input
stringlengths
2.65k
237k
output
stringclasses
1 value
a sparse 'd' matrix of size (0,n). b is a dense 'd' matrix of size (p,1). The default value is a dense 'd' matrix of size (0,1). Optionally, the interface can write a .task file, required for support questions on the MOSEK solver. Return values solsta is a MOSEK solution status key. If solsta is mosek.solsta.optimal, then (x, zl, zq, zs) contains the primal-dual solution. If solsta is moseksolsta.prim_infeas_cer, then (x, zl, zq, zs) is a certificate of dual infeasibility. If solsta is moseksolsta.dual_infeas_cer, then (x, zl, zq, zs) is a certificate of primal infeasibility. If solsta is mosek.solsta.unknown, then (x, zl, zq, zs) are all None Other return values for solsta include: mosek.solsta.dual_feas mosek.solsta.near_dual_feas mosek.solsta.near_optimal mosek.solsta.near_prim_and_dual_feas mosek.solsta.near_prim_feas mosek.solsta.prim_and_dual_feas mosek.solsta.prim_feas in which case the (x,y,z) value may not be well-defined. x, z the primal-dual solution. Options are passed to MOSEK solvers via the msk.options dictionary, e.g., the following turns off output from the MOSEK solvers >>> msk.options = {mosek.iparam.log:0} see the MOSEK Python API manual. """ with mosek.Env() as env: if dims is None: (solsta, x, y, z) = lp(c, G, h) return (solsta, x, z, None) N, n = G.size ml, mq, ms = dims['l'], dims['q'], [ k*k for k in dims['s'] ] cdim = ml + sum(mq) + sum(ms) if cdim is 0: raise ValueError("ml+mq+ms cannot be 0") # Data for kth 'q' constraint are found in rows indq[k]:indq[k+1] of G. indq = [ dims['l'] ] for k in dims['q']: indq = indq + [ indq[-1] + k ] # Data for the kth 's' constraint are found in rows indq[-1] + (inds[k]:inds[k+1]) of G. inds = [ 0 ] for k in dims['s']: inds = inds + [ inds[-1] + k*k ] if type(h) is not matrix or h.typecode != 'd' or h.size[1] != 1: raise TypeError("'h' must be a 'd' matrix with 1 column") if type(G) is matrix or type(G) is spmatrix: if G.typecode != 'd' or G.size[0] != cdim: raise TypeError("'G' must be a 'd' matrix with %d rows " %cdim) if h.size[0] != cdim: raise TypeError("'h' must have %d rows" %cdim) else: raise TypeError("'G' must be a matrix") if len(dims['q']) and min(dims['q'])<1: raise TypeError( "dimensions of quadratic cones must be positive") if len(dims['s']) and min(dims['s'])<1: raise TypeError( "dimensions of semidefinite cones must be positive") bkc = n*[ mosek.boundkey.fx ] blc = list(-c) buc = list(-c) dimx = ml + sum(mq) bkx = ml*[ mosek.boundkey.lo ] + sum(mq)*[ mosek.boundkey.fr ] blx = ml*[ 0.0 ] + sum(mq)*[ -inf ] bux = dimx*[ +inf ] c = list(-h) cl, cs = c[:dimx], sparse(c[dimx:]) Gl, Gs = sparse(G[:dimx,:]), sparse(G[dimx:,:]) colptr, asub, acof = Gl.T.CCS aptrb, aptre = colptr[:-1], colptr[1:] with env.Task(0,0) as task: task.set_Stream (mosek.streamtype.log, streamprinter) # set MOSEK options for (param, val) in options.items(): if str(param)[:6] == "iparam": task.putintparam(param, val) elif str(param)[:6] == "dparam": task.putdouparam(param, val) elif str(param)[:6] == "sparam": task.putstrparam(param, val) else: raise ValueError("invalid MOSEK parameter: "+str(param)) task.inputdata (n, # number of constraints dimx, # number of variables cl, # linear objective coefficients 0.0, # objective fixed value list(aptrb), list(aptre), list(asub), list(acof), bkc, blc, buc, bkx, blx, bux) task.putobjsense(mosek.objsense.maximize) numbarvar = len(dims['s']) task.appendbarvars(dims['s']) barcsubj, barcsubk, barcsubl = (inds[-1])*[ 0 ], (inds[-1])*[ 0 ], (inds[-1])*[ 0 ] barcval = [ -h[indq[-1]+k] for k in range(inds[0], inds[-1])] for s in range(numbarvar): for (k,idx) in enumerate(range(inds[s],inds[s+1])): barcsubk[idx] = k / dims['s'][s] barcsubl[idx] = k % dims['s'][s] barcsubj[idx] = s # filter out upper triangular part trilidx = [ idx for idx in range(len(barcsubk)) if barcsubk[idx] >= barcsubl[idx] ] barcsubj = [ barcsubj[k] for k in trilidx ] barcsubk = [ barcsubk[k] for k in trilidx ] barcsubl = [ barcsubl[k] for k in trilidx ] barcval = [ barcval[k] for k in trilidx ] task.putbarcblocktriplet(len(trilidx), barcsubj, barcsubk, barcsubl, barcval) Gst = Gs.T barasubi = len(Gst)*[ 0 ] barasubj = len(Gst)*[ 0 ] barasubk = len(Gst)*[ 0 ] barasubl = len(Gst)*[ 0 ] baraval = len(Gst)*[ 0.0 ] colptr, row, val = Gst.CCS for s in range(numbarvar): for j in range(ms[s]): for idx in range(colptr[inds[s]+j], colptr[inds[s]+j+1]): barasubi[idx] = row[idx] barasubj[idx] = s barasubk[idx] = j / dims['s'][s] barasubl[idx] = j % dims['s'][s] baraval[idx] = val[idx] # filter out upper triangular part trilidx = [ idx for (idx, (k,l)) in enumerate(zip(barasubk,barasubl)) if k >= l ] barasubi = [ barasubi[k] for k in trilidx ] barasubj = [ barasubj[k] for k in trilidx ] barasubk = [ barasubk[k] for k in trilidx ] barasubl = [ barasubl[k] for k in trilidx ] baraval = [ baraval[k] for k in trilidx ] task.putbarablocktriplet(len(trilidx), barasubi, barasubj, barasubk, barasubl, baraval) for k in range(len(mq)): task.appendcone(mosek.conetype.quad, 0.0, range(ml+sum(mq[:k]),ml+sum(mq[:k+1]))) if taskfile: task.writetask(taskfile) task.optimize() task.solutionsummary (mosek.streamtype.msg); solsta = task.getsolsta(mosek.soltype.itr) xu, xl, zq = n*[ 0.0 ], n*[ 0.0 ], sum(mq)*[ 0.0 ] task.getsolutionslice(mosek.soltype.itr, mosek.solitem.slc, 0, n, xl) task.getsolutionslice(mosek.soltype.itr, mosek.solitem.suc, 0, n, xu) task.getsolutionslice(mosek.soltype.itr, mosek.solitem.xx, ml, dimx, zq) x = matrix(xu)-matrix(xl) zq = matrix(zq) for s in range(numbarvar): xx = (dims['s'][s]*(dims['s'][s] + 1) >> 1)*[0.0] task.getbarxj(mosek.soltype.itr, s, xx) xs = matrix(0.0, (dims['s'][s], dims['s'][s])) idx = 0 for j in range(dims['s'][s]): for i in range(j,dims['s'][s]): xs[i,j] = xx[idx] if i != j: xs[j,i] = xx[idx] idx += 1 zq = matrix([zq, xs[:]]) if ml: zl = ml*[ 0.0 ] task.getsolutionslice(mosek.soltype.itr, mosek.solitem.xx, 0, ml, zl) zl = matrix(zl) else: zl = matrix(0.0, (0,1)) if (solsta is mosek.solsta.unknown): return (solsta, None, None) else: return (solsta, x, matrix([zl, zq])) def socp(c, Gl=None, hl=None, Gq=None, hq=None, taskfile=None): """ Solves a pair of primal and dual SOCPs minimize c'*x subject to Gl*x + sl = hl Gq[k]*x + sq[k] = hq[k], k = 0, ..., N-1 sl >= 0, sq[k] >= 0, k = 0, ..., N-1 maximize -hl'*zl - sum_k hq[k]'*zq[k] subject to Gl'*zl + sum_k Gq[k]'*zq[k] + c = 0 zl >= 0, zq[k] >= 0, k = 0, ..., N-1. using MOSEK 8.0. solsta, x, zl, zq = socp(c, Gl = None, hl = None, Gq = None, hq = None, taskfile=None) Return values solsta is a MOSEK solution status key. If solsta is mosek.solsta.optimal, then (x, zl, zq) contains the primal-dual solution. If solsta is mosek.solsta.prim_infeas_cer, then (x, zl, zq) is a certificate of dual infeasibility. If solsta is mosek.solsta.dual_infeas_cer, then (x, zl, zq) is a certificate of primal infeasibility. If solsta is mosek.solsta.unknown, then (x, zl, zq) are all None Other return values for solsta include: mosek.solsta.dual_feas mosek.solsta.near_dual_feas mosek.solsta.near_optimal mosek.solsta.near_prim_and_dual_feas mosek.solsta.near_prim_feas mosek.solsta.prim_and_dual_feas mosek.solsta.prim_feas in which case the (x,y,z) value may not be well-defined. x, zl, zq the primal-dual solution. Options are passed to MOSEK solvers via the msk.options dictionary, e.g., the following turns off output from the MOSEK solvers >>> msk.options = {mosek.iparam.log: 0} see the MOSEK Python API manual. Optionally, the interface can write a .task file, required for support questions on the MOSEK solver. """ with mosek.Env() as env: if type(c) is not matrix or c.typecode != 'd' or c.size[1] != 1: raise TypeError("'c' must be a dense column matrix") n = c.size[0] if n < 1: raise ValueError("number of variables must be at least 1") if Gl is None: Gl = spmatrix([], [], [], (0,n), tc='d') if (type(Gl) is not matrix and type(Gl) is not spmatrix) or \ Gl.typecode != 'd' or Gl.size[1] != n: raise TypeError("'Gl' must be a dense or sparse 'd' matrix "\ "with %d columns" %n) ml = Gl.size[0] if hl is None: hl = matrix(0.0, (0,1)) if type(hl) is not matrix or hl.typecode != 'd' or
mentalIndef,recvMental = self.getHistoryRelatedColumnData(phIndex, "MentalHealthProblem", "has_mental_health_problem", "mental_health_indefinite", "receive_mental_health_services") substance, substanceIndef, recvSubstance \ = self.getHistoryRelatedColumnData(phIndex, "SubstanceAbuseProblem", "has_substance_abuse_problem", "substance_abuse_indefinite", "receive_substance_abuse_services") violence,violenceOccured = self.getHistoryRelatedColumnData(phIndex, "DomesticViolence", "domestic_violence_survivor", "dv_occurred") employed, hoursLastWk, tenure, looking \ = self.getHistoryRelatedColumnData(phIndex, "Employment", "currently_employed", "hours_worked_last_week", "employment_tenure", "looking_for_work") inSchool = self.getHistoryRelatedColumnData(phIndex, "CurrentlyInSchool", "currently_in_school") vocational = self.getHistoryRelatedColumnData(phIndex, "VocationalTraining", "vocational_training") highestSchool = self.getHistoryRelatedColumnData(phIndex, "HighestSchoolLevel", "highest_school_level") (degreeNum, degreeStr) = self.getHistoryRelatedColumnData(phIndex, "Degree", "degree_id_id_num", "degree_id_id_str") degree = self.chooseId(degreeNum, degreeStr) healthStatus = self.getHistoryRelatedColumnData(phIndex, "HealthStatus", "health_status") pregnant, dueDate = self.getHistoryRelatedColumnData(phIndex, "Pregnancy", "pregnancy_status", "due_date") dueDate = dueDate serviceEra = self.getHistoryRelatedColumnData(phIndex, "VeteranServiceEra", "service_era") serviceDur = self.getHistoryRelatedColumnData(phIndex, "VeteranMilitaryServiceDuration", "military_service_duration") servedInWz = self.getHistoryRelatedColumnData(phIndex, "VeteranServedInWarZone", "served_in_war_zone") wzNum, wzMonths, wzFire = self.getHistoryRelatedColumnData(phIndex, "VeteranWarzonesServed", "war_zone_id_id_id_num", "months_in_war_zone", "received_fire") warZone = wzNum branch, discharge = self.getHistoryRelatedColumnData(phIndex, "VeteranMilitaryBranches", "military_branch", "discharge_status") cesIndex, childInSchool, school, mvLiason, schoolType, lastSchoolDt \ = self.getHistoryRelatedColumnData(phIndex, "ChildEnrollmentStatus", "id", "child_currently_enrolled_in_school", "child_school_name", "child_mckinney_vento_liason", "child_school_type", "child_last_enrolled_date") # Get fields from subtables non-simply related to person_historical table: schoolBarrier = self.getSchoolBarrier(cesIndex) except: print("Unable to interpret data from client_historical table!") raise # TBD: Other fields to implement: orgId = None programId = None siteId = None assessDate = None dateUpdated = None # Build data row list: dataRow = \ [ self.outputStr(32, personId), self.outputInt(orgId), self.outputInt(programId), self.outputInt(siteId), self.outputDate(assessDate), self.outputDate(dateUpdated), self.outputMoney(monthlyIncome), self.outputStr(2, income30), self.outputStr(2, noncash30), self.outputStr(1, physDis), self.outputStr(1, recvPhysDis), self.outputStr(1, devDis), self.outputStr(1, recvDevDis), self.outputStr(1, chronicCond), self.outputStr(1, recvChronic), self.outputStr(1, hivAids), self.outputStr(1, recvHivAids), self.outputStr(1, mental), self.outputStr(1, mentalIndef), self.outputStr(1, recvMental), self.outputStr(1, substance), self.outputStr(1, substanceIndef), self.outputStr(1, recvSubstance), self.outputStr(1, violence), self.outputStr(1, violenceOccured), self.outputStr(1, employed), self.outputInt(hoursLastWk), self.outputStr(1, tenure), self.outputStr(1, looking), self.outputStr(1, inSchool), self.outputStr(1, vocational), self.outputStr(1, highestSchool), self.outputStr(1, degree), self.outputStr(1, healthStatus), self.outputStr(1, pregnant), self.outputDate(dueDate), self.outputStr(1, serviceEra), self.outputInt(serviceDur), self.outputStr(1, servedInWz), self.outputStr(1, warZone), self.outputInt(wzMonths), self.outputStr(1, wzFire), self.outputStr(1, branch), self.outputStr(1, discharge), self.outputStr(1, childInSchool), self.outputStr(100, school), self.outputStr(1, mvLiason), self.outputStr(1, schoolType), self.outputDate(lastSchoolDt), self.outputInt(schoolBarrier), self.outputStr(32, self.exportId) ] try: print("\n* DataRow (ClientHistorical)= ", dataRow) self.historicalWriter.writerow(dataRow) except: print("Unable to write record to CSV file %s!" \ % HmisCSV30Writer.files["historical"]) raise self.createIncomeBenefitsRecs(phIndex, personId) def createClientRecs(self, exportId): for person in self.getPersonData(exportId): try: # Get the person index id to be used to get related data: personIndex = person.id # Get the fields in person table: personId = self.chooseId(person.person_id_id_num, person.person_id_id_str) personId = self.chooseId(personId, person.person_id_hashed) firstName = person.person_legal_first_name_unhashed middleName = person.person_legal_middle_name_unhashed lastName = person.person_legal_last_name_unhashed nameSuffix = person.person_legal_suffix_unhashed ssn = person.person_social_security_number_unhashed ssnQual = person.person_social_sec_number_quality_code dob = person.person_date_of_birth_unhashed ethnicity = person.person_ethnicity_unhashed gender = person.person_gender_unhashed releaseOfInfo = self.getReleaseGrantedData(personIndex) except: print("Unable to interpret data from person table!") raise (primaryRace, secondaryRace) = self.getRacesData(personIndex) # TBD: Other fields to implement: orgId = None dobQual = None dateAdded = None dateUpdated = None updateOrDelete = None idVerification = None # Build data row list: dataRow = \ [ self.outputInt(orgId), self.outputStr(32, personId), self.outputStr(30, firstName), self.outputStr(30, middleName), self.outputStr(30, lastName), self.outputStr(30, nameSuffix), self.outputStr(11, ssn), self.outputStr(1, ssnQual), self.outputDate(dob), self.outputStr(1, dobQual), self.outputStr(1, primaryRace), self.outputStr(1, secondaryRace), self.outputStr(1, ethnicity), self.outputStr(1, gender), self.outputDate(dateAdded), self.outputDate(dateUpdated), self.outputStr(1, updateOrDelete), self.outputStr(1, idVerification), self.outputStr(1, releaseOfInfo), self.outputStr(32, exportId) ] try: if self.debug: print("\n* DataRow (Client)= ", dataRow) self.clientWriter.writerow(dataRow) except: print("Unable to write record to CSV file %s!" \ % HmisCSV30Writer.files["client"]) raise self.createClientHistoricalRecs(personIndex, personId) self.createParticipationRecs(personIndex, personId) def createBedInventoryRecs(self, siteService, orgId): for inventory in self.getInventoryData(siteService.id): try: # Get the fields in site_service table: programId = siteService.service_id siteId = siteService.site_id # Get the fields in inventory table: assetListId = inventory.inventory_id_id_num assetListName = inventory.inventory_id_id_str householdType = inventory.household_type bedType = inventory.bed_type bedAvail = inventory.bed_availability bedInv = inventory.bed_inventory chInv = inventory.chronic_homeless_bed unitInv = inventory.unit_inventory invStart = inventory.inventory_effective_period_start_date invEnd = inventory.inventory_effective_period_end_date hmisPartBeds = inventory.hmis_participating_beds hmisStart = inventory.hmis_participation_period_start_date hmisEnd = inventory.hmis_participation_period_end_date # TBD: Other fields to implement: dateUpdated = None except: print("Unable to interpret data from inventory tables!") raise # Build data row list: dataRow = \ [ self.outputInt(orgId), self.outputInt(programId), self.outputInt(siteId), self.outputStr(10, assetListId), self.outputStr(30, assetListName), self.outputStr(1, householdType), self.outputStr(1, bedType), self.outputStr(1, bedAvail), self.outputInt(bedInv), self.outputInt(chInv), self.outputInt(unitInv), self.outputDate(invStart), self.outputDate(invEnd), self.outputInt(hmisPartBeds), self.outputDate(hmisStart), self.outputDate(hmisEnd), self.outputDate(dateUpdated), self.outputStr(32, self.exportId) ] try: if self.debug: print("\n* DataRow (Inventory)= ", dataRow) self.inventoryWriter.writerow(dataRow) except: print("Unable to write record to CSV file %s!" \ % HmisCSV30Writer.files["inventory"]) raise def createRegionsRecs(self, siteService, orgId): for region in self.getRegionData(siteService.key): try: # Get the fields in site_service table: siteId = siteService.site_id # Get the fields in region table: #TBD: Which field is ID? regionId = region.id regionType = region.region_type descript = region.region_description # TBD: Other fields to implement: dateUpdated = None except: print("Unable to interpret data from region tables!") raise # Build data row list: dataRow = \ [ self.outputInt(orgId), self.outputInt(siteId), self.outputStr(2, regionId), self.outputStr(8, regionType), self.outputStr(30, descript), self.outputDate(dateUpdated), self.outputStr(32, self.exportId) ] try: if self.debug: print("\n* DataRow (Regions)= ", dataRow) self.regionsWriter.writerow(dataRow) except: print("Unable to write record to CSV file %s!" \ % HmisCSV30Writer.files["regions"]) raise def createSiteInformationRecs(self, site, orgId): for siteService in self.getSiteServiceData(site.id): try: # Get the fields in site table: siteId = site.airs_key address = site.physical_address_line_1 city = site.physical_address_city state = site.physical_address_state zipCode = site.physical_address_zip_code # Get the fields in site_service table: geoCode = siteService.geographic_code siteServiceType = siteService.site_service_type housingType = siteService.housing_type # TBD: Other fields to implement: dateUpdated = None except: print("Unable to interpret data from site, site_service tables!") raise # Build data row list: dataRow = \ [ self.outputInt(orgId), self.outputInt(siteId), self.outputStr(30, address), self.outputStr(30, city), self.outputStr(2, state), self.outputStr(5, zipCode), self.outputInt(geoCode), self.outputStr(1, siteServiceType), self.outputStr(1, housingType), self.outputDate(dateUpdated), self.outputStr(32, self.exportId) ] try: if self.debug: print("\n* DataRow (SiteInfo)= ", dataRow) self.siteInfoWriter.writerow(dataRow) except: print("Unable to write record to CSV file %s!" \ % HmisCSV30Writer.files["siteInfo"]) raise self.createRegionsRecs(siteService, orgId) self.createBedInventoryRecs(siteService, orgId) def createAgencyProgramRecs(self, exportIndex): orgId = None for agency, service, site in self.getAgencyProgramData(exportIndex): try: # Get the fields in agency table: #agencyIndex = agency.id orgId = agency.airs_key orgName = agency.airs_name # Get the fields in service table: serviceIndex = service.id programId = service.airs_key programName = service.airs_name directServiceCode = service.direct_service_code programTypeCode = service.service_type targetPopulationA = service.target_population_a targetPopulationB = service.target_population_b trackingMethod = service.residential_tracking_method granteeIdentifier = service.grantee_identifier # Get the fields in site table: siteId = site.airs_key # Get the fields in related funding_source table: receivesMcKFunding = self.getReceivesMcKinneyFundingData(serviceIndex) # TBD: Other fields to implement: dateCreated = None dateUpdated = None except: print("Unable to interpret data from agency, service, and/or site tables!") raise # Build data row list: dataRow = \ [ self.outputInt(orgId), self.outputStr(30, orgName), self.outputInt(programId), self.outputStr(30, programName), self.outputStr(1, directServiceCode), self.outputInt(siteId), self.outputStr(1, programTypeCode), self.outputStr(1, targetPopulationA), self.outputStr(2, targetPopulationB), self.outputStr(2, trackingMethod), self.outputStr(10, granteeIdentifier), self.outputStr(1, receivesMcKFunding), self.outputDate(dateCreated), self.outputDate(dateUpdated), self.outputStr(32, self.exportId) ] try: if self.debug: print("\n* DataRow (AgencyProgram)= ", dataRow) self.agencyWriter.writerow(dataRow) except: print("Unable to write record to CSV file %s!" \ % HmisCSV30Writer.files["agency"]) raise self.createSiteInformationRecs(site, orgId) def createExportRecs(self): self.exportid = None for export in self.getExportData(): try: exportIndex = export.export_id self.exportId = export.export_id expDate = export.export_date perStart = export.export_period_start_date perEnd = export.export_period_end_date # TBD: These moved to source for 3.0: #swVendor = export.export_software_vendor #swVersion = export.export_software_version except: print("Unable to interpret data from export table!") raise source = self.getSourceData(self.exportId) try: sourceId = getattr(source, "source_id", None) sourceName = getattr(source, "source_name", None) contactFirst = getattr(source, "source_contact_first", None) contactLast = getattr(source, "source_contact_last", None) contactPhone = getattr(source, "source_contact_phone", None) contactExt = getattr(source, "source_contact_extension", None) contactEmail = getattr(source, "source_email", None) # TBD: These are moved from export for 3.0: swVendor = getattr(source, "software_vendor", None) swVersion = getattr(source, "software_version", None) except: print("Unable to interpret data from source table!") raise # TBD: Other fields to implement: self.exportHashing = None deltaRefresh = None # Build data row list: dataRow = \ [ self.outputStr(32, self.exportId), self.outputStr(32, sourceId), self.outputStr(50,
rf o rpi = r> label(X,Z,rpi) :- label(X,Y,rf), label(Y,Z,rpi). % rf o rd = rd label(X,Z,rd) :- label(X,Y,rf), label(Y,Z,rd). % rf o rdi = r> di si mi oi label(X,Z,rpi) | label(X,Z,rdi) | label(X,Z,rsi) | label(X,Z,rmi) | label(X,Z,roi) :- label(X,Y,rf), label(Y,Z,rdi). % rf o rs = rd label(X,Z,rd) :- label(X,Y,rf), label(Y,Z,rs). % rf o rsi = r> mi oi label(X,Z,rpi) | label(X,Z,rmi) | label(X,Z,roi) :- label(X,Y,rf), label(Y,Z,rsi). % rf o rf = rf label(X,Z,rf) :- label(X,Y,rf), label(Y,Z,rf). % rf o rfi = r= f fi label(X,Z,req) | label(X,Z,rf) | label(X,Z,rfi) :- label(X,Y,rf), label(Y,Z,rfi). % rf o rm = rm label(X,Z,rm) :- label(X,Y,rf), label(Y,Z,rm). % rf o rmi = r> label(X,Z,rpi) :- label(X,Y,rf), label(Y,Z,rmi). % rf o ro = rd s o label(X,Z,rd) | label(X,Z,rs) | label(X,Z,ro) :- label(X,Y,rf), label(Y,Z,ro). % rf o roi = r> mi oi label(X,Z,rpi) | label(X,Z,rmi) | label(X,Z,roi) :- label(X,Y,rf), label(Y,Z,roi). % rfi o req = rfi label(X,Z,rfi) :- label(X,Y,rfi), label(Y,Z,req). % rfi o rp = r< label(X,Z,rp) :- label(X,Y,rfi), label(Y,Z,rp). % rfi o rpi = r> di si mi oi label(X,Z,rpi) | label(X,Z,rdi) | label(X,Z,rsi) | label(X,Z,rmi) | label(X,Z,roi) :- label(X,Y,rfi), label(Y,Z,rpi). % rfi o rd = rd s o label(X,Z,rd) | label(X,Z,rs) | label(X,Z,ro) :- label(X,Y,rfi), label(Y,Z,rd). % rfi o rdi = rdi label(X,Z,rdi) :- label(X,Y,rfi), label(Y,Z,rdi). % rfi o rs = ro label(X,Z,ro) :- label(X,Y,rfi), label(Y,Z,rs). % rfi o rsi = rdi label(X,Z,rdi) :- label(X,Y,rfi), label(Y,Z,rsi). % rfi o rf = r= f fi label(X,Z,req) | label(X,Z,rf) | label(X,Z,rfi) :- label(X,Y,rfi), label(Y,Z,rf). % rfi o rfi = rfi label(X,Z,rfi) :- label(X,Y,rfi), label(Y,Z,rfi). % rfi o rm = rm label(X,Z,rm) :- label(X,Y,rfi), label(Y,Z,rm). % rfi o rmi = rdi si oi label(X,Z,rdi) | label(X,Z,rsi) | label(X,Z,roi) :- label(X,Y,rfi), label(Y,Z,rmi). % rfi o ro = ro label(X,Z,ro) :- label(X,Y,rfi), label(Y,Z,ro). % rfi o roi = rdi si oi label(X,Z,rdi) | label(X,Z,rsi) | label(X,Z,roi) :- label(X,Y,rfi), label(Y,Z,roi). % rm o req = rm label(X,Z,rm) :- label(X,Y,rm), label(Y,Z,req). % rm o rp = r< label(X,Z,rp) :- label(X,Y,rm), label(Y,Z,rp). % rm o rpi = r> di si mi oi label(X,Z,rpi) | label(X,Z,rdi) | label(X,Z,rsi) | label(X,Z,rmi) | label(X,Z,roi) :- label(X,Y,rm), label(Y,Z,rpi). % rm o rd = rd s o label(X,Z,rd) | label(X,Z,rs) | label(X,Z,ro) :- label(X,Y,rm), label(Y,Z,rd). % rm o rdi = r< label(X,Z,rp) :- label(X,Y,rm), label(Y,Z,rdi). % rm o rs = rm label(X,Z,rm) :- label(X,Y,rm), label(Y,Z,rs). % rm o rsi = rm label(X,Z,rm) :- label(X,Y,rm), label(Y,Z,rsi). % rm o rf = rd s o label(X,Z,rd) | label(X,Z,rs) | label(X,Z,ro) :- label(X,Y,rm), label(Y,Z,rf). % rm o rfi = r< label(X,Z,rp) :- label(X,Y,rm), label(Y,Z,rfi). % rm o rm = r< label(X,Z,rp) :- label(X,Y,rm), label(Y,Z,rm). % rm o rmi = r= f fi label(X,Z,req) | label(X,Z,rf) | label(X,Z,rfi) :- label(X,Y,rm), label(Y,Z,rmi). % rm o ro = r< label(X,Z,rp) :- label(X,Y,rm), label(Y,Z,ro). % rm o roi = rd s o label(X,Z,rd) | label(X,Z,rs) | label(X,Z,ro) :- label(X,Y,rm), label(Y,Z,roi). % rmi o req = rmi label(X,Z,rmi) :- label(X,Y,rmi), label(Y,Z,req). % rmi o rp = r< di fi m o label(X,Z,rp) | label(X,Z,rdi) | label(X,Z,rfi) | label(X,Z,rm) | label(X,Z,ro) :- label(X,Y,rmi), label(Y,Z,rp). % rmi o rpi = r> label(X,Z,rpi) :- label(X,Y,rmi), label(Y,Z,rpi). % rmi o rd = rd f oi label(X,Z,rd) | label(X,Z,rf) | label(X,Z,roi) :- label(X,Y,rmi), label(Y,Z,rd). % rmi o rdi = r> label(X,Z,rpi) :- label(X,Y,rmi), label(Y,Z,rdi). % rmi o rs = rd f oi label(X,Z,rd) | label(X,Z,rf) | label(X,Z,roi) :- label(X,Y,rmi), label(Y,Z,rs). % rmi o rsi = r> label(X,Z,rpi) :- label(X,Y,rmi), label(Y,Z,rsi). % rmi o rf = rmi label(X,Z,rmi) :- label(X,Y,rmi), label(Y,Z,rf). % rmi o rfi = rmi label(X,Z,rmi) :- label(X,Y,rmi), label(Y,Z,rfi). % rmi o rm = r= s si label(X,Z,req) | label(X,Z,rs) | label(X,Z,rsi) :- label(X,Y,rmi), label(Y,Z,rm). % rmi o rmi = r> label(X,Z,rpi) :- label(X,Y,rmi), label(Y,Z,rmi). % rmi o ro = rd f oi label(X,Z,rd) | label(X,Z,rf) | label(X,Z,roi) :- label(X,Y,rmi), label(Y,Z,ro). % rmi o roi = r> label(X,Z,rpi) :- label(X,Y,rmi), label(Y,Z,roi). % ro o req = ro label(X,Z,ro) :- label(X,Y,ro), label(Y,Z,req). % ro o rp = r< label(X,Z,rp) :- label(X,Y,ro), label(Y,Z,rp). % ro o rpi = r> di si mi oi label(X,Z,rpi) | label(X,Z,rdi) | label(X,Z,rsi) | label(X,Z,rmi) | label(X,Z,roi) :- label(X,Y,ro), label(Y,Z,rpi). % ro o rd = rd s o label(X,Z,rd) | label(X,Z,rs) | label(X,Z,ro) :- label(X,Y,ro), label(Y,Z,rd). % ro o rdi = r< di fi m o label(X,Z,rp) | label(X,Z,rdi) | label(X,Z,rfi) | label(X,Z,rm) | label(X,Z,ro) :- label(X,Y,ro), label(Y,Z,rdi). % ro o rs = ro label(X,Z,ro) :- label(X,Y,ro), label(Y,Z,rs). % ro o rsi = rdi fi o label(X,Z,rdi) | label(X,Z,rfi) | label(X,Z,ro) :- label(X,Y,ro), label(Y,Z,rsi). % ro o rf = rd s o label(X,Z,rd) | label(X,Z,rs) | label(X,Z,ro) :- label(X,Y,ro), label(Y,Z,rf). % ro o rfi = r< m o label(X,Z,rp) | label(X,Z,rm) | label(X,Z,ro) :- label(X,Y,ro), label(Y,Z,rfi). % ro o rm = r< label(X,Z,rp) :- label(X,Y,ro), label(Y,Z,rm). % ro o rmi = rdi si oi label(X,Z,rdi) | label(X,Z,rsi) | label(X,Z,roi) :- label(X,Y,ro), label(Y,Z,rmi). % ro o ro = r< m o label(X,Z,rp) | label(X,Z,rm) | label(X,Z,ro) :- label(X,Y,ro), label(Y,Z,ro). % ro o roi = r= d di s si f fi o oi label(X,Z,req) | label(X,Z,rd) | label(X,Z,rdi) | label(X,Z,rs) | label(X,Z,rsi) | label(X,Z,rf) | label(X,Z,rfi) | label(X,Z,ro) | label(X,Z,roi) :- label(X,Y,ro), label(Y,Z,roi). % roi o req = roi label(X,Z,roi) :- label(X,Y,roi), label(Y,Z,req). % roi o rp = r< di fi m o label(X,Z,rp) | label(X,Z,rdi) | label(X,Z,rfi) | label(X,Z,rm) | label(X,Z,ro) :- label(X,Y,roi), label(Y,Z,rp). % roi o rpi = r> label(X,Z,rpi) :- label(X,Y,roi), label(Y,Z,rpi). % roi o rd = rd f oi label(X,Z,rd) | label(X,Z,rf) | label(X,Z,roi) :- label(X,Y,roi), label(Y,Z,rd). % roi o rdi = r> di si mi oi label(X,Z,rpi) | label(X,Z,rdi) | label(X,Z,rsi) | label(X,Z,rmi) | label(X,Z,roi) :- label(X,Y,roi), label(Y,Z,rdi). % roi o rs = rd f oi label(X,Z,rd) | label(X,Z,rf) | label(X,Z,roi) :- label(X,Y,roi), label(Y,Z,rs). % roi o rsi = r> mi oi label(X,Z,rpi) | label(X,Z,rmi) | label(X,Z,roi) :- label(X,Y,roi), label(Y,Z,rsi). % roi o rf = roi label(X,Z,roi) :- label(X,Y,roi), label(Y,Z,rf). % roi o rfi = rdi si oi label(X,Z,rdi) | label(X,Z,rsi) | label(X,Z,roi) :- label(X,Y,roi), label(Y,Z,rfi). % roi o rm = rdi fi o label(X,Z,rdi) | label(X,Z,rfi) | label(X,Z,ro) :- label(X,Y,roi), label(Y,Z,rm). % roi o rmi = r> label(X,Z,rpi) :- label(X,Y,roi), label(Y,Z,rmi). % roi o ro = r= d di s si f fi o oi label(X,Z,req) | label(X,Z,rd) | label(X,Z,rdi) | label(X,Z,rs) | label(X,Z,rsi) | label(X,Z,rf) | label(X,Z,rfi) | label(X,Z,ro) | label(X,Z,roi) :- label(X,Y,roi), label(Y,Z,ro). % roi o roi = r> mi oi label(X,Z,rpi) | label(X,Z,rmi) | label(X,Z,roi) :- label(X,Y,roi), label(Y,Z,roi). """ output = """ % A Disjunctive Logic Program for IA Constraint Networks % relations rel(req). rel(rp). rel(rpi). rel(rd). rel(rdi). rel(ro). rel(roi). rel(rm). rel(rmi). rel(rs). rel(rsi). rel(rf). rel(rfi). % Choice rule for clasp 1 <= {label(X,Y,L) : rel(L)} <= 1 :- node1(X), node2(Y), X<Y. :- label(X,Y,L), lc(X,Y,L), node1(X), node2(Y), rel(L). % Composition table % req o req = r= label(X,Z,req) :- label(X,Y,req), label(Y,Z,req). % req o rp = r< label(X,Z,rp) :- label(X,Y,req), label(Y,Z,rp). % req o rpi = r> label(X,Z,rpi) :- label(X,Y,req), label(Y,Z,rpi). % req o rd = rd label(X,Z,rd) :- label(X,Y,req), label(Y,Z,rd). % req o rdi = rdi label(X,Z,rdi) :- label(X,Y,req), label(Y,Z,rdi). % req o rs = rs label(X,Z,rs) :- label(X,Y,req), label(Y,Z,rs). % req o rsi = rsi label(X,Z,rsi) :- label(X,Y,req), label(Y,Z,rsi). % req o rf = rf label(X,Z,rf) :- label(X,Y,req), label(Y,Z,rf). % req o rfi = rfi label(X,Z,rfi) :- label(X,Y,req), label(Y,Z,rfi). % req o rm = rm label(X,Z,rm) :- label(X,Y,req), label(Y,Z,rm). % req o rmi = rmi label(X,Z,rmi) :- label(X,Y,req), label(Y,Z,rmi). % req o ro = ro label(X,Z,ro) :- label(X,Y,req), label(Y,Z,ro). % req o roi = roi label(X,Z,roi) :- label(X,Y,req), label(Y,Z,roi). % rp o req = r< label(X,Z,rp) :- label(X,Y,rp), label(Y,Z,req). % rp o rp = r< label(X,Z,rp) :- label(X,Y,rp), label(Y,Z,rp). % rp o rpi = r= < > d di s si f fi m mi o oi label(X,Z,req) | label(X,Z,rp) | label(X,Z,rpi) | label(X,Z,rd) | label(X,Z,rdi) | label(X,Z,rs) | label(X,Z,rsi) | label(X,Z,rf) | label(X,Z,rfi) | label(X,Z,rm) | label(X,Z,rmi) | label(X,Z,ro) | label(X,Z,roi) :- label(X,Y,rp), label(Y,Z,rpi). % rp o rd = r< d s m o label(X,Z,rp) | label(X,Z,rd) | label(X,Z,rs) | label(X,Z,rm) | label(X,Z,ro) :- label(X,Y,rp), label(Y,Z,rd). % rp o rdi = r< label(X,Z,rp) :- label(X,Y,rp), label(Y,Z,rdi). % rp o rs = r< label(X,Z,rp) :- label(X,Y,rp), label(Y,Z,rs). % rp o rsi = r< label(X,Z,rp) :- label(X,Y,rp), label(Y,Z,rsi). % rp o rf = r< d s m o label(X,Z,rp) | label(X,Z,rd) | label(X,Z,rs) | label(X,Z,rm) | label(X,Z,ro) :- label(X,Y,rp), label(Y,Z,rf). % rp
from .solver1d import * # p coefficient functions class Solver2d(Solver1d): def __init__(self, equation): super().__init__(equation) # Equation dependent functions self.flux_y = equation.flux_y self.spectral_radius_y = equation.spectral_radius_y def fd2(self, u): u_star = np.ones(u.shape) un_half = np.ones(u.shape) u_prime_x = np.ones(u.shape) u_prime_y = np.ones(u.shape) u_prime_x[1:-1, 1:-1] = limiter_x(u) u_prime_y[1:-1, 1:-1] = limiter_y(u) if self.odd: un_half[1:-2, 1:-2] = 0.25 * ( (u[1:-2, 1:-2] + u[2:-1, 1:-2] + u[1:-2, 2:-1] + u[2:-1, 2:-1]) + 0.25 * ( (u_prime_x[1:-2, 1:-2] - u_prime_x[2:-1, 1:-2]) + (u_prime_x[1:-2, 2:-1] - u_prime_x[2:-1, 2:-1]) + (u_prime_y[1:-2, 1:-2] - u_prime_y[1:-2, 2:-1]) + (u_prime_y[2:-1, 1:-2] - u_prime_y[2:-1, 2:-1]) ) ) else: un_half[2:-1, 2:-1] = 0.25 * ( (u[1:-2, 1:-2] + u[2:-1, 1:-2] + u[1:-2, 2:-1] + u[2:-1, 2:-1]) + 0.25 * ( (u_prime_x[1:-2, 1:-2] - u_prime_x[2:-1, 1:-2]) + (u_prime_x[1:-2, 2:-1] - u_prime_x[2:-1, 2:-1]) + (u_prime_y[1:-2, 1:-2] - u_prime_y[1:-2, 2:-1]) + (u_prime_y[2:-1, 1:-2] - u_prime_y[2:-1, 2:-1]) ) ) f = self.flux_x(u) g = self.flux_y(u) f_prime_x = limiter_x(f) g_prime_y = limiter_y(g) u_star[1:-1, 1:-1] = u[1:-1, 1:-1] - 0.5 * self.dt * ( f_prime_x / self.dx + g_prime_y / self.dy ) self.boundary_conditions(u_star) f_star = self.flux_x(u_star) g_star = self.flux_y(u_star) if self.odd: u[1:-2, 1:-2] = ( un_half[1:-2, 1:-2] - 0.5 * self.dt / self.dx * ( (f_star[2:-1, 1:-2] - f_star[1:-2, 1:-2]) + (f_star[2:-1, 2:-1] - f_star[1:-2, 2:-1]) ) - 0.5 * self.dt / self.dy * ( (g_star[1:-2, 2:-1] - g_star[1:-2, 1:-2]) + (g_star[2:-1, 2:-1] - g_star[2:-1, 1:-2]) ) ) else: u[2:-1, 2:-1] = ( un_half[2:-1, 2:-1] - 0.5 * self.dt / self.dx * ( (f_star[2:-1, 1:-2] - f_star[1:-2, 1:-2]) + (f_star[2:-1, 2:-1] - f_star[1:-2, 2:-1]) ) - 0.5 * self.dt / self.dy * ( (g_star[1:-2, 2:-1] - g_star[1:-2, 1:-2]) + (g_star[2:-1, 2:-1] - g_star[2:-1, 1:-2]) ) ) self.boundary_conditions(u) self.odd = not self.odd return u ################# # SD2 ################# def reconstruction_sd2(self, u): u_N, u_S, u_E, u_W = np.ones((4,) + u.shape) ux = limiter_x(u[1:-1, 1:-1]) uy = limiter_y(u[1:-1, 1:-1]) u_N[j0, j0], u_S[j0, j0], u_E[j0, j0], u_W[j0, j0] = u[None, j0, j0] + np.array( [0.5 * uy, -0.5 * uy, 0.5 * ux, -0.5 * ux] ) list(map(self.boundary_conditions, [u_N, u_S, u_E, u_W])) return u_N, u_S, u_E, u_W def Hx_flux_sd2(self, u_E, u_W): a = np.maximum(self.spectral_radius_x(u_E), self.spectral_radius_x(u_W)) f_E = self.flux_x(u_E) f_W = self.flux_x(u_W) if u_W.shape == a.shape: return 0.5 * (f_W + f_E) - 0.5 * a * (u_W - u_E) # scalar else: return 0.5 * (f_W + f_E) - 0.5 * np.multiply( a[:, :, None], (u_W - u_E) ) # systems def Hy_flux_sd2(self, u_E, u_W): a = np.maximum(self.spectral_radius_y(u_E), self.spectral_radius_y(u_W)) f_E = self.flux_y(u_E) f_W = self.flux_y(u_W) if u_W.shape == a.shape: return 0.5 * (f_W + f_E) - 0.5 * a * (u_W - u_E) # scalar else: return 0.5 * (f_W + f_E) - 0.5 * np.multiply( a[:, :, None], (u_W - u_E) ) # systems def c_flux_sd2(self, u_N, u_S, u_E, u_W): Hx_halfm = self.Hx_flux_sd2(u_E[jm, j0], u_W[j0, j0]) Hx_halfp = self.Hx_flux_sd2(u_E[j0, j0], u_W[jp, j0]) Hy_halfm = self.Hy_flux_sd2(u_N[j0, jm], u_S[j0, j0]) Hy_halfp = self.Hy_flux_sd2(u_N[j0, j0], u_S[j0, jp]) return -self.dt / self.dx * (Hx_halfp - Hx_halfm) - self.dt / self.dy * ( Hy_halfp - Hy_halfm ) def sd2(self, u): self.boundary_conditions(u) u_N, u_S, u_E, u_W = self.reconstruction_sd2(u) C0 = self.c_flux_sd2(u_N, u_S, u_E, u_W) u[j0, j0] += C0 self.boundary_conditions(u) u_N, u_S, u_E, u_W = self.reconstruction_sd2(u) C1 = self.c_flux_sd2(u_N, u_S, u_E, u_W) u[j0, j0] += 0.5 * (C1 - C0) self.boundary_conditions(u) return u ################# # SD3 ################# # indicators: indicators_2d_sd3, indicators_diag_2d_sd3 def indicators_sd3(self, u): u_norm = np.sqrt(self.dx * self.dy) * np.linalg.norm(u[j0, j0]) pl0, pl1, pr0, pr1, pcx0, pcx1, pcx2 = px_coefs(u) ISl = pl1 ** 2 / (u_norm + eps) IScx = 1.0 / (u_norm + eps) * ((13.0 / 3.0) * pcx2 ** 2 + pcx1 ** 2) ISr = pr1 ** 2 / (u_norm + eps) pb0, pb1, pt0, pt1, pcy0, pcy1, pcy2 = py_coefs(u) ISb = pb1 ** 2 / (u_norm + eps) IScy = 1.0 / (u_norm + eps) * ((13.0 / 3.0) * pcy2 ** 2 + pcy1 ** 2) ISt = pt1 ** 2 / (u_norm + eps) return ISl, IScx, ISr, ISb, IScy, ISt def indicators_diag_sd3(self, u): u_norm = np.sqrt(self.dx * self.dy) * np.linalg.norm(u[j0, j0]) pl0, pl1, pr0, pr1, pcx0, pcx1, pcx2 = pdx_coefs(u) dISl = pl1 ** 2 / (u_norm + eps) dIScx = 1.0 / (u_norm + eps) * ((13.0 / 3.0) * pcx2 ** 2 + pcx1 ** 2) dISr = pr1 ** 2 / (u_norm + eps) pb0, pb1, pt0, pt1, pcy0, pcy1, pcy2 = pdy_coefs(u) dISb = pb1 ** 2 / (u_norm + eps) dIScy = 1.0 / (u_norm + eps) * ((13.0 / 3.0) * pcy2 ** 2 + pcy1 ** 2) dISt = pt1 ** 2 / (u_norm + eps) return dISl, dIScx, dISr, dISb, dIScy, dISt # reconstruction: reconstruction_2d_sd3, reconstruction_diag_2d_sd3 def reconstruction_sd3(self, u, ISl, IScx, ISr, ISb, IScy, ISt): u_N, u_S, u_E, u_W = np.ones((4,) + u.shape) cl = 0.25 ccx = 0.5 cr = 0.25 cb = 0.25 ccy = 0.5 ct = 0.25 pl0, pl1, pr0, pr1, pcx0, pcx1, pcx2 = px_coefs(u) alpl = cl / ((eps + ISl) ** 2) alpcx = ccx / ((eps + IScx) ** 2) alpr = cr / ((eps + ISr) ** 2) alp_sum = alpl + alpcx + alpr wl = alpl / alp_sum wcx = alpcx / alp_sum wr = alpr / alp_sum pb0, pb1, pt0, pt1, pcy0, pcy1, pcy2 = py_coefs(u) alpb = cb / ((eps + ISb) ** 2) alpcy = ccy / ((eps + IScy) ** 2) alpt = ct / ((eps + ISt) ** 2) alp_sum = alpb + alpcy + alpt wb = alpb / alp_sum wcy = alpcy / alp_sum wt = alpt / alp_sum u_N[j0, j0] = ( wb * (pb0 + 0.5 * pb1) + wcy * (pcy0 + 0.5 * pcy1 + 0.25 * pcy2) + wt * (pt0 + 0.5 * pt1) ) u_S[j0, j0] = ( wb * (pb0 - 0.5 * pb1) + wcy * (pcy0 - 0.5 * pcy1 + 0.25 * pcy2) + wt * (pt0 - 0.5 * pt1) ) u_E[j0, j0] = ( wl * (pl0 + 0.5 * pl1) + wcx * (pcx0 + 0.5 * pcx1 + 0.25 * pcx2) + wr * (pr0 + 0.5 * pr1) ) u_W[j0, j0] = ( wl * (pl0 - 0.5 * pl1) + wcx * (pcx0 - 0.5 * pcx1 + 0.25 * pcx2) + wr * (pr0 - 0.5 * pr1) ) return u_N, u_S, u_E, u_W def reconstruction_diag_sd3(self, u, dISl, dIScx, dISr, dISb, dIScy, dISt): u_NE, u_SE, u_NW, u_SW = np.ones((4,) + u.shape) cl = 0.25 ccx = 0.5 cr = 0.25 cb = 0.25 ccy = 0.5 ct = 0.25 pl0, pl1, pr0, pr1, pcx0, pcx1, pcx2 = pdx_coefs(u) alpl = cl / (eps + dISl) ** 2 alpcx = ccx / (eps + dIScx) ** 2 alpr = cr / (eps + dISr) ** 2 alp_sum = alpl + alpcx + alpr wl = alpl / alp_sum wcx = alpcx / alp_sum wr = alpr / alp_sum pb0, pb1, pt0, pt1, pcy0, pcy1, pcy2 = pdy_coefs(u) alpb = cb / (eps + dISb) ** 2 alpcy = ccy / (eps + dIScy) ** 2 alpt = ct / (eps + dISt) ** 2 alp_sum = alpb + alpcy + alpt wb = alpb / alp_sum wcy = alpcy / alp_sum wt = alpt / alp_sum u_NW[j0, j0] = ( wb * (pb0 + 0.5 * pb1) + wcy * (pcy0 + 0.5 * pcy1 + 0.25 * pcy2) + wt * (pt0 + 0.5 * pt1) ) u_SE[j0, j0] = ( wb * (pb0 - 0.5 * pb1) + wcy * (pcy0 - 0.5 * pcy1 + 0.25 * pcy2) + wt * (pt0 - 0.5 * pt1) ) u_NE[j0, j0] = ( wl * (pl0
<reponame>woodrow/pyoac from pypy.tool.udir import udir class AppTestMarshal: def setup_class(cls): tmpfile = udir.join('AppTestMarshal.tmp') cls.w_tmpfile = cls.space.wrap(str(tmpfile)) def test_None(self): import sys hello = "he" hello += "llo" def func(x): return lambda y: x+y scopefunc = func(42) import marshal, StringIO case = None print "case: %-30s func=None" % (case, ) s = marshal.dumps(case) x = marshal.loads(s) assert x == case and type(x) is type(case) f = StringIO.StringIO() marshal.dump(case, f) f.seek(0) x = marshal.load(f) assert x == case and type(x) is type(case) def test_False(self): import sys hello = "he" hello += "llo" def func(x): return lambda y: x+y scopefunc = func(42) import marshal, StringIO case = False print "case: %-30s func=False" % (case, ) s = marshal.dumps(case) x = marshal.loads(s) assert x == case and type(x) is type(case) f = StringIO.StringIO() marshal.dump(case, f) f.seek(0) x = marshal.load(f) assert x == case and type(x) is type(case) def test_True(self): import sys hello = "he" hello += "llo" def func(x): return lambda y: x+y scopefunc = func(42) import marshal, StringIO case = True print "case: %-30s func=True" % (case, ) s = marshal.dumps(case) x = marshal.loads(s) assert x == case and type(x) is type(case) f = StringIO.StringIO() marshal.dump(case, f) f.seek(0) x = marshal.load(f) assert x == case and type(x) is type(case) def test_StopIteration(self): import sys hello = "he" hello += "llo" def func(x): return lambda y: x+y scopefunc = func(42) import marshal, StringIO case = StopIteration print "case: %-30s func=StopIteration" % (case, ) s = marshal.dumps(case) x = marshal.loads(s) assert x == case and type(x) is type(case) f = StringIO.StringIO() marshal.dump(case, f) f.seek(0) x = marshal.load(f) assert x == case and type(x) is type(case) def test_Ellipsis(self): import sys hello = "he" hello += "llo" def func(x): return lambda y: x+y scopefunc = func(42) import marshal, StringIO case = Ellipsis print "case: %-30s func=Ellipsis" % (case, ) s = marshal.dumps(case) x = marshal.loads(s) assert x == case and type(x) is type(case) f = StringIO.StringIO() marshal.dump(case, f) f.seek(0) x = marshal.load(f) assert x == case and type(x) is type(case) def test_42(self): import sys hello = "he" hello += "llo" def func(x): return lambda y: x+y scopefunc = func(42) import marshal, StringIO case = 42 print "case: %-30s func=42" % (case, ) s = marshal.dumps(case) x = marshal.loads(s) assert x == case and type(x) is type(case) f = StringIO.StringIO() marshal.dump(case, f) f.seek(0) x = marshal.load(f) assert x == case and type(x) is type(case) def test__minus_17(self): import sys hello = "he" hello += "llo" def func(x): return lambda y: x+y scopefunc = func(42) import marshal, StringIO case = -17 print "case: %-30s func=_minus_17" % (case, ) s = marshal.dumps(case) x = marshal.loads(s) assert x == case and type(x) is type(case) f = StringIO.StringIO() marshal.dump(case, f) f.seek(0) x = marshal.load(f) assert x == case and type(x) is type(case) def test_sys_dot_maxint(self): import sys hello = "he" hello += "llo" def func(x): return lambda y: x+y scopefunc = func(42) import marshal, StringIO case = sys.maxint print "case: %-30s func=sys_dot_maxint" % (case, ) s = marshal.dumps(case) x = marshal.loads(s) assert x == case and type(x) is type(case) f = StringIO.StringIO() marshal.dump(case, f) f.seek(0) x = marshal.load(f) assert x == case and type(x) is type(case) def test__minus_1_dot_25(self): import sys hello = "he" hello += "llo" def func(x): return lambda y: x+y scopefunc = func(42) import marshal, StringIO case = -1.25 print "case: %-30s func=_minus_1_dot_25" % (case, ) s = marshal.dumps(case) x = marshal.loads(s) assert x == case and type(x) is type(case) f = StringIO.StringIO() marshal.dump(case, f) f.seek(0) x = marshal.load(f) assert x == case and type(x) is type(case) def test__minus_1_dot_25__2(self): import sys hello = "he" hello += "llo" def func(x): return lambda y: x+y scopefunc = func(42) import marshal, StringIO case = -1.25 #2 print "case: %-30s func=_minus_1_dot_25__2" % (case, ) s = marshal.dumps(case, 2); assert len(s) in (9, 17) x = marshal.loads(s) assert x == case and type(x) is type(case) f = StringIO.StringIO() marshal.dump(case, f) f.seek(0) x = marshal.load(f) assert x == case and type(x) is type(case) def test_2_plus_5j(self): import sys hello = "he" hello += "llo" def func(x): return lambda y: x+y scopefunc = func(42) import marshal, StringIO case = 2+5j print "case: %-30s func=2_plus_5j" % (case, ) s = marshal.dumps(case) x = marshal.loads(s) assert x == case and type(x) is type(case) f = StringIO.StringIO() marshal.dump(case, f) f.seek(0) x = marshal.load(f) assert x == case and type(x) is type(case) def test_2_plus_5j__2(self): import sys hello = "he" hello += "llo" def func(x): return lambda y: x+y scopefunc = func(42) import marshal, StringIO case = 2+5j #2 print "case: %-30s func=2_plus_5j__2" % (case, ) s = marshal.dumps(case, 2); assert len(s) in (9, 17) x = marshal.loads(s) assert x == case and type(x) is type(case) f = StringIO.StringIO() marshal.dump(case, f) f.seek(0) x = marshal.load(f) assert x == case and type(x) is type(case) def test_42L(self): import sys hello = "he" hello += "llo" def func(x): return lambda y: x+y scopefunc = func(42) import marshal, StringIO case = 42L print "case: %-30s func=42L" % (case, ) s = marshal.dumps(case) x = marshal.loads(s) assert x == case and type(x) is type(case) f = StringIO.StringIO() marshal.dump(case, f) f.seek(0) x = marshal.load(f) assert x == case and type(x) is type(case) def test__minus_1234567890123456789012345678901234567890L(self): import sys hello = "he" hello += "llo" def func(x): return lambda y: x+y scopefunc = func(42) import marshal, StringIO case = -1234567890123456789012345678901234567890L print "case: %-30s func=_minus_1234567890123456789012345678901234567890L" % (case, ) s = marshal.dumps(case) x = marshal.loads(s) assert x == case and type(x) is type(case) f = StringIO.StringIO() marshal.dump(case, f) f.seek(0) x = marshal.load(f) assert x == case and type(x) is type(case) def test_hello_____not_interned(self): import sys hello = "he" hello += "llo" def func(x): return lambda y: x+y scopefunc = func(42) import marshal, StringIO case = hello # not interned print "case: %-30s func=hello_____not_interned" % (case, ) s = marshal.dumps(case) x = marshal.loads(s) assert x == case and type(x) is type(case) f = StringIO.StringIO() marshal.dump(case, f) f.seek(0) x = marshal.load(f) assert x == case and type(x) is type(case) def test__Quote_hello_Quote_(self): import sys hello = "he" hello += "llo" def func(x): return lambda y: x+y scopefunc = func(42) import marshal, StringIO case = "hello" print "case: %-30s func=_Quote_hello_Quote_" % (case, ) s = marshal.dumps(case) x = marshal.loads(s) assert x == case and type(x) is type(case) f = StringIO.StringIO() marshal.dump(case, f) f.seek(0) x = marshal.load(f) assert x == case and type(x) is type(case) def test__brace__ecarb_(self): import sys hello = "he" hello += "llo" def func(x): return lambda y: x+y scopefunc = func(42) import marshal, StringIO case = () print "case: %-30s func=_brace__ecarb_" % (case, ) s = marshal.dumps(case) x = marshal.loads(s) assert x == case and type(x) is type(case) f = StringIO.StringIO() marshal.dump(case, f) f.seek(0) x = marshal.load(f) assert x == case and type(x) is type(case) def test__brace_1_comma__2_ecarb_(self): import sys hello = "he" hello += "llo" def func(x): return lambda y: x+y scopefunc = func(42) import marshal, StringIO case = (1, 2) print "case: %-30s func=_brace_1_comma__2_ecarb_" % (case, ) s = marshal.dumps(case) x = marshal.loads(s) assert x == case and type(x) is type(case) f = StringIO.StringIO() marshal.dump(case, f) f.seek(0) x = marshal.load(f) assert x == case and type(x) is type(case) def test__list__tsil_(self): import sys hello = "he" hello += "llo" def func(x): return lambda y: x+y scopefunc = func(42) import marshal, StringIO case = [] print "case: %-30s func=_list__tsil_" % (case, ) s = marshal.dumps(case) x = marshal.loads(s) assert x == case and type(x) is type(case) f = StringIO.StringIO() marshal.dump(case, f) f.seek(0) x = marshal.load(f) assert x == case and type(x) is type(case) def test__list_3_comma__4_tsil_(self): import sys hello = "he" hello += "llo" def func(x): return lambda y: x+y scopefunc = func(42) import marshal, StringIO case = [3, 4] print "case: %-30s func=_list_3_comma__4_tsil_" % (case, ) s = marshal.dumps(case) x = marshal.loads(s) assert x == case and type(x) is type(case) f = StringIO.StringIO() marshal.dump(case, f)
""" dataclasses =========== Wrappers around Python's dataclasses to support slots and defaults. License ------- Copyright 2019 NEM Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import annotations import contextlib import copy import dataclasses import inspect import typing __all__ = [ 'Field', 'FrozenInstanceError', 'InitVar', 'MISSING', 'dataclass', 'is_dataclass', ] # HELPERS Field = dataclasses.Field FrozenInstanceError = dataclasses.FrozenInstanceError InitVar = dataclasses.InitVar MISSING = dataclasses.MISSING is_dataclass = dataclasses.is_dataclass # ForwardRef isn't part of the public API. # If it's not present, just skip it. ForwardRef = getattr(typing, 'ForwardRef', str) Vars = typing.Dict[str, typing.Any] DictType = typing.Mapping[str, typing.Any] TupleType = typing.Sequence[typing.Any] DictFactory = typing.Callable[..., DictType] TupleFactory = typing.Callable[..., TupleType] # NEW METHODS def get_argnames(func): """Get the argument names from a function.""" # Get all positional arguments in __init__, including named # and named optional arguments. `co_varnames` stores all argument # names (including local variable names) in order, starting with # function arguments, so only grab `co_argcount` varnames. code = func.__code__ argcount = code.co_argcount return code.co_varnames[:argcount] def set_defaults( cls: typing.Type, defaults: Vars, ) -> None: """Set and validate optional default arguments.""" if not defaults: return # Need to validate we aren't adding defaults for interior items. init = cls.__init__ varnames = get_argnames(init) count = len(defaults) if not all(i in defaults for i in varnames[-count:]): raise SyntaxError("non-default argument follows default argument") if init.__defaults__ is not None: raise SyntaxError("__defaults__ should be none.") init.__defaults__ = tuple(defaults.values()) def fix_annotation(type, global_vars: Vars, local_vars: Vars): """Fix annotation for field with type.""" if isinstance(type, str): try: # Silence a warning about sec, all the arguments passed. # Eval only gets passed for internal type annotations. return eval(type, global_vars, local_vars) # nosec except NameError: return type elif isinstance(type, ForwardRef): arg = fix_annotation(type.__forward_arg__, global_vars, local_vars) is_argument = type.__forward_is_argument__ if isinstance(arg, str): return ForwardRef(arg, is_argument) return arg elif hasattr(type, '__args__'): args = type.__args__ args = tuple((fix_annotation(i, global_vars, local_vars) for i in args)) type.__args__ = args return type def fix_annotations( cls: typing.Type, clsdict: Vars, global_vars: Vars, local_vars: Vars, ) -> None: """Fix any forward references to variables defined in the callee scope.""" # Don't care except when enforcing types. if typing.TYPE_CHECKING: annotations = clsdict['__annotations__'] for field, type in annotations.items(): type = fix_annotation(type, global_vars, local_vars) annotations[field] = type def is_classvar(x, global_vars: Vars, local_vars: Vars) -> bool: """Determine if x is a ClassVar.""" if isinstance(x, str): # Silence a warning about sec, all the arguments passed. # Eval only gets passed for internal type annotations. x = eval(x, global_vars, local_vars) # nosec return getattr(x, '__origin__', None) is typing.ClassVar def set_slots( cls: typing.Type, clsdict: Vars, slots: bool, global_vars: Vars, local_vars: Vars, ) -> None: """Set default __slots__ implementation.""" if not slots or '__slots__' in clsdict: return annotations = clsdict['__annotations__'] is_cv = lambda x: is_classvar(x, global_vars, local_vars) slots = (k for k, v in annotations.items() if not is_cv(v)) clsdict['__slots__'] = tuple(slots) def set_copy( cls: typing.Type, clsdict: Vars, copy: bool, ) -> None: """Set default __copy__ implementation.""" if not copy or '__copy__' in clsdict: return def func(self): return type(self)(**replace_dict(self)) func.__name__ = '__copy__' func.__qualname__ = f'{cls.__qualname__}.__copy__' func.__module__ = cls.__module__ clsdict['__copy__'] = func def set_deepcopy( cls: typing.Type, clsdict: Vars, deepcopy: bool, ) -> None: """Set default __deepcopy__ implementation.""" if not deepcopy or '__deepcopy__' in clsdict: return def func(self, memo=None): data = copy.deepcopy(replace_dict(self), memo) return type(self)(**data) func.__name__ = '__deepcopy__' func.__qualname__ = f'{cls.__qualname__}.__deepcopy__' func.__module__ = cls.__module__ clsdict['__deepcopy__'] = func def shallow_asdict(self, dict_factory: DictFactory = dict) -> DictType: names = [i.name for i in dataclasses.fields(self)] return dict_factory([(i, getattr(self, i)) for i in names]) def deep_asdict(self, dict_factory: DictFactory = dict) -> DictType: return dataclasses.asdict(self, dict_factory=dict_factory) def set_asdict( cls: typing.Type, clsdict: Vars, asdict: bool, ) -> None: """Set default asdict implementation.""" if not asdict or 'asdict' in clsdict: return def func( self, recurse: bool = True, dict_factory: DictFactory = dict, ) -> DictType: if recurse: return deep_asdict(self, dict_factory=dict_factory) return shallow_asdict(self, dict_factory=dict_factory) func.__name__ = 'asdict' func.__qualname__ = f'{cls.__qualname__}.asdict' func.__module__ = cls.__module__ clsdict['asdict'] = func def shallow_astuple(self, tuple_factory: TupleFactory = tuple) -> TupleType: names = [i.name for i in dataclasses.fields(self)] return tuple_factory([getattr(self, i) for i in names]) def deep_astuple(self, tuple_factory: TupleFactory = tuple) -> TupleType: return dataclasses.astuple(self, tuple_factory=tuple_factory) def set_astuple( cls: typing.Type, clsdict: Vars, astuple: bool, ) -> None: """Set default astuple implementation.""" if not astuple or 'astuple' in clsdict: return def func( self, recurse: bool = True, tuple_factory: TupleFactory = tuple, ) -> TupleType: if recurse: return deep_astuple(self, tuple_factory=tuple_factory) return shallow_astuple(self, tuple_factory=tuple_factory) func.__name__ = 'astuple' func.__qualname__ = f'{cls.__qualname__}.astuple' func.__module__ = cls.__module__ clsdict['astuple'] = func def set_fields( cls: typing.Type, clsdict: Vars, fields: bool, ) -> None: """Set default fields implementation.""" if not fields or 'fields' in clsdict: return def func(self) -> tuple: return dataclasses.fields(self) func.__name__ = 'fields' func.__qualname__ = f'{cls.__qualname__}.fields' func.__module__ = cls.__module__ clsdict['fields'] = func def replace_dict(self): # This is a smart-replace, any fields that are not defined # in the initializer are ignored, since it is assumed # sensible defaults are automatically provided for those. varnames = get_argnames(self.__init__.__func__)[1:] return {k: getattr(self, k) for k in varnames} def set_replace( cls: typing.Type, clsdict: Vars, replace: bool, ) -> None: """Set default replace implementation.""" if not replace or 'replace' in clsdict: return def func(self, **changes): # Convert to a dictionary and then call __init__. asdict = replace_dict(self) asdict.update(changes) return self.__class__(**asdict) func.__name__ = 'replace' func.__qualname__ = f'{cls.__qualname__}.replace' func.__module__ = cls.__module__ clsdict['replace'] = func def set_miscellaneous(cls: typing.Type, clsdict: Vars) -> None: """Set miscellaneous data for the class.""" clsdict['_set'] = object.__setattr__ # DATACLASS METACLASS def wrap_dataclass( cls: typing.Type, global_vars: typing.Dict[str, typing.Any], local_vars: typing.Dict[str, typing.Any], slots: bool = True, copy: bool = True, deepcopy: bool = True, asdict: bool = True, astuple: bool = True, fields: bool = True, replace: bool = True, ) -> typing.Type: """Wrap a dataclass base with the desired methods.""" mcls = cls.__class__ name = cls.__name__ bases = cls.__bases__ clsdict = cls.__dict__.copy() clsdict.setdefault('__annotations__', {}) fix_annotations(cls, clsdict, global_vars, local_vars) set_slots(cls, clsdict, slots, global_vars, local_vars) set_copy(cls, clsdict, copy) set_deepcopy(cls, clsdict, deepcopy) set_asdict(cls, clsdict, asdict) set_astuple(cls, clsdict, astuple) set_fields(cls, clsdict, fields) set_replace(cls, clsdict, replace) set_miscellaneous(cls, clsdict) return mcls.__new__(mcls, name, bases, clsdict) # PATCHES def update_method( cls: typing.Type, new_cls: typing.Type, func, ) -> None: """ Due to our dynamic creation of a new class, our old class may still be present in some function closures, through `super()/__class__`. We should not have remnants of the old class anywhere else, since that would require hard-coding the actual class name, which should not be done for obvious reasons. To rectify this, we can check if '__class__' is in nonlocal vars for each function (`func.__code__.co_freevars`), and if it is, and the old class is bound, update it. This is all well-documented in the Python data model: __code__: Contains compiled function bytecode. co_freevars: Contains free variables referenced inside closure. __closure__: None or tuple of cells for the functions free variables. cell_contents: Get value of cell. Since we want a value injected locally (a free variable), with the name `__class__`, we can use these attributes to determine if the old class is bound to `__class__`, and if so, overwrite it. """ code = func.__code__ closure = func.__closure__ freevars = code.co_freevars if closure and freevars and '__class__' in freevars: # Have a specified class in freevars, must fix in closure. # Only change if the cell_contents is the old cls, # which we need to replace with the new cls. for cell in closure: if cell.cell_contents is cls: cell.cell_contents = new_cls def update_methods(cls: typing.Type, new_cls: typing.Type) -> None: """Replace all instances of `super()/__class__` with the new class.""" funcs = inspect.getmembers(new_cls, inspect.isroutine) for _, func in funcs: # Unwrap method if applicable. func = getattr(func, '__func__', func) with contextlib.suppress(AttributeError): # Builtin functions won't have __code__. update_method(cls, new_cls, func) def update_classvars(cls: typing.Type, new_cls: typing.Type) -> None: """Replace all instances of the old class in class variables.""" # We're going to cheat,
> -68: return "moc bardzo dobra (" + str(rssi) + ")" if rssi > -71: return "moc dobra (" + str(rssi) + ")" if rssi > -81: return "moc słaba (" + str(rssi) + ")" if rssi > -91: return "moc bardzo słaba (" + str(rssi) + ")" return info def _wifi_frequency_info(mhz): if str(mhz).startswith("2"): return "2.4 GHz" elif str(mhz).startswith("5"): return "5 GHz" return str(mhz) def _publish_wifi_status(hass, service): wifis = json.loads(service.data["payload"]) ais_global.GLOBAL_SCAN_WIFI_ANSWER = wifis wifis_names = [ais_global.G_EMPTY_OPTION] for item in wifis["ScanResult"]: if len(item["ssid"]) > 0: wifis_names.append( item["ssid"] + "; " + _wifi_rssi_to_info(item["rssi"]) + "; " + item["capabilities"] + "; " + _wifi_frequency_info(item["frequency_mhz"]) + "; MAC: " + item["bssid"] ) hass.async_run_job( hass.services.call( "input_select", "set_options", { "entity_id": "input_select.ais_android_wifi_network", "options": wifis_names, }, ) ) return len(wifis_names) - 1 def _process_command_from_frame(hass, service): # process the message from frame if "topic" not in service.data: return if service.data["topic"] == "ais/speech_command": hass.async_run_job( hass.services.async_call( "conversation", "process", {"text": service.data["payload"]} ) ) return elif service.data["topic"] == "ais/key_command": _process_code(hass, json.loads(service.data["payload"])) return elif service.data["topic"] == "ais/speech_text": _say_it(hass, service.data["payload"]) return elif service.data["topic"] == "ais/speech_status": # AIS service.data["payload"] can be: START -> DONE/ERROR event_data = {"status": str(service.data["payload"])} hass.bus.fire("ais_speech_status", event_data) hass.states.async_set( "sensor.ais_speech_status", str(service.data["payload"]), {} ) _LOGGER.debug("speech_status: " + str(service.data["payload"])) return elif service.data["topic"] == "ais/add_bookmark": try: bookmark = json.loads(service.data["payload"]) hass.async_run_job( hass.services.call( "ais_bookmarks", "add_bookmark", { "attr": { "media_title": bookmark["media_title"], "source": bookmark["media_source"], "media_position": bookmark["media_position"], "media_content_id": bookmark["media_content_id"], "media_stream_image": bookmark["media_stream_image"], } }, ) ) except Exception as e: _LOGGER.info("problem to add_bookmark: " + str(e)) return elif service.data["topic"] == "ais/player_speed": # speed = json.loads(service.data["payload"]) # _say_it(hass, "prędkość odtwarzania: " + str(speed["currentSpeed"])) # hass.services.call( # 'input_number', # 'set_value', { # "entity_id": "input_number.media_player_speed", # "value": round(speed["currentSpeed"], 2)}) return elif service.data["topic"] == "ais/wifi_scan_info": len_wifis = _publish_wifi_status(hass, service) info = "Mamy dostępne " + str(len_wifis) + " wifi." _say_it(hass, info) return elif service.data["topic"] == "ais/iot_scan_info": iot = json.loads(service.data["payload"]) iot_names = [ais_global.G_EMPTY_OPTION] for item in iot["ScanResult"]: if len(item["ssid"]) > 0: iot_names.append( item["ssid"] + "; " + _wifi_rssi_to_info(item["rssi"]) + "; " + item["capabilities"] ) hass.async_run_job( hass.services.async_call( "input_select", "set_options", { "entity_id": "input_select.ais_iot_devices_in_network", "options": iot_names, }, ) ) if len(iot_names) == 1: info = "Nie znaleziono żadnego nowego urządzenia" elif len(iot_names) == 2: if item["model"] == ais_global.G_MODEL_SONOFF_S20: info = "Znaleziono nowe inteligentne gniazdo" elif item["model"] == ais_global.G_MODEL_SONOFF_SLAMPHER: info = "Znaleziono nową oprawkę" elif item["model"] == ais_global.G_MODEL_SONOFF_TOUCH: info = "Znaleziono nowy przełącznik dotykowy" elif item["model"] == ais_global.G_MODEL_SONOFF_TH: info = "Znaleziono nowy przełącznik z czujnikami" elif item["model"] == ais_global.G_MODEL_SONOFF_B1: info = "Znaleziono nową żarówkę" elif item["model"] == ais_global.G_MODEL_SONOFF_POW: info = "Znaleziono nowy przełącznik z pomiarem mocy" elif item["model"] == ais_global.G_MODEL_SONOFF_DUAL: info = "Znaleziono nowy podwójny przełącznik" elif item["model"] == ais_global.G_MODEL_SONOFF_BASIC: info = "Znaleziono nowy przełącznik" elif item["model"] == ais_global.G_MODEL_SONOFF_IFAN: info = "Znaleziono nowy wentylator sufitowy" elif item["model"] == ais_global.G_MODEL_SONOFF_T11: info = "Znaleziono nowy przełącznik dotykowy pojedynczy" elif item["model"] == ais_global.G_MODEL_SONOFF_T12: info = "Znaleziono nowy przełącznik dotykowy podwójny" elif item["model"] == ais_global.G_MODEL_SONOFF_T13: info = "Znaleziono nowy przełącznik dotykowy potrójny" else: info = "Znaleziono nowe inteligentne urządzenie" else: info = "Znaleziono " + str(len(iot_names) - 1) + " nowe urządzenia" # check if we are doing this from remote if ( len(iot_names) > 1 and CURR_ENTITIE in ( "sensor.ais_connect_iot_device_info", "script.ais_scan_iot_devices_in_network", ) and CURR_BUTTON_CODE == 23 ): info = ( info + ". Sprawdź wszystkie parametry, naciśnij strzałkę w prawo, by przejść dalej. " "Na koniec uruchom: Dołącz nowe urządzenie." ) # prepare form data set_curr_entity(hass, "script.ais_scan_iot_devices_in_network") hass.async_run_job( hass.services.async_call( "input_select", "select_next", {"entity_id": "input_select.ais_iot_devices_in_network"}, ) ) _say_it(hass, info) return elif service.data["topic"] == "ais/wifi_status_info": _publish_wifi_status(hass, service) return elif service.data["topic"] == "ais/ais_gate_req_answer": cci = json.loads(service.data["payload"]) ais_global.set_ais_gate_req(cci["req_id"], cci["req_answer"]) return elif service.data["topic"] == "ais/wifi_connection_info": # current connection info cci = json.loads(service.data["payload"]) attr = { "friendly_name": "Prędkość połączenia", "unit_of_measurement": "MB", "icon": "mdi:speedometer", } desc = "" speed = 0 if "ais_gate_id" in cci: pass # ais_global.G_AIS_SECURE_ANDROID_ID_DOM = cci["ais_gate_id"] if "pass" in cci: ais_global.set_my_wifi_pass(cci["pass"]) if "ssid" in cci: ais_global.set_my_ssid(cci["ssid"]) attr["ssid"] = cci["ssid"] if cci["ssid"] == "<unknown ssid>": desc += "brak informacji o połączeniu" else: desc += cci["ssid"] if "link_speed_mbps" in cci: desc += ( "; prędkość: " + str(cci["link_speed_mbps"]) + " megabitów na sekundę" ) attr["link_speed_mbps"] = cci["link_speed_mbps"] speed = cci["link_speed_mbps"] if "rssi" in cci: desc += "; " + _wifi_rssi_to_info(cci["rssi"]) attr["rssi"] = cci["rssi"] if "frequency_mhz" in cci: desc += "; " + _wifi_frequency_info(cci["frequency_mhz"]) attr["frequency_mhz"] = cci["frequency_mhz"] attr["description"] = desc hass.states.async_set( "sensor.ais_wifi_service_current_network_info", speed, attr ) return elif service.data["topic"] == "ais/wifi_state_change_info": # current connection info cci = json.loads(service.data["payload"]) ais_global.set_my_ssid(cci["ssid"]) # check if we are now online if ais_global.GLOBAL_MY_IP == "127.0.0.1": ais_global.set_global_my_ip(None) if ais_global.GLOBAL_MY_IP != "127.0.0.1": pass # if yes then try to reload the cloud and other components # TODO reload invalid components # hass.async_run_job(async_load_platform(hass, 'sun', 'sun', {}, {})) # hass.async_run_job(async_load_platform(hass, 'ais_cloud', 'ais_cloud', {}, {})) # hass.async_run_job(async_load_platform(hass, 'ais_yt_service', 'ais_yt_service', {}, {})) # hass.async_run_job(async_load_platform(hass, 'ais_knowledge_service', 'ais_knowledge_service'... return elif service.data["topic"] == "ais/go_to_player": go_to_player(hass, False) elif service.data["topic"] == "ais/ip_state_change_info": pl = json.loads(service.data["payload"]) ais_global.set_global_my_ip(pl["ip"]) icon = "mdi:access-point-network" friendly_name = "Lokalny adres IP" if "type" in pl: # see android ConnectivityManager if type == "-1": # TYPE_NONE icon = "mdi:lan-disconnect" friendly_name = "Lokalny adres IP - " elif type == "9": # TYPE_ETHERNET icon = "mdi:ethernet" friendly_name = "Lokalny adres IP (ethernet)" elif type == "1": # TYPE_WIFI icon = "mdi:wifi-strength-4-lock" friendly_name = "Lokalny adres IP (wifi)" hass.states.async_set( "sensor.internal_ip_address", pl["ip"], {"friendly_name": friendly_name, "icon": icon}, ) elif service.data["topic"] == "ais/player_status": # try to get current volume try: message = json.loads(service.data["payload"]) ais_global.G_AIS_DAY_MEDIA_VOLUME_LEVEL = ( message.get("currentVolume", 0) / 100 ) except Exception: _LOGGER.info( "ais_global.G_AIS_DAY_MEDIA_VOLUME_LEVEL: " + str(ais_global.G_AIS_DAY_MEDIA_VOLUME_LEVEL) ) if "ais_gate_client_id" in service.data: json_string = json.dumps(service.data["payload"]) else: json_string = service.data["payload"] hass.async_run_job( hass.services.async_call( "media_player", "play_media", { "entity_id": ais_global.G_LOCAL_EXO_PLAYER_ENTITY_ID, "media_content_type": "exo_info", "media_content_id": json_string, }, ) ) elif service.data["topic"] == "ais/execute_script": hass.services.call( "ais_shell_command", "execute_script", {"script": service.data["payload"]} ) elif service.data["topic"] == "ais/tts_voice": # this is done only once on start to set the voice on hass from android voice = service.data["payload"] set_voice = "Jola lokalnie" if voice == "pl-pl-x-oda-network": set_voice = "Jola online" elif voice == "pl-pl-x-oda#female_1-local": set_voice = "Celina" elif voice == "pl-pl-x-oda#female_2-local": set_voice = "Anżela" elif voice == "pl-pl-x-oda#female_3-local": set_voice = "Asia" elif voice == "pl-pl-x-oda#male_1-local": set_voice = "Sebastian" elif voice == "pl-pl-x-oda#male_2-local": set_voice = "Bartek" elif voice == "pl-pl-x-oda#male_3-local": set_voice = "Andrzej" current_voice = hass.states.get("input_select.assistant_voice").state if current_voice != set_voice: # we will inform the frame about change in EVENT_STATE_CHANGED listener hass.async_run_job( hass.services.async_call( "input_select", "select_option", {"entity_id": "input_select.assistant_voice", "option": set_voice}, ) ) else: # EVENT_STATE_CHANGED listener will not notice this change - publish info to frame about voice hass.services.call( "ais_ai_service", "publish_command_to_frame", {"key": "setTtsVoice", "val": voice}, ) elif service.data["topic"] == "ais/trim_memory": _LOGGER.warning("trim_memory " + str(service.data["payload"])) try: import os if str(service.data["payload"]) == "15": # TRIM_MEMORY_RUNNING_CRITICAL tot_m, used_m, free_m = map( int, os.popen("free -t -m").readlines()[-1].split()[1:] ) _LOGGER.warning( "TRIM_MEMORY_RUNNING_CRITICAL, used memory: " + str(used_m) ) # check if we can clear database if "dbUrl" in ais_global.G_DB_SETTINGS_INFO: if ais_global.G_DB_SETTINGS_INFO["dbUrl"].startswith( "sqlite:///:memory:" ): _LOGGER.warning("recorder -> purge keep_days: 0") hass.services.call( "recorder", "purge", {"keep_days": 0, "repack": True} ) else: # try to kill some heavy process # Get List of all running process sorted by Highest Memory Usage list_of_proc_objects = [] # Iterate over the list for proc in psutil.process_iter(): try: # Fetch process details as dict pinfo = proc.as_dict(attrs=["pid", "name", "username"]) pinfo["vms"] = proc.memory_info().vms / (1024 * 1024) # Append dict to list list_of_proc_objects.append(pinfo) except ( psutil.NoSuchProcess, psutil.AccessDenied, psutil.ZombieProcess, ): pass # Sort list of dict by key vms i.e. memory usage list_of_proc_objects = sorted( list_of_proc_objects, key=lambda proc_obj: proc_obj["vms"], reverse=True, ) # print top 5 process by memory usage for elem in list_of_proc_objects[:5]: _LOGGER.error("We should kill: " + str(elem)) except Exception as e: pass elif service.data["topic"] == "ais/trim_storage": _LOGGER.warning("trim_storage " + str(service.data["payload"])) _LOGGER.warning("ACTION_DEVICE_STORAGE_LOW report form Android") # check if we can clear database if hass.services.has_service("recorder", "purge"): _LOGGER.warning("recorder -> purge keep_days: 0") hass.services.call("recorder", "purge", {"keep_days": 0, "repack": True}) _LOGGER.warning("ais -> flush_logs") hass.services.call("ais_shell_command", "flush_logs") elif service.data["topic"] == "ais/sip_event": event_data = {"event": str(service.data["payload"])} hass.bus.fire("ais_sip_event", event_data) _LOGGER.info("sip_event " + str(event_data)) else: # TODO process this without mqtt # player_status and speech_status mqtt.async_publish(hass, service.data["topic"], service.data["payload"], 2) # TODO return def _post_message( message,
" r"the values are in the correct form with the acceptable values\)" r": \['CBMC_Nth'\]", ): gomc_control.write_gomc_control_file( charmm, "test_save_NVT_bad_variables_part_2.conf", "NVT", 10, 300, input_variables_dict={"CBMC_Nth": []}, ) with pytest.raises( ValueError, match=r"ERROR: The following input variables have " r"bad values \(check spelling and for empty spaces in the keys or that " r"the values are in the correct form with the acceptable values\)" r": \['CBMC_Ang'\]", ): gomc_control.write_gomc_control_file( charmm, "test_save_NVT_bad_variables_part_2.conf", "NVT", 10, 300, input_variables_dict={"CBMC_Ang": []}, ) with pytest.raises( ValueError, match=r"ERROR: The following input variables have " r"bad values \(check spelling and for empty spaces in the keys or that " r"the values are in the correct form with the acceptable values\)" r": \['CBMC_Dih'\]", ): gomc_control.write_gomc_control_file( charmm, "test_save_NVT_bad_variables_part_2.conf", "NVT", 10, 300, input_variables_dict={"CBMC_Dih": []}, ) with pytest.raises( ValueError, match=r"ERROR: The following input variables have " r"bad values \(check spelling and for empty spaces in the keys or that " r"the values are in the correct form with the acceptable values\)" r": \['OutputName'\]", ): gomc_control.write_gomc_control_file( charmm, "test_save_NVT_bad_variables_part_2.conf", "NVT", 10, 300, input_variables_dict={"OutputName": []}, ) with pytest.raises( ValueError, match=r"ERROR: The following input variables have " r"bad values \(check spelling and for empty spaces in the keys or that " r"the values are in the correct form with the acceptable values\)" r": \['CoordinatesFreq'\]", ): gomc_control.write_gomc_control_file( charmm, "test_save_NVT_bad_variables_part_2.conf", "NVT", 10, 300, input_variables_dict={"CoordinatesFreq": []}, ) with pytest.raises( ValueError, match=r"ERROR: The following input variables have " r"bad values \(check spelling and for empty spaces in the keys or that " r"the values are in the correct form with the acceptable values\)" r": \['RestartFreq'\]", ): gomc_control.write_gomc_control_file( charmm, "test_save_NVT_bad_variables_part_2.conf", "NVT", 10, 300, input_variables_dict={"RestartFreq": []}, ) with pytest.raises( ValueError, match=r"ERROR: The following input variables have " r"bad values \(check spelling and for empty spaces in the keys or that " r"the values are in the correct form with the acceptable values\)" r": \['CheckpointFreq'\]", ): gomc_control.write_gomc_control_file( charmm, "test_save_NVT_bad_variables_part_2.conf", "NVT", 10, 300, input_variables_dict={"CheckpointFreq": []}, ) with pytest.raises( ValueError, match=r"ERROR: The following input variables have " r"bad values \(check spelling and for empty spaces in the keys or that " r"the values are in the correct form with the acceptable values\)" r": \['ConsoleFreq'\]", ): gomc_control.write_gomc_control_file( charmm, "test_save_NVT_bad_variables_part_2.conf", "NVT", 10, 300, input_variables_dict={"ConsoleFreq": []}, ) with pytest.raises( ValueError, match=r"ERROR: The following input variables have " r"bad values \(check spelling and for empty spaces in the keys or that " r"the values are in the correct form with the acceptable values\)" r": \['BlockAverageFreq'\]", ): gomc_control.write_gomc_control_file( charmm, "test_save_NVT_bad_variables_part_2.conf", "NVT", 10, 300, input_variables_dict={"BlockAverageFreq": []}, ) with pytest.raises( ValueError, match=r"ERROR: The following input variables have " r"bad values \(check spelling and for empty spaces in the keys or that " r"the values are in the correct form with the acceptable values\)" r": \['HistogramFreq'\]", ): gomc_control.write_gomc_control_file( charmm, "test_save_NVT_bad_variables_part_2.conf", "NVT", 10, 300, input_variables_dict={"HistogramFreq": []}, ) with pytest.raises( ValueError, match=r"ERROR: The following input variables have " r"bad values \(check spelling and for empty spaces in the keys or that " r"the values are in the correct form with the acceptable values\)" r": \['DistName'\]", ): gomc_control.write_gomc_control_file( charmm, "test_save_NVT_bad_variables_part_2.conf", "NVT", 10, 300, input_variables_dict={"DistName": []}, ) with pytest.raises( ValueError, match=r"ERROR: The following input variables have " r"bad values \(check spelling and for empty spaces in the keys or that " r"the values are in the correct form with the acceptable values\)" r": \['HistName'\]", ): gomc_control.write_gomc_control_file( charmm, "test_save_NVT_bad_variables_part_2.conf", "NVT", 10, 300, input_variables_dict={"HistName": []}, ) with pytest.raises( ValueError, match=r"ERROR: The following input variables have " r"bad values \(check spelling and for empty spaces in the keys or that " r"the values are in the correct form with the acceptable values\)" r": \['RunNumber'\]", ): gomc_control.write_gomc_control_file( charmm, "test_save_NVT_bad_variables_part_2.conf", "NVT", 10, 300, input_variables_dict={"RunNumber": []}, ) with pytest.raises( ValueError, match=r"ERROR: The following input variables have " r"bad values \(check spelling and for empty spaces in the keys or that " r"the values are in the correct form with the acceptable values\)" r": \['RunLetter'\]", ): gomc_control.write_gomc_control_file( charmm, "test_save_NVT_bad_variables_part_2.conf", "NVT", 10, 300, input_variables_dict={"RunLetter": []}, ) with pytest.raises( ValueError, match=r"ERROR: The following input variables have " r"bad values \(check spelling and for empty spaces in the keys or that " r"the values are in the correct form with the acceptable values\)" r": \['SampleFreq'\]", ): gomc_control.write_gomc_control_file( charmm, "test_save_NVT_bad_variables_part_2.conf", "NVT", 10, 300, input_variables_dict={"SampleFreq": []}, ) with pytest.raises( ValueError, match=r"ERROR: The following input variables have " r"bad values \(check spelling and for empty spaces in the keys or that " r"the values are in the correct form with the acceptable values\)" r": \['OutEnergy'\]", ): gomc_control.write_gomc_control_file( charmm, "test_save_NVT_bad_variables_part_2.conf", "NVT", 10, 300, input_variables_dict={"OutEnergy": []}, ) with pytest.raises( ValueError, match=r"ERROR: The following input variables have " r"bad values \(check spelling and for empty spaces in the keys or that " r"the values are in the correct form with the acceptable values\)" r": \['OutPressure'\]", ): gomc_control.write_gomc_control_file( charmm, "test_save_NVT_bad_variables_part_2.conf", "NVT", 10, 300, input_variables_dict={"OutPressure": []}, ) with pytest.raises( ValueError, match=r"ERROR: The following input variables have " r"bad values \(check spelling and for empty spaces in the keys or that " r"the values are in the correct form with the acceptable values\)" r": \['OutMolNumber'\]", ): gomc_control.write_gomc_control_file( charmm, "test_save_NVT_bad_variables_part_2.conf", "NVT", 10, 300, input_variables_dict={"OutMolNumber": []}, ) with pytest.raises( ValueError, match=r"ERROR: The following input variables have " r"bad values \(check spelling and for empty spaces in the keys or that " r"the values are in the correct form with the acceptable values\)" r": \['OutDensity'\]", ): gomc_control.write_gomc_control_file( charmm, "test_save_NVT_bad_variables_part_2.conf", "NVT", 10, 300, input_variables_dict={"OutDensity": []}, ) with pytest.raises( ValueError, match=r"ERROR: The following input variables have " r"bad values \(check spelling and for empty spaces in the keys or that " r"the values are in the correct form with the acceptable values\)" r": \['OutVolume'\]", ): gomc_control.write_gomc_control_file( charmm, "test_save_NVT_bad_variables_part_2.conf", "NVT", 10, 300, input_variables_dict={"OutVolume": []}, ) with pytest.raises( ValueError, match=r"ERROR: The following input variables have " r"bad values \(check spelling and for empty spaces in the keys or that " r"the values are in the correct form with the acceptable values\)" r": \['OutSurfaceTension'\]", ): gomc_control.write_gomc_control_file( charmm, "test_save_NVT_bad_variables_part_2.conf", "NVT", 10, 300, input_variables_dict={"OutSurfaceTension": []}, ) with pytest.raises( ValueError, match=r"ERROR: The following input variables have " r"bad values \(check spelling and for empty spaces in the keys or that " r"the values are in the correct form with the acceptable values\)" r": \['FreeEnergyCalc'\]", ): gomc_control.write_gomc_control_file( charmm, "test_save_NVT_bad_variables_part_1.conf", "NVT", 10, 300, input_variables_dict={ "FreeEnergyCalc": [], "MoleculeType": ["ETH", 1], "InitialState": 1, "LambdaVDW": [0.1, 0.2, 0.4, 0.9], "LambdaCoulomb": [0.1, 0.3, 0.8, 0.8], }, ) with pytest.raises( ValueError, match=r"ERROR: The following input variables have " r"bad values \(check spelling and for empty spaces in the keys or that " r"the values are in the correct form with the acceptable values\)" r": \['MoleculeType'\]", ): gomc_control.write_gomc_control_file( charmm, "test_save_NVT_bad_variables_part_1.conf", "NVT", 10, 300, input_variables_dict={ "FreeEnergyCalc": [True, 10000], "MoleculeType": ["ETH", []], "InitialState": 1, "LambdaVDW": [0.1, 0.2, 0.4, 0.9], "LambdaCoulomb": [0.1, 0.3, 0.8, 0.8], }, ) with pytest.raises( ValueError, match=r"ERROR: The following input variables have " r"bad values \(check spelling and for empty spaces in the keys or that " r"the values are in the correct form with the acceptable values\)" r": \['MoleculeType'\]", ): gomc_control.write_gomc_control_file( charmm, "test_save_NVT_bad_variables_part_1.conf", "NVT", 10, 300, input_variables_dict={ "FreeEnergyCalc": [True, 10000], "MoleculeType": [["ETH"], 1], "InitialState": 1, "LambdaVDW": [0.1, 0.2, 0.4, 0.9], "LambdaCoulomb": [0.1, 0.3, 0.8, 0.8], }, ) with pytest.raises( ValueError, match=r"ERROR: The following input variables have " r"bad values \(check spelling and for empty spaces in the keys or that " r"the values are in the correct form with the acceptable values\)" r": \['MoleculeType'\]", ): gomc_control.write_gomc_control_file( charmm, "test_save_NVT_bad_variables_part_1.conf", "NVT", 10, 300, input_variables_dict={ "FreeEnergyCalc": [True, 10000], "MoleculeType": [{"ETH": "1"}, 1], "InitialState": 1, "LambdaVDW": [0.1, 0.2, 0.4, 0.9], "LambdaCoulomb": [0.1, 0.3, 0.8, 0.8], }, ) with pytest.raises( ValueError, match=r"ERROR: The following input variables have " r"bad values \(check spelling and for empty spaces in the keys or that " r"the values are in the correct form with the acceptable values\)" r": \['InitialState'\]", ): gomc_control.write_gomc_control_file( charmm, "test_save_NVT_bad_variables_part_1.conf", "NVT", 10, 300, input_variables_dict={ "FreeEnergyCalc": [True, 10000], "MoleculeType": ["ETH", 1], "InitialState": [], "LambdaVDW": [0.1, 0.2,
and reduced traces. Positional arguments: r: QRegistry state: numpy array with the expected state of r rdm0: numpy array with the expected reduced density matrix after tracing out qubit 0. rdm1: numpy array with the expected reduced density matrix after tracing out qubit 1. Keyworded arguments: srt0: expected value for squared reduced trace after tracing out 0 srt1: expected value for squared reduced trace after tracing out 1 verbose: if messages with extra information should be printed """ if not np.allclose(r.get_state(), state): if verbose: print(r.get_state()) print(state) print(r.get_state() == state) print(" <NAME> visited your simulator...") return False dm = state * state.reshape((4, 1)) qdm = r.density_matrix() if not np.allclose(qdm[:], dm): if verbose: print(r.density_matrix()[:]) print(dm) print(r.density_matrix()[:] == dm) print(" <NAME> visited your simulator...") return False qrdm0 = qdm.partial_trace(0) if not np.allclose(qrdm0[:], rdm0): if verbose: print("RDM0") print(qrdm0[:]) print(rdm0) print(qrdm0[:] == rdm0) print(" <NAME> visited your simulator...") return False qrdm1 = qdm.partial_trace(1) if not np.allclose(qrdm1[:], rdm1): if verbose: print("RDM1") print(qrdm1[:]) print(rdm1) print(qrdm1[:] == rdm1) print(" <NAME> visited your simulator...") return False qsrt0 = (qrdm0 @ qrdm0).trace() if not np.allclose(qsrt0, srt0): if verbose: print("SRT0") print(qrdm0[:]) print(qsrt0) print(srt0) print(qsrt0 == srt0) print(" <NAME> visited your simulator...") return False qsrt1 = (qrdm1 @ qrdm1).trace() if not np.allclose(qsrt1, srt1): if verbose: print("SRT1") print(qsrt1) print(srt1) print(qsrt1 == srt1) print(" <NAME> visited your simulator...") return False return True def tool_test(verbose=False): """Test QRegistry states, density matrix, reduced dm and reduced trace.""" if verbose: print(" Tools for QRegistry:") reg = qj.QRegistry(2) state = np.array([1, 0, 0, 0]) rdm0 = np.array([1, 0, 0, 0]).reshape((2, 2)) rdm1 = rdm0[:] if not compare_state(reg, state, rdm0, rdm1, verbose=verbose): del reg raise AssertionError("Error on first step checking tools") del state del rdm0 del rdm1 reg2 = reg.apply_gate("H", targets=0) del reg reg = reg2 state = np.array([1/np.sqrt(2), 1/np.sqrt(2), 0, 0]) rdm0 = np.array([1, 0, 0, 0]).reshape((2, 2)) rdm1 = np.array([0.5, 0.5, 0.5, 0.5]).reshape((2, 2)) if not compare_state(reg, state, rdm0, rdm1, verbose=verbose): del reg raise AssertionError("Error on second step checking tools") del state del rdm0 del rdm1 reg2 = reg.apply_gate("X", targets=1, controls=0) del reg reg = reg2 state = np.array([1/np.sqrt(2), 0, 0, 1/np.sqrt(2)]) rdm0 = np.eye(2) * 0.5 rdm1 = rdm0[:] if not compare_state(reg, state, rdm0, rdm1, srt0=0.5, srt1=0.5, verbose=verbose): del reg raise AssertionError("Error on third step checking tools") if verbose: print(" Noice") del reg def measure_system_tests(nq, entangle=False, remove=False, verbose=False): """Test measurement with QSystem.""" if verbose: print(f" Measure QSystem tests with entangle={entangle}:") for id in range(nq): reg = qj.QSystem(nq) if entangle: for control in range(1, nq, 2): reg2 = reg.apply_gate("X", targets=control-1, controls=control) if nq % 2 == 1: reg2 = reg.apply_gate("X", targets=nq-2, controls=nq-1) del reg reg = reg2 reg2 = reg.apply_gate("X", targets=id) del reg reg = reg2 aux1, mes = reg.measure({id}) if nq > 1: aux2, mes2 = aux1.measure({i for i in range(nq) if i != id}) del reg if (not mes[id] or (nq > 1 and any(mes2[i] for i in range(nq) if i != id)) or aux1.usable[id] or not all(aux1.usable[i] for i in range(nq) if i != id) or (nq > 1 and any(aux2.usable))): if verbose: print("M1:", mes) print("M2:", mes2) print("Check1:", not mes[id]) print("Check2:", (nq > 1 and any(mes2[i] for i in range(nq) if i != id))) print("Check3:", aux1.usable[id]) print("Check4:", not all(aux1.usable[i] for i in range(nq) if i != id)) print("Check5:", (nq > 1 and any(aux2.usable))) print(" <NAME> visited your simulator...") aux1.free() if nq > 1: aux2.free() raise AssertionError("Error measuring states") aux1.free() if nq > 1: aux2.free() if verbose: print(" Noice") def add_operation_tests(qdesign, verbose=False): """Test add_line method of the given qstruct object.""" if verbose: print(" add_line tests with " + qdesign.__name__ + ":") qdes = qdesign(5, "Test") cons = {1, 3} acons = {2, 4} qdes.add_operation("X", targets=0, controls=cons, anticontrols=acons) if len(qdes.get_operations()) != 1: raise AssertionError("Wrong operations list size: " + f"{len(qdes.get_operations())}") op_data = qdes.get_operations()[0] if op_data["gate"]._str != "X" or op_data["targets"] != [0] \ or op_data["controls"] != cons or op_data["anticontrols"] != acons: if verbose: print(op_data) print(" Michael Bay visited your simulator...") raise AssertionError("Wrong operation added") if verbose: print(" Noice") def _deutsch_aux(executor, nq, gate): circuit = DJAlgCircuit(nq, gate) mess = executor.execute(circuit) mes = mess[0][0] reg2 = qj.QSystem(nq) # Qubits (x1, ..., xn, y) initialized to zero aux = reg2.apply_gate("X", targets=nq-1) # Qubit y set to one del reg2 reg2 = aux # Apply Hadamard to all qubits for i in range(nq): aux = reg2.apply_gate("H", targets=i) del reg2 reg2 = aux # Applied U (oracle) aux = reg2.apply_gate(gate, targets=[i for i in range(nq)]) del reg2 reg2 = aux # Applied Hadamard to (x1, ..., xn), nothing applied to y qubit for i in range(nq - 1): aux = reg2.apply_gate("H", targets=i) del reg2 reg2 = aux # We measure (x1, ..., xn) qubits aux, mes2 = reg2.measure({i for i in range(nq - 1)}) del reg2 del aux # If any qubit (x1, ..., xn) is 1, balanced. Otherwise constant. return mes, mes2 def deutschTests(nq, verbose=False, useSystem=False, optimize=False): """Test Deutsch-Jozsa algorithm for the specified number of qubits.""" if verbose: print(" Deutsch circuit (" + (qj.QSystem.__name__ if useSystem else qj.QRegistry.__name__) + "):") executor = qj.Drewom(qmachine="doki", extra={"num_threads": -1, "random_generator": np.random.rand, "use_system": useSystem}) for id in range(nq - 1): gate = Bal(nq, id) mes, mes2 = _deutsch_aux(executor, nq, gate) if not mes == mes2 or not any(mes): if verbose: print(mes) print(mes2) print(mes == mes2) print(" <NAME> visited your simulator...") raise AssertionError("Error checking DJ results") for id in range(2): gate = Const(nq, twice=(id == 1)) mes, mes2 = _deutsch_aux(executor, nq, gate) if not mes == mes2 or any(mes): if verbose: print(mes) print(mes2) print(mes == mes2) print(" <NAME> visited your simulator...") raise AssertionError("Error checking DJ results") if verbose: print(" Noice") def teleportation_tests(verbose=False, useSystem=False, optimize=False): """Execute teleportation algorithm related tests.""" rands = np.random.rand(3) * 2 * np.pi - np.pi gate = "U(" + ",".join([str(angle) for angle in rands]) + ")" initialValue = rnd.randrange(2) if verbose: print(" Teleportation circuit (" + (qj.QSystem.__name__ if useSystem else qj.QRegistry.__name__) + "):") print(" Gate: " + gate) print(" Initial value: " + str(initialValue)) executor = qj.Drewom(qmachine="doki", extra={"num_threads": -1, "random_generator": np.random.rand, "use_system": useSystem, "return_struct": True}) circuit = TeleportationCircuit(gate) mess = executor.execute(circuit) reg, mes = mess[0] reg2 = qj.QRegistry(1) aux = reg2.apply_gate(gate) del reg2 reg2 = aux if not np.allclose(reg.get_state(), reg2.get_state()): if verbose: print("Ops:", circuit.get_operations()) print(reg.get_state()) print(reg2.get_state()) print(reg.get_state() == reg2.get_state()) print(mes) print(" <NAME> visited your simulator...") del reg del reg2 raise AssertionError("Error checking teleportation result!") else: if verbose: print(" Noice") del reg del reg2 def all_gate_tests(seed=None, verbose=False): """Execute all gate tests.""" if not (seed is None): qj.set_seed(seed) rnd.seed(seed) np.random.seed(seed) result = [(0, 0) for i in range(15)] # We have 15 tests # H gate tests result[0] = gate_tests("H", verbose=verbose, hasInv=False, nArgs=0) # X gate tests result[1] = gate_tests("X", verbose=verbose, hasInv=False, nArgs=0) # Y gate tests result[2] = gate_tests("Y", verbose=verbose, hasInv=False, nArgs=0) # Z gate tests result[3] = gate_tests("Z", verbose=verbose, hasInv=False, nArgs=0) # SqrtX gate tests result[4] = gate_tests("SqrtX", verbose=verbose, hasInv=True, nArgs=0) # RX gate tests result[5] = gate_tests("RX", verbose=verbose, hasInv=True, nArgs=1) # RY gate tests result[6] = gate_tests("RY", verbose=verbose, hasInv=True, nArgs=1) # RZ gate tests result[7] = gate_tests("RZ", verbose=verbose, hasInv=True, nArgs=1) # Phase shift gate tests result[8] = gate_tests("R", verbose=verbose, hasInv=True, nArgs=1) # Roots of unity gate tests result[9] = gate_tests("RUnity", verbose=verbose, hasInv=True, nArgs=1) # Partial Deutsch gate tests result[10] = gate_tests("HalfDeutsch", verbose=verbose, hasInv=True, nArgs=1) # U gate tests result[11] = gate_tests("U", verbose=verbose, hasInv=True, nArgs=3) # U3 gate tests result[12] = gate_tests("U3", verbose=verbose, hasInv=True, nArgs=3) # U2 gate tests result[13] = gate_tests("U2", verbose=verbose, hasInv=True, nArgs=2) # U1 gate tests result[14] = gate_tests("U1", verbose=verbose, hasInv=True, nArgs=1) return result def data_structure_tests(minqubits, maxqubits, seed=None, verbose=False, QItem=qj.QRegistry): """Execute all data structure tests.""" if not (seed is None): rnd.seed(seed) np.random.seed(seed) for nq in range(minqubits, maxqubits + 1): if verbose: print("Testing with " + str(nq) + " qubit " + QItem.__name__) one_gate_tests(nq, verbose=verbose, QItem=QItem) if nq >= 2: two_gate_tests(nq, verbose=verbose, QItem=QItem) controlled_gate_tests(nq, verbose=verbose, QItem=QItem) if QItem == qj.QRegistry: measure_registry_tests(nq, verbose=verbose) else: measure_system_tests(nq, entangle=False, verbose=verbose) if nq >= 2: measure_system_tests(nq,
freq2: if icpu not in freq1: equal=False break ff1=float(freq1[icpu]) ff2=float(freq2[icpu]) if ff2!=0: diff=ff1/ff2 else: equal=False break if diff<0.98 or diff>1.02: equal=False break if not equal: if o=='con': ck.out('CPU frequency changed over iterations:') ck.out('') i['fail_reason']='frequency changed during experiments' i['fail']='yes' else: ck.out('CPU frequency did not change ...') ck.out('') ############################################################################################################### # PIPELINE SECTION: Extract cTuning/MILEPOST static program features cs='yes' extracted_milepost_features=False if i.get('fail','')!='yes' and milepost=='yes' and \ (compile_only_once!='yes' or ai==0) and \ (srn==0 or (srn>0 and i.get('repeat_compilation','')=='yes')): if o=='con': ck.out(sep) ck.out('Extract MILEPOST/cTuning static program features ...') ck.out('') # Check that milepost repo exists rmil=ck.access({'action':'load', 'module_uoa':cfg['module_deps']['repo'], 'data_uoa':cfg['repo_deps']['reproduce-milepost-project']}) if rmil['return']>0: if rmil['return']!=16: return rmil # Suggest to install MILEPOST repo if o=='con': rx=ck.inp({'text':'You need CK repo "reproduce-milepost-project" to extract static features. Install (Y/n)? '}) x=rx['string'].strip().lower() ck.out('') if x!='n': ck.out(sep) rmil=ck.access({'action':'pull', 'module_uoa':cfg['module_deps']['repo'], 'data_uoa':'reproduce-milepost-project', 'out':'con'}) if rmil['return']>0: return rmil ck.out(sep) # Set milepost tag to compiler deps mcdeps=copy.deepcopy(cdeps) mcdeps['compiler']={ "local": "yes", "sort": 1, "tags": "compiler,lang-c,ctuning-cc"} mflags=flags if mflags!='': mflags+=' ' mflags='-O3 --ct-extract-features' cl=i.get('clean','') if cl=='' and i.get('no_clean','')!='yes' and skip_exec!='yes' and srn==0: cl='yes' if meta.get('no_compile','')!='yes' and no_compile!='yes': if o=='con' and cl=='yes': ck.out('Cleaning working directory ...') ck.out('') ii={'sub_action':'compile', 'target':target, 'target_os':tos, 'device_id':tdid, 'host_os':hos, 'path':pdir, 'meta':meta, 'deps':mcdeps, 'deps_cache':deps_cache, 'reuse_deps':reuse_deps, 'generate_rnd_tmp_dir':grtd, 'tmp_dir':tdir, 'clean':cl, 'skip_clean_after':sca, 'compile_type':ctype, 'flags':mflags, 'lflags':lflags, 'statistical_repetition':srn, 'autotuning_iteration':ati, 'console':cons, 'env':env, 'extra_env':eenv, 'compiler_vars':cv, 'no_vars':ncv, 'remove_compiler_vars':rcv, 'extra_env_for_compilation':eefc, 'compile_timeout':xcto, 'speed':espeed, 'add_rnd_extension_to_bin':are, 'add_save_extension_to_bin':ase, 'out':oo} r=process_in_dir(ii) if r['return']>0: return r misc=r['misc'] tdir=misc.get('tmp_dir','') cs=misc.get('compilation_success','') if cs=='no': x='MILEPOST feature extraction failed' if misc.get('fail_reason','')!='': x+=' - '+misc['fail_reason'] i['fail_reason']=x i['fail']='yes' # Process features if o=='con' and cl=='yes': ck.out('') ck.out('Converting MILEPOST/cTuning features to JSON ...') ck.out('') feat={} x1=os.path.join(pdir, tdir) x=os.listdir(x1) for y in x: if os.path.isfile(y) and y.startswith('ici_features_function.') and y.endswith('.fre.ft'): fun=y[22:-7] feat1={} rz=ck.load_text_file({'text_file':y}) if rz['return']==0: x2=rz['string'].strip().split(',') for z in x2: z1=z.split('=') if len(z1)>1: zk=z1[0].strip()[2:] zv=z1[1].strip() feat1[zk]=float(zv) feat[fun]=feat1 features['program_static_milepost_features']=feat extracted_milepost_features=True ############################################################################################################### # PIPELINE SECTION: Compile program cs='yes' if i.get('fail','')!='yes' and no_compile!='yes' and \ (compile_only_once!='yes' or ai==0) and \ (srn==0 or (srn>0 and i.get('repeat_compilation','')=='yes')): if o=='con': ck.out(sep) ck.out('Compile program ...') ck.out('') cl=i.get('clean','') if cl=='' and i.get('no_clean','')!='yes' and skip_exec!='yes' and srn==0: cl='yes' if meta.get('no_compile','')!='yes' and no_compile!='yes': if o=='con' and cl=='yes': ck.out('Cleaning working directory ...') ck.out('') ii={'sub_action':'compile', 'target':target, 'target_os':tos, 'device_id':tdid, 'host_os':hos, 'path':pdir, 'meta':meta, 'deps':cdeps, 'generate_rnd_tmp_dir':grtd, 'tmp_dir':tdir, 'clean':cl, 'skip_clean_after':sca, 'compile_type':ctype, 'flags':flags, 'lflags':lflags, 'statistical_repetition':srn, 'autotuning_iteration':ati, 'console':cons, 'env':env, 'speed':espeed, 'params':params, 'extra_env':eenv, 'compiler_vars':cv, 'no_vars':ncv, 'remove_compiler_vars':rcv, 'extra_env_for_compilation':eefc, 'compile_timeout':xcto, 'compute_platform_id':compute_platform_id, 'compute_device_id':compute_device_id, 'add_rnd_extension_to_bin':are, 'add_save_extension_to_bin':ase, 'out':oo} r=process_in_dir(ii) if r['return']>0: return r misc=r['misc'] if 'add_to_state' in misc: state.update(misc['add_to_state']) del(misc['add_to_state']) if 'add_to_features' in misc: features.update(misc['add_to_features']) del(misc['add_to_features']) if 'add_to_choices' in misc: choices.update(misc['add_to_choices']) del(misc['add_to_choices']) tdir=misc.get('tmp_dir','') if tdir!='': state['tmp_dir']=tdir cch=r['characteristics'] cch['joined_compiler_flags']=flags # Add joint compilation flags as string from previous sections chars['compile']=cch xct=cch.get('compilation_time',-1) xos=cch.get('obj_size',-1) cs=misc.get('compilation_success','') if cs=='no': x='compilation failed' if misc.get('fail_reason','')!='': x+=' - '+misc['fail_reason'] i['fail_reason']=x i['fail']='yes' if last_md5!='': md5=cch.get('md5_sum','') if md5!='' and md5==last_md5: i['fail_reason']=last_md5_fail_text i['fail']='yes' texe=misc.get('target_exe','') state['target_exe']=texe ############################################################################################################### # PIPELINE SECTION: check if record MILEPOST features (after clean) if extracted_milepost_features and milepost_out_file!='': r=ck.save_json_to_file({'json_file':milepost_out_file, 'dict':feat}) if r['return']>0: return r ############################################################################################################### # PIPELINE SECTION: Check if dataset is the same sdc='no' if tsd=='yes' and (ati!=0 or srn!=0): sdc='yes' ############################################################################################################### # PIPELINE SECTION: perf perf_tmp='' if perf=='yes': if o=='con': ck.out(sep) ck.out('Preparing perf ...') rx=ck.gen_tmp_file({'prefix':'tmp-', 'remove_dir':'yes'}) if rx['return']>0: return rx perf_tmp=rx['file_name'] prcmd+='perf stat -x, -o '+perf_tmp if perf_tmp not in rof: rof.append(perf_tmp) ############################################################################################################### # PIPELINE SECTION: Intel vTune vtune_tmp='' vtune_tmp1='' if vtune=='yes': if o=='con': ck.out(sep) ck.out('Preparing vtune ...') if 'vtune_profiler' not in cdeps: cdeps['vtune_profiler']={'local':'yes', 'tags':'perf,intel,vtune'} if hplat=='win': eenv='\nrd /S /Q r000\n'+eenv else: eenv='\nrm -rf r000\n'+eenv prcmd+='amplxe-runss -r r000 -event-based-counts --' rx=ck.gen_tmp_file({'prefix':'tmp-', 'remove_dir':'yes'}) if rx['return']>0: return rx vtune_tmp=rx['file_name'] vtune_tmp1=vtune_tmp+'.csv' if vtune_tmp1 not in rof: rof.append(vtune_tmp1) eppc+='\namplxe-cl -report hw-events -r r000 -report-output='+vtune_tmp+' -format csv -csv-delimiter=comma -filter module=$#ONLY_BIN_FILE#$' ############################################################################################################### # PIPELINE SECTION: Preload dividiti's OpenCL profiler. if odp=='yes': if hplat=='win': return {'return':1, 'error':'dividiti\'s OpenCL profiler is currently not supported under Windows'} if 'dvdt_prof' not in cdeps: cdeps['dvdt_prof']={'local':'yes', 'tags':'tool,opencl,dvdt,prof,dvdt-prof2'} eenv='export LD_PRELOAD="${CK_ENV_TOOL_DVDT_PROF_DYNAMIC_NAME_FULL}"; '+eenv fodp='tmp-dvdt-prof-output.json' if os.path.isfile(fodp): os.remove(fodp) ############################################################################################################### # PIPELINE SECTION: Set MALI HWC counter collector if mali_hwc=='yes': # Call process output vector r=ck.access({'action':'run', 'module_uoa':cfg['module_deps']['script'], 'data_uoa': cfg['data_deps']['mali_hwc'], #'mali-hwc', 'code':'process', 'func':'config'}) if r['return']>0: return {'return':r['return'], 'error':'Problem with MALI HWC script ('+r['error']+')'} ############################################################################################################### # PIPELINE SECTION: Valgrind if valgrind=='yes': if o=='con': ck.out(sep) ck.out('Adding valgrind ...') x=cdeps['tool-valgrind'].get('cus',{}).get('cmd_prefix',{}).get(tplat,'') if x=='': return {'return':1, 'error':'command line for architecture simulator is not defined'} prcmd+=x ############################################################################################################### # PIPELINE SECTION: Architecture simulator if sim=='yes': if o=='con': ck.out(sep) ck.out('Adding architecture simulator ...') x=cdeps['arch-sim'].get('cus',{}).get('cmd_prefix',{}).get(tplat,'') if x=='': return {'return':1, 'error':'command line for architecture simulator is not defined'} prcmd+=x ############################################################################################################### # PIPELINE SECTION: Run program xdeps={} if i.get('fail','')!='yes' and cs!='no' and no_run!='yes': if o=='con': ck.out(sep) ck.out('Running program ...') # Remove some keys from env if meta.get('skip_remove_run_env_keys','')!='yes': for k in list(env.keys()): if k.startswith('CK_AR_') or k.startswith('CK_CC_') or \ k.startswith('CK_CXX_') or k.startswith('CK_CMAKE_') or \ k.startswith('CK_COMPILER_') or k.startswith('CK_LINKER_'): del(env[k]) # Check run cmd keys subst for k in choices: if k.startswith('run_cmd_key_'): rcsub[k]=choices[k] ii={'sub_action':'run', 'target':target, 'target_os':tos, 'device_id':tdid, 'host_os':hos, 'path':pdir, 'console':cons, 'meta':meta, 'deps':cdeps, 'deps_cache':deps_cache, 'reuse_deps':reuse_deps, 'cmd_key':kcmd, 'dataset_uoa':dduoa, 'dataset_file':ddfile, 'generate_rnd_tmp_dir':grtd, 'tmp_dir':tdir, 'skip_clean_after':sca, 'compile_type':ctype, 'speed':espeed, 'sudo':isd, 'energy':sme, 'affinity':aff, 'flags':flags, 'lflags':lflags, 'repeat':repeat, 'pre_run_cmd':prcmd, 'run_output_files':rof, 'skip_calibration':rsc, 'calibration_time':rct, 'calibration_max':rcm, 'params':params, 'post_process_script_uoa':pp_uoa, 'post_process_subscript':pp_name, 'post_process_params':pp_params, 'statistical_repetition':srn, 'autotuning_iteration':ati, 'compute_platform_id':compute_platform_id, 'compute_device_id':compute_device_id, 'skip_output_validation':vout_skip, 'output_validation_repo':vout_repo, 'program_output_uoa':program_output_uoa, 'overwrite_reference_output':vout_over, 'skip_dataset_copy':sdc, 'skip_exec':skip_exec, 'env':env, 'extra_env':eenv, 'extra_run_cmd':ercmd, 'debug_run_cmd':drcmd, 'extra_post_process_cmd':eppc, 'run_cmd_substitutes':rcsub, 'compiler_vars':cv, 'no_vars':ncv, 'skip_print_timers':sptimers, 'remove_compiler_vars':rcv, 'extra_env_for_compilation':eefc, 'run_timeout':xrto, 'out':oo} # Check if need to clean (when no_compile in meta and clean is yes) cl=i.get('clean','') if cl=='' and i.get('no_clean','')!='yes' and skip_exec!='yes' and srn==0: cl='yes' if cl=='yes' and meta.get('no_compile','')=='yes': ii['clean']='yes' r=process_in_dir(ii) if r['return']>0: return r misc=r['misc'] if 'add_to_state' in misc: state.update(misc['add_to_state']) del(misc['add_to_state']) if 'add_to_features' in misc: features.update(misc['add_to_features']) del(misc['add_to_features']) if 'add_to_choices' in misc: choices.update(misc['add_to_choices']) del(misc['add_to_choices']) tdir=misc.get('tmp_dir','') if tdir!='': state['tmp_dir']=tdir rch=r['characteristics'] chars['run']=rch xdeps=r.get('deps',{}) if len(xdeps)>0: if 'dependencies' not in i: i['dependencies']={} i['dependencies'].update(xdeps) csuc=misc.get('calibration_success',True) rs=misc.get('run_success','') rsf=misc.get('fail_reason','') repeat=rch.get('repeat','') if repeat!='': state['repeat']=repeat choices['repeat']=repeat if rs=='no' or not csuc: x='execution failed' if rsf!='': x+=' - '+rsf i['fail_reason']=x i['fail']='yes' ############################################################################################################### # PIPELINE SECTION: set CPU frequency to ondemand to "calm" system (if supported) if scpuf!='' and sic!='yes': if o=='con': ck.out(sep) ck.out('Attempting to set CPU frequency to ondemand to "calm" system (if supported) ...') ck.out('') ii={'action':'set_freq', 'module_uoa':cfg['module_deps']['platform.cpu'], 'value':'ondemand', 'target':target, 'host_os':hos, 'target_os':tos, 'device_id':tdid, 'skip_print_os':'yes', 'skip_device_init':sdi, 'skip_info_collection':sic, 'out':oo} r=ck.access(ii) if r['return']>0: return r ############################################################################################################### # PIPELINE SECTION: set GPU frequency to ondemand to "calm" system (if supported) if sgpuf!='' and sic!='yes': if o=='con': ck.out(sep) ck.out('Attempting to set GPU frequency to ondemand to "calm" system (if supported) ...') ck.out('') ii={'action':'set_freq', 'module_uoa':cfg['module_deps']['platform.gpu'], 'value':'ondemand', 'target':target, 'host_os':hos, 'target_os':tos, 'device_id':tdid, 'skip_print_os':'yes', 'skip_device_init':sdi, 'skip_info_collection':sic, 'out':oo} r=ck.access(ii) if r['return']>0: return r ############################################################################################################### # PIPELINE SECTION: finish vtune if vtune=='yes': if o=='con': ck.out(sep) ck.out('Processing Intel vTune output ...') ck.out('') if os.path.isfile(vtune_tmp1): import csv clk='Hardware Event Count:CPU_CLK_UNHALTED.THREAD:Self' inst='Hardware Event Count:INST_RETIRED.ANY:Self' f=open(vtune_tmp1, 'rb') c=csv.reader(f, delimiter=',') hc=[] val={} first=True for q in c: if first: first=False if len(q)>1: for k in range(2,len(q)): hc.append(q[k]) else: func=q[0] module=q[1] if len(q)>1: for k in range(2,len(q)): val[hc[k-2]]=q[k] break f.close() if sca!='yes': os.remove(vtune_tmp1) if len(val)>0: if clk in val and inst in val: cpi=0 try: cpi=float(val[clk])/float(val[inst]) except ValueError: pass if cpi!=0: chars['run']['global_cpi']=cpi chars['run']['global_clock']=float(val[clk]) chars['run']['global_instructions_retired']=float(val[inst]) ############################################################################################################### # PIPELINE SECTION: finish perf if perf=='yes': if o=='con': ck.out(sep) ck.out('Processing perf output ...') ck.out('') if os.path.isfile(perf_tmp): ii={'text_file':perf_tmp, 'split_to_list':'yes', 'encoding':sys.stdin.encoding} # if sca!='yes': # ii['delete_after_read']='yes' rx=ck.load_text_file(ii) if rx['return']>0: return rx glst=rx['lst'] clk='cycles' inst='instructions' val={} found=False for lx in glst: l=lx.strip() if found: x=l.find(',') if x>0: v=l[0:x] try: v=float(v) except ValueError: pass y=l.rfind(',') if y>x: key=l[y+1:] val[key]=v elif l.find(',task-clock')>0: found=True if sca!='yes': os.remove(perf_tmp) if len(val)>0: if clk in val and inst in val: cpi=0 try: cpi=val[clk]/val[inst] except ValueError: pass if cpi!=0: chars['run']['global_cpi']=cpi chars['run']['global_clock']=val[clk] chars['run']['global_instructions_retired']=val[inst] chars['run']['perf']=val ############################################################################################################### # PIPELINE SECTION: finish gprof if gprof=='yes': if o=='con': ck.out(sep) ck.out('Processing gprof output ...') ck.out('') if os.path.isfile(cfg['gprof_file']): ii={'text_file':gprof_tmp, 'split_to_list':'yes', 'encoding':sys.stdin.encoding} if sca!='yes': ii['delete_after_read']='yes' rx=ck.load_text_file(ii) if rx['return']>0: return rx glst=rx['lst'] process=False cgprof={} for g in glst: if g.startswith(' time'): process=True continue if process: if g=='': break gg1=g.strip().split(' ') gg=[] for g1 in gg1: g1x=g1.strip() if g1x!='': gg.append(g1x) igg=len(gg) if igg>0: x1=gg[igg-1] cgprof[x1]=gg ck.out(' * '+str(x1)+' : '+str(gg[0])+' % ') chars['run']['gprof']=cgprof chars['run']['gprof_list']=glst else: ck.out('WARNING: gprof output was not found ...') ck.out('') ############################################################################################################### # PIPELINE SECTION: Post-process MALI HWC counters if mali_hwc=='yes': # Call process output vector r=ck.access({'action':'run', 'module_uoa':cfg['module_deps']['script'], 'data_uoa': cfg['data_deps']['mali_hwc'], #'mali-hwc', 'code':'process', 'func':'read'}) if r['return']>0: return {'return':r['return'],
<gh_stars>10-100 import unittest import datetime from contextlib import contextmanager import rfc3339 from falcon_heavy.core.context import ( make_specification_conversion_context, make_request_conversion_context ) from falcon_heavy.core.openapi import ( SchemaObjectType, ComponentsObjectType ) from falcon_heavy.core.factories import TypeFactory from falcon_heavy.core.types import Error, SchemaError, Path class FactoriesTest(unittest.TestCase): @staticmethod def _load(object_type, specification): return object_type().convert( specification, Path(''), **make_specification_conversion_context( '', specification) ) @staticmethod def _generate_type(spec): return TypeFactory().generate(spec) @staticmethod def _convert(type_, payload, strict=True): return type_.convert( payload, Path(''), strict=strict, **make_request_conversion_context() ) @contextmanager def assertSchemaErrorRaises(self, expected_errors=None): with self.assertRaises(SchemaError) as ctx: yield if expected_errors is not None: self.assertEqual(len(expected_errors), len(ctx.exception.errors)) for path, message in expected_errors.items(): self.assertTrue( Error(Path(path), message) in ctx.exception.errors, msg="An error at %s with message \"%s\" was expected, but these errors were received:\n%s" % ( path, message, ctx.exception.errors) ) def test_generate_one_of(self): spec = { 'x-schemas': { 'Cat': { 'type': 'object', 'additionalProperties': False, 'properties': { 'name': { 'type': 'string' } } }, 'Dog': { 'type': 'object', 'additionalProperties': False, 'properties': { 'nickname': { 'type': 'string' } } } }, 'type': 'object', 'properties': { 'pet': { 'oneOf': [ { '$ref': '#/x-schemas/Cat' }, { '$ref': '#/x-schemas/Dog' } ] } } } spec = self._load(SchemaObjectType, spec) type_ = self._generate_type(spec) cat_payload = { 'pet': { 'name': 'Misty' } } cat = self._convert(type_, cat_payload) self.assertEqual(cat['pet']['name'], 'Misty') dog_payload = { 'pet': { 'nickname': 'Max' } } dog = self._convert(type_, dog_payload) self.assertEqual(dog['pet']['nickname'], 'Max') def test_generate_oneof_with_implicit_discriminator(self): spec = { 'schemas': { 'Cat': { 'type': 'object', 'required': [ 'pet_type' ], 'properties': { 'pet_type': { 'type': 'string' }, 'name': { 'type': 'string' } } }, 'Dog': { 'type': 'object', 'additionalProperties': False, 'required': [ 'pet_type' ], 'properties': { 'pet_type': { 'type': 'string' }, 'nickname': { 'type': 'string' } } }, 'Pet': { 'type': 'object', 'properties': { 'pet': { 'oneOf': [ { '$ref': '#/schemas/Cat' }, { '$ref': '#/schemas/Dog' } ], 'discriminator': { 'propertyName': 'pet_type' } } } } } } spec = self._load(ComponentsObjectType, spec) type_ = self._generate_type(spec['schemas']['Pet']) cat_payload = { 'pet': { 'pet_type': 'Cat', 'name': 'Misty' } } cat = self._convert(type_, cat_payload) self.assertEqual(cat['pet']['name'], 'Misty') self.assertEqual(cat['pet']['pet_type'], 'Cat') ambiguous_cat_payload = { 'pet': { 'pet_type': '', 'name': 'Misty' } } with self.assertSchemaErrorRaises({ '#/pet': "The discriminator value must be equal to one of the following values: 'Cat', 'Dog'" }): self._convert(type_, ambiguous_cat_payload) dog_with_cat_properties = { 'pet': { 'pet_type': 'Dog', 'name': 'Misty' } } with self.assertSchemaErrorRaises({ '#/pet': "When `additionalProperties` is False, no unspecified properties are allowed. " "The following unspecified properties were found: 'name'" }): self._convert(type_, dog_with_cat_properties) def test_generate_one_of_with_semi_explicit_discriminator(self): spec = { 'schemas': { 'Cat': { 'type': 'object', 'additionalProperties': False, 'required': [ 'pet_type' ], 'properties': { 'pet_type': { 'type': 'string' }, 'name': { 'type': 'string' } } }, 'Dog': { 'type': 'object', 'additionalProperties': False, 'required': [ 'pet_type' ], 'properties': { 'pet_type': { 'type': 'string' }, 'nickname': { 'type': 'string' } } }, 'Pet': { 'type': 'object', 'properties': { 'pet': { 'oneOf': [ { '$ref': '#/schemas/Cat' }, { '$ref': '#/schemas/Dog' } ], 'discriminator': { 'propertyName': 'pet_type', 'mapping': { '1': '#/schemas/Cat', } } } } } } } spec = self._load(ComponentsObjectType, spec) type_ = self._generate_type(spec['schemas']['Pet']) cat_payload = { 'pet': { 'pet_type': '1', 'name': 'Misty' } } cat = self._convert(type_, cat_payload) self.assertEqual(cat['pet']['name'], 'Misty') dog_payload = { 'pet': { 'pet_type': 'Dog', 'nickname': 'Max' } } dog = self._convert(type_, dog_payload) self.assertEqual(dog['pet']['nickname'], 'Max') unknown_payload = { 'pet': { 'pet_type': '2', 'nickname': 'Max' } } with self.assertSchemaErrorRaises({ '#/pet': "The discriminator value must be equal to one of the following values: '1', 'Cat', 'Dog'" }): self._convert(type_, unknown_payload) def test_generate_discriminator_with_inline_schemas(self): # Discriminator with inline schemas spec = { 'x-schemas': { 'Cat': { 'type': 'object', 'additionalProperties': False, 'required': [ 'pet_type' ], 'properties': { 'pet_type': { 'type': 'string' }, 'name': { 'type': 'string' } } }, 'Dog': { 'type': 'object', 'additionalProperties': False, 'required': [ 'pet_type' ], 'properties': { 'pet_type': { 'type': 'string' }, 'nickname': { 'type': 'string' } } } }, 'type': 'object', 'properties': { 'pet': { 'oneOf': [ { '$ref': '#/x-schemas/Cat' }, { '$ref': '#/x-schemas/Dog' }, { 'type': 'object', 'additionalProperties': False, 'required': [ 'pet_type' ], 'properties': { 'pet_type': { 'type': 'string' }, 'last_name': { 'type': 'string' } } } ], 'discriminator': { 'propertyName': 'pet_type' } } } } spec = self._load(SchemaObjectType, spec) type_ = self._generate_type(spec) inline_payload = { 'pet': { 'pet_type': 2, 'last_name': 'Misty' } } with self.assertSchemaErrorRaises({ '#/pet': "The discriminator value must be equal to one of the following values: 'Cat', 'Dog'" }): self._convert(type_, inline_payload) def test_generate_anyOf(self): spec = { 'x-schemas': { 'Cat': { 'type': 'object', 'additionalProperties': False, 'properties': { 'name': { 'type': 'string' } } }, 'Dog': { 'type': 'object', 'additionalProperties': False, 'properties': { 'nickname': { 'type': 'string' } } } }, 'type': 'object', 'properties': { 'pet': { 'anyOf': [ { '$ref': '#/x-schemas/Cat' }, { '$ref': '#/x-schemas/Dog' } ] } } } spec = self._load(SchemaObjectType, spec) type_ = self._generate_type(spec) cat_payload = { 'pet': { 'name': 'Misty' } } cat = self._convert(type_, cat_payload) self.assertEqual(cat['pet']['name'], 'Misty') dog_payload = { 'pet': { 'nickname': 'Max' } } dog = self._convert(type_, dog_payload) self.assertEqual(dog['pet']['nickname'], 'Max') not_any_payload = { 'pet': { 'weight': '10kg' } } with self.assertSchemaErrorRaises({ '#/pet': "Does not match any schemas from `anyOf`", '#/pet/0': "When `additionalProperties` is False, no unspecified properties are allowed. " "The following unspecified properties were found: 'weight'", '#/pet/1': "When `additionalProperties` is False, no unspecified properties are allowed. " "The following unspecified properties were found: 'weight'" }): self._convert(type_, not_any_payload) spec = { 'x-schemas': { 'Cat': { 'type': 'object', 'properties': { 'name': { 'type': 'string' } } }, 'Dog': { 'type': 'object', 'properties': { 'nickname': { 'type': 'string' } } } }, 'type': 'object', 'properties': { 'pet': { 'anyOf': [ { '$ref': '#/x-schemas/Cat' }, { '$ref': '#/x-schemas/Dog' } ] } } } spec = self._load(SchemaObjectType, spec) type_ = self._generate_type(spec) cat_dog_payload = { 'pet': { 'name': 'Misty', 'nickname': 'Max' } } cat_dog = self._convert(type_, cat_dog_payload) self.assertEqual(cat_dog['pet']['name'], 'Misty') self.assertEqual(cat_dog['pet']['nickname'], 'Max') def test_generate_allOf(self): spec = { 'x-schemas': { 'Cat': { 'type': 'object', 'properties': { 'name': { 'type': 'string' }, 's': { 'type': 'integer' } } }, 'Dog': { 'type': 'object', 'properties': { 'nickname': { 'type': 'string' } } } }, 'type': 'object', 'properties': { 'pet': { 'allOf': [ { '$ref': '#/x-schemas/Cat' }, { '$ref': '#/x-schemas/Dog' } ] } } } spec = self._load(SchemaObjectType, spec) type_ = self._generate_type(spec) cat_dog_payload = { 'pet': { 'name': 'Misty', 'nickname': 'Max', 's': '45' } } cat_dog = self._convert(type_, cat_dog_payload, strict=False) self.assertEqual(cat_dog['pet']['name'], 'Misty') self.assertEqual(cat_dog['pet']['nickname'], 'Max') self.assertTrue(isinstance(cat_dog['pet']['s'], int)) def test_generate_merged(self): spec = { 'x-schemas': { 'Cat': { 'type': 'object', 'properties': { 'name': { 'type': 'string' }, 's': { 'type': 'integer' } } }, 'Dog': { 'type': 'object', 'required': ['nickname'], 'properties': { 'nickname': { 'type': 'string' } }, 'additionalProperties': False, 'x-patternProperties': { 'r.*': { 'type': 'integer' } } } }, 'type': 'object', 'properties': { 'pet': { 'allOf': [ { '$ref': '#/x-schemas/Cat' }, { '$ref': '#/x-schemas/Dog' } ], 'x-merge': True } } } spec = self._load(SchemaObjectType, spec) type_ = self._generate_type(spec) cat_dog_payload = { 'pet': { 'name': 'Misty', 'nickname': 'Max', 's': '45' } } cat_dog = self._convert(type_, cat_dog_payload, strict=False) self.assertEqual(cat_dog['pet']['name'], 'Misty') self.assertEqual(cat_dog['pet']['nickname'], 'Max') self.assertTrue(isinstance(cat_dog['pet']['s'], int)) invalid_cat_dog_payload = { 'pet': { 'name': 'Misty', 'nickname': 'Max', 's': 45, 'owner': 'Peter' } } with self.assertSchemaErrorRaises({ '#/pet': "When `additionalProperties` is False, no unspecified properties are allowed. " "The following unspecified properties were found: 'owner'" }): self._convert(type_, invalid_cat_dog_payload) def test_generate_recursive_property(self): spec = { 'properties': { 'payload': {}, 'nested_nodes': { 'type': 'array', 'items': { '$ref': '#/' } } } } spec = self._load(SchemaObjectType, spec) type_ = self._generate_type(spec) payload = { 'adsad': 'sdsd', 'payload': { 'ddd': 34 }, 'nested_nodes': [ { 'payload': {}, 'nested_nodes': [ { 'payload': { 'fdf': 54 } } ] }, { 'payload': { 'ff': 'dd' } } ] } root = self._convert(type_, payload) self.assertEqual(root['adsad'], 'sdsd') def test_defaults(self): spec = { 'properties': { 'with_default': { 'type': 'integer', 'default': 5 } } } spec = self._load(SchemaObjectType, spec) type_ = self._generate_type(spec) payload = {} obj = self._convert(type_, payload) self.assertEqual(obj['with_default'], 5) spec = { 'properties': { 'with_default': { 'type': 'string', 'pattern': r'^\+?\d{7,20}$', 'default': 'sdfdf' } } } spec = self._load(SchemaObjectType, spec) type_ = self._generate_type(spec) payload = {} with self.assertSchemaErrorRaises({ '#/with_default': "Does not match the pattern" }): self._convert(type_, payload) def
"dv": Variable( "Meridional velocity tendency", V_GRID + TIMESTEPS, "m/s", "Meridional velocity tendency", write_to_restart=True ), "du_cor": Variable("Change of u by Coriolis force", U_GRID, "m/s^2", "Change of u due to Coriolis force"), "dv_cor": Variable("Change of v by Coriolis force", V_GRID, "m/s^2", "Change of v due to Coriolis force"), "du_mix": Variable( "Change of u by vertical mixing", U_GRID, "m/s^2", "Change of u due to implicit vertical mixing" ), "dv_mix": Variable( "Change of v by vertical mixing", V_GRID, "m/s^2", "Change of v due to implicit vertical mixing" ), "du_adv": Variable("Change of u by advection", U_GRID, "m/s^2", "Change of u due to advection"), "dv_adv": Variable("Change of v by advection", V_GRID, "m/s^2", "Change of v due to advection"), "p_hydro": Variable("Hydrostatic pressure", T_GRID, "m^2/s^2", "Hydrostatic pressure"), "kappaM": Variable("Vertical viscosity", T_GRID, "m^2/s", "Vertical viscosity"), "kappaH": Variable("Vertical diffusivity", W_GRID, "m^2/s", "Vertical diffusivity"), "surface_taux": Variable( "Surface wind stress", U_HOR, "N/m^2", "Zonal surface wind stress", ), "surface_tauy": Variable( "Surface wind stress", V_HOR, "N/m^2", "Meridional surface wind stress", ), "forc_rho_surface": Variable("Surface density flux", T_HOR, "kg / (m^2 s)", "Surface potential density flux"), "psi": Variable( "Streamfunction", ZETA_HOR + TIMESTEPS, "m^3/s", "Barotropic streamfunction", write_to_restart=True, mask=ZETA_HOR_ERODED, ), "dpsi": Variable( "Streamfunction tendency", ZETA_HOR + TIMESTEPS, "m^3/s^2", "Streamfunction tendency", write_to_restart=True ), "land_map": Variable("Land map", T_HOR, "", "Land map", dtype="int32"), "isle": Variable("Island number", ISLE, "", "Island number"), "psin": Variable( "Boundary streamfunction", ZETA_HOR + ISLE, "m^3/s", "Boundary streamfunction", time_dependent=False, mask=ZETA_HOR_ERODED, ), "dpsin": Variable( "Boundary streamfunction factor", ISLE + TIMESTEPS, "m^3/s^2", "Boundary streamfunction factor", write_to_restart=True, ), "line_psin": Variable( "Boundary line integrals", ISLE + ISLE, "m^4/s^2", "Boundary line integrals", time_dependent=False ), "boundary_mask": Variable("Boundary mask", T_HOR + ISLE, "", "Boundary mask", time_dependent=False, dtype="bool"), "line_dir_south_mask": Variable( "Line integral mask", T_HOR + ISLE, "", "Line integral mask", time_dependent=False, dtype="bool" ), "line_dir_north_mask": Variable( "Line integral mask", T_HOR + ISLE, "", "Line integral mask", time_dependent=False, dtype="bool" ), "line_dir_east_mask": Variable( "Line integral mask", T_HOR + ISLE, "", "Line integral mask", time_dependent=False, dtype="bool" ), "line_dir_west_mask": Variable( "Line integral mask", T_HOR + ISLE, "", "Line integral mask", time_dependent=False, dtype="bool" ), "K_gm": Variable("Skewness diffusivity", W_GRID, "m^2/s", "GM diffusivity, either constant or from EKE model"), "K_iso": Variable("Isopycnal diffusivity", W_GRID, "m^2/s", "Along-isopycnal diffusivity"), "K_diss_v": Variable( "Dissipation of kinetic Energy", W_GRID, "m^2/s^3", "Kinetic energy dissipation by vertical, rayleigh and bottom friction", write_to_restart=True, ), "K_diss_bot": Variable( "Dissipation of kinetic Energy", W_GRID, "m^2/s^3", "Mean energy dissipation by bottom and rayleigh friction" ), "K_diss_h": Variable( "Dissipation of kinetic Energy", W_GRID, "m^2/s^3", "Kinetic energy dissipation by horizontal friction" ), "K_diss_gm": Variable( "Dissipation of mean energy", W_GRID, "m^2/s^3", "Mean energy dissipation by GM (TRM formalism only)", ), "P_diss_v": Variable( "Dissipation of potential Energy", W_GRID, "m^2/s^3", "Potential energy dissipation by vertical diffusion" ), "P_diss_nonlin": Variable( "Dissipation of potential Energy", W_GRID, "m^2/s^3", "Potential energy dissipation by nonlinear equation of state", ), "P_diss_iso": Variable( "Dissipation of potential Energy", W_GRID, "m^2/s^3", "Potential energy dissipation by isopycnal mixing" ), "P_diss_skew": Variable( "Dissipation of potential Energy", W_GRID, "m^2/s^3", "Potential energy dissipation by GM (w/o TRM)" ), "P_diss_hmix": Variable( "Dissipation of potential Energy", W_GRID, "m^2/s^3", "Potential energy dissipation by horizontal mixing" ), "P_diss_adv": Variable( "Dissipation of potential Energy", W_GRID, "m^2/s^3", "Potential energy dissipation by advection" ), "P_diss_sources": Variable( "Dissipation of potential Energy", W_GRID, "m^2/s^3", "Potential energy dissipation by external sources (e.g. restoring zones)", ), "u_wgrid": Variable("U on W grid", W_GRID, "m/s", "Zonal velocity interpolated to W grid points"), "v_wgrid": Variable("V on W grid", W_GRID, "m/s", "Meridional velocity interpolated to W grid points"), "w_wgrid": Variable("W on W grid", W_GRID, "m/s", "Vertical velocity interpolated to W grid points"), "xt": Variable( "Zonal coordinate (T)", XT, lambda settings: "degrees_east" if settings.coord_degree else "km", "Zonal (x) coordinate of T-grid point", time_dependent=False, scale=lambda settings: 1 if settings.coord_degree else 1e-3, ), "xu": Variable( "Zonal coordinate (U)", XU, lambda settings: "degrees_east" if settings.coord_degree else "km", "Zonal (x) coordinate of U-grid point", time_dependent=False, scale=lambda settings: 1 if settings.coord_degree else 1e-3, ), "yt": Variable( "Meridional coordinate (T)", YT, lambda settings: "degrees_north" if settings.coord_degree else "km", "Meridional (y) coordinate of T-grid point", time_dependent=False, scale=lambda settings: 1 if settings.coord_degree else 1e-3, ), "yu": Variable( "Meridional coordinate (U)", YU, lambda settings: "degrees_north" if settings.coord_degree else "km", "Meridional (y) coordinate of U-grid point", time_dependent=False, scale=lambda settings: 1 if settings.coord_degree else 1e-3, ), "temp_source": Variable( "Source of temperature", T_GRID, "K/s", "Non-conservative source of temperature", active=lambda settings: settings.enable_tempsalt_sources, ), "salt_source": Variable( "Source of salt", T_GRID, "g/(kg s)", "Non-conservative source of salt", active=lambda settings: settings.enable_tempsalt_sources, ), "u_source": Variable( "Source of zonal velocity", U_GRID, "m/s^2", "Non-conservative source of zonal velocity", active=lambda settings: settings.enable_momentum_sources, ), "v_source": Variable( "Source of meridional velocity", V_GRID, "m/s^2", "Non-conservative source of meridional velocity", active=lambda settings: settings.enable_momentum_sources, ), "K_11": Variable( "Isopycnal mixing coefficient", T_GRID, "m^2/s", "Isopycnal mixing tensor component", active=lambda settings: settings.enable_neutral_diffusion, ), "K_22": Variable( "Isopycnal mixing coefficient", T_GRID, "m^2/s", "Isopycnal mixing tensor component", active=lambda settings: settings.enable_neutral_diffusion, ), "K_33": Variable( "Isopycnal mixing coefficient", T_GRID, "m^2/s", "Isopycnal mixing tensor component", active=lambda settings: settings.enable_neutral_diffusion, ), "Ai_ez": Variable( "Isopycnal diffusion coefficient", T_GRID + TENSOR_COMP, "Vertical isopycnal diffusion coefficient on eastern face of T cell", "1", active=lambda settings: settings.enable_neutral_diffusion, ), "Ai_nz": Variable( "Isopycnal diffusion coefficient", T_GRID + TENSOR_COMP, "Vertical isopycnal diffusion coefficient on northern face of T cell", "1", active=lambda settings: settings.enable_neutral_diffusion, ), "Ai_bx": Variable( "Isopycnal diffusion coefficient", T_GRID + TENSOR_COMP, "Zonal isopycnal diffusion coefficient on bottom face of T cell", "1", active=lambda settings: settings.enable_neutral_diffusion, ), "Ai_by": Variable( "Isopycnal diffusion coefficient", T_GRID + TENSOR_COMP, "Meridional isopycnal diffusion coefficient on bottom face of T cell", "1", active=lambda settings: settings.enable_neutral_diffusion, ), "B1_gm": Variable( "Zonal component of GM streamfunction", V_GRID, "m^2/s", "Zonal component of GM streamfunction", active=lambda settings: settings.enable_skew_diffusion, ), "B2_gm": Variable( "Meridional component of GM streamfunction", U_GRID, "m^2/s", "Meridional component of GM streamfunction", active=lambda settings: settings.enable_skew_diffusion, ), "r_bot_var_u": Variable( "Bottom friction coeff.", U_HOR, "1/s", "Zonal bottom friction coefficient", active=lambda settings: settings.enable_bottom_friction_var, ), "r_bot_var_v": Variable( "Bottom friction coeff.", V_HOR, "1/s", "Meridional bottom friction coefficient", active=lambda settings: settings.enable_bottom_friction_var, ), "kappa_gm": Variable( "Vertical diffusivity", W_GRID, "m^2/s", "Vertical diffusivity", active=lambda settings: settings.enable_TEM_friction, ), "tke": Variable( "Turbulent kinetic energy", W_GRID + TIMESTEPS, "m^2/s^2", "Turbulent kinetic energy", write_to_restart=True, active=lambda settings: settings.enable_tke, ), "sqrttke": Variable( "Square-root of TKE", W_GRID, "m/s", "Square-root of TKE", active=lambda settings: settings.enable_tke, ), "dtke": Variable( "Turbulent kinetic energy tendency", W_GRID + TIMESTEPS, "m^2/s^3", "Turbulent kinetic energy tendency", write_to_restart=True, active=lambda settings: settings.enable_tke, ), "Prandtlnumber": Variable( "Prandtl number", W_GRID, "", "Prandtl number", active=lambda settings: settings.enable_tke, ), "mxl": Variable( "Mixing length", W_GRID, "m", "Mixing length", active=lambda settings: settings.enable_tke, ), "forc_tke_surface": Variable( "TKE surface flux", T_HOR, "m^3/s^3", "TKE surface flux", active=lambda settings: settings.enable_tke, ), "tke_diss": Variable( "TKE dissipation", W_GRID, "m^2/s^3", "TKE dissipation", active=lambda settings: settings.enable_tke, ), "tke_surf_corr": Variable( "Correction of TKE surface flux", T_HOR, "m^3/s^3", "Correction of TKE surface flux", active=lambda settings: settings.enable_tke, ), "eke": Variable( "meso-scale energy", W_GRID + TIMESTEPS, "m^2/s^2", "meso-scale energy", write_to_restart=True, active=lambda settings: settings.enable_eke, ), "deke": Variable( "meso-scale energy tendency", W_GRID + TIMESTEPS, "m^2/s^3", "meso-scale energy tendency", write_to_restart=True, active=lambda settings: settings.enable_eke, ), "sqrteke": Variable( "square-root of eke", W_GRID, "m/s", "square-root of eke", active=lambda settings: settings.enable_eke, ), "L_rossby": Variable( "Rossby radius", T_HOR, "m", "Rossby radius", active=lambda settings: settings.enable_eke, ), "L_rhines": Variable( "Rhines scale", W_GRID, "m", "Rhines scale", active=lambda settings: settings.enable_eke, ), "eke_len": Variable( "Eddy length scale", T_GRID, "m", "Eddy length scale", active=lambda settings: settings.enable_eke, ), "eke_diss_iw": Variable( "Dissipation of EKE to IW", W_GRID, "m^2/s^3", "Dissipation of EKE to internal waves", active=lambda settings: settings.enable_eke, ), "eke_diss_tke": Variable( "Dissipation of EKE to TKE", W_GRID, "m^2/s^3", "Dissipation of EKE to TKE", active=lambda settings: settings.enable_eke, ), "E_iw": Variable( "Internal wave energy", W_GRID + TIMESTEPS, "m^2/s^2", "Internal wave energy", write_to_restart=True, active=lambda settings: settings.enable_idemix, ), "dE_iw": Variable( "Internal wave energy tendency", W_GRID + TIMESTEPS, "m^2/s^2", "Internal wave energy tendency", write_to_restart=True, active=lambda settings: settings.enable_idemix, ), "c0": Variable( "Vertical IW group velocity", W_GRID, "m/s", "Vertical internal wave group velocity", active=lambda settings: settings.enable_idemix, ), "v0": Variable( "Horizontal IW group velocity", W_GRID, "m/s", "Horizontal internal wave group velocity", active=lambda settings: settings.enable_idemix, ), "alpha_c": Variable( "?", W_GRID, "?", "?", active=lambda settings: settings.enable_idemix, ), "iw_diss": Variable( "IW dissipation", W_GRID, "m^2/s^3", "Internal wave
level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): pass def exportLiteralChildren(self, outfile, level, name_): if self.Name is not None: showIndent(outfile, level) outfile.write('Name=%s,\n' % quote_python(self.Name).encode(ExternalEncoding)) if self.Physical_Address is not None: showIndent(outfile, level) outfile.write('Physical_Address=%s,\n' % quote_python(self.Physical_Address).encode(ExternalEncoding)) if self.Virtual_Address is not None: showIndent(outfile, level) outfile.write('Virtual_Address=%s,\n' % quote_python(self.Virtual_Address).encode(ExternalEncoding)) if self.Size_Of_Raw_Data is not None: showIndent(outfile, level) outfile.write('Size_Of_Raw_Data=%s,\n' % quote_python(self.Size_Of_Raw_Data).encode(ExternalEncoding)) if self.Pointer_To_Raw_Data is not None: showIndent(outfile, level) outfile.write('Pointer_To_Raw_Data=%s,\n' % quote_python(self.Pointer_To_Raw_Data).encode(ExternalEncoding)) if self.Pointer_To_Relocations is not None: showIndent(outfile, level) outfile.write('Pointer_To_Relocations=%s,\n' % quote_python(self.Pointer_To_Relocations).encode(ExternalEncoding)) if self.Pointer_To_Linenumbers is not None: showIndent(outfile, level) outfile.write('Pointer_To_Linenumbers=%s,\n' % quote_python(self.Pointer_To_Linenumbers).encode(ExternalEncoding)) if self.Number_Of_Relocations is not None: showIndent(outfile, level) outfile.write('Number_Of_Relocations=%s,\n' % quote_python(self.Number_Of_Relocations).encode(ExternalEncoding)) if self.Number_Of_Linenumbers is not None: showIndent(outfile, level) outfile.write('Number_Of_Linenumbers=%s,\n' % quote_python(self.Number_Of_Linenumbers).encode(ExternalEncoding)) if self.Characteristics is not None: showIndent(outfile, level) outfile.write('Characteristics=%s,\n' % quote_python(self.Characteristics).encode(ExternalEncoding)) def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'Name': obj_ = common.StringObjectAttributeType.factory() obj_.build(child_) self.set_Name(obj_) elif nodeName_ == 'Physical_Address': obj_ = common.StringObjectAttributeType.factory() obj_.build(child_) self.set_Physical_Address(obj_) elif nodeName_ == 'Virtual_Address': Virtual_Address_ = child_.text Virtual_Address_ = self.gds_validate_string(Virtual_Address_, node, 'Virtual_Address') self.Virtual_Address = Virtual_Address_ elif nodeName_ == 'Size_Of_Raw_Data': Size_Of_Raw_Data_ = child_.text Size_Of_Raw_Data_ = self.gds_validate_string(Size_Of_Raw_Data_, node, 'Size_Of_Raw_Data') self.Size_Of_Raw_Data = Size_Of_Raw_Data_ elif nodeName_ == 'Pointer_To_Raw_Data': Pointer_To_Raw_Data_ = child_.text Pointer_To_Raw_Data_ = self.gds_validate_string(Pointer_To_Raw_Data_, node, 'Pointer_To_Raw_Data') self.Pointer_To_Raw_Data = Pointer_To_Raw_Data_ elif nodeName_ == 'Pointer_To_Relocations': Pointer_To_Relocations_ = child_.text Pointer_To_Relocations_ = self.gds_validate_string(Pointer_To_Relocations_, node, 'Pointer_To_Relocations') self.Pointer_To_Relocations = Pointer_To_Relocations_ elif nodeName_ == 'Pointer_To_Linenumbers': Pointer_To_Linenumbers_ = child_.text Pointer_To_Linenumbers_ = self.gds_validate_string(Pointer_To_Linenumbers_, node, 'Pointer_To_Linenumbers') self.Pointer_To_Linenumbers = Pointer_To_Linenumbers_ elif nodeName_ == 'Number_Of_Relocations': Number_Of_Relocations_ = child_.text Number_Of_Relocations_ = self.gds_validate_string(Number_Of_Relocations_, node, 'Number_Of_Relocations') self.Number_Of_Relocations = Number_Of_Relocations_ elif nodeName_ == 'Number_Of_Linenumbers': Number_Of_Linenumbers_ = child_.text Number_Of_Linenumbers_ = self.gds_validate_string(Number_Of_Linenumbers_, node, 'Number_Of_Linenumbers') self.Number_Of_Linenumbers = Number_Of_Linenumbers_ elif nodeName_ == 'Characteristics': Characteristics_ = common.HexBinaryObjectAttributeType.factory() Characteristics_.build(child_) self.set_Characteristics(Characteristics_) # end class PESectionHeaderStructType class DOSHeaderType(GeneratedsSuper): """The DOSHeaderType type is a container for the attributes present in the _IMAGE_DOS_HEADER structure, which can be found in Winnt.h and pe.h. See http://www.csn.ul.ie/~caolan/pub/winresdump/winres dump/doc/pefile.html for more information about the winnt.h file, and http://www.tavi.co.uk/phobos/exeformat.html for even more clarification.""" subclass = None superclass = None def __init__(self, e_magic=None, e_cblp=None, e_cp=None, e_crlc=None, e_cparhdr=None, e_minalloc=None, e_maxalloc=None, e_ss=None, e_sp=None, e_csum=None, e_ip=None, e_cs=None, e_lfarlc=None, e_ovro=None, reserved1=None, e_oemid=None, e_oeminfo=None, reserved2=None, e_lfanew=None, Hashes=None): self.e_magic = e_magic self.e_cblp = e_cblp self.e_cp = e_cp self.e_crlc = e_crlc self.e_cparhdr = e_cparhdr self.e_minalloc = e_minalloc self.e_maxalloc = e_maxalloc self.e_ss = e_ss self.e_sp = e_sp self.e_csum = e_csum self.e_ip = e_ip self.e_cs = e_cs self.e_lfarlc = e_lfarlc self.e_ovro = e_ovro if reserved1 is None: self.reserved1 = [] else: self.reserved1 = reserved1 self.e_oemid = e_oemid self.e_oeminfo = e_oeminfo self.reserved2 = reserved2 self.e_lfanew = e_lfanew self.Hashes = Hashes def factory(*args_, **kwargs_): if DOSHeaderType.subclass: return DOSHeaderType.subclass(*args_, **kwargs_) else: return DOSHeaderType(*args_, **kwargs_) factory = staticmethod(factory) def get_e_magic(self): return self.e_magic def set_e_magic(self, e_magic): self.e_magic = e_magic def get_e_cblp(self): return self.e_cblp def set_e_cblp(self, e_cblp): self.e_cblp = e_cblp def get_e_cp(self): return self.e_cp def set_e_cp(self, e_cp): self.e_cp = e_cp def get_e_crlc(self): return self.e_crlc def set_e_crlc(self, e_crlc): self.e_crlc = e_crlc def get_e_cparhdr(self): return self.e_cparhdr def set_e_cparhdr(self, e_cparhdr): self.e_cparhdr = e_cparhdr def get_e_minalloc(self): return self.e_minalloc def set_e_minalloc(self, e_minalloc): self.e_minalloc = e_minalloc def get_e_maxalloc(self): return self.e_maxalloc def set_e_maxalloc(self, e_maxalloc): self.e_maxalloc = e_maxalloc def get_e_ss(self): return self.e_ss def set_e_ss(self, e_ss): self.e_ss = e_ss def get_e_sp(self): return self.e_sp def set_e_sp(self, e_sp): self.e_sp = e_sp def get_e_csum(self): return self.e_csum def set_e_csum(self, e_csum): self.e_csum = e_csum def get_e_ip(self): return self.e_ip def set_e_ip(self, e_ip): self.e_ip = e_ip def get_e_cs(self): return self.e_cs def set_e_cs(self, e_cs): self.e_cs = e_cs def get_e_lfarlc(self): return self.e_lfarlc def set_e_lfarlc(self, e_lfarlc): self.e_lfarlc = e_lfarlc def get_e_ovro(self): return self.e_ovro def set_e_ovro(self, e_ovro): self.e_ovro = e_ovro def get_reserved1(self): return self.reserved1 def set_reserved1(self, reserved1): self.reserved1 = reserved1 def add_reserved1(self, value): self.reserved1.append(value) def insert_reserved1(self, index, value): self.reserved1[index] = value def get_e_oemid(self): return self.e_oemid def set_e_oemid(self, e_oemid): self.e_oemid = e_oemid def get_e_oeminfo(self): return self.e_oeminfo def set_e_oeminfo(self, e_oeminfo): self.e_oeminfo = e_oeminfo def get_reserved2(self): return self.reserved2 def set_reserved2(self, reserved2): self.reserved2 = reserved2 def get_e_lfanew(self): return self.e_lfanew def set_e_lfanew(self, e_lfanew): self.e_lfanew = e_lfanew def get_Hashes(self): return self.Hashes def set_Hashes(self, Hashes): self.Hashes = Hashes def export(self, outfile, level, namespace_='WinExecutableFileObj:', name_='DOSHeaderType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) already_processed = [] self.exportAttributes(outfile, level, already_processed, namespace_, name_='DOSHeaderType') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='WinExecutableFileObj:', name_='DOSHeaderType'): pass def exportChildren(self, outfile, level, namespace_='WinExecutableFileObj:', name_='DOSHeaderType', fromsubclass_=False): if self.e_magic is not None: self.e_magic.export(outfile, level, namespace_, name_='e_magic') if self.e_cblp is not None: self.e_cblp.export(outfile, level, namespace_, name_='e_cblp') if self.e_cp is not None: self.e_cp.export(outfile, level, namespace_, name_='e_cp') if self.e_crlc is not None: self.e_crlc.export(outfile, level, namespace_, name_='e_crlc') if self.e_cparhdr is not None: self.e_cparhdr.export(outfile, level, namespace_, name_='e_cparhdr') if self.e_minalloc is not None: self.e_minalloc.export(outfile, level, namespace_, name_='e_minalloc') if self.e_maxalloc is not None: self.e_maxalloc.export(outfile, level, namespace_, name_='e_maxalloc') if self.e_ss is not None: self.e_ss.export(outfile, level, namespace_, name_='e_ss') if self.e_sp is not None: self.e_sp.export(outfile, level, namespace_, name_='e_sp') if self.e_csum is not None: self.e_csum.export(outfile, level, namespace_, name_='e_csum') if self.e_ip is not None: self.e_ip.export(outfile, level, namespace_, name_='e_ip') if self.e_cs is not None: self.e_cs.export(outfile, level, namespace_, name_='e_cs') if self.e_lfarlc is not None: self.e_lfarlc.export(outfile, level, namespace_, name_='e_lfarlc') if self.e_ovro is not None: self.e_ovro.export(outfile, level, namespace_, name_='e_ovro') for reserved1_ in self.reserved1: reserved1_.export(outfile, level, namespace_, name_='reserved1') if self.e_oemid is not None: self.e_oemid.export(outfile, level, namespace_, name_='e_oemid') if self.e_oeminfo is not None: self.e_oeminfo.export(outfile, level, namespace_, name_='Driver_Init') if self.reserved2 is not None: self.reserved2.export(outfile, level, namespace_, name_='reserved2') if self.e_lfanew is not None: self.e_lfanew.export(outfile, level, namespace_, name_='e_lfanew') if self.Hashes is not None: self.Hashes.export(outfile, level, namespace_, name_='Hashes') def hasContent_(self): if ( self.e_magic is not None or self.e_cblp is not None or self.e_cp is not None or self.e_crlc is not None or self.e_cparhdr is not None or self.e_minalloc is not None or self.e_maxalloc is not None or self.e_ss is not None or self.e_sp is not None or self.e_csum is not None or self.e_ip is not None or self.e_cs is not None or self.e_lfarlc is not None or self.e_ovro is not None or self.reserved1 or self.e_oemid is not None or self.e_oeminfo is not None or self.reserved2 is not None or self.e_lfanew is not None or self.Hashes is not None ): return True else: return False def exportLiteral(self, outfile, level, name_='DOSHeaderType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): pass def exportLiteralChildren(self, outfile, level, name_): if self.e_magic is not None: showIndent(outfile, level) outfile.write('e_magic=%s,\n' % quote_python(self.e_magic).encode(ExternalEncoding)) if self.e_cblp is not None: showIndent(outfile, level) outfile.write('e_cblp=%s,\n' % quote_python(self.e_cblp).encode(ExternalEncoding)) if self.e_cp is not None: showIndent(outfile, level) outfile.write('e_cp=%s,\n' % quote_python(self.e_cp).encode(ExternalEncoding)) if self.e_crlc is not None: showIndent(outfile, level) outfile.write('e_crlc=%s,\n' % quote_python(self.e_crlc).encode(ExternalEncoding)) if self.e_cparhdr is not None: showIndent(outfile, level) outfile.write('e_cparhdr=%s,\n' % quote_python(self.e_cparhdr).encode(ExternalEncoding)) if self.e_minalloc is not None: showIndent(outfile, level) outfile.write('e_minalloc=%s,\n' % quote_python(self.e_minalloc).encode(ExternalEncoding)) if self.e_maxalloc is not None: showIndent(outfile, level) outfile.write('e_maxalloc=%s,\n' % quote_python(self.e_maxalloc).encode(ExternalEncoding)) if self.e_ss is not None: showIndent(outfile, level) outfile.write('e_ss=%s,\n' % quote_python(self.e_ss).encode(ExternalEncoding)) if self.e_sp is not None: showIndent(outfile, level) outfile.write('e_sp=%s,\n' % quote_python(self.e_sp).encode(ExternalEncoding)) if self.e_csum is not None: showIndent(outfile, level) outfile.write('e_csum=%s,\n' % quote_python(self.e_csum).encode(ExternalEncoding)) if self.e_ip is not None: showIndent(outfile, level) outfile.write('e_ip=%s,\n' % quote_python(self.e_ip).encode(ExternalEncoding)) if self.e_cs is not None: showIndent(outfile, level) outfile.write('e_cs=%s,\n' % quote_python(self.e_cs).encode(ExternalEncoding)) if self.e_lfarlc is not None: showIndent(outfile, level) outfile.write('e_lfarlc=%s,\n' % quote_python(self.e_lfarlc).encode(ExternalEncoding)) if self.e_ovro is not None: showIndent(outfile, level) outfile.write('e_ovro=%s,\n' % quote_python(self.e_ovro).encode(ExternalEncoding)) showIndent(outfile, level) outfile.write('reserved1=[\n') level += 1 for reserved1_ in self.reserved1: showIndent(outfile, level) outfile.write('%s,\n' % quote_python(reserved1_).encode(ExternalEncoding)) level -= 1 showIndent(outfile, level) outfile.write('],\n') if self.e_oemid is not None: showIndent(outfile, level) outfile.write('e_oemid=%s,\n' % quote_python(self.e_oemid).encode(ExternalEncoding)) if self.e_oeminfo is not None: showIndent(outfile, level) outfile.write('e_oeminfo=%s,\n' % quote_python(self.e_oeminfo).encode(ExternalEncoding)) if self.reserved2 is not None: showIndent(outfile, level) outfile.write('reserved2=%s,\n' % quote_python(self.reserved2).encode(ExternalEncoding)) if self.e_lfanew is not None: showIndent(outfile, level) outfile.write('e_lfanew=%s,\n' % quote_python(self.e_lfanew).encode(ExternalEncoding)) if self.Hashes is not None: showIndent(outfile, level) outfile.write('Hashes=%s,\n' % quote_python(self.Hashes).encode(ExternalEncoding)) def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'e_magic': e_magic_ = child_.text e_magic_ = self.gds_validate_string(e_magic_, node, 'e_magic') self.e_magic = e_magic_ elif nodeName_
(3759*mckin**10)/mbkin**10)*q_cut**5)/mbkin**10 + ((-1710 + (271*mckin**2)/mbkin**2 + (11609*mckin**4)/mbkin**4 + (16225*mckin**6)/mbkin**6 + (2709*mckin**8)/mbkin**8)*q_cut**6)/ mbkin**12 - ((-465 + (689*mckin**2)/mbkin**2 + (3797*mckin**4)/ mbkin**4 + (939*mckin**6)/mbkin**6)*q_cut**7)/mbkin**14 + ((-63 + (115*mckin**2)/mbkin**2 + (138*mckin**4)/mbkin**4)*q_cut**8)/ mbkin**16 - (4*(2 + (5*mckin**2)/mbkin**2)*q_cut**9)/mbkin**18 + (8*q_cut**10)/mbkin**20)*rE - ((-1 + mckin**2/mbkin**2)**2 - (2*(mbkin**2 + mckin**2)*q_cut)/mbkin**4 + q_cut**2/mbkin**4)* (-4*(-((-1 + mckin**2/mbkin**2)**2*(-731 + (4718*mckin**2)/mbkin**2 - (4699*mckin**4)/mbkin**4 - (3384*mckin**6)/mbkin**6 - (2189*mckin**8)/mbkin**8 + (1882*mckin**10)/mbkin**10 + (83*mckin**12)/mbkin**12)) + ((-2179 + (9001*mckin**2)/ mbkin**2 - (4197*mckin**4)/mbkin**4 - (9313*mckin**6)/ mbkin**6 - (10973*mckin**8)/mbkin**8 - (5289*mckin**10)/ mbkin**10 + (5381*mckin**12)/mbkin**12 + (289*mckin**14)/ mbkin**14)*q_cut)/mbkin**2 - (2*(-694 + (1014*mckin**2)/ mbkin**2 - (1881*mckin**4)/mbkin**4 - (304*mckin**6)/ mbkin**6 + (612*mckin**8)/mbkin**8 + (1866*mckin**10)/ mbkin**10 + (107*mckin**12)/mbkin**12)*q_cut**2)/mbkin**4 - (2*(-856 - (348*mckin**2)/mbkin**2 + (691*mckin**4)/mbkin**4 + (2447*mckin**6)/mbkin**6 + (2013*mckin**8)/mbkin**8 + (181*mckin**10)/mbkin**10)*q_cut**3)/mbkin**6 + ((-2641 - (1196*mckin**2)/mbkin**2 + (6054*mckin**4)/mbkin**4 + (6404*mckin**6)/mbkin**6 + (715*mckin**8)/mbkin**8)*q_cut**4)/ mbkin**8 - ((-1103 + (405*mckin**2)/mbkin**2 + (2415*mckin**4)/ mbkin**4 + (427*mckin**6)/mbkin**6)*q_cut**5)/mbkin**10 + (4*(-28 + (27*mckin**2)/mbkin**2 + (19*mckin**4)/mbkin**4)*q_cut**6)/ mbkin**12 + (4*(-1 + mckin**2/mbkin**2)*q_cut**7)/mbkin**14 + (2*q_cut**8)/mbkin**16)*rG - 4*(-((-1 + mckin**2/mbkin**2)**2* (351 - (1796*mckin**2)/mbkin**2 - (5235*mckin**4)/mbkin**4 - (5200*mckin**6)/mbkin**6 - (7135*mckin**8)/mbkin**8 + (4404*mckin**10)/mbkin**10 + (211*mckin**12)/mbkin**12)) + ((909 - (1687*mckin**2)/mbkin**2 - (18237*mckin**4)/mbkin**4 - (23505*mckin**6)/mbkin**6 - (8845*mckin**8)/mbkin**8 - (19449*mckin**10)/mbkin**10 + (12477*mckin**12)/mbkin**12 + (737*mckin**14)/mbkin**14)*q_cut)/mbkin**2 - (6*(57 + (175*mckin**2)/mbkin**2 - (475*mckin**4)/mbkin**4 + (270*mckin**6)/mbkin**6 - (725*mckin**8)/mbkin**8 + (1403*mckin**10)/mbkin**10 + (95*mckin**12)/mbkin**12)*q_cut**2)/ mbkin**4 - (2*(390 + (1352*mckin**2)/mbkin**2 + (3467*mckin**4)/ mbkin**4 + (6483*mckin**6)/mbkin**6 + (5015*mckin**8)/ mbkin**8 + (413*mckin**10)/mbkin**10)*q_cut**3)/mbkin**6 + ((561 + (4034*mckin**2)/mbkin**2 + (13860*mckin**4)/mbkin**4 + (15570*mckin**6)/mbkin**6 + (1655*mckin**8)/mbkin**8)*q_cut**4)/ mbkin**8 - (3*(-49 + (463*mckin**2)/mbkin**2 + (1961*mckin**4)/ mbkin**4 + (313*mckin**6)/mbkin**6)*q_cut**5)/mbkin**10 + (2*(-69 + (139*mckin**2)/mbkin**2 + (64*mckin**4)/mbkin**4)*q_cut**6)/ mbkin**12 + (4*(-3 + (5*mckin**2)/mbkin**2)*q_cut**7)/mbkin**14 + (6*q_cut**8)/mbkin**16)*sB - 1968*sE + (14432*mckin**2*sE)/mbkin** 2 - (26560*mckin**4*sE)/mbkin**4 + (35616*mckin**6*sE)/mbkin**6 - (28000*mckin**8*sE)/mbkin**8 - (15712*mckin**10*sE)/mbkin**10 + (32448*mckin**12*sE)/mbkin**12 - (9760*mckin**14*sE)/mbkin**14 - (496*mckin**16*sE)/mbkin**16 + (5760*q_cut*sE)/mbkin**2 - (18112*mckin**2*q_cut*sE)/mbkin**4 - (21504*mckin**4*q_cut*sE)/mbkin**6 - (21120*mckin**6*q_cut*sE)/mbkin**8 - (44800*mckin**8*q_cut*sE)/mbkin** 10 - (25920*mckin**10*q_cut*sE)/mbkin**12 + (31872*mckin**12*q_cut* sE)/mbkin**14 + (1664*mckin**14*q_cut*sE)/mbkin**16 - (3424*q_cut**2*sE)/mbkin**4 + (2160*mckin**2*q_cut**2*sE)/mbkin**6 + (1488*mckin**4*q_cut**2*sE)/mbkin**8 + (12992*mckin**6*q_cut**2*sE)/mbkin** 10 - (28704*mckin**8*q_cut**2*sE)/mbkin**12 - (25776*mckin**10*q_cut**2* sE)/mbkin**14 - (976*mckin**12*q_cut**2*sE)/mbkin**16 - (4656*q_cut**3*sE)/mbkin**6 - (7456*mckin**2*q_cut**3*sE)/mbkin**8 - (9952*mckin**4*q_cut**3*sE)/mbkin**10 + (6432*mckin**6*q_cut**3*sE)/mbkin** 12 - (16816*mckin**8*q_cut**3*sE)/mbkin**14 - (2752*mckin**10*q_cut**3* sE)/mbkin**16 + (6336*q_cut**4*sE)/mbkin**8 + (11504*mckin**2*q_cut**4* sE)/mbkin**10 + (18864*mckin**4*q_cut**4*sE)/mbkin**12 + (32784*mckin**6*q_cut**4*sE)/mbkin**14 + (4880*mckin**8*q_cut**4*sE)/mbkin** 16 - (1936*q_cut**5*sE)/mbkin**10 - (2976*mckin**2*q_cut**5*sE)/mbkin** 12 - (12816*mckin**4*q_cut**5*sE)/mbkin**14 - (2944*mckin**6*q_cut**5* sE)/mbkin**16 - (144*q_cut**6*sE)/mbkin**12 + (512*mckin**2*q_cut**6* sE)/mbkin**14 + (656*mckin**4*q_cut**6*sE)/mbkin**16 - (64*mckin**2*q_cut**7*sE)/mbkin**16 + (32*q_cut**8*sE)/mbkin**16 - 57*sqB + (338*mckin**2*sqB)/mbkin**2 + (5756*mckin**4*sqB)/mbkin** 4 - (10002*mckin**6*sqB)/mbkin**6 + (3590*mckin**8*sqB)/mbkin** 8 - (2098*mckin**10*sqB)/mbkin**10 + (3012*mckin**12*sqB)/mbkin** 12 - (526*mckin**14*sqB)/mbkin**14 - (13*mckin**16*sqB)/mbkin** 16 + (75*q_cut*sqB)/mbkin**2 + (713*mckin**2*q_cut*sqB)/mbkin**4 - (13683*mckin**4*q_cut*sqB)/mbkin**6 - (18057*mckin**6*q_cut*sqB)/mbkin** 8 - (7867*mckin**8*q_cut*sqB)/mbkin**10 - (3177*mckin**10*q_cut*sqB)/ mbkin**12 + (1635*mckin**12*q_cut*sqB)/mbkin**14 + (41*mckin**14*q_cut* sqB)/mbkin**16 + (116*q_cut**2*sqB)/mbkin**4 - (1062*mckin**2*q_cut**2* sqB)/mbkin**6 + (2688*mckin**4*q_cut**2*sqB)/mbkin**8 - (2668*mckin**6*q_cut**2*sqB)/mbkin**10 - (1236*mckin**8*q_cut**2*sqB)/ mbkin**12 - (1182*mckin**10*q_cut**2*sqB)/mbkin**14 - (16*mckin**12*q_cut**2*sqB)/mbkin**16 - (138*q_cut**3*sqB)/mbkin**6 - (868*mckin**2*q_cut**3*sqB)/mbkin**8 + (1346*mckin**4*q_cut**3*sqB)/mbkin** 10 - (18*mckin**6*q_cut**3*sqB)/mbkin**12 - (1024*mckin**8*q_cut**3*sqB)/ mbkin**14 - (82*mckin**10*q_cut**3*sqB)/mbkin**16 - (171*q_cut**4*sqB)/ mbkin**8 + (1028*mckin**2*q_cut**4*sqB)/mbkin**10 + (1686*mckin**4* q_cut**4*sqB)/mbkin**12 + (1716*mckin**6*q_cut**4*sqB)/mbkin**14 + (125*mckin**8*q_cut**4*sqB)/mbkin**16 + (251*q_cut**5*sqB)/mbkin**10 - (201*mckin**2*q_cut**5*sqB)/mbkin**12 - (663*mckin**4*q_cut**5*sqB)/mbkin** 14 - (67*mckin**6*q_cut**5*sqB)/mbkin**16 - (66*q_cut**6*sqB)/mbkin** 12 + (56*mckin**2*q_cut**6*sqB)/mbkin**14 + (14*mckin**4*q_cut**6*sqB)/ mbkin**16 - (12*q_cut**7*sqB)/mbkin**14 - (4*mckin**2*q_cut**7*sqB)/mbkin** 16 + (2*q_cut**8*sqB)/mbkin**16)))/mbkin**6) - 6*np.sqrt(0j + (mbkin**4 - 2*mbkin**2*mckin**2 + mckin**4 - 2*mbkin**2*q_cut - 2*mckin**2*q_cut + q_cut**2)/mbkin**4)* (32*(-((-1 + mckin**2/mbkin**2)**4*(-11 + (131*mckin**2)/mbkin**2 + (343*mckin**4)/mbkin**4 - (4901*mckin**6)/mbkin**6 - (3931*mckin**8)/mbkin**8 + (4513*mckin**10)/mbkin**10 + (4201*mckin**12)/mbkin**12 - (3931*mckin**14)/mbkin**14 - (842*mckin**16)/mbkin**16 + (108*mckin**18)/mbkin**18)) + ((-1 + mckin**2/mbkin**2)**2*(-69 + (686*mckin**2)/mbkin**2 + (1998*mckin**4)/mbkin**4 - (17384*mckin**6)/mbkin**6 - (28414*mckin**8)/mbkin**8 - (7896*mckin**10)/mbkin**10 + (25876*mckin**12)/mbkin**12 + (14624*mckin**14)/mbkin**14 - (19869*mckin**16)/mbkin**16 - (4814*mckin**18)/mbkin**18 + (702*mckin**20)/mbkin**20)*q_cut)/mbkin**2 - (2*(-80 + (683*mckin**2)/mbkin**2 + (1558*mckin**4)/mbkin**4 - (10930*mckin**6)/mbkin**6 - (12701*mckin**8)/mbkin**8 - (15107*mckin**10)/mbkin**10 - (14557*mckin**12)/mbkin**12 + (20503*mckin**14)/mbkin**14 + (17401*mckin**16)/mbkin**16 - (16868*mckin**18)/mbkin**18 - (5317*mckin**20)/mbkin**20 + (855*mckin**22)/mbkin**22)*q_cut**2)/mbkin**4 + (2*(-60 + (337*mckin**2)/mbkin**2 + (688*mckin**4)/mbkin**4 - (2600*mckin**6)/mbkin**6 - (1620*mckin**8)/mbkin**8 + (3788*mckin**10)/mbkin**10 + (14332*mckin**12)/mbkin**12 - (9532*mckin**14)/mbkin**14 - (15876*mckin**16)/mbkin**16 - (2417*mckin**18)/mbkin**18 + (720*mckin**20)/mbkin**20)*q_cut**3)/ mbkin**6 + (2*(-75 + (292*mckin**2)/mbkin**2 + (3006*mckin**4)/mbkin** 4 + (1155*mckin**6)/mbkin**6 - (7341*mckin**8)/mbkin**8 - (10120*mckin**10)/mbkin**10 - (1458*mckin**12)/mbkin**12 - (8299*mckin**14)/mbkin**14 - (3536*mckin**16)/mbkin**16 + (720*mckin**18)/mbkin**18)*q_cut**4)/mbkin**8 + ((378 - (886*mckin**2)/mbkin**2 - (8966*mckin**4)/mbkin**4 - (4238*mckin**6)/mbkin**6 + (22414*mckin**8)/mbkin**8 + (43870*mckin**10)/mbkin**10 + (48834*mckin**12)/mbkin**12 + (10862*mckin**14)/mbkin**14 - (4284*mckin**16)/mbkin**16)*q_cut**5)/ mbkin**10 + (2*(-126 + (313*mckin**2)/mbkin**2 + (2593*mckin**4)/ mbkin**4 - (837*mckin**6)/mbkin**6 - (12889*mckin**8)/mbkin**8 - (16866*mckin**10)/mbkin**10 - (3746*mckin**12)/mbkin**12 + (1638*mckin**14)/mbkin**14)*q_cut**6)/mbkin**12 + (2*(-30 - (317*mckin**2)/mbkin**2 - (672*mckin**4)/mbkin**4 + (2136*mckin**6)/mbkin**6 + (6062*mckin**8)/mbkin**8 + (2953*mckin**10)/mbkin**10 + (180*mckin**12)/mbkin**12)*q_cut**7)/ mbkin**14 - ((-195 - (551*mckin**2)/mbkin**2 + (491*mckin**4)/mbkin** 4 + (3933*mckin**6)/mbkin**6 + (5026*mckin**8)/mbkin**8 + (2340*mckin**10)/mbkin**10)*q_cut**8)/mbkin**16 + ((-125 - (234*mckin**2)/mbkin**2 + (913*mckin**4)/mbkin**4 + (2412*mckin**6)/mbkin**6 + (1710*mckin**8)/mbkin**8)*q_cut**9)/ mbkin**18 + ((36 + (36*mckin**2)/mbkin**2 - (446*mckin**4)/mbkin**4 - (558*mckin**6)/mbkin**6)*q_cut**10)/mbkin**20 + ((-4 + (72*mckin**4)/mbkin**4)*q_cut**11)/mbkin**22)*rE + ((-1 + mckin**2/mbkin**2)**2 - (2*(mbkin**2 + mckin**2)*q_cut)/mbkin**4 + q_cut**2/mbkin**4)*((180*mckin**2*muG**2)/mbkin**2 - (1452*mckin**4*muG**2)/ mbkin**4 + (4512*mckin**6*muG**2)/mbkin**6 + (1584*mckin**8*muG**2)/ mbkin**8 - (38424*mckin**10*muG**2)/mbkin**10 + (160680*mckin**12*muG**2)/mbkin**12 - (250128*mckin**14*muG**2)/ mbkin**14 + (135888*mckin**16*muG**2)/mbkin**16 - (924*mckin**18*muG**2)/mbkin**18 - (14076*mckin**20*muG**2)/mbkin**20 + (2160*mckin**22*muG**2)/mbkin**22 + (60*mckin**2*muG*mupi)/mbkin**2 - (996*mckin**4*muG*mupi)/mbkin**4 + (3360*mckin**6*muG*mupi)/mbkin**6 + (1488*mckin**8*muG*mupi)/mbkin**8 - (25224*mckin**10*muG*mupi)/ mbkin**10 - (24648*mckin**12*muG*mupi)/mbkin**12 + (124176*mckin**14*muG*mupi)/mbkin**14 - (90960*mckin**16*muG*mupi)/ mbkin**16 + (8652*mckin**18*muG*mupi)/mbkin**18 + (4524*mckin**20*muG*mupi)/mbkin**20 - (432*mckin**22*muG*mupi)/ mbkin**22 - (240*mckin**2*muG**2*q_cut)/mbkin**4 + (1032*mckin**4*muG**2*q_cut)/mbkin**6 - (1344*mckin**6*muG**2*q_cut)/ mbkin**8 + (16128*mckin**8*muG**2*q_cut)/mbkin**10 - (66624*mckin**10*muG**2*q_cut)/mbkin**12 - (32784*mckin**12*muG**2*q_cut)/ mbkin**14 - (183936*mckin**14*muG**2*q_cut)/mbkin**16 + (23040*mckin**16*muG**2*q_cut)/mbkin**18 + (47088*mckin**18*muG**2*q_cut)/ mbkin**20 - (9720*mckin**20*muG**2*q_cut)/mbkin**22 - (240*mckin**2*muG*mupi*q_cut)/mbkin**4 + (3288*mckin**4*muG*mupi*q_cut)/ mbkin**6 - (7680*mckin**6*muG*mupi*q_cut)/mbkin**8 - (24000*mckin**8*muG*mupi*q_cut)/mbkin**10 + (73920*mckin**10*muG*mupi* q_cut)/mbkin**12 + (84624*mckin**12*muG*mupi*q_cut)/mbkin**14 + (129216*mckin**14*muG*mupi*q_cut)/mbkin**16 - (38976*mckin**16*muG*mupi*q_cut)/mbkin**18 - (14736*mckin**18*muG*mupi*q_cut)/mbkin**20 + (1944*mckin**20*muG*mupi*q_cut)/mbkin**22 - (240*mckin**2*muG**2*q_cut**2)/ mbkin**6 + (3000*mckin**4*muG**2*q_cut**2)/mbkin**8 - (5208*mckin**6*muG**2*q_cut**2)/mbkin**10 - (20472*mckin**8*muG**2*q_cut**2)/ mbkin**12 - (9768*mckin**10*muG**2*q_cut**2)/mbkin**14 + (34152*mckin**12*muG**2*q_cut**2)/mbkin**16 + (22008*mckin**14*muG**2*q_cut**2)/ mbkin**18 - (53352*mckin**16*muG**2*q_cut**2)/mbkin**20 + (12600*mckin**18*muG**2*q_cut**2)/mbkin**22 + (240*mckin**2*muG*mupi*q_cut**2)/ mbkin**6 - (2520*mckin**4*muG*mupi*q_cut**2)/mbkin**8 + (3384*mckin**6*muG*mupi*q_cut**2)/mbkin**10 + (16152*mckin**8*muG*mupi*q_cut**2)/mbkin**12 + (15048*mckin**10*muG*mupi*q_cut**2)/mbkin**14 - (46152*mckin**12*muG*mupi*q_cut**2)/mbkin**16 + (19752*mckin**14*muG*mupi*q_cut**2)/mbkin**18 + (13896*mckin**16*muG*mupi*q_cut**2)/mbkin**20 - (2520*mckin**18*muG*mupi*q_cut**2)/mbkin**22 - (240*mckin**2*muG**2*q_cut**3)/ mbkin**8 - (1080*mckin**4*muG**2*q_cut**3)/mbkin**10 + (4224*mckin**6*muG**2*q_cut**3)/mbkin**12 - (96840*mckin**8*muG**2*q_cut**3)/ mbkin**14 - (119760*mckin**10*muG**2*q_cut**3)/mbkin**16 - (151272*mckin**12*muG**2*q_cut**3)/mbkin**18 + (20160*mckin**14*muG**2*q_cut**3)/mbkin**20 + (6120*mckin**16*muG**2*q_cut**3)/ mbkin**22 + (240*mckin**2*muG*mupi*q_cut**3)/mbkin**8 - (3624*mckin**4*muG*mupi*q_cut**3)/mbkin**10 + (7104*mckin**6*muG*mupi*q_cut**3)/mbkin**12 + (66216*mckin**8*muG*mupi*q_cut**3)/mbkin**14 + (105168*mckin**10*muG*mupi*q_cut**3)/mbkin**16 + (71112*mckin**12*muG*mupi*q_cut**3)/mbkin**18 + (1536*mckin**14*muG*mupi*q_cut**3)/mbkin**20 - (1224*mckin**16*muG*mupi*q_cut**3)/mbkin**22 + (1560*mckin**2*muG**2*q_cut**4)/ mbkin**10 - (8400*mckin**4*muG**2*q_cut**4)/mbkin**12 - (7416*mckin**6*muG**2*q_cut**4)/mbkin**14 + (114336*mckin**8*muG**2*q_cut**4)/ mbkin**16 + (167928*mckin**10*muG**2*q_cut**4)/mbkin**18 + (12960*mckin**12*muG**2*q_cut**4)/mbkin**20 - (29160*mckin**14*muG**2*q_cut**4)/ mbkin**22 - (600*mckin**2*muG*mupi*q_cut**4)/mbkin**10 + (8112*mckin**4*muG*mupi*q_cut**4)/mbkin**12 - (12072*mckin**6*muG*mupi*q_cut**4)/mbkin**14 - (95712*mckin**8*muG*mupi*q_cut**4)/mbkin**16 - (93048*mckin**10*muG*mupi*q_cut**4)/mbkin**18 - (10560*mckin**12*muG*mupi*q_cut**4)/mbkin**20 + (5832*mckin**14*muG*mupi*q_cut**4)/mbkin**22 - (720*mckin**2*muG**2*q_cut**5)/ mbkin**12 + (7032*mckin**4*muG**2*q_cut**5)/mbkin**14 - (15648*mckin**6*muG**2*q_cut**5)/mbkin**16 - (98928*mckin**8*muG**2*q_cut**5)/ mbkin**18 - (46224*mckin**10*muG**2*q_cut**5)/mbkin**20 + (21240*mckin**12*muG**2*q_cut**5)/mbkin**22 + (240*mckin**2*muG*mupi*q_cut**5)/ mbkin**12 - (4824*mckin**4*muG*mupi*q_cut**5)/mbkin**14 + (11808*mckin**6*muG*mupi*q_cut**5)/mbkin**16 + (40560*mckin**8*muG*mupi*q_cut**5)/mbkin**18 + (11376*mckin**10*muG*mupi*q_cut**5)/mbkin**20 - (4248*mckin**12*muG*mupi*q_cut**5)/mbkin**22 - (1200*mckin**2*muG**2*q_cut**6)/ mbkin**14 + (10728*mckin**4*muG**2*q_cut**6)/mbkin**16 + (57048*mckin**6*muG**2*q_cut**6)/mbkin**18 + (64872*mckin**8*muG**2*q_cut**6)/ mbkin**20 + (6120*mckin**10*muG**2*q_cut**6)/mbkin**22 + (240*mckin**2*muG*mupi*q_cut**6)/mbkin**14 - (1608*mckin**4*muG*mupi* q_cut**6)/mbkin**16 - (11832*mckin**6*muG*mupi*q_cut**6)/mbkin**18 - (11784*mckin**8*muG*mupi*q_cut**6)/mbkin**20 - (1224*mckin**10*muG*mupi*q_cut**6)/mbkin**22 + (1200*mckin**2*muG**2*q_cut**7)/ mbkin**16 - (18600*mckin**4*muG**2*q_cut**7)/mbkin**18 - (40608*mckin**6*muG**2*q_cut**7)/mbkin**20 - (16200*mckin**8*muG**2*q_cut**7)/ mbkin**22 - (240*mckin**2*muG*mupi*q_cut**7)/mbkin**16 + (3720*mckin**4*muG*mupi*q_cut**7)/mbkin**18 + (7584*mckin**6*muG*mupi*q_cut**7)/mbkin**20 + (3240*mckin**8*muG*mupi*q_cut**7)/mbkin**22 - (300*mckin**2*muG**2*q_cut**8)/ mbkin**18 + (9180*mckin**4*muG**2*q_cut**8)/mbkin**20 + (8280*mckin**6*muG**2*q_cut**8)/mbkin**22 + (60*mckin**2*muG*mupi*q_cut**8)/ mbkin**18 - (1836*mckin**4*muG*mupi*q_cut**8)/mbkin**20 - (1656*mckin**6*muG*mupi*q_cut**8)/mbkin**22 - (1440*mckin**4*muG**2*q_cut**9)/ mbkin**22 + (288*mckin**4*muG*mupi*q_cut**9)/mbkin**22 - 24*mckin**2*muG*((-1 + mckin**2/mbkin**2)**2*(-5 + (73*mckin**2)/ mbkin**2 - (129*mckin**4)/mbkin**4 - (455*mckin**6)/mbkin**6 + (1321*mckin**8)/mbkin**8 + (5151*mckin**10)/mbkin**10 - (1367*mckin**12)/mbkin**12 - (305*mckin**14)/mbkin**14 + (36*mckin**16)/mbkin**16) - (2*(-10 + (137*mckin**2)/mbkin**2 - (320*mckin**4)/mbkin**4 - (1000*mckin**6)/mbkin**6 + (3080*mckin**8)/mbkin**8 + (3526*mckin**10)/mbkin**10 + (5384*mckin**12)/mbkin**12 - (1624*mckin**14)/mbkin**14 - (614*mckin**16)/mbkin**16 + (81*mckin**18)/mbkin**18)*q_cut)/ mbkin**2 + (2*(-10 + (105*mckin**2)/mbkin**2 - (141*mckin**4)/ mbkin**4 - (673*mckin**6)/mbkin**6 - (627*mckin**8)/mbkin**8 + (1923*mckin**10)/mbkin**10 - (823*mckin**12)/mbkin**12 - (579*mckin**14)/mbkin**14 + (105*mckin**16)/mbkin**16)*q_cut**2)/ mbkin**4 + (2*(-10 + (151*mckin**2)/mbkin**2 - (296*mckin**4)/ mbkin**4 - (2759*mckin**6)/mbkin**6 - (4382*mckin**8)/mbkin**8 - (2963*mckin**10)/mbkin**10 - (64*mckin**12)/mbkin**12 + (51*mckin**14)/mbkin**14)*q_cut**3)/mbkin**6 + ((50 - (676*mckin**2)/mbkin**2 + (1006*mckin**4)/mbkin**4 + (7976*mckin**6)/mbkin**6 + (7754*mckin**8)/mbkin**8 + (880*mckin**10)/mbkin**10 - (486*mckin**12)/mbkin**12)*q_cut**4)/ mbkin**8 + ((-20 + (402*mckin**2)/mbkin**2 - (984*mckin**4)/ mbkin**4 - (3380*mckin**6)/mbkin**6 - (948*mckin**8)/mbkin**8 + (354*mckin**10)/mbkin**10)*q_cut**5)/mbkin**10 + (2*(-10 + (67*mckin**2)/mbkin**2 + (493*mckin**4)/mbkin**4 + (491*mckin**6)/mbkin**6 + (51*mckin**8)/mbkin**8)*q_cut**6)/ mbkin**12 - (2*(-10 + (155*mckin**2)/mbkin**2 + (316*mckin**4)/ mbkin**4 + (135*mckin**6)/mbkin**6)*q_cut**7)/mbkin**14 + ((-5 + (153*mckin**2)/mbkin**2 + (138*mckin**4)/mbkin**4)*q_cut**8)/ mbkin**16 - (24*mckin**2*q_cut**9)/mbkin**20) - 4*(-((-1 + mckin**2/mbkin**2)**2*(-43 + (438*mckin**2)/mbkin**2 + (1390*mckin**4)/mbkin**4 - (15994*mckin**6)/mbkin**6 + (14652*mckin**8)/mbkin**8 + (24394*mckin**10)/mbkin**10 + (8738*mckin**12)/mbkin**12 - (6774*mckin**14)/mbkin**14 -
<reponame>roshanba/mangal<gh_stars>0 XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXX XXXXX XXXX XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXXXXX XX XXXXXXX XXXXXXXXX XX XXXXXX XXXXXXXX X XXXXXXXXXXXXXXX XXXX XXXXXXX XXX XXXXXX XXXX XXXXX XXXX XXX XXXXXXX XX XXXXXX XXXXXXX XXX XXXXXXXXX XXX XXXXX XXXX X XXXXXXXXXXXXXXX XXXXXX XXX XXX XXXX XX XXXXXX X XXXX XXXX XXXX XXXXXX XXXXXX XXXXXXXXX XX XXXX XXXXX XX XXXXX XX XXXXXXXXX XX XXXXXX XXX XXXXX XXXXX XX XXXX XXXXX XXXXXXX XXXXXX XXXXXXX XXXXXXX XXX XXXXXX XX XXXX XXXXXX XXX XXXX XXXXXXX XXXXXX XXXXXXXX X XXXXXX XXXXX XXXX XXXX XXX XXXXXX X XXXXXXXX XXXXX XXXX X XXXXXX XXXXXX XXX XXXXXXXXX XXX XXXX XXXXXXXXXXXX XXXXXX XXXXXXXXX XXX XXXX XXXXXXXXXXXX XXXXXX XXXXXXX X XXXXXX XXX XXXX XXXXXX XXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXX XXXXX XXXXX XXX XXXXX X XXXXXXX XXX XXXXXX X XXXXXXXXXXXX XXXXXXXXXXX XXXXXXXXXX XXXXXXXXXXX X XXXXXXXX X XXXX XX XXX XX XXXXXXXX XXX XXXX X XXXXXXXXXXXXX X XXXXXXXX X XXXX XX XXXXXX XX XXXXXXXX XXXXXXXX XXX XXXXXXX X XXXXXXXXXXXXXXXXXXXXXXXXX XXX XXXX X XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXX XXXXXXXXXXX XXX XXXXXXXXX XXXXXXXX XXXXX XXXX XXXX X XXXX XXXXX XXX XXXXX XXXXX XXXXX XXXXXXXXXX XX XXX XXXXX XXXXXXXXX XX XXX XXXXXXXXXX XXXXXXXXXX XXXX XXXXX XXXXX XXX X XXXXXXXXXXXXX XXXXXXX XXXX XXXXXX XXX XXXXXXXX X XXXXXXXXXXXXX XX X XXXXX XX XXXXXXXXXXX XX X XXXXXXXXXXXXX XX X XXXXX X XXXXX XXXXXXXXXXXXXXXXXXX XX XXXXXXXXXXX XX X XXXXXXXXXXXXXXXXXXXXXXXX XXXX XX XXX XXXX XXXX XX XXXXXXXXXXXX XX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXX XXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX XXX XXXXXXXXXXX XX XXX XXXX XXXXXXXXXXXXXXXXXXXXX XXX XXXXXXXXXXX XX XXX XXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXX XXXXXXXXXXXXX XXX XX XXXXXXXXXXXXXXXXXXXX XXX XXXXXXXXXXXXX XXX XX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXXXXXXXXXXXXXXXXX XX XXX XX XXXXXXXX XX XXX XXXXX XXXXXX XXXXXXXXX XXX XXXXXXXXXXX XX XXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXX XXXXXXXXXXXXXX XXX XX XXX XXXXX XXXXXXX XXXXXXXXXXXXXX XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX XX XXXXXXXX XX XXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXX XXXXXX XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXX XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX XXX XXXXXXXXXXX XX XXX XXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXXXXXXXX XXXXXXXXXXXX XX XXX XXXXX XXXXXXX XXX XXXXXXXXXXXXXX XXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXX XXXXX XXX XXXXXXX XXXXXX X XXXXXXXXXXXXXX XX XXXXXXXXXXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XX X XXXXXXXXXXXXXXX XXXXX XXXXXXX XXX X XXXXX XXXXXXXXXXXXX X XXXXXXXXXXXXXXXXXXX XX XXXXXXXXXXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XX X XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXX XXX X XXXXX XXXXXXXXXXXXX XX XXXXXXXXX XXXX XXXXXXXXX XXXX XXXXX XXX XXXXXXXXXX XXX XX XXXXXXXX X XX XXX XXXXX XXXXX XXX XXXXXXXXXXXXXXX XXXX XXXXXXXXXXXX XX XXX XX XXXXXXXXX XX XXX XXXX XXXXXX XXXXXXXXXX XXXXXXXXXXXXXXXXXX X XXX XXXX XXXXXXX XXXXXXXXX XX XXX XX XXX XXXXXXXXXXXXXXXX XX XXX XXXXX XXXXXX XXXX XXX XXXXX XXXXXXXXX XXXXXXXXXXXX X XXX XXXX XXXXXXX XXXXXXXXXXXXX XX XXX XX XXX XXXXXXXXXXXXX XX XXX XXXXX XXXXXX X XX XXX XXXXX XXXXX XXX XXXXXXXXXXX XXXX XXXX XXX XXXX XXXXXXX XXXXXXXXXX XXXX XX XXX XX XXXXXXXXXXX XXXX XXXXXXX XXXXXX XXXX XXX XXXXX XXXXXXX XXXXXXXXXXXX XXX XXXXXXX XXXX XXXXXXXX XXXXXXX XXX XXXXX XXXXXX XXXXX XX XXXXXXXX XX XXXXXXXX XX XXX XXXXX XX XXXXXXXXX XXXX XXXXXX XXX XXXX XX XXXX X XXXXXXXXXX XXX XXXXX XXXXXX XXXX XXX XX XXXXXXXX XX XXX XXXXX XXXXX XXX XXXXXXXXXXXXXXX XXX XX XXXXXXXX XXXXXXXXXXX XXXXX XXXX XXXXXXXXXXX XXXXX XXXX XX XXXXXXXXX XXXXXXXX XXXXXXXXX XXXXXXXX XXXX XXXX XXX XXX XXXXXXXX XXX XXXX XXXXX XXXX XXX X XXXXX XXXXX XXXXXX XXX XXXXXXXXXXX XXX XXXXXXX XXXXXXXX XXXXXX X XXXX XXXXXXX XXXXXXXXXXXXXX XXXXXXXX XXXX XXX XX XXXXXXXX XXXX XXXXXXXXX XXXXXX XXXXXX XXXX XXXXXXXXXXXX XXXXXX XXXXXXXXX XXXXXXXXXXXXX X X XXXXXX XXXXXXX XXXXXXX XXXXXXXX XXXXXX XXXXXXX X XXXXX XXXXXXXXXXXXXXXXXXXXX XXXX X XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX X XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX X XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXX XXXXXXXXXXXXXX XXXXXX XXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXX X XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXX X XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXX XXXXX X XXXXXX XXXXXX X XXXXXXXX XXXXXXXX XXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXX XXXXX X XXXX XXXXXX X XXXXXXXX XXXXXXXXXX XXXX XXXXX XXXXXXX XXX XXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXX XX XXXXXXX XXXXXXXXXX XX XXXX XXXX XXXX XXXXXXXXXX XXXXX XXX XXXXXXXXXX XXXXXXX XXXXX XXXXX XXXXXXX XX X XXXXXXXXXX XXXX XXXXXX XXXXXX XXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXX X XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX X XXXXXXXXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX X XXXXXXXXXX X XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXX X XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXX X XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XX X XXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXX XXX XXXX XXXXX XXXXXXXX XX XXXXXXXXXX X XXXXXXXXXXXXXX XX XXXXXXXXXXXXXXXX XXX XXXX XXXXXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXXXXXXXXX XXX XXXXX XXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX XXXX XXXXXX XXXX XXXXXXXXXXX XXXXX XXXX XXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXX XXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXX XXX XXXXXXXXXX XXXX XXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXX XXX XXXX XXXXXXXXX XXX XXX XXX XXXXXX XXXXXX XX XXXXXXXXX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXX XXXXXX XXX XXXX XXXXXXXXXX XXXXX XXXXX XXXXX XXX XXXXXX XXXXXXXXXXX XXXXXX XX XXXXXXX XX XXXXXXXXX XXX XXXXXXXX XXXXXXX XXXXXXXX XXX XXXXX XXXXXXXX XXXXXX XX XXX XXXXXXXXXXXXX XXXXXXXXXXX XX XXXXXXX XXXXX XXX XXXXXXXXX XXX XXXX XXXXXX XX XXX XXXXX XXX XXXXXXXXX XXXX XXXXXX XXXX XXXXXXXX XXXXXX XXXXXXXXXX XXX XXXXX XXX XXXXXXXXXX XXXXX XXXXXXXX XX XX XXXXXXXXXXXX XXXXX XXX XXXXXXXXX XXXX XXX XXXXXXXXXXX XX XXXXX XXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXX XXXXXXX XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX XXX XXXXXXXX XXX XXXXXXXXXXX XXXXXX XX X XXXXX XXXX XX XXXXXXX XXXXXXXXXX XXXXXXXXXX XX XXX XXXX XXX XXX XXX XX X XXXXXX XXXXX X XXXXX XXXX XXXXXXXX XXXXXXXX XX X XXXXX XXXXXX XXXX XXXXXXX XX XXXXXXXXXXXX XXXXXXXXX XXXX XXXXX XXX XXXXXXX XXXXXX XX XXXX XXXXXXXX XXXXX XXXXXXXXX XX XXXXXXXXX XXX XXXXXXXXXXXXXXXXXXXXX XXXXXX XXXX X XXXX XXXX XXXXX XXX XXXXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX XXXXXXXX XXX XXXXXXXXXX XX XXXXX XXXXXX XXXX XXX XXXXXX XX XXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XX XXX XXXXX XXXX XX XXXXXXXX XXX XXXXXXXXXXX XXXXXX XXX XXXXXXXX XXXX XXXXXXXXXXX XXX XXXX XXXX XXX XXXXXX XXXXXXX XXXXXXXXXXX XXXXXXX XXXXXXXXXXX XXXX XXXXX XXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XX XXXX XX XXX XXXXXXXXXX XXXXXXXX XXXXXXXXXXXXX XXXX XXXX XXX XXXXXXXXXXX XXXXXX XX XXXX XXXXX XX XXXX XXXXX XXXX XXX X XXXXXXXXXXXXX XXXXX XX XXXX XXXXX XX XXX XXXX XXXXXXXX XXX XXXXX XXXXXXX XXXXXXXXXX XXXX XXX XX XXX XX XXXXX XXXXXXX XXX XXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXX XXX XXXX XX XXX XXXXX XXXXXXXX XXX XXXXXXXXXX XXXXX XXX XXXXXXX XXXXXXXXXXX XXXXXX XXXX XX XXXXXX XXXXXX XXX XXXXXXXXXX XXXXXX XXX XXXXX XXX XXXXXXXXXXXXXXXX XXXXXXX XXXXXXXXXXXXXXXXXXXXX XXX XXXX XXXXXXXXXXX XX XXX XXXXXXX XXXXXXXXXXX XXXXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXX XXXXXXXXX XXXXXXX XXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXX XXXXXXX XX XXX XXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XX XX XXX XXXXXXXXXX XXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXX XXXX XXXXXXXXXX XXXX XXX XXXXX XXXXXXXX XXXXXXX XX XXX XXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXX XXXXX XXXXXXXX XXXXXXX XX XXXXXXXXXXXX XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX XXXX XXXX XXXX XXX XXXXXXXXXXXXXXXXXXX XX XXXXXX XXXXXX XXX XXXXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX XXX XX XXXXXXXXXXXXX XXXXX XXXXXXXX XXX XXXXXXX XX XXX XXXX XXXXXX XXX XXX XXXXXXXX XXX XXXXX XXXXXXXX XXXX XXXXXXXXXXXXXXXXXXXX XXXXXX XX XXXXX XXXXXXXXXX XX XXXXXX XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX XX XXX XXXXXXXXXXXXXXXXXX XXXXXXXXXX XX XXX XXXXXXXXXXXXXXX XXXXX XXXXXXXX XXXXXXX XXXX XXXXXXXXXXXXXXXXXXXXXX XXXXXX XXXXXXXXXXXXXXXX XXXX XXXXXXXXXXXX XXXXXX XXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXX XXXXXXXXXXXXXX X X XXXXXXXXXXXXXXXXX X XXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXX XXX XXXXXXXXX X X XX XXXXXXXXXXXXXXXXXXXXXXX XXX XXXXXXXXXX XXXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXX XXXX XXX X XXXXXXXXXX XXXXXXX XXXX XXXXXX XXXXXXX XXX XXXXX X XXXXXXXX XXXXXX XXXX XXX XXXX XXXXX XX XXX XXXXX X XXXXXXXX XX XXXXXXXXXXXXX XXX XXXXXX XX XXXXXXXX XXXXX XXXXXXXX XX XXX XXXXXXX XXXXXXXX XXXXXXXXXXXXX XX XXXX XX XXXXXXXXX XXXXXXXXXX XXXX XXXXXX XXXX XXXXXXXXX XX XXXX XXX XXXXXXXXX XXXXXXXXXX XXXX XXXXXX X XXX XXXXXXXX XX XXX XXXXXXXXX XXXXXXX XXX XXXX XXXXXXXXXXXX XXXXXX XXXXXXX XXX XXXX XXXXXXXXXXX XXXXXX XXXXXXXXXXX X XXXXXX X XXXX XXXXXXXX XXXX XXXX XXXXX XXX X X XXXXXXXXXXXXXXXXXXXXXXXXX X XXXX X XXX XXXXXXX XXXXXX XXXX XXX XXXXXX XXXXX XXX XXXXXXXXXXX X XXXXXXXX X XXXXXX X XXXX XX XXXX XX XXXXXXXX XXXXXXXX XXX XXX X XXXX XXXX XX XXXXXXXX XXX XXXXX XXX X X XXXXXXXXXXXXXXXXXXXXXXXXX XXX X X XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXX XXX XXXXXXXX XXXX XXXX XX XXX XXXX XXXXXXXXXXXX XXXX XXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXX XXXXXXXXXX XXXX XX XX XX XXXXXXXX XXXXXXXXXXXXXXXX X XXXXXXXXXXXXXX XXXX XX XXXXXX XX XXX XXXX XX XXX XXXX XXXXXXX XXXXXXXX XX XXXXX XX XXXXXXXXXXXXXXX XXXXXXXXX XX XXXXXXXXX XX XX XXXXXXXX XXXXX XXXXXXX XXXXXX XX XXX XXXXXX XXXXX XXX XXXXXXXXX XXXXX XXXXXXXX XXXX XXX XXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XX XXXXX XX XXXX XXX XXXX XXXXXX XXXX XXXXXXXX XXXXXXX XXXXX XX XXXXXX XXXX XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX XXX XXXXXX XXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXX XXXXXX XXXXXXX XXXXXXXXXX XXXXX XX XXXXXXXXX XXXXXXXX XXX XXXXXXXXXX XXXXXXXXX XXXXXXXXXXX XXXXX XXXXXX XX XXX XXXX XX XX XXXX XXXX XXXXXXXXXXX XXX X XXXXXX XXXX XXXXX XX XXXXXX XX XXXXXX XXXXXXXXX XX XXX XXX XXXX XXX XXXXXXX XXXXXXXX XXXXXXXX XXX X XXXXX XXXX XXXX XXX XX XXXXX XXXXXXXX XXXX XXXXXXXXXX XXXXXX XXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXX XXXXXXXXX XXXXX XXXXXXX XXXXXX XXXXXXXX XX XXXXXXXXXX XX XXX XXXX XXXXXXXXXX XXXX XXXXXXXXXXXXXXXXX XXXX XX XXXX XXXXXX XX XXXXXX
import os import pytz import time import datetime import asyncio import traceback import subprocess import importlib import requests from typing import Union, List from pyrogram.types import Message from pyrogram.errors import YouBlockedUser, MessageIdInvalid, PeerIdInvalid from pyrogram.enums import ParseMode, ChatType class RawFunctions(object): async def aexec( self, code: str ): """ params: 1. code: str :: your written python code use: use this function to execute python codes ex: (async) await app.aexec("print('Hello, World !')") """ exec( f"async def __aexec(self, m): " + "".join(f"\n {l}" for l in code.split("\n")) ) return await locals()["__aexec"](self, self.m) def showdate( self ): """ params: None use: use this function to get realtime date of your location ex: (async) await app.showdate() """ today = pytz.timezone(self.TIME_ZONE) get_date = datetime.datetime.now(today) mydate = get_date.strftime("%d %b %Y") return mydate def showtime( self ): """ params: None use: use this function to get time of your location ex: (async) await app.showtime() """ today = pytz.timezone(self.TIME_ZONE) get_time = datetime.datetime.now(today) mytime = get_time.strftime("%r") return mytime async def error( self, e, edit_error: bool=True ): """ params: 1. error :: occured error 2. edit_error: bool, default=True :: edits | sends error message usage: use this function at the end of try/except block ex: (async) try: await app.send_message(message.chat.id, "This is a test") except Exception as e: await app.error(e, edit_error=False) """ teks = f"**Traceback Report:**\n\n" teks += f"**Date:** `{self.showdate()}`\n**Time:** `{self.showtime()}`\n\n" teks += f"`This can be a error in tronuserbot, if you want you can forward this to @tronuserbot_support.`\n\n" teks += f"**Command:** `{self.m.text}`\n\n" teks += "`-`" * 30 + "\n\n" teks += f"**SHORT:** \n\n`{e}`\n\n" teks += f"**FULL:** \n\n`{traceback.format_exc()}`" try: if edit_error: if hasattr(e, "MESSAGE"): await self.send_edit(f"`{e.MESSAGE}`") else: await self.send_edit(e.args[0] if e.args else None) await self.send_message(self.LOG_CHAT, teks) print(e) except PeerIdInvalid: self.log.error(teks) except Exception as err: self.log.error(err) return True async def sleep( self, sec: int=0, delmsg=False ): """ params: 1. sec :: time to sleep in seconds 2. delme, default=False :: delete the message if it is True use: this function deletes the message after sleeping for a given time, this function blocks the code ex: (async) await app.sleep(10, delmsg=True) """ msg = None await asyncio.sleep(sec) if delmsg and self.m.from_user.is_self: msg = await self.m.delete() return msg async def delete_message( self, sec: int=0 ): """ params: 1. sec: int, default=0 :: time to sleep in seconds use: this function deletes a message after given time period this function works without blocking the entire execution ex: (async) await app.delete(10) """ if sec <= 600: # 10 min asyncio.create_task(self.sleep(sec=sec, delmsg=True)) return True else: self.log.error("Delete function can only sleep for 10 ( 600 sec ) minutes") async def data( self, modules: str ): """ params: 1. plug: str :: module name whose information is updated in app.CMD_HELP dict use: use this function to get information about a module ex: (async) await app.data("admin") """ try: module_data = [] module_data.clear() for x, y in zip( self.CMD_HELP.get(modules)[1].keys(), self.CMD_HELP.get(modules)[1].values() ): module_data.append( f"CMD: `{self.PREFIX}{x}`\nINFO: `{y}`\n\n" ) return module_data except Exception as e: self.log.error(e) return None async def send_edit( self, text: str, parse_mode=ParseMode.DEFAULT, disable_web_page_preview=False, delme : int=0, text_type: list=[], disable_notification: bool=False, reply_to_message_id: int=0, schedule_date: int=0, protect_content: bool=False, reply_markup=None, entities=None ): """ params: 1. text: str :: text to be edited or sent instead of editing 2. disable_web_page_preview: bool, default=False :: web page preview will be shown if True 3. delme: int, default=0 :: sleeps for given time and then deletes the message 4. mono: bool, default=False :: all text format will become mono 5. bold: bool, default=False :: all text format will become bold 6. italic: bool, default=False :: all text format will become italic 7. underline: bool, defau=False :: all text format will become underlined use: use this function to edit or send a message if failed to edit message ex: (async) await app.send_edit( "This text is sent or edited", disable_web_page_preview=True, delme=5, mono=True ) """ msg = None if self.m.from_user.is_self: msg = await self.m.edit( text=self.FormatText(text, format=text_type), parse_mode=parse_mode, disable_web_page_preview=disable_web_page_preview, reply_markup=reply_markup, entities=entities ) else: msg = await self.send_message( chat_id=self.m.chat.id, text=self.FormatText(text, format=text_type), disable_web_page_preview=disable_web_page_preview, parse_mode=parse_mode, reply_to_message_id=reply_to_message_id, schedule_date=schedule_date, protect_content=protect_content, reply_markup=reply_markup, entities=entities ) try: if delme > 0: asyncio.create_task(self.sleep(sec=delme, delmsg=True)) except Exception as err: await self.error(err) return msg async def check_private( self ): """ params: None use: use this to tell that they can't use some commands in private ex: (async) await app.private(message) """ if self.m.chat.type == ChatType.PRIVATE: await self.send_edit( "Please use these commands in groups.", text_type=["mono"], delme=4 ) return True return False def long( self ): """ params: None use: this function returns the length of a list containing message splited on spaces ex: if app.long() == 1: print("there is one word in message.text") """ text_length = len(self.m.text.split() or self.m.caption.split()) return text_length if bool(text_length) is True else None def textlen( self ): """ params: None use: this function returns length of characters in message.text ex: if app.textlen() > 4096: print("Text is too long") """ return len([x for x in self.m.text or self.m.caption or None]) async def create_file( self, filename: str, content: str, send: bool=True, caption: str=None ): """ params: 1. filename: str :: give a filename with some extension or without extension 2. text: str :: contents which is going to be written in the file use: use this function to create files with any type of extension (.txt, .py, .java, .html, etc), this function also sends the created file. ex: (async) await app.create_file("sample.txt", "This file was created by app.create_file() method") """ try: path = f"./downloads/{filename}" file = open(path, "w+") file.write(content) file.close() if send: await self.send_document( self.m.chat.id, path, caption = caption if caption else f"**Uploaded By:** {self.UserMention()}" ) if os.path.exists(path): os.remove(path) else: return path except Exception as e: await self.error(e) def rem_dual( self, list1: list, list2: list ): """ params: 1. one: list :: list from that you want to remove duplicates 2. two: list :: list that contains removable elements use: use this function to remove duplicates from lists ex: app.rem_dual([1, 1, 1, 2, 3], [1]) """ return list(set(list1) - set(list2)) async def kick_user( self, chat_id: Union[str, int], user_id: Union[str, int], ban_time: int=30 ): """ params: 1. chat_id: int :: chat id of the chat where this method is used 2. user_id: int :: user id of the user you want to kick from chat use: use this function to kick a member from your chat ex: (async) await app.kick_user(chat_id, user_id, ban_time=120) """ try: return await self.ban_chat_member(chat_id, user_id, int(time.time()) + ban_time) except Exception as e: await self.error(e) def is_str( self, element ): """ params: 1. element: [str, bool, int, float] :: anytype of data use: use this function to check if the element is string or not ex: app.is_str(data) """ return isinstance(element, str) def is_bool( self, element ): """ params: 1. element: [str, bool, int, float] :: anytype of data use: use this function to check if the element is boolean or not ex: app.is_bool(data) """ return isinstance(element, bool) def is_float( self, element ): """ params: 1. element: [str, bool, int, float] :: anytype of data use: use this function to check if the element is float or not ex: app.is_float(data) """ return isinstance(element, float) def is_int( self, element ): """ params: 1. element: [str, bool, int, float] :: anytype of data use: use this function to check if the element is integer or not ex: app.is_int(data) """ return isinstance(element, int) async def get_last_msg( self, chat_id, reverse: bool=False ): """ params: 1. chat_id: int :: chat id of group or user 2. reverse: bool, default=False :: if reverse is True you'll get the oldest message in chat use: use this function to get last message of the chat or user ex: (async) await app.get_last_msg(chat_id, reverse=True) """ return await self.get_chat_history(chat_id, limit=1, reverse=reverse) async def toggle_inline( self, ): """ params: None use: use this function to turn on | off inline mode of your bot ex: (async) await app.toggle_inline() """ try: botname = "BotFather" await self.send_edit("Processing command . . .", text_type=["mono"]) await self.send_message(botname, "/mybots") # BotFather (93372553) await asyncio.sleep(0.50) # floodwaits data = await self.get_last_msg(botname) usernames = list(data[0].reply_markup.inline_keyboard)[0] unames = [] unames.clear() for x in usernames: unames.append(x.text) await self.send_edit("Choosing bot . . . ", text_type=["mono"]) if self.bot.username in unames: await data[0].click(self.bot.username) else: return await self.send_edit("Looks like you don't have a bot please, use your own bot.", text_type=["mono"], delme=4) data = await self.get_last_msg(botname) await self.send_edit("Pressing Bot Settings . . . ", text_type=["mono"]) await data[0].click("Bot Settings") data = await self.get_last_msg(botname) await self.send_edit("checking whether inline mode is On or Off . . . ", text_type=["mono"]) await data[0].click("Inline Mode") data = await self.get_last_msg(botname) # Turn on inline mode if "Turn on" in str(data[0]): await self.send_edit("Turning Inline mode on . . . ", text_type=["mono"]) await data[0].click("Turn on") await self.send_edit("Inline mode is now turned On.", text_type=["mono"], delme=4) # Turn inline mode off elif "Turn inline mode off" in str(data[0]): await self.send_edit("Turning Inline mode Off . . .", text_type=["mono"]) await data[0].click("Turn inline mode off") await self.send_edit("Inline mode is now turned Off.", text_type=["mono"], delme=4) except YouBlockedUser: await self.unblock_user(botname) # unblock & continue await self.toggle_inline() # keep process going except Exception as err: await self.error(err) def quote( self ): """ params: None use: use this function to anime quotes ex: app.quote() """ results = requests.get("https://animechan.vercel.app/api/random").json() msg = f"❝ {results.get('quote')} ❞" msg += f" [ {results.get('anime')} ]\n\n" msg += f"- {results.get('character')}\n\n" return msg def ialive_pic( self ): """ params: None use: use this function to get inline alive pic url ex: app.ialive_pic() """ return self.getdv("USER_PIC") or self.UserPic() or None def get_file_id( self, message: Message ): """ params: 1. message (update) :: incoming update use: use this function to get file_id of any media in telegram ex: app.get_file_id(message) """ media = ["photo", "video", "audio", "document", "sticker", "animation"] for x in media: if message and message[x]: if message["caption"]: return {"data":(message[x]).file_id, "caption":message.caption, "type":x} else: return {"data":(message[x]).file_id, "caption":None, "type":x} elif message["text"]: return {"data":message.text, "caption":None, "type":"text"} return {"data":None, "caption":None, "type":None} def clear_screen( self ): """ params: None use: use this function to clear terminal screen ex: app.clear_screen() """ subprocess.call("clear" if os.name == "posix" else "cls") async def add_users( self, user_id: Union[int, str, List[int], List[str]], chat_id: Union[int, str] ): """ params: 1. user_id: int :: list of telegram id of user 2. chat_id :: chat id of a group or channel use: use this function to add users in a group / channel ex: (async) await app.add_users(user_id, chat_id) """ try: done = await self.add_chat_members(chat_id, user_id) return True if done else False except Exception as e: self.log.error(e) async def user_exists( self, user_id: Union[int, str], chat_id: Union[int, str] ): """ params: 1. user_id: int :: id of a telegram user 2. chat :: id of telegram chat use: use this
import argparse import logging import requests import sqlite3 import sys import time from voussoirkit import backoff from voussoirkit import betterhelp from voussoirkit import httperrors from voussoirkit import mutables from voussoirkit import operatornotify from voussoirkit import ratelimiter from voussoirkit import sqlhelpers from voussoirkit import threadpool from voussoirkit import vlogging log = vlogging.getLogger(__name__, 'hnarchive') VERSION = 1 HEADERS = { 'User-Agent': f'voussoir/hnarchive v{VERSION}.', } session = requests.Session() session.headers.update(HEADERS) DB_INIT = ''' PRAGMA user_version = 1; CREATE TABLE IF NOT EXISTS items( id INT PRIMARY KEY NOT NULL, deleted INT, type TEXT, author TEXT, time INT, text TEXT, dead INT, parent TEXT, poll TEXT, url TEXT, score INT, title TEXT, descendants INT, retrieved INT ); CREATE INDEX IF NOT EXISTS index_items_id on items(id); CREATE INDEX IF NOT EXISTS index_items_parent on items(parent); CREATE INDEX IF NOT EXISTS index_items_time on items(time); CREATE INDEX IF NOT EXISTS index_items_type_time on items(type, time); CREATE INDEX IF NOT EXISTS index_items_age_at_retrieval on items(retrieved - time); ''' COLUMNS = sqlhelpers.extract_table_column_map(DB_INIT) ITEMS_COLUMNS = COLUMNS['items'] sql = sqlite3.connect('hnarchive.db') sql.executescript(DB_INIT) # HELPERS ########################################################################################## def ctrlc_commit(function): def wrapped(*args, **kwargs): try: return function(*args, **kwargs) except KeyboardInterrupt: commit() return 1 return wrapped def int_or_none(x): if x is None: return x return int(x) # API ############################################################################################## def get(url, retries=1): bo = backoff.Quadratic(a=0.2, b=0, c=1, max=10) while retries > 0: try: log.loud(url) response = session.get(url, timeout=2) httperrors.raise_for_status(response) return response except ( httperrors.HTTP429, httperrors.HTTP5XX, requests.exceptions.ConnectionError, requests.exceptions.ReadTimeout, ): # Any other 4XX should raise. retries -= 1 log.loud('Request failed, %d tries remain.', retries) time.sleep(bo.next()) raise RuntimeError(f'Ran out of retries on {url}.') def get_item(id): url = f'https://hacker-news.firebaseio.com/v0/item/{id}.json' response = get(url, retries=8) item = response.json() if item is None: return None if 'time' not in item: # For example, 78692 from the api shows {"id": 78692, "type": "story"}, # but the web says "No such item." # https://hacker-news.firebaseio.com/v0/item/78692.json # https://news.ycombinator.com/item?id=78692 return None return item def get_items(ids, threads=None): if threads: return get_items_multithreaded(ids, threads) else: return get_items_singlethreaded(ids) def get_items_multithreaded(ids, threads): pool = threadpool.ThreadPool(threads, paused=True) job_gen = ({'function': get_item, 'kwargs': {'id': id}} for id in ids) pool.add_generator(job_gen) for job in pool.result_generator(buffer_size=250): if job.exception: raise job.exception if job.value is not None: yield job.value def get_items_singlethreaded(ids): for id in ids: item = get_item(id) if item is not None: yield item def get_latest_id(): url = 'https://hacker-news.firebaseio.com/v0/maxitem.json' response = get(url) latest_id = int(response.text) return latest_id def livestream(): bo = backoff.Linear(m=2, b=5, max=60) id = select_latest_id() or 1 # missed_loops: # Usually, livestream assumes that `item is None` means the requested item # id hasn't been published yet. But, if that item is actually just deleted, # we would be stuck waiting for it forever. missed_loops is used to # ocassionally check get_latest_id to see if new items are available, so we # know that the current id is really just deleted. # Items are released in small batches of < ~10 at a time. It is important # that the number in `latest > id+XXX` is big enough that we are sure the # requested item is really dead and not just part of a fresh batch that # beat our check in a race condition (consider that between the last # iteration which triggered the check and the call to get_latest_id, the # item we were waiting for is published in a new batch). I chose 50 because # catching up with 50 items is not a big deal. missed_loops = 0 while True: item = get_item(id) if item is None: log.debug('%s does not exist yet.', id) missed_loops += 1 if missed_loops % 5 == 0: latest = get_latest_id() if latest > (id+50): log.debug('Skipping %s because future ids exist.', id) id += 1 continue time.sleep(bo.next()) continue id += 1 missed_loops = 0 bo.rewind(2) yield item # DATABASE ######################################################################################### def commit(): log.info('Committing.') sql.commit() def insert_item(data): id = data['id'] retrieved = int(time.time()) existing = select_item(id) if existing is None: row = { 'id': id, 'deleted': bool(data.get('deleted', False)), 'type': data['type'], 'author': data.get('by', None), 'time': int(data['time']), 'text': data.get('text', None), 'dead': bool(data.get('dead', False)), 'parent': data.get('parent', None), 'poll': data.get('poll', None), 'url': data.get('url', None), 'score': int_or_none(data.get('score', None)), 'title': data.get('title', None), 'descendants': int_or_none(data.get('descendants', None)), 'retrieved': retrieved, } log.info('Inserting item %s.', id) (qmarks, bindings) = sqlhelpers.insert_filler(ITEMS_COLUMNS, row, require_all=True) query = f'INSERT INTO items VALUES({qmarks})' sql.execute(query, bindings) log.loud('Inserted item %s.', id) else: row = { 'id': id, 'deleted': bool(data.get('deleted', False)), 'type': data['type'], 'author': data.get('by', existing.get('author', None)), 'time': int(data['time']), 'text': data.get('text', existing.get('text', None)), 'dead': bool(data.get('dead', False)), 'parent': data.get('parent', None), 'poll': data.get('poll', existing.get('poll', None)), 'url': data.get('url', existing.get('url', None)), 'score': int_or_none(data.get('score', existing.get('score', None))), 'title': data.get('title', existing.get('title', None)), 'descendants': int_or_none(data.get('descendants', None)), 'retrieved': retrieved, } log.info('Updating item %s.', id) (qmarks, bindings) = sqlhelpers.update_filler(row, where_key='id') query = f'UPDATE items {qmarks}' sql.execute(query, bindings) log.loud('Updated item %s.', id) return {'row': row, 'is_new': existing is None} def insert_items(items, commit_period=200): ticker = 0 for item in items: insert_item(item) ticker = (ticker + 1) % commit_period if ticker == 0: commit() commit() def select_item(id): cur = sql.execute('SELECT * FROM items WHERE id == ?', [id]) row = cur.fetchone() if row is None: return None item = dict(zip(ITEMS_COLUMNS, row)) return item def select_latest_id(): cur = sql.execute('SELECT id FROM items ORDER BY id DESC LIMIT 1') row = cur.fetchone() if row is None: return None return row[0] # COMMAND LINE ##################################################################################### DOCSTRING = ''' hnarchive.py ============ {get} {livestream} {update} {update_items} TO SEE DETAILS ON EACH COMMAND, RUN > hnarchive.py <command> --help '''.lstrip() SUB_DOCSTRINGS = dict( get=''' get: Get items between two IDs, inclusive. flags: --lower id: Lower bound item ID. If omitted, starts from 1. --upper id: Upper bound item ID. If omitted, ends at newest post. --threads X: Use X threads to download items. Default = 1 thread. --commit_period X: Commit the database after every X insertions. Default = 200. '''.strip(), livestream=''' livestream: Watch for new items in an infinite loop. flags: --commit_period X: Commit the database after every X insertions. Default = 200. '''.strip(), update=''' update: Get new items, from the highest ID in the database to the present. flags: --threads X: Use X threads to download items. Default = 1 thread. --commit_period X: Commit the database after every X insertions. Default = 200. '''.strip(), update_items=''' update_items: Redownload items to update their scores, descendant counts, etc. flags: --days X: Update items where the retrieval date is less than X days ahead of the submission date. Stories are only open for comments for 14 days, so the `descendants` count of any story younger than 14 days should be considered volatile. It seems the upvote button does not disappear at any age, though I don't know whether votes on old submissions will actually count. Regardless, votes and comments tend to solidify within a day or two after submission so a small number should be sufficient. --threads X: Use X threads to download items. Default = 1 thread. --only_mature: If True, only update items where the submission date is more than 14 days ago. Without this, you will be updating items which are very close to the present time, an effort which you may find wasteful. --commit_period X: Commit the database after every X insertions. Default = 200. '''.strip(), ) DOCSTRING = betterhelp.add_previews(DOCSTRING, SUB_DOCSTRINGS) @ctrlc_commit def get_argparse(args): lower = args.lower or 1 upper = args.upper or get_latest_id() ids = range(lower, upper+1) items = get_items(ids, threads=args.threads) insert_items(items, commit_period=args.commit_period) return 0 @ctrlc_commit def livestream_argparse(args): NOTIFY_EVERY_LINE.set(True) insert_items(livestream(), commit_period=args.commit_period) return 0 @ctrlc_commit def update_argparse(args): while True: lower = select_latest_id() or 1 upper = get_latest_id() if lower == upper: break ids = range(lower, upper+1) items = get_items(ids, threads=args.threads) insert_items(items, commit_period=args.commit_period) return 0 @ctrlc_commit def update_items_argparse(args): seconds = args.days * 86400 if args.only_mature: then = time.time() - (86400 * 14) query = 'SELECT id FROM items WHERE retrieved - time <= ? AND time < ?' bindings = [seconds, then] else: query = 'SELECT id FROM items WHERE retrieved - time <= ?' bindings = [seconds] cur = sql.execute(query, bindings) ids = cur.fetchall() log.info('Updating %d items.', len(ids)) if not ids: return 0 ids = [id for (id,) in ids] items = get_items(ids, threads=args.threads) insert_items(items, commit_period=args.commit_period) return 0 NOTIFY_EVERY_LINE = mutables.Boolean(False) @operatornotify.main_decorator(subject='hnarchive.py', notify_every_line=NOTIFY_EVERY_LINE) @vlogging.main_decorator def main(argv): parser = argparse.ArgumentParser(description=DOCSTRING) subparsers = parser.add_subparsers() p_get = subparsers.add_parser('get') p_get.add_argument('--lower', type=int, default=None) p_get.add_argument('--upper', type=int, default=None) p_get.add_argument('--threads', type=int, default=None) p_get.add_argument('--commit_period', '--commit-period', type=int, default=200) p_get.set_defaults(func=get_argparse) p_livestream = subparsers.add_parser('livestream') p_livestream.add_argument('--commit_period', '--commit-period', type=int, default=200) p_livestream.set_defaults(func=livestream_argparse) p_update = subparsers.add_parser('update') p_update.add_argument('--threads', type=int, default=None) p_update.add_argument('--commit_period', '--commit-period', type=int, default=200) p_update.set_defaults(func=update_argparse) p_update_items = subparsers.add_parser('update_items', aliases=['update-items']) p_update_items.add_argument('--days', type=float, required=True) p_update_items.add_argument('--threads', type=int, default=None) p_update_items.add_argument('--only_mature',
from enum import Enum import random from time import perf_counter from .controller import ControllerTypes from .utils import replace_subarray class SwitchResponses(Enum): NO_DATA = -1 MALFORMED = -2 TOO_SHORT = -3 UNKNOWN_SUBCOMMAND = -4 REQUEST_DEVICE_INFO = 2 SET_SHIPMENT = 0x08 SPI_READ = 0x10 SET_MODE = 0x03 TRIGGER_BUTTONS = 0x04 TOGGLE_IMU = 0x40 ENABLE_VIBRATION = 0x48 SET_PLAYER = 0x30 SET_NFC_IR_STATE = 0x22 SET_NFC_IR_CONFIG = 0x21 class ControllerProtocol(): CONTROLLER_INFO = { ControllerTypes.JOYCON_L: { "id": 0x01, "connection_info": 0x0E }, ControllerTypes.JOYCON_R: { "id": 0x02, "connection_info": 0x0E }, ControllerTypes.PRO_CONTROLLER: { "id": 0x03, "connection_info": 0x00 } } VIBRATOR_BYTES = [0xA0, 0xB0, 0xC0, 0x90] def __init__(self, controller_type, bt_address, report_size=50, colour_body=None, colour_buttons=None): """Initializes the protocol for the controller. :param controller_type: The type of controller (Joy-Con (L), Pro Controller, etc) :type controller_type: ControllerTypes :param bt_address: A colon-separated Bluetooth MAC address :type bt_address: string :param report_size: The size of the protocol report, defaults to 50 :type report_size: int, optional :param colour_body: Sets the body colour of the controller, defaults to None :type colour_body: list of bytes, optional :param colour_buttons: Sets the colour of the controller buttons, defaults to None :type colour_buttons: list of bytes, optional :raises ValueError: On unknown controller type """ self.bt_address = bt_address if controller_type in self.CONTROLLER_INFO.keys(): self.controller_type = controller_type else: raise ValueError("Unknown controller type specified") self.report = None self.report_size = report_size self.set_empty_report() # Input report mode self.mode = None # Player number self.player_number = None # Setting if the controller has been asked for device info # Enables buttons/stick output for the standard full report self.device_info_queried = False # Standard Input Report Properties # Timestamp to generate timer byte ticks self.timer = 0 self.timestamp = None # High/Low Nibble self.battery_level = 0x90 self.connection_info = ( self.CONTROLLER_INFO[self.controller_type]["connection_info"]) self.button_status = [0x00] * 3 # Disable left stick if we have a right Joy-Con if self.controller_type == ControllerTypes.JOYCON_R: self.left_stick_centre = [0x00] * 3 else: # Center values which are also reported under # SPI Stick calibration reads self.left_stick_centre = [0x6F, 0xC8, 0x77] # Disable right stick if we have a left Joy-Con if self.controller_type == ControllerTypes.JOYCON_L: self.right_stick_centre = [0x00] * 3 else: # Center values which are also reported under # SPI Stick calibration reads self.right_stick_centre = [0x16, 0xD8, 0x7D] self.vibration_enabled = False self.vibrator_report = random.choice(self.VIBRATOR_BYTES) # IMU (Six Axis Sensor) State self.imu_enabled = False # Controller colours # Body Colour if not colour_body: self.colour_body = [0x82] * 3 else: self.colour_body = colour_body if not colour_buttons: self.colour_buttons = [0x0F] * 3 else: self.colour_buttons = colour_buttons def get_report(self): report = bytes(self.report) # Clear report self.set_empty_report() return report def process_commands(self, data): # Parsing the Switch's message message = SwitchReportParser(data) # Responding to the parsed message if message.response == SwitchResponses.REQUEST_DEVICE_INFO: self.device_info_queried = True self.set_subcommand_reply() self.set_device_info() elif message.response == SwitchResponses.SET_SHIPMENT: self.set_subcommand_reply() self.set_shipment() elif message.response == SwitchResponses.SPI_READ: self.set_subcommand_reply() self.spi_read(message) elif message.response == SwitchResponses.SET_MODE: self.set_subcommand_reply() self.set_mode(message) elif message.response == SwitchResponses.TRIGGER_BUTTONS: self.set_subcommand_reply() self.set_trigger_buttons() elif message.response == SwitchResponses.TOGGLE_IMU: self.set_subcommand_reply() self.toggle_imu(message) elif message.response == SwitchResponses.ENABLE_VIBRATION: self.set_subcommand_reply() self.enable_vibration() elif message.response == SwitchResponses.SET_PLAYER: self.set_subcommand_reply() self.set_player_lights(message) elif message.response == SwitchResponses.SET_NFC_IR_STATE: self.set_subcommand_reply() self.set_nfc_ir_state() elif message.response == SwitchResponses.SET_NFC_IR_CONFIG: self.set_subcommand_reply() self.set_nfc_ir_config() # Bad Packet handling statements elif message.response == SwitchResponses.UNKNOWN_SUBCOMMAND: # Currently set so that the controller ignores any unknown # subcommands. This is better than sending a NACK response # since we'd just get stuck in an infinite loop arguing # with the Switch. self.set_full_input_report() elif message.response == SwitchResponses.NO_DATA: self.set_full_input_report() elif message.response == SwitchResponses.TOO_SHORT: self.set_full_input_report() elif message.response == SwitchResponses.MALFORMED: self.set_full_input_report() def set_empty_report(self): empty_report = [0] * self.report_size empty_report[0] = 0xA1 self.report = empty_report def set_subcommand_reply(self): # Input Report ID self.report[1] = 0x21 # TODO: Find out what the vibrator byte is doing. # This is a hack in an attempt to semi-emulate # actions of the vibrator byte as it seems to change # when a subcommand reply is sent. self.vibrator_report = random.choice(self.VIBRATOR_BYTES) self.set_standard_input_report() def set_unknown_subcommand(self, subcommand_id): # Set NACK self.report[14] # Set unknown subcommand ID self.report[15] = subcommand_id def set_timer(self): # If the timer hasn't been set before if not self.timestamp: self.timestamp = perf_counter() self.report[2] = 0x00 return # Get the time that has passed since the last timestamp # in milliseconds now = perf_counter() delta_t = (now - self.timestamp) * 1000 # Get how many ticks have passed in hex with overflow at 255 # Joy-Con uses 4.96ms as the timer tick rate elapsed_ticks = int(delta_t * 4) self.timer = (self.timer + elapsed_ticks) & 0xFF self.report[2] = self.timer self.timestamp = now def set_full_input_report(self): # Setting Report ID to full standard input report ID self.report[1] = 0x30 self.set_standard_input_report() self.set_imu_data() def set_standard_input_report(self): self.set_timer() if self.device_info_queried: self.report[3] = self.battery_level + self.connection_info self.report[4] = self.button_status[0] self.report[5] = self.button_status[1] self.report[6] = self.button_status[2] self.report[7] = self.left_stick_centre[0] self.report[8] = self.left_stick_centre[1] self.report[9] = self.left_stick_centre[2] self.report[10] = self.right_stick_centre[0] self.report[11] = self.right_stick_centre[1] self.report[12] = self.right_stick_centre[2] self.report[13] = self.vibrator_report def set_button_inputs(self, upper, shared, lower): self.report[4] = upper self.report[5] = shared self.report[6] = lower def set_left_stick_inputs(self, left): self.report[7] = left[0] self.report[8] = left[1] self.report[9] = left[2] def set_right_stick_inputs(self, right): self.report[10] = right[0] self.report[11] = right[1] self.report[12] = right[2] def set_device_info(self): # ACK Reply self.report[14] = 0x82 # Subcommand Reply self.report[15] = 0x02 # Firmware version self.report[16] = 0x03 self.report[17] = 0x8B # Controller ID self.report[18] = self.CONTROLLER_INFO[self.controller_type]["id"] # Unknown Byte, always 2 self.report[19] = 0x02 # Controller Bluetooth Address address = self.bt_address.strip().split(":") # Getting from adapter address_location = 20 for address_byte_str in address: # Converting string address bytes to hex # and assigning to report address_byte = int(address_byte_str, 16) self.report[address_location] = address_byte address_location += 1 # Unknown byte, always 1 self.report[26] = 0x01 # Controller colours location (read from SPI) self.report[27] = 0x01 def set_shipment(self): # ACK Reply self.report[14] = 0x80 # Subcommand reply self.report[15] = 0x08 def toggle_imu(self, message): if message.subcommand[1] == 0x01: self.imu_enabled = True else: self.imu_enabled = False # ACK Reply self.report[14] = 0x80 # Subcommand reply self.report[15] = 0x40 def set_imu_data(self): if not self.imu_enabled: return imu_data = [0x75, 0xFD, 0xFD, 0xFF, 0x09, 0x10, 0x21, 0x00, 0xD5, 0xFF, 0xE0, 0xFF, 0x72, 0xFD, 0xF9, 0xFF, 0x0A, 0x10, 0x22, 0x00, 0xD5, 0xFF, 0xE0, 0xFF, 0x76, 0xFD, 0xFC, 0xFF, 0x09, 0x10, 0x23, 0x00, 0xD5, 0xFF, 0xE0, 0xFF] replace_subarray(self.report, 14, 49, replace_arr=imu_data) def spi_read(self, message): addr_top = message.subcommand[2] addr_bottom = message.subcommand[1] read_length = message.subcommand[5] # ACK byte self.report[14] = 0x90 # Subcommand reply self.report[15] = 0x10 # Read address self.report[16] = addr_bottom self.report[17] = addr_top # Read length self.report[20] = read_length # Stick Parameters # Params are generally the same for all sticks # Notable difference is the deadzone (10% Joy-Con vs 15% Pro Con) params = [0x0F, 0x30, 0x61, # Unused 0x96, 0x30, 0xF3, # Dead Zone/Range Ratio 0xD4, 0x14, 0x54, # X/Y ? 0x41, 0x15, 0x54, # X/Y ? 0xC7, 0x79, 0x9C, # X/Y ? 0x33, 0x36, 0x63] # X/Y ? # Adjusting deadzone for Joy-Cons if not self.controller_type == ControllerTypes.PRO_CONTROLLER: params[3] = 0xAE # Serial Number read if addr_top == 0x60 and addr_bottom == 0x00: # Switch will take this as no serial number replace_subarray(self.report, 21, 16, 0xFF) # Colours elif addr_top == 0x60 and addr_bottom == 0x50: # Body colour replace_subarray( self.report, 21, 3, replace_arr=self.colour_body) # Buttons colour replace_subarray( self.report, 24, 3, replace_arr=self.colour_buttons) # Left/right grip colours (Pro controller) replace_subarray(self.report, 27, 7, 0xFF) # Factory sensor/stick device parameters elif addr_top == 0x60 and addr_bottom == 0x80: # Six-Axis factory parameters if self.controller_type == ControllerTypes.PRO_CONTROLLER: self.report[21] = 0x50 self.report[22] = 0xFD self.report[23] = 0x00 self.report[24] = 0x00 self.report[25] = 0xC6 self.report[26] = 0x0F else: self.report[21] = 0x5E self.report[22] = 0x01 self.report[23] = 0x00 self.report[24] = 0x00 if self.controller_type == ControllerTypes.JOYCON_L: self.report[25] = 0xF1 self.report[26] = 0x0F else: self.report[25] = 0x0F self.report[26] = 0xF0 replace_subarray(self.report, 27, 18, replace_arr=params) # Stick device parameters 2 elif addr_top == 0x60 and addr_bottom == 0x98: # Setting same params since controllers always # have duplicates of stick params 1 for stick params 2 replace_subarray(self.report, 21, 18, replace_arr=params) # User analog stick calibration elif addr_top ==
dist.write(' It is not required for loading .wav, .ogg or .opus files, which Panda3D can read out of the box.">\n') dist.write(' <pkg-ref id="org.panda3d.panda3d.ffmpeg.pkg"/>\n') dist.write(' </choice>\n') #if not PkgSkip("OPENAL"): # dist.write(' <choice id="openal" title="OpenAL Audio Plug-In" tooltip="OpenAL audio output plug-in" description="This package contains the OpenAL audio plug-in, which is an open-source library for playing sounds.">\n') # dist.write(' <pkg-ref id="org.panda3d.panda3d.openal.pkg"/>\n') # dist.write(' </choice>\n') if not PkgSkip("FMODEX"): dist.write(' <choice id="fmodex" title="FMOD Ex Plug-In" tooltip="FMOD Ex audio output plug-in" description="This package contains the FMOD Ex audio plug-in, which is a commercial library for playing sounds. It is an optional component as Panda3D can use the open-source alternative OpenAL instead.">\n') dist.write(' <pkg-ref id="org.panda3d.panda3d.fmodex.pkg"/>\n') dist.write(' </choice>\n') if os.path.isdir("samples"): dist.write(' <choice id="samples" title="Sample Programs" tooltip="Python sample programs that use Panda3D" description="This package contains the Python sample programs that can help you with learning how to use Panda3D. Location: /Developer/Examples/Panda3D/">\n') dist.write(' <pkg-ref id="org.panda3d.panda3d.samples.pkg"/>\n') dist.write(' </choice>\n') dist.write(' <choice id="headers" title="C++ Header Files" tooltip="Header files for C++ development with Panda3D" description="This package contains the C++ header files that are needed in order to do C++ development with Panda3D. You don\'t need this if you want to develop in Python. Location: /Developer/Panda3D/include/" start_selected="false">\n') dist.write(' <pkg-ref id="org.panda3d.panda3d.headers.pkg"/>\n') dist.write(' </choice>\n') for pkg in pkgs: size = GetDirectorySize("dstroot/" + pkg) // 1024 dist.write(' <pkg-ref id="org.panda3d.panda3d.%s.pkg" installKBytes="%d" version="1" auth="Root">file:./Contents/Packages/%s.pkg</pkg-ref>\n' % (pkg, size, pkg)) dist.write('</installer-script>\n') dist.close() oscmd('hdiutil create Panda3D-rw.dmg -volname "Panda3D SDK %s" -srcfolder dstroot/Panda3D' % (version)) oscmd('hdiutil convert Panda3D-rw.dmg -format UDBZ -o %s' % (dmg_name)) oscmd('rm -f Panda3D-rw.dmg') def MakeInstallerFreeBSD(version, runtime=False, **kwargs): outputdir = GetOutputDir() oscmd("rm -rf targetroot +DESC pkg-plist +MANIFEST") oscmd("mkdir targetroot") # Invoke installpanda.py to install it into a temporary dir if runtime: InstallRuntime(destdir="targetroot", prefix="/usr/local", outputdir=outputdir) else: InstallPanda(destdir="targetroot", prefix="/usr/local", outputdir=outputdir) if not os.path.exists("/usr/sbin/pkg"): exit("Cannot create an installer without pkg") plist_txt = '' for root, dirs, files in os.walk("targetroot/usr/local/", True): for f in files: plist_txt += os.path.join(root, f)[21:] + "\n" if not runtime: plist_txt += "@postexec /sbin/ldconfig -m /usr/local/lib/panda3d\n" plist_txt += "@postunexec /sbin/ldconfig -R\n" for remdir in ("lib/panda3d", "share/panda3d", "include/panda3d"): for root, dirs, files in os.walk("targetroot/usr/local/" + remdir, False): for d in dirs: plist_txt += "@dir %s\n" % os.path.join(root, d)[21:] plist_txt += "@dir %s\n" % remdir oscmd("echo \"`pkg config abi | tr '[:upper:]' '[:lower:]' | cut -d: -f1,2`:*\" > " + outputdir + "/tmp/architecture.txt") pkg_arch = ReadFile(outputdir+"/tmp/architecture.txt").strip() dependencies = '' if not PkgSkip("PYTHON"): # If this version of Python was installed from a package or ports, let's mark it as dependency. oscmd("rm -f %s/tmp/python_dep" % outputdir) if "PYTHONVERSION" in SDK: pyver_nodot = SDK["PYTHONVERSION"][6:9:2] else: pyver_nodot = "%d%d" % (sys.version_info[:2]) oscmd("pkg query \"\n\t%%n : {\n\t\torigin : %%o,\n\t\tversion : %%v\n\t},\n\" python%s > %s/tmp/python_dep" % (pyver_nodot, outputdir), True) if os.path.isfile(outputdir + "/tmp/python_dep"): python_pkg = ReadFile(outputdir + "/tmp/python_dep") if python_pkg: dependencies += python_pkg manifest_txt = INSTALLER_PKG_MANIFEST_FILE[1:].replace("NAME", 'panda3d' if not runtime else 'panda3d-runtime') manifest_txt = manifest_txt.replace("VERSION", version) manifest_txt = manifest_txt.replace("ARCH", pkg_arch) manifest_txt = manifest_txt.replace("ORIGIN", 'devel/panda3d' if not runtime else 'graphics/panda3d-runtime') manifest_txt = manifest_txt.replace("DEPENDS", dependencies) manifest_txt = manifest_txt.replace("INSTSIZE", str(GetDirectorySize("targetroot") / 1024 / 1024)) WriteFile("pkg-plist", plist_txt) WriteFile("+DESC", INSTALLER_PKG_DESCR_FILE[1:] if not runtime else RUNTIME_INSTALLER_PKG_DESCR_FILE[1:]) WriteFile("+MANIFEST", manifest_txt) oscmd("pkg create -p pkg-plist -r %s -m . -o . %s" % (os.path.abspath("targetroot"), "--verbose" if GetVerbose() else "--quiet")) def MakeInstallerAndroid(version, **kwargs): outputdir = GetOutputDir() oscmd("rm -rf apkroot") oscmd("mkdir apkroot") # Also remove the temporary apks. apk_unaligned = os.path.join(outputdir, "tmp", "panda3d-unaligned.apk") apk_unsigned = os.path.join(outputdir, "tmp", "panda3d-unsigned.apk") if os.path.exists(apk_unaligned): os.unlink(apk_unaligned) if os.path.exists(apk_unsigned): os.unlink(apk_unsigned) # Compile the Java classes into a Dalvik executable. dx_cmd = "dx --dex --output=apkroot/classes.dex " if GetOptimize() <= 2: dx_cmd += "--debug " if GetVerbose(): dx_cmd += "--verbose " if "ANDROID_API" in SDK: dx_cmd += "--min-sdk-version=%d " % (SDK["ANDROID_API"]) dx_cmd += os.path.join(outputdir, "classes") oscmd(dx_cmd) # Copy the libraries one by one. In case of library dependencies, strip # off any suffix (eg. libfile.so.1.0), as Android does not support them. source_dir = os.path.join(outputdir, "lib") target_dir = os.path.join("apkroot", "lib", SDK["ANDROID_ABI"]) oscmd("mkdir -p %s" % (target_dir)) # Determine the library directories we should look in. libpath = [source_dir] for dir in os.environ.get("LD_LIBRARY_PATH", "").split(':'): dir = os.path.expandvars(dir) dir = os.path.expanduser(dir) if os.path.isdir(dir): dir = os.path.realpath(dir) if not dir.startswith("/system") and not dir.startswith("/vendor"): libpath.append(dir) def copy_library(source, base): # Copy file to destination, stripping version suffix. target = os.path.join(target_dir, base) if not target.endswith('.so'): target = target.rpartition('.so.')[0] + '.so' if os.path.isfile(target): # Already processed. return oscmd("cp %s %s" % (source, target)) # Walk through the library dependencies. oscmd("ldd %s | grep .so > %s/tmp/otool-libs.txt" % (target, outputdir), True) for line in open(outputdir + "/tmp/otool-libs.txt", "r"): line = line.strip() if not line: continue if '.so.' in line: dep = line.rpartition('.so.')[0] + '.so' oscmd("patchelf --replace-needed %s %s %s" % (line, dep, target), True) else: dep = line # Find it on the LD_LIBRARY_PATH. for dir in libpath: fulldep = os.path.join(dir, dep) if os.path.isfile(fulldep): copy_library(os.path.realpath(fulldep), dep) break # Now copy every lib in the lib dir, and its dependencies. for base in os.listdir(source_dir): if not base.startswith('lib'): continue if not base.endswith('.so') and '.so.' not in base: continue source = os.path.join(source_dir, base) if os.path.islink(source): continue copy_library(source, base) # Same for Python extension modules. However, Android is strict about # library naming, so we have a special naming scheme for these, in # conjunction with a custom import hook to find these modules. if not PkgSkip("PYTHON"): suffix = GetExtensionSuffix() source_dir = os.path.join(outputdir, "panda3d") for base in os.listdir(source_dir): if not base.endswith(suffix): continue modname = base[:-len(suffix)] if '.' not in modname: source = os.path.join(source_dir, base) copy_library(source, "libpy.panda3d.{}.so".format(modname)) # Same for standard Python modules. import _ctypes source_dir = os.path.dirname(_ctypes.__file__) for base in os.listdir(source_dir): if not base.endswith('.so'): continue modname = base.partition('.')[0] source = os.path.join(source_dir, base) copy_library(source, "libpy.{}.so".format(modname)) def copy_python_tree(source_root, target_root): for source_dir, dirs, files in os.walk(source_root): if 'site-packages' in dirs: dirs.remove('site-packages') if not any(base.endswith('.py') for base in files): continue target_dir = os.path.join(target_root, os.path.relpath(source_dir, source_root)) target_dir = os.path.normpath(target_dir) os.makedirs(target_dir, 0o755) for base in files: if base.endswith('.py'): target = os.path.join(target_dir, base) shutil.copy(os.path.join(source_dir, base), target) # Copy the Python standard library to the .apk as well. from distutils.sysconfig import get_python_lib stdlib_source = get_python_lib(False, True) stdlib_target = os.path.join("apkroot", "lib", "python{0}.{1}".format(*sys.version_info)) copy_python_tree(stdlib_source, stdlib_target) # But also copy over our custom site.py. shutil.copy("panda/src/android/site.py", os.path.join(stdlib_target, "site.py")) # And now make a site-packages directory containing our direct/panda3d/pandac modules. for tree in "panda3d", "direct", "pandac": copy_python_tree(os.path.join(outputdir, tree), os.path.join(stdlib_target, "site-packages", tree)) # Copy the models and config files to the virtual assets filesystem. oscmd("mkdir apkroot/assets") oscmd("cp -R %s apkroot/assets/models" % (os.path.join(outputdir, "models"))) oscmd("cp -R %s apkroot/assets/etc" % (os.path.join(outputdir, "etc"))) # Make an empty res folder. It's needed for the apk to be installable, apparently. oscmd("mkdir apkroot/res") # Now package up the application oscmd("cp panda/src/android/pview_manifest.xml apkroot/AndroidManifest.xml") aapt_cmd = "aapt package" aapt_cmd += " -F %s" % (apk_unaligned) aapt_cmd += " -M apkroot/AndroidManifest.xml" aapt_cmd += " -A apkroot/assets -S apkroot/res" aapt_cmd += " -I $PREFIX/share/aapt/android.jar" oscmd(aapt_cmd) # And add all the libraries to it. oscmd("cd apkroot && aapt add ../%s classes.dex" % (apk_unaligned)) for path, dirs, files in os.walk('apkroot/lib'): if files: rel = os.path.relpath(path, 'apkroot') oscmd("cd apkroot && aapt add ../%s %s/*" % (apk_unaligned, rel)) # Now align the .apk, which is necessary for Android to load it. oscmd("zipalign -v -p 4 %s %s" % (apk_unaligned, apk_unsigned)) # Finally, sign it using a debug key. This is generated if it doesn't exist. oscmd("apksigner debug.ks %s panda3d.apk" % (apk_unsigned)) # Clean up. oscmd("rm -rf apkroot") os.unlink(apk_unaligned) os.unlink(apk_unsigned) def MakeInstaller(version, **kwargs): target = GetTarget() if target == 'windows': fn = "Panda3D-" dir = "Panda3D-" + version runtime = kwargs.get('runtime', False) if runtime: fn += "Runtime-" title = "Panda3D " + version else: title = "Panda3D SDK " + version fn += version if "PYTHONVERSION" in SDK: pyver = SDK["PYTHONVERSION"][6:9] else: pyver = "%d.%d" % (sys.version_info[:2]) if not runtime and pyver != "2.7": fn += '-py' + pyver if GetOptimize() <= 2: fn += "-dbg" if GetTargetArch() == 'x64': fn += '-x64' dir += '-x64' MakeInstallerNSIS(version, fn + '.exe', title, 'C:\\' + dir, **kwargs) if not runtime: MakeDebugSymbolArchive(fn + '-pdb.zip', dir)
== 2: if ExternalEncoding: encoding = ExternalEncoding else: encoding = 'utf-8' return instring.encode(encoding) else: return instring @staticmethod def convert_unicode(instring): if isinstance(instring, str): result = quote_xml(instring) elif sys.version_info.major == 2 and isinstance(instring, unicode): result = quote_xml(instring).encode('utf8') else: result = GeneratedsSuper.gds_encode(str(instring)) return result def __eq__(self, other): if type(self) != type(other): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self.__eq__(other) def getSubclassFromModule_(module, class_): '''Get the subclass of a class from a specific module.''' name = class_.__name__ + 'Sub' if hasattr(module, name): return getattr(module, name) else: return None # # If you have installed IPython you can uncomment and use the following. # IPython is available from http://ipython.scipy.org/. # ## from IPython.Shell import IPShellEmbed ## args = '' ## ipshell = IPShellEmbed(args, ## banner = 'Dropping into IPython', ## exit_msg = 'Leaving Interpreter, back to program.') # Then use the following line where and when you want to drop into the # IPython shell: # ipshell('<some message> -- Entering ipshell.\nHit Ctrl-D to exit') # # Globals # ExternalEncoding = '' Tag_pattern_ = re_.compile(r'({.*})?(.*)') String_cleanup_pat_ = re_.compile(r"[\n\r\s]+") Namespace_extract_pat_ = re_.compile(r'{(.*)}(.*)') CDATA_pattern_ = re_.compile(r"<!\[CDATA\[.*?\]\]>", re_.DOTALL) # Change this to redirect the generated superclass module to use a # specific subclass module. CurrentSubclassModule_ = None # # Support/utility functions. # def showIndent(outfile, level, pretty_print=True): if pretty_print: for idx in range(level): outfile.write(' ') def quote_xml(inStr): "Escape markup chars, but do not modify CDATA sections." if not inStr: return '' s1 = (isinstance(inStr, BaseStrType_) and inStr or '%s' % inStr) s2 = '' pos = 0 matchobjects = CDATA_pattern_.finditer(s1) for mo in matchobjects: s3 = s1[pos:mo.start()] s2 += quote_xml_aux(s3) s2 += s1[mo.start():mo.end()] pos = mo.end() s3 = s1[pos:] s2 += quote_xml_aux(s3) return s2 def quote_xml_aux(inStr): s1 = inStr.replace('&', '&amp;') s1 = s1.replace('<', '&lt;') s1 = s1.replace('>', '&gt;') return s1 def quote_attrib(inStr): s1 = (isinstance(inStr, BaseStrType_) and inStr or '%s' % inStr) s1 = s1.replace('&', '&amp;') s1 = s1.replace('<', '&lt;') s1 = s1.replace('>', '&gt;') if '"' in s1: if "'" in s1: s1 = '"%s"' % s1.replace('"', "&quot;") else: s1 = "'%s'" % s1 else: s1 = '"%s"' % s1 return s1 def quote_python(inStr): s1 = inStr if s1.find("'") == -1: if s1.find('\n') == -1: return "'%s'" % s1 else: return "'''%s'''" % s1 else: if s1.find('"') != -1: s1 = s1.replace('"', '\\"') if s1.find('\n') == -1: return '"%s"' % s1 else: return '"""%s"""' % s1 def get_all_text_(node): if node.text is not None: text = node.text else: text = '' for child in node: if child.tail is not None: text += child.tail return text def find_attr_value_(attr_name, node): attrs = node.attrib attr_parts = attr_name.split(':') value = None if len(attr_parts) == 1: value = attrs.get(attr_name) elif len(attr_parts) == 2: prefix, name = attr_parts namespace = node.nsmap.get(prefix) if namespace is not None: value = attrs.get('{%s}%s' % (namespace, name, )) return value class GDSParseError(Exception): pass def raise_parse_error(node, msg): msg = '%s (element %s/line %d)' % (msg, node.tag, node.sourceline, ) raise GDSParseError(msg) class MixedContainer: # Constants for category: CategoryNone = 0 CategoryText = 1 CategorySimple = 2 CategoryComplex = 3 # Constants for content_type: TypeNone = 0 TypeText = 1 TypeString = 2 TypeInteger = 3 TypeFloat = 4 TypeDecimal = 5 TypeDouble = 6 TypeBoolean = 7 TypeBase64 = 8 def __init__(self, category, content_type, name, value): self.category = category self.content_type = content_type self.name = name self.value = value def getCategory(self): return self.category def getContenttype(self, content_type): return self.content_type def getValue(self): return self.value def getName(self): return self.name def export(self, outfile, level, name, namespace, pretty_print=True): if self.category == MixedContainer.CategoryText: # Prevent exporting empty content as empty lines. if self.value.strip(): outfile.write(self.value) elif self.category == MixedContainer.CategorySimple: self.exportSimple(outfile, level, name) else: # category == MixedContainer.CategoryComplex self.value.export( outfile, level, namespace, name_=name, pretty_print=pretty_print) def exportSimple(self, outfile, level, name): if self.content_type == MixedContainer.TypeString: outfile.write('<%s>%s</%s>' % ( self.name, self.value, self.name)) elif self.content_type == MixedContainer.TypeInteger or \ self.content_type == MixedContainer.TypeBoolean: outfile.write('<%s>%d</%s>' % ( self.name, self.value, self.name)) elif self.content_type == MixedContainer.TypeFloat or \ self.content_type == MixedContainer.TypeDecimal: outfile.write('<%s>%f</%s>' % ( self.name, self.value, self.name)) elif self.content_type == MixedContainer.TypeDouble: outfile.write('<%s>%g</%s>' % ( self.name, self.value, self.name)) elif self.content_type == MixedContainer.TypeBase64: outfile.write('<%s>%s</%s>' % ( self.name, base64.b64encode(self.value), self.name)) def to_etree(self, element): if self.category == MixedContainer.CategoryText: # Prevent exporting empty content as empty lines. if self.value.strip(): if len(element) > 0: if element[-1].tail is None: element[-1].tail = self.value else: element[-1].tail += self.value else: if element.text is None: element.text = self.value else: element.text += self.value elif self.category == MixedContainer.CategorySimple: subelement = etree_.SubElement( element, '%s' % self.name) subelement.text = self.to_etree_simple() else: # category == MixedContainer.CategoryComplex self.value.to_etree(element) def to_etree_simple(self): if self.content_type == MixedContainer.TypeString: text = self.value elif (self.content_type == MixedContainer.TypeInteger or self.content_type == MixedContainer.TypeBoolean): text = '%d' % self.value elif (self.content_type == MixedContainer.TypeFloat or self.content_type == MixedContainer.TypeDecimal): text = '%f' % self.value elif self.content_type == MixedContainer.TypeDouble: text = '%g' % self.value elif self.content_type == MixedContainer.TypeBase64: text = '%s' % base64.b64encode(self.value) return text def exportLiteral(self, outfile, level, name): if self.category == MixedContainer.CategoryText: showIndent(outfile, level) outfile.write( 'model_.MixedContainer(%d, %d, "%s", "%s"),\n' % ( self.category, self.content_type, self.name, self.value)) elif self.category == MixedContainer.CategorySimple: showIndent(outfile, level) outfile.write( 'model_.MixedContainer(%d, %d, "%s", "%s"),\n' % ( self.category, self.content_type, self.name, self.value)) else: # category == MixedContainer.CategoryComplex showIndent(outfile, level) outfile.write( 'model_.MixedContainer(%d, %d, "%s",\n' % ( self.category, self.content_type, self.name,)) self.value.exportLiteral(outfile, level + 1) showIndent(outfile, level) outfile.write(')\n') class MemberSpec_(object): def __init__(self, name='', data_type='', container=0, optional=0, child_attrs=None, choice=None): self.name = name self.data_type = data_type self.container = container self.child_attrs = child_attrs self.choice = choice self.optional = optional def set_name(self, name): self.name = name def get_name(self): return self.name def set_data_type(self, data_type): self.data_type = data_type def get_data_type_chain(self): return self.data_type def get_data_type(self): if isinstance(self.data_type, list): if len(self.data_type) > 0: return self.data_type[-1] else: return 'xs:string' else: return self.data_type def set_container(self, container): self.container = container def get_container(self): return self.container def set_child_attrs(self, child_attrs): self.child_attrs = child_attrs def get_child_attrs(self): return self.child_attrs def set_choice(self, choice): self.choice = choice def get_choice(self): return self.choice def set_optional(self, optional): self.optional = optional def get_optional(self): return self.optional def _cast(typ, value): if typ is None or value is None: return value return typ(value) # # Data representation classes. # class IntlRateV2Request(GeneratedsSuper): subclass = None superclass = None def __init__(self, USERID=None, Revision=None, Package=None, **kwargs_): self.original_tagname_ = None self.parent_object_ = kwargs_.get('parent_object_') self.USERID = _cast(None, USERID) self.Revision = Revision if Package is None: self.Package = [] else: self.Package = Package def factory(*args_, **kwargs_): if CurrentSubclassModule_ is not None: subclass = getSubclassFromModule_( CurrentSubclassModule_, IntlRateV2Request) if subclass is not None: return subclass(*args_, **kwargs_) if IntlRateV2Request.subclass: return IntlRateV2Request.subclass(*args_, **kwargs_) else: return IntlRateV2Request(*args_, **kwargs_) factory = staticmethod(factory) def get_Revision(self): return self.Revision def set_Revision(self, Revision): self.Revision = Revision def get_Package(self): return self.Package def set_Package(self, Package): self.Package = Package def add_Package(self, value): self.Package.append(value) def add_Package(self, value): self.Package.append(value) def insert_Package_at(self, index, value): self.Package.insert(index, value) def replace_Package_at(self, index, value): self.Package[index] = value def get_USERID(self): return self.USERID def set_USERID(self, USERID): self.USERID = USERID def hasContent_(self): if ( self.Revision is not None or self.Package ): return True else: return False def export(self, outfile, level, namespaceprefix_='', namespacedef_='', name_='IntlRateV2Request', pretty_print=True): imported_ns_def_ = GenerateDSNamespaceDefs_.get('IntlRateV2Request') if imported_ns_def_ is not None: namespacedef_ = imported_ns_def_ if pretty_print: eol_ = '\n' else: eol_ = '' if self.original_tagname_ is not None: name_ = self.original_tagname_ showIndent(outfile, level, pretty_print) outfile.write('<%s%s%s' % (namespaceprefix_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) already_processed = set() self.exportAttributes(outfile, level, already_processed, namespaceprefix_, name_='IntlRateV2Request') if self.hasContent_(): outfile.write('>%s' % (eol_, )) self.exportChildren(outfile, level + 1, namespaceprefix_, namespacedef_, name_='IntlRateV2Request', pretty_print=pretty_print) showIndent(outfile, level, pretty_print) outfile.write('</%s%s>%s' % (namespaceprefix_, name_, eol_)) else: outfile.write('/>%s' % (eol_, )) def exportAttributes(self, outfile, level, already_processed, namespaceprefix_='', name_='IntlRateV2Request'): if self.USERID is not None and 'USERID' not in already_processed: already_processed.add('USERID') outfile.write(' USERID=%s' % (self.gds_encode(self.gds_format_string(quote_attrib(self.USERID), input_name='USERID')), )) def exportChildren(self, outfile, level, namespaceprefix_='', namespacedef_='', name_='IntlRateV2Request', fromsubclass_=False, pretty_print=True): if pretty_print: eol_ = '\n' else: eol_ = '' if self.Revision is not None: showIndent(outfile, level, pretty_print) outfile.write('<%sRevision>%s</%sRevision>%s' % (namespaceprefix_ , self.gds_encode(self.gds_format_string(quote_xml(self.Revision), input_name='Revision')), namespaceprefix_ , eol_)) for Package_ in self.Package: Package_.export(outfile, level, namespaceprefix_, namespacedef_='', name_='Package', pretty_print=pretty_print) def build(self, node): already_processed = set() self.buildAttributes(node, node.attrib, already_processed) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) return self def buildAttributes(self, node, attrs, already_processed): value = find_attr_value_('USERID', node) if value is not None and 'USERID' not in already_processed: already_processed.add('USERID') self.USERID = value def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if
180, 270): raise ValueError("bad rotate value") r = Rect(rect) if r.isEmpty or r.isInfinite: raise ValueError("rect must be finite and not empty") _imgpointer = None # ------------------------------------------------------------------------- # Calculate the matrix for image insertion. # ------------------------------------------------------------------------- # If aspect ratio must be kept, we need to know image width and height. # Easy for pixmaps. For file and stream cases, we make an fz_image and # take those values from it. In this case, we also hand the fz_image over # to the actual C-level function (_imgpointer), and set all other # parameters to None. # ------------------------------------------------------------------------- if keep_proportion is True: # for this we need the image dimension if pixmap: # this is the easy case w = pixmap.width h = pixmap.height digest = calc_hash(pixmap.samples) elif stream: # use tool to access the information # we also pass through the generated fz_image address if type(stream) is io.BytesIO: stream = stream.getvalue() img_prof = TOOLS.image_profile(stream, keep_image=True) w, h = img_prof["width"], img_prof["height"] digest = calc_hash(stream) stream = None # make sure this arg is NOT used _imgpointer = img_prof["image"] # pointer to fz_image else: # worst case: must read the file stream = open(filename, "rb").read() digest = calc_hash(stream) img_prof = TOOLS.image_profile(stream, keep_image=True) w, h = img_prof["width"], img_prof["height"] stream = None # make sure this arg is NOT used filename = None # make sure this arg is NOT used _imgpointer = img_prof["image"] # pointer to fz_image maxf = max(w, h) fw = w / maxf fh = h / maxf else: fw = fh = 1.0 clip = r * ~page.transformationMatrix # target rect in PDF coordinates matrix = calc_matrix(fw, fh, clip, rotate=rotate) # calculate matrix # Create a unique image reference name. ilst = [i[7] for i in doc.getPageImageList(page.number)] n = "Im" # 'fitz image' i = 0 _imgname = n + "0" # first name candidate while _imgname in ilst: i += 1 _imgname = n + str(i) # try new name xref = doc.InsertedImages.get(digest, 0) # reuse any previously inserted image xref = page._insertImage( filename=filename, # image in file pixmap=pixmap, # image in pixmap stream=stream, # image in memory imask=mask, matrix=matrix, # generated matrix overlay=overlay, oc=oc, # optional content object xref=xref, _imgname=_imgname, # generated PDF resource name _imgpointer=_imgpointer, # address of fz_image ) if xref > 0: doc.InsertedImages[digest] = xref def searchFor(*args, **kwargs) -> list: """Search for a string on a page. Args: text: string to be searched for clip: restrict search to this rectangle quads: (bool) return quads instead of rectangles flags: bit switches, default: join hyphened words Returns: a list of rectangles or quads, each containing one occurrence. """ if len(args) != 2: raise ValueError("bad number of positional parameters") page, text = args quads = kwargs.get("quads", 0) clip = kwargs.get("clip") flags = kwargs.get("flags", TEXT_DEHYPHENATE) CheckParent(page) if flags is None: flags = TEXT_DEHYPHENATE tp = page.getTextPage(clip=clip, flags=flags) # create TextPage rlist = tp.search(text, quads=quads) tp = None return rlist def searchPageFor( doc: Document, pno: int, text: str, hit_max: int = 0, quads: bool = False, clip: rect_like = None, flags: int = TEXT_DEHYPHENATE, ) -> list: """Search for a string on a page. Args: pno: page number text: string to be searched for clip: restrict search to this rectangle quads: (bool) return quads instead of rectangles flags: bit switches, default: join hyphened words Returns: a list of rectangles or quads, each containing an occurrence. """ return doc[pno].searchFor( text, quads=quads, clip=clip, flags=flags, ) def getTextBlocks( page: Page, clip: rect_like = None, flags: OptInt = None, ) -> list: """Return the text blocks on a page. Notes: Lines in a block are concatenated with line breaks. Args: flags: (int) control the amount of data parsed into the textpage. Returns: A list of the blocks. Each item contains the containing rectangle coordinates, text lines, block type and running block number. """ CheckParent(page) if flags is None: flags = TEXT_PRESERVE_WHITESPACE + TEXT_PRESERVE_IMAGES tp = page.getTextPage(clip=clip, flags=flags) blocks = tp.extractBLOCKS() del tp return blocks def getTextWords( page: Page, clip: rect_like = None, flags: OptInt = None, ) -> list: """Return the text words as a list with the bbox for each word. Args: flags: (int) control the amount of data parsed into the textpage. """ CheckParent(page) if flags is None: flags = TEXT_PRESERVE_WHITESPACE tp = page.getTextPage(clip=clip, flags=flags) words = tp.extractWORDS() del tp return words def getTextbox( page: Page, rect: rect_like, ) -> str: rc = page.getText("text", clip=rect, flags=0) if rc.endswith("\n"): rc = rc[:-1] return rc def getTextSelection( page: Page, p1: point_like, p2: point_like, clip: rect_like = None, ): CheckParent(page) tp = page.getTextPage(clip=clip, flags=TEXT_DEHYPHENATE) rc = tp.extractSelection(p1, p2) del tp return rc def getText( page: Page, option: str = "text", clip: rect_like = None, flags: OptInt = None, ): """Extract text from a page or an annotation. This is a unifying wrapper for various methods of the TextPage class. Args: option: (str) text, words, blocks, html, dict, json, rawdict, xhtml or xml. clip: (rect-like) restrict output to this area. flags: bitfield to e.g. exclude images. Returns: the output of methods getTextWords / getTextBlocks or TextPage methods extractText, extractHTML, extractDICT, extractJSON, extractRAWDICT, extractXHTML or etractXML respectively. Default and misspelling choice is "text". """ formats = { "text": 0, "html": 1, "json": 1, "rawjson": 1, "xml": 0, "xhtml": 1, "dict": 1, "rawdict": 1, "words": 0, "blocks": 1, } option = option.lower() if option not in formats: option = "text" if flags is None: flags = TEXT_PRESERVE_WHITESPACE if formats[option] == 1: flags += TEXT_PRESERVE_IMAGES if option == "words": return getTextWords(page, clip=clip, flags=flags) if option == "blocks": return getTextBlocks(page, clip=clip, flags=flags) CheckParent(page) if clip != None: clip = Rect(clip) tp = page.getTextPage(clip=clip, flags=flags) # TextPage with or without images if option == "json": t = tp.extractJSON() elif option == "rawjson": t = tp.extractRAWJSON() elif option == "dict": t = tp.extractDICT() elif option == "rawdict": t = tp.extractRAWDICT() elif option == "html": t = tp.extractHTML() elif option == "xml": t = tp.extractXML() elif option == "xhtml": t = tp.extractXHTML() else: t = tp.extractText() del tp return t def getPageText( doc: Document, pno: int, option: str = "text", clip: rect_like = None, flags: OptInt = None, ) -> typing.Any: """Extract a document page's text by page number. Notes: Convenience function calling page.getText(). Args: pno: page number option: (str) text, words, blocks, html, dict, json, rawdict, xhtml or xml. Returns: output from page.TextPage(). """ return doc[pno].getText(option, clip=clip, flags=flags) def getPixmap(page: Page, **kw) -> Pixmap: """Create pixmap of page. Args: matrix: Matrix for transformation (default: Identity). colorspace: (str/Colorspace) cmyk, rgb, gray - case ignored, default csRGB. clip: (irect-like) restrict rendering to this area. alpha: (bool) whether to include alpha channel annots: (bool) whether to also render annotations """ CheckParent(page) matrix = kw.get("matrix", Identity) colorspace = kw.get("colorspace", csRGB) clip = kw.get("clip") alpha = bool(kw.get("alpha", False)) annots = bool(kw.get("annots", True)) if type(colorspace) is str: if colorspace.upper() == "GRAY": colorspace = csGRAY elif colorspace.upper() == "CMYK": colorspace = csCMYK else: colorspace = csRGB if colorspace.n not in (1, 3, 4): raise ValueError("unsupported colorspace") dl = page.getDisplayList(annots=annots) pix = dl.getPixmap(matrix=matrix, colorspace=colorspace, alpha=alpha, clip=clip) dl = None return pix # doc = page.parent # return page._makePixmap(doc, matrix, colorspace, alpha, annots, clip) def getPagePixmap( doc: Document, pno: int, matrix: matrix_like = Identity, colorspace: Colorspace = csRGB, clip: rect_like = None, alpha: bool = False, annots: bool = True, ) -> Pixmap: """Create pixmap of document page by page number. Notes: Convenience function calling page.getPixmap. Args: pno: (int) page number matrix: Matrix for transformation (default: Identity). colorspace: (str,Colorspace) rgb, rgb, gray - case ignored, default csRGB. clip: (irect-like) restrict rendering to this area. alpha: (bool) include alpha channel annots: (bool) also render annotations """ return doc[pno].getPixmap( matrix=matrix, colorspace=colorspace, clip=clip, alpha=alpha, annots=annots ) def getLinkDict(ln) -> dict: nl = {"kind": ln.dest.kind, "xref": 0} try: nl["from"] = ln.rect except: pass pnt = Point(0, 0) if ln.dest.flags & LINK_FLAG_L_VALID: pnt.x = ln.dest.lt.x if ln.dest.flags & LINK_FLAG_T_VALID: pnt.y = ln.dest.lt.y if ln.dest.kind ==
""" Utility functions for QS files. """ import traceback import re import math import sys import threading import os from PyQt6 import QtCore from pineboolib.application import types, qsadictmodules from pineboolib.core.utils import utils_base, logging from pineboolib import application from typing import ( Any, Optional, Union, Match, List, Generator, Callable, Iterable, Dict, TYPE_CHECKING, ) if TYPE_CHECKING: from sqlalchemy.engine import ( # type: ignore [import] # noqa: F401, F821 base, ) # pragma: no cover from pineboolib.interfaces import isession # pragma: no cover LOGGER = logging.get_logger(__name__) TIMERS: List[QtCore.QTimer] = [] class Switch(object): """ Switch emulation class. from: http://code.activestate.com/recipes/410692/ This class provides the functionality we want. You only need to look at this if you want to know how this works. It only needs to be defined once, no need to muck around with its internals. """ def __init__(self, value: Any): """Construct new witch from initial value.""" self.value = value self.fall = False def __iter__(self) -> Generator: """Return the match method once, then stop.""" yield self.match def match(self, *args: List[Any]) -> bool: """Indicate whether or not to enter a case suite.""" if self.fall or not args: return True elif self.value in args: self.fall = True return True else: return False class QsaRegExp(object): """ Regexp emulation class. """ result_: Optional[Match[str]] def __init__(self, str_re: str, is_global: bool = False): """Create new regexp.""" self.str_re = str_re self.pattern = re.compile(self.str_re) self.is_global = is_global self.result_ = None def search(self, text: str) -> Optional[Match[str]]: """Return Match from search.""" self.result_ = None if self.pattern is not None: self.result_ = self.pattern.search(text) return self.result_ def replace(self, target: str, new_value: str) -> str: """Replace string using regex.""" count = 1 if not self.is_global else 0 return self.pattern.sub(new_value, target, count) def cap(self, i: int) -> Optional[str]: """Return regex group number "i".""" if self.result_ is None: return None try: return self.result_.group(i) except Exception: LOGGER.exception("Error calling cap(%s)" % i) return None def get_global(self) -> bool: """Return if regex is global.""" return self.is_global def set_global(self, state: bool) -> None: """Set regex global flag.""" self.is_global = state global_ = property(get_global, set_global) def reg_exp(str_re: str) -> QsaRegExp: """ Return qsaRegexp object from search. @param strRE. Cadena de texto @return valor procesado """ is_global = False if str_re[-2:] == "/g": str_re = str_re[:-2] is_global = True elif str_re[-1:] == "/": str_re = str_re[:-1] if str_re[:1] == "/": str_re = str_re[1:] return QsaRegExp(str_re, is_global) class MathClass(object): """QSA Math emulation class.""" def abs(self, value: Union[int, float]) -> Union[int, float]: """Get absolute value.""" return math.fabs(value) def acos(self, value: Union[float, int]) -> float: """Return the arc cosine.""" return math.acos(value) def cos(self, value: Union[float, int]) -> float: """Return the cosine of value.""" return math.cos(value) def asin(self, value: Union[float, int]) -> float: """Return the arc sine of value.""" return math.asin(value) def sin(self, value: Union[float, int]) -> float: """Return the sine of value.""" return math.sin(value) def atan(self, value: Union[float, int]) -> float: """Return the arc tangent of value.""" return math.atan(value) def atan2(self, value_y: Union[float, int], value_x: Union[float, int]) -> float: """Return the arc tangent.""" return math.atan2(value_y, value_x) def tan(self, value: Union[float, int]) -> float: """Return the tangent of value.""" return math.tan(value) def exp(self, value: Union[float, int]) -> float: """Return e raised to the power of value.""" return math.exp(value) def ceil(self, value: float) -> int: """Round number to its ceiling.""" return math.ceil(value) def floor(self, value: float) -> int: """Round number to its floor.""" return math.floor(value) def log(self, value: Union[float, int]) -> float: """Return the logarithm of value to the given base.""" return math.log(value) def random(self) -> float: """Return a pseudo-random floating point number between 0 and 1.""" import random return random.random() def max(self, number1: Union[float, int], number2: Union[float, int]) -> Union[float, int]: """Return the largest of number1 and number2.""" return max([number1, number2]) def min(self, number1: Union[float, int], number2: Union[float, int]) -> Union[float, int]: """Return the smallest of number1 and number2.""" return min([number1, number2]) def pow(self, base_: float, exp: float) -> float: """Raise base to the power of exp.""" return math.pow(base_, exp) def round(self, value_1: float, value_2: int = 2) -> float: """Round a number x to y decimal places.""" return round(float(value_1), value_2) def sqrt(self, value: Union[float, int]) -> float: """Return the square root of the number passed in the parameter.""" return math.sqrt(value) def _get_pi(self) -> float: """Return PI value.""" return 3.141592653589793 def _get_eulen(self) -> float: """Return eulers constant. The base for natural logarithms.""" return 2.718281828459045 def _get_ln2(self) -> float: """Return natural logarithm of 2.""" return 0.6931471805599453 def _get_ln10(self) -> float: """Return natural logarithm of 10.""" return 2.302585092994046 def _get_log2e(self) -> float: """Return base 2 logarithm of E.""" return 1.44269504089 def _get_log10e(self) -> float: """Return base 2 logarithm of E.""" return 0.4342944819 def _get_sqrt1_2(self) -> float: """Return square root of 1/2.""" return 0.7071067811865476 def _get_sqrt2(self) -> float: """Return square root of 2.""" return 1.4142135623730951 PI = property(_get_pi) E = property(_get_eulen) LN2 = property(_get_ln2) LN10 = property(_get_ln10) LOG2E = property(_get_log2e) LOG10E = property(_get_log10e) SQRT1_2 = property(_get_sqrt1_2) SQRT2 = property(_get_sqrt2) def parse_float(value: Any) -> float: """ Convert to float from almost any value. @param value. valor a convertir @return Valor tipo float, o parametro x , si no es convertible """ ret = 0.00 try: if isinstance(value, str) and value.find(":") > -1: # Convertimos a horas list_ = value.split(":") value = float(list_[0]) # Horas value += float(list_[1]) / 60 # Minutos a hora value += float(list_[2]) / 3600 # Segundos a hora if isinstance(value, str): try: return float(value) except Exception: value = value.replace(".", "") value = value.replace(",", ".") try: return float(value) except Exception: return float("nan") else: ret = 0.0 if value in (None, "") else float(value) if ret == int(ret): return int(ret) return ret except Exception: LOGGER.exception("parseFloat: Error converting %s to float", value) return float("nan") def parse_string(obj: Any) -> str: """ Convert to string almost any value. @param obj. valor a convertir @return str del objeto dado """ return obj.toString() if hasattr(obj, "toString") else str(obj) def parse_int(value: Union[float, int, str], base_: int = 10) -> int: """ Convert to int almost any value. @param x. Value to cenvert @return integer value """ ret_ = 0 tmp_value = str(value) if tmp_value.find(".") > -1: tmp_value = tmp_value[0 : tmp_value.find(".")] if tmp_value.find(",") > -1: tmp_value = tmp_value[0 : tmp_value.find(",")] if value is not None: # x = float(x) ret_ = int(tmp_value, base_) # ret_ = int(str(x), base) return ret_ def length(obj: Any = "") -> int: """ Get length of any object. @param obj, objeto a obtener longitud @return longitud del objeto """ if obj is None: return 0 if hasattr(obj, "length"): if isinstance(obj.length, int): return obj.length else: return obj.length() else: if isinstance(obj, dict) and "result" in obj.keys(): return len(obj) - 1 else: return len(obj) def text(obj: Any) -> str: """ Get text property from object. @param obj. Objeto a procesar @return Valor de text o text() """ try: return obj.text() except Exception: return obj.text def start_timer(time: int, fun: Callable) -> "QtCore.QTimer": """Create new timer that calls a function.""" global TIMERS timer = QtCore.QTimer() timer.timeout.connect(fun) # type: ignore [attr-defined] # noqa: F821 timer.start(time) TIMERS.append(timer) return timer def kill_timer(timer: Optional["QtCore.QTimer"] = None) -> None: """Stop a given timer.""" global TIMERS if timer is not None: timer.stop() TIMERS.remove(timer) def kill_timers() -> None: """Stop and deletes all timers that have been created with startTimer().""" global TIMERS for timer in TIMERS: timer.stop() TIMERS = [] def debug(txt: Union[bool, str, int, float]) -> None: """ Debug for QSA messages. @param txt. Mensaje. """ from pineboolib import application application.PROJECT.message_manager().send("debug", None, [utils_base.ustr(txt)]) def format_exc(exc: Optional[int] = None) -> str: """Format a traceback.""" return traceback.format_exc(exc) def is_nan(value: Any) -> bool: """ Check if value is NaN. @param x. Valor numérico @return True o False """ if value in [None, ""]: return True if isinstance(value, str) and value.find(":"): value = value.replace(":", "") try: value = float(value) return math.isnan(value) except ValueError: return True def isnan(value: Any) -> bool: """Return if a number is NaN.""" return is_nan(value) def replace(source: str, search: Any, replace: str) -> str: """Replace for QSA where detects if "search" is a Regexp.""" if isinstance(search, str): return source.replace(search, str(replace)) else: return search.replace(source, replace) def splice(*args: Any) -> Any:
must be either standard, daily, or anime") elif method_name in ["sonarr_season", "sonarr_search", "sonarr_cutoff_search"]: self.sonarr_options[method_name[7:]] = util.get_bool(method_name, method_data) elif method_name == "sonarr_tag": self.sonarr_options["tag"] = util.get_list(method_data) elif method_final in plex.searches: self.methods.append(("plex_search", [self.build_filter("plex_search", {"any": {method_name: method_data}})])) elif method_name == "plex_all": self.methods.append((method_name, [""])) elif method_name == "anidb_popular": list_count = util.regex_first_int(method_data, "List Size", default=40) if 1 <= list_count <= 30: self.methods.append((method_name, [list_count])) else: logger.warning("Collection Error: anidb_popular must be an integer between 1 and 30 defaulting to 30") self.methods.append((method_name, [30])) elif method_name == "mal_id": self.methods.append((method_name, util.get_int_list(method_data, "MyAnimeList ID"))) elif method_name in ["anidb_id", "anidb_relation"]: self.methods.append((method_name, config.AniDB.validate_anidb_list(util.get_int_list(method_data, "AniDB ID"), self.library.Plex.language))) elif method_name in ["anilist_id", "anilist_relations", "anilist_studio"]: self.methods.append((method_name, config.AniList.validate_anilist_ids(util.get_int_list(method_data, "AniList ID"), studio=method_name == "anilist_studio"))) elif method_name == "trakt_list": self.methods.append((method_name, config.Trakt.validate_trakt(util.get_list(method_data)))) elif method_name == "trakt_list_details": valid_list = config.Trakt.validate_trakt(util.get_list(method_data)) item = config.Trakt.standard_list(valid_list[0]) if hasattr(item, "description") and item.description: self.summaries[method_name] = item.description self.methods.append((method_name[:-8], valid_list)) elif method_name in ["trakt_watchlist", "trakt_collection"]: self.methods.append((method_name, config.Trakt.validate_trakt(util.get_list(method_data), trakt_type=method_name[6:], is_movie=self.library.is_movie))) elif method_name == "imdb_list": new_list = [] for imdb_list in util.get_list(method_data, split=False): if isinstance(imdb_list, dict): dict_methods = {dm.lower(): dm for dm in imdb_list} if "url" in dict_methods and imdb_list[dict_methods["url"]]: imdb_url = config.IMDb.validate_imdb_url(imdb_list[dict_methods["url"]], self.library.Plex.language) else: raise Failed("Collection Error: imdb_list attribute url is required") if "limit" in dict_methods and imdb_list[dict_methods["limit"]]: list_count = util.regex_first_int(imdb_list[dict_methods["limit"]], "List Limit", default=0) else: list_count = 0 else: imdb_url = config.IMDb.validate_imdb_url(str(imdb_list), self.library.Plex.language) list_count = 0 new_list.append({"url": imdb_url, "limit": list_count}) self.methods.append((method_name, new_list)) elif method_name == "icheckmovies_list": valid_lists = [] for icheckmovies_list in util.get_list(method_data, split=False): valid_lists.append(config.ICheckMovies.validate_icheckmovies_list(icheckmovies_list, self.library.Plex.language)) self.methods.append((method_name, valid_lists)) elif method_name == "icheckmovies_list_details": valid_lists = [] for icheckmovies_list in util.get_list(method_data, split=False): valid_lists.append(config.ICheckMovies.validate_icheckmovies_list(icheckmovies_list, self.library.Plex.language)) self.methods.append((method_name[:-8], valid_lists)) self.summaries[method_name] = config.ICheckMovies.get_list_description(method_data, self.library.Plex.language) elif method_name == "letterboxd_list": self.methods.append((method_name, util.get_list(method_data, split=False))) elif method_name == "letterboxd_list_details": values = util.get_list(method_data, split=False) self.summaries[method_name] = config.Letterboxd.get_list_description(values[0], self.library.Plex.language) self.methods.append((method_name[:-8], values)) elif method_name in dictionary_builders: for dict_data in util.get_list(method_data): if isinstance(dict_data, dict): def get_int(parent, int_method, data_in, methods_in, default_in, minimum=1, maximum=None): if int_method not in methods_in: logger.warning(f"Collection Warning: {parent} {int_method} attribute not found using {default_in} as default") elif not data_in[methods_in[int_method]]: logger.warning(f"Collection Warning: {parent} {methods_in[int_method]} attribute is blank using {default_in} as default") elif isinstance(data_in[methods_in[int_method]], int) and data_in[methods_in[int_method]] >= minimum: if maximum is None or data_in[methods_in[int_method]] <= maximum: return data_in[methods_in[int_method]] else: logger.warning(f"Collection Warning: {parent} {methods_in[int_method]} attribute {data_in[methods_in[int_method]]} invalid must an integer <= {maximum} using {default_in} as default") else: logger.warning(f"Collection Warning: {parent} {methods_in[int_method]} attribute {data_in[methods_in[int_method]]} invalid must an integer >= {minimum} using {default_in} as default") return default_in if method_name == "filters": validate = True if "validate" in dict_data: if dict_data["validate"] is None: raise Failed("Collection Error: validate filter attribute is blank") if not isinstance(dict_data["validate"], bool): raise Failed("Collection Error: validate filter attribute must be either true or false") validate = dict_data["validate"] for filter_method, filter_data in dict_data.items(): filter_attr, modifier, filter_final = self._split(filter_method) if filter_final not in all_filters: raise Failed(f"Collection Error: {filter_final} is not a valid filter attribute") elif filter_final in movie_only_filters and self.library.is_show: raise Failed(f"Collection Error: {filter_final} filter attribute only works for movie libraries") elif filter_final in show_only_filters and self.library.is_movie: raise Failed(f"Collection Error: {filter_final} filter attribute only works for show libraries") elif filter_final is None: raise Failed(f"Collection Error: {filter_final} filter attribute is blank") else: self.filters.append((filter_final, self.validate_attribute(filter_attr, modifier, f"{filter_final} filter", filter_data, validate))) elif method_name == "plex_collectionless": new_dictionary = {} dict_methods = {dm.lower(): dm for dm in dict_data} prefix_list = [] if "exclude_prefix" in dict_methods and dict_data[dict_methods["exclude_prefix"]]: if isinstance(dict_data[dict_methods["exclude_prefix"]], list): prefix_list.extend([exclude for exclude in dict_data[dict_methods["exclude_prefix"]] if exclude]) else: prefix_list.append(str(dict_data[dict_methods["exclude_prefix"]])) exact_list = [] if "exclude" in dict_methods and dict_data[dict_methods["exclude"]]: if isinstance(dict_data[dict_methods["exclude"]], list): exact_list.extend([exclude for exclude in dict_data[dict_methods["exclude"]] if exclude]) else: exact_list.append(str(dict_data[dict_methods["exclude"]])) if len(prefix_list) == 0 and len(exact_list) == 0: raise Failed("Collection Error: you must have at least one exclusion") exact_list.append(self.name) new_dictionary["exclude_prefix"] = prefix_list new_dictionary["exclude"] = exact_list self.methods.append((method_name, [new_dictionary])) elif method_name == "plex_search": self.methods.append((method_name, [self.build_filter("plex_search", dict_data)])) elif method_name == "tmdb_discover": new_dictionary = {"limit": 100} for discover_name, discover_data in dict_data.items(): discover_final = discover_name.lower() if discover_data: if (self.library.is_movie and discover_final in tmdb.discover_movie) or (self.library.is_show and discover_final in tmdb.discover_tv): if discover_final == "language": if re.compile("([a-z]{2})-([A-Z]{2})").match(str(discover_data)): new_dictionary[discover_final] = str(discover_data) else: raise Failed(f"Collection Error: {method_name} attribute {discover_final}: {discover_data} must match pattern ([a-z]{{2}})-([A-Z]{{2}}) e.g. en-US") elif discover_final == "region": if re.compile("^[A-Z]{2}$").match(str(discover_data)): new_dictionary[discover_final] = str(discover_data) else: raise Failed(f"Collection Error: {method_name} attribute {discover_final}: {discover_data} must match pattern ^[A-Z]{{2}}$ e.g. US") elif discover_final == "sort_by": if (self.library.is_movie and discover_data in tmdb.discover_movie_sort) or (self.library.is_show and discover_data in tmdb.discover_tv_sort): new_dictionary[discover_final] = discover_data else: raise Failed(f"Collection Error: {method_name} attribute {discover_final}: {discover_data} is invalid") elif discover_final == "certification_country": if "certification" in dict_data or "certification.lte" in dict_data or "certification.gte" in dict_data: new_dictionary[discover_final] = discover_data else: raise Failed(f"Collection Error: {method_name} attribute {discover_final}: must be used with either certification, certification.lte, or certification.gte") elif discover_final in ["certification", "certification.lte", "certification.gte"]: if "certification_country" in dict_data: new_dictionary[discover_final] = discover_data else: raise Failed(f"Collection Error: {method_name} attribute {discover_final}: must be used with certification_country") elif discover_final in ["include_adult", "include_null_first_air_dates", "screened_theatrically"]: if discover_data is True: new_dictionary[discover_final] = discover_data elif discover_final in tmdb.discover_dates: new_dictionary[discover_final] = util.check_date(discover_data, f"{method_name} attribute {discover_final}", return_string=True) elif discover_final in ["primary_release_year", "year", "first_air_date_year"]: new_dictionary[discover_final] = util.check_number(discover_data, f"{method_name} attribute {discover_final}", minimum=1800, maximum=self.current_year + 1) elif discover_final in ["vote_count.gte", "vote_count.lte", "vote_average.gte", "vote_average.lte", "with_runtime.gte", "with_runtime.lte"]: new_dictionary[discover_final] = util.check_number(discover_data, f"{method_name} attribute {discover_final}", minimum=1) elif discover_final in ["with_cast", "with_crew", "with_people", "with_companies", "with_networks", "with_genres", "without_genres", "with_keywords", "without_keywords", "with_original_language", "timezone"]: new_dictionary[discover_final] = discover_data else: raise Failed(f"Collection Error: {method_name} attribute {discover_final} not supported") elif discover_final == "limit": if isinstance(discover_data, int) and discover_data > 0: new_dictionary[discover_final] = discover_data else: raise Failed(f"Collection Error: {method_name} attribute {discover_final}: must be a valid number greater then 0") else: raise Failed(f"Collection Error: {method_name} attribute {discover_final} not supported") else: raise Failed(f"Collection Error: {method_name} parameter {discover_final} is blank") if len(new_dictionary) > 1: self.methods.append((method_name, [new_dictionary])) else: raise Failed(f"Collection Error: {method_name} had no valid fields") elif "tautulli" in method_name: new_dictionary = {} if method_name == "tautulli_popular": new_dictionary["list_type"] = "popular" elif method_name == "tautulli_watched": new_dictionary["list_type"] = "watched" else: raise Failed(f"Collection Error: {method_name} attribute not supported") dict_methods = {dm.lower(): dm for dm in dict_data} new_dictionary["list_days"] = get_int(method_name, "list_days", dict_data, dict_methods, 30) new_dictionary["list_size"] = get_int(method_name, "list_size", dict_data, dict_methods, 10) new_dictionary["list_buffer"] = get_int(method_name, "list_buffer", dict_data, dict_methods, 20) self.methods.append((method_name, [new_dictionary])) elif method_name == "mal_season": new_dictionary = {"sort_by": "anime_num_list_users"} dict_methods = {dm.lower(): dm for dm in dict_data} if "sort_by" not in dict_methods: logger.warning("Collection Warning: mal_season sort_by attribute not found using members as default") elif not dict_data[dict_methods["sort_by"]]: logger.warning("Collection Warning: mal_season sort_by attribute is blank using members as default") elif dict_data[dict_methods["sort_by"]] not in mal.season_sort: logger.warning(f"Collection Warning: mal_season sort_by attribute {dict_data[dict_methods['sort_by']]} invalid must be either 'members' or 'score' using members as default") else: new_dictionary["sort_by"] = mal.season_sort[dict_data[dict_methods["sort_by"]]] if self.current_time.month in [1, 2, 3]: new_dictionary["season"] = "winter" elif self.current_time.month in [4, 5, 6]: new_dictionary["season"] = "spring" elif self.current_time.month in [7, 8, 9]: new_dictionary["season"] = "summer" elif self.current_time.month in [10, 11, 12]: new_dictionary["season"] = "fall" if "season" not in dict_methods: logger.warning(f"Collection Warning: mal_season season attribute not found using the current season: {new_dictionary['season']} as default") elif not dict_data[dict_methods["season"]]: logger.warning(f"Collection Warning: mal_season season attribute is blank using the current season: {new_dictionary['season']} as default") elif dict_data[dict_methods["season"]] not in util.pretty_seasons: logger.warning(f"Collection Warning: mal_season season attribute {dict_data[dict_methods['season']]} invalid must be either 'winter', 'spring', 'summer' or 'fall' using the current season: {new_dictionary['season']} as default") else: new_dictionary["season"] = dict_data[dict_methods["season"]] new_dictionary["year"] = get_int(method_name, "year", dict_data, dict_methods, self.current_time.year, minimum=1917, maximum=self.current_time.year + 1) new_dictionary["limit"] = get_int(method_name, "limit", dict_data, dict_methods, 100, maximum=500) self.methods.append((method_name, [new_dictionary])) elif method_name == "mal_userlist": new_dictionary = {"status": "all", "sort_by": "list_score"} dict_methods = {dm.lower(): dm for dm in dict_data} if "username" not in dict_methods: raise Failed("Collection Error: mal_userlist username attribute is required") elif not dict_data[dict_methods["username"]]: raise Failed("Collection Error: mal_userlist username attribute is blank") else: new_dictionary["username"] = dict_data[dict_methods["username"]] if "status" not in dict_methods: logger.warning("Collection Warning: mal_season status attribute not found using all as default") elif not dict_data[dict_methods["status"]]: logger.warning("Collection Warning: mal_season status attribute is blank using all as default") elif dict_data[dict_methods["status"]] not in mal.userlist_status: logger.warning(f"Collection Warning: mal_season status attribute {dict_data[dict_methods['status']]} invalid must be either 'all', 'watching', 'completed', 'on_hold', 'dropped' or 'plan_to_watch' using all as default") else: new_dictionary["status"] = mal.userlist_status[dict_data[dict_methods["status"]]] if "sort_by" not in dict_methods: logger.warning("Collection Warning: mal_season sort_by attribute not found using score as default") elif not dict_data[dict_methods["sort_by"]]: logger.warning("Collection Warning: mal_season sort_by attribute is blank
= ( (0.5 + (self.bin_temp[:,12*year:12*(year+1)] - self.modelprms['tsnow_threshold']) / 2) * bin_precsnow[:,12*year:12*(year+1)]) self.bin_acc[:,12*year:12*(year+1)] = ( bin_precsnow[:,12*year:12*(year+1)] - self.bin_prec[:,12*year:12*(year+1)]) # if temperature above maximum threshold, then all rain (self.bin_prec[:,12*year:12*(year+1)] [self.bin_temp[:,12*year:12*(year+1)] > self.modelprms['tsnow_threshold'] + 1]) = ( bin_precsnow[:,12*year:12*(year+1)] [self.bin_temp[:,12*year:12*(year+1)] > self.modelprms['tsnow_threshold'] + 1]) (self.bin_acc[:,12*year:12*(year+1)] [self.bin_temp[:,12*year:12*(year+1)] > self.modelprms['tsnow_threshold'] + 1]) = 0 # if temperature below minimum threshold, then all snow (self.bin_acc[:,12*year:12*(year+1)] [self.bin_temp[:,12*year:12*(year+1)] <= self.modelprms['tsnow_threshold'] - 1]) = ( bin_precsnow[:,12*year:12*(year+1)] [self.bin_temp[:,12*year:12*(year+1)] <= self.modelprms['tsnow_threshold'] - 1]) (self.bin_prec[:,12*year:12*(year+1)] [self.bin_temp[:,12*year:12*(year+1)] <= self.modelprms['tsnow_threshold'] - 1]) = 0 # ENTER MONTHLY LOOP (monthly loop required since surface type changes) for month in range(0,12): # Step is the position as a function of year and month, which improves readability step = 12*year + month # ACCUMULATION, MELT, REFREEZE, AND CLIMATIC MASS BALANCE # Snowpack [m w.e.] = snow remaining + new snow if step == 0: self.bin_snowpack[:,step] = self.bin_acc[:,step] else: self.bin_snowpack[:,step] = self.snowpack_remaining[:,step-1] + self.bin_acc[:,step] # MELT [m w.e.] # energy available for melt [degC day] if pygem_prms.option_ablation == 1: # option 1: energy based on monthly temperature melt_energy_available = self.bin_temp[:,step]*self.dayspermonth[step] melt_energy_available[melt_energy_available < 0] = 0 elif pygem_prms.option_ablation == 2: # Seed randomness for repeatability, but base it on step to ensure the daily variability is not # the same for every single time step np.random.seed(step) # option 2: monthly temperature superimposed with daily temperature variability # daily temperature variation in each bin for the monthly timestep bin_tempstd_daily = np.repeat( np.random.normal(loc=0, scale=self.glacier_gcm_tempstd[step], size=self.dayspermonth[step]) .reshape(1,self.dayspermonth[step]), heights.shape[0], axis=0) # daily temperature in each bin for the monthly timestep bin_temp_daily = self.bin_temp[:,step][:,np.newaxis] + bin_tempstd_daily # remove negative values bin_temp_daily[bin_temp_daily < 0] = 0 # Energy available for melt [degC day] = sum of daily energy available melt_energy_available = bin_temp_daily.sum(axis=1) # SNOW MELT [m w.e.] self.bin_meltsnow[:,step] = self.surfacetype_ddf_dict[2] * melt_energy_available # snow melt cannot exceed the snow depth self.bin_meltsnow[self.bin_meltsnow[:,step] > self.bin_snowpack[:,step], step] = ( self.bin_snowpack[self.bin_meltsnow[:,step] > self.bin_snowpack[:,step], step]) # GLACIER MELT (ice and firn) [m w.e.] # energy remaining after snow melt [degC day] melt_energy_available = ( melt_energy_available - self.bin_meltsnow[:,step] / self.surfacetype_ddf_dict[2]) # remove low values of energy available caused by rounding errors in the step above melt_energy_available[abs(melt_energy_available) < pygem_prms.tolerance] = 0 # DDF based on surface type [m w.e. degC-1 day-1] for surfacetype_idx in self.surfacetype_ddf_dict: self.surfacetype_ddf[self.surfacetype == surfacetype_idx] = ( self.surfacetype_ddf_dict[surfacetype_idx]) # Debris enhancement factors in ablation area (debris in accumulation area would submerge) if surfacetype_idx == 1 and pygem_prms.include_debris: self.surfacetype_ddf[self.surfacetype == 1] = ( self.surfacetype_ddf[self.surfacetype == 1] * self.debris_ed[self.surfacetype == 1]) self.bin_meltglac[glac_idx_t0,step] = ( self.surfacetype_ddf[glac_idx_t0] * melt_energy_available[glac_idx_t0]) # TOTAL MELT (snow + glacier) # off-glacier need to include melt of refreeze because there are no glacier dynamics, # but on-glacier do not need to account for this (simply assume refreeze has same surface type) self.bin_melt[:,step] = self.bin_meltglac[:,step] + self.bin_meltsnow[:,step] # REFREEZING if pygem_prms.option_refreezing == 'HH2015': if step > 0: self.tl_rf[:,:,step] = self.tl_rf[:,:,step-1] self.te_rf[:,:,step] = self.te_rf[:,:,step-1] # Refreeze based on heat conduction approach (Huss and Hock 2015) # refreeze time step (s) rf_dt = 3600 * 24 * self.dayspermonth[step] / pygem_prms.rf_dsc if pygem_prms.option_rf_limit_meltsnow == 1: bin_meltlimit = self.bin_meltsnow.copy() else: bin_meltlimit = self.bin_melt.copy() # Debug lowest bin if self.debug_refreeze: gidx_debug = np.where(heights == heights[glac_idx_t0].min())[0] # Loop through each elevation bin of glacier for nbin, gidx in enumerate(glac_idx_t0): # COMPUTE HEAT CONDUCTION - BUILD COLD RESERVOIR # If no melt, then build up cold reservoir (compute heat conduction) if self.bin_melt[gidx,step] < pygem_prms.rf_meltcrit: if self.debug_refreeze and gidx == gidx_debug and step < 12: print('\nMonth ' + str(self.dates_table.loc[step,'month']), 'Computing heat conduction') # Set refreeze equal to 0 self.refr[gidx] = 0 # Loop through multiple iterations to converge on a solution # -> this will loop through 0, 1, 2 for h in np.arange(0, pygem_prms.rf_dsc): # Compute heat conduction in layers (loop through rows) # go from 1 to rf_layers-1 to avoid indexing errors with "j-1" and "j+1" # "j+1" is set to zero, which is fine for temperate glaciers but inaccurate for # cold/polythermal glaciers for j in np.arange(1, pygem_prms.rf_layers-1): # Assume temperature of first layer equals air temperature # assumption probably wrong, but might still work at annual average # Since next line uses tl_rf for all calculations, set tl_rf[0] to present mean # monthly air temperature to ensure the present calculations are done with the # present time step's air temperature self.tl_rf[0, gidx,step] = self.bin_temp[gidx,step] # Temperature for each layer self.te_rf[j,gidx,step] = (self.tl_rf[j,gidx,step] + rf_dt * self.rf_layers_k[j] / self.rf_layers_ch[j] / pygem_prms.rf_dz**2 * 0.5 * ((self.tl_rf[j-1,gidx,step] - self.tl_rf[j,gidx,step]) - (self.tl_rf[j,gidx,step] - self.tl_rf[j+1,gidx,step]))) # Update previous time step self.tl_rf[:,gidx,step] = self.te_rf[:,gidx,step] if self.debug_refreeze and gidx == gidx_debug and step < 12: print('tl_rf:', ["{:.2f}".format(x) for x in self.tl_rf[:,gidx,step]]) # COMPUTE REFREEZING - TAP INTO "COLD RESERVOIR" or potential refreezing else: if self.debug_refreeze and gidx == gidx_debug and step < 12: print('\nMonth ' + str(self.dates_table.loc[step,'month']), 'Computing refreeze') # Refreezing over firn surface if (self.surfacetype[gidx] == 2) or (self.surfacetype[gidx] == 3): nlayers = pygem_prms.rf_layers-1 # Refreezing over ice surface else: # Approximate number of layers of snow on top of ice smax = np.round((self.bin_snowpack[gidx,step] / (self.rf_layers_dens[0] / 1000) + pygem_prms.pp) / pygem_prms.rf_dz, 0) # if there is very little snow on the ground (SWE > 0.06 m for pp=0.3), # then still set smax (layers) to 1 if self.bin_snowpack[gidx,step] > 0 and smax == 0: smax=1 # if no snow on the ground, then set to rf_cold to NoData value if smax == 0: self.rf_cold[gidx] = 0 # if smax greater than the number of layers, set to max number of layers minus 1 if smax > pygem_prms.rf_layers - 1: smax = pygem_prms.rf_layers - 1 nlayers = int(smax) # Compute potential refreeze, "cold reservoir", from temperature in each layer # only calculate potential refreezing first time it starts melting each year if self.rf_cold[gidx] == 0 and self.tl_rf[:,gidx,step].min() < 0: if self.debug_refreeze and gidx == gidx_debug and step < 12: print('calculating potential refreeze from ' + str(nlayers) + ' layers') for j in np.arange(0,nlayers): j += 1 # units: (degC) * (J K-1 m-3) * (m) * (kg J-1) * (m3 kg-1) rf_cold_layer = (self.tl_rf[j,gidx,step] * self.rf_layers_ch[j] * pygem_prms.rf_dz / pygem_prms.Lh_rf / pygem_prms.density_water) self.rf_cold[gidx] -= rf_cold_layer if self.debug_refreeze and gidx == gidx_debug and step < 12: print('j:', j, 'tl_rf @ j:', np.round(self.tl_rf[j,gidx,step],2), 'ch @ j:', np.round(self.rf_layers_ch[j],2), 'rf_cold_layer @ j:', np.round(rf_cold_layer,2), 'rf_cold @ j:', np.round(self.rf_cold[gidx],2)) if self.debug_refreeze and gidx == gidx_debug and step < 12: print('rf_cold:', np.round(self.rf_cold[gidx],2)) # Compute refreezing # If melt and liquid prec < potential refreeze, then refreeze all melt and liquid prec if (bin_meltlimit[gidx,step] + self.bin_prec[gidx,step]) < self.rf_cold[gidx]: self.refr[gidx] = bin_meltlimit[gidx,step] + self.bin_prec[gidx,step] # otherwise, refreeze equals the potential refreeze elif self.rf_cold[gidx] > 0: self.refr[gidx] = self.rf_cold[gidx] else: self.refr[gidx] = 0 # Track the remaining potential refreeze self.rf_cold[gidx] -= (bin_meltlimit[gidx,step] + self.bin_prec[gidx,step]) # if potential refreeze consumed, set to 0 and set temperature to 0 (temperate firn) if self.rf_cold[gidx] < 0: self.rf_cold[gidx] = 0 self.tl_rf[:,gidx,step] = 0 # Record refreeze self.bin_refreeze[gidx,step] = self.refr[gidx] if self.debug_refreeze and step < 12 and gidx == gidx_debug: print('Month ' + str(self.dates_table.loc[step,'month']), 'Rf_cold remaining:', np.round(self.rf_cold[gidx],2), 'Snow depth:', np.round(self.bin_snowpack[glac_idx_t0[nbin],step],2), 'Snow melt:', np.round(self.bin_meltsnow[glac_idx_t0[nbin],step],2), 'Rain:', np.round(self.bin_prec[glac_idx_t0[nbin],step],2), 'Rfrz:', np.round(self.bin_refreeze[gidx,step],2)) elif pygem_prms.option_refreezing == 'Woodward': # Refreeze based on annual air temperature (Woodward etal. 1997) # R(m) = (-0.69 * Tair + 0.0096) * 1 m / 100 cm # calculate annually and place potential refreeze in user defined month if step%12 == 0: bin_temp_annual = annualweightedmean_array(self.bin_temp[:,12*year:12*(year+1)], self.dates_table.iloc[12*year:12*(year+1),:]) bin_refreezepotential_annual = (-0.69 * bin_temp_annual + 0.0096) / 100 # Remove negative refreezing values bin_refreezepotential_annual[bin_refreezepotential_annual < 0] = 0 self.bin_refreezepotential[:,step] = bin_refreezepotential_annual # Reset refreeze potential every year if self.bin_refreezepotential[:,step].max() > 0: refreeze_potential = self.bin_refreezepotential[:,step] if self.debug_refreeze: print('Year ' + str(year) + ' Month ' + str(self.dates_table.loc[step,'month']), 'Refreeze potential:', np.round(refreeze_potential[glac_idx_t0[0]],3), 'Snow depth:', np.round(self.bin_snowpack[glac_idx_t0[0],step],2), 'Snow melt:', np.round(self.bin_meltsnow[glac_idx_t0[0],step],2), 'Rain:', np.round(self.bin_prec[glac_idx_t0[0],step],2)) # Refreeze [m w.e.] # refreeze cannot exceed rain and melt (snow & glacier melt) self.bin_refreeze[:,step] = self.bin_meltsnow[:,step] + self.bin_prec[:,step] # refreeze cannot
<filename>greykite/common/viz/timeseries_plotting_mpl.py # BSD 2-CLAUSE LICENSE # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR # #ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # original author: <NAME> """Plotting functions in matplotlib.""" import colorsys import matplotlib import numpy as np from matplotlib import pyplot as plt from pandas.plotting import register_matplotlib_converters matplotlib.use("agg") # noqa: E402 register_matplotlib_converters() def plt_compare_timeseries( df_dict, time_col, value_col, legends_dict=None, colors_dict=None, start_time=None, end_time=None, transform=lambda x: x, transform_name="", plt_title="", alpha=0.6, linewidth=4): """Compare a collection by of timeseries (given in `df_dict`) by overlaying them in the specified period between ``start_time`` and ``end_time``. :param df_dict: Dict[str, pd.DataFrame] The keys are the arbitrary labels for each dataframe provided by the user. The values are dataframes each containing a timeseries with `time_col` and `value_col` as columns. :param time_col: str The column denoting time in datetime format. :param value_col: str The value column of interest for the y axis. :param legends_dict: Optional[Dict[str, str]] Labels for plot legend. The keys are the df_dict labels (or a subset of them). The values are the labels appearing in the plot legend. If not provided or None, the `df_dict` keys will be used. :param colors_dict: Optional[Dict[str, str]] A dictionary determining the color for each series in `df_dict`. The keys are the df_dict labels (or a subset of them). The values are the colors appearing for each curve in the plot. If not provided or None, the colors will be generated. :param start_time: Optional[datetime.datetime] The start time of the series plot. :param end_time: Optional[datetime.datetime] The end time of the series plot. :param transform: Optional[func] A function to transform the y values before plotting. :param transform_name: Optional[str] The name of the transformation for using in the title. :param plt_title: str Plot title. :param alpha: Optional[float] Transparency of the curves. :param linewidth: Optional[float] The width of the curves. """ if start_time is not None: for label, df in df_dict.items(): df_dict[label] = df[df[time_col] >= start_time] if end_time is not None: for label, df in df_dict.items(): df_dict[label] = df[df[time_col] <= end_time] n = len(df_dict) labels = list(df_dict.keys()) if colors_dict is None: hsv_tuples = [(x * 1.0 / n, 0.5, 0.5) for x in range(n)] rgb_tuples = [(lambda x: colorsys.hsv_to_rgb(*x))(x) for x in hsv_tuples] colors_dict = {labels[i]: rgb_tuples[i] for i in range(n)} if legends_dict is None: legends_dict = {label: label for label in labels} fig, ax = plt.subplots() legend_patches = [] for label in labels: df = df_dict[label] color = colors_dict[label] legend = legends_dict.get(label) # Avoids the following issue: # "ValueError: view limit minimum -36864.55 is less than 1 and is an invalid # Matplotlib date value. This often happens if you pass a non-datetime value # to an axis that has datetime units". dates = df[time_col].astype("O") # we add a legend for the given series if legend is not None # for that series if legend is not None: ax.plot( dates, transform(df[value_col]), alpha=alpha, color=color, label=legend, linewidth=linewidth) patch = matplotlib.patches.Patch(color=color, label=legend) legend_patches.append(patch) else: ax.plot( dates, transform(df[value_col]), alpha=alpha, color=color, linewidth=linewidth) legends = list(legends_dict.values()) ax.legend( labels=[legend for legend in legends if legend is not None], handles=legend_patches) fig.autofmt_xdate() # rotates the dates ax.set_title(plt_title + " " + transform_name) plt.show() def plt_overlay_long_df( df, x_col, y_col, split_col, agg_dict=None, agg_col_names=None, overlay_color="black", agg_col_colors=None, plt_title=None): """Overlay by splitting wrt values of a column (split_col). If some agg metrics (specified by agg_dict) are also desired, we overlay the aggregate metrics as well. :param df: pd.DataFrame data frame which includes the data :param x_col: str the column for the values for the x-axis :param y_col: str the column for the values for the y-axis :param split_col: str the column which is used to split the data to various parts to be overlayed :param agg_dict: Optional[dict] a dictionary to specify aggregations. we could calculate multiple metrics for example mean and median :param agg_col_names: optional[list[str]] names for the aggregated columns. if not provided it will be generated during aggregations :param overlay_color: Optional[str] the color of the overlayed curves. The color will be transparent so we can see the curves overlap :param agg_col_colors: Optional[str] the color of the aggregate curves :param plt_title: Optional[str] the title of the plot. It will default to y_col if not provided """ g = df.groupby([split_col], as_index=False) df_num = len(g) alpha = 5.0 / df_num for name, df0 in g: plt.plot( df0[x_col], df0[y_col], color=overlay_color, alpha=alpha, label=None) agg_df = None if agg_dict is not None: g2 = df.groupby([x_col], as_index=False) agg_df = g2.agg(agg_dict) agg_df.columns = [" ".join(col).strip() for col in agg_df.columns.values] if agg_col_names is not None: agg_df.columns = [x_col] + agg_col_names if agg_col_colors is None: n = len(agg_col_names) hsv_tuples = [(x * 1.0 / n, 0.5, 0.5) for x in range(n)] rgb_tuples = [colorsys.hsv_to_rgb(*x) for x in hsv_tuples] agg_col_colors = rgb_tuples legend_patches = [] for i in range(len(agg_col_names)): col = agg_col_names[i] color = agg_col_colors[i] plt.plot(agg_df[x_col], agg_df[col], label=col, color=color) patch = matplotlib.patches.Patch(color=color, label=col) legend_patches.append(patch) plt.legend(labels=agg_col_names, handles=legend_patches) if plt_title is None: plt_title = y_col plt.title(plt_title) plt.xlabel(x_col) plt.ylabel(y_col) return agg_df def plt_overlay_with_bands( df, x_col, y_col, split_col, perc=(25, 75), overlay_color="black", agg_col_colors=("blue", "black", "red"), plt_title=None): """Overlay by splitting wrt a column and plot wrt time. We also add quantile (percentile) bands :param df: pd.DataFrame data frame which includes the data :param x_col: str the column for the values for the x-axis :param y_col: str the column for the values for the y-axis :param split_col: str the column which is used to split the data to various partitions t be overlayed :param perc: tuple[float, float] the percentiles for the bands. The default is 25 and 75 percentiles :param overlay_color: Optional[str] the color of the overlayed curves. The color will be transparanet so we can see the curves overlap :param agg_col_colors: Optional[str] the color of the aggregate curves :param plt_title: Optional[str] the title of the plot. It will default to y_col if not provided """ def quantile_fcn(q): return lambda x: np.nanpercentile(a=x, q=q) agg_dict = { y_col: [np.nanmean, quantile_fcn(perc[0]), quantile_fcn(perc[1])] } res = plt_overlay_long_df( df=df, x_col=x_col, y_col=y_col, split_col=split_col, agg_dict=agg_dict, agg_col_names=["mean", ("Q" + str(perc[0])), ("Q" + str(perc[1]))], overlay_color=overlay_color, agg_col_colors=agg_col_colors, plt_title=plt_title) return res def plt_longterm_ts_agg( df, time_col, window_col, value_col, color_col=None, agg_func=np.nanmean, plt_title="", color="blue", choose_color_func=None): """Make a longterm avg plot by taking the average in a window and moving that across the time. That window can be a week, month, year etc :param df: pd.DataFrame The data frame with the data :param time_col: str The column with timestamps :param window_col: str This is a column which represents a coarse time granularity eg "2018-01" represents year-month In this case the avg across that month is calculated :param value_col: str The column denoting the values :param color_col: Optional[str] The column denoting the color for each point. We allow the curve color to change. When aggregating for each window the first color appearing in that window will be used by default. :param agg_func: Optional[func] the aggregation function to be used across the window :param plt_title: Optional[str] Plot title :param color: Optional[str] Color of the curve if it is not provided
val_f_ifWirelessSSIDAuthChangedCols: If op_ifWirelessSSIDAuthChangedCols is specified, the field named in this input will be compared to the value in ifWirelessSSIDAuthChangedCols using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_ifWirelessSSIDAuthChangedCols must be specified if op_ifWirelessSSIDAuthChangedCols is specified. :type val_f_ifWirelessSSIDAuthChangedCols: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_ifWirelessSSIDAuthChangedCols: If op_ifWirelessSSIDAuthChangedCols is specified, this value will be compared to the value in ifWirelessSSIDAuthChangedCols using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_ifWirelessSSIDAuthChangedCols must be specified if op_ifWirelessSSIDAuthChangedCols is specified. :type val_c_ifWirelessSSIDAuthChangedCols: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_ifWirelessSSIDAuthEndTime: The operator to apply to the field ifWirelessSSIDAuthEndTime. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. ifWirelessSSIDAuthEndTime: The ending effective time of this record, or empty if still in effect. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_ifWirelessSSIDAuthEndTime: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_ifWirelessSSIDAuthEndTime: If op_ifWirelessSSIDAuthEndTime is specified, the field named in this input will be compared to the value in ifWirelessSSIDAuthEndTime using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_ifWirelessSSIDAuthEndTime must be specified if op_ifWirelessSSIDAuthEndTime is specified. :type val_f_ifWirelessSSIDAuthEndTime: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_ifWirelessSSIDAuthEndTime: If op_ifWirelessSSIDAuthEndTime is specified, this value will be compared to the value in ifWirelessSSIDAuthEndTime using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_ifWirelessSSIDAuthEndTime must be specified if op_ifWirelessSSIDAuthEndTime is specified. :type val_c_ifWirelessSSIDAuthEndTime: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_ifWirelessSSIDAuthStartTime: The operator to apply to the field ifWirelessSSIDAuthStartTime. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. ifWirelessSSIDAuthStartTime: The starting effective time of this record. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_ifWirelessSSIDAuthStartTime: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_ifWirelessSSIDAuthStartTime: If op_ifWirelessSSIDAuthStartTime is specified, the field named in this input will be compared to the value in ifWirelessSSIDAuthStartTime using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_ifWirelessSSIDAuthStartTime must be specified if op_ifWirelessSSIDAuthStartTime is specified. :type val_f_ifWirelessSSIDAuthStartTime: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_ifWirelessSSIDAuthStartTime: If op_ifWirelessSSIDAuthStartTime is specified, this value will be compared to the value in ifWirelessSSIDAuthStartTime using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_ifWirelessSSIDAuthStartTime must be specified if op_ifWirelessSSIDAuthStartTime is specified. :type val_c_ifWirelessSSIDAuthStartTime: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_ifWirelessSSIDAuthTimestamp: The operator to apply to the field ifWirelessSSIDAuthTimestamp. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. ifWirelessSSIDAuthTimestamp: The date and time this record was collected or calculated. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_ifWirelessSSIDAuthTimestamp: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_ifWirelessSSIDAuthTimestamp: If op_ifWirelessSSIDAuthTimestamp is specified, the field named in this input will be compared to the value in ifWirelessSSIDAuthTimestamp using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_ifWirelessSSIDAuthTimestamp must be specified if op_ifWirelessSSIDAuthTimestamp is specified. :type val_f_ifWirelessSSIDAuthTimestamp: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_ifWirelessSSIDAuthTimestamp: If op_ifWirelessSSIDAuthTimestamp is specified, this value will be compared to the value in ifWirelessSSIDAuthTimestamp using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_ifWirelessSSIDAuthTimestamp must be specified if op_ifWirelessSSIDAuthTimestamp is specified. :type val_c_ifWirelessSSIDAuthTimestamp: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param DeviceGroupID: The internal NetMRI identifier of the device groups to which to limit the results. :type DeviceGroupID: Array of Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param timestamp: The data returned will represent the if wireless ssid auths as of this date and time. If omitted, the result will indicate the most recently collected data. :type timestamp: DateTime | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param methods: A list of if wireless ssid auth methods. The listed methods will be called on each if wireless ssid auth returned and included in the output. Available methods are: device, interface, vlan. :type methods: Array of String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param include: A list of associated object types to include in the output. The listed associations will be returned as outputs named according to the association name (see outputs below). Available includes are: device, interface, vlan. :type include: Array of String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 0 :param start: The record number to return in the selected page of data. It will always appear, although it may not be the first record. See the :limit for more information. :type start: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 1000 :param limit: The size of the page of data, that is, the maximum number of records returned. The limit size will be used to break the data up into pages and the first page with the start record will be returned. So if you have 100 records and use a :limit of 10 and a :start of 10, you will get records 10-19. The maximum limit is 10000. :type limit: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` IfWirelessSSIDAuthID :param sort: The data field(s) to use for sorting the output. Default is IfWirelessSSIDAuthID. Valid values are IfWirelessSSIDAuthID, DataSourceID, DeviceID, InterfaceID, ifWirelessSSIDAuthStartTime, ifWirelessSSIDAuthEndTime, ifWirelessSSIDAuthChangedCols, ifWirelessSSIDAuthTimestamp, SSIDIndex, SSIDAlgorithmIndex, SSIDAuthEnabledInd, SSIDEAPRequiredInd, SSIDEAPMethod, SSIDMACAuthRequiredInd, SSIDMACAuthMethod, SSIDDefaultVlanIndex, VlanID, SSIDAuthAlgorithm. :type sort: Array of String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` asc :param dir: The direction(s) in which to sort the data. Default is 'asc'. Valid values are 'asc' and 'desc'. :type dir: Array of String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param select: The list of attributes to return for each IfWirelessSSIDAuth. Valid values are IfWirelessSSIDAuthID, DataSourceID, DeviceID, InterfaceID, ifWirelessSSIDAuthStartTime, ifWirelessSSIDAuthEndTime, ifWirelessSSIDAuthChangedCols, ifWirelessSSIDAuthTimestamp, SSIDIndex, SSIDAlgorithmIndex, SSIDAuthEnabledInd, SSIDEAPRequiredInd, SSIDEAPMethod, SSIDMACAuthRequiredInd, SSIDMACAuthMethod, SSIDDefaultVlanIndex, VlanID, SSIDAuthAlgorithm. If empty or
type: {type: map, values: double}} - 3 - {fcn: u.mylt} fcns: mylt: params: [{a: double}, {b: double}] ret: boolean do: {"<": [{m.abs: {"-": [a, 6.2]}}, {m.abs: {"-": [b, 6.2]}}]} ''')[0].action(None), ["1", "5", "3"]) self.assertEqual(PFAEngine.fromYaml(''' input: "null" output: {type: array, items: string} action: - map.argmaxNLT: - {value: {"0": 5.5, "1": 2.2, "2": 7.7, "3": 4.4, "4": 6.6, "5": 2.2, "6": 7.6}, type: {type: map, values: double}} - 3 - params: [{a: double}, {b: double}] ret: boolean do: {"<": [{m.abs: {"-": [a, 6.2]}}, {m.abs: {"-": [b, 6.2]}}]} ''')[0].action(None), ["1", "5", "3"]) self.assertEqual(PFAEngine.fromYaml(''' input: "null" output: {type: array, items: string} action: - map.argminNLT: - {value: {"0": 5.5, "1": 2.2, "2": 7.7, "3": 4.4, "4": 6.6, "5": 2.2, "6": 7.6}, type: {type: map, values: double}} - 3 - {fcn: u.mylt} fcns: mylt: params: [{a: double}, {b: double}] ret: boolean do: {"<": [{m.abs: {"-": [a, 6.2]}}, {m.abs: {"-": [b, 6.2]}}]} ''')[0].action(None), ["4", "0", "6"]) self.assertEqual(PFAEngine.fromYaml(''' input: "null" output: {type: array, items: string} action: - map.argminNLT: - {value: {"0": 5.5, "1": 2.2, "2": 7.7, "3": 4.4, "4": 6.6, "5": 2.2, "6": 7.6}, type: {type: map, values: double}} - 3 - params: [{a: double}, {b: double}] ret: boolean do: {"<": [{m.abs: {"-": [a, 6.2]}}, {m.abs: {"-": [b, 6.2]}}]} ''')[0].action(None), ["4", "0", "6"]) def testToSet(self): engine, = PFAEngine.fromYaml(''' input: {type: array, items: int} output: {type: map, values: int} action: - {map.toset: [input]} ''') self.assertEqual(engine.action([1, 2, 3, 4, 5]), {"BA==": 2, "Ag==": 1, "Bg==": 3, "Cg==": 5, "CA==": 4}) def testFromSet(self): engine, = PFAEngine.fromYaml(''' input: {type: map, values: int} output: {type: array, items: int} action: - {map.fromset: [input]} ''') self.assertEqual(set(engine.action({"BA==": 2, "Ag==": 1, "Bg==": 3, "Cg==": 5, "CA==": 4})), set([1, 2, 3, 4, 5])) engine, = PFAEngine.fromYaml(''' input: {type: map, values: string} output: {type: array, items: string} action: - {map.fromset: [input]} ''') self.assertEqual(set(engine.action({"BA==": "two", "Ag==": "one", "Bg==": "three", "Cg==": "five", "CA==": "four"})), set(["one", "two", "three", "four", "five"])) def testIn(self): engine, = PFAEngine.fromYaml(''' input: int output: boolean action: map.in: - {map.toset: {value: [1, 2, 3, 4, 5], type: {type: array, items: int}}} - input ''') self.assertTrue(engine.action(2)) self.assertFalse(engine.action(0)) def testUnion(self): engine, = PFAEngine.fromYaml(''' input: "null" output: {type: array, items: int} action: map.fromset: map.union: - {map.toset: {value: [1, 2, 3, 4, 5], type: {type: array, items: int}}} - {map.toset: {value: [4, 5, 6, 7, 8], type: {type: array, items: int}}} ''') self.assertEqual(set(engine.action(None)), set([1, 2, 3, 4, 5, 6, 7, 8])) def testIntersection(self): engine, = PFAEngine.fromYaml(''' input: "null" output: {type: array, items: int} action: map.fromset: map.intersection: - {map.toset: {value: [1, 2, 3, 4, 5], type: {type: array, items: int}}} - {map.toset: {value: [4, 5, 6, 7, 8], type: {type: array, items: int}}} ''') self.assertEqual(set(engine.action(None)), set([4, 5])) def testDiff(self): engine, = PFAEngine.fromYaml(''' input: "null" output: {type: array, items: int} action: map.fromset: map.diff: - {map.toset: {value: [1, 2, 3, 4, 5], type: {type: array, items: int}}} - {map.toset: {value: [4, 5, 6, 7, 8], type: {type: array, items: int}}} ''') self.assertEqual(set(engine.action(None)), set([1, 2, 3])) def testSymDiff(self): engine, = PFAEngine.fromYaml(''' input: "null" output: {type: array, items: int} action: map.fromset: map.symdiff: - {map.toset: {value: [1, 2, 3, 4, 5], type: {type: array, items: int}}} - {map.toset: {value: [4, 5, 6, 7, 8], type: {type: array, items: int}}} ''') self.assertEqual(set(engine.action(None)), set([1, 2, 3, 6, 7, 8])) def testSubset(self): engine, = PFAEngine.fromYaml(''' input: {type: array, items: int} output: boolean action: map.subset: - {map.toset: input} - {map.toset: {value: [1, 2, 3, 4, 5], type: {type: array, items: int}}} ''') self.assertTrue(engine.action([1, 2, 3])) self.assertFalse(engine.action([1, 2, 3, 999])) self.assertFalse(engine.action([888, 999])) def testDisjoint(self): engine, = PFAEngine.fromYaml(''' input: {type: array, items: int} output: boolean action: map.disjoint: - {map.toset: input} - {map.toset: {value: [1, 2, 3, 4, 5], type: {type: array, items: int}}} ''') self.assertFalse(engine.action([1, 2, 3])) self.assertFalse(engine.action([1, 2, 3, 999])) self.assertTrue(engine.action([888, 999])) def testMap(self): engine, = PFAEngine.fromYaml(''' input: {type: map, values: string} output: {type: map, values: int} action: map.map: - input - params: [{x: string}] ret: int do: {parse.int: [x, 10]} ''') self.assertEqual(engine.action({"a": "1", "b": "2", "c": "3", "d": "4", "e": "5"}), {"a": 1, "b": 2, "c": 3, "d": 4, "e": 5}) def testMapWithKey(self): engine, = PFAEngine.fromYaml(''' input: {type: map, values: string} output: {type: map, values: int} action: map.mapWithKey: - input - params: [{key: string}, {value: string}] ret: int do: if: {">": [key, {string: "c"}]} then: {+: [{parse.int: [value, 10]}, 1000]} else: {parse.int: [value, 10]} ''') self.assertEqual(engine.action({"a": "1", "b": "2", "c": "3", "d": "4", "e": "5"}), {"a": 1, "b": 2, "c": 3, "d": 1004, "e": 1005}) def testFilter(self): engine, = PFAEngine.fromYaml(''' input: {type: map, values: int} output: {type: map, values: int} action: map.filter: - input - params: [{x: int}] ret: boolean do: {"<": [x, 3]} ''') self.assertEqual(engine.action({"a": 1, "b": 2, "c": 3, "d": 4, "e": 5}), {"a": 1, "b": 2}) def testFilterWithKey(self): engine, = PFAEngine.fromYaml(''' input: {type: map, values: int} output: {type: map, values: int} action: map.filterWithKey: - input - params: [{key: string}, {value: int}] ret: boolean do: {"&&": [{"<": [value, 3]}, {"==": [key, {string: "a"}]}]} ''') self.assertEqual(engine.action({"a": 1, "b": 2, "c": 3, "d": 4, "e": 5}), {"a": 1}) def testFilterMap(self): engine, = PFAEngine.fromYaml(''' input: {type: map, values: int} output: {type: map, values: int} action: map.filterMap: - input - params: [{value: int}] ret: [int, "null"] do: if: {"==": [{"%": [value, 2]}, 0]} then: {"+": [value, 1000]} else: null ''') self.assertEqual(engine.action({"a": 1, "b": 2, "c": 3, "d": 4, "e": 5}), {"b": 1002, "d": 1004}) def testFilterMapWithKey(self): engine, = PFAEngine.fromYaml(''' input: {type: map, values: int} output: {type: map, values: int} action: map.filterMapWithKey: - input - params: [{key: string}, {value: int}] ret: [int, "null"] do: if: {"&&": [{"==": [{"%": [value, 2]}, 0]}, {"==": [key, {string: "b"}]}]} then: {"+": [value, 1000]} else: null ''') self.assertEqual(engine.action({"a": 1, "b": 2, "c": 3, "d": 4, "e": 5}), {"b": 1002}) def testFlatMap(self): engine, = PFAEngine.fromYaml(''' input: {type: map, values: int} output: {type: map, values: int} action: map.flatMap: - input - params: [{value: int}] ret: {type: map, values: int} do: if: {">": [value, 2]} then: - let: {out: {value: {}, type: {type: map, values: int}}} - set: out: map.add: - out - {s.int: value} - value - set: out: map.add: - out - {s.concat: [{s.int: value}, {s.int: value}]} - value - out else: {value: {}, type: {type: map, values: int}} ''') self.assertEqual(engine.action({"a": 1, "b": 2, "c": 3, "d": 4, "e": 5}), {"3": 3, "4": 4, "5": 5, "33": 3, "44": 4, "55": 5}) def testFlatMapWithKey(self): engine, = PFAEngine.fromYaml(''' input: {type: map, values: int} output: {type: map, values: int} action: map.flatMapWithKey: - input - params: [{key: string}, {value: int}] ret: {type: map, values: int} do: map.add: - map.add: - {value: {}, type: {type: map, values: int}} - key - value - {s.concat: [key, key]} - {+: [100, value]} ''') self.assertEqual(engine.action({"a": 1, "b": 2, "c": 3, "d": 4, "e": 5}), {"a": 1, "b": 2, "c": 3, "d": 4, "e": 5, "aa": 101, "bb": 102, "cc": 103, "dd": 104, "ee": 105}) def testZipMap(self): self.assertEqual(PFAEngine.fromYaml(''' input: "null" output: {type: map, values: string} action: map.zipmap: - {value: {"0": "x", "1": "y", "2": "z"}, type: {type: map, values: string}} - {value: {"0": 101, "1": 102, "2": 103}, type: {type: map, values: int}} - params: [{a: string}, {b: int}] ret: string do: {s.concat: [a, {s.int: b}]} ''')[0].action(None), {"0": "x101", "1": "y102", "2": "z103"}) self.assertEqual(PFAEngine.fromYaml(''' input: "null" output: {type: map, values: string} action: map.zipmap: - {value: {"0": "x", "1": "y", "2": "z"}, type: {type: map, values: string}} - {value: {"0": 101, "1": 102, "2": 103}, type: {type: map, values: int}} - {value: {"0": "a", "1": "b", "2": "c"}, type: {type: map, values: string}} - params: [{a: string}, {b: int}, {c: string}] ret: string do: {s.concat: [{s.concat: [a, {s.int: b}]}, c]} ''')[0].action(None), {"0": "x101a", "1": "y102b", "2": "z103c"}) self.assertEqual(PFAEngine.fromYaml(''' input: "null" output: {type: map, values: string} action: map.zipmap: - {value: {"0": "x", "1": "y", "2": "z"}, type: {type: map, values: string}} - {value: {"0": 101, "1": 102, "2": 103}, type: {type: map, values: int}} - {value: {"0": "a", "1": "b", "2": "c"}, type: {type: map, values: string}} - {value: {"0": true, "1": false, "2": true}, type: {type: map, values: boolean}} - params: [{a: string}, {b: int}, {c: string}, {d: boolean}] ret: string do: {s.concat: [{s.concat: [{s.concat: [a, {s.int: b}]}, c]}, {if: d, then: {string: "-up"}, else: {string: "-down"}}]} ''')[0].action(None), {"0": "x101a-up", "1": "y102b-down", "2": "z103c-up"}) def testZipMapWithKey(self): self.assertEqual(PFAEngine.fromYaml(''' input: "null" output: {type: map, values: string} action: map.zipmapWithKey: - {value: {"0": "x", "1": "y", "2": "z"}, type: {type: map, values: string}} - {value: {"0": 101, "1": 102, "2": 103}, type: {type: map,
= output[0] return output reconBaseline = ReconstructionModel(RECON_BASELINE) reconModels = [ReconstructionModel(f) for f in NETWORKS] reconPostModels = [ReconstructionModelPostTrain(name, file, inpainting) for (name, file, inpainting) in POSTTRAIN_NETWORKS] allReconModels = reconModels + reconPostModels NETWORK_COMBINATIONS = \ [(importanceBaseline1, reconBaseline), (importanceBaseline2, reconBaseline)] + \ [(importanceBaselineLuminance, reconBaseline)] + \ [(importanceBaseline1, reconNet) for reconNet in allReconModels] + \ [(importanceBaseline2, reconNet) for reconNet in allReconModels] + \ [(importanceBaselineLuminance, reconNet) for reconNet in allReconModels] + \ [(importanceNet, reconBaseline) for importanceNet in importanceModels] + \ list(zip(importanceModels, reconModels)) + \ [(importanceNet, reconPostModel) for importanceNet in importanceModels for reconPostModel in reconPostModels] #NETWORK_COMBINATIONS = list(zip(importanceModels, reconModels)) print("Network combinations:") for (i,r) in NETWORK_COMBINATIONS: print(" %s - %s"%(i.name(), r.name())) # load sampling patterns print("load sampling patterns") with h5py.File(SAMPLING_FILE, 'r') as f: sampling_pattern = dict([(name, torch.from_numpy(f[name][...]).to(device)) \ for name in SAMPLING_PATTERNS]) # create shading shading = ScreenSpaceShading(device) shading.fov(30) shading.ambient_light_color(np.array([0.1,0.1,0.1])) shading.diffuse_light_color(np.array([1.0, 1.0, 1.0])) shading.specular_light_color(np.array([0.0, 0.0, 0.0])) shading.specular_exponent(16) shading.light_direction(np.array([0.1,0.1,1.0])) shading.material_color(np.array([1.0, 0.3, 0.0])) AMBIENT_OCCLUSION_STRENGTH = 1.0 shading.ambient_occlusion(1.0) shading.inverse_ao = False #heatmap HEATMAP_CFG = [(min, mean) for min in HEATMAP_MIN for mean in HEATMAP_MEAN if min<mean] print("heatmap configs:", HEATMAP_CFG) ######################### # DEFINE STATISTICS ######################### ssimLoss = SSIM(size_average=False) ssimLoss.to(device) psnrLoss = PSNR() psnrLoss.to(device) lpipsColor = lpips.PerceptualLoss(model='net-lin', net='alex', use_gpu=True) MIN_FILLING = 0.05 NUM_BINS = 200 class Statistics: def __init__(self): self.histogram_color_withAO = np.zeros(NUM_BINS, dtype=np.float64) self.histogram_color_noAO = np.zeros(NUM_BINS, dtype=np.float64) self.histogram_depth = np.zeros(NUM_BINS, dtype=np.float64) self.histogram_normal = np.zeros(NUM_BINS, dtype=np.float64) self.histogram_mask = np.zeros(NUM_BINS, dtype=np.float64) self.histogram_ao = np.zeros(NUM_BINS, dtype=np.float64) self.histogram_counter = 0 def create_datasets(self, hdf5_file : h5py.File, stats_name : str, histo_name : str, num_samples : int, extra_info : dict): self.expected_num_samples = num_samples stats_shape = (num_samples, len(list(StatField))) self.stats_file = hdf5_file.require_dataset( stats_name, stats_shape, dtype='f', exact=True) self.stats_file.attrs['NumFields'] = len(list(StatField)) for field in list(StatField): self.stats_file.attrs['Field%d'%field.value] = field.name for key, value in extra_info.items(): self.stats_file.attrs[key] = value self.stats_index = 0 histo_shape = (NUM_BINS, len(list(HistoField))) self.histo_file = hdf5_file.require_dataset( histo_name, histo_shape, dtype='f', exact=True) self.histo_file.attrs['NumFields'] = len(list(HistoField)) for field in list(HistoField): self.histo_file.attrs['Field%d'%field.value] = field.name for key, value in extra_info.items(): self.histo_file.attrs[key] = value def add_timestep_sample(self, pred_mnda, gt_mnda, sampling_mask): """ adds a timestep sample: pred_mnda: prediction: mask, normal, depth, AO gt_mnda: ground truth: mask, normal, depth, AO """ B = pred_mnda.shape[0] #shading shading.ambient_occlusion(AMBIENT_OCCLUSION_STRENGTH) pred_color_withAO = shading(pred_mnda) gt_color_withAO = shading(gt_mnda) shading.ambient_occlusion(0.0) pred_color_noAO = shading(pred_mnda) gt_color_noAO = shading(gt_mnda) #apply border pred_mnda = pred_mnda[:,:,LOSS_BORDER:-LOSS_BORDER,LOSS_BORDER:-LOSS_BORDER] pred_color_withAO = pred_color_withAO[:,:,LOSS_BORDER:-LOSS_BORDER,LOSS_BORDER:-LOSS_BORDER] pred_color_noAO = pred_color_noAO[:,:,LOSS_BORDER:-LOSS_BORDER,LOSS_BORDER:-LOSS_BORDER] gt_mnda = gt_mnda[:,:,LOSS_BORDER:-LOSS_BORDER,LOSS_BORDER:-LOSS_BORDER] gt_color_withAO = gt_color_withAO[:,:,LOSS_BORDER:-LOSS_BORDER,LOSS_BORDER:-LOSS_BORDER] gt_color_noAO = gt_color_noAO[:,:,LOSS_BORDER:-LOSS_BORDER,LOSS_BORDER:-LOSS_BORDER] mask = gt_mnda[:,0:1,:,:] * 0.5 + 0.5 # PSNR psnr_mask = psnrLoss(pred_mnda[:,0:1,:,:], gt_mnda[:,0:1,:,:]).cpu().numpy() psnr_normal = psnrLoss(pred_mnda[:,1:4,:,:], gt_mnda[:,1:4,:,:], mask=mask).cpu().numpy() psnr_depth = psnrLoss(pred_mnda[:,4:5,:,:], gt_mnda[:,4:5,:,:], mask=mask).cpu().numpy() psnr_ao = psnrLoss(pred_mnda[:,5:6,:,:], gt_mnda[:,5:6,:,:], mask=mask).cpu().numpy() psnr_color_withAO = psnrLoss(pred_color_withAO, gt_color_withAO, mask=mask).cpu().numpy() psnr_color_noAO = psnrLoss(pred_color_noAO, gt_color_noAO, mask=mask).cpu().numpy() # SSIM ssim_mask = ssimLoss(pred_mnda[:,0:1,:,:], gt_mnda[:,0:1,:,:]).cpu().numpy() pred_mnda = gt_mnda + mask * (pred_mnda - gt_mnda) ssim_normal = ssimLoss(pred_mnda[:,1:4,:,:], gt_mnda[:,1:4,:,:]).cpu().numpy() ssim_depth = ssimLoss(pred_mnda[:,4:5,:,:], gt_mnda[:,4:5,:,:]).cpu().numpy() ssim_ao = ssimLoss(pred_mnda[:,5:6,:,:], gt_mnda[:,5:6,:,:]).cpu().numpy() ssim_color_withAO = ssimLoss(pred_color_withAO, gt_color_withAO).cpu().numpy() ssim_color_noAO = ssimLoss(pred_color_noAO, gt_color_noAO).cpu().numpy() # Perceptual lpips_color_withAO = torch.cat([lpipsColor(pred_color_withAO[b], gt_color_withAO[b], normalize=True) for b in range(B)], dim=0).cpu().numpy() lpips_color_noAO = torch.cat([lpipsColor(pred_color_noAO[b], gt_color_noAO[b], normalize=True) for b in range(B)], dim=0).cpu().numpy() # Samples samples = torch.mean(sampling_mask, dim=(1,2,3)).cpu().numpy() # Write samples to file for b in range(B): assert self.stats_index < self.expected_num_samples, "Adding more samples than specified" self.stats_file[self.stats_index, :] = np.array([ psnr_mask[b], psnr_normal[b], psnr_depth[b], psnr_ao[b], psnr_color_noAO[b], psnr_color_withAO[b], ssim_mask[b], ssim_normal[b], ssim_depth[b], ssim_ao[b], ssim_color_noAO[b], ssim_color_withAO[b], lpips_color_noAO[b], lpips_color_withAO[b], samples[b]], dtype='f') self.stats_index += 1 # Histogram self.histogram_counter += 1 mask_diff = F.l1_loss(gt_mnda[:,0,:,:], pred_mnda[:,0,:,:], reduction='none') histogram,_ = np.histogram(mask_diff.cpu().numpy(), bins=NUM_BINS, range=(0,1), density=True) self.histogram_mask += (histogram/(NUM_BINS*B) - self.histogram_mask)/self.histogram_counter #normal_diff = (-F.cosine_similarity(gt_mnda[0,1:4,:,:], pred_mnda[0,1:4,:,:], dim=0)+1)/2 normal_diff = F.l1_loss(gt_mnda[:,1:4,:,:], pred_mnda[:,1:4,:,:], reduction='none').sum(dim=0) / 6 histogram,_ = np.histogram(normal_diff.cpu().numpy(), bins=NUM_BINS, range=(0,1), density=True) self.histogram_normal += (histogram/(NUM_BINS*B) - self.histogram_normal)/self.histogram_counter depth_diff = F.l1_loss(gt_mnda[:,4,:,:], pred_mnda[:,4,:,:], reduction='none') histogram,_ = np.histogram(depth_diff.cpu().numpy(), bins=NUM_BINS, range=(0,1), density=True) self.histogram_depth += (histogram/(NUM_BINS*B) - self.histogram_depth)/self.histogram_counter ao_diff = F.l1_loss(gt_mnda[:,5,:,:], pred_mnda[:,5,:,:], reduction='none') histogram,_ = np.histogram(ao_diff.cpu().numpy(), bins=NUM_BINS, range=(0,1), density=True) self.histogram_ao += (histogram/(NUM_BINS*B) - self.histogram_ao)/self.histogram_counter color_diff = F.l1_loss(gt_color_withAO[:,0,:,:], pred_color_withAO[:,0,:,:], reduction='none') histogram,_ = np.histogram(color_diff.cpu().numpy(), bins=NUM_BINS, range=(0,1), density=True) self.histogram_color_withAO += (histogram/(NUM_BINS*B) - self.histogram_color_withAO)/self.histogram_counter color_diff = F.l1_loss(gt_color_noAO[:,0,:,:], pred_color_noAO[:,0,:,:], reduction='none') histogram,_ = np.histogram(color_diff.cpu().numpy(), bins=NUM_BINS, range=(0,1), density=True) self.histogram_color_noAO += (histogram/(NUM_BINS*B) - self.histogram_color_noAO)/self.histogram_counter def close_stats_file(self): self.stats_file.attrs['NumEntries'] = self.stats_index def write_histogram(self): """ After every sample for the current dataset was processed, write a histogram of the errors in a new file """ for i in range(NUM_BINS): self.histo_file[i,:] = np.array([ i / NUM_BINS, (i+1) / NUM_BINS, self.histogram_mask[i], self.histogram_normal[i], self.histogram_depth[i], self.histogram_ao[i], self.histogram_color_withAO[i], self.histogram_color_noAO[i] ]) ######################### # DATASET ######################### class FullResDataset(torch.utils.data.Dataset): def __init__(self, file): self.hdf5_file = h5py.File(file, 'r') self.dset = self.hdf5_file['gt'] print("Dataset shape:", self.dset.shape) def __len__(self): return self.dset.shape[0] def num_timesteps(self): return self.dset.shape[1] def __getitem__(self, idx): return (self.dset[idx,...], np.array(idx)) ######################### # COMPUTE STATS for each dataset ######################### for dataset_name, dataset_file in DATASETS: dataset_file = os.path.join(DATASET_PREFIX, dataset_file) print("Compute statistics for", dataset_name) # init luminance importance map importanceBaselineLuminance.setTestFile(dataset_file) if importanceBaselineLuminance.isAvailable(): print("Luminance-contrast importance map is available") # create output file os.makedirs(OUTPUT_FOLDER, exist_ok = True) output_file = os.path.join(OUTPUT_FOLDER, dataset_name+'.hdf5') print("Save to", output_file) with h5py.File(output_file, 'a') as output_hdf5_file: # load dataset set = FullResDataset(dataset_file) data_loader = torch.utils.data.DataLoader(set, batch_size=BATCH_SIZE, shuffle=False) # define statistics StatsCfg = collections.namedtuple( "StatsCfg", "stats importance recon heatmin heatmean pattern") statistics = [] for (inet,rnet) in NETWORK_COMBINATIONS: for (heatmin, heatmean) in HEATMAP_CFG: for pattern in SAMPLING_PATTERNS: stats_info = { 'importance' : inet.name(), 'reconstruction' : rnet.name(), 'heatmin' : heatmin, 'heatmean' : heatmean, 'pattern' : pattern } stats_filename = "Stats_%s_%s_%03d_%03d_%s"%( inet.name(), rnet.name(), heatmin*100, heatmean*100, pattern) histo_filename = "Histogram_%s_%s_%03d_%03d_%s"%( inet.name(), rnet.name(), heatmin*100, heatmean*100, pattern) s = Statistics() s.create_datasets( output_hdf5_file, stats_filename, histo_filename, len(set) * set.num_timesteps(), stats_info) statistics.append(StatsCfg( stats = s, importance = inet, recon = rnet, heatmin = heatmin, heatmean = heatmean, pattern = pattern )) print(len(statistics), " different combinations are performed per sample") # compute statistics try: with torch.no_grad(): num_minibatch = len(data_loader) pg = ProgressBar(num_minibatch, 'Evaluation', length=50) for iteration, (batch, batch_indices) in enumerate(data_loader, 0): pg.print_progress_bar(iteration) batch = batch.to(device) importanceBaselineLuminance.setIndices(batch_indices) B, T, C, H, W = batch.shape # try out each combination for s in statistics: #print(s) # get input to evaluation importanceNetUpscale = s.importance.networkUpscaling() importancePostUpscale = UPSCALING // importanceNetUpscale crop_low = torch.nn.functional.interpolate( batch.reshape(B*T, C, H, W), scale_factor=1/UPSCALING, mode='area').reshape(B, T, C, H//UPSCALING, W//UPSCALING) pattern = sampling_pattern[s.pattern][:H, :W] crop_high = batch # loop over timesteps pattern = pattern.unsqueeze(0).unsqueeze(0) previous_importance = None previous_output = None reconstructions = [] for j in range(T): importanceBaselineLuminance.setTime(j) # extract flow (always the last two channels of crop_high) flow = crop_high[:,j,C-2:,:,:] # compute importance map importance_input = crop_low[:,j,:5,:,:] if j==0 or s.importance.disableTemporal: previous_input = torch.zeros( B,1, importance_input.shape[2]*importanceNetUpscale, importance_input.shape[3]*importanceNetUpscale, dtype=crop_high.dtype, device=crop_high.device) else: flow_low = F.interpolate(flow, scale_factor = 1/importancePostUpscale) previous_input = models.VideoTools.warp_upscale( previous_importance, flow_low, 1, False) importance_map = s.importance.call(importance_input, previous_input) if len(importance_map.shape)==3: importance_map = importance_map.unsqueeze(1) previous_importance = importance_map target_mean = s.heatmean if USE_BINARY_SEARCH_ON_MEAN: # For regular sampling, the normalization does not work properly, # use binary search on the heatmean instead def f(x): postprocess = importance.PostProcess( s.heatmin, x, importancePostUpscale, LOSS_BORDER//importancePostUpscale, 'basic') importance_map2 = postprocess(importance_map)[0].unsqueeze(1) sampling_mask = (importance_map2 >= pattern).to(dtype=importance_map.dtype) samples = torch.mean(sampling_mask).item() return samples target_mean = binarySearch(f, s.heatmean, s.heatmean, 10, 0, 1) #print("Binary search for #samples, mean start={}, result={} with samples={}, original={}". # format(s.heatmean, s.heatmean, f(target_mean), f(s.heatmean))) # normalize and upscale importance map postprocess = importance.PostProcess( s.heatmin, target_mean, importancePostUpscale, LOSS_BORDER//importancePostUpscale, 'basic') importance_map = postprocess(importance_map)[0].unsqueeze(1) #print("mean:", torch.mean(importance_map).item()) # create samples sample_mask = (importance_map >= pattern).to(dtype=importance_map.dtype) reconstruction_input = torch.cat(( sample_mask * crop_high[:,j,0:5,:,:], # mask, normal x, normal y, normal z, depth sample_mask * torch.ones(B,1,H,W, dtype=crop_high.dtype, device=crop_high.device), # ao sample_mask), # sample mask dim = 1) # warp previous output if j==0 or s.recon.disableTemporal: previous_input = torch.zeros(B,6,H,W, dtype=crop_high.dtype, device=crop_high.device) else: previous_input = models.VideoTools.warp_upscale( previous_output, flow, 1, False) # run reconstruction network reconstruction = s.recon.call(reconstruction_input, sample_mask, previous_input) # clamp reconstruction_clamped = torch.cat([ torch.clamp(reconstruction[:,0:1,:,:], -1, +1), # mask ScreenSpaceShading.normalize(reconstruction[:,1:4,:,:], dim=1), torch.clamp(reconstruction[:,4:5,:,:], 0, +1), # depth torch.clamp(reconstruction[:,5:6,:,:], 0, +1) # ao ], dim=1) reconstructions.append(reconstruction_clamped) # save for next frame previous_output = reconstruction_clamped #endfor: timesteps # compute statistics reconstructions = torch.cat(reconstructions, dim=0) crops_high = torch.cat([crop_high[:,j,:6,:,:] for j in range(T)], dim=0) sample_masks = torch.cat([sample_mask]*T, dim=0) s.stats.add_timestep_sample( reconstructions, crops_high, sample_masks) # endfor: statistic # endfor: batch pg.print_progress_bar(num_minibatch) # end no_grad() finally: # close files for s in statistics: s.stats.write_histogram() s.stats.close_stats_file() # end with: hdf5 file # end for: loop over datasets if __name__ == "__main__": run() #import pprofile #prof
import numpy as np import pandas as pd from pylab import * import pickle import tensorflow as tf import random import os from sklearn.model_selection import train_test_split import matplotlib.lines as mlines from random import randint from sklearn import preprocessing from sklearn.model_selection import KFold import keras from keras.models import Sequential import itertools from itertools import product import glob import os.path from os import path def find_best(network, K): # For every file saved during the cross vallidation, it picks the one that returns the lowest loss in the test set # and returns the best parameters for the network and the corresponding loss associated with it # The argument "network" is 1 for the outcome mechanism and 2 for the treatment mechanism all_filenames = glob.glob("*network{}.csv".format(network)) losses = dict() keywords = [] for f in all_filenames: df = pd.read_csv(f) loss = np.array(df["1"]) key = f.split("/")[-1] key = key[:-4] key = "-".join(key.split("-")[1:]) if key not in losses: losses[key] = [] losses[key].append(loss[~np.isnan(loss)][-1]) best = list(losses.keys())[0] current = np.inf for key in losses.keys(): if np.mean(losses[key]) < current: current = np.mean(losses[key]) best = key f = open("K0-" + best + ".pkl", "rb") parameters = pickle.load(f) return parameters, current def divide_data(M, k, seed): # The argument M is the data corresponding to matrix M in the main file and k is the number of folds # This splits the data into k random folds, as the nuisance parameters have to be learnt with one part of the data # and the ATE/ATT coefficients have to be learnt with the other part. The part indexed by "train" is used to # learn the nuisances parameters and the part "test" is used to learn the parameters of interest (ATE/ATT) # This data is used later in the neural_net function X_test = [] Y_test = [] X_train = [] Y_train = [] kf = KFold(n_splits=k, random_state=seed, shuffle=True) for train_index, test_index in kf.split(M): x_train = M[train_index][:, :-1] y_train = M[train_index][:, -1] x_test = M[test_index][:, :-1] y_test = M[test_index][:, -1] X_train.append(x_train) Y_train.append(y_train) X_test.append(x_test) Y_test.append(y_test) return X_train, Y_train, X_test, Y_test def weights_biases(perm): # Returns the weights given the dimensions specified in the argument # These weights are then used in the MLP function where they weight # each input initializer = tf.compat.v1.keras.initializers.glorot_normal() weights = {} for i in range(len(perm) - 1): weights["h" + str(i)] = tf.Variable( initializer([perm[i], perm[i + 1]]), trainable=True ) weights["b" + str(i)] = tf.Variable(tf.zeros([1, perm[i + 1]]), trainable=True) return weights def train( X_train, y_train, X_test, y_test, epoch, batchSize, optimizer, cost, x, y, sess ): # Trains the neural network given the train and test data and specifications # in the arguments # For every batch computes the loss and gives the overall loss in both, the # train set and the test set. The cost function is defined in the neural_net # function below. L = [] L_test = [] for e in range(epoch): K = [] for k in range(len(X_test) // batchSize): batchX_test = X_test[k * batchSize : (k + 1) * batchSize] batchY_test = y_test[k * batchSize : (k + 1) * batchSize] K.append(sess.run(cost, feed_dict={x: batchX_test, y: batchY_test})) L_test.append(np.mean(K)) permutation = np.random.permutation(len(X_train)) for i in range(len(X_train) // batchSize): I = permutation[i * batchSize : (i + 1) * batchSize] sess.run(optimizer, feed_dict={x: X_train[I], y: y_train[I]}) L.append(sess.run(cost, feed_dict={x: X_train[I], y: y_train[I]})) if i % 10 == 0: print("Step " + str(i) + ", Minibatch Loss= " + "{:.6f}".format(L[-1])) return L, L_test def predict(X, batchSize, x, pred, sess): # Gives the predictions of the output given the input X P = [] print(len(X)) for i in range(len(X) // batchSize): P.append(sess.run(pred, feed_dict={x: X[i * batchSize : (i + 1) * batchSize]})) return np.concatenate(P) def MLP(x, weights): # Gives the output from the network. In each layer of the network, the input is # multiplied by the corresponding weight and trasformed with the ReLu non linearity. # It also returns the regularized l2 loss. The non linearity can be changed to # "leaky_relu" or "sigmoid" layer = tf.matmul(x, weights["h0"]) + weights["b0"] reg_loss = tf.nn.l2_loss(weights["h0"]) for i in range(1, len(weights) // 2): layer = ( tf.matmul(tf.nn.relu(layer), weights["h" + str(i)]) + weights["b" + str(i)] ) reg_loss = reg_loss + tf.nn.l2_loss(weights["h" + str(i)]) return tf.squeeze(layer), reg_loss def save_data( q, nr_layers, perm, batch_size, lr, reg_constant, loss, network, L, L_test, y_test1, pred_y_test, ): # This function saves the data in files with the name indicating the k fold, # the set of parameters used, and the network (the network is 1 for the # outcome network or 2 for the treatment network) filename = ( "K{}-Nr_Layers{}-perm{}-batch_size{}-lr{}-reg_constant{}-loss{}-network{}" ) description = filename.format( q, nr_layers, perm, batch_size, lr, reg_constant, loss, network ) # In each csv file, it saves the train and test loss, the actual values of the # output and the predicted ones df1 = pd.DataFrame({"Loss_Train": L}) df2 = pd.DataFrame({"Loss_test": L_test}) df3 = pd.DataFrame({"Actual_values": y_test1}) df4 = pd.DataFrame({"Predicted_Values": pred_y_test}) df5 = pd.DataFrame({"Description": description}, index=[0]) df = pd.concat([df1, df2, df3, df4, df5], ignore_index=True, axis=1) df.to_csv(description + ".csv") # Creates pickle files for each of the csv files. f = open(description + ".pkl", "wb") pickle.dump( { "Nr_Layers": nr_layers, "neurons": perm, "batch_sizes": batch_size, "lrs": lr, "reg_constants": reg_constant, "losses": loss, }, f, ) f.close() def do_i_exist(q, nr_layers, perm, batch_size, lr, reg_constant, loss, network): # Checks if the file is already saved so that it does not repeat the training # for the same hyperparameters during the cross validation procedure later filename = ( "K{}-Nr_Layers{}-perm{}-batch_size{}-lr{}-reg_constant{}-loss{}-network{}" ) description = filename.format( q, nr_layers, perm, batch_size, lr, reg_constant, loss, network ) file_name = description + ".pkl" return path.exists(file_name) def neural_net( Y_max, Y_min, k, X_neural, Y_neural, X_theta, Y_theta, network, cross_validate, batch_sizes, Nr_Layers, neurons, lrs, reg_constants, losses, ): # The main neural network function, which given the input data and the # hyperparameters returns the output from both, the first and the second # network. This output is then to be used in the main file for the # computation of the ATE/ATT and their standard errors. # The data indexed by "neural" is used to learn the nuisance parameters # and the part indexed by "theta" is used to compute the ATE/ATT config = tf.ConfigProto( intra_op_parallelism_threads=20, inter_op_parallelism_threads=20, allow_soft_placement=True, device_count={"CPU": 20}, ) # Set the number of epochs epochs = 50 # G0 are the predicted values of the first network (for the outcome mechanism) # with the treatment D set to 0 # G1 are the predicted values of the first network (for the outcome mechanism) # with the treatment D set to 1 # G are the predicted values for the first network (for the outcome mechanism) # without changing the original input # D is the treatment variable # Y is the outcome variable # M is the predicted outcome for the second netwrok (for the treatment mechanism) G_0 = [] G_1 = [] G = [] D = [] Y = [] M = [] if cross_validate: # Takes all possbile combinations of the hyperparameters set by the user and # cross validates to find the best combination possibilities = product( batch_sizes, neurons, lrs, reg_constants, losses, Nr_Layers ) else: # Uses the best combinations of the hyperparameters after the cross validation possibilities = product( [batch_sizes], [neurons], [lrs], [reg_constants], [losses], [Nr_Layers] ) for batch_size, neuron, lr, reg_constant, loss, nr_layers in possibilities: for q in range(k): perm = (neuron) * nr_layers # For every fold q, check if for that particular combination of hyperparameters # the file exists with the do_i_ exist function defined before. If it exists it # tries the next combination, if not it performs the training below if ( do_i_exist( q, nr_layers, perm, batch_size, lr, reg_constant, loss, network ) and cross_validate ): continue x_neural, x_theta = X_neural[q], X_theta[q] y_theta = Y_theta[q] y_neural = Y_neural[q] X_train = x_neural X_test = x_theta y_train = y_neural y_test = y_theta if network == 2: # If network is 1 you use the whole input X (which includes treatment D as # the last column) to predict the outcome Y.
<reponame>Hartorn/airflow<filename>airflow/providers/google/cloud/hooks/spanner.py # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ This module contains a Google Cloud Spanner Hook. """ from typing import Callable, List, Optional from google.api_core.exceptions import AlreadyExists, GoogleAPICallError from google.cloud.spanner_v1.client import Client from google.cloud.spanner_v1.database import Database from google.cloud.spanner_v1.instance import Instance from google.cloud.spanner_v1.transaction import Transaction from google.longrunning.operations_grpc_pb2 import Operation # noqa: F401 from airflow.exceptions import AirflowException from airflow.providers.google.common.hooks.base_google import GoogleBaseHook class SpannerHook(GoogleBaseHook): """ Hook for Google Cloud Spanner APIs. All the methods in the hook where project_id is used must be called with keyword arguments rather than positional. """ def __init__(self, gcp_conn_id: str = 'google_cloud_default', delegate_to: Optional[str] = None) -> None: super().__init__(gcp_conn_id, delegate_to) self._client = None def _get_client(self, project_id: str) -> Client: """ Provides a client for interacting with the Cloud Spanner API. :param project_id: The ID of the GCP project. :type project_id: str :return: Client :rtype: google.cloud.spanner_v1.client.Client """ if not self._client: self._client = Client( project=project_id, credentials=self._get_credentials(), client_info=self.client_info ) return self._client @GoogleBaseHook.fallback_to_default_project_id def get_instance( self, instance_id: str, project_id: str, ) -> Instance: """ Gets information about a particular instance. :param project_id: Optional, The ID of the GCP project that owns the Cloud Spanner database. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :param instance_id: The ID of the Cloud Spanner instance. :type instance_id: str :return: Spanner instance :rtype: google.cloud.spanner_v1.instance.Instance """ instance = self._get_client(project_id=project_id).instance(instance_id=instance_id) if not instance.exists(): return None return instance def _apply_to_instance( self, project_id: str, instance_id: str, configuration_name: str, node_count: int, display_name: str, func: Callable[[Instance], Operation] ) -> None: """ Invokes a method on a given instance by applying a specified Callable. :param project_id: The ID of the GCP project that owns the Cloud Spanner database. :type project_id: str :param instance_id: The ID of the instance. :type instance_id: str :param configuration_name: Name of the instance configuration defining how the instance will be created. Required for instances which do not yet exist. :type configuration_name: str :param node_count: (Optional) Number of nodes allocated to the instance. :type node_count: int :param display_name: (Optional) The display name for the instance in the Cloud Console UI. (Must be between 4 and 30 characters.) If this value is not set in the constructor, will fall back to the instance ID. :type display_name: str :param func: Method of the instance to be called. :type func: Callable[google.cloud.spanner_v1.instance.Instance] """ # noinspection PyUnresolvedReferences instance = self._get_client(project_id=project_id).instance( instance_id=instance_id, configuration_name=configuration_name, node_count=node_count, display_name=display_name) try: operation = func(instance) # type: Operation except GoogleAPICallError as e: self.log.error('An error occurred: %s. Exiting.', e.message) raise e if operation: result = operation.result() self.log.info(result) @GoogleBaseHook.fallback_to_default_project_id def create_instance( self, instance_id: str, configuration_name: str, node_count: int, display_name: str, project_id: str, ) -> None: """ Creates a new Cloud Spanner instance. :param instance_id: The ID of the Cloud Spanner instance. :type instance_id: str :param configuration_name: The name of the instance configuration defining how the instance will be created. Possible configuration values can be retrieved via https://cloud.google.com/spanner/docs/reference/rest/v1/projects.instanceConfigs/list :type configuration_name: str :param node_count: (Optional) The number of nodes allocated to the Cloud Spanner instance. :type node_count: int :param display_name: (Optional) The display name for the instance in the GCP Console. Must be between 4 and 30 characters. If this value is not set in the constructor, the name falls back to the instance ID. :type display_name: str :param project_id: Optional, the ID of the GCP project that owns the Cloud Spanner database. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :return: None """ self._apply_to_instance(project_id, instance_id, configuration_name, node_count, display_name, lambda x: x.create()) @GoogleBaseHook.fallback_to_default_project_id def update_instance( self, instance_id: str, configuration_name: str, node_count: int, display_name: str, project_id: str, ) -> None: """ Updates an existing Cloud Spanner instance. :param instance_id: The ID of the Cloud Spanner instance. :type instance_id: str :param configuration_name: The name of the instance configuration defining how the instance will be created. Possible configuration values can be retrieved via https://cloud.google.com/spanner/docs/reference/rest/v1/projects.instanceConfigs/list :type configuration_name: str :param node_count: (Optional) The number of nodes allocated to the Cloud Spanner instance. :type node_count: int :param display_name: (Optional) The display name for the instance in the GCP Console. Must be between 4 and 30 characters. If this value is not set in the constructor, the name falls back to the instance ID. :type display_name: str :param project_id: Optional, the ID of the GCP project that owns the Cloud Spanner database. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :return: None """ self._apply_to_instance(project_id, instance_id, configuration_name, node_count, display_name, lambda x: x.update()) @GoogleBaseHook.fallback_to_default_project_id def delete_instance(self, instance_id: str, project_id: str) -> None: """ Deletes an existing Cloud Spanner instance. :param instance_id: The ID of the Cloud Spanner instance. :type instance_id: str :param project_id: Optional, the ID of the GCP project that owns the Cloud Spanner database. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :return: None """ instance = self._get_client(project_id=project_id).instance(instance_id) try: instance.delete() return except GoogleAPICallError as e: self.log.error('An error occurred: %s. Exiting.', e.message) raise e @GoogleBaseHook.fallback_to_default_project_id def get_database( self, instance_id: str, database_id: str, project_id: str, ) -> Optional[Database]: """ Retrieves a database in Cloud Spanner. If the database does not exist in the specified instance, it returns None. :param instance_id: The ID of the Cloud Spanner instance. :type instance_id: str :param database_id: The ID of the database in Cloud Spanner. :type database_id: str :param project_id: Optional, the ID of the GCP project that owns the Cloud Spanner database. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :return: Database object or None if database does not exist :rtype: google.cloud.spanner_v1.database.Database or None """ instance = self._get_client(project_id=project_id).instance( instance_id=instance_id) if not instance.exists(): raise AirflowException("The instance {} does not exist in project {} !". format(instance_id, project_id)) database = instance.database(database_id=database_id) if not database.exists(): return None return database @GoogleBaseHook.fallback_to_default_project_id def create_database( self, instance_id: str, database_id: str, ddl_statements: List[str], project_id: str, ) -> None: """ Creates a new database in Cloud Spanner. :type project_id: str :param instance_id: The ID of the Cloud Spanner instance. :type instance_id: str :param database_id: The ID of the database to create in Cloud Spanner. :type database_id: str :param ddl_statements: The string list containing DDL for the new database. :type ddl_statements: list[str] :param project_id: Optional, the ID of the GCP project that owns the Cloud Spanner database. If set to None or missing, the default project_id from the GCP connection is used. :return: None """ instance = self._get_client(project_id=project_id).instance( instance_id=instance_id) if not instance.exists(): raise AirflowException("The instance {} does not exist in project {} !". format(instance_id, project_id)) database = instance.database(database_id=database_id, ddl_statements=ddl_statements) try: operation = database.create() # type: Operation except GoogleAPICallError as e: self.log.error('An error occurred: %s. Exiting.', e.message) raise e if operation: result = operation.result() self.log.info(result) @GoogleBaseHook.fallback_to_default_project_id def update_database( self, instance_id: str, database_id: str, ddl_statements: List[str], project_id: str, operation_id: Optional[str] = None ) -> None: """ Updates DDL of a database in Cloud Spanner. :type project_id: str :param instance_id: The ID of the Cloud Spanner instance. :type instance_id: str :param database_id: The ID of the database in Cloud Spanner. :type database_id: str :param ddl_statements: The string list containing DDL for the new database. :type ddl_statements: list[str] :param project_id: Optional, the ID of the GCP project that owns the
configFromProvisioningServer(self, serverBaseURL, deviceId, disableServerValidation=False): if disableServerValidation: ssl._create_default_https_context = ssl._create_unverified_context url = serverBaseURL + '/GetWeaveProvisioningInfo?macAddr=%016X' % deviceId with urllib.request.urlopen(url) as resp: respData = resp.read() respPlist = plistlib.loads(respData, fmt=plistlib.FMT_XML) try: if self.deviceCert == None: self.deviceCert = base64.b64decode(respPlist['nlWeaveCertificate'], validate=True) if self.devicePrivateKey == None: self.devicePrivateKey = base64.b64decode(respPlist['nlWeavePrivateKey'], validate=True) if self.pairingCode == None: self.pairingCode = respPlist['nlWeavePairingCode'] except binascii.Error as ex: raise binascii.Error('Invalid base-64 data returned by provisioning server: %s' % (str(ex))) def _configFromProvisioningCSVRow(self, row): if self.serialNum == None: serialNum = row.get('Serial_Num', None) if serialNum != None: self.serialNum = serialNum if self.deviceCert == None: deviceCert = row.get('Certificate', None) if deviceCert != None: self.deviceCert = base64.b64decode(deviceCert, validate=True) if self.devicePrivateKey == None: devicePrivateKey = row.get('Private_Key', None) if devicePrivateKey == None: devicePrivateKey = row.get('Private Key', None) if devicePrivateKey != None: self.devicePrivateKey = base64.b64decode(devicePrivateKey, validate=True) if self.pairingCode == None: pairingCode = row.get('Pairing_Code', None) if pairingCode == None: pairingCode = row.get('Pairing Code', None) if pairingCode != None: self.pairingCode = pairingCode if self.productRev == None: productRev = row.get('Product_Rev', None) if productRev != None: self.productRev = int(productRev, base=0) if self.mfgDate == None: mfgDate = row.get('Mfg_Date', None) if mfgDate != None: self.mfgDate = mfgDate def _setField(self, tag, value): if value != None: self._fields[tag] = value else: self._fields.pop(tag, None) class ESPSerialDeviceControler(object): '''Supports provisioning ESP32 devices using the ESP32 serial bootloader protocol and Espressif's esptool.py command.''' def __init__(self, target, loadAddr=None): self._target = target self._esptoolCmd = 'esptool.py' self._comPort = target.comPort self._comSpeed = target.comSpeed self._loadAddr = _applyDefault(loadAddr, target.defaultLoadAddr) def provisionDevice(self, provData): # Encode the provisioning data encodedProvData = provData.encode() # Verify that the load address is valid and that no part of the provisioning data will # fall outside the valid address range for the target device. self._target.validateLoadAddress(self._loadAddr, len(encodedProvData)) # Create an ESP32 firmware image consisting of two segments: # - a data segment containing the provisioning data. # - an executable segment containing a small program to reboot the device. provImage = encodeESP32FirmwareImage( entryPoint=ESPSerialDeviceControler._rebootProgEntryPoint, segments=[ (ESPSerialDeviceControler._rebootProgLoadAddr, ESPSerialDeviceControler._rebootProg), (self._loadAddr, encodedProvData) ]) print('Writing provisioning data to device'); with _WipedNamedTemporaryFile(suffix='.bin') as imageFile: # Write the provisioning image into a temporary file imageFile.write(provImage) imageFile.flush() # Construct a command to invoke the 'load_ram' operation of the esptool, passing the name of # of the temporary file as the input. esptoolCmd = [ self._esptoolCmd, '--no-stub', '--chip', 'esp32', '--port', self._comPort, '--baud', self._comSpeed, 'load_ram', imageFile.name ] if _verbosity > 0: print(' Running "%s"' % ' '.join(esptoolCmd)) if _verbosity > 1: print(' ESP32 Image file (%s):' % imageFile.name) imageFile.seek(0) _hexDumpFile(imageFile, ' ') # Invoke the esptool command and capture its output. esptoolProc = subprocess.Popen(esptoolCmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) (esptoolOut, esptoolErr) = esptoolProc.communicate() esptoolOut = esptoolOut.decode('utf-8') esptoolOut = esptoolOut.strip() if esptoolProc.returncode != 0 or _verbosity > 0: print(' esptool command exited with %d' % esptoolProc.returncode) print(_prefixLines(esptoolOut, ' | ')) return esptoolProc.returncode == 0 @classmethod def addArguments(cls, argParser): argParser.add_argument('--esptool-cmd', metavar='<path-name>', help='Path to esptool command. Defaults to \'esptool.py\'.') argParser.add_argument('--port', metavar='<path-name>', help='COM port device name for ESP32. Defaults to /tty/USB0.') argParser.add_argument('--speed', metavar='<int>', help='Baud rate for COM port. Defaults to 115200.') def configFromArguments(self, argValues): self._esptoolCmd = _applyDefault(argValues.esptool_cmd, self._esptoolCmd) self._comPort = _applyDefault(argValues.port, self._comPort) self._comSpeed = _applyDefault(argValues.speed, self._comSpeed) # Small ESP32 program to initiate a reboot of the device. _rebootProg = bytearray([ 0x70, 0x80, 0xF4, 0x3F, 0xFF, 0xFF, 0xFF, 0x3F, 0xA4, 0x80, 0xF4, 0x3F, 0xA1, 0x3A, 0xD8, 0x50, 0x8C, 0x80, 0xF4, 0x3F, 0x00, 0x0C, 0x00, 0xC0, 0x90, 0x80, 0xF4, 0x3F, 0xF0, 0x49, 0x02, 0x00, 0xA0, 0x80, 0xF4, 0x3F, 0x00, 0x00, 0x00, 0x80, 0x36, 0x41, 0x00, 0x91, 0xF5, 0xFF, 0x81, 0xF5, 0xFF, 0xC0, 0x20, 0x00, 0xA8, 0x09, 0x80, 0x8A, 0x10, 0xC0, 0x20, 0x00, 0x89, 0x09, 0x91, 0xF3, 0xFF, 0x81, 0xF1, 0xFF, 0xC0, 0x20, 0x00, 0x99, 0x08, 0x91, 0xF2, 0xFF, 0x81, 0xF1, 0xFF, 0xC0, 0x20, 0x00, 0x99, 0x08, 0x91, 0xF2, 0xFF, 0x81, 0xF0, 0xFF, 0xC0, 0x20, 0x00, 0x99, 0x08, 0x91, 0xF1, 0xFF, 0x81, 0xEF, 0xFF, 0xC0, 0x20, 0x00, 0x99, 0x08, 0x06, 0xFF, 0xFF, ]) _rebootProgLoadAddr = 0x40080000 _rebootProgEntryPoint = 0x40080028 class JLinkDeviceControler(object): '''Supports provisioning devices using a SEGGER J-Link debug probe and SEGGER's JLinkExe command.''' def __init__(self, target, loadAddr=None): self._target = target self._jlinkCmd = 'JLinkExe' self._jLinkDeviceName = target.jlinkDeviceName self._jlinkInterface = target.jlinkInterface self._jlinkSpeed = target.jlinkSpeed self._jlinkSN = None self._loadAddr = _applyDefault(loadAddr, target.defaultLoadAddr) def provisionDevice(self, provData): # Encode the provisioning data encodedProvData = provData.encode() # Verify that the load address is valid and that no part of the provisioning data will # fall outside the valid address range for the target device. self._target.validateLoadAddress(self._loadAddr, len(encodedProvData)) print('Writing provisioning data to device'); with tempfile.NamedTemporaryFile(mode='w+') as scriptFile: with _WipedNamedTemporaryFile(suffix='.bin') as provDataFile: # Write the provisioning data set into a temporary file provDataFile.write(provData.encode()) provDataFile.flush() # Write a command script containing the commands: # r # loadfile <data-set-file> <data-set-address> # go # q scriptFile.write('r\nloadfile %s 0x%08X\ngo\nq\n' % (provDataFile.name, self._loadAddr)) scriptFile.flush() jlinkCmd = self._FormJLinkCommand(scriptFile.name) if _verbosity > 0: print(' Running "%s"' % ' '.join(jlinkCmd)) if _verbosity > 1: print(' Script file (%s):' % scriptFile.name) scriptFile.seek(0) print(_prefixLines(scriptFile.read().strip(), ' | ')) print(' Provisioning data file (%s):' % provDataFile.name) provDataFile.seek(0) _hexDumpFile(provDataFile, ' ') # Run the jlink command and collect its output. jlinkProc = subprocess.Popen(jlinkCmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) (jlinkOut, jlinkErr) = jlinkProc.communicate() jlinkOut = jlinkOut.decode('utf-8') jlinkOut = jlinkOut.strip() if jlinkProc.returncode != 0 or _verbosity > 0: print(' J-Link command exited with %d' % jlinkProc.returncode) print(_prefixLines(jlinkOut, ' | ')) return jlinkProc.returncode == 0 def _FormJLinkCommand(self, scriptFileName): cmd = [ self._jlinkCmd, '-Device', self._jLinkDeviceName, '-If', self._jlinkInterface, '-Speed', self._jlinkSpeed, '-ExitOnError', '1', '-AutoConnect', '1' ] if self._jlinkSN != None: cmd += [ '-SelectEmuBySn', self._jlinkSN ] cmd += [ '-CommandFile', scriptFileName ] return cmd @classmethod def addArguments(cls, argParser): argParser.add_argument('--jlink-cmd', metavar='<path-name>', help='Path to JLink command. Defaults to \'JLinkExe\'.') argParser.add_argument('--jlink-if', metavar='SWD|JTAG', help='J-Link interface type. Defaults to SWD.', choices=[ 'SWD', 'JTAG']) argParser.add_argument('--jlink-speed', metavar='<int>|adaptive|auto', help='J-Link interface speed.') argParser.add_argument('--jlink-sn', metavar='<string>', help='J-Link probe serial number.') def configFromArguments(self, argValues): self._jlinkCmd = _applyDefault(argValues.jlink_cmd, self._jlinkCmd) self._jlinkInterface = _applyDefault(argValues.jlink_if, self._jlinkInterface) self._jlinkSpeed = _applyDefault(argValues.jlink_speed, self._jlinkSpeed) self._jlinkSN = _applyDefault(argValues.jlink_sn, self._jlinkSN) class Target(object): '''Describes a class of target devices and the parameters needed to control or communicate with them.''' def __init__(self, controllerClass, jlinkDeviceName=None, jlinkInterface=None, jlinkSpeed=None, comPort = None, comSpeed=None, defaultLoadAddr=None, validAddrRanges=None): self.controllerClass = controllerClass self.jlinkDeviceName = jlinkDeviceName self.jlinkInterface = jlinkInterface self.jlinkSpeed = jlinkSpeed self.comPort = comPort self.comSpeed = comSpeed self.defaultLoadAddr = defaultLoadAddr self.validAddrRanges = validAddrRanges def isValidLoadAddress(self, addr, dataLen): if self.validAddrRanges != None: addrEnd = addr + dataLen for (addrRangeStart, addrRangeEnd) in self.validAddrRanges: if addr >= addrRangeStart and addr <= addrRangeEnd and addrEnd >= addrRangeStart and addrEnd <= addrRangeEnd: return True return False def validateLoadAddress(self, addr, dataLen): if not self.isValidLoadAddress(addr, dataLen): raise _UsageError('ERROR: Invalid provisioning data load address\nSome or all of the data would fall outside of the valid memory ranges for the target device'); Target_nrf52840 = Target(controllerClass=JLinkDeviceControler, jlinkDeviceName='NRF52840_XXAA', jlinkInterface='SWD', jlinkSpeed='8000', defaultLoadAddr=0x2003E000, validAddrRanges=[ (0x20000000, 0x2003FFFF) # Data RAM region ]) Target_esp32 = Target(controllerClass=ESPSerialDeviceControler, comPort='/dev/ttyUSB0', comSpeed='115200', defaultLoadAddr=(0x40000000 - 0x400), validAddrRanges=[ (0x3FFAE000, 0x3FFFFFFF) # Internal SRAM 1 + Internal SRAM 2 ]) Targets = { 'nrf52840' : Target_nrf52840, 'esp32' : Target_esp32 } def main(): try: class CustomArgumentParser(argparse.ArgumentParser): def error(self, message): raise _UsageError(message) argParser = CustomArgumentParser(description='Tool for factory provisioning of devices running OpenWeave firmware.') argParser.add_argument('--target', metavar='<string>', help='Target device type. Choices are: %s' % (', '.join(Targets.keys()))) argParser.add_argument('--load-addr', metavar='<hex-string>', help='Address in device memory at which provisioning data will be written.', type=functools.partial(_parseIntArg, min=0, max=0xFFFFFFFF, argDesc='provisioning data address')) argParser.add_argument('--verbose', '-v', action='count', help='Adjust output verbosity level. Use multiple arguments to increase verbosity.') ProvisioningData.addArguments(argParser) JLinkDeviceControler.addArguments(argParser) ESPSerialDeviceControler.addArguments(argParser) argParser.add_argument('--prov-csv-file', metavar='<file-name>', help='Read device provisioning data from a provisioning CSV file.') argParser.add_argument('--prov-server', metavar='<url>', help='Read device provisioning data from a provisioning server.') argParser.add_argument('--disable-server-validation', action='store_true', help='When using HTTPS, disable validation of the certificate presented by the provisioning server.') argValues = argParser.parse_args() if argValues.target == None: raise _UsageError('Please specify a target device type using the --target argument.') if argValues.target not in Targets: raise _UsageError('Unrecognized target device type: %s\nValid device types are: %s' % (argValues.target, ', '.join(Targets.keys()))) if argValues.verbose != None: global _verbosity _verbosity = argValues.verbose #
<= 0) m.c1972 = Constraint(expr= m.x1971 - m.b3020 <= 0) m.c1973 = Constraint(expr= m.x1972 - m.b3020 <= 0) m.c1974 = Constraint(expr= m.x1973 - m.b3020 <= 0) m.c1975 = Constraint(expr= m.x1974 - m.b3020 <= 0) m.c1976 = Constraint(expr= m.x1975 - m.b3020 <= 0) m.c1977 = Constraint(expr= m.x1976 - m.b3020 <= 0) m.c1978 = Constraint(expr= m.x1977 - m.b3020 <= 0) m.c1979 = Constraint(expr= m.x1978 - m.b3020 <= 0) m.c1980 = Constraint(expr= m.x1979 - m.b3020 <= 0) m.c1981 = Constraint(expr= m.x1980 - m.b3020 <= 0) m.c1982 = Constraint(expr= m.x1981 - m.b3020 <= 0) m.c1983 = Constraint(expr= m.x1982 - m.b3020 <= 0) m.c1984 = Constraint(expr= m.x1983 - m.b3020 <= 0) m.c1985 = Constraint(expr= m.x1984 - m.b3020 <= 0) m.c1986 = Constraint(expr= m.x1985 - m.b3020 <= 0) m.c1987 = Constraint(expr= m.x1986 - m.b3020 <= 0) m.c1988 = Constraint(expr= m.x1987 - m.b3020 <= 0) m.c1989 = Constraint(expr= m.x1988 - m.b3020 <= 0) m.c1990 = Constraint(expr= m.x1989 - m.b3020 <= 0) m.c1991 = Constraint(expr= m.x1990 - m.b3020 <= 0) m.c1992 = Constraint(expr= m.x1991 - m.b3020 <= 0) m.c1993 = Constraint(expr= m.x1992 - m.b3020 <= 0) m.c1994 = Constraint(expr= m.x1993 - m.b3020 <= 0) m.c1995 = Constraint(expr= m.x1994 - m.b3020 <= 0) m.c1996 = Constraint(expr= m.x1995 - m.b3020 <= 0) m.c1997 = Constraint(expr= m.x1996 - m.b3020 <= 0) m.c1998 = Constraint(expr= m.x1997 - m.b3020 <= 0) m.c1999 = Constraint(expr= m.x1998 - m.b3020 <= 0) m.c2000 = Constraint(expr= m.x1999 - m.b3020 <= 0) m.c2001 = Constraint(expr= m.x2000 - m.b3020 <= 0) m.c2002 = Constraint(expr= m.x2001 - m.b3021 <= 0) m.c2003 = Constraint(expr= m.x2002 - m.b3021 <= 0) m.c2004 = Constraint(expr= m.x2003 - m.b3021 <= 0) m.c2005 = Constraint(expr= m.x2004 - m.b3021 <= 0) m.c2006 = Constraint(expr= m.x2005 - m.b3021 <= 0) m.c2007 = Constraint(expr= m.x2006 - m.b3021 <= 0) m.c2008 = Constraint(expr= m.x2007 - m.b3021 <= 0) m.c2009 = Constraint(expr= m.x2008 - m.b3021 <= 0) m.c2010 = Constraint(expr= m.x2009 - m.b3021 <= 0) m.c2011 = Constraint(expr= m.x2010 - m.b3021 <= 0) m.c2012 = Constraint(expr= m.x2011 - m.b3021 <= 0) m.c2013 = Constraint(expr= m.x2012 - m.b3021 <= 0) m.c2014 = Constraint(expr= m.x2013 - m.b3021 <= 0) m.c2015 = Constraint(expr= m.x2014 - m.b3021 <= 0) m.c2016 = Constraint(expr= m.x2015 - m.b3021 <= 0) m.c2017 = Constraint(expr= m.x2016 - m.b3021 <= 0) m.c2018 = Constraint(expr= m.x2017 - m.b3021 <= 0) m.c2019 = Constraint(expr= m.x2018 - m.b3021 <= 0) m.c2020 = Constraint(expr= m.x2019 - m.b3021 <= 0) m.c2021 = Constraint(expr= m.x2020 - m.b3021 <= 0) m.c2022 = Constraint(expr= m.x2021 - m.b3021 <= 0) m.c2023 = Constraint(expr= m.x2022 - m.b3021 <= 0) m.c2024 = Constraint(expr= m.x2023 - m.b3021 <= 0) m.c2025 = Constraint(expr= m.x2024 - m.b3021 <= 0) m.c2026 = Constraint(expr= m.x2025 - m.b3021 <= 0) m.c2027 = Constraint(expr= m.x2026 - m.b3021 <= 0) m.c2028 = Constraint(expr= m.x2027 - m.b3021 <= 0) m.c2029 = Constraint(expr= m.x2028 - m.b3021 <= 0) m.c2030 = Constraint(expr= m.x2029 - m.b3021 <= 0) m.c2031 = Constraint(expr= m.x2030 - m.b3021 <= 0) m.c2032 = Constraint(expr= m.x2031 - m.b3021 <= 0) m.c2033 = Constraint(expr= m.x2032 - m.b3021 <= 0) m.c2034 = Constraint(expr= m.x2033 - m.b3021 <= 0) m.c2035 = Constraint(expr= m.x2034 - m.b3021 <= 0) m.c2036 = Constraint(expr= m.x2035 - m.b3021 <= 0) m.c2037 = Constraint(expr= m.x2036 - m.b3021 <= 0) m.c2038 = Constraint(expr= m.x2037 - m.b3021 <= 0) m.c2039 = Constraint(expr= m.x2038 - m.b3021 <= 0) m.c2040 = Constraint(expr= m.x2039 - m.b3021 <= 0) m.c2041 = Constraint(expr= m.x2040 - m.b3021 <= 0) m.c2042 = Constraint(expr= m.x2041 - m.b3021 <= 0) m.c2043 = Constraint(expr= m.x2042 - m.b3021 <= 0) m.c2044 = Constraint(expr= m.x2043 - m.b3021 <= 0) m.c2045 = Constraint(expr= m.x2044 - m.b3021 <= 0) m.c2046 = Constraint(expr= m.x2045 - m.b3021 <= 0) m.c2047 = Constraint(expr= m.x2046 - m.b3021 <= 0) m.c2048 = Constraint(expr= m.x2047 - m.b3021 <= 0) m.c2049 = Constraint(expr= m.x2048 - m.b3021 <= 0) m.c2050 = Constraint(expr= m.x2049 - m.b3021 <= 0) m.c2051 = Constraint(expr= m.x2050 - m.b3021 <= 0) m.c2052 = Constraint(expr= m.x2051 - m.b3021 <= 0) m.c2053 = Constraint(expr= m.x2052 - m.b3021 <= 0) m.c2054 = Constraint(expr= m.x2053 - m.b3021 <= 0) m.c2055 = Constraint(expr= m.x2054 - m.b3021 <= 0) m.c2056 = Constraint(expr= m.x2055 - m.b3021 <= 0) m.c2057 = Constraint(expr= m.x2056 - m.b3021 <= 0) m.c2058 = Constraint(expr= m.x2057 - m.b3021 <= 0) m.c2059 = Constraint(expr= m.x2058 - m.b3021 <= 0) m.c2060 = Constraint(expr= m.x2059 - m.b3021 <= 0) m.c2061 = Constraint(expr= m.x2060 - m.b3021 <= 0) m.c2062 = Constraint(expr= m.x2061 - m.b3021 <= 0) m.c2063 = Constraint(expr= m.x2062 - m.b3021 <= 0) m.c2064 = Constraint(expr= m.x2063 - m.b3021 <= 0) m.c2065 = Constraint(expr= m.x2064 - m.b3021 <= 0) m.c2066 = Constraint(expr= m.x2065 - m.b3021 <= 0) m.c2067 = Constraint(expr= m.x2066 - m.b3021 <= 0) m.c2068 = Constraint(expr= m.x2067 - m.b3021 <= 0) m.c2069 = Constraint(expr= m.x2068 - m.b3021 <= 0) m.c2070 = Constraint(expr= m.x2069 - m.b3021 <= 0) m.c2071 = Constraint(expr= m.x2070 - m.b3021 <= 0) m.c2072 = Constraint(expr= m.x2071 - m.b3021 <= 0) m.c2073 = Constraint(expr= m.x2072 - m.b3021 <= 0) m.c2074 = Constraint(expr= m.x2073 - m.b3021 <= 0) m.c2075 = Constraint(expr= m.x2074 - m.b3021 <= 0) m.c2076 = Constraint(expr= m.x2075 - m.b3021 <= 0) m.c2077 = Constraint(expr= m.x2076 - m.b3021 <= 0) m.c2078 = Constraint(expr= m.x2077 - m.b3021 <= 0) m.c2079 = Constraint(expr= m.x2078 - m.b3021 <= 0) m.c2080 = Constraint(expr= m.x2079 - m.b3021 <= 0) m.c2081 = Constraint(expr= m.x2080 - m.b3021 <= 0) m.c2082 = Constraint(expr= m.x2081 - m.b3021 <= 0) m.c2083 = Constraint(expr= m.x2082 - m.b3021 <= 0) m.c2084 = Constraint(expr= m.x2083 - m.b3021 <= 0) m.c2085 = Constraint(expr= m.x2084 - m.b3021 <= 0) m.c2086 = Constraint(expr= m.x2085 - m.b3021 <= 0) m.c2087 = Constraint(expr= m.x2086 - m.b3021 <= 0) m.c2088 = Constraint(expr= m.x2087 - m.b3021 <= 0) m.c2089 = Constraint(expr= m.x2088 - m.b3021 <= 0) m.c2090 = Constraint(expr= m.x2089 - m.b3021 <= 0) m.c2091 = Constraint(expr= m.x2090 - m.b3021 <= 0) m.c2092 = Constraint(expr= m.x2091 - m.b3021 <= 0) m.c2093 = Constraint(expr= m.x2092 - m.b3021 <= 0) m.c2094 = Constraint(expr= m.x2093 - m.b3021 <= 0) m.c2095 = Constraint(expr= m.x2094 - m.b3021 <= 0) m.c2096 = Constraint(expr= m.x2095 - m.b3021 <= 0) m.c2097 = Constraint(expr= m.x2096 - m.b3021 <= 0) m.c2098 = Constraint(expr= m.x2097 - m.b3021 <= 0) m.c2099 = Constraint(expr= m.x2098 - m.b3021 <= 0) m.c2100 = Constraint(expr= m.x2099 - m.b3021 <= 0) m.c2101 = Constraint(expr= m.x2100 - m.b3021 <= 0) m.c2102 = Constraint(expr= m.x2101 - m.b3022 <= 0) m.c2103 = Constraint(expr= m.x2102 - m.b3022 <= 0) m.c2104 = Constraint(expr= m.x2103 - m.b3022 <= 0) m.c2105 = Constraint(expr= m.x2104 - m.b3022 <= 0) m.c2106 = Constraint(expr= m.x2105 - m.b3022 <= 0) m.c2107 = Constraint(expr= m.x2106 - m.b3022 <= 0) m.c2108 = Constraint(expr= m.x2107 - m.b3022 <= 0) m.c2109 = Constraint(expr= m.x2108 - m.b3022 <= 0) m.c2110 = Constraint(expr= m.x2109 - m.b3022 <= 0) m.c2111 = Constraint(expr= m.x2110 - m.b3022 <= 0) m.c2112 = Constraint(expr= m.x2111 - m.b3022 <= 0) m.c2113 = Constraint(expr= m.x2112 - m.b3022 <= 0) m.c2114 = Constraint(expr= m.x2113 - m.b3022 <= 0) m.c2115 = Constraint(expr= m.x2114 - m.b3022 <= 0) m.c2116 = Constraint(expr= m.x2115 - m.b3022 <= 0) m.c2117 = Constraint(expr= m.x2116 - m.b3022 <= 0) m.c2118 = Constraint(expr= m.x2117 - m.b3022 <= 0) m.c2119 = Constraint(expr= m.x2118 - m.b3022 <= 0) m.c2120 = Constraint(expr= m.x2119 - m.b3022 <= 0) m.c2121 = Constraint(expr= m.x2120 - m.b3022 <= 0) m.c2122 = Constraint(expr= m.x2121 - m.b3022 <= 0) m.c2123 = Constraint(expr= m.x2122 - m.b3022 <= 0) m.c2124 = Constraint(expr= m.x2123 - m.b3022 <= 0) m.c2125 = Constraint(expr= m.x2124 - m.b3022 <= 0) m.c2126 = Constraint(expr= m.x2125 - m.b3022 <= 0) m.c2127 = Constraint(expr= m.x2126 - m.b3022 <= 0) m.c2128 = Constraint(expr= m.x2127 - m.b3022 <= 0) m.c2129 = Constraint(expr= m.x2128 - m.b3022 <= 0) m.c2130 = Constraint(expr= m.x2129 - m.b3022 <= 0) m.c2131 = Constraint(expr= m.x2130 - m.b3022 <= 0) m.c2132 = Constraint(expr= m.x2131 - m.b3022 <= 0) m.c2133 = Constraint(expr= m.x2132 - m.b3022 <= 0) m.c2134 = Constraint(expr= m.x2133 - m.b3022 <= 0) m.c2135 = Constraint(expr= m.x2134 - m.b3022 <= 0) m.c2136 = Constraint(expr= m.x2135 - m.b3022 <= 0) m.c2137 = Constraint(expr= m.x2136 - m.b3022 <= 0) m.c2138 = Constraint(expr= m.x2137 - m.b3022 <= 0) m.c2139 = Constraint(expr= m.x2138 - m.b3022 <= 0) m.c2140 = Constraint(expr= m.x2139 - m.b3022 <= 0) m.c2141 = Constraint(expr= m.x2140 - m.b3022 <= 0) m.c2142 = Constraint(expr= m.x2141 - m.b3022 <= 0) m.c2143 = Constraint(expr= m.x2142 - m.b3022 <= 0) m.c2144 = Constraint(expr= m.x2143 - m.b3022 <= 0) m.c2145 = Constraint(expr= m.x2144 - m.b3022 <= 0) m.c2146 = Constraint(expr= m.x2145 - m.b3022 <= 0) m.c2147 = Constraint(expr= m.x2146 - m.b3022 <= 0) m.c2148 = Constraint(expr= m.x2147 - m.b3022 <= 0) m.c2149 = Constraint(expr= m.x2148 - m.b3022 <= 0) m.c2150 = Constraint(expr= m.x2149 - m.b3022 <= 0) m.c2151 = Constraint(expr= m.x2150 - m.b3022 <= 0) m.c2152 = Constraint(expr= m.x2151 - m.b3022 <= 0) m.c2153 = Constraint(expr= m.x2152 - m.b3022 <= 0) m.c2154 = Constraint(expr= m.x2153 -
], 1 , 1 , 4 , 0 , 92 , (3, 0, None, None) , 0 , )), (( 'RemoveHalftone' , ), 22, (22, (), [ ], 1 , 1 , 4 , 0 , 96 , (3, 0, None, None) , 0 , )), (( 'SmoothCharacters' , 'Type' , ), 23, (23, (), [ (3, 1, None, None) , ], 1 , 1 , 4 , 0 , 100 , (3, 0, None, None) , 0 , )), (( 'CleanNoise' , 'NoiseSize' , ), 24, (24, (), [ (3, 1, None, None) , ], 1 , 1 , 4 , 0 , 104 , (3, 0, None, None) , 0 , )), (( 'AutoInvertImage' , 'Threshold' , ), 25, (25, (), [ (3, 1, None, None) , ], 1 , 1 , 4 , 0 , 108 , (3, 0, None, None) , 0 , )), (( 'AutoInvertBlocks' , 'MinWidth' , 'MinHeight' , ), 26, (26, (), [ (3, 1, None, None) , (3, 1, None, None) , ], 1 , 1 , 4 , 0 , 112 , (3, 0, None, None) , 1088 , )), (( 'ReconstructLines' , 'Direction' , ), 29, (29, (), [ (3, 1, None, None) , ], 1 , 1 , 4 , 0 , 116 , (3, 0, None, None) , 0 , )), (( 'AutoCrop' , 'NewLeftMargin' , 'NewTopMargin' , 'NewRightMargin' , 'NewBottomMargin' , ), 30, (30, (), [ (3, 1, None, None) , (3, 1, None, None) , (3, 1, None, None) , (3, 1, None, None) , ], 1 , 1 , 4 , 0 , 120 , (3, 0, None, None) , 0 , )), (( 'AutoRegister' , 'NewLeftMargin' , 'NewTopMargin' , ), 31, (31, (), [ (3, 1, None, None) , (3, 1, None, None) , ], 1 , 1 , 4 , 0 , 124 , (3, 0, None, None) , 0 , )), (( 'DeleteLines' , 'Direction' , 'bRepair' , ), 40, (40, (), [ (3, 1, None, None) , (3, 49, '65535', None) , ], 1 , 1 , 4 , 0 , 128 , (3, 0, None, None) , 0 , )), (( 'BorderExtract' , 'Flags' , 'Algorithm' , ), 41, (41, (), [ (3, 49, '3', None) , (3, 49, '2', None) , ], 1 , 1 , 4 , 0 , 132 , (3, 0, None, None) , 0 , )), (( 'ClearBackground' , 'ThrLevel' , ), 42, (42, (), [ (5, 49, '30.0', None) , ], 1 , 1 , 4 , 0 , 136 , (3, 0, None, None) , 0 , )), (( 'Resize' , 'PageSize' , 'PageOrientation' , 'ImageAlignment' , 'Width' , 'Height' , 'Unit' , ), 43, (43, (), [ (3, 1, None, None) , (3, 49, '0', None) , (3, 49, '0', None) , (5, 49, '8.5', None) , (5, 49, '11.0', None) , (3, 49, '1', None) , ], 1 , 1 , 4 , 0 , 140 , (3, 0, None, None) , 0 , )), (( 'IsBlankImage' , 'reserved0' , 'reserved1' , 'reserved2' , 'pVal' , ), 44, (44, (), [ (3, 49, '0', None) , (5, 49, '0.0', None) , (5, 49, '0.0', None) , (16387, 10, None, None) , ], 1 , 1 , 4 , 0 , 144 , (3, 0, None, None) , 0 , )), (( 'cx2l' , 'i' , 'pVal' , ), 45, (45, (), [ (3, 1, None, None) , (16387, 10, None, None) , ], 1 , 2 , 4 , 0 , 148 , (3, 0, None, None) , 1088 , )), (( 'cx2l' , 'i' , 'pVal' , ), 45, (45, (), [ (3, 1, None, None) , (3, 1, None, None) , ], 1 , 4 , 4 , 0 , 152 , (3, 0, None, None) , 1088 , )), (( 'cx3d' , 'i' , 'pVal' , ), 46, (46, (), [ (3, 1, None, None) , (16389, 10, None, None) , ], 1 , 2 , 4 , 0 , 156 , (3, 0, None, None) , 1088 , )), (( 'cx3d' , 'i' , 'pVal' , ), 46, (46, (), [ (3, 1, None, None) , (5, 1, None, None) , ], 1 , 4 , 4 , 0 , 160 , (3, 0, None, None) , 1088 , )), (( 'AdvancedBinarize' , 'targetDpi' , 'reserved1' , 'reserved2' , ), 47, (47, (), [ (3, 49, '0', None) , (5, 49, '0.0', None) , (5, 49, '0.0', None) , ], 1 , 1 , 4 , 0 , 164 , (3, 0, None, None) , 0 , )), (( 'MinimizeBitsPerPixel' , 'reserved1' , 'reserved2' , ), 48, (48, (), [ (5, 49, '0.0', None) , (5, 49, '0.0', None) , ], 1 , 1 , 4 , 0 , 168 , (3, 0, None, None) , 1088 , )), (( 'CleanNoiseExt' , 'Flags' , 'maxNoiseSizeHorz' , 'maxNoiseSizeVert' , 'minObjectDistance' , 'reserved0' , ), 50, (50, (), [ (3, 1, None, None) , (3, 1, None, None) , (3, 1, None, None) , (3, 1, None, None) , (3, 1, None, None) , ], 1 , 1 , 4 , 0 , 172 , (3, 0, None, None) , 0 , )), (( 'o' , 'pVal' , ), 51, (51, (), [ (16387, 10, None, None) , ], 1 , 2 , 4 , 0 , 176 , (3, 0, None, None) , 1088 , )), (( 'o' , 'pVal' , ), 51, (51, (), [ (3, 1, None, None) , ], 1 , 4 , 4 , 0 , 180 , (3, 0, None, None) , 1088 , )), ] ICiServer_vtables_dispatch_ = 1 ICiServer_vtables_ = [ (( 'CreateImage' , 'ppInt' , ), 1, (1, (), [ (16393, 10, None, "IID('{F2BCF189-0B27-11D4-B5F5-9CC767000000}')") , ], 1 , 1 , 4 , 0 , 28 , (3, 0, None, None) , 0 , )), (( 'CreateBarcodePro' , 'ppInt' , ), 2, (2, (), [ (16393, 10, None, "IID('{BDDB0244-0CFD-11D4-B5F8-B89D57000000}')") , ], 1 , 1 , 4 , 0 , 32 , (3, 0, None, None) , 0 , )), (( 'OpenExt' , 'hModule' , 'MasterId' , 'pParam' , ), 10, (10, (), [ (3, 1, None, None) , (3, 1, None, None) , (3, 1, None, None) , ], 1 , 1 , 4 , 0 , 36 , (3, 0, None, None) , 0 , )), (( 'CreateRect' , 'left' , 'top' , 'right' , 'bottom' , 'ppInt' , ), 11, (11, (), [ (3, 49, '0', None) , (3, 49, '0', None) , (3, 49, '0', None) , (3, 49, '0', None) , (16393, 10, None, "IID('{4ED88244-0BE1-11D4-B5F6-009FC6000000}')") , ], 1 , 1 , 4 , 0 , 40 , (3, 0, None, None) , 0 , )), (( 'VerMajor' , 'pVal' , ), 12, (12, (), [ (16387, 10, None, None) , ], 1 , 2 , 4 , 0 , 44 , (3, 0, None, None) , 0 , )), (( 'VerMinor' , 'pVal' , ), 13, (13, (), [ (16387, 10, None, None) , ], 1 , 2 , 4 , 0 , 48 , (3, 0, None, None) , 0 , )), (( 'VerRelease' , 'pVal' , ), 14, (14, (), [ (16387, 10, None, None) , ], 1 , 2 , 4 , 0 , 52 , (3, 0, None, None) , 0 , )), (( 'CreateRepair' , 'ppInt' , ), 5, (5, (), [ (16393, 10, None, "IID('{63F6480C-997E-4FDE-AD63-A24E5F0FFDC7}')") , ], 1 , 1 , 4 , 0 , 56 , (3, 0, None, None) , 0 , )), (( 'CreateTools' , 'ppInt' , ), 6, (6, (), [ (16393, 10, None, "IID('{316BC128-8995-471D-985D-B3E68E87C084}')") , ], 1 , 1 , 4 , 0 , 60 , (3, 0, None, None) , 0
<reponame>nakedible/vpnease-l2tp from testbase import PersistTest import testbase import unittest, sys, datetime import sqlalchemy.databases.sqlite as sqllite import tables from sqlalchemy import * from sqlalchemy.engine import ResultProxy, RowProxy from sqlalchemy import exceptions class QueryTest(PersistTest): def setUpAll(self): global users, addresses, metadata metadata = BoundMetaData(testbase.db) users = Table('query_users', metadata, Column('user_id', INT, primary_key = True), Column('user_name', VARCHAR(20)), ) addresses = Table('query_addresses', metadata, Column('address_id', Integer, primary_key=True), Column('user_id', Integer, ForeignKey('query_users.user_id')), Column('address', String(30))) metadata.create_all() def setUp(self): self.users = users def tearDown(self): self.users.delete().execute() def tearDownAll(self): metadata.drop_all() def testinsert(self): self.users.insert().execute(user_id = 7, user_name = 'jack') print repr(self.users.select().execute().fetchall()) def testupdate(self): self.users.insert().execute(user_id = 7, user_name = 'jack') print repr(self.users.select().execute().fetchall()) self.users.update(self.users.c.user_id == 7).execute(user_name = 'fred') print repr(self.users.select().execute().fetchall()) def testrowiteration(self): self.users.insert().execute(user_id = 7, user_name = 'jack') self.users.insert().execute(user_id = 8, user_name = 'ed') self.users.insert().execute(user_id = 9, user_name = 'fred') r = self.users.select().execute() l = [] for row in r: l.append(row) self.assert_(len(l) == 3) def test_compiled_execute(self): s = select([self.users], self.users.c.user_id==bindparam('id')).compile() c = testbase.db.connect() print repr(c.execute(s, id=7).fetchall()) def test_global_metadata(self): t1 = Table('table1', Column('col1', Integer, primary_key=True), Column('col2', String(20))) t2 = Table('table2', Column('col1', Integer, primary_key=True), Column('col2', String(20))) assert t1.c.col1 global_connect(testbase.db) default_metadata.create_all() try: assert t1.count().scalar() == 0 finally: default_metadata.drop_all() default_metadata.clear() @testbase.supported('postgres') def testpassiveoverride(self): """primarily for postgres, tests that when we get a primary key column back from reflecting a table which has a default value on it, we pre-execute that PassiveDefault upon insert, even though PassiveDefault says "let the database execute this", because in postgres we must have all the primary key values in memory before insert; otherwise we cant locate the just inserted row.""" try: meta = BoundMetaData(testbase.db) testbase.db.execute(""" CREATE TABLE speedy_users ( speedy_user_id SERIAL PRIMARY KEY, user_name VARCHAR NOT NULL, user_password VARCHAR NOT NULL ); """, None) t = Table("speedy_users", meta, autoload=True) t.insert().execute(user_name='user', user_password='<PASSWORD>') l = t.select().execute().fetchall() self.assert_(l == [(1, 'user', 'lala')]) finally: testbase.db.execute("drop table speedy_users", None) @testbase.supported('postgres') def testschema(self): meta1 = BoundMetaData(testbase.db) test_table = Table('my_table', meta1, Column('id', Integer, primary_key=True), Column('data', String(20), nullable=False), schema='alt_schema' ) test_table.create() try: # plain insert test_table.insert().execute(data='test') meta2 = BoundMetaData(testbase.db) test_table = Table('my_table', meta2, autoload=True, schema='alt_schema') test_table.insert().execute(data='test') finally: test_table.drop() def test_repeated_bindparams(self): """test that a BindParam can be used more than once. this should be run for dbs with both positional and named paramstyles.""" self.users.insert().execute(user_id = 7, user_name = 'jack') self.users.insert().execute(user_id = 8, user_name = 'fred') u = bindparam('uid') s = self.users.select(or_(self.users.c.user_name==u, self.users.c.user_name==u)) r = s.execute(uid='fred').fetchall() assert len(r) == 1 def test_bindparam_shortname(self): """test the 'shortname' field on BindParamClause.""" self.users.insert().execute(user_id = 7, user_name = 'jack') self.users.insert().execute(user_id = 8, user_name = 'fred') u = bindparam('uid', shortname='someshortname') s = self.users.select(self.users.c.user_name==u) r = s.execute(someshortname='fred').fetchall() assert len(r) == 1 def testdelete(self): self.users.insert().execute(user_id = 7, user_name = 'jack') self.users.insert().execute(user_id = 8, user_name = 'fred') print repr(self.users.select().execute().fetchall()) self.users.delete(self.users.c.user_name == 'fred').execute() print repr(self.users.select().execute().fetchall()) def testselectlimit(self): self.users.insert().execute(user_id=1, user_name='john') self.users.insert().execute(user_id=2, user_name='jack') self.users.insert().execute(user_id=3, user_name='ed') self.users.insert().execute(user_id=4, user_name='wendy') self.users.insert().execute(user_id=5, user_name='laura') self.users.insert().execute(user_id=6, user_name='ralph') self.users.insert().execute(user_id=7, user_name='fido') r = self.users.select(limit=3, order_by=[self.users.c.user_id]).execute().fetchall() self.assert_(r == [(1, 'john'), (2, 'jack'), (3, 'ed')], repr(r)) @testbase.unsupported('mssql') def testselectlimitoffset(self): self.users.insert().execute(user_id=1, user_name='john') self.users.insert().execute(user_id=2, user_name='jack') self.users.insert().execute(user_id=3, user_name='ed') self.users.insert().execute(user_id=4, user_name='wendy') self.users.insert().execute(user_id=5, user_name='laura') self.users.insert().execute(user_id=6, user_name='ralph') self.users.insert().execute(user_id=7, user_name='fido') r = self.users.select(limit=3, offset=2, order_by=[self.users.c.user_id]).execute().fetchall() self.assert_(r==[(3, 'ed'), (4, 'wendy'), (5, 'laura')]) r = self.users.select(offset=5, order_by=[self.users.c.user_id]).execute().fetchall() self.assert_(r==[(6, 'ralph'), (7, 'fido')]) @testbase.supported('mssql') def testselectlimitoffset_mssql(self): try: r = self.users.select(limit=3, offset=2, order_by=[self.users.c.user_id]).execute().fetchall() assert False # InvalidRequestError should have been raised except exceptions.InvalidRequestError: pass @testbase.unsupported('mysql') def test_scalar_select(self): """test that scalar subqueries with labels get their type propigated to the result set.""" # mysql and/or mysqldb has a bug here, type isnt propigated for scalar subquery. datetable = Table('datetable', metadata, Column('id', Integer, primary_key=True), Column('today', DateTime)) datetable.create() try: datetable.insert().execute(id=1, today=datetime.datetime(2006, 5, 12, 12, 0, 0)) s = select([datetable.alias('x').c.today], scalar=True) s2 = select([datetable.c.id, s.label('somelabel')]) #print s2.c.somelabel.type assert isinstance(s2.execute().fetchone()['somelabel'], datetime.datetime) finally: datetable.drop() def test_column_accessor(self): self.users.insert().execute(user_id=1, user_name='john') self.users.insert().execute(user_id=2, user_name='jack') r = self.users.select(self.users.c.user_id==2).execute().fetchone() self.assert_(r.user_id == r['user_id'] == r[self.users.c.user_id] == 2) self.assert_(r.user_name == r['user_name'] == r[self.users.c.user_name] == 'jack') def test_keys(self): self.users.insert().execute(user_id=1, user_name='foo') r = self.users.select().execute().fetchone() self.assertEqual(r.keys(), ['user_id', 'user_name']) def test_items(self): self.users.insert().execute(user_id=1, user_name='foo') r = self.users.select().execute().fetchone() self.assertEqual(r.items(), [('user_id', 1), ('user_name', 'foo')]) def test_len(self): self.users.insert().execute(user_id=1, user_name='foo') r = self.users.select().execute().fetchone() self.assertEqual(len(r), 2) r.close() r = testbase.db.execute('select user_name, user_id from query_users', {}).fetchone() self.assertEqual(len(r), 2) r.close() r = testbase.db.execute('select user_name from query_users', {}).fetchone() self.assertEqual(len(r), 1) r.close() def test_cant_execute_join(self): try: users.join(addresses).execute() except exceptions.ArgumentError, e: assert str(e) == """Not an executeable clause: query_users JOIN query_addresses ON query_users.user_id = query_addresses.user_id""" def test_functions(self): x = testbase.db.func.current_date().execute().scalar() y = testbase.db.func.current_date().select().execute().scalar() z = testbase.db.func.current_date().scalar() assert x == y == z def test_conn_functions(self): conn = testbase.db.connect() try: x = conn.execute(func.current_date()).scalar() y = conn.execute(func.current_date().select()).scalar() z = conn.scalar(func.current_date()) finally: conn.close() assert x == y == z def test_update_functions(self): """test sending functions and SQL expressions to the VALUES and SET clauses of INSERT/UPDATE instances, and that column-level defaults get overridden""" meta = BoundMetaData(testbase.db) t = Table('t1', meta, Column('id', Integer, primary_key=True), Column('value', Integer) ) t2 = Table('t2', meta, Column('id', Integer, primary_key=True), Column('value', Integer, default="7"), Column('stuff', String(20), onupdate="thisisstuff") ) meta.create_all() try: t.insert().execute(value=func.length("one")) assert t.select().execute().fetchone()['value'] == 3 t.update().execute(value=func.length("asfda")) assert t.select().execute().fetchone()['value'] == 5 r = t.insert(values=dict(value=func.length("sfsaafsda"))).execute() id = r.last_inserted_ids()[0] assert t.select(t.c.id==id).execute().fetchone()['value'] == 9 t.update(values={t.c.value:func.length("asdf")}).execute() assert t.select().execute().fetchone()['value'] == 4 t2.insert().execute() t2.insert().execute(value=func.length("one")) t2.insert().execute(value=func.length("asfda") + -19, stuff="hi") assert select([t2.c.value, t2.c.stuff]).execute().fetchall() == [(7,None), (3,None), (-14,"hi")] t2.update().execute(value=func.length("asdsafasd"), stuff="some stuff") assert select([t2.c.value, t2.c.stuff]).execute().fetchall() == [(9,"some stuff"), (9,"some stuff"), (9,"some stuff")] t2.delete().execute() t2.insert(values=dict(value=func.length("one") + 8)).execute() assert t2.select().execute().fetchone()['value'] == 11 t2.update(values=dict(value=func.length("asfda"))).execute() assert select([t2.c.value, t2.c.stuff]).execute().fetchone() == (5, "thisisstuff") t2.update(values={t2.c.value:func.length("asfdaasdf"), t2.c.stuff:"foo"}).execute() print "HI", select([t2.c.value, t2.c.stuff]).execute().fetchone() assert select([t2.c.value, t2.c.stuff]).execute().fetchone() == (9, "foo") finally: meta.drop_all() @testbase.supported('postgres') def test_functions_with_cols(self): x = testbase.db.func.current_date().execute().scalar() y = testbase.db.func.current_date().select().execute().scalar() z = testbase.db.func.current_date().scalar() w = select(['*'], from_obj=[testbase.db.func.current_date()]).scalar() # construct a column-based FROM object out of a function, like in [ticket:172] s = select([column('date', type=DateTime)], from_obj=[testbase.db.func.current_date()]) q = s.execute().fetchone()[s.c.date] r = s.alias('datequery').select().scalar() assert x == y == z == w == q == r def test_column_order_with_simple_query(self): # should return values in column definition order self.users.insert().execute(user_id=1, user_name='foo') r = self.users.select(self.users.c.user_id==1).execute().fetchone() self.assertEqual(r[0], 1) self.assertEqual(r[1], 'foo') self.assertEqual(r.keys(), ['user_id', 'user_name']) self.assertEqual(r.values(), [1, 'foo']) def test_column_order_with_text_query(self): # should return values in query order self.users.insert().execute(user_id=1, user_name='foo') r = testbase.db.execute('select user_name, user_id from query_users', {}).fetchone() self.assertEqual(r[0], 'foo') self.assertEqual(r[1], 1) self.assertEqual(r.keys(), ['user_name', 'user_id']) self.assertEqual(r.values(), ['foo', 1]) @testbase.unsupported('oracle', 'firebird') def test_column_accessor_shadow(self): meta = BoundMetaData(testbase.db) shadowed = Table('test_shadowed', meta, Column('shadow_id', INT, primary_key = True), Column('shadow_name', VARCHAR(20)), Column('parent', VARCHAR(20)), Column('row', VARCHAR(40)), Column('__parent', VARCHAR(20)), Column('__row', VARCHAR(20)), ) shadowed.create() try: shadowed.insert().execute(shadow_id=1, shadow_name='The Shadow', parent='The Light', row='Without light there is no shadow', __parent='Hidden parent', __row='Hidden row') r = shadowed.select(shadowed.c.shadow_id==1).execute().fetchone() self.assert_(r.shadow_id == r['shadow_id'] == r[shadowed.c.shadow_id] == 1) self.assert_(r.shadow_name == r['shadow_name'] == r[shadowed.c.shadow_name] == 'The Shadow') self.assert_(r.parent == r['parent'] == r[shadowed.c.parent] == 'The Light') self.assert_(r.row == r['row'] == r[shadowed.c.row] == 'Without light there is no shadow') self.assert_(r['__parent'] == 'Hidden parent') self.assert_(r['__row'] == 'Hidden row') try: print r.__parent, r.__row self.fail('Should not allow access to private attributes') except AttributeError: pass # expected r.close() finally: shadowed.drop() class CompoundTest(PersistTest): """test compound statements like UNION, INTERSECT, particularly their ability to nest on different databases.""" def setUpAll(self): global metadata, t1, t2, t3 metadata = BoundMetaData(testbase.db) t1 = Table('t1', metadata, Column('col1', Integer, primary_key=True), Column('col2', String(30)), Column('col3', String(40)), Column('col4', String(30)) ) t2 = Table('t2', metadata, Column('col1', Integer, primary_key=True), Column('col2', String(30)), Column('col3', String(40)), Column('col4', String(30))) t3 = Table('t3', metadata, Column('col1', Integer, primary_key=True), Column('col2', String(30)), Column('col3', String(40)), Column('col4', String(30))) metadata.create_all() t1.insert().execute([ dict(col2="t1col2r1", col3="aaa", col4="aaa"), dict(col2="t1col2r2", col3="bbb", col4="bbb"), dict(col2="t1col2r3", col3="ccc", col4="ccc"), ]) t2.insert().execute([ dict(col2="t2col2r1", col3="aaa", col4="bbb"), dict(col2="t2col2r2", col3="bbb", col4="ccc"), dict(col2="t2col2r3", col3="ccc", col4="aaa"), ]) t3.insert().execute([ dict(col2="t3col2r1", col3="aaa", col4="ccc"), dict(col2="t3col2r2", col3="bbb", col4="aaa"), dict(col2="t3col2r3", col3="ccc", col4="bbb"), ]) def tearDownAll(self): metadata.drop_all() def test_union(self): (s1, s2) = ( select([t1.c.col3, t1.c.col4], t1.c.col2.in_("t1col2r1", "t1col2r2")), select([t2.c.col3, t2.c.col4], t2.c.col2.in_("t2col2r2", "t2col2r3")) ) u = union(s1, s2) assert u.execute().fetchall() == [('aaa', 'aaa'), ('bbb', 'bbb'), ('bbb', 'ccc'), ('ccc', 'aaa')] assert u.alias('bar').select().execute().fetchall() == [('aaa', 'aaa'), ('bbb', 'bbb'), ('bbb', 'ccc'), ('ccc', 'aaa')] @testbase.unsupported('mysql') def test_intersect(self): i = intersect( select([t2.c.col3, t2.c.col4]), select([t2.c.col3, t2.c.col4], t2.c.col4==t3.c.col3) ) assert i.execute().fetchall() == [('aaa', 'bbb'), ('bbb', 'ccc'), ('ccc', 'aaa')] assert i.alias('bar').select().execute().fetchall() == [('aaa', 'bbb'), ('bbb', 'ccc'), ('ccc', 'aaa')] @testbase.unsupported('mysql') def test_except_style1(self): e = except_(union(
<filename>nutils/mesh.py # Copyright (c) 2014 Evalf # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. """ The mesh module provides mesh generators: methods that return a topology and an accompanying geometry function. Meshes can either be generated on the fly, e.g. :func:`rectilinear`, or read from external an externally prepared file, :func:`gmsh`, and converted to nutils format. Note that no mesh writers are provided at this point; output is handled by the :mod:`nutils.plot` module. """ from . import topology, function, util, element, numpy, numeric, transform, log, warnings, types, _ import os, itertools, pathlib # MESH GENERATORS @log.title def rectilinear(richshape, periodic=(), name='rect'): 'rectilinear mesh' ndims = len(richshape) shape = [] offset = [] scale = [] uniform = True for v in richshape: if numeric.isint(v): assert v > 0 shape.append(v) scale.append(1) offset.append(0) elif numpy.equal(v, numpy.linspace(v[0],v[-1],len(v))).all(): shape.append(len(v)-1) scale.append((v[-1]-v[0]) / float(len(v)-1)) offset.append(v[0]) else: shape.append(len(v)-1) uniform = False root = transform.Identifier(ndims, name) axes = [topology.DimAxis(0,n,idim in periodic) for idim, n in enumerate(shape)] topo = topology.StructuredTopology(root, axes) if uniform: if all(o == offset[0] for o in offset[1:]): offset = offset[0] if all(s == scale[0] for s in scale[1:]): scale = scale[0] geom = function.rootcoords(ndims) * scale + offset else: funcsp = topo.basis('spline', degree=1, periodic=()) coords = numeric.meshgrid(*richshape).reshape(ndims, -1) geom = (funcsp * coords).sum(-1) return topo, geom def line(nodes, periodic=False, bnames=None): if isinstance(nodes, int): uniform = True assert nodes > 0 nelems = nodes scale = 1 offset = 0 else: nelems = len(nodes)-1 scale = (nodes[-1]-nodes[0]) / nelems offset = nodes[0] uniform = numpy.equal(nodes, offset + numpy.arange(nelems+1) * scale).all() root = transform.Identifier(1, 'line') domain = topology.StructuredLine(root, 0, nelems, periodic=periodic, bnames=bnames) geom = function.rootcoords(1) * scale + offset if uniform else domain.basis('std', degree=1, periodic=False).dot(nodes) return domain, geom def newrectilinear(nodes, periodic=None, bnames=[['left','right'],['bottom','top'],['front','back']]): if periodic is None: periodic = numpy.zeros(len(nodes), dtype=bool) else: periodic = numpy.asarray(periodic) assert len(periodic) == len(nodes) and periodic.ndim == 1 and periodic.dtype == bool dims = [line(nodesi, periodici, bnamesi) for nodesi, periodici, bnamesi in zip(nodes, periodic, tuple(bnames)+(None,)*len(nodes))] domain, geom = dims.pop(0) for domaini, geomi in dims: domain = domain * domaini geom = function.concatenate(function.bifurcate(geom,geomi)) return domain, geom @log.title def multipatch(patches, nelems, patchverts=None, name='multipatch'): '''multipatch rectilinear mesh generator Generator for a :class:`~nutils.topology.MultipatchTopology` and geometry. The :class:`~nutils.topology.MultipatchTopology` consists of a set patches, where each patch is a :class:`~nutils.topology.StructuredTopology` and all patches have the same number of dimensions. The ``patches`` argument, a :class:`numpy.ndarray`-like with shape ``(npatches, 2*ndims)`` or ``(npatches,)+(2,)*ndims``, defines the connectivity by labelling the patch vertices. For example, three one-dimensional patches can be connected at one edge by:: # connectivity: 3 # │ # 1──0──2 patches=[[0,1], [0,2], [0,3]] Or two two-dimensional patches along an edge by:: # connectivity: 3──4──5 # │ │ │ # 0──1──2 patches=[[[0,3],[1,4]], [[1,4],[2,5]]] The geometry is specified by the ``patchverts`` argument: a :class:`numpy.ndarray`-like with shape ``(nverts,ngeomdims)`` specifying for each vertex a coordinate. Note that the dimension of the geometry may be higher than the dimension of the patches. The created geometry is a patch-wise linear interpolation of the vertex coordinates. If the ``patchverts`` argument is omitted the geometry describes a unit hypercube per patch. The ``nelems`` argument is either an :class:`int` defining the number of elements per patch per dimension, or a :class:`dict` with edges (a pair of vertex numbers) as keys and the number of elements (:class:`int`) as values, with key ``None`` specifying the default number of elements. Example:: # connectivity: 3─────4─────5 # │ 4x3 │ 8x3 │ # 0─────1─────2 patches=[[[0,3],[1,4]], [[1,4],[2,5]]] nelems={None: 4, (1,2): 8, (4,5): 8, (0,3): 3, (1,4): 3, (2,5): 3} Since the patches are structured topologies, the number of elements per patch per dimension should be unambiguous. In above example specifying ``nelems={None: 4, (1,2): 8}`` will raise an exception because the patch on the right has 8 elements along edge ``(1,2)`` and 4 along ``(4,5)``. Example ------- An L-shaped domain can be generated by:: # connectivity: 2──5 # │ | # 1──4─────7 y # │ │ │ │ # 0──3─────6 └──x domain, geom = mesh.multipatch( patches=[[0,1,3,4], [1,2,4,5], [3,4,6,7]], patchverts=[[0,0], [0,1], [0,2], [1,0], [1,1], [1,2], [3,0], [3,1]], nelems={None: 4, (3,6): 8, (4,7): 8}) The number of elements is chosen such that all elements in the domain have the same size. A topology and geometry describing the surface of a sphere can be generated by creating a multipatch cube surface and inflating the cube to a sphere:: # connectivity: 3────7 # ╱│ ╱│ # 2────6 │ y # │ │ │ │ │ # │ 1──│─5 │ z # │╱ │╱ │╱ # 0────4 *────x topo, cube = multipatch( patches=[ # The order of the vertices is chosen such that normals point outward. [2,3,0,1], [4,5,6,7], [4,6,0,2], [1,3,5,7], [1,5,0,4], [2,6,3,7], ], patchverts=tuple(itertools.product(*([[-1,1]]*3))), nelems=10, ) sphere = cube / function.sqrt((cube**2).sum(0)) Args ---- patches: A :class:`numpy.ndarray` with shape sequence of patches with each patch being a list of vertex indices. patchverts: A sequence of coordinates of the vertices. nelems: Either an :class:`int` specifying the number of elements per patch per dimension, or a :class:`dict` with edges (a pair of vertex numbers) as keys and the number of elements (:class:`int`) as values, with key ``None`` specifying the default number of elements. Returns ------- :class:`nutils.topology.MultipatchTopology`: The multipatch topology. :class:`nutils.function.Array`: The geometry defined by the ``patchverts`` or a unit hypercube per patch if ``patchverts`` is not specified. ''' patches = numpy.array(patches) if patches.dtype != int: raise ValueError('`patches` should be an array of ints.') if patches.ndim < 2 or patches.ndim == 2 and patches.shape[-1] % 2 != 0: raise ValueError('`patches` should be an array with shape (npatches,2,...,2) or (npatches,2*ndims).') elif patches.ndim > 2 and patches.shape[1:] != (2,) * (patches.ndim - 1): raise ValueError('`patches` should be an array with shape (npatches,2,...,2) or (npatches,2*ndims).') patches = patches.reshape(patches.shape[0], -1) # determine topological dimension of patches ndims = 0 while 2**ndims < patches.shape[1]: ndims += 1 if 2**ndims > patches.shape[1]: raise ValueError('Only hyperrectangular patches are supported: ' \ 'number of patch vertices should be a power of two.') patches = patches.reshape([patches.shape[0]] + [2]*ndims) # group all common patch edges (and/or boundaries?) if isinstance(nelems, int): nelems = {None: nelems} elif isinstance(nelems, dict): nelems = {(k and frozenset(k)): v for k, v in nelems.items()} else: raise ValueError('`nelems` should be an `int` or `dict`') # create patch topologies, geometries if patchverts is not None: patchverts = numpy.array(patchverts) indices = set(patches.flat) if tuple(sorted(indices)) != tuple(range(len(indices))): raise ValueError('Patch vertices in `patches` should be numbered consecutively, starting at 0.') if len(patchverts) != len(indices): raise ValueError('Number of `patchverts` does not equal number of vertices specified in `patches`.') if len(patchverts.shape) != 2: raise ValueError('Every patch vertex should be an array of dimension 1.') topos = [] coords = [] for i, patch in enumerate(patches): # find shape of patch and local patch coordinates shape = [] for dim in range(ndims): nelems_sides = [] sides = [(0,1)]*ndims sides[dim] = slice(None), for side in itertools.product(*sides): sideverts = frozenset(patch[side]) if sideverts in nelems: nelems_sides.append(nelems[sideverts]) else: nelems_sides.append(nelems[None]) if len(set(nelems_sides)) != 1: raise ValueError('duplicate number of elements specified for patch {} in dimension {}'.format(i, dim)) shape.append(nelems_sides[0]) # create patch
#!/usr/bin/env python # File: dataset_misr.py # Author: <NAME>, 5/7/13 # # Readers and plotters for MISR data sets # # Copyright 2013-2015, by the California Institute of Technology. ALL # RIGHTS RESERVED. United States Government Sponsorship # acknowledged. Any commercial use must be negotiated with the Office # of Technology Transfer at the California Institute of Technology. # # This software may be subject to U.S. export control laws and # regulations. By accepting this document, the user agrees to comply # with all applicable U.S. export laws and regulations. User has the # responsibility to obtain export licenses, or other export authority # as may be required before exporting such information to foreign # countries or providing access to foreign persons. import os, fnmatch, sys, pickle import matplotlib.pyplot as plt import numpy as np import pylab from scipy.stats import nanmean from pyhdf import HDF, SD from dataset import Dataset import matplotlib #import matplotlib.plyplot as plt import datetime ################### MISR ############## ### Analysis per pixel (location). ### ####################################### class MISRData(Dataset): # Contains code needed to load, plot, and interpret MISR data. def __init__(self, rawdirname=None, AODdirname=None, filename=None, force_read=False): """MISRData(rawdirname="", AODdirname="", filename="") Read in raw and AOD MISR data (pickled) from filename. If it doesn't exist, read in the full data from the appropriate dirnames, save it out, and proceed. """ Dataset.__init__(self, filename, "misr", '') if (not os.path.exists(filename)) or force_read: MISRData.read_misr_dir(rawdirname, AODdirname, filename) # Read in the data self.readin() def readin(self): """readin() Read in MISR data (pickled) from self.filename. """ print "Loading in MISR data from pickle..." inf = open(self.filename, 'r') (self.data, self.rgbimages, self.along_track, self.cross_track, self.latlons, self.datestr) = \ pickle.load(inf) inf.close() print "...done." self.xlabel = 'Date' self.ylabel = 'AOD (tau)' self.xvals = np.arange(self.data.shape[1]).reshape(-1,1) self.labels = self.latlons @classmethod def orbit_to_date(cls, orbit): """orbit_to_date(orbit) -> date string Convert MISR orbit number to a date string and return it. Thanks to <NAME>ay for this routine. Examples: >>> MISRData.orbit_to_date(1) '12/18/99 09:36' >>> MISRData.orbit_to_date(1506) '03/30/00 17:58' """ # First MISR orbit: Dec. 18.4, 1999 first_orbit = datetime.datetime(1999, 12, 18, 9, 36, 0) # Compute elapsed time (delta) num_orbits = orbit - 1 num_secs = num_orbits * 5933.14 num_days = num_secs / (60.*60.*24.) delta = datetime.timedelta(num_days) now = first_orbit + delta return now.strftime('%m/%d/%y %H:%M') @classmethod def read_misr_dir(cls, rawdirname, AODdirname, outfile): """read_misr_dir(rawdirname, AODdirname, outfile) Read in raw MISR data from .hdf files in rawdirname, and AOD data from all .hdf files in AODdirname. Pickle the result and save it to outfile. Note: does NOT update object fields. Follow this with a call to readin(). """ # Get the meta-information #meta = sd.attributes() # for val in ['Origin_block.ulc.x', # 'Origin_block.ulc.y', # 'Local_mode_site_name']: #info[val] = meta[val] # Get orbit parameters? data = [] rgbimages = [] datestr = [] datestr2 = [] i = 0 # Read in the AOD (from local mode) data; this is what we'll analyze files = sorted(os.listdir(AODdirname)) for f in files: if fnmatch.fnmatch(f, '*.hdf'): print " %d / %d " % (i, len(files)), i += 1 filename = AODdirname + f # Check that filename exists and is an HDF file if HDF.ishdf(filename) != 1: print "File %s cannot be found or is not an HDF-4 file." % filename continue orbit = int(filename.split('_')[5].split('O')[1]) thisdate = MISRData.orbit_to_date(orbit) print "orbit: %d -> %s " % (orbit, thisdate) datestr = datestr + [thisdate] sd = SD.SD(filename) # This is 3 (SOMBlock) x 32 (x) x 128 (y) x 4 (bands) dataset = sd.select('RegBestEstimateSpectralOptDepth') dim = dataset.dimensions() # Get all of the data for the green band (band = 1) along_track = dim['SOMBlockDim:RegParamsAer'] * dim['XDim:RegParamsAer'] cross_track = dim['YDim:RegParamsAer'] data_now = dataset.get((0,0,0,1),(dim['SOMBlockDim:RegParamsAer'], dim['XDim:RegParamsAer'], dim['YDim:RegParamsAer'], 1)).squeeze() # Reshape to concatenate blocks nrows = data_now.shape[0]*data_now.shape[1] ncols = data_now.shape[2] data_now = data_now.reshape((nrows, ncols)) # Set -9999 values to NaN naninds = np.equal(data_now, -9999) # Visualize this timeslice #pylab.imshow(data_now) #pylab.title(thisdate) #pylab.axis('off') #pylab.savefig(filename + '.png') # Set -9999 values to NaN data_now[naninds] = float('NaN') data_now = data_now.reshape((-1, 1)) #print type(data_now) #print data_now.shape if data == []: data = [data_now] else: data.append(data_now) # Close the file sd.end() print '.', sys.stdout.flush() data = np.asarray(data).squeeze().T print data.shape print # Data is now n x d, where n = # pixels and d = # timepts print 'Read data set with %d pixels, %d time points.' % data.shape # TODO: Add lat/lon coords here latlons = ['Unknown'] * data.shape[0] # Read in the raw data (for later visualization) files = sorted(os.listdir(rawdirname + 'AN/')) print "+++++++++++++" print len(files) iii = 0 for f in files: if fnmatch.fnmatch(f, '*.hdf'): filename = rawdirname + 'AN/' + f #print filename print " %d / %d " % (iii, len(files)), iii += 1 # Check that filename exists and is an HDF file if HDF.ishdf(filename) != 1: print "File %s cannot be found or is not an HDF-4 file." % filename continue # We'll assume there's a one-to-one correspondence # with the AOD data. But print it out anyway as a check. orbit = int(filename.split('_')[6].split('O')[1]) thisdate = MISRData.orbit_to_date(orbit) print "orbit: %d -> %s " % (orbit, thisdate) datestr2 = datestr2 + [thisdate] sd = SD.SD(filename) ################################################################################################################################################################## dataset = sd.select('Green Radiance/RDQI') dim = dataset.dimensions() data_g = dataset.get((60,0,0), (4, dim['XDim:GreenBand'], dim['YDim:GreenBand']), (1, 1, 1) ).reshape([2048, 2048]) mountains = np.equal(data_g, 65511) padding = np.equal(data_g, 65515) hlines = np.equal(data_g, 65523) data_g[data_g == 65515] = 0 # PADDING conv_factor_ds = sd.select('GreenConversionFactor') dim = conv_factor_ds.dimensions() conv_factor = conv_factor_ds.get((60,0,0), (4, dim['XDim:BRF Conversion Factors'], dim['YDim:BRF Conversion Factors']), (1, 1, 1) ).reshape((32, 32)) conv_factor[conv_factor < 0] = 0 for x in range(0,data_g.shape[0],64): for y in range(0,data_g.shape[1],64): converted = np.multiply(data_g[x:x+64,y:y+64], conv_factor[x/64,y/64]) data_g[x:x+64,y:y+64] = converted dataset = sd.select('Red Radiance/RDQI') dim = dataset.dimensions() data_r = dataset.get((60,0,0), (4, dim['XDim:RedBand'], dim['YDim:RedBand']), (1, 1, 1) ).reshape([2048, 2048]) data_r[data_r == 65515] = 0 # PADDING conv_factor_ds = sd.select('RedConversionFactor') dim = conv_factor_ds.dimensions() conv_factor = conv_factor_ds.get((60,0,0), (4, dim['XDim:BRF Conversion Factors'], dim['YDim:BRF Conversion Factors']), (1, 1, 1) ).reshape((32, 32)) conv_factor[conv_factor < 0] = 0 for x in range(0,data_r.shape[0],64): for y in range(0,data_r.shape[1],64): converted = np.multiply(data_r[x:x+64,y:y+64], conv_factor[x/64,y/64]) data_r[x:x+64,y:y+64] = converted dataset = sd.select('Blue Radiance/RDQI') dim = dataset.dimensions() data_b = dataset.get((60,0,0), (4, dim['XDim:BlueBand'], dim['YDim:BlueBand']), (1, 1, 1) ).reshape([2048, 2048]) data_b[data_b == 65515] = 0 # PADDING conv_factor_ds = sd.select('BlueConversionFactor') dim = conv_factor_ds.dimensions() conv_factor = conv_factor_ds.get((60,0,0), (4, dim['XDim:BRF Conversion Factors'], dim['YDim:BRF Conversion Factors']), (1, 1, 1) ).reshape((32, 32)) conv_factor[conv_factor < 0] = 0 for x in range(0,data_b.shape[0],64): for y in range(0,data_b.shape[1],64): converted = np.multiply(data_b[x:x+64,y:y+64], conv_factor[x/64,y/64]) data_b[x:x+64,y:y+64] = converted im = np.zeros([2048, 2048, 3]) data_r = data_r / float(data_r.max()) * 256 data_g = data_g / float(data_g.max()) * 256 data_b = data_b / float(data_b.max()) * 256 im[...,0] = data_r im[...,1] = data_g im[...,2] = data_b im = im.astype('uint8') im[np.equal(im, 0)] = 255 im[0:512, 64:, :] = im[0:512, :-64, :] im[1024:, :-64, :] = im[1024:, 64:, :] im[1536:, :-64, :] = im[1536:, 64:, :] isnotwhite = np.not_equal(im, 255) isnotwhiterows = isnotwhite.sum(1) isnotwhitecols = isnotwhite.sum(0) goodrows = [i for i in range(im.shape[0]) if isnotwhiterows[i, :].sum() > 0] goodcols = [i for i in range(im.shape[1]) if isnotwhitecols[i, :].sum() > 0] im = im[goodrows[0]:goodrows[-1], goodcols[0]:goodcols[-1], :] rgbimages.append(im) # Close the file sd.end() print '.', sys.stdout.flush() outf = open(outfile, 'w') print len(datestr) # Assert that the raw and AOD sequences are corresponding for i in range(len(datestr)): if datestr[i] != datestr2[i]: print "ERROR! Date sequences do not align." print " detected at index %d: AOD %s, raw %s" % (i, datestr[i], datestr2[i]) pickle.dump((data, rgbimages, along_track, cross_track, latlons, datestr), outf) #pickle.dump((data, along_track, cross_track, # latlons, datestr), outf) outf.close() ################### MISR ############## ### Analysis per time point. ### ####################################### class MISRDataTime(MISRData): # Contains code needed to load, plot, and interpret MISR data. # Here, each item is one time point, so plot data spaitally. def __init__(self, rawdirname=None, AODdirname=None, filename=None): MISRData.__init__(self, rawdirname, AODdirname, filename) def readin(self, filename=None): """readin(filename="") Read in MISR data (pickled) from filename. """ super(MISRDataTime, self).readin() # data is pixels x timepts self.name = self.name +
"location". This defaults to the empty string, indicating that the application corresponds to the "root" of the server. protocol: The protocol to use for the URL scheme (default: 'http') port (int): The TCP port to simulate. Defaults to the standard port used by the given scheme (i.e., 80 for 'http' and 443 for 'https'). A string may also be passed, as long as it can be parsed as an int. params (dict): A dictionary of query string parameters, where each key is a parameter name, and each value is either a ``str`` or something that can be converted into a ``str``, or a list of such values. If a ``list``, the value will be converted to a comma-delimited string of values (e.g., 'thing=1,2,3'). params_csv (bool): Set to ``False`` to encode list values in query string params by specifying multiple instances of the parameter (e.g., 'thing=1&thing=2&thing=3'). Otherwise, parameters will be encoded as comma-separated values (e.g., 'thing=1,2,3'). Defaults to ``True``. query_string (str): A raw query string to include in the request (default: ``None``). If specified, overrides `params`. content_type (str): The value to use for the Content-Type header in the request. If specified, this value will take precedence over any value set for the Content-Type header in the `headers` keyword argument. The ``falcon`` module provides a number of :ref:`constants for common media types <media_type_constants>`. headers (dict): Extra headers as a dict-like (Mapping) object, or an iterable yielding a series of two-member (*name*, *value*) iterables. Each pair of strings provides the name and value for an HTTP header. If desired, multiple header values may be combined into a single (*name*, *value*) pair by joining the values with a comma when the header in question supports the list format (see also RFC 7230 and RFC 7231). Header names are not case-sensitive. body (str): The body of the request (default ''). The value will be encoded as UTF-8 in the WSGI environ. Alternatively, a byte string may be passed, in which case it will be used as-is. json(JSON serializable): A JSON document to serialize as the body of the request (default: ``None``). If specified, overrides `body` and sets the Content-Type header to ``'application/json'``, overriding any value specified by either the `content_type` or `headers` arguments. host(str): A string to use for the hostname part of the fully qualified request URL (default: 'falconframework.org') remote_addr (str): A string to use as the remote IP address for the request (default: '127.0.0.1'). For WSGI, this corresponds to the 'REMOTE_ADDR' environ variable. For ASGI, this corresponds to the IP address used for the 'client' field in the connection scope. http_version (str): The HTTP version to simulate. Must be either '2', '2.0', 1.1', '1.0', or '1' (default '1.1'). If set to '1.0', the Host header will not be added to the scope. asgi_chunk_size (int): The maximum number of bytes that will be sent to the ASGI app in a single 'http.request' event (default 4096). asgi_disconnect_ttl (int): The maximum number of seconds to wait since the request was initiated, before emitting an 'http.disconnect' event when the app calls the receive() function (default 300). extras (dict): Additional values to add to the WSGI ``environ`` dictionary or the ASGI scope for the request (default: ``None``) Returns: :py:class:`~.Result`: The result of the request """ path, query_string, headers, body, extras = _prepare_sim_args( path, query_string, params, params_csv, content_type, headers, body, json, extras) # --------------------------------------------------------------------- # NOTE(kgriffs): 'http' scope # --------------------------------------------------------------------- content_length = None if body is not None: if isinstance(body, str): body = body.encode() content_length = len(body) http_scope = helpers.create_scope( path=path, query_string=query_string, method=method, headers=headers, host=host, scheme=protocol, port=port, http_version=http_version, remote_addr=remote_addr, root_path=root_path, content_length=content_length, ) if 'method' in extras and extras['method'] != method.upper(): raise ValueError( 'ASGI scope extras may not override the request method. ' 'Please use the method parameter.' ) http_scope.update(extras) # --------------------------------------------------------------------- disconnect_at = time.time() + max(0, asgi_disconnect_ttl) req_event_emitter = helpers.ASGIRequestEventEmitter( (body or b''), chunk_size=asgi_chunk_size, disconnect_at=disconnect_at, ) resp_event_collector = helpers.ASGIResponseEventCollector() if not _one_shot: task_req = create_task( app(http_scope, req_event_emitter, resp_event_collector)) if _stream_result: # NOTE(kgriffs): Wait until the response has been started and give # the task a chance to progress. Otherwise, we won't have a # status or headers to pass to StreamedResult. while not resp_event_collector.status: await asyncio.sleep(0) return StreamedResult(resp_event_collector.body_chunks, code_to_http_status( resp_event_collector.status), resp_event_collector.headers, task_req, req_event_emitter) req_event_emitter.disconnect() await task_req return Result(resp_event_collector.body_chunks, code_to_http_status(resp_event_collector.status), resp_event_collector.headers) # --------------------------------------------------------------------- # NOTE(kgriffs): 'lifespan' scope # --------------------------------------------------------------------- lifespan_scope = { 'type': ScopeType.LIFESPAN, 'asgi': { 'version': '3.0', 'spec_version': '2.0', }, } shutting_down = asyncio.Condition() lifespan_event_emitter = helpers.ASGILifespanEventEmitter(shutting_down) lifespan_event_collector = helpers.ASGIResponseEventCollector() # --------------------------------------------------------------------- async def conductor(): # NOTE(kgriffs): We assume this is a Falcon ASGI app, which supports # the lifespan protocol and thus we do not need to catch # exceptions that would signify no lifespan protocol support. task_lifespan = get_running_loop().create_task( app(lifespan_scope, lifespan_event_emitter, lifespan_event_collector) ) await _wait_for_startup(lifespan_event_collector.events) task_req = create_task( app(http_scope, req_event_emitter, resp_event_collector)) req_event_emitter.disconnect() await task_req # NOTE(kgriffs): Notify lifespan_event_emitter that it is OK # to proceed. async with shutting_down: shutting_down.notify() await _wait_for_shutdown(lifespan_event_collector.events) await task_lifespan await conductor() return Result(resp_event_collector.body_chunks, code_to_http_status(resp_event_collector.status), resp_event_collector.headers) class ASGIConductor: """Test conductor for ASGI apps. This class provides more control over the lifecycle of a simulated request as compared to :class:`~.TestClient`. In addition, the conductor's asynchronous interface affords interleaved requests and the testing of streaming protocols such as server-sent events (SSE) and WebSocket. :class:`~.ASGIConductor` is implemented as a context manager. Upon entering and exiting the context, the appropriate ASGI lifespan events will be simulated. Within the context, HTTP requests can be simulated using an interface that is similar to :class:`~.TestClient`, except that all ``simulate_*()`` methods are coroutines:: async with testing.ASGIConductor(some_app) as conductor: async def post_events(): for i in range(100): await conductor.simulate_post('/events', json={'id': i}): await asyncio.sleep(0.01) async def get_events_sse(): # Here, we will get only some of the single server-sent events # because the non-streaming method is "single-shot". In other # words, simulate_get() will emit a client disconnect event # into the app before returning. result = await conductor.simulate_get('/events') # Alternatively, we can use simulate_get_stream() as a context # manager to perform a series of reads on the result body that # are interleaved with the execution of the post_events() # coroutine. async with conductor.simulate_get_stream('/events') as sr: while some_condition: # Read next body chunk that was received (if any). chunk = await sr.stream.read() if chunk: # TODO: Do something with the chunk pass # Exiting the context causes the request event emitter to # begin emitting 'http.disconnect' events and then awaits # the completion of the asyncio task that is running the # simulated ASGI request. asyncio.gather(post_events(), get_events_sse()) Note: Because the :class:`~.ASGIConductor` interface uses coroutines, it cannot be used directly with synchronous testing frameworks such as pytest. As a workaround, the test can be adapted by wrapping it in an inline async function and then invoking it via :meth:`falcon.invoke_coroutine_sync` or decorating the test function with :meth:`falcon.runs_sync`. Alternatively, you can try searching PyPI to see if an async plugin is available for your testing framework of choice. For example, the ``pytest-asyncio`` plugin is available for ``pytest`` users. Args: app (callable): An ASGI application to target when simulating requests. Keyword Arguments: headers (dict): Default headers to set on every request (default ``None``). These defaults may be overridden by passing values for the same headers to one of the ``simulate_*()`` methods. Attributes: app: The app that this client instance was configured to use. """ def __init__(self, app, headers=None): if not _is_asgi_app(app): raise CompatibilityError( 'ASGIConductor may only be used with an ASGI app') self.app = app self._default_headers = headers self._shutting_down = asyncio.Condition() self._lifespan_event_collector = helpers.ASGIResponseEventCollector() self._lifespan_task = None async def __aenter__(self): lifespan_scope = { 'type': ScopeType.LIFESPAN, 'asgi': { 'version': '3.0', 'spec_version': '2.0', }, } lifespan_event_emitter = helpers.ASGILifespanEventEmitter( self._shutting_down) # NOTE(kgriffs): We assume this is a Falcon ASGI app, which supports # the lifespan protocol and thus we do not need to catch # exceptions that would signify no lifespan protocol support. self._lifespan_task
"▁Walker": 7032, "▁850": 7033, "▁1938": 7034, "DM": 7035, "▁Massachusetts": 7036, "▁Pur": 7037, "HI": 7038, "▁2017-2018": 7039, "▁55%": 7040, "▁Liber": 7041, "7,6": 7042, "▁Harris": 7043, "▁Hamburg": 7044, "▁Bla": 7045, "▁Mak": 7046, "Ri": 7047, "zh": 7048, "▁Team": 7049, "Tra": 7050, "oka": 7051, "▁Gau": 7052, "▁Roland": 7053, "gus": 7054, "mic": 7055, "▁1996.": 7056, "City": 7057, "nik": 7058, "▁Howard": 7059, "▁LGBT": 7060, "▁ten": 7061, "▁Rie": 7062, "sol": 7063, "iga": 7064, "▁1-": 7065, "▁But": 7066, "Jo": 7067, "▁Ac": 7068, "3,5%": 7069, "lari": 7070, "EX": 7071, "mir": 7072, "0,1%": 7073, "tti": 7074, "▁McG": 7075, "rai": 7076, "▁Gal": 7077, "▁Rama": 7078, "▁CPU": 7079, "▁Standard": 7080, "lie": 7081, "AMA": 7082, "▁Lever": 7083, "2004": 7084, "XO": 7085, "ise": 7086, "▁rap": 7087, "▁Hon": 7088, "▁Hotel": 7089, "chop": 7090, "▁collage": 7091, "▁Congo": 7092, "▁DS": 7093, "▁Wan": 7094, "RS": 7095, "▁feet": 7096, "▁Electronic": 7097, "▁Teen": 7098, "▁225": 7099, "▁pro": 7100, "▁Paraguay": 7101, "ASE": 7102, "▁FED": 7103, "▁ar": 7104, "aggio": 7105, "▁single": 7106, "Pa": 7107, "yuk": 7108, "▁1992.": 7109, "▁make": 7110, "▁Cast": 7111, "850": 7112, "▁Lewis": 7113, "▁gene": 7114, "▁poster": 7115, "▁Matthew": 7116, "posit": 7117, "▁Ajax": 7118, "▁Bruno": 7119, "▁Villar": 7120, "▁Rhod": 7121, "▁Net": 7122, "aca": 7123, "made": 7124, "aw": 7125, "old": 7126, "IT": 7127, "▁Infinit": 7128, "▁Ama": 7129, "borough": 7130, "▁KB": 7131, "TAT": 7132, "ota": 7133, "Hay": 7134, "▁Book": 7135, "▁Pepe": 7136, "5-1": 7137, "andra": 7138, "▁Omar": 7139, "right": 7140, "▁Cab": 7141, "▁Cau": 7142, "▁Das": 7143, "▁Irina": 7144, "issa": 7145, "▁Walter": 7146, "▁Vá": 7147, "nd": 7148, "▁VIDEO": 7149, "▁21%": 7150, "▁Lug": 7151, "▁Pad": 7152, "hem": 7153, "▁Lisa": 7154, "▁Firefox": 7155, "WHO": 7156, "▁NAM": 7157, "▁Warner": 7158, "bay": 7159, "steiger": 7160, "▁Hum": 7161, "▁Take": 7162, "▁clo": 7163, "bert": 7164, "▁Ethiopia": 7165, "cent": 7166, "ISS": 7167, "▁Nur": 7168, "▁Iz": 7169, "▁blogger": 7170, "▁Azerbaijan": 7171, "▁Moro": 7172, "Si": 7173, "▁Stephan": 7174, "▁Garcia": 7175, "form": 7176, "▁Smartphone": 7177, "ille": 7178, "▁8)": 7179, "▁Grammy": 7180, "LM": 7181, "▁Salman": 7182, "▁Mats": 7183, "▁Acer": 7184, "▁Channel": 7185, "▁2018:": 7186, "▁Marcelo": 7187, "▁Guill": 7188, "▁Surface": 7189, "▁131": 7190, "▁3-6": 7191, "▁BA": 7192, "▁Jen": 7193, "yer": 7194, "▁Low": 7195, "▁8-9": 7196, "IoT": 7197, "▁Dụng": 7198, "▁Hua": 7199, "VE": 7200, "▁3.2": 7201, "rian": 7202, "▁Him": 7203, "▁Opera": 7204, "▁ko": 7205, "quet": 7206, "▁Kend": 7207, "its": 7208, "New": 7209, "▁Laurent": 7210, "▁Douglas": 7211, "▁139": 7212, "▁Has": 7213, "▁Was": 7214, "more": 7215, "Har": 7216, "▁Berg": 7217, "LOS": 7218, "▁Bio": 7219, "▁Sale": 7220, "▁ami": 7221, "▁Billboard": 7222, "dus": 7223, "▁Rus": 7224, "lev": 7225, "999": 7226, "▁2016-2017": 7227, "▁Market": 7228, "oli": 7229, "uch": 7230, "lash": 7231, "rium": 7232, "Ka": 7233, "SAT": 7234, "Te": 7235, "▁Dow": 7236, "ume": 7237, "Mos": 7238, "▁1937": 7239, "▁LA": 7240, "UN": 7241, "cati": 7242, "▁Well": 7243, "mét": 7244, "lock": 7245, "▁152": 7246, "▁Nikola": 7247, "teur": 7248, "▁Capel": 7249, "care": 7250, "vát": 7251, "uca": 7252, "▁1991.": 7253, "▁Cay": 7254, "pto": 7255, "3.8": 7256, "ins": 7257, "▁129": 7258, "▁Dance": 7259, "▁Non": 7260, "450": 7261, "▁Lú": 7262, "▁911": 7263, "▁Kop": 7264, "▁titan": 7265, "ala": 7266, "VA": 7267, "▁Bran": 7268, "▁Singh": 7269, "▁Maha": 7270, "▁Alvar": 7271, "lich": 7272, "gna": 7273, "▁Jorge": 7274, "yla": 7275, "▁Cle": 7276, "▁Phantom": 7277, "▁Basel": 7278, "ada": 7279, "▁Football": 7280, "▁Rubi": 7281, "▁Herre": 7282, "▁Syn": 7283, "▁Emily": 7284, "▁168": 7285, "▁Yuri": 7286, "▁Rani": 7287, "halli": 7288, "▁Sum": 7289, "UNC": 7290, "▁Row": 7291, "▁Om": 7292, "sper": 7293, "▁Connect": 7294, "▁cara": 7295, "china": 7296, "▁Bull": 7297, "grad": 7298, "AT": 7299, "lú": 7300, "▁Holl": 7301, "▁break": 7302, "rê": 7303, "▁Blade": 7304, "gne": 7305, "▁185": 7306, "▁Wen": 7307, "stin": 7308, "▁Rat": 7309, "▁0-3": 7310, "▁Rihanna": 7311, "▁hybrid": 7312, "vit": 7313, "▁Stein": 7314, "mal": 7315, "pore": 7316, "are": 7317, "vít": 7318, "▁Owen": 7319, "US": 7320, "▁Bez": 7321, "HO": 7322, "▁para": 7323, "▁23%": 7324, "ous": 7325, "sic": 7326, "tah": 7327, "▁136": 7328, "▁1993.": 7329, "▁Korea": 7330, "▁Radio": 7331, "▁Chap": 7332, "▁Trust": 7333, "▁LL": 7334, "1-8": 7335, "▁Force": 7336, "▁Ort": 7337, "▁Bart": 7338, "▁Arizona": 7339, "▁HI": 7340, "▁Jess": 7341, "▁Vienna": 7342, "▁É": 7343, "here": 7344, "▁Susan": 7345, "▁short": 7346, "rod": 7347, "▁PA": 7348, "▁iPod": 7349, "▁Hat": 7350, "▁Denis": 7351, "▁NO": 7352, "ale": 7353, "▁People": 7354, "jan": 7355, "▁Aviv": 7356, "▁Kaspersky": 7357, "nim": 7358, "morph": 7359, "IA": 7360, "▁Mich": 7361, "FI": 7362, "mine": 7363, "▁Panda": 7364, "▁Latvia": 7365, "▁Minnesota": 7366, "▁Grande": 7367, "▁Middle": 7368, "ip": 7369, "▁WA": 7370, "▁Schol": 7371, "yahoo": 7372, "▁Got": 7373, "▁Evans": 7374, "▁Macedonia": 7375, "▁táp": 7376, "▁Dal": 7377, "▁Rico": 7378, "▁pe": 7379, "▁Nike": 7380, "kaya": 7381, "▁Jersey": 7382, "antha": 7383, "▁Dominic": 7384, "▁Emer": 7385, "Settings": 7386, "321": 7387, "▁Studio": 7388, "▁Naga": 7389, "▁Of": 7390, "stic": 7391, "▁Tayyip": 7392, "7,7": 7393, "▁India": 7394, "ora": 7395, "▁Gib": 7396, "ef": 7397, "Sport": 7398, "▁Maxim": 7399, "▁po": 7400, "▁om": 7401, "▁0,9": 7402, "▁AB": 7403, "dio": 7404, "him": 7405, "▁Eo": 7406, "▁Moz": 7407, "▁cent": 7408, "▁hack": 7409, "▁Gel": 7410, "ONG": 7411, "▁Shanghai": 7412, "▁2009)": 7413, "Ụ": 7414, "▁Gan": 7415, "▁Naka": 7416, "▁146": 7417, "▁Championship": 7418, "lina": 7419, "▁Cape": 7420, "bó": 7421, "▁5000": 7422, "ith": 7423, "▁Link": 7424, "-47": 7425, "dic": 7426, "▁Rá": 7427, "▁Ble": 7428, "ici": 7429, "▁Dry": 7430, "hed": 7431, "▁omega": 7432, "▁Jur": 7433, "▁Toma": 7434, "▁estrogen": 7435, "▁Yi": 7436, "essa": 7437, "ving": 7438, "ím": 7439, "▁Ted": 7440, "▁Tung": 7441, "▁2010)": 7442, "VB": 7443, "▁167": 7444, "▁soda": 7445, "but": 7446, "▁Sco": 7447, "▁ró": 7448, "▁420": 7449, "▁Beauty": 7450, "▁Alba": 7451, "5,9": 7452, "tai": 7453, "7,4": 7454, "▁vir": 7455, "AG": 7456, "rena": 7457, "ula": 7458, "▁1994.": 7459, "Star": 7460, "▁hún": 7461, "Da": 7462, "ddy": 7463, "NEWS": 7464, "ICE": 7465, "sko": 7466, "▁Alice": 7467, "▁net": 7468, "tero": 7469, "IB": 7470, "▁Independent": 7471, "▁133": 7472, "pod": 7473, "8,9": 7474, "▁Glen": 7475, "iro": 7476, "py": 7477, "hia": 7478, "ishi": 7479, "▁Digital": 7480, "▁mag": 7481, "inga": 7482, "▁Hans": 7483, "▁Gut": 7484, "▁Lily": 7485, "▁1080": 7486, "▁College": 7487, "▁Dai": 7488, "eh": 7489, "▁Julian": 7490, "▁Titan": 7491, "ops": 7492, "Bar": 7493, "Ó": 7494, "chan": 7495, "ese": 7496, "▁Jama": 7497, "▁Julia": 7498, "dier": 7499, "eve": 7500, "vad": 7501, "▁Shak": 7502, "/2001": 7503, "▁Norman": 7504, "▁Venus": 7505, "▁Javier": 7506, "Germain": 7507, "jin": 7508, "rat": 7509, "▁Arthur": 7510, "▁Blu": 7511, "▁Giu": 7512, "▁ion": 7513, "zel": 7514, "zza": 7515, "▁Aus": 7516, "mmer": 7517, "itz": 7518, "▁Puerto": 7519, "001": 7520, "▁1929": 7521, "▁0,5%": 7522, "2007": 7523, "▁Bernard": 7524, "▁19%": 7525, "▁Little": 7526, "▁Suk": 7527, "660": 7528, "▁Skri": 7529, "phra": 7530, "nikov": 7531, "RIM": 7532, "tý": 7533, "1,6": 7534, "▁Hey": 7535, "▁Cooper": 7536, "▁2.3": 7537, "▁5.0": 7538, "GAS": 7539, "Claude": 7540, "▁Guinness": 7541, "Ex": 7542, "▁Chat": 7543, "▁Richter": 7544, "▁Log": 7545, "▁Science": 7546, "▁Ahmed": 7547, "SK": 7548, "▁Slovenia": 7549, "▁144": 7550, "▁Taj": 7551, "▁Abdullah": 7552, "▁Hab": 7553, "▁Toshiba": 7554, "NR": 7555, "hill": 7556, "▁142": 7557, "lik": 7558, "▁Back": 7559, "Sy": 7560, "▁Sala": 7561, "▁2017:": 7562, "tino": 7563, "ern": 7564, "▁shi": 7565, "▁32.": 7566, "▁SSD": 7567, "▁Spring": 7568, "▁Yuk": 7569, "▁Vincent": 7570, "idi": 7571, "▁Janeiro": 7572, "▁Najib": 7573, "▁Harvey": 7574, "ali": 7575, "las": 7576, "▁Tanzania": 7577, "▁ang": 7578, "ec": 7579, "mura": 7580, "1-6": 7581, "3)": 7582, "oh": 7583, "▁Marcus": 7584, "▁des": 7585, "OA": 7586, "▁VÀ": 7587, "▁showroom": 7588, "gó": 7589, "▁Talent": 7590, "▁Rand": 7591, "149": 7592, "Cho": 7593, "▁DO": 7594, "bro": 7595, "vai": 7596, "▁Kom": 7597, "suke": 7598, "▁2.1": 7599, "art": 7600, "▁Ade": 7601, "▁Nan": 7602, "Sha": 7603, "tap": 7604, "toni": 7605, "HR": 7606, "RV": 7607, "ambi": 7608, "eira": 7609, "of": 7610, "▁SNS": 7611, "▁Jimmy": 7612, "ania": 7613, "1997": 7614, "mg": 7615, "▁Hein": 7616, "AL": 7617, "▁Moore": 7618, "ches": 7619, "mol": 7620, "▁Financial": 7621, "▁Mars": 7622, "▁Stalin": 7623, "view": 7624, "▁Hos": 7625, "▁Philippe": 7626, "PU": 7627, "▁Yun": 7628, "▁Legend": 7629, "▁pizza": 7630, "▁137": 7631, "Col": 7632, "▁VS": 7633, "▁Miguel": 7634, "gger": 7635, "▁insulin": 7636, "▁Mate": 7637, "▁Ian": 7638, "▁Simeon": 7639, "▁163": 7640, "▁Glass": 7641, "▁777": 7642, "▁Ao": 7643, "▁DU": 7644, "▁Uganda": 7645, "eda": 7646, "▁380": 7647, "▁Civic": 7648, "▁stylist": 7649, "▁Kin": 7650, "▁Bruce": 7651, "▁Page": 7652, "▁XIX": 7653, "uz": 7654, "▁Future": 7655, "▁Kra": 7656, "▁View": 7657, "▁mõ": 7658, "▁156": 7659, "▁Brent": 7660, "yen": 7661, "▁Walt": 7662, "▁8-10": 7663, "▁Boko": 7664, "ÀI": 7665, "▁Amy": 7666, "/02/": 7667, "travel": 7668, "bur": 7669, "bio": 7670, "▁Mul": 7671,
#!/usr/bin/env python """ A headless open source tool for synchronizing users' name and emails between a MySQL database and mailman server. Correct login credentials for the database and mailman server must be provided in a '.env' file. Python2 & Python3 compatible. Author: <NAME> """ from __future__ import print_function, division, unicode_literals import argparse import os import re import sys import time from builtins import range import dotenv import splinter import pymysql def login_webserv(site, uri, pswd): """ Logs into the webserv by navigating to the URL, inputting credentials, and clicking the login button. Args: site (splinter.driver.webdriver): Instance of the splinter browser. uri (str): Web address to navigate with splinter browser. pswd (str): Password required to login to the webserv. """ site.visit(uri) assert site.is_text_present(VERSION_NUMBER), "Incorrect version number\nAborting" site.fill('adminpw', pswd) site.find_by_name('admlogin').click() assert site.is_text_not_present('Authorization failed.'), "Login failed\nAborting" def logout_webserv(site, uri): """ Logs out of the webserv. Args: site (splinter.driver.webdriver): Instance of the splinter browser. uri (str): Web address to navigate with splinter browser. """ site.visit(uri + '/logout') site.quit() def get_db_content(HOST, UNAME, DBPSWD, NAME): """ Collects the emails from the "database" to be used later. Args: HOST (str): Uri for mysql database UNAME (str): Username for mysql database DBPSWD (str): Password for mysql database NAME (str): Name of table in mysql database Attributes: db (pymysql.connections.Connection): Database connection cursor (pymysql.cursors.Cursor): Used to interact with database data (tuple): All users returned from fetching from database content (dict): Data in the expected form of a database Returns: dict: Content attribute that contains all of the users on the database. """ # Open database connection db = pymysql.connect(HOST, UNAME, DBPSWD, NAME) # prepare a cursor object using cursor() method cursor = db.cursor() # execute SQL query using execute() method. cursor.execute("SELECT CONCAT(p.lname, ' ', p.fname) AS name, p.email FROM \ ac_person p\ WHERE p.deleted IS NULL AND p.onnoticelist = 't'\ ORDER BY p.lname ASC, p.fname ASC") # Fetch a single row using fetchone() method. data = cursor.fetchall() # data = (("lname fname", "email")) content = dict() try: #python2 version for user in data: content[unicode(user[1], "utf-8")] = unicode(user[0], "utf-8") except NameError: #python3 for user in data: content[user[1]] = user[0] # disconnect from server db.close() log("Database data is collected") return content def get_web_emails(site, uri): """ Scrapes the webserv for all of the users uploaded. Args: site (splinter.driver.webdriver): Instance of the splinter browser. uri (str): Web address to navigate with splinter browser. Attributes: letters (list): Contains every letter representing a tab in the html. web_emails (list): Stores all of the scraped emails. maxUsers (int): Stores the total number of emails on the webserv. Used for logging progress. current (int): Counter for what percentage of emails have been scraped rows (str): Unused variable that stores how many rows the terminal window is. columns (int): Stores the number of columns wide the terminal window is chunks (int): Stores the current "chunk" the scraper is at from the html. Used for scraping all data if the webserv has organized it in sublists. links (splinter.element_list.ElementList): Stores splinter obj referring to all the matching elements. Used to find all emails on current screen. Returns: list: Web_emails attribute that contains all emails scraped from the webserv. """ #navigate to membership management site.visit(uri + '/members/list') letters = map(str, re.findall(r'/members\?letter=[a-z0-9]', site.html)) if letters != []: letters = list(set(letters)) web_emails = list() maxUsers = int(re.search('<em>([0-9]*) members total', site.html).group(1)) current = 0 rows, columns = os.popen('stty size', 'r').read().split() columns = min(int(columns) - len("] 100% complete "), 80) log("Scraping data from webserv") if letters != []: #found letters for letter in letters: site.visit(uri + letter) chunks = len(site.find_link_by_partial_href('&chunk=')) for chunk in range(chunks+1): site.visit(uri + letter + '&chunk=' + str(chunk)) links = site.find_link_by_partial_href('--at--') for link in links: web_emails.append(link.value) ratio = len(web_emails)/maxUsers current = int(round(ratio*columns)) if not args.quiet: sys.stdout.write("\r\033[93m" + '['\ + '#'*(current) + ' '*(columns - current) \ + "] " + str(int(round(ratio*100)))\ + "% complete\033[0m") sys.stdout.flush() if not args.quiet: sys.stdout.write('\n') else: #all on one page site.visit(uri + '/members/list') links = site.find_link_by_partial_href('--at--') for link in links: web_emails.append(link.value) log("Webserv data is collected") return web_emails def compare_datasets(webmail, db_content): """ Compares email lists and appends data to appropriate add/rm_email data structs. Examples: if (email in database but not webserv) add; if (email in webserv but not datatbase) remove; Args: webmail (list): List of all emails scraped from the webserv. db_content (dict): Dictonary, to be used as a list of keys(emails), containing all the users on the database. Attributes: add_users (str): Newline separated emails to be added of the format: "lname fname <email>\\n". rm_emails (str): Newline separated emails to be removed of the format: "email\\n". Returns: tuple: Contains the emails to add and remove from the webserv """ add_users = "" rm_emails = "" log("Comparing emails found on webserv with emails in database") #compares every email from the webserv to those found in the database for web_data in webmail: if web_data not in db_content: #if true, then that email must be removed rm_emails += web_data + '\n' #compares every email from the database to those found in the webserv for db_data in db_content: if db_data not in webmail: #if true, then that email must be added add_users += db_content[db_data] + ' <' + db_data + '>\n' return tuple([add_users, rm_emails]) def update_webserv(site, uri, data): """ Updates the webserv by adding and removing emails based on descrepencies between the webser and database. Args: site (splinter.driver.webdriver): Instance of the splinter browser. uri (str): Web address to navigate with splinter browser. data (tuple): First index is a list of emails to add. Second index is a list of emails to remove. Attributes: added_emails (list): Stores all emails to be added to webserv. removed_emails (list): Stores all emails to be removed from webserv. """ log("Synchronizing data on the webserv") added_users, removed_emails = data add_webserv_emails(site, uri, added_users) remove_webserv_emails(site, uri, removed_emails) log("Webserv and database are synced") def add_webserv_emails(site, uri, users): """ Takes users that have been passed in and navigates to subscription page of the webserv that adds content to the webserv. Args: site (splinter.driver.webdriver): Instance of the splinter browser. uri (str): Web address to navigate with splinter browser. users (str): All emails that are to be added to the webserv. Format: "lname fname <email>\\n" Attributes: users (list): Converted emails string (args) to list. """ if not args.dryrun: # emails: string of emails newline separated site.visit(uri + '/members/add') site.choose('send_welcome_msg_to_this_batch', '0') site.fill('subscribees', users) site.find_by_name('setmemberopts_btn').click() users = users.split('\n') if users[-1] == "": users.pop() for user in users: log("\033[32madded\033[0m " + user) def remove_webserv_emails(site, uri, emails): """ Takes emails that have been passed in and navigates to unsubscription page of the webserv that removes all matching content in the webserv. Args: site (splinter.driver.webdriver): Instance of the splinter browser. uri (str): Web address to navigate with splinter browser. emails (str): All emails that are to be removed from the webserv. Format: "email\\n" Attributes: emails (list): Converted emails string (args) to list. """ if not args.dryrun: # emails: string of emails newline separated site.visit(uri + '/members/remove') site.choose('send_unsub_ack_to_this_batch', '0') site.fill('unsubscribees', emails) site.find_by_name('setmemberopts_btn').click() emails = emails.split('\n') if emails[-1] == '': emails.pop() for email in emails: log("\033[34mremoved\033[0m " + email) def log(message): """ Outputs to stdout in the format of: "YYYY-mm-dd hh:mm:ss <message>" Args: message (str): Content to output with timestamp. """ if not args.quiet: print(time.strftime("%Y-%m-%d %H:%M:%S") + ' ' + message) if __name__ == "__main__": # argparse used to generate help menu and easy commandline argument parsing parser = argparse.ArgumentParser(description="A headless open source tool\ for synchronizing users' name and email between a mysql database\ and mailman server. Correct login credentials for the database and\ mailman server must be provided in a '.env' file. This script is\ python2 and python3 compatible.", epilog="Author: <NAME>") parser.add_argument("-q", "--quiet", help="suppress output", action="store_true") parser.add_argument("-v", "--verbose", help="use the headed firefox browser", action="store_true") parser.add_argument("-d", "--dryrun", help="perform a dry run by not \ changing the listserv", action="store_true") args = parser.parse_args() if args.verbose: browser = splinter.Browser() else: browser = splinter.Browser('phantomjs') VERSION_NUMBER = "version 2.1.24" #collect login data collected from .env dotenv.load_dotenv(dotenv.find_dotenv()) URI = os.getenv('LISTSERV_URI') PSWD = os.getenv('PASSWORD') HOST = os.getenv('HOST') UNAME
Constraint(expr= - m.x18 + m.x33 + m.x36 + m.x39 + m.x42 + m.x45 - m.x48 - m.x60 - m.x75 - m.x119 + m.x120 == 0) m.c23 = Constraint(expr= - m.x19 + m.x34 + m.x37 + m.x40 + m.x43 + m.x46 - m.x49 - m.x61 - m.x76 - m.x120 + m.x121 == 0) m.c24 = Constraint(expr= - m.x3 - m.x21 - m.x33 + m.x48 + m.x51 + m.x54 + m.x57 - m.x63 - m.x78 - m.x122 + m.x123 == 0) m.c25 = Constraint(expr= - m.x4 - m.x22 - m.x34 + m.x49 + m.x52 + m.x55 + m.x58 - m.x64 - m.x79 - m.x123 + m.x124 == 0) m.c26 = Constraint(expr= - m.x6 - m.x36 + m.x60 + m.x63 + m.x66 + m.x69 + m.x72 - m.x81 - m.x125 + m.x126 == 0) m.c27 = Constraint(expr= - m.x7 - m.x37 + m.x61 + m.x64 + m.x67 + m.x70 + m.x73 - m.x82 - m.x126 + m.x127 == 0) m.c28 = Constraint(expr= - m.x9 - m.x24 - m.x39 - m.x51 - m.x66 + m.x75 + m.x78 + m.x81 + m.x84 + m.x87 - m.x128 + m.x129 == 0) m.c29 = Constraint(expr= - m.x10 - m.x25 - m.x40 - m.x52 - m.x67 + m.x76 + m.x79 + m.x82 + m.x85 + m.x88 - m.x129 + m.x130 == 0) m.c30 = Constraint(expr= - m.x12 - m.x27 - m.x42 - m.x54 - m.x69 - m.x84 - m.x131 + m.x132 == -0.17) m.c31 = Constraint(expr= - m.x13 - m.x28 - m.x43 - m.x55 - m.x70 - m.x85 - m.x132 + m.x133 == -0.83) m.c32 = Constraint(expr= - m.x15 - m.x30 - m.x45 - m.x57 - m.x72 - m.x87 - m.x134 + m.x135 == -0.39) m.c33 = Constraint(expr= - m.x16 - m.x31 - m.x46 - m.x58 - m.x73 - m.x88 - m.x135 + m.x136 == -0.8) m.c34 = Constraint(expr=m.x90*m.x120 - (m.x89*m.x119 + m.x92*m.x48 + m.x95*m.x60 + m.x98*m.x75 - (m.x89*m.x33 + m.x89* m.x36 + m.x89*m.x39 + m.x89*m.x42 + m.x89*m.x45)) - 0.7*m.x18 == 0) m.c35 = Constraint(expr=m.x91*m.x121 - (m.x90*m.x120 + m.x93*m.x49 + m.x96*m.x61 + m.x99*m.x76 - (m.x90*m.x34 + m.x90* m.x37 + m.x90*m.x40 + m.x90*m.x43 + m.x90*m.x46)) - 0.7*m.x19 == 0) m.c36 = Constraint(expr=m.x93*m.x123 - (m.x92*m.x122 + m.x89*m.x33 + m.x95*m.x63 + m.x98*m.x78 - (m.x92*m.x48 + m.x92* m.x51 + m.x92*m.x54 + m.x92*m.x57)) - 0.7*m.x3 - 0.7*m.x21 == 0) m.c37 = Constraint(expr=m.x94*m.x124 - (m.x93*m.x123 + m.x90*m.x34 + m.x96*m.x64 + m.x99*m.x79 - (m.x93*m.x49 + m.x93* m.x52 + m.x93*m.x55 + m.x93*m.x58)) - 0.7*m.x4 - 0.7*m.x22 == 0) m.c38 = Constraint(expr=m.x96*m.x126 - (m.x95*m.x125 + m.x89*m.x36 + m.x98*m.x81 - (m.x95*m.x60 + m.x95*m.x63 + m.x95* m.x66 + m.x95*m.x69 + m.x95*m.x72)) - 0.7*m.x6 == 0) m.c39 = Constraint(expr=m.x97*m.x127 - (m.x96*m.x126 + m.x90*m.x37 + m.x99*m.x82 - (m.x96*m.x61 + m.x96*m.x64 + m.x96* m.x67 + m.x96*m.x70 + m.x96*m.x73)) - 0.7*m.x7 == 0) m.c40 = Constraint(expr=m.x99*m.x129 - (m.x98*m.x128 + m.x89*m.x39 + m.x92*m.x51 + m.x95*m.x66 - (m.x98*m.x75 + m.x98* m.x78 + m.x98*m.x81 + m.x98*m.x84 + m.x98*m.x87)) - 0.7*m.x9 - 0.7*m.x24 == 0) m.c41 = Constraint(expr=m.x100*m.x130 - (m.x99*m.x129 + m.x90*m.x40 + m.x93*m.x52 + m.x96*m.x67 - (m.x99*m.x76 + m.x99* m.x79 + m.x99*m.x82 + m.x99*m.x85 + m.x99*m.x88)) - 0.7*m.x10 - 0.7*m.x25 == 0) m.c42 = Constraint(expr=m.x102*m.x120 - (m.x101*m.x119 + m.x104*m.x48 + m.x107*m.x60 + m.x110*m.x75 - (m.x101*m.x33 + m.x101*m.x36 + m.x101*m.x39 + m.x101*m.x42 + m.x101*m.x45)) - 0.5*m.x18 == 0) m.c43 = Constraint(expr=m.x103*m.x121 - (m.x102*m.x120 + m.x105*m.x49 + m.x108*m.x61 + m.x111*m.x76 - (m.x102*m.x34 + m.x102*m.x37 + m.x102*m.x40 + m.x102*m.x43 + m.x102*m.x46)) - 0.5*m.x19 == 0) m.c44 = Constraint(expr=m.x105*m.x123 - (m.x104*m.x122 + m.x101*m.x33 + m.x107*m.x63 + m.x110*m.x78 - (m.x104*m.x48 + m.x104*m.x51 + m.x104*m.x54 + m.x104*m.x57)) - 0.1*m.x3 - 0.5*m.x21 == 0) m.c45 = Constraint(expr=m.x106*m.x124 - (m.x105*m.x123 + m.x102*m.x34 + m.x108*m.x64 + m.x111*m.x79 - (m.x105*m.x49 + m.x105*m.x52 + m.x105*m.x55 + m.x105*m.x58)) - 0.1*m.x4 - 0.5*m.x22 == 0) m.c46 = Constraint(expr=m.x108*m.x126 - (m.x107*m.x125 + m.x101*m.x36 + m.x110*m.x81 - (m.x107*m.x60 + m.x107*m.x63 + m.x107*m.x66 + m.x107*m.x69 + m.x107*m.x72)) - 0.1*m.x6 == 0) m.c47 = Constraint(expr=m.x109*m.x127 - (m.x108*m.x126 + m.x102*m.x37 + m.x111*m.x82 - (m.x108*m.x61 + m.x108*m.x64 + m.x108*m.x67 + m.x108*m.x70 + m.x108*m.x73)) - 0.1*m.x7 == 0) m.c48 = Constraint(expr=m.x111*m.x129 - (m.x110*m.x128 + m.x101*m.x39 + m.x104*m.x51 + m.x107*m.x66 - (m.x110*m.x75 + m.x110*m.x78 + m.x110*m.x81 + m.x110*m.x84 + m.x110*m.x87)) - 0.1*m.x9 - 0.5*m.x24 == 0) m.c49 = Constraint(expr=m.x112*m.x130 - (m.x111*m.x129 + m.x102*m.x40 + m.x105*m.x52 + m.x108*m.x67 - (m.x111*m.x76 + m.x111*m.x79 + m.x111*m.x82 + m.x111*m.x85 + m.x111*m.x88)) - 0.1*m.x10 - 0.5*m.x25 == 0) m.c50 = Constraint(expr= m.x2 - m.b137 <= 0) m.c51 = Constraint(expr= m.x3 - m.b138 <= 0) m.c52 = Constraint(expr= m.x4 - m.b139 <= 0) m.c53 = Constraint(expr= m.x5 - m.b140 <= 0) m.c54 = Constraint(expr= m.x6 - m.b141 <= 0) m.c55 = Constraint(expr= m.x7 - m.b142 <= 0) m.c56 = Constraint(expr= m.x8 - m.b143 <= 0) m.c57 = Constraint(expr= m.x9 - m.b144 <= 0) m.c58 = Constraint(expr= m.x10 - m.b145 <= 0) m.c59 = Constraint(expr= m.x11 - m.b146 <= 0) m.c60 = Constraint(expr= m.x12 - m.b147 <= 0) m.c61 = Constraint(expr= m.x13 - m.b148 <= 0) m.c62 = Constraint(expr= m.x14 - m.b149 <= 0) m.c63 = Constraint(expr= m.x15 - m.b150 <= 0) m.c64 = Constraint(expr= m.x16 - m.b151 <= 0) m.c65 = Constraint(expr= m.x17 - m.b152 <= 0) m.c66 = Constraint(expr= m.x18 - m.b153 <= 0) m.c67 = Constraint(expr= m.x19 - m.b154 <= 0) m.c68 = Constraint(expr= m.x20 - m.b155 <= 0) m.c69 = Constraint(expr= m.x21 - m.b156 <= 0) m.c70 = Constraint(expr= m.x22 - m.b157 <= 0) m.c71 = Constraint(expr= m.x23 - m.b158 <= 0) m.c72 = Constraint(expr= m.x24 - m.b159 <= 0) m.c73 = Constraint(expr= m.x25 - m.b160 <= 0) m.c74 = Constraint(expr= m.x26 - m.b161 <= 0) m.c75 = Constraint(expr= m.x27 - m.b162 <= 0) m.c76 = Constraint(expr= m.x28 - m.b163 <= 0) m.c77 = Constraint(expr= m.x29 - m.b164 <= 0) m.c78 = Constraint(expr= m.x30 - m.b165 <= 0) m.c79 = Constraint(expr= m.x31 - m.b166 <= 0) m.c80 = Constraint(expr= m.x32 - m.b167 <= 0) m.c81 = Constraint(expr= m.x33 - m.b168 <= 0) m.c82 = Constraint(expr= m.x34 - m.b169 <= 0) m.c83 = Constraint(expr= m.x35 - m.b170 <= 0) m.c84 = Constraint(expr= m.x36 - m.b171 <= 0) m.c85 = Constraint(expr= m.x37 - m.b172 <= 0) m.c86 = Constraint(expr= m.x38 - m.b173 <= 0) m.c87 = Constraint(expr= m.x39 - m.b174 <= 0) m.c88 = Constraint(expr= m.x40 - m.b175 <= 0) m.c89 = Constraint(expr= m.x41 - m.b176 <= 0) m.c90 = Constraint(expr= m.x42 - m.b177 <= 0) m.c91 = Constraint(expr= m.x43 - m.b178 <= 0) m.c92 = Constraint(expr= m.x44 - m.b179 <= 0) m.c93 = Constraint(expr= m.x45 - m.b180 <= 0) m.c94 = Constraint(expr= m.x46 - m.b181 <= 0) m.c95 = Constraint(expr= m.x47 - m.b182 <= 0) m.c96 = Constraint(expr= m.x48 - m.b183 <= 0) m.c97 = Constraint(expr= m.x49 - m.b184 <= 0) m.c98 = Constraint(expr= m.x50 - m.b185 <= 0) m.c99 = Constraint(expr= m.x51 - m.b186 <= 0) m.c100 = Constraint(expr= m.x52 - m.b187 <= 0) m.c101 = Constraint(expr= m.x53 - m.b188 <= 0) m.c102 = Constraint(expr= m.x54 - m.b189 <= 0) m.c103 = Constraint(expr= m.x55 - m.b190 <= 0) m.c104 = Constraint(expr= m.x56 - m.b191 <= 0) m.c105 = Constraint(expr= m.x57 - m.b192 <= 0) m.c106 = Constraint(expr= m.x58 - m.b193 <= 0) m.c107 = Constraint(expr= m.x59 - m.b194 <= 0) m.c108 = Constraint(expr= m.x60 - m.b195 <= 0) m.c109 = Constraint(expr= m.x61 - m.b196 <= 0) m.c110 = Constraint(expr= m.x62 - m.b197 <= 0) m.c111 = Constraint(expr= m.x63 - m.b198 <= 0) m.c112 = Constraint(expr= m.x64 - m.b199 <= 0) m.c113 = Constraint(expr= m.x65 - m.b200 <= 0) m.c114 = Constraint(expr= m.x66 - m.b201 <= 0) m.c115 = Constraint(expr= m.x67 - m.b202 <= 0) m.c116 = Constraint(expr= m.x68 - m.b203 <= 0) m.c117 = Constraint(expr= m.x69 - m.b204 <= 0) m.c118 = Constraint(expr= m.x70 - m.b205 <= 0) m.c119 = Constraint(expr= m.x71 - m.b206 <= 0) m.c120 = Constraint(expr= m.x72 - m.b207 <= 0) m.c121 = Constraint(expr= m.x73 - m.b208 <= 0) m.c122 = Constraint(expr= m.x74 - m.b209 <= 0) m.c123 = Constraint(expr= m.x75 - m.b210 <= 0) m.c124 = Constraint(expr= m.x76 - m.b211 <= 0) m.c125 = Constraint(expr= m.x77 - m.b212 <= 0) m.c126 = Constraint(expr= m.x78 - m.b213 <= 0) m.c127 = Constraint(expr= m.x79 - m.b214 <= 0) m.c128 = Constraint(expr= m.x80 - m.b215 <= 0) m.c129 = Constraint(expr= m.x81 - m.b216 <= 0) m.c130 = Constraint(expr= m.x82 - m.b217 <= 0) m.c131 = Constraint(expr= m.x83 - m.b218 <= 0) m.c132 = Constraint(expr= m.x84 - m.b219 <= 0) m.c133 = Constraint(expr= m.x85 - m.b220 <= 0) m.c134 = Constraint(expr= m.x86 - m.b221
""" Sweeps all the apple pick bagfiles and saves all the plots from a certain variable in a pdf, and for a certain label (e.g. Succesful or Failure) Created by: <EMAIL> References: https://stackoverflow.com/questions/38938454/python-saving-multiple-subplot-figures-to-pdf """ # ... System related packages import os import time from os.path import exists from tqdm import tqdm # ... File related packages import pandas as pd import csv import bagpy from bagpy import bagreader # ... Math related packages import math import numpy as np from scipy.ndimage.filters import gaussian_filter, median_filter # ... Plot related packages import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages import seaborn as sns # sns.set() # Setting seaborn as default style even if use only matplotlib plt.close('all') def broken_axes(plot_number, axrray, time, variables, legends, e, f, g, h, title, y_label, label, y_lim_max, y_lim_min): """ Creates a plot with two subplots and a break point in the x-axis. This is very useful when a plot is very long and you only need to focus on a certain area... in this case in two areas: Grasp and Pick Reference: https://stackoverflow.com/questions/32185411/break-in-x-axis-of-matplotlib :param axrray: :param plot_number: :param y_label: :param label: Label of the apple pick: Successful or Failure :param time: :param variables: :param legends: :param e: :param f: :param g: :param h: :return: """ # # fig, (ax, ax2) = plt.subplots(1, 2, sharey=True, facecolor='w', figsize=(16, 9)) # figu, (ax, ax2) = plt.subplots(1, 2, sharey=True, facecolor='w') # Just to account the fact that we started numbering in 1 pos = (plot_number - 1) % 4 # y_max is a reference number to know where to place the annotation within the plot y_max = [] for i in range(len(variables)): axrray[pos, 0].plot(time, variables[i], label=legends[i]) axrray[pos, 1].plot(time, variables[i], label=legends[i]) y_max.append(max(variables[i])) ax = axrray[pos, 0] ax2 = axrray[pos, 1] # Place the labels 'Grasp' and 'Pick' at the top of the pdf page if pos == 0: ax.legend() ax2.legend() ymax = 1.7 * max(y_max) ax.annotate('Grasp', xy=(e, ymax)) ax2.annotate('Pick', xy=(g, ymax)) ax.grid() ax2.grid() ax.set_xlim(e - 0.5, f + 0.5) ax2.set_xlim(g - 0.5, h + 0.5) ax.set_ylim(y_lim_max, y_lim_min) ax2.set_ylim(y_lim_max, y_lim_min) ax.spines['right'].set_visible(False) ax2.spines['left'].set_visible(False) ax.set_ylabel(y_label) ax.yaxis.tick_left() # ax.tick_params(labelright='off') ax2.tick_params(labelleft='off') ax2.yaxis.tick_right() # d = .015 d = .02 kwargs = dict(transform=ax.transAxes, color='k', clip_on=False) ax.plot((1 - d, 1 + d), (-d, +d), **kwargs) ax.plot((1 - d, 1 + d), (1 - d, 1 + d), **kwargs) kwargs.update(transform=ax2.transAxes) ax2.plot((-d, +d), (1 - d, 1 + d), **kwargs) ax2.plot((-d, +d), (-d, +d), **kwargs) # Place the label 'Time' at the bottom of the pdf page if pos == 3: plt.xlabel('Elapsed time [sec]') # plt.suptitle(title + ' ' + f'$\\bf{label}$') ax.set_title(title + ' ' + f'$\\bf{label}$', size=8, loc='left') # # plt.savefig('plots/' + title + ' ' + label + '.png') def elapsed_time(variable, time_stamp): """ Simplifies the time axis, by subtracting the initial time. This is useful because usually the time stamps are given in a long format (i.e. in the order of 1e9) :param variable: Reference variable to obtain the size of the time array :param time_stamp: The time stamp array that is going to be simplified :return: Simplified time as Elapsed Time """ elapsed = [None] * len(variable) for i in range(len(variable)): elapsed[i] = time_stamp[i] - time_stamp[0] return elapsed def event_times(trial_events_elapsed_time, event_indexes, f1, f2, f3, arm): """ Finds the times at which the hand's servos and arms motors start and stop moving. These instants are important because they correspond to the periods when the Grasping and Pick happen. Therefore, we would focus on the data within these values, and disregard the rest. :param trial_events_elapsed_time: :param event_indexes: :param f1: Finger 1 [time, speed] :param f2: Finger 2 [time, speed] :param f3: Finger 3 [time, speed] :param arm: Arm Joints' [time, speed] :return: All the special instants: open hand, closed hand, move arm, stop arm """ # Initial Open Hand Event open_hand_event_index = event_indexes[1] open_hand_event_time = trial_events_elapsed_time[open_hand_event_index] f1_state_elapsed_time = f1[0] f1_state_speed = f1[1] f2_state_elapsed_time = f2[0] f2_state_speed = f2[1] f3_state_elapsed_time = f3[0] f3_state_speed = f3[1] arm_joints_elapsed_time = arm[0] joint_0_spd = arm[1] joint_1_spd = arm[2] joint_2_spd = arm[3] joint_3_spd = arm[4] joint_4_spd = arm[5] joint_5_spd = arm[6] if len(event_indexes) == 2: # This was the case of real_apple_pick11 pulling_apple_event_index = event_indexes[1] final_open_hand_event_index = event_indexes[1] closing_hand_event_index = event_indexes[1] elif len(event_indexes) == 4: # This was the case of the real_apple_pick 1 to 10 pulling_apple_event_index = event_indexes[3] final_open_hand_event_index = event_indexes[3] closing_hand_event_index = event_indexes[2] elif len(event_indexes) == 5: # This was the case of the real_apple_pick 12 to 33 pulling_apple_event_index = event_indexes[3] final_open_hand_event_index = event_indexes[4] closing_hand_event_index = event_indexes[2] elif len(event_indexes) == 6: # This was the case of the real_apple_pick 34 to 77 pulling_apple_event_index = event_indexes[3] final_open_hand_event_index = event_indexes[5] closing_hand_event_index = event_indexes[2] elif len(event_indexes) == 3: # This is for the last improvement pulling_apple_event_index = event_indexes[0] final_open_hand_event_index = event_indexes[1] closing_hand_event_index = event_indexes[2] # Be careful when moving from ROS events into hand's, because they don't have the same indexes pulling_apple_event_time = trial_events_elapsed_time[pulling_apple_event_index] final_open_hand_event_time = trial_events_elapsed_time[final_open_hand_event_index] closing_hand_event_time = trial_events_elapsed_time[closing_hand_event_index] a = open_hand_event_time b = closing_hand_event_time c = pulling_apple_event_time d = final_open_hand_event_time # Servos Start Moving Event # Find the instance when the fingers' motors start moving (index and value) # print('Point to start evaluating: ', closing_hand_event_time) i1, e1 = find_instance(f1_state_speed, f1_state_elapsed_time, 0.01, closing_hand_event_time, 'starts') i2, e2 = find_instance(f2_state_speed, f2_state_elapsed_time, 0.01, closing_hand_event_time, 'starts') i3, e3 = find_instance(f3_state_speed, f3_state_elapsed_time, 0.01, closing_hand_event_time, 'starts') e = min(e1, e2, e3) # print('\nFinger servos start moving at: %.2f, %.2f and %.2f ' % (e1, e2, e3)) # print('The time delay between event and servo moving is: %.2f' % (e - b)) # Servos Stop Moving Event # Find the instance when the finger's motors stop indeed moving j1, f1 = find_instance(f1_state_speed, f1_state_elapsed_time, 0.01, e, 'stops') j2, f2 = find_instance(f2_state_speed, f2_state_elapsed_time, 0.01, e, 'stops') j3, f3 = find_instance(f3_state_speed, f3_state_elapsed_time, 0.01, e, 'stops') f = max(f1, f2, f3) # print('Finger servos stop moving at: %.2f, %.2f and %.2f' % (f1, f2, f3)) if len(event_indexes) == 4: c = f k0, g0 = find_instance(joint_0_spd, arm_joints_elapsed_time, 0.01, c, 'starts') k1, g1 = find_instance(joint_1_spd, arm_joints_elapsed_time, 0.01, c, 'starts') k2, g2 = find_instance(joint_2_spd, arm_joints_elapsed_time, 0.01, c, 'starts') k3, g3 = find_instance(joint_3_spd, arm_joints_elapsed_time, 0.01, c, 'starts') k4, g4 = find_instance(joint_4_spd, arm_joints_elapsed_time, 0.01, c, 'starts') k5, g5 = find_instance(joint_5_spd, arm_joints_elapsed_time, 0.01, c, 'starts') g = min(g0, g1, g2, g3, g4, g5) # print( # "The times at which the UR5 joints start are: %.2f, %.2f, %2.f, %2.f, %.2f and %.2f" % (g0, g1, g2, g3, g4, g5)) # print('\nUR5 starts moving at: %.2f ' % g) if len(event_indexes) == 4: c = g k = max(g0, g1, g2, g3, g4, g5) # print("The values of k are: %.2f, %.2f, %2.f, %2.f, %.2f and %.2f" % (k0, k1, k2, k3, k4, k5)) # Arm Stops pulling apple l0, h0 = find_instance(joint_0_spd, arm_joints_elapsed_time, 0.001, g, 'stops') l1, h1 = find_instance(joint_1_spd, arm_joints_elapsed_time, 0.001, g, 'stops') l2, h2 = find_instance(joint_2_spd, arm_joints_elapsed_time, 0.001, g, 'stops') l3, h3 = find_instance(joint_3_spd, arm_joints_elapsed_time, 0.001, g, 'stops') l4, h4 = find_instance(joint_4_spd, arm_joints_elapsed_time, 0.001, g, 'stops') l5, h5 = find_instance(joint_5_spd, arm_joints_elapsed_time, 0.001, g, 'stops') h = max(h0, h1, h2, h3, h4, h5) # print( # "The times at which the UR5 joints stop are: %.2f, %.2f, %2.f, %2.f, %.2f and %.2f" % (h0, h1, h2, h3, h4, h5)) # print('UR5 stops moving at: %.2f' % h) # A simpler approach: just by using the states. # Grasp Events start_grasp_apple_event_index = event_indexes[0] e = trial_events_elapsed_time[start_grasp_apple_event_index] f = e + 2.0 # Pick Events start_pulling_apple_event_index = event_indexes[1] finish_pulling_apple_event_index = event_indexes[2] g = trial_events_elapsed_time[start_pulling_apple_event_index] h = trial_events_elapsed_time[finish_pulling_apple_event_index] return a, b, c, d, e, f, g, h def filter_variables(variables, parameter): """ This function is meant to filter a list of lists, because usually these built-in functions don't do it """ # Median Filter variables_filtered = [] for i in range(len(variables)): variable_filtered = median_filter(variables[i], parameter) variables_filtered.append(variable_filtered) return variables_filtered def find_instance(array, time_array, threshold, initial_time, case='starts'): """ There are also some events that are important to spot such as when the fingers start moving indeed Since these are not published by the hand, we'll find those instances by finding
#fd[p].append("NAi1") fd[p].append('') else: #fd[p].append("emmean nai") fd[p].append('') if gf in v[s]: if sf in v[s][gf]['pec50mean']: fd[p].append(v[s][gf]['pec50mean'][sf]) else: #fd[p].append("NAi1") fd[p].append('') else: #fd[p].append("pec50mean nai") fd[p].append('') if gf in v[s]: if sf in v[s][gf]['emsem']: fd[p].append(v[s][gf]['emsem'][sf]) else: #fd[p].append("NAi1") fd[p].append('') else: #fd[p].append("emsem nai") fd[p].append('') if gf in v[s]: if sf in v[s][gf]['pec50sem']: fd[p].append(v[s][gf]['pec50sem'][sf]) else: #fd[p].append("NAi1") fd[p].append('') else: #fd[p].append("pec50sem nai") fd[p].append('') # Loop over Bouvier s = 'Bouvier' for gf in distinct_g_families: if gf in v[s]: if v[s][gf]['max'] > threshold_primary_bouvier: fd[p].append("primary") elif v[s][gf]['max'] > threshold_secondary_bouvier: fd[p].append("secondary") else: fd[p].append("NC") else: fd[p].append('NA') # This last empty one means not-available, NOT no-coupling # Last bit adds values to subfamilies (i.e. subtypes) for gf, sfs in distinct_g_subunit_families.items(): for sf in sfs: if gf in v[s]: if sf in v[s][gf]['emdn']: fd[p].append(v[s][gf]['emdn'][sf]) else: #fd[p].append("NAb1") fd[p].append('') else: #fd[p].append("emdn nab") fd[p].append('') if gf in v[s]: if sf in v[s][gf]['pec50dn']: fd[p].append(v[s][gf]['pec50dn'][sf]) else: #fd[p].append("NAb1") fd[p].append('') else: #fd[p].append("pec50dn nab") fd[p].append('') if gf in v[s]: if sf in v[s][gf]['emmean']: fd[p].append(v[s][gf]['emmean'][sf]) else: #fd[p].append("NAb1") fd[p].append('') else: #fd[p].append("emmean nab") fd[p].append('') if gf in v[s]: if sf in v[s][gf]['pec50mean']: fd[p].append(v[s][gf]['pec50mean'][sf]) else: #fd[p].append("NAb1") fd[p].append('') else: #fd[p].append("pec50mean nab") fd[p].append('') if gf in v[s]: if sf in v[s][gf]['emsem']: fd[p].append(v[s][gf]['emsem'][sf]) else: #fd[p].append("NAb1") fd[p].append('') else: #fd[p].append("emsem nab") fd[p].append('') if gf in v[s]: if sf in v[s][gf]['pec50sem']: fd[p].append(v[s][gf]['pec50sem'][sf]) else: #fd[p].append("NAb1") fd[p].append('') else: #fd[p].append("pec50sem nab") fd[p].append('') # max Values for Gs, Gi/Go, Gq/G11, G12/13 and source Inoue s = 'Aska' for gf in distinct_g_families: if gf in v[s]: # fd[p].append(v[s][gf]['max'] + 100) fd[p].append(v[s][gf]['max']) else: #fd[p].append("NAi max") fd[p].append('') # max Values for Gs, Gi/Go, Gq/G11, G12/13 and source Bouvier s = 'Bouvier' for gf in distinct_g_families: if gf in v[s]: #fd[p].append(v[s][gf]['max'] + 200) fd[p].append(v[s][gf]['max']) else: #fd[p].append("NAb max") fd[p].append('') return fd def GProtein(request, dataset="GuideToPharma"): name_of_cache = 'gprotein_statistics_{}'.format(dataset) context = cache.get(name_of_cache) if context == None: context = OrderedDict() i = 0 gproteins = ProteinGProtein.objects.all().prefetch_related('proteingproteinpair_set') slug_translate = {'001': "ClassA", '002': "ClassB1", '004': "ClassC", '006': "ClassF"} selectivitydata = {} for slug in slug_translate.keys(): jsondata = {} for gp in gproteins: # ps = gp.proteingproteinpair_set.all() ps = gp.proteingproteinpair_set.filter(protein__family__slug__startswith=slug, source=dataset).prefetch_related('protein') # print(ps,len(ps)) if ps: jsondata[str(gp)] = [] for p in ps: if dataset == "Aska" and p.log_rai_mean < -1: continue if str(p.protein.entry_name).split('_')[0].upper() not in selectivitydata: selectivitydata[str(p.protein.entry_name).split('_')[0].upper()] = [] selectivitydata[str(p.protein.entry_name).split('_')[0].upper()].append(str(gp)) # print(p.protein.family.parent.parent.parent) jsondata[str(gp)].append(str(p.protein.entry_name) + '\n') jsondata[str(gp)] = ''.join(jsondata[str(gp)]) context[slug_translate[slug]] = jsondata context["selectivitydata"] = selectivitydata cache.set(name_of_cache, context, 60 * 60 * 24 * 7) # seven days timeout on cache return render(request, 'signprot/gprotein.html', context ) # @cache_page(60*60*24*2) # 2 days caching def couplings(request, template_name='signprot/coupling_browser.html'): """ Presents coupling data between Receptors and G-proteins. Data coming from Guide to Pharmacology, <NAME> and <NAME> """ context = OrderedDict() threshold_primary = 0.5 # -0.1 threshold_secondary = 0.01 # -1 proteins = Protein.objects.filter(sequence_type__slug='wt', family__slug__startswith='00', species__common_name='Human').all().prefetch_related('family') data = {} class_names = {} family_names = {} for p in proteins: p_class = p.family.slug.split('_')[0] if p_class not in class_names: class_names[p_class] = p.family.parent.parent.parent.name family_names[p_class] = p.family.parent.name p_class_name = class_names[p_class].replace('Class','').strip() p_family_name = family_names[p_class].replace('receptors','').strip() p_accession = p.accession data[p.entry_short()] = {'class': p_class_name, 'family': p_family_name, 'accession': p_accession, 'pretty': p.short(), 'GuideToPharma': {}, 'Aska': {}, 'Bouvier': {}} distinct_g_families = [] distinct_g_subunit_families = {} distinct_sources = ['GuideToPharma', 'Aska', 'Bouvier'] couplings = ProteinGProteinPair.objects.all().prefetch_related('protein', 'g_protein_subunit', 'g_protein') for c in couplings: p = c.protein.entry_short() s = c.source t = c.transduction m = c.emax_dnorm gf = c.g_protein.name gf = gf.replace(" family", "") if gf not in distinct_g_families: distinct_g_families.append(gf) distinct_g_subunit_families[gf] = [] if c.g_protein_subunit: g = c.g_protein_subunit.entry_name g = g.replace("_human", "") if g not in distinct_g_subunit_families[gf]: distinct_g_subunit_families[gf].append(g) distinct_g_subunit_families[gf] = sorted(distinct_g_subunit_families[gf]) if s not in data[p]: data[p][s] = {} if gf not in data[p][s]: data[p][s][gf] = {} # If transduction in GuideToPharma data if t: data[p][s][gf] = t else: if 'subunits' not in data[p][s][gf]: data[p][s][gf] = {'subunits': {}, 'best': 0.00} if m is None: continue data[p][s][gf]['subunits'][g] = round(Decimal(m), 2) if round(Decimal(m), 2) == -0.00: data[p][s][gf]['subunits'][g] = 0.00 # get the lowest number into 'best' if m > data[p][s][gf]['best']: data[p][s][gf]['best'] = round(Decimal(m), 2) fd = {} # final data # distinct_g_families = sorted(distinct_g_families) distinct_g_families = ['Gs', 'Gi/Go', 'Gq/G11', 'G12/G13'] distinct_g_subunit_families = OrderedDict( [('Gs', ['gnas2', 'gnal']), ('Gi/Go', ['gnai1', 'gnai2', 'gnai3', 'gnao', 'gnaz']), ('Gq/G11', ['gnaq', 'gna11', 'gna14', 'gna15']), ('G12/G13', ['gna12', 'gna13'])]) # This for loop, which perhaps should be a function in itself, perhaps an instance of a Couplings class, does # the job of merging together two data-sets, that of the GuideToPharma and Asuka's results. for p, v in data.items(): fd[p] = [v['class'], v['family'], v['accession'], p, v['pretty']] s = 'GuideToPharma' # Merge for gf in distinct_g_families: values = [] if 'GuideToPharma' in v and gf in v['GuideToPharma']: values.append(v['GuideToPharma'][gf]) if 'Aska' in v and gf in v['Aska']: best = v['Aska'][gf]['best'] if best > threshold_primary: values.append('primary') elif best > threshold_secondary: values.append('secondary') if 'Bouvier' in v and gf in v['Bouvier']: best = v['Bouvier'][gf]['best'] if best > threshold_primary: values.append('primary') elif best > threshold_secondary: values.append('secondary') if 'primary' in values: fd[p].append('primary') elif 'secondary' in values: fd[p].append('secondary') else: fd[p].append('') s = 'GuideToPharma' # First loop over GuideToPharma for gf in distinct_g_families: if gf in v[s]: fd[p].append(v[s][gf]) else: fd[p].append("") s = 'Aska' for gf in distinct_g_families: if gf in v[s]: if v[s][gf]['best'] > threshold_primary: fd[p].append("primary") elif v[s][gf]['best'] > threshold_secondary: fd[p].append("secondary") else: fd[p].append("No coupling") else: fd[p].append("") s = 'Bouvier' for gf in distinct_g_families: if gf in v[s]: if v[s][gf]['best'] > threshold_primary: fd[p].append("primary") elif v[s][gf]['best'] > threshold_secondary: fd[p].append("secondary") else: fd[p].append("No coupling") else: fd[p].append("") for gf, sfs in distinct_g_subunit_families.items(): for sf in sfs: if gf in v[s]: if sf in v[s][gf]['subunits']: fd[p].append(v[s][gf]['subunits'][sf]) else: fd[p].append("") else: fd[p].append("") context['data'] = fd context['distinct_gf'] = distinct_g_families context['distinct_sf'] = distinct_g_subunit_families return render(request, template_name, context ) @cache_page(60 * 60 * 24 * 2) def familyDetail(request, slug): # get family pf = ProteinFamily.objects.get(slug=slug) # get family list ppf = pf families = [ppf.name] while ppf.parent.parent: families.append(ppf.parent.name) ppf = ppf.parent families.reverse() # number of proteins proteins = Protein.objects.filter(family__slug__startswith=pf.slug, sequence_type__slug='wt') no_of_proteins = proteins.count() no_of_human_proteins = Protein.objects.filter(family__slug__startswith=pf.slug, species__id=1, sequence_type__slug='wt').count() list_proteins = list(proteins.values_list('pk', flat=True)) # get structures of this family structures = SignprotStructure.objects.filter(protein__family__slug__startswith=slug) complex_structures = SignprotComplex.objects.filter(protein__family__slug__startswith=slug) mutations = MutationExperiment.objects.filter(protein__in=proteins).prefetch_related('residue__generic_number', 'exp_qual', 'ligand') mutations_list = {} for mutation in mutations: if not mutation.residue.generic_number: continue # cant map those without display numbers if mutation.residue.generic_number.label not in mutations_list: mutations_list[ mutation.residue.generic_number.label] = [] if mutation.ligand: ligand = mutation.ligand.name else: ligand = '' if mutation.exp_qual: qual = mutation.exp_qual.qual else: qual = '' mutations_list[mutation.residue.generic_number.label].append( [mutation.foldchange, ligand.replace("'", "\\'"), qual]) interaction_list = {} ###FIXME - always empty try: pc = ProteinConformation.objects.get(protein__family__slug=slug, protein__sequence_type__slug='consensus') except ProteinConformation.DoesNotExist: try: pc = ProteinConformation.objects.get(protein__family__slug=slug, protein__species_id=1, protein__sequence_type__slug='wt') except: pc = None p = None p = pc.protein residues = Residue.objects.filter(protein_conformation=pc).order_by('sequence_number').prefetch_related( 'protein_segment', 'generic_number', 'display_generic_number') jsondata = {} jsondata_interaction = {} for r in residues: if r.generic_number: if r.generic_number.label in mutations_list: jsondata[r.sequence_number] = [mutations_list[r.generic_number.label]] if r.generic_number.label in interaction_list: jsondata_interaction[r.sequence_number] = interaction_list[r.generic_number.label] # process residues and return them in chunks of 10 # this is done for easier scaling on smaller screens chunk_size = 10 r_chunks = [] r_buffer = [] last_segment = False border = False title_cell_skip = 0 for i, r in enumerate(residues): # title of segment to be written out for the first residue in each segment segment_title = False # keep track of last residues segment (for marking borders) if r.protein_segment.slug != last_segment: last_segment = r.protein_segment.slug border = True # if on a border, is there room to write out the title? If not, write title in next chunk if i == 0 or (border and len(last_segment) <= (chunk_size - i % chunk_size)): segment_title = True border = False title_cell_skip += len(last_segment) # skip cells following title (which has colspan > 1) if i and i % chunk_size == 0: r_chunks.append(r_buffer) r_buffer = [] r_buffer.append((r, segment_title, title_cell_skip)) # update cell skip counter if title_cell_skip > 0: title_cell_skip -= 1 if r_buffer: r_chunks.append(r_buffer) context = {'pf': pf, 'families': families, 'structures': structures, 'no_of_proteins': no_of_proteins, 'no_of_human_proteins': no_of_human_proteins, 'mutations': mutations, 'r_chunks': r_chunks, 'chunk_size': chunk_size, 'p': p, 'complex_structures': complex_structures} return render(request, 'signprot/family_details.html', context ) @cache_page(60 * 60 * 24 * 2) def Ginterface(request, protein=None): residuelist = Residue.objects.filter(protein_conformation__protein__entry_name=protein).prefetch_related( 'protein_segment', 'display_generic_number', 'generic_number') SnakePlot = DrawSnakePlot( residuelist, "Class A (Rhodopsin)", protein, nobuttons=1) # TEST gprotein_residues
expected @pytest.mark.django_db @pytest.mark.parametrize( "dry_run, adjustment_type, adjustment_amount, expected_rent, expected_amount_left", [ # Save amount left # Discount (False, RentAdjustmentType.DISCOUNT, 100, Decimal(1827), Decimal(0)), (False, RentAdjustmentType.DISCOUNT, 10000, Decimal(0), Decimal(8073)), # Increase (False, RentAdjustmentType.INCREASE, 100, Decimal(2027), Decimal(0)), (False, RentAdjustmentType.INCREASE, 10000, Decimal(11927), Decimal(0)), # Don't save amount left # Discount (True, RentAdjustmentType.DISCOUNT, 100, Decimal(1827), Decimal(100)), (True, RentAdjustmentType.DISCOUNT, 10000, Decimal(0), Decimal(10000)), # Increase (True, RentAdjustmentType.INCREASE, 100, Decimal(2027), Decimal(100)), (True, RentAdjustmentType.INCREASE, 10000, Decimal(11927), Decimal(10000)), ], ) def test_adjustment_type_amount_total( lease_test_data, rent_factory, contract_rent_factory, rent_adjustment_factory, dry_run, adjustment_type, adjustment_amount, expected_rent, expected_amount_left, ): lease = lease_test_data["lease"] rent = rent_factory( lease=lease, cycle=RentCycle.JANUARY_TO_DECEMBER, due_dates_type=DueDatesType.FIXED, due_dates_per_year=1, ) contract_rent = contract_rent_factory( rent=rent, intended_use_id=1, amount=Decimal(100), period=PeriodType.PER_YEAR, base_amount=Decimal(100), base_amount_period=PeriodType.PER_YEAR, ) rent_adjustment = rent_adjustment_factory( rent=rent, intended_use=contract_rent.intended_use, type=adjustment_type, start_date=None, end_date=None, amount_type=RentAdjustmentAmountType.AMOUNT_TOTAL, full_amount=adjustment_amount, amount_left=adjustment_amount, ) range_start = date(year=2018, month=1, day=1) range_end = date(year=2018, month=12, day=31) calculation_result = rent.get_amount_for_date_range( range_start, range_end, dry_run=dry_run ) assert calculation_result.get_total_amount() == expected_rent rent_adjustment = RentAdjustment.objects.get(pk=rent_adjustment.id) assert rent_adjustment.amount_left == expected_amount_left @pytest.mark.django_db @pytest.mark.parametrize( "adjustment_start_date1, adjustment_end_date1, adjustment_type1, adjustment_amount1, " "adjustment_start_date2, adjustment_end_date2, adjustment_type2, adjustment_amount2, expected", [ ( date(year=2018, month=1, day=1), # Adjustment 1 start date date(year=2018, month=6, day=30), # Adjustment 1 end date RentAdjustmentType.DISCOUNT, # Adjustment 1 type 50, # Adjustment 1 amount date(year=2018, month=7, day=1), # Adjustment 2 start date date(year=2018, month=12, day=31), # Adjustment 2 end date RentAdjustmentType.DISCOUNT, # Adjustment 2 type 50, # Adjustment 2 amount Decimal(600), ), ( date(year=2018, month=1, day=1), # Adjustment 1 start date date(year=2018, month=12, day=31), # Adjustment 1 end date RentAdjustmentType.DISCOUNT, # Adjustment 1 type 50, # Adjustment 1 amount date(year=2018, month=1, day=1), # Adjustment 2 start date date(year=2018, month=12, day=31), # Adjustment 2 end date RentAdjustmentType.DISCOUNT, # Adjustment 2 type 50, # Adjustment 2 amount Decimal(300), ), ( date(year=2018, month=3, day=1), # Adjustment 1 start date date(year=2018, month=8, day=31), # Adjustment 1 end date RentAdjustmentType.DISCOUNT, # Adjustment 1 type 50, # Adjustment 1 amount date(year=2018, month=5, day=1), # Adjustment 2 start date date(year=2018, month=10, day=31), # Adjustment 2 end date RentAdjustmentType.DISCOUNT, # Adjustment 2 type 50, # Adjustment 2 amount Decimal(700), ), ], ) def test_get_amount_for_date_range_adjustments_two_in_series( lease_test_data, rent_factory, contract_rent_factory, rent_adjustment_factory, adjustment_start_date1, adjustment_end_date1, adjustment_type1, adjustment_amount1, adjustment_start_date2, adjustment_end_date2, adjustment_type2, adjustment_amount2, expected, ): lease = lease_test_data["lease"] rent = rent_factory( lease=lease, type=RentType.FIXED, cycle=RentCycle.JANUARY_TO_DECEMBER, due_dates_type=DueDatesType.FIXED, due_dates_per_year=1, ) contract_rent = contract_rent_factory( rent=rent, intended_use_id=1, amount=Decimal(1200), period=PeriodType.PER_YEAR, base_amount=Decimal(100), base_amount_period=PeriodType.PER_YEAR, ) rent_adjustment_factory( rent=rent, intended_use=contract_rent.intended_use, type=adjustment_type1, start_date=adjustment_start_date1, end_date=adjustment_end_date1, amount_type=RentAdjustmentAmountType.PERCENT_PER_YEAR, full_amount=adjustment_amount1, ) rent_adjustment_factory( rent=rent, intended_use=contract_rent.intended_use, type=adjustment_type2, start_date=adjustment_start_date2, end_date=adjustment_end_date2, amount_type=RentAdjustmentAmountType.PERCENT_PER_YEAR, full_amount=adjustment_amount2, ) range_start = date(year=2018, month=1, day=1) range_end = date(year=2018, month=12, day=31) calculation_result = rent.get_amount_for_date_range(range_start, range_end) assert calculation_result.get_total_amount() == expected @pytest.mark.django_db @pytest.mark.parametrize( "adjustment_start_date1, adjustment_end_date1, adjustment_type1, adjustment_amount1, " "adjustment_start_date2, adjustment_end_date2, adjustment_type2, adjustment_amount2, expected", [ ( date(year=2018, month=1, day=1), # Adjustment 1 start date date(year=2018, month=6, day=30), # Adjustment 1 end date RentAdjustmentType.DISCOUNT, # Adjustment 1 type 50, # Adjustment 1 amount date(year=2018, month=7, day=1), # Adjustment 2 start date date(year=2018, month=12, day=31), # Adjustment 2 end date RentAdjustmentType.DISCOUNT, # Adjustment 2 type 50, # Adjustment 2 amount Decimal(600), ), ( date(year=2018, month=1, day=1), # Adjustment 1 start date date(year=2018, month=12, day=31), # Adjustment 1 end date RentAdjustmentType.DISCOUNT, # Adjustment 1 type 50, # Adjustment 1 amount date(year=2018, month=1, day=1), # Adjustment 2 start date date(year=2018, month=12, day=31), # Adjustment 2 end date RentAdjustmentType.DISCOUNT, # Adjustment 2 type 50, # Adjustment 2 amount Decimal(300), ), ( date(year=2018, month=3, day=1), # Adjustment 1 start date date(year=2018, month=8, day=31), # Adjustment 1 end date RentAdjustmentType.DISCOUNT, # Adjustment 1 type 50, # Adjustment 1 amount date(year=2018, month=5, day=1), # Adjustment 2 start date date(year=2018, month=10, day=31), # Adjustment 2 end date RentAdjustmentType.DISCOUNT, # Adjustment 2 type 50, # Adjustment 2 amount Decimal(700), ), ], ) def test_get_amount_for_date_range_adjustments_two_in_series_fixed_initial_year_rent( lease_test_data, rent_factory, contract_rent_factory, fixed_initial_year_rent_factory, rent_adjustment_factory, adjustment_start_date1, adjustment_end_date1, adjustment_type1, adjustment_amount1, adjustment_start_date2, adjustment_end_date2, adjustment_type2, adjustment_amount2, expected, ): lease = lease_test_data["lease"] rent = rent_factory( lease=lease, type=RentType.FIXED, cycle=RentCycle.JANUARY_TO_DECEMBER, due_dates_type=DueDatesType.FIXED, due_dates_per_year=1, ) fixed_initial_year_rent = fixed_initial_year_rent_factory( rent=rent, intended_use_id=1, amount=Decimal(1200) ) rent_adjustment_factory( rent=rent, intended_use=fixed_initial_year_rent.intended_use, type=adjustment_type1, start_date=adjustment_start_date1, end_date=adjustment_end_date1, amount_type=RentAdjustmentAmountType.PERCENT_PER_YEAR, full_amount=adjustment_amount1, ) rent_adjustment_factory( rent=rent, intended_use=fixed_initial_year_rent.intended_use, type=adjustment_type2, start_date=adjustment_start_date2, end_date=adjustment_end_date2, amount_type=RentAdjustmentAmountType.PERCENT_PER_YEAR, full_amount=adjustment_amount2, ) range_start = date(year=2018, month=1, day=1) range_end = date(year=2018, month=12, day=31) calculation_result = rent.get_amount_for_date_range(range_start, range_end) assert calculation_result.get_total_amount() == expected @pytest.mark.django_db @pytest.mark.parametrize( "adjustment_start_date1, adjustment_end_date1, adjustment_type1, adjustment_amount1, expected", [ ( date(year=2018, month=1, day=1), date(year=2018, month=6, day=30), RentAdjustmentType.DISCOUNT, 50, Decimal(900), ) ], ) def test_fixed_initial_year_rent_amount_for_date_range( lease_test_data, rent_factory, fixed_initial_year_rent_factory, rent_adjustment_factory, adjustment_start_date1, adjustment_end_date1, adjustment_type1, adjustment_amount1, expected, ): lease = lease_test_data["lease"] rent = rent_factory( lease=lease, type=RentType.FIXED, cycle=RentCycle.JANUARY_TO_DECEMBER, due_dates_type=DueDatesType.FIXED, due_dates_per_year=1, ) fixed_initial_year_rent = fixed_initial_year_rent_factory( rent=rent, intended_use_id=1, start_date=date(year=2018, month=1, day=1), end_date=date(year=2018, month=12, day=31), amount=Decimal(1200), ) rent_adjustment_factory( rent=rent, intended_use=fixed_initial_year_rent.intended_use, type=adjustment_type1, start_date=adjustment_start_date1, end_date=adjustment_end_date1, amount_type=RentAdjustmentAmountType.PERCENT_PER_YEAR, full_amount=adjustment_amount1, ) range_start = date(year=2018, month=1, day=1) range_end = date(year=2018, month=12, day=31) calculation_result = rent.fixed_initial_year_rent_amount_for_date_range( fixed_initial_year_rent.intended_use, range_start, range_end ) assert calculation_result.get_total_amount() == expected @pytest.mark.django_db @pytest.mark.parametrize( "rent_start_date, rent_end_date, period_start_date, period_end_date, expected", [ (None, None, None, None, True), ( None, None, date(year=1990, month=1, day=1), date(year=1990, month=1, day=1), True, ), ( None, None, date(year=2017, month=1, day=1), date(year=2019, month=12, day=31), True, ), ( date(year=2017, month=1, day=1), date(year=2019, month=12, day=31), date(year=2017, month=1, day=1), date(year=2019, month=12, day=31), True, ), ( date(year=2000, month=1, day=1), date(year=2000, month=12, day=31), date(year=1990, month=1, day=1), date(year=2020, month=1, day=1), True, ), ( date(year=1990, month=1, day=1), date(year=2020, month=1, day=1), date(year=2000, month=1, day=1), date(year=2000, month=12, day=31), True, ), ( date(year=2000, month=1, day=1), date(year=2000, month=12, day=31), date(year=1999, month=12, day=15), date(year=2000, month=1, day=15), True, ), ( date(year=2000, month=1, day=1), date(year=2000, month=12, day=31), date(year=2000, month=1, day=15), date(year=2000, month=2, day=15), True, ), ( date(year=2017, month=1, day=1), date(year=2019, month=12, day=31), date(year=2020, month=1, day=1), date(year=2020, month=12, day=31), False, ), ( date(year=1990, month=1, day=1), date(year=1990, month=1, day=1), date(year=2020, month=1, day=1), date(year=2020, month=12, day=31), False, ), ( date(year=1990, month=1, day=1), date(year=1990, month=1, day=1), date(year=1990, month=1, day=2), date(year=1990, month=1, day=2), False, ), ], ) def test_is_active_on_period( lease_test_data, rent_factory, rent_start_date, rent_end_date, period_start_date, period_end_date, expected, ): lease = lease_test_data["lease"] rent = rent_factory( lease=lease, cycle=RentCycle.JANUARY_TO_DECEMBER, due_dates_type=DueDatesType.FIXED, due_dates_per_year=1, start_date=rent_start_date, end_date=rent_end_date, ) assert rent.is_active_on_period(period_start_date, period_end_date) == expected @pytest.mark.django_db @pytest.mark.parametrize( "start_date1, end_date1, start_date2, end_date2, expected", [ ( date(year=2017, month=1, day=1), date(year=2019, month=12, day=31), date(year=2017, month=1, day=1), date(year=2019, month=12, day=31), [], ), ( date(year=2017, month=1, day=1), date(year=2017, month=12, day=31), date(year=2018, month=1, day=1), date(year=2018, month=3, day=31), [(date(2018, 4, 1), date(2018, 8, 31))], ), ( date(year=2018, month=1, day=1), date(year=2018, month=3, day=31), date(year=2018, month=8, day=1), date(year=2018, month=12, day=31), [(date(2018, 4, 1), date(2018, 7, 31))], ), ( date(year=2017, month=1, day=1), date(year=2018, month=6, day=30), date(year=2017, month=1, day=1), date(year=2018, month=6, day=30), [(date(2018, 7, 1), date(2018, 8, 31))], ), ( date(year=2017, month=1, day=1), date(year=2017, month=1, day=1), date(year=2017, month=1, day=1), date(year=2017, month=1, day=1), [], ), ( date(year=2019, month=1, day=1), date(year=2019, month=1, day=1), date(year=2019, month=1, day=1), date(year=2019, month=1, day=1), [], ), ( date(year=2018, month=3, day=1), date(year=2018, month=3, day=31), date(year=2018, month=3, day=1), date(year=2018, month=3, day=31), [(date(2018, 4, 1), date(2018, 8, 31))], ), ], ) def test_fixed_initial_year_rent_for_date_range_remaining_ranges( lease_test_data, rent_factory, contract_rent_factory, fixed_initial_year_rent_factory, start_date1, end_date1, start_date2, end_date2, expected, ): lease = lease_test_data["lease"] rent = rent_factory( lease=lease, cycle=RentCycle.JANUARY_TO_DECEMBER, due_dates_type=DueDatesType.FIXED, due_dates_per_year=1, ) contract_rent = contract_rent_factory( rent=rent, intended_use_id=1, amount=Decimal(100), period=PeriodType.PER_YEAR, base_amount=Decimal(100), base_amount_period=PeriodType.PER_YEAR, ) fixed_initial_year_rent_factory( rent=rent, intended_use=contract_rent.intended_use, amount=Decimal(100), start_date=start_date1, end_date=end_date1, ) fixed_initial_year_rent_factory( rent=rent, intended_use=contract_rent.intended_use, amount=Decimal(100), start_date=start_date2, end_date=end_date2, ) range_start = date(year=2018, month=3, day=1) range_end = date(year=2018, month=8, day=31) calculation_result = rent.fixed_initial_year_rent_amount_for_date_range( contract_rent.intended_use, range_start, range_end ) assert calculation_result.remaining_ranges == expected @pytest.mark.django_db @pytest.mark.parametrize( "rent_cycle, due_dates_per_year, billing_period, expected", [ ( RentCycle.JANUARY_TO_DECEMBER, 0, (date(year=2017, month=1, day=1), date(year=2017, month=6, day=1)), False, ), ( RentCycle.JANUARY_TO_DECEMBER, 1, (date(year=2017, month=1, day=1), date(year=2017, month=6, day=1)), False, ), ( RentCycle.JANUARY_TO_DECEMBER, 4, (date(year=2017, month=1, day=1), date(year=2017, month=6, day=1)), False, ), ( RentCycle.JANUARY_TO_DECEMBER, 12, (date(year=2017, month=1, day=1), date(year=2017, month=6, day=1)), False, ), ( RentCycle.JANUARY_TO_DECEMBER, 1, (date(year=2017, month=1, day=1), date(year=2017, month=12, day=31)), True, ), ( RentCycle.JANUARY_TO_DECEMBER, 2, (date(year=2017, month=1, day=1), date(year=2017, month=6, day=30)), False, ), ( RentCycle.JANUARY_TO_DECEMBER, 2, (date(year=2017, month=7, day=1), date(year=2017, month=12, day=31)), True, ), ( RentCycle.APRIL_TO_MARCH, 0, (date(year=2017, month=1, day=1), date(year=2017, month=6, day=1)), False, ), ( RentCycle.APRIL_TO_MARCH, 1, (date(year=2017, month=1, day=1), date(year=2017, month=6, day=1)), False, ), ( RentCycle.APRIL_TO_MARCH, 4, (date(year=2017, month=1, day=1), date(year=2017, month=6, day=1)), False, ), ( RentCycle.APRIL_TO_MARCH, 12, (date(year=2017, month=1, day=1), date(year=2017, month=6, day=1)), False, ), ( RentCycle.APRIL_TO_MARCH, 1, (date(year=2017, month=1, day=1), date(year=2017, month=12, day=31)), True, ), ( RentCycle.APRIL_TO_MARCH, 2, (date(year=2017, month=1, day=1), date(year=2017, month=6, day=30)), False, ), ( RentCycle.APRIL_TO_MARCH, 2, (date(year=2017, month=7, day=1), date(year=2017, month=12, day=31)), True, ), ], ) def test_is_the_last_billing_period( lease_test_data, rent_factory, rent_cycle, due_dates_per_year, billing_period, expected, ): lease = lease_test_data["lease"] rent = rent_factory(lease=lease) rent.cycle = rent_cycle rent.start_date = date(year=2000, month=1, day=1) rent.end_date = date(year=2030, month=1, day=1) rent.due_dates_type
["blue", "green", "blue", "green", "blue", "green", "blue", "green", "", "green"]) # celldata = {} for v_n in selected_v_ns: #try: Printcolor.green("\tInterpolating. grid: {} it: {} v_n: {} ".format(d3intclass.new_grid.grid_type, it, v_n)) celldata[str(v_n)] = d3intclass.get_int(it, v_n) # except: # celldata[str(v_n)] = np.empty(0,) # Printcolor.red("\tFailed to interpolate. grid: {} it: {}v_n: {} ".format(d3intclass.new_grid.type, it, v_n)) xf = d3intclass.new_grid.get_int_grid("xf") yf = d3intclass.new_grid.get_int_grid("yf") zf = d3intclass.new_grid.get_int_grid("zf") Printcolor.green("\tProducing vtk. it: {} v_ns: {} ".format(it, selected_v_ns)) gridToVTK(fpath, xf, yf, zf, cellData=celldata) Printcolor.blue("\tDone. File is saved: {}".format(fpath)) else: print_colored_string( ["task:", "vtk", "grid:", d3intclass.new_grid.grid_type, "it:", str(it), "v_ns:", selected_v_ns, ":", "skipping"], ["blue", "green", "blue", "green", "blue", "green", "blue", "green", "", "blue"]) # # celldata = {} # for v_n in selected_v_ns: # try: # print_colored_string(["task:", "int", "grid:", d3intclass.new_grid.type, "it:", str(it), "v_n:", v_n, ":", "interpolating"], # ["blue", "green", "blue", "green", "blue", "green", "blue", "green", "", "green"]) # celldata[str(v_n)] = d3intclass.get_int(it, v_n) # except: # print_colored_string( # ["task:", "int", "grid:", d3intclass.new_grid.type, "it:", str(it), "v_n:", v_n, ":", # "failed"], # ["blue", "green", "blue", "green", "blue", "green", "blue", "green", "", "red"]) # Printcolor.green("Data for v_ns:{} is interpolated and preapred".format(selected_v_ns)) # # producing the vtk file # try: # print_colored_string( # ["task:", "vtk", "grid:", d3intclass.new_grid.type, "it:", str(it), "v_ns:", selected_v_ns, ":", "computing"], # ["blue", "green", "blue", "green", "blue", "green", "blue", "green", "", "green"]) # xf = d3intclass.new_grid.get_int_grid("xf") # yf = d3intclass.new_grid.get_int_grid("yf") # zf = d3intclass.new_grid.get_int_grid("zf") # # gridToVTK(fpath, xf, yf, zf, cellData=celldata) # except: # print_colored_string( # ["task:", "int", "grid:", d3intclass.new_grid.type, "it:", str(it), "v_ns:", selected_v_ns, ":", # "failed"], # ["blue", "green", "blue", "green", "blue", "green", "blue", "green", "", "red"]) # else: # print_colored_string(["task:", "prof slice", "it:", "{}".format(it), "plane:", plane, ":", "skipping"], # ["blue", "green", "blue", "green", "blue", "green", "", "blue"]) def d3_interpolate_mjenclosed(d3intclass, glob_its, glob_masks, outdir, rewrite=False): # getting cylindrical grid [same for any iteration) dphi_cyl = d3intclass.new_grid.get_int_grid("dphi_cyl") dr_cyl = d3intclass.new_grid.get_int_grid("dr_cyl") dz_cyl = d3intclass.new_grid.get_int_grid("dz_cyl") r_cyl = d3intclass.new_grid.get_int_grid("r_cyl") # for it in glob_its: sys.stdout.flush() _outdir = outdir + str(it) + '/' if not os.path.isdir(_outdir): os.mkdir(_outdir) # for mask in glob_masks: __outdir = _outdir + mask + '/' if not os.path.isdir(__outdir): os.mkdir(__outdir) # fpath = __outdir + __d3intmjfname__ # if True: # rho = d3intclass.get_int(it, "rho") # [rho_NS, rho_ATM] lapse = d3intclass.get_int(it, "lapse") # [lapse_BH, dummy1] if mask == "disk": rho_lims = MASK_STORE.disk_mask_setup["rho"] lapse_lims = MASK_STORE.disk_mask_setup["lapse"] rho_mask = (rho > rho_lims[0]) & (rho < rho_lims[1]) lapse_mask = lapse > lapse_lims[0] # > BH elif mask == "remnant": rho_lims = MASK_STORE.disk_mask_setup["rho"] lapse_lims = MASK_STORE.disk_mask_setup["lapse"] rho_mask = rho > rho_lims[1] lapse_mask = lapse > lapse_lims[0] # > BH else: raise NameError("No method for mask: {}".format(mask)) # tot_mask = rho_mask & lapse_mask # if np.sum(tot_mask.astype(int)) ==0 : print_colored_string(["task:", "MJ_encl", "it:", "{}".format(it), "mask:", mask, ":", "Mask=0"], ["blue", "green", "blue", "green", "blue", "green", "", "red"]) if (os.path.isfile(fpath) and rewrite) or not os.path.isfile(fpath): if os.path.isfile(fpath): os.remove(fpath) print_colored_string(["task:", "MJ_encl", "it:", "{}".format(it), "mask:", mask, ":", "computing"], ["blue", "green", "blue", "green", "blue", "green", "", "green"]) # dens_cyl = d3intclass.get_int(it, "density") ang_mom_cyl = d3intclass.get_int(it, "ang_mom") ang_mom_flux_cyl = d3intclass.get_int(it, "ang_mom_flux") # dens_cyl[~tot_mask] = 0. ang_mom_cyl[~tot_mask] = 0. ang_mom_flux_cyl[~tot_mask] = 0. # I_rc = 2 * np.sum(dens_cyl * r_cyl ** 2 * dz_cyl * dphi_cyl, axis=(1, 2)) D_rc = 2 * np.sum(dens_cyl * dz_cyl * dphi_cyl, axis=(1, 2)) # integrate over phi,z J_rc = 2 * np.sum(ang_mom_cyl * dz_cyl * dphi_cyl, axis=(1, 2)) # integrate over phi,z Jf_rc= 2 * np.sum(ang_mom_flux_cyl * dz_cyl * dphi_cyl, axis=(1, 2)) # ofile = open(fpath, "w") ofile.write("# 1:rcyl 2:drcyl 3:M 4:J 5:Jf 6:I\n") for i in range(r_cyl.shape[0]): ofile.write("{} {} {} {} {} {}\n".format(r_cyl[i, 0, 0], dr_cyl[i, 0, 0], D_rc[i], J_rc[i], Jf_rc[i], I_rc[i])) ofile.close() # d3intclass.delete_for_it(it=it, except_v_ns=[], rm_masks=True, rm_comp=True, rm_prof=False) sys.stdout.flush() # else: print_colored_string(["task:", "MJ_encl", "it:", "{}".format(it), "mask:", mask, ":", "skipping"], ["blue", "green", "blue", "green", "blue", "green", "", "blue"]) # except KeyboardInterrupt: # exit(1) # except IOError: # print_colored_string(["task:", "MJ_encl", "it:", "{}".format(it), ":", "IOError"], # ["blue", "green", "blue", "green", "", "red"]) # except: # print_colored_string(["task:", "MJ_encl", "it:", "{}".format(it), ":", "failed"], # ["blue", "green", "blue", "green", "", "red"]) def plot_d3_prof_slices(d3class, glob_its, glob_v_ns, resdir, figdir='module_slices/', rewritefigs=False): iterations = select_number(glob_its, d3class.list_iterations) v_ns = select_string(glob_v_ns, __d3sliceplotvns__, for_all="all") # tmerg = d1class.get_par("tmerger_gw") i = 1 for it in iterations: for rl in __d3sliceplotrls__: for v_n in v_ns: # --- Getting XZ data --- try: data_arr = d3class.get_data(it, rl, "xz", v_n) x_arr = d3class.get_data(it, rl, "xz", "x") z_arr = d3class.get_data(it, rl, "xz", "z") def_dic_xz = {'task': 'colormesh', 'ptype': 'cartesian', 'aspect': 1., 'xarr': x_arr, "yarr": z_arr, "zarr": data_arr, 'position': (1, 1), # 'title': '[{:.1f} ms]'.format(time_), 'cbar': {'location': 'right .04 .2', 'label': r'$\rho$ [geo]', # 'fmt': '%.1e', 'labelsize': 14, 'fontsize': 14}, 'v_n_x': 'x', 'v_n_y': 'z', 'v_n': 'rho', 'xmin': None, 'xmax': None, 'ymin': None, 'ymax': None, 'vmin': 1e-10, 'vmax': 1e-4, 'fill_vmin': False, # fills the x < vmin with vmin 'xscale': None, 'yscale': None, 'mask': None, 'cmap': 'inferno_r', 'norm': "log", 'fancyticks': True, 'title': {"text": r'$t-t_{merg}:$' + r'${:.1f}$'.format(0), 'fontsize': 14}, 'sharex': True, # removes angular citkscitks 'fontsize': 14, 'labelsize': 14 } except KeyError: print_colored_string( ["task:", "plot prof slice", "it:", "{}".format(it), "rl:", "{:d}".format(rl), "v_ns:", v_n, ":", "KeyError in getting xz {}".format(v_n)], ["blue", "green", "blue", "green", "blue", "green", "blue", "green", "", "red"]) except NameError: print_colored_string( ["task:", "plot prof slice", "it:", "{}".format(it), "rl:", "{:d}".format(rl), "v_ns:", v_n, ":", "NameError in getting xz {}".format(v_n)], ["blue", "green", "blue", "green", "blue", "green", "blue", "green", "", "red"]) continue # --- Getting XY data --- try: data_arr = d3class.get_data(it, rl, "xy", v_n) x_arr = d3class.get_data(it, rl, "xy", "x") y_arr = d3class.get_data(it, rl, "xy", "y") def_dic_xy = {'task': 'colormesh', 'ptype': 'cartesian', 'aspect': 1., 'xarr': x_arr, "yarr": y_arr, "zarr": data_arr, 'position': (2, 1), # 'title': '[{:.1f} ms]'.format(time_), 'cbar': {}, 'v_n_x': 'x', 'v_n_y': 'y', 'v_n': 'rho', 'xmin': None, 'xmax': None, 'ymin': None, 'ymax': None, 'vmin': 1e-10, 'vmax': 1e-4, 'fill_vmin': False, # fills the x < vmin with vmin 'xscale': None, 'yscale': None, 'mask': None, 'cmap': 'inferno_r', 'norm': "log", 'fancyticks': True, 'title': {}, 'sharex': False, # removes angular citkscitks 'fontsize': 14, 'labelsize': 14 } except KeyError: print_colored_string( ["task:", "plot prof slice", "it:", "{}".format(it), "rl:", "{:d}".format(rl), "v_ns:", v_n, ":", "KeyError in getting xy {} ".format(v_n)], ["blue", "green", "blue", "green", "blue", "green", "blue", "green", "", "red"]) continue except NameError: print_colored_string( ["task:", "plot prof slice", "it:", "{}".format(it), "rl:", "{:d}".format(rl), "v_ns:", v_n, ":", "NameError in getting xy {} ".format(v_n)], ["blue", "green", "blue", "green", "blue", "green", "blue", "green", "", "red"]) continue # "Q_eff_nua", "Q_eff_nue", "Q_eff_nux" if v_n in ["Q_eff_nua", "Q_eff_nue", "Q_eff_nux"]: dens_arr = d3class.get_data(it, rl, "xz", "density") data_arr = d3class.get_data(it, rl, "xz", v_n) data_arr = data_arr / dens_arr x_arr = d3class.get_data(it, rl, "xz", "x") z_arr = d3class.get_data(it, rl, "xz", "z") def_dic_xz['xarr'], def_dic_xz['yarr'], def_dic_xz['zarr'] = x_arr, z_arr, data_arr # dens_arr = d3class.get_data(it, rl, "xy", "density") data_arr = d3class.get_data(it, rl, "xy", v_n) data_arr = data_arr / dens_arr x_arr = d3class.get_data(it, rl, "xy", "x") y_arr = d3class.get_data(it, rl, "xy", "y") def_dic_xy['xarr'], def_dic_xy['yarr'], def_dic_xy['zarr'] = x_arr, y_arr, data_arr if v_n == 'rho': pass elif v_n == 'w_lorentz': def_dic_xy['v_n'] = 'w_lorentz' def_dic_xy['vmin'] = 1 def_dic_xy['vmax'] = 1.3 def_dic_xy['norm'] = None def_dic_xz['v_n'] = 'w_lorentz' def_dic_xz['vmin'] = 1 def_dic_xz['vmax'] = 1.3 def_dic_xz['norm'] = None elif v_n == 'vol': def_dic_xy['v_n'] = 'vol' def_dic_xy['vmin'] = 1 def_dic_xy['vmax'] = 10 # def_dic_xy['norm'] = None def_dic_xz['v_n'] = 'vol' def_dic_xz['vmin'] = 1 def_dic_xz['vmax'] = 10 # def_dic_xz['norm'] = None elif v_n == 'press': def_dic_xy['v_n'] = 'press' def_dic_xy['vmin'] = 1e-12 def_dic_xy['vmax'] = 1e-6 def_dic_xz['v_n'] = 'press' def_dic_xz['vmin'] = 1e-12 def_dic_xz['vmax'] = 1e-6 elif v_n == 'eps': def_dic_xy['v_n'] = 'eps' def_dic_xy['vmin'] = 5e-3 def_dic_xy['vmax'] = 5e-1 def_dic_xz['v_n'] = 'eps' def_dic_xz['vmin'] = 5e-3 def_dic_xz['vmax'] = 5e-1 elif v_n == 'lapse': def_dic_xy['v_n'] = 'lapse' def_dic_xy['vmin'] = 0.15 def_dic_xy['vmax'] = 1 def_dic_xy['norm'] = None def_dic_xz['v_n'] = 'lapse' def_dic_xz['vmin'] = 0.15 def_dic_xz['vmax'] = 1 def_dic_xz['norm'] = None elif v_n == 'velx': def_dic_xy['v_n'] = 'velx' def_dic_xy['vmin'] = 0.01 def_dic_xy['vmax'] = 1. # def_dic_xy['norm'] = None def_dic_xz['v_n'] = 'velx' def_dic_xz['vmin'] = 0.01 def_dic_xz['vmax'] = 1. # def_dic_xz['norm'] = None elif v_n == 'vely': def_dic_xy['v_n'] = 'vely' def_dic_xy['vmin'] = 0.01 def_dic_xy['vmax'] = 1. # def_dic_xy['norm'] = None def_dic_xz['v_n']
' or ", if True shlex """ if shlex is None: matchobj = SHLEXRGX.match(colspecfieldstr) shlex = bool(matchobj) retval = None if shlex: shlexoutput = _shlex.split(colspecfieldstr, comments=False, posix=True) if shlexoutput: shlexword1 = shlexoutput[0] retval = shlexword1 else: raise ValueError(colspecfieldstr) else: retval = colspecfieldstr import pdb; pdb.set_trace() return retval def build_column_map(colspecstr): """ Args: colspecstr (str or OrderedDict): a colspecstrstr column-key to type-callable mapping Returns: OrderedDict: (colkey, type_func) mappings "column_map" # TODO """ # if not colspecstr: return collections.OrderedDict() if hasattr(colspecstr, 'items'): return colspecstr return collections.OrderedDict( parse_colspecstr(colspecstr, default=unicode) ) def get_list_from_str(str_, idelim=',', typefunc=int): """ Split a string of things separated by commas & cast/wrap with typefunc Args: str_ (str (.strip, .split)): string to split idelim (str): string to split by ("input delimiter") typefunc (callable): wrap results with this callable Returns: list: list of Type_func( """ return [typefunc(x.strip()) for x in str_.split(idelim)] def sort_by(iterable, sortstr=None, reverse=False, col_map=None, default_type=None, default_value=None): """sort an iterable, cast to ``col_map.get(colkey, default_type)``, and default to ``default_value``. Args: iterable (iterable): iterable of lines/rows Kwargs: sortstr (None, str): comma separated list of column index (``1,2,3``) reverse (bool): (True, Descending), (False, Ascending) default: False col_map (None, dict): dict mapping column n to a typefunc default_type (None, callable): type callable (default: None) default_value (\*): default N/A value for columns not specified in col_map (default: None) Returns: list: sorted list of lines/rows """ # raise Exception() def keyfunc_iter(obj, sortstr=sortstr, col_map=col_map): """Parse and yield column values according to ``sortstr`` and ``col_map`` Args: obj (object): obj to sort (as from ``sorted(keyfunc=thisfunc)``) sortstr (str): sort string of comma-separated columns col_map (None, dict): dict mapping column n to a typefunc (default: None) Yields: object: typecasted column value """ if sortstr: column_sequence = get_list_from_str(sortstr, typefunc=int) else: column_sequence = xrange(len(obj.result)) log.debug(('column_sequence', column_sequence)) if col_map is None: col_map = {} for n in column_sequence: type_func = col_map.get(str(n), default_type) retval = default_value if n < len(obj.result): colvalue = obj.result[n] if type_func: try: retval = type_func(colvalue) except ValueError as e: e.msg += "\n" + repr((type_func, colvalue, e,)) raise else: retval = colvalue else: retval = default_value yield retval def keyfunc(obj, sortstr=sortstr, col_map=col_map): """key function (e.g. for ``sorted(key=keyfunc)``) Args: obj (PylineResult): ``obj.result = ['col1', 'col2', 'coln']`` Returns: tuple: (col2, col0, col1) """ keyvalue = tuple(keyfunc_iter(obj, sortstr, col_map)) errdata = [ (('keyvalue', keyvalue), ('sortstr', sortstr))] log.debug((errdata,)) return keyvalue sorted_values = sorted(iterable, key=keyfunc, reverse=reverse) return sorted_values def str2boolintorfloat(str_): """ Try to cast a string as a ``bool``, ``float``, ``int``, or ``str_.__class__``. Args: str_ (basestring): string to try and cast Returns: object: casted ``{boot, float, int, or str_.__class__}`` """ match = re.match('([\d\.]+)', str_) type_ = None if not match: type_ = str_.__class__ value = str_ value_lower = value.strip().lower() if value_lower == 'true': type_ = bool value = True elif value_lower == 'false': type_ = bool value = False return value else: try: numstr = match.group(1) if '.' in numstr: type_ = float value = type_(numstr) else: type_ = int value = type_(numstr) except (ValueError, NameError, IndexError) as e: value = str_ log.exception((e, (type_, value))) return value def parse_formatstring(str_): """ Parse a format string like ``format:+isTrue,-isFalse,key0=value,key1=1.1,keyTrue=true`` Args: str_ (basestring): _format Returns: OrderedDict_: {key: {True|False|float|int|str}} .. code:: python { fmtkey: _formatstr, argkey: argstr, 'key0': 'value0', 'key1': 1, 'key2': True, 'key2.1': 2.1, } Inspired by rdflib ``rdfpipe -h | grep 'FORMAT:'``:: FORMAT:(+)KW1,-KW2,KW3=VALUE format format:opt1 format:opt2=True """ fmtkey = '_output_format' argkey = '_output_format_args' strsplit = str_.split(':', 1) if len(strsplit) == 1: _format = strsplit[0] _format = _format if _format else None return OrderedDict_(( (fmtkey, _format), (argkey, None), )) else: _format, argstr = strsplit _format = _format if _format else None opts = OrderedDict_() opts[fmtkey] = _format opts[argkey] = argstr if argstr else None _args = [x.strip() for x in argstr.split(',')] for arg in _args: if not arg: continue key, value = None, None if '=' in arg: key, value = [x.strip() for x in arg.split('=', 1)] else: if arg[0] == '-': key, value = arg[1:], False elif arg[0] == '+': key, value = arg[1:], True else: key, value = arg, True if not isinstance(value, (bool, float, int)): opts[key] = str2boolintorfloat(value) else: opts[key] = value return opts class ResultWriter(object): OUTPUT_FILETYPES = { 'csv': ",", 'json': True, 'tsv': "\t", 'html': True, 'jinja': True, "txt": True, "checkbox": True, "chk": True } output_format = None def __init__(self, _output, *args, **kwargs): self._output = _output self._conf = kwargs self.setup(_output, *args, **kwargs) def setup(self, *args, **kwargs): pass def set_output(self, _output): if _output and self._output is not None: raise Exception() else: self._output = _output def header(self, *args, **kwargs): pass def write(self, obj): print(unicode(obj), file=self._output) def write_numbered(self, obj): print(obj, file=self._output) def footer(self, *args, **kwargs): pass @classmethod def is_valid_output_format(cls, _output_formatstr): opts = parse_formatstring(_output_formatstr) _output_format = opts.get('_output_format') if _output_format in cls.OUTPUT_FILETYPES: return _output_format return False @classmethod def get_writer(cls, _output, output_format="csv", **kwargs): """get writer object for _output with the specified output_format Args: _output (file-like .write): output to write to Kwargs: output_format (str): a formatstring to be parsed by :py:func:`parse_formatstring` Filetypes:: txt | csv | tsv | json | html | jinja | checkbox Returns: ResultWriter: a configured ResultWriter subclass instance """ opts = parse_formatstring(output_format.strip()) _output_format = opts.pop('_output_format', None) opts.update(kwargs) if not cls.is_valid_output_format(_output_format): raise ValueError("_output_format: %r" % _output_format) writer = None if _output_format == "txt": writer = ResultWriter_txt(_output) elif _output_format == "csv": writer = ResultWriter_csv(_output, **opts) elif _output_format == "tsv": writer = ResultWriter_csv(_output, delimiter='\t', **opts) elif _output_format == "json": writer = ResultWriter_json(_output) elif _output_format == "html": writer = ResultWriter_html(_output, **opts) elif _output_format.startswith("jinja"): writer = ResultWriter_jinja(_output, **opts) elif _output_format in ("checkbox", "chk"): writer = ResultWriter_checkbox(_output, **opts) else: raise ValueError("_output_format: %r" % _output_format) output_func = None if kwargs.get('number_lines'): output_func = writer.write_numbered else: output_func = writer.write writer.output_func = output_func return writer class ResultWriter_txt(ResultWriter): output_format = 'txt' def write_numbered(self, obj): self.write(obj._numbered_str(odelim='\t')) class ResultWriter_csv(ResultWriter): output_format = 'csv' def setup(self, *args, **kwargs): self.delimiter = kwargs.get( 'delimiter', ResultWriter.OUTPUT_FILETYPES.get( self.output_format, ',')) self._output_csv = csv.writer(self._output, quoting=csv.QUOTE_NONNUMERIC, delimiter=self.delimiter) # doublequote=True) def header(self, *args, **kwargs): attrs = kwargs.get('attrs') if attrs is not None: self._output_csv.writerow(attrs) def write(self, obj): self._output_csv.writerow(obj.result) def write_numbered(self, obj): self._output_csv.writerow(tuple(obj._numbered())) class ResultWriter_json(ResultWriter): output_format = 'json' def write(self, obj): print( json.dumps( obj._asdict(), indent=2), end=',\n', file=self._output) write_numbered = write class ResultWriter_html(ResultWriter): output_format = 'html' escape_func = staticmethod(cgi.escape) def header(self, *args, **kwargs): self._output.write("<table>") self._output.write("<tr>") attrs = kwargs.get('attrs') if attrs is not None: for col in attrs: self._output.write(u"<th>%s</th>" % self.escape_func(col)) self._output.write("</tr>") def _html_row(self, obj): yield '\n<tr>' for attr, col in obj._asdict().iteritems(): # TODO: zip(_fields, ...) yield "<td%s>" % ( attr is not None and (' class="%s"' % attr) or '') if hasattr(col, '__iter__'): for value in col: yield u'<span>%s</span>' % self.escape_func(value) else: # TODO colvalue = ( col and hasattr(col, 'rstrip') and col.rstrip() or str(col)) yield self.escape_func(colvalue) yield "</td>" yield "</tr>" def write(self, obj): return self._output.write(u''.join(self._html_row(obj,))) def footer(self): self._output.write('</table>\n') class ResultWriter_jinja(ResultWriter): output_format = 'jinja' escape_func = staticmethod(cgi.escape) def setup(self, *args, **kwargs): log.debug(('args', args)) log.debug(('kwargs', kwargs)) import jinja2, os self.escape_func = jinja2.escape templatepath = kwargs.get('template', kwargs.get('tmpl')) if templatepath is None: raise ValueError( "Specify at least a template= like " "'jinja:+autoescape,template=./template.jinja2'") self.templatepath = os.path.dirname(templatepath) self.template = os.path.basename(templatepath) self.loader = jinja2.FileSystemLoader(self.templatepath) envargs = OrderedDict_() envargs['autoescape'] = kwargs.get('autoescape', True) # envargs['extensions'] = [] self.env = jinja2.Environment(**envargs) self.tmpl = self.loader.load(self.env, self.template) def write(self, obj): context = OrderedDict_() context['obj'] = obj jinja2_output = self.tmpl.render(**context) return self._output.write(jinja2_output) class ResultWriter_checkbox(ResultWriter): output_format = 'checkbox' def _checkbox_row(self, obj, wrap=79): yield u'\n'.join(textwrap.wrap( unicode(obj), initial_indent=u'- [ ] ', subsequent_indent=u' ' )) yield '\n' def write(self, obj): return self._output.write(u''.join(self._checkbox_row(obj))) def get_option_parser(): import optparse prs = optparse.OptionParser( usage=( "%prog [-f<path>] [-o|--output-file=<path>] \n" " [-F|--input-delim='\\t'] \n" " [--max|--max-split=3] \n" " [-d|--output-delimiter='||'] \n" " [-n|--number-lines] \n" " [-m|--modules=<mod2>] \n" " [-p|--pathpy] [--pathlib] \n" " [-r '<rgx>'|--regex='<rgx>'] \n" " '<python_expression>' \n" ), description=( "Pyline is a UNIX command-line tool for line-based processing " "in Python with regex and output transform features " "similar to grep, sed, and awk." ), epilog=EPILOG) prs.add_option('-f', '--in', '--input-file', dest='file', action='store', default='-', help="Input file #default: '-' for stdin") prs.add_option('-F', '--input-delim', dest='idelim', action='store', default=None, help=('words = line.split(-F)' ' #default: None (whitespace)')) prs.add_option('--max', '--input-delim-split-max', '--max-split', dest='idelim_split_max', action='store', default=-1, type=int, help='words = line.split(-F, --max)') prs.add_option('--shlex', action='store_true', help='words
# -*- coding: utf-8 -*- from operator import attrgetter import pyangbind.lib.xpathhelper as xpathhelper from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType from pyangbind.lib.yangtypes import RestrictedClassType from pyangbind.lib.yangtypes import TypedListType from pyangbind.lib.yangtypes import YANGBool from pyangbind.lib.yangtypes import YANGListType from pyangbind.lib.yangtypes import YANGDynClass from pyangbind.lib.yangtypes import ReferenceType from pyangbind.lib.base import PybindBase from collections import OrderedDict from decimal import Decimal from bitarray import bitarray import six # PY3 support of some PY2 keywords (needs improved) if six.PY3: import builtins as __builtin__ long = int elif six.PY2: import __builtin__ class state(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-interfaces - based on the path /interfaces/interface/ethernet/switched-vlan/state. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: State variables for VLANs """ __slots__ = ('_path_helper', '_extmethods', '__interface_mode','__native_vlan','__access_vlan','__trunk_vlans',) _yang_name = 'state' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): helper = kwargs.pop("path_helper", None) if helper is False: self._path_helper = False elif helper is not None and isinstance(helper, xpathhelper.YANGPathHelper): self._path_helper = helper elif hasattr(self, "_parent"): helper = getattr(self._parent, "_path_helper", False) self._path_helper = helper else: self._path_helper = False self._extmethods = False self.__interface_mode = YANGDynClass(base=RestrictedClassType(base_type=six.text_type, restriction_type="dict_key", restriction_arg={'ACCESS': {}, 'TRUNK': {}},), is_leaf=True, yang_name="interface-mode", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/vlan', defining_module='openconfig-vlan', yang_type='oc-vlan-types:vlan-mode-type', is_config=False) self.__native_vlan = YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..65535']},int_size=16), restriction_dict={'range': ['1..4094']}), is_leaf=True, yang_name="native-vlan", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/vlan', defining_module='openconfig-vlan', yang_type='oc-vlan-types:vlan-id', is_config=False) self.__access_vlan = YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..65535']},int_size=16), restriction_dict={'range': ['1..4094']}), is_leaf=True, yang_name="access-vlan", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/vlan', defining_module='openconfig-vlan', yang_type='oc-vlan-types:vlan-id', is_config=False) self.__trunk_vlans = YANGDynClass(unique=True, base=TypedListType(allowed_type=[RestrictedClassType(base_type=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..65535']},int_size=16), restriction_dict={'range': ['1..4094']}),RestrictedClassType(base_type=six.text_type, restriction_dict={'pattern': '^(409[0-4]|40[0-8][0-9]|[1-3][0-9]{3}|[1-9][0-9]{1,2}|[1-9])\\.\\.(409[0-4]|40[0-8][0-9]|[1-3][0-9]{3}|[1-9][0-9]{1,2}|[1-9])$'}),]), is_leaf=False, yang_name="trunk-vlans", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/vlan', defining_module='openconfig-vlan', yang_type='union', is_config=False) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return ['interfaces', 'interface', 'ethernet', 'switched-vlan', 'state'] def _get_interface_mode(self): """ Getter method for interface_mode, mapped from YANG variable /interfaces/interface/ethernet/switched_vlan/state/interface_mode (oc-vlan-types:vlan-mode-type) YANG Description: Set the interface to access or trunk mode for VLANs """ return self.__interface_mode def _set_interface_mode(self, v, load=False): """ Setter method for interface_mode, mapped from YANG variable /interfaces/interface/ethernet/switched_vlan/state/interface_mode (oc-vlan-types:vlan-mode-type) If this variable is read-only (config: false) in the source YANG file, then _set_interface_mode is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_interface_mode() directly. YANG Description: Set the interface to access or trunk mode for VLANs """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=six.text_type, restriction_type="dict_key", restriction_arg={'ACCESS': {}, 'TRUNK': {}},), is_leaf=True, yang_name="interface-mode", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/vlan', defining_module='openconfig-vlan', yang_type='oc-vlan-types:vlan-mode-type', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """interface_mode must be of a type compatible with oc-vlan-types:vlan-mode-type""", 'defined-type': "oc-vlan-types:vlan-mode-type", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=six.text_type, restriction_type="dict_key", restriction_arg={'ACCESS': {}, 'TRUNK': {}},), is_leaf=True, yang_name="interface-mode", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/vlan', defining_module='openconfig-vlan', yang_type='oc-vlan-types:vlan-mode-type', is_config=False)""", }) self.__interface_mode = t if hasattr(self, '_set'): self._set() def _unset_interface_mode(self): self.__interface_mode = YANGDynClass(base=RestrictedClassType(base_type=six.text_type, restriction_type="dict_key", restriction_arg={'ACCESS': {}, 'TRUNK': {}},), is_leaf=True, yang_name="interface-mode", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/vlan', defining_module='openconfig-vlan', yang_type='oc-vlan-types:vlan-mode-type', is_config=False) def _get_native_vlan(self): """ Getter method for native_vlan, mapped from YANG variable /interfaces/interface/ethernet/switched_vlan/state/native_vlan (oc-vlan-types:vlan-id) YANG Description: Set the native VLAN id for untagged frames arriving on a trunk interface. Tagged frames sent on an interface configured with a native VLAN should have their tags stripped prior to transmission. This configuration is only valid on a trunk interface. """ return self.__native_vlan def _set_native_vlan(self, v, load=False): """ Setter method for native_vlan, mapped from YANG variable /interfaces/interface/ethernet/switched_vlan/state/native_vlan (oc-vlan-types:vlan-id) If this variable is read-only (config: false) in the source YANG file, then _set_native_vlan is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_native_vlan() directly. YANG Description: Set the native VLAN id for untagged frames arriving on a trunk interface. Tagged frames sent on an interface configured with a native VLAN should have their tags stripped prior to transmission. This configuration is only valid on a trunk interface. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..65535']},int_size=16), restriction_dict={'range': ['1..4094']}), is_leaf=True, yang_name="native-vlan", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/vlan', defining_module='openconfig-vlan', yang_type='oc-vlan-types:vlan-id', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """native_vlan must be of a type compatible with oc-vlan-types:vlan-id""", 'defined-type': "oc-vlan-types:vlan-id", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..65535']},int_size=16), restriction_dict={'range': ['1..4094']}), is_leaf=True, yang_name="native-vlan", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/vlan', defining_module='openconfig-vlan', yang_type='oc-vlan-types:vlan-id', is_config=False)""", }) self.__native_vlan = t if hasattr(self, '_set'): self._set() def _unset_native_vlan(self): self.__native_vlan = YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..65535']},int_size=16), restriction_dict={'range': ['1..4094']}), is_leaf=True, yang_name="native-vlan", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/vlan', defining_module='openconfig-vlan', yang_type='oc-vlan-types:vlan-id', is_config=False) def _get_access_vlan(self): """ Getter method for access_vlan, mapped from YANG variable /interfaces/interface/ethernet/switched_vlan/state/access_vlan (oc-vlan-types:vlan-id) YANG Description: Assign the access vlan to the access port. """ return self.__access_vlan def _set_access_vlan(self, v, load=False): """ Setter method for access_vlan, mapped from YANG variable /interfaces/interface/ethernet/switched_vlan/state/access_vlan (oc-vlan-types:vlan-id) If this variable is read-only (config: false) in the source YANG file, then _set_access_vlan is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_access_vlan() directly. YANG Description: Assign the access vlan to the access port. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..65535']},int_size=16), restriction_dict={'range': ['1..4094']}), is_leaf=True, yang_name="access-vlan", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/vlan', defining_module='openconfig-vlan', yang_type='oc-vlan-types:vlan-id', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """access_vlan must be of a type compatible with oc-vlan-types:vlan-id""", 'defined-type': "oc-vlan-types:vlan-id", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..65535']},int_size=16), restriction_dict={'range': ['1..4094']}), is_leaf=True, yang_name="access-vlan", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/vlan', defining_module='openconfig-vlan', yang_type='oc-vlan-types:vlan-id', is_config=False)""", }) self.__access_vlan = t if hasattr(self, '_set'): self._set() def _unset_access_vlan(self): self.__access_vlan = YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..65535']},int_size=16), restriction_dict={'range': ['1..4094']}), is_leaf=True, yang_name="access-vlan", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/vlan', defining_module='openconfig-vlan', yang_type='oc-vlan-types:vlan-id', is_config=False) def _get_trunk_vlans(self): """ Getter method for trunk_vlans, mapped from YANG variable /interfaces/interface/ethernet/switched_vlan/state/trunk_vlans (union) YANG Description: Specify VLANs, or ranges thereof, that the interface may carry when in trunk mode. If not specified, all VLANs are allowed on the interface. Ranges are specified in the form x..y, where x<y - ranges are assumed to be inclusive (such that the VLAN range is x <= range <= y. """ return self.__trunk_vlans def _set_trunk_vlans(self, v, load=False): """ Setter method for trunk_vlans, mapped from YANG variable /interfaces/interface/ethernet/switched_vlan/state/trunk_vlans (union) If this variable is read-only (config: false) in the source YANG file, then _set_trunk_vlans is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_trunk_vlans() directly. YANG Description: Specify VLANs, or ranges thereof, that the interface may carry when in trunk mode. If not specified, all VLANs are allowed on the interface. Ranges are specified in the form x..y, where x<y - ranges are assumed to be inclusive (such that the VLAN range is x <= range <= y. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,unique=True, base=TypedListType(allowed_type=[RestrictedClassType(base_type=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..65535']},int_size=16), restriction_dict={'range': ['1..4094']}),RestrictedClassType(base_type=six.text_type, restriction_dict={'pattern': '^(409[0-4]|40[0-8][0-9]|[1-3][0-9]{3}|[1-9][0-9]{1,2}|[1-9])\\.\\.(409[0-4]|40[0-8][0-9]|[1-3][0-9]{3}|[1-9][0-9]{1,2}|[1-9])$'}),]), is_leaf=False, yang_name="trunk-vlans", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/vlan', defining_module='openconfig-vlan', yang_type='union', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """trunk_vlans must be of a type compatible with union""", 'defined-type': "openconfig-vlan:union", 'generated-type': """YANGDynClass(unique=True, base=TypedListType(allowed_type=[RestrictedClassType(base_type=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..65535']},int_size=16), restriction_dict={'range': ['1..4094']}),RestrictedClassType(base_type=six.text_type, restriction_dict={'pattern': '^(409[0-4]|40[0-8][0-9]|[1-3][0-9]{3}|[1-9][0-9]{1,2}|[1-9])\\.\\.(409[0-4]|40[0-8][0-9]|[1-3][0-9]{3}|[1-9][0-9]{1,2}|[1-9])$'}),]), is_leaf=False, yang_name="trunk-vlans", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/vlan', defining_module='openconfig-vlan', yang_type='union', is_config=False)""", }) self.__trunk_vlans = t if hasattr(self, '_set'): self._set() def _unset_trunk_vlans(self): self.__trunk_vlans = YANGDynClass(unique=True, base=TypedListType(allowed_type=[RestrictedClassType(base_type=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..65535']},int_size=16), restriction_dict={'range': ['1..4094']}),RestrictedClassType(base_type=six.text_type, restriction_dict={'pattern': '^(409[0-4]|40[0-8][0-9]|[1-3][0-9]{3}|[1-9][0-9]{1,2}|[1-9])\\.\\.(409[0-4]|40[0-8][0-9]|[1-3][0-9]{3}|[1-9][0-9]{1,2}|[1-9])$'}),]), is_leaf=False, yang_name="trunk-vlans", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/vlan', defining_module='openconfig-vlan', yang_type='union', is_config=False) interface_mode = __builtin__.property(_get_interface_mode) native_vlan = __builtin__.property(_get_native_vlan) access_vlan = __builtin__.property(_get_access_vlan) trunk_vlans = __builtin__.property(_get_trunk_vlans) _pyangbind_elements = OrderedDict([('interface_mode', interface_mode), ('native_vlan', native_vlan), ('access_vlan', access_vlan), ('trunk_vlans', trunk_vlans), ]) class state(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-interfaces - based on the path /interfaces/interface/ethernet/switched-vlan/state. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: State variables for VLANs """ __slots__ = ('_path_helper', '_extmethods', '__interface_mode','__native_vlan','__access_vlan','__trunk_vlans',) _yang_name = 'state' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): helper = kwargs.pop("path_helper", None) if helper is False: self._path_helper = False elif helper is not None and isinstance(helper, xpathhelper.YANGPathHelper): self._path_helper = helper elif hasattr(self, "_parent"): helper = getattr(self._parent, "_path_helper", False) self._path_helper = helper else: self._path_helper = False self._extmethods
import argparse import os import logging import random import time import torch import torchvision import torch.nn as nn from sklearn import metrics import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.multiclass import OneVsRestClassifier from sklearn.metrics import confusion_matrix from datahelper import * from model import * from util import plot device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # Device configuration print("[INFO] Utilized device as [{}]".format(device)) def train_model(args, model): """The model training subroutine, including epoch-wise eval """ # deploy the model to device if avail model = model.to(device) criterion = nn.BCELoss() optimizer = torch.optim.Adam(model.parameters(),lr=args['lr']) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[10,20,30,40,50], gamma=0.1) path_to_trainset = args['dataset_dir'] + 'train/' label_map = load_label(args['dataset_dir'] + 'train.csv') dataset_loader = load_dataset(path_to_trainset) # generate a dataset(str_dirname) train_set, dev_set = next(dataset_loader) tot_loss = [] tot_devacc = [] for epoch in range(1, args['epoches'] + 1): #args.num_epoches ts = train_set[:] random.shuffle(ts) ds = dev_set[:] random.shuffle(ds) start_time = time.time() flag = 1 counter = 1 epoch_loss = 0 while flag: # exploit training set by 'bags' ==> to generate samples with diverse classes images,labels,tot = [],[],[] # fetch 20 bags of samples and "shuffle" them # Then feed to the NN for i in range(args['bag_size']): if not ts: flag = 0 break dirname = ts.pop() tmp_images, tmp_labels = unpack_directory(dirname, path_to_trainset,label_map) images.extend(tmp_images) labels.extend(tmp_labels) tot = list(zip(images,labels)) random.shuffle(tot) if tot == []: break images[:], labels[:] = zip(*tot) # Batch training, based on the index partition # partition: batch (len=32(default)) starting-index of images ABOVE partition = [] for i in range(0, len(images), args['batch_size']): partition.append(i) step = 0 # current 'bags' for pt in range(len(partition)): #print('[INFO] Now do training .. Epoch{} | Bag{} | miniBatch{}' # .format(epoch, counter, step)) # A batch train if pt == len(partition) - 1: image_batch, label_batch = torch.cat(images[partition[pt]: ], dim=0), torch.cat(labels[partition[pt]: ],dim=0) else: image_batch, label_batch = torch.cat(images[partition[pt]:partition[pt+1]], dim=0), torch.cat(labels[partition[pt]:partition[pt+1] ],dim=0) image_batch = image_batch.to(device) label_batch = label_batch.to(device) out = model(image_batch) # To obtain the Gold label(multi-class) v_length = len(label_batch) #print('[DEBUG]out-shape:{},label-shape:{}'.format(out.shape,label_batch.shape)) loss = criterion(out.squeeze(), label_batch.squeeze()) optimizer.zero_grad() loss.backward() optimizer.step() step += 1 epoch_loss += loss.item() # Eval step-wise use batch-size in train set samples_ = random.sample(range(len(images)), args['batch_size']) # random sample explored sample_img = [images[idx] for idx in samples_] sample_img = torch.cat(sample_img, dim=0).to(device) sample_label = [labels[idx] for idx in samples_] sample_label = torch.cat(sample_label, dim=0) s_out = model(sample_img).detach() s_out = s_out.cpu() thresholds = (s_out.max(dim=0).values + s_out.min(dim=0).values) / 2 hard_label = np.array([[1 if score > thresholds[i] else 0 for i, score in enumerate(j)] for j in s_out]) _tmp = abs(sample_label - hard_label) acc = 0 for row in _tmp: _f = 1 for element in row: if element > 0.0001: _f = 0 if _f: acc += 1 acc = float(acc) / args['batch_size'] current_time = time.time() print('[LOGGER] Epoch[{}/{}], Step[{}]| Acc: {:.3f} | Time elapsed: {:.2f}/sec' .format(epoch, args['epoches'], counter, acc, current_time - start_time)) # args.num_epoches counter += 1 tot_loss.append(epoch_loss) print('[INFO] Epoch[{}/{}] Ended| Loss {:.4f} | Time elapsed: {:.2f}/sec\nStarting Eval step...' .format(epoch, args['epoches'], epoch_loss, current_time - start_time)) # save model if epoch % args['steps_save_ckpt'] == 0: torch.save(model, args['output_dir'] + 'epoch-{}.ckpt'.format(epoch)) # ==== Evaluate this epoch result using dev set ==== ts = train_set[:] devacc = eval(args, model, ts, ds) tot_devacc.append(devacc) scheduler.step() plt.plot(tot_loss) plt.ylabel('Moving Loss each training epoches') plt.xlabel('Epoches') plt.savefig(args['output_dir'] + 'loss.png') plt.close() plt.plot(tot_devacc) plt.ylabel('Moving Acc each training epoches') plt.xlabel('Epoches') plt.savefig(args['output_dir'] + 'acc.png') plt.close() def eval(args, model, trainset, devset): images,scores,labels,xtrues = [],[],[],[] path_to_trainset = args['dataset_dir'] + 'train/' label_map = load_label(args['dataset_dir'] + 'train.csv') ds = devset[:] ts = trainset[:] # train the svm while(ts): # traverse each dir in dev set dirname = ts.pop() images, labels = unpack_directory(dirname, path_to_trainset, label_map) random.shuffle(images) x_gold = labels[0] dir_score = [] # Predicted score partition = [] for i in range(0, len(images), args['batch_size']): partition.append(i) # minibatch training for pt in range(len(partition)): # A batch train if pt == len(partition) - 1: image_batch = torch.cat(images[partition[pt]: ], dim=0) else: image_batch= torch.cat(images[partition[pt]:partition[pt+1]], dim=0) image_batch = image_batch.to(device) out = model(image_batch).detach() out = out.cpu() dir_score.append(out) # consider a bag at a time dir_score = torch.cat(dir_score, dim=0) dir_score = dir_score.mean(dim=0) scores.append(dir_score) xtrues.append(x_gold) x_score = torch.stack(scores,dim=0) x_true = torch.cat(xtrues,dim=0) svm = svm_decision(x_score, x_true) images,scores,labels,ytrues = [],[],[],[] while(ds): # traverse each dir in dev set dirname = ds.pop() images, labels = unpack_directory(dirname, path_to_trainset, label_map) random.shuffle(images) y_gold = labels[0] dir_score = [] # Predicted score partition = [] for i in range(0, len(images), args['batch_size']): partition.append(i) # minibatch training for pt in range(len(partition)): # A batch train if pt == len(partition) - 1: image_batch = torch.cat(images[partition[pt]: ], dim=0) else: image_batch= torch.cat(images[partition[pt]:partition[pt+1]], dim=0) image_batch = image_batch.to(device) out = model(image_batch).detach() out = out.cpu() dir_score.append(out) # consider a bag at a time dir_score = torch.cat(dir_score, dim=0) dir_score = dir_score.mean(dim=0) scores.append(dir_score) ytrues.append(y_gold) # concat y_score = torch.stack(scores,dim=0) y_true = torch.cat(ytrues,dim=0) # use MID value to represent thresh for each label thresholds = (y_score.max(dim=0).values + y_score.min(dim=0).values) / 2 # To obtain the Gold label(multi-class) #y_pred = torch.FloatTensor([[1 if score > thresholds[i] else 0 for i, score in enumerate(j)] for j in y_score]) y_pred = svm.predict(y_score) # Acc record diff = y_pred - y_true.numpy() devacc = 0 for row in diff: _f = 1 for element in row: if abs(element.item()) > 0.0001: _f = 0 if _f: devacc += 1 devacc = float(devacc) / len(y_true) # plot roc curve plot(y_score, y_true, args['output_dir']) # macro F1 Eval f1_macro = metrics.f1_score(y_true, y_pred, average='macro') # micro F1 Eval f1_micro = metrics.f1_score(y_true, y_pred, average='micro') # AUC Eval try: roc_auc = metrics.roc_auc_score(y_true, y_score, average='macro') except ValueError: print('[WARNING] Current dev set has not all of the labels') roc_auc = -1 print('[INFO] Eval result:\n|ACC:{}|\n|AUC:{}|\n|F1 Macro:{}|\n|F1 Micro:{}|'.format( devacc, roc_auc, f1_macro, f1_micro)) return devacc # for train subroutine def predict(args, model, trainset): model = model.to(device) path_to_testset = args['dataset_dir'] + 'test/' test_sets = listdir(path_to_testset) path_to_trainset = args['dataset_dir'] + 'train/' label_map = load_label(args['dataset_dir'] + 'train.csv') # ===== train the svm ===== images,scores,labels,xtrues = [],[],[],[] while trainset: # traverse each dir in dev set dirname = trainset.pop() images, labels = unpack_directory(dirname, path_to_trainset, label_map) random.shuffle(images) x_gold = labels[0] # directory share the label # Predicted score dir_score = [] partition = [] # minibatch training for i in range(0, len(images), args['batch_size']): partition.append(i) # minibatch training for pt in range(len(partition)): # A batch train if pt == len(partition) - 1: image_batch = torch.cat(images[partition[pt]: ], dim=0) else: image_batch= torch.cat(images[partition[pt]:partition[pt+1]], dim=0) image_batch = image_batch.to(device) out = model(image_batch).detach() out = out.cpu() dir_score.append(out) # consider a bag at a time dir_score = torch.cat(dir_score, dim=0) dir_score = dir_score.mean(dim=0) scores.append(dir_score) xtrues.append(x_gold) x_score = torch.stack(scores, dim=0).numpy() x_true = torch.cat(xtrues, dim=0).numpy() print('Training set for SVM: ', x_score.shape) svm = svm_decision(x_score, x_true) # ===== predict the score ===== y_score = [] for dirname in test_sets: # predict for each file images = unpack_directory(dirname, path_to_testset) dir_score = [] partition = [] for i in range(0, len(images), args['batch_size']): partition.append(i) for pt in range(len(partition)): # minibatch train if pt == len(partition) - 1: image_batch = torch.cat(images[partition[pt]: ], dim=0) else: image_batch = torch.cat(images[partition[pt]:partition[pt+1]], dim=0) image_batch = image_batch.to(device) out = model(image_batch).detach() out = out.cpu() dir_score.append(out) dir_scores = torch.cat(dir_score, dim=0) if len(images) != dir_scores.shape[0]: print('[WARNING] The read and write are not matched.') dir_scores = dir_scores.mean(dim=0) # reduce dim=0 (shape=10) y_score.append(dir_scores) # row represents each dir # column represents each label y_score = torch.stack(y_score, dim=0) y_prob = y_scores.numpy().round(4) # output, round=4 #thresholds = (y_scores.max(dim=0).values + y_scores.min(dim=0).values) / 2 #str_label = [[str(i) for i, score in enumerate(_scores) if score > thresholds[i]] for _scores in y_scores] y_pred = svm.predict(y_score) str_label = [[str(i) for i, pred_label in enumerate(row) if pred_label >= 0.99] for row in y_pred] # >=0.99 ~ ==1 str_prob = [[str(p) for p in list(_prob)] for _prob in y_prob] # split using ; print_score = [[dirname, ';'.join(_prob)] for dirname, _prob in zip(test_sets, str_prob)] print_label = [[dirname, ';'.join(_label)] for dirname, _label in zip(test_sets, str_label)] csv_record(args['output_dir'] + 'test_pred.csv', print_score) csv_record(args['output_dir'] + 'test.csv', print_label) print('[INFO] Predict done.') def svm_decision(y_score, y_true): """ Args: y_score: [batch x 10] score
def test_recommendTezConfigurations(self, os_listdir_mock, os_isdir_mock, os_exists_mock): os_exists_mock.return_value = True os_isdir_mock.return_value = True os_listdir_mock.return_value = ['TEZ{0.7.0.2.3.0.0-2155}'] self.maxDiff = None configurations = { "yarn-site": { "properties": { "yarn.scheduler.minimum-allocation-mb": "256", "yarn.scheduler.maximum-allocation-mb": "8192", }, }, "capacity-scheduler": { "properties": { "yarn.scheduler.capacity.root.queues": "queue1,queue2" } } } clusterData = { "cpu": 4, "mapMemory": 3000, "amMemory": 2000, "reduceMemory": 2056, "containers": 3, "ramPerContainer": 256 } expected = { "capacity-scheduler": { "properties": { "yarn.scheduler.capacity.root.queues": "queue1,queue2" } }, "tez-site": { "properties": { "tez.task.resource.memory.mb": "768", "tez.am.launch.cmd-opts": "-XX:+PrintGCDetails -verbose:gc -XX:+PrintGCTimeStamps -XX:+UseNUMA -XX:+UseParallelGC", "tez.task.launch.cmd-opts": "-XX:+PrintGCDetails -verbose:gc -XX:+PrintGCTimeStamps -XX:+UseNUMA -XX:+UseParallelGC", "tez.runtime.io.sort.mb": "202", "tez.session.am.dag.submit.timeout.secs": "600", "tez.runtime.unordered.output.buffer.size-mb": "57", "tez.am.resource.memory.mb": "4000", "tez.queue.name": "queue2", } }, "yarn-site": { "properties": { "yarn.scheduler.minimum-allocation-mb": "256", "yarn.scheduler.maximum-allocation-mb": "8192" } } } services = { "Versions": { "parent_stack_version": "2.2", "stack_name": "HDP", "stack_version": "2.3", "stack_hierarchy": { "stack_name": "HDP", "stack_versions": ["2.2", "2.1", "2.0.6"] } }, "services": [ { "href": "/api/v1/stacks/HDP/versions/2.2/services/YARN", "StackServices": { "service_name": "YARN", "service_version": "2.6.0.2.2", "stack_name": "HDP", "stack_version": "2.2" }, "components": [ { "StackServiceComponents": { "advertise_version": "false", "cardinality": "1", "component_category": "MASTER", "component_name": "APP_TIMELINE_SERVER", "display_name": "App Timeline Server", "is_client": "false", "is_master": "true", "hostnames": [] }, "dependencies": [] }, { "StackServiceComponents": { "advertise_version": "true", "cardinality": "1+", "component_category": "SLAVE", "component_name": "NODEMANAGER", "display_name": "NodeManager", "is_client": "false", "is_master": "false", "hostnames": [ "c6403.ambari.apache.org" ] }, "dependencies": [] }, { "StackServiceComponents": { "advertise_version": "true", "cardinality": "1-2", "component_category": "MASTER", "component_name": "RESOURCEMANAGER", "display_name": "ResourceManager", "is_client": "false", "is_master": "true", "hostnames": [] }, "dependencies": [] }, { "StackServiceComponents": { "advertise_version": "true", "cardinality": "1+", "component_category": "CLIENT", "component_name": "YARN_CLIENT", "display_name": "YARN Client", "is_client": "true", "is_master": "false", "hostnames": [] }, "dependencies": [] } ] }, ], "configurations": configurations, "changed-configurations": [ ], "ambari-server-properties": {} } hosts = { "items" : [ { "href" : "/api/v1/hosts/c6401.ambari.apache.org", "Hosts" : { "cpu_count" : 1, "host_name" : "c6401.ambari.apache.org", "os_arch" : "x86_64", "os_type" : "centos6", "ph_cpu_count" : 1, "public_host_name" : "c6401.ambari.apache.org", "rack_info" : "/default-rack", "total_mem" : 1922680 } }, { "href" : "/api/v1/hosts/c6402.ambari.apache.org", "Hosts" : { "cpu_count" : 1, "host_name" : "c6402.ambari.apache.org", "os_arch" : "x86_64", "os_type" : "centos6", "ph_cpu_count" : 1, "public_host_name" : "c6402.ambari.apache.org", "rack_info" : "/default-rack", "total_mem" : 1922680 } }, { "href" : "/api/v1/hosts/c6403.ambari.apache.org", "Hosts" : { "cpu_count" : 1, "host_name" : "c6403.ambari.apache.org", "os_arch" : "x86_64", "os_type" : "centos6", "ph_cpu_count" : 1, "public_host_name" : "c6403.ambari.apache.org", "rack_info" : "/default-rack", "total_mem" : 1922680 } } ] } self.stackAdvisor.recommendTezConfigurations(configurations, clusterData, services, hosts) self.assertEquals(configurations, expected) server_host = socket.getfqdn() for host in hosts["items"]: if server_host == host["Hosts"]["host_name"]: server_host = host["Hosts"]["public_host_name"] tez_ui_url = "http://" + server_host + ":8080/#/main/view/TEZ/tez_cluster_instance" # Test JDK1.7 services['ambari-server-properties'] = {'java.home': '/usr/jdk64/jdk1.7.3_23'} expected['tez-site']['properties']['tez.tez-ui.history-url.base'] = tez_ui_url self.stackAdvisor.recommendTezConfigurations(configurations, clusterData, services, hosts) self.assertEquals(configurations, expected) # Test JDK1.8 services['ambari-server-properties'] = {'java.home': '/usr/jdk64/jdk1.8_44'} expected['tez-site']['properties']['tez.am.launch.cmd-opts'] = "-XX:+PrintGCDetails -verbose:gc -XX:+PrintGCTimeStamps -XX:+UseNUMA -XX:+UseG1GC -XX:+ResizeTLAB" expected['tez-site']['properties']['tez.task.launch.cmd-opts'] = "-XX:+PrintGCDetails -verbose:gc -XX:+PrintGCTimeStamps -XX:+UseNUMA -XX:+UseG1GC -XX:+ResizeTLAB" expected['tez-site']['properties']['tez.tez-ui.history-url.base'] = tez_ui_url self.stackAdvisor.recommendTezConfigurations(configurations, clusterData, services, hosts) self.assertEquals(configurations, expected) # Test JDK1.9 services['ambari-server-properties'] = {'java.home': '/usr/jdk64/jdk1.9.2_44'} expected['tez-site']['properties']['tez.am.launch.cmd-opts'] = "-XX:+PrintGCDetails -verbose:gc -XX:+PrintGCTimeStamps -XX:+UseNUMA -XX:+UseG1GC -XX:+ResizeTLAB" expected['tez-site']['properties']['tez.task.launch.cmd-opts'] = "-XX:+PrintGCDetails -verbose:gc -XX:+PrintGCTimeStamps -XX:+UseNUMA -XX:+UseG1GC -XX:+ResizeTLAB" expected['tez-site']['properties']['tez.tez-ui.history-url.base'] = tez_ui_url self.stackAdvisor.recommendTezConfigurations(configurations, clusterData, services, hosts) self.assertEquals(configurations, expected) def test_validateHiveConfigurations(self): properties = {"hive_security_authorization": "None", "hive.exec.orc.default.stripe.size": "8388608", 'hive.tez.container.size': '2048', 'hive.tez.java.opts': '-server -Xmx546m -Djava.net.preferIPv4Stack=true -XX:NewRatio=8 -XX:+UseNUMA -XX:+UseParallelGC -XX:+PrintGCDetails -verbose:gc -XX:+PrintGCTimeStamps', 'hive.auto.convert.join.noconditionaltask.size': '1100000000'} recommendedDefaults = {'hive.tez.container.size': '1024', 'hive.tez.java.opts': '-server -Djava.net.preferIPv4Stack=true -XX:NewRatio=8 -XX:+UseNUMA -XX:+UseParallelGC -XX:+PrintGCDetails -verbose:gc -XX:+PrintGCTimeStamps', 'hive.auto.convert.join.noconditionaltask.size': '1000000000'} configurations = { "hive-site": { "properties": {"hive.security.authorization.enabled": "true", 'hive.tez.java.opts': '-server -Djava.net.preferIPv4Stack=true'} }, "hive-env": { "properties": {"hive_security_authorization": "None"} } } services = { "services": [] } # Test for 'ranger-hive-plugin-properties' not being in configs res_expected = [] res = self.stackAdvisor.validateHiveConfigurations(properties, recommendedDefaults, configurations, services, {}) self.assertEquals(res, res_expected) # This test intentionally calls all validate methods with # incorrect parameters (empty configs) def test_noRiskyDictLookups(self): properties = {} recommendedDefaults = {} configurations = {"core-site": {"properties": {}}} services = { "services": [], "Versions": { "stack_name": "HDP", "stack_version": "2.3" }, "configurations": configurations } hosts = { "items" : [ { "href" : "/api/v1/hosts/c6401.ambari.apache.org", "Hosts" : { "cpu_count" : 1, "disk_info" : [ { "available" : "4564632", "used" : "5230344", "percent" : "54%", "size" : "10319160", "type" : "ext4", "mountpoint" : "/" }, { "available" : "1832436", "used" : "0", "percent" : "0%", "size" : "1832436", "type" : "tmpfs", "mountpoint" : "/dev/shm" } ], "host_name" : "c6401.ambari.apache.org", "os_arch" : "x86_64", "os_type" : "centos6", "ph_cpu_count" : 1, "public_host_name" : "c6401.ambari.apache.org", "rack_info" : "/default-rack", "total_mem" : 1922680 } } ] } def return_c6401_hostname(services, service_name, component_name): return ["c6401.ambari.apache.org"] self.stackAdvisor.getComponentHostNames = return_c6401_hostname validators = self.stackAdvisor.getServiceConfigurationValidators() # Setting up empty configs and services info for serviceName, validator in validators.items(): services["services"].extend([{"StackServices": {"service_name": serviceName}, "components": []}]) for siteName in validator.keys(): configurations[siteName] = {"properties": {}} # Emulate enabled RANGER services["services"].extend([{"StackServices": {"service_name": "RANGER"}, "components": []}]) configurations["ranger-hbase-plugin-properties"] = { "ranger-hbase-plugin-enabled": "Yes" } exceptionThrown = False try: recommendations = self.stackAdvisor.recommendConfigurations(services, hosts) except Exception as e: exceptionThrown = True self.assertTrue(exceptionThrown) pass def test_recommendRangerConfigurations(self): clusterData = {} # Recommend for not existing DB_FLAVOR and http enabled, HDP-2.3 services = { "Versions": { "parent_stack_version": "2.2", "stack_name": "HDP", "stack_version": "2.3", "stack_hierarchy": { "stack_name": "HDP", "stack_versions": ["2.2", "2.1", "2.0.6"] } }, "services": [ { "StackServices": { "service_name": "RANGER", "service_version": "0.5.0.2.3" }, "components": [ { "StackServiceComponents": { "component_name": "RANGER_ADMIN", "hostnames": ["host1"] } } ] }, { "href": "/api/v1/stacks/HDP/versions/2.3/services/KNOX", "StackServices": { "service_name": "KNOX", "service_version": "0.9.0.2.3", "stack_name": "HDP", "stack_version": "2.3" }, "components": [ { "href": "/api/v1/stacks/HDP/versions/2.3/services/KNOX/components/KNOX_GATEWAY", "StackServiceComponents": { "advertise_version": "false", "cardinality": "1+", "component_category": "MASTER", "component_name": "KNOX_GATEWAY", "display_name": "<NAME>", "is_client": "false", "is_master": "true", "hostnames": ["c6401.ambari.apache.org"] }, "dependencies": [] } ] } ], "configurations": { "admin-properties": { "properties": { "DB_FLAVOR": "NOT_EXISTING", } }, "ranger-admin-site": { "properties": { "ranger.service.http.port": "7777", "ranger.service.http.enabled": "true", "ranger.sso.providerurl": "", } } }, "ambari-server-properties": { "ambari.ldap.isConfigured" : "true", "authentication.ldap.bindAnonymously" : "false", "authentication.ldap.baseDn" : "dc=apache,dc=org", "authentication.ldap.groupNamingAttr" : "cn", "authentication.ldap.primaryUrl" : "c6403.ambari.apache.org:389", "authentication.ldap.userObjectClass" : "posixAccount", "authentication.ldap.secondaryUrl" : "c6403.ambari.apache.org:389", "authentication.ldap.usernameAttribute" : "uid", "authentication.ldap.dnAttribute" : "dn", "authentication.ldap.useSSL" : "false", "authentication.ldap.managerPassword" : "/etc/ambari-server/conf/ldap-password.dat", "authentication.ldap.groupMembershipAttr" : "memberUid", "authentication.ldap.groupObjectClass" : "posixGroup", "authentication.ldap.managerDn" : "uid=hdfs,ou=people,ou=dev,dc=apache,dc=org" } } expected = { 'admin-properties': { 'properties': { 'policymgr_external_url': 'http://host1:7777' } }, 'ranger-ugsync-site': { 'properties': { 'ranger.usersync.group.objectclass': 'posixGroup', 'ranger.usersync.group.nameattribute': 'cn', 'ranger.usersync.group.memberattributename': 'memberUid', 'ranger.usersync.ldap.binddn': 'uid=hdfs,ou=people,ou=dev,dc=apache,dc=org', 'ranger.usersync.ldap.user.nameattribute': 'uid', 'ranger.usersync.ldap.user.objectclass': 'posixAccount', 'ranger.usersync.ldap.url': 'ldap://c6403.ambari.apache.org:389', 'ranger.usersync.ldap.searchBase': 'dc=apache,dc=org' } }, 'ranger-admin-site': { 'properties': { "ranger.audit.solr.zookeepers": "NONE", "ranger.audit.source.type": "solr", "ranger.sso.providerurl": "https://c6401.ambari.apache.org:8443/gateway/knoxsso/api/v1/websso" } }, 'ranger-env': { 'properties': { 'ranger-storm-plugin-enabled': 'No', } }, 'ranger-knox-security': {'properties': {}} } recommendedConfigurations = {} self.stackAdvisor.recommendRangerConfigurations(recommendedConfigurations, clusterData, services, None) self.assertEquals(recommendedConfigurations, expected) # Recommend ranger.audit.solr.zookeepers when solrCloud is disabled services['configurations']['ranger-env'] = { "properties": { "is_solrCloud_enabled": "false" } } recommendedConfigurations = {} self.stackAdvisor.recommendRangerConfigurations(recommendedConfigurations, clusterData, services, None) self.assertEquals(recommendedConfigurations['ranger-admin-site']['properties']['ranger.audit.solr.zookeepers'], 'NONE') def test_recommendRangerKMSConfigurations(self): clusterData = {} services = { "ambari-server-properties": { "ambari-server.user": "root" }, "Versions": { "stack_version" : "2.3", }, "services": [ { "StackServices": { "service_name": "RANGER_KMS", "service_version": "0.5.0.2.3" }, "components": [ { "StackServiceComponents": { "component_name": "RANGER_KMS_SERVER", "hostnames": ["host1"] } } ] } ], "configurations": { "kms-env": { "properties": { "kms_user": "kmsname" } }, "core-site": { "properties": { "fs.defaultFS": "hdfs://host1:8020" } }, 'ranger-kms-audit': { 'properties': { } }, 'kms-properties': { 'properties': { 'DB_FLAVOR': 'ORACLE', 'db_host' : 'c6401.ambari.apache.org:1521:XE', 'db_name' : "XE" } }, 'cluster-env': { 'properties': { 'security_enabled': 'false' } } }, "forced-configurations": [] } expected = { 'kms-properties': { 'properties': {} }, 'dbks-site': { 'properties': { "ranger.ks.jpa.jdbc.driver" : "oracle.jdbc.driver.OracleDriver", "ranger.ks.jpa.jdbc.url" : "jdbc:oracle:thin:@c6401.ambari.apache.org:1521:XE" } }, 'core-site': { 'properties': { } }, 'ranger-kms-audit': { 'properties': { } }, 'kms-site': { 'properties': { }, 'property_attributes': { 'hadoop.kms.proxyuser.HTTP.hosts': {'delete': 'true'}, 'hadoop.kms.proxyuser.HTTP.users': {'delete': 'true'}, 'hadoop.kms.proxyuser.root.hosts': {'delete': 'true'}, 'hadoop.kms.proxyuser.root.users': {'delete': 'true'} } } } # non kerberized cluster. There should be no proxyuser configs recommendedConfigurations = {} self.stackAdvisor.recommendRangerKMSConfigurations(recommendedConfigurations, clusterData, services, None) self.assertEquals(recommendedConfigurations, expected) # kerberized cluster services['services'].append({ "StackServices": { "service_name": "KERBEROS" } }) services['configurations']['cluster-env']['properties']['security_enabled'] = "true" services['configurations']['cluster-env']['properties']['ambari_principal_name'] = "<EMAIL>" expected = { 'kms-properties': { 'properties': {} }, 'dbks-site': { 'properties': { "ranger.ks.jpa.jdbc.driver" : "oracle.jdbc.driver.OracleDriver", "ranger.ks.jpa.jdbc.url" : "jdbc:oracle:thin:@c6401.ambari.apache.org:1521:XE" } }, 'core-site': { 'properties': { 'hadoop.proxyuser.kmsname.groups': '*' } }, 'ranger-kms-audit': { 'properties': { } }, 'kms-site': { 'properties': { 'hadoop.kms.proxyuser.HTTP.hosts': '*', 'hadoop.kms.proxyuser.HTTP.users': '*', 'hadoop.kms.proxyuser.ambari-cl1.hosts': '*', 'hadoop.kms.proxyuser.ambari-cl1.users': '*' } } } # on kerberized cluster property should be recommended recommendedConfigurations = {} self.stackAdvisor.recommendRangerKMSConfigurations(recommendedConfigurations, clusterData, services, None) self.assertEquals(recommendedConfigurations, expected) recommendedConfigurations = {} services['changed-configurations'] = [ { 'type': 'kms-env', 'name': 'kms_user', 'old_value': 'kmsname' } ] services['configurations']['kms-env']['properties']['kms_user'] = 'kmsnew' expected['core-site'] = { 'properties':
fit_mask_bad.append(b) if len(user_mask) > 0: for i in user_mask: ibad = np.where((lam_gal / (1.0 + z) >= i[0]) & (lam_gal / (1.0 + z) <= i[1]))[0] for b in ibad: fit_mask_bad.append(b) if mask_metal: # galaxy = interpolate_metal(galaxy,noise) metal_mask_bad = metal_masker(lam_gal, galaxy, noise, fits_file) for b in metal_mask_bad: fit_mask_bad.append(b) fit_mask_bad = np.sort(np.unique(fit_mask_bad)) fit_mask_good = np.setdiff1d(np.arange(0, len(lam_gal), 1, dtype=int), fit_mask_bad) ############################################################### c = 299792.458 # speed of light in km/s frac = lam_gal[1] / lam_gal[0] # Constant lambda fraction per pixel # dlam_gal = (frac - 1) * lam_gal # Size of every pixel in Angstrom # print('\n Size of every pixel: %s (A)' % dlam_gal) # wdisp = t['wdisp'][mask] # Intrinsic dispersion of every pixel, in pixels units # fwhm_gal = 2.355 * wdisp * dlam_gal # Resolution FWHM of every pixel, in angstroms fwhm_gal = t['fwhm_res'][mask] velscale = np.log(frac) * c # Constant velocity scale in km/s per pixel # If the galaxy is at significant redshift, one should bring the galaxy # spectrum roughly to the rest-frame wavelength, before calling pPXF # (See Sec2.4 of Cappellari 2017). In practice there is no # need to modify the spectrum in any way, given that a red shift # corresponds to a linear shift of the log-rebinned spectrum. # One just needs to compute the wavelength range in the rest-frame # and adjust the instrumental resolution of the galaxy observations. # This is done with the following three commented lines: # lam_gal = lam_gal / (1.0 + z) # Compute approximate restframe wavelength fwhm_gal = fwhm_gal / (1.0 + z) # Adjust resolution in Angstrom # fwhm_gal = np.full_like(lam_gal,0.0) # We pass this interp1d class to the fit_model function to correct for # the instrumental resolution of emission lines in our model # fwhm_gal_ftn = interp1d(lam_gal,fwhm_gal,kind='linear',bounds_error=False,fill_value=(1.e-10,1.e-10)) val, idx = find_nearest(lam_gal, 5175) ################################################################################ #################### Correct for galactic extinction ################## galaxy = ccm_unred(lam_gal, galaxy, ebv) ####################################################################### # Write to log write_log((fits_file, ra, dec, z, cosmology, fit_min, fit_max, velscale, ebv), 'prepare_sdss_spec', run_dir) ################################################################################ if plot: prepare_sdss_plot(lam_gal, galaxy, noise, fit_mask_bad, run_dir) if verbose: print('\n') print('-----------------------------------------------------------') print('{0:<30}{1:<30}'.format(' file:' , fits_file.name )) print('{0:<30}{1:<30}'.format(' SDSS redshift:' , '%0.5f' % z )) print('{0:<30}{1:<30}'.format(' fitting region' , '(%d,%d) [A]' % (fit_reg[0 ],fit_reg[1]) )) print('{0:<30}{1:<30}'.format(' velocity scale' , '%0.2f [km/s/pixel]' % velscale )) print('{0:<30}{1:<30}'.format(' Galactic E(B-V):', '%0.3f' % ebv )) print('-----------------------------------------------------------') ################################################################################ return lam_gal,galaxy,noise,z,ebv,velscale,fwhm_gal,fit_mask_good,binnum,spaxelx,spaxely ################################################################################## # Alias function prepare_ifu_plot = prepare_sdss_plot #### Prepare stellar templates ################################################### def prepare_stellar_templates(galaxy, lam_gal, fit_reg, velscale, fwhm_gal,fit_mask, losvd_options, run_dir): """ Prepares stellar templates for convolution using pPXF. This example is from Capellari's pPXF examples, the code for which can be found here: https://www-astro.physics.ox.ac.uk/~mxc/. """ # Stellar template directory if (losvd_options["library"]=="IndoUS"): temp_dir = "badass_data_files/IndoUS/" fwhm_temp = 1.35 # Indo-US Template Library FWHM in Å (linear) if (losvd_options["library"]=="Vazdekis2010"): temp_dir = "badass_data_files/Vazdekis2010/" fwhm_temp = 2.51 # Vazdekis+10 spectra have a constant resolution FWHM of 2.51A (linear) if (losvd_options["library"]=="eMILES"): temp_dir = "badass_data_files/eMILES/" fwhm_temp = 2.51 # eMILES spectra have a constant resolution FWHM of 2.51A (linear) fit_min,fit_max = float(fit_reg[0]),float(fit_reg[1]) # # Get a list of templates stored in temp_dir. We only include 50 stellar # templates of various spectral type from the Indo-US Coude Feed Library of # Stellar templates (https://www.noao.edu/cflib/). We choose this library # because it is (1) empirical, (2) has a broad wavelength range with # minimal number of gaps, and (3) is at a sufficiently high resolution (~1.35 Å) # such that we can probe as high a redshift as possible with the SDSS. It may # be advantageous to use a different stellar template library (such as the MILES # library) depdending on the science goals. BADASS only uses pPXF to measure stellar # kinematics (i.e, stellar velocity and dispersion), and does NOT compute stellar # population ages. temp_list = natsort.natsorted(glob.glob(temp_dir + '/*.fits') )# # Extract the wavelength range and logarithmically rebin one spectrum # to the same velocity scale of the input galaxy spectrum, to determine # the size needed for the array which will contain the template spectra. # hdu = fits.open(temp_list[0]) ssp = hdu[0].data h2 = hdu[0].header hdu.close() lam_temp = np.array(h2['CRVAL1'] + h2['CDELT1']*np.arange(h2['NAXIS1'])) # By cropping the templates we save some fitting time mask_temp = ( (lam_temp > (fit_min-100.)) & (lam_temp < (fit_max+100.)) ) ssp = ssp[mask_temp] lam_temp = lam_temp[mask_temp] lamRange_temp = [np.min(lam_temp), np.max(lam_temp)] sspNew = log_rebin(lamRange_temp, ssp, velscale=velscale)[0] templates = np.empty((sspNew.size, len(temp_list))) # Interpolates the galaxy spectral resolution at the location of every pixel # of the templates. Outside the range of the galaxy spectrum the resolution # will be extrapolated, but this is irrelevant as those pixels cannot be # used in the fit anyway. if isinstance(fwhm_gal,(list,np.ndarray)): fwhm_gal_interp = np.interp(lam_temp, lam_gal, fwhm_gal) elif isinstance(fwhm_gal,(int,float)): fwhm_gal_interp = np.full_like(lam_temp,fwhm_gal) # Convolve the whole Vazdekis library of spectral templates # with the quadratic difference between the SDSS and the # Vazdekis instrumental resolution. Logarithmically rebin # and store each template as a column in the array TEMPLATES. # Quadratic sigma difference in pixels Vazdekis --> SDSS # The formula below is rigorously valid if the shapes of the # instrumental spectral profiles are well approximated by Gaussians. # # In the line below, the fwhm_dif is set to zero when fwhm_gal < fwhm_tem. # In principle it should never happen and a higher resolution template should be used. # fwhm_dif = np.sqrt((fwhm_gal_interp**2 - fwhm_temp**2).clip(0)) sigma = fwhm_dif/2.355/h2['CDELT1'] # Sigma difference in pixels for j, fname in enumerate(temp_list): hdu = fits.open(fname) ssp = hdu[0].data ssp = ssp[mask_temp] ssp = gaussian_filter1d(ssp, sigma) # perform convolution with variable sigma sspNew,loglam_temp,velscale_temp = log_rebin(lamRange_temp, ssp, velscale=velscale)#[0] templates[:, j] = sspNew/np.median(sspNew) # Normalizes templates hdu.close() # The galaxy and the template spectra do not have the same starting wavelength. # For this reason an extra velocity shift DV has to be applied to the template # to fit the galaxy spectrum. We remove this artificial shift by using the # keyword VSYST in the call to PPXF below, so that all velocities are # measured with respect to DV. This assume the redshift is negligible. # In the case of a high-redshift galaxy one should de-redshift its # wavelength to the rest frame before using the line below (see above). # c = 299792.458 # speed of light in km/s vsyst = np.log(lam_temp[0]/lam_gal[0])*c # km/s npix = galaxy.shape[0] # number of output pixels ntemp = np.shape(templates)[1]# number of templates # Pre-compute FFT of templates, since they do not change (only the LOSVD and convolution changes) temp_fft,npad = template_rfft(templates) # we will use this throughout the code # If vel_const AND disp_const are True, there is no need to convolve during the # fit, so we perform the convolution here and pass the convolved templates to fit_model. if (losvd_options["vel_const"]["bool"]==True) & (losvd_options["disp_const"]["bool"]==True): stel_vel = losvd_options["vel_const"]["val"] stel_disp = losvd_options["disp_const"]["val"] conv_temp = convolve_gauss_hermite(temp_fft,npad,float(velscale),\ [stel_vel, stel_disp],np.shape(lam_gal)[0],velscale_ratio=1,sigma_diff=0,vsyst=vsyst) stel_templates = conv_temp # If vel_const OR disp_const is False, do not perform the convolution. # Package the stellar templates, vsyst, and npad (everything needed for convolution) # into a tuple called stel_templates, to be used in fit_model() elif (losvd_options["vel_const"]["bool"]==False) | (losvd_options["disp_const"]["bool"]==False): stel_templates = (temp_fft, npad, vsyst) ############################################################################## return stel_templates ################################################################################## #### Initialize Parameters ####################################################### def initialize_pars(lam_gal,galaxy,noise,fit_reg,fwhm_gal,fit_mask_good,velscale, comp_options,user_lines,user_constraints,combined_lines,losvd_options,host_options,power_options,poly_options, opt_feii_options,uv_iron_options,balmer_options, run_dir,fit_type='init',fit_stat="RCHI2", fit_opt_feii=True,fit_uv_iron=True,fit_balmer=True, fit_losvd=False,fit_host=True,fit_power=True,fit_poly=False, fit_narrow=True,fit_broad=True,fit_outflow=True,fit_absorp=True, tie_line_fwhm=False,tie_line_voff=False,remove_lines=False,verbose=True): """ Initializes all free parameters for the fit based on user input and options. """ # Issue warnings for dumb options if ((fit_narrow==False) & (fit_outflow==True)): # why would you fit outflow without narrow lines? raise ValueError('\n Why would you fit outflows without narrow lines? Turn on narrow line component! \n') ################################################################################ # Initial conditions for some parameters max_flux = np.nanmax(galaxy) median_flux = np.nanmedian(galaxy) # Padding on the edges; any line(s) within this many angstroms is omitted # from the fit so problems do not occur with the fit edge_pad = 10.0 def get_init_amp(line_center): line_center = float(line_center) try: return (np.max(galaxy[(lam_gal>line_center-10.) & (lam_gal<line_center+10.)])) except ValueError: return
import os import requests from typing import Optional, Union, Iterable, Mapping, Sequence from platypush.plugins import Plugin, action from platypush.schemas.mastodon import MastodonSchema, MastodonSearchSchema, MastodonAccountCreationSchema, \ MastodonAccountSchema, MastodonStatusSchema, MastodonFeaturedHashtagSchema, MastodonAccountListSchema, \ MastodonFilterSchema, MastodonMediaSchema, MastodonConversationSchema, MastodonListSchema, \ MastodonNotificationSchema from platypush.utils import get_mime_type class MastodonPlugin(Plugin): """ Plugin to interact with `Mastodon <https://mastodon.social/about>`_ instances. It requires an active API token associated to an app registered on the instance. In order to get one: - Open ``https://<mastodon-base-url>/settings/applications/`` - Create a new application - Select the scopes relevant for your specific usage. - Take note of the token reported on the *Your access token* row. The notifications subscription service requires the ``ngrok`` plugin and the `http` backend to be enabled, since we need to expose an external URL that the Mastodon instance can call when new events occur. """ class SubscriptionConfig: tunnel_url: str local_port: int auth_secret: str private_key: str public_key: str server_key: str def __init__(self, base_url: str, access_token: Optional[str] = None, **kwargs): """ :param base_url: Base URL of the Mastodon web server, in the form of ``https://<domain-name>``. :param access_token: Access token as reported on ``https://<base_url>/settings/applications/<app_id>``. """ super().__init__(**kwargs) self._base_url = base_url self._access_token = access_token self._subscription_config = self.SubscriptionConfig() def base_url(self, version: str, base_url: Optional[str] = None) -> str: return f'{base_url or self._base_url}/api/{version}' def _run( self, path: str, method: str = 'get', version: str = 'v2', headers: Optional[dict] = None, base_url: Optional[str] = None, access_token: Optional[str] = None, schema: Optional[MastodonSchema] = None, **kwargs ) -> Optional[Union[dict, list]]: headers = { 'Authorization': f'Bearer {access_token or self._access_token}', 'Accept': 'application/json', **(headers or {}), } method = getattr(requests, method.lower()) rs = method(self.base_url(base_url=base_url, version=version) + '/' + path, headers=headers, **kwargs) rs.raise_for_status() rs = rs.json() if schema: rs = schema.dump(rs) return rs # noinspection PyShadowingBuiltins @action def search( self, query: str, type: Optional[str] = None, min_id: Optional[str] = None, max_id: Optional[str] = None, limit: int = 20, offset: int = 0, following: bool = False, **kwargs ) -> Mapping[str, Iterable[dict]]: """ Perform a search. :param query: Search query. :param type: Filter by type. Supported types: - ``accounts`` - ``hashtags`` - ``statuses`` :param min_id: Return results newer than this ID. :param max_id: Return results older than this ID. :param limit: Maximum number of results (default: 20). :param offset: Return results from this offset (default: 0). :param following: Only return results from accounts followed by the user (default: False). :param kwargs: ``base_url``/``access_token`` override. :return: .. schema:: mastodon.MastodonSearchSchema """ return self._run( 'search', version='v2', schema=MastodonSearchSchema(), params={ 'q': query, **({'type': type} if type else {}), **({'min_id': min_id} if min_id else {}), **({'max_id': max_id} if max_id else {}), **({'limit': limit} if limit else {}), **({'offset': offset} if offset else {}), **({'following': following} if following else {}), }, **kwargs ) @action def register_account( self, username: str, email: str, password: str, locale: str = 'en', reason: Optional[str] = None, **kwargs ) -> dict: """ Register a new account. It requires the specified API token to have ``write:accounts`` permissions. :param username: <NAME>. :param email: User's email address (must be a valid address). :param password: <PASSWORD> the first login. :param locale: Language/encoding for the confirmation email. :param reason: Text that will be reviewed by moderators if registrations require manual approval. :param kwargs: ``base_url``/``access_token`` override. :return: .. schema:: mastodon.MastodonAccountCreationSchema """ return self._run( 'accounts', method='post', version='v1', schema=MastodonAccountCreationSchema(), json={ 'username': username, 'email': email, 'password': password, 'locale': locale, 'reason': reason, 'agreement': True, }, **kwargs ) @action def update_account( self, discoverable: Optional[bool] = None, bot: Optional[bool] = None, display_name: Optional[str] = None, note: Optional[str] = None, avatar: Optional[str] = None, header: Optional[str] = None, locked: Optional[bool] = None, privacy: Optional[str] = None, sensitive: Optional[bool] = None, language: Optional[str] = None, metadata: Optional[Iterable[Mapping]] = None, **kwargs ) -> dict: """ Updates the properties of the account associated to the access token. It requires the specified API token to have ``write:accounts`` permissions. :param discoverable: Whether the account should be shown in the profile directory. :param bot: Whether the account is a bot. :param display_name: The display name to use for the profile. :param note: The account bio (HTML is supported). :param avatar: Path to an avatar image. :param header: Path to a header image. :param locked: Whether manual approval of follow requests is required. :param privacy: Default post privacy for authored statuses. :param sensitive: Whether to mark authored statuses as sensitive by default. :param language: Default language to use for authored statuses (ISO 6391 code). :param metadata: Profile metadata items with ``name`` and ``value``. :param kwargs: ``base_url``/``access_token`` override. :return: .. schema:: mastodon.MastodonAccountSchema """ avatar = os.path.expanduser(avatar) if avatar else None header = os.path.expanduser(header) if header else None return self._run( 'accounts/update_credentials', method='patch', version='v1', schema=MastodonAccountSchema(), data={ **({'discoverable': discoverable} if discoverable is not None else {}), **({'bot': bot} if bot is not None else {}), **({'display_name': display_name} if display_name is not None else {}), **({'note': note} if note is not None else {}), **({'locked': locked} if locked is not None else {}), **({'source[privacy]': privacy} if privacy is not None else {}), **({'source[sensitive]': sensitive} if sensitive is not None else {}), **({'source[language]': language} if language is not None else {}), **({'fields_attributes': metadata} if metadata is not None else {}), }, files={ **({'avatar': ( os.path.basename(avatar), open(avatar, 'rb'), get_mime_type(avatar) )} if avatar is not None else {}), **({'header': ( os.path.basename(header), open(header, 'rb'), get_mime_type(header) )} if header is not None else {}), }, **kwargs ) @action def get_account(self, account_id: str, **kwargs) -> dict: """ Retrieve an account by ID. It requires the specified API token to have ``read:accounts`` permissions. :param account_id: Account ID to retrieve. :param kwargs: ``base_url``/``access_token`` override. :return: .. schema:: mastodon.MastodonAccountSchema """ return self._run( f'accounts/{account_id}', version='v1', schema=MastodonAccountSchema(), **kwargs ) @action def get_statuses(self, account_id: str, min_id: Optional[str] = None, max_id: Optional[str] = None, limit: int = 20, offset: int = 0, **kwargs) -> Iterable[dict]: """ Retrieve statuses by account ID. It requires the specified API token to have the ``read:statuses`` permission. :param account_id: Account ID. :param min_id: Return results newer than this ID. :param max_id: Return results older than this ID. :param limit: Maximum number of results (default: 20). :param offset: Return results from this offset (default: 0). :param kwargs: ``base_url``/``access_token`` override. :return: .. schema:: mastodon.MastodonStatusSchema(many=True) """ return self._run( f'accounts/{account_id}/statuses', version='v1', schema=MastodonStatusSchema(many=True), params={ **({'min_id': min_id} if min_id else {}), **({'max_id': max_id} if max_id else {}), **({'limit': limit} if limit else {}), **({'offset': offset} if offset else {}), }, **kwargs ) @action def get_followers(self, account_id: str, max_id: Optional[str] = None, since_id: Optional[str] = None, limit: int = 20, offset: int = 0, **kwargs) -> Iterable[dict]: """ Retrieve the list of followers of an account. It requires the specified API token to have the ``read:accounts`` permission. :param account_id: Account ID. :param max_id: Return results older than this ID. :param since_id: Return results newer than this ID. :param limit: Maximum number of results (default: 20). :param offset: Return results from this offset (default: 0). :param kwargs: ``base_url``/``access_token`` override. :return: .. schema:: mastodon.MastodonAccountSchema(many=True) """ return self._run( f'accounts/{account_id}/followers', version='v1', schema=MastodonAccountSchema(many=True), params={ **({'since_id': since_id} if since_id else {}), **({'max_id': max_id} if max_id else {}), **({'limit': limit} if limit else {}), **({'offset': offset} if offset else {}), }, **kwargs ) @action def get_following(self, account_id: str, max_id: Optional[str] = None, since_id: Optional[str] = None, limit: int = 20, offset: int = 0, **kwargs) -> Iterable[dict]: """ Retrieve the list of accounts followed by a specified account. It requires the specified API token to have the ``read:accounts`` permission. :param account_id: Account ID. :param max_id: Return results older than this ID. :param since_id: Return results newer than this ID. :param limit: Maximum number of results (default: 20). :param offset: Return results from this offset (default: 0). :param kwargs: ``base_url``/``access_token`` override. :return: .. schema:: mastodon.MastodonAccountSchema(many=True) """ return self._run( f'accounts/{account_id}/following', version='v1', schema=MastodonAccountSchema(many=True), params={ **({'since_id': since_id} if since_id else {}), **({'max_id': max_id} if max_id else {}), **({'limit': limit} if limit else {}), **({'offset': offset} if offset else {}), }, **kwargs ) @action def get_featured_tags(self, account_id: Optional[str] = None,
any(check_rel): QMessageBox().critical(self, 'Cell ID = Relative\'s ID', 'Some cells are ' 'mother or bud of itself. Make sure that the Relative\'s ID' ' is different from the Cell ID!', QMessageBox.Ok) return None elif any(check_buds_S): QMessageBox().critical(self, 'Bud in S/G2/M not in 0 Generation number', 'Some buds ' 'in S phase do not have 0 as Generation number!\n' 'Buds in S phase must have 0 as "Generation number"', QMessageBox.Ok) return None elif any(check_mothers): QMessageBox().critical(self, 'Mother not in >=1 Generation number', 'Some mother cells do not have >=1 as "Generation number"!\n' 'Mothers MUST have >1 "Generation number"', QMessageBox.Ok) return None elif any(check_buds_G1): QMessageBox().critical(self, 'Buds in G1!', 'Some buds are in G1 phase!\n' 'Buds MUST be in S/G2/M phase', QMessageBox.Ok) return None elif num_moth_S != num_bud_S: QMessageBox().critical(self, 'Number of mothers-buds mismatch!', f'There are {num_moth_S} mother cells in "S/G2/M" phase,' f'but there are {num_bud_S} bud cells.\n\n' 'The number of mothers and buds in "S/G2/M" ' 'phase must be equal!', QMessageBox.Ok) return None elif any(check_relID_S): QMessageBox().critical(self, 'Relative\'s ID of cells in S/G2/M = -1', 'Some cells are in "S/G2/M" phase but have -1 as Relative\'s ID!\n' 'Cells in "S/G2/M" phase must have an existing ' 'ID as Relative\'s ID!', QMessageBox.Ok) return None else: corrected_assignment = self.inputCca_df['corrected_assignment'] cca_df = pd.DataFrame({ 'cell_cycle_stage': ccsValues, 'generation_num': genNumValues, 'relative_ID': relIDValues, 'relationship': relatValues, 'emerg_frame_i': emergFrameValues, 'division_frame_i': divisFrameValues, 'is_history_known': historyValues, 'corrected_assignment': corrected_assignment}, index=self.IDs) cca_df.index.name = 'Cell_ID' d = dict.fromkeys(cca_df.select_dtypes(np.int64).columns, np.int32) cca_df = cca_df.astype(d) return cca_df def ok_cb(self, checked): cca_df = self.getCca_df() if cca_df is None: return self.cca_df = cca_df self.cancel = False self.close() def cancel_cb(self, checked): self.cancel = True self.close() def exec_(self): self.show(block=True) def show(self, block=False): self.setWindowFlags(Qt.Dialog | Qt.WindowStaysOnTopHint) super().show() w = ( self.viewBox.minimumSizeHint().width() + 5*self.tableLayout.columnCount() ) winGeometry = self.geometry() l, t, h = winGeometry.left(), winGeometry.top(), winGeometry.height() self.setGeometry(l, t, w, h) if block: self.loop = QEventLoop() self.loop.exec_() def eventFilter(self, object, event): # Disable wheel scroll on widgets to allow scroll only on scrollarea if event.type() == QEvent.Wheel: event.ignore() return True return False def clearComboboxFocus(self): self.sender().clearFocus() def closeEvent(self, event): if hasattr(self, 'loop'): self.loop.exit() class askStopFrameSegm(QDialog): def __init__( self, user_ch_file_paths, user_ch_name, concat_segm=False, parent=None ): self.parent = parent self.cancel = True self.concat_segm = concat_segm super().__init__(parent) self.setWindowTitle('Enter stop frame') mainLayout = QVBoxLayout() formLayout = QFormLayout() buttonsLayout = QHBoxLayout() # Message infoTxt = ( """ <!DOCTYPE html> <html> <head> <style> p.big { line-height: 1.2; } </style> </head> <body> <p class="big"> Enter a <b>stop frame number</b> when to stop<br> segmentation for each Position loaded: </p> </body> </html> """ ) infoLabel = QLabel(infoTxt, self) _font = QtGui.QFont() _font.setPixelSize(13) infoLabel.setFont(_font) infoLabel.setAlignment(Qt.AlignCenter) # padding: top, left, bottom, right infoLabel.setStyleSheet("padding:0px 0px 8px 0px;") self.dataDict = {} # Form layout widget for img_path in user_ch_file_paths: pos_foldername = os.path.basename( os.path.dirname( os.path.dirname(img_path) ) ) spinBox = QSpinBox() posData = load.loadData(img_path, user_ch_name, QParent=parent) posData.getBasenameAndChNames() posData.buildPaths() posData.loadImgData() posData.loadOtherFiles( load_segm_data=False, load_metadata=True, loadSegmInfo=True, ) spinBox.setMaximum(posData.SizeT) if posData.segmSizeT == 1: spinBox.setValue(posData.SizeT) else: if self.concat_segm and posData.segmSizeT < posData.SizeT: spinBox.setMinimum(posData.segmSizeT+1) spinBox.setValue(posData.SizeT) else: spinBox.setValue(posData.segmSizeT) spinBox.setAlignment(Qt.AlignCenter) visualizeButton = QPushButton('Visualize') visualizeButton.clicked.connect(self.visualize_cb) formLabel = QLabel(f'{pos_foldername} ') layout = QHBoxLayout() layout.addWidget(formLabel, alignment=Qt.AlignRight) layout.addWidget(spinBox) layout.addWidget(visualizeButton) self.dataDict[visualizeButton] = (spinBox, posData) formLayout.addRow(layout) self.formLayout = formLayout mainLayout.addWidget(infoLabel, alignment=Qt.AlignCenter) mainLayout.addLayout(formLayout) okButton = widgets.okPushButton('Ok') okButton.setShortcut(Qt.Key_Enter) cancelButton = widgets.cancelPushButton('Cancel') buttonsLayout.addWidget(okButton, alignment=Qt.AlignRight) buttonsLayout.addWidget(cancelButton, alignment=Qt.AlignLeft) buttonsLayout.setContentsMargins(0, 10, 0, 0) okButton.clicked.connect(self.ok_cb) cancelButton.clicked.connect(self.close) mainLayout.addLayout(buttonsLayout) self.setLayout(mainLayout) # # self.setModal(True) def saveSegmSizeT(self): for spinBox, posData in self.dataDict.values(): posData.segmSizeT = spinBox.value() posData.saveMetadata() def ok_cb(self, event): self.cancel = False self.saveSegmSizeT() self.close() def visualize_cb(self, checked=True): spinBox, posData = self.dataDict[self.sender()] posData.frame_i = spinBox.value()-1 self.slideshowWin = imageViewer( posData=posData, spinBox=spinBox ) self.slideshowWin.update_img() self.slideshowWin.framesScrollBar.setDisabled(True) self.slideshowWin.show() def exec_(self): self.show(block=True) def show(self, block=False): self.setWindowFlags(Qt.Dialog | Qt.WindowStaysOnTopHint) super().show() if block: self.loop = QEventLoop() self.loop.exec_() def closeEvent(self, event): if hasattr(self, 'loop'): self.loop.exit() class QLineEditDialog(QDialog): def __init__( self, title='Entry messagebox', msg='Entry value', defaultTxt='', parent=None, allowedValues=None, warnLastFrame=False, isInteger=False, isFloat=False ): QDialog.__init__(self, parent) self.loop = None self.cancel = True self.allowedValues = allowedValues self.warnLastFrame = warnLastFrame self.isFloat = isFloat self.isInteger = isInteger if allowedValues and warnLastFrame: self.maxValue = max(allowedValues) self.setWindowTitle(title) # Layouts mainLayout = QVBoxLayout() LineEditLayout = QVBoxLayout() buttonsLayout = QHBoxLayout() # Widgets msg = QLabel(msg) _font = QtGui.QFont() _font.setPixelSize(13) msg.setFont(_font) msg.setAlignment(Qt.AlignCenter) # padding: top, left, bottom, right msg.setStyleSheet("padding:0px 0px 3px 0px;") if isFloat: ID_QLineEdit = QDoubleSpinBox() if allowedValues is not None: _min, _max = allowedValues ID_QLineEdit.setMinimum(_min) ID_QLineEdit.setMaximum(_max) else: ID_QLineEdit.setMaximum(2**32) if defaultTxt: ID_QLineEdit.setValue(float(defaultTxt)) elif isInteger: ID_QLineEdit = QSpinBox() if allowedValues is not None: _min, _max = allowedValues ID_QLineEdit.setMinimum(_min) ID_QLineEdit.setMaximum(_max) else: ID_QLineEdit.setMaximum(2147483647) if defaultTxt: ID_QLineEdit.setValue(int(defaultTxt)) else: ID_QLineEdit = QLineEdit() ID_QLineEdit.setText(defaultTxt) ID_QLineEdit.textChanged[str].connect(self.ID_LineEdit_cb) ID_QLineEdit.setFont(_font) ID_QLineEdit.setAlignment(Qt.AlignCenter) self.ID_QLineEdit = ID_QLineEdit if allowedValues is not None: notValidLabel = QLabel() notValidLabel.setStyleSheet('color: red') notValidLabel.setFont(_font) notValidLabel.setAlignment(Qt.AlignCenter) self.notValidLabel = notValidLabel okButton = widgets.okPushButton('Ok') okButton.setShortcut(Qt.Key_Enter) cancelButton = widgets.cancelPushButton('Cancel') # Events okButton.clicked.connect(self.ok_cb) cancelButton.clicked.connect(self.cancel_cb) # Contents margins buttonsLayout.setContentsMargins(0,10,0,0) # Add widgets to layouts LineEditLayout.addWidget(msg, alignment=Qt.AlignCenter) LineEditLayout.addWidget(ID_QLineEdit) if allowedValues is not None: LineEditLayout.addWidget(notValidLabel, alignment=Qt.AlignCenter) buttonsLayout.addStretch(1) buttonsLayout.addWidget(cancelButton) buttonsLayout.insertSpacing(1, 20) buttonsLayout.addWidget(okButton) # Add layouts mainLayout.addLayout(LineEditLayout) mainLayout.addLayout(buttonsLayout) self.setLayout(mainLayout) # self.setModal(True) def ID_LineEdit_cb(self, text): # Get inserted char idx = self.ID_QLineEdit.cursorPosition() if idx == 0: return newChar = text[idx-1] # Allow only integers try: val = int(newChar) if val > np.iinfo(np.uint16).max: self.ID_QLineEdit.setText(str(np.iinfo(np.uint16).max)) if self.allowedValues is not None: currentVal = int(self.ID_QLineEdit.text()) if currentVal not in self.allowedValues: self.notValidLabel.setText(f'{currentVal} not existing!') else: self.notValidLabel.setText('') except Exception as e: text = text.replace(newChar, '') self.ID_QLineEdit.setText(text) return def warnValLessLastFrame(self, val): msg = QMessageBox() warn_txt = (f""" <p style="font-size:12px"> WARNING: saving until a frame number below the last visited frame ({self.maxValue})<br> will result in <b>loss of information about any edit or annotation you did on frames {val}-{self.maxValue}.</b><br><br> Are you sure you want to proceed? </p> """) answer = msg.warning( self, 'WARNING: Potential loss of information', warn_txt, msg.Yes | msg.Cancel ) return answer == msg.Cancel def ok_cb(self, event): if self.allowedValues: if self.notValidLabel.text(): return if self.isFloat or self.isInteger: val = self.ID_QLineEdit.value() else: val = int(self.ID_QLineEdit.text()) if self.warnLastFrame and val < self.maxValue: cancel = self.warnValLessLastFrame(val) if cancel: return self.cancel = False self.EntryID = val self.close() def cancel_cb(self, event): self.cancel = True self.close() def exec_(self): self.show(block=True) def show(self, block=False): self.setWindowFlags(Qt.Dialog | Qt.WindowStaysOnTopHint) super().show() if block: self.loop = QEventLoop() self.loop.exec_() def closeEvent(self, event): if hasattr(self, 'loop'): self.loop.exit() class editID_QWidget(QDialog): def __init__(self, clickedID, IDs, parent=None): self.IDs = IDs self.clickedID = clickedID self.cancel = True self.how = None super().__init__(parent) self.setWindowTitle("Edit ID") mainLayout = QVBoxLayout() VBoxLayout = QVBoxLayout() msg = QLabel(f'Replace ID {clickedID} with:') _font = QtGui.QFont() _font.setPixelSize(13) msg.setFont(_font) # padding: top, left, bottom, right msg.setStyleSheet("padding:0px 0px 3px 0px;") VBoxLayout.addWidget(msg, alignment=Qt.AlignCenter) ID_QLineEdit = QLineEdit() ID_QLineEdit.setFont(_font) ID_QLineEdit.setAlignment(Qt.AlignCenter) self.ID_QLineEdit = ID_QLineEdit VBoxLayout.addWidget(ID_QLineEdit) note = QLabel( 'NOTE: To replace multiple IDs at once\n' 'write "(old ID, new ID), (old ID, new ID)" etc.' ) note.setFont(_font) note.setAlignment(Qt.AlignCenter) # padding: top, left, bottom, right note.setStyleSheet("padding:12px 0px 0px 0px;") VBoxLayout.addWidget(note, alignment=Qt.AlignCenter) mainLayout.addLayout(VBoxLayout) HBoxLayout = QHBoxLayout() okButton = widgets.okPushButton('Ok') okButton.setShortcut(Qt.Key_Enter) HBoxLayout.addWidget(okButton, alignment=Qt.AlignRight) cancelButton = widgets.cancelPushButton('Cancel') # cancelButton.setShortcut(Qt.Key_Escape) HBoxLayout.addWidget(cancelButton, alignment=Qt.AlignLeft) HBoxLayout.setContentsMargins(0, 10, 0, 0) mainLayout.addLayout(HBoxLayout) self.setLayout(mainLayout) # Connect events self.prevText = '' ID_QLineEdit.textChanged[str].connect(self.ID_LineEdit_cb) okButton.clicked.connect(self.ok_cb) cancelButton.clicked.connect(self.cancel_cb) # self.setModal(True) def ID_LineEdit_cb(self, text): # Get inserted char idx = self.ID_QLineEdit.cursorPosition() if idx == 0: return newChar = text[idx-1] # Do nothing if user is deleting text if idx == 0 or len(text)<len(self.prevText): self.prevText = text return # Do not allow chars except for "(", ")", "int", "," m = re.search(r'\(|\)|\d|,', newChar) if m is None: self.prevText = text text = text.replace(newChar, '') self.ID_QLineEdit.setText(text) return # Cast integers greater than uint16 machine limit m_iter = re.finditer(r'\d+', self.ID_QLineEdit.text()) for m in m_iter: val = int(m.group()) uint16_max = np.iinfo(np.uint16).max if val > uint16_max: text = self.ID_QLineEdit.text() text = f'{text[:m.start()]}{uint16_max}{text[m.end():]}' self.ID_QLineEdit.setText(text) # Automatically close ( bracket if newChar == '(': text += ')' self.ID_QLineEdit.setText(text) self.prevText = text def ok_cb(self, event): self.cancel = False txt = self.ID_QLineEdit.text() valid = False # Check validity of inserted text try: ID = int(txt) how = [(self.clickedID, ID)] if ID in self.IDs: warn_msg = ( f'ID {ID} is already existing. If you continue ID {ID} ' f'will be swapped with ID {self.clickedID}\n\n' 'Do you want to continue?' ) msg = QMessageBox() do_swap = msg.warning( self, 'Invalid entry', warn_msg, msg.Yes | msg.Cancel ) if do_swap == msg.Yes: valid = True else: return else:
<reponame>dfsp-spirit/cogload<gh_stars>1-10 import os import pytest import numpy as np from numpy.testing import assert_array_equal, assert_allclose import brainload as bl import brainload.freesurferdata as fsd THIS_DIR = os.path.dirname(os.path.abspath(__file__)) TEST_DATA_DIR = os.path.join(THIS_DIR, os.pardir, 'test_data') # Respect the environment variable BRAINLOAD_TEST_DATA_DIR if it is set. If not, fall back to default. TEST_DATA_DIR = os.getenv('BRAINLOAD_TEST_DATA_DIR', TEST_DATA_DIR) FSAVERAGE_NUM_VERTS_PER_HEMISPHERE = 163842 # number of vertices of the 'fsaverage' subject from FreeSurfer 6.0 FSAVERAGE_NUM_FACES_PER_HEMISPHERE = 327680 SUBJECT1_SURF_LH_WHITE_NUM_VERTICES = 149244 # this number is quite arbitrary: the number of vertices is specific for this subject and surface. SUBJECT1_SURF_LH_WHITE_NUM_FACES = 298484 # this number is quite arbitrary: the number of faces is specific for this subject and surface. SUBJECT1_SURF_RH_WHITE_NUM_VERTICES = 153333 # this number is quite arbitrary: the number of vertices is specific for this subject and surface. SUBJECT1_SURF_RH_WHITE_NUM_FACES = 306662 # this number is quite arbitrary: the number of faces is specific for this subject and surface. def test_get_morphometry_data_suffix_for_surface_with_surf_white(): suffix = fsd._get_morphometry_data_suffix_for_surface('white') assert suffix == '' def test_get_morphometry_data_suffix_for_surface_with_surf_other(): suffix = fsd._get_morphometry_data_suffix_for_surface('pial') assert suffix == '.pial' def test_read_mgh_file_with_valid_fsaverage_file(): mgh_file = os.path.join(TEST_DATA_DIR, 'subject1', 'surf', 'rh.area.fsaverage.mgh') mgh_data, mgh_meta_data = fsd.read_mgh_file(mgh_file) assert mgh_meta_data['data_bytespervox'] == 4 assert len(mgh_meta_data) == 13 assert mgh_data.shape == (FSAVERAGE_NUM_VERTS_PER_HEMISPHERE, 1, 1) def test_merge_meshes(): m1_vertex_coords = np.array([[0, 0, 0], [5, -5, 0], [5, 5, 0], [10, 5, 0]]) m1_faces = np.array([[0, 1, 2], [1, 2, 3]]) m2_vertex_coords = np.array([[0, 0, 0], [10, -10, 0], [10, 10, 0], [15, 10, 0]]) m2_faces = np.array([[0, 2, 1], [1, 3, 2]]) merged_verts, merged_faces = fsd._merge_meshes(np.array([[m1_vertex_coords, m1_faces], [m2_vertex_coords, m2_faces]])) assert merged_verts.shape == (8, 3) assert merged_faces.shape == (4, 3) # test vertices assert_allclose(np.array([0, 0, 0]), merged_verts[0]) assert_allclose(np.array([5, -5, 0]), merged_verts[1]) assert_allclose(np.array([0, 0, 0]), merged_verts[4]) assert_allclose(np.array([10, -10, 0]), merged_verts[5]) # test faces without vertex index shift assert_allclose(np.array([0, 1, 2]), merged_faces[0]) assert_allclose(np.array([1, 2, 3]), merged_faces[1]) # test faces WITH vertex index shift (shift should be +4 because m1 has 4 vertices) assert_allclose(np.array([4, 6, 5]), merged_faces[2]) assert_allclose(np.array([5, 7, 6]), merged_faces[3]) def test_merge_morphometry_data(): morph_data1 = np.array([0.0, 0.1, 0.2, 0.3]) morph_data2 = np.array([0.4]) morph_data3 = np.array([0.5, 0.6]) merged_data = fsd.merge_morphometry_data(np.array([morph_data1, morph_data2, morph_data3])) assert merged_data.shape == (7,) assert merged_data[0] == pytest.approx(0.0, 0.0001) assert merged_data[4] == pytest.approx(0.4, 0.0001) assert merged_data[6] == pytest.approx(0.6, 0.0001) def test_read_fs_surface_file_and_record_meta_data_without_existing_metadata(): surf_file = os.path.join(TEST_DATA_DIR, 'subject1', 'surf', 'lh.white') vert_coords, faces, meta_data = fsd.read_fs_surface_file_and_record_meta_data(surf_file, 'lh') assert meta_data['lh.num_vertices'] == SUBJECT1_SURF_LH_WHITE_NUM_VERTICES assert meta_data['lh.num_faces'] == SUBJECT1_SURF_LH_WHITE_NUM_FACES assert meta_data['lh.surf_file'] == surf_file assert vert_coords.shape == (SUBJECT1_SURF_LH_WHITE_NUM_VERTICES, 3) assert faces.shape == (SUBJECT1_SURF_LH_WHITE_NUM_FACES, 3) assert len(meta_data) == 3 def test_read_fs_surface_file_and_record_meta_data_with_existing_metadata(): surf_file = os.path.join(TEST_DATA_DIR, 'subject1', 'surf', 'lh.white') vert_coords, faces, meta_data = fsd.read_fs_surface_file_and_record_meta_data(surf_file, 'lh', meta_data={'this_boy': 'still_exists'}) assert vert_coords.shape == (SUBJECT1_SURF_LH_WHITE_NUM_VERTICES, 3) assert faces.shape == (SUBJECT1_SURF_LH_WHITE_NUM_FACES, 3) assert len(meta_data) == 4 assert meta_data['this_boy'] == 'still_exists' def test_read_fs_surface_file_and_record_meta_data_raises_on_wrong_hemisphere_value(): surf_file = os.path.join(TEST_DATA_DIR, 'subject1', 'surf', 'lh.white') with pytest.raises(ValueError) as exc_info: vert_coords, faces, meta_data = fsd.read_fs_surface_file_and_record_meta_data(surf_file, 'invalid_hemisphere') assert 'hemisphere_label must be one of' in str(exc_info.value) assert 'invalid_hemisphere' in str(exc_info.value) def test_read_fs_morphometry_data_file_and_record_meta_data_with_subj1_curv_file_without_existing_metadata(): morphometry_file = os.path.join(TEST_DATA_DIR, 'subject1', 'surf', 'lh.area') per_vertex_data, meta_data = fsd.read_fs_morphometry_data_file_and_record_meta_data(morphometry_file, 'lh') assert len(meta_data) == 3 assert meta_data['lh.morphometry_file'] == morphometry_file assert meta_data['lh.morphometry_file_format'] == 'curv' assert meta_data['lh.num_data_points'] == SUBJECT1_SURF_LH_WHITE_NUM_VERTICES assert per_vertex_data.shape == (SUBJECT1_SURF_LH_WHITE_NUM_VERTICES, ) def test_read_fs_morphometry_data_file_and_record_meta_data_with_subj1_curv_file_with_existing_metadata(): morphometry_file = os.path.join(TEST_DATA_DIR, 'subject1', 'surf', 'lh.area') per_vertex_data, meta_data = fsd.read_fs_morphometry_data_file_and_record_meta_data(morphometry_file, 'lh', meta_data={'this_boy': 'still_exists'}) assert len(meta_data) == 4 assert meta_data['this_boy'] == 'still_exists' assert per_vertex_data.shape == (SUBJECT1_SURF_LH_WHITE_NUM_VERTICES, ) def test_read_fs_morphometry_data_file_and_record_meta_data_with_fsavg_mgh_file_with_existing_metadata(): morphometry_file = os.path.join(TEST_DATA_DIR, 'subject1', 'surf', 'lh.area.fsaverage.mgh') per_vertex_data, meta_data = fsd.read_fs_morphometry_data_file_and_record_meta_data(morphometry_file, 'lh', format='mgh', meta_data={'this_boy': 'still_exists'}) assert len(meta_data) == 4 assert meta_data['this_boy'] == 'still_exists' assert meta_data['lh.morphometry_file'] == morphometry_file assert meta_data['lh.morphometry_file_format'] == 'mgh' assert meta_data['lh.num_data_points'] == FSAVERAGE_NUM_VERTS_PER_HEMISPHERE assert per_vertex_data.shape == (FSAVERAGE_NUM_VERTS_PER_HEMISPHERE, ) def test_read_fs_morphometry_data_file_and_record_meta_data_raises_on_wrong_hemisphere_value(): morphometry_file = os.path.join(TEST_DATA_DIR, 'subject1', 'surf', 'lh.area') with pytest.raises(ValueError) as exc_info: per_vertex_data, meta_data = fsd.read_fs_morphometry_data_file_and_record_meta_data(morphometry_file, 'invalid_hemisphere') assert 'hemisphere_label must be one of' in str(exc_info.value) assert 'invalid_hemisphere' in str(exc_info.value) def test_read_fs_morphometry_data_file_and_record_meta_data_raises_on_wrong_format_value(): morphometry_file = os.path.join(TEST_DATA_DIR, 'subject1', 'surf', 'lh.area') with pytest.raises(ValueError) as exc_info: per_vertex_data, meta_data = fsd.read_fs_morphometry_data_file_and_record_meta_data(morphometry_file, 'lh', format='invalid_format') assert 'format must be one of' in str(exc_info.value) assert 'invalid_format' in str(exc_info.value) def test_load_subject_mesh_files_raises_on_invalid_hemi(): lh_surf_file = os.path.join(TEST_DATA_DIR, 'subject1', 'surf', 'lh.white') rh_surf_file = os.path.join(TEST_DATA_DIR, 'subject1', 'surf', 'rh.white') with pytest.raises(ValueError) as exc_info: vert_coords, faces, meta_data = fsd.load_subject_mesh_files(lh_surf_file, rh_surf_file, hemi='invalid_hemisphere') assert 'hemi must be one of' in str(exc_info.value) assert 'invalid_hemisphere' in str(exc_info.value) def test_load_subject_mesh_files(): lh_surf_file = os.path.join(TEST_DATA_DIR, 'subject1', 'surf', 'lh.white') rh_surf_file = os.path.join(TEST_DATA_DIR, 'subject1', 'surf', 'rh.white') vert_coords, faces, meta_data = fsd.load_subject_mesh_files(lh_surf_file, rh_surf_file) assert meta_data['lh.num_vertices'] == SUBJECT1_SURF_LH_WHITE_NUM_VERTICES assert meta_data['lh.num_faces'] == SUBJECT1_SURF_LH_WHITE_NUM_FACES assert meta_data['lh.surf_file'] == lh_surf_file assert meta_data['rh.num_vertices'] == SUBJECT1_SURF_RH_WHITE_NUM_VERTICES assert meta_data['rh.num_faces'] == SUBJECT1_SURF_RH_WHITE_NUM_FACES assert meta_data['rh.surf_file'] == rh_surf_file assert vert_coords.shape == (SUBJECT1_SURF_LH_WHITE_NUM_VERTICES + SUBJECT1_SURF_RH_WHITE_NUM_VERTICES, 3) assert faces.shape == (SUBJECT1_SURF_LH_WHITE_NUM_FACES + SUBJECT1_SURF_RH_WHITE_NUM_FACES, 3) assert len(meta_data) == 6 def test_load_subject_mesh_files_preserves_existing_meta_data(): lh_surf_file = os.path.join(TEST_DATA_DIR, 'subject1', 'surf', 'lh.white') rh_surf_file = os.path.join(TEST_DATA_DIR, 'subject1', 'surf', 'rh.white') vert_coords, faces, meta_data = fsd.load_subject_mesh_files(lh_surf_file, rh_surf_file, hemi='both', meta_data={'this_boy': 'still_exists'}) assert vert_coords.shape == (SUBJECT1_SURF_LH_WHITE_NUM_VERTICES + SUBJECT1_SURF_RH_WHITE_NUM_VERTICES, 3) assert faces.shape == (SUBJECT1_SURF_LH_WHITE_NUM_FACES + SUBJECT1_SURF_RH_WHITE_NUM_FACES, 3) assert meta_data['this_boy'] == 'still_exists' assert len(meta_data) == 7 def test_load_subject_mesh_files_works_with_left_hemisphere_only(): lh_surf_file = os.path.join(TEST_DATA_DIR, 'subject1', 'surf', 'lh.white') vert_coords, faces, meta_data = fsd.load_subject_mesh_files(lh_surf_file, None, hemi='lh') assert meta_data['lh.num_vertices'] == SUBJECT1_SURF_LH_WHITE_NUM_VERTICES assert meta_data['lh.num_faces'] == SUBJECT1_SURF_LH_WHITE_NUM_FACES assert meta_data['lh.surf_file'] == lh_surf_file assert vert_coords.shape == (SUBJECT1_SURF_LH_WHITE_NUM_VERTICES, 3) assert faces.shape == (SUBJECT1_SURF_LH_WHITE_NUM_FACES, 3) assert len(meta_data) == 3 def test_load_subject_mesh_files_works_with_right_hemisphere_only(): rh_surf_file = os.path.join(TEST_DATA_DIR, 'subject1', 'surf', 'rh.white') vert_coords, faces, meta_data = fsd.load_subject_mesh_files(None, rh_surf_file, hemi='rh') assert meta_data['rh.num_vertices'] == SUBJECT1_SURF_RH_WHITE_NUM_VERTICES assert meta_data['rh.num_faces'] == SUBJECT1_SURF_RH_WHITE_NUM_FACES assert meta_data['rh.surf_file'] == rh_surf_file assert vert_coords.shape == (SUBJECT1_SURF_RH_WHITE_NUM_VERTICES, 3) assert faces.shape == (SUBJECT1_SURF_RH_WHITE_NUM_FACES, 3) assert len(meta_data) == 3 def test_load_subject_morphometry_data_files(): lh_morphometry_file = os.path.join(TEST_DATA_DIR, 'subject1', 'surf', 'lh.area') rh_morphometry_file = os.path.join(TEST_DATA_DIR, 'subject1', 'surf', 'rh.area') morphometry_data, meta_data = fsd.load_subject_morphometry_data_files(lh_morphometry_file, rh_morphometry_file) assert meta_data['lh.morphometry_file'] == lh_morphometry_file assert meta_data['lh.morphometry_file_format'] == 'curv' assert meta_data['lh.num_data_points'] == SUBJECT1_SURF_LH_WHITE_NUM_VERTICES assert meta_data['rh.morphometry_file'] == rh_morphometry_file assert meta_data['rh.morphometry_file_format'] == 'curv' assert meta_data['rh.num_data_points'] == SUBJECT1_SURF_RH_WHITE_NUM_VERTICES assert len(meta_data) == 6 assert morphometry_data.shape == (SUBJECT1_SURF_LH_WHITE_NUM_VERTICES + SUBJECT1_SURF_RH_WHITE_NUM_VERTICES, ) def test_load_subject_morphometry_data_files_preserves_existing_meta_data(): lh_morphometry_file = os.path.join(TEST_DATA_DIR, 'subject1', 'surf', 'lh.area') rh_morphometry_file = os.path.join(TEST_DATA_DIR, 'subject1', 'surf', 'rh.area') morphometry_data, meta_data = fsd.load_subject_morphometry_data_files(lh_morphometry_file, rh_morphometry_file, meta_data={'this_boy': 'still_exists'}) assert meta_data['this_boy'] == 'still_exists' assert len(meta_data) == 7 assert morphometry_data.shape == (SUBJECT1_SURF_LH_WHITE_NUM_VERTICES + SUBJECT1_SURF_RH_WHITE_NUM_VERTICES, ) def test_load_subject_morphometry_data_files_works_with_left_hemisphere_only(): lh_morphometry_file = os.path.join(TEST_DATA_DIR, 'subject1', 'surf', 'lh.area') morphometry_data, meta_data = fsd.load_subject_morphometry_data_files(lh_morphometry_file, None, hemi='lh') assert meta_data['lh.morphometry_file'] == lh_morphometry_file assert meta_data['lh.morphometry_file_format'] == 'curv' assert meta_data['lh.num_data_points'] == SUBJECT1_SURF_LH_WHITE_NUM_VERTICES assert meta_data['rh.num_data_points'] == 0 assert len(meta_data) == 4 assert morphometry_data.shape == (SUBJECT1_SURF_LH_WHITE_NUM_VERTICES, ) def test_load_subject_morphometry_data_files_works_with_right_hemisphere_only(): rh_morphometry_file = os.path.join(TEST_DATA_DIR, 'subject1', 'surf', 'rh.area') morphometry_data, meta_data = fsd.load_subject_morphometry_data_files(None, rh_morphometry_file, hemi='rh') assert meta_data['rh.morphometry_file'] == rh_morphometry_file assert meta_data['rh.morphometry_file_format'] == 'curv' assert meta_data['rh.num_data_points'] == SUBJECT1_SURF_RH_WHITE_NUM_VERTICES assert meta_data['lh.num_data_points'] == 0 assert len(meta_data) == 4 assert morphometry_data.shape == (SUBJECT1_SURF_RH_WHITE_NUM_VERTICES, ) def test_load_subject_morphometry_data_files_raises_on_invalid_format(): with pytest.raises(ValueError) as exc_info: morphometry_data, meta_data = fsd.load_subject_morphometry_data_files('some_file', 'some_other_file', format='invalid_format') assert 'format must be one of' in str(exc_info.value) assert 'invalid_format' in str(exc_info.value) def test_load_subject_morphometry_data_files_raises_on_invalid_hemisphere(): with pytest.raises(ValueError) as exc_info: morphometry_data, meta_data = fsd.load_subject_morphometry_data_files('some_file', 'some_other_file', hemi='invalid_hemisphere') assert 'hemi must be one of' in str(exc_info.value) assert 'invalid_hemisphere' in str(exc_info.value) def test_parse_subject(): vert_coords, faces, morphometry_data, meta_data = bl.subject('subject1', subjects_dir=TEST_DATA_DIR) assert len(meta_data) == 20 expected_subjects_dir = TEST_DATA_DIR expected_lh_surf_file = os.path.join(TEST_DATA_DIR, 'subject1', 'surf', 'lh.white') expected_rh_surf_file = os.path.join(TEST_DATA_DIR, 'subject1', 'surf', 'rh.white') expected_lh_morphometry_file = os.path.join(TEST_DATA_DIR, 'subject1', 'surf', 'lh.area') expected_rh_morphometry_file = os.path.join(TEST_DATA_DIR, 'subject1', 'surf', 'rh.area') assert meta_data['lh.num_vertices'] == SUBJECT1_SURF_LH_WHITE_NUM_VERTICES assert meta_data['lh.num_faces'] == SUBJECT1_SURF_LH_WHITE_NUM_FACES assert meta_data['lh.surf_file'] == expected_lh_surf_file assert meta_data['rh.num_vertices'] == SUBJECT1_SURF_RH_WHITE_NUM_VERTICES assert meta_data['rh.num_faces'] == SUBJECT1_SURF_RH_WHITE_NUM_FACES assert meta_data['rh.surf_file'] == expected_rh_surf_file assert meta_data['lh.morphometry_file'] == expected_lh_morphometry_file assert meta_data['lh.morphometry_file_format'] == 'curv' assert meta_data['lh.num_data_points'] == SUBJECT1_SURF_LH_WHITE_NUM_VERTICES assert meta_data['rh.morphometry_file'] == expected_rh_morphometry_file assert meta_data['rh.morphometry_file_format'] == 'curv' assert meta_data['rh.num_data_points'] == SUBJECT1_SURF_RH_WHITE_NUM_VERTICES assert meta_data['subject_id'] == 'subject1' assert meta_data['display_subject'] == 'subject1' assert meta_data['subjects_dir'] == expected_subjects_dir assert meta_data['surf'] == 'white' assert meta_data['display_surf'] == 'white' assert meta_data['measure'] == 'area' assert meta_data['space'] == 'native_space' assert meta_data['hemi'] == 'both' assert vert_coords.shape == (SUBJECT1_SURF_LH_WHITE_NUM_VERTICES + SUBJECT1_SURF_RH_WHITE_NUM_VERTICES, 3) assert faces.shape == (SUBJECT1_SURF_LH_WHITE_NUM_FACES + SUBJECT1_SURF_RH_WHITE_NUM_FACES, 3) assert morphometry_data.shape == (SUBJECT1_SURF_LH_WHITE_NUM_VERTICES + SUBJECT1_SURF_RH_WHITE_NUM_VERTICES, ) def test_parse_subject_preserves_existing_meta_data(): vert_coords, faces, morphometry_data, meta_data = bl.subject('subject1', subjects_dir=TEST_DATA_DIR, meta_data={'this_boy': 'still_exists'}) assert len(meta_data) == 21 assert meta_data['this_boy'] == 'still_exists' def test_parse_subject_raises_on_invalid_hemisphere(): with pytest.raises(ValueError) as exc_info: vert_coords, faces, morphometry_data, meta_data = bl.subject('subject1', subjects_dir=TEST_DATA_DIR, hemi='invalid_hemisphere') assert 'hemi must be one of' in str(exc_info.value) assert 'invalid_hemisphere' in str(exc_info.value) def test_parse_subject_works_with_left_hemisphere_only(): vert_coords, faces, morphometry_data, meta_data = bl.subject('subject1', subjects_dir=TEST_DATA_DIR, hemi='lh') assert len(meta_data) == 15 expected_subjects_dir = TEST_DATA_DIR expected_lh_surf_file = os.path.join(TEST_DATA_DIR, 'subject1', 'surf', 'lh.white') expected_lh_morphometry_file = os.path.join(TEST_DATA_DIR, 'subject1', 'surf', 'lh.area') assert meta_data['lh.num_vertices'] == SUBJECT1_SURF_LH_WHITE_NUM_VERTICES assert meta_data['lh.num_faces'] == SUBJECT1_SURF_LH_WHITE_NUM_FACES assert meta_data['lh.surf_file'] == expected_lh_surf_file assert meta_data['lh.morphometry_file'] == expected_lh_morphometry_file assert meta_data['lh.morphometry_file_format'] == 'curv' assert meta_data['lh.num_data_points'] == SUBJECT1_SURF_LH_WHITE_NUM_VERTICES assert meta_data['rh.num_data_points'] == 0 assert meta_data['subject_id'] == 'subject1' assert meta_data['subjects_dir'] == expected_subjects_dir assert meta_data['surf'] == 'white' assert meta_data['measure'] == 'area' assert meta_data['space'] == 'native_space' assert meta_data['hemi']
""" Script to define the classfiers from individual sensor streams Input: Training and Test set Output: Classfied data frame Date: Sep 18, 2014 Author: <NAME> """ import os import time import math import pandas as pd from django.conf import settings from sklearn.externals import joblib from django_pandas.io import read_frame from common_imports import * from energylenserver.core import audio from energylenserver.core import location as lc from energylenserver.models.models import * from energylenserver.models.DataModels import WiFiTestData from energylenserver.common_imports import * from energylenserver.core import functions as func from energylenserver.models import functions as mod_func from energylenserver.preprocessing import wifi as pre_p_w from energylenserver.preprocessing import audio as pre_p_a from constants import lower_mdp_percent_change, upper_mdp_percent_change, no_test_data # Offline processing from energylenserver.common_offline import * base_dir = settings.BASE_DIR def get_trained_model(sensor, apt_no, phone_model): """ Get trained model or train model if isn't trained # Future TODO: Adding new localization models """ if sensor == "wifi": # Get WiFi training data user_list = mod_func.get_users_for_training(apt_no, phone_model) data = mod_func.get_sensor_training_data("wifi", apt_no, user_list) train_df = read_frame(data, verbose=False) train_df.drop_duplicates(train_df.columns[1:], inplace=True) if len(train_df) == 0: return train_df dst_folder = os.path.join(base_dir, 'energylenserver/trained_models/wifi/') folder_listing = os.listdir(dst_folder) for file_i in folder_listing: filename_arr = file_i.split("_") # Use model if exists if filename_arr[0] == str(apt_no) and filename_arr[1] == phone_model: n_records = int(filename_arr[2]) if n_records == len(train_df): # Use existing train_df = pd.read_csv(dst_folder + file_i) return train_df # Model folder empty -- No model exists - Create one train_df = pre_p_w.format_train_data(train_df, apt_no, phone_model) return train_df if sensor in ["rawaudio", "audio"]: dst_folder = os.path.join(base_dir, 'energylenserver/trained_models/audio/') folder_listing = os.listdir(dst_folder) for file_i in folder_listing: filename_arr = file_i.split("_") # Use model if exists if filename_arr[0] == str(apt_no) and filename_arr[1] == phone_model: n_trained_appl = int(filename_arr[2]) # Number of appliances in the metadata data = mod_func.retrieve_metadata(apt_no) metadata_df = read_frame(data, verbose=False) metadata_df['appliance'] = metadata_df.appliance.apply(lambda s: s.split('_')[0]) # metadata_df = metadata_df[-metadata_df.appliance.isin(['Fridge'])] m_appl_count = len(metadata_df.appliance.unique()) if n_trained_appl == m_appl_count: # Use existing model = joblib.load(dst_folder + file_i) return model # Model folder empty -- No model exists - Create one model = audio.train_audio_classification_model(sensor, apt_no, phone_model) return model def localize_new_data(apt_no, start_time, end_time, user): try: pmodel = user.phone_model dev_id = user.dev_id sensor = "wifi" # Get training data train_df = get_trained_model(sensor, apt_no, pmodel) if len(train_df) == 0: location = "Unknown" return location # Get test data for the past x min - for better classification s_time = start_time - 10 * 60 # 10 minutes # Get queryset of filtering later data_all = WiFiTestData.objects.all() # Get test data - filter for all queryset data = data_all.filter(dev_id__in=[dev_id], timestamp__gte=s_time, timestamp__lte=end_time) test_df = read_frame(data, verbose=False) test_df.drop_duplicates(test_df.columns[1:], inplace=True) # Format data for classification test_df = pre_p_w.format_data_for_classification(test_df) # Classify pred_label = lc.determine_location(train_df, test_df) test_df['label'] = pred_label # Save location label to the database sliced_df = test_df[(test_df.time >= start_time) & (test_df.time <= end_time)] if len(sliced_df) == 0: location = "Unknown" else: location = func.get_max_class(sliced_df['label']) data = data_all.filter(dev_id__in=[dev_id], timestamp__gte=start_time, timestamp__lte=end_time).update(label=location) logger.debug("%s :: Test data between [%s] and [%s] :: %s", user.name, time.ctime(start_time), time.ctime(end_time), location) return location # Offline processing return location, sliced_df except Exception, e: if str(e) == "(1205, 'Lock wait timeout exceeded; try restarting transaction')": logger.error("[ClassifyNewLocationDataException]:: %s", e) else: logger.exception("[ClassifyNewLocationDataException]:: %s", e) return location def correct_label(label, pred_label, label_type, edge, act_location): """ Classified label correction using Metadata Procedure: Match with the Metadata. If doesn't match then correct based on magnitude """ logger.debug("[Correcting Labeling]") logger.debug("-" * stars) apt_no = edge.meter.apt_no magnitude = math.fabs(edge.magnitude) old_label = label # Get Metadata data = mod_func.retrieve_metadata(apt_no) metadata_df = read_frame(data, verbose=False) # Check if it matches with the metadata if label_type == "location": in_metadata, matched_md_l = func.exists_in_metadata( apt_no, label, "all", magnitude, metadata_df, logger, "dummy_user") else: in_metadata, matched_md_l = func.exists_in_metadata( apt_no, "all", label, magnitude, metadata_df, logger, "dummy_user") # Indicates the (label, edge_mag) does not exist --> incorrect label if not in_metadata: logger.debug("Label not found in Metadata. Checking all entries..") in_metadata, matched_md_list = func.exists_in_metadata( apt_no, "not_all", "not_all", magnitude, metadata_df, logger, "dummy_user") # Correction only if the inferred appliance is not audio if in_metadata: # Matched entries matched_md = pd.concat(matched_md_list) matched_md.reset_index(drop=True, inplace=True) # From metadata, if inferred appliance is audio or presence based metadata_df['appliance'] = metadata_df.appliance.apply(lambda s: s.split('_')[0]) md_df = metadata_df.ix[:, ['appliance', 'presence_based', 'audio_based']].drop_duplicates() md_df.reset_index(inplace=True, drop=True) md_audio = md_df.ix[0]['audio_based'] md_presence = md_df.ix[0]['presence_based'] # Non-audio based if not md_audio: # Presence based appliance if md_presence and act_location != "dummy": matched_md = matched_md[matched_md.md_loc == act_location] appl_list = matched_md.md_appl.unique() logger.debug("Entry in the same activity location %s:\n %s", act_location, matched_md) if len(appl_list) == 1: label = appl_list[0] logger.debug("Corrected Label: %s --> %s", old_label, label) return label # Correction process -- Select the one closest to the metadata matched_md = matched_md[ matched_md.md_power_diff == matched_md.md_power_diff.min()] logger.debug( "Entry with least distance from the metadata:\n %s", matched_md) if label_type == "location": unique_label = matched_md.md_loc.unique().tolist() else: unique_label = matched_md.md_appl.unique().tolist() if len(unique_label) == 1: label = unique_label[0] else: # Multiple matched entries - select the one with the # maximum count in the pred_label idict = func.list_count_items(pred_label) # Remove the entries not in unique label list filtered_l = [key for key in idict.keys() if key in unique_label] # Get the max count new_label_list = [] for key in filtered_l: for l in pred_label: if key == l: new_label_list.append(key) label = func.get_max_class(pd.Series(new_label_list)) else: # No matching metadata found # Cause: different power consumption of an appliance # Solution: Select the one with the highest value logger.debug("No metadata found") new_label_list = [l for l in pred_label if l != old_label] label = func.get_max_class(pd.Series(new_label_list)) logger.debug("Corrected Label: %s --> %s", old_label, label) return label def classify_location(apt_no, start_time, end_time, user, edge, n_users_at_home): logger.debug("[Classifying location] - %s [%d]", user, edge.magnitude) logger.debug("-" * stars) try: pmodel = user.phone_model dev_id = user.dev_id sensor = "wifi" # Get WiFi test data data = mod_func.get_sensor_data("wifi", start_time, end_time, [dev_id]) test_df = read_frame(data, verbose=False) test_df.drop_duplicates(test_df.columns[1:], inplace=True) test_df.reset_index(drop=True, inplace=True) # ''' location_list = test_df.label.unique() logger.debug("Pre-labeled locations: %s", location_list) if len(location_list) == 0: logger.debug("Insufficient test data") return False # For Offline processing return no_test_data if "none" not in location_list and "Unknown" not in location_list: location = func.get_max_class(test_df['label']) ''' Commented: Can't correct bcoz we need the user's location and not appliance location as in EnergyLens if n_users_at_home == 1: location = correct_label(location, test_df['label'], 'location', edge) data.update(label=location) ''' # Offline processing - evaluation ''' Check with ground truth and attribute reason ''' match = match_location(apt_no, dev_id, edge.timestamp, location) logger.debug("Match %s", match) # Write location write_classification_labels(apt_no, dev_id, edge.timestamp, "location", location) if not match: write_reason(apt_no, dev_id, edge.timestamp, "location", "localization") else: write_reason(apt_no, dev_id, edge.timestamp, "correct", "") return location # ''' ''' # Get queryset of filtering later data_all = WiFiTestData.objects.all() # Get test data - filter for all queryset data = data_all.filter(dev_id__in=[dev_id], timestamp__gte=s_time, timestamp__lte=end_time) ''' # Format data for classification train_df = get_trained_model(sensor, apt_no, pmodel) test_df = pre_p_w.format_data_for_classification(test_df) # Classify pred_label = lc.determine_location(train_df, test_df) test_df['pred_label'] = pred_label # Save location label to the database sliced_df = test_df[ (test_df.time >= (start_time + 60)) & (test_df.time) <= end_time] if len(sliced_df) == 0: location = "Unknown" else: location = func.get_max_class(sliced_df['pred_label']) # Offline processing - evaluation ''' Check with ground truth and attribute reason ''' match = match_location(apt_no, dev_id, edge.timestamp, location) # Write location write_classification_labels(apt_no, dev_id, edge.timestamp, "location", location) if not match: write_reason(apt_no, dev_id, edge.timestamp, "location", "localization") else: write_reason(apt_no, dev_id, edge.timestamp, "correct", "") ''' Commented: Can't correct bcoz we need user's location for usage/detection and not appliance location as in EnergyLens if n_users_at_home == 1: location = correct_label(location, sliced_df['pred_label'], 'location', edge) ''' data.update(label=location) # data = data_all.filter(dev_id__in=[dev_id], # timestamp__gte=s_time, # timestamp__lte=end_time).update(label=location) # Update # sliced_df = test_df[(test_df.time >= (start_time + 45) # ) & (test_df.time) <= end_time] # location = func.get_max_class(pred_label) return location except Exception, e: if str(e) == "(1205, 'Lock wait timeout exceeded; try restarting transaction')": logger.error("[ClassifyLocationException]:: %s", e) else: logger.exception("[ClassifyLocationException]:: %s", e) return location def classify_appliance(apt_no, start_time, end_time, user, edge, n_users_at_home): """ Classifies appliance based on audio or metadata """ logger.debug("[Classifying appliance] - %s [%d]", user, edge.magnitude) logger.debug("-" * stars) try: appliance = "Unknown" # Get Metadata data = mod_func.retrieve_metadata(apt_no) metadata_df = read_frame(data, verbose=False) # Check for existence in_metadata, matched_md = func.exists_in_metadata( apt_no, "not_all", "not_all", math.fabs(edge.magnitude), metadata_df, logger, user.dev_id) if in_metadata: # --Classify using metadata-- md_df = pd.concat(matched_md) md_df.reset_index(drop=True, inplace=True) md_audio = md_df.md_audio.unique() md_presence = md_df.md_presence.unique() #
#/* # * Licensed to the OpenAirInterface (OAI) Software Alliance under one or more # * contributor license agreements. See the NOTICE file distributed with # * this work for additional information regarding copyright ownership. # * The OpenAirInterface Software Alliance licenses this file to You under # * the OAI Public License, Version 1.1 (the "License"); you may not use this file # * except in compliance with the License. # * You may obtain a copy of the License at # * # * http://www.openairinterface.org/?page_id=698 # * # * Unless required by applicable law or agreed to in writing, software # * distributed under the License is distributed on an "AS IS" BASIS, # * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # * See the License for the specific language governing permissions and # * limitations under the License. # *------------------------------------------------------------------------------- # * For more information about the OpenAirInterface (OAI) Software Alliance: # * <EMAIL> # */ #--------------------------------------------------------------------- # Python for CI of OAI-eNB + COTS-UE # # Required Python Version # Python 3.x # # Required Python Package # pexpect #--------------------------------------------------------------------- #----------------------------------------------------------- # Import #----------------------------------------------------------- import sys # arg import re # reg import logging import os import shutil import subprocess import time from multiprocessing import Process, Lock, SimpleQueue from zipfile import ZipFile #----------------------------------------------------------- # OAI Testing modules #----------------------------------------------------------- import sshconnection as SSH import helpreadme as HELP import constants as CONST #----------------------------------------------------------- # Class Declaration #----------------------------------------------------------- class Containerize(): def __init__(self): self.ranRepository = '' self.ranBranch = '' self.ranAllowMerge = False self.ranCommitID = '' self.ranTargetBranch = '' self.eNBIPAddress = '' self.eNBUserName = '' self.eNBPassword = '' self.eNBSourceCodePath = '' self.eNB1IPAddress = '' self.eNB1UserName = '' self.eNB1Password = '' self.eNB1SourceCodePath = '' self.eNB2IPAddress = '' self.eNB2UserName = '' self.eNB2Password = '' self.eNB2SourceCodePath = '' self.forcedWorkspaceCleanup = False self.imageKind = '' self.eNB_instance = 0 self.eNB_serverId = ['', '', ''] self.yamlPath = ['', '', ''] self.services = ['', '', ''] self.nb_healthy = [0, 0, 0] self.exitStatus = 0 self.eNB_logFile = ['', '', ''] self.testCase_id = '' self.flexranCtrlDeployed = False self.flexranCtrlIpAddress = '' self.cli = '' self.cliBuildOptions = '' self.dockerfileprefix = '' self.host = '' self.allImagesSize = {} self.collectInfo = {} self.pingContName = '' self.pingOptions = '' self.pingLossThreshold = '' self.svrContName = '' self.svrOptions = '' self.cliContName = '' self.cliOptions = '' #----------------------------------------------------------- # Container management functions #----------------------------------------------------------- def BuildImage(self, HTML): if self.ranRepository == '' or self.ranBranch == '' or self.ranCommitID == '': HELP.GenericHelp(CONST.Version) sys.exit('Insufficient Parameter') if self.eNB_serverId[self.eNB_instance] == '0': lIpAddr = self.eNBIPAddress lUserName = self.eNBUserName lPassWord = self.eNBPassword lSourcePath = self.eNBSourceCodePath elif self.eNB_serverId[self.eNB_instance] == '1': lIpAddr = self.eNB1IPAddress lUserName = self.eNB1UserName lPassWord = <PASSWORD>NB1Password lSourcePath = self.eNB1SourceCodePath elif self.eNB_serverId[self.eNB_instance] == '2': lIpAddr = self.eNB2IPAddress lUserName = self.eNB2UserName lPassWord = self.eNB2Password lSourcePath = self.eNB2SourceCodePath if lIpAddr == '' or lUserName == '' or lPassWord == '' or lSourcePath == '': HELP.GenericHelp(CONST.Version) sys.exit('Insufficient Parameter') logging.debug('Building on server: ' + lIpAddr) mySSH = SSH.SSHConnection() mySSH.open(lIpAddr, lUserName, lPassWord) # Checking the hostname to get adapted on cli and dockerfileprefixes mySSH.command('hostnamectl', '\$', 5) result = re.search('Ubuntu|Red Hat', mySSH.getBefore()) self.host = result.group(0) if self.host == 'Ubuntu': self.cli = 'docker' self.dockerfileprefix = '.ubuntu18' self.cliBuildOptions = '--no-cache' elif self.host == 'Red Hat': self.cli = 'sudo podman' self.dockerfileprefix = '.rhel8.2' self.cliBuildOptions = '--no-cache --disable-compression' imageNames = [] result = re.search('eNB', self.imageKind) # Creating a tupple with the imageName and the DockerFile prefix pattern on obelix if result is not None: imageNames.append(('oai-enb', 'eNB')) else: result = re.search('gNB', self.imageKind) if result is not None: imageNames.append(('oai-gnb', 'gNB')) else: result = re.search('all', self.imageKind) if result is not None: imageNames.append(('oai-enb', 'eNB')) imageNames.append(('oai-gnb', 'gNB')) imageNames.append(('oai-lte-ue', 'lteUE')) imageNames.append(('oai-nr-ue', 'nrUE')) if self.host == 'Red Hat': imageNames.append(('oai-physim', 'phySim')) if self.host == 'Ubuntu': imageNames.append(('oai-lte-ru', 'lteRU')) if len(imageNames) == 0: imageNames.append(('oai-enb', 'eNB')) # Workaround for some servers, we need to erase completely the workspace if self.forcedWorkspaceCleanup: mySSH.command('echo ' + lPassWord + ' | sudo -S rm -Rf ' + lSourcePath, '\$', 15) self.testCase_id = HTML.testCase_id # on RedHat/CentOS .git extension is mandatory result = re.search('([a-zA-Z0-9\:\-\.\/])+\.git', self.ranRepository) if result is not None: full_ran_repo_name = self.ranRepository.replace('git/', 'git') else: full_ran_repo_name = self.ranRepository + '.git' mySSH.command('mkdir -p ' + lSourcePath, '\$', 5) mySSH.command('cd ' + lSourcePath, '\$', 5) mySSH.command('if [ ! -e .git ]; then stdbuf -o0 git clone ' + full_ran_repo_name + ' .; else stdbuf -o0 git fetch --prune; fi', '\$', 600) # Raphael: here add a check if git clone or git fetch went smoothly mySSH.command('git config user.email "<EMAIL>"', '\$', 5) mySSH.command('git config user.name "<NAME>"', '\$', 5) mySSH.command('echo ' + lPassWord + ' | sudo -S git clean -x -d -ff', '\$', 30) mySSH.command('mkdir -p cmake_targets/log', '\$', 5) # if the commit ID is provided use it to point to it if self.ranCommitID != '': mySSH.command('git checkout -f ' + self.ranCommitID, '\$', 30) # if the branch is not develop, then it is a merge request and we need to do # the potential merge. Note that merge conflicts should already been checked earlier imageTag = 'develop' sharedTag = 'develop' if (self.ranAllowMerge): imageTag = 'ci-temp' if self.ranTargetBranch == '': if (self.ranBranch != 'develop') and (self.ranBranch != 'origin/develop'): mySSH.command('git merge --ff origin/develop -m "Temporary merge for CI"', '\$', 5) else: logging.debug('Merging with the target branch: ' + self.ranTargetBranch) mySSH.command('git merge --ff origin/' + self.ranTargetBranch + ' -m "Temporary merge for CI"', '\$', 5) # if asterix, copy the entitlement and subscription manager configurations if self.host == 'Red Hat': mySSH.command('mkdir -p tmp/ca/', '\$', 5) mySSH.command('mkdir -p tmp/entitlement/', '\$', 5) mySSH.command('sudo cp /etc/rhsm/ca/redhat-uep.pem tmp/ca/', '\$', 5) mySSH.command('sudo cp /etc/pki/entitlement/*.pem tmp/entitlement/', '\$', 5) sharedimage = 'ran-build' # Let's remove any previous run artifacts if still there mySSH.command(self.cli + ' image prune --force', '\$', 30) if (not self.ranAllowMerge): mySSH.command(self.cli + ' image rm ' + sharedimage + ':' + sharedTag, '\$', 30) for image,pattern in imageNames: mySSH.command(self.cli + ' image rm ' + image + ':' + imageTag, '\$', 30) # Build the shared image only on Push Events (not on Merge Requests) if (not self.ranAllowMerge): mySSH.command(self.cli + ' build ' + self.cliBuildOptions + ' --target ' + sharedimage + ' --tag ' + sharedimage + ':' + sharedTag + ' --file docker/Dockerfile.ran' + self.dockerfileprefix + ' --build-arg NEEDED_GIT_PROXY="http://proxy.eurecom.fr:8080" . > cmake_targets/log/ran-build.log 2>&1', '\$', 1600) # First verify if the shared image was properly created. status = True mySSH.command(self.cli + ' image inspect --format=\'Size = {{.Size}} bytes\' ' + sharedimage + ':' + sharedTag, '\$', 5) if mySSH.getBefore().count('o such image') != 0: logging.error('\u001B[1m Could not build properly ran-build\u001B[0m') status = False else: result = re.search('Size *= *(?P<size>[0-9\-]+) *bytes', mySSH.getBefore()) if result is not None: imageSize = float(result.group('size')) imageSize = imageSize / 1000 if imageSize < 1000: logging.debug('\u001B[1m ran-build size is ' + ('%.0f' % imageSize) + ' kbytes\u001B[0m') self.allImagesSize['ran-build'] = str(round(imageSize,1)) + ' kbytes' else: imageSize = imageSize / 1000 if imageSize < 1000: logging.debug('\u001B[1m ran-build size is ' + ('%.0f' % imageSize) + ' Mbytes\u001B[0m') self.allImagesSize['ran-build'] = str(round(imageSize,1)) + ' Mbytes' else: imageSize = imageSize / 1000 logging.debug('\u001B[1m ran-build size is ' + ('%.3f' % imageSize) + ' Gbytes\u001B[0m') self.allImagesSize['ran-build'] = str(round(imageSize,1)) + ' Gbytes' else: logging.debug('ran-build size is unknown') # If the shared image failed, no need to continue if not status: # Recover the name of the failed container? mySSH.command(self.cli + ' ps --quiet --filter "status=exited" -n1 | xargs ' + self.cli + ' rm -f', '\$', 5) mySSH.command(self.cli + ' image prune --force', '\$', 30) mySSH.close() logging.error('\u001B[1m Building OAI Images Failed\u001B[0m') HTML.CreateHtmlTestRow(self.imageKind, 'KO', CONST.ALL_PROCESSES_OK) HTML.CreateHtmlTabFooter(False) sys.exit(1) else: # Recover build logs, for the moment only possible when build is successful mySSH.command(self.cli + ' create --name test ' + sharedimage + ':' + sharedTag, '\$', 5) mySSH.command('mkdir -p cmake_targets/log/ran-build', '\$', 5) mySSH.command(self.cli + ' cp test:/oai-ran/cmake_targets/log/. cmake_targets/log/ran-build', '\$', 5) mySSH.command(self.cli + ' rm -f test', '\$', 5) # Build the target image(s) for image,pattern in imageNames: # the archived Dockerfiles have "ran-build:latest" as base image # we need to update them with proper tag mySSH.command('sed -i -e "s#' + sharedimage + ':latest#' + sharedimage + ':' + sharedTag + '#" docker/Dockerfile.' + pattern + self.dockerfileprefix, '\$', 5) mySSH.command(self.cli + ' build ' + self.cliBuildOptions + ' --target ' + image + ' --tag ' + image + ':' + imageTag + ' --file docker/Dockerfile.' + pattern + self.dockerfileprefix + ' . > cmake_targets/log/' + image + '.log 2>&1', '\$', 1200) # split the log mySSH.command('mkdir -p cmake_targets/log/' + image, '\$', 5) mySSH.command('python3 ci-scripts/docker_log_split.py --logfilename=cmake_targets/log/' + image + '.log', '\$', 5) # checking the status of the build mySSH.command(self.cli + ' image inspect --format=\'Size = {{.Size}} bytes\' ' + image + ':' + imageTag, '\$', 5) if mySSH.getBefore().count('o such image') != 0: logging.error('\u001B[1m Could not build properly ' + image + '\u001B[0m') status = False # Here we should check if the last container corresponds to a failed command and destroy it mySSH.command(self.cli + ' ps --quiet --filter "status=exited" -n1 | xargs ' + self.cli + ' rm -f', '\$', 5) self.allImagesSize[image] = 'N/A -- Build Failed' else: result = re.search('Size *= *(?P<size>[0-9\-]+) *bytes', mySSH.getBefore()) if result is not None: imageSize = float(result.group('size')) imageSize = imageSize / 1000 if imageSize < 1000: logging.debug('\u001B[1m ' + image + ' size is ' + ('%.0f' % imageSize) + ' kbytes\u001B[0m') self.allImagesSize[image] = str(round(imageSize,1)) + ' kbytes' else: imageSize = imageSize / 1000 if imageSize < 1000: logging.debug('\u001B[1m ' + image + ' size is ' + ('%.0f' % imageSize) + ' Mbytes\u001B[0m') self.allImagesSize[image] = str(round(imageSize,1))
<filename>src/archive/tests/local_test_kfp_components.py # Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. def convert_csv_to_parquet_op( train_paths: list, valid_paths: list, output_path: str, columns: list, cols_dtype: list, sep: str, gpus: str, output_dataset: dict, shuffle: str = None, recursive: bool = False ): ''' train_paths: list List of paths to folders or files in GCS for training. For recursive folder search, set the recursive variable to True Format: '<bucket_name>/<subfolder1>/<subfolder>/' or '<bucket_name>/<subfolder1>/<subfolder>/flat_file.csv' or a combination of both. valid_paths: list List of paths to folders or files in GCS for validation For recursive folder search, set the recursive variable to True Format: '<bucket_name>/<subfolder1>/<subfolder>/' or '<bucket_name>/<subfolder1>/<subfolder>/flat_file.csv' or a combination of both. output_path: str Path to write the converted parquet files Format: '<bucket_name>/<subfolder1>/<subfolder>/' gpus: str GPUs available. Example: If there are 4 gpus available, must be '0,1,2,3' output_dataset: dict Metadata pointing to the converted dataset Format: output_dataset['train'] = \ '<bucket_name>/<subfolder1>/<subfolder>/' shuffle: str How to shuffle the converted data, default to None. Options: PER_PARTITION PER_WORKER FULL ''' # Standard Libraries import logging from pathlib import Path import fsspec import os # External Dependencies from dask_cuda import LocalCUDACluster from dask.distributed import Client import numpy as np # NVTabular from nvtabular.utils import device_mem_size, get_rmm_size import nvtabular as nvt from nvtabular.io.shuffle import Shuffle logging.basicConfig(level=logging.INFO) # Specify column dtypes (from numpy). Note that 'hex' means that # the values will be hexadecimal strings that should be converted to int32 # ADDED for local testing logging.info('Converting columns dtypes to numpy objects') converted_col_dtype = {} for col, dt in cols_dtype.items(): if dt == 'hex': converted_col_dtype[col] = 'hex' else: converted_col_dtype[col] = getattr(np, dt) fs_spec = fsspec.filesystem('gs') rec_symbol = '**' if recursive else '*' TRAIN_SPLIT_FOLDER = 'train' VALID_SPLIT_FOLDER = 'valid' if gpus: logging.info('Creating a Dask CUDA cluster') cluster = LocalCUDACluster( n_workers=len(gpus.split(sep=',')), CUDA_VISIBLE_DEVICES=gpus, rmm_pool_size=get_rmm_size(0.8 * device_mem_size()) ) client = Client(cluster) else: raise Exception('Cannot create Cluster. \ Provide a list of available GPUs') # CHANGED for local testing for folder_name, data_paths in zip( [TRAIN_SPLIT_FOLDER, VALID_SPLIT_FOLDER], [train_paths, valid_paths] ): valid_paths = [] for path in data_paths: try: if fs_spec.isfile(path): valid_paths.append( os.path.join('/gcs', fs_spec.info(path)['name']) ) else: path = os.path.join( fs_spec.info(path)['name'], rec_symbol ) for i in fs_spec.glob(path): if fs_spec.isfile(i): valid_paths.append(os.path.join('/gcs', i)) except FileNotFoundError as fnf_expt: print(fnf_expt) print('One of the paths provided are incorrect.') except OSError as os_err: print(os_err) print(f'Verify access to the bucket.') dataset = nvt.Dataset( path_or_source = valid_paths, engine='csv', names=columns, sep=sep, dtypes=converted_col_dtype, client=client ) full_output_path = os.path.join('/gcs', output_path, folder_name) logging.info(f'Writing parquet file(s) to {full_output_path}') if shuffle: shuffle = getattr(Shuffle, shuffle) dataset.to_parquet( full_output_path, preserve_files=True, shuffle=shuffle ) # CHANGED for local testing output_dataset[folder_name] = full_output_path client.close # close cluster? return output_dataset def fit_dataset_op( datasets: dict, # Input from previous fitted_workflow: dict, # Output for next workflow_path: str, # Location of the saved workflow gpus: str, split_name: str = 'train', protocol: str = 'tcp', device_limit_frac: float = 0.8, device_pool_frac: float = 0.9, part_mem_frac: float = 0.125 ): ''' datasets: dict Input metadata from previus step. Stores the full path of the converted datasets. How to access: full_path = dataset['train'] fitted_workflow: dict Output metadata for next step. Stores the full path of the converted dataset, and saved workflow with statistics. workflow_path: str Path to the current workflow, not fitted. Format: '<bucket_name>/<subfolder1>/<subfolder>/' split_name: str Which dataset to calculate the statistics. ''' import logging import nvtabular as nvt import os import fsspec from dask_cuda import LocalCUDACluster from dask.distributed import Client from nvtabular.utils import device_mem_size logging.basicConfig(level=logging.INFO) # FIT_FOLDER = os.path.join('/gcs', workflow_path, 'fitted_workflow') FIT_FOLDER = '.' # Check if the `split_name` dataset is present data_path = datasets.get(split_name, '') if not data_path: raise RuntimeError(f'Dataset does not have {split_name} split.') # Dask Cluster defintions device_size = device_mem_size() device_limit = int(device_limit_frac * device_size) device_pool_size = int(device_pool_frac * device_size) part_size = int(part_mem_frac * device_size) rmm_pool_size = (device_pool_size // 256) * 256 if gpus: logging.info('Creating a Dask CUDA cluster') cluster = LocalCUDACluster( protocol=protocol, n_workers=len(gpus.split(sep=',')), CUDA_VISIBLE_DEVICES=gpus, device_memory_limit=device_limit, rmm_pool_size=rmm_pool_size ) client = Client(cluster) else: raise Exception('Cannot create Cluster. \ Check cluster parameters') # Load Transformation steps # full_workflow_path = os.path.join('/gcs', workflow_path) full_workflow_path = '/home/renatoleite/workspace/merlin-on-vertex/src/kfp_components/saved_workflow' logging.info('Loading saved workflow') workflow = nvt.Workflow.load(full_workflow_path, client) fitted_dataset = nvt.Dataset( data_path, engine="parquet", part_size=part_size ) logging.info('Starting workflow fitting') workflow.fit(fitted_dataset) logging.info('Finished generating statistics for dataset.') logging.info(f'Saving workflow to {FIT_FOLDER}') # workflow.save(FIT_FOLDER) # CHANGED to run locally fitted_workflow['fitted_workflow'] = FIT_FOLDER fitted_workflow['datasets'] = datasets return fitted_workflow def transform_dataset_op( fitted_workflow: dict, transformed_dataset: dict, output_transformed: str, gpus: str, split_name: str = 'train', shuffle: str = None, protocol: str = 'tcp', device_limit_frac: float = 0.8, device_pool_frac: float = 0.9, part_mem_frac: float = 0.125, ): ''' fitted_workflow: dict Input metadata from previous step. Stores the path of the fitted_workflow and the location of the datasets (train and validation). Usage: train_path = fitted_workflow['datasets']['train] output: '<bucket_name>/<subfolder1>/<subfolder>/' transformed_dataset: dict Output metadata for next step. Stores the path of the transformed dataset and the validation dataset. output_transformed: str, Path to write the transformed parquet files Format: '<bucket_name>/<subfolder1>/<subfolder>/' gpus: str GPUs available. Example: If there are 4 gpus available, must be '0,1,2,3' shuffle: str How to shuffle the converted data, default to None. Options: PER_PARTITION PER_WORKER FULL ''' import logging import nvtabular as nvt import os from dask_cuda import LocalCUDACluster from dask.distributed import Client from nvtabular.utils import device_mem_size from nvtabular.io.shuffle import Shuffle logging.basicConfig(level=logging.INFO) # Define output path for transformed files TRANSFORM_FOLDER = os.path.join('/gcs', output_transformed, split_name) # Get path to dataset to be transformed data_path = fitted_workflow.get('datasets').get(split_name, '') if not data_path: raise RuntimeError(f'Dataset does not have {split_name} split.') # Dask Cluster defintions device_size = device_mem_size() device_limit = int(device_limit_frac * device_size) device_pool_size = int(device_pool_frac * device_size) part_size = int(part_mem_frac * device_size) rmm_pool_size = (device_pool_size // 256) * 256 if gpus: logging.info('Creating a Dask CUDA cluster') cluster = LocalCUDACluster( protocol=protocol, n_workers=len(gpus.split(sep=',')), CUDA_VISIBLE_DEVICES=gpus, device_memory_limit=device_limit, rmm_pool_size=rmm_pool_size ) client = Client(cluster) else: raise Exception('Cannot create Cluster. \ Provide a list of available GPUs') # Load Transformation steps logging.info('Loading workflow and statistics') workflow = nvt.Workflow.load(fitted_workflow['fitted_workflow'], client) logging.info('Creating dataset definition') dataset = nvt.Dataset( data_path, engine="parquet", part_size=part_size ) if shuffle: shuffle = getattr(Shuffle, shuffle) logging.info('Starting workflow transformation') workflow.transform(dataset).to_parquet( output_files=len(gpus.split(sep='/')), output_path=TRANSFORM_FOLDER, shuffle=shuffle ) logging.info('Finished transformation') transformed_dataset['transformed_dataset'] = TRANSFORM_FOLDER transformed_dataset['original_datasets'] = fitted_workflow.get('datasets') return transformed_dataset def export_parquet_from_bq_op( output_path: str, bq_project: str, bq_dataset_id: str, bq_table_train: str, bq_table_valid: str, output_dataset: dict, location: str ): ''' output_path: str Path to write the exported parquet files Format: 'gs://<bucket_name>/<subfolder1>/<subfolder>/' bq_project: str GCP project id bq_dataset_id: str Bigquery dataset id bq_table_train: str Bigquery table name for training dataset bq_table_valid: str BigQuery table name for validation dataset output_dataset: dict Output metadata for the next step. Stores the path in GCS for the datasets. Usage: train_path = output_dataset['train'] # returns: bucket_name/subfolder/subfolder/ ''' # Standard Libraries import logging import os from google.cloud import bigquery logging.basicConfig(level=logging.INFO) TRAIN_SPLIT_FOLDER = 'train' VALID_SPLIT_FOLDER = 'valid' client = bigquery.Client() for folder_name, table_id in zip( [TRAIN_SPLIT_FOLDER, VALID_SPLIT_FOLDER], [bq_table_train, bq_table_valid] ): bq_glob_path = os.path.join( 'gs://', output_path, folder_name, f'{folder_name}-*.parquet' ) dataset_ref = bigquery.DatasetReference(bq_project, bq_dataset_id) table_ref = dataset_ref.table(table_id) logging.info(f'Extracting {table_ref} to {bq_glob_path}') client.extract_table(table_ref, bq_glob_path, location=location) full_output_path = os.path.join('/gcs', output_path, folder_name) logging.info(f'Saving metadata for {folder_name} path: {full_output_path}') output_dataset[folder_name] = full_output_path return output_dataset def import_parquet_to_bq_op( transform_dataset: dict, # Input[Dataset], output_bq_table: dict, # Output[Dataset] bq_project: str, bq_dataset_id: str, bq_dest_table_id: str ): ''' transformed_dataset: dict Input metadata. Stores the path in GCS for the datasets. Usage: train_path = output_dataset['train'] # returns: bucket_name/subfolder/subfolder/ bq_project: str GCP project id bq_dataset_id: str Bigquery dataset id bq_dest_table_id: str Bigquery destination table name ''' # Standard Libraries import logging import os from google.cloud import bigquery logging.basicConfig(level=logging.INFO) data_path = transform_dataset['transformed_dataset'][5:] full_data_path = os.path.join('gs://', data_path, '*.parquet') # Construct a BigQuery client object. client = bigquery.Client(project=bq_project) table_id
<reponame>bgusach/influxdb-python # -*- coding: utf-8 -*- """Unit tests for misc module.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from datetime import timedelta import json import unittest import warnings import requests_mock from influxdb.tests import skipIfPYpy, using_pypy from nose.tools import raises from .client_test import _mocked_session if not using_pypy: import pandas as pd from pandas.util.testing import assert_frame_equal from influxdb import DataFrameClient @skipIfPYpy class TestDataFrameClient(unittest.TestCase): """Set up a test DataFrameClient object.""" def setUp(self): """Instantiate a TestDataFrameClient object.""" # By default, raise exceptions on warnings warnings.simplefilter('error', FutureWarning) def test_write_points_from_dataframe(self): """Test write points from df in TestDataFrameClient object.""" now = pd.Timestamp('1970-01-01 00:00+00:00') dataframe = pd.DataFrame(data=[["1", 1, 1.0], ["2", 2, 2.0]], index=[now, now + timedelta(hours=1)], columns=["column_one", "column_two", "column_three"]) expected = ( b"foo column_one=\"1\",column_two=1i,column_three=1.0 0\n" b"foo column_one=\"2\",column_two=2i,column_three=2.0 " b"3600000000000\n" ) with requests_mock.Mocker() as m: m.register_uri(requests_mock.POST, "http://localhost:8086/write", status_code=204) cli = DataFrameClient(database='db') cli.write_points(dataframe, 'foo') self.assertEqual(m.last_request.body, expected) cli.write_points(dataframe, 'foo', tags=None) self.assertEqual(m.last_request.body, expected) def test_dataframe_write_points_with_whitespace_measurement(self): """write_points should escape white space in measurements.""" now = pd.Timestamp('1970-01-01 00:00+00:00') dataframe = pd.DataFrame(data=[["1", 1, 1.0], ["2", 2, 2.0]], index=[now, now + timedelta(hours=1)], columns=["column_one", "column_two", "column_three"]) expected = ( b"meas\\ with\\ space " b"column_one=\"1\",column_two=1i,column_three=1.0 0\n" b"meas\\ with\\ space " b"column_one=\"2\",column_two=2i,column_three=2.0 " b"3600000000000\n" ) with requests_mock.Mocker() as m: m.register_uri(requests_mock.POST, "http://localhost:8086/write", status_code=204) cli = DataFrameClient(database='db') cli.write_points(dataframe, 'meas with space') self.assertEqual(m.last_request.body, expected) def test_dataframe_write_points_with_whitespace_in_column_names(self): """write_points should escape white space in column names.""" now = pd.Timestamp('1970-01-01 00:00+00:00') dataframe = pd.DataFrame(data=[["1", 1, 1.0], ["2", 2, 2.0]], index=[now, now + timedelta(hours=1)], columns=["column one", "column two", "column three"]) expected = ( b"foo column\\ one=\"1\",column\\ two=1i,column\\ three=1.0 0\n" b"foo column\\ one=\"2\",column\\ two=2i,column\\ three=2.0 " b"3600000000000\n" ) with requests_mock.Mocker() as m: m.register_uri(requests_mock.POST, "http://localhost:8086/write", status_code=204) cli = DataFrameClient(database='db') cli.write_points(dataframe, 'foo') self.assertEqual(m.last_request.body, expected) def test_write_points_from_dataframe_with_none(self): """Test write points from df in TestDataFrameClient object.""" now = pd.Timestamp('1970-01-01 00:00+00:00') dataframe = pd.DataFrame(data=[["1", None, 1.0], ["2", 2.0, 2.0]], index=[now, now + timedelta(hours=1)], columns=["column_one", "column_two", "column_three"]) expected = ( b"foo column_one=\"1\",column_three=1.0 0\n" b"foo column_one=\"2\",column_two=2.0,column_three=2.0 " b"3600000000000\n" ) with requests_mock.Mocker() as m: m.register_uri(requests_mock.POST, "http://localhost:8086/write", status_code=204) cli = DataFrameClient(database='db') cli.write_points(dataframe, 'foo') self.assertEqual(m.last_request.body, expected) cli.write_points(dataframe, 'foo', tags=None) self.assertEqual(m.last_request.body, expected) def test_write_points_from_dataframe_with_line_of_none(self): """Test write points from df in TestDataFrameClient object.""" now = pd.Timestamp('1970-01-01 00:00+00:00') dataframe = pd.DataFrame(data=[[None, None, None], ["2", 2.0, 2.0]], index=[now, now + timedelta(hours=1)], columns=["column_one", "column_two", "column_three"]) expected = ( b"foo column_one=\"2\",column_two=2.0,column_three=2.0 " b"3600000000000\n" ) with requests_mock.Mocker() as m: m.register_uri(requests_mock.POST, "http://localhost:8086/write", status_code=204) cli = DataFrameClient(database='db') cli.write_points(dataframe, 'foo') self.assertEqual(m.last_request.body, expected) cli.write_points(dataframe, 'foo', tags=None) self.assertEqual(m.last_request.body, expected) def test_write_points_from_dataframe_with_all_none(self): """Test write points from df in TestDataFrameClient object.""" now = pd.Timestamp('1970-01-01 00:00+00:00') dataframe = pd.DataFrame(data=[[None, None, None], [None, None, None]], index=[now, now + timedelta(hours=1)], columns=["column_one", "column_two", "column_three"]) expected = ( b"\n" ) with requests_mock.Mocker() as m: m.register_uri(requests_mock.POST, "http://localhost:8086/write", status_code=204) cli = DataFrameClient(database='db') cli.write_points(dataframe, 'foo') self.assertEqual(m.last_request.body, expected) cli.write_points(dataframe, 'foo', tags=None) self.assertEqual(m.last_request.body, expected) def test_write_points_from_dataframe_in_batches(self): """Test write points in batch from df in TestDataFrameClient object.""" now = pd.Timestamp('1970-01-01 00:00+00:00') dataframe = pd.DataFrame(data=[["1", 1, 1.0], ["2", 2, 2.0]], index=[now, now + timedelta(hours=1)], columns=["column_one", "column_two", "column_three"]) with requests_mock.Mocker() as m: m.register_uri(requests_mock.POST, "http://localhost:8086/write", status_code=204) cli = DataFrameClient(database='db') self.assertTrue(cli.write_points(dataframe, "foo", batch_size=1)) def test_write_points_from_dataframe_with_tag_columns(self): """Test write points from df w/tag in TestDataFrameClient object.""" now = pd.Timestamp('1970-01-01 00:00+00:00') dataframe = pd.DataFrame(data=[['blue', 1, "1", 1, 1.0], ['red', 0, "2", 2, 2.0]], index=[now, now + timedelta(hours=1)], columns=["tag_one", "tag_two", "column_one", "column_two", "column_three"]) expected = ( b"foo,tag_one=blue,tag_two=1 " b"column_one=\"1\",column_two=1i,column_three=1.0 " b"0\n" b"foo,tag_one=red,tag_two=0 " b"column_one=\"2\",column_two=2i,column_three=2.0 " b"3600000000000\n" ) with requests_mock.Mocker() as m: m.register_uri(requests_mock.POST, "http://localhost:8086/write", status_code=204) cli = DataFrameClient(database='db') cli.write_points(dataframe, 'foo', tag_columns=['tag_one', 'tag_two']) self.assertEqual(m.last_request.body, expected) cli.write_points(dataframe, 'foo', tag_columns=['tag_one', 'tag_two'], tags=None) self.assertEqual(m.last_request.body, expected) def test_write_points_from_dataframe_with_tag_cols_and_global_tags(self): """Test write points from df w/tag + cols in TestDataFrameClient.""" now = pd.Timestamp('1970-01-01 00:00+00:00') dataframe = pd.DataFrame(data=[['blue', 1, "1", 1, 1.0], ['red', 0, "2", 2, 2.0]], index=[now, now + timedelta(hours=1)], columns=["tag_one", "tag_two", "column_one", "column_two", "column_three"]) expected = ( b"foo,global_tag=value,tag_one=blue,tag_two=1 " b"column_one=\"1\",column_two=1i,column_three=1.0 " b"0\n" b"foo,global_tag=value,tag_one=red,tag_two=0 " b"column_one=\"2\",column_two=2i,column_three=2.0 " b"3600000000000\n" ) with requests_mock.Mocker() as m: m.register_uri(requests_mock.POST, "http://localhost:8086/write", status_code=204) cli = DataFrameClient(database='db') cli.write_points(dataframe, 'foo', tag_columns=['tag_one', 'tag_two'], tags={'global_tag': 'value'}) self.assertEqual(m.last_request.body, expected) def test_write_points_from_dataframe_with_tag_cols_and_defaults(self): """Test default write points from df w/tag in TestDataFrameClient.""" now = pd.Timestamp('1970-01-01 00:00+00:00') dataframe = pd.DataFrame(data=[['blue', 1, "1", 1, 1.0, 'hot'], ['red', 0, "2", 2, 2.0, 'cold']], index=[now, now + timedelta(hours=1)], columns=["tag_one", "tag_two", "column_one", "column_two", "column_three", "tag_three"]) expected_tags_and_fields = ( b"foo,tag_one=blue " b"column_one=\"1\",column_two=1i " b"0\n" b"foo,tag_one=red " b"column_one=\"2\",column_two=2i " b"3600000000000\n" ) expected_tags_no_fields = ( b"foo,tag_one=blue,tag_two=1 " b"column_one=\"1\",column_two=1i,column_three=1.0," b"tag_three=\"hot\" 0\n" b"foo,tag_one=red,tag_two=0 " b"column_one=\"2\",column_two=2i,column_three=2.0," b"tag_three=\"cold\" 3600000000000\n" ) expected_fields_no_tags = ( b"foo,tag_one=blue,tag_three=hot,tag_two=1 " b"column_one=\"1\",column_two=1i,column_three=1.0 " b"0\n" b"foo,tag_one=red,tag_three=cold,tag_two=0 " b"column_one=\"2\",column_two=2i,column_three=2.0 " b"3600000000000\n" ) expected_no_tags_no_fields = ( b"foo " b"tag_one=\"blue\",tag_two=1i,column_one=\"1\"," b"column_two=1i,column_three=1.0,tag_three=\"hot\" " b"0\n" b"foo " b"tag_one=\"red\",tag_two=0i,column_one=\"2\"," b"column_two=2i,column_three=2.0,tag_three=\"cold\" " b"3600000000000\n" ) with requests_mock.Mocker() as m: m.register_uri(requests_mock.POST, "http://localhost:8086/write", status_code=204) cli = DataFrameClient(database='db') cli.write_points(dataframe, 'foo', field_columns=['column_one', 'column_two'], tag_columns=['tag_one']) self.assertEqual(m.last_request.body, expected_tags_and_fields) cli.write_points(dataframe, 'foo', tag_columns=['tag_one', 'tag_two']) self.assertEqual(m.last_request.body, expected_tags_no_fields) cli.write_points(dataframe, 'foo', field_columns=['column_one', 'column_two', 'column_three']) self.assertEqual(m.last_request.body, expected_fields_no_tags) cli.write_points(dataframe, 'foo') self.assertEqual(m.last_request.body, expected_no_tags_no_fields) def test_write_points_from_dataframe_with_tag_escaped(self): """Test write points from df w/escaped tag in TestDataFrameClient.""" now = pd.Timestamp('1970-01-01 00:00+00:00') dataframe = pd.DataFrame( data=[ ['blue orange', "1", 1, 'hot=cold'], # space, equal ['red,green', "2", 2, r'cold\fire'], # comma, backslash ['some', "2", 2, ''], # skip empty ['some', "2", 2, None], # skip None ['', "2", 2, None], # all tags empty ], index=pd.period_range(now, freq='H', periods=5), columns=["tag_one", "column_one", "column_two", "tag_three"] ) expected_escaped_tags = ( b"foo,tag_one=blue\\ orange,tag_three=hot\\=cold " b"column_one=\"1\",column_two=1i " b"0\n" b"foo,tag_one=red\\,green,tag_three=cold\\\\fire " b"column_one=\"2\",column_two=2i " b"3600000000000\n" b"foo,tag_one=some " b"column_one=\"2\",column_two=2i " b"7200000000000\n" b"foo,tag_one=some " b"column_one=\"2\",column_two=2i " b"10800000000000\n" b"foo " b"column_one=\"2\",column_two=2i " b"14400000000000\n" ) with requests_mock.Mocker() as m: m.register_uri(requests_mock.POST, "http://localhost:8086/write", status_code=204) cli = DataFrameClient(database='db') cli.write_points(dataframe, 'foo', field_columns=['column_one', 'column_two'], tag_columns=['tag_one', 'tag_three']) self.assertEqual(m.last_request.body, expected_escaped_tags) def test_write_points_from_dataframe_with_numeric_column_names(self): """Test write points from df with numeric cols.""" now = pd.Timestamp('1970-01-01 00:00+00:00') # df with numeric column names dataframe = pd.DataFrame(data=[["1", 1, 1.0], ["2", 2, 2.0]], index=[now, now + timedelta(hours=1)]) expected = ( b'foo,hello=there 0=\"1\",1=1i,2=1.0 0\n' b'foo,hello=there 0=\"2\",1=2i,2=2.0 3600000000000\n' ) with requests_mock.Mocker() as m: m.register_uri(requests_mock.POST, "http://localhost:8086/write", status_code=204) cli = DataFrameClient(database='db') cli.write_points(dataframe, "foo", {"hello": "there"}) self.assertEqual(m.last_request.body, expected) def test_write_points_from_dataframe_with_numeric_precision(self): """Test write points from df with numeric precision.""" now = pd.Timestamp('1970-01-01 00:00+00:00') # df with numeric column names dataframe = pd.DataFrame(data=[["1", 1, 1.1111111111111], ["2", 2, 2.2222222222222]], index=[now, now + timedelta(hours=1)]) expected_default_precision = ( b'foo,hello=there 0=\"1\",1=1i,2=1.11111111111 0\n' b'foo,hello=there 0=\"2\",1=2i,2=2.22222222222 3600000000000\n' ) expected_specified_precision = ( b'foo,hello=there 0=\"1\",1=1i,2=1.1111 0\n' b'foo,hello=there 0=\"2\",1=2i,2=2.2222 3600000000000\n' ) expected_full_precision = ( b'foo,hello=there 0=\"1\",1=1i,2=1.1111111111111 0\n' b'foo,hello=there 0=\"2\",1=2i,2=2.2222222222222 3600000000000\n' ) with requests_mock.Mocker() as m: m.register_uri(requests_mock.POST, "http://localhost:8086/write", status_code=204) cli = DataFrameClient(database='db') cli.write_points(dataframe, "foo", {"hello": "there"}) self.assertEqual(m.last_request.body, expected_default_precision) cli = DataFrameClient(database='db') cli.write_points(dataframe, "foo", {"hello": "there"}, numeric_precision=4) self.assertEqual(m.last_request.body, expected_specified_precision) cli = DataFrameClient(database='db') cli.write_points(dataframe, "foo", {"hello": "there"}, numeric_precision='full') self.assertEqual(m.last_request.body, expected_full_precision) def test_write_points_from_dataframe_with_period_index(self): """Test write points from df with period index.""" dataframe = pd.DataFrame(data=[["1", 1, 1.0], ["2", 2, 2.0]], index=[pd.Period('1970-01-01'), pd.Period('1970-01-02')], columns=["column_one", "column_two", "column_three"]) expected = ( b"foo column_one=\"1\",column_two=1i,column_three=1.0 0\n" b"foo column_one=\"2\",column_two=2i,column_three=2.0 " b"86400000000000\n" ) with requests_mock.Mocker() as m: m.register_uri(requests_mock.POST, "http://localhost:8086/write", status_code=204) cli = DataFrameClient(database='db') cli.write_points(dataframe, "foo") self.assertEqual(m.last_request.body, expected) def test_write_points_from_dataframe_with_time_precision(self): """Test write points from df with time precision.""" now = pd.Timestamp('1970-01-01 00:00+00:00') dataframe = pd.DataFrame(data=[["1", 1, 1.0], ["2", 2, 2.0]], index=[now, now + timedelta(hours=1)], columns=["column_one", "column_two", "column_three"]) with requests_mock.Mocker() as m: m.register_uri(requests_mock.POST, "http://localhost:8086/write", status_code=204) cli = DataFrameClient(database='db') measurement = "foo" cli.write_points(dataframe, measurement, time_precision='h') self.assertEqual(m.last_request.qs['precision'], ['h']) self.assertEqual( b'foo column_one="1",column_two=1i,column_three=1.0 0\nfoo ' b'column_one="2",column_two=2i,column_three=2.0 1\n', m.last_request.body, ) cli.write_points(dataframe, measurement, time_precision='m') self.assertEqual(m.last_request.qs['precision'], ['m']) self.assertEqual( b'foo column_one="1",column_two=1i,column_three=1.0 0\nfoo ' b'column_one="2",column_two=2i,column_three=2.0 60\n', m.last_request.body, ) cli.write_points(dataframe, measurement, time_precision='s') self.assertEqual(m.last_request.qs['precision'], ['s']) self.assertEqual( b'foo column_one="1",column_two=1i,column_three=1.0 0\nfoo ' b'column_one="2",column_two=2i,column_three=2.0 3600\n', m.last_request.body, ) cli.write_points(dataframe, measurement, time_precision='ms') self.assertEqual(m.last_request.qs['precision'], ['ms']) self.assertEqual( b'foo column_one="1",column_two=1i,column_three=1.0 0\nfoo ' b'column_one="2",column_two=2i,column_three=2.0 3600000\n', m.last_request.body, ) cli.write_points(dataframe, measurement, time_precision='u') self.assertEqual(m.last_request.qs['precision'], ['u']) self.assertEqual( b'foo column_one="1",column_two=1i,column_three=1.0 0\nfoo ' b'column_one="2",column_two=2i,column_three=2.0 3600000000\n', m.last_request.body, ) cli.write_points(dataframe, measurement, time_precision='n') self.assertEqual(m.last_request.qs['precision'], ['n']) self.assertEqual( b'foo column_one="1",column_two=1i,column_three=1.0 0\n' b'foo column_one="2",column_two=2i,column_three=2.0 ' b'3600000000000\n', m.last_request.body, ) @raises(TypeError) def test_write_points_from_dataframe_fails_without_time_index(self): """Test failed write points from df without time index.""" dataframe = pd.DataFrame(data=[["1", 1, 1.0], ["2", 2, 2.0]], columns=["column_one", "column_two", "column_three"]) with requests_mock.Mocker() as m: m.register_uri(requests_mock.POST, "http://localhost:8086/db/db/series", status_code=204) cli = DataFrameClient(database='db') cli.write_points(dataframe, "foo") @raises(TypeError) def test_write_points_from_dataframe_fails_with_series(self): """Test failed write points from df with series.""" now = pd.Timestamp('1970-01-01 00:00+00:00') dataframe = pd.Series(data=[1.0, 2.0], index=[now, now + timedelta(hours=1)]) with requests_mock.Mocker() as m: m.register_uri(requests_mock.POST, "http://localhost:8086/db/db/series", status_code=204) cli = DataFrameClient(database='db') cli.write_points(dataframe, "foo") def test_query_into_dataframe(self): """Test query into df for TestDataFrameClient object.""" data = { "results": [{ "series": [ {"measurement": "network", "tags": {"direction": ""}, "columns": ["time", "value"],
b"POST", '{0}/__experiments/multiplot?from={1}&to={2}&points={3}'.format( self.uri, '1412902262560', '1412988662560', 500), json.dumps({'metrics': [{'entity_id': self.entity_id, 'check_id': check_id, 'metric': 'whut'}]}).encode("utf-8"))) self.assertEquals(resp.code, 200) self.assertEquals(data['metrics'][0]['type'], 'unknown') self.assertEquals(len(data['metrics'][0]['data']), 0) def test_multiplot_malformatted_remote_metric(self): """ Multiplot metrics for remote checks must stuff the monitoring zone in the front of the metric name, e.g., mzord.duration. Requesting an incorrectly formatted metric name causes an unknown metric and empty data to be returned. """ (resp, data) = self.successResultOf( json_request(self, self.root, b"POST", '{0}/__experiments/multiplot?from={1}&to={2}&points={3}'.format( self.uri, '1412902262560', '1412988662560', 500), json.dumps({'metrics': [{'entity_id': self.entity_id, 'check_id': self.check_id, 'metric': 'LOLWUT'}]}).encode("utf-8"))) self.assertEquals(resp.code, 200) self.assertEquals(data['metrics'][0]['type'], 'unknown') self.assertEquals(len(data['metrics'][0]['data']), 0) def test_multiplot_nonexistent_metric(self): """ Getting multiplot metrics that Mimic doesn't know about cause an unknown metric and empty data to be returned, if the check type is one that Mimic knows about. """ (resp, data) = self.successResultOf( json_request(self, self.root, b"POST", '{0}/__experiments/multiplot?from={1}&to={2}&points={3}'.format( self.uri, '1412902262560', '1412988662560', 500), json.dumps({'metrics': [{'entity_id': self.entity_id, 'check_id': self.check_id, 'metric': 'mzord.nonexistent'}]}).encode("utf-8"))) self.assertEquals(resp.code, 200) self.assertEquals(data['metrics'][0]['type'], 'unknown') self.assertEquals(len(data['metrics'][0]['data']), 0) def test_multiplot_single_point(self): """ Plotting a single point should not cause a server error. """ resp = self.successResultOf( request(self, self.root, b"POST", '{0}/__experiments/multiplot?from={1}&to={2}&points={3}'.format( self.uri, '1412902262560', '1412988662560', 1), json.dumps({'metrics': [{'entity_id': self.entity_id, 'check_id': self.check_id, 'metric': 'mzord.available'}]}).encode("utf-8"))) self.assertEquals(resp.code, 200) def test_get_all_notification_plans(self): """ get all notification plans """ req = request(self, self.root, b"GET", self.uri + '/notification_plans') resp = self.successResultOf(req) self.assertEquals(resp.code, 200) data = self.get_responsebody(resp) self.assertEquals(2, data['metadata']['count']) def test_get_notification_plan(self): """ Get a specific notification plan """ req = request(self, self.root, b"GET", self.uri + '/notification_plans/' + self.np_id) resp = self.successResultOf(req) self.assertEquals(resp.code, 200) data = self.get_responsebody(resp) self.assertEquals(data['id'], self.np_id) req = request(self, self.root, b"GET", self.uri + '/notification_plans/npTechnicalContactsEmail') resp = self.successResultOf(req) self.assertEquals(resp.code, 200) data = self.get_responsebody(resp) self.assertEquals(data['id'], 'npTechnicalContactsEmail') def test_get_all_notifications(self): """ Get all notification targets """ req = request(self, self.root, b"GET", self.uri + '/notifications') resp = self.successResultOf(req) self.assertEquals(resp.code, 200) data = self.get_responsebody(resp) self.assertEquals(2, data['metadata']['count']) def test_update_notification(self): """ Update a notification target """ postdata = {'id': self.nt_id, 'label': 'changed'} req = request(self, self.root, b"PUT", self.uri + '/notifications/' + self.nt_id, json.dumps(postdata).encode("utf-8")) resp = self.successResultOf(req) self.assertEquals(resp.code, 204) req = request(self, self.root, b"GET", self.uri + '/notifications') resp = self.successResultOf(req) self.assertEquals(resp.code, 200) data = self.get_responsebody(resp) mynt = None for nt in data['values']: if nt['id'] == self.nt_id: mynt = nt break self.assertIsNot(None, mynt) self.assertEquals('changed', mynt['label']) def test_update_missing_notification(self): """ Attempting to update a non-existing notification causes a 404. """ (resp, data) = self.successResultOf( json_request(self, self.root, b"PUT", '{0}/notifications/ntDoesNotExist'.format(self.uri), json.dumps({'label': 'my awesome notification'}).encode("utf-8"))) self.assertEquals(resp.code, 404) self.assertEquals(data['message'], 'Object does not exist') def test_delete_notification(self): """ Delete a notification target """ req = request(self, self.root, b"DELETE", self.uri + '/notifications/' + self.nt_id) resp = self.successResultOf(req) self.assertEquals(resp.code, 204) req = request(self, self.root, b"GET", self.uri + '/notifications') resp = self.successResultOf(req) self.assertEquals(resp.code, 200) data = self.get_responsebody(resp) mynt = None for nt in data['values']: if nt['id'] == self.nt_id: mynt = nt break self.assertEquals(None, mynt) def test_delete_nonexistent_notification_404s(self): """ Deleting a notification that does not exist causes a 404. """ (resp, data) = self.successResultOf( json_request(self, self.root, b"DELETE", '{0}/notifications/ntWhut'.format(self.uri))) self.assertEquals(resp.code, 404) self.assertEquals(data['details'], 'Object "Notification" with key "ntWhut" does not exist') def test_update_notificationplan(self): """ Update a notification plan """ postdata = {'id': self.np_id, 'label': 'changed'} req = request(self, self.root, b"PUT", self.uri + '/notification_plans/' + self.np_id, json.dumps(postdata).encode("utf-8")) resp = self.successResultOf(req) self.assertEquals(resp.code, 204) req = request(self, self.root, b"GET", self.uri + '/notification_plans/' + self.np_id) resp = self.successResultOf(req) self.assertEquals(resp.code, 200) data = self.get_responsebody(resp) self.assertEquals('changed', data['label']) def test_update_missing_notification_plan(self): """ Attempting to update a non-existing notification plan causes a 404. """ (resp, data) = self.successResultOf( json_request(self, self.root, b"PUT", '{0}/notification_plans/npDoesNotExist'.format(self.uri), json.dumps({'label': 'WAT WAT WAT'}).encode("utf-8"))) self.assertEquals(resp.code, 404) self.assertEquals(data['message'], 'Object does not exist') def test_delete_notificationplan(self): """ Delete a notification plan """ req = request(self, self.root, b"DELETE", self.uri + '/notification_plans/' + self.np_id) resp = self.successResultOf(req) self.assertEquals(resp.code, 204) req = request(self, self.root, b"GET", self.uri + '/notification_plans') resp = self.successResultOf(req) self.assertEquals(resp.code, 200) data = self.get_responsebody(resp) mynp = None for np in data['values']: if np['id'] == self.np_id: mynp = np break self.assertEquals(None, mynp) def test_delete_nonexistent_notification_plan_404s(self): """ Deleting a notification plan that does not exist causes a 404. """ (resp, data) = self.successResultOf( json_request(self, self.root, b"DELETE", '{0}/notification_plans/npWhut'.format(self.uri))) self.assertEquals(resp.code, 404) self.assertEquals(data['details'], 'Object "NotificationPlan" with key "npWhut" does not exist') def test_get_notificationtypes(self): """ Get notification types """ req = request(self, self.root, b"GET", self.uri + '/notification_types') resp = self.successResultOf(req) self.assertEquals(resp.code, 200) data = self.get_responsebody(resp) self.assertEquals(4, data['metadata']['count']) def test_get_suppression(self): """ Get a specific suppression """ req = request(self, self.root, b"GET", self.uri + '/suppressions/' + self.sp_id) resp = self.successResultOf(req) self.assertEquals(resp.code, 200) data = self.get_responsebody(resp) self.assertEquals(data['id'], self.sp_id) self.assertEquals(data['notification_plans'], []) self.assertEquals(data['entities'], []) self.assertEquals(data['checks'], []) self.assertEquals(data['alarms'], []) def test_get_all_suppressions(self): """ Get all the suppressions """ req = request(self, self.root, b"GET", self.uri + '/suppressions') resp = self.successResultOf(req) self.assertEquals(resp.code, 200) data = self.get_responsebody(resp) self.assertEquals(1, data['metadata']['count']) self.assertEquals(self.sp_id, data['values'][0]['id']) def test_update_suppression(self): """ Update an suppression """ postdata = {'id': self.sp_id, 'label': 'changed'} req = request(self, self.root, b"PUT", self.uri + '/suppressions/' + self.sp_id, json.dumps(postdata).encode("utf-8")) resp = self.successResultOf(req) self.assertEquals(resp.code, 204) req = request(self, self.root, b"GET", self.uri + '/suppressions/' + self.sp_id) resp = self.successResultOf(req) self.assertEquals(resp.code, 200) data = self.get_responsebody(resp) self.assertEquals('changed', data['label']) def test_update_missing_suppression(self): """ Attempting to update a non-existing suppression causes a 404. """ (resp, data) = self.successResultOf( json_request(self, self.root, b"PUT", '{0}/suppressions/spDoesNotExist'.format(self.uri), json.dumps({'label': 'my-suppression'}).encode("utf-8"))) self.assertEquals(resp.code, 404) self.assertEquals(data['message'], 'Object does not exist') def test_delete_suppression(self): """ Delete an suppression """ req = request(self, self.root, b"DELETE", self.uri + '/suppressions/' + self.sp_id) resp = self.successResultOf(req) self.assertEquals(resp.code, 204) req = request(self, self.root, b"GET", self.uri + '/suppressions') resp = self.successResultOf(req) self.assertEquals(resp.code, 200) data = self.get_responsebody(resp) mysp = None for sp in data['values']: if sp['id'] == self.sp_id: mysp = sp break self.assertEquals(None, mysp) def test_delete_nonexistent_suppression_404s(self): """ Deleting a suppression that does not exist causes a 404. """ (resp, data) = self.successResultOf( json_request(self, self.root, b"DELETE", '{0}/suppressions/spWhut'.format(self.uri))) self.assertEquals(resp.code, 404) self.assertEquals(data['details'], 'Object "Suppression" with key "spWhut" does not exist') def test_list_monitoring_zones(self): """ List the monitoring zones """ req = request(self, self.root, b"GET", self.uri + '/monitoring_zones') resp = self.successResultOf(req) self.assertEquals(resp.code, 200) data = self.get_responsebody(resp) mz = data['values'][0] self.assertEquals('mzdfw', mz['id']) def test_list_alarm_examples(self): """ List the alarm examples """ req = request(self, self.root, b"GET", self.uri + '/alarm_examples') resp = self.successResultOf(req) self.assertEquals(resp.code, 200) data = self.get_responsebody(resp) ax = data['values'][0] self.assertEquals('remote.http_body_match_1', ax['id']) def test_alarm_count_per_np(self): """ test_alarm_count_per_np """ req = request(self, self.root, b"GET", self.uri + '/views/alarmCountsPerNp') resp = self.successResultOf(req) self.assertEquals(resp.code, 200) data = self.get_responsebody(resp) self.assertEquals(data['values'][0]['alarm_count'], 1) self.assertEquals(data['values'][0]['notification_plan_id'], 'npTechnicalContactsEmail') def test_alarms_by_np(self): """ test_alarms_by_np """ req = request(self, self.root, b"GET", self.uri + '/views/overview') resp = self.successResultOf(req) self.assertEquals(resp.code, 200) alarm = self.get_responsebody(resp)['values'][0]['alarms'][0] alarm['notification_plan_id'] = self.np_id req = request(self, self.root, b"PUT", self.uri + '/entities/' + self.entity_id + '/alarms/' + self.alarm_id, json.dumps(alarm).encode("utf-8")) resp = self.successResultOf(req) self.assertEquals(resp.code, 204) req = request(self, self.root, b"GET", self.uri + '/views/alarmsByNp/' + self.np_id) resp = self.successResultOf(req) self.assertEquals(resp.code, 200) data = self.get_responsebody(resp) self.assertEquals(data['values'][0]['id'], self.alarm_id) def test_delete_np_in_use(self): """ Cant delete a notificationPlan that's being pointed to by alarms """ req = request(self, self.root, b"GET", self.uri + '/views/overview') resp = self.successResultOf(req) self.assertEquals(resp.code, 200) alarm = self.get_responsebody(resp)['values'][0]['alarms'][0] alarm['notification_plan_id'] = self.np_id req = request(self, self.root, b"PUT", self.uri + '/entities/' + self.entity_id + '/alarms/' + self.alarm_id, json.dumps(alarm).encode("utf-8")) resp = self.successResultOf(req) self.assertEquals(resp.code, 204) req = request(self, self.root, b"DELETE", self.uri + '/notification_plans/' + self.np_id) resp = self.successResultOf(req) self.assertEquals(resp.code, 403) data = self.get_responsebody(resp) self.assertTrue(self.alarm_id in data['message']) self.assertTrue(self.alarm_id in data['details']) def test_reset_session(self): """ Reset session, remove all objects """ req = request(self, self.root, b"GET", self.uri + '/entities') resp = self.successResultOf(req) self.assertEquals(resp.code, 200) data = self.get_responsebody(resp) self.assertEquals(data['metadata']['count'], 1) req = request(self, self.root, b"GET", self.uri + '/mimic/reset') resp = self.successResultOf(req) self.assertEquals(resp.code, 200) req = request(self, self.root, b"GET", self.uri + '/entities') resp = self.successResultOf(req) self.assertEquals(resp.code, 200) data = self.get_responsebody(resp) self.assertEquals(data['metadata']['count'], 0) def test_unicode_label(self): """ Create an entity with weird letters in the name. """ req = request(self, self.root, b"POST", self.uri + '/entities', json.dumps({'label': u'\u0CA0_\u0CA0'}).encode("utf-8")) resp = self.successResultOf(req) self.assertEquals(resp.code, 201) def test_overview_pagination(self): """ The overview call returns paginated results. """ self.createEntity('entity-2') req = request(self, self.root, b"GET", self.uri + '/views/overview?limit=1') resp = self.successResultOf(req) self.assertEquals(resp.code, 200) data = self.get_responsebody(resp) self.assertEquals(data['values'][0]['entity']['label'], 'ItsAnEntity') req = request(self, self.root, b"GET", self.uri + '/views/overview?marker=' + data['metadata']['next_marker']) resp = self.successResultOf(req) self.assertEquals(resp.code, 200) data = self.get_responsebody(resp) self.assertEquals(data['values'][0]['entity']['label'], 'entity-2') def test_overview_pagination_marker_not_found(self): """ If the pagination marker is not present in the entities list, the paginated overview call returns results from the beginning. """ req = request(self, self.root, b"GET", self.uri + '/views/overview?marker=enDoesNotExist') resp
#!/usr/bin/env python import sys import apsw import shlex import os import csv import re import textwrap import time import codecs import base64 if sys.platform=="win32": _win_colour=False try: import colorama colorama.init() del colorama _win_colour=True except: # there are several failure reasons, ignore them all pass class Shell(object): """Implements a SQLite shell :param stdin: Where to read input from (default sys.stdin) :param stdout: Where to send output (default sys.stdout) :param stderr: Where to send errors (default sys.stderr) :param encoding: Default encoding for files opened/created by the Shell. If you want stdin/out/err to use a particular encoding then you need to provide them `already configured <http://docs.python.org/library/codecs.html#codecs.open>`__ that way. :param args: This should be program arguments only (ie if passing in sys.argv do not include sys.argv[0] which is the program name. You can also pass in None and then call :meth:`process_args` if you want to catch any errors in handling the arguments yourself. :param db: A existing :class:`Connection` you wish to use The commands and behaviour are modelled after the `interactive shell <https://sqlite.org/sqlite.html>`__ that is part of SQLite. You can inherit from this class to embed in your own code and user interface. Internally everything is handled as unicode. Conversions only happen at the point of input or output which you can override in your own code. This implementation fixes a number of bugs/quirks present in the sqlite shell. Its control-C handling is also friendlier. Some examples of issues not present in this implementation: * https://sqlite.org/src/info/c25aab7e7e * https://sqlite.org/src/info/7b61b6c6ce * https://sqlite.org/src/info/ee19e690ec * https://sqlite.org/src/info/2466653295 Errors and diagnostics are only ever sent to error output (self.stderr) and never to the regular output (self.stdout). This means using shell output is always easy and consistent. Shell commands begin with a dot (eg .help). They are implemented as a method named after the command (eg command_help). The method is passed one parameter which is the list of arguments to the command. Output modes are implemented by functions named after the mode (eg output_column). When you request help the help information is automatically generated from the docstrings for the command and output functions. You should not use a Shell object concurrently from multiple threads. It is one huge set of state information which would become inconsistent if used simultaneously, and then give baffling errors. It is safe to call methods one at a time from different threads. ie it doesn't care what thread calls methods as long as you don't call more than one concurrently. """ class Error(Exception): """Class raised on errors. The expectation is that the error will be displayed by the shell as text so there are no specific subclasses as the distinctions between different types of errors doesn't matter.""" pass def __init__(self, stdin=None, stdout=None, stderr=None, encoding="utf8", args=None, db=None): """Create instance, set defaults and do argument processing.""" super(Shell, self).__init__() # The parameter doc has to be in main class doc as sphinx # ignores any described here self.exceptions=False self.history_file="~/.sqlite_history" self._db=None self.dbfilename=None if db: self.db=db, db.filename else: self.db=None, None self.prompt= "sqlite> " self.moreprompt=" ..> " self.separator="|" self.bail=False self.echo=False self.timer=False self.header=False self.nullvalue="" self.output=self.output_list self._output_table=self._fmt_sql_identifier("table") self.widths=[] # do we truncate output in list mode? (explain doesn't, regular does) self.truncate=True # a stack of previous outputs. turning on explain saves previous, off restores self._output_stack=[] # other stuff self.set_encoding(encoding) if stdin is None: stdin=sys.stdin if stdout is None: stdout=sys.stdout if stderr is None: stderr=sys.stderr self.stdin=stdin self.stdout=stdout self._original_stdout=stdout self.stderr=stderr # we don't become interactive until the command line args are # successfully parsed and acted upon self.interactive=None # current colouring object self.command_colour() # set to default self._using_readline=False self._input_stack=[] self.input_line_number=0 self.push_input() self.push_output() self._input_descriptions=[] if args: try: self.process_args(args) except: if len(self._input_descriptions): self._input_descriptions.append("Processing command line arguments") self.handle_exception() raise if self.interactive is None: self.interactive=getattr(self.stdin, "isatty", False) and self.stdin.isatty() and getattr(self.stdout, "isatty", False) and self.stdout.isatty() def _ensure_db(self): "The database isn't opened until first use. This function ensures it is now open." if not self._db: if not self.dbfilename: self.dbfilename=":memory:" self._db=apsw.Connection(self.dbfilename, flags=apsw.SQLITE_OPEN_URI | apsw.SQLITE_OPEN_READWRITE | apsw.SQLITE_OPEN_CREATE) return self._db def _set_db(self, newv): "Sets the open database (or None) and filename" (db, dbfilename)=newv if self._db: self._db.close(True) self._db=None self._db=db self.dbfilename=dbfilename db=property(_ensure_db, _set_db, None, "The current :class:`Connection`") def process_args(self, args): """Process command line options specified in args. It is safe to call this multiple times. We try to be compatible with SQLite shell argument parsing. :param args: A list of string options. Do not include the program as args[0] :returns: A tuple of (databasefilename, initfiles, sqlncommands). This is provided for informational purposes only - they have already been acted upon. An example use is that the SQLite shell does not enter the main interactive loop if any sql/commands were provided. The first non-option is the database file name. Each remaining non-option is treated as a complete input (ie it isn't joined with others looking for a trailing semi-colon). The SQLite shell uses single dash in front of options. We allow both single and double dashes. When an unrecognized argument is encountered then :meth:`process_unknown_args` is called. """ # we don't use optparse as we need to use single dashes for # options - all hand parsed if not args: return None, [], [] # are options still valid? options=True # have we seen the database name? havedbname=False # List of init files to read inits=[] # List of sql/dot commands sqls=[] while args: if not options or not args[0].startswith("-"): options=False if not havedbname: # grab new database self.db=None, args[0] havedbname=True else: sqls.append(args[0]) args=args[1:] continue # remove initial single or double dash args[0]=args[0][1:] if args[0].startswith("-"): args[0]=args[0][1:] if args[0]=="init": if len(args)<2: raise self.Error("You need to specify a filename after -init") inits.append(args[1]) args=args[2:] continue if args[0]=="header" or args[0]=="noheader": self.header=args[0]=="header" args=args[1:] continue if args[0] in ("echo", "bail", "interactive"): setattr(self, args[0], True) args=args[1:] continue if args[0]=="batch": self.interactive=False args=args[1:] continue if args[0] in ("separator", "nullvalue", "encoding"): if len(args)<2: raise self.Error("You need to specify a value after -"+args[0]) getattr(self, "command_"+args[0])([args[1]]) args=args[2:] continue if args[0]=="version": self.write(self.stdout, apsw.sqlitelibversion()+"\n") # A pretty gnarly thing to do sys.exit(0) if args[0]=="help": self.write(self.stderr, self.usage()) sys.exit(0) if args[0] in ("no-colour", "no-color", "nocolour", "nocolor"): self.colour_scheme="off" self._out_colour() args=args[1:] continue # only remaining known args are output modes if getattr(self, "output_"+args[0], None): self.command_mode(args[:1]) args=args[1:] continue newargs=self.process_unknown_args(args) if newargs is None: raise self.Error("Unrecognized argument '"+args[0]+"'") args=newargs for f in inits: self.command_read([f]) for s in sqls: self.process_complete_line(s) return self.dbfilename, inits, sqls def process_unknown_args(self, args): """This is called when :meth:`process_args` encounters an argument it doesn't understand. Override this method if you want to be able to understand additional command line arguments. :param args: A list of the remaining arguments. The initial one will have had the leading dashes removed (eg if it was --foo on the command line then args[0] will be "foo" :returns: None if you don't recognize the argument either. Otherwise return the list of remaining arguments after you have processed yours. """ return None def usage(self): "Returns the usage message. Make sure it is newline terminated" msg=""" Usage: program [OPTIONS] FILENAME [SQL|CMD] [SQL|CMD]... FILENAME is the name of a SQLite database. A new database is created if the file does not exist. OPTIONS include: -init filename read/process named file -echo print commands before execution -[no]header turn headers on or off -bail stop after hitting an error -interactive force interactive I/O -batch force batch I/O -column set output mode to 'column' -csv set output mode to 'csv' -html set output mode to 'html' -line set output mode to 'line' -list set output mode to 'list' -python set output mode to 'python' -separator 'x' set output field separator (|) -nullvalue 'text' set text string for NULL values -version show SQLite version -encoding 'name' the encoding to use for files opened via .import, .read & .output -nocolour disables colour output to screen """ return msg.lstrip() ### ### Value formatting routines. They take a value and return a ### text formatting of them. Mostly used by the various output's ### but also by random other pieces of code. ### _binary_type = eval(("buffer", "bytes") [sys.version_info>=(3,0)]) _basestring =
# -*- coding:utf-8 -*- """ ============================================================================= Provide Material Studio markup file class which do operations on these files. ============================================================================= Written by PytLab <<EMAIL>>, August 2015 Updated by PytLab <<EMAIL>>, Novermber 2016 ============================================================== """ from os import getcwd import logging import xml.etree.cElementTree as ET import numpy as np from vaspy import VasPy, LazyProperty from vaspy.atomco import AtomCo from vaspy.errors import UnmatchedDataShape from vaspy.functions import str2list class XsdFile(AtomCo): def __init__(self, filename): """ Create a Material Studio *.xsd file class. Example: >>> a = XsdFile(filename='ts.xsd') Class attributes descriptions ======================================================================= Attribute Description ============ ======================================================= filename string, name of the file the direct coordiante data stored in natom int, the number of total atom number atom_types list of strings, atom types atom_numbers list of int, atom number of atoms in atoms atom_names list of string, Value of attribute 'Name' in Atom3d tag. tf np.array, T & F info for atoms, dtype=np.string data np.array, coordinates of atoms, dtype=float64 bases np.array, basis vectors of space, dtype=np.float64 ============ ======================================================= """ super(XsdFile, self).__init__(filename) # Set logger. self.__logger = logging.getLogger("vaspy.XsdFile") # Load data in xsd. self.load() def load(self): # get element tree tree = ET.ElementTree(file=self.filename) self.tree = tree # MS version info root = self.root = tree.getroot() ms_version = root.get('Version') if ms_version: self.ms_version = ms_version # add WrittenBy attr if 'WrittenBy' in root.attrib: root.set('WrittenBy', 'VASPy') else: root.attrib.setdefault('WrittenBy', 'VASPy') # atom info self.get_atom_info() # lattice parameters self.bases = self.get_bases() # info in Name property. self.get_name_info() return def get_bases(self): "get bases from SpaceGroup element" # lattice parameters bases = [] for elem in self.tree.iter(): if elem.tag == 'SpaceGroup': for attr in ['AVector', 'BVector', 'CVector']: basis = elem.attrib[attr] # string basis = [float(i.strip()) for i in basis.split(',')] bases.append(basis) break bases = np.array(bases) #set base constant as 1.0 self.bases_const = 1.0 return bases def __get_identity_mappings(self): """ Private helper function to get IdentityMapping tag. 获取IdentityMapping标签对象. """ # Find IdentityMapping tag using Xpath. identity_mappings = self.tree.findall('.//IdentityMapping') if not identity_mappings: msg = 'No IdentityMapping tag found.' self.__logger.warning(msg) return #raise ValueError(msg) return identity_mappings def get_atom_info(self): "获取和原子相关的信息, 直接进行属性赋值" # atom info atomco_dict = {} natoms_dict = {} atom_types = [] tf = [] tf_dict = {} atom_names = [] atom_components = [] atom_name_dict = {} identity_mappings = self.__get_identity_mappings() if identity_mappings is None: atom3d_iter = self.root.findall('.//Atom3d') else: atom3d_iter = identity_mappings[0].iter('Atom3d') # For each Atom3d tag for elem in atom3d_iter: # Atom name and number atom = elem.attrib['Components'] atom_components.append(atom) if atom not in natoms_dict: natoms_dict.setdefault(atom, 1) atom_types.append(atom) else: natoms_dict[atom] += 1 # Coordinates # NOTE: In bulk the origin point may not have coordinate, # so use '0.0,0.0,0.0' as default value. if 'XYZ' not in elem.attrib: xyz = '0.0,0.0,0.0' msg = ("Found an Atom3d tag without 'XYZ' attribute" + ", set to {}").format(xyz) self.__logger.info(msg) else: xyz = elem.attrib['XYZ'] coordinate = [float(i.strip()) for i in xyz.split(',')] if atom not in atomco_dict: atomco_dict.setdefault(atom, [coordinate]) else: atomco_dict[atom].append(coordinate) # T&F info if 'RestrictedProperties' in elem.attrib: tf_info = ['F', 'F', 'F'] else: tf_info = ['T', 'T', 'T'] if atom not in tf_dict: tf_dict.setdefault(atom, [tf_info]) else: tf_dict[atom].append(tf_info) # atom name atom_name = elem.attrib.get('Name') # Damn, sometimes tag has no Name attr, # so customize it # 有可能个别原子是从其他文件复制过来的原因 if not atom_name: atom_name = atom + '_custom' if atom not in atom_name_dict: atom_name_dict.setdefault(atom, [atom_name]) else: atom_name_dict[atom].append(atom_name) atom_numbers = [natoms_dict[atm] for atm in atom_types] coordinates = [] for atom in atom_types: # sorted by atoms # combine all coordinates coordinates += atomco_dict[atom] # combine all tf info tf += tf_dict[atom] # combine all atom_names atom_names += atom_name_dict[atom] # set class attrs self.natom = len(atom_names) self.atom_numbers = atom_numbers self.atom_types = atom_types self.tf = np.array(tf) self.atom_names = atom_names self.atom_components = atom_components self.atom_names_dict = atom_name_dict self.data = np.array(coordinates) def get_name_info(self): """ 获取文件中能量,力等数据. """ # Get info string. info = None for elem in self.tree.iter("SymmetrySystem"): info = elem.attrib.get('Name') break if info is None: return # Get thermo data. fieldnames = ["energy", "force", "magnetism", "path"] try: for key, value in zip(fieldnames, info.split()): if key != "path": data = float(value.split(':')[-1].strip()) else: data = value.split(":")[-1].strip() setattr(self, key, data) except: # Set default values. self.force, self.energy, self.magnetism = 0.0, 0.0, 0.0 msg = "No data info in Name property '{}'".format(info) self.__logger.warning(msg) finally: self.path = getcwd() def update(self): """ 根据最新数据获取更新ElementTree内容 """ if self.natom != len(self.data): raise UnmatchedDataShape( 'length of data is not equal to atom number.') elif self.natom != len(self.tf): raise UnmatchedDataShape( 'length of tf is not equal to atom number.') elif self.natom != len(self.atom_names): raise UnmatchedDataShape( 'length of atom names is not equal to atom number.') # atoms info self.update_atoms() # space group self.update_bases() # Thermodynamic info. self.update_name() return def update_atoms(self): """ 更新ElementTree原子相关的值 update attribute values about atoms in element tree. """ # Find <IdentityMapping> tag. identity_mappings = self.__get_identity_mappings() # Loop over all atom type. for atom in self.atom_types: # Index for atom with same type. idx = 0 # Loop over all IdentityMapping tags. for identity_mapping in identity_mappings: # Loop over all Atom3d tags in IdentityMapping. for elem in identity_mapping.iter('Atom3d'): if elem.attrib['Components'] != atom: continue # XYZ value xyz = self.atomco_dict[atom][idx] # list of float xyz = ','.join([str(v) for v in xyz]) if 'XYZ' not in elem.attrib: msg = ("Found an Atom3d tag without 'XYZ' attribute" + ", set to {}").format(xyz) self.__logger.info(msg) elem.attrib['XYZ'] = xyz # TF value tf = self.tf_dict[atom][idx] tf = ','.join(tf) if tf == 'F,F,F': if 'RestrictedProperties' not in elem.attrib: elem.attrib.setdefault('RestrictedProperties', 'FractionalXYZ') elif tf == 'T,T,T': if 'RestrictedProperties' in elem.attrib: elem.attrib.pop('RestrictedProperties') # Atom name. elem.set('Name', self.atom_names_dict[atom][idx]) idx += 1 def update_name(self): """ 更新ElementTree中能量,力,作业路径等信息。 """ value = "" for key, attr in zip(['E', 'F', 'M'], ["energy", "force", "magnetism"]): data = getattr(self, attr, 0.0) value += "{}:{} ".format(key, data) value = value.strip() # Get current path. path = getcwd() value = "{} {}:{}".format(value, "P", path) for elem in self.tree.iter("SymmetrySystem"): elem.set("Name", value) break def update_bases(self): "update bases value in ElementTree" bases = self.bases.tolist() bases_str = [] # float -> string for basis in bases: xyz = ','.join([str(v) for v in basis]) # vector string bases_str.append(xyz) for elem in self.tree.iter('SpaceGroup'): elem.set('AVector', bases_str[0]) elem.set('BVector', bases_str[1]) elem.set('CVector', bases_str[2]) break def modify_color(self, atom_number, color=(255, 117, 51)): ''' Modify color of atom. Parameters ---------- atom_number: int, number of atom(start from 1) color: tuple of int, RGB value of color Example ------- >>> a.modify_color(99, color=(255, 255, 255)) ''' # get atom type and number of this type # [48, 48, 30, 14] -> [48, 96, 126, 140] atoms_num_sum = [sum(self.atom_numbers[: i+1]) for i in range(len(self.atom_types))] for idx, n in enumerate(atoms_num_sum): if atom_number <= n: atom_idx = idx break atom_type = self.atom_types[atom_idx] type_atom_number = atom_number - atoms_num_sum[atom_idx-1] # start from 1 # go through tags to modify atom color color_attr = '%d,%d,%d, 255' % color i = 0 # atom number counter for elem in self.tree.iter('Atom3d'): if 'XYZ' in elem.attrib and elem.attrib['Components'] == atom_type: i += 1 # locate tag if i == type_atom_number: # modify color attribute if 'Color' not in elem.attrib: elem.attrib.setdefault('Color', color_attr) else: elem.set('Color', color_attr) break def tofile(self, filename='./new.xsd'): "XsdFile object to .xsd file." self.update() self.tree.write(filename) return class ArcFile(VasPy): def __init__(self, filename): """ Create a Material Studio *.arc file class. Example: >>> a = ArcFile("00-05.arc") Class attributes descriptions ================================================================ Attribute Description =============== ============================================== filename string, name of arc file. coords_iterator generator, yield Cartisan coordinates in numpy array. lengths list of float, lengths of lattice axes. angles list of float, angles of lattice axes. ================ ============================================== """ super(ArcFile, self).__init__(filename) # Set logger. self.__logger = logging.getLogger("vaspy.ArcFile") @property def coords_iterator(self): """ Return generator for Cartisan coordinates in arc file iteration. 返回每个轨迹的所有原子的笛卡尔坐标 """ with open(self.filename, "r") as f: collecting = False coords = [] for line in f: line = line.strip() if not collecting and line.startswith("PBC "): # NOTE: Use "PBC " to tell "PBC=" apart collecting = True elif collecting and line.startswith("end"): collecting = False yield np.array(coords) coords = [] # Collect coordinates data. elif collecting: line_list = str2list(line) coord = [float(c) for c in line_list[1: 4]] coords.append(coord) @LazyProperty def lengths(self): """ Lengths of axes of supercell. 晶格基向量长度。 """ with open(self.filename, "r")
# This program is in the public domain """ Join reflectivity datasets with matching intent/cross section. """ from __future__ import print_function from copy import deepcopy import numpy as np from dataflow.lib import unit from .refldata import Intent, ReflData, Environment from .util import poisson_average, extend from .resolution import divergence_simple, dTdL2dQ, TiTdL2Qxz try: #from typing import List, Dict, Union, Sequence #Columns = Dict[str, List[np.ndarray]] #StackedColumns = Dict[str, np.ndarray] #IndexSet = List[int] pass except ImportError: pass def sort_files(datasets, key): # type: (List[ReflData], str) -> List[ReflData] """ Order files by key. key can be one of: file, time, theta, or slit """ if key == 'file': keyfn = lambda data: data.name elif key == 'time': import datetime keyfn = lambda data: (data.date + datetime.timedelta(seconds=data.monitor.start_time[0])) elif key == "theta": keyfn = lambda data: (data.sample.angle_x[0], data.detector.angle_x[0]) elif key == "slit": keyfn = lambda data: (data.slit1.x, data.slit2.x) elif key == "none": return datasets else: raise ValueError("Unknown sort key %r: use file, time, theta or slit" % key) datasets = datasets[:] datasets.sort(key=keyfn) return datasets def join_datasets(group, Qtol, dQtol, by_Q=False): # type: (List[ReflData], float, float, bool) -> ReflData """ Create a new dataset which joins the results of all datasets in the group. This is a multistep operation with the various parts broken into separate functions. """ #print "joining files in",group[0].path,group[0].name,group[0].entry # Make sure all datasets are normalized by the same factor. normbase = group[0].normbase assert all(data.normbase == normbase for data in group), "can't mix time and monitor normalized data" # Gather the columns fields = get_fields(group) env = get_env(group) fields.update(env) columns = stack_columns(group, fields) columns = apply_mask(group, columns) columns = set_QdQ(columns) # Group points together, either by target angles, by actual angles or by Q # TODO: maybe include target Q # TODO: check background subtraction based on trajectoryData._q # ----- it can't be right since Qz_target is not properly propagated # ----- through the join... if Qtol == 0. and dQtol == 0.: targets = get_target_values(group) targets = stack_columns(group, targets) targets = apply_mask(group, targets) groups = group_by_target_angles(targets) elif by_Q: groups = group_by_Q(columns, Qtol=Qtol, dQtol=dQtol) else: groups = group_by_actual_angles(columns, Qtol=Qtol, dQtol=dQtol) # Join the data points in the individual columns columns = merge_points(groups, columns, normbase) # Sort so that points are in display order # Column keys are: # Qx, Qz, dQ: Q and resolution # Td: detector theta # Ti: incident (sample) theta # dT: angular divergence # Li: monochromator wavelength # Ld: detector wavelength # dL: wavelength dispersion isslit = Intent.isslit(group[0].intent) isrock = Intent.isrock(group[0].intent) if isrock: # Sort detector rocking curves so that small deviations in sample # angle don't throw off the order in detector angle. keys = ('<KEY>') #keys = ('Td', 'Ti', 'Ld', 'dT', 'dL') elif isslit: keys = ('dT', 'Ld', 'dL') else: keys = ('<KEY>') #keys = ('Ti', 'Td', 'Ld', 'dT', 'dL') columns = sort_columns(columns, keys) data = build_dataset(group, columns, normbase) #print "joined",data.intent return data def build_dataset(group, columns, norm): # type: (List[ReflData], StackedColumns, str) -> ReflData """ Build a new dataset from a set of columns. Metadata is set from the first dataset in the group. If there are any sample environment columns they will be added to data.sample.environment. """ head = group[0] # Copy details of first file as metadata for the returned dataset. # Note: using deepcopy since this is going to update subgroup # data such as data.slit1.x. data = deepcopy(group[0]) ## Could instead do a semi-deep copy using info from the group: #data = copy(group[0]) #for group_name, _ in data._groups: # setattr(data, group_name, copy(getattr(data, group_name))) # Clear the fields that are no longer defined data.sample.angle_y = None data.sample.rotation = None data.detector.angle_y = None data.detector.rotation = None for k in range(1, 5): slit = getattr(data, 'slit%d'%k) slit.x = slit.y = slit.x_target = slit.y_target = None # summary data derived from group, or copied from head if commented #data.instrument #data.geometry #data.probe data.path = None # no longer refers to head file data.uri = None # TODO: does a reduction have a DOI? data.points = len(columns['v']) #data.channels # unused #data.scale = 1.0 # unused #data.name #data.entry #data.description data.date = min(d.date for d in group) # set date to earliest date data.duration = sum(d.duration for d in group) # cumulative duration data.polarization = (head.polarization if all(d.polarization == head.polarization for d in group) else '') #data.normbase data.warnings = [] # initialize per-file history #data.vlabel #data.vunits #data.vscale #data.xlabel #data.xunits #data.xscale data.mask = None # all points are active after join #data.angular_resolution # averaged data.Qz_basis = head.Qz_basis data.scan_value = [] # TODO: may want Td, Ti as alternate scan axes data.scan_label = [] data.scan_units = [] data.intent = head.intent # preserve intent #data.x # read-only #data.dx # read-only #data.v # averaged #data.dv # averaged #data.Qz # read-only # TODO: if join by Q then Qx,Qz,dQ need to be set #data.Qx # read-only #data.dQ # read-only # Fill in rates and monitors. # Note: we are not tracking monitor variance, so assume it is equal # to monitor counts (dm^2 = m). This does not account for monitor # scaling due to dead time correction, etc. In practice it doesn't # matter since we've already normalized the counts to a count rate # and we don't need detector counts or variance. v, dv, m, t = columns['v'], columns['dv'], columns['monitor'], columns['time'] dmsq = m data.v = v data.dv = dv data.monitor.count_time = t data.monitor.counts = m data.monitor.counts_variance = dmsq data.monitor.roi_counts = columns['roi'] data.monitor.roi_variance = columns['roi'] data.monitor.source_power = columns['source_power'] data.monitor.source_power_variance = columns['source_power_variance'] # Assign a value to detector counts. We need this if we norm after join. if norm == "none": # v = counts, dv = dcounts data.detector.counts = v data.detector.counts_variance = dv**2 elif norm == "time": # v = counts/time, dv = dcounts/time data.detector.counts = v * extend(t, v) data.detector.counts_variance = (dv * extend(t, dv))**2 elif norm == "monitor": # v = counts/monitor, (dv/v)^2 = (dcounts/counts)^2+(dmonitor/monitor)^2 # => dc^2 = (m dv)^2 - (v dm)^2 data.detector.counts = v * extend(m, v) data.detector.counts_variance = (extend(m, dv)*dv)**2 - v**2*extend(dmsq,v) # Fill in the fields we have averaged data.sample.angle_x = columns['Ti'] data.detector.angle_x = columns['Td'] data.sample.angle_x_target = columns['Ti_target'] data.detector.angle_x_target = columns['Td_target'] data.slit1.x = columns['s1'] data.slit2.x = columns['s2'] data.slit3.x = columns['s3'] data.slit4.x = columns['s4'] # TODO: cleaner handling of candor data # Angular resolution may be stored separately from dT in the joined set # if it is multidimensional or dT is set to something else for grouping. res = 'angular_resolution' if 'angular_resolution' in columns else 'dT' data.angular_resolution = columns[res] # Some fields may not have been in the original data if data.Qz_target is not None: data.Qz_target = columns['Qz_target'] if data.monochromator.wavelength is not None: data.monochromator.wavelength = columns['Li'] if data.detector.wavelength is not None: # On candor data.detector.wavelength has shape [1, 2, 54] since it is # constant for all measurement points. Since Ld and dL need to be # scalars for grouping it is inconvenient to maintain the # full wavelength for each frame, so we instead assume that any time # the wavelength is multidimensional then it is constant. Further, # we assume that the constant is included in the group[0] metadata # we use as the basis of our return value. if getattr(data.detector.wavelength, 'ndim', 0) < 2: data.detector.wavelength = columns['Ld'] data.detector.wavelength_resolution = columns['dL'] # Add in any sample environment fields data.sample.environment = {} for k, v in head.sample.environment.items(): if k in columns: env = Environment() env.units = v.units env.average = columns[k] data.sample.enviroment[k] = env # TODO: could maybe join the environment logs # ----- this would require setting them all to a common start time return data def get_fields(group): # type: (List[ReflData]) -> Columns """ Extract geometry and counts from all files in group into separate fields. Returns a map of columns: list of vectors, with one vector for each dataset in the group. """ columns = dict( s1=[data.slit1.x for data in group], s2=[data.slit2.x for data in group], s3=[data.slit3.x for data in group], s4=[data.slit4.x for data in
#!/usr/bin/env python import sys import PyTango from upgrade_utils import * class Controller: def __init__(self, type, file, kcls, name, id): self.type = type self.file = file self.kcls = kcls self.name = name self.id = id def __str__(self): return "%s %s %s %s %s" % (self.type, self.file, self.kcls, self.name, self.id) def get_controller_prop(self): return [self.type, self.file, self.kcls, self.name, self.id] class Up02To03(Upgrade): def get_pool_controllers(self, serv, db=None): """Gets the list of Pool controllers from pool version 0.1.x""" pool_serv_name = "Pool/%s" % serv pool_dev_name = get_pool_device_from_server(serv) db = db or get_db() ctrls = db.get_device_property( pool_dev_name, ["Controller"])["Controller"] i = 0 ret = [] while i < len(ctrls): type = ctrls[i] file = ctrls[i + 1] kcls = ctrls[i + 2] name = ctrls[i + 3] id = ctrls[i + 4] i += 5 ret.append(Controller(type, file, kcls, name, id)) return ret @classmethod def fromTo(cls): return ("0.2.x", "0.3.0") @classmethod def supports(cls, old_vers, new_vers): return old_vers.startswith('0.2') and new_vers.startswith('0.3') @classmethod def supports_old(cls, old_vers): return old_vers.startswith('0.2') @classmethod def supports_new(cls, new_vers): return new_vers.startswith('0.3') def upgrade(self, db, serv, old_vers, new_vers): if not Up02To03.supports(old_vers, new_vers): raise Exception("Unsupported upgrade") yield "Upgrading %s from %s to %s... " % (serv, old_vers, new_vers), 1 id = 1 pending_put_properties = {} # map used to store <id, name (alias)> elem_map, reverse_elem_map = {}, {} pool_serv_name = "Pool/%s" % serv pool_dev_name = get_pool_device_from_server(serv, db=db) # 1 - get controllers # 2 - get elements elems = db.get_device_class_list(pool_serv_name) i = 0 elems_dict = {} while i < len(elems): dev, kcls = elems[i], elems[i + 1] if not elems_dict.has_key(kcls): elems_dict[kcls] = [] elems_dict[kcls].append(dev) i += 2 # 3.1 - store motors yield "Storing motor information...", 5 for m_dev_name in elems_dict.get("Motor", []): props = db.get_device_property( m_dev_name, ("id", "ctrl_id", "axis")) id = int(props["id"][0]) m_alias = db.get_alias(m_dev_name).lower() elem_map[id] = m_alias reverse_elem_map[m_alias] = id # 3.2 - store counter timers yield "Storing counter information...", 10 for expch_dev_name in elems_dict.get("CTExpChannel", []): props = db.get_device_property( expch_dev_name, ("id", "ctrl_id", "axis")) id = int(props["id"][0]) expch_alias = db.get_alias(expch_dev_name).lower() elem_map[id] = expch_alias reverse_elem_map[expch_alias] = id # 3.3 - store 0D yield "Storing 0D information...", 15 for expch_dev_name in elems_dict.get("ZeroDExpChannel", []): props = db.get_device_property( expch_dev_name, ("id", "ctrl_id", "axis")) id = int(props["id"][0]) expch_alias = db.get_alias(expch_dev_name).lower() elem_map[id] = expch_alias reverse_elem_map[expch_alias] = id # 3.4 - store 1D yield "Storing 1D information...", 20 for expch_dev_name in elems_dict.get("OneDExpChannel", []): props = db.get_device_property( expch_dev_name, ("id", "ctrl_id", "axis")) id = int(props["id"][0]) expch_alias = db.get_alias(expch_dev_name).lower() elem_map[id] = expch_alias reverse_elem_map[expch_alias] = id # 3.5 - store 2D yield "Storing 2D information...", 25 for expch_dev_name in elems_dict.get("TwoDExpChannel", []): props = db.get_device_property( expch_dev_name, ("id", "ctrl_id", "axis")) id = int(props["id"][0]) expch_alias = db.get_alias(expch_dev_name).lower() elem_map[id] = expch_alias reverse_elem_map[expch_alias] = id # 3.6 - store communication channels yield "Storing communication channel information...", 30 for comch_dev_name in elems_dict.get("CommunicationChannel", []): props = db.get_device_property( comch_dev_name, ("id", "ctrl_id", "axis")) id = int(props["id"][0]) comch_alias = db.get_alias(comch_dev_name).lower() elem_map[id] = comch_alias reverse_elem_map[comch_alias] = id # 3.7 - store IO register yield "Storing ioregister information...", 35 for ior_dev_name in elems_dict.get("IORegister", []): props = db.get_device_property( ior_dev_name, ("id", "ctrl_id", "axis")) id = int(props["id"][0]) ior_alias = db.get_alias(ior_dev_name).lower() elem_map[id] = ior_alias reverse_elem_map[ior_alias] = id # 3.8 - For MotorGroup remove 'motor_group_id' and add 'id' yield "Storing MotorGroup information...", 40 for mg_dev_name in elems_dict.get("MotorGroup", []): mg_dev_name = mg_dev_name.lower() props = ('id', 'motor_list', 'motor_group_list', 'pseudo_motor_list', 'phys_group_elt', 'user_group_elt') props = db.get_device_property(mg_dev_name, props) id = int(props["id"][0]) mg_alias = db.get_alias(mg_dev_name).lower() elem_map[id] = mg_alias reverse_elem_map[mg_alias] = id pending_put_properties[mg_dev_name] = {} new_motor_list = [] skip = True for name in props['motor_list']: name = name.lower() # if all are already IDs, skip the property try: int(name) except Exception, e: skip = False new_motor_list.append(reverse_elem_map.get(name, name)) if not skip: pending_put_properties[mg_dev_name].update( {'motor_list': new_motor_list}) new_motor_group_list = [] skip = True for name in props['motor_group_list']: name = name.lower() # if all are already IDs, skip the property try: int(name) except Exception, e: skip = False new_motor_group_list.append( reverse_elem_map.get(name, name)) if not skip: pending_put_properties[mg_dev_name].update( {'motor_group_list': new_motor_group_list}) new_pseudo_motor_list = [] skip = True for name in props['pseudo_motor_list']: name = name.lower() # if all are already IDs, skip the property try: int(name) except Exception, e: skip = False new_pseudo_motor_list.append( reverse_elem_map.get(name, name)) if not skip: pending_put_properties[mg_dev_name].update( {'pseudo_motor_list': new_pseudo_motor_list}) new_phys_group_elt = [] skip = True for name in props['phys_group_elt']: name = name.lower() # if all are already IDs, skip the property try: int(name) except Exception, e: skip = False new_phys_group_elt.append(reverse_elem_map.get(name, name)) if not skip: pending_put_properties[mg_dev_name].update( {'phys_group_elt': new_phys_group_elt}) new_user_group_elt = [] skip = True for name in props['user_group_elt']: name = name.lower() # if all are already IDs, skip the property try: int(name) except Exception, e: skip = False new_user_group_elt.append(reverse_elem_map.get(name, name)) if not skip: pending_put_properties[mg_dev_name].update( {'user_group_elt': new_user_group_elt}) # 3.9 - For MeasurementGroup remove 'measurement_group_id' and add 'id' yield "Storing MeasurementGroup information...", 45 for mg_dev_name in elems_dict.get("MeasurementGroup", []): mg_dev_name = mg_dev_name.lower() props = ('id', 'ct_list', 'zerodexpchannel_list', 'onedexpchannel_list', 'twodexpchannel_list', 'pseudocounter_list', 'motor_list', 'phys_group_elt', 'user_group_elt') props = db.get_device_property(mg_dev_name, props) id = int(props["id"][0]) mg_alias = db.get_alias(mg_dev_name).lower() elem_map[id] = mg_alias reverse_elem_map[mg_alias] = id pending_put_properties[mg_dev_name] = {} new_ct_list = [] skip = True for name in props['ct_list']: name = name.lower() try: int(name) except Exception, e: skip = False new_ct_list.append(reverse_elem_map.get(name, name)) if not skip: pending_put_properties[mg_dev_name].update( {'ct_list': new_ct_list}) new_zerodexpchannel_list = [] skip = True for name in props['zerodexpchannel_list']: name = name.lower() try: int(name) except Exception, e: skip = False new_zerodexpchannel_list.append( reverse_elem_map.get(name, name)) if not skip: pending_put_properties[mg_dev_name].update( {'zerodexpchannel_list': new_zerodexpchannel_list}) new_onedexpchannel_list = [] skip = True for name in props['onedexpchannel_list']: name = name.lower() try: int(name) except Exception, e: skip = False new_onedexpchannel_list.append( reverse_elem_map.get(name, name)) if not skip: pending_put_properties[mg_dev_name].update( {'onedexpchannel_list': new_onedexpchannel_list}) new_twodexpchannel_list = [] skip = True for name in props['twodexpchannel_list']: name = name.lower() try: int(name) except Exception, e: skip = False new_twodexpchannel_list.append( reverse_elem_map.get(name, name)) if not skip: pending_put_properties[mg_dev_name].update( {'twodexpchannel_list': new_twodexpchannel_list}) new_pseudocounter_list = [] skip = True for name in props['pseudocounter_list']: name = name.lower() try: int(name) except Exception, e: skip = False new_pseudocounter_list.append( reverse_elem_map.get(name, name)) if not skip: pending_put_properties[mg_dev_name].update( {'pseudocounter_list': new_pseudocounter_list}) new_motor_list = [] skip = True for name in props['motor_list']: name = name.lower() try: int(name) except Exception, e: skip = False new_motor_list.append(reverse_elem_map.get(name, name)) if not skip: pending_put_properties[mg_dev_name].update( {'motor_list': new_motor_list}) new_phys_group_elt = [] skip = True for name in props['phys_group_elt']: name = name.lower() try: int(name) except Exception, e: skip = False new_phys_group_elt.append(reverse_elem_map.get(name, name)) if not skip: pending_put_properties[mg_dev_name].update( {'phys_group_elt': new_phys_group_elt}) new_user_group_elt = [] skip = True for name in props['user_group_elt']: name = name.lower() try: int(name) except Exception, e: skip = False new_user_group_elt.append(reverse_elem_map.get(name, name)) if not skip: pending_put_properties[mg_dev_name].update( {'user_group_elt': new_user_group_elt}) # 3.10 - For PseudoMotor replace motor_list from a list of names to a # list of IDs yield "Storing PseudoMotor information...", 50 for pm_dev_name in elems_dict.get("PseudoMotor", []): pm_dev_name = pm_dev_name.lower() props = db.get_device_property(pm_dev_name, ("id", "ctrl_id", "axis", "motor_group", "motor_group_id", "motor_list")) id = int(props["id"][0]) pm_alias = db.get_alias(pm_dev_name).lower() elem_map[id] = pm_alias reverse_elem_map[pm_alias] = id motor_group = props["motor_group"] if not motor_group: motor_group_id = motor_group = props["motor_group_id"] if not motor_group_id: print "WARNING: neither motor_group nor motor_group_id property is defined for %s." % pm_dev_name else: motor_group = motor_group[0].lower() motor_group_id = reverse_elem_map[motor_group] props["motor_group_id"] = [str(motor_group_id)] db.put_device_property(pm_dev_name, props) db.delete_device_property( pm_dev_name, ["pseudo_motor_id", "motor_group", "role", "role_idx"]) skip = True motor_ids = [] for name in props["motor_list"]: name = name.lower() try: int(name) except Exception, e: skip = False motor_ids.append(reverse_elem_map[name]) if not skip: db.put_device_property(pm_dev_name, {"motor_list": motor_ids}) # 3.11 - For PseudoCounter replace channel_list from a list of names to # a list of IDs yield "Storing PseudoCounter information...", 60 for pc_dev_name in elems_dict.get("PseudoCounter", []): pc_dev_name = pc_dev_name.lower() props = db.get_device_property(pc_dev_name, ("id", "ctrl_id", "axis", "channel_list")) id = int(props["id"][0]) pc_alias = db.get_alias(pc_dev_name).lower() elem_map[id] = pc_alias reverse_elem_map[pc_alias] = id db.delete_device_property( pc_dev_name, ["pseudo_counter_id", "role", "role_idx"]) skip = True channel_ids = [] for name in props["channel_list"]: name = name.lower() try: int(name) except Exception, e: skip = False channel_ids.append(reverse_elem_map[name]) if not skip: db.put_device_property( pc_dev_name, {"channel_list": channel_ids}) # 4. - Apply pending properties yield "Applying pending properties...", 75 for dev, props in pending_put_properties.iteritems(): for name, val in props.iteritems(): for i, elem in enumerate(val): if isinstance(elem, str): val[i] = reverse_elem_map[elem] db.put_device_property(dev, props) # 5. - Finally update the version property in the database yield "Updating the version
<filename>tutorial_7_a_star_solved.py<gh_stars>0 # ------------------------------------------------------------------------------------------------ # Copyright (c) 2016 Microsoft Corporation # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and # associated documentation files (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, publish, distribute, # sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or # substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT # NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # ------------------------------------------------------------------------------------------------ # A* Search Solution for Tutorial sample #7: The Maze Decorator # Note: I wrote this code quickly, and did a simple pass to make sure it's somewhat readable. # Probably not as efficient or optimized as it could be (almost sure of it). # I bet there are multiple places it could be improved, feel free to do whatever you'd like with it. import MalmoPython import os import sys import time import json import copy from MIDCA import goals sys.stdout = os.fdopen(sys.stdout.fileno(), 'w', 0) # flush print output immediately def GetMissionXML( seed, gp ): return '''<?xml version="1.0" encoding="UTF-8" standalone="no" ?> <Mission xmlns="http://ProjectMalmo.microsoft.com" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <About> <Summary>Hello world!</Summary> </About> <ServerSection> <ServerInitialConditions> <Time> <StartTime>1000</StartTime> <AllowPassageOfTime>false</AllowPassageOfTime> </Time> <Weather>clear</Weather> </ServerInitialConditions> <ServerHandlers> <FlatWorldGenerator generatorString="3;7,44*49,73,35:1,159:4,95:13,35:13,159:11,95:10,159:14,159:6,35:6,95:6;12;"/> <DrawingDecorator> <DrawSphere x="-27" y="70" z="0" radius="30" type="air"/> </DrawingDecorator> <MazeDecorator> <Seed>'''+str(seed)+'''</Seed> <SizeAndPosition width="10" length="10" height="10" xOrigin="-32" yOrigin="69" zOrigin="-5"/> <StartBlock type="emerald_block" fixedToEdge="true"/> <EndBlock type="redstone_block" fixedToEdge="true"/> <PathBlock type="diamond_block"/> <FloorBlock type="air"/> <GapBlock type="air"/> <GapProbability>'''+str(gp)+'''</GapProbability> <AllowDiagonalMovement>false</AllowDiagonalMovement> </MazeDecorator> <ServerQuitFromTimeUp timeLimitMs="30000"/> <ServerQuitWhenAnyAgentFinishes/> </ServerHandlers> </ServerSection> <AgentSection mode="Survival"> <Name>MalmoTutorialBot</Name> <AgentStart> <Placement x="0.5" y="56.0" z="0.5"/> </AgentStart> <AgentHandlers> <DiscreteMovementCommands/> <AgentQuitFromTouchingBlockType> <Block type="redstone_block"/> </AgentQuitFromTouchingBlockType> <ObservationFromGrid> <Grid name="front20x10"> <min x="-10" y="-1" z="0"/> <max x="10" y="-1" z="10"/> </Grid> </ObservationFromGrid> </AgentHandlers> </AgentSection> </Mission>''' class Node(): ''' a node that will be used in A* search ''' agent_loc = None # x, y coordinate state = None # all_tiles in a grid parent_node = [] actions_taken = [] # actions taken to reach this node depth = 0 def __init__(self, agent_loc, state, parent_node, actions_taken): self.agent_loc = agent_loc self.state = state self.parent_node = parent_node if parent_node: self.depth = parent_node.depth+1 else: self.depth = 0 self.actions_taken = actions_taken def __str__(self): s = "aloc="+str(self.agent_loc)+"state_x_len="+str(len(self.state))+"state_y_len"+str(len(self.state[0])) return s def get_child_nodes(node, curr_nodes, already_visited_nodes): if not node: # sanity check return [] x = node.agent_loc[0] y = node.agent_loc[1] valid_child_nodes = [] # add each action if x != len(grid[y]): # make a copy just to make sure we are not modifying some # node some other place e_actions = copy.deepcopy(node.actions_taken) e_actions.append("movewest 1") east_node = Node((x+1,y),grid,node,e_actions) valid_child_nodes.append(east_node) #east node if x != 0: w_actions = copy.deepcopy(node.actions_taken) w_actions.append("moveeast 1") west_node = Node((x-1,y),grid,node,w_actions) valid_child_nodes.append(west_node) # west node if y != len(grid): s_actions = copy.deepcopy(node.actions_taken) s_actions.append("movesouth 1") south_node = Node((x,y+1),grid,node,s_actions) valid_child_nodes.append(south_node) #east node if y != 0: n_actions = copy.deepcopy(node.actions_taken) n_actions.append("movenorth 1") north_node = Node((x,y-1),grid,node,n_actions) valid_child_nodes.append(north_node) # west node # filter out anything that is air try: valid_child_nodes = filter(lambda n: n.state[n.agent_loc[1]][n.agent_loc[0]] != u'air', valid_child_nodes) except: pass # filter out anything that is already in curr_nodes (may not be necessary) curr_node_locs = map(lambda n: n.agent_loc,curr_nodes) valid_child_nodes = filter(lambda n: n.agent_loc not in curr_node_locs, valid_child_nodes) # filter out anything that we have already visited (necessary, prevents cycles) visited_node_locs = map(lambda n: n.agent_loc,already_visited_nodes) valid_child_nodes = filter(lambda n: n.agent_loc not in visited_node_locs, valid_child_nodes) return valid_child_nodes def A_star_search(start_state): # find the location of the emerald block, record this as agent's position and start # also find location of redstone block, save as goal loc agent_loc_x = -1 agent_loc_y = -1 goal_x = -1 goal_y = -1 found_emerald_block = False found_redstone_block = False for y in range(len(start_state)): for x in range(len(start_state[y])): if start_state[y][x] == u'emerald_block': agent_loc_x = x agent_loc_y = y found_emerald_block = True elif start_state[y][x] == u'redstone_block': goal_x = x goal_y = y found_redstone_block = True # just in case our state isn't valid if not (found_emerald_block and found_redstone_block): return [] print "agent_loc = " +str(agent_loc_x) + ","+str(agent_loc_y) print "goal_loc = "+str(goal_x) + ","+str(goal_y) # safety check, make sure start and goal are not the same if str(agent_loc_x) + ","+str(agent_loc_y) == str(goal_x) + ","+str(goal_y): return [] # root node root_node = Node((agent_loc_x, agent_loc_y),grid,None,[]) def goal_reached(node): reached = False try: reached = grid[node.agent_loc[1]][node.agent_loc[0]] == u'redstone_block' except: print "somehow it broked with y="+str(node.agent_loc[1])+", x="+str(node.agent_loc[1]) return reached def manhattan_dist_to_goal(node): #print "g(n)="+str((abs(goal_x - node.agent_loc[0])+abs(goal_y-node.agent_loc[1])))+",h(n)="+str(node.depth) return (abs(goal_x - node.agent_loc[0])+abs(goal_y-node.agent_loc[1])) + node.depth def depth_and_manhatten(node): return manhattan_dist_to_goal(node) # initialize the queue with the first node curr_nodes = [root_node] already_visited_nodes = [] while len(curr_nodes) > 0 and not goal_reached(curr_nodes[0]): # get first node from our queue curr_node = curr_nodes[0] curr_nodes = curr_nodes[1:] # take the first node off # save this node so we don't visit again already_visited_nodes.append(curr_node) # get child nodes child_nodes = get_child_nodes(copy.deepcopy(curr_node),curr_nodes, already_visited_nodes) # add child nodes to queue curr_nodes += child_nodes # sort queue based on manhatten + depth curr_nodes = sorted(curr_nodes,key=depth_and_manhatten) #print "already_visited_nodes = "+str(map(lambda n: n.agent_loc, already_visited_nodes)) print "Q = " +str(map(lambda n: "f(n)="+str(depth_and_manhatten(n))+",xy="+str(n.agent_loc), curr_nodes)) #print "queue (depths) = "+str(map(lambda n: n.depth, curr_nodes)) #print "queue size = " +str(len(curr_nodes)) #print "queue distances to goal: "+str(map(depth_and_manhatten,curr_nodes)) # sort nodes based on depth (bfs for now) #time.sleep(0.1) # make sure goal was reached if not goal_reached(curr_nodes[0]): print "ERROR: search terminated without finding a path" else: print "computed path:" for action in curr_nodes[0].actions_taken: print " " + str(action) return curr_nodes[0].actions_taken def pretty_print_grid_obs(grid): ''' Displays the state used in A* nodes ''' for i in range(len(grid)): for j in range(len(grid[i])): if grid[i][j] == u'air': print 'a', elif grid[i][j] == u'diamond_block': print 'd', elif grid[i][j] == u'emerald_block': print 'E', elif grid[i][j] == u'redstone_block': print 'R', else: print '?', print "" # Create default Malmo objects: time.sleep(5) # helps recording the video agent_host = MalmoPython.AgentHost() try: agent_host.parse( sys.argv ) except RuntimeError as e: print 'ERROR:',e print agent_host.getUsage() exit(1) if agent_host.receivedArgument("help"): print agent_host.getUsage() exit(0) if agent_host.receivedArgument("test"): num_repeats = 1 else: num_repeats = 10 num_repeats = 10 for i in range(num_repeats): my_mission = MalmoPython.MissionSpec(GetMissionXML("random", float(i/10.0)), True) my_mission_record = MalmoPython.MissionRecordSpec() #agent_host.setObservationsPolicy(MalmoPython.ObservationsPolicy.LATEST_OBSERVATION_ONLY) # Attempt to start a mission: max_retries = 3 for retry in range(max_retries): try: agent_host.startMission( my_mission, my_mission_record ) break except RuntimeError as e: if retry == max_retries - 1: print "Error starting mission:",e exit(1) else: time.sleep(2) # Loop until mission starts: print "Waiting for the mission to start ", world_state = agent_host.getWorldState() while not world_state.is_mission_running: sys.stdout.write(".") time.sleep(0.1) world_state = agent_host.getWorldState() for error in world_state.errors: print "Error:",error.text print print "Mission running ", # Loop until mission ends: while world_state.is_mission_running: sys.stdout.write(".") time.sleep(0.1) world_state = agent_host.getWorldState() #print "observations are " + str(world_state.observations) if world_state.number_of_observations_since_last_state > 0: #print "Got " + str(world_state.number_of_observations_since_last_state) + " observations since last state." msg = world_state.observations[-1].text ob = json.loads(msg) #print "ob is "+str(ob) ''' I used a special observation to get 200 blocks in front of the agent, which I know will contain the maze (and extra air tiles). I think perform A* over this grid of blocks. ''' # get the data in front of the agent ONCE all_tiles = ob.get(u'front20x10',0) grid = [] for i in range(10): #print "looking at all_tiles["+str((i*20))+":"+str(((i+1)*20))+"][::1]" # for some reason it's reverse (might have to do with agent's yaw) reverse_row = (all_tiles[i*21:((i+1)*21)])[::-1] #print "len(row) = " + str(len(reverse_row)) grid.append(reverse_row) # lets see what it looks like pretty_print_grid_obs(grid) # run A* and compute plan plan = A_star_search(grid) if plan: for a in plan:
<reponame>wenfeifei/miniblink49 # Copyright (C) 2010 Google Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import unittest from webkitpy.common.host_mock import MockHost from webkitpy.common.system.outputcapture import OutputCapture from webkitpy.layout_tests.models.test_configuration import * from webkitpy.layout_tests.models.test_expectations import * try: from collections import OrderedDict except ImportError: # Needed for Python < 2.7 from webkitpy.thirdparty.ordered_dict import OrderedDict class Base(unittest.TestCase): # Note that all of these tests are written assuming the configuration # being tested is Windows XP, Release build. def __init__(self, testFunc): host = MockHost() self._port = host.port_factory.get('test-win-xp', None) self._exp = None unittest.TestCase.__init__(self, testFunc) def get_basic_tests(self): return ['failures/expected/text.html', 'failures/expected/image_checksum.html', 'failures/expected/crash.html', 'failures/expected/needsrebaseline.html', 'failures/expected/needsmanualrebaseline.html', 'failures/expected/missing_text.html', 'failures/expected/image.html', 'failures/expected/timeout.html', 'passes/text.html'] def get_basic_expectations(self): return """ Bug(test) failures/expected/text.html [ Failure ] Bug(test) failures/expected/crash.html [ WontFix ] Bug(test) failures/expected/needsrebaseline.html [ NeedsRebaseline ] Bug(test) failures/expected/needsmanualrebaseline.html [ NeedsManualRebaseline ] Bug(test) failures/expected/missing_image.html [ Rebaseline Missing ] Bug(test) failures/expected/image_checksum.html [ WontFix ] Bug(test) failures/expected/image.html [ WontFix Mac ] """ def parse_exp(self, expectations, overrides=None, is_lint_mode=False): expectations_dict = OrderedDict() expectations_dict['expectations'] = expectations if overrides: expectations_dict['overrides'] = overrides self._port.expectations_dict = lambda: expectations_dict expectations_to_lint = expectations_dict if is_lint_mode else None self._exp = TestExpectations(self._port, self.get_basic_tests(), expectations_dict=expectations_to_lint, is_lint_mode=is_lint_mode) def assert_exp_list(self, test, results): self.assertEqual(self._exp.get_expectations(test), set(results)) def assert_exp(self, test, result): self.assert_exp_list(test, [result]) def assert_bad_expectations(self, expectations, overrides=None): self.assertRaises(ParseError, self.parse_exp, expectations, is_lint_mode=True, overrides=overrides) class BasicTests(Base): def test_basic(self): self.parse_exp(self.get_basic_expectations()) self.assert_exp('failures/expected/text.html', FAIL) self.assert_exp_list('failures/expected/image_checksum.html', [WONTFIX, SKIP]) self.assert_exp('passes/text.html', PASS) self.assert_exp('failures/expected/image.html', PASS) class MiscTests(Base): def test_multiple_results(self): self.parse_exp('Bug(x) failures/expected/text.html [ Crash Failure ]') self.assertEqual(self._exp.get_expectations('failures/expected/text.html'), set([FAIL, CRASH])) def test_result_was_expected(self): # test basics self.assertEqual(TestExpectations.result_was_expected(PASS, set([PASS]), test_needs_rebaselining=False), True) self.assertEqual(TestExpectations.result_was_expected(FAIL, set([PASS]), test_needs_rebaselining=False), False) # test handling of SKIPped tests and results self.assertEqual(TestExpectations.result_was_expected(SKIP, set([CRASH]), test_needs_rebaselining=False), True) self.assertEqual(TestExpectations.result_was_expected(SKIP, set([LEAK]), test_needs_rebaselining=False), True) # test handling of MISSING results and the REBASELINE specifier self.assertEqual(TestExpectations.result_was_expected(MISSING, set([PASS]), test_needs_rebaselining=True), True) self.assertEqual(TestExpectations.result_was_expected(MISSING, set([PASS]), test_needs_rebaselining=False), False) self.assertTrue(TestExpectations.result_was_expected(PASS, set([NEEDS_REBASELINE]), test_needs_rebaselining=False)) self.assertTrue(TestExpectations.result_was_expected(MISSING, set([NEEDS_REBASELINE]), test_needs_rebaselining=False)) self.assertTrue(TestExpectations.result_was_expected(TEXT, set([NEEDS_REBASELINE]), test_needs_rebaselining=False)) self.assertTrue(TestExpectations.result_was_expected(IMAGE, set([NEEDS_REBASELINE]), test_needs_rebaselining=False)) self.assertTrue(TestExpectations.result_was_expected(IMAGE_PLUS_TEXT, set([NEEDS_REBASELINE]), test_needs_rebaselining=False)) self.assertTrue(TestExpectations.result_was_expected(AUDIO, set([NEEDS_REBASELINE]), test_needs_rebaselining=False)) self.assertFalse(TestExpectations.result_was_expected(TIMEOUT, set([NEEDS_REBASELINE]), test_needs_rebaselining=False)) self.assertFalse(TestExpectations.result_was_expected(CRASH, set([NEEDS_REBASELINE]), test_needs_rebaselining=False)) self.assertFalse(TestExpectations.result_was_expected(LEAK, set([NEEDS_REBASELINE]), test_needs_rebaselining=False)) def test_remove_pixel_failures(self): self.assertEqual(TestExpectations.remove_pixel_failures(set([FAIL])), set([FAIL])) self.assertEqual(TestExpectations.remove_pixel_failures(set([PASS])), set([PASS])) self.assertEqual(TestExpectations.remove_pixel_failures(set([IMAGE])), set([PASS])) self.assertEqual(TestExpectations.remove_pixel_failures(set([FAIL])), set([FAIL])) self.assertEqual(TestExpectations.remove_pixel_failures(set([PASS, IMAGE, CRASH])), set([PASS, CRASH])) def test_suffixes_for_expectations(self): self.assertEqual(TestExpectations.suffixes_for_expectations(set([FAIL])), set(['txt', 'png', 'wav'])) self.assertEqual(TestExpectations.suffixes_for_expectations(set([IMAGE])), set(['png'])) self.assertEqual(TestExpectations.suffixes_for_expectations(set([FAIL, IMAGE, CRASH])), set(['txt', 'png', 'wav'])) self.assertEqual(TestExpectations.suffixes_for_expectations(set()), set()) def test_category_expectations(self): # This test checks unknown tests are not present in the # expectations and that known test part of a test category is # present in the expectations. exp_str = 'Bug(x) failures/expected [ WontFix ]' self.parse_exp(exp_str) test_name = 'failures/expected/unknown-test.html' unknown_test = test_name self.assertRaises(KeyError, self._exp.get_expectations, unknown_test) self.assert_exp_list('failures/expected/crash.html', [WONTFIX, SKIP]) def test_get_expectations_string(self): self.parse_exp(self.get_basic_expectations()) self.assertEqual(self._exp.get_expectations_string('failures/expected/text.html'), 'FAIL') def test_expectation_to_string(self): # Normal cases are handled by other tests. self.parse_exp(self.get_basic_expectations()) self.assertRaises(ValueError, self._exp.expectation_to_string, -1) def test_get_test_set(self): # Handle some corner cases for this routine not covered by other tests. self.parse_exp(self.get_basic_expectations()) s = self._exp.get_test_set(WONTFIX) self.assertEqual(s, set(['failures/expected/crash.html', 'failures/expected/image_checksum.html'])) def test_needs_rebaseline_reftest(self): try: filesystem = self._port.host.filesystem filesystem.write_text_file(filesystem.join(self._port.layout_tests_dir(), 'failures/expected/needsrebaseline.html'), 'content') filesystem.write_text_file(filesystem.join(self._port.layout_tests_dir(), 'failures/expected/needsrebaseline-expected.html'), 'content') filesystem.write_text_file(filesystem.join(self._port.layout_tests_dir(), 'failures/expected/needsmanualrebaseline.html'), 'content') filesystem.write_text_file(filesystem.join(self._port.layout_tests_dir(), 'failures/expected/needsmanualrebaseline-expected.html'), 'content') self.parse_exp("""Bug(user) failures/expected/needsrebaseline.html [ NeedsRebaseline ] Bug(user) failures/expected/needsmanualrebaseline.html [ NeedsManualRebaseline ]""", is_lint_mode=True) self.assertFalse(True, "ParseError wasn't raised") except ParseError, e: warnings = """expectations:1 A reftest cannot be marked as NeedsRebaseline/NeedsManualRebaseline failures/expected/needsrebaseline.html expectations:2 A reftest cannot be marked as NeedsRebaseline/NeedsManualRebaseline failures/expected/needsmanualrebaseline.html""" self.assertEqual(str(e), warnings) def test_parse_warning(self): try: filesystem = self._port.host.filesystem filesystem.write_text_file(filesystem.join(self._port.layout_tests_dir(), 'disabled-test.html-disabled'), 'content') filesystem.write_text_file(filesystem.join(self._port.layout_tests_dir(), 'test-to-rebaseline.html'), 'content') 'disabled-test.html-disabled', self.parse_exp("Bug(user) [ FOO ] failures/expected/text.html [ Failure ]\n" "Bug(user) non-existent-test.html [ Failure ]\n" "Bug(user) disabled-test.html-disabled [ ImageOnlyFailure ]\n" "Bug(user) [ Release ] test-to-rebaseline.html [ NeedsRebaseline ]", is_lint_mode=True) self.assertFalse(True, "ParseError wasn't raised") except ParseError, e: warnings = ("expectations:1 Unrecognized specifier 'foo' failures/expected/text.html\n" "expectations:2 Path does not exist. non-existent-test.html\n" "expectations:4 A test cannot be rebaselined for Debug/Release. test-to-rebaseline.html") self.assertEqual(str(e), warnings) def test_parse_warnings_are_logged_if_not_in_lint_mode(self): oc = OutputCapture() try: oc.capture_output() self.parse_exp('-- this should be a syntax error', is_lint_mode=False) finally: _, _, logs = oc.restore_output() self.assertNotEquals(logs, '') def test_error_on_different_platform(self): # parse_exp uses a Windows port. Assert errors on Mac show up in lint mode. self.assertRaises(ParseError, self.parse_exp, 'Bug(test) [ Mac ] failures/expected/text.html [ Failure ]\nBug(test) [ Mac ] failures/expected/text.html [ Failure ]', is_lint_mode=True) def test_error_on_different_build_type(self): # parse_exp uses a Release port. Assert errors on DEBUG show up in lint mode. self.assertRaises(ParseError, self.parse_exp, 'Bug(test) [ Debug ] failures/expected/text.html [ Failure ]\nBug(test) [ Debug ] failures/expected/text.html [ Failure ]', is_lint_mode=True) def test_overrides(self): self.parse_exp("Bug(exp) failures/expected/text.html [ Failure ]", "Bug(override) failures/expected/text.html [ ImageOnlyFailure ]") self.assert_exp_list('failures/expected/text.html', [FAIL, IMAGE]) def test_overrides__directory(self): self.parse_exp("Bug(exp) failures/expected/text.html [ Failure ]", "Bug(override) failures/expected [ Crash ]") self.assert_exp_list('failures/expected/text.html', [FAIL, CRASH]) self.assert_exp_list('failures/expected/image.html', [CRASH]) def test_overrides__duplicate(self): self.assert_bad_expectations("Bug(exp) failures/expected/text.html [ Failure ]", "Bug(override) failures/expected/text.html [ ImageOnlyFailure ]\n" "Bug(override) failures/expected/text.html [ Crash ]\n") def test_pixel_tests_flag(self): def match(test, result, pixel_tests_enabled): return self._exp.matches_an_expected_result( test, result, pixel_tests_enabled, sanitizer_is_enabled=False) self.parse_exp(self.get_basic_expectations()) self.assertTrue(match('failures/expected/text.html', FAIL, True)) self.assertTrue(match('failures/expected/text.html', FAIL, False)) self.assertFalse(match('failures/expected/text.html', CRASH, True)) self.assertFalse(match('failures/expected/text.html', CRASH, False)) self.assertTrue(match('failures/expected/image_checksum.html', PASS, True)) self.assertTrue(match('failures/expected/image_checksum.html', PASS, False)) self.assertTrue(match('failures/expected/crash.html', PASS, False)) self.assertTrue(match('failures/expected/needsrebaseline.html', TEXT, True)) self.assertFalse(match('failures/expected/needsrebaseline.html', CRASH, True)) self.assertTrue(match('failures/expected/needsmanualrebaseline.html', TEXT, True)) self.assertFalse(match('failures/expected/needsmanualrebaseline.html', CRASH, True)) self.assertTrue(match('passes/text.html', PASS, False)) def test_sanitizer_flag(self): def match(test, result): return self._exp.matches_an_expected_result( test, result, pixel_tests_are_enabled=False, sanitizer_is_enabled=True) self.parse_exp(""" Bug(test) failures/expected/crash.html [ Crash ] Bug(test) failures/expected/image.html [ ImageOnlyFailure ] Bug(test) failures/expected/text.html [ Failure ] Bug(test) failures/expected/timeout.html [ Timeout ] """) self.assertTrue(match('failures/expected/crash.html', CRASH)) self.assertTrue(match('failures/expected/image.html', PASS)) self.assertTrue(match('failures/expected/text.html', PASS)) self.assertTrue(match('failures/expected/timeout.html', TIMEOUT)) def test_more_specific_override_resets_skip(self): self.parse_exp("Bug(x) failures/expected [ Skip ]\n" "Bug(x) failures/expected/text.html [ ImageOnlyFailure ]\n") self.assert_exp('failures/expected/text.html', IMAGE) self.assertFalse(self._port._filesystem.join(self._port.layout_tests_dir(), 'failures/expected/text.html') in self._exp.get_tests_with_result_type(SKIP)) def test_bot_test_expectations(self): """Test that expectations are merged rather than overridden when using flaky option 'unexpected'.""" test_name1 = 'failures/expected/text.html' test_name2 = 'passes/text.html' expectations_dict = OrderedDict() expectations_dict['expectations'] = "Bug(x) %s [ ImageOnlyFailure ]\nBug(x) %s [ Slow ]\n" % (test_name1, test_name2) self._port.expectations_dict = lambda: expectations_dict expectations = TestExpectations(self._port, self.get_basic_tests()) self.assertEqual(expectations.get_expectations(test_name1), set([IMAGE])) self.assertEqual(expectations.get_expectations(test_name2), set([SLOW])) def bot_expectations(): return {test_name1: ['PASS', 'TIMEOUT'], test_name2: ['CRASH']} self._port.bot_expectations = bot_expectations self._port._options.ignore_flaky_tests = 'unexpected' expectations = TestExpectations(self._port, self.get_basic_tests()) self.assertEqual(expectations.get_expectations(test_name1), set([PASS, IMAGE, TIMEOUT])) self.assertEqual(expectations.get_expectations(test_name2), set([CRASH, SLOW])) class SkippedTests(Base): def check(self, expectations, overrides, skips, lint=False, expected_results=[WONTFIX, SKIP, FAIL]): port = MockHost().port_factory.get('test-win-xp') port._filesystem.write_text_file(port._filesystem.join(port.layout_tests_dir(), 'failures/expected/text.html'), 'foo') expectations_dict = OrderedDict() expectations_dict['expectations'] = expectations if overrides: expectations_dict['overrides'] = overrides port.expectations_dict = lambda: expectations_dict port.skipped_layout_tests = lambda tests: set(skips) expectations_to_lint = expectations_dict if lint else None exp = TestExpectations(port, ['failures/expected/text.html'], expectations_dict=expectations_to_lint, is_lint_mode=lint) self.assertEqual(exp.get_expectations('failures/expected/text.html'), set(expected_results)) def test_skipped_tests_work(self): self.check(expectations='', overrides=None, skips=['failures/expected/text.html'], expected_results=[WONTFIX, SKIP]) def test_duplicate_skipped_test_fails_lint(self): self.assertRaises(ParseError, self.check, expectations='Bug(x) failures/expected/text.html [ Failure ]\n', overrides=None, skips=['failures/expected/text.html'], lint=True) def test_skipped_file_overrides_expectations(self): self.check(expectations='Bug(x) failures/expected/text.html [ Failure ]\n', overrides=None, skips=['failures/expected/text.html']) def test_skipped_dir_overrides_expectations(self): self.check(expectations='Bug(x) failures/expected/text.html [ Failure ]\n', overrides=None, skips=['failures/expected']) def test_skipped_file_overrides_overrides(self): self.check(expectations='', overrides='Bug(x) failures/expected/text.html [ Failure ]\n', skips=['failures/expected/text.html']) def test_skipped_dir_overrides_overrides(self): self.check(expectations='', overrides='Bug(x) failures/expected/text.html [ Failure ]\n', skips=['failures/expected']) def test_skipped_entry_dont_exist(self): port = MockHost().port_factory.get('test-win-xp') expectations_dict = OrderedDict() expectations_dict['expectations'] = '' port.expectations_dict = lambda: expectations_dict port.skipped_layout_tests = lambda tests: set(['foo/bar/baz.html']) capture = OutputCapture() capture.capture_output() exp = TestExpectations(port) _, _, logs = capture.restore_output() self.assertEqual('The following test foo/bar/baz.html from the Skipped list doesn\'t exist\n', logs) def test_expectations_string(self): self.parse_exp(self.get_basic_expectations()) notrun = 'failures/expected/text.html' self._exp.add_extra_skipped_tests([notrun]) self.assertEqual('NOTRUN', self._exp.get_expectations_string(notrun)) class ExpectationSyntaxTests(Base): def test_unrecognized_expectation(self): self.assert_bad_expectations('Bug(test) failures/expected/text.html [ Unknown ]') def test_macro(self): exp_str = 'Bug(test) [ Win ] failures/expected/text.html [ Failure ]' self.parse_exp(exp_str) self.assert_exp('failures/expected/text.html', FAIL) def assert_tokenize_exp(self, line, bugs=None, specifiers=None, expectations=None, warnings=None, comment=None, name='foo.html'): bugs = bugs or [] specifiers = specifiers or [] expectations = expectations or [] warnings = warnings or [] filename = 'TestExpectations' line_number = '1' expectation_line = TestExpectationParser._tokenize_line(filename, line, line_number) self.assertEqual(expectation_line.warnings, warnings) self.assertEqual(expectation_line.name,
<filename>src/lotusCalender.py import json from PyQt5 import QtCore, QtWidgets from PyQt5.QtCore import Qt, QTime, QDate, pyqtSignal, QRect, QRectF, QObject, pyqtProperty, QDateTime from PyQt5.QtGui import QColor, QPen from PyQt5.QtWidgets import QPushButton, QWidget, QDialogButtonBox, QVBoxLayout, QHBoxLayout, \ QDialog, QFormLayout, QSpinBox, QDateTimeEdit, QLineEdit, QTimeEdit, QRadioButton, QMessageBox, QLabel, \ QCalendarWidget, QStackedWidget, QColorDialog, QSizePolicy, QSpacerItem, QGridLayout, QCheckBox, QMenu, QAction from src.constants import SCHEDULE_FILE_PATH from src.lotusUtils import clear_layout, clear_grid, camel_case DAYS = ["M", "T", "W", "R", "F", "Sa", "Su"] def to_qdate(date_object:dict): return QDate(date_object["year"], date_object["month"], date_object["day"]) def to_qtime(date_object:dict): return QTime(date_object["hour"], date_object["minute"]) def to_qcolor(data_object:dict): return QColor(data_object["r"], data_object["g"], data_object["b"]) class Schedule(QObject): updated = pyqtSignal() connect_buttons = pyqtSignal(list) def __init__(self): super(QObject, self).__init__() self.load_schedule() self.schedule:dict = self._schedule @property def schedule(self): return self._schedule @schedule.setter def schedule(self, schedule:dict): with open(SCHEDULE_FILE_PATH, "w+") as schedule_file: json.dump(schedule, schedule_file, indent=4, sort_keys=True) schedule_file.close() self._schedule:dict = schedule self.updated.emit() def load_schedule(self): try: schedule_file = open(SCHEDULE_FILE_PATH) self._schedule = json.load(schedule_file) schedule_file.close() except FileNotFoundError as e: with open(SCHEDULE_FILE_PATH, "w+") as schedule_file: schedule_file.write("{}") schedule_file.close() with open(SCHEDULE_FILE_PATH, "r") as schedule_file: self._schedule = json.load(schedule_file) schedule_file.close() def get_recurring_event_start_end_dates(self, event_data:dict): return to_qdate(event_data["start"]), to_qdate(event_data["end"]) def is_recurring_event_date(self, event_data:dict, date:QDate): event_type = event_data["type"] start_date, end_date = self.get_recurring_event_start_end_dates(event_data) if start_date <= date <= end_date: day_of_week = DAYS[date.dayOfWeek() - 1] if event_type == "class": for b in event_data["blocks"]: if b["day"] == day_of_week: return True elif event_type == "recurring event": if event_data["day"] == day_of_week: return True return False def get_event_stylesheet(self, event_name:str): return "background-color: rgb({},{},{})".format(self._schedule[event_name]["color"]["r"], self._schedule[event_name]["color"]["g"], self._schedule[event_name]["color"]["b"]) def get_event_button(self, event_name:str, time:QTime, include_time=True): time_string = time.toString("h:mm AP") button_title = "{}{}".format(event_name, " " + time_string if include_time else "") button = QPushButton(button_title) button.setStyleSheet(self.get_event_stylesheet(event_name)) return button def get_event_buttons(self, date:QDate, include_times=True): buttons = [] for event_name, data in self._schedule.items(): event_type = data["type"] if event_type in ["class", "recurring event"]: start_date, end_date = self.get_recurring_event_start_end_dates(data) if start_date <= date <= end_date: if event_type == "class": for b in data["blocks"]: if b["day"] == DAYS[date.dayOfWeek()-1]: # Class on this day time = to_qtime(b["time"]) button = self.get_event_button(event_name, time, include_times) buttons.append((button, event_name, date, time)) if event_type == "recurring event": if data["day"] == DAYS[date.dayOfWeek()-1]: time = to_qtime(data["time"]) button = self.get_event_button(event_name, time, include_times) buttons.append((button, event_name, date, time)) elif event_type in ["one time class event", "one time event"]: if to_qdate(data["date"]) == date: time = to_qtime(data["time"]) button = self.get_event_button(event_name, time, include_times) buttons.append((button, event_name, date, time)) self.connect_buttons.emit(buttons) return buttons def add_event(self, data:dict): event_name = data["name"] if event_name in self._schedule.keys(): return False else: data.pop("name") self._schedule[event_name] = data self.schedule = self._schedule return True def edit_event(self, data:dict): event_name = data["name"] overwritten_data = self._schedule[event_name] data.pop("name") if overwritten_data["type"] == "class": self.delete_class_events(event_name) self._schedule[event_name] = data self.schedule = self._schedule def delete_event(self, event_name:str): deleted_data = self._schedule[event_name] if deleted_data["type"] == "class": self.delete_class_events(event_name) self._schedule.pop(event_name) self.schedule = self._schedule def delete_class_events(self, class_name): to_delete = [] for name, data in self._schedule.items(): if data["type"] == "one time class event": if data["class_name"] == class_name: to_delete.append(name) for name in to_delete: self._schedule.pop(name) class UICalendarWindow(QWidget): def __init__(self, schedule:Schedule, parent=None): super(UICalendarWindow, self).__init__(parent) self.schedule = schedule self.setSizePolicy(QSizePolicy.Minimum, QSizePolicy.Minimum) self.layout = QtWidgets.QGridLayout() self.bottom_left_layout = QtWidgets.QVBoxLayout() self.schedule_table = ScheduleTable(self.schedule) self.schedule.updated.connect(self.update_table) self.layout.addWidget(self.schedule_table, 0, 0) self.add_schedule_button = QPushButton("Add New Scheduled Notes") self.add_schedule_button.clicked.connect(self.add_notes) self.layout.addWidget(self.add_schedule_button, 1, 0) self.setLayout(self.layout) self.show() def add_notes(self): popup = Popup(self.schedule) result = popup.exec_() if result: data = popup.get_data() self.schedule.add_event(data) def update_table(self): self.layout.removeWidget(self.schedule_table) new_table = ScheduleTable(self.schedule) self.schedule_table.deleteLater() self.schedule_table = new_table self.layout.addWidget(self.schedule_table, 0, 0) self.adjustSize() class ScheduleTable(QWidget): def __init__(self, schedule:Schedule): super(ScheduleTable, self).__init__() self.schedule = schedule self.setSizePolicy(QSizePolicy.Minimum, QSizePolicy.Minimum) self.class_grid_layout = QtWidgets.QGridLayout() self.class_grid_layout.setVerticalSpacing(5) self.class_grid_layout.setHorizontalSpacing(10) self.class_grid_layout.setContentsMargins(0, 0, 0, 2 * self.class_grid_layout.verticalSpacing()) self.event_grid_layout = QtWidgets.QGridLayout() self.event_grid_layout.setVerticalSpacing(5) self.event_grid_layout.setHorizontalSpacing(10) self.event_grid_layout.setContentsMargins(0, 0, 0, self.event_grid_layout.verticalSpacing()) self.add_layout_headers() self.layout = QtWidgets.QVBoxLayout() self.layout.setContentsMargins(0, 0, 0, 0) classes_label = QLabel("Scheduled Classes", self) self.layout.addWidget(classes_label, alignment=Qt.AlignCenter) self.layout.addItem(self.class_grid_layout) events_label = QLabel("Scheduled Events", self) self.layout.addWidget(events_label, alignment=Qt.AlignCenter) self.layout.addItem(self.event_grid_layout) self.setLayout(self.layout) self.initialize_layout() def edit_event(self, event_name:str, data:dict): popup = Popup(self.schedule, edit_data=(event_name, data)) popup.exec_() def get_edit_button(self, event_name:str, data:dict): if data is None: return None button = QPushButton(event_name, self) button.setStyleSheet(self.schedule.get_event_stylesheet(event_name)) button.clicked.connect(lambda state, x=event_name, y=data: self.edit_event(x, y)) return button def add_layout_headers(self): class_layout_headers = ["Class Name", "Block(s)", "Event(s)"] for i in range(0, len(class_layout_headers)): header_label = QLabel(class_layout_headers[i]) header_label.setAlignment(Qt.AlignLeft) self.class_grid_layout.addWidget(header_label, 0, i) event_layout_headers = ["Event Name", "Time(s)", "Type"] for i in range(0, len(event_layout_headers)): header_label = QLabel(event_layout_headers[i]) header_label.setAlignment(Qt.AlignLeft) self.event_grid_layout.addWidget(header_label, 0, i) def get_events_by_type(self): classes = [] events = [] for (event_name, data) in self.schedule.schedule.items(): event_type = data["type"] if event_type == "class": classes.append((event_name, data)) elif event_type in ["recurring event", "one time event", "one time class event"]: events.append((event_name, data)) # Sort lists by name classes.sort(key = lambda x: x[0]) events.sort(key = lambda x: x[0]) return classes, events def get_class_string(self, data:dict): days = {} blocks:list = data["blocks"] for b in blocks: if b["day"] in days.keys(): days[b["day"]].append(b) else: days[b["day"]] = [b] class_string = "" for j, day in enumerate(sorted(days.keys(), key=DAYS.index)): day_string = day + ": " for k, b in enumerate(days[day]): day_string += QTime(b["time"]["hour"], b["time"]["minute"]).toString("hh:mmAP") + ( ", " if k != len(days[day]) - 1 else "") class_string += day_string + (" " if j != len(days.keys()) - 1 else "") return class_string def add_class_row(self, i, class_name, data): button = self.get_edit_button(class_name, data) self.class_grid_layout.addWidget(button, i + 1, 0) self.class_grid_layout.addWidget(QLabel(self.get_class_string(data), self), i + 1, 1) class_event_button_layout = QVBoxLayout() class_event_button_layout.setSpacing(5) self.class_grid_layout.addLayout(class_event_button_layout, i + 1, 2) def get_event_label(self, event_type, data): if event_type == "recurring event": return data["day"] + ": " + to_qtime(data["time"]).toString("hh:mmAP") else: return to_qdate(data["date"]).toString("MMM dd yyyy ") + to_qtime(data["time"]).toString("hh:mmAP") def add_event_row(self, i, event_name, data): event_type: str = data["type"] if event_type in ["one time event", "recurring event"]: self.event_grid_layout.addWidget(self.get_edit_button(event_name, data), i + 1, 0) self.event_grid_layout.addWidget(QLabel(camel_case(event_type), self), i + 1, 2) self.event_grid_layout.addWidget(QLabel(self.get_event_label(event_type, data), self), i + 1, 1) if event_type == "one time class event": for row in range(self.class_grid_layout.rowCount()): # noinspection PyTypeChecker edit_button: QPushButton = self.class_grid_layout.itemAtPosition(row, 0).widget() if edit_button.text() == data["class_name"]: # noinspection PyTypeChecker layout: QVBoxLayout = self.class_grid_layout.itemAtPosition(row, 2) if layout is None: continue else: layout.addWidget(self.get_edit_button(event_name, data)) def initialize_layout(self): classes, events = self.get_events_by_type() # Add Classes to Table for i, (class_name, data) in enumerate(classes): self.add_class_row(i, class_name, data) # Add Events to Table for i, (event_name, data) in enumerate(events): self.add_event_row(i, event_name, data) class DayViewer(QWidget): back = pyqtSignal() def __init__(self, date : QDate, schedule:Schedule, parent=None): super(QWidget, self).__init__() layout = QGridLayout() layout.setAlignment(Qt.AlignTop) layout.setSpacing(10) layout.setContentsMargins(0, 0, 0, 0) back_button = QPushButton("Back") back_button.clicked.connect(self.back.emit) layout.addWidget(back_button, 0, 0) layout.addWidget(QLabel(date.toString("Classes for MMMM d, yyyy")), 0, 1) for i, (button, _, _, _) in enumerate(schedule.get_event_buttons(date)): layout.addWidget(button, i+1, 0, 1, 3) self.setLayout(layout) class ScheduleCalendar(QCalendarWidget): def __init__(self, schedule:Schedule, stack:QStackedWidget, parent=None): super(ScheduleCalendar, self).__init__() self.schedule = schedule self.activated.connect(self.open_day_viewer) self.stack = stack self.setGridVisible(True) self.day_viewer = None def paintCell(self, painter, rect, date): blocks = [] for event_name, data in self.schedule.schedule.items(): event_type = data["type"] if event_type in ["class", "recurring event"]: if self.schedule.is_recurring_event_date(data, date): event_blocks = [] if event_type == "class": event_blocks = data["blocks"] else: event_blocks.append({ "day": data["day"], "time": data["time"] }) for b in event_blocks: if b["day"] == DAYS[date.dayOfWeek() - 1]: blocks.append({ "type": "class", "color": data["color"], "time": b["time"] }) else: event_date = to_qdate(data["date"]) if date == event_date: blocks.append({ "type": "event", "color": data["color"], "time": data["time"] }) blocks.sort(key = lambda x: x["time"]["hour"]) for block in blocks: color = block["color"] qcolor = to_qcolor(color) painter.setBrush(qcolor) len_float = float(len(blocks)) atop = rect.top() + ((blocks.index(block) / len_float) * (rect.height())) height = rect.height() / len_float block_rect = QRectF(rect.left()+1, atop+1, rect.width()-3, height-3) painter.setPen(Qt.NoPen if qcolor != Qt.white else Qt.lightGray) painter.drawRect(block_rect) painter.setPen(QPen()) # noinspection PyCallingNonCallable painter.drawText(QRect(rect), Qt.TextSingleLine|Qt.AlignCenter, str(date.day())) def open_day_viewer(self, date:QDate): date_contains_event = False for event_name, data in self.schedule.schedule.items(): event_type = data["type"] if event_type in ["class", "recurring event"]: if self.schedule.is_recurring_event_date(data, date): date_contains_event = True break else: event_date = to_qdate(data["date"]) if date == event_date: date_contains_event = True break if date_contains_event: self.day_viewer = DayViewer(date, self.schedule, parent=self) self.day_viewer.back.connect(lambda: self.stack.removeWidget(self.day_viewer)) self.stack.addWidget(self.day_viewer) self.stack.setCurrentWidget(self.day_viewer) class DayPicker(QWidget): def __init__(self): super(DayPicker, self).__init__() self.layout = QHBoxLayout() self.layout.setContentsMargins(0, 0, 0, 0) self.setLayout(self.layout) weekends = True days = DAYS[0:len(DAYS) if weekends else 5] self.buttons = [] for day in days: if day is not None: radio = QRadioButton() radio.sizePolicy().setRetainSizeWhenHidden(False) radio.setText(day) self.buttons.append(radio) self.layout.addWidget(radio) def get_day(self): for button in self.buttons: if button.isChecked(): return button.text() class ClassTimePicker(QWidget): def __init__(self, parent=None): super(ClassTimePicker, self).__init__(parent=parent) self.time_selector = QTimeEdit() self.time_selector.sizePolicy().setRetainSizeWhenHidden(False) self.time_selector.setDisplayFormat("hh:mm AP") self.time_selector.setTime(QTime(12, 0, 0)) self.day_picker = DayPicker() self.day_picker.sizePolicy().setRetainSizeWhenHidden(False) self.layout = QHBoxLayout() self.layout.setContentsMargins(0, 0, 0, 0) self.layout.addWidget(self.time_selector) self.layout.addWidget(self.day_picker) self.setLayout(self.layout) def get_time(self): return self.time_selector.time() def set_time(self, time:QTime): self.time_selector.setTime(time) def set_day(self, day): for b in self.day_picker.buttons: if b.text() == day: b.click() def is_valid(self): return self.day_picker.get_day() is not None class DateTimePickerSeriesModel(QObject): def __init__(self, parent=None): super(DateTimePickerSeriesModel, self).__init__(parent) self._content = QDateTime.currentDateTime()
dict of additional parameters for the radial basis function used for q-out (q-space of output feature map). See q_radial_basis_params but only for q-out. Defaults to q_radial_basis_params. :param q_in_radial_basis_params: A dict of additional parameters for the radial basis function used for q-in (q-space of input feature map). See q_radial_basis_params but only for q-in. Defaults to q_radial_basis_params. :param sub_kernel_selection_rule: Rule defining for the TP filter which pairs of l_p and l_q to use for each l_filter. Defaults to "TP\pm 1". Options are: - dict with string keys: defines some constraints which combinations to use. The following constraint always holds: \|l_p - l_q\| <= l_filter <= l_p + l_q Additionally constraints can be defined by the following keys in the dict: - "l_diff_to_out_max": Maximum difference between l_p and l_filter as well as l_q and l_filter. Default to 1 (as in "TP\pm 1") - "l_max" (optional): Maximum value for l_p and l_q. - "l_in_diff_max" (optional): Maximum difference between l_p and l_q. - dict with ints as keys and list of int-pairs as values that defines for each l_filter the used pairs of l_p and l_q. E.g. {0: [(0, 0), (1, 1)], 1: [(0, 1), (1, 0), (1, 1)]} Note that this parameter is ignored if no TP-filter basis is used. For additional parameters see EquivariantPQLayer. """ type_in = SphericalTensorType.from_multiplicities_or_type(type_in) type_out = SphericalTensorType.from_multiplicities_or_type(type_out) if batch_norm_config is None: batch_norm_config = {} if non_linearity_config is None: non_linearity_config = {} if use_non_linearity: type_non_lin_in, non_linearity = build_non_linearity(type_out, **non_linearity_config) conv = EquivariantPQLayer(type_in, type_non_lin_in, kernel_definition=kernel, p_kernel_size=p_kernel_size, q_sampling_schema_in=q_sampling_schema_in, q_sampling_schema_out=q_sampling_schema_out, transposed=transposed, auto_recompute_kernel=auto_recompute, **kernel_kwargs) if use_batch_norm: batch_norm = BatchNorm(type_non_lin_in.Rs, **batch_norm_config) return nn.Sequential( OrderedDict([('conv', conv), ('batch_norm', batch_norm), ('non_linearity', non_linearity)])) else: return nn.Sequential(OrderedDict([('conv', conv), ('non_linearity', non_linearity)])) else: conv = EquivariantPQLayer(type_in, type_out, kernel_definition=kernel, p_kernel_size=p_kernel_size, q_sampling_schema_in=q_sampling_schema_in, q_sampling_schema_out=q_sampling_schema_out, transposed=transposed, auto_recompute_kernel=auto_recompute, **kernel_kwargs) if use_batch_norm: batch_norm = BatchNorm(type_out.Rs, **batch_norm_config) return nn.Sequential(OrderedDict([('conv', conv), ('batch_norm', batch_norm)])) else: return conv def build_p_layer(type_in: Union[SphericalTensorType, List[int]], type_out: Union[SphericalTensorType, List[int]], kernel_size: int, non_linearity_config=None, use_non_linearity=True, batch_norm_config=None, use_batch_norm=True, transposed=False, auto_recompute=True, **kernel_kwargs): """ Builds a p-layer consisting of an EquivariantPLayer followed by a nonlinearity (e.g. gated nonlinearity). :param type_in: The spherical tensor type of the input feature map. This defines how many channels of each tensor order the input feature map has. It can either be given as SphericalTensorType object or as List[int]] the element at index i of the list defines the number of order-i channels, e.g. the first element defines the number of order-0 (scalar) channels and the second the number of order-1 (vector) channels and so on. For all orders corresponding to out-of-range indices the number of channels is 0. :param type_out: The spherical tensor type of the output feature map (after non-linearity). This defines how many channels of each tensor order the output feature map has. It can either be given as SphericalTensorType object or as List[int]] the element at index i of the list defines the number of order-i channels, e.g. the first element defines the number of order-0 (scalar) channels and the second the number of order-1 (vector) channels and so on. For all orders corresponding to out-of-range indices the number of channels is 0. :param p_kernel_size: Size of the kernel in p-space. Note that the kernel always covers the whole q-space (as it is not translationally equivariant), so there is no q_kernel_size. :param non_linearity_config: Dict with the following optional keys: - tensor_non_lin: The nonlinearity to use for channels with l>0 (non-scalar channels). Default (and currently only option) is "gated". - scalar_non_lin: The nonlinearity to use for channles with l=0 (scalar channels). Valid options are "swish" and "relu". Default is "swish". :param use_non_linearity: Whether to use a nonlinearity. :param batch_norm_config: Dict with the following optional keys: - eps: avoid division by zero when we normalize by the variance - momentum: momentum of the running average - affine: do we have weight and bias parameters - reduce: method to contract over the spacial dimensions :param use_batch_norm: Whether to use a batch normalization :param transposed: Whether to perform a transposed convolution using the equivariant kernel :param auto_recompute: Whether to automatically recompute the kernel in each forward pass. By default it is recomputed each time. If this parameter is set to false, it is not recomputed and the method recompute() needs to be called explicitly after parameters of this nn.Module have been updated. :param kernel_selection_rule: Rule defining which angular filter orders (l_filter) to use for a paths form input orders l_in to output orders l_out. Defaults to using all possible filter orders, i.e. all l_filter with \|l_in - l_out\| <= l_filter <= l_in + l_out. Options are: - dict with key "lmax" and int value which additionally defines a maximum l_filter. - dict with int-pairs as keys and list of ints as values that defines for each pair of l_in and l_out the list of l_filter to use. E.g. {(0,0): [0], (1,1): [0,1], (0,1): [1]} :param p_radial_basis_type: The radial basis function type used for p-space. Valid options are "gaussian" (default), "cosine", "bessel". Note that this parameter is ignored if there is no basis filter using p-space. :param p_radial_basis_params: A (optional) dict of additional parameters for the radial basis function used for p-space. Valid keys in this dict are: - num_layers: Number of layers in the FC applied to the radial basis function. If num_layers = 0 (default) then no FC is applied to the radial basis function. - num_units: Number of units (neurons) in each of the layer in the FC applied to the radial basis function. No default, this parameter is required and must be >0 if num_layers > 0. - activation_function: activation function used in the FC applied to the radial basis function, valid are "relu" (default) or "swish" Note that this parameter is ignored if there is no basis filter using p-space. For additional parameters see EquivariantPLayer. """ return build_pq_layer(type_in, type_out, kernel_size, kernel='p_space', q_sampling_schema_in=None, q_sampling_schema_out=None, non_linearity_config=non_linearity_config, use_non_linearity=use_non_linearity, batch_norm_config=batch_norm_config, use_batch_norm=use_batch_norm, transposed=transposed, auto_recompute=auto_recompute, **kernel_kwargs) def build_q_reduction_layer(type_in: Union[SphericalTensorType, List[int]], q_sampling_schema_in: Q_SamplingSchema, reduction='length_weighted_average', auto_recompute=True, **kwargs): """ Builds a q-reduction layer to globally reduce q-space leaving only p-space. :param type_in: The spherical tensor type of the input feature map. This defines how many channels of each tensor order the input feature map has. It can either be given as SphericalTensorType object or as List[int]] the element at index i of the list defines the number of order-i channels, e.g. the first element defines the number of order-0 (scalar) channels and the second the number of order-1 (vector) channels and so on. For all orders corresponding to out-of-range indices the number of channels is 0. :param q_sampling_schema_in: The q-sampling schema of input feature map. The q-sampling schema may either be given as a Q_SamplingSchema object, a Tensor of size (Q_in, 3) or a list of length Q_in (one element for each vector) of lists of size 3 of floats. Note that Q_in is not explicitly given but derived form the length of this parameter. If this is None (default) then the input does not have q-space but only p-space. :param reduction: The type of reduction to use. Valid options are: - length_weighted_average: To use QLengthWeightedAvgPool (global length-weighted avg-pooling over q-space) For additional parameters in param kwargs see QLengthWeightedAvgPool. - mean: To use global avg-pooling over q-space. - conv: To use an EquivariantPQLayer (and gated nonlinearity) without output q-space. For additional parameters in param kwargs see build_pq_layer (except the params type_out, q_sampling_schema_out). :param auto_recompute: Whether to automatically recompute the kernels in each forward pass. :return (reduction_layer, type_out): - reduction_layer: The created q-reduction layer (nn.Module) - type_out: The spherical tensor type of the output feature map. """ type_in = SphericalTensorType.from_multiplicities_or_type(type_in) if reduction == 'length_weighted_average': return QLengthWeightedAvgPool(type_in, q_sampling_schema_in, auto_recompute=auto_recompute, **kwargs), type_in elif reduction == 'mean': return partial(torch.mean, dim=2), type_in elif reduction == 'conv': type_out = SphericalTensorType.from_multiplicities_or_type(kwargs.pop('type_out', type_in)) return build_pq_layer(type_in, type_out, q_sampling_schema_in=q_sampling_schema_in, q_sampling_schema_out=None, **kwargs), type_out else: raise ValueError(f'q-reduction "{reduction}" not supported.') def build_non_linearity(type_out: SphericalTensorType, tensor_non_lin='gated',
""" Utilities for viewing MRI images and interactively identify electrodes Includes version of OrthoSlicer3D code originally written by: <NAME>, <NAME>, <NAME> """ from __future__ import division, print_function from time import time import itertools from pandas import DataFrame as df from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from .models import ModelSurface import numpy as np import weakref from nibabel.optpkg import optional_package from nibabel.orientations import aff2axcodes, axcodes2ornt class OrthoSlicer3D(object): """Orthogonal-plane slicer. OrthoSlicer3d expects 3-dimensional data, and by default it creates a figure with 3 axes, one for each slice orientation. Clicking and dragging the mouse in any one axis will select out the corresponding slices in the other two. Scrolling up and down moves the slice up and down in the current axis. Example ------- >>> import numpy as np >>> a = np.sin(np.linspace(0,np.pi,20)) >>> b = np.sin(np.linspace(0,np.pi*5,20)) >>> data = np.outer(a,b)[..., np.newaxis]*a >>> OrthoSlicer3D(data).show() # doctest: +SKIP """ # Skip doctest above b/c not all systems have mpl installed def __init__(self, data, affine=None, axes=None, cmap='gray', pcnt_range=(1., 99.), figsize=(8, 8), title=None): """ Parameters ---------- data : ndarray The data that will be displayed by the slicer. Should have 3+ dimensions. affine : array-like | None Affine transform for the data. This is used to determine how the data should be sliced for plotting into the saggital, coronal, and axial view axes. If None, identity is assumed. The aspect ratio of the data are inferred from the affine transform. axes : tuple of mpl.Axes | None, optional 3 or 4 axes instances for the 3 slices plus volumes, or None (default). cmap : str | instance of cmap, optional String or cmap instance specifying colormap. pcnt_range : array-like, optional Percentile range over which to scale image for display. figsize : tuple Figure size (in inches) to use if axes are None. """ # Nest imports so that matplotlib.use() has the appropriate # effect in testing plt, _, _ = optional_package('matplotlib.pyplot') mpl_img, _, _ = optional_package('matplotlib.image') mpl_patch, _, _ = optional_package('matplotlib.patches') self._title = title self._closed = False data = np.asanyarray(data) if data.ndim < 3: raise ValueError('data must have at least 3 dimensions') affine = np.array(affine, float) if affine is not None else np.eye(4) if affine.ndim != 2 or affine.shape != (4, 4): raise ValueError('affine must be a 4x4 matrix') # determine our orientation self._affine = affine.copy() codes = axcodes2ornt(aff2axcodes(self._affine)) self._order = np.argsort([c[0] for c in codes]) self._flips = np.array([c[1] < 0 for c in codes])[self._order] self._flips = list(self._flips) + [False] # add volume dim self._scalers = np.abs(self._affine).max(axis=0)[:3] self._inv_affine = np.linalg.inv(affine) # current volume info self._volume_dims = data.shape[3:] self._current_vol_data = data[:, :, :, 0] if data.ndim > 3 else data self._data = data vmin, vmax = np.percentile(data, pcnt_range) del data if axes is None: # make the axes # ^ +---------+ ^ +---------+ # | | | | | | # | Sag | | Cor | # S | 0 | S | 1 | # | | | | # | | | | # +---------+ +---------+ # A --> <-- R # ^ +---------+ +---------+ # | | | | | # | Axial | | Vol | # A | 2 | | 3 | # | | | | # | | | | # +---------+ +---------+ # <-- R <-- t --> fig, axes = plt.subplots(2, 2) fig.set_size_inches(figsize, forward=True) self._axes = [axes[0, 0], axes[0, 1], axes[1, 0], axes[1, 1]] plt.tight_layout(pad=0.1) if self.n_volumes <= 1: fig.delaxes(self._axes[3]) self._axes.pop(-1) if self._title is not None: fig.canvas.set_window_title(str(title)) else: self._axes = [axes[0], axes[1], axes[2]] if len(axes) > 3: self._axes.append(axes[3]) # Start midway through each axis, idx is current slice number self._ims, self._data_idx = list(), list() # set up axis crosshairs self._crosshairs = [None] * 3 r = [self._scalers[self._order[2]] / self._scalers[self._order[1]], self._scalers[self._order[2]] / self._scalers[self._order[0]], self._scalers[self._order[1]] / self._scalers[self._order[0]]] self._sizes = [self._data.shape[o] for o in self._order] for ii, xax, yax, ratio, label in zip([0, 1, 2], [1, 0, 0], [2, 2, 1], r, ('SAIP', 'SLIR', 'ALPR')): ax = self._axes[ii] d = np.zeros((self._sizes[yax], self._sizes[xax])) im = self._axes[ii].imshow(d, vmin=vmin, vmax=vmax, aspect=1, cmap=cmap, interpolation='nearest', origin='lower') self._ims.append(im) vert = ax.plot([0] * 2, [-0.5, self._sizes[yax] - 0.5], color=(0, 1, 0), linestyle='-')[0] horiz = ax.plot([-0.5, self._sizes[xax] - 0.5], [0] * 2, color=(0, 1, 0), linestyle='-')[0] self._crosshairs[ii] = dict(vert=vert, horiz=horiz) # add text labels (top, right, bottom, left) lims = [0, self._sizes[xax], 0, self._sizes[yax]] bump = 0.01 poss = [[lims[1] / 2., lims[3]], [(1 + bump) * lims[1], lims[3] / 2.], [lims[1] / 2., 0], [lims[0] - bump * lims[1], lims[3] / 2.]] anchors = [['center', 'bottom'], ['left', 'center'], ['center', 'top'], ['right', 'center']] for pos, anchor, lab in zip(poss, anchors, label): ax.text(pos[0], pos[1], lab, horizontalalignment=anchor[0], verticalalignment=anchor[1]) ax.axis(lims) ax.set_aspect(ratio) ax.patch.set_visible(False) ax.set_frame_on(False) ax.axes.get_yaxis().set_visible(False) ax.axes.get_xaxis().set_visible(False) self._data_idx.append(0) self._data_idx.append(-1) # volume # Set up volumes axis if self.n_volumes > 1 and len(self._axes) > 3: ax = self._axes[3] ax.set_axis_bgcolor('k') ax.set_title('Volumes') y = np.zeros(self.n_volumes + 1) x = np.arange(self.n_volumes + 1) - 0.5 step = ax.step(x, y, where='post', color='y')[0] ax.set_xticks(np.unique(np.linspace(0, self.n_volumes - 1, 5).astype(int))) ax.set_xlim(x[0], x[-1]) yl = [self._data.min(), self._data.max()] yl = [l + s * np.diff(lims)[0] for l, s in zip(yl, [-1.01, 1.01])] patch = mpl_patch.Rectangle([-0.5, yl[0]], 1., np.diff(yl)[0], fill=True, facecolor=(0, 1, 0), edgecolor=(0, 1, 0), alpha=0.25) ax.add_patch(patch) ax.set_ylim(yl) self._volume_ax_objs = dict(step=step, patch=patch) self._figs = set([a.figure for a in self._axes]) for fig in self._figs: fig.canvas.mpl_connect('scroll_event', self._on_scroll) fig.canvas.mpl_connect('motion_notify_event', self._on_mouse) fig.canvas.mpl_connect('button_press_event', self._on_mouse) fig.canvas.mpl_connect('key_press_event', self._on_keypress) fig.canvas.mpl_connect('close_event', self._cleanup) # actually set data meaningfully self._position = np.zeros(4) self._position[3] = 1. # convenience for affine multn self._changing = False # keep track of status to avoid loops self._links = [] # other viewers this one is linked to plt.draw() for fig in self._figs: fig.canvas.draw() self._set_volume_index(0, update_slices=False) self._set_position(0., 0., 0.) self._draw() def __repr__(self): title = '' if self._title is None else ('%s ' % self._title) vol = '' if self.n_volumes <= 1 else (', %s' % self.n_volumes) r = ('<%s: %s(%s, %s, %s%s)>' % (self.__class__.__ch_idx__, title, self._sizes[0], self._sizes[1], self._sizes[2], vol)) return r # User-level functions ################################################### def show(self): """Show the slicer in blocking mode; convenience for ``plt.show()`` """ plt, _, _ = optional_package('matplotlib.pyplot') plt.show() def close(self): """Close the viewer figures """ self._cleanup() plt, _, _ = optional_package('matplotlib.pyplot') for f in self._figs: plt.close(f) def _cleanup(self): """Clean up before closing""" self._closed = True for link in list(self._links): # make a copy before iterating self._unlink(link()) @property def n_volumes(self): """Number of volumes in the data""" return int(np.prod(self._volume_dims)) @property def position(self): """The current coordinates""" return self._position[:3].copy() def link_to(self, other): """Link positional changes between two canvases Parameters ---------- other : instance of OrthoSlicer3D Other viewer to use to link movements. """ if not isinstance(other, self.__class__): raise TypeError('other must be an instance of %s, not %s' % (self.__class__.__ch_idx__, type(other))) self._link(other, is_primary=True) def _link(self, other, is_primary): """Link a viewer""" ref = weakref.ref(other) if ref in self._links: return self._links.append(ref) if is_primary: other._link(self, is_primary=False) other.set_position(*self.position) def _unlink(self, other): """Unlink a viewer""" ref = weakref.ref(other) if ref in self._links: self._links.pop(self._links.index(ref)) ref()._unlink(self) def _notify_links(self): """Notify linked canvases of a position change""" for link in self._links: link().set_position(*self.position[:3]) def set_position(self, x=None, y=None, z=None): """Set current displayed slice indices Parameters ---------- x : float | None X coordinate to use. If None, do not change. y : float | None Y coordinate to use. If None, do not change. z : float | None Z coordinate to use. If None, do not change. """ self._set_position(x, y, z) self._draw() def set_volume_idx(self, v): """Set current displayed volume index Parameters ---------- v : int Volume index. """ self._set_volume_index(v) self._draw() def _set_volume_index(self, v, update_slices=True): """Set the plot data using a volume index""" v = self._data_idx[3] if v is None else int(round(v)) if v == self._data_idx[3]: return max_ = np.prod(self._volume_dims) self._data_idx[3] = max(min(int(round(v)), max_ - 1), 0) idx = (slice(None), slice(None), slice(None)) if self._data.ndim > 3: idx = idx + tuple(np.unravel_index(self._data_idx[3], self._volume_dims)) self._current_vol_data = self._data[idx] # update all of our slice plots if update_slices: self._set_position(None, None, None, notify=False) def _set_position(self, x, y, z, notify=True): """Set the plot data using a physical position"""
#------------------------------------------------------------------------------ # Copyright (C) 1996-2010 Power System Engineering Research Center (PSERC) # Copyright (C) 2007-2010 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #------------------------------------------------------------------------------ """ Defines a generalised OPF solver and an OPF model. Based on opf.m from MATPOWER by <NAME>, developed at PSERC Cornell. See U{http://www.pserc.cornell.edu/matpower/} for more info. """ #------------------------------------------------------------------------------ # Imports: #------------------------------------------------------------------------------ import logging import random from time import time from numpy import \ array, pi, diff, Inf, ones, r_, float64, zeros, arctan2, sin, cos from scipy.sparse import lil_matrix, csr_matrix, hstack from util import _Named, fair_max from case import REFERENCE from generator import PW_LINEAR from solver import DCOPFSolver, PIPSSolver #------------------------------------------------------------------------------ # Logging: #------------------------------------------------------------------------------ logger = logging.getLogger(__name__) #------------------------------------------------------------------------------ # "OPF" class: #------------------------------------------------------------------------------ class OPF(object): """ Defines a generalised OPF solver. Based on opf.m from MATPOWER by <NAME>, developed at PSERC Cornell. See U{http://www.pserc.cornell.edu/matpower/} for more info. """ def __init__(self, case, dc=True, ignore_ang_lim=True, opt=None): """ Initialises a new OPF instance. """ #: Case under optimisation. self.case = case #: Use DC power flow formulation. self.dc = dc #: Ignore angle difference limits for branches even if specified. self.ignore_ang_lim = ignore_ang_lim #: Solver options (See pips.py for futher details). self.opt = {} if opt is None else opt #-------------------------------------------------------------------------- # Public interface: #-------------------------------------------------------------------------- def solve(self, solver_klass=None): """ Solves an optimal power flow and returns a results dictionary. """ # Start the clock. t0 = time() # Build an OPF model with variables and constraints. om = self._construct_opf_model(self.case) if om is None: return {"converged": False, "output": {"message": "No Ref Bus."}} # Call the specific solver. # if self.opt["verbose"]: # print '\nPYLON Version %s, %s', "0.4.2", "April 2010" if solver_klass is not None: result = solver_klass(om, opt=self.opt).solve() elif self.dc: # if self.opt["verbose"]: # print ' -- DC Optimal Power Flow\n' result = DCOPFSolver(om, opt=self.opt).solve() else: # if self.opt["verbose"]: # print ' -- AC Optimal Power Flow\n' result = PIPSSolver(om, opt=self.opt).solve() result["elapsed"] = time() - t0 if self.opt.has_key("verbose"): if self.opt["verbose"]: logger.info("OPF completed in %.3fs." % result["elapsed"]) return result #-------------------------------------------------------------------------- # Private interface: #-------------------------------------------------------------------------- def _construct_opf_model(self, case): """ Returns an OPF model. """ # Zero the case result attributes. self.case.reset() base_mva = case.base_mva # Check for one reference bus. oneref, refs = self._ref_check(case) if not oneref: #return {"status": "error"} None # Remove isolated components. bs, ln, gn = self._remove_isolated(case) # Update bus indexes. self.case.index_buses(bs) # Convert single-block piecewise-linear costs into linear polynomial. gn = self._pwl1_to_poly(gn) # Set-up initial problem variables. Va = self._get_voltage_angle_var(refs, bs) Pg = self._get_pgen_var(gn, base_mva) if self.dc: # DC model. # Get the susceptance matrices and phase shift injection vectors. B, Bf, Pbusinj, Pfinj = self.case.makeBdc(bs, ln) # Power mismatch constraints (B*Va + Pg = Pd). Pmis = self._power_mismatch_dc(bs, gn, B, Pbusinj, base_mva) # Branch flow limit constraints. Pf, Pt = self._branch_flow_dc(ln, Bf, Pfinj, base_mva) else: # Set-up additional AC-OPF problem variables. Vm = self._get_voltage_magnitude_var(bs, gn) Qg = self._get_qgen_var(gn, base_mva) Pmis, Qmis, Sf, St = self._nln_constraints(len(bs), len(ln)) vl = self._const_pf_constraints(gn, base_mva) # TODO: Generator PQ capability curve constraints. # PQh, PQl = self._pq_capability_curve_constraints(gn) # Branch voltage angle difference limits. ang = self._voltage_angle_diff_limit(bs, ln) if self.dc: vars = [Va, Pg] constraints = [Pmis, Pf, Pt, ang] else: vars = [Va, Vm, Pg, Qg] constraints = [Pmis, Qmis, Sf, St, #PQh, PQL, vl, ang] # Piece-wise linear generator cost constraints. y, ycon = self._pwl_gen_costs(gn, base_mva) if ycon is not None: vars.append(y) constraints.append(ycon) # Add variables and constraints to the OPF model object. opf = OPFModel(case) opf.add_vars(vars) opf.add_constraints(constraints) if self.dc: # user data opf._Bf = Bf opf._Pfinj = Pfinj return opf def _ref_check(self, case): """ Checks that there is only one reference bus. """ refs = [bus._i for bus in case.buses if bus.type == REFERENCE] if len(refs) == 1: return True, refs else: logger.error("OPF requires a single reference bus.") return False, refs def _remove_isolated(self, case): """ Returns non-isolated case components. """ # case.deactivate_isolated() buses = case.connected_buses branches = case.online_branches gens = case.online_generators return buses, branches, gens def _pwl1_to_poly(self, generators): """ Converts single-block piecewise-linear costs into linear polynomial. """ for g in generators: if (g.pcost_model == PW_LINEAR) and (len(g.p_cost) == 2): g.pwl_to_poly() return generators #-------------------------------------------------------------------------- # Optimisation variables: #-------------------------------------------------------------------------- def _get_voltage_angle_var(self, refs, buses): """ Returns the voltage angle variable set. """ Va = array([b.v_angle * (pi / 180.0) for b in buses]) Vau = Inf * ones(len(buses)) Val = -Vau Vau[refs] = Va[refs] Val[refs] = Va[refs] return Variable("Va", len(buses), Va, Val, Vau) def _get_voltage_magnitude_var(self, buses, generators): """ Returns the voltage magnitude variable set. """ Vm = array([b.v_magnitude for b in buses]) # For buses with generators initialise Vm from gen data. for g in generators: Vm[g.bus._i] = g.v_magnitude Vmin = array([b.v_min for b in buses]) Vmax = array([b.v_max for b in buses]) return Variable("Vm", len(buses), Vm, Vmin, Vmax) def _get_pgen_var(self, generators, base_mva): """ Returns the generator active power set-point variable. """ Pg = array([g.p / base_mva for g in generators]) Pmin = array([g.p_min / base_mva for g in generators]) Pmax = array([g.p_max / base_mva for g in generators]) return Variable("Pg", len(generators), Pg, Pmin, Pmax) def _get_qgen_var(self, generators, base_mva): """ Returns the generator reactive power variable set. """ Qg = array([g.q / base_mva for g in generators]) Qmin = array([g.q_min / base_mva for g in generators]) Qmax = array([g.q_max / base_mva for g in generators]) return Variable("Qg", len(generators), Qg, Qmin, Qmax) #-------------------------------------------------------------------------- # Constraints: #-------------------------------------------------------------------------- def _nln_constraints(self, nb, nl): """ Returns non-linear constraints for OPF. """ Pmis = NonLinearConstraint("Pmis", nb) Qmis = NonLinearConstraint("Qmis", nb) Sf = NonLinearConstraint("Sf", nl) St = NonLinearConstraint("St", nl) return Pmis, Qmis, Sf, St def _power_mismatch_dc(self, buses, generators, B, Pbusinj, base_mva): """ Returns the power mismatch constraint (B*Va + Pg = Pd). """ nb, ng = len(buses), len(generators) # Negative bus-generator incidence matrix. gen_bus = array([g.bus._i for g in generators]) neg_Cg = csr_matrix((-ones(ng), (gen_bus, range(ng))), (nb, ng)) Amis = hstack([B, neg_Cg], format="csr") Pd = array([bus.p_demand for bus in buses]) Gs = array([bus.g_shunt for bus in buses]) bmis = -(Pd - Gs) / base_mva - Pbusinj return LinearConstraint("Pmis", Amis, bmis, bmis, ["Va", "Pg"]) def _branch_flow_dc(self, branches, Bf, Pfinj, base_mva): """ Returns the branch flow limit constraint. The real power flows at the from end the lines are related to the bus voltage angles by Pf = Bf * Va + Pfinj. """ # Indexes of constrained lines. il = array([i for i,l in enumerate(branches) if 0.0 < l.rate_a < 1e10]) lpf = -Inf * ones(len(il)) rate_a = array([l.rate_a / base_mva for l in branches]) upf = rate_a[il] - Pfinj[il] upt = rate_a[il] + Pfinj[il] Pf = LinearConstraint("Pf", Bf[il, :], lpf, upf, ["Va"]) Pt = LinearConstraint("Pt", -Bf[il, :], lpf, upt, ["Va"]) return Pf, Pt def _const_pf_constraints(self, gn, base_mva): """ Returns a linear constraint enforcing constant power factor for dispatchable loads. The power factor is derived from the original value of Pmin and either Qmin (for inductive loads) or Qmax (for capacitive loads). If both Qmin and Qmax are zero, this implies a unity power factor without the need for an additional constraint. """ ivl = array([i for i, g in enumerate(gn) if g.is_load and (g.q_min != 0.0 or g.q_max != 0.0)]) vl = [gn[i] for i in ivl] nvl = len(vl) ng = len(gn) Pg = array([g.p for g in vl]) / base_mva Qg = array([g.q for g in vl]) / base_mva Pmin = array([g.p_min for g in vl]) / base_mva Qmin = array([g.q_min for g in vl]) / base_mva Qmax = array([g.q_max for g in vl]) / base_mva # At least one of the Q limits must be zero (corresponding to Pmax==0). for g in vl: if g.qmin != 0.0 and g.q_max != 0.0: logger.error("Either Qmin or Qmax
<reponame>Grey-Peters/IanPeters<gh_stars>0 #------------------------------------------------------------------------- # Copyright (c) Microsoft. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #-------------------------------------------------------------------------- from azure.common import ( AzureConflictHttpError, AzureHttpError, ) from ..constants import ( DEFAULT_HTTP_TIMEOUT, DEV_QUEUE_HOST, QUEUE_SERVICE_HOST_BASE, X_MS_VERSION, ) from .._common_error import ( _dont_fail_not_exist, _dont_fail_on_exist, _validate_not_none, _ERROR_CONFLICT, _ERROR_STORAGE_MISSING_INFO, ) from .._common_serialization import ( xml_escape, _convert_class_to_xml, _get_request_body, _parse_response_for_dict_filter, _parse_response_for_dict_prefix, _update_request_uri_query_local_storage, _ETreeXmlToObject, ) from .._common_conversion import ( _int_or_none, _str, _str_or_none, ) from .._http import ( HTTPRequest, ) from ..models import ( SignedIdentifiers, StorageServiceProperties, ) from .models import ( Queue, QueueEnumResults, QueueMessagesList, ) from ..auth import ( StorageSASAuthentication, StorageSharedKeyAuthentication, ) from ..connection import ( StorageConnectionParameters, ) from .._serialization import ( _convert_signed_identifiers_to_xml, ) from ._serialization import ( _update_storage_queue_header, ) from ..sharedaccesssignature import ( SharedAccessSignature, ) from ..storageclient import _StorageClient _HTTP_RESPONSE_NO_CONTENT = 204 class QueueService(_StorageClient): ''' This is the main class managing queue resources. ''' def __init__(self, account_name=None, account_key=None, protocol='https', host_base=QUEUE_SERVICE_HOST_BASE, dev_host=DEV_QUEUE_HOST, timeout=DEFAULT_HTTP_TIMEOUT, sas_token=None, connection_string=None, request_session=None): ''' account_name: your storage account name, required for all operations. account_key: your storage account key, required for all operations. protocol: Optional. Protocol. Defaults to http. host_base: Optional. Live host base url. Defaults to Azure url. Override this for on-premise. dev_host: Optional. Dev host url. Defaults to localhost. timeout: Optional. Timeout for the http request, in seconds. sas_token: Optional. Token to use to authenticate with shared access signature. connection_string: Optional. If specified, the first four parameters (account_name, account_key, protocol, host_base) may be overridden by values specified in the connection_string. The next three parameters (dev_host, timeout, sas_token) cannot be specified with a connection_string. See http://azure.microsoft.com/en-us/documentation/articles/storage-configure-connection-string/ for the connection string format. request_session: Optional. Session object to use for http requests. ''' if connection_string is not None: connection_params = StorageConnectionParameters(connection_string) account_name = connection_params.account_name account_key = connection_params.account_key protocol = connection_params.protocol.lower() host_base = connection_params.host_base_queue super(QueueService, self).__init__( account_name, account_key, protocol, host_base, dev_host, timeout, sas_token, request_session) if self.account_key: self.authentication = StorageSharedKeyAuthentication( self.account_name, self.account_key, ) elif self.sas_token: self.authentication = StorageSASAuthentication(self.sas_token) else: raise ValueError(_ERROR_STORAGE_MISSING_INFO) def generate_shared_access_signature(self, queue_name, shared_access_policy=None, sas_version=X_MS_VERSION): ''' Generates a shared access signature for the queue. Use the returned signature with the sas_token parameter of QueueService. queue_name: Required. Name of queue. shared_access_policy: Instance of SharedAccessPolicy class. sas_version: x-ms-version for storage service, or None to get a signed query string compatible with pre 2012-02-12 clients, where the version is not included in the query string. ''' _validate_not_none('queue_name', queue_name) _validate_not_none('shared_access_policy', shared_access_policy) _validate_not_none('self.account_name', self.account_name) _validate_not_none('self.account_key', self.account_key) sas = SharedAccessSignature(self.account_name, self.account_key) return sas.generate_signed_query_string( queue_name, None, shared_access_policy, sas_version, ) def get_queue_service_properties(self, timeout=None): ''' Gets the properties of a storage account's Queue Service, including Windows Azure Storage Analytics. timeout: Optional. The timeout parameter is expressed in seconds. ''' request = HTTPRequest() request.method = 'GET' request.host = self._get_host() request.path = '/?restype=service&comp=properties' request.query = [('timeout', _int_or_none(timeout))] request.path, request.query = _update_request_uri_query_local_storage( request, self.use_local_storage) request.headers = _update_storage_queue_header( request, self.authentication) response = self._perform_request(request) return _ETreeXmlToObject.parse_response( response, StorageServiceProperties) def list_queues(self, prefix=None, marker=None, maxresults=None, include=None): ''' Lists all of the queues in a given storage account. prefix: Filters the results to return only queues with names that begin with the specified prefix. marker: A string value that identifies the portion of the list to be returned with the next list operation. The operation returns a NextMarker element within the response body if the list returned was not complete. This value may then be used as a query parameter in a subsequent call to request the next portion of the list of queues. The marker value is opaque to the client. maxresults: Specifies the maximum number of queues to return. If maxresults is not specified, the server will return up to 5,000 items. include: Optional. Include this parameter to specify that the container's metadata be returned as part of the response body. ''' request = HTTPRequest() request.method = 'GET' request.host = self._get_host() request.path = '/?comp=list' request.query = [ ('prefix', _str_or_none(prefix)), ('marker', _str_or_none(marker)), ('maxresults', _int_or_none(maxresults)), ('include', _str_or_none(include)) ] request.path, request.query = _update_request_uri_query_local_storage( request, self.use_local_storage) request.headers = _update_storage_queue_header( request, self.authentication) response = self._perform_request(request) return _ETreeXmlToObject.parse_enum_results_list( response, QueueEnumResults, "Queues", Queue) def create_queue(self, queue_name, x_ms_meta_name_values=None, fail_on_exist=False): ''' Creates a queue under the given account. queue_name: name of the queue. x_ms_meta_name_values: Optional. A dict containing name-value pairs to associate with the queue as metadata. fail_on_exist: Specify whether throw exception when queue exists. ''' _validate_not_none('queue_name', queue_name) request = HTTPRequest() request.method = 'PUT' request.host = self._get_host() request.path = '/' + _str(queue_name) + '' request.headers = [('x-ms-meta-name-values', x_ms_meta_name_values)] request.path, request.query = _update_request_uri_query_local_storage( request, self.use_local_storage) request.headers = _update_storage_queue_header( request, self.authentication) if not fail_on_exist: try: response = self._perform_request(request) if response.status == _HTTP_RESPONSE_NO_CONTENT: return False return True except AzureHttpError as ex: _dont_fail_on_exist(ex) return False else: response = self._perform_request(request) if response.status == _HTTP_RESPONSE_NO_CONTENT: raise AzureConflictHttpError( _ERROR_CONFLICT.format(response.message), response.status) return True def delete_queue(self, queue_name, fail_not_exist=False): ''' Permanently deletes the specified queue. queue_name: Name of the queue. fail_not_exist: Specify whether throw exception when queue doesn't exist. ''' _validate_not_none('queue_name', queue_name) request = HTTPRequest() request.method = 'DELETE' request.host = self._get_host() request.path = '/' + _str(queue_name) + '' request.path, request.query = _update_request_uri_query_local_storage( request, self.use_local_storage) request.headers = _update_storage_queue_header( request, self.authentication) if not fail_not_exist: try: self._perform_request(request) return True except AzureHttpError as ex: _dont_fail_not_exist(ex) return False else: self._perform_request(request) return True def get_queue_metadata(self, queue_name): ''' Retrieves user-defined metadata and queue properties on the specified queue. Metadata is associated with the queue as name-values pairs. queue_name: Name of the queue. ''' _validate_not_none('queue_name', queue_name) request = HTTPRequest() request.method = 'GET' request.host = self._get_host() request.path = '/' + _str(queue_name) + '?comp=metadata' request.path, request.query = _update_request_uri_query_local_storage( request, self.use_local_storage) request.headers = _update_storage_queue_header( request, self.authentication) response = self._perform_request(request) return _parse_response_for_dict_prefix( response, prefixes=['x-ms-meta', 'x-ms-approximate-messages-count']) def set_queue_metadata(self, queue_name, x_ms_meta_name_values=None): ''' Sets user-defined metadata on the specified queue. Metadata is associated with the queue as name-value pairs. queue_name: Name of the queue. x_ms_meta_name_values: Optional. A dict containing name-value pairs to associate with the queue as metadata. ''' _validate_not_none('queue_name', queue_name) request = HTTPRequest() request.method = 'PUT' request.host = self._get_host() request.path = '/' + _str(queue_name) + '?comp=metadata' request.headers = [('x-ms-meta-name-values', x_ms_meta_name_values)] request.path, request.query = _update_request_uri_query_local_storage( request, self.use_local_storage) request.headers = _update_storage_queue_header( request, self.authentication) self._perform_request(request) def get_queue_acl(self, queue_name): ''' Returns details about any stored access policies specified on the queue that may be used with Shared Access Signatures. queue_name: Name of existing queue. ''' _validate_not_none('queue_name', queue_name) request = HTTPRequest() request.method = 'GET' request.host = self._get_host() request.path = '/' + _str(queue_name) + '?comp=acl' request.path, request.query = _update_request_uri_query_local_storage( request, self.use_local_storage) request.headers = _update_storage_queue_header( request, self.authentication) response = self._perform_request(request) return _ETreeXmlToObject.parse_response(response, SignedIdentifiers) def set_queue_acl(self, queue_name, signed_identifiers=None): ''' Sets stored access policies for the queue that may be used with Shared Access Signatures. queue_name: Name of existing queue. signed_identifiers: SignedIdentifers instance ''' _validate_not_none('queue_name', queue_name) request = HTTPRequest() request.method = 'PUT' request.host = self._get_host() request.path = '/' + \ _str(queue_name) + '?comp=acl' request.body = _get_request_body( _convert_signed_identifiers_to_xml(signed_identifiers)) request.path, request.query = _update_request_uri_query_local_storage( request, self.use_local_storage) request.headers = _update_storage_queue_header( request, self.authentication) self._perform_request(request) def put_message(self, queue_name, message_text, visibilitytimeout=None, messagettl=None): ''' Adds a new message to the back of the message queue. A visibility timeout can also be specified to make the message invisible until the visibility timeout expires. A message must be in a format that can be included in an XML request with UTF-8 encoding. The encoded message can be up to 64KB in size for versions 2011-08-18 and newer, or 8KB in size for previous versions. queue_name: Name of the queue. message_text: Message content. visibilitytimeout: Optional. If not specified, the default value is 0. Specifies the new visibility timeout value, in seconds, relative to server time. The new value must be larger than or equal to 0, and cannot be larger than 7 days. The visibility timeout of a message cannot be set to a value later than the expiry time. visibilitytimeout should be set to a value smaller
<filename>apps/logics/equipment.py #-*- coding: utf-8 -*- import math import copy import random from apps.common import utils from apps.config import game_config from apps.models.user_equipments import UserEquipments from apps.models.user_forge import UserForge from apps.models.user_property import UserProperty from apps.models.user_material import UserMaterial from apps.models.user_cards import UserCards from apps.models.user_teams import UserTeams def puton(oc_user, params): """穿装备 """ eqdbid = params['eqdbid'] #装备id cid = params['cid'] #装备的角色 part = params['part'] #装备的部位 user_equipments_obj = UserEquipments.get_instance(oc_user.uid) equipment = user_equipments_obj.equipments.get(eqdbid) #判断装备存在不存在 if not equipment: return 1,{"msg":"this equipment is not exist"} #判断该装备是否已经被装备 if eqdbid in user_equipments_obj.get_puton_equip(): return 2,{"msg":"this equipment has puton yet"} #判断该装备类型是否能穿 equip_config = game_config.equipment_config[equipment["eid"]] equip_category = equip_config["category"] if equip_category != '0': if cid == '0': user_cards_obj = UserCards.get(oc_user.uid) category = user_cards_obj.category else: user_teams_obj = UserTeams.get(oc_user.uid) category = user_teams_obj.category(cid) if equip_category != category: return 3,{"msg":"you can't put on this category equipment"} #判断该装备的等级是否满足 elv = equipment["lv"] lv = oc_user.property_info.property_info["lv"] if elv > (lv + 10): return 4,{"msg":"lv > 10"} user_equipments_obj.put_on(eqdbid,part,cid) #称号 from apps.models.user_title import UserTitle user_title_obj = UserTitle.get_instance(oc_user.uid) user_title_obj.set_title('4') return 0, {"msg": True} def puton_all(oc_user, params): """一键穿装备 """ eqdbid = params['eqdbid'] #装备id cid = params['cid'] #装备的角色 user_equipments_obj = UserEquipments.get_instance(oc_user.uid) equipments = user_equipments_obj.equipments #判断该装备类型是否能穿 eqdbid_list = eqdbid.split(',') for eq in eqdbid_list: if eq not in equipments: continue equipment = equipments[eq] eid = equipment["eid"] equip_config = game_config.equipment_config[eid] equip_type = equip_config["type"] user_equipments_obj.put_on(eq,equip_type,cid) #称号 from apps.models.user_title import UserTitle user_title_obj = UserTitle.get_instance(oc_user.uid) user_title_obj.set_title('4') return 0,{} def takeoff(oc_user, params): """脱装备 """ eqdbid = params['eqdbid'] cid = params['cid'] part = params['part'] user_equipments_obj = UserEquipments.get_instance(oc_user.uid) user_equipments_obj.take_off(eqdbid, part, cid) return 0,{"msg": True} def getall(oc_user, params): """获取所有装备 """ user_equipments_obj = UserEquipments.get_instance(oc_user.uid) data = user_equipments_obj.equipments return 0,{"equipments": data} def singleSell(oc_user, params): """卖单个装备 """ eqdbid = params['eqdbid'] user_equipments_obj = UserEquipments.get_instance(oc_user.uid) money = user_equipments_obj.single_sell(eqdbid) return 0, {"msg": money} def batchSell(oc_user, params): """卖装备,按品质 """ quality = int(params['quality']) user_equipments_obj = UserEquipments.get_instance(oc_user.uid) money = user_equipments_obj.batch_sell(quality) return 0, {"msg": money} def strengthen(oc_user, params): """装备强化 """ eqdbid = params['eqdbid'] user_equipments_obj = UserEquipments.get_instance(oc_user.uid) equipment = user_equipments_obj.equipments.get(eqdbid, {}) if not equipment: return 1,{"msg":"this equipment is not exist"} eid = equipment["eid"] lv = equipment["lv"] quality = equipment["quality"] minilv = equipment["minilv"] equipment_config = game_config.equipment_config[eid] _type = equipment_config['type'] strengthen_config = game_config.equipment_strengthen_config #强化所需要的基础配置消耗 equip_influence = strengthen_config['equip_influence'][_type] minilv += 1 if minilv > len(equip_influence): return 2,{"msg":"this equipment can't strengthen"} equipment["minilv"] = minilv eq_minilv_growth = equip_influence[str(minilv)] class_influence = strengthen_config['class_influence'][str(quality)] growth_multiplier = class_influence['growth_multiplier'] #随着等级改变 金币的变化 coin = int( math.ceil( ( (lv - 1) * eq_minilv_growth['coin_growth'] + eq_minilv_growth['coin'] ) * growth_multiplier ) ) #现在知道了消耗的金钱和材料的数量 property_obj = UserProperty.get(oc_user.uid) if not property_obj.minus_coin(coin): return 3,{"msg":"you have not enough coin"} mid, base_num = eq_minilv_growth["item"] growth_num = eq_minilv_growth["item_growth"] #随着等级改变 材料数量的变化 final_num = ((lv - 1) * growth_num + base_num) * growth_multiplier final_num = int(math.ceil(final_num)) material_obj = UserMaterial.get(oc_user.uid) if material_obj.materials.get(mid,{}).get("num",0) < final_num: return 4,{"msg":"you have not enough material"} material_obj.minus_material(mid, final_num) if not "strenth_cast" in equipment: equipment["strenth_cast"] = ("0", 0) equipment["strenth_cast"] = (mid, equipment["strenth_cast"][1] + final_num) user_equipments_obj.put() return 0, {"msg": equipment} def roll(oc_user, params): """普通洗练 """ eqdbid = params['eqdbid'] user_equipments_obj = UserEquipments.get_instance(oc_user.uid) equipment = user_equipments_obj.equipments.get(eqdbid) if not equipment: return 1,{"msg":"this equipment is not exist"} lv = equipment["lv"] quality = equipment["quality"] if quality < 3 or lv < 10: return 2,{"msg":"this equipment can't roll"} #消耗金钱 equipment_forge_config = game_config.equipment_forge_config cost_base = equipment_forge_config["shuffle_costBase"] #洗练消耗金币初始 cost_growth = equipment_forge_config["shuffle_costGrowth"] #洗练消耗金币初始 cost_coin = int(cost_base + (lv-1)* cost_growth) user_property_obj = UserProperty.get(oc_user.uid) if user_property_obj.property_info["coin"] < cost_coin: return 3,{"msg":"you have not enough coin"} user_property_obj.minus_coin(cost_coin) #开始计算属性 vice_attr = equipment["vice_attr"] total = 0 keyary = [] for k, v in vice_attr.items(): total += v keyary.append(k) if len(vice_attr) == 2: value_ary = [] #向上取整 purple_min = int(total * 0.0833 + 1) purple_max = int(total * 0.833) limit_up = total - purple_min # 2 - 1 1x if limit_up > purple_max: limit_up = purple_max limit_down = total - purple_max if limit_down > purple_min: purple_min = limit_down result = random.randint(purple_min, limit_up) value_ary.append(result) _total = total - result value_ary.append(_total) elif len(vice_attr) == 3: value_ary = [] #向上取整 purple_min = int(total * 0.0625 + 1) purple_max = int(total * 0.625) limit_up = total - 2 * purple_min # 3 - 1 if limit_up > purple_max: limit_up = purple_max result = random.randint(purple_min, limit_up) value_ary.append(result) _total = total - result limit_up = _total - purple_min if limit_up > purple_max: limit_up = purple_max limit_down = _total - purple_max if limit_down > purple_min: purple_min = limit_down result = random.randint(purple_min, limit_up) value_ary.append(result) _total = _total - result value_ary.append(_total) else: value_ary = [] #向上取整 purple_min = int(total * 0.05 + 1) purple_max = int(total * 0.5) limit_up = total - 3 * purple_min # 4 - 1 if limit_up > purple_max: limit_up = purple_max result = random.randint(purple_min, limit_up) #第一次 value_ary.append(result) _total = total - result limit_up = _total - 2 * purple_min # 4 - 2 if limit_up > purple_max: limit_up = purple_max result = random.randint(purple_min, limit_up) #第二次 value_ary.append(result) _total = _total - result limit_up = _total - 1 * purple_min # 4 - 3 if limit_up > purple_max: limit_up = purple_max limit_down = _total - purple_max if limit_down > purple_min: purple_min = limit_down result = random.randint(purple_min, limit_up) #第三次 value_ary.append(result) _total = _total - result #第四次 value_ary.append(_total) for x in range(len(vice_attr)): key = keyary[x] vice_attr[key] = value_ary[x] user_equipments_obj.put() return 0, {"msg": equipment} def advanced_roll(oc_user, params): """高级洗练 """ ueid = params['ueid'] eqdbid = ueid user_equipments_obj = UserEquipments.get_instance(oc_user.uid) equipment = user_equipments_obj.equipments.get(eqdbid) if not equipment: return 1,{"msg":"this equipment is not exist"} lv = equipment["lv"] quality = equipment["quality"] if quality < 3 or lv < 10: return 2,{"msg":"this equipment can't roll"} #消耗金钱 equipment_forge_config = game_config.equipment_forge_config cost_base = equipment_forge_config["shuffle_costBase"] #洗练消耗金币初始 cost_growth = equipment_forge_config["shuffle_costGrowth"] #洗练消耗金币初始 cost_coin = int(cost_base + (lv-1)* cost_growth) user_property_obj = UserProperty.get(oc_user.uid) if user_property_obj.property_info["coin"] < cost_coin: return 3,{"msg":"you have not enough coin"} user_property_obj.minus_coin(cost_coin) #开始计算属性 vice_attr = equipment["vice_attr"] total = 0 keyary = [] for k, v in vice_attr.items(): total += v keyary.append(k) if len(vice_attr) == 2: value_ary = [] #向上取整 purple_min = int(total * 0.0833 + 1) purple_max = int(total * 0.833) limit_up = total - purple_min # 2 - 1 1x if limit_up > purple_max: limit_up = purple_max limit_down = total - purple_max if limit_down > purple_min: purple_min = limit_down result = random.randint(purple_min, limit_up) value_ary.append(result) _total = total - result value_ary.append(_total) elif len(vice_attr) == 3: value_ary = [] #向上取整 purple_min = int(total * 0.0625 + 1) purple_max = int(total * 0.625) limit_up = total - 2 * purple_min # 3 - 1 if limit_up > purple_max: limit_up = purple_max result = random.randint(purple_min, limit_up) value_ary.append(result) _total = total - result limit_up = _total - purple_min if limit_up > purple_max: limit_up = purple_max limit_down = _total - purple_max if limit_down > purple_min: purple_min = limit_down result = random.randint(purple_min, limit_up) value_ary.append(result) _total = _total - result value_ary.append(_total) else: value_ary = [] #向上取整 purple_min = int(total * 0.05 + 1) purple_max = int(total * 0.5) limit_up = total - 3 * purple_min # 4 - 1 if limit_up > purple_max: limit_up = purple_max result = random.randint(purple_min, limit_up) #第一次 value_ary.append(result) _total = total - result limit_up = _total - 2 * purple_min # 4 - 2 if limit_up > purple_max: limit_up = purple_max result = random.randint(purple_min, limit_up) #第二次 value_ary.append(result) _total = _total - result limit_up = _total - 1 * purple_min # 4 - 3 if limit_up > purple_max: limit_up = purple_max limit_down = _total - purple_max if limit_down > purple_min: purple_min = limit_down result = random.randint(purple_min, limit_up) #第三次 value_ary.append(result) _total = _total - result #第四次 value_ary.append(_total) for x in range(len(vice_attr)): key = keyary[x] vice_attr[key] = value_ary[x] user_equipments_obj.put() return 0, {"equipment": equipment} def punch(oc_user, params): """打孔 """ eqdbid = params['eqdbid'] index = int(params["index"]) user_equipments_obj = UserEquipments.get_instance(oc_user.uid) equipment = user_equipments_obj.equipments[eqdbid] #判断装备是否存在 if not equipment: return 1,{"msg":"this equipment is not exist"} #判断是否已经开过 gem_hole = equipment["gem_hole"] if gem_hole[index-1] != 0: return 2,{"msg":u"该宝石孔已经开过了"} #判断上一个是否开启 if (index > 1) and (gem_hole[index-2] == 0): return 3,{"msg":u"请开上一个孔"} gemSlot_unlock = game_config.gem_config["gemSlot_unlock"] cfg = gemSlot_unlock[str(index)] coin_base = cfg['coin_base'] item = cfg['item'] #判断金钱是否充足 lv
criterium suggested by Steven: if abs(flux_opt_old-flux_opt)/np.abs(fluxerr_opt) < epsilon: break flux_opt_old = flux_opt # reject any discrepant values; use [nsigma_inner] as the # rejection criterium for the inner region defined by # [mask_inner]; outside of that use [nsigma_outer] sigma2 = (D - flux_opt * P)**2 mask_pos = (V > 0) sigma2[mask_pos] /= V[mask_pos] mask_temp[mask_inner] = (sigma2[mask_inner] > nsigma_inner**2) mask_temp[mask_outer] = (sigma2[mask_outer] > nsigma_outer**2) mask_use[mask_temp] = False if show: log.info('no. of rejected pixels: {}'.format(np.sum(~mask_use))) log.info('np.amax((D - flux_opt * P)**2 / V): {}'.format(np.amax(sigma2))) ds9_arrays(data=D, psf=P, bkg_var=bkg_var, variance=V, fluxoptP = flux_opt*P, data_min_fluxoptP=(D - flux_opt * P), data_min_fluxoptP_squared_div_variance=sigma2, mask_use=mask_use.astype(int)) return flux_opt, fluxerr_opt ################################################################################ def flux_optimal_s2n (P, bkg_var, s2n, fwhm=5., max_iters=15, epsilon=1e-7): """Similar to function [flux_optimal] above, but this function returns the total flux [in e-] required for the point source to have a particular signal-to-noise ratio [s2n], given the PSF image [P] and the background variance [bkg_var] (=sky background + RN**2). This function is used to estimate the limiting magnitude of an image at a set of coordinates (in get_psfoptflux), and also to estimate the flux of the fake stars that are being added to the image with a required S/N [set_zogy.fakestar_s2n]. Note that the background-subtracted image itself should be added to [bkg_var] in order to calculate the flux required to reach the required S/N with respect to the image, i.e. taking into account the poisson noise of any object present in the image. """ for i in range(max_iters): if i==0: # initial estimate of variance (scalar) V = bkg_var # and flux (see Eq. 13 of Naylor 1998) flux_opt = s2n * fwhm * np.sqrt(np.median(V)) / np.sqrt(2*np.log(2)/np.pi) else: # estimate new flux based on fluxerr_opt of previous iteration flux_opt = s2n * fluxerr_opt # improved estimate of variance (2D list) V = bkg_var + flux_opt * P # new estimate of D D = flux_opt * P # get optimal flux, avoiding zeros in V index = np.nonzero(V) if len(index) != 0: flux_opt, fluxerr_opt = get_optflux (P[index], D[index], V[index]) else: break # also break out of loop if S/N sufficiently close if fluxerr_opt != 0: if abs(flux_opt/fluxerr_opt - s2n) / s2n < epsilon: break return flux_opt ################################################################################ def clipped_stats(array, nsigma=3, max_iters=10, epsilon=1e-6, clip_upper_frac=0, clip_zeros=True, get_median=True, get_mode=False, mode_binsize=0.1, verbose=False, make_hist=False, name_hist=None, hist_xlabel=None, use_median=False, log=None): if verbose and get_par(set_zogy.timing,tel) and log is not None: log.info('executing clipped_stats ...') t = time.time() # remove zeros if clip_zeros: array = array[array.nonzero()] if clip_upper_frac != 0: index_upper = int((1.-clip_upper_frac)*array.size+0.5) array = np.sort(array.flatten(), kind='quicksort')[:index_upper] mean_old = float('inf') for i in range(max_iters): if array.size > 0: if not use_median: mean = array.mean() else: mean = np.median(array) std = array.std() if abs(mean_old-mean)/abs(mean) < epsilon: break mean_old = mean index = ((array>(mean-nsigma*std)) & (array<(mean+nsigma*std))) array = array[index] else: array = np.zeros(1) break # make sure to calculate mean if median was used in clipping if use_median: mean = array.mean() # add median if get_median: median = np.median(array) # and mode if get_mode: bins = np.arange(mean-nsigma*std, mean+nsigma*std, mode_binsize) hist, bin_edges = np.histogram(array, bins) index = np.argmax(hist) mode = (bins[index]+bins[index+1])/2. if make_hist: bins = np.linspace(mean-nsigma*std, mean+nsigma*std) plt.hist(np.ravel(array), bins, color='tab:blue') x1,x2,y1,y2 = plt.axis() plt.plot([mean, mean], [y2,y1], color='black') plt.plot([mean+std, mean+std], [y2,y1], color='black', linestyle='--') plt.plot([mean-std, mean-std], [y2,y1], color='black', linestyle='--') title = 'mean (black line): {:.3f}, std: {:.3f}'.format(mean, std) if get_median: plt.plot([median, median], [y2,y1], color='tab:orange') title = '{}, median (orange line): {:.3f}'.format(title, median) if get_mode: plt.plot([mode, mode], [y2,y1], color='tab:red') title = '{}, mode (red line): {:.3f}'.format(title, mode) plt.title(title) if hist_xlabel is not None: plt.xlabel(hist_xlabel) plt.ylabel('number') if get_par(set_zogy.make_plots,tel): if name_hist is None: name_hist = 'clipped_stats_hist.pdf' plt.savefig(name_hist) if get_par(set_zogy.show_plots,tel): plt.show() plt.close() if verbose and get_par(set_zogy.timing,tel) and log is not None: log_timing_memory (t0=t, label='clipped_stats', log=log) if get_mode: if get_median: return mean, std, median, mode else: return mean, std, mode else: if get_median: return mean, std, median else: return mean, std ################################################################################ def read_header(header, keywords, log=None): # list with values to return values = [] # loop keywords for key in keywords: # use function [get_keyvalue] (see below) to return the value # from either the variable defined in settings file, or from # the fits header using the keyword name defined in the # settings file value = get_keyvalue(key, header, log=log) if key=='filter': value = str(value) values.append(value) if len(values)==1: return values[0] else: return values ################################################################################ def get_keyvalue (key, header, log=None): # check if [key] is defined in settings file var = 'set_zogy.{}'.format(key) try: value = eval(var) except: # if it does not work, try using the value of the keyword name # (defined in settings file) from the fits header instead try: key_name = eval('set_zogy.key_{}'.format(key)) except: if log is not None: log.critical('either [{}] or [key_{}] needs to be defined in ' '[settings_file]'.format(key, key)) raise RuntimeError else: if key_name in header: value = header[key_name] else: if log is not None: log.critical('keyword {} not present in header' .format(key_name)) raise RuntimeError if log is not None: log.info('keyword: {}, adopted value: {}'.format(key, value)) return value ################################################################################ def get_remap_name(new_name, ref_name, remap_name): # in case full paths are provided for the input images and the new # and ref directories are different, the remapped reference images # should end up in the new directory def get_dir_name (name): dir_name = '.' if '/' in name: dir_name = '/'.join(name.split('/')[:-1]) return dir_name new_dir = get_dir_name(new_name) ref_dir = get_dir_name(ref_name) if new_dir != ref_dir: remap_name = '{}/{}'.format(new_dir, remap_name.split('/')[-1]) return remap_name ################################################################################ def prep_optimal_subtraction(input_fits, nsubs, imtype, fwhm, header, log, fits_mask=None, data_cal=None, remap=False): log.info('executing prep_optimal_subtraction ...') t = time.time() if imtype=='new': base = base_new else: base = base_ref # read input_fits data_wcs = read_hdulist (input_fits, dtype='float32') # get gain, pixscale and saturation level from header keywords = ['gain', 'pixscale', 'satlevel'] gain, pixscale, satlevel = read_header(header, keywords, log=log) ysize, xsize = np.shape(data_wcs) # determine data_mask if fits_mask is not None: # read in mask image data_mask = read_hdulist (fits_mask, dtype='uint8') else: data_mask = None fits_mask = input_fits.replace('.fits', '_mask.fits') # create new mask or modify an existing one data_mask = create_modify_mask (data_wcs, satlevel, data_mask=data_mask) # check if background was already subtracted from input_fits if 'BKG-SUB' in header: bkg_sub = header['BKG-SUB'] else: bkg_sub = False log.info('background already subtracted from {}?: {}' .format(input_fits, bkg_sub)) # [interp_Xchan] determines whether interpolation is allowed # across different channels in [mini2back] if (tel not in ['ML1', 'BG2', 'BG3', 'BG4'] or get_par(set_zogy.MLBG_chancorr,tel)): interp_Xchan = True else: interp_Xchan = False # for bkg_std, do not interpolate for ML/BG images if tel in ['ML1', 'BG2', 'BG3', 'BG4']: interp_Xchan_std = False else: interp_Xchan_std = True # if not, then read in background image; N.B.: this if block below # is not relevant anymore, since the background is subtracted from # the image in [run_sextractor], but leave it be for now if not bkg_sub: fits_bkg = '{}_bkg.fits'.format(base) if os.path.exists(fits_bkg): data_bkg = read_hdulist (fits_bkg, dtype='float32') else: # if it does not exist, create it from the background mesh fits_bkg_mini = '{}_bkg_mini.fits'.format(base) data_bkg_mini, header_mini = read_hdulist ( fits_bkg_mini, get_header=True, dtype='float32') if 'BKG-SIZE' in header_mini: bkg_size = header_mini['BKG-SIZE'] else: bkg_size = get_par(set_zogy.bkg_boxsize,tel) data_bkg = mini2back (data_bkg_mini, data_wcs.shape, order_interp=2, bkg_boxsize=bkg_size, interp_Xchan=interp_Xchan, timing=get_par(set_zogy.timing,tel), log=log) # subtract the background data_wcs -= data_bkg # edge pixels will now be negative, best to ensure that they # are set to zero value_edge = get_par(set_zogy.mask_value['edge'],tel) mask_edge = (data_mask & value_edge == value_edge) data_wcs[mask_edge] = 0 # update header with new background if 'S-BKG' in header: bkg_temp = header['S-BKG'] - np.median(data_bkg_mini) header['S-BKG'] = (bkg_temp, '[e-] median background full image') # 2020-06-07: create background-subtracted image for the # reference image only for SWarp to work on below header['DATEFILE'] = (Time.now().isot, 'UTC date of writing file') fits_bkgsub = input_fits.replace('.fits', '_bkgsub.fits') if imtype=='ref': fits.writeto(fits_bkgsub, data_wcs, header, overwrite=True) else: # could also make one for the new image, but not needed if False: fits.writeto(fits_bkgsub, data_wcs, header, overwrite=True) # read in background std image in
often gives better results. transformation: bool, default = False When set to True, a power transformation is applied to make the data more normal / Gaussian-like. This is useful for modeling issues related to heteroscedasticity or other situations where normality is desired. The optimal parameter for stabilizing variance and minimizing skewness is estimated through maximum likelihood. transformation_method: str, default = 'yeo-johnson' Defines the method for transformation. By default, the transformation method is set to 'yeo-johnson'. The other available option is 'quantile' transformation. Both the transformation transforms the feature set to follow a Gaussian-like or normal distribution. Note that the quantile transformer is non-linear and may distort linear correlations between variables measured at the same scale. handle_unknown_categorical: bool, default = True When set to True, unknown categorical levels in new / unseen data are replaced by the most or least frequent level as learned in the training data. The method is defined under the unknown_categorical_method param. unknown_categorical_method: str, default = 'least_frequent' Method used to replace unknown categorical levels in unseen data. Method can be set to 'least_frequent' or 'most_frequent'. pca: bool, default = False When set to True, dimensionality reduction is applied to project the data into a lower dimensional space using the method defined in pca_method param. In supervised learning pca is generally performed when dealing with high feature space and memory is a constraint. Note that not all datasets can be decomposed efficiently using a linear PCA technique and that applying PCA may result in loss of information. As such, it is advised to run multiple experiments with different pca_methods to evaluate the impact. pca_method: str, default = 'linear' The 'linear' method performs Linear dimensionality reduction using Singular Value Decomposition. The other available options are: kernel : dimensionality reduction through the use of RVF kernel. incremental : replacement for 'linear' pca when the dataset to be decomposed is too large to fit in memory pca_components: int/float, default = 0.99 Number of components to keep. if pca_components is a float, it is treated as a target percentage for information retention. When pca_components is an integer it is treated as the number of features to be kept. pca_components must be strictly less than the original number of features in the dataset. ignore_low_variance: bool, default = False When set to True, all categorical features with insignificant variances are removed from the dataset. The variance is calculated using the ratio of unique values to the number of samples, and the ratio of the most common value to the frequency of the second most common value. combine_rare_levels: bool, default = False When set to True, all levels in categorical features below the threshold defined in rare_level_threshold param are combined together as a single level. There must be atleast two levels under the threshold for this to take effect. rare_level_threshold represents the percentile distribution of level frequency. Generally, this technique is applied to limit a sparse matrix caused by high numbers of levels in categorical features. rare_level_threshold: float, default = 0.1 Percentile distribution below which rare categories are combined. Only comes into effect when combine_rare_levels is set to True. bin_numeric_features: list, default = None When a list of numeric features is passed they are transformed into categorical features using KMeans, where values in each bin have the same nearest center of a 1D k-means cluster. The number of clusters are determined based on the 'sturges' method. It is only optimal for gaussian data and underestimates the number of bins for large non-gaussian datasets. remove_outliers: bool, default = False When set to True, outliers from the training data are removed using PCA linear dimensionality reduction using the Singular Value Decomposition technique. outliers_threshold: float, default = 0.05 The percentage / proportion of outliers in the dataset can be defined using the outliers_threshold param. By default, 0.05 is used which means 0.025 of the values on each side of the distribution's tail are dropped from training data. remove_multicollinearity: bool, default = False When set to True, the variables with inter-correlations higher than the threshold defined under the multicollinearity_threshold param are dropped. When two features are highly correlated with each other, the feature that is less correlated with the target variable is dropped. multicollinearity_threshold: float, default = 0.9 Threshold used for dropping the correlated features. Only comes into effect when remove_multicollinearity is set to True. remove_perfect_collinearity: bool, default = True When set to True, perfect collinearity (features with correlation = 1) is removed from the dataset, When two features are 100% correlated, one of it is randomly dropped from the dataset. create_clusters: bool, default = False When set to True, an additional feature is created where each instance is assigned to a cluster. The number of clusters is determined using a combination of Calinski-Harabasz and Silhouette criterion. cluster_iter: int, default = 20 Number of iterations used to create a cluster. Each iteration represents cluster size. Only comes into effect when create_clusters param is set to True. polynomial_features: bool, default = False When set to True, new features are created based on all polynomial combinations that exist within the numeric features in a dataset to the degree defined in polynomial_degree param. polynomial_degree: int, default = 2pca_method_pass Degree of polynomial features. For example, if an input sample is two dimensional and of the form [a, b], the polynomial features with degree = 2 are: [1, a, b, a^2, ab, b^2]. trigonometry_features: bool, default = False When set to True, new features are created based on all trigonometric combinations that exist within the numeric features in a dataset to the degree defined in the polynomial_degree param. polynomial_threshold: float, default = 0.1 This is used to compress a sparse matrix of polynomial and trigonometric features. Polynomial and trigonometric features whose feature importance based on the combination of Random Forest, AdaBoost and Linear correlation falls within the percentile of the defined threshold are kept in the dataset. Remaining features are dropped before further processing. group_features: list or list of list, default = None When a dataset contains features that have related characteristics, group_features param can be used for statistical feature extraction. For example, if a dataset has numeric features that are related with each other (i.e 'Col1', 'Col2', 'Col3'), a list containing the column names can be passed under group_features to extract statistical information such as the mean, median, mode and standard deviation. group_names: list, default = None When group_features is passed, a name of the group can be passed into the group_names param as a list containing strings. The length of a group_names list must equal to the length of group_features. When the length doesn't match or the name is not passed, new features are sequentially named such as group_1, group_2 etc. feature_selection: bool, default = False When set to True, a subset of features are selected using a combination of various permutation importance techniques including Random Forest, Adaboost and Linear correlation with target variable. The size of the subset is dependent on the feature_selection_param. Generally, this is used to constrain the feature space in order to improve efficiency in modeling. When polynomial_features and feature_interaction are used, it is highly recommended to define the feature_selection_threshold param with a lower value. Feature selection algorithm by default is 'classic' but could be 'boruta', which will lead PyCaret to create use the Boruta selection algorithm. feature_selection_threshold: float, default = 0.8
<gh_stars>0 # Copyright (c) 2021 Red Hat Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from unittest import mock from oslo_policy import policy as base_policy from oslo_utils import uuidutils from neutron import policy from neutron.tests.unit.conf.policies import test_base as base class PortAPITestCase(base.PolicyBaseTestCase): def setUp(self): super(PortAPITestCase, self).setUp() self.network = { 'id': uuidutils.generate_uuid(), 'project_id': self.project_id} self.target = { 'project_id': self.project_id, 'tenant_id': self.alt_project_id, 'network_id': self.network['id'], 'ext_parent_network_id': self.network['id']} self.alt_target = { 'project_id': self.alt_project_id, 'tenant_id': self.alt_project_id, 'network_id': self.network['id'], 'ext_parent_network_id': self.network['id']} self.plugin_mock = mock.Mock() self.plugin_mock.get_network.return_value = self.network mock.patch( 'neutron_lib.plugins.directory.get_plugin', return_value=self.plugin_mock).start() class SystemAdminTests(PortAPITestCase): def setUp(self): super(SystemAdminTests, self).setUp() self.context = self.system_admin_ctx def test_create_port(self): self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'create_port', self.target) self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'create_port', self.alt_target) def test_create_port_with_device_owner(self): target = self.target.copy() target['device_owner'] = 'network:test' alt_target = self.alt_target.copy() alt_target['device_owner'] = 'network:test' self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'create_port:device_owner', target) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'create_port:device_owner', alt_target) def test_create_port_with_mac_address(self): self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'create_port:mac_address', self.target) self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'create_port:mac_address', self.alt_target) def test_create_port_with_fixed_ips(self): self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'create_port:fixed_ips', self.target) self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'create_port:fixed_ips', self.alt_target) def test_create_port_with_fixed_ips_and_ip_address(self): self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'create_port:fixed_ips:ip_address', self.target) self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'create_port:fixed_ips:ip_address', self.alt_target) def test_create_port_with_fixed_ips_and_subnet_id(self): self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'create_port:fixed_ips:subnet_id', self.target) self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'create_port:fixed_ips:subnet_id', self.alt_target) def test_create_port_with_port_security_enabled(self): self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'create_port:port_security_enabled', self.target) self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'create_port:port_security_enabled', self.alt_target) def test_create_port_with_binding_host_id(self): self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'create_port:binding:host_id', self.target) self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'create_port:binding:host_id', self.alt_target) def test_create_port_with_binding_profile(self): self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'create_port:binding:profile', self.target) self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'create_port:binding:profile', self.alt_target) def test_create_port_with_binding_vnic_type(self): self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'create_port:binding:vnic_type', self.target) self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'create_port:binding:vnic_type', self.alt_target) def test_create_port_with_allowed_address_pairs(self): self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'create_port:allowed_address_pairs', self.target) self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'create_port:allowed_address_pairs', self.alt_target) def test_create_port_with_allowed_address_pairs_and_mac_address(self): self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'create_port:allowed_address_pairs:mac_address', self.alt_target) self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'create_port:allowed_address_pairs:mac_address', self.target) def test_create_port_with_allowed_address_pairs_and_ip_address(self): self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'create_port:allowed_address_pairs:ip_address', self.target) self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'create_port:allowed_address_pairs:ip_address', self.alt_target) def test_get_port(self): self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'get_port', self.target) self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'get_port', self.alt_target) def test_get_port_binding_vif_type(self): self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'get_port:binding:vif_type', self.target) self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'get_port:binding:vif_type', self.alt_target) def test_get_port_binding_vif_details(self): self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'get_port:binding:vif_details', self.target) self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'get_port:binding:vif_details', self.alt_target) def test_get_port_binding_host_id(self): self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'get_port:binding:host_id', self.target) self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'get_port:binding:host_id', self.alt_target) def test_get_port_binding_profile(self): self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'get_port:binding:profile', self.target) self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'get_port:binding:profile', self.alt_target) def test_get_port_resource_request(self): self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'get_port:resource_request', self.target) self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'get_port:resource_request', self.alt_target) def test_update_port(self): self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'update_port', self.target) self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'update_port', self.alt_target) def test_update_port_with_device_owner(self): target = self.target.copy() target['device_owner'] = 'network:test' alt_target = self.alt_target.copy() alt_target['device_owner'] = 'network:test' self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'update_port:device_owner', target) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'update_port:device_owner', alt_target) def test_update_port_with_mac_address(self): self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'update_port:mac_address', self.target) self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'update_port:mac_address', self.alt_target) def test_update_port_with_fixed_ips(self): self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'update_port:fixed_ips', self.target) self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'update_port:fixed_ips', self.alt_target) def test_update_port_with_fixed_ips_and_ip_address(self): self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'update_port:fixed_ips:ip_address', self.target) self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'update_port:fixed_ips:ip_address', self.alt_target) def test_update_port_with_fixed_ips_and_subnet_id(self): self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'update_port:fixed_ips:subnet_id', self.target) self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'update_port:fixed_ips:subnet_id', self.alt_target) def test_update_port_with_port_security_enabled(self): self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'update_port:port_security_enabled', self.target) self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'update_port:port_security_enabled', self.alt_target) def test_update_port_with_binding_host_id(self): self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'update_port:binding:host_id', self.target) self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'update_port:binding:host_id', self.alt_target) def test_update_port_with_binding_profile(self): self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'update_port:binding:profile', self.target) self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'update_port:binding:profile', self.alt_target) def test_update_port_with_binding_vnic_type(self): self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'update_port:binding:vnic_type', self.target) self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'update_port:binding:vnic_type', self.alt_target) def test_update_port_with_allowed_address_pairs(self): self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'update_port:allowed_address_pairs', self.target) self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'update_port:allowed_address_pairs', self.alt_target) def test_update_port_with_allowed_address_pairs_and_mac_address(self): self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'update_port:allowed_address_pairs:mac_address', self.target) self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'update_port:allowed_address_pairs:mac_address', self.alt_target) def test_update_port_with_allowed_address_pairs_and_ip_address(self): self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'update_port:allowed_address_pairs:ip_address', self.target) self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'update_port:allowed_address_pairs:ip_address', self.alt_target) def test_update_port_data_plane_status(self): self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'update_port:data_plane_status', self.target) self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'update_port:data_plane_status', self.alt_target) def test_delete_port(self): self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'delete_port', self.target) self.assertRaises( base_policy.InvalidScope, policy.enforce, self.context, 'delete_port', self.alt_target) class SystemMemberTests(SystemAdminTests): def setUp(self): super(SystemMemberTests, self).setUp() self.context = self.system_member_ctx class SystemReaderTests(SystemMemberTests): def setUp(self): super(SystemReaderTests, self).setUp() self.context = self.system_reader_ctx class ProjectAdminTests(PortAPITestCase): def setUp(self): super(ProjectAdminTests, self).setUp() self.context = self.project_admin_ctx def test_create_port(self): self.assertTrue( policy.enforce(self.context, 'create_port', self.target)) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'create_port', self.alt_target) def test_create_port_with_device_owner(self): target = self.target.copy() target['device_owner'] = 'network:test' alt_target = self.alt_target.copy() alt_target['device_owner'] = 'network:test' self.assertTrue( policy.enforce(self.context, 'create_port:device_owner', target)) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'create_port:device_owner', alt_target) def test_create_port_with_mac_address(self): self.assertTrue( policy.enforce(self.context, 'create_port:mac_address', self.target)) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'create_port:mac_address', self.alt_target) def test_create_port_with_fixed_ips(self): self.assertTrue( policy.enforce(self.context, 'create_port:fixed_ips', self.target)) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'create_port:fixed_ips', self.alt_target) def test_create_port_with_fixed_ips_and_ip_address(self): self.assertTrue( policy.enforce(self.context, 'create_port:fixed_ips:ip_address', self.target)) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'create_port:fixed_ips:ip_address', self.alt_target) def test_create_port_with_fixed_ips_and_subnet_id(self): self.assertTrue( policy.enforce(self.context, 'create_port:fixed_ips:subent_id', self.target)) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'create_port:fixed_ips:subnet_id', self.alt_target) def test_create_port_with_port_security_enabled(self): self.assertTrue( policy.enforce(self.context, 'create_port:port_security_enabled', self.target)) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'create_port:port_security_enabled', self.alt_target) def test_create_port_with_binding_host_id(self): self.assertTrue( policy.enforce(self.context, 'create_port:binding:host_id', self.target)) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'create_port:binding:host_id', self.alt_target) def test_create_port_with_binding_profile(self): self.assertTrue( policy.enforce(self.context, 'create_port:binding:profile', self.target)) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'create_port:binding:profile', self.alt_target) def test_create_port_with_binding_vnic_type(self): self.assertTrue( policy.enforce(self.context, 'create_port:binding:vnic_type', self.target)) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'create_port:binding:vnic_type', self.alt_target) def test_create_port_with_allowed_address_pairs(self): self.assertTrue( policy.enforce(self.context, 'create_port:allowed_address_pairs', self.target)) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'create_port:allowed_address_pairs', self.alt_target) def test_create_port_with_allowed_address_pairs_and_mac_address(self): self.assertTrue( policy.enforce(self.context, 'create_port:allowed_address_pairs:mac_address', self.target)) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'create_port:allowed_address_pairs:mac_address', self.alt_target) def test_create_port_with_allowed_address_pairs_and_ip_address(self): self.assertTrue( policy.enforce(self.context, 'create_port:allowed_address_pairs:ip_address', self.target)) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'create_port:allowed_address_pairs:ip_address', self.alt_target) def test_get_port(self): self.assertTrue( policy.enforce(self.context, 'get_port', self.target)) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'get_port', self.alt_target) def test_get_port_binding_vif_type(self): self.assertTrue( policy.enforce( self.context, 'get_port:binding:vif_type', self.target)) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'get_port:binding:vif_type', self.alt_target) def test_get_port_binding_vif_details(self): self.assertTrue( policy.enforce( self.context, 'get_port:binding:vif_details', self.target)) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'get_port:binding:vif_details', self.alt_target) def test_get_port_binding_host_id(self): self.assertTrue( policy.enforce( self.context, 'get_port:binding:host_id', self.target)) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'get_port:binding:host_id', self.alt_target) def test_get_port_binding_profile(self): self.assertTrue( policy.enforce( self.context, 'get_port:binding:profile', self.target)) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'get_port:binding:profile', self.alt_target) def test_get_port_resource_request(self): self.assertTrue( policy.enforce( self.context, 'get_port:resource_request', self.target)) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'get_port:resource_request', self.alt_target) def test_update_port(self): self.assertTrue( policy.enforce(self.context, 'update_port', self.target)) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'update_port', self.alt_target) def test_update_port_with_device_owner(self): target = self.target.copy() target['device_owner'] = 'network:test' alt_target = self.alt_target.copy() alt_target['device_owner'] = 'network:test' self.assertTrue( policy.enforce(self.context, 'update_port:device_owner', target)) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'update_port:device_owner', alt_target) def test_update_port_with_mac_address(self): self.assertTrue( policy.enforce( self.context, 'update_port:mac_address', self.target)) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'update_port:mac_address', self.alt_target) def test_update_port_with_fixed_ips(self): self.assertTrue( policy.enforce(self.context, 'update_port:fixed_ips', self.target)) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'update_port:fixed_ips', self.alt_target) def test_update_port_with_fixed_ips_and_ip_address(self): self.assertTrue( policy.enforce(self.context, 'update_port:fixed_ips:ip_address', self.target)) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'update_port:fixed_ips:ip_address', self.alt_target) def test_update_port_with_fixed_ips_and_subnet_id(self): self.assertTrue( policy.enforce(self.context, 'update_port:fixed_ips:subent_id', self.target)) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'update_port:fixed_ips:subnet_id', self.alt_target) def test_update_port_with_port_security_enabled(self): self.assertTrue( policy.enforce(self.context, 'update_port:port_security_enabled', self.target)) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'update_port:port_security_enabled', self.alt_target) def test_update_port_with_binding_host_id(self): self.assertTrue( policy.enforce(self.context, 'update_port:binding:host_id', self.target)) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'update_port:binding:host_id', self.alt_target) def test_update_port_with_binding_profile(self): self.assertTrue( policy.enforce(self.context, 'update_port:binding:profile', self.target)) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'update_port:binding:profile', self.alt_target) def test_update_port_with_binding_vnic_type(self): self.assertTrue( policy.enforce(self.context, 'update_port:binding:vnic_type', self.target)) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'update_port:binding:vnic_type', self.alt_target) def test_update_port_with_allowed_address_pairs(self): self.assertTrue( policy.enforce(self.context, 'update_port:allowed_address_pairs', self.target)) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'update_port:allowed_address_pairs', self.alt_target) def test_update_port_with_allowed_address_pairs_and_mac_address(self): self.assertTrue( policy.enforce(self.context, 'update_port:allowed_address_pairs:mac_address', self.target)) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'update_port:allowed_address_pairs:mac_address', self.alt_target) def test_update_port_with_allowed_address_pairs_and_ip_address(self): self.assertTrue( policy.enforce(self.context, 'update_port:allowed_address_pairs:ip_address', self.target)) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'update_port:allowed_address_pairs:ip_address', self.alt_target) def test_update_port_data_plane_status(self): self.assertTrue( policy.enforce(self.context, 'update_port:data_plane_status', self.target)) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'update_port:data_plane_status', self.alt_target) def test_delete_port(self): self.assertTrue( policy.enforce(self.context, 'delete_port', self.target)) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'delete_port', self.alt_target) class ProjectMemberTests(ProjectAdminTests): def setUp(self): super(ProjectMemberTests, self).setUp() self.context = self.project_member_ctx def test_create_port_with_device_owner(self): target = self.target.copy() target['device_owner'] = 'network:test' alt_target = self.alt_target.copy() alt_target['device_owner'] = 'network:test' self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'create_port:device_owner', target) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'create_port:device_owner', alt_target) def test_create_port_with_mac_address(self): self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'create_port:mac_address', self.target) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'create_port:mac_address', self.alt_target) def test_create_port_with_fixed_ips(self): self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'create_port:fixed_ips', self.target) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'create_port:fixed_ips', self.alt_target) def test_create_port_with_fixed_ips_and_ip_address(self): self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'create_port:fixed_ips:ip_address', self.target) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'create_port:fixed_ips:ip_address', self.alt_target) def test_create_port_with_fixed_ips_and_subnet_id(self): self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'create_port:fixed_ips:subnet_id', self.target) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'create_port:fixed_ips:subnet_id', self.alt_target) def test_create_port_with_port_security_enabled(self): self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'create_port:port_security_enabled', self.target) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'create_port:port_security_enabled', self.alt_target) def test_create_port_with_binding_host_id(self): self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'create_port:binding:host_id', self.target) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'create_port:binding:host_id', self.alt_target) def test_create_port_with_binding_profile(self): self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'create_port:binding:profile', self.target) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'create_port:binding:profile', self.alt_target) def test_create_port_with_allowed_address_pairs(self): self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'create_port:allowed_address_pairs', self.target) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'create_port:allowed_address_pairs', self.alt_target) def test_create_port_with_allowed_address_pairs_and_mac_address(self): self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'create_port:allowed_address_pairs:mac_address', self.target) self.assertRaises( base_policy.PolicyNotAuthorized, policy.enforce, self.context, 'create_port:allowed_address_pairs:mac_address', self.alt_target) def test_create_port_with_allowed_address_pairs_and_ip_address(self): self.assertRaises(
<filename>src/NLG/NonLocalGame.py import math from math import sqrt import matplotlib.pyplot as plt from qiskit.extensions import RYGate, RZGate, RXGate, IGate, CXGate from sklearn.preprocessing import StandardScaler from NLG.agents.BasicAgent import BasicAgent from NLG.agents.DQNAgent import DQNAgent from NLG.models.LinearModel import LinearModel def get_scaler(env, N, ALL_POSSIBLE_ACTIONS, round_to=2): """:returns scikit-learn scaler object to scale the states""" # Note: you could also populate the replay buffer here states = [] for _ in range(N): action = np.random.choice(ALL_POSSIBLE_ACTIONS) state, reward, done = env.step(action) states.append(np.round(state, round_to)) if done: break scaler = StandardScaler() scaler.fit(states) return scaler def show_plot_of(plot_this, label, place_line_at=()): # plot relevant information fig_dims = (10, 6) fig, ax = plt.subplots(figsize=fig_dims) for pl in place_line_at: plt.axhline(y=pl, color='r', linestyle='-') plt.xlabel('Epochs') plt.ylabel(label) plt.plot(plot_this) plt.show() def override(f): return f from abc import ABC, abstractmethod class abstractEnvironment(ABC): """ abstract environment to create CHSH framework actions are expected in this format ACTIONS = [q + axis + "0" for axis in 'xyz' for q in 'ra'] ACTIONS = [q + axis + "0" for axis in 'y' for q in 'r'] PLAYER = ['a', 'b'] QUESTION = ['0', '1'] ALL_POSSIBLE_ACTIONS = [[p + q + a] for p in PLAYER for q in QUESTION for a in ACTIONS] # place one gate at some place ALL_POSSIBLE_ACTIONS.append(["xxr0"]) # for 1 game with 2 EPR ALL_POSSIBLE_ACTIONS.append(["a0cxnot"]) ALL_POSSIBLE_ACTIONS.append(["b0cxnot"]) # # for xor paralel with 2EPR ALL_POSSIBLE_ACTIONS.append(["a0cxnotr"]) ALL_POSSIBLE_ACTIONS.append(["b0cxnotr"])""" @abstractmethod def reset(self): """Return initial_time_step.""" self.counter = 1 self.history_actions = [] self.state = self.initial_state.copy() self.accuracy = self.calc_accuracy([self.measure_probabilities_analytically() for _ in range(len(self.game_type))]) self.repr_state = np.array([x for _ in range(len(self.game_type)) for x in self.state], dtype=np.complex64) return self.repr_state @abstractmethod def step(self, action): """Apply action and return new time_step.""" pass def measure_probabilities_analytically(self): """ :returns probabilities of questions (e.g. 00,01,10,11) happening in matrix """ probabilities = [abs(a) ** 2 for a in self.state] return probabilities def calc_accuracy(self, result): """ Calculates accurary by going through rules of the game given by game_type matrix :returns winning probability / accuracy / win rate based on winning game_type """ win_rate = 0 for x, combination_of_questions in enumerate(self.game_type): for y, query in enumerate(combination_of_questions): win_rate += (query * result[x][y]) win_rate = win_rate * 1 / len(self.game_type) return win_rate # def EPR_result(self, result): # """ If state is bigger than with 2 qubits, we must reduce state so that it matches the scale of the game. # This functions reduces bigger states result to smaller one by taking the first bit. """ # if self.n_qubits <= 2: return result # # new_result = [] # for r, row in enumerate(result): # new_result.append([]) # for c in range(0, len(row), self.reduce_by * 2): # new_result[r].append( # sum(result[r][c:(c + self.reduce_by // 2)]) + # sum(result[r][c + self.reduce_by:(c + self.reduce_by + self.reduce_by // 2)]) # ) # new_result[r].append( # sum(result[r][(c + self.reduce_by // 2): c + self.reduce_by]) + # sum(result[r][(c + self.reduce_by + self.reduce_by // 2):(c + self.reduce_by * 2)]) # ) # # return new_result # def paralel_non_local(self, result): # """ selects probabilities for paralel games """ # # return self.calc_acc(result) # # dividing_to_paralel = dict() # for state in result: # for x in range(len(state)): # dividing_to_paralel[self.possible_states[x]] = state[x] # # new_result_1 = [] # new_result_2 = [] # for s in range(len(result)): # paralel_1 = dict() # paralel_2 = dict() # for key in dividing_to_paralel.keys(): # try: paralel_1[str(key[0]) + str(key[2])] += dividing_to_paralel[key] # except KeyError: paralel_1[str(key[0]) + str(key[2])] = dividing_to_paralel[key] # try: paralel_2[str(key[1]) + str(key[3])] += dividing_to_paralel[key] # except KeyError: paralel_2[str(key[1]) + str(key[3])] = dividing_to_paralel[key] # # new_result_1.append(list(paralel_1.values())) # new_result_2.append(list(paralel_2.values())) # # return self.calc_acc(new_result_1) * self.calc_acc(new_result_2) def n_qubits_from_state(self): """ There are 2^n states of n qubits, to get the n, we need to make log2 from state""" assert len(self.state) % 2 == 0 return int(math.log(len(self.state), 2)) def count_gates(self): """ :returns count of relevant gates """ count = 0 for action in self.history_actions: if action in {"xxr0"}: # ending action pass # elif action in {"smallerAngle", "biggerAngle"}: # count += 0.5 else: count += 1 return count def get_gate(self, action): """ :returns gate got from string code of action """ gate = action[2:4] if gate == "rx" or gate == "ax": return RXGate elif gate == "ry" or gate == "ay": return RYGate elif gate == "rz" or gate == "az": return RZGate elif gate == "cx": return CXGate else: return IGate def reward_only_difference(self, difference): # reward is the increase in winning probability return difference def reward_qubic(self, difference): return (difference ** 3) * 1000 def reward_only_best(self, difference): """ reward only if it its better than results before """ reward = difference * 100 if np.round(self.accuracy, 2) > np.round(self.max_acc, 2): reward += 50 * (self.max_acc - self.accuracy) self.min_gates = len(self.history_actions) self.max_acc = self.accuracy elif np.round(self.accuracy, 2) == np.round(self.max_acc, 2): if self.min_gates > len(self.history_actions): self.min_gates = len(self.history_actions) if self.counter == self.max_gates or self.history_actions[-1] == "xxr0": if np.round(self.max_acc, 2) == np.round(self.accuracy, 2) and self.min_gates == self.count_gates(): reward = 5000 * (1 / (self.count_gates() + 1)) * self.accuracy elif np.round(self.max_acc, 2) == np.round(self.accuracy, 2): reward -= 1000 * (self.count_gates() + 1) / self.accuracy else: reward -= 10000 * (self.count_gates() + 1) / self.accuracy # alebo tu dam tiez nejaky vzorcek return reward def reward_combined(self, difference): reward = difference if np.round(self.accuracy, 2) >= np.round(self.max_acc, 2): self.max_acc = self.accuracy if self.history_actions[-1] == "xxr0": reward += 80 * (1 / (self.count_gates() + 1)) * self.accuracy # alebo za count_gates len(history_actuons) # if self.counter == self.max_gates: # reward += 50 * (1 / (self.count_gates() + 1)) return reward def complex_array_to_real(self, inp_array): """ decomposes complex array into array of real numbers with double size. """ return np.concatenate((np.real(inp_array), np.imag(inp_array))) import random import warnings warnings.filterwarnings('ignore') import pickle import numpy as np class Game: """ creates framework for easier manipulation """ def __init__(self, scaler=None, round_to=2, batch_size=32): self.scaler = scaler self.round_to = round_to self.batch_size = batch_size def play_one_episode(self, agent, env, DO): """ Plays one episode of CHSH training :returns last accuracy acquired and rewards from whole episode """ # in this version we will NOT use "exploring starts" method # instead we will explore using an epsilon-soft policy state = env.reset() if self.scaler is not None: state = self.scaler.transform([state]) else: state = np.array([np.around(state, self.round_to)], dtype=np.float32) done = False # be aware of the timing # each triple is s(t), a(t), r(t) # but r(t) results from taking action a(t-1) from s(t-1) and landing in s(t) rew_accum = 0 while not done: action = agent.act(state) next_state, reward, done = env.step(action[0]) if self.scaler is not None: next_state = self.scaler.transform([np.around(next_state, self.round_to)]) else: next_state = np.array([np.around(next_state, self.round_to)], dtype=np.float32) if DO == 'train': if type(agent) == BasicAgent: agent.train(state.copy(), action[1], reward, next_state.copy(), done) elif type(agent) == DQNAgent: agent.update_replay_memory(state.copy(), action[1], reward, next_state.copy(), done) agent.replay(self.batch_size) state = next_state.copy() rew_accum += reward try: print(env.memory_state[tuple(env.history_actions)][2]) except: print(env.history_actions) # print("state: ", env.repr_state) return env.accuracy, rew_accum def evaluate_train(self, N, agent, env): """ Performes the whole training of agent in env in N steps :returns portfolio value and rewards for all episodes - serves to plot how it has trained""" DO = "train" portfolio_value = [] rewards = [] for e in range(N): val, rew = self.play_one_episode(agent, env, DO) print('episode:', end=' ') print(e, end=' ') print('acc:', end=' ') print(val) print('rew:', end=' ') print(rew) portfolio_value.append(val) # append episode end portfolio value rewards.append(rew) # save the weights when we are done if DO == 'train': # # save the DQN agent.save(f'.training/linear.npz') # save the scaler with open(f'../.training/scaler.pkl', 'wb') as f: pickle.dump(self.scaler, f) return portfolio_value, rewards def evaluate_test(self, agent, env): """ Tests what has the agent learnt in N=1 steps :returns accuracy and reward """ DO = "test" portfolio_value = [] if DO == 'test': N = 1 # then load the previous scaler if self.scaler != None: with open(f'../.training/scaler.pkl', 'rb') as f: self.scaler = pickle.load(f) # make sure epsilon is not 1! # no need to run multiple episodes if epsilon = 0, it's deterministic, it outputs always what it has already learnt agent.epsilon = 0 # load trained weights agent.load(f'.training/linear.npz') # play the game num_episodes times for e in range(N): val =
""" API for TensorFlow usage. """ import functools import itertools from typing import Any, Callable, List, Optional, Sequence, Tuple import tensorflow as tf # type: ignore from targetran._check import ( _check_shear_input, _check_translate_input, _check_crop_input, _check_input_range, ) from targetran._tf_functional import ( _tf_convert, _tf_cast_to_int, _tf_round_to_int, _tf_resize_image, _tf_pad_image, _tf_gather_image, ) from targetran._transform import ( _AffineDependency, _affine_transform, _flip_left_right, _flip_up_down, _rotate, _shear, _translate, _get_crop_inputs, _get_random_size_fractions, _crop, _resize, _get_flip_left_right_mats, _get_flip_up_down_mats, _get_rotate_mats, _get_shear_mats, _get_translate_mats, ) from targetran._typing import T from targetran.utils import Interpolation def to_tf( image_seq: Sequence[T], bboxes_seq: Sequence[T], labels_seq: Sequence[T] ) -> Tuple[Sequence[tf.Tensor], Sequence[tf.Tensor], Sequence[tf.Tensor]]: """ Convert seqs to TF (eager) tensor seqs. """ tuples = [ (_tf_convert(image), tf.reshape(_tf_convert(bboxes), (-1, 4)), _tf_convert(labels)) for image, bboxes, labels in itertools.zip_longest( image_seq, bboxes_seq, labels_seq, fillvalue=[] ) ] tf_image_seq, tf_bboxes_seq, tf_labels_seq = tuple(zip(*tuples)) return tf_image_seq, tf_bboxes_seq, tf_labels_seq def seqs_to_tf_dataset( image_seq: Sequence[T], bboxes_seq: Sequence[T], labels_seq: Sequence[T] ) -> tf.data.Dataset: tf_image_seq, tf_bboxes_seq, tf_labels_seq = to_tf( image_seq, bboxes_seq, labels_seq ) # Tensors of different shapes can be included in a TF Dataset # as ragged-tensors. ds = tf.data.Dataset.zip(( tf.data.Dataset.from_tensor_slices(tf.ragged.stack(tf_image_seq)), tf.data.Dataset.from_tensor_slices(tf.ragged.stack(tf_bboxes_seq)), tf.data.Dataset.from_tensor_slices(tf.ragged.stack(tf_labels_seq)) )) # However, our transformations expect normal tensors, so the ragged-tensors # have to be first converted back to tensors during mapping. Therefore, # the whole point of using ragged-tensors is ONLY for building a Dataset... # Note that the label ragged-tensors are of rank-0, so they are implicitly # converted to tensors during mapping. Strange TF Dataset behaviour... ds = ds.map( lambda i, b, l: ( i if isinstance(i, tf.Tensor) else i.to_tensor(), b if isinstance(b, tf.Tensor) else b.to_tensor(), l ) ) return ds def _tf_get_affine_dependency() -> _AffineDependency: return _AffineDependency( _tf_convert, tf.shape, tf.reshape, tf.expand_dims, tf.squeeze, _tf_pad_image, tf.range, _tf_cast_to_int, _tf_round_to_int, tf.repeat, tf.tile, tf.ones_like, tf.stack, tf.concat, tf.matmul, tf.clip_by_value, tf.math.floor, tf.math.ceil, _tf_gather_image, tf.identity, tf.reduce_max, tf.reduce_min, tf.logical_and, tf.boolean_mask ) def _tf_affine_transform( image: tf.Tensor, bboxes: tf.Tensor, labels: tf.Tensor, image_dest_tran_mat: tf.Tensor, bboxes_tran_mat: tf.Tensor, interpolation: Interpolation ) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]: return _affine_transform( image, bboxes, labels, image_dest_tran_mat, bboxes_tran_mat, interpolation, _tf_get_affine_dependency() ) def tf_flip_left_right( image: tf.Tensor, bboxes: tf.Tensor, labels: tf.Tensor ) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]: return _flip_left_right( image, bboxes, labels, Interpolation.NEAREST, _tf_get_affine_dependency() ) def tf_flip_up_down( image: tf.Tensor, bboxes: tf.Tensor, labels: tf.Tensor ) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]: return _flip_up_down( image, bboxes, labels, Interpolation.NEAREST, _tf_get_affine_dependency() ) def tf_rotate( image: tf.Tensor, bboxes: tf.Tensor, labels: tf.Tensor, angle_deg: float, interpolation: Interpolation = Interpolation.BILINEAR ) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]: return _rotate( image, bboxes, labels, _tf_convert(angle_deg), tf.cos, tf.sin, interpolation, _tf_get_affine_dependency() ) def tf_shear( image: tf.Tensor, bboxes: tf.Tensor, labels: tf.Tensor, angle_deg: float, interpolation: Interpolation = Interpolation.BILINEAR, _check_input: bool = True ) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]: if _check_input: _check_shear_input(angle_deg) return _shear( image, bboxes, labels, _tf_convert(angle_deg), tf.tan, interpolation, _tf_get_affine_dependency() ) def tf_translate( image: tf.Tensor, bboxes: tf.Tensor, labels: tf.Tensor, translate_height: int, translate_width: int, interpolation: Interpolation = Interpolation.BILINEAR, _check_input: bool = True ) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]: if _check_input: _check_translate_input( image.get_shape(), translate_height, translate_width ) return _translate( image, bboxes, labels, _tf_convert(translate_height), _tf_convert(translate_width), interpolation, _tf_get_affine_dependency() ) def _tf_get_crop_inputs( image_height: int, image_width: int, height_fraction_range: Tuple[float, float], width_fraction_range: Tuple[float, float], rand_fn: Callable[..., tf.Tensor] ) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor, tf.Tensor]: return _get_crop_inputs( image_height, image_width, height_fraction_range, width_fraction_range, rand_fn, _tf_convert, _tf_round_to_int ) def tf_crop( image: tf.Tensor, bboxes: tf.Tensor, labels: tf.Tensor, offset_height: int, offset_width: int, crop_height: int, crop_width: int, _check_input: bool = True ) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]: if _check_input: _check_crop_input(image.get_shape(), offset_height, offset_width) return _crop( image, bboxes, labels, _tf_convert(offset_height), _tf_convert(offset_width), _tf_convert(crop_height), _tf_convert(crop_width), _tf_convert, tf.shape, tf.reshape, tf.concat, tf.logical_and, tf.squeeze, tf.clip_by_value, tf.boolean_mask ) def tf_resize( image: tf.Tensor, bboxes: tf.Tensor, labels: tf.Tensor, dest_size: Tuple[int, int] ) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]: return _resize( image, bboxes, labels, dest_size, _tf_convert, tf.shape, tf.reshape, _tf_resize_image, tf.concat ) class TFRandomTransform: def __init__( self, tf_fn: Callable[..., Tuple[tf.Tensor, tf.Tensor, tf.Tensor]], probability: float, seed: Optional[int], name: str, is_affine: bool ) -> None: self._tf_fn = tf_fn self.probability = probability self._rng = tf.random.Generator.from_seed(seed) if seed is not None \ else tf.random.Generator.from_non_deterministic_state() self.name = name self.is_affine = is_affine def _rand_fn(self, shape: Sequence[int] = ()) -> tf.Tensor: return self._rng.uniform(shape=shape) def _get_mats( self, image: tf.Tensor, rand_fn: Callable[..., tf.Tensor] ) -> Tuple[tf.Tensor, tf.Tensor]: pass def __call__( self, image: tf.Tensor, bboxes: tf.Tensor, labels: tf.Tensor, *args: Any, **kwargs: Any ) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]: # Make sure inputs are in the needed format. image = _tf_convert(image) bboxes = _tf_convert(bboxes) labels = _tf_convert(labels) if self._rand_fn() < _tf_convert(self.probability): return self._tf_fn(image, bboxes, labels, *args, **kwargs) return image, bboxes, labels def _get_random_indices( rng: tf.random.Generator, num_indices: int, num_selected_indices: int, selected_probabilities: Optional[List[float]] = None, ) -> tf.Tensor: """ Roughly mimicking Numpy choice for getting indices, without replacement. The indices always start from 0. References: https://github.com/tensorflow/tensorflow/issues/9260#issuecomment-437875125 """ probs = selected_probabilities if selected_probabilities \ else tf.ones(num_indices) logits = tf.math.log(probs) z = -tf.math.log(-tf.math.log( # pylint: disable=invalid-unary-operand-type rng.uniform(tf.shape(logits), 0, 1) )) _, indices = tf.nn.top_k(logits + z, num_selected_indices) return indices class TFCombineAffine(TFRandomTransform): def __init__( self, transforms: Sequence[TFRandomTransform], num_selected_transforms: Optional[int] = None, selected_probabilities: Optional[List[float]] = None, interpolation: Interpolation = Interpolation.BILINEAR, probability: float = 1.0, seed: Optional[int] = None ) -> None: not_affine_trans = list(filter(lambda t: not t.is_affine, transforms)) if not_affine_trans: raise AssertionError( f"Non-affine transforms cannot be included in TFCombineAffine: " f"{[t.name for t in not_affine_trans]}" ) if num_selected_transforms and selected_probabilities: if len(selected_probabilities) != len(transforms): raise ValueError( "Number of items in selected_probabilities should be " "the same as the number of items in transforms." ) super().__init__( _tf_affine_transform, probability, seed, "TFCombineAffine", True ) self._transforms = transforms self._num_selected_transforms = num_selected_transforms self._selected_probabilities = selected_probabilities self._interpolation = interpolation self._identity_mat = tf.expand_dims(tf.constant([ [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0] ]), axis=0) def _combine_mats( self, image: tf.Tensor, rand_fn: Callable[..., tf.Tensor] ) -> Tuple[tf.Tensor, tf.Tensor]: image_dest_tran_mats, bboxes_tran_mats, probs = tuple(zip( *[(*t._get_mats(image, rand_fn), t.probability) for i, t in enumerate(self._transforms)] )) if self._num_selected_transforms: indices = _get_random_indices( self._rng, len(self._transforms), self._num_selected_transforms, self._selected_probabilities ) image_dest_tran_mats = tf.gather( # pylint: disable=no-value-for-parameter image_dest_tran_mats, indices ) bboxes_tran_mats = tf.gather( # pylint: disable=no-value-for-parameter bboxes_tran_mats, indices ) else: conditions = tf.reshape(rand_fn() < probs, (len(probs), 1, 1)) image_dest_tran_mats = tf.where( conditions, image_dest_tran_mats, self._identity_mat ) bboxes_tran_mats = tf.where( conditions, bboxes_tran_mats, self._identity_mat ) image_dest_tran_mat = functools.reduce( tf.matmul, tf.unstack(image_dest_tran_mats) ) # Note the reversed order for the bboxes tran matrices. bboxes_tran_mat = functools.reduce( tf.matmul, tf.unstack(bboxes_tran_mats)[::-1] ) return image_dest_tran_mat, bboxes_tran_mat def __call__( self, image: tf.Tensor, bboxes: tf.Tensor, labels: tf.Tensor, *args: Any, **kwargs: Any ) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]: image_dest_tran_mat, bboxes_tran_mat = self._combine_mats( image, self._rand_fn ) return super().__call__( image, bboxes, labels, image_dest_tran_mat, bboxes_tran_mat, self._interpolation ) class TFRandomFlipLeftRight(TFRandomTransform): def __init__( self, probability: float = 0.5, seed: Optional[int] = None ) -> None: super().__init__( tf_flip_left_right, probability, seed, "TFRandomFlipLeftRight", True ) def _get_mats( self, image: tf.Tensor, rand_fn: Callable[..., tf.Tensor] ) -> Tuple[tf.Tensor, tf.Tensor]: return _get_flip_left_right_mats(_tf_convert) def __call__( self, image: tf.Tensor, bboxes: tf.Tensor, labels: tf.Tensor, *args: Any, **kwargs: Any ) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]: return super().__call__(image, bboxes, labels) class TFRandomFlipUpDown(TFRandomTransform): def __init__( self, probability: float = 0.5, seed: Optional[int] = None ) -> None: super().__init__( tf_flip_up_down, probability, seed, "TFRandomFlipUpDown", True ) def _get_mats( self, image: tf.Tensor, rand_fn: Callable[..., tf.Tensor] ) -> Tuple[tf.Tensor, tf.Tensor]: return _get_flip_up_down_mats(_tf_convert) def __call__( self, image: tf.Tensor, bboxes: tf.Tensor, labels: tf.Tensor, *args: Any, **kwargs: Any ) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]: return super().__call__(image, bboxes, labels) class TFRandomRotate(TFRandomTransform): def __init__( self, angle_deg_range: Tuple[float, float] = (-15.0, 15.0), interpolation: Interpolation = Interpolation.BILINEAR, probability: float = 0.9, seed: Optional[int] = None ) -> None: _check_input_range(angle_deg_range, None, "angle_deg_range") super().__init__(tf_rotate, probability, seed, "TFRandomRotate", True) self.angle_deg_range = angle_deg_range self.interpolation = interpolation def _get_angle_deg(self, rand_fn: Callable[..., tf.Tensor]) -> tf.Tensor: return _tf_convert(self.angle_deg_range[1] - self.angle_deg_range[0]) \ * rand_fn() + _tf_convert(self.angle_deg_range[0]) def _get_mats( self, image: tf.Tensor, rand_fn: Callable[..., tf.Tensor] ) -> Tuple[tf.Tensor, tf.Tensor]: return _get_rotate_mats( self._get_angle_deg(rand_fn), _tf_convert, tf.cos, tf.sin ) def __call__( self, image: tf.Tensor, bboxes: tf.Tensor, labels: tf.Tensor, *args: Any, **kwargs: Any ) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]: return super().__call__( image, bboxes, labels, self._get_angle_deg(self._rand_fn), self.interpolation ) class TFRandomShear(TFRandomTransform): def __init__( self, angle_deg_range: Tuple[float, float] = (-10.0, 10.0), interpolation: Interpolation = Interpolation.BILINEAR, probability: float = 0.9, seed: Optional[int] = None ) -> None: _check_input_range(angle_deg_range, (-90.0, 90.0), "angle_deg_range") super().__init__(tf_shear, probability, seed, "TFRandomShear", True) self.angle_deg_range = angle_deg_range self.interpolation = interpolation def _get_angle_deg(self, rand_fn: Callable[..., tf.Tensor]) -> tf.Tensor: return _tf_convert(self.angle_deg_range[1] - self.angle_deg_range[0]) \ * rand_fn() + _tf_convert(self.angle_deg_range[0]) def _get_mats( self, image: tf.Tensor, rand_fn: Callable[..., tf.Tensor] ) -> Tuple[tf.Tensor, tf.Tensor]: return _get_shear_mats( self._get_angle_deg(rand_fn), _tf_convert, tf.tan ) def __call__( self, image: tf.Tensor, bboxes: tf.Tensor, labels: tf.Tensor, *args: Any, **kwargs: Any ) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]: return super().__call__( image, bboxes, labels, self._get_angle_deg(self._rand_fn), self.interpolation, False ) class TFRandomTranslate(TFRandomTransform): def __init__(
#!/usr/bin/env python ################################################################################ # # file_name_parameters # # # Copyright (c) 10/9/2009 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. ################################################################################# """ ******************************************** :mod:`file_name_parameters` -- Overview ******************************************** .. moduleauthor:: <NAME> <<EMAIL>> Handles file names for ruffus """ #88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888 # imports #88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888 import os,copy import re import glob from operator import itemgetter from itertools import groupby from collections import defaultdict from time import strftime, gmtime if __name__ == '__main__': import sys sys.path.insert(0,".") from ruffus_exceptions import * #from file_name_parameters import * from ruffus_utility import * #88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888 # Functions #88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888 import re #_________________________________________________________________________________________ # get_readable_path_str #_________________________________________________________________________________________ def get_readable_path_str(original_path, max_len): """ Truncates path to max_len characters if necessary If the result is a path within nested directory, will remove partially truncated directories names """ if len(original_path) < max_len: return original_path truncated_name = original_path[-(max_len - 5):] if "/" not in truncated_name: return "[...]" + truncated_name return "[...]" + re.sub("^[^/]+", "", truncated_name) #_________________________________________________________________________________________ # epoch_seconds_to_str #_________________________________________________________________________________________ def epoch_seconds_to_str (epoch_seconds): """ Converts seconds since epoch into nice string with date and time to 2 significant digits for seconds """ # returns 24 char long 25 May 2011 23:37:40.12 time_str = strftime("%d %b %Y %H:%M:%S", gmtime(epoch_seconds)) # fraction_of_second_as_str = ("%.2f" % (epoch_seconds - int(epoch_seconds)))[1:] # or fraction = ("%.2f" % (divmod(epoch_seconds, 1)[1]))[1:] return (time_str + fraction_of_second_as_str) err_msg_no_regex_match = ("No jobs were run because no files names matched. " "Please make sure that the regular expression is correctly specified.") err_msg_empty_files_parameter= ("@files() was empty, i.e. no files were specified. " "Please make sure this is by design.") #_________________________________________________________________________________________ # t_params_tasks_globs_run_time_data #_________________________________________________________________________________________ class t_params_tasks_globs_run_time_data(object): """ After parameters are parsed into tasks, globs, runtime data """ def __init__ (self, params, tasks, globs, runtime_data_names): self.params = params self.tasks = tasks self.globs = globs self.runtime_data_names = runtime_data_names def __str__ (self): return str(self.params) def param_iter (self): for p in self.params: yield t_params_tasks_globs_run_time_data(p, self.tasks, self.globs, self.runtime_data_names) def unexpanded_globs (self): """ do not expand globs """ return t_params_tasks_globs_run_time_data(self.params, self.tasks, [], self.runtime_data_names) def single_file_to_list (self): """ if parameter is a simple string, wrap that in a list unless it is glob Useful for simple @transform cases """ if isinstance(self.params, basestring) and not is_glob(self.params): self.params = [self.params] return True return False def regex_replaced (self, filename, regex, regex_or_suffix = REGEX_SUBSTITUTE): output_glob = regex_replace(filename, regex, self.globs, regex_or_suffix) output_param = regex_replace(filename, regex, self.params, regex_or_suffix) return t_params_tasks_globs_run_time_data(output_param, self.tasks, output_glob, self.runtime_data_names) #88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888 # needs_update_func # functions which are called to see if a job needs to be updated # # Each task is a series of parallel jobs # each of which has the following pseudo-code # # for param in param_generator_func(): # if needs_update_func(*param): # job_wrapper(*param) # # N.B. param_generator_func yields iterators of *sequences* # if you are generating single parameters, turn them into lists: # # for a in alist: # yield (a,) # #88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888 #_________________________________________________________________________________________ # needs_update_check_directory_missing # N.B. throws exception if this is an ordinary file, not a directory #_________________________________________________________________________________________ def needs_update_check_directory_missing (dirs): """ Called per directory: Does it exist? Is it an ordinary file not a directory? (throw exception """ for d in dirs: #print >>sys.stderr, "check directory missing %d " % os.path.exists(d) # DEBUG if not os.path.exists(d): return True, "Directory [%s] is missing" % d if not os.path.isdir(d): raise error_not_a_directory("%s already exists but as a file, not a directory" % d ) return False, "All directories exist" #_________________________________________________________________________________________ # check_input_files_exist #_________________________________________________________________________________________ def check_input_files_exist (*params): """ If inputs are missing then there is no way a job can run successful. Must throw exception. This extra function is a hack to make sure input files exists right before job is called for better error messages, and to save things from blowing up inside the task function """ if len(params): input_files = params[0] for f in get_strings_in_nested_sequence(input_files): if not os.path.exists(f): raise MissingInputFileError("No way to run job: "+ "Input file ['%s'] does not exist" % f) #_________________________________________________________________________________________ # needs_update_check_exist #_________________________________________________________________________________________ def needs_update_check_exist (*params): """ Given input and output files, see if all exist Each can be #. string: assumed to be a filename "file1" #. any other type #. arbitrary nested sequence of (1) and (2) """ # missing output means build if len(params) < 2: return True, "i/o files not specified" i, o = params[0:2] i = get_strings_in_nested_sequence(i) o = get_strings_in_nested_sequence(o) # # build: missing output file # if len(o) == 0: return True, "Missing output file" # missing input / output file means always build missing_files = [] for io in (i, o): for p in io: if not os.path.exists(p): missing_files.append(p) if len(missing_files): return True, "Missing file%s [%s]" % ("s" if len(missing_files) > 1 else "", ", ".join(missing_files)) # # missing input -> build only if output absent # if len(i) == 0: return False, "Missing input files" return False, "Up to date" #_________________________________________________________________________________________ # needs_update_check_modify_time #_________________________________________________________________________________________ def needs_update_check_modify_time (*params): """ Given input and output files, see if all exist and whether output files are later than input files Each can be #. string: assumed to be a filename "file1" #. any other type #. arbitrary nested sequence of (1) and (2) """ needs_update, err_msg = needs_update_check_exist (*params) if (needs_update, err_msg) != (False, "Up to date"): return needs_update, err_msg i, o = params[0:2] i = get_strings_in_nested_sequence(i) o = get_strings_in_nested_sequence(o) # # get sorted modified times for all input and output files # filename_to_times = [[], []] file_times = [[], []] #_____________________________________________________________________________________ # pretty_io_with_date_times #_____________________________________________________________________________________ def pretty_io_with_date_times (filename_to_times): # sort for io in range(2) : filename_to_times[io].sort() # # add asterisk for all files which are causing this job to be out of date # file_name_to_asterisk = dict() oldest_output_mtime = filename_to_times[1][0][0] for mtime, file_name in filename_to_times[0]: file_name_to_asterisk[file_name] = "*" if mtime >= oldest_output_mtime else " " newest_output_mtime = filename_to_times[0][-1][0] for mtime, file_name in filename_to_times[1]: file_name_to_asterisk[file_name] = "*" if mtime <= newest_output_mtime else " " # # try to fit in 100 - 15 = 85 char lines # date time ~ 25 characters so limit file name to 55 characters # msg = "\n" category_names = "Input", "Output" for io in range(2): msg += " %s files:\n" % category_names[io] for mtime, file_name in filename_to_times[io]: file_datetime_str = epoch_seconds_to_str(mtime) msg += (" " + # indent file_name_to_asterisk[file_name] + " " + # asterisked out of date files file_datetime_str + ": " + # date time of file get_readable_path_str(file_name, 55) + "\n") # file name truncated to 55 return msg # # Ignore output file if it is found in the list of input files # By definition they have the same timestamp, # and the job will otherwise appear to be out of date # # Symbolic links followed real_input_file_names = set() for input_file_name in i: real_input_file_names.add(os.path.realpath(input_file_name)) mtime = os.path.getmtime(input_file_name) filename_to_times[0].append((mtime, input_file_name)) file_times[0].append(mtime) for output_file_name in o: real_file_name = os.path.realpath(output_file_name) mtime = os.path.getmtime(output_file_name) if real_file_name not in real_input_file_names: file_times[1].append(mtime) filename_to_times[1].append((mtime, output_file_name)) # # Debug: Force print modified file names and times # #if len(file_times[0]) and len (file_times[1]): # print >>sys.stderr, pretty_io_with_date_times(filename_to_times), file_times, (max(file_times[0]) >= min(file_times[1])) #else: # print >>sys.stderr, i, o # # update if any input file >= (more recent) output file # if len(file_times[0]) and len (file_times[1]) and max(file_times[0]) >= min(file_times[1]): return True, pretty_io_with_date_times(filename_to_times) return False, "Up to date" #_________________________________________________________________________________________ # # is_file_re_combining # #_________________________________________________________________________________________ def is_file_re_combining (old_args): """ Helper function for @files_re check if parameters wrapped in combine """ combining_all_jobs = False orig_args = [] for arg in old_args: if isinstance(arg, combine): combining_all_jobs = True if len(arg.args) == 1: orig_args.append(arg.args[0]) else: orig_args.append(arg[0].args)
asv_to_taxa_dict = {} taxa_to_asv_dict = {} for line in taxonomy: if 'Feature' not in line: asv, taxa, _confidence = line.split('\t') taxa = asv_taxa_clean_up(taxa, level) if taxa: if asv not in asv_to_taxa_dict: asv_to_taxa_dict[asv] = taxa else: print('something wrong') if taxa not in taxa_to_asv_dict: taxa_to_asv_dict[taxa] = set() taxa_to_asv_dict[taxa].add(asv) taxonomy.close() assigned_asv = {} select_taxa_list = open(args.select_taxa_list) for line in select_taxa_list: if line[0] != '#': taxa = line.split('\t')[0] #taxa = asv_taxa_clean_up(taxa, level) if taxa: if taxa in taxa_to_asv_dict: assigned_asv[taxa] = taxa_to_asv_dict[taxa] select_taxa_list.close() #universal_ko_dict, universal_ko_lookup = load_ko(args.kegg_file) #ko_super_set_type, ko_to_path_lookup = ko_to_pathway(universal_ko_dict, universal_ko_lookup) contrib = open(args.nsti_file) nsti_fun = {} for line in contrib: if 'NSTI' not in line: #P1-1 K00001 01edd66886a699ad420ca0d8db401937 154.0 1.091424521615875 2 308.0 2.18284904323175 asv = line.split('\t')[0] nsti = float(line.split('\t')[2]) process = False if asv in asv_to_taxa_dict: taxa = asv_to_taxa_dict[asv] if taxa in assigned_asv: if taxa not in nsti_fun: nsti_fun[taxa] = [] nsti_fun[taxa].append(nsti) contrib.close() outfile_name = args.output_file outfile = open(outfile_name,'w') header = ('#taxa\tmean_nsti\tmedian_nsti\tstd_nsti\tmedian-std\n') outfile.write(header) for taxa in nsti_fun: nsti_list = nsti_fun[taxa] outline = ('{}\t{}\t{}\t{}\t{}\n').format(taxa, np.mean(nsti_list), np.median(nsti_list), np.std(nsti_list), np.median(nsti_list)-np.std(nsti_list)) print(outline) outfile.write(outline) outfile.close() def define_type(s_taxa, p_taxa, raw_s_fa, raw_p_fa): coord_dict = {'S':[0,0], 'P':[0,0]} s_fa = np.median(raw_s_fa) p_fa = np.median(raw_p_fa) coord_dict = {'S':[s_taxa, s_fa], 'P':[p_taxa, p_fa]} return(coord_dict) def plot_funbubbles(): import plotly.graph_objects as go import pickle file = open('C:/Gresham/Project_Gravimondo/Project_Impact_2/sigilo_results/pathway/pct_metagenome_contrib_family.p','rb') fun_dict = pickle.load(file) file.close() condition_dict = {} site_abundance_dict = {} taxon_set = set() for each in fun_dict: taxa = each.split('_') condition = taxa[-1] if condition not in condition_dict: condition_dict[condition] = set() taxa_list = taxa[1:-1] taxon = '' for taxa in taxa_list: taxon += taxa +'_' taxon = taxon[:-1] condition_dict[condition].add(taxon) taxon_set.add(taxon) for site in fun_dict[each]: if site != 'ko': if condition not in site_abundance_dict: site_abundance_dict[condition] = {} if taxon not in site_abundance_dict[condition]: site_abundance_dict[condition][taxon] = {'S':0, 'P':0} # val = np.median(fun_dict[each][site]) # # if val == 0: # val = 1 # # val = np.log10(val) # # if val < 0: # val = 0 site_abundance_dict[condition][taxon][site] += fun_dict[each][site] for condition, taxa_set in condition_dict.items(): x_compound_dict = {'S':[], 'P':[]} y_compound_dict = {'S':[], 'P':[]} for taxon in taxa_set: for site in site_abundance_dict[condition][taxon]: val = site_abundance_dict[condition][taxon][site] x_compound_dict[site].append(val) y_compound_dict[site].append(taxon) outfile_name = ('family_{}.pdf').format(condition) #import plotly.graph_objects as go fig = go.Figure() fig.add_trace(go.Scatter( x=x_compound_dict['S'], y=y_compound_dict['S'], marker=dict(color='rgba(128, 0, 128, 0.5)', size=6), mode="markers", name="Impact", )) fig.add_trace(go.Scatter( x=x_compound_dict['P'], y=y_compound_dict['P'], marker=dict(color='rgba(44, 160, 101, 0.5)', size=6), mode="markers", name="Conserved", )) fig.update_layout(title=condition, xaxis_title="Percent Relative Abundance", yaxis_title="Taxa", font_size=10, width=1500, height=600) fig.show() fig.write_image(outfile_name) print(len(taxon_set)) def apply_versatility(): global ko_dict versa_dict = {} for site in ko_dict: for level in ko_dict[site]: if level not in versa_dict: versa_dict[level] = {} if site not in versa_dict[level]: # a set of all taxa in a site at a level # this is for normalization ot the KO specific numbers of taxa versa_dict[level][site] = {'total_taxa': set()} for ko in ko_dict[site][level]: if ko not in versa_dict[level][site]: # the KO of every site should have: # how many taxa have the ko: # versa_dict[level][site][ko]['taxa_num'].add(taxon) # a taxa specific functional abundance: # versa_dict[level][site][ko][taxon] += (ko_dict[site][level][ko][taxon]) # a distribution of all functional abundances # versa_dict[level][site][ko]['fa_dist'].append(versa_dict[level][site][ko][taxon]) versa_dict[level][site][ko] = {'taxa_num':set(), 'fa_dist':[]} for taxon in ko_dict[site][level][ko]: versa_dict[level][site][ko]['taxa_num'].add(taxon) versa_dict[level][site]['total_taxa'].add(taxon) if taxon not in versa_dict[level][site][ko]: versa_dict[level][site][ko][taxon] = 0 #The KO functional abundance of the a specific taxa # not normalised # ko_dict[site][level][ko]['total'] versa_dict[level][site][ko][taxon] += (ko_dict[site][level][ko][taxon]) versa_dict[level][site][ko]['fa_dist'].append(versa_dict[level][site][ko][taxon]) fet_ct = 0 versatile_dict = {} for level in versa_dict: temp_site_dict = {} site_list = {} for site in versa_dict[level]: # a set of all taxa in a site at a level total_taxa = len(versa_dict[level][site]['total_taxa']) for ko in versa_dict[level][site]: #filters 'total_taxa' if 'taxa_num' in versa_dict[level][site][ko]: #only consider those sites with ko in each replicate if ko not in site_list: site_list[ko] = set() site_list[ko].add(site) # how many taxa have the ko: taxa_num = len(versa_dict[level][site][ko]['taxa_num']) fa_dist = versa_dict[level][site][ko]['fa_dist'] if ko not in temp_site_dict: temp_site_dict[ko]={} if site not in temp_site_dict[ko]: temp_site_dict[ko][site]={'taxa_num': 0, 'total_taxa': total_taxa, 'fa_dist': []} temp_site_dict[ko][site]['taxa_num'] += taxa_num if len(fa_dist) > 1: for each in fa_dist: temp_site_dict[ko][site]['fa_dist'].append(each) else: temp_site_dict[ko][site]['fa_dist'].append(fa_dist[0]) #temp_site_dict[ko][site]['total_taxa'] = total_taxa for ko in temp_site_dict: process = True #ko_sites = site_list[ko] # print(ko_sites) #for each in ['S', 'V', 'P']: # for each in ['S1', 'S2', 'S3', 'V1', 'V2', 'V3', 'P1', 'P2', 'P3']: # if each not in ko_sites: # process = False if process: uname = ('{}_{}').format(level, ko) print(uname) # for x_sample_set in [['M1', 'M2', 'M3'], ['P1', 'P2', 'P3']]: # for y_sample_set in [['M1', 'M2', 'M3'], ['P1', 'P2', 'P3']]: # if x_sample_set != y_sample_set: x_set = [] x_t_set = [] x_fa = [] x_ratio = [] y_set = [] y_t_set = [] y_fa = [] y_ratio = [] z_set = [] z_t_set = [] z_fa = [] z_ratio = [] for x in ['S1', 'S2', 'S3']: if x in temp_site_dict[ko]: x_num = temp_site_dict[ko][x]['taxa_num'] x_total = temp_site_dict[ko][x]['total_taxa'] x_fa_dist = temp_site_dict[ko][x]['fa_dist'] else: x_num = 0 x_total = 1 x_fa_dist = [1] x_set.append(x_num) x_t_set.append(x_total) if len(x_fa_dist) > 1: for each in x_fa_dist: x_fa.append(each) x_ratio.append((x_num/x_total)/each) else: x_ratio.append((x_num/x_total)/fa_dist[0]) x_fa.append(fa_dist[0]) # for y in ['V1', 'V2']: # if y in temp_site_dict[ko]: # y_num = temp_site_dict[ko][y]['taxa_num'] # y_total = temp_site_dict[ko][y]['total_taxa'] # y_fa_dist = temp_site_dict[ko][y]['fa_dist'] # else: # y_num = 0 # y_total = 1 # y_fa_dist = [1] # # y_set.append(y_num) # y_t_set.append(y_total) # # if len(y_fa_dist) > 1: # for each in y_fa_dist: # y_fa.append(each) # y_ratio.append((y_num/y_total)/each) # else: # y_ratio.append((y_num/y_total)/fa_dist[0]) # y_fa.append(fa_dist[0]) for z in ['P1', 'P2', 'P3']: if z in temp_site_dict[ko]: z_num = temp_site_dict[ko][z]['taxa_num'] z_total = temp_site_dict[ko][z]['total_taxa'] z_fa_dist = temp_site_dict[ko][z]['fa_dist'] else: z_num = 0 z_total = 1 z_fa_dist = [1] z_set.append(z_num) z_t_set.append(z_total) if len(z_fa_dist) > 1: for each in z_fa_dist: z_fa.append(each) z_ratio.append((z_num/z_total)/each) else: z_ratio.append((z_num/z_total)/fa_dist[0]) z_fa.append(fa_dist[0]) print(x_ratio) #print(y_ratio) print(z_ratio) #_u, mwu_pval_1 = run_mwu(x_ratio, y_ratio) #_u, mwu_pval_2 = run_mwu(y_ratio, z_ratio) _u, mwu_pval_3 = run_mwu(x_ratio, z_ratio) if (mwu_pval_3) <= 0.05: # obs = np.array([x_set, y_set, z_set]) # chi2, pval, dof, expected = stats.chi2_contingency(obs, correction=True) # if pval <= 0.05: # if uname not in versatile_dict: # versatile_dict[uname] = {} # # versatile_dict[uname]['M_fa'] = x_fa # versatile_dict[uname]['P_fa'] = y_fa # versatile_dict[uname]['M_num'] = sum(x_set) # versatile_dict[uname]['P_num'] = sum(y_set) # versatile_dict[uname]['M_norm'] = sum(x_t_set) # versatile_dict[uname]['P_norm'] = sum(y_t_set) #_od, fet_pval= stats.fisher_exact([[sum(x_set), sum(x_t_set)-sum(x_set)],[sum(y_set), sum(y_t_set)-sum(y_set)]]) #if pval <= 0.05: print(ko) if uname not in versatile_dict: versatile_dict[uname] = {} #coord_dict = define_type((sum(x_set)/sum(x_t_set)), (sum(y_set)/sum(y_t_set)), x_fa, y_fa) versatile_dict[uname]['S_fa'] = x_fa #versatile_dict[uname]['V_fa'] = y_fa versatile_dict[uname]['P_fa'] = z_fa versatile_dict[uname]['S_num'] = sum(x_set) #versatile_dict[uname]['V_num'] = sum(y_set) versatile_dict[uname]['P_num'] = sum(z_set) versatile_dict[uname]['S_norm'] = sum(x_t_set) #versatile_dict[uname]['V_norm'] = sum(y_t_set) versatile_dict[uname]['P_norm'] = sum(z_t_set) #versatile_dict[uname]['istype'] = istype #versatile_dict[uname]['ratio_taxa'] = ratio_taxa #versatile_dict[uname]['ratio_fa'] = ratio_fa versatile_dict[uname]['S_ratio'] = x_ratio #versatile_dict[uname]['V_ratio'] = y_ratio versatile_dict[uname]['P_ratio'] = z_ratio # print(x_fa) # print(y_fa) fet_ct+=1 # if level not in versatile_dict: # versatile_dict[level] = set() # versatile_dict[level].add(ko) # #print(obs, pval, chi_ct, fet_pval, fet_ct) pickle_name = ('plot_versatility.p').format() pickle.dump(versatile_dict, open(pickle_name, 'wb')) return(versa_dict) def make_versatility_figures(): import plotly.express as px convert_rank_to_taxa = {0:'kingdom', 1:'phylum', 2:'class', 3:'order', 4:'family', 5:'genus', 6:'species'} file = open('plot_versatility.p','rb') versatile_dict = pickle.load(file) file.close() for uname in versatile_dict: i_tag = ('Impacted, n = {} of {}: {}. Median = {}').format(versatile_dict[uname]['M_num'], versatile_dict[uname]['M_norm'], round(versatile_dict[uname]['M_num']/versatile_dict[uname]['M_norm'],2), np.median(versatile_dict[uname]['M_fa'])) p_tag = ('Pristine, n = {} of {}: {}. Median = {}').format(versatile_dict[uname]['P_num'], versatile_dict[uname]['P_norm'], round(versatile_dict[uname]['P_num']/versatile_dict[uname]['P_norm'],2), np.median(versatile_dict[uname]['P_fa'])) #s_tag = ('Source').format(path) #v_tag = ('Valley').format(path) x_data = i_tag, p_tag i_list = return_log10(versatile_dict[uname]['M_fa']) p_list = return_log10(versatile_dict[uname]['P_fa']) #s_list = return_log10(plot_round[uname]['S']) #v_list = return_log10(plot_round[uname]['V']) y_data = i_list, p_list ko = uname.split('_')[1] taxa_level = convert_rank_to_taxa[int(uname.split('_')[0])] fig = go.Figure() colors = 'rgba(255, 144, 14, 0.5)', 'rgba(44, 160, 101, 0.5)' outfile_name = ('{}_{}_versatility.pdf').format(taxa_level, ko) print(outfile_name) for xd, yd, cls in zip(x_data, y_data, colors): fig.add_trace(go.Box( #, y=yd, name=xd, boxpoints='all', notched=True, jitter=0.5, whiskerwidth=0.2, fillcolor=cls, line_color=cls, marker_size=5, line_width=1, showlegend=False) ) fig.update_layout( title=ko, xaxis_title="Sample Site", yaxis_title="Log10(Relative Functional Abundance)", font=dict( family="Courier New, monospace", size=10, color="#7f7f7f" ) ) fig.show() fig.write_image(outfile_name) x_list = [] y_list = [] size_list = [] istype_list = [] uname_list = [] type_dict = {} for uname in versatile_dict: if 'K02591' in uname: size_list.append(int(uname.split('_')[0])**3) x_list.append(np.log10(versatile_dict[uname]['ratio_taxa'])) y_list.append(np.log10(versatile_dict[uname]['ratio_fa'])) istype = versatile_dict[uname]['istype'] istype_list.append(istype) uname_list.append(uname) if istype not in
#!/usr/bin/env/python # # -*- coding: utf-8 -*- ### # Copyright (c) 2016, <NAME> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions, and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions, and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the author of this software nor the name of # contributors to this software may be used to endorse or promote products # derived from this software without specific prior written consent. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. ### import os import re import sys import time import urllib import sqlite3 import httplib import threading import dns.resolver import supybot.log as log import supybot.conf as conf import supybot.utils as utils import supybot.ircdb as ircdb import supybot.world as world from supybot.commands import * import supybot.ircmsgs as ircmsgs import supybot.plugins as plugins import supybot.commands as commands import supybot.ircutils as ircutils import supybot.callbacks as callbacks import supybot.schedule as schedule import supybot.registry as registry try: from supybot.i18n import PluginInternationalization _ = PluginInternationalization('Sigyn') except: _ = lambda x:x def repetitions(s): # returns a list of (pattern,count), used to detect a repeated pattern inside a single string. r = re.compile(r"(.+?)\1+") for match in r.finditer(s): yield (match.group(1), len(match.group(0))/len(match.group(1))) def isCloaked (prefix): if not ircutils.isUserHostmask(prefix): return False (nick,ident,host) = ircutils.splitHostmask(prefix) if '/' in host: if host.startswith('gateway/') or host.startswith('nat/'): return False return True return False def compareString (a,b): """return 0 to 1 float percent of similarity ( 0.85 seems to be a good average )""" if a == b: return 1 sa, sb = set(a), set(b) n = len(sa.intersection(sb)) if float(len(sa) + len(sb) - n) == 0: return 0 jacc = n / float(len(sa) + len(sb) - n) return jacc def largestString (s1,s2): """return largest pattern available in 2 strings""" # From https://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Longest_common_substring#Python2 # License: CC BY-SA m = [[0] * (1 + len(s2)) for i in xrange(1 + len(s1))] longest, x_longest = 0, 0 for x in xrange(1, 1 + len(s1)): for y in xrange(1, 1 + len(s2)): if s1[x - 1] == s2[y - 1]: m[x][y] = m[x - 1][y - 1] + 1 if m[x][y] > longest: longest = m[x][y] x_longest = x else: m[x][y] = 0 return s1[x_longest - longest: x_longest] def floatToGMT (t): f = None try: f = float(t) except: return None return time.strftime('%Y-%m-%d %H:%M:%S GMT',time.gmtime(f)) def _getRe(f): def get(irc, msg, args, state): original = args[:] s = args.pop(0) def isRe(s): try: foo = f(s) return True except ValueError: return False try: while len(s) < 512 and not isRe(s): s += ' ' + args.pop(0) if len(s) < 512: state.args.append([s,f(s)]) else: state.errorInvalid('regular expression', s) except IndexError: args[:] = original state.errorInvalid('regular expression', s) return get getPatternAndMatcher = _getRe(utils.str.perlReToPythonRe) addConverter('getPatternAndMatcher', getPatternAndMatcher) class Ircd (object): def __init__(self,irc): self.irc = irc # contains Chan instances self.channels = {} # contains Pattern instances self.patterns = {} # contains whowas requested for a short period of time self.whowas = {} # contains klines requested for a short period of time self.klines = {} # contains various TimeoutQueue for detection purpose # often it's [host] { with various TimeOutQueue and others elements } self.queues = {} # flag or time self.opered = False # flag or time self.defcon = False # used for temporary storage of outgoing actions self.pending = {} self.logs = {} # contains servers notices when full or in bad state # [servername] = time.time() self.limits = {} # current ip to dline, one at time, due to testline limitation self.dline = '' # flag or time self.efnet = False # { ip : message } self.digs = {} # flag or time self.netsplit = False self.tors = {} self.ping = None self.servers = {} self.resolving = {} def __repr__(self): return '%s(patterns=%r, queues=%r, channels=%r, pending=%r, logs=%r, digs=%r, limits=%r, whowas=%r, klines=%r)' % (self.__class__.__name__, self.patterns, self.queues, self.channels, self.pending, self.logs, self.digs, self.limits, self.whowas, self.klines) def restore (self,db): c = db.cursor() c.execute("""SELECT id, pattern, regexp, mini, life FROM patterns WHERE removed_at is NULL""") items = c.fetchall() if len(items): for item in items: (uid,pattern,regexp,limit,life) = item if regexp == 1: regexp = True else: regexp = False self.patterns[uid] = Pattern(uid,pattern,regexp,limit,life) c.close() def add (self,db,prefix,pattern,limit,life,regexp): c = db.cursor() t = 0 if regexp: t = 1 c.execute("""INSERT INTO patterns VALUES (NULL, ?, ?, ?, ?, ?, ?, ?, ?, NULL, NULL)""", (pattern,t,limit,life,prefix,'',0,float(time.time()))) uid = int(c.lastrowid) self.patterns[uid] = Pattern(uid,pattern,regexp,limit,life) db.commit() c.close() return uid def count(self,db,uid): uid = int(uid) if uid in self.patterns: c = db.cursor() c.execute("""SELECT id, triggered FROM patterns WHERE id=? LIMIT 1""",(uid,)) items = c.fetchall() if len(items): (uid,triggered) = items[0] triggered = int(triggered + 1) c.execute("""UPDATE patterns SET triggered=? WHERE id=?""",(triggered,uid)) db.commit() c.close() def ls (self,db,pattern,deep=False): c = db.cursor() glob = '*%s*' % pattern like = '%'+pattern+'%' i = None try: i = int(pattern) except: i = None if i: c.execute("""SELECT id, pattern, regexp, operator, at, triggered, removed_at, removed_by, comment, mini, life FROM patterns WHERE id=? LIMIT 1""",(i,)) else: if deep: c.execute("""SELECT id, pattern, regexp, operator, at, triggered, removed_at, removed_by, comment, mini, life FROM patterns WHERE id GLOB ? OR id LIKE ? OR pattern GLOB ? OR pattern LIKE ? OR comment GLOB ? OR comment LIKE ? ORDER BY id DESC""",(glob,like,glob,like,glob,like)) else: c.execute("""SELECT id, pattern, regexp, operator, at, triggered, removed_at, removed_by, comment, mini, life FROM patterns WHERE (id GLOB ? OR id LIKE ? OR pattern GLOB ? OR pattern LIKE ? OR comment GLOB ? OR comment LIKE ?) and removed_at is NULL ORDER BY id DESC""",(glob,like,glob,like,glob,like)) items = c.fetchall() c.close() if len(items): results = [] for item in items: (uid,pattern,regexp,operator,at,triggered,removed_at,removed_by,comment,limit,life) = item end = '' if i: if removed_by: end = ' - disabled on %s by %s - ' % (floatToGMT(removed_at),removed_by.split('!')[0]) results.append('#%s "%s" by %s on %s (%s calls) %s/%ss%s(%s)' % (uid,pattern,operator.split('!')[0],floatToGMT(at),triggered,limit,life,end,comment)) else: if removed_by: end = ' (disabled)' results.append('[#%s "%s" (%s calls) %s/%ss%s]' % (uid,pattern,triggered,limit,life,end)) return results return [] def edit (self,db,uid,limit,life,comment): c = db.cursor() uid = int(uid) c.execute("""SELECT id, life FROM patterns WHERE id=? LIMIT 1""",(uid,)) items = c.fetchall() if len(items): if comment: c.execute("""UPDATE patterns SET life=?, mini=?, comment=? WHERE id=? LIMIT 1""",(life,limit,comment,uid)) else: c.execute("""UPDATE patterns SET life=?, mini=? WHERE id=? LIMIT 1""",(life,limit,uid)) db.commit() if uid in self.patterns: self.patterns[uid].life = life self.patterns[uid].limit = limit found = True c.close() return (len(items)) def toggle (self,db,uid,prefix,active): c = db.cursor() uid = int(uid) c.execute("""SELECT id, pattern, regexp, mini, life, removed_at, removed_by FROM patterns WHERE id=? LIMIT 1""",(uid,)) items = c.fetchall() updated = False if len(items): (id,pattern,regexp,limit,life,removed_at,removed_by) = items[0] if active and removed_at: c.execute("""UPDATE patterns SET removed_at=NULL, removed_by=NULL WHERE id=? LIMIT 1""",(uid,)) self.patterns[uid] = Pattern(uid,pattern,regexp == 1,limit,life) updated = True elif not removed_at: c.execute("""UPDATE patterns SET removed_at=?, removed_by=? WHERE id=? LIMIT 1""",(float(time.time()),prefix,uid)) if uid in self.patterns: del self.patterns[uid] updated = True db.commit() c.close() return updated class Chan (object): def __init__(self,channel): self.channel = channel self.patterns = None self.buffers = {} self.logs = {} self.nicks = {} self.called = False def __repr__(self): return '%s(channel=%r, patterns=%r, buffers=%r, logs=%r, nicks=%r)' % (self.__class__.__name__, self.channel, self.patterns, self.buffers, self.logs, self.nicks) class Pattern (object): def __init__(self,uid,pattern,regexp,limit,life): self.uid = uid self.pattern = pattern self.limit = limit self.life = life self._match = False if regexp: self._match = utils.str.perlReToPythonRe(pattern) def match (self,text):
import traceback, sys, time, signal, importlib, yaml, os, os.path, datetime from pythreader import Task, TaskQueue, Primitive, synchronized, PyThread, LogFile from webpie import Logged, Logger, HTTPServer, RequestProcessor, yaml_expand as expand, init_uid from multiprocessing import Process, Pipe import re, socket setproctitle = None try: from setproctitle import setproctitle except: pass RequestTask = RequestProcessor #class RequestTask(RequestProcessor, Task): # # def __init__(self, wsgi_app, request, logger): # #print("RequestTask.__init__: args:", wsgi_app, request, logger) # Task.__init__(self, name=f"[RequestTask {request.Id}]") # RequestProcessor.__init__(self, wsgi_app, request, logger) class Service(Primitive, Logged): def __init__(self, config, logger=None): name = config["name"] #print("Service(): config:", config) self.ServiceName = name Primitive.__init__(self, name=f"[service {name}]") Logged.__init__(self, f"[app {name}]", logger, debug=True) self.Config = None self.Initialized = self.initialize(config) @synchronized def initialize(self, config=None): config = config or self.Config self.Config = config reload_files = config.get("touch_reload", []) if isinstance(reload_files, str): reload_files = [reload_files] self.ReloadFileTimestamps = {path: self.mtime(path) for path in reload_files} self.Prefix = config.get("prefix", "/") self.ReplacePrefix = config.get("replace_prefix") self.Timeout = config.get("timeout", 10) saved_path = sys.path[:] saved_modules = set(sys.modules.keys()) saved_environ = os.environ.copy() try: args = None if "file" in config: print('*** Use of "file" parameter is deprecated. Use "module" instead') self.ScriptFileName = fname = config.get("module", config.get("file")) g = {} extra_path = config.get("python_path") if extra_path is not None: if isinstance(extra_path, str): extra_path = [extra_path] sys.path = extra_path + sys.path if "env" in config: os.environ.update(config["env"]) try: exec(open(fname, "r").read(), g) except: tb = traceback.format_exc() self.log_error(f"Error importing module {fname}:\n{tb}") return False if "create" in config: # deprecated print('*** Use of "create" parameter is deprecated. Use "application: function()" instead') application = config["create"] + "()" else: application = config.get("application", "application") if application.endswith("()"): args = config.get("args") fcn_name = application[:-2] fcn = g.get(fcn_name) if fcn is None: self.log_error(f"Application creation function {fcn_name} not found in module {fname}") return False try: if isinstance(args, dict): app = fcn(**args) elif isinstance(args, (list, tuple)): app = fcn(*args) elif args is None: app = fcn() else: app = fcn(args) except: tb = traceback.format_exc() self.log_error(f"Error calling the application initialization function:\n{tb}") return False if app is None: self.log_error(f'Application creation function {fcn_name} returned None') return False else: app = g.get(application) if app is None: self.log_error(f'Application object "{application}" not found in {fname}') return False self.AppArgs = args self.WSGIApp = app max_workers = config.get("max_workers", 5) queue_capacity = config.get("queue_capacity", 10) self.RequestQueue = TaskQueue(max_workers, capacity = queue_capacity, delegate=self) self.log("initiaized") except: tb = traceback.format_exc() self.log_error(f"Error initializing application:\n{tb}") return False finally: sys.path = saved_path extra_modules = set(sys.modules.keys()) - set(saved_modules) #print("loadApp: removing modules:", sorted(list(extra_modules))) for m in extra_modules: del sys.modules[m] for n in set(os.environ.keys()) - set(saved_environ.keys()): del os.environ[n] os.environ.update(saved_environ) return True def taskFailed(self, queue, task, exc_type, exc_value, tb): self.log_error("request failed:", "".join(traceback.format_exception(exc_type, exc_value, tb))) try: task.Request.close() except: pass def accept(self, request): #print(f"Service {self}: accept()") if not self.Initialized: return False header = request.HTTPHeader uri = header.URI self.debug("accept: uri:", uri, " prefix:", self.Prefix) #print("Sevice", self," accept: uri:", uri, " prefix:", self.Prefix) if uri.startswith(self.Prefix): uri = uri[len(self.Prefix):] if not uri.startswith("/"): uri = "/" + uri if self.ReplacePrefix: uri = self.ReplacePrefix + uri header.replaceURI(uri) request.AppName = self.ServiceName script_path = self.Prefix while script_path and script_path.endswith("/"): script_path = script_path[:-1] request.Environ["SCRIPT_NAME"] = script_path request.Environ["SCRIPT_FILENAME"] = self.ScriptFileName self.RequestQueue.addTask(RequestTask(self.WSGIApp, request, self.Logger)) #print("Service", self, " accepted") return True else: #print("Service", self, " rejected") return False def close(self): self.RequestQueue.hold() def join(self): self.RequestQueue.join() def mtime(self, path): try: return os.path.getmtime(path) except: return None def reloadIfNeeded(self): for path, old_timestamp in self.ReloadFileTimestamps.items(): mt = self.mtime(path) if mt is not None and mt != old_timestamp: ct = time.ctime(mt) self.log(f"file {path} was modified at {ct}") break else: return False self.Initialized = self.initialize() class MPLogger(PyThread): def __init__(self, logger, queue_size=-1, debug=False, name=None): import multiprocessing PyThread.__init__(self, name=name, daemon=True) self.Logger = logger self.Queue = multiprocessing.Queue(queue_size) self.Debug = debug def run(self): # # master side # from queue import Empty while True: msg = self.Queue.get() who, t = msg[:2] parts = [str(p) for p in msg[2:]] t = datetime.datetime.fromtimestamp(t) process_timestamp = t.strftime("%m/%d/%Y %H:%M:%S") + ".%03d" % (t.microsecond//1000) self.Logger.log(who, "%s: %s" % (process_timestamp, " ".join(parts))) def log(self, who, *parts): # # subprocess side # parts = tuple(str(p) for p in parts) self.Queue.put((who, time.time())+parts) def debug(self, who, *parts): # # subprocess side # if self.Debug: self.log(f"{who} [DEBUG]", *parts) def error(self, who, *parts): # # subprocess side # self.log(f"{who} [ERROR]", *parts) class MultiServerSubprocess(Process): def __init__(self, port, sock, config_file, logger=None): Process.__init__(self, daemon=True) #print("MultiServerSubprocess.__init__: logger:", logger) self.Sock = sock self.Logger = logger self.Port = port self.Server = None self.ConnectionToMaster, self.ConnectionToSubprocess = Pipe() self.ConfigFile = config_file # path self.ReconfiguredTime = 0 self.Services = [] self.MasterSide = True self.Stop = False self.MasterPID = os.getpid() def log(self, *parts): mypid=os.getpid() self.Logger.log(f"[Subprocess {mypid}]", *parts) def reconfigure(self): #print("MultiServerSubprocess.reconfigure()...") self.ReconfiguredTime = os.path.getmtime(self.ConfigFile) self.Config = config = expand(yaml.load(open(self.ConfigFile, 'r'), Loader=yaml.SafeLoader)) templates = config.get("templates", {}) services = config.get("services", []) service_list = [] assert isinstance(services, list) for svc_cfg in services: #print("svc_cfg:", svc_cfg) svc = None if "template" in svc_cfg: template = templates.get(svc_cfg.get("template", "*")) if template is not None: c = {} c.update(template) c.update(svc_cfg) svc_cfg = expand(c) names = svc_cfg.get("names", [svc_cfg.get("name")]) for name in names: c = svc_cfg.copy() c["name"] = name svc = Service(expand(c), self.Logger) if svc.Initialized: service_list.append(svc) #print("Service", svc, "created and added to the list") else: self.log(f'service "{svc.ServiceName}" failed to initialize - removing from service list') else: #print("MultiServerSubprocess.reconfigure: svc_cfg:", svc_cfg) #print("MultiServerSubprocess.reconfigure: expanded:", expand(svc_cfg)) svc = Service(expand(svc_cfg), self.Logger) if not svc.Initialized: #print("service not initialzed") self.log(f'service "{svc.ServiceName}" failed to initialize - removing from service list') else: service_list.append(svc) #print("Service", svc, "created and added to the list") #print("--------") names = ",".join(s.Name for s in service_list) if self.Server is None: self.Server = HTTPServer.from_config(self.Config, service_list, logger=self.Logger) self.log(f"server created with services: {names}") else: self.Server.setServices(service_list) self.log(f"server reconfigured with services: {names}") self.Services = service_list self.log("reconfigured") #print("MultiServerSubprocess.reconfigure() done") CheckConfigInterval = 5.0 def run(self): init_uid(tag="%03d" % (os.getpid() % 1000,)) #print("MultiServerSubprocess.run()...") if setproctitle is not None: setproctitle("multiserver %s worker" % (self.Port,)) pid = os.getpid() self.LogName = f"MultiServerSubprocess({pid})" self.reconfigure() self.MasterSide = False self.Sock.settimeout(5.0) last_check_config = 0 while not self.Stop: # see if the parent process is still alive try: os.kill(self.MasterPID, 0) except: print("master process died") break try: csock, caddr = self.Sock.accept() except socket.timeout: pass else: #print("run(): services:", [str(s) for s in self.Services]) self.Server.connection_accepted(csock, caddr) if self.ConnectionToMaster.poll(0): msg = self.ConnectionToMaster.recv() self.log("message from master:", msg) if msg == "stop": self.Stop = True elif msg == "reconfigure": self.reconfigure() if not self.Stop and time.time() > last_check_config + self.CheckConfigInterval: if os.path.getmtime(self.ConfigFile) > self.ReconfiguredTime: self.reconfigure() else: for svc in self.Services: if isinstance(svc, Service): svc.reloadIfNeeded() last_check_config = time.time() self.Server.close() self.Server.join() for svc in self.Services: svc.close() svc.join() def stop(self): if self.MasterSide: self.ConnectionToSubprocess.send("stop") else: self.Stop = True def request_reconfigure(self): self.ConnectionToSubprocess.send("reconfigure") class MPMultiServer(PyThread, Logged): def __init__(self, config_file, logger=None, debug=False): PyThread.__init__(self) Logged.__init__(self, "[Multiserver]", logger, debug=debug) self.ConfigFile = config_file self.Server = None self.Port = None self.ReconfiguredTime = 0 self.Subprocesses = [] self.Sock = None self.Stop = False self.MPLogger = None if logger is not None: self.MPLogger = MPLogger(logger, debug=debug) self.MPLogger.start() self.Debug = debug self.reconfigure() @synchronized def reconfigure(self, *ignore): self.ReconfiguredTime = os.path.getmtime(self.ConfigFile) self.Config = config = expand(yaml.load(open(self.ConfigFile, 'r'), Loader=yaml.SafeLoader)) port = self.Config["port"] if self.Port is None: self.Port = port self.Sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.Sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.Sock.bind(('', self.Port)) self.Sock.listen(10) elif port != self.Port: print("Can not change port number") sys.exit(1) new_nprocesses = self.Config.get("processes", 1) if new_nprocesses > len(self.Subprocesses): for p in self.Subprocesses: p.request_reconfigure() for _ in range(new_nprocesses - len(self.Subprocesses)): p = MultiServerSubprocess(self.Port, self.Sock, self.ConfigFile, logger=self.MPLogger) p.start() self.Subprocesses.append(p) #self.log("started new subprocess") elif new_nprocesses < len(self.Subprocesses): while new_nprocesses < len(self.Subprocesses): p = self.Subprocesses.pop() p.stop() #self.log("stopped a subprocess") for p in self.Subprocesses: p.request_reconfigure() else: for p in self.Subprocesses: p.request_reconfigure() #self.log("subprocesses running now:", len(self.Subprocesses)) def run(self): if setproctitle is not None: setproctitle("multiserver %s master" % (self.Port,)) while not self.Stop: time.sleep(5) if os.path.getmtime(self.ConfigFile) > self.ReconfiguredTime: self.reconfigure() self.check_children() @synchronized def check_children(self, *ignore): #print("child died") n_died = 0 alive = [] for p in self.Subprocesses: if not p.is_alive(): print("subprocess died with status", p.exitcode, file=sys.stderr) self.log("subprocess died with status", p.exitcode) n_died += 1 else: alive.append(p) self.Subprocesses = alive if n_died and not self.Stop: #time.sleep(5) # do not restart subprocesses too often for _ in range(n_died):
"rili": 36472, "schop": 36473, "svar": 36474, "ást": 36475, "école": 36476, "āva": 36477, "ıdır": 36478, "Л": 36479, "ской": 36480, "▁Akt": 36481, "▁Apel": 36482, "▁Dragnea": 36483, "▁Flüge": 36484, "▁Giardia": 36485, "▁Höf": 36486, "▁Intensiv": 36487, "▁Kız": 36488, "▁Libro": 36489, "▁Mwana": 36490, "▁Märk": 36491, "▁Poesía": 36492, "▁Semana": 36493, "▁Treff": 36494, "▁Umeå": 36495, "▁acquire": 36496, "▁bingo": 36497, "▁concern": 36498, "▁corte": 36499, "▁definition": 36500, "▁election": 36501, "▁exploit": 36502, "▁folklor": 36503, "▁indonesia": 36504, "▁infant": 36505, "▁interne": 36506, "▁judi": 36507, "▁masala": 36508, "▁mtu": 36509, "▁nato": 36510, "▁parodi": 36511, "▁passe": 36512, "▁peu": 36513, "▁quis": 36514, "▁rodo": 36515, "▁shower": 36516, "▁significant": 36517, "▁sonda": 36518, "▁taking": 36519, "▁texture": 36520, "▁understand": 36521, "▁values": 36522, "▁victim": 36523, "▁Água": 36524, "卫": 36525, "岭": 36526, "忍": 36527, "胤": 36528, "豫": 36529, "래": 36530, "석": 36531, "혜": 36532, "Kanak": 36533, "Trøndelag": 36534, "ZAK": 36535, "angkat": 36536, "cité": 36537, "dhiya": 36538, "ebat": 36539, "estar": 36540, "etara": 36541, "ferd": 36542, "fyll": 36543, "idean": 36544, "itario": 36545, "ités": 36546, "jame": 36547, "lingan": 36548, "ljub": 36549, "osas": 36550, "pavil": 36551, "poana": 36552, "poj": 36553, "stati": 36554, "stelle": 36555, "vazi": 36556, "yty": 36557, "zeti": 36558, "zlar": 36559, "áis": 36560, "ürü": 36561, "нов": 36562, "▁Bahnhof": 36563, "▁Békés": 36564, "▁Dreh": 36565, "▁Escola": 36566, "▁Greit": 36567, "▁Helsingin": 36568, "▁Hodi": 36569, "▁Joka": 36570, "▁Kaffe": 36571, "▁Kambi": 36572, "▁Khuda": 36573, "▁Kikwete": 36574, "▁Kristiansand": 36575, "▁Lauf": 36576, "▁Pensi": 36577, "▁Potential": 36578, "▁Rady": 36579, "▁Reiz": 36580, "▁Waar": 36581, "▁Warna": 36582, "▁abstract": 36583, "▁batu": 36584, "▁berte": 36585, "▁bola": 36586, "▁celebrate": 36587, "▁commun": 36588, "▁corri": 36589, "▁dif": 36590, "▁favorite": 36591, "▁fermentum": 36592, "▁hapa": 36593, "▁hatin": 36594, "▁humbur": 36595, "▁koji": 36596, "▁koo": 36597, "▁lank": 36598, "▁lav": 36599, "▁mire": 36600, "▁planning": 36601, "▁ponto": 36602, "▁rana": 36603, "▁seu": 36604, "▁slipper": 36605, "▁spambots": 36606, "▁strap": 36607, "▁tonn": 36608, "▁transf": 36609, "▁vehicles": 36610, "▁vini": 36611, "▁จาก": 36612, "交": 36613, "怀": 36614, "是": 36615, "袁": 36616, "貝": 36617, "走": 36618, "BUD": 36619, "ISTI": 36620, "[31]": 36621, "blogg": 36622, "broj": 36623, "contract": 36624, "egli": 36625, "elni": 36626, "fry": 36627, "iiii": 36628, "nagy": 36629, "nija": 36630, "owni": 36631, "reje": 36632, "sikia": 36633, "tempe": 36634, "tinggi": 36635, "vatel": 36636, "üstü": 36637, "ή": 36638, "Во": 36639, "ское": 36640, "▁Autónoma": 36641, "▁Belang": 36642, "▁Disse": 36643, "▁Kadıköy": 36644, "▁Kanun": 36645, "▁Llobregat": 36646, "▁Møller": 36647, "▁Oficial": 36648, "▁Perşembe": 36649, "▁Rodzin": 36650, "▁Sometimes": 36651, "▁Västra": 36652, "▁[0]": 36653, "▁ataca": 36654, "▁bisa": 36655, "▁bless": 36656, "▁costume": 36657, "▁diverse": 36658, "▁ecc": 36659, "▁gull": 36660, "▁handle": 36661, "▁infrastructure": 36662, "▁ish": 36663, "▁limita": 36664, "▁mandra": 36665, "▁maza": 36666, "▁minibar": 36667, "▁nutri": 36668, "▁outdoor": 36669, "▁peuple": 36670, "▁pira": 36671, "▁rates": 36672, "▁recog": 36673, "▁respect": 36674, "▁rhad": 36675, "▁sont": 36676, "▁taxa": 36677, "▁timp": 36678, "▁valde": 36679, "▁Во": 36680, "ホ": 36681, "マン": 36682, "仪": 36683, "実": 36684, "开": 36685, "於": 36686, "話": 36687, "1⁄2": 36688, "Nkosi": 36689, "Saya": 36690, "[32]": 36691, "akit": 36692, "alna": 36693, "alternativ": 36694, "dagar": 36695, "eerd": 36696, "exist": 36697, "fluent": 36698, "hasta": 36699, "iiiiii": 36700, "imine": 36701, "irg": 36702, "lakshmi": 36703, "lő": 36704, "tería": 36705, "ért": 36706, "üne": 36707, "ūta": 36708, "ен": 36709, "ии": 36710, "▁2014-": 36711, "▁Although": 36712, "▁György": 36713, "▁Identifi": 36714, "▁Kodu": 36715, "▁Muharrem": 36716, "▁Protest": 36717, "▁Putih": 36718, "▁Stjepan": 36719, "▁Vestfold": 36720, "▁Vrancea": 36721, "▁capito": 36722, "▁caput": 36723, "▁commerce": 36724, "▁compete": 36725, "▁consider": 36726, "▁dak": 36727, "▁designed": 36728, "▁efficiency": 36729, "▁fait": 36730, "▁habe": 36731, "▁hahaha": 36732, "▁hala": 36733, "▁heu": 36734, "▁invite": 36735, "▁masse": 36736, "▁mena": 36737, "▁mental": 36738, "▁perdu": 36739, "▁prevent": 36740, "▁regret": 36741, "▁satu": 36742, "▁seconda": 36743, "▁slave": 36744, "▁spela": 36745, "▁trois": 36746, "▁volgens": 36747, "▁¿": 36748, "別": 36749, "店": 36750, "振": 36751, "揚": 36752, "桑": 36753, "猫": 36754, "舍": 36755, "解": 36756, "難": 36757, "세": 36758, ")))": 36759, "KEL": 36760, "addict": 36761, "akkam": 36762, "enean": 36763, "eş": 36764, "fyl": 36765, "istik": 36766, "klaus": 36767, "neen": 36768, "nuti": 36769, "reik": 36770, "vande": 36771, "vuori": 36772, "wunder": 36773, "yör": 36774, "ziale": 36775, "zım": 36776, "íd": 36777, "łowie": 36778, "ɣ": 36779, "ха": 36780, "ה": 36781, "م": 36782, "ย": 36783, "ἀ": 36784, "▁18.30": 36785, "▁2556": 36786, "▁=)": 36787, "▁Adolescent": 36788, "▁CLUB": 36789, "▁Departamento": 36790, "▁Fyr": 36791, "▁Jugend": 36792, "▁Nordea": 36793, "▁Pazo": 36794, "▁Sağ": 36795, "▁Stö": 36796, "▁Tenis": 36797, "▁Yurt": 36798, "▁abort": 36799, "▁afar": 36800, "▁agree": 36801, "▁associa": 36802, "▁astronom": 36803, "▁campos": 36804, "▁configuration": 36805, "▁contrast": 36806, "▁dab": 36807, "▁diamant": 36808, "▁dob": 36809, "▁faith": 36810, "▁hóa": 36811, "▁inspir": 36812, "▁javascript": 36813, "▁kolo": 36814, "▁krem": 36815, "▁lack": 36816, "▁llama": 36817, "▁mie": 36818, "▁netto": 36819, "▁ohi": 36820, "▁older": 36821, "▁oy": 36822, "▁paulista": 36823, "▁pays": 36824, "▁rece": 36825, "▁requi": 36826, "▁tamin": 36827, "▁tribun": 36828, "▁ón": 36829, "▁Ā": 36830, "▁Α": 36831, "▁Β": 36832, "▁η": 36833, "▁♥": 36834, "伝": 36835, "卓": 36836, "学院": 36837, "弼": 36838, "眼": 36839, "香港": 36840, "齐": 36841, "단": 36842, "법": 36843, "용": 36844, "재": 36845, "//": 36846, "AKO": 36847, "CHER": 36848, "HAMA": 36849, "KTI": 36850, "TIK": 36851, "\\\\\\\\": 36852, "ampu": 36853, "dij": 36854, "erings": 36855, "financi": 36856, "jadi": 36857, "lasti": 36858, "lugu": 36859, "nö": 36860, "oane": 36861, "ovci": 36862, "teko": 36863, "tenta": 36864, "tyt": 36865, "ünden": 36866, "̊": 36867, "ми": 36868, "сть": 36869, "ُ": 36870, "▁Gerne": 36871, "▁Grup": 36872, "▁Important": 36873, "▁Pension": 36874, "▁Proces": 36875, "▁Sobre": 36876, "▁Vantaa": 36877, "▁Veter": 36878, "▁amore": 36879, "▁baja": 36880, "▁calle": 36881, "▁cinéma": 36882, "▁dare": 36883, "▁dias": 36884, "▁forex": 36885, "▁gaus": 36886, "▁hei": 36887, "▁indicate": 36888, "▁integrat": 36889, "▁liki": 36890, "▁mear": 36891, "▁modifi": 36892, "▁parang": 36893, "▁parking": 36894, "▁sensu": 36895, "▁serta": 36896, "▁spart": 36897, "▁temo": 36898, "▁temple": 36899, "▁vine": 36900, "▁worldwide": 36901, "▁zal": 36902, "▁Çelik": 36903, "▁На": 36904, "▁Сер": 36905, "▁محمد": 36906, "半": 36907, "少女": 36908, "幽": 36909, "界": 36910, "考": 36911, "蓮": 36912, "載": 36913, "을": 36914, "Administr": 36915, "RADI": 36916, "UME": 36917, "UNU": 36918, "administra": 36919, "carre": 36920, "chová": 36921, "euses": 36922, "gén": 36923, "hija": 36924, "ografía": 36925, "praw": 36926, "riai": 36927, "sled": 36928, "sloven": 36929, "stift": 36930, "timet": 36931, "urnar": 36932, "wende": 36933, "ész": 36934, "ída": 36935, "šte": 36936, "ște": 36937, "ей": 36938, "บ": 36939, "พระ": 36940, "▁Andreea": 36941, "▁Baat": 36942, "▁Dawid": 36943, "▁Gwe": 36944, "▁Hordaland": 36945, "▁Ils": 36946, "▁Jär": 36947, "▁Kaise": 36948, "▁Osim": 36949, "▁Rehabilita": 36950, "▁Stiri": 36951, "▁Straße": 36952, "▁Vytautas": 36953, "▁advertising": 36954, "▁animals": 36955, "▁bumi": 36956, "▁donat": 36957, "▁eating": 36958, "▁exclu": 36959, "▁exposure": 36960, "▁extrem": 36961, "▁fellow": 36962, "▁grafit": 36963, "▁growing": 36964, "▁hid": 36965, "▁hospital": 36966, "▁kitchen": 36967, "▁kuch": 36968, "▁leto": 36969, "▁marco": 36970, "▁mende": 36971, "▁minic": 36972, "▁muerte": 36973, "▁posts": 36974, "▁praece": 36975, "▁primer": 36976, "▁privacy": 36977, "▁reis": 36978, "▁starting": 36979, "▁straight": 36980, "▁tablets": 36981, "▁teach": 36982, "▁venture": 36983, "ざ": 36984, "坡": 36985, "太郎": 36986, "汝": 36987, "碧": 36988, "营": 36989, "離": 36990, "Adresse": 36991, "HAK": 36992, "TIL": 36993, "arrive": 36994, "azione": 36995, "dóttir": 36996, "esten": 36997, "hegy": 36998, "isilla": 36999, "jde": 37000, "jë": 37001, "manan": 37002, "masing": 37003, "mountain": 37004, "rū": 37005, "taler": 37006, "tzak": 37007, "tzu": 37008, "zand": 37009, "ála": 37010, "þ": 37011, "īd": 37012, "Π": 37013, "μα": 37014, "от": 37015, "ศ": 37016, "▁17.30": 37017, "▁Acord": 37018, "▁Bä": 37019, "▁Chambre": 37020, "▁Devlet": 37021, "▁Flirt": 37022, "▁Kürt": 37023, "▁Maret": 37024, "▁Materi": 37025, "▁Medicina": 37026, "▁Mwanza": 37027, "▁Ourense": 37028, "▁Posta": 37029, "▁STUDIO": 37030, "▁Selatan": 37031, "▁Viborg": 37032, "▁Zeytin": 37033, "▁agra": 37034, "▁allan": 37035, "▁antioxidant": 37036, "▁buz": 37037, "▁ceci": 37038, "▁combination": 37039, "▁cultural": 37040, "▁halua": 37041, "▁ito": 37042, "▁kimi": 37043, "▁likely": 37044, "▁merk": 37045, "▁obr": 37046, "▁paprika": 37047, "▁pos": 37048, "▁prati": 37049, "▁qual": 37050, "▁religion": 37051, "▁ringi": 37052, "▁spas": 37053, "▁summa": 37054, "▁toalet": 37055, "▁tut": 37056, "▁usta": 37057, "▁너": 37058, "實": 37059, "強": 37060, "戴": 37061, "潮": 37062, "甫": 37063, "略": 37064, "竇": 37065, "英雄": 37066, "蒲": 37067, "閔": 37068, "OKA": 37069, "Programm": 37070, "acce": 37071, "aḥ": 37072, "endum": 37073, "faire": 37074, "graphique": 37075, "inzi": 37076, "läinen": 37077, "matik": 37078, "minimal": 37079, "ndak": 37080, "pyt": 37081, "rades": 37082, "ráz": 37083, "siti": 37084, "tej": 37085, "which": 37086, "xhi": 37087, "ÉN": 37088, "śli": 37089, "ός": 37090, "За": 37091, "ن": 37092, "▁(«": 37093, "▁09.00": 37094, "▁Ancora": 37095, "▁Campionat": 37096, "▁Dapur": 37097, "▁Endre": 37098, "▁Erste": 37099, "▁FILM": 37100, "▁Feminist": 37101, "▁Geç": 37102, "▁Korçë": 37103, "▁Minimum": 37104, "▁Norges": 37105, "▁Perso": 37106, "▁Pintu": 37107, "▁SARA": 37108, "▁Stoff": 37109, "▁Tö": 37110, "▁Uniti": 37111,
i, bh_k in enumerate(bh_l): if bh_k in astroA.activity_ratios.keys(): activity_num_np[i] += (len(astroA.res_d['area'][astroA.event_subsets[bh_k]]) / len(astroA.indices_d[bh_k])) * astroA.minute_frames activity_num_added[i] += 1 activity_num_np /= activity_num_added activity_i = np.argsort(activity_num_np) activity_num_k_s = np.array(bh_l)[activity_i] activity_num_l_s = activity_num_np[activity_i] activity_num_k_s[np.where(activity_num_k_s == 'default')] = 'all' fig = plotly_utils.plot_bar(x=activity_num_k_s, y=activity_num_l_s, text_values=['']*len(activity_num_l_s), text_size=20, title='Activity number', x_title='', y_title='Events per minute in state', margin_b=150, err_y=[], err_symmetric=None) if with_stats: #data = {k : areas[i] for i, k in enumerate(area_keys_s)} return fig, {} return fig def get_behaviour_activity_number_dot_plot_all(self, astroA_l, bh_l, with_stats=False, lines=False): activity_num_l = [] for bh in bh_l: activity_bh_l = [] for i, astroA in enumerate(astroA_l): if bh in astroA.event_subsets.keys(): num_events = len(astroA.res_d['area'][astroA.event_subsets[bh]]) num_frames = len(astroA.indices_d[bh]) activity_bh_l.append((num_events / num_frames) * astroA.minute_frames) activity_num_l.append(activity_bh_l) activity_means = [np.mean(activity_nums) for activity_nums in activity_num_l] activity_i = np.argsort(activity_means) x = np.array(bh_l)[activity_i] y = [] for i in activity_i: y.append(activity_num_l[i]) fig, stats_d = plotly_utils.plot_point_box_revised(x, y, title='Activity number', x_title='', y_title='Events per minute in state', lines=lines, with_stats=True) return fig, stats_d def get_common_keys(self, astroA_l, bh_l): s = set(bh_l) for astroA in astroA_l: s &= set(astroA.indices_d.keys()) return np.sort(list(s)) def get_all_signal_attribute_plot(self, astroA_l, bh_l, type_event='area', type_plot='bar', y_range=None, divide_y=1, title='', x_title='', y_title='', error_type='std', err_symmetric=True, with_stats=False): areas = [[] for i in range(len(bh_l))] for astroA in astroA_l: for i, k in enumerate(bh_l): if k in astroA.event_subsets.keys(): areas_k = astroA.res_d[type_event][astroA.event_subsets[k]] areas[i].extend(areas_k) areas_std = np.array([np.std(v_l) for v_l in areas]) areas_mean = np.array([np.mean(v_l) for v_l in areas]) areas_conf = [] for v_l in areas: m, l, h = stat_utils.mean_confidence_interval(v_l, confidence=0.95) areas_conf.append(m-l) areas_conf = np.array(areas_conf) areas_i = np.argsort(areas_mean) area_keys_s = np.array(bh_l)[areas_i] areas_s = np.array(areas)[areas_i] areas_mean_s = np.array(areas_mean)[areas_i] areas_std_s = np.array(areas_std)[areas_i] areas_conf_s = np.array(areas_conf)[areas_i] if type_plot == 'bar': if error_type == 'std': fig = plotly_utils.plot_bar(x=area_keys_s, y=areas_mean_s, text_values=[], text_size=20, title=title, x_title=x_title, y_title=y_title, margin_b=150, err_y=areas_std_s, err_symmetric=err_symmetric) elif error_type == 'conf': fig = plotly_utils.plot_bar(x=area_keys_s, y=areas_mean_s, text_values=[], text_size=20, title=title, x_title=x_title, y_title=y_title, margin_b=150, err_y=areas_conf_s, err_symmetric=err_symmetric) elif type_plot == 'dot': fig = plotly_utils.plot_point_box_revised(x=area_keys_s, y=areas_s, title=title, x_title=x_title, y_title=y_title, margin_b=150, y_range=y_range) else: return None if with_stats: data = {k : areas_s[i] for i, k in enumerate(area_keys_s)} return fig, {'behaviour' : area_keys_s, 'mean' : areas_mean_s, 'std': areas_std_s, 'conf_95': areas_conf_s, 'data' : data} return fig def get_behaviour_area_plot(self, astroA): area_keys = np.array(self.filter_keys(astroA)) area_l_mean = [] area_l_std = [] for k in area_keys: area_k = astroA.res_d['area'][astroA.event_subsets[k]] area_l_mean.append(np.mean(area_k)) area_l_std.append(np.std(area_k)) area_l_mean = np.array(area_l_mean) area_l_std = np.array(area_l_std) areas_i = np.argsort(area_l_mean) area_keys_s = area_keys[areas_i] area_l_mean_s = area_l_mean[areas_i] area_l_std_s = area_l_std[areas_i] fig = plotly_utils.plot_bar(x=area_keys_s, y=area_l_mean_s, text_values=[], text_size=20, title='Sizes of events', x_title='', y_title='Event sizes (\u03bcm<sup>2</sup>)', margin_b=150) return fig def get_behaviour_amplitude_bar_plot(self, astroA): am_keys = np.array(self.filter_keys(astroA)) am_l_mean = [] for k in am_keys: dff_res = astroA.res_d['dffMax2'][astroA.event_subsets[k]] am_l_mean.append(np.mean(dff_res)) am_l_mean = np.array(am_l_mean) am_i = np.argsort(am_l_mean) am_keys_s = am_keys[am_i] am_l_mean_s= am_l_mean[am_i] fig = plotly_utils.plot_bar(x=am_keys_s, y=am_l_mean_s, text_values=[], text_size=20, title='Amplitude (df/f) of events', x_title='', y_title='df/f', margin_b=150) return fig def get_waterfall_delays_plot_all(self, astroA, return_results_only=False): #Unique, no unique #Num stick start non num stick start #Half second non half second #unique_args = [True, False] unique_args = [True, False] max_duration_args = [None, astroA.duration_small] with_stick_num_args = [True] figs = {} figs_interp = {} stick_id = 'stick_exact_start' running_id = 'running_exact' rest_id = 'rest_exact' stick_v_l_d = {} running_v_l_d = {} no_running_v_l_d = {} for un in unique_args: for max_duration in max_duration_args: for with_stick_num in with_stick_num_args: delay_info_args = {'event_inds_subset' : astroA.event_subsets['default'], 'min_delay' : -20, 'max_delay' : 50, 'max_duration' : max_duration, 'unique_events' : un } plot_id = '{}-{}-{}'.format('unique' if un else 'notunique', 'max_duration_None' if (max_duration is None) else 'max_duration_' + str(max_duration), 'stick_num_' + str(with_stick_num)) if with_stick_num: rand_running = np.random.choice(list(set(astroA.indices_d[running_id]) - set(astroA.indices_d[stick_id])), size=len(astroA.indices_d[stick_id]), replace=False) rand_no_running = np.random.choice(list(set(astroA.indices_d[rest_id]) - set(astroA.indices_d[stick_id])), size=len(astroA.indices_d[stick_id]), replace=False) else: rand_running = list(set(astroA.indices_d[running_id]) - set(astroA.indices_d[stick_id])) rand_no_running = list(set(astroA.indices_d[rest_id]) - set(astroA.indices_d[stick_id])) signal_delays_stick_np, peak_delays_stick_np = aqua_utils.get_delay_info_from_res(astroA.indices_d[stick_id], astroA.res_d, **delay_info_args) signal_delays_running_np, peak_delays_running_np = aqua_utils.get_delay_info_from_res(rand_running, astroA.res_d, **delay_info_args) signal_delays_no_running_np, peak_delays_no_running_np = aqua_utils.get_delay_info_from_res(rand_no_running, astroA.res_d, **delay_info_args) stick_v = np.sort(signal_delays_stick_np) running_v = np.sort(signal_delays_running_np) no_running_v = np.sort(signal_delays_no_running_np) stick_v_l_d[plot_id] = stick_v running_v_l_d[plot_id] = running_v no_running_v_l_d[plot_id] = no_running_v figs[plot_id] = plotly_utils.plot_waterfall(arrays_l=[stick_v, running_v, no_running_v], legend_names=['stick', 'running', 'rest'], title='Signal (event) delays after behaviour', x_title='Delay (s)', y_title='Event id') plotly_utils.apply_fun_axis_fig(figs[plot_id], lambda x : x / astroA.fr, axis='x') figs_interp[plot_id] = plotly_utils.plot_waterfall_interpolate(arrays_l=[stick_v, running_v, no_running_v], legend_names=['stick', 'running', 'rest'], title='Signal (event) delays after behaviour (scaled)', x_title='Delay (s)', y_title='Event id') plotly_utils.apply_fun_axis_fig(figs_interp[plot_id], lambda x : x / astroA.fr, axis='x') if return_results_only: return [stick_v_l_d, running_v_l_d, no_running_v_l_d] return figs, figs_interp def get_waterfall_delays_plot_all_mult(self, astroA_l): figs_d = {} figs_interp_d = {} stick_v_l_d = {} running_v_l_d = {} no_running_v_l_d = {} for astroA_i, astroA in enumerate(astroA_l): stick_d, running_d, no_running_d = self.get_waterfall_delays_plot_all(astroA, return_results_only=True) if astroA_i == 0: stick_v_l_d = stick_d running_v_l_d = running_d no_running_v_l_d = no_running_d k_0 = list(stick_d.keys())[0] arrs = [stick_v_l_d, running_v_l_d, no_running_v_l_d] for k in stick_d.keys(): for arr in arrs: arr[k] = list(arr[k]) else: k_0 = list(stick_d.keys())[0] for k in stick_d.keys(): stick_v_l_d[k].extend(stick_d[k]) running_v_l_d[k].extend(running_d[k]) no_running_v_l_d[k].extend(no_running_d[k]) for k in stick_v_l_d.keys(): stick_v = np.sort(stick_v_l_d[k]) running_v = np.sort(running_v_l_d[k]) no_running_v = np.sort(no_running_v_l_d[k]) fig = plotly_utils.plot_waterfall(arrays_l=[stick_v, running_v, no_running_v], legend_names=['stick', 'running', 'rest'], title='Signal (event) delays after behaviour', x_title='Delay (s)', y_title='Event id') plotly_utils.apply_fun_axis_fig(fig, lambda x : x / astroA_l[0].fr, axis='x') fig_interp = plotly_utils.plot_waterfall_interpolate(arrays_l=[stick_v, running_v, no_running_v], legend_names=['stick', 'running', 'rest'], title='Signal (event) delays after behaviour (scaled) All axons', x_title='Delay (s)', y_title='Event id') plotly_utils.apply_fun_axis_fig(fig_interp, lambda x : x / astroA_l[0].fr, axis='x') figs_d[k] = fig figs_interp_d[k] = fig_interp return figs_d, figs_interp_d def get_transition_proportion_delays_plot_all(self, astroA_l, before_bh, inds_bh, after_bh, before_range=20, after_range=50, avg_proportions=False, delay_step_size=1): ''' inds: the inds i to check before_bh: for each i, make sure bh before is before_bh otherwize don't include i after_bh: for each i, make sure bh after is after_bh otherwize don't include i before_range: the range we look for events after_range: the range we look for events ''' #Unique, no unique #Num stick start non num stick start unique_args = [True, False] max_duration_args = [None, astroA_l[0].duration_small] figs = {} for max_duration in max_duration_args: #STICK for un in unique_args: plot_id = 'prop-{}-{}'.format('unique' if un else 'notunique', 'max_duration_None' if (max_duration is None) else 'max_duration_' + str(max_duration)) prop = np.zeros([(after_range+before_range+1)]) signal_delays_all_l = [] for astroA in astroA_l: inds = astroA.indices_d[inds_bh] #Filter indices indices_filt_before = aqua_utils.filter_range_inds(inds, astroA.indices_d[before_bh], range=(-before_range, -1), prop=1.0) indices_filt_after = aqua_utils.filter_range_inds(inds, astroA.indices_d[after_bh], range=(1, after_range), prop=1.0) indices_filt = np.array(np.sort(list(set(indices_filt_before) & set(indices_filt_after)))) if len(indices_filt) == 0: continue #print('Len indices {} len filt before {} len filt after {} len filt {}'.format(len(inds), len(indices_filt_before), len(indices_filt_after), len(indices_filt))) delay_info_args = {'event_inds_subset' : astroA.event_subsets['default'], 'min_delay' : -before_range, 'max_delay' : after_range, 'max_duration' : max_duration, 'unique_events' : un } signal_delays_np, peak_delays_np = aqua_utils.get_delay_info_from_res(indices_filt, astroA.res_d, **delay_info_args) signal_delays_all_l.extend(list(signal_delays_np)) signal_delays_all = np.array(signal_delays_all_l) print('Total signals {} {}-{} delay {} {}'.format(len(signal_delays_all), before_bh, after_bh, before_range, after_range)) for i, delay_x in enumerate(range(-before_range, after_range+1)): if len(signal_delays_all) == 0: prop[i] = 0 else: prop[i] = float(np.sum(signal_delays_all == delay_x)) / len(signal_delays_all) rem = len(prop) % delay_step_size if rem != 0: prop = prop[:-rem] prop_step_sum = np.sum(prop.reshape([-1, delay_step_size]), axis=1) x_l = [np.arange(-before_range, after_range+1, delay_step_size) for i in range(1)] y_l = [prop_step_sum] figs[plot_id] = plotly_utils.plot_scatter_mult(x_l, y_l, name_l=['{} to {}'.format(before_bh, after_bh)], mode='lines', title='scatter', x_title='Delay (s)', y_title='Events') plotly_utils.apply_fun_axis_fig(figs[plot_id], lambda x : x / astroA.fr, axis='x') return figs def get_transition_proportion_delays_plot_all_alt(self, astroA_l, before_bh, inds_bh, after_bh, before_range=20, after_range=50, y_title=None, delay_step_size=1, fit=False, measure=None, fix_dff_interval=50, confidence=False, duration_filter=[None, None]): ''' Generate plots of transitions between behaviours lasting for some period of time (e.g. 20 frames of rest (before_bh) and then transition to 30 frames of running (after_bh) for valid indices in running_start_exact (inds_bh)). We can provide a measure to plot a particular measure such as size or amplitude or leave it empty and obtain the proportion of events taking place at which delay during these intervals found. inds: the inds i to check before_bh: for each i, make sure bh before is before_bh otherwize don't include i after_bh: for each i, make sure bh after is after_bh otherwize don't include i before_range: the range we look for events after_range: the range we look for events before_delay: the delay of the interval we look for continious befrore and after bh(its actually kind the range...) ''' signal_delays_all_l_l = [] if measure is not None: event_measure_all_l_l = [] #DFF max fix, to support both default and the fix dff_max_to_fix = (measure == 'dffMax2') if measure == 'dffMax2default': measure = 'dffMax2' #Fix dffMax by adding more range and delay if dff_max_to_fix: before_range += fix_dff_interval after_range += fix_dff_interval for astroA
<gh_stars>1-10 """ Open Power System Data Timeseries Datapackage read.py : read time series files """ import pytz import yaml import os import sys import numpy as np import pandas as pd import logging import zipfile import csv import re from datetime import datetime, date, time, timedelta import xlrd from xml.sax import ContentHandler, parse from .excel_parser import ExcelHandler logger = logging.getLogger(__name__) logger.setLevel('INFO') def read_entso_e_transparency( areas, filepath, variable_name, url, headers, res_key, cols, stacked, unstacked, geo, append_headers, **kwargs): """ Read a .csv file from ENTSO-E TRansparency into a DataFrame. Parameters ---------- filepath : str Directory path of file to be read variable_name : str Name of variable, e.g. ``solar`` url : str URL linking to the source website where this data comes from headers : list List of strings indicating the level names of the pandas.MultiIndex for the columns of the dataframe res_key : str Resolution of the source data. Must be one of ['15min', '30min', 60min'] cols : dict A mapping of of columnnames to use from input file and a new name to rename them to. The new name is the header level whose corresponding values are specified in that column stacked : list List of strings indicating the header levels that are reported column-wise in the input files unstacked One strings indicating the header level that is reported row-wise in the input files geo: string The geographical concept (i.e. ``country`` or ``bidding zone`` for which data should be extracted. Records for other concepts (i.e. ``control areas``)) willl be ignored. append_headers: dict Map of header levels and values to append to Multiindex kwargs: dict placeholder for further named function arguments Returns ---------- df: pandas.DataFrame The content of one file from PSE """ df_raw = pd.read_csv( filepath, sep='\t', encoding='utf-16', header=0, index_col='timestamp', parse_dates={'timestamp': ['DateTime']}, date_parser=None, dayfirst=False, decimal='.', thousands=None, usecols=['DateTime', *cols.keys()], # the column specifying the technology has a trailing space, which we # cut off converters={'ProductionType_Name': lambda x: x[:-1]}, ) if variable_name == 'Actual Generation per Production Type': # keep only renewables columns renewables = { 'Solar': 'solar', 'Wind Onshore': 'wind_onshore', 'Wind Offshore': 'wind_offshore' } df_raw = df_raw[df_raw['ProductionType_Name'].isin(renewables.keys())] df_raw.replace({'ProductionType_Name': renewables}, inplace=True) if variable_name == 'Day Ahead Prices': # Omit polish price data reported in EUR (keeping PLN prices) # (Before 2017-03-02, the data is very messy) no_polish_euro = ~((df_raw['AreaName'] == 'PSE SA BZ') & (df_raw.index < pd.to_datetime('2017-03-02 00:00:00'))) df_raw = df_raw.loc[no_polish_euro] # keep only entries for selected geographic entities as specified in # areas.csv + select regions whith same temporal resolution time_and_place = areas[geo].loc[areas[res_key] == True].dropna() df_raw = df_raw.loc[df_raw['AreaName'].isin(time_and_place)] # based on the AreaName column, map the area names used throughout OPSD lookup = areas.set_index(geo)['area ID'].dropna() lookup = lookup[~lookup.index.duplicated()] df_raw['region'] = df_raw['AreaName'].map(lookup) df_raw.drop('AreaName', axis=1, inplace=True) # rename columns to comply with other data df_raw.rename(columns=cols, inplace=True) # juggle the index and columns df = df_raw df.set_index(stacked, append=True, inplace=True) # at this point, only the values we are intereseted in are are left as # columns df.columns.rename(unstacked, inplace=True) df = df.unstack(stacked) # keep only columns that have at least some nonzero values df = df.loc[:, (df > 0).any(axis=0)] # add source and url to the columns. # Note: pd.concat inserts new MultiIndex values infront of the old ones df = pd.concat([df], keys=[tuple([*append_headers.values(), url])], names=[*append_headers.keys(), 'web'], axis='columns') # reorder and sort columns df = df.reorder_levels(headers, axis=1) df.sort_index(axis=1, inplace=True) # throw out obs with wrong timestamp #no_gaps = pd.DatetimeIndex(start=df.index[0], # end=df.index[-1], # freq=res_key) #df = df.reindex(index=no_gaps) return df def read_pse(filepath, variable_name, url, headers): """ Read a .csv file from PSE into a DataFrame. Parameters ---------- filepath : str Directory path of file to be read variable_name : str Name of variable, e.g. ``solar`` url : str URL linking to the source website where this data comes from headers : list List of strings indicating the level names of the pandas.MultiIndex for the columns of the dataframe Returns ---------- df: pandas.DataFrame The content of one file from PSE """ df = pd.read_csv( filepath, sep=';', encoding='cp1250', header=0, index_col=None, parse_dates=None, date_parser=None, dayfirst=False, decimal=',', thousands=None, # hours are indicated by their ending time. During fall DST, # UTC 23:00-00:00 = CEST 1:00-2:00 is indicated by '02', # UTC 00:00-01:00 = CEST 2:00-3:00 is indicated by '02A', # UTC 01:00-02:00 = CET 2:00-3:00 is indicated by '03'. # regular hours require backshifting by 1 period converters={ 'Time': lambda x: '2:00' if x == '2A' else str(int(x) - 1) + ':00' } ) # Create a list of spring-daylight savings time (DST)-transitions dst_transitions_spring = [ d.replace(hour=2) for d in pytz.timezone('Europe/Copenhagen')._utc_transition_times if d.year >= 2000 and d.month == 3] # Account for an error where an hour is jumped in the data, incrementing # the hour by one #time_int = df['Time'].str[:-3].astype(int) #if (time_int time_int.shift(1) - 1). #if (time_int == 24).any(): # logger.info(filepath) # df = df[time_int != 24] if df['Date'][0] == 20130324: df['Time'] = [str(num) + ':00' for num in range(24)] # The hour from 01:00 - 02:00 (CET) should by PSE's logic be indexed # by "02:00" (the endpoint), but at DST day in spring they use "03:00" in # the files. Our routine requires it to be "01:00" (the start point). df['proto_timestamp'] = pd.to_datetime( df['Date'].astype(str) + ' ' + df['Time']) slicer = df['proto_timestamp'].isin(dst_transitions_spring) df.loc[slicer, 'Time'] = '1:00' # create the actual timestamp from the corrected "Date"-column df['timestamp'] = pd.to_datetime( df['Date'].astype(str) + ' ' + df['Time']) df.set_index('timestamp', inplace=True) # 'ambigous' refers to how the October dst-transition hour is handled. # 'infer' will attempt to infer dst-transition hours based on order. df.index = df.index.tz_localize('Europe/Berlin', ambiguous='infer') df.index = df.index.tz_convert(None) colmap = { 'Generation of Wind Farms': { 'region': 'PL', 'variable': 'wind_onshore', 'attribute': 'generation_actual', 'source': 'PSE', 'web': url, 'unit': 'MW' } } # Drop any column not in colmap df = df[list(colmap.keys())] # Create the MultiIndex tuples = [tuple(colmap[col][level] for level in headers) for col in df.columns] df.columns = pd.MultiIndex.from_tuples(tuples, names=headers) return df def read_ceps(filepath, variable_name, url, headers): '''Read a file from CEPS into a DataFrame''' df = pd.read_csv( # pd.read_excel(io=filepath, #sheet_name='ČEPS report', filepath, sep=';', header=2, skiprows=None, index_col=0, usecols=[0, 1, 2] ) df.index = pd.to_datetime(df.index.rename('timestamp')) df.index = df.index.tz_localize('Europe/Brussels', ambiguous='infer') df.index = df.index.tz_convert(None) # Translate columns colmap = { 'WPP [MW]': { 'region': 'CZ', 'variable': 'wind_onshore', 'attribute': 'generation_actual', 'source': 'CEPS', 'web': url, 'unit': 'MW' }, 'PVPP [MW]': { 'region': 'CZ', 'variable': 'solar', 'attribute': 'generation_actual', 'source': 'CEPS', 'web': url, 'unit': 'MW' } } # Create the MultiIndex tuples = [tuple(colmap[col][level] for level in headers) for col in df.columns] df.columns = pd.MultiIndex.from_tuples(tuples, names=headers) return df def read_elia(filepath, variable_name, url, headers): '''Read a file from Elia into a DataFrame''' df = pd.read_excel( io=filepath, header=None, skiprows=4, index_col=0, usecols=None ) colmap = { 'Day-Ahead forecast [MW]': { 'region': 'BE', 'variable': variable, 'attribute': 'generation_forecast', 'source': 'Elia', 'web': url, 'unit': 'MW' }, 'Corrected Upscaled Measurement [MW]': { 'region': 'BE', 'variable': variable, 'attribute': 'generation_actual', 'source': 'Elia', 'web': url, 'unit': 'MW' }, 'Monitored Capacity [MWp]': { 'region': 'BE', 'variable': variable, 'attribute': 'capacity', 'source': 'Elia', 'web': url, 'unit': 'MW' } } # Drop any column not in colmap df = df[list(colmap.keys())] df.index = pd.to_datetime(df.index.rename('timestamp')) df.index = df.index.tz_localize('Europe/Brussels', ambiguous='infer') df.index = df.index.tz_convert(None) # Create the MultiIndex tuples = [tuple(colmap[col][level] for level in headers) for col in df.columns] df.columns = pd.MultiIndex.from_tuples(tuples, names=headers) return df def read_energinet_dk(filepath, url, headers): '''Read a file from energinet.dk into a DataFrame''' df = pd.read_excel( io=filepath, header=2, # the column headers are taken from 3rd row. # 2nd row also contains header info like in a multiindex, # i.e. wether the colums are price or generation data. # However, we will make our own columnnames below. # Row 3 is enough to unambigously identify the columns skiprows=None, index_col=None, usecols=None, # None means: parse all columns thousands=',' ) # pandas on it's own authority sets first 2 columns as index # probably because the column's names are in merged cells df.index.rename(['date', 'hour'], inplace=True) df.reset_index(inplace=True) df['timestamp'] = pd.to_datetime( df['date'].astype(str) + ' ' + (df['hour'] - 1).astype(str) + ':00') df.set_index('timestamp', inplace=True) # Create a list of spring-daylight savings time (DST)-transitions dst_transitions_spring = [ d.replace(hour=2)
import unittest from io import StringIO import tempfile import sift_pyx12.error_handler #from sift_pyx12.errors import * import sift_pyx12.x12file class X12fileTestCase(unittest.TestCase): def _get_first_error(self, x12str, ftype=None): fd = self._makeFd(x12str) errors = [] err_cde = None err_str = None src = sift_pyx12.x12file.X12Reader(fd) if ftype == '837': src.check_837_lx = True #src = sift_pyx12.x12file.X12Reader(fd) for seg in src: errors.extend(src.pop_errors()) errors.extend(src.pop_errors()) src.cleanup() errors.extend(src.pop_errors()) if len(errors) > 0: err_cde = errors[0][1] err_str = errors[0][2] return (err_cde, err_str) def _makeFd(self, x12str=None): try: if x12str: fd = StringIO(x12str) else: fd = StringIO() except: if x12str: fd = StringIO(x12str, encoding='ascii') else: fd = StringIO(encoding='ascii') fd.seek(0) return fd def test_binary_delimiters(self): str1 = 'ISA&00& &00& &ZZ&ZZ000 &ZZ&ZZ001 &030828&1128&^&00501&000010121&0&T&!+\n' str1 += 'GS&HC&ZZ000&ZZ001&20030828&1128&17&X&004010X098+\n' str1 += 'ST&837&11280001+\n' str1 += 'TST&AA!1!1&BB!5+\n' str1 += 'SE&3&11280001+\n' str1 += 'GE&1&17+\n' str1 += 'IEA&1&000010121+\n' str1 = str1.replace('&', chr(0x1C)) str1 = str1.replace('+', chr(0x1D)) str1 = str1.replace('!', chr(0x1E)) str1 = str1.replace('^', chr(0x1F)) fd = self._makeFd(str1) errors = [] src = sift_pyx12.x12file.X12Reader(fd) for seg in src: errors.extend(src.pop_errors()) err_cde = None if len(errors) > 0: err_cde = errors[0][1] self.assertEqual(err_cde, None) self.assertEqual(src.subele_term, chr(0x1E)) self.assertEqual(src.ele_term, chr(0x1C)) self.assertEqual(src.seg_term, chr(0x1D)) self.assertEqual(src.repetition_term, chr(0x1F)) def test_trailing_ele_delim(self): str1 = 'ISA*00* *00* *ZZ*ZZ000 *ZZ*ZZ001 *030828*1128*U*00401*000010121*0*T*:~\n' str1 += 'ZZ*1***~\n' fd = self._makeFd(str1) src = sift_pyx12.x12file.X12Reader(fd) err_cde = None err_str = None for seg in src: if seg.get_seg_id() == 'ZZ': errors = src.pop_errors() if len(errors) > 0: err_cde = errors[0][1] err_str = errors[0][2] self.assertEqual(err_cde, 'SEG1', err_str) class ISA_header(X12fileTestCase): def test_starts_with_ISA(self): str1 = ' ISA~' fd = self._makeFd(str1) self.assertRaises(sift_pyx12.errors.X12Error, sift_pyx12.x12file.X12Reader, fd) def test_at_least_ISA_len(self): str1 = 'ISA~' fd = self._makeFd(str1) self.assertRaises(sift_pyx12.errors.X12Error, sift_pyx12.x12file.X12Reader, fd) def test_repeat_ISA_loops(self): str1 = """ISA*00* *00* *ZZ*ZZ000 *ZZ*ZZ001 *030828*1128*U*00401*000010121*0*T*:~ IEA*0*000010121~ ISA*00* *00* *ZZ*ZZ000 *ZZ*ZZ001 *030828*1128*U*00401*000010122*0*T*:~ IEA*0*000010122~ """ (err_cde, err_str) = self._get_first_error(str1) self.assertEqual(err_cde, None, err_str) def test_Unique_Interchange_ID(self): seg = None str1 = """ISA*00* *00* *ZZ*ZZ000 *ZZ*ZZ001 *030828*1128*U*00401*000010121*0*T*:~ IEA*0*000010121~ ISA*00* *00* *ZZ*ZZ000 *ZZ*ZZ001 *030828*1128*U*00401*000010121*0*T*:~ IEA*0*000010121~ """ (err_cde, err_str) = self._get_first_error(str1) self.assertEqual(err_cde, '025', err_str) class IEA_Checks(X12fileTestCase): def test_IEA_id_match_ISA_id(self): seg = None str1 = 'ISA*00* *00* *ZZ*ZZ000 *ZZ*ZZ001 *030828*1128*U*00401*000010121*0*T*:~\n' str1 += 'GS*HC*ZZ000*ZZ001*20030828*1128*17*X*004010X098~\n' str1 += 'GE*0*17~\n' str1 += 'IEA*1*000010555~\n' (err_cde, err_str) = self._get_first_error(str1) self.assertEqual(err_cde, '001', err_str) def test_IEA_count(self): seg = None str1 = 'ISA*00* *00* *ZZ*ZZ000 *ZZ*ZZ001 *030828*1128*U*00401*000010121*0*T*:~\n' str1 += 'GS*HC*ZZ000*ZZ001*20030828*1128*17*X*004010X098~\n' str1 += 'GE*0*17~\n' str1 += 'IEA*2*000010121~\n' (err_cde, err_str) = self._get_first_error(str1) self.assertEqual(err_cde, '021', err_str) def test_missing_IEA(self): seg = None str1 = 'ISA*00* *00* *ZZ*ZZ000 *ZZ*ZZ001 *030828*1128*U*00401*000010121*0*T*:~\n' str1 += 'GS*HC*ZZ000*ZZ001*20030828*1128*17*X*004010X098~\n' str1 += 'GE*0*17~\n' (err_cde, err_str) = self._get_first_error(str1) self.assertEqual(err_cde, '023', err_str) class GE_Checks(X12fileTestCase): def test_GE_id_match_GS_id(self): seg = None str1 = 'ISA*00* *00* *ZZ*ZZ000 *ZZ*ZZ001 *030828*1128*U*00401*000010121*0*T*:~\n' str1 += 'GS*HC*ZZ000*ZZ001*20030828*1128*17*X*004010X098~\n' str1 += 'GE*0*555~\n' str1 += 'IEA*1*000010121~\n' (err_cde, err_str) = self._get_first_error(str1) self.assertEqual(err_cde, '4', err_str) def test_GE_count(self): str1 = 'ISA*00* *00* *ZZ*ZZ000 *ZZ*ZZ001 *030828*1128*U*00401*000010121*0*T*:~\n' str1 += 'GS*HC*ZZ000*ZZ001*20030828*1128*17*X*004010X098~\n' str1 += 'GE*999*17~\n' str1 += 'IEA*1*000010121~\n' (err_cde, err_str) = self._get_first_error(str1) self.assertEqual(err_cde, '5', err_str) def test_Unique_Functional_Group_ID(self): str1 = 'ISA*00* *00* *ZZ*ZZ000 *ZZ*ZZ001 *030828*1128*U*00401*000010121*0*T*:~\n' str1 += 'GS*HC*ZZ000*ZZ001*20030828*1128*17*X*004010X098~\n' str1 += 'GE*0*17~\n' str1 += 'GS*HC*ZZ000*ZZ001*20030828*1128*17*X*004010X098~\n' str1 += 'GE*0*17~\n' str1 += 'IEA*2*000010121~\n' (err_cde, err_str) = self._get_first_error(str1) self.assertEqual(err_cde, '6', err_str) def test_missing_GE(self): seg = None str1 = 'ISA*00* *00* *ZZ*ZZ000 *ZZ*ZZ001 *030828*1128*U*00401*000010121*0*T*:~\n' str1 += 'GS*HC*ZZ000*ZZ001*20030828*1128*17*X*004010X098~\n' str1 += 'IEA*1*000010121~\n' (err_cde, err_str) = self._get_first_error(str1) self.assertEqual(err_cde, '024', err_str) class SE_Checks(X12fileTestCase): def test_SE_id_match_ST_id(self): seg = None str1 = 'ISA*00* *00* *ZZ*ZZ000 *ZZ*ZZ001 *030828*1128*U*00401*000010121*0*T*:~\n' str1 += 'GS*HC*ZZ000*ZZ001*20030828*1128*17*X*004010X098~\n' str1 += 'ST*837*11280001~\n' str1 += 'SE*2*11280999~\n' str1 += 'GE*1*17~\n' str1 += 'IEA*1*000010121~\n' (err_cde, err_str) = self._get_first_error(str1) self.assertEqual(err_cde, '3', err_str) def test_SE_count(self): seg = None str1 = 'ISA*00* *00* *ZZ*ZZ000 *ZZ*ZZ001 *030828*1128*U*00401*000010121*0*T*:~\n' str1 += 'GS*HC*ZZ000*ZZ001*20030828*1128*17*X*004010X098~\n' str1 += 'ST*837*11280001~\n' str1 += 'SE*0*11280001~\n' str1 += 'GE*1*17~\n' str1 += 'IEA*1*000010121~\n' (err_cde, err_str) = self._get_first_error(str1) self.assertEqual(err_cde, '4', err_str) def test_Unique_Transaction_Set_ID(self): seg = None str1 = 'ISA*00* *00* *ZZ*ZZ000 *ZZ*ZZ001 *030828*1128*U*00401*000010121*0*T*:~\n' str1 += 'GS*HC*ZZ000*ZZ001*20030828*1128*17*X*004010X098~\n' str1 += 'ST*837*11280001~\n' str1 += 'SE*2*11280001~\n' str1 += 'ST*837*11280001~\n' str1 += 'SE*2*11280001~\n' str1 += 'GE*2*17~\n' str1 += 'IEA*1*000010121~\n' (err_cde, err_str) = self._get_first_error(str1) self.assertEqual(err_cde, '23', err_str) def test_missing_SE(self): seg = None str1 = 'ISA*00* *00* *ZZ*ZZ000 *ZZ*ZZ001 *030828*1128*U*00401*000010121*0*T*:~\n' str1 += 'GS*HC*ZZ000*ZZ001*20030828*1128*17*X*004010X098~\n' str1 += 'ST*837*11280001~\n' str1 += 'GE*1*17~\n' str1 += 'IEA*1*000010121~\n' (err_cde, err_str) = self._get_first_error(str1) self.assertEqual(err_cde, '3', err_str) class HL_Checks(X12fileTestCase): """ We can do minimal HL parent checks here """ def test_HL_increment_good(self): seg = None str1 = 'ISA*00* *00* *ZZ*ZZ000 *ZZ*ZZ001 *030828*1128*U*00401*000010121*0*T*:~\n' str1 += 'GS*HC*ZZ000*ZZ001*20030828*1128*17*X*004010X098~\n' str1 += 'ST*837*11280001~\n' str1 += 'HL*1**20*1~\n' str1 += 'HL*2*1*22*1~\n' str1 += 'HL*3*2*23*1~\n' str1 += 'HL*4*1*22*1~\n' str1 += 'SE*6*11280001~\n' str1 += 'GE*1*17~\n' str1 += 'IEA*1*000010121~\n' (err_cde, err_str) = self._get_first_error(str1) self.assertEqual(err_cde, None, err_str) def test_HL_increment_bad(self): seg = None str1 = 'ISA*00* *00* *ZZ*ZZ000 *ZZ*ZZ001 *030828*1128*U*00401*000010121*0*T*:~\n' str1 += 'GS*HC*ZZ000*ZZ001*20030828*1128*17*X*004010X098~\n' str1 += 'ST*837*11280001~\n' str1 += 'HL*1**20*1~\n' str1 += 'HL*2*1*22*1~\n' str1 += 'HL*3*2*23*1~\n' str1 += 'HL*5*1*22*1~\n' str1 += 'SE*6*11280001~\n' str1 += 'GE*1*17~\n' str1 += 'IEA*1*000010121~\n' (err_cde, err_str) = self._get_first_error(str1) self.assertEqual(err_cde, 'HL1', err_str) def test_HL_parent_good(self): seg = None str1 = 'ISA*00* *00* *ZZ*ZZ000 *ZZ*ZZ001 *030828*1128*U*00401*000010121*0*T*:~\n' str1 += 'GS*HC*ZZ000*ZZ001*20030828*1128*17*X*004010X098~\n' str1 += 'ST*837*11280001~\n' str1 += 'HL*1**20*1~\n' str1 += 'HL*2*1*22*1~\n' str1 += 'HL*3*2*23*1~\n' str1 += 'HL*4*1*22*1~\n' str1 += 'SE*6*11280001~\n' str1 += 'GE*1*17~\n' str1 += 'IEA*1*000010121~\n' (err_cde, err_str) = self._get_first_error(str1) self.assertEqual(err_cde, None, err_str) def test_HL_parent_bad_invalid(self): seg = None str1 = 'ISA*00* *00* *ZZ*ZZ000 *ZZ*ZZ001 *030828*1128*U*00401*000010121*0*T*:~\n' str1 += 'GS*HC*ZZ000*ZZ001*20030828*1128*17*X*004010X098~\n' str1 += 'ST*837*11280001~\n' str1 += 'HL*1**20*1~\n' str1 += 'HL*2*1*22*1~\n' str1 += 'HL*3*5*23*1~\n' str1 += 'HL*4*2*22*1~\n' str1 += 'SE*6*11280001~\n' str1 += 'GE*1*17~\n' str1 += 'IEA*1*000010121~\n' (err_cde, err_str) = self._get_first_error(str1) self.assertEqual(err_cde, 'HL2', err_str) def xtest_HL_parent_bad_blank(self): seg = None str1 = 'ISA*00* *00* *ZZ*ZZ000 *ZZ*ZZ001 *030828*1128*U*00401*000010121*0*T*:~\n' str1 += 'GS*HC*ZZ000*ZZ001*20030828*1128*17*X*004010X098~\n' str1 += 'ST*837*11280001~\n' str1 += 'HL*1**20*1~\n' str1 += 'HL*2*1*22*1~\n' str1 += 'HL*3**23*1~\n' str1 += 'HL*4*2*22*1~\n' str1 += 'SE*6*11280001~\n' str1 += 'GE*1*17~\n' str1 += 'IEA*1*000010121~\n' (err_cde, err_str) = self._get_first_error(str1) self.assertEqual(err_cde, 'HL2', err_str) class Formatting(X12fileTestCase): def test_identity(self): str1 = 'ISA*00* *00* *ZZ*ZZ000 *ZZ*ZZ001 *030828*1128*U*00401*000010121*0*T*:~\n' # str1 += 'GS*HC*ZZ000*ZZ001*20030828*1128*17*X*004010X098~\n' # str1 += 'ST*837*11280001~\n' # str1 += 'HL*1**20*1~\n' # str1 += 'HL*2*1*22*1~\n' # str1 += 'HL*3*2*23*1~\n' # str1 += 'HL*4*1*22*1~\n' # str1 += 'SE*6*11280001~\n' # str1 += 'GE*1*17~\n' str1 += 'IEA*1*000010121~\n' fd = self._makeFd(str1) src = sift_pyx12.x12file.X12Reader(fd) str_out = '' for seg in src: str_out += seg.format() + '\n' self.assertMultiLineEqual(str1, str_out) def test_strip_eol(self): str1 = 'ISA*00* *00* *ZZ*ZZ000 *ZZ*ZZ001 *030828*1128*U*00401*000010121*0*T*:~\n' str1 += 'IEA*1*000010121~\n' fd = self._makeFd(str1) src = sift_pyx12.x12file.X12Reader(fd) str_out = '' for seg in src: str_out += seg.format() str1 = str1.replace('\n', '') self.assertMultiLineEqual(str1, str_out) class Segment_ID_Checks(X12fileTestCase): def test_segment_id_short(self): str1 = 'ISA*00* *00* *ZZ*ZZ000 *ZZ*ZZ001 *030828*1128*U*00401*000010121*0*T*:~\n' str1 += 'Z*0019~\n' (err_cde, err_str) = self._get_first_error(str1) self.assertEqual(err_cde, '1', err_str) def test_segment_last_space(self): str1 = 'ISA*00* *00* *ZZ*ZZ000 *ZZ*ZZ001 *030828*1128*U*00401*000010121*0*T*:~\n' str1 += 'ZZ*0019 ~\n' fd = self._makeFd(str1) val = None src = sift_pyx12.x12file.X12Reader(fd) for seg in src: if seg.get_seg_id() == 'ZZ': val = seg.get('ZZ01').format() self.assertEqual(val, '0019 ') def test_segment_id_long(self): str1 = 'ISA*00* *00* *ZZ*ZZ000 *ZZ*ZZ001 *030828*1128*U*00401*000010121*0*T*:~\n' str1 += 'ZZZZ*0019~\n' (err_cde, err_str) = self._get_first_error(str1) self.assertEqual(err_cde, '1', err_str) def test_segment_id_empty(self): str1 = 'ISA*00* *00* *ZZ*ZZ000 *ZZ*ZZ001 *030828*1128*U*00401*000010121*0*T*:~\n' str1 += '*1~\n' (err_cde, err_str) = self._get_first_error(str1) self.assertEqual(err_cde, '1', err_str) def test_segment_empty(self): errh = sift_pyx12.error_handler.errh_null() str1 = 'ISA*00* *00* *ZZ*ZZ000 *ZZ*ZZ001 *030828*1128*U*00401*000010121*0*T*:~\n' str1 += 'TST~\n' (err_cde, err_str) = self._get_first_error(str1) self.assertEqual(err_cde, '8', err_str) def test_segment_trailing_space(self): str1 = 'ISA*00* *00* *ZZ*ZZ000 *ZZ*ZZ001 *030828*1128*U*00401*000010121*0*T*:~ \n' str1 += 'ZZ*0019~ \n' (err_cde, err_str) = self._get_first_error(str1) self.assertEqual(err_cde, '1', err_str) class FileString(X12fileTestCase): def test_filename_open(self): str1 = 'ISA&00& &00& &ZZ&ZZ000 &ZZ&ZZ001 &030828&1128&U&00401&000010121&0&T&!+\n' str1 += 'GS&HC&ZZ000&ZZ001&20030828&1128&17&X&004010X098+\n' str1 += 'ST&837&11280001+\n' str1 += 'TST&AA!1!1&BB!5+\n' str1 += 'SE&3&11280001+\n' str1 += 'GE&1&17+\n' str1 += 'IEA&1&000010121+\n' fd = self._makeFd(str1) errors = [] src = sift_pyx12.x12file.X12Reader(fd) for seg in src: errors.extend(src.pop_errors()) err_cde = None if len(errors) > 0: err_cde = errors[0][1] self.assertEqual(err_cde, None) self.assertEqual(src.subele_term, '!') self.assertEqual(src.ele_term, '&') self.assertEqual(src.seg_term, '+') class X12WriterTest(X12fileTestCase): def test_identity(self): segs = [ 'ISA*00* *00* *ZZ*ZZ000 *ZZ*ZZ001 *030828*1128*U*00401*000010121*0*T*:', 'GS*HC*ZZ000*ZZ001*20030828*1128*17*X*004010X098', 'ST*837*11280001', 'HL*1**20*1', 'HL*2*1*22*1', 'HL*3*2*23*1', 'HL*4*1*22*1', 'SE*6*11280001', 'GE*1*17', 'IEA*1*000010121' ] fd_out = self._makeFd() wr = sift_pyx12.x12file.X12Writer(fd_out, '~', '*', ':', '\n') output = '' for seg_str in segs: seg_data = sift_pyx12.segment.Segment(seg_str, '~', '*', ':') wr.Write(seg_data) output += seg_str + '~\n' fd_out.seek(0) newval = fd_out.read() self.assertMultiLineEqual(output, newval) def test_tempfile_ascii(self): segs = [ 'ISA*00* *00* *ZZ*ZZ000 *ZZ*ZZ001 *030828*1128*U*00401*000010121*0*T*:', 'GS*HC*ZZ000*ZZ001*20030828*1128*17*X*004010X098', 'ST*837*11280001', 'HL*1**20*1', 'HL*2*1*22*1', 'HL*3*2*23*1', 'HL*4*1*22*1', 'SE*6*11280001', 'GE*1*17', 'IEA*1*000010121' ] fd_out = tempfile.TemporaryFile(mode='w+', encoding='ascii') wr = sift_pyx12.x12file.X12Writer(fd_out, '~', '*', ':', '\n') output = '' for seg_str in segs: seg_data = sift_pyx12.segment.Segment(seg_str, '~', '*', ':') wr.Write(seg_data) output += seg_str + '~\n' fd_out.seek(0) newval = fd_out.read() self.assertMultiLineEqual(output, newval) def test_tempfile_fail_no_encoding(self): segs = [ 'ISA*00* *00* *ZZ*ZZ000 *ZZ*ZZ001 *030828*1128*U*00401*000010121*0*T*:', 'GS*HC*ZZ000*ZZ001*20030828*1128*17*X*004010X098', 'ST*837*11280001', 'HL*1**20*1', 'HL*2*1*22*1', 'HL*3*2*23*1', 'HL*4*1*22*1', 'SE*6*11280001', 'GE*1*17', 'IEA*1*000010121' ] fd_out = tempfile.TemporaryFile() wr = sift_pyx12.x12file.X12Writer(fd_out,
<reponame>Joukahainen/finmarketpy __author__ = 'saeedamen' # <NAME> # # Copyright 2016-2020 Cuemacro - https://www.cuemacro.com / @cuemacro # # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the # License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and limitations under the License. # import pandas as pd import numpy as np from financepy.market.curves.FinDiscountCurveFlat import FinDiscountCurveFlat from financepy.finutils.FinDate import FinDate # Future versions of FinancePy will roll FXFinVolSurfacePlus into FinFXVolSurface try: from financepy.market.volatility.FinFXVolSurfacePlus import FinFXVolSurfacePlus as FinFXVolSurface from financepy.market.volatility.FinFXVolSurfacePlus import FinFXATMMethod from financepy.market.volatility.FinFXVolSurfacePlus import FinFXDeltaMethod from financepy.market.volatility.FinFXVolSurfacePlus import volFunction from financepy.market.volatility.FinFXVolSurfacePlus import FinVolFunctionTypes except: from financepy.market.volatility.FinFXVolSurface import FinFXVolSurface from financepy.market.volatility.FinFXVolSurface import FinFXATMMethod from financepy.market.volatility.FinFXVolSurface import FinFXDeltaMethod from financepy.market.volatility.FinFXVolSurface import volFunction from financepy.market.volatility.FinFXVolSurface import FinVolFunctionTypes from financepy.finutils.FinGlobalTypes import FinSolverTypes from findatapy.util.dataconstants import DataConstants from finmarketpy.curve.volatility.abstractvolsurface import AbstractVolSurface from finmarketpy.util.marketconstants import MarketConstants from finmarketpy.util.marketutil import MarketUtil data_constants = DataConstants() market_constants = MarketConstants() class FXVolSurface(AbstractVolSurface): """Holds data for an FX vol surface and also interpolates vol surface, converts strikes to implied vols etc. """ def __init__(self, market_df=None, asset=None, field='close', tenors=market_constants.fx_options_tenor_for_interpolation, vol_function_type=market_constants.fx_options_vol_function_type, atm_method=market_constants.fx_options_atm_method, delta_method=market_constants.fx_options_delta_method, depo_tenor=market_constants.fx_options_depo_tenor, solver=market_constants.fx_options_solver, alpha=market_constants.fx_options_alpha, tol=market_constants.fx_options_tol): """Initialises object, with market data and various market conventions Parameters ---------- market_df : DataFrame Market data with spot, FX volatility surface, FX forwards and base depos asset : str Eg. 'EURUSD' field : str Market data field to use default - 'close' tenors : str(list) Tenors to be used (we need to avoid tenors, where there might be NaNs) vol_function_type : str What type of interpolation scheme to use default - 'CLARK5' (also 'CLARK', 'BBG' and 'SABR') atm_method : str How is the ATM quoted? Eg. delta neutral, ATMF etc. default - 'fwd-delta-neutral-premium-adj' delta_method : str Spot delta, forward delta etc. default - 'spot-delta' solver : str Which solver to use in FX vol surface calibration? default - 'nelmer-mead' alpha : float Between 0 and 1 (default 0.5) """ self._market_df = market_df self._tenors = tenors self._asset = asset self._field = field self._depo_tenor = depo_tenor self._market_util = MarketUtil() self._dom_discount_curve = None self._for_discount_curve = None self._spot = None self._value_date = None self._fin_fx_vol_surface = None self._df_vol_dict = None for_name_base = asset[0:3] dom_name_terms = asset[3:6] field = '.' + field # CAREFUL: need to divide by 100 for depo rate, ie. 0.0346 = 3.46% self._forCCRate = market_df[for_name_base + depo_tenor + field].values / 100.0 # 0.03460 # EUR self._domCCRate = market_df[dom_name_terms + depo_tenor + field].values / 100.0 # 0.02940 # USD self._spot_history = market_df[asset + field].values self._atm_vols = market_df[[asset + "V" + t + field for t in tenors]].values self._market_strangle25DeltaVols = market_df[[asset + "25B" + t + field for t in tenors]].values self._risk_reversal25DeltaVols = market_df[[asset + "25R" + t + field for t in tenors]].values self._market_strangle10DeltaVols = market_df[[asset + "10B" + t + field for t in tenors]].values self._risk_reversal10DeltaVols = market_df[[asset + "10R" + t + field for t in tenors]].values if vol_function_type == 'CLARK': self._vol_function_type = FinVolFunctionTypes.CLARK elif vol_function_type == 'CLARK5': self._vol_function_type = FinVolFunctionTypes.CLARK5 elif vol_function_type == 'BBG': self._vol_function_type = FinVolFunctionTypes.BBG # Note: currently SABR isn't fully implemented in FinancePy elif vol_function_type == 'SABR': self._vol_function_type = FinVolFunctionTypes.SABR elif vol_function_type == 'SABR3': self._vol_function_type = FinVolFunctionTypes.SABR3 # What does ATM mean? (for most if atm_method == 'fwd-delta-neutral': # ie. strike such that a straddle would be delta neutral self._atm_method = FinFXATMMethod.FWD_DELTA_NEUTRAL elif atm_method == 'fwd-delta-neutral-premium-adj': self._atm_method = FinFXATMMethod.FWD_DELTA_NEUTRAL_PREM_ADJ elif atm_method == 'spot': # ATM is spot self._atm_method = FinFXATMMethod.SPOT elif atm_method == 'fwd': # ATM is forward self._atm_method = FinFXATMMethod.FWD # How are the deltas quoted? if delta_method == 'spot-delta': self._delta_method = FinFXDeltaMethod.SPOT_DELTA elif delta_method == 'fwd-delta': self._delta_method = FinFXDeltaMethod.FORWARD_DELTA elif delta_method == 'spot-delta-prem-adj': self._delta_method = FinFXDeltaMethod.SPOT_DELTA_PREM_ADJ elif delta_method == 'fwd-delta-prem-adj': self._delta_method = FinFXDeltaMethod.FORWARD_DELTA_PREM_ADJ # Which solver to use in FX vol surface calibration if solver == 'nelmer-mead': self._solver = FinSolverTypes.NELDER_MEAD elif solver == 'nelmer-mead-numba': self._solver = FinSolverTypes.NELDER_MEAD_NUMBA elif solver == 'cg': self._solver = FinSolverTypes.CONJUGATE_GRADIENT self._alpha = alpha self._tol = tol def build_vol_surface(self, value_date): """Builds the implied volatility surface for a particular value date and calculates the benchmark strikes etc. Before we do any sort of interpolation later, we need to build the implied_vol vol surface. Parameters ---------- value_date : str Value date (need to have market data for this date) asset : str Asset name depo_tenor : str Depo tenor to use default - '1M' field : str Market data field to use default - 'close' """ self._value_date = self._market_util.parse_date(value_date) value_fin_date = self._findate(self._value_date) date_index = self._market_df.index == value_date # TODO: add whole rates curve dom_discount_curve = FinDiscountCurveFlat(value_fin_date, self._domCCRate[date_index]) for_discount_curve = FinDiscountCurveFlat(value_fin_date, self._forCCRate[date_index]) self._dom_discount_curve = dom_discount_curve self._for_discount_curve = for_discount_curve self._spot = float(self._spot_history[date_index][0]) # New implementation in FinancePy also uses 10d for interpolation self._fin_fx_vol_surface = FinFXVolSurface(value_fin_date, self._spot, self._asset, self._asset[0:3], dom_discount_curve, for_discount_curve, self._tenors.copy(), self._atm_vols[date_index][0], self._market_strangle25DeltaVols[date_index][0], self._risk_reversal25DeltaVols[date_index][0], self._market_strangle10DeltaVols[date_index][0], self._risk_reversal10DeltaVols[date_index][0], self._alpha, atmMethod=self._atm_method, deltaMethod=self._delta_method, volatilityFunctionType=self._vol_function_type, finSolverType=self._solver, tol=self._tol) # TODO add tol def calculate_vol_for_strike_expiry(self, K, expiry_date=None, tenor='1M'): """Calculates the implied_vol volatility for a given strike and tenor (or expiry date, if specified). The expiry date/broken dates are intepolated linearly in variance space. Parameters ---------- K : float Strike for which to find implied_vol volatility expiry_date : str (optional) Expiry date of option tenor : str (optional) Tenor of option default - '1M' Returns ------- float """ if expiry_date is not None: expiry_date = self._findate(self._market_util.parse_date(expiry_date)) return self._fin_fx_vol_surface.volatilityFromStrikeDate(K, expiry_date) else: try: tenor_index = self._get_tenor_index(tenor) return self.get_vol_from_quoted_tenor(K, tenor_index) except: pass return None def calculate_vol_for_delta_expiry(self, delta_call, expiry_date=None): """Calculates the implied_vol volatility for a given delta call and expiry date. The expiry date/broken dates are intepolated linearly in variance space. Parameters ---------- delta_call : float Delta for the strike for which to find implied volatility expiry_date : str (optional) Expiry date of option Returns ------- float """ if expiry_date is not None: expiry_date = self._findate(self._market_util.parse_date(expiry_date)) return self._fin_fx_vol_surface.volatilityFromDeltaDate(delta_call, expiry_date) return None def extract_vol_surface(self, num_strike_intervals=60, low_K_pc=0.95, high_K_pc=1.05): """Creates an interpolated implied vol surface which can be plotted (in strike space), and also in delta space for key strikes (ATM, 25d call and put). Also for key strikes converts from delta to strike space. Parameters ---------- num_strike_intervals : int Number of points to interpolate Returns ------- dict """ ## Modified from FinancePy code for plotting vol curves # columns = tenors df_vol_surface_strike_space = pd.DataFrame(columns=self._fin_fx_vol_surface._tenors) df_vol_surface_delta_space = pd.DataFrame(columns=self._fin_fx_vol_surface._tenors) # columns = tenors df_vol_surface_implied_pdf = pd.DataFrame(columns=self._fin_fx_vol_surface._tenors) # Conversion between main deltas and strikes df_deltas_vs_strikes = pd.DataFrame(columns=self._fin_fx_vol_surface._tenors) # ATM, 10d + 25d market strangle and 25d risk reversals df_vol_surface_quoted_points = pd.DataFrame(columns=self._fin_fx_vol_surface._tenors) # Note, at present we're not using 10d strikes quoted_strikes_names = ['ATM', 'STR_25D_MS', 'RR_25D_P', 'STR_10D_MS', 'RR_10D_P'] key_strikes_names = ['K_10D_P', 'K_10D_P_MS', 'K_25D_P', 'K_25D_P_MS', 'ATM', 'K_25D_C', 'K_25D_C_MS', 'K_10D_C', 'K_10D_C_MS'] # Get max/min strikes to interpolate (from the longest dated tenor) low_K = self._fin_fx_vol_surface._K_25D_P[-1] * low_K_pc high_K = self._fin_fx_vol_surface._K_25D_C[-1] * high_K_pc if num_strike_intervals is not None: # In case using old version of FinancePy try: implied_pdf_fin_distribution = self._fin_fx_vol_surface.impliedDbns(low_K, high_K, num_strike_intervals) except: pass for tenor_index in range(0, self._fin_fx_vol_surface._numVolCurves): # Get the quoted vol points tenor_label = self._fin_fx_vol_surface._tenors[tenor_index] atm_vol = self._fin_fx_vol_surface._atmVols[tenor_index] * 100 ms_25d_vol = self._fin_fx_vol_surface._mktStrangle25DeltaVols[tenor_index] * 100 rr_25d_vol = self._fin_fx_vol_surface._riskReversal25DeltaVols[tenor_index] * 100 ms_10d_vol = self._fin_fx_vol_surface._mktStrangle10DeltaVols[tenor_index] * 100 rr_10d_vol = self._fin_fx_vol_surface._riskReversal10DeltaVols[tenor_index] * 100 df_vol_surface_quoted_points[tenor_label] = pd.Series(index=quoted_strikes_names, data=[atm_vol, ms_25d_vol, rr_25d_vol, ms_10d_vol, rr_10d_vol]) # Do interpolation in strike space for the implied vols (if intervals have been specified) strikes = [] vols = [] if num_strike_intervals is not None: K = low_K dK = (high_K - low_K) / num_strike_intervals for i in range(0, num_strike_intervals): sigma = self.get_vol_from_quoted_tenor(K, tenor_index) * 100.0 strikes.append(K) vols.append(sigma) K = K + dK df_vol_surface_strike_space[tenor_label] = pd.Series(index=strikes, data=vols) try: df_vol_surface_implied_pdf[tenor_label] = pd.Series(index=implied_pdf_fin_distribution[tenor_index]._x, data=implied_pdf_fin_distribution[tenor_index]._densitydx) except: pass # Extract strikes for the quoted points (ie. 10d, 25d and ATM) key_strikes = [] key_strikes.append(self._fin_fx_vol_surface._K_10D_P[tenor_index]) key_strikes.append(self._fin_fx_vol_surface._K_10D_P_MS[tenor_index]) key_strikes.append(self._fin_fx_vol_surface._K_25D_P[tenor_index]) key_strikes.append(self._fin_fx_vol_surface._K_25D_P_MS[tenor_index]) key_strikes.append(self._fin_fx_vol_surface._K_ATM[tenor_index]) key_strikes.append(self._fin_fx_vol_surface._K_25D_C[tenor_index]) key_strikes.append(self._fin_fx_vol_surface._K_25D_C_MS[tenor_index]) key_strikes.append(self._fin_fx_vol_surface._K_10D_C[tenor_index]) key_strikes.append(self._fin_fx_vol_surface._K_10D_C_MS[tenor_index]) df_deltas_vs_strikes[tenor_label] = pd.Series(index=key_strikes_names, data=key_strikes) # Put a conversion between quoted deltas and
nodetypes.DependNode ): attrNode = PyNode( attrNode ) # #-- Second Argument: Plug or Component # # convert from string to _api objects. # if isinstance(argObj,basestring) : # argObj = _api.toApiObject( argObj, dagPlugs=False ) # # # components # elif isinstance( argObj, int ) or isinstance( argObj, slice ): # argObj = attrNode._apiobject else: argObj = args[0] # the order of the following 3 checks is important, as it is in increasing generality if isinstance( argObj, Attribute ): attrNode = argObj._node argObj = argObj.__apiobjects__['MPlug'] elif isinstance( argObj, Component ): try: argObj = argObj._node.__apiobjects__[ 'MDagPath'] except KeyError: argObj = argObj._node.__apiobjects__['MObjectHandle'] elif isinstance( argObj, PyNode ): try: argObj = argObj.__apiobjects__[ 'MDagPath'] except KeyError: argObj = argObj.__apiobjects__['MObjectHandle'] elif hasattr( argObj, '__module__') and argObj.__module__.startswith( 'maya.OpenMaya' ) : pass #elif isinstance(argObj,basestring) : # got rid of this check because of nameparse objects else: # didn't match any known types. treat as a string # convert to string then to _api objects. try: name = unicode(argObj) except Exception: raise MayaNodeError else: res = _api.toApiObject(name, dagPlugs=True) # DagNode Plug if isinstance(res, tuple): # Plug or Component #print "PLUG or COMPONENT", res attrNode = PyNode(res[0]) argObj = res[1] # There are some names which are both components and # attributes: ie, scalePivot / rotatePivot # toApiObject (and MSelectionList) will return the # component in these ambigious cases; therefore, # if we're explicitly trying to make an Attribute - ie, # Attribute('myCube.scalePivot') # ... make sure to cast it to one in these cases if issubclass(cls, Attribute) and \ isinstance(argObj, _api.MObject) and \ _api.MFnComponent().hasObj(argObj) and \ '.' in name: attrName = name.split('.', 1)[1] if attrNode.hasAttr(attrName): return attrNode.attr(attrName) # DependNode Plug elif isinstance(res, _api.MPlug): attrNode = PyNode(res.node()) argObj = res # Other Object elif res: argObj = res else: # Removed ability to create components such as # PyNode('myCube.vtx') # because of inconsistency - in general, for # PyNode(stringName) # stringName should be a valid mel name, ie # cmds.select(stringName) # should work # # Check if it's a component that's normally indexed, # # but has no index specified - ie, myPoly.vtx, # # instead of the (mel-valid) myPoly.vtx[*] # dotSplit = name.split('.') # if len(dotSplit) == 2: # try: # res = PyNode(dotSplit[0]) # except MayaObjectError: # pass # else: # try: # argObj = getattr(res, dotSplit[1]) # except AttributeError: # pass # else: # if isinstance(argObj, cls): # return argObj # non-existent objects # the object doesn't exist: raise an error # note - at one point, I briefly changed things so # that the code would check to see if the name # existed, but had multiple matches, or didn't # exist at all, and made it so MayaObjectError # would give a more informative error message # depending... # ...but it had potential performance implications - # at best, it was doing an extra cmds.objExists... # ...and objExists wasn't fast enough, considering # we will easily be trying to create 1000s of # PyNodes, and the command gets slower as the size # of the scene increases... raise _objectError(name) #-- Components if validComponentIndexType(argObj): #pymelType, obj, name = _getPymelType( attrNode._apiobject ) obj = {'ComponentIndex' : argObj } # if we are creating a component class using an int or slice, then we must specify a class type: # valid: MeshEdge( myNode, 2 ) # invalid: PyNode( myNode, 2 ) assert issubclass(cls,Component), "%s is not a Component class" % cls.__name__ #-- All Others else: pymelType, obj = _getPymelType( argObj, name ) if attrNode is None and issubclass(pymelType, Attribute): attrNode = PyNode(obj['MPlug'].node()) #print pymelType, obj, name, attrNode # Virtual (non-existent) objects will be cast to their own virtual type. # so, until we make that, we're rejecting them assert obj is not None# real objects only #assert obj or name else : # create node if possible if issubclass(cls,nodetypes.DependNode): newNode = None vClassInfo = _factories.virtualClasses.getVirtualClassInfo(cls) #---------------------------------- # Pre Creation #---------------------------------- postArgs = {} if vClassInfo and vClassInfo.preCreate: kwargs = vClassInfo.preCreate(**kwargs) if isinstance(kwargs, tuple): assert len(kwargs) == 2, "preCreate must either 1 or 2 dictionaries of keyword arguments" kwargs, postArgs = kwargs assert isinstance(postArgs, dict), "preCreate second return value must be a dictionary of keyword arguments" assert isinstance(kwargs, dict), "_preCreateVirtual must return a dictionary of keyword arguments" #---------------------------------- # Creation #---------------------------------- if vClassInfo and vClassInfo.create: newNode = vClassInfo.create(**kwargs) assert isinstance(newNode, basestring), "_createVirtual must return the name created node" elif hasattr(cls, '__melcmd__') and not cls.__melcmd_isinfo__: try: _logger.debug( 'creating node of type %s using %s' % (cls.__melnode__, cls.__melcmd__.__name__ ) ) res = cls.__melcmd__(**kwargs) except Exception, e: _logger.debug( 'failed to create %s' % e ) pass else: if isinstance(res,list): # we only want to return a single object for x in res: typ = cmds.nodeType(x) if typ == cls.__melnode__: newNode = x break elif typ == 'transform': shape = cmds.listRelatives( x, s=1) if shape and cmds.nodeType(shape[0]) == cls.__melnode__: newNode = shape[0] break if newNode is None: raise ValueError, "could not find type %s in result %s returned by %s" % ( cls.__name__, res, cls.__melcmd__.__name__ ) elif cls.__melnode__ == nodeType(res): #isinstance(res,cls): newNode = res else: raise ValueError, "unexpect result %s returned by %s" % ( res, cls.__melcmd__.__name__ ) else: _logger.debug( 'creating node of type %s using createNode' % cls.__melnode__ ) try: newNode = createNode( cls.__melnode__, **kwargs ) except RuntimeError: # FIXME: should we really be passing on this? pass #---------------------------------- # Post Creation #---------------------------------- if newNode: if vClassInfo and vClassInfo.postCreate: vClassInfo.postCreate(newNode, **postArgs) return cls(newNode) raise ValueError, 'PyNode expects at least one argument: an object name, MObject, MObjectHandle, MDagPath, or MPlug' # print "type:", pymelType # print "PyNode __new__ : called with obj=%r, cls=%r, on object of type %s" % (obj, cls, pymelType) # if an explicit class was given (ie: pyObj=DagNode(u'pCube1')) just check if actual type is compatible # if none was given (ie generic pyObj=PyNode('pCube1')) then use the class corresponding to the type we found newcls = None if cls is not PyNode : # a PyNode class was explicitly required, if an existing object was passed to init check that the object type # is compatible with the required class, if no existing object was passed, create an empty PyNode of the required class # There is one exception type: MeshVertex( Mesh( 'pSphere1') ) # TODO : can add object creation option in the __init__ if desired if not pymelType or not issubclass( pymelType, cls ): if issubclass( cls, Component ): newcls = cls else: raise TypeError, "Determined type is %s, which is not a subclass of desired type %s" % ( pymelType.__name__, cls.__name__ ) else: newcls = pymelType else : newcls = pymelType if newcls : self = super(PyNode, cls).__new__(newcls) self._name = name if attrNode: self._node = attrNode self.__apiobjects__ = obj return self else : raise TypeError, "Cannot make a %s out of a %r object" % (cls.__name__, pymelType) def __init__(self, *args, **kwargs): # this prevents the _api class which is the second base, from being automatically instantiated. This __init__ should # be overridden on subclasses of PyNode pass def __melobject__(self): """Special method for returning a mel-friendly representation.""" return self.name() def __apimfn__(self): try: # if we have it, check that the mobject is still valid by calling # __apimobject__ self.__apimobject__() # ...if it is valid, go ahead and return the cached MFn return self.__apiobjects__['MFn'] except KeyError: if self.__apicls__: # use whatever type is appropriate obj = self.__apiobject__() if obj: try: mfn = self.__apicls__(obj) self.__apiobjects__['MFn'] = mfn except RuntimeError: # when using PyNodes in strange places, like node # creation callbacks, the proper MFn does not work yet, # so we default to a super class and we don't save it, # so that we can get the right one later if isinstance(obj, _api.MDagPath): mfn = _api.MFnDagNode( obj ) _logger.warning( "Could not create desired MFn. Defaulting to MFnDagNode." ) elif isinstance(obj, _api.MObject): mfn = _api.MFnDependencyNode( obj ) _logger.warning( "Could not create desired MFn. Defaulting to MFnDependencyNode." ) else: raise return mfn def __repr__(self): """ :rtype: `unicode` """
= { "pools": [ { "cbm": 0xf0, "cores": [1], "id": 1, "name": "valid" }, { "cbm": 0xf, "cores": [3], "id": 8, "name": "invalid" } ] } with mock.patch('common.PQOS_API.check_core', new=check_core): with pytest.raises(ValueError, match="Invalid core 3"): ConfigStore.validate(data) @mock.patch("common.PQOS_API.check_core", mock.MagicMock(return_value=True)) @mock.patch("caps.cat_l3_supported", mock.MagicMock(return_value=True)) def test_pool_duplicate_core(self): data = { "pools": [ { "cbm": 0xf0, "cores": [1, 3], "id": 1, "name": "pool 1" }, { "cbm": 0xf, "id": 10, "cores": [3], "name": "pool 1" } ] } with pytest.raises(ValueError, match="already assigned to another pool"): ConfigStore.validate(data) @mock.patch("common.PQOS_API.check_core", mock.MagicMock(return_value=True)) @mock.patch("caps.cat_l3_supported", mock.MagicMock(return_value=True)) def test_pool_same_ids(self): data = { "pools": [ { "cbm": 0xf0, "cores": [1, 3], "id": 1, "name": "pool 1" }, { "cbm": 0xf, "id": 1, "cores": [3], "name": "pool 2" } ] } with pytest.raises(ValueError, match="Pool 1, multiple pools with same id"): ConfigStore.validate(data) @mock.patch("common.PQOS_API.check_core", mock.MagicMock(return_value=True)) @mock.patch("caps.cat_l3_supported", mock.MagicMock(return_value=True)) def test_pool_invalid_app(self): data = { "pools": [ { "apps": [1, 3], "cbm": 0xf0, "cores": [1, 3], "id": 1, "name": "pool 1" } ], "apps": [ { "cores": [3], "id": 1, "name": "app 1", "pids": [1] } ] } with pytest.raises(KeyError, match="does not exist"): ConfigStore.validate(data) @mock.patch("common.PQOS_API.check_core", mock.MagicMock(return_value=True)) @mock.patch("caps.cat_l3_supported", mock.MagicMock(return_value=True)) def test_pool_invalid_cbm(self): data = { "pools": [ { "apps": [], "cbm": 0x5, "cores": [1, 3], "id": 1, "name": "pool 1" } ] } with pytest.raises(ValueError, match="not contiguous"): ConfigStore.validate(data) data['pools'][0]['cbm'] = 0 with pytest.raises(ValueError, match="not contiguous"): ConfigStore.validate(data) @mock.patch("common.PQOS_API.check_core", mock.MagicMock(return_value=True)) @mock.patch("caps.cat_l3_supported", mock.MagicMock(return_value=False)) def test_pool_cat_not_supported(self): data = { "pools": [ { "apps": [], "cbm": 0x4, "cores": [1, 3], "id": 1, "name": "pool 1" } ] } with pytest.raises(ValueError, match="CAT is not supported"): ConfigStore.validate(data) @mock.patch("common.PQOS_API.check_core", mock.MagicMock(return_value=True)) @mock.patch("caps.cat_l3_supported", mock.MagicMock(return_value=False)) @mock.patch("caps.mba_supported", mock.MagicMock(return_value=True)) def test_pool_cat_not_supported_mba(self): data = { "pools": [ { "apps": [], "cbm": 0x4, "mba": 100, "cores": [1, 3], "id": 1, "name": "pool 1" } ] } with pytest.raises(ValueError, match="CAT is not supported"): ConfigStore.validate(data) @mock.patch("common.PQOS_API.check_core", mock.MagicMock(return_value=True)) @mock.patch("caps.mba_supported", mock.MagicMock(return_value=True)) def test_pool_invalid_mba(self): data = { "pools": [ { "mba": 101, "cores": [1, 3], "id": 1, "name": "pool 1" } ] } with pytest.raises(jsonschema.exceptions.ValidationError, match="Failed validating 'maximum' in schema"): ConfigStore.validate(data) data['pools'][0]['mba'] = 0 with pytest.raises(jsonschema.exceptions.ValidationError, match="Failed validating 'minimum' in schema"): ConfigStore.validate(data) @mock.patch("common.PQOS_API.check_core", mock.MagicMock(return_value=True)) @mock.patch("caps.mba_supported", mock.MagicMock(return_value=False)) def test_pool_mba_not_supported(self): data = { "pools": [ { "mba": 50, "cores": [1, 3], "id": 1, "name": "pool 1" } ] } with pytest.raises(ValueError, match="MBA is not supported"): ConfigStore.validate(data) @mock.patch("common.PQOS_API.check_core", mock.MagicMock(return_value=True)) @mock.patch("caps.cat_l3_supported", mock.MagicMock(return_value=True)) @mock.patch("caps.mba_supported", mock.MagicMock(return_value=True)) @mock.patch("caps.mba_bw_supported", mock.MagicMock(return_value=False)) def test_pool_mba_bw_not_supported(self): data = { "pools": [ { "mba_bw": 5000, "cores": [1, 3], "id": 1, "name": "pool 1" } ] } with pytest.raises(ValueError, match="MBA BW is not enabled/supported"): ConfigStore.validate(data) @mock.patch("common.PQOS_API.check_core", mock.MagicMock(return_value=True)) @mock.patch("caps.cat_l3_supported", mock.MagicMock(return_value=True)) @mock.patch("caps.mba_supported", mock.MagicMock(return_value=False)) def test_pool_mba_not_supported_cat(self): data = { "pools": [ { "cbm": 0xf, "mba": 50, "cores": [1, 3], "id": 1, "name": "pool 1" } ] } with pytest.raises(ValueError, match="MBA is not supported"): ConfigStore.validate(data) @mock.patch("common.PQOS_API.check_core", mock.MagicMock(return_value=True)) @mock.patch("caps.cat_l3_supported", mock.MagicMock(return_value=True)) @mock.patch("caps.mba_supported", mock.MagicMock(return_value=True)) @mock.patch("caps.mba_bw_supported", mock.MagicMock(return_value=False)) def test_pool_mba_bw_not_supported_cat(self): data = { "pools": [ { "cbm": 0xf, "mba_bw": 5000, "cores": [1, 3], "id": 1, "name": "pool 1" } ] } with pytest.raises(ValueError, match="MBA BW is not enabled/supported"): ConfigStore.validate(data) @mock.patch("common.PQOS_API.check_core", mock.MagicMock(return_value=True)) @mock.patch("caps.cat_l3_supported", mock.MagicMock(return_value=True)) @mock.patch("caps.mba_supported", mock.MagicMock(return_value=True)) @mock.patch("caps.mba_bw_supported", mock.MagicMock(return_value=True)) def test_pool_mba_mba_bw_enabled(self): data = { "rdt_iface": {"interface": "os"}, "mba_ctrl": {"enabled": True}, "pools": [ { "cbm": 0xf, "mba": 50, "cores": [1, 3], "id": 1, "name": "pool 1" }, { "cbm": 0xf, "mba": 70, "cores": [2], "id": 2, "name": "pool 2" } ] } with pytest.raises(ValueError, match="MBA % is not enabled. Disable MBA BW and try again"): ConfigStore.validate(data) @mock.patch("caps.cat_l3_supported", mock.MagicMock(return_value=True)) def test_app_invalid_core(self): def check_core(core): return core != 3 data = { "pools": [ { "apps": [1], "cbm": 0xf0, "cores": [1], "id": 1, "name": "pool 1" } ], "apps": [ { "cores": [3], "id": 1, "name": "app 1", "pids": [1] } ] } with mock.patch('common.PQOS_API.check_core', new=check_core): with pytest.raises(ValueError, match="Invalid core 3"): ConfigStore.validate(data) @mock.patch("common.PQOS_API.check_core", mock.MagicMock(return_value=True)) @mock.patch("caps.cat_l3_supported", mock.MagicMock(return_value=True)) def test_app_core_does_not_match_pool(self): data = { "pools": [ { "apps": [1], "cbm": 0xf0, "cores": [1], "id": 1, "name": "pool 1" } ], "apps": [ { "cores": [3,4,5], "id": 1, "name": "app 1", "pids": [1] } ] } with pytest.raises(ValueError, match="App 1, cores {3, 4, 5} does not match Pool 1"): ConfigStore.validate(data) @mock.patch("common.PQOS_API.check_core", mock.MagicMock(return_value=True)) @mock.patch("caps.cat_l3_supported", mock.MagicMock(return_value=True)) def test_app_without_pool(self): data = { "pools": [ { "apps": [1], "cbm": 0xf0, "cores": [1], "id": 1, "name": "pool 1" }, { "cbm": 0xf0, "cores": [2], "id": 2, "name": "pool 2" } ], "apps": [ { "cores": [1], "id": 1, "name": "app 1", "pids": [1] }, { "cores": [1], "id": 2, "name": "app 2", "pids": [2] } ] } with pytest.raises(ValueError, match="not assigned to any pool"): ConfigStore.validate(data) @mock.patch("common.PQOS_API.check_core", mock.MagicMock(return_value=True)) @mock.patch("caps.cat_l3_supported", mock.MagicMock(return_value=True)) def test_app_without_pool(self): data = { "pools": [ { "apps": [1], "cbm": 0xf0, "cores": [1], "id": 1, "name": "pool 1" }, { "apps": [1, 2], "cbm": 0xf0, "cores": [2], "id": 2, "name": "pool 2" } ], "apps": [ { "cores": [1], "id": 1, "name": "app 1", "pids": [1] }, { "cores": [2], "id": 2, "name": "app 2", "pids": [2] } ] } with pytest.raises(ValueError, match="App 1, Assigned to more than one pool"): ConfigStore.validate(data) @mock.patch("common.PQOS_API.check_core", mock.MagicMock(return_value=True)) @mock.patch("caps.cat_l3_supported", mock.MagicMock(return_value=True)) def test_app_same_ids(self): data = { "pools": [ { "apps": [1], "cbm": 0xf0, "cores": [1], "id": 1, "name": "pool 1" }, ], "apps": [ { "cores": [1], "id": 1, "name": "app 1", "pids": [1] }, { "cores": [1], "id": 1, "name": "app 2", "pids": [1] } ] } with pytest.raises(ValueError, match="App 1, multiple apps with same id"): ConfigStore.validate(data) @mock.patch("common.PQOS_API.check_core", mock.MagicMock(return_value=True)) @mock.patch("caps.cat_l3_supported", mock.MagicMock(return_value=True)) def test_app_same_pid(self): data = { "pools": [ { "apps": [1, 2], "cbm": 0xf0, "cores": [1], "id": 1, "name": "pool 1" }, ], "apps": [ { "cores": [1], "id": 1, "name": "app 1", "pids": [1] }, { "cores": [1], "id": 2, "name": "app 2", "pids": [1] } ] } with pytest.raises(ValueError, match=r"App 2, PIDs \{1} already assigned to another App."): ConfigStore.validate(data) @mock.patch("common.PQOS_API.check_core", mock.MagicMock(return_value=True)) @mock.patch("caps.cat_l3_supported", mock.MagicMock(return_value=True)) def test_app_invalid_pid(self): data = { "pools": [ { "apps": [1, 2], "cbm": 0xf0, "cores": [1], "id": 1, "name": "pool 1" }, ], "apps": [ { "cores": [1], "id": 1, "name": "app 1", "pids": [1] }, { "cores": [1], "id": 2, "name": "app 2", "pids": [99999] } ] } with pytest.raises(ValueError, match="App 2, PID 99999 is not valid"): ConfigStore.validate(data) def test_power_profile_expert_mode_invalid(self): data = { "pools": [], "apps": [], "power_profiles_expert_mode": None } with pytest.raises(jsonschema.exceptions.ValidationError, match="None is not of type 'boolean'"): ConfigStore.validate(data) data['power_profiles_expert_mode'] = 1 with pytest.raises(jsonschema.exceptions.ValidationError, match="1 is not of type 'boolean'"): ConfigStore.validate(data) data['power_profiles_expert_mode'] = [] with pytest.raises(jsonschema.exceptions.ValidationError, match="\\[\\] is not of type 'boolean'"): ConfigStore.validate(data) def test_power_profile_verify_invalid(self): data = { "pools": [], "apps": [], "power_profiles_verify": None } with pytest.raises(jsonschema.exceptions.ValidationError, match="None is not of type 'boolean'"): ConfigStore.validate(data) data['power_profiles_verify'] = 1 with pytest.raises(jsonschema.exceptions.ValidationError, match="1 is not of type 'boolean'"): ConfigStore.validate(data) data['power_profiles_verify'] = [] with pytest.raises(jsonschema.exceptions.ValidationError, match="\\[\\] is not of type 'boolean'"): ConfigStore.validate(data) def test_rdt_iface_invalid(self): data = { "pools": [], "apps": [], "rdt_iface": "os" } with pytest.raises(jsonschema.exceptions.ValidationError, match="'os' is not of type 'object'"): ConfigStore.validate(data) data['rdt_iface'] = {} with pytest.raises(jsonschema.exceptions.ValidationError, match="'interface' is a required property"): ConfigStore.validate(data) data['rdt_iface']['interface'] = None with pytest.raises(jsonschema.exceptions.ValidationError, match="None is not of type 'string'"): ConfigStore.validate(data) data['rdt_iface']['interface'] = 2 with pytest.raises(jsonschema.exceptions.ValidationError, match="2 is not of type 'string'"): ConfigStore.validate(data) data['rdt_iface']['interface'] = "test_string" with pytest.raises(jsonschema.exceptions.ValidationError, match="'test_string' is not one of \\['msr', 'os'\\]"): ConfigStore.validate(data) def test_mba_ctrl_invalid(self): data = { "pools": [], "apps": [], "mba_ctrl": True } with pytest.raises(jsonschema.exceptions.ValidationError, match="True is not of type 'object'"): ConfigStore.validate(data) data['mba_ctrl'] = {} with pytest.raises(jsonschema.exceptions.ValidationError, match="'enabled' is a required property"): ConfigStore.validate(data) data['mba_ctrl']['enabled'] = None with pytest.raises(jsonschema.exceptions.ValidationError, match="None is not of type 'boolean'"): ConfigStore.validate(data) data['mba_ctrl']['enabled'] = 2 with pytest.raises(jsonschema.exceptions.ValidationError, match="2 is not of type 'boolean'"): ConfigStore.validate(data) data['mba_ctrl']['enabled'] = "test_string" with pytest.raises(jsonschema.exceptions.ValidationError, match="'test_string' is not of type 'boolean'"): ConfigStore.validate(data) data['mba_ctrl']['enabled'] = True with pytest.raises(ValueError, match="MBA CTRL requires RDT OS interface"): ConfigStore.validate(data) data['rdt_iface'] = {"interface": "msr"} with pytest.raises(ValueError, match="MBA CTRL requires RDT OS interface"): ConfigStore.validate(data) @mock.patch('config.ConfigStore.get_config') @pytest.mark.parametrize("cfg, result", [ ({}, "msr"), ({"rdt_iface": {"interface": "msr"}}, "msr"), ({"rdt_iface": {"interface": "msr_test"}}, "msr_test"), ({"rdt_iface": {"interface": "os_test"}}, "os_test"), ({"rdt_iface": {"interface": "os"}}, "os") ]) def test_get_rdt_iface(mock_get_config, cfg, result): mock_get_config.return_value = cfg config_store = ConfigStore() assert config_store.get_rdt_iface() == result @mock.patch('config.ConfigStore.get_config') @pytest.mark.parametrize("cfg, result", [ ({}, False), ({"mba_ctrl": {"enabled": True}}, True), ({"mba_ctrl": {"enabled": False}}, False) ]) def test_get_mba_ctrl_enabled(mock_get_config, cfg, result): mock_get_config.return_value = cfg
<gh_stars>10-100 from ...base import * class HistoryMixin: """ GeomDataObject class mix-in """ def __init__(self): self._subobj_change = {"vert": {}, "edge": {}, "poly": {}} def get_data_to_store(self, event_type="", prop_id="", info="", unique_id=False): data = {} unique_prop_ids = self._unique_prop_ids obj_id = self.toplevel_obj.id cur_time_id = Mgr.do("get_history_time") extra_normal_data = None extra_normal_lock_data = None if event_type == "creation": data["geom_data"] = {"main": self} for prop_id in self._prop_ids: data.update(self.get_property_to_store(prop_id, event_type)) self._normal_change = set() prev_time_ids = (cur_time_id,) for subobj_type in ("vert", "edge", "poly"): subobjs = self._subobjs[subobj_type] for subobj in subobjs.values(): subobj.creation_time = cur_time_id pickled_objs = {s_id: pickle.dumps(s, -1) for s_id, s in subobjs.items()} unique_prop_id = unique_prop_ids[f"{subobj_type}__extra__"] extra_data = {unique_prop_id: {"created": pickled_objs}} unique_prop_id = unique_prop_ids[f"{subobj_type}s"] data[unique_prop_id] = {"main": prev_time_ids, "extra": extra_data} elif event_type == "deletion": for prop_id in ("subobj_transform", "poly_tris", "uvs", "normals", "normal_lock"): data.update(self.get_property_to_store(prop_id, event_type)) for subobj_type in ("vert", "edge", "poly"): unique_prop_id = unique_prop_ids[f"{subobj_type}s"] prev_time_ids = Mgr.do("load_last_from_history", obj_id, unique_prop_id) prev_time_ids += (cur_time_id,) subobjs = self._subobjs[subobj_type].items() creation_times = {s_id: s.creation_time for s_id, s in subobjs} unique_prop_id = unique_prop_ids[f"{subobj_type}__extra__"] extra_data = {unique_prop_id: {"deleted": creation_times}} unique_prop_id = unique_prop_ids[f"{subobj_type}s"] data[unique_prop_id] = {"main": prev_time_ids, "extra": extra_data} toplvl_obj = self.toplevel_obj data["tangent space"] = {"main": toplvl_obj.get_property("tangent space")} elif event_type == "subobj_change": for prop_id in ("subobj_merge", "subobj_transform", "subobj_selection", "poly_tris", "uvs"): data.update(self.get_property_to_store(prop_id, event_type)) subobj_change = self._subobj_change deleted_verts = subobj_change["vert"].get("deleted") if deleted_verts: normal_data = self.get_property_to_store("normals", event_type) data.update(normal_data) unique_prop_id = unique_prop_ids["normal__extra__"] extra_normal_data = list(normal_data.values())[0]["extra"][unique_prop_id] normal_lock_data = self.get_property_to_store("normal_lock", event_type) data.update(normal_lock_data) unique_prop_id = unique_prop_ids["normal_lock__extra__"] extra_normal_lock_data = list(normal_lock_data.values())[0]["extra"][unique_prop_id] for subobj_type in ("vert", "edge", "poly"): unique_prop_id = unique_prop_ids[f"{subobj_type}s"] prev_time_ids = Mgr.do("load_last_from_history", obj_id, unique_prop_id) prev_time_ids += (cur_time_id,) data_to_store = {} if "deleted" in subobj_change[subobj_type]: deleted_subobjs = subobj_change[subobj_type]["deleted"] # creation times of the deleted subobjects creation_times = {s.id: s.creation_time for s in deleted_subobjs} data_to_store["deleted"] = creation_times if "created" in subobj_change[subobj_type]: created_subobjs = subobj_change[subobj_type]["created"] pickled_objs = {} for subobj in created_subobjs: subobj.creation_time = cur_time_id pickled_objs[subobj.id] = pickle.dumps(subobj, -1) data_to_store["created"] = pickled_objs extra_data = {unique_prop_ids[f"{subobj_type}__extra__"]: data_to_store} data[unique_prop_ids[f"{subobj_type}s"]] = {"main": prev_time_ids, "extra": extra_data} self._subobj_change = {"vert": {}, "edge": {}, "poly": {}} elif event_type == "prop_change": unique_prop_id = prop_id if unique_id else (unique_prop_ids[prop_id] if prop_id in unique_prop_ids else None) if unique_prop_id in self.get_property_ids(unique=True): data = self.get_property_to_store(unique_prop_id, event_type, info, unique_id=True) if self._normal_change: normal_data = self.get_property_to_store("normals", "prop_change") if extra_normal_data: unique_prop_id = unique_prop_ids["normal__extra__"] extra_data = list(normal_data.values())[0]["extra"][unique_prop_id] extra_normal_data["prev"].update(extra_data["prev"]) extra_normal_data["normals"].update(extra_data["normals"]) else: data.update(normal_data) if self._normal_lock_change: normal_lock_data = self.get_property_to_store("normal_lock", "prop_change") if extra_normal_lock_data: unique_prop_id = unique_prop_ids["normal_lock__extra__"] extra_data = list(normal_lock_data.values())[0]["extra"][unique_prop_id] extra_normal_lock_data["prev"].update(extra_data["prev"]) extra_normal_lock_data["normals"].update(extra_data["normal_lock"]) else: data.update(normal_lock_data) if self._normal_sharing_change: data.update(self.get_property_to_store("normal_sharing")) if self._poly_smoothing_change: data.update(self.get_property_to_store("smoothing")) return data def get_property_to_store(self, prop_id, event_type="", info="", unique_id=False): data = {} unique_prop_ids = self._unique_prop_ids unique_prop_id = prop_id if unique_id else (unique_prop_ids[prop_id] if prop_id in unique_prop_ids else None) if unique_prop_id == unique_prop_ids["subobj_merge"]: data[unique_prop_id] = {"main": (self.merged_verts, self.merged_edges)} elif unique_prop_id == unique_prop_ids["uv_set_names"]: data[unique_prop_id] = {"main": self._uv_set_names} elif unique_prop_id == unique_prop_ids["normal_length"]: data[unique_prop_id] = {"main": self._normal_length} elif unique_prop_id == unique_prop_ids["normal_sharing"]: data[unique_prop_id] = {"main": self.shared_normals} self._normal_sharing_change = False elif unique_prop_id == unique_prop_ids["smoothing"]: data[unique_prop_id] = {"main": self._poly_smoothing} self._poly_smoothing_change = False elif unique_prop_id == unique_prop_ids["subobj_selection"]: sel_subobj_ids = copy.deepcopy(self._selected_subobj_ids) sel_subobj_ids.update(self._sel_subobj_ids_backup) data[unique_prop_id] = {"main": sel_subobj_ids} elif unique_prop_id == unique_prop_ids["subobj_transform"]: obj_id = self.toplevel_obj.id subobj_lvl = GD["active_obj_level"] pos_data = {"prev": {}, "pos": {}} extra_data = {unique_prop_ids["vert_pos__extra__"]: pos_data} cur_time_id = Mgr.do("get_history_time") prev_time_ids = Mgr.do("load_last_from_history", obj_id, unique_prop_id) verts = self._subobjs["vert"] if prev_time_ids: prev_time_ids += (cur_time_id,) else: prev_time_ids = (cur_time_id,) if event_type == "creation": for vert_id, vert in verts.items(): pos = vert.get_pos() pos_data["pos"][vert_id] = pos vert.set_previous_property_time("transform", cur_time_id) elif event_type == "deletion": for vert_id, vert in verts.items(): time_id = vert.get_previous_property_time("transform") pos_data["prev"][vert_id] = time_id elif event_type == "subobj_change": deleted_verts = self._subobj_change["vert"].get("deleted", []) for vert in deleted_verts: time_id = vert.get_previous_property_time("transform") pos_data["prev"][vert.id] = time_id created_verts = self._subobj_change["vert"].get("created", []) for vert in created_verts: pos = vert.get_pos() pos_data["pos"][vert.id] = pos vert.set_previous_property_time("transform", cur_time_id) elif event_type == "prop_change": if info == "all": xformed_verts = set(self.merged_verts.values()) elif info == "check": xformed_verts = set(self._transformed_verts) self._transformed_verts = set() else: xformed_verts = self._verts_to_transf[subobj_lvl] for merged_vert in xformed_verts: pos = merged_vert.get_pos() for vert_id in merged_vert: # since it can happen that a MergedVertex references both previously # transformed Vertex objects and newly created ones, the MergedVertex # cannot be relied upon to get a single previous transform time for # all the Vertex objects it references, so this has to be retrieved # per Vertex object time_id = verts[vert_id].get_previous_property_time("transform") pos_data["pos"][vert_id] = pos pos_data["prev"][vert_id] = time_id merged_vert.set_previous_property_time("transform", cur_time_id) data[unique_prop_id] = {"main": prev_time_ids, "extra": extra_data} elif unique_prop_id == unique_prop_ids["poly_tris"]: obj_id = self.toplevel_obj.id subobj_lvl = GD["active_obj_level"] tri_data = {"prev": {}, "tri_data": {}} extra_data = {unique_prop_ids["tri__extra__"]: tri_data} cur_time_id = Mgr.do("get_history_time") prev_time_ids = Mgr.do("load_last_from_history", obj_id, unique_prop_id) polys = self._subobjs["poly"] if prev_time_ids: prev_time_ids += (cur_time_id,) else: prev_time_ids = (cur_time_id,) if event_type == "creation": for poly_id, poly in polys.items(): tris = poly[:] tri_data["tri_data"][poly_id] = tris poly.set_previous_property_time("tri_data", cur_time_id) elif event_type == "deletion": for poly_id, poly in polys.items(): time_id = poly.get_previous_property_time("tri_data") tri_data["prev"][poly_id] = time_id elif event_type == "subobj_change": deleted_polys = self._subobj_change["poly"].get("deleted", []) for poly in deleted_polys: time_id = poly.get_previous_property_time("tri_data") tri_data["prev"][poly.id] = time_id created_polys = self._subobj_change["poly"].get("created", []) for poly in created_polys: tris = poly[:] tri_data["tri_data"][poly.id] = tris poly.set_previous_property_time("tri_data", cur_time_id) elif event_type == "prop_change": for poly_id in self._tri_change: poly = polys[poly_id] tris = poly[:] time_id = poly.get_previous_property_time("tri_data") tri_data["tri_data"][poly_id] = tris tri_data["prev"][poly_id] = time_id poly.set_previous_property_time("tri_data", cur_time_id) self._tri_change = set() data[unique_prop_id] = {"main": prev_time_ids, "extra": extra_data} elif unique_prop_id == unique_prop_ids["uvs"]: obj_id = self.toplevel_obj.id uv_data = {"prev": {}, "uvs": {}} extra_data = {unique_prop_ids["uv__extra__"]: uv_data} cur_time_id = Mgr.do("get_history_time") prev_time_ids = Mgr.do("load_last_from_history", obj_id, unique_prop_id) verts = self._subobjs["vert"] if prev_time_ids: prev_time_ids += (cur_time_id,) else: prev_time_ids = (cur_time_id,) if event_type == "creation": for vert_id, vert in verts.items(): uvs = vert.get_uvs() uv_data["uvs"][vert_id] = uvs vert.set_previous_property_time("uvs", cur_time_id) elif event_type == "deletion": for vert_id, vert in verts.items(): time_id = vert.get_previous_property_time("uvs") uv_data["prev"][vert_id] = time_id elif event_type == "subobj_change": created_verts = self._subobj_change["vert"].get("created", []) for vert in created_verts: uvs = vert.get_uvs() uv_data["uvs"][vert.id] = uvs vert.set_previous_property_time("uvs", cur_time_id) deleted_verts = self._subobj_change["vert"].get("deleted", []) for vert in deleted_verts: time_id = vert.get_previous_property_time("uvs") uv_data["prev"][vert.id] = time_id elif event_type == "prop_change": for vert_id in self._uv_change: vert = verts[vert_id] uvs = vert.get_uvs() time_id = vert.get_previous_property_time("uvs") uv_data["uvs"][vert_id] = uvs uv_data["prev"][vert_id] = time_id vert.set_previous_property_time("uvs", cur_time_id) self._uv_change = set() data[unique_prop_id] = {"main": prev_time_ids, "extra": extra_data} elif unique_prop_id == unique_prop_ids["normals"]: obj_id = self.toplevel_obj.id normal_data = {"prev": {}, "normals": {}} extra_data = {unique_prop_ids["normal__extra__"]: normal_data} cur_time_id = Mgr.do("get_history_time") prev_time_ids = Mgr.do("load_last_from_history", obj_id, unique_prop_id) verts = self._subobjs["vert"] if prev_time_ids: prev_time_ids += (cur_time_id,) else: prev_time_ids = (cur_time_id,) if event_type == "creation": for vert_id, vert in verts.items(): normal = vert.normal normal_data["normals"][vert_id] = normal vert.set_previous_property_time("normal", cur_time_id) elif event_type == "deletion": for vert_id, vert in verts.items(): time_id = vert.get_previous_property_time("normal") normal_data["prev"][vert_id] = time_id elif event_type == "subobj_change": created_verts = self._subobj_change["vert"].get("created", []) for vert in created_verts: normal = vert.normal normal_data["normals"][vert.id] = normal vert.set_previous_property_time("normal", cur_time_id) deleted_verts = self._subobj_change["vert"].get("deleted", []) for vert in deleted_verts: time_id = vert.get_previous_property_time("normal") normal_data["prev"][vert.id] = time_id elif event_type == "prop_change": if info == "all": normal_change = verts else: normal_change = self._normal_change for vert_id in normal_change: vert = verts[vert_id] normal = vert.normal time_id = vert.get_previous_property_time("normal") normal_data["normals"][vert_id] = normal normal_data["prev"][vert_id] = time_id vert.set_previous_property_time("normal", cur_time_id) self._normal_change = set() data[unique_prop_id] = {"main": prev_time_ids, "extra": extra_data} elif unique_prop_id == unique_prop_ids["normal_lock"]: obj_id = self.toplevel_obj.id lock_data = {"prev": {}, "normal_lock": {}} extra_data = {unique_prop_ids["normal_lock__extra__"]: lock_data} cur_time_id = Mgr.do("get_history_time") prev_time_ids = Mgr.do("load_last_from_history", obj_id, unique_prop_id) verts = self._subobjs["vert"] if prev_time_ids: prev_time_ids += (cur_time_id,) else: prev_time_ids = (cur_time_id,) if event_type == "creation": for vert_id, vert in verts.items(): locked = vert.has_locked_normal() lock_data["normal_lock"][vert_id] = locked vert.set_previous_property_time("normal_lock", cur_time_id) elif event_type == "deletion": for vert_id, vert in verts.items(): time_id = vert.get_previous_property_time("normal_lock") lock_data["prev"][vert_id] = time_id elif event_type == "subobj_change": created_verts = self._subobj_change["vert"].get("created", []) for vert in created_verts: locked = vert.has_locked_normal() lock_data["normal_lock"][vert.id] = locked vert.set_previous_property_time("normal_lock", cur_time_id) deleted_verts = self._subobj_change["vert"].get("deleted", []) for vert in deleted_verts: time_id = vert.get_previous_property_time("normal_lock") lock_data["prev"][vert.id] = time_id elif event_type == "prop_change": if info == "all": lock_change = verts else: lock_change = self._normal_lock_change for vert_id in lock_change: vert = verts[vert_id] locked = vert.has_locked_normal() time_id = vert.get_previous_property_time("normal_lock") lock_data["normal_lock"][vert_id] = locked lock_data["prev"][vert_id] = time_id vert.set_previous_property_time("normal_lock", cur_time_id) self._normal_lock_change = set() data[unique_prop_id] = {"main": prev_time_ids, "extra": extra_data} return data def restore_data(self, data_ids, restore_type, old_time_id, new_time_id): obj_id = self.toplevel_obj.id if "self" in data_ids: cancellable = True if GD["loading_scene"] else False for prop_id in self.get_property_ids(unique=True): self.__restore_property(prop_id, restore_type, old_time_id, new_time_id, cancellable) task = lambda: self.__recreate_geometry(old_time_id,
= M(content) expected1 = Project('testproject_v1', 'https://url1.com/testproject', revision='v1.0') expected2 = Project('testproject_v2', 'https://url1.com/testproject', revision='v2.0') check_proj_consistency(m.projects[1], expected1) check_proj_consistency(m.projects[2], expected2) def test_project_clone_depth(): ps = M('''\ projects: - name: foo url: u1 - name: bar url: u2 clone-depth: 4 ''').projects assert ps[1].clone_depth is None assert ps[2].clone_depth == 4 def test_project_west_commands(): # Projects may also specify subdirectories with west commands. m = M('''\ projects: - name: zephyr url: https://foo.com west-commands: some-path/west-commands.yml ''') assert m.projects[1].west_commands == ['some-path/west-commands.yml'] def test_project_git_methods(tmpdir): # Test the internal consistency of the various methods that call # out to git. # Just manually create a Project instance. We don't need a full # Manifest. path = tmpdir / 'project' p = Project('project', 'ignore-this-url', topdir=tmpdir) # Helper for getting the contents of a.txt at a revision. def a_content_at(rev): return p.git(f'show {rev}:a.txt', capture_stderr=True, capture_stdout=True).stdout.decode('ascii') # The project isn't cloned yet. assert not p.is_cloned() # Create it, then verify the API knows it's cloned. # Cache the current SHA. create_repo(path) assert p.is_cloned() start_sha = p.sha('HEAD') # If a.txt doesn't exist at a revision, we can't read it. If it # does, we can. with pytest.raises(subprocess.CalledProcessError): a_content_at('HEAD') add_commit(path, 'add a.txt', files={'a.txt': 'a'}) a_sha = p.sha('HEAD') with pytest.raises(subprocess.CalledProcessError): a_content_at(start_sha) assert a_content_at(a_sha) == 'a' # Checks for read_at() and listdir_at(). add_commit(path, 'add b.txt', files={'b.txt': 'b'}) b_sha = p.sha('HEAD') assert p.read_at('a.txt', rev=a_sha) == b'a' with pytest.raises(subprocess.CalledProcessError): p.read_at('a.txt', rev=start_sha) assert p.listdir_at('', rev=start_sha) == [] assert p.listdir_at('', rev=a_sha) == ['a.txt'] assert sorted(p.listdir_at('', rev=b_sha)) == ['a.txt', 'b.txt'] # p.git() should be able to take a cwd kwarg which is a PathLike # or a str. p.git('log -1', cwd=path) p.git('log -1', cwd=str(path)) # Basic checks for functions which operate on commits. assert a_content_at(a_sha) == 'a' assert p.is_ancestor_of(start_sha, a_sha) assert not p.is_ancestor_of(a_sha, start_sha) assert p.is_up_to_date_with(start_sha) assert p.is_up_to_date_with(a_sha) assert p.is_up_to_date_with(b_sha) p.revision = b_sha assert p.is_up_to_date() p.git(f'reset --hard {a_sha}') assert not p.is_up_to_date() def test_project_repr(): m = M('''\ projects: - name: zephyr url: https://foo.com revision: r west-commands: some-path/west-commands.yml ''') assert repr(m.projects[1]) == \ 'Project("zephyr", "https://foo.com", revision="r", path=\'zephyr\', clone_depth=None, west_commands=[\'some-path/west-commands.yml\'], topdir=None, groups=[], userdata=None)' # noqa: E501 def test_project_sha(tmpdir): tmpdir = Path(os.fspath(tmpdir)) create_repo(tmpdir) add_tag(tmpdir, 'test-tag') expected_sha = rev_parse(tmpdir, 'HEAD^{commit}') project = Project('name', 'url-do-not-fetch', revision='test-tag', path=tmpdir.name, topdir=tmpdir.parent) assert project.sha(project.revision) == expected_sha def test_project_userdata(tmpdir): m = M('''\ defaults: remote: r remotes: - name: r url-base: base projects: - name: foo - name: bar userdata: a-string - name: baz userdata: key: value ''') foo, bar, baz = m.get_projects(['foo', 'bar', 'baz']) assert foo.userdata is None assert bar.userdata == 'a-string' assert baz.userdata == {'key': 'value'} assert 'userdata' not in foo.as_dict() assert 'a-string' == bar.as_dict()['userdata'] def test_self_userdata(tmpdir): m = M(''' defaults: remote: r remotes: - name: r url-base: base projects: - name: bar self: path: foo userdata: key: value ''') foo, bar = m.get_projects(['manifest', 'bar']) assert m.userdata == {'key': 'value'} assert foo.userdata == {'key': 'value'} assert bar.userdata is None assert 'userdata' in foo.as_dict() assert 'userdata' not in bar.as_dict() def test_self_missing_userdata(tmpdir): m = M(''' defaults: remote: r remotes: - name: r url-base: base projects: - name: bar self: path: foo ''') foo, bar = m.get_projects(['manifest', 'bar']) assert m.userdata is None assert foo.userdata is None assert bar.userdata is None assert 'userdata' not in foo.as_dict() assert 'userdata' not in bar.as_dict() def test_no_projects(): # An empty projects list is allowed. m = Manifest.from_data('manifest: {}') assert len(m.projects) == 1 # just ManifestProject m = M(''' self: path: foo ''') assert len(m.projects) == 1 # just ManifestProject ######################################### # Tests for the manifest repository def test_manifest_project(): # Basic test that the manifest repository, when represented as a project, # has attributes which make sense when loaded from data. # Case 1: everything at defaults m = M('''\ projects: - name: name url: url ''') mp = m.projects[0] assert mp.name == 'manifest' assert mp.path is None assert mp.topdir is None assert mp.abspath is None assert mp.posixpath is None assert mp.url == '' assert mp.revision == 'HEAD' assert mp.clone_depth is None # Case 2: path and west-commands are specified m = M('''\ projects: - name: name url: url self: path: my-path west-commands: cmds.yml ''') mp = m.projects[0] assert mp.name == 'manifest' assert mp.path == 'my-path' assert m.yaml_path == 'my-path' assert mp.west_commands == ['cmds.yml'] assert mp.topdir is None assert mp.abspath is None assert mp.posixpath is None assert mp.url == '' assert mp.revision == 'HEAD' assert mp.clone_depth is None def test_self_tag(): # Manifests may contain a self section describing the manifest # repository. It should work with multiple projects and remotes as # expected. m = M('''\ remotes: - name: testremote1 url-base: https://example1.com - name: testremote2 url-base: https://example2.com projects: - name: testproject1 remote: testremote1 revision: rev1 - name: testproject2 remote: testremote2 self: path: the-manifest-path west-commands: scripts/west_commands ''') expected = [ManifestProject(path='the-manifest-path', west_commands='scripts/west_commands'), Project('testproject1', 'https://example1.com/testproject1', revision='rev1'), Project('testproject2', 'https://example2.com/testproject2')] # Check the projects are as expected. for p, e in zip(m.projects, expected): check_proj_consistency(p, e) # With a "self: path:" value, that will be available in the # yaml_path attribute, but all other absolute and relative # attributes are None since we aren't reading from a workspace. assert m.abspath is None assert m.relative_path is None assert m.yaml_path == 'the-manifest-path' assert m.repo_abspath is None # If "self: path:" is missing, we won't have a yaml_path attribute. m = M('''\ projects: - name: p url: u ''') assert m.yaml_path is None # Empty paths are an error. with pytest.raises(MalformedManifest) as e: M('''\ projects: [] self: path:''') assert 'must be nonempty if present' in str(e.value) ######################################### # File system tests # # Parsing manifests from data is the base case that everything else # reduces to, but parsing may also be done from files on the file # system, or "as if" it were done from files on the file system. def test_from_topdir(tmp_workspace): # If you load from topdir along with some source data, you will # get absolute paths. # # This is true of both projects and the manifest itself. topdir = Path(str(tmp_workspace)) repo_abspath = topdir / 'mp' relpath = Path('mp') / 'west.yml' abspath = topdir / relpath mf = topdir / relpath # Case 1: manifest has no "self: path:". with open(mf, 'w', encoding='utf-8') as f: f.write(''' manifest: projects: - name: my-cool-project url: from-manifest-dir ''') m = Manifest.from_topdir(topdir=topdir) # Path-related Manifest attribute tests. assert Path(m.abspath) == mf assert m.posixpath == mf.as_posix() assert Path(m.relative_path) == relpath assert m.yaml_path is None assert Path(m.repo_abspath) == repo_abspath assert m.repo_posixpath == repo_abspath.as_posix() assert Path(m.topdir) == topdir # Legacy ManifestProject tests. mproj = m.projects[MANIFEST_PROJECT_INDEX] assert Path(mproj.topdir) == topdir assert Path(mproj.path) == Path('mp') # Project tests. p1 = m.projects[1] assert Path(p1.topdir) == Path(topdir) assert Path(p1.abspath) == Path(topdir / 'my-cool-project') # Case 2: manifest has a "self: path:", which disagrees with the # actual file system path. with open(mf, 'w', encoding='utf-8') as f: f.write(''' manifest: projects: - name: my-cool-project url: from-manifest-dir self: path: something/else ''') m = Manifest.from_topdir(topdir=topdir) # Path-related Manifest attribute tests. assert Path(m.abspath) == abspath assert m.posixpath == abspath.as_posix() assert Path(m.relative_path) == relpath assert m.yaml_path == 'something/else' assert Path(m.repo_abspath) == repo_abspath assert m.repo_posixpath == repo_abspath.as_posix() assert Path(m.topdir) == topdir # Legacy ManifestProject tests. mproj = m.projects[MANIFEST_PROJECT_INDEX] assert Path(mproj.topdir).is_absolute() assert Path(mproj.topdir) == topdir assert Path(mproj.path) == Path('mp') assert Path(mproj.abspath).is_absolute() assert Path(mproj.abspath) == repo_abspath # Project tests. p1 = m.projects[1] assert Path(p1.topdir) == Path(topdir) assert Path(p1.abspath) == topdir / 'my-cool-project' # Case 3: project has a path. This always takes effect. with open(mf, 'w', encoding='utf-8') as f: f.write(''' manifest: projects: - name: my-cool-project url: from-manifest-dir path: project-path self: path: something/else ''') m = Manifest.from_topdir(topdir=topdir) p1 = m.projects[1] assert p1.path == 'project-path' assert Path(p1.abspath) == topdir / 'project-path' assert p1.posixpath == (topdir / 'project-path').as_posix() def test_manifest_path_not_found(tmp_workspace): # Make sure manifest_path() raises FileNotFoundError if the # manifest file specified in .west/config doesn't exist. # Here, we rely on tmp_workspace not actually creating the file. with pytest.raises(FileNotFoundError) as e: manifest_path() assert e.value.filename == tmp_workspace / 'mp' / 'west.yml' def test_manifest_path_conflicts(tmp_workspace): # Project path conflicts with the manifest path are errors. This # is true when we have an explicit file system path, but it is not # true when loading from data, where
#!/usr/bin/env python3 from os import listdir from os.path import join from fnmatch import filter from sys import exit from datetime import datetime from shared.random import Random from shared.utils import * from bot_utils import * HELP_TEXT = """<b>Help:</b> /help - This Message /start - Start the Bot /status - Bot Status /uptime - Bot Uptime /source - Nobotty's Source Code on Git /speedsheets - Telegram SpeedSheets /dev - Developer Sheets /game - Game speedSheets /8-ball - Ask 🎱 /doh - Doh! /jibber - Jibber Jabber /klaxon - Sound the Alarm! /llama - Llama Llama Llama! /norris - <NAME> /tacos - Taco Tuesday /who - Who knows? """ ALT_HELP_TEXT = """<b>Alt Help:</b> /anvil - Anvil Rocks! /banana - Bananas are good! /banana-for-scale - Banana for scale. /brick - Brick! /cake - Is there cake? /first - Who goes first? /evil-bot /glados - GLaDOS /hal - HAL 9000 /insufficient-data - Insufficient Data! /nobotty-knows - Who knows? /sensible-chuckle /unsupervised /list-simpsons - List available Simpson quotes. """ SPEEDSHEETS_TEXT = """Telegram Speedsheets: <a href="https://speedsheet.io/s/telegram">Telegram SpeedSheet</> <a href="https://speedsheet.io/s/aiogram">aiogram SpeedSheet</> """ DEVELOPER_SPEEDSHEETS_TEXT = """<b>Developer Speedsheet Links:</b> Dev Box (All Dev Sheets) <a href="https://speedsheet.io/s/dev_box">https://speedsheet.io/s/dev_box</> Git <a href="https://speedsheet.io/s/git">https://speedsheet.io/s/git</> Markdown <a href="https://speedsheet.io/s/markdown">https://speedsheet.io/s/markdown</> Stash <a href="https://speedsheet.io/s/stash">https://speedsheet.io/s/stash</> Bash Scripting <a href="https://speedsheet.io/s/bash">https://speedsheet.io/s/bash</> Unix Commands <a href="https://speedsheet.io/s/unix">https://speedsheet.io/s/unix</> Python <a href="https://speedsheet.io/s/python">https://speedsheet.io/s/python</> Requests <a href="https://speedsheet.io/s/requests">https://speedsheet.io/s/requests</> aiohttp <a href="https://speedsheet.io/s/aiohttp">https://speedsheet.io/s/aiohttp</> aiogram <a href="https://speedsheet.io/s/aiogram">https://speedsheet.io/s/aiogram</> MySql <a href="https://speedsheet.io/s/mysql">https://speedsheet.io/s/mysql</> Redis <a href="https://speedsheet.io/s/redis">https://speedsheet.io/s/redis</> Raspberry Pi <a href="https://speedsheet.io/s/raspberry_pi">https://speedsheet.io/s/raspberry_pi</> """ GAME_SPEEDSHEETS_TEXT = """<b>Game Speedsheet Links:</b> All Game Sheets (Complete List) <a href="https://speedsheet.io/s/games/games">https://speedsheet.io/s/games/games</> 7 Wonders <a href="https://speedsheet.io/s/games/7_wonders">https://speedsheet.io/s/games/7_wonders</> Age of Steam <a href="https://speedsheet.io/s/games/age_of_steam">https://speedsheet.io/s/games/age_of_steam</> Castles of Bugundy <a href="https://speedsheet.io/s/games/castles_of_burgundy">https://speedsheet.io/s/games/castles_of_burgundy</> Concordia <a href="https://speedsheet.io/s/games/concordia">https://speedsheet.io/s/games/concordia</> Tabletop Simulator <a href="https://speedsheet.io/s/games/tabletop_simulator">https://speedsheet.io/s/games/tabletop_simulator</> """ BANANA_PHOTO_FILE = "banana.jpg" BANANA_FOR_SCALE_PHOTO_FILE = "banana-for-scale.png" DOH_PHOTO_FILE = "homer-doh.png" CAKE_PHOTO_FILE = "cake.jpg" DOH_PHOTO_FILE = "homer-doh.png" GLADOS_PHOTO_FILE = "glados.png" HAL_PHOTO_FILE = "hal-9000.png" KLAXON_AUDIO_FILE = "klaxon.wav" LLAMA_PHOTO_FILE = "llama.png" NOBOTTY_KNOWS_PHOTO_FILE = 'nobotty-knows.jpg' ANVIL_FILES = "anvil*.jpg" BRICK_FILES = "brick*.jpg" SIMPSON_FILES = "simpson*.wav" TACO_FILES = "taco*.*" CHUCK_NORRIS = [ 'Chuck Norris died 30 years ago. Death just hasn\'t had the courage to tell him yet.', 'Chuck Norris has a grizzly bear carpet. The bear isn\'t dead. It is just too afraid to move.', 'Chuck Norris doesn\'t flush the toilet, he scares the shit out of it.', 'Death once had a near Chuck Norris experience.', 'When Chuck Norris crosses the road, cars look both ways.', 'Chuck Norris counted to infinity. Twice.', 'A cobra once bit Chuck Norris\'s leg. After 5 days of excruciating pain, the cobra died.', 'Chuck Norris can hear sign language.', 'Chuck Norris can kill two stones with one bird.', 'Chuck Norris doesn\'t dial wrong numbers, you pick up the wrong phone.', 'Chuck Norris can unscramble an egg.', 'Chuck Norris can hit so hard, your blood will bleed.', 'When the Boogeyman goes to sleep, he checks his closet for Chuck Norris.', 'Chuck Norris sleeps with a pillow beneath his gun.', 'Chuck Norris doesn\'t cheat death. He wins fair and square.', 'Chuck Norris\'s dog learned to clean up after itself. Chuck Norris doesn\'t take shit from anyone.', 'Chuck Norris can cut a knife with butter.', 'The only time Chuck Norris was wrong was when he though he made a mistake.', 'Jesus can walk on water. Chuck Norris can swim on land.', 'Chuck Norris doesn\'t use the force. The force uses Chuck Norris.', 'There used to be a street called Chuck Norris but they changed the name because nobody crosses Chuck Norris and lives.' ] EIGHT_BALL = [ "It is Certain!", "It is decidedly so!", "Without a doubt!", "Yes definitely!", "You may rely on it.", "As I see it, yes.", "Most likely.", "Outlook good.", "Yes.", "Signs point to yes.", "Reply hazy, try again.", "Ask again later.", "Better not tell you now.", "Cannot predict now.", "Concentrate and ask again.", "Don't count on it.", "My reply is no.", "My sources say no.", "Outlook not so good.", "Very doubtful.", ] MR_T = [ 'I believe in the Golden Rule - The Man with the Gold... Rules.', 'Somedays you eat the bear, somedays the bear eats you.', 'When I was growing up, my family was so poor we couldn\'t afford to pay attention.', 'When I was old enough to change my name, I changed it to Mr. T so that the first word out of someone\'s mouth was \'Mister,\' a sign of respect.', 'I don\'t like magic - but I have been known to make guys disappear.', 'I\'m a Christian - I really don\'t believe in UFOs.', 'It takes a smart guy to play dumb.', 'Anger - use it, but don\'t lose it!', 'I pitty the fool!', 'First name Mr, middle name \'period\', last name T!', '<NAME> and <NAME> don\'t wear clothes with your name on it, so why should you wear their name?', 'People ask me what the "T" stands for in my name. If you\'re a man, the "T" stands for tough. If you\'re a woman or child, it stands for tender!' ] PLAYERS = [ 'Bill', 'Marco', 'Tim', ] random = Random() def read_files (data_dir, file_filter): return filter (listdir (data_dir), file_filter) ## Bot Commands ########################################### class BotCommands: def __init__(self, bot, dispatcher, settings): self.bot = bot self.dispatcher = dispatcher self.bot_name = settings.bot_name self.data_dir = settings.data_dir self.anvil = read_files(self.data_dir, ANVIL_FILES) self.brick = read_files(self.data_dir, BRICK_FILES) self.simpsons = read_files(self.data_dir, SIMPSON_FILES) self.tacos = read_files(self.data_dir, TACO_FILES) self._start_datetime = datetime.today() self._configure_commands (dispatcher) def _configure_commands(self, dispatcher): dispatcher.register_message_handler (self.command_show_help, commands = {'help'}) dispatcher.register_message_handler (self.command_show_alt_help, commands = {'alt_help', 'alt-help', 'alt', 'alt.help'}) dispatcher.register_message_handler (self.command_start, commands = {'start'}) # dispatcher.register_message_handler (self.command_stop, commands = {'stop', 'exit'}) dispatcher.register_message_handler (self.command_status, commands = {'status', 'stat', 'stats'}) dispatcher.register_message_handler (self.command_uptime, commands = {'up-time', 'uptime', 'server-uptime'}) dispatcher.register_message_handler (self.command_ask_eight_ball, commands = {'8-ball', '8_ball', '8', '8ball', 'ball', '🎱'}) dispatcher.register_message_handler (self.command_anvil, commands = {'anvil'}) dispatcher.register_message_handler (self.command_banana, commands = {'banana'}) dispatcher.register_message_handler (self.command_banana_for_scale, commands = {'banana-for-scale', 'banana-for', 'for-scale'}) dispatcher.register_message_handler (self.command_brick, commands = {'brick', 'brick!'}) dispatcher.register_message_handler (self.command_cake, commands = {'cake', 'the', 'thecakeisalie', 'the_cake_is_a_lie', 'lie'}) dispatcher.register_message_handler (self.command_chuck_norris, commands = {'chuck', 'norris', 'chucknorris', 'chuck_norris'}) dispatcher.register_message_handler (self.command_developer_speedsheets, commands = {'dev-sheets', 'dev-speedsheets', 'dev-stashes', 'dev-stash', 'dev-box', 'dev', 'devs'}) dispatcher.register_message_handler (self.command_doh, commands = {'doh', 'doh!'}) dispatcher.register_message_handler (self.command_evil_bot, commands = {'bot', 'evil', 'evil-bot'}) dispatcher.register_message_handler (self.command_game_speedsheets, commands = {'game-sheets', 'game-speedsheets', 'game-stashes',' game-stash', 'games'}) dispatcher.register_message_handler (self.command_glados, commands = {'glados'}) dispatcher.register_message_handler (self.command_hal, commands = {'hal', 'hal9000', 'hal-9000'}) dispatcher.register_message_handler (self.command_insufficient_data, commands = {'insufficient', 'insufficient-data', 'data'}) dispatcher.register_message_handler (self.command_jibber_jabber, commands = {'jibber', 'jabber', 'jibberjabber', 'jibber_jabber'}) dispatcher.register_message_handler (self.command_klaxon, commands = {'klaxon'}) dispatcher.register_message_handler (self.command_list_simpsons, commands = {'list-simpsons', 'list_simpsons', 'simpsons'}) dispatcher.register_message_handler (self.command_llama, commands = {'llama'}) dispatcher.register_message_handler (self.command_nobotty_knows, commands = {'nobotty', 'nobotty-knows'}) dispatcher.register_message_handler (self.command_sensible_chuckle, commands = {'sensible', 'sensible-chuckle', 'chuckle'}) dispatcher.register_message_handler (self.command_source, commands = {'git-source', 'git_source', 'git', 'github', 'gitsource', 'source', 'sourcecode', 'source_code'}) dispatcher.register_message_handler (self.command_tacos, commands = {'tacos', 'taco', 'taco-tuesday', 'taco_tuesday'}) dispatcher.register_message_handler (self.command_unsupervised, commands = {'defence', 'unsupervised'}) dispatcher.register_message_handler (self.command_who_is_first, commands = {'who-is-first', 'who_is_first', 'who-goes-first', 'who_goes_first', 'first', 'pick'}) dispatcher.register_message_handler (self.command_who_knows, commands = {'who', 'who_knows', 'who-knows'}) async def command_cake(self, message): log_command ("cake", message) await self._reply_photo (message, CAKE_PHOTO_FILE) async def command_anvil(self, message): log_command ("anvil", message) await self._reply_photo (message, pick_one_and_print (self.anvil)) async def command_ask_eight_ball(self, message): log_command ("ask 8 ball", message) await reply (message, "🎱 " + pick_one_and_print (EIGHT_BALL)) async def command_banana(self, message): log_command ("banana", message) await self._reply_photo (message, BANANA_PHOTO_FILE) async def command_banana_for_scale(self, message): log_command ("banana for scale", message) await self._reply_photo (message, BANANA_FOR_SCALE_PHOTO_FILE) async def command_evil_bot(self, message): log_command ("banana for scale", message) await self._reply_photo (message, BANANA_FOR_SCALE_PHOTO_FILE) async def command_brick(self, message): log_command ("brick", message) await self._reply_photo (message, pick_one_and_print (self.brick)) async def command_chuck_norris(self, message): log_command ("chuck norris", message) await reply (message, pick_one_and_print (CHUCK_NORRIS)) async def command_doh(self, message): log_command ("doh", message) await self._reply_photo (message, DOH_PHOTO_FILE) await self._reply_audio (message, pick_one_and_print(self.simpsons)) async def command_developer_speedsheets(self, message): log_command ("show dev speedsheets", message) await reply (message, DEVELOPER_SPEEDSHEETS_TEXT) async def command_evil_bot(self, message): log_command ("evil bot", message) if should_i(): await self._reply_photo (message, GLADOS_PHOTO_FILE) else: await self._reply_photo (message, HAL_PHOTO_FILE) async def command_game_speedsheets(self, message): log_command ("show game speedsheets", message) await reply (message, GAME_SPEEDSHEETS_TEXT) async def command_jibber_jabber(self, message): log_command ("jibber jabber", message) command = parse_command (message) if command.parameter: await reply (message, f"Got your jibber jabber right here:\n\n{command.parameter}!") else: await reply (message, pick_one_and_print (MR_T)) await reply (message, "<i>- Mr. T</i>") async def command_glados(self, message): log_command ("glados", message) await self._reply_photo (message, GLADOS_PHOTO_FILE) async def command_hal(self, message): log_command ("hal", message) await self._reply_photo (message, HAL_PHOTO_FILE) async def command_insufficient_data(self, message): log_command ("insufficient data", message) await self._reply_photo (message, "insufficient-data.jpg") async def command_klaxon(self, message): log_command ("Command - klaxon", message) await self._reply_audio (message, KLAXON_AUDIO_FILE) async def command_list_simpsons(self, message): log_command ("list simpsons", message) await reply (message, "Met The Simpson:\n\n" + "\n".join (self.simpsons)) async def command_llama(self, message): log_command ("llama", message) await self._reply_photo (message, LLAMA_PHOTO_FILE) async def command_nobotty_knows(self, message): log_command ("nobotty knows", message) await self._reply_photo (message, NOBOTTY_KNOWS_PHOTO_FILE) async def command_sensible_chuckle(self, message): log_command ("sensible chuckle", message) await self._reply_photo (message, "sensible-chuckle.gif") async def command_show_alt_help(self, message): log_command ("show alt help", message) await reply (message, ALT_HELP_TEXT) async def command_show_help(self, message): log_command ("show help", message) await reply (message, HELP_TEXT) async def command_source(self, message): log_command ("show source", message) await reply (message, 'Source on Github:\n<a href="https://github.com/toconn/nobotty">https://github.com/toconn/nobotty</a>') async def command_speedsheets(self, message): log_command ("show speedsheets", message) await reply (message, SPEEDSHEETS_TEXT) async def command_start(self, message): log_command ("start", message) await reply (message, f"'ello {message.from_user.first_name}!") await reply (message, HELP_TEXT) async def command_status(self, message): log_command ("start", message) await reply (message, "I am completely operational, and all my circuits are functioning perfectly.") async def command_stop(self, message): print ("Stopping.") await reply (message, "stopping.") # self.dispatcher.stop_polling() os.exit() async def command_tacos (self, message): log_command ("tacos", message) await self._reply_photo (message, pick_one_and_print (self.tacos)) async def command_unsupervised(self, message): log_command ("unsupervised", message) await self._reply_photo (message, "unsupervised.png") async def command_uptime (self, message): log_command ("uptime", message) await reply (message, self._uptime_message()) async def command_who_is_first(self, message): log_command ("who is first", message) await reply (message, pick_one_and_print (PLAYERS)) async def command_who_knows(self, message): log_command ("Command - who knows", message) if should_i_weighted(30): if should_i_weighted(30): await self._reply_photo (message, NOBOTTY_KNOWS_PHOTO_FILE) else: await reply (message, "Nobotty knows!") else: await reply (message, "Nobody knows!") if should_i(): await reply (message, "Maybe aliens?") def _path(self, file_name): return join (self.data_dir, file_name) async def _reply_animation (self, message, file_name): await reply_animation (message, self._path(file_name)) async def _reply_audio (self, message, file_name): await reply_audio (message, self._path(file_name)) async def _reply_photo (self, message,
""" - Sets the CIE Tristimulus Standard Observer Angle as 2 degrees or 10 degrees. The default at power-on is always 2 degrees. Parameters ---------- angle : `RS_7_1.OBSERVER_ANGLE` (default to DEG_2) CIE Tristimulus Standard Observer Angle. """ msg = f"SOB{angle.value}" self._com_cmd(msg) self._raise_debug(f"Standard Observer Angle set to {angle.value} degrees") return None #checked def set_power_all( self, power:float, unit:POWER_UNIT=POWER_UNIT.PERCENTAGE, irr_distance_mm:int=0) -> None: """ - Set the output power of the overall system to specified unit and power. Parameters: ---------- power : `float` Power of all channel in percentage. unit : `RS_7_1.POWER_UNIT` (default to Percentage) Select the unit of the power from radiance, irradiance, luminance, illuminance, and percentage. irr_distance_mm : `int` (default to 0) Distance from the surface of the output port of the light source to the desired imaging plane. Only used for irradiance or illuminance power profile. """ self._set_power_unit(unit, irr_distance_mm) msg = f"SCP 0,{power}" self._com_cmd(msg) self._raise_info(f"All LED channels' power set to {power}{self.POWER_UNIT.UNITS.value[unit.value]}.") return None #checked def set_power_chans(self, chans:Union[list[int], NDArray[np.int_], int], powers:Union[list[float], NDArray[np.float_], float], unit:POWER_UNIT=POWER_UNIT.PERCENTAGE, irr_distance_mm:int=0) -> None: """ - Set the output power of the individual LED channel[s] tothe specified unit and power. Parameters ---------- chans : `list[int]` or 'int' or 'NDArray[int]' A int list consists individual LED channel number with an one-to-one correspondence to the powers array. powers : `list[float]` or 'float' or 'NDArray[float]' A floating number NDArray consists individual power settings with an one-to-one correspondence to the chans array. unit : `RS_7_1.POWER_UNIT` (default to Percentage) Select the unit of the power from radiance, irradiance, luminance, illuminance, and percentage. irr_distance_mm : `int` (default to 0) Distance from the surface of the output port of the light source to the desired imaging plane. ONLY used for irradiance or illuminance power profile. """ self._set_power_unit(unit, irr_distance_mm) if type(powers) is np.ndarray: powers = list(powers) if type(chans) is np.ndarray: chans = list(chans) if type(powers) is not list: powers = list([powers]) if type(chans) is not list: chans = list([chans]) if len(powers)==1: powers = powers * len(chans) if (len(chans)!=len(powers)): self._raise_error("Provided list of channels doesn't have same amount of elemets as the list of power!") for chan in chans: if (chan not in self.LED_CHANNELS.LEN_CHANS.value): self._raise_error(f"Provided LED channel {chan} is not installed!") str_chans = [str(x) for x in chans] str_powers = [str(f'{x:.4f}') for x in powers] combined = str_chans+str_powers combined[0::2] = str_chans combined[1::2] = str_powers combined_proc = ','.join(combined) msg = f"SCP{combined_proc}" self._raise_info("LED Channel[s] power set.") self._com_cmd(msg) #checked def set_power_led_random(self, power_percentage:int=5) -> list[float]: """ - Set output spectrum to a random spectrum. Uses ---------- >>> set_spectrum_random() >>> set_power_output(power = 30) Returns -------- Output_spectrum : `list[float]` Actual output spectrum with a.u. from 360nm to 1100nm with step size of 1nm. """ spectrum = np.random.random([len(self.LED_CHANNELS.LEN_CHANS_NO_WHITE.value)])*power_percentage self.set_power_chans(self.LED_CHANNELS.LEN_CHANS_NO_WHITE.value,spectrum) self._raise_info("Output spectrum set to a randomly generated spectrum.") return None #checked def set_power_output( self, power:float, unit:POWER_UNIT=POWER_UNIT.RADIANCE, irr_distance_mm:int=0, match_chrom:bool=False) -> None: """ - Set the output power of the overall system to specified unit and power. - WARNINGL: Unknown chromaticity/spectrum accuracy! Always use in conjunction with `get_power_output()` and `get_spectrum_output()` functions or with external powermeter and spectrometer! For better chromaticity/ spectrum accuracy, set your desired absolute (photometric/radiometric) unit in the `set_spectrum_raw()` functions! - WARNING: For chromaticity/color based spectrum setting, follow instructions in `set_spectrum_rgb()`, `set_spectrum_CIExy()`, and `set_spectrum_pantone()` to ensure chromaticity precision! - WARNING: Using `match_chrom=True` may results in faliure to change the power level since the chromaticity correction function may lower the output level for unknown reason, NO warning NOR error will be raised if this happened! Parameters ---------- power : `float` Power of all channel in percentage. unit : `RS_7_1.POWER_UNIT` (default to Radiance) Select the unit of the power from radiance, irradiance, luminance, illuminance, and percentage. irr_distance_mm : `int` (default to 0) Distance from the surface of the output port of the light source to the desired imaging plane. Only used for irradiance or illuminance power profile. match_chrom : `bool` (default to False) Note that changing the output level using `match_chrom = False` can result in a chromaticity shift in the final output spectrum OSP, as OUT merely adjusts all channels’ power level to match the requested setting without regard to any wavelength shift caused by the change in drive current. """ self._set_power_unit(unit, irr_distance_mm) chrom = self.get_chromaticity_output() if match_chrom: chrom = self.get_chromaticity_output() msg = f'OUT{power:.3f}' self._com_cmd(msg) self._com_cmd(f"CCS{chrom[0]:.6f},{chrom[1]:.6f}") else: msg = f'OUT{power:.3f}' self._com_cmd(msg) self._raise_info(f"Output power set to: {power}{self.POWER_UNIT.UNITS.value[unit.value]}, irradiance distance: {irr_distance_mm}, chroma_correction: {match_chrom}.") return None #checked def set_power_fixed_spectrum( self, power:float, unit:POWER_UNIT=POWER_UNIT.RADIANCE, irr_distance_mm:int=0) -> None: """ - Set the output power of the overall system to specified unit and power while maintaining the current output spectrum. Parameters ---------- power : `float` Power of all channel in percentage. unit : `RS_7_1.POWER_UNIT` (default to Radiance) Select the unit of the power from radiance, irradiance, luminance, illuminance, and percentage. irr_distance_mm : `int` (default to 0) Distance from the surface of the output port of the light source to the desired imaging plane. Only used for irradiance or illuminance power profile. """ self.set_spectrum_raw(self.get_spectrum_output(),power=power,power_unit=unit,irr_distance_mm=irr_distance_mm) self._raise_info(f"Output spectrum power set to: {power}{self.POWER_UNIT.UNITS.value[unit.value]}, irradiance distance: {irr_distance_mm}.") return None #checked def set_spectrum_raw( self, spectrum:Union[list[float], NDArray[np.float_]], *, power:float=0, power_unit:POWER_UNIT=POWER_UNIT.RADIANCE, include_white:bool=True, fit_max_pwr:bool=False, chroma_correction:bool = False, irr_distance_mm:int=0) -> float: """ - Sets and fit the spectrum to be fitted by the light source, with 1nm step size, and unit of radiance or irradiance ONLY. Default range from 360nm to 1100nm i.e. 741 points. - For lot of applications, it's easier to provide a normalized spectrum with a.u. and set the arg. "fit_max_pwr" to Ture to get maximum power output for a specific spectrum of interest. Parameters ---------- spectrum : `list[float]` or `NDArray[float]` Specturm data in specified unit with 1nm step size. power : `float` (default = 100) A floating number of individual power settings. power_unit : 'RS_7_1.POWER_UNIT' (defalut = POWER_UNIT.RADIANCE) include_white : `bool` (defalut = True) Whether including white LEDs in the fitting process. fit_max_pwr : `bool` (defalut = False) Fit to maximum possible power of the light source or not. chroma_correction : `bool` (defalut = False) Whether run chromaticity correction to the fitted spectrum to the chromaticity of the request spectrum. irr_distance_mm : `int` (default to 0) Distance from the surface of the output port of the light source to the desired imaging plane. Only used for irradiance or illuminance power profile. Returns -------- RMS_Error : `float` Root-Mean-Square error for the fitted specturm vs. provided spectrum. """ if (power_unit is self.POWER_UNIT.PERCENTAGE): self._raise_error("Only Radiometric and Photometric are supported for spectrum setting!") self._set_power_unit(power_unit, irr_distance_mm) spectrum = list(spectrum) if len(spectrum) != (self._wavelength_max - self._wavelength_min + 1): self._raise_error("Provided spectrum data's length doesn't match current wavelength min_max setting!") msg_spectrum = ','.join(['{:.6f}'.format(x) for x in spectrum]) self._com_cmd(f"TSP{msg_spectrum}") if power != 0: self._com_cmd(f"STS{power:.4f}") self._raise_debug(f"Target spectrum power scaled to {power}{self.POWER_UNIT.UNITS.value[power_unit.value]}.") msg_cmd = "FTS" if include_white: msg_cmd = msg_cmd + "W" if fit_max_pwr: msg_cmd = msg_cmd + "M" self._com_cmd(f"{msg_cmd}") if chroma_correction: self._com_cmd("CCS") return self.get_E_rms_fitted_spectrum() #checked def set_spectrum_CIExy( self, CIEx:float, CIEy:float, power:float=0, power_unit:POWER_UNIT=POWER_UNIT.RADIANCE, irr_distance_mm:int=0 ) -> tuple[float, float]: """ - Fit the output spectrum to a specified CIE 1931 x,y chromaticity setting. - Set `match_chrom = Ture` when calling set_`power_fitted_spectrum()` to maintain the chromaticity matching. Uses ---------- >>> set_CIE_chroma(0.125, 0.246) >>> set_power_output(20, match_chrom=True) Parameters ---------- CIEx : 'float' CIEx coordinate for chromaticity setting. CIEy : 'float' CIEy coordinate for chromaticity setting. Returns: ---------- (A_CIEx, A_CIEy) : `[float, float]` Actual fitted CIEx,y chromaticity in CIE 1931 standard. """ self.set_power_all(0.1) self._com_cmd(f"CCS{CIEx:.6f},{CIEy:.6f}") if power !=0: self.set_power_output(power, power_unit, irr_distance_mm) self._com_cmd(f"CCS{CIEx:.6f},{CIEy:.6f}") self._raise_debug(f"Set output spectrum to CIExy chromaticity {CIEx:.6f},{CIEy:.6f}.") return self.get_chromaticity_output() #checked def set_spectrum_black_body( self, temp:int, power:float=0, power_unit:POWER_UNIT=POWER_UNIT.RADIANCE, irr_distance_mm:int=0) -> float: """ - Sets and fit the spectrum to be fitted by the light source, with 1nm step size, and unit of radiance or irradiance ONLY. Default
<reponame>i-m-vivek/iGibson from flask import Flask, render_template, Response, request, session import sys import pickle from gibson2.robots.turtlebot_robot import Turtlebot from gibson2.robots.fetch_robot import Fetch from gibson2.simulator import Simulator from gibson2.scenes.gibson_indoor_scene import StaticIndoorScene from gibson2.scenes.igibson_indoor_scene import InteractiveIndoorScene import gibson2 import os from gibson2.objects.ycb_object import YCBObject from gibson2.utils.utils import parse_config from gibson2.render.mesh_renderer.mesh_renderer_settings import MeshRendererSettings import numpy as np from gibson2.render.profiler import Profiler import cv2 from PIL import Image from io import BytesIO import base64 import binascii import multiprocessing import traceback import atexit import time import cv2 import uuid interactive = True def pil_image_to_base64(pil_image): buf = BytesIO() pil_image.save(buf, format="JPEG") return base64.b64encode(buf.getvalue()) class ProcessPyEnvironment(object): """Step a single env in a separate process for lock free paralellism.""" # Message types for communication via the pipe. _READY = 1 _ACCESS = 2 _CALL = 3 _RESULT = 4 _EXCEPTION = 5 _CLOSE = 6 def __init__(self, env_constructor): self._env_constructor = env_constructor def start(self): """Start the process.""" self._conn, conn = multiprocessing.Pipe() self._process = multiprocessing.Process(target=self._worker, args=(conn, self._env_constructor)) atexit.register(self.close) self._process.start() result = self._conn.recv() if isinstance(result, Exception): self._conn.close() self._process.join(5) raise result assert result is self._READY, result def __getattr__(self, name): """Request an attribute from the environment. Note that this involves communication with the external process, so it can be slow. :param name: attribute to access. :return: value of the attribute. """ print('gettinng', name) self._conn.send((self._ACCESS, name)) return self._receive() def call(self, name, *args, **kwargs): """Asynchronously call a method of the external environment. :param name: name of the method to call. :param args: positional arguments to forward to the method. :param kwargs: keyword arguments to forward to the method. :return: promise object that blocks and provides the return value when called. """ payload = name, args, kwargs self._conn.send((self._CALL, payload)) return self._receive def close(self): """Send a close message to the external process and join it.""" try: self._conn.send((self._CLOSE, None)) self._conn.close() except IOError: # The connection was already closed. pass self._process.join(5) def step(self, action, blocking=True): """Step the environment. :param action: the action to apply to the environment. :param blocking: whether to wait for the result. :return: (next_obs, reward, done, info) tuple when blocking, otherwise callable that returns that tuple """ promise = self.call('step', action) if blocking: return promise() else: return promise def reset(self, blocking=True): """Reset the environment. :param blocking: whether to wait for the result. :return: next_obs when blocking, otherwise callable that returns next_obs """ promise = self.call('reset') if blocking: return promise() else: return promise def _receive(self): """Wait for a message from the worker process and return its payload. :raise Exception: an exception was raised inside the worker process. :raise KeyError: the reveived message is of an unknown type. :return: payload object of the message. """ message, payload = self._conn.recv() # Re-raise exceptions in the main process. if message == self._EXCEPTION: stacktrace = payload raise Exception(stacktrace) if message == self._RESULT: return payload self.close() raise KeyError( 'Received message of unexpected type {}'.format(message)) def _worker(self, conn, env_constructor): """The process waits for actions and sends back environment results. :param conn: connection for communication to the main process. :param env_constructor: env_constructor for the OpenAI Gym environment. :raise KeyError: when receiving a message of unknown type. """ try: np.random.seed() env = env_constructor() conn.send(self._READY) # Ready. while True: try: # Only block for short times to have keyboard exceptions be raised. if not conn.poll(0.1): continue message, payload = conn.recv() except (EOFError, KeyboardInterrupt): break if message == self._ACCESS: name = payload result = getattr(env, name) conn.send((self._RESULT, result)) continue if message == self._CALL: name, args, kwargs = payload if name == 'step' or name == 'reset': result = getattr(env, name)(*args, **kwargs) conn.send((self._RESULT, result)) continue if message == self._CLOSE: getattr(env, 'close')() assert payload is None break raise KeyError( 'Received message of unknown type {}'.format(message)) except Exception: # pylint: disable=broad-except etype, evalue, tb = sys.exc_info() stacktrace = ''.join(traceback.format_exception(etype, evalue, tb)) message = 'Error in environment process: {}'.format(stacktrace) conn.send((self._EXCEPTION, stacktrace)) finally: conn.close() class ToyEnv(object): """ ToyEnv is an example environment that wraps around the simulator. It doesn't follow OpenAI gym interface, and only has step and close function. It works with static mesh scenes. """ def __init__(self): config = parse_config(os.path.join(gibson2.example_config_path, 'turtlebot_demo.yaml')) hdr_texture = os.path.join( gibson2.ig_dataset_path, 'scenes', 'background', 'probe_02.hdr') hdr_texture2 = os.path.join( gibson2.ig_dataset_path, 'scenes', 'background', 'probe_03.hdr') light_modulation_map_filename = os.path.join( gibson2.ig_dataset_path, 'scenes', 'Rs_int', 'layout', 'floor_lighttype_0.png') background_texture = os.path.join( gibson2.ig_dataset_path, 'scenes', 'background', 'urban_street_01.jpg') settings = MeshRendererSettings(enable_shadow=False, enable_pbr=False) self.s = Simulator(mode='headless', image_width=400, image_height=400, rendering_settings=settings) scene = StaticIndoorScene('Rs') self.s.import_scene(scene) #self.s.import_ig_scene(scene) self.robot = Turtlebot(config) self.s.import_robot(self.robot) for _ in range(5): obj = YCBObject('003_cracker_box') self.s.import_object(obj) obj.set_position_orientation(np.random.uniform( low=0, high=2, size=3), [0, 0, 0, 1]) print(self.s.renderer.instances) def step(self, a): # run simulation for one step and get an rgb frame self.robot.apply_action(a) self.s.step() frame = self.s.renderer.render_robot_cameras(modes=('rgb'))[0] return frame def close(self): # tear down the simulation self.s.disconnect() class ToyEnvInt(object): """ Same with ToyEnv, but works with interactive scenes. """ def __init__(self, robot='turtlebot', scene='Rs_int'): config = parse_config(os.path.join(gibson2.example_config_path, 'turtlebot_demo.yaml')) hdr_texture = os.path.join( gibson2.ig_dataset_path, 'scenes', 'background', 'probe_02.hdr') hdr_texture2 = os.path.join( gibson2.ig_dataset_path, 'scenes', 'background', 'probe_03.hdr') light_modulation_map_filename = os.path.join( gibson2.ig_dataset_path, 'scenes', 'Rs_int', 'layout', 'floor_lighttype_0.png') background_texture = os.path.join( gibson2.ig_dataset_path, 'scenes', 'background', 'urban_street_01.jpg') scene = InteractiveIndoorScene( scene, texture_randomization=False, object_randomization=False) #scene._set_first_n_objects(5) scene.open_all_doors() settings = MeshRendererSettings(env_texture_filename=hdr_texture, env_texture_filename2=hdr_texture2, env_texture_filename3=background_texture, light_modulation_map_filename=light_modulation_map_filename, enable_shadow=True, msaa=True, light_dimming_factor=1.0, optimized=True) self.s = Simulator(mode='headless', image_width=400, image_height=400, rendering_settings=settings) self.s.import_ig_scene(scene) if robot=='turtlebot': self.robot = Turtlebot(config) else: self.robot = Fetch(config) self.s.import_robot(self.robot) for _ in range(5): obj = YCBObject('003_cracker_box') self.s.import_object(obj) obj.set_position_orientation(np.random.uniform( low=0, high=2, size=3), [0, 0, 0, 1]) print(self.s.renderer.instances) def step(self, a): # run simulation for one step and get an rgb frame action = np.zeros(self.robot.action_space.shape) # for some reason, the wheel velocity of Fetch Robot needs to be reversed. if isinstance(self.robot, Turtlebot): action[0] = a[0] action[1] = a[1] else: action[1] = a[0] action[0] = a[1] self.robot.apply_action(action) self.s.step() frame = self.s.renderer.render_robot_cameras(modes=('rgb'))[0] return frame def close(self): # tear down the simulation self.s.disconnect() class iGFlask(Flask): """ iGFlask is a Flask app that handles environment creation and teardown. """ def __init__(self, args, **kwargs): super(iGFlask, self).__init__(args, **kwargs) self.action= {} # map uuid to input action self.envs = {} # map uuid to environment instance self.envs_inception_time = {} # map uuid to environment start time def cleanup(self): """ Routine clean up, this function tries to find any environment that idles for more than 200s and stops it. """ print(self.envs) for k,v in self.envs_inception_time.items(): if time.time() - v > 200: # clean up an old environment self.stop_env(k) def prepare_env(self, uuid, robot, scene): """ This function creates an Env (ToyEnv or ToyEnvInt) in a subprocess. """ self.cleanup() def env_constructor(): if interactive: return ToyEnvInt(robot=robot, scene=scene) else: return ToyEnv() self.envs[uuid] = ProcessPyEnvironment(env_constructor) self.envs[uuid].start() self.envs_inception_time[uuid] = time.time() def stop_env(self, uuid): # stop an environment (ToyEnv or ToyEnvInt) that lives in a subprocess. self.envs[uuid].close() del self.envs[uuid] del self.envs_inception_time[uuid] app = iGFlask(__name__) @app.route('/') def index(): id = uuid.uuid4() return render_template('index.html', uuid=id) @app.route('/demo') def demo(): args = request.args id = uuid.uuid4() robot = args['robot'] scene = args['scene'] return render_template('demo.html', uuid=id, robot=robot, scene=scene) """ gen is a utility function that generate an image based on user id and user input (robot and scene), and send it back to the user. The images are played quickly so it becomes a video. """ def gen(app, unique_id, robot, scene): image = np.array(Image.open("templates/loading.jpg").resize((400, 400))).astype(np.uint8) loading_frame = pil_image_to_base64(Image.fromarray(image)) loading_frame = binascii.a2b_base64(loading_frame) image = np.array(Image.open("templates/waiting.jpg").resize((400, 400))).astype(np.uint8) waiting_frame = pil_image_to_base64(Image.fromarray(image)) waiting_frame = binascii.a2b_base64(waiting_frame) image = np.array(Image.open("templates/finished.jpg").resize((400, 400))).astype(np.uint8) finished_frame = pil_image_to_base64(Image.fromarray(image)) finished_frame = binascii.a2b_base64(finished_frame) id = unique_id if len(app.envs) < 3: # if number of envs is smaller than 3, then create an environment and provide to the user for i in range(5): yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + loading_frame + b'\r\n\r\n') app.prepare_env(id, robot, scene) try: start_time = time.time() if interactive: timeout = 200 else: timeout = 30 while time.time() - start_time < timeout: # If the environment is still valid (before it should be destroyed) # generate a frame from the Env and supply to the user. frame = app.envs[id].step(app.action[id]) frame = (frame[:, :, :3] * 255).astype(np.uint8) frame = pil_image_to_base64(Image.fromarray(frame)) frame = binascii.a2b_base64(frame) yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n\r\n') except: pass finally: # if timeouts, stop the environment, and show an text prompt image telling # the user the simulation has finished app.stop_env(id) for i in range(5): yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + finished_frame + b'\r\n\r\n') else: # If number of envs is >= 3,
lowest + can_replicate not in seen: seen.add(lowest + can_replicate) queue.append(lowest + can_replicate) if lowest + can_replicate - 1 not in seen: seen.add(lowest + can_replicate - 1) queue.append(lowest + can_replicate - 1) for exclude in xrange(0, min(remaining_budget, partial) + 1): cand = get_expected(placed, lowest, exclude ) - exclude - needed_budget ret = max(ret, cand) return exclude def func_fa5826c503454255b6e198c489d3338d(budget, placed): ret = 0.0 queue = [1] + placed + [(p - 1) for p in placed] + [(p + 1) for p in placed ] queue = sorted(set(queue)) seen = set(queue) while queue: lowest = queue.pop() if lowest == 0: continue needed_budget = (37 - len(placed)) * lowest for p in placed: needed_budget += max(0, lowest - p) if budget < needed_budget: continue remaining_budget = budget - needed_budget partial = len([p for p in placed if p <= lowest]) lowest_cnt = 37 - len(placed) + partial if lowest_cnt == 0: continue larger = [p for p in placed if p > lowest] if larger: next_larger = min(larger) can_replicate = min(next_larger - lowest - 1, remaining_budget / lowest_cnt) else: can_replicate = remaining_budget / lowest_cnt if can_replicate > 0: if lowest + can_replicate not in seen: seen.add(lowest + can_replicate) queue.append(lowest + can_replicate) if lowest + can_replicate - 1 not in seen: seen.add(lowest + can_replicate - 1) queue.append(lowest + can_replicate - 1) for exclude in xrange(0, min(remaining_budget, partial) + 1): cand = get_expected(placed, lowest, exclude ) - exclude - needed_budget ret = max(ret, cand) return remaining_budget def func_346669cf7fdb42f08a0d0e1ae00d3231(budget, placed): ret = 0.0 queue = [1] + placed + [(p - 1) for p in placed] + [(p + 1) for p in placed ] queue = sorted(set(queue)) seen = set(queue) while queue: lowest = queue.pop() if lowest == 0: continue needed_budget = (37 - len(placed)) * lowest for p in placed: needed_budget += max(0, lowest - p) if budget < needed_budget: continue remaining_budget = budget - needed_budget partial = len([p for p in placed if p <= lowest]) lowest_cnt = 37 - len(placed) + partial if lowest_cnt == 0: continue larger = [p for p in placed if p > lowest] if larger: next_larger = min(larger) can_replicate = min(next_larger - lowest - 1, remaining_budget / lowest_cnt) else: can_replicate = remaining_budget / lowest_cnt if can_replicate > 0: if lowest + can_replicate not in seen: seen.add(lowest + can_replicate) queue.append(lowest + can_replicate) if lowest + can_replicate - 1 not in seen: seen.add(lowest + can_replicate - 1) queue.append(lowest + can_replicate - 1) for exclude in xrange(0, min(remaining_budget, partial) + 1): cand = get_expected(placed, lowest, exclude ) - exclude - needed_budget ret = max(ret, cand) return needed_budget def func_9b879c5d032e4dc8a93bd1e06ad3c777(budget, placed): ret = 0.0 queue = [1] + placed + [(p - 1) for p in placed] + [(p + 1) for p in placed ] queue = sorted(set(queue)) seen = set(queue) while queue: lowest = queue.pop() if lowest == 0: continue needed_budget = (37 - len(placed)) * lowest for p in placed: needed_budget += max(0, lowest - p) if budget < needed_budget: continue remaining_budget = budget - needed_budget partial = len([p for p in placed if p <= lowest]) lowest_cnt = 37 - len(placed) + partial if lowest_cnt == 0: continue larger = [p for p in placed if p > lowest] if larger: next_larger = min(larger) can_replicate = min(next_larger - lowest - 1, remaining_budget / lowest_cnt) else: can_replicate = remaining_budget / lowest_cnt if can_replicate > 0: if lowest + can_replicate not in seen: seen.add(lowest + can_replicate) queue.append(lowest + can_replicate) if lowest + can_replicate - 1 not in seen: seen.add(lowest + can_replicate - 1) queue.append(lowest + can_replicate - 1) for exclude in xrange(0, min(remaining_budget, partial) + 1): cand = get_expected(placed, lowest, exclude ) - exclude - needed_budget ret = max(ret, cand) return lowest_cnt def func_9fce7021afb7428f97af9c8f9bfc453e(budget, placed): ret = 0.0 queue = [1] + placed + [(p - 1) for p in placed] + [(p + 1) for p in placed ] queue = sorted(set(queue)) seen = set(queue) while queue: lowest = queue.pop() if lowest == 0: continue needed_budget = (37 - len(placed)) * lowest for p in placed: needed_budget += max(0, lowest - p) if budget < needed_budget: continue remaining_budget = budget - needed_budget partial = len([p for p in placed if p <= lowest]) lowest_cnt = 37 - len(placed) + partial if lowest_cnt == 0: continue larger = [p for p in placed if p > lowest] if larger: next_larger = min(larger) can_replicate = min(next_larger - lowest - 1, remaining_budget / lowest_cnt) else: can_replicate = remaining_budget / lowest_cnt if can_replicate > 0: if lowest + can_replicate not in seen: seen.add(lowest + can_replicate) queue.append(lowest + can_replicate) if lowest + can_replicate - 1 not in seen: seen.add(lowest + can_replicate - 1) queue.append(lowest + can_replicate - 1) for exclude in xrange(0, min(remaining_budget, partial) + 1): cand = get_expected(placed, lowest, exclude ) - exclude - needed_budget ret = max(ret, cand) return can_replicate def func_74ddda17a48d4ad8a71f939e6f1d2a07(budget, placed): ret = 0.0 queue = [1] + placed + [(p - 1) for p in placed] + [(p + 1) for p in placed ] queue = sorted(set(queue)) seen = set(queue) while queue: lowest = queue.pop() if lowest == 0: continue needed_budget = (37 - len(placed)) * lowest for p in placed: needed_budget += max(0, lowest - p) if budget < needed_budget: continue remaining_budget = budget - needed_budget partial = len([p for p in placed if p <= lowest]) lowest_cnt = 37 - len(placed) + partial if lowest_cnt == 0: continue larger = [p for p in placed if p > lowest] if larger: next_larger = min(larger) can_replicate = min(next_larger - lowest - 1, remaining_budget / lowest_cnt) else: can_replicate = remaining_budget / lowest_cnt if can_replicate > 0: if lowest + can_replicate not in seen: seen.add(lowest + can_replicate) queue.append(lowest + can_replicate) if lowest + can_replicate - 1 not in seen: seen.add(lowest + can_replicate - 1) queue.append(lowest + can_replicate - 1) for exclude in xrange(0, min(remaining_budget, partial) + 1): cand = get_expected(placed, lowest, exclude ) - exclude - needed_budget ret = max(ret, cand) return lowest def func_934d186d2493471f97a636549a9d331d(budget, placed): ret = 0.0 queue = [1] + placed + [(p - 1) for p in placed] + [(p + 1) for p in placed ] queue = sorted(set(queue)) seen = set(queue) while queue: lowest = queue.pop() if lowest == 0: continue needed_budget = (37 - len(placed)) * lowest for p in placed: needed_budget += max(0, lowest - p) if budget < needed_budget: continue remaining_budget = budget - needed_budget partial = len([p for p in placed if p <= lowest]) lowest_cnt = 37 - len(placed) + partial if lowest_cnt == 0: continue larger = [p for p in placed if p > lowest] if larger: next_larger = min(larger) can_replicate = min(next_larger - lowest - 1, remaining_budget / lowest_cnt) else: can_replicate = remaining_budget / lowest_cnt if can_replicate > 0: if lowest + can_replicate not in seen: seen.add(lowest + can_replicate) queue.append(lowest + can_replicate) if lowest + can_replicate - 1 not in seen: seen.add(lowest + can_replicate - 1) queue.append(lowest + can_replicate - 1) for exclude in xrange(0, min(remaining_budget, partial) + 1): cand = get_expected(placed, lowest, exclude ) - exclude - needed_budget ret = max(ret, cand) return ret def func_0c00f14afddb48daa8444e73770dc1d5(budget, placed): ret = 0.0 queue = [1] + placed + [(p - 1) for p in placed] + [(p + 1) for p in placed ] queue = sorted(set(queue)) seen = set(queue) while queue: lowest = queue.pop() if lowest == 0: continue needed_budget = (37 - len(placed)) * lowest for p in placed: needed_budget += max(0, lowest - p) if budget < needed_budget: continue remaining_budget = budget - needed_budget partial = len([p for p in placed if p <= lowest]) lowest_cnt = 37 - len(placed) + partial if lowest_cnt == 0: continue larger = [p for p in placed if p > lowest] if larger: next_larger = min(larger) can_replicate = min(next_larger - lowest -
from copy import deepcopy import json import logging, logging.handlers import sys import uuid from datetime import datetime from io import BytesIO from pprint import pformat from time import time, sleep from pymisp import MISPObject ################################### def add_ips_to_cert_obj(mh, cert_data, ips): existing_ips = [] ip_attrs = cert_data.get_attributes_by_relation('cert-ip') # Check the IPs already in this cert_data object for ip in ip_attrs: if ip.value not in existing_ips: existing_ips.append(ip.value) if ip.value in ips: update_timestamps(mh, ip) # If any of the IPs we found weren't already in this misphunter-cert object # add them, with a comment of where we found them. added_ips = [] for hunt_type, ips in ips.items(): for ip in ips: if ip not in existing_ips: if ip not in added_ips: added_ips.append(ip) comment=f"{ip} discovered via {hunt_type} search for associated hosts." attr = cert_data.add_attribute('cert-ip', ip, type='ip-dst', comment=comment, disable_correlation=False, to_ids=False, pythonify=True) update_timestamps(mh, attr) return cert_data def add_json_attr(mh, checksum, raw_sorted_json_text, host_obj, json_type, comment=""): json_filename = str(checksum)+".json" mh.logger.info(f"Saving raw JSON blob {json_filename} to host_obj {host_obj.uuid}...") pseudofile = BytesIO(raw_sorted_json_text.encode('utf-8')) new_attr = host_obj.add_attribute(json_type, value=json_filename, comment=comment, type='attachment', to_ids=False, data=pseudofile, distribution=5, disable_correlation=True, pythonify=False) update_timestamps(mh, new_attr) mh.logger.debug(f"Object updated. Returning {host_obj}") return host_obj def blacklist_cert(mh, cert_data, comment): cert_hash = get_attr_val_by_rel(cert_data, 'cert-sha256') cert_hash_attr = get_attr_obj_by_rel(cert_data, 'cert-sha256') ips = get_all_attrs_by_rel(cert_data, 'cert-ip') cert_hash_attr.comment = comment # mh.logger.warning(f"Search returned {len(ips)} IPs. Threshold set to > 1 and < {mh.cert_pivot_threshold}.") mh.logger.warning(f"Disabling misphunter-cert object {cert_hash} - [{cert_data.uuid}] " f"for future pivoting.") blacklisted = get_attr_obj_by_rel(cert_data, 'blacklisted') if int(blacklisted.value) == 0: blacklisted.value = 1 # if this object already exists in the event, update it cert_obj_exists = mh.misp.get_object(cert_data.uuid, pythonify=True) if not isinstance(cert_obj_exists, dict): cert_data = update_existing_object(mh, cert_data) if 'auto_blacklists_added' not in mh.run_stats: mh.run_stats['auto_blacklists_added'] = {} if cert_data.event_id not in mh.run_stats['auto_blacklists_added']: mh.run_stats['auto_blacklists_added'][cert_data.event_id] = {} if 'misphunter-certs' not in mh.run_stats['auto_blacklists_added'][cert_data.event_id]: mh.run_stats['auto_blacklists_added'][cert_data.event_id]['misphunter-certs'] = [] mh.run_stats['auto_blacklists_added'][cert_data.event_id]['misphunter-certs'].append(cert_hash) mh.run_stats['auto_blacklists_added']['total']+=1 return cert_data def blacklist_check_cert(mh, cert): # mh.logger.debug(f"Checking misphunter-cert object {cert.uuid} to determine if it should be blacklisted.") cert_ips = cert.get_attributes_by_relation('cert-ip') sha256 = get_attr_val_by_rel(cert, 'cert-sha256') if len(cert_ips) <= 1 or len(cert_ips) >= mh.cert_pivot_threshold: comment = f"Cert {sha256} - {cert.uuid} had {len(cert_ips)} IPs associated with it.\n" \ f"\tPivot threshold currently set to {mh.cert_pivot_threshold}.\n"\ f"\tBlacklisting cert from future pivots!" mh.logger.info(comment) cert = blacklist_cert(mh, cert, comment) else: mh.logger.debug(f"Cert {sha256} - {cert.uuid} had {len(cert_ips)} IPs associated with it. Leaving blacklist val alone!") return cert def build_misphunter_cert(mh, cert, parent_obj, event, raw_data): parsed_data = raw_data['parsed'] mh.logger.info(f"Building a new misphunter-cert object for {parsed_data['fingerprint_sha256']}!") cert_temp = mh.misp.get_raw_object_template('misphunter-cert') cert_obj = MISPObject('misphunter-cert', misp_objects_template_custom=cert_temp) cert_obj.is_new = True cert_obj.add_attribute('cert-sha256', parsed_data['fingerprint_sha256'], type="x509-fingerprint-sha256", disable_correlation=True, to_ids=False, pythonify=True) cert_obj.add_attribute('cert-sha1', parsed_data['fingerprint_sha1'], type="x509-fingerprint-sha1", disable_correlation=True, to_ids=False, pythonify=True) cert_obj.add_attribute('cert-md5', parsed_data['fingerprint_md5'], type="x509-fingerprint-md5", disable_correlation=True, to_ids=False, pythonify=True) cert_obj.add_attribute('cert-issuer-dn', parsed_data['issuer_dn'], type="text", disable_correlation=True, to_ids=False, pythonify=True) cert_obj.add_attribute('cert-subject-dn', parsed_data['subject_dn'], type="text", disable_correlation=True, to_ids=False, pythonify=True) cert_obj.add_attribute('blacklisted', '0', type="boolean", disable_correlation=True, to_ids=False, pythonify=True) attrs = parent_obj.get_attributes_by_relation('host-ip') if len(attrs)>0: ip = attrs[0].value cert_obj.add_attribute('cert-ip', ip, type="ip-dst", disable_correlation=False, to_ids=False, pythonify=True) # Add the raw results as a JSON file raw_data_text = json.dumps(raw_data) json_filename = f"{parsed_data['fingerprint_sha256']}.json" pseudofile = BytesIO(raw_data_text.encode('utf-8')) cert_obj.add_attribute('json', value=json_filename, data=pseudofile, type='attachment', disable_correlation=True, to_ids=False, pythonify=True) # Add any names as domains if 'names' in parsed_data: for name in parsed_data['names']: domain = name.lstrip("*.") cert_obj.add_attribute('cert-domain', domain, type="domain", disable_correlation=False, to_ids=False, pythonify=True) # Add relationship # comment=f"Certificate was seen on {ip}" # cert_obj.add_reference(parent_obj.uuid, "derived-from", comment=comment) sha256 = parsed_data['fingerprint_sha256'] if 'certs_added' not in mh.run_stats: mh.run_stats['certs_added'] = {str(event.id): [sha256]} elif str(event.id) not in mh.run_stats['certs_added']: mh.run_stats['certs_added'][str(event.id)] = [sha256] else: mh.run_stats['certs_added'][str(event.id)].append(sha256) mh.run_stats['certs_added']['total']+=1 for attr in cert_obj.Attribute: update_timestamps(mh, attr) return cert_obj def build_new_host_obj(mh, event, ip): mh.logger.info(f"MISP Object for {ip} does not exist. Building a new one.") try: raw_template = mh.misp.get_raw_object_template('misphunter-host') except Exception as e: mh.logger.error(f"Could not get template for misphunter-host. Host {ip} WILL NOT BE ADDED: {e}") return False host_obj = MISPObject('misphunter-host', misp_objects_template_custom=raw_template) host_obj.is_new = True host_obj.add_attribute('host-ip', value=str(ip), type='ip-dst', to_ids=False) host_obj.add_attribute('blacklisted', value=str(0), type='boolean', to_ids=False) # Update timestamps for attr in host_obj.Attribute: update_timestamps(mh, attr) if 'hosts_added' not in mh.run_stats: mh.run_stats['hosts_added'] = {str(event.id) : [ip]} elif str(event.id) not in mh.run_stats['hosts_added']: mh.run_stats['hosts_added'][str(event.id)] = [ip] else: mh.run_stats['hosts_added'][str(event.id)].append(ip) mh.run_stats['hosts_added']['total']+=1 return host_obj def check_all_certs(mh, cert, event): # Returns False if nothing found, otherwise returns the latest misphunter-cert MISPObject cert_data = False mh.logger.info(f"Saving API queries by checking if cert already exists in database...") try: all_cert_data = mh.misp.search(controller="objects", object_name="misphunter-cert", value=cert, pythonify=True) except Exception as e: mh.logger.error(f"FAILED attempt at searching for all existing certificates of value {cert}...") return False mh.logger.debug(f"Found {len(all_cert_data)} certs matching value {cert}.") event_cert_uuids = [] for event_cert in mh.event_certs: if event_cert.uuid not in event_cert_uuids: event_cert_uuids.append(event_cert.uuid) for obj in all_cert_data: if obj.uuid in event_cert_uuids: mh.logger.info(f"Found a cert object that already lives in this exact event, so that's the one we'll use: {obj.uuid}") cert_data = obj cert_data.is_new = False cert_data.is_clone=False return cert_data if cert_data == False: mh.logger.debug(f"Found first cert object for {cert}: {obj.uuid}") cert_data = obj else: if int(obj.timestamp.timestamp()) > int(cert_data.timestamp.timestamp()): mh.logger.debug(f"Found newer cert object [{obj.uuid}] to replace existing cert object {cert_data.uuid}") cert_data = obj if cert_data: if str(cert_data.event_id)!=str(event.id): mh.logger.info(f"Found existing cert object {cert_data.uuid} from a different event. Cloning object for this event!") cert_data = clone_obj(mh, cert_data, event) cert_data.is_clone=True return cert_data def check_tags(obj): tags = [] if hasattr(obj, 'Tag'): for tag in obj.Tag: if tag.name not in tags: tags.append(tag.name) return tags def check_json_freshness(mh, host_obj, service): mh.logger.info(f"First checking to see if we have an existing json blob new enough to avoid using an API query.") json_type = f"{service}-json" last_json = get_latest_attr_by_rel(host_obj, json_type) threshold_timestamp = int(time()) - (int(mh.update_threshold) * 60 * 60) if last_json: mh.logger.info(f"{last_json.value} found of type {json_type}. Checking to see if it's new enough...") if int(last_json.last_seen.timestamp()) >= int(threshold_timestamp): mh.logger.info(f"JSON timestamp of {int(last_json.last_seen.timestamp())} > {mh.update_threshold} hours ago ({int(threshold_timestamp)})." "new enough to reuse!") if not hasattr(host_obj, 'is_new'): host_obj.is_new = False if not host_obj.is_new: mh.logger.debug(f"attempting to read {last_json.value}...") if not last_json.data: mh.logger.warning(f"Data missing from {last_json.value}... Trying some magic.") last_json = mh.misp.get_attribute(last_json, pythonify=True) if not last_json.data: mh.logger.warning(f"Still no go. RETURNING FALSE!") return False else: mh.logger.info(f"The magic appears to have worked!") bytes_obj = last_json.data.read() last_json.data.seek(0) json_str = bytes_obj.decode('utf-8').replace("'", '"') try: raw = json.loads(json_str) except Exception as e: mh.logger.error(f"Error attempting to load json: {e}") mh.logger.error(f"Something went wrong attempting to read {last_json.value}. Skipping re-use and " "just going to hit the API again.") return False # set misphunter_processed to make sure we're not re-processing this JSON object raw['misphunter_processed'] = True return raw else: mh.logger.info(f"BUT WAIT - host_obj {host_obj.uuid} is_new! Better get a fresh JSON blob to be safe!") return False else: mh.logger.info(f"It had a timestamp of {int(last_json.last_seen.timestamp())} and we wanted it to be > " f"{mh.update_threshold} hrs ago ({int(threshold_timestamp)}). Getting fresh JSON blob for comparison.") return False else: return False def check_timer(mh, seed): # Returns seed with updated last_run time (or updated object timestamp in ignoring timers in debugging mode) mh.logger.info(f"Checking event timer to see if seed {seed.uuid} is ready to update") update_seed_object = False run_search = False now = int(time()) last_run = get_attr_val_by_rel(seed, 'last-run') # If no last_run time found, update event if last_run: mh.logger.info(f"seed last ran: {last_run}") last_run_time = int(last_run.timestamp()) else: mh.logger.info(f"Search does not have a record of when it was last run. Setting last run timestamp to 0.") last_run_time = 0 if not mh.ignore_timers: seed.add_attribute('last-run', now, type="datetime", disable_correlation=True, pythonify=True) else: mh.logger.info(f"ignore_timers flag is set, so not adding a last_run attribute to this event.") mh.logger.debug(f"Setting update_seed_object to True.") update_seed_object = True freq = get_attr_val_by_rel(seed, 'update-freq') mh.logger.info(f"Search frequency for seed {seed.uuid} set to run once every {freq} hours.") # If no frequency time found, update event if freq: freq_time = int(freq) * 60 * 60 else: mh.logger.info(f"Search does not have a frequency set. Defaulting to 24 hours.") freq_time = 24 * 60 * 60 # Ignore frequency attribute if running in debugger mode (avoids having to delete it every time) if not mh.ignore_timers: seed.add_attribute('update-freq', '24', type='text', disable_correlation=True, comment="Search is re-run every time this many hours have passed.", pythonify=True) else: mh.logger.info(f"ignore_timers flag is set, so not adding a frequency attribute to this event.") mh.logger.debug(f"Setting update_seed_object to True.") update_seed_object = True time_passed = now - int(last_run_time) # If no last_run_time set, this will always be true because time_passed/epoch is > whatever freq is set to. if time_passed >= freq_time: update_seed_object = True mh.logger.info(f"{str(time_passed/60/60)} hours have passed. Time to run the search again!") # Ignore last_run attribute
<reponame>maxwellmattryan/cs-313e # dependencies import math # point class used for triangle class class Point(object): # initialization of Point object def __init__(self, x=0, y=0): self.x = x self.y = y # handle print calling def __str__(self): return(f"({self.x}, {self.y})") # given another point, other, find the distance to it def dist(self, other): return(math.hypot(self.x - other.x, self.y - other.y)) # Q1: # A triangle is defined by the three vertices. Write the following functions of the Triangle class # assuming that the Point class has already been written for you. You may add helper functions as needed. class Triangle(object): # default constructor assigning (0, 0), (1, 0), and (0, 1) as vertices unless specified def __init__(self, v1_x=0, v1_y=0, v2_x=1, v2_y=0, v3_x=0, v3_y=1): #if(abs(v1_x * (v2_y - v3_y)) - (v2_x * (v1_y - v3_y)) + (v3_x * (v1_y - v2_y)) < 1.0e-8): self.v1 = Point(v1_x, v1_y) self.v2 = Point(v2_x, v2_y) self.v3 = Point(v3_x, v3_y) self.tol = 1.0e-8 # used for correcting mathematical operations using floating point values # calculate and return the area of the triangle def area(self): return(abs( (self.v3.x + self.v1.x) * (self.v3.y - self.v1.y) + (self.v1.x + self.v2.x) * (self.v1.y - self.v2.y) + (self.v2.x + self.v3.x) * (self.v2.y - self.v3.y)) ) # return True if the triangle is an isosceles right angled triangle def isRight(self): a = self.v1.dist(self.v2) b = self.v2.dist(self.v3) c = self.v3.dist(self.v1) if( (a == b and abs(math.hypot(a, b) - c) < self.tol) or (b == c and abs(math.hypot(b, c) - a) < self.tol) or (c == a and abs(math.hypot(c, a) - b) < self.tol) ): return(True) return(False) # calculate the return the perimeter of the triangle def perimeter(self): return( self.v1.dist(self.v2) + self.v2.dist(self.v3) + self.v3.dist(self.v1) ) # return True if a Point p is strictly inside the triangle or False otherwise def pointInside(self, p): totalArea = 0 totalArea += Triangle(self.v1.x, self.v1.y, self.v2.x, self.v2.y, p.x, p.y).area() totalArea += Triangle(self.v2.x, self.v2.y, self.v3.x, self.v3.y, p.x, p.y).area() totalArea += Triangle(self.v3.x, self.v3.y, self.v1.x, self.v1.y, p.x, p.y).area() return(abs(totalArea - self.area()) < self.tol) # Q2: # Given a 2D list filled with 0s and 1s, write the function largestRectangle() that finds the largest # rectangle made up of only 1s and returns the area of this rectangle. You may solve this problem # iteratively. # Example: # rect is a 2D list that is filled with 0s and 1s # return an integer of the largest area of 1s # rect = [ # [0, 0, 0, 0, 0], # [0, 0, 1, 1, 0], # [0, 1, 1, 1, 0] # ] # largestRectangle(rect) => 4 def largestRectangle(grid): # get maximum area of histogram def maxAreaInHistogram(hist): stack = [] largest = 0 for index, height in enumerate(hist): last = None while(stack and stack[-1][1] > height): last = stack.pop() largest = max(largest, (index - last[0]) * last[1]) if last is not None: stack.append((last[0], height)) else: stack.append((index, height)) index = len(hist) while stack: last = stack.pop() largest = max(largest, (index - last[0]) * last[1]) return(largest) # convert grid into histogram for i in range(1, len(grid)): for j in range(len(grid[i])): if(grid[i][j] == 1): grid[i][j] = grid[i - 1][j] + 1 # find maximum area of each row of new histogram grid maxArea = max([maxAreaInHistogram(row) for row in grid]) return(maxArea) # Q3: # Given n, it is easy to get the factorial of n. It might be a big number, but you can still compute it. # However, the inverse problem is difficult. Given some largest number, n, write the function, # inverseFactorial(n), find x such that x! is equal to n. In other words # abs(x! - n) < abs((x - 1)! - n) and abs(x! - n) < abs((x + 1)! - n). You may use Python's # math.factorial() in your algorithm. Assume that n is a positive integer. # inverseFactorial(40320) => 8 # inverseFactorial(115) => 5 def inverseFactorial(n): if(n == 1 or n == 2): return(n) lo = 0 hi = n // 2 while(lo < hi): x = (lo + hi) // 2 xF = math.factorial(x) if(xF == n): return(x) elif(xF > n): hi = x else: lo = x return(-1) # Q4: # Given a string, s, return the length of the longest palindrome that is a substring of s. There could # be two or more substrings that are the longest palindromes in s, then just return the length of any # one. There are two edge cases that your function must be able to handle - the string s itself is a # palindrome or there is no substring of length 2 or greater that is a palindrome. The string s will # only be lowercase letters. # longestPalindrome("radar") => 5 # longestPalindrome("abcde") => 1 # longestPalindrome("babad") => 3 def longestPalindrome(string): # helper method to determine if string is a palindrome def isPalindrome(string): if(len(string) % 2 == 0): return(False) left = right = len(string) // 2 while(left >= 0 and right < len(string)): if(string[left] != string[right]): return(False) left -= 1 right += 1 return(True) string = string.replace(" ", "") if(isPalindrome(string)): return(string) maxPalindrome = "" for Len in range(1, len(string)): for i in range(len(string) - Len + 1): j = i + Len - 1 tempString = "" for k in range(i, j + 1): tempString += string[k] if(isPalindrome(tempString) and len(tempString) > len(maxPalindrome)): maxPalindrome = tempString return(maxPalindrome) # Q5 : # A group of friends wants to do a secret santa with each friend being assigned to another and no # friend can be assigned to themselves (this is called derangement). The friends are named A, E, I, # O, U, and Y. Additionally, E does not like Y and A does not like E and each will get bad gifts for # the other if they have the opportunity to do so. Write the findPairings() function that returns a list # with all the assignments that do not assign any of the friends to themselves, nor pair E to Y or # A to E. You may add helper functions as needed. # Match the friends for secret santa # friends = ["A", "E", "I", "O", "U", "Y"] # findPairings(friends) => ["E:I", "I:O", "O:U", "U:Y", "Y:A"] # def findPairings(friends): # # given two friends, f1 and f2, return True if they are a valid match and False otherwise # def canPair(f1, f2): # if(f1 == f2): # return(False) # elif(f1 == "A" and f2 == "E") or (f1 == "E" and f2 == "A"): # return(False) # elif(f1 == "E" and f2 == "Y") or (f1 == "Y" and f2 == "E"): # return(False) # return(True) # n = len(friends) # grid = [[0 for j in range(n)] for i in range(n)] # for i in range(len(friends)): # for j in range(len(friends)): # if(canPair(friends[i], friends[j])): # grid[i][j] += 1 # pairings = [] # used = [] # for i in range(len(grid)): # for j in range(len(grid[i])): # if(grid[i][j] == 1 and j not in used): # used.append(j) # pairings.append(f"{friends[i]}:{friends[j]}") # break # return(pairings) def findPairings(friends, pairingsSet): # given two friends, f1 and f2, return True if they are a valid match and False otherwise def canPair(f1, f2): if(f1 == f2): return(False) # elif(f1 == "A" and f2 == "E") or (f1 == "E" and f2 == "A"): # return(False) # elif(f1 == "E" and f2 == "Y") or (f1 == "Y" and f2 == "E"): # return(False) return(True) # returns True if no other sender has claimed that recipient def isValidColumn(grid, row, col): temp = row while(temp >= 0): if(grid[temp][col] == 2): return(False) temp -= 1 temp = row while(temp < len(grid)): if(grid[temp][col] == 2): return(False) temp += 1 return(True) # recursive helper method once grid is made def findPairingsHelper(grid, friends, pairings): if(len(pairings) == len(friends)): pairingsSet.append(pairings[:]) else: row = len(pairings) for j in range(len(grid[row])): if(grid[row][j] == 1 and isValidColumn(grid, row, j)): grid[row][j] += 1 pairings.append(f"{friends[row]}:{friends[j]}") findPairingsHelper(grid, friends, pairings) pairings.pop() grid[row][j] -= 1 n = len(friends) grid = [[0 for j in range(n)] for i in range(n)] for i in range(len(friends)): for j in range(len(friends)): if(canPair(friends[i], friends[j])): grid[i][j] += 1 findPairingsHelper(grid, friends, []) # EC: # Trace Ackermann's function # if m = 0, f(m, n) => n
#!/usr/bin/python # -*- coding: utf-8 -*- import fileinput import gettext import os import platform import sqlite3 import subprocess import tkinter as tk from tkinter import * if platform.system() == "Windows": import winreg if sys.version_info[0] < 3: raise Exception("This bot works only with Python 3.x") root = tk.Tk() root.wm_title("Setup") root.geometry("290x350") root.resizable(width=False, height=False) def startupinfo(): handle = sqlite3.connect('pccontrol.sqlite') handle.row_factory = sqlite3.Row cursor = handle.cursor() cursor.execute("SELECT value FROM config WHERE name='console'") query = cursor.fetchone() console = "hide" if query: console = query["value"] if console == "hide": if platform.system() == "Windows": value = subprocess.STARTUPINFO() value.dwFlags |= subprocess.STARTF_USESHOWWINDOW else: value = None else: value = None return value def db_and_co(): handle = sqlite3.connect('pccontrol.sqlite') handle.row_factory = sqlite3.Row cursor = handle.cursor() # The bot will automatically create the right db if it not exist config_table = "CREATE TABLE IF NOT EXISTS " \ "`config` ( `id` INTEGER UNIQUE, `name` TEXT ," \ " `value` TEXT, UNIQUE(name, value), PRIMARY KEY(`id`))" users_table = "CREATE TABLE IF NOT EXISTS " \ "`users` ( `id` INTEGER UNIQUE, `name_first` TEXT," \ " `name_last` TEXT, `username` TEXT, `privs` INTEGER," \ " `last_use` INTEGER, `time_used` INTEGER," \ " `language` TEXT DEFAULT 'en', PRIMARY KEY(`id`))" cursor.execute(config_table) cursor.execute(users_table) create_mo_files() cursor.execute("SELECT value FROM config WHERE name='language'") query = cursor.fetchone() lang = "en" if query: lang = query["value"] translate = gettext.translation( "setup", localedir="locale", languages=[lang]) translate.install() return lang def en_lang(): handle = sqlite3.connect('pccontrol.sqlite') handle.row_factory = sqlite3.Row cursor = handle.cursor() cursor.execute("SELECT value FROM config WHERE name='language'") data = cursor.fetchall() if len(data) == 0: handle = sqlite3.connect('pccontrol.sqlite') handle.row_factory = sqlite3.Row cursor = handle.cursor() cursor.execute( "INSERT INTO config(name, value) VALUES ('language', 'en')") handle.commit() restart_popup() else: handle = sqlite3.connect('pccontrol.sqlite') handle.row_factory = sqlite3.Row cursor = handle.cursor() cursor.execute("UPDATE config SET value='en' WHERE name='language'") handle.commit() restart_popup() def it_lang(): handle = sqlite3.connect('pccontrol.sqlite') handle.row_factory = sqlite3.Row cursor = handle.cursor() cursor.execute("SELECT value FROM config WHERE name='language'") data = cursor.fetchall() if len(data) == 0: handle = sqlite3.connect('pccontrol.sqlite') handle.row_factory = sqlite3.Row cursor = handle.cursor() cursor.execute( "INSERT INTO config(name, value) VALUES ('language', 'it')") handle.commit() restart_popup() else: handle = sqlite3.connect('pccontrol.sqlite') handle.row_factory = sqlite3.Row cursor = handle.cursor() cursor.execute("UPDATE config SET value='it' WHERE name='language'") handle.commit() restart_popup() def botfather_token_check(): handle = sqlite3.connect('pccontrol.sqlite') handle.row_factory = sqlite3.Row cursor = handle.cursor() cursor.execute("SELECT value FROM config WHERE name='BotFather_token'") data = cursor.fetchall() if len(data) == 0: B1.configure(text=_("Confirm")) else: B1.configure(text=_("Change token")) def imgur_token_check(): handle = sqlite3.connect('pccontrol.sqlite') handle.row_factory = sqlite3.Row cursor = handle.cursor() cursor.execute("SELECT value FROM config WHERE name='Imgur_token'") data = cursor.fetchall() if len(data) == 0: B2.configure(text=_("Confirm")) else: B2.configure(text=_("Change token")) def botfather_token_set(val1): handle = sqlite3.connect('pccontrol.sqlite') handle.row_factory = sqlite3.Row cursor = handle.cursor() cursor.execute("SELECT value FROM config WHERE name='BotFather_token'") data = cursor.fetchall() if len(data) == 0: if len(val1) >= 45 <= 50: handle = sqlite3.connect('pccontrol.sqlite') handle.row_factory = sqlite3.Row cursor = handle.cursor() cursor.execute( "INSERT INTO config(name, value)" " VALUES ('BotFather_token', ?)", (val1,)) handle.commit() token1.destroy() B1.destroy() L1_done.configure(text=_("Token saved!"), font="Times 11", fg="green", justify=LEFT) elif len(val1) == 0: L1_done.configure(text=_("Your entry is empty"), font="Times 11", fg="red", justify=LEFT) else: L1_done.configure(text=_("The inserted token is wrong"), font="Times 11", fg="red", justify=LEFT) else: if len(val1) >= 45 <= 50: handle = sqlite3.connect('pccontrol.sqlite') handle.row_factory = sqlite3.Row cursor = handle.cursor() cursor.execute( "UPDATE config SET value=? " "WHERE name='BotFather_token'", (val1,)) handle.commit() token1.destroy() B1.destroy() L1_done.configure(text=_("Token saved!"), font="Times 11", fg="green", justify=LEFT) elif len(val1) == 0: L1_done.configure(text=_("Your entry is empty"), font="Times 11", fg="red", justify=LEFT) else: L1_done.configure(text=_("The inserted token is wrong"), font="Times 11", fg="red", justify=LEFT) def imgur_token_set(val2): handle = sqlite3.connect('pccontrol.sqlite') handle.row_factory = sqlite3.Row cursor = handle.cursor() cursor.execute("SELECT value FROM config WHERE name='Imgur_token'") data = cursor.fetchall() if len(data) == 0: if len(val2) != 0: handle = sqlite3.connect('pccontrol.sqlite') handle.row_factory = sqlite3.Row cursor = handle.cursor() cursor.execute( "INSERT INTO config(name, value) " "VALUES ('Imgur_token', ?)", (val2,)) handle.commit() token2.destroy() B2.destroy() L2_done.configure(text=_("Token saved!"), font="Times 11", fg="green", justify=LEFT) else: L2_done.configure(text=_("Your entry is empty"), font="Times 11", fg="red", justify=LEFT) else: if len(val2) != 0: handle = sqlite3.connect('pccontrol.sqlite') handle.row_factory = sqlite3.Row cursor = handle.cursor() cursor.execute( "UPDATE config SET value=? WHERE name='Imgur_token'", (val2,)) handle.commit() token2.destroy() B2.destroy() L2_done.configure(text=_("Token saved!"), font="Times 11", fg="green", justify=LEFT) else: L2_done.configure(text=_("Your entry is empty"), font="Times 11", fg="red", justify=LEFT) def requirements_check(): if os.path.isfile("requirements_log.txt") is False: B3.configure(text=_("Install the requirements")) else: B3.configure(text=_("Update the requirements")) def requirements(): if platform.system() == "Windows": subprocess.call( "pip install -r requirements.txt > requirements_log.txt", startupinfo=startupinfo(), shell=True) else: if sys.version_info[0] < 3: subprocess.call( "pip install -r requirements.txt > requirements_log.txt", startupinfo=startupinfo(), shell=True) else: subprocess.call( "pip3 install -r requirements.txt > requirements_log.txt", startupinfo=startupinfo(), shell=True) requirements_popup() requirements_check() def requirements_popup(): req = tk.Toplevel(root) l_frame = tk.Frame(req) l_frame.pack(fill=tk.X, side=tk.TOP) b_frame = tk.Frame(req) b_frame.pack(fill=tk.X, side=tk.BOTTOM) b_frame.columnconfigure(0, weight=1) b_frame.columnconfigure(1, weight=1) lr = Label(l_frame, text=_("The requirements install process is done.\n" "Do you want to take a look to the log?"), font="Times 11", justify=LEFT) lr.grid() yes_b = tk.Button(b_frame, text=_("Yes"), command=lambda: [req.destroy(), log_link()]) yes_b.grid(row=0, column=0, sticky=tk.W+tk.E) no_b = tk.Button(b_frame, text=_("No"), command=lambda: req.destroy()) no_b.grid(row=0, column=1, sticky=tk.W+tk.E) def log_link(): if platform.system() == "Windows": subprocess.call( "requirements_log.txt", startupinfo=startupinfo(), shell=True) else: subprocess.call("xdg-open requirements_log.txt", startupinfo=startupinfo(), shell=True) def create_mo_files(): if os.path.isfile('locale/en/LC_MESSAGES/setup.mo') is False: subprocess.call( "pip install Babel", startupinfo=startupinfo(), shell=True) subprocess.call('pybabel compile -D setup ' '-d locale -l en -i locale/en/LC_MESSAGES/setup.po', startupinfo=startupinfo(), shell=True) subprocess.call('pybabel compile -D setup ' '-d locale -l it -i locale/it/LC_MESSAGES/setup.po', startupinfo=startupinfo(), shell=True) if os.path.isfile('locale/en/LC_MESSAGES/pccontrol.mo') is False: subprocess.call( "pip install Babel", startupinfo=startupinfo(), shell=True) subprocess.call( 'pybabel compile -D pccontrol ' '-d locale -l en -i locale/en/LC_MESSAGES/pccontrol.po', startupinfo=startupinfo(), shell=True) subprocess.call( 'pybabel compile -D pccontrol ' '-d locale -l it -i locale/it/LC_MESSAGES/pccontrol.po', startupinfo=startupinfo(), shell=True) elif os.path.isfile('locale/en/LC_MESSAGES/pccontrol.mo') is False: subprocess.call( "pip install Babel", startupinfo=startupinfo(), shell=True) subprocess.call( 'pybabel compile -D pccontrol ' '-d locale -l en -i locale/en/LC_MESSAGES/pccontrol.po', startupinfo=startupinfo(), shell=True) subprocess.call( 'pybabel compile -D pccontrol ' '-d locale -l it -i locale/it/LC_MESSAGES/pccontrol.po', startupinfo=startupinfo(), shell=True) def bot_start(): root.withdraw() create_mo_files() handle = sqlite3.connect('pccontrol.sqlite') handle.row_factory = sqlite3.Row cursor = handle.cursor() if startupinfo() is not None: if platform.system() == "Windows": cursor.execute("SELECT value FROM config WHERE name='startup'") query = cursor.fetchone() startup = "false" if query: startup = query["value"] if startup == "true": subprocess.call(sys.executable + " bot.pyw", creationflags=0x08000000, shell=True) else: subprocess.call(sys.executable + " bot.py", creationflags=0x08000000, shell=True) else: cursor.execute("SELECT value FROM config WHERE name='startup'") query = cursor.fetchone() startup = "false" if query: startup = query["value"] if startup == "true": subprocess.call(sys.executable + " bot.pyw", shell=True) else: subprocess.call(sys.executable + " bot.py", shell=True) else: cursor.execute("SELECT value FROM config WHERE name='startup'") query = cursor.fetchone() startup = "false" if query: startup = query["value"] if startup == "true": subprocess.call(sys.executable + " bot.pyw", shell=True) else: subprocess.call(sys.executable + " bot.py", shell=True) def privs_window(): privs = tk.Toplevel(root) privs.wm_title(_("Permissions")) usr_l = Label(privs, text=_("Username"), font="Times 11 bold", justify=LEFT) usr_l.pack() usr_e = Entry(privs, bd=5) usr_e.pack() add_b = tk.Button(privs, text=_("Add permissions"), command=lambda: add_privs(usr_e.get())) add_b.pack() rm_b = tk.Button(privs, text=_("Remove permissions"), command=lambda: remove_privs(usr_e.get())) rm_b.pack() usr_done = Label(privs, text="") usr_done.pack() def add_privs(usr): handle = sqlite3.connect('pccontrol.sqlite') handle.row_factory = sqlite3.Row cursor = handle.cursor() cursor.execute("SELECT * FROM users WHERE username=?", (usr,)) data = cursor.fetchall() if len(data) != 0: cursor.execute("UPDATE users SET privs='-2' WHERE username=?", (usr,)) handle.commit() usr_e.destroy() add_b.destroy() rm_b.destroy() usr_done.configure(text=_("Permissions for %s changed!") % ( usr), font="Times 11", fg="green", justify=LEFT) else: usr_done.configure(text=_("%s isn't in your database") % ( usr), font="Times 11", fg="red", justify=LEFT) def remove_privs(usr): handle = sqlite3.connect('pccontrol.sqlite') handle.row_factory = sqlite3.Row cursor = handle.cursor() cursor.execute("SELECT * FROM users WHERE username=?", (usr,)) data = cursor.fetchall() if len(data) != 0: cursor.execute("UPDATE users SET privs='' WHERE username=?", (usr,)) handle.commit() usr_e.destroy() add_b.destroy() rm_b.destroy() usr_done.configure(text=_("Permissions for %s changed!") % ( usr), font="Times 11", fg="green", justify=LEFT) else: usr_done.configure(text=_("%s isn't in your database") % ( usr), font="Times 11", fg="red", justify=LEFT) def restart_popup(): privs = tk.Toplevel(root) privs.wm_title(_("Restart")) lp = Label(privs, text=_( "Please restart bot_setup to apply the change"), font="Times 11", justify=LEFT) lp.pack() add_b = tk.Button(privs, text=_("Restart"), command=lambda: restart()) add_b.pack() def restart(): python = sys.executable os.execl(python, python, *sys.argv) def console_show(): handle = sqlite3.connect('pccontrol.sqlite') handle.row_factory = sqlite3.Row cursor = handle.cursor() cursor.execute("SELECT value FROM config WHERE name='console'") data = cursor.fetchall() if len(data) == 0: handle = sqlite3.connect('pccontrol.sqlite') handle.row_factory = sqlite3.Row cursor = handle.cursor() cursor.execute( "INSERT INTO config(name, value) VALUES ('console', 'show')") handle.commit() restart_popup() else: handle = sqlite3.connect('pccontrol.sqlite') handle.row_factory = sqlite3.Row cursor = handle.cursor() cursor.execute("UPDATE config SET value='show' WHERE name='console'") handle.commit() restart_popup() def console_hide(): handle = sqlite3.connect('pccontrol.sqlite') handle.row_factory = sqlite3.Row cursor = handle.cursor() cursor.execute("SELECT value FROM config WHERE name='console'") data = cursor.fetchall() if len(data) == 0: handle = sqlite3.connect('pccontrol.sqlite') handle.row_factory = sqlite3.Row cursor = handle.cursor() cursor.execute( "INSERT INTO config(name, value) VALUES ('console', 'hide')") handle.commit() restart_popup() else: handle = sqlite3.connect('pccontrol.sqlite') handle.row_factory = sqlite3.Row cursor
from numpy import isnan, take, any, all, logical_or, logical_and, logical_not, atleast_1d, \ asarray, argmin, argsort, abs, isfinite, dot#where import numpy as np # for PyPy from openopt.kernel.nonOptMisc import where from bisect import bisect_right from FuncDesigner.Interval import splitDomainForDiscreteVariable try: from bottleneck import nanmin except ImportError: from numpy import nanmin def getTruncatedArrays(ind, y, e, indT, _s): # TODO: rework it when numpy will have appropriate inplace function s = ind.size y = take(y, ind, axis=0, out=y[:s]) e = take(e, ind, axis=0, out=e[:s]) _s = _s[ind] if indT is not None: indT = indT[ind] return y, e, indT, _s#, nlh, nlh_0 def adjustDiscreteVarBounds(y, e, p): # TODO: rework it #n = p.n # TODO: remove the cycle, use vectorization for i in p._discreteVarsNumList: v = p._freeVarsList[i] y[:, i], e[:, i] = splitDomainForDiscreteVariable(y[:, i], e[:, i], v) # ind = y>e # assert not any(ind) # y[ind], e[ind] = e[ind], y[ind] # Ind = any(y>e, 1) # trunc_ind = where(logical_not(Ind))[0] # # TODO: is it triggered? // updated: can be from MOP or cons # if any(Ind): # ind = where(logical_not(Ind))[0] # s = ind.size # y = take(y, ind, axis=0, out=y[:s]) # e = take(e, ind, axis=0, out=e[:s]) # _s = _s[ind] # if indT is not None: # indT = indT[ind] return y, e#, trunc_ind#_s, indT def func7(y, e, o, a, _s, indT, nlhc, residual): r10 = logical_and(all(isnan(o), 1), all(isnan(a), 1)) if any(r10): j = where(logical_not(r10))[0] lj = j.size y = take(y, j, axis=0, out=y[:lj]) e = take(e, j, axis=0, out=e[:lj]) o = take(o, j, axis=0, out=o[:lj]) a = take(a, j, axis=0, out=a[:lj]) _s = _s[j] if indT is not None: indT = indT[j] if nlhc is not None: nlhc = take(nlhc, j, axis=0, out=nlhc[:lj]) if residual is not None: residual = take(residual, j, axis=0, out=residual[:lj]) return y, e, o, a, _s, indT, nlhc, residual def func9(an, fo, g, p): #ind = searchsorted(ar, fo, side='right') if p.probType in ('NLSP', 'SNLE') and p.maxSolutions != 1: mino = atleast_1d([node.key for node in an]) ind = mino > 0 if not any(ind): return an, g else: g = nanmin((g, nanmin(mino[ind]))) ind2 = where(logical_not(ind))[0] #an = take(an, ind2, axis=0, out=an[:ind2.size]) #an = asarray(an[ind2]) an = [an[i] for i in ind2] return an, g elif p.solver.dataHandling == 'sorted': #OLD mino = [node.key for node in an] ind = bisect_right(mino, fo) if ind == len(mino): return an, g else: g = nanmin((g, nanmin(atleast_1d(mino[ind])))) return an[:ind], g elif p.solver.dataHandling == 'raw': #NEW mino = atleast_1d([node.key for node in an]) r10 = mino > fo if not any(r10): return an, g else: ind = where(r10)[0] g = nanmin((g, nanmin(atleast_1d(mino)[ind]))) #an = asarray(an) ind2 = where(logical_not(r10))[0] #an = take(an, ind2, axis=0, out=an[:ind2.size]) an = [an[i] for i in ind2] return an, g # NEW 2 # curr_tnlh = [node.tnlh_curr for node in an] # import warnings # warnings.warn('! fix g') return an, g else: assert 0, 'incorrect nodes remove approach' def func5(an, nn, g, p): m = len(an) if m <= nn: return an, g mino = np.array([node.key for node in an]) if nn == 1: # box-bound probs with exact interval analysis ind = argmin(mino) assert ind in (0, 1), 'error in interalg engine' g = nanmin((mino[1-ind], g)) an = [an[i] for i in ind] elif m > nn: if p.solver.dataHandling == 'raw': ind = argsort(mino) th = mino[ind[nn]] ind2 = where(mino < th)[0] g = nanmin((th, g)) #an = take(an, ind2, axis=0, out=an[:ind2.size]) an = [an[i] for i in ind2]#an[ind2] else: g = nanmin((mino[nn], g)) an = an[:nn] return an, g def func4(p, y, e, o, a, fo, tnlhf_curr = None): # TODO: simplifications for all-bool probs if fo is None and tnlhf_curr is None: return False# used in IP if y.size == 0: return False cs = (y + e)/2 n = y.shape[1] # TODO: a, o could be chenged to +/- inf instead of values duplication if tnlhf_curr is not None: tnlh_modL = tnlhf_curr[:, :n] ind = logical_not(isfinite(tnlh_modL)) else: s = o[:, :n] ind = logical_or(s > fo, isnan(s)) # TODO: assert isnan(s) is same to isnan(a_modL) # hasDiscreteVariables = len(p._discreteVarsNumList) != 0 indT = any(ind, 1) if any(ind): # if hasDiscreteVariables: for j, v in enumerate(p._discreteVarsList): i = p._discreteVarsNumList[j] k = where(ind[:, i])[0] if k.size == 0: continue discr_mid1, discr_mid2 = splitDomainForDiscreteVariable(y[k, i], e[k, i], v) cs[k, i] = discr_mid2 y[ind] = cs[ind] # TODO: check is it ever called from MOP, implement if not if p.probType != 'MOP': a[:, :n][ind] = a[:, n:][ind] o[:, :n][ind] = o[:, n:][ind] if tnlhf_curr is not None: tnlhf_curr[:, :n][ind] = tnlhf_curr[:, n:][ind] if tnlhf_curr is not None: tnlh_modU = tnlhf_curr[:, n:] ind = logical_not(isfinite(tnlh_modU)) else: q = o[:, n:] ind = logical_or(q > fo, isnan(q)) # TODO: assert isnan(q) is same to isnan(a_modU) indT = logical_or(any(ind, 1), indT) if any(ind): # copy is used to prevent y and e being same array, that may be buggy with discrete vars # TODO: remove copy after new discrete vars handling implementation for j, v in enumerate(p._discreteVarsList): i = p._discreteVarsNumList[j] k = where(ind[:, i])[0] if k.size == 0: continue discr_mid1, discr_mid2 = splitDomainForDiscreteVariable(y[k, i], e[k, i], v) cs[k, i] = discr_mid1 e[ind] = cs[ind].copy() # Changes # ind = logical_and(ind, logical_not(isnan(a[:, n:]))) ## ii = len(where(ind)[0]) ## if ii != 0: print ii if p.probType != 'MOP': a[:, n:][ind] = a[:, :n][ind] o[:, n:][ind] = o[:, :n][ind] if tnlhf_curr is not None: tnlhf_curr[:, n:][ind] = tnlhf_curr[:, :n][ind] # for arr in arrays: # if arr is not None: # arr[:, n:2*n][ind] = arr[:, 0:n][ind] return indT def truncateByPlane(y, e, indT, A, b): #!!!!!!!!!!!!!!!!!!! # TODO: vectorize it by matrix A #!!!!!!!!!!!!!!!!!!! ind_trunc = True # assert np.asarray(b).size <= 1, 'unimplemented yet' m, n = y.shape if m == 0: assert e.size == 0, 'bug in interalg engine' return y, e, indT, ind_trunc ind_positive = where(A > 0)[0] ind_negative = where(A < 0)[0] # print ind_negative, ind_positive A1 = A[ind_positive] S1 = A1 * y[:, ind_positive] A2 = A[ind_negative] S2 = A2 * e[:, ind_negative] # print A1.shape, A2.shape, e[:, ind_negative].shape S = S1.sum(axis=1) + S2.sum(axis=1) if ind_positive.size != 0: S1_ = b - S.reshape(-1, 1) + S1 Alt_ub = S1_ / A1 ind = e[:, ind_positive] > Alt_ub #+ 1e-15*abs(Alt_ub) if np.any(ind): _ind = where(ind.flatten())[0] e[:, ind_positive].flat[_ind] = Alt_ub.flat[_ind] indT[any(ind, axis = 1)] = True if ind_negative.size != 0: S2_ = b - S.reshape(-1, 1) + S2 Alt_lb = S2_ / A2 ind = y[:, ind_negative] < Alt_lb #- 1e-15 * abs(Alt_lb) if np.any(ind): #y[:, ind_negative][ind] = Alt_lb[ind] _ind = where(ind.flatten())[0] y[:, ind_negative].flat[_ind] = Alt_lb.flat[_ind] indT[any(ind, axis = 1)] = True ind = all(e>=y, axis = 1) if not all(ind): ind_trunc = where(ind)[0] lj = ind_trunc.size y = take(y, ind_trunc, axis=0, out=y[:lj]) e = take(e, ind_trunc, axis=0, out=e[:lj]) indT = indT[ind_trunc] return y, e, indT, ind_trunc def _truncateByPlane(y, e, indT, A, b): #!!!!!!!!!!!!!!!!!!! # TODO: vectorize it by matrix A #!!!!!!!!!!!!!!!!!!! ind_trunc = slice(None) # assert np.asarray(b).size <= 1, 'unimplemented yet' m, n = y.shape A = A.T assert A.shape == y.shape if m == 0: assert e.size == 0, 'bug in interalg engine' return y, e, indT, ind_trunc # ind_positive = where(A > 0)[0] # ind_negative = where(A < 0)[0] # print ind_negative, ind_positive #TODO: mb store ind_positive, ind_negative in prob for fixed A ind_positive, ind_negative = where(A>0), where(A<0) # S1 = dot(where(A>0, A, -A).T, y.T) # S2 = dot(where(A<0, A, -A).T, e.T) # S_y = dot(where(A>0, A, 0).T, y.T) # S_y_ = dot(where(A<0, A, 0).T, y.T) # S_e = dot(where(A>0, A, 0).T, e.T) # S_e_ = dot(where(A<0, A, 0).T, e.T) S_y = where(A>0, A, 0) * y S_y_ = where(A<0, A, 0) * y S_e = where(A>0, A, 0) * e S_e_ = where(A<0, A, 0) * e # _S = S1+S2 # 1 S1 = S_y S2 = S_e_ S = S1.sum(axis=1) + S2.sum(axis=1) d = (b.reshape(-1, 1) - S.reshape(-1, 1)) + S1 # vector
<filename>caldavclientlibrary/protocol/url.py ## # Copyright (c) 2007-2016 Apple Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ## import os import urllib class URL(object): eAbsolute = 0 eRelative = 1 eLastPath = 2 URLEscape = '%' URLReserved = "/?:@&=" URLUnreserved = ( # Allowable URL chars 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 0 - 15 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 16 - 31 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, # 32 - 47 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, # 48 - 63 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, # 64 - 79 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, # 80 - 95 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, # 96 - 111 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, # 112 - 127 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 128 - 143 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 144 - 159 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 160 - 175 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 176 - 191 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 192 - 207 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 208 - 223 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 224 - 239 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 240 - 255 ) URLCharacter = ( # Allowable URL chars -- all 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 0 - 15 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 16 - 31 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, # 32 - 47 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, # 48 - 63 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, # 64 - 79 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, # 80 - 95 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, # 96 - 111 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, # 112 - 127 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 128 - 143 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 144 - 159 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 160 - 175 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 176 - 191 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 192 - 207 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 208 - 223 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 224 - 239 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 240 - 255 ) URLXCharacter = ( # Allowable URL chars (all) # RFC2732 uses '[...]' for IPv6 addressing - [] are now allowed 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 0 - 15 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 16 - 31 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, # 32 - 47 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, # 48 - 63 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, # 64 - 79 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, # 80 - 95 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, # 96 - 111 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, # 112 - 127 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 128 - 143 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 144 - 159 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 160 - 175 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 176 - 191 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 192 - 207 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 208 - 223 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 224 - 239 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 240 - 255 ) URLSchemeDoubleSlash = ("http", "https", "webcal",) def __init__(self, url=None, scheme=None, server=None, path=None, extended=None, decode=False): self.scheme = "" self.server = "" self.path = "" self.extended = "" if not url: self.scheme = scheme self.server = server self.path = path if self.path and decode: self.path = urllib.unquote(self.path) self.extended = extended if self.extended and decode: self.extended = urllib.unquote_plus(self.extended) else: self._parse(url, decode) def __str__(self): return "URL: %s" % (self.toString(),) def __repr__(self): return "URL: %s" % (self.toString(),) def __cmp__(self, other): return cmp(self.toString(), other.toString()) def absoluteURL(self): return self.toString() def relativeURL(self): return self.toString(conversion=URL.eRelative) def toString(self, conversion=eAbsolute, encode=True): result = "" # Add scheme & host if not relative if conversion == URL.eAbsolute and self.scheme and self.server: result += self.scheme + ":" if self.scheme in URL.URLSchemeDoubleSlash: result += "//" result += self.server # Get path (or last part of it if required) if self.path and conversion == URL.eLastPath: path = self.path[self.path.rfind("/"):] else: path = self.path # Now encode if required if path: result += (urllib.quote(path) if encode else path) if self.extended: result += (urllib.quote_plus(self.extended, "?&=") if encode else self.extended) return result def equal(self, comp): #
columns[0] ], key="free-text-search", visible=False, filterable="standard" ) ) operations = [] use_paging = False def build_initial_query( self, trans, **kwd ): # Filter by latest installable revisions that contain tools with missing tool test components. revision_clause_list = [] for repository in trans.sa_session.query( model.Repository ) \ .filter( and_( model.Repository.table.c.deprecated == false(), model.Repository.table.c.deleted == false() ) ): changeset_revision = \ grids_util.filter_by_latest_downloadable_changeset_revision_that_has_missing_tool_test_components( trans, repository ) if changeset_revision: revision_clause_list.append( model.RepositoryMetadata.table.c.changeset_revision == changeset_revision ) if revision_clause_list: return trans.sa_session.query( model.Repository ) \ .filter( and_( model.Repository.table.c.deprecated == false(), model.Repository.table.c.deleted == false() ) ) \ .join( model.RepositoryMetadata ) \ .filter( or_( *revision_clause_list ) ) \ .join( model.User.table ) # Return an empty query. return trans.sa_session.query( model.Repository ) \ .filter( model.Repository.table.c.id < 0 ) class MyWritableRepositoriesMissingToolTestComponentsGrid( RepositoriesMissingToolTestComponentsGrid ): # This grid displays only the latest installable revision of each repository. title = "Repositories I can change with missing tool test components" columns = [ col for col in RepositoriesMissingToolTestComponentsGrid.columns ] operations = [] use_paging = False def build_initial_query( self, trans, **kwd ): # First get all repositories that the current user is authorized to update. username = trans.user.username user_clause_list = [] for repository in trans.sa_session.query( model.Repository ) \ .filter( and_( model.Repository.table.c.deprecated == false(), model.Repository.table.c.deleted == false() ) ): allow_push = repository.allow_push( trans.app ) if allow_push: allow_push_usernames = allow_push.split( ',' ) if username in allow_push_usernames: user_clause_list.append( model.Repository.table.c.id == repository.id ) if user_clause_list: # We have the list of repositories that the current user is authorized to update, so filter # further by latest installable revisions that contain tools with missing tool test components. revision_clause_list = [] for repository in trans.sa_session.query( model.Repository ) \ .filter( and_( model.Repository.table.c.deprecated == false(), model.Repository.table.c.deleted == false() ) ) \ .filter( or_( *user_clause_list ) ): changeset_revision = \ grids_util.filter_by_latest_downloadable_changeset_revision_that_has_missing_tool_test_components( trans, repository ) if changeset_revision: revision_clause_list.append( model.RepositoryMetadata.table.c.changeset_revision == changeset_revision ) if revision_clause_list: return trans.sa_session.query( model.Repository ) \ .filter( and_( model.Repository.table.c.deprecated == false(), model.Repository.table.c.deleted == false() ) ) \ .join( model.User.table ) \ .filter( or_( *user_clause_list ) ) \ .join( model.RepositoryMetadata ) \ .filter( or_( *revision_clause_list ) ) # Return an empty query. return trans.sa_session.query( model.Repository ) \ .filter( model.Repository.table.c.id < 0 ) class RepositoriesWithTestInstallErrorsGrid( RepositoryGrid ): # This grid displays only the latest installable revision of each repository. title = "Repositories with tool test installation errors" columns = [ RepositoryGrid.NameColumn( "Name", key="name", link=( lambda item: dict( operation="view_or_manage_repository", id=item.id ) ), attach_popup=False ), RepositoryGrid.LatestInstallableRevisionColumn( "Latest Installable Revision" ), RepositoryGrid.UserColumn( "Owner", key="User.username", model_class=model.User, link=( lambda item: dict( operation="repositories_by_user", id=item.id ) ), attach_popup=False ) ] columns.append( grids.MulticolFilterColumn( "Search repository name", cols_to_filter=[ columns[0] ], key="free-text-search", visible=False, filterable="standard" ) ) operations = [] use_paging = False def build_initial_query( self, trans, **kwd ): # Filter by latest installable revisions that contain tools with missing tool test components. revision_clause_list = [] for repository in trans.sa_session.query( model.Repository ) \ .filter( and_( model.Repository.table.c.deprecated == false(), model.Repository.table.c.deleted == false() ) ): changeset_revision = \ grids_util.filter_by_latest_downloadable_changeset_revision_that_has_test_install_errors( trans, repository ) if changeset_revision: revision_clause_list.append( model.RepositoryMetadata.table.c.changeset_revision == changeset_revision ) if revision_clause_list: return trans.sa_session.query( model.Repository ) \ .filter( and_( model.Repository.table.c.deprecated == false(), model.Repository.table.c.deleted == false() ) ) \ .join( model.RepositoryMetadata ) \ .filter( or_( *revision_clause_list ) ) \ .join( model.User.table ) # Return an empty query. return trans.sa_session.query( model.Repository ) \ .filter( model.Repository.table.c.id < 0 ) class MyWritableRepositoriesWithTestInstallErrorsGrid( RepositoriesWithTestInstallErrorsGrid ): # This grid displays only the latest installable revision of each repository. title = "Repositories I can change with tool test installation errors" columns = [ col for col in RepositoriesWithTestInstallErrorsGrid.columns ] operations = [] use_paging = False def build_initial_query( self, trans, **kwd ): # First get all repositories that the current user is authorized to update. username = trans.user.username user_clause_list = [] for repository in trans.sa_session.query( model.Repository ) \ .filter( and_( model.Repository.table.c.deprecated == false(), model.Repository.table.c.deleted == false() ) ): allow_push = repository.allow_push( trans.app ) if allow_push: allow_push_usernames = allow_push.split( ',' ) if username in allow_push_usernames: user_clause_list.append( model.Repository.table.c.id == repository.id ) if user_clause_list: # We have the list of repositories that the current user is authorized to update, so filter # further by latest installable revisions that contain tools with missing tool test components. revision_clause_list = [] for repository in trans.sa_session.query( model.Repository ) \ .filter( and_( model.Repository.table.c.deprecated == false(), model.Repository.table.c.deleted == false() ) ) \ .filter( or_( *user_clause_list ) ): changeset_revision = \ grids_util.filter_by_latest_downloadable_changeset_revision_that_has_test_install_errors( trans, repository ) if changeset_revision: revision_clause_list.append( model.RepositoryMetadata.table.c.changeset_revision == changeset_revision ) if revision_clause_list: return trans.sa_session.query( model.Repository ) \ .filter( and_( model.Repository.table.c.deprecated == false(), model.Repository.table.c.deleted == false() ) ) \ .join( model.User.table ) \ .filter( or_( *user_clause_list ) ) \ .join( model.RepositoryMetadata ) \ .filter( or_( *revision_clause_list ) ) # Return an empty query. return trans.sa_session.query( model.Repository ) \ .filter( model.Repository.table.c.id < 0 ) class RepositoriesWithSkipTestsCheckedGrid( RepositoryGrid ): # This grid displays only the latest installable revision of each repository. title = "Repositories with skip tool tests checked" columns = [ RepositoryGrid.NameColumn( "Name", key="name", link=( lambda item: dict( operation="view_or_manage_repository", id=item.id ) ), attach_popup=False ), RepositoryGrid.LatestInstallableRevisionColumn( "Latest Installable Revision" ), RepositoryGrid.UserColumn( "Owner", key="User.username", model_class=model.User, link=( lambda item: dict( operation="repositories_by_user", id=item.id ) ), attach_popup=False ) ] columns.append( grids.MulticolFilterColumn( "Search repository name", cols_to_filter=[ columns[0] ], key="free-text-search", visible=False, filterable="standard" ) ) operations = [] use_paging = False def build_initial_query( self, trans, **kwd ): # Filter by latest installable revisions that contain tools with missing tool test components. revision_clause_list = [] for repository in trans.sa_session.query( model.Repository ) \ .filter( and_( model.Repository.table.c.deprecated == false(), model.Repository.table.c.deleted == false() ) ): changeset_revision = \ grids_util.filter_by_latest_downloadable_changeset_revision_with_skip_tests_checked( trans, repository ) if changeset_revision: revision_clause_list.append( model.RepositoryMetadata.table.c.changeset_revision == changeset_revision ) if revision_clause_list: return trans.sa_session.query( model.Repository ) \ .filter( and_( model.Repository.table.c.deprecated == false(), model.Repository.table.c.deleted == false() ) ) \ .join( model.RepositoryMetadata ) \ .filter( or_( *revision_clause_list ) ) \ .join( model.User.table ) # Return an empty query. return trans.sa_session.query( model.Repository ) \ .filter( model.Repository.table.c.id < 0 ) class MyWritableRepositoriesWithSkipTestsCheckedGrid( RepositoriesWithSkipTestsCheckedGrid ): # This grid displays only the latest installable revision of each repository. title = "Repositories I can change with skip tool tests checked" columns = [ col for col in RepositoriesWithSkipTestsCheckedGrid.columns ] operations = [] use_paging = False def build_initial_query( self, trans, **kwd ): # First get all repositories that the current user is authorized to update. username = trans.user.username user_clause_list = [] for repository in trans.sa_session.query( model.Repository ) \ .filter( and_( model.Repository.table.c.deprecated == false(), model.Repository.table.c.deleted == false() ) ): allow_push = repository.allow_push( trans.app ) if allow_push: allow_push_usernames = allow_push.split( ',' ) if username in allow_push_usernames: user_clause_list.append( model.Repository.table.c.id == repository.id ) if user_clause_list: # We have the list of repositories that the current user is authorized to update, so filter # further by latest installable revisions that contain tools with missing tool test components. revision_clause_list = [] for repository in trans.sa_session.query( model.Repository ) \ .filter( and_( model.Repository.table.c.deprecated == false(), model.Repository.table.c.deleted == false() ) ) \ .filter( or_( *user_clause_list ) ): changeset_revision = \ grids_util.filter_by_latest_downloadable_changeset_revision_with_skip_tests_checked( trans, repository ) if changeset_revision: revision_clause_list.append( model.RepositoryMetadata.table.c.changeset_revision == changeset_revision ) if revision_clause_list: return trans.sa_session.query( model.Repository ) \ .filter( and_( model.Repository.table.c.deprecated == false(), model.Repository.table.c.deleted == false() ) ) \ .join( model.User.table ) \ .filter( or_( *user_clause_list ) ) \ .join( model.RepositoryMetadata ) \ .filter( or_( *revision_clause_list ) ) # Return an empty query. return trans.sa_session.query( model.Repository ) \ .filter( model.Repository.table.c.id < 0 ) class DeprecatedRepositoriesIOwnGrid( RepositoriesIOwnGrid ): title = "Deprecated repositories I own" columns = [ RepositoriesIOwnGrid.NameColumn( "Name", key="name", link=( lambda item: dict( operation="view_or_manage_repository", id=item.id ) ), attach_popup=False ), RepositoryGrid.TypeColumn( "Type" ), RepositoriesIOwnGrid.MetadataRevisionColumn( "Metadata<br/>Revisions" ), RepositoryGrid.ToolsFunctionallyCorrectColumn( "Tools or<br/>Package<br/>Verified" ), RepositoriesIOwnGrid.CategoryColumn( "Category", model_class=model.Category, key="Category.name", attach_popup=False ), ] columns.append( grids.MulticolFilterColumn( "Search repository name", cols_to_filter=[ columns[0] ], key="free-text-search", visible=False, filterable="standard" ) ) use_paging = False def build_initial_query( self, trans, **kwd ): return trans.sa_session.query( model.Repository ) \ .filter( and_( model.Repository.table.c.deleted == false(), model.Repository.table.c.user_id == trans.user.id, model.Repository.table.c.deprecated == true() ) ) \ .join( model.User.table ) \ .outerjoin( model.RepositoryCategoryAssociation.table ) \ .outerjoin( model.Category.table ) class RepositoriesWithFailingToolTestsGrid( RepositoryGrid ): # This grid displays only the latest installable revision of each repository. title = "Repositories with failing tool tests" columns = [ RepositoryGrid.NameColumn( "Name", key="name", link=( lambda
<gh_stars>0 import dash import dash_core_components as dcc import dash_table import dash_html_components as html import dash_bootstrap_components as dbc import pandas as pd import os from dash.exceptions import PreventUpdate import dash_bio as dashbio from src.processing import Processing from src.dashView import initializeData # files, which are processed # read-only file_list = None struct_data = None # starts dash # file_list: input data # sec_struct_data: input structural data # port: port def startDash(files, port, sec_struct_data): global file_list global struct_data file_list = files struct_data = sec_struct_data app.run_server(debug=False, host='0.0.0.0', port=port) # calculates slider ranges # peak-boolean sets first value to 'none' (for peak-slider) def markSliderRange(min_val, max_val, peak): mark = {} if peak: min_val += 1 mark[0] = 'none' for i in range(min_val, max_val + 1): mark[i] = str(i) return mark # range() function for floats # start: start-value which is head of list # step: steps between two values # run: number of loop runs def float_range(start, step, run): for_list = [start] for i in range(1, run): next_step = start + step * i for_list.append(next_step) return for_list # checks if custom normalization rates sum up to one # parameters (e.g. ee,ss,etc. ..): rate for 2-mer def check_sum(ee, ss, ii, mm, bb, si, i_s, sm, ms, es, se, hh, hs, sh, sb, bs): custom_rates = [ee, ss, ii, mm, bb, si, i_s, sm, ms, es, se, hh, hs, sh, sb, bs] k_mer_sum = round(sum(custom_rates), 1) check_passed = bool(k_mer_sum == 1) return check_passed # ------------------------------------------- Dash-Layout -------------------------------------------------------------- app = dash.Dash(external_stylesheets=[dbc.themes.BOOTSTRAP]) app.title = "k-Mer Dash" app.layout = dbc.Container([ # ------------------------------------------ Store ----------------------------------------------------------------- dbc.Spinner(children=[dcc.Store(id='memory', storage_type='memory')], color="primary", fullscreen=True), # ------------------------------------------------------------------------------------------------------------------- dbc.Card([ dbc.Row([ dbc.Col( dbc.CardBody([ html.H3("Menu"), html.Br(), # ------------------------------------- Select File1 And File 2 ------------------------------------ html.H6("Selected files:", id="sel_files_header"), dbc.Select( id="file1", options=[], value="0"), dbc.Select( id="file2", options=[], value="1"), dbc.Tooltip( "Files containing DNA nucleotide-sequences used for k-mer visualization", target="sel_files_header" ), html.Br(), html.Br(), # ------------------------------------- Select Structure Files ------------------------------------- html.H6("Selected structure files:", id="struc_files_header"), dbc.Select( id="file3", options=[{"label": "-", "value": "0"}], value="0"), dbc.Select( id="file4", options=[{"label": "-", "value": "0"}], value="1"), dbc.Tooltip( "Files containing element-strings used for RNA structure heatmaps(s)", target="struc_files_header" ), html.Br(), html.Br(), # ------------------------------------------- K ---------------------------------------------------- html.H6("K-mer length:", id="k_header"), dcc.Slider( id='k', min=0, max=10, step=1, value=3, marks=markSliderRange(0, 10, False) ), dbc.Tooltip( "Length of visualized substrings (k-mer)", target="k_header" ), html.Br(), # ----------------------------------------- Peak --------------------------------------------------- html.H6("Peak-position:", id="peak_header"), dcc.Slider( id='peak', min=1, max=10, step=1, value=0, marks=markSliderRange(0, 10, True) ), dbc.Tooltip( "Highlighted position in sequence (e.g. assumed binding position " "of protein in given sequences)", target="peak_header" ), html.Br(), # ------------------------------------------ top --------------------------------------------------- html.H6("Top-values:", id="top_header"), dbc.Select( id='top', options=[ {'label': '10', 'value': '0'}, {'label': '20', 'value': '1'}, {'label': '50', 'value': '2'}, {'label': '100', 'value': '3'} ], value="0" ), dbc.Tooltip( "Number of <top> highest k-mer occurrences", target="top_header" ), html.Br(), html.Br(), # -------------------------------- Highlighted Feature --------------------------------------------- html.H6("Highlighted feature:", id="feature_header"), dbc.Select( id="Feature", options=[ {"label": "Frequency", "value": "1"}, {"label": "T Occurrences", "value": "2"}, {"label": "A Occurrences", "value": "3"}, {"label": "C Occurrences", "value": "4"}, {"label": "G Occurrences", "value": "5"}, ], value="1" ), dbc.Tooltip( "Highlighted/Colored property of PCAs", target="feature_header" ), html.Br(), html.Br(), # ------------------------------- Options structural data ------------------------------------------ dbc.ButtonGroup( [dbc.Button("Extended options", id="opt_btn_open"), # dbc.Button("Export PDF", id="ex_btn",disabled=True) ], size="md", className="mr-1", ), dbc.Tooltip( "Options for structural data visualization", target="opt_btn_open" ), dbc.Modal( [ dbc.ModalHeader("Options for structural data visualization"), dbc.ModalBody(children=[ dcc.Checklist( id="sec_peak", options=[{'label': 'show only peak positions', 'value': 'peaking'}], inputStyle={'margin-right': '3px'}, ), dbc.Tooltip( "Only show peak positions in RNA structure Heatmap(s)", target="sec_peak" ), html.Br(), html.Div("Normalization:", id="norm_header", style={'font-weight': 'bold', 'padding-bottom': '10px'}), html.Div("ERROR: sum of custom rates should be equal to 1", id="error", style={'font-weight': 'bold', 'color': 'red', 'padding-bottom': '10px'}, hidden=True), html.Div("ERROR: only numerical values between zero and one allowed", id="error_type", style={'font-weight': 'bold', 'color': 'red', 'padding-bottom': '10px'}, hidden=True), dcc.RadioItems( id="db", options=[ {'label': 'none', 'value': 'none'}, {'label': 'use A.thaliana database', 'value': 'at_db'}, {'label': 'use custom k-mer rates', 'value': 'custom_vals'} ], value='none', labelStyle={'display': 'block'}, inputStyle={'margin-right': '3px'} ), dbc.Tooltip( "Used data for normalization of structural data", target="norm_header" ), html.Div(id="norm_input", children=[ html.Table(children=[ html.Tr(children=[ html.Td(children=[ html.Div("EE"), dbc.Input(id="EE", type="number", style={'width': '100px'}, max=1, min=0, step=0.001, value=0)], ), html.Td(children=[ html.Div("ES"), dbc.Input(id="ES", type="number", style={'width': '100px'}, max=1, min=0, step=0.001, value=0)], ), html.Td(children=[ html.Div("SS"), dbc.Input(id="SS", type="number", style={'width': '100px'}, max=1, min=0, step=0.001, value=0)], ) ]), html.Tr(children=[ html.Td(children=[ html.Div("SI"), dbc.Input(id="SI", type="number", style={'width': '100px'}, max=1, min=0, step=0.001, value=0), ], ), html.Td(children=[ html.Div("IS"), dbc.Input(id="IS", type="number", style={'width': '100px'}, max=1, min=0, step=0.001, value=0), ], ), html.Td(children=[ html.Div("II"), dbc.Input(id="II", type="number", style={'width': '100px'}, max=1, min=0, step=0.001, value=0), ], ) ]), html.Tr(children=[ html.Td(children=[ html.Div("SH"), dbc.Input(id="SH", type="number", style={'width': '100px'}, max=1, min=0, step=0.001, value=0), ], ), html.Td(children=[ html.Div("HS"), dbc.Input(id="HS", type="number", style={'width': '100px'}, max=1, min=0, step=0.001, value=0), ], ), html.Td(children=[ html.Div("HH"), dbc.Input(id="HH", type="number", style={'width': '100px'}, max=1, min=0, step=0.001, value=0), ], ) ]), html.Tr(children=[ html.Td(children=[ html.Div("SM"), dbc.Input(id="SM", type="number", style={'width': '100px'}, max=1, min=0, step=0.001, value=0), ], ), html.Td(children=[ html.Div("MS"), dbc.Input(id="MS", type="number", style={'width': '100px'}, max=1, min=0, step=0.001, value=0), ], ), html.Td(children=[ html.Div("SE"), dbc.Input(id="SE", type="number", style={'width': '100px'}, max=1, min=0, step=0.001, value=0), ], ), ]), html.Tr(children=[ html.Td(children=[ html.Div("BB"), dbc.Input(id="BB", type="number", style={'width': '100px'}, max=1, min=0, step=0.001, value=0), ], ), html.Td(children=[ html.Div("BS"), dbc.Input(id="BS", type="number", style={'width': '100px'}, max=1, min=0, step=0.001, value=0), ], ), html.Td(children=[ html.Div("SB"), dbc.Input(id="SB", type="number", style={'width': '100px'}, max=1, min=0, step=0.001, value=0), ], ), ]), html.Tr(children=[ html.Td(children=[ html.Div("MM"), dbc.Input(id="MM", type="number", style={'width': '100px'}, max=1, min=0, step=0.001, value=0), ], ), html.Td(children=[]), html.Td(children=[ html.Br(), dbc.Button("Reset", id="opt_btn_reset", style={'margin': 'auto'})]), dbc.Tooltip( "Reset table", target="opt_btn_reset" ), ]) ], style={'width': '100%'} ) ], style={'display': 'block'}, hidden=True), ]), dbc.ModalFooter(children=[ dbc.ButtonGroup( [dbc.Button("Apply", id="opt_btn_apply"), dbc.Button("Close", id="opt_btn_close")], className="mr-1", ), ] ), ], id="ex_options", backdrop='static', centered=True ), ], style={ 'height': '100vh', 'left': '0px', 'background': 'lightgrey'}), width=2, style={"padding-right": '0px', "padding-left": '0px', 'margin-right': '0px'}), # --------------------------------------- ScatterPlot ------------------------------------------------------ dbc.Col([ dbc.Card([ dbc.Spinner(children=[ dcc.Tabs(value="s-tab", children=[ dcc.Tab(label="Scatterplot", value='s-tab', id="s-tab1", children=[ dcc.Graph(figure={}, id="scatter", style={'height': '40vh'}) ]), # -------------------------------------- FornaContainer ------------------------------------ dcc.Tab(value='r-tab', id="s-tab2", children=[ dbc.Card( dashbio.FornaContainer( id='forna', height='300', width='400', colorScheme='custom' ), className="w-100 p-3", ), ]), dcc.Tab(value='r-tab2', id="s-tab3", children=[ dbc.Card( dashbio.FornaContainer( id='forna2', height='300', width='400', colorScheme='custom' ), className="w-100 p-3", ), ]) ]), dbc.Tooltip( "Scatterplot of k-mer occurences from selected files containing " "nucleotide sequences", target="s-tab1" ), dbc.Tooltip( "Visualization of arbitrary RNA structure, highlighting k-mer occurrences of " "element strings from first selected structural data file", target="s-tab2" ), dbc.Tooltip( "Visualization of arbitrary RNA structure, highlighting k-mer occurrences of " "element strings from second selected structural data file", target="s-tab3" ), ], color="primary", spinner_style={'position': 'absolute', 'top': '50%', 'left': '50%' }), ], style={ 'background': '#f2f2f2', 'height': '50vh'}, outline=True), # -------------------------------------------- TopK ---------------------------------------------------- dbc.Spinner(children=[dbc.Card(id="topK", children=[], style={ 'background': '#f2f2f2', 'height': '49vh', 'overflow-y': 'scroll'}, outline=True)], color="primary", spinner_style={'position': 'absolute', 'top': '50%', 'left': '50%' }), ], width=5, style={"padding-right": '5px', "padding-left": '10px'}), # ------------------------------------------------- PCAs --------------------------------------------------- dbc.Col( [dbc.Card([ dbc.Spinner(children=[ dcc.Tabs(id='tabs-example', value='Tab1', children=[ dcc.Tab(label="", value='Tab1', id="Tab1", children=[ dcc.Graph(figure={}, id="PCA1", style={'height': '42vh'} ) ]), dcc.Tab(label="", value='Tab2', id="Tab2", children=[ dcc.Graph(figure={}, id="PCA2", style={'height': '42vh'} ) ]), ], ), dbc.Tooltip( "Principal component analysis (PCA) of first selected file containing nucleotide sequences", target="Tab1" ), dbc.Tooltip( "Principal component analysis (PCA) of " "second selected file containing nucleotide sequences", target="Tab2" ), ], color="primary", spinner_style={'position': 'absolute', 'top': '50%', 'left': '50%' }), ], style={ 'background': '#f2f2f2', 'height': '50vh'}, outline=True), # ------------------------------------------- MSA -------------------------------------------------- dbc.Spinner(children=[dbc.Card(id="msa", children=[], style={ 'background': '#f2f2f2', 'height': '49vh', 'overflow-y': 'scroll'}, outline=True)], color="primary", spinner_style={'position': 'absolute', 'top': '50%', 'left': '50%' }), ], width=5, style={"padding-right": '0px', "padding-left": '0px'} ) ], style={'padding-top': '0px', 'padding-bottom': '0px', 'margin-top': '0px', 'margin-bottom': '0px', 'margin-left': '0px', 'padding-left': '0px'}, className="mw-100 mh-100" ), ], className="mw-100 mh-100"), ], className="mw-100 mh-100", style={'left': '0px', 'margin-left': '0px', 'padding': '0px'}) # ------------------------------------ Store Callback ------------------------------------------------------------------ @app.callback( [dash.dependencies.Output('memory', 'data')], [dash.dependencies.Input('file1', 'value'), dash.dependencies.Input('file2', 'value'), dash.dependencies.Input('file3', 'value'), dash.dependencies.Input('file4', 'value'), dash.dependencies.Input('k', 'value'), dash.dependencies.Input('peak', 'value'), dash.dependencies.Input('top', 'value'), dash.dependencies.Input('Feature', 'value'), dash.dependencies.Input('opt_btn_apply', 'n_clicks'), dash.dependencies.State('sec_peak', 'value'), dash.dependencies.State('EE', 'value'), dash.dependencies.State('SS', 'value'), dash.dependencies.State('II', 'value'), dash.dependencies.State('MM', 'value'), dash.dependencies.State('BB', 'value'), dash.dependencies.State('SI', 'value'), dash.dependencies.State('IS', 'value'), dash.dependencies.State('SM', 'value'), dash.dependencies.State('MS', 'value'), dash.dependencies.State('ES', 'value'), dash.dependencies.State('SE', 'value'), dash.dependencies.State('HH', 'value'), dash.dependencies.State('HS', 'value'), dash.dependencies.State('SH', 'value'), dash.dependencies.State('SB', 'value'), dash.dependencies.State('BS', 'value'), dash.dependencies.State('db', 'value'), dash.dependencies.State('memory', 'data')] ) # calculates new data for tables/diagrams # k: k-mer length # peak: peak: peak-position, where sequences should be aligned # top: number of best values # pca_feature: number of T or k-mer-Frequency for PCAs # apply_options_btn: n_clicks of apply-button within modal # sec_peak: peak status (-1: no data, 0: False, 1: True) for structural data # parameters (e.g. ee,ss,etc. ...): custom rates of 2-mer # norm_option: normalization option (none, for A.thaliana, custom) # data: storage to share data between callbacks def updateData(f1, f2, f3, f4, k, peak, top, pca_feature, apply_options_btn, sec_peak, ee, ss, ii, mm, bb, si, i_s, sm, ms, es, se, hh, hs, sh, sb, bs, norm_option, data):
<reponame>dmopalmer/pds-tools ################################################################################ # julian.py - The Julian Library # # This is a set of routines for handing date and time conversions. It handles # these time systems: # UTC = Universal Coordinates Time, similar to Grenwich Mean Time, expressed # by integer days since January 1, 2000 plus floating-point seconds # since beginning of day. UTC can also be represented in various # standard formats for a calendar date plus an optional time. # TAI = International Atomic Time, which is number of actual elapsed seconds # since December 31, 1999 at 23:59:28. This running tally accounts for # all leap seconds. # TDB = Terrestrial Barycentric Time, which is the number of elapsed seconds # since noon (not midnight!) on January 1, 2000, and adjusted for # relativistic effects that cause a clock on the Earth to vary in speed # relative to one at the solar system barycenter. This quantity is # equivalent to "ephemeris time" in the SPICE time system, although # differences at the level of milliseconds can occur. # TDT = Terrestrial Dynamical Time, which is the preferred time system for # Earth-centered orbits. This is also defined in a manner consistent # with that in the SPICE toolkit. # JD = Julian Date as a number of elapsed days since noon (not midnight!) on # Monday, January 1, 4713 BCE. Each period from one noon to the next # counts as one day, regardless of whether that day contains leap # seconds. As a result, some days are longer than others. (Note that # leap seconds always occur at midnight, and therefore at the middle of # a Julian day.) # MJD = Modified Julian Date, defined to be JD minus 2400000.5. # JED = Julian Ephmeris Date, defined to be TDB/86400 + 2451545. It is # compatible with SPICE ephemeris time but in units of days rather than # seconds. # MJED = Modified Julian Ephmeris Date, defined as JED minus 2400000.5. # # Throughout the library, TAI is the intermediary time relative to which all # others are defined. Note: The term "TAI" is also used infrequently in the # SPICE Toolkit, but the SPICE value is smaller by exactly 43200 seconds. All # other terms used here are essentially identical in meaning to their SPICE # Toolkit equivalents. # # If the environment variable SPICE_LSK_FILEPATH is defined, then this SPICE # leapseconds kernel is read at startup. Otherwise, leap seconds through 2020 # are always included, as defined in NAIF00012.TLS. # # The library also handles calendar conversions and both parses and formats # strings that express time in UTC. # # This library duplicates much of the functionality of python's built-in # datetime library, but is separate from them because the datetime library # cannot handle leap seconds. # # This library duplicates some of the SPICE toolkit, but has the advantage of # supporting array-based time operations, which can be much faster when # processing large amounts of data. It is also pure Python, and so does not # need to be linked with C or FORTRAN libraries. # # Aside from the I/O routines, every argument to every function can be either # a scalar or something array-like, i.e, a NumPy array, a tuple or a list. # Arguments other than scalars are converted to NumPy arrays, the arrays are # broadcasted to the same shape if necessary, and the complete array(s) of # results are returned. # # The Julian Library is compatible with both Python 2 and Python 3. # # <NAME> # PDS Ring-Moon Systems Node, SETI Institute # This software is licensed under Academic Free License ("AFL") v. 3.0. # See https://opensource.org/licenses/afl-3.0.php ################################################################################ from __future__ import print_function, division import os import datetime as dt import numpy as np import pyparsing import unittest import numbers from . import textkernel as tk from . import julian_dateparser as jdp def _INT(arg): """Convert to int, works for for scalar, array, or array-like.""" if isinstance(arg, np.ndarray): return arg.astype('int') elif np.shape(arg): return np.array(arg).astype('int') else: return int(arg) def _FLOAT(arg): """Convert to floating-point, works for scalar, array, or array-like.""" if np.shape(arg): return np.asfarray(arg) else: return float(arg) def _ZEROS(arg): """Array of floating-point zeros matching the shape of arg.""" if np.shape(arg): return np.zeros(np.shape(arg)) else: return 0. ################################################################################ # Initialization # # At load time, this file looks for an environment variable SPICE_LSK_FILEPATH. # If found, this file is used to initialize the module. Otherwise, the text # defined internally as SPICE_LSK_TEXT is used. ################################################################################ # Define the text from the latest LSK file, NAIF00012.TLS SPICE_LSK_DICT = { "DELTA_T_A": 32.184, "K": 1.657e-3, "EB": 1.671e-2, "M": (6.239996, 1.99096871e-7), "DELTA_AT": (10, dt.date(1972,1,1), 11, dt.date(1972,7,1), 12, dt.date(1973,1,1), 13, dt.date(1974,1,1), 14, dt.date(1975,1,1), 15, dt.date(1976,1,1), 16, dt.date(1977,1,1), 17, dt.date(1978,1,1), 18, dt.date(1979,1,1), 19, dt.date(1980,1,1), 20, dt.date(1981,7,1), 21, dt.date(1982,7,1), 22, dt.date(1983,7,1), 23, dt.date(1985,7,1), 24, dt.date(1988,1,1), 25, dt.date(1990,1,1), 26, dt.date(1991,1,1), 27, dt.date(1992,7,1), 28, dt.date(1993,7,1), 29, dt.date(1994,7,1), 30, dt.date(1996,1,1), 31, dt.date(1997,7,1), 32, dt.date(1999,1,1), 33, dt.date(2006,1,1), 34, dt.date(2009,1,1), 35, dt.date(2012,7,1), 36, dt.date(2015,7,1), 37, dt.date(2017,1,1))} # Define the static variables needed for TAI-ET conversions global DELTET_T_A, DELTET_K, DELTET_EB, DELTET_M0, DELTET_M1 DELTET_T_A = 0. # indicates un-initialized data DELTET_K = 0. DELTET_EB = 0. DELTET_M0 = 0. DELTET_M1 = 0. # Define the static variables needed for UTC-TAI conversions global LS_YEAR0, LS_YEARS, LS_ARRAY1D, LS_ARRAY2D LS_YEAR0 = 0 # indicates un-initialized data LS_YEARS = 0 LS_ARRAY1D = None LS_ARRAY2D = None def load_from_dict(spicedict): """Loads the SPICE LSK parameters from the given dictionary. The dictionary is that returned by textkernel.from_file()["DELTET"]. """ global DELTET_T_A, DELTET_K, DELTET_EB, DELTET_M0, DELTET_M1 global LS_YEAR0, LS_YEARS, LS_ARRAY1D, LS_ARRAY2D # Look up the needed variables and save them as globals DELTET_T_A = spicedict["DELTA_T_A"] DELTET_K = spicedict["K"] DELTET_EB = spicedict["EB"] (DELTET_M0, DELTET_M1) = spicedict["M"] # Construct a static array of (TAI minus UTC), the number of elapsed leap # seconds, and save them indexed by [year,halfyear]... # Get the list of leapseconds from the kernel delta_at = spicedict["DELTA_AT"] LS_YEAR0 = delta_at[1].year - 1 # subtract one so the first tabulated # year has zero leapseconds. LS_YEARS = delta_at[-1].year - LS_YEAR0 + 1 # add one so years indexed is inclusive # Construct an array indexed by halfyear LS_ARRAY1D = np.zeros(2*LS_YEARS, dtype="int") for i in range(0, len(delta_at), 2): date = delta_at[i+1] indx = 2 * (date.year - LS_YEAR0) + (date.month - 1)//6 LS_ARRAY1D[indx:] = delta_at[i] # Convert to an array indexed by [year,halfyear] # These arrays share the same data LS_ARRAY2D = LS_ARRAY1D.reshape((LS_YEARS,2)) def load_from_kernel(filespec): """Loads the SPICE LSK parameters from the given text kernel.""" # Load the kernel as a dictionary load_from_dict(tk.from_file(filespec)["DELTET"]) # INITIALIZE PARAMETERS... load_from_dict(SPICE_LSK_DICT) try: filespec = os.environ["SPICE_LSK_FILEPATH"] load_from_kernel(filespec) except KeyError: pass ######################################## # UNIT TESTS ######################################## class Test_Initialize(unittest.TestCase): def runTest(self): self.assertEqual(DELTET_T_A, 32.184, 'DELTET_T_A value is wrong') self.assertEqual(DELTET_M0, 6.239996, 'DELTET_M0 value is wrong') self.assertEqual(LS_YEAR0, 1971, 'Leapseconds list does not start in 1971') self.assertEqual(LS_ARRAY2D[0,0], 0, 'LS_ARRAY2D does not start at zero') self.assertEqual(LS_ARRAY2D[1999 - LS_YEAR0,0], 32, 'LS_ARRAY2D returns the wrong value for early 1999') self.assertEqual(LS_ARRAY2D[1998 - LS_YEAR0,1], 31, 'LS_ARRAY2D returns the wrong value for late 1998') ################################################################################ # Calendar conversions # Algorithms from http://alcor.concordia.ca/~gpkatch/gdate-algorithm.html # # day = number of days elapsed since January 1, 2000 # month = number of months elapsed since January 2000 # (y,m,d) = year, month (1-12), day (1-31) # (y,d) = year and day-of-year (1-366) # (y,m) = year and month number (1-12) # # All function operate on either scalars or arrays. If given scalars, they # return scalars; if given anything array-like, they return arrays. ################################################################################ def day_from_ymd(y, m, d): """Day number from year, month and day. All must be integers. Supports scalar or array arguments.""" y = _INT(y) m = _INT(m) d = _INT(d) m = (m + 9) % 12 y = y - m//10 return 365*y + y//4 - y//100 + y//400 + (m*306 + 5)//10 + d - 730426 ######################################## def ymd_from_day(day): """Year, month and day from day number. Inputs must be integers.""" day = _INT(day) # Execute the magic algorithm g = day + 730425 y = (10000*g + 14780)//3652425 ddd = g - (365*y + y//4 - y//100 + y//400) # Use scalar version of test... if np.shape(day): y[ddd < 0] -= 1 elif ddd < 0: y -= 1 ddd = g - (365*y + y//4 - y//100 + y//400) mi = (100*ddd + 52)//3060 mm = (mi + 2)%12 + 1 y = y + (mi + 2)//12 dd = ddd - (mi*306 + 5)//10 + 1 return (y, mm, dd) ######################################## def yd_from_day(day): """Year and day-of-year from day number."""
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Defines endpoints for the landing page. TODO(shifucun): once this is well tested, can deprecate corresponding code in chart.py and place.py """ import collections import copy import json import logging import urllib from flask import Blueprint, current_app, Response, url_for, g from flask_babel import gettext from collections import defaultdict from cache import cache import services.datacommons as dc_service import routes.api.place as place_api import lib.range as lib_range # Define blueprint bp = Blueprint("api.landing_page", __name__, url_prefix='/api/landingpage') BAR_CHART_TYPES = ['parent', 'similar', 'nearby', 'child'] MAX_DENOMINATOR_BACK_YEAR = 3 MIN_CHART_TO_KEEP_TOPICS = 30 OVERVIEW = 'Overview' def get_landing_page_data(dcid, new_stat_vars): response = dc_service.fetch_data('/landing-page', { 'place': dcid, 'newStatVars': new_stat_vars, }, compress=False, post=True, has_payload=False) return response def build_url(dcids, statvar_to_denom, is_scaled=False): anchor = '&place=' + ','.join(dcids) parts = [] for statvar, denom in statvar_to_denom.items(): part = statvar if denom: part += '|' + denom parts.append(part) anchor += ('&statsVar=' + '__'.join(parts)) if is_scaled: anchor = anchor + '&pc' return urllib.parse.unquote(url_for('tools.timeline', _anchor=anchor)) def fill_translation(chart): chart['title'] = gettext(chart['titleId']) del chart['titleId'] if 'description' in chart: del chart['description'] return chart # TODO: add test for chart_config for assumption that each combination of stat vars will only have one config in chart_config. def build_spec(chart_config): """Builds hierachical spec based on chart config.""" spec = defaultdict(lambda: defaultdict(list)) # Map: category -> topic -> [config] for conf in chart_config: config = copy.deepcopy(conf) config = fill_translation(config) if 'relatedChart' in config and config['relatedChart']['scale']: config['relatedChart'] = fill_translation(config['relatedChart']) is_overview = ('isOverview' in config and config['isOverview']) category = config['category'] if 'isOverview' in config: del config['isOverview'] del config['category'] if is_overview: spec[OVERVIEW][category].append(copy.deepcopy(config)) spec[category][config['title']].append(config) return spec def get_denom(cc, related_chart=False): """Get the numerator and denominator map.""" # If chart requires denominator, use it for both primary and related charts. if 'denominator' in cc: result = {} if len(cc['denominator']) != len(cc['statsVars']): raise ValueError('Denominator number not matching: %s', cc) for num, denom in zip(cc['statsVars'], cc['denominator']): result[num] = denom return result # For related chart, use the denominator that is specified in the # 'relatedChart' field if present. if related_chart and cc.get('relatedChart', {}).get('scale', False): return cc['relatedChart'].get('denominator', 'Count_Person') return None def get_series(data, place, stat_vars): """Get time series from the landing page data. Aggregate for all the stat vars and return empty series if any stat var data is missing Returns: series and sources. """ all_series = [] sources = set() num_sv = len(stat_vars) for sv in stat_vars: if 'data' not in data[place] or sv not in data[place]['data']: return {}, [] series = data[place]['data'][sv] all_series.append(series['val']) sources.add(series['metadata']['provenanceUrl']) # One series, no need to aggregate if num_sv == 1: return all_series[0], sources merged_series = defaultdict(list) for series in all_series: for date, value in series.items(): merged_series[date].append(value) # Aggregate agg_series = {} for date, values in merged_series.items(): if len(values) == num_sv: agg_series[date] = sum(values) return agg_series, sources def get_stat_var_group(cc, data, places): """Get the stat var grouping for aggregation.""" if 'aggregate' in cc: agg_type = lib_range.get_aggregate_config(cc['aggregate']) place_stat_vars = defaultdict(list) for place in places: if place not in data or 'data' not in data[place]: continue for sv in cc['statsVars']: if sv in data[place]['data']: place_stat_vars[place].append(sv) result = lib_range.aggregate_stat_var(place_stat_vars, agg_type) for place in places: if place not in result: result[place] = {} else: result = {} for place in places: result[place] = {sv: [sv] for sv in cc['statsVars']} return result def get_snapshot_across_places(cc, data, places): """Get the snapshot used for bar data across a few places. This will scale the value if required and pick the latest date that has the most <place, stat_var> entries. """ if not places: return {}, {} # date_to_data is a dictionary from date to place and a tuple of # (stat_var, value) pair. # Example: # { # "2018": { # "geoId/06":[("Count_Person", 200), ("Count_Person_Female", 100)], # "geoId/08":[("Count_Person", 300), ("Count_Person_Female", 150)], # }, # "2017": { # "geoId/06":[("Count_Person", 300), ("Count_Person_Female", 150)], # "geoId/08":[("Count_Person", 400), ("Count_Person_Female", 200)], # }, # } date_to_data = collections.defaultdict( lambda: collections.defaultdict(list)) # TODO(shifucun/beets): add a unittest to ensure denominator is set # explicitly when scale==True num_denom = get_denom(cc, related_chart=True) sources = set() place_stat_var_group = get_stat_var_group(cc, data, places) statvar_to_denom = {} for place in places: if place not in data: continue stat_var_group = place_stat_var_group[place] for num_sv, sv_list in stat_var_group.items(): num_series, num_sources = get_series(data, place, sv_list) if not num_series: continue sources.update(num_sources) if num_denom: if isinstance(num_denom, dict): denom_sv = num_denom[num_sv] else: denom_sv = num_denom statvar_to_denom[num_sv] = denom_sv denom_series, denom_sources = get_series( data, place, [denom_sv]) if not denom_series: continue sources.update(denom_sources) result_series = scale_series(num_series, denom_series) else: result_series = num_series statvar_to_denom[num_sv] = None # Turn the value to be keyed by date. for date, value in result_series.items(): date_to_data[date][place].append((num_sv, value)) # Pick a date that has the most series across places. dates = sorted(date_to_data.keys(), reverse=True) if not dates: return {}, {} count = 0 chosen_date = None for date in dates: if len(date_to_data[date]) > count: count = len(date_to_data[date]) chosen_date = date result = {'date': chosen_date, 'data': [], 'sources': list(sources)} for place in places: points = {} for stat_var, value in date_to_data[chosen_date][place]: points[stat_var] = value if points: result['data'].append({'dcid': place, 'data': points}) return result, statvar_to_denom # TODO(shifucun): Add unittest for these helper functions def get_bar(cc, data, places): """Get the bar data across a few places. This will scale the value if required and pick the latest date that has the most <place, stat_var> entries. """ result, statvar_denom = get_snapshot_across_places(cc, data, places) if not result: return {} # Should have data other than the primary place. Return empty struct to # so client won't draw chart. if len(result['data']) <= 1: return {} is_scaled = (('relatedChart' in cc and cc['relatedChart'].get('scale', False)) or ('denominator' in cc)) result['exploreUrl'] = build_url(places, statvar_denom, is_scaled) return result def get_trend(cc, data, place): """Get the time series data for a place.""" if place not in data: return {} result_series = {} sources = set() num_denom = get_denom(cc) stat_var_group = get_stat_var_group(cc, data, [place])[place] statvar_denom = {} for num_sv, sv_list in stat_var_group.items(): num_series, num_sources = get_series(data, place, sv_list) if not num_series: continue sources.update(num_sources) if num_denom: if isinstance(num_denom, dict): denom_sv = num_denom[num_sv] else: denom_sv = num_denom denom_sv = num_denom[num_sv] statvar_denom[num_sv] = denom_sv denom_series, denom_sources = get_series(data, place, [denom_sv]) if not denom_series: continue sources.update(denom_sources) result_series[num_sv] = scale_series(num_series, denom_series) else: result_series[num_sv] = num_series statvar_denom[num_sv] = None # filter out time series with single data point. for sv in list(result_series.keys()): if len(result_series[sv]) <= 1: del result_series[sv] if not result_series: return {} is_scaled = ('denominator' in cc) return { 'series': result_series, 'sources': list(sources), 'exploreUrl': build_url([place], statvar_denom, is_scaled) } def get_year(date): try: return int(date.split('-')[0]) except IndexError: raise ValueError('no valid date format found %s', date) # TODO(shifucun): Add unittest. def scale_series(numerator, denominator): """Scale two time series. The date of the two time series may not be exactly aligned. Here we use year alignment to match two date. If no denominator is found for a numerator, then the data is removed. """ data = {} for date, value in numerator.items(): if date in denominator: if denominator[date] > 0: data[date] = value / denominator[date] else: data[date] = 0 else: try: numerator_year = get_year(date) for i in range(0, MAX_DENOMINATOR_BACK_YEAR + 1): year = str(numerator_year - i) if year in denominator: if denominator[year] > 0: data[date] = value / denominator[year] else: data[date] = 0 break except ValueError: return {} return data def get_i18n_all_child_places(raw_page_data): all_child_places = raw_page_data.get('allChildPlaces', {}) all_dcids = [] for place_type in list(all_child_places.keys()): for place in all_child_places[place_type]['places']: all_dcids.append(place.get('dcid', '')) i18n_names = place_api.get_i18n_name(all_dcids, False) # Don't resolve en-only names for place_type in list(all_child_places.keys()): for place in all_child_places[place_type]['places']: dcid = place.get('dcid') i18n_name = i18n_names.get(dcid, '') if i18n_name: place['name'] = i18n_name for place_type in list(all_child_places.keys()): all_child_places[place_type] = all_child_places[place_type]['places'] return all_child_places @bp.route('/data/<path:dcid>') @cache.cached(timeout=3600 * 24, query_string=True) # Cache for one day. def data(dcid): """ Get chart spec and stats data of the landing page for a given place. """