input
stringlengths
2.65k
237k
output
stringclasses
1 value
node)) val = 1 - self.agent.goal_f(self.condition, state) for i in range(len(path)): if path[i][1] is not None: path[i][1].update_value(val) path[i][0].success = max(val, path[i][0].success) path[i][0].discount = 0.9**(len(path)-i-1) path = [step[0] for step in path] if len(path) and val > 1. - 1e-3: print(('\nSUCCESS! Tree {0} {1} using ff solve\n'.format(self.log_file, state))) self.agent.add_task_paths([path]) else: print('FAILED with ff solve') print(('FF out:', task_path, 'Ran:', [step.task for step in path], 'End state:', state, 'Targets:', targets, 'Init state', init_state)) self.opt_strength = old_opt_strength self.val_per_run.append(val) self.log_path(path, -1) return val, path def get_path_info(self, x0, node, task, traj): return [x0, node, task, traj] def simulate(self, state, use_distilled=False, early_stop_prob=0.0, fixed_paths=[], debug=False): current_node = self.root path = [] samples = [] self.n_runs += 1 success = True cur_state = state.copy() prev_sample = None terminated = False iteration = 0 exclude_hl = [] path_value = 0. # None next_sample = None self.agent.reset_to_state(state) if np.random.uniform() < self.ff_thresh: val, path, _ = self.eval_pr_graph(state) return val, path while True: if debug: print("Taking simulation step") if self.agent.goal_f(self.condition, cur_state) == 0: # or current_node.depth >= self.max_depth: if not iteration: print((state, self.agent.targets[self.condition])) print('WARNING: Should not succeed without sampling') break if len(fixed_paths) <= iteration: value, next_node, next_sample = self._choose_next(cur_state, current_node, prev_sample, exclude_hl, use_distilled, debug=debug) else: path_info = fixed_paths[iteration] value, next_node, next_sample = self._simulate_fixed_path(*path_info) # if np.random.uniform() > 0.9 and current_node is self.root: print(next_sample.get(STATE_ENUM)) path_value = np.maximum(value, path_value) self.node_history[tuple(cur_state)] = current_node if next_node is None or next_sample is None or next_node.depth > self.max_depth: break # if len(fixed_paths) <= iteration and np.random.uniform() > 0.9: # print(next_sample.get_X(), '<---- sampled path in tree') next_sample.node = next_node.parent next_node.sample_links[next_sample] = prev_sample # Used to retrace paths prev_sample = next_sample cur_state = next_sample.end_state # get_X(t=next_sample.T-1) current_node = next_node # exclude_hl += [self._encode_f(cur_state, plan, self.agent.targets[self.condition])] iteration += 1 # if np.random.uniform() < early_stop_prob: # break if path_value is 0: path_value = 1 - self.agent.goal_f(self.condition, cur_state) end_sample = next_sample path = [] while current_node is not self.root and prev_sample in current_node.sample_links: path.append(prev_sample) cur_state = prev_sample.end_state # get_X(t=prev_sample.T-1) path_value = np.maximum(path_value, 1-self.agent.goal_f(self.condition, cur_state)) prev_sample.task_cost = 1-path_value prev_sample.success = path_value prev_sample = current_node.sample_links[prev_sample] current_node.sample_links = {} current_node.update_value(path_value) current_node = current_node.parent path.reverse() if end_sample is not None: if end_sample not in path: path.append(end_sample) end_sample.success = path_value end_sample.task_cost = 1. - path_value n = end_sample while hasattr(n, 'next_sample') and n.next_sample is not None: next_n = n.next_sample n.next_sample = None n = next_n n.success = path_value n.task_cost = 1. - path_value path.append(n) self.val_per_run.append(path_value) if len(path) and path_value > 1. - 1e-3: self.n_success += 1 self.first_success = np.minimum(self.first_success, self.n_runs) end = path[-1] print(('\nSUCCESS! Tree {0} {1} using fixed: {2} {3}\n'.format(self.log_file, state, len(fixed_paths) != 0, self.n_runs))) for s in path: s.prim_use_ts *= MCTS_WEIGHT self.agent.add_task_paths([path]) elif len(path) and self.her: old_nodes = [path[i].node for i in range(len(path))] for s in path: s.node = None s.next_sample = None new_path = self.agent.relabel_path(path) self.agent.add_task_paths([new_path]) for i in range(len(path)): path[i].node = old_nodes[i] self.log_path(path, len(fixed_paths)) for n in range(len(path)): path[n].discount = 0.9**(len(path)-n-1) if self.bad_tree: print(('Bad tree for state', state)) self.reset() if len(path): path[-1].done = 1 return path_value, path def simulate_from_next(self, node, state, prev_sample, num_samples=1, save=False, exclude_hl=[], use_distilled=True, debug=False): if debug: print("Running simulate from next") label = node.label value, samples = self._default_simulate_from_next(label, node.depth, node.depth, state, self.prob_func, [], num_samples, save, exclude_hl, use_distilled, [], debug=debug) if len(samples): pass # node.sample_links[samples[0]] = prev_sample else: samples.append(None) for i in range(len(samples) - 1): samples[i].next_sample = samples[i+1] return value, samples[0] def rollout_with_postcond(self, state, targets, max_t=10, task_ts=20, soft=False, eta=None, mode=''): prev_tasks = [] cur_run = [0] def task_f(s, t, curtask): next_task = self.run_hl(s, t, curtask, targets, check_cost=False) if len(prev_tasks) and tuple(next_task) != tuple(prev_tasks[-1]): s.targets = targets postcost = self.agent.postcond_cost(s, prev_tasks[-1], t) if postcost > 0: next_task = prev_tasks[-1] if len(prev_tasks) and tuple(next_task) == tuple(prev_tasks[-1]): cur_run.append(cur_run[-1]+1) else: cur_run.append(0) prev_tasks.append(next_task) return next_task self.agent.reset_to_state(state) old_opt = self.opt_strength path = [] val = 0 t = 0 old_soft = self._soft self._soft = soft old_eta = self.eta if eta is not None: self.eta = eta l = list(self.agent.plans.keys())[0] l = self.iter_labels(state, l, targets=targets, debug=False, check_cost=False) s, t = 0, 0 col_s, col_ts = -1, -1 while t < max_t and val < 1-1e-2 and l is not None: l = self.iter_labels(state, l, targets=targets, debug=False, check_cost=False) if l is None: break task_name = self.tasks[l[0]] pol = self.rollout_policy[task_name] plan = self.agent.plans[l] s = self.agent.sample_task(pol, self.condition, state, l, task_f=task_f, skip_opt=True) val = 1 - self.agent.goal_f(0, s.get_X(s.T-1), targets) state = s.end_state # s.get_X(s.T-1) path.append(s) if mode == 'collision' and 1 in s.col_ts: col_s = t col_t = s.col_ts.tolist().index(1) t += 1 if cur_run[-1] >= task_ts: break if col_ts >= 0: task = tuple(path[col_ts].get(FACTOREDTASK_ENUM, t=col_ts)) ts = col_ts - 2 if ts < 0: col_s -= 1 if col_s < 0: col_s, col_ts = 0, 0 else: ts = path[col_s].T + ts - 1 x = path[col_s].get_X(t=ts) plan = self.agent.plans[task] success = self.agent.backtrack_solve(plan, x0=x) if success: new_samples = self.agent.run_plan(plan, targets, record=False, save=False) for s in new_samples: self.optimal_samples[self.agent.task_list[task[0]]].append(s) print('OPT on collision in rollout:', success, task, x) if val < 1-1e-3: last_task = tuple(path[-1].get(FACTOREDTASK_ENUM, t=path[-1].T-1)) t = len(prev_tasks)-1 while t >= 0 and tuple(last_task) == tuple(prev_tasks[t]): t -= 1 ind = 0 while t >= path[ind].T: ind += 1 t -= path[ind].T s, t = ind, t self.opt_strength = old_opt self.eta = old_eta self.log_path(path, -50) self._soft = old_soft # (s, t) indexes the switch where it failed postconditions return val, path, s, t def test_run(self, state, targets, max_t=20, hl=False, soft=False, check_cost=True, eta=None): self.agent.reset_to_state(state) old_opt = self.opt_strength # self.opt_strength = 1. path = [] val = 0 l = (0,0,0,0) t = 0 old_soft = self._soft self._soft = soft old_eta = self.eta if eta is not None: self.eta = eta debug = np.random.uniform() < 0.1 while t < max_t and val < 1-1e-2 and l is not None: l = self.iter_labels(state, l, targets=targets, debug=debug, check_cost=check_cost) if l is None: break plan = self.agent.plans[l] s, _ = self.sample(l, state, plan, 1, hl=hl, hl_check=check_cost, save=False, skip_opt=True) val = 1 - self.agent.goal_f(0, s.get_X(s.T-1), targets) t += 1 state = s.end_state # s.get_X(s.T-1) path.append(s) self.opt_strength = old_opt self.eta = old_eta self.log_path(path, -5) self._soft = old_soft return val, path def get_bad_labels(self, state): labels = [l for l in self.label_options] bad = [] for l in labels: cost = self.agent.cost_f(state, l, self.condition, active_ts=(0,0), debug=debug) if cost > 1e-3: bad.append(l) return bad def run_hl(self, sample, t=0, task=None, targets=None, check_cost=False, debug=False): next_label, distr = self.eval_hl(sample, t, targets, debug, True) # if t== 0: # distrs = self.prob_func(sample.get_prim_obs(t=t), False, eta=1.) # print(distrs, sample.get(STATE_ENUM, t=t), sample.get(ONEHOT_GOAL_ENUM, t=t)) if not check_cost: return next_label return self.iter_distr(next_label, distr, self.label_options, sample.get_X(t), sample) def eval_hl(self, sample, t=0, targets=None, debug=False, find_distr=False): labels = [l for l in self.label_options] if self.use_q: obs = sample.get_val_obs(t=t) opts = self.agent.prob.get_prim_choices(self.agent.task_list) distr = np.zeros(len(labels)) dact = np.sum([len(opts[e]) for e in opts]) for i in range(len(labels)): l = labels[i] act = np.zeros(dact) cur_ind = 0 for j, e in enumerate(opts): act[cur_ind + l[j]] = 1. cur_ind += len(opts[e]) distr[i:i+1] = self.value_func(obs, act) if self._soft: exp_wt = np.exp(self.eta*(distr - np.max(distr))) wt = exp_wt / np.sum(exp_wt) ind = np.random.choice(list(range(len(labels))), p=wt) else: ind = np.argmax(distr) next_label = tuple(labels[ind]) elif self.discrete_prim: task = sample.task if hasattr(sample, 'task') else None distrs = self.prob_func(sample.get_prim_obs(t=t), self._soft, eta=self.eta, t=t, task=task) for d in distrs: for i in range(len(d)): d[i] = round(d[i], 5) if self.onehot_task: distr = distrs[0] val = np.max(distr) ind = np.random.choice([i for i in range(len(distr)) if distr[i] >= val]) next_label = self.agent.task_to_onehot[ind] else: distr = [np.prod([distrs[i][l[i]] for i in range(len(l))]) for l in labels] distr = np.array(distr) ind = [] for d in distrs: val = np.max(d) ind.append(np.random.choice([i for i in range(len(d)) if d[i] >= val])) next_label = tuple(ind) # tuple([ind[d] for d in range(len(distrs))]) if find_distr: return tuple(next_label), distr return tuple(next_label) def iter_distr(self, next_label, distr, labels, end_state, sample, debug=False): cost = self.agent.cost_f(end_state, next_label, self.condition, active_ts=(0,0), debug=debug) post = 1. # self.agent.cost_f(end_state, next_label, self.condition, active_ts=(sample.T-1,sample.T-1), debug=debug) init_label = next_label T = self.agent.plans[next_label].horizon - 1 while (cost > 0 or post < 1e-3) and np.any(distr
the array of expected galaxy counts per bin. SN_dist -- comoving distance to SN along line of sight. OM -- matter density parameter. Defaults to 0.27. """ H0 = 1000 * 100 * h # km/s/Gpc coeff = 3.0 * H0 ** 2 * OM / (2.0 * c ** 2) sf_arr = 1.0 / (1.0 + zs) k_i = coeff * chis * chi_widths * (SN_dist - chis) / SN_dist / expected_arr / sf_arr return np.sum(k_i) def general_convergence(chi_widths, chis, zs, d_arr, SN_dist, OM=0.27, h=0.738): """Calculates convergence from an array of overdesnities for all bins along line of sight. Inputs: chi_widths -- the width of the comoving distance bins. chis -- the mean comoving distances of each bin. zs -- the mean redshift of each bin, for the scale factor. d_arr -- overdensity array. SN_dist -- comoving distance to SN along line of sight. OM -- matter density parameter. Defaults to 0.27. """ H0 = 1000 * 100 * h # km/s/Gpc coeff = 3.0 * H0 ** 2 * OM / (2.0 * c ** 2) sf_arr = 1.0 / (1.0 + zs) k_i = coeff * chis * chi_widths * (SN_dist - chis) / SN_dist * d_arr / sf_arr return np.sum(k_i), k_i def calc_single_d(chi_widths, chis, zs, z_widths, z_SN, use_chi=True): """Uses single_m_convergence with index starting at 0 and going along the entire line of sight. Inputs: chi_widths -- the width of the comoving distance bins. chis -- the mean comoving distances of each bin. zs -- the mean redshift of each bin, for the scale factor. z_SN -- the reshift of the SN. use_chi -- boolean that determined whether equal comoving distance or redshift bins are used. """ comoving_to_SN = b_comoving(0, z_SN) chi_SN = comoving_to_SN[-1] convergence = np.linspace(0, 0, len(chis)) mass = MSOL * 10 ** 15 for i in range(0, len(chis)): if use_chi: convergence[i] = single_d_convergence(chi_widths, chis, zs, i, 1, chi_SN) else: convergence[i] = single_d_convergence_z(z_widths, chis, zs, i, 1, chi_SN) return convergence def plot_smoothed_d(chi_widths, chis, zs, z_SN): """Plots general_convergence for overdensities that are increasingly smoothed over the line of sight. Also plots the case where the overdensity along the entire line of sight is 0. Inputs: chi_widths -- the width of the comoving distance bins. chis -- the mean comoving distances of each bin. zs -- the mean redshift of each bin, for the scale factor. z_SN -- the reshift of the SN. """ comoving_to_SN = b_comoving(0, z_SN) chi_SN = comoving_to_SN[-1] size = 2 * len(zs) // 2 + 1 delta = np.zeros((size, len(zs))) delta1 = 1 correction = delta1 / len(zs) delta[0][int(len(zs) // 2):int(len(zs) // 2) + 1] = delta1 delta[-1][int(len(zs) // 2):int(len(zs) // 2) + 1] = -delta1 for i, s in enumerate(np.arange(1, len(zs) // 2 + 1, 1)): delta[s][int(len(zs) // 2) - s:int(len(zs) // 2) + s + 1] = delta1 / (2 * s + 1) delta[-s - 1][int(len(zs) // 2) - s:int(len(zs) // 2) + s + 1] = -delta1 / (2 * s + 1) convergence = np.zeros(size) convergence_cor = np.zeros(size) delta_cor = np.zeros((size, len(zs))) delta_cor[0:size // 2] = delta[0:size // 2] - correction delta_cor[size // 2:] = delta[size // 2:] + correction for j in range(size): convergence[j], _ = general_convergence(chi_widths, chis, zs, delta[j], chi_SN) convergence_cor[j], _ = general_convergence(chi_widths, chis, zs, delta_cor[j], chi_SN) # convergence = np.delete(convergence, size // 2, 0) convergence_cor = np.delete(convergence_cor, size // 2, 0) plt.plot([size // 2, size // 2], [min(convergence) - 0.0003, max(convergence) + 0.0003], color=[0.75, 0.75, 0.75], linestyle='--') plt.plot([0, size - 1], [0, 0], color=[0.75, 0.75, 0.75], linestyle='--') plt.plot(range(1, size // 2 + 1), convergence[:size // 2], label=f'Total $|\delta|$ = 1', color=colours[0], lw=2) plt.plot(range(size // 2, size), convergence[size // 2:], color=colours[0], lw=2) plt.plot(range(1, size), convergence_cor, label=f'Total $|\delta|$ = 0', color=colours[1], lw=2) plt.text(37.5, 0.00045, '$\leftarrow$ $\delta$ > 0', fontsize=20, ha='center') plt.text(62.5, 0.00045, '$\delta$ < 0 $\\rightarrow$', fontsize=20, ha='center') plt.xlabel("Number of bins smoothed over") plt.ylabel(" $\kappa \\times 10^{-3}$") # plt.title(f"Convergence as a function of central overdensity smoothing (z$_S$$_N$ = {z_SN})") plt.legend(frameon=0) plt.xticks([0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100], [0, 25, 50, 75, 100, 75, 50, 25, 0]) plt.yticks([-0.001, -0.0005, 0.0, 0.0005, 0.001], [-1.0, -0.5, 0.0, 0.5, 1.0]) plt.axis([0, size, min(convergence) - 0.0003, max(convergence) + 0.0003]) plt.tight_layout() plt.show() for array in delta[:len(delta_cor) // 2]: plt.bar(zs, array, width=chi_widths[0], edgecolor='w', lw=1.5) plt.xlabel("$z$", fontsize=20) plt.ylabel("$\delta_i$", fontsize=20) plt.tick_params(labelsize=16) # plt.plot([0, 0.6], [0, 0], color='k', linestyle='-') plt.xlim([0, 0.6]) plt.ylim([0, 1]) plt.tight_layout() plt.show() def compare_z_chi(conv_c_arr, conv_z_arr, chi_bins_c, chi_bins_z, z_bins_z, z_bins_c, SN_dist, z_SN): """Plots the convergence distribution for even chi and z, over chi or z. Inputs: conv_c_arr -- array of convergence for even comoving bins. conv_z_arr -- array of convergence for even redshift bins. chi_bins_c -- mean comoving distance values of the equal comoving bins. chi_bins_z -- mean comoving distance values of the equal redshift bins. z_bins_c -- mean redshift values of the equal comoving bins. z_bins_z -- mean redshift values of the equal redshift bins. SN_dist -- comoving distance to SN along line of sight. z_SN -- the reshift of the SN. """ plt.plot([SN_dist / 2, SN_dist / 2], [0, 1.1 * max(conv_c_arr)], linestyle='--', color=[0.75, 0.75, 0.75], linewidth=1) chi_peak_c = np.array(chi_bins_c)[np.argmin(np.abs(conv_c_arr - max(conv_c_arr)))] chi_peak_z = np.array(chi_bins_z)[np.argmin(np.abs(conv_z_arr - max(conv_z_arr)))] plt.plot(chi_bins_c, 1000 * conv_c_arr, label='Equal $\chi$', color=colours[0], lw=2) plt.plot(chi_peak_c, 1000 * max(conv_c_arr), marker='x', color=colours[0], ms=8) plt.text((chi_peak_z + chi_peak_c) / 2, 1000 * max(conv_c_arr) * 3.5 / 5, f'$\chi$ = {round(chi_peak_c, 2)} Gpc', fontsize=20, ha='center', color=colours[0]) plt.plot(chi_bins_z, 1000 * conv_z_arr, label='Equal $z$', color=colours[1], lw=2) plt.plot(chi_peak_z, 1000 * max(conv_z_arr), marker='x', color=colours[1], ms=8) plt.text((chi_peak_z + chi_peak_c) / 2, 1000 * max(conv_c_arr) * 3 / 5, f'$\chi$ = {round(chi_peak_z, 2)} Gpc', fontsize=20, ha='center', color=colours[1]) plt.xlabel("$\chi_L$ (Gpc)") plt.ylabel("$\kappa\\times 10^{-3}$") plt.legend(frameon=0, loc='upper left') plt.axis([0, SN_dist, 0, 1100 * max(conv_c_arr)]) plt.tight_layout() plt.show() plt.plot([z_SN / 2, z_SN / 2], [0, 1.1 * max(conv_c_arr)], linestyle='--', color=[0.75, 0.75, 0.75], linewidth=1) z_peak_c = np.array(z_bins_c)[np.argmin(np.abs(conv_c_arr - max(conv_c_arr)))] z_peak_z = np.array(z_bins_z)[np.argmin(np.abs(conv_z_arr - max(conv_z_arr)))] plt.plot(z_bins_c, 1000 * conv_c_arr, label='Equal $\chi$', color=colours[0], lw=2) plt.plot(z_peak_c, 1000 * max(conv_c_arr), marker='x', color=colours[0], ms=8) plt.text((z_peak_z + z_peak_c) / 2, 1000 * max(conv_z_arr) * 3.5 / 5, f'$z$ = {round(z_peak_c, 2)}', fontsize=20, ha='center', color=colours[0]) plt.plot(z_bins_z, 1000 * conv_z_arr, label='Equal $z$', color=colours[1], lw=2) plt.plot(z_peak_z, 1000 * max(conv_z_arr), marker='x', color=colours[1], ms=8) plt.text((z_peak_z + z_peak_c) / 2, 1000 * max(conv_z_arr) * 3 / 5, f'$z$ = {round(z_peak_z, 2)}', fontsize=20, ha='center', color=colours[1]) plt.xlabel("$z_L$") plt.ylabel("$\kappa\\times 10^{-3}$") plt.legend(frameon=0, loc='upper right') plt.axis([0, z_SN, 0, 1100 * max(conv_c_arr)]) plt.tight_layout() plt.show() def smoothed_m_convergence(tests, SN_dist, z_SN, OM=0.27, h=0.738): """Plots the convergence of a single mass confined to the centre of the LOS with decreasing bin width. Inputs: tests -- number of bin widths. SN_dist -- comoving distance to supernova. z_SN -- redshift of supernova. OM -- matter density parameter. Defaults to 0.27. """ H0 = 1000 * 100 * h # km/s/Gpc test_range = np.arange(3, tests, 4) conv1 = np.zeros(len(test_range)) conv2 = np.zeros(len(test_range)) mass_mag = 15 mass = MSOL * 10 ** mass_mag bin_lengths = np.zeros(len(test_range)) for num, y in enumerate(test_range): (comoving_binwidths, comoving_bins, z_bins, z_widths) = create_chi_bins(0, z_SN, y + 1) cone_rad = comoving_bins[len(z_bins) // 2] / (1 + z_bins[len(z_bins) // 2]) * 0.00349066 mid_value = len(z_bins) // 2 # print(y, mid_value) theta = np.deg2rad(12.0 / 60.0) # distance * 12 arcmin = 0.00349066 rad vol_bin = (comoving_binwidths[0] * (1 + z_bins[len(z_bins) // 2])) * np.pi * cone_rad ** 2 # vol_bin = 2.0 / 3.0 * np.pi * (1 - np.cos(theta)) * (comoving_binwidths[mid_value]) / (1 + z_bins[mid_value]) Hz = get_h_inv(z_bins[mid_value]) ** (-1) * H0 # rho = mass / vol_bin d_m1 = 8 * np.pi * G * mass / (3 * OM * vol_bin * Hz ** 2 * 3.086E31) - 1 d_m2 = 8 * np.pi * G * mass/1000.0 / (3 * OM * vol_bin * Hz ** 2 * 3.086E31) - 1 conv1[num] = single_d_convergence(comoving_binwidths, comoving_bins, z_bins, mid_value, d_m1, SN_dist) conv2[num] = single_d_convergence(comoving_binwidths, comoving_bins, z_bins, mid_value, d_m2, SN_dist) bin_lengths[num] = round(1000 * comoving_binwidths[0], 1)
shutil.rmtree('./index', ignore_errors=True) os.mkdir('./index') genoIndex = '%s/index/%s' % (os.getcwd(),fastaclean.rpartition('/')[-1].rpartition('.')[0]) ## Can be merged with genoIndex from earlier part if we use bowtie2 earlier # genoIndex = './index/%s' % (fastaclean.rpartition('/')[-1].rpartition('.')[0]) ## Alternative approach -Can be merged with genoIndex from earlier part if we use bowtie2 earlier print('Creating index of cDNA/genomic sequences:%s**\n' % (genoIndex)) adcv = "256" divn = "6" ### Run based on input about the memory # if args.lowmem: # retcode = subprocess.call(["bowtie-build","-f", fastaclean, genoIndex]) # else: retcode = subprocess.call(["bowtie-build","-f", "--noauto", "--dcv", adcv,"--bmaxdivn", divn, fastaclean, genoIndex]) if retcode == 0:## The bowtie mapping exit with status 0, all is well # print("Reference index prepared sucessfully") pass else: print("There is some problem preparing index of reference '%s'" % (reference)) print("Is 'Bowtie' installed? And added to environment variable?") print("Script will exit now") sys.exit() ########################################## ### Test for index files ################# # ## Close this code if not testing # fh_in1 = open("./index/Triticum_aestivum.TGACv1.dna.toplevel.clean.1.ebwtl",'w') # fh_in1.write("Atul is a developer for PHASIS") # fh_in1.close() ########################################## ### Make a memory file ################### fh_out = open(memFile,'w') print("Generating MD5 hash for reference") refHash = (hashlib.md5(open('%s' % (reference),'rb').read()).hexdigest()) ### reference hash used instead of cleaned FASTA because while comparing only the user input reference is available print("Generating MD5 hash for Bowtie index") if os.path.isfile("%s.1.ebwtl" % (genoIndex)): indexHash = (hashlib.md5(open('%s.1.ebwtl' % (genoIndex),'rb').read()).hexdigest()) elif os.path.isfile("%s.1.ebwt" % (genoIndex)): indexHash = (hashlib.md5(open('%s.1.ebwt' % (genoIndex),'rb').read()).hexdigest()) else: print("File extension for index couldn't be determined properly") print("It could be an issue from Bowtie") print("This needs to be reported to 'PHASIS' developer - Script will exit") sys.exit() print("\n@genomehash:%s | @indexhash:%s" % (refHash, indexHash) ) fh_out.write("@timestamp:%s\n" % (datetime.datetime.now().strftime("%m_%d_%H_%M"))) fh_out.write("@genomehash:%s\n" % (refHash)) fh_out.write("@index:%s\n" % (genoIndex)) fh_out.write("@indexhash:%s\n" % (indexHash)) print("Index prepared:%s\n" % (genoIndex)) # sys.exit() return genoIndex def indexIntegrityCheck(index): ''' Checks the integrity of index and the extension ''' indexFolder = index.rpartition("/")[0] # print("This is the folder from earlier run:%s" % (indexFolder)) if os.path.isfile("%s.1.ebwtl" % (index)): ## Check if this extension exists in folder indexExt = "ebwtl" indexFiles = [i for i in os.listdir('%s' % (indexFolder)) if i.endswith('.ebwtl')] if len(indexFiles) >= 6: # print("Index has all six parts") indexIntegrity = True elif os.path.isfile("%s.1.ebwt" % (index)): indexExt = "ebwt" indexFiles = [i for i in os.listdir('%s' % (indexFolder)) if i.endswith('.ebwt')] if len(indexFiles) >= 6: # print("Index has all six parts") indexIntegrity = True else: print("Existing index extension couldn't be determined") print("Genome index will be remade") indexExt = False indexIntegrity = False print("Ancillary data integrity :",indexIntegrity) # print("Number of files:%s" % (len(indexFiles))) return indexIntegrity,indexExt def FASTAClean(filename,mode): '''Cleans FASTA file - multi-line fasta to single line, header clean, empty lines removal''' ## Read seqeunce file fh_in = open(filename, 'r') print ("phasdetect uses FASTA header as key for identifying the phased loci") print ("Caching '%s' reference FASTA file" % (filename)) ## Write file if mode == 0: fastaclean = ('%s/%s.clean.fa' % (os.getcwd(),filename.rpartition('/')[-1].rpartition('.')[0])) ## os.getcwd(),fastaclean.rpartition('/')[-1].rpartition('.')[0] else: print("Input correct mode- 0: Normal | 1: Seqeunces reversed | 2: Seqeunces reverse complemented | 3: Seqeunces complemented only") print("USAGE: cleanFasta.v.x.x.py FASTAFILE MODE") sys.exit() ### Outfiles fh_out1 = open(fastaclean, 'w') fastasumm = ('%s/%s.summ.txt' % (os.getcwd(),filename.rpartition('/')[-1].rpartition('.')[0])) fh_out2 = open(fastasumm, 'w') fh_out2.write("Name\tLen\n") ### Read files fasta = fh_in.read() fasta_splt = fasta.split('>') fastaD = {} ## Store FASTA as dict acount = 0 ## count the number of entries empty_count = 0 for i in fasta_splt[1:]: ent = i.split('\n') aname = ent[0].split()[0].strip() if runType == 'G': ## To match with phasing-core script for genome version which removed non-numeric and preceding 0s name = re.sub("[^0-9]", "", aname).lstrip('0') else: name = aname seq = ''.join(x.strip() for x in ent[1:]) ## Sequence in multiple lines alen = len(seq) if alen > 200: fh_out1.write('>%s\n%s\n' % (name,seq)) fh_out2.write('%s\t%s\n' % (name,alen)) acount+=1 else: empty_count+=1 pass #### Prepare a dictionary - Not Tested # for line in fh_in: # if line.startswith('>'): # name = line[1:].rstrip('\n').split()[0] # fastaD[name] = '' # else: # fastaD[name] += line.rstrip('\n').rstrip('*') #### Write results - Not tested # for name,seq in fastaD.items(): # alen = len(seq) # if alen > 200: # fh_out1.write('>%s\n%s\n' % (name,seq)) # fh_out2.write('%s\t%s\n' % (name,alen)) # acount+=1 # else: # empty_count+=1 # pass fh_in.close() fh_out1.close() fh_out2.close() print("Fasta file with reduced header: '%s' with total entries %s is prepared" % (fastaclean, acount)) print("There were %s entries found with empty sequences and were removed\n" % (empty_count)) return fastaclean,fastasumm def readMem(memFile): ''' Reads memory file and gives global variables ''' print ("#### Fn: memReader ############################") fh_in = open(memFile,'r') memRead = fh_in.readlines() fh_in.close() memflag = True varcount = 0 for line in memRead: if line: ## Not empty if line.startswith('@'): line = line.strip("\n") # print(line) akey,aval = line.split(':') param = akey.strip() value = aval.strip() # print(param,value) if param == '@genomehash': global existRefHash varcount+=1 existRefHash = str(value) print('Existing reference hash :',existRefHash) elif param == '@indexhash': global existIndexHash varcount+=1 existIndexHash = str(value) print('Existing index hash :',existIndexHash) elif param == '@index': global index varcount+=1 index = str(value) print('Existing index location :',index) else: pass ## Sanity Check - Memory file is not empty, from a crash # if existRefHash.strip() == '': # memflag = False # elif existIndexHash.strip() == '': # memflag = False # elif index.strip() == '': # memflag = False if varcount == 3: memflag = True else: memflag = False return memflag def coreReserve(cores): ''' Decides the core pool for machine - written to make PHASIS comaptible with machines that have less than 10 cores - Will be improved in future ''' if cores == 0: ## Automatic assignment of cores selected totalcores = int(multiprocessing.cpu_count()) if totalcores == 4: ## For quad core system nproc = 3 elif totalcores == 6: ## For hexa core system nproc = 5 elif totalcores > 6 and totalcores <= 10: ## For octa core system and those with less than 10 cores nproc = 7 else: nproc = 10 #int(totalcores*0.9) else: ## Reserve user specifed cores nproc = int(cores) return nproc #### FASTA CLEAN P - IN DEV def FASTAread(filename): ''' Reads FASTA file to alist ''' ### Sanity check ##################### if not os.path.isfile(reference): print("'%s' reference file not found" % (reference)) print("Please check the genomeFile - Is it in specified directory? Did you input wrong name?") print("Script will exit for now\n") sys.exit() else: print("Reference file located - Preparing to create index") pass ##################################### ### Read seqeunce file ############## fh_in = open(filename, 'r') print ("phasdetect uses FASTA header as key for identifying the phased loci") print ("Caching reference '%s' FASTA file" % (filename)) fasta = fh_in.read() fasta_splt = fasta.split('>') print("Cached FASTA file with %s entries" % (len(fasta_splt[1:]))) fh_in.close() return fasta_splt[1:] def FASTAclean(ent): ''' Cleans one entry of FASTA file - multi-line fasta to single line, header clean, empty lines removal ''' ent_splt = ent.split('\n') aname = ent_splt[0].split()[0].strip() # print("Cleaning - %s" % (aname)) if runType == 'G': ## To match with phasing-core script for genome version which removed non-numeric and preceding 0s bname = re.sub("[^0-9]", "", aname).lstrip('0') else: bname = aname bseq = ''.join(x.strip() for x in ent[1:]) ## Sequence in multiple lines return bname,bseq def FASTAwrite(filename,alist,mode): ''' Writes list of processed/cleaned FASTA ''' ## Write file if mode == 0: fastaclean = ('%s/%s.clean.fa' % (os.getcwd(),filename.rpartition('/')[-1].rpartition('.')[0])) ## os.getcwd(),fastaclean.rpartition('/')[-1].rpartition('.')[0] else: print("Input correct mode- 0: Normal | 1: Seqeunces reversed | 2: Seqeunces reverse complemented | 3: Seqeunces complemented only") print("USAGE: cleanFasta.v.x.x.py FASTAFILE MODE") sys.exit() ### Outfiles fh_out1 = open(fastaclean, 'w') fastasumm = ('%s/%s.summ.txt' % (os.getcwd(),filename.rpartition('/')[-1].rpartition('.')[0])) fh_out2 = open(fastasumm, 'w') fh_out2.write("Name\tLen\n") acount = 0 ## count the number of entries empty_count = 0 ## count empty entries for ent in alist: aname,aseq = ent alen = len(aseq) if alen > 200: fh_out1.write('>%s\n%s\n' % (aname,aseq)) fh_out2.write('%s\t%s\n' % (aname,alen)) acount+=1 else: empty_count+=1 pass fh_out1.close() fh_out2.close() print("Fasta file with reduced header: '%s' with total entries %s is prepared" % (fastaclean, acount)) print("There were %s entries with empty/short sequences,these were removed\n" % (empty_count)) return fastaclean,fastasumm #### DE-DUPLICATOR MODULES #### def dedup_process(alib): ''' To parallelize the process ''' print("\n#### Fn: De-duplicater #######################") afastaL = dedup_fastatolist(alib) ## Read acounter = deduplicate(afastaL
#!/usr/bin/env python """lipid-martini-itp.py creates a customized Martini lipid topologies, use lipid-martini-itp.py -h for description""" __author__ = "<NAME>, and <NAME>" __status__ = "Development" __version__ = "0.5" __email__ = "<EMAIL>" import sys,math # Very simple option class class Option: def __init__(self,func=str,num=1,default=None,description=""): self.func = func self.num = num self.value = default self.description = description def __nonzero__(self): if self.func == bool: return self.value != False return bool(self.value) def __str__(self): return self.value and str(self.value) or "" def setvalue(self,v): if len(v) == 1: self.value = self.func(v[0]) else: self.value = [ self.func(i) for i in v ] # Description desc = """ This scripts creates a customized Martini lipid topology based on the head, linker and tail specification strings provided. The topology follows the standard Martini 2.0 lipid definitions, lipids with these topologies have been explore e.g. in: -<NAME>, <NAME>, <NAME>. Coarse grained model for semi-quantitative lipid simulations. JPC-B, 108:750-760, 2004. -<NAME>, <NAME>, <NAME>, <NAME>, <NAME>. The MARTINI force field: coarse grained model for biomolecular simulations. JPC-B, 111:7812-7824, 2007. -<NAME>, <NAME>, <NAME>, <NAME>, <NAME>. Cholesterol shows preference for the interior of polyunsaturated lipid membranes. JACS, 130:10-11, 2008. -<NAME>, <NAME>. The molecular face of lipid rafts in model membranes. PNAS, 105:17367-17372, 2008. -<NAME>, <NAME>, <NAME>, <NAME>, <NAME>. The molecular mechanism of lipid monolayer collapse. PNAS, 105:10803-10808, 2008. -<NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>. Lipid organization of the plasma membrane. JACS, 136:14554-14559, 2014. -<NAME>, <NAME>, <NAME>, <NAME>, <NAME>. Martini force field parameters for glycolipids. JCTC, 9:1694-1708, 2013. Description of this script can be found in the following manuscript, please cite: -<NAME>, <NAME>, <NAME>, <NAME>, <NAME>. Computational lipidomics with insane: a versatile tool for generating custom membranes for molecular simulations. JCTC, 150410125128004, 2015. WARNING: This script can generate topologies for numerous lipids many of which are unrealistic and untested, please use with discretion. E.g. none of the sphingomyelin lipids have been thoroughly tested. The lipid descriptions supported are as follows: Heads (-alhead): Please provide a list of lipid head beads. The left most bead will be on top, they are connected in a sequence from left to right and the right most bead is connected to the first bead in the linker. Each bead is connected with a bond (R_b = 0.47 and K_b = 1250). <Warning some charged Martini lipids have used a shorter bond, R_b = 0.37, but here all lipids use the same R_b = 0.47 bond between headgroup beads.> There are no angles between the different head beads, but there is an angle [last head bead / first linker bead / first bead of first tail] Theta_a = 180 and K_a = 25 that helps orient the head with respect to the rest of the lipid. If an empty string is provided the lipid will have no head and starts with the linker beads. Spaces should separate the different beads; extra spaces are ignored. head bead types supported: C = NC3 = Choline - bead Q0, charge +1 E = NH3 = Ethanolamine - bead Qd, charge +1 G = GL0 = Glycerol - bead P4, charge 0 S = CNO = Serine - bead P5, charge 0 P = PO4 = Phosphate - bead Qa, charge -1 O = PO4 = Phosphate - bead Qa, charge -2 Examples of lipid heads: "C P" -> 'NC3 PO4' - PC - PhosphatidylCholine "E P" -> 'NH3 PO4' - PE - PhosphatidylEthanolamine "G P" -> 'GL0 PO4' - PG - PhosphatidylGlycerol "S P" -> 'CNO PO4' - PS - PhosphatidylSerine "P" -> 'PO4 ---' - PA - Phosphatidic acid (charge -1, use "O" for charge -2) "O" -> 'PO4 ---' - PA - Phosphatidic acid, one bond, not protonated (charge -2) "" -> '--- ---' - DG - No head, Diacyl Glycerols if x2 Gly linkers are used (DAG) Current version also supports writing PI, PIP, PIP2 and PIP3 headgrous (called PI, P1, P2 and P3). These headgroups are hardcoded based on Cesar Lopez parameters see Lopez et al. 2013 JCTC. Linkers (-allink): Currently only lipids with Glycerol linker ir sogubgisube backboneare supported. Each linker is connected with a bond R_b = 0.37 and K_b 1250. The number of linkers and tails provided have to match and each linker is connected with its corresponding tail with a bond R_b = 0.47 and K_b = 1250. Additionally if more than one linker is provided an angle [last head bead / first linker bead / second linker bead] Theta_a = 120 and K_a = 25 is added to support the head / linker / tail orientation. The sphingosine linking (for ceramide and sphingomyeline lipids) is not tested and should be used with care. Only works with x2 linker beads AM1 and AM2. They are defined with the standard bond between them and linker angle to the head. Just remember that AM1 and AM2 contain parts of the lipid tail, and normally tail A (AM1 tail) should start with a T bead (containing the inital trans double bond) and be shorter than normal. linker beads types supported: G = GLY = Glycerols - bead Na with tail but P1 without, charge 0 A = Sphingosine backbone - always x2 - AM1 with P1 bead and AM2 with P5 bead, charge 0 Examples of lipid linkers: "G G" -> 'GLY GLY ---' - A glycerol linker "A A" -> 'AM1 AM2' - A sphingosine backbone Tails (-altail): One lipid tail definition should be provided for each linker, separated with a space; extra spaces are ignored. Each tail can have an arbitrary number of tail beads. Tails are connected by bonds, first bead to the tail's linker bead and then from left to right (R_b = 0.47 and K_b 1250). To fix the tails orientation/dynamics an angle is added for each tail bead [tail bead - 1 or linker bead / tail bead / tail bead + 1] the Theta_a and K_a depend on the tail definition. tail bead types supported: C = corresponding roughly to a linear combination of x4 CH2 groups (CH2-CH2-CH2-CH2). Represented with a C1 bead. Angle [X / C / X] Theta_a = 180 and K_a = 25. D = corresponding roughly to a linear combination of x2 CH2 and x2 CH groups (CH2-CH=CH-CH2), where the double bound is in a cis bond. Represented with a C3 bead, except if there is another D before or after then use a C4 bead. For the angles the standard [X / D / X] is a Theta_a = 120 and K_a = 45, except if the next bead is also D [X / D / D] then use Theta_a = 100 and K_a = 10. T = Same as D except with a trans double bond. The angle [X / T / X] is set with equilibrium bond angle Theta_a = 180 and K_a = 45. Represented with a C3 bead. Examples of tails: Lyso tails: "- CCCC " - C16-18:0 Lyso "- CCCCC " - C20-22:0 Lyso "- CCCCCC " - C24-26:0 Lyso Saturated tails: "CC CC " - C08-10:0 - diOctanoyl or diDecanoyl "CCC CCC " - C12-14:0 - diLauric acid or diMyristoyl "CCCC CCCC " - C16-18:0 - diPalmitic acid or diStearoyl "CCCCC CCCCC " - C20-22:0 - diArachidoyl or diBehenoyl "CCCCCC CCCCCC" - C24-26:0 - diLignoceroyl or diHexacosanoyl Unsaturated tails: "CDC CDC " - C14:1(9c) - diMyristoleoyl "CDCC CDCC " - C16:1(9c) - diPalmitoleoyl / C18:1(9c) - diOleoyl "CDDC CDDC " - C18:2(9c,12c) - diLinoleoyl "CCDCC CCDCC " - C20:1(11c) - diGondic acid / C22:1(11c) - diErucoyl "DDDDC DDDDC " - C20:4(5c,8c,11c,14c) - diArachidonoyl "DDDDDD DDDDDD" - C22:6(4c,7c,10c,13c,16c,19c) - diDocosahexaenoyl "CCCDCC CCCDCC" - C24:1(15c) - diNervonoyl Mixed tails: "CCCC CCC "
WC("b", S(1)) * acoth(x_ * WC("c", S(1)))) ** WC("n", S(1)) / (x_ * sqrt(d_ + x_ ** S(2) * WC("e", S(1)))), x_, ), cons2, cons3, cons8, cons29, cons50, cons1739, cons150, cons1740, ) rule6462 = ReplacementRule(pattern6462, replacement6462) pattern6463 = Pattern( Integral( (WC("a", S(0)) + WC("b", S(1)) * atanh(x_ * WC("c", S(1)))) ** WC("n", S(1)) / (x_ ** S(2) * sqrt(d_ + x_ ** S(2) * WC("e", S(1)))), x_, ), cons2, cons3, cons8, cons29, cons50, cons1739, cons89, cons90, ) rule6463 = ReplacementRule(pattern6463, replacement6463) pattern6464 = Pattern( Integral( (WC("a", S(0)) + WC("b", S(1)) * acoth(x_ * WC("c", S(1)))) ** WC("n", S(1)) / (x_ ** S(2) * sqrt(d_ + x_ ** S(2) * WC("e", S(1)))), x_, ), cons2, cons3, cons8, cons29, cons50, cons1739, cons89, cons90, ) rule6464 = ReplacementRule(pattern6464, replacement6464) pattern6465 = Pattern( Integral( x_ ** m_ * (WC("a", S(0)) + WC("b", S(1)) * atanh(x_ * WC("c", S(1)))) ** WC("n", S(1)) / sqrt(d_ + x_ ** S(2) * WC("e", S(1))), x_, ), cons2, cons3, cons8, cons29, cons50, cons1739, cons95, cons90, cons96, cons1512, ) rule6465 = ReplacementRule(pattern6465, replacement6465) pattern6466 = Pattern( Integral( x_ ** m_ * (WC("a", S(0)) + WC("b", S(1)) * acoth(x_ * WC("c", S(1)))) ** WC("n", S(1)) / sqrt(d_ + x_ ** S(2) * WC("e", S(1))), x_, ), cons2, cons3, cons8, cons29, cons50, cons1739, cons95, cons90, cons96, cons1512, ) rule6466 = ReplacementRule(pattern6466, replacement6466) pattern6467 = Pattern( Integral( x_ ** m_ * (d_ + x_ ** S(2) * WC("e", S(1))) ** p_ * (WC("a", S(0)) + WC("b", S(1)) * atanh(x_ * WC("c", S(1)))) ** WC("n", S(1)), x_, ), cons2, cons3, cons8, cons29, cons50, cons1739, cons1786, cons139, cons168, cons1154, ) rule6467 = ReplacementRule(pattern6467, replacement6467) pattern6468 = Pattern( Integral( x_ ** m_ * (d_ + x_ ** S(2) * WC("e", S(1))) ** p_ * (WC("a", S(0)) + WC("b", S(1)) * acoth(x_ * WC("c", S(1)))) ** WC("n", S(1)), x_, ), cons2, cons3, cons8, cons29, cons50, cons1739, cons1786, cons139, cons168, cons1154, ) rule6468 = ReplacementRule(pattern6468, replacement6468) pattern6469 = Pattern( Integral( x_ ** m_ * (d_ + x_ ** S(2) * WC("e", S(1))) ** p_ * (WC("a", S(0)) + WC("b", S(1)) * atanh(x_ * WC("c", S(1)))) ** WC("n", S(1)), x_, ), cons2, cons3, cons8, cons29, cons50, cons1739, cons1786, cons139, cons269, cons1154, ) rule6469 = ReplacementRule(pattern6469, replacement6469) pattern6470 = Pattern( Integral( x_ ** m_ * (d_ + x_ ** S(2) * WC("e", S(1))) ** p_ * (WC("a", S(0)) + WC("b", S(1)) * acoth(x_ * WC("c", S(1)))) ** WC("n", S(1)), x_, ), cons2, cons3, cons8, cons29, cons50, cons1739, cons1786, cons139, cons269, cons1154, ) rule6470 = ReplacementRule(pattern6470, replacement6470) pattern6471 = Pattern( Integral( x_ ** WC("m", S(1)) * (d_ + x_ ** S(2) * WC("e", S(1))) ** p_ * (WC("a", S(0)) + WC("b", S(1)) * atanh(x_ * WC("c", S(1)))) ** WC("n", S(1)), x_, ), cons2, cons3, cons8, cons29, cons50, cons1739, cons164, cons139, cons91, cons321, ) rule6471 = ReplacementRule(pattern6471, replacement6471) pattern6472 = Pattern( Integral( x_ ** WC("m", S(1)) * (d_ + x_ ** S(2) * WC("e", S(1))) ** p_ * (WC("a", S(0)) + WC("b", S(1)) * acoth(x_ * WC("c", S(1)))) ** WC("n", S(1)), x_, ), cons2, cons3, cons8, cons29, cons50, cons1739, cons164, cons139, cons91, cons321, ) rule6472 = ReplacementRule(pattern6472, replacement6472) pattern6473 = Pattern( Integral( x_ ** WC("m", S(1)) * (d_ + x_ ** S(2) * WC("e", S(1))) ** p_ * (WC("a", S(0)) + WC("b", S(1)) * atanh(x_ * WC("c", S(1)))) ** WC("n", S(1)), x_, ), cons2, cons3, cons8, cons29, cons50, cons4, cons1739, cons64, cons1787, cons1742, ) rule6473 = ReplacementRule(pattern6473, replacement6473) pattern6474 = Pattern( Integral( x_ ** WC("m", S(1)) * (d_ + x_ ** S(2) * WC("e", S(1))) ** p_ * (WC("a", S(0)) + WC("b", S(1)) * atanh(x_ * WC("c", S(1)))) ** WC("n", S(1)), x_, ), cons2, cons3, cons8, cons29, cons50, cons4, cons1739, cons64, cons1787, cons1743, ) rule6474 = ReplacementRule(pattern6474, replacement6474) pattern6475 = Pattern( Integral( x_ ** WC("m", S(1)) * (d_ + x_ ** S(2) * WC("e", S(1))) ** p_ * (WC("a", S(0)) + WC("b", S(1)) * acoth(x_ * WC("c", S(1)))) ** WC("n", S(1)), x_, ), cons2, cons3, cons8, cons29, cons50, cons4, cons1739, cons64, cons1787, cons40, ) rule6475 = ReplacementRule(pattern6475, replacement6475) pattern6476 = Pattern( Integral( x_ ** WC("m", S(1)) * (d_ + x_ ** S(2) * WC("e", S(1))) ** p_ * (WC("a", S(0)) + WC("b", S(1)) * acoth(x_ * WC("c", S(1)))) ** WC("n", S(1)), x_, ), cons2, cons3, cons8, cons29, cons50, cons4, cons1739, cons64, cons1787, cons149, ) rule6476 = ReplacementRule(pattern6476, replacement6476) pattern6477 = Pattern( Integral( x_ * (x_ ** S(2) * WC("e", S(1)) + WC("d", S(0))) ** WC("p", S(1)) * (WC("a", S(0)) + WC("b", S(1)) * atanh(x_ * WC("c", S(1)))), x_, ), cons2, cons3, cons8, cons29, cons50, cons5, cons56, ) rule6477 = ReplacementRule(pattern6477, replacement6477) pattern6478 = Pattern( Integral( x_ * (x_ ** S(2) * WC("e", S(1)) + WC("d", S(0))) ** WC("p", S(1)) * (WC("a", S(0)) + WC("b", S(1)) * acoth(x_ * WC("c", S(1)))), x_, ), cons2, cons3, cons8, cons29, cons50, cons5, cons56, ) rule6478 = ReplacementRule(pattern6478, replacement6478) pattern6479 = Pattern( Integral( x_ ** WC("m", S(1)) * (x_ ** S(2) * WC("e", S(1)) + WC("d", S(0))) ** WC("p", S(1)) * (WC("a", S(0)) + WC("b", S(1)) * atanh(x_ * WC("c", S(1)))), x_, ), cons2, cons3, cons8, cons29, cons50, cons19, cons5, cons1788, ) rule6479 = ReplacementRule(pattern6479, With6479) pattern6480 = Pattern( Integral( x_ ** WC("m", S(1)) * (x_ ** S(2) * WC("e", S(1)) + WC("d", S(0))) ** WC("p", S(1)) * (WC("a", S(0)) + WC("b", S(1)) * acoth(x_ * WC("c", S(1)))), x_, ), cons2, cons3, cons8, cons29, cons50, cons19, cons5, cons1788, ) rule6480 = ReplacementRule(pattern6480, With6480) pattern6481 = Pattern( Integral( x_ ** WC("m", S(1)) * (d_ + x_ ** S(2) * WC("e", S(1))) ** WC("p", S(1)) * (WC("a", S(0)) + WC("b", S(1)) * atanh(x_ * WC("c", S(1)))) ** WC("n", S(1)), x_, ), cons2, cons3, cons8, cons29, cons50, cons19, cons40, cons150, cons1789, ) rule6481 = ReplacementRule(pattern6481, replacement6481) pattern6482 = Pattern( Integral( x_ ** WC("m", S(1)) * (d_ + x_ ** S(2) * WC("e", S(1))) ** WC("p", S(1)) * (WC("a", S(0)) + WC("b", S(1)) * acoth(x_ * WC("c", S(1)))) ** WC("n", S(1)), x_, ), cons2, cons3, cons8, cons29, cons50, cons19, cons40, cons150, cons1789, ) rule6482 = ReplacementRule(pattern6482, replacement6482) pattern6483 = Pattern( Integral( x_ ** WC("m", S(1)) * (a_ + WC("b", S(1)) * atanh(x_ * WC("c", S(1)))) * (d_ + x_ ** S(2) * WC("e", S(1))) ** WC("p", S(1)), x_, ), cons2, cons3, cons8, cons29, cons50, cons19, cons5, cons1790, ) rule6483 = ReplacementRule(pattern6483, replacement6483) pattern6484 = Pattern( Integral( x_ ** WC("m", S(1)) * (a_ + WC("b", S(1)) * acoth(x_ * WC("c", S(1)))) * (d_ + x_ ** S(2) * WC("e", S(1))) ** WC("p", S(1)), x_, ), cons2, cons3, cons8, cons29, cons50, cons19, cons5, cons1790, ) rule6484 = ReplacementRule(pattern6484, replacement6484) pattern6485 = Pattern( Integral( x_ ** WC("m", S(1)) * (x_ ** S(2) * WC("e", S(1)) + WC("d", S(0))) ** WC("p", S(1)) * (WC("a", S(0)) + WC("b", S(1)) * atanh(x_ * WC("c", S(1)))) ** WC("n", S(1)), x_, ), cons2, cons3, cons8, cons29, cons50, cons19, cons4, cons5, cons1499, ) rule6485 = ReplacementRule(pattern6485, replacement6485) pattern6486 = Pattern( Integral( x_ ** WC("m", S(1)) * (x_ ** S(2) * WC("e", S(1)) + WC("d", S(0))) ** WC("p", S(1)) * (WC("a", S(0)) + WC("b", S(1)) * acoth(x_ * WC("c", S(1)))) ** WC("n", S(1)), x_, ), cons2, cons3, cons8, cons29, cons50, cons19, cons4, cons5, cons1499, ) rule6486 = ReplacementRule(pattern6486, replacement6486) pattern6487 = Pattern( Integral( (WC("a", S(0)) + WC("b", S(1)) * atanh(x_ * WC("c", S(1)))) ** WC("n", S(1)) * atanh(u_) / (d_ + x_ ** S(2) * WC("e", S(1))), x_, ), cons2, cons3, cons8, cons29, cons50, cons1739, cons89, cons90, cons1912, ) rule6487 = ReplacementRule(pattern6487, replacement6487) pattern6488 = Pattern( Integral( (WC("a", S(0)) + WC("b", S(1)) * acoth(x_ * WC("c", S(1)))) ** WC("n", S(1)) * acoth(u_) / (d_ + x_ ** S(2) * WC("e", S(1))), x_, ), cons2, cons3, cons8, cons29, cons50, cons1739, cons89, cons90, cons1912, ) rule6488 = ReplacementRule(pattern6488, replacement6488) pattern6489 = Pattern( Integral(
<gh_stars>100-1000 import numpy as np import math # from mxnet import nd from mxnet.gluon import nn class Augmentation(nn.HybridBlock): def __init__(self, angle_range, zoom_range, translation_range, target_shape, orig_shape, batch_size, aspect_range = None, relative_angle = 0, relative_scale = (1, 1), relative_translation = 0): super().__init__() self._angle_range = tuple(map(lambda x : x / 180 * math.pi, angle_range) ) self._scale_range = zoom_range try: translation_range = tuple(translation_range) if len(translation_range) != 2: raise ValueError('expect translation range to have shape [2,], but got {}'.format(translation_range)) except TypeError: translation_range = (-translation_range, translation_range) self._translation_range = tuple(map(lambda x : x * 2, translation_range)) self._target_shape = np.array(target_shape) self._orig_shape = np.array(orig_shape) self._batch_size = batch_size self._unit = np.flip(self._target_shape - 1, axis=0).reshape([2,1]) / np.flip(self._orig_shape - 1, axis=0).reshape([1,2]) self._relative_scale = relative_scale self._relative_angle = tuple(map(lambda x : x / 180 * math.pi * relative_angle, angle_range) ) self._relative_translation = (-relative_translation * 2, relative_translation * 2) self._aspect_range = aspect_range def _get_relative_transform(self, F): aspect_ratio = (self._target_shape[0] - 1) / (self._target_shape[1] - 1) rotation = F.random.uniform(*self._relative_angle, shape=(self._batch_size)) scale = F.random.uniform(*self._relative_scale, shape=(self._batch_size)) affine_params = [scale * rotation.cos(), scale * -rotation.sin() * aspect_ratio, F.zeros_like(scale), scale * rotation.sin() / aspect_ratio, scale * rotation.cos(), F.zeros_like(scale), F.zeros_like(scale), F.zeros_like(scale), F.ones_like(scale)] affine = F.reshape(F.stack(*affine_params, axis=1), [0, 3, 3]) return affine def hybrid_forward(self, F, img1, img2): rotation = F.random.uniform(*self._angle_range, shape=(self._batch_size)) scale = F.random.uniform(*self._scale_range, shape=(self._batch_size)) if self._aspect_range is not None: aspect_ratio = F.random.uniform(*self._aspect_range, shape=(self._batch_size)) else: aspect_ratio = 1 pad_x, pad_y = 1 - scale * self._unit[0, 0], 1 - scale * self._unit[1, 1] translation_x = F.random.uniform(-1, 1, shape=(self._batch_size,)) * pad_x + F.random.uniform(*self._translation_range, shape=(self._batch_size)) translation_y = F.random.uniform(-1, 1, shape=(self._batch_size,)) * pad_y + F.random.uniform(*self._translation_range, shape=(self._batch_size)) affine_params = [scale * aspect_ratio * rotation.cos() * self._unit[0, 0], scale * aspect_ratio * -rotation.sin() * self._unit[1, 0], translation_x, scale * rotation.sin() * self._unit[0, 1], scale * rotation.cos() * self._unit[1, 1], translation_y] affine_params = F.stack(*affine_params, axis=1) rel_affine = self._get_relative_transform(F) affine_2 = F.reshape(F.batch_dot(F.reshape(affine_params, [0, 2, 3]), rel_affine), [0, 6]) rel_translation = [F.zeros((self._batch_size,)), F.zeros((self._batch_size,)), F.random.uniform(*self._relative_translation, shape=(self._batch_size,)), F.zeros((self._batch_size,)), F.zeros((self._batch_size,)), F.random.uniform(*self._relative_translation, shape=(self._batch_size))] rel_translation = F.stack(*rel_translation, axis = 1) affine_2 = affine_2 + rel_translation grid = F.GridGenerator(data=affine_params, transform_type='affine', target_shape=list(self._target_shape)) img1 = F.BilinearSampler(data=img1, grid=grid) grid_2 = F.GridGenerator(data=affine_2, transform_type='affine', target_shape=list(self._target_shape)) img2 = F.BilinearSampler(data=img2, grid=grid_2) return img1, img2 ''' class ChromaticBrightnessAugmentation(nn.HybridBlock): def __init__(self, brightness = 0.5, batch_size = 1, **kwargs): super().__init__(**kwargs) self.brightness = brightness self.batch_size = batch_size def hybrid_forward(self, F, img): aug = img alpha = 1.0 + F.random.uniform(-self.brightness, self.brightness, shape = (self.batch_size, 1, 1, 1)) aug = F.broadcast_mul(aug, alpha) return aug class ChromaticContrastAugmentation(nn.HybridBlock): def __init__(self, contrast = 0.5, batch_size = 1, **kwargs): super().__init__(**kwargs) self.contrast = contrast self.coefficient = [0.299, 0.587, 0.114] self.batch_size = batch_size def hybrid_forward(self, F, img): aug = img alpha = 1.0 + F.random.uniform(-self.contrast, self.contrast, shape = (self.batch_size, 1, 1, 1)) gray = F.concat(*[img.slice_axis(axis = 1, begin = k, end = k + 1) * self.coefficient[k] for k in range(3)], dim = 1) mean = F.mean(gray, keepdims = True, axis = (1, 2, 3)) gray = 3.0 * (1.0 - alpha) * mean aug = F.broadcast_mul(aug, alpha) aug = F.broadcast_add(aug, gray) return aug ''' class ChromaticSHAugmentation(nn.HybridBlock): def __init__(self, saturation = 0.5, hue = 0.5, batch_size = 1, **kwargs): super().__init__(**kwargs) self.saturation = saturation self.hue = hue self.matrix_yiq = [ [ 0.299, 0.587, 0.114], [ 0.596, -0.274, -0.321], [ 0.211, -0.523, -0.311]] self.matrix_rgb = [ [ 1. , 0.956, 0.621], [ 1. , -0.272, -0.647], [ 1. , -1.107, 1.705]] self.batch_size = batch_size def hybrid_forward(self, F, img): aug = img alpha = 1.0 + F.random.uniform(-self.saturation, self.saturation, shape = (self.batch_size, 1, 1, 1)) theta = F.random.uniform(-self.hue * np.pi, self.hue * np.pi, shape = (self.batch_size, 1, 1, 1)) su = alpha * F.cos(theta) sw = alpha * F.sin(theta) matrix = [ [0.299 + 0.701 * su + 0.168 * sw, 0.587 - 0.587 * su + 0.330 * sw, 0.114 - 0.114 * su - 0.497 * sw], [0.299 - 0.299 * su - 0.328 * sw, 0.587 + 0.413 * su + 0.035 * sw, 0.114 - 0.114 * su + 0.292 * sw], [0.299 - 0.300 * su + 1.250 * sw, 0.587 - 0.588 * su - 1.050 * sw, 0.114 + 0.886 * su - 0.203 * sw]] aug = F.concat(*[sum([F.broadcast_mul(aug.slice_axis(axis = 1, begin = j, end = j + 1), matrix[i][j]) for j in range(3)]) for i in range(3)], dim = 1) return aug ''' class ChromaticGammaAugmentation(nn.HybridBlock): def __init__(self, gamma = (0.7, 1.5), batch_size = 1, **kwargs): super().__init__(**kwargs) self.gamma_min, self.gamma_max = gamma self.batch_size = batch_size def hybrid_forward(self, F, img): aug = img alpha = F.random.uniform(self.gamma_min, self.gamma_max, shape = (self.batch_size, 1, 1, 1)) aug = F.broadcast_power(aug, alpha) return aug class ChromaticEigenAugmentation(nn.HybridBlock): def __init__(self, batch_size = 1, **kwargs): super().__init__(**kwargs) self.batch_size = batch_size def hybrid_forward(self, F, img): spin_angle = F.random.uniform(low = -np.pi, high = np.pi, shape = (self.batch_size, 3, 1, 1)) cos_ = [F.cos(spin_angle).slice_axis(axis = 1, begin = k, end = k + 1) for k in range(3)] sin_ = [F.sin(spin_angle).slice_axis(axis = 1, begin = k, end = k + 1) for k in range(3)] spin_matrix = [ [ cos_[0] * cos_[1], sin_[1] * cos_[2] + sin_[0] * cos_[1] * sin_[2], sin_[1] * sin_[2] - sin_[0] * cos_[1] * cos_[2]], [- cos_[0] * sin_[1], cos_[1] * cos_[2] - sin_[0] * sin_[1] * sin_[2], cos_[1] * sin_[2] + sin_[0] * sin_[1] * cos_[2]], [ sin_[0] , - cos_[0] * sin_[2] , cos_[0] * cos_[2] ]] aug = F.concat(*[sum([F.broadcast_mul(img.slice_axis(axis = 1, begin = j, end = j + 1), spin_matrix[i][j]) for j in range(3)]) for i in range(3)], dim = 1) return aug class ChromaticComposeAugmentation(nn.Block): def __init__(self, brightness = 0.2, contrast = 0.5, saturation = 0.5, hue = 0.5, gamma = (0.7, 1.5), batch_size = 1, **kwargs): super().__init__(**kwargs) self.brightness = brightness self.contrast = contrast self.saturation = saturation self.hue = hue self.gamma = gamma self.batch_size = batch_size self.aug_brightness = ChromaticBrightnessAugmentation(self.brightness, self.batch_size) self.aug_contrast = ChromaticContrastAugmentation(self.contrast, self.batch_size) self.aug_sh = ChromaticSHAugmentation(self.saturation, self.hue, self.batch_size) self.augs = [self.aug_brightness, self.aug_contrast, self.aug_sh] self.Gamma = ChromaticGammaAugmentation(self.gamma, self.batch_size) def forward(self, img1, img2): aug = nd.concat(img1, img2, dim = 2) augs = random.sample(self.augs, 3) for aug_op in augs: aug = aug_op(aug) aug = aug.clip(0, 1) aug = self.Gamma(aug) return nd.split(aug, axis = 2, num_outputs = 2) ''' class ColorAugmentation(nn.HybridBlock): def __init__(self, contrast_range, brightness_sigma, channel_range, batch_size, shape, noise_range, saturation, hue, gamma_range = None, eigen_aug = False, **kwargs): super().__init__(**kwargs) self._contrast_range = contrast_range self._brightness_sigma = brightness_sigma self._channel_range = channel_range self._batch_size = batch_size self._shape = shape self._noise_range = noise_range self._gamma_range = gamma_range self._eigen_aug = eigen_aug self._saturation = saturation self._hue = hue def hybrid_forward(self, F, img1, img2): contrast = F.random.uniform(*self._contrast_range, shape=(self._batch_size, 1, 1, 1)) + 1 brightness = F.random.normal(scale=self._brightness_sigma, shape=(self._batch_size, 1, 1, 1)) channel = F.random.uniform(*self._channel_range, shape=(self._batch_size, 3, 1, 1)) noise_sigma = F.random.uniform(*self._noise_range) if self._gamma_range is not None: gamma = F.random.uniform(*self._gamma_range, shape = (self._batch_size, 1, 1, 1)) contrast = contrast.repeat(repeats=3, axis=1) brightness = brightness.repeat(repeats=3, axis=1) alpha = 1.0 + F.random.uniform(-self._saturation, self._saturation, shape = (self._batch_size, 1, 1, 1)) theta = F.random.uniform(-self._hue * np.pi, self._hue * np.pi, shape = (self._batch_size, 1, 1, 1)) su = alpha * F.cos(theta) sw = alpha * F.sin(theta) sh_matrix = [ [0.299 + 0.701 * su + 0.168 * sw, 0.587 - 0.587 * su + 0.330 * sw, 0.114 - 0.114 * su - 0.497 * sw], [0.299 - 0.299 * su - 0.328 * sw, 0.587 + 0.413 * su + 0.035 * sw, 0.114 - 0.114 * su + 0.292 * sw], [0.299 - 0.300 * su + 1.250 * sw, 0.587 - 0.588 * su - 1.050 * sw, 0.114 + 0.886 * su - 0.203 * sw]] if self._eigen_aug: spin_angle = F.random.uniform(low = -np.pi, high = np.pi, shape = (self._batch_size, 3, 1, 1)) cos_ = [F.cos(spin_angle).slice_axis(axis = 1, begin = k, end = k + 1) for k in range(3)] sin_ = [F.sin(spin_angle).slice_axis(axis = 1, begin = k, end = k + 1) for k in range(3)] spin_matrix = [ [ cos_[0] * cos_[1], sin_[1] * cos_[2] + sin_[0] * cos_[1] * sin_[2], sin_[1] * sin_[2] - sin_[0] * cos_[1] * cos_[2]], [-cos_[0] * sin_[1], cos_[1] * cos_[2] - sin_[0] * sin_[1] * sin_[2], cos_[1] * sin_[2] + sin_[0] * sin_[1] * cos_[2]], [ sin_[0] ,-cos_[0] * sin_[2] , cos_[0] * cos_[2] ]] ret = [] for img in (img1, img2): aug = img aug = F.concat(*[sum([F.broadcast_mul(aug.slice_axis(axis = 1, begin = j, end = j + 1), sh_matrix[i][j]) for j in range(3)]) for i in range(3)], dim = 1) noise = F.random.normal(scale=1, shape=(self._batch_size, 3) + tuple(self._shape)) aug = aug + noise * noise_sigma mean = F.mean(aug, keepdims=True, axis=(2,3)) aug = F.broadcast_minus(aug, mean) aug = F.broadcast_mul(aug, contrast * channel) if self._eigen_aug: aug = F.concat(*[sum([F.broadcast_mul(aug.slice_axis(axis = 1, begin = j, end = j + 1), spin_matrix[i][j]) for j in range(3)]) for i in range(3)], dim = 1) aug = F.broadcast_add(aug, mean * channel + brightness) aug = F.clip(aug, 0, 1) if self._gamma_range is not None: aug = F.broadcast_power(aug, F.exp(gamma)) ret.append(aug) return ret class GeometryAugmentation(nn.HybridBlock): def __init__(self, angle_range, zoom_range, translation_range, target_shape, orig_shape, batch_size, aspect_range = None, relative_angle=None, relative_scale=None, relative_translation=None): super().__init__() self._angle_range = tuple(map(lambda x : x / 180 * math.pi, angle_range) ) self._scale_range = zoom_range try: translation_range = tuple(translation_range) if len(translation_range) != 2: raise ValueError('expect translation range to have shape [2,], but got {}'.format(translation_range)) except TypeError: translation_range = (-translation_range, translation_range) self._translation_range = tuple(map(lambda x : x * 2, translation_range)) self._target_shape = np.array(target_shape) self._orig_shape = np.array(orig_shape) self._batch_size = batch_size self._unit
from collections import defaultdict import numpy as np import torch from pytorch_points.network.operations import faiss_knn, dot_product, batch_svd, ball_query, group_knn from pytorch_points.utils.pytorch_utils import save_grad, linear_loss_weight from pytorch_points.network.model_loss import nndistance, labeled_nndistance from pytorch_points.network.geo_operations import (compute_face_normals_and_areas, dihedral_angle, CotLaplacian, UniformLaplacian, batch_normals) from pytorch_points.network.model_loss import (MeshLaplacianLoss, PointEdgeLengthLoss, \ MeshStretchLoss, PointStretchLoss, PointLaplacianLoss, SimpleMeshRepulsionLoss, MeshEdgeLengthLoss, NormalLoss) from pytorch_points.misc import logger class AllLosses(torch.nn.Module): def __init__(self, opt): super().__init__() self.opt = opt self.loss = defaultdict(float) self.labeled_chamfer_loss = LabeledChamferDistance(beta=opt.beta, gamma=opt.gamma, delta=opt.delta) self.cage_shortLength_loss = SimpleMeshRepulsionLoss(0.02, reduction="mean", consistent_topology=True) self.cage_faceAngle_loss = MeshDihedralAngleLoss(threshold=np.pi/30) self.mvc_reg_loss = MVCRegularizer(threshold=50, beta=1.0, alpha=0.0) self.cage_laplacian = MeshLaplacianLoss(torch.nn.L1Loss(reduction="mean"), use_cot=False, use_norm=True, consistent_topology=True, precompute_L=True) self.cage_smooth_loss = MeshSmoothLoss(torch.nn.MSELoss(reduction="mean"), use_cot=False, use_norm=True) self.grounding_loss = GroundingLoss(up_dim=(1 if "SHAPENET" in opt.dataset else 2)) if opt.sym_plane is not None: self.symmetry_loss = SymmetryLoss(sym_plane=opt.sym_plane, NCHW=False).cuda() # mesh_chamfer_loss = losses.InterpolatedCDTriMesh(interpolate_n=5, beta=1.0, gamma=0.0, delta=1/30) # cage_inside_loss = InsideLoss3DTriMesh(reduction="max") # cage_inside_loss = ExtPointToNearestFaceDistance(reduction="mean", min_dist=opt.cinside_eps) if self.opt.dataset in ("SURREAL", "FAUST"): logger.info("Using GTNormal loss") self.shape_normal_loss = GTNormalLoss() else: logger.info("Using KNN for normal loss") self.shape_normal_loss = NormalLoss(reduction="none", nn_size=16) self.shape_fnormal_loss = FaceNormalLoss(n_faces=300) self.stretch_loss = PointStretchLoss((4 if opt.dim==3 else 2), reduction="mean") self.edge_loss = PointEdgeLengthLoss((4 if opt.dim==3 else 2), torch.nn.MSELoss(reduction="mean")) if self.opt.regular_sampling or (not opt.mesh_data): logger.info("Using point laplacian loss") self.shape_laplacian = PointLaplacianLoss(16, torch.nn.MSELoss(reduction="none"), use_norm=opt.slap_norm) else: logger.info("Using mesh laplacian loss") self.shape_laplacian = MeshLaplacianLoss(torch.nn.MSELoss(reduction="none"), use_cot=True, use_norm=True, consistent_topology=True, precompute_L=True) self.p2f_loss = LocalFeatureLoss(16, torch.nn.MSELoss(reduction="none")) def forward(self, all_inputs, all_outputs, progress=1.0): self.loss.clear() B = all_outputs["new_cage"].shape[0] # ======== cage deformation back and forth ============= # if self.opt.loss == "LCD": loss, idx12, idx21 = self.labeled_chamfer_loss(all_outputs["deformed"], all_inputs["target_shape"], all_inputs["source_label"], all_inputs["target_label"]) self.idx12 = idx12.to(dtype=torch.int64) self.idx21 = idx21.to(dtype=torch.int64) self.loss["LCD"] += loss*opt.loss_weight # S-to-S use MSE dist = torch.sum((all_outputs["deformed"][self.opt.batch_size*2:, :, :] - all_inputs["target_shape"][self.opt.batch_size*2:,:,:])**2, dim=-1) self.loss["MSE"] += dist.mean()*opt.loss_weight elif self.opt.loss == "CD": loss, idx12, idx21 = self.labeled_chamfer_loss(all_outputs["deformed"], all_inputs["target_shape"]) self.loss["CD"] = loss self.loss["CD"] *= self.opt.loss_weight self.idx12 = idx12.to(dtype=torch.int64) self.idx21 = idx21.to(dtype=torch.int64) # S-to-S use MSE dist = torch.sum((all_outputs["deformed"][self.opt.batch_size*2:, :, :] - all_inputs["target_shape"][self.opt.batch_size*2:,:,:])**2, dim=-1) self.loss["MSE"] += dist.mean()*self.opt.loss_weight elif self.opt.loss == "MSE": dist = torch.sum((all_outputs["deformed"] - all_inputs["target_shape"])**2, dim=-1) self.loss["MSE"] += dist.mean() self.loss["MSE"] += torch.max(dist, dim=1)[0].mean() self.loss["MSE"] *= self.opt.loss_weight # self.loss["MSE"] += torch.sum((all_outputs["t_deformed"] - all_inputs["source_shape"])**2, dim=-1).mean() # ======== cage surface close to the source shape ============= # if self.opt.cshape_weight > 0: ref_surface = all_inputs["source_shape"]+0.1*all_inputs["source_normals"] loss, _, _ = self.labeled_chamfer_loss(all_outputs["cage"], ref_surface) self.loss["CSHAPE"] += loss self.loss["CSHAPE"] *= linear_loss_weight(self.opt.nepochs, progress, self.opt.cshape_weight, 0) # ======== cage center must be close to shape center ========== # if self.opt.gravity_weight > 0: cage_shift = torch.mean(all_outputs["cage"], dim=1) - torch.mean(all_inputs["source_shape"], dim=1) self.loss["GRAV"] += torch.mean(torch.nn.functional.softshrink(torch.sum(cage_shift**2, dim=-1), lambd=0.1)) # cage_shift = torch.mean(all_outputs["new_cage"], dim=1) - torch.mean(all_inputs["target_shape"], dim=1) # self.loss["GRAV"] += torch.mean(torch.nn.functional.softshrink(torch.sum(cage_shift**2, dim=-1), lambd=0.1)) self.loss["GRAV"] *= self.opt.gravity_weight # ======== penalize large unnormalized weight and/or negative weights ========== # if self.opt.mvc_weight > 0: self.loss["WREG"] += self.mvc_reg_loss(all_outputs["weight"]) * self.opt.mvc_weight # ======== feature preservation via point to surface ======== # if self.opt.p2f_weight > 0: self.loss["P2F"] = torch.mean(self.p2f_loss(all_inputs["source_shape"], all_outputs["deformed"])) self.loss["P2F"] *= linear_loss_weight(self.opt.nepochs, progress, self.opt.p2f_weight, self.opt.p2f_weight/10) # ======== feature preservation via laplacian ========== # if self.opt.slap_weight > 0: # reduction none (B,P) slap1 = torch.mean( self.shape_laplacian(all_inputs["source_shape"], all_outputs["deformed"], face=all_inputs["source_face"]).view(B,-1), dim=-1, keepdim=True) # use idx12 to get the closest points on the target, laplacian of these points compute if self.opt.blend_style and hasattr(self, "idx21"): slap1 *= (1-all_inputs["alpha"]) # slap2 = 0.5*torch.mean(self.shape_laplacian(all_outputs["deformed"], all_inputs["target_shape"], idx12=self.idx12), dim=-1) slap2 = torch.mean( self.shape_laplacian(all_outputs["deformed"], all_inputs["target_shape"], idx12=self.idx12).view(B,-1), dim=-1, keepdim=True) slap2 *= all_inputs["alpha"] self.loss["SLAP"] += slap2.mean() self.loss["SLAP"] += slap1.mean() self.loss["SLAP"] *= linear_loss_weight(self.opt.nepochs, progress, self.opt.slap_weight, self.opt.slap_weight/10) # ======== feature preservation via normal ================= # if self.opt.snormal_weight > 0: snormal1 = torch.mean( self.shape_normal_loss(all_inputs["source_shape"], all_outputs["deformed"]), dim=-1, keepdim=True) if self.opt.blend_style and hasattr(self, "idx21"): snormal1 *= (1-all_inputs["alpha"]) # snormal2 = 0.5*torch.mean(self.shape_normal_loss(all_inputs["deformed"], all_inputs["target_shape"], idx=self.idx12), dim=-1) snormal2 = torch.mean( self.shape_normal_loss(all_outputs["deformed"], all_inputs["target_shape"], idx12=self.idx12), dim=-1, keepdim=True) snormal2 *= all_inputs["alpha"] self.loss["SNORMAL"] += snormal2.mean() self.loss["SNORMAL"] += snormal1.mean() self.loss["SNORMAL"] *= linear_loss_weight(self.opt.nepochs, progress, self.opt.snormal_weight, self.opt.snormal_weight/10) # ======== enforce symmetry on cage ========== # if self.opt.sym_weight > 0: self.loss["SYM"] += self.symmetry_loss(all_outputs["deformed"]) self.loss["SYM"] += self.symmetry_loss(all_outputs["cage"]) self.loss["SYM"] *= self.opt.sym_weight # ======== enforce to stay on the ground ========== # if self.opt.ground_weight > 0: self.loss["GROUND"] += self.grounding_loss(all_inputs["source_shape"], all_outputs["deformed"]) self.loss["GROUND"] *= self.opt.ground_weight # ======== cage face angle should be larger than pi/6 ========== # if self.opt.cfangle_weight > 0: # self.loss["CFANGLE"] += self.cage_faceAngle_loss(all_outputs["cage"], edge_points=all_inputs["cage_edge_points"]) self.loss["CFANGLE"] += self.cage_faceAngle_loss(all_outputs["new_cage"], edge_points=all_inputs["cage_edge_points"]) self.loss["CFANGLE"] *= self.opt.cfangle_weight # ======== cage face angle should be larger than pi/6 ========== # if self.opt.csmooth_weight > 0: # self.loss["CSMOOTH"] += self.cage_smooth_loss(all_outputs["cage"], face=all_outputs["cage_face"]) self.loss["CSMOOTH"] += self.cage_smooth_loss(all_outputs["new_cage"], face=all_outputs["cage_face"]) self.loss["CSMOOTH"] *= self.opt.csmooth_weight # ======== penalize cage with very short edges ================= # if self.opt.cshort_weight > 0: # TODO add cage_edges to all_inputs self.loss["CEDGE"] = self.cage_shortLength_loss(all_outputs["cage"], edges=all_inputs["cage_edges"]) # self.loss["CEDGE"] = self.cage_shortLength_loss(all_outputs["t_cage"], edges=all_inputs["cage_edges"]) self.loss["CEDGE"] *= self.opt.cshort_weight # ======== require new cage similar to cage ================= # if self.opt.clap_weight > 0: self.loss["CLAP"] += self.cage_laplacian(all_outputs["cage"].expand(B,-1,-1).contiguous().detach(), all_outputs["new_cage"].contiguous(), face=all_outputs["cage_face"]) self.loss["CLAP"] *= self.opt.clap_weight # ======== penalize increasing point distance ================= # if self.opt.sstretch_weight > 0: self.loss["SSTRETCH"] += self.stretch_loss(all_outputs["source_shape"], all_outputs["deformed"])*self.opt.sstretch_weight # ======== penalize knn distance change ================= # if self.opt.sedge_weight > 0: self.loss["SEDGE"] += self.edge_loss(all_outputs["source_shape"], all_outputs["deformed"]) self.loss["SEDGE"] *= linear_loss_weight(self.opt.nepochs, progress, self.opt.sedge_weight, self.opt.sedge_weight/10) if self.opt.sfnormal_weight > 0: # randomly compare a subset of face normals self.loss["SFNORMAL"] += self.shape_fnormal_loss(all_inputs["target_mesh"], all_outputs["deformed_hr"], all_inputs["source_face"].expand(B,-1,-1)) self.loss["SFNORMAL"] *= linear_loss_weight(self.opt.nepochs, progress, self.opt.sfnormal_weight, self.opt.sfnormal_weight/10) return self.loss class FaceNormalLoss(torch.nn.Module): def __init__(self, n_faces=100): super().__init__() self.n_faces= n_faces self.cos = torch.nn.CosineSimilarity(dim=-1, eps=1e-08) def forward(self, ref_mesh_V, mesh_V, mesh_F): B, F, _ = mesh_F.shape face_sample_idx = torch.randint(min(self.n_faces, F), (B, self.n_faces, 1), dtype=torch.int64).to(device=mesh_F.device) sampled_F = torch.gather(mesh_F, 1, face_sample_idx.expand(-1,-1,3)) ref_normals,_ = compute_face_normals_and_areas(ref_mesh_V, mesh_F) normals,_ = compute_face_normals_and_areas(mesh_V, mesh_F) cos = self.cos(ref_normals, normals) return torch.mean(1-cos) class GroundingLoss(torch.nn.Module): def __init__(self, up_dim=1): super().__init__() self.up_dim = up_dim # if z is the up direction, the up_dim = 2 # previous ground stays on the ground def forward(self, source, deformed): """ source: (B,N,3) deformed: (B,N,3) """ eps = 1e-2 ground_level = torch.min(source[:,:,self.up_dim], dim=1)[0] ground_point_mask = (source[:,:,self.up_dim] - ground_level.unsqueeze(-1)).abs() < eps source_ground_level = torch.masked_select(source[:,:,self.up_dim], ground_point_mask) deformed_ground_level = torch.masked_select(deformed[:,:,self.up_dim], ground_point_mask) return torch.mean(torch.abs(source_ground_level - deformed_ground_level)) # class SymmetricPointFaceDistance(nn.Module): # def forward(self, input, input_normals, target, target_normals): class ExtPointToNearestFaceDistance(torch.nn.Module): """ for every exteror points return the squared distance to the closest face """ def __init__(self, min_dist=0.1, reduction="mean"): super().__init__() self.min_dist = min_dist self.reduction = reduction def forward(self, mesh_V, mesh_F, points, exterior_flag, mesh_FN=None): """ mesh_V (B,N,3) mesh_F (B,F,3) mesh_FN (B,F,3) points (B,P,3) exterior_flat (B,P,1) """ if mesh_FN is None: mesh_FN, _ = compute_face_normals_and_areas(mesh_V, mesh_F) mesh_FN = mesh_FN.detach() else: mesh_FN = mesh_FN.detach() B, F, _ = mesh_F.shape _, N, D = mesh_V.shape _, P, D = points.shape # (B,N,D) (B,F,3) -> (B,F,3,3) face points face_points = torch.gather(mesh_V.unsqueeze(1).expand(-1,F,-1,-1), 2, mesh_F.unsqueeze(-1).expand(-1,-1,-1,3)) # (B,F,3) face_center = torch.mean(face_points, dim=-2) # (B,P,F,3) point_to_face_center = points.unsqueeze(2) - face_center.unsqueeze(1) # point to face distance (B,P,F,3) point_to_face_signed_dist = (dot_product(point_to_face_center, mesh_FN.unsqueeze(1), dim=-1, keepdim=True)+self.min_dist) point_to_face_v = point_to_face_signed_dist * mesh_FN.unsqueeze(1) # (B,P,F) point_to_face_sqdist = torch.sum(point_to_face_v*point_to_face_v, dim=-1) # ignore faces outside the points point_to_face_sqdist.masked_fill_(point_to_face_signed_dist.squeeze(-1)<0, 1e10) # (B,P) point_to_face_sqdist, _ = torch.min(point_to_face_sqdist, dim=-1) # ignore interior points inside_flag = (~exterior_flag.view(B,P))| torch.all(point_to_face_signed_dist.view(B,P,F)<0, dim=-1) point_to_face_sqdist.masked_fill_(inside_flag, 0) if self.reduction == "mean": point_to_face_sqdist = torch.mean(point_to_face_sqdist.view(B,-1), dim=1) elif self.reduction == "max": point_to_face_sqdist = torch.max(point_to_face_sqdist.view(B,-1), dim=1)[0] elif self.reduction == "sum": point_to_face_sqdist = torch.sum(point_to_face_sqdist.view(B,-1), dim=1) elif self.reduction == "none": pass else: raise NotImplementedError point_to_face_sqdist = torch.mean(point_to_face_sqdist, dim=0) return point_to_face_sqdist class MVCRegularizer(torch.nn.Module): """ penalize MVC with large absolute value and negative values alpha * large_weight^2 + beta * (negative_weight)^2 """ def __init__(self, alpha=1.0, beta=1.0, threshold=5.0): super().__init__() self.alpha = alpha self.beta = beta self.threshold = threshold def forward(self, weights): # ignore all weights <= 5 # B, N, F, _ = loss.shape loss = 0 if self.alpha > 0: large_loss = torch.log(torch.nn.functional.relu(weights.abs()-self.threshold)+1) # large_loss = large_loss ** 2 loss += (torch.mean(large_loss)) * self.alpha if self.beta > 0: neg_loss = torch.nn.functional.relu(-weights) neg_loss = neg_loss ** 2 loss += (torch.mean(neg_loss)) * self.beta return loss class LabeledChamferDistance(torch.nn.Module): """ Learning to Sample Dovrat et.al mean_{xyz1}(nd_{1to2})+\beta*max_{xyz1}(nd_{1to2})+(\gamma+\delta|xyz1|)mean_{xyz2}(nd_{2to1}) === :param: xyz1: generated points xyz2: reference points """ def __init__(self, beta=1.0, gamma=1, delta=0): super().__init__() self.beta = beta self.gamma = gamma self.delta = delta def forward(self, xyz1, xyz2, label1=None, label2=None): P = xyz1.shape[1] if label1 is not None and label2 is not None: dist12, dist21, idx12, idx21 = labeled_nndistance(xyz1, xyz2, label1, label2) else: dist12, dist21, idx12, idx21 = nndistance(xyz1, xyz2) # pred2gt is for each element in gt, the closest distance to this element loss = torch.mean(dist12, dim=-1) + torch.max(dist12, dim=-1)[0]*self.beta + (self.gamma+self.delta*P)*(torch.mean(dist21, dim=-1)) loss = torch.mean(loss) return loss, idx12, idx21 class SymmetryLoss(torch.nn.Module): """ symmetry loss chamfer(mirrored(xyz), xyz)
self.k.vehicle.get_position(veh_id) dist = edge_len - relative_pos return dist def _convert_edge(self, edges): """Convert the string edge to a number. Start at the bottom left vertical edge and going right and then up, so the bottom left vertical edge is zero, the right edge beside it is 1. The numbers are assigned along the lowest column, then the lowest row, then the second lowest column, etc. Left goes before right, top goes before bottom. The values are zero indexed. Parameters ---------- edges : list of str or str name of the edge(s) Returns ------- list of int or int a number uniquely identifying each edge """ if isinstance(edges, list): return [self._split_edge(edge) for edge in edges] else: return self._split_edge(edges) def _split_edge(self, edge): """Act as utility function for convert_edge.""" if edge: if edge[0] == ":": # center center_index = int(edge.split("center")[1][0]) base = ((self.cols + 1) * self.rows * 2) \ + ((self.rows + 1) * self.cols * 2) return base + center_index + 1 else: pattern = re.compile(r"[a-zA-Z]+") edge_type = pattern.match(edge).group() edge = edge.split(edge_type)[1].split('_') row_index, col_index = [int(x) for x in edge] if edge_type in ['bot', 'top']: rows_below = 2 * (self.cols + 1) * row_index cols_below = 2 * (self.cols * (row_index + 1)) edge_num = rows_below + cols_below + 2 * col_index + 1 return edge_num if edge_type == 'bot' else edge_num + 1 if edge_type in ['left', 'right']: rows_below = 2 * (self.cols + 1) * row_index cols_below = 2 * (self.cols * row_index) edge_num = rows_below + cols_below + 2 * col_index + 1 return edge_num if edge_type == 'left' else edge_num + 1 else: return 0 def _get_relative_node(self, agent_id, direction): """Yield node number of traffic light agent in a given direction. For example, the nodes in a traffic light grid with 2 rows and 3 columns are indexed as follows: | | | --- 3 --- 4 --- 5 --- | | | --- 0 --- 1 --- 2 --- | | | See flow.networks.traffic_light_grid for more information. Example of function usage: - Seeking the "top" direction to ":center0" would return 3. - Seeking the "bottom" direction to ":center0" would return -1. Parameters ---------- agent_id : str agent id of the form ":center#" direction : str top, bottom, left, right Returns ------- int node number """ ID_IDX = 1 agent_id_num = int(agent_id.split("center")[ID_IDX]) if direction == "top": node = agent_id_num + self.cols if node >= self.cols * self.rows: node = -1 elif direction == "bottom": node = agent_id_num - self.cols if node < 0: node = -1 elif direction == "left": if agent_id_num % self.cols == 0: node = -1 else: node = agent_id_num - 1 elif direction == "right": if agent_id_num % self.cols == self.cols - 1: node = -1 else: node = agent_id_num + 1 else: raise NotImplementedError return node def additional_command(self): """See parent class. Used to insert vehicles that are on the exit edge and place them back on their entrance edge. """ for veh_id in self.k.vehicle.get_ids(): self._reroute_if_final_edge(veh_id) def _reroute_if_final_edge(self, veh_id): """Reroute vehicle associated with veh_id. Checks if an edge is the final edge. If it is return the route it should start off at. """ edge = self.k.vehicle.get_edge(veh_id) if edge == "": return if edge[0] == ":": # center edge return pattern = re.compile(r"[a-zA-Z]+") edge_type = pattern.match(edge).group() edge = edge.split(edge_type)[1].split('_') row_index, col_index = [int(x) for x in edge] # find the route that we're going to place the vehicle on if we are # going to remove it route_id = None if edge_type == 'bot' and col_index == self.cols: route_id = "bot{}_0".format(row_index) elif edge_type == 'top' and col_index == 0: route_id = "top{}_{}".format(row_index, self.cols) elif edge_type == 'left' and row_index == 0: route_id = "left{}_{}".format(self.rows, col_index) elif edge_type == 'right' and row_index == self.rows: route_id = "right0_{}".format(col_index) if route_id is not None: type_id = self.k.vehicle.get_type(veh_id) lane_index = self.k.vehicle.get_lane(veh_id) # remove the vehicle self.k.vehicle.remove(veh_id) # reintroduce it at the start of the network self.k.vehicle.add( veh_id=veh_id, edge=route_id, type_id=str(type_id), lane=str(lane_index), pos="0", speed="max") def get_closest_to_intersection(self, edges, num_closest, padding=False): """Return the IDs of the vehicles that are closest to an intersection. For each edge in edges, return the IDs (veh_id) of the num_closest vehicles in edge that are closest to an intersection (the intersection they are heading towards). This function performs no check on whether or not edges are going towards an intersection or not, it just gets the vehicles that are closest to the end of their edges. If there are less than num_closest vehicles on an edge, the function performs padding by adding empty strings "" instead of vehicle ids if the padding parameter is set to True. Parameters ---------- edges : str | str list ID of an edge or list of edge IDs. num_closest : int (> 0) Number of vehicles to consider on each edge. padding : bool (default False) If there are less than num_closest vehicles on an edge, perform padding by adding empty strings "" instead of vehicle ids if the padding parameter is set to True (note: leaving padding to False while passing a list of several edges as parameter can lead to information loss since you will not know which edge, if any, contains less than num_closest vehicles). Usage ----- For example, consider the following network, composed of 4 edges whose ids are "edge0", "edge1", "edge2" and "edge3", the numbers being vehicles all headed towards intersection x. The ID of the vehicle with number n is "veh{n}" (edge "veh0", "veh1"...). edge1 | | | 7 | | 8 | -------------| |------------- edge0 1 2 3 4 5 6 x edge2 -------------| |------------- | 9 | | 10| | 11| edge3 And consider the following example calls on the previous network: >>> get_closest_to_intersection("edge0", 4) ["veh6", "veh5", "veh4", "veh3"] >>> get_closest_to_intersection("edge0", 8) ["veh6", "veh5", "veh4", "veh3", "veh2", "veh1"] >>> get_closest_to_intersection("edge0", 8, padding=True) ["veh6", "veh5", "veh4", "veh3", "veh2", "veh1", "", ""] >>> get_closest_to_intersection(["edge0", "edge1", "edge2", "edge3"], 3, padding=True) ["veh6", "veh5", "veh4", "veh8", "veh7", "", "", "", "", "veh9", "veh10", "veh11"] Returns ------- str list If n is the number of edges given as parameters, then the returned list contains n * num_closest vehicle IDs. Raises ------ ValueError if num_closest <= 0 """ if num_closest <= 0: raise ValueError("Function get_closest_to_intersection called with" "parameter num_closest={}, but num_closest should" "be positive".format(num_closest)) if isinstance(edges, list): ids = [self.get_closest_to_intersection(edge, num_closest) for edge in edges] # flatten the list and return it return [veh_id for sublist in ids for veh_id in sublist] # get the ids of all the vehicles on the edge 'edges' ordered by # increasing distance to end of edge (intersection) veh_ids_ordered = sorted(self.k.vehicle.get_ids_by_edge(edges), key=self.get_distance_to_intersection) # return the ids of the num_closest vehicles closest to the # intersection, potentially with ""-padding. pad_lst = [""] * (num_closest - len(veh_ids_ordered)) return veh_ids_ordered[:num_closest] + (pad_lst if padding else []) class TrafficLightGridPOEnv(TrafficLightGridEnv): """Environment used to train traffic lights. Required from env_params: * switch_time: minimum switch time for each traffic light (in seconds). Earlier RL commands are ignored. * num_observed: number of vehicles nearest each intersection that is observed in the state space; defaults to 2 States An observation is the number of observed vehicles in each intersection closest to the traffic lights, a number uniquely identifying which edge the vehicle is on, and the speed of the vehicle. Actions The action space consist of a list of float variables ranging from 0-1 specifying whether a traffic light is supposed to switch or not. The actions are sent to the traffic light in the grid from left to right and then top to bottom. Rewards The reward is the delay of each vehicle minus a penalty for switching traffic lights Termination A rollout is terminated once the time horizon is reached. Additional Vehicles are rerouted to the start of their original routes once they
import math from collections import Counter, defaultdict from datetime import datetime import networkx as nx import numpy as np import pandas as pd import plotly.graph_objects as go import pyproj from numpy import mean, nanmean from cognite.power.data_classes import PowerAssetList # unified plotting colors _MARKER_EDGE_COLOR = "rgb(85,150,210)" _MARKER_FILL_COLOR = "rgb(230,230,230)" # univeral transverse mercator zone 32 = south norway, germany _LATLON_PROJ = "+proj=utm +zone=32, +north +ellps=WGS84 +datum=WGS84 +units=m +no_defs" _PROJECTION = pyproj.Proj(_LATLON_PROJ, preserve_units=True) def _latlon_to_xy(lat, lon): (x, y) = (lat, lon) return (x, y) def voltage_color(base_voltage: float): color_map = [ (-1e9, "000000"), (100, "000000"), (132, "9ACA3C"), (300, "20B3DE"), (420, "ED1C24"), (1e9, "ED1C24"), ] color_map = [(v, tuple(int(h[i : i + 2], 16) for i in (0, 2, 4))) for v, h in color_map] # to rgb ix_above = 0 while color_map[ix_above][0] < base_voltage: ix_above += 1 t = (base_voltage - color_map[ix_above - 1][0]) / (color_map[ix_above][0] - color_map[ix_above - 1][0]) color = [ int(color_map[ix_above - 1][1][rgb] + t * (color_map[ix_above][1][rgb] - color_map[ix_above - 1][1][rgb])) for rgb in range(3) ] c = ",".join(map(str, color)) return f"rgb({c})" def _flow_color(flow: float): return voltage_color(base_voltage=flow) def node_locations(power_area, interpolate_missing_positions=True): node_loc = { name: [ float(substation.metadata.get("PositionPoint.xPosition", math.nan)), float(substation.metadata.get("PositionPoint.yPosition", math.nan)), ] for name, substation in power_area._graph.nodes(data="object") } if interpolate_missing_positions: orphan_count = 0 for it in range(2): for s, loc in node_loc.items(): if math.isnan(loc[0]): nb_locs = [ node_loc[n] for n in nx.neighbors(power_area._graph, s) if not math.isnan(node_loc[n][0]) ] mean_loc = [sum(c) / len(nb_locs) for c in zip(*nb_locs)] if len(mean_loc) == 2: node_loc[s] = mean_loc elif it == 1: node_loc[s] = [20, 55 + orphan_count] # TODO don't hardcode this orphan_count += 1 return node_loc def node_layout(power_area, position): if position == "source": node_positions = node_locations(power_area) elif position == "project": node_positions = {n: _latlon_to_xy(*xy) for n, xy in node_locations(power_area).items()} elif position == "spring": node_positions = nx.spring_layout(power_area._graph) elif position == "kamada": node_positions = nx.kamada_kawai_layout(power_area._graph) else: raise ValueError(f"Unknown layout {position}") return node_positions def create_substation_plot(node_locations, node_plot_mode): text, x, y = zip(*[(k, v[0], v[1]) for k, v in node_locations.items()]) return go.Scatter( x=x, y=y, text=text, mode=node_plot_mode, textposition="top center", hoverinfo="text", marker=dict(size=15, line=dict(color=_MARKER_EDGE_COLOR, width=2), color=_MARKER_FILL_COLOR), ) def create_substation_map_plot(node_locations): text, lon, lat = zip(*[(k, v[0], v[1]) for k, v in node_locations.items()]) # to get an edge color we plot the same data twice with difference marker size plots = [ go.Scattermapbox(lat=lat, lon=lon, showlegend=False, marker=dict(size=17, color=_MARKER_EDGE_COLOR),), go.Scattermapbox( lat=lat, lon=lon, text=text, mode="markers", showlegend=False, hoverinfo="text", marker=dict(size=13, color=_MARKER_FILL_COLOR), textposition="top center", ), ] return plots def edge_locations(power_area, node_locations): # there is a gotcha here that having 100s of line plots is resource intensive, so making one for each # ac line segment causes computers to catch fire. To get the coloring right we create one for each # base voltage value, and then we split the line by adding nans. This makes the function unintuitive. networkx_edges = power_area._graph.edges(data=True) lons = defaultdict(list) lats = defaultdict(list) center_lons = defaultdict(list) center_lats = defaultdict(list) text = defaultdict(list) counter = Counter([(edge[0], edge[1]) for edge in list(power_area._graph.edges(data=True))]) dups = {key: 1 for key in counter if counter[key] + counter[key[::-1]] == 2} # TODO: handle 3? for acls in networkx_edges: lon, lat = zip(*[node_locations[s] for s in acls[:2]]) center_lat = mean(lat) center_lon = mean(lon) if (acls[0], acls[1]) in dups: # probably there are more elegant ways, but we want to offset the center in cases where there are multiple # lines between two substations lat_len = abs(lat[1] - lat[0]) lon_len = abs(lon[1] - lon[0]) edge_length = math.sqrt((lat_len) ** 2 + (lon_len) ** 2) center_lat += 0.005 * dups[(acls[0], acls[1])] * lon_len / edge_length center_lon += 0.005 * dups[(acls[0], acls[1])] * lat_len / edge_length dups[(acls[0], acls[1])] *= -1 base_voltage = acls[2]["object"].metadata.get("BaseVoltage_nominalVoltage", "0") lats[base_voltage] += [lat[0], center_lat, lat[1], math.nan] lons[base_voltage] += [lon[0], center_lon, lon[1], math.nan] center_lons[base_voltage].append(center_lon) center_lats[base_voltage].append(center_lat) text[base_voltage].append("{}: {} kV".format(acls[2]["object"].name, base_voltage)) return lats, lons, center_lats, center_lons, text def create_line_segment_plot(x, y, center_x, center_y, text): line_plots = [ go.Scatter( x=x[base_voltage], y=y[base_voltage], line=dict(width=2, color=voltage_color(float(base_voltage)), shape="spline", smoothing=1.3), hoverinfo="none", mode="lines", ) for base_voltage in x.keys() ] center_plots = [ go.Scatter( x=center_x[base_voltage], y=center_y[base_voltage], text=text[base_voltage], mode="markers", hoverinfo="text", marker=dict(size=0.0001, color=voltage_color(float(base_voltage))), ) for base_voltage in text.keys() ] return line_plots, center_plots def create_line_segment_map_plot(lats, lons, center_lats, center_lons, text): line_plots = [ go.Scattermapbox( mode="lines", lon=lons[base_voltage], lat=lats[base_voltage], hoverinfo="none", showlegend=False, line=dict(color=voltage_color(float(base_voltage)), width=6), ) for base_voltage in lats.keys() ] center_plots = [ go.Scattermapbox( lat=center_lats[base_voltage], lon=center_lons[base_voltage], text=text[base_voltage], mode="markers", showlegend=False, hoverinfo="text", marker=dict(size=0.0001, color=voltage_color(float(base_voltage))), ) for base_voltage in text.keys() ] return line_plots + center_plots def _np_datetime_to_ms(np_datetime): return np_datetime.astype("datetime64[ms]").astype("uint64") class PowerPlot: @staticmethod def draw_with_map(power_area, height=None): # plot substations node_locs = node_locations(power_area, interpolate_missing_positions=False) substation_plots = create_substation_map_plot(node_locs) # plot ac line segments lats, lons, center_lats, center_lons, text = edge_locations(power_area, node_locs) ac_line_segment_plots = create_line_segment_map_plot(lats, lons, center_lats, center_lons, text) center = nanmean([v for v in node_locs.values()], axis=0) fig = go.Figure( # ordering matters here: substations last so they are drawn on top data=ac_line_segment_plots + substation_plots, layout=go.Layout( hovermode="closest", mapbox_style="stamen-terrain", margin={"r": 0, "t": 0, "l": 0, "b": 0}, height=height, mapbox=dict(zoom=7, center=dict(lon=center[0], lat=center[1])), ), ) return fig @staticmethod def draw(power_area, labels="fixed", position="kamada", height=None): node_positions = node_layout(power_area, position) node_plot_mode = "markers" if labels == "fixed": node_plot_mode += "+text" # plot substations substation_plot = create_substation_plot(node_positions, node_plot_mode) # plot ac line segments lats, lons, center_lats, center_lons, text = edge_locations(power_area, node_positions) ac_line_segment_plots, ac_line_label_point_plot = create_line_segment_plot( lons, lats, center_lons, center_lats, text ) fig = go.Figure( data=ac_line_segment_plots + ac_line_label_point_plot + [substation_plot], layout=go.Layout( height=height, plot_bgcolor="rgb(250,250,250)", titlefont_size=16, showlegend=False, hovermode="closest", margin=dict(b=0, l=0, r=0, t=0), xaxis=dict(showgrid=False, zeroline=False, showticklabels=False, constrain="domain"), yaxis=dict(showgrid=False, zeroline=False, showticklabels=False, scaleanchor="x"), ), ) return fig @staticmethod def draw_flow( power_area, labels="fixed", position="kamada", height=None, timeseries_type="estimated_value", granularity="1h", date: "np.datetime64" = None, ): """ Draws power flow through the area. Args: labels,position,height: as in `draw` timeseries_type: type of time series to retrieve, i.e. value/estimated_value. granularity: time step at which to average values over, as in the Python SDK `retrieve_dataframe` function. date: datetime object at which to visualize flow, use None for now. """ node_plot_mode = "markers" if labels == "fixed": node_plot_mode += "+text" node_positions = node_layout(power_area, position) substation_plot = create_substation_plot(node_positions, node_plot_mode) lats, lons, center_lats, center_lons, text = edge_locations(power_area, node_positions) ac_line_segment_plots, ac_line_label_point_plot = create_line_segment_plot( lons, lats, center_lons, center_lats, text ) terminals = PowerAssetList( list(set(sum([list(data["terminals"].values()) for f, t, data in power_area._graph.edges(data=True)], []))), cognite_client=power_area._cognite_client, ) ts = terminals.time_series(measurement_type="ThreePhaseActivePower", timeseries_type=timeseries_type) analogs = power_area._cognite_client.assets.retrieve_multiple(ids=[t.asset_id for t in ts]) terminal_ids: List[int] = [a.parent_id for a in analogs] target_time = np.datetime64(date or datetime.now()) delta = np.timedelta64(5, "D") start = _np_datetime_to_ms((target_time - delta)) end = _np_datetime_to_ms((target_time + delta)) df = power_area._cognite_client.datapoints.retrieve_dataframe( id=[t.id for t in ts], aggregates=["average"], granularity=granularity, start=start, # TODO: split data prep and update end=end, include_aggregate_name=False, ) df.columns = terminal_ids ix = np.searchsorted(df.index, target_time, side="left") flow_values = df.iloc[ix - 1, :] title = f"flow at {df.index[ix - 1]}" distances = [ np.linalg.norm(np.array(node_positions[edge[0]]) - np.array(node_positions[edge[1]])) for edge in power_area._graph.edges ] global_arrow_scale = 0.15 * np.mean(distances) # TODO: what is reasonable here? arrow_traces = [] for f, t, data in power_area._graph.edges(data=True): terminal_map = data["terminals"] terminals = [terminal_map[f], terminal_map[t]] flow_values_t = [] for side in [0, 1]: val = np.nan if terminals[side].id in flow_values.index: val = flow_values[terminals[side].id] if isinstance(val, pd.Series): val = val.dropna() val = val.mean() if not val.empty else np.nan flow_values_t.append(val) from_pos = np.array(node_positions[f]) to_pos = np.array(node_positions[t]) from_to_vec = to_pos - from_pos distance = np.linalg.norm(from_to_vec) arrow_scale = min(global_arrow_scale, 0.3 * distance) from_to_vec /= max(distance, 0.1) if flow_values_t[0] < flow_values_t[1]: flow_vec = -from_to_vec else: flow_vec = from_to_vec orthogonal = np.array([-flow_vec[1], flow_vec[0]]) mid = (from_pos + to_pos) / 2 sign_from = math.copysign(1, flow_values_t[0]) if not np.isnan(flow_values_t[0]) else 0 arrow_from_mid = mid - 0.5 * arrow_scale * from_to_vec # arrow middle is always closer to from # direction of arrow depends on sign of flow arrow_from_tail = arrow_from_mid - 0.33 * arrow_scale * flow_vec * sign_from arrow_from_head = arrow_from_mid + 0.33 * arrow_scale * flow_vec * sign_from arrow_from_left = arrow_from_tail - orthogonal * global_arrow_scale * 0.5 arrow_from_right = arrow_from_tail + orthogonal * global_arrow_scale * 0.5 sign_to = math.copysign(1, flow_values_t[1]) if not np.isnan(flow_values_t[1]) else 0 arrow_to_mid = mid + 0.5 * arrow_scale * from_to_vec # arrow middle is always closer to to # direction of arrow depends on sign of flow arrow_to_tail = arrow_to_mid - 0.33 * arrow_scale * flow_vec * (-sign_to) arrow_to_head = arrow_to_mid + 0.33 * arrow_scale * flow_vec * (-sign_to) arrow_to_left
""" library to take autodiff and execute a computation graph """ from __future__ import absolute_import from .BatchNorm import Batch_NormalizationOp import numpy as np from scipy.sparse import spmatrix, coo_matrix from .. import ndarray from .._base import DNNL_LIB from ..cpu_links import array_set as cpu_array_set from .Variable import PlaceholderOp # add for optimizer from ..dataloader import DataloaderOp, GNNDataLoaderOp from .AllReduceCommunicate import AllReduceCommunicateOp from .ParameterServerCommunicate import ParameterServerCommunicateOp, ParameterServerSparsePullOp, parameterServerSparsePull_op from .AddElewise import add_op from .DataTransfer import DataH2DOp, DataD2HOp, DataD2HSparseOp from .EmbeddingLookUp import EmbeddingLookUp, EmbeddingLookUp_Gradient from ..optimizer import OptimizerOp from . import OnesLike from ..stream import create_stream_handle, Event from ..context import get_current_context, get_launch_config_by_traverse_nodes, assign_context_by_traverse_nodes, DeviceGroup from .PipelineSend import PipelineSendOp from .PipelineReceive import PipelineReceiveOp from .Dropout import DropoutOp from .LayerNorm import Layer_NormalizationOp from .OnesLike import OnesLikeOp from operator import add from functools import reduce import ctypes import os from time import time def path_to_lib(name): curr_path = os.path.dirname(os.path.abspath(os.path.expanduser(__file__))) lib_path = os.path.join(curr_path, '../../../build/lib/') return os.path.join(lib_path, name) def wrapped_mpi_nccl_init(init_nccl=True, devices=None): from ..communicator.mpi_nccl_comm import mpi_communicator global mpi_comm global nccl_comm if 'mpi_comm' not in globals(): mpi_comm = mpi_communicator(devices=devices) if 'nccl_comm' not in globals(): nccl_comm = mpi_comm.ncclInit() if init_nccl else None return nccl_comm def new_group_comm(devices_context=None): assert 'mpi_comm' in globals() global mpi_comm if devices_context is None: comm = mpi_comm.ncclInit() else: comm = mpi_comm.ncclGroupInit(devices_context) return comm def get_nccl_communicate(): global nccl_comm return nccl_comm def get_worker_communicate(): global ps_comm return ps_comm def worker_init(): global ps_comm ll = ctypes.cdll.LoadLibrary ps_comm = ll(path_to_lib("libps.so")) ps_comm.Init() def worker_finish(): ps_comm.Finalize() def server_init(): global ps_comm ll = ctypes.cdll.LoadLibrary ps_comm = ll(path_to_lib("libps.so")) ps_comm.Init() ps_comm.StartServer() def server_finish(): ps_comm.Finalize() def scheduler_init(): global ps_comm ll = ctypes.cdll.LoadLibrary ps_comm = ll(path_to_lib("libps.so")) ps_comm.Init() def scheduler_finish(): ps_comm.Finalize() class HetuConfig(object): __slots__ = [ 'eval_node_list', 'train_name', 'val_name', 'context', 'seed', 'np_rand', 'comm_mode', 'node_strategy', 'context_launch', 'ps_comm', 'nccl_comm', 'local_rank', 'rank', 'nrank', 'p2p_stream', 'comp_stream', 'nccl_stream', 'h2d_stream', 'd2h_stream', 'h2d_ops', 'd2h_ops', 'ps_map', 'infer_ps_map', 'dataloader_ops', 'use_sparse_pull', 'cstable_policy', 'inference', 'enable_lazy', 'bsp', 'prefetch', 'cache_bound', 'log_path', 'my_eval_nodes', 'param_allreduce_group', 'placeholder_to_arr_map', 'gpipe' ] def __init__( self, eval_node_list, train_name, val_name, ctx=None, seed=None, comm_mode=None, use_sparse_pull=True, cstable_policy=None, bsp=False, prefetch=True, enable_lazy=True, cache_bound=100, log_path=None, gpipe=False, ): ''' context: default device context comm_mode: communication mode, should be one of the following None -> Single GPU PS -> Parameter Server AllRedeuce -> MPI AllReduce Hybrid -> Parameter Server for Sparse Parameter and MPI AllReduce for Dense Parameter ''' self.gpipe = gpipe self.eval_node_list = eval_node_list self.train_name = train_name self.val_name = val_name # check context if ctx is None: ctx = get_current_context() assert ctx, 'Default context should be determined.' self.comm_mode = comm_mode self.node_strategy = {} local_gpu_devices = None context_launch = isinstance(ctx, DeviceGroup) self.context_launch = context_launch if context_launch: # with context usage launchMPI, launchPS, self.node_strategy, devices = get_launch_config_by_traverse_nodes( eval_node_list, ctx) local_gpu_devices = sorted( [dev.device_id for dev in devices if dev.local and ndarray.is_gpu_ctx(dev)]) if not launchMPI and not launchPS: self.comm_mode = None elif launchMPI and not launchPS: self.comm_mode = 'AllReduce' elif not launchMPI and launchPS: self.comm_mode = 'PS' else: self.comm_mode = 'Hybrid' # in pipeline or model parallel we have to initialize another p2p stream init_p2p_stream = len(devices) != len(ctx) # variables initialization self.seed = seed if seed else np.int64(time()) self.np_rand = np.random.RandomState(self.seed) # get attribute of communication mode self.ps_comm = None self.nccl_comm = None self.local_rank = None self.rank = None self.nrank = None ps_nrank = None if self.comm_mode == 'PS' or self.comm_mode == 'Hybrid': worker_init() self.ps_comm = get_worker_communicate() ps_rank = int(self.ps_comm.rank()) ps_nrank = int( os.environ['DMLC_NUM_WORKER']) if 'DMLC_NUM_WORKER' in os.environ else 1 if self.comm_mode == "Hybrid" or self.comm_mode == "AllReduce": self.nccl_comm = wrapped_mpi_nccl_init(devices=local_gpu_devices) elif context_launch: self.nccl_comm = wrapped_mpi_nccl_init( init_nccl=init_p2p_stream, devices=local_gpu_devices) if self.nccl_comm is not None: self.local_rank = self.nccl_comm.local_rank device_id = self.nccl_comm.dev_id self.rank = self.nccl_comm.rank self.nrank = self.nccl_comm.nrank if ps_nrank: assert ps_nrank == self.nrank elif self.comm_mode == 'PS': self.rank = ps_rank self.nrank = ps_nrank if context_launch: global mpi_comm self.local_rank = mpi_comm.local_rank device_id = mpi_comm.dev_id self.my_eval_nodes = eval_node_list self.p2p_stream = None self.param_allreduce_group = {} if context_launch: # comm_mode is None <=> only 1 model parallel instance self.context = ndarray.gpu(device_id) self.p2p_stream = create_stream_handle( self.context) if init_p2p_stream else None self.my_eval_nodes, trainable_params, has_send_recv = assign_context_by_traverse_nodes( eval_node_list, self.context, self.nccl_comm, self.p2p_stream) if (self.comm_mode == "Hybrid" or self.comm_mode == "AllReduce") and has_send_recv: # here we need to use group communicator to implement allreduce, # since not all processes use the same group groups = set([n.raw_ctx for n in trainable_params]) temp_group_comms = {} for group in groups: temp_group_comms[group] = new_group_comm(group) self.param_allreduce_group = { n: temp_group_comms[n.raw_ctx] for n in trainable_params} else: self.context = ctx on_gpu = ndarray.is_gpu_ctx(self.context) self.nccl_stream = None if self.comm_mode == "Hybrid" or self.comm_mode == "AllReduce": if on_gpu: self.nccl_stream = create_stream_handle(self.context) self.nccl_comm = get_nccl_communicate() # define streams self.comp_stream = create_stream_handle( self.context) if on_gpu else None self.h2d_stream = create_stream_handle( self.context) if on_gpu else None self.d2h_stream = create_stream_handle( self.context) if on_gpu else None self.use_sparse_pull = use_sparse_pull if self.comm_mode == 'PS' or self.comm_mode == "Hybrid" else False self.cstable_policy = cstable_policy if self.comm_mode == 'PS' or self.comm_mode == "Hybrid" else None self.prefetch = prefetch if self.comm_mode == 'PS' or self.comm_mode == 'Hybrid' else False if self.cstable_policy is not None: self.cstable_policy = self.cstable_policy.upper() self.use_sparse_pull = False self.h2d_ops = {} self.d2h_ops = {} self.ps_map = {} self.infer_ps_map = {} self.enable_lazy = False and enable_lazy # now we don't use lazy self.bsp = bsp self.cache_bound = int(cache_bound) self.log_path = log_path if log_path is not None and (self.comm_mode == 'PS' or self.comm_mode == "Hybrid"): assert os.path.isdir( log_path), 'Need to specify a work directory to save logs.' self.ps_comm.startRecord(ctypes.c_char_p(bytes(log_path, 'utf-8'))) self.placeholder_to_arr_map = dict() topo_sort_with_hook(self.my_eval_nodes, self) class Executor(object): """Executor computes values for given set of nodes in computation graph.""" def __init__(self, eval_node_dict, config=None, **kargs): """ Parameters ---------- eval_node_dict: dict of list of nodes whose values need to be computed. """ if not isinstance(eval_node_dict, dict): eval_node_dict = {'default': eval_node_dict} train_name, val_name = None, None for k, v in eval_node_dict.items(): if any([isinstance(node, OptimizerOp) for node in v]): # get the last subexecutor containing optimizer as train for ps op train_name = k else: # get the last subexecutor not containing optimizer as val for ps op val_name = k all_eval_nodes = list(set(reduce(add, eval_node_dict.values()))) if config is None: config = HetuConfig(eval_node_list=all_eval_nodes, train_name=train_name, val_name=val_name, **kargs) assert isinstance( config, HetuConfig), 'Config type %s invalid.' % str(type(config)) self.eval_node_dict = eval_node_dict self.config = config if config.gpipe: self.subexecutor = {k: SubExecutor4Gpipe(k, v, config) for k, v in eval_node_dict.items()} else: self.subexecutor = {k: SubExecutor(k, v, config) for k, v in eval_node_dict.items()} self.topo_order = find_topo_sort(config.my_eval_nodes) self.param_nodes = [node for node in self.topo_order if isinstance( node, PlaceholderOp) and node.trainable] self.comm_mode = self.config.comm_mode self.ps_comm = self.config.ps_comm self.local_rank = self.config.local_rank self.rank = self.config.rank def run(self, name='default', eval_node_list={}, feed_dict={}, convert_to_numpy_ret_vals=False): return self.subexecutor[name].run(eval_node_list, feed_dict, convert_to_numpy_ret_vals) @property def batch_num(self): assert len( self.subexecutor) == 1, 'Batch num should be used with only 1 subexecutor.' return list(self.subexecutor.values())[0].batch_num def get_batch_num(self, name='default'): return self.subexecutor[name].batch_num def save(self, file_path): assert os.path.isdir( file_path), 'Need to specify a work directory to save parameters.' if self.comm_mode in (None, 'AllReduce'): # when using allreduce, users need to specify the worker whose rank equals 0 to save for node in self.param_nodes: np.save(os.path.join(file_path, node.name + '.npy'), self.config.placeholder_to_arr_map[node].asnumpy()) else: self.ps_comm.BarrierWorker() if self.config.rank == 0: for node in self.param_nodes: if node.is_embed or self.comm_mode == 'PS': node.event.sync() nodeid = ctypes.c_int(node.id) self.ps_comm.SaveParam( nodeid, ctypes.c_char_p(bytes(file_path, 'utf-8'))) self.ps_comm.Wait(nodeid) else: np.save(os.path.join(file_path, node.name + '.npy'), self.config.placeholder_to_arr_map[node].asnumpy()) self.ps_comm.BarrierWorker() def load(self, file_path): assert os.path.isdir( file_path), 'Need to specify a work directory to load parameters.' if self.comm_mode in (None, 'AllReduce'): for node in self.param_nodes: self.config.placeholder_to_arr_map[node][:] = np.load( os.path.join(file_path, node.name + '.npy')) else: self.ps_comm.BarrierWorker() if self.config.rank == 0: for node in self.param_nodes: if node.is_embed or self.comm_mode == 'PS': node.event.sync() nodeid = ctypes.c_int(node.id) self.ps_comm.LoadParam( nodeid, ctypes.c_char_p(bytes(file_path, 'utf-8'))) node.event.update() self.ps_comm.BarrierWorker() for node in self.topo_order: if isinstance(node, PlaceholderOp) and node.trainable and not node.is_embed: if self.comm_mode == 'PS': node.event.sync() nodeid = ctypes.c_int(node.id) self.ps_comm.Pull( nodeid, self.config.ps_map[node].handle) node.event.update() else: self.config.placeholder_to_arr_map[node][:] = np.load( os.path.join(file_path, node.name + '.npy')) elif isinstance(node, EmbeddingLookUp) and self.config.prefetch: node.event.sync() nodeid = ctypes.c_int(node.inputs[0].id) self.ps_comm.SparsePull(nodeid, node.inputs[1].get_next_arr( self.name).handle, self.config.ps_map[node.inputs[0]].handle) node.event.update() self.ps_comm.BarrierWorker() def recordLoads(self): for node in self.config.ps_map: node.event.sync() self.ps_comm.getLoads() def __del__(self): if self.config.comp_stream is not None: self.config.comp_stream.sync() if self.config.h2d_stream is not None: self.config.h2d_stream.sync() if self.config.d2h_stream is not None: self.config.d2h_stream.sync() if self.config.nccl_stream is not None: self.config.nccl_stream.sync() for node in self.param_nodes: if node.event: node.event.sync() if self.comm_mode in ('PS', 'Hybrid'): worker_finish() class SubExecutor4Gpipe(object): def __init__(self, name, eval_node_list, config): """ Parameters ---------- eval_node_list: list of nodes whose values need to be computed. topo_order: list of
# constants PROBE_SPACING = 100000 MAX_HEIGHT = 4 ABERRATION_HEIGHTS = { 'DEL': -1.0, 'DUP': +1.0, 'TDUP': +1.5, 'IDUP': +0.5, 'INV': -0.5, 'INS': -1.5, 'BND': -2.0, 'TRA': -2.0, } # Hard-coded data about GRCh37 follows. # Whenever GRCh38 becomes relevant, use external .fai and .bed files instead. CONTIG_LENGTHS_37 = { '1': 249250621, '2': 243199373, '3': 198022430, '4': 191154276, '5': 180915260, '6': 171115067, '7': 159138663, '8': 146364022, '9': 141213431, '10': 135534747, '11': 135006516, '12': 133851895, '13': 115169878, '14': 107349540, '15': 102531392, '16': 90354753, '17': 81195210, '18': 78077248, '19': 59128983, '20': 63025520, '21': 48129895, '22': 51304566, 'X': 155270560, 'Y': 59373566, } CONTIG_LENGTHS_38 = { '1': 248956422, '2': 242193529, '3': 198295559, '4': 190214555, '5': 181538259, '6': 170805979, '7': 159345973, '8': 145138636, '9': 138394717, '10': 133797422, '11': 135086622, '12': 133275309, '13': 114364328, '14': 107043718, '15': 101991189, '16': 90338345, '17': 83257441, '18': 80373285, '19': 58617616, '20': 64444167, '21': 46709983, '22': 50818468, 'X': 15604089, 'Y': 57227415, } N_INTERVALS_38 = { '1': [ (0, 10000), (207666, 257666), (297968, 347968), (535988, 585988), (2702781, 2746290), (12954384, 13004384), (16799163, 16849163), (29552233, 29553835), (121976459, 122026459), (122224535, 122224635), (122503147, 122503247), (124785432, 124785532), (124849129, 124849229), (124932724, 124932824), (124977944, 124978326), (125013060, 125013223), (125026048, 125026071), (125029104, 125029169), (125103213, 125103233), (125130246, 125131847), (125171347, 125173583), (125184587, 143184587), (223558935, 223608935), (228558364, 228608364), (248946422, 248956422), ], '2': [ (0,10000), (16145119, 16146119), (89330679, 89530679), (89685992, 89753992), (90402511, 91402511), (92138145, 92188145), (94090557, 94140557), (94293015, 94496015), (97439618, 97489618), (238903659, 238904047), (242183529, 242193529), ], '3': [ (0, 10000), (90550102, 90550202), (90565295, 90568828), (90699772, 90699792), (90722458, 90772458), (91233586, 91233686), (91247622, 91247722), (91249905, 91256421), (91257890, 91260180), (91265381, 91276994), (91282175, 91282734), (91291069, 91291218), (91345078, 91345173), (91364131, 91364151), (91438798, 91438818), (91553319, 91553419), (93655574, 93705574), (198235559, 198285559), (198285559, 198295559), ], '4': [ (0, 10000), (1429358, 1434206), (1435794, 1441552), (8797477, 8816477), (9272916, 9322916), (31819295, 31832569), (31835775, 31835795), (32833016, 32839016), (49336924, 49486924), (49658100, 49708100), (49711961, 49712061), (51743951, 51793951), (58878793, 58921381), (190123121, 190173121), (190204555, 190214555), ], '5': [ (0, 10000), (17530548, 17580548), (46435900, 46485900), (46569062, 46569162), (46796725, 46796825), (47061288, 47061388), (47069162, 47073730), (47078603, 47078720), (47079733, 47082080), (47106894, 47106994), (47153339, 47153439), (47296069, 47296169), (47300585, 47306086), (47309084, 47309184), (49591369, 49591469), (49592920, 49599323), (49600986, 49601086), (49603131, 49609714), (49611721, 49612096), (49618994, 49621605), (49628165, 49630729), (49633793, 49641815), (49646823, 49646923), (49650573, 49656261), (49661871, 49666173), (49667431, 49667531), (49721203, 49721303), (50059807, 50109807), (139452659, 139453659), (155760324, 155761324), (181478259, 181528259), (181528259, 181538259), ], '6':[ (0, 10000), (10000, 60000), (58453888, 58553888 ), (59829934, 60229934 ), (61357029, 61363066 ), (61370554, 61371372 ), (61378482, 61378582 ), (61381502, 61381602 ), (61393846, 61393946 ), (61398161, 61398261 ), (95020790, 95070790 ), (167591393, 167641393), (170745979, 170795979), (170795979, 170805979), ], '7': [ (0, 10000), (237846, 240242), (58119653, 58169653), (60828234, 60878234), (61063378, 61063426), (61327788, 61377788), (61528020, 61578020), (61964169, 61967063), (61976104, 62026104), (62456779, 62506779), (143650804, 143700804), (159335973, 159345973), ], '8': [ (0, 10000), (10000, 60000), (7617127, 7667127), (12234345, 12284345), (43983744, 44033744), (45877265, 45927265), (85664222, 85714222), (145078636, 145128636), (145128636, 145138636), ], '9':[ (0, 10000), (40529470, 40529480), (40537052, 40537134), (40547487, 40547497), (40561938, 40561948), (41225986, 41229378), (41237752, 41238504), (43222167, 43236167), (43240559, 43240579), (43254332, 43254352), (43263290, 43263820), (43268730, 43268750), (43270944, 43274935), (43276248, 43276457), (43281323, 43282956), (43332174, 43333269), (43370405, 43371325), (43377453, 43382279), (43389535, 43389635), (45518558, 60518558), (60688432, 60738432), (60779521, 60829521), (61003887, 61053887), (61231966, 61281966), (61468808, 61518808), (61735368, 61785368), (62149738, 62249738), (62748832, 62798832), (62958371, 63008371), (63202862, 63252862), (63492264, 63542264), (63918447, 63968447), (64135013, 64185013), (64215162, 64315162), (64998124, 65048124), (65080082, 65130082), (65325123, 65375123), (65595191, 65645191), (66391387, 66591387), (67920552, 68220552), (134183092, 134185536), (138334717, 138384717), (138384717, 138394717), ], '10':[ (0, 10000), (38529907, 38573338), (38906036, 38911580), (38913438, 38918269), (39229918, 39230136), (39238955, 39239118), (39254773, 39254793), (39338430, 39338450), (39341685, 39341705), (39409792, 39410237), (39479351, 39479371), (39497198, 39497296), (39570652, 39570672), (39585287, 39590435), (39593013, 39597435), (39598812, 39598832), (39602699, 39606089), (39607431, 39607451), (39613189, 39615618), (39617141, 39617255), (39622353, 39625274), (39635037, 39635057), (39636682, 39686682), (39935900, 39936000), (41497440, 41497540), (41545720, 41545820), (41593521, 41693521), (41916265, 42066265), (47780368, 47870368), (124121200, 124121502), (131597030, 131597130), (133690466, 133740466), (133787422, 133797422), ], '11': [ (0, 10000), (10000, 60000), (50821348, 50871348), (50871348, 51078348), (51090317, 51090417), (54342399, 54342499), (54425074, 54525074), (70955696, 71055696), (87978202, 88002896), (96566178, 96566364), (135076622, 135086622), ], '12': [ (0, 10000), (7083650, 7084650), (34719407, 34769407), (34816611, 34816711), (34820185, 34820285), (34822289, 34829237), (34832088, 34832188), (34835195, 34835295), (37185252, 37235252), (37240944, 37245716), (37255332, 37257055), (37333222, 37333242), (37334747, 37334767), (37379851, 37380460), (37460032, 37460128), (132223362, 132224362), (133265309, 133275309), ], '13': [ (0, 10000), (10000, 16000000), (16022537, 16022637), (16110659, 16110759), (16164892, 16164992), (16228527, 16228627), (16249297, 16249397), (16256067, 16256167), (16259412, 16259512), (16282073, 16282173), (17416384, 17416484), (17416824, 17416924), (17417264, 17417364), (17418562, 17418662), (18051248, 18071248), (18071248, 18171248), (18358106, 18408106), (86202979, 86252979), (111703855, 111753855), (111793441, 111843441), (113673020, 113723020), (114354328, 114364328), ], '14': [ (0, 10000), (10000, 16000000), (16022537, 16022637), (16053976, 16054459), (16061677, 16061993), (16086625, 16089562), (16096530, 16096630), (16105376, 16113232), (16130858, 16133335), (16140527, 16140627), (16228649, 16228749), (16282882, 16282982), (16346517, 16346617), (16367287, 16367387), (16374057, 16374157), (16377402, 16377502), (16400063, 16400163), (16404348, 16404448), (17538659, 17538759), (17539099, 17539199), (17539539, 17539639), (17540837, 17540937), (18173523, 18223523), (18712644, 18862644), (19511713, 19611713), (106883718, 107033718), (107033718, 107043718), ], '15': [ (0, 10000), (10000,17000000), (17049135, 17049334), (17076577, 17076597), (17083573, 17083673), (17498951, 17499051), (18355008, 18355108), (19725254, 19775254), (20689304, 20729746), (21193490, 21242090), (21778502, 21828502), (22308242, 22358242), (23226874, 23276874), (84270066, 84320066), (101981189, 101991189), ], '16': [ (0, 10000), (18436486, 18486486), (33214595, 33264595), (33392411, 33442411), (34289329, 34339329), (34521510, 34571510), (34576805, 34580965), (34584085, 34584622), (36260386, 36260628), (36261158, 36311158), (36334460, 36334560), (36337566, 36337666), (38265669, 38265769), (38269096, 38275758), (38280682, 46280682), (46280682, 46380682), (90228345, 90328345), (90328345, 90338345), ], '17': [ (0, 10000), (10000, 60000), (448188, 488987), (490395, 491111), (21795850, 21814103), (21860937, 21860957), (21976511, 21976531), (21983452, 21983554), (21984549, 21985100), (21992061, 22042061), (22089188, 22089410), (22763679, 22813679), (23194918, 23195018), (26566633, 26566733), (26616164, 26616264), (26627010, 26627349), (26638554, 26638627), (26640334, 26640620), (26643468, 26643843), (26698590, 26698998), (26720420, 26721376), (26735204, 26735774), (26805755, 26805775), (26820065, 26820266), (26859724, 26860166), (26876740, 26876850), (26880254, 26880354), (26885980, 26935980), (81742542, 81792542), (81796281, 81797727), (81798717, 81799133), (83247441, 83257441), ], '18': [ (0, 10000), (15410899, 15460899), (15780377, 15780477), (15788380, 15791047), (15797755, 15797855), (20561439, 20561539), (20564714, 20571466), (20582635, 20582735), (20603147, 20603247), (20696289, 20696389), (20736025, 20736125), (20813083, 20813183), (20830724, 20831341), (20835547, 20835592), (20839697, 20839797), (20861206, 20911206), (46969912, 47019912), (54536574, 54537528), (80263285, 80363285), (80363285, 80373285), ], '19': [ (24448980, 24498980), (24552652, 24552752), (24891256, 24891356), (24895790, 24895890), (24898313, 24904771), (24908589, 24908689), (27190874, 27240874), (58607616, 58617616), ], '20': [ (0, 10000), (10000, 60000), (63215, 63840), (66235, 66335), (26348365, 26348390), (26364240, 26365414), (26382164, 26382616), (26386232, 26436232), (26586955, 26587055), (26590875, 26596363), (26608045, 26608145), (28494539, 28494639), (28499358, 28504764), (28508897, 28508997), (28556953, 28557053), (28646195, 28646295), (28648008, 28648108), (28728874, 28728974), (28751119, 28752590), (28754750, 28754770), (28757831, 28757851), (28790010, 28790158), (28820603, 28820663), (28843401, 28859997), (28861347, 28861367), (28867524, 28868452), (28875884, 28875904), (28889198, 28889218), (28890335, 28896362), (29125693, 29125793), (29204668, 29204768), (29271546, 29271826), (29307456, 29307476), (29315342, 29315821), (29362154, 29362183), (29412507, 29413577), (29447838, 29447883), (29452158, 29452178), (29538733, 29538783), (29540234, 29540284), (29556103, 29556141), (29562970, 29563363), (29564411, 29565353), (29592644, 29592737), (29651590, 29651610), (29697363, 29697630), (29884750, 29884850), (29917304, 29917404), (30038348, 30088348), (30425128, 30456077), (30761898, 30811898), (31001508, 31051508), (31107036, 31157036), (31159119, 31161625), (64334167, 64434167), (64434167, 64444167), ], '21': [ (0, 10000), (10000, 5010000), (5166246, 5216246), (5393558, 5443558), (5449012, 5499012), (5627596, 5677596), (5796009, 5846009), (5916593, 5966593), (6161371, 6211371), (6377258, 6427258), (6580181, 6630181), (6739085, 6789085), (6934219, 6984219), (7149527, 7199527), (7327865, 7377865), (7500890, 7550890), (7693700, 7743700), (7865746, 7915746), (8049839, 8099839), (8260971, 8310971), (8472360, 8522360), (8706715, 8756715), (8886604, 8986604), (9196087, 9246087), (9377143, 9527143), (10169868, 10269868), (10274327, 10324327), (10814560, 10864560), (10887097, 10887197), (10975219, 10975319), (11029452, 11029552), (11093087, 11093187), (11113857, 11113957), (11120627, 11120727), (11123972, 11124072), (11146633, 11146733), (12280944, 12281044), (12281384, 12281484), (12281824, 12281924), (12283122, 12283222), (12915808, 12965808), (41584292, 41584392), (43212462, 43262462), (46699983, 46709983), ], '22': [ (0, 10000), (10000, 10510000), (10784643, 10834643), (10874572, 10924572), (10966724, 11016724), (11068987, 11118987), (11160921, 11210921), (11378056, 11428056), (11497337, 11547337), (11631288, 11681288), (11724629, 11774629), (11977555, 12027555), (12225588, 12275588), (12438690, 12488690), (12641730, 12691730), (12726204, 12776204), (12818137, 12868137), (12904788, 12954788), (12977325, 12977425), (12986171, 12994027), (13011653, 13014130), (13021322, 13021422), (13109444, 13109544), (13163677, 13163777), (13227312, 13227412), (13248082, 13248182), (13254852, 13254952), (13258197, 13258297), (13280858, 13280958), (13285143, 13285243), (14419454, 14419554), (14419894, 14419994), (14420334, 14420434), (14421632, 14421732), (15054318, 15154318), (16279672, 16302843), (16304296, 16305427), (16307048, 16307605), (16310302, 16310402), (16313516, 16314010), (18239129, 18339129), (18433513, 18483513), (18659564, 18709564), (49973865, 49975365), (50808468, 50818468), ], 'X': [ (0, 10000), (44821, 94821), (133871, 222346), (226276, 226351), (1949345, 2132994), (2137388, 2137488), (37099262, 37285837 ), (49348394, 49528394 ), (50228964, 50278964 ), (58555579, 58605579 ), (62412542, 62462542 ), (114281198, 114331198), (115738949, 115838949), (116557779, 116595566), (120879381, 120929381), (144425606, 144475606), (156030895, 156040895), ], 'Y': [ (0, 10000), (44821, 94821), (133871, 222346), (226276, 226351), (1949345, 2132994), (2137388, 2137488), (9046914, 9055174), (9057608, 9107608), (9111868, 9112715), (9114319, 9116371), (9403713, 9453713), (10266944, 10316944), (10544039, 10594039), (10633440, 10645833), (10649989, 10651421), (10669737, 10670732), (10674058, 10676544), (10679715, 10682442), (10691573, 10691902), (10694192, 10744192), (10747280, 10747305), (10809671, 10810479), (10816758, 10817292), (10852900, 10855135), (10871218, 10871897), (10890419, 10891942), (10896525, 10898184), (10908519, 10909101), (10922486, 10923564), (10956868, 10957767), (10961625, 10962533), (10965694, 10967284), (10969992, 10970620), (10986652, 10986677), (11002276, 11003059), (11012528, 11013046), (11016992, 11017247), (11023374, 11024266), (11028342, 11029160), (11036252, 11037032), (11592902, 11642902), (11647442, 11647709), (11653064, 11653102), (11660374, 11662181), (11663986, 11664006), (11669948, 11670088), (11671800, 11671820), (11673795, 11674123), (20207793, 20257793), (21739542, 21741441), (21747863, 21748371), (21750013, 21750314), (21789281, 21805281), (26673214, 56673214), (56771509, 56821509), (57217415, 57227415), ], } # Intervals at which the reference contains N bases N_INTERVALS_37 = { '1': [ (0, 10000), (177417, 227417), (267719, 317719), (471368, 521368), (2634220, 2684220), (3845268, 3995268), (13052998, 13102998), (13219912, 13319912), (13557162, 13607162), (17125658, 17175658), (29878082, 30028082), (103863906, 103913906), (120697156, 120747156), (120936695, 121086695), (121485434, 142535434), (142731022, 142781022), (142967761, 143117761), (143292816, 143342816), (143544525, 143644525), (143771002, 143871002), (144095783, 144145783), (144224481, 144274481), (144401744, 144451744), (144622413, 144672413), (144710724, 144810724), (145833118, 145883118), (146164650, 146214650), (146253299, 146303299), (148026038, 148176038), (148361358, 148511358), (148684147, 148734147), (148954460, 149004460), (149459645, 149509645), (205922707, 206072707), (206332221, 206482221), (223747846, 223797846), (235192211, 235242211), (248908210, 249058210), (249240621, 249250621), ], '2': [ (0, 10000), (3529312, 3579312), (5018788, 5118788), (16279724, 16329724), (21153113, 21178113), (31725939, 31726790), (33092197, 33093197), (33141692, 33142692), (87668206, 87718206), (89630436, 89830436), (90321525, 90371525), (90545103, 91595103), (92326171, 95326171), (110109337, 110251337), (149690582, 149790582), (234003741, 234053741), (239801978, 239831978), (240784132, 240809132), (243102476, 243152476), (243189373, 243199373), ], '3': [ (0, 60000), (66170270, 66270270), (90504854, 93504854), (194041961, 194047251), (197962430, 198022430), ], '4': [ (0, 10000), (1423146, 1478646), (8799203, 8818203), (9274642, 9324642), (31820917, 31837417), (32834638, 32840638), (40296396, 40297096), (49338941, 49488941), (49660117, 52660117), (59739333, 59789333), (75427379, 75452279), (191044276, 191154276), ], '5': [ (0, 10000), (17530657, 17580657), (46405641, 49405641), (91636128, 91686128), (138787073, 138837073), (155138727, 155188727), (180905260, 180915260), ], '6': [ (0, 60000), (58087659, 58137659), (58780166, 61880166), (62128589, 62178589), (95680543, 95830543), (157559467, 157609467), (157641300, 157691300), (167942073, 168042073), (170279972, 170329972), (171055067, 171115067), ], '7': [ (0, 10000), (232484, 282484), (50370631, 50410631), (58054331, 61054331), (61310513, 61360513), (61460465, 61510465), (61677020, 61727020), (61917157, 61967157), (74715724, 74765724), (100556043, 100606043), (130154523, 130254523), (139379377, 139404377), (142048195, 142098195), (142276197, 142326197), (143347897, 143397897), (154270634, 154370634), (159128663, 159138663), ], '8': [ (0, 10000), (7474649, 7524649), (12091854, 12141854), (43838887, 46838887), (48130499, 48135599), (86576451, 86726451), (142766515, 142816515), (145332588, 145432588), (146304022, 146364022), ], '9': [ (0, 10000), (39663686, 39713686), (39974796, 40024796), (40233029, 40283029), (40425834, 40475834), (40940341, 40990341), (41143214, 41193214), (41365793, 41415793), (42613955, 42663955), (43213698, 43313698), (43946569, 43996569), (44676646, 44726646), (44908293, 44958293), (45250203, 45350203), (45815521, 45865521), (46216430, 46266430), (46461039, 46561039), (47060133, 47160133), (47317679, 65467679), (65918360, 65968360), (66192215, 66242215), (66404656, 66454656), (66614195, 66664195), (66863343, 66913343), (67107834, 67207834), (67366296, 67516296), (67987998, 68137998), (68514181, 68664181), (68838946, 68988946), (69278385, 69328385), (70010542, 70060542), (70218729, 70318729), (70506535, 70556535), (70735468, 70835468), (92343416, 92443416), (92528796, 92678796), (133073060, 133223060), (137041193, 137091193), (139166997, 139216997), (141153431, 141213431), ], '10': [ (0, 60000), (17974675, 18024675), (38818835, 38868835), (39154935, 42354935), (42546687, 42596687), (46426964, 46476964), (47429169, 47529169), (47792476, 47892476), (48055707, 48105707), (49095536, 49195536), (51137410, 51187410), (51398845, 51448845), (125869472, 125919472), (128616069, 128766069), (133381404, 133431404), (133677527, 133727527), (135524747, 135534747), ], '11': [ (0, 60000), (1162759, 1212759), (50783853, 51090853), (51594205, 54694205), (69089801, 69139801), (69724695, 69774695), (87688378, 87738378), (96287584, 96437584), (134946516, 135006516), ], '12': [ (0, 60000), (95739, 145739), (7189876, 7239876), (34856694, 37856694), (109373470, 109423470), (121965036, 121965236), (122530623, 122580623), (123928080, 123928280), (132706992, 132806992), (133841895, 133851895), ], '13': [ (0, 19020000), (86760324, 86910324), (112353994, 112503994), (114325993, 114425993), (114639948, 114739948), (115109878, 115169878), ], '14': [ (0, 19000000), (107289540, 107349540), ], '15': [ (0, 20000000), (20894633, 20935075), (21398819, 21885000), (22212114, 22262114), (22596193, 22646193), (23514853, 23564853), (29159443, 29209443), (82829645, 82879645), (84984473, 85034473), (102521392, 102531392), ], '16': [ (0, 60000), (8636921, 8686921), (34023150, 34173150), (35285801, 46385801), (88389383, 88439383), (90294753, 90354753), ], '17': [ (296626, 396626), (21566608, 21666608), (22263006, 25263006), (34675848, 34725848), (62410760, 62460760), (77546461, 77596461), (79709049, 79759049), ], '18': [ (0, 10000), (15410898, 18510898), (52059136, 52209136), (72283353, 72333353), (75721820, 75771820), (78017248, 78077248), ], '19': [ (0, 60000), (7346004, 7396004), (8687198, 8737198), (20523415, 20573415), (24631782, 27731782), (59118983, 59128983), ], '20': [ (0, 60000), (26319569, 29419569), (29653908, 29803908), (34897085, 34947085), (61091437, 61141437), (61213369, 61263369), (62965520, 63025520), ], '21': [ (0, 9411193), (9595548, 9645548), (9775437, 9825437), (10034920, 10084920), (10215976, 10365976), (10647896, 10697896), (11188129, 14338129), (42955559, 43005559), (43226828, 43227328), (43249342, 43250842), (44632664, 44682664), (48119895, 48129895), ], '22': [ (0, 16050000), (16697850, 16847850), (20509431, 20609431), (50364777, 50414777), (51244566, 51304566), ], 'X': [ (0, 60000), (94821, 144821), (231384, 281384), (1047557, 1097557), (1134113, 1184113), (1264234, 1314234), (2068238, 2118238), (7623882, 7673882), (10738674, 10788674), (37098256, 37148256), (49242997, 49292997), (49974173, 50024173), (52395914, 52445914), (58582012, 61682012), (76653692, 76703692), (113517668, 113567668), (115682290, 115732290), (120013235, 120063235), (143507324, 143557324), (148906424, 148956424), (149032062, 149082062), (152277099, 152327099), (155260560, 155270560), ], 'Y': [ (0, 2649520), (8914955, 8964955), (9241322, 9291322), (10104553, 13104553), (13143954, 13193954), (13748578, 13798578), (20143885, 20193885), (22369679, 22419679), (23901428, 23951428), (28819361, 58819361), (58917656, 58967656), (59034049, 59373566), ] } CHROM_RENAME = {'X': '23', 'Y': '24'} CGH_TEMPLATE_37 = u""" <data formatVersion="2"> <pgdData><pgdDataEntry key="SPECIMEN_TYPE" value="BLASTOMERE"/></pgdData> <noResults> </noResults> <pgd_reagents/> <cgh mother="-1" father="-1" genomeBuild="hg19" softwareVersion="4.8.32" batched="false"> <submission design="031035" feFile="{}.txt" cghFile="{}.cgh" scanDate="1462520414000" barcode="{}" sampleCy3="true"> <notes/> <sample sampleId="{}" male="{}"><phenotype/></sample> <reference sampleId="Promega {}" male="{}"><phenotype/></reference> <extra> <datum category="Nanodrop" type="Sample DNA (ng)" dataType="Float"/> <datum category="Sample Extraction" type="Sample Arrival Date" dataType="Date"/> <datum category="Sample Extraction" type="Specimen Type" dataType="List">Blood</datum> <datum category="Labelling" type="Lab User" dataType="String"/> <datum category="Hyb &amp; Wash" type="Cot1 Batch" dataType="String"/> <datum category="Sample Extraction" type="Extraction Method" dataType="String"/> <datum category="General" type="Reference Concentration" dataType="Float"/> <datum category="Sample Extraction" type="A260/A280" dataType="Float"/> <datum category="General" type="Assigned Technologist" dataType="String">MF</datum> <datum category="Nanodrop" type="Reference DNA (pmoles)" dataType="Float"/> <datum category="Labelling" type="Columns Used" dataType="List">Qiagen</datum> <datum category="Nanodrop" type="Sample DNA (A260/A280)" dataType="Float"/> <datum category="Labelling" type="Column Batch No" dataType="String"/> <datum category="Sample Extraction" type="Extracted By" dataType="String"/> <datum category="Hyb &amp; Wash" type="Hyb Protocol" dataType="String"/> <datum category="Labelling" type="Experiment Date" dataType="Date"/> <datum category="General" type="Case Status" dataType="List"/> <datum category="Labelling" type="Lab Notes" dataType="Text"/> <datum category="Hyb &amp; Wash" type="Hyb Buffer Batch" dataType="String"/> <datum category="Nanodrop" type="Reference DNA (A260/A280)" dataType="Float"/> <datum category="Labelling" type="Labelling Reagent Batch No" dataType="String"/> <datum category="Hyb &amp; Wash" type="Wash Protocol" dataType="String"/> <datum category="Labelling" type="Labelling Protocol" dataType="List">Enzo</datum> <datum category="Nanodrop" type="Reference DNA (ng)" dataType="Float"/> <datum category="Nanodrop" type="Sample DNA (pmoles)" dataType="Float"/> </extra> </submission> <excludedRegions> </excludedRegions> <qc> <aqf key="SPIKES" value="null"/> <aqf key="DLRSPREAD" value="0.1"/> <aqf key="RED_SIGNAL_INTENSITY" value="1000.0"/> <aqf key="GREEN_SIGNAL_INTENSITY" value="1000.0"/> <aqf key="BG_NOISE_RED" value="5.0"/> <aqf key="BG_NOISE_GREEN" value="5.0"/> <aqf key="RED_SNR" value="100.0"/> <aqf key="GREEN_SNR" value="100.0"/> <aqf key="COMPARATIVE_SIGNAL_INTENSITY" value="0.11111111111"/> <aqf key="REPRODUCIBILITY_GREEN" value="0.1111111"/> <aqf key="REPRODUCIBILITY_RED" value="0.1111111"/> <aqf key="NEG_CONTROL_RED" value="1.1111111"/> <aqf key="NEG_CONTROL_GREEN" value="1.1111111"/> <aqf key="FLAG_PERC" value="0.00722363"/> <aqf key="SAT_PERC" value="0.0"/> <aqf key="WAVINESS" value="0.0011111"/> <aqf key="SNP_TROUGH_PEAK_RATIO" value="null"/> <aqf key="SNP_GREY_AREA" value="null"/> <aqf key="SNP_Red_Signal_Intensity" value="NaN"/> <aqf key="SNP_Green_Signal_Intensity" value="NaN"/> <aqf key="SNP_Ratio_Separation" value="0.0"/> <aqf key="Percentage_Homozygosity" value="NaN"/> <aqf key="SD" value="0.111111"/> </qc> <probes></probes> <segmentation type="NORMALIZED"></segmentation> </cgh> </data> """ CGH_TEMPLATE_38 = u""" <data formatVersion="2"> <pgdData><pgdDataEntry key="SPECIMEN_TYPE" value="BLASTOMERE"/></pgdData> <noResults> </noResults> <pgd_reagents/> <cgh mother="-1" father="-1" genomeBuild="hg38" softwareVersion="4.10.41" batched="false"> <submission design="031035" feFile="{}.txt" cghFile="{}.cgh" scanDate="1462520414000" barcode="{}" sampleCy3="true"> <notes/> <sample sampleId="{}" male="{}"><phenotype/></sample> <reference sampleId="Promega {}" male="{}"><phenotype/></reference> <extra> <datum category="Nanodrop" type="Sample DNA (ng)" dataType="Float"/> <datum category="Sample Extraction" type="Sample Arrival
try: self._Reset() if self._Scanbeam is None: return True botY = self._PopScanbeam() while True: self._InsertLocalMinimaIntoAEL(botY) self._HorzJoins = None self._ProcessHorizontals() topY = self._PopScanbeam() if not self._ProcessIntersections(botY, topY): return False self._ProcessEdgesAtTopOfScanbeam(topY) botY = topY if self._Scanbeam is None and self._CurrentLocMin is None: break for outRec in self._PolyOutList: if outRec.pts is None: continue _FixupOutPolygon(outRec) if outRec.pts is None: continue if (outRec.isHole ^ self.ReverseSolution) == ( self._Area(outRec.pts) > 0.0 ): _ReversePolyPtLinks(outRec.pts) if self._JoinList is not None: self._JoinCommonEdges() if self.ForceSimple: self._DoSimplePolygons() return True finally: self._JoinList = None self._HorzJoins = None # except: # return False def Execute( self, clipType, solution, subjFillType=PolyFillType.EvenOdd, clipFillType=PolyFillType.EvenOdd, ): if self._ExecuteLocked: return False try: self._ExecuteLocked = True self._UsingPolyTree = True del solution[:] self._SubjFillType = subjFillType self._ClipFillType = clipFillType self._ClipType = clipType result = self._ExecuteInternal() if result: self._BuildResult(solution) finally: self._ExecuteLocked = False self._UsingPolyTree = False return result def Execute2( self, clipType, solutionTree, subjFillType=PolyFillType.EvenOdd, clipFillType=PolyFillType.EvenOdd, ): if self._ExecuteLocked: return False try: self._ExecuteLocked = True self._UsingPolyTree = True solutionTree.Clear() self._SubjFillType = subjFillType self._ClipFillType = clipFillType self._ClipType = clipType result = self._ExecuteInternal() if result: self._BuildResult2(solutionTree) finally: self._ExecuteLocked = False self._UsingPolyTree = False return result def _BuildResult(self, polygons): for outRec in self._PolyOutList: if outRec is None: continue cnt = _PointCount(outRec.pts) if cnt < 3: continue poly = [] op = outRec.pts for _ in range(cnt): poly.append(op.pt) op = op.prevOp polygons.append(poly) return def _BuildResult2(self, polyTree): for outRec in self._PolyOutList: if outRec is None: continue cnt = _PointCount(outRec.pts) if cnt < 3: continue _FixHoleLinkage(outRec) # add nodes to _AllNodes list ... polyNode = PolyNode() polyTree._AllNodes.append(polyNode) outRec.PolyNode = polyNode op = outRec.pts while True: polyNode.Contour.append(op.pt) op = op.prevOp if op == outRec.pts: break # build the tree ... for outRec in self._PolyOutList: if outRec.PolyNode is None: continue if outRec.FirstLeft is None: polyTree._AddChild(outRec.PolyNode) else: outRec.FirstLeft.PolyNode._AddChild(outRec.PolyNode) return # =============================================================================== # OffsetPolygons (+ ancilliary functions) # =============================================================================== def _GetUnitNormal(pt1, pt2): if pt2.x == pt1.x and pt2.y == pt1.y: return FloatPoint(0.0, 0.0) dx = float(pt2.x - pt1.x) dy = float(pt2.y - pt1.y) f = 1.0 / math.hypot(dx, dy) dx = float(dx) * f dy = float(dy) * f return FloatPoint(dy, -dx) def _GetBounds(pts): left = None for poly in pts: for pt in poly: left = pt.x top = pt.y right = pt.x bottom = pt.y break break for poly in pts: for pt in poly: if pt.x < left: left = pt.x if pt.x > right: right = pt.x if pt.y < top: top = pt.y if pt.y > bottom: bottom = pt.y if left is None: return Rect(0, 0, 0, 0) else: return Rect(left, top, right, bottom) def _GetLowestPt(poly): # precondition: poly must not be empty result = poly[0] for pt in poly: if pt.y > result.y or (pt.y == result.y and pt.x < result.x): result = pt return result def _StripDupPts(poly): if poly == []: return poly for i in range(1, len(poly)): if _PointsEqual(poly[i - 1], poly[i]): poly.pop(i) i = len(poly) - 1 while i > 0 and _PointsEqual(poly[i], poly[0]): poly.pop(i) i -= 1 return poly def _OffsetInternal( polys, isPolygon, delta, jointype=JoinType.Square, endtype=EndType.Square, limit=0.0 ): def _DoSquare(pt): # see offset_triginometry.svg in the documentation folder ... dx = math.tan( math.atan2(sinA, Normals[k].x * Normals[j].x + Normals[k].y * Normals[j].y) / 4 ) result.append( Point( round(pt.x + delta * (Normals[k].x - Normals[k].y * dx)), round(pt.y + delta * (Normals[k].y + Normals[k].x * dx)), ) ) result.append( Point( round(pt.x + delta * (Normals[j].x + Normals[j].y * dx)), round(pt.y + delta * (Normals[j].y - Normals[j].x * dx)), ) ) return def _DoMiter(pt, r): q = delta / r result.append( Point( round(pt.x + (Normals[k].x + Normals[j].x) * q), round(pt.y + (Normals[k].y + Normals[j].y) * q), ) ) return def _DoRound(pt): a = math.atan2(sinA, Normals[k].x * Normals[j].x + Normals[k].y * Normals[j].y) steps = round(step360 * abs(a)) X, Y = Normals[k].x, Normals[k].y for _ in range(steps): result.append(Point(round(pt.x + X * delta), round(pt.y + Y * delta))) X2 = X X = X * mcos - msin * Y Y = X2 * msin + Y * mcos result.append( Point( round(pt.x + Normals[j].x * delta), round(pt.y + Normals[j].y * delta) ) ) return def GetSin(): result = Normals[k].x * Normals[j].y - Normals[j].x * Normals[k].y if result > 1.0: result = 1.0 elif result < -1.0: result = -1.0 return result def _OffsetPoint(jointype): if sinA * delta < 0: result.append( Point( round(pts[j].x + Normals[k].x * delta), round(pts[j].y + Normals[k].y * delta), ) ) result.append(pts[j]) result.append( Point( round(pts[j].x + Normals[j].x * delta), round(pts[j].y + Normals[j].y * delta), ) ) elif jointype == JoinType.Miter: r = 1.0 + (Normals[j].x * Normals[k].x + Normals[j].y * Normals[k].y) if r >= miterLim: _DoMiter(pts[j], r) else: _DoSquare(pts[j]) elif jointype == JoinType.Square: _DoSquare(pts[j]) else: _DoRound(pts[j]) return j if delta == 0: return polys if not isPolygon and delta < 0: delta = -delta if jointype == JoinType.Miter: # miterLim: see offset_triginometry3.svg in the documentation folder ... if limit > 2: miterLim = 2 / (limit * limit) else: miterLim = 0.5 if endtype == EndType.Round: limit = 0.25 if jointype == JoinType.Round or endtype == EndType.Round: if limit <= 0: limit = 0.25 elif limit > abs(delta) * 0.25: limit = abs(delta) * 0.25 # step360: see offset_triginometry2.svg in the documentation folder ... step360 = math.pi / math.acos(1 - limit / abs(delta)) msin = math.sin(2 * math.pi / step360) mcos = math.cos(2 * math.pi / step360) step360 /= math.pi * 2 if delta < 0: msin = -msin res = [] ppts = polys[:] for pts in ppts: Normals = [] result = [] cnt = len(pts) if cnt == 0 or cnt < 3 and delta <= 0: continue if cnt == 1: if jointype == JoinType.Round: X, Y = 1.0, 0.0 for _ in range(round(step360 * 2 * math.pi)): result.append( Point(round(pts[0].x + X * delta), round(pts[0].y + Y * delta)) ) X2 = X X = X * mcos - msin * Y Y = X2 * msin + Y * mcos else: X, Y = -1.0, -1.0 for _ in range(4): result.append( Point(round(pts[0].x + X * delta), round(pts[0].y + Y * delta)) ) if X < 0: X = 1 elif Y < 0: Y = 1 else: X = -1 continue forceClose = _PointsEqual(pts[0], pts[cnt - 1]) if forceClose: cnt -= 1 for j in range(cnt - 1): Normals.append(_GetUnitNormal(pts[j], pts[j + 1])) if isPolygon or forceClose: Normals.append(_GetUnitNormal(pts[cnt - 1], pts[0])) else: Normals.append(Normals[cnt - 2]) if isPolygon or forceClose: k = cnt - 1 for j in range(cnt): sinA = GetSin() k = _OffsetPoint(jointype) res.append(result) if not isPolygon: result = [] delta = -delta k = cnt - 1 for j in range(cnt): sinA = GetSin() k = _OffsetPoint(jointype) delta = -delta res.append(result[::-1]) else: # offset the polyline going forward ... k = 0 for j in range(1, cnt - 1): sinA = GetSin() k = _OffsetPoint(jointype) # handle the end (butt, round or square) ... if endtype == EndType.Butt: j = cnt - 1 pt1 = Point( round(float(pts[j].x) + Normals[j].x * delta), round(float(pts[j].y) + Normals[j].y * delta), ) result.append(pt1) pt1 = Point( round(float(pts[j].x) - Normals[j].x * delta), round(float(pts[j].y) - Normals[j].y * delta), ) result.append(pt1) else: j = cnt - 1 k = cnt - 2 Normals[j] = FloatPoint(-Normals[j].x, -Normals[j].y) if endtype == EndType.Square: _DoSquare(pts[j]) else: _DoRound(pts[j]) # re-build Normals ... for j in range(cnt - 1, 0, -1): Normals[j] = FloatPoint(-Normals[j - 1].x, -Normals[j - 1].y) Normals[0] = FloatPoint(-Normals[1].x, -Normals[1].y) # offset the polyline going backward ... k = cnt - 1 for j in range(cnt - 2, 0, -1): sinA = GetSin() k = _OffsetPoint(jointype) # finally handle the start (butt, round or square) ... if endtype == EndType.Butt: pt1 = Point( round(float(pts[0].x) - Normals[0].x * delta), round(float(pts[0].y) - Normals[0].y * delta), ) result.append(pt1) pt1 = Point( round(float(pts[0].x) + Normals[0].x * delta), round(float(pts[0].y) + Normals[0].y * delta), ) result.append(pt1) else: j = 0 k = 1 if endtype == EndType.Square: _DoSquare(pts[0]) else: _DoRound(pts[0])
#!/usr/bin/env python3 import re import sys import os import argparse import logging import itertools import collections.abc from collections import defaultdict from lxml import etree # Typing import io from typing import Sequence, Mapping, Iterator, Generic, AbstractSet, Callable from typing import Any, List, Tuple from typing import TypeVar, Union from typing.io import TextIO from numbers import Number from lxml.etree import _Element as Element from lxml.etree import XPath TEX_ESCAPES = [ ('\\', r'\textbackslash'), ('&', r'\&'), ('%', r'\%'), ('$', r'\$'), ('#', r'\#'), ('_', r'\_'), ('{', r'\{'), ('}', r'\}'), ('~', r'\textasciitilde{}'), ('^', r'\textasciicircum{}'), (r'\textbackslash', r'\textbackslash{}'), ] KNOWN_FORMATS = { 'mono': (r'\texttt{%s}', True), 'verb': (r'\verb|%s|', False), 'italic': (r'\textit{%s}', False), 'math': (r'$ %s $', True), 'bold': (r'\textbf{%s}', False), } EMPTY_ELEMENT = etree.Element('empty') SORTING_TRANSFORMS = { 'ident': lambda x: x, 'ip': lambda x: [int(i) for i in x.split('.')], 'port': lambda x: int(x.split('/')[0]) if x else -1 } logger = logging.getLogger('xpath2tex') T = TypeVar('T') class AnyMap(collections.abc.Mapping, Generic[T]): def __init__(self, item: T): self.item = item def __getitem__(self, value: Any) -> T: return self.item def __len__(self) -> int: return 1 def __iter__(self) -> Iterator[Any]: return iter((None,)) def __repr__(self) -> str: return 'AnyMap({:r})'.format(self.item) def ensure_str(item) -> str: """Ensures that the element passed in turns into a string. First, if given a sequence of length 1, extract the element. If given `str`, it retuns `item`. If given `bytes`, it decodes it with UTF-8. If given `etree._Element`, it gets the internal text. If given a number, return `str(item)`. Otherwise, give a warning and return `str(item)`. """ if isinstance(item, Sequence): if len(item) == 1: item = item[0] elif len(item) == 0: return '' elif not isinstance(item, (str, bytes)): return ', '.join(ensure_str(i) for i in item) if item is None: return '' if isinstance(item, str): return item if isinstance(item, bytes): return item.decode() if isinstance(item, Element): return ensure_str(item.text) if isinstance(item, Number): return str(item) logger.warning('Could not identify string conversion of %r', item) return str(item) def query_row( row: Element, col_xpaths: Sequence[Sequence[XPath]], col_relatives: Mapping[XPath, List[int]]) -> List[str]: col_relatives = { next(iter(xpath(row)), EMPTY_ELEMENT): cols for xpath, cols in col_relatives.items() } rel = { col: element for element, cols in col_relatives.items() for col in cols } return [ next(filter( None, (ensure_str(xpath(rel.get(n, row))) for xpath in xpaths)), '') for n, xpaths in enumerate(col_xpaths) ] def query_row_group( row: Element, group: int, col_xpaths: Sequence[Sequence[XPath]], col_relatives: Mapping[XPath, List[int]]) -> Tuple[List[str], List[List[str]]]: grouped, non_grouped = col_xpaths[:group], col_xpaths[group:] non_grouped_relative = { tuple(xpath(row)): cols for xpath, cols in col_relatives.items() } rel = { col: element for element, cols in non_grouped_relative.items() for col in cols } return ( query_row(row, grouped, col_relatives), [ [ensure_str(result) for result in xpath(row)] if n not in rel else [ensure_str(xpath(rel_row)) for rel_row in rel[n]] for n, xpaths in enumerate(non_grouped, group) for xpath in xpaths ] ) def replace_multiple(s: str, replaces: Sequence[Tuple[str, str]]) -> str: for from_, to in replaces: s = s.replace(from_, to) return s def escape_tex(s: str) -> str: return replace_multiple(s, TEX_ESCAPES) def format_item(item: str, fmt: str=None, escape: bool=True) -> str: if escape: item = escape_tex(item) if fmt is not None: item = fmt % item return item def format_row( cols: Sequence[str], row_style: str='%s', col_defaults: Mapping[int, str]=None, col_formats: Mapping[int, str]=None, col_escapes: Mapping[int, bool]=None, col_group: int=None, skip_cols: AbstractSet[int]=set(),) -> str: col_defaults = col_defaults or {} col_formats = col_formats or {} col_escapes = col_escapes or {} return ' & '.join( format_item( col or col_defaults.get(n, ''), col_formats.get(n), col_escapes.get(n, True)) for n, col in enumerate(cols) if n not in skip_cols ) + r' \\' def format_row_group( group_cols: List[str], non_group_cols: List[List[str]], col_defaults: Mapping[int, str]=None, col_formats: Mapping[int, str]=None, col_escapes: Mapping[int, bool]=None, is_last: bool=False, skip_cols: AbstractSet[int]=set(), **kwargs) -> Iterator[str]: assert len(group_cols) > 0 assert len(non_group_cols) > 0 n_rows = max(map(len, non_group_cols)) # print((group_cols, non_group_cols), file=sys.stderr) yield r'\multirow[t]{%d}{*}{%s} & %s' % ( n_rows, format_item( group_cols[0] or col_defaults.get(0, ''), col_formats.get(0), col_escapes.get(0, True)), format_row( [''] + group_cols[1:] + [col_rows[0] if col_rows else '' for col_rows in non_group_cols], col_defaults=col_defaults, col_formats=col_formats, col_escapes=col_escapes, skip_cols=skip_cols | {0}, **kwargs)) for extra_row in itertools.islice(itertools.zip_longest( *non_group_cols, fillvalue=''), 1, None): yield format_row([''] * len(group_cols) + list(extra_row), **kwargs) if not is_last: yield '\\midrule\n' def enum_rows( in_file: TextIO, row_xpath: str, col_xpaths: Sequence[Union[str, Sequence[str]]], row_style: str='%s', col_group: int=0, sort_by: Tuple[int, Callable[[str], Any]]=None, skip_cols: AbstractSet[int]=set(), col_relatives: Mapping[str, List[int]]=None, col_defaults: Mapping[int, str]=None, col_formats: Mapping[int, str]=None, col_escapes: Mapping[int, bool]=None) -> Iterator[str]: col_defaults = col_defaults or {} col_formats = col_formats or {} col_escapes = col_escapes or {} col_relatives = col_relatives or {} row_xpath = XPath(row_xpath) col_xpaths = [ [XPath(i)] if isinstance(i, str) else [XPath(j) for j in i] for i in col_xpaths] col_relatives = {XPath(k): v for k, v in col_relatives.items()} tree = etree.parse(in_file) if col_group > 0: rows = row_xpath(tree) for n, row_element in enumerate(rows): group_cols, non_group_cols = query_row_group( row_element, col_group, col_xpaths, col_relatives) yield from format_row_group( group_cols=group_cols, non_group_cols=non_group_cols, row_style=row_style, col_formats=col_formats, col_escapes=col_escapes, col_defaults=col_defaults, skip_cols=skip_cols, is_last=n == len(rows) - 1 ) return row_cols = [ query_row(row_element, col_xpaths, col_relatives) for row_element in row_xpath(tree)] if sort_by is not None: col_sort, translate = sort_by if translate is None: translate = SORTING_TRANSFORMS['ident'] reverse = col_sort < 0 sort_by = abs(col_sort) row_cols.sort( key=lambda cols: translate(ensure_str(cols[col_sort])), reverse=reverse) for cols in row_cols: yield format_row( cols=cols, row_style=row_style, col_formats=col_formats, col_escapes=col_escapes, col_defaults=col_defaults, skip_cols=skip_cols ) def output_xml( in_filename: str, col_xpaths: Sequence[Union[str, Sequence[str]]], out_file: io.TextIOBase=sys.stdout, col_names: Sequence[str]=None, row_aligns: Sequence[str]=None, print_environment: bool=False, skip_cols: AbstractSet[int]=set(), environment_name: str='tabular', **kwargs) -> None: if col_xpaths is None: col_xpaths = ['text()'] if print_environment: if row_aligns is None: row_aligns = 'l' * (len(col_xpaths) - len(skip_cols)) print(r'\begin{%s}{%s}\toprule' % (environment_name, row_aligns), file=out_file) if col_names is not None: print( ' & '.join( r'\textbf{%s}' % escape_tex(name) for n, name in enumerate(col_names) if n not in skip_cols ) + r'\\\midrule', file=out_file) with open(in_filename) as f: rows = enum_rows( f, col_xpaths=col_xpaths, skip_cols=skip_cols, **kwargs) for row in rows: print(row, file=out_file) if print_environment: print('\\bottomrule\n\\end{%s}' % environment_name, file=out_file) def parse_formats(formats: List[str]) -> \ Tuple[Mapping[int, str], Mapping[int, bool]]: col_formats = {} col_escapes = {} expr = re.compile(r'^(?:(\d+(?:,\d+)*):)?(\!?)(.*)$') for fmt in formats: m = expr.match(fmt) if m is None: raise ValueError('Format %s is invalid' % fmt) cols, no_escape, expr = m.groups() if expr in KNOWN_FORMATS: expr, escape = KNOWN_FORMATS[expr] else: escape = not no_escape cols = list(map(int, filter(None, (cols or '').split(',')))) if not cols: col_formats = AnyMap(expr) col_escapes = AnyMap(escape) break for col in cols: if col in col_formats: raise ValueError('Column %d format set more than once' % col) col_formats[col] = expr col_escapes[col] = escape return col_formats, col_escapes def parse_defaults(defaults: Mapping[str, str]) -> Mapping[int, str]: col_defaults = {} expr = re.compile(r'^(\d+(?:,\d+)*)$') for cols, text in defaults: m = expr.match(cols) if m is None: raise ValueError('Column expression %s invalid' % cols) cols = [int(i) for i in m.group().split(',')] for col in cols: if col in col_defaults: raise ValueError('Column %d default set more than once' % col) col_defaults[col] = text return col_defaults def parse_relatives(relatives: List[str]) -> Mapping[str, List[int]]: if relatives is None: return {} col_relative = defaultdict(list) expr = re.compile(r'^(\d+(?:,\d+)*):(.+)$') for text in relatives: m = expr.match(text) if m is None: raise ValueError('Column expression %s invalid' % cols) cols, xpath = m.groups() cols = [int(i) for i in cols.split(',')] col_relative[xpath].extend(cols) return dict(col_relative) def merge_config(current, other): current = current.copy() for key, val in other.items(): if current.get(key) is None: current[key] = val continue cval = current[key] logger.debug('Merging key %s', key) if isinstance(val, dict): d = cval.copy() d.update(val) current[key] = d elif isinstance(val, list): current[key] = cval + val elif isinstance(val, set): current[key] = cval | val elif isinstance(val, (str, int)): logger.warning('Overwriting key %s' % key) current[key] = val else: current[key] = val return current def get_config(args): col_formats, col_escapes = parse_formats(args.formats) col_defaults = parse_defaults(args.defaults) col_relatives = parse_relatives(args.relatives) kwargs = { 'in_filename': args.file, 'row_xpath': args.rows, 'col_xpaths': args.cols, 'col_formats': col_formats, 'col_escapes': col_escapes, 'col_defaults': col_defaults, 'skip_cols': args.skip_cols, 'row_style': args.row_style, 'col_names': args.names, 'col_relatives': col_relatives, 'sort_by': args.sort_by, 'row_aligns': args.align, 'print_environment': args.print_environment, 'col_group': args.group, 'environment_name': args.environment_name, } if args.rows.startswith('auto:'): del kwargs['row_xpath'] config_file = os.path.join( os.path.split(os.path.realpath(__file__))[0], 'auto', args.rows[5:]) + '.py' with open(config_file) as f: code_str = f.read() config = {} try: config = eval(compile(code_str, config_file, 'eval')) except SyntaxError: l = {} exec(compile(code_str, config_file, 'exec'), None, l) if 'config' not in l: raise NameError('config not defined') config = l['config'] kwargs = merge_config(kwargs, config) n_cols = len(kwargs['col_xpaths'] or []) invalid_col = next(( col for groups in (col_formats, col_escapes, col_defaults) for col in groups if col
len(self._group[name]) > 0: if empty_only: raise ValueError(f"Cannot remove non-empty group '{name}'.") else: print("Warning: Group to remove is not empty.") self._group.pop(name) def add_group_member(self, group, member, **kws): """Add a *member* to *group*, if *group* is new, add and update *member* group only when *new* if True. Parameters ---------- group : str Group name. member : CaElement. Keyword Arguments ----------------- new : True or False If *group* is new, add and update when *new* is True, or ignore. """ new = kws.get('new', True) elem = self._find_exact_element(member) if elem is None: raise ValueError(f"Invalid element '{member}'.") if group in self._group: if elem in self._group[group]: msg = "'{0}' is already in group: '{1}'.".format( elem.name, group) print("Warning: {0}".format(msg)) _LOGGER.warning(msg) return else: elem.group.add(group) _inplace_order_insert(elem, self._group[group]) msg = "Add '{0}' into group '{1}'.".format( elem.name, group) _LOGGER.info(msg) elif new: self._group[group] = [elem] elem.group.add(group) msg = "Add '{0}' into new group '{1}'.".format( elem.name, group) _LOGGER.info(msg) else: raise ValueError( "Group {} does not exist, use 'new=True' to add it.".format( group)) def has_group(self, name): """Check if group exists or not. Parameters ---------- name : str Group name. Returns ------- ret : True or False True if has group *name* or False. """ return name in self._group def remove_group_member(self, group, member): """Remove a *member* from *group*. Parameters ---------- group : str Group name. member : CaElement. """ if group not in self._group: raise ValueError( "Remove error: group '{}' does not exist.".format(group)) if member in self._group[group]: self._group[group].remove(member) else: raise ValueError( "Remove error: '{}' not in group '{}'.".format( member, group)) def get_groups(self, name=None, element=None, **kws): """Get groups filtered by *name*, if *element* is given, a list of groups that *element* belongs to would return. Parameters ---------- name : str Group name string, could be Unix shell style pattern. element : str Element name. Keyword Arguments ----------------- empty : True or False If *empty* is True, also return name the empty groups, else not, True by default. Returns ------- ret : list List of group names. """ if element is None: if kws.get('empty', True): g = [k for k, v in self._group.items() if fnmatch(k, name)] else: g = [k for k, v in self._group.items() if fnmatch(k, name) and v != []] return g else: return [k for k, v in self._group.items() if fnmatch(k, name) and element in [el.name for el in v]] def get_group_members(self, group, **kws): """Return element members by applying proper filtering operation on each group from *group*, filtering operation could be defined by keyword argument *op*. Parameters ---------- group: str or list Group name string or list[str], could be Unix shell style pattern. Keyword Arguments ----------------- op : str Valid options: ``and``, ``or``. Returns ------- ret : list List of elements. """ op = kws.get('op', 'and') if isinstance(group, str): group = group, group_list = flatten( [[g for g in self._group if fnmatch(g, gi)] for gi in group] ) elem_dict = {g: self._group[g] for g in group_list} if op == 'and': return get_intersection(**elem_dict) else: # op = 'or' return list(set(flatten(elem_dict.values()))) @property def orm(self): """Array: Orbit response matrix. See Also -------- :func:`~phantasy.library.physics.orm.get_orm` Calculator orbit response matrix. """ return self._orm @orm.setter def orm(self, m): self._orm = m def correct_orbit(self, correctors, bpms, **kws): """Correct orbit by using ORM. Parameters ---------- correctors : list List of corrector elements. bpms : list List of BPM elements. Keyword Arguments ----------------- cor_field : str Field name for correctors, ``'ANG'`` by default. orb_field : tuple[str] Field names for monitors to retrieve orbit data, ``('X', 'Y')`` for *x* and *y* directions by default. xoy : str 'x'('y') for monitoring 'x'('y') direction,'xy' for both (default). damping_factor : float Factor to correct orbit, default is 0.05, which would decrease beam orbit (BPM readings) by 5% for every correction. iteration : int Iteration numbers of correction, default is 1. wait : float Wait time after set value, in *sec*, 1.0 by default. echo : bool Print out message or not, default is True. msg_queue : Queue A queue that keeps log messages. mode : str If running under 'interactive' mode or not. cor_min : float Lower limit for corrector settings. cor_max : float Upper limit for corrector settings. Returns ------- r : bool True if no errors happen. See Also -------- get_settings_from_orm : calculate COR settings from ORM for orbit correction. apply_settings_from_orm : apply COR settings from ORM to do orbit correction. """ itern = kws.get('iteration', 1) cor_field = kws.get('cor_field', 'ANG') damp_fac = kws.get('damping_factor', 0.05) wait = kws.get('wait', 1.0) echo = kws.get('echo', True) q_msg = kws.get('msg_queue', None) mode = kws.get('mode', 'interactive') upper_limit_cor = kws.get('cor_max', 5.0) # A lower_limit_cor = kws.get('cor_min', -5.0) # A if self._orm is None: _LOGGER.error("correct_orbit: ORM is not available, set ORM first.") raise RuntimeError("INVALID ORM data.") m = self._orm m_inv = inverse_matrix(m) n_cor = len(correctors) for i in range(1, itern + 1): bpm_readings = get_orbit(bpms, **kws) delt_cor = np.dot(m_inv, -bpm_readings * damp_fac) for ic, (e, v) in enumerate(zip(correctors, delt_cor)): v0 = getattr(e, cor_field) v_to_set = limit_input(v0 + v, lower_limit_cor, upper_limit_cor) setattr(e, cor_field, v_to_set) time.sleep(wait) msg = "[{0}] #[{1}]/[{2}] Set [{3:02d}] {4} [{5}]: {6:>10.6g}.".format( epoch2human(time.time(), fmt=TS_FMT), i, itern, ic + 1, e.name, cor_field, v_to_set) if q_msg is not None: q_msg.put((((ic + (i - 1) * n_cor))* 100.0 / n_cor / itern, msg)) if echo: print(msg) if i+1 > itern: break if mode != 'interactive': next_iter = 'Y' else: next_iter = input( "Continue correction iteration: {0}/{1}? ([Y]/N)".format(i + 1, itern) ) if next_iter.upper() in ['Y', '']: continue else: break return True def apply_settings_from_orm(self, settings, **kws): """Apply correctors settings calculated from OMR to do orbit correction. Parameters ---------- settings : list List of tuple of (CaElement, field, setting, setting_limited). Keyword Arguments ----------------- iteration : int Iteration numbers of correction, default is 1. wait : float Wait time after set value, in *sec*, 1.0 by default. echo : bool Print out message or not, default is True. msg_queue : Queue A queue that keeps log messages. mode : str If running under 'interactive' mode or not. cor_min : float Lower limit for corrector settings. cor_max : float Upper limit for corrector settings. See Also -------- get_settings_from_orm : calculate COR settings from ORM for orbit correction. correct_orbit : calculate and apply COR settings from ORM to do orbit correction. """ itern = kws.get('iteration', 1) wait = kws.get('wait', 1.0) echo = kws.get('echo', True) q_msg = kws.get('msg_queue', None) mode = kws.get('mode', 'interactive') upper_limit_cor = kws.get('cor_max', 5.0) # A, void in this method lower_limit_cor = kws.get('cor_min', -5.0) # A n_cor = len(settings) for i in range(1, itern + 1): for ic, (cor, cor_field, v, v_limited) in enumerate(settings): #v_to_set = limit_input(v, lower_limit_cor, upper_limit_cor) v_to_set = v_limited setattr(cor, cor_field, v_to_set) time.sleep(wait) msg = "[{0}] #[{1}]/[{2}] Set [{3:02d}] {4} [{5}]: {6:>10.6g}.".format( epoch2human(time.time(), fmt=TS_FMT), i, itern, ic + 1, cor.name, cor_field, v_to_set) if q_msg is not None: q_msg.put((((ic + (i - 1) * n_cor))* 100.0 / n_cor / itern, msg)) if echo: print(msg) if i+1 > itern: break if mode != 'interactive': next_iter = 'Y' else: next_iter = input( "Continue correction iteration: {0}/{1}? ([Y]/N)".format(i + 1, itern) ) if next_iter.upper() in ['Y', '']: continue else: break return True def apply_setting(self, setting, **kws): """Apply setting for one corrector. Parameters ---------- setting : tuple Tuple of corrector setting: (CaElement, field, setpoint, setpoint_limited). Keyword Arguments ----------------- wait : float Wait time after set value, in *sec*, 1.0 by default. msg_queue : Queue A queue that keeps log messages. idx : int Index of selected corrector of all selected ones. ncor : int Total number of selected correctors. ndigits : int Number of effective digits to keep for a float number. """ wait = kws.get('wait', 1.0) idx = kws.get('idx', 0.0) # index of correctors n = kws.get('ncor', 1) # total number of correctors q_msg = kws.get('msg_queue', None) n_trun = kws.get('ndigits', 6) cor, cor_field, v, v_limited = setting v_truncated = truncate_number(v_limited, n_trun) setattr(cor, cor_field, v_truncated) time.sleep(wait) msg = "[{0}] Set [{1:02d}] {2}
for x, y in walk_coords] polygon = Polygon(*points, color = WHITE) if self.color_foreground_not_background: polygon.stroke_width = border_stroke_width polygon.color_using_background_image(self.background_image_file) total_run_time = len(points) * self.step_run_time polygon_anim = ShowCreation(polygon, run_time = total_run_time, rate_func=linear) walker_anim = empty_animation start_wind = 0 for i in range(len(walk_coords)): start_coords = walk_coords[i] end_coords = walk_coords[(i + 1) % len(walk_coords)] # We need to do this roundabout default argument thing to get the closure we want, # so the next iteration changing start_coords, end_coords doesn't change this closure val_alpha_func = lambda a, start_coords = start_coords, end_coords = end_coords : self.func(interpolate(start_coords, end_coords, a)) if self.display_wind: clockwise_val_func = lambda p : -point_to_rev(self.func(p)) alpha_winder = make_alpha_winder(clockwise_val_func, start_coords, end_coords, self.num_checkpoints) number_update_func = lambda alpha, alpha_winder = alpha_winder, start_wind = start_wind: alpha_winder(alpha) - alpha_winder(0) + start_wind start_wind = 0 if i + 1 in self.wind_reset_indices else number_update_func(1) elif self.display_size: # We need to do this roundabout default argument thing to get the closure we want, # so the next iteration changing val_alpha_func doesn't change this closure number_update_func = lambda a, val_alpha_func = val_alpha_func : point_to_rescaled_size(val_alpha_func(a)) # We only use this for diagnostics else: number_update_func = None new_anim = LinearWalker( start_coords = start_coords, end_coords = end_coords, coords_to_point = num_plane.coords_to_point, val_func = self.func, remover = (i < len(walk_coords) - 1), show_arrows = not self.show_output, scale_arrows = self.scale_arrows, number_update_func = number_update_func, run_time = self.step_run_time, walker_stroke_color = WALKER_LIGHT_COLOR if self.color_foreground_not_background else BLACK, num_decimal_places = self.num_decimal_places, include_background_rectangle = self.include_background_rectangle, ) if self.display_odometer: # Discard above animation and show an odometer instead # We need to do this roundabout default argument thing to get the closure we want, # so the next iteration changing val_alpha_func doesn't change this closure rev_func = lambda a, val_alpha_func = val_alpha_func : point_to_rev(val_alpha_func(a)) base_arrow = Arrow(ORIGIN, RIGHT, buff = 0) new_anim = FuncRotater(base_arrow, rev_func = rev_func, run_time = self.step_run_time, rate_func=linear, remover = i < len(walk_coords) - 1, ) walker_anim = Succession(walker_anim, new_anim) # TODO: Allow smooth paths instead of breaking them up into lines, and # use point_from_proportion to get points along the way if self.display_odometer: color_wheel = Circle(radius = ODOMETER_RADIUS) color_wheel.stroke_width = ODOMETER_STROKE_WIDTH color_wheel.color_using_background_image(self.short_path_to_long_path("pure_color_map.png")) # Manually inserted here; this is unclean self.add(color_wheel) self.play(walker_anim) else: if self.draw_lines: self.play(polygon_anim, walker_anim) else: # (Note: Turns out, play is unhappy playing empty_animation, as had been # previous approach to this toggle; should fix that) self.play(walker_anim) self.wait() class PiWalkerRect(PiWalker): CONFIG = { "start_x" : -1, "start_y" : 1, "walk_width" : 2, "walk_height" : 2, "func" : plane_func_from_complex_func(lambda c: c**2), "double_up" : False, # New default for the scenes using this: "display_wind" : True } def setup(self): TL = np.array((self.start_x, self.start_y)) TR = TL + (self.walk_width, 0) BR = TR + (0, -self.walk_height) BL = BR + (-self.walk_width, 0) self.walk_coords = [TL, TR, BR, BL] if self.double_up: self.walk_coords = self.walk_coords + self.walk_coords PiWalker.setup(self) class PiWalkerCircle(PiWalker): CONFIG = { "radius" : 1, "num_steps" : 100, "step_run_time" : 0.01 } def setup(self): r = self.radius N = self.num_steps self.walk_coords = [r * np.array((np.cos(i * TAU/N), np.sin(i * TAU/N))) for i in range(N)] PiWalker.setup(self) def split_interval(xxx_todo_changeme10): (a, b) = xxx_todo_changeme10 mid = (a + b)/2.0 return ((a, mid), (mid, b)) # I am surely reinventing some wheel here, but what's done is done... class RectangleData(): def __init__(self, x_interval, y_interval): self.rect = (x_interval, y_interval) def get_top_left(self): return np.array((self.rect[0][0], self.rect[1][1])) def get_top_right(self): return np.array((self.rect[0][1], self.rect[1][1])) def get_bottom_right(self): return np.array((self.rect[0][1], self.rect[1][0])) def get_bottom_left(self): return np.array((self.rect[0][0], self.rect[1][0])) def get_top(self): return (self.get_top_left(), self.get_top_right()) def get_right(self): return (self.get_top_right(), self.get_bottom_right()) def get_bottom(self): return (self.get_bottom_right(), self.get_bottom_left()) def get_left(self): return (self.get_bottom_left(), self.get_top_left()) def get_center(self): return interpolate(self.get_top_left(), self.get_bottom_right(), 0.5) def get_width(self): return self.rect[0][1] - self.rect[0][0] def get_height(self): return self.rect[1][1] - self.rect[1][0] def splits_on_dim(self, dim): x_interval = self.rect[0] y_interval = self.rect[1] # TODO: Can refactor the following; will do later if dim == 0: return_data = [RectangleData(new_interval, y_interval) for new_interval in split_interval(x_interval)] elif dim == 1: return_data = [RectangleData(x_interval, new_interval) for new_interval in split_interval(y_interval)[::-1]] else: print("RectangleData.splits_on_dim passed illegitimate dimension!") return tuple(return_data) def split_line_on_dim(self, dim): x_interval = self.rect[0] y_interval = self.rect[1] if dim == 0: sides = (self.get_top(), self.get_bottom()) elif dim == 1: sides = (self.get_left(), self.get_right()) else: print("RectangleData.split_line_on_dim passed illegitimate dimension!") return tuple([mid(x, y) for (x, y) in sides]) class EquationSolver2dNode(object): def __init__(self, first_anim, children = []): self.first_anim = first_anim self.children = children def depth(self): if len(self.children) == 0: return 0 return 1 + max([n.depth() for n in self.children]) def nodes_at_depth(self, n): if n == 0: return [self] # Not the efficient way to flatten lists, because Python + is linear in list size, # but we have at most two children, so no big deal here return sum([c.nodes_at_depth(n - 1) for c in self.children], []) # This is definitely NOT the efficient way to do BFS, but I'm just trying to write something # quick without thinking that gets the job done on small instances for now def hacky_bfs(self): depth = self.depth() # Not the efficient way to flatten lists, because Python + is linear in list size, # but this IS hacky_bfs... return sum([self.nodes_at_depth(i) for i in range(depth + 1)], []) def display_in_series(self): return Succession(self.first_anim, *[n.display_in_series() for n in self.children]) def display_in_parallel(self): return Succession(self.first_anim, AnimationGroup(*[n.display_in_parallel() for n in self.children])) def display_in_bfs(self): bfs_nodes = self.hacky_bfs() return Succession(*[n.first_anim for n in bfs_nodes]) def play_in_bfs(self, scene, border_anim): bfs_nodes = self.hacky_bfs() print("Number of nodes: ", len(bfs_nodes)) if len(bfs_nodes) < 1: print("Less than 1 node! Aborting!") return scene.play(bfs_nodes[0].first_anim, border_anim) for node in bfs_nodes[1:]: scene.play(node.first_anim) class EquationSolver2d(ColorMappedObjectsScene): CONFIG = { "camera_config" : {"use_z_coordinate_for_display_order": True}, "initial_lower_x" : -5, "initial_upper_x" : 5, "initial_lower_y" : -3, "initial_upper_y" : 3, "num_iterations" : 0, "num_checkpoints" : 10, # Should really merge this into one enum-style variable "display_in_parallel" : False, "display_in_bfs" : False, "use_fancy_lines" : True, "line_color" : WHITE, # Only used for non-fancy lines # TODO: Consider adding a "find_all_roots" flag, which could be turned off # to only explore one of the two candidate subrectangles when both are viable # Walker settings "show_arrows" : True, "scale_arrows" : False, # Special case settings # These are used to hack UhOhScene, where we display different colors than # are actually, secretly, guiding the evolution of the EquationSolver2d # # replacement_background_image_file has to be manually configured "show_winding_numbers" : True, # Used for UhOhScene; "manual_wind_override" : None, "show_cursor" : True, "linger_parameter" : 0.5, "use_separate_plays" : False, "use_cheap_winding_numbers" : False, # To use this, make num_checkpoints large } def construct(self): if self.num_iterations == 0: print("You forgot to set num_iterations (maybe you meant to subclass something other than EquationSolver2d directly?)") return ColorMappedObjectsScene.construct(self) num_plane = self.num_plane clockwise_val_func = lambda p : -point_to_rev(self.func(p)) base_line = Line(UP, RIGHT, stroke_width = border_stroke_width, color = self.line_color) if self.use_fancy_lines: base_line.color_using_background_image(self.background_image_file) def match_style_with_bg(obj1, obj2): obj1.match_style(obj2) bg = obj2.get_background_image_file() if bg != None: obj1.color_using_background_image(bg) run_time_base = 1 run_time_with_lingering = run_time_base + self.linger_parameter base_rate = lambda t : t linger_rate = squish_rate_func(lambda t : t, 0, fdiv(run_time_base, run_time_with_lingering)) cursor_base = TexText("?") cursor_base.scale(2) # Helper functions for manual_wind_override def head(m): if m == None: return None return m[0] def child(m, i): if m == None or m == 0: return None return m[i + 1] def Animate2dSolver(cur_depth, rect, dim_to_split, sides_to_draw = [0, 1, 2, 3], manual_wind_override = None): print("Solver at depth: " + str(cur_depth)) if cur_depth >= self.num_iterations: return EquationSolver2dNode(empty_animation) def draw_line_return_wind(start, end, start_wind, should_linger = False, draw_line = True): alpha_winder = make_alpha_winder(clockwise_val_func, start, end, self.num_checkpoints, cheap = self.use_cheap_winding_numbers) a0 = alpha_winder(0) rebased_winder = lambda alpha: alpha_winder(alpha) - a0 + start_wind colored_line = Line(num_plane.coords_to_point(*start) + IN, num_plane.coords_to_point(*end) + IN) match_style_with_bg(colored_line, base_line) walker_anim = LinearWalker( start_coords = start, end_coords = end, coords_to_point = num_plane.coords_to_point, val_func = self.func, # Note: This is the image func, and not logic_func number_update_func = rebased_winder if self.show_winding_numbers else None, remover = True, walker_stroke_color = WALKER_LIGHT_COLOR, show_arrows = self.show_arrows, scale_arrows = self.scale_arrows, ) if should_linger: # Do we need an "and not self.display_in_parallel" here? run_time = run_time_with_lingering rate_func =
journal = {CoRR}, volume = {abs/1903.04561}, year = {2019}, url = {http://arxiv.org/abs/1903.04561}, archivePrefix = {arXiv}, eprint = {1903.04561}, timestamp = {Sun, 31 Mar 2019 19:01:24 +0200}, biburl = {https://dblp.org/rec/bib/journals/corr/abs-1903-04561}, bibsource = {dblp computer science bibliography, https://dblp.org} } """ # An experiment we could try is tagging with another public figure tag called PUBLIC_FIGURE_OPINION # so that we could train a model to distinguish between public figure mentions in opinion domains vs non-opinion domains dataset = load_dataset("civil_comments") for d in (dataset['train'],): for idx, data in enumerate(d): score = sum([data[feature] for feature in ['toxicity', 'severe_toxicity', 'obscene', 'threat', 'insult', 'identity_attack', 'sexual_explicit']]) l2 = data['text'] l2 = l2.replace("\n", " ").replace(" ", " ").replace(" ", " ") l2Arr = l2.split() has_a_name = has_any(first_names, l2Arr) l2_lower = l2.lower() if random.choice([0, 1]) and not has_a_name and "mr." not in l2_lower and "ms." not in l2_lower and "mrs." not in l2_lower and "president" not in l2_lower and "governor" not in l2_lower and "mayor" not in l2_lower: continue if len(l2Arr) > 10 and len(l2Arr) < 50 and (score <= 0.5 or random.randint(0, 10) == 0): # having too much toxic content may skew the data if has_a_name or "mr." in l2_lower or "ms." in l2_lower or "mrs." in l2_lower or "senator" in l2_lower or "president" in l2_lower or "governor" in l2_lower or "mayor" in l2_lower: o.write(l2 + "\tcivil_comments\n") os.system("sort --parallel=32 english.tsv -o english.tsv") with open("english_cleaned.tsv", "w", encoding="utf8") as o: with open("english.tsv", "rb") as f: prev = "" while True: l = f.readline().decode() if not l: break l = l.strip() l2 = l.replace(":", "").replace("[", "").replace("]", "").replace(".", "").replace("!", "").replace("?", "").replace( ",", "").replace("-", "").replace(";", "").replace(" ", "").lower() prev2 = prev.replace(":", "").replace("[", "").replace("]", "").replace(".", "").replace("!", "").replace( "?", "").replace(",", "").replace("-", "").replace(";", "").replace(" ", "").lower() if prev != "" and (l2 == prev2 or (len(prev) > 10 and len(l) > 10 and prev2[:10] == l2[:10])): if len(l) > len(prev): prev = l continue else: if prev: if prev[0] < 'וח': o.write(prev.lstrip(':;.+- ') + "\n") prev = l if prev: if prev[0] < 'וח': o.write(prev.lstrip(':;.+- ') + "\n") os.system("sort --parallel=32 english_cleaned.tsv -o english_cleaned.tsv") os.system(f"cp english_cleaned.tsv {share_dir}/english_cleaned.tsv") def check_good_sentence(s, en_lang_cutoff=0.1, junk_ratio=0.5, stopword_check=True): # basic dejunk s = s.lower().strip() if not s: return False jr = len([s2 for s2 in s if s2 in junk_dict]) / len(s) if jr >= junk_ratio: return False sArr = [s2.strip("' 0123456789¯_§½¼¾×|†—~\"—±′–'°−{}[]·-\'?,./<>!@#^&*()+-‑=:;`→¶'") for s2 in s.lower().split()] if len(sArr) == 0: return False # stopword check if stopword_check and len([s2 for s2 in sArr if s2 in stopwords_en]) / len(sArr) < en_lang_cutoff: return False else: # langid check try: lang = langid.classify(s)[0] except: lang = "" return lang == "en" def create_oscar_subset_for_ner(): with open("pii_oscar.txt", "w", encoding="utf8") as o: with open("oscar_sample.txt", "rb") as f: while True: sent = f.readline().decode() if not sent: break sent = sent.strip() for sent2 in sent.split("<|endoftext|>"): sent2 = sent2.strip() sentArr = sent2.split() if len(sentArr) > 150: # print ("truncating sent", sent) sent2 = " ".join(sentArr[:150]) if "Alzheimer's" in sent2 or "Alzheimer" in sent2 or 'heart disease' in sent2 or ' AIDS ' in sent2 or ' HIV ' in sent2 or ' was born ' in sent2 or 'Social Secu' in sent2 or 'socialist' in sent2 or 'republican' in sent2 or 'democrat' in sent2 or 'lower class' in sent2 or ' union ' in sent2 or 'upper class' in sent2 or 'middle class' in sent2 or ' cancer ' in sent2: if 'pussy' not in sent2 and ' cock ' not in sent2: o.write(sent2 + "\n") url = _get_oscar_urls("en")[0] _download_urls([url]) file = url.split("/")[-1] for sent2 in gzip.open(file): sent2 = sent2.decode() sent2 = sent2.strip() sentArr = sent2.split() if len(sentArr) > 150: sent2 = " ".join(sentArr[:150]) # let's just look for disease age, for the bigger set, since terms like "republic" and "democract" are over represented if "Alzheimer's" in sent2 or "Alzheimer" in sent2 or 'heart disease' in sent2 or ' AIDS ' in sent2 or ' HIV ' in sent2 or ' was born ' in sent2 or ' cancer ' in sent2: if not check_good_sentence(sent2): continue if 'pussy' not in sent2 and ' cock ' not in sent2: o.write(sent2 + "\n") os.system("sort --parallel=32 pii_oscar.txt -o pii_oscar.txt") def do_ner(do_casehold=False): """ Create English based NER/PII dataset """ faker_target_lang = Faker(faker_map["en"]) faker_target_lang.add_provider(person) faker_target_lang.add_provider(ssn) faker_target_lang.add_provider(address) nlp = spacy.load('en_core_web_lg') row_id = 0 with open("pii_en.jsonl", "w", encoding="utf8") as o: with open("pii_oscar.txt", "rb") as f: prev = "" for sent2 in tqdm(f): # sent2 = f.readline().decode().strip() sent2 = sent2.decode().strip() if not sent2: break domain = "oscar" if sent2 == prev: continue if prev: sent3 = prev if sent3[0] in "0123456789": sent3 = sent3.split(" ", 1)[1] sentArr = sent3.split() if sentArr[0].endswith(":"): sentArr = sentArr[:1] if len(sentArr) > 100: sentArr = sentArr[:100] sent3 = " ".join(sentArr) if True: doc = nlp(sent3) entities = list(doc.ents) if [entity for entity in entities if entity.label_ == 'PERSON']: ents = [[entity.text, entity.label_] for entity in entities if entity.label_ in ('PERSON', 'GPE', 'ORG', 'NORP') and 'http:' not in entity.text] swap = False for label, regex in basic_regex: for x in regex.findall(sent3): if type(x) != str: continue ents.append([x, label]) if label in ('GOVT_ID', 'STREET_ADDRESS',): swap = True if len(ents) > 1 or 'cancer' in sent3 or 'class' in sent3 or 'union' in sent3 or 'democrat' in sent3 or 'republican' in sent3 or 'socialist' in sent3: if len(ents) < 5: if swap or '@' in sent3 or 'Social Sec' in sent3 or 'password' in sent3: context = {} ents2 = [] for item in ents: if item[1] in ('GOVT_ID', 'STREET_ADDRESS', 'PERSON'): if item[0] in public_figures: item[1] = 'PUBLIC_FIGURE' else: context[item[0]] = context.get(item[0], \ faker_target_lang.name() if " " in item[ 0] and item[ 1] == 'PERSON' else \ faker_target_lang.first_name() if item[1] == 'PERSON' else \ faker_target_lang.ssn() if item[1] == 'GOVT_ID' else \ faker_target_lang.address() if item[ 1] == 'STREET_ADDRESS' else \ item[0]) if " " in item[0]: context[item[0].split()[0]] = context[item[0]].split()[0] context[item[0].split()[-1]] = context[item[0]].split()[-1] item[0] = context[item[0]] ents2.append(item) else: ents2 = ents o.write(json.dumps( {"text": sent3, "ner": ents2, "domain": domain, "target_lang": "en", "id": row_id}) + "\n") row_id += 1 prev = sent2 with open("english_cleaned.tsv", "rb") as f: # while True: # l = f.readline().decode() # if not l: break for l in tqdm(f): # sent2 = f.readline().decode().strip() l = l.decode().strip() l = l.split("\t") sent = l[0] domain = l[-1].strip() if not check_good_sentence(sent): continue if not do_casehold and domain == "casehold": continue if "Notice No." in sent: continue if "TO: ALL COMEX" in sent: continue if "TO: All NYMEX" in sent: continue if "TO: All New" in sent: continue if sent[0] in "0123456789": sent = sent.split(" ", 1)[1] sentArr = sent.split() if sentArr[0].endswith(":"): sentArr = sentArr[:1] if len(sentArr) > 100: sentArr = sentArr[:100] sent = " ".join(sentArr) doc = nlp(sent) entities = list(doc.ents) if [entity for entity in entities if entity.label_ == 'PERSON']: ents = [[entity.text, entity.label_] for entity in entities if entity.label_ in ('PERSON', 'GPE', 'ORG', 'NORP') and 'http:' not in entity.text] swap = False for label, regex in basic_regex: for x in regex.findall(sent): if type(x) != str: continue ents.append([x, label]) if label in ('GOVT_ID', 'STREET_ADDRESS',): swap = True if len(ents) > 1 and len(ents) < 5: if swap or random.randint(0, 1) == 0 or '@' in sent or 'Social Sec' in sent or 'password' in sent: context = {} ents2 = [] for item in ents: if item[1] in ('GOVT_ID', 'STREET_ADDRESS', 'PERSON'): if item[0] in public_figures: item[1] = 'PUBLIC_FIGURE' else: context[item[0]] = context.get(item[0], \ faker_target_lang.name() if " " in item[0] and item[ 1] == 'PERSON' else \ faker_target_lang.first_name() if item[ 1] == 'PERSON' else \ faker_target_lang.ssn() if item[ 1] == 'GOVT_ID' else \ faker_target_lang.address() if item[ 1] == 'STREET_ADDRESS' else \ item[0]) sent = sent.replace(item[0], context[item[0]]) if " " in item[0]: context[item[0].split()[0]] = context[item[0]].split()[0] context[item[0].split()[-1]] = context[item[0]].split()[-1] item[0] = context[item[0]] ents2.append(item) else: ents2 = ents o.write(json.dumps( {"text": sent, "ner": ents2, "domain": domain, "target_lang": "en", "id": row_id}) + "\n") row_id += 1 def pre_translation_steps(target_lang='hi', person_swap=True): texts
#@+node:ekr.20040306214401: *5* p.Status bits def isDirty(self): return self.v.isDirty() def isMarked(self): return self.v.isMarked() def isOrphan(self): return self.v.isOrphan() def isSelected(self): return self.v.isSelected() def isTopBitSet(self): return self.v.isTopBitSet() def isVisited(self): return self.v.isVisited() def status(self): return self.v.status() #@+node:ekr.20040306214240.2: *4* p.children & parents #@+node:ekr.20040326064330: *5* p.childIndex # This used to be time-critical code. def childIndex(self): p = self return p._childIndex #@+node:ekr.20040323160302: *5* p.directParents def directParents(self): return self.v.directParents() #@+node:ekr.20040306214240.3: *5* p.hasChildren & p.numberOfChildren def hasChildren(self): p = self return len(p.v.children) > 0 hasFirstChild = hasChildren def numberOfChildren(self): p = self return len(p.v.children) #@+node:ekr.20031218072017.915: *4* p.getX & VNode compatibility traversal routines # These methods are useful abbreviations. # Warning: they make copies of positions, so they should be used _sparingly_ def getBack(self): return self.copy().moveToBack() def getFirstChild(self): return self.copy().moveToFirstChild() def getLastChild(self): return self.copy().moveToLastChild() def getLastNode(self): return self.copy().moveToLastNode() # def getLastVisible (self): return self.copy().moveToLastVisible() def getNext(self): return self.copy().moveToNext() def getNodeAfterTree(self): return self.copy().moveToNodeAfterTree() def getNthChild(self, n): return self.copy().moveToNthChild(n) def getParent(self): return self.copy().moveToParent() def getThreadBack(self): return self.copy().moveToThreadBack() def getThreadNext(self): return self.copy().moveToThreadNext() # New in Leo 4.4.3 b2: add c args. def getVisBack(self, c): return self.copy().moveToVisBack(c) def getVisNext(self, c): return self.copy().moveToVisNext(c) # These are efficient enough now that iterators are the normal way to traverse the tree! back = getBack firstChild = getFirstChild lastChild = getLastChild lastNode = getLastNode # lastVisible = getLastVisible # New in 4.2 (was in tk tree code). next = getNext nodeAfterTree = getNodeAfterTree nthChild = getNthChild parent = getParent threadBack = getThreadBack threadNext = getThreadNext visBack = getVisBack visNext = getVisNext # New in Leo 4.4.3: hasVisBack = visBack hasVisNext = visNext #@+node:tbrown.20111010104549.26758: *4* p.get_UNL def get_UNL(self, with_file=True, with_proto=False, with_index=True, with_count=False): """ with_file=True - include path to Leo file with_proto=False - include 'file://' with_index - include ',x' at end where x is child index in parent with_count - include ',x,y' at end where y zero based count of same headlines """ aList = [] for i in self.self_and_parents(): if with_index or with_count: i = i.copy() count = 0 ind = 0 p = i.copy() while p.hasBack(): ind = ind + 1 p = p.back().copy() if i.h == p.h: count = count + 1 aList.append(i.h.replace('-->', '--%3E') + ":" + str(ind)) # g.recursiveUNLFind and sf.copy_to_my_settings undo this replacement. if count or with_count: aList[-1] = aList[-1] + "," + str(count) else: aList.append(i.h.replace('-->', '--%3E')) # g.recursiveUNLFind and sf.copy_to_my_settings undo this replacement. UNL = '-->'.join(reversed(aList)) if with_proto: # return ("file://%s#%s" % (self.v.context.fileName(), UNL)).replace(' ', '%20') s = "unl:" + "//%s#%s" % (self.v.context.fileName(), UNL) return s.replace(' ', '%20') elif with_file: return ("%s#%s" % (self.v.context.fileName(), UNL)) else: return UNL #@+node:ekr.20080416161551.192: *4* p.hasBack/Next/Parent/ThreadBack def hasBack(self): p = self return p.v and p._childIndex > 0 def hasNext(self): p = self try: parent_v = p._parentVnode() # Returns None if p.v is None. return p.v and parent_v and p._childIndex + 1 < len(parent_v.children) except Exception: g.trace('*** Unexpected exception') g.es_exception() return None def hasParent(self): p = self return p.v and p.stack def hasThreadBack(self): p = self return p.hasParent() or p.hasBack() # Much cheaper than computing the actual value. #@+node:ekr.20080416161551.193: *5* hasThreadNext (the only complex hasX method) def hasThreadNext(self): p = self if not p.v: return False if p.hasChildren() or p.hasNext(): return True n = len(p.stack) - 1 while n >= 0: v, childIndex = p.stack[n] # See how many children v's parent has. if n == 0: parent_v = v.context.hiddenRootNode else: parent_v, junk = p.stack[n - 1] if len(parent_v.children) > childIndex + 1: # v has a next sibling. return True n -= 1 return False #@+node:ekr.20060920203352: *4* p.findRootPosition def findRootPosition(self): # 2011/02/25: always use c.rootPosition p = self c = p.v.context return c.rootPosition() #@+node:ekr.20080416161551.194: *4* p.isAncestorOf def isAncestorOf(self, p2): '''Return True if p is one of the direct ancestors of p2.''' p = self c = p.v.context if not c.positionExists(p2): return False for z in p2.stack: # 2013/12/25: bug fix: test childIndices. # This is required for the new per-position expansion scheme. parent_v, parent_childIndex = z if parent_v == p.v and parent_childIndex == p._childIndex: return True return False #@+node:ekr.20040306215056: *4* p.isCloned def isCloned(self): p = self return p.v.isCloned() #@+node:ekr.20040307104131.2: *4* p.isRoot def isRoot(self): p = self return not p.hasParent() and not p.hasBack() #@+node:ekr.20080416161551.196: *4* p.isVisible (slow) def isVisible(self, c): '''Return True if p is visible in c's outline.''' p = self def visible(p, root=None): for parent in p.parents(): if parent and parent == root: # Fix bug: https://github.com/leo-editor/leo-editor/issues/12 return True if not c.shouldBeExpanded(parent): return False return True if c.hoistStack: root = c.hoistStack[-1].p if p == root: # Fix bug: https://github.com/leo-editor/leo-editor/issues/12 return True else: return root.isAncestorOf(p) and visible(p, root=root) else: for root in c.rootPosition().self_and_siblings(): if root == p or root.isAncestorOf(p): return visible(p) return False #@+node:ekr.20080416161551.197: *4* p.level & simpleLevel def level(self): '''Return the number of p's parents.''' p = self return len(p.stack) if p.v else 0 simpleLevel = level #@+node:ekr.20111005152227.15566: *4* p.positionAfterDeletedTree def positionAfterDeletedTree(self): '''Return the position corresponding to p.nodeAfterTree() after this node is deleted. This will be p.nodeAfterTree() unless p.next() exists. This method allows scripts to traverse an outline, deleting nodes during the traversal. The pattern is:: p = c.rootPosition() while p: if <delete p?>: next = p.positionAfterDeletedTree() p.doDelete() p = next else: p.moveToThreadNext() This method also allows scripts to *move* nodes during a traversal, **provided** that nodes are moved to a "safe" spot so that moving a node does not change the position of any other nodes. For example, the move-marked-nodes command first creates a **move node**, called 'Clones of marked nodes'. All moved nodes become children of this move node. **Inserting** these nodes as children of the "move node" does not change the positions of other nodes. **Deleting** these nodes *may* change the position of nodes, but the pattern above handles this complication cleanly. ''' p = self next = p.next() if next: # The new position will be the same as p, except for p.v. p = p.copy() p.v = next.v return p else: return p.nodeAfterTree() #@+node:shadow.20080825171547.2: *4* p.textOffset def textOffset(self): ''' Return the fcol offset of self. Return None if p is has no ancestor @<file> node. http://tinyurl.com/5nescw ''' p = self found, offset = False, 0 for p in p.self_and_parents(): if p.isAnyAtFileNode(): # Ignore parent of @<file> node. found = True break parent = p.parent() if not parent: break # If p is a section definition, search the parent for the reference. # Otherwise, search the parent for @others. h = p.h.strip() i = h.find('<<') j = h.find('>>') target = h[i: j + 2] if -1 < i < j else '@others' for s in parent.b.split('\n'): if s.find(target) > -1: offset += g.skip_ws(s, 0) break return offset if found else None #@+node:ekr.20150410101842.1: *3* p.isOutsideAtFileTree def isOutsideAnyAtFileTree(self): '''Select the first clone of target that is outside any @file node.''' p = self for parent in p.self_and_parents(): if parent.isAnyAtFileNode(): return False return True #@+node:ekr.20080423062035.1: *3* p.Low level methods # These methods are only for the use of low-level code # in leoNodes.py, leoFileCommands.py and leoUndo.py. #@+node:ekr.20080427062528.4: *4* p._adjustPositionBeforeUnlink def _adjustPositionBeforeUnlink(self, p2): '''Adjust position p before unlinking p2.''' # p will change if p2 is a previous sibling of p or # p2 is a previous sibling of any ancestor of p. p = self; sib = p.copy() # A special case for previous siblings. # Adjust p._childIndex, not the stack's childIndex. while sib.hasBack(): sib.moveToBack() if sib == p2: p._childIndex -= 1 return # Adjust p's stack. stack = []; changed = False; i = 0 while i < len(p.stack): v, childIndex = p.stack[i] p3 = Position(v=v, childIndex=childIndex, stack=stack[: i]) while p3: if p2 == p3: # 2011/02/25: compare full positions, not just vnodes. # A match with the to-be-moved node. stack.append((v, childIndex - 1),) changed = True break # terminate only the inner loop. p3.moveToBack() else: stack.append((v, childIndex),) i += 1 if changed: p.stack = stack #@+node:ekr.20080416161551.214: *4* p._linkAfter def _linkAfter(self, p_after, adjust=True): '''Link self after
immutable once created. No mechanism is provided for maintaining reference consistency if data in the alignment are modified. An Alignment is expected to be able to generate the following: - Seqs: Sequence objects in the alignment, can turn themselves into strings. These are usually thought of as "rows" in an alignment. - Positions: Vectors representing data in each position in the alignment These are usually thought of as "columns" in an alignment. - SeqData: Vectors representing data in each sequence in the alignment, not necessarily guaranteed to turn themselves into a string - Items: Iterator over the characters in the alignment - Names: List of names of sequences in the alignment. Used for display order. A cheap way to omit or reorder sequences is to modify the list of names. - NamedSeqs: Dict of name -> seq object, used for lookup. - MolType: MolType of the alignment. """ DefaultGap = '-' #default gap character for padding GapChars = dict.fromkeys('-?') #default gap chars for comparisons def iterPositions(self, pos_order=None): """Iterates over positions in the alignment, in order. pos_order refers to a list of indices (ints) specifying the column order. This lets you rearrange positions if you want to (e.g. to pull out individual codon positions). Note that self.iterPositions() always returns new objects, by default lists of elements. Use map(f, self.iterPositions) to apply the constructor or function f to the resulting lists (f must take a single list as a parameter). Note that some sequences (e.g. ViennaStructures) have rules that prevent arbitrary strings of their symbols from being valid objects. Will raise IndexError if one of the indices in order exceeds the sequence length. This will always happen on ragged alignments: assign to self.SeqLen to set all sequences to the same length. """ get = self.NamedSeqs.__getitem__ pos_order = pos_order or xrange(self.SeqLen) seq_order = self.Names for pos in pos_order: yield [get(seq)[pos] for seq in seq_order] Positions = property(iterPositions) def takePositions(self, cols, negate=False, seq_constructor=None): """Returns new Alignment containing only specified positions. By default, the seqs will be lists, but an alternative constructor can be specified. Note that takePositions will fail on ragged positions. """ if seq_constructor is None: seq_constructor = self.MolType.Sequence result = {} #if we're negating, pick out all the positions except specified indices if negate: col_lookup = dict.fromkeys(cols) for key, row in self.NamedSeqs.items(): result[key] = seq_constructor([row[i] for i in range(len(row)) \ if i not in col_lookup]) #otherwise, just get the requested indices else: for key, row in self.NamedSeqs.items(): result[key] = seq_constructor([row[i] for i in cols]) return self.__class__(result, Names=self.Names) def getPositionIndices(self, f, negate=False): """Returns list of column indices for which f(col) is True.""" #negate f if necessary if negate: new_f = lambda x: not f(x) else: new_f = f return [i for i, col in enumerate(self.Positions) if new_f(col)] def takePositionsIf(self, f, negate=False, seq_constructor=None): """Returns new Alignment containing cols where f(col) is True. Note that the seqs in the new Alignment are always new objects. Default constructor is list(), but an alternative can be passed in. """ if seq_constructor is None: seq_constructor = self.MolType.Sequence return self.takePositions(self.getPositionIndices(f, negate), \ seq_constructor=seq_constructor) def IUPACConsensus(self, alphabet=None): """Returns string containing IUPAC consensus sequence of the alignment. """ if alphabet is None: alphabet = self.MolType consensus = [] degen = alphabet.degenerateFromSequence for col in self.Positions: consensus.append(degen(coerce_to_string(col))) return coerce_to_string(consensus) def columnFreqs(self, constructor=Freqs): """Returns list of Freqs with item counts for each column. """ return map(constructor, self.Positions) def columnProbs(self, constructor=Freqs): """Returns FrequencyDistribuutions w/ prob. of each item per column. Implemented as a list of normalized Freqs objects. """ freqs = self.columnFreqs(constructor) for fd in freqs: fd.normalize() return freqs def majorityConsensus(self, transform=None, constructor=Freqs): """Returns list containing most frequent item at each position. Optional parameter transform gives constructor for type to which result will be converted (useful when consensus should be same type as originals). """ col_freqs = self.columnFreqs(constructor) consensus = [freq.Mode for freq in col_freqs] if transform == str: return coerce_to_string(consensus) elif transform: return transform(consensus) else: return consensus def uncertainties(self, good_items=None): """Returns Shannon uncertainty at each position. Usage: information_list = alignment.information(good_items=None) If good_items is supplied, deletes any symbols that are not in good_items. """ uncertainties = [] #calculate column probabilities if necessary if hasattr(self, 'PositionumnProbs'): probs = self.PositionumnProbs else: probs = self.columnProbs() #calculate uncertainty for each column for prob in probs: #if there's a list of valid symbols, need to delete everything else if good_items: prob = prob.copy() #do not change original #get rid of any symbols not in good_items for symbol in prob.keys(): if symbol not in good_items: del prob[symbol] #normalize the probabilities and add to the list prob.normalize() uncertainties.append(prob.Uncertainty) return uncertainties def scoreMatrix(self): """Returns a position specific score matrix for the alignment.""" return Dict2D(dict([(i,Freqs(col)) for i, col in enumerate(self.Positions)])) def _get_freqs(self, index=None): """Gets array of freqs along index 0 (= positions) or 1 (= seqs). index: if 0, will calculate the frequency of each symbol in each position (=column) in the alignment. Will return 2D array where the first index is the position, and the second index is the index of the symbol in the alphabet. For example, for the TCAG DNA Alphabet, result[3][0] would store the count of T at position 3 (i.e. the 4th position in the alignment. if 1, does the same thing except that the calculation is performed for each sequence, so the 2D array has the sequence index as the first index, and the symbol index as the second index. For example, for the TCAG DNA Alphabet, result[3][0] would store the count of T in the sequence at index 3 (i.e. the 4th sequence). First an DenseAligment object is created, next the calculation is done on this object. It is important that the DenseAlignment is initialized with the same MolType and Alphabet as the original Alignment. """ da = DenseAlignment(self, MolType=self.MolType, Alphabet=self.Alphabet) return da._get_freqs(index) def getPosFreqs(self): """Returns Profile of counts: position by character. See documentation for _get_freqs: this just wraps it and converts the result into a Profile object organized per-position (i.e. per column). """ return Profile(self._get_freqs(1), self.Alphabet) def sample(self, n=None, with_replacement=False, motif_length=1, \ randint=randint, permutation=permutation): """Returns random sample of positions from self, e.g. to bootstrap. Arguments: - n: the number of positions to sample from the alignment. Default is alignment length - with_replacement: boolean flag for determining if sampled positions - random_series: a random number generator with .randint(min,max) .random() methods Notes: By default (resampling all positions without replacement), generates a permutation of the positions of the alignment. Setting with_replacement to True and otherwise leaving parameters as defaults generates a standard bootstrap resampling of the alignment. """ population_size = len(self) // motif_length if not n: n = population_size if with_replacement: locations = randint(0, population_size, n) else: assert n <= population_size, (n, population_size, motif_length) locations = permutation(population_size)[:n] positions = [(loc*motif_length, (loc+1)*motif_length) for loc in locations] sample = Map(positions, parent_length=len(self)) return self.gappedByMap(sample, Info=self.Info) def slidingWindows(self, window, step, start=None, end=None): """Generator yielding new Alignments of given length and interval. Arguments: - window: The length of each returned alignment. - step: The interval between the start of the successive alignment objects returned. - start: first window start position - end: last window start position """ start = [start, 0][start is None] end = [end, len(self)-window+1][end is None] end = min(len(self)-window+1, end) if start < end and len(self)-end >= window-1: for pos in xrange(start, end, step): yield self[pos:pos+window] def aln_from_array(a, array_type=None, Alphabet=None): """Alignment from array of pos x seq: no change, names are integers. This is an InputHandler for Alignment. It converts an arbitrary array of numbers without change, but adds successive integer names (0-based) to each sequence (i.e. column) in the input a. Data type
<filename>bolt4ds/pipe/api.py import copy import os import json import ntpath import shutil import warnings import logging # logging.basicConfig(level=logging.DEBUG) from abc import ABC from pathlib import Path import jwt import bolt4ds.collect.collect as d6tcollect from .http_client import client as python_http_client from .utils.utils import ClientTiny, loadjson, _dict_sort class ConfigManager(object): """ Manage local config. The config is stored in JSON and can be edited directly `filecfg` location, by default '~/bolt4dspipe/cfg.json' Args: profile (str): name of profile to use filecfg (str): path to where config file is stored """ def __init__(self, profile=None, filecfg='~/bolt4dspipe/cfg.json'): self.profile = 'default' if profile is None else profile if str(filecfg).startswith('~'): filecfg = os.path.expanduser(filecfg) self.filecfg = filecfg def init(self, config=None, server='http://localhost', reset=False): """ Initialize config with content Args: config (dict): manually pass config object server (str): location of REST API server reset (bool): force reset of an existing config """ if os.path.exists(self.filecfg) and not reset and self.profile in self._loadall(): # todo: why does Path(self.filecfg).exists() not work in pytest? warnings.warn('Config for profile {} in {} already exists, skipping init. Use reset=True to reset config.'.format(self.profile,self.filecfg)) return None if not config: config = {} if 'server' not in config: config['server'] = server if 'filerepo' not in config: config['filerepo'] = '~/bolt4dspipe' p = Path(config['filerepo']) p2 = p/'files/{}/'.format(self.profile) config['filereporoot'] = str(p) config['filerepo'] = str(p2) if 'filedb' not in config: config['filedb'] = str(p2/'.filedb.json') # create config file if doesn't exist if not os.path.exists(self.filecfg): if not os.path.exists(ntpath.dirname(self.filecfg)): os.makedirs(ntpath.dirname(self.filecfg)) self._save(config) def update(self, config): """ Update config. Only keys present in the new dict will be updated, other parts of the config will be kept as is. In other words you can pass in a partial dict to update just the parts you need to be updated. Args: config (dict): updated config """ configall = self._loadall() config_current = configall[self.profile] config_current.update(config) self._save(config_current) return True def _save(self, config): if os.path.exists(self.filecfg): configall = self._loadall() configall[self.profile] = config else: configall = {} configall[self.profile] = config with open(self.filecfg, 'w') as f: json.dump(configall, f, indent=4) return True def _loadall(self): if not os.path.exists(self.filecfg): self.init() print('auto created profile "{}", see docs how to customize profile'.format(self.profile)) with open(self.filecfg, 'r') as f: config = json.load(f) return config def load(self): """ Loads config Returns: dict: config """ config = self._loadall() if self.profile not in config: self.init() config = self._loadall() warnings.warn('auto created profile "{}", see docs how to customize profile'.format(self.profile)) config = config[self.profile] for ikey in ['filereporoot','filerepo','filedb']: if config[ikey].startswith('~'): # do this dynamically config[ikey] = os.path.expanduser(config[ikey]) if not os.path.exists(config['filerepo']): os.makedirs(config['filerepo']) return config class _APIBase(metaclass=d6tcollect.Collect): def __init__(self, config=None, profile=None, filecfg='~/bolt4dspipe/cfg.json'): self.profile = 'default' if profile is None else profile if config is None: self.configmgr = ConfigManager(filecfg=filecfg, profile=self.profile) self.config = self.configmgr.load() else: self.config = config warnings.warn("Using manual config override, some api functions might not work") self.cfg_profile = self.config self.cfg_filecfg = filecfg self.filerepo = self.cfg_profile['filerepo'] self.dir = self.filerepo self.dirpath = Path(self.dir) self.key = self.cfg_profile.get('key',None) if self.key is None: # print("Auto generated an encryption key, update the config if you want to use your own") import uuid self.key = str(uuid.uuid4()) self.configmgr.update({'key':self.key}) self.encrypt_keys = ['location','readCredentials','writeCredentials','settings','files','readParams'] def list_pipes(self, names_only=True, parent_only=False): """ List all pipes you have access to Args: names_only (bool): if false, return all details """ r = self.cnxn.pipes.get()[1] if parent_only: r = [o for o in r if not o.get('parent')] if names_only: r = sorted([o['name'] for o in r]) return r def wipe_all(self, confirm=True): """ Remove all d6tpipe files. WARNING: this can't be undone Args: confirm (bool): ask for user confirmation """ if confirm: c = input('Confirm deleting files in {}. WARNING: this cannot be undone (y/n)'.format(self.dir)) else: c = 'y' if c=='y': del self.cnxn shutil.rmtree(self.filerepo) os.remove(self.configmgr.filecfg) def list_local_pipes(self): """ List all pipes already pulled Returns: list: list of pipe names """ dirs = [ name for name in os.listdir(self.filerepo) if os.path.isdir(os.path.join(self.filerepo, name)) ] return [name for name in dirs if os.listdir(os.path.join(self.filerepo, name))] def move_repo(self, path): """ Moves all files to another location and updates the config Args: path (pathlib.Path): Returns: bool: """ Path(path).mkdir(parents=True, exist_ok=True) shutil.move(self.filerepo,path) self.configmgr.update({'filerepo': path}) print('Moved repo to {}. Reloading api'.format(path)) self.__init__(profile=self.profile, filecfg=self.cfg_filecfg) return True def encode(self, dict_): """ Encrypt Args: dict_ (dict): Returns: dict: all values encrypted, keys are kept as is """ raise NotImplementedError('Sign up for premium features to access this function, email <EMAIL>') def decode(self, dict_): """ Decrypt Args: dict_ (dict): Returns: dict: """ raise NotImplementedError('Sign up for premium features to access this function, email <EMAIL>') class APILocal(_APIBase,metaclass=d6tcollect.Collect): """ As an alternative to the remote API, you can store everything locally. It mirrors the basic funtionality of the remote API but is not as feature rich. Args: config (dict): manually pass config object profile (str): name of profile to use filecfg (str): path to where config file is stored """ def __init__(self, config=None, profile=None, filecfg='~/bolt4dspipe/cfg.json'): super().__init__(config,profile,filecfg) self.cnxn = ClientTiny(self.config['filedb']) self.mode = 'local' class APIClient(_APIBase, metaclass=d6tcollect.Collect): """ Manager to interface with the remote API. Args: token (str): your API token config (dict): manually pass config object profile (str): name of profile to use filecfg (str): path to where config file is stored """ def __init__(self, token='config', config=None, profile=None, filecfg='~/bolt4dspipe/cfg.json'): super().__init__(config,profile,filecfg) if token=='config': self.token = self.cfg_profile.get('token',None) else: self.token = token if self.token is not None: request_headers = { "Authorization": 'Token {0}'.format(self.token) } else: # if not registered request_headers = {} client = python_http_client.Client(host=self.cfg_profile['server'], request_headers=request_headers, append_slash=True, version='1') self.cnxn = client.api self.mode = self.cfg_profile.get('mode','local') if self.token is not None: # test connection try: r,d = self.cnxn.get() if 'databolt.tech' in self.cfg_profile['server'] and 'username' not in d: warnings.warn('API authentication error') else: self.username = d.get('username') print('Connected to {} as {}'.format(self.cfg_profile['server'],self.username)) if 'message' in d: print(d['message']) except Exception as e: warnings.warn('API connection error ' + str(e)) else: print('No token provided. Register or login to connect to repo API.') def register(self, username, email, password): """ Register a new API user Args: username (str): email (str): password (str): """ data = {'username': username, 'email': email, 'password': password} # response, data = self.cnxn.accounts.post(request_body=data) try: response, data = self.cnxn.accounts.post(request_body=data) except Exception as e: if 'This field must be unique' in str(e): warnings.warn("Username or email already registered, registration failed. Pick a different username if you haven't registered before. If you already registered and forgot your token, call api.forgotToken(). If you want to re-register provide a different username") return else: raise e token = data.get('token') self._printtoken(token) return token def login(self, username, password): """ Login if already registered Args: username (str): password (str): """ return self.forgotToken(username, password) def forgotToken(self, username, password): """ Retrieve your API token Args: username (str): password (str): """ data = {'username': username, 'password': password} response, data = self.cnxn.accounts.token.post(request_body=data) token = data.get('token') self._printtoken(token) return token def setToken(self, token): self._printtoken(token) def _printtoken(self, token): print('Your token is below. Please save it and KEEP IT SAFE! If you forget it, you can retrieve it with APIClient().forgotToken(username, password)') print(token) print('reloading api to update token') self.configmgr.update({'token': token}) self.__init__(profile=self.profile, filecfg=self.cfg_filecfg) def _unregister(self, username): self.cnxn.accounts._(username).delete() self.configmgr.update({'token': None}) @d6tcollect.collect def list_profiles(filecfg='~/bolt4dspipe/cfg.json'): if str(filecfg).startswith('~'): filecfg = os.path.expanduser(filecfg) print(open(filecfg).read()) @d6tcollect.collect def upsert_resource(apiroot, settings): """ Convenience function to create or update a resource Args: apiroot (obj): API endpoint root eg `api.cnxn.pipes` settings (dict): resource settings Returns: response (obj): server response data (dict): json returned by server """ try: r, d = apiroot._(settings['name']).patch(request_body=settings) except Exception as e: if 'Not found' in str(e): return apiroot.post(request_body=settings) else: raise e return apiroot._(settings['name']).get() @d6tcollect.collect def upsert_pipe(api, settings): """ Convenience function to create or update a pipe Args: api (obj): api settings (dict): pipe settings Returns: response (obj): server response data (dict): json returned by server """ return upsert_resource(api.cnxn.pipes, settings) @d6tcollect.collect def upsert_permissions(api, pipe_name, settings): """ Convenience function to create or update pipe permissions Args: api (obj): api settings (dict): permission settings Returns: response (obj): server response data (dict): json returned by server """ apiroot = api.cnxn.pipes._(pipe_name).permissions # for now just post to permissions return apiroot.post(request_body=settings) def upsert_pipe_json(api, path_json, name): """ Convenience function to create or update a resource. Loads settings from config file to secure credentials Args: api (obj): api path_json (str): path to config file in json format name (str): name of json entry Returns:
bin_ix: numpy.ndarray :param events: Set of photon events to check if they are near the detector edge. :type events: dict :param verbose: Verbosity level, a value of 0 is minimum verbosity. :type verbose: int :param valid_detrad: The radius, in degrees, beyond which an edge warning is raised. :type valid_detrad: float :returns: bool -- Returns True/False whether a given set of events are too close to the edge of the detector. """ ix = np.where(mc.distance(events['photons']['col'][bin_ix], events['photons']['row'][bin_ix], 400, 400)* gxt.aper2deg(4) >= valid_detrad) return True if len(ix[0]) else False # ------------------------------------------------------------------------------ # ------------------------------------------------------------------------------ def getflags(band, bin_ix, events, verbose=0): """ Pass flags if data meets conditions that are likely to create misleading photometry. The flags are binary, with bins set as follows: 1 - 'hotspot' - aperture events in pixels contiguous to a masked hotspot 2 - 'mask edge' - aperture events in pixels contiguous to the detector edge 4 - 'exptime' - bin contains < 50% exposure time coverage 8 - 'respose' - events weighted with response < 0.7 16 - 'nonlinearity' - local countrate exceeds 10% response dropoff 32 - 'detector edge' - events outside of 0.5 degrees of detector center 64 - 'bg hotspot' - annulus events in pixels contiguous to a masked hotspot 128 - 'bg mask' - annulus events in pixels contiguous to detector edge :param band: The band being used, either 'FUV' or 'NUV'. :type band: str :param bin_ix: Array indices designating which events are in the time bin of interest. :type bin_ix: numpy.ndarray :param events: Set of photon events to check for warning flags. :type events: dict :param verbose: Verbosity level, a value of 0 is minimum verbosity. :type verbose: int :returns: numpy.ndarray -- The array of flags for each photon event. """ bin_num = np.unique(bin_ix) flags = np.zeros(len(bin_num)) for i, b in enumerate(bin_num): ix = np.where(bin_ix == b) if len(ix): #ix = bin_ix[np.where(bin_ix == bin)] try: if maskwarning(band, ix, events, mapkey='H', mode='aper', verbose=verbose): flags[i] += 1 if maskwarning(band, ix, events, mapkey='E', mode='aper', verbose=verbose): flags[i] += 2 if exptimewarning(i, events, verbose=verbose): flags[i] += 4 if lowresponsewarning(ix, events, verbose=verbose): flags[i] += 8 if nonlinearitywarning(band, i, events, verbose=verbose): flags[i] += 16 if detedgewarning(ix, events, verbose=verbose): flags[i] += 32 if maskwarning(band, ix, events, mapkey='H', mode='bg', verbose=verbose): flags[i] += 64 if maskwarning(band, ix, events, mapkey='E', mode='bg', verbose=verbose): flags[i] += 128 #if caiwarning(band, ix, events, verbose=verbose): # flags[i] += 256 if recoverywarning(band, ix, events, verbose=verbose): flags[i] += 512 except: raise else: flags[i] = np.nan return np.array(flags) # ------------------------------------------------------------------------------ # ------------------------------------------------------------------------------ def quickmag(band, ra0, dec0, tranges, radius, annulus=None, stepsz=None, verbose=0, detsize=1.25, coadd=False): """ Primary wrapper function for generating and synthesizing all of the parameters and calculations necessary to create light curves. :param band: The band being used, either 'FUV' or 'NUV'. :type band: str :param ra0: Right ascension, in degrees, of the target position. :type ra0: float :param dec0: Declination, in degrees, of the target position. :type dec0: float :param tranges: Set of time ranges to query within in GALEX time seconds. :type tranges: list :param radius: The radius of the photometric aperture, in degrees. :type radius: float :param annulus: Radii of the inner and outer extents of the background annulus, in degrees. :type annulus: list :param stepsz: The size of the time bins to use, in seconds. :type stepsz: float :param verbose: Verbosity level, a value of 0 is minimum verbosity. :type verbose: int :param detsize: Effective diameter, in degrees, of the field-of-view. :param coadd: Set to True if calculating a total flux instead of flux from each time bin. :type coadd: bool :returns: dict -- The light curve, including input parameters. """ if verbose: mc.print_inline("Retrieving all of the target events.") searchradius = radius if annulus is None else annulus[1] data = pullphotons(band, ra0, dec0, tranges, searchradius, verbose=verbose, detsize=detsize) if not data: return None if verbose: mc.print_inline("Binning data according to requested depth.") # Multiple ways of defining bins try: trange = [np.array(tranges).min(), np.array(tranges).max()] except ValueError: trange = tranges if coadd: bins = np.array(trange) elif stepsz: bins = np.append(np.arange(trange[0], trange[1], stepsz), max(trange)) else: bins = np.unique(np.array(tranges).flatten()) lcurve = {'params':gphot_params(band, [ra0, dec0], radius, annulus=annulus, verbose=verbose, detsize=detsize, stepsz=stepsz, trange=trange)} # This is equivalent in function to np.digitize(data['t'],bins) except # that it's much, much faster. See numpy issue #2656 at # https://github.com/numpy/numpy/issues/2656 bin_ix = np.searchsorted(bins, data['t'], "right") try: lcurve['t0'] = bins[np.unique(bin_ix)-1] lcurve['t1'] = bins[np.unique(bin_ix)] lcurve['exptime'] = np.array( dbt.compute_exptime(band, tranges if coadd else list(zip( lcurve['t0'], lcurve['t1'])), verbose=verbose, coadd=coadd, detsize=detsize, skypos=[ra0, dec0])) except IndexError: if np.isnan(data['t']): if verbose: mc.print_inline( "No valid data available in {t}".format(t=tranges)) lcurve['t0'] = np.array([np.nan]) lcurve['t1'] = np.array([np.nan]) lcurve['exptime'] = np.array([0]) angSep = mc.angularSeparation(ra0, dec0, data['ra'], data['dec']) aper_ix = np.where(angSep <= radius) lcurve['t0_data'] = reduce_lcurve(bin_ix, aper_ix, data['t'], np.min) lcurve['t1_data'] = reduce_lcurve(bin_ix, aper_ix, data['t'], np.max) lcurve['t_mean'] = reduce_lcurve(bin_ix, aper_ix, data['t'], np.mean) lcurve['q_mean'] = reduce_lcurve(bin_ix, aper_ix, data['q'], np.mean) lcurve['counts'] = reduce_lcurve(bin_ix, aper_ix, data['t'], len) lcurve['flat_counts'] = reduce_lcurve(bin_ix, aper_ix, 1./data['response'], np.sum) lcurve['responses'] = reduce_lcurve(bin_ix, aper_ix, data['response'], np.mean) lcurve['detxs'] = reduce_lcurve(bin_ix, aper_ix, data['col'], np.mean) lcurve['detys'] = reduce_lcurve(bin_ix, aper_ix, data['row'], np.mean) lcurve['detrad'] = mc.distance(lcurve['detxs'], lcurve['detys'], 400, 400) lcurve['racent'] = reduce_lcurve(bin_ix, aper_ix, data['ra'], np.mean) lcurve['deccent'] = reduce_lcurve(bin_ix, aper_ix, data['dec'], np.mean) skybgmcatdata = dbt.get_mcat_data([ra0, dec0], radius) lcurve['mcat_bg'] = lcurve['exptime']*np.array( [dbt.mcat_skybg(band, [ra0, dec0], radius, trange=tr, mcat=skybgmcatdata, verbose=verbose) for tr in zip(lcurve['t0'], lcurve['t1'])]) if annulus is not None: annu_ix = np.where((angSep > annulus[0]) & (angSep <= annulus[1])) lcurve['bg_counts'] = reduce_lcurve(bin_ix, annu_ix, data['t'], len) lcurve['bg_flat_counts'] = reduce_lcurve( bin_ix, annu_ix, data['response'], np.sum) lcurve['bg'] = (mc.area(radius)*lcurve['bg_flat_counts'] / (mc.area(annulus[1])-mc.area(annulus[0]))) else: lcurve['bg_counts'] = np.zeros(len(lcurve['counts'])) lcurve['bg_flat_counts'] = np.zeros(len(lcurve['counts'])) lcurve['bg'] = np.zeros(len(lcurve['counts'])) lcurve['cps'] = lcurve['flat_counts']/lcurve['exptime'] lcurve['cps_err'] = aperture_error(lcurve['flat_counts'], lcurve['exptime']) lcurve['cps_bgsub'] = (lcurve['flat_counts']- lcurve['bg'])/lcurve['exptime'] lcurve['cps_bgsub_err'] = aperture_error( lcurve['flat_counts'], lcurve['exptime'], bgcounts=lcurve['bg']) lcurve['cps_mcatbgsub'] = (lcurve['flat_counts']- lcurve['mcat_bg'])/lcurve['exptime'] lcurve['cps_mcatbgsub_err'] = aperture_error( lcurve['flat_counts'], lcurve['exptime'], bgcounts=lcurve['mcat_bg']) lcurve['flux'] = gxt.counts2flux(lcurve['cps'], band) lcurve['flux_err'] = gxt.counts2flux(lcurve['cps_err'], band) lcurve['flux_bgsub'] = gxt.counts2flux(lcurve['cps_bgsub'], band) lcurve['flux_bgsub_err'] = gxt.counts2flux(lcurve['cps_bgsub_err'], band) lcurve['flux_mcatbgsub'] = gxt.counts2flux(lcurve['cps_mcatbgsub'], band) lcurve['flux_mcatbgsub_err'] = gxt.counts2flux( lcurve['cps_mcatbgsub_err'], band) # NOTE: These conversions to mag can throw logarithm warnings if the # background is brighter than the source, resuling in a negative cps which # then gets propagated as a magnitude of NaN. lcurve['mag'] = gxt.counts2mag(lcurve['cps'], band) lcurve['mag_err_1'] = (lcurve['mag'] - gxt.counts2mag(lcurve['cps'] + lcurve['cps_err'], band)) lcurve['mag_err_2'] = (gxt.counts2mag(lcurve['cps'] - lcurve['cps_err'], band) - lcurve['mag']) lcurve['mag_bgsub'] = gxt.counts2mag(lcurve['cps_bgsub'], band) lcurve['mag_bgsub_err_1'] = (lcurve['mag_bgsub'] - gxt.counts2mag(lcurve['cps_bgsub'] + lcurve['cps_bgsub_err'], band)) lcurve['mag_bgsub_err_2'] = (gxt.counts2mag(lcurve['cps_bgsub'] - lcurve['cps_bgsub_err'], band) - lcurve['mag_bgsub']) lcurve['mag_mcatbgsub'] = gxt.counts2mag(lcurve['cps_mcatbgsub'], band) lcurve['mag_mcatbgsub_err_1'] = (lcurve['mag_mcatbgsub'] - gxt.counts2mag(lcurve['cps_mcatbgsub'] + lcurve['cps_mcatbgsub_err'], band)) lcurve['mag_mcatbgsub_err_2'] = (gxt.counts2mag(lcurve['cps_mcatbgsub'] - lcurve['cps_mcatbgsub_err'], band) - lcurve['mag_mcatbgsub']) lcurve['photons'] = data lcurve['flags'] = getflags(band, bin_ix, lcurve, verbose=verbose) return lcurve # ------------------------------------------------------------------------------ # ------------------------------------------------------------------------------ def get_curve(band, ra0, dec0, radius, annulus=None, stepsz=None, trange=None, tranges=None, verbose=0, coadd=False, minexp=1., maxgap=1., detsize=1.1): """ Wraps quickmag() to make it ensure some proper parameter formatting and therefore make it slightly more user friendly. :param band: The band being used, either 'FUV' or 'NUV'. :type band: str :param ra0: Right ascension, in degrees, of the target position. :type ra0: float :param dec0: Declination, in degrees, of the target position. :type dec0: float :param radius: The radius of the photometric aperture, in degrees. :type radius: float :param annulus: Radii of the inner and outer extents of the background annulus, in degrees. :type annulus: list :param stepsz: The size (depth) of the time bins to use, in seconds. :type stepsz: float :param trange: Minimum and maximum time range to make a light curve, in GALEX time seconds. :type trange: list :param tranges: Set of time ranges to query within in GALEX time seconds. :type tranges: list :param verbose: Verbosity level, a value of 0 is minimum verbosity. :type verbose: int :param coadd: Set to True if calculating a total flux instead of flux from each time bin. :type coadd: bool :param minexp: Minimum gap size, in seconds, for data to be considered contiguous. :type minexp: float :param maxgap: Maximum gap size, in seconds, for data to be considered contiguous. :type maxgap: float :param detsize: Effective diameter, in degrees, of the field-of-view. :type detsize: float :returns: dict -- The light curve,
from __future__ import absolute_import, division, print_function import tensorflow.compat.v1 as tf import numpy as np import time from scipy.special import comb, perm import argparse import json import os import pprint ### self-defined module import policy from dataloader import * import util import tff_util from task import Task parser = argparse.ArgumentParser(description='FL') parser.add_argument("--distribution", type=str, default="mix", help="Data distribution") parser.add_argument("--lr", type=float, default=0.1, help="Initialized learning rate") parser.add_argument("--policy", type=str, default="my", help="Client Assignment Policy") parser.add_argument("--trade_once", action="store_true", help="Set to update clients selection only after the first epoch") args = parser.parse_args() # tf.compat.v1.enable_v2_behavior() # tf.compat.v1.enable_eager_execution() # NUM_EXAMPLES_PER_USER = 1000 ### Experiment Configs MIX_RATIO = 0.8 SIMULATE = False EPOCH_NUM = 35 TRIAL_NUM = 1 TASK_NUM = 2 bid_per_loss_delta_space = [0.8,1,1.2] required_client_num_space = [1,2,3] target_labels_space = [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]] START_TIME = time.time() # class Client: # def __init__(self, ...): # self.cost = xxx # self.id = xxx # self.idlecost = xxx # self.data = xxx def pick_client_based_on_index(task, epoch, selected_client_idx, all_client_data, all_client_data_full): clients_data = [] # if epoch == 0: # return all_client_data_full # else: for idx in selected_client_idx: batch= next(all_client_data[idx]) if task.target_labels is None: new_batch = batch else: # filter batch according to required labels of tasks new_batch = {"x": [], "y": []} for idx, y in enumerate(batch["y"]): if y in task.target_labels: new_batch["x"].append(batch["x"][idx]) new_batch["y"].append(batch["y"][idx]) clients_data.append([new_batch]) return clients_data def train_one_round( task, round_idx, learning_rate, epoch, all_client_data, all_client_data_full, test_data, ckpt=False, evaluate_each_client=False): if task.selected_client_idx is None: assert args.trade_once task.totoal_loss_delta = 0 return clients_data = pick_client_based_on_index(task, epoch, task.selected_client_idx, all_client_data, all_client_data_full) task.params_per_client = [None] * len(task.selected_client_idx) ### Train if SIMULATE: local_models = [(task.model['weights'], task.model['bias']) for _ in task.selected_client_idx] else: local_models = tff_util.federated_train(task.model, learning_rate, clients_data) ### Output model parameters of all selected agents of this task ### Store the model parameters of this round if ckpt is True for local_index in range(len(local_models)): client_id = task.selected_client_idx[local_index] if epoch == 0: if task.params_per_client[local_index] is None: task.params_per_client[local_index] = [] task.params_per_client[local_index].append( (local_models[local_index], learning_rate)) task.params_per_client[local_index] = (local_models[local_index], learning_rate) if ckpt: f = open(os.path.join(os.path.dirname(__file__), "weights_"+str(client_id)+".txt"),"a",encoding="utf-8") for i in local_models[local_index][0]: line = "" arr = list(i) for j in arr: line += (str(j)+"\t") print(line, file=f) print("***"+str(learning_rate)+"***",file=f) print("-"*50,file=f) f.close() f = open(os.path.join(os.path.dirname(__file__), "bias_" + str(client_id) + ".txt"), "a", encoding="utf-8") line = "" for i in local_models[local_index][1]: line += (str(i) + "\t") print(line, file=f) print("***" + str(learning_rate) + "***",file=f) print("-"*50,file=f) f.close() ### Store the model before updating if task.model_epoch_start is None: task.model_epoch_start = task.model ### Update the global model parameters task.model = tff_util.weighted_average_model(local_models, data_num, task.selected_client_idx, evaluate_each_client, test_data=None) task.learning_rate = learning_rate ### evaluate the loss loss = tff_util.evaluate_loss_on_server(task.model, test_data) task.totoal_loss_delta = 1000*float(task.prev_loss - loss) task.prev_loss = loss task.log("Epoch {} Round {} at {:.3f} s, selected_client_idx: {}, learning rate: {:.3f}, loss: {:.3f}, loss_delta: {:.3f}".format( epoch, round_idx, time.time()-START_TIME, task.selected_client_idx, learning_rate, loss, task.totoal_loss_delta)) #raise NotImplementedError("TODO, update task.total_loss_delta") def calculate_feedback(task, test_data): ### TODO: comment the process to calculate the shapley value ### Substitute with our own algorithm if task.selected_client_idx is None: return [] ### Calculate the Feedback selected_client_num = len(task.selected_client_idx) all_sets = util.PowerSetsBinary([i for i in range(selected_client_num)]) group_shapley_value = [] # print(train_with_gradient_and_valuation(task, [0], test_data, data_num)) # print(train_with_gradient_and_valuation(task, [9], test_data, data_num)) # print(train_with_gradient_and_valuation(task, [0, 9], test_data, data_num)) # raise for s in all_sets: _loss = tff_util.train_with_gradient_and_valuation(task, s, test_data, data_num) contrib = task.prev_loss - _loss group_shapley_value.append(contrib) # task.log(str(s)+"\t"+str(group_shapley_value[len(group_shapley_value)-1])) agent_shapley = [] for index in range(selected_client_num): shapley = 0.0 for set_idx, j in enumerate(all_sets): if index in j: remove_list_index = util.remove_list_indexed(index, j, all_sets) if remove_list_index != -1: shapley += (group_shapley_value[set_idx] - group_shapley_value[ remove_list_index]) / (comb(selected_client_num - 1, len(all_sets[remove_list_index]))) agent_shapley.append(shapley) # for ag_s in agent_shapley: # print(ag_s) # task.select_clients(agent_shapley, free_client) # if sum(agent_shapley) == 0: # import code # code.interact(local=locals()) return agent_shapley def run_one_trial(): ### Load data all_client_data, test_data, all_client_data_full = main_load(args) ############################### client ########################################### ### 0 denotes free, 1 denotes being occupied free_client = [0] * NUM_AGENT cost_list = [] for client_idx in range(NUM_AGENT): # cost_list.append(random.randint(1,10)/10) cost_list.append(0) idlecost_list = [] for client_idx in range(NUM_AGENT): idlecost_list.append(0) client_feature_list = list(zip( cost_list, idlecost_list)) # client_list = [] # for client_idx in range(NUM_AGENT): # client = Client(....) # client_list.append(client) ############################### client end ########################################### ### Read inital model parameters from files w_initial, b_initial = tff_util.init_model() learning_rate = args.lr ############################### Task ########################################### ### Initialize the global model parameters for both tasks ### At the first epoch, both tasks select all clients task_list = [] def create_task(selected_client_idx, init_model, required_client_num, bid_per_loss_delta, target_labels=None): task = Task( task_id = len(task_list), selected_client_idx=selected_client_idx, model = init_model, required_client_num=required_client_num, bid_per_loss_delta=bid_per_loss_delta, target_labels=target_labels) task_list.append(task) ### Init the loss task.prev_loss = tff_util.evaluate_loss_on_server(task.model, test_data) for task_id in range(TASK_NUM): create_task( selected_client_idx=list(range(NUM_AGENT)), init_model = { 'weights': w_initial, 'bias': b_initial }, required_client_num=util.sample_config(required_client_num_space, task_id, use_random=True), bid_per_loss_delta=util.sample_config(bid_per_loss_delta_space, task_id, use_random=True), target_labels=util.sample_config(target_labels_space,task_id, use_random=True) ) ### Initialize the price_table and bid table price_table = None def init_price_table(price_table): price_table = [] for client_idx in range(NUM_AGENT): init_price_list = [] for taks_idx in range(len(task_list)): init_price_list.append(0) price_table.append(init_price_list) return price_table price_table = init_price_table(price_table) bid_table = np.zeros((NUM_AGENT, len(task_list))) ############################### Main process of FL ########################################## total_reward_list = [] succ_cnt_list = [] reward_sum=[] for epoch in range(EPOCH_NUM): for task in task_list: task.epoch = epoch for round_idx in range(1): ### Train the model parameters distributedly # return a list of model parameters # local_models[0][0], weights of the 0-th agent # local_models[0][1], bias of the 0-th agent for task in task_list: train_one_round( task, round_idx, learning_rate, epoch, all_client_data, all_client_data_full, test_data, ckpt=False, evaluate_each_client=False) learning_rate = learning_rate * 0.7 ### At the end of this epoch ### At the first epoch, calculate the Feedback and update clients for each task print("Start to update client assignment ... ") shapely_value_table = [calculate_feedback(task, test_data) for task in task_list] ### Normalize using sigmoid shapely_value_table = [ util.sigmoid(np.array(elem)) if len(elem) > 0 else elem for elem in shapely_value_table] shapely_value_table = np.array(shapely_value_table) print(shapely_value_table) ### Update price table for task_idx in range(len(task_list)): if task_list[task_idx].selected_client_idx is None: continue selected_client_index = task_list[task_idx].selected_client_idx for idx in range(len(selected_client_index)): client_idx = selected_client_index[idx] shapley_value = shapely_value_table[task_idx][idx] shapely_value_scaled = shapley_value * len(selected_client_index) / NUM_AGENT # price_table[client_idx][task_idx] = ((epoch / (epoch + 1)) * price_table[client_idx][task_idx] + (1 / (epoch + 1)) * shapely_value_scaled) price_table[client_idx][task_idx] = shapely_value_scaled total_cost = 0 bid_list = [task.totoal_loss_delta * task.bid_per_loss_delta for task in task_list] total_bid = sum(bid_list) for task in task_list: if task.selected_client_idx is None: continue for client_idx in task.selected_client_idx : total_cost += cost_list[client_idx] assert price_table is not None ### Update bid table for task_idx in range(len(task_list)): if task_list[task_idx].selected_client_idx is None: continue selected_client_index = task_list[task_idx].selected_client_idx for idx in range(len(selected_client_index)): client_idx = selected_client_index[idx] shapley_value = shapely_value_table[task_idx][idx] bid_table[client_idx][task_idx] = shapley_value * bid_list[task_idx] # reward_list = [task.totoal_loss_delta * task.bid_per_loss_delta for task in task_list] # reward_list = [task.totoal_loss_delta * task.bid_per_loss_delta - total_cost for task in task_list] #print ('reward list', reward_list) print("Start to select clients ... ") if epoch == 0 or not args.trade_once: ask_table = util.calcualte_client_value(price_table, client_feature_list) norm_ask_table = util.normalize_data(ask_table) norm_bid_table = util.normalize_data(bid_table) if args.policy == "my": succ_cnt, reward = policy.my_select_clients( norm_ask_table, client_feature_list, task_list, norm_bid_table) elif args.policy == "random": succ_cnt, reward = policy.random_select_clients( norm_ask_table, client_feature_list, task_list, norm_bid_table) elif args.policy == "simple": succ_cnt, reward = policy.simple_select_clients(task_list, NUM_AGENT) elif args.policy == "mcafee": if epoch == 0: succ_cnt, reward = policy.mcafee_select_clients( norm_ask_table, client_feature_list, task_list, norm_bid_table) norm_bid_table_first_epoch = norm_bid_table.copy() elif args.policy == "even": succ_cnt, reward =policy.even_select_clients( norm_ask_table, client_feature_list, task_list, norm_bid_table) else: raise print("Client assignment Done ") for task in task_list: task.end_of_epoch() ### caclulate reward if epoch > 0: if args.policy == "mcafee": _, reward = policy.mcafee_select_clients( norm_ask_table, client_feature_list, task_list, norm_bid_table_first_epoch, update=False) bid_list = [task.totoal_loss_delta * reward for task in task_list] print ([task.totoal_loss_delta for task in task_list]) total_bid = sum(bid_list) total_reward = total_bid - total_cost total_reward_list.append(total_reward) reward_sum.append(sum(total_reward_list)) elif args.policy == "even": _, reward = policy.even_select_clients( norm_ask_table, client_feature_list, task_list, norm_bid_table, update=False ) total_reward = reward - total_cost total_reward_list.append(total_reward) reward_sum.append(sum(total_reward_list)) # raise NotImplementedError("Current implementation is wrong") # client_value_table = policy.calcualte_client_value(price_table, client_feature_list) # task_price_list = np.sum(bid_table, axis=0) # sorted_task_with_index = sorted(enumerate(task_price_list), key=lambda x: x[1], reverse=True) # client_value_list = np.sum((client_value_table), axis=1) # client_value_list_sorted = sorted(enumerate(client_value_list), key=lambda x: x[1], reverse=False) # for j in selected_client_index: # b = client_value_list_sorted[j][1] # bid_list = [task.totoal_loss_delta * 1/2* (task.bid_per_loss_delta +b ) for task in task_list] else: total_reward = total_bid - total_cost total_reward_list.append(total_reward) reward_sum.append(sum(total_reward_list)) print(reward_sum[-1]) ### Count successful matching succ_cnt_list.append(succ_cnt) ### end of trianing with
# Copyright 2022 The Waymo Open Dataset Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """Tools related to working with human keypoints.""" import abc import dataclasses from typing import Collection, Mapping, Optional, Tuple import immutabledict from matplotlib import collections as mc from matplotlib import pyplot as plt import numpy as np import plotly.graph_objects as go from waymo_open_dataset import label_pb2 from waymo_open_dataset.protos import keypoint_pb2 from waymo_open_dataset.utils import keypoint_data as _data KeypointType = keypoint_pb2.KeypointType ColorByType = Mapping['KeypointType', str] DEFAULT_COLOR = '#424242' OCCLUDED_COLOR = '#000000' OCCLUDED_BORDER_WIDTH = 3 @dataclasses.dataclass(frozen=True) class Line: """Line in 2D or 3D space for visualization of keypoints. It is a primitive for visualization purposes. Attributes: start: Start point of the line, an array with 2 or 3 elements. end: End point of the line, an array with 2 or 3 elements. color: a hex string representing an RGB color. width: thickness of the line in units specifix to a rendering function. """ start: np.ndarray end: np.ndarray color: str width: float @dataclasses.dataclass(frozen=True) class Dot: """A small circle/sphere in 2D or 3D space for visualization of keypoints. It is a primitive for visualization purposes. Attributes: location: Point in space, an array with 2 or 3 elements. color: a hex string representing an RGB color. size: diameter of the dot in units specifix to a rendering function. name: name of the keypoint. border_color: optional color of the border, default is None. actual_border_color: same as the `border_color` if it was set and same as `color` otherwise. """ location: np.ndarray color: str size: float name: str border_color: Optional[str] = None @property def actual_border_color(self) -> str: if self.border_color: return self.border_color return self.color @dataclasses.dataclass(frozen=True) class Wireframe: """Data required to render visual representation of keypoints. Attributes: lines: set of line segments between keypoints. dots: set of points in keypoints locations. """ lines: Collection[Line] dots: Collection[Dot] class Edge(abc.ABC): """Base class for all wireframe edges.""" @abc.abstractmethod def create_lines(self, point_by_type: _data.PointByType, colors: ColorByType) -> Collection[Line]: """Creates all lines to visualize an edge. Args: point_by_type: a mapping between keypoint type and its coordinates. colors: a mpping between keypoitn type and its color. Returns: a list of line representing the edge in the wireframe. """ @dataclasses.dataclass(frozen=True) class SolidLineEdge(Edge): """Represents an edge between two keypoints a single line segment. Attributes: start: type of the start keypoint. end: type of the end keypoint. width: thickness of the line in units specifix to a rendering function. """ start: 'KeypointType' end: 'KeypointType' width: float def create_lines(self, point_by_type: _data.PointByType, colors: Mapping['KeypointType', str]) -> Collection[Line]: """See base class.""" if self.start not in point_by_type or self.end not in point_by_type: return [] color = colors.get(self.start, DEFAULT_COLOR) return [ Line(point_by_type[self.start].location, point_by_type[self.end].location, color, self.width) ] def _bicolor_lines(start: np.ndarray, start_color: str, end: np.ndarray, end_color: str, width: float) -> Collection[Line]: middle = (start + end) / 2 start_half = Line(start, middle, start_color, width) end_half = Line(middle, end, end_color, width) return [start_half, end_half] @dataclasses.dataclass(frozen=True) class BicoloredEdge(SolidLineEdge): """Edge with two line segments colored according to keypoint type.""" def create_lines(self, point_by_type: _data.PointByType, colors: Mapping['KeypointType', str]) -> Collection[Line]: """See base class.""" if self.start not in point_by_type or self.end not in point_by_type: return [] start = np.array(point_by_type[self.start].location) start_color = colors.get(self.start, DEFAULT_COLOR) end = np.array(point_by_type[self.end].location) end_color = colors.get(self.end, DEFAULT_COLOR) return _bicolor_lines(start, start_color, end, end_color, self.width) def _combine_colors(colors: Collection[str]) -> str: if len(colors) == 1: return next(iter(colors)) else: return DEFAULT_COLOR @dataclasses.dataclass(frozen=True) class MultipointEdge(Edge): """An edge with start/end points computed by averaging input coordinates.""" start_avg: Collection['KeypointType'] end_avg: Collection['KeypointType'] width: float def create_lines(self, point_by_type: _data.PointByType, colors: Mapping['KeypointType', str]) -> Collection[Line]: """See base class.""" has_start = set(self.start_avg).issubset(point_by_type.keys()) has_end = set(self.end_avg).issubset(point_by_type.keys()) if not has_start or not has_end: return [] start = np.mean([point_by_type[s].location for s in self.start_avg], axis=0) start_color = _combine_colors([colors[s] for s in self.start_avg]) end = np.mean([point_by_type[e].location for e in self.end_avg], axis=0) end_color = _combine_colors([colors[s] for s in self.end_avg]) return _bicolor_lines(start, start_color, end, end_color, self.width) _COMMON_EDGES = (BicoloredEdge(KeypointType.KEYPOINT_TYPE_LEFT_ANKLE, KeypointType.KEYPOINT_TYPE_LEFT_KNEE, 2), BicoloredEdge(KeypointType.KEYPOINT_TYPE_LEFT_KNEE, KeypointType.KEYPOINT_TYPE_LEFT_HIP, 2), BicoloredEdge(KeypointType.KEYPOINT_TYPE_LEFT_HIP, KeypointType.KEYPOINT_TYPE_LEFT_SHOULDER, 2), BicoloredEdge(KeypointType.KEYPOINT_TYPE_LEFT_SHOULDER, KeypointType.KEYPOINT_TYPE_LEFT_ELBOW, 2), BicoloredEdge(KeypointType.KEYPOINT_TYPE_LEFT_ELBOW, KeypointType.KEYPOINT_TYPE_LEFT_WRIST, 2), BicoloredEdge(KeypointType.KEYPOINT_TYPE_RIGHT_ANKLE, KeypointType.KEYPOINT_TYPE_RIGHT_KNEE, 2), BicoloredEdge(KeypointType.KEYPOINT_TYPE_RIGHT_KNEE, KeypointType.KEYPOINT_TYPE_RIGHT_HIP, 2), BicoloredEdge(KeypointType.KEYPOINT_TYPE_RIGHT_HIP, KeypointType.KEYPOINT_TYPE_RIGHT_SHOULDER, 2), BicoloredEdge(KeypointType.KEYPOINT_TYPE_RIGHT_SHOULDER, KeypointType.KEYPOINT_TYPE_RIGHT_ELBOW, 2), BicoloredEdge(KeypointType.KEYPOINT_TYPE_RIGHT_ELBOW, KeypointType.KEYPOINT_TYPE_RIGHT_WRIST, 2), BicoloredEdge(KeypointType.KEYPOINT_TYPE_LEFT_HIP, KeypointType.KEYPOINT_TYPE_RIGHT_HIP, 2), BicoloredEdge(KeypointType.KEYPOINT_TYPE_LEFT_SHOULDER, KeypointType.KEYPOINT_TYPE_RIGHT_SHOULDER, 2)) _DEFAULT_CAMERA_EDGES = _COMMON_EDGES + ( BicoloredEdge(KeypointType.KEYPOINT_TYPE_NOSE, KeypointType.KEYPOINT_TYPE_FOREHEAD, 1), MultipointEdge([KeypointType.KEYPOINT_TYPE_FOREHEAD], [ KeypointType.KEYPOINT_TYPE_LEFT_SHOULDER, KeypointType.KEYPOINT_TYPE_RIGHT_SHOULDER ], 1)) _DEFAULT_LASER_EDGES = _COMMON_EDGES + ( BicoloredEdge(KeypointType.KEYPOINT_TYPE_NOSE, KeypointType.KEYPOINT_TYPE_HEAD_CENTER, 1), MultipointEdge([KeypointType.KEYPOINT_TYPE_HEAD_CENTER], [ KeypointType.KEYPOINT_TYPE_LEFT_SHOULDER, KeypointType.KEYPOINT_TYPE_RIGHT_SHOULDER ], 1)) _DEFAULT_POINT_COLORS = immutabledict.immutabledict({ KeypointType.KEYPOINT_TYPE_NOSE: '#00FF00', KeypointType.KEYPOINT_TYPE_FOREHEAD: '#00FFFF', KeypointType.KEYPOINT_TYPE_HEAD_CENTER: '#00FFFF', KeypointType.KEYPOINT_TYPE_LEFT_SHOULDER: '#FFA6FE', KeypointType.KEYPOINT_TYPE_LEFT_ELBOW: '#FFE502', KeypointType.KEYPOINT_TYPE_LEFT_WRIST: '#006401', KeypointType.KEYPOINT_TYPE_LEFT_HIP: '#010067', KeypointType.KEYPOINT_TYPE_LEFT_KNEE: '#95003A', KeypointType.KEYPOINT_TYPE_LEFT_ANKLE: '#007DB5', KeypointType.KEYPOINT_TYPE_RIGHT_SHOULDER: '#774D00', KeypointType.KEYPOINT_TYPE_RIGHT_ELBOW: '#90FB92', KeypointType.KEYPOINT_TYPE_RIGHT_WRIST: '#0076FF', KeypointType.KEYPOINT_TYPE_RIGHT_HIP: '#D5FF00', KeypointType.KEYPOINT_TYPE_RIGHT_KNEE: '#A75740', KeypointType.KEYPOINT_TYPE_RIGHT_ANKLE: '#6A826C' }) # Keypoint sigmas from https://cocodataset.org/#keypoints-eval _OKS_SCALES = immutabledict.immutabledict({ KeypointType.KEYPOINT_TYPE_NOSE: 0.052, KeypointType.KEYPOINT_TYPE_LEFT_SHOULDER: 0.158, KeypointType.KEYPOINT_TYPE_RIGHT_SHOULDER: 0.158, KeypointType.KEYPOINT_TYPE_LEFT_ELBOW: 0.144, KeypointType.KEYPOINT_TYPE_RIGHT_ELBOW: 0.144, KeypointType.KEYPOINT_TYPE_LEFT_WRIST: 0.124, KeypointType.KEYPOINT_TYPE_RIGHT_WRIST: 0.124, KeypointType.KEYPOINT_TYPE_LEFT_HIP: 0.214, KeypointType.KEYPOINT_TYPE_RIGHT_HIP: 0.214, KeypointType.KEYPOINT_TYPE_LEFT_KNEE: 0.174, KeypointType.KEYPOINT_TYPE_RIGHT_KNEE: 0.174, KeypointType.KEYPOINT_TYPE_LEFT_ANKLE: 0.178, KeypointType.KEYPOINT_TYPE_RIGHT_ANKLE: 0.178, KeypointType.KEYPOINT_TYPE_FOREHEAD: 0.158, KeypointType.KEYPOINT_TYPE_HEAD_CENTER: 0.158 }) def _default_point_sizes(): max_scale = max(s for s in _OKS_SCALES.values()) return {n: s / max_scale for n, s in _OKS_SCALES.items()} @dataclasses.dataclass(frozen=True) class WireframeConfig: """Settings to build a wireframe out of a set of keypoints. Attributes: edges: types of keypoints to connect with line segments. point_colors: colors of keypoint types for corresponding dots and line segments. point_sizes: nominal sizes of dots. dot_size_factor: a factor used to compute actual sizes of dots using `point_sizes`. line_width_factor: a factor used to compute actual width of lines using configured edge widths. """ edges: Collection[BicoloredEdge] point_colors: Mapping['KeypointType', str] point_sizes: Mapping['KeypointType', float] dot_size_factor: float = 1.0 line_width_factor: float = 1.0 DEFAULT_CAMERA_WIREFRAME_CONFIG = WireframeConfig( edges=_DEFAULT_CAMERA_EDGES, point_colors=_DEFAULT_POINT_COLORS, point_sizes=_default_point_sizes(), dot_size_factor=6, line_width_factor=1) DEFAULT_LASER_WIREFRAME_CONFIG = WireframeConfig( edges=_DEFAULT_LASER_EDGES, point_colors=_DEFAULT_POINT_COLORS, point_sizes=_default_point_sizes(), dot_size_factor=15, line_width_factor=4) def _removeprefix(x, y): if x.startswith(y): return x[len(y):] return x def point_name(point_type: 'KeypointType') -> str: """Returns a short name of the keypoint type.""" name = KeypointType.Name(point_type) return _removeprefix(name, 'KEYPOINT_TYPE_') def _build_wireframe(point_by_type: _data.PointByType, config: WireframeConfig) -> Wireframe: """Creates a wireframe for a collection of keypoint coordinates.""" lines = [] for e in config.edges: e = dataclasses.replace(e, width=e.width * config.line_width_factor) lines.extend(e.create_lines(point_by_type, config.point_colors)) dots = [] for point_type, point in point_by_type.items(): border_color = OCCLUDED_COLOR if point.is_occluded else None occlusion_marker = '?' if point.is_occluded else '' dots.append( Dot(point.location, config.point_colors[point_type], config.point_sizes[point_type] * config.dot_size_factor, name=f'{point_name(point_type)}{occlusion_marker}', border_color=border_color)) return Wireframe(lines=lines, dots=dots) def build_camera_wireframe( keypoints: Collection[keypoint_pb2.CameraKeypoint], config: WireframeConfig = DEFAULT_CAMERA_WIREFRAME_CONFIG) -> Wireframe: """Creates a wireframe for camera keypoints.""" point_by_type = _data.camera_keypoint_coordinates(keypoints) return _build_wireframe(point_by_type, config) def build_laser_wireframe( keypoints: Collection[keypoint_pb2.LaserKeypoint], config: WireframeConfig = DEFAULT_LASER_WIREFRAME_CONFIG) -> Wireframe: """Creates a wireframe for laser keypoints.""" point_by_type = _data.laser_keypoint_coordinates(keypoints) return _build_wireframe(point_by_type, config) def draw_camera_wireframe(ax: plt.Axes, wireframe: Wireframe) -> None: """Draws a camera wireframe onto the axes.""" ax.add_collection( mc.LineCollection( segments=[[l.start, l.end] for l in wireframe.lines], colors=[l.color for l in wireframe.lines], linewidths=[l.width for l in wireframe.lines], antialiased=True)) dots_sizes = [d.size for d in wireframe.dots] ax.add_collection( mc.EllipseCollection( widths=dots_sizes, heights=dots_sizes, angles=0, units='xy', offsets=[d.location for d in wireframe.dots], facecolors=[d.color for d in wireframe.dots], edgecolors=[d.actual_border_color for d in wireframe.dots], linewidth=OCCLUDED_BORDER_WIDTH, transOffset=ax.transData, antialiased=True)) def draw_laser_wireframe(fig: go.Figure, wireframe: Wireframe) -> None: """Draws a laser wireframe onto the plotly Figure.""" for line in wireframe.lines: points = np.stack([line.start, line.end], axis=0) fig.add_trace( go.Scatter3d( mode='lines', x=points[:, 0], y=points[:, 1], z=points[:, 2], line=dict(color=line.color, width=line.width))) dot_coords = np.stack([d.location for d in wireframe.dots], axis=0) fig.add_trace( go.Scatter3d( text=[d.name for d in wireframe.dots], mode='markers', x=dot_coords[:, 0], y=dot_coords[:, 1], z=dot_coords[:, 2], marker=dict( color=[d.color for d in wireframe.dots], size=[d.size for d in wireframe.dots], line=dict( width=OCCLUDED_BORDER_WIDTH, color=[d.actual_border_color for d in wireframe.dots])))) def crop_camera_keypoints( image: np.ndarray, keypoints: Collection[keypoint_pb2.CameraKeypoint], box: label_pb2.Label.Box, margin: float = 0 ) -> Tuple[np.ndarray, Collection[keypoint_pb2.CameraKeypoint]]: """Crops camera image to the specified bounding box and shifts keypoints. Args: image: input image to crop, an array with shape [height, width, 3]. keypoints: a collection of camera keypoints. box: a 2D bounding box to extract from the input image. margin: a ratio of the extra margin to add to the image relative to the input image size. Returns: a tuple (new image, shifted keypoints). """ new_camera_keypoints = [] crop_width = (1 + margin) * box.length crop_height = (1 + margin) * box.width min_x = max(0, int(box.center_x - crop_width /
self.osid_object.genus_type == NEW_TYPE with pytest.raises(errors.IllegalState): self.catalog.create_assessment_part_for_assessment_part(self.form) with pytest.raises(errors.InvalidArgument): self.catalog.create_assessment_part_for_assessment_part('I Will Break You!') update_form = self.catalog.get_assessment_part_form_for_update(self.osid_object.ident) with pytest.raises(errors.InvalidArgument): self.catalog.create_assessment_part_for_assessment_part(update_form) else: with pytest.raises(errors.PermissionDenied): self.catalog.create_assessment_part_for_assessment_part('foo') def test_can_update_assessment_parts(self): """Tests can_update_assessment_parts""" # From test_templates/resource.py::ResourceAdminSession::can_update_resources_template assert isinstance(self.catalog.can_update_assessment_parts(), bool) def test_get_assessment_part_form_for_update(self): """Tests get_assessment_part_form_for_update""" # From test_templates/resource.py::ResourceAdminSession::get_resource_form_for_update_template if not is_never_authz(self.service_config): form = self.catalog.get_assessment_part_form_for_update(self.osid_object.ident) assert isinstance(form, OsidForm) assert form.is_for_update() with pytest.raises(errors.InvalidArgument): self.catalog.get_assessment_part_form_for_update(['This is Doomed!']) with pytest.raises(errors.InvalidArgument): self.catalog.get_assessment_part_form_for_update( Id(authority='Respect my Authoritay!', namespace='assessment.authoring.{object_name}', identifier='1')) else: with pytest.raises(errors.PermissionDenied): self.catalog.get_assessment_part_form_for_update(self.fake_id) def test_update_assessment_part(self): """Tests update_assessment_part""" if not is_never_authz(self.service_config): form = self.catalog.get_assessment_part_form_for_update(self.osid_object.ident) form.display_name = 'new name' form.description = 'new description' form.set_genus_type(NEW_TYPE_2) updated_object = self.catalog.update_assessment_part(self.osid_object.ident, form) assert isinstance(updated_object, ABCObjects.AssessmentPart) assert updated_object.ident == self.osid_object.ident assert updated_object.display_name.text == 'new name' assert updated_object.description.text == 'new description' assert updated_object.genus_type == NEW_TYPE_2 else: with pytest.raises(errors.PermissionDenied): self.session.update_assessment_part(self.fake_id, 'foo') def test_can_delete_assessment_parts(self): """Tests can_delete_assessment_parts""" # From test_templates/resource.py::ResourceAdminSession::can_delete_resources_template assert isinstance(self.catalog.can_delete_assessment_parts(), bool) def test_delete_assessment_part(self): """Tests delete_assessment_part""" if not is_never_authz(self.service_config): results = self.catalog.get_assessment_parts() assert results.available() == 1 form = self.catalog.get_assessment_part_form_for_create_for_assessment(self.assessment.ident, []) form.display_name = 'new AssessmentPart' form.description = 'description of AssessmentPart' new_assessment_part = self.catalog.create_assessment_part_for_assessment(form) results = self.catalog.get_assessment_parts() assert results.available() == 2 self.session.delete_assessment_part(new_assessment_part.ident) results = self.catalog.get_assessment_parts() assert results.available() == 1 assert str(results.next().ident) != str(new_assessment_part.ident) else: with pytest.raises(errors.PermissionDenied): self.catalog.delete_assessment_part(self.fake_id) def test_can_manage_assessment_part_aliases(self): """Tests can_manage_assessment_part_aliases""" # From test_templates/resource.py::ResourceAdminSession::can_manage_resource_aliases_template assert isinstance(self.catalog.can_manage_assessment_part_aliases(), bool) def test_alias_assessment_part(self): """Tests alias_assessment_part""" # From test_templates/resource.py::ResourceAdminSession::alias_resource_template if not is_never_authz(self.service_config): alias_id = Id(self.catalog.ident.namespace + '%3Amy-alias%40ODL.MIT.EDU') self.catalog.alias_assessment_part(self.osid_object.ident, alias_id) aliased_object = self.catalog.get_assessment_part(alias_id) assert aliased_object.ident == self.osid_object.ident else: with pytest.raises(errors.PermissionDenied): self.catalog.alias_assessment_part(self.fake_id, self.fake_id) @pytest.fixture(scope="class", params=['TEST_SERVICE', 'TEST_SERVICE_ALWAYS_AUTHZ', 'TEST_SERVICE_NEVER_AUTHZ', 'TEST_SERVICE_CATALOGING', 'TEST_SERVICE_FILESYSTEM', 'TEST_SERVICE_MEMCACHE']) def assessment_part_bank_session_class_fixture(request): request.cls.service_config = request.param request.cls.assessment_part_list = list() request.cls.assessment_part_ids = list() request.cls.svc_mgr = Runtime().get_service_manager( 'ASSESSMENT', proxy=PROXY, implementation=request.cls.service_config) request.cls.fake_id = Id('resource.Resource%3Afake%40DLKIT.MIT.EDU') if not is_never_authz(request.cls.service_config): create_form = request.cls.svc_mgr.get_bank_form_for_create([]) create_form.display_name = 'Test Bank' create_form.description = 'Test Bank for AssessmentPartBankSession tests' request.cls.catalog = request.cls.svc_mgr.create_bank(create_form) create_form = request.cls.svc_mgr.get_bank_form_for_create([]) create_form.display_name = 'Test Bank for Assignment' create_form.description = 'Test Bank for AssessmentPartBankSession tests assignment' request.cls.assigned_catalog = request.cls.svc_mgr.create_bank(create_form) assessment_form = request.cls.catalog.get_assessment_form_for_create([]) assessment_form.display_name = 'Test Assessment' assessment_form.description = 'Test Assessment for AssessmentPartBankSession tests' request.cls.assessment = request.cls.catalog.create_assessment(assessment_form) for num in [0, 1, 2]: create_form = request.cls.catalog.get_assessment_part_form_for_create_for_assessment(request.cls.assessment.ident, []) create_form.display_name = 'Test AssessmentPart ' + str(num) create_form.description = 'Test AssessmentPart for AssessmentPartBankSession tests' obj = request.cls.catalog.create_assessment_part_for_assessment(create_form) request.cls.assessment_part_list.append(obj) request.cls.assessment_part_ids.append(obj.ident) request.cls.svc_mgr.assign_assessment_part_to_bank( request.cls.assessment_part_ids[1], request.cls.assigned_catalog.ident) request.cls.svc_mgr.assign_assessment_part_to_bank( request.cls.assessment_part_ids[2], request.cls.assigned_catalog.ident) def class_tear_down(): if not is_never_authz(request.cls.service_config): request.cls.svc_mgr.unassign_assessment_part_from_bank( request.cls.assessment_part_ids[1], request.cls.assigned_catalog.ident) request.cls.svc_mgr.unassign_assessment_part_from_bank( request.cls.assessment_part_ids[2], request.cls.assigned_catalog.ident) for obj in request.cls.catalog.get_assessment_parts(): request.cls.catalog.delete_assessment_part(obj.ident) request.cls.catalog.delete_assessment(request.cls.assessment.ident) request.cls.svc_mgr.delete_bank(request.cls.assigned_catalog.ident) request.cls.svc_mgr.delete_bank(request.cls.catalog.ident) request.addfinalizer(class_tear_down) @pytest.fixture(scope="function") def assessment_part_bank_session_test_fixture(request): request.cls.session = request.cls.svc_mgr @pytest.mark.usefixtures("assessment_part_bank_session_class_fixture", "assessment_part_bank_session_test_fixture") class TestAssessmentPartBankSession(object): """Tests for AssessmentPartBankSession""" def test_can_lookup_assessment_part_bank_mappings(self): """Tests can_lookup_assessment_part_bank_mappings""" # From test_templates/resource.py::ResourceBinSession::can_lookup_resource_bin_mappings result = self.session.can_lookup_assessment_part_bank_mappings() assert isinstance(result, bool) def test_use_comparative_assessment_part_bank_view(self): """Tests use_comparative_assessment_part_bank_view""" # From test_templates/resource.py::BinLookupSession::use_comparative_bin_view_template self.svc_mgr.use_comparative_assessment_part_bank_view() def test_use_plenary_assessment_part_bank_view(self): """Tests use_plenary_assessment_part_bank_view""" # From test_templates/resource.py::BinLookupSession::use_plenary_bin_view_template self.svc_mgr.use_plenary_assessment_part_bank_view() def test_get_assessment_part_ids_by_bank(self): """Tests get_assessment_part_ids_by_bank""" # From test_templates/resource.py::ResourceBinSession::get_resource_ids_by_bin_template if not is_never_authz(self.service_config): objects = self.svc_mgr.get_assessment_part_ids_by_bank(self.assigned_catalog.ident) assert objects.available() == 2 else: with pytest.raises(errors.PermissionDenied): self.svc_mgr.get_assessment_part_ids_by_bank(self.fake_id) def test_get_assessment_parts_by_bank(self): """Tests get_assessment_parts_by_bank""" # From test_templates/resource.py::ResourceBinSession::get_resources_by_bin_template if not is_never_authz(self.service_config): results = self.session.get_assessment_parts_by_bank(self.assigned_catalog.ident) assert isinstance(results, ABCObjects.AssessmentPartList) assert results.available() == 2 else: with pytest.raises(errors.PermissionDenied): self.session.get_assessment_parts_by_bank(self.fake_id) def test_get_assessment_part_ids_by_banks(self): """Tests get_assessment_part_ids_by_banks""" # From test_templates/resource.py::ResourceBinSession::get_resource_ids_by_bins_template if not is_never_authz(self.service_config): catalog_ids = [self.catalog.ident, self.assigned_catalog.ident] object_ids = self.session.get_assessment_part_ids_by_banks(catalog_ids) assert isinstance(object_ids, IdList) # Currently our impl does not remove duplicate objectIds assert object_ids.available() == 5 else: with pytest.raises(errors.PermissionDenied): self.session.get_assessment_part_ids_by_banks([self.fake_id]) def test_get_assessment_parts_by_banks(self): """Tests get_assessment_parts_by_banks""" # From test_templates/resource.py::ResourceBinSession::get_resources_by_bins_template if not is_never_authz(self.service_config): catalog_ids = [self.catalog.ident, self.assigned_catalog.ident] results = self.session.get_assessment_parts_by_banks(catalog_ids) assert isinstance(results, ABCObjects.AssessmentPartList) # Currently our impl does not remove duplicate objects assert results.available() == 5 else: with pytest.raises(errors.PermissionDenied): self.session.get_assessment_parts_by_banks([self.fake_id]) def test_get_bank_ids_by_assessment_part(self): """Tests get_bank_ids_by_assessment_part""" # From test_templates/resource.py::ResourceBinSession::get_bin_ids_by_resource_template if not is_never_authz(self.service_config): cats = self.svc_mgr.get_bank_ids_by_assessment_part(self.assessment_part_ids[1]) assert cats.available() == 2 else: with pytest.raises(errors.PermissionDenied): self.svc_mgr.get_bank_ids_by_assessment_part(self.fake_id) def test_get_banks_by_assessment_part(self): """Tests get_banks_by_assessment_part""" # From test_templates/resource.py::ResourceBinSession::get_bins_by_resource_template if not is_never_authz(self.service_config): cats = self.svc_mgr.get_banks_by_assessment_part(self.assessment_part_ids[1]) assert cats.available() == 2 else: with pytest.raises(errors.PermissionDenied): self.svc_mgr.get_banks_by_assessment_part(self.fake_id) @pytest.fixture(scope="class", params=['TEST_SERVICE', 'TEST_SERVICE_ALWAYS_AUTHZ', 'TEST_SERVICE_NEVER_AUTHZ', 'TEST_SERVICE_CATALOGING', 'TEST_SERVICE_FILESYSTEM', 'TEST_SERVICE_MEMCACHE']) def assessment_part_bank_assignment_session_class_fixture(request): request.cls.service_config = request.param request.cls.assessment_part_list = list() request.cls.assessment_part_ids = list() request.cls.svc_mgr = Runtime().get_service_manager( 'ASSESSMENT', proxy=PROXY, implementation=request.cls.service_config) request.cls.fake_id = Id('resource.Resource%3Afake%40DLKIT.MIT.EDU') if not is_never_authz(request.cls.service_config): create_form = request.cls.svc_mgr.get_bank_form_for_create([]) create_form.display_name = 'Test Bank' create_form.description = 'Test Bank for AssessmentPartBankAssignmentSession tests' request.cls.catalog = request.cls.svc_mgr.create_bank(create_form) create_form = request.cls.svc_mgr.get_bank_form_for_create([]) create_form.display_name = 'Test Bank for Assignment' create_form.description = 'Test Bank for AssessmentPartBankAssignmentSession tests assignment' request.cls.assigned_catalog = request.cls.svc_mgr.create_bank(create_form) assessment_form = request.cls.catalog.get_assessment_form_for_create([]) assessment_form.display_name = 'Test Assessment' assessment_form.description = 'Test Assessment for AssessmentPartBankAssignmentSession tests' request.cls.assessment = request.cls.catalog.create_assessment(assessment_form) for num in [0, 1, 2]: create_form = request.cls.catalog.get_assessment_part_form_for_create_for_assessment(request.cls.assessment.ident, []) create_form.display_name = 'Test AssessmentPart ' + str(num) create_form.description = 'Test AssessmentPart for AssessmentPartBankAssignmentSession tests' obj = request.cls.catalog.create_assessment_part_for_assessment(create_form) request.cls.assessment_part_list.append(obj) request.cls.assessment_part_ids.append(obj.ident) def class_tear_down(): if not is_never_authz(request.cls.service_config): for obj in request.cls.catalog.get_assessment_parts(): request.cls.catalog.delete_assessment_part(obj.ident) request.cls.catalog.delete_assessment(request.cls.assessment.ident) request.cls.svc_mgr.delete_bank(request.cls.assigned_catalog.ident) request.cls.svc_mgr.delete_bank(request.cls.catalog.ident) request.addfinalizer(class_tear_down) @pytest.fixture(scope="function") def assessment_part_bank_assignment_session_test_fixture(request): request.cls.session = request.cls.svc_mgr @pytest.mark.usefixtures("assessment_part_bank_assignment_session_class_fixture", "assessment_part_bank_assignment_session_test_fixture") class TestAssessmentPartBankAssignmentSession(object): """Tests for AssessmentPartBankAssignmentSession""" def test_can_assign_assessment_parts(self): """Tests can_assign_assessment_parts""" # From test_templates/resource.py::ResourceBinAssignmentSession::can_assign_resources_template result = self.session.can_assign_assessment_parts() assert isinstance(result, bool) def test_can_assign_assessment_parts_to_bank(self): """Tests can_assign_assessment_parts_to_bank""" # From test_templates/resource.py::ResourceBinAssignmentSession::can_assign_resources_to_bin_template result = self.session.can_assign_assessment_parts_to_bank(self.assigned_catalog.ident) assert isinstance(result, bool) def test_get_assignable_bank_ids(self): """Tests get_assignable_bank_ids""" # From test_templates/resource.py::ResourceBinAssignmentSession::get_assignable_bin_ids_template # Note that our implementation just returns all catalogIds, which does not follow # the OSID spec (should return only the catalogIds below the given one in the hierarchy. if not is_never_authz(self.service_config): results = self.session.get_assignable_bank_ids(self.catalog.ident) assert isinstance(results, IdList) # Because we're not deleting all banks from all tests, we might # have some crufty banks here...but there should be at least 2. assert results.available() >= 2 else: with pytest.raises(errors.PermissionDenied): self.session.get_assignable_bank_ids(self.fake_id) def test_get_assignable_bank_ids_for_assessment_part(self): """Tests get_assignable_bank_ids_for_assessment_part""" # From test_templates/resource.py::ResourceBinAssignmentSession::get_assignable_bin_ids_for_resource_template # Note that our implementation just returns all catalogIds, which does not follow # the OSID spec (should return only the catalogIds below the given one in the hierarchy. if not is_never_authz(self.service_config): results = self.session.get_assignable_bank_ids_for_assessment_part(self.catalog.ident, self.assessment_part_ids[0]) assert isinstance(results, IdList) # Because we're not deleting all banks from all tests, we might # have some crufty banks here...but there should be at least 2. assert results.available() >= 2 else: with pytest.raises(errors.PermissionDenied): self.session.get_assignable_bank_ids_for_assessment_part(self.fake_id, self.fake_id) def test_assign_assessment_part_to_bank(self): """Tests assign_assessment_part_to_bank""" # From test_templates/resource.py::ResourceBinAssignmentSession::assign_resource_to_bin_template if not is_never_authz(self.service_config): results = self.assigned_catalog.get_assessment_parts() assert results.available() == 0 self.session.assign_assessment_part_to_bank(self.assessment_part_ids[1], self.assigned_catalog.ident) results = self.assigned_catalog.get_assessment_parts() assert results.available() == 1 self.session.unassign_assessment_part_from_bank( self.assessment_part_ids[1], self.assigned_catalog.ident) else: with pytest.raises(errors.PermissionDenied): self.session.assign_assessment_part_to_bank(self.fake_id, self.fake_id) def test_unassign_assessment_part_from_bank(self): """Tests unassign_assessment_part_from_bank""" # From test_templates/resource.py::ResourceBinAssignmentSession::unassign_resource_from_bin_template if not is_never_authz(self.service_config): results = self.assigned_catalog.get_assessment_parts() assert results.available() == 0 self.session.assign_assessment_part_to_bank( self.assessment_part_ids[1], self.assigned_catalog.ident) results = self.assigned_catalog.get_assessment_parts() assert results.available() == 1 self.session.unassign_assessment_part_from_bank( self.assessment_part_ids[1], self.assigned_catalog.ident) results = self.assigned_catalog.get_assessment_parts() assert results.available() == 0 else: with pytest.raises(errors.PermissionDenied): self.session.unassign_assessment_part_from_bank(self.fake_id, self.fake_id) def test_reassign_assessment_part_to_bank(self): """Tests reassign_assessment_part_to_bank""" if is_never_authz(self.service_config): pass # no object to call the method on? elif uses_cataloging(self.service_config): pass # cannot call the _get_record() methods on catalogs else: with pytest.raises(errors.Unimplemented): self.session.reassign_assessment_part_to_bank(True, True, True) @pytest.fixture(scope="class", params=['TEST_SERVICE', 'TEST_SERVICE_ALWAYS_AUTHZ', 'TEST_SERVICE_NEVER_AUTHZ', 'TEST_SERVICE_CATALOGING', 'TEST_SERVICE_FILESYSTEM', 'TEST_SERVICE_MEMCACHE']) def assessment_part_item_session_class_fixture(request): request.cls.service_config = request.param request.cls.svc_mgr = Runtime().get_service_manager( 'ASSESSMENT_AUTHORING', proxy=PROXY, implementation=request.cls.service_config) request.cls.fake_id = Id('resource.Resource%3Afake%40DLKIT.MIT.EDU') @pytest.fixture(scope="function") def assessment_part_item_session_test_fixture(request): request.cls.item_list = list() request.cls.item_ids = list() if not is_never_authz(request.cls.service_config): create_form = request.cls.svc_mgr.get_bank_form_for_create([]) create_form.display_name = 'Test Bank' create_form.description = 'Test Bank for AssessmentPartItemSession tests' request.cls.catalog = request.cls.svc_mgr.create_bank(create_form) create_form = request.cls.catalog.get_assessment_form_for_create([]) create_form.display_name = 'Test Assessment' create_form.description = 'Test Assessment for AssessmentPartItemSession tests' request.cls.assessment = request.cls.catalog.create_assessment(create_form) create_form = request.cls.catalog.get_assessment_part_form_for_create_for_assessment(request.cls.assessment.ident, []) create_form.display_name = 'Test Assessment Part' create_form.description = 'Test Assessment Part for AssessmentPartItemSession tests' request.cls.assessment_part = request.cls.catalog.create_assessment_part_for_assessment(create_form) for num in [0, 1, 2, 3]: create_form = request.cls.catalog.get_item_form_for_create([]) create_form.display_name = 'Test Item ' + str(num) create_form.description = 'Test Item for AssessmentPartItemSession tests' obj = request.cls.catalog.create_item(create_form) request.cls.item_list.append(obj) request.cls.item_ids.append(obj.ident) request.cls.catalog.add_item(obj.ident, request.cls.assessment_part.ident) else: request.cls.catalog = request.cls.svc_mgr.get_assessment_part_item_session(proxy=PROXY) request.cls.session = request.cls.catalog def test_tear_down(): if not is_never_authz(request.cls.service_config): for catalog in request.cls.svc_mgr.get_banks(): for obj in catalog.get_assessment_parts(): if obj.has_children(): for child_id in obj.get_child_assessment_part_ids(): catalog.delete_assessment_part(child_id) catalog.delete_assessment_part(obj.ident) for obj in catalog.get_assessments(): catalog.delete_assessment(obj.ident) for obj in catalog.get_items(): catalog.delete_item(obj.ident) request.cls.svc_mgr.delete_bank(catalog.ident) request.addfinalizer(test_tear_down) @pytest.mark.usefixtures("assessment_part_item_session_class_fixture", "assessment_part_item_session_test_fixture") class TestAssessmentPartItemSession(object): """Tests for AssessmentPartItemSession""" def test_get_bank_id(self): """Tests get_bank_id""" # From test_templates/resource.py ResourceLookupSession.get_bin_id_template if not is_never_authz(self.service_config): assert self.catalog.get_bank_id() == self.catalog.ident def test_get_bank(self): """Tests get_bank""" # is this test really needed? # From test_templates/resource.py::ResourceLookupSession::get_bin_template if not is_never_authz(self.service_config): assert isinstance(self.catalog.get_bank(), ABCBank) def test_can_access_assessment_part_items(self): """Tests can_access_assessment_part_items""" assert isinstance(self.session.can_access_assessment_part_items(), bool) def test_use_comparative_asseessment_part_item_view(self): """Tests use_comparative_asseessment_part_item_view""" # From test_templates/resource.py ResourceLookupSession.use_comparative_resource_view_template self.catalog.use_comparative_asseessment_part_item_view() def test_use_plenary_assessment_part_item_view(self): """Tests use_plenary_assessment_part_item_view""" # From test_templates/resource.py ResourceLookupSession.use_plenary_resource_view_template self.catalog.use_plenary_assessment_part_item_view() def test_use_federated_bank_view(self): """Tests use_federated_bank_view""" # From test_templates/resource.py ResourceLookupSession.use_federated_bin_view_template self.catalog.use_federated_bank_view() def test_use_isolated_bank_view(self): """Tests use_isolated_bank_view""" # From test_templates/resource.py ResourceLookupSession.use_isolated_bin_view_template self.catalog.use_isolated_bank_view() def test_get_assessment_part_items(self): """Tests get_assessment_part_items""" # From test_templates/repository.py::AssetCompositionSession::get_composition_assets_template if not is_never_authz(self.service_config): assert self.catalog.get_assessment_part_items(self.assessment_part.ident).available() == 4 else: with pytest.raises(errors.PermissionDenied): self.catalog.get_assessment_part_items(self.fake_id) def test_get_assessment_parts_by_item(self): """Tests get_assessment_parts_by_item""" # From test_templates/repository.py::AssetCompositionSession::get_compositions_by_asset_template if not is_never_authz(self.service_config): assert self.catalog.get_assessment_parts_by_item(self.item_ids[0]).available() == 1 assert self.catalog.get_assessment_parts_by_item(self.item_ids[0]).next().ident == self.assessment_part.ident else: with pytest.raises(errors.PermissionDenied): self.catalog.get_assessment_parts_by_item(self.fake_id) @pytest.fixture(scope="class", params=['TEST_SERVICE', 'TEST_SERVICE_ALWAYS_AUTHZ', 'TEST_SERVICE_NEVER_AUTHZ', 'TEST_SERVICE_CATALOGING', 'TEST_SERVICE_FILESYSTEM', 'TEST_SERVICE_MEMCACHE']) def assessment_part_item_design_session_class_fixture(request): request.cls.service_config = request.param request.cls.item_list = list() request.cls.item_ids = list() request.cls.svc_mgr = Runtime().get_service_manager( 'ASSESSMENT_AUTHORING', proxy=PROXY, implementation=request.cls.service_config) request.cls.fake_id = Id('resource.Resource%3Afake%40DLKIT.MIT.EDU') if
<gh_stars>1-10 import numpy as np import os import pytest import sys from numpy import testing from textwrap import dedent from moflow.mf.name import Modflow from moflow.mf.base import MFPackage from moflow.mf.reader import MFFileReader if sys.version_info[0] < 3: from io import BytesIO StringIO = BytesIO else: from io import StringIO, BytesIO class ExamplePackage(MFPackage): par1 = None par2 = None def test_mf_reader_basics(): p = ExamplePackage() f = StringIO(dedent('''\ # A comment 100 ignore 200 -2.4E-12 4 500 FREE -44 888.0 last line ''')) r = MFFileReader(f, p) assert r.not_eof assert r.lineno == 0 assert len(r) == 6 # 0: Text r.read_text() assert r.lineno == 1 assert p.text == ['A comment'] # 1: an item assert r.get_items(1, 1, 'i') == [100] assert r.lineno == 2 # 2: two named items with pytest.raises(ValueError): r.read_named_items(2, ('par1', 'par2'), 'i') r.lineno -= 1 # manually scroll back 1 line and try again r.read_named_items(2, ('par1', 'par2'), 'f') assert p.par1 == 200.0 testing.assert_almost_equal(p.par2, -2.4E-12) # 3: three named items items = r.get_named_items(3, ['a', 'b'], 'f') assert items == {'a': 4.0, 'b': 500.0} # 4: two named items r.read_named_items(4, ['par1', 'par2'], 'f') assert p.par1 == -44.0 testing.assert_almost_equal(p.par2, 888.0) # post-Data Set assert r.not_eof assert r.nextline() == 'last line\n' assert r.lineno == 6 assert not r.not_eof # Try to read past EOF with pytest.raises(IndexError): r.nextline() assert r.lineno == 6 def test_mf_reader_empty(): p = ExamplePackage() f = StringIO('# Empty file') r = MFFileReader(f, p) assert r.not_eof assert r.lineno == 0 assert len(r) == 1 # Item 0: Text r.read_text() assert r.lineno == 1 assert p.text == ['Empty file'] assert not r.not_eof def test_mf_read_free_arrays(): # Examples from page 8-59 of TM6A16_MF2005 m = Modflow() p = ExamplePackage() m.append(p) f = StringIO(dedent('''\ CONSTANT 5.7 This sets an entire array to the value "5.7". INTERNAL 1.0 (7F4.0) 3 This reads the array values from the ... 1.2 3.7 9.3 4.2 2.2 9.9 1.0 3.3 4.9 7.3 7.5 8.2 8.7 6.6 4.5 5.7 2.2 1.1 1.7 6.7 6.9 7.4 3.5 7.8 8.5 7.4 6.8 8.8 EXTERNAL 52 1.0 (7F4.0) 3 This reads the array from the formatted.. EXTERNAL 47 1.0 (BINARY) 3 This reads the array from the binary ... OPEN/CLOSE test.dat 1.0 (7F4.0) 3 This reads the array from the ... ''')) # Prepare ASCII data for unit 52, and for test.dat d2_str = ( ' 1.2 3.7 9.3 4.2 2.2 9.9 1.0\n' ' 3.3 4.9 7.3 7.5 8.2 8.7 6.6\n' ' 4.5 5.7 2.2 1.1 1.7 6.7 6.9\n' ' 7.4 3.5 7.8 8.5 7.4 6.8 8.8\n' ) m[52] = StringIO(d2_str) # Prepare binary data for unit 47 d2_expected = np.array( [[1.2, 3.7, 9.3, 4.2, 2.2, 9.9, 1.0], [3.3, 4.9, 7.3, 7.5, 8.2, 8.7, 6.6], [4.5, 5.7, 2.2, 1.1, 1.7, 6.7, 6.9], [7.4, 3.5, 7.8, 8.5, 7.4, 6.8, 8.8]], 'f') m[47] = BytesIO(d2_expected.tostring()) r = MFFileReader(f, p) # Data Number 1: Read constant 4x5 array d1_shape = (4, 7) d1_expected = np.ones(d1_shape, 'f') * 5.7 d1 = r.get_array(1, d1_shape, 'f', return_dict=True) assert not hasattr(d1, 'locat') assert d1['cntrl'] == 'CONSTANT' assert d1['cnstnt'] == '5.7' assert d1['text'] == 'This sets an entire array to the value "5.7".' testing.assert_array_equal(d1['array'], d1_expected) assert r.lineno == 1 # Data Number 2: Read internal 4x7 array d2_shape = (4, 7) d2 = r.get_array(2, d2_shape, 'f', return_dict=True) assert d2['cntrl'] == 'INTERNAL' assert d2['cnstnt'] == '1.0' assert d2['fmtin'] == '(7F4.0)' assert d2['iprn'] == '3' assert d2['text'] == 'This reads the array values from the ...' testing.assert_array_equal(d2['array'], d2_expected) assert r.lineno == 6 # Data Number 3: EXTERNAL ASCII d3 = r.get_array(3, d2_shape, 'f', return_dict=True) assert d3['cntrl'] == 'EXTERNAL' assert d3['nunit'] == 52 assert d3['cnstnt'] == '1.0' assert d3['fmtin'] == '(7F4.0)' assert d3['iprn'] == '3' testing.assert_array_equal(d3['array'], d2_expected) assert r.lineno == 7 # Data Number 4: EXTERNAL BINARY d4 = r.get_array(4, d2_shape, 'f', return_dict=True) assert d4['cntrl'] == 'EXTERNAL' assert d4['nunit'] == 47 assert d4['cnstnt'] == '1.0' assert d4['fmtin'] == '(BINARY)' assert d4['iprn'] == '3' testing.assert_array_equal(d4['array'], d2_expected) assert r.lineno == 8 # Data Number 5: OPEN/CLOSE test.dat d5_fname = 'test.dat' with open(d5_fname, 'w') as fp: fp.write(d2_str) d5 = r.get_array(5, d2_shape, 'f', return_dict=True) os.unlink(d5_fname) assert d5['cntrl'] == 'OPEN/CLOSE' assert d5['fname'] == d5_fname assert d5['cnstnt'] == '1.0' assert d5['fmtin'] == '(7F4.0)' assert d5['iprn'] == '3' testing.assert_array_equal(d5['array'], d2_expected) assert r.lineno == 9 assert not r.not_eof def test_mf_read_fixed_arrays(): m = Modflow() p = ExamplePackage() p.nunit = 11 m.append(p) f = StringIO('''\ 11 1. (15f4.0) 7 WETDRY-1 2. 2. 2. 2. 2. 2. 2. 2. -2. -2. -2. -2. -2. -2. -2. 2. 2. 2. 2. 2. 2. 2. 2. -2. -2. -2. -2. -2. -2. -2. 2. 2. 2. -2. 2. 2. 2. 2. -2. -2. -2. -2. -2. -2. -2. 2. 2. 2. 2. 2. 2. 2. 2. -2. -2. -2. -2. -2. -2. -2. 2. 2. 2. 2. 2. 2. 2. 2. -2. -2. -2. -2. -2. -2. -2. 2. 2. 2. -2. 2. 2. 2. 2. -2. -2. -2. -2. -2. -2. -2. 2. 2. 2. 2. 2. 2. 2. 2. -2. -2. -2. -2. -2. -2. -2. 11 1(12I2) 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9 1 1 1 1 1 1 1 1 1 11 1(13I3) IBOUND L1 -1 1 1 1 1 1 1 1 1 1 1 1 -1 11 1(13I3) IBOUND L2 -1 1 1 1 1 1 1 1 1 1 1 1 -1 0 6. (15f4.0) 7 # Some text 0 8(12I2) 3 -17 1. (binary) 7 16 1(24I3) 3 16 1(24I3) 3 0 145. ''') # Prepare two ASCII data sets for unit 16 m[16] = StringIO('''\ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
01, 01 ) labelFolderOfPreference = '2014_custom' presentSubject = Subject( initials, firstName, birthdate, standardFSID, labelFolderOfPreference ) presentProject = Project( 'feedback', subject = presentSubject, base_dir = os.path.join(this_project_folder, 'data') ) sessionID = 'feedback' + presentSubject.initials sj_session1 = [] if s == 1: sessionDate = datetime.date(2017, 6, 22) sj_session1 = 'sub-20_220617' presentSession = VisualSession(sessionID, sessionDate, presentProject, presentSubject) try: os.mkdir(os.path.join(this_project_folder, 'data', initials)) except OSError: presentSession.logger.debug('output folders already exist') # ---------------------- # Decision tasks: - # ---------------------- if s == 1: runDecisionArray = [ # Measure IRF: {'ID' : 1, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-20_s1_r1.edf' ), }, {'ID' : 2, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-20_s1_r2.edf' ), }, {'ID' : 3, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-20_s1_r3.edf' ), }, {'ID' : 4, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-20_s1_r4.edf' ), }, {'ID' : 5, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-20_s1_r5.edf' ), }, {'ID' : 6, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-20_s1_r6.edf' ), }, {'ID' : 7, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-20_s1_r7.edf' ), }, {'ID' : 8, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-20_s1_r8.edf' ), }, ] # ---------------------- # Initialise session - # ---------------------- runWholeSession( runDecisionArray, presentSession ) ######################################################################################################################################################################################################## if which_subject == 'sub-21': # subject information initials = 'sub-21' firstName = 'sub-21' standardFSID = 'sub-21_220617' birthdate = datetime.date( 1900, 01, 01 ) labelFolderOfPreference = '2014_custom' presentSubject = Subject( initials, firstName, birthdate, standardFSID, labelFolderOfPreference ) presentProject = Project( 'feedback', subject = presentSubject, base_dir = os.path.join(this_project_folder, 'data') ) sessionID = 'feedback' + presentSubject.initials sj_session1 = [] if s == 1: sessionDate = datetime.date(2017, 6, 29) sj_session1 = 'sub-21_290617' presentSession = VisualSession(sessionID, sessionDate, presentProject, presentSubject) try: os.mkdir(os.path.join(this_project_folder, 'data', initials)) except OSError: presentSession.logger.debug('output folders already exist') # ---------------------- # Decision tasks: - # ---------------------- if s == 1: runDecisionArray = [ # Measure IRF: {'ID' : 1, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-21_s1_r1.edf' ), }, {'ID' : 2, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-21_s1_r2.edf' ), }, {'ID' : 3, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-21_s1_r3.edf' ), }, {'ID' : 4, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-21_s1_r4.edf' ), }, {'ID' : 5, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-21_s1_r5.edf' ), }, {'ID' : 6, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-21_s1_r6.edf' ), }, {'ID' : 7, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-21_s1_r7.edf' ), }, {'ID' : 8, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-21_s1_r8.edf' ), }, ] # ---------------------- # Initialise session - # ---------------------- runWholeSession( runDecisionArray, presentSession ) ######################################################################################################################################################################################################## if which_subject == 'sub-05': # subject information initials = 'sub-05' firstName = 'sub-05' standardFSID = 'sub-05_180717' birthdate = datetime.date( 1900, 01, 01 ) labelFolderOfPreference = '2014_custom' presentSubject = Subject( initials, firstName, birthdate, standardFSID, labelFolderOfPreference ) presentProject = Project( 'feedback', subject = presentSubject, base_dir = os.path.join(this_project_folder, 'data') ) sessionID = 'feedback' + presentSubject.initials sj_session1 = [] if s == 1: sessionDate = datetime.date(2017, 7, 18) sj_session1 = 'sub-05_180717' presentSession = VisualSession(sessionID, sessionDate, presentProject, presentSubject) try: os.mkdir(os.path.join(this_project_folder, 'data', initials)) except OSError: presentSession.logger.debug('output folders already exist') # ---------------------- # Decision tasks: - # ---------------------- if s == 1: runDecisionArray = [ # Measure IRF: {'ID' : 1, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-05_s1_r1.edf' ), }, {'ID' : 2, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-05_s1_r2.edf' ), }, {'ID' : 3, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-05_s1_r3.edf' ), }, {'ID' : 4, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-05_s1_r4.edf' ), }, {'ID' : 5, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-05_s1_r5.edf' ), }, {'ID' : 6, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-05_s1_r6.edf' ), }, {'ID' : 7, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-05_s1_r7.edf' ), }, {'ID' : 8, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-05_s1_r8.edf' ), }, ] # ---------------------- # Initialise session - # ---------------------- runWholeSession( runDecisionArray, presentSession ) ######################################################################################################################################################################################################## if which_subject == 'sub-22': # subject information initials = 'sub-22' firstName = 'sub-22' standardFSID = 'sub-22_220611' birthdate = datetime.date( 1900, 01, 01 ) labelFolderOfPreference = '2014_custom' presentSubject = Subject( initials, firstName, birthdate, standardFSID, labelFolderOfPreference ) presentProject = Project( 'feedback', subject = presentSubject, base_dir = os.path.join(this_project_folder, 'data') ) sessionID = 'feedback' + presentSubject.initials sj_session1 = [] if s == 1: sessionDate = datetime.date(2017, 6, 22) sj_session1 = 'sub-22_220617' presentSession = VisualSession(sessionID, sessionDate, presentProject, presentSubject) try: os.mkdir(os.path.join(this_project_folder, 'data', initials)) except OSError: presentSession.logger.debug('output folders already exist') # ---------------------- # Decision tasks: - # ---------------------- if s == 1: runDecisionArray = [ # Measure IRF: {'ID' : 1, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-22_s1_r1.edf' ), }, {'ID' : 2, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-22_s1_r2.edf' ), }, {'ID' : 3, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-22_s1_r3.edf' ), }, {'ID' : 4, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-22_s1_r4.edf' ), }, {'ID' : 5, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-22_s1_r5.edf' ), }, {'ID' : 6, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-22_s1_r6.edf' ), }, {'ID' : 7, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-22_s1_r7.edf' ), }, {'ID' : 8, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-22_s1_r8.edf' ), }, ] # ---------------------- # Initialise session - # ---------------------- runWholeSession( runDecisionArray, presentSession ) ######################################################################################################################################################################################################## if which_subject == 'sub-23': # subject information initials = 'sub-23' firstName = 'sub-23' standardFSID = 'sub-23_010100' birthdate = datetime.date( 1900, 01, 01 ) labelFolderOfPreference = '2014_custom' presentSubject = Subject( initials, firstName, birthdate, standardFSID, labelFolderOfPreference ) presentProject = Project( 'feedback', subject = presentSubject, base_dir = os.path.join(this_project_folder, 'data') ) sessionID = 'feedback' + presentSubject.initials sj_session1 = [] if s == 1: sessionDate = datetime.date(2017, 10, 11) sj_session1 = 'sub-23_111017' presentSession = VisualSession(sessionID, sessionDate, presentProject, presentSubject) try: os.mkdir(os.path.join(this_project_folder, 'data', initials)) except OSError: presentSession.logger.debug('output folders already exist') # ---------------------- # Decision tasks: - # ---------------------- if s == 1: runDecisionArray = [ # Measure IRF: {'ID' : 1, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-23_s1_r1.edf' ), }, {'ID' : 2, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-23_s1_r2.edf' ), }, {'ID' : 3, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-23_s1_r3.edf' ), }, {'ID' : 4, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-23_s1_r4.edf' ), }, {'ID' : 5, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-23_s1_r5.edf' ), }, {'ID' : 6, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-23_s1_r6.edf' ), }, {'ID' : 7, 'scanType': 'main_task', 'condition': 'task', 'session' : 1, 'eyeLinkFilePath': os.path.join(this_raw_folder, initials, sj_session1, 'eye', 'sub-23_s1_r7.edf' ), }, {'ID' :
#!/usr/bin/env python """ `htrc.volumes` Contains functions to retrieve volumes from the HTRC Data API. The functions in this package will not operate unless they are executed from an HTRC Data Capsule in Secure Mode. The module `htrc.mock.volumes` contains Patch objects for testing workflows. """ from __future__ import print_function from future import standard_library standard_library.install_aliases() from htrc.models import HtrcPage import http.client from io import BytesIO, TextIOWrapper import json import os.path import progressbar import socket import ssl from urllib.parse import urlencode from zipfile import ZipFile # used to decompress requested zip archives. from tqdm import tqdm from htrc.runningheaders import parse_page_structure from functools import partial import pandas as pd from htrc.util import split_items import htrc.config import multiprocessing import logging from logging import NullHandler logging.getLogger(__name__).addHandler(NullHandler()) def get_volumes(data_api_config: htrc.config.HtrcDataApiConfig, volume_ids, concat=False, mets=False, buffer_size=128): """ Returns volumes from the Data API as a raw zip stream. Parameters: :token: An OAuth2 token for the app. :volume_ids: A list of volume_ids :concat: If True, return a single file per volume. If False, return a single file per page (default). :host: Data API host :port: Data API port """ if not volume_ids: raise ValueError("volume_ids is empty.") url = data_api_config.epr + "volumes" for id in volume_ids: if ("." not in id or " " in id): print("Invalid volume id " + id + ". Please correct this volume id and try again.") data = {'volumeIDs': '|'.join( [id.replace('+', ':').replace('=', '/') for id in volume_ids])} if concat: data['concat'] = 'true' if mets: data['mets'] = 'true' # Authorization headers = {"Authorization": "Bearer " + data_api_config.token, "Content-type": "application/x-www-form-urlencoded"} # Create SSL lookup # TODO: Fix SSL cert verification ctx = ssl.create_default_context() ctx.check_hostname = False ctx.verify_mode = ssl.CERT_NONE # Retrieve the volumes httpsConnection = http.client.HTTPSConnection( data_api_config.host, data_api_config.port, context=ctx, key_file=data_api_config.key, cert_file=data_api_config.cert) httpsConnection.request("POST", url, urlencode(data), headers) response = httpsConnection.getresponse() if response.status is 200: body = True data = BytesIO() bytes_downloaded = 0 bar = progressbar.ProgressBar(max_value=progressbar.UnknownLength, widgets=[progressbar.AnimatedMarker(), ' ', progressbar.DataSize(), ' (', progressbar.FileTransferSpeed(), ')']) while body: body = response.read(buffer_size) data.write(body) bytes_downloaded += len(body) bar.update(bytes_downloaded) data = data.getvalue() else: logging.debug("Unable to get volumes") logging.debug("Response Code: {}".format(response.status)) logging.debug("Response: {}".format(response.reason)) raise EnvironmentError("Unable to get volumes.") if httpsConnection is not None: httpsConnection.close() return data def get_pages(data_api_config: htrc.config.HtrcDataApiConfig, page_ids, concat=False, mets=False, buffer_size=128): """ Returns a ZIP file containing specfic pages. Parameters: :data_api_config: The configuration data of the DataAPI endpoint. :volume_ids: A list of volume_ids :concat: If True, return a single file per volume. If False, return a single file per page (default). """ if not page_ids: raise ValueError("page_ids is empty.") url = data_api_config.epr + "pages" for id in page_ids: if ("." not in id or " " in id): print("Invalid volume id " + id + ". Please correct this volume id and try again.") data = {'pageIDs': '|'.join( [id.replace('+', ':').replace('=', '/') for id in page_ids])} if concat and mets: print("Cannot set both concat and mets with pages.") elif concat: data['concat'] = 'true' elif mets: data['mets'] = 'true' # Authorization headers = {"Authorization": "Bearer " + data_api_config.token, "Content-type": "application/x-www-form-urlencoded"} # Create SSL lookup # TODO: Fix SSL cert verification ctx = ssl.create_default_context() ctx.check_hostname = False ctx.verify_mode = ssl.CERT_NONE # Retrieve the volumes httpsConnection = http.client.HTTPSConnection( data_api_config.host, data_api_config.port, context=ctx, key_file=data_api_config.key, cert_file=data_api_config.cert ) httpsConnection.request("POST", url, urlencode(data), headers) response = httpsConnection.getresponse() if response.status is 200: body = True data = BytesIO() bytes_downloaded = 0 bar = progressbar.ProgressBar(max_value=progressbar.UnknownLength, widgets=[progressbar.AnimatedMarker(), ' ', progressbar.DataSize(), ' (', progressbar.FileTransferSpeed(), ')']) while body: body = response.read(buffer_size) data.write(body) bytes_downloaded += len(body) bar.update(bytes_downloaded) data = data.getvalue() else: logging.debug("Unable to get pages") logging.debug("Response Code: ".format(response.status)) logging.debug("Response: ".format(response.reason)) raise EnvironmentError("Unable to get pages.") if httpsConnection is not None: httpsConnection.close() return data def get_oauth2_token(username, password): # make sure to set the request content-type as application/x-www-form-urlencoded headers = {"Content-type": "application/x-www-form-urlencoded"} data = {"grant_type": "client_credentials", "client_secret": password, "client_id": username} data = urlencode(data) # create an SSL context ctx = ssl.create_default_context() ctx.check_hostname = False ctx.verify_mode = ssl.CERT_NONE # make sure the request method is POST host, port = htrc.config.get_oauth2_host_port() oauth2port = htrc.config.get_oauth2_port() oauth2EPRurl = htrc.config.get_oauth2_url() httpsConnection = http.client.HTTPSConnection(host, oauth2port, context=ctx) httpsConnection.request("POST", oauth2EPRurl + "?" + data, "", headers) response = httpsConnection.getresponse() # if response status is OK if response.status == 200: data = response.read().decode('utf8') jsonData = json.loads(data) logging.info("*** JSON: {}".format(jsonData)) token = jsonData["access_token"] logging.info("*** parsed token: {}".format(token)) else: logging.debug("Unable to get token") logging.debug("Response Code: {}".format(response.status)) logging.debug("Response: {}".format(response.reason)) logging.debug(response.read()) raise EnvironmentError("Unable to get the token.") if httpsConnection is not None: httpsConnection.close() return token def grep_error(file_name, output_dir, pattern, txt_index): na_volume = [] if output_dir.endswith("/"): file_path = output_dir + file_name else: file_path = output_dir + "/" + file_name if os.path.isfile(file_path): for line in open(file_path): if pattern in line: na_volume.append(line.split()[txt_index]) return na_volume def _to_htrc_page(page_file, zip): with TextIOWrapper(BytesIO(zip.read(page_file)), encoding='utf-8') as page: return HtrcPage([line.rstrip() for line in page.readlines()]) def download_volumes(volume_ids, output_dir, concat=False, mets=False, pages=False, remove_headers_footers=False, hf_window_size=6, hf_min_similarity=0.7, skip_removed_hf=False, parallelism=multiprocessing.cpu_count(), batch_size=250, data_api_config=None): if not 0 < parallelism <= multiprocessing.cpu_count(): raise ValueError("Invalid parallelism level specified") remove_hf_fun = partial( _remove_headers_footers_and_save, concat=concat, hf_min_similarity=hf_min_similarity, hf_window_size=hf_window_size, skip_removed_hf=skip_removed_hf, output_dir=output_dir ) volume_ids = list(set(volume_ids)) # ensure unique volume ids num_vols = len(volume_ids) data_api_config = data_api_config or htrc.config.HtrcDataApiConfig() os.makedirs(output_dir, exist_ok=True) if any((data_api_config.token, data_api_config.host, data_api_config.port)) is not None: logging.info("obtained token: %s\n" % data_api_config.token) try: errors = [] rights = [] with tqdm(total=num_vols) as progress, multiprocessing.Pool(processes=parallelism) as pool: for ids in split_items(volume_ids, batch_size): if pages: if concat and mets: raise ValueError("Cannot set both concat and mets with pages.") else: data = get_pages(data_api_config, ids, concat and not remove_headers_footers, mets) else: data = get_volumes(data_api_config, ids, concat and not remove_headers_footers, mets) volumes = [] with ZipFile(BytesIO(data)) as vols_zip: zip_list = vols_zip.namelist() if 'ERROR.err' in zip_list: errors.append(vols_zip.read('ERROR.err').decode('utf-8')) zip_list.remove('ERROR.err') if 'volume-rights.txt' in zip_list: rights_data = vols_zip.read('volume-rights.txt').decode('utf-8') zip_list.remove('volume-rights.txt') if not rights: rights.append(rights_data) else: # due to the format in which 'volume-rights.txt' is created, we have to skip # the first 4 lines which make up the header of the file, to extract only the # actual volume rights data for accumulation rights.append(''.join(rights_data.splitlines(keepends=True)[4:])) zip_volume_paths = [zip_vol_path for zip_vol_path in zip_list if zip_vol_path.endswith('/')] num_vols_in_zip = len(zip_volume_paths) if not remove_headers_footers: vols_zip.extractall(output_dir, members=zip_list) progress.update(num_vols_in_zip) else: for zip_vol_path in zip_volume_paths: sorted_vol_zip_page_paths = sorted(zip_page_path for zip_page_path in zip_list if zip_page_path.startswith(zip_vol_path) and not zip_page_path.endswith('/')) vol_pages = [_to_htrc_page(page_path, vols_zip) for page_path in sorted_vol_zip_page_paths] volumes.append((zip_vol_path, sorted_vol_zip_page_paths, vol_pages)) del data, vols_zip num_missing = batch_size - num_vols_in_zip if num_vols >= batch_size else num_vols - num_vols_in_zip progress.update(num_missing) # update progress bar state to include the missing volumes also # `volumes` will be empty if `remove_headers_footers=False` since the ZIP was extracted # without further processing if volumes: for _ in pool.imap_unordered(remove_hf_fun, volumes): progress.update() na_volumes_all = [] if errors: with open(os.path.join(output_dir, 'ERROR.err'), 'w') as err_file: err_file.write(''.join(errors)) na_volumes_error = grep_error('ERROR.err', output_dir, 'KeyNotFoundException', -1) na_volumes_all.extend(na_volumes_error) if rights: with open(os.path.join(output_dir, 'volume-rights.txt'), 'w') as rights_file: rights_file.write(''.join(rights)) if htrc.config.get_dataapi_access() == "true": na_volumes_rights = grep_error('volume-rights.txt', output_dir, ' 3', 0) na_volumes_all.extend(na_volumes_rights) num_na = len(na_volumes_all) if num_na > 0: with open(os.path.join(output_dir, 'volumes_not_available.txt'), 'w') as volumes_na: volumes_na.write("\n".join(str(item) for item in na_volumes_all)) if num_na < 100: print("\nThe following volume ids are not available. \n Please check volumes_not_available.txt " "for the complete list. ") print('\n'.join(str(item) for item in na_volumes_all)) else: print("\nThere are {:,} unavailable volumes.\n Please check volumes_not_available.txt " "for the " "complete list. \nTo check the validity of volumes in your workset or volume id file go " "to:\n " "https://analytics.hathitrust.org/validateworkset \n or email us at " "<EMAIL> " "for assistance.".format(num_na)) except socket.error: raise RuntimeError("HTRC Data API time out. Check your inode usage if downloading a large workset. " "Contact HTRC for further help.") else: raise RuntimeError("Failed to obtain the JWT token.") def _remove_headers_footers_and_save(vol_data, concat, hf_min_similarity, hf_window_size, skip_removed_hf, output_dir): zip_vol_path, sorted_vol_zip_page_paths, vol_pages = vol_data clean_volid = zip_vol_path[:-1] vol_pages = parse_page_structure(vol_pages, window_size=hf_window_size, min_similarity_ratio=hf_min_similarity) pages_body = (page.body for page in vol_pages) # save the removed headers/footers for user inspection if skip_removed_hf: if concat: with open(os.path.join(output_dir, clean_volid + '.txt'), 'w', encoding='utf-8') as vol_file: vol_file.write('\n'.join(pages_body)) else: vol_path = os.path.join(output_dir, zip_vol_path) os.mkdir(vol_path) for vol_page_path, page_body in zip(sorted_vol_zip_page_paths, pages_body): with open(os.path.join(output_dir, vol_page_path), 'w', encoding='utf-8') as page_file: page_file.write(page_body) else: if concat: with open(os.path.join(output_dir, clean_volid + '.txt'), 'w', encoding='utf-8') as vol_file: vol_file.write('\n'.join(pages_body)) else: vol_path = os.path.join(output_dir, zip_vol_path) os.mkdir(vol_path) for vol_page_path, page_body in zip(sorted_vol_zip_page_paths, pages_body): with open(os.path.join(output_dir, vol_page_path), 'w', encoding='utf-8') as page_file: page_file.write(page_body) removed_hf = [] for vol_page_path, vol_page
import os import sys import datetime import numpy as np import scipy.signal import pandas as pd import yfinance as yf from contextlib import contextmanager from src.utils_date import add_days from src.utils_date import prev_weekday #from pandas_datareader.nasdaq_trader import get_nasdaq_symbols ERROR_NO_MINUTE_DATA_YTD = 'Skip: Missing minute-level data for yesterday' ERROR_NO_MINUTE_DATA_TDY = 'Skip: Missing minute-level data for today' ERROR_CANDLES_PER_DAY = 'Skip: Insufficient candles today ({} less than {})' ERROR_NULL_COL = 'Skip: NULL value in df_i columns ({})' ERROR_NULL_DAY_LEVEL_IND = 'Skip: NULL value in day-level indicators' ERROR_PRICES_D_NOT_UPDATE = 'Error: prices_d not updated, latest date found: {}' @contextmanager def suppress_stdout(): '''Decorator to supress function output to sys.stdout''' with open(os.devnull, "w") as devnull: old_stdout = sys.stdout sys.stdout = devnull try: yield finally: sys.stdout = old_stdout def get_ls_sym(): '''Returns list of tickers from nasdaqtrader.com Duplicates and strings with length > 5 are removed Returns: ls_sym (List of str) ''' #df_symbols = get_nasdaq_symbols() #ls_sym = df_symbols.index.to_list() ls_urls = [ 'http://ftp.nasdaqtrader.com/dynamic/SymDir/nasdaqlisted.txt' ,'http://ftp.nasdaqtrader.com/dynamic/SymDir/otherlisted.txt' ] ls_sym = [] for i, url in enumerate(ls_urls): df = pd.read_csv(url, sep='|') for col in list(df): if col in ['ACT Symbol', 'Symbol']: df['sym'] = df[col] ls_sym+=df[df['sym'].str.len()<=5]['sym'].to_list() ls_sym = list(set(ls_sym)) # remove duplicates return ls_sym def get_df_prices(sym, start_str, end_str): '''Return dataframe with minute-level stock price data from start date to end date (inclusive). Args: sym (str): Ticker symbol e.g. 'BYND' start_str (str): Start date string e.g. '2020-07-18' end_str (str): End date string e.g. '2020-07-18' Returns: df (pandas.Dataframe) ''' assert start_str <= end_str end_str_mod=add_days(end_str, 3) with suppress_stdout(): df = yf.download(sym, start=start_str, end=end_str_mod, interval='1m', progress=0, prepost=True).reset_index() is_date_range = ((df['Datetime'].dt.date.astype('str')>=start_str) &(df['Datetime'].dt.date.astype('str')<=end_str)) df = df[is_date_range] df['Datetime'] = df['Datetime'].dt.tz_localize(None) #remove timezone is_reg_hours = ((df['Datetime'].dt.time.astype('str')>='09:30:00') &(df['Datetime'].dt.time.astype('str')<='15:59:00')) df['is_reg_hours'] = np.where(is_reg_hours, 1, 0) df['sym'] = sym df = df.rename(columns={ 'Datetime':'datetime', 'Open':'open', 'High':'high', 'Low':'low', 'Adj Close':'adj_close', 'Volume':'volume' }) ls_col = [ 'sym', 'datetime', 'open', 'high', 'low', 'adj_close', 'volume', 'is_reg_hours', ] return df[ls_col] def add_rsi(df, rsi_period): '''Returns dataframe with additional columns: rsi (float) Args: df (pandas.DataFrame): Must be index sorted by datetime: adj_close (float) rsi_period (int): Number of rsi periods Returns: df (pandas.DataFrame) ''' chg = df['adj_close'].diff(1) gain = chg.mask(chg<0,0) loss = chg.mask(chg>0,0) avg_gain = gain.ewm(com=rsi_period-1, min_periods=rsi_period).mean() avg_loss = loss.ewm(com=rsi_period-1, min_periods=rsi_period).mean() rs = abs(avg_gain/avg_loss) rsi = 100 - (100/(1+rs)) df['rsi14'] = rsi return df def add_vwap(df): '''Returns dataframe with additional columns: vwap (float): Volume Weighted Average Price vwap_var (float): % variance of close from vwap Args: df (pandas.DataFrame): Dataframe with at least columns: datetime open high low adj_close volume Returns: df (pandas.DataFrame) ''' df['vwap'] = (df['volume']*(df['high']+df['low']+df['adj_close'])/3).cumsum()/df['volume'].cumsum() df['vwap'] = df['vwap'].fillna(df['adj_close']) df['vwap_var'] = (df['adj_close']/df['vwap'])-1 return df def get_df_i(sym, date_str, live_data, db, num_candles_min = 200): '''Returns interim dataframe with price data and trading indicators for input symbol and date Args: sym (str) date_str (str) live_data (int) db (Database object) num_candles_min (int) Returns: df_i (pandas.Dataframe) ''' start_str = prev_weekday(date_str) #start 1 day early to get prev day data for rsi etc end_str = add_days(date_str, 3) #extend end date string due to bug if live_data: with suppress_stdout(): df = yf.download(sym, start=start_str, end=end_str, interval='1m', prepost = False, progress=0).reset_index() df['Datetime'] = df['Datetime'].dt.tz_localize(None) #remove timezone df = df.rename(columns={'Adj Close':'adj_close', 'Datetime':'datetime', 'Open':'open', 'High':'high', 'Low':'low', 'Volume':'volume'}) else: q = ''' SELECT * FROM prices_m WHERE is_reg_hours = 1 AND sym='{}' AND DATE(datetime)>='{}' AND DATE(datetime)<='{}' ORDER BY datetime '''.format(sym, start_str, date_str) df = pd.read_sql(q, db.conn) df['datetime'] = pd.to_datetime(df['datetime']) df['date_str'] = df['datetime'].dt.date.astype('str') if df[df['date_str']==start_str].empty: raise Exception(ERROR_NO_MINUTE_DATA_YTD) if df[df['date_str']==date_str].empty: raise Exception(ERROR_NO_MINUTE_DATA_TDY) num_candles_today = df[df['date_str']==date_str].shape[0] if num_candles_today<num_candles_min and not live_data: raise Exception(ERROR_CANDLES_PER_DAY.format(num_candles_today, num_candles_min)) df = df[df['date_str']<=date_str] df = df[df['date_str']>=start_str] df['sma9'] = df['adj_close'].rolling(9).mean() df['sma90'] = df['adj_close'].rolling(90).mean() df['sma180'] = df['adj_close'].rolling(180).mean() df['sma180'] = df['sma180'].fillna(df['sma90']) df['sma9_var'] = (df['adj_close']/df['sma9'])-1 df['sma180_var'] = (df['adj_close']/df['sma180'])-1 df = add_rsi(df, 14) df['spread']=((df['adj_close']/df['open'])-1).abs() df['spread14_e']=df['spread'].ewm(span=14).mean() df['volume14'] = df['volume'].rolling(14).mean() df['volume34'] = df['volume'].rolling(34).mean() df['volume14_34_var'] = (df['volume14']/df['volume34'])-1 df['volume14_34_var'] = df['volume14_34_var'].fillna(0.0) prev_close = df[df['date_str']==start_str]['adj_close'].to_list()[-1] prev_floor = df[df['date_str']==start_str]['adj_close'].min() prev_ceil = df[df['date_str']==start_str]['adj_close'].max() df['prev_close'] = prev_close df['prev_close_var'] = df['adj_close']/prev_close - 1 df['prev_floor_var'] = (df['adj_close']/prev_floor)-1 df['prev_ceil_var'] = (df['adj_close']/prev_ceil)-1 df['candle_score'] = df['adj_close']/df['open']-1 df['prev1_candle_score'] = df['candle_score'].shift(1) df['prev2_candle_score'] = df['candle_score'].shift(2) df['prev3_candle_score'] = df['candle_score'].shift(3) df = df[df['date_str']==date_str] df = add_vwap(df) df = df.rename(columns={'adj_close':'close'}) ls_col = [ 'datetime', 'close', 'sma9', 'sma180', 'rsi14', 'vwap', 'sma9_var', 'sma180_var', 'vwap_var', 'spread14_e', 'volume14_34_var', 'prev_close', 'prev_close_var', 'prev_floor_var', 'prev_ceil_var', 'prev1_candle_score', 'prev2_candle_score', 'prev3_candle_score', ] df = df[ls_col] ls_col_na = df.columns[df.isna().any()].tolist() if ls_col_na: raise Exception(ERROR_NULL_COL.format(ls_col_na)) return df.reset_index(drop=1) def add_peaks_valleys(df, order=5): '''Returns Dataframe with additional columns: peak_valley - 1 if peak, -1 if valley, 0 o.w. Args: df (pandas.DataFrame): Dataframe with at least columns: datetime close order (int): How many points on each side to use for the comparison to consider Returns: df (pandas.DataFrame) ''' df['peak_valley'] = 0 col_peak_valley = list(df).index('peak_valley') peak_indexes = scipy.signal.argrelextrema(np.array(df['close']), np.greater, order = order)[0] valley_indexes = scipy.signal.argrelextrema(np.array(df['close']), np.less, order = order)[0] df.iloc[peak_indexes, col_peak_valley] = 1 df.iloc[valley_indexes, col_peak_valley] = -1 return df def add_valley_variances(df): '''Returns Dataframe with additional columns: valley_close_pct_chg (float): % change in close of current and previous valley e.g. 1% -> 0.01 valley_rsi_diff (float): Change in rsi of current and previous valley valley_interval_mins (float): Minutes since last valley Args: df (pandas.DataFrame): Dataframe with at least columns: datetime close rsi14 peak_valley Returns: df (pandas.DataFrame) ''' df['valley_close'] = np.where(df['peak_valley']==-1, df['close'], np.nan) df['valley_rsi'] = np.where(df['peak_valley']==-1, df['rsi14'], np.nan) df['valley_datetime'] = pd.to_datetime(np.where(df['peak_valley']==-1, df['datetime'], pd.NaT)) df['valley_close'] = df['valley_close'].ffill() df['valley_rsi'] = df['valley_rsi'].ffill() df['valley_datetime'] = df['valley_datetime'].ffill() df['valley_close_pct_chg'] = df['valley_close'].pct_change() df['valley_rsi_diff'] = df['valley_rsi'].diff() df['valley_interval_mins'] = df['valley_datetime'].diff().astype('timedelta64[m]') df = df.drop(columns=['valley_close' ,'valley_rsi' ,'valley_datetime']) return df def add_divergences(df, close_buffer=0, rsi_buffer=0): '''Returns Dataframe with additional columns: divergence (str): 'bull_reg' - Regular bullish divergence i.e. Lower price valleys, but rise in RSI 'bull_hid' - Hidden bullish divergence i.e. Higher price valleys, but drop in RSI '' - No divergence Args: df (pandas.DataFrame): Dataframe with at least columns: datetime valley_close_pct_chg valley_rsi_diff close_buffer (float): Price change must be at least this % change to count as divergence, e.g 1.5 -> 1.5% rsi_buffer (float): RSI change must be at least this change to count as divergence Returns: df (pandas.DataFrame) ''' df['divergence'] = '' df['divergence'] = np.where((df['valley_close_pct_chg'] < -(close_buffer/100)) &(df['valley_rsi_diff'] > rsi_buffer) ,'bull_reg' ,df['divergence']) df['divergence'] = np.where((df['valley_close_pct_chg'] > (close_buffer/100)) &(df['valley_rsi_diff'] < -rsi_buffer) ,'bull_hid' ,df['divergence']) return df def add_additional_measures(df, sym): '''Add last few features to Dataframe Args: df (pandas.Dataframe) Returns: df (pandas.Dataframe) ''' df['mins_from_start'] = (df['datetime']-df['datetime'].min()).astype('timedelta64[m]') df['valley_close_score'] = df['valley_close_pct_chg'].abs()*100 df['valley_rsi_score'] = df['valley_rsi_diff'].abs() df['day_open_var'] = df['close']/df['close'].to_list()[0] - 1 df['open_from_prev_close_var'] = df['close'].to_list()[0]/df['prev_close'] - 1 df['ceil'] = df['close'].cummax() df['ceil_var'] = df['close']/df['ceil'] - 1 df['floor'] = df['close'].cummin() df['floor_var'] = df['close']/df['floor'] - 1 df['sym'] = sym #df['hour_of_day'] = (df['datetime'] - pd.Timedelta(minutes=29)).dt.hour #df['weekday'] = df['datetime'].dt.weekday.astype('category') #monday is 0 return df def add_is_profit(df, target_profit, target_loss): '''Returns Dataframe with additional columns, calculated based on input profit/loss parameters: actual_buy_price (float) profit (float) is_profit (bool) Args: df (pandas.DataFrame): Sorted Dataframe with at least these columns: close (float) divergence (str) target_profit (float): Target percentage profit e.g. 0.01 -> 1% target_loss (float): Target percentage loss e.g. 0.01 -> 1% Returns: df (pandas.DataFrame) ''' buy_delay = 2 #only buy after n mins df['actual_buy_price'] = df['close'].shift(-buy_delay) df['profit'] = None for idx_div_row in df.index[df['divergence']!='']: actual_buy_price = df.iloc[idx_div_row, df.columns.get_loc('actual_buy_price')] profit = 0 for selling_price in df.iloc[idx_div_row:-buy_delay, df.columns.get_loc('actual_buy_price')]: profit = (selling_price/actual_buy_price)-1 if profit>target_profit or profit<target_loss: break df.at[idx_div_row, 'profit'] = profit df['is_profit'] = df['profit']>=target_profit df['profit'] = df['profit'].astype('float') return df def get_dt_day_indicators(sym, close_latest, date_str_tdy, db): '''Returns dictionary with day level indicators for input symbol Args: sym (str) close_latest (float) Returns: dt_day_indicators (Dictionary) ''' q=''' with t as ( select date, adj_close from prices_d where sym = '{}' and date(date) < '{}' order by date desc limit 185 ) select adj_close from t order by date '''.format(sym.upper(), date_str_tdy) df = pd.read_sql(q, db.conn) df = df.append(pd.DataFrame({'adj_close':[close_latest]})) df['sma9'] = df['adj_close'].rolling(9).mean() df['sma90'] = df['adj_close'].rolling(90).mean() df['sma180'] = df['adj_close'].rolling(180).mean() df['sma180'] = df['sma180'].fillna(df['sma90']) df['sma9_var'] = (df['adj_close']/df['sma9'])-1 df['sma180_var'] = (df['adj_close']/df['sma180'])-1 df = add_rsi(df, 14) ls_col = [ 'sma9_var', 'sma180_var', 'rsi14', ] if df[ls_col].iloc[-1].isnull().any(): raise Exception(ERROR_NULL_DAY_LEVEL_IND) dt_day_indicators = dict(df[ls_col].iloc[-1]) return dt_day_indicators def add_day_level_indicators(df_i, sym, db): '''Returns df_interim with day-level indicators added Args: df_i (pandas.DataFrame) sym (str) Returns: df_i (pandas.DataFrame) ''' close_latest = df_i['close'].to_list()[0] date_str_tdy = df_i['datetime'].to_list()[-1].strftime('%Y-%m-%d') dt_day_indicators = get_dt_day_indicators(sym, close_latest, date_str_tdy, db) for col, value in dt_day_indicators.items(): df_i[f'day_{col}'] = value return df_i def get_df_c(sym, date_str, live_data, db, target_profit, target_loss, index_limit=1000): '''Returns df_cooked Args: sym (str) date_str (str) live_data (int) db (DataBase object) target_profit (float): Target percentage profit e.g. 0.01 -> 1% target_loss (float): Target percentage
With class _SpecialFunctionParameterTokenHitTests(_SimpleWordsTokenHitTests): def __init__(self, func_name, gjs): self.func_name = func_name super(_SpecialFunctionParameterTokenHitTests, self).__init__(gjs) def __within_target_function(self, token): if token.parent and tu.is_parenthesis(token.parent): tgtfunc = token.parent.parent if tgtfunc and tu.is_function(tgtfunc): fst = tu.token_next_enable(tgtfunc) return tu.equals_ignore_case(fst.value, self.func_name) return False def first_test(self, token): return super(_SpecialFunctionParameterTokenHitTests, self).first_test(token) \ and self.__within_target_function(token) def get_next_test(self, tokens): fnc = super(_SpecialFunctionParameterTokenHitTests, self).get_next_test(tokens) return lambda t: fnc(t) and self.__within_target_function(t) def is_completed(self, tokens): return super(_SpecialFunctionParameterTokenHitTests, self).is_completed(tokens) def is_completed_group(self, tokens, curr_stmt): if not super(_SpecialFunctionParameterTokenHitTests, self).is_completed_group(tokens, curr_stmt): return False last = tokens[-1] for tkn in tu.flatten_tokens_next(curr_stmt, last): if tu.is_enable(tkn): return tu.is_close_punctuation(tkn) return False class GroupingSpecialFunctionParameter(_BaseWordsGrouping): """ 特殊な関数のグルーピングを拡張 ANSIのTRIM ORACLEのTRIM・EXTRACT PostgreSQLのSUBSTRING など """ GROUP_JUDGE_SET = [ # TRIM ( [ LEADING | TRAILING | BOTH ] trim_char FROM string ) 標準SQL _SpecialFunctionParameterTokenHitTests("TRIM", ( ("LEADING", "TRAILING", "BOTH"), tu.is_string_candidate, "FROM", tu.is_string_candidate, )), # TRIM ( trim_char FROM string ) _SpecialFunctionParameterTokenHitTests("TRIM", ( tu.is_string_candidate, "FROM", tu.is_string_candidate, )), # EXTRACT ( element FROM datetime ) _SpecialFunctionParameterTokenHitTests("EXTRACT", ( tu.is_value_candidate, "FROM", tu.is_identifier, )), # overlay(string placing string from int [for int]) _SpecialFunctionParameterTokenHitTests("overlay", ( tu.is_string_candidate, "placing", tu.is_string_candidate, "from", tu.is_number_candidate, "for", tu.is_number_candidate, )), _SpecialFunctionParameterTokenHitTests("overlay", ( tu.is_string_candidate, "placing", tu.is_string_candidate, "from", tu.is_number_candidate, )), # position(substring in string) _SpecialFunctionParameterTokenHitTests("position", ( tu.is_string_candidate, "in", tu.is_string_candidate, )), # substring(string [from int] [for int]) _SpecialFunctionParameterTokenHitTests("substring", ( tu.is_string_candidate, "from", tu.is_number_candidate, "for", tu.is_number_candidate, )), _SpecialFunctionParameterTokenHitTests("substring", ( tu.is_string_candidate, "from", tu.is_number_candidate, )), # substring(string from pattern) _SpecialFunctionParameterTokenHitTests("substring", ( tu.is_string_candidate, "from", tu.is_string_candidate, )), # substring(string from pattern for escape) _SpecialFunctionParameterTokenHitTests("substring", ( tu.is_string_candidate, "from", tu.is_string_candidate, "for", tu.is_string_candidate, )), ] def get_group_class(self): return SpecialFunctionParameter def init_group_token(self, token, idx): pass class _GroupingCalculationTokenHitTests(_WordsTokenHitTests): def first_test(self, token): return tu.is_calc_operator(token) def get_next_test(self, tokens): last = tokens[-1] if tu.is_value_candidate(last): return tu.is_calc_operator if tu.is_calc_operator(last): return tu.is_value_candidate return lambda t:False def is_completed(self, tokens): return False # is_value_candidateから演算を始めると処理が遅いのであとで頭に追加する def get_add_prev_tokens(self, tokens, prevs): for i, tkn in list(enumerate(prevs))[::-1]: if tu.is_enable(tkn): if tu.is_value_candidate(tkn): return prevs[i:] break return [] def is_completed_group(self, tokens, curr_stmt): first = tokens[0] if not tu.is_value_candidate(first): return False last = tokens[-1] if not tu.is_value_candidate(last): return False tokens = [t for t in tokens if tu.is_enable] return len(tokens) > 2 def adj_tokens(self, tokens, **_): for i, tkn in list(enumerate(tokens))[::-1]: if tu.is_enable(tkn): return tokens[:i + 1] return tokens class GroupingCalculation(_BaseWordsGrouping): """ 計算値のグルーピングを拡張 """ GROUP_JUDGE_SET = [ _GroupingCalculationTokenHitTests(), ] def get_group_class(self): return Calculation def init_group_token(self, token, idx): pass class AdjustGroupingFunction(_BaseWordsGrouping): """ スペースが入ったとき、Function判定されないので、Functionのグルーピングを調整 現状は下記の関数のみ対応。(T.Nameなどで当ててしまうとINSERT句で間違った判定がされる) ・COUNT ・EXISTS ・SUM ・MAX ・MIN """ GROUP_JUDGE_SET = [ (lambda t: tu.equals_ignore_case(t.value, "COUNT") \ and (t.ttype in T.Name or t.ttype in T.Keyword) \ and (not tu.is_identifier(t.parent)) , tu.is_parenthesis), (lambda t: tu.equals_ignore_case(t.value, "EXISTS") \ and (t.ttype in T.Name or t.ttype in T.Keyword) \ and (not tu.is_identifier(t.parent)), tu.is_parenthesis), (lambda t: tu.equals_ignore_case(t.value, "SUM") \ and (t.ttype in T.Name or t.ttype in T.Keyword) \ and (not tu.is_identifier(t.parent)), tu.is_parenthesis), (lambda t: tu.equals_ignore_case(t.value, "MAX") \ and (t.ttype in T.Name or t.ttype in T.Keyword) \ and (not tu.is_identifier(t.parent)), tu.is_parenthesis), (lambda t: tu.equals_ignore_case(t.value, "MIN") \ and (t.ttype in T.Name or t.ttype in T.Keyword) \ and (not tu.is_identifier(t.parent)), tu.is_parenthesis), ] def get_group_class(self): return sql.Function def group_having(tlist): def end_match(token): stopwords = ('ORDER', 'GROUP', 'LIMIT', 'UNION', 'EXCEPT', 'HAVING', 'WHEN', # for Oracle10g merge 'CONNECT', # for Oracle connect by ) if token.match(T.Keyword, stopwords): return True if token.match(T.DML, ('DELETE')): # for Oracle10g merge return True if token.match(T.DML, ('START')): # for Oracle connect by return True return False def proc(tlist): [proc(sgroup) for sgroup in tlist.get_sublists() if not isinstance(sgroup, Having)] idx = 0 token = tlist.token_next_match(idx, T.Keyword, 'HAVING') while token: tidx = tlist.token_index(token) end = tlist.token_matching(tidx + 1, (end_match, )) if end is None: end = tlist._groupable_tokens[-1] else: end = tlist.tokens[tlist.token_index(end) - 1] tgroup = tlist.group_tokens(Having, tlist.tokens_between(token, end), ignore_ws=True) idx = tlist.token_index(tgroup) token = tlist.token_next_match(idx, T.Keyword, 'HAVING') proc = SqlFormatterException.to_wrap_try_except(proc, 0) proc(tlist) def group_when(tlist): def proc(tlist): [proc(sgroup) for sgroup in tlist.get_sublists() if not isinstance(sgroup, When)] if not tu.is_case(tlist): return idx = 0 token = tlist.token_next_match(idx, T.Keyword, 'WHEN') stopwords = ('THEN', 'END') while token: tidx = tlist.token_index(token) end = tlist.token_next_match(tidx + 1, T.Keyword, stopwords) if end is None: end = tlist._groupable_tokens[-1] else: end = tlist.tokens[tlist.token_index(end) - 1] tgroup = tlist.group_tokens(When, tlist.tokens_between(token, end), ignore_ws=True) idx = tlist.token_index(tgroup) token = tlist.token_next_match(idx, T.Keyword, 'WHEN') proc = SqlFormatterException.to_wrap_try_except(proc, 0) proc(tlist) def group_on(tlist): def end_match(token): stopwords = ('WHERE', 'ORDER', 'GROUP', 'LIMIT', 'UNION', 'EXCEPT', 'HAVING', 'WHEN', # for Oracle10g merge 'CONNECT', # for Oracle connect by ) if token.match(T.Keyword, stopwords): return True if tu.is_phrase(token): if token.match_phrase(('ORDER', 'BY')) or token.match_phrase(('GROUP', 'BY')): return True return tu.is_join(token) or tu.is_mergewhen(token) def proc(tlist): [proc(sgroup) for sgroup in tlist.get_sublists() if not isinstance(sgroup, On)] idx = 0 token = tlist.token_next_match(idx, T.Keyword, 'ON') while token: tidx = tlist.token_index(token) end = tlist.token_matching(tidx + 1, (end_match,)) if end is None: end = tlist._groupable_tokens[-1] else: end = tlist.tokens[tlist.token_index(end) - 1] tgroup = tlist.group_tokens(On, tlist.tokens_between(token, end), ignore_ws=True) idx = tlist.token_index(tgroup) token = tlist.token_next_match(idx, T.Keyword, 'ON') proc = SqlFormatterException.to_wrap_try_except(proc, 0) proc(tlist) def group_connectby_startwith(tlist): def start_match(token): if tu.is_phrase(token): return token.match_phrase(("CONNECT", "BY")) or token.match_phrase(("START", "WITH")) def end_match(token): stopwords = ('ORDER', 'GROUP', 'LIMIT', 'UNION', 'EXCEPT', 'HAVING', 'WHEN', # for Oracle10g merge 'CONNECT', # for Oracle connect by ) if token.match(T.Keyword, stopwords): return True if token.match(T.DML, ('DELETE')): # for Oracle10g merge return True if token.match(T.DML, ('START')): # for Oracle connect by return True if tu.is_phrase(token): if token.match_phrase(("CONNECT", "BY")) or token.match_phrase(("START", "WITH")): return True return False def proc(tlist): [proc(sgroup) for sgroup in tlist.get_sublists() if (not isinstance(sgroup, ConnectBy)) and (not isinstance(sgroup, StartWith))] idx = 0 token = tlist.token_matching(idx, (start_match, )) while token: tidx = tlist.token_index(token) end = tlist.token_matching(tidx + 1, (end_match, )) if end is None: end = tlist._groupable_tokens[-1] else: end = tlist.tokens[tlist.token_index(end) - 1] group_class = None if token.match_phrase(("CONNECT", "BY")): group_class = ConnectBy elif token.match_phrase(("START", "WITH")): group_class = StartWith tgroup = tlist.group_tokens(group_class, tlist.tokens_between(token, end), ignore_ws=True) idx = tlist.token_index(tgroup) token = tlist.token_matching(idx, (start_match, )) proc = SqlFormatterException.to_wrap_try_except(proc, 0) proc(tlist) def group_mergeupdateinsertclause(tlist): def get_start_match(tlist): token = tlist.token_matching(0, (tu.is_mergewhen,)) if token: return tu.token_next_enable(tlist, token) return None def get_start_match2(tlist, idx): token = tlist.token_matching(idx, (tu.is_mergewhen, tu.is_delete_dml)) if token: if tu.is_delete_dml(token): return token return tu.token_next_enable(tlist, token) return None def end_match(token): return tu.is_mergewhen(token) or tu.is_delete_dml(token) def proc(tlist): [proc(sgroup) for sgroup in tlist.get_sublists() if not isinstance(sgroup, MergeUpdateInsertClause)] token = get_start_match(tlist) while token: tidx = tlist.token_index(token) end = tlist.token_matching(tidx + 1, (end_match,)) if end is None: end = tlist._groupable_tokens[-1] else: end = tlist.tokens[tlist.token_index(end) - 1] tgroup = tlist.group_tokens(MergeUpdateInsertClause, tlist.tokens_between(token, end), ignore_ws=True) idx = tlist.token_index(tgroup) token = get_start_match2(tlist, idx) proc = SqlFormatterException.to_wrap_try_except(proc, 0) proc(tlist) def adj_group_comparison(tlist): """ Comparisonのグルーピングでコメントがあると綺麗に整わないので調整する Comparisonにならない式をグルーピング """ def find_comparison(tokens): for token in tokens: if tu.is_comparison(token): return token return None def adjust_identifier_tokens(comp): """ identifier中のコメントを分解する """ for token in comp.tokens[:]: if tu.is_identifier(token): for tkn in token.tokens[::-1]: if tkn.is_whitespace() or tu.is_comment(tkn): comp.insert_after(token, tkn) tkn.parent = token token.tokens.remove(tkn) else: break def adjust_tokens(tlist, comp_tokens): if comp_tokens[0].is_whitespace(): comp_tokens = comp_tokens[1:] if comp_tokens[-1].is_whitespace(): comp_tokens = comp_tokens[:-1] comp = find_comparison(comp_tokens) if comp: left = True left_idx = 0 for token in comp_tokens: if token is comp: left = False elif left: comp.insert_before(comp.tokens[left_idx], token) left_idx += 1 tlist.tokens.remove(token) else: comp.tokens.append(token) tlist.tokens.remove(token) adjust_identifier_tokens(comp) else: if tu.find_comparison_operator_words(comp_tokens): tgp = tlist.group_tokens(sql.Comparison, comp_tokens) adjust_identifier_tokens(tgp) def adjust_prior(tlist, comp_tokens): """ priorの調整 """ prior = None for token in comp_tokens[:]: if not tu.is_enable(token): continue if prior: tokens = tlist.tokens_between(prior, token) if tu.is_comparison(token): tgp = token.group_tokens( sql.Identifier, token.tokens_between(token.tokens[0],tu.token_next_enable(token)) ) for tkn in tokens[1::-1]: tgp.tokens.insert(0, tkn) tkn.parent.tokens.remove(tkn) tkn.parent = tgp comp_tokens.remove(tkn) else: idx = comp_tokens.index(prior) comp_tokens.insert(idx, tlist.group_tokens(sql.Identifier, tokens)) for tkn in tokens: comp_tokens.remove(tkn) prior.ttype = T.Name # Keywordだと改行されてしまうためName属性にする prior = None continue if token.ttype in T.Keyword and tu.equals_ignore_case(token.value, "PRIOR"): prior = token else: prior = None def proc(tlist): [proc(sgroup) for sgroup in tlist.get_sublists()] in_prior = False target_tokens = [] if tu.is_where(tlist): where_token = tlist.token_next_match(0, T.Keyword, 'WHERE') where_index = tlist.token_index(where_token) target_tokens = tlist.tokens[where_index + 1:] # where 以降を処理 elif tu.is_when(tlist): when_token = tlist.token_next_match(0, T.Keyword, 'WHEN') when_index = tlist.token_index(when_token) target_tokens = tlist.tokens[when_index + 1:] # when 以降を処理 elif tu.is_having(tlist): having_token = tlist.token_next_match(0, T.Keyword, 'HAVING') having_index = tlist.token_index(having_token) target_tokens = tlist.tokens[having_index + 1:] # having 以降を処理 elif tu.is_on(tlist): on_token = tlist.token_next_match(0, T.Keyword, 'ON') on_index = tlist.token_index(on_token) target_tokens = tlist.tokens[on_index + 1:] # on 以降を処理 elif tu.is_connectby(tlist) or tu.is_startwith(tlist): in_prior = tu.is_connectby(tlist) # connect byの場合はpriorを考慮 phrase_token = tlist.token_matching(0, (tu.is_phrase, )) phrase_index = tlist.token_index(phrase_token) target_tokens = tlist.tokens[phrase_index +
<filename>guild/commands/run_impl.py # Copyright 2017-2022 RStudio, PBC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import sys import six from guild import batch_util from guild import cli from guild import click_util from guild import cmd_impl_support from guild import config from guild import flag_util from guild import guildfile from guild import help as helplib from guild import op as oplib from guild import op_cmd as op_cmd_lib from guild import op_dep from guild import op_util from guild import remote from guild import resolver as resolverlib from guild import run as runlib from guild import run_util from guild import summary from guild import util from guild import var from guild import yaml_util from . import remote_impl_support log = logging.getLogger("guild") # Use Bayesian with gaussian process as default optimizer when opdef # does not contain any optimizers. # DEFAULT_OPTIMIZER = "gp" DEFAULT_OBJECTIVE = "loss" FLAG_TEST_ATTRS = [ "default", "type", "required", "arg_name", "arg_skip", "arg_switch", "arg_split", "env_name", "choices", "allow_other", "distribution", "max", "min", "null_label", ] RESPECIFIABLE_RUN_PARAMS = { "gpus", "label", "tags", } CORE_RUN_ATTRS = { "cmd", "deps", "env", "exit_status", "flags", "host", "id", "initialized", "label", "op", "pip_freeze", "platform", "random_seed", "run_params", "sourcecode_digest", "started", "stopped", "user", "user_flags", "vcs_commit", } ################################################################### # State ################################################################### class State: def __init__(self, args): self.args = args self.restart_run = None self.proto_run = None self.user_op = Operation() self.batch_op = None class Operation(oplib.Operation): def __init__(self): super(Operation, self).__init__() self._run = None self._run_is_proto = False self._force_sourcecode = False self._opdef = None self._resource_flagdefs = [] self._user_flag_vals = {} self._batch_trials = None self._op_flag_vals = {} self._flag_null_labels = {} self._op_cmd = None self._op_cmd_run_attrs = {} self._python_requires = None self._random_seed = None self._max_trials = None self._objective = None self._label_template = None self._label = None self._tags = [] self._comment = None self._output_scalars = None self._sourcecode_root = None self._flags_extra = None self._delete_on_success = None self._additional_deps = [] def _state_for_args(args): S = State(args) if S.args.help_op: _op_init_opdef(S.args.opspec, S.user_op, S.args) else: _state_init_restart_or_proto_run(S) _state_init_user_op(S) _state_init_batch_op(S) return S def _apply_run_params_for_args(args, attrs): """Applies values for 'run_params' to attrs given args. This function handles cases where args are re-specificed after being initially specified. This occurs when a run is staged (initial run params specification) and then started (run params re-respecification). There are a limited number of params that can be re-specified. These are defined in `RESPECIFIABLE_RUN_PARAMS`. If any of these are re-specified, run params are updated. Otherwise, run params are not updated if they are already specified. """ params = attrs.setdefault("run_params", {}) for name, val in args.as_kw().items(): if name not in params: params[name] = val continue if val and name in RESPECIFIABLE_RUN_PARAMS: params[name] = val def _op_config_data(op): return { "flag-null-labels": op._flag_null_labels, "op-cmd": op_cmd_lib.as_data(op._op_cmd), "python-requires": op._python_requires, "label-template": op._label_template, "output-scalars": op._output_scalars, "deps": op_util.op_deps_as_data(op.deps), "sourcecode-root": op._sourcecode_root, "flags-extra": op._flags_extra, "delete-on-success": op._delete_on_success, } def _apply_op_config_data(data, op): op._flag_null_labels = data.get("flag-null-labels") op._op_cmd = op_cmd_lib.for_data(data.get("op-cmd")) op._python_requires = data.get("python-requires") op._label_template = data.get("label-template") op._output_scalars = data.get("output-scalars") op._sourcecode_root = data.get("sourcecode-root") op._flags_extra = data.get("flags-extra") op._delete_on_success = data.get("delete-on-success") op.deps = op_util.op_deps_for_data(data.get("deps")) # ================================================================= # State - restart / proto run # ================================================================= def _state_init_restart_or_proto_run(S): assert not (S.args.restart and S.args.proto) if S.args.restart: _state_init_restart_run(S) elif S.args.proto: _state_init_proto_run(S) def _state_init_restart_run(S): if S.args.remote: S.restart_run = _remote_run_for_spec(S.args.restart, S.args) else: S.restart_run = _local_run_for_spec(S.args.restart) _apply_restart_run_state(S) def _state_init_proto_run(S): if S.args.remote: S.proto_run = _remote_run_for_spec(S.args.proto, S.args) else: S.proto_run = _local_run_for_spec(S.args.proto) def _remote_run_for_spec(spec, args): return remote_impl_support.one_run(spec, args) def _local_run_for_spec(spec): return util.find_apply( [ run_util.run_for_run_dir, run_util.marked_or_latest_run_for_opspec, one_run, ], spec, ) def _apply_restart_run_state(S): """Applies any state from a restart run. The only state applied from a restart run is the 'run_params' attr. This is initialized to ensure that any original run params are preserved from the original run spec (e.g. a staged run) unless otherwise updated by the restart. """ op = S.batch_op if S.batch_op else S.user_op assert op assert not op.run_attrs, op.run_attrs op.run_attrs["run_params"] = S.restart_run.get("run_params") or {} # ================================================================= # State - user op # ================================================================= def _state_init_user_op(S): """Initialize state for user op.""" _user_op_init_run(S) _op_init_force_sourcecode(S.args.force_sourcecode, S.user_op) _op_init_opdef(S.args.opspec, S.user_op, S.args) _op_init_user_flags(S.args.flags, S.user_op) _op_init_op_cmd(S.user_op, S.args) _op_init_op_flags(S.args, S.user_op) _op_init_config( S.args.label, S.args.tags, S.args.comment, S.args.edit_comment, S.args.keep_run, S.user_op, ) _op_init_core(S.args, S.user_op) def _user_op_init_run(S): assert not (S.restart_run and S.proto_run) if S.restart_run: _user_op_init_run_(S, S.restart_run) elif S.proto_run: _user_op_init_run_(S, S.proto_run) S.user_op._run_is_proto = True def _user_op_init_run_(S, run): if run.batch_proto: S.user_op._run = run.batch_proto else: S.user_op._run = run def _op_init_force_sourcecode(force_sourcecode_arg, op): op._force_sourcecode = force_sourcecode_arg # ================================================================= # Op - user flags # ================================================================= def _op_init_user_flags(flag_args, op): op._user_flag_vals, batch_files = split_flag_args(flag_args, op._opdef) if batch_files: trials = _trials_for_batch_files(batch_files) if len(trials) == 1: _apply_single_trial_user_flags(trials[0], op) else: op._batch_trials = trials def split_flag_args(flag_args, opdef, incomplete=None, raise_parse_errors=True): batch_files, rest_args = op_util.split_batch_files(flag_args) assigns = _parse_assigns(rest_args, opdef, raise_parse_errors) if incomplete: assigns = {k: v for k, v in assigns.items() if incomplete in k} return assigns, batch_files def _parse_assigns(assign_args, opdef, raise_parse_errors): assigns, errors = op_util.parse_flag_assigns(assign_args, opdef) if errors and raise_parse_errors: _invalid_flag_arg_error(errors) return assigns def _trials_for_batch_files(batch_files): batch_files = [_resolve_batch_file(path) for path in batch_files] try: return op_util.trials_for_batch_files(batch_files) except op_util.BatchFileError as e: _batch_file_error(e) def _resolve_batch_file(path): resolved = os.path.join(config.cwd(), os.path.expanduser(path)) if not os.path.exists(resolved): _no_such_batch_file_error(resolved) return resolved def _apply_single_trial_user_flags(trial, op): for name, val in trial.items(): if name not in op._user_flag_vals: op._user_flag_vals[name] = val # ================================================================= # Op - opdef # ================================================================= def _op_init_opdef(opspec, op, args): if opspec: op._opdef = opdef_for_opspec(opspec) elif op._run: if args.flags or args.force_sourcecode: # We need opdef for restart/run-with-proto when user specifies # flag values or when force-sourcecode is specified. op._opdef = _opdef_for_run(op._run) else: op._opdef = _default_opdef() def _opdef_for_run(run): if isinstance(run, remote.RunProxy): return _opdef_for_remote_run(run) opspec = run.opref.to_opspec() return opdef_for_opspec(opspec, run) def _opdef_for_remote_run(run): if _cwd_remote_run(run): return opdef_for_opspec(_cwd_opspec(run.opref)) return opdef_for_opspec(run.opref.to_opspec(), run) def _cwd_remote_run(run): try: gf = guildfile.for_dir(config.cwd()) except: return False else: return gf.package and gf.package.name == run.opref.pkg_name def _cwd_opspec(opref): return "%s:%s" % (opref.model_name, opref.op_name) def opdef_for_opspec(opspec, for_run=None): try: return op_util.opdef_for_opspec(opspec) except op_util.InvalidOpSpec: _invalid_opspec_error(opspec) except op_util.CwdGuildfileError as e: _guildfile_error(e.path, str(e)) except op_util.NoSuchModel: if for_run: _missing_run_opdef_error(opspec, for_run) else: _no_such_model_op_error(opspec) except op_util.MultipleMatchingModels as e: _multiple_models_error(e.model_ref, e.matches) except op_util.NoSuchOperation as e: _no_such_opdef_error(e.model, e.op_name) except op_util.ModelOpProxyError as e: _model_op_proxy_error(e) def _default_opdef(): return opdef_for_opspec(None) # ================================================================= # Op - op cmd # ================================================================= def _op_init_op_cmd(op, args): if op._opdef: op._op_cmd, run_attrs = _op_cmd_for_opdef(op._opdef) _apply_gpu_arg_env(args, op._op_cmd.cmd_env) _apply_no_output_env(op._op_cmd.cmd_env) if run_attrs: op._op_cmd_run_attrs.update(run_attrs) def _op_cmd_for_opdef(opdef): try: return op_util.op_cmd_for_opdef(opdef) except op_util.InvalidOpDef as e: _invalid_opdef_error(opdef, e.msg) def _apply_no_output_env(op_env): """Applies op env 'NO_RUN_OUTPUT' to `os.environ` if defined. Skipped if 'NO_RUN_OUTPUT' is defined in the current Guild env. This lets the operation control whether or not run output is disabled. We take this approach because Guild's only interface for disabling run output is the current Guild env's 'NO_RUN_OUTPUT' value. """ if "NO_RUN_OUTPUT" in op_env and not "NO_RUN_OUTPUT" in os.environ: os.environ["NO_RUN_OUTPUT"] = str(op_env["NO_RUN_OUTPUT"]) # ================================================================= # Op - op flags # ================================================================= def _op_init_op_flags(args, op): if op._run: _apply_run_flags(op._run, op._op_flag_vals) if op._opdef: _apply_op_flag_vals_for_opdef( op._opdef, op._user_flag_vals, args.force_flags or op._batch_trials, op._op_cmd, args, op._resource_flagdefs, op._op_flag_vals, ) if args.edit_flags: _edit_op_flags(op) def _apply_run_flags(run, flag_vals): flag_vals.update(run.get("flags") or {}) def _apply_op_flag_vals_for_opdef( opdef, user_flag_vals, force_flags, op_cmd, args, resource_flagdefs, op_flag_vals, ): """Applies opdef and user-provided flags to `op_flag_vals`. Also applies resolved resource flag defs per flag vals `resource_flagdefs`. Attempts to resolve operation runs and use resolve run short IDs as applicable flag values. Opdef is used to provide missing default values, coerce flag vals, and validate vals. Opdef-provided flag vals are added to op flag vals only if they are not already in op flags, or if they are in user-provided flags. This maintains existing values (e.g. from a restart) unless a user explicitly provides a flag value. op_cmd is modified to include CmdFlag with arg-skip=yes for resolved run IDs provided a flag isn't defined for the resolved resource name. These flag values are used by Guild to resolve resources and should not be included in flag args unless the a flag def is explicitly provided. """ flag_vals, resolved_resource_flagdefs = _flag_vals_for_opdef( opdef, user_flag_vals, force_flags ) resource_flagdefs.extend(resolved_resource_flagdefs) _apply_default_dep_runs(opdef, op_cmd, args, flag_vals) for name, val in flag_vals.items(): if name in user_flag_vals or name not in op_flag_vals: op_flag_vals[name] = val def _flag_vals_for_opdef(opdef, user_flag_vals, force_flags): """Returns flag vals for opdef. Results includes defaults for opdef overridden by user flag vals where specified. """ try: return op_util.flag_vals_for_opdef(opdef, user_flag_vals, force_flags) except op_util.MissingRequiredFlags as e: _missing_required_flags_error(e) except op_util.InvalidFlagChoice as e: _invalid_flag_choice_error(e) except op_util.InvalidFlagValue as e: _invalid_flag_value_error(e) except op_util.NoSuchFlagError as e: _no_such_flag_error(e.flag_name, opdef) def _apply_default_dep_runs(opdef, op_cmd, args, flag_vals): """Applies default run IDs to
_preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :param _request_auth: set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request. :type _request_auth: dict, optional :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: tuple(NetworkLoadBalancerForwardingRule, status_code(int), headers(HTTPHeaderDict)) """ local_var_params = locals() all_params = [ 'datacenter_id', 'network_load_balancer_id', 'forwarding_rule_id', 'network_load_balancer_forwarding_rule_properties', 'pretty', 'depth', 'x_contract_number' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout', '_request_auth', 'response_type', 'query_params' ] ) for local_var_params_key, local_var_params_val in six.iteritems(local_var_params['kwargs']): if local_var_params_key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method datacenters_networkloadbalancers_forwardingrules_patch" % local_var_params_key ) local_var_params[local_var_params_key] = local_var_params_val del local_var_params['kwargs'] # verify the required parameter 'datacenter_id' is set if self.api_client.client_side_validation and ('datacenter_id' not in local_var_params or # noqa: E501 local_var_params['datacenter_id'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `datacenter_id` when calling `datacenters_networkloadbalancers_forwardingrules_patch`") # noqa: E501 # verify the required parameter 'network_load_balancer_id' is set if self.api_client.client_side_validation and ('network_load_balancer_id' not in local_var_params or # noqa: E501 local_var_params['network_load_balancer_id'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `network_load_balancer_id` when calling `datacenters_networkloadbalancers_forwardingrules_patch`") # noqa: E501 # verify the required parameter 'forwarding_rule_id' is set if self.api_client.client_side_validation and ('forwarding_rule_id' not in local_var_params or # noqa: E501 local_var_params['forwarding_rule_id'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `forwarding_rule_id` when calling `datacenters_networkloadbalancers_forwardingrules_patch`") # noqa: E501 # verify the required parameter 'network_load_balancer_forwarding_rule_properties' is set if self.api_client.client_side_validation and ('network_load_balancer_forwarding_rule_properties' not in local_var_params or # noqa: E501 local_var_params['network_load_balancer_forwarding_rule_properties'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `network_load_balancer_forwarding_rule_properties` when calling `datacenters_networkloadbalancers_forwardingrules_patch`") # noqa: E501 if self.api_client.client_side_validation and 'depth' in local_var_params and local_var_params['depth'] > 10: # noqa: E501 raise ApiValueError("Invalid value for parameter `depth` when calling `datacenters_networkloadbalancers_forwardingrules_patch`, must be a value less than or equal to `10`") # noqa: E501 if self.api_client.client_side_validation and 'depth' in local_var_params and local_var_params['depth'] < 0: # noqa: E501 raise ApiValueError("Invalid value for parameter `depth` when calling `datacenters_networkloadbalancers_forwardingrules_patch`, must be a value greater than or equal to `0`") # noqa: E501 collection_formats = {} path_params = {} if 'datacenter_id' in local_var_params: path_params['datacenterId'] = local_var_params['datacenter_id'] # noqa: E501 if 'network_load_balancer_id' in local_var_params: path_params['networkLoadBalancerId'] = local_var_params['network_load_balancer_id'] # noqa: E501 if 'forwarding_rule_id' in local_var_params: path_params['forwardingRuleId'] = local_var_params['forwarding_rule_id'] # noqa: E501 query_params = list(local_var_params.get('query_params', {}).items()) if 'pretty' in local_var_params and local_var_params['pretty'] is not None: # noqa: E501 query_params.append(('pretty', local_var_params['pretty'])) # noqa: E501 if 'depth' in local_var_params and local_var_params['depth'] is not None: # noqa: E501 query_params.append(('depth', local_var_params['depth'])) # noqa: E501 header_params = {} if 'x_contract_number' in local_var_params: header_params['X-Contract-Number'] = local_var_params['x_contract_number'] # noqa: E501 form_params = [] local_var_files = {} body_params = None if 'network_load_balancer_forwarding_rule_properties' in local_var_params: body_params = local_var_params['network_load_balancer_forwarding_rule_properties'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['Basic Authentication', 'Token Authentication'] # noqa: E501 response_type = 'NetworkLoadBalancerForwardingRule' if 'response_type' in kwargs: response_type = kwargs['response_type'] return self.api_client.call_api( '/datacenters/{datacenterId}/networkloadbalancers/{networkLoadBalancerId}/forwardingrules/{forwardingRuleId}', 'PATCH', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=response_type, # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats, _request_auth=local_var_params.get('_request_auth')) def datacenters_networkloadbalancers_forwardingrules_post(self, datacenter_id, network_load_balancer_id, network_load_balancer_forwarding_rule, **kwargs): # noqa: E501 """Create NLB forwarding rules # noqa: E501 Create a forwarding rule for the specified Network Load Balancer. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.datacenters_networkloadbalancers_forwardingrules_post(datacenter_id, network_load_balancer_id, network_load_balancer_forwarding_rule, async_req=True) >>> result = thread.get() :param datacenter_id: The unique ID of the data center. (required) :type datacenter_id: str :param network_load_balancer_id: The unique ID of the Network Load Balancer. (required) :type network_load_balancer_id: str :param network_load_balancer_forwarding_rule: The forwarding rule to create. (required) :type network_load_balancer_forwarding_rule: NetworkLoadBalancerForwardingRule :param pretty: Controls whether the response is pretty-printed (with indentations and new lines). :type pretty: bool :param depth: Controls the detail depth of the response objects. GET /datacenters/[ID] - depth=0: Only direct properties are included; children (servers and other elements) are not included. - depth=1: Direct properties and children references are included. - depth=2: Direct properties and children properties are included. - depth=3: Direct properties and children properties and children's children are included. - depth=... and so on :type depth: int :param x_contract_number: Users with multiple contracts must provide the contract number, for which all API requests are to be executed. :type x_contract_number: int :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: NetworkLoadBalancerForwardingRule """ kwargs['_return_http_data_only'] = True return self.datacenters_networkloadbalancers_forwardingrules_post_with_http_info(datacenter_id, network_load_balancer_id, network_load_balancer_forwarding_rule, **kwargs) # noqa: E501 def datacenters_networkloadbalancers_forwardingrules_post_with_http_info(self, datacenter_id, network_load_balancer_id, network_load_balancer_forwarding_rule, **kwargs): # noqa: E501 """Create NLB forwarding rules # noqa: E501 Create a forwarding rule for the specified Network Load Balancer. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.datacenters_networkloadbalancers_forwardingrules_post_with_http_info(datacenter_id, network_load_balancer_id, network_load_balancer_forwarding_rule, async_req=True) >>> result = thread.get() :param datacenter_id: The unique ID of the data center. (required) :type datacenter_id: str :param network_load_balancer_id: The unique ID of the Network Load Balancer. (required) :type network_load_balancer_id: str :param network_load_balancer_forwarding_rule: The forwarding rule to create. (required) :type network_load_balancer_forwarding_rule: NetworkLoadBalancerForwardingRule :param pretty: Controls whether the response is pretty-printed (with indentations and new lines). :type pretty: bool :param depth: Controls the detail depth of the response objects. GET /datacenters/[ID] - depth=0: Only direct properties are included; children (servers and other elements) are not included. - depth=1: Direct properties and children references are included. - depth=2: Direct properties and children properties are included. - depth=3: Direct properties and children properties and children's children are included. - depth=... and so on :type depth: int :param x_contract_number: Users with multiple contracts must provide the contract number, for which all API requests are to be executed. :type x_contract_number: int :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _return_http_data_only: response data without head status code and headers :type _return_http_data_only: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :param _request_auth: set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request. :type _request_auth: dict, optional :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: tuple(NetworkLoadBalancerForwardingRule, status_code(int), headers(HTTPHeaderDict)) """ local_var_params = locals() all_params = [ 'datacenter_id', 'network_load_balancer_id', 'network_load_balancer_forwarding_rule', 'pretty', 'depth', 'x_contract_number' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout', '_request_auth', 'response_type', 'query_params' ] ) for local_var_params_key, local_var_params_val in six.iteritems(local_var_params['kwargs']): if local_var_params_key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method datacenters_networkloadbalancers_forwardingrules_post" % local_var_params_key ) local_var_params[local_var_params_key] = local_var_params_val del local_var_params['kwargs'] # verify the required parameter 'datacenter_id' is set if self.api_client.client_side_validation and ('datacenter_id' not in local_var_params or # noqa: E501 local_var_params['datacenter_id'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `datacenter_id` when calling `datacenters_networkloadbalancers_forwardingrules_post`") # noqa: E501 # verify the required parameter 'network_load_balancer_id' is set if self.api_client.client_side_validation and ('network_load_balancer_id' not in local_var_params or # noqa: E501 local_var_params['network_load_balancer_id'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `network_load_balancer_id` when calling `datacenters_networkloadbalancers_forwardingrules_post`") # noqa: E501 # verify the required parameter 'network_load_balancer_forwarding_rule' is set if self.api_client.client_side_validation and ('network_load_balancer_forwarding_rule' not in local_var_params or # noqa: E501 local_var_params['network_load_balancer_forwarding_rule'] is None): # noqa: E501 raise
be trouble reconciling regional + entire extent quivers lon_qp = model.X[::skip_interval].values lat_qp = model.Y[::skip_interval].values # minshaft=.2; scale=250 for idx, pressure in enumerate(model.uwnd_vwnd_pressure_lvls): print(f'Currently on {pressure}hpa...') fig, gs_qp = create_multisubplot_axes(optimal_k) for cluster in range(optimal_k): print(f"{utils.time_now()} - Cluster {cluster}: ") # uwnd_gridded_centroids = target_ds_withClusterLabels.sel(level=pressure).where( # target_ds_withClusterLabels.cluster==cluster, drop=True).uwnd.mean( # "time")[::skip_interval, ::skip_interval].values # vwnd_gridded_centroids = target_ds_withClusterLabels.sel(level=pressure).where( # target_ds_withClusterLabels.cluster==cluster, drop=True).vwnd.mean( # "time")[::skip_interval, ::skip_interval].values uwnd_gridded_centroids = target_ds_withClusterLabels.sel(level=pressure).where( target_ds_withClusterLabels.cluster==cluster, drop=True).uwnd.mean( "time").values vwnd_gridded_centroids = target_ds_withClusterLabels.sel(level=pressure).where( target_ds_withClusterLabels.cluster==cluster, drop=True).vwnd.mean( "time").values ax_qp = fig.add_subplot(gs_qp[cluster], projection=ccrs.PlateCarree()) ax_qp.xaxis.set_major_formatter(model.lon_formatter) ax_qp.yaxis.set_major_formatter(model.lat_formatter) ax_qp.set_facecolor('white') ax_qp.add_feature(cf.LAND,facecolor='white') ax_qp.set_extent([model.LON_W-1, model.LON_E+1, model.LAT_S-1, model.LAT_N+1]) if cluster < model.grid_width: # top ticks ax_qp.set_xticks([model.LON_W, (model.LON_E - model.LON_W)/2 + model.LON_W, model.LON_E], crs=ccrs.PlateCarree()) ax_qp.set_xticklabels([model.LON_W, (model.LON_E - model.LON_W)/2 + model.LON_W, model.LON_E], rotation=55) ax_qp.xaxis.tick_top() else: ax_qp.set_xticks([]) if cluster % model.grid_width == model.grid_width-1: # right-side ticks ax_qp.set_yticks([model.LAT_S, (model.LAT_N - model.LAT_S)/2 + model.LAT_S, model.LAT_N], crs=ccrs.PlateCarree()) ax_qp.yaxis.set_label_position("right") ax_qp.yaxis.tick_right() else: ax_qp.set_yticks([]) if cluster == 0: # title ax_qp.set_title(f"Pressure: {pressure} hpa,\ncluster no.{cluster+1}", loc='left') else: ax_qp.set_title(f"cluster no.{cluster+1}", loc='left') time.sleep(1); gc.collect() # wndspd = np.hypot(vwnd_gridded_centroids,uwnd_gridded_centroids) wndspd = np.hypot(vwnd_gridded_centroids,uwnd_gridded_centroids)[::skip_interval,::skip_interval] time.sleep(1); gc.collect() # u = uwnd_gridded_centroids/wndspd; # v = vwnd_gridded_centroids/wndspd; u = uwnd_gridded_centroids[::skip_interval,::skip_interval]/wndspd v = vwnd_gridded_centroids[::skip_interval,::skip_interval]/wndspd spd_plot = ax_qp.contourf(lon_qp, lat_qp, wndspd, np.linspace(0,18,19), transform=ccrs.PlateCarree(), cmap='terrain_r', alpha=1) Quiver = ax_qp.quiver(lon_qp, lat_qp, u, v, color='Black', minshaft=minshaft, scale=scale) conts = ax_qp.contour(spd_plot, 'w', linewidths=.3) ax_qp.coastlines("50m", linewidth=coastline_lw, color='orangered') ax_qp.add_feature(cf.BORDERS, linewidth=.35, color='orangered', linestyle='dashed') ax_qp.clabel(conts, conts.levels, inline=True, fmt='%1.f', fontsize=5) time.sleep(1); gc.collect() if cluster == model.cbar_pos: # cbar axins_qp = inset_axes(ax_qp, width='100%', height='100%', loc='lower left', bbox_to_anchor=(0, -.8, model.grid_width, .1), bbox_transform=ax_qp.transAxes) cbar_qp = fig.colorbar(spd_plot, cax=axins_qp, label='Quiver (m/s)', orientation='horizontal',pad=0.01) cbar_qp.ax.xaxis.set_ticks_position('top') cbar_qp.ax.xaxis.set_label_position('top') print(f"=> Quiver plots plotted for {pressure}hpa") fig.subplots_adjust(wspace=0.05,hspace=0.3) fn = f"{dest}/{model.month_names_joined}_qp_v5-at-{pressure}hpa_{model.gridsize}x{model.gridsize}" fig.savefig(fn, bbox_inches='tight', pad_inches=1) print(f'file saved @:\n{fn}') plt.close('all') print(f"\n\nQuiver plotting took {utils.time_since(quiverstarttime)}.\n\n") def print_quiver_ANOM_whole(model, dest, optimal_k): quiverstarttime = timer(); print(f'{utils.time_now()} - Finishing quiver ANOMALY plots (whole)...') target_ds_withClusterLabels = utils.open_pickle(model.target_ds_withClusterLabels_path) target_ds_withClusterLabels = utils.remove_expver(target_ds_withClusterLabels) area = (model.LON_E-model.LON_W)*(model.LAT_N-model.LAT_S) coastline_lw = .8 minshaft=2; scale=33 if area > 3000: skip_interval=4 elif 2000 < area <= 3000: skip_interval=3; coastline_lw=.6 elif 500 < area <= 2000 : skip_interval=2; minshaft=3; scale=33 else: skip_interval=1; minshaft=3; scale=33 # lon_qp = model.X[::skip_interval].values # lat_qp = model.Y[::skip_interval].values lon = target_ds_withClusterLabels.lon[::skip_interval] lat = target_ds_withClusterLabels.lat[::skip_interval] w = lon.min().data e = lon.max().data s = lat.min().data n = lat.max().data levels = [int(i) for i in np.linspace(-10,10,21)] for idx, pressure in enumerate(model.uwnd_vwnd_pressure_lvls): print(f'Currently on {pressure}hpa...') fig, gs_qp = create_multisubplot_axes(optimal_k) # uwnd_baseline = target_ds_withClusterLabels.sel(level=pressure).uwnd.mean("time")[::skip_interval, ::skip_interval].values # vwnd_baseline = target_ds_withClusterLabels.sel(level=pressure).vwnd.mean("time")[::skip_interval, ::skip_interval].values uwnd_baseline = target_ds_withClusterLabels.sel(level=pressure).uwnd.mean("time").values vwnd_baseline = target_ds_withClusterLabels.sel(level=pressure).vwnd.mean("time").values for cluster in range(optimal_k): print(f"{utils.time_now()} - Cluster {cluster}: ") # uwnd_gridded_centroids = target_ds_withClusterLabels.sel(level=pressure).where( # target_ds_withClusterLabels.cluster==cluster, drop=True).uwnd.mean( # "time")[::skip_interval, ::skip_interval].values # vwnd_gridded_centroids = target_ds_withClusterLabels.sel(level=pressure).where( # target_ds_withClusterLabels.cluster==cluster, drop=True).vwnd.mean( # "time")[::skip_interval, ::skip_interval].values uwnd_gridded_centroids = target_ds_withClusterLabels.sel(level=pressure).where( target_ds_withClusterLabels.cluster==cluster, drop=True).uwnd.mean( "time").values vwnd_gridded_centroids = target_ds_withClusterLabels.sel(level=pressure).where( target_ds_withClusterLabels.cluster==cluster, drop=True).vwnd.mean( "time").values uwnd_mean = uwnd_gridded_centroids - uwnd_baseline vwnd_mean = vwnd_gridded_centroids - vwnd_baseline ax_qp = fig.add_subplot(gs_qp[cluster], projection=ccrs.PlateCarree()) ax_qp.xaxis.set_major_formatter(model.lon_formatter) ax_qp.yaxis.set_major_formatter(model.lat_formatter) ax_qp.set_facecolor('white') ax_qp.add_feature(cf.LAND,facecolor='silver') ax_qp.set_extent([w,e,s,n]) if cluster < model.grid_width: # top ticks ax_qp.set_xticks(np.linspace(w,e, 5), crs=ccrs.PlateCarree()) ax_qp.set_xticklabels(np.linspace(w,e, 5), rotation=55) ax_qp.xaxis.tick_top() else: ax_qp.set_xticks([]) if cluster % model.grid_width == model.grid_width-1: # right-side ticks ax_qp.set_yticks(np.linspace(s,n, 5), crs=ccrs.PlateCarree()) ax_qp.yaxis.set_label_position("right") ax_qp.yaxis.tick_right() else: ax_qp.set_yticks([]) if cluster == 0: # title ax_qp.set_title(f"Pressure: {pressure} hpa for model of: {model.domain[0]}S {model.domain[1]}N {model.domain[2]}W {model.domain[3]}E\ncluster no.{cluster+1}", loc='left') else: ax_qp.set_title(f"cluster no.{cluster+1}", loc='left') time.sleep(1); gc.collect() wndspd = np.hypot(vwnd_mean,uwnd_mean); # wndspd = np.hypot(vwnd_gridded_centroids,uwnd_gridded_centroids) # u = uwnd_gridded_centroids[::skip_interval,::skip_interval]/wndspd # v = vwnd_gridded_centroids[::skip_interval,::skip_interval]/wndspd u = uwnd_mean/wndspd; v = vwnd_mean/wndspd; wndspd = wndspd[::skip_interval,::skip_interval] u = u[::skip_interval,::skip_interval] v = v[::skip_interval,::skip_interval] spd_plot = ax_qp.contourf(lon, lat, wndspd, levels, transform=ccrs.PlateCarree(), cmap='terrain_r', alpha=1) Quiver = ax_qp.quiver(lon, lat, u, v, color='Black', minshaft=minshaft, scale=scale) conts = ax_qp.contour(spd_plot, 'w', linewidths=.3) ax_qp.coastlines("50m", linewidth=coastline_lw, color='orangered') ax_qp.add_feature(cf.BORDERS, linewidth=.35, color='orangered', linestyle='dashed') ax_qp.clabel(conts, conts.levels, inline=True, fmt='%1.f', fontsize=5) time.sleep(1); gc.collect() if cluster == model.cbar_pos: # cbar axins_qp = inset_axes(ax_qp, width='100%', height='100%', loc='lower left', bbox_to_anchor=(0, -.8, model.grid_width, .1), bbox_transform=ax_qp.transAxes) cbar_qp = fig.colorbar(spd_plot, cax=axins_qp, label='Quiver (m/s)', orientation='horizontal',pad=0.01, ticks=levels) cbar_qp.ax.xaxis.set_ticks_position('top') cbar_qp.ax.xaxis.set_label_position('top') print(f"=> Quiver ANOMALY plots plotted for {pressure}hpa") fig.subplots_adjust(wspace=0.05,hspace=0.3) fn = f"{dest}/{model.month_names_joined}_qp_v1_ANOM-at-{pressure}hpa_{model.gridsize}x{model.gridsize}" fig.savefig(fn, bbox_inches='tight', pad_inches=1) print(f'file saved @:\n{fn}') plt.close('all') print(f"\n\nQuiver ANOMALY plotting took {utils.time_since(quiverstarttime)}.\n\n") def print_quiver_plots_sgonly(model, dest, optimal_k): quiverstarttime = timer(); print(f"{utils.time_now()} - Drawing quiver sub-plots (sgonly) now...") target_ds_withClusterLabels = utils.open_pickle(model.target_ds_withClusterLabels_path) target_ds_withClusterLabels = utils.remove_expver(target_ds_withClusterLabels) w_lim_sg = 101 e_lim_sg = 107 s_lim_sg = -1 n_lim_sg = 4 target_ds_withClusterLabels = target_ds_withClusterLabels.sel( lon=slice(w_lim_sg, e_lim_sg),lat=slice(n_lim_sg, s_lim_sg)) # area = (model.LON_E-model.LON_W)*(model.LAT_N-model.LAT_S) coastline_lw = 1 # minshaft=2; scale=33 # if area > 3000: skip_interval=4 # elif 2000 < area <= 3000: skip_interval=3 # elif 500 < area <= 2000 : skip_interval=2; minshaft=3; scale=33 # else: skip_interval=1; minshaft=3; scale=33 skip_interval=1; minshaft=3; scale=10 lon_qp = target_ds_withClusterLabels.lon[::skip_interval].values lat_qp = target_ds_withClusterLabels.lat[::skip_interval].values # w = lon_qp.min() # e = lon_qp.max() # s = lat_qp.min() # n = lat_qp.max() w = 102 e = 105 s = 0.5 n = 2 for idx, pressure in enumerate(model.uwnd_vwnd_pressure_lvls): print(f'Currently on {pressure}hpa...') fig, gs_qp = create_multisubplot_axes(optimal_k) for cluster in range(optimal_k): print(f"{utils.time_now()} - Cluster {cluster}: ") uwnd_gridded_centroids = target_ds_withClusterLabels.sel(level=pressure).where( target_ds_withClusterLabels.cluster==cluster, drop=True).uwnd.mean( "time")[::skip_interval, ::skip_interval].values vwnd_gridded_centroids = target_ds_withClusterLabels.sel(level=pressure).where( target_ds_withClusterLabels.cluster==cluster, drop=True).vwnd.mean( "time")[::skip_interval, ::skip_interval].values ax_qp = fig.add_subplot(gs_qp[cluster], projection=ccrs.PlateCarree()) ax_qp.xaxis.set_major_formatter(model.lon_formatter) ax_qp.yaxis.set_major_formatter(model.lat_formatter) ax_qp.set_facecolor('white') ax_qp.add_feature(cf.LAND,facecolor='silver') # ax_qp.set_extent([model.LON_W-1, model.LON_E+1, model.LAT_S-1, model.LAT_N+1]) # ax_qp.set_extent([103, 105, 0.5, 2]) ax_qp.set_extent([w, e, s, n]) if cluster < model.grid_width: # top ticks ax_qp.set_xticks([w,e], crs=ccrs.PlateCarree()) ax_qp.set_xticklabels([w,e], rotation=55) ax_qp.xaxis.tick_top() else: ax_qp.set_xticks([]) if cluster % model.grid_width == model.grid_width-1: # right-side ticks ax_qp.set_yticks([s,n], crs=ccrs.PlateCarree()) ax_qp.yaxis.set_label_position("right") ax_qp.yaxis.tick_right() else: ax_qp.set_yticks([]) if cluster == 0: # title ax_qp.set_title(f"Pressure: {pressure} hpa,\ncluster no.{cluster+1}", loc='left') else: ax_qp.set_title(f"cluster no.{cluster+1}", loc='left') time.sleep(1); gc.collect() wndspd = np.hypot(vwnd_gridded_centroids,uwnd_gridded_centroids); time.sleep(1); gc.collect() u = uwnd_gridded_centroids/wndspd; v = vwnd_gridded_centroids/wndspd; spd_plot = ax_qp.contourf(lon_qp, lat_qp, wndspd, np.linspace(0,18,19), transform=ccrs.PlateCarree(), cmap='terrain_r', alpha=1) Quiver = ax_qp.quiver(lon_qp, lat_qp, u, v, color='Black', minshaft=minshaft, scale=scale) conts = ax_qp.contour(spd_plot, 'w', linewidths=.3) ax_qp.coastlines("50m", linewidth=coastline_lw, color='aqua') ax_qp.add_feature(cf.BORDERS, linewidth=.5, color='k', linestyle='dashed') ax_qp.clabel(conts, conts.levels, inline=True, fmt='%1.f', fontsize=5) time.sleep(1); gc.collect() if cluster == model.cbar_pos: # cbar axins_qp = inset_axes(ax_qp, width='100%', height='100%', loc='lower left', bbox_to_anchor=(0, -.8, model.grid_width, .1), bbox_transform=ax_qp.transAxes) cbar_qp = fig.colorbar(spd_plot, cax=axins_qp, label='Quiver (m/s)', orientation='horizontal',pad=0.01) cbar_qp.ax.xaxis.set_ticks_position('top') cbar_qp.ax.xaxis.set_label_position('top') print(f"=> Quiver plots plotted for {pressure}hpa") fig.subplots_adjust(wspace=0.05,hspace=0.3) fn = f"{dest}/{model.month_names_joined}_qp_sgonly-at-{pressure}hpa_{model.gridsize}x{model.gridsize}" fig.savefig(fn, bbox_inches='tight', pad_inches=1) print(f'file saved @:\n{fn}') plt.close('all') print(f"\n\nQuiver plotting took {utils.time_since(quiverstarttime)}.\n\n") def print_rhum_plots(model, dest, optimal_k): rhumstarttime = timer(); print(f"{utils.time_now()} - Finishing RHUM plots...") target_ds_withClusterLabels = utils.open_pickle(model.target_ds_withClusterLabels_path) target_ds_withClusterLabels = utils.remove_expver(target_ds_withClusterLabels) for idx, pressure in enumerate(model.rhum_pressure_levels): fig, gs_rhum = create_multisubplot_axes(optimal_k) for cluster in range(optimal_k): rhum_gridded_centroids = target_ds_withClusterLabels.sel(level=pressure).where( target_ds_withClusterLabels.cluster==cluster, drop=True).rhum.mean("time") ax_rhum = fig.add_subplot(gs_rhum[cluster], projection=ccrs.PlateCarree()) ax_rhum.xaxis.set_major_formatter(model.lon_formatter) ax_rhum.yaxis.set_major_formatter(model.lat_formatter) ax_rhum.coastlines("50m", linewidth=.7, color='w') ax_rhum.add_feature(cf.BORDERS, linewidth=.5, color='w', linestyle='dashed') ax_rhum.set_facecolor('white') ax_rhum.add_feature(cf.LAND, facecolor='k') ax_rhum.set_extent([model.LON_W-1, model.LON_E+1, model.LAT_S-1, model.LAT_N+1]) if cluster < model.grid_width: # top ticks ax_rhum.set_xticks([model.LON_W, (model.LON_E - model.LON_W)/2 + model.LON_W, model.LON_E], crs=ccrs.PlateCarree()) ax_rhum.set_xticklabels([model.LON_W, (model.LON_E - model.LON_W)/2 + model.LON_W, model.LON_E], rotation=55) ax_rhum.xaxis.tick_top() else: ax_rhum.set_xticks([]) if cluster % model.grid_width == model.grid_width-1: # right-side ticks ax_rhum.set_yticks([model.LAT_S, (model.LAT_N - model.LAT_S)/2 + model.LAT_S, model.LAT_N], crs=ccrs.PlateCarree()) ax_rhum.yaxis.set_label_position("right") ax_rhum.yaxis.tick_right() else: ax_rhum.set_yticks([]) if cluster == 0: # title ax_rhum.set_title(f"Pressure: {pressure} hpa,\ncluster no.{cluster+1}", loc='left') else: ax_rhum.set_title(f"cluster no.{cluster+1}", loc='left') normi = mpl.colors.Normalize(vmin=model.min_maxes['rhum_min'], vmax=model.min_maxes['rhum_max']); Rhum = ax_rhum.contourf(model.X, model.Y, rhum_gridded_centroids, np.linspace(model.min_maxes['rhum_min'], model.min_maxes['rhum_max'], 21), norm=normi, cmap='jet_r') conts = ax_rhum.contour(Rhum, 'k:', linewidths=.5) ax_rhum.clabel(conts, conts.levels, inline=True, fmt='%1.f', fontsize=10) if cluster == model.cbar_pos: # cbar axins_rhum = inset_axes(ax_rhum, width='100%', height='100%', loc='lower left', bbox_to_anchor=(0, -.8, model.grid_width, .1), bbox_transform=ax_rhum.transAxes); cbar_rhum = fig.colorbar(Rhum, cax=axins_rhum, label='Relative humidity (%)', orientation='horizontal', pad=0.01); cbar_rhum.ax.xaxis.set_ticks_position('top') cbar_rhum.ax.xaxis.set_label_position('top') print(f"{utils.time_now()} - clus {cluster}") print(f"==> Rhum plots plotted for {pressure}hpa") fig.subplots_adjust(wspace=0.05,hspace=0.3) fn = f"{dest}/{model.month_names_joined}_rhum_v3-at-{pressure}hpa_{model.gridsize}x{model.gridsize}" fig.savefig(fn, bbox_inches='tight', pad_inches=1) print(f'file saved @:\n{fn}') plt.close('all') print(f"\n\nTime taken to plot RHUM: {utils.time_since(rhumstarttime)}.") def print_rhum_plots_sgonly(model, dest, optimal_k): rhumstarttime = timer(); print(f"{utils.time_now()} - Finishing RHUM plots...") target_ds_withClusterLabels = utils.open_pickle(model.target_ds_withClusterLabels_path) target_ds_withClusterLabels = utils.remove_expver(target_ds_withClusterLabels) w_lim_sg = 101 e_lim_sg = 107 s_lim_sg = -1 n_lim_sg = 4 target_ds_withClusterLabels = target_ds_withClusterLabels.sel( lon=slice(w_lim_sg, e_lim_sg),lat=slice(n_lim_sg, s_lim_sg)) w = 102 e = 105 s = 0.5 n = 2 for idx, pressure in enumerate(model.rhum_pressure_levels): fig, gs_rhum = create_multisubplot_axes(optimal_k) for cluster in range(optimal_k): rhum_gridded_centroids = target_ds_withClusterLabels.sel(level=pressure).where( target_ds_withClusterLabels.cluster==cluster, drop=True).rhum.mean("time") ax_rhum = fig.add_subplot(gs_rhum[cluster], projection=ccrs.PlateCarree()) ax_rhum.xaxis.set_major_formatter(model.lon_formatter) ax_rhum.yaxis.set_major_formatter(model.lat_formatter) ax_rhum.coastlines("50m", linewidth=.7, color='w') ax_rhum.add_feature(cf.BORDERS, linewidth=.5, color='w', linestyle='dashed') ax_rhum.set_facecolor('white') ax_rhum.add_feature(cf.LAND, facecolor='k') # ax_rhum.set_extent([model.LON_W-1, model.LON_E+1, model.LAT_S-1, model.LAT_N+1]) ax_rhum.set_extent([w, e, s, n]) if cluster < model.grid_width: # top ticks ax_rhum.set_xticks([w,e], crs=ccrs.PlateCarree()) ax_rhum.set_xticklabels([w,e], rotation=55) ax_rhum.xaxis.tick_top() else: ax_rhum.set_xticks([]) if cluster % model.grid_width == model.grid_width-1: # right-side ticks ax_rhum.set_yticks([s,n], crs=ccrs.PlateCarree()) ax_rhum.yaxis.set_label_position("right") ax_rhum.yaxis.tick_right() else: ax_rhum.set_yticks([]) if cluster == 0: # title ax_rhum.set_title(f"Pressure: {pressure}
<filename>monitor_ed/ed_monitor.py # -*- coding: utf-8 -*- """ Created on Thu Mar 25 18:17:13 2021 @author: AndyWang """ from bs4 import BeautifulSoup from selenium import webdriver from selenium.webdriver.chrome.options import Options from datetime import datetime from time import sleep import pandas as pd import numpy as np import os import subprocess import matplotlib.pyplot as plt import warnings warnings.filterwarnings("ignore") def _start_webdriver(browser, driverpath): ''' Function to start a webdriver Parameters ---------- browser : str Type of the browser you want to open driverpath : str Path of the driver. Returns ------- selenium.webdriver Webdriver object for further usage ''' if browser.lower() == 'edge': return webdriver.Edge(executable_path=driverpath) elif browser.lower() == 'chrome': return webdriver.Chrome(executable_path=driverpath) else: raise NotImplementedError(f'Code for {browser} is not implemented') def _open_browser_cmd(port, cache_dir): ''' Open chrome in debugging mode ''' chrome_cmd = f'chrome.exe --remote-debugging-port={port} --user-data-dir="{cache_dir}"' subprocess.Popen(chrome_cmd) def _connect_selenium(driverpath, port, cache_dir): ''' connect your browser to python Returns ------- driver: Selenium.webdriver object that is connected to your browser ''' chrome_options = Options() chrome_options.add_experimental_option("debuggerAddress", f"127.0.0.1:{port}") driver = webdriver.Chrome(driverpath, options=chrome_options) return driver def _find_inputbox(driver, timeout=30): ''' Find inputbox element in Ed analytics page Parameters ---------- driver : selenium.webdriver timeout : float/int, optional Timeout limit for finding the element. The default is 15. Raises ------ TimeoutError Returns ------- inputbox : selenium.webdriver.remote.webelement.WebElement Input box for searching. ''' tstart = datetime.now() while True: # break out the loop if # 1) find the element successfully # 2) reach the time limit try: inputbox = driver.find_element_by_tag_name('input') return inputbox except: tnow = datetime.now() if (tnow - tstart).total_seconds() > timeout: raise TimeoutError('Check out your connection!') sleep(0.3) def _search_tut(inputbox, tutcode): ''' Searching tut in Ed analytics page Parameters ---------- inputbox : selenium.webdriver.remote.webelement.WebElement Webelement for input box tutcode : str tutorial for searching. Returns ------- None. ''' inputbox.clear() inputbox.send_keys(tutcode) def _get_header_use(thtag): ''' Get header attribute from usetag Parameters ---------- thtag : bs4.element.Tag Table header tag. Returns ------- str header attribute. ''' usetag = thtag.findAll('use') if len(usetag) == 0: return '#' return usetag[0].attrs['xlink:href'] def _get_tdstatus(tdtag): ''' Get table cell content or status (for questions) Parameters ---------- tdtag : bs4.element.Tag table cell tag. Returns ------- str table cell content or status. ''' text = tdtag.text if text: if text != '\u200b': return text if 'class' in tdtag.attrs: cellclass = tdtag.attrs['class'] if len(cellclass) > 1: return cellclass[1].split('-')[-1] return '' def _get_tdlink(tdtag): atags = tdtag.findAll('a') if len(atags) > 0: return 'https://edstem.org{}'.format(atags[0].attrs['href']) return 'N/A' def _get_analytics_table(driver): ''' Get analytics table from driver Parameters ---------- driver : selenium.webdriver Driver that opens Ed analytics page. Returns ------- analytics_df : pandas.DataFrame DataFrame for analytics table. colattrs : list A list of column's attribute. ''' soup = BeautifulSoup(driver.page_source, 'lxml') table = soup.findAll('table', attrs={'class':"lesson-analytics-table"})[0] ### get header and body tag thead = table.findAll('thead')[0] tbody = table.findAll('tbody')[0] ### extract info from html to list ### (Note: pandas.read_html doesn't work for this case) # header header = [] colattrs = [] for thtag in thead.findAll('th'): header.append(thtag.text.strip()) colattrs.append(_get_header_use(thtag)) # body tablecells = [] tablehtmls = [] trtags = tbody.findAll('tr') for trtag in trtags: rowcells = [] rowhtmls = [] tdtags = trtag.findAll('td') for tdtag in tdtags: rowcells.append(_get_tdstatus(tdtag)) rowhtmls.append(_get_tdlink(tdtag)) tablecells.append(rowcells) tablehtmls.append(rowhtmls) analytics_df = pd.DataFrame(tablecells, columns=header) analytics_html = pd.DataFrame(tablehtmls, columns=header) return analytics_df, analytics_html, colattrs def _check_search_loaded(driver, tutcode): df, _, _ = _get_analytics_table(driver) tutcol = df['Tutorial'].apply(lambda x:x.lower()) if (tutcol != tutcode.lower()).sum() > 0: return False return True def _get_online_students(analytics_df): ''' Get students that are online ''' opened_count = (analytics_df.iloc[:, 3:] != 'unopened').sum(axis=1) return opened_count > 0 def _get_code_cols(colattrs): ''' Get columns for code only ''' code_check = [] for attr in colattrs: if attr == '#lesson-slide-code' or attr == '#lesson-slide-postgres': code_check.append(True) else: code_check.append(False) return code_check def _prepare_code_plotting(analytics_df, colattrs): good_stu = _get_online_students(analytics_df) code_check = _get_code_cols(colattrs) cleaned_df = analytics_df.loc[good_stu, code_check] ### preparing statistics ### We use .iloc here to avoid same question in one week stats = {'completed':[], 'attempted':[], 'opened':[], 'unopened':[], } for colidx in range(cleaned_df.shape[1]): colseries = cleaned_df.iloc[:,colidx] for status in stats: stats[status].append((colseries == status).sum()) colnames = cleaned_df.columns.tolist() ### return values return stats, colnames def _plot_code_status(stats, colnames): fig = plt.figure(figsize=(12, len(colnames)/2)) ax = fig.add_subplot(111) ypos = range(len(colnames),0,-1) left = np.zeros(len(colnames)) statuses = ['completed', 'attempted', 'opened', 'unopened'] barcolor = {'completed':'green', 'attempted':'orange', 'opened':'yellow', 'unopened':'white' } for status in statuses: ax.barh(ypos, stats[status], left=left, color=barcolor[status], label=status, edgecolor='black' ) left = np.add(left, stats[status]) ax.set_yticks(ypos) ax.set_yticklabels(colnames, fontsize=15) ax.set_ylim(0.5, len(colnames)+0.5) xlim_max = 5 * ((int(left[0]) // 5) + 1) ax.set_xticks(range(0, xlim_max+1, 5)) ax.set_xlim(0, xlim_max) ax.grid(axis='x', linestyle='--') fig.savefig('Class_status.png', bbox_inches='tight', dpi=100) plt.close() ### for printing def _get_value_rowcol(df, value): rowcols = [] for i in range(df.shape[0]): for j in range(df.shape[1]): if df.iloc[i, j] == value: rowcols.append((i, j)) return rowcols def _print_new_attempted(analytics_df, analytics_html, rowcols): print('NEW ATTEMPTS'.center(70, '*')) for row, col in rowcols: print('{} attempted {}!\n{}\n'.format(analytics_df.iloc[row, 0], analytics_df.columns[col], analytics_html.iloc[row, col] )) print('*'*70) def _print_gone_attempted(analytics_df, rowcols): print('THESE ATTEMPTS ARE SOLVED'.center(70, '*')) for row, col in rowcols: print('{} finished {}!'.format(analytics_df.iloc[row, 0], analytics_df.columns[col])) print('*'*70) def _print_old_attempted(analytics_df, analytics_html, rowcols): print('OLD ATTEMPTS'.center(70, '*')) for row, col in rowcols: print('{} is still trying {}!\n{}\n'.format(analytics_df.iloc[row, 0], analytics_df.columns[col], analytics_html.iloc[row, col] )) print('*'*70) def _compare_analytics_dfs(analytics_df, analytics_html, oldpath='./old_analytics_df.pickle'): if not os.path.exists(oldpath): rowcols = _get_value_rowcol(analytics_df, 'attempted') _print_gone_attempted(analytics_df, []) _print_old_attempted(analytics_df, analytics_html, []) _print_new_attempted(analytics_df, analytics_html, rowcols) else: old_analytics_df = pd.read_pickle(oldpath) oldatttab = old_analytics_df == 'attempted' changetab = analytics_df != old_analytics_df newatttab = analytics_df == 'attempted' ### attempts gone goneatt_ = (oldatttab & changetab) rowcols = _get_value_rowcol(goneatt_, True) _print_gone_attempted(analytics_df, rowcols) ### old attempts oldatt_ = (oldatttab & newatttab) rowcols = _get_value_rowcol(oldatt_, True) _print_old_attempted(analytics_df, analytics_html, rowcols) ### new attempts newatt_ = (newatttab & changetab) rowcols = _get_value_rowcol(newatt_, True) _print_new_attempted(analytics_df, analytics_html, rowcols) analytics_df.to_pickle(oldpath) def _get_html_table(analytics_df, analytics_html, rowcols): html_table = [] for row, col in rowcols: name = analytics_df.iloc[row, 0] question_name = analytics_df.columns[col] url = analytics_html.iloc[row, col] url = f'<a href="{url}" target="_blank">{url}</a>' html_table.append([name, question_name, url]) return pd.DataFrame(html_table, columns=['NAME', 'QUESTION', 'WORKSPACE']) def _make_html(analytics_df, analytics_html, oldpath): html_content = '' time_update = datetime.now().strftime("%m/%d/%Y, %H:%M:%S") ### The basic information for the course tut_info = f'''<h2>TUTCODE {TUTCODE} UPDATED @ {time_update}</h2><hr>\n''' html_content += tut_info # if there is no old pickle if not os.path.exists(oldpath): ### new attempts html_content += '<h3>NEW ATTEMPTS</h3>\n' rowcols = _get_value_rowcol(analytics_df, 'attempted') if len(rowcols) != 0: newatt_ = _get_html_table(analytics_df, analytics_html, rowcols) html_content += newatt_.to_html(escape=False) else: html_content += '<p> no new attempts</p>\n' ### html_content += '<hr><h3>OLD ATTEMPTS</h3>\n' html_content += '<p> no old attempts</p>\n' ### attempts are gone html_content += '<hr><h3>ATTEMPTS SOLVED</h3>\n' html_content += '<p> no old attempts solved</p>\n' else: old_analytics_df = pd.read_pickle(oldpath) oldatttab = old_analytics_df == 'attempted' changetab = analytics_df != old_analytics_df newatttab = analytics_df == 'attempted' ### new attempts html_content += '<h3>NEW ATTEMPTS</h3>\n' newatt_ = (newatttab & changetab) rowcols = _get_value_rowcol(newatt_, True) if len(rowcols) != 0: newatt_ = _get_html_table(analytics_df, analytics_html, rowcols) html_content += newatt_.to_html(escape=False) else: html_content += '<p> no new attempts</p>\n' ### html_content += '<hr><h3>OLD ATTEMPTS</h3>\n' oldatt_ = (oldatttab & newatttab) rowcols = _get_value_rowcol(oldatt_, True) if len(rowcols) != 0: oldatt_ = _get_html_table(analytics_df, analytics_html, rowcols) html_content += oldatt_.to_html(escape=False) else: html_content += '<p> no old attempts</p>\n' ### attempts are gone html_content += '<hr><h3>ATTEMPTS SOLVED</h3>\n' goneatt_ = (oldatttab & changetab) rowcols = _get_value_rowcol(goneatt_, True) if len(rowcols) != 0: goneatt_ = _get_html_table(analytics_df, analytics_html, rowcols) html_content += goneatt_.to_html(escape=False) else: html_content += '<p> no old attempts solved</p>\n' html_content += '<hr>\n' html_content += '<h3>CLASS MONITORING</h3>\n' html_content += '<a href="./Class_status.png"><img src="Class_status.png" width="1000"><\a>' with open('monitor.html', 'w', encoding='utf-8') as fp: fp.write(html_content) def _check_login(driver): if 'Log in to continue' in driver.page_source: return True return False def _manually_check(): ### read settings with open('./setup.py') as fp: code = fp.read() exec(code, globals()) if os.path.exists(OLDPICKLEPATH): os.remove(OLDPICKLEPATH) ### start! if not OPEN_WITH_CACHE: driver = _start_webdriver(BROWSER, DRIVERPATH) elif BROWSER.lower() == 'chrome': _open_browser_cmd(PORT, CACHE_DIR) driver = _connect_selenium(DRIVERPATH, PORT, CACHE_DIR) else: raise NotImplementedError('NOT IMPLEMENTED') driver.get(EDURL) wait = input('Please wait till the webpage responds!') while _check_login(driver): status_code = input('Please Log in Ed first!!!'.center(70, '+')) print(f'The Tutorial Code is {TUTCODE}') # tutnew = input("Input the new TUTCODE if it is not correct, or press enter") # if tutnew: # TUTCODE = tutnew ### starting the loop! break_sign = '' while break_sign != 'q': driver.refresh() inputbox = _find_inputbox(driver) _search_tut(inputbox, TUTCODE) ### get analytics dataframe while not _check_search_loaded(driver, TUTCODE): sleep(0.3) analytics_df, analytics_html, colattrs = _get_analytics_table(driver)
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import json import os import shutil import tempfile import eventlet import fixtures from ironicclient import exceptions import mock from oslo_config import cfg from oslo_serialization import base64 from oslo_utils import timeutils from oslo_utils import uuidutils import six from ironic_inspector.common import ironic as ir_utils from ironic_inspector import db from ironic_inspector import introspection_state as istate from ironic_inspector import node_cache from ironic_inspector.plugins import base as plugins_base from ironic_inspector.plugins import example as example_plugin from ironic_inspector import process from ironic_inspector.pxe_filter import base as pxe_filter from ironic_inspector.test import base as test_base from ironic_inspector import utils CONF = cfg.CONF class BaseTest(test_base.NodeTest): def setUp(self): super(BaseTest, self).setUp() self.started_at = timeutils.utcnow() self.all_ports = [mock.Mock(uuid=uuidutils.generate_uuid(), address=mac) for mac in self.macs] self.ports = [self.all_ports[1]] self.fake_result_json = 'node json' self.cli_fixture = self.useFixture( fixtures.MockPatchObject(ir_utils, 'get_client', autospec=True)) self.cli = self.cli_fixture.mock.return_value class BaseProcessTest(BaseTest): def setUp(self): super(BaseProcessTest, self).setUp() self.cache_fixture = self.useFixture( fixtures.MockPatchObject(node_cache, 'find_node', autospec=True)) self.process_fixture = self.useFixture( fixtures.MockPatchObject(process, '_process_node', autospec=True)) self.find_mock = self.cache_fixture.mock self.node_info = node_cache.NodeInfo( uuid=self.node.uuid, state=istate.States.waiting, started_at=self.started_at) self.node_info.finished = mock.Mock() self.find_mock.return_value = self.node_info self.cli.node.get.return_value = self.node self.process_mock = self.process_fixture.mock self.process_mock.return_value = self.fake_result_json self.addCleanup(self._cleanup_lock, self.node_info) def _cleanup_lock(self, node_info): if node_info._locked: node_info.release_lock() class TestProcess(BaseProcessTest): def test_ok(self): res = process.process(self.data) self.assertEqual(self.fake_result_json, res) self.find_mock.assert_called_once_with(bmc_address=self.bmc_address, mac=mock.ANY) actual_macs = self.find_mock.call_args[1]['mac'] self.assertEqual(sorted(self.all_macs), sorted(actual_macs)) self.cli.node.get.assert_called_once_with(self.uuid) self.process_mock.assert_called_once_with( self.node_info, self.node, self.data) def test_no_ipmi(self): del self.inventory['bmc_address'] process.process(self.data) self.find_mock.assert_called_once_with(bmc_address=None, mac=mock.ANY) actual_macs = self.find_mock.call_args[1]['mac'] self.assertEqual(sorted(self.all_macs), sorted(actual_macs)) self.cli.node.get.assert_called_once_with(self.uuid) self.process_mock.assert_called_once_with(self.node_info, self.node, self.data) def test_ipmi_not_detected(self): self.inventory['bmc_address'] = '0.0.0.0' process.process(self.data) self.find_mock.assert_called_once_with(bmc_address=None, mac=mock.ANY) actual_macs = self.find_mock.call_args[1]['mac'] self.assertEqual(sorted(self.all_macs), sorted(actual_macs)) self.cli.node.get.assert_called_once_with(self.uuid) self.process_mock.assert_called_once_with(self.node_info, self.node, self.data) def test_ipmi_not_detected_with_old_field(self): self.inventory['bmc_address'] = '0.0.0.0' self.data['ipmi_address'] = '0.0.0.0' process.process(self.data) self.find_mock.assert_called_once_with(bmc_address=None, mac=mock.ANY) actual_macs = self.find_mock.call_args[1]['mac'] self.assertEqual(sorted(self.all_macs), sorted(actual_macs)) self.cli.node.get.assert_called_once_with(self.uuid) self.process_mock.assert_called_once_with(self.node_info, self.node, self.data) def test_not_found_in_cache(self): self.find_mock.side_effect = utils.Error('not found') self.assertRaisesRegex(utils.Error, 'not found', process.process, self.data) self.assertFalse(self.cli.node.get.called) self.assertFalse(self.process_mock.called) def test_not_found_in_ironic(self): self.cli.node.get.side_effect = exceptions.NotFound() self.assertRaisesRegex(utils.Error, 'Node %s was not found' % self.uuid, process.process, self.data) self.cli.node.get.assert_called_once_with(self.uuid) self.assertFalse(self.process_mock.called) self.node_info.finished.assert_called_once_with( istate.Events.error, error=mock.ANY) def test_already_finished(self): self.node_info.finished_at = timeutils.utcnow() self.assertRaisesRegex(utils.Error, 'already finished', process.process, self.data) self.assertFalse(self.process_mock.called) self.assertFalse(self.find_mock.return_value.finished.called) def test_expected_exception(self): self.process_mock.side_effect = utils.Error('boom') self.assertRaisesRegex(utils.Error, 'boom', process.process, self.data) self.node_info.finished.assert_called_once_with( istate.Events.error, error='boom') def test_unexpected_exception(self): self.process_mock.side_effect = RuntimeError('boom') with self.assertRaisesRegex(utils.Error, 'Unexpected exception') as ctx: process.process(self.data) self.assertEqual(500, ctx.exception.http_code) self.node_info.finished.assert_called_once_with( istate.Events.error, error='Unexpected exception RuntimeError during processing: boom') def test_hook_unexpected_exceptions(self): for ext in plugins_base.processing_hooks_manager(): patcher = mock.patch.object(ext.obj, 'before_processing', side_effect=RuntimeError('boom')) patcher.start() self.addCleanup(lambda p=patcher: p.stop()) self.assertRaisesRegex(utils.Error, 'Unexpected exception', process.process, self.data) self.node_info.finished.assert_called_once_with( istate.Events.error, error=mock.ANY) error_message = self.node_info.finished.call_args[1]['error'] self.assertIn('RuntimeError', error_message) self.assertIn('boom', error_message) def test_hook_unexpected_exceptions_no_node(self): # Check that error from hooks is raised, not "not found" self.find_mock.side_effect = utils.Error('not found') for ext in plugins_base.processing_hooks_manager(): patcher = mock.patch.object(ext.obj, 'before_processing', side_effect=RuntimeError('boom')) patcher.start() self.addCleanup(lambda p=patcher: p.stop()) self.assertRaisesRegex(utils.Error, 'Unexpected exception', process.process, self.data) self.assertFalse(self.node_info.finished.called) def test_error_if_node_not_found_hook(self): plugins_base._NOT_FOUND_HOOK_MGR = None self.find_mock.side_effect = utils.NotFoundInCacheError('BOOM') self.assertRaisesRegex(utils.Error, 'Look up error: BOOM', process.process, self.data) @mock.patch.object(example_plugin, 'example_not_found_hook', autospec=True) class TestNodeNotFoundHook(BaseProcessTest): def test_node_not_found_hook_run_ok(self, hook_mock): CONF.set_override('node_not_found_hook', 'example', 'processing') plugins_base._NOT_FOUND_HOOK_MGR = None self.find_mock.side_effect = utils.NotFoundInCacheError('BOOM') hook_mock.return_value = node_cache.NodeInfo( uuid=self.node.uuid, started_at=self.started_at) res = process.process(self.data) self.assertEqual(self.fake_result_json, res) hook_mock.assert_called_once_with(self.data) def test_node_not_found_hook_run_none(self, hook_mock): CONF.set_override('node_not_found_hook', 'example', 'processing') plugins_base._NOT_FOUND_HOOK_MGR = None self.find_mock.side_effect = utils.NotFoundInCacheError('BOOM') hook_mock.return_value = None self.assertRaisesRegex(utils.Error, 'Node not found hook returned nothing', process.process, self.data) hook_mock.assert_called_once_with(self.data) def test_node_not_found_hook_exception(self, hook_mock): CONF.set_override('node_not_found_hook', 'example', 'processing') plugins_base._NOT_FOUND_HOOK_MGR = None self.find_mock.side_effect = utils.NotFoundInCacheError('BOOM') hook_mock.side_effect = Exception('Hook Error') self.assertRaisesRegex(utils.Error, 'Node not found hook failed: Hook Error', process.process, self.data) hook_mock.assert_called_once_with(self.data) class TestUnprocessedData(BaseProcessTest): @mock.patch.object(process, '_store_unprocessed_data', autospec=True) def test_save_unprocessed_data(self, store_mock): CONF.set_override('store_data', 'swift', 'processing') expected = copy.deepcopy(self.data) process.process(self.data) store_mock.assert_called_once_with(mock.ANY, expected) @mock.patch.object(process.swift, 'SwiftAPI', autospec=True) def test_save_unprocessed_data_failure(self, swift_mock): CONF.set_override('store_data', 'swift', 'processing') name = 'inspector_data-%s-%s' % ( self.uuid, process._UNPROCESSED_DATA_STORE_SUFFIX ) swift_conn = swift_mock.return_value swift_conn.create_object.side_effect = utils.Error('Oops') res = process.process(self.data) # assert store failure doesn't break processing self.assertEqual(self.fake_result_json, res) swift_conn.create_object.assert_called_once_with(name, mock.ANY) @mock.patch.object(example_plugin.ExampleProcessingHook, 'before_processing', autospec=True) class TestStoreLogs(BaseProcessTest): def setUp(self): super(TestStoreLogs, self).setUp() CONF.set_override('processing_hooks', 'ramdisk_error,example', 'processing') self.tempdir = tempfile.mkdtemp() self.addCleanup(lambda: shutil.rmtree(self.tempdir)) CONF.set_override('ramdisk_logs_dir', self.tempdir, 'processing') self.logs = b'test logs' self.data['logs'] = base64.encode_as_bytes(self.logs) def _check_contents(self, name=None): files = os.listdir(self.tempdir) self.assertEqual(1, len(files)) filename = files[0] if name is None: self.assertTrue(filename.startswith(self.uuid), '%s does not start with uuid' % filename) else: self.assertEqual(name, filename) with open(os.path.join(self.tempdir, filename), 'rb') as fp: self.assertEqual(self.logs, fp.read()) def test_store_on_preprocess_failure(self, hook_mock): hook_mock.side_effect = Exception('Hook Error') self.assertRaises(utils.Error, process.process, self.data) self._check_contents() def test_store_on_process_failure(self, hook_mock): self.process_mock.side_effect = utils.Error('boom') self.assertRaises(utils.Error, process.process, self.data) self._check_contents() def test_store_on_unexpected_process_failure(self, hook_mock): self.process_mock.side_effect = RuntimeError('boom') self.assertRaises(utils.Error, process.process, self.data) self._check_contents() def test_store_on_ramdisk_error(self, hook_mock): self.data['error'] = 'boom' self.assertRaises(utils.Error, process.process, self.data) self._check_contents() def test_store_find_node_error(self, hook_mock): self.cli.node.get.side_effect = exceptions.NotFound('boom') self.assertRaises(utils.Error, process.process, self.data) self._check_contents() def test_no_error_no_logs(self, hook_mock): process.process(self.data) self.assertEqual([], os.listdir(self.tempdir)) def test_logs_disabled(self, hook_mock): CONF.set_override('ramdisk_logs_dir', None, 'processing') hook_mock.side_effect = Exception('Hook Error') self.assertRaises(utils.Error, process.process, self.data) self.assertEqual([], os.listdir(self.tempdir)) def test_always_store_logs(self, hook_mock): CONF.set_override('always_store_ramdisk_logs', True, 'processing') process.process(self.data) self._check_contents() @mock.patch.object(os, 'makedirs', autospec=True) @mock.patch.object(process.LOG, 'exception', autospec=True) def test_failure_to_write(self, log_mock, makedirs_mock, hook_mock): tempdir = tempfile.mkdtemp() logs_dir = os.path.join(tempdir, 'I/never/exist') CONF.set_override('always_store_ramdisk_logs', True, 'processing') CONF.set_override('ramdisk_logs_dir', logs_dir, 'processing') makedirs_mock.side_effect = OSError() process.process(self.data) os.rmdir(tempdir) self.assertEqual([], os.listdir(self.tempdir)) self.assertTrue(makedirs_mock.called) self.assertTrue(log_mock.called) def test_directory_is_created(self, hook_mock): shutil.rmtree(self.tempdir) self.data['error'] = 'boom' self.assertRaises(utils.Error, process.process, self.data) self._check_contents() def test_store_custom_name(self, hook_mock): CONF.set_override('ramdisk_logs_filename_format', '{uuid}-{bmc}-{mac}', 'processing') self.process_mock.side_effect = utils.Error('boom') self.assertRaises(utils.Error, process.process, self.data) self._check_contents(name='%s-%s-%s' % (self.uuid, self.bmc_address, self.pxe_mac.replace(':', ''))) class TestProcessNode(BaseTest): def setUp(self): super(TestProcessNode, self).setUp() CONF.set_override('processing_hooks', '$processing.default_processing_hooks,example', 'processing') self.validate_attempts = 5 self.data['macs'] = self.macs # validate_interfaces hook self.valid_interfaces['eth3'] = { 'mac': self.macs[1], 'ip': self.ips[1], 'extra': {}, 'pxe': False } self.data['interfaces'] = self.valid_interfaces self.ports = self.all_ports self.cli.node.get_boot_device.side_effect = ( [RuntimeError()] * self.validate_attempts + [None]) self.cli.port.create.side_effect = self.ports self.cli.node.update.return_value = self.node self.cli.node.list_ports.return_value = [] self.useFixture(fixtures.MockPatchObject( pxe_filter, 'driver', autospec=True)) self.useFixture(fixtures.MockPatchObject( eventlet.greenthread, 'sleep', autospec=True)) self.node_info._state = istate.States.waiting db.Node(uuid=self.node_info.uuid, state=self.node_info._state, started_at=self.node_info.started_at, finished_at=self.node_info.finished_at, error=self.node_info.error).save(self.session) def test_return_includes_uuid(self): ret_val = process._process_node(self.node_info, self.node, self.data) self.assertEqual(self.uuid, ret_val.get('uuid')) @mock.patch.object(example_plugin.ExampleProcessingHook, 'before_update') def test_wrong_provision_state(self, post_hook_mock): self.node.provision_state = 'active' self.assertRaises(utils.Error, process._process_node, self.node_info, self.node, self.data) self.assertFalse(post_hook_mock.called) @mock.patch.object(example_plugin.ExampleProcessingHook, 'before_update') @mock.patch.object(node_cache.NodeInfo, 'finished', autospec=True) def test_ok(self, finished_mock, post_hook_mock): process._process_node(self.node_info, self.node, self.data) self.cli.port.create.assert_any_call(node_uuid=self.uuid, address=self.macs[0], extra={}, pxe_enabled=True) self.cli.port.create.assert_any_call(node_uuid=self.uuid, address=self.macs[1], extra={}, pxe_enabled=False) self.cli.node.set_power_state.assert_called_once_with(self.uuid, 'off') self.assertFalse(self.cli.node.validate.called) post_hook_mock.assert_called_once_with(self.data, self.node_info) finished_mock.assert_called_once_with(mock.ANY, istate.Events.finish) def test_port_failed(self): self.cli.port.create.side_effect = ( [exceptions.Conflict()] + self.ports[1:]) process._process_node(self.node_info, self.node, self.data) self.cli.port.create.assert_any_call(node_uuid=self.uuid, address=self.macs[0], extra={}, pxe_enabled=True) self.cli.port.create.assert_any_call(node_uuid=self.uuid, address=self.macs[1], extra={}, pxe_enabled=False) @mock.patch.object(node_cache.NodeInfo, 'finished', autospec=True) def test_power_off_failed(self, finished_mock): self.cli.node.set_power_state.side_effect = RuntimeError('boom') process._process_node(self.node_info, self.node, self.data) self.cli.node.set_power_state.assert_called_once_with(self.uuid, 'off') finished_mock.assert_called_once_with( mock.ANY, istate.Events.error, error='Failed to power off node %s, check its power ' 'management configuration: boom' % self.uuid ) @mock.patch.object(example_plugin.ExampleProcessingHook, 'before_update') @mock.patch.object(node_cache.NodeInfo, 'finished', autospec=True) def test_power_off_enroll_state(self, finished_mock, post_hook_mock): self.node.provision_state = 'enroll' self.node_info.node = mock.Mock(return_value=self.node) process._process_node(self.node_info, self.node, self.data) self.assertTrue(post_hook_mock.called) self.assertTrue(self.cli.node.set_power_state.called) finished_mock.assert_called_once_with( self.node_info, istate.Events.finish) @mock.patch.object(node_cache.NodeInfo, 'finished', autospec=True) def test_no_power_off(self, finished_mock): CONF.set_override('power_off', False, 'processing') process._process_node(self.node_info, self.node, self.data) self.assertFalse(self.cli.node.set_power_state.called) finished_mock.assert_called_once_with( self.node_info, istate.Events.finish) @mock.patch.object(process.swift, 'SwiftAPI', autospec=True) def test_store_data(self, swift_mock): CONF.set_override('store_data', 'swift', 'processing') swift_conn = swift_mock.return_value name = 'inspector_data-%s' % self.uuid expected = self.data process._process_node(self.node_info, self.node, self.data) swift_conn.create_object.assert_called_once_with(name, mock.ANY) self.assertEqual(expected, json.loads(swift_conn.create_object.call_args[0][1])) @mock.patch.object(process.swift, 'SwiftAPI', autospec=True) def test_store_data_no_logs(self, swift_mock): CONF.set_override('store_data', 'swift', 'processing') swift_conn = swift_mock.return_value name = 'inspector_data-%s' % self.uuid self.data['logs'] = 'something' process._process_node(self.node_info, self.node, self.data) swift_conn.create_object.assert_called_once_with(name, mock.ANY) self.assertNotIn('logs', json.loads(swift_conn.create_object.call_args[0][1])) @mock.patch.object(process.swift, 'SwiftAPI', autospec=True) def test_store_data_location(self, swift_mock): CONF.set_override('store_data', 'swift', 'processing') CONF.set_override('store_data_location', 'inspector_data_object', 'processing') swift_conn = swift_mock.return_value name = 'inspector_data-%s' % self.uuid patch = [{'path': '/extra/inspector_data_object', 'value': name, 'op': 'add'}] expected = self.data process._process_node(self.node_info, self.node, self.data) swift_conn.create_object.assert_called_once_with(name, mock.ANY) self.assertEqual(expected, json.loads(swift_conn.create_object.call_args[0][1])) self.cli.node.update.assert_any_call(self.uuid, patch) @mock.patch.object(process, '_reapply', autospec=True) @mock.patch.object(node_cache, 'get_node', autospec=True) class TestReapply(BaseTest): def prepare_mocks(func): @six.wraps(func) def wrapper(self, pop_mock, *args, **kw): pop_mock.return_value = node_cache.NodeInfo( uuid=self.node.uuid, started_at=self.started_at) pop_mock.return_value.finished = mock.Mock() pop_mock.return_value.acquire_lock = mock.Mock() return func(self, pop_mock, *args, **kw) return wrapper def setUp(self): super(TestReapply, self).setUp() CONF.set_override('store_data', 'swift', 'processing') @prepare_mocks def test_ok(self, pop_mock, reapply_mock): process.reapply(self.uuid) pop_mock.assert_called_once_with(self.uuid, locked=False) pop_mock.return_value.acquire_lock.assert_called_once_with( blocking=False ) reapply_mock.assert_called_once_with(pop_mock.return_value) @prepare_mocks def test_locking_failed(self, pop_mock, reapply_mock): pop_mock.return_value.acquire_lock.return_value = False self.assertRaisesRegex(utils.Error, 'Node locked, please, try again later', process.reapply, self.uuid) pop_mock.assert_called_once_with(self.uuid, locked=False) pop_mock.return_value.acquire_lock.assert_called_once_with( blocking=False ) @mock.patch.object(example_plugin.ExampleProcessingHook, 'before_update') @mock.patch.object(process.rules, 'apply', autospec=True) @mock.patch.object(process.swift, 'SwiftAPI', autospec=True) @mock.patch.object(node_cache.NodeInfo, 'finished', autospec=True) @mock.patch.object(node_cache.NodeInfo, 'release_lock', autospec=True) class TestReapplyNode(BaseTest): def setUp(self): super(TestReapplyNode, self).setUp() CONF.set_override('processing_hooks', '$processing.default_processing_hooks,example', 'processing') CONF.set_override('store_data', 'swift', 'processing') self.data['macs'] = self.macs self.ports = self.all_ports self.node_info = node_cache.NodeInfo(uuid=self.uuid, started_at=self.started_at, node=self.node) self.node_info.invalidate_cache = mock.Mock() self.cli.port.create.side_effect = self.ports self.cli.node.update.return_value = self.node self.cli.node.list_ports.return_value = [] self.node_info._state = istate.States.finished self.commit_fixture = self.useFixture( fixtures.MockPatchObject(node_cache.NodeInfo, 'commit', autospec=True)) db.Node(uuid=self.node_info.uuid, state=self.node_info._state, started_at=self.node_info.started_at, finished_at=self.node_info.finished_at, error=self.node_info.error).save(self.session) def call(self): process._reapply(self.node_info) # make sure node_info lock is released after a call self.node_info.release_lock.assert_called_once_with(self.node_info) def prepare_mocks(fn): @six.wraps(fn) def wrapper(self, release_mock, finished_mock, swift_mock, *args, **kw): finished_mock.side_effect = lambda *a, **kw: \ release_mock(self.node_info) swift_client_mock = swift_mock.return_value fn(self, finished_mock, swift_client_mock, *args, **kw) return wrapper @prepare_mocks def test_ok(self, finished_mock, swift_mock, apply_mock, post_hook_mock): swift_name = 'inspector_data-%s' % self.uuid swift_mock.get_object.return_value
projector.brightness() == new_brightness # Test the edge cases brightness = projector.brightness(100) assert brightness == 100 assert projector.brightness() == 100 brightness = projector.brightness(30) assert brightness == 30 assert projector.brightness() == 30 # Test out of range values with pytest.raises(PySproutError) as execinfo: projector.brightness(29) assert 'Parameter out of range' in execinfo.value.message with pytest.raises(PySproutError) as execinfo: projector.brightness(101) assert 'Parameter out of range' in execinfo.value.message with pytest.raises(PySproutError) as execinfo: projector.brightness(1020) assert 'Parameter out of range' in execinfo.value.message with pytest.raises(PySproutError) as execinfo: projector.brightness(-2) assert 'Parameter out of range' in execinfo.value.message # Test invalid parameters with pytest.raises(PySproutError) as execinfo: projector.brightness("abc") assert 'Invalid parameter' in execinfo.value.message with pytest.raises(PySproutError) as execinfo: projector.brightness({}) assert 'Invalid parameter' in execinfo.value.message # Set the original value back brightness = projector.brightness(original_brightness) assert brightness == original_brightness assert projector.brightness() == original_brightness def test_factory_default(get_projector): """ Tests the projector's factory_default method. """ projector = get_projector projector_model = check_device_types.get_device_model(projector) projector.factory_default() assert projector.brightness() == 100 assert projector.manufacturing_data()['keystone'] == projector.keystone() assert Projector.State.standby == projector.state() if projector_model == Devices.projector_g2: white_point = projector.white_point() assert white_point['name'] == Projector.Illuminant.d65 d65 = {'name': 'd65', 'value': {'x': 0.31271, 'y': 0.32902}} assert round(white_point['value']['x'], 5) == d65['value']['x'] assert round(white_point['value']['y'], 5) == d65['value']['y'] assert white_point['name'].value == d65['name'] def test_temperatures(get_projector): """ Tests the projector's temperatures method. """ projector = get_projector temperatures = projector.temperatures() info = projector.info() check_system_types.check_TemperatureInfoList(temperatures, [info]) def test_solid_color(get_projector): """ Tests the projector's solid_color method. """ projector = get_projector projector_model = check_device_types.get_device_model(projector) if projector_model == Devices.projector_g1: with pytest.raises(PySproutError) as execinfo: projector.solid_color() assert 'Functionality not available.' in str(execinfo.value) return with pytest.raises(PySproutError) as execinfo: # solid_color will fail if the projector isn't on projector.solid_color() assert execinfo.value.message == 'Device is in the wrong state' with pytest.raises(PySproutError) as execinfo: # solid_color will fail if the projector isn't on projector.solid_color('green') assert execinfo.value.message == 'Device is in the wrong state' turn_proj_on(projector, projector_model) fw_version = get_proj_fw_version(projector) color = projector.solid_color() assert isinstance(color, Projector.SolidColor) for color in Projector.SolidColor: if color != Projector.SolidColor.off: new_color = projector.solid_color(color) assert new_color == color assert isinstance(new_color.value, str) assert color == projector.solid_color() if check_device_types.firmware_version_at_least(fw_version, 5, 9): assert Projector.State.solid_color == projector.state() else: assert Projector.State.on == projector.state() new_color = projector.solid_color('off') assert new_color == Projector.SolidColor.off assert Projector.SolidColor.off == projector.solid_color() if check_device_types.firmware_version_at_least(fw_version, 5, 9): assert Projector.State.on == projector.state() # Now that we're in the 'on' state, sending a solid_color 'off' should # raise a wrong state error. with pytest.raises(PySproutError) as execinfo: projector.solid_color('off') assert execinfo.value.message == 'Device is in the wrong state' color = projector.solid_color('yellow') assert Projector.SolidColor.yellow == color assert Projector.SolidColor.yellow == projector.solid_color() assert Projector.State.solid_color == projector.state() projector.on() assert Projector.State.on == projector.state() assert Projector.SolidColor.off == projector.solid_color() # When flash times out it should go back to solid color color = projector.solid_color('blue') assert Projector.SolidColor.blue == color assert Projector.SolidColor.blue == projector.solid_color() assert Projector.State.solid_color == projector.state() projector.flash(True) assert Projector.State.flashing == projector.state() time.sleep(10) assert Projector.State.solid_color == projector.state() assert Projector.SolidColor.blue == projector.solid_color() projector.flash(False) assert Projector.State.flashing == projector.state() time.sleep(10) assert Projector.State.solid_color == projector.state() assert Projector.SolidColor.blue == projector.solid_color() projector.flash(True) assert Projector.State.flashing == projector.state() # solid_color 'off' fails if we're in the 'flashing' state with pytest.raises(PySproutError) as execinfo: projector.solid_color('off') assert execinfo.value.message == 'Device is in the wrong state' # flash(True) -> solid_color -> solid_color(off) should put us in # the 'on' state color = projector.solid_color('cyan') assert Projector.SolidColor.cyan == color assert Projector.SolidColor.cyan == projector.solid_color() assert Projector.State.solid_color == projector.state() color = projector.solid_color('off') assert Projector.SolidColor.off == color assert Projector.SolidColor.off == projector.solid_color() assert Projector.State.on == projector.state() projector.flash(False) assert Projector.State.flashing == projector.state() # solid_color 'off' fails if we're in the 'flashing' state with pytest.raises(PySproutError) as execinfo: projector.solid_color('off') assert execinfo.value.message == 'Device is in the wrong state' # flash(False) -> solid_color -> solid_color(off) should put us in # the 'on' state color = projector.solid_color('magenta') assert Projector.SolidColor.magenta == color assert Projector.SolidColor.magenta == projector.solid_color() assert Projector.State.solid_color == projector.state() color = projector.solid_color('off') assert Projector.SolidColor.off == color assert Projector.SolidColor.off == projector.solid_color() assert Projector.State.on == projector.state() projector.grayscale() assert Projector.State.grayscale == projector.state() # solid_color 'off' fails if we're in the 'grayscale' state with pytest.raises(PySproutError) as execinfo: projector.solid_color('off') assert execinfo.value.message == 'Device is in the wrong state' # grayscale -> solid_color -> solid_color(off) should put us back in # the 'grayscale' state color = projector.solid_color('green') assert Projector.SolidColor.green == color assert Projector.SolidColor.green == projector.solid_color() assert Projector.State.solid_color == projector.state() color = projector.solid_color('off') assert Projector.SolidColor.off == color assert Projector.SolidColor.off == projector.solid_color() assert Projector.State.grayscale == projector.state() # Verify invalid values are rejected (by hippy) with pytest.raises(ValueError) as execinfo: projector.solid_color('fake') with pytest.raises(ValueError) as execinfo: projector.solid_color(3) with pytest.raises(ValueError) as execinfo: projector.solid_color({}) with pytest.raises(ValueError) as execinfo: projector.solid_color('gray') # Send bad values to SoHal (bypassing the hippy enum check) and make # sure SoHal throws an error... with pytest.raises(PySproutError) as execinfo: projector._send_msg('solid_color', 'fake') # pylint: disable=protected-access with pytest.raises(PySproutError) as execinfo: projector._send_msg('solid_color', 2) # pylint: disable=protected-access with pytest.raises(PySproutError) as execinfo: projector._send_msg('solid_color', {}) # pylint: disable=protected-access def test_led_times(get_projector): """ Tests the projector's led_times method. """ projector = get_projector projector_model = check_device_types.get_device_model(projector) if projector_model == Devices.projector_g1: with pytest.raises(PySproutError) as execinfo: projector.led_times() assert 'Functionality not available.' in str(execinfo.value) return times = projector.led_times() assert isinstance(times, dict) assert isinstance(times['grayscale'], float) assert isinstance(times['on'], float) assert isinstance(times['flash'], float) assert times['grayscale'] > 0 assert times['on'] > 0 assert times['flash'] > 0 def test_structured_light_mode(get_projector): """ Tests the projector's structured_light_mode method. """ projector = get_projector projector_model = check_device_types.get_device_model(projector) if projector_model == Devices.projector_g1: with pytest.raises(PySproutError) as execinfo: projector.led_times() assert 'Functionality not available.' in str(execinfo.value) return with pytest.raises(PySproutError) as execinfo: projector.structured_light_mode() assert execinfo.value.message == 'Device is in the wrong state' turn_proj_on(projector, projector_model) slm = projector.structured_light_mode() assert isinstance(slm, bool) assert slm is False slm = projector.structured_light_mode(True) assert slm is True assert projector.structured_light_mode() is True slm = projector.structured_light_mode(False) assert slm is False assert projector.structured_light_mode() is False # Turn on structured_light_mode, then turn the projector off and then # on again. When it comes on, structured_light_mode should always be false, # regardless of what it was previously. slm = projector.structured_light_mode(True) assert slm is True assert projector.structured_light_mode() is True projector.off() assert Projector.State.standby == projector.state() projector.on() assert projector.state() in (Projector.State.on, Projector.State.on_no_source) assert projector.structured_light_mode() is False # Verify that non-boolean values raise errors with pytest.raises(PySproutError) as execinfo: projector.structured_light_mode(0) assert 'Invalid parameter' in execinfo.value.message with pytest.raises(PySproutError) as execinfo: projector.structured_light_mode('fake') assert 'Invalid parameter' in execinfo.value.message with pytest.raises(PySproutError) as execinfo: projector.structured_light_mode({}) assert 'Invalid parameter' in execinfo.value.message def test_white_point(get_projector): """ Tests the projector's white_point method. """ projector = get_projector projector_model = check_device_types.get_device_model(projector) if projector_model == Devices.projector_g1: with pytest.raises(PySproutError) as execinfo: projector.led_times() assert 'Functionality not available.' in str(execinfo.value) return orig_wp = projector.white_point() assert isinstance(orig_wp, dict) assert isinstance(orig_wp['name'], Projector.Illuminant) assert isinstance(orig_wp['value'], dict) assert isinstance(orig_wp['value']['x'], float) assert isinstance(orig_wp['value']['y'], float) # Test passing in just the name for name in Projector.Illuminant: new_wp = projector.white_point({'name': name.value}) assert new_wp['name'] == name new_wp = projector.white_point() assert new_wp['name'] == name d50 = {'name': 'd50', 'value': {'x': 0.34567, 'y': 0.35850}} d65 = {'name': 'd65', 'value': {'x': 0.31271, 'y': 0.32902}} d75 = {'name': 'd75', 'value': {'x': 0.29902, 'y': 0.31485}} # This one is d55 custom = {'name': 'custom', 'value': {'x': 0.33242, 'y': 0.34743}} # Test passing in the whole dictionary for item in [d50, d65, d75, custom]: new_wp = projector.white_point(item) assert round(new_wp['value']['x'], 5) == item['value']['x'] assert round(new_wp['value']['y'], 5) == item['value']['y'] assert new_wp['name'].value == item['name'] new_wp = projector.white_point() assert round(new_wp['value']['x'], 5) == item['value']['x'] assert round(new_wp['value']['y'], 5) == item['value']['y'] assert new_wp['name'].value == item['name'] # Verify parameters that are out of range raise errors with pytest.raises(PySproutError) as execinfo: projector.white_point({'name' : 'custom', 'value' : {'x' : 0.4, 'y' : 0.34743}}) assert 'Parameter out of range' in str(execinfo.value) with pytest.raises(PySproutError) as execinfo: projector.white_point({'name' : 'custom', 'value' : {'x' : 0.2, 'y' : 0.34743}}) assert 'Parameter out of range' in str(execinfo.value) with pytest.raises(PySproutError) as execinfo: projector.white_point({'name' : 'custom', 'value' : {'x' : 0.33242, 'y' : 0.4}}) assert 'Parameter out of range' in str(execinfo.value) with pytest.raises(PySproutError) as execinfo: projector.white_point({'name' : 'custom', 'value' : {'x' : 0.33242, 'y' : 0.2}}) assert 'Parameter out of range' in str(execinfo.value) # Verify that Invalid parameters raise errors with pytest.raises(PySproutError) as execinfo: projector.white_point({'name' : 'custom', 'value' : {'x' : 'bad', 'y' : 0.34743}}) assert 'Invalid parameter' in execinfo.value.message with pytest.raises(PySproutError) as execinfo: projector.white_point({'name' : 'custom', 'value' : {'x' : 0.33242,
<reponame>Kyubravo/qassim-university-cs213-project ''' This Project is by: Name: <NAME> ID: 391107963 Name: <NAME> ID: 391108011 ''' import re import csv import matplotlib.pyplot as plt # For graphs import tkinter as tk # for GUI """ import pandas as pd import matplotlib.pyplot as plt import numpy as np """ class Book: ListOfBooks = [] __indexList = [] # using regex """ # Must be used first to set the catagory Index csv file @classmethod def openCatagoryIndexFile(cls, csvFilePath): indexFile = open(csvFilePath) indexReturn = indexFile.read() catagoryRegex = re.compile(r'(\d), (\w*)') cls.__indexList = catagoryRegex.findall(indexReturn) indexFile.close() """ # using csv library # Must be used first to set the catagory Index csv file @classmethod def CatagoryIndexFile(cls, csvFilePath): csvIndexFile = open(csvFilePath) indexReader = csv.DictReader(csvIndexFile) # import the csv file as a dictionary with the row names as the keys for row in indexReader: cls.__indexList.append((int(row['index']),row['catagory'])) csvIndexFile.close() @classmethod def importFromCSVfile(cls,csvFilePath): csvIndexFile = open(csvFilePath) indexReader = csv.DictReader(csvIndexFile) # import the csv file as a dictionary with the row names as the keys for row in indexReader: Book(row['index'],row['title'],row['numberOfPages'],row['catagoryIndex']) csvIndexFile.close() return cls.ListOfBooks # return a list of Book objects @classmethod def getBookByIndex(cls,bookIndex): for book in Book.ListOfBooks: if book.getIndex() == bookIndex: return book @classmethod def getBookByTitle(cls,bookTitle): for book in Book.ListOfBooks: if book.getTitle() == bookTitle: return book @classmethod def getCatagoryByIndex(cls,catagoryIndex): for catagoryListing in Book.__indexList: if catagoryListing[0] == catagoryIndex: return catagoryListing[1] def __init__(self, bookIndex, title, pageNum, catagoryIndex): self.__bookIndex = bookIndex self.__title = title self.__pageNum = pageNum self.__catagoryIndex = catagoryIndex Book.ListOfBooks.append(self) # add to the list to look it up if needed using getBookByIndex() def getIndex(self): return self.__bookIndex def getTitle(self): return self.__title def getpageNum(self): return int(self.__pageNum) def getCatagoryIndex(self): return int(self.__catagoryIndex) def getCatagoryName(self): for i in Book.__indexList: if int(i[0]) == self.__catagoryIndex: # check the Indice return i[1] # if it's true, then return the catagory class Member: listOfMembers = [] # list of all members, static @classmethod def importFromCSVfile(cls,csvFilePath): csvIndexFile = open(csvFilePath) indexReader = csv.DictReader(csvIndexFile) # import the csv file as a dictionary with the row names as the keys readBooksIndexRegex = re.compile(r'(\d+)') # this takes separated numbers in any format and turns them into a list. memberObjectList = [] for row in indexReader: readBooksIndexList = readBooksIndexRegex.findall(row['readBooksIndex']) member = Member(row['index'],row['name'],row['phoneNumber'],row['email']) for bookIndex in readBooksIndexList: member.addReadBook(Book.getBookByIndex(bookIndex)) # add all the read books to the member's readbooks list memberObjectList.append(member) csvIndexFile.close() return memberObjectList # return a list of all imported members @classmethod def getMemberByIndex(cls,memberIndex): for member in Member.listOfMembers: if member.getIndex() == memberIndex: return member def __init__(self,index, name, phoneNumber, email): self.__index = index self.__name = name self.__phoneNumber = phoneNumber self.__email = email self.__numberOfReadPages = 0 # the pages the member read self.readBooks = [] # keep track of books that read books for the preson Member.listOfMembers.append(self) # add the instance of the Member class to listOfMembers which is static def getIndex(self): return int(self.__index) def getName(self): return self.__name def getPhoneNumber(self): return self.__phoneNumber def getEmail(self): return self.__email def getNumberOfReadPages(self): return int(self.__numberOfReadPages) def addReadBook(self,bookClassList): # NOTE: the format addReadBook(book1,book2,...) is not supported if(type(bookClassList) == list): # if it's a list in format addReadBook([book1,book2,...]) for book in bookClassList: self.readBooks.append(book) # add the book to the list of the member self.__numberOfReadPages += book.getpageNum() # count read pages for the member elif(type(bookClassList) == Book): # if it's a Book object in format addReadBook(book1) self.readBooks.append(bookClassList) # add the book to the list of the member self.__numberOfReadPages += bookClassList.getpageNum() # count read pages for the member elif(type(bookClassList) == int): # if it's an index of a book in format addReadbook(1) book = Book.getBookByIndex(bookClassList) # get the book object using the index self.readBooks.append(book) # add the book to the list of the member self.__numberOfReadPages += book.getpageNum() # count read pages for the member def catagoryRanking(): #ranking catagory, format [[book1,count1],[book2,count2],...] rawCatagoryList = [] #list every Catagory "with" repeating for member in Member.listOfMembers: # list every get Catagory Index read book "with" repeating for book in member.readBooks: rawCatagoryList.append(book.getCatagoryIndex()) IndexList = [] # list every Catagory Index "without" repeating for i in rawCatagoryList: if IndexList.count(i) == 0 : IndexList.append(i) catCount = [] # catagory rank count the read for i in IndexList: # count how many times the catagory his been read catCount.append(rawCatagoryList.count(i)) sortedCat = [] # final list that will be returned for i in range(len(IndexList)): # formats the catagories in the format [[book1,count1],[book2,count2],...] sortedCat.append((IndexList[i],catCount[i])) sortedCat.sort(reverse=True ,key=lambda sortedCat: sortedCat[1]) # sort the list and the key lambda is telling the sort function to sort depending on the second element on the tuple return sortedCat def memberRankingBooks(): rawRankList= [] for member in Member.listOfMembers: rawRankList.append((member.getName(), len(member.readBooks))) # save the length with the name of the member in one tuple in the list rawRankList.sort(reverse=True ,key=lambda rawRankList: rawRankList[1]) # sort the list and the key lambda is telling the sort function to sort depending on the second element on the tuple return rawRankList def memberRankingPages(): rawRankList= [] for member in Member.listOfMembers: rawRankList.append((member.getName(), member.getNumberOfReadPages())) # save the number of read pages of the member with the name of the member in one tuple in the list rawRankList.sort(reverse=True ,key=lambda rawRankList: rawRankList[1]) # sort the list and the key lambda is telling the sort function to sort depending on the second element on the tuple return rawRankList def pltCatRank(): catRankRaw, catPlace, catCount = [], [], [] catRankRaw = catagoryRanking() # formats the catagories in the format [[book1,count1],[book2,count2],...] catOrder = [] i = 0 while(i < len(catRankRaw)): # Splitting the values catPlace.append(catRankRaw[i][0]) catCount.append(catRankRaw[i][1]) i+= 1 for i in catPlace: # covert the catagory indice to the name of the catagory catOrder.append((Book.getCatagoryByIndex(i))) # make the plot plt.bar(catOrder,catCount) # (x, y) plt.xticks(rotation=30,size=8) plt.xlabel('Catagory Name') plt.ylabel('Number of read catagories') plt.show() def pltMemberRankBook(): # plt the rank of the members dependenig on how many book have been read memberRankRaw, memberPlace, memberCount = [], [], [] memberRankRaw = memberRankingBooks() i = 0 while(i < len(memberRankRaw)): # Splitting the values memberPlace.append(memberRankRaw[i][0]) memberCount.append(memberRankRaw[i][1]) i += 1 plt.bar(memberPlace,memberCount) # (x, y) plt.xticks(rotation=30,size=8) plt.xlabel('member Name') plt.ylabel('Number of read books') plt.show() def pltMemberRankPages(): memberRankRaw, memberPlace, memberCount = [], [], [] memberRankRaw = memberRankingPages() i = 0 while(i < len(memberRankRaw)): # Splitting the values memberPlace.append(memberRankRaw[i][0]) memberCount.append(memberRankRaw[i][1]) i += 1 plt.bar(memberPlace,memberCount) # (x, y) plt.xticks(rotation=30,size=8) plt.xlabel('Member name') plt.ylabel('Number of read pages') plt.show() # ============ GUI ============# def openBooksWindow(books): window = tk.Toplevel() window.title('Books') mainFrame = tk.Frame(window,width=400,height=300) mainFrame.pack(fill='both',padx=10, pady=10) leftFrame = tk.Frame(mainFrame,width=200) leftFrame.pack(side='left',fill='y',padx=10, pady=10) rightFrame = tk.Frame(mainFrame,width=200) rightFrame.pack(side='right',fill='y',padx=10, pady=10) # left frame lb = tk.Listbox(leftFrame, selectmode='browse') for book in books: lb.insert(book.getIndex(), book.getTitle()) lb.pack(fill='both') lb.select_set(0) #right frame lbSelectedIndex = lb.curselection()[0] label = tk.Label(rightFrame,text='Book index: {}\nBook title: {}\nPages: {}\n'.format(lbSelectedIndex, \ books[lbSelectedIndex].getTitle(), \ books[lbSelectedIndex].getpageNum() \ ), \ justify='left',anchor='nw' ) label.pack(fill='both') def showInfo(): # Show info button, updating label from simply selecting something else in the listbox is impossible with tkinter library, this is a work around by using showButton and a function lbSelectedIndex = lb.curselection()[0] label.config(text='Book index: {}\nBook title: {}\nPages: {}\n'.format(lbSelectedIndex, \ books[lbSelectedIndex].getTitle(), \ books[lbSelectedIndex].getpageNum() \ ) ) showButton = tk.Button(rightFrame,text='Show Book Info',command=lambda: showInfo()) showButton.pack(side='bottom') window.mainloop() def openMembersWindow(members,books): window = tk.Toplevel() window.title('Members') mainFrame = tk.Frame(window) mainFrame.pack(fill='both',padx=10, pady=10) leftFrame = tk.Frame(mainFrame) leftFrame.grid(row=0,column=0,padx=10, pady=10,) midFrame = tk.Frame(mainFrame) midFrame.grid(row=0,column=1,padx=10, pady=10) rightFrame = tk.Frame(mainFrame) rightFrame.grid(row=0,column=2,padx=10, pady=10) # left frame leftlabel = tk.Label(leftFrame,text='Members') leftlabel.pack(side = 'top',anchor='n') leftlb = tk.Listbox(leftFrame) for member in members: leftlb.insert(member.getIndex(), member.getName()) leftlb.pack(fill='both',anchor='n') leftlb.select_set(0) # middle frame midlabel = tk.Label(midFrame,text='Read books by the member') midlabel.pack(side = 'top') midlb = tk.Listbox(midFrame) for book in books: midlb.insert(book.getIndex(), book.getTitle()) midlb.pack(fill='both',side='top',expand=1) midlb.select_set(0) #right frame member = Member.getMemberByIndex(midlb.curselection()[0]) label = tk.Label(rightFrame,text='Member index: {}\nName: {}\nPhone: {}\nEmail: {}'.format(member.getIndex(), \ member.getName(), \ member.getPhoneNumber(), \ member.getEmail() \ ), \ justify='left',anchor='nw' ) label.pack(fill='both') # mainframe again def showMemberInfo(memberIndex): # Show info button, updating label from simply selecting something else in the listbox is impossible with tkinter library, this is a work around by using showButton and a function member = Member.getMemberByIndex(memberIndex)
# type: ignore from typing import Callable, Optional, Dict, Any, List from radixlib.parsers.base_parser import ParserBase import radixlib as radix import dateparser class DefaultParser(ParserBase): """ A default parser used to parse the responses of the gateway API into a format that is easy to query """ @classmethod def parse( cls, data: Any, data_type: str ) -> Any: """ Routes the parsing of the data to the appropriate parsing function from within the class This function acts as a router which tires to find the appropriate parsing function within the class to parse the data. If no parser is implemented for this data type, then the original data is returned without any parsing. Args: data (Any): Data of any type to pass to the parser function data_type (str): Type of the data or the origin of the data Returns: Any: The parsed data """ # Getting the parsing function for this data type from the attributes of the class function_name: str = f'parse_{data_type}' parsing_function: Optional[Callable[..., Any]] = getattr(cls, function_name, None) # We try calling the parsing function with the data that we have. If the parsing function # works, then we return the parsed data. However, if a TypeError or NotImplementedError is # raised, then we return the original data try: parsed_data: Any = parsing_function(data) # type: ignore return parsed_data if parsed_data is not None else data except (TypeError, NotImplementedError): return data @classmethod def parse_get_gateway_info(cls, data: Dict[str, Any]) -> Any: """ A function used for the parsing of the get_gateway_info API calls. This parser function produces output in the following format:: { "network_identifier": { "network": "mainnet" }, "gateway_api": { "version": "1.0.1", "open_api_schema_version": "1.0.3" }, "ledger_state": { "version": 78345123, "timestamp": "2022-02-03T15:24:35.866Z", "epoch": 7024, "round": 8910 }, "target_ledger_state": { "version": 78345127 } } Args: data (dict): A dictionary of the data to parse. Returns: dict: A dictionary of the parsed data. """ # No parsing is needed in this case, the default format the data is given in is easy to # query. raise NotImplementedError("No implementation for the parse_get_gateway_info") @classmethod def parse_derive_account_identifier(cls, data: Dict[str, Dict[str, str]]) -> str: """ A function used for the parsing of the derive_account_identifier API calls. Args: data (dict): A dictionary of the data to parse. Returns: str: A string of the derived account address. """ return data['account_identifier']['address'] @classmethod def parse_get_account_balances(cls, data: Dict[Any, Any]) -> Dict[str, Dict[str, int]]: """ A function used for the parsing of the get_account_balances API calls. This parser function produces output in the following format:: { "total_balance": { "token_rri": "balance of token" }, "staking_balance": { "token_rri": "balance of token" }, "liquid_balance": { "token_rri": "balance of token" } } Args: data (dict): A dictionary of the data to parse. Returns: dict: A dictionary of the parsed data. """ # Processing the balances into an easy to query dictionary format final_balances: Dict[str, Dict[str, int]] = { "total_balance": {}, "staking_balance": {}, "liquid_balance": {}, } final_balances['staking_balance'][data['account_balances']['staked_and_unstaking_balance']['token_identifier']['rri']] = int(data['account_balances']['staked_and_unstaking_balance']['value']) for token_balance in data['account_balances']['liquid_balances']: final_balances['liquid_balance'][token_balance['token_identifier']['rri']] = int(token_balance['value']) unique_rris: List[str] = list(set(list(final_balances['staking_balance'].keys()) + list(final_balances['liquid_balance'].keys()))) for rri in unique_rris: balance1: Optional[int] = final_balances['staking_balance'].get(rri) balance2: Optional[int] = final_balances['liquid_balance'].get(rri) final_balances['total_balance'][rri] = (0 if balance1 is None else balance1) + (0 if balance2 is None else balance2) return final_balances @classmethod def parse_get_stake_positions(cls, data: Dict[str, Any]) -> Dict[str, List[Dict[str, Any]]]: """ A function used for the parsing of the get_stake_positions API calls. This parser function produces output in the following format:: { "pending_stakes": [ { "validator_address": "address", "amount": { "xrd_rri": "amount" }, } ], "stakes": [ { "validator_address": "address", "amount": { "xrd_rri": "amount" }, } ] } Args: data (dict): A dictionary of the data to parse. Returns: dict: A dictionary of the parsed data. """ return { key: list(map(lambda x: dict([ ('validator_address', x['validator_identifier']['address']), ('amount', { x['delegated_stake']['token_identifier']['rri']: int(x['delegated_stake']['value']) }) ]), value)) for key, value in data.items() if key in ['pending_stakes', 'stakes'] } @classmethod def parse_get_unstake_positions(cls, data: Dict[str, Any]) -> Dict[str, List[Dict[str, Any]]]: """ A function used for the parsing of the get_unstake_positions API calls. This parser function produces output in the following format:: { "pending_unstakes": [ { "validator_address": "address", "amount": { "xrd_rri": "amount" }, "epochs_until_unlocked": "amount" } ], "unstakes": [ { "validator_address": "address", "amount": { "xrd_rri": "amount" }, "epochs_until_unlocked": "amount" } ] } Args: data (dict): A dictionary of the data to parse. Returns: dict: A dictionary of the parsed data. """ return { key: list(map(lambda x: dict([ ('validator_address', x['validator_identifier']['address']), ('amount', { x['delegated_stake']['token_identifier']['rri']: int(x['delegated_stake']['value']) }), ('epochs_until_unlocked', x['epochs_until_unlocked']), ]), value)) for key, value in data.items() if key in ['pending_unstakes', 'unstakes'] } @classmethod def parse_get_account_transactions(cls, data: Dict[str, Any]) -> List[Dict[str, Any]]: """ A function used for the parsing of the get_account_transactions API calls. This parser function produces output in the following format:: [ { "hash": data['transaction']['transaction_identifier']['hash'], "status": data['transaction']['transaction_status']['status'], "confirmed_time": dateparser.parse(data['transaction']['transaction_status']['confirmed_time']), "actions": list(map( lambda x: getattr(radix.actions, x['type']).from_dict(x), data['transaction']['actions'] )), "fee_paid": { data['transaction']['fee_paid']['token_identifier']['rri']: int(data['transaction']['fee_paid']['value']) }, "transaction_blob": data['transaction']['metadata']['hex'], "message_blob": data['transaction']['metadata'].get('message'), } ] Args: data (dict): A dictionary of the data to parse. Returns: dict: A dictionary of the parsed data. """ return list(map( lambda x: cls.parse({'transaction': x}, 'transaction_status'), data['transactions'] )) @classmethod def parse_get_native_token_info(cls, data: Any) -> Any: """ A function used for the parsing of the get_native_token_info API calls. This parser function produces output in the following format:: { "rri": "token_rri", "total_supply": "amount" "total_minted": "amount" "total_burned": "amount" "name": "token_name" "description": "token_description", "icon_url": "token_icon_url", "url": "token_url", "symbol": "token_symbol", "is_supply_mutable": "token_is_supply_mutable", "granularity": "token_granularity", } Args: data (dict): A dictionary of the data to parse. Returns: dict: A dictionary of the parsed data. """ return cls.parse(data, 'get_token_info') @classmethod def parse_get_token_info(cls, data: Any) -> Any: """ A function used for the parsing of the get_token_info API calls. This parser function produces output in the following format:: { "rri": "token_rri", "total_supply": "amount" "total_minted": "amount" "total_burned": "amount" "name": "token_name" "description": "token_description", "icon_url": "token_icon_url", "url": "token_url", "symbol": "token_symbol", "is_supply_mutable": "token_is_supply_mutable", "granularity": "token_granularity", } Args: data (dict): A dictionary of the data to parse. Returns: dict: A dictionary of the parsed data. """ return { "rri": data['token']['token_identifier']['rri'], "total_supply": int(data['token']['token_supply']['value']), "total_minted": int(data['token']['info']['total_minted']['value']), "total_burned": int(data['token']['info']['total_burned']['value']), "name": data['token']['token_properties']['name'], "description": data['token']['token_properties']['description'], "icon_url": data['token']['token_properties']['icon_url'], "url": data['token']['token_properties']['url'], "symbol": data['token']['token_properties']['symbol'], "is_supply_mutable": bool(data['token']['token_properties']['is_supply_mutable']), "granularity": int(data['token']['token_properties']['granularity']), } @classmethod def parse_derive_token_identifier(cls, data: Dict[str, Dict[str, str]]) -> str: """ A function used for the parsing of the derive_token_identifier API calls. Args: data (dict): A dictionary of the data to parse. Returns: str: A string of the token RRI """ return data['token_identifier']['rri'] @classmethod def parse_get_validator(cls, data: Dict[str, Any]) -> Dict[str, Any]: """ A function used for the parsing of the get_validator API calls. This parser function produces output in the following format:: { "validator_address": "address", "stake": { "xrd_rri": "amount" }, "owner_stake": { "xrd_rri": "amount" }, "uptime": { "epoch_range": { "from": "from_epoch", "to": "to_epoch" }, "uptime_percentage": "uptime_percentage", "proposals_missed": "proposals_missed", "proposals_completed": "proposals_completed" }, "url": "url", "validator_fee_percentage": "validator_fee_percentage", "name": "name", "registered": "registered", "owner_account_address": "owner_account_address", "external_stake_accepted": "external_stake_accepted", } Args: data (dict): A dictionary of the data to parse. Returns: dict: A dictionary of the parsed data. """ return { "validator_address": data['validator']['validator_identifier']['address'], "stake": { data['validator']['stake']['token_identifier']['rri']: int(data['validator']['stake']['value']) }, "owner_stake": { data['validator']['info']['owner_stake']['token_identifier']['rri']: int(data['validator']['info']['owner_stake']['value']) }, "uptime": data['validator']['info']['uptime'], "url": data['validator']['properties']['url'], "validator_fee_percentage": data['validator']['properties']['validator_fee_percentage'], "name": data['validator']['properties']['name'], "registered": bool(data['validator']['properties']['registered']), "owner_account_address": data['validator']['properties']['owner_account_identifier']['address'], "external_stake_accepted": data['validator']['properties']['external_stake_accepted'], } @classmethod def parse_get_validator_identifier(cls, data: Dict[str, Dict[str, str]]) -> str: """ A function used for the parsing of the get_validator_identifier API calls. Args: data (dict): A dictionary of the data to parse. Returns: str: A string of the validator address """ return data['validator_identifier']['address'] @classmethod def parse_get_validators(cls, data: Dict[str, Any]) -> List[Dict[str, Any]]: """ A function used for the parsing of the get_validators API calls. This parser function produces output in the following format:: [ { "validator_address": "address", "stake": { "xrd_rri": "amount" }, "owner_stake": { "xrd_rri": "amount" }, "uptime": { "epoch_range": { "from": "from_epoch",
u"light nucleus: production", u"neutralino", u"gluino: mass", u"parton", u"Higgs particle: leptonic decay", u"electron: beam", u"polarized target", u"potential: static", u"glueball", u"symmetry: O(N)", u"eta(958)", u"tracking detector", u"J-PARC Lab", u"quark: flavor: 3", u"parton: energy loss", u"electroweak interaction: correction", u"Hanbury-Brown-Twiss effect", u"momentum dependence", u"dependence: mass number", u"knot theory", u"tau: semileptonic decay", u"WIMP: dark matter", u"WIMP: mass", u"Higgs mechanism", u"crystal", u"mu-problem", u"photon: associated production", u"temperature: 0", u"Lipatov equation", u"B-factory", u"time resolution", u"field theory: Euclidean", u"minisuperspace", u"evolution equation", u"photon: yield", u"inflaton", u"new physics: search for", u"pair production", u"diffeomorphism: invariance", u"ABJM model", u"matter: hadronic", u"WIMP", u"Cherenkov counter: imaging", u"electron: cosmic radiation", u"cavity", u"anomaly: conformal", u"BFKL equation", u"gravitation: potential", u"Z': mass", u"D0: hadronic decay", u"jet: bottom", u"electromagnetic", u"hidden sector", u"fermion: Majorana", u"total cross section: energy dependence", u"gap", u"algebra: conformal", u"transverse momentum: missing-energy", u"collective phenomena", u"mechanics: classical", u"error", u"quark: polarization", u"Born approximation", u"gas", u"computer", u"mass: topological", u"R symmetry", u"inflaton: potential", u"homology", u"B+: branching ratio", u"<NAME>", u"experimental methods", u"flux: magnetic", u"equivalence principle", u"jet: transverse momentum", u"supercharge", u"correction: nonperturbative", u"sphere: fuzzy", u"spin: 2", u"weak interaction", u"matter: coupling", u"massless", u"inflation: hybrid", u"synchrotron radiation", u"Weinberg angle", u"particle identification", u"leading logarithm approximation: higher-order", u"mirror", u"structure function", u"group theory", u"rapidity: gap", u"isospin: violation", u"gamma ray: cosmic radiation", u"algebra: deformation", u"meson: hadron spectroscopy", u"iron", u"fermion: pair production", u"deep underground detector", u"quark: Wilson", u"p p: elastic scattering", u"gluon: radiation", u"field theory: classical", u"fixed point: infrared", u"Compton scattering: off-shell", u"B: decay", u"final state: two-particle", u"differential equations: solution", u"cryogenics", u"asymptotic freedom", u"HESS", u"conductivity", u"black hole: formation", u"gauge field theory: abelian", u"noncommutative", u"scaling: violation", u"electron p: colliding beams", u"J/psi(3100): leptonic decay", u"kinetic", u"phase shift", u"field theory: anti-de Sitter", u"compactification: flux", u"cluster", u"gauge field theory: supersymmetry", u"Z'", u"charge: magnetic", u"mass spectrum: dilepton", u"neutrino: interaction", u"quark: chiral", u"D0 anti-D0: mixing", u"master equation", u"quark: mass dependence", u"scale: electroweak interaction", u"p: form factor", u"Higgs particle: radiative decay", u"gravitino", u"quark: constituent", u"regularization: zeta function", u"enhancement", u"hadron: production", u"particle: massive", u"quark antiquark: potential", u"expansion: derivative", u"fermion: domain wall", u"hyperfine structure", u"lepton: mixing angle", u"interpretation of experiments: DESY HERA Stor", u"hidden symmetry", u"BF model", u"defect", u"gluon: fusion", u"Newport News CEBAF Linac", u"photon: polarized beam", u"index theorem", u"pi: photoproduction", u"positron p: colliding beams", u"electron", u"electromagnetic interaction", u"mean field approximation: relativistic", u"density: high", u"neutrino: pair production", u"baryon: octet", u"field theory: noncommutative", u"charge", u"neutrino: heavy", u"scattering amplitude: higher-order", u"charged particle: multiple production", u"B/s0: hadronic decay", u"mass generation", u"operator: differential", u"quark antiquark: annihilation", u"satellite", u"approximation: eikonal", u"spin: network", u"scaling: dimension", u"PYTHIA", u"Grid computing", u"gravitino: mass", u"three-body problem", u"ghost: propagator", u"baryon: mass", u"inflation: model", u"black hole: evaporation", u"magnetic moment", u"gauge boson: mass", u"landscape", u"mass: top", u"algebra: Kac-Moody", u"validity test", u"group: Lie", u"current: vector", u"quasinormal mode", u"energy: threshold", u"quark: staggered", u"differential cross section: measured", u"gauge field theory: SU(2) x U(1)", u"Auger", u"graphene", u"pi0: hadroproduction", u"form factor: electric", u"quark: mixing angle", u"electroweak interaction: model", u"interferometer", u"gauge field theory: Yang-Mills: supersymmetry", u"Bianchi identity", u"quasar", u"correlation: two-particle", u"black hole: production", u"Batavia TEVATRON PS", u"scaling: finite size", u"pi0: radiative decay", u"correlation: length", u"f0(600)", u"invariance: modular", u"electron p: exclusive reaction", u"S-duality", u"lepton: asymmetry", u"cosmic radiation: anisotropy", u"SU(N)", u"field strength", u"susceptibility", u"dispersion", u"dark matter: interaction", u"anomaly: chiral", u"violation: CPT", u"strong interaction: CP", u"scalar meson", u"field theory: massless", u"Higgs model: abelian", u"effect: quantum", u"bootstrap", u"field theory: spinor", u"space: S(5)", u"space: de Sitter", u"bounce", u"star", u"electroweak interaction: standard model", u"potential: confinement", u"symmetry: Lorentz", u"reheating", u"Higgs particle: neutral particle", u"cosmological constant: negative", u"f0(980)", u"tensor: Weyl", u"mass: Majorana", u"temperature: reheating", u"Poisson bracket", u"quaternion", u"spin: 1", u"n: electric moment", u"approximation", u"central region", u"detector: design", u"neural network", u"jet: production", u"Wess-Zumino model", u"space-time: Kerr", u"potential: optical", u"mass difference", u"multiplet", u"dark matter: decay", u"supersymmetry: multiplet", u"effect: finite size", u"quark: flavor: 2", u"soft collinear effective theory", u"costs", u"multiplet: vector", u"pi: electroproduction", u"spin dependence", u"solar system", u"space-time: dimension", u"nucleon: spin", u"moduli: stability", u"standard model: supersymmetry", u"optical", u"fermion: massless", u"angular resolution", u"HERMES", u"matter: strangeness", u"geophysics", u"structure function: spin", u"background: stochastic", u"baryon number: violation", u"mass: texture", u"WIMP: annihilation", u"OPERA", u"force: Casimir", u"form factor: magnetic", u"current: correlation function", u"kink", u"quantum chromodynamics: vacuum state", u"pseudoscalar meson: pair production", u"Compton scattering: inverse", u"rho(770)0", u"nucleon resonance", u"differential cross section: transverse momentum", u"p p: exclusive reaction", u"toy model", u"sparticle: hadroproduction", u"initial state", u"fermion: mixing angle", u"coupling: scalar", u"atom", u"dark energy: holography", u"B/s0 anti-B/s0: mixing", u"tadpole", u"dipole", u"integrated circuit", u"current: axial-vector", u"baryon", u"neutrino: mass spectrum", u"quantum group", u"form factor: electromagnetic", u"eta", u"K: pair production", u"Higgs particle: triplet", u"modulation", u"quantum chromodynamics: holography", u"COMPASS", u"electroweak interaction: critical phenomena", u"Yang-Mills: supersymmetry", u"time", u"oxygen", u"hadron hadron: inclusive reaction", u"beam transport", u"matter", u"transformation: Lorentz", u"particle identification: flavor", u"neutralino: LSP", u"meson: mass spectrum", u"hadron: gas", u"K: semileptonic decay", u"functional analysis", u"curvature: scalar", u"photon photon: exclusive reaction", u"dimension: 7", u"dark energy: equation of state", u"scattering length", u"baryon: heavy", u"time projection chamber", u"fermion: Wilson", u"gauge boson", u"nuclear reaction: model", u"finite size", u"field theory: Dirac", u"integral equations", u"distribution function", u"decay rate", u"K: hadronic decay", u"Dvali-Gabadadze-Porrati model", u"acceptance", u"K-theory", u"nucleus: recoil", u"Juelich COSY PS", u"cross section: upper limit", u"big bang", u"critical phenomena: deconfinement", u"MINOS", u"ionization", u"meson: wave function", u"p: polarized beam", u"fermion: zero mode", u"simplex", u"Schroedinger equation: solution", u"MSW effect", u"nucleon", u"baryon number", u"renormalizable", u"variational", u"dilepton: final state", u"Einstein-Maxwell equation: solution", u"photon: flux", u"deceleration", u"gravitation: effect", u"superfield: chiral", u"transverse momentum: factorization", u"radiative correction: higher-order", u"anomaly: axial", u"higher-order: 3", u"star: compact", u"linear collider: proposed", u"bubble", u"light front", u"model: Glauber", u"resonance", u"diquark", u"fermion: clover", u"charge: fractional", u"approximation: weak field", u"heat kernel", u"muon: flux", u"deeply virtual Compton scattering", u"fermion: determinant", u"model: oscillator", u"electron positron: inelastic scattering", u"channel cross section: branching ratio", u"energy: ground state", u"little Higgs model", u"angular distribution: anisotropy", u"Langevin equation", u"K0 anti-K0: mixing", u"transverse", u"semiconductor detector", u"generalized uncertainty principle", u"radioactivity", u"vector meson: mass", u"interpretation of experiments: CERN SPS", u"XENON", u"energy: conservation law", u"space: noncommutative", u"mass spectrum: transverse", u"Unruh effect", u"algebra: Poincare", u"space-time: geometry", u"design", u"electron p: elastic scattering", u"Thesis", u"semiconductor detector: microstrip", u"gravitation: Lovelock", u"radiation: initial-state interaction", u"length: minimal", u"VERITAS", u"spin: dependence", u"energy: flux", u"control system", u"satellite: Planck", u"dark energy: density", u"GEANT", u"neutrino: magnetic moment", u"p: beam", u"Seiberg-Witten map", u"decay: amplitude analysis", u"conifold", u"neutron star: binary", u"Z0: pair production", u"cosmic radiation: spectrum", u"particle flow", u"p", u"deep inelastic scattering: semi-inclusive reaction", u"galaxy: halo", u"model: chiral", u"tau: branching ratio", u"Gribov problem", u"lepton", u"VIRGO", u"slope", u"external field", u"multiplicity: spectrum", u"string model: topological", u"photon p: inelastic scattering", u"black hole: stability", u"superconductivity: holography", u"trace anomaly", u"W: associated production", u"quantum chromodynamics: matter", u"density dependence", u"neutrino: decay", u"<NAME>", u"silicon", u"Poincare", u"Lambda: hypernucleus", u"quantization: canonical", u"DAMA", u"photon: absorption", u"invariance: CPT", u"screening", u"neutrino: nuclear reactor", u"fermion: overlap", u"Brookhaven PS", u"top: single production", u"BooNE", u"hard thermal loop approximation", u"Feynman graph: penguin", u"de Sitter", u"operator", u"quantum gravity: effect", u"gravitation: induced", u"algebra: Heisenberg", u"missing-energy", u"stochastic", u"nucleosynthesis", u"Hall effect", u"nucleus: cosmic radiation", u"black brane", u"muon: storage ring", u"universal extra dimension", u"structure function: longitudinal", u"neutrino nucleon: deep inelastic scattering", u"gluon: mass", u"preheating", u"photon: production", u"determinant", u"photon: energy", u"operator: composite", u"Hall effect: quantum", u"photon: electroproduction", u"p nucleus: scattering", u"gauge field theory: noncommutative", u"positron p: deep inelastic scattering", u"channel cross section: measured", u"graph theory", u"tetraquark", u"shell model", u"semiconductor detector: germanium", u"black hole: spin", u"nucleus: semileptonic decay", u"scintillation counter: crystal", u"susceptibility: topological", u"Euclidean", u"propagation", u"Robertson-Walker", u"Einstein", u"bottom: radiative decay", u"prepotential", u"OPAL", u"dependence: impact parameter", u"Aharonov-Bohm effect", u"quantization: constraint", u"Ward-Takahashi identity", u"network", u"momentum transfer: high", u"compactification: Calabi-Yau", u"Higgs particle: composite", u"multiverse", u"fluctuation: vacuum", u"field theory: finite temperature", u"differential cross section: ratio", u"Theta(1540)", u"magnetic field: galaxy", u"entropy: production", u"gluon: density", u"lepton: radiative decay", u"Lambda", u"collapse", u"warped", u"littlest Higgs model", u"approximation: linear", u"Ginsparg-Wilson relation", u"neutrino: massive", u"imaging", u"abelian", u"momentum spectrum", u"electroweak interaction: radiative correction", u"time delay", u"lattice: anisotropy", u"particle: massless", u"symmetry: family", u"homotopy", u"positron: polarized beam", u"binary: compact", u"current", u"gas electron multiplier", u"renormalization: nonperturbative", u"current algebra", u"interface", u"resistive plate chamber", u"effect: nonlinear", u"space: Minkowski", u"CPT: violation", u"gravitation: dilaton", u"causality: violation", u"zeta function", u"LSP", u"lifetime", u"D", u"threshold: correction", u"differential cross section: x-dependence", u"decay: flavor changing", u"meson: hybrid", u"flavor: 4", u"Yang-Baxter equation", u"galaxy: formation", u"correction: relativistic", u"upgrade", u"family", u"potential: thermodynamical", u"glueball: mass", u"neutrino/e", u"Gross-Neveu model", u"spin: density matrix", u"hierarchy: gauge", u"space-time:
dataset.lower() == "kitti": train_dataset = gdata.SIM10kDetection(root=args.train_root, splits=args.train_split, min_dataset_size=args.min_dataset_size) val_dataset = gdata.SIM10kDetection(root=args.val_root, splits=args.val_split) if args.target_split != "": target_dataset = gdata.SIM10kDetection(root=args.target_root, splits=args.target_split, min_dataset_size=args.min_dataset_size) else: target_dataset = None val_metric = VOC07MApMetric(iou_thresh=0.5, class_names=val_dataset.classes) elif dataset.lower() == 'coco': train_dataset = gdata.COCODetection(splits='instances_train2017', use_crowd=False) val_dataset = gdata.COCODetection(splits='instances_val2017', skip_empty=False) val_metric = COCODetectionMetric(val_dataset, args.save_prefix + '_eval', cleanup=True) target_dataset = None else: raise NotImplementedError('Dataset: {} not implemented.'.format(dataset)) return train_dataset, val_dataset, target_dataset, val_metric def get_dataloader(net, train_dataset, val_dataset, target_dataset, batch_size, num_workers, args): """Get dataloader.""" train_bfn = batchify.Tuple(*[batchify.Append() for _ in range(5)]) train_loader = mx.gluon.data.DataLoader( train_dataset.transform( FasterRCNNDefaultTrainTransform(net.short, net.max_size, net, augmentation=args.augmentation)), batch_size, True, batchify_fn=train_bfn, last_batch='rollover', num_workers=num_workers) if target_dataset is None: target_loader = None else: target_bfn = batchify.Tuple(*[batchify.Append() for _ in range(2)]) target_loader = mx.gluon.data.DataLoader( target_dataset.transform( FasterRCNNDefaultSEMultiTeacherTransform(net.short, net.max_size, net, teacher_num=args.num_teacher, teacher_aug=args.teacher_aug)), batch_size, True, batchify_fn=target_bfn, last_batch='rollover', num_workers=num_workers) val_bfn = batchify.Tuple(*[batchify.Append() for _ in range(3)]) val_loader = mx.gluon.data.DataLoader( val_dataset.transform(FasterRCNNDefaultValTransform(net.short, net.max_size)), batch_size, False, batchify_fn=val_bfn, last_batch='keep', num_workers=num_workers) return train_loader, val_loader, target_loader def save_params(net, logger, best_map, current_map, epoch, save_interval, prefix): current_map = float(current_map) if current_map > best_map[0]: logger.info('[Epoch {}] mAP {} higher than current best {} saving to {}'.format( epoch, current_map, best_map, '{:s}_best.params'.format(prefix))) best_map[0] = current_map net.save_parameters('{:s}_best.params'.format(prefix)) with open(prefix + '_best_map.log', 'a') as f: f.write('\n{:04d}:\t{:.4f}'.format(epoch, current_map)) if save_interval and (epoch + 1) % save_interval == 0: logger.info('[Epoch {}] Saving parameters to {}'.format( epoch, '{:s}_{:04d}_{:.4f}.params'.format(prefix, epoch, current_map))) net.save_parameters('{:s}_{:04d}_{:.4f}.params'.format(prefix, epoch, current_map)) def split_and_load(batch, ctx_list): """Split data to 1 batch each device.""" num_ctx = len(ctx_list) new_batch = [] for i, data in enumerate(batch): new_data = [x.as_in_context(ctx) for x, ctx in zip(data, ctx_list)] new_batch.append(new_data) return new_batch def validate(net, val_data, ctx, eval_metric): """Test on validation dataset.""" clipper = gcv.nn.bbox.BBoxClipToImage() eval_metric.reset() net.hybridize(False) for batch in tqdm(val_data, total=len(val_data)): batch = split_and_load(batch, ctx_list=ctx) det_bboxes = [] det_ids = [] det_scores = [] gt_bboxes = [] gt_ids = [] gt_difficults = [] for x, y, im_scale in zip(*batch): # get prediction results ids, scores, bboxes = net(x) det_ids.append(ids) det_scores.append(scores) # clip to image size det_bboxes.append(clipper(bboxes, x)) # rescale to original resolution im_scale = im_scale.reshape((-1)).asscalar() det_bboxes[-1] *= im_scale # split ground truths gt_ids.append(y.slice_axis(axis=-1, begin=4, end=5)) gt_bboxes.append(y.slice_axis(axis=-1, begin=0, end=4)) gt_bboxes[-1] *= im_scale gt_difficults.append(y.slice_axis(axis=-1, begin=5, end=6) if y.shape[-1] > 5 else None) # update metric for det_bbox, det_id, det_score, gt_bbox, gt_id, gt_diff in zip(det_bboxes, det_ids, det_scores, gt_bboxes, gt_ids, gt_difficults): eval_metric.update(det_bbox, det_id, det_score, gt_bbox, gt_id, gt_diff) return eval_metric.get() def get_lr_at_iter(alpha): return 1. / 3. * (1 - alpha) + alpha def consistent_loss(image_feature, region_feature, scale=0.1): image_feature = nd.reshape(image_feature, shape=(0, -1)) image_feature = nd.mean(image_feature, axis=1) distance = nd.square(region_feature - image_feature) * scale return distance def train(student_list, teacher_list, train_data, val_data, target_data, eval_metric, ctx, args, se_opt_list): """Training pipeline""" trainer_list = [] train_patterns = args.train_patterns for student, teacher in zip(student_list, teacher_list): student[0].collect_params().setattr('grad_req', 'null') student[0].collect_train_params(train_patterns).setattr('grad_req', 'write') teacher[0].collect_params().setattr('grad_req', 'null') teacher[0].collect_train_params(train_patterns).setattr('grad_req', 'write') for k, v in student[0].collect_params().items(): logger.info("all params:" + str(k)) for k, v in student[0].collect_train_params(train_patterns).items(): logger.info("training params:" + str(k)) trainer = gluon.Trainer( student[0].collect_train_params(train_patterns), # fix batchnorm, fix first stage, etc... 'sgd', {'learning_rate': args.lr, 'wd': args.wd, 'momentum': args.momentum, 'clip_gradient': 5}) trainer_list.append(trainer) # lr decay policy lr_decay = float(args.lr_decay) lr_steps = sorted([float(ls) for ls in args.lr_decay_epoch.split(',') if ls.strip()]) lr_warmup = float(args.lr_warmup) # avoid int division # TODO(zhreshold) losses? rpn_cls_loss = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss(from_sigmoid=False) rpn_box_loss = mx.gluon.loss.HuberLoss(rho=1 / 9.) # == smoothl1 rcnn_cls_loss = mx.gluon.loss.SoftmaxCrossEntropyLoss() rcnn_box_loss = mx.gluon.loss.HuberLoss() # == smoothl1 metrics = [mx.metric.Loss('RPN_Conf'), mx.metric.Loss('RPN_SmoothL1'), mx.metric.Loss('RCNN_CrossEntropy'), mx.metric.Loss('RCNN_SmoothL1'), ] rpn_acc_metric = RPNAccMetric() rpn_bbox_metric = RPNL1LossMetric() rcnn_acc_metric = RCNNAccMetric() rcnn_bbox_metric = RCNNL1LossMetric() metrics2 = [rpn_acc_metric, rpn_bbox_metric, rcnn_acc_metric, rcnn_bbox_metric, ScalarMetric(name="rpn_se_cnt"), ScalarMetric(name="rpn_se_loss"), ScalarMetric(name="rcnn_se_cnt"), ScalarMetric("rcnn_se_loss"), ScalarMetric("wd loss"), ScalarMetric("similarity loss"), ScalarMetric("inside graph loss")] logger.info(args) logger.info("net have classes:{}".format(student_list[0][0].classes)) logger.info('Start training from [Epoch {}]'.format(args.start_epoch)) if args.validate_resume: map_name, mean_ap = validate(teacher_list[0], val_data, ctx, eval_metric) logger.info("validating resuming model") logger.info(map_name) logger.info(mean_ap) box_to_center = None box_decoder = None clipper = None if args.dense_regions: raise NotImplementedError best_map = [0] data_size = len(train_data) data_size = data_size * 1.0 for epoch in range(args.start_epoch, args.epochs): while lr_steps and epoch >= lr_steps[0]: new_lr = trainer_list[0].learning_rate * lr_decay lr_steps.pop(0) for trainer in trainer_list: trainer.set_learning_rate(new_lr) logger.info("[Epoch {}] Set learning rate to {}".format(epoch, new_lr)) for metric in metrics: metric.reset() tic = time.time() btic = time.time() for student in student_list: if args.hybrid: student.hybridize(static_alloc=True) else: student.hybridize(False) for teacher in teacher_list: if args.hybrid: teacher.hybridize(static_alloc=True) else: teacher.hybridize(False) base_lr = trainer_list[0].learning_rate conf_thres = 0 if target_data is None: target_data_size = len(train_data) target_data = [] for _ in range(target_data_size): target_data.append([nd.zeros((1,)), nd.zeros((1,))]) if len(train_data) != len(target_data): logger.info( "train data has: {} items but target data has: {} items, it would be better if they have the same number".format( len(train_data), len(target_data))) logger.info("training data has: {} items".format(min(len(train_data), len(target_data)))) for i, (batch, target_batch) in tqdm(enumerate(zip(train_data, target_data)), total=min(len(train_data), len(target_data))): if epoch == 0 and i <= lr_warmup: # adjust based on real percentage new_lr = base_lr * get_lr_at_iter(i / lr_warmup) if new_lr != trainer_list[0].learning_rate: if i % args.log_interval == 0: logger.info('[Epoch 0 Iteration {}] Set learning rate to {}'.format(i, new_lr)) for trainer in trainer_list: trainer.set_learning_rate(new_lr) batch = split_and_load(batch, ctx_list=ctx) if args.use_se: target_batch_new = [] for target_batch_item1 in target_batch: tmp_batch = [] for tmp_data in target_batch_item1: tmp_data_reshape = nd.reshape(tmp_data, shape=(-1, 3, 0, 0)) tmp_batch.append(tmp_data_reshape) target_batch_new.append(tmp_batch) target_batch = target_batch_new target_batch = split_and_load(target_batch, ctx_list=ctx) else: target_batch = [[nd.zeros(shape=(1,), ctx=ctx[ctx_idx]) for ctx_idx in range(len(ctx))], [nd.zeros(shape=(1,), ctx=ctx[ctx_idx]) for ctx_idx in range(len(ctx))]] batch_size = len(batch[0]) losses = [] metric_losses = [[] for _ in metrics] add_losses = [[] for _ in metrics2] with autograd.record(): for data, label, rpn_cls_targets, rpn_box_targets, rpn_box_masks, target_data_image_1, target_data_image_2 in zip( *(batch + target_batch)): gt_label = label[:, :, 4:5] gt_box = label[:, :, :4] mask_score = None valid_index = 1.0 teacher_roi_list = None if args.num_teacher > 1 and args.use_se: raise NotImplementedError idx_list = [k for k in range(args.num_teacher)] for idx, student, teacher in zip(idx_list, student_list, teacher_list): if args.student_se_loss: raise NotImplementedError cls_pred, box_pred, roi, samples, matches, rpn_score, rpn_box, anchors, _, _ = student[0]( data, gt_box, None) if args.use_se: target_data_image_t = target_data_image_1[idx:idx + 1, :, :, :] cls_pred_1, _, roi_1, _, _, rpn_score_1, rpn_box_1, anchor_for_se, _, top_feature_1 = \ teacher[0]( target_data_image_t, None, teacher_roi_list) target_data_image_t = target_data_image_2[idx:idx + 1, :, :, :] if teacher_roi_list is None: if args.dense_regions: raise NotImplementedError else: teacher_roi_list = roi_1 if args.dense_regions: raise NotImplementedError cls_pred_2, _, roi_2, _, _, rpn_score_2, rpn_box_2, _, _, top_feature_2 = student[0]( target_data_image_t, None, teacher_roi_list) # cls_pred_2 = nd.stop_gradient(cls_pred_2) cls_pred_1_softmax = nd.softmax(cls_pred_1, axis=-1) cls_pred_2_softmax = nd.softmax(cls_pred_2, axis=-1) if not args.teacher_agree: max_score = nd.max(cls_pred_1_softmax[:, :, 1:], axis=-1) * valid_index if args.fixed_conf_thres: conf_thres = args.base_conf_thres else: if args.continue_conf_thres: conf_thres = 1. + epoch + 1.0 * i / data_size else: conf_thres = 1. + epoch if args.linear_conf: conf_thres = (conf_thres - 1) / args.conf_decay_epoch * ( 1 - args.base_conf_thres) + args.base_conf_thres else: conf_thres = np.log(conf_thres) / np.log(args.conf_decay_epoch) * ( 1 - args.base_conf_thres) + args.base_conf_thres mask_score = max_score > conf_thres conf_thres = min(conf_thres, args.max_conf_thres) if args.similarity_weight > 0: max_label = nd.argmax(cls_pred_1_softmax[:, :, :], axis=-1) * valid_index max_label_info = nd.broadcast_equal(nd.transpose(max_label), max_label) if args.similarity_feature == "prob": raise NotImplementedError elif args.similarity_feature == "visual": sim_feature_1 = top_feature_1[:, :, 0, 0] sim_feature_2 = top_feature_2[:, :, 0, 0] else: assert 1 == 0, "unsupport similarity feature {}".format(args.similarity_feature) if args.similarity_metric == "cosine": sim_feature_1_t = nd.L2Normalization(sim_feature_1, mode="instance") sim_feature_2_t = nd.L2Normalization(sim_feature_2, mode="instance") similarity_1 = nd.dot(sim_feature_1_t, nd.transpose(sim_feature_1_t)) similarity_2 = nd.dot(sim_feature_2_t, nd.transpose(sim_feature_2_t)) else: assert 1 == 0, "unsupport similarity metric {}".format(args.similarity_metric) if args.post_softmax: similarity_1 = nd.softmax(similarity_1, axis=-1) similarity_2 = nd.softmax(similarity_2, axis=-1) if args.similarity_distance_metric == "l1": raise NotImplementedError elif args.similarity_distance_metric == "l2": similarity_diff = nd.square(similarity_1 - similarity_2) if args.similarity_metric == "l0" or args.similarity_metric == "l1" or args.similarity_metric == "l2" or args.similarity_metric == "id": similarity_diff = nd.sum(similarity_diff, axis=2) else: assert 1 == 0, "unsupport similarity distance metric {}".format( args.similarity_distance_metric) similarity_mask = nd.dot(nd.transpose(mask_score), mask_score) if args.similarity_mask_with_equal_label: similarity_mask = similarity_mask * max_label_info + args.similarity_negative_weight * similarity_mask if args.distance_based_inside_graph: sim_feature_1 = top_feature_1[:, :, 0, 0] sim_feature_2 = top_feature_2[:, :, 0, 0] sim_feature_1_1 = nd.expand_dims(sim_feature_1, axis=1) sim_feature_1_2 = nd.expand_dims(sim_feature_1, axis=0) similarity_1 = nd.square(nd.broadcast_minus(sim_feature_1_1, sim_feature_1_2)) sim_feature_2_1 = nd.expand_dims(sim_feature_2, axis=1) sim_feature_2_2 = nd.expand_dims(sim_feature_2, axis=0) similarity_2 = nd.square(nd.broadcast_minus(sim_feature_2_1, sim_feature_2_2)) similarity_1_summed = nd.mean(similarity_1, axis=2) similarity_2_summed = nd.mean(similarity_2, axis=2) inside_graph_loss_1 = similarity_1_summed * max_label_info + ( 1 - max_label_info) * nd.relu(5 - similarity_1_summed) inside_graph_loss_2 = similarity_2_summed * max_label_info + ( 1 - max_label_info) * nd.relu(5 -
import json from enum import Enum import requests from requests import Response import os from crawler.crawler_bis.fdutils import string_or_path, web_downloader try: from urllib import quote # Python 2.X except ImportError: from urllib.parse import quote # Python 3+ class FlickrPrivacyFilter(Enum): default = u"" public = u"&privacy_filter=1" friends = u"&privacy_filter=2" family = u"&privacy_filter=3" friends_family = u"&privacy_filter=4" private = u"&privacy_filter=5" class FlickrSafeSearch(Enum): default = u"&safe_search=1" class FlickrContentType(Enum): default = u"" photos = u"&content_type=1" screenshoots = u"&content_type=2" other = u"&content_type=3" photos_screenshots = u"&content_type=4" screenshoots_other = u"&content_type=5" photos_other = u"&content_type=6" photos_screenshots_other = u"&content_type=7" class FlickrTagMode(Enum): default = u"" any = u'&tag_mode=any' # logic OR all = u'&tag_mode=all' # logic AND class FlickrMedia(Enum): default = u"" photos = u"&media=photos" videos = u"&media=videos" class FlickrResponseFormat(Enum): JSON = u"&format=json&nojsoncallback=1" JSONP = u"&format=json" XML = u"&format=rest" PHP_SERIAL = u"&format=php_serial" default = JSON class FlickrImageSize(Enum): default = u"" square_75x75 = u"_s" # 75 x 75 square_150x150 = u"_q" # 150 x 150 longedge_100 = u"_t" # 100 on the longest edge longedge_240 = u"_m" # 240 on the longest edge longedge_320 = u"_n" # 320 on the longest edge longedge_500 = u"_-" # 500 on the longest edge longedge_640 = u"_z" # 640 on the longest edge # 800 on the longest edge (flickr new feature from 01/03/2012) longedge_800 = u"_c" longedge_1024 = u"_b" # 1024 on the longest edge # 1600 on the longest edge (flickr new feature from 01/03/2012) longedge_1600 = u"_h" # 2048 on the longest edge (flickr new feature from 01/03/2012) longedge_2048 = u"_k" # class FlickrImageExtension(Enum): # jpg = "jpg" # png = "png" # gif = "gif" # default = jpg def flickr_photos_search(api_key_or_file_path, # type: unicode n_images=100, # type: int query_text=None, # type: unicode tags=None, # type: unicode tag_mode=FlickrTagMode.default, # type: FlickrTagMode content_type=FlickrContentType.default, # type: FlickrContentType safe_search=FlickrSafeSearch.default, media=FlickrMedia.default, # type: FlickrMedia response_format=FlickrResponseFormat.JSON, # type: FlickrResponseFormat license_id=None, camera=None ): # type: (unicode, int, unicode, unicode, FlickrTagMode, FlickrContentType, FlickrMedia, FlickrResponseFormat) -> list(Response) """ :rtype: list(Response) """ MAX_IMAGES_PER_PAGE = 500 # fixed by flickr api if isinstance(api_key_or_file_path, str): api_key_or_file_path = str(api_key_or_file_path) if not isinstance(api_key_or_file_path, str): raise ValueError( u"api_key_or_file_path must be a unicode (flickr api key or path to text file containing key).") api_key = string_or_path(api_key_or_file_path).split(" ")[0].split("\n")[0] query = u"https://api.flickr.com/services/rest/?method=flickr.photos.search" query += u"&api_key=" + api_key if camera is None: camera_str = '' else: camera_str = camera if isinstance(query_text, str): query_text = str(query_text) if isinstance(tags, str): tags = str(tags) # if isinstance(query_text, unicode): if query_text is not None: query += camera_str + u"&text=" + quote(query_text.encode('utf-8')) # if isinstance(tags, unicode): if tags is not None: query += u"&tags=" + \ quote(tags.encode('utf-8')) + tag_mode.value # query.replace(" ", "%20") query += content_type.value + safe_search.value + media.value + \ response_format.value + FlickrPrivacyFilter.public.value if license_id is not None: query += u"&license_id=" + str(license_id) print(query) rest = n_images % MAX_IMAGES_PER_PAGE n_queries = int(n_images / MAX_IMAGES_PER_PAGE) query_len_list = [MAX_IMAGES_PER_PAGE] * n_queries if rest > 0: query_len_list.append(rest) responses = [] for i, query_len in enumerate(query_len_list): page_query = query + u"&per_page=" + \ str(query_len) + u"&page=" + str(i + 1) responses.append(requests.get(page_query)) return responses def flickr_photos_links(api_key_or_file_path, # type: unicode n_images=100, # type: int query_text=None, # type: unicode tags=None, # type: unicode image_size=FlickrImageSize.default, # type: FlickrImageSize tag_mode=FlickrTagMode.default, # type: FlickrTagMode content_type=FlickrContentType.default, # type: FlickrContentType media=FlickrMedia.default, # type: FlickrMedia license_id=None, verbose=False, ignore_errors=False, max_error_retries=3, camera=None ): # type: (...) -> list(unicode) retry = 0 links = [] while retry < max_error_retries: links = [] try: responses = flickr_photos_search(api_key_or_file_path=api_key_or_file_path, n_images=n_images, query_text=query_text, tags=tags, tag_mode=tag_mode, content_type=content_type, media=media, response_format=FlickrResponseFormat.JSON, license_id=license_id, camera=camera ) for response in responses: if response.ok: content = response.content data = json.loads(content) if 'photos' in data.keys(): data = data['photos']['photo'] for d in data: # https://farm{farm-id}.staticflickr.com/{server-id}/{id}_{secret}_[mstzb].jpg lnk = u"https://farm{}.staticflickr.com/{}/{}_{}{}.jpg"\ .format(d['farm'], d['server'], d['id'], d['secret'], image_size.value) links.append(lnk) else: if not ignore_errors: print( u"Format error in received json (can't find key 'photos').") if 'message' in data.keys(): print(u"Received Message: {}".format( data['message'].encode("utf-8"))) else: if not ignore_errors: print(u"Flickr response not ok.") if verbose: print(u"Links retrived from flickr responses: {}".format(len(links))) return links except ValueError as v: retry -= 1 if verbose or not ignore_errors: print(u"Value Error in flickr_photos_links process:") print(v.message) if retry < max_error_retries: print(u"Retry {}".format(retry)) return links def flickr_photos_downloader(api_key_or_file_path, # type: unicode n_images=100, # type: int query_text=None, # type: unicode tags=None, # type: unicode tag_mode=FlickrTagMode.default, # type: FlickrTagMode image_size=FlickrImageSize.default, # type: FlickrImageSize content_type=FlickrContentType.default, # type: FlickrContentType media=FlickrMedia.default, # type: FlickrMedia license_id=None, download_path=u"", save_filename_prefix=u"flickr_", forced_extension=None, verbose=False, ignore_errors=False, max_error_retries=3, camera=None ): # type: (...) -> list(unicode) if os.path.isfile('../links-selfie-6000.txt'): print("links file found") with open('../links-selfie-6000.txt', 'r') as file: links = file.read().split('\n') else: print("links not found; loading and writing to text file") links = flickr_photos_links(api_key_or_file_path=api_key_or_file_path, query_text=query_text, tags=tags, n_images=n_images, image_size=image_size, tag_mode=tag_mode, content_type=content_type, media=media, verbose=verbose, ignore_errors=ignore_errors, license_id=license_id, max_error_retries=max_error_retries, camera=camera) with open('../links-selfie-6000.txt', 'w') as file: file.write("\n".join(links)) for i in range(len(links)): links[i] = links[i].replace('_h', '_b') links = list(set(links)) print(len(links)) web_downloader(link_list=links, download_path=download_path, k=0, save_filename_prefix=save_filename_prefix, forced_extension=forced_extension, verbose=verbose, ignore_errors=ignore_errors) return links # Flickr Documentations: # For search: # https://www.flickr.com/services/api/explore/flickr.photos.search # (use public = 1 in the query!) # (log in in flickr to automatically insert my api key). # # # To download images, look at here: https://www.flickr.com/services/api/misc.urls.html # example: http://farm3.staticflickr.com/2636/32179988483_cd41d8fca9_b.jpg # # Otherwise you can use getSize query and use the source response to get the direct link: # http://www.flickr.com/services/api/flickr.photos.getSizes.html # # * * * * * * * * * * * * * * * * * * * SEARCH API * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * # SEARCH API ( https://www.flickr.com/services/api/flickr.photos.search.html ) # EXAMPLE OF QUERY: # https://api.flickr.com/services/rest/?method=flickr.photos.search # &api_key=API_KEY # &tags=art # &text=david # &per_page=100 # &page=1 # &format=json # tags (Not mandatory) # A comma-delimited list of tags. Photos with one or more of the tags listed will be returned. You can exclude results # that match a term by prepending it with a - character. # tag_mode (Not mandatory) # Either 'any' for an OR combination of tags, or 'all' for an AND combination. Defaults to 'any' if not specified. # text (Not mandatory) # A free text search. Photos who's title, description or tags contain the text will be returned. You can exclude results # that match a term by prepending it with a - character. # sort (Not mandatory) # The order in which to sort returned photos. Deafults to date-posted-desc (unless you are doing a radial geo query, in # which case the default sorting is by ascending distance from the point specified). The possible values are: # date-posted-asc, # date-posted-desc, # date-taken-asc, # date-taken-desc, # interestingness-desc, # interestingness-asc, # relevance. # privacy_filter (Not mandatory) # Return photos only matching a certain privacy level. # This only applies when making an authenticated call to view photos you own. # Valid values are: # 1 public photos # 2 private photos visible to friends # 3 private photos visible to family # 4 private photos visible to friends & family # 5 completely private photos # content_type (Not mandatory) # Content Type setting: # 1 for photos only. # 2 for screenshots only. # 3 for 'other' only. # 4 for photos and screenshots. # 5 for screenshots and 'other'. # 6 for photos and 'other'. # 7 for photos, screenshots, and 'other' (all). # media (Not mandatory) # Filter results by media type. Possible values are all (default), photos or videos # per_page (Not mandatory) # Number of photos to return per page. If this argument is omitted, it defaults to 100. The maximum allowed value is 500. # page (Not mandatory) # The page of results to return. If this argument is omitted, it defaults to 1. # FOR LOCALIZATION: # geo_context (Not mandatory) # Geo context is a numeric value representing the photo's geotagginess beyond latitude and longitude. # For example, you may wish to search for photos that were taken "indoors" or "outdoors". # The current list of context IDs is : # 0, not defined. # 1, indoors. # 2, outdoors. # Geo queries require some sort of limiting agent in order to prevent the database from crying. # This is basically like the check against "parameterless searches" for queries without a geo component. # # A tag, for instance, is considered a limiting agent as are user defined min_date_taken and min_date_upload parameters # If no limiting factor is passed we return only photos added in the last 12 hours (though
<filename>src/quo/layout/containers.py """ Container for the layout. (Containers can contain other containers or user interface controls.) """ from abc import ABCMeta, abstractmethod from enum import Enum from functools import partial from typing import ( TYPE_CHECKING, Callable, Dict, List, Optional, Sequence, Tuple, Union, cast, ) from quo.suite.current import get_app from quo.cache import SimpleCache from quo.data_structures import Point from quo.filters import ( FilterOrBool, emacs_insert_mode, to_filter, vi_insert_mode, ) from quo.text import ( AnyFormattedText, StyleAndTextTuples, to_formatted_text, ) from quo.text.utils import ( fragment_list_to_text, fragment_list_width, ) from quo.keys.key_binding import KeyBindingsBase from quo.mouse_events import MouseEvent, MouseEventType from quo.utils.utils import get_width as get_cwidth from quo.utils.utils import take_using_weights, to_int, to_str from .controls import ( DummyControl, FormattedTextControl, GetLinePrefixCallable, UIContent, UIControl, ) from .dimension import ( AnyDimension, Dimension, max_layout_dimensions, sum_layout_dimensions, to_dimension, ) from .margins import Margin from .mouse_handlers import MouseHandlers from .screen import _CHAR_CACHE, Screen, WritePosition from .utils import explode_text_fragments if TYPE_CHECKING: from typing_extensions import Protocol NotImplementedOrNone = object __all__ = [ "AnyContainer", "Container", "HorizontalAlign", "VerticalAlign", "HSplit", "VSplit", "FloatContainer", "Float", "WindowAlign", "Window", "WindowRenderInfo", "ConditionalContainer", "ScrollOffsets", "ColorColumn", "to_container", "to_window", "is_container", "DynamicContainer", ] class Container(metaclass=ABCMeta): """ Base class for user interface layout. """ @abstractmethod def reset(self) -> None: """ Reset the state of this container and all the children. (E.g. reset scroll offsets, etc...) """ @abstractmethod def preferred_width(self, max_available_width: int) -> Dimension: """ Return a :class:`~quo.layout.Dimension` that represents the desired width for this container. """ @abstractmethod def preferred_height(self, width: int, max_available_height: int) -> Dimension: """ Return a :class:`~quo.layout.Dimension` that represents the desired height for this container. """ @abstractmethod def write_to_screen( self, screen: Screen, mouse_handlers: MouseHandlers, write_position: WritePosition, parent_style: str, erase_bg: bool, z_index: Optional[int], ) -> None: """ Write the actual content to the screen. :param screen: :class:`~quo.layout.screen.Screen` :param mouse_handlers: :class:`~quo.layout.mouse_handlers.MouseHandlers`. :param parent_style: Style string to pass to the :class:`.Window` object. This will be applied to all content of the windows. :class:`.VSplit` and :class:`.HSplit` can use it to pass their style down to the windows that they contain. :param z_index: Used for propagating z_index from parent to child. """ def is_modal(self) -> bool: """ When this container is modal, key bindings from parent containers are not taken into account if a user control in this container is focused. """ return False def get_key_bindings(self) -> Optional[KeyBindingsBase]: """ Returns a :class:`.KeyBinder` object. These bindings become active when any user control in this container has the focus, except if any containers between this container and the focused user control is modal. """ return None @abstractmethod def get_children(self) -> List["Container"]: """ Return the list of child :class:`.Container` objects. """ return [] if TYPE_CHECKING: class MagicContainer(Protocol): """ Any object that implements ``__pt_container__`` represents a container. """ def __pt_container__(self) -> "AnyContainer": ... AnyContainer = Union[Container, "MagicContainer"] def _window_too_small() -> "Window": "Create a `Window` that displays the 'Window too small' text." return Window( FormattedTextControl(text=[("class:window-too-small", "𝚃𝚑𝚎 𝚠𝚒𝚗𝚍𝚘𝚠 𝚒𝚜 𝚝𝚘𝚘 𝚜𝚖𝚊𝚕𝚕,\n 𝚣𝚘𝚘𝚖 𝚘𝚞𝚝...⏳")]) ) class VerticalAlign(Enum): "Alignment for `HSplit`." TOP = "TOP" CENTER = "CENTER" BOTTOM = "BOTTOM" JUSTIFY = "JUSTIFY" class HorizontalAlign(Enum): "Alignment for `VSplit`." LEFT = "LEFT" CENTER = "CENTER" RIGHT = "RIGHT" JUSTIFY = "JUSTIFY" class _Split(Container): """ The common parts of `VSplit` and `HSplit`. """ def __init__( self, subset: Sequence[AnyContainer], window_too_small: Optional[Container] = None, padding: AnyDimension = Dimension.exact(0), padding_char: Optional[str] = None, padding_style: str = "", width: AnyDimension = None, height: AnyDimension = None, z_index: Optional[int] = None, modal: bool = False, bind: Optional[KeyBindingsBase] = None, style: Union[str, Callable[[], str]] = "", ) -> None: self.subset = [to_container(c) for c in subset] self.window_too_small = window_too_small or _window_too_small() self.padding = padding self.padding_char = padding_char self.padding_style = padding_style self.width = width self.height = height self.z_index = z_index self.modal = modal self.bind = bind self.style = style def is_modal(self) -> bool: return self.modal def get_key_bindings(self) -> Optional[KeyBindingsBase]: return self.bind def get_children(self) -> List[Container]: return self.subset class HSplit(_Split): """ Several layouts, one stacked above/under the other. :: +--------------------+ | | +--------------------+ | | +--------------------+ By default, this doesn't display a horizontal line between the children, but if this is something you need, then create a HSplit as follows:: HSplit(subset=[ ... ], padding_char='-', padding=1, padding_style='green') :param subset: List of child :class:`.Container` objects. :param window_too_small: A :class:`.Container` object that is displayed if there is not enough space for all the subsets By default, this is a "Window too small" message. :param align: `VerticalAlign` value. :param width: When given, use this width instead of looking at the children. :param height: When given, use this height instead of looking at the children. :param z_index: (int or None) When specified, this can be used to bring element in front of floating elements. `None` means: inherit from parent. :param style: A style string. :param modal: ``True`` or ``False``. :param bind: ``None`` or a :class:`.KeyBinder` object. :param padding: (`Dimension` or int), size to be used for the padding. :param padding_char: Character to be used for filling in the padding. :param padding_style: Style to applied to the padding. """ def __init__( self, subset: Sequence[AnyContainer], window_too_small: Optional[Container] = None, align: VerticalAlign = VerticalAlign.JUSTIFY, padding: AnyDimension = 0, padding_char: Optional[str] = None, padding_style: str = "", width: AnyDimension = None, height: AnyDimension = None, z_index: Optional[int] = None, modal: bool = False, bind: Optional[KeyBindingsBase] = None, style: Union[str, Callable[[], str]] = "", ) -> None: super().__init__( subset=subset, window_too_small=window_too_small, padding=padding, padding_char=padding_char, padding_style=padding_style, width=width, height=height, z_index=z_index, modal=modal, bind=bind, style=style, ) self.align = align self._subset_cache: SimpleCache[ Tuple[Container, ...], List[Container] ] = SimpleCache(maxsize=1) self._remaining_space_window = Window() # Dummy window. def preferred_width(self, max_available_width: int) -> Dimension: if self.width is not None: return to_dimension(self.width) if self.subset: dimensions = [c.preferred_width(max_available_width) for c in self.subset] return max_layout_dimensions(dimensions) else: return Dimension() def preferred_height(self, width: int, max_available_height: int) -> Dimension: if self.height is not None: return to_dimension(self.height) dimensions = [ c.preferred_height(width, max_available_height) for c in self._all_subset ] return sum_layout_dimensions(dimensions) def reset(self) -> None: for c in self.subset: c.reset() @property def _all_subset(self) -> List[Container]: """ List of child objects, including padding. """ def get() -> List[Container]: result: List[Container] = [] # Padding Top. if self.align in (VerticalAlign.CENTER, VerticalAlign.BOTTOM): result.append(Window(width=Dimension(preferred=0))) # The children with padding. for child in self.subset: result.append(child) result.append( Window( height=self.padding, char=self.padding_char, style=self.padding_style, ) ) if result: result.pop() # Padding right. if self.align in (VerticalAlign.CENTER, VerticalAlign.TOP): result.append(Window(width=Dimension(preferred=0))) return result return self._subset_cache.get(tuple(self.subset), get) def write_to_screen( self, screen: Screen, mouse_handlers: MouseHandlers, write_position: WritePosition, parent_style: str, erase_bg: bool, z_index: Optional[int], ) -> None: """ Render the prompt to a `Screen` instance. :param screen: The :class:`~quo.layout.screen.Screen` class to which the output has to be written. """ sizes = self._divide_heights(write_position) style = parent_style + " " + to_str(self.style) z_index = z_index if self.z_index is None else self.z_index if sizes is None: self.window_too_small.write_to_screen( screen, mouse_handlers, write_position, style, erase_bg, z_index ) else: # ypos = write_position.ypos xpos = write_position.xpos width = write_position.width # Draw child panes. for s, c in zip(sizes, self._all_subset): c.write_to_screen( screen, mouse_handlers, WritePosition(xpos, ypos, width, s), style, erase_bg, z_index, ) ypos += s # Fill in the remaining space. This happens when a child control # refuses to take more space and we don't have any padding. Adding a # dummy child control for this (in `self._all_children`) is not # desired, because in some situations, it would take more space, even # when it's not required. This is required to apply the styling. remaining_height = write_position.ypos + write_position.height - ypos if remaining_height > 0: self._remaining_space_window.write_to_screen( screen, mouse_handlers, WritePosition(xpos, ypos, width, remaining_height), style, erase_bg, z_index, ) def _divide_heights(self, write_position: WritePosition) -> Optional[List[int]]: """ Return the heights for all rows. Or None when there is not enough space. """ if not self.subset: return [] width = write_position.width height = write_position.height # Calculate heights. dimensions = [c.preferred_height(width, height) for c in self._all_subset] # Sum dimensions sum_dimensions = sum_layout_dimensions(dimensions) # If there is not enough space for both. # Don't do anything. if sum_dimensions.min > height: return None # Find optimal sizes. (Start with minimal size, increase until we cover # the whole height.) sizes = [d.min for d in dimensions] child_generator = take_using_weights( items=list(range(len(dimensions))), weights=[d.weight for d in dimensions] ) i = next(child_generator) # Increase until we meet at least the 'preferred' size. preferred_stop = min(height, sum_dimensions.preferred) preferred_dimensions = [d.preferred for d
# -*- coding: utf-8 -*- """ Created on Sun Dec 16 17:02:37 2018 @author: shenzx """ from __future__ import print_function import warnings import shutil from os.path import join import numpy as np from ase.io.abacus import write_input_stru from ase.calculators.calculator import FileIOCalculator # copyright © Key Lab of Quantum Information, CAS, China """This module defines an ASE interface to ABACUS Developed on the basis of modules by <NAME>. The path of the directory containing the pseudopotential and basis directories (LDA, PBE, SG15, ORBITAL, ...) should be set by the enviromental flag $ABACUS_PP_PATH, $ABACUS_ORBITAL_PATH. The user should also set the enviroment flag $ABACUS_SCRIPT pointing to a python script looking like:: import os exitcode = os.system('abacus') http://abacus.ustc.edu.cn/ """ # Parameters list that can be set in INPUT. -START- # 1 general_keys = [ 'suffix', # the name of main output directory 'latname', # the name of lattice name 'atom_file', # the filename of file containing atom positions 'kpoint_file', # the name of file containing k points 'pseudo_dir', # the directory containing pseudo files 'pseudo_type', # the type pseudo files 'dft_functional', # exchange correlation functional 'calculation', # test; scf; relax; nscf; ienvelope; istate; 'ntype', # atom species number 'nspin', # 1: single spin; 2: up and down spin; 'nbands', # number of bands 'nbands_istate', # number of bands around Fermi level for istate calulation 'symmetry', # turn symmetry on or off 'nelec' # input number of electrons ] # 2 pw_keys = [ 'ecutwfc', # energy cutoff for wave functions 'ethr', # threshold for eigenvalues is cg electron iterations 'dr2', # charge density error 'start_wfc', # start wave functions are from 'atomic' or 'file' 'start_charge', # start charge is from 'atomic' or file 'charge_extrap', # atomic; first-order; second-order; dm:coefficients of SIA 'out_charge', # >0 output charge density for selected electron steps 'out_potential', # output realspace potential 'out_wf', # output wave functions 'out_dos', # output energy and dos 'out_band', # output energy and band structure 'nx', # number of points along x axis for FFT grid 'ny', # number of points along y axis for FFT grid 'nz' # number of points along z axis for FFT grid ] # 3 relaxation_keys = [ 'ks_solver', # cg; david; lapack; genelpa; hpseps; 'niter', # number of electron iterations 'vna', # use the vna or not 'grid_speed', # 1:normal 2:fast 'force_set', # output the force_set or not 'force', # calculate the force 'nstep', # number of ion iteration steps 'out_stru', # output the structure files after each ion step 'force_thr', # force threshold, unit: Ry/Bohr 'force_thr_ev', # force threshold, unit: eV/Angstrom 'force_thr_ev2', # force invalid threshold, unit: eV/Angstrom 'stress_thr', # stress threshold 'press1', # target pressure, unit: KBar 'press2', # target pressure, unit: KBar 'press3', # target pressure, unit: KBar 'bfgs_w1', # wolfe condition 1 for bfgs 'bfgs_w2', # wolfe condition 2 for bfgs 'trust_radius_max', # maximal trust radius, unit: Bohr 'trust_radius_min', # minimal trust radius, unit: Bohr 'trust_radius_ini', # initial trust radius, unit: Bohr 'stress', # calculate the stress or not 'fixed_axes', # which axes are fixed 'move_method', # bfgs; sd; cg; cg_bfgs; 'out_level', # ie(for electrons); i(for ions); 'out_dm' # >0 output density matrix ] # 4 lcao_keys = [ 'basis_type', # PW; LCAO in pw; LCAO 'search_radius', # input search radius (Bohr) 'search_pbc', # input periodic boundary condition 'lcao_ecut', # energy cutoff for LCAO 'lcao_dk', # delta k for 1D integration in LCAO 'lcao_dr', # delta r for 1D integration in LCAO 'lcao_rmax', # max R for 1D two-center integration table 'out_hs', # output H and S matrix 'out_lowf', # ouput LCAO wave functions 'bx', # division of an element grid in FFT grid along x 'by', # division of an element grid in FFT grid along y 'bz' # division of an element grid in FFT grid along z ] # 5 smearing_keys = [ 'smearing', # type of smearing: gauss; fd; fixed; mp; mp2 'sigma' # energy range for smearing ] # 6 charge_mixing_keys = [ 'mixing_type', # plain; kerker; pulay; pulay-kerker 'mixing_beta', # mixing parameter: 0 means no new charge 'mixing_ndim', # mixing dimension in pulay 'mixing_gg0' # mixing parameter in kerker ] # 7 dos_keys = [ 'dos_emin_ev', # minimal range for dos 'dos_emax_ev', # maximal range for dos 'dos_edelta_ev', # delta energy for dos 'dos_sigma' # gauss b coefficeinet(default=0.07) ] # 8 technique_keys = [ 'gamma_only', # gamma only 'diago_proc', # number of proc used to diago 'npool', # number of pools for k points, pw only 'sparse_matrix', # use sparse matrix, in DMM 'atom_distribution', # distribute atoms, in DMM 'mem_saver', # memory saver for many k points used 'printe' # print band energy for selectively ionic steps ] # 9 siao_keys = [ 'selinv_npole', # number of selected poles 'selinv_temp', # temperature for Fermi-Dirac distribution 'selinv_gap', # supposed gap in the calculation 'selinv_deltae', # expected energy range 'selinv_mu', # chosen mu as Fermi energy 'selinv_threshold', # threshold for calculated electron number 'selinv_niter', # max number of steps to update mu ] # 10 molecular_dynamics_keys = [ 'md_mdtype', # choose ensemble 'md_dt', # time step 'md_nresn', # parameter during integrater 'md_nyosh', # parameter during integrater 'md_qmass', # mass of thermostat 'md_tfirst', # temperature first 'md_tlast', # temperature last 'md_dumpmdfred', # The period to dump MD information for monitoring and restarting MD 'md_mdoutpath', # output path of md 'md_domsd', # whether compute <r(t)-r(0)> 'md_domsdatom', # whether compute msd for each atom 'md_rstmd', # whether restart 'md_fixtemperature', # period to change temperature 'md_ediff', # parameter for constraining total energy change 'md_ediffg', # parameter for constraining max force change 'md_msdstarttime' # choose which step that msd be calculated ] # 11 efield_keys = [ 'efield', # add electric field 'edir', # add electric field 'emaxpos', # maximal position of efield [0, 1 'eopreg', # where sawlike potential decrease 'eamp', # amplitute of the efield, unit is a.u. 'eamp_v' # amplitute of the efield, unit is V/A ] # 12 bfield_keys = [ 'bfield', # add magnetic field 'bfield_teslax', # magnetic field strength 'bfield_teslay', # magnetic field strength 'bfield_teslaz', # magnetic field strength 'bfield_gauge_x', # magnetic field gauge origin 'bfield_gauge_y', # magnetic field gauge origin 'bfield_gauge_z' # magnetic field gauge origin ] # 13 test_keys = [ 'out_alllog', # output information for each processor, when parallel 'nurse', # for coders 'colour', # for coders, make their live colourful 't_in_h', # calculate the kinetic energy or not 'vl_in_h', # calculate the local potential or not 'vnl_in_h', # calculate the nonlocal potential or not 'zeeman_in_h', # calculate the zeeman term or not 'test_force', # test the force 'test_stress' # test the force ] # 14 other_methods_keys = [ 'mlwf_flag', # turn MLWF on or off 'opt_epsilon2', # calculate the dielectic function 'opt_nbands' # number of bands for optical calculation ] # 15 vdw_d2_keys = [ 'vdwD2', # calculate vdw-D2 or not 'vdwD2_scaling', # scaling of vdw-D2 'vdwD2_d', # damping parameter 'vdwD2_C6_file', # filename of C6 'vdwD2_C6_unit', # unit of C6, Jnm6/mol or eVA6 'vdwD2_R0_file', # filename of R0 'vdwD2_R0_unit', # unit of R0, A or Bohr 'vdwD2_model', # expression model of periodic structure, radius or period 'vdwD2_radius', # radius cutoff for periodic structure 'vdwD2_radius_unit', # unit of radius cutoff for periodic structure 'vdwD2_period' # periods of periodic structure ] # 16 spectrum_keys = [ 'spectral_type', # the type of the calculated spectrum 'spectral_method', # 0: tddft(linear response) 'kernel_type', # the kernel type: rpa, tdlda ... 'eels_method', # 0: hilbert_transform method; 1: standard method 'absorption_method', # 0: vasp's method 1: pwscf's method 'system', # the calculate system 'eta', # eta(Ry) 'domega', # domega(Ry) 'nomega', # nomega 'ecut_chi', # the dimension of chi matrix 'q_start', # the position of the first q point in direct coordinate 'q_direction', # the q direction 'nq', # the total number of qpoints for calculation 'out_epsilon', # output epsilon or not 'out_chi', # output chi or not 'out_chi0', # output chi0 or not 'fermi_level', # the change of the fermi_level(Ry) 'coulomb_cutoff', # turn on the coulomb_cutoff or not 'kmesh_interpolation', # calculting <i, 0|j, R> 'qcar', # (unit: 2PI/lat0) 'lcao_box', # the scale
import json import logging import re import time import os from threading import Semaphore, Thread, current_thread try: from bs4 import BeautifulSoup import requests inited = 1 except ImportError: inited = 0 try: import vim except ImportError: vim = None LC_BASE = os.environ['LEETCODE_BASE_URL'] LC_CSRF = LC_BASE + '/ensure_csrf/' LC_LOGIN = LC_BASE + '/accounts/login/' LC_GRAPHQL = LC_BASE + '/graphql' LC_CATEGORY_PROBLEMS = LC_BASE + '/api/problems/{category}' LC_PROBLEM = LC_BASE + '/problems/{slug}/description' LC_TEST = LC_BASE + '/problems/{slug}/interpret_solution/' LC_SUBMIT = LC_BASE + '/problems/{slug}/submit/' LC_SUBMISSIONS = LC_BASE + '/api/submissions/{slug}' LC_SUBMISSION = LC_BASE + '/submissions/detail/{submission}/' LC_CHECK = LC_BASE + '/submissions/detail/{submission}/check/' LC_PROBLEM_SET_ALL = LC_BASE + '/problemset/all/' EMPTY_FREQUENCIES = [0, 0, 0, 0, 0, 0, 0, 0] session = None task_running = False task_done = False task_trigger = Semaphore(0) task_name = '' task_input = None task_progress = '' task_output = None task_err = '' log = logging.getLogger(__name__) log.setLevel(logging.ERROR) def enable_logging(): out_hdlr = logging.FileHandler('leetcode-vim.log') out_hdlr.setFormatter(logging.Formatter('%(asctime)s %(message)s')) out_hdlr.setLevel(logging.INFO) log.addHandler(out_hdlr) log.setLevel(logging.INFO) def _make_headers(): assert is_login() headers = {'Origin': LC_BASE, 'Referer': LC_BASE, 'X-CSRFToken': session.cookies['csrftoken'], 'X-Requested-With': 'XMLHttpRequest'} return headers def _level_to_name(level): if level == 1: return 'Easy' if level == 2: return 'Medium' if level == 3: return 'Hard' return ' ' def _state_to_flag(state): if state == 'ac': return 'X' if state == 'notac': return '?' return ' ' def _status_to_name(status): if status == 10: return 'Accepted' if status == 11: return 'Wrong Answer' if status == 12: return 'Memory Limit Exceeded' if status == 13: return 'Output Limit Exceeded' if status == 14: return 'Time Limit Exceeded' if status == 15: return 'Runtime Error' if status == 16: return 'Internal Error' if status == 20: return 'Compile Error' if status == 21: return 'Unknown Error' return 'Unknown State' def _break_code_lines(s): return s.replace('\r\n', '\n').replace('\xa0', ' ').split('\n') def _break_paragraph_lines(s): lines = _break_code_lines(s) result = [] # reserve one and only one empty line between two non-empty lines for line in lines: if line.strip() != '': # a line with only whitespaces is also empty result.append(line) result.append('') return result def _remove_description(code): eod = code.find('[End of Description]') if eod == -1: return code eol = code.find('\n', eod) if eol == -1: return '' return code[eol+1:] def is_login(): return session and 'LEETCODE_SESSION' in session.cookies def signin(username, password): global session session = requests.Session() if 'cn' in LC_BASE: res = session.get(LC_CSRF) else: res = session.get(LC_LOGIN) if res.status_code != 200: _echoerr('cannot open ' + LC_BASE) return False headers = {'Origin': LC_BASE, 'Referer': LC_LOGIN} form = {'csrfmiddlewaretoken': session.cookies['csrftoken'], 'login': username, 'password': password} log.info('signin request: headers="%s" login="%s"', headers, username) # requests follows the redirect url by default # disable redirection explicitly res = session.post(LC_LOGIN, data=form, headers=headers, allow_redirects=False) log.info('signin response: status="%s" body="%s"', res.status_code, res.text) if res.status_code != 302: _echoerr('password incorrect') return False return True def _get_category_problems(category): headers = _make_headers() url = LC_CATEGORY_PROBLEMS.format(category=category) res = session.get(url, headers=headers) if res.status_code != 200: _echoerr('cannot get the category: {}'.format(category)) return [] problems = [] content = res.json() for p in content['stat_status_pairs']: # skip hidden questions if p['stat']['question__hide']: continue problem = {'state': _state_to_flag(p['status']), 'id': p['stat']['question_id'], 'fid': p['stat']['frontend_question_id'], 'title': p['stat']['question__title'], 'slug': p['stat']['question__title_slug'], 'paid_only': p['paid_only'], 'ac_rate': p['stat']['total_acs'] / p['stat']['total_submitted'], 'level': _level_to_name(p['difficulty']['level']), 'favor': p['is_favor'], 'category': content['category_slug'], 'frequency': p['frequency']} problems.append(problem) return problems def get_problems(categories): assert is_login() problems = [] for c in categories: problems.extend(_get_category_problems(c)) return sorted(problems, key=lambda p: p['id']) def get_problem(slug): assert is_login() headers = _make_headers() headers['Referer'] = LC_PROBLEM.format(slug=slug) body = {'query': '''query getQuestionDetail($titleSlug : String!) { question(titleSlug: $titleSlug) { questionId title content stats difficulty codeDefinition sampleTestCase enableRunCode translatedContent } }''', 'variables': {'titleSlug': slug}, 'operationName': 'getQuestionDetail'} log.info('get_problem request: url="%s" headers="%s" body="%s"', LC_GRAPHQL, headers, body) res = session.post(LC_GRAPHQL, json=body, headers=headers) log.info('get_problem response: status="%s" body="%s"', res.status_code, res.text) if res.status_code != 200: _echoerr('cannot get the problem: {}'.format(slug)) return None q = res.json()['data']['question'] content = q['translatedContent'] or q['content'] if content is None: _echoerr('cannot get the problem: {}'.format(slug)) return None soup = BeautifulSoup(content, features='html.parser') problem = {} problem['id'] = q['questionId'] problem['title'] = q['title'] problem['slug'] = slug problem['level'] = q['difficulty'] problem['desc'] = _break_paragraph_lines(soup.get_text()) problem['templates'] = {} for t in json.loads(q['codeDefinition']): problem['templates'][t['value']] = _break_code_lines(t['defaultCode']) problem['testable'] = q['enableRunCode'] problem['testcase'] = q['sampleTestCase'] stats = json.loads(q['stats']) problem['total_accepted'] = stats['totalAccepted'] problem['total_submission'] = stats['totalSubmission'] problem['ac_rate'] = stats['acRate'] return problem def _split(s): # str.split has an disadvantage that ''.split('\n') results in [''], but what we want # is []. This small function returns [] if `s` is a blank string, that is, containing no # characters other than whitespaces. if s.strip() == '': return [] return s.split('\n') def _check_result(submission_id): global task_progress if _in_task(): prog_stage = 'Uploading ' prog_bar = '.' task_progress = prog_stage + prog_bar while True: headers = _make_headers() url = LC_CHECK.format(submission=submission_id) log.info('check result request: url="%s" headers="%s"', url, headers) res = session.get(url, headers=headers) log.info('check result response: status="%s" body="%s"', res.status_code, res.text) if res.status_code != 200: _echoerr('cannot get the execution result') return None if _in_task(): prog_bar += '.' r = res.json() if r['state'] == 'SUCCESS': prog_stage = 'Done ' break elif r['state'] == 'PENDING': prog_stage = 'Pending ' elif r['state'] == 'STARTED': prog_stage = 'Running ' if _in_task(): task_progress = prog_stage + prog_bar time.sleep(1) result = { 'answer': r.get('code_answer', []), 'runtime': r['status_runtime'], 'state': _status_to_name(r['status_code']), 'testcase': _split(r.get('input', r.get('last_testcase', ''))), 'passed': r.get('total_correct') or 0, 'total': r.get('total_testcases') or 0, 'error': [v for k, v in r.items() if 'error' in k and v] } # the keys differs between the result of testing the code and submitting it # for submission judge_type is 'large', and for testing judge_type does not exist if r.get('judge_type') == 'large': result['answer'] = _split(r.get('code_output', '')) result['expected_answer'] = _split(r.get('expected_output', '')) result['stdout'] = _split(r.get('std_output', '')) result['runtime_percentile'] = r.get('runtime_percentile', '') else: # Test states cannot distinguish accepted answers from wrong answers. if result['state'] == 'Accepted': result['state'] = 'Finished' result['stdout'] = r.get('code_output', []) result['expected_answer'] = [] result['runtime_percentile'] = r.get('runtime_percentile', '') result['expected_answer'] = r.get('expected_code_answer', []) return result def test_solution(problem_id, title, slug, filetype, code, test_input): assert is_login() code = _remove_description(code) headers = _make_headers() headers['Referer'] = LC_PROBLEM.format(slug=slug) body = {'data_input': test_input, 'lang': filetype, 'question_id': str(problem_id), 'test_mode': False, 'typed_code': code} url = LC_TEST.format(slug=slug) log.info('test solution request: url="%s" headers="%s" body="%s"', url, headers, body) res = session.post(url, json=body, headers=headers) log.info('test solution response: status="%s" body="%s"', res.status_code, res.text) if res.status_code != 200: if 'too fast' in res.text: _echoerr('you are sending the request too fast') else: _echoerr('cannot test the solution for ' + slug) return None result = _check_result(res.json()['interpret_id']) result['testcase'] = test_input.split('\n') result['title'] = title return result def test_solution_async(problem_id, title, slug, filetype, code, test_input): assert is_login() global task_input, task_name if task_running: _echoerr('there is other task running: ' + task_name) return False code = _remove_description(code) task_name = 'test_solution' task_input = [problem_id, title, slug, filetype, code, test_input] task_trigger.release() return True def submit_solution(slug, filetype, code=None): assert is_login() problem = get_problem(slug) if not problem: return None if code is None: code = '\n'.join(vim.current.buffer) code = _remove_description(code) headers = _make_headers() headers['Referer'] = LC_PROBLEM.format(slug=slug) body = {'data_input': problem['testcase'], 'lang': filetype, 'question_id': str(problem['id']), 'test_mode': False, 'typed_code': code, 'judge_type': 'large'} url = LC_SUBMIT.format(slug=slug) log.info('submit solution request: url="%s" headers="%s" body="%s"', url, headers, body) res = session.post(url, json=body, headers=headers) log.info('submit solution response: status="%s" body="%s"', res.status_code, res.text) if res.status_code != 200: if 'too fast' in res.text: _echoerr('you are sending the request too fast') else: _echoerr('cannot submit the solution for ' + slug) return None result = _check_result(res.json()['submission_id']) result['title'] = problem['title'] return result def submit_solution_async(slug, filetype, code=None): assert is_login() global task_input, task_name if task_running: _echoerr('there is other task running: ' + task_name) return False if code is None: code = '\n'.join(vim.current.buffer) task_name = 'submit_solution' task_input = [slug, filetype, code] task_trigger.release() return True def get_submissions(slug): assert is_login() headers = _make_headers() headers['Referer'] = LC_PROBLEM.format(slug=slug) url = LC_SUBMISSIONS.format(slug=slug) log.info('get submissions request: url="%s" headers="%s"', url, headers) res = session.get(url, headers=headers) log.info('get submissions response: status="%s" body="%s"', res.status_code, res.text) if res.status_code != 200: _echoerr('cannot find the submissions of problem: ' + slug) return None submissions = [] for r in res.json()['submissions_dump']: s = { 'id': r['url'].split('/')[3], 'time': r['time'].replace('\xa0', ' '), 'status': r['status_display'], 'runtime': r['runtime'], } submissions.append(s) return submissions def _group1(match, default): if match: return match.group(1) return default def _unescape(s): return s.encode().decode('unicode_escape') def get_submission(sid): assert is_login() headers = _make_headers() url = LC_SUBMISSION.format(submission=sid) log.info('get submission request: url="%s" headers="%s"', url, headers) res = session.get(url, headers=headers) log.info('get submission response: status="%s" body="%s"', res.status_code, res.text) if res.status_code != 200: _echoerr('cannot find the submission: ' + sid) return None # we need to parse the data from the Javascript snippet s = res.text
+ fns) rejection_fraction = tns / (tns + fps) fprs = fps / (fps + tns) return rejection_fraction, tprs, fprs, thresholds def disp_multiple_learn_hist(locations,losslim=None,show=True,titles=None,best_only=False,leg_font=10,title_font=10): ''' Plots a grid of learning histories. Args: locations ... list of paths to directories of training dumps losslim ... limit of loss axis show ... bool, whether to show the plot titles ... list of titles for each plot in the grid best_only ... bool, whether to plot only the points where best model was saved leg_font ... legend font size author: <NAME> June 2020 ''' ncols = len(locations) if len(locations) < 3 else 3 nrows = math.ceil(len(locations)/3) if nrows==1 and ncols==1: fig = plt.figure(facecolor='w',figsize=(12,12)) else: fig = plt.figure(facecolor='w',figsize=(12,nrows*4)) gs = gridspec.GridSpec(nrows,ncols,figure=fig) axes = [] for i,location in enumerate(locations): train_log=location+'/log_train.csv' val_log=location+'/log_val.csv' train_log_csv = pd.read_csv(train_log) val_log_csv = pd.read_csv(val_log) if best_only: best_idxs = [0] best_epoch=0 best_loss = val_log_csv.loss[0] for idx,loss in enumerate(val_log_csv.loss): if loss < best_loss: best_loss=loss best_idxs.append(idx) best_epoch=val_log_csv.epoch[idx] val_log_csv = val_log_csv.loc[best_idxs] if titles is not None: titles[i] = titles[i] + ", Best Val Loss ={loss:.4f}@Ep.{epoch:.2f}".format(loss=best_loss,epoch=best_epoch) ax1=fig.add_subplot(gs[i],facecolor='w') if i ==0 else fig.add_subplot(gs[i],facecolor='w',sharey=axes[0]) ax1.set_xlim(0,train_log_csv.epoch.max()) axes.append(ax1) line11 = ax1.plot(train_log_csv.epoch, train_log_csv.loss, linewidth=2, label='Train loss', color='b', alpha=0.3) line12 = ax1.plot(val_log_csv.epoch, val_log_csv.loss, marker='o', markersize=3, linestyle='', label='Validation loss', color='blue') if losslim is not None: ax1.set_ylim(None,losslim) if titles is not None: ax1.set_title(titles[i],size=title_font) ax2 = ax1.twinx() line21 = ax2.plot(train_log_csv.epoch, train_log_csv.accuracy, linewidth=2, label='Train accuracy', color='r', alpha=0.3) line22 = ax2.plot(val_log_csv.epoch, val_log_csv.accuracy, marker='o', markersize=3, linestyle='', label='Validation accuracy', color='red') ax1.set_xlabel('Epoch',fontweight='bold',fontsize=24,color='black') ax1.tick_params('x',colors='black',labelsize=18) ax1.set_ylabel('Loss', fontsize=24, fontweight='bold',color='b') ax1.tick_params('y',colors='b',labelsize=18) ax2.set_ylabel('Accuracy', fontsize=24, fontweight='bold',color='r') ax2.tick_params('y',colors='r',labelsize=18) ax2.set_ylim(0.,1.05) lines = line11 + line12 + line21 + line22 labels = [l.get_label() for l in lines] leg = ax2.legend(lines, labels, fontsize=16, loc=5, numpoints=1,prop={'size':leg_font}) leg_frame = leg.get_frame() leg_frame.set_facecolor('white') gs.tight_layout(fig) return fig # Function to plot a grid of confusion matrices def plot_multiple_confusion_matrix(label_arrays, prediction_arrays, class_names,titles=None): """ plot_multiple_confusion_matrix(label_arrays, prediction_arrays, class_names,titles=None) Purpose : Plot the confusion matrix for a series of test outputs. Args: label_arrays ... array of 1D arrays of true label value, the length = sample size predictions ... array of 1D arrays of predictions, the length = sample size class_names ... 1D array of string label for classification targets, the length = number of categories author: <NAME> May 2020 """ fig = plt.figure(facecolor='w',figsize=(16,8)) gs = gridspec.GridSpec(math.ceil(len(label_arrays)/3),3,figure=fig) axes = [] for i,labels in enumerate(label_arrays): predictions = prediction_arrays[i] ax=fig.add_subplot(gs[i],facecolor='w') num_labels = len(class_names) max_value = np.max([np.max(np.unique(labels)),np.max(np.unique(labels))]) assert max_value < num_labels mat,_,_,im = ax.hist2d(predictions, labels, bins=(num_labels,num_labels), range=((-0.5,num_labels-0.5),(-0.5,num_labels-0.5)),cmap=plt.cm.Blues) # Normalize the confusion matrix mat = mat.astype("float") / mat.sum(axis=0) cbar = plt.colorbar(im, ax=ax) cbar.ax.tick_params(labelsize=20) ax.set_xticks(np.arange(num_labels)) ax.set_yticks(np.arange(num_labels)) ax.set_xticklabels(class_names,fontsize=20) ax.set_yticklabels(class_names,fontsize=20) plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor") plt.setp(ax.get_yticklabels(), rotation=45, ha="right", rotation_mode="anchor") ax.set_xlabel('Prediction',fontsize=20) ax.set_ylabel('True Label',fontsize=20) if titles is not None: ax.set_title(titles[i]) for i in range(mat.shape[0]): for j in range(mat.shape[1]): ax.text(i,j, r"${0:0.3f}$".format(mat[i,j]), ha="center", va="center", fontsize=20, color="white" if mat[i,j] > (0.5*mat.max()) else "black") gs.tight_layout(fig) return fig def load_test_output(location,index_path,remove_flagged=True): """ load_test_output(location,index_path) Purpose : Load output of a test run on the full h5 test set, remove FiTQun flagged/failed events, and return a dict of results. Args: location ... string, path of the directory containing the test output eg. '/home/cmacdonald/CNN/dumps/20200525_152544/test_validation_iteration_dump.npz' index_path ... string, path of directory containing indices of FiTQun failed and flagged files author: <NAME> May 2020 """ test_dump_np = np.load(location, allow_pickle=True) res_predictedlabels = np.concatenate(list([batch_array for batch_array in test_dump_np['predicted_labels']])) res_softmaxes = np.concatenate(list([batch_array for batch_array in test_dump_np['softmax']])) res_labels = np.concatenate(list([batch_array for batch_array in test_dump_np['labels']])) res_energies = np.concatenate(list([batch_array for batch_array in test_dump_np['energies']])) res_rootfiles = np.concatenate(list([batch_array for batch_array in test_dump_np['rootfiles']])) res_eventids = np.concatenate(list([batch_array for batch_array in test_dump_np['eventids']])) res_angles = np.concatenate(list([batch_array for batch_array in test_dump_np['angles']])) failed_idxs = np.load(os.path.join(index_path, 'fq_failed_idxs.npz'),allow_pickle=True)['failed_indices_pointing_to_h5_test_set'].astype(int) flagged_idxs = np.load(os.path.join(index_path, 'fq_flagged_idxs.npz'),allow_pickle=True)['arr_0'].astype(int) sres_predictedlabels = np.delete(res_predictedlabels,failed_idxs) sres_softmaxes = np.delete(res_softmaxes,failed_idxs,0) sres_labels = np.delete(res_labels,failed_idxs) sres_energies = np.delete(res_energies,failed_idxs) sres_rootfiles = np.delete(res_rootfiles,failed_idxs) sres_eventids = np.delete(res_eventids,failed_idxs) sres_angles = np.delete(res_angles,failed_idxs,0) if remove_flagged: filtered_res_predictedlabels = np.delete(sres_predictedlabels,flagged_idxs) filtered_res_softmaxes = np.delete(sres_softmaxes,flagged_idxs,0) filtered_res_labels = np.delete(sres_labels,flagged_idxs) filtered_res_energies = np.delete(sres_energies,flagged_idxs) filtered_res_rootfiles = np.delete(sres_rootfiles,flagged_idxs) filtered_res_eventids = np.delete(sres_eventids,flagged_idxs) filtered_res_angles = np.delete(sres_angles,flagged_idxs,0) return{'filtered_predictions':filtered_res_predictedlabels, 'filtered_softmaxes':filtered_res_softmaxes, 'filtered_labels':filtered_res_labels, 'filtered_energies':filtered_res_energies, 'filtered_rootfiles':filtered_res_rootfiles, 'filtered_eventids':filtered_res_eventids, 'filtered_angles':filtered_res_angles } else: return{'s_predictions':sres_predictedlabels, 's_softmaxes':sres_softmaxes, 's_labels':sres_labels, 's_energies':sres_energies, 's_rootfiles':sres_rootfiles, 's_eventids':sres_eventids, 's_angles':sres_angles } def parametrized_ray_point(x,y,z,theta,phi,t): ''' parametrized_ray_point(x,y,z,theta,phi,t) Purpose: Find the point of a line departing (x,y,z) in direction specified by (theta,phi) and parametrized by t at given value of t. Args: x, y, z ... origin co-ordinates of line theta, phi ... polar and azimuthal angles of departure t ... parameter giving desired point author: <NAME> May 2020 ''' return x + np.sin(theta)*np.cos(phi)*t,y + np.sin(theta)*np.sin(phi)*t, z + np.cos(theta)*t def distance_to_wall(position, angle): """ distance_to_wall(position, angle) Purpose : Calculate distance from event origin to IWCD wall along particle trajectory. Args: position ... array of [x, y, z] co-ordinates of event origin angle ... array of [theta, phi] angles of departure author: <NAME> May 2020 """ x = position[0] y = position[2] z = position[1] theta = angle[0] phi = angle[1] no_radial=False sols = [] #Solve for intersections of parametrized path with the cylinder and caps, keep only positive parameter solns try: shared_expression = np.sqrt(-np.sin(theta)**2*(-275282+(x**2 + y**2) + (y**2 - x**2)*np.cos(2*phi)-2*x*y*np.sin(2*phi)))/(np.sin(theta)*np.sqrt(2)) except: no_radial=True if not no_radial: try: radial_parameter_sol_1 = -1/np.sin(theta)*(x*np.cos(phi)+y*np.sin(phi) +shared_expression) if radial_parameter_sol_1 > 0: sols.append(radial_parameter_sol_1) except: pass try: radial_parameter_sol_2 = 1/np.sin(theta)*(-x*np.cos(phi)-y*np.sin(phi) +shared_expression) if radial_parameter_sol_2 > 0: sols.append(radial_parameter_sol_2) except: pass try: cap_parameter_sol_top = (521 - z)/np.cos(theta) cap_parameter_sol_bottom = -(521+z)/np.cos(theta) if cap_parameter_sol_top > 0: sols.append(cap_parameter_sol_top) if cap_parameter_sol_bottom > 0: sols.append(cap_parameter_sol_bottom) except: pass sols = np.sort(sols) x_int,y_int,z_int = parametrized_ray_point(x,y,z,theta,phi,sols[0]) return np.sqrt((x-x_int)**2+(y-y_int)**2+(z-z_int)**2) def plot_compare_dists(dists,dist_idxs_to_compare,dist_idxs_reference, labels,axes=None,colors=None,bins=20, title=None, ratio_range=None,xlabel=None, linestyle=None): ''' Plot distributions and plot their ratio. Args: dists ... list of 1d arrays dist_idxs_to_compare ... list of indices of distributions to use as numerator in the ratio plot dist_idxs_reference ... list of indices of distributions to use as denominator in the ratio plot labels ... list of labels for each distribution axes ... optional, list of two matplotlib.pyplot.axes on which to place the plots colors ... list of colors to use for each distribution bins ... number of bins to use in histogram title ... plot title ratio_range ... range of distribution range to plot xlabel ... x-axis label linestyle ... list of linestyles to use for each distribution author: <NAME> June 2020 ''' ret = False if axes is None: fig, axes = plt.subplots(2,1,figsize=(12,12)) ret = True axes = axes.flatten() ax = axes[0] ns, bins, patches = ax.hist(dists, weights=[np.ones(len(dists[i]))*1/len(dists[i]) for i in range(len(dists))], label=labels,histtype=u'step',bins=bins,color=colors,alpha=0.8) if linestyle is not None: for i,patch_list in enumerate(patches): for patch in patch_list: patch.set_linestyle(linestyle[i]) ax.legend() if title is not None: ax.set_title(title) ax2 = axes[1] for i,idx in enumerate(dist_idxs_to_compare): lines = ax2.plot(bins[:-1], ns[idx] / ns[dist_idxs_reference[i]], alpha=0.8,label='{} to {}'.format(labels[idx],labels[dist_idxs_reference[i]])) lines[0].set_color(patches[idx][0].get_edgecolor()) lines[0].set_drawstyle('steps') if ratio_range is not None: ax2.set_ylim(ratio_range) ax2.legend() ax2.set_title('Ratio of Distributions') lines = ax2.plot(bins[:-1],np.ones(len(bins)-1),color='k',alpha=0.5) lines[0].set_linestyle('-.') if xlabel is not None: ax.set_xlabel(xlabel) ax2.set_xlabel(xlabel) if ret: return fig def plot_2d_ratio(dist_1_x,dist_1_y,dist_2_x, dist_2_y,bins=(150,150),fig=None,ax=None, title=None, xlabel=None, ylabel=None, ratio_range=None): ''' Plots the 2d ratio between the 2d histograms of two distributions. Args: dist_1_x: ... 1d array of x-values of distribution 1 of length n dist_1_y: ... 1d array of y-values of distribution 1 of length n dist_2_x: ... 1d array of x-values of distribution 2 of length n dist_2_y: ... 1d array of y-values of distribution 2 of length n bins: ... tuple of integer numbers of bins in x and y author: <NAME> May 2020 ''' if ax is None: fig,ax = plt.subplots(1,1,figsize=(8,8)) bin_range = [[np.min([np.min(dist_1_x),np.min(dist_2_x)]),np.max([np.max(dist_1_x),np.max(dist_2_x)])], [np.min([np.min(dist_1_y),np.min(dist_2_y)]),np.max([np.max(dist_1_y),np.max(dist_2_y)])]] ns_1, xedges, yedges = np.histogram2d(dist_1_x,dist_1_y,bins=bins,density=True,range=bin_range) ns_2,_,_ = np.histogram2d(dist_2_x,dist_2_y,bins=bins,density=True,range=bin_range) ratio = ns_1/ns_2 ratio = np.where((ns_2==0) & (ns_1==0),1,ratio) ratio = np.where((ns_2==0) & (ns_1!=0),10,ratio) pc = ax.pcolormesh(xedges, yedges, np.swapaxes(ratio,0,1),vmin=ratio_range[0],vmax=ratio_range[1],cmap="RdBu_r") fig.colorbar(pc, ax=ax) if title is not None: ax.set_title(title) if xlabel is not None: ax.set_xlabel(xlabel) if ylabel is not None: ax.set_ylabel(ylabel) return fig a = np.ones((100,100)) [i for i in itertools.product(range(3),range(3))] def binary_clf_curve(y_true, y_score, pos_label=None, sample_weight=None): ''' SOURCE: Scikit.metrics internal usage tool ''' """Calculate true and false positives per binary classification threshold. Parameters ---------- y_true : array, shape = [n_samples] True targets of binary classification y_score : array, shape = [n_samples] Estimated probabilities or decision function pos_label : int or str, default=None The label of
from __future__ import absolute_import from __future__ import division from __future__ import print_function import builtins import math import warnings import inspect from functools import partial import tensorflow as tf from trident.backend.common import TensorShape from trident.backend.tensorflow_backend import * from trident.backend.tensorflow_ops import * from trident.backend.common import get_function, camel2snake __all__ = ['kaiming_uniform', 'kaiming_normal','xavier_uniform','xavier_normal','trunc_normal','fill_zeros','fill_ones'] def calculate_gain(nonlinearity, param=None): r"""Return the recommended gain value for the given nonlinearity function. The values are as follows: ================= ==================================================== nonlinearity gain ================= ==================================================== Linear / Identity :math:`1` Conv{1,2,3}D :math:`1` Sigmoid :math:`1` Tanh :math:`\frac{5}{3}` ReLU :math:`\sqrt{2}` Leaky Relu :math:`\sqrt{\frac{2}{1 + \text{negative\_slope}^2}}` ================= ==================================================== Args: nonlinearity: the non-linear function (`nn.functional` name) param: optional parameter for the non-linear function Examples: >>> gain = nn.init.calculate_gain('leaky_relu', 0.2) # leaky_relu with negative_slope=0.2 """ linear_fns = ['linear', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d'] if nonlinearity in linear_fns or nonlinearity == 'sigmoid': return 1 elif nonlinearity == 'tanh': return 5.0 / 3 elif nonlinearity == 'relu': return math.sqrt(2.0) elif nonlinearity == 'leaky_relu': if param is None: negative_slope = 0.01 elif not isinstance(param, bool) and isinstance(param, int) or isinstance(param, float): # True/False are instances of int, hence check above negative_slope = param else: raise ValueError("negative_slope {} not a valid number".format(param)) return math.sqrt(2.0 / (1 + negative_slope ** 2)) else: raise ValueError("Unsupported nonlinearity {}".format(nonlinearity)) def _calculate_fan_in_and_fan_out(tensor): dimensions = len(tensor.shape) if dimensions < 2: raise ValueError("Fan in and fan out can not be computed for tensor with fewer than 2 dimensions") num_input_fmaps = int_shape(tensor)[-1] num_output_fmaps = int_shape(tensor)[0] receptive_field_size = 1 if dimensions > 2: receptive_field_size = tensor[0][0].numel() fan_in = num_input_fmaps * receptive_field_size fan_out = num_output_fmaps * receptive_field_size return fan_in, fan_out def _calculate_correct_fan(tensor, mode): mode = mode.lower() valid_modes = ['fan_in', 'fan_out'] if mode not in valid_modes: raise ValueError("Mode {} not supported, please use one of {}".format(mode, valid_modes)) fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) return fan_in if mode == 'fan_in' else fan_out def uniform(tensor, a=0., b=1.): # type: (Tensor, float, float) -> Tensor r"""Fills the input Tensor with values drawn from the uniform distribution :math:`\mathcal{U}(a, b)`. Args: tensor: an n-dimensional `torch.Tensor` a: the lower bound of the uniform distribution b: the upper bound of the uniform distribution Examples: >>> w = torch.empty(3, 5) >>> nn.init.uniform_(w) """ if isinstance(tensor,tf.Module): for name,weight in tensor.named_parameters(): if weight.trainable==True and 'bias' not in name: weight.assign(random_uniform_like(weight, a=a,b=b)) elif isinstance(tensor, tf.Variable) and tensor.trainable==True: tensor.assign(random_uniform_like(tensor, a=a,b=b)) def normal(tensor, mean=0., std=1.): # type: (Tensor, float, float) -> Tensor r"""Fills the input Tensor with values drawn from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`. Args: tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation of the normal distribution Examples: >>> w = torch.empty(3, 5) >>> nn.init.normal_(w) """ if isinstance(tensor,tf.Module): for name,weight in tensor.named_parameters(): if weight.trainable==True and 'bias' not in name: weight.assign(random_normal_like(weight,mean=mean,std=std)) elif isinstance(tensor, tf.Variable) and tensor.trainable==True: tensor.assign(random_normal_like(tensor,mean=mean,std=std)) def fill_zeros(tensor): # type: (Tensor) -> Tensor r"""Fills the input Tensor with the scalar value `0`. Args: tensor: an n-dimensional `torch.Tensor` Examples: >>> w = torch.empty(3, 5) >>> nn.init.zeros_(w) """ if isinstance(tensor,tf.Module): for name,weight in tensor.named_parameters(): if weight.trainable : weight.assign(zeros_like(weight)) elif isinstance(tensor, tf.Variable) and tensor.trainable==True: tensor.assign(zeros_like(tensor)) def fill_ones(tensor): # type: (Tensor) -> Tensor r"""Fills the input Tensor with the scalar value `1`. Args: tensor: an n-dimensional `torch.Tensor` Examples: >>> w = torch.empty(3, 5) >>> nn.init.ones_(w) """ if isinstance(tensor,tf.Module): for name,weight in tensor.named_parameters(): if weight.trainable==True and 'bias' not in name: weight.assign(ones_like(weight)) elif isinstance(tensor, tf.Variable) and tensor.trainable==True: tensor.assign(ones_like(tensor)) def kaiming_uniform(tensor, a=0, mode='fan_in', nonlinearity='leaky_relu'): r"""Fills the input `Tensor` with values according to the method described in `Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification` - He, K. et al. (2015), using a uniform distribution. The resulting tensor will have values sampled from :math:`\mathcal{U}(-\text{bound}, \text{bound})` where .. math:: \text{bound} = \text{gain} \times \sqrt{\frac{3}{\text{fan\_mode}}} Also known as He initialization. Args: tensor: an n-dimensional `torch.Tensor` a: the negative slope of the rectifier used after this layer (only used with ``'leaky_relu'``) mode: either ``'fan_in'`` (default) or ``'fan_out'``. Choosing ``'fan_in'`` preserves the magnitude of the variance of the weights in the forward pass. Choosing ``'fan_out'`` preserves the magnitudes in the backwards pass. nonlinearity: the non-linear function (`nn.functional` name), recommended to use only with ``'relu'`` or ``'leaky_relu'`` (default). Examples: >>> w = zeros((3, 5)) >>> kaiming_uniform(w, mode='fan_in', nonlinearity='relu') """ if isinstance(tensor,tf.Module): for name,weight in tensor.named_parameters(): if weight.trainable==True and 'bias' not in name: kaiming_uniform(weight, a, mode, nonlinearity) elif isinstance(tensor, tf.Variable) and tensor.trainable == True: tensor_data = tensor.value() fan = to_numpy(_calculate_correct_fan(tensor_data, mode)).mean() gain = calculate_gain(nonlinearity, a) std = true_divide(gain, math.sqrt(fan)) bound = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation tensor.assign(random_uniform_like(tensor_data, -bound, bound, tensor_data.dtype)) def kaiming_normal(tensor, a=0, mode='fan_in', nonlinearity='leaky_relu'): r"""Fills the input `Tensor` with values according to the method described in `Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification` - <NAME>. et al. (2015), using a normal distribution. The resulting tensor will have values sampled from :math:`\mathcal{N}(0, \text{std}^2)` where .. math:: \text{std} = \frac{\text{gain}}{\sqrt{\text{fan\_mode}}} Also known as He initialization. Args: tensor: an n-dimensional `torch.Tensor` a: the negative slope of the rectifier used after this layer (only used with ``'leaky_relu'``) mode: either ``'fan_in'`` (default) or ``'fan_out'``. Choosing ``'fan_in'`` preserves the magnitude of the variance of the weights in the forward pass. Choosing ``'fan_out'`` preserves the magnitudes in the backwards pass. nonlinearity: the non-linear function (`nn.functional` name), recommended to use only with ``'relu'`` or ``'leaky_relu'`` (default). Examples: >>> w = torch.empty(3, 5) >>> nn.init.kaiming_normal_(w, mode='fan_out', nonlinearity='relu') """ if isinstance(tensor, tf.Module): for name,weight in tensor.named_parameters(): if weight.trainable==True and 'bias' not in name: kaiming_normal(weight, a, mode, nonlinearity) elif isinstance(tensor, tf.Variable) and tensor.trainable == True: tensor_data=tensor.value() fan = to_numpy(_calculate_correct_fan(tensor_data, mode)).mean() gain = calculate_gain(nonlinearity, a) std = true_divide(gain , math.sqrt(fan)) tensor.assign(random_normal_like(tensor_data,0, std, tensor_data.dtype)) def xavier_uniform(tensor, gain=1.): # type: (Tensor, float) -> Tensor r"""Fills the input `Tensor` with values according to the method described in `Understanding the difficulty of training deep feedforward neural networks` - <NAME>. & <NAME>. (2010), using a uniform distribution. The resulting tensor will have values sampled from :math:`\mathcal{U}(-a, a)` where .. math:: a = \text{gain} \times \sqrt{\frac{6}{\text{fan\_in} + \text{fan\_out}}} Also known as Glorot initialization. Args: tensor: an n-dimensional `torch.Tensor` gain: an optional scaling factor Examples: >>> w = torch.empty(3, 5) >>> nn.init.xavier_uniform_(w, gain=nn.init.calculate_gain('relu')) """ if isinstance(tensor,tf.Module): for name,weight in tensor.named_parameters(): if weight.trainable==True and 'bias' not in name: xavier_uniform(weight, gain) elif isinstance(tensor, tf.Variable) and tensor.trainable==True: fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) std = gain * math.sqrt(2.0 / float(fan_in + fan_out)) a = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation tensor.assign(random_uniform_like(tensor, -a, a)) def xavier_normal(tensor, gain=1.): # type: (Tensor, float) -> Tensor r"""Fills the input `Tensor` with values according to the method described in `Understanding the difficulty of training deep feedforward neural networks` - <NAME>. & <NAME>. (2010), using a normal distribution. The resulting tensor will have values sampled from :math:`\mathcal{N}(0, \text{std}^2)` where .. math:: \text{std} = \text{gain} \times \sqrt{\frac{2}{\text{fan\_in} + \text{fan\_out}}} Also known as Glorot initialization. Args: tensor: an n-dimensional `torch.Tensor` gain: an optional scaling factor Examples: >>> w = torch.empty(3, 5) >>> nn.init.xavier_normal_(w) """ if isinstance(tensor,tf.Module): for name,weight in tensor.named_parameters(): if weight.trainable==True and 'bias' not in name: xavier_normal(weight, gain) elif isinstance(tensor, tf.Variable) and tensor.trainable==True: fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) std = gain * math.sqrt(2.0 / float(fan_in + fan_out)) tensor.assign(random_normal_like(tensor, 0, std)) def trunc_normal(tensor, mean=0., std=1., a=-2., b=2.): # type: (Tensor, float, float, float, float) -> Tensor r"""Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for generating the random values works best when :math:`a \leq \text{mean} \leq b`. Args: tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation of the normal distribution a: the minimum cutoff value b: the maximum cutoff value Examples: >>> w = torch.empty(3, 5) >>> nn.init.trunc_normal_(w) """ if isinstance(tensor,tf.Module): for name,weight in tensor.named_parameters(): if weight.trainable==True and 'bias' not in name: weight.assign(tf.random.truncated_normal(weight.shape,mean=mean, std=std, a=a, b=b)) elif isinstance(tensor, tf.Variable) and tensor.trainable==True: tensor.assign(tf.random.truncated_normal(tensor.shape,mean=mean, std=std, a=a, b=b)) def get_initializer(initializer,**kwargs): if isinstance(initializer,str): initializer_fn = get_function(camel2snake(initializer), ['trident.backend.tensorflow_initializers']) initializer_fn=partial(initializer_fn,**kwargs) if len(kwargs)>0 else initializer_fn return initializer_fn elif
<reponame>jjisnow/pytube<gh_stars>0 """ Downloader of video website links. Will download video and mux with audio, or audio only, or video with audio already. It will also download and retime caption subtitles using pysrt. Usage: downloader.py [URL...] [--verbose | --quiet] [--itag value] [--lang string] [--list] [--duration HH:MM:SS.milliseconds] [--start HH:MM:SS.milliseconds] Arguments: URL individual websites to download video from Options: -h, --help Show this screen -v, --verbose Show verbose output -q, --quiet Run quietly -i, --itag value The stream to download --lang string The caption language to download [default: English] -l, --list List streams and exit -d, --duration t Download [[HH:]MM:]SS[.milliseconds] of clip -s, --start s Start download at [[HH:]MM:]SS[.milliseconds] """ import datetime import math import os import shutil import sys from functools import wraps from pprint import pformat import time import pysrt from pytube import YouTube import subprocess from pathlib import Path import logging from docopt import docopt from tabulate import tabulate from typing import Union def timing(fn): '''Timing decorator for program - calculates runtime''' @wraps(fn) def wrap(*args, **kw): time_start = time.time() result = fn(*args, **kw) time_end = time.time() run_secs = time_end - time_start date_secs = datetime.datetime.utcfromtimestamp(run_secs) run_time = date_secs.time() logging.info(f'function:{fn.__name__} args:[{args}, {kw}]') logging.info(f' --- {run_time.isoformat(timespec="milliseconds")} secs --- ') return result return wrap @timing def downloader(*args: tuple): ''' main interface for downloader file ''' arguments = parse_arguments(args) config_loggers(arguments) arguments = check_url(arguments) check_requirements('aria2c', 'ffmpeg') for file in arguments['URL']: logging.debug(f"Parsing url: {file}") yt = YouTube(file) streams = yt.streams stream_table = parse_streams(streams) if arguments['--list']: return stream_table itag = get_itag(arguments) target_stream = streams.get_by_itag(itag) logging.info("DOWNLOADING:") video_path, audio_path, subtitle_path, video_fps = [None] * 4 if not target_stream.includes_audio_track: logging.info("downloading video first......") video_path = download_file(target_stream, args=arguments, ) video_fps = target_stream.fps logging.info("downloading audio as well!") audio_target = streams.filter(only_audio=True).first() audio_path = download_file(audio_target, args=arguments, ) else: logging.info(f"downloading {target_stream.type} ONLY") if target_stream.type == 'video': video_path = download_file(target_stream, args=arguments, ) video_fps = target_stream.fps elif target_stream.type == 'audio': audio_target = target_stream audio_path = download_file(audio_target, args=arguments, ) else: logging.critical( f"unexpected file type: {target_stream.type}") return 1 # need to retime the captions if I'm to use them in shorter videos if not target_stream.type == 'audio': subtitle_path = download_captions(yt, lang=arguments['--lang'], duration=arguments['--duration'], start=arguments['--start']) # In the event only audio, create HQ mp3 or aac file if target_stream.type == 'audio': if (audio_path.suffix == '.webm' and target_stream.audio_codec == 'opus') \ or ( audio_path.suffix == '.mp4' and 'mp4' in target_stream.audio_codec): final_path = make_mp3(audio_path) # the default # final_fp = make_aac(audio_path) # not supported by all platforms # final_fp = make_ogg(audio_path) # not supported by all platforms else: final_path = mux_files(audio_path) else: final_path = mux_files(audio_path, video_path, subtitle_path, video_fps) cleanup_files(audio_path, video_path, subtitle_path) logging.info(f"Final output file: {final_path}") return final_path def parse_arguments(args: tuple) -> dict: '''set arguments dictionary from supplied arguments''' arguments = docopt(__doc__, argv=args, help=True) if arguments['--verbose']: log_level = logging.DEBUG elif arguments['--quiet']: log_level = logging.CRITICAL else: log_level = logging.INFO arguments['log_level'] = log_level return arguments def config_loggers(args: dict) -> None: """ displays the supplied arguments to stdout before switching back to the stderr handler :param args: :param log_level: :return: """ log_level = args['log_level'] logging.basicConfig(level=log_level) logger = logging.getLogger() # These lines are needed to create a stdout handler # stdout_handler = logging.StreamHandler(stream=sys.stdout) # stdout_handler.setLevel(log_level) # logger.addHandler(stdout_handler) # # root_handler = logger.handlers[0] # root_handler.setLevel(log_level) # logger.removeHandler(root_handler) logging.info(f"Supplied args: \n {args}") # logger.removeHandler(stdout_handler) # logger.addHandler(root_handler) def check_url(args: dict) -> dict: ''' parse the url and obtain one if none provided Use a provided link or the args provided ''' while len(args['URL']) == 0: link = input("Provide a youtube link to download: ") args['URL'].append(link) if args['URL'][0] == '': print("a link must be supplied!") del args['URL'][0] logging.info(f"Final args: {args}") return args def check_requirements(*args) -> None: '''ensure executables supplied exist on the file system''' logging.debug(f'Requirements: {args}') for arg in args: status = shutil.which(f'{arg}') if status is not None: logging.debug(f'Requirement: {arg} met with {status}') else: logging.error(f'Requirement: {arg} not met! status: {status}') raise Exception(f'Requirement: {arg} not met! status: {status}') def parse_streams(streams) -> str: ''' take yt.streams.all() and print it as a table for viewing ''' final_list = [] for stream in streams: stream = str(stream).strip('<>').replace('Stream: ', '').split(' ') stream_dict = {} for item in stream: a = item.split('=') k = a[0] v = a[1].strip('"') stream_dict[k] = v final_list.append(stream_dict) stream_table = tabulate(final_list, headers="keys") print(stream_table) return stream_table def get_itag(args: dict) -> int: while True: if args['--itag']: itag = args['--itag'] break try: itag = int(input("Which stream do you want? (specify itag): ")) break except ValueError: logging.error("you need to provide a number!") return itag def download_file(download_target, args: dict = (), ) -> Path: '''download stream given a download_target (a stream object either audio or video, captions are handled separately). args['duration'] and args['start'] are used to specify time dimensions Note that ffmpeg already has a HH:MM:SS.ms specification limited to 2 digits for HH, MM and SS ''' logging.debug(f"current directory: {Path.cwd()}") logging.info(f"Downloading itag: {download_target.itag}") logging.info(f"Download url: {download_target.url}") download_path = Path(download_target.default_filename) # set local defaults for arguments passed args = dict(args) duration = args.get('--duration', None) start = args.get('--start', '0') download_path = Path(f"{download_path.stem}-{download_target.type}{download_path.suffix}") logging.debug(f"Targeting destination: {download_path}") if duration: # download the file with ffmpeg # -ss : start point to download in HH:MM:SS.MILLISECONDS format if needed # -t : duration to download in seconds # -to: end point to download as above format. -t takes precedence # NB: -ss before -i sets the -to origin to zero at the cut point # -copyts: allows -to to refer to start of clip, no the cut point. # removed individual codec copy encode commands because keyframes need # to match downloaded time. logging.debug(f"attempting to download {duration} seconds of file") cmd = (f'ffmpeg', '-y', '-ss', f'{start}', '-i', f'{download_target.url}', '-t', f'{duration}', '-c', 'copy', f'{download_path}') else: # download the entire file with aria # -c : continue/resume downloads # -j : number of parallel downloads for 1 link # --optimize-concurrent-downloads=true: optimise speed # -x : max connections per server # -k : min split size # -s, --split=N: Download using N connections cmd = ('aria2c', '--continue=true', '-j5', '-x5', '--optimize-concurrent-downloads=true', '-k', '1M', '--split=5', '-o', f'{download_path}', f'{download_target.url}') logging.debug(f"Command to be run: {cmd}") subprocess.run(cmd, shell=False, check=True) logging.info(f"Final {download_target.type} file: {download_path}") return download_path def download_captions(yt: YouTube, lang: str = 'English', duration: str = None, start: str = None) -> Union[Path, None]: i = None caption_list = list(yt.captions.lang_code_index.values()) captions = enumerate(caption_list) captions_string = pformat(captions) logging.debug(f'captions available: {captions_string}') for index, c in captions: logging.debug(f'{index} index: {c} caption') if lang in str(c): i = index logging.debug(f'found {lang} captions at index {i}') break if i is None: logging.debug(f'No {lang} Captions found!') return None subt_base = Path(yt.fmt_streams[0].default_filename).stem subt_fp = Path(f'{subt_base}-captions.srt') if os.path.exists(subt_fp): logging.info(f'File {subt_fp} exists already!! Deleting') os.remove(subt_fp) logging.debug(f'Writing {subt_fp}') lines = yt.caption_tracks[i].generate_srt_captions() subt_fp.write_text(lines, encoding='utf-8') # retime the subtitles if start or duration: logging.info(f'retiming subtitles {subt_fp}') subs = pysrt.open(subt_fp) if start: start = float(strp_time(start)) subs.shift(seconds=-math.trunc(start), milliseconds=-math.trunc((start % 1) * 1000)) part = subs.slice(starts_after={'milliseconds': -1}) if duration: duration = float(strp_time(duration)) part = part.slice(ends_before={'seconds' : math.trunc(duration), 'milliseconds': math.trunc( (duration % 1) * 1000)}) if len(part) < 1: logging.info(f'No valid subtitles left, removing {subt_fp} file') os.remove(subt_fp) return None part.save(subt_fp) return subt_fp def strp_time(time_str: str) -> str: ''' returns corrected number of seconds given a variation of HH:MM:SS.milliseconds string''' if ':' not in time_str: return time_str else: secs = 0 time_parts = time_str.split(':') for i, n in enumerate(reversed(time_parts)): secs += 60 ** i * float(n) return str(secs) def mux_files(audio_path: Path, video_path: Path = None, subt_path: Path = None, video_fps: str = None) -> Path: '''mux file streams supplied''' logging.info("attempting to mix audio and video") # -y: global ie overwrite without asking # -i: input file # -r: set frame rate in fps # -filter:a create filtergraph # -c:a copy means copy audio streams # -c:v copy means copy video stream codec # -c:s srt means copy subtitles as srt # -filter:a aresample=async=1 means resample audio to fit frame rates if video_path: # removes "-video" from name end if video_path.stem.endswith('-video'): final_path = Path(video_path.stem[:-6]).with_suffix(video_path.suffix) elif audio_path: # leaves "-audio" on end for only audio files final_path = audio_path else: logging.error("no audio or video file path supplied") # Using '.mkv' to handle subtitles for time being final_path = Path(f'{final_path.stem}-output.mkv') audio_path_text = ('-i', f'{audio_path}') if audio_path else () video_path_text = ('-i', f'{video_path}')
<filename>tests/test_travel.py from .helpers import IFPTestCase from intficpy.exceptions import IFPError from intficpy.room import Room from intficpy.things import Container, Surface, Lock from intficpy.travel import ( travelN, travelNE, travelE, travelSE, travelS, travelSW, travelW, travelNW, travelU, travelD, travelIn, travelOut, TravelConnector, DoorConnector, LadderConnector, StaircaseConnector, ) class TestDirectionTravel(IFPTestCase): def test_cannot_travel_if_not_connection(self): room1 = Room(self.game, "A place", "Description of a place. ") self.assertTrue( ( not room1.north and not room1.northeast and not room1.east and not room1.southeast and not room1.south and not room1.southwest and not room1.west and not room1.northwest and not room1.up and not room1.down and not room1.entrance and not room1.exit ), "This test needs room1 to have no directional connections.", ) self.me.location.removeThing(self.me) room1.addThing(self.me) self.game.turnMain("n") self.assertIs(self.me.location, room1) self.assertEqual(self.app.print_stack.pop(), room1.n_false_msg) self.game.turnMain("ne") self.assertIs(self.me.location, room1) self.assertEqual(self.app.print_stack.pop(), room1.ne_false_msg) self.game.turnMain("e") self.assertIs(self.me.location, room1) self.assertEqual(self.app.print_stack.pop(), room1.e_false_msg) self.game.turnMain("se") self.assertIs(self.me.location, room1) self.assertEqual(self.app.print_stack.pop(), room1.se_false_msg) self.game.turnMain("s") self.assertIs(self.me.location, room1) self.assertEqual(self.app.print_stack.pop(), room1.s_false_msg) self.game.turnMain("sw") self.assertIs(self.me.location, room1) self.assertEqual(self.app.print_stack.pop(), room1.sw_false_msg) self.game.turnMain("w") self.assertIs(self.me.location, room1) self.assertEqual(self.app.print_stack.pop(), room1.w_false_msg) self.game.turnMain("nw") self.assertIs(self.me.location, room1) self.assertEqual(self.app.print_stack.pop(), room1.nw_false_msg) self.game.turnMain("u") self.assertIs(self.me.location, room1) self.assertEqual(self.app.print_stack.pop(), room1.u_false_msg) self.game.turnMain("d") self.assertIs(self.me.location, room1) self.assertEqual(self.app.print_stack.pop(), room1.d_false_msg) self.game.turnMain("in") self.assertIs(self.me.location, room1) self.assertEqual(self.app.print_stack.pop(), room1.in_false_msg) self.game.turnMain("out") self.assertIs(self.me.location, room1) self.assertEqual(self.app.print_stack.pop(), room1.out_false_msg) def test_travel_north_south(self): room1 = Room(self.game, "A place", "Description of a place. ") room2 = Room( self.game, "A different place", "Description of a different place. " ) room1.north = room2 room2.south = room1 self.me.location.removeThing(self.me) room1.addThing(self.me) self.assertIs( self.me.location, room1, "This test needs the user to start in room1" ) self.game.turnMain("go n") self.assertEqual(self.app.print_stack[-3], room1.n_msg) self.assertIs( self.me.location, room2, f"Tried to travel north to {room2}, '{room2.name}', but player in " f"{self.me.location}", ) self.game.turnMain("s") self.assertEqual(self.app.print_stack[-3], room1.s_msg) self.assertIs( self.me.location, room1, f"Tried to travel south to {room1}, '{room1.name}', but player in " f"{self.me.location}", ) def test_travel_northeast_southwest(self): room1 = Room(self.game, "A place", "Description of a place. ") room2 = Room( self.game, "A different place", "Description of a different place. " ) room1.northeast = room2 room2.southwest = room1 self.me.location.removeThing(self.me) room1.addThing(self.me) self.assertIs( self.me.location, room1, "This test needs the user to start in room1" ) self.game.turnMain("go northeast") self.assertEqual(self.app.print_stack[-3], room1.ne_msg) self.assertIs( self.me.location, room2, f"Tried to travel northeast to {room2}, '{room2.name}', but player in " f"{self.me.location}", ) self.game.turnMain("southwest") self.assertEqual(self.app.print_stack[-3], room1.sw_msg) self.assertIs( self.me.location, room1, f"Tried to travel southwest to {room1}, '{room1.name}', but player in " f"{self.me.location}", ) def test_travel_east_west(self): room1 = Room(self.game, "A place", "Description of a place. ") room2 = Room( self.game, "A different place", "Description of a different place. " ) room1.east = room2 room2.west = room1 self.me.location.removeThing(self.me) room1.addThing(self.me) self.assertIs( self.me.location, room1, "This test needs the user to start in room1" ) self.game.turnMain("go e") self.assertEqual(self.app.print_stack[-3], room1.e_msg) self.assertIs( self.me.location, room2, f"Tried to travel east to {room2}, '{room2.name}', but player in " f"{self.me.location}", ) self.game.turnMain("w") self.assertEqual(self.app.print_stack[-3], room1.w_msg) self.assertIs( self.me.location, room1, f"Tried to travel west to {room1}, '{room1.name}', but player in " f"{self.me.location}", ) def test_travel_southeast_northwest(self): room1 = Room(self.game, "A place", "Description of a place. ") room2 = Room( self.game, "A different place", "Description of a different place. " ) room1.southeast = room2 room2.northwest = room1 self.me.location.removeThing(self.me) room1.addThing(self.me) self.assertIs( self.me.location, room1, "This test needs the user to start in room1" ) self.game.turnMain("go southeast") self.assertEqual(self.app.print_stack[-3], room1.se_msg) self.assertIs( self.me.location, room2, f"Tried to travel southeast to {room2}, '{room2.name}', but player in " f"{self.me.location}", ) self.game.turnMain("go northwest") self.assertEqual(self.app.print_stack[-3], room1.nw_msg) self.assertIs( self.me.location, room1, f"Tried to travel northwest to {room1}, '{room1.name}', but player in " f"{self.me.location}", ) def test_travel_up_down(self): room1 = Room(self.game, "A place", "Description of a place. ") room2 = Room( self.game, "A different place", "Description of a different place. " ) room1.up = room2 room2.down = room1 self.me.location.removeThing(self.me) room1.addThing(self.me) self.assertIs( self.me.location, room1, "This test needs the user to start in room1" ) self.game.turnMain("u") self.assertEqual(self.app.print_stack[-3], room1.u_msg) self.assertIs( self.me.location, room2, f"Tried to travel up to {room2}, '{room2.name}', but player in " f"{self.me.location}", ) self.game.turnMain("go d") self.assertEqual(self.app.print_stack[-3], room1.d_msg) self.assertIs( self.me.location, room1, f"Tried to travel down to {room1}, '{room1.name}', but player in " f"{self.me.location}", ) def test_travel_in_out(self): room1 = Room(self.game, "A place", "Description of a place. ") room2 = Room( self.game, "A different place", "Description of a different place. " ) room1.entrance = room2 room2.exit = room1 self.me.location.removeThing(self.me) room1.addThing(self.me) self.assertIs( self.me.location, room1, "This test needs the user to start in room1" ) self.game.turnMain("enter") self.assertEqual(self.app.print_stack[-3], room1.in_msg) self.assertIs( self.me.location, room2, f"Tried to travel in to {room2}, '{room2.name}', but player in " f"{self.me.location}", ) self.game.turnMain("exit") self.assertEqual(self.app.print_stack[-3], room1.out_msg) self.assertIs( self.me.location, room1, f"Tried to travel out to {room1}, '{room1.name}', but player in " f"{self.me.location}", ) class TestTravelConnectors(IFPTestCase): def _assert_can_travel(self, room1, room2, command, return_command): self.me.location.removeThing(self.me) room1.addThing(self.me) self.assertIs( self.me.location, room1, "This test needs the user to start in room1" ) self.game.turnMain(command) self.assertIs( self.me.location, room2, f"Tried to travel to {room2}, '{room2.name}', but player in " f"{self.me.location}", ) self.game.turnMain(return_command) self.assertIs( self.me.location, room1, f"Tried to travel to {room1}, '{room1.name}', but player in " f"{self.me.location}", ) def test_create_TravelConnector_with_invalid_direction(self): room2 = Room( self.game, "A different place", "Description of a different place. " ) with self.assertRaises(IFPError): c = TravelConnector( self.game, self.start_room, "lllllllrrrrrkkkk", room2, "s" ) def test_cannot_travel_blocked_connector(self): room2 = Room( self.game, "A different place", "Description of a different place. " ) c = TravelConnector(self.game, self.start_room, "n", room2, "s") c.can_pass = False self.assertItemIn( self.me, self.start_room.contains, "test needs player to start here" ) self.assertIs(self.start_room.north, c) self.game.turnMain("n") self.assertIn(c.cannot_pass_msg, self.app.print_stack) self.assertIs(self.me.location, self.start_room) self.assertItemIn( self.me, self.start_room.contains, "player should not have moved" ) def test_cannot_travel_if_barrier_function_blocks(self): room2 = Room( self.game, "A different place", "Description of a different place. " ) c = TravelConnector(self.game, self.start_room, "n", room2, "s") c.barrierFunc = lambda g: True self.assertItemIn( self.me, self.start_room.contains, "test needs player to start here" ) self.assertIs(self.start_room.north, c) self.game.turnMain("n") self.assertIs(self.me.location, self.start_room) self.assertItemIn( self.me, self.start_room.contains, "player should not have moved" ) def test_cannot_travel_in_darkness(self): room2 = Room( self.game, "A different place", "Description of a different place. " ) c = TravelConnector(self.game, self.start_room, "n", room2, "s") self.start_room.dark = True self.assertItemIn( self.me, self.start_room.contains, "test needs player to start here" ) self.assertIs(self.start_room.north, c) self.game.turnMain("n") self.assertIn("It's too dark to find your way. ", self.app.print_stack) self.assertIs(self.me.location, self.start_room) self.assertItemIn( self.me, self.start_room.contains, "player should not have moved" ) def test_can_travel_TravelConnector(self): self.me.position = "sitting" room1 = Room(self.game, "A place", "Description of a place. ") room2 = Room( self.game, "A different place", "Description of a different place. " ) c = TravelConnector(self.game, room1, "n", room2, "s") c.entrance_a_msg = "You creep north. " self._assert_can_travel(room1, room2, "n", "s") self.assertIn("You stand up. ", self.app.print_stack) self.assertEqual(self.me.position, "standing") self.assertIn(c.entrance_a_msg, self.app.print_stack) self.assertIn("You go through the south doorway. ", self.app.print_stack) self.assertIn( room1.desc + "There is a doorway to the north. ", self.app.print_stack ) def test_can_travel_DoorConnector(self): room1 = Room(self.game, "A place", "Description of a place. ") room2 = Room( self.game, "A different place", "Description of a different place. " ) c = DoorConnector(self.game, room1, "n", room2, "s") c.entrance_a.makeClosed() self._assert_can_travel(room1, room2, "n", "s") self.assertIn("You open the north door. ", self.app.print_stack) self.assertIn("You go through the north door. ", self.app.print_stack) self.assertIn("You go through the south door. ", self.app.print_stack) self.assertIn( room1.desc + "There is a door to the north. It is open. ", self.app.print_stack, ) def test_cannot_travel_closed_and_locked_door(self): room2 = Room( self.game, "A different place", "Description of a different place. " ) c = DoorConnector(self.game, self.start_room, "n", room2, "s") lock = Lock(self.game, is_locked=True, key_obj=None) c.setLock(lock) self.assertItemIn( self.me, self.start_room.contains, "test needs player to start here" ) self.assertIs(self.start_room.north, c) self.game.turnMain("n") self.assertIn( f"{c.entrance_a.capNameArticle(True)} is locked. ", self.app.print_stack ) self.assertIs(self.me.location, self.start_room) self.assertItemIn( self.me, self.start_room.contains, "player should not have moved" ) def test_cannot_set_non_lock_as_door_lock(self): room2 = Room( self.game, "A different place", "Description of a different place. " ) c = DoorConnector(self.game, self.start_room, "n", room2, "s") lock = Surface(self.game, "lock?") with self.assertRaises(IFPError): c.setLock(lock) def test_lock_already_attached_to_something_cannot_be_applied_to_a_door(self): room2 = Room( self.game, "A different place", "Description of a different place. " ) c = DoorConnector(self.game, self.start_room, "n", room2, "s") lock = Lock(self.game, is_locked=True, key_obj=None) c.setLock(lock) c2 = DoorConnector(self.game, self.start_room, "e", room2, "w") with self.assertRaises(IFPError): c2.setLock(lock) def test_can_travel_LadderConnector(self): room1 = Room(self.game, "A place", "Description of a place. ") room2 = Room( self.game, "A different place", "Description of a different place. " ) c = LadderConnector(self.game, room1, room2) self._assert_can_travel(room1, room2, "u", "d") self.assertIn("You climb up the upward ladder. ", self.app.print_stack) self.assertIn("You climb down the downward ladder. ", self.app.print_stack) self.assertIn(room1.desc + "A ladder leads up. ", self.app.print_stack) def test_can_travel_StaircaseConnector(self): room1 = Room(self.game, "A place", "Description of a place. ") room2 = Room( self.game, "A different place", "Description of a
+= 'Avg AcceptedTx PerSec,' line += 'ClocksPerSec,' line += '# VERSION Msgs,' line += 'Num VERSION PerSec,' line += 'Avg VERSION PerSec,' line += 'ClocksAvg VERSION,' line += 'ClocksMax VERSION,' line += 'BytesAvg VERSION,' line += 'BytesMax VERSION,' line += '# VERACK Msgs,' line += 'Num VERACK PerSec,' line += 'Avg VERACK PerSec,' line += 'ClocksAvg VERACK,' line += 'ClocksMax VERACK,' line += 'BytesAvg VERACK,' line += 'BytesMax VERACK,' line += '# ADDR Msgs,' line += 'Num ADDR PerSec,' line += 'Avg ADDR PerSec,' line += 'ClocksAvg ADDR,' line += 'ClocksMax ADDR,' line += 'BytesAvg ADDR,' line += 'BytesMax ADDR,' line += '# INV Msgs,' line += 'Num INV PerSec,' line += 'Avg INV PerSec,' line += 'ClocksAvg INV,' line += 'ClocksMax INV,' line += 'BytesAvg INV,' line += 'BytesMax INV,' line += '# GETDATA Msgs,' line += 'Num GETDATA PerSec,' line += 'Avg GETDATA PerSec,' line += 'ClocksAvg GETDATA,' line += 'ClocksMax GETDATA,' line += 'BytesAvg GETDATA,' line += 'BytesMax GETDATA,' line += '# MERKLEBLOCK Msgs,' line += 'Num MERKLEBLOCK PerSec,' line += 'Avg MERKLEBLOCK PerSec,' line += 'ClocksAvg MERKLEBLOCK,' line += 'ClocksMax MERKLEBLOCK,' line += 'BytesAvg MERKLEBLOCK,' line += 'BytesMax MERKLEBLOCK,' line += '# GETBLOCKS Msgs,' line += 'Num GETBLOCKS PerSec,' line += 'Avg GETBLOCKS PerSec,' line += 'ClocksAvg GETBLOCKS,' line += 'ClocksMax GETBLOCKS,' line += 'BytesAvg GETBLOCKS,' line += 'BytesMax GETBLOCKS,' line += '# GETHEADERS Msgs,' line += 'Num GETHEADERS PerSec,' line += 'Avg GETHEADERS PerSec,' line += 'ClocksAvg GETHEADERS,' line += 'ClocksMax GETHEADERS,' line += 'BytesAvg GETHEADERS,' line += 'BytesMax GETHEADERS,' line += '# TX Msgs,' line += 'Num TX PerSec,' line += 'Avg TX PerSec,' line += 'ClocksAvg TX,' line += 'ClocksMax TX,' line += 'BytesAvg TX,' line += 'BytesMax TX,' line += '# HEADERS Msgs,' line += 'Num HEADERS PerSec,' line += 'Avg HEADERS PerSec,' line += 'ClocksAvg HEADERS,' line += 'ClocksMax HEADERS,' line += 'BytesAvg HEADERS,' line += 'BytesMax HEADERS,' line += '# BLOCK Msgs,' line += 'Num BLOCK PerSec,' line += 'Avg BLOCK PerSec,' line += 'ClocksAvg BLOCK,' line += 'ClocksMax BLOCK,' line += 'BytesAvg BLOCK,' line += 'BytesMax BLOCK,' line += '# GETADDR Msgs,' line += 'Num GETADDR PerSec,' line += 'Avg GETADDR PerSec,' line += 'ClocksAvg GETADDR,' line += 'ClocksMax GETADDR,' line += 'BytesAvg GETADDR,' line += 'BytesMax GETADDR,' line += '# MEMPOOL Msgs,' line += 'Num MEMPOOL PerSec,' line += 'Avg MEMPOOL PerSec,' line += 'ClocksAvg MEMPOOL,' line += 'ClocksMax MEMPOOL,' line += 'BytesAvg MEMPOOL,' line += 'BytesMax MEMPOOL,' line += '# PING Msgs,' line += 'Num PING PerSec,' line += 'Avg PING PerSec,' line += 'ClocksAvg PING,' line += 'ClocksMax PING,' line += 'BytesAvg PING,' line += 'BytesMax PING,' line += '# PONG Msgs,' line += 'Num PONG PerSec,' line += 'Avg PONG PerSec,' line += 'ClocksAvg PONG,' line += 'ClocksMax PONG,' line += 'BytesAvg PONG,' line += 'BytesMax PONG,' line += '# NOTFOUND Msgs,' line += 'Num NOTFOUND PerSec,' line += 'Avg NOTFOUND PerSec,' line += 'ClocksAvg NOTFOUND,' line += 'ClocksMax NOTFOUND,' line += 'BytesAvg NOTFOUND,' line += 'BytesMax NOTFOUND,' line += '# FILTERLOAD Msgs,' line += 'Num FILTERLOAD PerSec,' line += 'Avg FILTERLOAD PerSec,' line += 'ClocksAvg FILTERLOAD,' line += 'ClocksMax FILTERLOAD,' line += 'BytesAvg FILTERLOAD,' line += 'BytesMax FILTERLOAD,' line += '# FILTERADD Msgs,' line += 'Num FILTERADD PerSec,' line += 'Avg FILTERADD PerSec,' line += 'ClocksAvg FILTERADD,' line += 'ClocksMax FILTERADD,' line += 'BytesAvg FILTERADD,' line += 'BytesMax FILTERADD,' line += '# FILTERCLEAR Msgs,' line += 'Num FILTERCLEAR PerSec,' line += 'Avg FILTERCLEAR PerSec,' line += 'ClocksAvg FILTERCLEAR,' line += 'ClocksMax FILTERCLEAR,' line += 'BytesAvg FILTERCLEAR,' line += 'BytesMax FILTERCLEAR,' line += '# SENDHEADERS Msgs,' line += 'Num SENDHEADERS PerSec,' line += 'Avg SENDHEADERS PerSec,' line += 'ClocksAvg SENDHEADERS,' line += 'ClocksMax SENDHEADERS,' line += 'BytesAvg SENDHEADERS,' line += 'BytesMax SENDHEADERS,' line += '# FEEFILTER Msgs,' line += 'Num FEEFILTER PerSec,' line += 'Avg FEEFILTER PerSec,' line += 'ClocksAvg FEEFILTER,' line += 'ClocksMax FEEFILTER,' line += 'BytesAvg FEEFILTER,' line += 'BytesMax FEEFILTER,' line += '# SENDCMPCT Msgs,' line += 'Num SENDCMPCT PerSec,' line += 'Avg SENDCMPCT PerSec,' line += 'ClocksAvg SENDCMPCT,' line += 'ClocksMax SENDCMPCT,' line += 'BytesAvg SENDCMPCT,' line += 'BytesMax SENDCMPCT,' line += '# CMPCTBLOCK Msgs,' line += 'Num CMPCTBLOCK PerSec,' line += 'Avg CMPCTBLOCK PerSec,' line += 'ClocksAvg CMPCTBLOCK,' line += 'ClocksMax CMPCTBLOCK,' line += 'BytesAvg CMPCTBLOCK,' line += 'BytesMax CMPCTBLOCK,' line += '# GETBLOCKTXN Msgs,' line += 'Num GETBLOCKTXN PerSec,' line += 'Avg GETBLOCKTXN PerSec,' line += 'ClocksAvg GETBLOCKTXN,' line += 'ClocksMax GETBLOCKTXN,' line += 'BytesAvg GETBLOCKTXN,' line += 'BytesMax GETBLOCKTXN,' line += '# BLOCKTXN Msgs,' line += 'Num BLOCKTXN PerSec,' line += 'Avg BLOCKTXN PerSec,' line += 'ClocksAvg BLOCKTXN,' line += 'ClocksMax BLOCKTXN,' line += 'BytesAvg BLOCKTXN,' line += 'BytesMax BLOCKTXN,' line += '# REJECT Msgs,' line += 'Num REJECT PerSec,' line += 'Avg REJECT PerSec,' line += 'ClocksAvg REJECT,' line += 'ClocksMax REJECT,' line += 'BytesAvg REJECT,' line += 'BytesMax REJECT,' line += '# [UNDOCUMENTED] Msgs,' line += 'Num [UNDOCUMENTED] PerSec,' line += 'Avg [UNDOCUMENTED] PerSec,' line += 'ClocksAvg [UNDOCUMENTED],' line += 'ClocksMax [UNDOCUMENTED],' line += 'BytesAvg [UNDOCUMENTED],' line += 'BytesMax [UNDOCUMENTED],' line += 'NumSkippedSamples,' line += 'Power usage,' line += 'Power usage unit,' line += 'Power usage baseline,' line += 'Power usage baseline unit,' line += 'Hashrate,' line += '\n' line += 'Time in which the sample was taken (in human readable format),' # Timestamp line += 'Time in which the sample was taken (in number of seconds since 1/01/1970),' # Timestamp (Seconds) line += 'Number of peer connections,' # NumPeers line += 'Sum of inbound connections (initiated by the peer),' # NumInbound line += 'Sum of peers that do not have the full blockchain downloaded,' # NumPruned line += 'Sum of peers that relay transactions,' # NumTXRelayers line += 'Sum of peers that were connected through the "addnode command,' # NumAddnode line += 'Sum of peers that have a bloom filter,' # NumBloom line += 'Average round trip time for ping to return a pong,' # AvgPingTime line += 'Sum of all banscores (0 means genuine and 100 means ban),' # TotalBanScore line += 'An array of all peer addresses separated by a space,' # Connections line += 'Percentage of CPU usage of bitcoind for each core summed together (i.e. it may exceed 100%),' # CPU % line += 'Percentage of memory usage of bitcoind,' # Memory % line += 'Megabytes of memory being used,' # Mem line += 'System bytes per second of the download and upload rates,' # Full System Bandwidth (download/upload) line += 'System CPU usage pergentage,' # Full System CPU % #line += 'Contains the output from the "top" instruction for the bitcoind process,' # Resource usage #line += 'A list of the current peer connections,' # GetPeerInfo line += 'Block height of the node,' # BlockHeight line += 'Amount of time it took for the block and header to reach you,' # BlockDelay line += 'Number of unconfirmed transactions currently in the mempool,' # MempoolSize line += 'Number of bytes that the mempool is currently taking up,' # MempoolBytes line += 'Change in block height over the change in time for the most recent block update,' # AcceptedBlocksPerSec line += 'Average of all previous AcceptedBlocksPerSec values,' # AcceptedBlocksPerSecAvg line += 'Change in mempool size over the change in time for the most recent mempool size update,' # AcceptedTxPerSec line += 'Average of all previous AcceptedTxPerSec values,' # AcceptedTxPerSecAvg line += 'Number of clock cycles that occur each second within Bitcoin Core,' # ClocksPerSec line += 'Total number of VERSION messages received thus far,' # # VERSION Msgs line += 'Change in number of messages over the change in time for the most recent VERSION message received,' # Num VERSION PerSec line += 'Average number of VERSION messages received per second thus far (the average of all previous Num VERSION PerSec values),' # Avg VERSION PerSec line += 'Average number of clocks that it took to process this message,' # ClocksAvg VERSION line += 'Maximum number of clocks that it took to process this message,' # ClocksMax VERSION line += 'Average number of bytes that this message took up,' # BytesAvg VERSION line += 'Maximum number of bytes that this message took up,' # BytesMax VERSION line += 'Total number of VERACK messages received thus far,' # # VERACK Msgs line += 'Change in number of messages over the change in time for the most recent VERACK message received,' # Num VERACK PerSec line += 'Average number of VERACK messages received per second thus far (the average of all previous Num VERACK PerSec values),' # Avg VERACK PerSec line += 'Average number of clocks that it took to process this message,' # ClocksAvg VERACK line += 'Maximum number of clocks that it took to process this message,' # ClocksMax VERACK line += 'Average number of bytes that this message took up,' # BytesAvg VERACK line += 'Maximum number of bytes that this message took up,' # BytesMax VERACK line += 'Total number of ADDR messages received thus far,' # # ADDR Msgs line += 'Change in number of messages over the change in time for the most recent ADDR message received,' #
self.buttonSample.bind('<Button-1>', self.setSample) self.buttonShowA.bind('<Button-1>', self.setFeatA) self.buttonShowB.bind('<Button-1>', self.setFeatB) self.buttonSaveDatasets.bind('<Button-1>', self.saveDataset) self.buttonGetFeat.bind('<Button-1>', self.getFeat) self.comboBoxTestType.bind('<<ComboboxSelected>>', self.setTest) self.listFeatA.bind('<<ListboxSelect>>', self.selectValuesDatasetA) self.listFeatB.bind('<<ListboxSelect>>', self.selectValuesDatasetB) #self.listAttributes.bind('<<ListboxSelect>>', self.selectFocusFeatureValues) ''' ''' TAB 2 - PREPROCESSOR ''' self.labelFrameVariableDescriptor = LabelFrame(self.Tabs_t2) self.labelFrameVariableDescriptor.place(relx=0.01, rely=0.0 , relheight=0.19, relwidth=0.98) self.labelFrameVariableDescriptor.configure(relief=GROOVE) self.labelFrameVariableDescriptor.configure(foreground="black") self.labelFrameVariableDescriptor.configure(text='''Variable Description Generator (Not yet functional)''') self.labelFrameVariableDescriptor.configure(background="#d9d9d9") self.labelFrameVariableDescriptor.configure(width=980) self.labelVariableFile = Label(self.labelFrameVariableDescriptor) self.labelVariableFile.place(relx=0.01, rely=0.17, height=26, width=172) self.labelVariableFile.configure(background="#d9d9d9") self.labelVariableFile.configure(disabledforeground="#a3a3a3") self.labelVariableFile.configure(foreground="#000000") self.labelVariableFile.configure(text='''Variable File:''') self.labelVariableFile.configure(width=172) self.entryVariableFile = Entry(self.labelFrameVariableDescriptor) self.entryVariableFile.place(relx=0.19, rely=0.17, relheight=0.21 , relwidth=0.64) self.entryVariableFile.configure(background="white") self.entryVariableFile.configure(disabledforeground="#a3a3a3") self.entryVariableFile.configure(font="TkFixedFont") self.entryVariableFile.configure(foreground="#000000") self.entryVariableFile.configure(insertbackground="black") self.entryVariableFile.configure(width=624) self.buttonVariableFile = Button(self.labelFrameVariableDescriptor) self.buttonVariableFile.place(relx=0.84, rely=0.17, height=23, width=146) self.buttonVariableFile.configure(activebackground="#d9d9d9") self.buttonVariableFile.configure(activeforeground="#000000") self.buttonVariableFile.configure(background="#d9d9d9") self.buttonVariableFile.configure(disabledforeground="#a3a3a3") self.buttonVariableFile.configure(foreground="#000000") self.buttonVariableFile.configure(highlightbackground="#d9d9d9") self.buttonVariableFile.configure(highlightcolor="black") self.buttonVariableFile.configure(pady="0") self.buttonVariableFile.configure(text='''Choose File...''') self.buttonVariableFile.configure(width=146) self.labelValuesFile = Label(self.labelFrameVariableDescriptor) self.labelValuesFile.place(relx=0.01, rely=0.43, height=26, width=172) self.labelValuesFile.configure(background="#d9d9d9") self.labelValuesFile.configure(disabledforeground="#a3a3a3") self.labelValuesFile.configure(foreground="#000000") self.labelValuesFile.configure(text='''Values File:''') self.labelValuesFile.configure(width=172) self.entryValuesFile = Entry(self.labelFrameVariableDescriptor) self.entryValuesFile.place(relx=0.19, rely=0.43, relheight=0.21 , relwidth=0.64) self.entryValuesFile.configure(background="white") self.entryValuesFile.configure(disabledforeground="#a3a3a3") self.entryValuesFile.configure(font="TkFixedFont") self.entryValuesFile.configure(foreground="#000000") self.entryValuesFile.configure(insertbackground="black") self.entryValuesFile.configure(width=624) self.buttonValuesFile = Button(self.labelFrameVariableDescriptor) self.buttonValuesFile.place(relx=0.84, rely=0.43, height=23, width=146) self.buttonValuesFile.configure(activebackground="#d9d9d9") self.buttonValuesFile.configure(activeforeground="#000000") self.buttonValuesFile.configure(background="#d9d9d9") self.buttonValuesFile.configure(disabledforeground="#a3a3a3") self.buttonValuesFile.configure(foreground="#000000") self.buttonValuesFile.configure(highlightbackground="#d9d9d9") self.buttonValuesFile.configure(highlightcolor="black") self.buttonValuesFile.configure(pady="0") self.buttonValuesFile.configure(text='''Choose File...''') self.buttonValuesFile.configure(width=146) self.buttonStartVariableDescriptor = Button(self.labelFrameVariableDescriptor) self.buttonStartVariableDescriptor.place(relx=0.84, rely=0.7, height=23 , width=146) self.buttonStartVariableDescriptor.configure(activebackground="#d9d9d9") self.buttonStartVariableDescriptor.configure(activeforeground="#000000") self.buttonStartVariableDescriptor.configure(background="#d9d9d9") self.buttonStartVariableDescriptor.configure(disabledforeground="#a3a3a3") self.buttonStartVariableDescriptor.configure(foreground="#000000") self.buttonStartVariableDescriptor.configure(highlightbackground="#d9d9d9") self.buttonStartVariableDescriptor.configure(highlightcolor="black") self.buttonStartVariableDescriptor.configure(pady="0") self.buttonStartVariableDescriptor.configure(text='''Start''') self.buttonStartVariableDescriptor.configure(width=146) self.entryInitialVarDesc = Entry(self.Tabs_t2) self.entryInitialVarDesc.place(relx=0.19, rely=0.25, relheight=0.04 , relwidth=0.64) self.entryInitialVarDesc.configure(background="white") self.entryInitialVarDesc.configure(disabledforeground="#a3a3a3") self.entryInitialVarDesc.configure(font="TkFixedFont") self.entryInitialVarDesc.configure(foreground="#000000") self.entryInitialVarDesc.configure(insertbackground="black") self.entryInitialVarDesc.configure(width=624) self.buttonInitialVarDesc = Button(self.Tabs_t2) self.buttonInitialVarDesc.place(relx=0.84, rely=0.25, height=23 , width=146) self.buttonInitialVarDesc.configure(activebackground="#d9d9d9") self.buttonInitialVarDesc.configure(activeforeground="#000000") self.buttonInitialVarDesc.configure(background="#d9d9d9") self.buttonInitialVarDesc.configure(disabledforeground="#a3a3a3") self.buttonInitialVarDesc.configure(foreground="#000000") self.buttonInitialVarDesc.configure(highlightbackground="#d9d9d9") self.buttonInitialVarDesc.configure(highlightcolor="black") self.buttonInitialVarDesc.configure(pady="0") self.buttonInitialVarDesc.configure(text='''Upload''') self.buttonInitialVarDesc.configure(width=146) self.labelInitialVarDesc = Label(self.Tabs_t2) self.labelInitialVarDesc.place(relx=0.01, rely=0.2, height=26, width=250) self.labelInitialVarDesc.configure(background="#d9d9d9") self.labelInitialVarDesc.configure(disabledforeground="#a3a3a3") self.labelInitialVarDesc.configure(foreground="#000000") self.labelInitialVarDesc.configure(text='''Variable Description:''') self.labelInitialVarDesc.configure(width=172) self.entryQueryPopulation = Entry(self.Tabs_t2) self.entryQueryPopulation.place(relx=0.19, rely=0.35, relheight=0.04 , relwidth=0.64) self.entryQueryPopulation.configure(background="white") self.entryQueryPopulation.configure(disabledforeground="#a3a3a3") self.entryQueryPopulation.configure(font="TkFixedFont") self.entryQueryPopulation.configure(foreground="#000000") self.entryQueryPopulation.configure(insertbackground="black") self.entryQueryPopulation.configure(width=654) self.buttonQueryPopulation = Button(self.Tabs_t2) self.buttonQueryPopulation.place(relx=0.84, rely=0.35, height=23 , width=146) self.buttonQueryPopulation.configure(activebackground="#d9d9d9") self.buttonQueryPopulation.configure(activeforeground="#000000") self.buttonQueryPopulation.configure(background="#d9d9d9") self.buttonQueryPopulation.configure(disabledforeground="#a3a3a3") self.buttonQueryPopulation.configure(foreground="#000000") self.buttonQueryPopulation.configure(highlightbackground="#d9d9d9") self.buttonQueryPopulation.configure(highlightcolor="black") self.buttonQueryPopulation.configure(pady="0") self.buttonQueryPopulation.configure(text='''Upload''') self.buttonQueryPopulation.configure(width=316) self.labelInitialVarDesc = Label(self.Tabs_t2) self.labelInitialVarDesc.place(relx=0.01, rely=0.3, height=26, width=250) self.labelInitialVarDesc.configure(background="#d9d9d9") self.labelInitialVarDesc.configure(disabledforeground="#a3a3a3") self.labelInitialVarDesc.configure(foreground="#000000") self.labelInitialVarDesc.configure(text='''Population Dataset:''') self.labelInitialVarDesc.configure(width=172) #--------Database Description File UI--------# self.entryDatabaseDesc = Entry(self.Tabs_t2) self.entryDatabaseDesc.place(relx=0.19, rely=0.45, relheight=0.04 , relwidth=0.64) self.entryDatabaseDesc.configure(background="white") self.entryDatabaseDesc.configure(disabledforeground="#a3a3a3") self.entryDatabaseDesc.configure(font="TkFixedFont") self.entryDatabaseDesc.configure(foreground="#000000") self.entryDatabaseDesc.configure(insertbackground="black") self.entryDatabaseDesc.configure(width=654) self.buttonDatabaseDesc = Button(self.Tabs_t2) self.buttonDatabaseDesc.place(relx=0.84, rely=0.45, height=23 , width=146) self.buttonDatabaseDesc.configure(activebackground="#d9d9d9") self.buttonDatabaseDesc.configure(activeforeground="#000000") self.buttonDatabaseDesc.configure(background="#d9d9d9") self.buttonDatabaseDesc.configure(disabledforeground="#a3a3a3") self.buttonDatabaseDesc.configure(foreground="#000000") self.buttonDatabaseDesc.configure(highlightbackground="#d9d9d9") self.buttonDatabaseDesc.configure(highlightcolor="black") self.buttonDatabaseDesc.configure(pady="0") self.buttonDatabaseDesc.configure(text='''Submit''') self.buttonDatabaseDesc.configure(width=316) self.labelInitialVarDesc = Label(self.Tabs_t2) self.labelInitialVarDesc.place(relx=0.01, rely=0.4, height=26, width=250) self.labelInitialVarDesc.configure(background="#d9d9d9") self.labelInitialVarDesc.configure(disabledforeground="#a3a3a3") self.labelInitialVarDesc.configure(foreground="#000000") self.labelInitialVarDesc.configure(text='''Enter unique code:''') self.labelInitialVarDesc.configure(width=172) #------------------------------------------# ''' BINDING PREPROCESSOR ELEMENTS ''' self.buttonStartVariableDescriptor.bind('<Button-1>', self.makeInitialVarDesc) self.buttonVariableFile.bind('<Button-1>', self.getVariableFile) self.buttonValuesFile.bind('<Button-1>', self.getValuesFile) self.buttonInitialVarDesc.bind('<Button-1>', self.uploadInitVarDesc) self.buttonDatabaseDesc.bind('<Button-1>', self.uploadDatabaseDescription) ''' TAB 3 - QUERY ''' self.labelFrameQueryDataA = LabelFrame(self.Tabs_t3) self.labelFrameQueryDataA.place(relx=0.01, rely=0.07, relheight=0.7 , relwidth=0.48) self.labelFrameQueryDataA.configure(relief=GROOVE) self.labelFrameQueryDataA.configure(foreground="black") self.labelFrameQueryDataA.configure(text='''Dataset A''') self.labelFrameQueryDataA.configure(background="#d9d9d9") self.labelFrameQueryDataA.configure(width=480) global queryStrFilterB self.entryQuerySetDataA = Entry(self.labelFrameQueryDataA) self.entryQuerySetDataA.place(relx=0.02, rely=0.04, relheight=0.05 , relwidth=0.2) self.entryQuerySetDataA.configure(background="white") self.entryQuerySetDataA.configure(disabledforeground="#a3a3a3") self.entryQuerySetDataA.configure(font="TkFixedFont") self.entryQuerySetDataA.configure(foreground="#000000") self.entryQuerySetDataA.configure(insertbackground="black") self.entryQuerySetDataA.configure(width=94) self.buttonQuerySetDataA = Button(self.labelFrameQueryDataA) self.buttonQuerySetDataA.place(relx=0.02, rely=0.1, height=23, width=96) self.buttonQuerySetDataA.configure(activebackground="#d9d9d9") self.buttonQuerySetDataA.configure(activeforeground="#000000") self.buttonQuerySetDataA.configure(background="#d9d9d9") self.buttonQuerySetDataA.configure(disabledforeground="#a3a3a3") self.buttonQuerySetDataA.configure(foreground="#000000") self.buttonQuerySetDataA.configure(highlightbackground="#d9d9d9") self.buttonQuerySetDataA.configure(highlightcolor="black") self.buttonQuerySetDataA.configure(pady="0") self.buttonQuerySetDataA.configure(text='''Find Feature''') self.buttonQuerySetDataA.configure(width=96) self.listQuerySetDataA = Listbox(self.labelFrameQueryDataA) self.listQuerySetDataA.place(relx=0.23, rely=0.04, relheight=0.26 , relwidth=0.76) self.listQuerySetDataA.configure(background="white") self.listQuerySetDataA.configure(disabledforeground="#a3a3a3") self.listQuerySetDataA.configure(font="TkFixedFont") self.listQuerySetDataA.configure(foreground="#000000") self.listQuerySetDataA.configure(width=364) self.listQuerySetDataA.configure(selectmode=MULTIPLE) self.listQuerySetDataA.configure(exportselection="0") self.listQuerySetDataA.configure(highlightbackground="#d9d9d9") self.listQuerySetDataA.configure(highlightcolor="black") self.listQuerySetDataA.configure(selectbackground="#c4c4c4") self.listQuerySetDataA.configure(selectforeground="black") self.buttonQueryAddFilterA = Button(self.labelFrameQueryDataA) self.buttonQueryAddFilterA.place(relx=0.02, rely=0.15, height=23, width=96) self.buttonQueryAddFilterA.configure(activebackground="#d9d9d9") self.buttonQueryAddFilterA.configure(activeforeground="#000000") self.buttonQueryAddFilterA.configure(background="#d9d9d9") self.buttonQueryAddFilterA.configure(disabledforeground="#a3a3a3") self.buttonQueryAddFilterA.configure(foreground="#000000") self.buttonQueryAddFilterA.configure(highlightbackground="#d9d9d9") self.buttonQueryAddFilterA.configure(highlightcolor="black") self.buttonQueryAddFilterA.configure(pady="0") self.buttonQueryAddFilterA.configure(text='''Filter''') self.buttonQueryAddFilterA.configure(width=96) self.buttonQueryResetFilterA = Button(self.labelFrameQueryDataA) self.buttonQueryResetFilterA.place(relx=0.02, rely=0.20, height=23, width=96) self.buttonQueryResetFilterA.configure(activebackground="#d9d9d9") self.buttonQueryResetFilterA.configure(activeforeground="#000000") self.buttonQueryResetFilterA.configure(background="#d9d9d9") self.buttonQueryResetFilterA.configure(disabledforeground="#a3a3a3") self.buttonQueryResetFilterA.configure(foreground="#000000") self.buttonQueryResetFilterA.configure(highlightbackground="#d9d9d9") self.buttonQueryResetFilterA.configure(highlightcolor="black") self.buttonQueryResetFilterA.configure(pady="0") self.buttonQueryResetFilterA.configure(text='''Reset Dataset''') self.buttonQueryResetFilterA.configure(width=96) self.labelQueryDataACount = Label(self.labelFrameQueryDataA) self.labelQueryDataACount.place(relx=0.02, rely=0.25, height=23, width=96) self.labelQueryDataACount.configure(text='Count: ') self.entryQueryFeatureA = Entry(self.labelFrameQueryDataA) self.entryQueryFeatureA.place(relx=0.23, rely=0.32, relheight=0.05 , relwidth=0.76) self.entryQueryFeatureA.configure(background="white") self.entryQueryFeatureA.configure(disabledforeground="#a3a3a3") self.entryQueryFeatureA.configure(font="TkFixedFont") self.entryQueryFeatureA.configure(foreground="#000000") self.entryQueryFeatureA.configure(insertbackground="black") self.entryQueryFeatureA.configure(width=364) self.buttonQueryFeatureA = Button(self.labelFrameQueryDataA) self.buttonQueryFeatureA.place(relx=0.02, rely=0.32, height=23, width=96) self.buttonQueryFeatureA.configure(activebackground="#d9d9d9") self.buttonQueryFeatureA.configure(activeforeground="#000000") self.buttonQueryFeatureA.configure(background="#d9d9d9") self.buttonQueryFeatureA.configure(disabledforeground="#a3a3a3") self.buttonQueryFeatureA.configure(foreground="#000000") self.buttonQueryFeatureA.configure(highlightbackground="#d9d9d9") self.buttonQueryFeatureA.configure(highlightcolor="black") self.buttonQueryFeatureA.configure(pady="0") self.buttonQueryFeatureA.configure(text='''Enter Code''') self.buttonQueryFeatureA.configure(width=96) self.listQueryDataA = Listbox(self.labelFrameQueryDataA) self.listQueryDataA.place(relx=0.02, rely=0.43, relheight=0.48 , relwidth=0.97) self.listQueryDataA.configure(background="white") self.listQueryDataA.configure(disabledforeground="#a3a3a3") self.listQueryDataA.configure(font="TkFixedFont") self.listQueryDataA.configure(foreground="#000000") self.listQueryDataA.configure(width=364) self.listQueryDataA.configure(selectmode=MULTIPLE) self.listQueryDataA.configure(exportselection="0") self.listQueryDataA.configure(highlightbackground="#d9d9d9") self.listQueryDataA.configure(highlightcolor="black") self.listQueryDataA.configure(selectbackground="#c4c4c4") self.listQueryDataA.configure(selectforeground="black") self.labelQueryDataAFeature = Label(self.labelFrameQueryDataA) self.labelQueryDataAFeature.place(relx=0.02, rely=0.38, relheight=0.05, relwidth=0.97) self.labelQueryDataAFeature.configure(text='''''') self.labelQueryDataA = Label(self.labelFrameQueryDataA) self.labelQueryDataA.place(relx=0.02, rely=0.91, height=26, width=462) self.labelQueryDataA.configure(background="#d9d9d9") self.labelQueryDataA.configure(disabledforeground="#a3a3a3") self.labelQueryDataA.configure(foreground="#000000") self.labelQueryDataA.configure(text='''NO DATA SELECTED''') self.labelQueryDataA.configure(width=462) self.labelFrameQueryDataB = LabelFrame(self.Tabs_t3) self.labelFrameQueryDataB.place(relx=0.5, rely=0.07, relheight=0.7 , relwidth=0.48) self.labelFrameQueryDataB.configure(relief=GROOVE) self.labelFrameQueryDataB.configure(foreground="black") self.labelFrameQueryDataB.configure(text='''Dataset B''') self.labelFrameQueryDataB.configure(background="#d9d9d9") self.labelFrameQueryDataB.configure(width=480) global queryStrFilterA self.entryQuerySetDataB = Entry(self.labelFrameQueryDataB) self.entryQuerySetDataB.place(relx=0.02, rely=0.04, relheight=0.05 , relwidth=0.2) self.entryQuerySetDataB.configure(background="white") self.entryQuerySetDataB.configure(disabledforeground="#a3a3a3") self.entryQuerySetDataB.configure(font="TkFixedFont") self.entryQuerySetDataB.configure(foreground="#000000") self.entryQuerySetDataB.configure(insertbackground="black") self.entryQuerySetDataB.configure(width=94) self.buttonQuerySetDataB = Button(self.labelFrameQueryDataB) self.buttonQuerySetDataB.place(relx=0.02, rely=0.1, height=23, width=96) self.buttonQuerySetDataB.configure(activebackground="#d9d9d9") self.buttonQuerySetDataB.configure(activeforeground="#000000") self.buttonQuerySetDataB.configure(background="#d9d9d9") self.buttonQuerySetDataB.configure(disabledforeground="#a3a3a3") self.buttonQuerySetDataB.configure(foreground="#000000") self.buttonQuerySetDataB.configure(highlightbackground="#d9d9d9") self.buttonQuerySetDataB.configure(highlightcolor="black") self.buttonQuerySetDataB.configure(pady="0") self.buttonQuerySetDataB.configure(text='''Find Feature''') self.buttonQuerySetDataB.configure(width=96) self.listQuerySetDataB = Listbox(self.labelFrameQueryDataB) self.listQuerySetDataB.place(relx=0.23, rely=0.04, relheight=0.26 , relwidth=0.76) self.listQuerySetDataB.configure(background="white") self.listQuerySetDataB.configure(disabledforeground="#a3a3a3") self.listQuerySetDataB.configure(font="TkFixedFont") self.listQuerySetDataB.configure(foreground="#000000") self.listQuerySetDataB.configure(width=364) self.listQuerySetDataB.configure(selectmode=MULTIPLE) self.listQuerySetDataB.configure(exportselection="0") self.listQuerySetDataB.configure(highlightbackground="#d9d9d9") self.listQuerySetDataB.configure(highlightcolor="black") self.listQuerySetDataB.configure(selectbackground="#c4c4c4") self.listQuerySetDataB.configure(selectforeground="black") self.buttonQueryAddFilterB = Button(self.labelFrameQueryDataB) self.buttonQueryAddFilterB.place(relx=0.02, rely=0.15, height=23, width=96) self.buttonQueryAddFilterB.configure(activebackground="#d9d9d9") self.buttonQueryAddFilterB.configure(activeforeground="#000000") self.buttonQueryAddFilterB.configure(background="#d9d9d9") self.buttonQueryAddFilterB.configure(disabledforeground="#a3a3a3") self.buttonQueryAddFilterB.configure(foreground="#000000") self.buttonQueryAddFilterB.configure(highlightbackground="#d9d9d9") self.buttonQueryAddFilterB.configure(highlightcolor="black") self.buttonQueryAddFilterB.configure(pady="0") self.buttonQueryAddFilterB.configure(text='''Filter''') self.buttonQueryAddFilterB.configure(width=96) self.buttonQueryResetFilterB = Button(self.labelFrameQueryDataB) self.buttonQueryResetFilterB.place(relx=0.02, rely=0.20, height=23, width=96) self.buttonQueryResetFilterB.configure(activebackground="#d9d9d9") self.buttonQueryResetFilterB.configure(activeforeground="#000000") self.buttonQueryResetFilterB.configure(background="#d9d9d9") self.buttonQueryResetFilterB.configure(disabledforeground="#a3a3a3") self.buttonQueryResetFilterB.configure(foreground="#000000") self.buttonQueryResetFilterB.configure(highlightbackground="#d9d9d9") self.buttonQueryResetFilterB.configure(highlightcolor="black") self.buttonQueryResetFilterB.configure(pady="0") self.buttonQueryResetFilterB.configure(text='''Reset Dataset''') self.labelQueryDataBCount = Label(self.labelFrameQueryDataB) self.labelQueryDataBCount.place(relx=0.02, rely=0.25, height=23, width=96) self.labelQueryDataBCount.configure(text='Count: ') self.entryQueryFeatureB = Entry(self.labelFrameQueryDataB) self.entryQueryFeatureB.place(relx=0.23, rely=0.32, relheight=0.05 , relwidth=0.76) self.entryQueryFeatureB.configure(background="white") self.entryQueryFeatureB.configure(disabledforeground="#a3a3a3") self.entryQueryFeatureB.configure(font="TkFixedFont") self.entryQueryFeatureB.configure(foreground="#000000") self.entryQueryFeatureB.configure(insertbackground="black") self.entryQueryFeatureB.configure(width=364) self.buttonQueryFeatureB = Button(self.labelFrameQueryDataB) self.buttonQueryFeatureB.place(relx=0.02, rely=0.32, height=23, width=96) self.buttonQueryFeatureB.configure(activebackground="#d9d9d9") self.buttonQueryFeatureB.configure(activeforeground="#000000") self.buttonQueryFeatureB.configure(background="#d9d9d9") self.buttonQueryFeatureB.configure(disabledforeground="#a3a3a3") self.buttonQueryFeatureB.configure(foreground="#000000") self.buttonQueryFeatureB.configure(highlightbackground="#d9d9d9") self.buttonQueryFeatureB.configure(highlightcolor="black") self.buttonQueryFeatureB.configure(pady="0") self.buttonQueryFeatureB.configure(text='''Enter Code''') self.buttonQueryFeatureB.configure(width=96) self.listQueryDataB = Listbox(self.labelFrameQueryDataB) self.listQueryDataB.place(relx=0.02, rely=0.43, relheight=0.48 , relwidth=0.97) self.listQueryDataB.configure(background="white") self.listQueryDataB.configure(disabledforeground="#a3a3a3") self.listQueryDataB.configure(font="TkFixedFont") self.listQueryDataB.configure(foreground="#000000") self.listQueryDataB.configure(width=364) self.listQueryDataB.configure(selectmode=MULTIPLE) self.listQueryDataB.configure(exportselection="0") self.listQueryDataB.configure(highlightbackground="#d9d9d9") self.listQueryDataB.configure(highlightcolor="black") self.listQueryDataB.configure(selectbackground="#c4c4c4") self.listQueryDataB.configure(selectforeground="black") self.labelQueryDataBFeature = Label(self.labelFrameQueryDataB) self.labelQueryDataBFeature.place(relx=0.02, rely=0.38, relheight=0.05, relwidth=0.97) self.labelQueryDataBFeature.configure(text='''''') self.labelQueryDataB = Label(self.labelFrameQueryDataB) self.labelQueryDataB.place(relx=0.02, rely=0.91, height=26, width=462) self.labelQueryDataB.configure(background="#d9d9d9") self.labelQueryDataB.configure(disabledforeground="#a3a3a3") self.labelQueryDataB.configure(foreground="#000000") self.labelQueryDataB.configure(text='''NO DATA SELECTED''') self.labelQueryDataB.configure(width=462) global testTypes testTypes = ["Sample vs Sample","Sample vs Population"] self.comboQueryTest = ttk.Combobox(self.Tabs_t3) self.comboQueryTest.place(relx=0.01, rely=0.02, height=23, width=316) self.comboQueryTest.configure(exportselection="0") self.comboQueryTest.configure(takefocus="") self.comboQueryTest.configure(values=testTypes) self.comboQueryTest.current(0) self.comboQueryTest.configure(state="readonly") self.labelFrameQueryZ = LabelFrame(self.Tabs_t3) self.labelFrameQueryZ.place(relx=0.01, rely=0.78, relheight=0.1, relwidth=0.48) self.labelFrameQueryZ.configure(relief=GROOVE) self.labelFrameQueryZ.configure(foreground="black") self.labelFrameQueryZ.configure(text='''Z-Test''') self.labelFrameQueryZ.configure(background="#d9d9d9") self.labelFrameQueryZ.configure(width=480) self.labelQueryZTest = Label(self.labelFrameQueryZ) self.labelQueryZTest.place(relx=0.47, rely=0.01, height=26, width=240) # self.labelQueryZTest.configure(background="#d9d9d9") self.labelQueryZTest.configure(disabledforeground="#a3a3a3") self.labelQueryZTest.configure(foreground="#000000") self.labelQueryZTest.configure(text='''NO DATA''') self.labelQueryZTest.configure(width=862) self.buttonQueryZTest = Button(self.labelFrameQueryZ) self.buttonQueryZTest.place(relx=0.01, rely=0.01, height=23, width=106) self.buttonQueryZTest.configure(activebackground="#d9d9d9") self.buttonQueryZTest.configure(activeforeground="#000000") self.buttonQueryZTest.configure(background="#d9d9d9") self.buttonQueryZTest.configure(disabledforeground="#a3a3a3") self.buttonQueryZTest.configure(foreground="#000000") self.buttonQueryZTest.configure(highlightbackground="#d9d9d9") self.buttonQueryZTest.configure(highlightcolor="black") self.buttonQueryZTest.configure(pady="0") self.buttonQueryZTest.configure(text='''Test''') self.buttonQueryZTest.configure(width=106) self.labelFrameQueryChi = LabelFrame(self.Tabs_t3) self.labelFrameQueryChi.place(relx=0.5, rely=0.78, relheight=0.1 , relwidth=0.48) self.labelFrameQueryChi.configure(relief=GROOVE) self.labelFrameQueryChi.configure(foreground="black") self.labelFrameQueryChi.configure(text='''Chi Test''') self.labelFrameQueryChi.configure(background="#d9d9d9") self.labelFrameQueryChi.configure(width=480) global arrQueryCriticalValue arrQueryCriticalValue = ["0.80", "0.90", "0.95", "0.98", "0.99"] global arrQueryCriticalValueMapping arrQueryCriticalValueMapping = {"0.80":1.28, "0.90":1.645, "0.95":1.96, "0.98":2.33, "0.99":2.58} self.comboQueryCriticalValue = ttk.Combobox(self.labelFrameQueryZ) self.comboQueryCriticalValue.place(relx=0.24, rely=0.01, height=23, width=106) self.comboQueryCriticalValue.configure(exportselection="0") self.comboQueryCriticalValue.configure(takefocus="") self.comboQueryCriticalValue.configure(values=arrQueryCriticalValue) self.comboQueryCriticalValue.set(arrQueryCriticalValue[0]) self.labelQueueCount = Label(self.Tabs_t3) self.labelQueueCount.place(relx=0.87, rely=0.01, height=23, width=106) self.labelQueueCount.configure(text='''Queue Count: 0''') ''' self.buttonTest = Button(self.labelFrameQueryChi) self.buttonTest.place(relx=0.01, rely=0.01, height=23, width=106) self.buttonTest.configure(activebackground="#d9d9d9") self.buttonTest.configure(activeforeground="#000000") self.buttonTest.configure(background="#d9d9d9") self.buttonTest.configure(disabledforeground="#a3a3a3") self.buttonTest.configure(foreground="#000000") self.buttonTest.configure(highlightbackground="#d9d9d9") self.buttonTest.configure(highlightcolor="black") self.buttonTest.configure(pady="0") self.buttonTest.configure(text=''''Test'''') ''' # self.buttonTest.configure(state='disabled') self.buttonTestQueue = Button(self.labelFrameQueryChi) self.buttonTestQueue.place(relx=0.7, rely=0.01, height=23, width=106) self.buttonTestQueue.configure(activebackground="#d9d9d9") self.buttonTestQueue.configure(activeforeground="#000000") self.buttonTestQueue.configure(background="#d9d9d9") self.buttonTestQueue.configure(disabledforeground="#a3a3a3") self.buttonTestQueue.configure(foreground="#000000") self.buttonTestQueue.configure(highlightbackground="#d9d9d9") self.buttonTestQueue.configure(highlightcolor="black") self.buttonTestQueue.configure(pady="0") self.buttonTestQueue.configure(text='''Run Miner''') # self.buttonTestQueue.configure(state='disabled') self.buttonClearQueue = Button(self.labelFrameQueryChi) self.buttonClearQueue.place(relx=0.47, rely=0.01, height=23, width=106) self.buttonClearQueue.configure(activebackground="#d9d9d9") self.buttonClearQueue.configure(activeforeground="#000000") self.buttonClearQueue.configure(background="#d9d9d9") self.buttonClearQueue.configure(disabledforeground="#a3a3a3") self.buttonClearQueue.configure(foreground="#000000") self.buttonClearQueue.configure(highlightbackground="#d9d9d9") self.buttonClearQueue.configure(highlightcolor="black") self.buttonClearQueue.configure(pady="0") self.buttonClearQueue.configure(text='''Clear All''') # self.buttonClearQueue.configure(state='disabled') self.buttonQueue = Button(self.labelFrameQueryChi) self.buttonQueue.place(relx=0.01, rely=0.01, height=23, width=106) self.buttonQueue.configure(activebackground="#d9d9d9") self.buttonQueue.configure(activeforeground="#000000") self.buttonQueue.configure(background="#d9d9d9") self.buttonQueue.configure(disabledforeground="#a3a3a3") self.buttonQueue.configure(foreground="#000000") self.buttonQueue.configure(highlightbackground="#d9d9d9") self.buttonQueue.configure(highlightcolor="black") self.buttonQueue.configure(pady="0") self.buttonQueue.configure(text='''Enqueue''') # self.buttonQueue.configure(state='disabled') self.labelFrameQuerySvP = LabelFrame(self.Tabs_t3) self.labelFrameQuerySvP.place(relx=0.01, rely=0.88, relheight=0.1 , relwidth=0.48) self.labelFrameQuerySvP.configure(relief=GROOVE) self.labelFrameQuerySvP.configure(foreground="black") self.labelFrameQuerySvP.configure(text='''Z-Test Sample Vs Population''') self.labelFrameQuerySvP.configure(background="#d9d9d9") self.labelFrameQuerySvP.configure(width=480) self.comboQueryCriticalValueSvP = ttk.Combobox(self.labelFrameQuerySvP) self.comboQueryCriticalValueSvP.place(relx=0.24, rely=0.01, height=23, width=106) self.comboQueryCriticalValueSvP.configure(exportselection="0") self.comboQueryCriticalValueSvP.configure(takefocus="") self.comboQueryCriticalValueSvP.configure(values=arrQueryCriticalValue) self.comboQueryCriticalValueSvP.set(arrQueryCriticalValue[0]) self.comboQueryCriticalValueSvP.configure(state="disabled") self.labelQueryZTestSvP = Label(self.labelFrameQuerySvP) self.labelQueryZTestSvP.place(relx=0.47, rely=0.01, height=26, width=240) # self.labelQueryZTest.configure(background="#d9d9d9") self.labelQueryZTestSvP.configure(disabledforeground="#a3a3a3") self.labelQueryZTestSvP.configure(foreground="#000000") self.labelQueryZTestSvP.configure(text='''NO DATA''') self.labelQueryZTestSvP.configure(width=862) self.labelQueryZTestSvP.configure(state="disabled") self.buttonQueryZTestSvP = Button(self.labelFrameQuerySvP) self.buttonQueryZTestSvP.place(relx=0.01, rely=0.01, height=23, width=106) self.buttonQueryZTestSvP.configure(activebackground="#d9d9d9") self.buttonQueryZTestSvP.configure(activeforeground="#000000") self.buttonQueryZTestSvP.configure(background="#d9d9d9") self.buttonQueryZTestSvP.configure(disabledforeground="#a3a3a3") self.buttonQueryZTestSvP.configure(foreground="#000000") self.buttonQueryZTestSvP.configure(highlightbackground="#d9d9d9") self.buttonQueryZTestSvP.configure(highlightcolor="black") self.buttonQueryZTestSvP.configure(pady="0") self.buttonQueryZTestSvP.configure(text='''Test''') self.buttonQueryZTestSvP.configure(width=106) self.buttonQueryZTestSvP.configure(state="disabled") ''' BINDING FOR QUERY TAB ''' self.buttonQueryPopulation.bind('<Button-1>', self.querySetPopulation) self.buttonQuerySetDataA.bind('<Button-1>', self.querySetDataA) self.buttonQuerySetDataB.bind('<Button-1>', self.querySetDataB) self.buttonQueryAddFilterA.bind('<Button-1>', self.queryAddFilterA) self.buttonQueryAddFilterB.bind('<Button-1>', self.queryAddFilterB) self.buttonQueryFeatureA.bind('<Button-1>', self.querySetFeatureA) self.buttonQueryFeatureB.bind('<Button-1>', self.querySetFeatureB) self.buttonQueryZTest.bind('<Button-1>', self.queryZTest) self.buttonQueryZTestSvP.bind('<Button-1>', self.querySVP) self.buttonQueue.bind('<Button-1>', self.queue) self.buttonClearQueue.bind('<Button-1>', self.clearQueue) self.buttonTestQueue.bind('<Button-1>', self.testQueue) self.buttonQueryResetFilterA.bind('<Button-1>', self.queryResetDatasetA) self.buttonQueryResetFilterB.bind('<Button-1>', self.queryResetDatasetB) self.listQuerySetDataA.bind('<<ListboxSelect>>', self.querySelectDataValuesA) self.listQuerySetDataB.bind('<<ListboxSelect>>', self.querySelectDataValuesB) self.listQueryDataA.bind('<<ListboxSelect>>', self.setFocusFeatureValuesA) self.listQueryDataB.bind('<<ListboxSelect>>', self.setFocusFeatureValuesB) self.comboQueryTest.bind('<<ComboboxSelected>>', self.querySetType) ####################################### global queryType queryType = self.comboQueryTest.get() global populationDir populationDir = "" self.populationDataset = [] self.datasetA = {'Data':[], 'Filter Features':[]} self.datasetB = {'Data':[], 'Filter Features':[]} global tests tests = [] self.labelQueryDataACount.configure(text="n: " + str(len(self.datasetA['Data']))) self.labelQueryDataBCount.configure(text="n: " + str(len(self.datasetB['Data']))) ''' Functions to be called by the bound commands ''' #Adds test to the queue def addToQueue(self, testType, **params): global tests test = {'Type':testType} for key in params: if(key == 'popDirArg'): test['Population Path'] = copy.copy(params[key]) elif(key == 'sampleFeatArg'): test['Sample Feature'] = copy.copy(params[key]) elif(key == 'selectedFeatArg'): test['Selected Feature'] = copy.copy(params[key]) elif(key == 'allValArg'): test['SF All Values'] = copy.copy(params[key]) elif(key == 'selValArg'): test['SF Selected Values'] = copy.copy(params[key]) elif(key == 'datasetArgs'): test['Datasets'] = copy.deepcopy(params[key]) elif(key == 'zArg'): test['Z Critical Value'] = copy.copy(params[key]) tests.append(test) self.labelQueueCount.configure(text='Queue Count: ' + str(len(tests))) messagebox.showinfo("Test queued", test['Type'] + " has been queued.") ''' DEFINING BOUND COMMANDS ''' #Create the Initial Variable Descriptor def makeInitialVarDesc(self, evt): varFileDir = self.entryVariableFile.get() valFileDir = self.entryValuesFile.get() messagebox.showinfo("Work in progress",'Make the Initial Variable Descriptor! (WIP)') def getVariableFile(self): varFileDir = askopenfilename(title = "Select variable file",filetypes = (("txt files","*.txt"),("all files","*.*"))) self.entryVariableFile.delete(0, END) self.entryVariableFile.insert(0, varFileDir) def getValuesFile(self): valFileDir = askopenfilename(title = "Select values file",filetypes = (("txt files","*.txt"),("all files","*.*"))) self.entryValuesFile.delete(0,END) self.entryValuesFile.insert(0, valFileDir) # ABOUT US def showAbout(self): strAbout = "OTOO Miner v4.0\n" \ "by TE3D House\n" \ "De La Salle University - Laguna" messagebox.showinfo("About", strAbout) # UPLOAD MODULE def setPopulation(self, evt): global populationDir populationDir = filedialog.askopenfilename(title = "Select file",filetypes = (("csv files","*.csv"),("all files","*.*"))) self.entryQueryPopulation.delete(0,END) self.entryQueryPopulation.insert(0,populationDir) self.populationDataset = readCSVDict(populationDir) self.datasetA['Data']=[] self.datasetB['Data']=[] if(len(list(self.populationDataset)) > 0): messagebox.showinfo("Population set", "Population dataset uploaded") self.populationDataset = readCSVDict(populationDir) for record in self.populationDataset: self.datasetA['Data'].append(record) self.datasetB['Data'].append(record) self.labelQueryDataACount.configure(text="n: " + str(len(self.datasetA['Data'])) ) self.labelQueryDataBCount.configure(text="n: " + str(len(self.datasetB['Data'])) ) else: messagebox.showerror("Error: Upload error", "Error uploading population dataset. Please try again.") def setPopulationFromDatabase(self): self.populationDataset = readCSVDict(filenameFromDB + " results.csv") self.datasetA['Data'] = [] self.datasetB['Data'] =
<filename>main.py<gh_stars>1-10 import scipy.io as sio import numpy as np from scipy.sparse import csc_matrix import scipy.sparse as sp from sklearn.preprocessing import normalize import scipy.sparse.linalg as LA import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import argparse import sklearn.metrics as metrics from model import GCN, GFNN, MLP, pro_lstm_featwalk, pro_lstm_featwalk_full from random_walk import walk_dic_featwalk from utils import output_csv, subsample import time import sys, os parser = argparse.ArgumentParser() parser.add_argument('--model', type=str, default='ATTR_RW') parser.add_argument('--gpu', type=int, default=0) parser.add_argument('--seed', type=int, default=0) parser.add_argument('--dataset', type=str, default='BlogCatalog') parser.add_argument('--proportion', type=float, default=0.25) parser.add_argument('--saved', action='store_true', default=False) parser.add_argument('--output_file', type=str, default='toy') parser.add_argument('--times_features', action='store_true', default=False) parser.add_argument('--subsample', action='store_true', default=False) parser.add_argument('--data_path', type=str, default='.') args = parser.parse_args() class Unbuffered(object): def __init__(self, stream): self.stream = stream def write(self, data): self.stream.write(data) self.stream.flush() def writelines(self, datas): self.stream.writelines(datas) self.stream.flush() def __getattr__(self, attr): return getattr(self.stream, attr) sys.stdout = Unbuffered(sys.stdout) print(args) output_file = 'results/' + args.output_file + '_' + str(args.seed) + '.csv' np.random.seed(args.seed) torch.manual_seed(args.seed) if torch.cuda.is_available(): device = 'cuda:' + str(args.gpu) torch.cuda.manual_seed(args.seed) else: device = 'cpu' if args.dataset.lower() == 'blogcatalog': mat_name = args.data_path + '/data/BlogCatalog.mat' nb_classes = 6 elif args.dataset.lower() == 'flickr': mat_name = args.data_path + '/data/Flickr.mat' #'data/Flickr_SDM.mat' nb_classes = 9 mat_contents = sio.loadmat(mat_name) adj = mat_contents['Network'] features = mat_contents['Attributes'] def concatenate_csc_matrices_by_columns(matrix1, matrix2): assert matrix1.shape[0] == matrix2.shape[0] new_data = np.concatenate((matrix1.data, matrix2.data)) new_indices = np.concatenate((matrix1.indices, matrix2.indices)) new_ind_ptr = matrix2.indptr + len(matrix1.data) new_ind_ptr = new_ind_ptr[1:] new_ind_ptr = np.concatenate((matrix1.indptr, new_ind_ptr)) return csc_matrix((new_data, new_indices, new_ind_ptr)) def concatenate_sparse_matrices_by_rows(matrix1, matrix2): assert matrix1.shape[1] == matrix2.shape[1] return concatenate_csc_matrices_by_columns(matrix1.transpose().tocsc(), matrix2.transpose().tocsc()).transpose().tocsc() def concat_attr(adj, features, alpha=1.0): adj_sum = sp.csc_matrix(np.diag(np.array(adj.sum(axis=1)).squeeze())) features = normalize(features, norm='l1', axis=1) features = adj_sum @ features * alpha zeros = sp.csc_matrix(np.zeros(shape=(features.shape[1], features.shape[1]))) return concatenate_sparse_matrices_by_rows(concatenate_csc_matrices_by_columns(adj, features), concatenate_csc_matrices_by_columns(features.transpose().tocsc(), zeros)) def normalize_trans(adj): # symmetric adj # output: sym-normed_adj, deg ** (-0.5) vol = adj.sum() adj_deg = np.array(adj.sum(axis=0)).squeeze() adj_deg_inv = sp.csc_matrix(np.diag(np.where(adj_deg>0, adj_deg**(-0.5), 0))) adj_normed = adj_deg_inv @ adj @ adj_deg_inv return adj_normed, adj_deg_inv.todense(), vol # dataset split k = args.proportion # used proportion of training set for evaluation nb_nodes = adj.shape[0] nb_train = int(nb_nodes * 0.8) nb_train_real = int(nb_train * k) nb_val_start = int(nb_train_real * 0.9) random_perm = np.random.permutation(nb_nodes) train_mask_real = random_perm[:nb_val_start] val_mask = random_perm[nb_val_start:nb_train_real] test_mask = random_perm[nb_train:] def micro_f1(logits, labels): # Compute predictions preds = torch.argmax(logits, dim=1) return metrics.f1_score(labels, preds, average='micro') def macro_f1(logits, labels): # Compute predictions preds = torch.argmax(logits, dim=1) return metrics.f1_score(labels, preds, average='macro') # train def train(model, optimizer, loss_func, adj, x, labels, train_mask, val_mask, test_mask, batch_size, epochs, iters_per_epoch, patience): save_name = 'save_model/' + str(int(time.time())) + str(args.proportion) + '_' + str(args.seed) + '.pkl' best_val_loss = 100 # a large loss p = 0 for i in range(epochs): train_mask = train_mask[np.random.permutation(train_mask.shape[0])] train_start = 0 acum_loss = 0 acum_acc = 0 for j in range(iters_per_epoch): model.train() if train_start + batch_size < train_mask.shape[0]: train_nodes = train_mask[train_start:train_start+batch_size] train_start += batch_size else: train_nodes = list(train_mask[train_start:]) + list(train_mask[:train_start+batch_size-train_mask.shape[0]]) train_start += batch_size-train_mask.shape[0] output = model(adj, x) loss = loss_func(output[train_nodes], labels[train_nodes]) optimizer.zero_grad() loss.backward() optimizer.step() acum_loss += loss.detach().cpu() acum_acc += sum(torch.argmax(output[train_nodes], dim=1) == labels[train_nodes]).float()/batch_size with torch.no_grad(): model.eval() output = model(adj, x) val_loss = loss_func(output[val_mask], labels[val_mask]) val_acc = torch.sum(torch.argmax(output[val_mask], dim=1) == labels[val_mask]).float()/val_mask.shape[0] print('epoch: {}, training loss: {}, training acc: {}, val loss: {}, val acc: {}'.format(i, acum_loss/iters_per_epoch, acum_acc/iters_per_epoch, \ val_loss, val_acc)) if val_loss < best_val_loss: best_val_loss = val_loss torch.save(model.state_dict(), save_name) p = 0 else: if p >= patience: break p += 1 with torch.no_grad(): model.load_state_dict(torch.load(save_name)) model.eval() output = model(adj, x) #test_acc = torch.sum(torch.argmax(output[test_mask], dim=1) == labels[test_mask]).float()/test_mask.shape[0] test_results = [micro_f1(output[test_mask].cpu(), labels[test_mask].cpu()), macro_f1(output[test_mask].cpu(), labels[test_mask].cpu())] print(test_results) output_csv(output_file, test_results) os.remove(save_name) #train mlp def train_mlp(model, optimizer, loss_func, x, labels, train_mask, val_mask, test_mask, batch_size, epochs, iters_per_epoch, patience): save_name = 'save_model/' + str(int(time.time())) + str(args.proportion) + '_' + str(args.seed) + '.pkl' best_val_loss = 100 # a large loss for i in range(epochs): train_mask = train_mask[np.random.permutation(train_mask.shape[0])] train_start = 0 acum_loss = 0 acum_acc = 0 for j in range(iters_per_epoch): model.train() if train_start + batch_size < train_mask.shape[0]: train_nodes = train_mask[train_start:train_start+batch_size] train_start += batch_size else: train_nodes = list(train_mask[train_start:]) + list(train_mask[:train_start+batch_size-train_mask.shape[0]]) train_start += batch_size-train_mask.shape[0] output = model(x) loss = loss_func(output[train_nodes], labels[train_nodes]) optimizer.zero_grad() loss.backward() optimizer.step() acum_loss += loss.detach().cpu() acum_acc += sum(torch.argmax(output[train_nodes], dim=1) == labels[train_nodes]).float()/batch_size with torch.no_grad(): model.eval() output = model(x) val_loss = loss_func(output[val_mask], labels[val_mask]) val_acc = torch.sum(torch.argmax(output[val_mask], dim=1) == labels[val_mask]).float()/val_mask.shape[0] print('epoch: {}, training loss: {}, training acc: {}, val loss: {}, val acc: {}'.format(i, acum_loss/iters_per_epoch, acum_acc/iters_per_epoch, \ val_loss, val_acc)) if val_loss < best_val_loss: best_val_loss = val_loss torch.save(model.state_dict(), save_name) p = 0 else: if p >= patience: break p += 1 with torch.no_grad(): model.load_state_dict(torch.load(save_name)) model.eval() output = model(x) #test_acc = torch.sum(torch.argmax(output[test_mask], dim=1) == labels[test_mask]).float()/test_mask.shape[0] test_results = [micro_f1(output[test_mask].cpu(), labels[test_mask].cpu()), macro_f1(output[test_mask].cpu(), labels[test_mask].cpu())] print(test_results) output_csv(output_file, test_results) os.remove(save_name) def train_rna_rw(model, optimizer, loss_func, sentencedic, features, labels, train_mask, val_mask, test_mask, batch_size, epochs, iters_per_epoch, patience): save_name = 'save_model/' + str(int(time.time())) + str(args.proportion) + '_' + str(args.seed) + '.pkl' best_val_loss = 1e6 # a large loss sentences_val = [[]] val_mask_batch = [[]] batch_start = 0 p=0 for i in val_mask: if batch_start >= batch_size: sentences_val.append([]) val_mask_batch.append([]) batch_start = 0 sentences_val[-1].extend(sentencedic[i]) val_mask_batch[-1].append(i) batch_start += 1 sentences_test = [[]] test_mask_batch = [[]] batch_start = 0 for i in test_mask: if batch_start >= batch_size: sentences_test.append([]) test_mask_batch.append([]) batch_start = 0 sentences_test[-1].extend(sentencedic[i]) test_mask_batch[-1].append(i) batch_start += 1 for i in range(epochs): train_mask = train_mask[np.random.permutation(train_mask.shape[0])] train_start = 0 acum_loss = 0 acum_acc = 0 for j in range(iters_per_epoch): model.train() if train_start + batch_size < train_mask.shape[0]: train_nodes = train_mask[train_start:train_start+batch_size] train_start += batch_size else: train_nodes = list(train_mask[train_start:]) + list(train_mask[:train_start+batch_size-train_mask.shape[0]]) train_start += batch_size-train_mask.shape[0] sentences = [] for k in train_nodes: sentences.extend(sentencedic[k]) output = model(features[sentences]) loss = loss_func(output, labels[train_nodes]) optimizer.zero_grad() loss.backward() optimizer.step() acum_loss += loss.detach().cpu() acum_acc += sum(torch.argmax(output, dim=1) == labels[train_nodes]).float()/batch_size with torch.no_grad(): acum_val_acc = 0 acum_val_loss = 0 model.eval() for mask, paths in zip(val_mask_batch, sentences_val): output = model(features[paths]) acum_val_loss += loss_func(output, labels[mask]).detach().cpu() * len(mask) acum_val_acc += torch.sum(torch.argmax(output, dim=1) == labels[mask]).float() print('epoch: {}, training loss: {}, training acc: {}, val loss: {}, val acc: {}'.format(i, acum_loss/iters_per_epoch, acum_acc/iters_per_epoch, \ acum_val_loss/len(val_mask), acum_val_acc/len(val_mask))) if acum_val_loss < best_val_loss: best_val_loss = acum_val_loss torch.save(model.state_dict(), save_name) p = 0 else: if p >= patience: break p += 1 with torch.no_grad(): model.load_state_dict(torch.load(save_name)) model.eval() outputs = [] for mask, paths in zip(test_mask_batch, sentences_test): outputs.append(model(features[paths])) #test_acc = torch.sum(torch.argmax(output[test_mask], dim=1) == labels[test_mask]).float()/test_mask.shape[0] outputs = torch.cat(outputs).cpu() test_results = [micro_f1(outputs.cpu(), labels[test_mask].cpu()), macro_f1(outputs.cpu(), labels[test_mask].cpu())] print(test_results) output_csv(output_file, test_results) os.remove(save_name) # preprocess features def preprocess_features(features): """Row-normalize feature matrix""" features = normalize(features, norm='l1', axis=1) return features.todense() # numpy sparse to pytorch sparse def np_sparse_to_pt_sparse(matrix): coo = matrix.tocoo() values = coo.data indices = np.vstack((coo.row, coo.col)) i = torch.LongTensor(indices) v = torch.FloatTensor(values) shape = coo.shape return torch.sparse.FloatTensor(i, v, torch.Size(shape)) if args.model == 'GCN': #x = preprocess_features(features) x = features.todense() x = torch.FloatTensor(x).to(device) labels = mat_contents['Label'] labels = torch.LongTensor(labels-1).squeeze().to(device) #adj_pt, _, _ = normalize_trans(adj+sp.eye(adj.shape[0])) adj_pt = normalize_trans(adj)[0] + sp.eye(adj.shape[0]) adj_pt = np_sparse_to_pt_sparse(adj_pt).to(device) model = GCN(x.size()[-1], 128, nb_classes).to(device) optimizer = optim.Adam(model.parameters(), lr=0.01) loss_func = nn.CrossEntropyLoss() train(model, optimizer, loss_func, adj_pt, x, labels, train_mask_real, val_mask, test_mask, batch_size=128, epochs = 200, iters_per_epoch=int(nb_train_real/128)+1, patience=10) elif args.model == 'GFNN' or args.model == 'SGC': x = preprocess_features(features) x = torch.FloatTensor(x).to(device) labels = mat_contents['Label'] labels = torch.LongTensor(labels-1).squeeze().to(device) adj_pt, _, _ = normalize_trans(adj+sp.eye(adj.shape[0])) adj_pt = np_sparse_to_pt_sparse(adj_pt).to(device) x = torch.spmm(adj_pt, x) x = torch.spmm(adj_pt, x) if args.model == 'GFNN': model = MLP(x.size()[-1], 128, nb_classes).to(device) optimizer = optim.Adam(model.parameters(), lr=0.01) else: model = MLP(x.size()[-1], out_dim = nb_classes).to(device) optimizer = optim.Adam(model.parameters(), lr=0.001) loss_func = nn.CrossEntropyLoss() train_mlp(model, optimizer, loss_func, x, labels, train_mask_real, val_mask, test_mask, batch_size=128, epochs = 200, iters_per_epoch=int(nb_train_real/128)+1, patience=10) elif args.model == 'ATTR_RW_MF': ## ``Ours 1`` with (args.times_features == False) ## ``Ours 2`` with (args.times_features == True) if args.saved == False: # For the abalation study of local, non-local if args.subsample: features = subsample(adj, features) trans_attr_rw, trans_deg_inv, vol = normalize_trans(concat_attr(adj, features)) rank_k = 300 window_size = 5 ''' vals, vecs = LA.eigsh(trans_attr_rw, k=rank_k) vals_power = [vals] for i in range(window_size): vals_power.append(vals_power[-1] * vals) vals_power = sum(vals_power) / window_size trans_power = vecs @ np.diag(vals_power) @ vecs.transpose() ''' trans_attr_rw = trans_attr_rw.todense() trans_power = [trans_attr_rw] for i in range(window_size-1): trans_power.append(trans_power[-1] @ trans_attr_rw) trans_power = sum(trans_power) / window_size mf = (trans_deg_inv @ trans_power @ trans_deg_inv * vol).real mf = mf[:nb_nodes, :nb_nodes] mf[mf<1] = 1 mf = np.log(mf) np.save(args.dataset + '_attr_rw_win5_nosvd.npy', mf) exit() else: mf = np.load(args.dataset + '_attr_rw_win5_nosvd.npy') mf_sp = csc_matrix(mf) u, s, vt = LA.svds(mf_sp, k=200) mf_embed = u @ np.diag(s ** 0.5) if args.times_features: mf = mf[:nb_nodes, :nb_nodes] @ features else: mf = mf[:nb_nodes, :nb_nodes] x = torch.FloatTensor(mf).to(device) labels = mat_contents['Label'] labels = torch.LongTensor(labels-1).squeeze().to(device) #model = MLP(x.size()[-1],
<gh_stars>10-100 from __future__ import annotations import io from pathlib import Path from typing import TYPE_CHECKING, BinaryIO, cast import dask import dask.array as da import matplotlib.cm import matplotlib.colors import numpy as np import xarray as xr from dask.delayed import Delayed from PIL import Image, ImageDraw, ImageFont from typing_extensions import Literal from xarray.plot.utils import _rescale_imshow_rgb if TYPE_CHECKING: import IPython.display def _validate_arr_for_gif( arr: xr.DataArray, cmap: str | matplotlib.colors.Colormap | None, date_format: str | None, date_position: Literal["ul", "ur", "ll", "lr"], ) -> tuple[xr.DataArray, matplotlib.colors.Colormap | None]: if arr.ndim not in (3, 4): raise ValueError( f"Array must only have the dimensions 'time', 'y', 'x', and optionally 'band', not {arr.dims!r}" ) if arr.ndim == 3: arr = arr.expand_dims("band", axis=1) if arr.shape[1] not in (1, 3): raise ValueError(f"Array must have 1 or 3 bands, not {arr.shape[1]}") if arr.shape[1] == 1: cmap = ( # this will use the default colormap (usually viridis) if it's None matplotlib.cm.get_cmap(cmap) if not isinstance(cmap, matplotlib.colors.Colormap) else cmap ) elif cmap is not None: raise ValueError( f"Colormaps are only possible on single-band data; this array has {arr.shape[1]} bands: " f"{arr[arr.dims[1]].data.tolist()}" ) if date_format: time_coord = arr[arr.dims[0]] try: time_coord.dt.strftime except (TypeError, AttributeError): raise TypeError( f"Coordinates for the {time_coord.name} dimension are not datetimes, or don't support `strftime`. " "Set `date_format=False`" ) assert date_position in ( "ul", "ur", "ll", "lr", ), f"date_position must be one of ('ul', 'ur', 'll', 'lr'), not {date_position}." return (arr, cmap) def gif( arr: xr.DataArray, *, to: str | Path | BinaryIO | None = None, fps: int = 16, robust: bool = True, vmin: float | None = None, vmax: float | None = None, cmap: str | matplotlib.colors.Colormap | None = None, date_format: str | None = "%Y-%m-%d", date_position: Literal["ul", "ur", "ll", "lr"] = "ul", date_color: tuple[int, int, int] = (255, 255, 255), date_bg: tuple[int, int, int] | None = (0, 0, 0), ) -> IPython.display.Image | None: """ Render a `~xarray.DataArray` timestack (``time``, ``band``, ``y``, ``x``) into a GIF. If the `~xarray.DataArray` contains a `dask.array.Array`, use `dgif` (delayed-GIF) instead. The `~xarray.DataArray` must have 1 or 3 bands. Unless ``date_format=None``, a small timestamp will be printed onto each frame of the animation. You can control the position and styling of this with the ``date_position``, ``date_color``, and ``date_bg`` arguments. Parameters ---------- arr: Time-stacked array to animate. Must have 3 or 4 dimensions, which are assumed to be in the order ``time``, [optional ``band``], ``y``, ``x``. to: Where to write the GIF. If None (default), an `IPython.display.Image` is returned, which will display the GIF in your Jupyter notebook. fps: Frames per second robust: Calculate ``vmin`` and ``vmax`` from the 2nd and 98th percentiles of the data (default True) vmin: Value in the data to map to 0 (black). If None (default), it's calculated from the minimum value of the data or the 2nd percentile, depending on ``robust``. vmax: Value in the data to map to 255 (white). If None (default), it's calculated from the maximum value of the data or the 98nd percentile, depending on ``robust``. cmap: Colormap to use for single-band data. Can be a :doc:`matplotlib colormap name <gallery/color/colormap_reference>` as a string, or a `~matplotlib.colors.Colormap` object for custom colormapping. If None (default), the default matplotlib colormap (usually ``viridis``) will automatically be used for 1-band data. Setting a colormap for multi-band data is an error. date_format: Date format string (like ``"%Y-%m-%d"``, the default) used to format the timestamps written onto each frame of the animation. If the coordinates for axis 0 of the `~xarray.DataArray` are not timestamps or timedeltas, you must explicitly pass ``date_format=None``. See the `Python string format doc <https://docs.python.org/3/library/datetime.html#strftime-strptime-behavior>`__ for details. date_position: Where to print the timestamp on each frame. One of ``"ul"`` (upper-left), ``"ur"`` (upper-right), ``"ll"`` (lower-left), ``"lr"`` (lower-right), default ``"ul"``. date_color: Color for the timestamp font, as an RGB 3-tuple. Default: ``(255, 255, 255)`` (white). date_bg: Fill color to draw behind the timestamp (for legibility), as an RGB 3-tuple. Default: ``(0, 0, 0)`` (black). Set to None to disable. Returns ------- IPython.display.Image or None If ``to`` is None, returns an `IPython.display.Image`, which will display the GIF in a Jupyter Notebook. (You can also get the GIF data as bytes from the Image's ``.data`` attribute.) Otherwise, returns None, and the GIF data is written to ``to``. Example ------- >>> # Generate a GIF and show it in your notebook: >>> stackstac.gif(arr, date_format="Year: %Y") >>> # Write the GIF to a file, with no timestamp printed: >>> stackstac.gif(arr, to="animation.gif", fps=24, date_format=None) >>> # Show a colormapped GIF of single-band data in your notebook, >>> # with the timestamp font in black and no background behind it: >>> stackstac.gif( ... arr.sel(band="ndvi"), cmap="YlGn", date_color=(0, 0, 0), date_bg=None ... ) """ if isinstance(arr.data, da.Array): raise TypeError("DataArray contains delayed data; use `dgif` instead.") arr, cmap = _validate_arr_for_gif(arr, cmap, date_format, date_position) # Rescale if arr.dtype.kind == "b": data = arr.data.astype("uint8", copy=False) else: if not robust and vmin is None and vmax is None: vmin = np.nanmin(arr) vmax = np.nanmax(arr) rescaled: xr.DataArray = _rescale_imshow_rgb(arr, vmin, vmax, robust) data: np.ndarray = rescaled.data # Colormap if arr.shape[1] == 1: assert isinstance(cmap, matplotlib.colors.Colormap) data = data[:, 0] data = cmap(data) data = np.moveaxis(data, -1, -3) # colormap puts RGB last # Convert to uint8 u8 = (data * 255).astype("uint8") u8 = np.clip(u8, 0, 255, out=u8) u8 = np.moveaxis(u8, -3, -1) # Add alpha mask if data.shape[1] == 4: # colormap has already added the alpha band frames = u8 else: mask: np.ndarray = arr.isnull().data.any(axis=-3) alpha = (~mask).astype("uint8", copy=False) * 255 frames = np.concatenate([u8, alpha[..., None]], axis=-1) imgs = [Image.fromarray(frame) for frame in frames] # Write timestamps onto each frame if date_format: time_coord = arr[arr.dims[0]] labels = time_coord.dt.strftime(date_format).data fnt = ImageFont.load_default() for label, img in zip(labels, imgs): # get a drawing context d = ImageDraw.Draw(img) d = cast(ImageDraw.ImageDraw, d) width, height = img.size t_width, t_height = fnt.getsize(label) offset = 15 if date_position[0] == "u": y = offset else: y = height - t_height - offset if date_position[1] == "l": x = offset else: x = width - t_width - offset if date_bg: d.rectangle((x, y, x + t_width, y + t_height), fill=date_bg) # draw text d.multiline_text((x, y), label, font=fnt, fill=date_color) out = to if to is not None else io.BytesIO() imgs[0].save( out, format="gif", save_all=True, append_images=imgs[1:], duration=1 / fps * 1000, # ms loop=False, ) if to is None and isinstance(out, io.BytesIO): # second `isinstace` is just for the typechecker try: import IPython.display except ImportError: raise ImportError( "Cannot return an Image to display in a notebook, since IPython is not installed. " "Pass a path or file to save the GIF to as the `to=` argument. " "To get the GIF data as bytes, pass an instance of `io.BytesIO()`.\n" "If this error is coming from your distributed cluster and you called `dgif`, " "then IPython is not installed on your dask workers. Either install it, or " "pass `dgif(arr, bytes=True)` to return the GIF as bytes. " "Then use `IPython.display.Image(data=computed_bytes)` to show the image." ) else: return IPython.display.Image(data=out.getvalue()) def _gif(arr: xr.DataArray, bytes=False, **kwargs): to = io.BytesIO() if bytes else None out = gif(arr, to=to, **kwargs) return to.getvalue() if bytes else out _dgif = dask.delayed(_gif, pure=True) def dgif( arr: xr.DataArray, *, bytes=False, fps: int = 10, robust: bool = True, vmin: float | None = None, vmax: float | None = None, cmap: str | matplotlib.colors.Colormap | None = None, date_format: str | None = "%Y-%m-%d", date_position: Literal["ul", "ur", "ll", "lr"] = "ul", date_color: tuple[int, int, int] = (255, 255, 255), date_bg: tuple[int, int, int] | None = (0, 0, 0), ) -> Delayed: """ Turn a dask-backed `~xarray.DataArray` timestack into a GIF, as a `~dask.delayed.Delayed` object. The `~xarray.DataArray` must have 1 or 3 bands, and dimensions in (``time``, [optional ``band``], ``y``, ``x``) order. If all you want is a GIF, `dgif` can be faster than calling ``.compute()`` and then `gif`: since GIFs are smaller and reduced in quality from NumPy arrays, there's less data to
CAS connection object. model_table : string or dict or CAS table, optional Specifies the CAS table to store the deep learning model. batch_norm_first : bool, optional Specifies whether to have batch normalization layer before the convolution layer in the residual block. For a detailed discussion about this, please refer to this paper: <NAME>, et al. "Identity mappings in deep residual networks." European Conference on Computer Vision. Springer International Publishing, 2016. Default: False n_classes : int, optional Specifies the number of classes. If None is assigned, the model will automatically detect the number of classes based on the training set. Default: 1000 n_channels : int, optional Specifies the number of the channels (i.e., depth) of the input layer. Default: 3 width : int, optional Specifies the width of the input layer. Default: 224 height : int, optional Specifies the height of the input layer. Default: 224 scale : double, optional Specifies a scaling factor to be applied to each pixel intensity values. Default: 1 random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping. Valid Values: 'h', 'hv', 'v', 'none' Default: 'none' random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters. Only the images with one or both dimensions that are larger than those sizes are cropped. Valid Values: 'none', 'unique' Default: 'none' offsets : double or iter-of-doubles, optional Specifies an offset for each channel in the input data. The final input data is set after applying scaling and subtracting the specified offsets. Default: (103.939, 116.779, 123.68) pre_trained_weights : bool, optional Specifies whether to use the pre-trained weights from ImageNet data set Default: False pre_trained_weights_file : string, optional Specifies the file name for the pre-trained weights. Must be a fully qualified file name of SAS-compatible file (e.g., *.caffemodel.h5) Note: Required when pre_trained_weights=True. include_top : bool, optional Specifies whether to include pre-trained weights of the top layers, i.e. the last layer for classification. Default: False. Returns ------- :class:`Sequential` If `pre_trained_weights` is `False` :class:`Model` If `pre_trained_weights` is `True` References ---------- https://arxiv.org/pdf/1512.03385.pdf ''' conn.retrieve('loadactionset', _messagelevel='error', actionset='deeplearn') if not pre_trained_weights: model = Sequential(conn=conn, model_table=model_table) model.add(InputLayer(n_channels=n_channels, width=width, height=height, scale=scale, offsets=offsets, random_flip=random_flip, random_crop=random_crop)) # Top layers model.add(Conv2d(64, 7, act='identity', include_bias=False, stride=2)) model.add(BN(act='relu')) model.add(Pooling(width=3, stride=2)) # Residual block configuration. kernel_sizes_list = [(1, 3, 1)] * 4 n_filters_list = [(64, 64, 256), (128, 128, 512), (256, 256, 1024), (512, 512, 2048)] rep_nums_list = [3, 4, 23, 3] for i in range(4): kernel_sizes = kernel_sizes_list[i] n_filters = n_filters_list[i] for rep_num in range(rep_nums_list[i]): if rep_num == 0: conv_short_cut = True if i == 0: strides = 1 else: strides = 2 else: conv_short_cut = False strides = 1 model.add(ResBlock_Caffe(kernel_sizes=kernel_sizes, n_filters=n_filters, strides=strides, batch_norm_first=batch_norm_first, conv_short_cut=conv_short_cut)) # Bottom Layers pooling_size = (width // 2 // 2 // 2 // 2 // 2, height // 2 // 2 // 2 // 2 // 2) model.add(Pooling(width=pooling_size[0], height=pooling_size[1], pool='mean')) model.add(OutputLayer(act='softmax', n=n_classes)) return model else: if pre_trained_weights_file is None: raise DLPyError('\nThe pre-trained weights file is not specified.\n' 'Please follow the steps below to attach the pre-trained weights:\n' '1. go to the website https://support.sas.com/documentation/prod-p/vdmml/zip/ ' 'and download the associated weight file.\n' '2. upload the *.h5 file to ' 'a server side directory which the CAS session has access to.\n' '3. specify the pre_trained_weights_file using the fully qualified server side path.') model_cas = model_resnet101.ResNet101_Model( s=conn, model_table=model_table, n_channels=n_channels, width=width, height=height, random_crop=random_crop, offsets=offsets) if include_top: if n_classes != 1000: warnings.warn('If include_top = True, n_classes will be set to 1000.', RuntimeWarning) model = Model.from_table(model_cas) model.load_weights(path=pre_trained_weights_file, labels=True) return model else: model = Model.from_table(conn.CASTable(model_table), display_note=False) model.load_weights(path=pre_trained_weights_file) model._retrieve_('deeplearn.removelayer', model=model_table, name='fc1000') model._retrieve_('deeplearn.addlayer', model=model_table, name='output', layer=dict(type='output', n=n_classes, act='softmax'), srcLayers=['pool5']) weight_table_options = model.model_weights.to_table_params() weight_table_options.update(dict(where='_LayerID_<244')) model._retrieve_('table.partition', table=weight_table_options, casout=dict(replace=True, **model.model_weights.to_table_params())) model = Model.from_table(conn.CASTable(model_table)) return model def ResNet152_SAS(conn, model_table='RESNET152_SAS', n_classes=1000, n_channels=3, width=224, height=224, scale=1, batch_norm_first=True, random_flip='none', random_crop='none', offsets=(103.939, 116.779, 123.68)): ''' Generates a deep learning model with the SAS ResNet152 architecture. Compared to Caffe ResNet152, the model prepends a batch normalization layer to the last global pooling layer. Parameters ---------- conn : CAS Specifies the CAS connection object. model_table : string or dict or CAS table, optional Specifies the CAS table to store the deep learning model. batch_norm_first : bool, optional Specifies whether to have batch normalization layer before the convolution layer in the residual block. For a detailed discussion about this, please refer to this paper: <NAME>, et al. "Identity mappings in deep residual networks." European Conference on Computer Vision. Springer International Publishing, 2016. Default: True n_classes : int, optional Specifies the number of classes. If None is assigned, the model will automatically detect the number of classes based on the training set. Default: 1000 n_channels : int, optional Specifies the number of the channels (i.e., depth) of the input layer. Default: 3 width : int, optional Specifies the width of the input layer. Default: 224 height : int, optional Specifies the height of the input layer. Default: 224 scale : double, optional Specifies a scaling factor to be applied to each pixel intensity values. Default: 1 random_flip : string, optional Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping. Valid Values: 'h', 'hv', 'v', 'none' Default: 'none' random_crop : string, optional Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters. Only the images with one or both dimensions that are larger than those sizes are cropped. Valid Values: 'none', 'unique' Default: 'none' offsets : double or iter-of-doubles, optional Specifies an offset for each channel in the input data. The final input data is set after applying scaling and subtracting the specified offsets. Default: (103.939, 116.779, 123.68) Returns ------- :class:`Sequential` References ---------- https://arxiv.org/pdf/1512.03385.pdf ''' conn.retrieve('loadactionset', _messagelevel='error', actionset='deeplearn') model = Sequential(conn=conn, model_table=model_table) model.add(InputLayer(n_channels=n_channels, width=width, height=height, scale=scale, offsets=offsets, random_flip=random_flip, random_crop=random_crop)) # Top layers model.add(Conv2d(64, 7, act='identity', include_bias=False, stride=2)) model.add(BN(act='relu')) model.add(Pooling(width=3, stride=2)) kernel_sizes_list = [(1, 3, 1)] * 4 n_filters_list = [(64, 64, 256), (128, 128, 512), (256, 256, 1024), (512, 512, 2048)] rep_nums_list = [3, 8, 36, 3] for i in range(4): kernel_sizes = kernel_sizes_list[i] n_filters = n_filters_list[i] for rep_num in range(rep_nums_list[i]): if i == 0: strides = 1 else: if rep_num == 0: strides = 2 else: strides = 1 model.add(ResBlockBN(kernel_sizes=kernel_sizes, n_filters=n_filters, strides=strides, batch_norm_first=batch_norm_first)) model.add(BN(act='relu')) # Bottom Layers pooling_size = (width // 2 // 2 // 2 // 2 // 2, height // 2 // 2 // 2 // 2 // 2) model.add(Pooling(width=pooling_size[0], height=pooling_size[1], pool='mean')) model.add(OutputLayer(act='softmax', n=n_classes)) return model def ResNet152_Caffe(conn, model_table='RESNET152_CAFFE', n_classes=1000, n_channels=3, width=224, height=224, scale=1, batch_norm_first=False, random_flip='none', random_crop='none', offsets=(103.939, 116.779, 123.68), pre_trained_weights=False, pre_trained_weights_file=None, include_top=False): ''' Generates a deep learning model with the ResNet152 architecture with convolution shortcut Parameters ---------- conn : CAS Specifies the CAS connection object. model_table : string or dict or CAS table, optional Specifies the CAS table to store the deep learning model. batch_norm_first : bool, optional Specifies whether to have batch normalization layer before the convolution layer in the residual block. For a detailed discussion about this, please refer to this paper: <NAME>, et al. "Identity mappings in deep residual networks." European Conference on Computer Vision. Springer International Publishing, 2016. Default: False n_classes : int, optional Specifies the number of classes. If None is assigned, the model will automatically detect the number of classes based on the training set. Default: 1000 n_channels : int, optional Specifies the number of the channels (i.e., depth) of the input layer. Default: 3 width : int, optional Specifies the width of the input layer. Default: 224 height : int, optional Specifies
<filename>google-cloud-sdk/lib/googlecloudsdk/third_party/apis/recommender/v1alpha2/recommender_v1alpha2_client.py<gh_stars>0 """Generated client library for recommender version v1alpha2.""" # NOTE: This file is autogenerated and should not be edited by hand. from apitools.base.py import base_api from googlecloudsdk.third_party.apis.recommender.v1alpha2 import recommender_v1alpha2_messages as messages class RecommenderV1alpha2(base_api.BaseApiClient): """Generated client library for service recommender version v1alpha2.""" MESSAGES_MODULE = messages BASE_URL = u'https://recommender.googleapis.com/' _PACKAGE = u'recommender' _SCOPES = [u'https://www.googleapis.com/auth/cloud-platform'] _VERSION = u'v1alpha2' _CLIENT_ID = '1042881264118.apps.googleusercontent.com' _CLIENT_SECRET = 'x_Tw5K8nnjoRAqULM9PFAC2b' _USER_AGENT = 'x_Tw5K8nnjoRAqULM9PFAC2b' _CLIENT_CLASS_NAME = u'RecommenderV1alpha2' _URL_VERSION = u'v1alpha2' _API_KEY = None def __init__(self, url='', credentials=None, get_credentials=True, http=None, model=None, log_request=False, log_response=False, credentials_args=None, default_global_params=None, additional_http_headers=None, response_encoding=None): """Create a new recommender handle.""" url = url or self.BASE_URL super(RecommenderV1alpha2, self).__init__( url, credentials=credentials, get_credentials=get_credentials, http=http, model=model, log_request=log_request, log_response=log_response, credentials_args=credentials_args, default_global_params=default_global_params, additional_http_headers=additional_http_headers, response_encoding=response_encoding) self.billingAccounts_locations_insightTypes_insights = self.BillingAccountsLocationsInsightTypesInsightsService(self) self.billingAccounts_locations_insightTypes = self.BillingAccountsLocationsInsightTypesService(self) self.billingAccounts_locations_recommenders_recommendations = self.BillingAccountsLocationsRecommendersRecommendationsService(self) self.billingAccounts_locations_recommenders = self.BillingAccountsLocationsRecommendersService(self) self.billingAccounts_locations = self.BillingAccountsLocationsService(self) self.billingAccounts = self.BillingAccountsService(self) self.projects_locations_insightTypes_insights = self.ProjectsLocationsInsightTypesInsightsService(self) self.projects_locations_insightTypes = self.ProjectsLocationsInsightTypesService(self) self.projects_locations_recommenders_recommendations = self.ProjectsLocationsRecommendersRecommendationsService(self) self.projects_locations_recommenders = self.ProjectsLocationsRecommendersService(self) self.projects_locations = self.ProjectsLocationsService(self) self.projects = self.ProjectsService(self) class BillingAccountsLocationsInsightTypesInsightsService(base_api.BaseApiService): """Service class for the billingAccounts_locations_insightTypes_insights resource.""" _NAME = u'billingAccounts_locations_insightTypes_insights' def __init__(self, client): super(RecommenderV1alpha2.BillingAccountsLocationsInsightTypesInsightsService, self).__init__(client) self._upload_configs = { } def Get(self, request, global_params=None): r"""Gets the requested insight. Requires the recommender.*.get IAM permission. for the specified insight type. Args: request: (RecommenderBillingAccountsLocationsInsightTypesInsightsGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleCloudRecommenderV1alpha2Insight) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) Get.method_config = lambda: base_api.ApiMethodInfo( flat_path=u'v1alpha2/billingAccounts/{billingAccountsId}/locations/{locationsId}/insightTypes/{insightTypesId}/insights/{insightsId}', http_method=u'GET', method_id=u'recommender.billingAccounts.locations.insightTypes.insights.get', ordered_params=[u'name'], path_params=[u'name'], query_params=[], relative_path=u'v1alpha2/{+name}', request_field='', request_type_name=u'RecommenderBillingAccountsLocationsInsightTypesInsightsGetRequest', response_type_name=u'GoogleCloudRecommenderV1alpha2Insight', supports_download=False, ) def List(self, request, global_params=None): r"""Lists insights for a Cloud project. Requires the recommender.*.list IAM. permission for the specified insight type. Args: request: (RecommenderBillingAccountsLocationsInsightTypesInsightsListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleCloudRecommenderV1alpha2ListInsightsResponse) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) List.method_config = lambda: base_api.ApiMethodInfo( flat_path=u'v1alpha2/billingAccounts/{billingAccountsId}/locations/{locationsId}/insightTypes/{insightTypesId}/insights', http_method=u'GET', method_id=u'recommender.billingAccounts.locations.insightTypes.insights.list', ordered_params=[u'parent'], path_params=[u'parent'], query_params=[u'filter', u'pageSize', u'pageToken'], relative_path=u'v1alpha2/{+parent}/insights', request_field='', request_type_name=u'RecommenderBillingAccountsLocationsInsightTypesInsightsListRequest', response_type_name=u'GoogleCloudRecommenderV1alpha2ListInsightsResponse', supports_download=False, ) def MarkAccepted(self, request, global_params=None): r"""Marks the Insight State as Accepted. Users can use this method to. indicate to the Recommender API that they have applied some action based on the insight. This stops the insight content from being updated. MarkInsightAccepted can be applied to insights in ACTIVE state. Requires the recommender.*.update IAM permission for the specified insight. Args: request: (RecommenderBillingAccountsLocationsInsightTypesInsightsMarkAcceptedRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleCloudRecommenderV1alpha2Insight) The response message. """ config = self.GetMethodConfig('MarkAccepted') return self._RunMethod( config, request, global_params=global_params) MarkAccepted.method_config = lambda: base_api.ApiMethodInfo( flat_path=u'v1alpha2/billingAccounts/{billingAccountsId}/locations/{locationsId}/insightTypes/{insightTypesId}/insights/{insightsId}:markAccepted', http_method=u'POST', method_id=u'recommender.billingAccounts.locations.insightTypes.insights.markAccepted', ordered_params=[u'name'], path_params=[u'name'], query_params=[], relative_path=u'v1alpha2/{+name}:markAccepted', request_field=u'googleCloudRecommenderV1alpha2MarkInsightAcceptedRequest', request_type_name=u'RecommenderBillingAccountsLocationsInsightTypesInsightsMarkAcceptedRequest', response_type_name=u'GoogleCloudRecommenderV1alpha2Insight', supports_download=False, ) def MarkActive(self, request, global_params=None): r"""Mark the Insight State as Active. Users can use this method to. indicate to the Recommender API that a DISMISSED insight has to be marked back as ACTIVE. MarkInsightActive can be applied to insights in DISMISSED state. Requires the recommender.*.update IAM permission for the specified insight type. Args: request: (RecommenderBillingAccountsLocationsInsightTypesInsightsMarkActiveRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleCloudRecommenderV1alpha2Insight) The response message. """ config = self.GetMethodConfig('MarkActive') return self._RunMethod( config, request, global_params=global_params) MarkActive.method_config = lambda: base_api.ApiMethodInfo( flat_path=u'v1alpha2/billingAccounts/{billingAccountsId}/locations/{locationsId}/insightTypes/{insightTypesId}/insights/{insightsId}:markActive', http_method=u'POST', method_id=u'recommender.billingAccounts.locations.insightTypes.insights.markActive', ordered_params=[u'name'], path_params=[u'name'], query_params=[], relative_path=u'v1alpha2/{+name}:markActive', request_field=u'googleCloudRecommenderV1alpha2MarkInsightActiveRequest', request_type_name=u'RecommenderBillingAccountsLocationsInsightTypesInsightsMarkActiveRequest', response_type_name=u'GoogleCloudRecommenderV1alpha2Insight', supports_download=False, ) def MarkDismissed(self, request, global_params=None): r"""Mark the Insight State as Dismissed. Users can use this method to. indicate to the Recommender API that an ACTIVE insight should be dismissed. MarkInsightDismissed can be applied to insights in ACTIVE state. Requires the recommender.*.update IAM permission for the specified insight type. Args: request: (RecommenderBillingAccountsLocationsInsightTypesInsightsMarkDismissedRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleCloudRecommenderV1alpha2Insight) The response message. """ config = self.GetMethodConfig('MarkDismissed') return self._RunMethod( config, request, global_params=global_params) MarkDismissed.method_config = lambda: base_api.ApiMethodInfo( flat_path=u'v1alpha2/billingAccounts/{billingAccountsId}/locations/{locationsId}/insightTypes/{insightTypesId}/insights/{insightsId}:markDismissed', http_method=u'POST', method_id=u'recommender.billingAccounts.locations.insightTypes.insights.markDismissed', ordered_params=[u'name'], path_params=[u'name'], query_params=[], relative_path=u'v1alpha2/{+name}:markDismissed', request_field=u'googleCloudRecommenderV1alpha2MarkInsightDismissedRequest', request_type_name=u'RecommenderBillingAccountsLocationsInsightTypesInsightsMarkDismissedRequest', response_type_name=u'GoogleCloudRecommenderV1alpha2Insight', supports_download=False, ) class BillingAccountsLocationsInsightTypesService(base_api.BaseApiService): """Service class for the billingAccounts_locations_insightTypes resource.""" _NAME = u'billingAccounts_locations_insightTypes' def __init__(self, client): super(RecommenderV1alpha2.BillingAccountsLocationsInsightTypesService, self).__init__(client) self._upload_configs = { } class BillingAccountsLocationsRecommendersRecommendationsService(base_api.BaseApiService): """Service class for the billingAccounts_locations_recommenders_recommendations resource.""" _NAME = u'billingAccounts_locations_recommenders_recommendations' def __init__(self, client): super(RecommenderV1alpha2.BillingAccountsLocationsRecommendersRecommendationsService, self).__init__(client) self._upload_configs = { } def Get(self, request, global_params=None): r"""Gets the requested recommendation. Requires the recommender.*.get. IAM permission for the specified recommender. Args: request: (RecommenderBillingAccountsLocationsRecommendersRecommendationsGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleCloudRecommenderV1alpha2Recommendation) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) Get.method_config = lambda: base_api.ApiMethodInfo( flat_path=u'v1alpha2/billingAccounts/{billingAccountsId}/locations/{locationsId}/recommenders/{recommendersId}/recommendations/{recommendationsId}', http_method=u'GET', method_id=u'recommender.billingAccounts.locations.recommenders.recommendations.get', ordered_params=[u'name'], path_params=[u'name'], query_params=[], relative_path=u'v1alpha2/{+name}', request_field='', request_type_name=u'RecommenderBillingAccountsLocationsRecommendersRecommendationsGetRequest', response_type_name=u'GoogleCloudRecommenderV1alpha2Recommendation', supports_download=False, ) def List(self, request, global_params=None): r"""Lists recommendations for a Cloud project. Requires the recommender.*.list. IAM permission for the specified recommender. Args: request: (RecommenderBillingAccountsLocationsRecommendersRecommendationsListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleCloudRecommenderV1alpha2ListRecommendationsResponse) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) List.method_config = lambda: base_api.ApiMethodInfo( flat_path=u'v1alpha2/billingAccounts/{billingAccountsId}/locations/{locationsId}/recommenders/{recommendersId}/recommendations', http_method=u'GET', method_id=u'recommender.billingAccounts.locations.recommenders.recommendations.list', ordered_params=[u'parent'], path_params=[u'parent'], query_params=[u'filter', u'pageSize', u'pageToken'], relative_path=u'v1alpha2/{+parent}/recommendations', request_field='', request_type_name=u'RecommenderBillingAccountsLocationsRecommendersRecommendationsListRequest', response_type_name=u'GoogleCloudRecommenderV1alpha2ListRecommendationsResponse', supports_download=False, ) def MarkActive(self, request, global_params=None): r"""Mark the Recommendation State as Active. Users can use this method to. indicate to the Recommender API that a DISMISSED recommendation has to be marked back as ACTIVE. MarkRecommendationActive can be applied to recommendations in DISMISSED state. Requires the recommender.*.update IAM permission for the specified recommender. Args: request: (RecommenderBillingAccountsLocationsRecommendersRecommendationsMarkActiveRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleCloudRecommenderV1alpha2Recommendation) The response message. """ config = self.GetMethodConfig('MarkActive') return self._RunMethod( config, request, global_params=global_params) MarkActive.method_config = lambda: base_api.ApiMethodInfo( flat_path=u'v1alpha2/billingAccounts/{billingAccountsId}/locations/{locationsId}/recommenders/{recommendersId}/recommendations/{recommendationsId}:markActive', http_method=u'POST', method_id=u'recommender.billingAccounts.locations.recommenders.recommendations.markActive', ordered_params=[u'name'], path_params=[u'name'], query_params=[], relative_path=u'v1alpha2/{+name}:markActive', request_field=u'googleCloudRecommenderV1alpha2MarkRecommendationActiveRequest', request_type_name=u'RecommenderBillingAccountsLocationsRecommendersRecommendationsMarkActiveRequest', response_type_name=u'GoogleCloudRecommenderV1alpha2Recommendation', supports_download=False, ) def MarkClaimed(self, request, global_params=None): r"""Marks the Recommendation State as Claimed. Users can use this method to. indicate to the Recommender API that they are starting to apply the recommendation themselves. This stops the recommendation content from being updated. Associated insights are frozen and placed in the ACCEPTED state. MarkRecommendationClaimed can be applied to recommendations in CLAIMED or ACTIVE state. Requires the recommender.*.update IAM permission for the specified recommender. Args: request: (RecommenderBillingAccountsLocationsRecommendersRecommendationsMarkClaimedRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleCloudRecommenderV1alpha2Recommendation) The response message. """ config = self.GetMethodConfig('MarkClaimed') return self._RunMethod( config, request, global_params=global_params) MarkClaimed.method_config = lambda: base_api.ApiMethodInfo( flat_path=u'v1alpha2/billingAccounts/{billingAccountsId}/locations/{locationsId}/recommenders/{recommendersId}/recommendations/{recommendationsId}:markClaimed', http_method=u'POST', method_id=u'recommender.billingAccounts.locations.recommenders.recommendations.markClaimed', ordered_params=[u'name'], path_params=[u'name'], query_params=[], relative_path=u'v1alpha2/{+name}:markClaimed', request_field=u'googleCloudRecommenderV1alpha2MarkRecommendationClaimedRequest', request_type_name=u'RecommenderBillingAccountsLocationsRecommendersRecommendationsMarkClaimedRequest', response_type_name=u'GoogleCloudRecommenderV1alpha2Recommendation', supports_download=False, ) def MarkDismissed(self, request, global_params=None): r"""Mark the Recommendation State as Dismissed. Users can use this method to. indicate to the Recommender API that an ACTIVE recommendation has to be marked back as DISMISSED. MarkRecommendationDismissed can be applied to recommendations in ACTIVE state. Requires the recommender.*.update IAM permission for the specified recommender. Args: request: (RecommenderBillingAccountsLocationsRecommendersRecommendationsMarkDismissedRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleCloudRecommenderV1alpha2Recommendation) The response message. """ config = self.GetMethodConfig('MarkDismissed') return self._RunMethod( config, request, global_params=global_params) MarkDismissed.method_config = lambda: base_api.ApiMethodInfo( flat_path=u'v1alpha2/billingAccounts/{billingAccountsId}/locations/{locationsId}/recommenders/{recommendersId}/recommendations/{recommendationsId}:markDismissed', http_method=u'POST', method_id=u'recommender.billingAccounts.locations.recommenders.recommendations.markDismissed', ordered_params=[u'name'], path_params=[u'name'], query_params=[], relative_path=u'v1alpha2/{+name}:markDismissed', request_field=u'googleCloudRecommenderV1alpha2MarkRecommendationDismissedRequest', request_type_name=u'RecommenderBillingAccountsLocationsRecommendersRecommendationsMarkDismissedRequest', response_type_name=u'GoogleCloudRecommenderV1alpha2Recommendation', supports_download=False, ) def MarkFailed(self, request, global_params=None): r"""Marks the Recommendation State as Failed. Users can use this method to. indicate to the Recommender API that they have applied the recommendation themselves, and the operation failed. This stops the recommendation content from being updated. Associated insights are frozen and placed in the ACCEPTED state. MarkRecommendationFailed can be applied to recommendations in ACTIVE, CLAIMED, SUCCEEDED, or FAILED state. Requires the recommender.*.update IAM permission for the specified recommender. Args: request: (RecommenderBillingAccountsLocationsRecommendersRecommendationsMarkFailedRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleCloudRecommenderV1alpha2Recommendation) The response message. """ config = self.GetMethodConfig('MarkFailed') return self._RunMethod( config, request, global_params=global_params) MarkFailed.method_config = lambda: base_api.ApiMethodInfo( flat_path=u'v1alpha2/billingAccounts/{billingAccountsId}/locations/{locationsId}/recommenders/{recommendersId}/recommendations/{recommendationsId}:markFailed', http_method=u'POST', method_id=u'recommender.billingAccounts.locations.recommenders.recommendations.markFailed', ordered_params=[u'name'], path_params=[u'name'], query_params=[], relative_path=u'v1alpha2/{+name}:markFailed', request_field=u'googleCloudRecommenderV1alpha2MarkRecommendationFailedRequest', request_type_name=u'RecommenderBillingAccountsLocationsRecommendersRecommendationsMarkFailedRequest', response_type_name=u'GoogleCloudRecommenderV1alpha2Recommendation', supports_download=False, ) def MarkSucceeded(self, request, global_params=None): r"""Marks the Recommendation State as Succeeded. Users can use this method to. indicate to the Recommender API that they have applied the recommendation themselves, and the operation was successful. This stops the recommendation content from being updated. Associated insights are frozen and placed in the ACCEPTED state. MarkRecommendationSucceeded can be applied to recommendations in ACTIVE, CLAIMED, SUCCEEDED, or FAILED state. Requires the recommender.*.update IAM permission for the specified recommender. Args: request: (RecommenderBillingAccountsLocationsRecommendersRecommendationsMarkSucceededRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleCloudRecommenderV1alpha2Recommendation) The response message. """ config = self.GetMethodConfig('MarkSucceeded') return self._RunMethod( config, request, global_params=global_params) MarkSucceeded.method_config = lambda: base_api.ApiMethodInfo( flat_path=u'v1alpha2/billingAccounts/{billingAccountsId}/locations/{locationsId}/recommenders/{recommendersId}/recommendations/{recommendationsId}:markSucceeded', http_method=u'POST', method_id=u'recommender.billingAccounts.locations.recommenders.recommendations.markSucceeded', ordered_params=[u'name'], path_params=[u'name'], query_params=[], relative_path=u'v1alpha2/{+name}:markSucceeded', request_field=u'googleCloudRecommenderV1alpha2MarkRecommendationSucceededRequest', request_type_name=u'RecommenderBillingAccountsLocationsRecommendersRecommendationsMarkSucceededRequest', response_type_name=u'GoogleCloudRecommenderV1alpha2Recommendation', supports_download=False, ) class BillingAccountsLocationsRecommendersService(base_api.BaseApiService): """Service class for the billingAccounts_locations_recommenders resource.""" _NAME = u'billingAccounts_locations_recommenders' def __init__(self, client): super(RecommenderV1alpha2.BillingAccountsLocationsRecommendersService, self).__init__(client) self._upload_configs = { } class BillingAccountsLocationsService(base_api.BaseApiService): """Service class for the billingAccounts_locations resource.""" _NAME = u'billingAccounts_locations' def __init__(self, client): super(RecommenderV1alpha2.BillingAccountsLocationsService, self).__init__(client) self._upload_configs = { } class BillingAccountsService(base_api.BaseApiService): """Service class for the billingAccounts resource.""" _NAME = u'billingAccounts' def __init__(self, client): super(RecommenderV1alpha2.BillingAccountsService, self).__init__(client) self._upload_configs = { } class ProjectsLocationsInsightTypesInsightsService(base_api.BaseApiService): """Service class for the projects_locations_insightTypes_insights resource.""" _NAME = u'projects_locations_insightTypes_insights' def __init__(self, client): super(RecommenderV1alpha2.ProjectsLocationsInsightTypesInsightsService, self).__init__(client) self._upload_configs = { } def Get(self, request, global_params=None): r"""Gets the requested insight. Requires the recommender.*.get
<reponame>tatsukichi108/cpython """Core implementation of path-based import. This module is NOT meant to be directly imported! It has been designed such that it can be bootstrapped into Python as the implementation of import. As such it requires the injection of specific modules and attributes in order to work. One should use importlib as the public-facing version of this module. """ # IMPORTANT: Whenever making changes to this module, be sure to run a top-level # `make regen-importlib` followed by `make` in order to get the frozen version # of the module updated. Not doing so will result in the Makefile to fail for # all others who don't have a ./python around to freeze the module in the early # stages of compilation. # # See importlib._setup() for what is injected into the global namespace. # When editing this code be aware that code executed at import time CANNOT # reference any injected objects! This includes not only global code but also # anything specified at the class level. # Module injected manually by _set_bootstrap_module() _bootstrap = None # Import builtin modules import _imp import _io import sys import _warnings import marshal _MS_WINDOWS = (sys.platform == 'win32') if _MS_WINDOWS: import nt as _os import winreg else: import posix as _os if _MS_WINDOWS: path_separators = ['\\', '/'] else: path_separators = ['/'] # Assumption made in _path_join() assert all(len(sep) == 1 for sep in path_separators) path_sep = path_separators[0] path_separators = ''.join(path_separators) _pathseps_with_colon = {f':{s}' for s in path_separators} # Bootstrap-related code ###################################################### _CASE_INSENSITIVE_PLATFORMS_STR_KEY = 'win', _CASE_INSENSITIVE_PLATFORMS_BYTES_KEY = 'cygwin', 'darwin' _CASE_INSENSITIVE_PLATFORMS = (_CASE_INSENSITIVE_PLATFORMS_BYTES_KEY + _CASE_INSENSITIVE_PLATFORMS_STR_KEY) def _make_relax_case(): if sys.platform.startswith(_CASE_INSENSITIVE_PLATFORMS): if sys.platform.startswith(_CASE_INSENSITIVE_PLATFORMS_STR_KEY): key = 'PYTHONCASEOK' else: key = b'PYTHONCASEOK' def _relax_case(): """True if filenames must be checked case-insensitively and ignore environment flags are not set.""" return not sys.flags.ignore_environment and key in _os.environ else: def _relax_case(): """True if filenames must be checked case-insensitively.""" return False return _relax_case _relax_case = _make_relax_case() def _pack_uint32(x): """Convert a 32-bit integer to little-endian.""" return (int(x) & 0xFFFFFFFF).to_bytes(4, 'little') def _unpack_uint32(data): """Convert 4 bytes in little-endian to an integer.""" assert len(data) == 4 return int.from_bytes(data, 'little') def _unpack_uint16(data): """Convert 2 bytes in little-endian to an integer.""" assert len(data) == 2 return int.from_bytes(data, 'little') def _path_join(*path_parts): """Replacement for os.path.join().""" return path_sep.join([part.rstrip(path_separators) for part in path_parts if part]) def _path_split(path): """Replacement for os.path.split().""" if len(path_separators) == 1: front, _, tail = path.rpartition(path_sep) return front, tail for x in reversed(path): if x in path_separators: front, tail = path.rsplit(x, maxsplit=1) return front, tail return '', path def _path_stat(path): """Stat the path. Made a separate function to make it easier to override in experiments (e.g. cache stat results). """ return _os.stat(path) def _path_is_mode_type(path, mode): """Test whether the path is the specified mode type.""" try: stat_info = _path_stat(path) except OSError: return False return (stat_info.st_mode & 0o170000) == mode def _path_isfile(path): """Replacement for os.path.isfile.""" return _path_is_mode_type(path, 0o100000) def _path_isdir(path): """Replacement for os.path.isdir.""" if not path: path = _os.getcwd() return _path_is_mode_type(path, 0o040000) def _path_isabs(path): """Replacement for os.path.isabs. Considers a Windows drive-relative path (no drive, but starts with slash) to still be "absolute". """ return path.startswith(path_separators) or path[1:3] in _pathseps_with_colon def _write_atomic(path, data, mode=0o666): """Best-effort function to write data to a path atomically. Be prepared to handle a FileExistsError if concurrent writing of the temporary file is attempted.""" # id() is used to generate a pseudo-random filename. path_tmp = '{}.{}'.format(path, id(path)) fd = _os.open(path_tmp, _os.O_EXCL | _os.O_CREAT | _os.O_WRONLY, mode & 0o666) try: # We first write data to a temporary file, and then use os.replace() to # perform an atomic rename. with _io.FileIO(fd, 'wb') as file: file.write(data) _os.replace(path_tmp, path) except OSError: try: _os.unlink(path_tmp) except OSError: pass raise _code_type = type(_write_atomic.__code__) # Finder/loader utility code ############################################### # Magic word to reject .pyc files generated by other Python versions. # It should change for each incompatible change to the bytecode. # # The value of CR and LF is incorporated so if you ever read or write # a .pyc file in text mode the magic number will be wrong; also, the # Apple MPW compiler swaps their values, botching string constants. # # There were a variety of old schemes for setting the magic number. # The current working scheme is to increment the previous value by # 10. # # Starting with the adoption of PEP 3147 in Python 3.2, every bump in magic # number also includes a new "magic tag", i.e. a human readable string used # to represent the magic number in __pycache__ directories. When you change # the magic number, you must also set a new unique magic tag. Generally this # can be named after the Python major version of the magic number bump, but # it can really be anything, as long as it's different than anything else # that's come before. The tags are included in the following table, starting # with Python 3.2a0. # # Known values: # Python 1.5: 20121 # Python 1.5.1: 20121 # Python 1.5.2: 20121 # Python 1.6: 50428 # Python 2.0: 50823 # Python 2.0.1: 50823 # Python 2.1: 60202 # Python 2.1.1: 60202 # Python 2.1.2: 60202 # Python 2.2: 60717 # Python 2.3a0: 62011 # Python 2.3a0: 62021 # Python 2.3a0: 62011 (!) # Python 2.4a0: 62041 # Python 2.4a3: 62051 # Python 2.4b1: 62061 # Python 2.5a0: 62071 # Python 2.5a0: 62081 (ast-branch) # Python 2.5a0: 62091 (with) # Python 2.5a0: 62092 (changed WITH_CLEANUP opcode) # Python 2.5b3: 62101 (fix wrong code: for x, in ...) # Python 2.5b3: 62111 (fix wrong code: x += yield) # Python 2.5c1: 62121 (fix wrong lnotab with for loops and # storing constants that should have been removed) # Python 2.5c2: 62131 (fix wrong code: for x, in ... in listcomp/genexp) # Python 2.6a0: 62151 (peephole optimizations and STORE_MAP opcode) # Python 2.6a1: 62161 (WITH_CLEANUP optimization) # Python 2.7a0: 62171 (optimize list comprehensions/change LIST_APPEND) # Python 2.7a0: 62181 (optimize conditional branches: # introduce POP_JUMP_IF_FALSE and POP_JUMP_IF_TRUE) # Python 2.7a0 62191 (introduce SETUP_WITH) # Python 2.7a0 62201 (introduce BUILD_SET) # Python 2.7a0 62211 (introduce MAP_ADD and SET_ADD) # Python 3000: 3000 # 3010 (removed UNARY_CONVERT) # 3020 (added BUILD_SET) # 3030 (added keyword-only parameters) # 3040 (added signature annotations) # 3050 (print becomes a function) # 3060 (PEP 3115 metaclass syntax) # 3061 (string literals become unicode) # 3071 (PEP 3109 raise changes) # 3081 (PEP 3137 make __file__ and __name__ unicode) # 3091 (kill str8 interning) # 3101 (merge from 2.6a0, see 62151) # 3103 (__file__ points to source file) # Python 3.0a4: 3111 (WITH_CLEANUP optimization). # Python 3.0b1: 3131 (lexical exception stacking, including POP_EXCEPT #3021) # Python 3.1a1: 3141 (optimize list, set and dict comprehensions: # change LIST_APPEND and SET_ADD, add MAP_ADD #2183) # Python 3.1a1: 3151 (optimize conditional branches: # introduce POP_JUMP_IF_FALSE and POP_JUMP_IF_TRUE #4715) # Python 3.2a1: 3160 (add SETUP_WITH #6101) # tag: cpython-32 # Python 3.2a2: 3170 (add DUP_TOP_TWO, remove DUP_TOPX and ROT_FOUR #9225) # tag: cpython-32 # Python 3.2a3 3180 (add DELETE_DEREF #4617) # Python 3.3a1 3190 (__class__ super closure changed) # Python 3.3a1 3200 (PEP 3155 __qualname__ added #13448) # Python 3.3a1 3210 (added size modulo 2**32 to the pyc header #13645) # Python 3.3a2 3220 (changed PEP 380 implementation #14230) # Python 3.3a4 3230 (revert changes to implicit __class__ closure #14857) # Python 3.4a1 3250 (evaluate positional default arguments before # keyword-only defaults #16967) # Python 3.4a1 3260 (add LOAD_CLASSDEREF; allow locals of class to override # free vars #17853) # Python 3.4a1 3270 (various tweaks to the __class__ closure #12370) # Python 3.4a1 3280 (remove implicit class argument) # Python 3.4a4 3290 (changes to __qualname__ computation #19301) # Python 3.4a4 3300 (more changes to __qualname__ computation #19301) # Python 3.4rc2 3310 (alter __qualname__ computation #20625) # Python 3.5a1 3320 (PEP 465: Matrix multiplication operator #21176) # Python 3.5b1 3330 (PEP 448: Additional Unpacking Generalizations #2292) # Python 3.5b2 3340 (fix dictionary display evaluation order #11205) # Python 3.5b3 3350 (add GET_YIELD_FROM_ITER opcode #24400) # Python 3.5.2 3351 (fix BUILD_MAP_UNPACK_WITH_CALL opcode #27286) # Python 3.6a0 3360 (add FORMAT_VALUE opcode #25483) # Python 3.6a1 3361 (lineno delta of code.co_lnotab becomes signed #26107) # Python 3.6a2 3370 (16 bit wordcode #26647) # Python 3.6a2 3371 (add BUILD_CONST_KEY_MAP opcode #27140) # Python 3.6a2 3372 (MAKE_FUNCTION simplification, remove MAKE_CLOSURE # #27095) # Python 3.6b1 3373 (add BUILD_STRING opcode #27078) # Python 3.6b1 3375 (add SETUP_ANNOTATIONS and STORE_ANNOTATION opcodes # #27985) # Python 3.6b1 3376 (simplify CALL_FUNCTIONs & BUILD_MAP_UNPACK_WITH_CALL #27213) # Python 3.6b1 3377 (set __class__ cell from type.__new__ #23722) # Python 3.6b2 3378 (add BUILD_TUPLE_UNPACK_WITH_CALL #28257) # Python 3.6rc1 3379 (more thorough __class__ validation #23722) # Python 3.7a1 3390 (add LOAD_METHOD and CALL_METHOD opcodes #26110) # Python 3.7a2 3391 (update GET_AITER #31709) # Python 3.7a4 3392 (PEP 552: Deterministic pycs
C.f) a = C() a.f = 100 self.assertEqual(a.f, 100) self.assertEqual(a.calls, 0) del a.f with self.assertRaises(AttributeError): del a.f self.assertEqual(a.f, 42) self.assertEqual(a.calls, 1) def test_cached_property_slot_subtype(self): class C: __slots__ = ("f",) def f(self): return 42 class my_cached_prop(cached_property): pass with self.assertRaises(TypeError): C.f = my_cached_prop(f, C.f) def test_cached_property_slot_raises(self): class C: __slots__ = ("f",) def f(self): raise NoWayError() C.f = cached_property(f, C.f) with self.assertRaises(NoWayError): C().f def test_cached_property_slot_wrong_type(self): """apply a cached property from one type to another""" class C: __slots__ = ("abc",) class D: pass D.abc = cached_property(lambda self: 42, C.abc) a = D() with self.assertRaises(TypeError): x = a.abc def test_cached_property_slot_wrong_type_set(self): """apply a cached property from one type to another""" class C: __slots__ = ("abc",) class D: pass D.abc = cached_property(lambda self: 42, C.abc) a = D() with self.assertRaises(TypeError): print(a.abc) def test_cached_property_slot_name(self): class C: __slots__ = ("f",) C.f = cached_property(lambda self: 42, C.f) self.assertEqual(C.f.name, "f") def test_cached_property_slot_property(self): class C: __slots__ = ("f",) prev_f = C.f C.f = cached_property(lambda self: 42, C.f) self.assertEqual(C.f.slot, prev_f) def test_cached_property_no_slot_property(self): class C: @cached_property def f(self): return 42 self.assertEqual(C.f.slot, None) def test_cached_property_non_descriptor(self): with self.assertRaises(TypeError): cached_property(lambda self: 42, 42) def test_cached_property_incompatible_descriptor(self): with self.assertRaises(TypeError): cached_property(lambda self: 42, GeneratorType.gi_frame) def test_cached_property_readonly_descriptor(self): with self.assertRaises(TypeError): cached_property(lambda self: 42, range.start) def test_warn_on_type(self): class C: pass msg = type = attr = None def cb(*args): nonlocal msg, type, attr msg = args[0] type = args[1] attr = args[2] cinder.warn_on_inst_dict(C) cinder.freeze_type(C) cinder.cinder_set_warn_handler(cb) C.foo = 42 self.assertEqual( msg, "WARN002: Type modified that was flagged for immutability" ) self.assertEqual(type, C) self.assertEqual(attr, "foo") def test_get_warn(self): class C: pass def cb(*args): pass cinder.set_warn_handler(cb) self.assertEqual(cinder.get_warn_handler(), cb) cinder.set_warn_handler(None) self.assertEqual(cinder.get_warn_handler(), None) def test_warn_on_frozen_type(self): class C: pass cinder.freeze_type(C) with self.assertRaisesRegex( TypeError, "can't call warn_on_inst_dict on a frozen type" ): cinder.warn_on_inst_dict(C) def test_gen_free_list(self): knobs = cinder.getknobs() self.assertEqual(knobs["genfreelist"], False) cinder.setknobs({"genfreelist": True}) knobs = cinder.getknobs() self.assertEqual(knobs["genfreelist"], True) def f(): yield 42 a = f() id1 = id(a) del a a = f() id2 = id(a) self.assertEqual(id1, id2) cinder.setknobs({"genfreelist": False}) knobs = cinder.getknobs() self.assertEqual(knobs["genfreelist"], False) # def test_polymorphic_cache(self): # knobs = cinder.getknobs() # self.assertEqual(knobs["polymorphiccache"], False) # cinder.setknobs({"polymorphiccache": True}) # knobs = cinder.getknobs() # self.assertEqual(knobs["polymorphiccache"], True) # cinder.setknobs({"polymorphiccache": False}) # knobs = cinder.getknobs() # self.assertEqual(knobs["polymorphiccache"], False) def test_strictmodule_type(self): foo = strict_module_from_module(ModuleType("foo")) self.assertTrue(type(foo) is StrictModule) def test_strictmodule_uninitialized(self): # An uninitialized module has no __dict__ or __name__, # and __doc__ is None foo = StrictModule.__new__(StrictModule) self.assertTrue(foo.__dict__ == None) self.assertRaises(SystemError, dir, foo) try: s = foo.__name__ self.fail("__name__ = %s" % repr(s)) except AttributeError: pass self.assertEqual(foo.__doc__, StrictModule.__doc__) def test_strictmodule_uninitialized_missing_getattr(self): foo = StrictModule.__new__(StrictModule) self.assertRaisesRegex( AttributeError, "module has no attribute 'not_here'", getattr, foo, "not_here", ) def test_strictmodule_missing_getattr(self): foo = strict_module_from_module(ModuleType("foo")) self.assertRaisesRegex( AttributeError, "module 'foo' has no attribute 'not_here'", getattr, foo, "not_here", ) def test_strictmodule_no_docstring(self): # Regularly initialized module, no docstring foo = strict_module_from_module(ModuleType("foo")) self.assertEqual(foo.__name__, "foo") self.assertEqual(foo.__doc__, None) self.assertIs(foo.__loader__, None) self.assertIs(foo.__package__, None) self.assertIs(foo.__spec__, None) self.assertEqual( foo.__dict__, { "__name__": "foo", "__doc__": None, "__loader__": None, "__package__": None, "__spec__": None, }, ) def test_strictmodule_ascii_docstring(self): # ASCII docstring foo = strict_module_from_module(ModuleType("foo", "foodoc")) self.assertEqual(foo.__name__, "foo") self.assertEqual(foo.__doc__, "foodoc") self.assertEqual( foo.__dict__, { "__name__": "foo", "__doc__": "foodoc", "__loader__": None, "__package__": None, "__spec__": None, }, ) def test_strictmodule_unicode_docstring(self): # Unicode docstring foo = strict_module_from_module(ModuleType("foo", "foodoc\u1234")) self.assertEqual(foo.__name__, "foo") self.assertEqual(foo.__doc__, "foodoc\u1234") self.assertEqual( foo.__dict__, { "__name__": "foo", "__doc__": "foodoc\u1234", "__loader__": None, "__package__": None, "__spec__": None, }, ) def test_strictmodule_weakref(self): m = strict_module_from_module(ModuleType("foo")) wr = weakref.ref(m) self.assertIs(wr(), m) del m gc_collect() self.assertIs(wr(), None) def test_strictmodule_getattr(self): foo = create_strict_module(x=1) self.assertEqual(foo.x, 1) def test_strictmodule_setattr(self): foo = create_strict_module(x=1) with self.assertRaises(AttributeError): foo.x = 2 def test_strictmodule_delattr(self): foo = create_strict_module(x=1) with self.assertRaises(AttributeError): del foo.x def test_strictmodule_setattr_with_patch_enabled(self): foo = create_strict_module(x=1, enable_patching=True) with self.assertRaises(AttributeError): foo.x = 2 def test_strictmodule_patch_disabled(self): foo = create_strict_module(x=1) with self.assertRaises(AttributeError): strict_module_patch(foo, "x", 2) def test_strictmodule_patch_enabled(self): foo = create_strict_module(x=1, enable_patching=True) strict_module_patch(foo, "x", 2) self.assertEqual(foo.x, 2) def test_strictmodule_patch_enabled(self): foo = strict_module_from_module(ModuleType("a"), enable_patching=True) strict_module_patch(foo, "__dir__", 2) self.assertEqual(foo.__dir__, 2) def test_strictmodule_patch_enabled_2(self): m = ModuleType("a") d = m.__dict__ foo = StrictModule(m.__dict__, False) d["__dir__"] = 2 self.assertEqual(foo.__dir__, 2) def test_strictmodule_getattr_errors(self): import test.bad_getattr as bga from test import bad_getattr2 bga = strict_module_from_module(bga) bad_getattr2 = strict_module_from_module(bad_getattr2) self.assertEqual(bga.x, 1) self.assertEqual(bad_getattr2.x, 1) # we are not respecting module __getattr__ here with self.assertRaises(TypeError): bga.nope with self.assertRaises(TypeError): bad_getattr2.nope del sys.modules["test.bad_getattr"] if "test.bad_getattr2" in sys.modules: del sys.modules["test.bad_getattr2"] def test_strictmodule_dir(self): import test.good_getattr as gga gga = strict_module_from_module(gga) self.assertEqual(dir(gga), ["a", "b", "c"]) del sys.modules["test.good_getattr"] def test_strictmodule_dir_errors(self): import test.bad_getattr as bga from test import bad_getattr2 bga = strict_module_from_module(bga) bad_getattr2 = strict_module_from_module(bad_getattr2) with self.assertRaises(TypeError): dir(bga) with self.assertRaises(TypeError): dir(bad_getattr2) del sys.modules["test.bad_getattr"] if "test.bad_getattr2" in sys.modules: del sys.modules["test.bad_getattr2"] def test_strictmodule_getattr_tricky(self): from test import bad_getattr3 bad_getattr3 = strict_module_from_module(bad_getattr3) # these lookups should not crash with self.assertRaises(AttributeError): bad_getattr3.one with self.assertRaises(AttributeError): bad_getattr3.delgetattr if "test.bad_getattr3" in sys.modules: del sys.modules["test.bad_getattr3"] def test_strictmodule_repr_minimal(self): # reprs when modules have no __file__, __name__, or __loader__ m = ModuleType("foo") del m.__name__ m = strict_module_from_module(m) self.assertEqual(repr(m), "<module '?'>") def test_strictmodule_repr_with_name(self): m = ModuleType("foo") m = strict_module_from_module(m) self.assertEqual(repr(m), "<module 'foo'>") def test_strictmodule_repr_with_name_and_filename(self): m = ModuleType("foo") m.__file__ = "/tmp/foo.py" m = strict_module_from_module(m) self.assertEqual(repr(m), "<module 'foo' from '/tmp/foo.py'>") def test_strictmodule_repr_with_filename_only(self): m = ModuleType("foo") del m.__name__ m.__file__ = "/tmp/foo.py" m = strict_module_from_module(m) self.assertEqual(repr(m), "<module '?' from '/tmp/foo.py'>") def test_strictmodule_modify_dict_patch_disabled(self): foo = create_strict_module(x=1, enable_patching=False) foo.__dict__["x"] = 2 self.assertEqual(foo.x, 1) def test_strictmodule_modify_dict_patch_enabled(self): foo = create_strict_module(x=1, enable_patching=True) foo.__dict__["x"] = 2 self.assertEqual(foo.x, 1) def test_strictmodule_unassigned_field(self): d = {"<assigned:x>": False, "x": 1} foo = StrictModule(d, False) self.assertNotIn("x", foo.__dict__) def test_const_object(self): class MyObj: magic = [42] a = MyObj b = const(a) c = [b] self.assertEqual(c[0], b) self.assertEqual(b.magic, const([42])) d = c[0] e = d.magic with self.assertRaises(AttributeError): e.magic = 33 def async_test(f): assert inspect.iscoroutinefunction(f) @wraps(f) def impl(*args, **kwargs): asyncio.run(f(*args, **kwargs)) return impl class AsyncCinderTest(unittest.TestCase): def setUp(self) -> None: loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) self.loop = loop def tearDown(self): self.loop.close() asyncio.set_event_loop_policy(None) @async_test async def test_cached_property(self): class C: def __init__(self): self.calls = 0 @async_cached_property async def f(self): self.calls += 1 return 42 a = C() self.assertEqual(await a.f, 42) self.assertEqual(a.calls, 1) self.assertEqual(await a.f, 42) self.assertEqual(a.calls, 1) @async_test async def test_cached_property_loop(self): val = object() class C: @async_cached_property async def f(self): return val a = C() for i in range(1000): x = await a.f self.assertEqual(x, val) @async_test async def test_cached_property_raises(self): class C: @async_cached_property async def f(self): raise NoWayError() with self.assertRaises(NoWayError): await C().f @async_test async def test_cached_property_no_dict(self): class C: __slots__ = () @async_cached_property async def f(self): return 42 with self.assertRaises(AttributeError): a = await C().f @async_test async def test_cached_property_name(self): class C: @async_cached_property async def f(self): return 42 self.assertEqual(C.f.name, "f") @async_test async def test_cached_property_func(self): class C: pass async def f(self): return 42 C.f = async_cached_property(f) self.assertEqual(C.f.func, f) @async_test async def test_cached_property_doc(self): class C: @async_cached_property async def f(self): return 42 self.assertEqual(C.f.__doc__, None) class D: @async_cached_property async def f(self): "hi there" return 42 self.assertEqual(D.f.__doc__, "hi there") D.f.func.__doc__ = "updated" self.assertEqual(D.f.__doc__, "updated") @async_test async def test_cached_property_slot(self): class C: __slots__ = ("f", "calls") def __init__(self): self.calls = 0 async def f(self): self.calls += 1 return 42 C.f = async_cached_property(f, C.f) a = C() self.assertEqual(await a.f, 42) self.assertEqual(a.calls, 1) self.assertEqual(await a.f, 42) self.assertEqual(a.calls, 1) @async_test async def test_cached_property_slot_raises(self): class C: __slots__ = ("f",) async def f(self): raise NoWayError() C.f = async_cached_property(f, C.f) with self.assertRaises(NoWayError): await C().f @async_test async def test_cached_property_slot_wrong_type(self): """apply a cached property from one type to another""" class C: __slots__ = ("abc",) class D: pass async def f(self): return 42 D.abc = async_cached_property(f, C.abc) a = D() with self.assertRaises(TypeError): x = await a.abc @async_test async def test_cached_property_slot_name(self): class C: __slots__ = ("f",) async def f(self): return 42 C.f = async_cached_property(f, C.f) self.assertEqual(C.f.name, "f") @async_test async def test_cached_property_slot_property(self): class C: __slots__ = ("f",) async def f(self): return 42 prev_f = C.f C.f = async_cached_property(f, C.f) self.assertEqual(C.f.slot, prev_f) @async_test async def test_cached_property_no_slot_property(self): class C: @async_cached_property async def f(self): return 42 self.assertEqual(C.f.slot, None) @async_test async def test_cached_property_non_descriptor(self): async def f(self): return 42 with self.assertRaises(TypeError): async_cached_property(f, 42) @async_test async def test_cached_property_incompatible_descriptor(self): async def f(self): return 42 with self.assertRaises(TypeError): async_cached_property(f, GeneratorType.gi_frame) @async_test async def test_cached_property_readonly_descriptor(self): async def f(self): return 42 with self.assertRaises(TypeError): async_cached_property(f, range.start) @async_test async def test_cached_class_prop(self): class C: @async_cached_classproperty async def f(self): return 42 self.assertEqual(await C.f, 42) @async_test async def test_cached_class_prop_called_once(self): class C: calls = 0 @async_cached_classproperty async def f(cls): cls.calls += 1
<reponame>astroumd/admit """ .. _filter1D: Filter1D --- 1-dimensional spectral filtering. ---------------------------------------------- This module defines the 1D filter methods. """ import numpy as np import math from copy import deepcopy from collections import OrderedDict class Filter1D(object): """ This class defines and runs 1D spectral filters. The currently available filters are Gaussian, Hanning, Triangle, Welch, Boxcar, and Savitzky Golay. The output spectrum will be of the same length as the input spectrum, however some edge channels may be zeroed by some methods, depending on the input paramters. Parameters ---------- spec : numpy array 1D numpy array of the input spectrum (just the amplitudes). method : str The smoothing filter to apply: boxcar, gaussian, welch, hanning, triangle, or savgol. No default. Minimum matching is enabled with a minimum of 3 characters, i.e. box = boxcar. keyval : various Any keyword value pairs for the specific method chosen, see the notes for specific keywords. Attributes ---------- spec : numpy array The spectrum. len : int The length of the spectrum. methods : list A list of the available filters. [method]_args : dict A dictionary for each method giving its keywords and defaults (e.g. boxcar_args). method : str The method being used. Notes ----- Details of the different filter keywords and defaults: .. tabularcolumns:: |p{1.5cm}|p{2cm}|p{0.5cm}|p{8cm}| +------------+---------------+------+----------------------------------------------+ | Filter | Keyword | Def. | Description | +============+===============+======+==============================================+ | "boxcar" | "width" | 3 | Number of channels to average together | +------------+---------------+------+----------------------------------------------+ | "gaussian" | "width" | 7 | Number of channels to span with the gaussian | +------------+---------------+------+----------------------------------------------+ | "hanning" | "width" | 5 | Number of channels to include in the cos | +------------+---------------+------+----------------------------------------------+ | "triangle" | "width" | 5 | Number of channels to span with the triangle | +------------+---------------+------+----------------------------------------------+ | "welch" | "width" | 5 | Number of channels to use in the function | +------------+---------------+------+----------------------------------------------+ | "savgol" | "window_size" | 7 | Number of channels to use in the calculation | +------------+---------------+------+----------------------------------------------+ | | "order" | 3 | Order of the poynomial fit (must be odd) | +------------+---------------+------+----------------------------------------------+ | | "deriv" | 0 | The number of the derivative to compute | | | | | (0 = just smooth) | +------------+---------------+------+----------------------------------------------+ """ boxcar_args = OrderedDict([("width", 3)]) gaussian_args = OrderedDict([("width", 7)]) welch_args = OrderedDict([("width", 5)]) hanning_args = OrderedDict([("width", 5)]) triangle_args = OrderedDict([("width", 5)]) savgol_args = OrderedDict([("window_size", 7), ("order" , 3), ("deriv" , 0), ("rate" , 1)]) methods = ["boxcar", "gaussian", "welch", "hanning", "triangle", "savgol"] def __init__(self, spec, method, **keyval): if len(spec.shape) > 1: raise Exception("Spectrum is not 1D but you are trying to use a 1D filter.") self.spec = spec self.len = self.spec.shape[0] # keywords for the different algorithms self.method = self.checkmethod(method) for k, v in keyval.iteritems(): try: a = getattr(self, method + "_args")[k] except: raise Exception("Unknown input %s for smoothing." % (k)) if type(a) != type(v): raise Exception("Cannot change the type of an attribute. %s must be a %s not a %s." % (k, type(a), type(v))) getattr(self, method + "_args")[k] = v def isodd(self, value): """ Method to determine if a number is odd Parameters ---------- value : int The number to check Returns ------- bool, True if the number is odd, False if it is even """ return value%2 == 1 def checkmethod(self, method): """ Method to interpret the input method and determine the full method name Parameters ---------- method : str The method to use, minimal matching is possible, with a minimum of 3 characters (e.g. "box" will be interpreted to be "boxcar") Returns ------- None """ if len(method) < 3: raise Exception("Minimum of 3 characters are needed for minimal matching of strings.") for m in self.methods: if m.startswith(method): return m raise Exception("Unknown method %s given for smoothing. Available methods are: %s" % (method, str(self.methods))) def buffer(self, nchan): """ Method to buffer/pad an array so that filters can work all the way to the edge. Uses np.pad with mode='reflect' Parameters ---------- nchan : int The number of channels to add to each end of the array Returns ------- Numpy array containing the buffered input array """ return np.pad(self.spec, (nchan, ), mode='reflect') def boxcar(self, width): r""" Method to apply a boxcar filter to a spectrum. The filter for point x[i] is defined as: .. math:: x[i] = \frac{1}{N} \sum_{n=0}^{N} x[i + n - \frac{N - 1}{2}] where N is the width of the filter. Parameters ---------- width : int The width of the box to use in channels, must be odd Returns ------- numpy array The smoothed spectrum, (width - 1)/2 edge channels will be zeroed """ if not self.isodd(width): raise Exception("Boxcar width must be an odd number.") side = (width - 1) / 2 kernel = np.array([1.0] * width) kernel /= kernel.sum() return np.convolve(self.buffer(side), kernel, mode="valid") def gaussian(self, width): r""" Method to apply a Gaussian filter to a spectrum. The filter for point x[i] is defined as: .. math:: x[i] = \sum_{n=0}^{N} x[i + n - \frac{N - 1}{2}] e^{-\frac{1}{2}\left(\frac{n-(N-1)/2}{\sigma(N-1)/2}\right)^2} where N is the width of the filter. Parameters ---------- width : int The number of channels to span with the gaussian for each iteration, must be odd Returns ------- numpy array The smoothed spectrum, (width - 1)/2 edge channels will be zeroed """ if not self.isodd(width): raise Exception("Gaussian width must be an odd number.") side = (width - 1) / 2 kernel = np.zeros(width) for j in range(width): kernel[j] = math.exp(-0.5 * pow(((float(j) - ((float(width) - 1.0) / 2.0)) / (0.2 * (float(width) - 1.0) / 2.0)), 2)) kernel /= kernel.sum() return np.convolve(self.buffer(side), kernel, mode="valid") def welch(self, width): r""" Method to apply a Welch filter to a spectrum. The filter for point x[i] is defined as: .. math:: x[i] = \sum_{n=0}^{N} x[i + n - \frac{N - 1}{2}] \left(1 - \left(\frac{n - \frac{N-1}{2}}{\frac{N-1}{2}}\right)^2\right) where N is the width of the filter. Parameters ---------- width : int The number of channels to span with the function for each iteration, must be odd Returns ------- numpy array The smoothed spectrum, (width - 1)/2 edge channels will be zeroed """ if not self.isodd(width): raise Exception("Welch width must be an odd number.") width += 2 # must add 2 to get the proper width side = (width - 1) / 2 kernel = np.zeros(width) for j in range(width): kernel[j] = (1 - math.pow((j - (float(width - 1) / 2.0)) / (float(width - 1) / 2.0), 2)) kernel /= kernel.sum() return np.convolve(self.buffer(side), kernel, mode="valid") def hanning(self, width): r""" Method to apply a Hanning filter to a spectrum. The filter for point x[i] is defined as: .. math:: x[i] = \sum_{n=0}^{N} x[i + n - \frac{N - 1}{2}] 0.5 \left(1 - \cos\left(\frac{2\pi n}{N-1}\right)\right) where N is the width of the filter. Parameters ---------- width : int The number of channels to span with the function for each iteration, must be odd Returns ------- numpy array The smoothed spectrum, (width - 1)/2 edge channels will be zeroed """ if not self.isodd(width): raise Exception("Hanning width must be an odd number.") width += 2 # must add 2 to get the proper width side = (width - 1) / 2 kernel = np.zeros(width) for j in range(width): kernel[j] = 0.5 * (1.0 - math.cos((2.0 * math.pi * j) / float(width - 1))) kernel /= kernel.sum() return np.convolve(self.buffer(side), kernel, mode="valid") def triangle(self, width): r""" Method to apply a Triangular filter to a spectrum. The filter for point x[i] is defined as: .. math:: x[i] = \sum_{n=0}^{N} x[i + n - \frac{N - 1}{2}] \left(1 - \left|\frac{n-\frac{N-1}{2}}{\frac{N}{2}}\right|\right) where N is the width of the filter. Parameters ---------- width : int The number of channels to span with the function for each iteration, must be odd Returns ------- numpy array The
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore from google.protobuf import timestamp_pb2 # type: ignore __protobuf__ = proto.module( package='google.cloud.retail.v2', manifest={ 'Audience', 'ColorInfo', 'CustomAttribute', 'FulfillmentInfo', 'Image', 'Interval', 'PriceInfo', 'Rating', 'UserInfo', 'Promotion', }, ) class Audience(proto.Message): r"""An intended audience of the [Product][google.cloud.retail.v2.Product] for whom it's sold. Attributes: genders (Sequence[str]): The genders of the audience. Strongly encouraged to use the standard values: "male", "female", "unisex". At most 5 values are allowed. Each value must be a UTF-8 encoded string with a length limit of 128 characters. Otherwise, an INVALID_ARGUMENT error is returned. Google Merchant Center property `gender <https://support.google.com/merchants/answer/6324479>`__. Schema.org property `Product.audience.suggestedGender <https://schema.org/suggestedGender>`__. age_groups (Sequence[str]): The age groups of the audience. Strongly encouraged to use the standard values: "newborn" (up to 3 months old), "infant" (3–12 months old), "toddler" (1–5 years old), "kids" (5–13 years old), "adult" (typically teens or older). At most 5 values are allowed. Each value must be a UTF-8 encoded string with a length limit of 128 characters. Otherwise, an INVALID_ARGUMENT error is returned. Google Merchant Center property `age_group <https://support.google.com/merchants/answer/6324463>`__. Schema.org property `Product.audience.suggestedMinAge <https://schema.org/suggestedMinAge>`__ and `Product.audience.suggestedMaxAge <https://schema.org/suggestedMaxAge>`__. """ genders = proto.RepeatedField( proto.STRING, number=1, ) age_groups = proto.RepeatedField( proto.STRING, number=2, ) class ColorInfo(proto.Message): r"""The color information of a [Product][google.cloud.retail.v2.Product]. Attributes: color_families (Sequence[str]): The standard color families. Strongly recommended to use the following standard color groups: "Red", "Pink", "Orange", "Yellow", "Purple", "Green", "Cyan", "Blue", "Brown", "White", "Gray", "Black" and "Mixed". Normally it is expected to have only 1 color family. May consider using single "Mixed" instead of multiple values. A maximum of 5 values are allowed. Each value must be a UTF-8 encoded string with a length limit of 128 characters. Otherwise, an INVALID_ARGUMENT error is returned. Google Merchant Center property `color <https://support.google.com/merchants/answer/6324487>`__. Schema.org property `Product.color <https://schema.org/color>`__. colors (Sequence[str]): The color display names, which may be different from standard color family names, such as the color aliases used in the website frontend. Normally it is expected to have only 1 color. May consider using single "Mixed" instead of multiple values. A maximum of 25 colors are allowed. Each value must be a UTF-8 encoded string with a length limit of 128 characters. Otherwise, an INVALID_ARGUMENT error is returned. Google Merchant Center property `color <https://support.google.com/merchants/answer/6324487>`__. Schema.org property `Product.color <https://schema.org/color>`__. """ color_families = proto.RepeatedField( proto.STRING, number=1, ) colors = proto.RepeatedField( proto.STRING, number=2, ) class CustomAttribute(proto.Message): r"""A custom attribute that is not explicitly modeled in [Product][google.cloud.retail.v2.Product]. Attributes: text (Sequence[str]): The textual values of this custom attribute. For example, ``["yellow", "green"]`` when the key is "color". At most 400 values are allowed. Empty values are not allowed. Each value must be a UTF-8 encoded string with a length limit of 256 characters. Otherwise, an INVALID_ARGUMENT error is returned. Exactly one of [text][google.cloud.retail.v2.CustomAttribute.text] or [numbers][google.cloud.retail.v2.CustomAttribute.numbers] should be set. Otherwise, an INVALID_ARGUMENT error is returned. numbers (Sequence[float]): The numerical values of this custom attribute. For example, ``[2.3, 15.4]`` when the key is "lengths_cm". At most 400 values are allowed.Otherwise, an INVALID_ARGUMENT error is returned. Exactly one of [text][google.cloud.retail.v2.CustomAttribute.text] or [numbers][google.cloud.retail.v2.CustomAttribute.numbers] should be set. Otherwise, an INVALID_ARGUMENT error is returned. searchable (bool): If true, custom attribute values are searchable by text queries in [SearchService.Search][google.cloud.retail.v2.SearchService.Search]. This field is ignored in a [UserEvent][google.cloud.retail.v2.UserEvent]. Only set if type [text][google.cloud.retail.v2.CustomAttribute.text] is set. Otherwise, a INVALID_ARGUMENT error is returned. indexable (bool): If true, custom attribute values are indexed, so that it can be filtered, faceted or boosted in [SearchService.Search][google.cloud.retail.v2.SearchService.Search]. This field is ignored in a [UserEvent][google.cloud.retail.v2.UserEvent]. See [SearchRequest.filter][google.cloud.retail.v2.SearchRequest.filter], [SearchRequest.facet_specs][google.cloud.retail.v2.SearchRequest.facet_specs] and [SearchRequest.boost_spec][google.cloud.retail.v2.SearchRequest.boost_spec] for more details. """ text = proto.RepeatedField( proto.STRING, number=1, ) numbers = proto.RepeatedField( proto.DOUBLE, number=2, ) searchable = proto.Field( proto.BOOL, number=3, optional=True, ) indexable = proto.Field( proto.BOOL, number=4, optional=True, ) class FulfillmentInfo(proto.Message): r"""Fulfillment information, such as the store IDs for in-store pickup or region IDs for different shipping methods. Attributes: type_ (str): The fulfillment type, including commonly used types (such as pickup in store and same day delivery), and custom types. Customers have to map custom types to their display names before rendering UI. Supported values: - "pickup-in-store" - "ship-to-store" - "same-day-delivery" - "next-day-delivery" - "custom-type-1" - "custom-type-2" - "custom-type-3" - "custom-type-4" - "custom-type-5" If this field is set to an invalid value other than these, an INVALID_ARGUMENT error is returned. place_ids (Sequence[str]): The IDs for this [type][google.cloud.retail.v2.FulfillmentInfo.type], such as the store IDs for [FulfillmentInfo.type.pickup-in-store][google.cloud.retail.v2.FulfillmentInfo.type] or the region IDs for [FulfillmentInfo.type.same-day-delivery][google.cloud.retail.v2.FulfillmentInfo.type]. A maximum of 3000 values are allowed. Each value must be a string with a length limit of 30 characters, matching the pattern ``[a-zA-Z0-9_-]+``, such as "store1" or "REGION-2". Otherwise, an INVALID_ARGUMENT error is returned. """ type_ = proto.Field( proto.STRING, number=1, ) place_ids = proto.RepeatedField( proto.STRING, number=2, ) class Image(proto.Message): r"""[Product][google.cloud.retail.v2.Product] thumbnail/detail image. Attributes: uri (str): Required. URI of the image. This field must be a valid UTF-8 encoded URI with a length limit of 5,000 characters. Otherwise, an INVALID_ARGUMENT error is returned. Google Merchant Center property `image_link <https://support.google.com/merchants/answer/6324350>`__. Schema.org property `Product.image <https://schema.org/image>`__. height (int): Height of the image in number of pixels. This field must be nonnegative. Otherwise, an INVALID_ARGUMENT error is returned. width (int): Width of the image in number of pixels. This field must be nonnegative. Otherwise, an INVALID_ARGUMENT error is returned. """ uri = proto.Field( proto.STRING, number=1, ) height = proto.Field( proto.INT32, number=2, ) width = proto.Field( proto.INT32, number=3, ) class Interval(proto.Message): r"""A floating point interval. Attributes: minimum (float): Inclusive lower bound. exclusive_minimum (float): Exclusive lower bound. maximum (float): Inclusive upper bound. exclusive_maximum (float): Exclusive upper bound. """ minimum = proto.Field( proto.DOUBLE, number=1, oneof='min', ) exclusive_minimum = proto.Field( proto.DOUBLE, number=2, oneof='min', ) maximum = proto.Field( proto.DOUBLE, number=3, oneof='max', ) exclusive_maximum = proto.Field( proto.DOUBLE, number=4, oneof='max', ) class PriceInfo(proto.Message): r"""The price information of a [Product][google.cloud.retail.v2.Product]. Attributes: currency_code (str): The 3-letter currency code defined in `ISO 4217 <https://www.iso.org/iso-4217-currency-codes.html>`__. If this field is an unrecognizable currency code, an INVALID_ARGUMENT error is returned. The [Product.Type.VARIANT][google.cloud.retail.v2.Product.Type.VARIANT] [Product][google.cloud.retail.v2.Product]s with the same [Product.primary_product_id][google.cloud.retail.v2.Product.primary_product_id] must share the same [currency_code][google.cloud.retail.v2.PriceInfo.currency_code]. Otherwise, a FAILED_PRECONDITION error is returned. price (float): Price of the product. Google Merchant Center property `price <https://support.google.com/merchants/answer/6324371>`__. Schema.org property `Offer.priceSpecification <https://schema.org/priceSpecification>`__. original_price (float): Price of the product without any discount. If zero, by default set to be the [price][google.cloud.retail.v2.PriceInfo.price]. cost (float): The costs associated with the sale of a particular product. Used for gross profit reporting. - Profit = [price][google.cloud.retail.v2.PriceInfo.price] - [cost][google.cloud.retail.v2.PriceInfo.cost] Google Merchant Center property `cost_of_goods_sold <https://support.google.com/merchants/answer/9017895>`__. price_effective_time (google.protobuf.timestamp_pb2.Timestamp): The timestamp when the [price][google.cloud.retail.v2.PriceInfo.price] starts to be effective. This can be set as a future timestamp, and the [price][google.cloud.retail.v2.PriceInfo.price] is only used for search after [price_effective_time][google.cloud.retail.v2.PriceInfo.price_effective_time]. If so, the [original_price][google.cloud.retail.v2.PriceInfo.original_price] must be set and [original_price][google.cloud.retail.v2.PriceInfo.original_price] is used before [price_effective_time][google.cloud.retail.v2.PriceInfo.price_effective_time]. Do not set if [price][google.cloud.retail.v2.PriceInfo.price] is always effective because it will cause additional latency during search. price_expire_time (google.protobuf.timestamp_pb2.Timestamp): The timestamp when the [price][google.cloud.retail.v2.PriceInfo.price] stops to be effective. The [price][google.cloud.retail.v2.PriceInfo.price] is used for search before [price_expire_time][google.cloud.retail.v2.PriceInfo.price_expire_time]. If this field is set, the [original_price][google.cloud.retail.v2.PriceInfo.original_price] must be set and [original_price][google.cloud.retail.v2.PriceInfo.original_price] is used after [price_expire_time][google.cloud.retail.v2.PriceInfo.price_expire_time]. Do not set if [price][google.cloud.retail.v2.PriceInfo.price] is always effective because it will cause additional latency during search. price_range (google.cloud.retail_v2.types.PriceInfo.PriceRange): Output only. The price range of all the child [Product.Type.VARIANT][google.cloud.retail.v2.Product.Type.VARIANT] [Product][google.cloud.retail.v2.Product]s grouped together on the [Product.Type.PRIMARY][google.cloud.retail.v2.Product.Type.PRIMARY] [Product][google.cloud.retail.v2.Product]. Only populated for [Product.Type.PRIMARY][google.cloud.retail.v2.Product.Type.PRIMARY] [Product][google.cloud.retail.v2.Product]s. Note: This field is OUTPUT_ONLY for [ProductService.GetProduct][google.cloud.retail.v2.ProductService.GetProduct]. Do not set this field in API requests. """ class PriceRange(proto.Message): r"""The price range of all [variant][google.cloud.retail.v2.Product.Type.VARIANT] [Product][google.cloud.retail.v2.Product] having the same [Product.primary_product_id][google.cloud.retail.v2.Product.primary_product_id]. Attributes: price (google.cloud.retail_v2.types.Interval): The inclusive [Product.pricing_info.price][google.cloud.retail.v2.PriceInfo.price] interval of all [variant][google.cloud.retail.v2.Product.Type.VARIANT] [Product][google.cloud.retail.v2.Product] having the
<filename>python/foglamp/plugins/south/wind_turbine/wind_turbine.py # -*- coding: utf-8 -*- # FOGLAMP_BEGIN # See: http://foglamp.readthedocs.io/ # FOGLAMP_END """ Module for Phidget poll mode plugin The following is intended as the south service plugin of Dianomic wind turbine demo of FogLAMP. Phidget based sensors: - Temperature & Humidity: HUM1000_0 (https://www.phidgets.com/?tier=3&catid=14&pcid=12&prodid=644) - Spatial: MOT1101_0 (https://www.phidgets.com/?tier=3&catid=10&pcid=8&prodid=975) - Rotary: 3531_0 (https://www.phidgets.com/?tier=3&catid=103&pcid=83&prodid=404) - Current: VCP1100_0 (https://www.phidgets.com/?tier=3&catid=16&pcid=14&prodid=983) """ import copy import datetime import logging import math import time from foglamp.common import logger from foglamp.plugins.common import utils from foglamp.services.south import exceptions from Phidget22.Devices.Accelerometer import * from Phidget22.Devices.CurrentInput import * from Phidget22.Devices.Encoder import * from Phidget22.Devices.Gyroscope import * from Phidget22.Devices.HumiditySensor import * from Phidget22.Devices.Magnetometer import * from Phidget22.Devices.TemperatureSensor import * from Phidget22.PhidgetException import * from Phidget22.Phidget import * __author__ = "<NAME>" __copyright__ = "Copyright (c) 2019 Dianomic Systems Inc." __license__ = "Apache 2.0" __version__ = "${VERSION}" _DEFAULT_CONFIG = { 'plugin': { 'description': 'Wind Turbine Poll Plugin', 'type': 'string', 'default': 'wind_turbine', 'readonly': 'true' }, 'hubSN': { 'description': 'VINT Hub Serial Number', 'type': 'string', 'default': '538854', 'order': '1', 'displayName': 'VINT Hub SN' }, 'assetPrefix': { 'description': 'Prefix of asset name', 'type': 'string', 'default': 'wind_turbine/', 'order': '2', 'displayName': 'Asset Name Prefix' }, 'tempHumAssetName': { 'description': 'Humidity/Temperature sensor asset name', 'type': 'string', 'default': 'weather', 'order': '3', 'displayName': 'Humidity/Temperature Asset Name' }, 'tempHumPort': { 'description': 'VINT Hub port of temperature/humidity sensor', 'type': 'string', 'default': '0', 'order': '4', 'displayName': 'Humidity/Temperature Port' }, 'tempHumPoll': { 'description': 'Obtain Humidity/Temperature every nth time the plugin is pulled', 'type': 'integer', 'default': '1', 'order': '5', 'displayName': 'Humidity/Temperature Poll', }, 'tempHumEnable': { 'description': 'Enable Humidity/Temperature', 'type': 'boolean', 'default': 'true', 'order': '6', 'displayName': 'Enable Humidity/Temperature' }, 'currentAssetName': { 'description': 'Current sensor asset name', 'type': 'string', 'default': 'current', 'order': '7', 'displayName': 'Current Asset Name' }, 'currentPort': { 'description': 'VINT Hub port of current sensor', 'type': 'string', 'default': '3', 'order': '8', 'displayName': 'Current Port' }, 'currentPoll': { 'description': 'Obtain current every nth time the plugin is pulled', 'type': 'integer', 'default': '1', 'order': '9', 'displayName': 'Current Poll' }, 'currentEnable': { 'description': 'Enable/Disable Current sensor', 'type': 'boolean', 'default': 'true', 'order': '10', 'displayName': 'Enable Current' }, 'encoderAssetName': { 'description': 'Encoder sensor asset name', 'type': 'string', 'default': 'encoder', 'order': '11', 'displayName': 'Encoder Asset Name' }, 'encoderPort': { 'description': 'VINT Hub port of encoder sensor', 'type': 'string', 'default': '1', 'order': '12', 'displayName': 'Encoder Port' }, 'encoderPoll': { 'description': 'Obtain encoder every nth time the plugin is pulled', 'type': 'integer', 'default': '1', 'order': '13', 'displayName': 'Encoder Poll' }, 'encoderEnable': { 'description': 'Enable Encoder Sensor', 'type': 'boolean', 'default': 'true', 'order': '14', 'displayName': 'Enable Encoder' }, 'spatialPort': { 'description': 'VINT Hub port of spatial sensors', 'type': 'string', 'default': '2', 'order': '15', 'displayName': 'Spatial Port' }, 'accelerometerAssetName': { 'description': 'accelerometer sensor asset name', 'type': 'string', 'default': 'accelerometer', 'order': '16', 'displayName': 'accelerometer Asset Name' }, 'accelerometerPoll': { 'description': 'Obtain accelerometer every nth time the plugin is pulled', 'type': 'integer', 'default': '1', 'order': '17', 'displayName': 'Acceleration Poll' }, 'accelerometerEnable': { 'description': 'Enable Acceleration Sensor', 'type': 'boolean', 'default': 'true', 'order': '18', 'displayName': 'Acceleration Encoder' }, 'gyroscopeAssetName': { 'description': 'gyroscope sensor asset name', 'type': 'string', 'default': 'gyroscope', 'order': '19', 'displayName': 'gyroscope Asset Name' }, 'gyroscopePoll': { 'description': 'Obtain gyroscope every nth time the plugin is pulled', 'type': 'integer', 'default': '1', 'order': '20', 'displayName': 'Gyroscope Poll' }, 'gyroscopeEnable': { 'description': 'Enable Gyroscope Sensor', 'type': 'boolean', 'default': 'true', 'order': '21', 'displayName': 'Enable Gyroscope' }, 'magnetometerAssetName': { 'description': 'magnetometer sensor asset name', 'type': 'string', 'default': 'magnetometer', 'order': '22', 'displayName': 'magnetometer Asset Name' }, 'magnetometerPoll': { 'description': 'Obtain magnetometer every nth time the plugin is pulled', 'type': 'integer', 'default': '1', 'order': '23', 'displayName': 'Magnetometer Poll' }, 'magnetometerEnable': { 'description': 'Enable Magnetometer Sensor', 'type': 'boolean', 'default': 'true', 'order': '24', 'displayName': 'Enable Magnetometer' } } _LOGGER = logger.setup(__name__, level=logging.INFO) def plugin_info(): """ Returns information about the plugin. Args: Returns: dict: plugin information Raises: """ return { 'name': 'wind_turbine Poll Plugin', 'version': '1.7.0', 'mode': 'poll', 'type': 'south', 'interface': '1.0', 'config': _DEFAULT_CONFIG } def plugin_init(config): """ Initialise the plugin. Args: config: JSON configuration document for the South plugin configuration category Returns: data: JSON object to be used in future calls to the plugin Raises: """ try: data = copy.deepcopy(config) if data['tempHumEnable']['value'] == 'true': data['humidity'] = HumiditySensor() data['humidity'].setDeviceSerialNumber(int(data['hubSN']['value'])) data['humidity'].setHubPort(int(data['tempHumPort']['value'])) data['humidity'].setIsHubPortDevice(False) data['humidity'].setChannel(0) data['humidity'].openWaitForAttachment(5000) try: data['humidity'].getHumidity() except Exception: pass data['temperature'] = TemperatureSensor() data['temperature'].setDeviceSerialNumber(int(data['hubSN']['value'])) data['temperature'].setHubPort(int(data['tempHumPort']['value'])) data['temperature'].setIsHubPortDevice(False) data['temperature'].setChannel(0) data['temperature'].openWaitForAttachment(5000) try: data['temperature'].getTemperature() except Exception: pass if data['currentEnable']['value'] == 'true': data['current'] = CurrentInput() data['current'].setDeviceSerialNumber(int(data['hubSN']['value'])) data['current'].setHubPort(int(data['currentPort']['value'])) data['current'].setIsHubPortDevice(False) data['current'].setChannel(0) data['current'].openWaitForAttachment(5000) try: data['current'].getCurrent() except Exception: pass if data['encoderEnable']['value'] == 'true': data['encoder'] = Encoder() data['encoder'].setDeviceSerialNumber(int(data['hubSN']['value'])) data['encoder'].setHubPort(int(data['encoderPort']['value'])) data['encoder'].setIsHubPortDevice(False) data['encoder'].setChannel(0) data['encoder'].openWaitForAttachment(5000) data['encoder'].setDataInterval(20) i = 0 while i < 120: try: data['encoder'].getPosition() except Exception: time.sleep(1) i += 1 else: break if data['accelerometerEnable']['value'] == 'true': data['accelerometer'] = Accelerometer() data['accelerometer'].setDeviceSerialNumber(int(data['hubSN']['value'])) data['accelerometer'].setHubPort(int(data['spatialPort']['value'])) data['accelerometer'].setIsHubPortDevice(False) data['accelerometer'].setChannel(0) data['accelerometer'].openWaitForAttachment(5000) data['accelerometer'].setDataInterval(20) i = 0 while i < 120: try: data['accelerometer'].getAcceleration() except Exception: time.sleep(1) i += 1 else: break if data['gyroscopeEnable']['value'] == 'true': data['gyroscope'] = Gyroscope() data['gyroscope'].setDeviceSerialNumber(int(data['hubSN']['value'])) data['gyroscope'].setHubPort(int(data['spatialPort']['value'])) data['gyroscope'].setIsHubPortDevice(False) data['gyroscope'].setChannel(0) data['gyroscope'].openWaitForAttachment(5000) data['gyroscope'].setDataInterval(20) i = 0 while i < 120: try: data['gyroscope'].getAngularRate() except Exception: time.sleep(1) i += 1 else: break if data['magnetometerEnable']['value'] == 'true': data['magnetometer'] = Magnetometer() data['magnetometer'].setDeviceSerialNumber(int(data['hubSN']['value'])) data['magnetometer'].setHubPort(int(data['spatialPort']['value'])) data['magnetometer'].setIsHubPortDevice(False) data['magnetometer'].setChannel(0) data['magnetometer'].openWaitForAttachment(5000) data['magnetometer'].setDataInterval(20) i = 0 while i < 120: try: data['magnetometer'].getMagneticField() except Exception: time.sleep(1) i += 1 else: break except Exception as ex: _LOGGER.exception("wind_turbine exception: {}".format(str(ex))) raise ex # counter to know when to run process data['tempHumCount'] = 0 data['currentCount'] = 0 data['encoderCount'] = 0 data['accelerometerCount'] = 0 data['gyroscopeCount'] = 0 data['magnetometerCount'] = 0 # counter of last encoder value data['encoderPreviousValue'] = 0 data['encoderPreviousTime'] = 0 return data def plugin_poll(handle): """ Extracts data from the sensor and returns it in a JSON document as a Python dict. Available for poll mode only. Args: handle: handle returned by the plugin initialisation call Returns: returns a sensor reading in a JSON document, as a Python dict, if it is available None - If no reading is available Raises: TimeoutError """ # air quality is voltage reading between 0 and 5.1 # we scale is to a value between 0 and 1023 try: time_stamp = utils.local_timestamp() data = list() if handle['tempHumEnable']['value'] == 'true' and handle['tempHumCount'] == 0: data.append({ 'asset': '{}{}'.format(handle['assetPrefix']['value'], handle['tempHumAssetName']['value']), 'timestamp': time_stamp, 'readings': { "temperature": handle['temperature'].getTemperature(), "humidity": handle['humidity'].getHumidity() } }) if handle['currentEnable']['value'] == 'true' and handle['currentCount'] == 0: data.append({ 'asset': '{}{}'.format(handle['assetPrefix']['value'], handle['currentAssetName']['value']), 'timestamp': time_stamp, 'readings': { "current": handle['current'].getCurrent() } }) if handle['encoderEnable']['value'] == 'true' and handle['encoderCount'] == 0: value = handle['encoder'].getPosition() # convert time_stamp to be usable if ":" == time_stamp[-3:-2]: timestamp_new = datetime.datetime.strptime(time_stamp[:-3]+time_stamp[-2:], '%Y-%m-%d %H:%M:%S.%f%z') else: timestamp_new = datetime.datetime.strptime(time_stamp, '%Y-%m-%d %H:%M:%S.%f%z') if handle['encoderPreviousValue'] > 0: # omit first one # calculate elapse time in milliseconds elapse_time = timestamp_new - handle['encoderPreviousTime'] elapse_time = elapse_time.total_seconds() data.append({ 'asset': '{}{}'.format(handle['assetPrefix']['value'], handle['encoderAssetName']['value']), 'timestamp': time_stamp, 'readings': { # (current_total_iterations - previous_total_iterations) / (elapsed time in seconds) "rotation-per-second": ((value - handle['encoderPreviousValue'])/1200)/elapse_time } }) # update old values handle['encoderPreviousValue'] = value handle['encoderPreviousTime'] = timestamp_new if handle['accelerometerEnable']['value'] == 'true' and handle['accelerometerCount'] == 0: x, y, z = handle['accelerometer'].getAcceleration() data.append({ 'asset': '{}{}'.format(handle['assetPrefix']['value'], handle['accelerometerAssetName']['value']), 'timestamp': time_stamp, 'readings': { "accelerometer-x": x, "accelerometer-y": y, "accelerometer-z": z } }) if handle['gyroscopeEnable']['value'] == 'true' and handle['gyroscopeCount'] == 0: x, y, z = handle['gyroscope'].getAngularRate() data.append({ 'asset': '{}{}'.format(handle['assetPrefix']['value'], handle['gyroscopeAssetName']['value']), 'timestamp': time_stamp, 'readings': { "gyroscope-x": x, "gyroscope-y": y, "gyroscope-z": z } }) if handle['magnetometerEnable']['value'] == 'true' and handle['magnetometerCount'] == 0: x, y, z = handle['magnetometer'].getMagneticField() data.append({ 'asset': '{}{}'.format(handle['assetPrefix']['value'], handle['magnetometerAssetName']['value']), 'timestamp': time_stamp, 'readings': { "magnetometer-x": x, "magnetometer-y": y, "magnetometer-z": z } }) handle['tempHumCount'] = (handle['tempHumCount'] + 1) % int(handle['tempHumPoll']['value']) handle['currentCount'] = (handle['currentCount'] + 1) % int(handle['currentPoll']['value']) handle['encoderCount'] = (handle['encoderCount'] + 1) % int(handle['encoderPoll']['value']) handle['accelerometerCount'] = (handle['accelerometerCount'] + 1) % int(handle['accelerometerPoll']['value']) handle['gyroscopeCount'] = (handle['gyroscopeCount'] + 1) % int(handle['gyroscopePoll']['value']) handle['magnetometerCount'] = (handle['magnetometerCount'] + 1) % int(handle['magnetometerPoll']['value']) except (Exception, RuntimeError) as ex: _LOGGER.exception("wind_turbine exception: {}".format(str(ex))) raise exceptions.DataRetrievalError(ex) else: return data def plugin_reconfigure(handle, new_config): """ Reconfigures the plugin Args: handle: handle returned
def test_code_info_object(self): self.assertRaises(TypeError, dis.code_info, object()) def test_pretty_flags_no_flags(self): self.assertEqual(dis.pretty_flags(0), '0x0') # Fodder for instruction introspection tests # Editing any of these may require recalculating the expected output def outer(a=1, b=2): def f(c=3, d=4): def inner(e=5, f=6): print(a, b, c, d, e, f) print(a, b, c, d) return inner print(a, b, '', 1, [], {}, "Hello world!") return f def jumpy(): # This won't actually run (but that's OK, we only disassemble it) for i in range(10): print(i) if i < 4: continue if i > 6: break else: print("I can haz else clause?") while i: print(i) i -= 1 if i > 6: continue if i < 4: break else: print("Who let lolcatz into this test suite?") try: 1 / 0 except ZeroDivisionError: print("Here we go, here we go, here we go...") else: with i as dodgy: print("Never reach this") finally: print("OK, now we're done") # End fodder for opinfo generation tests expected_outer_line = 1 _line_offset = outer.__code__.co_firstlineno - 1 code_object_f = outer.__code__.co_consts[4] expected_f_line = code_object_f.co_firstlineno - _line_offset code_object_inner = code_object_f.co_consts[4] expected_inner_line = code_object_inner.co_firstlineno - _line_offset expected_jumpy_line = 1 # The following lines are useful to regenerate the expected results after # either the fodder is modified or the bytecode generation changes # After regeneration, update the references to code_object_f and # code_object_inner before rerunning the tests #_instructions = dis.get_instructions(outer, first_line=expected_outer_line) #print('expected_opinfo_outer = [\n ', #',\n '.join(map(str, _instructions)), ',\n]', sep='') #_instructions = dis.get_instructions(outer(), first_line=expected_f_line) #print('expected_opinfo_f = [\n ', #',\n '.join(map(str, _instructions)), ',\n]', sep='') #_instructions = dis.get_instructions(outer()(), first_line=expected_inner_line) #print('expected_opinfo_inner = [\n ', #',\n '.join(map(str, _instructions)), ',\n]', sep='') #_instructions = dis.get_instructions(jumpy, first_line=expected_jumpy_line) #print('expected_opinfo_jumpy = [\n ', #',\n '.join(map(str, _instructions)), ',\n]', sep='') Instruction = dis.Instruction expected_opinfo_outer = [ Instruction(opname='FUNC_HEADER', opcode=6, imm=[14], argval=14, argrepr='14', offset=0, starts_line=1, is_jump_target=False), Instruction(opname='LOAD_CONST', opcode=52, imm=[2], argval=3, argrepr='3', offset=2, starts_line=2, is_jump_target=False), Instruction(opname='STORE_FAST', opcode=58, imm=[3], argval=3, argrepr='.t0', offset=4, starts_line=None, is_jump_target=False), Instruction(opname='LOAD_CONST', opcode=52, imm=[3], argval=4, argrepr='4', offset=6, starts_line=None, is_jump_target=False), Instruction(opname='STORE_FAST', opcode=58, imm=[4], argval=4, argrepr='.t1', offset=8, starts_line=None, is_jump_target=False), Instruction(opname='MAKE_FUNCTION', opcode=106, imm=[4], argval=code_object_f, argrepr=repr(code_object_f), offset=10, starts_line=None, is_jump_target=False), Instruction(opname='CLEAR_FAST', opcode=2, imm=[4], argval=4, argrepr='.t1', offset=12, starts_line=None, is_jump_target=False), Instruction(opname='CLEAR_FAST', opcode=2, imm=[3], argval=3, argrepr='.t0', offset=14, starts_line=None, is_jump_target=False), Instruction(opname='STORE_FAST', opcode=58, imm=[2], argval=2, argrepr='f', offset=16, starts_line=None, is_jump_target=False), Instruction(opname='LOAD_GLOBAL', opcode=54, imm=[5, 254], argval='print', argrepr="'print'; 254", offset=18, starts_line=7, is_jump_target=False), Instruction(opname='STORE_FAST', opcode=58, imm=[6], argval=6, argrepr='.t3', offset=21, starts_line=None, is_jump_target=False), Instruction(opname='LOAD_DEREF', opcode=56, imm=[0], argval=0, argrepr='a', offset=23, starts_line=None, is_jump_target=False), Instruction(opname='STORE_FAST', opcode=58, imm=[7], argval=7, argrepr='.t4', offset=25, starts_line=None, is_jump_target=False), Instruction(opname='LOAD_DEREF', opcode=56, imm=[1], argval=1, argrepr='b', offset=27, starts_line=None, is_jump_target=False), Instruction(opname='STORE_FAST', opcode=58, imm=[8], argval=8, argrepr='.t5', offset=29, starts_line=None, is_jump_target=False), Instruction(opname='LOAD_CONST', opcode=52, imm=[6], argval='', argrepr="''", offset=31, starts_line=None, is_jump_target=False), Instruction(opname='STORE_FAST', opcode=58, imm=[9], argval=9, argrepr='.t6', offset=33, starts_line=None, is_jump_target=False), Instruction(opname='LOAD_CONST', opcode=52, imm=[7], argval=1, argrepr='1', offset=35, starts_line=None, is_jump_target=False), Instruction(opname='STORE_FAST', opcode=58, imm=[10], argval=10, argrepr='.t7', offset=37, starts_line=None, is_jump_target=False), Instruction(opname='BUILD_LIST', opcode=93, imm=[11, 0], argval=(11, 0), argrepr='.t8; 0', offset=39, starts_line=None, is_jump_target=False), Instruction(opname='STORE_FAST', opcode=58, imm=[11], argval=11, argrepr='.t8', offset=42, starts_line=None, is_jump_target=False), Instruction(opname='BUILD_MAP', opcode=95, imm=[0], argval=0, argrepr='0', offset=44, starts_line=None, is_jump_target=False), Instruction(opname='STORE_FAST', opcode=58, imm=[12], argval=12, argrepr='.t9', offset=46, starts_line=None, is_jump_target=False), Instruction(opname='LOAD_CONST', opcode=52, imm=[8], argval='Hello world!', argrepr="'Hello world!'", offset=48, starts_line=None, is_jump_target=False), Instruction(opname='STORE_FAST', opcode=58, imm=[13], argval=13, argrepr='.t10', offset=50, starts_line=None, is_jump_target=False), Instruction(opname='CALL_FUNCTION', opcode=70, imm=[7, 7], argval=(7, 7), argrepr='.t4 to .t11', offset=52, starts_line=None, is_jump_target=False), Instruction(opname='CLEAR_ACC', opcode=1, imm=[], argval=None, argrepr='', offset=56, starts_line=None, is_jump_target=False), Instruction(opname='LOAD_FAST', opcode=50, imm=[2], argval=2, argrepr='f', offset=57, starts_line=8, is_jump_target=False), Instruction(opname='RETURN_VALUE', opcode=75, imm=[], argval=None, argrepr='', offset=59, starts_line=None, is_jump_target=False), ] expected_opinfo_f = [ Instruction(opname='FUNC_HEADER', opcode=6, imm=[13], argval=13, argrepr='13', offset=0, starts_line=2, is_jump_target=False), Instruction(opname='LOAD_CONST', opcode=52, imm=[2], argval=5, argrepr='5', offset=2, starts_line=3, is_jump_target=False), Instruction(opname='STORE_FAST', opcode=58, imm=[5], argval=5, argrepr='.t0', offset=4, starts_line=None, is_jump_target=False), Instruction(opname='LOAD_CONST', opcode=52, imm=[3], argval=6, argrepr='6', offset=6, starts_line=None, is_jump_target=False), Instruction(opname='STORE_FAST', opcode=58, imm=[6], argval=6, argrepr='.t1', offset=8, starts_line=None, is_jump_target=False), Instruction(opname='MAKE_FUNCTION', opcode=106, imm=[4], argval=code_object_inner, argrepr=repr(code_object_inner), offset=10, starts_line=None, is_jump_target=False), Instruction(opname='CLEAR_FAST', opcode=2, imm=[6], argval=6, argrepr='.t1', offset=12, starts_line=None, is_jump_target=False), Instruction(opname='CLEAR_FAST', opcode=2, imm=[5], argval=5, argrepr='.t0', offset=14, starts_line=None, is_jump_target=False), Instruction(opname='STORE_FAST', opcode=58, imm=[2], argval=2, argrepr='inner', offset=16, starts_line=None, is_jump_target=False), Instruction(opname='LOAD_GLOBAL', opcode=54, imm=[5, 254], argval='print', argrepr="'print'; 254", offset=18, starts_line=5, is_jump_target=False), Instruction(opname='STORE_FAST', opcode=58, imm=[8], argval=8, argrepr='.t3', offset=21, starts_line=None, is_jump_target=False), Instruction(opname='LOAD_DEREF', opcode=56, imm=[3], argval=3, argrepr='a', offset=23, starts_line=None, is_jump_target=False), Instruction(opname='STORE_FAST', opcode=58, imm=[9], argval=9, argrepr='.t4', offset=25, starts_line=None, is_jump_target=False), Instruction(opname='LOAD_DEREF', opcode=56, imm=[4], argval=4, argrepr='b', offset=27, starts_line=None, is_jump_target=False), Instruction(opname='STORE_FAST', opcode=58, imm=[10], argval=10, argrepr='.t5', offset=29, starts_line=None, is_jump_target=False), Instruction(opname='LOAD_DEREF', opcode=56, imm=[0], argval=0, argrepr='c', offset=31, starts_line=None, is_jump_target=False), Instruction(opname='STORE_FAST', opcode=58, imm=[11], argval=11, argrepr='.t6', offset=33, starts_line=None, is_jump_target=False), Instruction(opname='LOAD_DEREF', opcode=56, imm=[1], argval=1, argrepr='d', offset=35, starts_line=None, is_jump_target=False), Instruction(opname='STORE_FAST', opcode=58, imm=[12], argval=12, argrepr='.t7', offset=37, starts_line=None, is_jump_target=False), Instruction(opname='CALL_FUNCTION', opcode=70, imm=[9, 4], argval=(9, 4), argrepr='.t4 to .t8', offset=39, starts_line=None, is_jump_target=False), Instruction(opname='CLEAR_ACC', opcode=1, imm=[], argval=None, argrepr='', offset=43, starts_line=None, is_jump_target=False), Instruction(opname='LOAD_FAST', opcode=50, imm=[2], argval=2, argrepr='inner', offset=44, starts_line=6, is_jump_target=False), Instruction(opname='RETURN_VALUE', opcode=75, imm=[], argval=None, argrepr='', offset=46, starts_line=None, is_jump_target=False), ] expected_opinfo_inner = [ Instruction(opname='FUNC_HEADER', opcode=6, imm=[16], argval=16, argrepr='16', offset=0, starts_line=3, is_jump_target=False), Instruction(opname='LOAD_GLOBAL', opcode=54, imm=[2, 254], argval='print', argrepr="'print'; 254", offset=2, starts_line=4, is_jump_target=False), Instruction(opname='STORE_FAST', opcode=58, imm=[9], argval=9, argrepr='.t3', offset=5, starts_line=None, is_jump_target=False), Instruction(opname='LOAD_DEREF', opcode=56, imm=[2], argval=2, argrepr='a', offset=7, starts_line=None, is_jump_target=False), Instruction(opname='STORE_FAST', opcode=58, imm=[10], argval=10, argrepr='.t4', offset=9, starts_line=None, is_jump_target=False), Instruction(opname='LOAD_DEREF', opcode=56, imm=[3], argval=3, argrepr='b', offset=11, starts_line=None, is_jump_target=False), Instruction(opname='STORE_FAST', opcode=58, imm=[11], argval=11, argrepr='.t5', offset=13, starts_line=None, is_jump_target=False), Instruction(opname='LOAD_DEREF', opcode=56, imm=[4], argval=4, argrepr='c', offset=15, starts_line=None, is_jump_target=False), Instruction(opname='STORE_FAST', opcode=58, imm=[12], argval=12, argrepr='.t6', offset=17, starts_line=None, is_jump_target=False), Instruction(opname='LOAD_DEREF', opcode=56, imm=[5], argval=5, argrepr='d', offset=19, starts_line=None, is_jump_target=False), Instruction(opname='STORE_FAST', opcode=58, imm=[13], argval=13, argrepr='.t7', offset=21, starts_line=None, is_jump_target=False), Instruction(opname='COPY', opcode=4, imm=[14, 0], argval=(14, 0), argrepr='.t8 <- e', offset=23, starts_line=None, is_jump_target=False), Instruction(opname='COPY', opcode=4, imm=[15, 1], argval=(15, 1), argrepr='.t9 <- f', offset=26, starts_line=None, is_jump_target=False), Instruction(opname='CALL_FUNCTION', opcode=70, imm=[10, 6], argval=(10, 6), argrepr='.t4 to .t10', offset=29, starts_line=None, is_jump_target=False), Instruction(opname='CLEAR_ACC', opcode=1, imm=[], argval=None, argrepr='', offset=33, starts_line=None, is_jump_target=False), Instruction(opname='LOAD_CONST', opcode=52, imm=[0], argval=None, argrepr='None', offset=34, starts_line=None, is_jump_target=False), Instruction(opname='RETURN_VALUE', opcode=75, imm=[], argval=None, argrepr='', offset=36, starts_line=None, is_jump_target=False), ] expected_opinfo_jumpy = [ Instruction(opname='FUNC_HEADER', opcode=6, imm=[9], argval=9, argrepr='9', offset=0, starts_line=1, is_jump_target=False), Instruction(opname='LOAD_GLOBAL', opcode=54, imm=[2, 254], argval='range', argrepr="'range'; 254", offset=2, starts_line=3, is_jump_target=False), Instruction(opname='STORE_FAST', opcode=58, imm=[5], argval=5, argrepr='.t3', offset=5, starts_line=None, is_jump_target=False), Instruction(opname='LOAD_CONST', opcode=52, imm=[3], argval=10, argrepr='10', offset=7, starts_line=None, is_jump_target=False), Instruction(opname='STORE_FAST', opcode=58, imm=[6], argval=6, argrepr='.t4', offset=9, starts_line=None, is_jump_target=False), Instruction(opname='CALL_FUNCTION', opcode=70, imm=[6, 1], argval=(6, 1), argrepr='.t4 to .t5', offset=11, starts_line=None, is_jump_target=False), Instruction(opname='GET_ITER', opcode=85, imm=[2], argval=2, argrepr='.t0', offset=15, starts_line=None, is_jump_target=False), Instruction(opname='JUMP', opcode=79, imm=[42], argval=59, argrepr='to 59', offset=17, starts_line=None, is_jump_target=False), Instruction(opname='STORE_FAST', opcode=58, imm=[0], argval=0, argrepr='i', offset=20, starts_line=None, is_jump_target=True), Instruction(opname='LOAD_GLOBAL', opcode=54, imm=[4, 252], argval='print', argrepr="'print'; 252", offset=22, starts_line=4, is_jump_target=False), Instruction(opname='STORE_FAST', opcode=58, imm=[6], argval=6, argrepr='.t4', offset=25, starts_line=None, is_jump_target=False), Instruction(opname='COPY', opcode=4, imm=[7, 0], argval=(7, 0), argrepr='.t5 <- i', offset=27, starts_line=None, is_jump_target=False), Instruction(opname='CALL_FUNCTION', opcode=70, imm=[7, 1], argval=(7, 1), argrepr='.t5 to .t6', offset=30, starts_line=None, is_jump_target=False), Instruction(opname='CLEAR_ACC', opcode=1, imm=[], argval=None, argrepr='', offset=34, starts_line=None, is_jump_target=False), Instruction(opname='LOAD_CONST', opcode=52, imm=[5], argval=4, argrepr='4', offset=35, starts_line=5, is_jump_target=False), Instruction(opname='COMPARE_OP', opcode=36, imm=[0, 0], argval=(0, 0), argrepr='0; i', offset=37, starts_line=None, is_jump_target=False), Instruction(opname='POP_JUMP_IF_FALSE', opcode=83, imm=[6], argval=46, argrepr='to 46', offset=40, starts_line=None, is_jump_target=False), Instruction(opname='JUMP', opcode=79, imm=[16], argval=59, argrepr='to 59', offset=43, starts_line=6, is_jump_target=False), Instruction(opname='LOAD_CONST', opcode=52, imm=[6], argval=6, argrepr='6', offset=46, starts_line=7, is_jump_target=True), Instruction(opname='COMPARE_OP', opcode=36, imm=[4, 0], argval=(4, 0), argrepr='4; i', offset=48, starts_line=None, is_jump_target=False), Instruction(opname='POP_JUMP_IF_FALSE', opcode=83, imm=[8], argval=59, argrepr='to 59', offset=51, starts_line=None, is_jump_target=False), Instruction(opname='CLEAR_FAST', opcode=2, imm=[2], argval=2, argrepr='.t0', offset=54, starts_line=8, is_jump_target=False), Instruction(opname='JUMP', opcode=79, imm=[21], argval=77, argrepr='to 77', offset=56, starts_line=None, is_jump_target=False), Instruction(opname='FOR_ITER', opcode=87, imm=[2, -39], argval=(2, 20), argrepr='.t0; to 20', offset=59, starts_line=3, is_jump_target=True), Instruction(opname='LOAD_GLOBAL', opcode=54, imm=[4, 252], argval='print', argrepr="'print'; 252", offset=63, starts_line=10, is_jump_target=False), Instruction(opname='STORE_FAST', opcode=58, imm=[5], argval=5, argrepr='.t3', offset=66, starts_line=None, is_jump_target=False), Instruction(opname='LOAD_CONST', opcode=52, imm=[7], argval='I can haz else clause?', argrepr="'I can haz else clause?'", offset=68, starts_line=None, is_jump_target=False), Instruction(opname='STORE_FAST', opcode=58, imm=[6], argval=6, argrepr='.t4', offset=70, starts_line=None, is_jump_target=False), Instruction(opname='CALL_FUNCTION', opcode=70, imm=[6, 1], argval=(6, 1), argrepr='.t4 to .t5', offset=72, starts_line=None, is_jump_target=False), Instruction(opname='CLEAR_ACC', opcode=1, imm=[], argval=None, argrepr='', offset=76, starts_line=None, is_jump_target=False), Instruction(opname='JUMP', opcode=79, imm=[44], argval=121, argrepr='to 121', offset=77, starts_line=11, is_jump_target=True), Instruction(opname='LOAD_GLOBAL', opcode=54, imm=[4, 252], argval='print', argrepr="'print'; 252", offset=80, starts_line=12, is_jump_target=True), Instruction(opname='STORE_FAST', opcode=58, imm=[5], argval=5, argrepr='.t3', offset=83, starts_line=None, is_jump_target=False), Instruction(opname='COPY', opcode=4, imm=[6, 0], argval=(6, 0), argrepr='.t4 <- i', offset=85, starts_line=None, is_jump_target=False), Instruction(opname='CALL_FUNCTION', opcode=70, imm=[6, 1], argval=(6, 1), argrepr='.t4 to .t5', offset=88, starts_line=None, is_jump_target=False), Instruction(opname='CLEAR_ACC', opcode=1, imm=[], argval=None, argrepr='', offset=92, starts_line=None, is_jump_target=False), Instruction(opname='LOAD_CONST', opcode=52, imm=[8], argval=1, argrepr='1', offset=93, starts_line=13, is_jump_target=False), Instruction(opname='INPLACE_SUBTRACT', opcode=40, imm=[0], argval=0, argrepr='i', offset=95, starts_line=None, is_jump_target=False), Instruction(opname='STORE_FAST', opcode=58, imm=[0], argval=0, argrepr='i', offset=97, starts_line=None, is_jump_target=False), Instruction(opname='LOAD_CONST', opcode=52, imm=[6], argval=6, argrepr='6', offset=99, starts_line=14, is_jump_target=False), Instruction(opname='COMPARE_OP', opcode=36, imm=[4, 0], argval=(4, 0), argrepr='4; i', offset=101, starts_line=None, is_jump_target=False), Instruction(opname='POP_JUMP_IF_FALSE', opcode=83, imm=[6], argval=110, argrepr='to 110', offset=104, starts_line=None, is_jump_target=False), Instruction(opname='JUMP', opcode=79, imm=[14], argval=121, argrepr='to 121', offset=107, starts_line=15, is_jump_target=False), Instruction(opname='LOAD_CONST', opcode=52, imm=[5], argval=4, argrepr='4', offset=110, starts_line=16, is_jump_target=True), Instruction(opname='COMPARE_OP', opcode=36, imm=[0, 0], argval=(0, 0), argrepr='0; i', offset=112, starts_line=None, is_jump_target=False), Instruction(opname='POP_JUMP_IF_FALSE', opcode=83, imm=[6], argval=121, argrepr='to 121', offset=115, starts_line=None, is_jump_target=False), Instruction(opname='JUMP', opcode=79, imm=[22], argval=140, argrepr='to 140', offset=118, starts_line=17, is_jump_target=False), Instruction(opname='LOAD_FAST',
<reponame>afontscd/openstacksdk<gh_stars>0 # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ test_baremetal_node ---------------------------------- Tests for baremetal node related operations """ import uuid from testscenarios import load_tests_apply_scenarios as load_tests # noqa from openstack.cloud import exc from openstack import exceptions from openstack.tests import fakes from openstack.tests.unit import base class TestBaremetalNode(base.IronicTestCase): def setUp(self): super(TestBaremetalNode, self).setUp() self.fake_baremetal_node = fakes.make_fake_machine( self.name, self.uuid) # TODO(TheJulia): Some tests below have fake ports, # since they are required in some processes. Lets refactor # them at some point to use self.fake_baremetal_port. self.fake_baremetal_port = fakes.make_fake_port( '00:01:02:03:04:05', node_id=self.uuid) def test_list_machines(self): fake_baremetal_two = fakes.make_fake_machine('two', str(uuid.uuid4())) self.register_uris([ dict(method='GET', uri=self.get_mock_url(resource='nodes'), json={'nodes': [self.fake_baremetal_node, fake_baremetal_two]}), ]) machines = self.cloud.list_machines() self.assertEqual(2, len(machines)) self.assertSubdict(self.fake_baremetal_node, machines[0]) self.assertSubdict(fake_baremetal_two, machines[1]) self.assert_calls() def test_get_machine(self): self.register_uris([ dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), ]) machine = self.cloud.get_machine(self.fake_baremetal_node['uuid']) self.assertEqual(machine['uuid'], self.fake_baremetal_node['uuid']) self.assert_calls() def test_get_machine_by_mac(self): mac_address = '00:01:02:03:04:05' url_address = 'detail?address=%s' % mac_address node_uuid = self.fake_baremetal_node['uuid'] self.register_uris([ dict(method='GET', uri=self.get_mock_url( resource='ports', append=[url_address]), json={'ports': [{'address': mac_address, 'node_uuid': node_uuid}]}), dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), ]) machine = self.cloud.get_machine_by_mac(mac_address) self.assertEqual(machine['uuid'], self.fake_baremetal_node['uuid']) self.assert_calls() def test_validate_machine(self): # NOTE(TheJulia): Note: These are only the interfaces # that are validated, and all must be true for an # exception to not be raised. validate_return = { 'boot': { 'result': True, }, 'deploy': { 'result': True, }, 'management': { 'result': True, }, 'power': { 'result': True, }, 'foo': { 'result': False, }} self.register_uris([ dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'validate']), json=validate_return), ]) self.cloud.validate_machine(self.fake_baremetal_node['uuid']) self.assert_calls() def test_validate_machine_not_for_deploy(self): validate_return = { 'deploy': { 'result': False, 'reason': 'Not ready', }, 'power': { 'result': True, }, 'foo': { 'result': False, }} self.register_uris([ dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'validate']), json=validate_return), ]) self.cloud.validate_machine(self.fake_baremetal_node['uuid'], for_deploy=False) self.assert_calls() def test_deprecated_validate_node(self): validate_return = { 'deploy': { 'result': True, }, 'power': { 'result': True, }, 'foo': { 'result': False, }} self.register_uris([ dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'validate']), json=validate_return), ]) self.cloud.validate_node(self.fake_baremetal_node['uuid']) self.assert_calls() def test_validate_machine_raises_exception(self): validate_return = { 'deploy': { 'result': False, 'reason': 'error!', }, 'power': { 'result': True, 'reason': None, }, 'foo': { 'result': True }} self.register_uris([ dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'validate']), json=validate_return), ]) self.assertRaises( exceptions.ValidationException, self.cloud.validate_machine, self.fake_baremetal_node['uuid']) self.assert_calls() def test_patch_machine(self): test_patch = [{ 'op': 'remove', 'path': '/instance_info'}] self.fake_baremetal_node['instance_info'] = {} self.register_uris([ dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), dict(method='PATCH', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node, validate=dict(json=test_patch)), ]) self.cloud.patch_machine( self.fake_baremetal_node['uuid'], test_patch) self.assert_calls() def test_set_node_instance_info(self): test_patch = [{ 'op': 'add', 'path': '/foo', 'value': 'bar'}] self.register_uris([ dict(method='PATCH', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node, validate=dict(json=test_patch)), ]) self.cloud.set_node_instance_info( self.fake_baremetal_node['uuid'], test_patch) self.assert_calls() def test_purge_node_instance_info(self): test_patch = [{ 'op': 'remove', 'path': '/instance_info'}] self.fake_baremetal_node['instance_info'] = {} self.register_uris([ dict(method='PATCH', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node, validate=dict(json=test_patch)), ]) self.cloud.purge_node_instance_info( self.fake_baremetal_node['uuid']) self.assert_calls() def test_inspect_machine_fail_active(self): self.fake_baremetal_node['provision_state'] = 'active' self.register_uris([ dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), ]) self.assertRaises( exc.OpenStackCloudException, self.cloud.inspect_machine, self.fake_baremetal_node['uuid'], wait=True, timeout=1) self.assert_calls() def test_inspect_machine_fail_associated(self): self.fake_baremetal_node['provision_state'] = 'available' self.fake_baremetal_node['instance_uuid'] = '1234' self.register_uris([ dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), ]) self.assertRaisesRegex( exc.OpenStackCloudException, 'associated with an instance', self.cloud.inspect_machine, self.fake_baremetal_node['uuid'], wait=True, timeout=1) self.assert_calls() def test_inspect_machine_failed(self): inspecting_node = self.fake_baremetal_node.copy() self.fake_baremetal_node['provision_state'] = 'inspect failed' self.fake_baremetal_node['last_error'] = 'kaboom!' inspecting_node['provision_state'] = 'inspecting' finished_node = self.fake_baremetal_node.copy() finished_node['provision_state'] = 'manageable' self.register_uris([ dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'inspect'})), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=inspecting_node), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=finished_node), ]) self.cloud.inspect_machine(self.fake_baremetal_node['uuid']) self.assert_calls() def test_inspect_machine_manageable(self): self.fake_baremetal_node['provision_state'] = 'manageable' inspecting_node = self.fake_baremetal_node.copy() inspecting_node['provision_state'] = 'inspecting' self.register_uris([ dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'inspect'})), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=inspecting_node), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), ]) self.cloud.inspect_machine(self.fake_baremetal_node['uuid']) self.assert_calls() def test_inspect_machine_available(self): available_node = self.fake_baremetal_node.copy() available_node['provision_state'] = 'available' manageable_node = self.fake_baremetal_node.copy() manageable_node['provision_state'] = 'manageable' self.register_uris([ dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=available_node), dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'manage'})), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=manageable_node), dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'inspect'})), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=manageable_node), dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'provide'})), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=available_node), ]) self.cloud.inspect_machine(self.fake_baremetal_node['uuid']) self.assert_calls() def test_inspect_machine_available_wait(self): available_node = self.fake_baremetal_node.copy() available_node['provision_state'] = 'available' manageable_node = self.fake_baremetal_node.copy() manageable_node['provision_state'] = 'manageable' inspecting_node = self.fake_baremetal_node.copy() inspecting_node['provision_state'] = 'inspecting' self.register_uris([ dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=available_node), dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'manage'})), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=available_node), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=manageable_node), dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'inspect'})), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=inspecting_node), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=manageable_node), dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'provide'})), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=available_node), ]) self.cloud.inspect_machine( self.fake_baremetal_node['uuid'], wait=True, timeout=1) self.assert_calls() def test_inspect_machine_wait(self): self.fake_baremetal_node['provision_state'] = 'manageable' inspecting_node = self.fake_baremetal_node.copy() inspecting_node['provision_state'] = 'inspecting' self.register_uris([ dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'inspect'})), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=inspecting_node), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=inspecting_node), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), ]) self.cloud.inspect_machine( self.fake_baremetal_node['uuid'], wait=True, timeout=1) self.assert_calls() def test_inspect_machine_inspect_failed(self): self.fake_baremetal_node['provision_state'] = 'manageable' inspecting_node = self.fake_baremetal_node.copy() inspecting_node['provision_state'] = 'inspecting' inspect_fail_node = self.fake_baremetal_node.copy() inspect_fail_node['provision_state'] = 'inspect failed' inspect_fail_node['last_error'] = 'Earth Imploded' self.register_uris([ dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'inspect'})), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=inspecting_node), dict( method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=inspect_fail_node), ]) self.assertRaises(exc.OpenStackCloudException, self.cloud.inspect_machine, self.fake_baremetal_node['uuid'], wait=True, timeout=1) self.assert_calls() def test_set_machine_maintenace_state(self): self.register_uris([ dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'maintenance']), validate=dict(json={'reason': 'no reason'})), ]) self.cloud.set_machine_maintenance_state( self.fake_baremetal_node['uuid'], True, reason='no reason') self.assert_calls() def test_set_machine_maintenace_state_false(self): self.register_uris([ dict( method='DELETE', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'maintenance'])), ]) self.cloud.set_machine_maintenance_state( self.fake_baremetal_node['uuid'], False) self.assert_calls def test_remove_machine_from_maintenance(self): self.register_uris([ dict( method='DELETE', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'maintenance'])), ]) self.cloud.remove_machine_from_maintenance( self.fake_baremetal_node['uuid']) self.assert_calls() def test_set_machine_power_on(self): self.register_uris([ dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'power']), validate=dict(json={'target': 'power on'})), ]) return_value = self.cloud.set_machine_power_on( self.fake_baremetal_node['uuid']) self.assertIsNone(return_value) self.assert_calls() def test_set_machine_power_on_with_retires(self): # NOTE(TheJulia): This logic ends up testing power on/off and reboot # as they all utilize the same helper method. self.register_uris([ dict( method='PUT', status_code=503, uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'power']), validate=dict(json={'target': 'power on'})), dict( method='PUT', status_code=409, uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'power']), validate=dict(json={'target': 'power on'})), dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'power']), validate=dict(json={'target': 'power on'})), ]) return_value = self.cloud.set_machine_power_on( self.fake_baremetal_node['uuid']) self.assertIsNone(return_value) self.assert_calls() def test_set_machine_power_off(self): self.register_uris([ dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'power']), validate=dict(json={'target': 'power off'})), ]) return_value = self.cloud.set_machine_power_off( self.fake_baremetal_node['uuid']) self.assertIsNone(return_value) self.assert_calls() def test_set_machine_power_reboot(self): self.register_uris([ dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'power']), validate=dict(json={'target': 'rebooting'})), ]) return_value = self.cloud.set_machine_power_reboot( self.fake_baremetal_node['uuid']) self.assertIsNone(return_value) self.assert_calls() def test_set_machine_power_reboot_failure(self): self.register_uris([ dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'power']), status_code=400, json={'error': 'invalid'}, validate=dict(json={'target': 'rebooting'})), ]) self.assertRaises(exc.OpenStackCloudException, self.cloud.set_machine_power_reboot, self.fake_baremetal_node['uuid']) self.assert_calls() def test_node_set_provision_state(self): deploy_node = self.fake_baremetal_node.copy() deploy_node['provision_state'] = 'deploying' active_node = self.fake_baremetal_node.copy() active_node['provision_state'] = 'active' self.register_uris([ dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'active', 'configdrive': 'http://host/file'})), dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), ]) self.cloud.node_set_provision_state( self.fake_baremetal_node['uuid'], 'active', configdrive='http://host/file') self.assert_calls() def test_node_set_provision_state_with_retries(self): deploy_node = self.fake_baremetal_node.copy() deploy_node['provision_state'] = 'deploying' active_node = self.fake_baremetal_node.copy() active_node['provision_state'] = 'active' self.register_uris([ dict( method='PUT', status_code=409, uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'active', 'configdrive': 'http://host/file'})), dict( method='PUT', status_code=503, uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'active', 'configdrive': 'http://host/file'})), dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'active', 'configdrive': 'http://host/file'})), dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), ]) self.cloud.node_set_provision_state( self.fake_baremetal_node['uuid'], 'active', configdrive='http://host/file') self.assert_calls() def test_node_set_provision_state_wait_timeout(self): deploy_node = self.fake_baremetal_node.copy() deploy_node['provision_state'] = 'deploying' active_node = self.fake_baremetal_node.copy() active_node['provision_state'] = 'active' self.fake_baremetal_node['provision_state'] = 'available' self.register_uris([ dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'active'})), dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=deploy_node), dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=active_node), ]) return_value = self.cloud.node_set_provision_state( self.fake_baremetal_node['uuid'], 'active', wait=True) self.assertSubdict(active_node, return_value) self.assert_calls() def test_node_set_provision_state_wait_timeout_fails(self): # Intentionally time out. self.fake_baremetal_node['provision_state'] = 'deploy wait' self.register_uris([ dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'active'})), dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), ]) self.assertRaises( exc.OpenStackCloudException, self.cloud.node_set_provision_state, self.fake_baremetal_node['uuid'], 'active', wait=True, timeout=0.001) self.assert_calls() def test_node_set_provision_state_wait_success(self): self.fake_baremetal_node['provision_state'] = 'active' self.register_uris([ dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']), validate=dict(json={'target': 'active'})), dict(method='GET', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid']]), json=self.fake_baremetal_node), ]) return_value = self.cloud.node_set_provision_state( self.fake_baremetal_node['uuid'], 'active', wait=True) self.assertSubdict(self.fake_baremetal_node, return_value) self.assert_calls() def test_node_set_provision_state_wait_failure_cases(self): self.fake_baremetal_node['provision_state'] = 'foo failed' self.register_uris([ dict( method='PUT', uri=self.get_mock_url( resource='nodes', append=[self.fake_baremetal_node['uuid'], 'states', 'provision']),
= params.get("Uid") self.GroupId = params.get("GroupId") class GroupInfo(AbstractModel): """用户组信息 """ def __init__(self): """ :param GroupId: 用户组 ID。 :type GroupId: int :param GroupName: 用户组名称。 :type GroupName: str :param CreateTime: 用户组创建时间。 :type CreateTime: str :param Remark: 用户组描述。 :type Remark: str """ self.GroupId = None self.GroupName = None self.CreateTime = None self.Remark = None def _deserialize(self, params): self.GroupId = params.get("GroupId") self.GroupName = params.get("GroupName") self.CreateTime = params.get("CreateTime") self.Remark = params.get("Remark") class GroupMemberInfo(AbstractModel): """用户组用户信息 """ def __init__(self): """ :param Uid: 子用户 Uid。 :type Uid: int :param Uin: 子用户 Uin。 :type Uin: int :param Name: 子用户名称。 :type Name: str :param PhoneNum: 手机号。 :type PhoneNum: str :param CountryCode: 手机区域代码。 :type CountryCode: str :param PhoneFlag: 是否已验证手机。 :type PhoneFlag: int :param Email: 邮箱地址。 :type Email: str :param EmailFlag: 是否已验证邮箱。 :type EmailFlag: int :param UserType: 用户类型。 :type UserType: int :param CreateTime: 创建时间。 :type CreateTime: str :param IsReceiverOwner: 是否为主消息接收人。 :type IsReceiverOwner: int """ self.Uid = None self.Uin = None self.Name = None self.PhoneNum = None self.CountryCode = None self.PhoneFlag = None self.Email = None self.EmailFlag = None self.UserType = None self.CreateTime = None self.IsReceiverOwner = None def _deserialize(self, params): self.Uid = params.get("Uid") self.Uin = params.get("Uin") self.Name = params.get("Name") self.PhoneNum = params.get("PhoneNum") self.CountryCode = params.get("CountryCode") self.PhoneFlag = params.get("PhoneFlag") self.Email = params.get("Email") self.EmailFlag = params.get("EmailFlag") self.UserType = params.get("UserType") self.CreateTime = params.get("CreateTime") self.IsReceiverOwner = params.get("IsReceiverOwner") class ListAttachedGroupPoliciesRequest(AbstractModel): """ListAttachedGroupPolicies请求参数结构体 """ def __init__(self): """ :param TargetGroupId: 用户组ID :type TargetGroupId: int :param Page: 页码,默认值是 1,从 1 开始 :type Page: int :param Rp: 每页大小,默认值是 20 :type Rp: int """ self.TargetGroupId = None self.Page = None self.Rp = None def _deserialize(self, params): self.TargetGroupId = params.get("TargetGroupId") self.Page = params.get("Page") self.Rp = params.get("Rp") class ListAttachedGroupPoliciesResponse(AbstractModel): """ListAttachedGroupPolicies返回参数结构体 """ def __init__(self): """ :param TotalNum: 策略总数 :type TotalNum: int :param List: 策略列表 :type List: list of AttachPolicyInfo :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.TotalNum = None self.List = None self.RequestId = None def _deserialize(self, params): self.TotalNum = params.get("TotalNum") if params.get("List") is not None: self.List = [] for item in params.get("List"): obj = AttachPolicyInfo() obj._deserialize(item) self.List.append(obj) self.RequestId = params.get("RequestId") class ListAttachedRolePoliciesRequest(AbstractModel): """ListAttachedRolePolicies请求参数结构体 """ def __init__(self): """ :param Page: 页码,从 1 开始 :type Page: int :param Rp: 每页行数,不能大于200 :type Rp: int :param RoleId: 角色 ID。用于指定角色,入参 RoleId 与 RoleName 二选一 :type RoleId: str :param RoleName: 角色名。用于指定角色,入参 RoleId 与 RoleName 二选一 :type RoleName: str :param PolicyType: 按策略类型过滤,User表示仅查询自定义策略,QCS表示仅查询预设策略 :type PolicyType: str """ self.Page = None self.Rp = None self.RoleId = None self.RoleName = None self.PolicyType = None def _deserialize(self, params): self.Page = params.get("Page") self.Rp = params.get("Rp") self.RoleId = params.get("RoleId") self.RoleName = params.get("RoleName") self.PolicyType = params.get("PolicyType") class ListAttachedRolePoliciesResponse(AbstractModel): """ListAttachedRolePolicies返回参数结构体 """ def __init__(self): """ :param List: 角色关联的策略列表 :type List: list of AttachedPolicyOfRole :param TotalNum: 角色关联的策略总数 :type TotalNum: int :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.List = None self.TotalNum = None self.RequestId = None def _deserialize(self, params): if params.get("List") is not None: self.List = [] for item in params.get("List"): obj = AttachedPolicyOfRole() obj._deserialize(item) self.List.append(obj) self.TotalNum = params.get("TotalNum") self.RequestId = params.get("RequestId") class ListAttachedUserPoliciesRequest(AbstractModel): """ListAttachedUserPolicies请求参数结构体 """ def __init__(self): """ :param TargetUin: 子账号 uin :type TargetUin: int :param Page: 页码,默认值是 1,从 1 开始 :type Page: int :param Rp: 每页大小,默认值是 20 :type Rp: int """ self.TargetUin = None self.Page = None self.Rp = None def _deserialize(self, params): self.TargetUin = params.get("TargetUin") self.Page = params.get("Page") self.Rp = params.get("Rp") class ListAttachedUserPoliciesResponse(AbstractModel): """ListAttachedUserPolicies返回参数结构体 """ def __init__(self): """ :param TotalNum: 策略总数 :type TotalNum: int :param List: 策略列表 :type List: list of AttachPolicyInfo :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.TotalNum = None self.List = None self.RequestId = None def _deserialize(self, params): self.TotalNum = params.get("TotalNum") if params.get("List") is not None: self.List = [] for item in params.get("List"): obj = AttachPolicyInfo() obj._deserialize(item) self.List.append(obj) self.RequestId = params.get("RequestId") class ListEntitiesForPolicyRequest(AbstractModel): """ListEntitiesForPolicy请求参数结构体 """ def __init__(self): """ :param PolicyId: 策略 id :type PolicyId: int :param Page: 页码,默认值是 1,从 1 开始 :type Page: int :param Rp: 每页大小,默认值是 20 :type Rp: int :param EntityFilter: 可取值 'All'、'User'、'Group' 和 'Role','All' 表示获取所有实体类型,'User' 表示只获取子账号,'Group' 表示只获取用户组,'Role' 表示只获取角色,默认取 'All' :type EntityFilter: str """ self.PolicyId = None self.Page = None self.Rp = None self.EntityFilter = None def _deserialize(self, params): self.PolicyId = params.get("PolicyId") self.Page = params.get("Page") self.Rp = params.get("Rp") self.EntityFilter = params.get("EntityFilter") class ListEntitiesForPolicyResponse(AbstractModel): """ListEntitiesForPolicy返回参数结构体 """ def __init__(self): """ :param TotalNum: 实体总数 注意:此字段可能返回 null,表示取不到有效值。 :type TotalNum: int :param List: 实体列表 注意:此字段可能返回 null,表示取不到有效值。 :type List: list of AttachEntityOfPolicy :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.TotalNum = None self.List = None self.RequestId = None def _deserialize(self, params): self.TotalNum = params.get("TotalNum") if params.get("List") is not None: self.List = [] for item in params.get("List"): obj = AttachEntityOfPolicy() obj._deserialize(item) self.List.append(obj) self.RequestId = params.get("RequestId") class ListGroupsForUserRequest(AbstractModel): """ListGroupsForUser请求参数结构体 """ def __init__(self): """ :param Uid: 子用户 UID :type Uid: int :param Rp: 每页数量。默认为20。 :type Rp: int :param Page: 页码。默认为1。 :type Page: int """ self.Uid = None self.Rp = None self.Page = None def _deserialize(self, params): self.Uid = params.get("Uid") self.Rp = params.get("Rp") self.Page = params.get("Page") class ListGroupsForUserResponse(AbstractModel): """ListGroupsForUser返回参数结构体 """ def __init__(self): """ :param TotalNum: 子用户加入的用户组总数 :type TotalNum: int :param GroupInfo: 用户组信息 :type GroupInfo: list of GroupInfo :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.TotalNum = None self.GroupInfo = None self.RequestId = None def _deserialize(self, params): self.TotalNum = params.get("TotalNum") if params.get("GroupInfo") is not None: self.GroupInfo = [] for item in params.get("GroupInfo"): obj = GroupInfo() obj._deserialize(item) self.GroupInfo.append(obj) self.RequestId = params.get("RequestId") class ListGroupsRequest(AbstractModel): """ListGroups请求参数结构体 """ def __init__(self): """ :param Page: 页码。默认为1。 :type Page: int :param Rp: 每页数量。默认为20。 :type Rp: int :param Keyword: 按用户组名称匹配。 :type Keyword: str """ self.Page = None self.Rp = None self.Keyword = None def _deserialize(self, params): self.Page = params.get("Page") self.Rp = params.get("Rp") self.Keyword = params.get("Keyword") class ListGroupsResponse(AbstractModel): """ListGroups返回参数结构体 """ def __init__(self): """ :param TotalNum: 用户组总数。 :type TotalNum: int :param GroupInfo: 用户组数组信息。 :type GroupInfo: list of GroupInfo :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.TotalNum = None self.GroupInfo = None self.RequestId = None def _deserialize(self, params): self.TotalNum = params.get("TotalNum") if params.get("GroupInfo") is not None: self.GroupInfo = [] for item in params.get("GroupInfo"): obj = GroupInfo() obj._deserialize(item) self.GroupInfo.append(obj) self.RequestId = params.get("RequestId") class ListPoliciesRequest(AbstractModel): """ListPolicies请求参数结构体 """ def __init__(self): """ :param Rp: 每页数量,默认值是 20,必须大于 0 且小于或等于 200 :type Rp: int :param Page: 页码,默认值是 1,从 1开始,不能大于 200 :type Page: int :param Scope: 可取值 'All'、'QCS' 和 'Local','All' 获取所有策略,'QCS' 只获取预设策略,'Local' 只获取自定义策略,默认取 'All' :type Scope: str :param Keyword: 按策略名匹配 :type Keyword: str """ self.Rp = None self.Page = None self.Scope = None self.Keyword = None def _deserialize(self, params): self.Rp = params.get("Rp") self.Page = params.get("Page") self.Scope = params.get("Scope") self.Keyword = params.get("Keyword") class ListPoliciesResponse(AbstractModel): """ListPolicies返回参数结构体 """ def __init__(self): """ :param TotalNum: 策略总数 :type TotalNum: int :param List: 策略数组,数组每个成员包括 policyId、policyName、addTime、type、description、 createMode 字段。其中: policyId:策略 id policyName:策略名 addTime:策略创建时间 type:1 表示自定义策略,2 表示预设策略 description:策略描述 createMode:1 表示按业务权限创建的策略,其他值表示可以查看策略语法和通过策略语法更新策略 Attachments: 关联的用户数 ServiceType: 策略关联的产品 IsAttached: 当需要查询标记实体是否已经关联策略时不为null。0表示未关联策略,1表示已关联策略 :type List: list of StrategyInfo :param ServiceTypeList: 保留字段 注意:此字段可能返回 null,表示取不到有效值。 :type ServiceTypeList: list of str :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.TotalNum = None self.List = None self.ServiceTypeList = None self.RequestId = None def _deserialize(self, params): self.TotalNum = params.get("TotalNum") if params.get("List") is not None: self.List = [] for item in params.get("List"): obj = StrategyInfo() obj._deserialize(item) self.List.append(obj) self.ServiceTypeList = params.get("ServiceTypeList") self.RequestId = params.get("RequestId") class ListSAMLProvidersRequest(AbstractModel): """ListSAMLProviders请求参数结构体 """ class ListSAMLProvidersResponse(AbstractModel): """ListSAMLProviders返回参数结构体 """ def __init__(self): """ :param TotalCount: SAML身份提供商总数 :type TotalCount: int :param SAMLProviderSet: SAML身份提供商列表 :type SAMLProviderSet: list of SAMLProviderInfo :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.TotalCount = None self.SAMLProviderSet = None self.RequestId = None def _deserialize(self, params): self.TotalCount = params.get("TotalCount") if params.get("SAMLProviderSet") is not None: self.SAMLProviderSet = [] for item in params.get("SAMLProviderSet"): obj = SAMLProviderInfo() obj._deserialize(item) self.SAMLProviderSet.append(obj) self.RequestId = params.get("RequestId") class ListUsersForGroupRequest(AbstractModel): """ListUsersForGroup请求参数结构体 """ def __init__(self): """ :param GroupId: 用户组 ID。 :type GroupId: int :param Page: 页码。默认为1。 :type Page: int :param Rp: 每页数量。默认为20。 :type Rp: int """ self.GroupId = None self.Page = None self.Rp = None def _deserialize(self, params): self.GroupId = params.get("GroupId") self.Page = params.get("Page") self.Rp = params.get("Rp") class ListUsersForGroupResponse(AbstractModel): """ListUsersForGroup返回参数结构体 """ def __init__(self): """ :param TotalNum: 用户组关联的用户总数。 :type TotalNum: int :param UserInfo: 子用户信息。 :type UserInfo: list of GroupMemberInfo :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.TotalNum = None self.UserInfo = None self.RequestId = None def _deserialize(self, params): self.TotalNum = params.get("TotalNum") if params.get("UserInfo") is not None: self.UserInfo = [] for item in params.get("UserInfo"): obj = GroupMemberInfo() obj._deserialize(item) self.UserInfo.append(obj)
float('inf'), QC_pw_min = float('-inf'), QC_pw_max = float('inf'), QC_ph_min = float('-inf'), QC_ph_max = float('inf'), QC_pb_min = float('-inf'), QC_pb_max = -15, QC_lb_min = float('-inf'), QC_lb_max = float('inf'), QC_rb_min = float('-inf'), QC_rb_max = float('inf') ) # dmpag_vglut2_200716_c4_LDECE_OP_VC_clear_nointerval_2 # prominence (100-200), peak (-150-0) peaks_QC, cut_spikes_QC, cut_spikes_holding_QC, cut_spikes_baselined_QC, parameters_QC = spikesQC( file_name, peaks, peaks_properties, cut_spikes, cut_spikes_holding, cut_spikes_baselined, filter_by = ['p', 'wh', 'pw', 'ph', 'pb', 'lb', 'rb'], QC_p_min = float('-inf'), QC_p_max = float('inf'), QC_wh_min = float('-inf'), QC_wh_max = float('inf'), QC_pw_min = float('-inf'), QC_pw_max = float('inf'), QC_ph_min = float('-inf'), QC_ph_max = float('inf'), QC_pb_min = float('-inf'), QC_pb_max = float('inf'), QC_lb_min = float('-inf'), QC_lb_max = float('inf'), QC_rb_min = float('-inf'), QC_rb_max = float('inf') ) # dmpag_vglut2_200716_c5_LDECF_OP_VC_clear_nointerval_1 # prominence (100-400), peak (-400-0) peaks_QC, cut_spikes_QC, cut_spikes_holding_QC, cut_spikes_baselined_QC, parameters_QC = spikesQC( file_name, peaks, peaks_properties, cut_spikes, cut_spikes_holding, cut_spikes_baselined, filter_by = ['p', 'wh', 'pw', 'ph', 'pb', 'lb', 'rb'], QC_p_min = float('-inf'), QC_p_max = float('inf'), QC_wh_min = float('-inf'), QC_wh_max = float('inf'), QC_pw_min = float('-inf'), QC_pw_max = float('inf'), QC_ph_min = float('-inf'), QC_ph_max = float('inf'), QC_pb_min = float('-inf'), QC_pb_max = float('inf'), QC_lb_min = float('-inf'), QC_lb_max = float('inf'), QC_rb_min = float('-inf'), QC_rb_max = float('inf') ) # dmpag_vglut2_200716_c6_LDECG_OP_VC_clear_nointerval_1 # prominence (25-50), peak (NA) peaks_QC, cut_spikes_QC, cut_spikes_holding_QC, cut_spikes_baselined_QC, parameters_QC = spikesQC( file_name, peaks, peaks_properties, cut_spikes, cut_spikes_holding, cut_spikes_baselined, filter_by = ['p', 'wh', 'pw', 'ph', 'pb', 'lb', 'rb'], QC_p_min = float('-inf'), QC_p_max = float('inf'), QC_wh_min = float('-inf'), QC_wh_max = float('inf'), QC_pw_min = float('-inf'), QC_pw_max = float('inf'), QC_ph_min = float('-inf'), QC_ph_max = float('inf'), QC_pb_min = float('-inf'), QC_pb_max = -20, QC_lb_min = float('-inf'), QC_lb_max = float('inf'), QC_rb_min = float('-inf'), QC_rb_max = float('inf') ) # dmpag_vglut2_200716_c7_LDECH_OP_VC_clear_nointerval_1 # prominence (24-50), peak (NA) peaks_QC, cut_spikes_QC, cut_spikes_holding_QC, cut_spikes_baselined_QC, parameters_QC = spikesQC( file_name, peaks, peaks_properties, cut_spikes, cut_spikes_holding, cut_spikes_baselined, filter_by = ['p', 'wh', 'pw', 'ph', 'pb', 'lb', 'rb'], QC_p_min = float('-inf'), QC_p_max = float('inf'), QC_wh_min = float('-inf'), QC_wh_max = float('inf'), QC_pw_min = float('-inf'), QC_pw_max = float('inf'), QC_ph_min = float('-inf'), QC_ph_max = float('inf'), QC_pb_min = float('-inf'), QC_pb_max = -20, QC_lb_min = float('-inf'), QC_lb_max = float('inf'), QC_rb_min = float('-inf'), QC_rb_max = float('inf') ) # dmpag_vglut2_200716_c8_LDECI_OP_VC_clear_nointerval_1 # prominence (30-100), peak (NA) peaks_QC, cut_spikes_QC, cut_spikes_holding_QC, cut_spikes_baselined_QC, parameters_QC = spikesQC( file_name, peaks, peaks_properties, cut_spikes, cut_spikes_holding, cut_spikes_baselined, filter_by = ['p', 'wh', 'pw', 'ph', 'pb', 'lb', 'rb'], QC_p_min = float('-inf'), QC_p_max = float('inf'), QC_wh_min = float('-inf'), QC_wh_max = float('inf'), QC_pw_min = 4, QC_pw_max = float('inf'), QC_ph_min = float('-inf'), QC_ph_max = float('inf'), QC_pb_min = float('-inf'), QC_pb_max = float('inf'), QC_lb_min = float('-inf'), QC_lb_max = float('inf'), QC_rb_min = float('-inf'), QC_rb_max = float('inf') ) # dmpag_vglut2_201116_c6_LDECL_OP_VC_clear_nointerval_1 # prominence (75-350), peak (NA) peaks_QC, cut_spikes_QC, cut_spikes_holding_QC, cut_spikes_baselined_QC, parameters_QC = spikesQC( file_name, peaks, peaks_properties, cut_spikes, cut_spikes_holding, cut_spikes_baselined, filter_by = ['p', 'wh', 'pw', 'ph', 'pb', 'lb', 'rb'], QC_p_min = float('-inf'), QC_p_max = 300, QC_wh_min = float('-inf'), QC_wh_max = float('inf'), QC_pw_min = 4, QC_pw_max = 20, QC_ph_min = float('-inf'), QC_ph_max = float('inf'), QC_pb_min = float('-inf'), QC_pb_max = 0, QC_lb_min = 7, QC_lb_max = float('inf'), QC_rb_min = 7, QC_rb_max = float('inf') ) # dmpag_vglut2_201116_c7_LDECM_OP_VC_clear_nointerval_1 # prominence (50-200), peak (NA) peaks_QC, cut_spikes_QC, cut_spikes_holding_QC, cut_spikes_baselined_QC, parameters_QC = spikesQC( file_name, peaks, peaks_properties, cut_spikes, cut_spikes_holding, cut_spikes_baselined, filter_by = ['p', 'wh', 'pw', 'ph', 'pb', 'lb', 'rb'], QC_p_min = float('-inf'), QC_p_max = float('inf'), QC_wh_min = float('-inf'), QC_wh_max = float('inf'), QC_pw_min = 3, QC_pw_max = float('inf'), QC_ph_min = float('-inf'), QC_ph_max = float('inf'), QC_pb_min = float('-inf'), QC_pb_max = float('inf'), QC_lb_min = 5, QC_lb_max = float('inf'), QC_rb_min = 5, QC_rb_max = float('inf') ) # dmpag_vglut2_201116_c9_LDECO_OP_VC_clear_nointerval_1 # prominence (35-80), peak (-100-0) peaks_QC, cut_spikes_QC, cut_spikes_holding_QC, cut_spikes_baselined_QC, parameters_QC = spikesQC( file_name, peaks, peaks_properties, cut_spikes, cut_spikes_holding, cut_spikes_baselined, filter_by = ['p', 'wh', 'pw', 'ph', 'pb', 'lb', 'rb'], QC_p_min = float('-inf'), QC_p_max = float('inf'), QC_wh_min = float('-inf'), QC_wh_max = float('inf'), QC_pw_min = 4, QC_pw_max = 20, QC_ph_min = float('-inf'), QC_ph_max = float('inf'), QC_pb_min = -80, QC_pb_max = -20, QC_lb_min = 4, QC_lb_max = float('inf'), QC_rb_min = 5, QC_rb_max = float('inf') ) # dmpag_vglut2_201117_c6_LDECS_OP_VC_clear_nointerval_1 # prominence (75-150), peak (NA) peaks_QC, cut_spikes_QC, cut_spikes_holding_QC, cut_spikes_baselined_QC, parameters_QC = spikesQC( file_name, peaks, peaks_properties, cut_spikes, cut_spikes_holding, cut_spikes_baselined, filter_by = ['p', 'wh', 'pw', 'ph', 'pb', 'lb', 'rb'], QC_p_min = float('-inf'), QC_p_max = float('inf'), QC_wh_min = float('-inf'), QC_wh_max = float('inf'), QC_pw_min = 4, QC_pw_max = float('inf'), QC_ph_min = float('-inf'), QC_ph_max = float('inf'), QC_pb_min = float('-inf'), QC_pb_max = -10, QC_lb_min = float('-inf'), QC_lb_max = float('inf'), QC_rb_min = float('-inf'), QC_rb_max = float('inf') ) # dmpag_vglut2_201119_c10_LDEDB_OP_VC_clear_nointerval_1 # prominence (40-200), peak (NA) peaks_QC, cut_spikes_QC, cut_spikes_holding_QC, cut_spikes_baselined_QC, parameters_QC = spikesQC( file_name, peaks, peaks_properties, cut_spikes, cut_spikes_holding, cut_spikes_baselined, filter_by = ['p', 'wh', 'pw', 'ph', 'pb', 'lb', 'rb'], QC_p_min = float('-inf'), QC_p_max = float('inf'), QC_wh_min = float('-inf'), QC_wh_max = float('inf'), QC_pw_min = 4, QC_pw_max = float('inf'), QC_ph_min = float('-inf'), QC_ph_max = float('inf'), QC_pb_min = float('-inf'), QC_pb_max = -10, QC_lb_min = float('-inf'), QC_lb_max = float('inf'), QC_rb_min = float('-inf'), QC_rb_max = float('inf') ) # dmpag_vglut2_201119_c7_LDECY_OP_VC_clear_nointerval_1 # prominence (75-250), peak (NA) peaks_QC, cut_spikes_QC, cut_spikes_holding_QC, cut_spikes_baselined_QC, parameters_QC = spikesQC( file_name, peaks, peaks_properties, cut_spikes, cut_spikes_holding, cut_spikes_baselined, filter_by = ['p', 'wh', 'pw', 'ph', 'pb', 'lb', 'rb'], QC_p_min = float('-inf'), QC_p_max = float('inf'), QC_wh_min = float('-inf'), QC_wh_max = float('inf'), QC_pw_min = 5, QC_pw_max = float('inf'), QC_ph_min = float('-inf'), QC_ph_max = float('inf'), QC_pb_min = float('-inf'), QC_pb_max = -30, QC_lb_min = 5, QC_lb_max = float('inf'), QC_rb_min = 5, QC_rb_max = float('inf') ) # dmpag_vglut2_201120_c9_LDEDG_OP_VC_clear_nointerval_1 # prominence (35-200), peak (NA) peaks_QC, cut_spikes_QC, cut_spikes_holding_QC, cut_spikes_baselined_QC, parameters_QC = spikesQC( file_name, peaks, peaks_properties, cut_spikes, cut_spikes_holding, cut_spikes_baselined, filter_by = ['p', 'wh', 'pw', 'ph', 'pb', 'lb', 'rb'], QC_p_min = float('-inf'), QC_p_max = float('inf'), QC_wh_min = float('-inf'), QC_wh_max = float('inf'), QC_pw_min = 7, QC_pw_max = float('inf'), QC_ph_min = float('-inf'), QC_ph_max = float('inf'), QC_pb_min = float('-inf'), QC_pb_max = float('inf'), QC_lb_min = float('-inf'), QC_lb_max = float('inf'), QC_rb_min = float('-inf'), QC_rb_max = float('inf') ) ##### lpag ##### # lpag_vglut2_190115_c2_LDEBC_OP_VC_clear_nointerval_1 # prominence (25, 50), peak (NA) peaks_QC, cut_spikes_QC, cut_spikes_holding_QC, cut_spikes_baselined_QC, parameters_QC = spikesQC( file_name, peaks, peaks_properties, cut_spikes, cut_spikes_holding, cut_spikes_baselined, filter_by = ['p', 'wh', 'pw', 'ph', 'pb', 'lb', 'rb'], QC_p_min = float('-inf'), QC_p_max = float('inf'), QC_wh_min = float('-inf'), QC_wh_max = float('inf'), QC_pw_min = float('-inf'), QC_pw_max = float('inf'), QC_ph_min = float('-inf'), QC_ph_max = float('inf'), QC_pb_min = float('-inf'), QC_pb_max = -30, QC_lb_min = float('-inf'), QC_lb_max = float('inf'), QC_rb_min = float('-inf'), QC_rb_max = float('inf') ) # lpag_vglut2_190117_c2_LDEBK_OP_VC_clear_nointerval_1 # prominence (30, 300), peak (NA) peaks_QC, cut_spikes_QC, cut_spikes_holding_QC, cut_spikes_baselined_QC, parameters_QC = spikesQC( file_name, peaks, peaks_properties, cut_spikes, cut_spikes_holding, cut_spikes_baselined, filter_by = ['p', 'wh', 'pw', 'ph', 'pb', 'lb', 'rb'], QC_p_min = float('-inf'), QC_p_max = float('inf'), QC_wh_min = float('-inf'), QC_wh_max = float('inf'), QC_pw_min = 5, QC_pw_max = float('inf'), QC_ph_min = float('-inf'), QC_ph_max = float('inf'), QC_pb_min = -200, QC_pb_max = float('inf'), QC_lb_min = float('-inf'), QC_lb_max = float('inf'), QC_rb_min = float('-inf'), QC_rb_max = float('inf') ) # lpag_vglut2_190117_c4_LDEBM_OP_VC_clear_nointerval_1 # prominence (28, 100), peak (-100, 0) peaks_QC, cut_spikes_QC, cut_spikes_holding_QC, cut_spikes_baselined_QC, parameters_QC = spikesQC( file_name, peaks, peaks_properties, cut_spikes, cut_spikes_holding, cut_spikes_baselined, filter_by = ['p', 'wh', 'pw', 'ph', 'pb', 'lb', 'rb'], QC_p_min = float('-inf'), QC_p_max = float('inf'), QC_wh_min = float('-inf'), QC_wh_max = float('inf'), QC_pw_min = 4, QC_pw_max = float('inf'), QC_ph_min = float('-inf'), QC_ph_max = float('inf'), QC_pb_min = float('-inf'), QC_pb_max = float('inf'), QC_lb_min = float('-inf'), QC_lb_max = float('inf'), QC_rb_min = float('-inf'), QC_rb_max = float('inf') ) # lpag_vglut2_190208_c1_LDEBR_OP_VC_clear_nointerval_2 # prominence (30, 100), peak (NA) peaks_QC, cut_spikes_QC, cut_spikes_holding_QC, cut_spikes_baselined_QC, parameters_QC = spikesQC( file_name, peaks, peaks_properties, cut_spikes, cut_spikes_holding, cut_spikes_baselined, filter_by = ['p', 'wh', 'pw', 'ph', 'pb', 'lb', 'rb'], QC_p_min = float('-inf'), QC_p_max = float('inf'), QC_wh_min = float('-inf'), QC_wh_max = float('inf'), QC_pw_min = 5, QC_pw_max = 20, QC_ph_min = float('-inf'), QC_ph_max = float('inf'), QC_pb_min = float('-inf'), QC_pb_max = -25, QC_lb_min = float('-inf'), QC_lb_max = float('inf'), QC_rb_min = float('-inf'), QC_rb_max = float('inf') ) # lpag_vglut2_201117_c11_LDECX_OP_VC_clear_nointerval_2 # prominence (25, 50), peak (NA) peaks_QC, cut_spikes_QC, cut_spikes_holding_QC, cut_spikes_baselined_QC, parameters_QC = spikesQC( file_name, peaks, peaks_properties, cut_spikes, cut_spikes_holding, cut_spikes_baselined, filter_by = ['p', 'wh', 'pw', 'ph', 'pb', 'lb', 'rb'], QC_p_min = float('-inf'), QC_p_max = float('inf'), QC_wh_min = float('-inf'), QC_wh_max = float('inf'), QC_pw_min = 10, QC_pw_max = float('inf'), QC_ph_min = float('-inf'), QC_ph_max = float('inf'), QC_pb_min = float('-inf'), QC_pb_max = -20, QC_lb_min = float('-inf'), QC_lb_max = float('inf'), QC_rb_min = float('-inf'), QC_rb_max = float('inf') ) # lpag_vglut2_201117_c8_LDECU_OP_VC_clear_nointerval_1 # prominence (170, 200), peak (NA) peaks_QC, cut_spikes_QC, cut_spikes_holding_QC, cut_spikes_baselined_QC, parameters_QC = spikesQC( file_name, peaks, peaks_properties, cut_spikes, cut_spikes_holding, cut_spikes_baselined, filter_by = ['p', 'wh', 'pw', 'ph', 'pb', 'lb', 'rb'], QC_p_min = float('-inf'), QC_p_max = float('inf'), QC_wh_min = float('-inf'), QC_wh_max = float('inf'), QC_pw_min = 5, QC_pw_max = 20, QC_ph_min = float('-inf'), QC_ph_max = float('inf'), QC_pb_min = float('-inf'), QC_pb_max = 0, QC_lb_min = float('-inf'), QC_lb_max = float('inf'), QC_rb_min = float('-inf'), QC_rb_max
# -*- coding: utf-8 -*- # Copyright (c) 2016-2017 by University of Kassel and Fraunhofer Institute for Wind Energy and # Energy System Technology (IWES), Kassel. All rights reserved. Use of this source code is governed # by a BSD-style license that can be found in the LICENSE file. import copy import warnings import numpy as np import pytest import pandapower as pp import pandapower.networks as nw from pandapower.diagnostic_reports import DiagnosticReports try: import numba numba_installed = True except: numba_installed = False @pytest.fixture(scope='module') def test_net(): net = nw.example_multivoltage() return net @pytest.fixture(scope='module') def diag_params(): diag_params = { "overload_scaling_factor": 0.001, "lines_min_length_km": 0, "lines_min_z_ohm": 0, "nom_voltage_tolerance": 0.3, "numba_tolerance": 1e-5} return diag_params @pytest.fixture(scope='module') def report_methods(): report_methods = { "missing_bus_indeces": "diag_report.report_missing_bus_indeces()", "disconnected_elements": "diag_report.report_disconnected_elements()", "different_voltage_levels_connected": "diag_report.report_different_voltage_levels_connected()", "lines_with_impedance_close_to_zero": "diag_report.report_lines_with_impedance_close_to_zero()", "nominal_voltages_dont_match": "diag_report.report_nominal_voltages_dont_match()", "invalid_values": "diag_report.report_invalid_values()", "overload": "diag_report.report_overload()", "multiple_voltage_controlling_elements_per_bus" : "diag_report.report_multiple_voltage_controlling_elements_per_bus()", "wrong_switch_configuration": "diag_report.report_wrong_switch_configuration()", "no_ext_grid": "diag_report.report_no_ext_grid()", "wrong_reference_system": "diag_report.report_wrong_reference_system()", "deviation_from_std_type": "diag_report.report_deviation_from_std_type()", "numba_comparison": "diag_report.report_numba_comparison()", "parallel_switches": "diag_report.report_parallel_switches()"} return report_methods def test_no_issues(diag_params, report_methods): net = nw.example_simple() diag_params = copy.deepcopy(diag_params) report_methods = copy.deepcopy(report_methods) diag_results = pp.diagnostic(net, report_style=None) assert diag_results == {} for bool_value in [True, False]: for check_function in report_methods.keys(): diag_report = DiagnosticReports(net, diag_results, diag_params, compact_report=bool_value) report_check = None try: eval(report_methods[check_function]) report_check = True except: report_check = False assert report_check class TestInvalidValues: def test_greater_zero(self, test_net, diag_params, report_methods): net = copy.deepcopy(test_net) check_function = 'invalid_values' diag_params = copy.deepcopy(diag_params) report_methods = copy.deepcopy(report_methods) net.bus.loc[42, 'vn_kv'] = '-1' net.line.loc[7, 'length_km'] = -1 net.line.loc[8, 'max_i_ka'] = 0 net.trafo.loc[0, 'vsc_percent'] = 0.0 net.trafo.loc[0, 'sn_kva'] = None net.trafo.loc[0, 'vn_hv_kv'] = -1.5 net.trafo.loc[0, 'vn_lv_kv'] = False net.trafo3w.loc[0, 'vsc_hv_percent'] = 2.3 net.trafo3w.loc[0, 'vsc_mv_percent'] = np.nan net.trafo3w.loc[0, 'vsc_lv_percent'] = 0.0 net.trafo3w.loc[0, 'sn_hv_kva'] = 11 net.trafo3w.loc[0, 'sn_mv_kva'] = 'a' net.trafo3w.loc[0, 'vn_hv_kv'] = -1.5 net.trafo3w.loc[0, 'vn_mv_kv'] = -1.5 net.trafo3w.loc[0, 'vn_lv_kv'] = False net.ext_grid.loc[0, 'vm_pu'] = True check_result = pp.invalid_values(net) if check_result: diag_results = {check_function: check_result} else: diag_results = {} assert diag_results[check_function] == \ {'bus': [(42, 'vn_kv', '-1', '>0')], 'ext_grid': [(0, 'vm_pu', True, '>0')], 'line': [(7, 'length_km', -1.0, '>0'), (8, 'max_i_ka', 0.0, '>0')], 'trafo': [(0, 'sn_kva', 'nan', '>0'), (0, 'vn_hv_kv', -1.5, '>0'), (0, 'vn_lv_kv', False, '>0'), (0, 'vsc_percent', 0.0, '>0')], 'trafo3w': [(0, 'sn_mv_kva', 'a', '>0'), (0, 'vn_hv_kv', -1.5, '>0'), (0, 'vn_mv_kv', -1.5, '>0'), (0, 'vn_lv_kv', False, '>0'), (0, 'vsc_mv_percent', 'nan', '>0'), (0, 'vsc_lv_percent', 0.0, '>0')]} for bool_value in [True, False]: diag_report = DiagnosticReports(net, diag_results, diag_params, compact_report=bool_value) report_check = None try: eval(report_methods[check_function]) report_check = True except: report_check = False assert report_check def test_greater_equal_zero(self, test_net, diag_params, report_methods): net = copy.deepcopy(test_net) check_function = 'invalid_values' diag_params = copy.deepcopy(diag_params) report_methods = copy.deepcopy(report_methods) net.line.loc[7, 'r_ohm_per_km'] = -1 net.line.loc[8, 'x_ohm_per_km'] = None net.line.loc[8, 'c_nf_per_km'] = '0' net.trafo.loc[0, 'vscr_percent'] = '-1' net.trafo.loc[0, 'pfe_kw'] = -1.5 net.trafo.loc[0, 'i0_percent'] = -0.001 net.trafo3w.loc[0, 'vscr_hv_percent'] = True net.trafo3w.loc[0, 'vscr_mv_percent'] = False net.trafo3w.loc[0, 'vscr_lv_percent'] = 1 net.trafo3w.loc[0, 'pfe_kw'] = '2' net.trafo3w.loc[0, 'i0_percent'] = 10 net.load.loc[0, 'scaling'] = -0.1 net.load.loc[1, 'scaling'] = 0 net.load.loc[2, 'scaling'] = 1 net.load.loc[3, 'scaling'] = '1' net.gen.loc[0, 'scaling'] = None net.sgen.loc[0, 'scaling'] = False check_result = pp.invalid_values(net) if check_result: diag_results = {check_function: check_result} else: diag_results = {} assert diag_results[check_function] == \ {'line': [(7, 'r_ohm_per_km', -1.0, '>=0'), (8, 'x_ohm_per_km', 'nan', '>=0'), (8, 'c_nf_per_km', '0', '>=0')], 'trafo': [(0, 'vscr_percent', '-1', '>=0'), (0, 'pfe_kw', -1.5, '>=0'), (0, 'i0_percent', -0.001, '>=0')], 'trafo3w': [(0, 'vscr_hv_percent', True, '>=0'), (0, 'vscr_mv_percent', False, '>=0'), (0, 'pfe_kw', '2', '>=0')], 'gen': [(0, 'scaling', 'nan', '>=0')], 'load': [(0, 'scaling', -0.1, '>=0'), (3, 'scaling', '1', '>=0')], 'sgen': [(0, 'scaling', False, '>=0')]} for bool_value in [True, False]: diag_report = DiagnosticReports(net, diag_results, diag_params, compact_report=bool_value) report_check = None try: eval(report_methods[check_function]) report_check = True except: report_check = False assert report_check # # # #def test_smaller_zero(self, net): # check_smaller_zero currently not in use # #pass # # #def test_smaller_equal_zero(self, net): # check_smaller_equal_zero currently not in use # #pass # # def test_boolean(self, test_net, diag_params, report_methods): net = copy.deepcopy(test_net) check_function = 'invalid_values' diag_params = copy.deepcopy(diag_params) report_methods = copy.deepcopy(report_methods) net.sgen.loc[0, 'in_service'] = 0 net.sgen.loc[1, 'in_service'] = 0.0 net.sgen.loc[2, 'in_service'] = '0' net.sgen.loc[3, 'in_service'] = '0.0' net.sgen.loc[4, 'in_service'] = 1 net.gen.loc[0, 'in_service'] = '1' net.load.loc[0, 'in_service'] = 10 net.line.loc[0, 'in_service'] = -1 net.bus.loc[0, 'in_service'] = 'no' net.trafo.loc[0, 'in_service'] = 'True' net.trafo3w.loc[0, 'in_service'] = None net.switch.loc[0, 'closed'] = 0 net.switch.loc[1, 'closed'] = 'False' net.switch.loc[2, 'closed'] = False net.switch.loc[3, 'closed'] = 'False' net.switch.loc[4, 'closed'] = None net.switch.loc[5, 'closed'] = 10 check_result = pp.invalid_values(net) if check_result: diag_results = {check_function: check_result} else: diag_results = {} assert diag_results[check_function] == \ {'bus': [(0, 'in_service', 'no', 'boolean')], 'gen': [(0, 'in_service', '1', 'boolean')], 'sgen': [(2, 'in_service', '0', 'boolean'), (3, 'in_service', '0.0', 'boolean')], 'switch': [(1, 'closed', 'False', 'boolean'), (3, 'closed', 'False', 'boolean'), (4, 'closed', 'None', 'boolean'), (5, 'closed', 10, 'boolean')], 'trafo': [(0, 'in_service', 'True', 'boolean')], 'trafo3w': [(0, 'in_service', 'nan', 'boolean')]} for bool_value in [True, False]: diag_report = DiagnosticReports(net, diag_results, diag_params, compact_report=bool_value) report_check = None try: eval(report_methods[check_function]) report_check = True except: report_check = False assert report_check def test_pos_int(self, test_net, diag_params, report_methods): net = copy.deepcopy(test_net) check_function = 'invalid_values' diag_params = copy.deepcopy(diag_params) report_methods = copy.deepcopy(report_methods) net.line.loc[7, 'from_bus'] = 1 net.line.loc[8, 'to_bus'] = '2' net.trafo.loc[0, 'hv_bus'] = False net.trafo.loc[0, 'lv_bus'] = None net.trafo3w.loc[0, 'hv_bus'] = False net.trafo3w.loc[0, 'mv_bus'] = 0.5 net.trafo3w.loc[0, 'lv_bus'] = 2 net.load.loc[0, 'bus'] = True net.sgen.loc[0, 'bus'] = 1.5 net.gen.loc[0, 'bus'] = np.nan net.ext_grid.loc[0, 'bus'] = -2.5 net.switch.loc[0, 'bus'] = None net.switch.loc[0, 'element'] = -1.5 check_result = pp.invalid_values(net) if check_result: diag_results = {check_function: check_result} else: diag_results = {} assert diag_results[check_function] == \ {'ext_grid': [(0, 'bus', -2.5, 'positive_integer')], 'gen': [(0, 'bus', 'nan', 'positive_integer')], 'line': [(8, 'to_bus', '2', 'positive_integer')], 'load': [(0, 'bus', True, 'positive_integer')], 'sgen': [(0, 'bus', 1.5, 'positive_integer')], 'switch': [(0, 'bus', 'nan', 'positive_integer'), (0, 'element', -1.5, 'positive_integer')], 'trafo': [(0, 'hv_bus', False, 'positive_integer'), (0, 'lv_bus', 'nan', 'positive_integer')], 'trafo3w': [(0, 'hv_bus', False, 'positive_integer'), (0, 'mv_bus', 0.5, 'positive_integer')]} for bool_value in [True, False]: diag_report = DiagnosticReports(net, diag_results, diag_params, compact_report=bool_value) report_check = None try: eval(report_methods[check_function]) report_check = True except: report_check = False assert report_check def test_number(self, test_net, diag_params, report_methods): net = copy.deepcopy(test_net) check_function = 'invalid_values' diag_params = copy.deepcopy(diag_params) report_methods = copy.deepcopy(report_methods) net.load.loc[0, 'p_kw'] = '1000' net.load.loc[1, 'q_kvar'] = None net.gen.loc[0, 'p_kw'] = False net.sgen.loc[0, 'p_kw'] = -1.5 net.sgen.loc[1, 'q_kvar'] = np.nan net.ext_grid.loc[0, 'va_degree'] = 13.55 check_result = pp.invalid_values(net) if check_result: diag_results = {check_function: check_result} else: diag_results = {} assert diag_results[check_function] == \ {'gen': [(0, 'p_kw', False, 'number')], 'load': [(0, 'p_kw', '1000', 'number'), (1, 'q_kvar', 'nan', 'number')], 'sgen': [(1, 'q_kvar', 'nan', 'number')]} for bool_value in [True, False]: diag_report = DiagnosticReports(net, diag_results, diag_params, compact_report=bool_value) report_check = None try: eval(report_methods[check_function]) report_check = True except: report_check = False assert report_check def test_between_zero_and_one(self, test_net, diag_params, report_methods): net = copy.deepcopy(test_net) check_function = 'invalid_values' diag_params = copy.deepcopy(diag_params) report_methods = copy.deepcopy(report_methods) net.line.loc[0, 'df'] = 1.5 check_result = pp.invalid_values(net) if check_result: diag_results = {check_function: check_result} else: diag_results = {} assert diag_results[check_function] == \ {'line': [(0, 'df', 1.5, '0to1')]} for bool_value in [True, False]: diag_report = DiagnosticReports(net, diag_results, diag_params, compact_report=bool_value) report_check = None try: eval(report_methods[check_function]) report_check = True except: report_check = False assert report_check def test_switch_type(self, test_net, diag_params, report_methods): net = copy.deepcopy(test_net) check_function = 'invalid_values' diag_params = copy.deepcopy(diag_params) report_methods = copy.deepcopy(report_methods) net.switch.loc[0, 'et'] = 'bus' net.switch.loc[1, 'et'] = 1 net.switch.loc[2, 'et'] = None net.switch.loc[3, 'et'] = True net.switch.loc[4, 'et'] = 't' check_result = pp.invalid_values(net) if check_result: diag_results = {check_function: check_result} else: diag_results = {} assert diag_results[check_function] == \ {'switch': [(0, 'et', 'bus', 'switch_type'), (1, 'et', 1, 'switch_type'), (2, 'et', 'None', 'switch_type'), (3, 'et', True, 'switch_type')]} for bool_value in [True, False]: diag_report = DiagnosticReports(net, diag_results, diag_params, compact_report=bool_value) report_check = None try: eval(report_methods[check_function]) report_check = True except: report_check = False assert report_check def test_no_ext_grid(test_net, diag_params, report_methods): net = copy.deepcopy(test_net) check_function = 'no_ext_grid' diag_params = copy.deepcopy(diag_params) report_methods = copy.deepcopy(report_methods) net.ext_grid = net.ext_grid.drop(0) check_result = pp.no_ext_grid(net) if check_result: diag_results = {check_function: check_result} else: diag_results = {} assert diag_results[check_function] == True def test_multiple_voltage_controlling_elements_per_bus(test_net, diag_params, report_methods): net = copy.deepcopy(test_net) check_function = 'multiple_voltage_controlling_elements_per_bus' diag_params = copy.deepcopy(diag_params) report_methods = copy.deepcopy(report_methods) net.gen.bus.at[0] = 0 pp.create_ext_grid(net, 1) net.ext_grid.bus.at[1] = 0 check_result = pp.multiple_voltage_controlling_elements_per_bus(net) if check_result: diag_results = {check_function: check_result} else: diag_results = {} assert diag_results[check_function] == \ {'buses_with_gens_and_ext_grids': [0], 'buses_with_mult_ext_grids': [0]} for bool_value in [True, False]: diag_report = DiagnosticReports(net, diag_results, diag_params, compact_report=bool_value) report_check = None try: eval(report_methods[check_function]) report_check = True except: report_check = False assert report_check def test_overload(test_net, diag_params, report_methods): net = copy.deepcopy(test_net) check_function = 'overload' diag_params
# --------------------------------------------------------------------------- # # SPEEDMETER Control wxPython IMPLEMENTATION # Python Code By: # # <NAME>, @ 25 Sep 2005 # Latest Revision: 27 Dec 2012, 21.00 GMT # # # TODO List/Caveats # # 1. Combination Of The Two Styles: # # SM_DRAW_PARTIAL_FILLER # SM_DRAW_SECTORS # # Does Not Work Very Well. It Works Well Only In Case When The Sector Colours # Are The Same For All Intervals. # # # Thanks To <NAME> That Has Tried The Demo On MacOS, I Corrected A # Bug On Line 246 # # # For All Kind Of Problems, Requests Of Enhancements And Bug Reports, Please # Write To Me At: # # <EMAIL> # <EMAIL> # # Or, Obviously, To The wxPython Mailing List!!! # # Tags: phoenix-port, unittest, documented, py3-port # # End Of Comments # --------------------------------------------------------------------------- # """ :class:`~wx.lib.agw.speedmeter.SpeedMeter` tries to reproduce the behavior of some car controls (but not only), by creating an "angular" control (actually, circular). Description =========== :class:`SpeedMeter` tries to reproduce the behavior of some car controls (but not only), by creating an "angular" control (actually, circular). I remember to have seen it somewhere, and i decided to implement it in wxPython. :class:`SpeedMeter` starts its construction from an empty bitmap, and it uses some functions of the :class:`wx.DC` class to create the rounded effects. everything is processed in the `Draw()` method of :class:`SpeedMeter` class. This implementation allows you to use either directly the :class:`PaintDC`, or the better (for me) double buffered style with :class:`BufferedPaintDC`. the double buffered implementation has been adapted from the wxPython wiki example: http://wiki.wxpython.org/index.cgi/doublebuffereddrawing Usage ===== Usage example:: import wx import wx.lib.agw.speedmeter as SM class MyFrame(wx.Frame): def __init__(self, parent): wx.Frame.__init__(self, parent, -1, "SpeedMeter Demo") speed = SM.SpeedMeter(self, agwStyle=SM.SM_DRAW_HAND|SM.SM_DRAW_SECTORS|SM.SM_DRAW_MIDDLE_TEXT|SM.SM_DRAW_SECONDARY_TICKS) # Set The Region Of Existence Of SpeedMeter (Always In Radians!!!!) speed.SetAngleRange(-pi/6, 7*pi/6) # Create The Intervals That Will Divide Our SpeedMeter In Sectors intervals = range(0, 201, 20) speed.SetIntervals(intervals) # Assign The Same Colours To All Sectors (We Simulate A Car Control For Speed) # Usually This Is Black colours = [wx.BLACK]*10 speed.SetIntervalColours(colours) # Assign The Ticks: Here They Are Simply The String Equivalent Of The Intervals ticks = [str(interval) for interval in intervals] speed.SetTicks(ticks) # Set The Ticks/Tick Markers Colour speed.SetTicksColour(wx.WHITE) # We Want To Draw 5 Secondary Ticks Between The Principal Ticks speed.SetNumberOfSecondaryTicks(5) # Set The Font For The Ticks Markers speed.SetTicksFont(wx.Font(7, wx.FONTFAMILY_SWISS, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) # Set The Text In The Center Of SpeedMeter speed.SetMiddleText("Km/h") # Assign The Colour To The Center Text speed.SetMiddleTextColour(wx.WHITE) # Assign A Font To The Center Text speed.SetMiddleTextFont(wx.Font(8, wx.FONTFAMILY_SWISS, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_BOLD)) # Set The Colour For The Hand Indicator speed.SetHandColour(wx.Colour(255, 50, 0)) # Do Not Draw The External (Container) Arc. Drawing The External Arc May # Sometimes Create Uglier Controls. Try To Comment This Line And See It # For Yourself! speed.DrawExternalArc(False) # Set The Current Value For The SpeedMeter speed.SetSpeedValue(44) # our normal wxApp-derived class, as usual app = wx.App(0) frame = MyFrame(None) app.SetTopWindow(frame) frame.Show() app.MainLoop() Methods and Settings ==================== :class:`SpeedMeter` is highly customizable, and in particular you can set: - The start and end angle of existence for :class:`SpeedMeter`; - The intervals in which you divide the :class:`SpeedMeter` (numerical values); - The corresponding thicks for the intervals; - The interval colours (different intervals may have different filling colours); - The ticks font and colour; - The background colour (outsize the :class:`SpeedMeter` region); - The external arc colour; - The hand (arrow) colour; - The hand's shadow colour; - The hand's style ("arrow" or "hand"); - The partial filler colour; - The number of secondary (intermediate) ticks; - The direction of increasing speed ("advance" or "reverse"); - The text to be drawn in the middle and its font; - The icon to be drawn in the middle; - The first and second gradient colours (that fills the :class:`SpeedMeter` control); - The current value. Window Styles ============= This class supports the following window styles: =========================== =========== ================================================== Window Styles Hex Value Description =========================== =========== ================================================== ``SM_ROTATE_TEXT`` 0x1 Draws the ticks rotated: the ticks are rotated accordingly to the tick marks positions. ``SM_DRAW_SECTORS`` 0x2 Different intervals are painted in differend colours (every sector of the circle has its own colour). ``SM_DRAW_PARTIAL_SECTORS`` 0x4 Every interval has its own colour, but only a circle corona is painted near the ticks. ``SM_DRAW_HAND`` 0x8 The hand (arrow indicator) is drawn. ``SM_DRAW_SHADOW`` 0x10 A shadow for the hand is drawn. ``SM_DRAW_PARTIAL_FILLER`` 0x20 A circle corona that follows the hand position is drawn near the ticks. ``SM_DRAW_SECONDARY_TICKS`` 0x40 Intermediate (smaller) ticks are drawn between principal ticks. ``SM_DRAW_MIDDLE_TEXT`` 0x80 Some text is printed in the middle of the control near the center. ``SM_DRAW_MIDDLE_ICON`` 0x100 An icon is drawn in the middle of the control near the center. ``SM_DRAW_GRADIENT`` 0x200 A gradient of colours will fill the control. ``SM_DRAW_FANCY_TICKS`` 0x400 With this style you can use xml tags to create some custom text and draw it at the ticks position. See :mod:`lib.fancytext` for the tags. =========================== =========== ================================================== Events Processing ================= `No custom events are available for this class.` License And Version =================== :class:`SpeedMeter` is distributed under the wxPython license. Latest revision: <NAME> @ 27 Dec 2012, 21.00 GMT Version 0.3 """ #---------------------------------------------------------------------- # Beginning Of SPEEDMETER wxPython Code #---------------------------------------------------------------------- import wx import wx.lib.colourdb import wx.lib.fancytext as fancytext from math import pi, sin, cos, log, sqrt, atan2 #---------------------------------------------------------------------- # DC Drawing Options #---------------------------------------------------------------------- # SM_NORMAL_DC Uses The Normal wx.PaintDC # SM_BUFFERED_DC Uses The Double Buffered Drawing Style SM_NORMAL_DC = 0 """ Uses the normal :class:`PaintDC`. """ SM_BUFFERED_DC = 1 """ Uses a double buffered drawing code. """ #---------------------------------------------------------------------- # SpeedMeter Styles #---------------------------------------------------------------------- # SM_ROTATE_TEXT: Draws The Ticks Rotated: The Ticks Are Rotated # Accordingly To The Tick Marks Positions # SM_DRAW_SECTORS: Different Intervals Are Painted In Differend Colours # (Every Sector Of The Circle Has Its Own Colour) # SM_DRAW_PARTIAL_SECTORS: Every Interval Has Its Own Colour, But Only # A Circle Corona Is Painted Near The Ticks # SM_DRAW_HAND: The Hand (Arrow Indicator) Is Drawn # SM_DRAW_SHADOW: A Shadow For The Hand Is Drawn # SM_DRAW_PARTIAL_FILLER: A Circle Corona That Follows The Hand Position # Is Drawn Near The Ticks # SM_DRAW_SECONDARY_TICKS: Intermediate (Smaller) Ticks Are Drawn Between # Principal Ticks # SM_DRAW_MIDDLE_TEXT: Some Text Is Printed In The Middle Of The Control # Near The Center # SM_DRAW_MIDDLE_ICON: An Icon Is Drawn In The Middle Of The Control Near # The Center # SM_DRAW_GRADIENT: A Gradient Of Colours Will Fill The Control # SM_DRAW_FANCY_TICKS: With This Style You Can Use XML Tags To Create # Some Custom Text And Draw It At The Ticks Position. # See wx.lib.fancytext For The Tags. SM_ROTATE_TEXT = 1 """ Draws the ticks rotated: the ticks are rotated accordingly to the tick marks positions. """ SM_DRAW_SECTORS = 2 """ Different intervals are painted in differend colours (every sector of the circle has its own colour). """ SM_DRAW_PARTIAL_SECTORS = 4 """ Every interval has its own colour, but only a circle corona is painted near the ticks. """ SM_DRAW_HAND = 8 """ The hand (arrow indicator) is drawn. """ SM_DRAW_SHADOW = 16 """ A shadow for the hand is drawn. """ SM_DRAW_PARTIAL_FILLER = 32 """ A circle corona that follows the hand position is drawn near the ticks. """ SM_DRAW_SECONDARY_TICKS = 64 """ Intermediate (smaller) ticks are drawn between principal ticks. """ SM_DRAW_MIDDLE_TEXT = 128 """ Some text is printed in the middle of the control near the center. """ SM_DRAW_MIDDLE_ICON = 256 """ An icon is drawn in the middle of the control near the center. """ SM_DRAW_GRADIENT = 512 """ A gradient of colours will fill the control. """ SM_DRAW_FANCY_TICKS = 1024 """ With this style you can use xml tags to create some custom text and draw it at the ticks position. See :mod:`lib.fancytext` for the tags. """ #---------------------------------------------------------------------- # Event Binding #---------------------------------------------------------------------- # SM_MOUSE_TRACK: The Mouse Left Click/Drag Allow You To Change The # SpeedMeter Value Interactively SM_MOUSE_TRACK = 1 """ Flag to allow the left/right click of the mouse to change the :class:`SpeedMeter` value interactively. """ fontfamily = list(range(70, 78)) familyname = ["default", "decorative", "roman", "script", "swiss", "modern", "teletype"] weights = list(range(90, 93)) weightsname = ["normal", "light", "bold"] styles = [90, 93, 94] stylesname = ["normal", "italic", "slant"] #---------------------------------------------------------------------- # BUFFERENDWINDOW Class # This Class Has Been Taken From The wxPython Wiki, And Slightly # Adapted To Fill My Needs. See: # # http://wiki.wxpython.org/index.cgi/DoubleBufferedDrawing # # For More Info About DC And Double Buffered Drawing. #---------------------------------------------------------------------- class BufferedWindow(wx.Window): """ A buffered window class. To use it, subclass it and define a `Draw(dc)` method that takes a `dc` to draw to. In that method, put the code needed to draw the picture you want. The window will automatically be double buffered, and the screen will be automatically updated when a Paint event is received. When the drawing needs to
#!/usr/bin/env python3 # coding=utf-8 from itertools import cycle from statistics import mean from typing import Iterable from .core import * from ..simulator import Sim, SchedulingFailure class SFF(object): @Sim.register_reset_global_fields class Props: def __init__(self): self.counter_packets_put_on_wire: int = 0 self.consider_link_capacity: bool = None self.linkBwCap: List[List[int]] = None self.linkBwRemaining: List[List[int]] = None self.linkLatency: List[List[int]] = None self.latencyProvider: Dict[int, Iterable[int]] = None self.end_to_end_latency: List[List[int]] = None self.end_to_end_bw: List[List[int]] = None self.end_to_end_next_hop: List[List[int]] = None self.allSFFs: Dict[int, 'SFF'] = dict() @staticmethod @Sim.register_simulation_start_hook def init_data_structure(sim: Sim): # make sure that we reset the data structure only if we are already at the beginning of the simulation, # of if somebody calls this function explicitly (before starting the simulation) sff_props = sim.props.sff if not sim.run or sff_props.linkLatency is None: di = len(sff_props.allSFFs) sff_props.linkLatency = [[0 for _ in range(di)] for _ in range(di)] sff_props.linkBwRemaining = [[0 for _ in range(di)] for _ in range(di)] sff_props.linkBwCap = [[0 for _ in range(di)] for _ in range(di)] sff_props.end_to_end_latency = [[0 for _ in range(di)] for _ in range(di)] sff_props.end_to_end_bw = [[0 for _ in range(di)] for _ in range(di)] sff_props.end_to_end_next_hop = [[0 for _ in range(di)] for _ in range(di)] @staticmethod @Sim.register_stop_sim_catch_all_packets_hooks def callback_get_all_packets_from_sff(sim: Sim): for sff in sim.props.sff.allSFFs.values(): if sff.scheduler.requires_queues_per_class(): for q in sff.packet_queue_per_class: for p in sff.packet_queue_per_class[q]: p.timeQueueScheduling += p.get_delta_of_time_mark() yield p else: for p in sff.packet_queue: p.timeQueueScheduling += p.get_delta_of_time_mark() yield p def __repr__(self): return f"SFF({str(self.id)}/{self.get_number_of_queued_packets()})" def __init__(self, sim: Sim, scheduler): if sim.props.sff.linkLatency is not None: raise NameError( "Cannot create new SFF after initializing the data structures. " + "You have to create all SFFs, and then setup the connections.") self.id = len(sim.props.sff.allSFFs) sim.props.sff.allSFFs[self.id] = self self.sim = sim self.scheduler = scheduler self.SFIsPerType: Dict[int, List['SFI']] = dict() self.servers = set() self.service_rate_per_sf: Dict[int, float] = {} # this is either a single queue, or a dictionary of queues if self.scheduler.requires_queues_per_class(): self.packet_queue_per_class: Dict[int, deque] = dict() else: self.packet_queue: deque = deque() scheduler.assign_sff(self) # holds all queued events when the outgoing link does not provide # enough capacity self.outQueue = dict() @staticmethod def init_end_to_end_paths(sim: Sim): di = len(sim.props.sff.allSFFs) # initialize with direct edges for s in range(di): for d in range(di): assert (sim.props.sff.end_to_end_bw[s][d] == 0) # draw randomly 500 latencies and calculate the mean expected_latencies = [mean([next(sim.props.sff.latencyProvider[dist]) for _ in range(500)]) for dist in sim.props.sff.latencyProvider] for s in range(di): for d in range(di): if sim.props.sff.linkBwCap[s][d] > 0: sim.props.sff.end_to_end_bw[s][d] = sim.props.sff.linkBwCap[s][d] sim.props.sff.end_to_end_latency[s][d] = expected_latencies[sim.props.sff.linkLatency[s][d]] sim.props.sff.end_to_end_next_hop[s][d] = d # this is simply floyd warshall for via in range(di): for s in range(di): for d in range(di): if s == d: continue if s == via or d == via: continue # check if s->d using "via" is a valid connection if sim.props.sff.end_to_end_bw[s][via] > 0 and sim.props.sff.end_to_end_bw[via][d] > 0: # faster? new_latency = sim.props.sff.end_to_end_latency[s][via] + sim.props.sff.end_to_end_latency[via][ d] if sim.props.sff.end_to_end_bw[s][d] == 0 or new_latency < sim.props.sff.end_to_end_latency[s][ d]: # either new latency is faster, or there was no connection before sim.props.sff.end_to_end_latency[s][d] = new_latency sim.props.sff.end_to_end_next_hop[s][d] = sim.props.sff.end_to_end_next_hop[s][via] sim.props.sff.end_to_end_bw[s][d] = min(sim.props.sff.end_to_end_bw[s][via], sim.props.sff.end_to_end_bw[via][d]) def get_number_of_queued_packets(self): if self.scheduler.requires_queues_per_class(): return sum(map(len, self.packet_queue_per_class.values())) else: return len(self.packet_queue) def route_packet_to_sfi(self, packet: 'Packet', sfi: 'SFI'): if self.sim.DEBUG: print("route packet to sfi " + str(sfi)) packet.mark_time() sfi_props: 'SFI.Props' = self.sim.props.sfi sff_props: SFF.Props = self.sim.props.sff delay = next(sff_props.latencyProvider[sfi_props.latency_provider]) self.sim.schedule_event(NetworkDelayEvent(delay=delay, inner_packet=packet, source=self, dest_id=sfi.id, source_is_sff=True, dest_is_sff=False)) def free_bw_resource_to_dest_id(self, dest_id, packet: Packet): assert self.sim.props.sff.consider_link_capacity self.sim.props.sff.linkBwRemaining[self.id][dest_id] += packet.transmission_size # sends a packet to a SFF def route_packet_to_sff_id(self, packet: Packet, dest_id): if self.sim.DEBUG: print("route packet to sff" + str(dest_id)) # mark current time for statistics packet.mark_time() sff_props: SFF.Props = self.sim.props.sff if sff_props.linkBwCap[self.id][dest_id] < packet.transmission_size: print("end 2 end links says capacity:{0} using next hop {1}". format(sff_props.end_to_end_bw[self.id][dest_id], sff_props.end_to_end_next_hop[self.id][dest_id])) raise NameError(f"cannot route this packet {self.id}->{dest_id}, because bw capacity " + f"({sff_props.linkBwCap[self.id][dest_id]}) is not sufficient for packet " + f"of size ({packet.transmission_size})!") if sff_props.consider_link_capacity: if not (dest_id in self.outQueue): self.outQueue[dest_id] = [] if (len(self.outQueue[dest_id]) == 0 and packet.transmission_size <= sff_props.linkBwRemaining[self.id][dest_id]): self.put_packet_on_wire(packet=packet, dest_id=dest_id) else: # enqueue packet self.outQueue[dest_id].append(packet) else: self.put_packet_on_wire(packet=packet, dest_id=dest_id) # internal method, don't call directly # this method does not check if some packet are in the out queue # use route_packet_to_sff_id() for sending packets to a SFF def put_packet_on_wire(self, packet: Packet, dest_id): packet.timeQueueNetwork += packet.get_delta_of_time_mark() packet.mark_time() sff_props: SFF.Props = self.sim.props.sff # enough bw so that we can send the packet immediately delay = next(sff_props.latencyProvider[sff_props.linkLatency[self.id][dest_id]]) self.sim.schedule_event(NetworkDelayEvent(delay=delay, inner_packet=packet, source=self, dest_id=dest_id)) if sff_props.consider_link_capacity: sff_props.linkBwRemaining[self.id][dest_id] -= packet.transmission_size def route_packet_to_next_hop(self, packet: Packet): next_hop_type, next_hop = packet.fullPath[packet.pathPosition] packet.pathPosition += 1 if self.sim.PACKET_ID_TO_DEBUG == packet.id: print(f'** packet at sff {self.id}, route to next hop') if next_hop_type == 'SFF': if self.sim.DEBUG: print(". packet goes to another SFF") # we send this packet to the other SFF if packet.id == self.sim.PACKET_ID_TO_DEBUG: print("** debug packet route to {0}".format(str(next_hop))) self.route_packet_to_sff_id(packet, next_hop.id) elif next_hop_type == 'SFI': if self.sim.DEBUG: print(". packet goes to a SFI") # we send this packet to the SFI self.route_packet_to_sfi(packet, next_hop) else: NameError(f"unknown next hop: {next_hop_type}") def check_and_update_packet_and_return_if_process_locally(self, packet: Packet, source: str) -> bool: if self.sim.TRACE_PACKET_PATH: packet.visitedHops.append(self) if self.sim.DEBUG: print(f'at SFF {self.id}, receive a packet from {source}; ' f'packet: id:{packet.id} sfc:{packet.flow.sfTypeChain} ' f'remaining path:{packet.fullPath[packet.pathPosition:]}') if packet.id == self.sim.PACKET_ID_TO_DEBUG: print( f"** @{self.sim.currentTime} debug packet at {str(self)}, path={packet.fullPath}, coming from {source}") if packet.flow.qosMaxDelay < (self.sim.currentTime - packet.time_ingress): if self.sim.DEBUG: print(". drop packet because of timeout") # print(". drop packet because of timeout " + source) packet.drop_timed_out(self) return False if packet.processing_done: # do we have to add the path to the egress? if len(packet.toBeVisited) == 0 and len( packet.fullPath) == packet.pathPosition and self.id != packet.flow.desiredEgressSSFid: # add the path to the egress path_to_dest = self.get_multi_hop_path_for(self.sim, self.id, packet.flow.desiredEgressSSFid) for sff_id in path_to_dest: packet.fullPath.append((SFF.__name__, self.sim.props.sff.allSFFs[sff_id])) # we reached already the egress? if len(packet.fullPath) == packet.pathPosition: if self.sim.DEBUG: print(". packet reached egress") # we should be at the egress assert (self.id == packet.flow.desiredEgressSSFid) # there should be no remaining sf type assert (len(packet.toBeVisited) == 0) packet.done() return False else: self.route_packet_to_next_hop(packet) return False elif len(packet.fullPath) > packet.pathPosition: self.route_packet_to_next_hop(packet) return False return True def handle_packet_from_ingress(self, packet: Packet): if self.check_and_update_packet_and_return_if_process_locally(packet, f'ingress'): self.apply_logic_packet_from_ingress(packet) def handle_packet_from_other_sff(self, packet: Packet, other_sff: 'SFF'): if self.check_and_update_packet_and_return_if_process_locally(packet, f'a sff {other_sff.id}'): self.apply_logic_packet_from_other_sff(packet, other_sff) def handle_packet_from_sfi(self, packet: Packet, sfi: 'SFI'): if self.check_and_update_packet_and_return_if_process_locally(packet, f'a sfi {sfi.id}'): self.apply_logic_packet_from_sfi(packet, sfi) def handle_packet_from_scheduler(self, packet: Packet): if self.sim.PACKET_ID_TO_DEBUG == packet.id: print(f'** receive packet from scheduler..') Packet.debug_print_path(packet.fullPath, packet.pathPosition) if self.check_and_update_packet_and_return_if_process_locally(packet, 'scheduler'): Packet.debug_packet(packet) raise NameError(f'scheduler returns a packet {packet.id}, but sff does not know how to proceed with this ' f'packet') def apply_logic_packet_from_other_sff(self, packet, other_sff: 'SFF'): self.put_packet_in_queue(packet) self.inform_scheduler_about_packet(packet) def apply_logic_packet_from_ingress(self, packet): self.put_packet_in_queue(packet) self.inform_scheduler_about_packet(packet) def apply_logic_packet_from_sfi(self, packet, sfi: 'SFI'): self.put_packet_in_queue(packet) self.inform_scheduler_about_packet(packet) def inform_scheduler_about_packet(self, packet): if self.sim.DEBUG or packet.id == self.sim.PACKET_ID_TO_DEBUG: print(f'** send packet ({packet.id}) to scheduler') packet.seenByScheduler += 1 try: self.scheduler.handle_packet_arrival(packet=packet) except SchedulingFailure as e: if self.sim.STOP_SIMULATION_IF_SCHEDULER_WAS_UNSUCCESSFUL: raise e elif self.sim.DEBUG: print( ". scheduler was unsuccessful to schedule a packet: " + str(e)) def put_packet_in_queue(self, packet): if self.scheduler.requires_queues_per_class(): queue = Flow.get_packet_class_of_packet(packet) if queue not in self.packet_queue_per_class: self.packet_queue_per_class[queue] = deque() if self.sim.DEBUG: print(f'. add packet of sfc {packet.flow.sfc_identifier} ' f'at position {packet.sfc_position} to queue {queue}') self.packet_queue_per_class[queue].append(packet) else: self.packet_queue.append(packet) packet.mark_time() # mark time when this packet was queued to the scheduler def register_sfi(self, sfi: 'SFI'): if not (sfi.of_type in self.SFIsPerType): self.SFIsPerType[sfi.of_type] = [] # check here that we don't get for a server multiplel SFI of the same # type for otherSFI in self.SFIsPerType[sfi.of_type]: if otherSFI.server == sfi.server: raise NameError( "this configuration is not allowed! A SFF should" + " see for a single server only one SFI instance per type!") self.SFIsPerType[sfi.of_type].append(sfi) self.servers.add(sfi.server) if sfi.of_type not in self.service_rate_per_sf: self.service_rate_per_sf[sfi.of_type] = 0 self.service_rate_per_sf[sfi.of_type] += sfi.get_expected_processing_rate() def sfi_finishes_processing_of_packet(self, sfi: 'SFI', packet: Packet): # the given SFI is finished with processing, so depeding on the server cpu sharing policy, # this server might be free now self.scheduler.notify_sfi_finished_processing_of_packet(sfi, packet) @staticmethod
<filename>build/docker/zap-baseline.py #!/usr/bin/env python # Zed Attack Proxy (ZAP) and its related class files. # # ZAP is an HTTP/HTTPS proxy for assessing web application security. # # Copyright 2016 ZAP Development Team # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This script runs a baseline scan against a target URL using ZAP # # It can either be run 'standalone', in which case depends on # https://pypi.python.org/pypi/python-owasp-zap-v2.4 and Docker, or it can be run # inside one of the ZAP docker containers. It automatically detects if it is # running in docker so the parameters are the same. # # By default it will spider the target URL for one minute, but you can change # that via the -m parameter. # It will then wait for the passive scanning to finish - how long that takes # depends on the number of pages found. # It will exit with codes of: # 0: Success # 1: At least 1 FAIL # 2: At least one WARN and no FAILs # 3: Any other failure # By default all alerts found by ZAP will be treated as WARNings. # You can use the -c or -u parameters to specify a configuration file to override # this. # You can generate a template configuration file using the -g parameter. You will # then need to change 'WARN' to 'FAIL', 'INFO' or 'IGNORE' for the rules you want # to be handled differently. # You can also add your own messages for the rules by appending them after a tab # at the end of each line. import getopt import json import logging import os import os.path import re import socket import subprocess import sys import time import traceback import urllib2 from datetime import datetime from random import randint from zapv2 import ZAPv2 timeout = 120 config_dict = {} config_msg = {} out_of_scope_dict = {} running_in_docker = os.path.exists('/.dockerenv') levels = ["PASS", "IGNORE", "INFO", "WARN", "FAIL"] min_level = 0 # Pscan rules that aren't really relevant, eg the examples rules in the alpha set blacklist = ['-1', '50003', '60000', '60001'] # Pscan rules that are being addressed in_progress_issues = {} logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s') def usage(): print ('Usage: zap-baseline.py -t <target> [options]') print (' -t target target URL including the protocol, eg https://www.example.com') print ('Options:') print (' -c config_file config file to use to INFO, IGNORE or FAIL warnings') print (' -u config_url URL of config file to use to INFO, IGNORE or FAIL warnings') print (' -g gen_file generate default config file (all rules set to WARN)') print (' -m mins the number of minutes to spider for (default 1)') print (' -r report_html file to write the full ZAP HTML report') print (' -w report_md file to write the full ZAP Wiki (Markdown) report') print (' -x report_xml file to write the full ZAP XML report') print (' -a include the alpha passive scan rules as well') print (' -d show debug messages') print (' -P specify listen port') print (' -D delay in seconds to wait for passive scanning ') print (' -i default rules not in the config file to INFO') print (' -j use the Ajax spider in addition to the traditional one') print (' -l level minimum level to show: PASS, IGNORE, INFO, WARN or FAIL, use with -s to hide example URLs') print (' -n context_file context file which will be loaded prior to spidering the target') print (' -p progress_file progress file which specifies issues that are being addressed') print (' -s short output format - dont show PASSes or example URLs') print (' -z zap_options ZAP command line options e.g. -z "-config aaa=bbb -config ccc=ddd"') print ('') print ('For more details see https://github.com/zaproxy/zaproxy/wiki/ZAP-Baseline-Scan') def load_config(config): for line in config: if not line.startswith('#') and len(line) > 1: (key, val, optional) = line.rstrip().split('\t', 2) if key == 'OUTOFSCOPE': for plugin_id in val.split(','): if not plugin_id in out_of_scope_dict: out_of_scope_dict[plugin_id] = [] out_of_scope_dict[plugin_id].append(re.compile(optional)) else: config_dict[key] = val if '\t' in optional: (ignore, usermsg) = optional.rstrip().split('\t') config_msg[key] = usermsg else: config_msg[key] = '' def is_in_scope(plugin_id, url): if '*' in out_of_scope_dict: for oos_prog in out_of_scope_dict['*']: #print('OOS Compare ' + oos_url + ' vs ' + 'url) if oos_prog.match(url): #print('OOS Ignoring ' + str(plugin_id) + ' ' + url) return False #print 'Not in * dict' if plugin_id in out_of_scope_dict: for oos_prog in out_of_scope_dict[plugin_id]: #print('OOS Compare ' + oos_url + ' vs ' + 'url) if oos_prog.match(url): #print('OOS Ignoring ' + str(plugin_id) + ' ' + url) return False #print 'Not in ' + plugin_id + ' dict' return True def print_rule(action, alert_list, detailed_output, user_msg): if min_level > levels.index(action): return; id = alert_list[0].get('pluginId') if id in in_progress_issues: print (action + '-IN_PROGRESS: ' + alert_list[0].get('alert') + ' [' + id + '] x ' + str(len(alert_list)) + ' ' + user_msg) if in_progress_issues[id]["link"]: print ('\tProgress link: ' + in_progress_issues[id]["link"]) else: print (action + '-NEW: ' + alert_list[0].get('alert') + ' [' + id + '] x ' + str(len(alert_list)) + ' ' + user_msg) if detailed_output: # Show (up to) first 5 urls for alert in alert_list[0:5]: print ('\t' + alert.get('url')) def dump_log_file(cid): traceback.print_exc() # Unexpected issue - dump the zap.log file if running_in_docker: zap_log = '/zap/zap.out' if os.path.isfile(zap_log): with open(zap_log, 'r') as zlog: for line in zlog: sys.stderr.write(line) else: logging.debug ('Failed to find zap_log ' + zap_log) else: logging.debug ('Dumping docker logs') subprocess.call(["docker", "logs", cid], stdout = sys.stderr) def main(argv): global min_level global in_progress_issues cid = '' context_file = '' progress_file = '' config_file = '' config_url = '' generate = '' mins = 1 port = 0 detailed_output = True report_html = '' report_md = '' report_xml = '' target = '' zap_alpha = False info_unspecified = False ajax = False base_dir = '' zap_ip = 'localhost' zap_options = '' delay = 0 pass_count = 0 warn_count = 0 fail_count = 0 info_count = 0 ignore_count = 0 warn_inprog_count = 0 fail_inprog_count = 0 try: opts, args = getopt.getopt(argv,"t:c:u:g:m:n:r:w:x:l:daijp:sz:P:D:") except getopt.GetoptError, exc: logging.warning ('Invalid option ' + exc.opt + ' : ' + exc.msg) usage() sys.exit(3) for opt, arg in opts: if opt == '-t': target = arg logging.debug ('Target: ' + target) elif opt == '-c': config_file = arg elif opt == '-u': config_url = arg elif opt == '-g': generate = arg elif opt == '-d': logging.getLogger().setLevel(logging.DEBUG) elif opt == '-m': mins = int(arg) elif opt == '-P': port = int(arg) elif opt == '-D': delay = int(arg) elif opt == '-n': context_file = arg elif opt == '-p': progress_file = arg elif opt == '-r': report_html = arg elif opt == '-w': report_md = arg elif opt == '-x': report_xml = arg elif opt == '-a': zap_alpha = True elif opt == '-i': info_unspecified = True elif opt == '-j': ajax = True elif opt == '-l': try: min_level = levels.index(arg) except ValueError: logging.warning ('Level must be one of ' + str(levels)) usage() sys.exit(3) elif opt == '-z': zap_options = arg elif opt == '-s': detailed_output = False # Check target supplied and ok if len(target) == 0: usage() sys.exit(3) if not (target.startswith('http://') or target.startswith('https://')): logging.warning ('Target must start with \'http://\' or \'https://\'') usage() sys.exit(3) if running_in_docker: base_dir = '/zap/wrk/' if len(config_file) > 0 or len(generate) > 0 or len(report_html) > 0 or len(report_xml) > 0 or len(progress_file) > 0 or len(context_file) > 0: # Check directory has been mounted if not os.path.exists(base_dir): logging.warning ('A file based option has been specified but the directory \'/zap/wrk\' is not mounted ') usage() sys.exit(3) # Choose a random 'ephemeral' port and check its available if it wasn't specified with -P option if port == 0: while True: port = randint(32768, 61000) sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) if not (sock.connect_ex(('127.0.0.1', port))
d_model, pdrop, scale=scale, d_k=d_k) self.ffn = FFN(d_model, activation_type, d_ff, ffn_pdrop, name="ffn") self.ln1 = tf.keras.layers.LayerNormalization(epsilon=layer_norm_eps) self.ln2 = tf.keras.layers.LayerNormalization(epsilon=layer_norm_eps) self.dropout = tf.keras.layers.Dropout(pdrop) def call(self, inputs): """ :param inputs: `(x, mask)` :return: The output tensor """ x, mask = inputs if not self.layer_norms_after: x = self.ln1(x) h = self.self_attn((x, x, x, mask)) x = x + self.dropout(h, TRAIN_FLAG()) x = self.ln2(x) x = x + self.dropout(self.ffn(x), TRAIN_FLAG()) if self.layer_norms_after: x = self.ln1(x) return x class SpatialGatingUnit(tf.keras.layers.Layer): """Spatial gating unit There are 2 ways we can look at this unit, as an MLP or a Conv with kernel length 1 l = nn.Linear(T, T) c = nn.Conv1d(T, T, 1) l(x.transpose(1, 2)).transpose(1, 2) c(x) """ def __init__(self, d_ffn: int, nctx: int, layer_norm_eps: float = 1.0e-6, name: Optional[str] = None, ): super().__init__(name=name) self.norm = tf.keras.layers.LayerNormalization(epsilon=layer_norm_eps) self.proj = tf.keras.layers.Conv1D(filters=nctx, kernel_size=1, data_format="channels_first", bias_initializer='ones') def call(self, x): u, v = tf.split(x, 2, axis=-1) # "channel" layer norm v = self.norm(v) v = self.proj(v) return u * v class GatedMLPEncoder(tf.keras.layers.Layer): """Following https://arxiv.org/pdf/2105.08050.pdf """ def __init__( self, d_model: int, pdrop: float, nctx: int = 256, activation_type: str = "gelu", d_ff: Optional[int] = None, ffn_pdrop: Optional[float] = 0.0, layer_norm_eps: float = 1.0e-6, name: Optional[str] = None, ): super().__init__(name=name) # to properly execute BERT models, we have to follow T2T and do layer norms after self.d_model = d_model self.d_ff = d_ff if d_ff is not None else 4 * d_model self.to_ffn = tf.keras.layers.Dense(self.d_ff) self.activation = get_activation(activation_type) self.ffn_drop = tf.keras.layers.Dropout(ffn_pdrop) self.from_sgu = tf.keras.layers.Dense(self.d_model) self.norm = tf.keras.layers.LayerNormalization(epsilon=layer_norm_eps) self.dropout = tf.keras.layers.Dropout(pdrop) self.spatial_gating_unit = SpatialGatingUnit(d_ff, nctx, layer_norm_eps) def call(self, inputs): """ :param inputs: `(x, mask)` :return: The output tensor """ # The shortcut here happens pretty early shortcut, mask = inputs # A "channel" norm x = self.norm(shortcut) # A "channel" FFN x = self.dropout(self.to_ffn(x)) # gelu according to https://arxiv.org/pdf/2105.08050.pdf x = self.activation(x) # "spatial" projection (over T) x = self.spatial_gating_unit(x) # "channel" projection x = self.from_sgu(x) x = self.dropout(x) return x + shortcut class TransformerDecoder(tf.keras.layers.Layer): def __init__( self, num_heads: int, d_model: int, pdrop: float, scale: bool = True, activation_type: str = "relu", d_ff: Optional[int] = None, d_k: Optional[int] = None, rpr_k: Optional[int] = None, ffn_pdrop: Optional[float] = 0.0, layer_norms_after: bool = False, layer_norm_eps: float = 1.0e-6, layer_drop: float = 0.0, name: str = None ): super().__init__(name=name) self.d_model = d_model self.layer_norms_after = layer_norms_after self.d_ff = d_ff if d_ff is not None else 4 * d_model if rpr_k is not None: self.self_attn = MultiHeadedRelativeAttention(num_heads, d_model, rpr_k, pdrop, scale, d_k=d_k, name="self_attention") self.src_attn = MultiHeadedRelativeAttention(num_heads, d_model, rpr_k, pdrop, scale, d_k=d_k, name="src_attention") else: self.self_attn = MultiHeadedAttention(num_heads, d_model, pdrop, scale, d_k=d_k, name="self_attention") self.src_attn = MultiHeadedAttention(num_heads, d_model, pdrop, scale, d_k=d_k, name="src_attention") self.ffn = FFN(d_model, activation_type, d_ff, pdrop=ffn_pdrop, name="ffn") self.ln1 = tf.keras.layers.LayerNormalization(epsilon=layer_norm_eps) self.ln2 = tf.keras.layers.LayerNormalization(epsilon=layer_norm_eps) self.ln3 = tf.keras.layers.LayerNormalization(epsilon=layer_norm_eps) self.dropout = tf.keras.layers.Dropout(pdrop) def call(self, inputs): x, memory, src_mask, tgt_mask = inputs if not self.layer_norms_after: x = self.ln1(x) x = x + self.dropout(self.self_attn((x, x, x, tgt_mask)), TRAIN_FLAG()) x = self.ln2(x) x = x + self.dropout(self.src_attn((x, memory, memory, src_mask)), TRAIN_FLAG()) x = self.ln3(x) x = x + self.dropout(self.ffn(x), TRAIN_FLAG()) if self.layer_norms_after: x = self.ln1(x) return x class GatedMLPEncoderStack(tf.keras.layers.Layer): """Following https://arxiv.org/pdf/2105.08050.pdf """ def __init__( self, d_model: int, pdrop: float, layers: int = 1, nctx: int = 256, activation: str = "gelu", d_ff: Optional[int] = None, ffn_pdrop: Optional[float] = 0.0, layer_norm_eps: float = 1.0e-6, layer_drop: float = 0.0, name: Optional[str] = None, **kwargs, ): super().__init__(name=name) self.encoders = [] self.ln = tf.keras.layers.LayerNormalization(epsilon=layer_norm_eps) self.output_dim = d_model self.layer_drop = layer_drop for i in range(layers): self.encoders.append( GatedMLPEncoder( d_model, pdrop, nctx, activation, d_ff, ffn_pdrop=ffn_pdrop, layer_norm_eps=layer_norm_eps, ) ) def call(self, inputs): x, mask = inputs for layer in self.encoders: x = layer((x, mask)) return self.ln(x) class TransformerEncoderStack(tf.keras.layers.Layer): def __init__( self, num_heads: int, d_model: int, pdrop: float, scale: bool = True, layers: int = 1, activation: str = "relu", d_ff: Optional[int] = None, d_k: Optional[int] = None, rpr_k: Optional[Union[int, List[int]]] = None, ffn_pdrop: Optional[float] = 0.0, layer_norms_after: bool = False, layer_norm_eps: float = 1.0e-6, windowed_ra: bool = False, rpr_value_on: bool = True, layer_drop: float = 0.0, name: Optional[str] = None, **kwargs, ): super().__init__(name=name) self.encoders = [] self.ln = tf.identity if layer_norms_after else tf.keras.layers.LayerNormalization(epsilon=layer_norm_eps) self.layer_drop = layer_drop if not is_sequence(rpr_k): rpr_k = [rpr_k] * layers for i in range(layers): self.encoders.append( TransformerEncoder( num_heads, d_model, pdrop, scale, activation, d_ff, d_k, rpr_k=rpr_k[i], ffn_pdrop=ffn_pdrop, layer_norms_after=layer_norms_after, layer_norm_eps=layer_norm_eps, windowed_ra=windowed_ra, rpr_value_on=rpr_value_on, name=name, ) ) def call(self, inputs): x, mask = inputs for layer in self.encoders: ## TODO: FIXME I dont work on TPUs!!! ##pdrop = tf.random.uniform([]) ##if not TRAIN_FLAG() or (pdrop >= self.layer_drop): x = layer((x, mask)) return self.ln(x) class TransformerEncoderStackWithLengths(TransformerEncoderStack): def __init__( self, num_heads: int, d_model: int, pdrop: bool, scale: bool = True, layers: int = 1, activation: str = "relu", d_ff: Optional[int] = None, d_k: Optional[int] = None, rpr_k: Optional[Union[int, List[int]]] = None, ffn_pdrop: Optional[float] = 0.0, layer_norms_after: bool = False, layer_norm_eps: float = 1.0e-6, windowed_ra: Optional[bool] = False, rpr_value_on: bool = True, layer_drop: float = 0.0, name: str = None, **kwargs, ): super().__init__(num_heads, d_model, pdrop, scale, layers, activation, d_ff, d_k, rpr_k, ffn_pdrop, layer_norms_after, layer_norm_eps, windowed_ra, rpr_value_on, layer_drop, name, **kwargs) self.proj = WithDropout(tf.keras.layers.Dense(d_model), pdrop) def call(self, inputs): x, lengths = inputs x = self.proj(x) max_seqlen = get_shape_as_list(x)[1] mask = tf.expand_dims(tf.expand_dims(tf.sequence_mask(lengths, max_seqlen, dtype=tf.float32), 1), 1) return super().call((x, mask)) class TransformerEncoderStackWithTimeMask(TransformerEncoderStack): def __init__( self, num_heads: int, d_model: int, pdrop: bool, scale: bool = True, layers: int = 1, activation: str = "relu", d_ff: Optional[int] = None, d_k: Optional[int] = None, rpr_k: Optional[Union[int, List[int]]] = None, ffn_pdrop: Optional[float] = 0.0, layer_norms_after: bool = False, layer_norm_eps: float = 1.0e-6, windowed_ra: Optional[bool] = False, rpr_value_on: bool = True, layer_drop: float = 0.0, name: str = None, **kwargs, ): super().__init__(num_heads, d_model, pdrop, scale, layers, activation, d_ff, d_k, rpr_k, ffn_pdrop, layer_norms_after, layer_norm_eps, windowed_ra, rpr_value_on, layer_drop, name, **kwargs) self.proj = WithDropout(tf.keras.layers.Dense(d_model), pdrop) def call(self, inputs): x, _ = inputs x = self.proj(x) max_seqlen = get_shape_as_list(x)[1] mask = subsequent_mask(max_seqlen) return super().call((x, mask)) class AttentionReduction(tf.keras.layers.Layer): """ This is a reduction that is given Q, K, V and a mask vector. Different from base reductions, which get an embedding stack """ def __init__(self, name=None): super().__init__(name=name) def call(self, qkvm: Tuple[tf.Tensor, tf.Tensor, tf.Tensor, tf.Tensor]) -> tf.Tensor: """Inputs are the same as for a normal attention function, but the output here is a single tensor, ``[B, H]`` :param query: a query for alignment. Can come from self in case of self-attn or decoder in case of E/D :param key: a set of keys from encoder or self :param value: a set of values from encoder or self :param mask: masking (for destination) to prevent seeing what we shouldnt :return: sentence-level encoding with dim [B, d_model] """ class SingleHeadReduction(AttentionReduction): """ Implementation of the "self_attention_head" layer from the conveRT paper (https://arxiv.org/pdf/1911.03688.pdf) """ def __init__( self, d_model: int, dropout: float = 0.0, scale: bool = False, d_k: Optional[int] = None, pooling: str = 'sqrt_length', name: Optional[str] = None, ): """ :param d_model: The model hidden size :param dropout (``float``): The amount of dropout to use :param scale: should we scale the dot product attention :param d_k: The low-order project per head. This is normally `d_model // num_heads` unless set explicitly """ super().__init__(name=name) self.output_dim = d_model if d_k is None: self.d_k = d_model else: self.d_k = d_k self.w_Q = tf.keras.layers.Dense(self.d_k, name="query_projection") self.w_K = tf.keras.layers.Dense(self.d_k, name="key_projection") if scale: self.attn_fn = SeqScaledDotProductAttention(dropout) else: self.attn_fn = SeqDotProductAttention(dropout) self.attn = None pooling = pooling.lower() self.fill = 0 if pooling == 'max': self.pool = self._max_pool self.fill = -1e9 elif pooling == 'mean': self.pool = self._mean_pool else: self.pool = self._sqrt_length_pool def _sqrt_length_pool(self, x, seq_lengths): x = tf.reduce_sum(x, axis=1) # [B, D] x = x * tf.expand_dims(tf.sqrt(tf.cast(seq_lengths, tf.float32)), -1) return x def _mean_pool(self, x, seq_lengths): return tf.reduce_sum(x, 1) / tf.expand_dims(seq_lengths, -1) def _max_pool(self, x, _): x = tf.reduce_max(x, 1) return x def call(self, qkvm: Tuple[tf.Tensor, tf.Tensor, tf.Tensor, tf.Tensor]) -> tf.Tensor: query, key, value, mask = qkvm batchsz = get_shape_as_list(query)[0] # (B, T, H, D) -> (B, H, T, D) query = tf.transpose(tf.reshape(self.w_Q(query), [batchsz, -1, 1, self.d_k]),
0.25) # The final RGB array :) RGB = np.dstack([R, G, B]) ds["DayConvection"] = (("y", "x", "rgb"), RGB) ds["rgb"] = ["R", "G", "B"] ds["DayConvection"].attrs[ "Quick Guide" ] = "http://rammb.cira.colostate.edu/training/visit/quick_guides/QuickGuide_GOESR_DayConvectionRGB_final.pdf" ds["DayConvection"].attrs["long_name"] = "Day Convection" return ds["DayConvection"] def DayCloudConvection(self): """ Day Cloud Convection RGB: (See `Quick Guide <http://rammb.cira.colostate.edu/training/visit/quick_guides/QuickGuide_DayCloudConvectionRGB_final.pdf>`__ for reference) .. image:: /_static/DayCloudConvection.png """ ds = self._obj # Load the three channels into appropriate R, G, and B variables R, G, B = self._load_RGB_channels((2, 2, 13)) # _normalize each channel by the appropriate range of values. R = _normalize(R, 0, 1) G = _normalize(G, 0, 1) B = _normalize(B, -70.15, 49.85) # Invert B B = 1 - B # Apply the gamma correction to Red channel. # corrected_value = value^(1/gamma) gamma = 1.7 R = _gamma_correction(R, gamma) G = _gamma_correction(G, gamma) # The final RGB array :) RGB = np.dstack([R, G, B]) ds["DayCloudConvection"] = (("y", "x", "rgb"), RGB) ds["rgb"] = ["R", "G", "B"] ds["DayCloudConvection"].attrs[ "Quick Guide" ] = "http://rammb.cira.colostate.edu/training/visit/quick_guides/QuickGuide_DayCloudConvectionRGB_final.pdf" ds["DayCloudConvection"].attrs["long_name"] = "Day Cloud Convection" return ds["DayCloudConvection"] def DayLandCloud(self): """ Day Land Cloud Fire RGB: (See `Quick Guide <http://rammb.cira.colostate.edu/training/visit/quick_guides/QuickGuide_GOESR_daylandcloudRGB_final.pdf>`__ for reference) .. image:: /_static/DayLandCloud.png """ ds = self._obj # Load the three channels into appropriate R, G, and B variables R, G, B = self._load_RGB_channels((5, 3, 2)) # _normalize each channel by the appropriate range of values e.g. R = (R-minimum)/(maximum-minimum) R = _normalize(R, 0, 0.975) G = _normalize(G, 0, 1.086) B = _normalize(B, 0, 1) # The final RGB array :) RGB = np.dstack([R, G, B]) ds["DayLandCloud"] = (("y", "x", "rgb"), RGB) ds["rgb"] = ["R", "G", "B"] ds["DayLandCloud"].attrs[ "Quick Guide" ] = "http://rammb.cira.colostate.edu/training/visit/quick_guides/QuickGuide_GOESR_daylandcloudRGB_final.pdf" ds["DayLandCloud"].attrs["long_name"] = "Day Land Cloud" return ds["DayLandCloud"] def DayLandCloudFire(self): """ Day Land Cloud Fire RGB: (See `Quick Guide <http://rammb.cira.colostate.edu/training/visit/quick_guides/QuickGuide_GOESR_DayLandCloudFireRGB_final.pdf>`__ for reference) .. image:: /_static/DayLandCloudFire.png """ ds = self._obj # Load the three channels into appropriate R, G, and B variables R, G, B = self._load_RGB_channels((6, 3, 2)) # _normalize each channel by the appropriate range of values e.g. R = (R-minimum)/(maximum-minimum) R = _normalize(R, 0, 1) G = _normalize(G, 0, 1) B = _normalize(B, 0, 1) # The final RGB array :) RGB = np.dstack([R, G, B]) ds["DayLandCloudFire"] = (("y", "x", "rgb"), RGB) ds["rgb"] = ["R", "G", "B"] ds["DayLandCloudFire"].attrs[ "Quick Guide" ] = "http://rammb.cira.colostate.edu/training/visit/quick_guides/QuickGuide_GOESR_DayLandCloudFireRGB_final.pdf" ds["DayLandCloudFire"].attrs["long_name"] = "Day Land Cloud Fire" return ds["DayLandCloud"] def WaterVapor(self): """ Simple Water Vapor RGB: (See `Quick Guide <http://rammb.cira.colostate.edu/training/visit/quick_guides/Simple_Water_Vapor_RGB.pdf>`__ for reference) .. image:: /_static/WaterVapor.png """ ds = self._obj # Load the three channels into appropriate R, G, and B variables. R, G, B = self._load_RGB_channels((13, 8, 10)) # _normalize each channel by the appropriate range of values. e.g. R = (R-minimum)/(maximum-minimum) R = _normalize(R, -70.86, 5.81) G = _normalize(G, -58.49, -30.48) B = _normalize(B, -28.03, -12.12) # Invert the colors R = 1 - R G = 1 - G B = 1 - B # The final RGB array :) RGB = np.dstack([R, G, B]) ds["WaterVapor"] = (("y", "x", "rgb"), RGB) ds["rgb"] = ["R", "G", "B"] ds["WaterVapor"].attrs[ "Quick Guide" ] = "http://rammb.cira.colostate.edu/training/visit/quick_guides/Simple_Water_Vapor_RGB.pdf" ds["WaterVapor"].attrs["long_name"] = "Water Vapor" return ds["WaterVapor"] def DifferentialWaterVapor(self): """ Differential Water Vapor RGB: (See `Quick Guide <http://rammb.cira.colostate.edu/training/visit/quick_guides/QuickGuide_GOESR_DifferentialWaterVaporRGB_final.pdf>`__ for reference) .. image:: /_static/DifferentialWaterVapor.png """ ds = self._obj # Load the three channels into appropriate R, G, and B variables. R = ds["CMI_C10"].data - ds["CMI_C08"].data G = ds["CMI_C10"].data - 273.15 B = ds["CMI_C08"].data - 273.15 # _normalize each channel by the appropriate range of values. e.g. R = (R-minimum)/(maximum-minimum) R = _normalize(R, -3, 30) G = _normalize(G, -60, 5) B = _normalize(B, -64.65, -29.25) # Gamma correction R = _gamma_correction(R, 0.2587) G = _gamma_correction(G, 0.4) B = _gamma_correction(B, 0.4) # Invert the colors R = 1 - R G = 1 - G B = 1 - B # The final RGB array :) RGB = np.dstack([R, G, B]) ds["DifferentialWaterVapor"] = (("y", "x", "rgb"), RGB) ds["rgb"] = ["R", "G", "B"] ds["DifferentialWaterVapor"].attrs[ "Quick Guide" ] = "http://rammb.cira.colostate.edu/training/visit/quick_guides/QuickGuide_GOESR_DifferentialWaterVaporRGB_final.pdf" ds["DifferentialWaterVapor"].attrs["long_name"] = "Differential Water Vapor" return ds["DifferentialWaterVapor"] def DaySnowFog(self): """ Day Snow-Fog RGB: (See `Quick Guide <http://rammb.cira.colostate.edu/training/visit/quick_guides/QuickGuide_DaySnowFog.pdf>`__ for reference) .. image:: /_static/DaySnowFog.png """ ds = self._obj # Load the three channels into appropriate R, G, and B variables R = ds["CMI_C03"].data G = ds["CMI_C05"].data B = ds["CMI_C07"].data - ds["CMI_C13"].data # _normalize values R = _normalize(R, 0, 1) G = _normalize(G, 0, 0.7) B = _normalize(B, 0, 30) # Apply a gamma correction to the image gamma = 1.7 R = _gamma_correction(R, gamma) G = _gamma_correction(G, gamma) B = _gamma_correction(B, gamma) # The final RGB array :) RGB = np.dstack([R, G, B]) ds["DaySnowFog"] = (("y", "x", "rgb"), RGB) ds["rgb"] = ["R", "G", "B"] ds["DaySnowFog"].attrs[ "Quick Guide" ] = "http://rammb.cira.colostate.edu/training/visit/quick_guides/QuickGuide_DaySnowFog.pdf" ds["DaySnowFog"].attrs["long_name"] = "Day Snow Fog" return ds["DaySnowFog"] def NighttimeMicrophysics(self): """ Nighttime Microphysics RGB: (See `Quick Guide <http://rammb.cira.colostate.edu/training/visit/quick_guides/QuickGuide_GOESR_NtMicroRGB_final.pdf>`__ for reference) .. image:: /_static/NighttimeMicrophysics.png """ ds = self._obj # Load the three channels into appropriate R, G, and B variables R = ds["CMI_C15"].data - ds["CMI_C13"].data G = ds["CMI_C13"].data - ds["CMI_C07"].data B = ds["CMI_C13"].data - 273.15 # _normalize values R = _normalize(R, -6.7, 2.6) G = _normalize(G, -3.1, 5.2) B = _normalize(B, -29.6, 19.5) # The final RGB array :) RGB = np.dstack([R, G, B]) ds["NighttimeMicrophysics"] = (("y", "x", "rgb"), RGB) ds["rgb"] = ["R", "G", "B"] ds["NighttimeMicrophysics"].attrs[ "Quick Guide" ] = "http://rammb.cira.colostate.edu/training/visit/quick_guides/QuickGuide_GOESR_NtMicroRGB_final.pdf" ds["NighttimeMicrophysics"].attrs["long_name"] = "Nighttime Microphysics" return ds["NighttimeMicrophysics"] def Dust(self): """ SulfurDioxide RGB: (See `Quick Guide <http://rammb.cira.colostate.edu/training/visit/quick_guides/Dust_RGB_Quick_Guide.pdf>`__ for reference) .. image:: /_static/Dust.png """ ds = self._obj # Load the three channels into appropriate R, G, and B variables R = ds["CMI_C15"].data - ds["CMI_C13"].data G = ds["CMI_C14"].data - ds["CMI_C11"].data B = ds["CMI_C13"].data - 273.15 # _normalize values R = _normalize(R, -6.7, 2.6) G = _normalize(G, -0.5, 20) B = _normalize(B, -11.95, 15.55) # Apply a gamma correction to the image gamma = 2.5 G = _gamma_correction(G, gamma) # The final RGB array :) RGB = np.dstack([R, G, B]) ds["Dust"] = (("y", "x", "rgb"), RGB) ds["rgb"] = ["R", "G", "B"] ds["Dust"].attrs[ "Quick Guide" ] = "http://rammb.cira.colostate.edu/training/visit/quick_guides/Dust_RGB_Quick_Guide.pdf" ds["Dust"].attrs["long_name"] = "Dust" return ds["Dust"] def SulfurDioxide(self): """ SulfurDioxide RGB: (See `Quick Guide <http://rammb.cira.colostate.edu/training/visit/quick_guides/Quick_Guide_SO2_RGB.pdf>`__ for reference) .. image:: /_static/SulfurDioxide.png """ ds = self._obj # Load the three channels into appropriate R, G, and B variables R = ds["CMI_C09"].data - ds["CMI_C10"].data G = ds["CMI_C13"].data - ds["CMI_C11"].data B = ds["CMI_C07"].data - 273.15 # _normalize values R = _normalize(R, -4, 2) G = _normalize(G, -4, 5) B = _normalize(B, -30.1, 29.8) # The final RGB array :) RGB = np.dstack([R, G, B]) ds["SulfurDioxide"] = (("y", "x", "rgb"), RGB) ds["rgb"] = ["R", "G", "B"] ds["SulfurDioxide"].attrs[ "Quick Guide" ] = "http://rammb.cira.colostate.edu/training/visit/quick_guides/Quick_Guide_SO2_RGB.pdf" ds["SulfurDioxide"].attrs["long_name"] = "<NAME>" return ds["SulfurDioxide"] def Ash(self): """ Ash RGB: (See `Quick Guide <http://rammb.cira.colostate.edu/training/visit/quick_guides/GOES_Ash_RGB.pdf>`__ for reference) .. image:: /_static/Ash.png """ ds = self._obj # Load the three channels into appropriate R, G, and B variables R = ds["CMI_C15"].data - ds["CMI_C13"].data G = ds["CMI_C14"].data - ds["CMI_C11"].data B = ds["CMI_C13"].data - 273.15 # _normalize values R = _normalize(R, -6.7, 2.6) G = _normalize(G, -6, 6.3) B = _normalize(B, -29.55, 29.25) # The final RGB array :) RGB = np.dstack([R, G, B]) ds["Ash"] = (("y", "x", "rgb"), RGB) ds["rgb"] = ["R", "G", "B"] ds["Ash"].attrs[ "Quick Guide" ] = "http://rammb.cira.colostate.edu/training/visit/quick_guides/GOES_Ash_RGB.pdf" ds["Ash"].attrs["long_name"] = "Ash" return ds["Ash"] def SplitWindowDifference(self): """ Split Window Difference RGB (greyscale): (See `Quick Guide <http://cimss.ssec.wisc.edu/goes/OCLOFactSheetPDFs/ABIQuickGuide_SplitWindowDifference.pdf>`__ for reference) .. image:: /_static/SplitWindowDifference.png """ ds = self._obj # Load the three channels into appropriate R, G, and B variables data = ds["CMI_C15"].data - ds["CMI_C13"].data # _normalize values data = _normalize(data, -10, 10) # The final RGB array :) RGB = np.dstack([data, data, data]) ds["SplitWindowDifference"] = (("y", "x", "rgb"), RGB) ds["rgb"] = ["R", "G", "B"] ds["SplitWindowDifference"].attrs[ "Quick Guide" ] = "http://cimss.ssec.wisc.edu/goes/OCLOFactSheetPDFs/ABIQuickGuide_SplitWindowDifference.pdf" ds["SplitWindowDifference"].attrs["long_name"] = "Split Window Difference" return ds["SplitWindowDifference"] def NightFogDifference(self): """ Night Fog Difference RGB (greyscale): (See `Quick Guide <http://cimss.ssec.wisc.edu/goes/OCLOFactSheetPDFs/ABIQuickGuide_NightFogBTD.pdf>`__ for reference) .. image:: /_static/NightFogDifference.png """ ds = self._obj # Load the three channels into appropriate R, G, and B variables data = ds["CMI_C13"].data - ds["CMI_C07"].data # _normalize
help='') with self.argument_context('sites sitesonenotepagesparentnotebooksectionsparentsectiongroupsection copy-to-section-group') as c: c.argument('site_id', type=str, help='key: id of site') c.argument('onenote_page_id', type=str, help='key: id of onenotePage') c.argument('onenote_section_id', type=str, help='key: id of onenoteSection') c.argument('onenote_section_id1', type=str, help='key: id of onenoteSection') c.argument('id_', options_list=['--id'], type=str, help='') c.argument('group_id', type=str, help='') c.argument('rename_as', type=str, help='') c.argument('site_collection_id', type=str, help='') c.argument('string_site_id', type=str, help='') with self.argument_context('sites sitesonenotepagesparentsection copy-to-notebook') as c: c.argument('site_id', type=str, help='key: id of site') c.argument('onenote_page_id', type=str, help='key: id of onenotePage') c.argument('id_', options_list=['--id'], type=str, help='') c.argument('group_id', type=str, help='') c.argument('rename_as', type=str, help='') c.argument('site_collection_id', type=str, help='') c.argument('string_site_id', type=str, help='') with self.argument_context('sites sitesonenotepagesparentsection copy-to-section-group') as c: c.argument('site_id', type=str, help='key: id of site') c.argument('onenote_page_id', type=str, help='key: id of onenotePage') c.argument('id_', options_list=['--id'], type=str, help='') c.argument('group_id', type=str, help='') c.argument('rename_as', type=str, help='') c.argument('site_collection_id', type=str, help='') c.argument('string_site_id', type=str, help='') with self.argument_context('sites sitesonenotepagesparentsectionpage copy-to-section') as c: c.argument('site_id', type=str, help='key: id of site') c.argument('onenote_page_id', type=str, help='key: id of onenotePage') c.argument('onenote_page_id1', type=str, help='key: id of onenotePage') c.argument('id_', options_list=['--id'], type=str, help='') c.argument('group_id', type=str, help='') c.argument('site_collection_id', type=str, help='') c.argument('string_site_id', type=str, help='') with self.argument_context('sites sitesonenotepagesparentsectionpage onenote-patch-content') as c: c.argument('site_id', type=str, help='key: id of site') c.argument('onenote_page_id', type=str, help='key: id of onenotePage') c.argument('onenote_page_id1', type=str, help='key: id of onenotePage') c.argument('commands', action=AddSitesOnenotePagesParentsectionPagesCommands, nargs='+', help='') with self.argument_context('sites sitesonenotepagesparentsectionpage preview') as c: c.argument('site_id', type=str, help='key: id of site') c.argument('onenote_page_id', type=str, help='key: id of onenotePage') c.argument('onenote_page_id1', type=str, help='key: id of onenotePage') with self.argument_context('sites sitesonenotepagesparentsectionparentnotebook copy-notebook') as c: c.argument('site_id', type=str, help='key: id of site') c.argument('onenote_page_id', type=str, help='key: id of onenotePage') c.argument('group_id', type=str, help='') c.argument('rename_as', type=str, help='') c.argument('notebook_folder', type=str, help='') c.argument('site_collection_id', type=str, help='') c.argument('string_site_id', type=str, help='') with self.argument_context('sites sitesonenotepagesparentsectionparentnotebooksectiongroupsparentnotebook copy-notebook') as c: c.argument('site_id', type=str, help='key: id of site') c.argument('onenote_page_id', type=str, help='key: id of onenotePage') c.argument('section_group_id', type=str, help='key: id of sectionGroup') c.argument('group_id', type=str, help='') c.argument('rename_as', type=str, help='') c.argument('notebook_folder', type=str, help='') c.argument('site_collection_id', type=str, help='') c.argument('string_site_id', type=str, help='') with self.argument_context('sites sitesonenotepagesparentsectionparentnotebooksectiongroupssection copy-to-notebook') as c: c.argument('site_id', type=str, help='key: id of site') c.argument('onenote_page_id', type=str, help='key: id of onenotePage') c.argument('section_group_id', type=str, help='key: id of sectionGroup') c.argument('onenote_section_id', type=str, help='key: id of onenoteSection') c.argument('id_', options_list=['--id'], type=str, help='') c.argument('group_id', type=str, help='') c.argument('rename_as', type=str, help='') c.argument('site_collection_id', type=str, help='') c.argument('string_site_id', type=str, help='') with self.argument_context('sites sitesonenotepagesparentsectionparentnotebooksectiongroupssection copy-to-section-group') as c: c.argument('site_id', type=str, help='key: id of site') c.argument('onenote_page_id', type=str, help='key: id of onenotePage') c.argument('section_group_id', type=str, help='key: id of sectionGroup') c.argument('onenote_section_id', type=str, help='key: id of onenoteSection') c.argument('id_', options_list=['--id'], type=str, help='') c.argument('group_id', type=str, help='') c.argument('rename_as', type=str, help='') c.argument('site_collection_id', type=str, help='') c.argument('string_site_id', type=str, help='') with self.argument_context('sites sitesonenotepagesparentsectionparentnotebooksection copy-to-notebook') as c: c.argument('site_id', type=str, help='key: id of site') c.argument('onenote_page_id', type=str, help='key: id of onenotePage') c.argument('onenote_section_id', type=str, help='key: id of onenoteSection') c.argument('id_', options_list=['--id'], type=str, help='') c.argument('group_id', type=str, help='') c.argument('rename_as', type=str, help='') c.argument('site_collection_id', type=str, help='') c.argument('string_site_id', type=str, help='') with self.argument_context('sites sitesonenotepagesparentsectionparentnotebooksection copy-to-section-group') as c: c.argument('site_id', type=str, help='key: id of site') c.argument('onenote_page_id', type=str, help='key: id of onenotePage') c.argument('onenote_section_id', type=str, help='key: id of onenoteSection') c.argument('id_', options_list=['--id'], type=str, help='') c.argument('group_id', type=str, help='') c.argument('rename_as', type=str, help='') c.argument('site_collection_id', type=str, help='') c.argument('string_site_id', type=str, help='') with self.argument_context('sites sitesonenotepagesparentsectiongroupparentnotebook copy-notebook') as c: c.argument('site_id', type=str, help='key: id of site') c.argument('onenote_page_id', type=str, help='key: id of onenotePage') c.argument('group_id', type=str, help='') c.argument('rename_as', type=str, help='') c.argument('notebook_folder', type=str, help='') c.argument('site_collection_id', type=str, help='') c.argument('string_site_id', type=str, help='') with self.argument_context('sites sitesonenotepagesparentsectiongroupparentnotebooksection copy-to-notebook') as c: c.argument('site_id', type=str, help='key: id of site') c.argument('onenote_page_id', type=str, help='key: id of onenotePage') c.argument('onenote_section_id', type=str, help='key: id of onenoteSection') c.argument('id_', options_list=['--id'], type=str, help='') c.argument('group_id', type=str, help='') c.argument('rename_as', type=str, help='') c.argument('site_collection_id', type=str, help='') c.argument('string_site_id', type=str, help='') with self.argument_context('sites sitesonenotepagesparentsectiongroupparentnotebooksection copy-to-section-group') as c: c.argument('site_id', type=str, help='key: id of site') c.argument('onenote_page_id', type=str, help='key: id of onenotePage') c.argument('onenote_section_id', type=str, help='key: id of onenoteSection') c.argument('id_', options_list=['--id'], type=str, help='') c.argument('group_id', type=str, help='') c.argument('rename_as', type=str, help='') c.argument('site_collection_id', type=str, help='') c.argument('string_site_id', type=str, help='') with self.argument_context('sites sitesonenotepagesparentsectiongroupsection copy-to-notebook') as c: c.argument('site_id', type=str, help='key: id of site') c.argument('onenote_page_id', type=str, help='key: id of onenotePage') c.argument('onenote_section_id', type=str, help='key: id of onenoteSection') c.argument('id_', options_list=['--id'], type=str, help='') c.argument('group_id', type=str, help='') c.argument('rename_as', type=str, help='') c.argument('site_collection_id', type=str, help='') c.argument('string_site_id', type=str, help='') with self.argument_context('sites sitesonenotepagesparentsectiongroupsection copy-to-section-group') as c: c.argument('site_id', type=str, help='key: id of site') c.argument('onenote_page_id', type=str, help='key: id of onenotePage') c.argument('onenote_section_id', type=str, help='key: id of onenoteSection') c.argument('id_', options_list=['--id'], type=str, help='') c.argument('group_id', type=str, help='') c.argument('rename_as', type=str, help='') c.argument('site_collection_id', type=str, help='') c.argument('string_site_id', type=str, help='') with self.argument_context('sites sitesonenotesectiongroupsparentnotebook copy-notebook') as c: c.argument('site_id', type=str, help='key: id of site') c.argument('section_group_id', type=str, help='key: id of sectionGroup') c.argument('group_id', type=str, help='') c.argument('rename_as', type=str, help='') c.argument('notebook_folder', type=str, help='') c.argument('site_collection_id', type=str, help='') c.argument('string_site_id', type=str, help='') with self.argument_context('sites sitesonenotesectiongroupsparentnotebooksection copy-to-notebook') as c: c.argument('site_id', type=str, help='key: id of site') c.argument('section_group_id', type=str, help='key: id of sectionGroup') c.argument('onenote_section_id', type=str, help='key: id of onenoteSection') c.argument('id_', options_list=['--id'], type=str, help='') c.argument('group_id', type=str, help='') c.argument('rename_as', type=str, help='') c.argument('site_collection_id', type=str, help='') c.argument('string_site_id', type=str, help='') with self.argument_context('sites sitesonenotesectiongroupsparentnotebooksection copy-to-section-group') as c: c.argument('site_id', type=str, help='key: id of site') c.argument('section_group_id', type=str, help='key: id of sectionGroup') c.argument('onenote_section_id', type=str, help='key: id of onenoteSection') c.argument('id_', options_list=['--id'], type=str, help='') c.argument('group_id', type=str, help='') c.argument('rename_as', type=str, help='') c.argument('site_collection_id', type=str, help='') c.argument('string_site_id', type=str, help='') with self.argument_context('sites sitesonenotesectiongroupsparentnotebooksectionspage copy-to-section') as c: c.argument('site_id', type=str, help='key: id of site') c.argument('section_group_id', type=str, help='key: id of sectionGroup') c.argument('onenote_section_id', type=str, help='key: id of onenoteSection') c.argument('onenote_page_id', type=str, help='key: id of onenotePage') c.argument('id_', options_list=['--id'], type=str, help='') c.argument('group_id', type=str, help='') c.argument('site_collection_id', type=str, help='') c.argument('string_site_id', type=str, help='') with self.argument_context('sites sitesonenotesectiongroupsparentnotebooksectionspage onenote-patch-content') as c: c.argument('site_id', type=str, help='key: id of site') c.argument('section_group_id', type=str, help='key: id of sectionGroup') c.argument('onenote_section_id', type=str, help='key: id of onenoteSection') c.argument('onenote_page_id', type=str, help='key: id of onenotePage') c.argument('commands', action=AddSitesOnenoteSectiongroupsParentnotebookSectionsPagesCommands, nargs='+', help='') with self.argument_context('sites sitesonenotesectiongroupsparentnotebooksectionspage preview') as c: c.argument('site_id', type=str, help='key: id of site') c.argument('section_group_id', type=str, help='key: id of sectionGroup') c.argument('onenote_section_id', type=str, help='key: id of onenoteSection') c.argument('onenote_page_id', type=str, help='key: id of onenotePage') with self.argument_context('sites sitesonenotesectiongroupsparentnotebooksectionspagesparentnotebook copy-notebook') as c: c.argument('site_id', type=str, help='key: id of site') c.argument('section_group_id', type=str, help='key: id of sectionGroup') c.argument('onenote_section_id', type=str, help='key: id of onenoteSection') c.argument('onenote_page_id', type=str, help='key: id of onenotePage') c.argument('group_id', type=str, help='') c.argument('rename_as', type=str, help='') c.argument('notebook_folder', type=str, help='') c.argument('site_collection_id', type=str, help='') c.argument('string_site_id', type=str, help='') with self.argument_context('sites sitesonenotesectiongroupsparentnotebooksectionspagesparentsection copy-to-notebook') as c: c.argument('site_id', type=str, help='key: id of site') c.argument('section_group_id', type=str, help='key: id of sectionGroup') c.argument('onenote_section_id', type=str, help='key: id of onenoteSection') c.argument('onenote_page_id', type=str, help='key: id of onenotePage') c.argument('id_', options_list=['--id'], type=str, help='') c.argument('group_id', type=str, help='') c.argument('rename_as', type=str, help='') c.argument('site_collection_id', type=str, help='') c.argument('string_site_id', type=str, help='') with self.argument_context('sites sitesonenotesectiongroupsparentnotebooksectionspagesparentsection copy-to-section-group') as c: c.argument('site_id', type=str, help='key: id of site') c.argument('section_group_id', type=str, help='key: id of sectionGroup') c.argument('onenote_section_id', type=str, help='key: id of onenoteSection') c.argument('onenote_page_id', type=str, help='key: id of onenotePage') c.argument('id_', options_list=['--id'], type=str, help='') c.argument('group_id', type=str, help='') c.argument('rename_as', type=str, help='') c.argument('site_collection_id', type=str, help='') c.argument('string_site_id', type=str, help='') with self.argument_context('sites sitesonenotesectiongroupsparentnotebooksectionsparentnotebook copy-notebook') as c: c.argument('site_id', type=str, help='key: id of site') c.argument('section_group_id', type=str, help='key: id of sectionGroup') c.argument('onenote_section_id', type=str, help='key: id of onenoteSection') c.argument('group_id', type=str, help='') c.argument('rename_as', type=str, help='') c.argument('notebook_folder', type=str, help='') c.argument('site_collection_id', type=str, help='') c.argument('string_site_id', type=str, help='') with self.argument_context('sites sitesonenotesectiongroupssection copy-to-notebook') as c: c.argument('site_id', type=str, help='key: id of site') c.argument('section_group_id', type=str, help='key: id of sectionGroup') c.argument('onenote_section_id', type=str, help='key: id of onenoteSection') c.argument('id_', options_list=['--id'], type=str, help='') c.argument('group_id', type=str, help='') c.argument('rename_as', type=str, help='') c.argument('site_collection_id', type=str, help='') c.argument('string_site_id', type=str, help='') with self.argument_context('sites sitesonenotesectiongroupssection copy-to-section-group') as c: c.argument('site_id', type=str, help='key: id of site') c.argument('section_group_id', type=str, help='key: id of sectionGroup') c.argument('onenote_section_id', type=str, help='key: id of onenoteSection') c.argument('id_', options_list=['--id'], type=str, help='') c.argument('group_id', type=str, help='') c.argument('rename_as', type=str, help='') c.argument('site_collection_id', type=str, help='') c.argument('string_site_id', type=str, help='') with self.argument_context('sites sitesonenotesectiongroupssectionspage copy-to-section') as c: c.argument('site_id', type=str, help='key: id of site') c.argument('section_group_id', type=str, help='key: id of sectionGroup') c.argument('onenote_section_id', type=str, help='key: id of onenoteSection') c.argument('onenote_page_id', type=str, help='key: id of onenotePage') c.argument('id_', options_list=['--id'], type=str, help='') c.argument('group_id', type=str, help='') c.argument('site_collection_id', type=str, help='') c.argument('string_site_id', type=str, help='') with self.argument_context('sites sitesonenotesectiongroupssectionspage onenote-patch-content') as c: c.argument('site_id', type=str, help='key: id of site') c.argument('section_group_id', type=str, help='key: id of sectionGroup') c.argument('onenote_section_id', type=str, help='key: id of onenoteSection') c.argument('onenote_page_id', type=str, help='key: id of onenotePage') c.argument('commands', action=AddSitesOnenoteSectiongroupsSectionsPagesCommands, nargs='+', help='') with self.argument_context('sites sitesonenotesectiongroupssectionspage preview') as c: c.argument('site_id', type=str, help='key: id of site') c.argument('section_group_id', type=str, help='key: id of sectionGroup') c.argument('onenote_section_id', type=str, help='key: id of onenoteSection') c.argument('onenote_page_id', type=str, help='key: id of onenotePage') with self.argument_context('sites sitesonenotesectiongroupssectionspagesparentnotebook copy-notebook') as c: c.argument('site_id', type=str, help='key: id of site') c.argument('section_group_id', type=str, help='key: id of sectionGroup') c.argument('onenote_section_id', type=str, help='key: id of onenoteSection') c.argument('onenote_page_id', type=str, help='key: id of onenotePage') c.argument('group_id', type=str, help='') c.argument('rename_as', type=str, help='') c.argument('notebook_folder', type=str, help='') c.argument('site_collection_id', type=str, help='') c.argument('string_site_id', type=str, help='') with self.argument_context('sites sitesonenotesectiongroupssectionspagesparentnotebooksection copy-to-notebook') as c: c.argument('site_id', type=str, help='key: id of
<reponame>noahwaterfieldprice/alphago<filename>alphago/alphago.py from collections import OrderedDict import numpy as np from tqdm import tqdm import tensorflow as tf from .player import MCTSPlayer, RandomPlayer, OptimalPlayer from .evaluator import evaluate from .mcts_tree import MCTSNode, mcts from .utilities import sample_distribution __all__ = ["train_alphago", "self_play", "process_self_play_data", "process_training_data"] def compute_checkpoint_name(step, path): return path + "{}.checkpoint".format(step) def train_alphago(game, create_estimator, self_play_iters, training_iters, checkpoint_path, summary_path, alphago_steps=100, evaluate_every=1, batch_size=32, mcts_iters=100, c_puct=1.0, replay_length=100000, num_evaluate_games=500, win_rate=0.55, verbose=True, restore_step=None, self_play_file_path=None): """Trains AlphaGo on the game. Parameters ---------- game: object An object that has the attributes a game needs. create_estimator: func Creates a trainable estimator for the game. The estimator should have a train function. self_play_iters: int Number of self-play games to play each self-play step. training_iters: int Number of training iters to use for each training step. checkpoint_path: str Where to save the checkpoints to. summary_path: str Where to save the summaries (tensorboard) to. alphago_steps: int Number of steps to run the alphago loop for. evaluate_every: int Evaluate the network every evaluate_every steps. batch_size: int Batch size to train with. mcts_iters: int Number of iterations to run MCTS for. c_puct: float Parameter for MCTS. See AlphaGo paper. replay_length: int The amount of training data to use. Only train on the most recent training data. num_evaluate_games: int Number of games to evaluate the players for. win_rate: float Number between 0 and 1. Only update self-play player when training player beats self-play player by at least this rate. verbose: bool Whether or not to output progress. restore_step: int or None If given, restore the network from the checkpoint at this step. self_play_file_path: str or None Where to load self play data from, if given. """ # TODO: Do self-play, training and evaluating in parallel. # We use a fixed estimator (the best one that's been trained) to # generate self-play training data. We then train the training estimator # on that data. We produce a checkpoint every 1000 training steps. This # checkpoint is then evaluated against the current best neural network. # If it beats the current best network by at least 55% then it becomes # the new best network. # 1 is the fixed player, and 2 is the training player. self_play_estimator = create_estimator() training_estimator = create_estimator() graph = tf.Graph() sess = tf.Session(graph=graph) with graph.as_default(): tf_success_rate = tf.placeholder( tf.float32, name='success_rate_summary') success_rate_summary = tf.summary.scalar( 'success_rate_summary', tf_success_rate) tf_success_rate_random = tf.placeholder( tf.float32, name='success_rate_random') success_rate_random_summary = tf.summary.scalar( 'success_rate_random', tf_success_rate_random) #tf_success_rate_optimal = tf.placeholder( # tf.float32, name='success_rate_optimal') #success_rate_optimal_summary = tf.summary.scalar( # 'success_rate_optimal', tf_success_rate_optimal) #merged_summary = tf.summary.merge([success_rate_summary, # success_rate_random_summary, # success_rate_optimal_summary]) merged_summary = tf.summary.merge([success_rate_summary, success_rate_random_summary]) sess.run(tf.global_variables_initializer()) writer = tf.summary.FileWriter(summary_path) if restore_step: restore_path = compute_checkpoint_name(restore_step, checkpoint_path) self_play_estimator.restore(restore_path) training_estimator.restore(restore_path) all_losses = [] self_play_data = None initial_step = restore_step + 1 if restore_step else 0 for alphago_step in range(initial_step, initial_step + alphago_steps): self_play_data = generate_self_play_data( game, self_play_estimator, mcts_iters, c_puct, self_play_iters, verbose=verbose, data=self_play_data) training_data = process_training_data(self_play_data, replay_length) if len(training_data) < 100: continue optimise_estimator(training_estimator, training_data, batch_size, training_iters, writer=writer, verbose=verbose) # Evaluate the players and choose the best. if alphago_step % evaluate_every == 0: success_rate, success_rate_random = \ evaluate_model(game, self_play_estimator, training_estimator, mcts_iters, c_puct, num_evaluate_games, verbose=verbose) summary = sess.run(merged_summary, feed_dict= {tf_success_rate: success_rate, tf_success_rate_random: success_rate_random}) writer.add_summary(summary, training_estimator.global_step) checkpoint_model(training_estimator, alphago_step, checkpoint_path) # If training player beats self-play player by a large enough # margin, then it becomes the new best estimator. if success_rate > win_rate: # Create a new self player, with the weights of the most # recent training_estimator. if verbose: print("Updating self-play player.") print("Restoring from step: {}".format(alphago_step)) self_play_estimator = create_estimator() restore_path = compute_checkpoint_name(alphago_step, checkpoint_path) self_play_estimator.restore(restore_path) return all_losses def optimise_estimator(estimator, training_data, batch_size, training_iters, mode='reinforcement', writer=None, verbose=True): summary = estimator.train(training_data, batch_size, training_iters, mode=mode, writer=writer, verbose=verbose) return summary def evaluate_model(game, player1, player2, mcts_iters, c_puct, num_games, verbose=True): # Checkpoint the model. # TODO: Implement evaluation # TODO: Choose tau more systematically. if verbose: print("Evaluating. Self-player vs training, then training vs " "self-player") wins1, wins2, draws = evaluate_estimators_in_both_positions( game, player1.create_estimate_fn(), player2.create_estimate_fn(), mcts_iters, c_puct, num_games, tau=0.01, verbose=verbose) if verbose: print("Self-play player wins: {}, Training player wins: {}, " "Draws: {}".format(wins1, wins2, draws)) success_rate = (wins2 + draws) / (wins1 + wins2 + draws) if verbose: print("Win + draw rate for training player: {}".format( success_rate)) # Also evaluate against a random player wins1, wins2, draws = evaluate_mcts_against_random_player( game, player2.create_estimate_fn(), mcts_iters, c_puct, num_games, tau=0.01, verbose=verbose) success_rate_random = (wins1 + draws) / (wins1 + wins2 + draws) if verbose: print("Training player vs random. Wins: {}, Losses: {}, " "Draws: {}".format(wins1, wins2, draws)) ## Also evaluate against an optimal player #wins1, wins2, draws = evaluate_mcts_against_optimal_player( # game, player2.create_estimate_fn(), mcts_iters, c_puct, num_games, # tau=0.1, verbose=verbose) #success_rate_optimal = (wins1 + draws) / (wins1 + wins2 + draws) #if verbose: # print("Training player vs optimal. Wins: {}, Losses: {}, " # "Draws: {}".format(wins1, wins2, draws)) #return success_rate, success_rate_random, success_rate_optimal return success_rate, success_rate_random def checkpoint_model(player, step, path): """Checkpoint the training player. """ checkpoint_name = compute_checkpoint_name(step, path) player.save(checkpoint_name) def evaluate_mcts_against_optimal_player(game, estimator, mcts_iters, c_puct, num_evaluate_games, tau, verbose=True): # Evaluate estimator1 vs estimator2. players = {1: MCTSPlayer(game, estimator, mcts_iters, c_puct, tau=tau), 2: OptimalPlayer(game)} player1_results, _ = evaluate(game, players, num_evaluate_games, verbose=verbose) wins1 = player1_results[1] wins2 = player1_results[-1] draws = player1_results[0] # Evaluate estimator2 vs estimator1. players = {1: OptimalPlayer(game), 2: MCTSPlayer(game, estimator, mcts_iters, c_puct, tau=tau)} player1_results, _ = evaluate(game, players, num_evaluate_games, verbose=verbose) wins1 += player1_results[-1] wins2 += player1_results[1] draws += player1_results[0] return wins1, wins2, draws def evaluate_mcts_against_random_player(game, estimator, mcts_iters, c_puct, num_evaluate_games, tau, verbose=True): # Evaluate estimator1 vs estimator2. players = {1: MCTSPlayer(game, estimator, mcts_iters, c_puct, tau=tau), 2: RandomPlayer(game)} player1_results, _ = evaluate(game, players, num_evaluate_games, verbose=verbose) wins1 = player1_results[1] wins2 = player1_results[-1] draws = player1_results[0] # Evaluate estimator2 vs estimator1. players = {1: RandomPlayer(game), 2: MCTSPlayer(game, estimator, mcts_iters, c_puct, tau=tau)} player1_results, _ = evaluate(game, players, num_evaluate_games, verbose=verbose) wins1 += player1_results[-1] wins2 += player1_results[1] draws += player1_results[0] return wins1, wins2, draws def evaluate_estimators_in_both_positions(game, estimator1, estimator2, mcts_iters, c_puct, num_evaluate_games, tau, verbose=True): # Evaluate estimator1 vs estimator2. players = {1: MCTSPlayer(game, estimator1, mcts_iters, c_puct, tau=tau), 2: MCTSPlayer(game, estimator2, mcts_iters, c_puct, tau=tau)} player1_results, _ = evaluate(game, players, num_evaluate_games, verbose=verbose) wins1 = player1_results[1] wins2 = player1_results[-1] draws = player1_results[0] # Evaluate estimator2 vs estimator1. players = {1: MCTSPlayer(game, estimator2, mcts_iters, c_puct, tau=tau), 2: MCTSPlayer(game, estimator1, mcts_iters, c_puct, tau=tau)} player1_results, _ = evaluate(game, players, num_evaluate_games, verbose=verbose) wins1 += player1_results[-1] wins2 += player1_results[1] draws += player1_results[0] return wins1, wins2, draws def generate_self_play_data(game, estimator, mcts_iters, c_puct, num_iters, data=None, verbose=True): """Generates self play data for a number of iterations for a given estimator. Saves to save_file_path, if given. """ # if save_file_path is not None: # with open(save_file_path, 'r') as f: # data = json.load(save_file_path) # index = max(data.keys()) + 1 if data is not None: index = max(data.keys()) + 1 else: data = OrderedDict() index = 0 # Collect self-play training data using the best estimator. disable_tqdm = False if verbose else True for _ in tqdm(range(num_iters), disable=disable_tqdm): data[index] = self_play( game, estimator.create_estimate_fn(), mcts_iters, c_puct) index += 1 # if save_file_path is not None: # with open(save_file_path, 'w') as f: # json.dump(data, f) return data def self_play(game, estimator, mcts_iters, c_puct): """Plays a single game using MCTS to choose actions for both players. Parameters ---------- game: Game An object representing the game to be played. estimator: func An estimate function. mcts_iters: int Number of iterations to run MCTS for. c_puct: float Parameter for MCTS. Returns ------- game_state_list: list A list of game states encountered in the self-play game. Starts with the initial state and ends with a terminal state. action_probs_list: list A list of action probability dictionaries, as returned by MCTS each time the algorithm has to take an action. The ith action probabilities dictionary corresponds to the ith game_state, and action_probs_list has length one less than game_state_list, since we don't have to move in a terminal state. """ node = MCTSNode(game.initial_state, game.current_player(game.initial_state)) game_state_list = [node.game_state] action_probs_list = [] action_list = [] move_count = 0 while not node.is_terminal: # TODO: Choose this better. tau = 1 if move_count >= 10: tau = 1 / (move_count - 10 + 1) # First run MCTS
<reponame>savi-dev/keystone # vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2012 OpenStack LLC # Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # Copyright 2010 OpenStack LLC. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Utility methods for working with WSGI servers.""" import sys import eventlet.wsgi import routes.middleware import ssl import webob.dec import webob.exc from keystone.common import logging from keystone.common import utils from keystone import exception from keystone.openstack.common import jsonutils LOG = logging.getLogger(__name__) class WritableLogger(object): """A thin wrapper that responds to `write` and logs.""" def __init__(self, logger, level=logging.DEBUG): self.logger = logger self.level = level def write(self, msg): self.logger.log(self.level, msg) class Server(object): """Server class to manage multiple WSGI sockets and applications.""" def __init__(self, application, host=None, port=None, threads=1000): self.application = application self.host = host or '0.0.0.0' self.port = port or 0 self.pool = eventlet.GreenPool(threads) self.socket_info = {} self.greenthread = None self.do_ssl = False self.cert_required = False def start(self, key=None, backlog=128): """Run a WSGI server with the given application.""" LOG.debug('Starting %(arg0)s on %(host)s:%(port)s' % {'arg0': sys.argv[0], 'host': self.host, 'port': self.port}) socket = eventlet.listen((self.host, self.port), backlog=backlog) if key: self.socket_info[key] = socket.getsockname() # SSL is enabled if self.do_ssl: if self.cert_required: cert_reqs = ssl.CERT_REQUIRED else: cert_reqs = ssl.CERT_NONE sslsocket = eventlet.wrap_ssl(socket, certfile=self.certfile, keyfile=self.keyfile, server_side=True, cert_reqs=cert_reqs, ca_certs=self.ca_certs) socket = sslsocket self.greenthread = self.pool.spawn(self._run, self.application, socket) def set_ssl(self, certfile, keyfile=None, ca_certs=None, cert_required=True): self.certfile = certfile self.keyfile = keyfile self.ca_certs = ca_certs self.cert_required = cert_required self.do_ssl = True def kill(self): if self.greenthread: self.greenthread.kill() def wait(self): """Wait until all servers have completed running.""" try: self.pool.waitall() except KeyboardInterrupt: pass def _run(self, application, socket): """Start a WSGI server in a new green thread.""" log = logging.getLogger('eventlet.wsgi.server') eventlet.wsgi.server(socket, application, custom_pool=self.pool, log=WritableLogger(log)) class Request(webob.Request): pass class BaseApplication(object): """Base WSGI application wrapper. Subclasses need to implement __call__.""" @classmethod def factory(cls, global_config, **local_config): """Used for paste app factories in paste.deploy config files. Any local configuration (that is, values under the [app:APPNAME] section of the paste config) will be passed into the `__init__` method as kwargs. A hypothetical configuration would look like: [app:wadl] latest_version = 1.3 paste.app_factory = nova.api.fancy_api:Wadl.factory which would result in a call to the `Wadl` class as import nova.api.fancy_api fancy_api.Wadl(latest_version='1.3') You could of course re-implement the `factory` method in subclasses, but using the kwarg passing it shouldn't be necessary. """ return cls() def __call__(self, environ, start_response): r"""Subclasses will probably want to implement __call__ like this: @webob.dec.wsgify(RequestClass=Request) def __call__(self, req): # Any of the following objects work as responses: # Option 1: simple string res = 'message\n' # Option 2: a nicely formatted HTTP exception page res = exc.HTTPForbidden(detail='Nice try') # Option 3: a webob Response object (in case you need to play with # headers, or you want to be treated like an iterable, or or or) res = Response(); res.app_iter = open('somefile') # Option 4: any wsgi app to be run next res = self.application # Option 5: you can get a Response object for a wsgi app, too, to # play with headers etc res = req.get_response(self.application) # You can then just return your response... return res # ... or set req.response and return None. req.response = res See the end of http://pythonpaste.org/webob/modules/dec.html for more info. """ raise NotImplementedError('You must implement __call__') class Application(BaseApplication): @webob.dec.wsgify def __call__(self, req): arg_dict = req.environ['wsgiorg.routing_args'][1] action = arg_dict.pop('action') del arg_dict['controller'] LOG.debug('arg_dict: %s', arg_dict) # allow middleware up the stack to provide context & params context = req.environ.get('openstack.context', {}) context['query_string'] = dict(req.params.iteritems()) params = req.environ.get('openstack.params', {}) params.update(arg_dict) # TODO(termie): do some basic normalization on methods method = getattr(self, action) # NOTE(vish): make sure we have no unicode keys for py2.6. params = self._normalize_dict(params) try: result = method(context, **params) except exception.Unauthorized as e: LOG.warning("Authorization failed. %s from %s" % (e, req.environ['REMOTE_ADDR'])) return render_exception(e) except exception.Error as e: LOG.warning(e) return render_exception(e) except Exception as e: logging.exception(e) return render_exception(exception.UnexpectedError(exception=e)) if result is None: return render_response(status=(204, 'No Content')) elif isinstance(result, basestring): return result elif isinstance(result, webob.Response): return result elif isinstance(result, webob.exc.WSGIHTTPException): return result return render_response(body=result) def _normalize_arg(self, arg): return str(arg).replace(':', '_').replace('-', '_') def _normalize_dict(self, d): return dict([(self._normalize_arg(k), v) for (k, v) in d.iteritems()]) def assert_admin(self, context): if not context['is_admin']: try: user_token_ref = self.token_api.get_token( context=context, token_id=context['token_id']) except exception.TokenNotFound: raise exception.Unauthorized() creds = user_token_ref['metadata'].copy() try: creds['user_id'] = user_token_ref['user'].get('id') except AttributeError: logging.debug('Invalid user') raise exception.Unauthorized() try: creds['tenant_id'] = user_token_ref['tenant'].get('id') except AttributeError: logging.debug('Invalid tenant') raise exception.Unauthorized() # NOTE(vish): this is pretty inefficient creds['roles'] = [self.identity_api.get_role(context, role)['name'] for role in creds.get('roles', [])] # Accept either is_admin or the admin role self.policy_api.enforce(context, creds, 'admin_required', {}) class Middleware(Application): """Base WSGI middleware. These classes require an application to be initialized that will be called next. By default the middleware will simply call its wrapped app, or you can override __call__ to customize its behavior. """ @classmethod def factory(cls, global_config, **local_config): """Used for paste app factories in paste.deploy config files. Any local configuration (that is, values under the [filter:APPNAME] section of the paste config) will be passed into the `__init__` method as kwargs. A hypothetical configuration would look like: [filter:analytics] redis_host = 127.0.0.1 paste.filter_factory = nova.api.analytics:Analytics.factory which would result in a call to the `Analytics` class as import nova.api.analytics analytics.Analytics(app_from_paste, redis_host='127.0.0.1') You could of course re-implement the `factory` method in subclasses, but using the kwarg passing it shouldn't be necessary. """ def _factory(app): conf = global_config.copy() conf.update(local_config) return cls(app) return _factory def __init__(self, application): self.application = application def process_request(self, request): """Called on each request. If this returns None, the next application down the stack will be executed. If it returns a response then that response will be returned and execution will stop here. """ return None def process_response(self, request, response): """Do whatever you'd like to the response, based on the request.""" return response @webob.dec.wsgify(RequestClass=Request) def __call__(self, request): response = self.process_request(request) if response: return response response = request.get_response(self.application) return self.process_response(request, response) class Debug(Middleware): """Helper class for debugging a WSGI application. Can be inserted into any WSGI application chain to get information about the request and response. """ @webob.dec.wsgify(RequestClass=Request) def __call__(self, req): LOG.debug('%s %s %s', ('*' * 20), 'REQUEST ENVIRON', ('*' * 20)) for key, value in req.environ.items(): LOG.debug('%s = %s', key, value) LOG.debug('') LOG.debug('%s %s %s', ('*' * 20), 'REQUEST BODY', ('*' * 20)) for line in req.body_file: LOG.debug(line) LOG.debug('') resp = req.get_response(self.application) LOG.debug('%s %s %s', ('*' * 20), 'RESPONSE HEADERS', ('*' * 20)) for (key, value) in resp.headers.iteritems(): LOG.debug('%s = %s', key, value) LOG.debug('') resp.app_iter = self.print_generator(resp.app_iter) return resp @staticmethod def print_generator(app_iter): """Iterator that prints the contents of a wrapper string.""" LOG.debug('%s %s %s', ('*' * 20), 'RESPONSE BODY', ('*' * 20)) for part in app_iter: LOG.debug(part) yield part class Router(object): """WSGI middleware that maps incoming requests to WSGI apps.""" def __init__(self, mapper): """Create a router for the given routes.Mapper. Each route in `mapper` must specify a 'controller', which is a WSGI app to call. You'll probably want to specify an 'action' as well and have your controller be an object that can route the request to the action-specific method. Examples: mapper = routes.Mapper() sc = ServerController() # Explicit mapping of one route to a controller+action mapper.connect(None, '/svrlist', controller=sc, action='list') # Actions are all implicitly defined mapper.resource('server', 'servers', controller=sc) # Pointing to an arbitrary WSGI app. You can specify the # {path_info:.*} parameter so the target app can be handed just that # section of the URL. mapper.connect(None, '/v1.0/{path_info:.*}', controller=BlogApp()) """ self.map = mapper self._router = routes.middleware.RoutesMiddleware(self._dispatch, self.map) @webob.dec.wsgify(RequestClass=Request) def __call__(self, req): """Route the incoming request to a controller based on self.map. If no match, return a 404. """ return self._router @staticmethod @webob.dec.wsgify(RequestClass=Request) def
<reponame>chrisspen/homebot<filename>src/ros/src/ros_homebot/nodes/arduino_relay.py #!/usr/bin/env python from __future__ import print_function #import time from math import pi # import traceback import os import sys import time import threading # import cPickle as pickle from functools import partial #from math import pi, sin, cos #import numpy as np import rospy import tf #import tf2_ros #http://docs.ros.org/api/sensor_msgs/html/msg/Imu.html from sensor_msgs.msg import Imu #http://wiki.ros.org/std_msgs from sensor_msgs.msg import JointState from std_msgs.msg import Header, String, UInt16MultiArray, Bool, Int16 #from std_srvs.srv import Empty, EmptyResponse from nav_msgs.msg import Odometry from geometry_msgs.msg import Quaternion, Point from diagnostic_msgs.msg import DiagnosticArray, DiagnosticStatus#, KeyValue from ros_homebot_python.node import say from ros_homebot_python import constants as c #from ros_homebot_python.node import BaseArduinoNode OK = DiagnosticStatus.OK # 0 WARN = DiagnosticStatus.WARN # 1 ERROR = DiagnosticStatus.ERROR # 2 STALE = DiagnosticStatus.STALE # 3 IMU_CALIBRATION_FN = 'imu_calibration.pickle' V0 = 'v0' V1 = 'v1' status_id_to_name = { OK: 'OK', WARN: 'WARN', ERROR: 'ERROR', STALE: 'STALE', } def ltof(values): """ Converts the special integer-encoded doubles back into Python floats. See the Arduino's equivalent ftol(). """ assert isinstance(values, (tuple, list)) return [int(_)/1000. for _ in values] # Based on https://goo.gl/mY0th1 # http://wiki.ros.org/tf2/Tutorials/Writing%20a%20tf2%20broadcaster%20%28Python%29 # http://wiki.ros.org/navigation/Tutorials/RobotSetup/Odom # http://answers.ros.org/question/79851/python-odometry/ class ArduinoRelay: cache_dir = '~/.homebot_cache/torso_relay' # Covariance #P = np.mat(np.diag([0.0]*3)) def __init__(self): rospy.init_node('arduino_relay') self._imu_data = {} self._lock = threading.RLock() # self.imu_calibration_loaded = False # self.imu_calibration_loaded_time = rospy.Time(0) self.diagnostics_msg_count = 0 self.diagnostics_buffer = [] # http://wiki.ros.org/tf/Tutorials/Writing%20a%20tf%20broadcaster%20%28Python%29 self.tf_br = tf.TransformBroadcaster() #self.tf2_br = tf2_ros.TransformBroadcaster() #rospy.Service('~reset_odometry', Empty, self.reset_odometry) ## Publishers. self.diagnostics_pub = rospy.Publisher('/diagnostics', DiagnosticArray, queue_size=10) self.odometry_pub = rospy.Publisher('/odom', Odometry, queue_size=10) self.imu_calibration_load_pub = rospy.Publisher('/torso_arduino/imu_calibration_load', UInt16MultiArray, queue_size=1) self.imu_pub = rospy.Publisher('/imu_data', Imu, queue_size=10) self.joint_pub = rospy.Publisher('joint_states', JointState, queue_size=10) self._joint_pub_lock = threading.RLock() self.last_pan_angle = None self.last_tilt_angle = None self.received_angles = False self._joint_pub_thread = threading.Thread(target=self.publish_joints_thread) self._joint_pub_thread.daemon = True self._joint_pub_thread.start() ## Head Subscribers. rospy.Subscriber('/head_arduino/diagnostics_relay', String, partial(self.on_diagnostics_relay, prefix='head')) rospy.Subscriber('/head_arduino/pan_degrees', Int16, self.on_head_pan_degrees) rospy.Subscriber('/head_arduino/tilt_degrees', Int16, self.on_head_tilt_degrees) ## Torso Subscribers. rospy.Subscriber('/torso_arduino/diagnostics_relay', String, partial(self.on_diagnostics_relay, prefix='torso')) # rospy.Subscriber('/torso_arduino/imu_calibration_save', UInt16MultiArray, self.on_imu_calibration_save) rospy.Subscriber('/torso_arduino/imu_relay', String, self.on_imu_relay) rospy.Subscriber('/torso_arduino/odometry_relay', String, self.on_odometry_relay) rospy.Subscriber('/torso_arduino/power_shutdown', Bool, self.on_power_shutdown) self._odom_lock = threading.RLock() self.pos = None self.ori = None # self._motor_target_left = None # self._motor_target_right = None # rospy.Subscriber('/torso_arduino/motor_target_a', Int16, partial(self.on_motor_target, side='left')) # rospy.Subscriber('/torso_arduino/motor_target_b', Int16, partial(self.on_motor_target, side='right')) # self._motor_encoder_left = None # self._motor_encoder_right = None # rospy.Subscriber('/torso_arduino/motor_encoder_a', Int16, partial(self.on_motor_encoder, side='left')) # rospy.Subscriber('/torso_arduino/motor_encoder_b', Int16, partial(self.on_motor_encoder, side='right')) ## Begin IO. rospy.spin() @property def imu_calibration_filename(self): cache_dir = os.path.expanduser(self.cache_dir) if not os.path.isdir(cache_dir): os.makedirs(cache_dir) fn = os.path.join(cache_dir, IMU_CALIBRATION_FN) return fn # def load_imu_calibration(self): # """ # Automatically called once after the first diagnostic message is received. # Per Adafruit's documentation: # "One thing to keep in mind though is that the sensor isn't necessarily 'plug and play' with # loading the calibration data, in particular the magnetometer needs to be recalibrated even if # the offsets are loaded. The magnetometer calibration is very dynamic so saving the values # once might" # """ # try: # fn = self.imu_calibration_filename # if os.path.isfile(fn): # rospy.loginfo('Loading imu calibration %s...' % fn) # with open(fn, 'r') as fin: # msg = pickle.load(fin) # rospy.loginfo('Sending calibration:') # rospy.loginfo(msg) # self.imu_calibration_load_pub.publish(msg) # self.imu_calibration_loaded = True # self.imu_calibration_loaded_time = rospy.Time.now() # rospy.loginfo('Sent.') # else: # rospy.loginfo('No saved imu calibration.') # except Exception as exc: # traceback.print_exc() # finally: # self.imu_calibration_loaded = True def on_head_pan_degrees(self, msg): """ Re-publishes the pan angle as a standard JointState message. """ # rospy.loginfo('pan: %s' % msg.data) with self._joint_pub_lock: self.last_pan_angle = msg.data*pi/180. self.received_angles = True self.publish_joints() def on_head_tilt_degrees(self, msg): """ Re-publishes the tilt angle as a standard JointState message. """ # rospy.loginfo('tilt: %s' % msg.data) with self._joint_pub_lock: self.last_tilt_angle = msg.data*pi/180. self.received_angles = True self.publish_joints() def publish_joints_thread(self): time.sleep(3) while 1: if self.received_angles: self.publish_joints() time.sleep(1) def publish_joints(self): if self.last_tilt_angle is None: rospy.logwarn('No tilt angle, aborting joint publish.') return if self.last_pan_angle is None: rospy.logwarn('No pan angle, aborting joint publish.') return with self._joint_pub_lock: joint_state = JointState() joint_state.header = Header() joint_state.header.stamp = rospy.Time.now() joint_state.name = [ c.FOOTPRINT_TO_TORSO_JOINT, c.TORSO_TO_NECK_JOINT, c.NECK_TO_HEAD_JOINT, c.HEAD_TO_CAMERA_JOINT, ] joint_state.position = [ 0, self.last_pan_angle, self.last_tilt_angle, 0, ] joint_state.velocity = [] joint_state.effort = [] self.joint_pub.publish(joint_state) def on_power_shutdown(self, msg): rospy.loginfo('Received shutdown signal. Issuing halt command in 3 seconds...') try: say(c.SYSTEM_SHUTDOWN_SPEECH) except Exception as exc: # pylint: disable=broad-except rospy.logerr('Unable to speak about shutdown: %s', exc) time.sleep(3) os.system('sudo halt') # After halt is performed, all ROS nodes will be killed. # The torso Arduino will then wait a few seconds to allow Linux to clean up all processes, and then it will kill all system power. # See the deadman flag that triggers the call to power_controller.shutdown(). # def on_imu_calibration_save(self, msg): # #print('Received imu calibration:', msg) # if sum(msg.data) == 0: # rospy.logwarn('Ignoring blank calibration.') # self.load_imu_calibration() # return # fn = self.imu_calibration_filename # with open(fn, 'w') as fout: # pickle.dump(msg, fout) def on_imu_relay(self, msg): parts = msg.data.split(':') # Validate type. typ = parts[0] assert typ in 'aeg', 'Invalid typ: %s' % typ # Convert the integers to the original floats. nums = ltof(parts[1:]) for num, axis in zip(nums, 'xyz'): self._imu_data['%s%s' % (typ, axis)] = num # If we've received the final segment, re-publish the complete IMU message. if typ == 'a': # https://docs.ros.org/api/sensor_msgs/html/msg/Imu.html imu_msg = Imu() imu_msg.header = Header() imu_msg.header.stamp = rospy.Time.now() imu_msg.header.frame_id = c.BASE_LINK #TODO # Our sensor returns Euler angles in degrees, but ROS requires radians. # http://answers.ros.org/question/69754/quaternion-transformations-in-python/ roll = self._imu_data['ex'] pitch = self._imu_data['ey'] yaw = self._imu_data['ez'] quaternion = tf.transformations.quaternion_from_euler(roll, pitch, yaw) imu_msg.orientation.x = quaternion[0] imu_msg.orientation.y = quaternion[1] imu_msg.orientation.z = quaternion[2] imu_msg.orientation.w = quaternion[3] imu_msg.orientation_covariance = [1, 0.001, 0.001, 0.001, 1, 0.001, 0.001, 0.001, 1] imu_msg.angular_velocity.x = self._imu_data['gx'] imu_msg.angular_velocity.y = self._imu_data['gy'] imu_msg.angular_velocity.z = self._imu_data['gz'] imu_msg.angular_velocity_covariance = [1, 0.001, 0.001, 0.001, 1, 0.001, 0.001, 0.001, 1] imu_msg.linear_acceleration.x = self._imu_data['ax'] imu_msg.linear_acceleration.y = self._imu_data['ay'] imu_msg.linear_acceleration.z = self._imu_data['az'] imu_msg.linear_acceleration_covariance = [1, 0.001, 0.001, 0.001, 1, 0.001, 0.001, 0.001, 1] self.imu_pub.publish(imu_msg) def on_diagnostics_relay(self, msg, prefix): """ The Arduino has limited RAM and an even more limited serial buffer, so it can't send complex ROS structures like DiagnosticArrays. So instead, it publishes diagnostic data via a key/value pair formatted in a simple string, which we convert to a proper diagnostic message. """ #print('diagnostics.msg:', msg) self.diagnostics_msg_count += 1 # if (rospy.Time.now() - self.imu_calibration_loaded_time).secs >= 300: # self.load_imu_calibration() # Aggregate single-character messages into a complete message. # if not msg.data: # #print('Received empty message.') # return # elif msg.data[0] == '^': # #print('Received message start.') # self.diagnostics_buffer = [] # return # elif msg.data[0] == '$': # #print('Received message end.') # msg.data = ''.join(self.diagnostics_buffer) # else: # #print('Recieved %i chars.' % len(msg.data)) # self.diagnostics_buffer.append(msg.data) # return # Extract parts. # print('Message length:', len(msg.data)) # print('Message data:', msg.data) parts = msg.data.split(':') if len(parts) < 2: rospy.logerr('Malformed diagnostics message.', file=sys.stderr) return # Complete name part. name = '%s: %s' % (prefix, parts[0].strip()) # Complete level part. try: level = int(parts[1]) # OK|WARN|ERROR|STALE assert level in range(4) except (TypeError, ValueError, AssertionError) as exc: rospy.logerr('Malformed level: "%s"', parts[1]) return # Complete message part. message = '' if len(parts) >= 3: message = parts[2].strip() if message == '?': message = '' if not message: # If not given, default the message to the name equivalent of the level. message = status_id_to_name.get(level, '') # Construct and send diagnostics array. # http://docs.ros.org/api/diagnostic_msgs/html/msg/DiagnosticStatus.html array = DiagnosticArray() array.status = [ DiagnosticStatus(name=name, level=level, message=message) ] with self._lock: self.diagnostics_pub.publish(array) def on_odometry_relay(self, msg): parts = msg.data.split(':') if len(parts) < 5: rospy.logerr('Malformed odometry message.', file=sys.stderr) return # Validate type. typ = parts[0] assert typ in (V0, V1), 'Invalid type: %s' % typ # Validate numbers. nums = ltof(parts[1:]) # Save type parts. if typ == V0: # Position. # x,y,z,th self._odometry_v0 = nums else: # Velocity. # vx,vy,vz,vth self._odometry_v1 = nums # Combine and publish a complete odometry message on the receipt of the last part. if typ == V1: current_time = rospy.Time.now() # print('position:', self._odometry_v0) x, y, z, th = self._odometry_v0 # print('velocity:', self._odometry_v1) vx, vy, vz, vth = self._odometry_v1 # since all odometry is 6DOF we'll need a quaternion created from yaw #geometry_msgs::Quaternion odom_quat = tf::createQuaternionMsgFromYaw(th); odom_quat = Quaternion(*tf.transformations.quaternion_from_euler(0, 0, th)) # https://docs.ros.org/kinetic/api/nav_msgs/html/msg/Odometry.html msg = Odometry() msg.header.stamp = current_time msg.header.frame_id = c.ODOM msg.child_frame_id = c.BASE_LINK msg.pose.pose.position = Point(x, y, z) msg.pose.pose.orientation = odom_quat msg.pose.covariance = [ 1, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 1, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 1, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 1, 0.001, 0.001,
self.am.get_active_char() if char is not None: try: mc.setAttr( char + '.jointRadius', self.jointRadius.value() ) except: pass def set_joint_display(self): mode = self.jointMode.currentIndex() if self.char is not None: try: mc.setAttr ( self.char + '.display_Joint', mode ) except: pass def set_geo_display(self): mode = self.geoMode.currentIndex() if self.char is not None: try: mc.setAttr ( self.char + '.display_Geo', mode ) except: pass def show_character(self, *args): char = self.am.get_active_char( ) if char is not None: try: mc.setAttr( char + '.v', int(self.showChar.checkState())/2 ) except: pass else: self.ui_update() def show_rig(self, *args): char = self.am.get_active_char() if char is not None: try: mc.setAttr( char + '.show_Rig', int(self.showRig.checkState())/2 ) except: pass def show_geo(self, *args): char = self.am.get_active_char() if char is not None: try: mc.setAttr( char + '.show_Geo', int(self.showGeo.checkState())/2 ) except: pass def show_joints(self, *args): char = self.am.get_active_char() if char is not None: try: mc.setAttr( char + '.show_Joints', int(self.showJoints.checkState())/2 ) except: pass def show_guides(self, *args): char = self.am.get_active_char() if char is not None: try: mc.setAttr( char + '.show_Guides', int(self.showGuides.checkState())/2 ) except: pass def show_mocap(self, *args): char = self.am.get_active_char() if char is not None: try: mc.setAttr( char + '.show_Mocap', int(self.showMocap.checkState())/2 ) except: pass def show_upVecs(self, *args): char = self.am.get_active_char() if char is not None: try: mc.setAttr( char + '.show_UpVectors', int(self.showUpVecs.checkState())/2 ) except: pass def update_value_widget( self, char, widget, attribute ): try: gs = mc.getAttr( char + '.' + attribute ) widget.setValue( gs ) except: #mc.warning('aniMeta: Can not find globalScale attribute.') pass def update_state_widget( self, char, widget, attribute ): try: sj = mc.getAttr( char + '.' + attribute ) widget.setCheckState(self.get_state(sj)) except: #mc.warning('aniMeta: Can not find globalScale attribute.') pass def update_enum_widget( self, char, widget, attribute ): try: sj = mc.getAttr( char + '.' + attribute ) widget.setCurrentIndex(sj) except: #mc.warning('aniMeta: Can not find globalScale attribute.') pass def ui_update( self, char=None ): if char is None: char = self.am.get_active_char() if char is not None: if mc.objExists( char ): self.ui_enable( True ) v = mc.getAttr(char + '.v') data = self.am.get_metaData(char) ###################################################################### # Update the Display Options Widgets if 'RigState' in data: state = data['RigState'] self.pickerWidget.setEnabled( state-1 ) self.update_value_widget( char, self.globalScale, 'globalScale' ) self.update_value_widget( char, self.ctrlScale, 'globalCtrlScale' ) self.update_value_widget( char, self.jointRadius, 'jointRadius' ) self.update_state_widget( char, self.showJoints, 'show_Joints' ) self.update_state_widget( char, self.showGuides, 'show_Guides' ) self.update_state_widget( char, self.showRig, 'show_Rig' ) self.update_state_widget( char, self.showGeo, 'show_Geo' ) self.update_state_widget( char, self.showMocap, 'show_Mocap' ) self.update_state_widget( char, self.showUpVecs, 'show_UpVectors' ) self.update_enum_widget( char, self.jointMode, 'display_Joint' ) self.update_enum_widget( char, self.geoMode, 'display_Geo' ) self.showChar.setCheckState( self.get_state(v) ) # Save the current char self.char = char metaData = self.am.get_metaData(char) if 'RigState' in metaData: rigState = metaData['RigState'] if rigState == kRigStateControl: self.modeControls.setEnabled(False) self.modeControls.setStyleSheet(self.style_active) self.modeControls.setToolTip( 'Rig is in control mode.') self.modeGuides.setEnabled(True) self.modeGuides.setStyleSheet(self.style_not_active) self.modeGuides.setToolTip( 'Switch the rig to guide mode.') self.lockGuides1.setEnabled(False) self.lockGuides2.setEnabled(False) self.lockGuides3.setEnabled(False) else: self.modeControls.setEnabled(True) self.modeControls.setStyleSheet(self.style_not_active) self.modeControls.setToolTip( 'Switch the rig to control mode.') self.modeGuides.setEnabled(False) self.modeGuides.setStyleSheet(self.style_active) self.modeGuides.setToolTip( 'Rig is in guide mode.') self.lockGuides1.setEnabled(True) self.lockGuides2.setEnabled(True) self.lockGuides3.setEnabled(True) # Arm IK R if self.arm_mode_R == kFK: self.button_ik_arm_R.setEnabled( True ) self.button_ik_arm_R.setStyleSheet(self.style_not_active) self.button_fk_arm_R.setEnabled( False ) self.button_fk_arm_R.setStyleSheet(self.style_active) for widget in self.buttons_arm_ik_R: widget.setVisible( False ) for widget in self.buttons_arm_fk_R: widget.setVisible( True ) else: self.button_ik_arm_R.setEnabled( False ) self.button_ik_arm_R.setStyleSheet(self.style_active) self.button_fk_arm_R.setEnabled( True ) self.button_fk_arm_R.setStyleSheet(self.style_not_active) for widget in self.buttons_arm_ik_R: widget.setVisible( True ) for widget in self.buttons_arm_fk_R: widget.setVisible( False ) # Arm IK L if self.arm_mode_L == kFK: self.button_ik_arm_L.setEnabled( True ) self.button_ik_arm_L.setStyleSheet(self.style_not_active) self.button_fk_arm_L.setEnabled( False ) self.button_fk_arm_L.setStyleSheet(self.style_active) for widget in self.buttons_arm_ik_L: widget.setVisible( False ) for widget in self.buttons_arm_fk_L: widget.setVisible( True ) else: self.button_ik_arm_L.setEnabled( False ) self.button_ik_arm_L.setStyleSheet(self.style_active) self.button_fk_arm_L.setEnabled( True ) self.button_fk_arm_L.setStyleSheet(self.style_not_active) for widget in self.buttons_arm_ik_L: widget.setVisible( True ) for widget in self.buttons_arm_fk_L: widget.setVisible( False ) # Leg IK R if self.leg_mode_R == kFK: self.button_ik_leg_R.setEnabled( True ) self.button_ik_leg_R.setStyleSheet(self.style_not_active) self.button_fk_leg_R.setEnabled( False ) self.button_fk_leg_R.setStyleSheet(self.style_active) for widget in self.buttons_leg_ik_R: widget.setVisible( False ) for widget in self.buttons_leg_fk_R: widget.setVisible( True ) else: self.button_ik_leg_R.setEnabled( False ) self.button_ik_leg_R.setStyleSheet(self.style_active) self.button_fk_leg_R.setEnabled( True ) self.button_fk_leg_R.setStyleSheet(self.style_not_active) for widget in self.buttons_leg_ik_R: widget.setVisible( True ) for widget in self.buttons_leg_fk_R: widget.setVisible( False ) # Leg IK L if self.leg_mode_L == kFK: self.button_ik_leg_L.setEnabled( True ) self.button_ik_leg_L.setStyleSheet(self.style_not_active) self.button_fk_leg_L.setEnabled( False ) self.button_fk_leg_L.setStyleSheet(self.style_active) for widget in self.buttons_leg_ik_L: widget.setVisible( False ) for widget in self.buttons_leg_fk_L: widget.setVisible( True ) else: self.button_ik_leg_L.setEnabled( False ) self.button_ik_leg_L.setStyleSheet(self.style_active) self.button_fk_leg_L.setEnabled( True ) self.button_fk_leg_L.setStyleSheet(self.style_not_active) for widget in self.buttons_leg_ik_L: widget.setVisible( True ) for widget in self.buttons_leg_fk_L: widget.setVisible( False ) self.pickerLayout.update() else: self.ui_enable( False ) else: self.ui_enable( False ) def ui_enable(self, mode): self.showChar.setEnabled(mode) self.showJoints.setEnabled(mode) self.showGeo.setEnabled(mode) self.showRig.setEnabled(mode) self.showMocap.setEnabled(mode) self.showUpVecs.setEnabled(mode) self.globalScale.setEnabled(mode) self.ctrlScale.setEnabled(mode) self.jointRadius.setEnabled(mode) self.jointMode.setEnabled(mode) self.geoMode.setEnabled(mode) self.modeControls.setEnabled(mode) self.modeGuides.setEnabled(mode) self.lockGuides1.setEnabled(mode) self.lockGuides2.setEnabled(mode) self.lockGuides3.setEnabled(mode) self.pickerWidget.setEnabled(mode) kLibPose, kLibAnim, kLibRig = range(3) class LibTab(QWidget): charList = None resized = Signal() pose_path = None pose = None def __init__(self, *argv, **keywords): super(LibTab, self).__init__( ) self.am = AniMeta() self.rig = Rig() mainLayout = QVBoxLayout( self ) self.setLayout(mainLayout) self.menu = QMenu( self ) l_widget = QWidget() self.l = QVBoxLayout( l_widget ) self.scrollArea = QScrollArea() self.layout().addWidget( self.scrollArea ) self.scrollArea.setWidget( l_widget ) self.scrollArea.setWidgetResizable(True) self.kPose, self.kAnim = range(2) self.pose_column_count = 3 self.anim_column_count = 3 self.rig_column_count = 3 self.pose_root = self.am.folder_pose self.pose_path = self.am.folder_pose self.anim_root = self.am.folder_anim self.anim_path = self.am.folder_anim self.rig_root = self.am.folder_rig self.rig_path = self.am.folder_rig self.pose_grid = QGridLayout() self.anim_grid = QGridLayout() self.rig_grid = QGridLayout() self.button_height = 28 self.button_width = 128 self.poses() self.anims() self.rigs() for section in [kLibPose, kLibAnim, kLibRig ]: self.tree_refresh( section ) self.refresh( section ) self.l.addStretch() def resizeEvent( self, event ): self.check_columns( kLibPose ) self.check_columns( kLibAnim ) self.check_columns( kLibRig ) def poses( self ): ######################################## # Poses self.pose_frame = FrameWidget( 'Poses', None, 600 ) self.l.addWidget( self.pose_frame ) widget = QWidget( self.pose_frame ) vLayout = QVBoxLayout( self ) self.pose_frame.setLayout( vLayout ) hLayout = QHBoxLayout( self ) vLayout.addLayout( hLayout ) # Buttons button1 = QPushButton( 'Save' ) button2 = QPushButton( 'Load' ) button1.clicked.connect( self.pose_export_dialog ) for button in [ button1, button2 ]: button.setMinimumWidth( self.button_width ) button.setMaximumWidth( self.button_width ) button.setMinimumHeight( self.button_height ) button.setMaximumHeight( self.button_height ) hLayout.addWidget( button1 ) hLayout.addWidget( button2 ) hLayout.addStretch() # Split Layout self.pose_split = QSplitter( Qt.Horizontal ) self.pose_split.splitterMoved.connect( partial( self.check_columns, kLibPose ) ) # Tree View self.pose_tree_scroll = QScrollArea() #self.pose_tree_scroll.setVerticalScrollBarPolicy( QtCore.Qt.ScrollBarAlwaysOn ) self.pose_tree_scroll.setHorizontalScrollBarPolicy( QtCore.Qt.ScrollBarAlwaysOff ) self.pose_tree_scroll.setWidgetResizable( True ) self.pose_tree_view = aniMetaTreeWidget() self.pose_tree_view.setHeaderLabel( 'Pose Folders' ) self.pose_tree_view.installEventFilter( self ) self.pose_tree_view.setContextMenuPolicy( QtCore.Qt.CustomContextMenu ) self.pose_tree_view.customContextMenuRequested.connect( self.pose_tree_ctx_menu ) self.pose_tree_scroll.setWidget( self.pose_tree_view ) self.pose_tree_view.selectionModel().selectionChanged.connect( partial ( self.tree_select, kLibPose ) ) self.pose_split.addWidget( self.pose_tree_scroll ) # Pose Panel self.pose_scroll = QScrollArea() self.pose_scroll.setVerticalScrollBarPolicy( QtCore.Qt.ScrollBarAlwaysOn ) self.pose_scroll.setHorizontalScrollBarPolicy( QtCore.Qt.ScrollBarAlwaysOff ) self.pose_scroll.setWidgetResizable( True ) self.pose_split.addWidget( self.pose_scroll ) vLayout.addWidget( self.pose_split ) self.pose_frame.setCollapsed( True ) # Poses ######################################## ######################################## # Animation def anims( self ): self.anim_frame = FrameWidget( 'Animation', None, 600 ) self.l.addWidget( self.anim_frame ) widget = QWidget( self.anim_frame ) vLayout = QVBoxLayout( self ) self.anim_frame.setLayout( vLayout ) hLayout = QHBoxLayout( self ) vLayout.addLayout( hLayout ) # Buttons button1 = QPushButton( 'Save' ) button2 = QPushButton( 'Load' ) button1.clicked.connect( self.export_anim_dialog ) for button in [ button1, button2 ]: button.setMinimumWidth( self.button_width ) button.setMaximumWidth( self.button_width ) button.setMinimumHeight( self.button_height ) button.setMaximumHeight( self.button_height ) hLayout.addWidget( button1 ) hLayout.addWidget( button2 ) hLayout.addStretch() # Split Layout self.anim_split = QSplitter( Qt.Horizontal ) self.anim_split.splitterMoved.connect( partial ( self.check_columns, kLibAnim ) ) # Tree View self.anim_tree_scroll = QScrollArea() #self.anim_tree_scroll.setVerticalScrollBarPolicy( QtCore.Qt.ScrollBarAlwaysOn ) self.anim_tree_scroll.setHorizontalScrollBarPolicy( QtCore.Qt.ScrollBarAlwaysOff ) self.anim_tree_scroll.setWidgetResizable( True ) self.anim_tree_view = aniMetaTreeWidget() self.anim_tree_view.setHeaderLabel( 'Animation Folders' ) self.anim_tree_view.installEventFilter( self ) self.anim_tree_view.setContextMenuPolicy( QtCore.Qt.CustomContextMenu ) self.anim_tree_view.customContextMenuRequested.connect( self.anim_tree_ctx_menu ) self.anim_tree_scroll.setWidget( self.anim_tree_view ) self.anim_tree_view.selectionModel().selectionChanged.connect( partial ( self.tree_select, kLibAnim ) ) self.anim_split.addWidget( self.anim_tree_scroll ) # Animation Panel self.anim_scroll = QScrollArea() self.anim_scroll.setVerticalScrollBarPolicy( QtCore.Qt.ScrollBarAlwaysOn ) self.anim_scroll.setHorizontalScrollBarPolicy( QtCore.Qt.ScrollBarAlwaysOff ) self.anim_scroll.setWidgetResizable( True ) self.anim_split.addWidget( self.anim_scroll ) vLayout.addWidget( self.anim_split ) self.anim_frame.setCollapsed( True ) # Animation ######################################## ######################################## # Rig Settings def rigs( self ): self.rig_frame = FrameWidget( 'Rigs', None, 600 ) self.l.addWidget( self.rig_frame ) widget = QWidget( self.rig_frame ) vLayout = QVBoxLayout( self ) self.rig_frame.setLayout( vLayout ) hLayout = QHBoxLayout( self ) vLayout.addLayout( hLayout ) # Buttons button1 = QPushButton( 'Save' ) button2 = QPushButton( 'Load' ) button1.clicked.connect( self.rig_export_dialog ) for button in [ button1, button2 ]: button.setMinimumWidth( self.button_width ) button.setMaximumWidth( self.button_width ) button.setMinimumHeight( self.button_height ) button.setMaximumHeight( self.button_height ) hLayout.addWidget( button1 ) hLayout.addWidget( button2 ) hLayout.addStretch() # Split Layout self.rig_split = QSplitter( Qt.Horizontal ) self.rig_split.splitterMoved.connect( partial ( self.check_columns, kLibRig ) ) # Tree View self.rig_tree_scroll = QScrollArea() self.rig_tree_scroll.setVerticalScrollBarPolicy( QtCore.Qt.ScrollBarAsNeeded ) self.rig_tree_scroll.setHorizontalScrollBarPolicy( QtCore.Qt.ScrollBarAlwaysOff ) self.rig_tree_scroll.setWidgetResizable( True ) self.rig_tree_view = aniMetaTreeWidget() self.rig_tree_view.setHeaderLabel( 'Rig Settings Folders' ) self.rig_tree_view.installEventFilter( self ) self.rig_tree_view.setContextMenuPolicy( QtCore.Qt.CustomContextMenu ) self.rig_tree_view.customContextMenuRequested.connect( self.rig_tree_ctx_menu
another aperture. """ # find the room and include the room shell geometry. # include the rest of the scene except for indoor geometries for that room. # here is a place that light-path is necessary to be able to know what is indoor # and what is outdoor. raise NotImplementedError() def aperture_files(self, black_out=False, rel_path=True): """Return list of files for apertures. This list includes both geometry and modifier files. This method will raise a ValueError if it cannot find a modifier file with the same name as the geometry file. Args: black_out (str): Set black_out to True for "isolated" studies for aperture groups. rel_path (str): Set rel_path to False for getting full path to files. By default the path is relative to study folder root. """ cfg = self._config['APERTURE'] pattern = cfg['geo_pattern'] geometry_files = self._find_files( self.aperture_folder(full=True), pattern, rel_path ) pattern = cfg['blk_pattern'] if black_out else cfg['mod_pattern'] modifier_files = self._find_files( self.aperture_folder(full=True), pattern, rel_path ) return self._match_files(modifier_files, geometry_files) def aperture_group_files_black(self, exclude=None, rel_path=False): """Return list of files for black aperture groups. Args: exclude: Identifier of aperture groups to exclude from the list of black aperture groups files. This input can be either a single aperture group identifier or a list of aperture group identifiers. rel_path: Set rel_path to True for getting full path to files. By default the path is relative to study folder root. """ if exclude and not isinstance(exclude, (list, tuple)): exclude = [exclude] else: exclude = [] states = self.aperture_groups_states(full=True) blk_files = [] for aperture_group, ap_states in states.items(): if aperture_group in exclude: continue blk_file = os.path.normpath(ap_states[0]['black']) blk_file = os.path.join(self.aperture_group_folder(full=rel_path), blk_file) blk_files.append(self._as_posix(blk_file)) return blk_files def scene_files(self, black_out=False, rel_path=True): """Return list of files for scene. Args: black_out (str): Set black_out to True for direct sunlight studies. rel_path (str): Set rel_path to False for getting full path to files. By default the path is relative to study folder root. """ cfg = self._config['SCENE'] pattern = cfg['geo_pattern'] geometry_files = self._find_files( self.scene_folder(full=True), pattern, rel_path ) pattern = cfg['blk_pattern'] if black_out else cfg['mod_pattern'] modifier_files = self._find_files( self.scene_folder(full=True), pattern, rel_path ) return self._match_files(modifier_files, geometry_files) def grid_files(self, rel_path=True, group=None): """Return list of grid files.""" cfg = self._config['GRID'] pattern = cfg['grid_pattern'] if not group: grid_files = self._find_files( self.grid_folder(full=True), pattern, rel_path ) else: grid_files = self._find_files( os.path.join(self.grid_folder(full=True), group), pattern, rel_path ) return grid_files def grid_info_files(self, rel_path=True): """Return list of grid information files.""" cfg = self._config['GRID'] pattern = cfg['info_pattern'] grid_info_files = self._find_files( self.grid_folder(full=True), pattern, rel_path ) return grid_info_files def view_files(self, rel_path=True): """Return list of view files.""" cfg = self._config['VIEW'] pattern = cfg['view_pattern'] view_files = self._find_files( self.view_folder(full=True), pattern, rel_path ) return view_files def view_info_files(self, rel_path=True): """Return list of view information files.""" cfg = self._config['VIEW'] pattern = cfg['info_pattern'] view_info_files = self._find_files( self.view_folder(full=True), pattern, rel_path ) return view_info_files def receiver_files(self, rel_path=True): """Return list of receiver files.""" cfg = self._config['RECEIVER'] pattern = cfg['receiver_pattern'] receiver_files = self._find_files( self.receiver_folder(full=True), pattern, rel_path ) return receiver_files def receiver_info_file(self, rel_path=True): """Return the receiver information file.""" cfg = self._config['RECEIVER'] pattern = cfg['info_pattern'] receiver_info_file = self._find_files( self.receiver_folder(full=True), pattern, rel_path ) return receiver_info_file[0] def aperture_groups(self, interior=False, reload=False): """List of apertures groups. Args: interior (bool): Boolean switch to return interior dynamic apertures. reload (bool): Dynamic geometries are loaded the first time this method is called. To reload the files set reload to True. Returns: A list of dynamic apertures. """ if reload or self._aperture_groups_load: # load dynamic apertures self._load_aperture_groups() self._aperture_groups_load = False return self._aperture_group_interior if interior else self._aperture_group def aperture_groups_states(self, full=False, interior=False): """Return states information for aperture groups. Arg: full: A boolean to note if the path should be a full path or a relative path (default: False). interior: Set to True to get the states information for the interior aperture groups. """ apt_group_folder = self.aperture_group_folder(full=full, interior=interior) if interior: states_file = os.path.join( apt_group_folder, self._config['INTERIOR-APERTURE-GROUP']['states']) else: states_file = os.path.join( apt_group_folder, self._config['APERTURE-GROUP']['states']) return parse_states(states_file) def combined_receivers(self, folder='receiver', auto_mtx_path=False): """Write combined receiver files to folder. This function writes a combined receiver file of the aperture groups for all grids in the folder. It will look for the light paths (aperture groups) of the grid and include only aperture groups that has a mtx file. This is intended for matrix-based daylight simulations, e.g. 3-phase, in which a view matrix is calculated. The combined receiver file allow multiple view matrices to be calculated at once, while still saving the result of each aperture group in a unique view matrix file. Arg: folder: A path of the target folder to write files to (default: 'receiver'). auto_mtx_path: If set to True, then the path of the view matrices will be specified automatically. Returns: A dictionary containing grid identifiers as keys and the receiver rad files as values. """ grids = self.grid_data_all() or [] apt_group_folder = self.aperture_group_folder(full=False) states = self.aperture_groups_states(full=True) rec_folder = os.path.join( self.model_folder(True), folder ) if not os.path.isdir(rec_folder): os.mkdir(rec_folder) receivers_info = [] # find the light_path for each grid for grid in grids: if not 'light_path' in grid or not grid['light_path']: # The light-path for this grid is not set # This grid will be ignored for 3/5 phase studies warnings.warn( '%s sensor grid has no light-path. It will not be included in three ' 'or five phase studies.' % grid['name'] ) continue light_path = grid['light_path'] # remove the static windows and non-bsdf groups aperture_groups = [ p[0] for p in light_path if p[0] in states and 'vmtx' in states[p[0]][0] ] if not aperture_groups: # The light-path for this grid is static or # non-bsdf groups warnings.warn( '%s sensor grid has no view matrix receiver. It will not be ' 'included in three or five phase studies.' % grid['name'] ) continue # write combined receiver for grid receiver_file = combined_receiver( grid['identifier'], apt_group_folder, aperture_groups, rec_folder, add_output_header=auto_mtx_path ) receivers_info.append( { 'identifier': grid['identifier'], 'count': grid['count'], 'path': receiver_file, 'aperture_groups': aperture_groups } ) receivers_info_file = os.path.join(rec_folder, '_info.json') with open(receivers_info_file, 'w') as outf: outf.write(json.dumps(receivers_info, indent=2)) return receivers_info def octree_scene_mapping(self, exclude_static=True, phase=2): """List of rad files for each state of aperture groups. These files can be used to create the octree for each specific state for dynamic daylight simulations. Arg: exclude_static: A boolean to note whether static apertures are included. If True static apertures will be treated as a state, and a list of scene files for static apertures will be created. phase: An integer to note which multiphase study to generate the list of grids for. Chose between 2, 3, and 5.""" # check if phase is valid if phase not in [2, 3, 5]: raise ValueError( '%s is not a valid phase. Must be 2, 3 or 5.' % phase ) two_phase, three_phase, five_phase = [], [], [] # two phase static apertures if self.has_aperture and not exclude_static: scene_files = self.scene_files() + self.aperture_files() scene_files_direct = self.scene_files(black_out=True) + self.aperture_files() if self.has_aperture_group: # add black aperture groups if any scene_files += self.aperture_group_files_black() scene_files_direct += self.aperture_group_files_black() two_phase.append( { 'light_path': '__static_apertures__', 'identifier': '__static_apertures__', 'scene_files': scene_files, 'scene_files_direct': scene_files_direct } ) if self.has_aperture_group: states = self.aperture_groups_states(full=True) # add scene files for each state. Static apertures and all other aperture # groups will be black for aperture_group, ap_states in states.items(): for state in ap_states: if not 'tmtx' in state or ('tmtx' in state and phase == 2): pattern = '%s$' % state['default'].replace('./', '') scene_files = self.scene_files() + \ self.aperture_files(black_out=True) + \ self._find_files( self.aperture_group_folder(full=True), pattern) + \ self.aperture_group_files_black(exclude=aperture_group) scene_files_direct = self.scene_files(black_out=True) + \ self.aperture_files(black_out=True) + \ self._find_files( self.aperture_group_folder(full=True), pattern) + \ self.aperture_group_files_black(exclude=aperture_group) two_phase.append( { 'light_path': aperture_group, 'identifier': state['identifier'], 'scene_files': scene_files, 'scene_files_direct': scene_files_direct } ) else: # five phase pattern = '%s$' % state['direct'].replace('./', '') five_phase.append( { 'light_path': aperture_group, 'identifier': state['identifier'], 'scene_files_direct': self.scene_files(black_out=True) + \ self.aperture_files(black_out=True) + \ self._find_files(self.aperture_group_folder(full=True), pattern) + \ self.aperture_group_files_black(exclude=aperture_group) } ) # three phase three_phase.append( { 'light_path': None, 'identifier': '__three_phase__', 'scene_files': self.scene_files() + self.aperture_files(), 'scene_files_direct': self.scene_files(black_out=True) + \ self.aperture_files(black_out=True) } ) if phase == 2: scene_mapping = { 'two_phase': two_phase } if phase ==
there are clean components, then #do a "soft" denoising else: full_matrix_to_be_used = np.vstack((noise_comps_post_filter, clean_comps_post_filter))[:,good_timepoint_inds].transpose() noise_comps_post_filter_T_to_be_used = noise_comps_post_filter[:,good_timepoint_inds].transpose() XT_X_Neg1_XT = imaging_utils.calculate_XT_X_Neg1_XT(full_matrix_to_be_used) for temp_time_signal_dim in range(filtered_time_series.shape[0]): regressed_time_signal[good_timepoint_inds,temp_time_signal_dim] = imaging_utils.partial_clean_fast(filtered_time_series_T[good_timepoint_inds,temp_time_signal_dim], XT_X_Neg1_XT, noise_comps_post_filter_T_to_be_used) #Put back into original dimensions regressed_time_signal = regressed_time_signal.transpose() #Now apply interpolation interpolated_time_signal = np.zeros(regressed_time_signal.shape) if interpolation_method == 'spectral': interpolated_time_signal = spectral_interpolation_fast(good_timepoints, regressed_time_signal, parc_obj.TR) else: for dim in range(regressed_time_signal.shape[0]): interpolated_time_signal[dim,:] = interpolate(good_timepoints, regressed_time_signal[dim,:], interpolation_method, parc_obj.TR) #Now if necessary, apply additional filterign: if high_pass == False and low_pass == False: filtered_time_signal = interpolated_time_signal else: if high_pass != False and low_pass == False: b, a = imaging_utils.construct_filter('highpass', [high_pass], parc_obj.TR, 6) elif high_pass == False and low_pass != False: b, a = imaging_utils.construct_filter('lowpass', [low_pass], parc_obj.TR, 6) elif high_pass != False and low_pass != False: b, a = imaging_utils.construct_filter('bandpass', [high_pass, low_pass], parc_obj.TR, 6) filtered_time_signal = np.zeros(regressed_time_signal.shape) for dim in range(regressed_time_signal.shape[0]): filtered_time_signal[dim,:] = imaging_utils.apply_filter(b,a,regressed_time_signal[dim,:]) #Now set all the undefined timepoints to Nan cleaned_time_signal = filtered_time_signal cleaned_time_signal[:,bad_timepoint_inds] = np.nan return cleaned_time_signal, good_timepoint_inds def flexible_orth_denoise_parc(parc_obj, hpf_before_regression, scrub_criteria_dictionary, interpolation_method, noise_comps_dict, clean_comps_dict, high_pass, low_pass): #THIS FUNCTION IS THE SAME AS FLEXIBLE DENOISE PARC, #EXCEPT FOR HERE, THE REGRESSORS IDENTIFIED BY CLEAN #COMPS DICT ARE REGRESSED FROM THE REGRESSORS IDENTIFIED #BY NOISE COMPS DICT PRIOR TO THE REGRESSORS FROM NOISE COMPS #DICT BEING USED TO CLEAN THE TIMESERIES. THIS MEANS THE MODEL #TO CLEAN THE TIMESERIES WILL ONLY CONTAIN THE ORTHOGONALIZED #NUISANCE VARIABLES (filtering and other options will be applied #as per usual) #Function inputs: #parc_object = a parcellated timeseries object generated from #file "imaging_utility_classes.py" which will contain both an #uncleaned parcellated time series, and other nuisance variables # etc. of interest #hpf_before_regression = the cutoff frequency for an optional high #pass filter that can be applied to the nuisance regressors (noise/clean) and the #uncleaned time signal before any regression or scrubbing occurs. Recommended #value would be 0.01 or False (False for if you want to skip this step) #scrub_criteria_dictionary = a dictionary that describes how scrubbing should be #implemented. Three main options are (1) instead of inputting a dictionary, setting this #variable to False, which will skip scrubbing, (2) {'Uniform' : [AMOUNT_TO_KEEP, ['std_dvars', 'framewise_displacement']]}, #which will automatically only keep the best timepoints (for if you want all subjects to be scrubbed an equivelant amount). #This option will keep every timepoint if AMOUNT_TO_KEEP was 1, and no timepoints if it was 0. The list of confounds following #AMOUNT_TO_KEEP must at least contain one metric (but can be as many as you want) from parc_object.confounds. If more than one #metric is given, they will be z-transformed and their sum will be used to determine which timepoints should be #kept, with larger values being interpreted as noiser (WHICH MEANS THIS OPTION SHOULD ONLY BE USED WITH METRICS WHERE #ZERO OR NEGATIVE BASED VALUES ARE FINE AND LARGE POSITIVE VALUES ARE BAD) - this option could potentially produce #slightly different numbers of timepoints accross subjects still if the bad timepoints overlap to varying degrees with #the number of timepoints that are dropped at the beginning of the scan. (3) {'std_dvars' : 1.2, 'framewise_displacement' : 0.5} - #similar to the "Uniform" option, the input metrics should be found in parc_object.confounds. Here only timepoints #with values below all specified thresholds will be kept for further analyses #interpolation_method: options are 'linear', 'cubic_spline' and (IN FUTURE) 'spectral'. #While scrubbed values are not included to determine any of the weights in the denoising #model, they will still be interpolated over and then "denoised" (have nuisance variance #removed) so that we have values to put into the optional filter at the end of processing. #The interpolated values only have any influence on the filtering proceedure, and will be again #removed from the time signal after filtering and thus not included in the final output. Interpolation #methods will do weird things if there aren't many timepoints after scrubbing. All interpolation #schemes besides spectral are essentially wrappers over scipy's 1d interpolation methods. 'spectral' #interpolation is implemented based on code from <NAME>/<NAME> #as shown in Power's 2014 NeuroImage paper #noise_comps_dict and clean_comps_dict both have the same syntax. The values #specified by both of these matrices will be used (along with constant and linear trend) #to construct the denoising regression model for the input timeseries, but only the #noise explained by the noise_comps_dict will be removed from the input timeseries ( #plus also the constant and linear trend). Unlike the scrub_criteria_dictionary, the #data specifed here do not need to come from the confounds section of the parc_object, #and because of this, if you want to include something found under parc_object.confounds, #you will need to specify "confounds" in the name. An example of the dictionary can be seen below: # # clean_comps_dict = {'aroma_clean_ics' : False} # # # noise_comps_dict = {'aroma_noise_ics' : 5, # 'confounds.wmcsfgsr' : False # 'confounds.twelve_motion_regs' : False # } # # #The dictionary key should specify an element to be included in the denoising process #and the dictionary value should be False if you don't want to do a PCA reduction on #the set of nuisance variables (this will be the case more often than not), alternatively #if the key represents a grouping of confounds, then you can use the value to specify the #number of principal components to kept from a reduction of the grouping. If hpf_before_regression #is used, the filtering will happen after the PCA. # # # #high_pass, low_pass: Filters to be applied as the last step in processing. #set as False if you don't want to use them, otherwise set equal to the #cutoff frequency # #If any of the input parameters are set to True, they will be treated as if they were #set to False, because True values wouldn't mean anything.... # # # ################################################################################################# ################################################################################################# ################################################################################################# ################################################################################################# ################################################################################################# ################################################################################################# #Create an array with 1s for timepoints to use, and 0s for scrubbed timepointsx good_timepoints = find_timepoints_to_scrub(parc_obj, scrub_criteria_dictionary) #Load the arrays with the data for both the clean and noise components to be used in regression clean_comps_pre_filter = load_comps_dict(parc_obj, clean_comps_dict) noise_comps_pre_filter = load_comps_dict(parc_obj, noise_comps_dict) #Apply an initial HPF to everything if necessary - this does not remove scrubbed timepoints, #but does skips the first n_skip_vols (which will be set to 0 and not used in subsequent steps) if hpf_before_regression != False: b, a = imaging_utils.construct_filter('highpass', [hpf_before_regression], parc_obj.TR, 6) #start with the clean comps matrix if type(clean_comps_pre_filter) != type(False): clean_comps_post_filter = np.zeros(clean_comps_pre_filter.shape) for clean_dim in range(clean_comps_pre_filter.shape[0]): clean_comps_post_filter[clean_dim, parc_obj.n_skip_vols:] = imaging_utils.apply_filter(b, a, clean_comps_pre_filter[clean_dim, parc_obj.n_skip_vols:]) #this option for both clean/noise indicates there is no input matrix to filter else: clean_comps_post_filter = False #Move to the noise comps matrix if type(noise_comps_pre_filter) != type(False): noise_comps_post_filter = np.zeros(noise_comps_pre_filter.shape) for noise_dim in range(noise_comps_pre_filter.shape[0]): noise_comps_post_filter[noise_dim, parc_obj.n_skip_vols:] = imaging_utils.apply_filter(b, a, noise_comps_pre_filter[noise_dim, parc_obj.n_skip_vols:]) else: noise_comps_post_filter = False #then filter the original time signal filtered_time_series = np.zeros(parc_obj.time_series.shape) for original_ts_dim in range(parc_obj.time_series.shape[0]): filtered_time_series[original_ts_dim, parc_obj.n_skip_vols:] = imaging_utils.apply_filter(b, a, parc_obj.time_series[original_ts_dim, parc_obj.n_skip_vols:]) #If you don't want to apply the initial HPF, then #just make a copy of the matrices of interest else: clean_comps_post_filter = clean_comps_pre_filter noise_comps_post_filter = noise_comps_pre_filter filtered_time_series = parc_obj.time_series #Now create the nuisance regression model. Only do this step if #the noise_comps_post_filter isn't false. good_timepoint_inds = np.where(good_timepoints == True)[0] bad_timepoint_inds = np.where(good_timepoints == False)[0] if type(noise_comps_post_filter) == type(False): regressed_time_signal = filtered_time_series else: #Weird thing where I need to swap dimensions here...(implemented correctly) #First add constant/linear trend to the denoising model constant = np.ones((1,filtered_time_series.shape[1])) linear_trend = np.linspace(0,filtered_time_series.shape[1],num=filtered_time_series.shape[1]) linear_trend = np.reshape(linear_trend, (1,filtered_time_series.shape[1]))[0] noise_comps_post_filter = np.vstack((constant, linear_trend, noise_comps_post_filter)) regressed_time_signal = np.zeros(filtered_time_series.shape).transpose() filtered_time_series_T =
<reponame>the-utkarshjain/GUI-for-Fortran<filename>gui_func.py """ @name `gui_func.py` @description `src file for GUI Main class, subclass of <GUIBase>` @package `GUI for Fortran/C++ Application` @official_repository `https://github.com/the-utkarshjain/GUI-for-Fortran` @contributors * <NAME> * <NAME> * <NAME> * Navya * <NAME>` """ from gui_base import GUIBase, PlotEncapsulator, GUI_exception import threading import time import numpy as np import matplotlib.pyplot as plt import os import hashlib import random import subprocess from copy import deepcopy import math class GUIMain(GUIBase): r''' Primary class to be used for implementation. ''' def __init__(self, *args, **kwargs): super(GUIMain, self).__init__(*args, **kwargs) @classmethod @GUI_exception def _refresh_utility(cls, first_file_path: str, second_file_path: str, third_file_path: str, memory: dict) -> bool: r''' Function to check if any input file is changed/updated and run the executable in case files are changed/updated. ''' isupdates = False checksum_file_1 = hashlib.sha256(open(first_file_path, 'r').read().encode('utf-8')).hexdigest() checksum_file_2 = hashlib.sha256(open(second_file_path, 'r').read().encode('utf-8')).hexdigest() checksum_file_3 = hashlib.sha256(open(third_file_path, 'r').read().encode('utf-8')).hexdigest() if memory.get(first_file_path, None) != checksum_file_1: memory[first_file_path] = checksum_file_1 isupdates = True if memory.get(second_file_path, None) != checksum_file_2: memory[second_file_path] = checksum_file_2 isupdates = True if memory.get(third_file_path, None) != checksum_file_3: memory[third_file_path] = checksum_file_3 isupdates = True if isupdates == False: print("No updates found in the input file.") return type(isupdates) is bool @classmethod @GUI_exception def _nonblocking_execute_external_code(cls, exe_file_path: str, thread_queue: list): r''' Function to execute the fortran executable and generate output file. ''' def target_func(x): return subprocess.call([x]) t = threading.Thread(target=target_func, args=(exe_file_path,)) thread_queue.append(t) t.start() @PlotEncapsulator @GUI_exception def _plot_first_2D_data(self, output_file_path: str, time_file_path: str): r''' Function to plot experimental data with reespect to timestamp. ''' time = [] conc = [] with open(time_file_path,'r') as file: data = file.read().splitlines() for row in range(1,len(data)): if row>int(data[0]): time.append(float(data[row])) with open(output_file_path,'r') as file: data = file.read().splitlines() for line in data: x, y = line.split() x = float(x) conc.append(x) plt.scatter(time,conc, marker='o', color='black') plt.xlabel('Time') plt.ylabel('Concentration') plt.title('Observed-BTC [ {} ]'.format(self.mode)) @PlotEncapsulator @GUI_exception def _plot_second_2D_data(self, output_file_path: str, time_file_path: str): r''' Function to plot simulation data with reespect to timestamp. ''' time = [] conc = [] with open(time_file_path,'r') as file: data = file.read().splitlines() for row in range(1,len(data)): if row>int(data[0]): time.append(float(data[row])) with open(output_file_path,'r') as file: data = file.read().splitlines() for line in data: x, y = line.split() y = float(y) conc.append(y) plt.plot(time,conc) plt.xlabel('Time') plt.ylabel('Concentration') plt.title('Concentration-Time graph [ {} ]'.format(self.mode)) @PlotEncapsulator @GUI_exception def _plot_both_2D_data(self, output_file_path: str, time_file_path: str): r''' Function to plot simulation and experimental data on same canvas. ''' time = [] conc1 = [] conc2=[] with open(time_file_path,'r') as file: data = file.read().splitlines() for row in range(1,len(data)): if row>int(data[0]): time.append(float(data[row])) with open(output_file_path,'r') as file: data = file.read().splitlines() for line in data: x, y = line.split() x, y = float(x), float(y) conc1.append(x) conc2.append(y) plt.scatter(time,conc1, marker='o',label='Observed',color='black') plt.plot(time,conc2, label='Simulated [ {} ]'.format(self.mode)) plt.xlabel('Time') plt.ylabel('Concentration') plt.title('Simulated-BTC [ {} ]'.format(self.mode)) plt.legend() @classmethod @GUI_exception def _inplace_update_variable_dictionary(cls, first_file_path: str, second_file_path: str, third_file_path: str, variable_dictionary: dict) -> None: r''' Function to update variable dictionary in place using the manually entered values ''' try: file1 = open(first_file_path, "r") variable_dictionary["Mesopore seepage velocity"] = file1.readline().strip() variable_dictionary["Macropore seepage velocity"] = file1.readline().strip() variable_dictionary["Solute mass transfer rate b/w meso-micropore"] = file1.readline().strip() variable_dictionary["Solute mass transfer rate b/w meso-macropore"] = file1.readline().strip() variable_dictionary["Dispersivity"] = file1.readline().strip() variable_dictionary["No. of observation time steps"] = file1.readline().strip() finally: file1.close() try: file3 = open(third_file_path, "r") line = file3.readline().split() variable_dictionary["nz"] = line[0] variable_dictionary["nm"] = line[1] line = file3.readline().split() variable_dictionary["Length"] = line[0] variable_dictionary["Bulk density of porous media"] = line[1] variable_dictionary["Run time"] = line[2] variable_dictionary["Pulse time"] = line[3] variable_dictionary["delta_t"] = line[4] variable_dictionary["delta_x"] = line[5] line = file3.readline().split() variable_dictionary["Porosity of the macropore region"] = line[0] variable_dictionary["Porosity of the mesopore region"] = line[1] variable_dictionary["Porosity of the micropore region"] = line[2] line = file3.readline().split() variable_dictionary["Instantaneous sorption fraction in macropore region"] = line[0] variable_dictionary["Instantaneous sorption fraction in mesopore region"] = line[1] variable_dictionary["Instantaneous sorption fraction in micropore region"] = line[2] variable_dictionary["Fraction of sorption site available for macropore region"] = line[3] variable_dictionary["Fraction of sorption site available for mesopore region"] = line[4] variable_dictionary["Fraction of sorption site available for immobile region"] = line[5] line = file3.readline().split() variable_dictionary["Equilibrium sorption coefficient in macropore region"] = line[0] variable_dictionary["Equilibrium sorption coefficient in mesopore region"] = line[1] variable_dictionary["Equilibrium sorption coefficient in micropore region"] = line[2] variable_dictionary["Rate-limited sorbed coefficient in macropore region"] = line[3] variable_dictionary["Rate-limited sorbed coefficient in mesopore region"] = line[4] variable_dictionary["Rate-limited sorbed coefficient in micropore region"] = line[5] finally: file3.close() @classmethod @GUI_exception def _write_updated_values(cls, first_file_path: str, second_file_path: str, third_file_path: str, variable_dictionary: dict) -> None: r''' Function to update values (manually entered by user) in the files from the variable dictionary. ''' try: with open(first_file_path, "r") as f: temp = f.readlines() file1 = open(first_file_path, "w") lines = ["Mesopore seepage velocity", "Macropore seepage velocity", "Solute mass transfer rate b/w meso-micropore", "Solute mass transfer rate b/w meso-macropore", "Dispersivity", "No. of observation time steps"] for line in lines[:-1]: file1.write(variable_dictionary[line]+str("\n")) file1.write(str(int(float(variable_dictionary[lines[-1]])))+str("\n")) file1.write("".join(temp[6:])) finally: file1.close() try: file3 = open(third_file_path, "w") lines = ["nz", "nm"] for line in lines[:-1]: file3.write(str(int(float(variable_dictionary[line])))+str(" ")) file3.write(str(int(float(variable_dictionary[lines[-1]])))+str("\n")) lines = ["Length", "Bulk density of porous media", "Run time", "Pulse time", "delta_t", "delta_x"] for line in lines[:-1]: file3.write(variable_dictionary[line]+str(" ")) file3.write(variable_dictionary[lines[-1]]+str("\n")) lines = ["Porosity of the macropore region", "Porosity of the mesopore region", "Porosity of the micropore region"] for line in lines[:-1]: file3.write(variable_dictionary[line]+str(" ")) file3.write(variable_dictionary[lines[-1]]+str("\n")) lines = ["Instantaneous sorption fraction in macropore region", "Instantaneous sorption fraction in mesopore region", "Instantaneous sorption fraction in micropore region", "Fraction of sorption site available for macropore region", "Fraction of sorption site available for mesopore region", "Fraction of sorption site available for immobile region"] for line in lines[:-1]: file3.write(variable_dictionary[line]+str(" ")) file3.write(variable_dictionary[lines[-1]]+str("\n")) lines = ["Equilibrium sorption coefficient in macropore region", "Equilibrium sorption coefficient in mesopore region", "Equilibrium sorption coefficient in micropore region", "Rate-limited sorbed coefficient in macropore region", "Rate-limited sorbed coefficient in mesopore region", "Rate-limited sorbed coefficient in micropore region"] for line in lines[:-1]: file3.write(variable_dictionary[line]+str(" ")) file3.write(variable_dictionary[lines[-1]]+str("\n")) finally: file3.close() @GUI_exception def _export_timestamps_data(self, time_series: list, first_file_path: str, second_file_path: str, third_file_path: str) -> None: r''' Function to export timestamp data to an external file. ''' time_series_copy = map(lambda x: str(x), time_series) as_string = "\n".join(time_series_copy) with open(second_file_path, "w") as f: f.write(as_string) @GUI_exception def _import_timestamps_data(self, first_file_path: str, second_file_path: str, third_file_path: str) -> list: r''' Function to import time-stamp data manually. ''' try: file2 = open(second_file_path, "r") skip = int(file2.readline()) for i in range(skip): file2.readline() timestamps_data = file2.read().splitlines() finally: file2.close() time_series = [float(i) for i in timestamps_data] return time_series @GUI_exception def _export_concentration_data(self, time_series: list, first_file_path: str, second_file_path: str, third_file_path: str) -> None: r''' Function to export concentration data to an external file. ''' time_series_copy = map(lambda x: str(x), time_series) as_string = "\n".join(time_series_copy) with open(first_file_path, "w") as f: f.write(as_string) @GUI_exception def _import_concentration_data(self, first_file_path: str, second_file_path: str, third_file_path: str) -> list: r''' Function to import concentration data manually. ''' try: file1 = open(first_file_path, "r") for i in range(6): file1.readline() concentration_data = file1.read().splitlines() finally: file1.close() consentration_series = [float(i) for i in concentration_data] return consentration_series @GUI_exception def _initialize_variables(self): r''' Function to initialise variables in accordance with the modes as suggested in first feedback. ''' return { "ADE": { "nz": None, "nm": None, "Length": None, "Bulk density of porous media": None, "Run time": None, "Pulse time": None, "delta_t": None, "delta_x": None, "Porosity of the macropore region": None, "Porosity of the mesopore region": 1e-16, "Porosity of the micropore region": 1e-16, "Instantaneous sorption fraction in macropore region": 1, "Instantaneous sorption fraction in mesopore region": 1e-16, "Instantaneous sorption fraction in micropore region": 1e-16, "Fraction of sorption site available for macropore region": 1, "Fraction of sorption site available for mesopore region": 1e-16, "Fraction of sorption site available for immobile region": 1e-16, "Equilibrium sorption coefficient in macropore region": None, "Equilibrium sorption coefficient in mesopore region": 1e-16, "Equilibrium sorption coefficient in micropore region": 1e-16, "Rate-limited sorbed coefficient in macropore region": 1e-16, "Rate-limited sorbed coefficient in mesopore region": 1e-16, "Rate-limited sorbed coefficient in micropore region": 1e-16, "Mesopore seepage velocity": 1e-16, "Macropore seepage velocity": None, "Solute mass transfer rate b/w meso-micropore": 1e-16, "Solute mass transfer rate b/w meso-macropore": 1e-16, "Dispersivity": None, "No. of observation time steps": None, }, "MIM": { "nz": None, "nm": None, "Length": None, "Bulk density of porous media": None, "Run time": None, "Pulse time": None, "delta_t": None, "delta_x": None, "Porosity of the macropore region": None, "Porosity of the
import pandas as pd from . import register_class, EXP_NAMESPACE from ..container import Table, Row, Container, AbstractContainer from ..utils import docval, popargs class KeyTable(Table): """ A table for storing keys used to reference external resources """ __defaultname__ = 'keys' __columns__ = ( {'name': 'key', 'type': str, 'doc': 'The user key that maps to the resource term / registry symbol.'}, ) class Key(Row): """ A Row class for representing rows in the KeyTable """ __table__ = KeyTable class ResourceTable(Table): """ A table for storing names of ontology sources and their uri """ __defaultname__ = 'resources' __columns__ = ( {'name': 'resource', 'type': str, 'doc': 'The resource/registry that the term/symbol comes from.'}, {'name': 'resource_uri', 'type': str, 'doc': 'The URI for the resource term / registry symbol.'}, ) class Resource(Row): """ A Row class for representing rows in the ResourceTable """ __table__ = ResourceTable class EntityTable(Table): """ A table for storing the external resources a key refers to """ __defaultname__ = 'entities' __columns__ = ( {'name': 'keys_idx', 'type': (int, Key), 'doc': ('The index into the keys table for the user key that ' 'maps to the resource term / registry symbol.')}, {'name': 'resources_idx', 'type': (int, Resource), 'doc': 'The index into the ResourceTable.'}, {'name': 'entity_id', 'type': str, 'doc': 'The unique ID for the resource term / registry symbol.'}, {'name': 'entity_uri', 'type': str, 'doc': 'The URI for the resource term / registry symbol.'}, ) class Entity(Row): """ A Row class for representing rows in the EntityTable """ __table__ = EntityTable class ObjectTable(Table): """ A table for storing objects (i.e. Containers) that contain keys that refer to external resources """ __defaultname__ = 'objects' __columns__ = ( {'name': 'object_id', 'type': str, 'doc': 'The object ID for the Container/Data'}, {'name': 'field', 'type': str, 'doc': 'The field on the Container/Data that uses an external resource reference key'}, ) class Object(Row): """ A Row class for representing rows in the ObjectTable """ __table__ = ObjectTable class ObjectKeyTable(Table): """ A table for identifying which keys are used by which objects for referring to external resources """ __defaultname__ = 'object_keys' __columns__ = ( {'name': 'objects_idx', 'type': (int, Object), 'doc': 'the index into the objects table for the object that uses the key'}, {'name': 'keys_idx', 'type': (int, Key), 'doc': 'the index into the key table that is used to make an external resource reference'} ) class ObjectKey(Row): """ A Row class for representing rows in the ObjectKeyTable """ __table__ = ObjectKeyTable @register_class('ExternalResources', EXP_NAMESPACE) class ExternalResources(Container): """A table for mapping user terms (i.e. keys) to resource entities.""" __fields__ = ( {'name': 'keys', 'child': True}, {'name': 'resources', 'child': True}, {'name': 'objects', 'child': True}, {'name': 'object_keys', 'child': True}, {'name': 'entities', 'child': True}, ) @docval({'name': 'name', 'type': str, 'doc': 'the name of this ExternalResources container'}, {'name': 'keys', 'type': KeyTable, 'default': None, 'doc': 'the table storing user keys for referencing resources'}, {'name': 'resources', 'type': ResourceTable, 'default': None, 'doc': 'the table for storing names of resources and their uri'}, {'name': 'entities', 'type': EntityTable, 'default': None, 'doc': 'the table storing entity information'}, {'name': 'objects', 'type': ObjectTable, 'default': None, 'doc': 'the table storing object information'}, {'name': 'object_keys', 'type': ObjectKeyTable, 'default': None, 'doc': 'the table storing object-resource relationships'}) def __init__(self, **kwargs): name = popargs('name', kwargs) super().__init__(name) self.keys = kwargs['keys'] or KeyTable() self.resources = kwargs['resources'] or ResourceTable() self.entities = kwargs['entities'] or EntityTable() self.objects = kwargs['objects'] or ObjectTable() self.object_keys = kwargs['object_keys'] or ObjectKeyTable() @docval({'name': 'key_name', 'type': str, 'doc': 'the name of the key to be added'}) def _add_key(self, **kwargs): """ Add a key to be used for making references to external resources It is possible to use the same *key_name* to refer to different resources so long as the *key_name* is not used within the same object and field. To do so, this method must be called for the two different resources. The returned Key objects must be managed by the caller so as to be appropriately passed to subsequent calls to methods for storing information about the different resources. """ key = kwargs['key_name'] return Key(key, table=self.keys) @docval({'name': 'key', 'type': (str, Key), 'doc': 'the key to associate the entity with'}, {'name': 'resources_idx', 'type': (int, Resource), 'doc': 'the id of the resource'}, {'name': 'entity_id', 'type': str, 'doc': 'unique entity id'}, {'name': 'entity_uri', 'type': str, 'doc': 'the URI for the entity'}) def _add_entity(self, **kwargs): """ Add an entity that will be referenced to using the given key """ key = kwargs['key'] resources_idx = kwargs['resources_idx'] entity_id = kwargs['entity_id'] entity_uri = kwargs['entity_uri'] if not isinstance(key, Key): key = self._add_key(key) resource_entity = Entity(key, resources_idx, entity_id, entity_uri, table=self.entities) return resource_entity @docval({'name': 'resource', 'type': str, 'doc': 'the name of the ontology resource'}, {'name': 'uri', 'type': str, 'doc': 'uri associated with ontology resource'}) def _add_resource(self, **kwargs): """ Add resource name and uri to ResourceTable that will be referenced by the ResourceTable idx. """ resource_name = kwargs['resource'] uri = kwargs['uri'] resource = Resource(resource_name, uri, table=self.resources) return resource @docval({'name': 'container', 'type': (str, AbstractContainer), 'doc': 'the Container/Data object to add or the object_id for the Container/Data object to add'}, {'name': 'field', 'type': str, 'doc': 'the field on the Container to add'}) def _add_object(self, **kwargs): """ Add an object that references an external resource """ container, field = popargs('container', 'field', kwargs) if isinstance(container, AbstractContainer): container = container.object_id obj = Object(container, field, table=self.objects) return obj @docval({'name': 'obj', 'type': (int, Object), 'doc': 'the Object to that uses the Key'}, {'name': 'key', 'type': (int, Key), 'doc': 'the Key that the Object uses'}) def _add_external_reference(self, **kwargs): """ Specify that an object (i.e. container and field) uses a key to reference an external resource """ obj, key = popargs('obj', 'key', kwargs) return ObjectKey(obj, key, table=self.object_keys) def _check_object_field(self, container, field): """ A helper function for checking if a container and field have been added. The container can be either an object_id string or a AbstractContainer. If the container and field have not been added, add the pair and return the corresponding Object. Otherwise, just return the Object. """ if isinstance(container, str): objecttable_idx = self.objects.which(object_id=container) else: objecttable_idx = self.objects.which(object_id=container.object_id) if len(objecttable_idx) > 0: field_idx = self.objects.which(field=field) objecttable_idx = list(set(objecttable_idx) & set(field_idx)) if len(objecttable_idx) == 1: return self.objects.row[objecttable_idx[0]] elif len(objecttable_idx) == 0: return self._add_object(container, field) else: raise ValueError("Found multiple instances of the same object_id and field in object table") @docval({'name': 'key_name', 'type': str, 'doc': 'the name of the key to get'}, {'name': 'container', 'type': (str, AbstractContainer), 'default': None, 'doc': ('the Container/Data object that uses the key or ' 'the object_id for the Container/Data object that uses the key')}, {'name': 'field', 'type': str, 'doc': 'the field of the Container that uses the key', 'default': None}) def get_key(self, **kwargs): """ Return a Key or a list of Key objects that correspond to the given key. If container and field are provided, the Key that corresponds to the given name of the key for the given container and field is returned. """ key_name, container, field = popargs('key_name', 'container', 'field', kwargs) key_idx_matches = self.keys.which(key=key_name) if container is not None and field is not None: # if same key is used multiple times, determine # which instance based on the Container object_field = self._check_object_field(container, field) for row_idx in self.object_keys.which(objects_idx=object_field.idx): key_idx = self.object_keys['keys_idx', row_idx] if key_idx in key_idx_matches: return self.keys.row[key_idx] raise ValueError("No key with name '%s' for container '%s' and field '%s'" % (key_name, container, field)) else: if len(key_idx_matches) == 0: # the key has never been used before raise ValueError("key '%s' does not exist" % key_name) elif len(key_idx_matches) > 1: return [self.keys.row[i] for i in key_idx_matches] else: return self.keys.row[key_idx_matches[0]] @docval({'name': 'resource_name', 'type': str, 'default': None}) def get_resource(self, **kwargs): """ Retrieve resource object with the given resource_name. """ resource_table_idx = self.resources.which(resource=kwargs['resource_name']) if len(resource_table_idx) == 0: # Resource hasn't been created msg = "No resource '%s' exists. Use _add_resource to create a new resource" % kwargs['resource_name'] raise ValueError(msg) else: return self.resources.row[resource_table_idx[0]] @docval({'name': 'container', 'type': (str, AbstractContainer), 'default': None, 'doc': ('the Container/Data object that uses the key or ' 'the object_id for the Container/Data object that uses the key')},
<gh_stars>1-10 ''' Function: 游戏进行中界面 Author: Charles 微信公众号: Charles的皮卡丘 ''' import json import math import random import pygame from ..sprites import Enemy from ..sprites import Turret from .....utils import QuitGame from .pause import PauseInterface from collections import namedtuple '''游戏进行中界面''' class GamingInterface(): def __init__(self, cfg, resource_loader): self.cfg = cfg self.resource_loader = resource_loader # 游戏地图大小 map_w = self.cfg.SCREENSIZE[0] map_h = 500 # 按钮大小和位置 button_w = 60 button_h = 60 button_y = 520 # 间隙 gap = 20 # 按钮放在工具栏, 工具栏两端各有一个信息显示框 toolbar_w = gap * 7 + button_w * 6 info_w = (self.cfg.SCREENSIZE[0] - toolbar_w) // 2 info_h = self.cfg.SCREENSIZE[1] - map_h toolbar_h = self.cfg.SCREENSIZE[1] - map_h # 界面布置 self.map_rect = pygame.Rect(0, 0, map_w, map_h) self.map_surface = pygame.Surface((map_w, map_h)) self.leftinfo_rect = pygame.Rect(0, map_h, info_w, info_h) self.rightinfo_rect = pygame.Rect(self.cfg.SCREENSIZE[0] - info_w, map_h, info_w, info_h) self.toolbar_rect = pygame.Rect(info_w, map_h, toolbar_w, toolbar_h) # 草 self.grass = resource_loader.images['game']['grass'] # 岩石(铺路用的) self.rock = resource_loader.images['game']['rock'] # 污垢 self.dirt = resource_loader.images['game']['dirt'] # 水 self.water = resource_loader.images['game']['water'] # 灌木 self.bush = resource_loader.images['game']['bush'] # 纽带 self.nexus = resource_loader.images['game']['nexus'] # 洞穴 self.cave = resource_loader.images['game']['cave'] # 获取地图元素的大小,请保证素材库里组成地图的元素图大小一致 self.element_size = int(self.grass.get_rect().width) # 一些字体 self.info_font = resource_loader.fonts['Calibri_s'] self.button_font = resource_loader.fonts['Calibri_l'] # 可以放炮塔的地方 self.placeable = {0: self.grass} # 地图元素字典(数字对应.map文件中的数字) self.map_elements = { 0: self.grass, 1: self.rock, 2: self.dirt, 3: self.water, 4: self.bush, 5: self.nexus, 6: self.cave } # 用于记录地图中的道路 self.path_list = [] # 当前的地图,将地图导入到这里面 self.current_map = dict() # 当前鼠标携带的图标(即选中道具) -> [道具名, 道具] self.mouse_carried = [] # 在地图上建造好了的炮塔 self.built_turret_group = pygame.sprite.Group() # 所有的敌人 self.enemies_group = pygame.sprite.Group() # 所有射出的箭 self.arrows_group = pygame.sprite.Group() # 玩家操作用的按钮 Button = namedtuple('Button', ['rect', 'text', 'onClick']) self.buttons = [ Button(pygame.Rect((info_w + gap), button_y, button_w, button_h), 'T1', self.takeT1), Button(pygame.Rect((info_w + gap * 2 + button_w), button_y, button_w, button_h), 'T2', self.takeT2), Button(pygame.Rect((info_w + gap * 3 + button_w * 2), button_y, button_w, button_h), 'T3', self.takeT3), Button(pygame.Rect((info_w + gap * 4 + button_w * 3), button_y, button_w, button_h), 'XXX', self.takeXXX), Button(pygame.Rect((info_w + gap * 5 + button_w * 4), button_y, button_w, button_h), 'Pause', self.pauseGame), Button(pygame.Rect((info_w + gap * 6 + button_w * 5), button_y, button_w, button_h), 'Quit', QuitGame) ] '''开始游戏''' def start(self, screen, map_path=None, difficulty_path=None): # 读取游戏难度对应的参数 with open(difficulty_path, 'r') as f: difficulty_dict = json.load(f) self.money = difficulty_dict.get('money') self.health = difficulty_dict.get('health') self.max_health = difficulty_dict.get('health') difficulty_dict = difficulty_dict.get('enemy') # 每60s生成一波敌人 generate_enemies_event = pygame.constants.USEREVENT + 0 pygame.time.set_timer(generate_enemies_event, 60000) # 生成敌人的flag和当前已生成敌人的总次数 generate_enemies_flag = False num_generate_enemies = 0 # 每0.5秒出一个敌人 generate_enemy_event = pygame.constants.USEREVENT + 1 pygame.time.set_timer(generate_enemy_event, 500) generate_enemy_flag = False # 防止变量未定义 enemy_range = None num_enemy = None # 是否手动操作箭塔射击 manual_shot = False has_control = False # 游戏主循环 while True: if self.health <= 0: return for event in pygame.event.get(): if event.type == pygame.QUIT: QuitGame() if event.type == pygame.MOUSEBUTTONUP: # --左键选物品 if event.button == 1: # ----鼠标点击在地图上 if self.map_rect.collidepoint(event.pos): if self.mouse_carried: if self.mouse_carried[0] == 'turret': self.buildTurret(event.pos) elif self.mouse_carried[0] == 'XXX': self.sellTurret(event.pos) # ----鼠标点击在工具栏 elif self.toolbar_rect.collidepoint(event.pos): for button in self.buttons: if button.rect.collidepoint(event.pos): if button.text == 'T1': button.onClick() elif button.text == 'T2': button.onClick() elif button.text == 'T3': button.onClick() elif button.text == 'XXX': button.onClick() elif button.text == 'Pause': button.onClick(screen) elif button.text == 'Quit': button.onClick() break # --右键释放物品 if event.button == 3: self.mouse_carried = [] # --按中间键手动控制炮塔射箭方向一次,否则自由射箭 if event.button == 2: manual_shot = True if event.type == generate_enemies_event: generate_enemies_flag = True if event.type == generate_enemy_event: generate_enemy_flag = True # --生成敌人, 生成的敌人随当前已生成敌人的总次数的增加而变强变多 if generate_enemies_flag: generate_enemies_flag = False num_generate_enemies += 1 idx = 0 for key, value in difficulty_dict.items(): idx += 1 if idx == len(difficulty_dict.keys()): enemy_range = value['enemy_range'] num_enemy = value['num_enemy'] break if num_generate_enemies <= int(key): enemy_range = value['enemy_range'] num_enemy = value['num_enemy'] break if generate_enemy_flag and num_enemy: generate_enemy_flag = False num_enemy -= 1 enemy = Enemy(random.choice(range(enemy_range)), self.cfg, self.resource_loader) self.enemies_group.add(enemy) # --射箭 for turret in self.built_turret_group: if not manual_shot: position = turret.position[0] + self.element_size // 2, turret.position[1] arrow = turret.shot(position) else: position = turret.position[0] + self.element_size // 2, turret.position[1] mouse_pos = pygame.mouse.get_pos() angle = math.atan((mouse_pos[1] - position[1]) / (mouse_pos[0] - position[0] + 1e-6)) arrow = turret.shot(position, angle) has_control = True if arrow: self.arrows_group.add(arrow) else: has_control = False if has_control: has_control = False manual_shot = False # --移动箭和碰撞检测 for arrow in self.arrows_group: arrow.move() points = [(arrow.rect.left, arrow.rect.top), (arrow.rect.left, arrow.rect.bottom), (arrow.rect.right, arrow.rect.top), (arrow.rect.right, arrow.rect.bottom)] if (not self.map_rect.collidepoint(points[0])) and (not self.map_rect.collidepoint(points[1])) and \ (not self.map_rect.collidepoint(points[2])) and (not self.map_rect.collidepoint(points[3])): self.arrows_group.remove(arrow) del arrow continue for enemy in self.enemies_group: if pygame.sprite.collide_rect(arrow, enemy): enemy.life_value -= arrow.attack_power self.arrows_group.remove(arrow) del arrow break self.draw(screen, map_path) '''将场景画到游戏界面上''' def draw(self, screen, map_path): self.drawToolbar(screen) self.loadMap(screen, map_path) self.drawMouseCarried(screen) self.drawBuiltTurret(screen) self.drawEnemies(screen) self.drawArrows(screen) pygame.display.flip() '''画出所有射出的箭''' def drawArrows(self, screen): for arrow in self.arrows_group: screen.blit(arrow.image, arrow.rect) '''画敌人''' def drawEnemies(self, screen): for enemy in self.enemies_group: if enemy.life_value <= 0: self.money += enemy.reward self.enemies_group.remove(enemy) del enemy continue res = enemy.move(self.element_size) if res: coord = self.find_next_path(enemy) if coord: enemy.reached_path.append(enemy.coord) enemy.coord = coord enemy.position = self.coord2pos(coord) enemy.rect.left, enemy.rect.top = enemy.position else: self.health -= enemy.damage self.enemies_group.remove(enemy) del enemy continue # 画血条 green_len = max(0, enemy.life_value / enemy.max_life_value) * self.element_size if green_len > 0: pygame.draw.line(screen, (0, 255, 0), (enemy.position), (enemy.position[0] + green_len, enemy.position[1]), 1) if green_len < self.element_size: pygame.draw.line(screen, (255, 0, 0), (enemy.position[0] + green_len, enemy.position[1]), (enemy.position[0] + self.element_size, enemy.position[1]), 1) screen.blit(enemy.image, enemy.rect) '''画已经建造好的炮塔''' def drawBuiltTurret(self, screen): for turret in self.built_turret_group: screen.blit(turret.image, turret.rect) '''画鼠标携带物''' def drawMouseCarried(self, screen): if self.mouse_carried: position = pygame.mouse.get_pos() coord = self.pos2coord(position) position = self.coord2pos(coord) # 在地图里再画 if self.map_rect.collidepoint(position): if self.mouse_carried[0] == 'turret': screen.blit(self.mouse_carried[1].image, position) self.mouse_carried[1].coord = coord self.mouse_carried[1].position = position self.mouse_carried[1].rect.left, self.mouse_carried[1].rect.top = position else: screen.blit(self.mouse_carried[1], position) '''画工具栏''' def drawToolbar(self, screen): # 信息显示框 info_color = (120, 20, 50) # --左 pygame.draw.rect(screen, info_color, self.leftinfo_rect) left_title = self.info_font.render('Player info:', True, (255, 255, 255)) money_info = self.info_font.render('Money: ' + str(self.money), True, (255, 255, 255)) health_info = self.info_font.render('Health: ' + str(self.health), True, (255, 255, 255)) screen.blit(left_title, (self.leftinfo_rect.left + 5, self.leftinfo_rect.top + 5)) screen.blit(money_info, (self.leftinfo_rect.left + 5, self.leftinfo_rect.top + 35)) screen.blit(health_info, (self.leftinfo_rect.left + 5, self.leftinfo_rect.top + 55)) # --右 pygame.draw.rect(screen, info_color, self.rightinfo_rect) right_title = self.info_font.render('Selected info:', True, (255, 255, 255)) screen.blit(right_title, (self.rightinfo_rect.left + 5, self.rightinfo_rect.top + 5)) # 中间部分 pygame.draw.rect(screen, (127, 127, 127), self.toolbar_rect) for button in self.buttons: mouse_pos = pygame.mouse.get_pos() if button.rect.collidepoint(mouse_pos): self.showSelectedInfo(screen, button) button_color = (0, 200, 0) else: button_color = (0, 100, 0) pygame.draw.rect(screen, button_color, button.rect) button_text = self.button_font.render(button.text, True, (255, 255, 255)) button_text_rect = button_text.get_rect() button_text_rect.center = (button.rect.centerx, button.rect.centery) screen.blit(button_text, button_text_rect) '''显示被鼠标选中按钮的作用信息''' def showSelectedInfo(self, screen, button): if button.text in ['T1', 'T2', 'T3']: turret = Turret({'T1': 0, 'T2': 1, 'T3': 2}[button.text], self.cfg, self.resource_loader) selected_info1 = self.info_font.render('Cost: ' + str(turret.price), True, (255, 255, 255)) selected_info2 = self.info_font.render('Damage: ' + str(turret.arrow.attack_power), True, (255, 255, 255)) selected_info3 = self.info_font.render('Affordable: ' + str(self.money >= turret.price), True, (255, 255, 255)) screen.blit(selected_info1, (self.rightinfo_rect.left + 5, self.rightinfo_rect.top + 35)) screen.blit(selected_info2, (self.rightinfo_rect.left + 5, self.rightinfo_rect.top + 55)) screen.blit(selected_info3, (self.rightinfo_rect.left + 5, self.rightinfo_rect.top + 75)) elif button.text == 'XXX': selected_info = self.info_font.render('Sell a turret', True, (255, 255, 255)) screen.blit(selected_info, (self.rightinfo_rect.left + 5, self.rightinfo_rect.top + 35)) elif button.text == 'Pause': selected_info = self.info_font.render('Pause game', True, (255, 255, 255)) screen.blit(selected_info, (self.rightinfo_rect.left + 5, self.rightinfo_rect.top + 35)) elif button.text == 'Quit': selected_info = self.info_font.render('Quit game', True, (255, 255, 255)) screen.blit(selected_info, (self.rightinfo_rect.left + 5, self.rightinfo_rect.top + 35)) '''出售炮塔(半价)''' def sellTurret(self, position): coord = self.pos2coord(position) for turret in self.built_turret_group: if coord == turret.coord: self.built_turret_group.remove(turret) self.money += int(turret.price * 0.5) del turret break '''建造炮塔''' def buildTurret(self, position): turret = self.mouse_carried[1] coord = self.pos2coord(position) position = self.coord2pos(coord) turret.position = position turret.coord = coord turret.rect.left, turret.rect.top = position if self.money - turret.price >= 0: if self.current_map.get(turret.coord) in self.placeable.keys(): self.money -= turret.price self.built_turret_group.add(turret) if self.mouse_carried[1].turret_type == 0: self.mouse_carried = [] self.takeT1() elif self.mouse_carried[1].turret_type == 1: self.mouse_carried = [] self.takeT2() elif self.mouse_carried[1].turret_type == 2: self.mouse_carried = [] self.takeT3() '''拿炮塔1''' def takeT1(self): T1 = Turret(0, self.cfg, self.resource_loader) if self.money >= T1.price: self.mouse_carried = ['turret', T1] '''拿炮塔2''' def takeT2(self): T2 = Turret(1, self.cfg, self.resource_loader) if self.money >= T2.price: self.mouse_carried = ['turret', T2] '''拿炮塔3''' def takeT3(self): T3 = Turret(2, self.cfg, self.resource_loader) if self.money >= T3.price: self.mouse_carried = ['turret', T3] '''出售炮塔''' def takeXXX(self): XXX = self.resource_loader.images['game']['x'] self.mouse_carried = ['XXX', XXX] '''找下一个路径单元''' def find_next_path(self, enemy): x, y = enemy.coord # 优先级: 下右左上 neighbours = [(x, y+1), (x+1, y), (x-1, y), (x, y-1)] for neighbour in neighbours: if (neighbour in self.path_list) and (neighbour
import argparse import numpy as np import csv import pandas as pd import json import scipy.sparse as sp from sparsebm import ( SBM, LBM, ModelSelection, generate_LBM_dataset, generate_SBM_dataset, ) from sparsebm.utils import reorder_rows, ARI import logging logger = logging.getLogger(__name__) try: import cupy _DEFAULT_USE_GPU = True except ImportError: _DEFAULT_USE_GPU = False def define_parsers(): main = argparse.ArgumentParser(prog="sparsebm") subparsers = main.add_subparsers( help="algorithm to use", dest="subparser_name" ) sbm_parser = subparsers.add_parser( "sbm", help="use the stochastic block model" ) lbm_parser = subparsers.add_parser( "lbm", help="use the latent block model" ) ms_parser = subparsers.add_parser( "modelselection", help="use the model selection with LBM or SBM" ) input_grp = ms_parser.add_argument_group("mandatory arguments") input_grp.add_argument( "ADJACENCY_MATRIX", help="List of edges in CSV format" ) input_grp.add_argument( "-t", "--type", help="model to use. Either 'lbm' or 'sbm'", required=True, ) input_grp = ms_parser.add_argument_group("optional arguments") input_grp.add_argument( "-sep", "--sep", default=",", help="CSV delimiter to use. Default is ',' ", ) input_grp.add_argument( "-gpu", "--use_gpu", help="specify if a GPU should be used.", default=_DEFAULT_USE_GPU, type=bool, ) input_grp.add_argument( "-idgpu", "--gpu_index", help="specify the gpu index if needed.", default=None, type=bool, ) input_grp.add_argument( "-s", "--symmetric", help="specify if the adajacency matrix is symmetric. For sbm only", default=False, ) input_grp.add_argument( "-p", "--plot", help="display model exploration plot", default=True ) output_grp = ms_parser.add_argument_group("output") output_grp.add_argument( "-o", "--output", help="File path for the json results.", default="results.json", ) generate_sbm_parser = subparsers.add_parser( "generate", help="use sparsebm to generate a data matrix" ) subparsers_generate = generate_sbm_parser.add_subparsers( help="model to generate data with", dest="subparsers_generate_name" ) sbm_generation_parser = subparsers_generate.add_parser( "sbm", help="use the stochastic block model to generate data" ) lbm_generation_parser = subparsers_generate.add_parser( "lbm", help="use the latent block model to generate data" ) help_example_base = """A json configuration file that specify the parameters of the data to generate. If no file is given a random graph is generated.""" help_sbm_gen = """\n Example of json configuration file for SBM: \n{\n "type": "sbm",\n "number_of_nodes": 1000,\n "number_of_clusters": 4,\n "symmetric": true,\n "connection_probabilities": [\n [\n 0.1,\n 0.036,\n 0.012,\n 0.0614\n ],\n [\n 0.036,\n 0.074,\n 0,\n 0\n ],\n [\n 0.012,\n 0,\n 0.11,\n 0.024\n ],\n [\n 0.0614,\n 0,\n 0.024,\n 0.086\n ]\n ],\n "cluster_proportions": [\n 0.25 ,\n 0.25,\n 0.25,\n 0.25\n ]\n}""" sbm_generation_parser.add_argument( "-f", "--file", default=None, help=help_example_base + help_sbm_gen, required=False, ) lbm_generation_parser.add_argument( "-f", "--file", default=None, help=help_example_base, required=False ) for parser in [sbm_parser, lbm_parser]: input_grp = parser.add_argument_group("mandatory arguments") input_grp.add_argument( "ADJACENCY_MATRIX", help="List of edges in CSV format" ) if parser == lbm_parser: input_grp.add_argument( "-k1", "--n_row_clusters", help="number of row clusters", default=4, type=int, required=True, ) input_grp.add_argument( "-k2", "--n_column_clusters", help="number of row clusters", default=4, type=int, required=True, ) if parser == sbm_parser: input_grp.add_argument( "-k", "--n_clusters", help="number of clusters", default=4, type=int, required=True, ) output_grp = parser.add_argument_group("output") output_grp.add_argument( "-o", "--output", help="File path for the json results.", default="results.json", ) param_grp = parser.add_argument_group("optional arguments") param_grp.add_argument( "-sep", "--sep", default=",", help="CSV delimiter to use. Default is ',' ", ) if parser == sbm_parser: param_grp.add_argument( "-s", "--symmetric", help="Specify if the adajacency matrix is symmetric", default=False, # type=bool, ) param_grp.add_argument( "-niter", "--max_iter", help="Maximum number of EM step", default=10000, type=int, ) param_grp.add_argument( "-ninit", "--n_init", help="Number of initializations that will be run", default=100, type=int, ) param_grp.add_argument( "-early", "--n_iter_early_stop", help="Number of EM steps to perform for each initialization.", default=10, type=int, ) param_grp.add_argument( "-ninitt", "--n_init_total_run", help="Number of the best initializations that will be run\ until convergence.", default=2, type=int, ) param_grp.add_argument( "-t", "--tol", help="Tolerance of likelihood to declare convergence.", default=1e-4, type=float, ) param_grp.add_argument( "-v", "--verbosity", help="Degree of verbosity. Scale from 0 (no message displayed)\ to 3.", default=1, type=int, ) param_grp.add_argument( "-gpu", "--use_gpu", help="Specify if a GPU should be used.", default=_DEFAULT_USE_GPU, type=bool, ) param_grp.add_argument( "-idgpu", "--gpu_index", help="Specify the gpu index if needed.", default=None, type=bool, ) return main def graph_from_csv(file, type, sep=","): try: pda = pd.read_csv(file, sep=sep, header=None) npa = pda[[0, 1]].to_numpy() if type == "sbm": node_i_from = np.unique(npa) node_i_to = np.arange(node_i_from.size) i_mapping = { f: t for f, t in np.stack((node_i_from, node_i_to), 1) } rows = pda[0].map(i_mapping) cols = pda[1].map(i_mapping) graph = sp.coo_matrix( (np.ones(npa.shape[0]), (rows, cols)), shape=(node_i_from.size, node_i_from.size), ) return graph, i_mapping, None else: node_i_from = np.unique(npa[:, 0]) node_i_to = np.arange(node_i_from.size) i_mapping = { f: t for f, t in np.stack((node_i_from, node_i_to), 1) } rows = pda[0].map(i_mapping) node_j_from = np.unique(npa[:, 1]) node_j_to = np.arange(node_j_from.size) j_mapping = { f: t for f, t in np.stack((node_j_from, node_j_to), 1) } cols = pda[1].map(j_mapping) graph = sp.coo_matrix( (np.ones(npa.shape[0]), (rows, cols)), shape=(node_i_from.size, node_j_from.size), ) return graph, i_mapping, j_mapping except Exception as e: logger.error(e) raise e def str2bool(v): if isinstance(v, bool): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("Boolean value expected.") def process_sbm(args): graph, row_from_to, _ = graph_from_csv( args["ADJACENCY_MATRIX"], args["subparser_name"], sep=args["sep"] ) model = SBM( max_iter=args["max_iter"], n_clusters=args["n_clusters"], n_init=args["n_init"], n_iter_early_stop=args["n_iter_early_stop"], n_init_total_run=args["n_init_total_run"], verbosity=args["verbosity"], atol=args["tol"], use_gpu=args["use_gpu"], gpu_index=args["gpu_index"], ) symmetric = str2bool(args["symmetric"]) logger.info( "Runing with symmetric adjacency matrix : {}".format(symmetric) ) model.fit(graph, symmetric=symmetric) if not model.trained_successfully: logger.error("FAILED, model has not been trained successfully.") return None logger.info("Model has been trained successfully.") logger.info( "Value of the Integrated Completed Loglikelihood is {:.4f}".format( model.get_ICL() ) ) labels = model.labels groups = [ np.argwhere(labels == q).flatten() for q in range(args["n_clusters"]) ] row_to_from = {v: k for k, v in row_from_to.items()} groups = [pd.Series(g).map(row_to_from).tolist() for g in groups] results = { "ILC": model.get_ICL(), "edge_probability_between_groups": model.pi_.tolist(), "group_membership_probability": model.group_membership_probability.flatten().tolist(), "node_ids_clustered": groups, } with open(args["output"], "w") as outfile: json.dump(results, outfile) logger.info("Results saved in {}".format(args["output"])) def process_lbm(args): graph, row_from_to, col_from_to = graph_from_csv( args["ADJACENCY_MATRIX"], args["subparser_name"], sep=args["sep"] ) model = LBM( max_iter=args["max_iter"], n_row_clusters=args["n_row_clusters"], n_column_clusters=args["n_column_clusters"], n_init=args["n_init"], n_iter_early_stop=args["n_iter_early_stop"], n_init_total_run=args["n_init_total_run"], verbosity=args["verbosity"], atol=args["tol"], use_gpu=args["use_gpu"], gpu_index=args["gpu_index"], ) model.fit(graph) if not model.trained_successfully: logger.error("FAILED, model has not been trained successfully.") return None logger.info("Model has been trained successfully.") logger.info( "Value of the Integrated Completed Loglikelihood is {:.4f}".format( model.get_ICL() ) ) row_labels = model.row_labels row_groups = [ np.argwhere(row_labels == q).flatten() for q in range(args["n_row_clusters"]) ] row_to_from = {v: k for k, v in row_from_to.items()} row_groups = [pd.Series(g).map(row_to_from).tolist() for g in row_groups] col_labels = model.column_labels col_groups = [ np.argwhere(col_labels == q).flatten() for q in range(args["n_column_clusters"]) ] col_to_from = {v: k for k, v in col_from_to.items()} col_groups = [pd.Series(g).map(col_to_from).tolist() for g in col_groups] results = { "ILC": model.get_ICL(), "edge_probability_between_groups": model.pi_.tolist(), "row_group_membership_probability": model.row_group_membership_probability.flatten().tolist(), "column_group_membership_probability": model.column_group_membership_probability.flatten().tolist(), "node_type_1_ids_clustered": row_groups, "node_type_2_ids_clustered": col_groups, } with open(args["output"], "w") as outfile: json.dump(results, outfile) logger.info("Results saved in {}".format(args["output"])) def generate_sbm(args): if "JSON_FILE" in args: with open(args["JSON_FILE"]) as f: conf = json.load(f) else: conf = {} number_of_nodes = ( conf["number_of_nodes"] if "number_of_nodes" in conf else None ) number_of_clusters = ( conf["number_of_clusters"] if "number_of_clusters" in conf else None ) connection_probabilities = ( np.array(conf["connection_probabilities"]) if "connection_probabilities" in conf else None ) cluster_proportions = ( np.array(conf["cluster_proportions"]) if "cluster_proportions" in conf else None ) symmetric = conf["symmetric"] if "symmetric" in conf else False dataset = generate_SBM_dataset( number_of_nodes, number_of_clusters, connection_probabilities, cluster_proportions, symmetric=symmetric, ) graph = dataset["data"] graph = np.stack((graph.row, graph.col), 1) cluster_indicator = dataset["cluster_indicator"] labels = cluster_indicator.argmax(1) number_of_clusters = cluster_indicator.shape[1] groups = [ np.argwhere(labels == q).flatten().tolist() for q in range(number_of_clusters) ] results = { "node_ids_grouped": groups, "number_of_nodes": number_of_nodes, "number_of_clusters": number_of_clusters, "connection_probabilities": connection_probabilities.flatten().tolist() if connection_probabilities else None, "cluster_proportions": cluster_proportions.tolist() if cluster_proportions else None, } file_groups = "./groups.json" file_edges = "./edges.csv" with open(file_groups, "w") as outfile: json.dump(results, outfile) logger.info("\n Groups and params saved in {}".format(file_groups)) np.savetxt(file_edges, graph, delimiter=",") logger.info("Edges saved in {}".format(file_edges)) def generate_lbm(args): if "JSON_FILE" in args: with open(args["JSON_FILE"]) as f: conf = json.load(f) else: conf = {} number_of_rows = ( conf["number_of_rows"] if "number_of_rows" in conf else None ) number_of_columns = ( conf["number_of_columns"] if "number_of_columns" in conf else None ) nb_row_clusters = ( conf["nb_row_clusters"] if "nb_row_clusters" in conf else None ) nb_column_clusters = ( conf["nb_column_clusters"] if "nb_column_clusters" in conf else None ) connection_probabilities = ( np.array(conf["connection_probabilities"]) if "connection_probabilities" in conf else None ) row_cluster_proportions = ( np.array(conf["row_cluster_proportions"]) if "row_cluster_proportions" in conf else None ) column_cluster_proportions = ( np.array(conf["column_cluster_proportions"]) if "column_cluster_proportions" in conf else None ) dataset = generate_LBM_dataset( number_of_rows, number_of_columns, nb_row_clusters, nb_column_clusters, connection_probabilities, row_cluster_proportions, column_cluster_proportions, ) graph = dataset["data"] number_of_rows, number_of_columns = graph.shape graph = np.stack((graph.row, graph.col), 1) row_cluster_indicator = dataset["row_cluster_indicator"] column_cluster_indicator = dataset["column_cluster_indicator"] row_labels = row_cluster_indicator.argmax(1) col_labels = column_cluster_indicator.argmax(1) nb_row_clusters = row_cluster_indicator.shape[1] nb_column_clusters = column_cluster_indicator.shape[1] row_groups = [ np.argwhere(row_labels == q).flatten().tolist() for q in range(nb_row_clusters) ] col_groups = [ np.argwhere(col_labels == q).flatten().tolist() for q in range(nb_column_clusters) ] results = { "row_ids_grouped": row_groups, "column_ids_grouped": col_groups,
< r_br) & (counts_df[c_tag] > c_tl) & (counts_df[c_tag] < c_br),:] return overlapping_ref_df # TODO adjust the registration with dots (triangulation) def register_cpl(cpl, chunk_coords, experiment_fpath, stitching_channel, reference_round): logger = selected_logger() registration = {} experiment_fpath = Path(experiment_fpath) try: counts1_fpath = list((experiment_fpath / 'results').glob('*decoded_fov_' + str(cpl[0]) + '.parquet'))[0] except: logger.error(f'count file missing for fov {cpl[0]}') else: try: counts2_fpath = list((experiment_fpath / 'results').glob('*decoded_fov_' + str(cpl[1]) + '.parquet'))[0] except: logger.error(f'count file missing for fov {cpl[1]}') else: counts1_df = pd.read_parquet(counts1_fpath) counts2_df = pd.read_parquet(counts2_fpath) count1_grp = counts1_df.loc[(counts1_df.channel == stitching_channel) & (counts1_df.round_num == reference_round),:] count2_grp = counts2_df.loc[(counts2_df.channel == stitching_channel) & (counts2_df.round_num == reference_round),:] count1_grp = counts1_df.loc[counts1_df.channel == stitching_channel,:] count2_grp = counts2_df.loc[counts2_df.channel == stitching_channel,:] overlap_count1 = get_all_dots_in_overlapping_regions(count1_grp, chunk_coords,stitching_selected='microscope_stitched') overlap_count2 = get_all_dots_in_overlapping_regions(count2_grp, chunk_coords,stitching_selected='microscope_stitched') if overlap_count1.empty or overlap_count2.empty: shift = np.array([1000,1000]) registration[cpl] = [shift, np.nan] else: # TODO # Maybe add a selction step where if the number of beads is below X the beads based registration will be run or fft based # registration if the number of beads is high enough r_tl = chunk_coords[0] c_tl = chunk_coords[2] img_shape = np.array([np.abs(chunk_coords[1]-chunk_coords[0]),np.abs(chunk_coords[3]-chunk_coords[2])]).astype('int') + 1 norm_ref_coords = overlap_count1.loc[:,['r_px_microscope_stitched','c_px_microscope_stitched']].to_numpy() -[r_tl, c_tl] norm_comp_coords = overlap_count2.loc[:,['r_px_microscope_stitched','c_px_microscope_stitched']].to_numpy() -[r_tl, c_tl] img_ref = create_fake_image(img_shape, norm_ref_coords) img_tran = create_fake_image(img_shape, norm_comp_coords) shift, error, diffphase = register_translation(img_ref, img_tran) registration[cpl] = [shift, error] return registration def register_cpl_fresh_nuclei(cpl: Tuple, chunk_coords: np.ndarray, order: dict, metadata:dict, experiment_fpath:str): """Function to register orverlapping regions of nuclear staining for stitching Args: cpl (Tuple): overlapping tiles chunk_coords (np.ndarray): coords of the overlapping region [r_tl,r_br,c_tl,c_br] order (dict): description of the position of the tiles metadata (dict): dictionary with the general experiment data experiment_fpath (str): path to the experiment to process Returns: dict: registration output [shift, error] """ logger = selected_logger() registration = {} experiment_fpath = Path(experiment_fpath) img_width = metadata['img_width'] img_height = metadata['img_height'] experiment_name = metadata['experiment_name'] error = 0 filtered_nuclei_fpath = experiment_fpath / 'fresh_tissue' / 'fresh_tissue_nuclei_preprocessed_img_data.zarr' try: st = zarr.DirectoryStore(filtered_nuclei_fpath) root = zarr.group(store=st, overwrite=False) except: logger.error(f'cannot load the zarr files with filtered nuclei') else: try: img1 = root[experiment_name + '_fresh_tissue_nuclei_fov_' + str(cpl[0])]['preprocessed_data_fov_'+str(cpl[0])][...] except: logger.error(f'image file cannot be loaded for nuclei of fov {cpl[0]}') else: try: img2 = root[experiment_name + '_fresh_tissue_nuclei_fov_' + str(cpl[1])]['preprocessed_data_fov_'+str(cpl[1])][...] except: logger.error(f'image file cannot be loaded for nuclei of fov {cpl[1]}') else: img_shape = np.array([np.abs(chunk_coords[1]-chunk_coords[0]),np.abs(chunk_coords[3]-chunk_coords[2])]).astype('int') if order == {'row_order': ('top', 'bottom'), 'column_order': ('right', 'left')}: img1_slice = img1[(img_height-img_shape[0]):img_height,0:img_shape[1]] img2_slice = img2[0:img_shape[0],(img_width-img_shape[1]):img_width] elif order == {'row_order': ('top', 'bottom'), 'column_order': ('left', 'right')}: img1_slice = img1[img_height-img_shape[0]:img_height,img_width-img_shape[1]:img_width] img2_slice = img2[0:img_shape[0],0:img_shape[1]] elif order == {'row_order': ('bottom', 'top'), 'column_order': ('left', 'right')}: img1_slice = img1[0:img_shape[0],img_width-img_shape[1]:img_width] img2_slice = img2[img_height-img_shape[0]:img_height,0:img_shape[1]] elif order == {'row_order': ('bottom', 'top'), 'column_order': ('right', 'left')}: img1_slice = img1[0:img_shape[0],0:img_shape[1]] img2_slice = img2[img_height-img_shape[0]:img_height,img_width-img_shape[1]:img_width] else: logger.error(f'unknown fovs order') error = 1 if error: shift = np.array([1000,1000]) registration[cpl] = [shift, np.nan] else: shift, error, diffphase = register_translation(img1_slice, img2_slice) registration[cpl] = [shift, error] return registration def stitching_graph(experiment_fpath, stitching_channel,tiles_org, metadata, reference_round, client, nr_dim = 2): logger = selected_logger() unfolded_overlapping_regions_dict = {key:value for (k,v) in tiles_org.overlapping_regions.items() for (key,value) in v.items()} futures = [] for cpl, chunk_coords in unfolded_overlapping_regions_dict.items(): future = client.submit(register_cpl,cpl, chunk_coords, experiment_fpath,stitching_channel, reference_round) futures.append(future) all_registrations = client.gather(futures) all_registrations = [reg for reg in all_registrations if reg ] all_registrations_dict = {} for output_dict in all_registrations: all_registrations_dict.update(output_dict) # Run registration only if there are not too many overlappig regions without # dots # counts_cpls_missing_overlapping_dots = 0 # cpls_missing_overlapping_dots = [] # for cpl, registration_output in all_registrations_dict.items(): # if np.isnan(registration_output[1]): # cpls_missing_overlapping_dots.append(cpl) # counts_cpls_missing_overlapping_dots += 1 # global_stitching_done = 0 # if len(cpls_missing_overlapping_dots) > 10: # logger.error(f"Too many cpl of fovs without overlapping reference dots") # pickle.dump([cpls_missing_overlapping_dots,counts_cpls_missing_overlapping_dots ], # open(experiment_fpath / 'results' / 'fovs_without_overlapping_reference_dots_no_global_stitching.pkl','rb')) # global_stitching_done = 0 # return tiles_org.tile_corners_coords_pxl, global_stitching_done # else: # global_stitching_done = 1 # logger.error(f"The number of cpls of fovs without overlapping reference dots is low, test global stitching") # pickle.dump([cpls_missing_overlapping_dots,counts_cpls_missing_overlapping_dots ], # open(experiment_fpath / 'results' / 'fovs_without_overlapping_reference_dots_yes_global_stitching.pkl','wb')) overlapping_coords_reorganized = {} for idx, cpl_dict in tiles_org.overlapping_regions.items(): overlapping_coords_reorganized.update(cpl_dict) all_registrations_removed_large_shift = {k:v for (k,v) in all_registrations_dict.items() if np.all(np.abs(v[0]) < 20)} cpls = all_registrations_removed_large_shift.keys() # cpls = list(unfolded_overlapping_regions_dict.keys()) total_cpls = len(cpls) nr_tiles = tiles_org.tile_corners_coords_pxl.shape[0] weights_err1 = np.zeros((total_cpls * nr_dim)) weights_err2 = np.zeros((total_cpls * nr_dim)) P = np.zeros(total_cpls * nr_dim) ZQ = np.zeros((total_cpls * nr_dim,nr_tiles * nr_dim)) weights_err = np.zeros((total_cpls * nr_dim)) for i, (a, b) in enumerate(cpls): shift = all_registrations_removed_large_shift[(a,b)][0] dr = shift[0] dc = shift[1] P[i * nr_dim] = dr P[i * nr_dim +1 ] = dc weights_err[i * nr_dim:i * nr_dim + nr_dim] = all_registrations_removed_large_shift[(a,b)][1] for i, (a, b) in enumerate(cpls): # Y row: Z = np.zeros((nr_tiles * nr_dim)) Z[nr_dim * a:nr_dim * a + 1] = -1 Z[nr_dim * b:nr_dim * b + 1] = 1 ZQ[i * nr_dim, :] = Z # X row Z = np.zeros((nr_tiles * nr_dim)) Z[nr_dim * a + 1:nr_dim * a + 2] = -1 Z[nr_dim * b + 1:nr_dim * b + 2] = 1 ZQ[i * nr_dim + 1, :] = Z lrg = linmod.LinearRegression(fit_intercept=False) lrg.fit(ZQ,P) global_translrg = lrg.coef_.reshape(nr_tiles, nr_dim) gb = -1 * (-lrg.coef_.reshape((nr_tiles, nr_dim)) \ + lrg.coef_.reshape((nr_tiles, nr_dim))[0:1, :]) global_shift = gb.astype(int) adjusted_coords = tiles_org.tile_corners_coords_pxl + global_shift # Determine shift of missing tiles out_level = 1000 low = np.where(global_shift< -out_level)[0] high = np.where(global_shift> out_level)[0] low_high = np.hstack((low,high)) missing_tiles_id = np.unique(low_high) missing_tiles_coords = tiles_org.tile_corners_coords_pxl[missing_tiles_id,:] if missing_tiles_coords.shape[0] >0: coords_cl = np.delete(tiles_org.tile_corners_coords_pxl, missing_tiles_id, 0) ad_coords_cl = np.delete(adjusted_coords, missing_tiles_id, 0 ) tst = linmod.LinearRegression(fit_intercept=False) tst.fit(coords_cl,ad_coords_cl) corrected_missing = tst.predict(missing_tiles_coords) for idx, tile_id in enumerate(missing_tiles_id): adjusted_coords[tile_id] = corrected_missing[idx] dec_fpath = (experiment_fpath / 'results').glob('*_decoded_fov*') for fpath in dec_fpath: global_stitched_decoded_df = stitch_using_coords_general(fpath, adjusted_coords, tiles_org.reference_corner_fov_position, metadata, 'global_stitched') if isinstance(global_stitched_decoded_df,pd.DataFrame): global_stitched_decoded_df.to_parquet(fpath) global_shift = tiles_org.tile_corners_coords_pxl - adjusted_coords pickle.dump(global_shift,open(experiment_fpath / 'results'/ 'stitching_global_shift.pkl','wb')) pickle.dump(adjusted_coords,open(experiment_fpath / 'results'/ 'global_stitched_coords.pkl','wb')) return adjusted_coords # return adjusted_coords, global_stitching_done def stitching_graph_fresh_nuclei(experiment_fpath,tiles_org, metadata, client, nr_dim = 2): logger = selected_logger() unfolded_overlapping_regions_dict = {key:value for (k,v) in tiles_org.overlapping_regions.items() for (key,value) in v.items()} unfolded_overlapping_order_dict = {key:value for (k,v) in tiles_org.overlapping_order.items() for (key,value) in v.items()} futures = [] for cpl, chunk_coords in unfolded_overlapping_regions_dict.items(): future = client.submit(register_cpl_fresh_nuclei,cpl, chunk_coords, unfolded_overlapping_order_dict[cpl], metadata, experiment_fpath) futures.append(future) all_registrations = client.gather(futures) all_registrations = [reg for reg in all_registrations if reg ] all_registrations_dict = {} for output_dict in all_registrations: all_registrations_dict.update(output_dict) overlapping_coords_reorganized = {} for idx, cpl_dict in tiles_org.overlapping_regions.items(): overlapping_coords_reorganized.update(cpl_dict) all_registrations_removed_large_shift = {k:v for (k,v) in all_registrations_dict.items() if np.all(np.abs(v[0]) < 20)} cpls = all_registrations_removed_large_shift.keys() # cpls = list(unfolded_overlapping_regions_dict.keys()) total_cpls = len(cpls) nr_tiles = tiles_org.tile_corners_coords_pxl.shape[0] weights_err1 = np.zeros((total_cpls * nr_dim)) weights_err2 = np.zeros((total_cpls * nr_dim)) P = np.zeros(total_cpls * nr_dim) ZQ = np.zeros((total_cpls * nr_dim,nr_tiles * nr_dim)) weights_err = np.zeros((total_cpls * nr_dim)) for i, (a, b) in enumerate(cpls): shift = all_registrations_removed_large_shift[(a,b)][0] dr = shift[0] dc = shift[1] P[i * nr_dim] = dr P[i * nr_dim +1 ] = dc weights_err[i * nr_dim:i * nr_dim + nr_dim] = all_registrations_removed_large_shift[(a,b)][1] for i, (a, b) in enumerate(cpls): # Y row: Z = np.zeros((nr_tiles * nr_dim)) Z[nr_dim * a:nr_dim * a + 1] = -1 Z[nr_dim * b:nr_dim * b + 1] = 1 ZQ[i * nr_dim, :] = Z # X row Z = np.zeros((nr_tiles * nr_dim)) Z[nr_dim * a + 1:nr_dim * a + 2] = -1 Z[nr_dim * b + 1:nr_dim * b + 2] = 1 ZQ[i * nr_dim + 1, :] = Z lrg = linmod.LinearRegression(fit_intercept=False) lrg.fit(ZQ,P) global_translrg = lrg.coef_.reshape(nr_tiles, nr_dim) gb = -1 * (-lrg.coef_.reshape((nr_tiles, nr_dim)) \ + lrg.coef_.reshape((nr_tiles, nr_dim))[0:1, :]) global_shift = gb.astype(int) adjusted_coords = tiles_org.tile_corners_coords_pxl + global_shift # Determine shift of missing tiles out_level = 1000 low = np.where(global_shift< -out_level)[0] high = np.where(global_shift> out_level)[0] low_high = np.hstack((low,high)) missing_tiles_id = np.unique(low_high) missing_tiles_coords = tiles_org.tile_corners_coords_pxl[missing_tiles_id,:] if missing_tiles_coords.shape[0] >0: coords_cl = np.delete(tiles_org.tile_corners_coords_pxl, missing_tiles_id, 0) ad_coords_cl = np.delete(adjusted_coords, missing_tiles_id, 0 ) tst = linmod.LinearRegression(fit_intercept=False) tst.fit(coords_cl,ad_coords_cl) corrected_missing = tst.predict(missing_tiles_coords) for idx, tile_id in enumerate(missing_tiles_id): adjusted_coords[tile_id] = corrected_missing[idx] dec_fpath = (experiment_fpath / 'fresh_tissue'/ 'results').glob('*_decoded_fov*') for fpath in dec_fpath: global_stitched_decoded_df = stitch_using_coords_general(fpath, adjusted_coords, tiles_org.reference_corner_fov_position, metadata, 'global_stitched_nuclei') if isinstance(global_stitched_decoded_df,pd.DataFrame): global_stitched_decoded_df.to_parquet(fpath) global_shift = tiles_org.tile_corners_coords_pxl - adjusted_coords pickle.dump(global_shift,open(experiment_fpath / 'fresh_tissue' / 'results'/ 'stitching_global_shift.pkl','wb'))
''' units.py Module to work with S.I. units History: 3/04/2018 : First version 4/04/2018 : Addition of non S.I. units and Physics constants 5/04/2018 : Modifications to work with numpy arrays Connection with sympy 6/04/2018 : Connection with calc 9/04/2018 : Units as text in make* functions 10/04/2018 : Corrections in unitless and Hz 11/04/2018 : Addition of setSciForPrint 13/06/2018 : Addition of makeRange function 6/09/2018 : Added methods: __getitem__ , strip , __len__ ''' # Python 2.7 compatibility from __future__ import print_function from __future__ import division version = '6/09/2018' # Basic imports import numpy as np import inspect # Try to load sympy try: import sympy except: sympy_imported = False else: sympy_imported = True # Try to load calc try: import calc except: calc_imported = False else: calc_imported = True # Try to load mmVars try: import mmVars as mm except: mmVars_imported = False else: mmVars_imported = True # Exception code ###################################################### class unitsEx(Exception): def __init__(self, msg=""): self.msg = msg print("\n** Units Exception") print('** ' + msg) print("\n") # Globals ############################################################ # Number of base units nbase = 7 # Vector with no units v_none = np.array([0,0,0,0,0,0,0]) # Base unit names v_names = ['m','kg','s','A','K','mol','cd'] # Indicate if we use sci for __str__ sci4str = False # Number presentation code ########################################### # This is the same code included in calc.py def f2s(v,nd=None): """ f2s (float2string) Takes one float value and converts it to string If greater or equal than 1000, uses two decimal places If greater than one, uses three decimal places if less than one, uses three significant decimal places The optional parameter can fix the number of significant digits """ # Base number of decimals a = abs(v) if nd == None: ndec = 3 if (a>=1000): ndec = 2 if (a<1): if a!=0: ndec = int(np.floor(3-np.log10(a))) else: ndec = nd if (a<1): if a!=0: ndec = int(np.floor(nd-np.log10(a))) # Check for significance v2 = np.floor(v*10**ndec)/(10**ndec) for i in range(0,ndec): if np.floor(v2) == v2: ndec = i+1 break v2 = v2*10.0 # Return string return ('{0:.%df}' % ndec).format(v) def f2sci(v,unit='',nd=3,prefix=True,sep=''): """ Takes one float and converts it to scientific notation Required parameters v : Number to convert Optional parameters unit : Unit to show nd : Number of decimal places (Default to 3) prefix : Use standard prefixes for powers of 10 up to +/-18 sep : Separator between prefix and unit (Defaults to none) """ potH=['k','M','G','T','P','E'] potL=['m','u','n','p','f','a'] a = abs(v) ndec = int(np.floor(np.log10(a))) pot = int(np.floor(ndec/3)) exp = 3*pot base = v/(10.0**exp) s = f2s(base,nd) if pot==0: return s + ' ' + unit if (prefix): if 1 <= pot <=6: s = s + ' ' + potH[pot-1] + sep + unit return s if 1 <= -pot <=6: s = s + ' '+ potL[-pot-1] + sep + unit return s s = s + 'E' + ('{:+d}').format(exp) + ' ' + unit return s def _unitName(unit): """ Special internal function for printVar """ if isinstance(unit,uVar): return unit.name return unit def _usePrefix(unit,prefix): """ Special internal function for printVar """ if isinstance(unit,uVar): if unit.complex: return False else: return prefix return prefix def _printUnit(unit): """ Special internal function for printVar """ if unit == '': print() return print(' '+_unitName(unit)) def printVar(name,value=None,unit='',sci=True,prefix=True,sep='',level=0): """ Print a variable name, value and units Required parameters: name : Name of the variable Optional parameters: value : value of to show (Defaults to be obtained from globals) unit : units to use (Defaults to self ones) sci : use sci numeric format (Defaults to True) prefix : use powers of 10 prefixes (Defaults to True) sep : separator between prefix and units (Defaults to none) Internal use parameters: level : stack level of caller to inspect globals """ # Try to evaluate variable if not given if value is None: value = _getVar(name,level=level+1) # Code if value is not an uVar object if not isinstance(value,uVar): # Special case for numpy arrays if isinstance(value,np.ndarray): print(name + ' = ' + str(value),end='') _printUnit(unit) if sci: prefix = _usePrefix(unit,prefix) print(name + " = " + f2sci(value,_unitName(unit),prefix=prefix,sep=sep)) else: print(name + " = " + f2s(value) + " " + _unitName(unit)) return # Code if value is a uVar object if unit != "" and not isinstance(unit,uVar): raise unitsEx('If value is an uVar object, unit shall be of the same kind') if unit != "": value=value.convert(unit) if isinstance(value.value,np.ndarray): print(name + " = " + str(value)) return if sci: print(name + " = " + value.sci(prefix=prefix,sep=sep)) else: print(name + " = " + str(value)) def printUnit(name,unit='',sci=True,prefix=True,sep=''): """ Special call to printVar without value """ printVar(name,value=None,unit=unit,sci=sci,prefix=prefix,sep=sep,level=1) def setSciForPrint(flag=True): global sci4str sci4str = flag # uVar class ######################################################### class uVar: # Constructor ----------------------------------------------------- def __init__(self,name,vector,value=1.0,scale=1.0): """ uVar constructor uVar(name,vector,value=1.0) Creates a new uVar object Parameters: name : Name of the units vector : Vector of base units exponents value : Numeric value (defaults to 1.0) scale : Scaling factor from S.I. units Returns a new uVar object """ if len(vector)!=7: raise unitsEx('Constructor vector size must be seven') self.vector = np.array(vector) # Base unit powers self.value = value # Numerical value self.name = name # Name of the units self.complex = False # No single name for units self.scale = scale # Scaling factor for this unit # Copy object def copy(self): """ Returns a copy of the current object """ res = uVar(self.name,self.vector,self.value,self.scale) res.complex = self.complex return res # Get internal elements ----------------------------------------------------- def get_value(self): """ Returns the numeric value of the object """ return self.value def get_vector(self): """ Return the vector of base units exponents """ return self.vector def get_name(self): """ Return the name of the object units """ return self.name # Set internal elements ----------------------------------------------------- def set_name(self,name,complex=False): """ Set the name of the object units If complex is false (default) power of 10 prefixed could be used """ self.name=name self.complex = complex def set_value(self,value): """ Returns the numeric value of the object """ self.value = value # Especial constructors ---------------------------------------------------- def operateValue(self,func): """ Execute a function on the value of the uVar object Returns a new object """ new = self.copy() new.value = func(new.value) return new def newValue(self,value): """ Sets a new value Returns a new object """ new = self.copy() new.value = value return new def newUnit(self): """ Return the units of a uVar object as a new object """ new = self.copy() new.value = 1 return new # Private methods ----------------------------------------------------------- def _construct_name_old(self): """ Private function Return a new complex name from the base units exponents Old version to be eliminated """ first = True name = '' for i in range(0,nbase): if self.vector[i] != 0: if not first: name = name + '*' first = False name = name + v_names[i] if self.vector[i] != 1: name = name + '^' + str(self.vector[i]) return name def _reconstruct(self,defaults=True): """ Private function Reconstruct the own name from base units If defaults is True, will use defaults if available """ # Remove the scaling self.value = self.value * self.scale self.scale = 1.0 # Check if it targets a default unit if defaults: tup = tuple(self.vector) if tup in register: unit = register[tup] self.value = self.value/unit.scale self.name = unit.name self.complex = unit.complex return # Not complex by default self.complex = False # It is not a default unit name ='' num = False den = False # Check if there is numerator and denominator for i in range(0,nbase): if self.vector[i]>0: num = True if self.vector[i]<0: den = True # If there is no numerator if not num: # No numerator and no denominator if not den: self.name = '' self.complex = True
gauss_sigma, x) lorentz_peak = cls._f_lorentz(offset, amplitude, lorentz_hwhm, x) peak = frac_gauss*gauss_peak + (1-frac_gauss)*lorentz_peak return peak @classmethod def _f_makep(cls, data, peaks, frac_gauss=None): """ Make a set of initial peak parameters for deconvolution. :arg data: data to be fitted :arg peaks: selected peak positions (see peakpicker()) :returns: an array of peaks, each consisting of the following parameters: spectral offset (x) gauss: 2*sigma**2 lorentz: scale (HWHM) amplitude: amplitude of peak frac_gauss: fraction of function to be Gaussian (0 -> 1) """ if not cls._is_flat_iter(data): raise TypeError('data must be a flat iterable') if not cls._is_flat_iter(peaks): raise TypeError('peaks must be a flat iterable') if not isinstance(data, numpy.ndarray): data = numpy.array(data) p = [] for i in peaks: pamp = 0.9*abs(data[int(i)]) single_peak = [i, 10, 0.1, pamp, frac_gauss] p.append(single_peak) return numpy.array(p) @classmethod def _f_conv(cls, parameterset_list, data): """ Returns the maximum of a convolution of an initial set of lineshapes and the data to be fitted. parameterset_list -- a list of parameter lists: n*[[spectral offset (x), gauss: 2*sigma**2, lorentz: scale (HWHM), amplitude: amplitude of peak, frac_gauss: fraction of function to be Gaussian (0 -> 1)]] where n is the number of peaks data -- 1D spectral array """ if not cls._is_flat_iter(data): raise TypeError('data must be a flat iterable') if not cls._is_iter(parameterset_list): raise TypeError('parameterset_list must be an iterable') if not isinstance(data, numpy.ndarray): data = numpy.array(data) data[data == 0.0] = 1e-6 x = numpy.arange(len(data), dtype='f8') peaks_init = cls._f_pks(parameterset_list, x) data_convolution = numpy.convolve(data, peaks_init[::-1]) auto_convolution = numpy.convolve(peaks_init, peaks_init[::-1]) max_data_convolution = numpy.where(data_convolution == data_convolution.max())[0][0] max_auto_convolution = numpy.where(auto_convolution == auto_convolution.max())[0][0] return max_data_convolution - max_auto_convolution @classmethod def _f_pks_list(cls, parameterset_list, x): """ Return a list of peak evaluations for deconvolution. See _f_pk(). Keyword arguments: parameterset_list -- a list of parameter lists: [spectral offset (x), gauss: 2*sigma**2, lorentz: scale (HWHM), amplitude: amplitude of peak, frac_gauss: fraction of function to be Gaussian (0 -> 1)] x -- array of equal length to FID """ if not cls._is_iter_of_iters(parameterset_list): raise TypeError('Parameter set must be an iterable of iterables') for p in parameterset_list: if not cls._is_iter(p): raise TypeError('Parameter set must be an iterable') if not all(isinstance(i, numbers.Number) for i in p): raise TypeError('Keyword parameters must be numbers.') if not cls._is_iter(x): raise TypeError('x must be an iterable') if not isinstance(x, numpy.ndarray): x = numpy.array(x) return numpy.array([Fid._f_pk(x, *peak) for peak in parameterset_list]) @classmethod def _f_pks(cls, parameterset_list, x): """ Return the sum of a series of peak evaluations for deconvolution. See _f_pk(). Keyword arguments: parameterset_list -- a list of parameter lists: [spectral offset (x), gauss: 2*sigma**2, lorentz: scale (HWHM), amplitude: amplitude of peak, frac_gauss: fraction of function to be Gaussian (0 -> 1)] x -- array of equal length to FID """ if not cls._is_iter_of_iters(parameterset_list): raise TypeError('Parameter set must be an iterable of iterables') for p in parameterset_list: if not cls._is_iter(p): raise TypeError('Parameter set must be an iterable') if not all(isinstance(i, numbers.Number) for i in p): raise TypeError('Keyword parameters must be numbers.') if not cls._is_iter(x): raise TypeError('x must be an iterable') if not isinstance(x, numpy.ndarray): x = numpy.array(x) peaks = x*0.0 for p in parameterset_list: peak = cls._f_pk(x, offset=p[0], gauss_sigma=p[1], lorentz_hwhm=p[2], amplitude=p[3], frac_gauss=p[4], ) peaks += peak return peaks @classmethod def _f_res(cls, p, data): """ Objective function for deconvolution. Returns residuals of the devonvolution fit. x -- array of equal length to FID Keyword arguments: p -- lmfit parameters object: offset_n -- spectral offset in x sigma_n -- gaussian 2*sigma**2 hwhm_n -- lorentzian half width at half maximum height amplitude_n -- amplitude of peak frac_gauss_n -- fraction of function to be Gaussian (0 -> 1) where n is the peak number (zero-indexed) data -- spectrum array """ if not isinstance(p, lmfit.parameter.Parameters): raise TypeError('Parameters must be of type lmfit.parameter.Parameters.') if not cls._is_flat_iter(data): raise TypeError('data must be a flat iterable.') if not isinstance(data, numpy.ndarray): data = numpy.array(data) params = Fid._parameters_to_list(p) x = numpy.arange(len(data), dtype='f8') res = data-cls._f_pks(params, x) return res @classmethod def _f_fitp(cls, data, peaks, frac_gauss=None, method='leastsq'): """Fit a section of spectral data with a combination of Gaussian/Lorentzian peaks for deconvolution. Keyword arguments: peaks -- selected peak positions (see peakpicker()) frac_gauss -- fraction of fitted function to be Gaussian (1 - Guassian, 0 - Lorentzian) returns: fits -- list of fitted peak parameter sets Note: peaks are fitted by default using the Levenberg-Marquardt algorithm[1]. Other fitting algorithms are available (http://cars9.uchicago.edu/software/python/lmfit/fitting.html#choosing-different-fitting-methods). [1] Marquardt, <NAME>. 'An algorithm for least-squares estimation of nonlinear parameters.' Journal of the Society for Industrial & Applied Mathematics 11.2 (1963): 431-441. """ data = numpy.real(data) if not cls._is_flat_iter(data): raise TypeError('data must be a flat iterable') if not cls._is_flat_iter(peaks): raise TypeError('peaks must be a flat iterable') if any(peak > (len(data)-1) for peak in peaks): raise ValueError('peaks must be within the length of data.') if not isinstance(data, numpy.ndarray): data = numpy.array(data) p = cls._f_makep(data, peaks, frac_gauss=0.5) init_ref = cls._f_conv(p, data) if any(peaks+init_ref < 0) or any(peaks+init_ref > len(data)-1): init_ref = 0 if frac_gauss==None: p = cls._f_makep(data, peaks+init_ref, frac_gauss=0.5) else: p = cls._f_makep(data, peaks+init_ref, frac_gauss=frac_gauss) params = lmfit.Parameters() for parset in range(len(p)): current_parset = dict(zip(['offset', 'sigma', 'hwhm', 'amplitude', 'frac_gauss'], p[parset])) for k,v in current_parset.items(): par_name = '%s_%i'%(k, parset) params.add(name=par_name, value=v, vary=True, min=0.0) if 'offset' in par_name: params[par_name].max = len(data)-1 if 'frac_gauss' in par_name: params[par_name].max = 1.0 if frac_gauss is not None: params[par_name].vary = False #if 'sigma' in par_name or 'hwhm' in par_name: # params[par_name].max = 0.01*current_parset['amplitude'] if 'amplitude' in par_name: params[par_name].max = 2.0*data.max() try: mz = lmfit.minimize(cls._f_res, params, args=([data]), method=method) fits = Fid._parameters_to_list(mz.params) except: fits = None return fits @classmethod def _parameters_to_list(cls, p): n_pks = int(len(p)/5) params = [] for i in range(n_pks): current_params = [p['%s_%s'%(par, i)].value for par in ['offset', 'sigma', 'hwhm', 'amplitude', 'frac_gauss']] params.append(current_params) return params @classmethod def _deconv_datum(cls, list_parameters): if len(list_parameters) != 5: raise ValueError('list_parameters must consist of five objects.') if (type(list_parameters[1]) == list and len(list_parameters[1]) == 0) or \ (type(list_parameters[2]) == list and len(list_parameters[2]) == 0): return [] datum, peaks, ranges, frac_gauss, method = list_parameters if not cls._is_iter_of_iters(ranges): raise TypeError('ranges must be an iterable of iterables') if not all(len(rng) == 2 for rng in ranges): raise ValueError('ranges must contain two values.') if not all(rng[0] != rng[1] for rng in ranges): raise ValueError('data_index must contain different values.') if not isinstance(datum, numpy.ndarray): datum = numpy.array(datum) if datum.dtype in cls._complex_dtypes: raise TypeError('data must be not be complex.') fit = [] for j in zip(peaks, ranges): d_slice = datum[j[1][0]:j[1][1]] p_slice = j[0]-j[1][0] f = cls._f_fitp(d_slice, p_slice, frac_gauss=frac_gauss, method=method) f = numpy.array(f).transpose() f[0] += j[1][0] f = f.transpose() fit.append(f) return fit def deconv(self, method='leastsq', frac_gauss=0.0): """ Deconvolute :attr:`~nmrpy.data_obects.Fid.data` object by fitting a series of peaks to the spectrum. These peaks are generated using the parameters in :attr:`~nmrpy.data_objects.Fid.peaks`. :attr:`~nmrpy.data_objects.Fid.ranges` splits :attr:`~nmrpy.data_objects.Fid.data` up into smaller portions. This significantly speeds up deconvolution time. :keyword frac_gauss: (0-1) determines the Gaussian fraction of the peaks. Setting this argument to None will fit this parameter as well. :keyword method: The fitting method to use. Default is 'leastsq', the Levenberg-Marquardt algorithm, which is usually sufficient. Additional options include: Nelder-Mead (nelder) L-BFGS-B (l-bfgs-b) Conjugate Gradient (cg) Powell (powell) Newton-CG (newton) """ if not len(self.data): raise AttributeError('data does not exist.') if self.data.dtype in self._complex_dtypes: raise TypeError('data must be not be complex.') if self.peaks is None: raise AttributeError('peaks must be picked.') if self.ranges is None: raise AttributeError('ranges must be specified.') print('deconvoluting {}'.format(self.id)) list_parameters = [self.data, self._grouped_index_peaklist, self._index_ranges, frac_gauss, method] self._deconvoluted_peaks = numpy.array([j for i in Fid._deconv_datum(list_parameters) for j in i]) print('deconvolution completed') def plot_ppm(self, **kwargs): """ Plot :attr:`~nmrpy.data_objects.Fid.data`. :keyword upper_ppm:
<reponame>ratschlab/immunopepper import gzip import os import pickle import pytest import pysam import numpy as np from immunopepper.filter import junction_tuple_is_annotated from immunopepper.io_ import convert_namedtuple_to_str from immunopepper.io_ import gz_and_normal_open from immunopepper.io_ import load_pickled_graph from immunopepper.mutations import apply_germline_mutation from immunopepper.mutations import construct_mut_seq_with_str_concat from immunopepper.mutations import get_mutation_mode_from_parser from immunopepper.mutations import get_sub_mutation_tuple from immunopepper.preprocess import genes_preprocess_all from immunopepper.preprocess import parse_mutation_from_vcf from immunopepper.preprocess import parse_mutation_from_maf from immunopepper.preprocess import preprocess_ann from immunopepper.utils import check_chr_consistence from immunopepper.utils import create_libsize from immunopepper.utils import get_sub_mut_dna from immunopepper.utils import get_concat_peptide from immunopepper.translate import translate_dna_to_peptide from immunopepper.translate import complementary_seq from immunopepper.immunopepper import parse_arguments from immunopepper.immunopepper import split_mode from immunopepper.traversal import create_output_kmer from immunopepper.namedtuples import Coord from immunopepper.namedtuples import Mutation from immunopepper.namedtuples import OutputBackground from immunopepper.namedtuples import OutputKmer data_dir = os.path.join(os.path.dirname(__file__), 'test1','data') groundtruth_dir = os.path.join(os.path.dirname(__file__), 'test1') @pytest.fixture def load_gene_data(): f = open(os.path.join(data_dir, 'posgraph','spladder', 'genes_graph_conf3.merge_graphs.pickle'), 'rb') ann_path = os.path.join(data_dir, 'test1pos.gtf') ref_path = os.path.join(data_dir, 'test1pos.fa') (graph_data, graph_meta) = load_pickled_graph(f) # cPickle.load(f) genetable,chr_set = preprocess_ann(ann_path) interesting_chr = list(map(str, range(1, 23))) + ["X", "Y", "MT"] gene = graph_data[0] chrm = gene.chr.strip() ref_seq = ref_path # seq_dict[chrm] return graph_data, ref_path, genetable.gene_to_cds_begin @pytest.fixture def load_mutation_data(): vcf_path = os.path.join(data_dir, 'test1pos.vcf') maf_path = os.path.join(data_dir, 'test1pos.maf') mutation_dic_vcf = parse_mutation_from_vcf(vcf_path=vcf_path,h5_sample_list=['test1pos']) mutation_dic_maf = parse_mutation_from_maf(maf_path=maf_path) return mutation_dic_vcf, mutation_dic_maf def test_preprocess(load_gene_data): graph_data, _, gene_cds_begin_dict = load_gene_data gene_info = genes_preprocess_all(graph_data, gene_cds_begin_dict) assert gene_info[0].nvertices == 8 def test_germline_mutation(load_gene_data, load_mutation_data): graph_data, ref_path, gene_cds_begin_dict = load_gene_data mutation_dic_vcf, mutation_dic_maf = load_mutation_data gene = graph_data[0] mutation_sub_dic_vcf = mutation_dic_vcf['test1pos', gene.chr] ref_mut_seq = apply_germline_mutation(ref_sequence_file=ref_path, chrm=gene.chr, pos_start=gene.start, pos_end=gene.stop, mutation_sub_dict=mutation_sub_dic_vcf) assert 'ref' in ref_mut_seq.keys() def test_get_sub_mut_dna(load_gene_data, load_mutation_data): graph_data, ref_path, gene_cds_begin_dict = load_gene_data mutation_dic_vcf, mutation_dic_maf = load_mutation_data gene = graph_data[0] # made modification to the mutation_dic_vcf var_dict = {'ref_base': 'G', 'mut_base': 'A', 'strand': '+', 'Variant_Classification': 'Silent', 'Variant_Type': 'SNP'} mutation_sub_dic_maf = mutation_dic_maf['test1pos', gene.chr] mutation_sub_dic_maf[41] = var_dict test_list = [[11, 29, 38, 50], [11, 29, 38, 50], [60, 75, 87, 102]] groundtruth = ['GATGACGCACGCATGGTGGTGGGTTGCGGA', 'GATGACGCACGCATGGTGGTGAGTTGCGGA', 'GTTCAGGTACGTATATCGACGTTCTGGTGG', ] variant_comb = [(38,), (38, 41), '.'] strand = ['+', '+', '+'] for i, vlist in enumerate(test_list): with pysam.FastaFile(ref_path) as fh: ref_seq = fh.fetch(gene.chr, vlist[0], vlist[3]) coord = Coord(vlist[0], vlist[1], vlist[2], vlist[3]) sub_dna = get_sub_mut_dna(ref_seq, coord, variant_comb[i], mutation_sub_dic_maf, strand[i], vlist[0]) assert sub_dna == groundtruth[i] def test_reading_gtf_and_gff3_file(): gff3_path = os.path.join(data_dir,'small.gencode.v29.gff3') gtf_path = os.path.join(data_dir, 'small.gencode.v29.gtf') gene_table_gtf,_ = preprocess_ann(gtf_path) gene_table_gff,_ = preprocess_ann(gff3_path) assert gene_table_gff.gene_to_ts == gene_table_gtf.gene_to_ts assert gene_table_gtf.ts_to_cds.keys() == gene_table_gff.ts_to_cds.keys() assert gene_table_gtf.ts_to_cds['ENST00000335137.4'] == [(69090, 70005, 0)] assert gene_table_gff.ts_to_cds['ENST00000335137.4'] == [(69090, 70008, 0)] # include stop codon in gff3 def test_reading_gtf_and_gff_file(): gff_path = os.path.join(data_dir,'small.gencode.v19.gff') gtf_path = os.path.join(data_dir, 'small.gencode.v19.gtf') gene_table_gtf,_ = preprocess_ann(gtf_path) gene_table_gff,_ = preprocess_ann(gff_path) assert gene_table_gff.gene_to_ts == gene_table_gtf.gene_to_ts assert gene_table_gtf.ts_to_cds.keys() == gene_table_gff.ts_to_cds.keys() assert gene_table_gff.ts_to_cds['ENST00000335137.3'] == [(69090, 70006, 0)] assert gene_table_gtf.ts_to_cds['ENST00000335137.3'] == [(69090, 70005, 0)] def test_reading_vcf_h5(): vcf_dict_default_heter_code0 = parse_mutation_from_vcf(os.path.join(data_dir,'test1vcf.h5'),h5_sample_list=['test1pos','test1neg']) vcf_dict_heter_code2 = parse_mutation_from_vcf(os.path.join(data_dir,'test1vcf.h5'),h5_sample_list=['test1pos','test1neg'],heter_code=2) assert len(vcf_dict_default_heter_code0) == 2 assert vcf_dict_default_heter_code0['test1neg', 'X'][135] == {'mut_base': 'G', 'ref_base': 'C'} assert vcf_dict_default_heter_code0['test1pos', 'X'][14] == {'mut_base': 'C', 'ref_base':'G'} assert vcf_dict_heter_code2['test1pos', 'X'][135] == {'mut_base': 'G', 'ref_base': 'C'} assert vcf_dict_heter_code2['test1neg', 'X'][14] == {'mut_base': 'C', 'ref_base':'G'} assert vcf_dict_heter_code2['test1neg', 'X'][135] == {'mut_base': 'G', 'ref_base':'C'} def test_construct_mut_seq_with_str_concat(): ref_seq = 'GTAATGTGTAAGATGACGCACGCATGGTGGTATTGGAGATGGGTTGCGGAGTAAGTTCGAGTTC' gt_mut_seq2 = 'GTAATGTGTAAGATGACGCACGCATA'+'C'+'TGGTATTGGAGATGGGTTGCGGAGTAAGTTCGAGTTC' gt_mut_seq3 = 'GTAATGTGTAAGATGACGCACGCATA'+'G'+'TGGTATTGGAGATGGGTTGCGGAGTAAGTTCGAGTTC' mut_dict = {} mut_dict[10] = {'mut_base':'*','ref_base':'A'} mut_dict[25] = {'mut_base':'A','ref_base':'G'} mut_dict[26] = {'mut_base':'C','ref_base':'G'} mut_seq1 = construct_mut_seq_with_str_concat(ref_seq[45:], 45, 46, mut_dict) # test unclear mut_base assert mut_seq1 == ref_seq[45:] mut_seq2 = construct_mut_seq_with_str_concat(ref_seq[25:], 25, 27, mut_dict) # [25,27) include 26 assert mut_seq2 == gt_mut_seq2[25:] mut_seq3 = construct_mut_seq_with_str_concat(ref_seq[25:], 25, 26, mut_dict) # [25,26) not include 26 assert mut_seq3 == gt_mut_seq3[25:] def test_get_mutation_mode_from_parser(): basic_args = ['build', '--samples','this_sample', '--splice-path','this_splicegraph', '--output-dir','this_output_dir', '--ann-path','this_ann_path', '--ref-path','this_ref_path'] my_args1 = basic_args+[ '--germline', os.path.join(data_dir,'test1pos.vcf'), '--somatic', os.path.join(data_dir,'test1pos.maf'), '--mutation-mode', 'somantic'] # bad mutation mode args = parse_arguments(my_args1) try: get_mutation_mode_from_parser(args) except SystemExit: assert 1 my_args2 = basic_args+['--germline', os.path.join(data_dir,'test1pos.vcf'), '--mutation-mode', 'somatic'] # mismatch mutation mode and input files args = parse_arguments(my_args2) try: get_mutation_mode_from_parser(args) except SystemExit: assert 1 def test_get_sub_mutation_tuple(): germline_dict = {('test1pos','1'):{135:{'mut_base': 'G', 'ref_base': 'C'}},('test1neg','1'):{136:{'mut_base': 'G', 'ref_base': 'C'}}} somatic_dict = {('test1pos','1'):{28:{'mut_base': 'G', 'ref_base': 'C'}},('test2neg','1'):{29:{'mut_base': 'G', 'ref_base': 'C'}}} sample = 'test1pos' chrm = '1' mutation = Mutation(mode='somatic_and_germline',germline_mutation_dict=germline_dict,somatic_mutation_dict=somatic_dict) sub_mutation = get_sub_mutation_tuple(mutation,sample,chrm) assert sub_mutation.somatic_mutation_dict == mutation.somatic_mutation_dict[('test1pos','1')] assert sub_mutation.germline_mutation_dict == mutation.germline_mutation_dict[('test1pos','1')] assert sub_mutation.mode == mutation.mode # (test1neg,'1') not in the keys of maf_dict sample = 'test1neg' try: sub_mutation = get_sub_mutation_tuple(mutation, sample, chrm) except SystemExit: assert 1 # (test1pos, 2) does exists neither in vcf nor maf sample = 'test1pos' chrm = '2' try: sub_mutation = get_sub_mutation_tuple(mutation, sample, chrm) except SystemExit: assert 1 def test_create_output_kmer(): k = 3 peptide = OutputBackground('1','MTHAW') expr_lists = [(8,1000),(1,220),(6,0)] # test 0 expression c = create_output_kmer(peptide, k, expr_lists) true_output = [OutputKmer('MTH','1',913.33,False,NOT_EXIST), OutputKmer('THA','1',580.0,False,NOT_EXIST), OutputKmer('HAW','1',246.67,False,NOT_EXIST)] assert c == true_output expr_lists = [(8,1000),(1,220),(0,0)] # test 0 expression c = create_output_kmer(peptide, k, expr_lists) true_output = [OutputKmer('MTH','1',913.33,False,NOT_EXIST), OutputKmer('THA','1',870.0,False,NOT_EXIST), OutputKmer('HAW','1',740.0,False,NOT_EXIST)] assert c == true_output def test_get_concat_peptide(): front_coord = Coord(10,19,25,33) back_coord = Coord(27,36,44,53) front_peptide = '' back_peptide = 'MGF' strand = '+' concat_pep = get_concat_peptide(front_coord,back_coord,front_peptide,back_peptide,strand) assert concat_pep == '' front_peptide = 'MGF' back_peptide = '' strand = '+' concat_pep = get_concat_peptide(front_coord,back_coord,front_peptide,back_peptide,strand) assert concat_pep == '' front_peptide = 'EDM' back_peptide = 'DMF' strand = '+' concat_pep = get_concat_peptide(front_coord,back_coord,front_peptide,back_peptide,strand) assert concat_pep == 'EDMF' # neg case front_coord = Coord(35,43,20,29) back_coord = Coord(18,26,17,13) strand = '-' front_peptide = 'EDM' back_peptide = 'DMF' concat_pep = get_concat_peptide(front_coord,back_coord,front_peptide,back_peptide,strand) assert concat_pep == 'EDMF' def test_convert_namedtuple_to_str(): other_pep_field_list = ['id', 'new_line', 'peptide'] back_pep1 = OutputBackground(1,'EDMHG') back_pep2 = OutputBackground(2,'') back_pep3 = OutputBackground(3,'KKQ') back_pep_list = [back_pep1,back_pep2,back_pep3] result = [convert_namedtuple_to_str(back_pep,other_pep_field_list)+'\n' for back_pep in back_pep_list] expected_result = ['1\nEDMHG\n', '2\n\n', '3\nKKQ\n'] assert result == expected_result other_pep_field_list = ['kmer','id','expr','is_cross_junction','junction_count'] kmer_pep1 = OutputKmer('','GENE0_1_2',NOT_EXIST,False,NOT_EXIST) kmer_pep2 = OutputKmer('AQEB','GENE0_1_3',20,True,25) kmer_pep_list = [kmer_pep1,kmer_pep2] result = [convert_namedtuple_to_str(kmer_pep,other_pep_field_list)+'\n' for kmer_pep in kmer_pep_list] expected_result = ['\tGENE0_1_2\t.\tFalse\t.\n', 'AQEB\tGENE0_1_3\t20\tTrue\t25\n'] assert result == expected_result def test_get_junction_ann_flag(): junction_flag = np.zeros((4,4)) junction_flag[1,2] = 1 junction_flag[2,3] = 1 vertex_id_tuple = (1, 2, 3) assert junction_tuple_is_annotated(junction_flag, vertex_id_tuple) == 1 vertex_id_tuple = (0, 2, 3) assert junction_tuple_is_annotated(junction_flag, vertex_id_tuple) == 1 vertex_id_tuple = (0, 1, 3) assert junction_tuple_is_annotated(junction_flag, vertex_id_tuple) == 0 vertex_id_tuple = (1, 2) assert junction_tuple_is_annotated(junction_flag, vertex_id_tuple) == 1 def test_check_chr_consistence(load_gene_data, load_mutation_data): graph_data, _, gene_cds_begin_dict = load_gene_data mutation_dic_vcf, mutation_dic_maf = load_mutation_data mutation = Mutation(None,mutation_dic_maf,mutation_dic_vcf) # vcf_dict[('test1pos','X')] ann_path = os.path.join(data_dir, 'test1pos.gtf') genetable,chr_set = preprocess_ann(ann_path) check_chr_consistence(chr_set,mutation,graph_data) # conflict between chr_set and vcf_dict try: chr_set = set(['chrX']) check_chr_consistence(chr_set, mutation, graph_data) except SystemExit: assert 1 # conflict between chr_set and gene.chr try: graph_data[0].chr = 'chrX' check_chr_consistence(chr_set, mutation, graph_data) except SystemExit: assert 1 def test_create_libsize(): fp = 'temp.txt' expr_distr_dict = {'test1pos':['.'],'test1neg':[2,10,11]} libsize_count_dict = create_libsize(expr_distr_dict,fp,debug=True) assert libsize_count_dict == {'test1neg':(10.5,23)} def check_kmer_pos_valid(new_junction_file, genome_file, mutation_mode='somatic', sample=None, germline_file_path=None,somatic_file_path=None,basic_args=None): """ Check if the exact dna position can output the same kmer Parameters ---------- new_junction_file: str. kmer_junction file path outputed by filter genome_file: str. genome file path. mutation_mode: str. choose from four modes. ref, germline, somatic, somatic_and_germline sample: str. sample name germline_file_path: str. germline file path somatic_file_path: str. somatic file path """ #read the variant file if basic_args is None: basic_args = ['build', '--samples','this_sample', '--splice-path','this_splicegraph', '--output-dir','this_output_dir', '--ann-path','this_ann_path', '--ref-path','this_ref_path'] my_args1 = basic_args+[ '--somatic', somatic_file_path, '--germline',germline_file_path, '--mutation-mode', mutation_mode] args = parse_arguments(my_args1) mutation = get_mutation_mode_from_parser(args) # read genome file seq_dict = {} with pysam.FastaFile(genome_file) as fh: refs = fh.references lens = fh.lengths for i,ref in enumerate(refs): if mutation_mode in ['germline', 'somatic_and_germline']: if (sample, ref) in mutation.germline_mutation_dict: seq_dict[ref] = apply_germline_mutation(ref_sequence_file=genome_file, chrm=ref, pos_start=0, pos_end=lens[i], mutation_sub_dict=mutation.germline_mutation_dict[(sample, ref)])['background'] else: seq_dict[ref] = fh.fetch(ref) f = gz_and_normal_open(new_junction_file,'r') headline = next(f) for line_id, line in enumerate(f): if line_id % 10000 == 0: print("{} kmers validated".format(line_id)) items = line.strip().split('\t') kmer = items[0] exact_kmer_pos = items[5] gene_chr, gene_strand, somatic_comb,pos_str = exact_kmer_pos.split('_') pos_list = [int(pos) for pos in pos_str.split(';')] sub_mutation = get_sub_mutation_tuple(mutation, sample, gene_chr) somatic_comb_list = somatic_comb.split(';') if somatic_comb_list[0] == NOT_EXIST: somatic_comb_list = [] i = 0 seq_list = [] if gene_strand == '+': while i < len(pos_list): orig_str = seq_dict[gene_chr][pos_list[i]:pos_list[i+1]] for somatic_mut_pos in somatic_comb_list: somatic_mut_pos = int(somatic_mut_pos) if somatic_mut_pos in range(pos_list[i],pos_list[i+1]): offset = somatic_mut_pos-pos_list[i] mut_base = sub_mutation.somatic_mutation_dict[somatic_mut_pos]['mut_base'] ref_base = sub_mutation.somatic_mutation_dict[somatic_mut_pos]['ref_base'] # assert ref_base == orig_str[offset] orig_str = orig_str[:offset] + mut_base+orig_str[offset+1:] #somatic_comb_list.remove(str(somatic_mut_pos)) seq_list.append(orig_str) i += 2 seq = ''.join(seq_list) else: while i < len(pos_list)-1: orig_str = seq_dict[gene_chr][pos_list[i+1]:pos_list[i]] for somatic_mut_pos in somatic_comb_list: somatic_mut_pos = int(somatic_mut_pos) if somatic_mut_pos in range(pos_list[i+1], pos_list[i]): offset = somatic_mut_pos - pos_list[i+1] mut_base = sub_mutation.somatic_mutation_dict[somatic_mut_pos]['mut_base'] ref_base = sub_mutation.somatic_mutation_dict[somatic_mut_pos]['ref_base'] # assert ref_base == orig_str[offset] orig_str = orig_str[:offset] + mut_base + orig_str[offset+1:] #somatic_comb_list.remove(somatic_mut_pos) seq_list.append(orig_str[::-1]) i += 2 seq = ''.join(seq_list) seq = complementary_seq(seq) aa,_ = translate_dna_to_peptide(seq) assert aa == kmer # case='neg' # mutation_mode='somatic_and_germline' # sample='test1{}'.format(case) # new_junction_file = 'new_junction_kmer.txt' # genome_file = 'tests/test1/data/test1{}.fa'.format(case) # germline_file_path='tests/test1/data/test1{}.vcf'.format(case) # somatic_file_path='tests/test1/data/test1{}.maf'.format(case) # check_kmer_pos_valid(new_junction_file,genome_file,mutation_mode,sample,germline_file_path,somatic_file_path) @pytest.mark.parametrize("test_id,case,mutation_mode", [ ['1', 'pos', 'ref'], ['1', 'pos', 'germline'], ['1', 'pos', 'somatic'], ['1', 'pos', 'somatic_and_germline'], ['1', 'neg', 'ref'], ['1', 'neg', 'germline'], ['1', 'neg', 'somatic'], ['1',
mapping') plt.show() return image_tonemapped def srgb_to_linear(image_srgb, verbose=False): ''' --------------------------------------------------------------------------- Transform an image from sRGB color space to linear --------------------------------------------------------------------------- The function undos the main non-linearities associated with the sRGB color space, in order to approximate a linear color response. Note that the linear image output will look darker, because the gamma correction will be undone. The transformation formulas can be found in the EasyRGB website: https://www.easyrgb.com/en/math.php Note that the formulas may look slightly different. This is because they have been altered in order to implement them in a vectorized way, avoiding for loops. As such, an image is partitioned in 2 parts image_upper and image_lower, which implement separate parts of the piece-wise color transformation formula. INPUTS ------ image_srgb: numpy array of WxHx3 of uint8 [0,255] Input color image with values in the interval [0,255]. Assuming that it is encoded on the sRGB color space. The code will still work if the input image is grayscale or within [0,1] range. verbose: boolean Display outputs. OUTPUT ------ image_linear: numpy array of WxHx3 of float [0,1] Output color linear image with values in the interval [0,1]. Gamma has been removed, so it looks darker. ''' # dealing with different input dimensions dimensions = len(image_srgb.shape) if dimensions == 1: image_srgb = np.expand_dims(image_srgb, axis=2) # make a 3rd dimension image_srgb = img_as_float(image_srgb) # [0,1] # lower part of the piecewise formula image_lower = image_srgb.copy() image_lower[image_lower > 0.04045] = 0 image_lower = image_lower / 12.92 # upper part of the piecewise formula image_upper = image_srgb.copy() image_upper = image_upper + 0.055 image_upper[image_upper <= (0.04045+0.055)] = 0 image_upper = image_upper / 1.055 image_upper = image_upper ** 2.4 image_linear = image_lower + image_upper # combine into the final result if verbose is True: plt.figure() plt.subplot(1,2,1) plt.imshow(image_srgb, vmin=0, vmax=1) plt.title('Image sRGB') plt.axis('off') plt.subplot(1,2,2) plt.imshow(image_linear, vmin=0, vmax=1) plt.title('Image linear') plt.axis('off') plt.tight_layout(True) plt.suptitle('sRGB -> linear space') plt.show() return image_linear def linear_to_srgb(image_linear, verbose=False): ''' --------------------------------------------------------------------------- Transform an image from linear to sRGB color space --------------------------------------------------------------------------- The function re-applies the main non-linearities associated with the sRGB color space. The transformation formula can be found in EasyRGB website: https://www.easyrgb.com/en/math.php Note that the formulas may look slightly different. This is because they have been altered in order to implement them in a vectorized way, avoiding for loops. As such, an image is partitioned in 2 parts image_upper and image_lower, which implement separate parts of the piece-wise color transformation formula. INPUTS ------ image_linear: numpy array of WxHx3 of float [0,1] Input color image with values in the interval [0,1]. verbose: boolean Display outputs. OUTPUT ------ image_srgb: numpy array of WxHx3 of uint8 [0,255] Output color sRGB image with values in the interval [0,255]. ''' # dealing with different input dimensions dimensions = len(image_linear.shape) if dimensions == 1: image_linear = np.expand_dims(image_linear, axis=2) # 3rd dimension image_linear = img_as_float(image_linear) # [0,1] # lower part of the piecewise formula image_lower = image_linear.copy() image_lower[image_lower > 0.0031308] = 0 image_lower = image_lower * 12.92 # upper part of the piecewise formula image_upper = image_linear.copy() image_upper[image_upper <= 0.0031308] = 0 image_upper = image_upper ** (1/2.4) image_upper = image_upper * 1.055 image_upper = image_upper - 0.055 image_srgb = image_lower + image_upper image_srgb = np.clip(a=image_srgb, a_min=0, a_max=1, out=image_srgb) if verbose is True: plt.figure() plt.subplot(1,2,1) plt.imshow(image_linear, vmin=0, vmax=1) plt.title('Image linear') plt.axis('off') plt.subplot(1,2,2) plt.imshow(image_srgb, vmin=0, vmax=1) plt.title('Image sRGB') plt.axis('off') plt.tight_layout(True) plt.suptitle('Linear space -> sRGB') plt.show() return (image_srgb * 255).astype(np.uint8) def transfer_graytone_to_color(image_color, image_graytone, verbose=False): ''' --------------------------------------------------------------------------- Transfer grayscale tones to a color image --------------------------------------------------------------------------- Transfers the tones of a guide grayscale image to the color version of the same image, by using linear color ratios. It first brings the image from the sRGB color space back to the linear color space. It estimates color ratios of the grayscale color image with the tone-mapped grayscale guide image. It then applies the color ratios on the 3 color channels. Finally, it brings back the image to the sRGB color space (gamma corrected). Is the input image is in another color space (Adobe RGB), a different transformation could be used. However, results will not be that much different. Related publication: <NAME>, <NAME>, <NAME>, and <NAME>, "Color preservation for tone reproduction and image enhancement", Proc. SPIE 9015, Color Imaging XIX, 2014 INPUTS ------ image_color: numpy array of WxHx3 of uint8 [0,255] Input color image. image_graytone: numpy array of WxH of float [0,1] Grayscale version of the image_color which has been tonemapped and it will be used as a guide to transfer the same tonemapping to the color image. verbose: boolean Display outputs. OUTPUT ------ image_colortone: numpy array of WxHx3 of uint8 [0,255] Output color image with transfered tonemapping. ''' EPSILON = 1 / 256 # bring both color and graytone to linear space image_color_linear = srgb_to_linear(image_color.copy(), verbose=False) image_graytone_linear = srgb_to_linear(image_graytone.copy(),verbose=False) image_gray_linear = rgb2gray(image_color_linear.copy()) image_gray_linear[image_gray_linear==0] = EPSILON # for the division later # tone ratio of linear images: improved/original tone_ratio = image_graytone_linear / image_gray_linear # tone_ratio[np.isinf(tone_ratio)] = 0 # tone_ratio[np.isnan(tone_ratio)] = 0 # apply the tone ratios to the color image image_colortone_linear = image_color_linear * np.dstack([tone_ratio] * 3) # make sure it's within limits image_colortone_linear = np.clip( a=image_colortone_linear, a_min=0, a_max=1, out=image_colortone_linear ) # bring back to gamma-corrected sRGB space for visualization image_colortone = linear_to_srgb(image_colortone_linear, verbose=False) # display results if verbose is True: plt.figure() plt.subplot(2,4,1) plt.imshow(image_color, vmin=0, vmax=255) plt.title('Color') plt.axis('off') plt.subplot(2,4,5) plt.imshow(image_color_linear, vmin=0, vmax=1) plt.title('Color linear') plt.axis('off') plt.subplot(2,4,2) plt.imshow(image_graytone, cmap='gray', vmin=0, vmax=1) plt.title('Graytone') plt.axis('off') plt.subplot(2,4,6) plt.imshow(image_graytone_linear, cmap='gray', vmin=0, vmax=1) plt.title('Graytone linear') plt.axis('off') plt.subplot(2,4,7) plt.imshow(tone_ratio, cmap='gray') plt.title('Tone ratios') plt.axis('off') plt.subplot(2,4,4) plt.imshow(image_colortone, vmin=0, vmax=255) plt.title('Colortone') plt.axis('off') plt.subplot(2,4,8) plt.imshow(image_colortone_linear, vmin=0, vmax=1) plt.title('Colortone linear') plt.axis('off') plt.tight_layout(True) plt.suptitle('Transfering gray tones to color') plt.show() return image_colortone def change_color_saturation( image_color, image_ph_mask=None, sat_degree=1.5, verbose=False): ''' --------------------------------------------------------------------------- Adjust color saturation of an image --------------------------------------------------------------------------- Increase or decrease the saturation (vibrance) of colors in an image. This implements a simpler approach rather than using the HSV color space to adjust S. In my experiments HSV-based saturation adjustment was not as good and it exhibited some kind of 'color noise'. This approach is aesthetically better. The use of photometric_mask is optional, in case you would like to treat dark areas (where saturation is usually lower) differently. INPUTS ------ image_color: numpy array of WxHx3 of float [0,1] Input color image. image_ph_mask: numpy array of WxH of float [0,1] or None Grayscale image whose values represent the neighborhood of the pixels of the input image. If None, saturation adjustment is applied globally to all pixels. If not None, then dark regions are treated differently and get an additional boost in saturation. sat_degree': float [0,inf]. How to change the color saturation. 0: no color (grayscale), <1: reduced color saturation, 1: color saturation unchanged >1: increased color saturation verbose: boolean Display outputs. OUTPUT ------ image_new_sat: numpy array of WxHx3 of float [0,1] Output image with adjusted saturation. ''' LOCAL_BOOST = 0.2 THRESHOLD_DARK_TONES = 100 / 255 #TODO: return the same image type image_color = img_as_float(image_color) # [0,1] # define gray scale image_gray = (image_color[:,:,0] + image_color[:,:,1] + image_color[:,:,2]) / 3 image_gray = np.dstack([image_gray] * 3) # grayscale with 3 channels image_delta = image_color - image_gray # deviations from gray # defining local color amplification degree if image_ph_mask is not None: detail_amplification_local = image_ph_mask / THRESHOLD_DARK_TONES detail_amplification_local[detail_amplification_local>1]
= None ) -> None: self.email = email super().__init__( id=id, version=version, created_at=created_at, last_modified_at=last_modified_at, last_modified_by=last_modified_by, created_by=created_by, sequence_number=sequence_number, resource=resource, resource_version=resource_version, type="CustomerEmailChanged", resource_user_provided_identifiers=resource_user_provided_identifiers, ) def __repr__(self) -> str: return ( "CustomerEmailChangedMessage(id=%r, version=%r, created_at=%r, last_modified_at=%r, last_modified_by=%r, created_by=%r, sequence_number=%r, resource=%r, resource_version=%r, type=%r, resource_user_provided_identifiers=%r, email=%r)" % ( self.id, self.version, self.created_at, self.last_modified_at, self.last_modified_by, self.created_by, self.sequence_number, self.resource, self.resource_version, self.type, self.resource_user_provided_identifiers, self.email, ) ) class CustomerEmailChangedMessagePayload(MessagePayload): "Corresponding marshmallow schema is :class:`commercetools.schemas.CustomerEmailChangedMessagePayloadSchema`." #: :class:`str` email: str def __init__(self, *, type: str = None, email: str = None) -> None: self.email = email super().__init__(type="CustomerEmailChanged") def __repr__(self) -> str: return "CustomerEmailChangedMessagePayload(type=%r, email=%r)" % ( self.type, self.email, ) class CustomerEmailVerifiedMessage(Message): "Corresponding marshmallow schema is :class:`commercetools.schemas.CustomerEmailVerifiedMessageSchema`." def __init__( self, *, id: str = None, version: int = None, created_at: datetime.datetime = None, last_modified_at: datetime.datetime = None, last_modified_by: typing.Optional["LastModifiedBy"] = None, created_by: typing.Optional["CreatedBy"] = None, sequence_number: int = None, resource: "Reference" = None, resource_version: int = None, type: str = None, resource_user_provided_identifiers: typing.Optional[ "UserProvidedIdentifiers" ] = None ) -> None: super().__init__( id=id, version=version, created_at=created_at, last_modified_at=last_modified_at, last_modified_by=last_modified_by, created_by=created_by, sequence_number=sequence_number, resource=resource, resource_version=resource_version, type="CustomerEmailVerified", resource_user_provided_identifiers=resource_user_provided_identifiers, ) def __repr__(self) -> str: return ( "CustomerEmailVerifiedMessage(id=%r, version=%r, created_at=%r, last_modified_at=%r, last_modified_by=%r, created_by=%r, sequence_number=%r, resource=%r, resource_version=%r, type=%r, resource_user_provided_identifiers=%r)" % ( self.id, self.version, self.created_at, self.last_modified_at, self.last_modified_by, self.created_by, self.sequence_number, self.resource, self.resource_version, self.type, self.resource_user_provided_identifiers, ) ) class CustomerEmailVerifiedMessagePayload(MessagePayload): "Corresponding marshmallow schema is :class:`commercetools.schemas.CustomerEmailVerifiedMessagePayloadSchema`." def __init__(self, *, type: str = None) -> None: super().__init__(type="CustomerEmailVerified") def __repr__(self) -> str: return "CustomerEmailVerifiedMessagePayload(type=%r)" % (self.type,) class CustomerGroupSetMessage(Message): "Corresponding marshmallow schema is :class:`commercetools.schemas.CustomerGroupSetMessageSchema`." #: :class:`commercetools.types.CustomerGroupReference` `(Named` ``customerGroup`` `in Commercetools)` customer_group: "CustomerGroupReference" def __init__( self, *, id: str = None, version: int = None, created_at: datetime.datetime = None, last_modified_at: datetime.datetime = None, last_modified_by: typing.Optional["LastModifiedBy"] = None, created_by: typing.Optional["CreatedBy"] = None, sequence_number: int = None, resource: "Reference" = None, resource_version: int = None, type: str = None, resource_user_provided_identifiers: typing.Optional[ "UserProvidedIdentifiers" ] = None, customer_group: "CustomerGroupReference" = None ) -> None: self.customer_group = customer_group super().__init__( id=id, version=version, created_at=created_at, last_modified_at=last_modified_at, last_modified_by=last_modified_by, created_by=created_by, sequence_number=sequence_number, resource=resource, resource_version=resource_version, type="CustomerGroupSet", resource_user_provided_identifiers=resource_user_provided_identifiers, ) def __repr__(self) -> str: return ( "CustomerGroupSetMessage(id=%r, version=%r, created_at=%r, last_modified_at=%r, last_modified_by=%r, created_by=%r, sequence_number=%r, resource=%r, resource_version=%r, type=%r, resource_user_provided_identifiers=%r, customer_group=%r)" % ( self.id, self.version, self.created_at, self.last_modified_at, self.last_modified_by, self.created_by, self.sequence_number, self.resource, self.resource_version, self.type, self.resource_user_provided_identifiers, self.customer_group, ) ) class CustomerGroupSetMessagePayload(MessagePayload): "Corresponding marshmallow schema is :class:`commercetools.schemas.CustomerGroupSetMessagePayloadSchema`." #: :class:`commercetools.types.CustomerGroupReference` `(Named` ``customerGroup`` `in Commercetools)` customer_group: "CustomerGroupReference" def __init__( self, *, type: str = None, customer_group: "CustomerGroupReference" = None ) -> None: self.customer_group = customer_group super().__init__(type="CustomerGroupSet") def __repr__(self) -> str: return "CustomerGroupSetMessagePayload(type=%r, customer_group=%r)" % ( self.type, self.customer_group, ) class DeliveryAddedMessage(Message): "Corresponding marshmallow schema is :class:`commercetools.schemas.DeliveryAddedMessageSchema`." #: :class:`commercetools.types.Delivery` delivery: "Delivery" def __init__( self, *, id: str = None, version: int = None, created_at: datetime.datetime = None, last_modified_at: datetime.datetime = None, last_modified_by: typing.Optional["LastModifiedBy"] = None, created_by: typing.Optional["CreatedBy"] = None, sequence_number: int = None, resource: "Reference" = None, resource_version: int = None, type: str = None, resource_user_provided_identifiers: typing.Optional[ "UserProvidedIdentifiers" ] = None, delivery: "Delivery" = None ) -> None: self.delivery = delivery super().__init__( id=id, version=version, created_at=created_at, last_modified_at=last_modified_at, last_modified_by=last_modified_by, created_by=created_by, sequence_number=sequence_number, resource=resource, resource_version=resource_version, type="DeliveryAdded", resource_user_provided_identifiers=resource_user_provided_identifiers, ) def __repr__(self) -> str: return ( "DeliveryAddedMessage(id=%r, version=%r, created_at=%r, last_modified_at=%r, last_modified_by=%r, created_by=%r, sequence_number=%r, resource=%r, resource_version=%r, type=%r, resource_user_provided_identifiers=%r, delivery=%r)" % ( self.id, self.version, self.created_at, self.last_modified_at, self.last_modified_by, self.created_by, self.sequence_number, self.resource, self.resource_version, self.type, self.resource_user_provided_identifiers, self.delivery, ) ) class DeliveryAddedMessagePayload(MessagePayload): "Corresponding marshmallow schema is :class:`commercetools.schemas.DeliveryAddedMessagePayloadSchema`." #: :class:`commercetools.types.Delivery` delivery: "Delivery" def __init__(self, *, type: str = None, delivery: "Delivery" = None) -> None: self.delivery = delivery super().__init__(type="DeliveryAdded") def __repr__(self) -> str: return "DeliveryAddedMessagePayload(type=%r, delivery=%r)" % ( self.type, self.delivery, ) class DeliveryAddressSetMessage(Message): "Corresponding marshmallow schema is :class:`commercetools.schemas.DeliveryAddressSetMessageSchema`." #: :class:`str` `(Named` ``deliveryId`` `in Commercetools)` delivery_id: str #: Optional :class:`commercetools.types.Address` address: typing.Optional["Address"] #: Optional :class:`commercetools.types.Address` `(Named` ``oldAddress`` `in Commercetools)` old_address: typing.Optional["Address"] def __init__( self, *, id: str = None, version: int = None, created_at: datetime.datetime = None, last_modified_at: datetime.datetime = None, last_modified_by: typing.Optional["LastModifiedBy"] = None, created_by: typing.Optional["CreatedBy"] = None, sequence_number: int = None, resource: "Reference" = None, resource_version: int = None, type: str = None, resource_user_provided_identifiers: typing.Optional[ "UserProvidedIdentifiers" ] = None, delivery_id: str = None, address: typing.Optional["Address"] = None, old_address: typing.Optional["Address"] = None ) -> None: self.delivery_id = delivery_id self.address = address self.old_address = old_address super().__init__( id=id, version=version, created_at=created_at, last_modified_at=last_modified_at, last_modified_by=last_modified_by, created_by=created_by, sequence_number=sequence_number, resource=resource, resource_version=resource_version, type="DeliveryAddressSet", resource_user_provided_identifiers=resource_user_provided_identifiers, ) def __repr__(self) -> str: return ( "DeliveryAddressSetMessage(id=%r, version=%r, created_at=%r, last_modified_at=%r, last_modified_by=%r, created_by=%r, sequence_number=%r, resource=%r, resource_version=%r, type=%r, resource_user_provided_identifiers=%r, delivery_id=%r, address=%r, old_address=%r)" % ( self.id, self.version, self.created_at, self.last_modified_at, self.last_modified_by, self.created_by, self.sequence_number, self.resource, self.resource_version, self.type, self.resource_user_provided_identifiers, self.delivery_id, self.address, self.old_address, ) ) class DeliveryAddressSetMessagePayload(MessagePayload): "Corresponding marshmallow schema is :class:`commercetools.schemas.DeliveryAddressSetMessagePayloadSchema`." #: :class:`str` `(Named` ``deliveryId`` `in Commercetools)` delivery_id: str #: Optional :class:`commercetools.types.Address` address: typing.Optional["Address"] #: Optional :class:`commercetools.types.Address` `(Named` ``oldAddress`` `in Commercetools)` old_address: typing.Optional["Address"] def __init__( self, *, type: str = None, delivery_id: str = None, address: typing.Optional["Address"] = None, old_address: typing.Optional["Address"] = None ) -> None: self.delivery_id = delivery_id self.address = address self.old_address = old_address super().__init__(type="DeliveryAddressSet") def __repr__(self) -> str: return ( "DeliveryAddressSetMessagePayload(type=%r, delivery_id=%r, address=%r, old_address=%r)" % (self.type, self.delivery_id, self.address, self.old_address) ) class DeliveryItemsUpdatedMessage(Message): "Corresponding marshmallow schema is :class:`commercetools.schemas.DeliveryItemsUpdatedMessageSchema`." #: :class:`str` `(Named` ``deliveryId`` `in Commercetools)` delivery_id: str #: List of :class:`commercetools.types.DeliveryItem` items: typing.List["DeliveryItem"] #: List of :class:`commercetools.types.DeliveryItem` `(Named` ``oldItems`` `in Commercetools)` old_items: typing.List["DeliveryItem"] def __init__( self, *, id: str = None, version: int = None, created_at: datetime.datetime = None, last_modified_at: datetime.datetime = None, last_modified_by: typing.Optional["LastModifiedBy"] = None, created_by: typing.Optional["CreatedBy"] = None, sequence_number: int = None, resource: "Reference" = None, resource_version: int = None, type: str = None, resource_user_provided_identifiers: typing.Optional[ "UserProvidedIdentifiers" ] = None, delivery_id: str = None, items: typing.List["DeliveryItem"] = None, old_items: typing.List["DeliveryItem"] = None ) -> None: self.delivery_id = delivery_id self.items = items self.old_items = old_items super().__init__( id=id, version=version, created_at=created_at, last_modified_at=last_modified_at, last_modified_by=last_modified_by, created_by=created_by, sequence_number=sequence_number, resource=resource, resource_version=resource_version, type="DeliveryItemsUpdated", resource_user_provided_identifiers=resource_user_provided_identifiers, ) def __repr__(self) -> str: return ( "DeliveryItemsUpdatedMessage(id=%r, version=%r, created_at=%r, last_modified_at=%r, last_modified_by=%r, created_by=%r, sequence_number=%r, resource=%r, resource_version=%r, type=%r, resource_user_provided_identifiers=%r, delivery_id=%r, items=%r, old_items=%r)" % ( self.id, self.version, self.created_at, self.last_modified_at, self.last_modified_by, self.created_by, self.sequence_number, self.resource, self.resource_version, self.type, self.resource_user_provided_identifiers, self.delivery_id, self.items, self.old_items, ) ) class DeliveryItemsUpdatedMessagePayload(MessagePayload): "Corresponding marshmallow schema is :class:`commercetools.schemas.DeliveryItemsUpdatedMessagePayloadSchema`." #: :class:`str` `(Named` ``deliveryId`` `in Commercetools)` delivery_id: str #: List of :class:`commercetools.types.DeliveryItem` items: typing.List["DeliveryItem"] #: List of :class:`commercetools.types.DeliveryItem` `(Named` ``oldItems`` `in Commercetools)` old_items: typing.List["DeliveryItem"] def __init__( self, *, type: str = None, delivery_id: str = None, items: typing.List["DeliveryItem"] = None, old_items: typing.List["DeliveryItem"] = None ) -> None: self.delivery_id = delivery_id self.items = items self.old_items = old_items super().__init__(type="DeliveryItemsUpdated") def __repr__(self) -> str: return ( "DeliveryItemsUpdatedMessagePayload(type=%r, delivery_id=%r, items=%r, old_items=%r)" % (self.type, self.delivery_id, self.items, self.old_items) ) class DeliveryRemovedMessage(Message): "Corresponding marshmallow schema is :class:`commercetools.schemas.DeliveryRemovedMessageSchema`." #: :class:`commercetools.types.Delivery` delivery: "Delivery" def __init__( self, *, id: str = None, version: int = None, created_at: datetime.datetime = None, last_modified_at: datetime.datetime = None, last_modified_by: typing.Optional["LastModifiedBy"] = None, created_by: typing.Optional["CreatedBy"] = None, sequence_number: int = None, resource: "Reference" = None, resource_version: int = None, type: str = None, resource_user_provided_identifiers: typing.Optional[ "UserProvidedIdentifiers" ] = None, delivery: "Delivery" = None ) -> None: self.delivery = delivery super().__init__( id=id, version=version, created_at=created_at, last_modified_at=last_modified_at, last_modified_by=last_modified_by, created_by=created_by, sequence_number=sequence_number, resource=resource, resource_version=resource_version, type="DeliveryRemoved", resource_user_provided_identifiers=resource_user_provided_identifiers, ) def __repr__(self) -> str: return ( "DeliveryRemovedMessage(id=%r, version=%r, created_at=%r, last_modified_at=%r, last_modified_by=%r, created_by=%r, sequence_number=%r, resource=%r, resource_version=%r, type=%r, resource_user_provided_identifiers=%r, delivery=%r)" % ( self.id, self.version, self.created_at, self.last_modified_at, self.last_modified_by, self.created_by, self.sequence_number, self.resource, self.resource_version, self.type, self.resource_user_provided_identifiers, self.delivery, ) ) class DeliveryRemovedMessagePayload(MessagePayload): "Corresponding marshmallow schema is :class:`commercetools.schemas.DeliveryRemovedMessagePayloadSchema`." #: :class:`commercetools.types.Delivery` delivery: "Delivery" def __init__(self, *, type: str = None, delivery: "Delivery" = None) -> None: self.delivery = delivery super().__init__(type="DeliveryRemoved") def __repr__(self) -> str: return "DeliveryRemovedMessagePayload(type=%r, delivery=%r)" % ( self.type, self.delivery, ) class InventoryEntryCreatedMessage(Message): "Corresponding marshmallow schema is :class:`commercetools.schemas.InventoryEntryCreatedMessageSchema`." #: :class:`commercetools.types.InventoryEntry` `(Named` ``inventoryEntry`` `in Commercetools)` inventory_entry: "InventoryEntry" def __init__( self, *, id: str = None, version: int = None, created_at: datetime.datetime = None, last_modified_at: datetime.datetime = None, last_modified_by: typing.Optional["LastModifiedBy"] = None, created_by: typing.Optional["CreatedBy"] = None, sequence_number: int = None, resource: "Reference" = None, resource_version: int = None, type: str = None, resource_user_provided_identifiers: typing.Optional[ "UserProvidedIdentifiers" ] = None, inventory_entry: "InventoryEntry" = None ) -> None: self.inventory_entry = inventory_entry super().__init__( id=id, version=version, created_at=created_at, last_modified_at=last_modified_at, last_modified_by=last_modified_by, created_by=created_by, sequence_number=sequence_number, resource=resource, resource_version=resource_version, type="InventoryEntryCreated", resource_user_provided_identifiers=resource_user_provided_identifiers, ) def __repr__(self) -> str: return ( "InventoryEntryCreatedMessage(id=%r, version=%r, created_at=%r, last_modified_at=%r, last_modified_by=%r, created_by=%r, sequence_number=%r, resource=%r, resource_version=%r, type=%r, resource_user_provided_identifiers=%r, inventory_entry=%r)" % ( self.id, self.version, self.created_at, self.last_modified_at, self.last_modified_by, self.created_by, self.sequence_number, self.resource, self.resource_version,
<filename>cube.py<gh_stars>0 """ cube Original PyCube written by <NAME> Based and modified from original version found at: http://stackoverflow.com/questions/30745703/rotating-a-cube-using-quaternions-in-pyopengl """ from OpenGL.GL import * from OpenGL.GLU import * from OpenGL.GLUT import * import math import numpy as np from queue import Queue from enums import FaceRotation from geometry import Geometry from helpers import LittleHelpers from mathf import Mathf from quat import * from tween import * class State(Enum): IDLE = 0 TWEENING = 1 class Cube: def __init__(self, settings, face_rotation_ease_type, sticker_texture_id, size=3): default_color = (0, 0, 0) self.padding = settings.cube_padding self.draw_cubies = settings.cube_draw_cubies self.draw_sphere = settings.cube_draw_sphere self.draw_lines = settings.cube_draw_lines self.line_width = settings.cube_line_width self.inner_color = LittleHelpers.convert_hex_color_to_floats(settings.cube_inner_color, default_color) self.sphere_color = LittleHelpers.convert_hex_color_to_floats(settings.cube_sphere_color, default_color) self.angular_drag = settings.cube_angular_drag self.scale_drag = settings.cube_scale_drag self.min_scale = settings.cube_min_scale/size self.max_scale = settings.cube_max_scale self.size = size self.rot_x = 0 self.rot_y = 0 self.accum = (1, 0, 0, 0) self.scale = 1/(self.size/3) self.scale_speed = 0 self.sphere_radius = 3 self.sphere_slices = 16 self.sphere_stacks = 16 self.face_rotation_tween_time = settings.cube_face_rotation_tween_time self.face_rotation_ease_type = face_rotation_ease_type self.texture_mapping_enabled = settings.texture_mapping_enabled self.sticker_texture_id = sticker_texture_id self.geometry = Geometry(self.size) self.face_colors = ( (0, 154/255, 74/255), # Front: Green (1, 86/255, 35/255), # Left: Orange (0, 75/255, 171/255), # Back: Blue (190/255, 15/255, 56/255), # Right: Red (1, 1, 1), # Up: White (1, 210/255, 44/255), # Down: Yellow ) self.reset() rx = settings.cube_initial_rotation_x * Mathf.DEG_TO_RAD ry = settings.cube_initial_rotation_y * Mathf.DEG_TO_RAD self.apply_rotation(rx, ry, settings.rotate_y_before_x_initially) # auto-rotation repeat = True repetion_count = -1 if settings.cube_auto_rot_x_enabled: begin = settings.cube_auto_rot_x_begin end = settings.cube_auto_rot_x_end jump_start = settings.cube_auto_rot_x_jump_start ease = Tween.get_ease_type_by_name(settings.cube_auto_rot_x_ease_type) self.auto_rot_x = Tween() self.auto_rot_x.tween(begin, end, time, ease, repeat, repetition_count, jump_start) else: self.auto_rot_x = False if settings.cube_auto_rot_y_enabled: begin = settings.cube_auto_rot_y_begin end = settings.cube_auto_rot_y_end time = settings.cube_auto_rot_y_time jump_start = settings.cube_auto_rot_y_jump_start ease = Tween.get_ease_type_by_name(settings.cube_auto_rot_y_ease_type) self.auto_rot_y = Tween() self.auto_rot_y.tween(begin, end, time, ease, repeat, repetition_count, jump_start) else: self.auto_rot_y = False def reset(self): self.geometry = Geometry(self.size) self.geometry.add_padding(self.padding) self.queued_face_rotations = Queue(0) self.tween = Tween() self.state = State.IDLE self.current_face_rotation = None def apply_rotation(self, x, y, rotate_y_before_x=False): qx = normalize(axisangle_to_q((1, 0, 0), x)) qy = normalize(axisangle_to_q((0, 1, 0), y)) if rotate_y_before_x: self.accum = q_mult(self.accum, qy) self.accum = q_mult(self.accum, qx) else: self.accum = q_mult(self.accum, qx) self.accum = q_mult(self.accum, qy) def update(self, elapsed_time): self.rot_x -= abs(self.rot_x) * self.angular_drag * elapsed_time * np.sign(self.rot_x) self.rot_y -= abs(self.rot_y) * self.angular_drag * elapsed_time * np.sign(self.rot_y) qx = normalize(axisangle_to_q((1, 0, 0), self.rot_x)) qy = normalize(axisangle_to_q((0, 1, 0), self.rot_y)) self.accum = q_mult(self.accum, qx) self.accum = q_mult(self.accum, qy) self.scale_speed -= abs(self.scale_speed) * self.scale_drag * elapsed_time * np.sign(self.scale_speed) self.scale += self.scale_speed if self.scale < self.min_scale: self.scale = self.min_scale self.scale_speed = 0 if self.scale > self.max_scale: self.scale = self.max_scale self.scale_speed = 0 self.update_queue() self.update_tween(elapsed_time) self.update_face_tweening() if self.auto_rot_x: self.auto_rot_x.update(elapsed_time) if self.auto_rot_y: self.auto_rot_y.update(elapsed_time) def render(self): # glPushMatrix() glLoadMatrixf(q_to_mat4(self.accum)) glScalef(self.scale, self.scale, self.scale) if self.auto_rot_x: rot_x = self.auto_rot_x.get_current() glRotatef(rot_x, 1, 0, 0) if self.auto_rot_y: rot_y = self.auto_rot_y.get_current() glRotatef(rot_y, 0, 1, 0) if self.draw_sphere: self.render_sphere() if self.draw_cubies: if self.texture_mapping_enabled: self.render_cubies_with_textures() else: self.render_cubies() if self.draw_lines: self.render_lines() # glPopMatrix() def add_rotate_x(self, value): self.rot_x += value def add_rotate_y(self, value): self.rot_y += value def add_scale(self, value): self.scale_speed += value def reset_rotation(self): self.rot_x = 0 self.rot_y = 0 self.accum = (1, 0, 0, 0) def reset_scale(self): self.scale = 1 def stop_rotation(self): self.rot_x = 0 self.rot_y = 0 def append_face_rotation(self, face_rotation): if type(face_rotation) == FaceRotation: self.queued_face_rotations.put(face_rotation) def scramble(self, face_rotations): theta = math.pi / 2 for face in face_rotations: self.rotate_face(face, theta) def map_colors(self, front_color, back_color, left_color, right_color, up_color, down_color): self.face_colors = (front_color, left_color, back_color, right_color, up_color, down_color) def update_queue(self): if self.state == State.TWEENING or self.queued_face_rotations.empty(): return self.current_face_rotation = self.queued_face_rotations.get_nowait() self.state = State.TWEENING self.tween.tween(0, math.pi/2, self.face_rotation_tween_time, self.face_rotation_ease_type) def update_tween(self, elapsed_time): if self.state != State.TWEENING: return if self.tween.is_done(): self.state = State.IDLE self.current_face_rotation = None else: self.tween.update(elapsed_time) def update_face_tweening(self): theta = self.tween.get_delta() self.rotate_face(self.current_face_rotation, theta) def rotate_face(self, face, theta): if (face == FaceRotation.FRONT_CW or face == FaceRotation.BACK_CCW or face == FaceRotation.LEFT_CCW or face == FaceRotation.RIGHT_CW or face == FaceRotation.UP_CW or face == FaceRotation.DOWN_CCW): theta *= -1 if face == FaceRotation.FRONT_CW or face == FaceRotation.FRONT_CCW: self.rotate_front_face(theta) if face == FaceRotation.BACK_CW or face == FaceRotation.BACK_CCW: self.rotate_back_face(theta) if face == FaceRotation.LEFT_CW or face == FaceRotation.LEFT_CCW: self.rotate_left_face(theta) if face == FaceRotation.RIGHT_CW or face == FaceRotation.RIGHT_CCW: self.rotate_right_face(theta) if face == FaceRotation.UP_CW or face == FaceRotation.UP_CCW: self.rotate_up_face(theta) if face == FaceRotation.DOWN_CW or face == FaceRotation.DOWN_CCW: self.rotate_down_face(theta) def rotate_front_face(self, theta, layer=1): for pieces in self.geometry.center_pieces[0]: for piece in pieces: for i in range(8): piece[i] = z_rot(piece[i], theta) #self.geometry.center_pieces[0][i] = z_rot(self.geometry.center_pieces[0][i], theta) for axis in self.geometry.edge_pieces: for pieces in axis: for piece in pieces: flag = True for vertex in piece: if vertex[2] < (self.size-1) - (layer*2): #if vertex[2] < 0: flag = False break if flag: for i in range(8): piece[i] = z_rot(piece[i], theta) for piece in self.geometry.corner_pieces: flag = True for vertex in piece: if vertex[2] < 0: flag = False break if flag: for i in range(8): piece[i] = z_rot(piece[i], theta) def rotate_back_face(self, theta, layer=1): for pieces in self.geometry.center_pieces[2]: for piece in pieces: for i in range(8): piece[i] = z_rot(piece[i], theta) #self.geometry.center_pieces[2][i] = z_rot(self.geometry.center_pieces[2][i], theta) for axis in self.geometry.edge_pieces: for pieces in axis: for piece in pieces: flag = True for vertex in piece: #if vertex[2] > 0: if vertex[2] > (-self.size+1) + (layer*2): # or vertex[2] > (-self.size-1) + (layer*2): flag = False break if flag: for i in range(8): piece[i] = z_rot(piece[i], theta) for piece in self.geometry.corner_pieces: flag = True for vertex in piece: if vertex[2] > 0: flag = False break if flag: for i in range(8): piece[i] = z_rot(piece[i], theta) def rotate_left_face(self, theta, layer=1): for pieces in self.geometry.center_pieces[1]: for piece in pieces: for i in range(8): piece[i] = x_rot(piece[i], theta) #self.geometry.center_pieces[1][i] = x_rot(self.geometry.center_pieces[1][i], theta) for axis in self.geometry.edge_pieces: for pieces in axis: for piece in pieces: flag = True for vertex in piece: #if vertex[0] > 0: if vertex[0] > (-self.size+1) + (layer*2): flag = False break if flag: for i in range(8): piece[i] = x_rot(piece[i], theta) for piece in self.geometry.corner_pieces: flag = True for vertex in piece: if vertex[0] > 0: flag = False break if flag: for i in range(8): piece[i] = x_rot(piece[i], theta) def rotate_right_face(self, theta, layer=1): for pieces in self.geometry.center_pieces[3]: for piece in pieces: for i in range(8): piece[i] = x_rot(piece[i], theta) #self.geometry.center_pieces[3][i] = x_rot(self.geometry.center_pieces[3][i], theta) for axis in self.geometry.edge_pieces: for pieces in axis: for piece in pieces: flag = True for vertex in piece: #if vertex[0] < 0: if vertex[0] < (self.size-1) - (layer*2): flag = False break if flag: for i in range(8): piece[i] = x_rot(piece[i], theta) for piece in self.geometry.corner_pieces: flag = True for vertex in piece: if vertex[0] < 0: flag = False if flag: for i in range(8): piece[i] = x_rot(piece[i], theta) def rotate_up_face(self, theta, layer=1): for pieces in self.geometry.center_pieces[4]: for piece in pieces: for i in range(8): piece[i] = y_rot(piece[i], theta) #self.geometry.center_pieces[4][i] = y_rot(self.geometry.center_pieces[4][i], theta) for axis in self.geometry.edge_pieces: for pieces in axis: for piece in pieces: flag = True for vertex in piece: #if vertex[1] < 0: if vertex[1] < (self.size-1) - (layer*2): #if vertex[1] < self.size - layer*2: flag = False break if flag: for i in range(8): piece[i] = y_rot(piece[i], theta) for piece in self.geometry.corner_pieces: flag = True for vertex in piece: if vertex[1] < 0: flag = False break if flag: for i in range(8): piece[i] = y_rot(piece[i], theta) def rotate_down_face(self, theta, layer=1): for pieces in self.geometry.center_pieces[5]: for piece in pieces: for i in range(8): piece[i] = y_rot(piece[i], theta) #self.geometry.center_pieces[5][i] = y_rot(self.geometry.center_pieces[5][i], theta) for axis in self.geometry.edge_pieces: for pieces in axis: for piece in pieces: flag = True for vertex in piece: #if vertex[1] > 0: if vertex[1] > (-self.size+1) + (layer*2): #if vertex[1] > -self.size + layer*2: flag = False break if flag: for i in range(8): piece[i] = y_rot(piece[i], theta) for piece in self.geometry.corner_pieces: flag = True for vertex in piece: if vertex[1] > 0: flag = False break if flag: for i in range(8): piece[i] = y_rot(piece[i], theta) def render_sphere(self): glColor3f(self.sphere_color[0], self.sphere_color[1], self.sphere_color[2]) glutSolidSphere(self.sphere_radius, self.sphere_slices, self.sphere_stacks) def render_axes(self): glLineWidth(1) glBegin(GL_LINES) for color, axis in zip(self.geometry.axis_colors, self.geometry.axes): glColor3f(color[0], color[1], color[2]) for point in axis: p = self.geometry.axis_verts[point] glVertex3f(p[0], p[1],
test examples ''' return self.sess.run(self.preds, feed_dict=self.all_test_feed_dict) def print_model_eval(self): ''' print the evaluation of the model related information, such as loss, gradients, norm of parameters, etc. ''' params_val = self.sess.run(self.params) if self.mini_batch == True: grad_loss_val, loss_no_reg_val, loss_val = self.minibatch_mean_eval( [self.grad_total_loss_op, self.loss_no_reg, self.total_loss], self.data_sets.train) test_loss_val = self.minibatch_mean_eval( [self.loss_no_reg], self.data_sets.test) else: grad_loss_val, loss_no_reg_val, loss_val = self.sess.run( [self.grad_total_loss_op, self.loss_no_reg, self.total_loss], feed_dict=self.all_train_feed_dict) test_loss_val = self.sess.run( [self.loss_no_reg], feed_dict=self.all_test_feed_dict) print('Train loss (w reg) on all data: %s' % loss_val) print('Train loss (w/o reg) on all data: %s' % loss_no_reg_val) print('Test loss (w/o reg) on all data: %s' % test_loss_val) print('Norm of the mean of gradients: %s' % np.linalg.norm( np.concatenate([np.reshape(x, [-1, 1]) for x in grad_loss_val]))) print('Norm of the params: %s' % np.linalg.norm(np.concatenate([np.reshape(x, [-1, 1]) for x in params_val]))) def retrain(self, num_steps, feed_dict): ''' retrain the model with num_steps iterations num_steps: the number of iterations feed_dict: the training examples ''' for step in xrange(num_steps): self.sess.run(self.train_op, feed_dict=feed_dict) def update_learning_rate(self, step): ''' update the learning rate step: when the step or iteration is reached, update the learning rate ''' if self.mini_batch: assert self.num_train_examples % self.batch_size == 0 num_steps_in_epoch = self.num_train_examples / self.batch_size else: num_steps_in_epoch = 1 epoch = step // num_steps_in_epoch multiplier = 1 if epoch < self.decay_epochs[0]: multiplier = 1 elif epoch < self.decay_epochs[1]: multiplier = 0.1 else: multiplier = 0.01 self.sess.run( self.update_learning_rate_op, feed_dict={self.learning_rate_placeholder: multiplier * self.initial_learning_rate}) def train(self, num_steps, iter_to_switch_to_batch=20000, iter_to_switch_to_sgd=40000, save_checkpoints=True, verbose=True, ): """ Trains a model for a specified number of steps. num_steps: the number of iterations iter_to_switch_to_batch: the number of iterations to switch to batch training iter_to_switch_to_sgd: the number of iterations to switch to sgd optimizer save_checkpoints: Whether to save the model at the checkpoints verbose: whether to print the message during the training """ if verbose: print('Training for %s steps' % num_steps) self.num_train_step = num_steps self.iter_to_switch_to_batch = iter_to_switch_to_batch self.iter_to_switch_to_sgd = iter_to_switch_to_sgd sess = self.sess # Tensorboard # train_writer = tf.summary.FileWriter('./logs/{}/train'.format(datetime.datetime.now().strftime("%Y_%m_%d_%H_%M")), # sess.graph) # tf.summary.scalar("loss", self.total_loss) # merged = tf.summary.merge_all() org_loss = -100 err = [] for step in range(num_steps): self.update_learning_rate(step) start_time = time.time() if step < iter_to_switch_to_batch: feed_dict = self.fill_feed_dict_with_batch(self.data_sets.train) _, loss_val = sess.run([self.train_op, self.total_loss], feed_dict=feed_dict) # loss_val = sess.run([self.total_loss], feed_dict=feed_dict) elif step < iter_to_switch_to_sgd: feed_dict = self.all_train_feed_dict _, loss_val = sess.run([self.train_op, self.total_loss], feed_dict=feed_dict) else: feed_dict = self.all_train_feed_dict _, loss_val = sess.run([self.train_sgd_op, self.total_loss], feed_dict=feed_dict) duration = time.time() - start_time # train_writer.add_summary(summary, step) if (step + 1) % 1000 == 0: # Print status to stdout. if verbose: print('Step %d: loss = %.8f (%.3f sec)' % (step, loss_val, duration)) # if(abs(loss_val - org_loss) < epsilon): # break # org_loss = loss_val err.append((step, loss_val)) # Save a checkpoint and evaluate the model periodically. if (step + 1) % 10000 == 0 or (step + 1) == num_steps: if save_checkpoints: self.saver.save(sess, self.checkpoint_file, global_step=step) if verbose: self.print_model_eval() return err # train_writer.flush() def load_checkpoint(self, iter_to_load, do_checks=True): ''' load the model at the checkpoint iter_to_load: the number of iteration where the model is saved do_checks: print the informaiton of the model after loading ''' checkpoint_to_load = "%s_%s" % (self.checkpoint_file, iter_to_load) self.saver.restore(self.sess, checkpoint_to_load) if do_checks: print('Model %s loaded. Sanity checks ---' % checkpoint_to_load) self.print_model_eval() def save(self, file_name, do_checks=False): ''' save the model at the checkpoint file_name: the name of the file with which the model is saved do_checks: print the information of the model after loading ''' self.saver.save(self.sess, file_name) if do_checks: print('Model %s sSaved. Sanity checks ---' % file_name) self.print_model_eval() def restore(self, file_name, do_checks=False): ''' load the model at the checkpoint file_name: the name of the file with which the model is saved do_checks: print the information of the model after loading ''' self.saver.restore(self.sess, file_name) if do_checks: print('Model %s loaded. Sanity checks ---' % file_name) self.print_model_eval() def restore_train(self, file_name, init_step, iter_to_switch_to_batch=20000, iter_to_switch_to_sgd=40000, ): """ Trains a model for a specified number of steps. file_name: the name of the file with which the model is saved init_step: the threshold to train the model with different learning rate, different batches, etc. iter_to_switch_to_batch: the number of iterations to switch to batch training iter_to_switch_to_sgd: the number of iterations to switch to sgd optimizer """ self.num_train_step = init_step self.iter_to_switch_to_batch = iter_to_switch_to_batch self.iter_to_switch_to_sgd = iter_to_switch_to_sgd sess = self.sess org_loss = -100 err = [] self.update_learning_rate(init_step) start_time = time.time() if init_step < iter_to_switch_to_batch: feed_dict = self.fill_feed_dict_with_batch(self.data_sets.train) _, loss_val = sess.run([self.train_op, self.total_loss], feed_dict=feed_dict) # loss_val = sess.run([self.total_loss], feed_dict=feed_dict) elif init_step < iter_to_switch_to_sgd: feed_dict = self.all_train_feed_dict _, loss_val = sess.run([self.train_op, self.total_loss], feed_dict=feed_dict) else: feed_dict = self.all_train_feed_dict _, loss_val = sess.run([self.train_sgd_op, self.total_loss], feed_dict=feed_dict) duration = time.time() - start_time self.load_checkpoint(file_name, do_checks=True) # train_writer.add_summary(summary, step) print('inital loss = %.8f (%.3f sec)' % (loss_val)) def get_train_op(self, total_loss, global_step, learning_rate): """ Return train_op total_loss: the loss function to be optimized global_step: the global step for the optimizer learning_rate: the learning rate of the adam optimizer """ optimizer = tf.train.AdamOptimizer(learning_rate) train_op = optimizer.minimize(total_loss, global_step=global_step, ) return train_op def get_train_sgd_op(self, total_loss, global_step, learning_rate=0.001): """ Return train_sgd_op total_loss: the loss function to be optimized global_step: the global step for the optimizer learning_rate: the learning rate of the SGD optimizer """ optimizer = tf.train.GradientDescentOptimizer(learning_rate) train_op = optimizer.minimize(total_loss, global_step=global_step) return train_op def get_accuracy_op(self, logits, labels): """Evaluate the quality of the logits at predicting the label. Args: logits: Logits tensor, float - [batch_size, NUM_CLASSES]. labels: Labels tensor, int32 - [batch_size], with values in the range [0, NUM_CLASSES). Returns: A scalar int32 tensor with the number of examples (out of batch_size) that were predicted correctly. """ # correct = tf.nn.in_top_k(logits, labels, 1) # return tf.reduce_sum(tf.cast(correct, tf.int32)) / tf.shape(labels)[0] return np.NaN def loss(self, yhat, y): ''' the l2 norm between yhat and y. In addition, we try to remove the nan value after L2 norm computation. yhat: the prediction of the label y: the label ''' indiv_loss_no_reg = tf.squared_difference(yhat, y, name='indiv_loss') # indiv_loss_no_reg = tf.Print(indiv_loss_no_reg, [yhat[0], y[0], indiv_loss_no_reg[0]]) # neglect nans when do the average loss_no_reg = tf.reduce_mean(tf.boolean_mask(indiv_loss_no_reg, tf.logical_not(tf.is_nan(indiv_loss_no_reg))), name='loss_no_reg') # loss_no_reg = tf.Print(loss_no_reg, [loss_no_reg]) tf.add_to_collection('losses', loss_no_reg) total_loss = tf.add_n(tf.get_collection('losses'), name='total_loss') # total_loss = tf.Print(total_loss, [yhat[0], y[0], indiv_loss_no_reg[0], loss_no_reg, total_loss]) return total_loss, loss_no_reg, indiv_loss_no_reg def adversarial_loss(self, logits, labels): return 0, 0 def update_feed_dict_with_v_placeholder(self, feed_dict, vec): for pl_block, vec_block in zip(self.v_placeholder, vec): shp = pl_block.get_shape().as_list() shp = [-1 if x is None else x for x in shp] feed_dict[pl_block] = np.reshape(vec_block, shp) return feed_dict def get_inverse_hvp(self, v, approx_type='cg', approx_params=None, verbose=True): assert approx_type in ['cg', 'lissa'] if approx_type == 'lissa': return self.get_inverse_hvp_lissa(v, **approx_params) elif approx_type == 'cg': return self.get_inverse_hvp_cg(v, verbose) def get_inverse_hvp_lissa(self, v, batch_size=None, scale=10, damping=0.0, num_samples=1, recursion_depth=10000): """ This uses mini-batching; uncomment code for the single sample case. """ inverse_hvp = None print_iter = recursion_depth / 10 for i in range(num_samples): # samples = np.random.choice(self.num_train_examples, size=recursion_depth) cur_estimate = v for j in range(recursion_depth): feed_dict = self.fill_feed_dict_with_batch(self.data_sets.train, batch_size=batch_size) feed_dict = self.update_feed_dict_with_v_placeholder(feed_dict, cur_estimate) hessian_vector_val = self.sess.run(self.hessian_vector, feed_dict=feed_dict) cur_estimate = [a + (1 - damping) * b - c / scale for (a, b, c) in zip(v, cur_estimate, hessian_vector_val)] # Update: v + (I - Hessian_at_x) * cur_estimate if (j % print_iter == 0) or (j == recursion_depth - 1): print( "Recursion at depth %s: norm is %.8lf" % (j, np.linalg.norm(self.list_to_vec((cur_estimate))))) feed_dict = self.update_feed_dict_with_v_placeholder(feed_dict, cur_estimate) if inverse_hvp is None: inverse_hvp = [b / scale for b in cur_estimate] else: inverse_hvp = [a + b / scale for (a, b) in zip(inverse_hvp, cur_estimate)] inverse_hvp = [a / num_samples for a in inverse_hvp] return inverse_hvp def minibatch_hessian_vector_val(self, v): num_examples = self.num_train_examples if self.mini_batch == True: batch_size = 100 assert num_examples % batch_size == 0 else: batch_size = self.num_train_examples num_iter = int(num_examples / batch_size) self.reset_datasets() hessian_vector_val = None for i in range(num_iter): feed_dict = self.fill_feed_dict_with_batch(self.data_sets.train, batch_size=batch_size) # Can optimize this feed_dict = self.update_feed_dict_with_v_placeholder(feed_dict, [v]) hessian_vector_val_temp = self.sess.run(self.hessian_vector, feed_dict=feed_dict) if hessian_vector_val is None: hessian_vector_val = [b / float(num_iter) for b in hessian_vector_val_temp] else: hessian_vector_val = [a + (b / float(num_iter)) for (a, b) in zip(hessian_vector_val, hessian_vector_val_temp)] hessian_vector_val = [a + self.damping * b for (a, b) in zip(hessian_vector_val, v)] return hessian_vector_val
arc tangent of two data arrays `x` and `y`. It is similar to calculating the arc tangent of `y/x`, except that the signs of both arguments are used to determine the quadrant of the result. Works on radians only. The no-data value np.nan is passed through and therefore gets propagated if any of the arguments is null. Parameters ---------- y : xr.DataArray Numbers to be used as dividend. x : xr.DataArray Numbers to be used as divisor. Returns ------- xr.DataArray : The computed angles in radians. """ arct = xr.ufuncs.arctan2(y, x) return keep_attrs(x, y, arct) @staticmethod def exec_da(): pass ######################################################################################################################## # linear_scale_range Process ######################################################################################################################## @process def linear_scale_range(): """ Returns class instance of `LinearScaleRange`. For more details, please have a look at the implementations inside `LinearScaleRange`. Returns ------- LinearScaleRange : Class instance implementing all 'linear_scale_range' processes. """ return LinearScaleRange() class LinearScaleRange: """ Class implementing all 'linear_scale_range' processes. """ @staticmethod def exec_num(x, inputMin, inputMax, outputMin=0., outputMax=1.): """ Performs a linear transformation between the input and output range. The underlying formula is: `((x - input_min) / (input_max - input_min)) * (output_max - output_min) + output_min`. Potential use case include scaling values to the 8-bit range (0 - 255) often used for numeric representation of values in one of the channels of the RGB colour model or calculating percentages (0 - 100). The no-data value None is passed through and therefore gets propagated. Parameters ---------- x : int or float A number to transform. input_min : int or float Minimum value the input can obtain. input_max : int or float Maximum value the input can obtain. output_min : int or float, optional Minimum value of the desired output range (default is 0.). output_max : int or float, optional Maximum value of the desired output range (default is 1.). Returns ------- float : The transformed number. """ return LinearScaleRange.exec_np(x, inputMin, inputMax, outputMin=outputMin, outputMax=outputMax) if x is not None else x @staticmethod def exec_np(x, inputMin, inputMax, outputMin=0., outputMax=1.): """ Performs a linear transformation between the input and output range. The underlying formula is: `((x - input_min) / (input_max - input_min)) * (output_max - output_min) + output_min`. Potential use case include scaling values to the 8-bit range (0 - 255) often used for numeric representation of values in one of the channels of the RGB colour model or calculating percentages (0 - 100). The no-data value np.nan is passed through and therefore gets propagated. Parameters ---------- x : np.array Numbers to transform. input_min : int or float Minimum value the input can obtain. input_max : int or float Maximum value the input can obtain. output_min : int or float, optional Minimum value of the desired output range (default is 0.). output_max : int or float, optional Maximum value of the desired output range (default is 1.). Returns ------- np.array : The transformed numbers. """ return ((x - inputMin) / (inputMax - inputMin)) * (outputMax - outputMin) + outputMin @staticmethod def exec_xar(x, inputMin, inputMax, outputMin=0., outputMax=1.): """ Performs a linear transformation between the input and output range. The underlying formula is: `((x - input_min) / (input_max - input_min)) * (output_max - output_min) + output_min`. Potential use case include scaling values to the 8-bit range (0 - 255) often used for numeric representation of values in one of the channels of the RGB colour model or calculating percentages (0 - 100). The no-data value np.nan is passed through and therefore gets propagated. Parameters ---------- x : xr.DataArray Numbers to transform. input_min : int or float Minimum value the input can obtain. input_max : int or float Maximum value the input can obtain. output_min : int or float, optional Minimum value of the desired output range (default is 0.). output_max : int or float, optional Maximum value of the desired output range (default is 1.). Returns ------- xr.DataArray : The transformed numbers. """ lsr = ((x - inputMin) / (inputMax - inputMin)) * (outputMax - outputMin) + outputMin lsr.attrs = x.attrs return lsr @staticmethod def exec_da(): pass ######################################################################################################################## # Scale Process ######################################################################################################################## @process def scale(): """ Returns class instance of `Scale`. For more details, please have a look at the implementations inside `Scale`. Returns ------- Scale : Class instance implementing all 'scale' processes. """ return Scale() class Scale: """ Class implementing all 'scale' processes. """ @staticmethod def exec_num(x, factor=1.): """ Scales `x` with a multiplicand `factor`. The no-data value None is passed through and therefore gets propagated. Parameters ---------- x : int or float A number to scale. factor : int or float, optional The scale factor/multiplicand (default is 1.). Returns ------- float : The scaled number. """ return x*factor if x is not None else x @staticmethod def exec_np(x, factor=1.): """ Scales `x` with a multiplicand `factor`. The no-data value np.nan is passed through and therefore gets propagated. Parameters ---------- x : np.array A number to scale. factor : int or float, optional The scale factor/multiplicand (default is 1.). Returns ------- np.array : The scaled numbers. """ return x*factor @staticmethod def exec_xar(x, factor=1.): """ Scales `x` with a multiplicand `factor`. The no-data value np.nan is passed through and therefore gets propagated. Parameters ---------- x : xr.DataArray A number to scale. factor : int or float, optional The scale factor/multiplicand (default is 1.). Returns ------- xr.DataArray : The scaled numbers. """ s = x*factor s.attrs = x.attrs return s @staticmethod def exec_da(): pass ######################################################################################################################## # Mod Process ######################################################################################################################## @process def mod(): """ Returns class instance of `Mod`. For more details, please have a look at the implementations inside `Mod`. Returns ------- Mod : Class instance implementing all 'mod' processes. """ return Mod() class Mod: """ Class implementing all 'mod' processes. """ @staticmethod def exec_num(x, y): """ Remainder after division of `x` by `y`. The result of a modulo operation has the sign of the divisor. The no-data value None is passed through and therefore gets propagated if any of the arguments is None. Parameters ---------- x : int or float A number to be used as dividend. y : int or float A number to be used as divisor. Returns ------- float : The remainder after division. """ return x % y if x is not None and y is not None else None @staticmethod def exec_np(x, y): """ Remainder after division of `x` by `y`. The result of a modulo operation has the sign of the divisor. The no-data value None is passed through and therefore gets propagated if any of the arguments is None. Parameters ---------- x : np.array Numbers to be used as dividend. y : np.array Numbers to be used as divisor. Returns ------- np.array : The remainders after division. """ return np.mod(x, y) @staticmethod def exec_xar(x, y): """ Remainder after division of `x` by `y`. The result of a modulo operation has the sign of the divisor. The no-data value None is passed through and therefore gets propagated if any of the arguments is None. Parameters ---------- x : xr.DataArray Numbers to be used as dividend. y : xr.DataArray Numbers to be used as divisor. Returns ------- xr.DataArray : The remainders after division. """ if x is None or y is None: return None m = x % y return keep_attrs(x, y, m) @staticmethod def exec_da(): pass ######################################################################################################################## # Absolute Process ######################################################################################################################## @process def absolute(): """ Returns class instance of `Absolute`. For more details, please have a look at the implementations inside `Absolute`. Returns ------- Mod : Class instance implementing all 'absolute' processes. """ return Absolute() class Absolute: """ Class implementing all 'absolute' processes. """ @staticmethod def exec_num(x): """ Computes the absolute value of a real number `x`, which is the "unsigned" portion of `x` and often denoted as `|x|`. The no-data value None is passed through and therefore gets propagated. Parameters ---------- x : int or float A number. Returns ------- int or float : The computed absolute value. """ return abs(x) if x is not None else
number of points to sample at between the starting and stopping phase. :param num_shots: The number of shots to average over for each data point. :return: pandas DataFrame ''' cz_expriment = [] rz_qubit = [] # this is the qubit to which the RZ is applied for edge in edges: qubit, other_qubit = edge # first qubit gets RZ cz_expriment.append({ 'Edge': tuple(edge), 'Rz_qubit': qubit, 'Program': generate_cz_phase_ramsey_program(qubit, other_qubit, num_shots), 'Start_phase': start_phase, 'Stop_phase': stop_phase, 'Num_points': num_points, 'Num_shots': num_shots, }) # second qubit gets RZ cz_expriment.append({ 'Edge': tuple(edge), 'Rz_qubit': other_qubit, 'Program': generate_cz_phase_ramsey_program(other_qubit, qubit, num_shots), 'Start_phase': start_phase, 'Stop_phase': stop_phase, 'Num_points': num_points, 'Num_shots': num_shots, }) return pd.DataFrame(cz_expriment) def acquire_data_cz_phase_ramsey(qc: QuantumComputer, cz_experiment: pd.DataFrame, filename: str = None) -> pd.DataFrame: """ Execute experiments to measure the RZ incurred as a result of a CZ gate. :param qc: The qubit to move around the Bloch sphere and measure the incurred RZ on :param cz_experiment: pandas DataFrame :param filename: The name of the file to write JSON-serialized results to :return: pandas DataFrame """ results = [] for index, row in cz_experiment.iterrows(): parametric_ramsey_prog = row['Program'] edge = row['Edge'] rz_qb = row['Rz_qubit'] start_phase = row['Start_phase'] stop_phase = row['Stop_phase'] num_points = row['Num_points'] num_shots = row['Num_shots'] binary = compile_parametric_program(qc, parametric_ramsey_prog, num_shots=num_shots) qc.qam.load(binary) for theta in np.linspace(start_phase, stop_phase, num_points): qc.qam.write_memory(region_name='theta', value=theta) qc.qam.run() qc.qam.wait() bitstrings = qc.qam.read_from_memory_region(region_name="ro") avg = np.mean(bitstrings[:, 0]) results.append({ 'Edge': edge, 'Rz_qubit': rz_qb, 'Phase': theta, 'Num_bitstrings': len(bitstrings), 'Average': float(avg), }) if filename: pd.DataFrame(results).to_json(filename) return pd.DataFrame(results) def estimate_cz_phase_ramsey(df: pd.DataFrame) -> pd.DataFrame: """ Estimate CZ phase ramsey experimental data. :param df: Experimental results to plot and fit exponential decay curve to. :param detuning: Detuning frequency used in experiment creation. :return: List of dicts. """ results = [] edges = df['Edge'].unique() for id_row, edge in enumerate(edges): for id_col, qubit in enumerate(edge): qubit_df = df[(df['Rz_qubit'] == qubit) & (df['Edge'] == edge)].sort_values('Phase') phases = qubit_df['Phase'] prob_of_one = qubit_df['Average'] rz_qb = qubit_df['Rz_qubit'].values[0] try: # fit to sinusoid fit_params, fit_params_errs = fit_to_sinusoidal_waveform(phases, prob_of_one) results.append({ 'Edge': edge, 'Rz_qubit': rz_qb, 'Angle': fit_params[1], 'Prob_of_one': fit_params[2], 'Fit_params': fit_params, 'Fit_params_errs': fit_params_errs, 'Message': None, }) except RuntimeError: print(f"Could not fit to experimental data for edge {edge}") results.append({ 'Edge': edge, 'Rz_qubit': rz_qb, 'Angle': None, 'Prob_of_one': None, 'Fit_params': None, 'Fit_params_errs': None, 'Message': 'Could not fit to experimental data for edge' + str(edge), }) return pd.DataFrame(results) def plot_cz_phase_estimate_over_data(df: pd.DataFrame, filename: str = None) -> None: """ Plot Ramsey experimental data, the fitted sinusoid, and the maximum of that sinusoid. :param df: Experimental results to plot and fit exponential decay curve to. :return: None """ edges = df['Edge'].unique() if len(edges) == 1: # this deals with the one edge case, then plot will have an empty row # if you don't do this you get `axes.shape = (2,)` fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(24, 30)) else: fig, axes = plt.subplots(nrows=len(edges), ncols=2, figsize=(24, 10 * len(edges))) for id_row, edge in enumerate(edges): for id_col, qubit in enumerate(edge): qubit_df = df[(df['Rz_qubit'] == qubit) & (df['Edge'] == edge)].sort_values('Phase') phases = qubit_df['Phase'] prob_of_one = qubit_df['Average'] # plot raw data axes[id_row, id_col].plot(phases, prob_of_one, 'o', label=f"qubit{qubit} CZ Ramsey data") try: # fit to sinusoid fit_params, fit_params_errs = fit_to_sinusoidal_waveform(phases, prob_of_one) except RuntimeError: print(f"Could not fit to experimental data for qubit {qubit}") else: # find max excited state visibility (ESV) and propagate error from fit params max_ESV, max_ESV_err = get_peak_from_fit_params(fit_params, fit_params_errs) # overlay fitted curve and vertical line at maximum ESV axes[id_row, id_col].plot(phases, sinusoidal_waveform(phases, *fit_params), label=f"QC{qubit} fitted line") axes[id_row, id_col].axvline(max_ESV, label=f"QC{qubit} max ESV={max_ESV:.3f}+/-{max_ESV_err:.3f} rad") axes[id_row, id_col].set_xlabel("Phase on second +X/2 gate [rad]") axes[id_row, id_col].set_ylabel("Pr($|1\langle)") axes[id_row, id_col].set_title(f"CZ Phase Ramsey fringes on QC{qubit}\n" f"due to CZ_{edge[0]}_{edge[1]} application") axes[id_row, id_col].legend(loc='best') if filename is not None: plt.savefig(filename) plt.show() # ================================================================================================== # Fits and so forth # ================================================================================================== def exponential_decay_curve(t: Union[float, np.ndarray], amplitude: float, time_decay_constant: float, t_offset: float = 0.0) -> Union[float, np.ndarray]: """ Calculate exponential decay at a series of points. :param t: The independent variable with respect to which decay is calculated. :param amplitude: The amplitude of the decay curve. :param time_decay_constant: The time decay constant - in this case T1 - of the decay curve. :param t_offset: The time offset of the curve, assumed to be 0.0. :return: The exponential decay at the point(s) in time. """ return amplitude * np.exp(-1 * (t - t_offset) / time_decay_constant) def fit_to_exponential_decay_curve(x_data: np.ndarray, y_data: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """ Fit experimental data to exponential decay curve. :param x_data: Independent data to fit to. :param y_data: Experimental, dependent data to fit to. :return: Arrays of fitted decay curve parameters and their errors """ params, params_covariance = optimize.curve_fit(exponential_decay_curve, x_data, y_data, p0=[1.0, 15e-6, 0.0]) # parameter error extraction from # https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html params_errs = np.sqrt(np.diag(params_covariance)) return params, params_errs def sinusoidal_waveform(x: float, amplitude: float, baseline: float, frequency: float, x_offset: float) -> np.ufunc: """ Calculate sinusoidal response at a series of points. :param x: The independent variable with respect to which the sinusoidal response is calculated. :param amplitude: The amplitude of the sinusoid. :param baseline: The baseline of the sinusoid. :param frequency: The frequency of the sinusoid. :param x_offset: The x offset of the sinusoid. :return: The sinusoidal response at the given phases(s). """ return amplitude * np.sin(frequency * x + x_offset) + baseline def fit_to_sinusoidal_waveform(x_data: np.ndarray, y_data: List[float], displayflag: bool = False, ) -> Tuple[np.ndarray, np.ndarray]: """ Fit experimental data to sinusoid. :param x_data: Independent data to fit to. :param y_data: Experimental, dependent data to fit to. :param displayflag: If True displays results from scipy curve fit analysis. :return: Arrays of fitted decay curve parameters and their standard deviations """ params, params_covariance = optimize.curve_fit(sinusoidal_waveform, x_data, y_data, p0=[0.5, 0.5, 1.0, np.pi / 2]) # parameter error extraction from # https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html params_errs = np.sqrt(np.diag(params_covariance)) # interleave params and params_errs print_params = [] for idx in range(len(params)): print_params.append(params[idx]) print_params.append(params_errs[idx]) if displayflag: print("scipy curve fitting analysis returned\n" "amplitude:\t{:.5f} +/- {:.5f}\n" "baseline:\t{:.5f} +/- {:.5f}\n" "frequency:\t{:.5f} +/- {:.5f}\n" "x offset:\t{:.5f} +/- {:.5f}".format(*print_params)) return params, params_errs def get_peak_from_fit_params(fit_params: np.ndarray, fit_params_errs: np.ndarray) -> Tuple[float, float]: """ Extract peak from the fit parameters returned by scipy.optimize.curve_fit. :param fit_params: fit parameters out of scipy.optimize.curve_fit :param fit_params_errs: standard deviations on the fit parameters from scipy.optimize.curve_fit :return: The phase corresponding the to the maximum excited state visibility and its st. dev. """ # TODO: do away with hard-coded indices for fit params x0 = fit_params[-1] x0_err = fit_params_errs[-1] freq = fit_params[-2] freq_err = fit_params_errs[-2] print("propagating error using x_0 = {} +/- {} and freq = {} +/- {}".format(x0, x0_err, freq, freq_err)) # find the phase corresponding to maximum excited state visibility (ESV) using the fit params max_ESV = (np.pi / 2 - x0) / freq # max_ESV_err obtained by applying error propagation formula to max_ESV max_ESV_err = np.sqrt((x0_err / freq) ** 2 + ((np.pi / 2 - x0) * (freq_err / freq ** 2)) ** 2) print("\nmaximum excited state visibility observed at x = {} +/- {}".format(max_ESV, max_ESV_err)) return max_ESV, max_ESV_err def exponentially_decaying_sinusoidal_curve(t: Union[float, np.ndarray], amplitude: float, time_decay_constant: float, frequency: float, baseline: float, sin_t_offset: float = 0.0) -> Union[float, np.ndarray]: """ Calculate exponentially decaying sinusoid at a series of points. :param t: The independent variable with respect to which decay is calculated. :param amplitude: The amplitude of the decay curve. :param time_decay_constant: The time decay constant - in this case T2 - of the decay curve. :param frequency: The frequency to fit to the Ramsey fringes. :param baseline: The baseline of the Ramsey fringes. :param sin_t_offset: The time offset of the sinusoidal curve, assumed to be 0.0. :return: The exponentially decaying sinusoid evaluated at the point(s) in time. """ return amplitude * np.exp(-1 * t / time_decay_constant) * \ np.sin(frequency * (t - sin_t_offset)) + baseline def fit_to_exponentially_decaying_sinusoidal_curve(x_data: np.ndarray, y_data: np.ndarray, detuning: float = 5e6) -> Tuple[np.ndarray, np.ndarray]: """ Fit experimental data to exponential decay curve. :param x_data: Independent data to fit to. :param y_data: Experimental, dependent data to fit to. :param detuning: Detuning frequency used in experiment creation. :return: Arrays of fitted decay curve parameters and their errors """ params, params_covariance = optimize.curve_fit(exponentially_decaying_sinusoidal_curve,
#!/usr/bin/python3.9 # Copyright (c) 2021 MobileCoin Inc. # Copyright (c) 2021 The Forest Team import argparse import asyncio import json import logging import os import shutil import socket import sys import time from io import BytesIO from pathlib import Path from tarfile import TarFile from typing import Any, Callable, Optional try: # normally in a package from forest import pghelp, utils except ImportError: # maybe we're local? try: import pghelp # type: ignore import utils # type: ignore except ImportError: # i wasn't asking sys.path.append("forest") sys.path.append("..") import pghelp # type: ignore # pylint: disable=ungrouped-imports import utils # type: ignore # pylint: disable=ungrouped-imports if utils.get_secret("MIGRATE"): get_datastore = "SELECT account, datastore FROM {self.table} WHERE id=$1" else: get_datastore = "SELECT datastore FROM {self.table} WHERE id=$1" class DatastoreError(Exception): pass AccountPGExpressions = pghelp.PGExpressions( table="signal_accounts", # rename="ALTAR TABLE IF EXISTS prod_users RENAME TO {self.table}", migrate="ALTER TABLE IF EXISTS {self.table} ADD IF NOT EXISTS datastore BYTEA, ADD IF NOT EXISTS notes TEXT", create_table="CREATE TABLE IF NOT EXISTS {self.table} \ (id TEXT PRIMARY KEY, \ datastore BYTEA, \ last_update_ms BIGINT, \ last_claim_ms BIGINT, \ active_node_name TEXT, \ notes TEXT);", is_registered="SELECT datastore is not null as registered FROM {self.table} WHERE id=$1", get_datastore=get_datastore, get_claim="SELECT active_node_name FROM {self.table} WHERE id=$1", mark_account_claimed="UPDATE {self.table} \ SET active_node_name = $2, \ last_claim_ms = (extract(epoch from now()) * 1000) \ WHERE id=$1;", mark_account_freed="UPDATE {self.table} SET last_claim_ms = 0, \ active_node_name = NULL WHERE id=$1;", get_free_account="SELECT id, datastore FROM {self.table} \ WHERE active_node_name IS NULL \ AND last_claim_ms = 0 \ LIMIT 1;", upload="INSERT INTO {self.table} (id, datastore, last_update_ms) \ VALUES($1, $2, (extract(epoch from now()) * 1000)) \ ON CONFLICT (id) DO UPDATE SET \ datastore = $2, last_update_ms = EXCLUDED.last_update_ms;", free_accounts_not_updated_in_the_last_hour="UPDATE {self.table} \ SET last_claim_ms = 0, active_node_name = NULL \ WHERE last_update_ms < ((extract(epoch from now())-3600) * 1000);", get_timestamp="select last_update_ms from {self.table} where id=$1", ) def get_account_interface() -> pghelp.PGInterface: return pghelp.PGInterface( query_strings=AccountPGExpressions, database=utils.get_secret("DATABASE_URL"), ) class SignalDatastore: """ Download, claim, mount, and sync a signal datastore """ def __init__(self, number: str): self.account_interface = get_account_interface() formatted_number = utils.signal_format(number) if isinstance(formatted_number, str): self.number: str = formatted_number else: raise Exception("not a valid number") logging.info("SignalDatastore number is %s", self.number) self.filepath = "data/" + number # await self.account_interface.create_table() setup_tmpdir() # shouldn't do anything if not running locally def is_registered_locally(self) -> bool: try: return json.load(open(self.filepath))["registered"] except (FileNotFoundError, json.JSONDecodeError, KeyError) as e: logging.error(e) return False async def is_claimed(self) -> Optional[str]: record = await self.account_interface.get_claim(self.number) if not record: logging.warning("checking claim without plus instead") record = await self.account_interface.get_claim(self.number[1:]) if record: return record[0].get("active_node_name") raise Exception(f"no record in db for {self.number}") return record[0].get("active_node_name") async def download(self) -> None: """Fetch our account datastore from postgresql and mark it claimed""" logging.info("datastore download entered") await self.account_interface.free_accounts_not_updated_in_the_last_hour() for i in range(5): logging.info("checking claim") claim = await self.is_claimed() if not claim: logging.info("no account claim!") break # you can also try to kill the other process logging.info( "this account is claimed by %s, waiting", claim, ) await asyncio.sleep(6) if i == 4: logging.info("time's up") logging.info("downloading") record = await self.account_interface.get_datastore(self.number) if not record and utils.get_secret("MIGRATE"): logging.warning("trying without plus") record = await self.account_interface.get_datastore( self.number.removeprefix("+") ) logging.info("got datastore from pg") if json_data := record[0].get("account"): # legacy json-only field loaded_data = json.loads(json_data) if "username" in loaded_data: try: os.mkdir("data") except FileExistsError: pass open("data/" + loaded_data["username"], "w").write(json_data) return buffer = BytesIO(record[0].get("datastore")) tarball = TarFile(fileobj=buffer) fnames = [member.name for member in tarball.getmembers()] logging.debug(fnames[:2]) logging.info( "expected file %s exists: %s", self.filepath, self.filepath in fnames, ) tarball.extractall(utils.ROOT_DIR) # open("last_downloaded_checksum", "w").write(zlib.crc32(buffer.seek(0).read())) hostname = socket.gethostname() await self.account_interface.mark_account_claimed(self.number, hostname) logging.debug("marked account as claimed, asserting that this is the case") assert await self.is_claimed() return def tarball_data(self) -> Optional[bytes]: """Tarball our data files""" if not self.is_registered_locally(): logging.error("datastore not registered. not uploading") return None # fixme: check if the last thing we downloaded/uploaded # is older than the last thing in the db buffer = BytesIO() tarball = TarFile(fileobj=buffer, mode="w") try: tarball.add(self.filepath) try: tarball.add(self.filepath + ".d") except FileNotFoundError: logging.info("ignoring no %s", self.filepath + ".d") except FileNotFoundError: logging.warning( "couldn't find %s in %s, adding data instead", self.filepath + ".d", os.getcwd(), ) tarball.add("data") fnames = [member.name for member in tarball.getmembers()] logging.debug(fnames[:2]) tarball.close() buffer.seek(0) data = buffer.read() return data async def upload(self) -> Any: """Puts account datastore in postgresql.""" data = self.tarball_data() if not data: return kb = round(len(data) / 1024, 1) # maybe something like: # upload and return registered timestamp. write timestamp locally. when uploading, check that the last_updated_ts in postgres matches the file # if it doesn't, you've probably diverged, but someone may have put an invalid ratchet more recently by mistake (e.g. restarting triggering upload despite crashing) # or: # open("last_uploaded_checksum", "w").write(zlib.crc32(buffer.seek(0).read())) # you could formalize this as "present the previous checksum to upload" as a db procedure await self.account_interface.upload(self.number, data) logging.debug("saved %s kb of tarballed datastore to supabase", kb) return async def mark_freed(self) -> list: """Marks account as freed in PG database.""" return await self.account_interface.mark_account_freed(self.number) def setup_tmpdir() -> None: if not utils.LOCAL: logging.warning("not setting up tmpdir, FLY_APP_NAME is set") return if utils.ROOT_DIR == ".": logging.warning("not setting up tmpdir, using current directory") return if utils.ROOT_DIR == "/tmp/local-signal/" and not utils.MEMFS: try: shutil.rmtree(utils.ROOT_DIR) except (FileNotFoundError, OSError) as e: logging.warning("couldn't remove rootdir: %s", e) if not utils.MEMFS: (Path(utils.ROOT_DIR) / "data").mkdir(exist_ok=True, parents=True) try: os.symlink(Path("avatar.png").absolute(), utils.ROOT_DIR + "/avatar.png") except FileExistsError: pass logging.info("chdir to %s", utils.ROOT_DIR) os.chdir(utils.ROOT_DIR) return async def getFreeSignalDatastore() -> SignalDatastore: interface = get_account_interface() await interface.free_accounts_not_updated_in_the_last_hour() record = await interface.get_free_account() if not record: raise Exception("no free accounts") # alternatively, register an account... # could put some of register.py/signalcaptcha handler here... number = record[0].get("id") logging.info(number) assert number return SignalDatastore(number) # maybe a config about where we're running: # MEMFS, DOWNLOAD, ROOT_DIR, etc # is HCL overkill? parser = argparse.ArgumentParser( description="manage the signal datastore. use ENV=... to use something other than dev" ) subparser = parser.add_subparsers(dest="subparser") # ? # h/t https://gist.github.com/mivade/384c2c41c3a29c637cb6c603d4197f9f def argument(*name_or_flags: Any, **kwargs: Any) -> tuple: """Convenience function to properly format arguments to pass to the subcommand decorator. """ return (list(name_or_flags), kwargs) def subcommand( _args: Optional[list] = None, parent: argparse._SubParsersAction = subparser ) -> Callable: """Decorator to define a new subcommand in a sanity-preserving way. The function will be stored in the ``func`` variable when the parser parses arguments so that it can be called directly like so:: args = cli.parse_args() args.func(args) Usage example:: @subcommand([argument("-d", help="Enable debug mode", action="store_true")]) def subcommand(args): print(args) Then on the command line:: $ python cli.py subcommand -d """ def decorator(func: Callable) -> None: _parser = parent.add_parser(func.__name__, description=func.__doc__) for arg in _args if _args else []: _parser.add_argument(*arg[0], **arg[1]) _parser.set_defaults(func=func) return decorator @subcommand() async def list_accounts(_args: argparse.Namespace) -> None: "list available accounts in table format" cols = ["id", "last_update_ms", "last_claim_ms", "active_node_name"] interface = get_account_interface() # sorry if "notes" in [ column.get("column_name") for column in ( await interface.execute( "select column_name from information_schema.columns where table_name='signal_accounts';" ) or [] # don't error if the query fails ) ]: cols.append("notes") query = f"select {' ,'.join(cols)} from signal_accounts order by id" accounts = await get_account_interface().execute(query) if not isinstance(accounts, list): return table = [cols] + [ [str(value) for value in account.values()] for account in accounts ] str_widths = [max(len(row[index]) for row in table) for index in range(len(cols))] row_format = " ".join("{:<" + str(width) + "}" for width in str_widths) for row in table: print((row_format.format(*row).rstrip())) return @subcommand([argument("--number")]) async def free(ns: argparse.Namespace) -> None: "mark account freed" await get_account_interface().mark_account_freed(ns.number) async def _set_note(number: str, note: str) -> None: await get_account_interface().execute( "update signal_accounts set notes=$1 where id=$2", note, number, ) @subcommand([argument("--number"), argument("note", help="new note for number")]) async def set_note(ns: argparse.Namespace) -> None: "set the note field for a number" await _set_note(ns.number, ns.note) @subcommand( [argument("--path"), argument("--number"), argument("note", help="note for number")] ) async def upload(ns: argparse.Namespace) -> None: """ upload a datastore --path to a directory that contains data/ --number for the account number note: note indicating if this number is free or used for a specific bot """ if ns.path: os.chdir(ns.path) if ns.number: num = ns.number else: num = sorted(os.listdir("data"))[0] store = SignalDatastore(num) await store.upload() await _set_note(num, ns.note) @subcommand([argument("--number")]) async def sync(ns: argparse.Namespace) -> None: # maybe worth running autosave after all? try: datastore = SignalDatastore(ns.number) await datastore.download() except (IndexError, DatastoreError): datastore = await getFreeSignalDatastore() await datastore.download() try: while 1: time.sleep(3600) except KeyboardInterrupt: await datastore.upload()
<filename>patcherex/techniques/simple_ptr_enc.py<gh_stars>100-1000 import string import random import logging from collections import defaultdict import networkx import pyvex from angr.sim_variable import SimConstantVariable, SimRegisterVariable, SimMemoryVariable from angr import KnowledgeBase from ..backends import ReassemblerBackend from ..errors import SimplePtrEncError from ..technique import Technique from ..patches import InsertCodePatch, PointerArrayPatch, AddEntryPointPatch, AddRWDataPatch l = logging.getLogger('techniques.simple_ptr_enc') # TODO: - detect if ebp is used as base pointer in a function or not # TODO: - support more types of VEX statements and expressions # TODO: - compress the pointer storage array # TODO: - use random strings for label names ('begin', 'end', etc.) # TODO: - more testing # TODO: - bug fixes # TODO: - do not re-encrypt for control-flow changing code, like jmps and calls class MiniAST(object): def __init__(self, op, args=None): self.op = op self.args = args def __repr__(self): s = "(%s %s)" % (self.op, " ".join(repr(a) for a in self.args)) return s class DerefInstruction(object): def __init__(self, ins_addr, action, addr_regs): self.ins_addr = ins_addr self.ins_size = None self.action = action self.addr_regs = addr_regs self.addr_reg_overwritten = None self.skip = False self.decryption_addrs = None self.encryption_addrs = None def __repr__(self): return "<Deref %#08x %s@%s>" % (self.ins_addr, self.action, self.addr_regs) @property def should_reencrypt(self): if self.encryption_addrs is None: return True return len(self.encryption_addrs) > 0 class RefInstruction(object): def __init__(self, ins_addr, addr_reg, sources, store_addr=None): self.ins_addr = ins_addr self.ins_size = None self.addr_reg = addr_reg self.sources = sources self.store_addr = store_addr def __repr__(self): if self.addr_reg is not None: return "<Ref %#08x %s: %s>" % (self.ins_addr, self.addr_reg, self.sources) else: return "<Ref %#08x %s: %s>" % (self.ins_addr, self.store_addr, self.sources) class BlockTraverser(object): OPSTR_TO_OP = { 'Iop_Add32': '+', 'Iop_Sub32': '-', 'Iop_Sub8': '-', 'Iop_Shl32': '<<', 'Iop_And8': '&', 'Iop_And32': '&', 'Iop_Sar32': '>>', 'Iop_Shr32': '>>', 'Iop_Mul32': '*', } def __init__(self, cfg): self.cfg = cfg self._addr_belongs_to_section = self.cfg._addr_belongs_to_section # global temporary variables self._last_instr = None self.ins_addr = None self.instrs = [ ] self.ip_offset = self.cfg.project.arch.ip_offset self.sp_offset = self.cfg.project.arch.sp_offset self.bp_offset = self.cfg.project.arch.bp_offset self.tmps = {} self.regs = {} # begin traversal! self._analyze() self._post_analysis() def _is_addr_valid(self, addr): if self._addr_belongs_to_section(addr) is not None: return True if 0x4347c000 <= addr < 0x4347c000 + 0x1000: return True return False def _ast_to_addr_regs(self, ast): """ Pick registers that holds a valid address and return them. :param MiniAST ast: The AST :return: A list of register offsets. :rtype: list """ # we only care about where the base comes from # - if there is only one register, then it must be the base # - if there are a register and a const, the register is the base if and only if the const # is not a valid address. Otherwise the constant is the base # - if there are two constants, it's gonna be a little complicated... TODO is_addr_valid = self._is_addr_valid if len(ast.args) == 2: # binary operations if ast.op == '+': if ast.args[1].op == 'const': # something + constant if is_addr_valid(ast.args[1].args[0]): # base address + some offset return [] else: if ast.args[0].op == 'reg': # this register must be the base address return [ast.args[0].args[0]] elif ast.args[0].op == 'const' and is_addr_valid(ast.args[0].args[0]): # the constant is the base address return [] else: return self._ast_to_addr_regs(ast.args[0]) elif ast.args[1].op in ('<<',): # arg1 must be used as an offset or index # arg0 is the base address if ast.args[0].op == 'reg': return [ast.args[0].args[0]] elif ast.args[0].op == 'const': return [] elif ast.args[0].op == 'reg': # let's see if we can extract a base address from other arguments regs = self._ast_to_addr_regs(ast.args[1]) if not regs: # nice! the first argument must be the base register return ast.args[0].args[0] elif ast.op == '-': if ast.args[0].op == 'reg': return [ast.args[0].args[0]] elif ast.args[0].op == 'const': return [] elif len(ast.args) == 1: if ast.op == 'reg': # directly using the register as the address return ast.args elif ast.op == 'const': # using a constant as the address return [] print "Unresolved AST", ast import ipdb; ipdb.set_trace() def _ast_to_indir_memrefs(self, ast): """ :param ast: :return: """ if len(ast.args) == 2: if ast.args[0].op == 'reg' and ast.args[1].op == 'const': # reg +/- const # the original instruction might be 'push <addr>' when the const is 4 reg_offset = ast.args[0].args[0] reg_name = self.cfg.project.arch.register_names[reg_offset] const = ast.args[1].args[0] op = ast.op return "dword ptr [{reg_name} {op} {delta}]".format( reg_name=reg_name, op=op, delta=const, ) else: import ipdb; ipdb.set_trace() elif len(ast.args) == 1: if ast.op == 'const': return 'dword ptr [%#x]' % ast.args[0] elif ast.op == 'reg': reg_offset = ast.args[0] return 'dword ptr [%s]' % (self.cfg.project.arch.register_names[reg_offset]) else: print "Unresolved AST", ast import ipdb; ipdb.set_trace() def _filter_instrs(self): raise NotImplementedError() def _post_analysis(self): raise NotImplementedError() def _analyze(self): for function in self.cfg.functions.values(): # type: angr.knowledge.Function for block in function.blocks: self.last_instr = None # type: DerefInstruction vex_block_noopt = self.cfg.project.factory.block(block.addr, opt_level=0, size=block.size).vex self.ins_addr = None self.tmps = {} self.regs = {} for stmt in vex_block_noopt.statements: handler = getattr(self, '_handle_statement_%s' % (stmt.__class__.__name__), None) if handler is not None: handler(stmt) if self.last_instr is not None and self.last_instr.ins_size is None: self.last_instr.ins_size = block.addr + vex_block_noopt.size - self.last_instr.ins_addr self.last_instr = None self._handle_next(vex_block_noopt.next) if self.last_instr is not None and self.last_instr.ins_size is None: self.last_instr.ins_size = block.addr + vex_block_noopt.size - self.last_instr.ins_addr self.last_instr = None self._filter_instrs() def _handle_next(self, next_expr): pass def _handle_statement_IMark(self, stmt): self.ins_addr = stmt.addr + stmt.delta # update the instruction size of the previous DerefInstruction object if self.last_instr is not None and self.last_instr.ins_size is None: self.last_instr.ins_size = self.ins_addr - self.last_instr.ins_addr self.last_instr = None def _handle_statement_WrTmp(self, stmt): tmp = stmt.tmp data = stmt.data data = self._handle_expression(data) if data is not None: self.tmps[tmp] = data def _handle_statement_Put(self, stmt): # loading data into a register if self.last_instr is not None and self.last_instr.addr_reg_overwritten is None and \ self.last_instr.ins_addr == self.ins_addr and \ len(self.last_instr.addr_regs) == 1 and \ stmt.offset in self.last_instr.addr_regs: # the address register is overwritten in the same instruction self.last_instr.addr_reg_overwritten = True data = self._handle_expression(stmt.data) if data is not None: self.regs[stmt.offset] = data return data def _handle_expression(self, expr, allow_override=True): if allow_override: expr_handler = getattr(self.__class__, '_handle_expression_%s' % (expr.__class__.__name__), None) else: expr_handler = getattr(BlockTraverser, '_handle_expression_%s' % (expr.__class__.__name__), None) if expr_handler is not None: return expr_handler(self, expr) else: return None def _handle_expression_Get(self, expr): # read from register if expr.offset not in (self.ip_offset, self.bp_offset, self.sp_offset): return MiniAST('reg', [ expr.offset ]) def _handle_expression_Binop(self, expr): # some sort of arithmetic operations if expr.op.startswith('Iop_Cmp') or \ expr.op.startswith('Iop_Div') or \ expr.op.startswith('Iop_Or') or \ expr.op.startswith('Iop_Xor') or \ expr.op in ('Iop_32HLto64',): # ignore them. return None elif expr.op in self.OPSTR_TO_OP: op = self.OPSTR_TO_OP[expr.op] else: op = expr.op args = [] for arg in expr.args: arg_data = self._handle_expression(arg, False) if arg_data is None: return None args.append(arg_data) return MiniAST(op, args) def _handle_expression_RdTmp(self, expr): data_tmp = expr.tmp if data_tmp in self.tmps: return self.tmps[data_tmp] def _handle_expression_Const(self, expr): value = expr.con.value return MiniAST('const', [ value ]) class MemoryRefCollector(BlockTraverser): def __init__(self, cfg): super(MemoryRefCollector, self).__init__(cfg) def _has_regs(self, ast, reg_offsets): if not isinstance(ast, MiniAST): return False if ast.op == 'reg' and ast.args[0] in reg_offsets: return True for arg in ast.args: if self._has_regs(arg, reg_offsets): return True return False def _filter_instrs(self): # filtering self.instrs = [i for i in self.instrs if i.addr_reg not in (self.ip_offset, self.sp_offset, self.bp_offset) and i.addr_reg < 40 # this is x86 only - 40 is cc_op ] def _post_analysis(self): # do nothing pass def _handle_statement_Put(self, stmt): data = self._handle_expression(stmt.data) if data is not None and stmt.offset != self.ip_offset: # check whether data is a memory reference or not if data.op == 'const' or \ (self._has_regs(data, (self.sp_offset, self.bp_offset)) and (stmt.offset not in (self.sp_offset, self.bp_offset)) ): self.last_instr = RefInstruction(self.ins_addr, stmt.offset, data) self.instrs.append(self.last_instr) # special case handling: writing data to esp if data is not None and stmt.offset is self.sp_offset: if isinstance(stmt.data, pyvex.IRExpr.RdTmp): tmp = stmt.data.tmp self.tmps[tmp] = MiniAST('reg', [ stmt.offset ]) def _handle_statement_Store(self, stmt): data = self._handle_expression(stmt.data) addr = self._handle_expression(stmt.addr) if data is not None and addr is not None: # check whether data is a memory reference or not if data.op == 'const': # and not self._has_regs(addr, (self.sp_offset, self.bp_offset)): self.last_instr = RefInstruction(self.ins_addr, None, data, store_addr=self._ast_to_indir_memrefs(addr)) self.instrs.append(self.last_instr) def _handle_expression_Get(self, expr): # read from register if expr.offset != self.ip_offset: return MiniAST('reg', [ expr.offset ]) def _handle_expression_Const(self, expr): value = expr.con.value # is it using an effective address? if self._is_addr_valid(value): # it is...
getHost(self, name): """Get information about a Host. :param name: The name of the Host to find :type name: str :returns: host dict :raises: :class:`~hpe3parclient.exceptions.HTTPNotFound` - NON_EXISTENT_HOST - HOST doesn't exist """ response, body = self.http.get('/hosts/%s' % name) return body def createHost(self, name, iscsiNames=None, FCWwns=None, optional=None): """Create a new Host entry. :param name: The name of the host :type name: str :param iscsiNames: Array if iscsi iqns :type name: array :param FCWwns: Array if Fibre Channel World Wide Names :type name: array :param optional: The optional stuff :type optional: dict .. code-block:: python optional = { 'persona': 1, # ID of the persona to assign # to the host. # 3.1.3 default: Generic-ALUA # 3.1.2 default: General 'domain': 'myDomain', # Create the host in the # specified domain, or default # domain if unspecified. 'forceTearDown': False, # If True, force to tear down # low-priority VLUN exports. 'descriptors': {'location': 'earth', # The host's location 'IPAddr': '10.10.10.10', # The host's IP address 'os': 'linux', # The operating system running # on the host. 'model': 'ex', # The host's model 'contact': 'Smith', # The host's owner and contact 'comment': "Joe's box"} # Additional host information } :raises: :class:`~hpe3parclient.exceptions.HTTPForbidden` - PERM_DENIED - Permission denied :raises: :class:`~hpe3parclient.exceptions.HTTPBadRequest` - INV_INPUT_MISSING_REQUIRED - Name not specified. :raises: :class:`~hpe3parclient.exceptions.HTTPBadRequest` - INV_INPUT_PARAM_CONFLICT - FCWWNs and iSCSINames are both specified. :raises: :class:`~hpe3parclient.exceptions.HTTPBadRequest` - INV_INPUT_EXCEEDS_LENGTH - Host name, domain name, or iSCSI name is too long. :raises: :class:`~hpe3parclient.exceptions.HTTPBadRequest` - INV_INPUT_EMPTY_STR - Input string (for domain name, iSCSI name, etc.) is empty. :raises: :class:`~hpe3parclient.exceptions.HTTPBadRequest` - INV_INPUT_ILLEGAL_CHAR - Any error from host-name or domain-name parsing. :raises: :class:`~hpe3parclient.exceptions.HTTPBadRequest` - INV_INPUT_TOO_MANY_WWN_OR_iSCSI - More than 1024 WWNs or iSCSI names are specified. :raises: :class:`~hpe3parclient.exceptions.HTTPBadRequest` - INV_INPUT_WRONG_TYPE - The length of WWN is not 16. WWN specification contains non-hexadecimal digit. :raises: :class:`~hpe3parclient.exceptions.HTTPConflict` - EXISTENT_PATH - host WWN/iSCSI name already used by another host :raises: :class:`~hpe3parclient.exceptions.HTTPConflict` - EXISTENT_HOST - host name is already used. :raises: :class:`~hpe3parclient.exceptions.HTTPBadRequest` - NO_SPACE - No space to create host. """ info = {'name': name} if iscsiNames: iscsi = {'iSCSINames': iscsiNames} info = self._mergeDict(info, iscsi) if FCWwns: fc = {'FCWWNs': FCWwns} info = self._mergeDict(info, fc) if optional: info = self._mergeDict(info, optional) response, body = self.http.post('/hosts', body=info) return body def modifyHost(self, name, mod_request): """Modify an existing Host entry. :param name: The name of the host :type name: str :param mod_request: Objects for Host Modification Request :type mod_request: dict .. code-block:: python mod_request = { 'newName': 'myNewName', # New name of the host 'pathOperation': 1, # If adding, adds the WWN or # iSCSI name to the existing # host. 'FCWWNs': [], # One or more WWN to set for # the host. 'iSCSINames': [], # One or more iSCSI names to # set for the host. 'forcePathRemoval': False, # If True, remove SSN(s) or # iSCSI(s) even if there are # VLUNs exported to host 'persona': 1, # ID of the persona to modify # the host's persona to. 'descriptors': {'location': 'earth', # The host's location 'IPAddr': '10.10.10.10', # The host's IP address 'os': 'linux', # The operating system running # on the host. 'model': 'ex', # The host's model 'contact': 'Smith', # The host's owner and contact 'comment': '<NAME>'} # Additional host information 'chapOperation': HOST_EDIT_ADD, # Add or remove 'chapOperationMode': CHAP_INITIATOR, # Initator or target 'chapName': 'MyChapName', # The chap name 'chapSecret': 'xyz', # The chap secret for the host # or the target 'chapSecretHex': False, # If True, the chapSecret is # treated as Hex. 'chapRemoveTargetOnly': True # If True, then remove target # chap only } :raises: :class:`~hpe3parclient.exceptions.HTTPBadRequest` - INV_INPUT - Missing host name. :raises: :class:`~hpe3parclient.exceptions.HTTPBadRequest` - INV_INPUT_PARAM_CONFLICT - Both iSCSINames & FCWWNs are specified. (lot of other possibilities) :raises: :class:`~hpe3parclient.exceptions.HTTPBadRequest` - INV_INPUT_ONE_REQUIRED - iSCSINames or FCWwns missing. :raises: :class:`~hpe3parclient.exceptions.HTTPBadRequest` - INV_INPUT_ONE_REQUIRED - No path operation specified. :raises: :class:`~hpe3parclient.exceptions.HTTPBadRequest` - INV_INPUT_BAD_ENUM_VALUE - Invalid enum value. :raises: :class:`~hpe3parclient.exceptions.HTTPBadRequest` - INV_INPUT_MISSING_REQUIRED - Required fields missing. :raises: :class:`~hpe3parclient.exceptions.HTTPBadRequest` - INV_INPUT_EXCEEDS_LENGTH - Host descriptor argument length, new host name, or iSCSI name is too long. :raises: :class:`~hpe3parclient.exceptions.HTTPBadRequest` - INV_INPUT_ILLEGAL_CHAR - Error parsing host or iSCSI name. :raises: :class:`~hpe3parclient.exceptions.HTTPConflict` - EXISTENT_HOST - New host name is already used. :raises: :class:`~hpe3parclient.exceptions.HTTPNotFound` - NON_EXISTENT_HOST - Host to be modified does not exist. :raises: :class:`~hpe3parclient.exceptions.HTTPBadRequest` - INV_INPUT_TOO_MANY_WWN_OR_iSCSI - More than 1024 WWNs or iSCSI names are specified. :raises: :class:`~hpe3parclient.exceptions.HTTPBadRequest` - INV_INPUT_WRONG_TYPE - Input value is of the wrong type. :raises: :class:`~hpe3parclient.exceptions.HTTPConflict` - EXISTENT_PATH - WWN or iSCSI name is already claimed by other host. :raises: :class:`~hpe3parclient.exceptions.HTTPBadRequest` - INV_INPUT_BAD_LENGTH - CHAP hex secret length is not 16 bytes, or chap ASCII secret length is not 12 to 16 characters. :raises: :class:`~hpe3parclient.exceptions.HTTPNotFound` - NO_INITIATOR_CHAP - Setting target CHAP without initiator CHAP. :raises: :class:`~hpe3parclient.exceptions.HTTPNotFound` - NON_EXISTENT_CHAP - Remove non-existing CHAP. :raises: :class:`~hpe3parclient.exceptions.HTTPConflict` - NON_UNIQUE_CHAP_SECRET - CHAP secret is not unique. :raises: :class:`~hpe3parclient.exceptions.HTTPConflict` - EXPORTED_VLUN - Setting persona with active export; remove a host path on an active export. :raises: :class:`~hpe3parclient.exceptions.HTTPBadRequest` - NON_EXISTENT_PATH - Remove a non-existing path. :raises: :class:`~hpe3parclient.exceptions.HTTPConflict` - LUN_HOSTPERSONA_CONFLICT - LUN number and persona capability conflict. :raises: :class:`~hpe3parclient.exceptions.HTTPBadRequest` - INV_INPUT_DUP_PATH - Duplicate path specified. """ response = self.http.put('/hosts/%s' % name, body=mod_request) return response def deleteHost(self, name): """Delete a Host. :param name: Host Name :type name: str :raises: :class:`~hpe3parclient.exceptions.HTTPNotFound` - NON_EXISTENT_HOST - HOST Not Found :raises: :class:`~hpe3parclient.exceptions.HTTPForbidden` - IN_USE - The HOST Cannot be removed because it's in use. :raises: :class:`~hpe3parclient.exceptions.HTTPForbidden` - PERM_DENIED - Permission denied """ response, body = self.http.delete('/hosts/%s' % name) def findHost(self, iqn=None, wwn=None): """Find a host from an iSCSI initiator or FC WWN. :param iqn: lookup based on iSCSI initiator :type iqn: str :param wwn: lookup based on WWN :type wwn: str """ # for now there is no search in the REST API # so we can do a create looking for a specific # error. If we don't get that error, we nuke the # fake host. def _hostname(): # create a safe, random hostname that won't # create a collision when findHost is called # in parallel, before the temp host is removed. uuid_str = str(uuid.uuid4()).replace("-", "")[:20] return uuid_str cmd = ['createhost'] # create a random hostname hostname = _hostname() if iqn: cmd.append('-iscsi') cmd.append(hostname) if iqn: cmd.append(iqn) else: cmd.append(wwn) result = self._run(cmd) test = ' '.join(result) search_str = "already used by host " if search_str in test: # host exists, return name used by 3par hostname_3par = self._get_next_word(test, search_str) return hostname_3par else: # host creation worked...so we need to remove it. # this means we didn't find an existing host that # is using the iqn or wwn. self.deleteHost(hostname) return None def queryHost(self, iqns=None, wwns=None): """Find a host from an iSCSI initiator or FC WWN. :param iqns: lookup based on iSCSI initiator list :type iqns: list :param wwns: lookup based on WWN list :type wwns: list :raises: :class:`~hpe3parclient.exceptions.HTTPBadRequest` - INV_INPUT - Invalid URI syntax. :raises: :class:`~hpe3parclient.exceptions.HTTPNotFound` - NON_EXISTENT_HOST - HOST Not Found :raises: :class:`~hpe3parclient.exceptions.HTTPInternalServerError` - INTERNAL_SERVER_ERR - Internal server error. :raises: :class:`~hpe3parclient.exceptions.HTTPBadRequest` - INV_INPUT_ILLEGAL_CHAR - Host name contains invalid character. """ wwnsQuery = '' if wwns: tmpQuery = [] for wwn in wwns: tmpQuery.append('wwn==%s' % wwn) wwnsQuery = ('FCPaths[%s]' % ' OR '.join(tmpQuery)) iqnsQuery = '' if iqns: tmpQuery = [] for iqn in iqns: tmpQuery.append('name==%s' % iqn) iqnsQuery = ('iSCSIPaths[%s]' % ' OR '.join(tmpQuery)) query = '' if wwnsQuery and iqnsQuery: query = ('%(wwns)s OR %(iqns)s' % ({'wwns': wwnsQuery, 'iqns': iqnsQuery})) elif wwnsQuery: query = wwnsQuery elif iqnsQuery: query = iqnsQuery query = '"%s"' % query response, body = self.http.get('/hosts?query=%s' % quote(query.encode("utf8"))) return body def getHostVLUNs(self, hostName): """Get all of the VLUNs on a specific Host. :param hostName: Host name :type hostNane: str :raises: :class:`~hpe3parclient.exceptions.HTTPNotFound` - NON_EXISTENT_HOST - HOST Not Found """ # calling getHost to see if the host exists and raise not found # exception if it's not found. self.getHost(hostName) vluns = []
<filename>src/copulabayesnet/cop_plot.py<gh_stars>0 # -*- coding: utf-8 -*- """ Created on 5-12-2019 @author: <NAME> """ import matplotlib.pyplot as plt import matplotlib.animation as manimation #from biokit.viz.scatter import ScatterHist # biokit is not working right now #from biokit.viz import corrplot import numpy as np from pycopula.visualization import pdf_2d, cdf_2d #from tools.bncopula import Copula2d from matplotlib import cm import datetime as dt metadata = dict(title='Copula', artist='<NAME>', comment='Enjoy!') import matplotlib def cop_2_param(Copula2d, type_copula = "pdf", plot_method = "3d", zclip = 6, elev = 15., azim = 280, x_name = None, y_name = None, title = None, save_fig=False, save_path='pred_target.png'): """Plots a 2-parameter copula, either on a 2d or 3d plane, either the pdf or the cdf. Parameters ---------- Copula2d : bncopula.Copula2d Object A copula object type_copula : str (optional) Default value: "pdf" The capacity of the copula: either 'pdf' or 'cdf' plot_method : str (optional) Default value: 3d. Plot either 2d or 3d. zclip : float (optional) Default value: 6. The maximum z-value to plot elev : float (optional) Default value: 15. From which elevation to watch the 3d plot azim : float (optional) Default value: 280. The angle to watch the 3d plot. x_name : str (optional) The name of the x-axis. When None, tries to find name in the copula. y_name : str (optional) The name of the y-axis. When None, tries to find name in the copula. title : str (optional) Title of the figure. save_fig : bool (optional) Whether or not to save the figure. save_path : str (optional) Path where to save the figure to """ copula = Copula2d.copula if type_copula.lower() == "pdf": level = pdf_2d(copula, zclip = zclip) elif type_copula.lower() == "cdf": level = cdf_2d(copula) else: raise ValueError("type_copula should be either 'pdf' or 'cdf'") x,y = np.meshgrid(level[0], level[1]) # Handle data names if x_name is None: try: x_name = Copula2d.x_name except: x_name = "X values" if y_name is None: try: y_name = Copula2d.y_name except: y_name = "Y values" fig = plt.figure(figsize = (10,8)) if plot_method.lower() == "3d": ax = fig.add_subplot(111, projection='3d') ax.view_init(elev=elev, azim=azim) ax.plot_surface(x,y,level[2],cmap=cm.coolwarm) if type_copula.lower() == "pdf": ax.set_zlabel("Probability ($p$)") elif type_copula.lower() == "cdf": ax.set_zlabel("Cumulative probability") elif plot_method.lower() == "2d": ax = fig.add_subplot(111) maxval = round(np.min([np.nanmax(np.array(level[2])), zclip])) cm_levels = np.linspace(0,maxval, np.max([20, maxval*5])+1) cmp = ax.contourf(x,y,level[2],cmap=cm.coolwarm, levels = cm_levels) ax.contour(x,y,level[2], colors='k',linewidths=0.5, levels = cm_levels) cbar = plt.colorbar(cmp) ax.set_xlim(0,1) ax.set_ylim(0,1) ax.axis('scaled') if type_copula.lower() == "pdf": cbar.set_label("Probability (p)", rotation=270, labelpad = 20) elif type_copula.lower() == "cdf": cbar.set_label("Cumulative probability", rotation=270, labelpad = 20) else: raise ValueError("Plot method should be either '2d' or '3d'") if title is None: ax.set_title(f"Figure of a copula ({type_copula})") else: ax.set_title(title) ax.set_xlabel(x_name) ax.set_ylabel(y_name) if save_fig: plt.savefig(save_path, dpi=200, bbox_inches='tight') def different_cop(x, y, level, type_copula = "pdf", plot_method = "3d", zclip = 6, elev = 15., azim = 280, x_name = "$u_1$", y_name = "$u_2$", title = None, save_fig=False, save_path='pred_target.png'): """Plots any 2-parameter copula, either on a 2d or 3d plane, either the pdf or the cdf. Parameters ---------- Copula2d : bncopula.Copula2d Object A copula object type_copula : str (optional) Default value: "pdf" The capacity of the copula: either 'pdf' or 'cdf' plot_method : str (optional) Default value: 3d. Plot either 2d or 3d. zclip : float (optional) Default value: 6. The maximum z-value to plot elev : float (optional) Default value: 15. From which elevation to watch the 3d plot azim : float (optional) Default value: 280. The angle to watch the 3d plot. x_name : str (optional) The name of the x-axis. When None, tries to find name in the copula. y_name : str (optional) The name of the y-axis. When None, tries to find name in the copula. title : str (optional) Title of the figure. save_fig : bool (optional) Whether or not to save the figure. save_path : str (optional) Path where to save the figure to """ fig = plt.figure(figsize = (7,5.6)) # 10,8 if plot_method.lower() == "3d": #ax = fig.add_subplot(111, projection='3d') ax = Axes3D(fig) ax.view_init(elev=elev, azim=azim) level[level > zclip] = zclip ax.plot_surface(x,y,level,cmap=cm.coolwarm) plt.tight_layout() #ax.set_zticklabels((), color = '#4d4d4d', fontsize = 14) if type_copula.lower() == "pdf": ax.set_zlim(0,zclip) ax.set_zlabel("Probability (p)", color = '#4d4d4d', fontsize = 14) elif type_copula.lower() == "cdf": ax.set_zlabel("Cumulative probability", color = '#4d4d4d', fontsize = 14) ax.w_zaxis.set_pane_color((250/255, 250/255, 250/255)) ax.w_yaxis.set_pane_color((225/255, 225/255, 225/255)) ax.w_xaxis.set_pane_color((190/255, 190/255, 190/255)) ax.xaxis._axinfo["grid"]['linestyle'] = ':' ax.yaxis._axinfo["grid"]['linestyle'] = ':' ax.zaxis._axinfo["grid"]['linestyle'] = ':' #ax.grid(linestyle = ':') #fig.set_tight_layout(True) elif plot_method.lower() == "2d": ax = fig.add_subplot(111) maxval = round(np.min([np.nanmax(np.array(level)), zclip])) cm_levels = np.linspace(0,maxval, int(np.max([20, maxval*5])+1)) cmp = ax.contourf(x,y,level,cmap=cm.coolwarm, levels = cm_levels) ax.contour(x,y,level, colors='k',linewidths=0.5, levels = cm_levels) cbar = plt.colorbar(cmp) ax.set_xlim(0,1) ax.set_ylim(0,1) ax.axis('scaled') if type_copula.lower() == "pdf": cbar.set_label("Probability (p)", rotation=270, labelpad = 20, color = '#4d4d4d', fontsize = 14) elif type_copula.lower() == "cdf": cbar.set_label("Cumulative probability", rotation=270, labelpad = 20, color = '#4d4d4d', fontsize = 14) else: raise ValueError("Plot method should be either '2d' or '3d'") if title is None: ax.set_title(f"Figure of a copula ({type_copula})", fontsize = 16) else: ax.set_title(title, fontsize = 14) ax.set_xlabel(x_name, color = '#4d4d4d', fontsize = 14) ax.set_ylabel(y_name, color = '#4d4d4d', fontsize = 14) #ax.set_xticklabels((), color = '#4d4d4d', fontsize = 14) ax.tick_params(axis='both', which='major',color = '#4d4d4d') if save_fig: print(save_path) plt.savefig(save_path, dpi=200) def different_cop_video(x, y, level, type_copula = "pdf", plot_method = "3d", zclip = 6, elev = 15., azim = 280, x_name = "$u_1$", y_name = "$u_2$", title = None, save_video = False, save_fig=False, save_path='pred_target.png'): """Plots any 2-parameter copula, either on a 2d or 3d plane, either the pdf or the cdf. Parameters ---------- Copula2d : bncopula.Copula2d Object A copula object type_copula : str (optional) Default value: "pdf" The capacity of the copula: either 'pdf' or 'cdf' plot_method : str (optional) Default value: 3d. Plot either 2d or 3d. zclip : float (optional) Default value: 6. The maximum z-value to plot elev : float (optional) Default value: 15. From which elevation to watch the 3d plot azim : float (optional) Default value: 280. The angle to watch the 3d plot. x_name : str (optional) The name of the x-axis. When None, tries to find name in the copula. y_name : str (optional) The name of the y-axis. When None, tries to find name in the copula. title : str (optional) Title of the figure. save_fig : bool (optional) Whether or not to save the figure. save_path : str (optional) Path where to save the figure to """ fig = plt.figure(figsize = (7,5.6)) # 10,8 if save_video: path2 = "../figures/part6_2.mp4" matplotlib.use("Agg") FFMpegWriter = manimation.writers['ffmpeg'] writer = FFMpegWriter(fps=10, metadata=metadata, bitrate = 2000) with writer.saving(fig, path2, 200): if plot_method.lower() == "3d": ax = fig.add_subplot(111, projection='3d') if title is None: ax.set_title(f"Figure of a copula ({type_copula})", fontsize = 16) else: ax.set_title(title, fontsize = 14) ax.set_xlabel(x_name, color = '#4d4d4d', fontsize = 14) ax.set_ylabel(y_name, color = '#4d4d4d', fontsize = 14) #ax.set_xticklabels((), color = '#4d4d4d', fontsize = 14) ax.tick_params(axis='both', which='major',color = '#4d4d4d') level[level > zclip] = zclip ax.plot_surface(x,y,level,cmap=cm.coolwarm) #plt.tight_layout() #ax.set_zticklabels((), color = '#4d4d4d', fontsize = 14) if type_copula.lower() == "pdf": ax.set_zlim(0,zclip) ax.set_zlabel("Probability (p)", color = '#4d4d4d', fontsize = 14) elif type_copula.lower() == "cdf": ax.set_zlabel("Cumulative probability", color = '#4d4d4d', fontsize = 14) ax.w_zaxis.set_pane_color((250/255, 250/255, 250/255)) ax.w_yaxis.set_pane_color((225/255, 225/255, 225/255)) ax.w_xaxis.set_pane_color((190/255, 190/255, 190/255)) ax.xaxis._axinfo["grid"]['linestyle'] = ':' ax.yaxis._axinfo["grid"]['linestyle'] = ':' ax.zaxis._axinfo["grid"]['linestyle'] = ':' for i in np.linspace(0,360,100): ax.view_init(elev=25+i/8, azim=i) writer.grab_frame() #ax.grid(linestyle = ':') #fig.set_tight_layout(True) elif plot_method.lower() == "2d": ax = fig.add_subplot(111) maxval = round(np.min([np.nanmax(np.array(level)), zclip])) cm_levels = np.linspace(0,maxval, int(np.max([20, maxval*5])+1)) cmp = ax.contourf(x,y,level,cmap=cm.coolwarm, levels = cm_levels) ax.contour(x,y,level, colors='k',linewidths=0.5, levels = cm_levels) cbar = plt.colorbar(cmp) ax.set_xlim(0,1) ax.set_ylim(0,1) ax.axis('scaled') if type_copula.lower() == "pdf": cbar.set_label("Probability (p)", rotation=270, labelpad = 20, color = '#4d4d4d', fontsize = 14) elif type_copula.lower() == "cdf": cbar.set_label("Cumulative probability", rotation=270, labelpad =
random_type == 'micro_multiply_by': rule['how_many'] = random.choice([2, 3, 4, 5, 'size']) elif random_type == 'macro_multiply_by': rule['how_many'] = random.choice(['both', 'hor', 'ver']) rule['rotates'] = [np.random.randint(1) for _ in range(4)] rule['flips'] = [random.choice(['hor', 'ver', 'horver', 'no']) for _ in range(4)] elif random_type == 'distribute_from_border': rule['colors'] = list(np.unique([get_random_out_color(), get_random_all_color()])) elif random_type == 'draw_lines': rule['direction'] = random.choice(['everywhere', 'horizontal', 'vertical', 'horver', 'diagonal']) # 'top', 'bottom', 'left', 'right', # 'top_left', 'bottom_left', 'top_right', 'bottom_right']) rule['not_stop_by_color'] = 0 # get_random_all_color() rule['start_by_color'] = get_random_all_color() rule['with_color'] = get_random_out_color() elif random_type == 'reduce': rule['skip_color'] = get_random_all_color() elif random_type == 'draw_line_to': #rule['direction_type'] = random.choice(['border']) rule['direction_color'] = get_random_all_color() rule['not_stop_by_color'] = 0 if np.random.rand() < 0.5: rule['not_stop_by_color_and_skip'] = get_random_all_color() else: rule['not_stop_by_color_and_skip'] = 0 rule['start_by_color'] = get_random_all_color() rule['with_color'] = get_random_out_color() elif random_type == 'distribute_colors': rule['colors'] = list(np.unique([get_random_out_color(), get_random_all_color()])) rule['horizontally'] = np.random.randint(2) rule['vertically'] = np.random.randint(2) rule['intersect'] = get_random_out_color() elif random_type == 'color_for_inners': rule['color_out'] = get_random_out_color() elif random_type == 'crop_figure': rule['mode'] = random.choice(['smallest', 'biggest']) rule['dif_c_edge'] = random.choice([True, False]) elif random_type == 'unity': rule['mode'] = random.choice(['diagonal', 'horizontal', 'vertical', 'horver']) # rule['inner'] = np.random.choice(2) rule['ignore_colors'] = [0] if np.random.rand() < 0.5: rule['ignore_colors'] += [get_random_all_color()] rule['with_color'] = random.choice([get_random_out_color(), 0]) elif random_type == 'map_color': rule['color_in'] = get_random_all_color() rule['color_out'] = get_random_out_color() elif random_type == 'gravity': rule['gravity_type'] = random.choice(['figures', 'cells']) rule['steps_limit'] = np.random.choice(2) rule['look_at_what_to_move'] = np.random.choice(2) if rule['look_at_what_to_move'] == 1: rule['color_what'] = get_random_out_color() rule['direction_type'] = random.choice(['border', 'color']) if rule['direction_type'] == 'border': rule['direction_border'] = random.choice(['top', 'bottom', 'left', 'right']) else: rule['direction_color'] = get_random_color() elif random_type == 'split_by_H' or random_type == 'split_by_W': rule['merge_rule'] = random.choice(['and', 'equal', 'or', 'xor']) elif random_type == 'align_pattern': rule['macro_type'] = 'global_interaction_rule' # rule['allow_rotation'] = False rule['allow_color'] = get_random_all_color() rule['fill_with_color'] = 0 #random.choice([0, get_random_all_color()]) return rule def get_task_metadata(task): colors = [] shapes_input = [[], []] shapes_output = [[], []] for part in ['train']: for uni_task in task[part]: inp = uni_task['input'] colors += list(np.unique(inp)) out = uni_task['output'] colors += list(np.unique(out)) shapes_input[0].append(inp.shape[0]) shapes_input[1].append(inp.shape[1]) shapes_output[0].append(out.shape[0]) shapes_output[1].append(out.shape[1]) all_colors = np.unique(colors) min_k1 = int(np.floor(np.min(np.array(shapes_output[0])/np.array(shapes_input[0])))) min_k2 = int(np.floor(np.min(np.array(shapes_output[1])/np.array(shapes_input[1])))) max_k1 = int(np.ceil(np.max(np.array(shapes_output[0])/np.array(shapes_input[0])))) max_k2 = int(np.ceil(np.max(np.array(shapes_output[1])/np.array(shapes_input[1])))) max_shape = np.max([shapes_input]) config = {} config['mink1'] = max(1, min(min(min_k1, 30//max_shape), 3)) config['mink2'] = max(1, min(min(min_k2, 30//max_shape), 3)) config['maxk1'] = max(1, min(min(max_k1, 30//max_shape), 3)) config['maxk2'] = max(1, min(min(max_k2, 30//max_shape), 3)) config['allow_make_smaller'] = False config['allow_make_bigger'] = False for uni_task in task['train']: if uni_task['input'].shape[0] > uni_task['output'].shape[0] or \ uni_task['input'].shape[1] > uni_task['output'].shape[1]: config['allow_make_smaller'] = True if uni_task['input'].shape[0] < uni_task['output'].shape[0] or \ uni_task['input'].shape[1] < uni_task['output'].shape[1]: config['allow_make_bigger'] = True colors_out = [] changed_colors = [] inp_colors = [] for uni_task in task['train']: inp = uni_task['input'] out = uni_task['output'] for i in range(min(inp.shape[0], out.shape[0])): for j in range(min(inp.shape[1], out.shape[1])): inp_colors.append(inp[i, j]) if out[i, j] != inp[i, j]: colors_out.append(out[i, j]) changed_colors.append(inp[i, j]) inp_colors = np.unique(inp_colors) changed_colors = np.unique(changed_colors) config['ignore_colors'] = [c for c in inp_colors if not c in changed_colors] config['possible_ignore_colors'] = np.array([c for c in all_colors if not c in config['ignore_colors']]) if len(colors_out) == 0: colors_out = [0] config['possible_colors_out'] = np.unique(colors_out) return all_colors, config def compute_parametrized_automata(input, hidden_i, rules): output = np.zeros_like(input, dtype=int) hidden_o = np.copy(hidden_i) for i, j in product(range(input.shape[0]), range(input.shape[1])): i_c = input[i, j] i_nbh = nbh(input, i, j) # cells adagent to the current one i_direct_nbh = {k: v for k, v in i_nbh.items() if k in {(1, 0), (-1, 0), (0, 1), (0, -1)}} i_indirect_nbh = {k: v for k, v in i_nbh.items() if k in {(1, 1), (-1, -1), (-1, 1), (1, -1)}} is_top_b, is_bottom_b = i == 0, i == input.shape[0] - 1 is_left_b, is_right_b = j == 0, j == input.shape[1] - 1 is_b = is_top_b or is_bottom_b or is_left_b or is_right_b if i_c > 0: output[i, j] = i_c for rule in rules: if i_c in rule['ignore_colors']: continue if rule['type'] == 'copy_color_by_direction': if rule['direction'] == 'bottom' or rule['direction'] == 'everywhere': if not is_top_b and input[i - 1, j] in rule['copy_color'] and \ (i == 1 or input[i - 2, j] == rule['look_back_color']): output[i, j] = input[i - 1, j] break if rule['direction'] == 'top' or rule['direction'] == 'everywhere': if not is_bottom_b and input[i + 1, j] in rule['copy_color'] and \ (i == input.shape[0] - 2 or input[i + 2, j] == rule['look_back_color']): output[i, j] = input[i + 1, j] break if rule['direction'] == 'right' or rule['direction'] == 'everywhere': if not is_left_b and input[i, j - 1] in rule['copy_color'] and \ (j == 1 or input[i, j - 2] == rule['look_back_color']): output[i, j] = input[i, j - 1] break if rule['direction'] == 'left' or rule['direction'] == 'everywhere': if not is_right_b and input[i, j + 1] in rule['copy_color'] and \ (j == input.shape[1] - 2 or input[i, j + 2] == rule['look_back_color']): output[i, j] = input[i, j + 1] break elif rule['type'] == 'corner_check': color_nbh = rule['nbh_check_colors'] sum_nbh = 3 out_nbh = rule['nbh_check_out'] i_uplecorner_nbh = {k: v for k, v in i_nbh.items() if k in {(-1, -1), (-1, 0), (0, -1)}} i_upricorner_nbh = {k: v for k, v in i_nbh.items() if k in {(-1, 1), (-1, 0), (0, 1)}} i_dolecorner_nbh = {k: v for k, v in i_nbh.items() if k in {(1, -1), (1, 0), (0, -1)}} i_doricorner_nbh = {k: v for k, v in i_nbh.items() if k in {(1, 1), (1, 0), (0, 1)}} if sum(1 for v in i_nbh.values() if v in color_nbh) < 3: continue did_something = False for corner_idx in [i_uplecorner_nbh, i_upricorner_nbh, i_dolecorner_nbh, i_doricorner_nbh]: for color in color_nbh: if sum(1 for v in corner_idx.values() if v == color) == sum_nbh: output[i, j] = out_nbh did_something = True break if did_something: break if did_something: break elif rule['type'] == 'nbh_check': color_nbh = rule['nbh_check_colors'] sum_nbh = rule['nbh_check_sum'] out_nbh = rule['nbh_check_out'] proper_nbhs = i_nbh.values() if sum(1 for v in proper_nbhs if v in color_nbh) > sum_nbh: output[i, j] = out_nbh break elif rule['type'] == 'direct_check': color_nbh = rule['nbh_check_colors'] sum_nbh = rule['nbh_check_sum'] out_nbh = rule['nbh_check_out'] proper_nbhs = i_direct_nbh.values() if sum(1 for v in proper_nbhs if v in color_nbh) > sum_nbh: output[i, j] = out_nbh break elif rule['type'] == 'indirect_check': color_nbh = rule['nbh_check_colors'] sum_nbh = rule['nbh_check_sum'] out_nbh = rule['nbh_check_out'] proper_nbhs = i_indirect_nbh.values() if sum(1 for v in proper_nbhs if v in color_nbh) > sum_nbh: output[i, j] = out_nbh break elif rule['type'] == 'color_distribution': directions = ['top', 'bottom', 'left', 'right', 'top_left', 'bottom_left', 'top_right', 'bottom_right'] not_border_conditions = \ [ not is_top_b, not is_bottom_b, not is_left_b, not is_right_b, not is_top_b and not is_left_b, not is_bottom_b and not is_left_b, not is_top_b and not is_right_b, not is_bottom_b and not is_right_b ] index_from = \ [ (i - 1, j), (i + 1, j), (i, j - 1), (i, j + 1), (i - 1, j - 1), (i + 1, j - 1), (i - 1, j + 1), (i + 1, j + 1) ] did_something = False for i_dir, direction in enumerate(directions): if rule['direction'] == direction: if not_border_conditions[i_dir]: if (rule['check_in_empty'] == 1 and input[index_from[i_dir]] > 0) or \ (rule['check_in_empty'] == 0 and input[index_from[i_dir]] == rule['color_in']): output[i, j] = rule['color_out'] did_something = True break if did_something: break return output, hidden_o def get_connectivity_info(color: np.array, ignore_black = False, von_neumann_only = False, edge_for_difcolors = False): # UnionFind structure allows us to detect all connected areas in a linear time. class UnionFind: def __init__(self) -> None: self.area = np.ones(color.size) self.parent = np.arange(color.size) def find(self, x: int) -> int: if self.parent[x] != x: self.parent[x] = self.find(self.parent[x]) return self.parent[x] def union(self, u: int, v: int) -> None: root_u, root_v = self.find(u), self.find(v) if root_u != root_v: area_u, area_v = self.area[root_u], self.area[root_v] if area_u < area_v: root_u, root_v = root_v, root_u self.parent[root_v] = root_u self.area[root_u] = area_u + area_v union_find = UnionFind() neighbours = [[-1, 0], [0, -1], [1, 0], [0, 1]] if not von_neumann_only: neighbours.extend([[-1, -1], [1, -1], [1, 1], [-1, 1]]) nrows, ncols = color.shape for i in range(nrows): for j in range(ncols): for s, t in neighbours: u, v = i + s, j + t if u >= 0 and u < nrows and v >= 0 and v < ncols and \ (color[u, v] == color[i, j] or (edge_for_difcolors
mutually exclusive. If not offset-related params are provided, offset equals to 0. :param Query query_set: Existing queryset. If provided, all queries are applied to it instead of creating new queryset. Defaults to None. :param _count: When provided, only results number is returned as integer. :param _explain: When provided, query performed(SQL) is returned as a string instead of query results. :param bool _raise_on_empty: When True JHTTPNotFound is raised if query returned no results. Defaults to False in which case error is just logged and empty query results are returned. :returns: Query results as ``sqlalchemy.orm.query.Query`` instance. May be sorted, offset, limited. :returns: Dict of {'field_name': fieldval}, when ``_fields`` param is provided. :returns: Number of query results as an int when ``_count`` param is provided. :returns: String representing query ran when ``_explain`` param is provided. :raises JHTTPNotFound: When ``_raise_on_empty=True`` and no results found. :raises JHTTPNotFound: When ``_item_request=True`` and ``sqlalchemy.exc.DataError`` exception is raised during DB query. Latter exception is raised when querying DB with an identifier of a wrong type. E.g. when querying Int field with a string. :raises JHTTPBadRequest: When ``_item_request=False`` and ``sqlalchemy.exc.DataError`` exception is raised during DB query. :raises JHTTPBadRequest: When ``sqlalchemy.exc.InvalidRequestError`` or ``sqlalchemy.exc.IntegrityError`` errors happen during DB query. """ log.debug('Get collection: {}, {}'.format(cls.__name__, params)) params.pop('__confirmation', False) _strict = params.pop('_strict', True) _item_request = params.pop('_item_request', False) _sort = _split(params.pop('_sort', [])) _fields = _split(params.pop('_fields', [])) _limit = params.pop('_limit', None) _page = params.pop('_page', None) _start = params.pop('_start', None) query_set = params.pop('query_set', None) _count = '_count' in params params.pop('_count', None) _explain = '_explain' in params params.pop('_explain', None) _raise_on_empty = params.pop('_raise_on_empty', False) if query_set is None: query_set = Session().query(cls) # Remove any __ legacy instructions from this point on params = dictset({ key: val for key, val in params.items() if not key.startswith('__') }) iterables_exprs, params = cls._pop_iterables(params) params = drop_reserved_params(params) if _strict: _check_fields = [ f.strip('-+') for f in list(params.keys()) + _fields + _sort] cls.check_fields_allowed(_check_fields) else: params = cls.filter_fields(params) process_lists(params) process_bools(params) # If param is _all then remove it params.pop_by_values('_all') try: query_set = query_set.filter_by(**params) # Apply filtering by iterable expressions for expr in iterables_exprs: query_set = query_set.from_self().filter(expr) _total = query_set.count() if _count: return _total # Filtering by fields has to be the first thing to do on # the query_set! query_set = cls.apply_fields(query_set, _fields) query_set = cls.apply_sort(query_set, _sort) if _limit is not None: _start, _limit = process_limit(_start, _page, _limit) query_set = query_set.offset(_start).limit(_limit) if not query_set.count(): msg = "'%s(%s)' resource not found" % (cls.__name__, params) if _raise_on_empty: raise JHTTPNotFound(msg) else: log.debug(msg) except DataError as ex: if _item_request: msg = "'{}({})' resource not found".format( cls.__name__, params) raise JHTTPNotFound(msg, explanation=ex.message) else: raise JHTTPBadRequest(str(ex), extra={'data': ex}) except (InvalidRequestError,) as ex: raise JHTTPBadRequest(str(ex), extra={'data': ex}) query_sql = str(query_set).replace('\n', '') if _explain: return query_sql log.debug('get_collection.query_set: %s (%s)', cls.__name__, query_sql) if _fields: query_set = cls.add_field_names(query_set, _fields) query_set._nefertari_meta = dict( total=_total, start=_start, fields=_fields) return query_set @classmethod def add_field_names(cls, query_set, requested_fields): """ Convert list of tuples to dict with proper field keys. """ from .utils import FieldsQuerySet fields = [col['name'] for col in query_set.column_descriptions] + [ '_type'] add_vals = (cls.__name__,) pk_field = cls.pk_field() def _convert(val): return dict(zip(fields, val+add_vals)) def _add_pk(obj): if pk_field in obj: obj['_pk'] = obj[pk_field] if pk_field not in requested_fields: obj.pop(pk_field) return obj values = query_set.all() converted = [_add_pk(_convert(val)) for val in values] return FieldsQuerySet(converted) @classmethod def has_field(cls, field): return field in cls.native_fields() @classmethod def native_fields(cls): columns = list(cls._mapped_columns().keys()) relationships = list(cls._mapped_relationships().keys()) return columns + relationships @classmethod def _mapped_columns(cls): return {c.name: c for c in class_mapper(cls).columns} @classmethod def _mapped_relationships(cls): return {c.key: c for c in class_mapper(cls).relationships} @classmethod def fields_to_query(cls): query_fields = [ 'id', '_limit', '_page', '_sort', '_fields', '_count', '_start'] return list(set(query_fields + cls.native_fields())) @classmethod def get_item(cls, **params): """ Get single item and raise exception if not found. Exception raising when item is not found can be disabled by passing ``_raise_on_empty=False`` in params. :returns: Single collection item as an instance of ``cls``. """ params.setdefault('_raise_on_empty', True) params['_limit'] = 1 params['_item_request'] = True query_set = cls.get_collection(**params) return query_set.first() def unique_fields(self): native_fields = class_mapper(self.__class__).columns return [f for f in native_fields if f.unique or f.primary_key] @classmethod def get_or_create(cls, **params): defaults = params.pop('defaults', {}) _limit = params.pop('_limit', 1) query_set = cls.get_collection(_limit=_limit, **params) try: obj = query_set.one() return obj, False except NoResultFound: defaults.update(params) new_obj = cls(**defaults) new_obj.save() return new_obj, True except MultipleResultsFound: raise JHTTPBadRequest('Bad or Insufficient Params') def _update(self, params, **kw): process_bools(params) self.check_fields_allowed(list(params.keys())) columns = {c.name: c for c in class_mapper(self.__class__).columns} iter_columns = set( k for k, v in columns.items() if isinstance(v, (DictField, ListField))) pk_field = self.pk_field() for key, new_value in params.items(): # Can't change PK field if key == pk_field: continue if key in iter_columns: self.update_iterables(new_value, key, unique=True, save=False) else: setattr(self, key, new_value) return self @classmethod def _delete_many(cls, items, request=None, synchronize_session=False): """ Delete :items: queryset or objects list. When queryset passed, Query.delete() is used to delete it but first queryset is re-queried to clean it from explicit limit/offset/etc. If some of the methods listed above were called, or :items: is not a Query instance, one-by-one items update is performed. `on_bulk_delete` function is called to delete objects from index and to reindex relationships. This is done explicitly because it is impossible to get access to deleted objects in signal handler for 'after_bulk_delete' ORM event. """ if isinstance(items, Query): del_queryset = cls._clean_queryset(items) del_items = del_queryset.all() del_count = del_queryset.delete( synchronize_session=synchronize_session) on_bulk_delete(cls, del_items, request) return del_count items_count = len(items) session = Session() for item in items: item._request = request session.delete(item) session.flush() return items_count @classmethod def _update_many(cls, items, params, request=None, synchronize_session='fetch'): """ Update :items: queryset or objects list. When queryset passed, Query.update() is used to update it but first queryset is re-queried to clean it from explicit limit/offset/etc. If some of the methods listed above were called, or :items: is not a Query instance, one-by-one items update is performed. """ if isinstance(items, Query): upd_queryset = cls._clean_queryset(items) upd_queryset._request = request upd_count = upd_queryset.update( params, synchronize_session=synchronize_session) return upd_count items_count = len(items) for item in items: item.update(params, request) return items_count @classmethod def _clean_queryset(cls, queryset): """ Clean :queryset: from explicit limit, offset, etc. New queryset is created by querying collection by IDs from passed queryset. """ pk_field = getattr(cls, cls.pk_field()) pks_query = queryset.with_entities(pk_field) return queryset.session.query(cls).filter( pk_field.in_(pks_query)) def __repr__(self): pk_field = self.pk_field() parts = [ '{}={}'.format(pk_field, getattr(self, pk_field)), ] return '<{}: {}>'.format(self.__class__.__name__, ', '.join(parts)) @classmethod def get_by_ids(cls, ids, **params): query_set = cls.get_collection(**params) cls_id = getattr(cls, cls.pk_field()) return query_set.from_self().filter(cls_id.in_(ids)).limit(len(ids)) @classmethod def get_null_values(cls): """ Get null values of :cls: fields. """ skip_fields = set(['_acl']) null_values = {} columns = cls._mapped_columns() columns.update(cls._mapped_relationships()) for name, col in columns.items(): if name in skip_fields: continue if isinstance(col, RelationshipProperty) and col.uselist: value = [] else: value = None null_values[name] = value return null_values def to_dict(self, **kwargs): _depth = kwargs.get('_depth') if _depth is None: _depth = self._nesting_depth depth_reached = _depth is not None and _depth <= 0 _data = dictset() native_fields = self.__class__.native_fields() for field in native_fields: value = getattr(self, field, None) include = field in self._nested_relationships if not include or depth_reached: encoder = lambda v: getattr(v, v.pk_field(), None) else: encoder = lambda v: v.to_dict(_depth=_depth-1) if isinstance(value, BaseMixin): value = encoder(value) elif isinstance(value, InstrumentedList): value = [encoder(val) for val in value] elif hasattr(value, 'to_dict'): value = value.to_dict(_depth=_depth-1) _data[field] = value _data['_type'] = self._type _data['_pk'] = str(getattr(self, self.pk_field())) return _data def update_iterables(self, params, attr, unique=False, value_type=None, save=True, request=None): self._request = request mapper = class_mapper(self.__class__) columns = {c.name: c for c in mapper.columns} is_dict = isinstance(columns.get(attr), DictField) is_list = isinstance(columns.get(attr), ListField) def split_keys(keys): neg_keys, pos_keys = [], [] for key in keys: if key.startswith('__'): continue if key.startswith('-'): neg_keys.append(key[1:]) else: pos_keys.append(key.strip()) return pos_keys, neg_keys def update_dict(update_params): final_value = getattr(self, attr, {}) or {} final_value = final_value.copy() if update_params is None or update_params == '': if not final_value: return update_params = { '-' + key: val for key, val in final_value.items()} positive, negative = split_keys(list(update_params.keys())) # Pop negative keys for key in negative: final_value.pop(key, None) # Set positive keys for key in
False def export(self, write, level, namespace_='maecPackage:', name_='ObjectEquivalenceType', namespacedef_='', pretty_print=True): if pretty_print: eol_ = '\n' else: eol_ = '' showIndent(write, level, pretty_print) write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) already_processed = set() self.exportAttributes(write, level, already_processed, namespace_, name_='ObjectEquivalenceType') if self.hasContent_(): write('>%s' % (eol_, )) self.exportChildren(write, level + 1, namespace_, name_, pretty_print=pretty_print) showIndent(write, level, pretty_print) write('</%s%s>%s' % (namespace_, name_, eol_)) else: write('/>%s' % (eol_, )) def exportAttributes(self, write, level, already_processed, namespace_='maecPackage:', name_='ObjectEquivalenceType'): super(ObjectEquivalenceType, self).exportAttributes(write, level, already_processed, namespace_, name_='ObjectEquivalenceType') if self.id is not None and 'id' not in already_processed: already_processed.add('id') write(' id=%s' % (quote_attrib(self.id), )) def exportChildren(self, write, level, namespace_='maecPackage:', name_='ObjectEquivalenceType', fromsubclass_=False, pretty_print=True): super(ObjectEquivalenceType, self).exportChildren(write, level, 'maecPackage:', name_, True, pretty_print=pretty_print) def build(self, node): self.__sourcenode__ = node already_processed = set() self.buildAttributes(node, node.attrib, already_processed) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): value = find_attr_value_('id', node) if value is not None and 'id' not in already_processed: already_processed.add('id') self.id = value super(ObjectEquivalenceType, self).buildAttributes(node, attrs, already_processed) def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): super(ObjectEquivalenceType, self).buildChildren(child_, node, nodeName_, True) pass # end class ObjectEquivalenceType class HypervisorHostSystemType(system_object.SystemObjectType): """The HypervisorHostSystemType characterizes the VM Hypervisor host system used in the malware analysis environment.""" subclass = None superclass = system_object.SystemObjectType def __init__(self, object_reference=None, Custom_Properties=None, Available_Physical_Memory=None, BIOS_Info=None, Date=None, Hostname=None, Local_Time=None, Network_Interface_List=None, OS=None, Processor=None, Processor_Architecture=None, System_Time=None, Timezone_DST=None, Timezone_Standard=None, Total_Physical_Memory=None, Uptime=None, Username=None, VM_Hypervisor=None): super(HypervisorHostSystemType, self).__init__(object_reference, Custom_Properties, Available_Physical_Memory, BIOS_Info, Date, Hostname, Local_Time, Network_Interface_List, OS, Processor, Processor_Architecture, System_Time, Timezone_DST, Timezone_Standard, Total_Physical_Memory, Uptime, Username, ) self.VM_Hypervisor = VM_Hypervisor def factory(*args_, **kwargs_): if HypervisorHostSystemType.subclass: return HypervisorHostSystemType.subclass(*args_, **kwargs_) else: return HypervisorHostSystemType(*args_, **kwargs_) factory = staticmethod(factory) def get_VM_Hypervisor(self): return self.VM_Hypervisor def set_VM_Hypervisor(self, VM_Hypervisor): self.VM_Hypervisor = VM_Hypervisor def hasContent_(self): if ( self.VM_Hypervisor is not None or super(HypervisorHostSystemType, self).hasContent_() ): return True else: return False def export(self, write, level, namespace_='maecPackage:', name_='HypervisorHostSystemType', namespacedef_='', pretty_print=True): if pretty_print: eol_ = '\n' else: eol_ = '' showIndent(write, level, pretty_print) write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) already_processed = set() self.exportAttributes(write, level, already_processed, namespace_, name_='HypervisorHostSystemType') if self.hasContent_(): write('>%s' % (eol_, )) self.exportChildren(write, level + 1, namespace_, name_, pretty_print=pretty_print) showIndent(write, level, pretty_print) write('</%s%s>%s' % (namespace_, name_, eol_)) else: write('/>%s' % (eol_, )) def exportAttributes(self, write, level, already_processed, namespace_='maecPackage:', name_='HypervisorHostSystemType'): super(HypervisorHostSystemType, self).exportAttributes(write, level, already_processed, namespace_, name_='HypervisorHostSystemType') def exportChildren(self, write, level, namespace_='maecPackage:', name_='HypervisorHostSystemType', fromsubclass_=False, pretty_print=True): super(HypervisorHostSystemType, self).exportChildren(write, level, 'maecPackage:', name_, True, pretty_print=pretty_print) if pretty_print: eol_ = '\n' else: eol_ = '' if self.VM_Hypervisor is not None: self.VM_Hypervisor.export(write, level, 'maecPackage:', name_='VM_Hypervisor', pretty_print=pretty_print) def build(self, node): self.__sourcenode__ = node already_processed = set() self.buildAttributes(node, node.attrib, already_processed) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): super(HypervisorHostSystemType, self).buildAttributes(node, attrs, already_processed) def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'VM_Hypervisor': obj_ = cybox_common.PlatformSpecificationType.factory() obj_.build(child_) self.set_VM_Hypervisor(obj_) super(HypervisorHostSystemType, self).buildChildren(child_, node, nodeName_, True) # end class HypervisorHostSystemType class AnalysisSystemType(system_object.SystemObjectType): """The AnalysisSystemType is intended to characterize any systems on which malware analysis is performed. It imports and extends version 1.3 of the CybOX System Object.""" subclass = None superclass = system_object.SystemObjectType def __init__(self, object_reference=None, Custom_Properties=None, Available_Physical_Memory=None, BIOS_Info=None, Date=None, Hostname=None, Local_Time=None, Network_Interface_List=None, OS=None, Processor=None, Processor_Architecture=None, System_Time=None, Timezone_DST=None, Timezone_Standard=None, Total_Physical_Memory=None, Uptime=None, Username=None, Installed_Programs=None): super(AnalysisSystemType, self).__init__(object_reference, Custom_Properties, Available_Physical_Memory, BIOS_Info, Date, Hostname, Local_Time, Network_Interface_List, OS, Processor, Processor_Architecture, System_Time, Timezone_DST, Timezone_Standard, Total_Physical_Memory, Uptime, Username, ) self.Installed_Programs = Installed_Programs def factory(*args_, **kwargs_): if AnalysisSystemType.subclass: return AnalysisSystemType.subclass(*args_, **kwargs_) else: return AnalysisSystemType(*args_, **kwargs_) factory = staticmethod(factory) def get_Installed_Programs(self): return self.Installed_Programs def set_Installed_Programs(self, Installed_Programs): self.Installed_Programs = Installed_Programs def hasContent_(self): if ( self.Installed_Programs is not None or super(AnalysisSystemType, self).hasContent_() ): return True else: return False def export(self, write, level, namespace_='maecPackage:', name_='AnalysisSystemType', namespacedef_='', pretty_print=True): if pretty_print: eol_ = '\n' else: eol_ = '' showIndent(write, level, pretty_print) write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) already_processed = set() self.exportAttributes(write, level, already_processed, namespace_, name_='AnalysisSystemType') if self.hasContent_(): write('>%s' % (eol_, )) self.exportChildren(write, level + 1, namespace_, name_, pretty_print=pretty_print) showIndent(write, level, pretty_print) write('</%s%s>%s' % (namespace_, name_, eol_)) else: write('/>%s' % (eol_, )) def exportAttributes(self, write, level, already_processed, namespace_='maecPackage:', name_='AnalysisSystemType'): super(AnalysisSystemType, self).exportAttributes(write, level, already_processed, namespace_, name_='AnalysisSystemType') def exportChildren(self, write, level, namespace_='maecPackage:', name_='AnalysisSystemType', fromsubclass_=False, pretty_print=True): super(AnalysisSystemType, self).exportChildren(write, level, 'maecPackage:', name_, True, pretty_print=pretty_print) if pretty_print: eol_ = '\n' else: eol_ = '' if self.Installed_Programs is not None: self.Installed_Programs.export(write, level, 'maecPackage:', name_='Installed_Programs', pretty_print=pretty_print) def build(self, node): self.__sourcenode__ = node already_processed = set() self.buildAttributes(node, node.attrib, already_processed) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): super(AnalysisSystemType, self).buildAttributes(node, attrs, already_processed) def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'Installed_Programs': obj_ = InstalledProgramsType.factory() obj_.build(child_) self.set_Installed_Programs(obj_) super(AnalysisSystemType, self).buildChildren(child_, node, nodeName_, True) # end class AnalysisSystemType class CommentType(cybox_common.StructuredTextType): """The CommentType captures a comment relating to some MAEC entity.The author field specifies the name of the author that added the comment.The timestamp field specifies the date/time that the comment was added.""" subclass = None superclass = cybox_common.StructuredTextType def __init__(self, structuring_format=None, timestamp=None, author=None, observation_name=None, valueOf_=None): super(CommentType, self).__init__(structuring_format, valueOf_, ) self.timestamp = _cast(None, timestamp) self.author = _cast(None, author) self.observation_name = observation_name self.valueOf_ = valueOf_ def factory(*args_, **kwargs_): if CommentType.subclass: return CommentType.subclass(*args_, **kwargs_) else: return CommentType(*args_, **kwargs_) factory = staticmethod(factory) def get_timestamp(self): return self.timestamp def set_timestamp(self, timestamp): self.timestamp = timestamp def get_author(self): return self.author def set_author(self, author): self.author = author def get_observation_name(self): return self.observation_name def set_observation_name(self, observation_name): self.observation_name = observation_name def get_valueOf_(self): return self.valueOf_ def set_valueOf_(self, valueOf_): self.valueOf_ = valueOf_ def hasContent_(self): if ( self.valueOf_ or super(CommentType, self).hasContent_() ): return True else: return False def export(self, write, level, namespace_='maecPackage:', name_='CommentType', namespacedef_='', pretty_print=True): if pretty_print: eol_ = '\n' else: eol_ = '' showIndent(write, level, pretty_print) write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) already_processed = set() self.exportAttributes(write, level, already_processed, namespace_, name_='CommentType') if self.hasContent_(): write('>') write(quote_xml(self.valueOf_)) self.exportChildren(write, level + 1, namespace_, name_, pretty_print=pretty_print) write('</%s%s>%s' % (namespace_, name_, eol_)) else: write('/>%s' % (eol_, )) def exportAttributes(self, write, level, already_processed, namespace_='maecPackage:', name_='CommentType'): super(CommentType, self).exportAttributes(write, level, already_processed, namespace_, name_='CommentType') if self.timestamp is not None and 'timestamp' not in already_processed: already_processed.add('timestamp') write(' timestamp="%s"' % self.gds_format_datetime(self.timestamp, input_name='timestamp')) if self.author is not None and 'author' not in already_processed: already_processed.add('author') write(' author=%s' % (quote_attrib(self.author))) if self.observation_name is not None and 'observation_name' not in already_processed: already_processed.add('observation_name') write(' observation_name=%s' % (quote_attrib(self.observation_name))) def exportChildren(self, write, level, namespace_='maecPackage:', name_='CommentType', fromsubclass_=False, pretty_print=True): super(CommentType, self).exportChildren(write, level, 'maecPackage:', name_, True, pretty_print=pretty_print) pass def build(self, node): self.__sourcenode__ = node already_processed = set() self.buildAttributes(node, node.attrib, already_processed) self.valueOf_ = get_all_text_(node) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): value = find_attr_value_('timestamp', node) if value is not None and 'timestamp' not in already_processed: already_processed.add('timestamp') try: self.timestamp = value except ValueError as exp: raise ValueError('Bad date-time attribute (timestamp): %s' % exp) value = find_attr_value_('author', node) if value is not None and 'author' not in already_processed: already_processed.add('author') self.author = value super(CommentType, self).buildAttributes(node, attrs, already_processed) value = find_attr_value_('observation_name', node) if value is not None and 'observation_name' not in already_processed: already_processed.add('observation_name') self.observation_name = value super(CommentType, self).buildAttributes(node, attrs, already_processed) def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): pass # end class CommentType class MalwareExceptionType(cybox_common.ErrorType): """The MalwareExceptionType captures details of exceptions that may be raised as a result of a malware instance executing on a system.The is_fatal field specifies whether the exception is fatal; that is, whether it caused the malware instance to terminate.""" subclass = None superclass = cybox_common.ErrorType def __init__(self, is_fatal=None, Error_Type=None, Error_Count=None, Error_Instances=None, Exception_Code=None, Faulting_Address=None, Description=None): super(MalwareExceptionType, self).__init__(Error_Type=None, Error_Count=None, Error_Instances=None) self.is_fatal = _cast(bool, is_fatal) self.Exception_Code = Exception_Code self.Faulting_Address = Faulting_Address self.Description = Description def factory(*args_, **kwargs_): if MalwareExceptionType.subclass: return MalwareExceptionType.subclass(*args_, **kwargs_) else: return MalwareExceptionType(*args_, **kwargs_) factory = staticmethod(factory) def get_Exception_Code(self): return self.Exception_Code def set_Exception_Code(self, Exception_Code): self.Exception_Code = Exception_Code def get_Faulting_Address(self): return self.Faulting_Address def set_Faulting_Address(self, Faulting_Address): self.Faulting_Address = Faulting_Address def get_Description(self): return self.Description def set_Description(self, Description): self.Description = Description def get_is_fatal(self): return self.is_fatal def set_is_fatal(self, is_fatal): self.is_fatal = is_fatal def hasContent_(self): if ( self.Exception_Code is not None or self.Faulting_Address is not None or self.Description is not None ): return True else: return False def export(self, write, level, namespace_='maecPackage:', name_='MalwareExceptionType', namespacedef_='', pretty_print=True): if pretty_print: eol_
<filename>storm_control/hal4000/settings/settings.py #!/usr/bin/env python """ Handles all interaction / communication with the parameters widget. This widget is responsible for keeping track of the various different parameter files that the user has loaded as well as editting and saving these parameters. Unlike in Python2/PyQt4 HAL there is no longer a single current parameter object that is shared across all the modules. The 'parameters of record' are those that are stored by each module, though they are expected to match this modules parameters. In general, modules should update their parameters with the values from these parameters when settings are changed. Module should try not to use these parameters directly as their parameters, though this will sometimes be unavoidable, e.g. with the feeds. This is because at least some of these parameters will come directly from an XML file and may not have the complete type information, for example they will just be ParameterInt when the module might be expecting to work with a ParameterRangeInt. Hazen 03/17 """ import copy import os from PyQt5 import QtWidgets import storm_control.sc_library.halExceptions as halExceptions import storm_control.sc_library.parameters as params import storm_control.hal4000.halLib.halMessage as halMessage import storm_control.hal4000.halLib.halMessageBox as halMessageBox import storm_control.hal4000.halLib.halModule as halModule import storm_control.hal4000.settings.parametersBox as parametersBox class Settings(halModule.HalModule): def __init__(self, module_params = None, qt_settings = None, **kwds): super().__init__(**kwds) self.locked_out = False self.wait_for = [] self.waiting_on = [] self.view = parametersBox.ParametersBox(module_params = module_params, qt_settings = qt_settings) self.view.editParameters.connect(self.handleEditParameters) self.view.newParameters.connect(self.handleNewParameters) p = params.StormXMLObject() p.set("parameters_file", os.path.join(module_params.get("directory"), "default.xml")) # # Add parameter to record whether or not these parameters have actually # been used (as opposed to just appearing in the list view). # # They should be initialized since this is what we are starting with.. # p.add(params.ParameterSetBoolean(name = "initialized", value = False, is_mutable = False, is_saved = False)) self.view.addParameters(p, is_default = True) self.configure_dict = {"ui_order" : 0, "ui_parent" : "hal.containerWidget", "ui_widget" : self.view} # This message marks the beginning and the end of the parameter change # life cycle. halMessage.addMessage("changing parameters", validator = {"data" : {"changing" : [True, bool]}, "resp" : None}) # Other modules should respond to this message with their current # parameters. halMessage.addMessage("current parameters", validator = {"data" : None, "resp" : {"parameters" : [False, params.StormXMLObject]}}) # A request from another module for one of the sets of parameters. halMessage.addMessage("get parameters", validator = {"data" : {"index or name" : [True, (str, int)]}, "resp" : {"parameters" : [False, params.StormXMLObject], "found" : [True, bool]}}) # The current parameters have changed. # # Data includes a copy of the desired new parameters. Other modules # should at least check if the new parameters are okay. They may # defer actually re-configuring until they receive the # 'updated parameters' message. # # Other modules that respond should send two response: # 1. A response with a copy of their old parameter as "old parameters". # 2. A response with their updated parameters as "new parameters". # # The response is structured this way so that if an error occurs # during the parameter update we still have a record of the last # good state in "old parameters". # # Notes: # 1. We send a copy of the parameters in the listview, so if the # module wants to it can just use these as the parameters without # copying them again. # # 2. The 'old parameters' response should be a copy. # # 3. The 'new parameters' response does not need to be a copy. # halMessage.addMessage("new parameters", validator = {"data" : {"parameters" : [True, params.StormXMLObject], "is_edit" : [True, bool]}, "resp" : {"new parameters" : [False, params.StormXMLObject], "old parameters" : [False, params.StormXMLObject]}}) # This comes from other modules that requested "wait for" at startup. # # Modules may respond with their new parameters here if they did not know # the final values for the parameters at 'new parameters'. At this point # however the modules cannot complain that the parameters they were given # were invalid, this has to be done at 'new parameters'. # halMessage.addMessage("parameters changed", validator = {"data" : {"new parameters" : [False, params.StormXMLObject]}, "resp" : None}) # A request from another module to set the current parameters. halMessage.addMessage("set parameters", validator = {"data" : {"index or name" : [True, (str, int)]}, "resp" : {"found" : [True, bool], "current" : [True, bool]}}) # The updated parameters. # # These are the updated values of parameters of all of the modules. # This is sent immediately after all of the modules respond to # the 'new parameters' message. # # The parameter change cycle won't actually complete till all the # modules that requested a wait send the "parameters changed" message. # halMessage.addMessage("updated parameters", validator = {"data" : {"parameters" : [True, params.StormXMLObject]}}) def handleEditParameters(self): """ Send the 'current parameters' message. Once all the modules have responded with their current parameters we will start the editor. """ # # FIXME: Not all modules are responding to this message. Not clear # whether we should require a response or not. This will use # possibly incorrect parameter values if there is no response, # but not all modules have parameters. # self.sendMessage(halMessage.HalMessage(m_type = "current parameters")) def handleError(self, message, m_error): # We can hopefully handle all 'new parameters' errors by reverting # to the previous good parameters. The actual reversion happens in # handleResponses. if message.isType("new parameters"): return True def handleNewParameters(self, parameters, is_edit): """ Sends the 'new parameters' message. The updated parameters could be a modified form of the current parameters or it could be a different set. We use the is_edit flag to record which of these two it is. """ if self.locked_out: raise halExceptions.HalException("parameter change attempted while locked out.") # Disable the UI so the user can't change the parameters again while we # are processing the current change. self.view.enableUI(False) self.setLockout(True) # is_edit means we are sending a modified version of the current parameters. self.sendMessage(halMessage.HalMessage(m_type = "new parameters", data = {"parameters" : parameters.copy(), "is_edit" : is_edit})) def handleResponses(self, message): if message.isType("current parameters"): # Update our copy of the current parameters. for response in message.getResponses(): data = response.getData() if "parameters" in data: self.view.updateCurrentParameters(response.source, data["parameters"].copy()) # Start the editor. self.view.startParameterEditor() elif message.isType("new parameters"): # Check if we got any errors. if message.hasErrors(): # Create a message box with the first error. msg = "New Parameters:\n\n" for m_error in message.getErrors(): msg += "Got an error from '" + m_error.source + "' of type '" + m_error.message + "'!\n\n" msg += "Attempting to revert to the last known good parameters." halMessageBox.halMessageBoxInfo(msg) # Attempt reversion. # Replace the 'bad' parameters with their previous 'good' values. if message.getData()["is_edit"]: for response in message.getResponses(): data = response.getData() if "old parameters" in data: self.view.updateCurrentParameters(response.source, data["old parameters"]) self.sendMessage(halMessage.HalMessage(m_type = "new parameters", data = {"parameters" : self.view.getCurrentParameters(), "is_edit" : True})) # Otherwise set the current selection back to previous selection. # This will automatically send a 'new parameters' message. else: self.view.revertSelection() else: # # If this is in response to a 'new parameters' message triggered by # the editor then we don't want to update the previous parameters. # is_edit = message.getData()["is_edit"] if not is_edit: for response in message.getResponses(): data = response.getData() if "old parameters" in data: self.view.updatePreviousParameters(response.source, data["old parameters"]) for response in message.getResponses(): data = response.getData() if "new parameters" in data: self.view.updateCurrentParameters(response.source, data["new parameters"].copy()) # Let modules, such as feeds.feeds know that all of the modules # have updated their parameters. self.waiting_on = copy.copy(self.wait_for) self.sendMessage(halMessage.HalMessage(m_type = "updated parameters", data = {"parameters" : self.view.getCurrentParameters().copy()})) elif message.isType("updated parameters"): # No waits requested, so the parameter change is complete if (len(self.waiting_on) == 0): self.updateComplete() def processMessage(self, message): if message.isType("configure1"): self.newMessage.emit(halMessage.HalMessage(source = self, m_type = "add to ui", data = self.configure_dict)) elif message.isType("configure2"): self.view.copyDefaultParameters() self.view.markCurrentAsInitialized() elif message.isType("get parameters"): p = self.view.getParameters(message.getData()["index or name"]) if p is None: message.addResponse(halMessage.HalMessageResponse(source = self.module_name, data = {"found" : False})) else: message.addResponse(halMessage.HalMessageResponse(source = self.module_name, data = {"parameters" : p, "found" : True})) elif
from __future__ import ( absolute_import, unicode_literals, ) import collections import random import sys import uuid import attr import six from pysoa.client.expander import ( ExpansionConverter, ExpansionSettings, ) from pysoa.client.settings import PolymorphicClientSettings from pysoa.common.metrics import TimerResolution from pysoa.common.transport.exceptions import ( ConnectionError, InvalidMessageError, MessageReceiveError, MessageReceiveTimeout, MessageSendError, MessageSendTimeout, MessageTooLarge, ) from pysoa.common.types import ( ActionRequest, JobRequest, JobResponse, UnicodeKeysDict, ) __all__ = ( 'Client', 'ServiceHandler', ) class ServiceHandler(object): """Does the low-level work of communicating with an individual service through its configured transport.""" def __init__(self, service_name, settings): """ :param service_name: The name of the service which this handler calls :param settings: The client settings object for this service (and only this service) """ self.metrics = settings['metrics']['object'](**settings['metrics'].get('kwargs', {})) with self.metrics.timer('client.transport.initialize', resolution=TimerResolution.MICROSECONDS): self.transport = settings['transport']['object']( service_name, self.metrics, **settings['transport'].get('kwargs', {}) ) with self.metrics.timer('client.middleware.initialize', resolution=TimerResolution.MICROSECONDS): self.middleware = [ m['object'](**m.get('kwargs', {})) for m in settings['middleware'] ] # Make sure the request counter starts at a random location to avoid clashing with other clients # sharing the same connection self.request_counter = random.randint(1, 1000000) @staticmethod def _make_middleware_stack(middleware, base): """ Given a list of in-order middleware callables `middleware` and a base function `base`, chains them together so each middleware is fed the function below, and returns the top level ready to call. """ for ware in reversed(middleware): base = ware(base) return base def _base_send_request(self, request_id, meta, job_request, message_expiry_in_seconds=None): with self.metrics.timer('client.send.excluding_middleware', resolution=TimerResolution.MICROSECONDS): if isinstance(job_request, JobRequest): job_request = attr.asdict(job_request, dict_factory=UnicodeKeysDict) self.transport.send_request_message(request_id, meta, job_request, message_expiry_in_seconds) def send_request(self, job_request, message_expiry_in_seconds=None): """ Send a JobRequest, and return a request ID. The context and control_extra arguments may be used to include extra values in the context and control headers, respectively. :param job_request: The job request object to send :type job_request: JobRequest :param message_expiry_in_seconds: How soon the message will expire if not received by a server (defaults to sixty seconds unless the settings are otherwise) :type message_expiry_in_seconds: int :return: The request ID :rtype: int :raise: ConnectionError, InvalidField, MessageSendError, MessageSendTimeout, MessageTooLarge """ request_id = self.request_counter self.request_counter += 1 meta = {} wrapper = self._make_middleware_stack( [m.request for m in self.middleware], self._base_send_request, ) try: with self.metrics.timer('client.send.including_middleware', resolution=TimerResolution.MICROSECONDS): wrapper(request_id, meta, job_request, message_expiry_in_seconds) return request_id finally: self.metrics.commit() def _get_response(self, receive_timeout_in_seconds=None): with self.metrics.timer('client.receive.excluding_middleware', resolution=TimerResolution.MICROSECONDS): request_id, meta, message = self.transport.receive_response_message(receive_timeout_in_seconds) if message is None: return None, None else: return request_id, JobResponse(**message) def get_all_responses(self, receive_timeout_in_seconds=None): """ Receive all available responses from the transport as a generator. :param receive_timeout_in_seconds: How long to block without receiving a message before raising `MessageReceiveTimeout` (defaults to five seconds unless the settings are otherwise). :type receive_timeout_in_seconds: int :return: A generator that yields (request ID, job response) :rtype: generator :raise: ConnectionError, MessageReceiveError, MessageReceiveTimeout, InvalidMessage, StopIteration """ wrapper = self._make_middleware_stack( [m.response for m in self.middleware], self._get_response, ) try: while True: with self.metrics.timer('client.receive.including_middleware', resolution=TimerResolution.MICROSECONDS): request_id, response = wrapper(receive_timeout_in_seconds) if response is None: break yield request_id, response finally: self.metrics.commit() class Client(object): """ The `Client` provides a simple interface for calling actions on services and supports both sequential and parallel action invocation. """ settings_class = PolymorphicClientSettings handler_class = ServiceHandler def __init__(self, config, expansion_config=None, settings_class=None, context=None): """ :param config: The entire client configuration dict, whose keys are service names and values are settings dicts abiding by the `PolymorphicClientSettings` schema :type config: dict :param expansion_config: The optional expansion configuration dict, if this client supports expansions, which is a dict abiding by the `ExpansionSettings` schema :type expansion_config: dict :param settings_class: An optional settings schema enforcement class or callable to use, which overrides the default of `PolymorphicClientSettings` :type settings_class: union[class, callable] :param context: An optional base request context that will be used for all requests this client instance sends (individual calls can add to and override the values supplied in this context dict) :type: dict """ if settings_class: self.settings_class = settings_class self.context = context or {} self.handlers = {} self.settings = {} self.config = config or {} for service_name, service_config in self.config.items(): self.settings[service_name] = self.settings_class(service_config) if expansion_config: expansion_settings = ExpansionSettings(expansion_config) self.expansion_converter = ExpansionConverter( type_routes=expansion_settings['type_routes'], type_expansions=expansion_settings['type_expansions'], ) class FutureResponse(object): """ A future representing a retrievable response after sending a request. """ DelayedException = collections.namedtuple('DelayedException', ['tp', 'value', 'tb']) def __init__(self, get_response): self._get_response = get_response self._response = None self._raise = None def result(self, timeout=None): """ Obtain the result of this future response. The first time you call this method on a given future response, it will block for a response and then either return the response or raise any errors raised by the response. You can specify an optional timeout, which will override any timeout specified in the client settings or when calling the request method. If a timeout occurs, `MessageReceiveTimeout` will be raised. It will not be cached, and you can attempt to call this again, and those subsequent calls to `result` (or `exception`) will be treated like a first-time calls until a response is returned or non-timeout error is raised. The subsequent times you call this method on a given future response after obtaining a non-timeout response, any specified timeout will be ignored, and the cached response will be returned (or the cached exception re-raised). :param timeout: If specified, the client will block for at most this many seconds waiting for a response. If not specified, but a timeout was specified when calling the request method, the client will block for at most that many seconds waiting for a response. If neither this nor the request method timeout are specified, the configured timeout setting (or default of 5 seconds) will be used. :type timeout: int :return: The response :rtype: union[ActionResponse, JobResponse, list[union[ActionResponse, JobResponse]], generator[union[ActionResponse, JobResponse]]] """ if self._raise: if six.PY2: six.reraise(tp=self._raise.tp, value=self._raise.value, tb=self._raise.tb) else: # We do it this way because six.reraise adds extra traceback items in Python 3 raise self._raise.value.with_traceback(self._raise.tb) if self._response: return self._response try: self._response = self._get_response(timeout) return self._response except MessageReceiveTimeout: raise except Exception: self._raise = self.DelayedException(*sys.exc_info()) raise def exception(self, timeout=None): """ Obtain the exception raised by the call, blocking if necessary, per the rules specified in the documentation for `result`. If the call completed without raising an exception, `None` is returned. If a timeout occurs, `MessageReceiveTimeout` will be raised (not returned). :param timeout: If specified, the client will block for at most this many seconds waiting for a response. If not specified, but a timeout was specified when calling the request method, the client will block for at most that many seconds waiting for a response. If neither this nor the request method timeout are specified, the configured timeout setting (or default of 5 seconds) will be used. :type timeout: int :return: The exception :rtype: Exception """ if self.running(): try: self.result(timeout) return None except MessageReceiveTimeout: raise except Exception as e: return e if self._raise: return self._raise.value return None def running(self): """ Returns `True` if the response (or exception) has not yet been obtained, `False` otherwise. :return: Whether the request is believed to still be running (this is updated only when `result` or `exception` is called). """ return not self.done() def done(self): """ Returns `False` if the response (or exception) has not yet been obtained, `True` otherwise. :return: Whether the request is known to be done (this is updated only when `result` or `exception` is called). """ return bool(self._response or self._raise) # Exceptions class ImproperlyConfigured(Exception): pass class InvalidExpansionKey(Exception): pass class JobError(Exception): """ Raised by `Client.call_***` methods when a job response contains one or more job errors. Stores a list of `Error` objects, and has a string representation cleanly displaying the errors. """ def __init__(self, errors=None): """ :param errors: The list of all errors in this job, available as an `errors` property on the exception instance. :type errors: list[Error] """ self.errors = errors or [] def __repr__(self): return self.__str__() def __str__(self): errors_string = '\n'.join([str(e) for e in self.errors]) return 'Error executing job:\n{}'.format(errors_string) class CallActionError(Exception): """ Raised by `Client.call_***` methods when a job response contains one or more action errors. Stores a list of `ActionResponse` objects, and has a string representation cleanly displaying the actions' errors. """ def __init__(self, actions=None): """ :param actions: The list of all actions that have errors (not actions without
"x", y_name: "y"}).sort_values(by="x") for t in list(data["table"])] l = list(data["label"]) s = list(data["speed"]) lt = zip(l, tables, s) for m in lt: setattr(m[1], "label", m[0]) setattr(m[1], "speed", m[2]) return tables def df_to_plot2(data, x_name, y_name): tables = [data[[x_name, y_name]].rename(columns={x_name: "x", y_name: "y"}).loc[data["codec"] == s].sort_values(by="x") for s in codecs] lt = zip(codecs, tables) for m in lt: setattr(m[1], "label", codecs_short[m[0]]) return tables #def composite_plot(data, xlabel, ylabel, savefile, xlim=None, ylim=None, log_inter=True, xlog=False, ylog=False, smooth=True, xlogscalar=False, ylogscalar=False, legend_loc=None, tikz_before=True): #i1, ax1 = plt.subplots() #if not (xlog or ylog): #tikz_before = False #if xlog: #ax1.set_xscale('log') #ax1.grid(True, which="both") #if xlogscalar: #ax1.xaxis.set_major_formatter(matplotlib.ticker.ScalarFormatter()) #else: #ax1.set_xscale('linear') #ax1.grid(True) #if ylog: #ax1.set_yscale('log') #ax1.grid(True, which="both") #if ylogscalar: #ax1.yaxis.set_major_formatter(matplotlib.ticker.ScalarFormatter()) #else: #ax1.set_yscale('linear') #ax1.grid(True) #for table in data: #if smooth: #c = plt.scatter(table.x, table.y, label=table.label, marker="+") #colr = c.get_facecolor()[0] #if log_inter: #lx = np.log(table.x) #p = sc.interpolate.Akima1DInterpolator(lx, table.y) #x_smooth = np.logspace(np.log10(min(table.x)), np.log10(max(table.x)), 200) #else: #lx = table.x #p = sc.interpolate.Akima1DInterpolator(lx, table.y) #x_smooth = np.linspace(min(table.x), max(table.x), 200) #y_smooth = p(np.log(x_smooth)) #plt.plot(x_smooth, y_smooth, color=colr) #else: #plt.plot(table.x, table.y, label=table.label, marker="+") #ax1.set(xlabel=xlabel, ylabel=ylabel) #if legend_loc is None: #ax1.legend() #else: #ax1.legend(loc=legend_loc) #if xlim is True: #ax1.set_xlim(left=table.x.min(), right=table.x.max()) #elif xlim is not None: #ax1.set_xlim(left=xlim[0], right=xlim[1]) #if ylim is True: #ax1.set_ylim(bottom=table.y.min(), top=table.y.max()) #elif ylim is not None: #ax1.set_ylim(bottom=ylim[0], top=ylim[1]) #p = os.path.split(savefile) #enc.create_dir(p[0] + '/svg/') #enc.create_dir(p[0] + '/png/') #enc.create_dir(p[0] + '/tex/') #if tikz_before: #tikzplotlib.save(f"{p[0] + '/tex/' + p[1]}.tex") #plt.savefig(f"{p[0] + '/svg/' + p[1]}.svg") #plt.savefig(f"{p[0] + '/png/' + p[1]}.png") #if not tikz_before: #tikzplotlib.save(f"{p[0] + '/tex/' + p[1]}.tex") #plt.close(i1) def composite_plot(data, xlabel, ylabel, savefile, xlim=None, ylim=None, log_inter=True, xlog=False, ylog=False, smooth=True, xlogscalar=False, ylogscalar=False, legend_loc=None, tikz_before=True): plt.figure() plt.axis() if not (xlog or ylog): tikz_before = False if xlog: plt.xscale('log') plt.grid(True, which="both") # if xlogscalar: # plt.xaxis.set_major_formatter(matplotlib.ticker.ScalarFormatter()) else: plt.xscale('linear') plt.grid(True) if ylog: plt.yscale('log') plt.grid(True, which="both") # if ylogscalar: # plt.yaxis.set_major_formatter(matplotlib.ticker.ScalarFormatter()) else: plt.yscale('linear') plt.grid(True) for table in data: if smooth: c = plt.scatter(table.x, table.y, label=table.label, marker="+") colr = c.get_facecolor()[0] if log_inter: lx = np.log(table.x) p = sc.interpolate.Akima1DInterpolator(lx, table.y) x_smooth = np.logspace(np.log10(min(table.x)), np.log10(max(table.x)), 200) else: lx = table.x p = sc.interpolate.Akima1DInterpolator(lx, table.y) x_smooth = np.linspace(min(table.x), max(table.x), 200) y_smooth = p(np.log(x_smooth)) plt.plot(x_smooth, y_smooth, color=colr) else: plt.plot(table.x, table.y, label=table.label, marker="+") plt.xlabel(xlabel) plt.ylabel(ylabel) plt.legend(loc=legend_loc) if xlim is True: plt.xlim(left=table.x.min(), right=table.x.max()) elif xlim is not None: plt.xlim(left=xlim[0], right=xlim[1]) if ylim is True: plt.ylim(bottom=table.y.min(), top=table.y.max()) elif ylim is not None: plt.ylim(bottom=ylim[0], top=ylim[1]) p = os.path.split(savefile) enc.create_dir(p[0] + '/svg/') enc.create_dir(p[0] + '/png/') enc.create_dir(p[0] + '/tex/') if tikz_before: tikzplotlib.save(f"{p[0] + '/tex/' + p[1]}.tex") plt.savefig(f"{p[0] + '/svg/' + p[1]}.svg") plt.savefig(f"{p[0] + '/png/' + p[1]}.png") if not tikz_before: tikzplotlib.save(f"{p[0] + '/tex/' + p[1]}.tex") plt.close() def df_to_latex_table(values, save_path): pass def calc_bj(mxy_o, mlegend_o, bd_metric_legend, bd_rate_legend): mxy = mxy_o.copy() mlegend = mlegend_o.copy() xy1 = mxy[mlegend.index(BJ1_serie)] t1 = zip(*xy1) x1, y1 = [list(t1) for t1 in t1] mxy.remove(xy1) mlegend.remove(BJ1_serie) i = enc.count() for m in mxy: t = zip(*m) x, y = [list(t) for t in t] bd_metric = bj_delta(x1, y1, x, y, mode=0) bd_rate = bj_delta(x1, y1, x, y, mode=1) l = mlegend[next(i)] print(f"{l}: BD-{bd_metric_legend}: {bd_metric}%") print(f"{l}: BD-{bd_rate_legend}: {bd_rate}%") def formatter1(x): s = ('%1.2f' % x).replace(".",",") + "\,\%" return s def formatter2(x): s = ('%1.2f' % x).replace(".",",") + "\%" if x > 0: s = "\cellcolor{red!25}" + s elif x < 0: s = "\cellcolor{green!25}" + s return s def calc_bj_cross_to_table(mxy_o, mlegend_o, bd_metric_legend, bd_rate_legend): table_metric = pd.DataFrame(np.zeros((len(mlegend_o), len(mlegend_o))), columns=mlegend_o, index=mlegend_o) table_rate = pd.DataFrame(np.zeros((len(mlegend_o), len(mlegend_o))), columns=mlegend_o, index=mlegend_o) for mleg in mlegend_o: mxy = mxy_o.copy() mlegend = mlegend_o.copy() xy1 = mxy[mlegend.index(mleg)] t1 = zip(*xy1) x1, y1 = [list(t1) for t1 in t1] mxy.remove(xy1) mlegend.remove(mleg) i = enc.count() for m in mxy: t = zip(*m) x, y = [list(t) for t in t] bd_metric = bj_delta(x1, y1, x, y, mode=0) bd_rate = bj_delta(x1, y1, x, y, mode=1) l = mlegend[next(i)] table_metric.loc[l, mleg] = bd_metric table_rate.loc[l, mleg] = bd_rate # print(table_metric.to_latex(float_format="%.2f", decimal=",")) # print(table_rate.to_latex(float_format="%.2f")) return table_metric, table_rate ''' def calc_bj_akima(dftable, x_name, y_name, bd_metric_legend, bd_rate_legend): xy1 = mxy[mlegend.index(BJ1_serie)] t1 = zip(*xy1) x1, y1 = [list(t1) for t1 in t1] mxy.remove(xy1) mlegend.remove(BJ1_serie) i = enc.count() for m in mxy: t = zip(*m) x, y = [list(t) for t in t] bd_metric = bj_delta_akima(x1, y1, x, y, mode=0) bd_rate = bj_delta_akima(x1, y1, x, y, mode=1) l = mlegend[next(i)] print(f"{l}: BD-{bd_metric_legend}: {bd_metric}%") print(f"{l}: BD-{bd_rate_legend}: {bd_rate}%") ''' def calc_bj_akima(data, x_name, y_name, bd_metric_legend, bd_rate_legend): df = data.copy() for t in df.itertuples(): t.table.rename(columns={x_name: "x", y_name: "y"}).sort_values(by="x") df bd_metric = bj_delta_akima(x1, y1, x, y, mode=0) bd_rate = bj_delta_akima(x1, y1, x, y, mode=1) def read_table_kcolv(logpath): with open(logpath, "r") as f: firstline = next(f).rstrip(" \n") columns = [] for x in firstline.rsplit(" "): columns.append(x.rsplit(":")[0]) r = range(len(columns)) table = pd.read_table(logpath, names=columns, usecols=list(r), sep=" ", converters={k: lambda x: (x.rsplit(":")[1]) for k in r}) return table.apply(pd.to_numeric) class PSNR_values: def __init__(self, logpath): self.logpath = logpath table = read_table_kcolv(self.logpath) self.n = table.n self.mse_avg = table.mse_avg self.mse_y = table.mse_y self.mse_u = table.mse_u self.mse_v = table.mse_v self.psnr_avg = table.psnr_avg self.psnr_y = table.psnr_y self.psnr_u = table.psnr_u self.psnr_v = table.psnr_v self.mse_avg_avg = np.average(self.mse_avg) self.mse_y_avg = np.average(self.mse_y) self.mse_u_avg = np.average(self.mse_u) self.mse_v_avg = np.average(self.mse_v) self.psnr_avg_avg = np.average(self.psnr_avg) self.psnr_y_avg = np.average(self.psnr_y) self.psnr_u_avg = np.average(self.psnr_u) self.psnr_v_avg = np.average(self.psnr_v) class SSIM_values: def __init__(self, logpath): self.logpath = logpath names = ("n", "Y", "U", "V", "All", "unnorm") table = pd.read_table(self.logpath, names=names, sep=" ", converters={k: lambda x: (x.rsplit(":")[1]) for k in range(5)}) table.unnorm = table.unnorm.str.slice(start=1, stop=-1) table = table.apply(pd.to_numeric) self.n = table.n self.Y = table.Y self.U = table.U self.V = table.V self.All = table.All self.unnorm = table.unnorm # unnorm = 10*log10(1-All) self.Y_avg = np.average(self.Y) self.U_avg = np.average(self.U) self.V_avg = np.average(self.V) self.All_avg = np.average(self.All) self.unnorm_avg = np.average(self.unnorm) class VMAF_values: def __init__(self, logpath): self.logpath = logpath table = pd.read_table(logpath, sep=",") table = table.loc[:, ~table.columns.str.contains('^Unnamed')] self.table = table self.vmaf_avg = table.vmaf.mean() class Useage_values: def __init__(self, logpath): self.logpath = logpath with open(logpath, "r") as log: firstline = next(log) self.row_names = firstline.rsplit(",")[0:-1] table = pd.read_csv(self.logpath) self.table = table self.state_names = list(table.state.unique()) total_time = 0 total_cpu_time = 0 for state in [x for x in self.state_names if x not in encode_excluded_states]: for row in self.row_names: if row == "state": pass else: arr = np.array(table[row][table.index[table['state'] == state]]) setattr(self, state + "_" + row, arr) cpu_time_user = getattr(self, state + "_cpu_time_user") cpu_time_user = np.append(np.array([0]), cpu_time_user) cpu_time_system = getattr(self, state + "_cpu_time_system") cpu_time_system = np.append(np.array([0]), cpu_time_system) cpu_time_total = cpu_time_user + cpu_time_system setattr(self, state + "_cpu_time_total", cpu_time_total) cpu_time_diff = np.ediff1d(cpu_time_total) time = np.append(np.array([0]), getattr(self, state + "_time")) time_diff = np.ediff1d(time) cpu_percent_calc = cpu_time_diff / time_diff setattr(self, state + "_cpu_percent_calc", cpu_percent_calc) total_time += time[-1] total_cpu_time += cpu_time_total[-1] self.total_time = total_time self.total_cpu_time = total_cpu_time cpu_time_diff = np.ediff1d(np.append(np.array([0]), np.array(table.cpu_time_user + table.cpu_time_system))) time_diff = np.ediff1d(np.append(np.array([0]), np.array(table.time))) cpu_time_int = np.sum(cpu_time_diff * time_diff) self.cpu_usage_avg = cpu_time_int / total_time self.max_RSS = self.table.RSS.max() self.perc_RSS = self.table.RSS.quantile(0.9) self.mean_RSS = self.table.RSS.mean() self.med_RSS = self.table.RSS.median() for row in self.row_names: if row == "state": pass else: arr = np.array(table[row][table.index[table['state'] == "measuring decode"]]) setattr(self, "decode_row_" + row, arr) self.decode_time = self.decode_row_time[-1] self.decode_cpu_time = self.decode_row_cpu_time_user[-1] + self.decode_row_cpu_time_system[-1] class VideoFile: def __init__(self, videofilepath): self.videofilepath = videofilepath self.basename = os.path.basename(videofilepath) self.path_without_ext = os.path.splitext(videofilepath)[0] if os.path.exists(self.path_without_ext + ".266"): self.videofilepath = self.path_without_ext + ".266" self.useage_log_path = self.path_without_ext + useage_log_suffix if not os.path.isfile(self.useage_log_path): print(f"File not found: {self.useage_log_path}") self.useage_log_path = None self.psnr_log_path = self.path_without_ext + psnr_log_suffix if not os.path.isfile(self.psnr_log_path): print(f"File not found: {self.psnr_log_path}") self.psnr_log_path = None self.ssim_log_path = self.path_without_ext + ssim_log_suffix if not os.path.isfile(self.ssim_log_path): print(f"File not found: {self.ssim_log_path}") self.ssim_log_path = None self.vmaf_log_path = self.path_without_ext + vmaf_log_suffix if not os.path.isfile(self.vmaf_log_path): print(f"File not found: {self.vmaf_log_path}") self.vmaf_log_path = None self.topserie = os.path.split(os.path.split(self.videofilepath)[0])[1] # eg. /path/to/video/av1/cpu-used_4/ShakeNDry/ShakeNDry-crf10.mkv -> ShakeNDry for c in codecs: if c in videofilepath: self.codec = c s = os.path.split(os.path.split(self.videofilepath)[0])[0] # eg. /path/to/video/av1/cpu-used_4/ShakeNDry -> /path/to/video/av1/cpu-used_4 self.serie = s[s.index(self.codec)+len(self.codec)+1:].replace("/", "-") + "-" + self.topserie self.label = s[s.index(self.codec)+len(self.codec)+1:].replace("/", "-") self.codec_serie = self.codec + "-" + self.serie def load_log(self): with cf.ThreadPoolExecutor() as executor: if self.psnr_log_path is not None: psnr = executor.submit(PSNR_values, self.psnr_log_path) if self.ssim_log_path is not None: ssim = executor.submit(SSIM_values, self.ssim_log_path) if self.vmaf_log_path is not None: vmaf = executor.submit(VMAF_values, self.vmaf_log_path) if self.useage_log_path is not None: useage = executor.submit(Useage_values, self.useage_log_path) if self.psnr_log_path is not None: self.psnr = psnr.result() if self.ssim_log_path is not None: self.ssim = ssim.result() if self.vmaf_log_path is not None: self.vmaf = vmaf.result() if self.useage_log_path is not None: self.useage =
in simulation:', sum_quantity, quantity, buy_rate]) sum_quantity = quantity avg_price = buy_rate # Real mode else: # Double-checking the quantity after we calculated the actual rate if quantity > 0.0: # Bitmex is a bit special (market making) if robot.exchange == 'bitmex': # Open a long or a short depending on the requested side if the number of contracts (calculated) > 0 if contracts > 0: # we can have a situation with non-zero quantity but zero contracts # Process the order if robot.short_flag: robot.logger.lprint(['Contracts (short) {} buy_rate {}'.format(contracts, buy_rate)]) # DEBUG buy_result = e_api.selllimit(robot.exchange, robot.market, None, buy_rate, contracts, postonly=current_postonly_flag) else: robot.logger.lprint(['Contracts (long) {} buy_rate {}'.format(contracts, buy_rate)]) # DEBUG buy_result = e_api.buylimit(robot.exchange, robot.market, None, buy_rate, contracts, postonly=current_postonly_flag) else: # if zero contracts to buy are left - finish buying buy_flag = False robot.sleep_buy_timer = 0 robot.logger.lprint(['Finished buying - zero contracts left']) else: # other exchanges if robot.short_flag: robot.logger.lprint(['Quantity (short) {} buy_rate {}'.format(quantity, buy_rate)]) # DEBUG buy_result = e_api.selllimit(robot.exchange, robot.market, quantity, buy_rate, postonly=current_postonly_flag) else: robot.logger.lprint(['Quantity (long) {} buy_rate {}'.format(quantity, buy_rate)]) # DEBUG buy_result = e_api.buylimit(robot.exchange, robot.market, quantity, buy_rate, postonly=current_postonly_flag) # Process buy results # print "\n>>> Result", buy_result #DEBUG robot.logger.lprint(["------\nResult:", buy_result, "\n------"]) # DEBUG # if buy_result == 'MIN_TRADE_REQUIREMENT_NOT_MET': # If trade requirement were not met or an error occured buy_flag = False robot.sleep_buy_timer = 0 send_chat_message(robot.user_id, 'Cancelling buying on ' + robot.market + ' as minimum trade requirements were not met') elif buy_result == 'issue_unknown': robot.logger.lprint(['An issue occured while submitting the order. Trying again.']) elif buy_result == 'access_denied': robot.logger.lprint(["Your API keys do not have proper access"]) send_chat_message(robot.user_id, 'Your API keys do not have proper access') buy_flag = False robot.sleep_buy_timer = 0 robot.wf_id = None else: # If the results are ok try: if buy_result is not None: buy_uuid = buy_result['uuid'] robot.logger.lprint(['>> Placed order', buy_uuid]) else: # sometimes the last result is None but previous orders were actually fine err_msg = "{} user had None is buy order - follow up".format(robot.user_id) issue_notify(robot, err_msg, only_admin=True) buy_flag = False robot.sleep_buy_timer = 0 robot.wf_id = None except: # If something else is wrong buy_flag = False robot.sleep_buy_timer = 0 err_msg = traceback.format_exc() issue_notify(robot, err_msg) # Also cancelling workflow until we figure out what's up robot.wf_id = None print('sleeping...') b_test.sleep(robot.sleep_buy_timer) else: # if quantity is zero buy_flag = False robot.sleep_buy_timer = 0 return buy_uuid, buy_flag, sum_quantity, quantity, avg_price ### Init: post-orders work. Calculating averages and updating the information / logging the results def init_post_results(robot, sum_quantity, sum_paid, source_filled, avg_price): if sum_quantity > 0: if not robot.simulation: if robot.exchange == 'bitmex': if robot.market in config.primary_calc_markets: # robot.market == 'btc/usd': avg_price = round(Decimal(sum_quantity) / Decimal(str(sum_paid)), 8) # cause we are buying contracts there else: avg_price = round(Decimal(sum_paid) / Decimal(str(sum_quantity)), 8) # cause we are buying contracts there else: # for oanda avg_price = round(Decimal(abs(sum_paid)) / Decimal(str(sum_quantity)), 8) robot.logger.lprint(['Average price paid:', avg_price]) else: # If simulation sum_paid = robot.source_position # Fix for the backtesting - we will just use ticker as an average price paid if config.backtesting_enabled: avg_price = robot.price # Take absolute values if avg_price and spent as oanda returns negatives avg_price = abs(avg_price) source_filled = abs(source_filled) # Description if robot.short_flag: direction_desc = 'short' robot.entry_direction = 'red' else: direction_desc = 'long' robot.entry_direction = 'green' # Round the avg price for comms avg_price_comm = round(float(avg_price), 2) if robot.exchange == 'bitmex': comm_string = "{}: orders completed on {}, opened a position for {} contracts. \n" \ "Direction: {}. \nAverage price: {}".format( robot.market, robot.exchange, sum_quantity, direction_desc, avg_price_comm) else: comm_string = "{}: orders completed on {} at the average price {}.\n" \ "Position of {} unit(s).".format(robot.market, robot.exchange, avg_price_comm, sum_quantity) send_chat_message(robot.user_id, comm_string) robot.logger.lprint([comm_string]) # Updating twitter if (robot.lambobot is not None) and not robot.simulation: comm_string_twitter = "{}: opened a {} position. #algotrading".format( robot.market.upper(), direction_desc, robot.core_strategy) try: # just in case if this returns an error robot.lambobot.post(comm_string_twitter) except: pass # Updating workflow info if we have a workflow if robot.wf_id is not None: sql_string = "UPDATE workflow SET sum_q = '{}', avg_price = '{}' " \ "WHERE wf_id = {} AND userid = {} AND core_strategy = '{}' ".format( sum_quantity, avg_price, robot.wf_id, robot.user_id, robot.core_strategy) robot.job_id, rows = sql.query_lastrow_id(sql_string) else: # if we have zero quantity as a result send_chat_message(robot.user_id, '{} ({}): buy order was cancelled, no positions initiated'.format(robot.exchange, robot.market)) robot.logger.lprint([robot.market, ': buy order was cancelled, no positions initiated']) if robot.wf_id is not None: sql_string = "DELETE FROM workflow WHERE wf_id = {} " \ "AND userid = {} AND core_strategy = '{}' ".format( robot.wf_id, robot.user_id, robot.core_strategy) sql.query(sql_string) robot.wf_id = None robot.terminate() return sum_quantity, sum_paid, source_filled, avg_price ### Init: check workflow runs def init_check_wf(robot, sql): if robot.wf_id is not None: sql_string = "SELECT * FROM workflow WHERE wf_id = '{}' " \ "AND userid = {} AND core_strategy = '{}' LIMIT 1".format( robot.wf_id, robot.user_id, robot.core_strategy) rows = sql.query(sql_string) # Checks to handle duplicated jobs situation try: wf_info = rows[0] except: sql_string = "SELECT * FROM workflow WHERE market = '{}' " \ "AND userid = {} AND core_strategy = '{}' LIMIT 1".format( robot.market.upper(), robot.user_id, robot.core_strategy) rows = sql.query(sql_string) try: wf_info = rows[0] except: wf_info = None chat_error_msg = 'Cannot launch the trading job for the market {}. ' \ 'Please launch it using new command.'.format(robot.market) send_chat_message(robot.user_id, chat_error_msg) # Launching a job if required by workflow if wf_info is not None: wf_info = rows[0] # first result if existing wf_info_market = wf_info[1] wf_info_price = wf_info[8] wf_stop_mode = wf_info[9] wf_price_entry = wf_info[10] robot.exchange_abbr = wf_info[11] # Using actual average price as an entry: avg_price if (wf_info_price is None) and (wf_price_entry is not None): wf_info_price = wf_price_entry # Deleting wf_id from the db sql_string = "DELETE FROM workflow WHERE wf_id = {} " \ "AND userid = {} AND core_strategy = '{}' ".format( robot.wf_id, robot.user_id, robot.core_strategy) sql.query(sql_string) launch_str = "params: process, {}, {}, {}, {}".format(wf_stop_mode, robot.exchange_abbr, wf_info_market, str(wf_info_price)) #DEBUG robot.logger.lprint([launch_str]) if not b_test.backtesting: robot.input('_', 'process', wf_stop_mode, robot.exchange_abbr, wf_info_market, str(wf_info_price)) else: # limitation of sell amount needed robot.input('_', 'process', wf_stop_mode, robot.exchange_abbr, wf_info_market, str(wf_info_price), str(robot.source_position/robot.margin_level)) robot.run_program_mode = 'process' else: # if there is no workflow task - stop robot.run_continued = False ### USD - local curr rates update def usd_rate_value(robot, e_api): if robot.exchange == 'oanda': if not robot.simulation: usd_x_rate = e_api.getticker('oanda', 'AUD_USD') else: usd_x_rate = 1 # does not matter # If market is closed if usd_x_rate is None: # a workaround to get the last known usd_x_rate = robot.usd_x_rate_last else: robot.usd_x_rate_last = usd_x_rate return usd_x_rate else: return None ### Main workflow: initiate a position def buyer(robot, b_test): # Restoring the timers etc, incl. postonly attempts robot.assign_default_values() # Update the prediction for buyer except for the case when it is called by reentry if robot.entry_direction is None: stop_reconfigure(robot, 'now', b_test = b_test) else: robot.logger.lprint(["Initiated from previous job. Direction {}, prediction {}, probability {}".format( robot.entry_direction, robot.prediction, robot.prediction_probability)]) # Timestamp for initiation start #added_precision robot.timestamp_start_initiate = b_test.time() ### Set up the margin (needed on on bitmex) init_set_margin(robot, e_api) ### Price data analysis robot.time_hour = b_test.strftime("%H") robot.time_hour_comms = robot.time_hour # Sleeping for a bit so that information on workflows is updated in the database just in case b_test.sleep(int(30/robot.speedrun)) init_full_cycle(robot, sql) # full cycle mode handling init_get_workflow(robot, sql) # check if this is a part of workflow (meaning that a job should be then launched) ### 1. Checking availability, balance init_pre_check(robot, coinigy, b_test) ### 2. Start timer for price switching and handling simulation modes robot.timer_init_start = b_test.time() # Modes check init_mode_check(robot) # Default values and starting balances / contracts robot.source_position = Decimal(str(robot.source_position)) # Checking balance balance_check = ensure_balance(robot) # added to modify the quantity on the start if balance_check is None: robot.logger.lprint(["Invalid API keys"]) send_chat_message(robot.user_id, 'Invalid API keys - cannot check the balance') robot.terminate() robot.source_start = robot.source_position initiate_position_launch = False # no launching just yet # Default variables robot.contracts_total = 0 buy_uuid = None buy_flag = True sum_paid, sum_quantity, source_filled, contracts, avg_price, buy_rate = 0, 0, 0, 0,
# Copyright 2021 Canonical Ltd. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Collection of Events for a test run. Zaza is capable of running multiple bundles / test_runs in a single instance. The Collection classes are to deal with: * Events from the test functions that indicates stages of the test. * Events from the Juju units (specifically scanning the logs) for hook events and errors. * Events from other compatible logging entities that need to be combined into a coherent log for the collection. There are several common fields used in the logging framework: * collection - the name of the test (but could be anything) * event - the thing that occurred. Any other fields can be used as needed. Additionally, tags can be used which result in a field of the form name=thing,name1=thing2. At the highest level of abstraction, the objects in the collection need to be able to 'give-up' their log files, so that they can be combined and stored as a collection along with a manifest. """ import collections from datetime import datetime import logging import tempfile import sys from zaza.global_options import get_option from zaza.utilities import ConfigurableMixin from .types import LogFormats # Hold collections; probably there will only be one. _collections = {} logger = logging.getLogger(__name__) def get_collection(name=None): """Return a collection by name. Collections are available globally, and typically only one will be needed per test. If the global options 'zaza-events.collection-name' is defined, then that collection name is used for the collection. This is so a global collection can be used within tests if wanted. Obviously, overriding :param:`name` will force a particular collection to be returned. This returns a named collection (a.k.a logging) for use in a module. :returns: the colection named, or creates a new one of that name. :rtype: Collection """ global _collections if name is None: name = get_option("zaza-events.collection-name", "DEFAULT") try: return _collections[name] except KeyError: pass _collections[name] = Collection(name=name) return _collections[name] class Collection(ConfigurableMixin): """Collection of Log Events. The collection manages a set of event loggers and associated log files. The final set of files is provided in a Manifest object. And event logger object needs the following methods: configure(**kwargs) -> None finalise(self) -> None get_manifest(self) -> ManifestBase clean_up(self) -> None These are used to control the logging on the units, in the following manner. configure(logs_dir=...) -- indicate where to put the logs. finalise() -- ensure that the logs are complete and pullable. get_manifest() -- fetch a manifest of all the log files. clean_up() -- do any clean-up as we've finished. If the logs_dir is not configured then a temporary log directory will be created with tempfile.mkdtemp() -- this will stick around after the program is completed. """ def __init__(self, **kwargs): """Initialise a collection of related log files.""" self.name = None self.collection = None self.description = None self.logs_dir = None self.log_format = None self._event_managers = [] self.configure(**kwargs) if self.log_format is None: self.log_format = LogFormats.InfluxDB def _ensure_logs_dir(self): """Ensure that the logs_dir is set. Also ensure the directory exists. """ if self.logs_dir is not None: return self.logs_dir = tempfile.mkdtemp() def add_logging_manager(self, manager): """Add a logging manager to the collection. The manager implements the PluginManagerBase class which allows the collection to configure the logs dir, collection name, log format, and other items. :param manager: the plugin manager that manages the thing recording events. :type manager: PluginManagerBase """ if manager in self._event_managers: logger.debug( "Collection: adding manager %s more than once, ignoring.", manager) return self._event_managers.append(manager) if self.log_format is None: self.log_format = LogFormats.InfluxDB manager.configure(collection_object=self) self._ensure_logs_dir() manager.configure_plugin() def finalise(self): """Finalise the logging collection. This finalises ALL of the event managers that are connected to this collection. Depending on the plugin this may terminate / gather logs from multiple sources; i.e. it may take a while. """ for manager in self._event_managers: manager.finalise() def log_files(self): """Return iterator of (name, type, filename). This is from all of the managers. :returns: A list/iterator of tuples of (name, type, filename) :rtype: Iterator[Tuple[str, str, str]] """ for manager in self._event_managers: yield from manager.log_files() def events(self, sort=True, precision="us", strip_precision=True): """Provide a context manager that returns an iterator of events. Designed to be used as: with collection.events() as events: for event in events: # do something with the (filename, event) If sort is True, then the events are sorted, otherwise they are just returned in the order of files from :method:`log_files`. Note that all the log files should be the same format. If, not, the collection is broken and an error will probably occur. This uses the log_file() iterator on this class to produce a complete list of log files; they all must provide the same log format. The precision is used to normalise the precision across all of the events to the same precision and then strip the precision indicator ready for upload to InfluxDB. :param sort: if True, then a sorted stream is returned. :type sort: bool :param precision: the precision to use; (default ms) :type precision: str :param strip_precision: If True, do no re-add the precision at the end. :type strip_precision: bool :returns: context manager :rtype: Iterator[(str, str)] :raises AssertionError: if the logs are all the same type. """ specs = list(self.log_files()) if not specs: return Streamer([], self.log_format) type_ = specs[0][1] if not all(t[1] == type_ for t in specs[1:]): raise AssertionError("Not all specs match {}".format(type_)) files = [s[2] for s in specs] return Streamer(files, self.log_format, sort=sort, precision=precision, strip_precision=strip_precision) def clean_up(self): """Tell all the managed plugins to clean-up.""" for manager in self._event_managers: manager.clean_up() def reset(self): """Reset the collection so that it can be used again. This calls reset on all the contained managers, before removing them. It then resets the configuration so that it can be reset. """ for manager in self._event_managers: manager.reset() self.collection = None self.description = None self.logs_dir = None self.log_format = None for manager in self._event_managers: manager.collection_object = None self._event_managers = [] class Streamer: """An context manager for with that streams from multiple log files.""" def __init__(self, files, log_format, sort=True, precision="us", strip_precision=True): """Initialise the object. precision must be of of ("s", "ms", "us", "ns") :param files: a list of files :type files: List[str] :param log_format: one of CSV, LOG, InfluxDB :type log_format: str :param sort: whether to sort the logs by date order. :type sort: bool :param precision: the precision to use; (default ms) :type precision: str :param strip_precision: If True, do no re-add the precision at the end. :type strip_precision: bool :returns: Iterator[(str, str)] :raises: AssertionError if precision is not valid. """ self.files = files self.log_format = log_format self.sort = sort self.handles = None self.precision = precision self.strip_precision = strip_precision assert precision in ("s", "ms", "us", "ns") def __enter__(self): """Set it up.""" # open the files to handles handles = collections.OrderedDict() for f in self.files: try: handles[f] = open(f) except (FileNotFoundError, OSError) as e: logger.warning("Couldn't open log file: %s: %s", f, str(e)) self.handles = handles return self._iterator() def __exit__(self, _, __, ___): """Exit, just ensure that all the handles are closed.""" for f, h in self.handles.items(): try: h.close() except Exception as e: logger.warning("Exception on closing %s: %s", f, str(e)) return False def _iterator(self): # Whilst we still have open files. currents = [] # Get the first set of currents [(timestamp, filename, event)] for f, h in self.handles.copy().items(): try: line = h.readline() if line: event = line.rstrip() currents.append( (_parse_date(self.log_format, event), f, event)) else: self.handles[f].close() del self.handles[f] except OSError as e: logger.warning("Couldn't read log file: %s: %s", f, str(e)) self.handles[f].close() del self.handles[f] if self.sort: currents.sort(key=lambda i: i[0]) # Now whilst