstraint from bagpipe.exabgp.structure.asn import ASN,AS_TRANS from bagpipe.exabgp.network.connection import Connection from bagpipe.exabgp.message import Message,defix,Failure from bagpipe.exabgp.message.nop import NOP from bagpipe.exabgp.message.open import Open,Unknown,Parameter,Capabilities,RouterID,MultiProtocol,RouteRefresh,CiscoRouteRefresh,MultiSession,Graceful from bagpipe.exabgp.message.update import Update from bagpipe.exabgp.message.update.eor import EOR from bagpipe.exabgp.message.keepalive import KeepAlive from bagpipe.exabgp.message.notification import Notification, Notify #, NotConnected from bagpipe.exabgp.message.update.route import ReceivedRoute # ,Route from bagpipe.exabgp.message.update.attributes import Attributes from bagpipe.exabgp.message.update.attribute import AttributeID from bagpipe.exabgp.message.update.attribute.flag import Flag from bagpipe.exabgp.message.update.attribute.origin import Origin from bagpipe.exabgp.message.update.attribute.aspath import ASPath,AS4Path from bagpipe.exabgp.message.update.attribute.nexthop import NextHop from bagpipe.exabgp.message.update.attribute.med import MED from bagpipe.exabgp.message.update.attribute.localpref import LocalPreference from bagpipe.exabgp.message.update.attribute.communities import Community,Communities,ECommunity,ECommunities from bagpipe.exabgp.message.update.attribute.originator_id import OriginatorId from bagpipe.exabgp.message.update.attribute.pmsi_tunnel import PMSITunnel #from bagpipe.exabgp.message.update.attribute.mprnlri import MPRNLRI #from bagpipe.exabgp.message.update.attribute.mpurnlri import MPURNLRI from bagpipe.exabgp.processes import ProcessError from bagpipe.exabgp.log import Logger logger = Logger() MAX_BACKLOG = 200000 # README: Move all the old packet decoding in another file to clean up the includes here, as it is not used anyway class Protocol (object): decode = True strict = False def __init__ (self,peer,connection=None): self.peer = peer self.neighbor = peer.neighbor self.connection = connection self._delta = Delta(Table(peer)) self._asn4 = False self._messages = {} self._frozen = 0 self.message_size = 4096 # XXX: we use self.peer.neighbor.peer_address when we could use self.neighbor.peer_address def me (self,message): return "Peer %15s ASN %-7s %s" % (self.peer.neighbor.peer_address,self.peer.neighbor.peer_as,message) def connect (self): # allows to test the protocol code using modified StringIO with a extra 'pending' function if not self.connection: peer = self.neighbor.peer_address local = self.neighbor.local_address md5 = self.neighbor.md5 ttl = self.neighbor.ttl self.connection = Connection(peer,local,md5,ttl) message = 'neighbor %s connected\n' % self.peer.neighbor.peer_address try: proc = self.peer.supervisor.processes for name in proc.notify(self.neighbor.peer_address): proc.write(name,message) except ProcessError: raise Failure('Could not send message(s) to helper program(s) : %s' % message) def check_keepalive (self): left = int (self.connection.last_read + self.neighbor.hold_time - time.time()) if left <= 0: raise Notify(4,0) return left def close (self): #self._delta.last = 0 if self.connection: # must be first otherwise we could have a loop caused by the raise in the below self.connection.close() self.connection = None message = 'neighbor %s down\n' % self.peer.neighbor.peer_address try: proc = self.peer.supervisor.processes for name in proc.notify(self.neighbor.peer_address): proc.write(name,message) except ProcessError: raise Failure('Could not send message(s) to helper program(s) : %s' % message) # Read from network ....................................................... def read_message (self): # This call reset the time for the timeout in if not self.connection.pending(True): return NOP('') length = 19 data = '' while length: if self.connection.pending(): delta = self.connection.read(length) data += delta length -= len(delta) # The socket is closed if not data: raise Failure('The TCP connection is closed') if data[:16] != Message.MARKER: # We are speaking BGP - send us a valid Marker raise Notify(1,1,'The packet received does not contain a BGP marker') raw_length = data[16:18] length = unpack('!H',raw_length)[0] msg = data[18] if ( length < 19 or length > 4096): # BAD Message Length raise Notify(1,2) if ( (msg == Open.TYPE and length < 29) or (msg == Update.TYPE and length < 23) or (msg == Notification.TYPE and length < 21) or (msg == KeepAlive.TYPE and length != 19) ): # MUST send the faulty length back raise Notify(1,2,raw_length) #(msg == RouteRefresh.TYPE and length != 23) length -= 19 data = '' while length: if self.connection.pending(): delta = self.connection.read(length) data += delta length -= len(delta) # The socket is closed if not data: raise Failure('The TCP connection is closed') if msg == Notification.TYPE: raise Notification(ord(data[0]),ord(data[1])) if msg == KeepAlive.TYPE: return self.KeepAliveFactory(data) if msg == Open.TYPE: return self.OpenFactory(data) if msg == Update.TYPE: if self.neighbor.parse_routes: update = self.UpdateFactory(data) return update else: return NOP('') if self.strict: raise Notify(1,3,msg) return NOP(data) def read_open (self,_open,ip): message = self.read_message() if message.TYPE == NOP.TYPE: return message if message.TYPE != Open.TYPE: raise Notify(5,1,'The first packet received is not an open message (%s)' % message) if _open.asn.asn4() and not message.capabilities.announced(Capabilities.FOUR_BYTES_ASN): raise Notify(2,0,'We have an ASN4 and you do not speak it. bye.') self._asn4 = message.capabilities.announced(Capabilities.FOUR_BYTES_ASN) if message.asn == AS_TRANS: peer_as = message.capabilities[Capabilities.FOUR_BYTES_ASN] else: peer_as = message.asn if peer_as != self.neighbor.peer_as: raise Notify(2,2,'ASN in OPEN (%d) did not match ASN expected (%d)' % (message.asn,self.neighbor.peer_as)) # RFC 6286 : http://tools.ietf.org/html/rfc6286 #if message.router_id == RouterID('0.0.0.0'): # message.router_id = RouterID(ip) if message.router_id == RouterID('0.0.0.0'): raise Notify(2,3,'0.0.0.0 is an invalid router_id according to RFC6286') if message.router_id == self.neighbor.router_id and message.asn == self.neighbor.local_as: raise Notify(2,3,'BGP Indendifier collision (%s) on IBGP according to RFC 6286' % message.router_id) if message.hold_time < 3: raise Notify(2,6,'Hold Time is invalid (%d)' % message.hold_time) if message.hold_time >= 3: self.neighbor.hold_time = min(self.neighbor.hold_time,message.hold_time) # XXX: Does not work as the capa is not yet defined if message.capabilities.announced(Capabilities.EXTENDED_MESSAGE): # untested ! if self.peer.bgp.message_size: self.message_size = self.peer.bgp.message_size # README: This limit what we are announcing may cause some issue if you add new family and SIGHUP # README: So it is commented until I make my mind to add it or not (as Juniper complain about mismatch capabilities) # # Those are the capacity we need to announce those routes # for family in _open.capabilities[Capabilities.MULTIPROTOCOL_EXTENSIONS]: # # if the peer does not support them, tear down the session # if family not in message.capabilities[Capabilities.MULTIPROTOCOL_EXTENSIONS]: # afi,safi = family # raise Notify(2,0,'Peers does not speak %s %s' % (afi,safi)) return message def read_keepalive (self): message = self.read_message() if message.TYPE == NOP.TYPE: return message if message.TYPE != KeepAlive.TYPE: raise Notify(5,2) return message # Sending message to peer ................................................. # we do not buffer those message in purpose def new_open (self,restarted,asn4): if asn4: asn = self.neighbor.local_as else: asn = AS_TRANS o = Open(4,asn,self.neighbor.router_id.ip,Capabilities().default(self.neighbor,restarted),self.neighbor.hold_time) if not self.connection.write(o.message()): raise Failure('Could not send open') return o def new_keepalive (self,force=False): left = int(self.connection.last_write + self.neighbor.hold_time.keepalive() - time.time()) k = KeepAlive() m = k.message() if force: written = self.connection.write(k.message()) if not written: logger.message(self.me(">> KEEPALIVE buffered")) self._messages[self.neighbor.peer_as].append(('KEEPALIVE',m)) else: self._frozen = 0 return left,k if left <= 0: written = self.connection.write(k.message()) if not written: logger.message(self.me(">> KEEPALIVE buffered")) self._messages[self.neighbor.peer_as].append(('KEEPALIVE',m)) else: self._frozen = 0 return left,k return left,None def new_notification (self,notification): return self.connection.write(notification.message()) # messages buffered in case of failure def buffered (self): return self._messages.get(self.neighbor.peer_as,[]) != [] def _backlog (self,maximum=0): backlog = self._messages.get(self.neighbor.peer_as,[]) if backlog: if not self._frozen: self._frozen = time.time() if self._frozen and self._frozen + (self.neighbor.hold_time) < time.time(): raise Failure('peer %s not reading on socket - killing session' % self.neighbor.peer_as) logger.message(self.me("unable to send route for %d second (maximum allowed %d)" % (time.time()-self._frozen,self.neighbor.hold_time))) nb_backlog = len(backlog) if nb_backlog > MAX_BACKLOG: raise Failure('over %d routes buffered for peer %s - killing session' % (MAX_BACKLOG,self.neighbor.peer_as)) logger.message(self.me("backlog of %d/%d routes" % (nb_backlog,MAX_BACKLOG))) count = 0 while backlog: count += 1 name,update = backlog[0] written = self.connection.write(update) if not written: break logger.message(self.me(">> DEBUFFERED %s" % name)) backlog.pop(0) self._frozen = 0 yield count if maximum and count >= maximum: break self._messages[self.neighbor.peer_as] = backlog def _announce (self,name,generator): def chunked (generator,size): chunk = '' for data in generator: if len(data) > size: raise Failure('Can not send BGP update larger than %d bytes on this connection.' % size) if len(chunk) + len(data) <= size: chunk += data continue yield chunk chunk = data if chunk: yield chunk count = 0 # The message size is the whole BGP message INCLUDING headers ! for update in chunked(generator,self.message_size-19): count += 1 if self._messages[self.neighbor.peer_as]: logger.message(self.me(">> %s could not be sent, some messages are still in the buffer" % name)) self._messages[self.neighbor.peer_as].append((name,update)) continue written = self.connection.write(update) if not written: logger.message(self.me(">> %s buffered" % name)) self._messages[self.neighbor.peer_as].append((name,update)) yield count def new_announce (self): for answer in self._backlog(): yield answer asn4 = not not self.peer.open.capabilities.announced(Capabilities.FOUR_BYTES_ASN) for answer in self._announce('UPDATE',self._delta.announce(asn4,self.neighbor.local_as,self.neighbor.peer_as)): yield answer def new_update (self): for answer in self._backlog(): yield answer asn4 = not not self.peer.open.capabilities.announced(Capabilities.FOUR_BYTES_ASN) for answer in self._announce('UPDATE',self._delta.update(asn4,self.neighbor.local_as,self.neighbor.peer_as)): yield answer def new_eors (self,families): for answer in self._backlog(): pass eor = EOR() eors = eor.eors(families) for answer in self._announce('EOR',eors): pass # Message Factory ................................................. def KeepAliveFactory (self,data): return KeepAlive() def _key_values (self,name,data): if len(data) < 2: raise Notify(2,0,"Bad length for OPEN %s (<2) %s" % (name,hexa(data))) l = ord(data[1]) boundary = l+2 if len(data) < boundary: raise Notify(2,0,"Bad length for OPEN %s (buffer underrun) %s" % (name,hexa(data))) key = ord(data[0]) value = data[2:boundary] rest = data[boundary:] return key,value,rest def CapabilitiesFactory (self,data): capabilities = Capabilities() option_len = ord(data[0]) if option_len: data = data[1:] while data: key,value,data = self._key_values('parameter',data) # Paramaters must only be sent once. if key == Parameter.AUTHENTIFICATION_INFORMATION: raise Notify(2,5) if key == Parameter.CAPABILITIES: while value: k,capv,value = self._key_values('capability',value) # Multiple Capabilities can be present in a single attribute #if r: # raise Notify(2,0,"Bad length for OPEN %s (size mismatch) %s" % ('capability',hexa(value))) if k == Capabilities.MULTIPROTOCOL_EXTENSIONS: if k not in capabilities: capabilities[k] = MultiProtocol() afi = AFI(unpack('!H',capv[:2])[0]) safi = SAFI(ord(capv[3])) capabilities[k].append((afi,safi)) continue if k == Capabilities.GRACEFUL_RESTART: restart = unpack('!H',capv[:2])[0] restart_flag = restart >> 12 restart_time = restart & Graceful.TIME_MASK value_gr = capv[2:] families = [] while value_gr: afi = AFI(unpack('!H',value_gr[:2])[0]) safi = SAFI(ord(value_gr[2])) flag_family = ord(value_gr[0]) families.append((afi,safi,flag_family)) value_gr = value_gr[4:] capabilities[k] = Graceful(restart_flag,restart_time,families) continue if k == Capabilities.FOUR_BYTES_ASN: capabilities[k] = ASN(unpack('!L',capv[:4])[0]) continue if k == Capabilities.ROUTE_REFRESH: capabilities[k] = RouteRefresh() continue if k == Capabilities.CISCO_ROUTE_REFRESH: capabilities[k] = CiscoRouteRefresh() continue if k == Capabilities.MULTISESSION_BGP: capabilities[k] = MultiSession() continue if k == Capabilities.MULTISESSION_BGP_RFC: capabilities[k] = MultiSession() continue if k not in capabilities: capabilities[k] = Unknown(k,[ord(_) for _ in capv]) else: raise Notify(2,0,'Unknown OPEN parameter %s' % hex(key)) return capabilities def OpenFactory (self,data): version = ord(data[0]) if version != 4: # Only version 4 is supported nowdays.. raise Notify(2,1,data[0]) asn = unpack('!H',data[1:3])[0] hold_time = unpack('!H',data[3:5])[0] numeric = unpack('!L',data[5:9])[0] router_id = "%d.%d.%d.%d" % (numeric>>24,(numeric>>16)&0xFF,(numeric>>8)&0xFF,numeric&0xFF) capabilities = self.CapabilitiesFactory(data[9:]) return Open(version,asn,router_id,capabilities,hold_time) def UpdateFactory (self,data): length = len(data) # withdrawn lw,withdrawn,data = defix(data) if len(withdrawn) != lw: raise Notify(3,1) la,attribute,announced = defix(data) if len(attribute) != la: raise Notify(3,1) # The RFC check ... #if lw + la + 23 > length: if 2 + lw + 2+ la + len(announced) != length: raise Notify(3,1) routes = [] while withdrawn: nlri = BGPPrefix(AFI.ipv4,withdrawn) route = ReceivedRoute(nlri,'withdraw') withdrawn = withdrawn[len(nlri):] routes.append(route) self.mp_routes = [] attributes = self.AttributesFactory(attribute) routes.extend(self.mp_routes) while announced: nlri = BGPPrefix(AFI.ipv4,announced) route = ReceivedRoute(nlri,'announce') # XXX: Should this be a deep copy route.attributes = attributes announced = announced[len(nlri):] routes.append(route) #logger.info(self.me('Received route %s' % nlri)) #print "routes", routes #print "attributes", attributes if routes: return Update(routes) return NOP('') def AttributesFactory (self,data): try: self.attributes = Attributes() return self._AttributesFactory(data).attributes except IndexError: raise Notify(3,2,data) def __new_ASPath (self,data,asn4=False): if len(data) == 0: return ASPath(asn4) if asn4: size =
= re_.compile(r'({.*})?(.*)') String_cleanup_pat_ = re_.compile(r"[\n\r\s]+") Namespace_extract_pat_ = re_.compile(r'{(.*)}(.*)') # # Support/utility functions. # def showIndent(outfile, level, pretty_print=True): if pretty_print: for idx in range(level): outfile.write(' ') def quote_xml(inStr): if not inStr: return '' s1 = (isinstance(inStr, basestring) and inStr or '%s' % inStr) s1 = s1.replace('&', '&amp;') s1 = s1.replace('<', '&lt;') s1 = s1.replace('>', '&gt;') return s1 def quote_attrib(inStr): s1 = (isinstance(inStr, basestring) and inStr or '%s' % inStr) s1 = s1.replace('&', '&amp;') s1 = s1.replace('<', '&lt;') s1 = s1.replace('>', '&gt;') if '"' in s1: if "'" in s1: s1 = '"%s"' % s1.replace('"', "&quot;") else: s1 = "'%s'" % s1 else: s1 = '"%s"' % s1 return s1 def quote_python(inStr): s1 = inStr if s1.find("'") == -1: if s1.find('\n') == -1: return "'%s'" % s1 else: return "'''%s'''" % s1 else: if s1.find('"') != -1: s1 = s1.replace('"', '\\"') if s1.find('\n') == -1: return '"%s"' % s1 else: return '"""%s"""' % s1 def get_all_text_(node): if node.text is not None: text = node.text else: text = '' for child in node: if child.tail is not None: text += child.tail return text def find_attr_value_(attr_name, node): attrs = node.attrib attr_parts = attr_name.split(':') value = None if len(attr_parts) == 1: value = attrs.get(attr_name) elif len(attr_parts) == 2: prefix, name = attr_parts namespace = node.nsmap.get(prefix) if namespace is not None: value = attrs.get('{%s}%s' % (namespace, name, )) return value class GDSParseError(Exception): pass def raise_parse_error(node, msg): if XMLParser_import_library == XMLParser_import_lxml: msg = '%s (element %s/line %d)' % ( msg, node.tag, node.sourceline, ) else: msg = '%s (element %s)' % (msg, node.tag, ) raise GDSParseError(msg) class MixedContainer: # Constants for category: CategoryNone = 0 CategoryText = 1 CategorySimple = 2 CategoryComplex = 3 # Constants for content_type: TypeNone = 0 TypeText = 1 TypeString = 2 TypeInteger = 3 TypeFloat = 4 TypeDecimal = 5 TypeDouble = 6 TypeBoolean = 7 TypeBase64 = 8 def __init__(self, category, content_type, name, value): self.category = category self.content_type = content_type self.name = name self.value = value def getCategory(self): return self.category def getContenttype(self, content_type): return self.content_type def getValue(self): return self.value def getName(self): return self.name def export(self, outfile, level, name, namespace, pretty_print=True): if self.category == MixedContainer.CategoryText: # Prevent exporting empty content as empty lines. if self.value.strip(): outfile.write(self.value) elif self.category == MixedContainer.CategorySimple: self.exportSimple(outfile, level, name) else: # category == MixedContainer.CategoryComplex self.value.export(outfile, level, namespace, name, pretty_print) def exportSimple(self, outfile, level, name): if self.content_type == MixedContainer.TypeString: outfile.write('<%s>%s</%s>' % ( self.name, self.value, self.name)) elif self.content_type == MixedContainer.TypeInteger or \ self.content_type == MixedContainer.TypeBoolean: outfile.write('<%s>%d</%s>' % ( self.name, self.value, self.name)) elif self.content_type == MixedContainer.TypeFloat or \ self.content_type == MixedContainer.TypeDecimal: outfile.write('<%s>%f</%s>' % ( self.name, self.value, self.name)) elif self.content_type == MixedContainer.TypeDouble: outfile.write('<%s>%g</%s>' % ( self.name, self.value, self.name)) elif self.content_type == MixedContainer.TypeBase64: outfile.write('<%s>%s</%s>' % ( self.name, base64.b64encode(self.value), self.name)) def to_etree(self, element): if self.category == MixedContainer.CategoryText: # Prevent exporting empty content as empty lines. if self.value.strip(): if len(element) > 0: if element[-1].tail is None: element[-1].tail = self.value else: element[-1].tail += self.value else: if element.text is None: element.text = self.value else: element.text += self.value elif self.category == MixedContainer.CategorySimple: subelement = etree_.SubElement(element, '%s' % self.name) subelement.text = self.to_etree_simple() else: # category == MixedContainer.CategoryComplex self.value.to_etree(element) def to_etree_simple(self): if self.content_type == MixedContainer.TypeString: text = self.value elif (self.content_type == MixedContainer.TypeInteger or self.content_type == MixedContainer.TypeBoolean): text = '%d' % self.value elif (self.content_type == MixedContainer.TypeFloat or self.content_type == MixedContainer.TypeDecimal): text = '%f' % self.value elif self.content_type == MixedContainer.TypeDouble: text = '%g' % self.value elif self.content_type == MixedContainer.TypeBase64: text = '%s' % base64.b64encode(self.value) return text def exportLiteral(self, outfile, level, name): if self.category == MixedContainer.CategoryText: showIndent(outfile, level) outfile.write( 'model_.MixedContainer(%d, %d, "%s", "%s"),\n' % ( self.category, self.content_type, self.name, self.value)) elif self.category == MixedContainer.CategorySimple: showIndent(outfile, level) outfile.write( 'model_.MixedContainer(%d, %d, "%s", "%s"),\n' % ( self.category, self.content_type, self.name, self.value)) else: # category == MixedContainer.CategoryComplex showIndent(outfile, level) outfile.write( 'model_.MixedContainer(%d, %d, "%s",\n' % ( self.category, self.content_type, self.name,)) self.value.exportLiteral(outfile, level + 1) showIndent(outfile, level) outfile.write(')\n') class MemberSpec_(object): def __init__(self, name='', data_type='', container=0): self.name = name self.data_type = data_type self.container = container def set_name(self, name): self.name = name def get_name(self): return self.name def set_data_type(self, data_type): self.data_type = data_type def get_data_type_chain(self): return self.data_type def get_data_type(self): if isinstance(self.data_type, list): if len(self.data_type) > 0: return self.data_type[-1] else: return 'xs:string' else: return self.data_type def set_container(self, container): self.container = container def get_container(self): return self.container def _cast(typ, value): if typ is None or value is None: return value return typ(value) # # Data representation classes. # class corner(GeneratedsSuper): subclass = None superclass = None def __init__(self, location=None, latitude=None, longitude=None): self.location = _cast(None, location) self.latitude = _cast(float, latitude) self.longitude = _cast(float, longitude) pass def factory(*args_, **kwargs_): if corner.subclass: return corner.subclass(*args_, **kwargs_) else: return corner(*args_, **kwargs_) factory = staticmethod(factory) def get_location(self): return self.location def set_location(self, location): self.location = location def get_latitude(self): return self.latitude def set_latitude(self, latitude): self.latitude = latitude def get_longitude(self): return self.longitude def set_longitude(self, longitude): self.longitude = longitude def validate_cornerType(self, value): # Validate type cornerType, a restriction on xs:string. pass def validate_latAngleType(self, value): # Validate type latAngleType, a restriction on xs:float. pass def validate_longAngleType(self, value): # Validate type longAngleType, a restriction on xs:float. pass def hasContent_(self): if ( ): return True else: return False def export(self, outfile, level, namespace_='', name_='corner', namespacedef_='', pretty_print=True): # Check if we are at the root level and output the XML header if level == 0: outfile.write('<?xml version="1.0"?>\n') outfile.write('\n') if pretty_print: eol_ = '\n' else: eol_ = '' showIndent(outfile, level, pretty_print) # Check if we are at the root level and output attributes first before namespacedef if level == 0: outfile.write('<%s%s' % (namespace_, name_)) already_processed = set() self.exportAttributes(outfile, level, already_processed, namespace_, name_='corner') outfile.write('%s' % (namespacedef_ and ' ' + namespacedef_ or '')) else: outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) already_processed = set() self.exportAttributes(outfile, level, already_processed, namespace_, name_='corner') if self.hasContent_(): outfile.write('>%s' % (eol_, )) self.exportChildren(outfile, level + 1, namespace_='', name_='corner', pretty_print=pretty_print) outfile.write('</%s%s>%s' % (namespace_, name_, eol_)) else: outfile.write('/>%s' % (eol_, )) def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='corner'): if self.location is not None and 'location' not in already_processed: already_processed.add('location') outfile.write(' location=%s' % (quote_attrib(self.location), )) if self.latitude is not None and 'latitude' not in already_processed: already_processed.add('latitude') outfile.write(' latitude="%s"' % self.gds_format_float(self.latitude, input_name='latitude')) if self.longitude is not None and 'longitude' not in already_processed: already_processed.add('longitude') outfile.write(' longitude="%s"' % self.gds_format_float(self.longitude, input_name='longitude')) def exportChildren(self, outfile, level, namespace_='', name_='corner', fromsubclass_=False, pretty_print=True): pass def exportLiteral(self, outfile, level, name_='corner'): level += 1 already_processed = set() self.exportLiteralAttributes(outfile, level, already_processed, name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): if self.location is not None and 'location' not in already_processed: already_processed.add('location') showIndent(outfile, level) outfile.write('location="%s",\n' % (self.location,)) if self.latitude is not None and 'latitude' not in already_processed: already_processed.add('latitude') showIndent(outfile, level) outfile.write('latitude=%f,\n' % (self.latitude,)) if self.longitude is not None and 'longitude' not in already_processed: already_processed.add('longitude') showIndent(outfile, level) outfile.write('longitude=%f,\n' % (self.longitude,)) def exportLiteralChildren(self, outfile, level, name_): pass def build(self, node): already_processed = set() self.buildAttributes(node, node.attrib, already_processed) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) return self def buildAttributes(self, node, attrs, already_processed): value = find_attr_value_('location', node) if value is not None and 'location' not in already_processed: already_processed.add('location') self.location = value self.validate_cornerType(self.location) # validate type cornerType value = find_attr_value_('latitude', node) if value is not None and 'latitude' not in already_processed: already_processed.add('latitude') try: self.latitude = float(value) except ValueError, exp: raise ValueError('Bad float/double attribute (latitude): %s' % exp) self.validate_latAngleType(self.latitude) # validate type latAngleType value = find_attr_value_('longitude', node) if value is not None and 'longitude' not in already_processed: already_processed.add('longitude') try: self.longitude = float(value) except ValueError, exp: raise ValueError('Bad float/double attribute (longitude): %s' % exp) self.validate_longAngleType(self.longitude) # validate type longAngleType def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): pass # end class corner class bounding_coordinates(GeneratedsSuper): subclass = None superclass = None def __init__(self, west=None, east=None, north=None, south=None): self.west = west self.east = east self.north = north self.south = south def factory(*args_, **kwargs_): if bounding_coordinates.subclass: return bounding_coordinates.subclass(*args_, **kwargs_) else: return bounding_coordinates(*args_, **kwargs_) factory = staticmethod(factory) def get_west(self): return self.west def set_west(self, west): self.west = west def get_east(self): return self.east def set_east(self, east): self.east = east def get_north(self): return self.north def set_north(self, north): self.north = north def get_south(self): return
# Copyright 2012-2016 The Meson development team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import configparser, os, platform, re, shlex, shutil, subprocess from . import coredata from .linkers import ArLinker, VisualStudioLinker from . import mesonlib from .mesonlib import EnvironmentException, Popen_safe from . import mlog from . import compilers from .compilers import ( CLANG_OSX, CLANG_STANDARD, CLANG_WIN, GCC_CYGWIN, GCC_MINGW, GCC_OSX, GCC_STANDARD, ICC_STANDARD, is_assembly, is_header, is_library, is_llvm_ir, is_object, is_source, ) from .compilers import ( ArmCCompiler, ArmCPPCompiler, ArmclangCCompiler, ArmclangCPPCompiler, ClangCCompiler, ClangCPPCompiler, ClangObjCCompiler, ClangObjCPPCompiler, G95FortranCompiler, GnuCCompiler, GnuCPPCompiler, GnuFortranCompiler, GnuObjCCompiler, GnuObjCPPCompiler, ElbrusCCompiler, ElbrusCPPCompiler, ElbrusFortranCompiler, IntelCCompiler, IntelCPPCompiler, IntelFortranCompiler, JavaCompiler, MonoCompiler, VisualStudioCsCompiler, NAGFortranCompiler, Open64FortranCompiler, PathScaleFortranCompiler, PGIFortranCompiler, RustCompiler, SunFortranCompiler, ValaCompiler, VisualStudioCCompiler, VisualStudioCPPCompiler, ) build_filename = 'meson.build' known_cpu_families = ( 'aarch64', 'arm', 'e2k', 'ia64', 'mips', 'mips64', 'parisc', 'ppc', 'ppc64', 'sparc64', 'x86', 'x86_64' ) def detect_gcovr(version='3.1', log=False): gcovr_exe = 'gcovr' try: p, found = Popen_safe([gcovr_exe, '--version'])[0:2] except (FileNotFoundError, PermissionError): # Doesn't exist in PATH or isn't executable return None, None found = search_version(found) if p.returncode == 0: if log: mlog.log('Found gcovr-{} at {}'.format(found, shlex.quote(shutil.which(gcovr_exe)))) return gcovr_exe, mesonlib.version_compare(found, '>=' + version) return None, None def find_coverage_tools(): gcovr_exe, gcovr_new_rootdir = detect_gcovr() lcov_exe = 'lcov' genhtml_exe = 'genhtml' if not mesonlib.exe_exists([lcov_exe, '--version']): lcov_exe = None if not mesonlib.exe_exists([genhtml_exe, '--version']): genhtml_exe = None return gcovr_exe, gcovr_new_rootdir, lcov_exe, genhtml_exe def detect_ninja(version='1.5', log=False): for n in ['ninja', 'ninja-build']: try: p, found = Popen_safe([n, '--version'])[0:2] except (FileNotFoundError, PermissionError): # Doesn't exist in PATH or isn't executable continue found = found.strip() # Perhaps we should add a way for the caller to know the failure mode # (not found or too old) if p.returncode == 0 and mesonlib.version_compare(found, '>=' + version): if log: mlog.log('Found ninja-{} at {}'.format(found, shlex.quote(shutil.which(n)))) return n def detect_native_windows_arch(): """ The architecture of Windows itself: x86 or amd64 """ # These env variables are always available. See: # https://msdn.microsoft.com/en-us/library/aa384274(VS.85).aspx # https://blogs.msdn.microsoft.com/david.wang/2006/03/27/howto-detect-process-bitness/ arch = os.environ.get('PROCESSOR_ARCHITEW6432', '').lower() if not arch: try: # If this doesn't exist, something is messing with the environment arch = os.environ['PROCESSOR_ARCHITECTURE'].lower() except KeyError: raise EnvironmentException('Unable to detect native OS architecture') return arch def detect_windows_arch(compilers): """ Detecting the 'native' architecture of Windows is not a trivial task. We cannot trust that the architecture that Python is built for is the 'native' one because you can run 32-bit apps on 64-bit Windows using WOW64 and people sometimes install 32-bit Python on 64-bit Windows. We also can't rely on the architecture of the OS itself, since it's perfectly normal to compile and run 32-bit applications on Windows as if they were native applications. It's a terrible experience to require the user to supply a cross-info file to compile 32-bit applications on 64-bit Windows. Thankfully, the only way to compile things with Visual Studio on Windows is by entering the 'msvc toolchain' environment, which can be easily detected. In the end, the sanest method is as follows: 1. Check if we're in an MSVC toolchain environment, and if so, return the MSVC toolchain architecture as our 'native' architecture. 2. If not, check environment variables that are set by Windows and WOW64 to find out the architecture that Windows is built for, and use that as our 'native' architecture. """ os_arch = detect_native_windows_arch() if os_arch != 'amd64': return os_arch # If we're on 64-bit Windows, 32-bit apps can be compiled without # cross-compilation. So if we're doing that, just set the native arch as # 32-bit and pretend like we're running under WOW64. Else, return the # actual Windows architecture that we deduced above. for compiler in compilers.values(): # Check if we're using and inside an MSVC toolchain environment if compiler.id == 'msvc' and 'VCINSTALLDIR' in os.environ: if float(compiler.get_toolset_version()) < 10.0: # On MSVC 2008 and earlier, check 'BUILD_PLAT', where # 'Win32' means 'x86' platform = os.environ.get('BUILD_PLAT', 'x86') if platform == 'Win32': return 'x86' else: # On MSVC 2010 and later 'Platform' is only set when the # target arch is not 'x86'. It's 'x64' when targeting # x86_64 and 'arm' when targeting ARM. platform = os.environ.get('Platform', 'x86').lower() if platform == 'x86': return platform if compiler.id == 'gcc' and compiler.has_builtin_define('__i386__'): return 'x86' return os_arch def detect_cpu_family(compilers): """ Python is inconsistent in its platform module. It returns different values for the same cpu. For x86 it might return 'x86', 'i686' or somesuch. Do some canonicalization. """ if mesonlib.is_windows(): trial = detect_windows_arch(compilers) else: trial = platform.machine().lower() if trial.startswith('i') and trial.endswith('86'): return 'x86' if trial.startswith('arm'): return 'arm' if trial.startswith('ppc64'): return 'ppc64' if trial in ('amd64', 'x64'): trial = 'x86_64' if trial == 'x86_64': # On Linux (and maybe others) there can be any mixture of 32/64 bit # code in the kernel, Python, system etc. The only reliable way # to know is to check the compiler defines. for c in compilers.values(): try: if c.has_builtin_define('__i386__'): return 'x86' except mesonlib.MesonException: # Ignore compilers that do not support has_builtin_define. pass return 'x86_64' # Add fixes here as bugs are reported. if trial not in known_cpu_families: mlog.warning('Unknown CPU family {!r}, please report this at ' 'https://github.com/mesonbuild/meson/issues/new with the' 'output of `uname -a` and `cat /proc/cpuinfo`'.format(trial)) return trial def detect_cpu(compilers): if mesonlib.is_windows(): trial = detect_windows_arch(compilers) else: trial = platform.machine().lower() if trial in ('amd64', 'x64'): trial = 'x86_64' if trial == 'x86_64': # Same check as above for cpu_family for c in compilers.values(): try: if c.has_builtin_define('__i386__'): return 'i686' # All 64 bit cpus have at least this level of x86 support. except mesonlib.MesonException: pass return 'x86_64' if trial == 'e2k': # Make more precise CPU detection for Elbrus platform. trial = platform.processor().lower() # Add fixes here as bugs are reported. return trial def detect_system(): system = platform.system().lower() if system.startswith('cygwin'): return 'cygwin' return system def detect_msys2_arch(): if 'MSYSTEM_CARCH' in os.environ: return os.environ['MSYSTEM_CARCH'] return None def search_version(text): # Usually of the type 4.1.4 but compiler output may contain # stuff like this: # (Sourcery CodeBench Lite 2014.05-29) 4.8.3 20140320 (prerelease) # Limiting major version number to two digits seems to work # thus far. When we get to GCC 100, this will break, but # if we are still relevant when that happens, it can be # considered an achievement in itself. # # This regex is reaching magic levels. If it ever needs # to be updated, do not complexify but convert to something # saner instead. version_regex = '(?<!(\d|\.))(\d{1,2}(\.\d+)+(-[a-zA-Z0-9]+)?)' match = re.search(version_regex, text) if match: return match.group(0) return 'unknown version' class Environment: private_dir = 'meson-private' log_dir = 'meson-logs' def __init__(self, source_dir, build_dir, options): self.source_dir = source_dir self.build_dir = build_dir self.scratch_dir = os.path.join(build_dir, Environment.private_dir) self.log_dir = os.path.join(build_dir, Environment.log_dir) os.makedirs(self.scratch_dir, exist_ok=True) os.makedirs(self.log_dir, exist_ok=True) try: self.coredata = coredata.load(self.get_build_dir()) self.first_invocation = False except FileNotFoundError: # WARNING: Don't use any values from coredata in __init__. It gets # re-initialized with project options by the interpreter during # build file parsing. self.coredata = coredata.CoreData(options) # Used by the regenchecker script, which runs meson self.coredata.meson_command = mesonlib.meson_command self.first_invocation = True if self.coredata.cross_file: self.cross_info = CrossBuildInfo(self.coredata.cross_file) else: self.cross_info = None self.cmd_line_options = options.cmd_line_options.copy() # List of potential compilers. if mesonlib.is_windows(): self.default_c = ['cl', 'cc', 'gcc', 'clang'] self.default_cpp = ['cl', 'c++', 'g++', 'clang++'] else: self.default_c = ['cc', 'gcc', 'clang'] self.default_cpp = ['c++', 'g++', 'clang++'] if mesonlib.is_windows(): self.default_cs = ['csc', 'mcs'] else: self.default_cs = ['mcs', 'csc'] self.default_objc = ['cc'] self.default_objcpp = ['c++'] self.default_fortran = ['gfortran', 'g95', 'f95', 'f90', 'f77', 'ifort'] self.default_rust = ['rustc'] self.default_static_linker = ['ar'] self.vs_static_linker = ['lib'] self.gcc_static_linker = ['gcc-ar'] self.clang_static_linker = ['llvm-ar'] # Various prefixes and suffixes for import libraries, shared libraries, # static libraries, and executables. # Versioning is added to these names in the backends as-needed. cross = self.is_cross_build() if (not cross and mesonlib.is_windows()) \ or
""" Copyright (c) 2020, 2021 Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl. """ import unittest import os import shutil import tempfile from java.util.logging import Level from oracle.weblogic.deploy.compare import CompareException from oracle.weblogic.deploy.logging import SummaryHandler from oracle.weblogic.deploy.util import PyWLSTException from compare_model import ModelFileDiffer from wlsdeploy.aliases.model_constants import APPLICATION from wlsdeploy.aliases.model_constants import APP_DEPLOYMENTS from wlsdeploy.aliases.model_constants import LIBRARY from wlsdeploy.aliases.model_constants import MAX_THREADS_CONSTRAINT from wlsdeploy.aliases.model_constants import MIN_THREADS_CONSTRAINT from wlsdeploy.aliases.model_constants import RESOURCES from wlsdeploy.aliases.model_constants import SELF_TUNING from wlsdeploy.aliases.model_constants import SOURCE_PATH from wlsdeploy.aliases.model_constants import TOPOLOGY from wlsdeploy.aliases.model_constants import WORK_MANAGER from wlsdeploy.logging.platform_logger import PlatformLogger from wlsdeploy.util import dictionary_utils from wlsdeploy.util import model_helper from wlsdeploy.util.model_context import ModelContext from wlsdeploy.util.model_translator import FileToPython class CompareModelTestCase(unittest.TestCase): _resources_dir = '../../test-classes' _tests_dir = '../../unit-tests' _results_dir = _tests_dir + '/compare' _use_ordering = True def setUp(self): self.name = 'CompareModelTestCase' self._logger = PlatformLogger('wlsdeploy.compare_model') self._program_name = 'CompareModelTestCase' if not os.path.isdir(self._tests_dir): os.mkdir(self._tests_dir) if not os.path.isdir(self._results_dir): os.mkdir(self._results_dir) # add summary handler to validate logger to check results self._summary_handler = SummaryHandler() PlatformLogger('wlsdeploy.validate').logger.addHandler(self._summary_handler) def tearDown(self): # remove summary handler for next test suite PlatformLogger('wlsdeploy.validate').logger.removeHandler(self._summary_handler) def testCompareModelFull(self): _method_name = 'testCompareModelFull' _variables_file = self._resources_dir + '/compare_model_model1.10.properties' _new_model_file = self._resources_dir + '/compare_model_model2.yaml' _old_model_file = self._resources_dir + '/compare_model_model1.yaml' _temp_dir = os.path.join(tempfile.gettempdir(), _method_name) if os.path.exists(_temp_dir): shutil.rmtree(_temp_dir) os.mkdir(_temp_dir) mw_home = os.environ['MW_HOME'] args_map = { '-oracle_home': mw_home, '-variable_file': _variables_file, '-output_dir' : _temp_dir, '-domain_type' : 'WLS', '-trailing_arguments': [ _new_model_file, _old_model_file ] } try: model_context = ModelContext('CompareModelTestCase', args_map) obj = ModelFileDiffer(_new_model_file, _old_model_file, model_context, _temp_dir) return_code = obj.compare() self.assertEqual(return_code, 0) yaml_result = _temp_dir + os.sep + 'diffed_model.yaml' json_result = _temp_dir + os.sep + 'diffed_model.json' stdout_result = obj.get_compare_msgs() model_dictionary = FileToPython(yaml_result).parse() yaml_exists = os.path.exists(yaml_result) json_exists = os.path.exists(json_result) self.assertEqual(yaml_exists, True) self.assertEqual(json_exists, True) self.assertEqual(len(stdout_result), 14) self.assertEqual(model_dictionary.has_key('resources'), True) self.assertEqual(model_dictionary.has_key('topology'), True) self.assertEqual(model_dictionary.has_key('appDeployments'), True) self.assertEqual(model_dictionary['topology'].has_key('ServerTemplate'), True) self.assertEqual(model_dictionary['topology'].has_key('Cluster'), True) self.assertEqual(model_dictionary['topology']['ServerTemplate'].has_key('cluster-1-template'), True) self.assertEqual(model_dictionary['topology']['Cluster'].has_key('cluster-2'), True) self.assertEqual(model_dictionary['appDeployments'].has_key('Library'), True) self.assertEqual(model_dictionary['appDeployments'].has_key('Application'), True) self.assertEqual(model_dictionary['appDeployments']['Application'].has_key('myear'), True) self.assertEqual(model_dictionary['resources'].has_key('JMSSystemResource'), True) self.assertEqual(model_dictionary['resources']['JMSSystemResource'].has_key('MyJmsModule'), True) self.assertEqual(model_dictionary['resources'].has_key('SingletonService'), True) self.assertEqual(model_dictionary['appDeployments']['Library'].has_key('!jax-rs#[email protected]'), True) self.assertEqual(model_dictionary['appDeployments']['Library'].has_key('!jsf#[email protected]'), True) self.assertEqual(model_dictionary['appDeployments']['Application']['myear'].has_key('ModuleType'), False) except (CompareException, PyWLSTException), te: return_code = 2 self._logger.severe('WLSDPLY-05709', te.getLocalizedMessage(), error=te, class_name=self._program_name, method_name=_method_name) if os.path.exists(_temp_dir): shutil.rmtree(_temp_dir) self.assertEqual(return_code, 0) def testCompareModelSecurityConfigurationAttribute(self): _method_name = 'testCompareModelSecurityConfigurationAttribute' _new_model_file = self._resources_dir + '/compare/model-sc1-new.yaml' _old_model_file = self._resources_dir + '/compare/model-sc1-old.yaml' _temp_dir = os.path.join(tempfile.gettempdir(), _method_name) if os.path.exists(_temp_dir): shutil.rmtree(_temp_dir) os.mkdir(_temp_dir) mw_home = os.environ['MW_HOME'] args_map = { '-oracle_home': mw_home, '-output_dir' : _temp_dir, '-domain_type' : 'WLS', '-trailing_arguments': [ _new_model_file, _old_model_file ] } try: model_context = ModelContext('CompareModelTestCase', args_map) obj = ModelFileDiffer(_new_model_file, _old_model_file, model_context, _temp_dir) return_code = obj.compare() self.assertEqual(return_code, 0) yaml_result = _temp_dir + os.sep + 'diffed_model.yaml' json_result = _temp_dir + os.sep + 'diffed_model.json' stdout_result = obj.get_compare_msgs() model_dictionary = FileToPython(yaml_result).parse() self.assertEqual(model_dictionary.has_key('topology'), True) self.assertEqual(model_dictionary['topology'].has_key('SecurityConfiguration'), True) self.assertEqual(model_dictionary['topology']['SecurityConfiguration'].has_key('Realm'), True) self.assertEqual(model_dictionary['topology']['SecurityConfiguration']['Realm'].has_key('myrealm'), True) self.assertEqual(model_dictionary['topology']['SecurityConfiguration']['Realm']['myrealm'].has_key('Auditor'), False) self.assertEqual(model_dictionary['topology']['SecurityConfiguration']['Realm']['myrealm'].has_key('AuthenticationProvider'), True) self.assertEqual(model_dictionary['topology']['SecurityConfiguration']['Realm']['myrealm'].has_key('PasswordValidator'), False) except (CompareException, PyWLSTException), te: return_code = 2 self._logger.severe('WLSDPLY-05709', te.getLocalizedMessage(), error=te, class_name=self._program_name, method_name=_method_name) if os.path.exists(_temp_dir): shutil.rmtree(_temp_dir) self.assertEqual(return_code, 0) def testCompareModelSecurityConfigurationCustomList(self): _method_name = 'testCompareModelSecurityConfigurationCustomList' _new_model_file = self._resources_dir + '/compare/model-sc2-new.yaml' _old_model_file = self._resources_dir + '/compare/model-sc2-old.yaml' _temp_dir = os.path.join(tempfile.gettempdir(), _method_name) if os.path.exists(_temp_dir): shutil.rmtree(_temp_dir) os.mkdir(_temp_dir) mw_home = os.environ['MW_HOME'] args_map = { '-oracle_home': mw_home, '-output_dir' : _temp_dir, '-domain_type' : 'WLS', '-trailing_arguments': [ _new_model_file, _old_model_file ] } try: model_context = ModelContext('CompareModelTestCase', args_map) obj = ModelFileDiffer(_new_model_file, _old_model_file, model_context, _temp_dir) return_code = obj.compare() self.assertEqual(return_code, 0) yaml_result = _temp_dir + os.sep + 'diffed_model.yaml' json_result = _temp_dir + os.sep + 'diffed_model.json' stdout_result = obj.get_compare_msgs() model_dictionary = FileToPython(yaml_result).parse() self.assertEqual(model_dictionary.has_key('topology'), True) self.assertEqual(model_dictionary['topology'].has_key('SecurityConfiguration'), True) self.assertEqual(model_dictionary['topology']['SecurityConfiguration'].has_key('Realm'), True) self.assertEqual(model_dictionary['topology']['SecurityConfiguration']['Realm'].has_key('myrealm'), True) self.assertEqual(model_dictionary['topology']['SecurityConfiguration']['Realm']['myrealm'].has_key('Auditor'), False) self.assertEqual(model_dictionary['topology']['SecurityConfiguration']['Realm']['myrealm'].has_key('AuthenticationProvider'), True) self.assertEqual(model_dictionary['topology']['SecurityConfiguration']['Realm']['myrealm'].has_key('PasswordValidator'), True) except (CompareException, PyWLSTException), te: return_code = 2 self._logger.severe('WLSDPLY-05709', te.getLocalizedMessage(), error=te, class_name=self._program_name, method_name=_method_name) if os.path.exists(_temp_dir): shutil.rmtree(_temp_dir) self.assertEqual(return_code, 0) def testCompareModelInvalidModel(self): _method_name = 'testCompareModelInvalidModel' _variables_file = self._resources_dir + '/compare_model_model1.10.properties' _new_model_file = self._resources_dir + '/compare_model_model3.yaml' _old_model_file = self._resources_dir + '/compare_model_model1.yaml' _temp_dir = os.path.join(tempfile.gettempdir(), _method_name) if os.path.exists(_temp_dir): shutil.rmtree(_temp_dir) os.mkdir(_temp_dir) mw_home = os.environ['MW_HOME'] args_map = { '-oracle_home': mw_home, '-variable_file': _variables_file, '-output_dir' : _temp_dir, '-domain_type' : 'WLS', '-trailing_arguments': [ _new_model_file, _old_model_file ] } try: model_context = ModelContext('CompareModelTestCase', args_map) obj = ModelFileDiffer(_new_model_file, _old_model_file, model_context, _temp_dir) return_code = obj.compare() except (CompareException, PyWLSTException), te: return_code = 2 # self._logger.severe('WLSDPLY-05709', te.getLocalizedMessage(), error=te, # class_name=self._program_name, method_name=_method_name) if os.path.exists(_temp_dir): shutil.rmtree(_temp_dir) self.assertNotEqual(return_code, 0) def testCompareModelInvalidFile(self): _method_name = 'testCompareModelInvalidFile' _variables_file = self._resources_dir + '/compare_model_model1.10.properties' _new_model_file = self._resources_dir + '/compare_model_model4.yaml' _old_model_file = self._resources_dir + '/compare_model_model1.yaml' _temp_dir = os.path.join(tempfile.gettempdir(), _method_name) if os.path.exists(_temp_dir): shutil.rmtree(_temp_dir) os.mkdir(_temp_dir) mw_home = os.environ['MW_HOME'] args_map = { '-oracle_home': mw_home, '-variable_file': _variables_file, '-output_dir' : _temp_dir, '-domain_type' : 'WLS', '-trailing_arguments': [ _new_model_file, _old_model_file ] } try: model_context = ModelContext('CompareModelTestCase', args_map) obj = ModelFileDiffer(_new_model_file, _old_model_file, model_context, _temp_dir) # expected parse error for model4, disable logging yaml_logger = PlatformLogger('wlsdeploy.yaml') yaml_level = yaml_logger.get_level() yaml_logger.set_level(Level.OFF) compare_logger = PlatformLogger('wlsdeploy.compare_model') compare_level = compare_logger.get_level() compare_logger.set_level(Level.OFF) return_code = obj.compare() # Restore original log levels yaml_logger.set_level(yaml_level) compare_logger.set_level(compare_level) except (CompareException, PyWLSTException), te: return_code = 2 # self._logger.severe('WLSDPLY-05709', te.getLocalizedMessage(), error=te, # class_name=self._program_name, method_name=_method_name) if os.path.exists(_temp_dir): shutil.rmtree(_temp_dir) self.assertNotEqual(return_code, 0) def testDeleteModelAppDeployments(self): _method_name = 'testCompareModelFull' _variables_file = self._resources_dir + '/compare_model_model1.10.properties' _new_model_file = self._resources_dir + '/compare_model_model5.yaml' _old_model_file = self._resources_dir + '/compare_model_model1.yaml' _temp_dir = os.path.join(tempfile.gettempdir(), _method_name) if os.path.exists(_temp_dir): shutil.rmtree(_temp_dir) os.mkdir(_temp_dir) mw_home = os.environ['MW_HOME'] args_map = { '-oracle_home': mw_home, '-variable_file': _variables_file, '-output_dir' : _temp_dir, '-domain_type' : 'WLS', '-trailing_arguments': [ _new_model_file, _old_model_file ] } try: model_context = ModelContext('CompareModelTestCase', args_map) obj = ModelFileDiffer(_new_model_file, _old_model_file, model_context, _temp_dir) return_code = obj.compare() self.assertEqual(return_code, 0) yaml_result = _temp_dir + os.sep + 'diffed_model.yaml' stdout_result = obj.get_compare_msgs() model_dictionary = FileToPython(yaml_result).parse() yaml_exists = os.path.exists(yaml_result) self.assertEqual(yaml_exists, True) self.assertEqual(len(stdout_result), 0) self.assertEqual(model_dictionary.has_key('appDeployments'), True) self.assertEqual(model_dictionary['appDeployments'].has_key('Library'), True) self.assertEqual(model_dictionary['appDeployments'].has_key('Application'), True) self.assertEqual(model_dictionary['appDeployments']['Application'].has_key('!myear'), True) self.assertEqual(model_dictionary['appDeployments']['Library'].has_key('!jax-rs#[email protected]'), True) self.assertEqual(model_dictionary['appDeployments']['Library'].has_key('!jsf#[email protected]'), True) except (CompareException, PyWLSTException), te: return_code = 2 self._logger.severe('WLSDPLY-05709', te.getLocalizedMessage(), error=te, class_name=self._program_name, method_name=_method_name) if os.path.exists(_temp_dir): shutil.rmtree(_temp_dir) self.assertEqual(return_code, 0) def testCompareModelFull2(self): _method_name = 'testCompareModelFull2' # This test for # 1. Changing weblogic password # 2. Changing RCU password # 3. Deleting an application _variables_file = self._resources_dir + '/compare_model_model1.10.properties' _new_model_file = self._resources_dir + '/compare_model_model7.yaml' _old_model_file = self._resources_dir + '/compare_model_model6.yaml' _temp_dir = os.path.join(tempfile.gettempdir(), _method_name) if os.path.exists(_temp_dir): shutil.rmtree(_temp_dir) os.mkdir(_temp_dir) mw_home = os.environ['MW_HOME'] args_map = { '-oracle_home': mw_home, '-variable_file': _variables_file, '-output_dir' : _temp_dir, '-domain_type' : 'WLS', '-trailing_arguments': [ _new_model_file, _old_model_file ] } try: model_context = ModelContext('CompareModelTestCase', args_map) obj = ModelFileDiffer(_new_model_file, _old_model_file, model_context, _temp_dir) return_code = obj.compare() self.assertEqual(return_code, 0) yaml_result = _temp_dir + os.sep + 'diffed_model.yaml' json_result = _temp_dir + os.sep + 'diffed_model.json' stdout_result = obj.get_compare_msgs() model_dictionary = FileToPython(yaml_result).parse() yaml_exists = os.path.exists(yaml_result) json_exists = os.path.exists(json_result) self.assertEqual(yaml_exists, True) self.assertEqual(json_exists, True) self.assertEqual(len(stdout_result), 0) self.assertEqual(model_dictionary.has_key('domainInfo'), True) self.assertEqual(model_dictionary['domainInfo'].has_key('AdminPassword'), True) self.assertEqual(model_dictionary['domainInfo']['AdminPassword'], '<PASSWORD>') self.assertEqual(model_dictionary['domainInfo'].has_key('AdminUser'), False) self.assertEqual(model_dictionary['domainInfo'].has_key('RCUDbInfo'), True) self.assertEqual(model_dictionary['domainInfo']['RCUDbInfo'].has_key('rcu_admin_password'), True) self.assertEqual(len(model_dictionary['domainInfo']['RCUDbInfo']), 1) self.assertEqual(len(model_dictionary['domainInfo']), 2) self.assertEqual(model_dictionary.has_key('appDeployments'), True) self.assertEqual(model_dictionary['appDeployments'].has_key('Application'), True) self.assertEqual(model_dictionary['appDeployments']['Application'].has_key('!yourear'), True) self.assertEqual(len(model_dictionary['appDeployments']['Application']), 1) except (CompareException, PyWLSTException), te: return_code = 2 self._logger.severe('WLSDPLY-05709', te.getLocalizedMessage(), error=te, class_name=self._program_name, method_name=_method_name) if os.path.exists(_temp_dir): shutil.rmtree(_temp_dir) self.assertEqual(return_code, 0) def testCompareModelFull3(self): _method_name = 'testCompareModelFull3' # This test for # 1. Changing MailSessionProperty # 2. Changing ODL HandlerDefaults # 3. Changing ODL Handler property # 4. Changing ODL Logger attributes _variables_file = self._resources_dir + '/compare_model_model1.10.properties' _new_model_file = self._resources_dir + '/compare_model_model8.yaml' _old_model_file = self._resources_dir + '/compare_model_model7.yaml' _temp_dir = os.path.join(tempfile.gettempdir(), _method_name) if os.path.exists(_temp_dir): shutil.rmtree(_temp_dir) os.mkdir(_temp_dir) mw_home = os.environ['MW_HOME'] args_map = { '-oracle_home': mw_home, '-variable_file': _variables_file, '-output_dir' : _temp_dir, '-domain_type' : 'WLS', '-trailing_arguments': [ _new_model_file, _old_model_file ] } try: model_context = ModelContext('CompareModelTestCase', args_map) obj = ModelFileDiffer(_new_model_file, _old_model_file, model_context, _temp_dir) return_code = obj.compare() self.assertEqual(return_code, 0) yaml_result = _temp_dir + os.sep + 'diffed_model.yaml' json_result = _temp_dir + os.sep + 'diffed_model.json' stdout_result = obj.get_compare_msgs() model_dictionary = FileToPython(yaml_result).parse() yaml_exists = os.path.exists(yaml_result) json_exists = os.path.exists(json_result) self.assertEqual(yaml_exists, True) self.assertEqual(json_exists, True) self.assertEqual(len(stdout_result), 0) self.assertEqual(model_dictionary.has_key('resources'), True) self.assertEqual(model_dictionary['resources'].has_key('MailSession'), True) self.assertEqual(model_dictionary['resources']['MailSession'].has_key('MyMailSession'), True) mail_session = model_dictionary['resources']['MailSession']['MyMailSession'] self.assertEqual(mail_session.has_key('Properties'), True) self.assertEqual(mail_session['Properties'].has_key('mail.imap.port'), True) self.assertEqual(mail_session['Properties']['mail.imap.port'], 993) self.assertEqual(model_dictionary['resources'].has_key('ODLConfiguration'), True) self.assertEqual(model_dictionary['resources']['ODLConfiguration'].has_key('config'), True) self.assertEqual(model_dictionary['resources']['ODLConfiguration']['config'].has_key('HandlerDefaults'), True) self.assertEqual( model_dictionary['resources']['ODLConfiguration']['config']['HandlerDefaults'].has_key('maxFileSize'), True) self.assertEqual( model_dictionary['resources']['ODLConfiguration']['config']['HandlerDefaults']['maxFileSize'], 14857620) self.assertEqual(model_dictionary['resources']['ODLConfiguration']['config'].has_key('Handler'), True) self.assertEqual( model_dictionary['resources']['ODLConfiguration']['config']['Handler'].has_key('odl-handler'), True) self.assertEqual( model_dictionary['resources']['ODLConfiguration']['config']['Handler']['odl-handler'] .has_key('Properties'), True) self.assertEqual( model_dictionary['resources']['ODLConfiguration']['config']['Handler']['odl-handler']['Properties'] .has_key('maxFileSize'), True) self.assertEqual( model_dictionary['resources']['ODLConfiguration']['config']['Handler']['odl-handler'] ['Properties']['maxFileSize'], 14857620) self.assertEqual(model_dictionary['resources']['ODLConfiguration']['config'].has_key('Logger'), True) self.assertEqual( model_dictionary['resources']['ODLConfiguration']['config']['Logger'] .has_key('oracle.communications.ordermanagement.automation.plugin.AutomationPluginManager'), True) self.assertEqual( model_dictionary['resources']['ODLConfiguration']['config']['Logger'] ['oracle.communications.ordermanagement.automation.plugin.AutomationPluginManager'] .has_key('Level'), True) self.assertEqual( model_dictionary['resources']['ODLConfiguration']['config']['Logger'] ['oracle.communications.ordermanagement.automation.plugin.AutomationPluginManager']['Level'], 'TRACE:16') self.assertEqual( len(model_dictionary['resources']['ODLConfiguration']['config']), 3) self.assertEqual( len(model_dictionary['resources']['ODLConfiguration']['config']['Logger']), 1) self.assertEqual( len(model_dictionary['resources']['ODLConfiguration']['config']['HandlerDefaults']), 1) except (CompareException, PyWLSTException), te: return_code = 2 self._logger.severe('WLSDPLY-05709', te.getLocalizedMessage(), error=te, class_name=self._program_name, method_name=_method_name) if os.path.exists(_temp_dir): shutil.rmtree(_temp_dir) self.assertEqual(return_code, 0) def testCompareModel4(self): _method_name = 'testCompareModel4' _models_dir = self._resources_dir + '/compare' _new_model_file = _models_dir + '/model-4-new.yaml' _old_model_file = _models_dir + '/model-4-old.yaml' _output_dir = os.path.join(self._results_dir, 'model-4') if not os.path.isdir(_output_dir): os.mkdir(_output_dir) args_map = { '-oracle_home': '/oracle', '-output_dir': _output_dir, '-trailing_arguments': [_new_model_file, _old_model_file] } try: model_context = ModelContext('CompareModelTestCase', args_map) differ = ModelFileDiffer(_new_model_file, _old_model_file, model_context, _output_dir) return_code = differ.compare() self.assertEqual(return_code, 0) yaml_result = _output_dir + os.sep + 'diffed_model.yaml' self.assertEqual(os.path.exists(yaml_result), True, "YAML result should exist: " + yaml_result) json_result = _output_dir + os.sep + 'diffed_model.json' self.assertEqual(os.path.exists(json_result), True, "JSON result should exist: " + json_result) # see comments in the model for erased
<reponame>gmargaryan/hardy<filename>scripts/Cisco_IOS_15_Benchmark_scripts.py<gh_stars>0 import re import yaml from netmiko import Netmiko ### Debug output ### def debug_output(command, pattern, output): print ("\ncommand:\n" + command) print ("\npattern:\n" + pattern) print ("\noutput:\n" + output + "\n") ### Manual ### def manual(net_connect,host_parameters, debug): return (False, "MANUAL") ### Dependecies #### def if_eigrp_configured (net_connect,host_parameters, debug): result = False message = "NO EIGRP" command_1 = "sh run | sec router eigrp" pattern_1 = ".+" output_str_1 = net_connect.send_command(command_1) if debug: debug_output(command_1, pattern_1, output_str_1) else: pass # compare output with pattern match_1 = re.search(pattern_1, output_str_1) if match_1: result = True message = "" return (result, message) def if_ospf_configured (net_connect,host_parameters, debug): result = False message = "NO OSPF" command_1 = "sh run | sec router ospf" pattern_1 = ".+" output_str_1 = net_connect.send_command(command_1) if debug: debug_output(command_1, pattern_1, output_str_1) else: pass # compare output with pattern match_1 = re.search(pattern_1, output_str_1) if match_1: result = True message = "" return (result, message) def if_bgp_configured (net_connect,host_parameters, debug): result = False message = "NO BGP" command_1 = "sh run | sec router bgp" pattern_1 = ".+" output_str_1 = net_connect.send_command(command_1) if debug: debug_output(command_1, pattern_1, output_str_1) else: pass # compare output with pattern match_1 = re.search(pattern_1, output_str_1) if match_1: result = True message = "" return (result, message) def if_rip_configured (net_connect,host_parameters, debug): result = False message = "NO RIP" command_1 = "sh run | sec router rip" pattern_1 = ".+" output_str_1 = net_connect.send_command(command_1) if debug: debug_output(command_1, pattern_1, output_str_1) else: pass # compare output with pattern match_1 = re.search(pattern_1, output_str_1) if match_1: result = True message = "" return (result, message) ### Scripts #### def Create_acl_for_use_with_line_vty(net_connect,host_parameters, debug): result = False command_1 = "show conf | sec line vty" pattern_1 = "access-class (\w+) in" command_2_without_acl_name = "show ip access-list %s" pattern_2 = ".+" output_str_1 = net_connect.send_command(command_1) if debug: debug_output(command_1, pattern_1, output_str_1) else: pass # compare output with pattern match_1 = re.search(pattern_1, output_str_1) if match_1: acl_name = match_1.group(1) command_2 = command_2_without_acl_name % acl_name output_str_2 = net_connect.send_command(command_2 ) if debug: debug_output(command_2, pattern_2, output_str_2) else: pass match_2 = re.search(pattern_2, output_str_2) if match_2: result = True return (result, "") def Create_an_acl_for_use_with_SNMP(net_connect,host_parameters, debug): result = False command_1 = "show conf | sec snmp-server community" pattern_1 = "snmp-server community .* R[OW] (\w+)" command_2_without_acl_name = "show ip access-list %s" pattern_2 = ".+" output_str_1 = net_connect.send_command(command_1) if debug: debug_output(command_1, pattern_1, output_str_1) else: pass # str -> list output_list_1 = output_str_1.split("\n") # check each line with pattern for output_line in output_list_1: match_1 = re.search(pattern_1, output_line) if match_1: acl_name = match_1.group(1) command_2 = command_2_without_acl_name % acl_name output_str_2 = net_connect.send_command(command_2) if debug: debug_output(command_2, pattern_2, output_str_2) else: pass match_2 = re.search(pattern_2, output_str_2) if match_2: result = True else: result = False break return (result, "") def Set_no_ip_proxy_arp(net_connect,host_parameters, debug): result = False message = "NO INT" command_1 = "sh ip interface brief | incl Eth|eth" pattern_1 = "^(\w+[0-9/.]+)\s+[0-9.]+\s+YES.*" command_2_without_int_name = "sh run int %s | incl proxy-arp" pattern_2 = "no ip proxy-arp" interface = "" output_str_1 = net_connect.send_command(command_1) if debug: debug_output(command_1, pattern_1, output_str_1) else: pass # str -> list output_list_1 = output_str_1.split("\n") # check each line with pattern for output_line in output_list_1: match_1 = re.search(pattern_1, output_line) if match_1: result = False message = "" interface = match_1.group(1) command_2 = command_2_without_int_name % interface output_str_2 = net_connect.send_command(command_2) if debug: debug_output(command_2, pattern_2, output_str_2) else: pass match_2 = re.search(pattern_2, output_str_2) if match_2: result = True else: break return (result, message) def Set_ip_verify_unicast_source_reachable_via(net_connect,host_parameters, debug): command_without_int = "sh ip int %s | incl verify source" pattern = ".+" result = True for interface in host_parameters['interfaces']['untrust']: if (interface['name']): command = command_without_int % interface['name'] output_str = net_connect.send_command(command) if debug: debug_output(command, pattern, output_str) else: pass match = re.search(pattern, output_str) if not(match): result = False break else: pass if result: for interface in host_parameters['interfaces']['internet']: if (interface['name']): command = command_without_int % interface['name'] output_str = net_connect.send_command(command) if debug: debug_output(command, pattern, output_str) else: pass match = re.search(pattern, output_str) if not(match): result = False break else: pass if result: for interface in host_parameters['interfaces']['dmz']: if (interface['name']): command = command_without_int % interface['name'] output_str = net_connect.send_command(command) if debug: debug_output(command, pattern, output_str) else: pass match = re.search(pattern, output_str) if not(match): result = False break else: pass return (result, "") def Set_ip_acl_extended_to_Forbid_Private_Source_Addresses_from_External_Networks(net_connect,host_parameters, debug): return (False, "MANUAL") def Set_inbound_ip_access_group_on_the_External_Interface(net_connect,host_parameters, debug): return (False, "MANUAL") def Set_ip_authentication_key_chain_eigrp(net_connect,host_parameters, debug): result = False message = "NO INT" command_1 = "sh ip eigrp interfaces | excl Vi|Lo" pattern_1 = "^(\w+[0-9/.]+)\s+.+" command_2_without_int_name = "sh run int %s | incl key-chain" pattern_2 = "ip authentication key-chain eigrp " interface = "" output_str_1 = net_connect.send_command(command_1) if debug: debug_output(command_1, pattern_1, output_str_1) else: pass # str -> list output_list_1 = output_str_1.split("\n") # check each line with pattern for output_line in output_list_1: match_1 = re.search(pattern_1, output_line) if (match_1): result = False message = "" interface = match_1.group(1) command_2 = command_2_without_int_name % interface output_str_2 = net_connect.send_command(command_2) if debug: debug_output(command_2, pattern_2, output_str_2) else: pass match_2 = re.search(pattern_2, output_str_2) if match_2: result = True else: break return (result, message) def Set_ip_authentication_mode_eigrp(net_connect,host_parameters, debug): result = False message = "NO INT" command_1 = "sh ip eigrp interfaces | excl Vi|Lo" pattern_1 = "^(\w+[0-9/.]+)\s+.+" command_2_without_int_name = "sh run int %s | incl authentication mode" pattern_2 = "ip authentication mode eigrp .+ " interface = "" output_str_1 = net_connect.send_command(command_1) if debug: debug_output(command_1, pattern_1, output_str_1) else: pass # str -> list output_list_1 = output_str_1.split("\n") # check each line with pattern for output_line in output_list_1: match_1 = re.search(pattern_1, output_line) if match_1: result = False message = "" interface = match_1.group(1) command_2 = command_2_without_int_name % interface output_str_2 = net_connect.send_command(command_2) if debug: debug_output(command_2, pattern_2, output_str_2) else: pass match_2 = re.search(pattern_2, output_str_2) if match_2: result = True else: break return (result, message) def Set_authentication_message_digest_for_OSPF_area(net_connect,host_parameters, debug): result = False message = "NO INT" command_1 = "sh ip ospf interface brief | excl Vi|Lo" pattern_1 = "^\w+[0-9/.]+\s+\d+\s+(\d+)\s+.+" command_2 = "sh run | sec router ospf " pattern_2_without_area_name = "area %s authentication message-digest" area = "" output_str_1 = net_connect.send_command(command_1) if debug: debug_output(command_1, pattern_1, output_str_1) else: pass # str -> list output_list_1 = output_str_1.split("\n") # check each line with pattern for output_line in output_list_1: match_1 = re.search(pattern_1, output_line) if match_1: result = False message = "" area = match_1.group(1) pattern_2 = pattern_2_without_area_name % area output_str_2 = net_connect.send_command(command_2) if debug: debug_output(command_2, pattern_2, output_str_2) else: pass match_2 = re.search(pattern_2, output_str_2) if match_2: result = True else: break return (result, message) def Set_ip_ospf_message_digest_key_md5(net_connect,host_parameters, debug): result = False message = "NO INT" command_1 = "sh ip ospf interface brief | excl Vi|Lo" pattern_1 = "^(\w+[0-9/.]+)\s+\d+\s+\d+\s+.+" command_2_without_int_name = "sh run int %s | incl ip ospf message-digest-key" pattern_2 = "ip ospf message-digest-key \d+ md5 .+" interface = "" output_str_1 = net_connect.send_command(command_1) if debug: debug_output(command_1, pattern_1, output_str_1) else: pass # str -> list output_list_1 = output_str_1.split("\n") # check each line with pattern for output_line in output_list_1: match_1 = re.search(pattern_1, output_line) if match_1: result = False message = "" interface = match_1.group(1) command_2 = command_2_without_int_name % interface output_str_2 = net_connect.send_command(command_2) if debug: debug_output(command_2, pattern_2, output_str_2) else: pass match_2 = re.search(pattern_2, output_str_2) if match_2: result = True else: break return (result, message) def Set_ip_rip_authentication_key_chain(net_connect,host_parameters, debug): result = False message = "NO INT" command_1 = "sh ip protocols | sec rip" pattern_1 = "\s+(\w+[0-9/.]+)\s+[12]" command_2_without_int_name = "sh run int %s | incl ip rip authentication key-chain" pattern_2 = "ip rip authentication key-chain .+" interface = "" output_str_1 = net_connect.send_command(command_1) if debug: debug_output(command_1, pattern_1, output_str_1) else: pass # str -> list output_list_1 = output_str_1.split("\n") # check each line with pattern for output_line in output_list_1: match_1 = re.search(pattern_1, output_line) if (match_1 and not(re.search('Lo', match_1.group(1))) and not(re.search('Virtual-Access', match_1.group(1)))): result = False message = "" interface = match_1.group(1) command_2 = command_2_without_int_name % interface output_str_2 = net_connect.send_command(command_2) if debug: debug_output(command_2, pattern_2, output_str_2) else: pass match_2 = re.search(pattern_2, output_str_2) if match_2: result = True else: break return (result, message) def Set_ip_rip_authentication_mode_to_md5(net_connect,host_parameters, debug): result = False message = "NO INT" command_1 = "sh ip protocols | sec rip" pattern_1 = "\s+([FfGgEe]\w+[0-9/.]+)\s+[12]" command_2_without_int_name = "show run interface %s | incl ip rip authentication mode" pattern_2 = "ip rip authentication mode md5" interface = "" output_str_1 = net_connect.send_command(command_1) if debug:
"""Quantum mechanical angular momemtum.""" from sympy import ( Add, binomial, cos, diff, exp, Expr, factorial, I, Integer, Matrix, Mul, N, pi, Rational, S, sin, simplify, sqrt, Sum, Symbol, symbols, sympify ) from sympy.matrices.matrices import zeros from sympy.printing.pretty.stringpict import prettyForm, stringPict from sympy.physics.quantum.qexpr import QExpr from sympy.physics.quantum.operator import ( HermitianOperator, Operator, UnitaryOperator ) from sympy.physics.quantum.state import Bra, Ket, State from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.physics.quantum.constants import hbar from sympy.physics.quantum.hilbert import ComplexSpace from sympy.physics.quantum.tensorproduct import TensorProduct from sympy.physics.quantum.cg import CG from sympy.physics.quantum.qapply import qapply __all__ = [ 'm_values', 'Jplus', 'Jminus', 'Jx', 'Jy', 'Jz', 'J2', 'JxKet', 'JxBra', 'JyKet', 'JyBra', 'JzKet', 'JzBra', 'JxKetCoupled', 'JxBraCoupled', 'JyKetCoupled', 'JyBraCoupled', 'JzKetCoupled', 'JzBraCoupled', 'Rotation', 'WignerD', 'couple', 'uncouple' ] def m_values(j): j = sympify(j) size = 2*j + 1 if not size.is_Integer or not size > 0: raise ValueError( 'Only integer or half-integer values allowed for j, got: : %r' % j ) return size, [j-i for i in range(int(2*j+1))] def couple(tp): """ Couple an uncoupled spin states This function can be used to couple an uncoupled tensor product of spin states. All of the eigenstates to be coupled must be of the same class. It will return a linear combination of eigenstates that are subclasses of CoupledSpinState. Parameters ========== tp: TensorProduct TensorProduct of spin states to be coupled Examples ======== Couple a tensor product of numerical states: >>> from sympy.physics.quantum.spin import JzKet, couple >>> from sympy.physics.quantum.tensorproduct import TensorProduct >>> couple(TensorProduct(JzKet(1,0), JzKet(1,1))) -sqrt(2)*|1,1,1,1>/2 + sqrt(2)*|2,1,1,1>/2 Couple a tensor product of symbolic states: >>> from sympy import symbols >>> j1,m1,j2,m2 = symbols('j1 m1 j2 m2') >>> couple(TensorProduct(JzKet(j1,m1), JzKet(j2,m2))) Sum(CG(j1, m1, j2, m2, j, m1 + m2)*|j,m1 + m2>, (j, 0, j1 + j2)) """ states = tp.args evect = states[0].__class__ if not all([arg.__class__ is evect for arg in states]): raise TypeError('All operands must be of the same class') evect = evect.coupled_class() if all(state.j.is_number for state in states): # Numerical coupling vect = TensorProduct(*[state._represent() for state in states]) maxj = states[0].j + states[1].j j1, j2 = states[0].j, states[1].j if maxj == int(maxj): minj = 0 else: minj = S(1)/2 result = [] for i in range(maxj-minj+1): j = maxj-i for k in range(2*j+1): m = j-k max_m1 = min(j1, m+j2) min_m1 = max(-j1, m-j2) min_m2 = m-max_m1 result.append(Add(*[vect[(j1-(max_m1-l))*(2*j2+1)+(j2-(min_m2+l)),0] * CG(j1,max_m1-l,j2,min_m2+l,j,m) * evect(j,m,j1,j2) for l in range(max_m1-min_m1+1)])) if all(state.m.is_number for state in states): return Add(*result).doit() else: return Add(*result) else: # Symbolic coupling maxj = Add(*[state.j for state in states]) m = Add(*[state.m for state in states]) j = symbols('j') if not maxj.is_number or maxj == int(maxj): minj = 0 else: minj = S(1)/2 j1 = states[0].j j2 = states[1].j m1 = states[0].m m2 = states[1].m return Sum(CG(j1,m1,j2,m2,j,m) * evect(j,m), (j,minj,maxj)) def uncouple(*args): """ Uncouple a coupled spin state Gives the uncoupled representation of a coupled spin state. Arguments must be either a spin state that is a subclass of CoupledSpinState or a spin state that is a subclass of SpinState and an array giving the j values of the spaces that are to be coupled Parameters ========== args: CoupledSpinState or SpinState The state that is to be coupled. If a subclass of SpinState is used, the state must be followed by the j values of the spaces that are to be coupled. Examples ======== Uncouple a numerical state using a CoupledSpinState state: >>> from sympy.physics.quantum.spin import JzKetCoupled, uncouple >>> from sympy import S >>> uncouple(JzKetCoupled(1, 0, S(1)/2, S(1)/2)) sqrt(2)*|1/2,-1/2>x|1/2,1/2>/2 + sqrt(2)*|1/2,1/2>x|1/2,-1/2>/2 Perform the same calculation using a SpinState state: >>> from sympy.physics.quantum.spin import JzKet >>> uncouple(JzKet(1, 0), S(1)/2, S(1)/2) sqrt(2)*|1/2,-1/2>x|1/2,1/2>/2 + sqrt(2)*|1/2,1/2>x|1/2,-1/2>/2 Uncouple a symbolic state using a CoupledSpinState state: >>> from sympy import symbols >>> j,m,j1,j2 = symbols('j m j1 j2') >>> uncouple(JzKetCoupled(j, m, j1, j2)) Sum(CG(j1, m1, j2, m2, j, m)*|j1,m1>x|j2,m2>, (m1, -j1, j1), (m2, -j2, j2)) Perform the same calculation using a SpinState state >>> uncouple(JzKet(j, m), j1, j2) Sum(CG(j1, m1, j2, m2, j, m)*|j1,m1>x|j2,m2>, (m1, -j1, j1), (m2, -j2, j2)) """ if len(args) == 3: state, j1, j2 = args evect = state.__class__ elif len(args) == 1: state = args[0] evect = state.uncoupled_class() j1, j2 = state.jvals state = evect(state.j, state.m) else: raise TypeError j = state.j m = state.m if state.j.is_number and state.m.is_number: result = [] for i_m1 in range(2*j1+1): m1 = j1-i_m1 for i_m2 in range(2*j2+1): m2 = j2-i_m2 result.append(CG(j1,m1,j2,m2,j,m).doit() * TensorProduct(evect(j1,m1), evect(j2,m2))) return Add(*result) else: m1,m2,mi = symbols('m1 m2 mi') # Hack to get rotation angles angles = (evect(0,mi)._represent())[0].args[3:6] out_state = TensorProduct(evect(j1,m1),evect(j2,m2)) if angles == (0,0,0): lt = CG(j1,m1,j2,m2,state.j,state.m) return Sum(lt * out_state, (m1,-j1,j1), (m2,-j2,j2)) else: lt = CG(j1,m1,j2,m2,state.j,mi) * Rotation.D(state.j,mi,state.m,*angles) return Sum(lt * out_state, (mi,-state.j,state.j), (m1,-j1,j1), (m2,-j2,j2)) #----------------------------------------------------------------------------- # SpinOperators #----------------------------------------------------------------------------- class SpinOpBase(object): """Base class for spin operators.""" @classmethod def _eval_hilbert_space(cls, label): # We consider all j values so our space is infinite. return ComplexSpace(S.Infinity) @property def name(self): return self.args[0] def _print_contents(self, printer, *args): return '%s%s' % (unicode(self.name), self._coord) # def _sympyrepr(self, printer, *args): # return '%s(%s)' % ( # self.__class__.__name__, printer._print(self.label,*args) # def _print_contents_pretty(self, printer, *args): a = stringPict(unicode(self.name)) b = stringPict(self._coord) return self._print_subscript_pretty(a, b) def _print_contents_latex(self, printer, *args): return r'%s_%s' % ((unicode(self.name), self._coord)) def _represent_base(self, basis, **options): j = options.get('j', Rational(1,2)) size, mvals = m_values(j) result = zeros(size, size) for p in range(size): for q in range(size): me = self.matrix_element(j, mvals[p], j, mvals[q]) result[p, q] = me return result def _apply_op(self, ket, orig_basis, **options): state = ket.rewrite(self.basis) # If the state has only one term if isinstance(state, State): return self._apply_operator(state, **options) # state is a linear combination of states return qapply(self*state).rewrite(orig_basis) def _apply_operator_JxKet(self, ket, **options): return self._apply_op(ket, 'Jx', **options) def _apply_operator_JyKet(self, ket, **options): return self._apply_op(ket, 'Jy', **options) def _apply_operator_JzKet(self, ket, **options): return self._apply_op(ket, 'Jz', **options) def _apply_operator_TensorProduct(self, tp, **options): if isinstance(self, J2Op): raise NotImplementedError result = [] for n in range(len(tp.args)): arg = [] arg.extend(tp.args[:n]) arg.append(self._apply_operator(tp.args[n])) arg.extend(tp.args[n+1:]) result.append(tp.__class__(*arg)) return Add(*result).expand() class JplusOp(SpinOpBase, Operator): """The J+ operator.""" _coord = '+' basis = 'Jz' def _eval_commutator_JminusOp(self, other): return 2*hbar*JzOp(self.name) def _apply_operator_JzKet(self, ket, **options): j = ket.j m = ket.m if m.is_Number and j.is_Number: if m >= j: return S.Zero return hbar*sqrt(j*(j+S.One)-m*(m+S.One))*JzKet(j, m+S.One) def matrix_element(self, j, m, jp, mp): result = hbar*sqrt(j*(j+S.One)-mp*(mp+S.One)) result *= KroneckerDelta(m, mp+1) result *= KroneckerDelta(j, jp) return result def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(basis, **options) def _eval_rewrite_as_xyz(self, *args): return JxOp(args[0]) + I*JyOp(args[0]) class JminusOp(SpinOpBase, Operator): """The J- operator.""" _coord = '-' basis = 'Jz' def _apply_operator_JzKet(self, ket, **options): j = ket.j m = ket.m if m.is_Number and j.is_Number: if m <= -j: return S.Zero return hbar*sqrt(j*(j+S.One)-m*(m-S.One))*JzKet(j, m-S.One) def matrix_element(self, j, m, jp, mp): result = hbar*sqrt(j*(j+S.One)-mp*(mp-S.One)) result *= KroneckerDelta(m, mp-1) result *= KroneckerDelta(j, jp) return result def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(basis, **options) def _eval_rewrite_as_xyz(self, *args): return JxOp(args[0]) - I*JyOp(args[0]) class JxOp(SpinOpBase, HermitianOperator): """The Jx operator.""" _coord = 'x' basis = 'Jx' def _eval_commutator_JyOp(self, other): return I*hbar*JzOp(self.name) def _eval_commutator_JzOp(self, other): return -I*hbar*JyOp(self.name) def _apply_operator_JxKet(self, ket, **options): return (hbar*ket.m)*ket def _apply_operator_JzKet(self, ket, **options): jp = JplusOp(self.name)._apply_operator_JzKet(ket, **options) jm = JminusOp(self.name)._apply_operator_JzKet(ket, **options) return (jp + jm)/Integer(2) def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): jp = JplusOp(self.name)._represent_JzOp(basis, **options) jm = JminusOp(self.name)._represent_JzOp(basis, **options) return (jp + jm)/Integer(2) def _eval_rewrite_as_plusminus(self, *args): return (JplusOp(args[0]) + JminusOp(args[0]))/2 class JyOp(SpinOpBase, HermitianOperator): """The Jy operator.""" _coord = 'y' basis = 'Jy' def _eval_commutator_JzOp(self, other): return I*hbar*JxOp(self.name) def _eval_commutator_JxOp(self, other): return -I*hbar*J2Op(self.name) def _apply_operator_JyKet(self, ket, **options): return (hbar*ket.m)*ket def _apply_operator_JzKet(self, ket, **options): jp = JplusOp(self.name)._apply_operator_JzKet(ket, **options) jm = JminusOp(self.name)._apply_operator_JzKet(ket, **options) return (jp - jm)/(Integer(2)*I) def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): jp = JplusOp(self.name)._represent_JzOp(basis, **options) jm = JminusOp(self.name)._represent_JzOp(basis, **options) return (jp - jm)/(Integer(2)*I) def _eval_rewrite_as_plusminus(self, *args): return (JplusOp(args[0]) - JminusOp(args[0]))/(2*I) class JzOp(SpinOpBase, HermitianOperator): """The Jz operator.""" _coord = 'z' basis = 'Jz' def _eval_commutator_JxOp(self, other): return I*hbar*JyOp(self.name) def _eval_commutator_JyOp(self, other): return -I*hbar*JxOp(self.name) def _eval_commutator_JplusOp(self, other): return hbar*JplusOp(self.name) def _eval_commutator_JminusOp(self, other): return -hbar*JminusOp(self.name) def _apply_operator_JzKet(self, ket, **options): return (hbar*ket.m)*ket def matrix_element(self, j, m, jp, mp): result = hbar*mp result *= KroneckerDelta(m, mp) result *= KroneckerDelta(j, jp) return result def _represent_default_basis(self, **options): return self._represent_JzOp(None,
# Copyright (c) 2009-2012 <NAME>. See LICENSE for details. import sys from gevent.hub import greenlet, getcurrent, get_hub, GreenletExit, Waiter, PY3, iwait, wait from gevent.timeout import Timeout from collections import deque __all__ = ['Greenlet', 'joinall', 'killall'] class SpawnedLink(object): """A wrapper around link that calls it in another greenlet. Can be called only from main loop. """ __slots__ = ['callback'] def __init__(self, callback): if not callable(callback): raise TypeError("Expected callable: %r" % (callback, )) self.callback = callback def __call__(self, source): g = greenlet(self.callback, get_hub()) g.switch(source) def __hash__(self): return hash(self.callback) def __eq__(self, other): return self.callback == getattr(other, 'callback', other) def __str__(self): return str(self.callback) def __repr__(self): return repr(self.callback) def __getattr__(self, item): assert item != 'callback' return getattr(self.callback, item) class SuccessSpawnedLink(SpawnedLink): """A wrapper around link that calls it in another greenlet only if source succeed. Can be called only from main loop. """ __slots__ = [] def __call__(self, source): if source.successful(): return SpawnedLink.__call__(self, source) class FailureSpawnedLink(SpawnedLink): """A wrapper around link that calls it in another greenlet only if source failed. Can be called only from main loop. """ __slots__ = [] def __call__(self, source): if not source.successful(): return SpawnedLink.__call__(self, source) class Greenlet(greenlet): """A light-weight cooperatively-scheduled execution unit.""" def __init__(self, run=None, *args, **kwargs): hub = get_hub() greenlet.__init__(self, parent=hub) if run is not None: self._run = run self.args = args self.kwargs = kwargs self._links = deque() self.value = None self._exception = _NONE self._notifier = None self._start_event = None @property def loop(self): # needed by killall return self.parent.loop if PY3: def __bool__(self): return self._start_event is not None and self._exception is _NONE else: def __nonzero__(self): return self._start_event is not None and self._exception is _NONE @property def started(self): # DEPRECATED return bool(self) def ready(self): """Return true if and only if the greenlet has finished execution.""" return self.dead or self._exception is not _NONE def successful(self): """Return true if and only if the greenlet has finished execution successfully, that is, without raising an error.""" return self._exception is None def __repr__(self): classname = self.__class__.__name__ result = '<%s at %s' % (classname, hex(id(self))) formatted = self._formatinfo() if formatted: result += ': ' + formatted return result + '>' def _formatinfo(self): try: return self._formatted_info except AttributeError: pass try: result = getfuncname(self.__dict__['_run']) except Exception: pass else: args = [] if self.args: args = [repr(x)[:50] for x in self.args] if self.kwargs: args.extend(['%s=%s' % (key, repr(value)[:50]) for (key, value) in self.kwargs.items()]) if args: result += '(' + ', '.join(args) + ')' # it is important to save the result here, because once the greenlet exits '_run' attribute will be removed self._formatted_info = result return result return '' @property def exception(self): """Holds the exception instance raised by the function if the greenlet has finished with an error. Otherwise ``None``. """ if self._exception is not _NONE: return self._exception def throw(self, *args): """Immediatelly switch into the greenlet and raise an exception in it. Should only be called from the HUB, otherwise the current greenlet is left unscheduled forever. To raise an exception in a safely manner from any greenlet, use :meth:`kill`. If a greenlet was started but never switched to yet, then also a) cancel the event that will start it b) fire the notifications as if an exception was raised in a greenlet """ if self._start_event is None: self._start_event = _dummy_event else: self._start_event.stop() try: greenlet.throw(self, *args) finally: if self._exception is _NONE and self.dead: # the greenlet was never switched to before and it will never be, _report_error was not called # the result was not set and the links weren't notified. let's do it here. # checking that self.dead is true is essential, because throw() does not necessarily kill the greenlet # (if the exception raised by throw() is caught somewhere inside the greenlet). if len(args) == 1: arg = args[0] #if isinstance(arg, type): if type(arg) is type(Exception): args = (arg, arg(), None) else: args = (type(arg), arg, None) elif not args: args = (GreenletExit, GreenletExit(), None) self._report_error(args) def start(self): """Schedule the greenlet to run in this loop iteration""" if self._start_event is None: self._start_event = self.parent.loop.run_callback(self.switch) def start_later(self, seconds): """Schedule the greenlet to run in the future loop iteration *seconds* later""" if self._start_event is None: self._start_event = self.parent.loop.timer(seconds) self._start_event.start(self.switch) @classmethod def spawn(cls, *args, **kwargs): """Return a new :class:`Greenlet` object, scheduled to start. The arguments are passed to :meth:`Greenlet.__init__`. """ g = cls(*args, **kwargs) g.start() return g @classmethod def spawn_later(cls, seconds, *args, **kwargs): """Return a Greenlet object, scheduled to start *seconds* later. The arguments are passed to :meth:`Greenlet.__init__`. """ g = cls(*args, **kwargs) g.start_later(seconds) return g def kill(self, exception=GreenletExit, block=True, timeout=None): """Raise the exception in the greenlet. If block is ``True`` (the default), wait until the greenlet dies or the optional timeout expires. If block is ``False``, the current greenlet is not unscheduled. The function always returns ``None`` and never raises an error. `Changed in version 0.13.0:` *block* is now ``True`` by default. """ # XXX this function should not switch out if greenlet is not started but it does # XXX fix it (will have to override 'dead' property of greenlet.greenlet) if self._start_event is None: self._start_event = _dummy_event else: self._start_event.stop() if not self.dead: waiter = Waiter() self.parent.loop.run_callback(_kill, self, exception, waiter) if block: waiter.get() self.join(timeout) # it should be OK to use kill() in finally or kill a greenlet from more than one place; # thus it should not raise when the greenlet is already killed (= not started) def get(self, block=True, timeout=None): """Return the result the greenlet has returned or re-raise the exception it has raised. If block is ``False``, raise :class:`gevent.Timeout` if the greenlet is still alive. If block is ``True``, unschedule the current greenlet until the result is available or the timeout expires. In the latter case, :class:`gevent.Timeout` is raised. """ if self.ready(): if self.successful(): return self.value else: raise self._exception if block: switch = getcurrent().switch self.rawlink(switch) try: t = Timeout.start_new(timeout) try: result = self.parent.switch() assert result is self, 'Invalid switch into Greenlet.get(): %r' % (result, ) finally: t.cancel() except: # unlinking in 'except' instead of finally is an optimization: # if switch occurred normally then link was already removed in _notify_links # and there's no need to touch the links set. # Note, however, that if "Invalid switch" assert was removed and invalid switch # did happen, the link would remain, causing another invalid switch later in this greenlet. self.unlink(switch) raise if self.ready(): if self.successful(): return self.value else: raise self._exception else: raise Timeout def join(self, timeout=None): """Wait until the greenlet finishes or *timeout* expires. Return ``None`` regardless. """ if self.ready(): return else: switch = getcurrent().switch self.rawlink(switch) try: t = Timeout.start_new(timeout) try: result = self.parent.switch() assert result is self, 'Invalid switch into Greenlet.join(): %r' % (result, ) finally: t.cancel() except Timeout as ex: self.unlink(switch) if ex is not t: raise except: self.unlink(switch) raise def _report_result(self, result): self._exception = None self.value = result if self._links and not self._notifier: self._notifier = self.parent.loop.run_callback(self._notify_links) def _report_error(self, exc_info): exception = exc_info[1] if isinstance(exception, GreenletExit): self._report_result(exception) return self._exception = exception if self._links and not self._notifier: self._notifier = self.parent.loop.run_callback(self._notify_links) self.parent.handle_error(self, *exc_info) def run(self): try: if self._start_event is None: self._start_event = _dummy_event else: self._start_event.stop() try: result = self._run(*self.args, **self.kwargs) except: self._report_error(sys.exc_info()) return self._report_result(result) finally: self.__dict__.pop('_run', None) self.__dict__.pop('args', None) self.__dict__.pop('kwargs', None) def rawlink(self, callback): """Register a callable to be executed when the greenlet finishes the execution. WARNING: the callable will be called in the HUB greenlet. """ if not callable(callback): raise TypeError('Expected callable: %r' % (callback, )) self._links.append(callback) if self.ready() and self._links and not self._notifier: self._notifier = self.parent.loop.run_callback(self._notify_links) def link(self, callback, SpawnedLink=SpawnedLink): """Link greenlet's completion to a callable. The *callback* will be called with this instance as an argument once this greenlet's dead. A callable is called in its own greenlet. """ self.rawlink(SpawnedLink(callback)) def unlink(self, callback): """Remove the callback set by :meth:`link` or :meth:`rawlink`""" try: self._links.remove(callback) except ValueError: pass def link_value(self, callback, SpawnedLink=SuccessSpawnedLink): """Like :meth:`link` but *callback* is only notified when the greenlet has completed successfully""" self.link(callback, SpawnedLink=SpawnedLink)
# coding: utf-8 import plfit import os from pylab import * if not os.path.isdir('figures'): os.mkdir('figures') blackouts = np.loadtxt('blackouts.txt', dtype='int') cities = np.loadtxt('cities.txt', dtype='int') earthquakes = np.loadtxt('earthquakes.txt') melville = np.loadtxt('melville.txt') solarflares = np.loadtxt('solarflares.txt', dtype='int') terrorism = np.loadtxt('terrorism.txt') fires = np.loadtxt('fires.txt') ## Solarflares are discrete but well-approximated (I hope...) by continuous... #plf = plfit.plfit(solarflares.ravel(), discrete=False, usefortran=True, verbose=True, quiet=False) #plc = plfit.plfit(solarflares.ravel(), discrete=False, usecy=True, verbose=True, quiet=False) #pl = plfit.plfit(solarflares.ravel(), discrete=False, usefortran=False, verbose=True, quiet=False) #print "Solarflares (Clauset): n:%10i mean,std,max: %8.2f,%8.2f,%8.2f xmin: %8.2f alpha: %8.2f (%8.2f) ntail: %10i p: %5.2f" % (19447,9.00,77.83,8009,52.46,2.37,0.08,580,0.76) #for ppp in (pl,plf,plc): # print "Solarflares (me) : n:%10i mean,std,max: %8.2f,%8.2f,%8.2f xmin: %8.2f alpha: %8.2f (%8.2f) ntail: %10i p: %5.2f" % (ppp.data.shape[0], ppp.data.mean(), ppp.data.std(), ppp.data.max(), ppp._xmin, ppp._alpha, ppp._alphaerr, ppp._ngtx, ppp._ks_prob) # np.testing.assert_almost_equal(ppp._xmin, 323, 2) # np.testing.assert_almost_equal(ppp._alpha, 1.79, 2) # np.testing.assert_almost_equal(ppp._alphaerr, 0.02, 2) # assert ppp._ngtx == 1711 # Earthquakes are a BAD FIT in the original manuscript #plf = plfit.plfit(earthquakes.ravel(), nosmall=True, usefortran=True, verbose=True, quiet=False) #plc = plfit.plfit(earthquakes.ravel(), nosmall=True, usecy=True, verbose=True, quiet=False) #pl = plfit.plfit(earthquakes.ravel(), nosmall=True, usefortran=False, verbose=True, quiet=False) #print "Earthquakes (Clauset): n:%10i mean,std,max: %8.2f,%8.2f,%8.2f xmin: %8.2f alpha: %8.2f (%8.2f) ntail: %10i p: %5.2f" % (19447,9.00,77.83,8009,52.46,2.37,0.08,580,0.76) #for ppp in (pl,plf,plc): # print "Earthquakes (me) : n:%10i mean,std,max: %8.2f,%8.2f,%8.2f xmin: %8.2f alpha: %8.2f (%8.2f) ntail: %10i p: %5.2f" % (ppp.data.shape[0], ppp.data.mean(), ppp.data.std(), ppp.data.max(), ppp._xmin, ppp._alpha, ppp._alphaerr, ppp._ngtx, ppp._ks_prob) # np.testing.assert_almost_equal(ppp._xmin, 0.794, 2) # np.testing.assert_almost_equal(ppp._alpha, 1.64, 2) # np.testing.assert_almost_equal(ppp._alphaerr, 0.04, 2) # assert ppp._ngtx == 11697 plf = plfit.plfit(cities.ravel() / 1e3, usefortran=True, verbose=True, quiet=False) plc = plfit.plfit(cities.ravel() / 1e3, usecy=True, verbose=True, quiet=False) pl = plfit.plfit(cities.ravel() / 1e3, usefortran=False, verbose=True, quiet=False) print("Cities (Clauset): n:%10i mean,std,max: %8.2f,%8.2f,%8.2f xmin: %8.2f alpha: %8.2f (%8.2f) ntail: %10i p: %5.2f" % (19447,9.00,77.83,8009,52.46,2.37,0.08,580,0.76)) for ppp in (pl,plf,plc): print("Cities (me) : n:%10i mean,std,max: %8.2f,%8.2f,%8.2f xmin: %8.2f alpha: %8.2f (%8.2f) ntail: %10i p: %5.2f" % (ppp.data.shape[0], ppp.data.mean(), ppp.data.std(), ppp.data.max(), ppp._xmin, ppp._alpha, ppp._alphaerr, ppp._ngtx, ppp._ks_prob)) np.testing.assert_almost_equal(ppp._xmin, 52.46, 2) np.testing.assert_almost_equal(ppp._alpha, 2.37, 2) np.testing.assert_almost_equal(ppp._alphaerr, 0.08, 2) assert ppp._ngtx == 580 figure(1) clf() title("Cities") subplot(131) pl.plotpdf() subplot(132) title("Cities") pl.xminvsks() subplot(133) pl.alphavsks() savefig("figures/cities_kstests.png") figure(2) title("Cities") pl.plotcdf() savefig("figures/cities_cdf.png") pl = plfit.plfit(melville.ravel(), verbose=True, quiet=False) p,sims = pl.test_pl(usefortran=True, niter=100) print("Melville (me) : n:%10i mean,std,max: %8.2f,%8.2f,%8.2f xmin: %8.2f alpha: %8.2f (%8.2f) ntail: %10i p: %5.2f" % (pl.data.shape[0], pl.data.mean(), pl.data.std(), pl.data.max(), pl._xmin, pl._alpha, pl._alphaerr, pl._ngtx, p)) print("Melville (Clauset): n:%10i mean,std,max: %8.2f,%8.2f,%8.2f xmin: %8.2f alpha: %8.2f (%8.2f) ntail: %10i p: %5.2f" % (18855,11.14,148.33,14086,7,1.95,0.02,2958,0.49)) # count of word use 18 855 11.14 148.33 14 086 7 ± 2 1.95(2) 2958 ± 987 0.49 # words 0.49 4.43 0.00 0.395 0.69 9.09 0.00 4.13 0.00 −0.899 0.18 goo figure(3) clf() title("Melville") subplot(131) pl.plotpdf() subplot(132) title("Melville") pl.xminvsks() subplot(133) pl.alphavsks() savefig("figures/Melville_kstests.png") figure(4) title("Melville") pl.plotcdf() savefig("figures/Melville_cdf.png") pl = plfit.plfit(solarflares.ravel(), verbose=True, quiet=False) plf = plfit.plfit(solarflares.ravel(), verbose=True, quiet=False, usefortran=True) plc = plfit.plfit(solarflares.ravel(), verbose=True, quiet=False, usecy=True) p,sims = pl.test_pl(usefortran=True, niter=100) print("Solarflares (me) : n:%10i mean,std,max: %8.2f,%8.2f,%8.2f xmin: %8.2f alpha: %8.2f (%8.2f) ntail: %10i p: %5.2f" % (pl.data.shape[0], pl.data.mean(), pl.data.std(), pl.data.max(), pl._xmin, pl._alpha, pl._alphaerr, pl._ngtx, p)) print("Solarflares (Clauset): n:%10i mean,std,max: %8.2f,%8.2f,%8.2f xmin: %8.2f alpha: %8.2f (%8.2f) ntail: %10i p: %5.2f" % (12773, 689.41, 6520.59, 231300, 323, 1.79, 0.02, 1711, 1.00)) for ppp in (pl,plf,plc): np.testing.assert_almost_equal(ppp._xmin, 323, 1) np.testing.assert_almost_equal(ppp._alpha, 1.79, 2) np.testing.assert_almost_equal(ppp._alphaerr, 0.02, 2) assert ppp._ngtx == 1711 figure(5) clf() title("Solar Flares") subplot(131) pl.plotpdf() subplot(132) title("Solar Flares") pl.xminvsks() subplot(133) pl.alphavsks() savefig("figures/SolarFlares_kstests.png") figure(6) title("SolarFlares") pl.plotcdf() savefig("figures/SolarFlares_cdf.png") pl = plfit.plfit(terrorism.ravel(), verbose=True, quiet=False) plf = plfit.plfit(terrorism.ravel(), verbose=True, quiet=False, usefortran=True) plc = plfit.plfit(terrorism.ravel(), verbose=True, quiet=False, usecy=True) p,sims = pl.test_pl(usefortran=True, niter=100, nosmall=False) print("Terrorism (me) : n:%10i mean,std,max: %8.2f,%8.2f,%8.2f xmin: %8.2f alpha: %8.2f (%8.2f) ntail: %10i p: %5.2f" % (pl.data.shape[0], pl.data.mean(), pl.data.std(), pl.data.max(), pl._xmin, pl._alpha, pl._alphaerr, pl._ngtx, p)) print("Terrorism (Clauset): n:%10i mean,std,max: %8.2f,%8.2f,%8.2f xmin: %8.2f alpha: %8.2f (%8.2f) ntail: %10i p: %5.2f" % (9101, 4.35, 31.58, 2749, 12, 2.4, 0.2, 547, 0.68)) figure(6) clf() title("Terrorism") subplot(131) pl.plotpdf() subplot(132) title("Terrorism") pl.xminvsks() subplot(133) pl.alphavsks() savefig("figures/Terorrism_kstests.png") figure(7) title("Terorrism") pl.plotcdf() savefig("figures/Terorrism_cdf.png") # """ # power law log-normal exponential stretched exp. power law + cut-off support for # data set p LR p LR p LR p LR p power law # birds 0.55 -0.850 0.40 1.87 0.06 -0.882 0.38 -1.24 0.12 moderate # blackouts 0.62 -0.412 0.68 1.21 0.23 -0.417 0.68 -0.382 0.38 moderate # book sales 0.66 -0.267 0.79 2.70 0.01 3.885 0.00 -0.140 0.60 moderate # cities 0.76 -0.090 0.93 3.65 0.00 0.204 0.84 -0.123 0.62 moderate # fires 0.05 -1.78 0.08 4.00 0.00 -1.82 0.07 -5.02 0.00 with cut-off # flares 1.00 -0.803 0.42 13.7 0.00 -0.546 0.59 -4.52 0.00 with cut-off # HTTP 0.00 1.77 0.08 11.8 0.00 2.65 0.01 0.000 1.00 none # quakes 0.00 -7.14 0.00 11.6 0.00 -7.09 0.00 -24.4 0.00 with cut-off # religions 0.42 -0.073 0.94 1.59 0.11 1.75 0.08 -0.167 0.56 moderate # surnames 0.20 -0.836 0.40 2.89 0.00 -0.844 0.40 -1.36 0.10 with cut-off # wars 0.20 -0.737 0.46 3.68 0.00 -0.767 0.44 -0.847 0.19 moderate # wealth 0.00 0.249 0.80 6.20 0.00 8.05 0.00 -0.142 0.59 none # web hits 0.00 -10.21 0.00 8.55 0.00 10.94 0.00 -74.66 0.00 with cut-off # web links 0.00 -2.24 0.03 25.3 0.00 -1.08 0.28 -21.2 0.00 with cut-o # # # # Poisson log-normal exponential stretched exp. power law + cut-off support for # data set p LR p LR p LR p LR p LR p power law # Internet 0.29 5.31 0.00 −0.807 0.42 6.49 0.00 0.493 0.62 −1.97 0.05 with cut-off # calls 0.63 17.9 0.00 −2.03 0.04 35.0 0.00 14.3 0.00 −30.2 0.00 with cut-off # citations 0.20 6.54 0.00 −0.141 0.89 5.91 0.00 1.72 0.09 −0.007 0.91 moderate # email 0.16 4.65 0.00 −1.10 0.27 0.639 0.52 −1.13 0.26 −1.89 0.05 with cut-off # metabolic 0.00 3.53 0.00 −1.05 0.29 5.59 0.00 3.66 0.00 0.000 1.00 none # papers 0.90 5.71 0.00 −0.091 0.93 3.08 0.00 0.709 0.48 −0.016 0.86 moderate # proteins 0.31 3.05 0.00 −0.456 0.65 2.21 0.03 0.055 0.96 −0.414 0.36 moderate # species 0.10 5.04 0.00 −1.63 0.10 2.39 0.02 −1.59 0.11 −3.80 0.01 with cut-off # terrorism 0.68 1.81 0.07 −0.278 0.78 2.457 0.01 0.772 0.44 −0.077 0.70 moderate # words 0.49 4.43 0.00 0.395 0.69 9.09 0.00 4.13 0.00 −0.899 0.18 goo # # # # # quantity n hxi σ xmax xˆmin α n ˆ tail p # count of word use 18 855 11.14 148.33 14 086 7 ± 2 1.95(2) 2958 ± 987 0.49 # protein interaction degree 1846 2.34 3.05 56 5 ± 2 3.1(3) 204 ± 263 0.31 # metabolic degree 1641 5.68 17.81 468 4 ± 1 2.8(1) 748 ± 136 0.00 # Internet degree 22 688 5.63 37.83 2583 21 ± 9 2.12(9) 770 ± 1124 0.29 # telephone calls received 51 360 423 3.88 179.09 375 746 120 ± 49 2.09(1) 102 592 ± 210 147 0.63 # intensity of wars 115 15.70 49.97 382 2.1 ± 3.5 1.7(2) 70 ± 14 0.20 # terrorist attack severity 9101 4.35 31.58 2749 12 ± 4 2.4(2) 547 ± 1663 0.68 # HTTP size (kilobytes) 226 386 7.36 57.94 10 971 36.25 ± 22.74 2.48(5) 6794 ± 2232 0.00 # species per genus 509 5.59 6.94 56 4 ± 2 2.4(2) 233 ± 138 0.10 # bird species sightings 591 3384.36 10 952.34 138 705 6679 ± 2463 2.1(2) 66 ± 41 0.55 # blackouts (×10 # 3 # ) 211 253.87 610.31 7500 230 ± 90 2.3(3) 59 ± 35 0.62 # sales of books (×10 # 3 # ) 633 1986.67 1396.60 19 077 2400 ± 430 3.7(3) 139 ± 115 0.66 # population of cities (×10 # 3 # ) 19 447 9.00 77.83 8 009 52.46 ± 11.88 2.37(8) 580 ± 177 0.76 # email address books size 4581 12.45 21.49 333 57 ± 21 3.5(6) 196 ± 449 0.16 # forest fire size (acres) 203 785 0.90 20.99 4121 6324 ± 3487 2.2(3) 521 ± 6801 0.05 # solar flare intensity 12 773 689.41 6520.59 231 300 323 ± 89 1.79(2) 1711 ± 384 1.00 # quake intensity (×10 # 3 # ) 19 302 24.54 563.83 63 096 0.794 ± 80.198 1.64(4) 11 697 ± 2159 0.00 # religious followers (×10 # 6 # ) 103 27.36 136.64 1050 3.85 ± 1.60 1.8(1) 39 ± 26 0.42 # freq. of surnames (×10 # 3 # ) 2753 50.59 113.99 2502 111.92 ± 40.67 2.5(2) 239 ± 215 0.20 # net worth (mil. USD) 400 2388.69 4 167.35 46 000 900 ± 364 2.3(1) 302 ± 77 0.00 # citations to papers 415 229 16.17 44.02 8904 160 ± 35 3.16(6) 3455 ± 1859 0.20 # papers authored 401 445 7.21 16.52 1416 133 ± 13 4.3(1) 988 ± 377 0.90 # hits to web sites 119 724 9.83 392.52 129 641 2 ± 13 1.81(8) 50 981 ± 16 898 0.00 # links to web sites 241 428 853 9.15 106 871.65 1 199 466 3684 ± 151 2.336(9) 28 986 ± 1560 0.00 # # # Poisson log-normal exponential stretched
"""Tokenization utilties for exrepssions.""" import re from typing import Dict, List, Tuple import torch from selfies import decoder, split_selfies from transformers import BertTokenizer, XLNetTokenizer SMILES_TOKENIZER_PATTERN = r"(\%\([0-9]{3}\)|\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\||\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>>?|\*|\$|\%[0-9]{2}|[0-9])" class RegexTokenizer: """Run regex tokenization""" def __init__(self, regex_pattern: str) -> None: """Constructs a RegexTokenizer. Args: regex_pattern: regex pattern used for tokenization """ self.regex_pattern = regex_pattern self.regex = re.compile(self.regex_pattern) def tokenize(self, text: str) -> List[str]: """Regex tokenization. Args: text: text to tokenize. Returns: extracted tokens. """ tokens = [token for token in self.regex.findall(text)] return tokens class PropertyTokenizer: """Run a property tokenization.""" def __init__(self) -> None: """Constructs a PropertyTokenizer.""" self.regex = re.compile(r"\s*(<\w+>)\s*?(\+|-)?(\d+)(\.)?(\d+)?\s*") def tokenize(self, text: str) -> List[str]: """Tokenization of a property. Args: text: text to tokenize. Returns: extracted tokens. """ tokens = [] matched = self.regex.match(text) if matched: property_name, sign, units, dot, decimals = matched.groups() tokens = [property_name] if sign: tokens += [f"_{sign}_"] tokens += [ f"_{number}_{position}_" for position, number in enumerate(units[::-1]) ][::-1] if dot: tokens += [f"_{dot}_"] if decimals: tokens += [ f"_{number}_-{position}_" for position, number in enumerate(decimals, 1) ] return tokens class PropertyTokenizerSquare(PropertyTokenizer): """Run a property tokenization.""" def __init__(self) -> None: """Constructs a PropertyTokenizer.""" self.regex = re.compile(r"\s*(\[\w+\])\s*?(\+|-)?(\d+)(\.)?(\d+)?\s*") class CharacterTokenizer: def __init__(self) -> None: """Constructs a tokenizer that simply splits each character""" self.tokenizer = lambda x: list(x) def tokenize(self, text: str) -> List[str]: """Tokenize an expression. Args: text: text to tokenize. Returns: extracted tokens. """ return self.tokenizer(text) class SelfiesTokenizer(CharacterTokenizer): def __init__(self) -> None: """Constructs an expression tokenizer for SELFIES Args: expression_tokenizer: Separator token for properties and molecule. Defaults to '|'. """ self.tokenizer = lambda x: list(split_selfies(x)) class ExpressionTokenizer: def __init__( self, expression_tokenizer: str = "|", language: str = "SMILES" ) -> None: """Constructs an expression tokenizer. Args: expression_tokenizer (str): Token separating the property. Defaults to '|'. Must not occur in the language itself. language (str): Identifier for the (chemical) language. Should be either 'SMILES', 'SELFIES' or 'AAS'. """ self.language = language if language == "SMILES": self.text_tokenizer = RegexTokenizer(regex_pattern=SMILES_TOKENIZER_PATTERN) elif language == "SELFIES": self.text_tokenizer = SelfiesTokenizer() elif language == "AAS": self.text_tokenizer = CharacterTokenizer() else: raise ValueError( f"Unsupported language {language}, choose 'SMILES', 'SELFIES' or 'AAS'." ) self.property_tokenizer = PropertyTokenizer() self.expression_separator = expression_tokenizer def tokenize(self, text: str) -> List[str]: """Tokenize an expression. Args: text: text to tokenize. Returns: extracted tokens. """ splitted_expression = text.split(self.expression_separator) tokens = [] for property_expression in splitted_expression[:-1]: tokens.extend(self.property_tokenizer.tokenize(property_expression)) tokens.append(self.expression_separator) tokens.extend(self.text_tokenizer.tokenize(splitted_expression[-1])) return tokens class ExpressionBertTokenizer(BertTokenizer): """ Constructs a bert-based tokenizer used for the Regression Transformer. Args: vocab_file: path to a token per line vocabulary file. """ def __init__( self, vocab_file, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", pad_even: bool = True, language: str = "SMILES", **kwargs, ) -> None: """Constructs an ExpressionTokenizer. Args: vocab_file: vocabulary file containing tokens. unk_token: unknown token. Defaults to "[UNK]". sep_token: separator token. Defaults to "[SEP]". pad_token: pad token. Defaults to "[PAD]". cls_token: cls token. Defaults to "[CLS]". mask_token: mask token. Defaults to "[MASK]". pad_even (bool): Boolean indicating whether sequences of odd length should be padded to have an even length. Neede for PLM in XLNet. Defaults to True. language (str): Identifier for the (chemical) language. Should be either 'SMILES', 'SELFIES' or 'AAS'. """ super().__init__( vocab_file=vocab_file, do_lower_case=False, do_basic_tokenize=True, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, **kwargs, ) # define tokenization utilities self.language = language if language == "SMILES": self.text_tokenizer = RegexTokenizer(regex_pattern=SMILES_TOKENIZER_PATTERN) elif self.language == "SELFIES": self.text_tokenizer = SelfiesTokenizer() elif language == "AAS": self.text_tokenizer = CharacterTokenizer() else: raise ValueError( f"Unsupported language {language}, choose 'SMILES', 'SELFIES' or 'AAS'." ) self.property_tokenizer = PropertyTokenizer() self.expression_separator = "|" self.separator_idx = self.vocab[self.expression_separator] self.pad_even = pad_even # DEPRECATED if pad_even: self.pad_even_fn = lambda x: x if len(x) % 2 == 0 else x + [self.pad_token] else: self.pad_even_fn = lambda x: x @property def vocab_list(self) -> List[str]: """List vocabulary tokens. Returns: a list of vocabulary tokens. """ return list(self.vocab.keys()) def _tokenize(self, text: str) -> List[str]: """Tokenize a text representing an expression. Args: text: text to tokenize. Returns: extracted tokens. """ splitted_expression = text.split(self.expression_separator) tokens = [] for property_expression in splitted_expression[:-1]: tokens.extend(self.property_tokenizer.tokenize(property_expression)) tokens.append(self.expression_separator) tokens.extend(self.text_tokenizer.tokenize(splitted_expression[-1])) # TODO: remove this hack # This is a hack to get around DataCollatorForLanguageModeling requiring even # length sequences return self.pad_even_fn(tokens) def add_padding_tokens( self, token_ids: List[int], max_length: int, padding_right: bool = True ) -> List[int]: """Adds padding tokens to return a sequence of length max_length. By default padding tokens are added to the right of the sequence. Args: token_ids: token indexes. max_length: maximum length of the sequence. padding_right: whether the sequence is padded on the right. Defaults to True. Returns: padded sequence of token indexes. """ padding_ids = [self.pad_token_id] * (max_length - len(token_ids)) if padding_right: return token_ids + padding_ids else: return padding_ids + token_ids @staticmethod def get_sample_label(mlm_label: List[str], mlm_input: List[str]) -> List[str]: """MLM case: Retrieve true sample sequence from mlm label and mlm input. NOTE: Also works for PLM. Args: mlm_label (List[str]): Target sample used in MLM. mlm_input (List[str]): MLM input sample. Returns: List[str]: Sample sequence as part of the dataset """ return [i if el == "[UNK]" else el for el, i in zip(mlm_label, mlm_input)] @staticmethod def get_sample_prediction( mlm_prediction: List[str], mlm_input: List[str] ) -> List[str]: """MLM case: Retrieve predicted sequence from mlm prediction and mlm input NOTE: Also works for PLM. Args: mlm_label (List[str]): Target sample used in MLM. mlm_input (List[str]): MLM input sample. Returns: List[str]: Sample sequence as part of the dataset """ return [ i if i not in ["[MASK]"] else o for o, i in zip(mlm_prediction, mlm_input) ] @staticmethod def floating_tokens_to_float(token_ids: List[str]) -> float: """Converts tokens representing a float value into a float. NOTE: Expects that non-floating tokens are strippped off Args: token_ids: List of tokens, each representing a float. E.g.: ['_0_0_', '_._', '_9_-1_', '_3_-2_', '_1_-3_'] Returns: float: Float representation for the list of tokens. """ try: float_string = "".join([token.split("_")[1] for token in token_ids]) float_value = float(float_string) except ValueError: float_value = -1 return float_value def aggregate_tokens( self, token_ids: List[str], label_mode: bool, cls_first: bool = True ) -> Tuple[str, Dict]: """Receives tokens of one sample and returns sequence (e.g. SMILES) and a dict of properties. Args: token_ids (List[str]): List of tokens. label_mode (bool): Whether the token_ids are labels or predictions. cls_first (bool, optional): Whether CLS token occurres first, default: True Returns: Tuple[str, Dict]: str: SMILES/SELFIES sequence of sample. Dict: A dictionary with property names (e.g. 'qed') as key and properties as values. """ edx = min( token_ids.index("[SEP]") if "[SEP]" in token_ids else 1000, token_ids.index("[PAD]") if "[PAD]" in token_ids else 1000, ) edx = -1 if edx == 1000 else edx seq = ( "".join(token_ids[token_ids.index("|") + 1 : edx]) if "|" in token_ids else "".join(token_ids) ) property_dict = {} for idx, t in enumerate(token_ids): if t.startswith("<") and t.endswith(">"): key = t[1:-1] # Convert float end_floating_idx = idx + 1 while token_ids[end_floating_idx].startswith("_"): end_floating_idx += 1 prop = self.floating_tokens_to_float( token_ids[idx + 1 : end_floating_idx] ) property_dict[key] = prop return seq, property_dict def to_readable(self, sequence: str) -> str: """Safely returns a readable string irrespective of whether the language is SMILES, SELFIES or AAS. Args: sequence (str): A string representing a molecule (either SMILES or SELFIES) or amino acid sequence. Returns: str: A SMILES representing the same molecule. """ if self.language == "SMILES": return sequence elif self.language == "SELFIES": return decoder(sequence) elif self.language == "AAS": return sequence else: raise AttributeError(f"Unknown language {self.language}") class XLNetRTTokenizer(XLNetTokenizer): """ A XLNet-based tokenizer for the Regression Transformer, build for the humicroedit dataset """ def set_property_tokenizer( self, tokenizer: PropertyTokenizer, expression_separator: str = '{', expression_end: str = '}', property_token: str = '[<PASSWORD>]', ): """ Set the property tokenizer to be used by the main tokenizer. Args: tokenizer: a property tokenizer. expression_separator: a token that separates the property from the rest. expression_end: a token that ends the joke-token sequence. property_token: the property token. """ self.property_tokenizer = tokenizer # The start token indicating the joke tokens self.expression_separator = expression_separator self.expressiond_end = expression_end self.property_token = property_token def set_vocab(self): self.vocab = self.get_vocab() self.idx_to_token = dict(zip(self.vocab.values(), self.vocab.keys())) def _tokenize(self, text: str) -> List[str]: """ Core tokenization function. Args: text: A string to be tokenized. Returns: A
import torch import torch.nn as nn import torch.nn.functional as F from dataset.config import widerface_640 as cfg # from layers.DCNv2 import DCN RELU_FIRST = True OPS = { "none": lambda C, stride, affine: Zero(stride), "avg_pool_3x3": lambda C, stride, affine: nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False), "max_pool_3x3": lambda C, stride, affine: nn.MaxPool2d(3, stride=stride, padding=1), "skip_connect": lambda C, stride, affine: Identity() if stride == 1 else FactorizedReduce(C, C, affine=affine), "sep_conv_3x3": lambda C, stride, affine: SepConv(C, C, 3, stride, 1, affine=affine), "sep_conv_5x5": lambda C, stride, affine: SepConv(C, C, 5, stride, 2, affine=affine), "sep_conv_7x7": lambda C, stride, affine: SepConv(C, C, 7, stride, 3, affine=affine), "dil_conv_3x3": lambda C, stride, affine: DilConv(C, C, 3, stride, 2, 2, affine=affine), "dil_conv_3x3_3": lambda C, stride, affine: DilConv(C, C, 3, stride, 3, 3, affine=affine), "dil_conv_5x5": lambda C, stride, affine: DilConv(C, C, 5, stride, 4, 2, affine=affine), "conv_1x3_3x1": lambda C, stride, affine: RfeConv(C, C, 3, stride, 1, affine=affine), "conv_1x5_5x1": lambda C, stride, affine: RfeConv(C, C, 5, stride, 2, affine=affine), # "dconv_3x3": lambda C, stride, affine: D_Conv(C, C, 3, 1, affine=affine, bn=False), "conv_1x3": lambda C, stride, affine: Normal_Relu_Conv(C, C, kernel_size=(1,3), stride=stride, padding=(0,1), bn=False), "conv_3x1": lambda C, stride, affine: Normal_Relu_Conv(C, C, kernel_size=(3,1), stride=stride, padding=(1,0), bn=False), "conv_1x5": lambda C, stride, affine: Normal_Relu_Conv(C, C, kernel_size=(1,5), stride=stride, padding=(0,2), bn=False), "conv_5x1": lambda C, stride, affine: Normal_Relu_Conv(C, C, kernel_size=(5,1), stride=stride, padding=(2,0), bn=False), "conv_1x1": lambda C, stride, affine: Normal_Relu_Conv(C, C, kernel_size=1, stride=1, padding=0, bn=False), } # black: disable BN_OPS = { "none": lambda C, stride, affine: Zero(stride), "avg_pool_3x3": lambda C, stride, affine: nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False), "max_pool_3x3": lambda C, stride, affine: nn.MaxPool2d(3, stride=stride, padding=1), "skip_connect": lambda C, stride, affine: Identity() if stride == 1 else FactorizedReduce(C, C, affine=affine), "sep_conv_3x3": lambda C, stride, affine: SepConv(C, C, 3, stride, 1, affine=affine, bn=True), "sep_conv_5x5": lambda C, stride, affine: SepConv(C, C, 5, stride, 2, affine=affine, bn=True), "sep_conv_7x7": lambda C, stride, affine: SepConv(C, C, 7, stride, 3, affine=affine, bn=True), "dil_conv_3x3": lambda C, stride, affine: DilConv(C, C, 3, stride, 2, 2, affine=affine, bn=True), "dil_conv_3x3_3": lambda C, stride, affine: DilConv(C, C, 3, stride, 3, 3, affine=affine, bn=True), "dil_conv_5x5": lambda C, stride, affine: DilConv(C, C, 5, stride, 4, 2, affine=affine, bn=True), "conv_1x3_3x1": lambda C, stride, affine: RfeConv(C, C, 3, stride, 1, affine=affine, bn=True), "conv_1x5_5x1": lambda C, stride, affine: RfeConv(C, C, 5, stride, 2, affine=affine, bn=True), # "dconv_3x3": lambda C, stride, affine: D_Conv(C, C, 3, 1, affine=affine, bn=True), "conv_1x3": lambda C, stride, affine: Normal_Relu_Conv(C, C, kernel_size=(1,3), stride=stride, padding=(0,1), bn=True), "conv_3x1": lambda C, stride, affine: Normal_Relu_Conv(C, C, kernel_size=(3,1), stride=stride, padding=(1,0), bn=True), "conv_1x5": lambda C, stride, affine: Normal_Relu_Conv(C, C, kernel_size=(1,5), stride=stride, padding=(0,2), bn=True), "conv_5x1": lambda C, stride, affine: Normal_Relu_Conv(C, C, kernel_size=(5,1), stride=stride, padding=(2,0), bn=True), "conv_1x1": lambda C, stride, affine: Normal_Relu_Conv(C, C, kernel_size=1, stride=1, padding=0, bn=True), } NORMAL_OPS = { "none": lambda C, stride, affine: Zero(stride), "avg_pool_3x3": lambda C, stride, affine: nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False), "max_pool_3x3": lambda C, stride, affine: nn.MaxPool2d(3, stride=stride, padding=1), "skip_connect": lambda C, stride, affine: Identity() if stride == 1 else FactorizedReduce(C, C, affine=affine), "sep_conv_3x3": lambda C, stride, affine: Normal_Relu_Conv(C, C, kernel_size=3, stride=stride, padding=1, bn=True), "sep_conv_5x5": lambda C, stride, affine: Normal_Relu_Conv(C, C, kernel_size=5, stride=stride, padding=1, bn=True), "sep_conv_7x7": lambda C, stride, affine: Normal_Relu_Conv(C, C, kernel_size=7, stride=stride, padding=1, bn=True), "dil_conv_3x3": lambda C, stride, affine: Normal_Relu_Conv(C, C, kernel_size=3, stride=stride, padding=2, bn=True, dilation=2), "dil_conv_3x3_3": lambda C, stride, affine: Normal_Relu_Conv(C, C, kernel_size=3, stride=stride, padding=3, bn=True, dilation=3), "dil_conv_5x5": lambda C, stride, affine: Normal_Relu_Conv(C, C, kernel_size=5, stride=stride, padding=4, bn=True, dilation=2), "conv_1x3_3x1": lambda C, stride, affine: RfeConv(C, C, 3, stride, 1, affine=affine, bn=True), "conv_1x5_5x1": lambda C, stride, affine: RfeConv(C, C, 5, stride, 2, affine=affine, bn=True), # "dconv_3x3": lambda C, stride, affine: D_Conv(C, C, 3, 1, affine=affine, bn=True), "conv_1x3": lambda C, stride, affine: Normal_Relu_Conv(C, C, kernel_size=(1,3), stride=stride, padding=(0,1), bn=True), "conv_3x1": lambda C, stride, affine: Normal_Relu_Conv(C, C, kernel_size=(3,1), stride=stride, padding=(1,0), bn=True), "conv_1x5": lambda C, stride, affine: Normal_Relu_Conv(C, C, kernel_size=(1,5), stride=stride, padding=(0,2), bn=True), "conv_5x1": lambda C, stride, affine: Normal_Relu_Conv(C, C, kernel_size=(5,1), stride=stride, padding=(2,0), bn=True), } class Normal_Relu_Conv(nn.Module): def __init__(self, C_in, C_out, affine=True, bn=False, **kwargs): super(Normal_Relu_Conv, self).__init__() if not bn: op = nn.Sequential( # nn.ReLU(), nn.Conv2d(C_in, C_in, bias=True, **kwargs), ) else: if cfg['GN']: bn_layer = nn.GroupNorm(32, C_out) elif cfg["syncBN"]: bn_layer = nn.SyncBatchNorm(C_out) else: bn_layer = nn.BatchNorm2d(C_out) op = nn.Sequential( # nn.ReLU(), nn.Conv2d(C_in, C_in, bias=False, **kwargs), bn_layer, ) if RELU_FIRST: self.op = nn.Sequential() self.op.add_module('0', nn.ReLU()) for i in range(1, len(op)+1): self.op.add_module(str(i), op[i-1]) else: self.op = op self.op.add_module(str(len(op)), nn.ReLU()) # self.op = op def forward(self, x): return self.op(x) class _GumbelSoftMax(torch.autograd.Function): """ implementing the MixedOp, but carried out in a different way as DARTS DARTS adds all operations together, then select the maximal one to construct the final network, however, during the late process, more weights are assigned to the None, this is unreasonable under the circumstance that per operation has the unsure number of inputs. Thus, we modifies the original DARTS by applying way in GDAS to test. This class aims to compute the gradients by ourself. """ @staticmethod def forward(ctx, weights): weights_norm = F.softmax(weights, dim=-1) ctx.saved_for_backward = weights_norm # select the max one mask = torch.zeros_like(weights_norm).to(weights.device) _, idx = weights_norm.topk(dim=-1, k=1, largest=True) mask[idx] = 1.0 return mask @staticmethod def backward(ctx, grad_output): gumbel_norm = ctx.saved_for_backward return gumbel_norm * (1 - gumbel_norm) * grad_output * gumbel_norm.shape[0] class GumbelSoftMax(nn.Module): def __init__(self): super(GumbelSoftMax, self).__init__() def forward(self, weights, temp_coeff=1.0): gumbel = -1e-3 * torch.log(-torch.log(torch.rand_like(weights))).to(weights.device) weights = _GumbelSoftMax.apply((weights + gumbel) / temp_coeff) return weights # class D_Conv(nn.Module): # """ Deformable Conv V2 """ # def __init__(self, C_in, C_out, kernel_size, padding, affine=True, bn=False): # super(D_Conv, self).__init__() # if bn: # if cfg["syncBN"]: # bn_layer = nn.SyncBatchNorm(C_out) # else: # bn_layer = nn.BatchNorm2d(C_out) # self.op = nn.Sequential( # nn.ReLU(inplace=False), # DCN( # C_in, C_in, kernel_size=kernel_size, padding=padding, stride=1, deformable_groups=C_in, groups=C_in # ), # nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False), # bn_layer, # ) # else: # self.op = nn.Sequential( # nn.ReLU(inplace=False), # DCN( # C_in, C_in, kernel_size=kernel_size, padding=padding, stride=1, deformable_groups=C_in, groups=C_in # ), # nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=True), # ) # def forward(self, x): # return self.op(x) class RfeConv(nn.Module): def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True, bn=False): super(RfeConv, self).__init__() if not bn: op = nn.Sequential( # nn.ReLU(), nn.Conv2d( C_in, C_in, kernel_size=(1, kernel_size), stride=(1, stride), padding=(0, padding), groups=C_in, bias=True, ), # nn.Conv2d(C_in, C_in, kernel_size=1, padding=0, bias=True), nn.Conv2d( C_in, C_in, kernel_size=(kernel_size, 1), stride=(stride, 1), padding=(padding, 0), groups=C_in, bias=True, ), nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=True), ) else: if cfg['GN']: bn_layer = nn.GroupNorm(32, C_out) elif cfg["syncBN"]: bn_layer = nn.SyncBatchNorm(C_out) else: bn_layer = nn.BatchNorm2d(C_out) op = nn.Sequential( # nn.ReLU(), nn.Conv2d( C_in, C_in, kernel_size=(1, kernel_size), stride=(1, stride), padding=(0, padding), groups=C_in, bias=True, ), nn.Conv2d( C_in, C_in, kernel_size=(kernel_size, 1), stride=(stride, 1), padding=(padding, 0), groups=C_in, bias=True, ), nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=True), bn_layer, ) if RELU_FIRST: self.op = nn.Sequential() self.op.add_module('0', nn.ReLU()) for i in range(1, len(op)+1): self.op.add_module(str(i), op[i-1]) else: self.op = op self.op.add_module(str(len(op)), nn.ReLU()) # self.op = op def forward(self, x): return self.op(x) class DilConv(nn.Module): def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine=True, bn=False): super(DilConv, self).__init__() if not bn: op = nn.Sequential( # nn.ReLU(), nn.Conv2d( C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=C_in, bias=True, ), nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=True), ) else: if cfg['GN']: bn_layer = nn.GroupNorm(32, C_out) elif cfg["syncBN"]: bn_layer = nn.SyncBatchNorm(C_out) else: bn_layer = nn.BatchNorm2d(C_out) op = nn.Sequential( # nn.ReLU(), nn.Conv2d( C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=C_in, bias=False, ), nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False), bn_layer, ) if RELU_FIRST: self.op = nn.Sequential() self.op.add_module('0', nn.ReLU()) for i in range(1, len(op)+1): self.op.add_module(str(i), op[i-1]) else: self.op = op self.op.add_module(str(len(op)), nn.ReLU()) # self.op = op def forward(self, x): return self.op(x) class SepConv(nn.Module): def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True, bn=False): super(SepConv, self).__init__() if not bn: op = nn.Sequential( # nn.ReLU(), nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, groups=C_in, bias=True,), nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=True), ) else: if cfg['GN']: bn_layer = nn.GroupNorm(32, C_out) elif cfg["syncBN"]: bn_layer = nn.SyncBatchNorm(C_out) else: bn_layer = nn.BatchNorm2d(C_out) op = nn.Sequential( # nn.ReLU(), nn.Conv2d( C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, groups=C_in, bias=False, ), nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False), bn_layer, ) if RELU_FIRST: self.op = nn.Sequential(nn.ReLU()) # self.op.add_module('0', nn.ReLU()) for i in range(1, len(op)+1): self.op.add_module(str(i), op[i-1]) else: self.op = op self.op.add_module(str(len(op)), nn.ReLU()) # self.op = op def forward(self, x): return self.op(x) class Identity(nn.Module): def __init__(self): super(Identity, self).__init__() def forward(self, x): return x class Zero(nn.Module): def __init__(self, stride): super(Zero, self).__init__() self.stride
<reponame>Deltares/geolib<gh_stars>1-10 import os import pathlib import shutil from pathlib import Path import pytest from teamcity import is_running_under_teamcity from geolib.geometry.one import Point from geolib.models import BaseModel, BaseModelStructure from geolib.models.dstability import DStabilityModel from geolib.models.dstability.analysis import ( DStabilityBishopAnalysisMethod, DStabilityBishopBruteForceAnalysisMethod, DStabilityCircle, DStabilitySearchArea, DStabilitySearchGrid, DStabilitySpencerAnalysisMethod, DStabilitySpencerGeneticAnalysisMethod, DStabilityUpliftVanAnalysisMethod, DStabilityUpliftVanParticleSwarmAnalysisMethod, ) from geolib.models.dstability.dstability_model import DStabilityModel from geolib.models.dstability.internal import ( AnalysisTypeEnum, CalculationTypeEnum, DStabilityStructure, ) from geolib.models.dstability.loads import Consolidation, LineLoad, UniformLoad from geolib.models.dstability.reinforcements import ForbiddenLine, Geotextile, Nail from geolib.models.dstability.states import ( DStabilityStateLinePoint, DStabilityStatePoint, DStabilityStress, ) from geolib.soils import ShearStrengthModelTypePhreaticLevel, Soil, SuTablePoint from tests.utils import TestUtils, only_teamcity class TestDStabilityModel: @pytest.mark.unittest def test_instantiate_DStabilityModel(self): assert isinstance(DStabilityModel(filename=None), BaseModel), ( "" + "DStabilityModel does not instanciate BaseModel" ) @pytest.mark.systemtest @pytest.mark.parametrize( "filepath", [ pytest.param("dstability/example_1", id="Input Structure"), pytest.param( "dstability/example_1/Tutorial.stix", id="Input Structure for zip" ), pytest.param("dstability/Tutorial_v20_2_1", id="Tutorial DStability 20.2.1"), ], ) def test_given_datadir_when_parse_then_datastructure_of_expected_type( self, filepath: str ): # 1. Set up test data. test_input_filepath = Path(TestUtils.get_local_test_data_dir(filepath)) dstability_model = DStabilityModel(filename=None) # 2. Verify initial expectations. assert os.path.exists(test_input_filepath) assert dstability_model is not None # 3. Run test. dstability_model.parse(test_input_filepath) # 4. Verify final expectations. assert dstability_model.is_valid assert isinstance(dstability_model.datastructure, DStabilityStructure) @pytest.mark.systemtest @pytest.mark.parametrize( "dir_path", [ pytest.param("dstability/example_1", id="Input Structure"), pytest.param("dstability/Tutorial_v20_2_1", id="Tutorial DStability 20.2.1"), ], ) def test_given_data_when_parseandserialize_then_doesnotraise(self, dir_path: str): # 1. Set up test data. test_input_filepath = Path(TestUtils.get_local_test_data_dir(dir_path)) dstability_model = DStabilityModel(filename=None) test_output_filepath = Path( TestUtils.get_output_test_data_dir("dstability/parseandserialize") ) # 2. Verify initial expectations. assert os.path.exists(test_input_filepath) if len(os.listdir(test_output_filepath)) > 0: shutil.rmtree(test_output_filepath) os.mkdir(test_output_filepath) assert dstability_model is not None # 3. Run test. dstability_model.parse(test_input_filepath) dstability_model.serialize(test_output_filepath) # 4. Verify final expectations. assert dstability_model.is_valid assert len(os.listdir(test_output_filepath)) > 0, ( "" + "No data was generated while serializing." ) @pytest.mark.systemtest @pytest.mark.skipif( not is_running_under_teamcity(), reason="Console test only installed on TC." ) @pytest.mark.parametrize( "dir_path", [ pytest.param("dstability/example_1", id="Input Structure"), pytest.param("dstability/Tutorial_v20_2_1", id="Tutorial DStability 20.2.1"), ], ) def test_execute_model_succesfully(self, dir_path: str): # 1. Set up test data. dm = DStabilityModel() test_filepath = Path(TestUtils.get_local_test_data_dir(dir_path)) dm.parse(test_filepath) test_output_filepath = ( Path(TestUtils.get_output_test_data_dir("dstability")) / "test.stix" ) dm.serialize(test_output_filepath) # 2. Verify initial expectations. assert os.path.exists(test_output_filepath) # 3. Run test. dm.filename = test_output_filepath model = dm.execute() # 3. Verify model output has been parsed assert model @pytest.mark.integrationtest def test_add_default_stage(self): # Setup dm = DStabilityModel() dm.add_layer( [ Point(x=-50, z=-10), Point(x=50, z=-10), Point(x=50, z=-20), Point(x=-50, z=-20), ], "Sand", ) # Test new_stage_id = dm.add_stage("new stage", "") # Assert new stage has default (empty geometry) assert new_stage_id == 1 assert len(dm.stages) == 2 assert len(dm.datastructure.geometries[-1].Layers) == 0 @pytest.mark.integrationtest def test_copy_stage(self): # Setup dm = DStabilityModel() dm.add_layer( [ Point(x=-50, z=-10), Point(x=50, z=-10), Point(x=50, z=-20), Point(x=-50, z=-20), ], "Sand", ) # Test new_stage_id = dm.copy_stage("new stage", "") # Assert new stage has default (empty geometry) assert new_stage_id == 1 assert len(dm.stages) == 2 assert len(dm.datastructure.geometries[-1].Layers) == 1 @pytest.mark.unittest def test_gen_unique_id(self): """This test will fail when we've added new default ids to the internal datastructure. Please update accordingly.""" max_id_after_initialization_of_dstability_structure = 21 dm = DStabilityModel() assert dm.datastructure.waternets[0].Id == "14" new_id = dm.datastructure.get_unique_id() assert new_id == max_id_after_initialization_of_dstability_structure @pytest.mark.acceptance @only_teamcity def test_generate_simple_model(self): dm = DStabilityModel() layer_1 = [ Point(x=-50, z=-10), Point(x=50, z=-10), Point(x=50, z=-20), Point(x=-50, z=-20), ] layer_2 = [ Point(x=-50, z=-5), Point(x=50, z=-5), Point(x=50, z=-10), Point(x=-50, z=-10), ] layer_3 = [ Point(x=-50, z=0), Point(x=50, z=0), Point(x=50, z=-5), Point(x=-50, z=-5), ] embankment = [ Point(x=-10, z=0), Point(x=0, z=2), Point(x=10, z=2), Point(x=30, z=0), ] layers_and_soils = [ (layer_1, "Sand"), (layer_2, "H_Ro_z&k"), (layer_3, "H_Rk_k_shallow"), (embankment, "H_Aa_ht_old"), ] layer_ids = [dm.add_layer(points, soil) for points, soil in layers_and_soils] for layer_id in layer_ids: # Has to be done in separate loop since all layers first need to be definied. dm.add_soil_layer_consolidations(soil_layer_id=layer_id) assert len(dm.datastructure.loads[0].LayerLoads) == 4 assert dm.is_valid # Serialize model to input file. path = pathlib.Path.cwd() / "test.stix" dm.serialize(path) # Check for succesfull execution dm.execute() assert dm.datastructure @pytest.mark.systemtest def test_get_stabfactor(self): test_filepath = Path( TestUtils.get_local_test_data_dir("dstability/test_dstab_full.stix") ) dm = DStabilityModel() dm.parse(test_filepath) assert pytest.approx(dm.output.FactorOfSafety, 0.56) def test_get_slipeplane(self): test_filepath = Path( TestUtils.get_local_test_data_dir("dstability/test_dstab_full.stix") ) dm = DStabilityModel() dm.parse(test_filepath) assert len(dm.output.SlipPlane) == 5 @pytest.mark.acceptance @only_teamcity def test_generate_model_from_scratch(self): dm = DStabilityModel() bishop_analysis_method = DStabilityBishopAnalysisMethod( circle=DStabilityCircle(center=Point(x=20, z=3), radius=15) ) dm.set_model(bishop_analysis_method) assert ( dm.datastructure.calculationsettings[0].CalculationType == CalculationTypeEnum.DETERMINISTIC ) assert ( dm.datastructure.calculationsettings[0].AnalysisType == AnalysisTypeEnum.BISHOP ) # add soil soil_peat_id = Soil() soil_peat_id.name = "Peat (weak)" soil_peat_id.code = "HV" soil_peat_id.soil_weight_parameters.unsaturated_weight.mean = 10.2 soil_peat_id.soil_weight_parameters.saturated_weight.mean = 10.2 soil_peat_id.mohr_coulomb_parameters.friction_angle.mean = 15 soil_peat_id.mohr_coulomb_parameters.cohesion.mean = 0.5 soil_peat_id = dm.add_soil(soil_peat_id) # add layers layer_1 = [ Point(x=-50, z=-10), Point(x=50, z=-10), Point(x=50, z=-20), Point(x=-50, z=-20), ] layer_2 = [ Point(x=-50, z=-5), Point(x=50, z=-5), Point(x=50, z=-10), Point(x=-50, z=-10), ] layer_3 = [ Point(x=-50, z=0), Point(x=-10, z=0), Point(x=30, z=0), Point(x=50, z=0), Point(x=50, z=-5), Point(x=-50, z=-5), ] embankment = [ Point(x=-10, z=0), Point(x=0, z=2), Point(x=10, z=2), Point(x=30, z=0), ] layers_and_soils = [ (layer_1, "Sand"), (layer_2, "H_Ro_z&k"), (layer_3, "HV"), (embankment, "H_Aa_ht_old"), ] layer_ids = [] for layer, soil in layers_and_soils: layer_id = dm.add_layer(layer, soil) layer_ids.append(layer_id) outputdir = Path(TestUtils.get_output_test_data_dir("dstability/acceptancetest/")) path = outputdir / "test_layers.stix" dm.serialize(path) # add phreatic line phreatic_line_id = dm.add_head_line( points=[ Point(x=-50, z=1.0), Point(x=0, z=1), Point(x=30, z=-1), Point(x=50, z=-1), ], label="Phreatic Line", is_phreatic_line=True, ) path = outputdir / "test_phreatic_line.stix" dm.serialize(path) # add headline for deep sand sand_head_line_id = dm.add_head_line( points=[Point(x=-50, z=5.0), Point(x=50, z=5.0)], label="Hydraulic head in sandlayer", ) dm.add_reference_line( points=[Point(x=-50, z=-3), Point(x=50, z=-3)], bottom_headline_id=phreatic_line_id, top_head_line_id=phreatic_line_id, ) dm.add_reference_line( points=[Point(x=-50, z=-10), Point(x=50, z=-10)], bottom_headline_id=sand_head_line_id, top_head_line_id=sand_head_line_id, ) path = outputdir / "test_reference_line.stix" dm.serialize(path) # change some parameters dm.edit_soil("HV", cohesion=2.0, friction_angle=17.5) path = outputdir / "test_edited_soil.stix" dm.serialize(path) # add uniform load dm.add_load( UniformLoad( label="trafficload", start=6.5, end=9.0, magnitude=13, angle_of_distribution=45, ) ) path = outputdir / "test_uniformload.stix" dm.serialize(path) # add line load dm.add_load( LineLoad( location=Point(x=2.0, z=2.0), angle=0.0, magnitude=10.0, angle_of_distribution=45.0, ) ) path = outputdir / "test_lineload.stix" dm.serialize(path) # create reinforcements NAIL dm.add_reinforcement( Nail( location=Point(x=20.0, z=1.0), direction=15.0, horizontal_spacing=1.0, length=3.0, grout_diameter=0.1, max_pull_force=10.0, plastic_moment=5.0, bending_stiffness=100.0, ) ) path = outputdir / "test_nail.stix" dm.serialize(path) # create reinforcements GEOTEXTILE dm.add_reinforcement( Geotextile( start=Point(x=20.0, z=0.0), end=Point(x=30.0, z=0.0), effective_tensile_strength=10.0, reduction_area=0.5, ) ) path = outputdir / "test_geotextile.stix" dm.serialize(path) # create reinforcements FORBIDDEN LINE dm.add_reinforcement( ForbiddenLine(start=Point(x=30.0, z=0.0), end=Point(x=30.0, z=-4.0)) ) path = outputdir / "test_forbidden_line.stix" dm.serialize(path) # add bishop brute force dm.set_model( DStabilityBishopBruteForceAnalysisMethod( search_grid=DStabilitySearchGrid( bottom_left=Point(x=15, z=2), number_of_points_in_x=10, number_of_points_in_z=10, space=0.5, ), bottom_tangent_line_z=-6.0, number_of_tangent_lines=5, space_tangent_lines=0.5, ) ) path = outputdir / "test_bishop_brute_force.stix" dm.serialize(path) # add spencer dm.set_model( DStabilitySpencerAnalysisMethod( slipplane=[ Point(x=7, z=2.0), Point(x=15, z=-3), Point(x=30, z=-4.5), Point(x=40, z=0.0), ] ) ) path = outputdir / "test_spencer.stix" dm.serialize(path) # add spencer genetic dm.set_model( DStabilitySpencerGeneticAnalysisMethod( slip_plane_a=[ Point(x=10, z=2.0), Point(x=15, z=0), Point(x=30, z=-4), Point(x=35, z=0.0), ], slip_plane_b=[ Point(x=5, z=2.0), Point(x=15, z=-3), Point(x=30, z=-6), Point(x=40, z=0.0), ], ) ) path = outputdir / "test_spencer_genetic.stix" dm.serialize(path) # uplift dm.set_model( DStabilityUpliftVanAnalysisMethod( first_circle=DStabilityCircle(center=Point(x=5, z=5), radius=9.5), second_circle_center=Point(x=40, z=2), ) ) path = outputdir / "test_uplift.stix" dm.serialize(path) # uplift particle swarm dm.set_model( DStabilityUpliftVanParticleSwarmAnalysisMethod( search_area_a=DStabilitySearchArea( height=5.0, top_left=Point(x=0.0, z=10.0), width=5.0 ), search_area_b=DStabilitySearchArea( height=5.0, top_left=Point(x=35.0, z=5.0), width=5.0 ), tangent_area_height=2.0, tangent_area_top_z=-4.5, ) ) path = outputdir / "test_uplift_particle_swarm.stix" dm.serialize(path) # state point dm.add_state_point( DStabilityStatePoint( layer_id=layer_ids[2], # HV layer point=Point(x=0, z=-2.5), stress=DStabilityStress(pop=10.0), ) ) path = outputdir / "test_state_point.stix" dm.serialize(path) # state line dm.add_state_line( points=[Point(x=-50, z=-2), Point(x=50, z=-2)], state_points=[ DStabilityStateLinePoint( above=DStabilityStress(pop=5), below=DStabilityStress(pop=10), x=20 ) ], ) path = outputdir / "test_state_line.stix" dm.serialize(path) # 3. Verify model output has been parsed model = dm.execute() assert model @pytest.mark.integrationtest def test_su_table_version_parsing(self): # initialize model dm = DStabilityModel() # stix input file path test_filepath = Path(TestUtils.get_local_test_data_dir("dstability/Example.stix")) # stix output file path test_output_filepath = Path( TestUtils.get_local_test_data_dir("dstability/Tutorial_serialized_new.stix") ) # parse existing files dm.parse(test_filepath) # test that the file was read correctly soil_su_table = dm.input.soils.get_soil("H_Aa_ht_old") assert soil_su_table.shear_strength_model_below_phreatic_level.value == "SuTable" assert ( soil_su_table.shear_strength_model_above_phreatic_level.value == "Mohr_Coulomb" ) assert soil_su_table.undrained_parameters.su_table @pytest.mark.integrationtest def test_su_table_version_input(self): # initialize model dm = DStabilityModel() # stix input file path test_filepath = Path(TestUtils.get_local_test_data_dir("dstability/Example.stix")) # stix output file path test_output_filepath = Path( TestUtils.get_local_test_data_dir("dstability/Tutorial_serialized_new.stix") ) # parse existing files dm.parse(test_filepath) # change waterlevels # add su table values for soil # add soil soil = Soil() soil.name = "Soil test" soil.code = "su soil" soil.soil_weight_parameters.saturated_weight.mean = 10.2 soil.soil_weight_parameters.unsaturated_weight.mean = 10.2 soil.undrained_parameters.strength_increase_exponent = 1.1 soil.undrained_parameters.su_table = [ SuTablePoint(su=0, stress=0), SuTablePoint(su=100, stress=200), SuTablePoint(su=200, stress=300), ] soil.shear_strength_model_below_phreatic_level = ( ShearStrengthModelTypePhreaticLevel.SUTABLE ) new_layer = [ Point(x=66, z=0), Point(x=89.95, z=-0.06), Point(x=90, z=-8.7), Point(x=88.6, z=-5.9), Point(x=85.9, z=-4.7), Point(x=83.6, z=-3.6), Point(x=81, z=-3), Point(x=79.2, z=-2), Point(x=77.1, z=-1.7), Point(x=74.2, z=-1), Point(x=71, z=-0.4), ] soil_undrained_id = dm.add_soil(soil) layer_id = dm.add_layer(points=new_layer, soil_code=soil.code) # output changed file dm.serialize(test_output_filepath) # test that the file was written correctly soil_su_table = dm.input.soils.get_soil("su soil") assert soil_su_table.shear_strength_model_below_phreatic_level.value ==
ranks of each process.") group.add('--world_size', '-world_size', default=1, type=int, help="total number of distributed processes.") group.add('--gpu_backend', '-gpu_backend', default="nccl", type=str, help="Type of torch distributed backend") group.add('--gpu_verbose_level', '-gpu_verbose_level', default=0, type=int, help="Gives more info on each process per GPU.") group.add('--master_ip', '-master_ip', default="localhost", type=str, help="IP of master for torch.distributed training.") group.add('--master_port', '-master_port', default=10000, type=int, help="Port of master for torch.distributed training.") group.add('--queue_size', '-queue_size', default=40, type=int, help="Size of queue for each process in producer/consumer") _add_reproducibility_opts(parser) # Init options group = parser.add_argument_group('Initialization') group.add('--param_init', '-param_init', type=float, default=0.1, help="Parameters are initialized over uniform distribution " "with support (-param_init, param_init). " "Use 0 to not use initialization") group.add('--param_init_glorot', '-param_init_glorot', action='store_true', help="Init parameters with xavier_uniform. " "Required for transformer.") group.add('--train_from', '-train_from', default='', type=str, help="If training from a checkpoint then this is the " "path to the pretrained model's state_dict.") group.add('--reset_optim', '-reset_optim', default='none', choices=['none', 'all', 'states', 'keep_states'], help="Optimization resetter when train_from.") # Pretrained word vectors group.add('--pre_word_vecs_enc', '-pre_word_vecs_enc', help="If a valid path is specified, then this will load " "pretrained word embeddings on the encoder side. " "See README for specific formatting instructions.") group.add('--pre_word_vecs_dec', '-pre_word_vecs_dec', help="If a valid path is specified, then this will load " "pretrained word embeddings on the decoder side. " "See README for specific formatting instructions.") # Freeze word vectors group.add('--freeze_word_vecs_enc', '-freeze_word_vecs_enc', action='store_true', help="Freeze word embeddings on the encoder side.") group.add('--freeze_word_vecs_dec', '-freeze_word_vecs_dec', action='store_true', help="Freeze word embeddings on the decoder side.") # Optimization options group = parser.add_argument_group('Optimization- Type') group.add('--batch_size', '-batch_size', type=int, default=64, help='Maximum batch size for training') group.add('--batch_size_multiple', '-batch_size_multiple', type=int, default=None, help='Batch size multiple for token batches.') group.add('--batch_type', '-batch_type', default='sents', choices=["sents", "tokens"], help="Batch grouping for batch_size. Standard " "is sents. Tokens will do dynamic batching") group.add('--pool_factor', '-pool_factor', type=int, default=8192, help="""Factor used in data loading and batch creations. It will load the equivalent of `pool_factor` batches, sort them by the according `sort_key` to produce homogeneous batches and reduce padding, and yield the produced batches in a shuffled way. Inspired by torchtext's pool mechanism.""") group.add('--normalization', '-normalization', default='sents', choices=["sents", "tokens"], help='Normalization method of the gradient.') group.add('--accum_count', '-accum_count', type=int, nargs='+', default=[1], help="Accumulate gradient this many times. " "Approximately equivalent to updating " "batch_size * accum_count batches at once. " "Recommended for Transformer.") group.add('--accum_steps', '-accum_steps', type=int, nargs='+', default=[0], help="Steps at which accum_count values change") group.add('--valid_steps', '-valid_steps', type=int, default=10000, help='Perfom validation every X steps') group.add('--valid_batch_size', '-valid_batch_size', type=int, default=32, help='Maximum batch size for validation') group.add('--max_generator_batches', '-max_generator_batches', type=int, default=32, help="Maximum batches of words in a sequence to run " "the generator on in parallel. Higher is faster, but " "uses more memory. Set to 0 to disable.") group.add('--train_steps', '-train_steps', type=int, default=100000, help='Number of training steps') group.add('--single_pass', '-single_pass', action='store_true', help="Make a single pass over the training dataset.") group.add('--epochs', '-epochs', type=int, default=0, help='Deprecated epochs see train_steps') group.add('--early_stopping', '-early_stopping', type=int, default=0, help='Number of validation steps without improving.') group.add('--early_stopping_criteria', '-early_stopping_criteria', nargs="*", default=None, help='Criteria to use for early stopping.') group.add('--optim', '-optim', default='sgd', choices=['sgd', 'adagrad', 'adadelta', 'adam', 'sparseadam', 'adafactor', 'fusedadam'], help="Optimization method.") group.add('--adagrad_accumulator_init', '-adagrad_accumulator_init', type=float, default=0, help="Initializes the accumulator values in adagrad. " "Mirrors the initial_accumulator_value option " "in the tensorflow adagrad (use 0.1 for their default).") group.add('--max_grad_norm', '-max_grad_norm', type=float, default=5, help="If the norm of the gradient vector exceeds this, " "renormalize it to have the norm equal to " "max_grad_norm") group.add('--dropout', '-dropout', type=float, default=[0.3], nargs='+', help="Dropout probability; applied in LSTM stacks.") group.add('--attention_dropout', '-attention_dropout', type=float, default=[0.1], nargs='+', help="Attention Dropout probability.") group.add('--dropout_steps', '-dropout_steps', type=int, nargs='+', default=[0], help="Steps at which dropout changes.") group.add('--truncated_decoder', '-truncated_decoder', type=int, default=0, help="""Truncated bptt.""") group.add('--adam_beta1', '-adam_beta1', type=float, default=0.9, help="The beta1 parameter used by Adam. " "Almost without exception a value of 0.9 is used in " "the literature, seemingly giving good results, " "so we would discourage changing this value from " "the default without due consideration.") group.add('--adam_beta2', '-adam_beta2', type=float, default=0.999, help='The beta2 parameter used by Adam. ' 'Typically a value of 0.999 is recommended, as this is ' 'the value suggested by the original paper describing ' 'Adam, and is also the value adopted in other frameworks ' 'such as Tensorflow and Keras, i.e. see: ' 'https://www.tensorflow.org/api_docs/python/tf/train/Adam' 'Optimizer or https://keras.io/optimizers/ . ' 'Whereas recently the paper "Attention is All You Need" ' 'suggested a value of 0.98 for beta2, this parameter may ' 'not work well for normal models / default ' 'baselines.') group.add('--label_smoothing', '-label_smoothing', type=float, default=0.0, help="Label smoothing value epsilon. " "Probabilities of all non-true labels " "will be smoothed by epsilon / (vocab_size - 1). " "Set to zero to turn off label smoothing. " "For more detailed information, see: " "https://arxiv.org/abs/1512.00567") group.add('--average_decay', '-average_decay', type=float, default=0, help="Moving average decay. " "Set to other than 0 (e.g. 1e-4) to activate. " "Similar to Marian NMT implementation: " "http://www.aclweb.org/anthology/P18-4020 " "For more detail on Exponential Moving Average: " "https://en.wikipedia.org/wiki/Moving_average") group.add('--average_every', '-average_every', type=int, default=1, help="Step for moving average. " "Default is every update, " "if -average_decay is set.") # learning rate group = parser.add_argument_group('Optimization- Rate') group.add('--learning_rate', '-learning_rate', type=float, default=1.0, help="Starting learning rate. " "Recommended settings: sgd = 1, adagrad = 0.1, " "adadelta = 1, adam = 0.001") group.add('--learning_rate_decay', '-learning_rate_decay', type=float, default=0.5, help="If update_learning_rate, decay learning rate by " "this much if steps have gone past " "start_decay_steps") group.add('--start_decay_steps', '-start_decay_steps', type=int, default=50000, help="Start decaying every decay_steps after " "start_decay_steps") group.add('--decay_steps', '-decay_steps', type=int, default=10000, help="Decay every decay_steps") group.add('--decay_method', '-decay_method', type=str, default="none", choices=['noam', 'noamwd', 'rsqrt', 'none'], help="Use a custom decay rate.") group.add('--warmup_steps', '-warmup_steps', type=int, default=4000, help="Number of warmup steps for custom decay.") _add_logging_opts(parser, is_train=True) def _add_train_dynamic_data(parser): group = parser.add_argument_group("Dynamic data") group.add("-bucket_size", "--bucket_size", type=int, default=2048, help="Examples per dynamically generated torchtext Dataset.") def train_opts(parser): """ Training and saving options """ group = parser.add_argument_group('General') group.add('--data', '-data', required=True, help='Path prefix to the ".train.pt" and ' '".valid.pt" file path from preprocess.py') group.add('--data_ids', '-data_ids', nargs='+', default=[None], help="In case there are several corpora.") group.add('--data_weights', '-data_weights', type=int, nargs='+', default=[1], help="""Weights of different corpora, should follow the same order as in -data_ids.""") group.add('--data_to_noise', '-data_to_noise', nargs='+', default=[], help="IDs of datasets on which to apply noise.") group.add('--save_model', '-save_model', default='model', help="Model filename (the model will be saved as " "<save_model>_N.pt where N is the number " "of steps") group.add('--save_checkpoint_steps', '-save_checkpoint_steps', type=int, default=5000, help="""Save a checkpoint every X steps""") group.add('--keep_checkpoint', '-keep_checkpoint', type=int, default=-1, help="Keep X checkpoints (negative: keep all)") # GPU group.add('--gpuid', '-gpuid', default=[], nargs='*', type=int, help="Deprecated see world_size and gpu_ranks.") group.add('--gpu_ranks', '-gpu_ranks', default=[], nargs='*', type=int, help="list of ranks of each process.") group.add('--world_size', '-world_size', default=1, type=int, help="total number of distributed processes.") group.add('--gpu_backend', '-gpu_backend', default="nccl", type=str, help="Type of torch distributed backend") group.add('--gpu_verbose_level', '-gpu_verbose_level', default=0, type=int, help="Gives more info on each process per GPU.") group.add('--master_ip', '-master_ip', default="localhost", type=str, help="IP of master for torch.distributed training.") group.add('--master_port', '-master_port', default=10000, type=int, help="Port of master for torch.distributed training.") group.add('--queue_size', '-queue_size', default=40, type=int, help="Size of queue for each process in producer/consumer") group.add('--seed', '-seed', type=int, default=-1, help="Random seed used for the experiments " "reproducibility.") # Init options group = parser.add_argument_group('Initialization') group.add('--param_init', '-param_init', type=float, default=0.1, help="Parameters are initialized over uniform distribution " "with support (-param_init, param_init). " "Use 0 to not use initialization") group.add('--param_init_glorot', '-param_init_glorot', action='store_true', help="Init parameters with xavier_uniform. " "Required for transformer.") group.add('--train_from', '-train_from', default='', type=str, help="If training from a checkpoint then this is the " "path to the pretrained model's state_dict.") group.add('--reset_optim', '-reset_optim', default='none', choices=['none', 'all', 'states', 'keep_states'], help="Optimization resetter when train_from.") # Pretrained word vectors group.add('--pre_word_vecs_enc', '-pre_word_vecs_enc', help="If a valid path is specified, then this will load " "pretrained word embeddings on the encoder side. " "See README for specific formatting instructions.") group.add('--pre_word_vecs_dec', '-pre_word_vecs_dec', help="If a valid path is specified, then this will load " "pretrained word embeddings on the decoder side. " "See README for specific formatting instructions.") # Fixed word vectors group.add('--fix_word_vecs_enc', '-fix_word_vecs_enc', action='store_true', help="Fix word embeddings on the encoder side.") group.add('--fix_word_vecs_dec', '-fix_word_vecs_dec', action='store_true', help="Fix word embeddings on the decoder side.") # Optimization options group = parser.add_argument_group('Optimization- Type') group.add('--batch_size', '-batch_size', type=int, default=64, help='Maximum batch size for training') group.add('--batch_type', '-batch_type', default='sents', choices=["sents", "tokens"], help="Batch grouping for batch_size. Standard " "is sents. Tokens will do dynamic batching") group.add('--pool_factor', '-pool_factor', type=int, default=8192, help="""Factor used in data loading
<filename>exopy_qcircuits/instruments/drivers/ZI/UHFLI.py # -*- coding: utf-8 -*- """This module defines drivers for UHFLI using Zhinst Library. :Contains: UHFLI Python package zhinst from Zurick Instruments need to be install """ from __future__ import (division, unicode_literals, print_function, absolute_import) from ..driver_tools import (InstrIOError, instrument_property, secure_communication) import sys from subprocess import call import ctypes import os from inspect import cleandoc import math import numpy as np import time import logging logger = logging.getLogger(__name__) try: from ..ZI_tools import ZIInstrument import zhinst.utils class UHFLI(ZIInstrument): def __init__(self,connection_info, caching_allowed=True, caching_permissions={}): super(UHFLI, self).__init__(connection_info, caching_allowed, caching_permissions) self.awgModule = None self.required_devtype='.*LI' self.required_options=['AWG','DIG'] def close_connection(self): if self.awgModule: if self.daq: self.daq.setInt('/%s/awgs/0/enable' %self.device, 0) self.awgModule.finish() self.awgModule.clear() def set_general_setting(self): general_setting = [['/%s/demods/*/enable' % self.device, 0], ['/%s/scopes/*/enable' % self.device, 0]] self.daq.set(general_setting) self.daq.sync() def TransfertSequence(self,awg_program): # Transfer the AWG sequence program. Compilation starts automatically. self.awgModule.set('awgModule/compiler/sourcestring', awg_program) while self.awgModule.getInt('awgModule/compiler/status') == -1: time.sleep(0.1) if self.awgModule.getInt('awgModule/compiler/status') == 1: # compilation failed, raise an exception raise Exception(self.awgModule.getString('awgModule/compiler/statusstring')) else: if self.awgModule.getInt('awgModule/compiler/status') == 2: print("Compilation successful with warnings, will upload the program to the instrument.") print("Compiler warning: ", self.awgModule.getString('awgModule/compiler/statusstring')) # wait for waveform upload to finish i = 0 while self.awgModule.getDouble('awgModule/progress') < 1.0: time.sleep(0.1) i += 1 def get_scope_demod(self,samplingRate, duration, delay, recordsPerCapture, freq, average,demod,trace, Npoints,customDemod,demodCosinus,scopeModule): if 0 in duration[0]: channel = [1] elif 0 in duration[1]: channel=[0] else : channel = [0,1] #erase the memory of the scope scopeModule.set('scopeModule/clearhistory', 1) # Tell the module to be ready to acquire data; reset the module's progress to 0.0. scopeModule.execute() # Enable the scope: Now the scope is ready to record data upon receiving triggers. self.daq.setInt('/%s/scopes/0/single' % self.device, 0) self.daq.setInt('/%s/scopes/0/enable' % self.device, 1) self.daq.sync() start = time.time() timeout = recordsPerCapture/100 #[s] records = 0 dataRecorded = [] # Wait until the Scope Module has received and processed the desired number of records. while (records < recordsPerCapture): time.sleep(0.01) records = scopeModule.getInt("scopeModule/records") # Advanced use: It's possible to read-out data before all records have been recorded (or even before all # segments in a multi-segment record have been recorded). Note that complete records are removed from the Scope # Module and can not be read out again; the read-out data must be managed by the client code. If a multi-segment # record is read-out before all segments have been recorded, the wave data has the same size as the complete # data and scope data points currently unacquired segments are equal to 0. data=scopeModule.read(True) if '/%s/scopes/0/wave'%self.device in data.keys(): dataRecorded.extend(data['/%s/scopes/0/wave' % self.device]) if (time.time() - start) > timeout: # Break out of the loop if for some reason we're no longer receiving scope data from the device. print("\nScope Module did not return {} records after {} s - forcing stop.".format(1, timeout)) break self.daq.setInt('/%s/scopes/0/enable' % self.device, 0) # Read out the scope data from the module. data = scopeModule.read(True) if '/%s/scopes/0/wave' %self.device in data.keys(): dataRecorded.extend(data['/%s/scopes/0/wave' %self.device]) # Stop the module scopeModule.set('scopeModule/clearhistory', 1) scopeModule.finish() scopeModule.clear() #check that no problems occur dataUnusable=[] num_records = len(dataRecorded) for i in range(len(dataRecorded)): if dataRecorded[i][0]['flags'] & 1: dataUnusable.append(i) if dataRecorded[i][0]['flags'] & 2: dataUnusable.append(i) if dataRecorded[i][0]['flags'] & 3: dataUnusable.append(i) # number max of period in the trace at the frequency freq nb =np.array([np.int_(duration[i]*freq[i]) for i in range(2)]) #number of point we keep for the demodulation nbSample= [np.int_(nb[i]*1/freq[i]*samplingRate) for i in range(2)] delaySample= np.int_(np.array(delay)*samplingRate) length = [np.int_(i) for i in np.array(duration)*samplingRate] #keep only data with no problem tracedata = [[],[]] for i in range(num_records): if not i in dataUnusable: for c in range(len(channel)): tracedata[channel[c]].append(dataRecorded[i][0]['wave'][c][:delaySample[channel[c]]+np.sum(length[channel[c]])]) if max(len(tracedata[0]),len(tracedata[1]))>=recordsPerCapture: for c in channel: tracedata[c] = np.array(tracedata[c])[:recordsPerCapture,delaySample[c]:delaySample[c]+np.sum(length[c])] else: raise Exception("Error: To many data not workable") datatype = str(dataRecorded[0][0]['wave'].dtype) del(dataRecorded) #demodulation function coses=[] sines=[] for c in range(2): if demodCosinus: coses.append(np.cos(np.arange(np.sum(length[c]))*2*np.pi*freq[c]/samplingRate)) sines.append(np.sin(np.arange(np.sum(length[c]))*2*np.pi*freq[c]/samplingRate)) else: coses.append(customDemod[0]) sines.append(customDemod[1]) if demod: answerTypeDemod = [] for c in channel: for i in range(len(duration[c])): answerTypeDemod =answerTypeDemod+ [(str(c+1)+'I_'+str(i),datatype), (str(c+1)+'Q_'+str(i),datatype)] else: answerTypeDemod= 'f' if trace: answerTypeTrace=[] for c in channel: for i in range(len(duration[c])): answerTypeTrace = answerTypeTrace+ [(str(c+1)+'_'+str(i),datatype)] else: answerTypeTrace = 'f' if average: if Npoints == 1 or Npoints == 0: answerDemod = np.zeros(1, dtype=answerTypeDemod) answerTrace = np.zeros(np.max([np.max(length[0]),np.max(length[1])]), dtype=answerTypeTrace) else: answerDemod = np.zeros((1, Npoints), dtype=answerTypeDemod) answerTrace = np.zeros((Npoints,np.max([np.max(length[0]),np.max(length[1])])), dtype=answerTypeTrace) else: answerDemod = np.zeros(recordsPerCapture, dtype=answerTypeDemod) answerTrace = np.zeros((recordsPerCapture, np.max([np.max(length[0]),np.max(length[1])])), dtype=answerTypeTrace) for c in channel: if demod[c]: start =0 for i in range(len(duration[c])): ansI= 2*np.mean(tracedata[c][:,start:start+nbSample[c][i]]*coses[c][start:start+nbSample[c][i]],axis=1) ansQ= 2*np.mean(tracedata[c][:,start:start+nbSample[c][i]]*sines[c][start:start+nbSample[c][i]],axis=1) if Npoints!=1 and Npoints!=0 and average: ansI = ansI.reshape((int(recordsPerCapture/Npoints),Npoints)) ansQ = ansQ.reshape((int(recordsPerCapture/Npoints),Npoints)) ansI = ansI.mean(axis=0) ansQ = ansQ.mean(axis=0) answerDemod[str(c+1)+'I_'+str(i)]= ansI answerDemod[str(c+1)+'Q_'+str(i)]= ansQ elif average and (Npoints==1 or Npoints ==0): ansI = np.mean(ansI,axis=0) ansQ = np.mean(ansQ,axis=0) answerDemod[str(c+1)+'I_'+str(i)]= ansI answerDemod[str(c+1)+'Q_'+str(i)]= ansQ else: answerDemod[str(c+1)+'I_'+str(i)]= ansI answerDemod[str(c+1)+'Q_'+str(i)]= ansQ start = start+length[c][i] for c in channel: if trace[c]: start =0 for i in range(len(duration[c])): trace = (tracedata[c][:,start:start+length[c][i]]) if Npoints!=1 and Npoints!=0 and average: trace =(trace.reshape((-1,Npoints,length[c][i]))).mean(axis=0) answerTrace[str(c+1)+'_'+str(i)][:,:length[c][i]]= trace elif average and (Npoints==1 or Npoints ==0): trace = np.mean(trace,axis=0) answerTrace[str(c+1)+'_'+str(i)][:length[c][i]]= trace else: answerTrace[str(c+1)+'_'+str(i)][:,:length[c][i]]= trace start = start+length[c][i] return answerDemod, answerTrace @secure_communication() def get_demodLI(self,recordsPerCapture,average,Npoints,channel,demod,powerBool,AWGcontrol): if ['1'] == channel: self.daq.setInt('/%s/demods/%d/enable' % (self.device,demod[0]), 1) # enable the stream data of input1 self.daq.sync() elif ['2'] == channel: self.daq.setInt('/%s/demods/%d/enable' % (self.device,demod[1]), 1) # enable the stream data of input2 self.daq.sync() else : # enable the stream data of the demodulators 3 and 4 self.daq.set([['/%s/demods/%d/enable' % (self.device,demod[0]), 1],['/%s/demods/%d/enable' % (self.device,demod[1]), 1]]) self.daq.sync() time.sleep(0.1) if AWGcontrol: self.daq.setInt('/%s/awgs/0/enable' %self.device, 1) data1x=[]; data1y=[]; data2x=[]; data2y=[]; time1=[] time2=[] path1 = '/%s/demods/%d/sample' % (self.device,demod[0]) path2 = '/%s/demods/%d/sample' % (self.device,demod[1]) data=self.daq.poll(0.1,500,0x0004,True) if '1' in channel: if path1 in data.keys(): data1x= data[path1]['x'] data1y = data[path1]['y'] time1 = data[path1]['timestamp'] if '2' in channel: if path2 in data.keys(): data2x= data[path2]['x'] data2y = data[path2 ]['y'] time2 = data[path2]['timestamp'] # if math.isnan(np.mean(data1x)) or math.isnan(np.mean(data1y)): # print(str(data)) while(len(data1x)<recordsPerCapture*('1' in channel) or len(data2x)<recordsPerCapture*('2' in channel)): data=self.daq.poll(0.1,500,0x0004,True) if '1' in channel: if path1 in data.keys(): data1x = np.concatenate((data1x,data[path1]['x'])) data1y = np.concatenate((data1y,data[path1]['y'])) time1 = np.concatenate((time1,data[path1]['timestamp'])) if '2' in channel: if path2 in data.keys(): data2x = np.concatenate((data2x,data[path2]['x'])) data2y = np.concatenate((data2y,data[path2]['y'])) time2 = np.concatenate((time2,data[path2]['timestamp'])) self.daq.setInt('/%s/demods/%s/enable'% (self.device,demod[0]), 0); # close the stream data of input1 self.daq.setInt('/%s/demods/%s/enable'% (self.device,demod[1]), 0); # close the stream data of input2 if AWGcontrol: self.daq.setInt('/%s/awgs/0/enable' %self.device, 0) if ['1','2'] == channel: n=0; for i in range(min(len(time1),len(time2))): if time1[i]!=time2[i]: n+=1; print(str(n) + ' errors in demodulation') print(str(len(time1)-len(time2))) diff = np.diff(time1) mini = np.min(diff) number=0; for i in range(len(diff)): if 1.5*mini <= diff[i]: number = number+1 if number!=0: print("%d trigger miss" %number) if '1' in channel: if math.isnan(np.mean(data1x)): listNan = [math.isnan(i) for i in data1x] data1x=np.delete(data1x,np.where(listNan)) data1y=np.delete(data1y,np.where(listNan)) print('Warning NaN value detect in data1 :%d NaN value, %d value correct' %(np.sum(listNan),len(data1x))) if len(data1x)<recordsPerCapture: recordsPerCapture = len(data1x) if '2' in channel: if math.isnan(np.mean(data2x)): listNan = [math.isnan(i) for i in data2x] data2x=np.delete(data2x,np.where(listNan)) data2y=np.delete(data2y,np.where(listNan)) print('Warning NaN value detect in data2 :%d NaN value, %d value correct' %(np.sum(listNan),len(data2x))) if len(data2x)<recordsPerCapture: recordsPerCapture = len(data2x) if '1' in channel: data1x= data1x[:recordsPerCapture] data1y= data1y[:recordsPerCapture] if '2' in channel: data2x= data2x[:recordsPerCapture] data2y= data2y[:recordsPerCapture] answerTypeDemod=[]; if '1' in channel: answerTypeDemod = answerTypeDemod+ [('1I',str(data1x.dtype)), ('1Q',str(data1y.dtype))] if powerBool : answerTypeDemod = answerTypeDemod+ [('1P',str(data1x.dtype))] if '2' in channel: answerTypeDemod = answerTypeDemod+ [('2I',str(data2x.dtype)), ('2Q',str(data2y.dtype))] if powerBool : answerTypeDemod = answerTypeDemod+ [('2P',str(data2x.dtype))] if average: if Npoints==0 or Npoints ==1: answerDemod = np.zeros(1, dtype=answerTypeDemod) else : answerDemod = np.zeros((1, Npoints), dtype=answerTypeDemod) else: answerDemod = np.zeros(recordsPerCapture, dtype=answerTypeDemod) if average: if Npoints==0 or Npoints ==1: if '1' in channel: ans1I = np.mean(data1x) ans1Q = np.mean(data1y) answerDemod['1I']= ans1I answerDemod['1Q']= ans1Q if powerBool: ansR = np.mean(data1x**2+data1y**2) answerDemod['1P']= ansR if '2' in channel: ans2I = np.mean(data2x) ans2Q = np.mean(data2y) answerDemod['2I']= ans2I answerDemod['2Q']= ans2Q if powerBool: ansR = np.mean(data2x**2+data2y**2) answerDemod['2P']= ansR else : if '1' in channel: data1x = data1x.reshape((-1,Npoints)) data1y = data1y.reshape((-1,Npoints)) ans1I = data1x.mean(axis=0) ans1Q = data1y.mean(axis=0) answerDemod['1I']= ans1I answerDemod['1Q']= ans1Q if powerBool: ansR = np.mean((data2x**2+data2y**2).reshape((-1,Npoints)),axis=0) answerDemod['1P']= ansR if '2' in channel: data2x = data2x.reshape((-1,Npoints)) data2y = data2y.reshape((-1,Npoints)) ans2I = data2x.mean(axis=0)
" to method portals_id_image_folders_rel_fk_delete" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params) or (params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `portals_id_image_folders_rel_fk_delete`") # verify the required parameter 'fk' is set if ('fk' not in params) or (params['fk'] is None): raise ValueError("Missing the required parameter `fk` when calling `portals_id_image_folders_rel_fk_delete`") collection_formats = {} resource_path = '/Portals/{id}/imageFolders/rel/{fk}'.replace('{format}', 'json') path_params = {} if 'id' in params: path_params['id'] = params['id'] if 'fk' in params: path_params['fk'] = params['fk'] query_params = {} header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json', 'application/xml', 'text/xml', 'application/javascript', 'text/javascript']) if not header_params['Accept']: del header_params['Accept'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json', 'application/x-www-form-urlencoded', 'application/xml', 'text/xml']) # Authentication setting auth_settings = ['access_token'] return self.api_client.call_api(resource_path, 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), collection_formats=collection_formats) def portals_id_image_folders_rel_fk_head(self, id, fk, **kwargs): """ Check the existence of imageFolders relation to an item by id. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.portals_id_image_folders_rel_fk_head(id, fk, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: Portal id (required) :param str fk: Foreign key for imageFolders (required) :return: bool If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.portals_id_image_folders_rel_fk_head_with_http_info(id, fk, **kwargs) else: (data) = self.portals_id_image_folders_rel_fk_head_with_http_info(id, fk, **kwargs) return data def portals_id_image_folders_rel_fk_head_with_http_info(self, id, fk, **kwargs): """ Check the existence of imageFolders relation to an item by id. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.portals_id_image_folders_rel_fk_head_with_http_info(id, fk, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: Portal id (required) :param str fk: Foreign key for imageFolders (required) :return: bool If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'fk'] all_params.append('callback') all_params.append('_return_http_data_only') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method portals_id_image_folders_rel_fk_head" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params) or (params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `portals_id_image_folders_rel_fk_head`") # verify the required parameter 'fk' is set if ('fk' not in params) or (params['fk'] is None): raise ValueError("Missing the required parameter `fk` when calling `portals_id_image_folders_rel_fk_head`") collection_formats = {} resource_path = '/Portals/{id}/imageFolders/rel/{fk}'.replace('{format}', 'json') path_params = {} if 'id' in params: path_params['id'] = params['id'] if 'fk' in params: path_params['fk'] = params['fk'] query_params = {} header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json', 'application/xml', 'text/xml', 'application/javascript', 'text/javascript']) if not header_params['Accept']: del header_params['Accept'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json', 'application/x-www-form-urlencoded', 'application/xml', 'text/xml']) # Authentication setting auth_settings = ['access_token'] return self.api_client.call_api(resource_path, 'HEAD', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='bool', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), collection_formats=collection_formats) def portals_id_image_folders_rel_fk_put(self, id, fk, **kwargs): """ Add a related item by id for imageFolders. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.portals_id_image_folders_rel_fk_put(id, fk, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: Portal id (required) :param str fk: Foreign key for imageFolders (required) :param PortalImageFolder data: :return: PortalImageFolder If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.portals_id_image_folders_rel_fk_put_with_http_info(id, fk, **kwargs) else: (data) = self.portals_id_image_folders_rel_fk_put_with_http_info(id, fk, **kwargs) return data def portals_id_image_folders_rel_fk_put_with_http_info(self, id, fk, **kwargs): """ Add a related item by id for imageFolders. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.portals_id_image_folders_rel_fk_put_with_http_info(id, fk, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: Portal id (required) :param str fk: Foreign key for imageFolders (required) :param PortalImageFolder data: :return: PortalImageFolder If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'fk', 'data'] all_params.append('callback') all_params.append('_return_http_data_only') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method portals_id_image_folders_rel_fk_put" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params) or (params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `portals_id_image_folders_rel_fk_put`") # verify the required parameter 'fk' is set if ('fk' not in params) or (params['fk'] is None): raise ValueError("Missing the required parameter `fk` when calling `portals_id_image_folders_rel_fk_put`") collection_formats = {} resource_path = '/Portals/{id}/imageFolders/rel/{fk}'.replace('{format}', 'json') path_params = {} if 'id' in params: path_params['id'] = params['id'] if 'fk' in params: path_params['fk'] = params['fk'] query_params = {} header_params = {} form_params = [] local_var_files = {} body_params = None if 'data' in params: body_params = params['data'] # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json', 'application/xml', 'text/xml', 'application/javascript', 'text/javascript']) if not header_params['Accept']: del header_params['Accept'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json', 'application/x-www-form-urlencoded', 'application/xml', 'text/xml']) # Authentication setting auth_settings = ['access_token'] return self.api_client.call_api(resource_path, 'PUT', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='PortalImageFolder', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), collection_formats=collection_formats) def portals_id_invitation_tickets_fk_delete(self, id, id2, fk, **kwargs): """ Delete InvitationTickets for this Portal This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.portals_id_invitation_tickets_fk_delete(id, id2, fk, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: Portal id (required) :param str id2: Portal id (required) :param str fk: InvitationTicket id (required) :return: object If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.portals_id_invitation_tickets_fk_delete_with_http_info(id, id2, fk, **kwargs) else: (data) = self.portals_id_invitation_tickets_fk_delete_with_http_info(id, id2, fk, **kwargs) return data def portals_id_invitation_tickets_fk_delete_with_http_info(self, id, id2, fk, **kwargs): """ Delete InvitationTickets for this Portal This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.portals_id_invitation_tickets_fk_delete_with_http_info(id, id2, fk, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str id: Portal id (required) :param str id2: Portal id (required) :param str fk: InvitationTicket id (required) :return: object If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'id2', 'fk'] all_params.append('callback') all_params.append('_return_http_data_only') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method portals_id_invitation_tickets_fk_delete" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params) or (params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `portals_id_invitation_tickets_fk_delete`") # verify the required parameter 'id2' is set if ('id2' not in params) or (params['id2'] is None): raise ValueError("Missing the required parameter `id2` when calling `portals_id_invitation_tickets_fk_delete`") # verify the required parameter 'fk' is set if ('fk' not in params) or (params['fk'] is None): raise ValueError("Missing the required parameter `fk` when calling `portals_id_invitation_tickets_fk_delete`") collection_formats = {} resource_path = '/Portals/{id}/invitationTickets/{fk}'.replace('{format}', 'json') path_params = {} if 'id' in params: path_params['id'] = params['id'] if 'id2' in params: path_params['id'] = params['id2'] if 'fk' in params:
import code # For development: code.interact(local = dict(globals(), **locals())) import numpy as np import xml.etree.ElementTree as et from scipy.io import netcdf import matplotlib.dates as mdates from datetime import datetime, timedelta import matplotlib.pyplot as plt import math # ============================================================================= # # This module processes and compares model output to census benchmarks. # Currently, this module assumes that FATES size structured outputs are # available. Benchmarks are prepared in another script, one such script # is the NGEET/tools_benchmarking_evaluation set. # # Here is the list of model output needed: # # Basal Area: BA_SCPF (SIZE x PFT) # Diameter Increment: DDBH_SCPF (SIZE x PFT) / NPLANT_SCPF # Mortality Rate: (M1_SCPF + M2_SCPF + M3_SCPF + M4_SCPF + M5_SCPF + # M6_SCPF + M7_SCPF + M8_SCPF) / NPLANT_SCPF # Recruitment Rate: RECRUITMENT (PFT) # # # # # ============================================================================= # The CTFS processed files use an invalid flag of -9e+30 # We will consider anything very large negative invalid invalid_flag = -9.9e10 # Anything that is a rate, needs to be normalized by the number of plants # This is a restriction on nplant_scpf_name = 'NPLANT_SCPF' # BA_SCPF (SIZE x PFT) # DDBH_SCPF (SIZE x PFT) # (M1_SCPF + M2_SCPF + M3_SCPF + M4_SCPF + M5_SCPF + M6_SCPF + M7_SCPF + M8_SCPF) / NPLANT_SCPF # RECRUITMENT (PFT) # This object is bound to each site # It should contain a list of viable benchmarks class benchmark_obj: def __init__(self,census_filename): self.bvarlist = [] self.census_filename = census_filename # Lets check through the census file and see if any of these variables # are in the file. We will later look through the model output # and pop off list entries that are not there. if(census_filename.strip() != ''): print("Loading census file: {}".format(census_filename)) fp = netcdf.netcdf_file(census_filename, 'r', mmap=False) cens_var_name = 'basal_area_by_size_census' if (fp.variables.has_key(cens_var_name)): self.bvarlist.append(benchmark_vars( name = 'Basal Area', \ mod_symbols = 'BA_SCPF', \ obs_symbol = cens_var_name, \ mod_dimclass = 'scpf', \ obs_dimclass = 'size-class', \ unit = 'm2/ha', \ vartype = 'quantity')) self.bvarlist[-1].load_census(fp) else: print('Census variable: '+cens_var_name+', was not found in the census file') cens_var_name = 'growth_increment_by_size_census' if (fp.variables.has_key(cens_var_name)): self.bvarlist.append(benchmark_vars( name = 'Growth Increment', \ mod_symbols = 'DDBH_SCPF', \ obs_symbol = cens_var_name, \ mod_dimclass = 'scpf', \ obs_dimclass = 'size-class', \ unit = 'cm/yr', \ vartype = 'rate')) self.bvarlist[-1].load_census(fp) else: print('Census variable: '+cens_var_name+', was not found in the census file') cens_var_name = 'mortality_rate_by_size_census' if (fp.variables.has_key(cens_var_name)): self.bvarlist.append(benchmark_vars( name = 'Mortality Rate', \ mod_symbols = 'M1_SCPF,M2_SCPF,M3_SCPF,M4_SCPF,M5_SCPF,M6_SCPF,M7_SCPF,M8_SCPF', \ obs_symbol = cens_var_name, \ mod_dimclass = 'scpf', \ obs_dimclass = 'size-class', \ unit = '/yr', \ vartype = 'rate')) self.bvarlist[-1].load_census(fp) cens_var_name = 'new_recruits_by_census' if (fp.variables.has_key(cens_var_name)): self.bvarlist.append(benchmark_vars( name = 'Recruitment Rate', \ mod_symbols = 'RECRUITMENT', \ obs_symbol = cens_var_name, \ mod_dimclass = 'pft', \ obs_dimclass = 'scalar', \ unit = 'indv ha-1 yr-1', \ vartype = 'quantity')) self.bvarlist[-1].load_census(fp) else: print('Census variable: '+cens_var_name+', was not found in the census file') fp.close() # =================================================================================== ## Check the first history file in the list to see which benchmarking variables # are available. def init_history(self,hist_file0,n_htypes): fp = netcdf.netcdf_file(hist_file0, 'r', mmap=False) for bvar in self.bvarlist: all_symbols_found = True for mod_symbol in bvar.mod_symbols: if( not fp.variables.has_key(mod_symbol) ): all_symbols_found = False if( all_symbols_found ): bvar.active = True if( bvar.mod_dimclass == 'scpf'): dims = fp.variables[bvar.mod_symbols[0]].dimensions if(dims[1] != 'fates_levscpf'): print('An SCPF benchmark variable: {} does not actually'.format(bvar.mod_symbols[0])) print(' have the correct dimensions: {}... exiting'.format(dims)) exit(2) fates_levscls = fp.variables['fates_levscls'].data if (fates_levscls[0] == 0.0): bvar.offset0 = True if(fates_levscls.size-1 != bvar.scv_obs_ar.shape[0]): print('Dimensions of model output size-classes dont match observations') for isc,scvar in enumerate(fates_levscls[1:]): if( np.abs(scvar- bvar.scv_x[isc])>1.0e-10 ): print('Dimensions of model output size-classes dont match observations') print('Observed classes: {}'.format(bvar.scv_x)) print('Modeled (0 is ignored): {}',format(fates_levscls)) else: bvar.offset0 = False if(fates_levscls.size != bvar.scv_obs_ar.shape[0]): print('Dimensions of model output size-classes dont match observations') for isc,scvar in enumerate(fates_levscls[:]): if( np.abs(scvar- bvar.scv_x[isc])>1.0e-10 ): print('Dimensions of model output size-classes dont match observations') print('Observed classes: {}'.format(bvar.scv_x)) print('Modeled (0 is ignored): {}',format(fates_levscls)) d_sizes = bvar.scv_obs_ar.shape bvar.modlist = [] for imod in range(n_htypes): bvar.modlist.append(mod_scv_array(d_sizes[0])) elif( bvar.mod_dimclass == 'pft' ): dims = fp.variables[bvar.mod_symbols[0]].dimensions if(dims[1] != 'fates_levpft'): print('A PFT benchmark variable: {} does not actually'.format(bvar.mod_symbols[0])) print(' have the correct dimensions: {}... exiting'.format(dims)) exit(2) fates_levpft = fp.variables['fates_levpft'].data scalar_size = 1 bvar.modlist = [] for imod in range(n_htypes): bvar.modlist.append(mod_scv_array(scalar_size)) fp.close() # =================================================================================== def load_history(self,filename,h_index,site_index): # Objective is to push new estimates of the benchmark variables fp = netcdf.netcdf_file(filename, 'r', mmap=False) #code.interact(local = dict(globals(), **locals())) for bvar in self.bvarlist: if(bvar.active): d_sizes = fp.variables[bvar.mod_symbols[0]].shape hist_arr = np.ma.zeros(fp.variables[bvar.mod_symbols[0]].shape) if(bvar.vartype == 'quantity'): for mod_symbol in bvar.mod_symbols: hist_arr = hist_arr + fp.variables[mod_symbol].data elif( (bvar.vartype == 'rate') and (bvar.mod_dimclass=='scpf') ): # Mask out when there are no cohort counts hist_arr[fp.variables[nplant_scpf_name].data <= 0.] = np.ma.masked for mod_symbol in bvar.mod_symbols: hist_arr = hist_arr + \ fp.variables[mod_symbol].data / fp.variables[nplant_scpf_name].data else: print("Unhandled variable type submitted to registry: {}".format(bvar.vartype)) print("Must be one of: quantity or rate. Exiting") exit(2) # Mask if the variable has a no data flag hist_arr[hist_arr.data<invalid_flag] = np.ma.masked if( (bvar.obs_dimclass=='scalar') and (bvar.mod_dimclass == 'pft') ): # These are the expected dimensions # (time, fates_levpft, lndgrid) ; for itime in range(d_sizes[0]): # Loop PFTs local_vars = hist_arr[itime,:,site_index] if ( np.ma.count(local_vars)>0 ): if(bvar.vartype == 'quantity'): local_var = local_vars.sum() elif(bvar.vartype == 'rate'): local_var = local_vars.mean() else: print('Unknown vartype') exit(2) bvar.modlist[h_index].var_ar[0] = ( bvar.modlist[h_index].var_ar[0] \ * bvar.modlist[h_index].var_n[0] \ + local_var) / (bvar.modlist[h_index].var_n[0] + 1.0) bvar.modlist[h_index].var_n[0] = bvar.modlist[h_index].var_n[0] + 1.0 elif( (bvar.obs_dimclass=='size-class') and (bvar.mod_dimclass=='scpf') ): # Create a mapping between FATES size-classes and the SCPF map # ------------------------------------------------------------ fates_levscls = fp.variables['fates_levscls'].data fates_scmap_levscpf = fp.variables['fates_scmap_levscpf'].data # fates_scmap_levscpf # These are the expected dimensions # ('time', 'fates_levscpf', 'lndgrid') # Mask out when there are no cohort counts hist_arr[fp.variables[nplant_scpf_name].data <= 0.] = np.ma.masked for itime in range(d_sizes[0]): # Loop Sizes and then PFTs # For quantities, add them # For rates, take the mean # code.interact(local = dict(globals(), **locals())) # for isc,isc_map0 in enumerate(fates_scmap_levscpf): for isc,isc_val in enumerate(fates_levscls): if ( (bvar.offset0 == False) or ((bvar.offset0 == True)and(isc != 0 )) ): if(bvar.offset0==True): isc0 = isc-1 else: isc0 = isc sc_maps = [i for i, x in enumerate(fates_scmap_levscpf) if x == isc+1 ] local_vars = hist_arr[itime,sc_maps,site_index] if ( np.ma.count(local_vars)>0 ): if(bvar.vartype == 'quantity'): local_var = local_vars.sum() elif(bvar.vartype == 'rate'): local_var = local_vars.mean() else: print('Unknown vartype') exit(2) bvar.modlist[h_index].var_ar[isc0] = ( bvar.modlist[h_index].var_ar[isc0] \ * bvar.modlist[h_index].var_n[isc0] \ + local_var) / (bvar.modlist[h_index].var_n[isc0] + 1.0) bvar.modlist[h_index].var_n[isc0] = bvar.modlist[h_index].var_n[isc0] + 1.0 else: print('Only scpf to sc is available now. Exiting.') print(0) fp.close() # ======================================================================================= class benchmark_vars: def __init__(self,name,mod_symbols,obs_symbol,mod_dimclass,obs_dimclass,unit,vartype): self.active = False self.obs_symbol = obs_symbol self.name = name self.scv = False # Size-class variable self.sv = False # Scalar variable self.unit = unit self.vartype = vartype # Is this a simple quantity, or a rate? self.hfile_id = -9 # This will convert mod_symbols into a list self.mod_symbols = mod_symbols.split(',') self.mod_dimclass = mod_dimclass self.obs_dimclass = obs_dimclass # This is a size-dimensioned variable if(self.mod_dimclass == 'scpf'): # Initialize size-class array self.scv = True # Initialize scalar array self.sv = True if(self.mod_dimclass == 'scalar'): # Initialize scalar array self.sv = True def load_census(self,fp): # The 'size-class' type census variable is actually a # fp.variables[self.obs_symbol].shape # (7, 10, 3) # fp.variables[self.obs_symbol].dimensions # ('cens', 'dclass', 'confidence') # fp.variables[self.obs_symbol].data d_sizes = fp.variables[self.obs_symbol].shape dim_names = fp.variables[self.obs_symbol].dimensions if(self.obs_dimclass == 'size-class'): if(dim_names[0] != 'cens'): print('expected census data to have cens as first dimension: {}'.format(dim_names)) print('exiting') exit(2) # Condense the census dimension into 1 size self.scv_obs_ar = np.zeros((d_sizes[1],d_sizes[2])) # This is the mean across census intervals # AND... the lowest lower bound CI across census, # and... the highest upper bound CI across census # Mask out bad data (for rates of change, probably missing # first census, or perhaps lowest masked_data = np.ma.array(fp.variables[self.obs_symbol].data, \ mask=fp.variables[self.obs_symbol].data<invalid_flag) self.scv_obs_ar[:,0] = masked_data[:,:,0].min(axis=0).data self.scv_obs_ar[:,1] = masked_data[:,:,1].mean(axis=0).data self.scv_obs_ar[:,2] = masked_data[:,:,2].max(axis=0).data # Note that the dimensions in the census dictate the output dimension self.scv_x = np.zeros((d_sizes[1],1)) fp.variables['dclass'].data.resize(self.scv_x.shape) self.scv_x[:] = fp.variables['dclass'].data self.scv_x_unit = 'DBH [cm]' elif(self.obs_dimclass == 'scalar' ): if(dim_names[0] != 'cens'): print('expected census data to have cens as first dimension: {}'.format(dim_names)) print('exiting') exit(2) # Condense the census dimension into 1 size (confidence interval) self.scv_obs_ar = np.zeros((d_sizes[1])) # This
x2, y1: y2] = 255 return ''' # for the full equation - m and the whole thing # USED in "get rect side scales" def math_m(alpha,beta): m = np.tan(0.5*(alpha-beta)) / np.tan(0.5*(alpha+beta)) return m def math_scale_a(d,m): a = d*((1+m) / (1-m)) #keep in mind this is HALF a scale. This is also for Vertical measuring return a # Retrieve the height and width of a rectangle # USE THIS IN A FUNCTION def get_rect_side_scales(aspect_ratio, distance, alpha, beta): global math_m global math_scale_a V, H = aspect_ratio vertical_scale_angle_parameter = math_m(alpha, beta) vertical_scale = 2 * math_scale_a(distance, vertical_scale_angle_parameter) horizontal_scale = (vertical_scale / V) * H return (vertical_scale, horizontal_scale) """ # Checks whether we have an overlapped rectangle def check_overlap(h_offset, v_offset, rect_cam, rect_proj): h_c, v_c = rect_cam h_p, v_p = rect_proj scalar_h = (h_c / 2) + (h_p / 2) scalar_v = (v_c / 2) + (v_p / 2) if np.abs(h_offset) >= scalar_h or np.abs(v_offset) >= scalar_v: return False else: return True """ # This function will pull the raw pixel coordinates from the img with the face detection rectangle # just the actual location of the pixels, along with the size in pixels of the image, and will convert to ratios def detection_rect_get_ratio(a,b,c,d,resolution): m = a[0] / resolution[0] k = a[1] / resolution[1] face_width = np.abs(a[0] - b[0]) face_height = np.abs(a[1] - d[1]) n = (a[0] + face_width) / resolution[0] l = (a[1] + face_height) / resolution[1] return m, k, n, l # this function is intended to use the above given ratios in order to convert the coordinates into our plane # it will need to be fed the cam rectangle dimensions as they are in the plane def detection_rect_in_plane(m, k, n, l, cam_rect_width, cam_rect_height): ad = (m * cam_rect_width, k * cam_rect_height) bd = (n * cam_rect_width, k * cam_rect_height) cd = (n * cam_rect_width, l * cam_rect_height) dd = (m * cam_rect_width, l * cam_rect_height) rect_width = np.abs(ad[0] - bd[0]) rect_height = np.abs(ad[1] - dd[1]) return rect_width, rect_height, ad, bd, cd, dd #This is our logic for finding the overlap coordinates # y,y means completely outside, n,n means completely inside # REVISION - THIS FUNCTION SHOULD ONLY BE USED TO DETERMINE THE OVERLAP OF THE DETECTION RECTANGLE OVER THE # PROJECTION RECTANGLE. FEED IN THIS ORDER: AP, AD, BP, BD, CP, CD, DP, DD def get_overlap_rect(ac, ap, bc, bp, cc, cp, dc, dp): a = [0,0] b = [0,0] c = [0,0] d = [0,0] overlap_a = [0,0] overlap_b = [0,0] overlap_c = [0,0] overlap_d = [0,0] if ap[0] < ac[0]: a[0] = True else: a[0] = False if ap[1] < ac[1]: a[1] = True else: a[1] = False if a == [True,True]: overlap_a = ac elif a== [False,False]: overlap_a = ap elif a==[True,False]: overlap_a = (ac[0], ap[1]) elif a==[False,True]: overlap_a = (ap[0], ac[0]) if bp[0] > bc[0]: b[0] = True else: b[1] = False if bp[1] < bc[1]: b[1] = True else: b[1] = False if b==[True,True]: overlap_b=bc elif b==[False,False]: overlap_b=bp elif b==[True,False]: overlap_b=(bc[0],bp[1]) elif b==[False,True]: overlap_b = (bp[0],bc[1]) if cp[0] > cc[0]: c[0] = True else: c[0] = False if cp[1] > cc[1]: c[1] = True else: c[1] = False if c==[True,True]: overlap_c=cc elif c==[False,False]: overlap_c=cp elif c==[True,False]: overlap_c=(cc[0],cp[1]) elif c==[False,True]: overlap_c=(cp[0],cc[1]) if dp[0] < dc[0]: d[0] = True else: d[0] = False if dp[1] > dc[1]: d[1] = True else: d[1] = False if d==[True,True]: overlap_d = dc elif d==[False,False]: overlap_d = dp elif d==[True,False]: overlap_d = (dc[0], dp[1]) elif d==[False,True]: overlap_d = (dp[0], dc[1]) #print(overlap_a, overlap_b, overlap_c, overlap_d) scale_width = np.abs(overlap_d[0] - overlap_c[0]) scale_height = np.abs(overlap_a[1] - overlap_d[1]) overlap_a = tuple(overlap_a) overlap_b = tuple(overlap_b) overlap_c = tuple(overlap_c) overlap_d = tuple(overlap_d) return scale_width, scale_height, overlap_a, overlap_b, overlap_c, overlap_d # generates NEW coordinates of overlapping rectangle, based on a new axis in which ap is (0,0) # feed the "a" point of the projection rectangle, feed all points of the overlapping rectangle & dimensions def get_overlap_coords_based_on_projector_rect(ap, overlap_a, overlap_width, overlap_height): new_overlap_a = (overlap_a[0] - ap[0], overlap_a[1] - ap[1]) new_overlap_b = (new_overlap_a[0] + overlap_width, new_overlap_a[1]) new_overlap_c = (new_overlap_b[0], new_overlap_b[1] + overlap_height) new_overlap_d = (new_overlap_a[0], new_overlap_c[1]) return new_overlap_a, new_overlap_b, new_overlap_c, new_overlap_d # Feed into this the overlap coordinates based on the "get_overlap_coords_base_on_projector_rect" function # also feed the width and height of the projector rectangle def get_trimmed_detect_ratio_by_projection(a, b, c, d, proj_width, proj_height): trimmed_overlap_width = np.abs(a[0] - b[0]) trimmed_overlap_height = np.abs(a[1] - d[1]) m = a[0] / proj_width k = a[1] / proj_height n = (a[0] + trimmed_overlap_width) / proj_width l = (a[1] + trimmed_overlap_height) / proj_height return m, k, n, l # feed ratios receive from "get_trimmed_detect_ratio_by_projection" and the resolution of the projected image # This function will give us the final coordinates IN THE PROJECTED IMAGE in which there is a face :) def get_detected_rectangle_in_projected_image(m, k, n, l, resolution_proj): a_detect = (np.int(m * resolution_proj[0]), np.int(k * resolution_proj[1])) b_detect = (np.int(n * resolution_proj[0]), np.int(k * resolution_proj[1])) c_detect = (np.int(n * resolution_proj[0]), np.int(l * resolution_proj[1])) d_detect = (np.int(m * resolution_proj[0]), np.int(l * resolution_proj[1])) detect_width = np.abs(a_detect[1] - b_detect[1]) detect_height = np.abs(a_detect[0] - d_detect[0]) return a_detect, b_detect, c_detect, d_detect, detect_width, detect_height # BEFORE WE GO INTO THE LOOP - WE SET UP ALL THE PERMANENCE SCALES # just the sizes of each rectangle's sides based on the projection spread angle and distance cam_scales = get_rect_side_scales(aspect_ratio_cam, camera_distance, camera_vertical_fov, beta_cam) proj_scales = get_rect_side_scales(aspect_ratio_proj, projector_distance, projector_vertical_fov, beta_proj) # DEFINE BOTH RECTANGLES IN AXIS # Width, height and center of camera rectangle rect_cam = get_rect_side_scales(aspect_ratio_cam, camera_distance, camera_vertical_fov, beta_cam) width_cam, height_cam = rect_cam center_cam = (width_cam / 2, height_cam / 2) # Width, height and center of projector rectangle in relation to Cam rect_proj = get_rect_side_scales(aspect_ratio_proj, projector_distance, projector_vertical_fov, beta_proj) width_proj, height_proj = rect_proj center_proj = ((width_cam / 2) + horizontal_offset, (height_cam / 2) + vertical_offset) ProjC_x, ProjC_y = center_proj # points of cam rectangle, and of projector rectangle. THE ARE ALL DEFINED FOR RECTANGLES ONLY. No angle vs the wall. # CAM POINTS ac = (0,0) bc = (width_cam, 0) cc = (width_cam, height_cam) dc = (0, height_cam) # PROJ POINTS ap = (ProjC_x - (width_proj / 2), ProjC_y - (height_proj / 2)) bp = (ProjC_x + (width_proj / 2), ProjC_y - (height_proj / 2)) cp = (ProjC_x + (width_proj / 2), ProjC_y + (height_proj / 2)) dp = (ProjC_x - (width_proj / 2), ProjC_y + (height_proj / 2)) cv2.namedWindow("projection", cv2.WND_PROP_FULLSCREEN) cv2.setWindowProperty("projection", cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN) # THE WHILE LOOP WHERE EVERYTHING HAPPENS while True: _, frame = cap.read() cam_feed=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY) # I want to get the two Cam and Proj rectangles now in the RL axis I defined by Cam # detect faces & select a random one faces = face_cascade.detectMultiScale(cam_feed, 1.1, 12) if len(faces) > 0: color=color1 if len(faces) > 1: color=color2 x, y, w, h = faces[np.random.randint(0, len(faces), dtype=np.uint8)] a1 = (x,y) b1 = (x+w,y) c1 = (x+w, y+h) d1 = (x, y+h) #print(a1,b1,c1,d1) # m k n and l ratios-by-cam of the detected face, converted into ratios-by-cam for use in our global axis m,k,n,l = detection_rect_get_ratio(a1,b1,c1,d1, img_resolution_cam) # get all the infos about the detected face in our global plain d_width, d_height, ad,bd,cd,dd = detection_rect_in_plane(m, k, n, l, cam_scales[0], cam_scales[1]) '''this part checked and is okay''' """ WE NEED TO CHECK FOR OVERLAP AT ***THIS*** STAGE """ # ADJUSTMENT ONLY FOR OVERLAP OVER PROJECTION RECTANGLE # PROJECTION RECTANGLE. FEED IN THIS ORDER: AP, AD, BP, BD, CP, CD, DP, DD d_width, d_height, ad,bd,cd,dd = get_overlap_rect(ap, ad, bp, bd, cp, cd, dp, dd) #print(ad,bd,cd,dd) '''at this point we're getting points that are all 0''' # convert into axis which is defined by projector rect ad, bd, cd, dd = get_overlap_coords_based_on_projector_rect(ap, ad, d_width, d_height) """ BROKEN OVERLAP COORDS - NEED FIX """ #print(ad,bd,cd,dd) md, kd, nd, ld = get_trimmed_detect_ratio_by_projection(ad, bd, cd, dd, proj_scales[0], proj_scales[1]) # get the final set of coordinates or scales in the projected image of where the face is a_detect, b_detect, c_detect, d_detect, detect_width, detect_height = get_detected_rectangle_in_projected_image(md, kd, nd, ld, img_resolution_proj) #print(a_detect,b_detect,c_detect,d_detect) # Finally - we get the picture the
Prop._class_property_relation: storids = [ancestor.storid for ancestor in entity.ancestors()] prop_storids = [] values = set() for P in Props: if issubclass_python(P, TransitiveProperty): if P._inverse_storid: prop_storids.append((P.storid, P._inverse_storid)) else: prop_storids.append((P.storid, None)) else: if P._inverse_storid: values.update(onto._to_python(o) for storid in storids for g in (world._get_obj_triples_sp_o(storid, P.storid), world._get_obj_triples_po_s(P._inverse_storid, storid)) for o in g ) else: values.update(onto._to_python(o) for storid in storids for o in world._get_obj_triples_sp_o(storid, P.storid) ) if prop_storids: values.update(onto._to_python(o) for storid in storids for o in world._get_obj_triples_transitive_sp_indirect(storid, prop_storids)) if transitive_exclude_self: values.discard(entity) elif Prop._class_property_some: if issubclass_python(Prop, TransitiveProperty): values = set() def walk(o): values.add(o) for r in _inherited_properties_value_restrictions(o, Props, set()): if r.type == VALUE: if not r.value in values: for o2 in r.value.equivalent_to.self_and_indirect_equivalent(): if not o2 in values: values.add(o2) values.update(Prop._get_indirect_values_for_individual(o2)) elif (r.type == SOME) or ((r.type == EXACTLY) and r.cardinality >= 1) or ((r.type == MIN) and r.cardinality >= 1): if not r.value in values: walk(r.value) if isinstance(o, ThingClass): for e in o.equivalent_to.indirect(): if not e in values: walk(e) walk(entity) if transitive_exclude_self: values.discard(entity) else: values = set(r.value for r in _inherited_properties_value_restrictions(entity, Props, set()) if (r.type == VALUE) or (r.type == SOME) or ((r.type == EXACTLY) and r.cardinality >= 1) or ((r.type == MIN) and r.cardinality >= 1) ) elif Prop._class_property_only: # Effect of transitivity on ONLY restrictions is unclear -- probably no effect? or_valuess = [set(_flatten_only(r)) for r in _inherited_properties_value_restrictions(entity, Props, set()) if (r.type == ONLY)] values = or_valuess[0] for or_values in or_valuess[1:]: new_values = values & or_values for vs1, vs2 in ((values, or_values), (or_values, values)): vs2_classes = tuple(o for o in vs2 if isinstance(o, EntityClass)) for v in vs1 - vs2: if isinstance(v, EntityClass): if issubclass(v, vs2_classes): new_values.add(v) else: if isinstance(v, vs2_classes): new_values.add(v) values = new_values return list(values) def _set_value_for_individual(Prop, entity, value): if value is None: entity.namespace.ontology._del_obj_triple_spo(entity.storid, Prop.storid, None) else: entity.namespace.ontology._set_obj_triple_spo(entity.storid, Prop.storid, value.storid) if (not isinstance(entity, EntityClass)) and (Prop is entity.namespace.world._props.get(Prop._python_name)): entity.__dict__[Prop.python_name] = value def _set_value_for_class (Prop, entity, value ): Prop._get_values_for_class(entity).reinit([value]) class ObjectProperty(Property, metaclass = ObjectPropertyClass): namespace = owl class DataPropertyClass(ReasoningPropertyClass): _owl_type = owl_data_property inverse_property = None def _get_value_for_individual(Prop, entity): value = entity.namespace.world._get_data_triple_sp_od(entity.storid, Prop.storid) if not value is None: return entity.namespace.ontology._to_python(*value) def _get_value_for_class(Prop, entity): if Prop._class_property_relation: Prop._get_value_for_individual(entity) elif Prop._class_property_some: for r in _property_value_restrictions(entity, Prop): if (r.type == VALUE) or (r.type == SOME) or ((r.type == EXACTLY) and r.cardinality >= 1) or ((r.type == MIN) and r.cardinality >= 1): return r.value elif Prop._class_property_only: for r in _property_value_restrictions(Class, Prop): if (r.type == ONLY): for value in _flatten_only(r): return value def _get_values_for_individual(Prop, entity): return IndividualValueList((entity.namespace.ontology._to_python(o, d) for o, d in entity.namespace.world._get_data_triples_sp_od(entity.storid, Prop.storid)), entity, Prop) def _get_values_for_class(Prop, entity): if Prop._class_property_relation: return Prop._get_values_for_individual(entity) elif Prop._class_property_some: return ClassValueList(set(r.value for r in _property_value_restrictions(entity, Prop) if (r.type == VALUE) or (r.type == SOME) or ((r.type == EXACTLY) and r.cardinality >= 1) or ((r.type == MIN) and r.cardinality >= 1) ), entity, Prop) elif Prop._class_property_only: return ClassValueList(set(x for r in _property_value_restrictions(entity, Prop) if (r.type == ONLY) for x in _flatten_only(r) ), entity, Prop) def _get_indirect_value_for_individual(Prop, entity): values = Prop._get_indirect_values_for_individual(entity) if len(values) == 0: return None elif len(values) == 1: return values[0] # XXX datatype return _most_specific(values) def _get_indirect_value_for_class(Prop, entity): values = Prop._get_indirect_values_for_class(entity) if len(values) == 0: return None elif len(values) == 1: return values[0] # XXX datatype return _most_specific(values) def _get_indirect_values_for_individual(Prop, entity): eqs = list(entity.equivalent_to.self_and_indirect_equivalent()) values = [entity.namespace.ontology._to_python(o, d) for P in Prop.descendants() for eq in eqs for o, d in entity.namespace.world._get_data_triples_sp_od(eq.storid, P.storid)] values.extend(Prop._get_indirect_values_for_class(entity.__class__)) return values def _get_indirect_values_for_class(Prop, entity): Props = Prop.descendants() if Prop._class_property_relation: storids = [ancestor.storid for ancestor in entity.ancestors()] return [ entity.namespace.ontology._to_python(o, d) for storid in storids for P in Props for o, d in entity.namespace.world._get_data_triples_sp_od(storid, P.storid) ] elif Prop._class_property_some: return list(set(r.value for r in _inherited_properties_value_restrictions(entity, Props, set()) if (r.type == VALUE) or (r.type == SOME) or ((r.type == EXACTLY) and r.cardinality >= 1) or ((r.type == MIN) and r.cardinality >= 1) )) elif Prop._class_property_only: return list(set(x for r in _inherited_properties_value_restrictions(entity, Props, set()) if (r.type == ONLY) for x in _flatten_only(r) )) def _set_value_for_individual(Prop, entity, value): if value is None: entity.namespace.ontology._del_data_triple_spod(entity.storid, Prop.storid, None, None) else: entity.namespace.ontology._set_data_triple_spod(entity.storid, Prop.storid, *entity.namespace.ontology._to_rdf(value)) if (not isinstance(entity, EntityClass)) and (Prop is entity.namespace.world._props.get(Prop._python_name)): entity.__dict__[Prop.python_name] = value def _set_value_for_class (Prop, entity, value ): Prop._get_values_for_class(entity).reinit([value]) class DatatypeProperty(Property, metaclass = DataPropertyClass): namespace = owl DataProperty = DatatypeProperty class FunctionalProperty(Property): namespace = owl @classmethod def is_functional_for(Prop, o): return True class InverseFunctionalProperty(Property): namespace = owl class TransitiveProperty (Property): namespace = owl class SymmetricProperty (Property): namespace = owl class AsymmetricProperty (Property): namespace = owl class ReflexiveProperty (Property): namespace = owl class IrreflexiveProperty (Property): namespace = owl _CLASS_PROPS = { DataProperty, ObjectProperty } _TYPE_PROPS = { FunctionalProperty, InverseFunctionalProperty, TransitiveProperty, SymmetricProperty, AsymmetricProperty, ReflexiveProperty, IrreflexiveProperty } def destroy_entity(e, undoable = False): if undoable: undoer_objs = []; undoer_datas = []; undoer_bnodes = []; undoer_relations = [] else: undoer_objs = undoer_datas = None; undoer_bnodes = None; undoer_relations = None if hasattr(e, "__destroy__"): e.__destroy__(undoer_objs, undoer_datas) elif isinstance(e, PropertyClass): modified_entities = set() if e._owl_type == owl_object_property: for s,p,o in e.namespace.world._get_obj_triples_spo_spo(None, e.storid, None): modified_entities.add(s) e.namespace.world._del_obj_triple_spo(None, e.storid, None) # XXX inverse ? elif e._owl_type == owl_data_property: for s,p,o,d in e.namespace.world._get_data_triples_spod_spod(None, e.storid, None, None): modified_entities.add(s) e.namespace.world._del_data_triple_spod(None, e.storid, None, None) else: #e._owl_type == owl_annotation_property: for s,p,o,d in e.namespace.world._get_triples_spod_spod(None, e.storid, None, None): modified_entities.add(s) e.namespace.world._del_obj_triple_spo (None, e.storid, None) e.namespace.world._del_data_triple_spod(None, e.storid, None, None) for s in modified_entities: s = e.namespace.world._entities.get(s) if s: delattr(s, e._python_name) e.namespace.world._props .pop(e._python_name, None) e.namespace.world._reasoning_props.pop(e._python_name, None) def destroyer(bnode): if bnode == e.storid: return if undoer_bnodes: undoer_bnodes.append(bnode) class_construct = e.namespace.ontology._bnodes.pop(bnode, None) if class_construct and class_construct.ontology: # No ontology => already removed for subclass in class_construct.subclasses(True): if isinstance(subclass, EntityClass) or isinstance(subclass, Thing): if class_construct in subclass.is_a: subclass.is_a .remove(class_construct) else: subclass.equivalent_to.remove(class_construct) def relation_updater(destroyed_storids, storid, relations): if undoer_relations is not None: undoer_relations.append((destroyed_storids, storid, relations)) update_relation(destroyed_storids, storid, relations) def update_relation(destroyed_storids, storid, relations): o = e.namespace.world._entities.get(storid) if o: for r in relations: if (r == rdf_type) or (r == rdfs_subpropertyof) or (r == rdfs_subclassof): #o.is_a.reinit([i for i in o.is_a if not i.storid in destroyed_storids]) parents = [e.namespace.world._to_python(i) for i in e.namespace.world._get_obj_triples_sp_o(storid, r)] o.is_a.reinit([i for i in parents if not i is None]) if r == rdfs_subclassof: for Subclass in o.descendants(True, True): _FUNCTIONAL_FOR_CACHE.pop(Subclass, None) elif (r == owl_equivalentproperty) or (r == owl_equivalentindividual): if o._equivalent_to._indirect: for o2 in o.equivalent_to._indirect: o2._equivalent_to._indirect = None o._equivalent_to._indirect = None elif r == owl_equivalentclass: if o._equivalent_to._indirect: for o2 in o.equivalent_to._indirect: o2._equivalent_to._indirect = None o._equivalent_to._indirect = None for Subclass in o.descendants(True, True): _FUNCTIONAL_FOR_CACHE.pop(Subclass, None) elif r == rdf_domain: o._domain = None elif r == rdf_range: o._range = None else: r = e.namespace.world._entities.get(r) if r: try: del o.__dict__[r.python_name] except: pass e.namespace.world.graph.destroy_entity(e.storid, destroyer, relation_updater, undoer_objs, undoer_datas) e.namespace.world._entities.pop(e.storid, None) e.namespace.ontology._entity_destroyed(e) if undoable: def undestroy(): e.namespace.world.graph.restore_iri(e.storid, e.iri) c_2_onto = e.namespace.world.graph.c_2_onto for c,s,p,o in undoer_objs: c_2_onto[c]._add_obj_triple_spo(s,p,o) for c,s,p,o,d in undoer_datas: c_2_onto[c]._add_data_triple_spo(s,p,o,d) #e.namespace.world.graph.db.executemany("INSERT INTO objs VALUES (?,?,?,?)", undoer_objs) #e.namespace.world.graph.db.executemany("INSERT INTO datas VALUES (?,?,?,?,?)", undoer_datas) e.namespace.world._entities[e.storid] = e for bnode in undoer_bnodes: class_construct = e.namespace.world._parse_bnode(bnode) for subclass in class_construct.subclasses(True): if isinstance(subclass, EntityClass) or isinstance(subclass, Thing): subclass.is_a._append(class_construct) for destroyed_storids, storid, relations in undoer_relations: update_relation(destroyed_storids, storid, relations) return undestroy class bottomObjectProperty(ObjectProperty): pass class bottomDataProperty(DataProperty): pass def _property_value_restrictions(x, Prop): for parents in (x.is_a, x.equivalent_to.indirect()): for r in parents: if isinstance(r, Restriction): if (Prop is None) or (r.property is Prop): yield r elif isinstance(r, And): for r2 in r.Classes: if isinstance(r2, Restriction): if (Prop is None) or (r2.property is Prop): yield r2 def _inherited_properties_value_restrictions(x, Props, already): if isinstance(x, Restriction): if (Props is None) or (x.property in Props): yield x elif isinstance(x, And): for x2 in x.Classes: yield from _inherited_properties_value_restrictions(x2, Props, already) elif isinstance(x, EntityClass) or isinstance(x, Thing): already.add(x) parents = [ parent for parents in (x.is_a, list(x.equivalent_to.indirect())) for parent in parents if not parent in already ] # Need two passes in order to favor restriction on the initial class rather than those on the ancestor classes for parent in parents: if isinstance(parent,
def get_remote_client(self, server_or_ip, username=None, private_key=None): if isinstance(server_or_ip, six.string_types): ip = server_or_ip else: network_name_for_ssh = CONF.compute.network_for_ssh ip = server_or_ip.networks[network_name_for_ssh][0] if username is None: username = CONF.scenario.ssh_user if private_key is None: private_key = self.keypair.private_key return remote_client.RemoteClient(ip, username, pkey=private_key) def _log_console_output(self, servers=None): if not servers: servers = self.compute_client.servers.list() for server in servers: LOG.debug('Console output for %s', server.id) LOG.debug(server.get_console_output()) def wait_for_volume_status(self, status): volume_id = self.volume.id self.status_timeout( self.volume_client.volumes, volume_id, status) def _image_create(self, name, fmt, path, properties={}): name = data_utils.rand_name('%s-' % name) image_file = open(path, 'rb') self.addCleanup(image_file.close) params = { 'name': name, 'container_format': fmt, 'disk_format': fmt, 'is_public': 'True', } params.update(properties) image = self.image_client.images.create(**params) self.addCleanup(self.image_client.images.delete, image) self.assertEqual("queued", image.status) image.update(data=image_file) return image.id def glance_image_create(self): qcow2_img_path = (CONF.scenario.img_dir + "/" + CONF.scenario.qcow2_img_file) aki_img_path = CONF.scenario.img_dir + "/" + CONF.scenario.aki_img_file ari_img_path = CONF.scenario.img_dir + "/" + CONF.scenario.ari_img_file ami_img_path = CONF.scenario.img_dir + "/" + CONF.scenario.ami_img_file LOG.debug("paths: img: %s, ami: %s, ari: %s, aki: %s" % (qcow2_img_path, ami_img_path, ari_img_path, aki_img_path)) try: self.image = self._image_create('scenario-img', 'bare', qcow2_img_path, properties={'disk_format': 'qcow2'}) except IOError: LOG.debug("A qcow2 image was not found. Try to get a uec image.") kernel = self._image_create('scenario-aki', 'aki', aki_img_path) ramdisk = self._image_create('scenario-ari', 'ari', ari_img_path) properties = { 'properties': {'kernel_id': kernel, 'ramdisk_id': ramdisk} } self.image = self._image_create('scenario-ami', 'ami', path=ami_img_path, properties=properties) LOG.debug("image:%s" % self.image) class BaremetalScenarioTest(OfficialClientTest): @classmethod def setUpClass(cls): super(BaremetalScenarioTest, cls).setUpClass() if (not CONF.service_available.ironic or not CONF.baremetal.driver_enabled): msg = 'Ironic not available or Ironic compute driver not enabled' raise cls.skipException(msg) # use an admin client manager for baremetal client username, password, tenant = cls.admin_credentials() manager = clients.OfficialClientManager(username, password, tenant) cls.baremetal_client = manager.baremetal_client # allow any issues obtaining the node list to raise early cls.baremetal_client.node.list() def _node_state_timeout(self, node_id, state_attr, target_states, timeout=10, interval=1): if not isinstance(target_states, list): target_states = [target_states] def check_state(): node = self.get_node(node_id=node_id) if getattr(node, state_attr) in target_states: return True return False if not tempest.test.call_until_true( check_state, timeout, interval): msg = ("Timed out waiting for node %s to reach %s state(s) %s" % (node_id, state_attr, target_states)) raise exceptions.TimeoutException(msg) def wait_provisioning_state(self, node_id, state, timeout): self._node_state_timeout( node_id=node_id, state_attr='provision_state', target_states=state, timeout=timeout) def wait_power_state(self, node_id, state): self._node_state_timeout( node_id=node_id, state_attr='power_state', target_states=state, timeout=CONF.baremetal.power_timeout) def wait_node(self, instance_id): """Waits for a node to be associated with instance_id.""" def _get_node(): node = None try: node = self.get_node(instance_id=instance_id) except ironic_exceptions.HTTPNotFound: pass return node is not None if not tempest.test.call_until_true( _get_node, CONF.baremetal.association_timeout, 1): msg = ('Timed out waiting to get Ironic node by instance id %s' % instance_id) raise exceptions.TimeoutException(msg) def get_node(self, node_id=None, instance_id=None): if node_id: return self.baremetal_client.node.get(node_id) elif instance_id: return self.baremetal_client.node.get_by_instance_uuid(instance_id) def get_ports(self, node_id): ports = [] for port in self.baremetal_client.node.list_ports(node_id): ports.append(self.baremetal_client.port.get(port.uuid)) return ports class NetworkScenarioTest(OfficialClientTest): """ Base class for network scenario tests """ @classmethod def check_preconditions(cls): if (CONF.service_available.neutron): cls.enabled = True # verify that neutron_available is telling the truth try: cls.network_client.list_networks() except exc.EndpointNotFound: cls.enabled = False raise else: cls.enabled = False msg = 'Neutron not available' raise cls.skipException(msg) @classmethod def setUpClass(cls): super(NetworkScenarioTest, cls).setUpClass() if CONF.compute.allow_tenant_isolation: cls.tenant_id = cls.isolated_creds.get_primary_tenant().id else: cls.tenant_id = cls.manager._get_identity_client( CONF.identity.username, CONF.identity.password, CONF.identity.tenant_name).tenant_id def _create_network(self, tenant_id, namestart='network-smoke-'): name = data_utils.rand_name(namestart) body = dict( network=dict( name=name, tenant_id=tenant_id, ), ) result = self.network_client.create_network(body=body) network = net_common.DeletableNetwork(client=self.network_client, **result['network']) self.assertEqual(network.name, name) self.set_resource(name, network) return network def _list_networks(self, **kwargs): nets = self.network_client.list_networks(**kwargs) return nets['networks'] def _list_subnets(self, **kwargs): subnets = self.network_client.list_subnets(**kwargs) return subnets['subnets'] def _list_routers(self, **kwargs): routers = self.network_client.list_routers(**kwargs) return routers['routers'] def _list_ports(self, **kwargs): ports = self.network_client.list_ports(**kwargs) return ports['ports'] def _get_tenant_own_network_num(self, tenant_id): nets = self._list_networks(tenant_id=tenant_id) return len(nets) def _get_tenant_own_subnet_num(self, tenant_id): subnets = self._list_subnets(tenant_id=tenant_id) return len(subnets) def _get_tenant_own_port_num(self, tenant_id): ports = self._list_ports(tenant_id=tenant_id) return len(ports) def _create_subnet(self, network, namestart='subnet-smoke-', **kwargs): """ Create a subnet for the given network within the cidr block configured for tenant networks. """ def cidr_in_use(cidr, tenant_id): """ :return True if subnet with cidr already exist in tenant False else """ cidr_in_use = self._list_subnets(tenant_id=tenant_id, cidr=cidr) return len(cidr_in_use) != 0 tenant_cidr = netaddr.IPNetwork(CONF.network.tenant_network_cidr) result = None # Repeatedly attempt subnet creation with sequential cidr # blocks until an unallocated block is found. for subnet_cidr in tenant_cidr.subnet( CONF.network.tenant_network_mask_bits): str_cidr = str(subnet_cidr) if cidr_in_use(str_cidr, tenant_id=network.tenant_id): continue body = dict( subnet=dict( name=data_utils.rand_name(namestart), ip_version=4, network_id=network.id, tenant_id=network.tenant_id, cidr=str_cidr, ), ) body['subnet'].update(kwargs) try: result = self.network_client.create_subnet(body=body) break except exc.NeutronClientException as e: is_overlapping_cidr = 'overlaps with another subnet' in str(e) if not is_overlapping_cidr: raise self.assertIsNotNone(result, 'Unable to allocate tenant network') subnet = net_common.DeletableSubnet(client=self.network_client, **result['subnet']) self.assertEqual(subnet.cidr, str_cidr) self.set_resource(data_utils.rand_name(namestart), subnet) return subnet def _create_port(self, network, namestart='port-quotatest-'): name = data_utils.rand_name(namestart) body = dict( port=dict(name=name, network_id=network.id, tenant_id=network.tenant_id)) result = self.network_client.create_port(body=body) self.assertIsNotNone(result, 'Unable to allocate port') port = net_common.DeletablePort(client=self.network_client, **result['port']) self.set_resource(name, port) return port def _get_server_port_id(self, server, ip_addr=None): ports = self._list_ports(device_id=server.id, fixed_ip=ip_addr) self.assertEqual(len(ports), 1, "Unable to determine which port to target.") return ports[0]['id'] def _create_floating_ip(self, thing, external_network_id, port_id=None): if not port_id: port_id = self._get_server_port_id(thing) body = dict( floatingip=dict( floating_network_id=external_network_id, port_id=port_id, tenant_id=thing.tenant_id, ) ) result = self.network_client.create_floatingip(body=body) floating_ip = net_common.DeletableFloatingIp( client=self.network_client, **result['floatingip']) self.set_resource(data_utils.rand_name('floatingip-'), floating_ip) return floating_ip def _associate_floating_ip(self, floating_ip, server): port_id = self._get_server_port_id(server) floating_ip.update(port_id=port_id) self.assertEqual(port_id, floating_ip.port_id) return floating_ip def _disassociate_floating_ip(self, floating_ip): """ :param floating_ip: type DeletableFloatingIp """ floating_ip.update(port_id=None) self.assertIsNone(floating_ip.port_id) return floating_ip def _ping_ip_address(self, ip_address, should_succeed=True): cmd = ['ping', '-c1', '-w1', ip_address] def ping(): proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) proc.wait() return (proc.returncode == 0) == should_succeed return tempest.test.call_until_true( ping, CONF.compute.ping_timeout, 1) def _create_pool(self, lb_method, protocol, subnet_id): """Wrapper utility that returns a test pool.""" name = data_utils.rand_name('pool-') body = { "pool": { "protocol": protocol, "name": name, "subnet_id": subnet_id, "lb_method": lb_method } } resp = self.network_client.create_pool(body=body) pool = net_common.DeletablePool(client=self.network_client, **resp['pool']) self.assertEqual(pool['name'], name) self.set_resource(name, pool) return pool def _create_member(self, address, protocol_port, pool_id): """Wrapper utility that returns a test member.""" body = { "member": { "protocol_port": protocol_port, "pool_id": pool_id, "address": address } } resp = self.network_client.create_member(body) member = net_common.DeletableMember(client=self.network_client, **resp['member']) self.set_resource(data_utils.rand_name('member-'), member) return member def _create_vip(self, protocol, protocol_port, subnet_id, pool_id): """Wrapper utility that returns a test vip.""" name = data_utils.rand_name('vip-') body = { "vip": { "protocol": protocol, "name": name, "subnet_id": subnet_id, "pool_id": pool_id, "protocol_port": protocol_port } } resp = self.network_client.create_vip(body) vip = net_common.DeletableVip(client=self.network_client, **resp['vip']) self.assertEqual(vip['name'], name) self.set_resource(name, vip) return vip def _check_vm_connectivity(self, ip_address, username=None, private_key=None, should_connect=True): """ :param ip_address: server to test against :param username: server's ssh username :param private_key: server's ssh private key to be used :param should_connect: True/False indicates positive/negative test positive - attempt ping and ssh negative - attempt ping and fail if succeed :raises: AssertError if the result of the connectivity check does not match the value of the should_connect param """ if should_connect: msg = "Timed out waiting for %s to become reachable" % ip_address else: msg = "ip address %s is reachable" % ip_address self.assertTrue(self._ping_ip_address(ip_address, should_succeed=should_connect), msg=msg) if should_connect: # no need to check ssh for negative connectivity linux_client = self.get_remote_client(ip_address, username, private_key) linux_client.validate_authentication() def _check_remote_connectivity(self, source, dest, should_succeed=True): """ check ping server via source ssh connection :param source: RemoteClient: an ssh connection from which to ping :param dest: and IP to ping against :param should_succeed: boolean should ping succeed or not :returns: boolean -- should_succeed == ping :returns: ping is false if ping failed """ def ping_remote(): try: source.ping_host(dest) except exceptions.SSHExecCommandFailed: LOG.exception('Failed to ping host via ssh connection') return not should_succeed return should_succeed return tempest.test.call_until_true(ping_remote, CONF.compute.ping_timeout, 1) def _create_security_group_nova(self, client=None, namestart='secgroup-smoke-', tenant_id=None): if client is None: client = self.compute_client # Create security group sg_name = data_utils.rand_name(namestart) sg_desc = sg_name + " description" secgroup = client.security_groups.create(sg_name, sg_desc) self.assertEqual(secgroup.name, sg_name) self.assertEqual(secgroup.description, sg_desc) self.set_resource(sg_name, secgroup) # Add rules to the security group self._create_loginable_secgroup_rule_nova(client, secgroup.id) return secgroup def _create_security_group_neutron(self, tenant_id, client=None, namestart='secgroup-smoke-'): if client is None: client = self.network_client secgroup = self._create_empty_security_group(namestart=namestart, client=client, tenant_id=tenant_id) # Add rules to the security group rules = self._create_loginable_secgroup_rule_neutron(secgroup=secgroup) for rule in rules: self.assertEqual(tenant_id, rule.tenant_id) self.assertEqual(secgroup.id, rule.security_group_id) return secgroup def _create_empty_security_group(self, tenant_id, client=None, namestart='secgroup-smoke-'): """Create a security group without rules. Default rules will be created: - IPv4 egress to any - IPv6 egress to any :param tenant_id: secgroup will be created in this tenant :returns: DeletableSecurityGroup -- containing the secgroup created """ if client is None: client = self.network_client sg_name = data_utils.rand_name(namestart) sg_desc = sg_name + " description" sg_dict = dict(name=sg_name, description=sg_desc) sg_dict['tenant_id'] = tenant_id body = dict(security_group=sg_dict) result = client.create_security_group(body=body) secgroup
= ir*sigmax this_sigmay = ir*sigmay # print iz, ir, a, b tmpG = (1/(2.*this_sigmax*this_sigmay))*np.exp(-0.5*(((x-x0)**2)/this_sigmax**2+((y-y0)**2)/this_sigmay**2)) tmpdens[:,:,ii] = tmpG*scale_factor/tmpG.max() # print tmpG.shape, tmpG.max() # exit() ii=ii+1 iz=iz+1 if verbose==True: print x print x.shape, y.shape, z.shape sys.stdout.flush() return tmpdens def make3DBox(sizex, sizey, sizez, verbose=False, scale_factor=1.0): """ Make homogeneous 3D 3x3x3 cube. """ if verbose==True: print "make3DBox size", sizex, sizey, sizez sys.stdout.flush() tmpdens = np.ones((sizex, sizey, sizez)) tmpdens = tmpdens*scale_factor if verbose==True: print "make3DBox", tmpdens.shape print "make3DBox", tmpdens sys.stdout.flush() return tmpdens def make3DCell(sizex, sizey, sizez, verbose=False, scale_factor=1.0): """ Calculate 3D distribution for an SO2 cell. Here a 3x3x3 cube with a hole in the middle for the camera. """ if verbose==True: print "make3DCell size", sizex, sizey, sizez sys.stdout.flush() tmpdens = np.ones((sizex, sizey, sizez)) tmpdens = tmpdens*scale_factor x0 = sizex // 2 y0 = sizey // 2 z0 = sizez // 2 tmpdens[x0,y0,z0] = 0.0 if verbose==True: print "make3DCell", tmpdens.shape print "make3DCell", tmpdens sys.stdout.flush() return tmpdens class ConversionFactors: def __init__(self): self.nm2cm = 1.e-07 # Convert from nm to cm self.nm2um = 1.e-03 # Convert from nm to cm self.um2m = 1.e-06 # Convert from um to m self.cm2km = 1.e-05 # Factor from cm to km self.m2km = 1.e-03 # Factor from m to km self.m2cm = 1.e+02 # Factor from m to cm self.km2m = 1000. # Factor from km to m self.km2cm = 100000. # Factor from km to m self.gm3togcm3=1e-06 # Convert from g/m**3 to g/cm**3 self.kgtog=1.0e+03 # Convert from kg to g self.m3tocm3=1.0e+06 # Convert from m**3 to cm**3 class Camera: def __init__(self,RandString=''): self.Type='Camera' self.verbose=False self.name='TestCamera' self.savename='Camera' # Localisation of camera in m self.x = 0.0 self.y = 0.0 self.z = 0.0 # Viewing direction self.umu = 1.0 # Viewing the horizon self.phi = 0.0 # Looking north # Number of pixels in horizontal and vertical self.h_pixels=0 self.v_pixels=0 # Field of view of camera: phi1 phi2 theta1 theta2 # phi = 0 is looking to the south # phi = 180 is with the sun in the back if phi0=0 self.phi1 = 0.0 self.phi2 = 0.0 self.theta1 = 0.0 self.theta2 = 0.0 self.wavelength_grid_file='../Data/XSections/uvspec_SO2_wavelength_grid_file' self.wavelength=-9999 self.wavelength1=-9999 self.wavelength2=-9999 if RandString == '': self.RandString= 'Cam'+''.join((random.sample(string.ascii_lowercase, 5))) else: self.RandString= 'Cam'+RandString return def info(self,latex=False): print print self.savename+' name:', self.name print '(All dimensions are in units of m)' print 'Localisation x={:f}, y={:f}, z={:f}'.format(self.x, self.y, self.z) print 'Pixels h_pixels={:d}, v_pixels={:f}'.format(self.h_pixels, self.v_pixels) print 'FOV phi1={:f}, phi2={:f}, theta1={:f}, theta2={:f}'.format(self.phi1, self.phi2, self.theta1, self.theta2) sys.stdout.flush() if latex: print '& {:5.1f} & {:5.1f} & {:5.1f} & {:5.1f} & {:6.1f} & {:6.1f} & {:6.1f} & {:6.1f} & {:d}& {:d}\\\\'.format(self.wavelength1, self.x, self.y, self.z, self.phi1, self.phi2, self.theta1, self.theta2, self.h_pixels, self.v_pixels) sys.stdout.flush() print return def save(self,folder): pkl_file = open(folder+self.savename+self.name+'.pkl', 'wb') pickle.dump(self,pkl_file ) pkl_file.close() return def SetRTInput(self, UVS): print "Cam SetRTInput" sys.stdout.flush() UVS.inp['mc_sensorposition'] = '{:8.1f} {:8.1f} {:8.1f}'.format(self.x, self.y, self.z) UVS.inp['mc_sample_grid'] = '{:d} {:d}'.format(self.h_pixels, self.v_pixels) UVS.inp['mc_panorama_view'] = '{:f} {:f} {:f} {:f}'.format(self.phi1, self.phi2, self.theta1, self.theta2) UVS.inp['mc_panorama_alignment'] = 'mu' UVS.inp['umu'] = '{:f}'.format(self.umu) UVS.inp['phi'] = '{:f}'.format(self.phi) # UVS.inp['mc_panorama_alignment'] = 'sun' # UVS.inp['mc_panorama'] = 'weight_with_cos' # UVS.inp['mc_panorama'] = 'with_direct_rad' # UVS.inp['umu'] = '{:f}'.format((np.cos(np.deg2rad(0.5*(self.theta1+self.theta2))))) # UVS.inp['phi'] = '{:f}'.format(0.5*(self.phi1+self.phi2)-UVS.inp['phi0']) if self.wavelength1 != self.wavelength2: UVS.inp['wavelength_grid_file'] = self.wavelength_grid_file if not 'mol_abs_param' in UVS.inp: UVS.inp['mol_abs_param'] = 'crs' try: self.wavelength UVS.inp['wavelength'] = self.wavelength except: pass try: self.wavelength1 self.wavelength2 UVS.inp['wavelength'] = str(self.wavelength1)+' '+str(self.wavelength2) except: print "Both wavelength1 and wavelength2 must be given" exit() # try: # self.filterfunction # UVS.inp['filter_function_file'] = self.filterfunction # UVS.inp['output_process'] = 'integrate' # except: # pass return class Spectrometer(Camera): def __init__(self, RunName=''): self.Type='Spectrometer' self.verbose=False self.name='Spectrometer' self.savename='Spectrometer' # Localisation of camera in m self.x = 0.0 self.y = 0.0 self.z = 0.0 # Number of pixels in horizontal and vertical self.h_pixels=1 self.v_pixels=1 # Field of view of camera: phi1 phi2 theta1 theta2 # phi = 0 is looking to the south # phi = 180 is with the sun in the back if phi0=0 self.phi1 = 0.0 self.phi2 = 0.0 self.theta1 = 0.0 self.theta2 = 0.0 self.mol_modify_o3=-9999 self.crs_o3= '../Data/XSections/O3_Serdyuchenko_2014_223K_213-1100nm2013version.txt' self.crs_o4= '../Data/XSections/o4_thalman_volkamer_293K.dat' self.slitfunction = '' self.wavelength_grid_file='../Data/XSections/uvspec_SO2_wavelength_grid_file' self.RandString= 'Spec'+RunName+'_'+''.join(random.sample(string.ascii_lowercase, 5)) return def SetRTInput(self, UVS): print self.savename+" SetRTInput" sys.stdout.flush() UVS.inp['mc_sensorposition'] = '{:8.1f} {:8.1f} {:8.1f}'.format(self.x, self.y, self.z) UVS.inp['mc_sample_grid'] = '{:d} {:d}'.format(self.h_pixels, self.v_pixels) UVS.inp['mc_panorama_view'] = '{:f} {:f} {:f} {:f}'.format(self.phi1, self.phi2, self.theta1, self.theta2) UVS.inp['wavelength'] = str(self.wavelength1)+' '+str(self.wavelength2) UVS.inp['mol_abs_param'] = 'crs' UVS.inp['crs_file O4'] = self.crs_o4 UVS.inp['crs_file O3'] = self.crs_o3 if self.mol_modify_o3>0.0: UVS.inp['mol_modify O3'] = self.mol_modify_o3+' DU' # Do this in a separate call to conv and spline after running uvspec # if self.slitfunction != '': # UVS.inp['slit_function_file'] = self.slitfunction UVS.inp['wavelength_grid_file'] = self.wavelength_grid_file return def CalculateColumnDensity(self): """ NOTE: It is assumed that integration is along x-axis for the center pixels in the y-direction. """ for Plu in self.PlumeList: if 'SO2' in Plu.name: fact = 100. # Convert from m to cm to column in cm-2 else: fact = 1.0 # print "CalculateCol", Plu.name, fact # Calculate line integral for Spectrometer using Tomography software nx=Plu.nx dx=Plu.dx*1000 # # In meters x0=0 nz=Plu.nz z0=Plu.z[0]*1000.0 dz=Plu.dz*1000.0 #100. # In meters # RR=ReconstructionRegion RR = TC.Area(nx=nx,dx=dx, x0=x0, nz=nz, dz=dz, z0=z0 ) RR.zmin = RR.z0 RR.zmax = RR.z0 + RR.dz*RR.nz RR.Image = np.zeros([nz,nx]) # print RR.Image.shape, Plu.dens.shape ycenter = int(Plu.dens.shape[1]/2) # Do this for center slice in y-direction RR.Image=Plu.dens[:,ycenter,1:] # Plu is one pixel larger in z-direction, inconsistent. RR.Image=RR.Image.T # Sigh, why do I use different conventions for x and y...... indices=np.argmax(RR.Image) #maxind=np.unravel_index(indices, RR.Image.shape) #print "RR", indices, maxind indices=np.argmax(Plu.dens) maxind=np.unravel_index(indices, Plu.dens.shape) # print "Plu dens", indices, maxind # print "RR.Image.max()", RR.Image.min(), RR.Image.max(), Plu.dens[maxind] theta1 = self.theta1-90 # And different conventions for the angles..... theta2 = self.theta2-90 Nrays=9 Camera1=TC.TomoCamera(x=-Plu.x_start*1000-Plu.x_length*1000/2, z=self.z, theta1=theta1, theta2=theta2, Nrays=Nrays,Name='Cam 1') Camera1.Rays() iRay=0 sumtmpRq=0 while iRay<Camera1.Nrays: tmpRq, tmpTotalLength, tmpind, tmpN =Camera1.CalculateLineIntegral(RR, iRay) Camera1.Sinogram[iRay]=tmpRq # print '{:e}'.format(tmpRq) sumtmpRq=sumtmpRq+tmpRq iRay=iRay+1 Plu.ColumnDensity = fact*sumtmpRq/Nrays # fnTestLineIntegral='tmpgabba_' # tmpfn = fnTestLineIntegral+'Cam1.dat' # print 'tmpfn', tmpfn # Camera1.WriteLineIntegralToFile(tmpfn) return class Domain: def __init__(self): self.verbose=False self.name='TestDomain' # Domain size, all in km self.x_start = 0 self.x_end = 0.4 self.dx = 0.001 self.nx=0 self.x =None self.y_start = 0 self.y_end = 0.8 self.dy = 0.001 self.ny=0 self.y =None self.z_start = 0.150 self.z_end = 0.350 self.dz = 0.001 self.nz=0 self.z =None self.x_centre = 0.5*(self.x_start+self.x_end) self.y_centre = 0.5*(self.y_start+self.y_end) self.z_centre = 0.5*(self.z_start+self.z_end) return def finalize(self): self.nx = int(np.rint((self.x_end-self.x_start)/self.dx)) self.x = np.linspace(self.x_start,self.x_end,self.nx+1) self.x_size = self.x_end-self.x_start self.ny = int(np.rint((self.y_end-self.y_start)/self.dy)) self.y = np.linspace(self.y_start,self.y_end,self.ny+1) self.y_size = self.y_end-self.y_start self.nz = int(np.rint((self.z_end-self.z_start)/self.dz)) self.z = np.linspace(self.z_start,self.z_end,self.nz+1) self.z_size = self.z_end-self.z_start self.x_centre = 0.5*(self.x_start+self.x_end) self.y_centre = 0.5*(self.y_start+self.y_end) self.z_centre = 0.5*(self.z_start+self.z_end) return def info(self): print print 'Domain name:', self.name print '(All dimensions are in units of km)' print 'x_start {:f}, x_end {:f}, dx {:f}, nx {:d}'.format(self.x_start, self.x_end, self.dx, self.nx) print 'y_start {:f}, y_end {:f}, dy {:f}, ny {:d}'.format(self.y_start, self.y_end, self.dy, self.ny) print 'z_start {:f}, z_end {:f}, dz {:f}, nz {:d}'.format(self.z_start, self.z_end, self.dz, self.nz) print 'x_centre {:f}, y_centre {:f}, z_centre {:f}'.format(self.x_centre, self.y_centre, self.z_centre) print sys.stdout.flush() return def save(self,folder): pkl_file = open(folder+'Domain.pkl', 'wb') pickle.dump(self,pkl_file ) pkl_file.close() return class Plume: def __init__(self): self.verbose=False self.name='TestPlume' self.randname = 'Plume'+''.join((random.sample(string.ascii_lowercase, 5))) self.shape= '' # Either set by input to set_density or inside ReadLESNetCDF self.x_start = None self.x_end = None self.x_length = None self.y_start = None self.y_end = None self.y_length = None self.z_start = None self.z_end = None self.z_length = None self.set_density_flag=False self.ext = 0.0 self.gg = 0.0 self.ssa = 0.0 self.cdf = '' self.MYSTIC_profile_file_flag=0 return def revise_domain(self, Domain, verbose=False): if verbose: print "Inside revise_domain" sys.stdout.flush() # Only need to revise z-direction as x- and y-direction should be ok # For z-direction avoid first value as it has a half step. tmpdz = self.z[2]-self.z[1] tmpz_start=self.z[1]-tmpdz#*self.z.shape[0] # Add 1 as we want altitude at levels. tmpz = np.arange(tmpz_start, tmpz_start+tmpdz*float(self.z.shape[0]+1), tmpdz) Domain.z = tmpz Domain.dz = tmpdz Domain.nz = Domain.z.shape[0]-1 # -1 as this should by number of layers, not levels Domain.z_start=Domain.z[0] Domain.z_end=Domain.z[Domain.nz] Domain.z_size = Domain.z_end-Domain.z_end return Domain def finalize_size(self, Domain, verbose=False): if verbose: print "Inside finalize_size" sys.stdout.flush() self.x_end = self.x_start+self.x_length self.y_end = self.y_start+self.y_length self.z_end = self.z_start+self.z_length self.x_centre = self.x_start+0.5*self.x_length self.y_centre = self.y_start+0.5*self.y_length self.z_centre = self.z_start+0.5*self.z_length self.dx = Domain.dx self.dy = Domain.dy self.dz = Domain.dz self.nx = int(np.rint((self.x_end-self.x_start)/self.dx)) self.x = np.linspace(self.x_start,self.x_end,self.nx+1) self.ny = int(np.rint((self.y_end-self.y_start)/self.dy)) self.y = np.linspace(self.y_start,self.y_end,self.ny+1) self.nz = int(np.ceil((self.z_end-self.z_start)/self.dz)) self.z = np.linspace(self.z_start,self.z_end,self.nz+1) # Check that plume
<filename>src/bot.py from rlbot.agents.base_agent import BaseAgent, SimpleControllerState from rlbot.messages.flat.QuickChatSelection import QuickChatSelection from rlbot.utils.structures.game_data_struct import GameTickPacket from util.ball_prediction_analysis import find_slice_at_time, find_matching_slice from util.boost_pad_tracker import BoostPadTracker from util.drive import steer_toward_target, limit_to_safe_range from util.sequence import Sequence, ControlStep from util.vec import Vec3 from util.orientation import Orientation, relative_location import math class MyBot(BaseAgent): def __init__(self, name, team, index): super().__init__(name, team, index) self.active_sequence: Sequence = None self.boost_pad_tracker = BoostPadTracker() self.bot_state = 0 def initialize_agent(self): # Set up information about the boost pads now that the game is active and the info is available self.boost_pad_tracker.initialize_boosts(self.get_field_info()) def get_output(self, packet: GameTickPacket) -> SimpleControllerState: """ This function will be called by the framework many times per second. This is where you can see the motion of the ball, etc. and return controls to drive your car. """ # Keep our boost pad info updated with which pads are currently active self.boost_pad_tracker.update_boost_status(packet) # This is good to keep at the beginning of get_output. It will allow you to continue # any sequences that you may have started during a previous call to get_output. if self.active_sequence is not None and not self.active_sequence.done: controls = self.active_sequence.tick(packet) if controls is not None: return controls # Gather some information about our car and the ball my_car = packet.game_cars[self.index] car_location = Vec3(my_car.physics.location) car_velocity = Vec3(my_car.physics.velocity) ball_location = Vec3(packet.game_ball.physics.location) ball_velocity = Vec3(packet.game_ball.physics.velocity) # By default we will chase the ball, but target_location can be changed later target_location = ball_location ball_on_floor = target_location ball_prediction = self.get_ball_prediction_struct() # This can predict bounces, etc # dynamic time to the ball depending on the car's speed time_in_future = self.time_to_ball(car_location, car_velocity.length(), ball_location) seconds_in_future = packet.game_info.seconds_elapsed + time_in_future ball_in_future = find_slice_at_time(ball_prediction, seconds_in_future) ball_on_floor = find_matching_slice(ball_prediction, 0, lambda s: s.physics.location.z < 150 and s.game_seconds >= packet.game_info.seconds_elapsed + time_in_future, search_increment=1) time_to_floor = 0 # ball_in_future might be None if we don't have an adequate ball prediction right now, like during # replays, so check it to avoid errors. if ball_in_future is not None: target_location = Vec3(ball_in_future.physics.location) time_in_future = self.time_to_ball(car_location, car_velocity.length(), target_location) self.renderer.draw_line_3d(ball_location, target_location, self.renderer.cyan()) # gets the next time when the ball is on the floor if ball_on_floor is not None: floor_location = Vec3(ball_on_floor.physics.location) time_to_floor = ball_on_floor.game_seconds - packet.game_info.seconds_elapsed self.renderer.draw_line_3d(ball_location, floor_location, self.renderer.orange()) self.renderer.draw_rect_3d(floor_location, 8, 8, True, self.renderer.orange(), centered=True) # Draw some things to help understand what the bot is thinking self.renderer.draw_line_3d(car_location, target_location, self.renderer.white()) self.renderer.draw_rect_3d(target_location, 8, 8, True, self.renderer.cyan(), centered=True) orientation = Orientation(my_car.physics.rotation) relative = relative_location(car_location, orientation, ball_location) controls = SimpleControllerState() self.renderer.draw_string_2d(10, 10 + self.team * 100, 5, 5, f"{controls.throttle}", self.renderer.team_color()) # makes the car rotate to be more straight if not my_car.has_wheel_contact: # roll to land on all four wheels if orientation.roll < -0.1: controls.roll = 1 elif orientation.roll > 0.1: controls.roll = -1 # pitch to land on all four wheels if orientation.pitch < -0.1: controls.pitch = 1 elif orientation.pitch > 0.1: controls.pitch = -1 deg = math.degrees(car_location.ang_to(ball_location)) # yaw to correct angle towards ball if deg < 85: controls.yaw = 1 elif deg > 95: controls.yaw = -1 # jump if another car is close to not get stuck if self.location_to_nearest_car(car_location, my_car.team, packet).dist(car_location) < 200 and car_velocity.length() < 50: controls.jump = True self.set_kickoff_state(car_velocity, ball_location, ball_velocity) self.decide_state(controls, packet, my_car, car_location, car_velocity, ball_location, ball_velocity, target_location, ball_prediction, orientation, relative, time_in_future, time_to_floor) return controls def decide_state(self, controls, packet, my_car, car_location, car_velocity, ball_location, ball_velocity, target_location, ball_prediction, orientation, relative, time_to_target, time_to_floor): if self.bot_state == 0: self.ball_chase(controls, packet, my_car, car_velocity, car_location, target_location, ball_location, relative, time_to_target, time_to_floor, orientation) elif self.bot_state == 1: self.retreat_to_goal(controls, packet, my_car, car_location, car_velocity) elif self.bot_state == 2: self.go_towards_own_goal(controls, my_car, car_location, ball_location) elif self.bot_state == 3: self.kickoff() def set_kickoff_state(self, car_velocity, ball_location, ball_velocity): if car_velocity.length() == 0 and ball_location.x == 0 and ball_location.y == 0 and ball_velocity.length() == 0: self.bot_state = 3 def kickoff(self): self.bot_state = 0 def ball_chase(self, controls, packet, my_car, car_velocity, car_location, target_location, ball_location, relative, time_to_target, time_to_floor, orientation): """ Makes the bot chase the ball unless some conditions are valid """ # retreat to own goal if the ball is a lot closer to our goal than we are info = self.get_field_info() own_goal_vec = info.goals[self.team].location own_goal_location = Vec3(own_goal_vec) if ball_location.dist(own_goal_location) + 1000 < car_location.dist(own_goal_location) and car_location.dist(own_goal_location) > 4000: self.bot_state = 1 elif own_goal_vec.y > 5000 and car_location.y + 100 < target_location.y: # BLUE self.bot_state = 2 elif own_goal_vec.y < -5000 and car_location.y > target_location.y + 100: # ORANGE self.bot_state = 2 self.renderer.draw_string_3d(car_location, 1, 1, "\nBall chasing", self.renderer.red()) # makes the bots shoot towards the goal target_location = self.ball_towards_goal_location(target_location, own_goal_location, car_location, ball_location) self.renderer.draw_rect_3d(target_location, 8, 8, True, self.renderer.red(), centered=True) self.renderer.draw_line_3d(car_location, target_location, self.renderer.red()) controls.steer = steer_toward_target(my_car, target_location) controls.throttle = 1.0 # You can set more controls if you want, like controls.boost. # angle to ball car_to_ball = Vec3(ball_location.x - car_location.x, ball_location.y - car_location.y, ball_location.z - car_location.z) angle = math.degrees(orientation.forward.ang_to(car_to_ball)) # boost if angle < 20 and not my_car.is_super_sonic: controls.boost = True # try to turn around quickly if angle > 160 and relative.x < -2000: self.begin_half_flip(packet) elif angle > 40: controls.handbrake = True elif 1000 < car_velocity.length() and angle < 90 and car_to_ball.length() < 400 and relative.z < 200: # We'll do a front flip if the car is moving at a certain speed. return self.begin_front_flip(packet, angle, orientation.right.length()) def drive_to_ball_bounce(self, my_car, car_location, floor_location): """ Slowly drives to where the ball will bounce """ pass def retreat_to_goal(self, controls, packet, my_car, car_location, car_velocity): """ Makes the bot retreat back to the goal and only change back to another state when it's close to the goal """ self.renderer.draw_string_3d(car_location, 1, 1, "\nRetreating to goal", self.renderer.red()) info = self.get_field_info() own_goal_vec = info.goals[self.team].location own_goal_location = Vec3(own_goal_vec) controls.steer = steer_toward_target(my_car, own_goal_location) controls.throttle = 1.0 if not my_car.is_super_sonic and car_velocity.length() > 200 and car_location.dist(own_goal_location) > 4500: controls.boost = True # change back to ball chasing if distance to goal is small self.renderer.draw_string_3d(car_location, 1, 1, f"\n\nDist to goal {car_location.dist(own_goal_location)}", self.renderer.white()) if car_location.dist(own_goal_location) < 4000: self.bot_state = 0 def go_towards_own_goal(self, controls, my_car, car_location, ball_location): """ Goes towards own goal and changes back to ball chasing when a bit away from the ball """ self.renderer.draw_string_3d(car_location, 1, 1, "\nGoing towards own goal", self.renderer.red()) info = self.get_field_info() own_goal_vec = info.goals[self.team].location own_goal_location = Vec3(own_goal_vec) controls.steer = steer_toward_target(my_car, own_goal_location) controls.throttle = 1.0 # goes back to ball chase state if far enough away from the ball if car_location.dist(ball_location) > 1000 or car_location.dist(own_goal_location) < 4000: self.bot_state = 0 def jump_shot(self, controls, car_location, ball_location): pass def ball_towards_goal_location(self, target_location, goal_location, car_location, ball_location): """ Modifies the target location so that the ball is hit a bit more towards the enemy goal """ enemy_goal_location = Vec3(0, -goal_location.y, goal_location.z) if target_location.x - enemy_goal_location.x == 0: target_location.x = 1 if goal_location.y < 0: # usually for blue side target_location.x = -1 slope = (target_location.y - enemy_goal_location.y) / (target_location.x - enemy_goal_location.x) dist = car_location.dist(target_location) if dist > 3000: correction = 1000 elif 500 < dist <= 3000: correction = 0.36 * dist - 80 else: correction = 100 x_value = 1 if target_location.x < 0: x_value = -1 new_target_location = Vec3(1, slope, 0).normalized() return target_location + x_value * correction * new_target_location def location_to_nearest_car(self, car_location, team, packet, enemy=False): """ Gets the closest enemy car to a target location """ # If enemy is true, only view nearest enemy cars nearest_distance = 999999 nearest_car = None for car in packet.game_cars: if car.team == team: continue other_car = Vec3(car.physics.location) distance_to = car_location.dist(other_car) if distance_to < nearest_distance: nearest_distance = distance_to nearest_car = other_car return nearest_car def time_to_ball(self, car_location, car_speed, ball_location): # estimates a time it takes for the bot to reach the ball for it to better predict where to go to hit the ball distance = car_location.dist(ball_location) return distance/(car_speed+100) def begin_half_flip(self, packet): self.active_sequence = Sequence([ ControlStep(duration=1.0, controls=SimpleControllerState(throttle=-1, boost=False)), ControlStep(duration=0.1, controls=SimpleControllerState(jump=True)), ControlStep(duration=0.05, controls=SimpleControllerState(jump=False)), ControlStep(duration=0.2, controls=SimpleControllerState(jump=True, pitch=1)), ControlStep(duration=0.15, controls=SimpleControllerState(pitch=-1, boost=False)), ControlStep(duration=0.5, controls=SimpleControllerState(pitch=-1, boost=True, roll=1, throttle=1)), ControlStep(duration=0.5, controls=SimpleControllerState()), ]) return self.active_sequence.tick(packet) def begin_front_flip(self, packet, angle=0.0, right=1): # Do a flip. We will be committed to this for a few seconds and the bot will ignore other # logic during that time because
self.vz = vz self.xacc = xacc self.yacc = yacc self.zacc = zacc def pack(self, mav): return MAVLink_message.pack(self, mav, 183, struct.pack('<Qffffffiiihhhhhh', self.time_usec, self.roll, self.pitch, self.yaw, self.rollspeed, self.pitchspeed, self.yawspeed, self.lat, self.lon, self.alt, self.vx, self.vy, self.vz, self.xacc, self.yacc, self.zacc)) class MAVLink_hil_controls_message(MAVLink_message): ''' Sent from autopilot to simulation. Hardware in the loop control outputs ''' def __init__(self, time_usec, roll_ailerons, pitch_elevator, yaw_rudder, throttle, aux1, aux2, aux3, aux4, mode, nav_mode): MAVLink_message.__init__(self, MAVLINK_MSG_ID_HIL_CONTROLS, 'HIL_CONTROLS') self._fieldnames = ['time_usec', 'roll_ailerons', 'pitch_elevator', 'yaw_rudder', 'throttle', 'aux1', 'aux2', 'aux3', 'aux4', 'mode', 'nav_mode'] self.time_usec = time_usec self.roll_ailerons = roll_ailerons self.pitch_elevator = pitch_elevator self.yaw_rudder = yaw_rudder self.throttle = throttle self.aux1 = aux1 self.aux2 = aux2 self.aux3 = aux3 self.aux4 = aux4 self.mode = mode self.nav_mode = nav_mode def pack(self, mav): return MAVLink_message.pack(self, mav, 63, struct.pack('<QffffffffBB', self.time_usec, self.roll_ailerons, self.pitch_elevator, self.yaw_rudder, self.throttle, self.aux1, self.aux2, self.aux3, self.aux4, self.mode, self.nav_mode)) class MAVLink_hil_rc_inputs_raw_message(MAVLink_message): ''' Sent from simulation to autopilot. The RAW values of the RC channels received. The standard PPM modulation is as follows: 1000 microseconds: 0%, 2000 microseconds: 100%. Individual receivers/transmitters might violate this specification. ''' def __init__(self, time_usec, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, chan9_raw, chan10_raw, chan11_raw, chan12_raw, rssi): MAVLink_message.__init__(self, MAVLINK_MSG_ID_HIL_RC_INPUTS_RAW, 'HIL_RC_INPUTS_RAW') self._fieldnames = ['time_usec', 'chan1_raw', 'chan2_raw', 'chan3_raw', 'chan4_raw', 'chan5_raw', 'chan6_raw', 'chan7_raw', 'chan8_raw', 'chan9_raw', 'chan10_raw', 'chan11_raw', 'chan12_raw', 'rssi'] self.time_usec = time_usec self.chan1_raw = chan1_raw self.chan2_raw = chan2_raw self.chan3_raw = chan3_raw self.chan4_raw = chan4_raw self.chan5_raw = chan5_raw self.chan6_raw = chan6_raw self.chan7_raw = chan7_raw self.chan8_raw = chan8_raw self.chan9_raw = chan9_raw self.chan10_raw = chan10_raw self.chan11_raw = chan11_raw self.chan12_raw = chan12_raw self.rssi = rssi def pack(self, mav): return MAVLink_message.pack(self, mav, 54, struct.pack('<QHHHHHHHHHHHHB', self.time_usec, self.chan1_raw, self.chan2_raw, self.chan3_raw, self.chan4_raw, self.chan5_raw, self.chan6_raw, self.chan7_raw, self.chan8_raw, self.chan9_raw, self.chan10_raw, self.chan11_raw, self.chan12_raw, self.rssi)) class MAVLink_optical_flow_message(MAVLink_message): ''' Optical flow from a flow sensor (e.g. optical mouse sensor) ''' def __init__(self, time_usec, sensor_id, flow_x, flow_y, flow_comp_m_x, flow_comp_m_y, quality, ground_distance): MAVLink_message.__init__(self, MAVLINK_MSG_ID_OPTICAL_FLOW, 'OPTICAL_FLOW') self._fieldnames = ['time_usec', 'sensor_id', 'flow_x', 'flow_y', 'flow_comp_m_x', 'flow_comp_m_y', 'quality', 'ground_distance'] self.time_usec = time_usec self.sensor_id = sensor_id self.flow_x = flow_x self.flow_y = flow_y self.flow_comp_m_x = flow_comp_m_x self.flow_comp_m_y = flow_comp_m_y self.quality = quality self.ground_distance = ground_distance def pack(self, mav): return MAVLink_message.pack(self, mav, 175, struct.pack('<QfffhhBB', self.time_usec, self.flow_comp_m_x, self.flow_comp_m_y, self.ground_distance, self.flow_x, self.flow_y, self.sensor_id, self.quality)) class MAVLink_global_vision_position_estimate_message(MAVLink_message): ''' ''' def __init__(self, usec, x, y, z, roll, pitch, yaw): MAVLink_message.__init__(self, MAVLINK_MSG_ID_GLOBAL_VISION_POSITION_ESTIMATE, 'GLOBAL_VISION_POSITION_ESTIMATE') self._fieldnames = ['usec', 'x', 'y', 'z', 'roll', 'pitch', 'yaw'] self.usec = usec self.x = x self.y = y self.z = z self.roll = roll self.pitch = pitch self.yaw = yaw def pack(self, mav): return MAVLink_message.pack(self, mav, 102, struct.pack('<Qffffff', self.usec, self.x, self.y, self.z, self.roll, self.pitch, self.yaw)) class MAVLink_vision_position_estimate_message(MAVLink_message): ''' ''' def __init__(self, usec, x, y, z, roll, pitch, yaw): MAVLink_message.__init__(self, MAVLINK_MSG_ID_VISION_POSITION_ESTIMATE, 'VISION_POSITION_ESTIMATE') self._fieldnames = ['usec', 'x', 'y', 'z', 'roll', 'pitch', 'yaw'] self.usec = usec self.x = x self.y = y self.z = z self.roll = roll self.pitch = pitch self.yaw = yaw def pack(self, mav): return MAVLink_message.pack(self, mav, 158, struct.pack('<Qffffff', self.usec, self.x, self.y, self.z, self.roll, self.pitch, self.yaw)) class MAVLink_vision_speed_estimate_message(MAVLink_message): ''' ''' def __init__(self, usec, x, y, z): MAVLink_message.__init__(self, MAVLINK_MSG_ID_VISION_SPEED_ESTIMATE, 'VISION_SPEED_ESTIMATE') self._fieldnames = ['usec', 'x', 'y', 'z'] self.usec = usec self.x = x self.y = y self.z = z def pack(self, mav): return MAVLink_message.pack(self, mav, 208, struct.pack('<Qfff', self.usec, self.x, self.y, self.z)) class MAVLink_vicon_position_estimate_message(MAVLink_message): ''' ''' def __init__(self, usec, x, y, z, roll, pitch, yaw): MAVLink_message.__init__(self, MAVLINK_MSG_ID_VICON_POSITION_ESTIMATE, 'VICON_POSITION_ESTIMATE') self._fieldnames = ['usec', 'x', 'y', 'z', 'roll', 'pitch', 'yaw'] self.usec = usec self.x = x self.y = y self.z = z self.roll = roll self.pitch = pitch self.yaw = yaw def pack(self, mav): return MAVLink_message.pack(self, mav, 56, struct.pack('<Qffffff', self.usec, self.x, self.y, self.z, self.roll, self.pitch, self.yaw)) class MAVLink_highres_imu_message(MAVLink_message): ''' The IMU readings in SI units in NED body frame ''' def __init__(self, time_usec, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag, abs_pressure, diff_pressure, pressure_alt, temperature, fields_updated): MAVLink_message.__init__(self, MAVLINK_MSG_ID_HIGHRES_IMU, 'HIGHRES_IMU') self._fieldnames = ['time_usec', 'xacc', 'yacc', 'zacc', 'xgyro', 'ygyro', 'zgyro', 'xmag', 'ymag', 'zmag', 'abs_pressure', 'diff_pressure', 'pressure_alt', 'temperature', 'fields_updated'] self.time_usec = time_usec self.xacc = xacc self.yacc = yacc self.zacc = zacc self.xgyro = xgyro self.ygyro = ygyro self.zgyro = zgyro self.xmag = xmag self.ymag = ymag self.zmag = zmag self.abs_pressure = abs_pressure self.diff_pressure = diff_pressure self.pressure_alt = pressure_alt self.temperature = temperature self.fields_updated = fields_updated def pack(self, mav): return MAVLink_message.pack(self, mav, 93, struct.pack('<QfffffffffffffH', self.time_usec, self.xacc, self.yacc, self.zacc, self.xgyro, self.ygyro, self.zgyro, self.xmag, self.ymag, self.zmag, self.abs_pressure, self.diff_pressure, self.pressure_alt, self.temperature, self.fields_updated)) class MAVLink_file_transfer_start_message(MAVLink_message): ''' Begin file transfer ''' def __init__(self, transfer_uid, dest_path, direction, file_size, flags): MAVLink_message.__init__(self, MAVLINK_MSG_ID_FILE_TRANSFER_START, 'FILE_TRANSFER_START') self._fieldnames = ['transfer_uid', 'dest_path', 'direction', 'file_size', 'flags'] self.transfer_uid = transfer_uid self.dest_path = dest_path self.direction = direction self.file_size = file_size self.flags = flags def pack(self, mav): return MAVLink_message.pack(self, mav, 235, struct.pack('<QI240sBB', self.transfer_uid, self.file_size, self.dest_path, self.direction, self.flags)) class MAVLink_file_transfer_dir_list_message(MAVLink_message): ''' Get directory listing ''' def __init__(self, transfer_uid, dir_path, flags): MAVLink_message.__init__(self, MAVLINK_MSG_ID_FILE_TRANSFER_DIR_LIST, 'FILE_TRANSFER_DIR_LIST') self._fieldnames = ['transfer_uid', 'dir_path', 'flags'] self.transfer_uid = transfer_uid self.dir_path = dir_path self.flags = flags def pack(self, mav): return MAVLink_message.pack(self, mav, 93, struct.pack('<Q240sB', self.transfer_uid, self.dir_path, self.flags)) class MAVLink_file_transfer_res_message(MAVLink_message): ''' File transfer result ''' def __init__(self, transfer_uid, result): MAVLink_message.__init__(self, MAVLINK_MSG_ID_FILE_TRANSFER_RES, 'FILE_TRANSFER_RES') self._fieldnames = ['transfer_uid', 'result'] self.transfer_uid = transfer_uid self.result = result def pack(self, mav): return MAVLink_message.pack(self, mav, 124, struct.pack('<QB', self.transfer_uid, self.result)) class MAVLink_battery_status_message(MAVLink_message): ''' Transmitte battery informations for a accu pack. ''' def __init__(self, accu_id, voltage_cell_1, voltage_cell_2, voltage_cell_3, voltage_cell_4, voltage_cell_5, voltage_cell_6, current_battery, battery_remaining): MAVLink_message.__init__(self, MAVLINK_MSG_ID_BATTERY_STATUS, 'BATTERY_STATUS') self._fieldnames = ['accu_id', 'voltage_cell_1', 'voltage_cell_2', 'voltage_cell_3', 'voltage_cell_4', 'voltage_cell_5', 'voltage_cell_6', 'current_battery', 'battery_remaining'] self.accu_id = accu_id self.voltage_cell_1 = voltage_cell_1 self.voltage_cell_2 = voltage_cell_2 self.voltage_cell_3 = voltage_cell_3 self.voltage_cell_4 = voltage_cell_4 self.voltage_cell_5 = voltage_cell_5 self.voltage_cell_6 = voltage_cell_6 self.current_battery = current_battery self.battery_remaining = battery_remaining def pack(self, mav): return MAVLink_message.pack(self, mav, 42, struct.pack('<HHHHHHhBb', self.voltage_cell_1, self.voltage_cell_2, self.voltage_cell_3, self.voltage_cell_4, self.voltage_cell_5, self.voltage_cell_6, self.current_battery, self.accu_id, self.battery_remaining)) class MAVLink_setpoint_8dof_message(MAVLink_message): ''' Set the 8 DOF setpoint for a controller. ''' def __init__(self, target_system, val1, val2, val3, val4, val5, val6, val7, val8): MAVLink_message.__init__(self, MAVLINK_MSG_ID_SETPOINT_8DOF, 'SETPOINT_8DOF') self._fieldnames = ['target_system', 'val1', 'val2', 'val3', 'val4', 'val5', 'val6', 'val7', 'val8'] self.target_system = target_system self.val1 = val1 self.val2 = val2 self.val3 = val3 self.val4 = val4 self.val5 = val5 self.val6 = val6 self.val7 = val7 self.val8 = val8 def pack(self, mav): return MAVLink_message.pack(self, mav, 241, struct.pack('<ffffffffB', self.val1, self.val2, self.val3, self.val4, self.val5, self.val6, self.val7, self.val8, self.target_system)) class MAVLink_setpoint_6dof_message(MAVLink_message): ''' Set the 6 DOF setpoint for a attitude and position controller. ''' def __init__(self, target_system, trans_x, trans_y, trans_z, rot_x, rot_y, rot_z): MAVLink_message.__init__(self, MAVLINK_MSG_ID_SETPOINT_6DOF, 'SETPOINT_6DOF') self._fieldnames = ['target_system', 'trans_x', 'trans_y', 'trans_z', 'rot_x', 'rot_y', 'rot_z'] self.target_system = target_system self.trans_x = trans_x self.trans_y = trans_y self.trans_z = trans_z self.rot_x = rot_x self.rot_y = rot_y self.rot_z = rot_z def pack(self, mav): return MAVLink_message.pack(self, mav, 15, struct.pack('<ffffffB', self.trans_x, self.trans_y, self.trans_z, self.rot_x, self.rot_y, self.rot_z, self.target_system)) class MAVLink_memory_vect_message(MAVLink_message): ''' Send raw controller memory. The use of this message is discouraged for normal packets, but a quite efficient way for testing new messages and getting experimental debug output. ''' def __init__(self, address, ver, type, value): MAVLink_message.__init__(self, MAVLINK_MSG_ID_MEMORY_VECT, 'MEMORY_VECT') self._fieldnames = ['address', 'ver', 'type', 'value'] self.address = address self.ver = ver self.type = type self.value = value def pack(self, mav): return MAVLink_message.pack(self, mav, 204, struct.pack('<HBB32s', self.address, self.ver, self.type, self.value)) class MAVLink_debug_vect_message(MAVLink_message): ''' ''' def __init__(self, name, time_usec, x, y, z): MAVLink_message.__init__(self, MAVLINK_MSG_ID_DEBUG_VECT, 'DEBUG_VECT') self._fieldnames = ['name', 'time_usec', 'x', 'y', 'z'] self.name = name self.time_usec = time_usec self.x = x self.y = y self.z = z def pack(self, mav): return MAVLink_message.pack(self, mav, 49, struct.pack('<Qfff10s', self.time_usec, self.x, self.y, self.z, self.name)) class MAVLink_named_value_float_message(MAVLink_message): ''' Send a key-value pair as float. The use of this message is discouraged for normal packets, but a quite efficient way for testing new messages and getting experimental debug output. ''' def __init__(self, time_boot_ms, name, value): MAVLink_message.__init__(self, MAVLINK_MSG_ID_NAMED_VALUE_FLOAT, 'NAMED_VALUE_FLOAT') self._fieldnames = ['time_boot_ms', 'name', 'value'] self.time_boot_ms = time_boot_ms self.name = name self.value = value def pack(self, mav): return MAVLink_message.pack(self, mav, 170, struct.pack('<If10s', self.time_boot_ms, self.value, self.name)) class MAVLink_named_value_int_message(MAVLink_message): ''' Send a key-value pair as integer. The use of this message is discouraged for normal packets, but a quite efficient way for testing new messages and getting experimental debug output. ''' def __init__(self, time_boot_ms, name, value): MAVLink_message.__init__(self, MAVLINK_MSG_ID_NAMED_VALUE_INT, 'NAMED_VALUE_INT') self._fieldnames = ['time_boot_ms', 'name', 'value'] self.time_boot_ms = time_boot_ms self.name = name self.value = value def pack(self, mav): return MAVLink_message.pack(self, mav, 44,
<filename>generated_python_code/ball_collector/ballcollector/scripts/subsystem_cs.py #!/usr/bin/env python ''' Copyright (c) 2019, Robot Control and Pattern Recognition Group, Warsaw University of Technology All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the Warsaw University of Technology nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL <COPYright HOLDER> BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Author: <NAME> ''' # Import other scripts # from auxiliary_functions import * from auxiliary_agent_ballcollector import * from auxiliary_subsystem_cs import * # Temporary definitions # IS_LOG = False # Flag determining if logs are shown in the terminal # IS_PRINT = True # Flag indicating if debug information for developer are shown in the terminal # class cs: ##### Subsystem cs constructor ##### def __init__(self): self.log("__init__ function") rospy.init_node("cs") self._subsystemName="cs" self._subsystemFrequency=10; self._currentSubsystemBehaviour="Behaviour_initBehaviour"; self._subsystemIterations=0 self._behaviourIterations=0 self.initialiseCommunicationModel() self.auxiliaryFunctions = AuxiliaryFunctions(self._subsystemFrequency) # initialize all input flags self._in_flag_desiredRobotCommandTele=False self._in_flag_desiredRobotCommandAuto=False self._in_flag_cameraInfo=False self._in_flag_sensorInfo=False self._in_flag_detectedBalls=False self._in_flag_rpiCamera=False self._in_flag_desiredRobotSpeedAuto=False self._in_flag_desiredVaccumSpeedAuto=False # initialize all output flags self._out_flag_obstacleDetectedAuto=False self._out_flag_obstacleDetectedTele=False self._out_flag_ballInfoAuto=False self._out_flag_ballInfoTele=False self._out_flag_ballCollectedTele=False self._out_flag_ballCollectedAuto=False self._out_flag_desiredVacuumCommand=False self._out_flag_desiredMoveCommand=False pass ##### Start subsystem ##### def startSubsystem(self): self.log("startSubsystem") try: while self.auxiliaryFunctions.isSubsystemOK(): ''' Execute behaviour associated with _currentSubsystemBehaviour -- choose appropriate state based on _currentSubsystemBehaviour ''' if self._currentSubsystemBehaviour=="Behaviour_initBehaviour": self.log("_currentSubsystemBehaviour==Behaviour_initBehaviour") self.subsystemBehaviour_initBehaviour() continue if self._currentSubsystemBehaviour=="Behaviour_idleBehaviour": self.log("_currentSubsystemBehaviour==Behaviour_idleBehaviour") self.subsystemBehaviour_idleBehaviour() continue except Exception as e: print e self.error("Error found in function startSubsystem -- file subsystem_cs.py!") pass ##### Update data for input buffer: desiredRobotCommandTele ##### def update_desiredRobotCommandTele(self, data): self.log("update_desiredRobotCommandTele") self.desiredRobotCommandTele=data self._in_flag_desiredRobotCommandTele=True pass ##### Update data for input buffer: desiredRobotCommandAuto ##### def update_desiredRobotCommandAuto(self, data): self.log("update_desiredRobotCommandAuto") self.desiredRobotCommandAuto=data self._in_flag_desiredRobotCommandAuto=True pass ##### Update data for input buffer: cameraInfo ##### def update_cameraInfo(self, data): self.log("update_cameraInfo") self.cameraInfo=data self._in_flag_cameraInfo=True pass ##### Update data for input buffer: sensorInfo ##### def update_sensorInfo(self, data): self.log("update_sensorInfo") self.sensorInfo=data self._in_flag_sensorInfo=True pass ##### Update data for input buffer: detectedBalls ##### def update_detectedBalls(self, data): self.log("update_detectedBalls") self.detectedBalls=data self._in_flag_detectedBalls=True pass ##### Update data for input buffer: rpiCamera ##### def update_rpiCamera(self, data): self.log("update_rpiCamera") self.rpiCamera=data self._in_flag_rpiCamera=True pass ##### Update data for input buffer: desiredRobotSpeedAuto ##### def update_desiredRobotSpeedAuto(self, data): self.log("update_desiredRobotSpeedAuto") self.desiredRobotSpeedAuto=data self._in_flag_desiredRobotSpeedAuto=True pass ##### Update data for input buffer: desiredVaccumSpeedAuto ##### def update_desiredVaccumSpeedAuto(self, data): self.log("update_desiredVaccumSpeedAuto") self.desiredVaccumSpeedAuto=data self._in_flag_desiredVaccumSpeedAuto=True pass ##### Initialise communication model ##### def initialiseCommunicationModel(self): self.log("initialiseCommunicationModel") self.initialiseSendChannel() self.initialiseSendChannelForDiagnostics() self.initialiseReceiveChannel() pass ##### Initialise send channel ##### def initialiseSendChannel(self): self.log("initialiseSendChannel") # Buffer name=obstacleDetectedAuto - Sender using NON-BLOCKING mode, receiver using NON-BLOCKING mode self._sender_obstacleDetectedAuto=rospy.Publisher("obstacleDetectedChannelAuto", ObstacleDetected, queue_size=CHANNEL_SIZE) # Buffer name=obstacleDetectedTele - Sender using NON-BLOCKING mode, receiver using NON-BLOCKING mode self._sender_obstacleDetectedTele=rospy.Publisher("obstacleDetectedChannelTele", ObstacleDetected, queue_size=CHANNEL_SIZE) # Buffer name=ballInfoAuto - Sender using NON-BLOCKING mode, receiver using NON-BLOCKING mode self._sender_ballInfoAuto=rospy.Publisher("ballInfoRpiChannelAuto", CameraMessage, queue_size=CHANNEL_SIZE) # Buffer name=ballInfoTele - Sender using NON-BLOCKING mode, receiver using NON-BLOCKING mode self._sender_ballInfoTele=rospy.Publisher("ballInfoChannelTele", CameraMessage, queue_size=CHANNEL_SIZE) # Buffer name=ballCollectedTele - Sender using NON-BLOCKING mode, receiver using NON-BLOCKING mode self._sender_ballCollectedTele=rospy.Publisher("ballCollectedChannelTele", Bool, queue_size=CHANNEL_SIZE) # Buffer name=ballCollectedAuto - Sender using NON-BLOCKING mode, receiver using NON-BLOCKING mode self._sender_ballCollectedAuto=rospy.Publisher("ballCollectedChannelAuto", Bool, queue_size=CHANNEL_SIZE) # Buffer name=desiredVacuumCommand - Sender using NON-BLOCKING mode, receiver using NON-BLOCKING mode self._sender_desiredVacuumCommand=rospy.Publisher("desiredVacuumCommandChannel", Int64, queue_size=CHANNEL_SIZE) # Buffer name=desiredMoveCommand - Sender using NON-BLOCKING mode, receiver using NON-BLOCKING mode self._sender_desiredMoveCommand=rospy.Publisher("desiredMoveCommandChannel", MotorMessage, queue_size=CHANNEL_SIZE) pass ##### Initialise send channel for diagnostics ##### def initialiseSendChannelForDiagnostics(self): self.log("initialiseSendChannelForDiagnostics") self._vectorOfSenderDiagnostics=[] self._vectorOfSenderDiagnostics.append(rospy.Publisher('cs/_currentSubsystemBehaviour', String, queue_size=CHANNEL_SIZE)) self._vectorOfSenderDiagnostics.append(rospy.Publisher('cs/_subsystemFrequency', Float64, queue_size=CHANNEL_SIZE)) self._vectorOfSenderDiagnostics.append(rospy.Publisher('cs/_subsystemName', String, queue_size=CHANNEL_SIZE)) self._vectorOfSenderDiagnostics.append(rospy.Publisher('cs/_subsystemIterations', Int64, queue_size=CHANNEL_SIZE)) self._vectorOfSenderDiagnostics.append(rospy.Publisher('cs/_behaviourIterations', Int64, queue_size=CHANNEL_SIZE)) self._vectorOfSenderDiagnostics.append(rospy.Publisher('cs/currentRobotSpeed', Int64, queue_size=CHANNEL_SIZE)) self._vectorOfSenderDiagnostics.append(rospy.Publisher('cs/_in_flag_desiredRobotCommandTele', Bool, queue_size=CHANNEL_SIZE)) self._vectorOfSenderDiagnostics.append(rospy.Publisher('cs/_in_flag_desiredRobotCommandAuto', Bool, queue_size=CHANNEL_SIZE)) self._vectorOfSenderDiagnostics.append(rospy.Publisher('cs/_in_flag_cameraInfo', Bool, queue_size=CHANNEL_SIZE)) self._vectorOfSenderDiagnostics.append(rospy.Publisher('cs/_in_flag_sensorInfo', Bool, queue_size=CHANNEL_SIZE)) self._vectorOfSenderDiagnostics.append(rospy.Publisher('cs/_in_flag_detectedBalls', Bool, queue_size=CHANNEL_SIZE)) self._vectorOfSenderDiagnostics.append(rospy.Publisher('cs/_in_flag_rpiCamera', Bool, queue_size=CHANNEL_SIZE)) self._vectorOfSenderDiagnostics.append(rospy.Publisher('cs/_in_flag_desiredRobotSpeedAuto', Bool, queue_size=CHANNEL_SIZE)) self._vectorOfSenderDiagnostics.append(rospy.Publisher('cs/_in_flag_desiredVaccumSpeedAuto', Bool, queue_size=CHANNEL_SIZE)) self._vectorOfSenderDiagnostics.append(rospy.Publisher('cs/_out_flag_obstacleDetectedAuto', Bool, queue_size=CHANNEL_SIZE)) self._vectorOfSenderDiagnostics.append(rospy.Publisher('cs/_out_flag_obstacleDetectedTele', Bool, queue_size=CHANNEL_SIZE)) self._vectorOfSenderDiagnostics.append(rospy.Publisher('cs/_out_flag_ballInfoAuto', Bool, queue_size=CHANNEL_SIZE)) self._vectorOfSenderDiagnostics.append(rospy.Publisher('cs/_out_flag_ballInfoTele', Bool, queue_size=CHANNEL_SIZE)) self._vectorOfSenderDiagnostics.append(rospy.Publisher('cs/_out_flag_ballCollectedTele', Bool, queue_size=CHANNEL_SIZE)) self._vectorOfSenderDiagnostics.append(rospy.Publisher('cs/_out_flag_ballCollectedAuto', Bool, queue_size=CHANNEL_SIZE)) self._vectorOfSenderDiagnostics.append(rospy.Publisher('cs/_out_flag_desiredVacuumCommand', Bool, queue_size=CHANNEL_SIZE)) self._vectorOfSenderDiagnostics.append(rospy.Publisher('cs/_out_flag_desiredMoveCommand', Bool, queue_size=CHANNEL_SIZE)) pass ##### Initialise receive channel based on input buffers ##### def initialiseReceiveChannel(self): self.log("initialiseReceiveChannel") # Buffer name=desiredRobotCommandTele sender NON-BLOCKING mode - receiver NON-BLOCKING mode self._subscriber_desiredRobotCommandTele=rospy.Subscriber("desiredRobotCommandChannelTele", String, self.update_desiredRobotCommandTele) # Buffer name=desiredRobotCommandAuto sender NON-BLOCKING mode - receiver NON-BLOCKING mode self._subscriber_desiredRobotCommandAuto=rospy.Subscriber("desiredRobotCommandChannelAuto", String, self.update_desiredRobotCommandAuto) # Buffer name=cameraInfo sender NON-BLOCKING mode - receiver NON-BLOCKING mode self._subscriber_cameraInfo=rospy.Subscriber("cameraInfoChannel", CameraMessage, self.update_cameraInfo) # Buffer name=sensorInfo sender NON-BLOCKING mode - receiver NON-BLOCKING mode self._subscriber_sensorInfo=rospy.Subscriber("sensorInfoChannel", SensorMessage, self.update_sensorInfo) # Buffer name=detectedBalls sender NON-BLOCKING mode - receiver NON-BLOCKING mode self._subscriber_detectedBalls=rospy.Subscriber("detectedBallsChannel", Image, self.update_detectedBalls) # Buffer name=rpiCamera sender NON-BLOCKING mode - receiver NON-BLOCKING mode self._subscriber_rpiCamera=rospy.Subscriber("rpiCameraChannel", Image, self.update_rpiCamera) # Buffer name=desiredRobotSpeedAuto sender NON-BLOCKING mode - receiver NON-BLOCKING mode self._subscriber_desiredRobotSpeedAuto=rospy.Subscriber("desiredRobotSpeedChannelAuto", Int64, self.update_desiredRobotSpeedAuto) # Buffer name=desiredVaccumSpeedAuto sender NON-BLOCKING mode - receiver NON-BLOCKING mode self._subscriber_desiredVaccumSpeedAuto=rospy.Subscriber("desiredVaccumSpeedChannelAuto", Int64, self.update_desiredVaccumSpeedAuto) pass ##### Wait for all messages ##### def waitForAllMessages(self): self.log("waitForAllMessages") #rospy.wait_for_message("", String, timeout=TOPIC_TIMEOUT) #rospy.wait_for_message("", String, timeout=TOPIC_TIMEOUT) #rospy.wait_for_message("", CameraMessage, timeout=TOPIC_TIMEOUT) #rospy.wait_for_message("", SensorMessage, timeout=TOPIC_TIMEOUT) #rospy.wait_for_message("", Image, timeout=TOPIC_TIMEOUT) #rospy.wait_for_message("", Image, timeout=TOPIC_TIMEOUT) #rospy.wait_for_message("", Int64, timeout=TOPIC_TIMEOUT) #rospy.wait_for_message("", Int64, timeout=TOPIC_TIMEOUT) pass ##### Publish on topics diagnostic data concerning the subsystem state ##### def sendDataForDiagnostics(self): self._vectorOfSenderDiagnostics[0].publish(self._currentSubsystemBehaviour) self._vectorOfSenderDiagnostics[1].publish(self._subsystemFrequency) self._vectorOfSenderDiagnostics[2].publish(self._subsystemName) self._vectorOfSenderDiagnostics[3].publish(self._subsystemIterations) self._vectorOfSenderDiagnostics[4].publish(self._behaviourIterations) ###### internal state ##### if(21 < len(self._vectorOfSenderDiagnostics) ): self._vectorOfSenderDiagnostics[5].publish(self.currentRobotSpeed) self._vectorOfSenderDiagnostics[6].publish(self._in_flag_desiredRobotCommandTele) self._vectorOfSenderDiagnostics[7].publish(self._in_flag_desiredRobotCommandAuto) self._vectorOfSenderDiagnostics[8].publish(self._in_flag_cameraInfo) self._vectorOfSenderDiagnostics[9].publish(self._in_flag_sensorInfo) self._vectorOfSenderDiagnostics[10].publish(self._in_flag_detectedBalls) self._vectorOfSenderDiagnostics[11].publish(self._in_flag_rpiCamera) self._vectorOfSenderDiagnostics[12].publish(self._in_flag_desiredRobotSpeedAuto) self._vectorOfSenderDiagnostics[13].publish(self._in_flag_desiredVaccumSpeedAuto) self._vectorOfSenderDiagnostics[14].publish(self._out_flag_obstacleDetectedAuto) self._vectorOfSenderDiagnostics[15].publish(self._out_flag_obstacleDetectedTele) self._vectorOfSenderDiagnostics[16].publish(self._out_flag_ballInfoAuto) self._vectorOfSenderDiagnostics[17].publish(self._out_flag_ballInfoTele) self._vectorOfSenderDiagnostics[18].publish(self._out_flag_ballCollectedTele) self._vectorOfSenderDiagnostics[19].publish(self._out_flag_ballCollectedAuto) self._vectorOfSenderDiagnostics[20].publish(self._out_flag_desiredVacuumCommand) self._vectorOfSenderDiagnostics[21].publish(self._out_flag_desiredMoveCommand) pass ##### Behaviour definitions ##### ##### Behaviour initBehaviour ##### ##### Terminal condition ##### def terminalCondition_initBehaviour(self): # String desiredRobotCommandTele, String desiredRobotCommandAuto, CameraMessage cameraInfo, SensorMessage sensorInfo, Image detectedBalls, Image rpiCamera, Int64 desiredRobotSpeedAuto, Int64 desiredVaccumSpeedAuto, Int64 currentRobotSpeed, std_msgs::Bool _in_flag_desiredRobotCommandTele, std_msgs::Bool _in_flag_desiredRobotCommandAuto, std_msgs::Bool _in_flag_cameraInfo, std_msgs::Bool _in_flag_sensorInfo, std_msgs::Bool _in_flag_detectedBalls, std_msgs::Bool _in_flag_rpiCamera, std_msgs::Bool _in_flag_desiredRobotSpeedAuto, std_msgs::Bool _in_flag_desiredVaccumSpeedAuto, std_msgs::Bool _out_flag_obstacleDetectedAuto, std_msgs::Bool _out_flag_obstacleDetectedTele, std_msgs::Bool _out_flag_ballInfoAuto, std_msgs::Bool _out_flag_ballInfoTele, std_msgs::Bool _out_flag_ballCollectedTele, std_msgs::Bool _out_flag_ballCollectedAuto, std_msgs::Bool _out_flag_desiredVacuumCommand, std_msgs::Bool _out_flag_desiredMoveCommand # self.log("[Behaviour initBehaviour] -- Checking Terminal Condition") return True pass ##### Error condition ##### def errorCondition_initBehaviour(self): # String desiredRobotCommandTele, String desiredRobotCommandAuto, CameraMessage cameraInfo, SensorMessage sensorInfo, Image detectedBalls, Image rpiCamera, Int64 desiredRobotSpeedAuto, Int64 desiredVaccumSpeedAuto, Int64 currentRobotSpeed, std_msgs::Bool _in_flag_desiredRobotCommandTele, std_msgs::Bool _in_flag_desiredRobotCommandAuto, std_msgs::Bool _in_flag_cameraInfo, std_msgs::Bool _in_flag_sensorInfo, std_msgs::Bool _in_flag_detectedBalls, std_msgs::Bool _in_flag_rpiCamera, std_msgs::Bool _in_flag_desiredRobotSpeedAuto, std_msgs::Bool _in_flag_desiredVaccumSpeedAuto, std_msgs::Bool _out_flag_obstacleDetectedAuto, std_msgs::Bool _out_flag_obstacleDetectedTele, std_msgs::Bool _out_flag_ballInfoAuto, std_msgs::Bool _out_flag_ballInfoTele, std_msgs::Bool _out_flag_ballCollectedTele, std_msgs::Bool _out_flag_ballCollectedAuto, std_msgs::Bool _out_flag_desiredVacuumCommand, std_msgs::Bool _out_flag_desiredMoveCommand # self.log("[Behaviour initBehaviour] -- Checking Error Condition") return False pass ##### Transition function ##### def transitionFunction_initBehaviour(self): self.log("[Behaviour initBehaviour] -- Calculating Transition Function") # Transition function # self.log("TRANSITION FUNCTION - initBehaviour consists of the following partial transition functions (decomposition based on output buffers)") # Partial transition function call: fun1 self.transitionFunction_initBehaviour_fun1() # Partial transition function call: set_buffer_flags_function self.transitionFunction_initBehaviour_set_buffer_flags_function() pass ##### Decomposition of partial transition function based on input buffers ##### def transitionFunction_initBehaviour_fun1(self): self.log("[Behaviour initBehaviour] -- Calculating Partial Transition Function fun1") # Partial Transition Function - the first layer # self.log("PARTIAL TRANSITION FUNCTION - FIRST LAYER - initBehaviour consists of the following partial transition functions (decomposition based on input buffers)") if True: self.transitionFunction_initBehaviour_fun1_0() pass ##### Partial transition function: fun1_0 based on input buffers True ##### def transitionFunction_initBehaviour_fun1_0(self): self.log("[Behaviour initBehaviour] -- Calculating Partial Transition Function fun1_0") # Partial Transition Function - the second layer # self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - initBehaviour consists of the following partial transition functions (decomposition based on input buffers)") # Begin - Partial Transition Function Code print("[CS - ballCollector] -- initBehaviour") self.desiredMoveCommand=MotorMessage() print("ALA") self.desiredMoveCommand.desiredSpeed=Int64(10) print("ALA1") self.desiredMoveCommand.direction=Int64(0) print("ALA2") self.desiredMoveCommand.cmd=String("empty") self.desiredRobotCommandTele=String("empty") self.desiredRobotCommandAuto=String("empty") self.ballCollectedAuto=Bool(False) self.ballCollectedTele=Bool(False) self.obstacleDetectedTele=ObstacleDetected() self.obstacleDetectedTele.sonar_1=Int64(0) self.obstacleDetectedTele.sonar_2=Int64(0) self.obstacleDetectedTele.sonar_3=Int64(0) self.obstacleDetectedTele.sonar_4=Int64(0) self.obstacleDetectedAuto=ObstacleDetected() self.obstacleDetectedAuto.sonar_1=Int64(0) self.obstacleDetectedAuto.sonar_2=Int64(0) self.obstacleDetectedAuto.sonar_3=Int64(0) self.obstacleDetectedAuto.sonar_4=Int64(0) # vacuum self.desiredVacuumCommand=Int64(0) # output camera info self.ballInfoAuto=CameraMessage() self.ballInfoTele=CameraMessage() # internal memory self.currentRobotSpeed=Int64(0) # input buffer self.desiredRobotSpeedAuto=Int64(0) # End - Partial Transition Function Code pass ##### Decomposition of partial transition function based on input buffers ##### def transitionFunction_initBehaviour_set_buffer_flags_function(self):
None: # 窓面積が空欄であれば、窓寸法から面積を計算。 inputdata["WindowConfigure"][window_id]["windowArea"] = \ inputdata["WindowConfigure"][window_id]["windowWidth"] * inputdata["WindowConfigure"][window_id]["windowHeight"] # 外壁面積の算出 for room_zone_name in inputdata["EnvelopeSet"]: for (wall_id, wall_configure) in enumerate( inputdata["EnvelopeSet"][room_zone_name]["WallList"] ): window_total = 0 # 窓面積の集計用 if "WindowList" in wall_configure: # 窓がある場合 # 窓面積の合計を求める(Σ{窓面積×枚数}) for (window_id, window_configure) in enumerate(wall_configure["WindowList"]): if window_configure["WindowID"] != "無": window_total += \ inputdata["WindowConfigure"][ window_configure["WindowID"] ]["windowArea"] * window_configure["WindowNumber"] # 壁のみの面積(窓がない場合は、window_total = 0) if wall_configure["EnvelopeArea"] >= window_total: inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["WallArea"] = wall_configure["EnvelopeArea"] - window_total else: print(room_zone_name) print(wall_configure) raise Exception('窓面積が外皮面積よりも大きくなっています') ##---------------------------------------------------------------------------------- ## 室の定常熱取得の計算(解説書 2.4.2.2〜2.4.2.7) ##---------------------------------------------------------------------------------- ## EnvelopeSet に WallConfigure, WindowConfigure の情報を貼り付ける。 for room_zone_name in inputdata["EnvelopeSet"]: # 壁毎にループ for (wall_id, wall_configure) in enumerate( inputdata["EnvelopeSet"][room_zone_name]["WallList"]): if inputdata["WallConfigure"][ wall_configure["WallSpec"] ]["inputMethod"] == "断熱材種類を入力": if wall_configure["Direction"] == "水平(上)": # 天井と見なす。 inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["U_wall"] = \ inputdata["WallConfigure"][ wall_configure["WallSpec"] ]["Uvalue_roof"] inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["WallArea"] = wall_configure["WallArea"] elif wall_configure["Direction"] == "水平(下)": # 床と見なす。 inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["U_wall"] = \ inputdata["WallConfigure"][ wall_configure["WallSpec"] ]["Uvalue_floor"] inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["WallArea"] = wall_configure["WallArea"] else: inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["U_wall"] = \ inputdata["WallConfigure"][ wall_configure["WallSpec"] ]["Uvalue_wall"] inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["WallArea"] = wall_configure["WallArea"] else: inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["U_wall"] = \ inputdata["WallConfigure"][ wall_configure["WallSpec"] ]["Uvalue"] inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["WallArea"] = wall_configure["WallArea"] for (window_id, window_configure) in enumerate( inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["WindowList"]): if window_configure["WindowID"] != "無": # 日よけ効果係数の算出 if window_configure["EavesID"] == "無": inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["WindowList"][window_id]["shadingEffect_C"] = 1 inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["WindowList"][window_id]["shadingEffect_H"] = 1 else: if inputdata["ShadingConfigure"][ window_configure["EavesID"] ]["shadingEffect_C"] != None and \ inputdata["ShadingConfigure"][ window_configure["EavesID"] ]["shadingEffect_H"] != None : inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["WindowList"][window_id]["shadingEffect_C"] = \ inputdata["ShadingConfigure"][ window_configure["EavesID"] ]["shadingEffect_C"] inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["WindowList"][window_id]["shadingEffect_H"] = \ inputdata["ShadingConfigure"][ window_configure["EavesID"] ]["shadingEffect_H"] else: # 関数 shading.calc_shadingCoefficient で日よけ効果係数を算出。 (inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["WindowList"][window_id]["shadingEffect_C"], \ inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["WindowList"][window_id]["shadingEffect_H"] ) = \ shading.calc_shadingCoefficient(inputdata["Building"]["Region"],\ wall_configure["Direction"], \ inputdata["ShadingConfigure"][ window_configure["EavesID"] ]["x1"],\ inputdata["ShadingConfigure"][ window_configure["EavesID"] ]["x2"],\ inputdata["ShadingConfigure"][ window_configure["EavesID"] ]["x3"],\ inputdata["ShadingConfigure"][ window_configure["EavesID"] ]["y1"],\ inputdata["ShadingConfigure"][ window_configure["EavesID"] ]["y2"],\ inputdata["ShadingConfigure"][ window_configure["EavesID"] ]["y3"],\ inputdata["ShadingConfigure"][ window_configure["EavesID"] ]["zxPlus"],\ inputdata["ShadingConfigure"][ window_configure["EavesID"] ]["zxMinus"],\ inputdata["ShadingConfigure"][ window_configure["EavesID"] ]["zyPlus"],\ inputdata["ShadingConfigure"][ window_configure["EavesID"] ]["zyMinus"]) # 窓のUA(熱貫流率×面積)を計算 if window_configure["isBlind"] == "無": # ブラインドがない場合 inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["WindowList"][window_id]["U_window"] = \ inputdata["WindowConfigure"][ window_configure["WindowID"] ]["Uvalue"] inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["WindowList"][window_id]["I_window"] = \ inputdata["WindowConfigure"][ window_configure["WindowID"] ]["Ivalue"] inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["WindowList"][window_id]["windowArea"] = \ window_configure["WindowNumber"] * inputdata["WindowConfigure"][ window_configure["WindowID"] ]["windowArea"] elif window_configure["isBlind"] == "有": # ブラインドがある場合 inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["WindowList"][window_id]["U_window"] = \ inputdata["WindowConfigure"][ window_configure["WindowID"] ]["Uvalue_blind"] inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["WindowList"][window_id]["I_window"] = \ inputdata["WindowConfigure"][ window_configure["WindowID"] ]["Ivalue_blind"] inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["WindowList"][window_id]["windowArea"] = \ window_configure["WindowNumber"] * inputdata["WindowConfigure"][ window_configure["WindowID"] ]["windowArea"] # 任意入力 SP-8 if "window_Ivalue" in inputdata["SpecialInputData"]: if window_configure["WindowID"] in inputdata["SpecialInputData"]["window_Ivalue"]: inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["WindowList"][window_id]["IA_window"] = \ window_configure["WindowNumber"] * inputdata["WindowConfigure"][ window_configure["WindowID"] ]["windowArea"] * \ np.array(inputdata["SpecialInputData"]["window_Ivalue"][ window_configure["WindowID"] ]) ##---------------------------------------------------------------------------------- ## 室負荷の計算(解説書 2.4.3、2.4.4) ##---------------------------------------------------------------------------------- Heat_light_hourly = {} Num_of_Person_hourly = {} Heat_OAapp_hourly = {} for room_zone_name in inputdata["AirConditioningZone"]: # 室が使用されているか否か=空調運転時間(365日分) btype = inputdata["AirConditioningZone"][room_zone_name]["buildingType"] rtype = inputdata["AirConditioningZone"][room_zone_name]["roomType"] # 発熱量参照値 [W/m2] を読み込む関数(空調) SP-9 if "room_usage_condition" in inputdata["SpecialInputData"]: (roomHeatGain_Light, roomHeatGain_Person, roomHeatGain_OAapp, roomNumOfPerson) = \ bc.get_roomHeatGain(btype, rtype, inputdata["SpecialInputData"]["room_usage_condition"]) else: (roomHeatGain_Light, roomHeatGain_Person, roomHeatGain_OAapp, roomNumOfPerson) = \ bc.get_roomHeatGain(btype, rtype) # 様式4から照明発熱量を読み込む if BUILELIB_MODE: if room_zone_name in inputdata["LightingSystems"]: lighting_power = 0 for unit_name in inputdata["LightingSystems"][room_zone_name]["lightingUnit"]: lighting_power += inputdata["LightingSystems"][room_zone_name]["lightingUnit"][unit_name]["RatedPower"] * \ inputdata["LightingSystems"][room_zone_name]["lightingUnit"][unit_name]["Number"] roomHeatGain_Light = lighting_power / inputdata["AirConditioningZone"][room_zone_name]["zoneArea"] # 時刻別計算用(本来はこのループに入れるべきではない → 時刻別計算の方に入れるべき) Heat_light_hourly[room_zone_name] = roomScheduleLight[room_zone_name] * roomHeatGain_Light # 照明からの発熱 (365日分) Num_of_Person_hourly[room_zone_name] = roomSchedulePerson[room_zone_name] * roomNumOfPerson # 人員密度(365日分) Heat_OAapp_hourly[room_zone_name] = roomScheduleOAapp[room_zone_name] * roomHeatGain_OAapp # 機器からの発熱 (365日分) ##---------------------------------------------------------------------------------- ## 動的室負荷計算 ##---------------------------------------------------------------------------------- # 負荷計算モジュールの読み込み from .heat_load_calculation import Main import copy # ファイルの読み込み with open('./builelib/heat_load_calculation/heatload_calculation_template.json', 'r', encoding='utf-8') as js: # with open('input_non_residential.json', 'r', encoding='utf-8') as js: input_heatcalc_template = json.load(js) ## 入力ファイルの生成(共通) # 地域 input_heatcalc_template["common"]["region"] = inputdata["Building"]["Region"] input_heatcalc_template["common"]["is_residential"] = False # 室温上限値・下限 input_heatcalc_template["rooms"][0]["schedule"]["temperature_upper_limit"] = bc.trans_36524to8760(resultJson["schedule"]["room_temperature_setpoint"]) input_heatcalc_template["rooms"][0]["schedule"]["temperature_lower_limit"] = bc.trans_36524to8760(resultJson["schedule"]["room_temperature_setpoint"]) # 相対湿度上限値・下限 input_heatcalc_template["rooms"][0]["schedule"]["relative_humidity_upper_limit"] = bc.trans_36524to8760(resultJson["schedule"]["room_humidity_setpoint"]) input_heatcalc_template["rooms"][0]["schedule"]["relative_humidity_lower_limit"] = bc.trans_36524to8760(resultJson["schedule"]["room_humidity_setpoint"]) # 非住宅では使わない input_heatcalc_template["rooms"][0]["vent"] = 0 input_heatcalc_template["rooms"][0]["schedule"]["heat_generation_cooking"] = np.zeros(8760) input_heatcalc_template["rooms"][0]["schedule"]["vapor_generation_cooking"] = np.zeros(8760) input_heatcalc_template["rooms"][0]["schedule"]["local_vent_amount"] = np.zeros(8760) # 空調ゾーン毎に負荷を計算 for room_zone_name in inputdata["AirConditioningZone"]: # 入力ファイルの読み込み input_heatcalc = copy.deepcopy(input_heatcalc_template) ## 入力ファイルの生成(室単位) # 室名 input_heatcalc["rooms"][0]["name"] = room_zone_name # 気積 [m3] input_heatcalc["rooms"][0]["volume"] = inputdata["AirConditioningZone"][room_zone_name]["zoneArea"] * inputdata["AirConditioningZone"][room_zone_name]["ceilingHeight"] # 室温湿度の上下限 input_heatcalc["rooms"][0]["schedule"]["is_upper_temp_limit_set"] = np.reshape(np.array(roomScheduleRoom[room_zone_name], dtype="bool"), 8760) input_heatcalc["rooms"][0]["schedule"]["is_lower_temp_limit_set"] = np.reshape(np.array(roomScheduleRoom[room_zone_name], dtype="bool"), 8760) input_heatcalc["rooms"][0]["schedule"]["is_upper_humidity_limit_set"] = np.reshape(np.array(roomScheduleRoom[room_zone_name], dtype="bool"), 8760) input_heatcalc["rooms"][0]["schedule"]["is_lower_humidity_limit_set"] = np.reshape(np.array(roomScheduleRoom[room_zone_name], dtype="bool"), 8760) # 発熱量 # 照明発熱スケジュール[W] input_heatcalc["rooms"][0]["schedule"]["heat_generation_lighting"] = np.reshape(Heat_light_hourly[room_zone_name],8760) * inputdata["AirConditioningZone"][room_zone_name]["zoneArea"] # 機器発熱スケジュール[W] input_heatcalc["rooms"][0]["schedule"]["heat_generation_appliances"] = np.reshape(Heat_OAapp_hourly[room_zone_name],8760) * inputdata["AirConditioningZone"][room_zone_name]["zoneArea"] # 人員数[人] input_heatcalc["rooms"][0]["schedule"]["number_of_people"] = np.reshape(Num_of_Person_hourly[room_zone_name],8760) * inputdata["AirConditioningZone"][room_zone_name]["zoneArea"] # 床の面積(計算対象床面積を入力する) input_heatcalc["rooms"][0]["boundaries"][0]["area"] = \ inputdata["AirConditioningZone"][room_zone_name]["zoneArea"] # 天井の面積(床と同じとする) input_heatcalc["rooms"][0]["boundaries"][1]["area"] = \ inputdata["AirConditioningZone"][room_zone_name]["zoneArea"] # 外皮があれば if room_zone_name in inputdata["EnvelopeSet"]: # 外壁 for (wall_id, wall_configure) in enumerate( inputdata["EnvelopeSet"][room_zone_name]["WallList"]): # 等価R値 if inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["U_wall"] > 4: equivalent_Rvalue = 0.001 else: equivalent_Rvalue = (1/inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["U_wall"] - 0.25) direction = "" if inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["Direction"] == "北": direction = "n" elif inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["Direction"] == "北東": direction = "ne" elif inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["Direction"] == "東": direction = "e" elif inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["Direction"] == "南東": direction = "se" elif inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["Direction"] == "南": direction = "s" elif inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["Direction"] == "南西": direction = "sw" elif inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["Direction"] == "西": direction = "w" elif inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["Direction"] == "北西": direction = "nw" elif inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["Direction"] == "水平(上)": direction = "top" elif inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["Direction"] == "水平(下)": direction = "bottom" else: raise Exception("方位が不正です") boundary_type = "" is_sun_striked_outside = "" if inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["WallType"] == "日の当たる外壁": boundary_type = "external_general_part" is_sun_striked_outside = True elif inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["WallType"] == "日の当たらない外壁": boundary_type = "external_general_part" is_sun_striked_outside = False elif inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["WallType"] == "地盤に接する外壁": boundary_type = "ground" is_sun_striked_outside = False elif inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["WallType"] == "地盤に接する外壁_Ver2": boundary_type = "ground" is_sun_striked_outside = False if boundary_type == "external_general_part": input_heatcalc["rooms"][0]["boundaries"].append( { "name": "wall", "boundary_type": boundary_type, "area": inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["WallArea"], "is_sun_striked_outside": is_sun_striked_outside, "temp_dif_coef": 0, "direction": direction, "is_solar_absorbed_inside": False, "general_part_spec" : { "outside_emissivity": 0.9, "outside_solar_absorption": 0.8, "inside_heat_transfer_resistance": 0.11, "outside_heat_transfer_resistance": 0.04, "layers": [ { "name": "コンクリート", "thermal_resistance": 0.10, "thermal_capacity": 300 }, { "name": "吹付け硬質ウレタンフォーム", "thermal_resistance": equivalent_Rvalue, "thermal_capacity": 1.00 } ], }, "solar_shading_part": { "existence" : False }, } ) elif boundary_type == "ground": input_heatcalc["rooms"][0]["boundaries"].append( { "name": "wall", "boundary_type": boundary_type, "area": inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["WallArea"], "is_sun_striked_outside": is_sun_striked_outside, "temp_dif_coef": 0, "direction": direction, "is_solar_absorbed_inside": False, "ground_spec" : { "inside_heat_transfer_resistance": 0.11, "layers": [ { "name": "コンクリート", "thermal_resistance": 0.10, "thermal_capacity": 300 }, { "name": "吹付け硬質ウレタンフォーム", "thermal_resistance": equivalent_Rvalue, "thermal_capacity": 1.00 } ], } } ) # 窓 for (window_id, window_configure) in enumerate( inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["WindowList"]): if window_configure["WindowID"] != "無": input_heatcalc["rooms"][0]["boundaries"].append( { "name": "window", "boundary_type": "external_transparent_part", "area": inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["WindowList"][window_id]["windowArea"] , "is_sun_striked_outside": True, "temp_dif_coef": 0, "direction": direction, "is_solar_absorbed_inside": False, "transparent_opening_part_spec": { "eta_value": inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["WindowList"][window_id]["I_window"], "u_value": inputdata["EnvelopeSet"][room_zone_name]["WallList"][wall_id]["WindowList"][window_id]["U_window"], "outside_emissivity": 0.8, "inside_heat_transfer_resistance": 0.11, "outside_heat_transfer_resistance": 0.04, "incident_angle_characteristics": "1" }, "solar_shading_part": { "existence": False } } ) # デバッグ用 # with open("heatloadcalc_input.json",'w', encoding='utf-8') as fw: # json.dump(input_heatcalc, fw, indent=4, ensure_ascii=False, cls = bc.MyEncoder) # 負荷計算の実行 room_air_temperature, mean_radiant_temperature, heatload_sensible_convection, heatload_sensible_radiation, heatload_latent \ = Main.run(input_heatcalc) # 室温 resultJson["Qroom"][room_zone_name]["Troom"] = bc.trans_8760to36524(room_air_temperature) resultJson["Qroom"][room_zone_name]["MRTroom"] = bc.trans_8760to36524(mean_radiant_temperature) # 負荷の積算(全熱負荷)[W] (365×24) heatload = np.array( bc.trans_8760to36524(heatload_sensible_convection) + \ bc.trans_8760to36524(heatload_sensible_radiation) + \ bc.trans_8760to36524(heatload_latent) ) for dd in range(0,365): for hh in range(0,24): # 時刻別室負荷 [W] → [MJ/hour] resultJson["Qroom"][room_zone_name]["Qroom_hourly"][dd][hh] = (-1) * heatload[dd][hh] * 3600/1000000 if DEBUG: # pragma: no cover # 熱負荷のグラフ化 for room_zone_name in inputdata["AirConditioningZone"]: mf.hourlyplot(resultJson["Qroom"][room_zone_name]["Troom"], "室内空気温度: "+room_zone_name, "b", "室内空気温度") mf.hourlyplot(resultJson["Qroom"][room_zone_name]["MRTroom"], "室内平均放射温度 "+room_zone_name, "b", "室内平均放射温度") mf.hourlyplot(resultJson["Qroom"][room_zone_name]["Qroom_hourly"], "室負荷: "+room_zone_name, "b", "時刻別室負荷") print('室負荷計算完了') ##---------------------------------------------------------------------------------- ## 空調機群の一次エネルギー消費量(解説書 2.5) ##---------------------------------------------------------------------------------- # 結果格納用の変数 resultJson (空調機群) for ahu_name in inputdata["AirHandlingSystem"]: resultJson["AHU"][ahu_name] = { "schedule": np.zeros((365,24)), # 時刻別の運転スケジュール(365×24) "Hoa_hourly": np.zeros((365,24)), # 空調運転時間帯の外気エンタルピー "Qoa_hourly": np.zeros((365,24)), # 日平均外気負荷 [kW] "Qroom_hourly" : np.zeros((365,24)), # 時刻別室負荷の積算値 [MJ/h] "Qahu_hourly" : np.zeros((365,24)), # 時刻別空調負荷 [MJ/day] "Qahu_unprocessed": np.zeros((365,24)), # 空調機群の未処理負荷(冷房)[MJ/h] "E_fan_hourly" : np.zeros((365,24)), # 送風機の時刻別エネルギー消費量 [MWh] "E_aex_hourly" : np.zeros((365,24)), # 全熱交換器の時刻別エネルギー消費量 [MWh] "Economizer":{ "AHUVovc" : np.zeros((365,24)), # 外気冷房運転時の外気風量 [kg/s] "Qahu_oac": np.zeros((365,24)), # 外気冷房による負荷削減効果 [MJ/day] }, "load_ratio": np.zeros((365,24)), # 時刻別の負荷率 "Eahu_total" : 0, # 消費電力の合計 [h] "Tahu_total" : 0 # 運転時間の合計 [h] } ##---------------------------------------------------------------------------------- ## 空調機群全体のスペックを整理 ##---------------------------------------------------------------------------------- for ahu_name in inputdata["AirHandlingSystem"]: # 空調機タイプ(1つでも空調機があれば「空調機」と判断する) inputdata["AirHandlingSystem"][ahu_name]["AHU_type"] = "空調機以外" for unit_id, unit_configure in enumerate(inputdata["AirHandlingSystem"][ahu_name]["AirHandlingUnit"]): if unit_configure["Type"] == "空調機": inputdata["AirHandlingSystem"][ahu_name]["AHU_type"] = "空調機" break # 空調機の能力 inputdata["AirHandlingSystem"][ahu_name]["RatedCapacityCooling"] = 0 inputdata["AirHandlingSystem"][ahu_name]["RatedCapacityHeating"] = 0 for unit_id, unit_configure in enumerate(inputdata["AirHandlingSystem"][ahu_name]["AirHandlingUnit"]): if unit_configure["RatedCapacityCooling"] != None: inputdata["AirHandlingSystem"][ahu_name]["RatedCapacityCooling"] += \ unit_configure["RatedCapacityCooling"] * unit_configure["Number"] if unit_configure["RatedCapacityHeating"] != None: inputdata["AirHandlingSystem"][ahu_name]["RatedCapacityHeating"] += \ unit_configure["RatedCapacityHeating"] * unit_configure["Number"] # 送風機単体の定格消費電力(解説書 2.5.8) [kW] for unit_id, unit_configure in enumerate(inputdata["AirHandlingSystem"][ahu_name]["AirHandlingUnit"]): inputdata["AirHandlingSystem"][ahu_name]["AirHandlingUnit"][unit_id]["FanPowerConsumption_total"] = 0 if unit_configure["FanPowerConsumption"] != None: # 送風機の定格消費電力 kW = 1台あたりの消費電力 kW × 台数 inputdata["AirHandlingSystem"][ahu_name]["AirHandlingUnit"][unit_id]["FanPowerConsumption_total"] = \ unit_configure["FanPowerConsumption"] * unit_configure["Number"] # 空調機の風量 [m3/h] inputdata["AirHandlingSystem"][ahu_name]["FanAirVolume"] = 0 for unit_id, unit_configure in enumerate(inputdata["AirHandlingSystem"][ahu_name]["AirHandlingUnit"]): if unit_configure["FanAirVolume"] != None: inputdata["AirHandlingSystem"][ahu_name]["FanAirVolume"] += \ unit_configure["FanAirVolume"] * unit_configure["Number"] # 全熱交換器の効率(一番低いものを採用) inputdata["AirHandlingSystem"][ahu_name]["AirHeatExchangeRatioCooling"] = None inputdata["AirHandlingSystem"][ahu_name]["AirHeatExchangeRatioHeating"] = None for unit_id, unit_configure in enumerate(inputdata["AirHandlingSystem"][ahu_name]["AirHandlingUnit"]): # 冷房の効率 if (unit_configure["AirHeatExchangeRatioCooling"] != None): if inputdata["AirHandlingSystem"][ahu_name]["AirHeatExchangeRatioCooling"] == None: inputdata["AirHandlingSystem"][ahu_name]["AirHeatExchangeRatioCooling"] = unit_configure["AirHeatExchangeRatioCooling"] elif inputdata["AirHandlingSystem"][ahu_name]["AirHeatExchangeRatioCooling"] > unit_configure["AirHeatExchangeRatioCooling"]: inputdata["AirHandlingSystem"][ahu_name]["AirHeatExchangeRatioCooling"] = unit_configure["AirHeatExchangeRatioCooling"] # 暖房の効率 if (unit_configure["AirHeatExchangeRatioHeating"] != None): if inputdata["AirHandlingSystem"][ahu_name]["AirHeatExchangeRatioHeating"] == None: inputdata["AirHandlingSystem"][ahu_name]["AirHeatExchangeRatioHeating"] = unit_configure["AirHeatExchangeRatioHeating"] elif inputdata["AirHandlingSystem"][ahu_name]["AirHeatExchangeRatioHeating"] > unit_configure["AirHeatExchangeRatioHeating"]: inputdata["AirHandlingSystem"][ahu_name]["AirHeatExchangeRatioHeating"] = unit_configure["AirHeatExchangeRatioHeating"] # 全熱交換器のバイパス制御の有無(1つでもあればバイパス制御「有」とする) inputdata["AirHandlingSystem"][ahu_name]["AirHeatExchangerControl"] = "無" for unit_id, unit_configure in enumerate(inputdata["AirHandlingSystem"][ahu_name]["AirHandlingUnit"]): if (unit_configure["AirHeatExchangeRatioCooling"] != None) and (unit_configure["AirHeatExchangeRatioHeating"] != None): if unit_configure["AirHeatExchangerControl"] == "有": inputdata["AirHandlingSystem"][ahu_name]["AirHeatExchangerControl"] = "有" # 全熱交換器の消費電力 [kW]
counts: dict - lookup table for SVDM min_max: pd:DataFrame - contains min/max values per numeric feature classes: list of str - class labels in the dataset. examples_covered_by_rule: dict - which rule covers which examples, i.e. {rule ri: set(example ei, example ej)} label_type: str - consider only examples of the specified type as neighbors. Valid values: scripts.vars.ALL_LABELS - ignore the label and choose the k-nearest examples across all class labels scripts.vars.SAME_LABEL_AS_RULE - consider only examples as k-nearest examples with they have the same label as <rule> scripts.vars.OPPOSITE_LABEL_TO_RULE - consider only examples as k-nearest examples with they have the opposite label of <rule> only_uncovered_neighbors: bool - True if only examples should be considered that aren't covered by <rule> yet. Otherwise, all neighbors are considered. An example is covered by a rule if the example satisfies all conditions imposed by <rule>. Returns ------- pd.Series, float, bool OR None, None, None. Rule that is closest to an example, distance of that rule to the example, True if a rule became the closest rule. None, None, None if only 1 rule and 1 example are provided and that example is seed for the rule, where the latter doesn't cover multiple examples. """ k = 5 min_dist = math.inf min_rule_id = None if example.name in my_vars.closest_rule_per_example: min_rule_id, min_dist = my_vars.closest_rule_per_example[example.name] # print("entry exists for example {}: {}".format(example.name, my_vars.closest_rule_per_example[example.name])) # hvdm() expects a dataFrame of examples, not a Series # Plus, data type is "object", but then numeric columns won't be detected in di(), so we need to infer them example_df = example.to_frame().T.infer_objects() try: was_updated = False for rule in rules: rule_id = rule.name # print("Now checking rule with ID {}:\n{}".format(rule_id, rule)) examples = len(examples_covered_by_rule.get(rule.name, set())) # > 0 (instead of 1) because seeds aren't stored in this dict, so we implicitly add 1 covers_multiple_examples = True if examples > 0 else False # Ignore rule because current example was seed for it and the rule doesn't cover multiple examples # if not covers_multiple_examples and my_vars.seed_example_rule[example.name] == rule_id: if not covers_multiple_examples and rule_id in my_vars.seed_example_rule.get(example.name, set()): # Ignore rule as it's the seed for the example # print("rule {} is seed for example {}, so ignore it".format(rule_id, example.name)) continue neighbors, dists, is_closest = \ find_nearest_examples(example_df, k, rule, class_col_name, counts, min_max, classes, label_type=label_type, only_uncovered_neighbors=only_uncovered_neighbors) if neighbors is not None: dist = dists.iloc[0][my_vars.DIST] if min_dist is not None: if is_closest: was_updated = True min_dist = dist min_rule_id = rule_id else: min_dist = dist min_rule_id = rule_id was_updated = True else: raise MyException("No neighbors for rule:\n{}".format(rule)) if min_rule_id is not None: print("nearest rule for example {}:rule {} with dist={}".format(example.name, min_rule_id, min_dist)) return my_vars.all_rules[min_rule_id], min_dist, was_updated return None, None, None except MyException: return None, None, None def most_specific_generalization(example, rule, class_col_name, dtypes): """ Implements MostSpecificGeneralization() from the paper, i.e. Algorithm 2. Parameters ---------- example: pd.Series - row from the dataset. rule: pd.Series - rule that will be potentially generalized. class_col_name: str - name of the column hold the class labels. dtypes: pd.Series - data types of the respective columns in the dataset. Returns ------- pd.Series. Generalized rule """ # Without a deep copy, any changes to the returned rule, will also affect <rule>, i.e. the original rule rule = copy.deepcopy(rule) for (col_name, example_val), dtype in zip(example.iteritems(), dtypes): if col_name == class_col_name: continue example_dtype = dtype if col_name in rule: # Cast object to tuple datatype -> this is only automatically done if it's not a string rule_val = (rule[col_name]) # print("rule_val", rule_val, "\nrule type:", type(rule_val)) if is_string_dtype(example_dtype) and example_val != rule_val: rule = rule.drop(labels=[col_name]) elif is_numeric_dtype(example_dtype): if example_val > rule_val[1]: # print("new upper limit", (rule_val[0], example_val)) rule[col_name] = Bounds(lower=rule_val[0], upper=example_val) elif example_val < rule_val[0]: # print("new lower limit", (example_val, rule_val[1])) rule[col_name] = Bounds(lower=example_val, upper=rule_val[1]) # print("updated:", rule) return rule def hvdm(examples, rule, counts, classes, min_max, class_col_name): """ Computes the distance (Heterogenous Value Difference Metrics) between a rule/example and another example. Assumes that there's at least 1 feature shared between <rule> and <examples>. Parameters ---------- examples: pd.DataFrame - examples rule: pd.Series - (m x n) rule counts: dict of Counters - contains for nominal classes how often the value of an co-occurs with each class label classes: list of str - class labels in the dataset. min_max: pd: pd.DataFrame - contains min/max values per numeric feature class_col_name: str - name of class label Returns ------- pd.DataFrame - distances. """ # Select only those columns that exist in examples and rule # https://stackoverflow.com/questions/46228574/pandas-select-dataframe-columns-based-on-another-dataframes-columns examples = examples[rule.index.intersection(examples.columns)] dists = [] # Compute distance for j-th feature (=column) for col_name in examples: if col_name == class_col_name or col_name == my_vars.TAG or col_name == my_vars.COVERED: continue # Extract column from both dataframes into numpy array example_feature_col = examples[col_name] # Compute nominal/numeric distance if pd.api.types.is_numeric_dtype(example_feature_col): dist_squared = di(example_feature_col, rule, min_max) else: dist_squared = svdm(example_feature_col, rule, counts, classes) dists.append(dist_squared) # Note: this line assumes that there's at least 1 feature distances = pd.DataFrame(list(zip(*dists)), columns=[s.name for s in dists], index=dists[0].index) # Sum up rows to compute HVDM - no need to square the distances as the order won't change distances[my_vars.DIST] = distances.select_dtypes(float).sum(1) distances = distances.sort_values(my_vars.DIST, ascending=True) return distances def svdm(example_feat, rule_feat, counts, classes): """ Computes the (squared) Value difference metric for nominal values. Parameters ---------- example_feat: pd.Series - column (=feature) containing all examples. rule_feat: pd.Series - column (=feature) of the rule. counts: dict of Counters - contains for nominal classes how often the value of an co-occurs with each class label classes: list of str - class labels in the dataset. Returns ------- pd.Series. (squared) distance of each example. """ col_name = example_feat.name rule_val = rule_feat[col_name] dists = [] # Feature is NaN in rule -> all distances will become 1 automatically by definition if pd.isnull(rule_val): print("column {} is NaN in rule:\n{}".format(col_name, rule_feat)) dists = [(idx, 1.0) for idx, _ in example_feat.iteritems()] zlst = list(zip(*dists)) out = pd.Series(zlst[1], index=zlst[0], name=col_name) return out n_rule = counts[col_name][rule_val] # For every row/example for idx, example_val in example_feat.iteritems(): if pd.isnull(example_val): print("NaN(s) in svdm() in column '{}' in row {}".format(col_name, idx)) dist = 1.0 else: # print("compute example", idx) # print("------------------") # print(example_val) dist = 0. if example_val != rule_val: for k in classes: # print("processing class", k) n_example = counts[col_name][example_val] nk_example = counts[col_name][my_vars.CONDITIONAL][example_val][k] nk_rule = counts[col_name][my_vars.CONDITIONAL][rule_val][k] # print("n_example", n_example) # print("nk_example", nk_example) # print("n_rule", n_rule) # print("nk_rule", nk_rule) res = abs(nk_example/n_example - nk_rule/n_rule) dist += res # print("|{}/{}-{}/{}| = {}".format(nk_example, n_example, nk_rule, n_rule, res)) # print("d={}".format(dist)) # else: # print("same val ({}) in row {}".format(example_val, idx)) dists.append((idx, dist*dist)) # Split tuples into 2 separate lists, one containing the indices and the other one containing the values zlst = list(zip(*dists)) out = pd.Series(zlst[1], index=zlst[0], name=col_name) return out def di(example_feat, rule_feat, min_max): """ Computes the (squared) partial distance for numeric values between an example and a rule. Parameters ---------- example_feat: pd.Series - column (=feature) containing all examples. rule_feat: pd.Series - column (=feature) of the rule. min_max: pd.DataFrame - min and max value per numeric feature. Returns ------- pd.Series (squared) distance of each example. """ col_name = example_feat.name lower_rule_val, upper_rule_val = rule_feat[col_name] dists = [] # Feature is NaN in rule -> all distances will become 1 automatically by definition if pd.isnull(lower_rule_val) or pd.isnull(upper_rule_val): print("column {} is NaN in rule:\n{}".format(col_name, rule_feat)) dists = [(idx, 1.0) for idx, _ in example_feat.iteritems()] zlst = list(zip(*dists)) out = pd.Series(zlst[1], index=zlst[0], name=col_name) return out # For every row/example for idx, example_val in example_feat.iteritems(): # print("processing", example_val) if pd.isnull(example_val): print("NaN(s) in svdm() in column '{}' in row {}".format(col_name, idx)) dist = 1.0 else: min_rule_val = min_max.at["min", col_name] max_rule_val = min_max.at["max", col_name] # print("min({})={}".format(col_name, min_rule_val)) # print("max({})={}".format(col_name, max_rule_val)) if example_val > upper_rule_val: # print("example > upper") # print("({} - {}) / ({} - {})".format(example_val, upper_rule_val, max_rule_val, min_rule_val)) dist = (example_val - upper_rule_val) / (max_rule_val - min_rule_val) elif example_val < lower_rule_val: # print("example < lower") # print("({} -
, u'㓲' : [u'p'] , u'䩹' : [u'e'] , u'腿' : [u't'] , u'邋' : [u'l'] , u'漊' : [u'l'] , u'厍' : [u's'] , u'抗' : [u'k'] , u'萘' : [u'n'] , u'䜚' : [u't'] , u'鰨' : [u't', u'd'] , u'弪' : [u'j'] , u'辵' : [u'c'] , u'渴' : [u'h', u'k', u'j'] , u'劷' : [u'y'] , u'㴾' : [u'b'] , u'懁' : [u'h', u'x'] , u'荂' : [u'k'] , u'䙄' : [u'q', u'z'] , u'科' : [u'k'] , u'魒' : [u'p'] , u'幔' : [u'm'] , u'軟' : [u'r'] , u'浞' : [u'z'] , u'凡' : [u'f'] , u'㱨' : [u'l'] , u'惫' : [u'b'] , u'艬' : [u'c'] , u'䕮' : [u'j'] , u'磻' : [u'p', u'b'] , u'驼' : [u't'] , u'嵾' : [u'c'] , u'沈' : [u'c', u's', u't'] , u'錍' : [u'p'] , u'嘏' : [u'j', u'g'] , u'膖' : [u'p'] , u'攙' : [u'c'] , u'馦' : [u'x'] , u'紩' : [u'z'] , u'岨' : [u'j'] , u'殲' : [u'j'] , u'鈷' : [u'h', u'g'] , u'唹' : [u'y'] , u'㪼' : [u'k'] , u'胀' : [u'z'] , u'摃' : [u'k', u'g'] , u'䏂' : [u's'] , u'飐' : [u'z'] , u'籓' : [u'f'] , u'寒' : [u'h'] , u'櫜' : [u'g'] , u'酡' : [u't'] , u'㧦' : [u'x'] , u'捭' : [u'b'] , u'韺' : [u'y'] , u'嫼' : [u'm'] , u'䂁' : [u'c'] , u'讇' : [u'c'] , u'琎' : [u'j'] , u'墑' : [u'd'] , u'晴' : [u'q'] , u'䰞' : [u'z'] , u'疣' : [u'y'] , u'㚥' : [u'y'] , u'霤' : [u'l'] , u'椰' : [u'y'] , u'䶳' : [u'y'] , u'钹' : [u'b'] , u'䅀' : [u'l'] , u'曅' : [u'y'] , u'衆' : [u'z'] , u'奐' : [u'h'] , u'绕' : [u'r'] , u'觛' : [u'd'] , u'牢' : [u'l'] , u'囥' : [u'k'] , u'㝤' : [u'g'] , u'珷' : [u'w'] , u'㓹' : [u'r'] , u'镸' : [u'c'] , u'老' : [u'l'] , u'构' : [u'g'] , u'儋' : [u'd'] , u'頑' : [u'k', u'w'] , u'羔' : [u'g'] , u'蚚' : [u'q'] , u'樝' : [u'z'] , u'垤' : [u'd'] , u'麪' : [u'm'] , u'䈭' : [u'h'] , u'贳' : [u's'] , u'炶' : [u'h'] , u'㖸' : [u'x'] , u'娽' : [u'l'] , u'䣆' : [u'x'] , u'鏌' : [u'm'] , u'睏' : [u'k'] , u'㡑' : [u'q'] , u'旘' : [u'z'] , u'佟' : [u't'] , u'陥' : [u'x'] , u'編' : [u'b'] , u'㻪' : [u's'] , u'蓮' : [u'l'] , u'桱' : [u'j'] , u'嗸' : [u'a'] , u'鳾' : [u's'] , u'蚃' : [u'x'] , u'愂' : [u'b'] , u'䖅' : [u'l'] , u'麓' : [u'l'] , u'礒' : [u'y'] , u'嶕' : [u'j'] , u'沟' : [u'g'] , u'鈠' : [u'y'] , u'儢' : [u'l'] , u'膭' : [u'g'] , u'怬' : [u'x'] , u'馽' : [u'z'] , u'砼' : [u't'] , u'岿' : [u'k'] , u'濉' : [u's'] , u'赊' : [u's'] , u'偌' : [u'r'] , u'胗' : [u'z'] , u'捖' : [u'h', u'w', u'g'] , u'䟙' : [u'q'] , u'飧' : [u's'] , u'筦' : [u'g'] , u'忩' : [u'c'] , u'滳' : [u's'] , u'豴' : [u'd'] , u'卶' : [u's'] , u'㧽' : [u'h', u'g'] , u'技' : [u'j'] , u'蔅' : [u'y'] , u'䠇' : [u'j'] , u'窐' : [u'w', u'g'] , u'鴕' : [u't'] , u'辞' : [u'c'] , u'猡' : [u'l'] , u'加' : [u'j'] , u'萯' : [u'f'] , u'䬱' : [u'b'] , u'疺' : [u'f'] , u'鰿' : [u'j'] , u'牋' : [u'j'] , u'㵕' : [u's'] , u'蝙' : [u'p', u'b'] , u'䩛' : [u'b'] , u'瓤' : [u'r'] , u'齩' : [u'y', u'j'] , u'觲' : [u'x'] , u'浵' : [u't'] , u'䳴' : [u'd', u't'] , u'㱿' : [u'q'] , u'樆' : [u'l'] , u'争' : [u'z'] , u'閏' : [u'r'] , u'殛' : [u'j'] , u'娦' : [u'p'] , u'䎫' : [u'c', u'z'] , u'誱' : [u'j'] , u'眸' : [u'm'] , u'宻' : [u'm'] , u'㐺' : [u'z'] , u'佈' : [u'b'] , u'烍' : [u'x'] , u'陎' : [u's'] , u'摚' : [u't'] , u'䣝' : [u't'] , u'韣' : [u'd'] , u'籪' : [u'd'] , u'旯' : [u'x', u'l'] , u'議' : [u'y'] , u'呺' : [u'x', u'h'] , u'緿' : [u'd'] , u'踉' : [u'l'] , u'熌' : [u's'] , u'弓' : [u'g'] , u'䦜' : [u'w'] , u'邢' : [u'x', u'g'] , u'琥' : [u'h'] , u'㤧' : [u'h'] , u'茫' : [u'h', u'm'] , u'暮' : [u'm'] , u'鬻' : [u'y', u'z', u'j'] , u'纾' : [u's'] , u'藄' : [u'q'] , u'楇' : [u'h'] , u'鷔' : [u'a'] , u'䅗' : [u's'] , u'衝' : [u'c'] , u'珠' : [u'z'] , u'奧' : [u'a', u'y'] , u'䯰' : [u'j'] , u'鋶' : [u'l'] , u'癹' : [u'p', u'b'] , u'㭻' : [u't'] , u'钋' : [u'p'] , u'權' : [u'q'] , u'垍' : [u'j'] , u'㨔' : [u'h'] , u'暗' : [u'a'] , u'耘' : [u'y'] , u'䌚' : [u's'] , u'㖡' : [u'y'] , u'级' : [u'j'] , u'頨' : [u'p'] , u'嬪' : [u'p'] , u'讵' : [u'j'] , u'樴' : [u'z'] , u'嚷' : [u'r'] , u'㤾' : [u's'] , u'旁' : [u'p', u'b'] , u'蝂' : [u'b'] , u'䉄' : [u'l'] , u'㓋' : [u'g'] , u'緑' : [u'l'] , u'齒' : [u'c'] , u'諟' : [u's'] , u'楞' : [u'l'] , u'嗡' : [u'w'] , u'㡨' : [u'q'] , u'擫' : [u'y'] , u'虬' : [u'q'] , u'䅮' : [u'c'] , u'系' : [u'x', u'j'] , u'鹼' : [u'j'] , u'奾' : [u'x'] , u'梈' : [u'p'] , u'霍' : [u'h', u's'] , u'刏' : [u'j'] , u'㾒' : [u'r', u'j'] , u'薖' : [u'k'] , u'愙' : [u'k'] , u'鶦' : [u'h'] , u'礩' : [u'z'] , u'墨' : [u'm'] , u'澲' : [u'y'] , u'阷' : [u'c'] , u'儹' : [u'z'] , u'蓀' : [u's'] , u'恃' : [u's'] , u'䟂' : [u'm'] , u'㝍' : [u'x'] , u'鳐' : [u'y'] , u'忒' : [u't'] , u'滜' : [u'h', u'z', u'g'] , u'镡' : [u'x', u't'] , u'偣' : [u'y'] , u'㷦' : [u'x'] , u'杭' : [u'h', u'k'] , u'䛬' : [u'c', u't'] , u'㙷' : [u'z'] , u'鏺' : [u'p'] , u'罽' : [u'j'] , u'廼' : [u'n'] , u'䒁' : [u'y', u'x', u'j'] , u'辇' : [u'n'] , u'瀎' : [u'm'] , u'岑' : [u'c'] , u'㴐' : [u'm'] , u'䠞' : [u'q', u'c'] , u'熣' : [u's'] , u'錤' : [u'q', u'j'] , u'洰' : [u'j'] , u'䦳' : [u'h', u'x'] , u'邹' : [u'z'] , u'䕀' : [u'k'] , u'担' : [u'q', u'd'] , u'豆' : [u'd'] , u'嵐' : [u'l'] , u'跛' : [u'p', u'b'] , u'癢' : [u'y'] , u'勥' : [u'q', u'j'] , u'矷' : [u'z'] , u'酸' : [u's'] , u'萁' : [u'q', u'j'] , u'掄' : [u'l'] , u'唋' : [u't'] , u'鰑' : [u'y'] , u'箔' : [u'b'] , u'芚' : [u'c', u't'] , u'渝' : [u'y'] , u'厤' : [u'l'] , u'骪' : [u'w'] , u'䘭' : [u'z', u'd'] , u'褳' : [u'l'] , u'璶' : [u'j'] , u'帽' : [u'm'] , u'䳆' : [u'b'] , u'韌' : [u'r'] , u'獏' : [u'm'] , u'懘' : [u'c'] , u'䭟' : [u'y'] , u'鉥' : [u's'] , u'秨' : [u'z'] , u'胮' : [u'p'] , u'汱' : [u'q'] , u'凸' : [u't'] , u'飾' : [u's', u'c'] , u'芃' : [u'p'] , u'攂' : [u'l'] , u'䆅' : [u'c', u'j'] , u'㐌' : [u'y', u's'] , u'骓' : [u'z'] , u'紒' : [u'j'] , u'妕' : [u'z'] , u'梟' : [u'x'] , u'阠' : [u'x'] , u'唢' : [u's'] , u'搬' : [u'b'] , u'䂯' : [u'g'] , u'㜶' : [u'w'] , u'鶽' : [u's', u'z'] , u'簼' : [u'l'] , u'墿' : [u'y'] , u'毉' : [u'y'] , u'襊' : [u'z'] , u'呌' : [u'j'] , u'㫓' : [u'q'] , u'蓗' : [u'z'] , u'杖' : [u'z'] , u'䏙' : [u't'] , u'㙠' : [u'y'] , u'鳧' : [u'f'] , u'罦' : [u'f'] , u'審' : [u's'] , u'櫳' : [u'l'] , u'衴' : [u'd'] , u'坶' : [u'm'] , u'暀' : [u'w'] , u'脅' : [u'x'] , u'䰇' : [u'q'] , u'餕' : [u'j'] , u'讞' : [u'y'] , u'眡' : [u'd'] , u'嚠' : [u'l'] , u'耯' : [u'h'] , u'伱' : [u'n'] , u'熺' : [u'x'] , u'頿' : [u'z'] , u'諈' : [u'z'] , u'癋' : [u'h'] , u'㥕' : [u'l'] , u'荙' : [u'd'] , u'烤' : [u'k'] , u'魩' : [u'm'] , u'跲' : [u'j'] , u'極' : [u'j'] , u'䣴' : [u'x'] , u'㡿' : [u'c'] , u'渆' : [u'y'] , u'䪉' : [u'l'] , u'醏' : [u'd'] , u'贜' : [u'z'] , u'带' : [u'd'] , u'䞫' : [u'y'] , u'躱' : [u'd'] , u'猸' : [u'm'] , u'徻' : [u'w'] , u'䭈' : [u'j'] , u'瓍' : [u's'] , u'鉎' : [u's'] , u'恚' : [u'h'] , u'䳝' : [u'p', u'b', u'd', u'f'] , u'鏣' : [u's'] , u'硪' : [u'y', u'e', u'w'] , u'懯' : [u'f'] , u'轰' : [u'h'] , u'偺' : [u'z'] , u'秿' : [u'f'] , u'䌃' : [u's'] , u'訉' : [u'f'] , u'疌' : [u'n'] , u'嬓' : [u'j'] , u'䶜' : [u'g'] , u'钢' : [u'g'] , u'瀥' : [u'h'] , u'蜫' : [u'k'] , u'抮' : [u'z'] , u'䠵' : [u'f'] , u'鼻' : [u'b'] , u'窾' : [u'k'] , u'臄' : [u'j'] , u'浇' : [u'a', u'j'] , u'勎' : [u'l'] , u'駔' : [u'z'] , u'䕗' : [u'p', u'b'] , u'豝' : [u'b'] , u'矠' : [u'c'] , u'㓢' : [u'l'] , u'嵧' : [u'l'] , u'俰' : [u'h'] , u'零' : [u'l'] , u'特' : [u't'] , u'颋' : [u't'] , u'朊' : [u'r'] , u'宍' : [u'r'] , u'㘔' : [u'c', u's'] , u'檗' : [u'b'] , u'谘' : [u'z'] , u'会' : [u'h', u'k', u'g'] , u'㦡' : [u'l'] , u'犧' : [u'x', u's'] , u'鐨' :
Mikrotik product; for future use) elif "tbps" in rate_string: # Yes # Then speed is saved in mpbs speed = int( float(rate_string.split("tbps")[0]) * 1000000 ) # Display info message log.info( f"get_interfaces: get_speed: rate found: {rate_string}, rate: {speed} mbps" ) # " full-duplex: yes" field found in the block of strings? (full_duplex) if " full-duplex: yes" in data_block: # Yes # Display info message log.info( f"get_interfaces: get_duplex: {interface_name} is in full duplex mode" ) # Then the insterface is in full duplex mode full_duplex = True # Remove current interface information from the block of data # (to speed up the research of data) del block_of_strings_bitrate[index] # Leave the loop break # Get interface mode (access, trunk or hybrid) # Check if the interface is one of the trunk interface if interface_name in dict_trunk_interface: # Yes # Set interface mode mode = dict_trunk_interface[interface_name] # Display info message log.info(f"get_interfaces: mode: {mode}") # # Check if the interface is one of the trunk interface # if interface_name in dict_trunk_interface: # # Yes # # Set trunk mode # mode = "trunk" # # Display info message # log.info(f"get_interfaces: mode: {mode}") # # Get input erros, FCS errors, input packets anf output packets # for index, data_stats in enumerate(block_of_strings_stats): # # Display info message # log.info( # f"get_interfaces: get_stats: index: {index} [{len(block_of_strings_stats)}]" # ) # # Is the name of interface found in the block of strings? # if f"name: {interface_name}" in data_stats: # # Yes, so this block of strings has information on the interface # # Display info message # log.info(f"get_interfaces: get_stats: index found: {index}") # # " rx-fcs-error=" filed found in the block of strings? (speed) # if " rx-fcs-error=" in data_stats: # # Yes # # Save the line with the data of FCS errors # line_split = data_stats.split("rx-fcs-error=")[-1].split("=")[0] # # By default no string gathered # fcs_string = "" # # Check each character till a non-numeric character # for character in line_split: # # Display info message # log.info( # f"get_interfaces: get_stats: fcs errors: char = {character}" # ) # # Is it a numeric characer ("0" to "9")? # if character >= "0" and character <= "9": # # Yes # # So the character is added to a string # fcs_string += character # # Is the character different than " " (which can be used for separator)? # elif character != " ": # # Yes, this is not a space # # Leave the loop then since this is the beginning of another word # break # log.info( # f"get_interfaces: get_stats: fcs errors: fcs_string: {fcs_string}" # ) # # String not empty? # if fcs_string: # # Yes # # Then save the result in integer # fcs_error = int(fcs_string) # Get description if " comment=" in line: description = ( line.split(" comment=")[-1].split("=")[0].rsplit(" ", 1)[0] ) # Display info message log.info(f"get_interfaces: comment: {description}") # Create a dictionary returned_dict = { "operational": operational, "admin_state": admin_state, "maximum_frame_size": maximum_frame_size, "full_duplex": full_duplex, "speed": speed, "mode": mode, "description": description, } # Add the information to the dict if interface_name: returned_output[interface_name] = returned_dict # Return data return returned_output async def get_vlans(self): """ Asyn method used to get the vlans information from the device :return: VLANs of the device :rtype: dict """ # Display info message log.info("get_vlans") # By default nothing is returned returned_output = {} # Send a command output = await self.send_command(self.cmd_get_vlans) # Display info message log.info(f"get_vlans:\n'{output}'") # Convert a string into a list of strings lines = output.splitlines() # Read each line for line in lines: # Initialize data with default values name = "" vlan_id = 0 extra = None # extra = { # "bridge": "", # } # Get VLAN name if " comment=" in line: name = line.split(" comment=")[-1].split("=")[0].rsplit(" ", 1)[0] # Display info message log.info(f"get_vlans: name: {name}") # Get VLAN ID if " vlan-ids=" in line: vlan_id = int(line.split(" vlan-ids=")[-1].split()[0]) # Display info message log.info(f"get_vlans: vlan_id: {vlan_id}") # Get bridge (special Mikrotik) if " bridge=" in line: bridge = line.split(" bridge=")[-1].split("=")[0].rsplit(" ", 1)[0] # Display info message log.info(f"get_vlans: bridge: {bridge}") # Save bridge information into extra = { "bridge": bridge, } # Create a dictionary returned_dict = { "name": name, "extra": extra, } # Is VLAN ID not nul? if vlan_id: # Yes # Add the information to the dict returned_output[vlan_id] = returned_dict # Return data return returned_output async def get_routing_table(self): """ Asyn method used to get the routing table of the device :return: Routing table of the device :rtype: dict """ # Display info message log.info("get_routing_table") # By default nothing is returned returned_output = {} # Send a command output = await self.send_command(self.cmd_get_routing_table) # Display info message log.info(f"get_routing_table:\n'{output}'") # Convert a string into a list of strings lines = output.splitlines() # Read each line for line in lines: # Initialize data with default values network = "" address = "" prefix = 0 protocol = "unknown" administrative_distance = 0 gateway = "" active = False protocol_attributes = None # Get network, address and prefix if " dst-address=" in line: network = line.split(" dst-address=")[-1].split()[0] address = network.split("/")[0] prefix = int(network.split("/")[1]) # Get protocol # Save char with protocol letter if len(line) > 5: protocol_char = line[5] if protocol_char == "C": # Connected protocol = "connected" elif protocol_char == "S": # Static protocol = "static" elif protocol_char == "r": # RIP protocol = "rip" elif protocol_char == "b": # BGP protocol = "bgp" elif protocol_char == "o": # OSPF protocol = "ospf" elif protocol_char == "m": # MME protocol = "mme" # Get administrative distance if " distance=" in line: administrative_distance = int(line.split(" distance=")[-1].split()[0]) # Get gateway if " gateway=" in line: gateway = line.split(" gateway=")[-1].split()[0] # Get active status if len(line) > 3: if line[3] == "A": active = True # Create a dictionary returned_dict = { "address": address, "prefix": prefix, "protocol": protocol, "administrative_distance": administrative_distance, "gateway": gateway, "active": active, "protocol_attributes": protocol_attributes, } # Is a network found? if network: # Yes # Add the information to the dict returned_output[network] = returned_dict # Return data return returned_output async def get_bridges(self): """ Asyn method used to get bridges from the device :return: A dictionary with the bridge information :rtype: dict of dict """ # Display info message log.info("get_bridges") # By default nothing is returned returned_output = {} # Send a command output = await self.send_command(self.cmd_get_bridges) # Display info message log.info(f"get_bridges:\n'{output}'") # Convert a string into a list of strings lines = output.splitlines() # Read each line for line in lines: # Initialize data with default values index = None name = "" status = False mac_address = None spanning_tree = None igmp_snooping = False vlan_filtering = False multicast_querier = False # Get index # Line has enough characters? if len(line) > 1: # Yes # Get the 2 first characters (100 bridges max should be ok) index_string = line[:2] # Convert characters into a integer try: index = int(index_string) # Display info message log.info(f"get_bridges: index: {index}") except: # Convertion failed pass # Get name if " name=" in line: name = line.split(" name=")[-1].split("=")[0].rsplit(" ", 1)[0] # Display info message log.info(f"get_bridges: name: {name}") # Get status line_words = line.split() # Enough words? if len(line_words) > 1: # Running? if line_words[1] == "R": # Yes # So the bridge is enabled status = True # Display info message log.info(f"get_bridges: status: {status}") # Get MAC ADDRESS if " mac-address=" in line: mac_address = ( line.split(" mac-address=")[-1].split("=")[0].rsplit(" ", 1)[0] ) # Display info message log.info(f"get_bridges: mac_address: {mac_address}") # Get Spanning Tree mode if " protocol-mode=" in line: spanning_tree = ( line.split(" protocol-mode=")[-1].split("=")[0].rsplit(" ", 1)[0] ) # Display info message log.info(f"get_bridges: spanning_tree: {spanning_tree}") # Get IGMP SNOOPING status if " igmp-snooping=" in line: # Value "yes" for IGMP SNOOPING? if
#!/usr/bin/python import os, sys import json import numpy as np import re import copy """ Name: <NAME> ID: 16342613 Github: I have included manual implementations of 5 different problems. The copy library was used to create a deep copy of the input grid. """ ### YOUR CODE HERE: write at least three functions which solve ### specific tasks by transforming the input x and returning the ### result. Name them according to the task ID as in the three ### examples below. Delete the three examples. The tasks you choose ### must be in the data/training directory, not data/evaluation. # This is an exception that will allow us to break from nested loops class BreakLoop(Exception): pass def solve_0a938d79(inputGrid): """ - Transformation Process: The input matrix has 2 coloured cells on an edge/s of the matrix. In the output matrix, these cells are extended up to the opposite edge, forming a procedural pattern up to the end of the matrix. - Analysis: All training and testing grids were solved correctly. """ # Note: This was the first one that I did, and I can admit that this can be programmed more efficiently. I wanted # to get back to this one and fix the inefficiency but I ran out of time. There is too much repetition in this # function and that could be removed easily! # The grids are layed out using (y,x,colour) as the coordinates. seeds = [] # Create a deep copy of the input grid output = copy.deepcopy(inputGrid) # Store the size of the input grid gridXSize = len(inputGrid[0]) gridYSize = len(inputGrid) coloursOnYAxis = True # Loop through the edges of the grid and find the 'seeds' which are the coloured cells try: for xIndex in range(gridXSize): # Represents the opposite edges on the x axis possibleColourIndexes = [0, gridYSize - 1] # Find the seeds on each edge (if they exist on both edges) for yIndex in range(len(possibleColourIndexes)): colourValue = inputGrid[yIndex][xIndex] # If we find a seed if colourValue != 0: seeds.append([0, xIndex, colourValue]) # Find the remaining seed for yIndex2 in possibleColourIndexes: for xIndex2 in range(gridXSize): colourValue = inputGrid[yIndex2][xIndex2] if colourValue != 0 and xIndex2 != xIndex: seeds.append([gridYSize - 1, xIndex2, colourValue]) # Once we find both seeds, specify which axis the coloured bars will be (perpendicular # to the x axis here), and break from the nested loop coloursOnYAxis = True raise BreakLoop for yIndex in range(gridYSize): # Represents the opposite edges on the y axis possibleColourIndexes = [0, gridXSize - 1] # Find the seeds on each edge (if they exist on both edges) colourValue = inputGrid[yIndex][0] for xIndex in possibleColourIndexes: # If we find a seed if colourValue != 0: seeds.append([yIndex, xIndex, colourValue]) # Find the remaining seed for xIndex2 in possibleColourIndexes: for yIndex2 in range(gridYSize): colourValue = inputGrid[yIndex2][xIndex2] if colourValue != 0 and yIndex2 != yIndex: seeds.append([yIndex2, gridYSize - 1, colourValue]) # Once we find both seeds, specify which axis the coloured bars will be (perpendicular # to the y axis here), and break from the nested loop coloursOnYAxis = False raise BreakLoop except BreakLoop: pass # Find out how far to extend the lines gridConstraint = gridXSize if coloursOnYAxis is False: seeds[0] = [seeds[0][1], seeds[0][0], seeds[0][2]] seeds[1] = [seeds[1][1], seeds[1][0], seeds[1][2]] gridConstraint = gridYSize # The gap between the lines barGap = seeds[0][1] - seeds[1][1] # The details of the current line we are painting currentPaintAxisValueDetails = [0, 0, 0] # Find out which line to draw first if barGap < 0: currentPaintAxisValueDetails = [seeds[0][1], seeds[0][2], seeds[1][2]] elif barGap > 0: currentPaintAxisValueDetails = [seeds[1][1], seeds[1][2], seeds[0][2]] # A count of how many lines we have drawn so far count = 0 while currentPaintAxisValueDetails[0] < gridConstraint: if coloursOnYAxis is True: # Draw the line for the first colour if count % 2 == 0: output[:, currentPaintAxisValueDetails[0]] = currentPaintAxisValueDetails[1] # Draw the line for the second colour else: output[:, currentPaintAxisValueDetails[0]] = currentPaintAxisValueDetails[2] else: # Draw the line for the first colour if count % 2 == 0: output[currentPaintAxisValueDetails[0], :] = currentPaintAxisValueDetails[1] else: # Draw the line for the second colour output[currentPaintAxisValueDetails[0], :] = currentPaintAxisValueDetails[2] # Set up the 'painter' to draw the next line, taking the gap between the lines into account currentPaintAxisValueDetails[0] += abs(barGap) count += 1 return output def solve_5c0a986e(inputGrid): """ - Transformation Process: The input grid has a 2x2 red square and a 2x2 blue square. A bottom-right facing diagonal line trails off from the red square, while a top-left facing diagonal line trials off from the blue square. Adding these trails gives us the output matrix. - Analysis: All training and testing grids were solved correctly. """ # Create a deep copy of the input grid output = copy.deepcopy(inputGrid) # Store the size of the input grid gridXSize = len(inputGrid[0]) gridYSize = len(inputGrid) # The important corner of the blue and red squares, and the colours of the diagonal lines which emanate from them blueSeed = [] redSeed = [] colours = [1, 2] try: # Loop through the grid for yIndex in range(gridYSize): for xIndex in range(gridXSize): # Finding the top left blue block in the 2x2 blue square if inputGrid[yIndex][xIndex] == 1 and blueSeed == []: blueSeed = [yIndex, xIndex] # Finding the bottom right red block in the 2x2 blue square if inputGrid[yIndex][xIndex] == 2 and redSeed == []: redSeed = [yIndex + 1, xIndex + 1] # If we have found both the red and blue squares, we can stop our search if redSeed != [] and blueSeed != []: raise BreakLoop except BreakLoop: pass nextIndexes = [[point - 1 for point in blueSeed], [point + 1 for point in redSeed]] # Repeat this for both squares for i in range(2): # Repeat until the diagonal line hits an edge while (nextIndexes[i][0] < gridYSize) and (nextIndexes[i][0] >= 0) and \ (nextIndexes[i][1] < gridXSize) and (nextIndexes[i][1] >= 0): output[nextIndexes[i][0]][nextIndexes[i][1]] = colours[i] if i == 0: nextIndexes[0] = [point - 1 for point in nextIndexes[0]] if i == 1: nextIndexes[1] = [point + 1 for point in nextIndexes[1]] return output def solve_363442ee(inputGrid): """ - Transformation Process: The input grid is seperates by a grey line. The top 3x3 square to the left of the grey line has a specific pattern if colours, and we store this pattern. To the right of the grey line, there are a number of blue cells. Each blue cell represents a centre point on which the pattern should be applied, therefore we paste the pattern onto the blue cells such that a blue cell is in the middle of the 3x3 pattern. This gives us the output matrix. - Analysis: All training and testing grids were solved correctly. """ # Create a deep copy of the input grid output = copy.deepcopy(inputGrid) # Store the pattern and the input grid size pattern = inputGrid[0:3, 0:3] gridXSize = len(inputGrid[0]) gridYSize = len(inputGrid) # Locate the grey line which separates the input grid seperatorXIndex = 0 for xIndex in range(gridXSize): if inputGrid[0][xIndex] == 5: seperatorXIndex = xIndex break # Only keep the right hand side of the grey line gridXSize = gridXSize - seperatorXIndex # Paste the pattern on top of the blue cells, centred on the blue cells for yIndex in range(gridYSize): for xIndex in range(gridXSize): if inputGrid[yIndex][xIndex + seperatorXIndex] == 1: output[(yIndex - 1):(yIndex + 2), (xIndex + seperatorXIndex- 1):(xIndex + seperatorXIndex + 2)] = pattern return output def solve_868de0fa(inputGrid): """ - Transformation Process: In the input grid, there are a set of 'hollow' squares. In the output, these same 'hollow' squares are filled with either a red or orange colour. If the number of cells in one side of the square is even, then the square is filled with a red colour. If the number of cells in one side of the square is odd, then the square os filled with an orange
function at a given address with a given type. :param int addr: Address to get tags at :param TagType tag_type: TagType object to match in searching :param Architecture arch: Architecture for the block in which the Tags are located (optional) :return: A list of data Tags :rtype: list(Tag) """ if arch is None: assert self.arch is not None, "Can't get_user_address_tags_of_type for function with no architecture specified" arch = self.arch count = ctypes.c_ulonglong() tags = core.BNGetUserAddressTagsOfType(self.handle, arch.handle, addr, tag_type.handle, count) assert tags is not None, "core.BNGetUserAddressTagsOfType returned None" try: result = [] for i in range(0, count.value): tag_ref = core.BNNewTagReference(tags[i]) assert tag_ref is not None, "core.BNNewTagReference returned None" result.append(binaryview.Tag(tag_ref)) return result finally: core.BNFreeTagList(tags, count.value) def get_address_tags_in_range( self, address_range: 'variable.AddressRange', arch: 'architecture.Architecture' = None ) -> List[Tuple['architecture.Architecture', int, 'binaryview.Tag']]: """ ``get_address_tags_in_range`` gets a list of all Tags in the function at a given address. Range is inclusive at the start, exclusive at the end. :param AddressRange address_range: Address range from which to get tags :param Architecture arch: Architecture for the block in which the Tag is located (optional) :return: A list of (arch, address, Tag) tuples :rtype: list((Architecture, int, Tag)) """ if arch is None: assert self.arch is not None, "Can't call get_address_tags_in_range for function with no architecture specified" arch = self.arch count = ctypes.c_ulonglong() refs = core.BNGetAddressTagsInRange(self.handle, arch.handle, address_range.start, address_range.end, count) assert refs is not None, "core.BNGetAddressTagsInRange returned None" try: result = [] for i in range(0, count.value): tag_ref = core.BNNewTagReference(refs[i].tag) assert tag_ref is not None, "core.BNNewTagReference returned None" tag = binaryview.Tag(tag_ref) result.append((arch, refs[i].addr, tag)) return result finally: core.BNFreeTagReferences(refs, count.value) def get_auto_address_tags_in_range( self, address_range: 'variable.AddressRange', arch: 'architecture.Architecture' = None ) -> List[Tuple['architecture.Architecture', int, 'binaryview.Tag']]: """ ``get_auto_address_tags_in_range`` gets a list of all auto-defined Tags in the function at a given address. Range is inclusive at the start, exclusive at the end. :param AddressRange address_range: Address range from which to get tags :param Architecture arch: Architecture for the block in which the Tag is located (optional) :return: A list of (arch, address, Tag) tuples :rtype: list((Architecture, int, Tag)) """ if arch is None: assert self.arch is not None, "Can't call get_auto_address_tags_in_range for function with no architecture specified" arch = self.arch count = ctypes.c_ulonglong() refs = core.BNGetAutoAddressTagsInRange(self.handle, arch.handle, address_range.start, address_range.end, count) assert refs is not None, "core.BNGetAutoAddressTagsInRange returned None" try: result = [] for i in range(0, count.value): tag_ref = core.BNNewTagReference(refs[i].tag) assert tag_ref is not None, "core.BNNewTagReference returned None" tag = binaryview.Tag(tag_ref) result.append((arch, refs[i].addr, tag)) return result finally: core.BNFreeTagReferences(refs, count.value) def get_user_address_tags_in_range( self, address_range: 'variable.AddressRange', arch: 'architecture.Architecture' = None ) -> List[Tuple['architecture.Architecture', int, 'binaryview.Tag']]: """ ``get_user_address_tags_in_range`` gets a list of all user Tags in the function at a given address. Range is inclusive at the start, exclusive at the end. :param AddressRange address_range: Address range from which to get tags :param Architecture arch: Architecture for the block in which the Tag is located (optional) :return: A list of (arch, address, Tag) tuples :rtype: list((Architecture, int, Tag)) """ if arch is None: assert self.arch is not None, "Can't call get_user_address_tags_in_range for function with no architecture specified" arch = self.arch count = ctypes.c_ulonglong() refs = core.BNGetUserAddressTagsInRange(self.handle, arch.handle, address_range.start, address_range.end, count) assert refs is not None, "core.BNGetUserAddressTagsInRange returned None" try: result = [] for i in range(0, count.value): tag_ref = core.BNNewTagReference(refs[i].tag) assert tag_ref is not None, "core.BNNewTagReference returned None" tag = binaryview.Tag(tag_ref) result.append((arch, refs[i].addr, tag)) return result finally: core.BNFreeTagReferences(refs, count.value) def get_stack_contents_at( self, addr: int, offset: int, size: int, arch: Optional['architecture.Architecture'] = None ) -> 'variable.RegisterValue': """ ``get_stack_contents_at`` returns the RegisterValue for the item on the stack in the current function at the given virtual address ``addr``, stack offset ``offset`` and size of ``size``. Optionally specifying the architecture. :param int addr: virtual address of the instruction to query :param int offset: stack offset base of stack :param int size: size of memory to query :param Architecture arch: (optional) Architecture for the given function :rtype: variable.RegisterValue .. note:: Stack base is zero on entry into the function unless the architecture places the return address on the \ stack as in (x86/x86_64) where the stack base will start at address_size :Example: >>> current_function.get_stack_contents_at(0x400fad, -16, 4) <range: 0x8 to 0xffffffff> """ if arch is None: arch = self.arch value = core.BNGetStackContentsAtInstruction(self.handle, arch.handle, addr, offset, size) result = variable.RegisterValue.from_BNRegisterValue(value, arch) return result def get_stack_contents_after( self, addr: int, offset: int, size: int, arch: Optional['architecture.Architecture'] = None ) -> 'variable.RegisterValue': if arch is None: arch = self.arch value = core.BNGetStackContentsAfterInstruction(self.handle, arch.handle, addr, offset, size) result = variable.RegisterValue.from_BNRegisterValue(value, arch) return result def get_parameter_at( self, addr: int, func_type: Optional['types.Type'], i: int, arch: Optional['architecture.Architecture'] = None ) -> 'variable.RegisterValue': if arch is None: arch = self.arch _func_type = None if func_type is not None: _func_type = func_type.handle value = core.BNGetParameterValueAtInstruction(self.handle, arch.handle, addr, _func_type, i) result = variable.RegisterValue.from_BNRegisterValue(value, arch) return result def remove_user_address_tags_of_type(self, addr, tag_type, arch=None): """ ``remove_user_address_tags_of_type`` removes all tags at the given address of the given type. Since this removes user tags, it will be added to the current undo buffer. :param int addr: Address at which to remove the tag :param Tag tag_type: TagType object to match for removing :param Architecture arch: Architecture for the block in which the Tags is located (optional) :rtype: None """ if arch is None: arch = self.arch core.BNRemoveUserAddressTagsOfType(self.handle, arch.handle, addr, tag_type.handle) def get_parameter_at_low_level_il_instruction( self, instr: 'lowlevelil.InstructionIndex', func_type: 'types.Type', i: int ) -> 'variable.RegisterValue': _func_type = None if func_type is not None: _func_type = func_type.handle value = core.BNGetParameterValueAtLowLevelILInstruction(self.handle, instr, _func_type, i) result = variable.RegisterValue.from_BNRegisterValue(value, self.arch) return result def get_regs_read_by(self, addr: int, arch: Optional['architecture.Architecture'] = None) -> List['architecture.RegisterName']: if arch is None: arch = self.arch count = ctypes.c_ulonglong() regs = core.BNGetRegistersReadByInstruction(self.handle, arch.handle, addr, count) assert regs is not None, "core.BNGetRegistersReadByInstruction returned None" result = [] for i in range(0, count.value): result.append(arch.get_reg_name(regs[i])) core.BNFreeRegisterList(regs) return result def get_regs_written_by(self, addr: int, arch: Optional['architecture.Architecture'] = None) -> List['architecture.RegisterName']: if arch is None: arch = self.arch count = ctypes.c_ulonglong() regs = core.BNGetRegistersWrittenByInstruction(self.handle, arch.handle, addr, count) assert regs is not None, "core.BNGetRegistersWrittenByInstruction returned None" result = [] for i in range(0, count.value): result.append(arch.get_reg_name(regs[i])) core.BNFreeRegisterList(regs) return result def remove_auto_address_tag( self, addr: int, tag: 'binaryview.TagType', arch: Optional['architecture.Architecture'] = None ) -> None: """ ``remove_auto_address_tag`` removes a Tag object at a given address. :param int addr: Address at which to add the tag :param Tag tag: Tag object to be added :param Architecture arch: Architecture for the block in which the Tag is added (optional) :rtype: None """ if arch is None: arch = self.arch core.BNRemoveAutoAddressTag(self.handle, arch.handle, addr, tag.handle) def remove_auto_address_tags_of_type(self, addr, tag_type, arch=None): """ ``remove_auto_address_tags_of_type`` removes all tags at the given address of the given type. :param int addr: Address at which to remove the tags :param Tag tag_type: TagType object to match for removing :param Architecture arch: Architecture for the block in which the Tags is located (optional) :rtype: None """ if arch is None: arch = self.arch core.BNRemoveAutoAddressTagsOfType(self.handle, arch.handle, addr, tag_type.handle) def get_stack_vars_referenced_by( self, addr: int, arch: Optional['architecture.Architecture'] = None ) -> List['variable.StackVariableReference']: if arch is None: arch = self.arch count = ctypes.c_ulonglong() refs = core.BNGetStackVariablesReferencedByInstruction(self.handle, arch.handle, addr, count) assert refs is not None, "core.BNGetStackVariablesReferencedByInstruction returned None" result = [] for i in range(0, count.value): var_type = types.Type.create( core.BNNewTypeReference(refs[i].type), platform=self.platform, confidence=refs[i].typeConfidence ) var = variable.Variable.from_identifier(self, refs[i].varIdentifier) result.append( variable.StackVariableReference( refs[i].sourceOperand, var_type, refs[i].name, var, refs[i].referencedOffset, refs[i].size ) ) core.BNFreeStackVariableReferenceList(refs, count.value) return result def get_stack_vars_referenced_by_address_if_available( self, addr: int, arch: Optional['architecture.Architecture'] = None ) -> List['variable.StackVariableReference']: if arch is None: arch = self.arch count = ctypes.c_ulonglong() refs = core.BNGetStackVariablesReferencedByInstructionIfAvailable(self.handle, arch.handle, addr, count) assert refs is not None, "core.BNGetStackVariablesReferencedByInstructionIfAvailable returned None" result = [] for i in range(0, count.value): var_type = types.Type.create( core.BNNewTypeReference(refs[i].type), platform=self.platform, confidence=refs[i].typeConfidence ) var = variable.Variable.from_identifier(self, refs[i].varIdentifier) result.append( variable.StackVariableReference( refs[i].sourceOperand, var_type, refs[i].name, var, refs[i].referencedOffset, refs[i].size ) ) core.BNFreeStackVariableReferenceList(refs, count.value) return result @property def auto_function_tags(self): """ ``auto_function_tags`` gets a list of all auto-defined function Tags for the function. :rtype: list(Tag) """ count = ctypes.c_ulonglong() tags = core.BNGetAutoFunctionTags(self.handle, count) assert tags is not None, "core.BNGetAutoFunctionTags returned None" result = [] for i in range(0, count.value): tag_ref = core.BNNewTagReference(tags[i]) assert tag_ref is not None, "core.BNNewTagReference returned None" result.append(binaryview.Tag(tag_ref)) core.BNFreeTagList(tags, count.value) return result @property def user_function_tags(self): """ ``user_function_tags`` gets a list of all user function Tags for the function. :rtype: list(Tag) """ count = ctypes.c_ulonglong() tags = core.BNGetUserFunctionTags(self.handle, count) assert tags is not None, "core.BNGetUserFunctionTags returned None" result = [] for i in range(0, count.value): tag_ref = core.BNNewTagReference(tags[i]) assert tag_ref is not None, "core.BNNewTagReference returned None" result.append(binaryview.Tag(tag_ref)) core.BNFreeTagList(tags, count.value) return result def get_lifted_il_at( self, addr: int, arch: Optional['architecture.Architecture'] = None ) -> Optional['lowlevelil.LowLevelILInstruction']: if arch is None: arch = self.arch idx = core.BNGetLiftedILForInstruction(self.handle, arch.handle, addr) if idx == len(self.lifted_il): return None return self.lifted_il[idx] def get_lifted_ils_at( self, addr: int, arch: Optional['architecture.Architecture'] = None ) -> List['lowlevelil.LowLevelILInstruction']: """ ``get_lifted_ils_at`` gets the Lifted IL Instruction(s) corresponding to the given virtual address :param int addr: virtual address of the function to be queried :param Architecture arch: (optional) Architecture for the given function :rtype: list(LowLevelILInstruction) :Example: >>> func = next(bv.functions) >>> func.get_lifted_ils_at(func.start) [<il: push(rbp)>] """ if arch is None: arch = self.arch count = ctypes.c_ulonglong() instrs = core.BNGetLiftedILInstructionsForAddress(self.handle, arch.handle, addr, count) assert instrs is not None, "core.BNGetLiftedILInstructionsForAddress returned None" result = [] for i in range(0, count.value): result.append(self.lifted_il[instrs[i]]) core.BNFreeILInstructionList(instrs) return result def get_function_tags_of_type(self, tag_type): """ ``get_function_tags_of_type`` gets a list of all function Tags with a given type. :param TagType tag_type: TagType object to match in searching :return: A list of data Tags :rtype: list(Tag) """ count = ctypes.c_ulonglong() tags = core.BNGetFunctionTagsOfType(self.handle, tag_type.handle, count) assert tags is not None, "core.BNGetFunctionTagsOfType returned None" result = [] for i in range(0, count.value): tag_ref = core.BNNewTagReference(tags[i]) assert tag_ref is not None, "core.BNNewTagReference returned None" result.append(binaryview.Tag(tag_ref)) core.BNFreeTagList(tags, count.value) return result def get_auto_function_tags_of_type(self, tag_type): """ ``get_auto_function_tags_of_type`` gets a list of all auto-defined function Tags with a given type. :param TagType
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: # # Copyright 2022 The NiPreps Developers <<EMAIL>> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # We support and encourage derived works from this project, please read # about our expectations at # # https://www.nipreps.org/community/licensing/ # """A lightweight NiPype MultiProc execution plugin.""" # Import packages import os import sys from copy import deepcopy from time import sleep, time import multiprocessing as mp from concurrent.futures import ProcessPoolExecutor from traceback import format_exception import gc # Run node def run_node(node, updatehash, taskid): """ Execute node.run(), catch and log any errors and get a result. Parameters ---------- node : nipype Node instance the node to run updatehash : boolean flag for updating hash taskid : int an identifier for this task Returns ------- result : dictionary dictionary containing the node runtime results and stats """ # Init variables result = dict(result=None, traceback=None, taskid=taskid) # Try and execute the node via node.run() try: result["result"] = node.run(updatehash=updatehash) except: # noqa: E722, intendedly catch all here result["traceback"] = format_exception(*sys.exc_info()) result["result"] = node.result # Return the result dictionary return result class PluginBase: """Base class for plugins.""" def __init__(self, plugin_args=None): """Initialize plugin.""" if plugin_args is None: plugin_args = {} self.plugin_args = plugin_args self._config = None self._status_callback = plugin_args.get("status_callback") def run(self, graph, config, updatehash=False): """ Instruct the plugin to execute the workflow graph. The core plugin member that should be implemented by all plugins. Parameters ---------- graph : a networkx, flattened :abbr:`DAG (Directed Acyclic Graph)` to be executed config : :obj:`~nipype.config` a nipype.config object updatehash : :obj:`bool` whether cached nodes with stale hash should be just updated. """ raise NotImplementedError class DistributedPluginBase(PluginBase): """ Execute workflow with a distribution engine. Combinations of ``proc_done`` and ``proc_pending``: +------------+---------------+--------------------------------+ | proc_done | proc_pending | outcome | +============+===============+================================+ | True | False | Process is finished | +------------+---------------+--------------------------------+ | True | True | Process is currently being run | +------------+---------------+--------------------------------+ | False | False | Process is queued | +------------+---------------+--------------------------------+ | False | True | INVALID COMBINATION | +------------+---------------+--------------------------------+ Attributes ---------- procs : :obj:`list` list (N) of underlying interface elements to be processed proc_done : :obj:`numpy.ndarray` a boolean numpy array (N,) signifying whether a process has been submitted for execution proc_pending : :obj:`numpy.ndarray` a boolean numpy array (N,) signifying whether a process is currently running. depidx : :obj:`numpy.matrix` a boolean matrix (NxN) storing the dependency structure accross processes. Process dependencies are derived from each column. """ def __init__(self, plugin_args=None): """Initialize runtime attributes to none.""" super(DistributedPluginBase, self).__init__(plugin_args=plugin_args) self.procs = None self.depidx = None self.refidx = None self.mapnodes = None self.mapnodesubids = None self.proc_done = None self.proc_pending = None self.pending_tasks = [] self.max_jobs = self.plugin_args.get("max_jobs", None) def _prerun_check(self, graph): """Stub method to validate/massage graph and nodes before running.""" def _postrun_check(self): """Stub method to close any open resources.""" def run(self, graph, config, updatehash=False): """Execute a pre-defined pipeline using distributed approaches.""" import numpy as np self._config = config poll_sleep_secs = float(config["execution"]["poll_sleep_duration"]) self._prerun_check(graph) # Generate appropriate structures for worker-manager model self._generate_dependency_list(graph) self.mapnodes = [] self.mapnodesubids = {} # setup polling - TODO: change to threaded model notrun = [] errors = [] while not np.all(self.proc_done) or np.any(self.proc_pending): loop_start = time() toappend = [] # trigger callbacks for any pending results while self.pending_tasks: taskid, jobid = self.pending_tasks.pop() try: result = self._get_result(taskid) except Exception as exc: notrun.append(self._clean_queue(jobid, graph)) errors.append(exc) else: if result: if result["traceback"]: notrun.append( self._clean_queue(jobid, graph, result=result) ) errors.append("".join(result["traceback"])) else: self._task_finished_cb(jobid) self._remove_node_dirs() self._clear_task(taskid) else: assert self.proc_done[jobid] and self.proc_pending[jobid] toappend.insert(0, (taskid, jobid)) if toappend: self.pending_tasks.extend(toappend) num_jobs = len(self.pending_tasks) if self.max_jobs is None or num_jobs < self.max_jobs: self._send_procs_to_workers(updatehash=updatehash, graph=graph) sleep_til = loop_start + poll_sleep_secs sleep(max(0, sleep_til - time())) self._remove_node_dirs() # close any open resources self._postrun_check() if errors: # If one or more nodes failed, re-rise first of them error, cause = errors[0], None if isinstance(error, str): error = RuntimeError(error) if len(errors) > 1: error, cause = ( RuntimeError(f"{len(errors)} raised. Re-raising first."), error, ) raise error from cause def _get_result(self, taskid): raise NotImplementedError def _submit_job(self, node, updatehash=False): raise NotImplementedError def _report_crash(self, node, result=None): from nipype.pipeline.plugins.tools import report_crash tb = None if result is not None: node._result = result["result"] tb = result["traceback"] node._traceback = tb return report_crash(node, traceback=tb) def _clear_task(self, taskid): raise NotImplementedError def _clean_queue(self, jobid, graph, result=None): from mriqc import config if self._status_callback: self._status_callback(self.procs[jobid], "exception") if result is None: result = { "result": None, "traceback": "\n".join(format_exception(*sys.exc_info())), } crashfile = self._report_crash(self.procs[jobid], result=result) if config.nipype.stop_on_first_crash: raise RuntimeError("".join(result["traceback"])) if jobid in self.mapnodesubids: # remove current jobid self.proc_pending[jobid] = False self.proc_done[jobid] = True # remove parent mapnode jobid = self.mapnodesubids[jobid] self.proc_pending[jobid] = False self.proc_done[jobid] = True # remove dependencies from queue return self._remove_node_deps(jobid, crashfile, graph) def _send_procs_to_workers(self, updatehash=False, graph=None): """Submit tasks to workers when system resources are available.""" def _submit_mapnode(self, jobid): import numpy as np import scipy.sparse as ssp if jobid in self.mapnodes: return True self.mapnodes.append(jobid) mapnodesubids = self.procs[jobid].get_subnodes() numnodes = len(mapnodesubids) for i in range(numnodes): self.mapnodesubids[self.depidx.shape[0] + i] = jobid self.procs.extend(mapnodesubids) self.depidx = ssp.vstack( (self.depidx, ssp.lil_matrix(np.zeros((numnodes, self.depidx.shape[1])))), "lil", ) self.depidx = ssp.hstack( (self.depidx, ssp.lil_matrix(np.zeros((self.depidx.shape[0], numnodes)))), "lil", ) self.depidx[-numnodes:, jobid] = 1 self.proc_done = np.concatenate( (self.proc_done, np.zeros(numnodes, dtype=bool)) ) self.proc_pending = np.concatenate( (self.proc_pending, np.zeros(numnodes, dtype=bool)) ) return False def _local_hash_check(self, jobid, graph): from mriqc import config if not config.nipype.local_hash_check: return False try: cached, updated = self.procs[jobid].is_cached() except Exception: return False overwrite = self.procs[jobid].overwrite always_run = self.procs[jobid].interface.always_run if ( cached and updated and (overwrite is False or overwrite is None and not always_run) ): try: self._task_finished_cb(jobid, cached=True) self._remove_node_dirs() except Exception: self._clean_queue(jobid, graph) self.proc_pending[jobid] = False return True return False def _task_finished_cb(self, jobid, cached=False): """ Extract outputs and assign to inputs of dependent tasks. This is called when a job is completed. """ if self._status_callback: self._status_callback(self.procs[jobid], "end") # Update job and worker queues self.proc_pending[jobid] = False # update the job dependency structure rowview = self.depidx.getrowview(jobid) rowview[rowview.nonzero()] = 0 if jobid not in self.mapnodesubids: self.refidx[self.refidx[:, jobid].nonzero()[0], jobid] = 0 def _generate_dependency_list(self, graph): """Generate a dependency list for a list of graphs.""" import numpy as np import networkx as nx from nipype.pipeline.engine.utils import topological_sort self.procs, _ = topological_sort(graph) self.depidx = nx.to_scipy_sparse_matrix( graph, nodelist=self.procs, format="lil" ) self.refidx = self.depidx.astype(int) self.proc_done = np.zeros(len(self.procs), dtype=bool) self.proc_pending = np.zeros(len(self.procs), dtype=bool) def _remove_node_deps(self, jobid, crashfile, graph): import networkx as nx try: dfs_preorder = nx.dfs_preorder except AttributeError: dfs_preorder = nx.dfs_preorder_nodes subnodes = [s for s in dfs_preorder(graph, self.procs[jobid])] for node in subnodes: idx = self.procs.index(node) self.proc_done[idx] = True self.proc_pending[idx] = False return dict(node=self.procs[jobid], dependents=subnodes, crashfile=crashfile) def _remove_node_dirs(self): """Remove directories whose outputs have already been used up.""" import numpy as np from shutil import rmtree from mriqc import config if config.nipype.remove_node_directories: indices = np.nonzero((self.refidx.sum(axis=1) == 0).__array__())[0] for idx in indices: if idx in self.mapnodesubids: continue if self.proc_done[idx] and (not self.proc_pending[idx]): self.refidx[idx, idx] = -1 outdir = self.procs[idx].output_dir() rmtree(outdir) class MultiProcPlugin(DistributedPluginBase): """ A lightweigh re-implementation of NiPype's MultiProc plugin. Execute workflow with multiprocessing, not sending more jobs at once than the system can support. The plugin_args input to run can be used to control the multiprocessing execution and defining the maximum amount of memory and threads that should be used. When those parameters are not specified, the number of threads and memory of the system is used. System consuming nodes should be tagged:: memory_consuming_node.mem_gb = 8 thread_consuming_node.n_procs = 16 The default number of threads and memory are set at node creation, and are 1 and 0.25GB respectively. Currently supported options are: - non_daemon: boolean flag to execute as non-daemon processes - n_procs: maximum number of threads to be executed in parallel - memory_gb: maximum
#TODO: Consider adding more checks whether entities exist. class Geometry: ''' Instances of GeoData can hold geometric data and be passed to GmshMesher in pycalfem_Mesh to mesh the geometry. ''' def __init__(self): self.points = {} #dict of [[x, y, z], elSize, marker] self.curves = {} #dict of [curvTypestring, [p1, p2, ... pn], marker, elementsOnCurve, distributionString, distributionVal] self.surfaces = {} #dict of [SurfaceTypeString, [c1, c2 ... cn], [[c1, c2 ... cm], ... [c1, ... ck]], ID, marker, isStructured]. c means curve-ID. self.volumes = {} #dict of [[s1, s2 ..], [[s1,s2...],[s1,s2..],..], ID, marker, isStructured] self.is3D = False #This is automatically set to True if a 3D point is added. self._pointIDspecified = False self._nextPointID = 0 self._curveIDspecified = False self._nextcurveID = 0 self._surfaceIDspecified = False self._nextsurfaceID = 0 self._volumeIDspecified = False self._nextvolumeID = 0 def removePoint(self, ID): '''Removes the point with this ID''' self.points.pop(ID) def removeCurve(self, ID): '''Removes the curve with this ID''' self.curve.pop(ID) def removeSurface(self, ID): '''Removes the surface with this ID''' self.surfaces.pop(ID) def removeVolume(self, ID): '''Removes the volume with this ID''' self.volumes.pop(ID) def getPointCoords(self, IDs=None): ''' Returns an N-by-3 list of point coordinates if the parameter is a list of IDs. If the parameter is just a single integer then a single coordinate (simple 3-element list) is returned. If the parameter is undefined (or None) all point coords will be returned ''' if IDs == None: return [p[0] for p in self.points.values()] try: pointCoords = [self.points[pID][0] for pID in IDs] except TypeError: #IDs was not iterable. Probably just a single ID. pointCoords = self.points[IDs][0] return pointCoords def pointsOnCurves(self, IDs): ''' Returns a list of all geometric points (not nodes) on the curves specified in IDs. IDs may be an integer or a list of integers. ''' return self._subentitiesOnEntities(IDs, self.curves, 1) def stuffOnSurfaces(self, IDs): ''' Returns lists of all geometric points and curves on the surfaces specified in IDs. IDs may be an integer or a list of integers ''' curveSet = self._subentitiesOnEntities(IDs, self.surfaces, 1) #Curves on the outer edges curveSet.update( self._subentityHolesOnEntities(IDs, self.surfaces, 2) ) #Curves on the holes pointList = self.pointsOnCurves(curveSet) #Points on the curves of these surfaces. return pointList, list(curveSet) def stuffOnVolumes(self, IDs): ''' Returns lists of all geometric points, curves, and surfaces on the volumes specified in IDs. IDs may be an integer or a list of integers ''' surfaceSet = self._subentitiesOnEntities(IDs, self.surfaces, 0) surfaceSet.update( self._subentitiesOnEntities(IDs, self.surfaces, 1) ) pointList, curveList = self.stuffOnSurfaces(surfaceSet) return pointList, curveList, list(surfaceSet) def _subentitiesOnEntities(self, IDs, entityDict, index): ''' Duplicate code. Gets the IDs of the subentities that make up an entity, i.e. the points that define a curve or the curves that define a surface. Note that only the outer subentities of surfaces and volumes can be extracted with this function. For holes use _subentityHolesOnEntities(). ''' theSet = set() try: for ID in IDs: theSet.update(entityDict[ID][index]) except TypeError: #IDs is not iterable, so it is probably a single ID theSet.update(entityDict[IDs][index]) return theSet def _subentityHolesOnEntities(self, IDs, entityDict, index): '''Duplicate code. Does the same thing as _subentitiesOnEntities(), but for holes''' theSet = set() try: for ID in IDs: for hole in entityDict[ID][index]: theSet.update(hole) except TypeError: #IDs is not iterable, so it is probably a single ID for hole in entityDict[IDs][index]: theSet.update(hole) return theSet def addPoint(self, coord, ID=None, marker=0, elSize=1): ''' Adds a point. Parameters: coord - [x, y] or [x, y, z]. List, not array. ID - Positive integer ID of this point. If left unspecified the point will be assigned the smallest unused point-ID. It is recommended to specify all point-IDs or none. marker - Marker applied to this point. Default 0. It is not a good idea to apply non-zero markers to points that are control points on B-splines or center points on circles/ellipses, since this can lead to "loose" nodes that are not part of any elements. elSize - The size of elements at this point. Default 1. Use to make a mesh denser or sparser here. Only affects unstructured meshes ''' if len(coord)==3: #A 3D point is inserted. self.is3D = True else: #The point is in 2D (we assume) coord = coord+[0] #Pad with a 0. (we store points as 3D points for consistency's sake) if ID==None: #ID is not specified. Get an ID for this point: ID = self._getNewPointID() else: self._pointIDspecified = True self.points[ID] = [coord, elSize, marker] def addSpline(self, points, ID=None, marker=0, elOnCurve=None, elDistribType=None, elDistribVal=None): ''' Adds a Spline curve points - List of indices of control points that make a Spline [p1, p2, ... , pn] ID - Positive integer ID of this curve. If left unspecified the curve will be assigned the smallest unused curve-ID. It is recommended to specify all curve-IDs or none. marker - Integer. Marker applied to this curve. Default 0. elOnCurv - Positive integer. Elements on curve. The number of element edges that will be distributed along this curve. Only works for structured meshes. elDistribType - String. Either "bump" or "progression". Determines how the density of elements vary along the curve for structured meshes. Only works for structured meshes. elOnCurv and elDistribVal must be be defined if this param is used. elDistribVal - Float. Determines how severe the element distribution is. Only works for structured meshes. elOnCurv and elDistribType must be be defined if this param is used. bump: Smaller value means elements are bunched up at the edges of the curve, larger means bunched in the middle. progression: The edge of each element along this curve (from starting point to end) will be larger than the preceding one by this factor. elDistribVal = 2 meaning for example that each line element in the series will be twice as long as the preceding one. elDistribVal < 1 makes each element smaller than the preceeding one. ''' self._addCurve("Spline", points, ID, marker, elOnCurve, elDistribType, elDistribVal) def addBSpline(self, points, ID=None, marker=0, elOnCurve=None, elDistribType=None, elDistribVal=None): ''' Adds a B-Spline curve points - List of indices of control points that make a B-spline [p1, p2, ... , pn] ID - Positive integer ID of this curve. If left unspecified the curve will be assigned the smallest unused curve-ID. It is recommended to specify all curve-IDs or none. marker - Integer. Marker applied to this curve. Default 0. elOnCurv - Positive integer. Elements on curve. The number of element edges that will be distributed along this curve. Only works for structured meshes. elDistribType - String. Either "bump" or "progression". Determines how the density of elements vary along the curve for structured meshes. Only works for structured meshes. elOnCurv and elDistribVal must be be defined if this param is used. elDistribVal - Float. Determines how severe the element distribution is. Only works for structured meshes. elOnCurv and elDistribType must be be defined if this param is used. bump: Smaller value means elements are bunched up at the edges of the curve, larger means bunched in the middle. progression: The edge of each element along this curve (from starting point to end) will be larger than the preceding one by this factor. elDistribVal = 2 meaning for example that each line element in the series will be twice as long as the preceding one. elDistribVal < 1 makes each element smaller than the preceeding one. ''' self._addCurve("BSpline", points, ID, marker, elOnCurve, elDistribType, elDistribVal) def addCircle(self, points, ID=None, marker=0, elOnCurve=None, elDistribType=None, elDistribVal=None): ''' Adds a Circle arc curve. points - list of 3 indices of point that make a circle
a string value for input uint64_t sh_funcs.append("string string_convert_helper(const uint64_t toString, const string prefix)\n{") sh_funcs.append(" using namespace StreamControl;") sh_funcs.append(" stringstream ss;") sh_funcs.append(' ss << toString;') sh_funcs.append(' string final_str = prefix + ss.str();') sh_funcs.append(" return final_str;") sh_funcs.append("}") sh_funcs.append('%s' % lineinfo.get()) # Add function to return a string value for input VkSurfaceFormatKHR* sh_funcs.append("string string_convert_helper(VkSurfaceFormatKHR toString, const string prefix)\n{") sh_funcs.append(' string final_str = prefix + "format = " + string_VkFormat(toString.format) + "format = " + string_VkColorSpaceKHR(toString.colorSpace);') sh_funcs.append(" return final_str;") sh_funcs.append("}") sh_funcs.append('%s' % lineinfo.get()) # Add function to dynamically print out unknown struct sh_funcs.append("string dynamic_display(const void* pStruct, const string prefix)\n{") sh_funcs.append(" // Cast to APP_INFO ptr initially just to pull sType off struct") sh_funcs.append(" if (pStruct == NULL) {\n") sh_funcs.append(" return string();") sh_funcs.append(" }\n") sh_funcs.append(" VkStructureType sType = ((VkApplicationInfo*)pStruct)->sType;") sh_funcs.append(' string indent = " ";') sh_funcs.append(' indent += prefix;') sh_funcs.append(" switch (sType)\n {") for e in enum_type_dict: if "StructureType" in e: for v in sorted(enum_type_dict[e]): struct_name = get_struct_name_from_struct_type(v) if struct_name not in self.struct_dict: continue print_func_name = self._get_sh_func_name(struct_name) #sh_funcs.append('string %s(const %s* pStruct, const string prefix);' % (self._get_sh_func_name(s), typedef_fwd_dict[s])) sh_funcs.append(' case %s:\n {' % (v)) sh_funcs.append(' return %s((%s*)pStruct, indent);' % (print_func_name, struct_name)) sh_funcs.append(' }') sh_funcs.append(' break;') sh_funcs.append(" default:") sh_funcs.append(" return string();") sh_funcs.append('%s' % lineinfo.get()) sh_funcs.append(" }") sh_funcs.append("}") return "\n".join(sh_funcs) def _genStructMemberPrint(self, member, s, array, struct_array): (p_out, p_arg) = self._get_struct_print_formatted(self.struct_dict[s][member], pre_var_name="&m_dummy_prefix", struct_var_name="m_struct", struct_ptr=False, print_array=True) extra_indent = "" if array: extra_indent = " " if is_type(self.struct_dict[s][member]['type'], 'struct'): # print struct address for now struct_array.insert(0, self.struct_dict[s][member]) elif self.struct_dict[s][member]['ptr']: # Special case for void* named "pNext" if "void" in self.struct_dict[s][member]['type'] and "pNext" == self.struct_dict[s][member]['name']: struct_array.insert(0, self.struct_dict[s][member]) return (' %sprintf("%%*s %s", m_indent, ""%s);' % (extra_indent, p_out, p_arg), struct_array) def _generateDisplayDefinitions(self, s): disp_def = [] struct_array = [] # Single-line struct print function disp_def.append("// Output 'structname = struct_address' on a single line") disp_def.append("void %s::display_single_txt()\n{" % self.get_class_name(s)) disp_def.append(' printf(" %%*s%s = %%p", m_indent, "", (void*)m_origStructAddr);' % typedef_fwd_dict[s]) disp_def.append("}\n") # Private helper function to print struct members disp_def.append("// Private helper function that displays the members of the wrapped struct") disp_def.append("void %s::display_struct_members()\n{" % self.get_class_name(s)) i_declared = False for member in sorted(self.struct_dict[s]): # TODO : Need to display each member based on its type # TODO : Need to handle pNext which are structs, but of void* type # Can grab struct type off of header of struct pointed to # TODO : Handle Arrays if self.struct_dict[s][member]['array']: # Create for loop to print each element of array if not i_declared: disp_def.append(' uint32_t i;') i_declared = True disp_def.append(' for (i = 0; i<%s; i++) {' % self.struct_dict[s][member]['array_size']) (return_str, struct_array) = self._genStructMemberPrint(member, s, True, struct_array) disp_def.append(return_str) disp_def.append(' }') else: (return_str, struct_array) = self._genStructMemberPrint(member, s, False, struct_array) disp_def.append(return_str) disp_def.append("}\n") i_declared = False # Basic print function to display struct members disp_def.append("// Output all struct elements, each on their own line") disp_def.append("void %s::display_txt()\n{" % self.get_class_name(s)) disp_def.append(' printf("%%*s%s struct contents at %%p:\\n", m_indent, "", (void*)m_origStructAddr);' % typedef_fwd_dict[s]) disp_def.append(' this->display_struct_members();') disp_def.append("}\n") # Advanced print function to display current struct and contents of any pointed-to structs disp_def.append("// Output all struct elements, and for any structs pointed to, print complete contents") disp_def.append("void %s::display_full_txt()\n{" % self.get_class_name(s)) disp_def.append(' printf("%%*s%s struct contents at %%p:\\n", m_indent, "", (void*)m_origStructAddr);' % typedef_fwd_dict[s]) disp_def.append(' this->display_struct_members();') class_num = 0 # TODO : Need to handle arrays of structs here for ms in struct_array: swc_name = "class%s" % str(class_num) if ms['array']: if not i_declared: disp_def.append(' uint32_t i;') i_declared = True disp_def.append(' for (i = 0; i<%s; i++) {' % ms['array_size']) #disp_def.append(" if (m_struct.%s[i]) {" % (ms['name'])) disp_def.append(" %s %s(&(m_struct.%s[i]));" % (self.get_class_name(ms['type']), swc_name, ms['name'])) disp_def.append(" %s.set_indent(m_indent + 4);" % (swc_name)) disp_def.append(" %s.display_full_txt();" % (swc_name)) #disp_def.append(' }') disp_def.append(' }') elif 'pNext' == ms['name']: # Need some code trickery here # I'm thinking have a generated function that takes pNext ptr value # then it checks sType and in large switch statement creates appropriate # wrapper class type and then prints contents disp_def.append(" if (m_struct.%s) {" % (ms['name'])) #disp_def.append(' printf("%*s This is where we would call dynamic print function\\n", m_indent, "");') disp_def.append(' dynamic_display_full_txt(m_struct.%s, m_indent);' % (ms['name'])) disp_def.append(" }") else: if ms['ptr']: disp_def.append(" if (m_struct.%s) {" % (ms['name'])) disp_def.append(" %s %s(m_struct.%s);" % (self.get_class_name(ms['type']), swc_name, ms['name'])) else: disp_def.append(" if (&m_struct.%s) {" % (ms['name'])) disp_def.append(" %s %s(&m_struct.%s);" % (self.get_class_name(ms['type']), swc_name, ms['name'])) disp_def.append(" %s.set_indent(m_indent + 4);" % (swc_name)) disp_def.append(" %s.display_full_txt();\n }" % (swc_name)) class_num += 1 disp_def.append("}\n") return "\n".join(disp_def) def _generateStringHelperHeader(self): header = [] header.append("//#includes, #defines, globals and such...\n") for f in self.include_headers: if 'vk_enum_string_helper' not in f: header.append("#include <%s>\n" % f) header.append('#include "vk_enum_string_helper.h"\n\n// Function Prototypes\n') header.append("char* dynamic_display(const void* pStruct, const char* prefix);\n") return "".join(header) def _generateStringHelperHeaderCpp(self): header = [] header.append("//#includes, #defines, globals and such...\n") for f in self.include_headers: if 'vk_enum_string_helper' not in f: header.append("#include <%s>\n" % f) header.append('#include "vk_enum_string_helper.h"\n') header.append('using namespace std;\n\n// Function Prototypes\n') header.append('\n') header.append('namespace StreamControl\n') header.append('{\n') header.append('bool writeAddress = true;\n') header.append('template <typename T>\n') header.append('std::ostream& operator<< (std::ostream &out, T const* pointer)\n') header.append('{\n') header.append(' if(writeAddress)\n') header.append(' {\n') header.append(' out.operator<<(pointer);\n') header.append(' }\n') header.append(' else\n') header.append(' {\n') header.append(' std::operator<<(out, "address");\n') header.append(' }\n') header.append(' return out;\n') header.append('}\n') header.append('std::ostream& operator<<(std::ostream &out, char const*const s)\n') header.append('{\n') header.append(' return std::operator<<(out, s);\n') header.append('}\n') header.append('}\n') header.append('\n') header.append("string dynamic_display(const void* pStruct, const string prefix);\n") return "".join(header) def _generateValidateHelperFunctions(self): sh_funcs = [] # We do two passes, first pass just generates prototypes for all the functsions for s in sorted(self.struct_dict): # Wrap this in platform check since it may contain undefined structs or functions add_platform_wrapper_entry(sh_funcs, typedef_fwd_dict[s]) sh_funcs.append('uint32_t %s(const %s* pStruct);' % (self._get_vh_func_name(s), typedef_fwd_dict[s])) add_platform_wrapper_exit(sh_funcs, typedef_fwd_dict[s]) sh_funcs.append('\n') for s in sorted(self.struct_dict): # Wrap this in platform check since it may contain undefined structs or functions add_platform_wrapper_entry(sh_funcs, typedef_fwd_dict[s]) sh_funcs.append('uint32_t %s(const %s* pStruct)\n{' % (self._get_vh_func_name(s), typedef_fwd_dict[s])) for m in sorted(self.struct_dict[s]): # TODO : Need to handle arrays of enums like in VkRenderPassCreateInfo struct if is_type(self.struct_dict[s][m]['type'], 'enum') and not self.struct_dict[s][m]['ptr']: sh_funcs.append(' if (!validate_%s(pStruct->%s))\n return 0;' % (self.struct_dict[s][m]['type'], self.struct_dict[s][m]['name'])) # TODO : Need a little refinement to this code to make sure type of struct matches expected input (ptr, const...) if is_type(self.struct_dict[s][m]['type'], 'struct'): if (self.struct_dict[s][m]['ptr']): sh_funcs.append(' if (pStruct->%s && !%s((const %s*)pStruct->%s))\n return 0;' % (self.struct_dict[s][m]['name'], self._get_vh_func_name(self.struct_dict[s][m]['type']), self.struct_dict[s][m]['type'], self.struct_dict[s][m]['name'])) else: sh_funcs.append(' if (!%s((const %s*)&pStruct->%s))\n return 0;' % (self._get_vh_func_name(self.struct_dict[s][m]['type']), self.struct_dict[s][m]['type'], self.struct_dict[s][m]['name'])) sh_funcs.append(" return 1;\n}") # End of platform wrapped section add_platform_wrapper_exit(sh_funcs, typedef_fwd_dict[s]) return "\n".join(sh_funcs) def _generateValidateHelperHeader(self): header = [] header.append("//#includes, #defines, globals and such...\n") for f in self.include_headers: if 'vk_enum_validate_helper' not in f: header.append("#include <%s>\n" % f) header.append('#include "vk_enum_validate_helper.h"\n\n// Function Prototypes\n') #header.append("char* dynamic_display(const void* pStruct, const char* prefix);\n") return "".join(header) def _generateSizeHelperFunctions(self): sh_funcs = [] # just generates prototypes for all the functions for s in sorted(self.struct_dict): # Wrap this in platform check since it may contain undefined structs or functions add_platform_wrapper_entry(sh_funcs, typedef_fwd_dict[s]) sh_funcs.append('size_t %s(const %s* pStruct);' % (self._get_size_helper_func_name(s), typedef_fwd_dict[s])) add_platform_wrapper_exit(sh_funcs, typedef_fwd_dict[s]) return "\n".join(sh_funcs) def _generateSizeHelperFunctionsC(self): sh_funcs = [] # generate function definitions for s in sorted(self.struct_dict): # Wrap this in platform check since it may contain undefined structs or functions add_platform_wrapper_entry(sh_funcs, typedef_fwd_dict[s]) skip_list = [] # Used when struct elements need to be skipped because size already accounted for sh_funcs.append('size_t %s(const %s* pStruct)\n{' % (self._get_size_helper_func_name(s), typedef_fwd_dict[s])) indent = ' ' sh_funcs.append('%ssize_t structSize = 0;' % (indent)) sh_funcs.append('%sif (pStruct) {' % (indent)) indent = ' ' sh_funcs.append('%sstructSize = sizeof(%s);' % (indent, typedef_fwd_dict[s])) i_decl = False for m in sorted(self.struct_dict[s]): if m in skip_list: continue if self.struct_dict[s][m]['dyn_array']: if self.struct_dict[s][m]['full_type'].count('*') > 1: if not is_type(self.struct_dict[s][m]['type'], 'struct') and not 'char' in self.struct_dict[s][m]['type'].lower(): if 'ppMemoryBarriers' == self.struct_dict[s][m]['name']: # TODO : For now be conservative and consider all memBarrier ptrs as largest possible struct sh_funcs.append('%sstructSize += pStruct->%s*(sizeof(%s*) + sizeof(VkImageMemoryBarrier));' % (indent, self.struct_dict[s][m]['array_size'], self.struct_dict[s][m]['type'])) else: sh_funcs.append('%sstructSize += pStruct->%s*(sizeof(%s*) + sizeof(%s));' % (indent, self.struct_dict[s][m]['array_size'], self.struct_dict[s][m]['type'], self.struct_dict[s][m]['type'])) else: # This is an array of char* or array of struct ptrs if not i_decl: sh_funcs.append('%suint32_t i = 0;' % (indent)) i_decl = True sh_funcs.append('%sfor (i = 0; i < pStruct->%s; i++) {' % (indent, self.struct_dict[s][m]['array_size'])) indent = ' ' if is_type(self.struct_dict[s][m]['type'], 'struct'): sh_funcs.append('%sstructSize += (sizeof(%s*) + %s(pStruct->%s[i]));' % (indent, self.struct_dict[s][m]['type'], self._get_size_helper_func_name(self.struct_dict[s][m]['type']), self.struct_dict[s][m]['name'])) else: sh_funcs.append('%sstructSize += (sizeof(char*)
# -*- coding: utf-8 -*- """ irradiance.py from pvlib ======================== Stripped down, vendorized version from: https://github.com/pvlib/pvlib-python/ Calculate the solar position using the NREL SPA algorithm either using numpy arrays or compiling the code to machine language with numba. The rational for not including this library as a strict dependency is to avoid including a dependency on pandas, keeping load time low, and PyPy compatibility Created by <NAME> (@alorenzo175), Univ. of Arizona, 2015 For a full list of contributors to this file, see the `pvlib` repository. The copyright notice (BSD-3 clause) is as follows: BSD 3-Clause License Copyright (c) 2013-2018, Sandia National Laboratories and pvlib python Development Team All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. Neither the name of the {organization} nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ from __future__ import division import os import time from datetime import datetime import math from math import degrees, sin, cos, tan, radians, atan, asin, atan2, sqrt, acos from fluids.constants import deg2rad, rad2deg from fluids.numerics import sincos __all__ = ['julian_day_dt', 'julian_day', 'julian_ephemeris_day', 'julian_century', 'julian_ephemeris_century', 'julian_ephemeris_millennium', 'heliocentric_longitude', 'heliocentric_latitude', 'heliocentric_radius_vector', 'geocentric_longitude', 'geocentric_latitude', 'mean_elongation', 'mean_anomaly_sun', 'mean_anomaly_moon', 'moon_argument_latitude', 'moon_ascending_longitude', 'longitude_nutation', 'obliquity_nutation', 'mean_ecliptic_obliquity', 'true_ecliptic_obliquity', 'aberration_correction', 'apparent_sun_longitude', 'mean_sidereal_time', 'apparent_sidereal_time', 'geocentric_sun_right_ascension', 'geocentric_sun_declination', 'local_hour_angle', 'equatorial_horizontal_parallax', 'uterm', 'xterm', 'yterm', 'parallax_sun_right_ascension', 'topocentric_sun_right_ascension', 'topocentric_sun_declination', 'topocentric_local_hour_angle', 'topocentric_elevation_angle_without_atmosphere', 'atmospheric_refraction_correction', 'topocentric_elevation_angle', 'topocentric_zenith_angle', 'topocentric_astronomers_azimuth', 'topocentric_azimuth_angle', 'sun_mean_longitude', 'equation_of_time', 'calculate_deltat', 'longitude_obliquity_nutation', 'transit_sunrise_sunset', ] nan = float("nan") HELIO_RADIUS_TABLE_LIST_0 = [[100013989.0, 0.0, 0.0], [1670700.0, 3.0984635, 6283.07585], [13956.0, 3.05525, 12566.1517], [3084.0, 5.1985, 77713.7715], [1628.0, 1.1739, 5753.3849], [1576.0, 2.8469, 7860.4194], [925.0, 5.453, 11506.77], [542.0, 4.564, 3930.21], [472.0, 3.661, 5884.927], [346.0, 0.964, 5507.553], [329.0, 5.9, 5223.694], [307.0, 0.299, 5573.143], [243.0, 4.273, 11790.629], [212.0, 5.847, 1577.344], [186.0, 5.022, 10977.079], [175.0, 3.012, 18849.228], [110.0, 5.055, 5486.778], [98.0, 0.89, 6069.78], [86.0, 5.69, 15720.84], [86.0, 1.27, 161000.69], [65.0, 0.27, 17260.15], [63.0, 0.92, 529.69], [57.0, 2.01, 83996.85], [56.0, 5.24, 71430.7], [49.0, 3.25, 2544.31], [47.0, 2.58, 775.52], [45.0, 5.54, 9437.76], [43.0, 6.01, 6275.96], [39.0, 5.36, 4694.0], [38.0, 2.39, 8827.39], [37.0, 0.83, 19651.05], [37.0, 4.9, 12139.55], [36.0, 1.67, 12036.46], [35.0, 1.84, 2942.46], [33.0, 0.24, 7084.9], [32.0, 0.18, 5088.63], [32.0, 1.78, 398.15], [28.0, 1.21, 6286.6], [28.0, 1.9, 6279.55], [26.0, 4.59, 10447.39]] HELIO_RADIUS_TABLE_LIST_1 = [[103019.0, 1.10749, 6283.07585], [1721.0, 1.0644, 12566.1517], [702.0, 3.142, 0.0], [32.0, 1.02, 18849.23], [31.0, 2.84, 5507.55], [25.0, 1.32, 5223.69], [18.0, 1.42, 1577.34], [10.0, 5.91, 10977.08], [9.0, 1.42, 6275.96], [9.0, 0.27, 5486.78], ] HELIO_RADIUS_TABLE_LIST_2 = [[4359.0, 5.7846, 6283.0758], [124.0, 5.579, 12566.152], [12.0, 3.14, 0.0], [9.0, 3.63, 77713.77], [6.0, 1.87, 5573.14], [3.0, 5.47, 18849.23]] HELIO_RADIUS_TABLE_LIST_3 = [[145.0, 4.273, 6283.076], [7.0, 3.92, 12566.15]] HELIO_RADIUS_TABLE_LIST_4 = [[4.0, 2.56, 6283.08]] NUTATION_YTERM_LIST_0 = [0.0, -2.0, 0.0, 0.0, 0.0, 0.0, -2.0, 0.0, 0.0, -2.0, -2.0, -2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 0.0, -2.0, 0.0, 2.0, 0.0, 0.0, -2.0, 0.0, -2.0, 0.0, 0.0, 2.0, -2.0, 0.0, -2.0, 0.0, 0.0, 2.0, 2.0, 0.0, -2.0, 0.0, 2.0, 2.0, -2.0, -2.0, 2.0, 2.0, 0.0, -2.0, -2.0, 0.0, -2.0, -2.0, 0.0, -1.0, -2.0, 1.0, 0.0, 0.0, -1.0, 0.0, 0.0, 2.0, 0.0, 2.0] NUTATION_YTERM_LIST_1 = [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, 2.0, 1.0, 0.0, -1.0, 0.0, 0.0, 0.0, 1.0, 1.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, -1.0, 1.0, -1.0, -1.0, 0.0, -1.0] NUTATION_YTERM_LIST_2 = [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, -1.0, 0.0, 1.0, -1.0, -1.0, 1.0, 2.0, -2.0, 0.0, 2.0, 2.0, 1.0, 0.0, 0.0, -1.0, 0.0, -1.0, 0.0, 0.0, 1.0, 0.0, 2.0, -1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 2.0, 1.0, -2.0, 0.0, 1.0, 0.0, 0.0, 2.0, 2.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, -2.0, 1.0, 1.0, 1.0, -1.0, 3.0, 0.0] NUTATION_YTERM_LIST_3 = [0.0, 2.0, 2.0, 0.0, 0.0, 0.0, 2.0, 2.0, 2.0, 2.0, 0.0, 2.0, 2.0, 0.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 2.0, 2.0, 0.0, 2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0, -2.0, 2.0, 2.0, 2.0, 0.0, 2.0, 2.0, 0.0, 2.0, 2.0, 0.0, 0.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, -2.0, 0.0, 0.0, 0.0, 2.0, 2.0, 0.0, 0.0, 2.0, 2.0, 2.0, 2.0] NUTATION_YTERM_LIST_4 = [1.0, 2.0, 2.0, 2.0, 0.0, 0.0, 2.0, 1.0, 2.0, 2.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0, 1.0, 1.0, 0.0, 1.0, 2.0, 2.0, 0.0, 2.0, 0.0, 0.0, 1.0, 0.0, 1.0, 2.0, 1.0, 1.0, 1.0, 0.0, 1.0, 2.0, 2.0, 0.0, 2.0, 1.0, 0.0, 2.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 2.0, 2.0, 2.0, 2.0] NUTATION_ABCD_LIST = [[-171996.0, -174.2, 92025.0, 8.9], [-13187.0, -1.6, 5736.0, -3.1], [-2274.0, -0.2, 977.0, -0.5], [2062.0, 0.2, -895.0, 0.5], [1426.0, -3.4, 54.0, -0.1], [712.0, 0.1, -7.0, 0.0], [-517.0, 1.2, 224.0, -0.6], [-386.0, -0.4, 200.0, 0.0], [-301.0, 0.0, 129.0, -0.1], [217.0, -0.5, -95.0, 0.3], [-158.0, 0.0, 0.0, 0.0], [129.0, 0.1, -70.0, 0.0], [123.0, 0.0, -53.0, 0.0], [63.0, 0.0, 0.0, 0.0], [63.0, 0.1, -33.0, 0.0], [-59.0, 0.0, 26.0, 0.0], [-58.0, -0.1, 32.0, 0.0], [-51.0, 0.0, 27.0, 0.0], [48.0, 0.0, 0.0, 0.0], [46.0, 0.0, -24.0, 0.0], [-38.0, 0.0, 16.0, 0.0], [-31.0, 0.0, 13.0, 0.0], [29.0, 0.0, 0.0, 0.0], [29.0, 0.0, -12.0, 0.0], [26.0, 0.0, 0.0, 0.0], [-22.0, 0.0, 0.0, 0.0], [21.0, 0.0, -10.0, 0.0], [17.0, -0.1, 0.0, 0.0], [16.0, 0.0, -8.0, 0.0], [-16.0, 0.1, 7.0, 0.0], [-15.0, 0.0, 9.0, 0.0], [-13.0, 0.0, 7.0, 0.0], [-12.0, 0.0, 6.0, 0.0], [11.0, 0.0, 0.0, 0.0], [-10.0, 0.0, 5.0, 0.0], [-8.0, 0.0, 3.0, 0.0], [7.0, 0.0, -3.0, 0.0], [-7.0, 0.0, 0.0, 0.0], [-7.0, 0.0, 3.0, 0.0], [-7.0, 0.0, 3.0, 0.0], [6.0, 0.0, 0.0, 0.0], [6.0, 0.0, -3.0, 0.0], [6.0, 0.0, -3.0, 0.0], [-6.0, 0.0, 3.0, 0.0], [-6.0, 0.0, 3.0, 0.0], [5.0, 0.0, 0.0, 0.0], [-5.0, 0.0, 3.0, 0.0], [-5.0, 0.0, 3.0, 0.0], [-5.0, 0.0, 3.0, 0.0], [4.0, 0.0, 0.0, 0.0], [4.0, 0.0, 0.0, 0.0], [4.0, 0.0, 0.0, 0.0], [-4.0, 0.0, 0.0, 0.0], [-4.0, 0.0, 0.0, 0.0], [-4.0, 0.0, 0.0, 0.0], [3.0, 0.0, 0.0, 0.0], [-3.0, 0.0, 0.0, 0.0], [-3.0, 0.0, 0.0, 0.0], [-3.0, 0.0, 0.0, 0.0], [-3.0, 0.0, 0.0, 0.0], [-3.0, 0.0, 0.0, 0.0], [-3.0, 0.0, 0.0, 0.0], [-3.0, 0.0, 0.0, 0.0]] HELIO_LAT_TABLE_LIST_0 = [[280.0, 3.199, 84334.662], [102.0, 5.422, 5507.553], [80.0, 3.88, 5223.69], [44.0, 3.7, 2352.87], [32.0, 4.0, 1577.34]] HELIO_LAT_TABLE_LIST_1 = [[9.0, 3.9, 5507.55], [6.0, 1.73, 5223.69]] #HELIO_LONG_TABLE_LIST = HELIO_LONG_TABLE.tolist() HELIO_LONG_TABLE_LIST_0 = [[175347046.0, 0.0, 0.0], [3341656.0, 4.6692568, 6283.07585], [34894.0, 4.6261, 12566.1517], [3497.0, 2.7441, 5753.3849], [3418.0, 2.8289, 3.5231], [3136.0, 3.6277, 77713.7715], [2676.0, 4.4181, 7860.4194], [2343.0, 6.1352, 3930.2097], [1324.0, 0.7425, 11506.7698], [1273.0, 2.0371, 529.691], [1199.0, 1.1096, 1577.3435], [990.0, 5.233, 5884.927], [902.0, 2.045, 26.298], [857.0, 3.508, 398.149], [780.0, 1.179, 5223.694], [753.0, 2.533, 5507.553], [505.0, 4.583, 18849.228], [492.0, 4.205, 775.523], [357.0, 2.92, 0.067], [317.0, 5.849, 11790.629], [284.0, 1.899, 796.298], [271.0, 0.315, 10977.079], [243.0, 0.345, 5486.778], [206.0, 4.806, 2544.314], [205.0, 1.869, 5573.143], [202.0, 2.458, 6069.777], [156.0, 0.833, 213.299], [132.0, 3.411, 2942.463], [126.0, 1.083, 20.775], [115.0, 0.645, 0.98], [103.0, 0.636, 4694.003], [102.0, 0.976, 15720.839], [102.0, 4.267, 7.114], [99.0, 6.21, 2146.17], [98.0, 0.68, 155.42], [86.0, 5.98, 161000.69], [85.0, 1.3, 6275.96], [85.0, 3.67, 71430.7], [80.0, 1.81, 17260.15], [79.0, 3.04, 12036.46], [75.0, 1.76, 5088.63], [74.0, 3.5, 3154.69], [74.0,
""" Get arguments corresponding to parser. """ return parser.parse_args() def getSourceListArgs(parser, wildcards = True): """ Create a list of tuples that contain source ROOT file names and lists of path in these files as well as the original arguments """ args = getArgs(parser) inputFiles = [] try: inputFiles = args.FILE except: inputFiles = args.SOURCE sourceList = \ [tup for pattern in inputFiles \ for tup in patternToFileNameAndPathSplitList(pattern,wildcards)] return sourceList, args def getSourceListOptDict(parser, wildcards = True): """ Get the list of tuples and the dictionary with options returns: sourceList: a list of tuples with one list element per file the first tuple entry being the root file, the second a list of subdirectories, each being represented as a list itself with a string per level e.g. rootls tutorial/tmva/TMVA.root:Method_BDT/BDT turns into [('tutorials/tmva/TMVA.root', [['Method_BDT','BDT']])] vars(args): a dictionary of matched options, e.g. {'longListing': False, 'oneColumn': False, 'treeListing': False, 'FILE': ['tutorials/tmva/TMVA.root:Method_BDT/BDT'] } """ sourceList, args = getSourceListArgs(parser, wildcards) if sourceList == []: logging.error("Input file(s) not found!") return sourceList, vars(args) def getSourceDestListOptDict(parser, wildcards = True): """ Get the list of tuples of sources, create destination name, destination pathSplit and the dictionary with options """ sourceList, args = getSourceListArgs(parser, wildcards) destList = \ patternToFileNameAndPathSplitList( \ args.DEST,wildcards=False) if destList != []: destFileName,destPathSplitList = destList[0] destPathSplit = destPathSplitList[0] else: destFileName = "" destPathSplit = [] return sourceList, destFileName, destPathSplit, vars(args) # The end of the set of functions to put the arguments in shape ########## ########## # Several functions shared by rootcp, rootmv and rootrm TARGET_ERROR = "target '{0}' is not a directory" OMITTING_FILE_ERROR = "omitting file '{0}'" OMITTING_DIRECTORY_ERROR = "omitting directory '{0}'" OVERWRITE_ERROR = "cannot overwrite non-directory '{0}' with directory '{1}'" def copyRootObject(sourceFile,sourcePathSplit,destFile,destPathSplit,oneSource,recursive,replace): """ Initialize the recursive function 'copyRootObjectRecursive', written to be as unix-like as possible """ retcode = 0 isMultipleInput = not (oneSource and sourcePathSplit != []) recursiveOption = recursive # Multiple input and un-existing or non-directory destination # TARGET_ERROR if isMultipleInput and destPathSplit != [] \ and not (isExisting(destFile,destPathSplit) \ and isDirectory(destFile,destPathSplit)): logging.warning(TARGET_ERROR.format(destPathSplit[-1])) retcode += 1 # Entire ROOT file or directory in input omitting "-r" option # OMITTING_FILE_ERROR or OMITTING_DIRECTORY_ERROR if not recursiveOption: if sourcePathSplit == []: logging.warning(OMITTING_FILE_ERROR.format( \ sourceFile.GetName())) retcode += 1 elif isDirectory(sourceFile,sourcePathSplit): logging.warning(OMITTING_DIRECTORY_ERROR.format( \ sourcePathSplit[-1])) retcode += 1 # Run copyRootObjectRecursive function with the wish # to follow the unix copy behaviour if sourcePathSplit == []: retcode += copyRootObjectRecursive(sourceFile,sourcePathSplit, \ destFile,destPathSplit,replace) else: setName = "" if not isMultipleInput and (destPathSplit != [] \ and not isExisting(destFile,destPathSplit)): setName = destPathSplit[-1] objectName = sourcePathSplit[-1] if isDirectory(sourceFile,sourcePathSplit): if setName != "": createDirectory(destFile,destPathSplit[:-1]+[setName]) retcode += copyRootObjectRecursive(sourceFile,sourcePathSplit, \ destFile,destPathSplit[:-1]+[setName],replace) elif isDirectory(destFile,destPathSplit): if not isExisting(destFile,destPathSplit+[objectName]): createDirectory(destFile,destPathSplit+[objectName]) if isDirectory(destFile,destPathSplit+[objectName]): retcode += copyRootObjectRecursive(sourceFile,sourcePathSplit, \ destFile,destPathSplit+[objectName],replace) else: logging.warning(OVERWRITE_ERROR.format( \ objectName,objectName)) retcode += 1 else: logging.warning(OVERWRITE_ERROR.format( \ destPathSplit[-1],objectName)) retcode += 1 else: if setName != "": retcode += copyRootObjectRecursive(sourceFile,sourcePathSplit, \ destFile,destPathSplit[:-1],replace,setName) elif isDirectory(destFile,destPathSplit): retcode += copyRootObjectRecursive(sourceFile,sourcePathSplit, \ destFile,destPathSplit,replace) else: setName = destPathSplit[-1] retcode += copyRootObjectRecursive(sourceFile,sourcePathSplit, \ destFile,destPathSplit[:-1],replace,setName) return retcode DELETE_ERROR = "object {0} was not existing, so it is not deleted" def deleteObject(rootFile,pathSplit): """ Delete the object 'pathSplit[-1]' from (rootFile,pathSplit[:-1]) """ retcode = changeDirectory(rootFile,pathSplit[:-1]) if retcode == 0: fileName = pathSplit[-1] if isExisting(rootFile,pathSplit): ROOT.gDirectory.Delete(fileName+";*") else: logging.warning(DELETE_ERROR.format(fileName)) retcode += 1 return retcode def copyRootObjectRecursive(sourceFile,sourcePathSplit,destFile,destPathSplit,replace,setName=""): """ Copy objects from a file or directory (sourceFile,sourcePathSplit) to an other file or directory (destFile,destPathSplit) - Has the will to be unix-like - that's a recursive function - Python adaptation of a root input/output tutorial : $ROOTSYS/tutorials/io/copyFiles.C """ retcode = 0 replaceOption = replace seen = {} for key in getKeyList(sourceFile,sourcePathSplit): objectName = key.GetName() # write keys only if the cycle is higher than before if objectName not in seen.keys(): seen[objectName] = key else: if seen[objectName].GetCycle() < key.GetCycle(): seen[objectName] = key else: continue if isDirectoryKey(key): if not isExisting(destFile,destPathSplit+[objectName]): createDirectory(destFile,destPathSplit+[objectName]) if isDirectory(destFile,destPathSplit+[objectName]): retcode +=copyRootObjectRecursive(sourceFile, \ sourcePathSplit+[objectName], \ destFile,destPathSplit+[objectName],replace) else: logging.warning(OVERWRITE_ERROR.format( \ objectName,objectName)) retcode += 1 elif isTreeKey(key): T = key.GetMotherDir().Get(objectName+";"+str(key.GetCycle())) if replaceOption and isExisting(destFile,destPathSplit+[T.GetName()]): retcodeTemp = deleteObject(destFile,destPathSplit+[T.GetName()]) if retcodeTemp: retcode += retcodeTemp continue changeDirectory(destFile,destPathSplit) newT = T.CloneTree(-1,"fast") if setName != "": newT.SetName(setName) newT.Write() else: obj = key.ReadObj() if replaceOption and isExisting(destFile,destPathSplit+[setName]): changeDirectory(destFile,destPathSplit) otherObj = getFromDirectory(setName) if not otherObj == obj: retcodeTemp = deleteObject(destFile,destPathSplit+[setName]) if retcodeTemp: retcode += retcodeTemp continue else: obj.SetName(setName) changeDirectory(destFile,destPathSplit) obj.Write() else: obj.SetName(setName) changeDirectory(destFile,destPathSplit) obj.Write() elif issubclass(obj.__class__, ROOT.TCollection): # probably the object was written with kSingleKey changeDirectory(destFile,destPathSplit) obj.Write(setName, ROOT.TObject.kSingleKey) else: if setName != "": obj.SetName(setName) else: obj.SetName(objectName) changeDirectory(destFile,destPathSplit) obj.Write() obj.Delete() changeDirectory(destFile,destPathSplit) ROOT.gDirectory.SaveSelf(ROOT.kTRUE) return retcode FILE_REMOVE_ERROR = "cannot remove '{0}': Is a ROOT file" DIRECTORY_REMOVE_ERROR = "cannot remove '{0}': Is a directory" ASK_FILE_REMOVE = "remove '{0}' ? (y/n) : " ASK_OBJECT_REMOVE = "remove '{0}' from '{1}' ? (y/n) : " def deleteRootObject(rootFile, pathSplit, interactive, recursive): """ Remove the object (rootFile,pathSplit) -interactive : prompt before every removal -recursive : allow directory, and ROOT file, removal """ retcode = 0 if not recursive and isDirectory(rootFile,pathSplit): if pathSplit == []: logging.warning(FILE_REMOVE_ERROR.format(rootFile.GetName())) retcode += 1 else: logging.warning(DIRECTORY_REMOVE_ERROR.format(pathSplit[-1])) retcode += 1 else: if interactive: if pathSplit != []: answer = _input(ASK_OBJECT_REMOVE \ .format("/".join(pathSplit),rootFile.GetName())) else: answer = _input(ASK_FILE_REMOVE \ .format(rootFile.GetName())) remove = answer.lower() == 'y' else: remove = True if remove: if pathSplit != []: retcode += deleteObject(rootFile,pathSplit) else: rootFile.Close() os.remove(rootFile.GetName()) return retcode # End of functions shared by rootcp, rootmv and rootrm ########## ########## # Help strings for ROOT command line tools # Arguments SOURCE_HELP = "path of the source." SOURCES_HELP = "path of the source(s)." DEST_HELP = "path of the destination." # Options COMPRESS_HELP = \ """change the compression settings of the destination file (if not already existing).""" INTERACTIVE_HELP = "prompt before every removal." RECREATE_HELP = "recreate the destination file." RECURSIVE_HELP = "recurse inside directories" REPLACE_HELP = "replace object if already existing" # End of help strings ########## ########## # ROOTBROWSE def _openBrowser(rootFile=None): browser = ROOT.TBrowser() _input("Press enter to exit.") def rootBrowse(fileName=None): if fileName: rootFile = openROOTFile(fileName) if not rootFile: return 1 _openBrowser(rootFile) rootFile.Close() else: _openBrowser() return 0 # End of ROOTBROWSE ########## ########## # ROOTCP def _copyObjects(fileName, pathSplitList, destFile, destPathSplit, oneFile, \ recursive, replace): retcode = 0 destFileName = destFile.GetName() rootFile = openROOTFile(fileName) \ if fileName != destFileName else \ destFile if not rootFile: return 1 ROOT.gROOT.GetListOfFiles().Remove(rootFile) # Fast copy necessity for pathSplit in pathSplitList: oneSource = oneFile and len(pathSplitList)==1 retcode += copyRootObject(rootFile, pathSplit, destFile, destPathSplit, \ oneSource, recursive, replace) if fileName != destFileName: rootFile.Close() return retcode def rootCp(sourceList, destFileName, destPathSplit, \ compress=None, recreate=False, recursive=False, replace=False): # Check arguments if sourceList == [] or destFileName == "": return 1 if recreate and destFileName in [n[0] for n in sourceList]: logging.error("cannot recreate destination file if this is also a source file") return 1 # Open destination file destFile = openROOTFileCompress(destFileName, compress, recreate) if not destFile: return 1 ROOT.gROOT.GetListOfFiles().Remove(destFile) # Fast copy necessity # Loop on the root files retcode = 0 for fileName, pathSplitList in sourceList: retcode += _copyObjects(fileName, pathSplitList, destFile, destPathSplit, \ len(sourceList)==1, recursive, replace) destFile.Close() return retcode # End of ROOTCP ########## ########## # ROOTEVENTSELECTOR def _setBranchStatus(tree,branchSelectionString,status=0): """This is used by _copyTreeSubset() to turn on/off branches""" for branchToModify in branchSelectionString.split(","): logging.info("Setting branch status to %d for %s"%(status,branchToModify) ) tree.SetBranchStatus(branchToModify,status) return tree def _copyTreeSubset(sourceFile,sourcePathSplit,destFile,destPathSplit,firstEvent,lastEvent,selectionString, branchinclude, branchexclude): """Copy a subset of the tree from (sourceFile,sourcePathSplit) to (destFile,destPathSplit) according to options in optDict""" retcode = changeDirectory(sourceFile,sourcePathSplit[:-1]) if retcode != 0: return retcode bigTree = getFromDirectory(sourcePathSplit[-1]) nbrEntries = bigTree.GetEntries() # changeDirectory for the small tree not to be memory-resident retcode = changeDirectory(destFile,destPathSplit) if retcode != 0: return retcode if lastEvent == -1: lastEvent = nbrEntries-1 numberOfEntries = (lastEvent-firstEvent)+1 # "Skim" events based on branch values using selectionString # as well as selecting a range of events by index outputTree = bigTree.CopyTree(selectionString,"",numberOfEntries,firstEvent) # "Slim" tree by removing branches - # This is done after the skimming to allow for the user to skim on a # branch they no longer need to keep if branchexclude: _setBranchStatus(outputTree,branchexclude,0) if branchinclude: _setBranchStatus(outputTree,branchinclude,1) if branchexclude or branchinclude: outputTree = outputTree.CloneTree() outputTree.Write() return retcode def _copyTreeSubsets(fileName, pathSplitList, destFile, destPathSplit, first, last, selectionString, branchinclude, branchexclude): retcode = 0 destFileName = destFile.GetName() rootFile = openROOTFile(fileName) \ if fileName != destFileName else \ destFile if not rootFile: return 1 for pathSplit in pathSplitList: if isTree(rootFile,pathSplit): retcode += _copyTreeSubset(rootFile,pathSplit, \ destFile,destPathSplit,first,last,selectionString,branchinclude, branchexclude) if fileName != destFileName: rootFile.Close() return retcode def
<filename>Sprint Week/Main.py # Filename Main.py # The Sprint Project Company Main Menu # Authors:<NAME>, <NAME>, <NAME>. # Date November 17, 2021 # Imports import time import datetime # Functions def As_Dollars_Pad(Number): """Format Dollars amounts to strings & Pad Right 10 Spaces""" Number_Display = f"${Number:,.2f}" Number_Display = f"{Number_Display:>10}" return Number_Display def Number_Pad(Number): """Format Dollars amounts to strings & Pad Right 10 Spaces""" Number_Display = f"{Number:,}" Number_Display = f"{Number_Display:>10}" return Number_Display def Write(Variable, f): """Function to Convert None Strings to Strings and Format to write to file with ,""" import datetime if isinstance(Variable, str) == False: if isinstance(Variable, datetime.datetime) == True: return f.write(f"{Variable.strftime('%Y-%m-%d')},") else: Variable = round(Variable, 2) return f.write(f"{str(Variable)},") elif isinstance(Variable, str) == True: return f.write(f"{(Variable)},") def Write_Space(Variable, f): """Function to Convert None Strings to Strings and Format to write to file with Space""" import datetime if isinstance(Variable, str) == False: if isinstance(Variable, datetime.datetime) == True: return f.write(f"{Variable.strftime('%Y-%m-%d')}\n") else: Variable = round(Variable, 2) return f.write(f"{str(Variable)}\n") elif isinstance(Variable, str) == True: return f.write(f"{(Variable)}\n") def Name_Validation(Name): """ Function to Validate a Name for Input: Allowing Spaces, - and '""" for Char in Name: if ("A" <= Char <= "Z" or "a" <= Char <= "z" or Char == "-" or Char == "'"): continue else: return False return True def Business_Day(Date): """Function to Work Within Business Days Only Mon-Fri""" Weekday = Date.weekday() if Weekday == 5: Date += datetime.timedelta(days=2) elif Weekday == 6: Date += datetime.timedelta(days=1) return Date # Part One Simple IPO Program def Part_One(): # CONSTANTS RENT_RATE = 35.00 KM_RATE = 0.10 HST_TAX = 0.15 # INPUT STATEMENTS print() print(" Edsel Car Rental Company ") print() print("Please answer the following questions!") print() print("Rental Details") print() while True: try: Num_Days_Rented = int(input(" Number of days the automobile was rented: ")) except: print("Invalid Entry: Please input a Number") else: if Num_Days_Rented == "": print("Cannot be blank! Please try again") elif Num_Days_Rented < 1: print("Invalid Entry Number Days Rented Cannot be Less than 1") else: break print() print(" Mileage") print() while True: try: Start_Mileage = int(input(" Starting mileage when car was rented: ")) End_Mileage = int(input(" Ending mileage when car was returned: ")) except: print("Invalid Entry: Please Input KM Amount") else: if Start_Mileage == "" or End_Mileage == "": print("Cannot be blank - Please try again!") elif Start_Mileage < 100: print("Invalid Entry Starting Mileage cannot be less than 100km") elif End_Mileage < Start_Mileage: print("Invalid Entry: Ending Mileage Cannot be less than starting Mileage") else: break print() AnyKey = input("Press any key to Display Rental Invoice....") print() # CALCULATIONS PROCESSING Km_Travelled = End_Mileage - Start_Mileage Daily_Cost = Num_Days_Rented * RENT_RATE Mileage_Cost = Km_Travelled * KM_RATE Rent_Cost = Daily_Cost + Mileage_Cost Tax_Cost = Daily_Cost * HST_TAX Total_Rent_Cost = Rent_Cost + Tax_Cost # CALCULATIONS FOR OUTPUT TO USER print() print(" Edsel") print(" Car Rental Company") print() print(" Mileage:") print("~" * 30) print(" Km's Travelled {}".format(Number_Pad(Km_Travelled))) print("~" * 30) print(" Costs:") print("~" * 30) print(" Daily Cost {}".format(As_Dollars_Pad(Daily_Cost))) print(" Mileage Cost {}".format(As_Dollars_Pad(Mileage_Cost))) print(' ------------ {:>10}'.format("-" * 9)) print(" Rental Cost {}".format(As_Dollars_Pad(Rent_Cost))) print(" Tax/HST Cost {}".format(As_Dollars_Pad(Tax_Cost))) print(' ------------ {:>10}'.format("-" * 9)) print(" Total Cost {}".format(As_Dollars_Pad(Total_Rent_Cost))) print("~" * 30) print() print() AnyKey = input("Press any key to Return to Menu....") print() print("Loading ", end="") for wait in range(1, 11): print('*', end=' ') time.sleep(.2) print() return # Option 2 If and Loop Sample def FizzBuzz(X=5,Y=8): """Number Divisible by 5 = Fizz and Number Divisible by 8 = Buzz, both = FizzBuzz""" for Number in range(1, 101): Fizz = Number % X Buzz = Number % Y if Fizz == 0 and Buzz == 0: print("FizzBuzz") elif Fizz == 0: print("Fizz") elif Buzz == 0: print("Buzz") else: print(Number) print() AnyKey = input("Press any key to Return to Menu....") print() print("Loading ", end="") for wait in range(1, 11): print('*', end=' ') time.sleep(.2) print() return # Strings and Dates def Part_Three(): # inputs print() print("Employee Information Page") print() while True: First = input("First Name: ").title().lstrip().rstrip() if First == "": print("First Name cannot be blank: Please Re-Enter") elif len(First) > 25: print("Invalid First Name Length: Cannot be longer than 25 letters ") elif Name_Validation(First) == False: # Function to Validate Name Input print("Invalid Name Entered: Please use letters between (a-z), (-) and (') No Spaces") else: break while True: Last = input("Last Name: ").title().lstrip().rstrip() if Last == "": print("Last Name cannot be blank: Please Re-Enter") elif len(Last) > 30: print("Invalid Last Name Length: Cannot be longer than 30 letters ") elif Name_Validation(Last) == False: # Function to Validate Name Input print("Invalid Name Entered: Please use letters between (a-z), (-) and (') ") else: break while True: try: StartDate = input("What date did they start? (YYYY-MM-DD): ") StartDate = datetime.datetime.strptime(StartDate, "%Y-%m-%d") except: print("Invalid start date - must be in the format YYYY-MM-DD).") else: break while True: try: BirthDate = input("What is the Employee's Birthday? (YYYY-MM-DD): ") BirthDate = datetime.datetime.strptime(BirthDate, "%Y-%m-%d") except: print("Invalid Birthdate - must be in the format YYYY-MM-DD).") else: break while True: try: Salary = int(input("What is their yearly salary?: ")) except: print("Invalid Entry: Please input the Yearly Salary") else: if Salary <= 0: print("Salary must be greater than 0!") else: break # Forrmatting and Calculations StartDateStr = str(StartDate) BirthDateStr = str(BirthDate) EmployeeNo = f"{First[0]}{Last[0]}-{StartDateStr[0:4]}-{BirthDateStr[5:7]}" ReviewDate = StartDate + datetime.timedelta(weeks=52) Probation = StartDate + datetime.timedelta(days=90) # days to next birthday Today = datetime.date.today() if (Today.month == BirthDate.month and Today.day >= BirthDate.day or Today.month > BirthDate.month): NextBirthdayYear = Today.year + 1 else: NextBirthdayYear = Today.year NextBirthday = datetime.date(NextBirthdayYear, BirthDate.month, BirthDate.day) DaysToNextBirthday = NextBirthday - Today if (Today.month == StartDate.month and Today.day >= StartDate.day or Today.month > StartDate.month): NextReviewYear = Today.year + 1 else: NextReviewYear = Today.year NextReview = datetime.date(NextReviewYear, StartDate.month, StartDate.day) # Output print() print("Employee Information:") print() print(f"Employee Name: {First} {Last}; {First[0].title()}.{Last}; {Last},{First[0]}.") print("Employee Number: ", EmployeeNo) print(f"Employee Review Date: {ReviewDate.strftime('%Y-%m-%d')}") print("Days left to Employee's next Birthday:", DaysToNextBirthday.days) print(f"Salary: ${Salary:,}") print() print(f"{EmployeeNo}:({First} {Last})") print("-" * 50) if ReviewDate > datetime.datetime.now(): print(f"Next Annual Review Date: {Business_Day(ReviewDate.date())}") else: print(f"Next Annual Review Date: {Business_Day(NextReview)}") print(f"Probation Period End: {Probation.strftime('%Y-%m-%d')}") print() print(f"Eligible for company benefits on: {Probation.strftime('%B %d, %Y')} ") print() AnyKey = input("Press any key to Return to Menu....") print() print("Loading ", end="") for wait in range(1, 11): print('*', end=' ') time.sleep(.2) print() return #Option 4 Data Files and Default Values. def Part_Four(): # opening Default values from file with open('ECRDef.dat', 'r') as f: RENTAL_NUMBER = int(f.readline()) RENT_RATE = int(f.readline()) KM_RATE = float(f.readline()) TAX = float(f.readline()) while True: #Program end loop # INPUT STATEMENTS print() print(" Edsel Car Rental Company ") print() print("Please answer the following questions") print() print("*" * 40) print(" To End Program and Return to Menu ") print(" Enter 0 for Travel Days") print("*" * 40) print() print(" Rental Details") print() while True: try: Num_Days_Rented = int(input(" Number of days the automobile was rented: ")) except: print("Invalid Entry: Please input a Number") else: if Num_Days_Rented == 0: print() print("Loading ", end="") for wait in range(1, 11): print('*', end=' ') time.sleep(.2) print() break elif Num_Days_Rented < 0: print("Invalid Entry Number Days Rented Cannot be Less than 0") else: break if Num_Days_Rented == 0: break print() print(" Mileage") print() while True: try: Start_Mileage = int(input(" Starting mileage when car was rented: ")) End_Mileage = int(input(" Ending mileage when car was returned: ")) except: print("Invalid Entry: Please Input KM Amount") else: if Start_Mileage == "" or End_Mileage == "": print("Cannot be blank - Please try again!") elif Start_Mileage < 100: print("Invalid Entry Starting Mileage cannot be less than 100km") elif End_Mileage < Start_Mileage: print("Invalid Entry: Ending Mileage Cannot be less than starting Mileage") else: break print() AnyKey = input("Press any key to Display Rental Invoice....") print() # CALCULATIONS PROCESSING Km_Travelled = End_Mileage - Start_Mileage Daily_Cost = Num_Days_Rented * RENT_RATE Mileage_Cost = Km_Travelled * KM_RATE Rent_Cost = Daily_Cost + Mileage_Cost Tax_Cost = Daily_Cost * TAX Total_Rent_Cost = Rent_Cost + Tax_Cost # CALCULATIONS FOR OUTPUT TO USER print() print(" Edsel Car Rental Company ") print(f" Rental Number") print(f" #{RENTAL_NUMBER}") print() print(" Mileage:") print("~"
# Copyright 2015 Cloudbase Solutions Srl # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import collections import contextlib import ntpath import os import re import shutil import tempfile import six from argus import config as argus_config from argus import exceptions from argus.introspection.cloud import base from argus import util CONFIG = argus_config.CONFIG # escaped characters for powershell paths ESC = "( )" SEP = "----" # default separator for network details blocks NIC_KEYS = ["mac", "address", "gateway", "netmask", "dns", "dhcp"] Address = collections.namedtuple("Address", ["v4", "v6"]) NICDetails = collections.namedtuple("NICDetails", NIC_KEYS) Interface = collections.namedtuple('Interface', ['name', 'mtu']) @contextlib.contextmanager def _create_tempdir(): tempdir = tempfile.mkdtemp(prefix="cloudbaseinit-ci-tests") try: yield tempdir finally: shutil.rmtree(tempdir) @contextlib.contextmanager def _create_tempfile(content=None): with _create_tempdir() as temp: file_desc, path = tempfile.mkstemp(dir=temp) os.close(file_desc) if content: with open(path, 'w') as stream: stream.write(content) yield path def _get_ntp_peers(output): peers = [] for line in output.splitlines(): if not line.startswith("Peer: "): continue _, _, entry_peers = line.partition(":") peers.extend(entry_peers.split(",")) return list(filter(None, map(six.text_type.strip, peers))) def escape_path(path): """Escape the spaces in the given path in order to work with Powershell.""" for char in ESC: path = path.replace(char, "`{}".format(char)) return path def _get_ips(ips_as_string): """Returns viable v4 and v6 IPs from a space separated string.""" ips = ips_as_string.split(" ")[1:] # skip the header ips_v4, ips_v6 = [], [] # There is no guarantee if all the IPs are valid and sorted by type. for ip in ips: if not ip: continue if "." in ip and ":" not in ip: ips_v4.append(ip) else: ips_v6.append(ip) return ips_v4, ips_v6 def _get_nic_details(details): """Get parsed network details from the raw ones.""" nic_details = dict.fromkeys(NIC_KEYS) for detail in details: if detail.startswith("mac"): nic_details["mac"] = detail.split(" ")[1] elif detail.startswith("address"): v4s, v6s = _get_ips(detail) if len(v6s) >= 2: v6 = v6s[1] else: v6 = None nic_details["address"] = Address(v4s[0], v6) elif detail.startswith("gateway"): v4s, v6s = _get_ips(detail) v4 = v4s[0] if v4s else None v6 = v6s[0] if v6s else None nic_details["gateway"] = Address(v4, v6) elif detail.startswith("netmask"): # Similar to "address" field. v4s, v6s = _get_ips(detail) v4 = v4s[0] if len(v6s) >= 2: v6 = v6s[1] else: v6 = None nic_details["netmask"] = Address(v4, v6) elif detail.startswith("dns"): v4s, v6s = _get_ips(detail) nic_details["dns"] = Address(v4s, v6s) elif detail.startswith("dhcp"): nic_details["dhcp"] = detail.split(" ")[1].lower() == "true" return NICDetails(**nic_details) def get_cbinit_dir(execute_function): """Get the location of Cloudbase-Init from the instance.""" stdout = execute_function( '$ENV:PROCESSOR_ARCHITECTURE', command_type=util.POWERSHELL) architecture = stdout.strip() locations = [execute_function('echo "$ENV:ProgramFiles"', command_type=util.POWERSHELL)] if architecture == 'AMD64': location = execute_function( 'echo "${ENV:ProgramFiles(x86)}"', command_type=util.POWERSHELL) locations.append(location) for location in locations: location = location.strip() _location = escape_path(location) status = execute_function( 'Test-Path "{}\\Cloudbase` Solutions"'.format( _location), command_type=util.POWERSHELL).strip().lower() if status == "true": return ntpath.join( location, "Cloudbase Solutions", "Cloudbase-Init" ) raise exceptions.ArgusError('Cloudbase-Init installation directory' ' not found') def set_config_option(option, value, execute_function): """Set the value for the given *option* to *value*.""" line = "{} = {}".format(option, value) cbdir = get_cbinit_dir(execute_function) conf = ntpath.join(cbdir, "conf", "cloudbase-init.conf") cmd = ('((Get-Content {0!r}) + {1!r}) |' ' Set-Content {0!r}'.format(conf, line)) execute_function(cmd, command_type=util.POWERSHELL) def get_python_dir(execute_function): """Find python directory from the Cloudbase-Init installation.""" cbinit_dir = get_cbinit_dir(execute_function) command = 'dir "{}" /b'.format(cbinit_dir) stdout = execute_function(command, command_type=util.CMD).strip() names = list(filter(None, stdout.splitlines())) for name in names: if "python" in name.lower(): return ntpath.join(cbinit_dir, name) def get_cbinit_key(execute_function): """Get the proper registry key for Cloudbase-Init.""" key = ("HKLM:SOFTWARE\\Cloudbase` Solutions\\" "Cloudbase-init") key_x64 = ("HKLM:SOFTWARE\\Wow6432Node\\Cloudbase` Solutions\\" "Cloudbase-init") cmd = 'Test-Path {}'.format(key) result = execute_function(cmd, command_type=util.POWERSHELL) if result.strip().lower() == "true": return key return key_x64 def get_os_version(client, field): """Gets the specified version from the OS. :param client: represents the client object on which to run the command. :param field: the version type. """ cmd = "[System.Environment]::OSVersion.Version.{}".format(field) stdout, _, _ = client.run_command_with_retry(cmd, command_type=util.POWERSHELL) return util.get_int_from_str(stdout.strip()) def parse_netsh_output(output): output = output.strip() blocks = re.split(r"SubInterface\s+(.*?)-{46}\s+", output, flags=re.DOTALL) blocks = blocks[1:] # empty space interfaces = blocks[0::2] content = blocks[1::2] Interfaces = [] for interface, block in zip(interfaces, content): interface = interface.strip() mtu = re.search(r"MTU\s*:\s*(\d+)\s+", block) name, _, _ = interface.partition('Parameters') if 'loopback' not in interface.lower(): Interfaces.append(Interface(name=name.strip(), mtu=mtu.group(1))) return Interfaces class InstanceIntrospection(base.CloudInstanceIntrospection): """Utilities for introspecting a Windows instance.""" def __init__(self, remote_client): super(InstanceIntrospection, self).__init__(remote_client) self._cmdlet = remote_client.manager.WINDOWS_MANAGEMENT_CMDLET def get_disk_size(self): cmd = ('({} win32_logicaldisk | where {{$_.DeviceID ' '-Match "C:"}}).Size').format(self._cmdlet) return int(self.remote_client.run_command_verbose( cmd, command_type=util.POWERSHELL)) def username_exists(self, username): cmd = ('{0} Win32_Account | ' 'where {{$_.Name -contains "{1}"}}' .format(self._cmdlet, username)) stdout = self.remote_client.run_command_verbose( cmd, command_type=util.POWERSHELL) return bool(stdout) def get_instance_ntp_peers(self): command = 'w32tm /query /peers' stdout = self.remote_client.run_command_verbose(command, command_type=util.CMD) return _get_ntp_peers(stdout) def get_instance_keys_path(self): cmd = 'echo %cd%' stdout = self.remote_client.run_command_verbose(cmd, command_type=util.CMD) homedir, _, _ = stdout.rpartition(ntpath.sep) return ntpath.join( homedir, CONFIG.cloudbaseinit.created_user, ".ssh", "authorized_keys") def get_instance_file_content(self, filepath): cmd = '[io.file]::ReadAllText("%s")' % filepath return self.remote_client.run_command_verbose( cmd, command_type=util.POWERSHELL) def get_userdata_executed_plugins(self): cmd = r'(Get-ChildItem -Path C:\ *.txt).Count' stdout = self.remote_client.run_command_verbose( cmd, command_type=util.POWERSHELL) return int(stdout) def get_instance_mtu(self): cmd = 'netsh interface ipv4 show subinterfaces level=verbose' stdout = self.remote_client.run_command_verbose( cmd, command_type=util.CMD) return parse_netsh_output(stdout)[0] def get_cloudbaseinit_traceback(self): code = util.get_resource('windows/get_traceback.ps1') remote_script = "C:\\{}.ps1".format(util.rand_name()) with _create_tempfile(content=code) as tmp: self.remote_client.copy_file(tmp, remote_script) stdout = self.remote_client.run_command_verbose( remote_script, command_type=util.POWERSHELL_SCRIPT_REMOTESIGNED) return stdout.strip() def _file_exist(self, filepath): stdout = self.remote_client.run_command_verbose( 'Test-Path {}'.format(filepath), command_type=util.POWERSHELL) return stdout.strip() == 'True' def instance_exe_script_executed(self): return self._file_exist("C:\\Scripts\\exe.output") def get_group_members(self, group): cmd = "net localgroup {}".format(group) std_out = self.remote_client.run_command_verbose( cmd, command_type=util.CMD) member_search = re.search( r"Members\s+-+\s+(.*?)The\s+command", std_out, re.MULTILINE | re.DOTALL) if not member_search: raise ValueError('Unable to get members.') return list(filter(None, member_search.group(1).split())) def list_location(self, location): command = "dir {} /b".format(location) stdout = self.remote_client.run_command_verbose( command, command_type=util.CMD) return list(filter(None, stdout.splitlines())) def get_trim_state(self): # Query the current state of DisableDeleteNotify # 1 - DeleteNotify is disabled # 0 - DeleteNotify is enabled command = "fsutil.exe behavior query disabledeletenotify" stdout = self.remote_client.run_command_verbose( command, command_type=util.CMD) return "DisableDeleteNotify = 0" in stdout def get_san_policy(self): """Get the SAN policy.""" return self.remote_client.manager.get_san_policy() def get_power_setting_value(self): command = ('powercfg.exe -query SCHEME_CURRENT SUB_VIDEO VIDEOIDLE' ' | findstr /R /C:"Current AC Power Setting Index"') stdout = self.remote_client.run_command_verbose( command, command_type=util.CMD) return stdout.strip() def get_service_triggers(self, service): """Get the triggers of the given service. Return a tuple of two elements, where the first is the start trigger and the second is the end trigger. """ command = "sc qtriggerinfo {}".format(service) stdout = self.remote_client.run_command_verbose( command, command_type=util.CMD) match = re.search(r"START SERVICE\s+(.*?):.*?STOP SERVICE\s+(.*?):", stdout, re.DOTALL) if not match: raise ValueError("Unable to get the triggers for the " "given service.") return (match.group(1).strip(), match.group(2).strip()) def get_instance_os_version(self): """Get the version of the underlying OS Return a tuple of two elements, the major and the minor version. """ major_version = get_os_version(self.remote_client, 'Major') minor_version = get_os_version(self.remote_client, 'Minor') return (major_version, minor_version) def get_cloudconfig_executed_plugins(self): expected = { 'b64', 'b64_1', 'gzip', 'gzip_1', 'gzip_base64', 'gzip_base64_1', 'gzip_base64_2' } files = {} for basefile in expected: path = ntpath.join("C:\\", basefile) content = self.get_instance_file_content(path) files[basefile] = content.strip() return files def get_timezone(self): command = "tzutil /g" stdout = self.remote_client.run_command_verbose( "{}".format(command), command_type=util.POWERSHELL) return stdout def get_instance_hostname(self): command = "hostname" stdout = self.remote_client.run_command_verbose( command, command_type=util.CMD) return stdout.lower().strip() def get_network_interfaces(self): """Get a list with dictionaries of network details. If a value is an empty string, then that value is missing. """ location = r"C:\network_details.ps1" self.remote_client.manager.download_resource( resource_location="windows/network_details.ps1", location=location) # Run and parse the output, where each adapter details # block is separated by a specific separator. # Each block contains multiple fields separated by EOLs # and each field contains multiple details separated by spaces. output = self.remote_client.run_command_verbose( location, command_type=util.POWERSHELL) output = output.replace(SEP, "", 1) nics = [] for block in output.split(SEP): details = block.strip().splitlines() if len(details) < 6: continue # not enough, invalid data block # Must follow `argus.util.NETWORK_KEYS` model. nic_details = _get_nic_details(details) nic = { "mac": nic_details.mac, "address": nic_details.address.v4, "address6": nic_details.address.v6, "gateway": nic_details.gateway.v4, "gateway6": nic_details.gateway.v6, "netmask": nic_details.netmask.v4, "netmask6": nic_details.netmask.v6, "dns": nic_details.dns.v4, "dns6": nic_details.dns.v6, "dhcp": nic_details.dhcp } nics.append(nic) return nics def get_user_flags(self, user): cmd = self.remote_client.manager.get_agent_command( agent_action="get_user_flags", source=user) stdout = self.remote_client.run_command_verbose(cmd) return stdout.strip() def get_swap_status(self): """Get the swap memory status.""" swap_query = (r"HKLM:\SYSTEM\CurrentControlSet\Control\Session" r" Manager\Memory Management") cmd = r"(Get-ItemProperty '{}').PagingFiles".format(swap_query) stdout = self.remote_client.run_command_verbose(cmd) return stdout.strip() def get_kms_host_settings(self): licensing_query
<filename>examples/run_experiments.py import argparse import collections import itertools import glob import json import logging import os import shlex import subprocess import natsort import numpy as np import yaml logger = logging.getLogger(__name__) TrainedModel = collections.namedtuple('TrainedModel', [ 'base_directory', 'model', 'environment', 'model_info', 'parameters', ]) def model_train(args, model, environment, dry_run, results_dir_base, skip_existing_train=False): """Run model training script.""" cmd_str = "" needs_train = True output_directory = os.path.join(results_dir_base, model['name'].replace(' ', '-'), environment) try: os.makedirs(output_directory) except OSError: logger.warning("Experiment directory '{}' already exists. Assuming trained model.".format(output_directory)) if skip_existing_train: logger.warning("Skip existing train flag enabled, returning.") return needs_train = False if needs_train: process = model['train']['command'].strip().format( environment=environment, output=output_directory, **model['hyperparameters'] ) process = shlex.split(process) cmd_str = " ".join(process) if dry_run: logger.debug("[DRY RUN] Running: '{}'".format(cmd_str)) else: logger.debug("Running: '{}'".format(cmd_str)) try: subprocess.run(process, check=True) except subprocess.CalledProcessError: logger.error("Failed to train model '{}' on environment '{}'.".format(model['name'], environment)) return # Check if output directory exists and return it. if dry_run or model['train'].get('output_no_check', False): output_model = os.path.join(output_directory, model['train']['output']) else: output_model = glob.glob(os.path.join(output_directory, model['train']['output'])) if not output_model: logger.error("Unable to find trained model output file.") return # Fixes issue of 'normalize' file inside checkpoint folder output_model = [f for f in output_model if 'normalize' not in f] if not output_model: logger.error("Unable to find trained model output file.") return output_model = natsort.natsorted(output_model, reverse=True)[0] # Get all parameters used during training. parameters = [] if 'parameters' in model['train']: for parameters_filename in glob.glob(os.path.join(output_directory, model['train']['parameters'])): with open(parameters_filename) as parameters_file: for line in parameters_file: try: parameters.append(json.loads(line)) except ValueError: continue return TrainedModel( base_directory=output_directory, model=output_model, model_info=model, environment=environment, parameters=parameters, ), cmd_str def model_evaluate(args, model, environment, trained_model, dry_run): """Run model evaluation script.""" cmd_str = "" needs_evaluate = True output_directory = os.path.join(trained_model.base_directory, 'evaluations', environment) # make sure file exists before running the rest if not os.path.isfile(trained_model.model): logger.error("Checkpoint does not exist: '{}', stopping eval.".format( trained_model.model )) return try: os.makedirs(output_directory) except OSError: if not args.force_evaluate: logger.warning("Experiment directory '{}' already exists. Assuming evaluation done.".format( output_directory )) needs_evaluate = False if needs_evaluate: process = model['evaluate']['command'].strip().format( environment=environment, output=output_directory, model=trained_model.model, #**model['hyperparameters'] ) process = shlex.split(process) cmd_str = " ".join(process) if dry_run: logger.debug("[DRY RUN] Running: '{}'".format(cmd_str)) else: logger.debug("Running: '{}'".format(cmd_str)) try: subprocess.run(process, check=True) except subprocess.CalledProcessError: logger.error("Failed to evaluate model '{}' on environment '{}'.".format(model['name'], environment)) return # We can't evaluate the reward statistics on a dry run, so return a dummy dict if dry_run: return {}, cmd_str else: # Get evaluation results. evaluation = glob.glob(os.path.join(output_directory, model['evaluate']['output'])) if not evaluation: logger.error("Unable to find evaluation output file.") return evaluation = natsort.natsorted(evaluation, reverse=True)[0] with open(evaluation) as evaluation_file: episodes = [] for line in evaluation_file: try: episodes.append(json.loads(line)) except ValueError: pass rewards = np.asarray([data['reward'] for data in episodes]) return { 'model': trained_model.model_info, 'trained_on': trained_model.environment, 'trained_parameters': trained_model.parameters, 'evaluated_on': environment, 'episodes': episodes, 'rewards': { 'count': len(rewards), 'mean': float(np.mean(rewards)), 'median': float(np.median(rewards)), 'std': float(np.std(rewards)), 'min': float(np.min(rewards)), 'max': float(np.max(rewards)), } }, cmd_str def random_evaluate(args, model, environment, results_dir, dry_run): """Similar to model_evaluate(), but doesn't take trained model as input. Whereas the log dir format for regular (non-random) models is: results_dir/model-name/training-env-name/progress.csv (logs, etc) results_dir/model-name/training-env-name/checkpoints/* (saved model files) results_dir/model-name/training-env-name/evaluations/testing-env-name/results.json (testing results) The log dir format for random models is simply: results_dir/Random/evaluations/testing-env-name/log.txt (testing log, etc.) results_dir/Random/evaluations/testing-env-name/results.json (testing results) """ cmd_str = "" needs_evaluate = True output_directory = os.path.join(results_dir, model['name'], 'evaluations', environment) try: os.makedirs(output_directory) except OSError: if not args.force_evaluate: logger.warning("Experiment directory '{}' already exists. Assuming evaluation done.".format( output_directory )) needs_evaluate = False if needs_evaluate: process = model['evaluate']['command'].strip().format( environment=environment, output=output_directory, ) process = shlex.split(process) cmd_str = " ".join(process) if dry_run: logger.debug("[DRY RUN] Running: '{}'".format(cmd_str)) else: logger.debug("Running: '{}'".format(cmd_str)) try: subprocess.run(process, check=True) except subprocess.CalledProcessError: logger.error("Failed to evaluate model '{}' on environment '{}'.".format(model['name'], environment)) return # We can't evaluate the reward statistics on a dry run, so return a dummy dict if dry_run: return {}, cmd_str else: # Get evaluation results. evaluation = glob.glob(os.path.join(output_directory, model['evaluate']['output'])) if not evaluation: logger.error("Unable to find evaluation output file.") return evaluation = natsort.natsorted(evaluation, reverse=True)[0] with open(evaluation) as evaluation_file: episodes = [] for line in evaluation_file: try: episodes.append(json.loads(line)) except ValueError: pass rewards = np.asarray([data['reward'] for data in episodes]) return { 'model': model['name'], 'trained_on': 'N/A', 'trained_parameters': 'N/A', 'evaluated_on': environment, 'episodes': episodes, 'rewards': { 'count': len(rewards), 'mean': float(np.mean(rewards)), 'median': float(np.median(rewards)), 'std': float(np.std(rewards)), 'min': float(np.min(rewards)), 'max': float(np.max(rewards)), } }, cmd_str def record_result(results_dir, result): """Record evaluation result.""" with open(os.path.join(results_dir, 'results.json'), 'a') as results_file: results_file.write(json.dumps(result)) results_file.write('\n') if __name__ == '__main__': parser = argparse.ArgumentParser(description=None) parser.add_argument('experiments', type=str, help="Experiments definition file (.yml)") parser.add_argument('output', type=str, help="Output directory for all experiments") parser.add_argument('--filter-models', type=str, nargs='+', help="Only run experiments on specified models") parser.add_argument('--filter-envs', type=str, nargs='+', help="Only run experiments on specified environments") parser.add_argument('--force-evaluate', action='store_true', help="Run experiment even if directory already exists") # NOTE: This creates dummy files. Make sure to run on empty output # directory and delete afterwards parser.add_argument('--dry-run', action='store_true', help="Print the expr. commands but don't run them") parser.add_argument('--dry-run-file', default='run_experiments_cmds', help="Where to store the commands (saves both .txt and .json)") # NOTE: If used with --dry-run on an experiments.yml with explicit # testing on train envs, script will fail parser.add_argument('--eval-train', action='store_true', help="Implicitly evaluate on the training environment") parser.add_argument('--skip-existing-train', action='store_true', help="Skip models dirs with existing checkpoint files but no evaluate dir") parser.add_argument('--skip-existing-eval', action='store_true', help="Skip models dirs with existing evaluate dir") args = parser.parse_args() # Configure logger. logging.basicConfig( format='%(asctime)-15s %(levelname)s: %(message)s', level=logging.DEBUG, ) # Store then write out the commands to be run (dry run only) # Dict should look like: # commands = { # 'PPO': [{ # 'train': 'run xyz_command', # 'test': ['run a_command', 'run b_command', ...] # }], # 'TRPO': { # ... if args.dry_run: commands = {} # Load experiments definitions. logger.info("Loading experiment plan '{}'.".format(args.experiments)) with open(args.experiments) as experiments_file: config = yaml.load(experiments_file) logger.info("Models:") for model in config['models']: logger.info(' * {}'.format(model['name'])) logger.info("Loaded {} environment sets.".format(len(config['environments']))) for model in config['models']: if args.filter_models and model['name'] not in args.filter_models: continue random_model = model['name'] == 'Random' if random_model: # Hyperparameters don't make sense for Random assert 'hyperparameters' not in model hp_dicts = [{}] else: # Check in advance to see if any model hyperparameters are specified as lists # If so, then have an outer-loop that does a full sweep based on the list(s) hp_original_copy = model['hyperparameters'].copy() hps_with_list = list(filter(lambda kv: isinstance(kv[1], list), model['hyperparameters'].items())) if len(hps_with_list) > 0: logger.info("Found hyperparameter(s) specified as list, performing hyperparameter sweep.") # Generate Cartesian product of all hyperparameters specified as lists hp_names, hp_vals = zip(*hps_with_list) hp_vals_combos = list(itertools.product(*hp_vals)) logger.info("Testing following combinations for {}: {}.".format(hp_names, hp_vals_combos)) # Create a different hyperparam. dict. for each combination hp_dicts = [] for combo in hp_vals_combos: base_dict = model['hyperparameters'].copy() # Overwrite (list) values with specific combination base_dict.update(dict(zip(hp_names, combo))) hp_dicts.append(base_dict) else: hp_dicts = [model['hyperparameters']] # Dump all the dicts for the log logger.info("Full hyperparameter set(s) [total %d]:" % len(hp_dicts)) for hpd in hp_dicts: logger.info(hpd) # Loop over each hyperparameter configuration, # and write-out to a different results DIR for each output_dir_base = str(args.output) for hp_dict in hp_dicts: output_dir = output_dir_base if not random_model: # Code to modify the provided log dir (args.output) with hyperparameter suffix model['hyperparameters'] = hp_dict # Only append to output DIR if we're doing a hyperparameter sweep if len(hp_dicts) > 1: # Sort by key so that we get consistent log dirs hp_dict_sorted = [(k, hp_dict[k]) for k in sorted(hp_dict)] suffix = '_'.join(['{0}-{1}'.format(k, v) for k, v in hp_dict_sorted]) output_dir = output_dir_base + '___' + suffix logger.info("Hyperparameter sweep dict: {}".format(hp_dict)) logger.info("Logging to: {}".format(output_dir)) logger.info("Evaluating model '{}'.".format(model['name'])) if args.dry_run: # Algorithm -> list of train/test combos to try if model['name'] not in commands: commands[model['name']] = [] for environment in config['environments']: if args.filter_envs and environment['train'] not in args.filter_envs: continue if args.skip_existing_train: output_directory = os.path.join(output_dir_base, model['name'].replace(' ', '-'), environment['train']) if os.path.isdir(output_directory): logger.warning("Experiment directory '{}' already exists, and --skip-existing-train flag enabled. Skipping environment.".format(output_directory)) continue if random_model: # 'Random' is a special case where we don't actually train anything logger.info("'Random' model specified, skipping training.") else: logger.info("Training on '{}'.".format(environment['train'])) ret = model_train(args, model, environment['train'], args.dry_run, output_dir, args.skip_existing_train) if not ret: continue else: trained_model, cmd = ret if args.dry_run: # Store the command for training on the train env env_exprs = {} if not random_model: env_exprs['train'] = cmd env_exprs['test'] = [] # Evaluate on the train environment # In the current
SimTK::Array_< int >::size_type n, int const & fillValue) Parameters ---------- n: SimTK::Array_< int >::size_type fillValue: int const & """ return _simbody.SimTKArrayInt_assign(self, n, fillValue) def fill(self, fillValue): """ fill(SimTKArrayInt self, int const & fillValue) Parameters ---------- fillValue: int const & """ return _simbody.SimTKArrayInt_fill(self, fillValue) def swap(self, other): """ swap(SimTKArrayInt self, SimTKArrayInt other) Parameters ---------- other: SimTK::Array_< int > & """ return _simbody.SimTKArrayInt_swap(self, other) def adoptData(self, *args): """ adoptData(SimTKArrayInt self, int * newData, SimTK::Array_< int >::size_type dataSize, SimTK::Array_< int >::size_type dataCapacity) -> SimTKArrayInt Parameters ---------- newData: int * dataSize: SimTK::Array_< int >::size_type dataCapacity: SimTK::Array_< int >::size_type adoptData(SimTKArrayInt self, int * newData, SimTK::Array_< int >::size_type dataSize) -> SimTKArrayInt Parameters ---------- newData: int * dataSize: SimTK::Array_< int >::size_type """ return _simbody.SimTKArrayInt_adoptData(self, *args) def shareData(self, *args): """ shareData(SimTKArrayInt self, int * newData, SimTK::Array_< int >::size_type dataSize) -> SimTKArrayInt Parameters ---------- newData: int * dataSize: SimTK::Array_< int >::size_type shareData(SimTKArrayInt self, int * first, int const * last1) -> SimTKArrayInt Parameters ---------- first: int * last1: int const * """ return _simbody.SimTKArrayInt_shareData(self, *args) def size(self): """ size(SimTKArrayInt self) -> SimTK::Array_< int >::size_type Parameters ---------- self: SimTK::Array_< int > const * """ return _simbody.SimTKArrayInt_size(self) def max_size(self): """ max_size(SimTKArrayInt self) -> SimTK::Array_< int >::size_type Parameters ---------- self: SimTK::Array_< int > const * """ return _simbody.SimTKArrayInt_max_size(self) def empty(self): """ empty(SimTKArrayInt self) -> bool Parameters ---------- self: SimTK::Array_< int > const * """ return _simbody.SimTKArrayInt_empty(self) def capacity(self): """ capacity(SimTKArrayInt self) -> SimTK::Array_< int >::size_type Parameters ---------- self: SimTK::Array_< int > const * """ return _simbody.SimTKArrayInt_capacity(self) def resize(self, *args): """ resize(SimTKArrayInt self, SimTK::Array_< int >::size_type n) Parameters ---------- n: SimTK::Array_< int >::size_type resize(SimTKArrayInt self, SimTK::Array_< int >::size_type n, int const & initVal) Parameters ---------- n: SimTK::Array_< int >::size_type initVal: int const & """ return _simbody.SimTKArrayInt_resize(self, *args) def reserve(self, n): """ reserve(SimTKArrayInt self, SimTK::Array_< int >::size_type n) Parameters ---------- n: SimTK::Array_< int >::size_type """ return _simbody.SimTKArrayInt_reserve(self, n) def shrink_to_fit(self): """ shrink_to_fit(SimTKArrayInt self) Parameters ---------- self: SimTK::Array_< int > * """ return _simbody.SimTKArrayInt_shrink_to_fit(self) def allocated(self): """ allocated(SimTKArrayInt self) -> SimTK::Array_< int >::size_type Parameters ---------- self: SimTK::Array_< int > const * """ return _simbody.SimTKArrayInt_allocated(self) def isOwner(self): """ isOwner(SimTKArrayInt self) -> bool Parameters ---------- self: SimTK::Array_< int > const * """ return _simbody.SimTKArrayInt_isOwner(self) def cbegin(self): """ cbegin(SimTKArrayInt self) -> int const * Parameters ---------- self: SimTK::Array_< int > const * """ return _simbody.SimTKArrayInt_cbegin(self) def begin(self, *args): """ begin(SimTKArrayInt self) -> int const begin(SimTKArrayInt self) -> int * Parameters ---------- self: SimTK::Array_< int > * """ return _simbody.SimTKArrayInt_begin(self, *args) def cend(self): """ cend(SimTKArrayInt self) -> int const * Parameters ---------- self: SimTK::Array_< int > const * """ return _simbody.SimTKArrayInt_cend(self) def end(self, *args): """ end(SimTKArrayInt self) -> int const end(SimTKArrayInt self) -> int * Parameters ---------- self: SimTK::Array_< int > * """ return _simbody.SimTKArrayInt_end(self, *args) def crbegin(self): """ crbegin(SimTKArrayInt self) -> SimTK::Array_< int >::const_reverse_iterator Parameters ---------- self: SimTK::Array_< int > const * """ return _simbody.SimTKArrayInt_crbegin(self) def rbegin(self, *args): """ rbegin(SimTKArrayInt self) -> SimTK::Array_< int >::const_reverse_iterator rbegin(SimTKArrayInt self) -> SimTK::Array_< int >::reverse_iterator Parameters ---------- self: SimTK::Array_< int > * """ return _simbody.SimTKArrayInt_rbegin(self, *args) def crend(self): """ crend(SimTKArrayInt self) -> SimTK::Array_< int >::const_reverse_iterator Parameters ---------- self: SimTK::Array_< int > const * """ return _simbody.SimTKArrayInt_crend(self) def rend(self, *args): """ rend(SimTKArrayInt self) -> SimTK::Array_< int >::const_reverse_iterator rend(SimTKArrayInt self) -> SimTK::Array_< int >::reverse_iterator Parameters ---------- self: SimTK::Array_< int > * """ return _simbody.SimTKArrayInt_rend(self, *args) def cdata(self): """ cdata(SimTKArrayInt self) -> int const * Parameters ---------- self: SimTK::Array_< int > const * """ return _simbody.SimTKArrayInt_cdata(self) def data(self, *args): """ data(SimTKArrayInt self) -> int const data(SimTKArrayInt self) -> int * Parameters ---------- self: SimTK::Array_< int > * """ return _simbody.SimTKArrayInt_data(self, *args) def at(self, *args): """ at(SimTKArrayInt self, SimTK::Array_< int >::index_type i) -> int const Parameters ---------- i: SimTK::Array_< int >::index_type at(SimTKArrayInt self, SimTK::Array_< int >::index_type i) -> int & Parameters ---------- i: SimTK::Array_< int >::index_type """ return _simbody.SimTKArrayInt_at(self, *args) def getElt(self, i): """ getElt(SimTKArrayInt self, SimTK::Array_< int >::index_type i) -> int const & Parameters ---------- i: SimTK::Array_< int >::index_type """ return _simbody.SimTKArrayInt_getElt(self, i) def updElt(self, i): """ updElt(SimTKArrayInt self, SimTK::Array_< int >::index_type i) -> int & Parameters ---------- i: SimTK::Array_< int >::index_type """ return _simbody.SimTKArrayInt_updElt(self, i) def front(self, *args): """ front(SimTKArrayInt self) -> int const front(SimTKArrayInt self) -> int & Parameters ---------- self: SimTK::Array_< int > * """ return _simbody.SimTKArrayInt_front(self, *args) def back(self, *args): """ back(SimTKArrayInt self) -> int const back(SimTKArrayInt self) -> int & Parameters ---------- self: SimTK::Array_< int > * """ return _simbody.SimTKArrayInt_back(self, *args) def push_back(self, *args): """ push_back(SimTKArrayInt self, int const & value) Parameters ---------- value: int const & push_back(SimTKArrayInt self) Parameters ---------- self: SimTK::Array_< int > * """ return _simbody.SimTKArrayInt_push_back(self, *args) def raw_push_back(self): """ raw_push_back(SimTKArrayInt self) -> int * Parameters ---------- self: SimTK::Array_< int > * """ return _simbody.SimTKArrayInt_raw_push_back(self) def pop_back(self): """ pop_back(SimTKArrayInt self) Parameters ---------- self: SimTK::Array_< int > * """ return _simbody.SimTKArrayInt_pop_back(self) def erase(self, *args): """ erase(SimTKArrayInt self, int * first, int const * last1) -> int Parameters ---------- first: int * last1: int const * erase(SimTKArrayInt self, int * p) -> int * Parameters ---------- p: int * """ return _simbody.SimTKArrayInt_erase(self, *args) def eraseFast(self, p): """ eraseFast(SimTKArrayInt self, int * p) -> int * Parameters ---------- p: int * """ return _simbody.SimTKArrayInt_eraseFast(self, p) def clear(self): """ clear(SimTKArrayInt self) Parameters ---------- self: SimTK::Array_< int > * """ return _simbody.SimTKArrayInt_clear(self) def insert(self, *args): """ insert(SimTKArrayInt self, int * p, SimTK::Array_< int >::size_type n, int const & value) -> int Parameters ---------- p: int * n: SimTK::Array_< int >::size_type value: int const & insert(SimTKArrayInt self, int * p, int const & value) -> int * Parameters ---------- p: int * value: int const & """ return _simbody.SimTKArrayInt_insert(self, *args) SimTKArrayInt_swigregister = _simbody.SimTKArrayInt_swigregister SimTKArrayInt_swigregister(SimTKArrayInt) class SimTKArrayRotation(_object): """Proxy of C++ SimTK::Array_<(SimTK::Rotation_<(double)>)> class.""" __swig_setmethods__ = {} __setattr__ = lambda self, name, value: _swig_setattr(self, SimTKArrayRotation, name, value) __swig_getmethods__ = {} __getattr__ = lambda self, name: _swig_getattr(self, SimTKArrayRotation, name) __repr__ = _swig_repr def __init__(self, *args): """ __init__(SimTK::Array_<(SimTK::Rotation_<(double)>)> self) -> SimTKArrayRotation __init__(SimTK::Array_<(SimTK::Rotation_<(double)>)> self, SimTK::Array_< SimTK::Rotation_< double > >::size_type n) -> SimTKArrayRotation Parameters ---------- n: SimTK::Array_< SimTK::Rotation_< double > >::size_type __init__(SimTK::Array_<(SimTK::Rotation_<(double)>)> self, SimTK::Array_< SimTK::Rotation_< double > >::size_type n, Rotation initVal) -> SimTKArrayRotation Parameters ---------- n: SimTK::Array_< SimTK::Rotation_< double > >::size_type initVal: SimTK::Rotation_< double > const & __init__(SimTK::Array_<(SimTK::Rotation_<(double)>)> self, SimTKArrayRotation src) -> SimTKArrayRotation Parameters ---------- src: SimTK::Array_< SimTK::Rotation_< double > > const & __init__(SimTK::Array_<(SimTK::Rotation_<(double)>)> self, Rotation first, Rotation last1, DontCopy arg4) -> SimTKArrayRotation Parameters ---------- first: SimTK::Rotation_< double > * last1: SimTK::Rotation_< double > const * arg4: SimTK::DontCopy const & """ this = _simbody.new_SimTKArrayRotation(*args) try: self.this.append(this) except __builtin__.Exception: self.this = this __swig_destroy__ = _simbody.delete_SimTKArrayRotation __del__ = lambda self: None def deallocate(self): """ deallocate(SimTKArrayRotation self) -> SimTKArrayRotation Parameters ---------- self: SimTK::Array_< SimTK::Rotation_< double > > * """ return _simbody.SimTKArrayRotation_deallocate(self) def assign(self, n, fillValue): """ assign(SimTKArrayRotation self, SimTK::Array_< SimTK::Rotation_< double > >::size_type n, Rotation fillValue) Parameters ---------- n: SimTK::Array_< SimTK::Rotation_< double > >::size_type fillValue: SimTK::Rotation_< double > const & """ return _simbody.SimTKArrayRotation_assign(self, n, fillValue) def fill(self, fillValue): """ fill(SimTKArrayRotation self, Rotation fillValue) Parameters ---------- fillValue: SimTK::Rotation_< double > const & """ return _simbody.SimTKArrayRotation_fill(self, fillValue) def swap(self, other): """ swap(SimTKArrayRotation self, SimTKArrayRotation other) Parameters ---------- other: SimTK::Array_< SimTK::Rotation_< double > > & """ return _simbody.SimTKArrayRotation_swap(self, other) def adoptData(self, *args): """ adoptData(SimTKArrayRotation self, Rotation newData, SimTK::Array_< SimTK::Rotation_< double > >::size_type dataSize, SimTK::Array_< SimTK::Rotation_< double > >::size_type dataCapacity) -> SimTKArrayRotation Parameters ---------- newData: SimTK::Rotation_< double > * dataSize: SimTK::Array_< SimTK::Rotation_< double > >::size_type dataCapacity: SimTK::Array_< SimTK::Rotation_< double > >::size_type adoptData(SimTKArrayRotation self, Rotation newData, SimTK::Array_< SimTK::Rotation_< double > >::size_type dataSize) -> SimTKArrayRotation Parameters ---------- newData: SimTK::Rotation_< double > * dataSize: SimTK::Array_< SimTK::Rotation_< double > >::size_type """ return _simbody.SimTKArrayRotation_adoptData(self, *args) def shareData(self, *args): """ shareData(SimTKArrayRotation self, Rotation newData, SimTK::Array_< SimTK::Rotation_< double > >::size_type dataSize) -> SimTKArrayRotation Parameters ---------- newData: SimTK::Rotation_< double > * dataSize: SimTK::Array_< SimTK::Rotation_< double > >::size_type shareData(SimTKArrayRotation self, Rotation first, Rotation last1) -> SimTKArrayRotation Parameters ---------- first: SimTK::Rotation_< double > * last1: SimTK::Rotation_< double > const *
increase lineN when the last line doesn't end with '\n' if lineN < len(lines)-1 or line[-1] == '\n' : lineN += 1 else: raise ValueError("Unknown lineBreaking option ({}) is" "specified.".format(lineBreaking)) # convert the vertices to stimulus units self._rawVerts = vertices / self._pixelScaling # thisW = current[0] - glyph.advance[0] + glyph.size[0] * alphaCorrection # calculate final self.size and tightBox if np.isnan(self._requestedSize[0]): self.size[0] = max(self._lineWidths) + self.padding*2 if np.isnan(self._requestedSize[1]): self.size[1] = ((lineN + 1) * self._lineHeight / self._pixelScaling + self.padding * 2) # if we had to add more glyphs to make possible then if self.glFont._dirty: self.glFont.upload() self.glFont._dirty = False self._needVertexUpdate = True def _getStartingVertices(self): """Returns vertices for a single non-printing char as a proxy (needed to get location for caret when there are no actual chars)""" yTop = self._anchorOffsetY - (self.glFont.height - self.glFont.ascender) * self.lineSpacing yBot = yTop - self._lineHeight x = 0 theseVertices = np.array([[x, yTop], [x, yBot], [x, yBot], [x, yTop]]) return theseVertices def draw(self): """Draw the text to the back buffer""" # Border width self.box.setLineWidth(self.pallette['lineWidth']) # Use 1 as base if border width is none #self.borderWidth = self.box.lineWidth # Border colour self.box.setLineColor(self.pallette['lineColor'], colorSpace='rgb') #self.borderColor = self.box.lineColor # Background self.box.setFillColor(self.pallette['fillColor'], colorSpace='rgb') #self.fillColor = self.box.fillColor if self._needVertexUpdate: #print("Updating vertices...") self._updateVertices() if self.fillColor is not None or self.borderColor is not None: self.box.draw() # self.boundingBox.draw() # could draw for debug purposes gl.glPushMatrix() self.win.setScale('pix') gl.glActiveTexture(gl.GL_TEXTURE0) gl.glBindTexture(gl.GL_TEXTURE_2D, self.glFont.textureID) gl.glEnable(gl.GL_TEXTURE_2D) gl.glDisable(gl.GL_DEPTH_TEST) gl.glEnableClientState(gl.GL_VERTEX_ARRAY) gl.glEnableClientState(gl.GL_COLOR_ARRAY) gl.glEnableClientState(gl.GL_TEXTURE_COORD_ARRAY) gl.glEnableClientState(gl.GL_VERTEX_ARRAY) gl.glVertexPointer(2, gl.GL_DOUBLE, 0, self.verticesPix.ctypes) gl.glColorPointer(4, gl.GL_DOUBLE, 0, self._colors.ctypes) gl.glTexCoordPointer(2, gl.GL_DOUBLE, 0, self._texcoords.ctypes) self.shader.bind() self.shader.setInt('texture', 0) self.shader.setFloat('pixel', [1.0 / 512, 1.0 / 512]) nVerts = len(self._text)*4 gl.glDrawArrays(gl.GL_QUADS, 0, nVerts) self.shader.unbind() # removed the colors and font texture gl.glDisableClientState(gl.GL_COLOR_ARRAY) gl.glDisableClientState(gl.GL_TEXTURE_COORD_ARRAY) gl.glDisableVertexAttribArray(1) gl.glDisableClientState(gl.GL_VERTEX_ARRAY) gl.glActiveTexture(gl.GL_TEXTURE0) gl.glBindTexture(gl.GL_TEXTURE_2D, 0) gl.glDisable(gl.GL_TEXTURE_2D) if self.hasFocus: # draw caret line self.caret.draw() gl.glPopMatrix() def reset(self): # Reset contents self.text = self.startText def clear(self): # Clear contents self.text = "" def contains(self, x, y=None, units=None, tight=False): """Returns True if a point x,y is inside the stimulus' border. Can accept variety of input options: + two separate args, x and y + one arg (list, tuple or array) containing two vals (x,y) + an object with a getPos() method that returns x,y, such as a :class:`~psychopy.event.Mouse`. Returns `True` if the point is within the area defined either by its `border` attribute (if one defined), or its `vertices` attribute if there is no .border. This method handles complex shapes, including concavities and self-crossings. Note that, if your stimulus uses a mask (such as a Gaussian) then this is not accounted for by the `contains` method; the extent of the stimulus is determined purely by the size, position (pos), and orientation (ori) settings (and by the vertices for shape stimuli). See Coder demos: shapeContains.py See Coder demos: shapeContains.py """ if tight: return self.boundingBox.contains(x, y, units) else: return self.box.contains(x, y, units) def overlaps(self, polygon, tight=False): """Returns `True` if this stimulus intersects another one. If `polygon` is another stimulus instance, then the vertices and location of that stimulus will be used as the polygon. Overlap detection is typically very good, but it can fail with very pointy shapes in a crossed-swords configuration. Note that, if your stimulus uses a mask (such as a Gaussian blob) then this is not accounted for by the `overlaps` method; the extent of the stimulus is determined purely by the size, pos, and orientation settings (and by the vertices for shape stimuli). Parameters See coder demo, shapeContains.py """ if tight: return self.boundingBox.overlaps(polygon) else: return self.box.overlaps(polygon) def _updateVertices(self): """Sets Stim.verticesPix and ._borderPix from pos, size, ori, flipVert, flipHoriz """ # check whether stimulus needs flipping in either direction flip = np.array([1, 1]) if hasattr(self, 'flipHoriz') and self.flipHoriz: flip[0] = -1 # True=(-1), False->(+1) if hasattr(self, 'flipVert') and self.flipVert: flip[1] = -1 # True=(-1), False->(+1) font = self.glFont # to start with the anchor is bottom left of *first line* if self._anchorY == 'top': self._anchorOffsetY = (-font.ascender / self._pixelScaling - self.padding) boxOffsetY = - self.size[1] / 2.0 elif self._anchorY == 'center': self._anchorOffsetY = ( self.size[1] / 2 - (font.height / 2 - font.descender) / self._pixelScaling - self.padding ) boxOffsetY = 0 elif self._anchorY == 'bottom': self._anchorOffsetY = ( self.size[1] - (font.height / 2 + font.ascender) / self._pixelScaling ) # self._anchorOffsetY = (-font.ascender / self._pixelScaling # - self.padding) boxOffsetY = + (self.size[1]) / 2.0 else: raise ValueError('Unexpected value for _anchorY') # calculate anchor offsets (text begins on left=0, box begins center=0) if self._anchorX == 'right': self._anchorOffsetX = - self.size[0] + self.padding boxOffsetX = - self.size[0] / 2.0 elif self._anchorX == 'center': self._anchorOffsetX = - self.size[0] / 2.0 + self.padding boxOffsetX = 0 elif self._anchorX == 'left': self._anchorOffsetX = 0 + self.padding boxOffsetX = + self.size[0] / 2.0 else: raise ValueError('Unexpected value for _anchorX') self.vertices = self._rawVerts + (self._anchorOffsetX, self._anchorOffsetY) vertsPix = convertToPix(vertices=self.vertices, pos=self.pos, win=self.win, units=self.units) self.__dict__['verticesPix'] = vertsPix # tight bounding box if self.vertices.shape[0] < 1: # editable box with no letters? self.boundingBox.size = 0, 0 self.boundingBox.pos = self.pos else: L = self.vertices[:, 0].min() R = self.vertices[:, 0].max() B = self.vertices[:, 1].min() T = self.vertices[:, 1].max() tightW = R-L Xmid = (R+L)/2 tightH = T-B Ymid = (T+B)/2 # for the tight box anchor offset is included in vertex calcs self.boundingBox.size = tightW, tightH self.boundingBox.pos = self.pos + (Xmid, Ymid) # box (larger than bounding box) needs anchor offest adding self.box.pos = self.pos + (boxOffsetX, boxOffsetY) self.box.size = self.size # this might have changed from _requested self._needVertexUpdate = False def _onText(self, chr): """Called by the window when characters are received""" if chr == '\t': self.win.nextEditable() return if chr == '\r': # make it newline not Carriage Return chr = '\n' self.addCharAtCaret(chr) if self.onTextCallback: self.onTextCallback() def _onCursorKeys(self, key): """Called by the window when cursor/del/backspace... are received""" if key == 'MOTION_UP': self.caret.row -= 1 elif key == 'MOTION_DOWN': self.caret.row += 1 elif key == 'MOTION_RIGHT': self.caret.char += 1 elif key == 'MOTION_LEFT': self.caret.char -= 1 elif key == 'MOTION_BACKSPACE': self.deleteCaretLeft() elif key == 'MOTION_DELETE': self.deleteCaretRight() elif key == 'MOTION_NEXT_WORD': pass elif key == 'MOTION_PREVIOUS_WORD': pass elif key == 'MOTION_BEGINNING_OF_LINE': self.caret.char = 0 elif key == 'MOTION_END_OF_LINE': self.caret.char = END_OF_THIS_LINE elif key == 'MOTION_NEXT_PAGE': pass elif key == 'MOTION_PREVIOUS_PAGE': pass elif key == 'MOTION_BEGINNING_OF_FILE': pass elif key == 'MOTION_END_OF_FILE': pass else: print("Received unhandled cursor motion type: ", key) @property def hasFocus(self): if self.win and self.win.currentEditable == self: return True return False @hasFocus.setter def hasFocus(self, focus): if focus is False and self.hasFocus: # If focus is being set to False, tell window to # give focus to next editable. if self.win: self.win.nextEditable() elif focus is True and self.hasFocus is False: # If focus is being set True, set textbox instance to be # window.currentEditable. if self.win: self.win.currentEditable=self return False def getText(self): """Returns the current text in the box, including formating tokens.""" return self.text @property def visibleText(self): """Returns the current visible text in the box""" return self._text def getVisibleText(self): """Returns the current visible text in the box""" return self.visibleText @attributeSetter def pos(self, value): """The position of the center of the TextBox in the stimulus :ref:`units <units>` `value` should be an :ref:`x,y-pair <attrib-xy>`. :ref:`Operations <attrib-operations>` are also supported. Example:: stim.pos = (0.5, 0) # Set slightly to the right of center stim.pos += (0.5, -1) # Increment pos rightwards and upwards. Is now (1.0, -1.0) stim.pos *= 0.2 # Move stim towards the center. Is now (0.2, -0.2) Tip: If you need the position of stim in pixels, you can obtain it like this: from psychopy.tools.monitorunittools import posToPix posPix = posToPix(stim) """ self.__dict__['pos'] = val2array(value, False, False) try: self.box.pos = (self.__dict__['pos'] + (self._anchorOffsetX, self._anchorOffsetY)) except AttributeError: pass # may not be created yet, which is fine self._needVertexUpdate = True self._needUpdate = True def setText(self, text=None, log=None): """Usually you can use 'stim.attribute = value' syntax instead, but use this method if you need to suppress the log message. """ setAttribute(self,