input
stringlengths
2.65k
237k
output
stringclasses
1 value
from operator import itemgetter from functools import reduce from launcher import parse_file from frequency import get_freq_bounds_ryzen def calc_share_ratios(list_prio, cores): """ Basic Shares calculator""" # Shares calculation logic max_shares_per_app = 100 # collect all high priority apps shares_per_app = None if len(list_prio) <= cores: total_shares = sum([r[2] for r in list_prio]) shares_per_app = [r[2]/total_shares for r in list_prio] print(total_shares, shares_per_app) elif len(list_prio) > cores: # we have more apps to run than core # Option 1 assume all High priority apps have the same shares # Hence all of them will run under the same limit and # linux scheduler can take care of them shares_per_app = [max_shares_per_app/(max_shares_per_app*cores)]*cores # we are done we can return shares_per_app return shares_per_app def calc_share_ratios_2(list_prio, inc_cores, ratios): sum_shares = 0 for i, work in enumerate(list_prio): if inc_cores[i]: sum_shares += work[2] shares = [r[2]/sum_shares if inc_cores[i] else ratios[i] for i, r in enumerate(list_prio)] print("r2", sum_shares, shares) return shares def allocate_shares_loop(limit, _proc, max_per_core, cores, spill): shares_app = calc_share_ratios(_proc, cores) left_over_pwr = limit limit_per_core = None # allocate if limit > min(len(_proc),cores)*max_per_core: # Have more power than needs allocation limit_per_core = [max_per_core]*min(len(_proc), cores) left_over_pwr = left_over_pwr - min(len(_proc), cores)*max_per_core return left_over_pwr, limit_per_core, shares_app # Allocate and check limit_per_core = [min(r*limit, max_per_core) for r in shares_app] cores_to_include = [False if r >= max_per_core else True for r in limit_per_core] count = 0 # Check for leftover power left_over_pwr = left_over_pwr - sum(limit_per_core) print("FIRST ALLOCATION", cores_to_include, limit_per_core, left_over_pwr) while int(round(left_over_pwr, 0)) > spill: # we have left over power if int(round(left_over_pwr, 0) <= spill): print("END") break if reduce((lambda x, y: x and y), cores_to_include): left_over_pwr = left_over_pwr - sum(limit_per_core) break # redistribute this power among the apps that didn't recieve it in the last # round of proportional share calculations # find apps and shares to consider ncores = len([x for x in cores_to_include if x]) if ncores == 1: limit_per_core = [min(l+(1*left_over_pwr), max_per_core) if c else l for l, c in zip(limit_per_core, cores_to_include)] left_over_pwr = left_over_pwr - sum(limit_per_core) break elif ncores < 1: # Excess power break else: shares_app = calc_share_ratios_2(_proc, shares_app, cores_to_include) limit_per_core = [min(l+(r*left_over_pwr), max_per_core) if c else l for l, r, c in zip(limit_per_core, shares_app, cores_to_include)] print(str(count), left_over_pwr, limit_per_core, shares_app) count += 1 cores_to_include = [False if r >= max_per_core else True for r in limit_per_core] left_over_pwr = left_over_pwr - sum(limit_per_core) print("Entity left = ", left_over_pwr) left_over_pwr = 0 if left_over_pwr < 0 else left_over_pwr return left_over_pwr, limit_per_core, shares_app def first_allocation(power, cores, app_file): list_procs = parse_file(app_file) list_procs.sort(key=itemgetter(3)) limit = power*1000 max_per_core = 10000 # cores = 4 high = [r for r in list_procs if r[3] < 0] low = [r for r in list_procs if r[3] > 0] high_set = None low_set = None if high is None: # we got no High Powe applications high_set = None extra_pwr = limit else: high.sort(key=itemgetter(2)) extra_pwr, hi_limits, shares_high = allocate_shares_loop(limit, high, max_per_core, cores, 0) print("Power left = ", extra_pwr) high_set = (hi_limits, shares_high, high) cores_avil = cores if high is None else cores-len(high) # if int(round(extra_pwr, 0)) > 0 and not(low is None) and cores_avil > 0: if not(low is None) and cores_avil > 0: # We have power for low priority # First check if we have cores avialable low.sort(key=itemgetter(2)) if int(round(extra_pwr, 0)) > 0 : extra_pwr, lo_limits, shares_lo = allocate_shares_loop(extra_pwr, low, max_per_core, cores_avil, 0) else: # get case for 1 W per avialable core _,lo_limits, shares_lo = allocate_shares_loop(1000*cores_avil, low, max_per_core, cores_avil, 0) extra_pwr = None low_set = (lo_limits, shares_lo, low) return extra_pwr, high_set, low_set def get_list_limits(power, cores, app_file): extra_power, high_set, low_set = first_allocation(power, cores, app_file) all_limits = None all_apps = None if not high_set is None: #We have high_prio apps all_limits = high_set[0] all_apps = high_set[2] if not low_set is None: #We have low_prio apps if not(extra_power is None): all_limits += low_set[0] all_apps += low_set[2] return all_apps, all_limits def first_freq_allocation(power_limit, cores, app_file): list_procs = parse_file(app_file) list_procs.sort(key=itemgetter(3)) bounds = get_freq_bounds_ryzen() high = [r for r in list_procs if r[3] < 0] low = [r for r in list_procs if r[3] > 0] TDP = 85*1000 alpha = 1 if power_limit*1000 < TDP: alpha = power_limit*1000/float(TDP) # WARN: hard-coding max frequency for 10 active cores # add code to read directly from relevant MSR's # if len(list_procs) > 10: max_turbo = 3400000 max_per_core = min(get_freq_bounds_ryzen()[1],max_turbo) freq_limit = alpha * max_per_core * cores high_set = None low_set = None extra_freq = freq_limit print("FREQ CONFIG: ", power_limit, freq_limit, alpha, max_per_core, max_turbo) if high is None: # we got no High Powe applications high_set = None extra_freq = freq_limit else: high.sort(key=itemgetter(2)) extra_freq, hi_limits, shares_high = allocate_shares_loop(extra_freq, high, max_per_core, min(cores, len(high)), 100000) # WARN: Hack for fixing lower limit for frequency hi_limits = [max(h, bounds[0]) for h in hi_limits] print("freq left = ", extra_freq) high_set = (hi_limits, shares_high, high) # First check if we have cores avialable cores_avil = cores if high is None else cores-len(high) # if int(round(extra_pwr, 0)) > 0 and not(low is None) and cores_avil > 0: if not(low is None) and cores_avil > 0: # We have power for low priority low.sort(key=itemgetter(2)) if int(round(extra_freq, 0)) > 0 : extra_freq, lo_limits, shares_lo = allocate_shares_loop(extra_freq, low, max_per_core, cores_avil, 100000) else: # get case for 800 MHz per avialable core _,lo_limits, shares_lo = allocate_shares_loop(800000*cores_avil, low, max_per_core, cores_avil, 100000) # WARN: Hack for fixing lower limit for frequency lo_limits = [max(l, bounds[0]) for l in lo_limits] extra_freq = None low_set = (lo_limits, shares_lo, low) return extra_freq, high_set, low_set def first_perf_allocation(power_limit, cores, app_file): list_procs = parse_file(app_file) list_procs.sort(key=itemgetter(3)) high = [r for r in list_procs if r[3] < 0] low = [r for r in list_procs if r[3] > 0] TDP = 85*1000 alpha = 1 if power_limit*1000 < TDP: alpha = (power_limit*1000)/float(TDP) max_per_core = 100 perf_limit = alpha * max_per_core * cores high_set = None low_set = None extra_freq = perf_limit print("PERF CONFIG: ", power_limit*1000, perf_limit, alpha, max_per_core) if high is None: # we got no High Powe applications high_set = None extra_freq = perf_limit else: high.sort(key=itemgetter(2)) extra_freq, hi_limits, shares_high = allocate_shares_loop(extra_freq, high, max_per_core, min(cores, len(high)), 1) # WARN: Hack for fixing lower limit for frequency # hi_limits = [max(h, 100) for h in hi_limits] print("freq left = ", extra_freq) high_set = (hi_limits, shares_high, high) # First check if we have cores avialable cores_avil = cores if high is None else cores-len(high) # if int(round(extra_pwr, 0)) > 0 and not(low is None) and cores_avil > 0: if not(low is None) and cores_avil > 0: # We have power for low priority low.sort(key=itemgetter(2)) if int(round(extra_freq, 0)) > 0 : extra_freq, lo_limits, shares_lo = allocate_shares_loop(extra_freq, low, max_per_core, cores_avil, 1) else: # get case for 800 MHz per avialable core _,lo_limits, shares_lo = allocate_shares_loop(1*cores_avil, low, max_per_core, cores_avil, 1) # WARN: Hack for fixing lower limit for frequency # lo_limits = [max(l, 1) for l in lo_limits] extra_freq = None low_set = (lo_limits, shares_lo, low) return extra_freq, high_set, low_set def get_list_limits_cores(power, cores, app_file, opt="Power"): high_set = None low_set = None all_limits = None all_shares = None high_apps = None low_apps = None high_cores = None low_cores = None high_limits = None low_limits = None high_shares = None low_shares = None start = 0 if opt == "Freq": __, high_set, low_set = first_freq_allocation(power, cores, app_file) elif opt == "Power": __, high_set, low_set = first_allocation(power, cores, app_file) elif opt == "Perf": __, high_set, low_set = first_perf_allocation(power, cores, app_file) if not high_set is None: #We have high_prio apps all_limits = high_set[0] high_limits = high_set[0] high_shares = high_set[1] high_apps = high_set[2] high_cores = [i*2 for i in range(start, len(all_limits))] all_shares = high_set[1] # get high shares start = len(all_limits) if not low_set is None: #We have low_prio apps all_limits += low_set[0] low_limits = low_set[0] low_shares = low_set[1] low_apps
<gh_stars>1-10 import libcst as cst from libcst import CSTNode import random from lampion.components.engine import Engine def test_create_engine_with_empty_config(): testobject = Engine({}, "PLACEHOLDER") assert testobject def test_create_engine_with_none_config(): testobject = Engine(None, "PLACEHOLDER_ENGINE_OUTPUT") assert testobject def test_default_engine_has_transformers(): testobject = Engine({}, "PLACEHOLDER") assert len(testobject.get_transformers()) > 0 def test_run_with_default_transformers_gives_output(): testobject = Engine(None, "PLACEHOLDER_ENGINE_OUTPUT") example_cst = [example()] altered_cst = testobject.run(example_cst)[0] assert altered_cst def test_run_with_default_transformers_input_remains_unchanged(): testobject = Engine(None, "PLACEHOLDER_ENGINE_OUTPUT") random.seed(1996) example_cst = [example()] initial_value = str(example_cst[0][1].code) altered_csts = testobject.run(example_cst) testobject.run(example_cst) post_change_code = get_first_code(example_cst) assert initial_value == post_change_code def test_run_with_default_transformers_output_different_to_input(): testobject = Engine(None, "PLACEHOLDER_ENGINE_OUTPUT") random.seed(1996) example_cst = [example()] initial_value = str(example_cst[0][1].code) altered_csts = testobject.run(example_cst) altered_cst = altered_csts[0][1] assert altered_cst.code != initial_value def test_run_with_default_transformers_with_two_CSTs_both_changed(): testobject = Engine({"transformations": 50}, "PLACEHOLDER_ENGINE_OUTPUT") random.seed(1996) example_cst_A = cst.parse_module("def hi(): \n\tprint(\"Hello World\")") example_cst_B = cst.parse_module("def bye(): \n\tprint(\"Goodbye (cruel) World\")") example_A_value = str(example_cst_A.code) example_B_value = str(example_cst_B.code) csts = [("PLACEHOLDER", example_cst_A), ("PLACEHOLDER", example_cst_B)] altered_csts = testobject.run(csts) altered_cst_A = get_first_code([x for x in altered_csts if "Hello" in x[1].code]) altered_cst_B = get_first_code([x for x in altered_csts if "Goodbye" in x[1].code]) assert altered_cst_A != example_A_value assert altered_cst_B != example_B_value def test_run_with_default_transformers_with_two_CSTs_output_has_paths_to_compare(): # This is a regression test, as when I wanted to print some of the changed code # It started to explode around my head testobject = Engine(None, "PLACEHOLDER_ENGINE_OUTPUT") random.seed(1996) example_cst_A = cst.parse_module("def hi(): \n\tprint(\"Hello World\")") example_cst_B = cst.parse_module("def bye(): \n\tprint(\"Goodbye (cruel) World\")") csts = [("PLACEHOLDER_A", example_cst_A), ("PLACEHOLDER_B", example_cst_B)] altered_csts = testobject.run(csts) assert len(altered_csts) == 2 first_altered_cst = altered_csts[0] assert first_altered_cst[0] assert first_altered_cst[1] second_altered_cst = altered_csts[1] assert second_altered_cst[0] assert second_altered_cst[1] def test_run_with_default_transformers_with_two_CSTs_both_inputs_stay_unchanged(): testobject = Engine(None, "PLACEHOLDER_ENGINE_OUTPUT") random.seed(1996) example_cst_A = cst.parse_module("def hi(): \n\tprint(\"Hello World\")") example_cst_B = cst.parse_module("def bye(): \n\tprint(\"Goodbye (cruel) World\")") example_A_value = str(example_cst_A.code) example_B_value = str(example_cst_B.code) csts = [("PLACEHOLDER", example_cst_A), ("PLACEHOLDER", example_cst_B)] testobject.run(csts) assert example_cst_A.code == example_A_value assert example_cst_B.code == example_B_value def test_with_one_file_after_transformation_path_is_the_same(): testobject = Engine(None, "PLACEHOLDER_ENGINE_OUTPUT") random.seed(1996) example_cst = [example()] initial_path = str(example_cst[0][0]) altered_csts = testobject.run(example_cst) post_change_path = altered_csts[0][0] assert post_change_path == initial_path def test_with_one_file_per_class_should_have_expected_transformations(): testobject = Engine({"transformationscope": "per_class", "transformations": 10}, None) random.seed(1996) example_cst = [example()] altered_csts = testobject.run(example_cst) assert testobject.get_successful_transformations() == 10 def test_with_one_file_global_scope_should_have_expected_transformations(): testobject = Engine({"transformationscope": "global", "transformations": 10}, None) random.seed(1996) example_cst = [example()] altered_csts = testobject.run(example_cst) assert testobject.get_successful_transformations() == 10 def test_with_one_file_per_class_should_have_expected_transformations_variant_b(): testobject = Engine({"transformationscope": "per_class", "transformations": 15}, None) random.seed(1996) example_cst = [example()] altered_csts = testobject.run(example_cst) assert testobject.get_successful_transformations() == 15 def test_run_with_two_csts_paths_match(): testobject = Engine(None, "PLACEHOLDER_ENGINE_OUTPUT") random.seed(1996) example_cst_A = cst.parse_module("def hi(): \n\tprint(\"Hello World\")") example_cst_B = cst.parse_module("def bye(): \n\tprint(\"Goodbye (cruel) World\")") csts = [("PLACEHOLDER_A", example_cst_A), ("PLACEHOLDER_B", example_cst_B)] altered_csts = testobject.run(csts) altered_cst_A = [x for x in altered_csts if "Hello" in x[1].code] altered_cst_B = [x for x in altered_csts if "Goodbye" in x[1].code] altered_cst_path_A = altered_cst_A[0][0] altered_cst_path_B = altered_cst_B[0][0] assert altered_cst_path_A == "PLACEHOLDER_A" assert altered_cst_path_B == "PLACEHOLDER_B" def test_run_with_two_csts_second_method_is_kept(): testobject = Engine(None, "PLACEHOLDER_ENGINE_OUTPUT") random.seed(1996) example_cst_A = cst.parse_module("def hi(): \n\tprint(\"Hello World\")") example_cst_B = cst.parse_module("def bye(): \n\tprint(\"Goodbye (cruel) World\")") csts = [("PLACEHOLDER_A", example_cst_A), ("PLACEHOLDER_B", example_cst_B)] altered_csts = testobject.run(csts) altered_cst_B = [x for x in altered_csts if "Goodbye" in x[1].code] # If one of them is 0 and the other one is two, # then there was an issue in putting them back in the engines running asts assert len(altered_cst_B) == 1 def test_run_with_two_csts_first_method_is_kept(): testobject = Engine(None, "PLACEHOLDER_ENGINE_OUTPUT") random.seed(1996) example_cst_A = cst.parse_module("def hi(): \n\tprint(\"Hello World\")") example_cst_B = cst.parse_module("def bye(): \n\tprint(\"Goodbye (cruel) World\")") csts = [("PLACEHOLDER_A", example_cst_A), ("PLACEHOLDER_B", example_cst_B)] altered_csts = testobject.run(csts) altered_cst_A = [x for x in altered_csts if "Hello" in x[1].code] # If one of them is 0 and the other one is two, # then there was an issue in putting them back in the engines running asts assert len(altered_cst_A) == 1 def test_run_with_two_csts_check_only_one_transformation_one_touched(): testobject = Engine(config={"transformations": 1, "transformationscope": "global"}) random.seed(1996) example_cst_A = cst.parse_module("def hi(): \n\tprint(\"Hello World\")") example_cst_B = cst.parse_module("def bye(): \n\tprint(\"Goodbye (cruel) World\")") csts = [("PLACEHOLDER_A", example_cst_A), ("PLACEHOLDER_B", example_cst_B)] testobject.run(csts) assert len(testobject.get_touched_paths()) == 1 def test_run_with_two_csts_check_many_transformations_both_touched(): testobject = Engine(config={"transformations": 40, "transformationscope": "global"}) random.seed(1996) example_cst_A = cst.parse_module("def hi(): \n\tprint(\"Hello World\")") example_cst_B = cst.parse_module("def bye(): \n\tprint(\"Goodbye (cruel) World\")") csts = [("PLACEHOLDER_A", example_cst_A), ("PLACEHOLDER_B", example_cst_B)] testobject.run(csts) assert len(testobject.get_touched_paths()) == 2 def test_run_global_with_two_csts_check_many_transformations_has_expected_number_of_transformations(): testobject = Engine(config={"transformations": 20, "transformationscope": "global"}) random.seed(1996) example_cst_A = cst.parse_module("def hi(): \n\tprint(\"Hello World\")") example_cst_B = cst.parse_module("def bye(): \n\tprint(\"Goodbye (cruel) World\")") csts = [("PLACEHOLDER_A", example_cst_A), ("PLACEHOLDER_B", example_cst_B)] testobject.run(csts) assert testobject.get_successful_transformations() == 20 def test_run_global_with_two_csts_check_many_transformations_has_expected_number_of_transformations_variant_b(): testobject = Engine(config={"transformations": 50, "transformationscope": "global"}) random.seed(1996) example_cst_A = cst.parse_module("def hi(): \n\tprint(\"Hello World\")") example_cst_B = cst.parse_module("def bye(): \n\tprint(\"Goodbye (cruel) World\")") csts = [("PLACEHOLDER_A", example_cst_A), ("PLACEHOLDER_B", example_cst_B)] testobject.run(csts) assert testobject.get_successful_transformations() == 50 def test_run_with_two_csts_no_transformations_none_touched(): testobject = Engine(config={"transformations": 0, "transformationscope": "global"}) random.seed(1996) example_cst_A = cst.parse_module("def hi(): \n\tprint(\"Hello World\")") example_cst_B = cst.parse_module("def bye(): \n\tprint(\"Goodbye (cruel) World\")") csts = [("PLACEHOLDER_A", example_cst_A), ("PLACEHOLDER_B", example_cst_B)] testobject.run(csts) assert len(testobject.get_touched_paths()) == 0 def test_run_per_class_with_default_transformers_with_two_CSTs_should_have_2_csts(): testobject = Engine({"transformationscope": "per_class"}, None) random.seed(1996) example_cst_A = cst.parse_module("def hi(): \n\tprint(\"Hello World\")") example_cst_B = cst.parse_module("def bye(): \n\tprint(\"Goodbye (cruel) World\")") csts = [("PLACEHOLDER", example_cst_A), ("PLACEHOLDER", example_cst_B)] altered_csts = testobject.run(csts) assert len(altered_csts) == 2 def test_run_per_class_with_default_transformers_with_two_CSTs_both_touched(): testobject = Engine({"transformationscope": "per_class"}, None) random.seed(1996) example_cst_A = cst.parse_module("def hi(): \n\tprint(\"Hello World\")") example_cst_B = cst.parse_module("def bye(): \n\tprint(\"Goodbye (cruel) World\")") csts = [("PLACEHOLDER_A", example_cst_A), ("PLACEHOLDER_B", example_cst_B)] testobject.run(csts) assert len(testobject.get_touched_paths()) == 2 def test_run_per_class_with_default_transformers_with_two_CSTs_both_changed(): testobject = Engine({"transformationscope": "per_class"}, None) random.seed(1996) example_cst_A = cst.parse_module("def hi(): \n\tprint(\"Hello World\")") example_cst_B = cst.parse_module("def bye(): \n\tprint(\"Goodbye (cruel) World\")") example_A_value = str(example_cst_A.code) example_B_value = str(example_cst_B.code) csts = [("PLACEHOLDER_A", example_cst_A), ("PLACEHOLDER_B", example_cst_B)] altered_csts = testobject.run(csts) altered_cst_A = get_first_code([x for x in altered_csts if "Hello" in x[1].code]) altered_cst_B = get_first_code([x for x in altered_csts if "Goodbye" in x[1].code]) assert altered_cst_A != example_A_value assert altered_cst_B != example_B_value def test_run_per_class_with_default_transformers_with_two_CSTs_should_have_expected_number_of_transformations(): testobject = Engine({"transformationscope": "per_class", "transformations": 5}, None) random.seed(1996) example_cst_A = cst.parse_module("def hi(): \n\tprint(\"Hello World\")") example_cst_B = cst.parse_module("def bye(): \n\tprint(\"Goodbye (cruel) World\")") csts = [("PLACEHOLDER", example_cst_A), ("PLACEHOLDER", example_cst_B)] testobject.run(csts) assert testobject.get_successful_transformations() == 10 def test_run_per_class_with_default_transformers_with_two_CSTs_should_have_expected_number_of_transformations_variant_b(): testobject = Engine({"transformationscope": "per_class", "transformations": 10}, None) random.seed(1996) example_cst_A = cst.parse_module("def hi(): \n\tprint(\"Hello World\")") example_cst_B = cst.parse_module("def bye(): \n\tprint(\"Goodbye (cruel) World\")") csts = [("PLACEHOLDER", example_cst_A), ("PLACEHOLDER", example_cst_B)] testobject.run(csts) assert testobject.get_successful_transformations() == 20 def test_run_with_bad_scope_CSTs_should_stay_unchanged(): testobject = Engine({"transformationscope": "bad_scope", "transformations": 10}, None) random.seed(1996) example_cst_A = cst.parse_module("def hi(): \n\tprint(\"Hello World\")") example_cst_B = cst.parse_module("def bye(): \n\tprint(\"Goodbye (cruel) World\")") csts = [("PLACEHOLDER", example_cst_A), ("PLACEHOLDER", example_cst_B)] altered_csts = testobject.run(csts) altered_cst_A = get_first_code([x for x in altered_csts if "Hello" in x[1].code]) altered_cst_B = get_first_code([x for x in altered_csts if "Goodbye" in x[1].code]) assert testobject.get_successful_transformations() == 0 assert len(testobject.get_touched_paths()) == 0 assert altered_cst_A == example_cst_A.code assert altered_cst_B == example_cst_B.code ## "Integration" Tests # Testing a bit of the logic around def test_engine_with_literal_transformers_cst_has_no_literals(): # Important things to test here: # 1. Termination # 2. No successful Transformations # 3. Bad Transformations recorded # 4. Code remains unchanged # 5. No Files touched # Config that allows "only" literal-related Transformers config = {} config["AddUnusedVariableTransformer"] = False config["AddCommentTransformer"] = False config["RenameParameterTransformer"] = False config["RenameVariableTransformer"] = False config["AddNeutralElementTransformer"] = True config["LambdaIdentityTransformer"] = True testobject = Engine(config) example_cst = [("PLACEHOLDER",cst.parse_module("def some(): return Math.Pi"))] altered_cst = testobject.run(example_cst) assert testobject.get_successful_transformations() == 0 assert testobject.get_failed_transformations() > 0 assert len(testobject.get_touched_paths()) == 0 def test_engine_per_class_with_literal_transformers_cst_has_no_literals(): # Config that allows "only" literal-related Transformers config = {} config["AddUnusedVariableTransformer"] = False config["AddCommentTransformer"] = False config["RenameParameterTransformer"] = False config["RenameVariableTransformer"] = False config["AddNeutralElementTransformer"] = True config["LambdaIdentityTransformer"] = True config["transformationscope"] = "per_class" testobject = Engine(config) example_cst = [("PLACEHOLDER",cst.parse_module("def some(): return Math.Pi"))] altered_cst = testobject.run(example_cst) assert testobject.get_successful_transformations() == 0 assert testobject.get_failed_transformations() > 0 assert len(testobject.get_touched_paths()) == 0 def test_engine_per_class_with_unfailable_transformers_has_no_failures(): # These transformers can never fail config = {} config["AddUnusedVariableTransformer"] = True config["AddCommentTransformer"] = False config["RenameParameterTransformer"] = False config["RenameVariableTransformer"] = False config["AddNeutralElementTransformer"] = False config["LambdaIdentityTransformer"] = False config["transformationscope"] = "per_class" config["transformations"] = 10 testobject = Engine(config) example_cst = [("PLACEHOLDER",cst.parse_module("def some(): \n\t a = 'bla' \n\t b = 'bla' \n\t c = 'bla' \n\t d = 'bla' \n\t e = 'bla' \n\t return Math.Pi"))] altered_cst = testobject.run(example_cst) assert testobject.get_successful_transformations() == 10 assert testobject.get_failed_transformations() == 0 def test_engine_with_unfailable_transformers_has_no_failures(): # These transformers can never fail config = {} config["AddUnusedVariableTransformer"] = True config["AddCommentTransformer"] = False config["RenameParameterTransformer"] = False config["RenameVariableTransformer"] = False config["AddNeutralElementTransformer"] = False config["LambdaIdentityTransformer"] = False config["transformationscope"] = "global" config["transformations"] = 3 testobject = Engine(config) example_cst = [("PLACEHOLDER",cst.parse_module("def some(): \n\t a = 'bla' \n\t b = 'bla' \n\t c = 'bla' \n\t d = 'bla' \n\t e = 'bla' \n\t return Math.Pi"))] altered_cst = testobject.run(example_cst) assert 3 == testobject.get_successful_transformations() assert 0 == testobject.get_failed_transformations() ## Tests for Helpers, internals and Configs def
Milk</option> <option value="KF-Hip-House-14-Dj-Milk">19/12/12 - KF Hip House #14 - Dj Milk</option> <option value="Gabe-Wrecked-Machines">07/01/12 - Gabe - Wrecked Machines</option> <option value="Aniversario-do-Kengao">13/01/12 - Aniversário do Kengão</option> <option value="Tribe-Club-Summer-Edition">21/01/12 - Tribe Club - Summer Edition</option> <option value="La-Madre-DJ-Robson-Nogueira">27/01/12 - La Madre - DJ <NAME></option> <option value="Summer-After">26/02/12 - Summer After</option> <option value="Reinauguracao-Pos-Reforma">24/02/12 - Reinauguração Pós Reforma</option> <option value="Pub-in-the-House-BDay-Sabrina-Rabelo">29/02/12 - Pub in the House + B.Day Sabrina Rabelo</option> <option value="House-no-Deck-Dj-Nicodemo-Banda-All-Star-40">02/03/12 - House no Deck - Dj Nicodemo + Banda All Star 40</option> <option value="House-no-Deck-Niver-Allan-Mello-Magno-Nascimento-Vanessa-Cabral">29/06/12 - House no Deck - Niver Allan Mello, Magno Nascimento, Vanessa Cabral</option> <option value="QUARTA-FEIRA">04/09/13 - QUARTA-FEIRA</option> <option value="House-no-Deck-com-Du-Aoki-Marco-Aoki-e-Diego-Colombini">16/03/12 - House no Deck com Du Aoki, Marco Aoki e Diego Colombini</option> <option value="House-no-Deck-AfterFest-2a-Edicao">09/03/12 - House no Deck - AfterFest 2ª Edição + B.Day Plínio Boucault</option> <option value="House-4-Friends-DJ-Felix-Mixer-Live">17/03/12 - House 4 Friends - DJ Felix + Mixer Live</option> <option value="Beach-Conception-Dj-Felix-Dj-Pedro-Scarpa">24/03/12 - Beach Conception - Dj Felix + Dj Pedro Scarpa</option> <option value="Electrance-Preview-Indoor">29/01/12 - Electrance Preview Indoor</option> <option value="Island-Pool-Party-II">17/03/12 - Island Pool Party II</option> <option value="House-no-Deck-com-DJ-Robson-Nogueira">23/03/12 - House no Deck com DJ Robson Nogueira</option> <option value="House-no-Deck-Dj-Du-Aoki-Niver-Juliete-Leal">11/05/12 - House no Deck - Dj Du Aoki + Niver Juliete Leal</option> <option value="Ministry-of-Sound-Campinas-Camarote-Perfect-Life">30/03/12 - Ministry of Sound Campinas - Camarote Perfect Life</option> <option value="House-no-Deck-AfterFest-3-Edicao-BDay-Rick-Afterfest-Dj-Felix-e-Juliana-Minini">27/04/12 - House no Deck - AfterFest 3ª Edição + B.Day Rick Afterfest, Dj Felix e Juliana Minini</option> <option value="House-no-Deck-Niver-Danielle-Ferri-e-Maiara-Nozari-Dj-Robson-Nogueira-Dj-Marcelo-Tromboni">18/05/12 - House no Deck - Niver Danielle Ferri e Maiara Nozari - Dj <NAME>, Dj Marcelo Tromboni</option> <option value="House-no-Deck-Warm-Up-Fire-Up-Lounge-Dj-Edu-Zottini">21/06/13 - House no Deck - Warm Up Fire Up Lounge - Dj Edu Zottini</option> <option value="Hip-House-Guten">01/06/12 - Hip-House Guten</option> <option value="House-No-Deck-Dj-Robson-Nogueira">01/06/12 - House No Deck - Dj Robson Nogueira</option> </select> </div> <div id="comum"> <div class="info"> <h2> Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 </h2> <div class="compartilhar"> <div class="addthis_toolbox addthis_pill_combo"> <a class="addthis_button_tweet" tw:count="horizontal"></a> <a class="addthis_button_facebook_like"></a> <a class="addthis_counter addthis_pill_style"></a> </div> <script type="text/javascript" src="http://s7.addthis.com/js/250/addthis_widget.js#username=afterfest"></script> </div> </div> <div id="listaFotos"> <a href="/uploads/coberturas/XV-Edicao/20130919-084632-2.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 1" rel="galeria"> <img src="/uploads/coberturas/XV-Edicao/mini.20130919-084632-2.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 1" alt="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 1"/></a> <a href="/uploads/coberturas/XV-Edicao/20130919-084632-3.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 2" rel="galeria"> <img src="/uploads/coberturas/XV-Edicao/mini.20130919-084632-3.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 2" alt="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 2"/></a> <a href="/uploads/coberturas/XV-Edicao/20130919-084632-4.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 3" rel="galeria"> <img src="/uploads/coberturas/XV-Edicao/mini.20130919-084632-4.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 3" alt="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 3"/></a> <a href="/uploads/coberturas/XV-Edicao/20130919-084632-5.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 4" rel="galeria"> <img src="/uploads/coberturas/XV-Edicao/mini.20130919-084632-5.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 4" alt="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 4"/></a> <a href="/uploads/coberturas/XV-Edicao/20130919-084632-6.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 5" rel="galeria"> <img src="/uploads/coberturas/XV-Edicao/mini.20130919-084632-6.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 5" alt="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 5"/></a> <a href="/uploads/coberturas/XV-Edicao/20130919-084632-7.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 6" rel="galeria"> <img src="/uploads/coberturas/XV-Edicao/mini.20130919-084632-7.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 6" alt="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 6"/></a> <a href="/uploads/coberturas/XV-Edicao/20130919-084632-8.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 7" rel="galeria"> <img src="/uploads/coberturas/XV-Edicao/mini.20130919-084632-8.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 7" alt="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 7"/></a> <a href="/uploads/coberturas/XV-Edicao/20130919-084632-9.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 8" rel="galeria"> <img src="/uploads/coberturas/XV-Edicao/mini.20130919-084632-9.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 8" alt="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 8"/></a> <a href="/uploads/coberturas/XV-Edicao/20130919-084632-10.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 9" rel="galeria"> <img src="/uploads/coberturas/XV-Edicao/mini.20130919-084632-10.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 9" alt="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 9"/></a> <a href="/uploads/coberturas/XV-Edicao/20130919-084632-11.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 10" rel="galeria"> <img src="/uploads/coberturas/XV-Edicao/mini.20130919-084632-11.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 10" alt="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 10"/></a> <a href="/uploads/coberturas/XV-Edicao/20130919-084632-12.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 11" rel="galeria"> <img src="/uploads/coberturas/XV-Edicao/mini.20130919-084632-12.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 11" alt="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 11"/></a> <a href="/uploads/coberturas/XV-Edicao/20130919-084632-13.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 12" rel="galeria"> <img src="/uploads/coberturas/XV-Edicao/mini.20130919-084632-13.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 12" alt="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 12"/></a> <a href="/uploads/coberturas/XV-Edicao/20130919-084632-14.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 13" rel="galeria"> <img src="/uploads/coberturas/XV-Edicao/mini.20130919-084632-14.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 13" alt="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 13"/></a> <a href="/uploads/coberturas/XV-Edicao/20130919-084632-15.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 14" rel="galeria"> <img src="/uploads/coberturas/XV-Edicao/mini.20130919-084632-15.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 14" alt="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 14"/></a> <a href="/uploads/coberturas/XV-Edicao/20130919-084632-16.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 15" rel="galeria"> <img src="/uploads/coberturas/XV-Edicao/mini.20130919-084632-16.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 15" alt="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 15"/></a> <a href="/uploads/coberturas/XV-Edicao/20130919-084632-17.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 16" rel="galeria"> <img src="/uploads/coberturas/XV-Edicao/mini.20130919-084632-17.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 16" alt="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 16"/></a> <a href="/uploads/coberturas/XV-Edicao/20130919-084713-2.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 17" rel="galeria"> <img src="/uploads/coberturas/XV-Edicao/mini.20130919-084713-2.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 17" alt="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 17"/></a> <a href="/uploads/coberturas/XV-Edicao/20130919-084713-3.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 18" rel="galeria"> <img src="/uploads/coberturas/XV-Edicao/mini.20130919-084713-3.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 18" alt="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 18"/></a> <a href="/uploads/coberturas/XV-Edicao/20130919-084713-4.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 19" rel="galeria"> <img src="/uploads/coberturas/XV-Edicao/mini.20130919-084713-4.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 19" alt="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 19"/></a> <a href="/uploads/coberturas/XV-Edicao/20130919-084713-5.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 20" rel="galeria"> <img src="/uploads/coberturas/XV-Edicao/mini.20130919-084713-5.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 20" alt="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 20"/></a> <a href="/uploads/coberturas/XV-Edicao/20130919-084713-6.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 21" rel="galeria"> <img src="/uploads/coberturas/XV-Edicao/mini.20130919-084713-6.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 21" alt="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 21"/></a> <a href="/uploads/coberturas/XV-Edicao/20130919-084713-7.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 22" rel="galeria"> <img src="/uploads/coberturas/XV-Edicao/mini.20130919-084713-7.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 22" alt="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 22"/></a> <a href="/uploads/coberturas/XV-Edicao/20130919-084713-8.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 23" rel="galeria"> <img src="/uploads/coberturas/XV-Edicao/mini.20130919-084713-8.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 23" alt="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 23"/></a> <a href="/uploads/coberturas/XV-Edicao/20130919-084713-9.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 24" rel="galeria"> <img src="/uploads/coberturas/XV-Edicao/mini.20130919-084713-9.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 24" alt="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 24"/></a> <a href="/uploads/coberturas/XV-Edicao/20130919-084713-10.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 25" rel="galeria"> <img src="/uploads/coberturas/XV-Edicao/mini.20130919-084713-10.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 25" alt="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 25"/></a> <a href="/uploads/coberturas/XV-Edicao/20130919-084713-11.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 26" rel="galeria"> <img src="/uploads/coberturas/XV-Edicao/mini.20130919-084713-11.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 26" alt="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 26"/></a> <a href="/uploads/coberturas/XV-Edicao/20130919-084713-12.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 27" rel="galeria"> <img src="/uploads/coberturas/XV-Edicao/mini.20130919-084713-12.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 27" alt="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 27"/></a> <a href="/uploads/coberturas/XV-Edicao/20130919-084713-13.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 28" rel="galeria"> <img src="/uploads/coberturas/XV-Edicao/mini.20130919-084713-13.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 28" alt="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 - Foto 28"/></a> <a href="/uploads/coberturas/XV-Edicao/20130919-084713-14.jpg" title="Fotos BIXURRASCO - XV Edicao - FATEC - 14/09/2013 -
<reponame>mbaak/Eskapade import numpy as np from sklearn import preprocessing import string import pandas as pd import scipy def generate_unordered_categorical_random_data(n_obs, p, dtype=np.str): """ Generates unordered categorical random data. :param int n_obs: Number of data points (rows) to generate :param np.2darray p: The probabilities associated with each category per dimension. The length of p determines the number of dimensions, the length of the j-th element of p (np.array) is the number of categories for dimension j and p[j] are the probabilities for the categories of dimension j. :param type dtype: The type of the data (str or int) :return: The generated data :rtype: np.ndarray """ n_dim = p.shape[0] alphabet = np.array(list(string.ascii_lowercase)) data = np.empty((n_obs, n_dim), dtype=dtype) for j in range(n_dim): if dtype == np.str: data[:, j] = alphabet[np.random.choice(np.arange(0, len(p[j])), n_obs, p=p[j])] elif dtype == np.int: data[:, j] = np.random.choice(np.arange(0, len(p[j])), n_obs, p=p[j]) else: raise NotImplementedError return data def generate_ordered_categorical_random_data(n_obs, p): """ Generates ordered categorical random data :param int n_obs: Number of data points (rows) to generate :param np.2darray p: The probabilities associated with each category per dimension. The length of p determines the number of dimensions, the length of the j-th element of p (np.array) is the number of categories for dimension j and p[j] are the probabilities for the categories of dimension j. :return: The generated data :rtype: np.ndarray """ n_dim = p.shape[0] data = np.empty((n_obs, n_dim), dtype=np.int) for j in range(n_dim): data[:, j] = np.random.choice(np.arange(0, len(p[j])), n_obs, p=p[j]) return data def generate_continuous_random_data(n_obs, means_stds): """ Generates continuous random data. The data is pulled from a gaussian distribution plus a uniform distribution. The lower and upper boundery of the uniform distribution are equal to -m - 5*s and m + 5*s respectively, where m and s are the mean and standard deviation of the gaussian distribution respectively. NB: m should be positive! :param int n_obs: Number of data points (rows) to generate :param np.2darray means_stds: The length of means_stds determines the number of dimensions. means_stds[0] (np.array) are the means for each dimension. means_stds[1] (np.array) are the standard deviations for each dimension :return: The generated data :rtype: np.ndarray """ means = means_stds[0] stds = means_stds[1] try: assert len(means) == len(stds) except AssertionError: print('lenth of means is not equal to lenth of standard deviations') n_dim = len(means) data = np.empty((n_obs, n_dim), dtype=np.float) for j in range(n_dim): m = means[j] s = stds[j] data[:, j] = np.random.normal(m, s, n_obs) + np.random.uniform(low=-m - 5 * s, high=m + 5 * s, size=(n_obs,)) return data def generate_data(n_obs=None, p_unordered=None, p_ordered=None, means_stds=None, dtype_unordered_categorical_data=np.str): """ Generates unordered categorical, ordered categorical and continuous random data. See the docs of the functions generate_unordered_categorical_random_data, generate_ordered_categorical_random_data and generate_continuous_random_data for more explanation about the p_unordered, p_ordered and means_stds parameters. The column names are alphabetically ascending starting with the continuous columns, then the unordered categorical columns and finally the ordered categorical columns. :param int n_obs: Number of data points (rows) to generate :param np.2darray p_unordered: The probabilities associated with each category per unordered categorical dimension :param np.2darray p_ordered: The probabilities associated with each category per ordered categorical dimension :param np.2darray means_stds: The means and standard deviations per continuous dimension :param type dtype_unordered_categorical_data: The type of the unordered categorical data (str or int) :return: The generated data :rtype: pd.DataFrame """ # Input checking assert n_obs is not None and n_obs != 0, 'n_obs is 0 or None' assert p_unordered is not None or p_ordered is not None or means_stds is not None, \ 'p_unordered is None, p_ordered is None and means_stds is None. Please set one of these values' if p_unordered is not None: unordered_categorical_data = generate_unordered_categorical_random_data(n_obs, p_unordered, dtype=dtype_unordered_categorical_data) else: unordered_categorical_data = np.array([[]]) if p_ordered is not None: ordered_categorical_data = generate_ordered_categorical_random_data(n_obs, p_ordered) else: ordered_categorical_data = np.array([[]]) if means_stds is not None: continuous_data = generate_continuous_random_data(n_obs, means_stds) else: continuous_data = np.array([[]]) alphabet = np.array(list(string.ascii_lowercase)) columns1 = list(alphabet[0:continuous_data.shape[1]]) columns2 = list(alphabet[continuous_data.shape[1]: continuous_data.shape[1] + unordered_categorical_data.shape[1]]) columns3 = list(alphabet[continuous_data.shape[1] + unordered_categorical_data.shape[1]: continuous_data.shape[1] + unordered_categorical_data.shape[1] + ordered_categorical_data.shape[1]]) df1 = pd.DataFrame(continuous_data, columns=columns1) df2 = pd.DataFrame(unordered_categorical_data, columns=columns2) df3 = pd.DataFrame(ordered_categorical_data, columns=columns3) df = pd.concat([df1, df2, df3], axis=1) return df def find_peaks(data, continuous_i, count=1): """ Finds peaks in a set of data points. A peak is a set of data points with more then 'count' data points with equal value. :param np.ndarray data: the data :param iterable continuous_i: column indices. In these columns, this function searches for peaks. :param int count: the minimum number of data points per unique value for the value te be flagged as a peak :return: (column index, np.array of peak values) as key-value pairs :rtype: dict """ peaks = {} for d in continuous_i: u, c = np.unique(data[:, d], return_counts=True) peaks[d] = u[c > count] return peaks def smooth_peaks(data, peaks, smoothing_fraction=0.0002): """ Smooths the peaks in the data. All data points in the peaks (data points with equal value) are replaced by a sample drawn from a normal distribution. The mean of this normal distribution is equal to the value of the peak and the standard deviation of this normal distribution is equal to the smoothing_fraction times the range of the data ( for the column holding the peak). :param np.ndarray data: the data :param dict peaks: (column index, np.array of peak values) as key-value pairs :param float smoothing_fraction: fraction of the range (of the column) to use for smoothing :return: smoothed data :rtype: np.ndarray """ data_smoothed = data.copy() for d, vs in peaks.items(): for v in vs: i = np.where(data[:, d] == v)[0] s = (data[:, d].max() - data[:, d].min()) * smoothing_fraction data_smoothed[i, d] = np.random.normal(v, s, size=len(i)) return data_smoothed def remove_nans(data_smoothed): """ Removes np.nan from data_smoothed. If a row contains at least one np.nan then the whole row is removed. :param np.ndarray data_smoothed: the data :return: the data without np.nan's :rtype: np.ndarray """ data_no_nans = data_smoothed.copy() data_no_nans = data_no_nans[~np.isnan(data_no_nans).any(axis=1)] return data_no_nans def make_extremes(x, fraction=0.15): """ Calculates extremes: extreme_max = max + fraction * range, extreme_min = min - fraction * range :param np.ndarray x: the data :param float fraction: fraction of range to add to min and max :return: extreme_min and extreme_max :rtype: tuple """ xmin = [] xmax = [] xdiff = [] for i in range(x.shape[1]): y = x[..., i] y = y[~np.isnan(y)] xmin.append(np.min(y)) xmax.append(np.max(y)) xdiff.append((xmax[i] - xmin[i])) for i in range(x.shape[1]): xmin[i] -= fraction * xdiff[i] xmax[i] += fraction * xdiff[i] return xmin, xmax def append_extremes(data_continuous, fraction=0.15): """ Appends extremes to the data. :param np.ndarray data_continuous: the data :param float fraction: fraction to use for calculation of the extremes :return: the extremes appended to data_continuous :rtype: tuple """ xmin, xmax = make_extremes(data_continuous, fraction=fraction) # extremes are added because we want to extend the range on which the data is transformed to a normal distribution. data_extremes = np.append(data_continuous, [xmin, xmax], axis=0).copy() # save inidices, we want to remove the min and max after quantile transformation imin = np.argmin(data_extremes, axis=0) imax = np.argmax(data_extremes, axis=0) return data_extremes, imin, imax def transform_to_normal(data_extremes, imin, imax): """ Transforming a random distribution to a normal distribution can be done in the following way: 1. Compute the values of the CDF. These values are the percentiles. These are (always) uniformly distributed. 2. Use the percent point function (inverse of cdf) of a normal distribution to transform the uniform\ distribution to a normal distribution. :param np.ndarray data_extremes: the continuous data columns with smoothed peaks and extremes appended :param np.array imin: indices of the minimum per continuous column :param np.array imax: indices of the maximum per continuous column :return: the continuous columns normalized :rtype: tuple (np.ndarray, list of trained sklearn.preprocessing.data.QuantileTransformer) """ qts = [] data_normalized_ = [] for d in range(0, data_extremes.shape[1]): qt = preprocessing.QuantileTransformer(n_quantiles=len(data_extremes), subsample=len(data_extremes), output_distribution='normal', copy=True) a = qt.fit_transform(data_extremes[:, d].reshape(-1, 1)) a = np.delete(a, np.array([imin[d], imax[d]])) data_normalized_.append(a) qts.append(qt) if data_normalized_: data_normalized = np.stack(data_normalized_, axis=-1) else: data_normalized = np.empty((0,0)) return data_normalized, qts def insert_back_nans(data_normalized, data, unordered_categorical_i, ordered_categorical_i, continuous_i): """ Insert np.nan's back into the transformed continuous variables (data_normalized) before resampling and
<gh_stars>10-100 """ Transform the parse tree produced by parser.py to a higher-level tree using recursive descent. """ from magpieparsers.parser_common import * from magpieparsers.types.evaluator import evaluate from magpieparsers.types.infogripper import * from magpieparsers.cplusplus.normalise import normalise_type_list from astexpr import get_expression import operator class Error(Exception): pass CLASS_SPECIFIERS = ('union', 'struct', 'class', 'enum_specifier') # AST helper functions def any_child(node, name_list): """ Return the first child of "node" with a name matching any in "name_list" """ for child in node.children: if child.name in name_list: return child def any_in_list(list1, list2): """ Return the item if any items in list1 are present in list2""" for item in list1: if item in list2: return item def all_children(node, names): for child_name in node.get_child_names(): if child_name not in names: return False return True # AST generator class ASTGen(object): def __init__(self, types_only = True, experimental = False): """ If types_only is set to True, only typedefs are converted. Conversion of entities other than typedefs is experimental and is likely to fail with an exception. If experimental is set to True, a slightly different (new-format) data structure will be produced. """ self.types_only = types_only self.experimental = experimental def convert(self, ast, pt, filename, types_only = True): """ Convert 'pt' to 'ast'. """ return self.translation_unit(ast, pt, filename) def translation_unit(self, baseast, pt, filename): #print 'PT' #pt.print_tree() #print 'PT done' #ast = Node(baseast, "translation_unit") #ast.leaf = filename ast = baseast # Hmm - nfd #ref_node = ast for node in pt.children: if node.name == 'declaration': #print '*******************************\n\ # processing tree: ' #node.print_tree() #decl_types = self.declaration(ref_node, node) decl_types = self.declaration(ast, node) ast.add_children(decl_types) #ref_node = decl_types[-1] #print '*******************************\n\ # new starting-tree: ' #ref_node.print_tree() #print '*******************************\n\ # processing final-tree: ' #ast.print_tree() elif node.name == 'function_definition': if not self.types_only: self.function_definition(ast, node) #ast.add_child(Node(ast, 'unfinished_function_definition', source = node)) elif node.name == 'enum': if not self.types_only: self.enum(ast, node) else: ast.add_child(UnknownNode(ast, node, 'translation_unit', source = node)) return ast def _wrap_node(self, name, parentast, ast): result = Node(parentast, name, source = parentast) result.add_child(ast) return result def enum(self, parent, pt): """ We look for: enum enum_specifier enumerator_list enumerator ... enumerator ... init_declarator_list (optional) """ # FIXME: Stub ast = Node(parent, 'unfinished') return ast def function_definition(self, parent, pt): """ Yay a function! We expect it to look like this: function_definition declaration_specifiers - 'inline' etc plus return type function_declarator - function name and parameters declaration_list - function parameters (K&R only) compound_statement - function body """ def walk_to_fdd(fd_pt): """ Walks a chain of function declarators, collecting indirection, until we get to function_direct_declarator. """ indirection = '' while fd_pt: if fd_pt.leaf == '*': indirection += '*' fdd_pt = fd_pt.get_child('function_direct_declarator') fd_pt = fd_pt.get_child('function_declarator') return indirection, fdd_pt # Stick the node in the AST. node = Node(parent, 'function', source = pt) parent.add_child(node) # Parts of the parse tree # ... function_direct_declarator holds param list & name retval_indirection, function_direct_declarator = \ walk_to_fdd(pt.get_child('function_declarator')) declaration_specifiers = pt.get_child('declaration_specifiers') compound_statement = pt.get_child('compound_statement') # Get function name... node.leaf = function_direct_declarator.leaf # Function return type... return_type_ast = Node(node, 'return_type', source = declaration_specifiers) return_type_ast.add_attribute('indirection', retval_indirection) return_type_ast.add_child(self._wrap_node('target', node, self.get_type(node, declaration_specifiers))) node.add_child(return_type_ast) # Function parameters... parameter_list = function_direct_declarator.get_child('parameter_list') if parameter_list: parameter_declaration_list = parameter_list.get_child('parameter_declaration_list') for parameter_declaration in parameter_declaration_list.get_children_named('parameter_declaration'): parameter_ast = self._function_parameter(node, parameter_declaration) node.add_child(parameter_ast) # We ignore K&R-style declaration list # Function body. body_ast = Node(node, 'body', source = compound_statement) node.add_child(body_ast) body_ast.add_children(self._compound_statement(body_ast, compound_statement)) def get_type(self, parentast, pt): """ Given a PT containing a type reference as a child, return the AST node describing this type. The AST node may already exist, or it may be created here. """ if pt.has_child('simple_type_specifier'): #type_name = ' '.join(pt.get_child('simple_type_specifier').leaf) #return TypeNode(parentast, None, type_name) simple_type_specifier = pt.get_children_named('simple_type_specifier')[0] type_list = [child_pt.name for child_pt in simple_type_specifier.children] typenode = self.get_type_from_list(parentast, type_list) elif any_child(pt, CLASS_SPECIFIERS): child_pt = any_child(pt, CLASS_SPECIFIERS) # We're either declaring an instance of an existing class, or # creating a new one. typenode = self.find_or_create_type(parentast, child_pt) elif pt.my_children_are('enum_specifier'): # FIXME: We still have bad handling of enums. typenode = getTypenode('int', parentast) else: pt.print_tree() parentast.print_tree() raise Exception() if typenode is None: print "Couldn't find type node in here:" pt.print_tree() print "My parent is:" parentast.print_tree() assert typenode is not None return typenode def get_type_from_list(self, parentast, type_list): type_list = normalise_type_list(type_list) type_name = ' '.join(type_list) return getTypenode(type_name, parentast) def find_or_create_type(self, parentast, pt): # Called when we're not sure if the current type must be created # or not. # FIXME: We could/should extend this to other types. assert pt.type in CLASS_SPECIFIERS # The class may exist ast = None if pt.leaf: ast = getTypenode(pt.leaf, parentast) # There is one case where getTypenode can succeed and yet the type # can be defined below: when a previous forward declaration is # being defined. if ast and not ast.get_child('members') and pt.get_child('members'): # We're defining it here - so forget about the previous reference # and use this one. ast = None # By this point the name isn't declared, or we need to define a # forward reference. if not ast: # The class doesn't exist - create it ast = self.create_type(parentast, pt) # Done: if we're None at this point something is broken. assert ast is not None return ast def create_type(self, parentast, pt): """ Create a new type from a list of member_declarations """ # We know how to construct the following types: # structs # unions # enums # forward declarations of structs if pt.name == 'struct': handler = self.create_type_struct elif pt.name == 'union': handler = self.create_type_union elif pt.name == 'enum_specifier': handler = self.create_type_enum else: raise Error("Unknown parsed type '%s'" % (pt.type)) return handler(parentast, pt) def create_type_struct(self, parentast, pt): members_pt = pt.get_child('members') if pt.leaf and members_pt and getTypenode(pt.leaf, parentast) is not None: # This is a forward declaration! # Modify the forward declaration in-place. ast = getTypenode(pt.leaf, parentast) else: ast = TypeNode(parentast, None, leaf = pt.leaf, source = members_pt) ast.add_attribute('meta_type', 'struct') # We may not have a "members" tree if this was a forward decl if members_pt: ast.add_child(Node(ast, 'members', source = members_pt)) decls_list = self.make_declarations_list(ast, members_pt) ast.get_child('members').add_children(decls_list) return ast def create_type_union(self, parentast, pt): members_pt = pt.get_child('members') ast = TypeNode(parentast, None, source = members_pt) ast.add_attribute('meta_type', 'union') if members_pt: decls_list = self.make_declarations_list(ast, members_pt) ast.add_child(Node(ast, 'members', children = decls_list, leaf = pt.leaf, source = members_pt)) ast.add_attribute('switch_type', None) return ast def create_type_enum(self, parentast, pt): """ FIXME: The code below is truly broken. In C++ enums can look like this: enum Blah{...} blah; enum {...} blah; enum {...}; Where the {...} is a list of IDs with (optional) assignment to integers. A helpful site: http://cpptips.hyperformix.com/Enums.html """ members_pt = pt.get_child('enumerator_list') ast = TypeNode(parentast, None, source = members_pt) ast.add_attribute('meta_type', 'enum') decls_list = self.make_declarations_list(ast, members_pt) #print "There is only one Power in this world that knows all about the Rings and their effects.\n -> Use this Power to solve the BUG!" ast.add_children(decls_list) return ast def make_declarations_list(self, ast, members_pt): decls = [] for child in members_pt.children: if child.name in ('declaration', 'member_declaration'): decls.extend(self.declaration(ast, child)) return decls def _is_declaration(self, pt): return pt.name in ('declaration', 'using_declaration', 'linkage_specification') def declaration(self, parentast, pt): """ Process a declaration. Complicated because the declaration could be: * A simple variable declaration * A definition * A forward declaration It also supports member declarators (inside enums, typed class members, typedefs) in addition to init declarators (all other types of declaration) """ # The first part of the declaration specifies the type. # (the "int" part of "int x") decl_specifier = pt.get_child('declaration_specifiers') # This function is used for both member declarations (lists of declarators # inside structs) and init declarators (values on the RHS of a declaration) # so we test for both. This list contains intialisers and names. # (the "x" part of "int x") init_decl_list = pt.get_child('init_declarator_list') if not init_decl_list: init_decl_list = pt.get_child('member_declarator_list') # Bail early if this doesn't look at all right. if not decl_specifier: return [UnknownNode(None, pt, name = 'declaration_type')] if init_decl_list: # The type referenced may already exist, or it may be declared here. declarators = self._init_declarator_list(parentast, init_decl_list) else: # If there are no init declarators, that means that either: # 1. This is a new type, or # 2. This is a forward declaration. declarators = [] # Now we're ready to create declarations. We create as many declarations # as there are names members in the initialiser list. newNodes = [] decl_type = [ds.name for ds in decl_specifier.children] decl_type_node = self.get_type(parentast, decl_specifier) def _any_combination(target, acceptable): """ Returns True if target has any combination of "acceptable" in it (including zero elements - ie if target is []) """ for item in target: if item not in acceptable: return False return True if 'typedef' in decl_type: node_template = TypeNode(None, source = init_decl_list) node_template.add_attribute('meta_type', 'alias') elif 'const' in decl_type: node_template = Node(None, 'type_instance', source = init_decl_list) node_template.add_attribute('meta_type', 'const') elif init_decl_list and _any_combination(decl_type, ['static', 'inline']): node_template = Node(None, 'type_instance', source = init_decl_list) elif any_in_list(CLASS_SPECIFIERS, decl_type): node_template = Node(None, 'type_instance', source = init_decl_list) elif init_decl_list is not None: node_template = Node(None, 'type_instance', source = init_decl_list) if init_decl_list is None: # Forward declaration. newNodes.append(decl_type_node) else: # Build declarations from the node template. for decl in declarators: if decl.name == 'attribute': # FIXME: Attributes are ignored right now continue newNode = node_template.copy() newNode.leaf = decl.leaf newNode.add_attribute('indirection', decl.get_single_attribute('indirection', '')) newNode.add_child(self._wrap_node('target', newNode, decl_type_node)) newNode.add_child(decl) if 'static' in decl_type: newNode.attributes['c_static'] = True if 'inline' in decl_type: newNode.attributes['c_inline'] = True newNodes.append(newNode) return newNodes def _init_declarator_list(self, parentast, pt): return self._some_declarator_list(parentast, pt) def _some_declarator_list(self, parentast, pt): """ Init declarators are separated in source using commas. """ assert pt.name in ("init_declarator_list", "member_declarator_list") init_declarators = [] for child in pt.children: init_declarators.append(self.init_declarator(parentast, child)) return init_declarators def init_declarator(self, parentast, pt): """ Return an init_declarator node. We used to return: name expression result indirection This now becomes a Node with name "name", child "expression", attribute "indirection", a result, and possibly other children """ decl = Node(None, 'declarator') if pt.name == 'member_declarator_bitfield': decl.leaf = pt.leaf decl.add_child(pt.get_child('expression')) try: decl.result = evaluate(pt.get_child('expression'), parentast) except Exception: decl.result = pt.get_child('expression').result elif pt.name == 'attribute': attribute_pt = pt.children[0] # FIXME: Attribute support decl.set_name('attribute') decl.set_leaf(attribute_pt.name) elif pt.name in ("init_declarator", "member_declarator"): indirection = '' # Now we want this: # declarator * # direct_declarator ID # # ... or any of these : # direct_declarator ID <- function declaration # parameter_list # type_qualifier # exception_specification # direct_declarator ID <- class instantation / array declaration # expression # direct_declarator ID
<reponame>Bertware/microdot-phat # -*- coding: utf-8 -*- tinynumbers = [ [0b11111,0b11111], [0b11111], [0b10111,0b11101], [0b10101,0b11111], [0b11110,0b00011], [0b11101,0b10111], [0b11111,0b00111], [0b10000,0b11111], [0b10101,0b10101], [0b11100,0b11111] ] # add japanese font = { 32: [0x00, 0x00, 0x00, 0x00, 0x00], # (space) 33: [0x00, 0x00, 0x5f, 0x00, 0x00], # ! 34: [0x00, 0x07, 0x00, 0x07, 0x00], # " 35: [0x14, 0x7f, 0x14, 0x7f, 0x14], # # 36: [0x24, 0x2a, 0x7f, 0x2a, 0x12], # $ 37: [0x23, 0x13, 0x08, 0x64, 0x62], # % 38: [0x36, 0x49, 0x55, 0x22, 0x50], # & 39: [0x00, 0x05, 0x03, 0x00, 0x00], # ' 40: [0x00, 0x1c, 0x22, 0x41, 0x00], # ( 41: [0x00, 0x41, 0x22, 0x1c, 0x00], # ) 42: [0x08, 0x2a, 0x1c, 0x2a, 0x08], # * 43: [0x08, 0x08, 0x3e, 0x08, 0x08], # + 44: [0x00, 0x50, 0x30, 0x00, 0x00], # , 45: [0x08, 0x08, 0x08, 0x08, 0x08], # - 46: [0x00, 0x60, 0x60, 0x00, 0x00], # . 47: [0x20, 0x10, 0x08, 0x04, 0x02], # / 48: [0x3e, 0x51, 0x49, 0x45, 0x3e], # 0 49: [0x00, 0x42, 0x7f, 0x40, 0x00], # 1 50: [0x42, 0x61, 0x51, 0x49, 0x46], # 2 51: [0x21, 0x41, 0x45, 0x4b, 0x31], # 3 52: [0x18, 0x14, 0x12, 0x7f, 0x10], # 4 53: [0x27, 0x45, 0x45, 0x45, 0x39], # 5 54: [0x3c, 0x4a, 0x49, 0x49, 0x30], # 6 55: [0x01, 0x71, 0x09, 0x05, 0x03], # 7 56: [0x36, 0x49, 0x49, 0x49, 0x36], # 8 57: [0x06, 0x49, 0x49, 0x29, 0x1e], # 9 58: [0x00, 0x36, 0x36, 0x00, 0x00], # : 59: [0x00, 0x56, 0x36, 0x00, 0x00], # ; 60: [0x00, 0x08, 0x14, 0x22, 0x41], # < 61: [0x14, 0x14, 0x14, 0x14, 0x14], # = 62: [0x41, 0x22, 0x14, 0x08, 0x00], # > 63: [0x02, 0x01, 0x51, 0x09, 0x06], # ? 64: [0x32, 0x49, 0x79, 0x41, 0x3e], # @ 65: [0x7e, 0x11, 0x11, 0x11, 0x7e], # A 66: [0x7f, 0x49, 0x49, 0x49, 0x36], # B 67: [0x3e, 0x41, 0x41, 0x41, 0x22], # C 68: [0x7f, 0x41, 0x41, 0x22, 0x1c], # D 69: [0x7f, 0x49, 0x49, 0x49, 0x41], # E 70: [0x7f, 0x09, 0x09, 0x01, 0x01], # F 71: [0x3e, 0x41, 0x41, 0x51, 0x32], # G 72: [0x7f, 0x08, 0x08, 0x08, 0x7f], # H 73: [0x00, 0x41, 0x7f, 0x41, 0x00], # I 74: [0x20, 0x40, 0x41, 0x3f, 0x01], # J 75: [0x7f, 0x08, 0x14, 0x22, 0x41], # K 76: [0x7f, 0x40, 0x40, 0x40, 0x40], # L 77: [0x7f, 0x02, 0x04, 0x02, 0x7f], # M 78: [0x7f, 0x04, 0x08, 0x10, 0x7f], # N 79: [0x3e, 0x41, 0x41, 0x41, 0x3e], # O 80: [0x7f, 0x09, 0x09, 0x09, 0x06], # P 81: [0x3e, 0x41, 0x51, 0x21, 0x5e], # Q 82: [0x7f, 0x09, 0x19, 0x29, 0x46], # R 83: [0x46, 0x49, 0x49, 0x49, 0x31], # S 84: [0x01, 0x01, 0x7f, 0x01, 0x01], # T 85: [0x3f, 0x40, 0x40, 0x40, 0x3f], # U 86: [0x1f, 0x20, 0x40, 0x20, 0x1f], # V 87: [0x7f, 0x20, 0x18, 0x20, 0x7f], # W 88: [0x63, 0x14, 0x08, 0x14, 0x63], # X 89: [0x03, 0x04, 0x78, 0x04, 0x03], # Y 90: [0x61, 0x51, 0x49, 0x45, 0x43], # Z 91: [0x00, 0x00, 0x7f, 0x41, 0x41], # [ 92: [0x02, 0x04, 0x08, 0x10, 0x20], # \ 93: [0x41, 0x41, 0x7f, 0x00, 0x00], # ] 94: [0x04, 0x02, 0x01, 0x02, 0x04], # ^ 95: [0x40, 0x40, 0x40, 0x40, 0x40], # _ 96: [0x00, 0x01, 0x02, 0x04, 0x00], # ` 97: [0x20, 0x54, 0x54, 0x54, 0x78], # a 98: [0x7f, 0x48, 0x44, 0x44, 0x38], # b 99: [0x38, 0x44, 0x44, 0x44, 0x20], # c 100: [0x38, 0x44, 0x44, 0x48, 0x7f], # d 101: [0x38, 0x54, 0x54, 0x54, 0x18], # e 102: [0x08, 0x7e, 0x09, 0x01, 0x02], # f 103: [0x08, 0x14, 0x54, 0x54, 0x3c], # g 104: [0x7f, 0x08, 0x04, 0x04, 0x78], # h 105: [0x00, 0x44, 0x7d, 0x40, 0x00], # i 106: [0x20, 0x40, 0x44, 0x3d, 0x00], # j 107: [0x00, 0x7f, 0x10, 0x28, 0x44], # k 108: [0x00, 0x41, 0x7f, 0x40, 0x00], # l 109: [0x7c, 0x04, 0x18, 0x04, 0x78], # m 110: [0x7c, 0x08, 0x04, 0x04, 0x78], # n 111: [0x38, 0x44, 0x44, 0x44, 0x38], # o 112: [0x7c, 0x14, 0x14, 0x14, 0x08], # p 113: [0x08, 0x14, 0x14, 0x18, 0x7c], # q 114: [0x7c, 0x08, 0x04, 0x04, 0x08], # r 115: [0x48, 0x54, 0x54, 0x54, 0x20], # s 116: [0x04, 0x3f, 0x44, 0x40, 0x20], # t 117: [0x3c, 0x40, 0x40, 0x20, 0x7c], # u 118: [0x1c, 0x20, 0x40, 0x20, 0x1c], # v 119: [0x3c, 0x40, 0x30, 0x40, 0x3c], # w 120: [0x44, 0x28, 0x10, 0x28, 0x44], # x 121: [0x0c, 0x50, 0x50, 0x50, 0x3c], # y 122: [0x44, 0x64, 0x54, 0x4c, 0x44], # z 123: [0x00, 0x08, 0x36, 0x41, 0x00], # { 124: [0x00, 0x00, 0x7f, 0x00, 0x00], # | 125: [0x00, 0x41, 0x36, 0x08, 0x00], # } 126: [0x08, 0x08, 0x2a, 0x1c, 0x08], # ~ 8221: [0x00, 0x07, 0x00, 0x07, 0x00], # ” 8592: [0x08, 0x1C, 0x2A, 0x08, 0x08], # ← 8593: [0x08, 0x04, 0x7E, 0x04, 0x08], # ↑ 8594: [0x08, 0x08, 0x2A, 0x1C, 0x08], # → 8595: [0x08, 0x10, 0x3F, 0x10, 0x08], # ↓ 9472: [0x08, 0x08, 0x08, 0x08, 0x08], # ─ 9474: [0x00, 0x00, 0x7F, 0x00, 0x00], # │ 9484: [0x00, 0x00, 0x78, 0x08, 0x08], # ┌ 9488: [0x08, 0x08, 0x78, 0x00, 0x00], # ┐ 9492: [0x00, 0x00, 0x0F, 0x08, 0x08], # └ 9496: [0x08, 0x08, 0x0F, 0x00, 0x00], # ┘ 9500: [0x00, 0x00, 0x7F, 0x08, 0x08], # ├ 9508: [0x08, 0x08, 0x7F, 0x00, 0x00], # ┤ 9516: [0x08, 0x08, 0x78, 0x08, 0x08], # ┬ 9524: [0x08, 0x08, 0x0F, 0x08, 0x08], # ┴ 9532: [0x08, 0x08, 0x7F, 0x08, 0x08], # ┼ 9632: [0x7F, 0x7F, 0x7F, 0x7F, 0x7F], # ■ 9633: [0x7F, 0x41, 0x41, 0x41, 0x7F], # □ 9650: [0x10, 0x1C, 0x1E, 0x1C, 0x10], # ▲ 9651: [0x10, 0x1C, 0x12, 0x1C, 0x10], # △ 9660: [0x04, 0x1C, 0x3C, 0x1C, 0x04], # ▼ 9661: [0x04, 0x1C, 0x24, 0x1C, 0x04], # ▽ 9670: [0x08, 0x1C, 0x3E, 0x1C, 0x08], # ◆ 9675: [0x1C, 0x22, 0x22, 0x22, 0x1C], # ○ 9679: [0x1C, 0x3E, 0x3E, 0x3E, 0x1C], # ● 9733: [0x64, 0x3E, 0x1F, 0x3E, 0x64], # ★ 12288: [0x00, 0x00, 0x00, 0x00, 0x00], #   12289: [0x10, 0x20, 0x40, 0x00, 0x00], # 、 12290: [0x70, 0x50, 0x70, 0x00, 0x00], # 。 12300: [0x00, 0x0F, 0x01, 0x01, 0x01], # 「 12301: [0x40, 0x40, 0x40, 0x78, 0x00], # 」 12316: [0x02, 0x01, 0x02, 0x04, 0x02], # 〜 12353: [0x28, 0x58, 0x3C, 0x68, 0x00], # ぁ 12354: [0x32, 0x7A, 0x2F, 0x1A, 0x72], # あ 12355: [0x38, 0x40, 0x08, 0x30, 0x00], # ぃ 12356: [0x3E, 0x40, 0x20, 0x00, 0x1C], # い 12357: [0x10, 0x0C, 0x4C, 0x30, 0x00], # ぅ 12358: [0x04, 0x05, 0x45, 0x25, 0x18], # う 12359: [0x48, 0x2C, 0x5C, 0x48, 0x00], # ぇ 12360: [0x44, 0x24, 0x35, 0x4D, 0x44], # え 12361: [0x68, 0x7C, 0x10, 0x64, 0x00], # ぉ 12362: [0x32, 0x7F, 0x0A, 0x48, 0x32], # お 12363: [0x34, 0x0F, 0x44, 0x38, 0x06], # か 12365: [0x22, 0x4A, 0x4F, 0x5A, 0x08], # き 12367: [0x00, 0x18, 0x24, 0x43, 0x00], # く 12369: [0x3E, 0x00, 0x44, 0x3F, 0x04], # け 12371: [0x22, 0x52, 0x42, 0x42, 0x44], # こ 12373: [0x24, 0x44, 0x47, 0x5C, 0x12], # さ 12375: [0x3F, 0x40, 0x40, 0x20, 0x10], # し 12377: [0x02, 0x0A, 0x56, 0x3F, 0x02], # す 12379: [0x04, 0x3E, 0x44, 0x5F, 0x44], # せ 12381: [0x08, 0x2D, 0x5B, 0x45, 0x44], # そ 12383: [0x72, 0x0F, 0x22, 0x4A, 0x48], # た 12385: [0x0A, 0x0E, 0x4B, 0x4A, 0x32], # ち 12387: [0x08, 0x48, 0x48, 0x30, 0x00], # っ 12388: [0x02, 0x02, 0x42, 0x22, 0x1C], # つ 12390: [0x02, 0x32, 0x4A, 0x46, 0x42], # て 12392: [0x30, 0x4B, 0x44, 0x44, 0x42], # と 12394: [0x0A, 0x27, 0x52, 0x38, 0x26], # な 12395: [0x3E, 0x00, 0x22, 0x42, 0x42], # に 12396: [0x38, 0x6F, 0x1C, 0x67, 0x78], # ぬ 12397: [0x12, 0x7F, 0x0A, 0x64, 0x78], # ね 12398: [0x3C,
<reponame>BatmanAoD/oil<filename>core/state.py<gh_stars>0 #!/usr/bin/env python # Copyright 2016 <NAME>. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 from __future__ import print_function """ state.py -- Interpreter state """ import cStringIO import os from core import args from core import legacy from osh.meta import runtime from core import util from osh.meta import Id from osh.meta import ast part_value_e = runtime.part_value_e value_e = runtime.value_e lvalue_e = runtime.lvalue_e scope_e = runtime.scope_e var_flags_e = runtime.var_flags_e log = util.log e_die = util.e_die class _ErrExit(object): """Manages the errexit setting. - The user can change it with builtin 'set' at any point in the code. - These constructs implicitly disable 'errexit': - if / while / until conditions - ! (part of pipeline) - && || An _ErrExit object prevents these two mechanisms from clobbering each other. """ def __init__(self): self.errexit = False # the setting self.stack = [] def Push(self): if self.errexit: self.errexit = False self.stack.append(True) # value to restore else: self.stack.append(False) def Pop(self): self.errexit = self.stack.pop() def Set(self, b): """User code calls this.""" if True in self.stack: # are we in a temporary state? # TODO: Add error context. e_die("Can't set 'errexit' in a context where it's disabled " "(if, !, && ||, while/until conditions)") self.errexit = b def Disable(self): """For bash compatibility in command sub.""" self.errexit = False # Used by builtin SET_OPTIONS = [ ('e', 'errexit'), ('n', 'noexec'), ('u', 'nounset'), ('x', 'xtrace'), ('f', 'noglob'), ('C', 'noclobber'), ('h', 'hashall'), (None, 'pipefail'), (None, 'debug-completion'), (None, 'strict-control-flow'), (None, 'strict-errexit'), (None, 'strict-array'), (None, 'vi'), (None, 'emacs'), # TODO: Add strict-arg-parse? For example, 'trap 1 2 3' shouldn't be # valid, because it has an extra argument. Builtins are inconsistent about # checking this. ] _SET_OPTION_NAMES = set(name for _, name in SET_OPTIONS) class ExecOpts(object): def __init__(self, mem): """ Args: mem: state.Mem, for SHELLOPTS """ self.mem = mem # Depends on the shell invocation (sh -i, etc.) This is not technically an # 'set' option, but it appears in $-. self.interactive = False # set -o / set +o self.errexit = _ErrExit() # -e self.nounset = False # -u self.pipefail = False self.xtrace = False # NOTE: uses PS4 self.noglob = False # -f self.noexec = False # -n self.noclobber = False # -C # We don't do anything with this yet. But Aboriginal calls 'set +h'. self.hashall = True # -h is true by default. # OSH-specific options. self.debug_completion = False self.strict_control_flow = False # strict_errexit makes 'local foo=$(false)' and echo $(false) fail. # By default, we have mimic bash's undesirable behavior of ignoring # these failures, since ash copied it, and Alpine's abuild relies on it. # # bash 4.4 also has shopt -s inherit_errexit, which says that command subs # inherit the value of errexit. # I don't believe it is strict enough -- # local still needs to fail. self.strict_errexit = False # Several problems: # - foo="$@" not allowed because it decays. Should be foo=( "$@" ). # - ${a} not ${a[0]} # - possibly disallow $* "$*" altogether. # - do not allow [[ "$@" == "${a[@]}" ]] self.strict_array = False # This comes after all the 'set' options. shellopts = self.mem.GetVar('SHELLOPTS') assert shellopts.tag == value_e.Str, shellopts self._InitOptionsFromEnv(shellopts.s) # shopt -s / -u. NOTE: bash uses $BASHOPTS rather than $SHELLOPTS for # these. self.nullglob = False self.failglob = False # # OSH-specific options that are not yet implemented. # self.strict_arith = False # e.g. $(( x )) where x doesn't look like integer self.strict_word = False # word splitting, etc. self.strict_scope = False # disable dynamic scope # TODO: strict_bool. Some of this is covered by arithmetic, e.g. -eq. # Don't need flags -e and -n. -e is $'\n', and -n is write. self.sane_echo = False # Used for 'set -o vi/emacs' # Set by the Executor, if available self.readline = None def _InitOptionsFromEnv(self, shellopts): # e.g. errexit:nounset:pipefail lookup = set(shellopts.split(':')) for _, name in SET_OPTIONS: if name in lookup: self._SetOption(name, True) def ErrExit(self): return self.errexit.errexit def GetDollarHyphen(self): chars = [] if self.interactive: chars.append('i') if self.ErrExit(): chars.append('e') if self.nounset: chars.append('u') # NO letter for pipefail? if self.xtrace: chars.append('x') if self.noexec: chars.append('n') # bash has: # - c for sh -c, i for sh -i (mksh also has this) # - h for hashing (mksh also has this) # - B for brace expansion return ''.join(chars) def _SetOption(self, opt_name, b): """Private version for synchronizing from SHELLOPTS.""" assert '_' not in opt_name if opt_name not in _SET_OPTION_NAMES: raise args.UsageError('Invalid option %r' % opt_name) if opt_name == 'errexit': self.errexit.Set(b) elif opt_name in ('vi', 'emacs'): if self.readline: self.readline.parse_and_bind("set editing-mode " + opt_name); else: # TODO error message copied from 'cmd_exec.py'; refactor? util.error('Oil was not built with readline/completion.') else: # strict-control-flow -> strict_control_flow opt_name = opt_name.replace('-', '_') setattr(self, opt_name, b) def SetOption(self, opt_name, b): """ For set -o, set +o, or shopt -s/-u -o. """ self._SetOption(opt_name, b) val = self.mem.GetVar('SHELLOPTS') assert val.tag == value_e.Str shellopts = val.s # Now check if SHELLOPTS needs to be updated. It may be exported. # # NOTE: It might be better to skip rewriting SEHLLOPTS in the common case # where it is not used. We could do it lazily upon GET. # Also, it would be slightly more efficient to update SHELLOPTS if # settings were batched, Examples: # - set -eu # - shopt -s foo bar if b: if opt_name not in shellopts: new_val = runtime.Str('%s:%s' % (shellopts, opt_name)) self.mem.InternalSetGlobal('SHELLOPTS', new_val) else: if opt_name in shellopts: names = [n for n in shellopts.split(':') if n != opt_name] new_val = runtime.Str(':'.join(names)) self.mem.InternalSetGlobal('SHELLOPTS', new_val) SHOPT_OPTIONS = ('nullglob', 'failglob') def SetShoptOption(self, opt_name, b): """ For shopt -s/-u. """ if opt_name not in self.SHOPT_OPTIONS: raise args.UsageError('Invalid option %r' % opt_name) setattr(self, opt_name, b) def ShowOptions(self, opt_names): """ For 'set -o' and 'shopt -p -o' """ # TODO: Maybe sort them differently? opt_names = opt_names or _SET_OPTION_NAMES for opt_name in opt_names: if opt_name == 'errexit': b = self.errexit.errexit else: attr = opt_name.replace('-', '_') b = getattr(self, attr) print('set %so %s' % ('-' if b else '+', opt_name)) def ShowShoptOptions(self, opt_names): """ For 'shopt -p' """ opt_names = opt_names or self.SHOPT_OPTIONS # show all for opt_name in opt_names: b = getattr(self, opt_name) print('shopt -%s %s' % ('s' if b else 'u', opt_name)) class _ArgFrame(object): """Stack frame for arguments array.""" def __init__(self, argv): self.argv = argv self.num_shifted = 0 def __repr__(self): return '<_ArgFrame %s %d at %x>' % (self.argv, self.num_shifted, id(self)) def GetArgNum(self, arg_num): index = self.num_shifted + arg_num - 1 if index >= len(self.argv): return runtime.Undef() return runtime.Str(str(self.argv[index])) def GetArgv(self): return self.argv[self.num_shifted : ] def GetNumArgs(self): return len(self.argv) - self.num_shifted def SetArgv(self, argv): self.argv = argv self.num_shifted = 0 class _StackFrame(object): def __init__(self, readonly=False): self.vars = {} # string -> runtime.cell self.readonly = readonly def __repr__(self): f = cStringIO.StringIO() f.write('<_StackFrame readonly:%s' % self.readonly) for name, cell in self.vars.iteritems(): f.write(' %s = ' % name) f.write(' %s' % cell) f.write('\n') f.write('>') return f.getvalue() class DirStack(object): """For pushd/popd/dirs.""" def __init__(self): self.stack = [] self.Reset() def Reset(self): self.stack[:] = [os.getcwd()] def Push(self, entry): self.stack.append(entry) def Pop(self): if len(self.stack) <= 1: return None return self.stack.pop() def Iter(self): """Iterate in reverse order.""" return reversed(self.stack) def _FormatStack(var_stack): """Temporary debugging. TODO: Turn this into a real JSON dump or something. """ f = cStringIO.StringIO() for i, entry in enumerate(var_stack): f.write('[%d] %s' % (i, entry)) f.write('\n') return f.getvalue() class Mem(object): """For storing variables. Mem is better than "Env" -- Env implies OS stuff. Callers: User code: assigning and evaluating variables, in command context or arithmetic context. Completion engine: for COMP_WORDS, etc. Builtins call it implicitly: read, cd for $PWD, $OLDPWD, etc. Modules: cmd_exec, word_eval, expr_eval, completion """ def __init__(self, argv0, argv, environ, arena): top = _StackFrame() self.var_stack = [top] self.argv0 = argv0 self.argv_stack = [_ArgFrame(argv)] # NOTE: could use deque and appendleft/popleft, but: # 1. ASDL type checking of StrArray doesn't
<reponame>yonghoonlee/dymos import numpy as np import openmdao.api as om from ...transcriptions.grid_data import GridData from ...utils.lgl import lgl class VandermondeControlInterpComp(om.ExplicitComponent): """ A component which interpolates control values in 1D using Vandermonde interpolation. Takes training values for control variables at given _input_ nodes, broadcaasts them to _discretization_ nodes, and then interpolates the discretization values to provide a control variable at a given segment tau or phase tau. For dynamic controls, the current segment is given as a discrete input and the interpolation is a smooth polynomial along the given segment. OpenMDAO assumes sizes of variables at setup time, and we don't want to need to change the size of the control input nodes when we evaluate different segments. Instead, this component will take in the control values of all segments and internally use the appropriate one. Parameters ---------- grid_data : GridData A GridData instance that details information on how the control input and discretization nodes are layed out. control_options : dict of {str: ControlOptionsDictionary} A mapping that maps the name of each control to a ControlOptionsDictionary of its options. polynomial_control_options : dict of {str: PolynomialControlOptionsDictionary} A mapping that maps the name of each polynomial control to an OptionsDictionary of its options. time_units : str The time units pertaining to the control rates. standalone_mode : bool If True, this component runs its configuration steps during setup. This is useful for unittests in which the component does not exist in a larger group. **kwargs Keyword arguments passed to ExplicitComponent. """ def __init__(self, grid_data, control_options=None, polynomial_control_options=None, time_units=None, standalone_mode=False, **kwargs): self._grid_data = grid_data self._control_options = {} if control_options is None else control_options self._polynomial_control_options = {} if polynomial_control_options is None else polynomial_control_options self._time_units = time_units self._standalone_mode = standalone_mode # Storage for the Vandermonde matrix and its inverse for each control self._V_hat = {} self._V_hat_inv = {} # Storage for factors used in the derivatives of Vandermonde matrices. self._fac = {} # Cache formatted strings: { control_name : (input_name, output_name) } self._control_io_names = {} # The Lagrange interpolation matrix L_id maps control values as given at the input nodes # to values at the discretization nodes. num_disc_nodes = grid_data.subset_num_nodes['control_disc'] num_input_nodes = grid_data.subset_num_nodes['control_input'] self._L_id = np.zeros((num_disc_nodes, num_input_nodes), dtype=float) self._L_id[np.arange(num_disc_nodes, dtype=int), self._grid_data.input_maps['dynamic_control_input_to_disc']] = 1.0 super().__init__(**kwargs) def initialize(self): """ Declare component options. """ self.options.declare('segment_index', types=int, desc='index of the current segment') self.options.declare('vec_size', types=int, default=1, desc='number of points at which the control will be evaluated. This is not' 'necessarily the same as the number of nodes in the GridData.') def _configure_controls(self): vec_size = self.options['vec_size'] gd = self._grid_data self._V_hat = {} self._V_hat_inv = {} self._disc_node_idxs_by_segment = [] self._input_node_idxs_by_segment = [] if not self._control_options: return first_disc_node_in_seg = 0 for seg_idx in range(gd.num_segments): # Number of control discretization nodes per segment ncdnps = gd.subset_num_nodes_per_segment['control_disc'][seg_idx] ar_control_disc_nodes = np.arange(ncdnps, dtype=int) disc_idxs_in_seg = first_disc_node_in_seg + ar_control_disc_nodes first_disc_node_in_seg += ncdnps # The indices of the discretization node u vector pertaining to the given segment self._disc_node_idxs_by_segment.append(disc_idxs_in_seg) # The indices of the input u vector pertaining to the given segment self._input_node_idxs_by_segment.append(gd.input_maps['dynamic_control_input_to_disc'][disc_idxs_in_seg]) # Indices of the control disc nodes belonging to the current segment control_disc_seg_idxs = gd.subset_segment_indices['control_disc'][seg_idx] # Segment tau values for the control disc nodes in the phase control_disc_stau = gd.node_stau[gd.subset_node_indices['control_disc']] # Segment tau values for the control disc nodes in the given segment control_disc_seg_stau = control_disc_stau[control_disc_seg_idxs[0]: control_disc_seg_idxs[1]] seg_control_order = gd.transcription_order[seg_idx] - 1 if seg_control_order not in self._V_hat: self._V_hat[seg_control_order] = np.vander(control_disc_seg_stau, increasing=True) self._V_hat_inv[seg_control_order] = np.linalg.inv(self._V_hat[seg_control_order]) if seg_control_order + 1 not in self._fac: self._fac[seg_control_order + 1] = np.arange(seg_control_order + 1, dtype=int) num_uhat_nodes = gd.subset_num_nodes['control_input'] ar = np.arange(vec_size, dtype=int) for control_name, options in self._control_options.items(): shape = options['shape'] units = options['units'] input_name = f'controls:{control_name}' output_name = f'control_values:{control_name}' rate_name = f'control_rates:{control_name}_rate' rate2_name = f'control_rates:{control_name}_rate2' uhat_shape = (num_uhat_nodes,) + shape output_shape = (vec_size,) + shape self.add_input(input_name, shape=uhat_shape, units=units) self.add_output(output_name, shape=output_shape, units=units) self.add_output(rate_name, shape=output_shape, units=units) self.add_output(rate2_name, shape=output_shape, units=units) self._control_io_names[control_name] = (input_name, output_name, rate_name, rate2_name) self.declare_partials(of=output_name, wrt=input_name) self.declare_partials(of=output_name, wrt='stau', rows=ar, cols=ar) self.declare_partials(of=rate_name, wrt=input_name) self.declare_partials(of=rate_name, wrt='stau', rows=ar, cols=ar) self.declare_partials(of=rate_name, wrt='dstau_dt') self.declare_partials(of=rate2_name, wrt=input_name) self.declare_partials(of=rate2_name, wrt='stau', rows=ar, cols=ar) self.declare_partials(of=rate2_name, wrt='dstau_dt') def _configure_polynomial_controls(self): vec_size = self.options['vec_size'] ar = np.arange(vec_size, dtype=int) for pc_name, options in self._polynomial_control_options.items(): order = options['order'] shape = options['shape'] units = options['units'] input_name = f'polynomial_controls:{pc_name}' output_name = f'polynomial_control_values:{pc_name}' rate_name = f'polynomial_control_rates:{pc_name}_rate' rate2_name = f'polynomial_control_rates:{pc_name}_rate2' input_shape = (order + 1,) + shape output_shape = (vec_size,) + shape self.add_input(input_name, shape=input_shape, units=units) self.add_output(output_name, shape=output_shape, units=units) self.add_output(rate_name, shape=output_shape, units=units) self.add_output(rate2_name, shape=output_shape, units=units) self._control_io_names[pc_name] = (input_name, output_name, rate_name, rate2_name) self.declare_partials(of=output_name, wrt=input_name) self.declare_partials(of=output_name, wrt='ptau', rows=ar, cols=ar) self.declare_partials(of=rate_name, wrt=input_name) self.declare_partials(of=rate_name, wrt='ptau', rows=ar, cols=ar) self.declare_partials(of=rate_name, wrt='t_duration') self.declare_partials(of=rate2_name, wrt=input_name) self.declare_partials(of=rate2_name, wrt='ptau', rows=ar, cols=ar) self.declare_partials(of=rate2_name, wrt='t_duration') if order not in self._V_hat: pc_disc_seg_ptau, _ = lgl(order + 1) self._V_hat[order] = np.vander(pc_disc_seg_ptau, increasing=True) self._V_hat_inv[order] = np.linalg.inv(self._V_hat[order]) if order + 1 not in self._fac: self._fac[order + 1] = np.arange(order + 1, dtype=int) def setup(self): """ Perform the I/O creation if operating in _standalone_mode. """ if self._standalone_mode: self.configure_io() def configure_io(self): """ I/O creation is delayed until configure so we can determine shape and units for the controls. """ vec_size = self.options['vec_size'] self._V_hat = {} self._V_hat_inv = {} # self.add_discrete_input('segment_index', val=0, desc='index of the segment') self.add_input('stau', shape=(vec_size,), units=None) self.add_input('dstau_dt', val=1.0, units=f'1/{self._time_units}') self.add_input('t_duration', val=1.0, units=self._time_units) self.add_input('ptau', shape=(vec_size,), units=None) self._configure_controls() self._configure_polynomial_controls() def _dvander(self, v): """ Return the derivative of a Vandermonde matrix wrt the independent variable _in increasing order_. Parameters ---------- v : np.array The Vandermonde matrix for which the derivatives are requested. Returns ------- dV : np.array The derivative of v with respect to the independent variable. dv2 : np.array The second derivative of v wrt the independent variable. dv3 : np.array The third derivative of v wrt the independent variable. """ p, n = v.shape dv = np.zeros_like(v) dv2 = dv.copy() dv3 = dv.copy() dv[:, 1:] = v[:, :-1] dv2[:, 2:] = v[:, :-2] dv3[:, 3:] = v[:, :-3] fac = self._fac[n] fac2 = fac[:-1] fac3 = fac[:-2] dv[:, :] = dv * fac[np.newaxis, :] dv2[:, 1:] = dv2[:, 1:] * fac2[np.newaxis, :] * fac[np.newaxis, 1:] dv3[:, 2:] = dv3[:, 2:] * fac3[np.newaxis, :] * fac2[np.newaxis, 1:] * fac[np.newaxis, 2:] return dv, dv2, dv3 def compute(self, inputs, outputs, discrete_inputs=None, discrete_outputs=None): """ Compute interpolated control values and rates. Parameters ---------- inputs : `Vector` `Vector` containing inputs. outputs : `Vector` `Vector` containing outputs. discrete_inputs : `Vector` `Vector` containing discrete_inputs. discrete_outputs : `Vector` `Vector` containing discrete_outputs. """ seg_idx = self.options['segment_index'] n = self._grid_data.transcription_order[seg_idx] stau = inputs['stau'] dstau_dt = inputs['dstau_dt'] ptau = inputs['ptau'] dptau_dt = 2 / inputs['t_duration'] if self._control_options: seg_order = n - 1 disc_node_idxs = self._disc_node_idxs_by_segment[seg_idx] input_node_idxs = self._input_node_idxs_by_segment[seg_idx] V_stau = np.vander(stau, N=n, increasing=True) dV_stau, dV2_stau, _ = self._dvander(V_stau) L_seg = self._L_id[disc_node_idxs[0]:disc_node_idxs[0] + len(disc_node_idxs), input_node_idxs[0]:input_node_idxs[0] + len(input_node_idxs)] for control_name, options in self._control_options.items(): input_name, output_name, rate_name, rate2_name = self._control_io_names[control_name] u_hat = np.dot(L_seg, inputs[input_name][input_node_idxs]) a = np.atleast_2d(self._V_hat_inv[seg_order] @ u_hat) outputs[output_name] = V_stau @ a outputs[rate_name] = dstau_dt * (dV_stau @ a) outputs[rate2_name] = dstau_dt**2 * (dV2_stau @ a) for pc_name, options in self._polynomial_control_options.items(): input_name, output_name, rate_name, rate2_name = self._control_io_names[pc_name] order = options['order'] V_ptau = np.vander(ptau, N=order+1, increasing=True) dV_ptau, dV2_ptau, _ = self._dvander(V_ptau) a = np.atleast_2d(self._V_hat_inv[order] @ inputs[input_name]) outputs[output_name] = V_ptau @ a outputs[rate_name] = dptau_dt * (dV_ptau @ a) outputs[rate2_name] = dptau_dt**2 * (dV2_ptau @ a) def compute_partials(self, inputs, partials, discrete_inputs=None): """ Compute derivatives interpolated control values and rates wrt the inputs. Parameters ---------- inputs : Vector Unscaled, dimensional input variables read via inputs[key]. partials : Jacobian Subjac components written to partials[output_name, input_name]. discrete_inputs : Vector Unscaled, discrete input variables keyed by variable name. """ seg_idx = self.options['segment_index'] n = self._grid_data.transcription_order[seg_idx] stau = inputs['stau'].real dstau_dt = inputs['dstau_dt'].real ptau = inputs['ptau'].real t_duration = inputs['t_duration'].real dptau_dt = 2.0 / t_duration ddptau_dt_dtduration = -2.0 / t_duration**2 if self._control_options: u_idxs = self._input_node_idxs_by_segment[seg_idx] seg_order = self._grid_data.transcription_order[seg_idx] - 1 V_stau = np.vander(stau, N=n, increasing=True) dV_stau, dV2_stau, dV3_stau = self._dvander(V_stau) disc_node_idxs = self._disc_node_idxs_by_segment[seg_idx] input_node_idxs = self._input_node_idxs_by_segment[seg_idx] L_seg = self._L_id[disc_node_idxs[0]:disc_node_idxs[0] + len(disc_node_idxs), input_node_idxs[0]:input_node_idxs[0] + len(input_node_idxs)] for control_name, options in self._control_options.items(): input_name, output_name, rate_name, rate2_name = self._control_io_names[control_name] u_hat = np.dot(L_seg, inputs[input_name][input_node_idxs].real) a = self._V_hat_inv[seg_order]
# <NAME>, March 2020 # Common code for PyTorch implementation of Copy-Pasting GAN import copy import itertools import matplotlib.pyplot as plt import numpy as np import os, platform, time import torch import torch.nn as nn import torch.nn.functional as F import torchvision import torchvision.transforms as transforms from PIL import Image, ImageDraw from torch.utils.data import Dataset from tqdm import tqdm def read_image_robust(img_path, monochromatic=False): ''' Returns an image that meets conditions along with a success flag, in order to avoid crashing. ''' try: # image = plt.imread(img_path).copy() image = np.array(Image.open(img_path)).copy() # always uint8 success = True if np.any(np.array(image.strides) < 0): success = False # still negative stride elif not(monochromatic) and (image.ndim != 3 or image.shape[2] != 3): success = False # not RGB elif monochromatic: # width, height = image.shape[1], image.shape[0] # image = np.broadcast_to(x[:, :, np.newaxis], (height, width, 3)) image = image[:, :, np.newaxis] # one channel <=> only one ground truth except IOError: # Probably corrupt file image = None success = False return image, success def paint_squares(image, noisy=False, channels=10): ''' Paints one or more squares at random locations to create an artificial foreground image. Generates multiple associated ground truth masks; one per object. ''' width, height = image.shape[1], image.shape[0] image = image.copy() # do not overwrite background object_count = np.random.randint(1, 5) # [1, 4] inclusive masks = np.zeros((height, width, channels), dtype=np.uint8) for i in range(object_count): sq_w, sq_h = 9, 9 x1 = np.random.randint(0, width - sq_w + 1) y1 = np.random.randint(0, height - sq_h + 1) x2 = x1 + sq_w y2 = y1 + sq_h masks[y1:y2, x1:x2, i] = 255 if not(noisy): # Pick one fixed (not necessarily saturated) color for the whole square clr = np.random.randint(0, 256, 3) image[y1:y2, x1:x2] = clr else: # Pick a random fully saturated (extremal) color for every pixel image[y1:y2, x1:x2] = np.random.choice([0, 255], (sq_h, sq_w, 3)) return image, masks, object_count def create_random_gfake_mask(width, height): ''' See Appendix D. ''' x0, y0 = np.random.rand(2) * 0.8 + 0.1 num_verts = np.random.randint(4, 7) # TODO possible improvement: allow up to more vertices? # TODO possible improvement: encourage convex (currently many "sharp" objects) radii = np.random.rand(num_verts) * 0.4 + 0.1 # radii = np.random.rand(num_verts) * 0.8 + 0.2 # TODO: not very clear from paper angles = np.sort(np.random.rand(num_verts)) * 2.0 * np.pi poly_polar = list(zip(radii, angles)) poly_cart = [(int(width * (x0 + r * np.cos(a)) / 1), int(height * (y0 + r * np.sin(a)) / 1)) for (r, a) in poly_polar] # poly_cart = [(x1, y1), (x2, y2), ...] img = Image.new('L', (width, height), 0) ImageDraw.Draw(img).polygon(poly_cart, outline=1, fill=255) mask = np.array(img, dtype='uint8') assert(mask.shape == (height, width)) return mask def apply_border_zero(masks): ndim = len(masks.shape) if ndim == 2: masks[0, :] = 0 masks[-1, :] = 0 masks[:, 0] = 0 masks[:, -1] = 0 elif ndim == 3: masks[:, 0, :] = 0 masks[:, -1, :] = 0 masks[:, :, 0] = 0 masks[:, :, -1] = 0 elif ndim == 4: masks[:, :, 0, :] = 0 masks[:, :, -1, :] = 0 masks[:, :, :, 0] = 0 masks[:, :, :, -1] = 0 else: raise Exception('Mask has too many dimensions') return masks def copy_paste(fores, masks, backs, border_zero=True): # TODO possible improvement: poisson blending # if hard_thres > 0: # used_masks = (masks > hard_thres).float() # force binary # else: used_masks = masks.clone() # Border zeroing implemented in April 2020 if border_zero: used_masks = apply_border_zero(used_masks) return used_masks * fores + (1.0 - used_masks) * backs class MyCopyPasteDataset(Dataset): ''' Custom dataset class with foreground, background, and optional mask folders as image sources. Only one object may appear per image, since the object count is not kept track of. Returns irrelevant foreground anti-shortcuts as well. Enforces color (RGB) images. ''' def __init__(self, fore_dir, back_dir, mask_dir=None, rand_horz_flip=True, post_resize=-1, center_crop=False): self.fore_dir = fore_dir self.back_dir = back_dir self.rand_horz_flip = rand_horz_flip if post_resize <= 0: self.post_tf = transforms.ToTensor() # converts [0, 255] to [0.0, 1.0] elif center_crop: # Resize + square center crop self.post_tf = transforms.Compose([ transforms.ToPILImage(), transforms.Resize(post_resize), transforms.CenterCrop(post_resize), transforms.ToTensor() ]) else: # Resize both dimensions, possibly distorting the images self.post_tf = transforms.Compose([ transforms.ToPILImage(), transforms.Resize((post_resize, post_resize)), transforms.ToTensor() ]) self.has_masks = (mask_dir is not None) # Load all file paths; file names must be the same across all 2 or 3 given directories # self.all_fore_files = [] # self.all_mask_files = [] # self.all_back_files = [] # for fn in os.listdir(fore_dir): # fore_fp = os.path.join(fore_dir, fn) # if os.path.isfile(fore_fp): # back_fp = os.path.join(back_dir, fn) # assert(os.path.isfile(back_fp)) # self.all_fore_files.append(fore_fp) # self.all_back_files.append(back_fp) # if self.has_masks: # mask_fp = os.path.join(mask_dir, fn) # assert(os.path.isfile(mask_fp)) # self.all_mask_files.append(mask_fp) # Load all file paths; file names must be the same across foreground and segmentation masks self.all_fore_files = [] self.all_mask_files = [] self.all_back_files = [] for fn in os.listdir(fore_dir): fore_fp = os.path.join(fore_dir, fn) self.all_fore_files.append(fore_fp) if self.has_masks: mask_fp_jpg = os.path.join(mask_dir, fn[:-4] + '.jpg') mask_fp_png = os.path.join(mask_dir, fn[:-4] + '.png') if os.path.isfile(mask_fp_jpg): self.all_mask_files.append(mask_fp_jpg) elif os.path.isfile(mask_fp_png): self.all_mask_files.append(mask_fp_png) else: raise Exception('No matching mask file found for ' + fore_fp) for fn in os.listdir(back_dir): back_fp = os.path.join(back_dir, fn) self.all_back_files.append(back_fp) self.fore_count = len(self.all_fore_files) self.back_count = len(self.all_back_files) print('Image file count: ' + str(self.fore_count) + ' foreground, ' + str(self.back_count) + ' background, has masks: ' + str(self.has_masks)) def __len__(self): return self.fore_count def __getitem__(self, idx): # Force randomness (especially if num_workers > 0) np.random.seed(idx + int((time.time() * 654321) % 123456)) # Read random pair of images from file system success = False while not(success): file_idx = np.random.choice(self.fore_count) fp = self.all_fore_files[file_idx] fore, success = read_image_robust(fp) if not(success): continue if self.has_masks: fp = self.all_mask_files[file_idx] mask, success = read_image_robust(fp, monochromatic=True) assert(success) # must match fore # mask = ((mask > 0) * 255.0).astype('uint8') # convert soft masks to hard else: mask = None # Read random background image success = False while not(success): file_idx2 = np.random.choice(self.back_count) fp = self.all_back_files[file_idx2] back, success = read_image_robust(fp) # Read irrelevant foreground image success = False while not(success): file_idx3 = np.random.choice(self.fore_count) if file_idx3 == file_idx: continue # try again, cannot pick same image fp = self.all_fore_files[file_idx3] irrel, success = read_image_robust(fp) # Transform foregrounds (+ masks) and backgrounds # NOTE: identical random choices must be made for some images if self.rand_horz_flip: if np.random.rand() < 0.5: fore = fore[:, ::-1, :].copy() if self.has_masks: mask = mask[:, ::-1, :].copy() if np.random.rand() < 0.5: irrel = irrel[:, ::-1, :].copy() if np.random.rand() < 0.5: back = back[:, ::-1, :].copy() fore = self.post_tf(fore) irrel = self.post_tf(irrel) back = self.post_tf(back) if self.has_masks: mask = self.post_tf(mask) # Verify sizes assert(fore.shape[1:] == irrel.shape[1:]) assert(fore.shape[1:] == back.shape[1:]) if self.has_masks: assert(fore.shape[1:] == mask.shape[1:]) # Create grounded fake mask and composite width, height = fore.shape[2], fore.shape[1] # fore is (C, H, W) gfake_mask = self.post_tf(create_random_gfake_mask(width, height)) comp_gfake = copy_paste(fore, gfake_mask, back) # Construct dictionary; object count is unknown result = {'fore': fore, 'back': back, 'irrel': irrel, 'object_cnt': 1, 'gfake_mask': gfake_mask, 'comp_gfake': comp_gfake} if self.has_masks: result['mask'] = mask # don't set None, otherwise crash return result class MySquaresDataset(Dataset): ''' Custom dataset class with just a collection of background images as source. One or more artificial objects are painted to create a foreground, keeping track of object count. Returns irrelevant foreground anti-shortcuts as well. Enforces color (RGB) images. ''' def __init__(self, back_dir, rand_horz_flip=True, noisy=False, max_objects=10): self.back_dir = back_dir self.rand_horz_flip = rand_horz_flip self.post_tf = transforms.ToTensor() # converts [0, 255] to [0.0, 1.0] self.noisy = noisy self.max_objects = max_objects # Load all file paths; file names must be the same across all 2 or 3 given directories self.all_back_files = [] for fn in os.listdir(back_dir): back_fp = os.path.join(back_dir, fn) self.all_back_files.append(back_fp) self.file_count = len(self.all_back_files) print('Image file count: ' + str(self.file_count) + ', noisy: ' + str(self.noisy) + ', max objects: ' + str(self.max_objects)) def __len__(self): return self.file_count def __getitem__(self, idx): # Read a random triplet (relevant + background + irrelevant) of non-overlapping backgrounds from file system success = False while not(success): file_idx = np.random.choice(self.file_count) fp = self.all_back_files[file_idx] fore, success = read_image_robust(fp) success = False while not(success): file_idx2 = np.random.choice(self.file_count) if file_idx2 == file_idx: continue
<filename>algogalaxy/cluster/kmeans.py """ @author: <NAME> @email : <EMAIL> @date : 29/6/21 5:44 pm @desc : @ref : """ import numpy as np from algogalaxy.base import BaseEstimator from utils.util_metric_funcs import euclidean_dist, angle, sq_euclidean_dist # ============================================================================= # Types and constants # ============================================================================= # Options for metric measure: Euclidean distance and angle size. METRIC_FUNCS = {"euclidean": euclidean_dist, "angle": angle} # ============================================================================= # Initialisation functions # ============================================================================= def init_forgy(X, n_clusters): """ Initialise a specified number of centroids using Forgy's method, which randomly samples data points from the data as the centroids. Parameters ---------- X : n_clusters : Returns ------- """ return X[np.random.choice(range(X.shape[0]), replace=False, size=n_clusters), :] def init_random_partition(X, n_clusters, lower_limit, upper_limit): """ Initialise a specified number of centroids in the random partition method. The initial centroids used by different instances in the input data are different, while the ones used by each feature in the same instance are the same. Therefore, the first dimension of the generated sequence is equal to the first dimension of the input data, and the second dimension is the specified number of clusters. Parameters ---------- X : array-like Training instances. Returns ------- ndarray of shape (n_samples, n_clusters) The 2-d array of random centroids. Notes ----- According to Hamerly et al. [1]_, the Random Partition method is generally preferable for algorithms such as the k-harmonic means and fuzzy k-means. References ---------- .. [1] <NAME>. and <NAME>., 2002, November. Alternatives to the k-means algorithm that find better clusterings. In Proceedings of the eleventh international conference on Information and knowledge management (pp. 600-607). """ dots = [] for i in range(0, len(X)): # dummy = [random.random() for i in range(n_clusters)] dummy = np.random.randint(low=int(lower_limit), high=int(upper_limit), size=int(n_clusters)) dummy_sum = np.sum(dummy) dot_temp = [d / dummy_sum for d in dummy] print("1st is:\n", dot_temp) # dummy = as_float_array(dummy) # Include cases: dummy.astype(np.float32) and dummy.astype(np.float64) # for j in range(0, self.n_clusters): # dummy[j] = dummy[j] / dummy_sum # print("2nd is:\n", dummy) dots.append(dot_temp) return np.asarray(dots) def init_rand_partition(X, n_clusters): """ Initialise a specified number of centroids using random partition method, which randomly assign each data point to a cluster and then calculate the average value of each cluster to get the centroids. Parameters ---------- X n_clusters Returns ------- """ idxs = np.random.choice(range(0, n_clusters), replace=True, size=X.shape[0]) means = [] for j in range(n_clusters): means.append(X[idxs == j].mean(axis=0)) return np.concatenate([mean[None, :] for mean in means], axis=0) # NB: "None" above means that the current dimension is not sliced, but treated as a whole as an array element. def _kmeans_plusplus(X, n_clusters, x_squared_norms, random_state, n_local_trials=None): """ Initialise a specified number of centroids using the k-means++ method (heuristic). Prior validation of data is assumed. Parameters ---------- X : ndarray of shape (n_samples, n_features) The data to pick seeds for. n_clusters : int The number of seeds to choose. x_squared_norms : ndarray of shape (n_samples,) Squared Euclidean norm of each data point. random_state : RandomState instance The generator used to initialize the centers. n_local_trials : int, default=None The number of seeding trials for each center (except the first), of which the one reducing inertia the most is greedily chosen. Set to None to make the number of trials depend logarithmically on the number of seeds (2+log(k)); this is the default. Returns ------- centers : ndarray of shape (n_clusters, n_features) The initial centers for k-means. indexes : ndarray of shape (n_clusters,) The index location of the chosen centers in the data array X. For a given index and center, X[index] = center. Notes ----- K-means++ is an algorithm for choosing the initial values (or "seeds") for the k-means clustering algorithm. It was proposed in 2007 by <NAME> and <NAME> [1]_, as an approximation algorithm for the NP-hard k-means problem—a way of avoiding the sometimes poor clusterings found by the standard k-means algorithm. It is similar to the first of three seeding methods proposed, in independent work, in 2006 by <NAME>, <NAME>, <NAME> and <NAME> [2]_. (The distribution of the first seed is different.) The exact k-means++ algorithm is as follows: 1. Choose one center uniformly at random among the data points. 2. For each data point `x` not chosen yet, compute :math:`D(x)`, the distance between `x` and the nearest center that has already been chosen. 3. Choose one new data point at random as a new center, using a weighted probability distribution where a point `x` is chosen with probability proportional to :math:`D(x)^2`. 4. Repeat Steps 2 and 3 until `k` centers have been chosen. 5. Now that the initial centers have been chosen, proceed using standard k-means clustering. References ---------- .. [1] <NAME>. and <NAME>., 2006. k-means++: The advantages of careful seeding. Stanford. .. [2] <NAME>., <NAME>., <NAME>. and <NAME>., 2013. The effectiveness of Lloyd-type methods for the k-means problem. Journal of the ACM (JACM), 59(6), pp.1-22. """ # TODO: Simplify the function's arguments. centers = [] X = np.array(X) # Sample the first data point. initial_idx = np.random.choice(range(X.shape[0]), ) centers.append(X[initial_idx, :].tolist()) print('max: ', np.max(np.sum((X - np.array(centers)) ** 2))) # Loop and select the remaining points for i in range(n_clusters - 1): print(i) distance = sq_euclidean_dist(X, np.array(centers)) if i == 0: pdf = distance / np.sum(distance) centroid_new = X[np.random.choice(range(X.shape[0]), replace=False, p=pdf.flatten())] else: # Calculate the distance of each data point from its nearest centroid. dist_min = np.min(distance, axis=1) # if pdf_method == True: if n_local_trials is not None: pdf = dist_min / np.sum(dist_min) # Sample one data point from the given distribution. centroid_new = X[np.random.choice(range(X.shape[0]), replace=False, p=pdf)] else: idx_max = np.argmax(dist_min, axis=0) centroid_new = X[idx_max, :] centers.append(centroid_new.tolist()) return np.array(centers) def kmeans_plusplus(X, n_clusters, *, x_squared_norms=None, random_state=None, n_local_trials=None): """ Initialise a specified number of seeds using the k-means++ method. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The data to pick seeds from. n_clusters : int The number of centroids to initialize x_squared_norms : array-like of shape (n_samples,), default=None Squared Euclidean norm of each data point. random_state : int or RandomState instance, default=None Determines random number generation for centroid initialization. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. n_local_trials : int, default=None The number of seeding trials for each center (except the first), of which the one reducing inertia the most is greedily chosen. Set to None to make the number of trials depend logarithmically on the number of seeds (2+log(k)). Returns ------- centers : ndarray of shape (n_clusters, n_features) The inital centers for k-means. indices : ndarray of shape (n_clusters,) The index location of the chosen centers in the data array X. For a given index and center, X[index] = center. Notes ----- Selects initial cluster centers for k-mean clustering in a smart way to speed up convergence. see: <NAME>. and <NAME>. "k-means++: the advantages of careful seeding". ACM-SIAM symposium on Discrete algorithms. 2007 """ pass # TODO: Simplify the function's arguments; Do validation and call the private function _kmeans_plusplus(). # ============================================================================= # Public k-means batch estimation functions # ============================================================================= # All functions are based on EM(expectation maximisation). def k_means(X, n_clusters, *, sample_weight=None, init_method='k-means++', precompute_distances='deprecated', n_init=10, max_iter=300, verbose=False, tol=1e-4, random_state=None, copy_x=True, n_jobs='deprecated', algorithm="auto", return_n_iter=False, metric="euclidean"): """ K-means clustering algorithm (standard k-means). Parameters ---------- X : array-like of shape (n_samples, n_features) The observations to cluster. It must be noted that the data will be converted to C ordering, which will cause a memory copy if the given data is not C-contiguous. n_clusters : int The number of clusters to form as well as the number of centroids to generate. sample_weight : array-like of shape (n_samples,), default=None The weights for each observation in X. If None, all observations are assigned equal weight. init_method : {'k-means++', 'random'}, callable or array-like of shape \ (n_clusters, n_features), default='k-means++' Method for initialization: 'k-means++' : selects initial cluster centers for k-mean clustering in a smart way to speed up convergence. See section Notes in k_init for more details. 'random': choose `n_clusters` observations (rows) at random from data for the initial centroids. If an array is passed, it should be of shape (n_clusters, n_features) and gives the
import logging import logging.handlers import queue from multiprocessing import JoinableQueue, Process, active_children from time import sleep # IMPORTS FOR TYPE HINTING from typing import Callable, List, Optional, Type, Union class PipelineManager: """ Class encapsulating multiprocessing library in Python. This class is meant to encapsulate the multiprocessing functionality already present in Python and combine it with several other useful libraries, to serve as a way to have both convenience and functionality. Parameters ---------- name : str The name of the PipelineManager. Meant for differentiation. input_queue : multiprocessing.JoinableQueue The JoinableQueue from which Processes will be pulled from. See the Multiprocessing documentation for more information. output_queue : multiprocessing.JoinableQueue The JoinableQueue which Processes will place finished items in. See the Multiprocessing documentation for more information. error_queue : multiprocessing.JoinableQueue The JoinableQueue which Processes will place bugged/unfinished items in. See the Multiprocessing documentation for more information. slack_queue : SlackBot.SlackQueue A wrapper class around multiprocessing.JoinableQueue that allows for asyncio-friendly operations. logging_queue : multiprocessing.JoinableQueue The JoinableQueue which is meant to handle logging messages. See the Multiprocessing documentation for more information. num_processes : int The number of Process objects that will be made by this PipelineManager. process_job : function The function that each Process will be given to work on. Make sure that this lines up with what the input/output Queues expect. timeout_duration : int The number of seconds which a Process will attempt to get an item from input_queue before throwing a TimeoutError. """ def __init__(self, input_queue: JoinableQueue, output_queue: JoinableQueue, error_queue: JoinableQueue, slack_queue: 'SlackBot.SlackQueue', logging_queue: JoinableQueue, process_job: Callable[[Type['Task.Task']], Type['Task.Task']], name: str ="PipelineManager", num_processes: int = 1, timeout_duration: int = 1) -> None: """ Initialize a PipelineManager Object. Initializes an instance of PipelineManager with a name, given pair of input/output queues (important for chaining), the number of processes the PipelineManager will deal with, the actual target function used (see Process in multiprocessing), and how long a given Process should wait until returning a TimeoutError. NOTE: Requres multiprocessing package Parameters ---------- name : str The name of the PipelineManager. Meant for differentiation. input_queue : multiprocessing.JoinableQueue The JoinableQueue from which Processes will be pulled from. See the Multiprocessing documentation for more information. output_queue : multiprocessing.JoinableQueue The JoinableQueue which Processes will place finished items in. See the Multiprocessing documentation for more information. error_queue : multiprocessing.JoinableQueue The JoinableQueue which Processes will place bugged/unfinished items in. See the Multiprocessing documentation for more information. slack_queue : SlackBot.SlackQueue A wrapper class around multiprocessing.JoinableQueue that allows for asyncio-friendly operations. logging_queue : multiprocessing.JoinableQueue The JoinableQueue which is meant to handle logging messages. See the Multiprocessing documentation for more information. num_processes : int The number of Process objects that will be made by this PipelineManager. process_job : function The function that each Process will be given to work on. Make sure that this lines up with what the input/output Queues expect. timeout_duration : int The number of seconds which a Process will attempt to get an item from input_queue before throwing a TimeoutError. Returns ------- self : PipelineManager A PipelineManager object. Raises ------ None. """ self.name = name #An attempt to idiot-proof the PipelineManager by instantiating a JoinableQueue() if one didn't exist already. self.input_queue = input_queue if input_queue else JoinableQueue() self.output_queue = output_queue if output_queue else JoinableQueue() self.error_queue = error_queue if error_queue else JoinableQueue() self.slack_queue = slack_queue self.logging_queue = logging_queue self.num_processes = num_processes self.process_job = process_job self.timeout_duration = timeout_duration #A list of active processes comprised of Process objects self.process_list: List[Process] = [] #An internal restart flag (used when all processes managed die) self.restart_required = False self.logger = logging.getLogger(self.name) self.logger.setLevel(logging.DEBUG) def setup_manager(self) -> None: """ Create Processes to be run by the PipelineManager. This function will create a number of Process objects, but does not run them immediately. This function is meant to be used if data is not yet ready in the JoinableQueue. Parameters ---------- None. Returns ------- None. """ #Clean out the process list. self.process_list.clear() for _ in range(self.num_processes): p = Process(target=self.multiprocessing_job, args=(self.process_job,)) self.process_list.append(p) self.restart_required = False def run_manager(self) -> None: """ Begin running the PipelineManager. This function will start any Process objects inside of the PipelineManager. From there, it will poll every 1 seconds to check if any of the Process objects are still active. Parameters ---------- None. Returns ------- None. """ for p in self.process_list: try: p.daemon = True p.start() except: self.process_list.remove(p) p = Process(target=self.multiprocessing_job, args=(self.process_job,)) p.daemon = True self.process_list.append(p) p.start() #Every 1 seconds, check for active Processes. while True: sleep(1) running = any(p.is_alive() for p in self.process_list) if not running or not active_children: self.restart_required = True break self.logger.info(self.name + " has finished managing.") def end_manager(self) -> None: """ Send poison pills to the processes under the manager. Sends None Tasks into the JoinableQueue, which will cause the Process that picks them up to terminate. Parameters ---------- None. Returns ------- None. """ for _ in range(self.num_processes): self.input_queue.put(None) def kill_manager(self) -> None: """ Kill all processes under the manager in the event of interruption. This function will terminate all processes and attempt to release any resources held in the event of interruption to avoid potential leakage and orphaned processes. Parameters ---------- None. Returns ------- None. """ for p in self.process_list: p.terminate() # NOTE: Seems Python does not appreciate if close is called too quickly. sleep(0.5) # Release the resources held by the Proess (Python 3.7 and up) p.close() def purge_manager(self) -> None: """ Purge the manager in the event of interruption. This function flushes the input queue and attempts to place any pending tasks into the error queue for further handling/disposal, flushing the queue afterwards. Parameters ---------- None. Returns ------- None. """ self.logger.debug(f"Beginning purging of {self.name}") # Don't need to join an empty queue, likely will result in more issues if you do. if self.input_queue.empty(): self.logger.debug(f"Input Queue of {self.name} is empty.") else: # Try to process all the remaining values put in (no need to change behavior around poison pills) while not self.input_queue.empty(): try: task = self.input_queue.get_nowait() self.logger.debug(f"Receiving Task to purge: {task.get_job_id()}") self.error_queue.put(task) # NOTE: This sleep call may be unnecessary but I placed it here to err on the side of caution. sleep(1) self.input_queue.task_done() except: break # NOTE: This loop is a bit hacky probably, but it does ensure that the correct number of task_done calls are made. # NOTE: This is meant to handle any "unfinished tasks" (meaning ones that haven't had their task_done calls). while not self.input_queue._unfinished_tasks._semlock._is_zero(): self.input_queue.task_done() self.restart_required = True def cleanup_manager(self) -> None: """ Clean up the manager by releasing the resources held by each process. Parameters ---------- None. Returns ------- None. """ for p in self.process_list: if p.is_alive(): p.terminate() sleep(1) p.close() def print_process_list(self) -> None: """ Print the process list. A convenience function that prints the processes under this PipelineManager. Parameters ---------- None. Returns ------- None. """ print(f"Process List: {self.process_list}") def print(self) -> None: """ Print all relevant information on this PipelineManager. Prints out all arguments (except the JoinableQueue objects) that are associated with this PipelineManager. Meant for debugging purposes. Parameters ---------- None. Returns ------- None. """ print("Name: {}".format(self.name)) print("Input Queue: {}".format(self.input_queue)) print("Output Queue: {}".format(self.output_queue)) print("Restart Required: {}".format(str(self.restart_required))) print("Number of Processes: {}".format(str(self.num_processes))) print("Process Job: {}".format(self.process_job.__name__)) print("Timeout Duration: {}".format(str(self.timeout_duration))) self.print_process_list() def _to_string(self) -> str: """ Generate a string representation of the object. Generates a string that contains all the information about the object found inside of the __dict__ attribute. This includes variable names and values, and is predominately used for logging purposes. Parameters ---------- None. Returns ------- result : str A string that contains all information about an object found in the __dict__ attribute. """ string_list = [] for key, value in self.__dict__.items(): if isinstance(value, dict): string_list.append(key) string_list.extend('\n'.join(["Key: {:24}\tValue: {}".format(_key, _value) for _key, _value in value.items()])) else: string_list.append("Key: {:24}\tValue: {}\n".format(key, value)) return ''.join(string_list) def push_information_to_slack_bot(self, q: 'SlackBot.SlackQueue', item: List[Optional[Union[str, int]]]) -> None: """ Push some information into the Slack Bot.
<reponame>autodidact-m/Projects # coding: utf-8 # In[1]: import csv import pandas as pd import os pd.options.mode.chained_assignment = None import numpy as np import boto3 from boto3.s3.transfer import S3Transfer import sys # In[5]: def readFile(): homepath = os.path.expanduser('~') indicator_data = pd.read_csv('./Data/Clustering/Indicators_Clustering_Combined.csv', low_memory=False) return indicator_data # # Handling Missing values for Australia # In[25]: def australia(): indicator_data = readFile() australia_df_ind1 = indicator_data[(indicator_data['IndicatorCode'].isin(['AG.LND.AGRI.ZS'])) & (indicator_data['CountryCode'] == 'AU')] australia_df_ind2 = indicator_data[(indicator_data['IndicatorCode'].isin(['SP.DYN.CBRT.IN'])) & (indicator_data['CountryCode'] == 'AU')] australia_df_ind3 = indicator_data[(indicator_data['IndicatorCode'].isin(['SP.POP.DPND'])) & (indicator_data['CountryCode'] == 'AU')] australia_df_ind4 = indicator_data[(indicator_data['IndicatorCode'].isin(['NE.EXP.GNFS.ZS'])) & (indicator_data['CountryCode'] == 'AU')] australia_df_ind5 = indicator_data[(indicator_data['IndicatorCode'].isin(['NE.IMP.GNFS.ZS'])) & (indicator_data['CountryCode'] == 'AU')] australia_df_ind6 = indicator_data[(indicator_data['IndicatorCode'].isin(['NY.GDP.MKTP.CD'])) & (indicator_data['CountryCode'] == 'AU')] australia_df_ind7 = indicator_data[(indicator_data['IndicatorCode'].isin(['NY.GDP.MKTP.KD.ZG'])) & (indicator_data['CountryCode'] == 'AU')] australia_df_ind8 = indicator_data[(indicator_data['IndicatorCode'].isin(['SP.POP.GROW'])) & (indicator_data['CountryCode'] == 'AU')] australia_df_ind9 = indicator_data[(indicator_data['IndicatorCode'].isin(['FI.RES.TOTL.CD'])) & (indicator_data['CountryCode'] == 'AU')] australia_df_ind10 = indicator_data[(indicator_data['IndicatorCode'].isin(['NE.TRD.GNFS.ZS'])) & (indicator_data['CountryCode'] == 'AU')] australia_df_ind1['Value'] = australia_df_ind1['Value'].fillna(method='bfill', axis = 0) australia_df_ind2['Value'] = australia_df_ind2['Value'].fillna(method='bfill', axis = 0) # Combining all the Argentina Dataframes australia_df = pd.concat([australia_df_ind1, australia_df_ind2, australia_df_ind3, australia_df_ind4, australia_df_ind5, australia_df_ind6, australia_df_ind7, australia_df_ind8, australia_df_ind9, australia_df_ind10]) print('Clustering Wrangling completed for Australia!!', '\n') return australia_df # # Handling Missing values for Canada # In[26]: def canada(): indicator_data = readFile() canada_df_ind1 = indicator_data[(indicator_data['IndicatorCode'].isin(['AG.LND.AGRI.ZS'])) & (indicator_data['CountryCode'] == 'CA')] canada_df_ind2 = indicator_data[(indicator_data['IndicatorCode'].isin(['SP.DYN.CBRT.IN'])) & (indicator_data['CountryCode'] == 'CA')] canada_df_ind3 = indicator_data[(indicator_data['IndicatorCode'].isin(['SP.POP.DPND'])) & (indicator_data['CountryCode'] == 'CA')] canada_df_ind4 = indicator_data[(indicator_data['IndicatorCode'].isin(['NE.EXP.GNFS.ZS'])) & (indicator_data['CountryCode'] == 'CA')] canada_df_ind5 = indicator_data[(indicator_data['IndicatorCode'].isin(['NE.IMP.GNFS.ZS'])) & (indicator_data['CountryCode'] == 'CA')] canada_df_ind6 = indicator_data[(indicator_data['IndicatorCode'].isin(['NY.GDP.MKTP.CD'])) & (indicator_data['CountryCode'] == 'CA')] canada_df_ind7 = indicator_data[(indicator_data['IndicatorCode'].isin(['NY.GDP.MKTP.KD.ZG'])) & (indicator_data['CountryCode'] == 'CA')] canada_df_ind8 = indicator_data[(indicator_data['IndicatorCode'].isin(['SP.POP.GROW'])) & (indicator_data['CountryCode'] == 'CA')] canada_df_ind9 = indicator_data[(indicator_data['IndicatorCode'].isin(['FI.RES.TOTL.CD'])) & (indicator_data['CountryCode'] == 'CA')] canada_df_ind10 = indicator_data[(indicator_data['IndicatorCode'].isin(['NE.TRD.GNFS.ZS'])) & (indicator_data['CountryCode'] == 'CA')] canada_df_ind1['Value'] = canada_df_ind1['Value'].fillna(method='bfill', axis = 0) canada_df_ind2['Value'] = canada_df_ind2['Value'].fillna(method='bfill', axis = 0) # Combining all the Brazil Dataframes canada_df = pd.concat([canada_df_ind1, canada_df_ind2, canada_df_ind3, canada_df_ind4, canada_df_ind5, canada_df_ind6, canada_df_ind7, canada_df_ind8, canada_df_ind9, canada_df_ind10]) print('Clustering Wrangling completed for Canada!!', '\n') return canada_df # # Handling Missing values for Saudi Arabia # In[27]: def saudi_Arabia(): indicator_data = readFile() saudi_arabia_df_ind1 = indicator_data[(indicator_data['IndicatorCode'].isin(['AG.LND.AGRI.ZS'])) & (indicator_data['CountryCode'] == 'SA')] saudi_arabia_df_ind2 = indicator_data[(indicator_data['IndicatorCode'].isin(['SP.DYN.CBRT.IN'])) & (indicator_data['CountryCode'] == 'SA')] saudi_arabia_df_ind3 = indicator_data[(indicator_data['IndicatorCode'].isin(['SP.POP.DPND'])) & (indicator_data['CountryCode'] == 'SA')] saudi_arabia_df_ind4 = indicator_data[(indicator_data['IndicatorCode'].isin(['NE.EXP.GNFS.ZS'])) & (indicator_data['CountryCode'] == 'SA')] saudi_arabia_df_ind5 = indicator_data[(indicator_data['IndicatorCode'].isin(['NE.IMP.GNFS.ZS'])) & (indicator_data['CountryCode'] == 'SA')] saudi_arabia_df_ind6 = indicator_data[(indicator_data['IndicatorCode'].isin(['NY.GDP.MKTP.CD'])) & (indicator_data['CountryCode'] == 'SA')] saudi_arabia_df_ind7 = indicator_data[(indicator_data['IndicatorCode'].isin(['NY.GDP.MKTP.KD.ZG'])) & (indicator_data['CountryCode'] == 'SA')] saudi_arabia_df_ind8 = indicator_data[(indicator_data['IndicatorCode'].isin(['SP.POP.GROW'])) & (indicator_data['CountryCode'] == 'SA')] saudi_arabia_df_ind9 = indicator_data[(indicator_data['IndicatorCode'].isin(['FI.RES.TOTL.CD'])) & (indicator_data['CountryCode'] == 'SA')] saudi_arabia_df_ind10 = indicator_data[(indicator_data['IndicatorCode'].isin(['NE.TRD.GNFS.ZS'])) & (indicator_data['CountryCode'] == 'SA')] saudi_arabia_df_ind1['Value'] = saudi_arabia_df_ind1['Value'].fillna(method='bfill', axis = 0) saudi_arabia_df_ind2['Value'] = saudi_arabia_df_ind2['Value'].fillna(method='bfill', axis = 0) # Combining all the Ecuador Dataframes saudi_arabia_df = pd.concat([saudi_arabia_df_ind1, saudi_arabia_df_ind2, saudi_arabia_df_ind3, saudi_arabia_df_ind4, saudi_arabia_df_ind5, saudi_arabia_df_ind6, saudi_arabia_df_ind7, saudi_arabia_df_ind8, saudi_arabia_df_ind9, saudi_arabia_df_ind10]) print('Clustering Wrangling completed for Saudi Arabia!!', '\n') return saudi_arabia_df # # Handling Missing values for United States # In[28]: def united_States(): indicator_data = readFile() united_states_df_ind1 = indicator_data[(indicator_data['IndicatorCode'].isin(['AG.LND.AGRI.ZS'])) & (indicator_data['CountryCode'] == 'US')] united_states_df_ind2 = indicator_data[(indicator_data['IndicatorCode'].isin(['SP.DYN.CBRT.IN'])) & (indicator_data['CountryCode'] == 'US')] united_states_df_ind3 = indicator_data[(indicator_data['IndicatorCode'].isin(['SP.POP.DPND'])) & (indicator_data['CountryCode'] == 'US')] united_states_df_ind4 = indicator_data[(indicator_data['IndicatorCode'].isin(['NE.EXP.GNFS.ZS'])) & (indicator_data['CountryCode'] == 'US')] united_states_df_ind5 = indicator_data[(indicator_data['IndicatorCode'].isin(['NE.IMP.GNFS.ZS'])) & (indicator_data['CountryCode'] == 'US')] united_states_df_ind6 = indicator_data[(indicator_data['IndicatorCode'].isin(['NY.GDP.MKTP.CD'])) & (indicator_data['CountryCode'] == 'US')] united_states_df_ind7 = indicator_data[(indicator_data['IndicatorCode'].isin(['NY.GDP.MKTP.KD.ZG'])) & (indicator_data['CountryCode'] == 'US')] united_states_df_ind8 = indicator_data[(indicator_data['IndicatorCode'].isin(['SP.POP.GROW'])) & (indicator_data['CountryCode'] == 'US')] united_states_df_ind9 = indicator_data[(indicator_data['IndicatorCode'].isin(['FI.RES.TOTL.CD'])) & (indicator_data['CountryCode'] == 'US')] united_states_df_ind10 = indicator_data[(indicator_data['IndicatorCode'].isin(['NE.TRD.GNFS.ZS'])) & (indicator_data['CountryCode'] == 'US')] united_states_df_ind1['Value'] = united_states_df_ind1['Value'].fillna(method='bfill', axis = 0) united_states_df_ind2['Value'] = united_states_df_ind2['Value'].fillna(method='bfill', axis = 0) united_states_df_ind4['Value'] = united_states_df_ind4['Value'].fillna(method='bfill', axis = 0) united_states_df_ind5['Value'] = united_states_df_ind5['Value'].fillna(method='bfill', axis = 0) united_states_df_ind10['Value'] = united_states_df_ind10['Value'].fillna(method='bfill', axis = 0) # Combining all the Libya Dataframes united_states_df = pd.concat([united_states_df_ind1, united_states_df_ind2, united_states_df_ind3, united_states_df_ind4, united_states_df_ind5, united_states_df_ind6, united_states_df_ind7, united_states_df_ind8, united_states_df_ind9, united_states_df_ind10]) print('Clustering Wrangling completed for United States!!', '\n') return united_states_df # # Handling Missing values for India # In[10]: def india(): indicator_data = readFile() india_df_ind1 = indicator_data[(indicator_data['IndicatorCode'].isin(['AG.LND.AGRI.ZS'])) & (indicator_data['CountryCode'] == 'IN')] india_df_ind2 = indicator_data[(indicator_data['IndicatorCode'].isin(['SP.DYN.CBRT.IN'])) & (indicator_data['CountryCode'] == 'IN')] india_df_ind3 = indicator_data[(indicator_data['IndicatorCode'].isin(['SP.POP.DPND'])) & (indicator_data['CountryCode'] == 'IN')] india_df_ind4 = indicator_data[(indicator_data['IndicatorCode'].isin(['NE.EXP.GNFS.ZS'])) & (indicator_data['CountryCode'] == 'IN')] india_df_ind5 = indicator_data[(indicator_data['IndicatorCode'].isin(['NE.IMP.GNFS.ZS'])) & (indicator_data['CountryCode'] == 'IN')] india_df_ind6 = indicator_data[(indicator_data['IndicatorCode'].isin(['NY.GDP.MKTP.CD'])) & (indicator_data['CountryCode'] == 'IN')] india_df_ind7 = indicator_data[(indicator_data['IndicatorCode'].isin(['NY.GDP.MKTP.KD.ZG'])) & (indicator_data['CountryCode'] == 'IN')] india_df_ind8 = indicator_data[(indicator_data['IndicatorCode'].isin(['SP.POP.GROW'])) & (indicator_data['CountryCode'] == 'IN')] india_df_ind9 = indicator_data[(indicator_data['IndicatorCode'].isin(['FI.RES.TOTL.CD'])) & (indicator_data['CountryCode'] == 'IN')] india_df_ind10 = indicator_data[(indicator_data['IndicatorCode'].isin(['NE.TRD.GNFS.ZS'])) & (indicator_data['CountryCode'] == 'IN')] india_df_ind1['Value'] = india_df_ind1['Value'].fillna(method='bfill', axis = 0) india_df_ind2['Value'] = india_df_ind2['Value'].fillna(method='bfill', axis = 0) # Combining all the India Dataframes india_df = pd.concat([india_df_ind1, india_df_ind2, india_df_ind3, india_df_ind4, india_df_ind5, india_df_ind6, india_df_ind7, india_df_ind8, india_df_ind9, india_df_ind10]) print('Clustering Wrangling completed for India!!', '\n') return india_df # # Handling Missing values for Russia # In[11]: def russia(): indicator_data = readFile() russia_df_ind1 = indicator_data[(indicator_data['IndicatorCode'].isin(['AG.LND.AGRI.ZS'])) & (indicator_data['CountryCode'] == 'RU')] russia_df_ind2 = indicator_data[(indicator_data['IndicatorCode'].isin(['SP.DYN.CBRT.IN'])) & (indicator_data['CountryCode'] == 'RU')] russia_df_ind3 = indicator_data[(indicator_data['IndicatorCode'].isin(['SP.POP.DPND'])) & (indicator_data['CountryCode'] == 'RU')] russia_df_ind4 = indicator_data[(indicator_data['IndicatorCode'].isin(['NE.EXP.GNFS.ZS'])) & (indicator_data['CountryCode'] == 'RU')] russia_df_ind5 = indicator_data[(indicator_data['IndicatorCode'].isin(['NE.IMP.GNFS.ZS'])) & (indicator_data['CountryCode'] == 'RU')] russia_df_ind6 = indicator_data[(indicator_data['IndicatorCode'].isin(['NY.GDP.MKTP.CD'])) & (indicator_data['CountryCode'] == 'RU')] russia_df_ind7 = indicator_data[(indicator_data['IndicatorCode'].isin(['NY.GDP.MKTP.KD.ZG'])) & (indicator_data['CountryCode'] == 'RU')] russia_df_ind8 = indicator_data[(indicator_data['IndicatorCode'].isin(['SP.POP.GROW'])) & (indicator_data['CountryCode'] == 'RU')] russia_df_ind9 = indicator_data[(indicator_data['IndicatorCode'].isin(['FI.RES.TOTL.CD'])) & (indicator_data['CountryCode'] == 'RU')] russia_df_ind10 = indicator_data[(indicator_data['IndicatorCode'].isin(['NE.TRD.GNFS.ZS'])) & (indicator_data['CountryCode'] == 'RU')] russia_df_ind1['Value'] = russia_df_ind1['Value'].fillna(method='bfill', axis = 0) russia_df_ind2['Value'] = russia_df_ind2['Value'].fillna(method='bfill', axis = 0) # Combining all the South_Africa Dataframes russia_df = pd.concat([russia_df_ind1, russia_df_ind2, russia_df_ind3, russia_df_ind4, russia_df_ind5, russia_df_ind6, russia_df_ind7, russia_df_ind8, russia_df_ind9, russia_df_ind10]) print('Clustering Wrangling completed for Russia!!', '\n') return russia_df # # Handling Missing values for South Africa # In[12]: def south_Africa(): indicator_data = readFile() south_africa_df_ind1 = indicator_data[(indicator_data['IndicatorCode'].isin(['AG.LND.AGRI.ZS'])) & (indicator_data['CountryCode'] == 'ZA')] south_africa_df_ind2 = indicator_data[(indicator_data['IndicatorCode'].isin(['SP.DYN.CBRT.IN'])) & (indicator_data['CountryCode'] == 'ZA')] south_africa_df_ind3 = indicator_data[(indicator_data['IndicatorCode'].isin(['SP.POP.DPND'])) & (indicator_data['CountryCode'] == 'ZA')] south_africa_df_ind4 = indicator_data[(indicator_data['IndicatorCode'].isin(['NE.EXP.GNFS.ZS'])) & (indicator_data['CountryCode'] == 'ZA')] south_africa_df_ind5 = indicator_data[(indicator_data['IndicatorCode'].isin(['NE.IMP.GNFS.ZS'])) & (indicator_data['CountryCode'] == 'ZA')] south_africa_df_ind6 = indicator_data[(indicator_data['IndicatorCode'].isin(['NY.GDP.MKTP.CD'])) & (indicator_data['CountryCode'] == 'ZA')] south_africa_df_ind7 = indicator_data[(indicator_data['IndicatorCode'].isin(['NY.GDP.MKTP.KD.ZG'])) & (indicator_data['CountryCode'] == 'ZA')] south_africa_df_ind8 = indicator_data[(indicator_data['IndicatorCode'].isin(['SP.POP.GROW'])) & (indicator_data['CountryCode'] == 'ZA')] south_africa_df_ind9 = indicator_data[(indicator_data['IndicatorCode'].isin(['FI.RES.TOTL.CD'])) & (indicator_data['CountryCode'] == 'ZA')] south_africa_df_ind10 = indicator_data[(indicator_data['IndicatorCode'].isin(['NE.TRD.GNFS.ZS'])) & (indicator_data['CountryCode'] == 'ZA')] south_africa_df_ind1['Value'] = south_africa_df_ind1['Value'].fillna(method='bfill', axis = 0) south_africa_df_ind2['Value'] = south_africa_df_ind2['Value'].fillna(method='bfill', axis = 0) # Combining all the South_Africa Dataframes south_africa_df = pd.concat([south_africa_df_ind1, south_africa_df_ind2, south_africa_df_ind3, south_africa_df_ind4, south_africa_df_ind5, south_africa_df_ind6, south_africa_df_ind7, south_africa_df_ind8, south_africa_df_ind9, south_africa_df_ind10]) print('Clustering Wrangling completed for South Africa!!', '\n') return south_africa_df # # Handling Missing values for Turkey # In[13]: def turkey(): indicator_data = readFile() turkey_df_ind1 = indicator_data[(indicator_data['IndicatorCode'].isin(['AG.LND.AGRI.ZS'])) & (indicator_data['CountryCode'] == 'TR')] turkey_df_ind2 = indicator_data[(indicator_data['IndicatorCode'].isin(['SP.DYN.CBRT.IN'])) & (indicator_data['CountryCode'] == 'TR')] turkey_df_ind3 = indicator_data[(indicator_data['IndicatorCode'].isin(['SP.POP.DPND'])) & (indicator_data['CountryCode'] == 'TR')] turkey_df_ind4 = indicator_data[(indicator_data['IndicatorCode'].isin(['NE.EXP.GNFS.ZS'])) & (indicator_data['CountryCode'] == 'TR')] turkey_df_ind5 = indicator_data[(indicator_data['IndicatorCode'].isin(['NE.IMP.GNFS.ZS'])) & (indicator_data['CountryCode'] == 'TR')] turkey_df_ind6 = indicator_data[(indicator_data['IndicatorCode'].isin(['NY.GDP.MKTP.CD'])) & (indicator_data['CountryCode'] == 'TR')] turkey_df_ind7 = indicator_data[(indicator_data['IndicatorCode'].isin(['NY.GDP.MKTP.KD.ZG'])) & (indicator_data['CountryCode'] == 'TR')] turkey_df_ind8 = indicator_data[(indicator_data['IndicatorCode'].isin(['SP.POP.GROW'])) & (indicator_data['CountryCode'] == 'TR')] turkey_df_ind9 = indicator_data[(indicator_data['IndicatorCode'].isin(['FI.RES.TOTL.CD'])) & (indicator_data['CountryCode'] == 'TR')] turkey_df_ind10 = indicator_data[(indicator_data['IndicatorCode'].isin(['NE.TRD.GNFS.ZS'])) & (indicator_data['CountryCode'] == 'TR')] turkey_df_ind1['Value'] = turkey_df_ind1['Value'].fillna(method='bfill', axis = 0) turkey_df_ind2['Value'] = turkey_df_ind2['Value'].fillna(method='bfill', axis = 0) # Combining all the South_Africa Dataframes turkey_df = pd.concat([turkey_df_ind1, turkey_df_ind2, turkey_df_ind3, turkey_df_ind4, turkey_df_ind5, turkey_df_ind6, turkey_df_ind7, turkey_df_ind8, turkey_df_ind9, turkey_df_ind10]) print('Clustering Wrangling completed for Turkey!!', '\n') return turkey_df # # Handling Missing values for Argentina # In[14]: def argentina(): indicator_data = readFile() argentina_df_ind1 = indicator_data[(indicator_data['IndicatorCode'].isin(['AG.LND.AGRI.ZS'])) & (indicator_data['CountryCode'] == 'AR')] argentina_df_ind2 = indicator_data[(indicator_data['IndicatorCode'].isin(['SP.DYN.CBRT.IN'])) & (indicator_data['CountryCode'] == 'AR')] argentina_df_ind3 = indicator_data[(indicator_data['IndicatorCode'].isin(['SP.POP.DPND'])) & (indicator_data['CountryCode'] == 'AR')] argentina_df_ind4 = indicator_data[(indicator_data['IndicatorCode'].isin(['NE.EXP.GNFS.ZS'])) & (indicator_data['CountryCode'] == 'AR')] argentina_df_ind5 = indicator_data[(indicator_data['IndicatorCode'].isin(['NE.IMP.GNFS.ZS'])) & (indicator_data['CountryCode'] == 'AR')] argentina_df_ind6 = indicator_data[(indicator_data['IndicatorCode'].isin(['NY.GDP.MKTP.CD'])) & (indicator_data['CountryCode'] == 'AR')] argentina_df_ind7 = indicator_data[(indicator_data['IndicatorCode'].isin(['NY.GDP.MKTP.KD.ZG'])) & (indicator_data['CountryCode'] == 'AR')] argentina_df_ind8 = indicator_data[(indicator_data['IndicatorCode'].isin(['SP.POP.GROW'])) & (indicator_data['CountryCode'] == 'AR')] argentina_df_ind9 = indicator_data[(indicator_data['IndicatorCode'].isin(['FI.RES.TOTL.CD'])) & (indicator_data['CountryCode'] == 'AR')] argentina_df_ind10 = indicator_data[(indicator_data['IndicatorCode'].isin(['NE.TRD.GNFS.ZS'])) & (indicator_data['CountryCode'] == 'AR')] argentina_df_ind1['Value'] = argentina_df_ind1['Value'].fillna(method='bfill', axis = 0) argentina_df_ind2['Value'] = argentina_df_ind2['Value'].fillna(method='bfill', axis = 0) # Combining all the Argentina Dataframes argentina_df = pd.concat([argentina_df_ind1, argentina_df_ind2, argentina_df_ind3, argentina_df_ind4, argentina_df_ind5, argentina_df_ind6, argentina_df_ind7, argentina_df_ind8, argentina_df_ind9, argentina_df_ind10]) print('Clustering Wrangling completed for Argentina!!', '\n') return argentina_df # # Handling Missing values for Brazil # In[17]: def brazil(): indicator_data = readFile() brazil_df_ind1 = indicator_data[(indicator_data['IndicatorCode'].isin(['AG.LND.AGRI.ZS'])) & (indicator_data['CountryCode'] == 'BR')] brazil_df_ind2 = indicator_data[(indicator_data['IndicatorCode'].isin(['SP.DYN.CBRT.IN'])) & (indicator_data['CountryCode'] == 'BR')] brazil_df_ind3 = indicator_data[(indicator_data['IndicatorCode'].isin(['SP.POP.DPND'])) & (indicator_data['CountryCode'] == 'BR')] brazil_df_ind4 = indicator_data[(indicator_data['IndicatorCode'].isin(['NE.EXP.GNFS.ZS'])) & (indicator_data['CountryCode'] == 'BR')] brazil_df_ind5 = indicator_data[(indicator_data['IndicatorCode'].isin(['NE.IMP.GNFS.ZS'])) & (indicator_data['CountryCode'] == 'BR')] brazil_df_ind6 = indicator_data[(indicator_data['IndicatorCode'].isin(['NY.GDP.MKTP.CD'])) & (indicator_data['CountryCode'] == 'BR')] brazil_df_ind7 = indicator_data[(indicator_data['IndicatorCode'].isin(['NY.GDP.MKTP.KD.ZG'])) & (indicator_data['CountryCode'] == 'BR')] brazil_df_ind8 = indicator_data[(indicator_data['IndicatorCode'].isin(['SP.POP.GROW'])) & (indicator_data['CountryCode'] == 'BR')] brazil_df_ind9 = indicator_data[(indicator_data['IndicatorCode'].isin(['FI.RES.TOTL.CD'])) & (indicator_data['CountryCode'] == 'BR')] brazil_df_ind10 = indicator_data[(indicator_data['IndicatorCode'].isin(['NE.TRD.GNFS.ZS'])) & (indicator_data['CountryCode'] == 'BR')] brazil_df_ind1['Value'] = brazil_df_ind1['Value'].fillna(method='bfill', axis = 0) brazil_df_ind2['Value'] = brazil_df_ind2['Value'].fillna(method='bfill', axis = 0) # Combining all the Brazil Dataframes brazil_df = pd.concat([brazil_df_ind1, brazil_df_ind2, brazil_df_ind3, brazil_df_ind4, brazil_df_ind5, brazil_df_ind6, brazil_df_ind7, brazil_df_ind8, brazil_df_ind9, brazil_df_ind10]) print('Clustering Wrangling completed for Brazil!!', '\n') return brazil_df # # Handling Missing values for Mexico #
<filename>old_game/maps.py import pygame from . import image import weakref from . import characters import math from . import pfov import collections from . import pygwrap from . import enchantments from . import items from . import context import random from . import monsters from . import container # Enumerated constants for sprite sheets. SPRITE_GROUND, SPRITE_WALL, SPRITE_BORDER, SPRITE_INTERIOR, SPRITE_FLOOR, \ SPRITE_DECOR, SPRITE_CHEST, SPRITE_SIGNS = list(range( 8)) class SingTerrain( object ): # A singleton terrain class; use these objects as tokens for maps. def __init__( self, ident, spritesheet = SPRITE_GROUND, block_vision = False, block_walk = False, block_fly = False, frame = 0 ): # ident should be the module-level name of this stat. self.ident = ident self.spritesheet = spritesheet self.block_vision = block_vision self.block_walk = block_walk self.block_fly = block_fly self.frame = frame def render( self, screen, dest, view, data ): view.sprites[ self.spritesheet ].render( screen, dest, self.frame ) def prerender( self, screen, dest, view, data ): """Some wall types need a border that gets drawn first.""" pass def get_data( self, view, x, y ): """Pre-generate display data for this tile.""" return None def place( self, scene, pos ): if scene.on_the_map( *pos ): scene.map[pos[0]][pos[1]].decor = self def __str__( self ): return self.ident def __reduce__( self ): return self.ident class VariableTerrain( SingTerrain ): def __init__( self, ident, spritesheet = SPRITE_FLOOR, block_vision = False, block_walk = False, block_fly = False, frames = (0,1,) ): # ident should be the module-level name of this stat. self.ident = ident self.spritesheet = spritesheet self.block_vision = block_vision self.block_walk = block_walk self.block_fly = block_fly self.frames = frames def render( self, screen, dest, view, data ): view.sprites[ self.spritesheet ].render( screen, dest, self.frames[ data ] ) def get_data( self, view, x, y ): """Pre-generate display data for this tile.""" return view.get_pseudo_random() % len(self.frames) class GroundTerrain( SingTerrain ): # A singleton terrain class; use these objects as tokens for maps. def __init__( self, ident, spritesheet = SPRITE_GROUND, block_vision = False, block_walk = False, block_fly = False, frame = 0, edge = None ): # ident should be the module-level name of this stat. self.ident = ident self.spritesheet = spritesheet self.block_vision = block_vision self.block_walk = block_walk self.block_fly = block_fly self.frame = frame self.edge = edge def render( self, screen, dest, view, data ): view.sprites[ self.spritesheet ].render( screen, dest, self.frame + data ) def get_data( self, view, x, y ): """Pre-generate display data for this tile- frame offset.""" n = view.calc_floor_score( x , y , self.edge ) if n > 0: n += 6 else: n = view.get_pseudo_random() % 7 return n class WaterTerrain( SingTerrain ): # A singleton terrain class; use these objects as tokens for maps. def __init__( self, ident, spritesheet = SPRITE_GROUND, block_vision = False, block_walk = True, block_fly = False, frame = 0 ): # ident should be the module-level name of this stat. self.ident = ident self.spritesheet = spritesheet self.block_vision = block_vision self.block_walk = block_walk self.block_fly = block_fly self.frame = frame def get_data( self, view, x, y ): """Pre-generate display data for this tile- phase offset.""" return ( x + y ) % 2 def render( self, screen, dest, view, data ): view.sprites[ self.spritesheet ].render( screen, dest, self.frame + ( view.phase // 5 + data ) % 2 ) class WallTerrain( SingTerrain ): # A singleton terrain class; use these objects as tokens for maps. def __init__( self, ident, spritesheet = SPRITE_WALL, block_vision = True, block_walk = True, block_fly = True ): # ident should be the module-level name of this stat. self.ident = ident self.spritesheet = spritesheet self.block_vision = block_vision self.block_walk = block_walk self.block_fly = block_fly def prerender( self, screen, dest, view, data ): if data[0] != None: view.sprites[ SPRITE_BORDER ].render( screen, dest, data[0] ) def render( self, screen, dest, view, data ): if data[1] != None: view.sprites[ self.spritesheet ].render( screen, dest, data[1] ) def get_data( self, view, x, y ): """Pre-generate display data for this tile- border frame, wall frame.""" bor = view.calc_border_score( x, y ) if bor == -1: bor = None if bor == 14: wal = None else: wal = view.calc_wall_score( x, y ) return (bor,wal) class DoorTerrain( WallTerrain ): # A singleton terrain class; use these objects as tokens for maps. def __init__( self, ident, spritesheet = SPRITE_WALL, block_vision = True, block_walk = True, block_fly = True, frame=0 ): # ident should be the module-level name of this stat. self.ident = ident self.spritesheet = spritesheet self.block_vision = block_vision self.block_walk = block_walk self.block_fly = block_fly self.frame = frame def render( self, screen, dest, view, data ): if data[1] != None: view.sprites[ self.spritesheet ].render( screen, dest, self.frame + data[1] ) def get_data( self, view, x, y ): """Pre-generate display data for this tile- border frame, wall frame.""" bor = view.calc_border_score( x, y ) if bor == -1: bor = None if view.space_to_south( x, y ): wal = 1 else: wal = 0 return (bor,wal) class OnTheWallTerrain( SingTerrain ): def __init__( self, ident, spritesheet = SPRITE_DECOR, block_vision = False, block_walk = False, block_fly = False, frame = 0 ): # ident should be the module-level name of this stat. self.ident = ident self.spritesheet = spritesheet self.block_vision = block_vision self.block_walk = block_walk self.block_fly = block_fly self.frame = frame ATTACH_TO_WALL = True def render( self, screen, dest, view, data ): view.sprites[ self.spritesheet ].render( screen, dest, self.frame + data ) def get_data( self, view, x, y ): """Pre-generate display data for this tile- facing offset.""" if view.space_to_south( x, y ): return 1 else: return 0 class OnTheWallVariable( SingTerrain ): def __init__( self, ident, spritesheet = SPRITE_DECOR, block_vision = False, block_walk = False, block_fly = False, frames = (0,1) ): # ident should be the module-level name of this stat. self.ident = ident self.spritesheet = spritesheet self.block_vision = block_vision self.block_walk = block_walk self.block_fly = block_fly self.frames = frames ATTACH_TO_WALL = True def render( self, screen, dest, view, data ): view.sprites[ self.spritesheet ].render( screen, dest, data ) def get_data( self, view, x, y ): """Pre-generate display data for this tile- facing offset.""" if view.space_to_south( x, y ): return self.frames[ view.get_pseudo_random() % len( self.frames ) ] + 1 else: return self.frames[ view.get_pseudo_random() % len( self.frames ) ] class BedHeadTerrain( SingTerrain ): def __init__( self, ident, spritesheet = SPRITE_INTERIOR, block_vision = False, block_walk = False, block_fly = False, frame = 0, partner=None ): # ident should be the module-level name of this stat. self.ident = ident self.spritesheet = spritesheet self.block_vision = block_vision self.block_walk = block_walk self.block_fly = block_fly self.frame = frame self.partner = partner def render( self, screen, dest, view, data ): view.sprites[ self.spritesheet ].render( screen, dest, self.frame + data ) def get_data( self, view, x, y ): """Pre-generate display data for this tile- facing offset.""" if view.scene.get_decor( x, y+1 ) == self.partner: return 1 else: return 0 class BedFootTerrain( SingTerrain ): def __init__( self, ident, spritesheet = SPRITE_INTERIOR, block_vision = False, block_walk = False, block_fly = False, frame = 0, partner=None ): # ident should be the module-level name of this stat. self.ident = ident self.spritesheet = spritesheet self.block_vision = block_vision self.block_walk = block_walk self.block_fly = block_fly self.frame = frame self.partner = partner def render( self, screen, dest, view, data ): view.sprites[ self.spritesheet ].render( screen, dest, self.frame + data ) def get_data( self, view, x, y ): """Pre-generate display data for this tile- facing offset.""" if view.scene.get_decor( x, y-1 ) == self.partner: return 1 else: return 0 class CrowdTerrain( SingTerrain ): def __init__( self, ident, spritesheet = SPRITE_GROUND, block_vision = False, block_walk = True, block_fly = True, inner_frames = (0,1), outer_frames=(2,3) ): # ident should be the module-level name of this stat. self.ident = ident self.spritesheet = spritesheet self.block_vision = block_vision self.block_walk = block_walk self.block_fly = block_fly self.inner_frames = inner_frames self.outer_frames = outer_frames def render( self, screen, dest, view, data ): view.sprites[ self.spritesheet ].render( screen, dest, data ) def get_data( self, view, x, y ): """Pre-generate display data for this tile- facing offset.""" if view.space_nearby( x, y ): return self.outer_frames[ view.get_pseudo_random() % len(self.outer_frames) ] else: return self.inner_frames[ view.get_pseudo_random() % len(self.inner_frames) ] # GROUND
= self._create_excel_writer_styles(excel_writer_styles) def __str__(self): return f'{self.__class__.__name__}(name={self.name})' @classmethod def _create_excel_writer_styles(cls, styles=None): """ Sets the styles for the ouput Excel file. Ensures that at least cls.excel_styles are included in the style dictionary. Parameters ---------- styles : dict, optional The input dictionary to override the default styles. Returns ------- format_kwargs : dict The input styles dictionary with any missing keys from DataSource.excel_styles added. """ format_kwargs = styles if styles is not None else {} for key, value in cls.excel_styles.items(): if key not in format_kwargs: format_kwargs[key] = value return format_kwargs def _validate_target_columns(self): """ Ensures that the target columns and function names for each Function are valid. Raises ------ ValueError Raises ValueError if the target column for a Function does not exist, or if two Function objects have the same name. If the target column does not exist, it can either be due to that target not existing, or that the functions are calculated in the wrong order. """ target_error = ('"{target}" is not an available column for {function} to modify. ' 'Check that {self} a) has the correct function order and/or b) has ' 'the correct unique_variables specified.') unique_keys = set(self.unique_variables) for function in (self.preprocess_functions + self.calculation_functions + self.sample_summary_functions + self.dataset_summary_functions): # ensure function names are unique if function.name in unique_keys: raise ValueError(( f'The name "{function.name}" is associated with two ' f'different objects for {self}, which is not allowed.' )) # ensure targets exist for target in function.target_columns: if target not in unique_keys: raise ValueError(target_error.format(target=target, self=self, function=function)) # remove keys for columns removed by PreprocessFunction if isinstance(function, PreprocessFunction): for key in function.deleted_columns: if key in unique_keys: unique_keys.remove(key) else: raise ValueError(target_error.format(target=key, self=self, function=function)) # ensure columns exist if function modifies columns elif not isinstance(function.added_columns, int): for target in function.added_columns: if target not in unique_keys: raise ValueError(target_error.format(target=target, self=self, function=function)) # ensure summary functions either add columns or modify other summary columns if (isinstance(function, SummaryFunction) and not isinstance(function.added_columns, int)): if function.sample_summary: sum_funcs = [function.name for function in self.sample_summary_functions] else: sum_funcs = [function.name for function in self.dataset_summary_functions] if any(column not in sum_funcs for column in function.added_columns): raise ValueError(( f'Error with {function}. SummaryFunctions can only modify columns ' 'for other SummaryFunctions with matching sample_summary attributes.' )) unique_keys.add(function.name) def _create_references(self, dataset, import_values): """Creates a dictionary to reference the column indices.""" references = [[] for sample in dataset] for i, sample in enumerate(dataset): for j, dataframe in enumerate(sample): reference = {key: [value] for key, value in import_values[i][j].items()} start_index = len(dataframe.columns) for function in self.calculation_functions: if isinstance(function.added_columns, int): end_index = start_index + function.added_columns reference[function.name] = list(range(start_index, end_index)) for num in range(start_index, end_index): dataframe[num] = pd.Series(np.nan, dtype=np.float32) start_index = end_index else: reference[function.name] = [] for target in function.added_columns: reference[function.name].extend(reference[target]) references[i].append(reference) return references def _add_summary_dataframes(self, dataset, references): """Adds the dataframes for summary functions and creates references for them.""" if self.sample_summary_functions: for reference in references: reference.append({}) for i, sample in enumerate(dataset): start_index = 0 data = {} for function in self.sample_summary_functions: if isinstance(function.added_columns, int): end_index = start_index + function.added_columns references[i][-1][function.name] = list(range(start_index, end_index)) for num in range(start_index, end_index): data[num] = np.nan start_index = end_index else: references[i][-1][function.name] = [] for target in function.added_columns: references[i][-1][function.name].extend( references[i][-1][target] ) sample.append(pd.DataFrame(data, index=[0], dtype=np.float32)) if self.dataset_summary_functions: references.append([{}]) start_index = 0 data = {} for function in self.dataset_summary_functions: if isinstance(function.added_columns, int): end_index = start_index + function.added_columns references[-1][-1][function.name] = list( range(start_index, end_index) ) for num in range(start_index, end_index): data[num] = np.nan start_index = end_index else: references[-1][-1][function.name] = [] for target in function.added_columns: references[-1][-1][function.name].extend( references[-1][-1][target] ) dataset.append([pd.DataFrame(data, index=[0], dtype=np.float32)]) def _merge_references(self, dataframes, references): """Merges all the references for the merged dataframe.""" functions = (self.calculation_functions + self.sample_summary_functions + self.dataset_summary_functions) merged_references = [] for i, dataset in enumerate(dataframes): start_index = 0 merged_reference = { key: [] for key in (self.unique_variables + [func.name for func in functions]) } for j, sample in enumerate(dataset): for key in merged_reference: merged_reference[key].append([]) for k, entry in enumerate(sample): for key, value in references[i][j][k].items(): merged_reference[key][j].extend([index + start_index for index in value]) start_index += len(entry.columns) merged_references.append(merged_reference) return merged_references def _set_references(self, dataframes, import_values): """ Creates a dictionary to reference the column indices for calculations. Also adds the necessary columns to the input dataframes for all calculations, creates dataframes for the SummaryCalculations, and adds spacing between samples and entries. Assigns the merged references to the references attribute. Parameters ---------- dataframes : list(list(list(pd.DataFrame))) A list of lists of lists of dataframes. import_values : list A list of lists of dictionaries containing the values used to import the data from files. The relevant keys are the DataSource's unique variables """ # create references, add summary dataframes, and add in empty spacing columns references = [] for i, dataset in enumerate(dataframes): reference = self._create_references(dataset, import_values[i]) self._add_summary_dataframes(dataset, reference) references.append(reference) # add entry spacings for sample in dataset: for k, entry in enumerate(sample): if k < len(sample) - 1: start_index = len(entry.columns) for num in range(start_index, start_index + self.entry_separation): entry[num] = pd.Series(np.nan, dtype=np.float16) # add sample spacings start_index = len(sample[-1].columns) for num in range(start_index, start_index + self.sample_separation): sample[-1][num] = pd.Series(np.nan, dtype=np.float16) # merges the references into one for each dataset self.references = self._merge_references(dataframes, references) self._added_separators = True def _do_preprocessing(self, dataframes, import_values): """ Performs the function for all PreprocessFunctions. Parameters ---------- dataframes : list(list(list(pd.DataFrame))) A list of lists of lists of dataframes. import_values : list A list of lists of dictionaries containing the values used to import the data from files. The relevant keys are the DataSource's unique variables Returns ------- new_dataframes : list(list(list(pd.DataFrame))) The list of lists of lists of dataframes, after performing the preprocessing. new_import_values : list The list of lists of dictionaries containing the values used to import the data from files, after performing the preprocessing. """ new_dataframes = [] new_import_values = [] for i, dataset in enumerate(dataframes): for function in self.preprocess_functions: dataset, import_values[i] = function._preprocess_data( dataset, import_values[i] ) new_dataframes.append(dataset) new_import_values.append(import_values[i]) self._remove_unneeded_variables() return new_dataframes, new_import_values def _remove_unneeded_variables(self): """Removes unique variables that are not needed for processing.""" for function in self.preprocess_functions: for variable in function.deleted_columns: if variable in self.unique_variables: variable_index = self.unique_variables.index(variable) column_index = self.unique_variable_indices[variable_index] for i, col_num in enumerate(self.unique_variable_indices): if col_num > column_index: self.unique_variable_indices[i] -= 1 self.unique_variables.pop(variable_index) self.unique_variable_indices.pop(variable_index) self.column_numbers.pop(column_index) self._deleted_columns = 0 def merge_datasets(self, dataframes): """ Merges all entries and samples into one dataframe for each dataset. Also sets the length attribute, which will later be used to separate each dataframes back into individual dataframes for each entry. Parameters ---------- dataframes : list(list(list(pd.DataFrame))) A nested list of list of lists of dataframes. Returns ------- merged_dataframes : list(pd.DataFrame) A list of dataframes. """ merged_dataframes = [] # length of each individual entry for splitting later lengths = [[[] for sample in dataset] for dataset in dataframes] for i, dataset in enumerate(dataframes): for j, sample in enumerate(dataset): lengths[i][j] = [len(entry.columns) for entry in sample] # merges all dataframes in the dataset using generators dataset_dataframe = pd.concat( (pd.concat((entry for entry in sample), axis=1) for sample in dataset), axis=1 ) dataset_dataframe.columns = list(range(len(dataset_dataframe.columns))) merged_dataframes.append(dataset_dataframe) self.lengths = lengths return merged_dataframes def _do_functions(self, dataframes, index): """ Performs the function for all CalculationFunctions and SummaryFunctions. Parameters ---------- dataframes : list(pd.DataFrame) A list of dataframes, one per dataset. index : int If index is 0, will perform the Excel functions; if index is 1, will perform the python functions. Returns ------- dataframes : list(pd.DataFrame) The list of dataframes after processing. Notes ----- The start row is set to self.excel_row_offset + 3 since openpyxl is 1-based and there are two header rows. The start column is also set to self.excel_column_offset + 1 since openpyxl is 1-based. All dataframes are overwritten for each processing step so that no copies are made. """ functions = (self.calculation_functions + self.sample_summary_functions + self.dataset_summary_functions) first_column = self.excel_column_offset + 1 for i, dataset in enumerate(dataframes): if index == 1: excel_columns = None else: excel_columns = [ utils.excel_column_name(num) for num in range(first_column, len(dataset.columns) + first_column) ] for function in functions: dataset = function._do_function( dataset, self.references[i], index,
# Miscellaneous functions used to search collect lyrics for all Billboard # Hot 100 number one songs from 1959 - 2011 # Lyric data scraped from lyricsfly.com where available from django.conf import settings from django.template import Template, Context from gdutils.scrape import post, get import BeautifulSoup as BS # next time, just use html5lib from the start =/ import html5lib as hl import codecs import datetime import re import sys import time import urllib, urllib2 UASTRING = "GreaterDebater Crawler - report abuse to <EMAIL>" YEARS = range(1959, 2012) MONTHS = ['January', 'February', 'March', 'April', 'May', 'June', 'July', \ 'August', 'September', 'October', 'November', 'December'] SEARCH_URL = 'http://lyricsfly.com/search/search.php' RESULT_URL = 'http://lyricsfly.com/search/' ERR_TEMPLATE = 'errtemplate.xml' ERR_FILE = '/home/gabe/python/selfishmusic/errors.xml' DATA_PATH = '/home/gabe/data/music/' def make_urls(): """generate the wikipedia urls for the pages of lists of number one singles from 1959 - 2011""" urlfile = open('/home/gabe/data/music/urls.txt', 'w') urls = ["http://en.wikipedia.org/wiki/List_of_Hot_100_number-one_singles_of_%i_(U.S.)\n" % year for year in range(1959, 2012)] for url in urls: urlfile.write(url) urlfile.close() def get_text(cell): """ get stripped text from a BeautifulSoup td object""" return ''.join([x.strip() + ' ' for x in cell.findAll(text=True)]).strip() def read_wiki(): """read the saved wikipedia pages to get song titles, artist, and first date they hit #1""" base_path = '/home/gabe/data/music/' songdata = [] for year in range(1959, 2012): filename = "List_of_Hot_100_number-one_singles_of_%i_(U.S.)" % year f = open(base_path + filename) soup = BS.BeautifulSoup(f.read()) if year < 2010: table = soup.table else: table = soup.find('table', {'class': 'wikitable'}) # remove superscripts ss = table.findAll('sup') [s.extract() for s in ss] for row in table.findAll('tr'): song = {} cells = row.findAll('td') try: txt = get_text(cells[0]) if txt.find("Issue") != -1: continue song['date'] = get_text(cells[0]) + ', ' + str(year) song['title'] = get_text(cells[1]) song['artist'] = get_text(cells[2]) songdata.append(song) except IndexError: pass # remove duplicates checked = {} for song in songdata: date = [x.strip(' ,').encode('ascii', 'ignore') for x in song['date'].split(' ')] song['date'] = datetime.date(month=MONTHS.index(date[0]) + 1, day=int(date[1]), year=int(date[2])) song['title'] = song['title'].strip('" ') checked[(song['artist'], song['title'])] = song songs = checked.values() songs.sort(key=lambda x: x['date']) return songs def save_songs(songs, template="songtemplate.xml", ofile="songs.xml"): """ save songs to xml file """ try: settings.configure(DEBUG=True, TEMPLATE_DEBUG=True, TEMPLATE_DIRS='/home/gabe/python/selfishmusic/templates/', DATE_FORMAT='F d, Y') except RuntimeError: # running in interpreter and have already loaded settings pass song_t_file = open(template) song_t = Template(song_t_file.read()) song_c = Context({'songs': songs}) # outfile = open(DATA_PATH + ofile, 'w') outfile = codecs.open(DATA_PATH + ofile, encoding='utf-8', mode='w') outfile.write(song_t.render(song_c)) outfile.close() print "Wrote %i songs to file %s" % (len(songs), ofile) def read_songs(filename='songs.xml'): """ read song data from xml file to a list of dictionaries """ songfile = open(DATA_PATH + filename) soup = BS.BeautifulSoup(songfile.read(), convertEntities=BS.BeautifulSoup.ALL_ENTITIES) songsxml = soup.findAll('song') songs = [] for song in songsxml: sd = {} sd['title'] = get_text(song.title) sd['artist'] = get_text(song.artist) date = get_text(song.date) date = [x.strip(' ,') for x in date.split(' ')] sd['date'] = datetime.date(month=MONTHS.index(date[0]) + 1, day=int(date[1]), year=int(date[2])) sd['lyrics'] = get_text(song.lyrics) sd['found_title'] = get_text(song.found_title) sd['found_artist'] = get_text(song.found_artist) try: sd['mr'] = float(get_text(song.mr)) except: pass songs.append(sd) songfile.close() return songs def search_songs(search, songs, field): results = [] for song in songs: if search.lower() in song[field].lower(): results.append(song) for index, song in enumerate(results): print "%i: %s by %s" % (index, song['title'], song['artist']) return results def read_err_songs(): """ read song data from xml file to a list of dictionaries """ songfile = open('/home/gabe/python/selfishmusic/errors.xml') soup = BS.BeautifulSoup(songfile.read()) songsxml = soup.findAll('song') songs = [] for song in songsxml: sd = {} sd['songnum'] = int(get_text(song.songnum)) sd['title'] = get_text(song.title) sd['artist'] = get_text(song.artist) date = get_text(song.date) date = [x.strip(' ,') for x in date.split(' ')] sd['date'] = datetime.date(month=MONTHS.index(date[0]) + 1, day=int(date[1]), year=int(date[2])) sd['lyrics'] = get_text(song.lyrics) sd['found_title'] = get_text(song.found_title) sd['found_artist'] = get_text(song.found_artist) songs.append(sd) songfile.close() return songs def save_err_songs(indexes, songs): allbad = [songs[i] for i in indexes] save_songs(allbad, template=ERR_TEMPLATE, ofile=ERR_FILE) def get_search_results(song, options=1, sort=3, aside=False): """ retrive the list of rows from the search results table for a given song lyrics""" # search lyricsfly by song title title = song['title'] if aside and ('/' in title): # if aside is true the title is both a and b sides of a single # split on the slash to search for the a-side only title = title.split('/')[0].strip() postdata = {'keywords': title.encode('ascii', errors='ignore'), 'options':options, 'sort':sort} def search(url): response = post(url, urllib.urlencode(postdata)) try: soup = BS.BeautifulSoup(response, convertEntities=BS.BeautifulSoup.HTML_ENTITIES) except TypeError: soup = hl.parse(response, treebuilder='beautifulsoup') cell = soup.find('td', {'class': 'list'}) if not cell: return -1, -1 results_table = cell.parent.parent rows = results_table.findAll('tr') return rows, soup rows, soup = search(SEARCH_URL) if rows == -1: return -1 # check for a second page of results # This should be more general, for n pages, but I think lyricsfly # only ever returns 2 pages at most. page2 = soup.find('form', {'name': 'search2'}) url2 = SEARCH_URL + '?page=2' if page2: # wait 1.1 seconds before requesting next page time.sleep(1.1) rows2, soup = search(url2) if rows2 == -1: return rows rows.extend(rows2) return rows def get_lyrics(song, rows): """find the best match for title and artist among a list of rows from the search results table then retrieve the lyrics from the url in that row""" best_artist = 1 best_title = 1 best_index = -1 song_artist_words = song['artist'].split(' ') song_title_words = song['title'].split(' ') # titles and artists may not match up exactly # pick the result that has the most words in common for both # the artist and the title for i, row in enumerate(rows): cells = row.findAll('td') row_artist_words = get_text(cells[0]) row_title_words = get_text(cells[1]) artist_count = 0 title_count = 0 for word in song_artist_words: if word in row_artist_words: artist_count += 1 for word in song_title_words: if word in row_title_words: title_count += 1 if artist_count >= best_artist and title_count >= best_title: best_index = i best_artist = artist_count best_title = title_count if best_index == -1: return best_index, -1, -1 lyrics_url = RESULT_URL + rows[best_index].findAll('td')[1].a['href'] print lyrics_url found_title = get_text(rows[best_index].findAll('td')[1]) found_artist = get_text(rows[best_index].findAll('td')[0]) lyrics_page = get(lyrics_url) try: soup = BS.BeautifulSoup(lyrics_page, convertEntities=BS.BeautifulSoup.HTML_ENTITIES) except TypeError: soup = hl.parse(lyrics_page, treebuilder='beautifulsoup') span = soup.findAll('span', {'class':'adbriteinline'})[0] # remove linebreaks br = soup.findAll('br') [b.extract() for b in br] try: lyrics = ''.join(span.contents) except TypeError: lyrics = ''.join(soup.p.contents) if not lyrics: lyrics = ''.join(soup.p.contents) lyrics = lyrics.replace(u"\ufffd", '') return lyrics, found_title, found_artist def get_all_lyrics(songs): """loop through all songs and search lyricsfly for lyrics""" for songnum, song in enumerate(songs): print "Song %i getting lyrics for %s by %s" % (songnum, song['title'], song['artist']) try: rows = get_search_results(song) if rows == -1: print "\tSong %i No results for %s by %s" % (songnum, song['title'], song['artist']) song['lyrics'] = 'Not found' continue lyrics, found_title, found_artist = get_lyrics(song, rows) time.sleep(1.1) if lyrics == -1: print "\t Song %i No match for %s by %s" % (songnum, song['title'], song['artist']) song['lyrics'] = "No match" continue song['lyrics'] = lyrics song['found_artist'] = found_artist song['found_title'] = found_title print "\tFound %s by %s -- saving lyrics" % (found_title, found_artist) time.sleep(1.1) except: print "\t Song %i Error fetching lyrics for %s by %s - skipping" % (songnum, song['title'], song['artist']) song['lyrics'] = "Error" return songs def find_errors(songs): notfound = [] nomatch = [] err = [] empty = [] for index, song in enumerate(songs): song['songnum'] = index if song['lyrics'] == 'Not found': notfound.append(index) elif song['lyrics'] == 'No match': nomatch.append(index) elif song['lyrics'] == 'Error': err.append(index) elif song['lyrics'] == '': empty.append(index) return notfound, nomatch, err, empty def fix_empties(empties, songs, aside=False): """retry search for lyrics to songs where none were found or there was an error""" for e in empties: songnum = e print "Song %i getting lyrics for %s by %s" % (songnum, songs[e]['title'], songs[e]['artist']) if aside and (not '/' in songs[e]['title']): continue try: rows = get_search_results(songs[e], aside=aside) if rows == -1: print "\tSong %i No results for %s by %s" % (songnum, title, songs[e]['artist']) songs[e]['lyrics'] = 'Not found' continue lyrics, found_title, found_artist = get_lyrics(songs[e], rows) time.sleep(1.1) if lyrics == -1: print "\t Song %i No match for %s by %s" % (songnum, songs[e]['title'], songs[e]['artist']) songs[e]['lyrics'] = "No match" continue songs[e]['lyrics'] = lyrics songs[e]['found_artist'] = found_artist songs[e]['found_title'] = found_title print "\tFound %s by %s -- saving lyrics" % (found_title, found_artist) time.sleep(1.1) except: print "\t Song %pi Error fetching lyrics for %s by %s - skipping" % (songnum, songs[e]['title'], songs[e]['artist']) songs[e]['lyrics']
""" Cadastre - Dialog classeas This plugins helps users to import the french land registry ('cadastre') into a database. It is meant to ease the use of the data in QGIs by providing search tools and appropriate layer symbology. begin : 2013-06-11 copyright : (C) 2013,2019 by 3liz email : <EMAIL> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. """ import os import re import sys from pathlib import Path from typing import Any, Dict, List, Union from db_manager.db_plugins.plugin import BaseError, ConnectionError from db_manager.db_plugins.postgis.connector import ( DBConnector, PostGisDBConnector, ) from qgis.core import ( Qgis, QgsDataSourceUri, QgsMapLayer, QgsMessageLog, QgsProject, ) from qgis.PyQt.QtCore import QObject def hasSpatialiteSupport() -> bool: """ Check whether or not spatialite support is ok """ try: from db_manager.db_plugins.spatialite.connector import ( # NOQA SpatiaLiteDBConnector, ) return True except ImportError: return False pass def openFile(filename: str) -> None: """ Opens a file with default system app """ import subprocess if sys.platform == "win32": os.startfile(filename) else: opener = "open" if sys.platform == "darwin" else "xdg-open" subprocess.call([opener, filename]) def getLayerFromLegendByTableProps(project: QgsProject, tableName: str, geomCol: str = 'geom', sql: str = '') -> QgsMapLayer: """ Get the layer from QGIS legend corresponding to a database table name (postgis or sqlite) """ import re layer = None lr = project for lid, l in list(lr.mapLayers().items()): if not hasattr(l, 'providerType'): continue if hasattr(l, 'type') and l.type() != QgsMapLayer.VectorLayer: # Ignore this layer as it's not a vector # QgsMapLayer.VectorLayer is an equivalent to QgsMapLayerType.VectorLayer since 3.8 continue if not l.providerType() in ('postgres', 'spatialite'): # Ignore this layer as it's not a postgres or spatialite vector layer continue connectionParams = getConnectionParameterFromDbLayer(l) reg = r'(\.| )?(%s)' % tableName if connectionParams and \ ( \ connectionParams['table'] == tableName or \ (re.findall(reg, '%s' % connectionParams['table']) and re.findall(reg, '%s' % connectionParams['table'])[0]) \ ) and \ connectionParams['geocol'] == geomCol: # and connectionParams['sql'] == sql: return l return layer def getConnectionParameterFromDbLayer(layer: QgsMapLayer) -> Dict[str, str]: """ Get connection parameters from the layer datasource """ connectionParams = None if layer.providerType() == 'postgres': dbType = 'postgis' else: dbType = 'spatialite' src = layer.source() uri = QgsDataSourceUri(src) # TODO Use immutable namedtuple connectionParams = { 'service': uri.service(), 'dbname': uri.database(), 'host': uri.host(), 'port': uri.port(), 'user': uri.username(), 'password': <PASSWORD>.password(), 'sslmode': uri.sslMode(), 'key': uri.keyColumn(), 'estimatedmetadata': str(uri.useEstimatedMetadata()), 'checkPrimaryKeyUnicity': '', 'srid': uri.srid(), 'type': uri.wkbType(), 'schema': uri.schema(), 'table': uri.table(), 'geocol': uri.geometryColumn(), 'sql': uri.sql(), 'dbType': dbType } return connectionParams def setSearchPath(sql: str, schema: str) -> str: """ Set the search_path parameters if postgis database """ prefix = 'SET search_path = "%s", public, pg_catalog;' % schema if re.search('^BEGIN;', sql): sql = sql.replace('BEGIN;', 'BEGIN;%s' % prefix) else: sql = prefix + sql return sql def fetchDataFromSqlQuery(connector: 'DBConnector', sql: str, schema: str = None) -> List[Any]: """ Execute a SQL query and return [header, data, rowCount] NB: commit qgis/QGIS@14ab5eb changes QGIS DBmanager behaviour """ # print(sql) data = [] header = [] rowCount = 0 c = None ok = True # print "run query" try: c = connector._execute(None, str(sql)) data = [] header = connector._get_cursor_columns(c) if header is None: header = [] if len(header) > 0: data = connector._fetchall(c) rowCount = len(data) except BaseError as e: ok = False QgsMessageLog.logMessage( "Error while fetching data from database : {}".format(str(e.msg)), "cadastre", Qgis.Critical ) QgsMessageLog.logMessage(sql, "cadastre", Qgis.Info) finally: if c: # print "close connection" c.close() del c # TODO: Return tuple return [header, data, rowCount, ok] def getConnectorFromUri(connectionParams: Dict[str, str]) -> 'DBConnector': """ Set connector property for the given database type and parameters """ connector = None uri = QgsDataSourceUri() if connectionParams['dbType'] == 'postgis': if connectionParams['host']: uri.setConnection( connectionParams['host'], connectionParams['port'], connectionParams['dbname'], connectionParams['user'], connectionParams['password'] ) if connectionParams['service']: uri.setConnection( connectionParams['service'], connectionParams['dbname'], connectionParams['user'], connectionParams['password'] ) if Qgis.QGIS_VERSION_INT >= 31200: # we need a fake DBPlugin object # with connectionName and providerName methods obj = QObject() obj.connectionName = lambda: 'fake' obj.providerName = lambda: 'postgres' connector = PostGisDBConnector(uri, obj) else: connector = PostGisDBConnector(uri) if connectionParams['dbType'] == 'spatialite': uri.setConnection('', '', connectionParams['dbname'], '', '') if hasSpatialiteSupport(): from db_manager.db_plugins.spatialite.connector import ( SpatiaLiteDBConnector, ) # Il y a bug évident ici si il n'y pas le support spatialite, quid de SpatiaLiteDBConnector ? try: connector = SpatiaLiteDBConnector(uri) except ConnectionError as e: QgsMessageLog.logMessage( "Erreur lors de la récupération du fichier SQLite : {}".format(str(e)), 'cadastre', Qgis.Critical) return connector def postgisToSpatialite(sql: str, targetSrid: str = '2154') -> str: """ Convert postgis SQL statement into spatialite compatible statements """ # delete some incompatible options # replace other by spatialite syntax replaceDict = [ # delete {'in': r'with\(oids=.+\)', 'out': ''}, {'in': r'comment on [^;]+;', 'out': ''}, {'in': r'alter table ([^;]+) add primary key( )+\(([^;]+)\);', 'out': r'create index idx_\1_\3 on \1 (\3);'}, {'in': r'alter table ([^;]+) add constraint [^;]+ primary key( )+\(([^;]+)\);', 'out': r'create index idx_\1_\3 on \1 (\3);'}, {'in': r'alter table [^;]+drop column[^;]+;', 'out': ''}, {'in': r'alter table [^;]+drop constraint[^;]+;', 'out': ''}, # ~ {'in': r'^analyse [^;]+;', 'out': ''}, # replace {'in': r'truncate (bati|fanr|lloc|nbat|pdll|prop)', 'out': r'drop table \1;create table \1 (tmp text)'}, {'in': r'truncate ', 'out': 'delete from '}, {'in': r'distinct on *\([a-z, ]+\)', 'out': 'distinct'}, {'in': r'serial', 'out': 'INTEGER PRIMARY KEY AUTOINCREMENT'}, {'in': r'string_agg', 'out': 'group_concat'}, {'in': r'current_schema::text, ', 'out': ''}, {'in': r'substring', 'out': 'SUBSTR'}, {'in': r"(to_char\()([^']+) *, *'[09]+' *\)", 'out': r"CAST(\2 AS TEXT)"}, {'in': r"(to_number\()([^']+) *, *'[09]+' *\)", 'out': r"CAST(\2 AS float)"}, {'in': r"(to_date\()([^']+) *, *'DDMMYYYY' *\)", 'out': r"date(substr(\2, 5, 4) || '-' || substr(\2, 3, 2) || '-' || substr(\2, 1, 2))"}, {'in': r"(to_date\()([^']+) *, *'DD/MM/YYYY' *\)", 'out': r"date(substr(\2, 7, 4) || '-' || substr(\2, 4, 2) || '-' || substr(\2, 1, 2))"}, {'in': r"(to_date\()([^']+) *, *'YYYYMMDD' *\)", 'out': r"date(substr(\2, 1, 4) || '-' || substr(\2, 5, 2) || '-' || substr(\2, 7, 2))"}, {'in': r"(to_char\()([^']+) *, *'dd/mm/YYYY' *\)", 'out': r"strftime('%d/%m/%Y', \2)"}, {'in': r"ST_MakeValid\(geom\)", 'out': r"CASE WHEN ST_IsValid(geom) THEN geom ELSE ST_Buffer(geom,0) END"}, {'in': r"ST_MakeValid\(p\.geom\)", 'out': r"CASE WHEN ST_IsValid(p.geom) THEN p.geom ELSE ST_Buffer(p.geom,0) END"}, {'in': r' ~ ', 'out': ' regexp '} ] for a in replaceDict: r = re.compile(a['in'], re.IGNORECASE | re.MULTILINE) sql = r.sub(a['out'], sql) # index spatiaux r = re.compile(r'(create index [^;]+ ON )([^;]+)( USING +)(gist +)?\(([^;]+)\);', re.IGNORECASE | re.MULTILINE) sql = r.sub(r"SELECT createSpatialIndex('\2', '\5');", sql) # replace postgresql "update from" statement r = re.compile(r'(update [^;=]+)(=)([^;=]+ FROM [^;]+)(;)', re.IGNORECASE | re.MULTILINE) sql = r.sub(r'\1=(SELECT \3);', sql) return sql def postgisToSpatialiteLocal10(sql: str, dataYear: str) -> str: # majic formatage : replace multiple column update for loca10 r = re.compile(r'update local10 set[^;]+;', re.IGNORECASE | re.MULTILINE) res = r.findall(sql) replaceBy = '' for statement in res: replaceBy = ''' DROP TABLE IF EXISTS ll; CREATE TABLE ll AS SELECT DISTINCT l.invar, l.ccopre , l.ccosec, l.dnupla, l.ccoriv, l.ccovoi, l.dnvoiri, l10.ccodep || l10.ccodir || l10.invar AS local00, REPLACE(l10.ccodep || l10.ccodir || l10.ccocom || l.ccopre || l.ccosec || l.dnupla,' ', '0') AS parcelle, REPLACE(l10.ccodep || l10.ccodir || l10.ccocom || l.ccovoi,' ', '0') AS voie FROM local00 l INNER JOIN local10 AS l10 ON l.invar = l10.invar AND l.annee = l10.annee WHERE l10.annee='?'; CREATE INDEX idx_ll_invar ON ll (invar); UPDATE local10 SET ccopre = (SELECT DISTINCT ll.ccopre FROM ll WHERE ll.invar = local10.invar) WHERE local10.annee = '?'; UPDATE local10 SET ccosec = (SELECT DISTINCT ll.ccosec FROM ll WHERE ll.invar = local10.invar) WHERE local10.annee = '?'; UPDATE local10 SET dnupla = (SELECT DISTINCT ll.dnupla FROM ll WHERE ll.invar = local10.invar) WHERE local10.annee = '?'; UPDATE local10 SET ccoriv = (SELECT DISTINCT ll.ccoriv FROM ll WHERE ll.invar = local10.invar) WHERE local10.annee = '?'; UPDATE local10 SET ccovoi = (SELECT DISTINCT ll.ccovoi FROM ll WHERE ll.invar = local10.invar) WHERE local10.annee = '?'; UPDATE local10 SET dnvoiri = (SELECT DISTINCT ll.dnvoiri FROM ll WHERE ll.invar = local10.invar) WHERE local10.annee = '?'; UPDATE local10 SET local00 = (SELECT DISTINCT ll.local00 FROM ll WHERE ll.invar = local10.invar) WHERE local10.annee = '?'; UPDATE local10 SET parcelle = (SELECT DISTINCT ll.parcelle FROM ll WHERE ll.invar = local10.invar) WHERE local10.annee = '?'; UPDATE local10 SET voie = (SELECT DISTINCT ll.voie FROM ll
Returns: true. """ pass def IsControlElementCore(self, *args): #cannot find CLR method """ IsControlElementCore(self: UIElementAutomationPeer) -> bool Gets or sets a value that indicates whether the System.Windows.UIElement that is associated with this System.Windows.Automation.Peers.UIElementAutomationPeer is understood by the end user as interactive. Optionally, the user might understand the System.Windows.UIElement as contributing to the logical structure of the control in the GUI. This method is called by System.Windows.Automation.Peers.AutomationPeer.IsControlElement. Returns: true. """ pass def IsEnabledCore(self, *args): #cannot find CLR method """ IsEnabledCore(self: UIElementAutomationPeer) -> bool Gets a value that indicates whether the System.Windows.UIElement that is associated with this System.Windows.Automation.Peers.UIElementAutomationPeer can accept keyboard focus. This method is called by System.Windows.Automation.Peers.AutomationPeer.IsKeyboardFocusable. Returns: A boolean that contains the value of System.Windows.UIElement.IsEnabled. """ pass def IsKeyboardFocusableCore(self, *args): #cannot find CLR method """ IsKeyboardFocusableCore(self: UIElementAutomationPeer) -> bool Gets a value that indicates whether the System.Windows.UIElement that is associated with this System.Windows.Automation.Peers.UIElementAutomationPeer can accept keyboard focus. This method is called by System.Windows.Automation.Peers.AutomationPeer.IsKeyboardFocusable. Returns: true if the element is focusable by the keyboard; otherwise false. """ pass def IsOffscreenCore(self, *args): #cannot find CLR method """ IsOffscreenCore(self: UIElementAutomationPeer) -> bool Gets a value that indicates whether the System.Windows.UIElement that is associated with this System.Windows.Automation.Peers.UIElementAutomationPeer is off the screen. This method is called by System.Windows.Automation.Peers.AutomationPeer.IsOffscreen. Returns: true if the element is not on the screen; otherwise, false. """ pass def IsPasswordCore(self, *args): #cannot find CLR method """ IsPasswordCore(self: UIElementAutomationPeer) -> bool Gets a value that indicates whether the System.Windows.UIElement that is associated with this System.Windows.Automation.Peers.UIElementAutomationPeer contains protected content. This method is called by System.Windows.Automation.Peers.AutomationPeer.IsPassword. Returns: false. """ pass def IsRequiredForFormCore(self, *args): #cannot find CLR method """ IsRequiredForFormCore(self: UIElementAutomationPeer) -> bool Gets a value that indicates whether the System.Windows.UIElement that is associated with this System.Windows.Automation.Peers.UIElementAutomationPeer is required to be completed on a form. This method is called by System.Windows.Automation.Peers.AutomationPeer.IsRequiredForForm. Returns: A boolean that contains the value that is returned by System.Windows.Automation.AutomationProperties.GetIsRequiredForForm(System.Windo ws.DependencyObject), if it's set; otherwise false. """ pass def PeerFromProvider(self, *args): #cannot find CLR method """ PeerFromProvider(self: AutomationPeer, provider: IRawElementProviderSimple) -> AutomationPeer Gets an System.Windows.Automation.Peers.AutomationPeer for the specified System.Windows.Automation.Provider.IRawElementProviderSimple proxy. provider: The class that implements System.Windows.Automation.Provider.IRawElementProviderSimple. Returns: The System.Windows.Automation.Peers.AutomationPeer. """ pass def ProviderFromPeer(self, *args): #cannot find CLR method """ ProviderFromPeer(self: AutomationPeer, peer: AutomationPeer) -> IRawElementProviderSimple Gets the System.Windows.Automation.Provider.IRawElementProviderSimple for the specified System.Windows.Automation.Peers.AutomationPeer. peer: The automation peer. Returns: The proxy. """ pass def SetFocusCore(self, *args): #cannot find CLR method """ SetFocusCore(self: UIElementAutomationPeer) Sets the keyboard input focus on the System.Windows.UIElement that is associated with this System.Windows.Automation.Peers.UIElementAutomationPeer. This method is called by System.Windows.Automation.Peers.AutomationPeer.SetFocus. """ pass def __init__(self, *args): #cannot find CLR method """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass @staticmethod # known case of __new__ def __new__(self, owner): """ __new__(cls: type, owner: TabControl) """ pass IsHwndHost = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Gets a value that indicates whether the element that is associated with this System.Windows.Automation.Peers.AutomationPeer hosts hwnds in Windows Presentation Foundation (WPF). """ IsVirtualized = property(lambda self: object(), lambda self, v: None, lambda self: None) # default class TabItemAutomationPeer(SelectorItemAutomationPeer, IVirtualizedItemProvider, ISelectionItemProvider): """ Exposes System.Windows.Controls.TabItem types to UI Automation. TabItemAutomationPeer(owner: object, tabControlAutomationPeer: TabControlAutomationPeer) """ def GetAcceleratorKeyCore(self, *args): #cannot find CLR method """ GetAcceleratorKeyCore(self: ItemAutomationPeer) -> str Gets the accelerator key for the System.Windows.UIElement that corresponds to the data item in the System.Windows.Controls.ItemsControl.Items collection that is associated with this System.Windows.Automation.Peers.ItemAutomationPeer. Returns: The accelerator key. """ pass def GetAccessKeyCore(self, *args): #cannot find CLR method """ GetAccessKeyCore(self: ItemAutomationPeer) -> str Gets the access key for the System.Windows.UIElement that corresponds to the data item in the System.Windows.Controls.ItemsControl.Items collection that is associated with this System.Windows.Automation.Peers.ItemAutomationPeer. Returns: The access key. """ pass def GetAutomationControlTypeCore(self, *args): #cannot find CLR method """ GetAutomationControlTypeCore(self: TabItemAutomationPeer) -> AutomationControlType Gets the control type for the System.Windows.Controls.TabItem that is associated with this System.Windows.Automation.Peers.TabItemAutomationPeer. Called by System.Windows.Automation.Peers.AutomationPeer.GetAutomationControlType. Returns: System.Windows.Automation.Peers.AutomationControlType.TabItem """ pass def GetAutomationIdCore(self, *args): #cannot find CLR method """ GetAutomationIdCore(self: ItemAutomationPeer) -> str Gets the string that uniquely identifies the System.Windows.UIElement that corresponds to the data item in the System.Windows.Controls.ItemsControl.Items collection that is associated with this System.Windows.Automation.Peers.ItemAutomationPeer. Returns: A string that contains the UI Automation�identifier. """ pass def GetBoundingRectangleCore(self, *args): #cannot find CLR method """ GetBoundingRectangleCore(self: ItemAutomationPeer) -> Rect Gets the System.Windows.Rect that represents the bounding rectangle of the specified System.Windows.UIElement. Returns: The bounding rectangle. """ pass def GetChildrenCore(self, *args): #cannot find CLR method """ GetChildrenCore(self: TabItemAutomationPeer) -> List[AutomationPeer] Gets the collection of child elements of the System.Windows.Controls.TabItem that is associated with this System.Windows.Automation.Peers.TabItemAutomationPeer. Called by System.Windows.Automation.Peers.AutomationPeer.GetChildren. Returns: The collection of child elements. """ pass def GetClassNameCore(self, *args): #cannot find CLR method """ GetClassNameCore(self: TabItemAutomationPeer) -> str Gets the name of the System.Windows.Controls.TabItem that is associated with this System.Windows.Automation.Peers.TabItemAutomationPeer. Called by System.Windows.Automation.Peers.AutomationPeer.GetClassName. Returns: A string that contains "TabItem". """ pass def GetClickablePointCore(self, *args): #cannot find CLR method """ GetClickablePointCore(self: ItemAutomationPeer) -> Point Gets a System.Windows.Point that represents the clickable space that is on the specified System.Windows.UIElement. Returns: The point that represents the clickable space that is on the specified System.Windows.UIElement. """ pass def GetHelpTextCore(self, *args): #cannot find CLR method """ GetHelpTextCore(self: ItemAutomationPeer) -> str Gets the string that describes the functionality of the System.Windows.UIElement that corresponds to the data item in the System.Windows.Controls.ItemsControl.Items collection that is associated with this System.Windows.Automation.Peers.ItemAutomationPeer. Returns: The help text. """ pass def GetHostRawElementProviderCore(self, *args): #cannot find CLR method """ GetHostRawElementProviderCore(self: AutomationPeer) -> HostedWindowWrapper Tells UI Automation where in the UI Automation tree to place the hwnd being hosted by a Windows Presentation Foundation (WPF) element. Returns: This method returns the hosted hwnd to UI Automation for controls that host hwnd objects. """ pass def GetItemStatusCore(self, *args): #cannot find CLR method """ GetItemStatusCore(self: ItemAutomationPeer) -> str Gets a string that conveys the visual status of the specified System.Windows.UIElement. Returns: The status. Examples include "Busy" or "Online". """ pass def GetItemTypeCore(self, *args): #cannot find CLR method """ GetItemTypeCore(self: ItemAutomationPeer) -> str Gets a human-readable string that contains the type of item that the specified System.Windows.UIElement represents. Returns: The item type. An example includes "Mail Message" or "Contact". """ pass def GetLabeledByCore(self, *args): #cannot find CLR method """ GetLabeledByCore(self: ItemAutomationPeer) -> AutomationPeer Gets the System.Windows.Automation.Peers.AutomationPeer for the System.Windows.Controls.Label that is targeted to the specified System.Windows.UIElement. Returns: The System.Windows.Automation.Peers.LabelAutomationPeer for the element that is targeted by the System.Windows.Controls.Label. """ pass def GetLocalizedControlTypeCore(self, *args): #cannot find CLR method """ GetLocalizedControlTypeCore(self: AutomationPeer) -> str When overridden in a derived class, is called by System.Windows.Automation.Peers.AutomationPeer.GetLocalizedControlType. Returns: The type of the control. """ pass def GetNameCore(self, *args): #cannot find CLR method """ GetNameCore(self: TabItemAutomationPeer) -> str Gets the text label of the System.Windows.Controls.TabItem that is associated with this System.Windows.Automation.Peers.TabItemAutomationPeer. Called by System.Windows.Automation.Peers.AutomationPeer.GetName. Returns: The string that contains the label. If set, this method returns the value of the System.Windows.Automation.AutomationProperties.Name property; otherwise this method will return the value of the System.Windows.Controls.HeaderedContentControl.Header property. """ pass def GetOrientationCore(self, *args): #cannot find CLR method """ GetOrientationCore(self: ItemAutomationPeer) -> AutomationOrientation Gets a value that indicates whether the specified System.Windows.UIElement is laid out in a particular direction. Returns: The direction of the specified System.Windows.UIElement. Optionally, the method returns System.Windows.Automation.Peers.AutomationOrientation.None if the
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # "Probabilistic Grammar Fuzzing" - a chapter of "The Fuzzing Book" # Web site: https://www.fuzzingbook.org/html/ProbabilisticGrammarFuzzer.html # Last change: 2022-02-09 08:26:36+01:00 # # Copyright (c) 2021 CISPA Helmholtz Center for Information Security # Copyright (c) 2018-2020 Saarland University, authors, and contributors # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY # CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. r''' The Fuzzing Book - Probabilistic Grammar Fuzzing This file can be _executed_ as a script, running all experiments: $ python ProbabilisticGrammarFuzzer.py or _imported_ as a package, providing classes, functions, and constants: >>> from fuzzingbook.ProbabilisticGrammarFuzzer import <identifier> but before you do so, _read_ it and _interact_ with it at: https://www.fuzzingbook.org/html/ProbabilisticGrammarFuzzer.html A _probabilistic_ grammar allows to attach individual _probabilities_ to production rules. To set the probability of an individual expansion `S` to the value `X` (between 0 and 1), replace it with a pair (S, opts(prob=X)) If we want to ensure that 90% of phone numbers generated have an area code starting with `9`, we can write: >>> from Grammars import US_PHONE_GRAMMAR, extend_grammar, opts >>> PROBABILISTIC_US_PHONE_GRAMMAR: Grammar = extend_grammar(US_PHONE_GRAMMAR, >>> { >>> "": [ >>> "2", "3", "4", "5", "6", "7", "8", >>> ("9", opts(prob=0.9)) >>> ], >>> }) A `ProbabilisticGrammarFuzzer` will extract and interpret these options. Here is an example: >>> probabilistic_us_phone_fuzzer = ProbabilisticGrammarFuzzer(PROBABILISTIC_US_PHONE_GRAMMAR) >>> [probabilistic_us_phone_fuzzer.fuzz() for i in range(5)] ['(918)925-2501', '(981)925-0792', '(934)995-5029', '(955)999-7801', '(964)927-0877'] As you can see, the large majority of area codes now starts with `9`. For more details, source, and documentation, see "The Fuzzing Book - Probabilistic Grammar Fuzzing" at https://www.fuzzingbook.org/html/ProbabilisticGrammarFuzzer.html ''' # Allow to use 'from . import <module>' when run as script (cf. PEP 366) if __name__ == '__main__' and __package__ is None: __package__ = 'fuzzingbook' # Probabilistic Grammar Fuzzing # ============================= if __name__ == '__main__': print('# Probabilistic Grammar Fuzzing') if __name__ == '__main__': from .bookutils import YouTubeVideo YouTubeVideo('XzJqzawOubo') ## Synopsis ## -------- if __name__ == '__main__': print('\n## Synopsis') ## The Law of Leading Digits ## ------------------------- if __name__ == '__main__': print('\n## The Law of Leading Digits') def first_digit_via_string(x: int) -> int: return ord(repr(x)[0]) - ord('0') if __name__ == '__main__': first_digit_via_string(2001) import math def first_digit_via_log(x: int) -> int: frac, whole = math.modf(math.log10(x)) return int(10 ** frac) if __name__ == '__main__': first_digit_via_log(2001) if __name__ == '__main__': (math.log10(1), math.log10(2)) if __name__ == '__main__': (math.log10(2), math.log10(3)) def prob_leading_digit(d: int) -> float: return math.log10(d + 1) - math.log10(d) if __name__ == '__main__': digit_probs = [prob_leading_digit(d) for d in range(1, 10)] [(d, "%.2f" % digit_probs[d - 1]) for d in range(1, 10)] if __name__ == '__main__': import matplotlib.pyplot as plt # type: ignore if __name__ == '__main__': labels = range(1, 10) fig1, ax1 = plt.subplots() ax1.pie(digit_probs, labels=labels, shadow=True, autopct='%1.1f%%', counterclock=False, startangle=90) ax1.axis('equal'); ## Specifying Probabilities ## ------------------------ if __name__ == '__main__': print('\n## Specifying Probabilities') if __name__ == '__main__': # We use the same fixed seed as the notebook to ensure consistency import random random.seed(2001) from .Fuzzer import Fuzzer from .GrammarFuzzer import GrammarFuzzer, all_terminals, display_tree, DerivationTree from .Grammars import is_valid_grammar, EXPR_GRAMMAR, START_SYMBOL, crange from .Grammars import opts, exp_string, exp_opt, set_opts from .Grammars import Grammar, Expansion from typing import List, Dict, Set, Optional, cast, Any, Tuple PROBABILISTIC_EXPR_GRAMMAR: Grammar = { "<start>": ["<expr>"], "<expr>": [("<term> + <expr>", opts(prob=0.1)), ("<term> - <expr>", opts(prob=0.2)), "<term>"], "<term>": [("<factor> * <term>", opts(prob=0.1)), ("<factor> / <term>", opts(prob=0.1)), "<factor>" ], "<factor>": ["+<factor>", "-<factor>", "(<expr>)", "<leadinteger>", "<leadinteger>.<integer>"], "<leadinteger>": ["<leaddigit><integer>", "<leaddigit>"], # Benford's law: frequency distribution of leading digits "<leaddigit>": [("1", opts(prob=0.301)), ("2", opts(prob=0.176)), ("3", opts(prob=0.125)), ("4", opts(prob=0.097)), ("5", opts(prob=0.079)), ("6", opts(prob=0.067)), ("7", opts(prob=0.058)), ("8", opts(prob=0.051)), ("9", opts(prob=0.046)), ], # Remaining digits are equally distributed "<integer>": ["<digit><integer>", "<digit>"], "<digit>": ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"], } if __name__ == '__main__': assert is_valid_grammar(PROBABILISTIC_EXPR_GRAMMAR, supported_opts={'prob'}) if __name__ == '__main__': leaddigits: List[Expansion] = PROBABILISTIC_EXPR_GRAMMAR["<leaddigit>"] leaddigits if __name__ == '__main__': leaddigit_expansion = leaddigits[0] leaddigit_expansion if __name__ == '__main__': exp_string(leaddigit_expansion) def exp_prob(expansion: Expansion) -> float: """Return the options of an expansion""" return exp_opt(expansion, 'prob') if __name__ == '__main__': exp_prob(leaddigit_expansion) if __name__ == '__main__': f = GrammarFuzzer(PROBABILISTIC_EXPR_GRAMMAR) f.fuzz() from .GrammarCoverageFuzzer import GrammarCoverageFuzzer # minor dependency if __name__ == '__main__': f = GrammarCoverageFuzzer(PROBABILISTIC_EXPR_GRAMMAR) f.fuzz() ## Computing Probabilities ## ----------------------- if __name__ == '__main__': print('\n## Computing Probabilities') ### Distributing Probabilities if __name__ == '__main__': print('\n### Distributing Probabilities') def exp_probabilities(expansions: List[Expansion], nonterminal: str ="<symbol>") \ -> Dict[Expansion, float]: probabilities = [exp_prob(expansion) for expansion in expansions] prob_dist = prob_distribution(probabilities, nonterminal) # type: ignore prob_mapping: Dict[Expansion, float] = {} for i in range(len(expansions)): expansion = exp_string(expansions[i]) prob_mapping[expansion] = prob_dist[i] return prob_mapping def prob_distribution(probabilities: List[Optional[float]], nonterminal: str = "<symbol>"): epsilon = 0.00001 number_of_unspecified_probabilities = probabilities.count(None) if number_of_unspecified_probabilities == 0: sum_probabilities = cast(float, sum(probabilities)) assert abs(sum_probabilities - 1.0) < epsilon, \ nonterminal + ": sum of probabilities must be 1.0" return probabilities sum_of_specified_probabilities = 0.0 for p in probabilities: if p is not None: sum_of_specified_probabilities += p assert 0 <= sum_of_specified_probabilities <= 1.0, \ nonterminal + ": sum of specified probabilities must be between 0.0 and 1.0" default_probability = ((1.0 - sum_of_specified_probabilities) / number_of_unspecified_probabilities) all_probabilities = [] for p in probabilities: if p is None: p = default_probability all_probabilities.append(p) assert abs(sum(all_probabilities) - 1.0) < epsilon return all_probabilities if __name__ == '__main__': print(exp_probabilities(PROBABILISTIC_EXPR_GRAMMAR["<leaddigit>"])) if __name__ == '__main__': print(exp_probabilities(PROBABILISTIC_EXPR_GRAMMAR["<digit>"])) if __name__ == '__main__': exp_probabilities(PROBABILISTIC_EXPR_GRAMMAR["<expr>"]) ### Checking Probabilities if __name__ == '__main__': print('\n### Checking Probabilities') def is_valid_probabilistic_grammar(grammar: Grammar, start_symbol: str = START_SYMBOL) -> bool: if not is_valid_grammar(grammar, start_symbol): return False for nonterminal in grammar: expansions = grammar[nonterminal] _ = exp_probabilities(expansions, nonterminal) return True if __name__ == '__main__': assert is_valid_probabilistic_grammar(PROBABILISTIC_EXPR_GRAMMAR) if __name__ == '__main__': assert is_valid_probabilistic_grammar(EXPR_GRAMMAR) from .ExpectError import ExpectError if __name__ == '__main__': with ExpectError(): assert is_valid_probabilistic_grammar({"<start>": [("1", opts(prob=0.5))]}) if __name__ == '__main__': with ExpectError(): assert is_valid_probabilistic_grammar( {"<start>": [("1", opts(prob=1.5)), "2"]}) ## Expanding by Probability ## ------------------------ if __name__ == '__main__': print('\n## Expanding by Probability') import random class ProbabilisticGrammarFuzzer(GrammarFuzzer): """A grammar-based fuzzer respecting probabilities in grammars.""" def check_grammar(self) -> None: super().check_grammar() assert is_valid_probabilistic_grammar(self.grammar) def supported_opts(self) -> Set[str]: return super().supported_opts() | {'prob'} class ProbabilisticGrammarFuzzer(ProbabilisticGrammarFuzzer): def choose_node_expansion(self, node: DerivationTree, children_alternatives: List[Any]) -> int: (symbol, tree) = node expansions = self.grammar[symbol] probabilities = exp_probabilities(expansions) weights: List[float] = [] for children in children_alternatives: expansion = all_terminals((symbol, children)) children_weight = probabilities[expansion] if self.log: print(repr(expansion), "p =", children_weight) weights.append(children_weight) if sum(weights) == 0: # No alternative (probably expanding at minimum cost) return random.choices( range(len(children_alternatives)))[0] else: return random.choices( range(len(children_alternatives)), weights=weights)[0] if __name__ == '__main__': natural_fuzzer = ProbabilisticGrammarFuzzer( PROBABILISTIC_EXPR_GRAMMAR, start_symbol="<leadinteger>") print([natural_fuzzer.fuzz() for i in range(20)]) if __name__ == '__main__': integer_fuzzer = GrammarFuzzer( PROBABILISTIC_EXPR_GRAMMAR, start_symbol="<leadinteger>") print([integer_fuzzer.fuzz() for i in range(20)]) if __name__ == '__main__': leaddigit_fuzzer = ProbabilisticGrammarFuzzer( PROBABILISTIC_EXPR_GRAMMAR, start_symbol="<leaddigit>") leaddigit_fuzzer.fuzz() if __name__ == '__main__': trials = 10000 count = {} for c in crange('0', '9'): count[c] = 0 for i in range(trials): count[leaddigit_fuzzer.fuzz()] += 1 print([(digit, count[digit] / trials) for digit in count]) ## Directed Fuzzing ## ---------------- if __name__ == '__main__': print('\n## Directed Fuzzing') def set_prob(grammar: Grammar, symbol: str, expansion: Expansion, prob: Optional[float]) -> None: """Set the probability of the given expansion of grammar[symbol]""" set_opts(grammar, symbol, expansion, opts(prob=prob)) from .Grammars import URL_GRAMMAR, extend_grammar if __name__ == '__main__': probabilistic_url_grammar = extend_grammar(URL_GRAMMAR) set_prob(probabilistic_url_grammar, "<scheme>", "ftps", 0.8) assert is_valid_probabilistic_grammar(probabilistic_url_grammar) if __name__ == '__main__': probabilistic_url_grammar["<scheme>"] if __name__ == '__main__': prob_url_fuzzer = ProbabilisticGrammarFuzzer(probabilistic_url_grammar) for i in range(10): print(prob_url_fuzzer.fuzz()) if __name__ == '__main__': set_prob(probabilistic_url_grammar, "<scheme>", "ftps", 0.0) assert is_valid_probabilistic_grammar(probabilistic_url_grammar) if __name__ == '__main__': prob_url_fuzzer = ProbabilisticGrammarFuzzer(probabilistic_url_grammar) for i in range(10): print(prob_url_fuzzer.fuzz()) from .Grammars import EXPR_GRAMMAR if __name__ == '__main__': probabilistic_expr_grammar = extend_grammar(EXPR_GRAMMAR) probabilistic_expr_grammar["<expr>"] if __name__ == '__main__': set_prob(probabilistic_expr_grammar, "<expr>", "<term>", 0.0) assert is_valid_probabilistic_grammar(probabilistic_expr_grammar) if __name__ == '__main__': prob_expr_fuzzer = ProbabilisticGrammarFuzzer(probabilistic_expr_grammar) prob_expr_fuzzer.fuzz() ## Probabilities in Context ## ------------------------ if __name__ == '__main__': print('\n## Probabilities in Context') def decrange(start: int, end: int) -> List[Expansion]: """Return a list with string
<gh_stars>0 ######## # Copyright (c) 2015 GigaSpaces Technologies Ltd. All rights reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # * See the License for the specific language governing permissions and # * limitations under the License. import os import json import shlex import shutil import zipfile import subprocess import contextlib from cloudify.workflows import ctx from cloudify import constants, manager from . import constants as snapshot_constants from .constants import SECURITY_FILE_LOCATION, SECURITY_FILENAME from cloudify.utils import ManagerVersion, get_local_rest_certificate from cloudify.utils import get_tenant_name, internal as internal_utils # Path to python binary in the manager environment PYTHON_MANAGER_ENV = '/opt/manager/env/bin/python' # Path to database migration script SCHEMA_SCRIPT = '/opt/manager/resources/cloudify/migrations/schema.py' class DictToAttributes(object): def __init__(self, dic): self._dict = dic def __getattr__(self, name): return self._dict[name] def __str__(self): try: # try to convert to json, # may fail on UTF-8 and stuff, don't sweat on it.. return json.dumps(self._dict) except Exception: return self._dict def copy_files_between_manager_and_snapshot(archive_root, config, to_archive=True, tenant_name=None): """ Copy files/dirs between snapshot/manager and manager/snapshot. :param archive_root: Path to the snapshot archive root. :param config: Config of manager. :param to_archive: If True then copying is from manager to snapshot, otherwise from snapshot to manager. :param tenant_name: If passed, will restore files to this tenant name. Expected to be used only for 3.x upgrades. """ ctx.logger.info('Copying files/directories...') data_to_copy = [ constants.FILE_SERVER_BLUEPRINTS_FOLDER, constants.FILE_SERVER_DEPLOYMENTS_FOLDER, constants.FILE_SERVER_UPLOADED_BLUEPRINTS_FOLDER, constants.FILE_SERVER_PLUGINS_FOLDER, ] # To work with cert dir logic for archiving if tenant_name: # This is a 3.x install, files go in tenant folders data_to_copy = [ ( # The root path to copy the files to in the manager for each # type of restored file # e.g. blueprints/<tenant_name>/ os.path.join(path, tenant_name) # Plugins are an exception as they are all stored in one path # under UUIDs without tenant names if path != constants.FILE_SERVER_PLUGINS_FOLDER else path, # The path of the file type in the snapshot path, ) for path in data_to_copy ] else: # This is a 4.x+ install, files go where they went. data_to_copy = [(path, path) for path in data_to_copy] local_cert_dir = os.path.dirname(get_local_rest_certificate()) if to_archive: data_to_copy.append((local_cert_dir, snapshot_constants.ARCHIVE_CERT_DIR)) data_to_copy.append((SECURITY_FILE_LOCATION, SECURITY_FILENAME)) ctx.logger.info(str(data_to_copy)) for p1, p2 in data_to_copy: # first expand relative paths if p1[0] != '/': p1 = os.path.join(config.file_server_root, p1) if p2[0] != '/': p2 = os.path.join(archive_root, p2) # make p1 to always point to source and p2 to target of copying if not to_archive: p1, p2 = p2, p1 copy_snapshot_path(p1, p2) def copy_stage_files(archive_root): """Copy Cloudify Stage files into the snapshot""" stage_data = [ snapshot_constants.STAGE_CONFIG_FOLDER, snapshot_constants.STAGE_USERDATA_FOLDER ] for folder in stage_data: copy_snapshot_path( os.path.join(snapshot_constants.STAGE_BASE_FOLDER, folder), os.path.join(archive_root, 'stage', folder)) def restore_stage_files(archive_root, override=False): """Copy Cloudify Stage files from the snapshot archive to stage folder. Note that only the stage user can write into the stage directory, so we use sudo to run a script (created during bootstrap) that copies the restored files. """ stage_archive = os.path.join(archive_root, 'stage') if not os.path.exists(stage_archive): # no stage files in the snapshot archive - nothing to do # (perhaps the snapshot was made before stage was included in it?) return # let's not give everyone full read access to the snapshot, instead, # copy only the stage-related parts and give the stage user read access # to those stage_tempdir = '{0}_stage'.format(archive_root) shutil.copytree(stage_archive, stage_tempdir) run(['/bin/chmod', 'a+r', '-R', stage_tempdir]) try: sudo( [ snapshot_constants.MANAGER_PYTHON, snapshot_constants.STAGE_TOKEN_SCRIPT ], user=snapshot_constants.STAGE_USER, ) restore_command = [snapshot_constants.STAGE_RESTORE_SCRIPT, stage_tempdir] if override: restore_command.append('--override-existing') sudo(restore_command, user=snapshot_constants.STAGE_USER) finally: shutil.rmtree(stage_tempdir) sudo(['/usr/bin/systemctl', 'restart', 'cloudify-stage'], ignore_failures=True) def copy_composer_files(archive_root): """Copy Cloudify Composer files into the snapshot""" composer_data = [ snapshot_constants.COMPOSER_CONFIG_FOLDER, snapshot_constants.COMPOSER_BLUEPRINTS_FOLDER, ] for folder in composer_data: copy_snapshot_path( os.path.join(snapshot_constants.COMPOSER_BASE_FOLDER, folder), os.path.join(archive_root, 'composer', folder)) def restore_composer_files(archive_root): """Copy Composer files from the snapshot archive to Composer folder. """ composer_archive = os.path.join(archive_root, 'composer') if not os.path.exists(composer_archive): # no composer files in the snapshot archive - nothing to do # (perhaps the snapshot was made before composer was included in it?) return composer_data = [ snapshot_constants.COMPOSER_CONFIG_FOLDER, snapshot_constants.COMPOSER_BLUEPRINTS_FOLDER, ] for folder in composer_data: dest_path = os.path.join(snapshot_constants.COMPOSER_BASE_FOLDER, folder) copied = copy_snapshot_path( os.path.join(archive_root, 'composer', folder), dest_path) if copied: run(['/bin/chmod', '-R', 'g+w', dest_path]) def copy_snapshot_path(source, destination): # source doesn't need to exist, then ignore if not os.path.exists(source): ctx.logger.warning('Source not found: {0}. Skipping...'.format(source)) return False ctx.logger.debug( 'Copying from dump: {0} to: {1}..'.format(source, destination)) # copy data if os.path.isfile(source): shutil.copy(source, destination) else: if os.path.exists(destination): shutil.rmtree(destination) shutil.copytree(source, destination) return True def copy(source, destination): ctx.logger.debug('Copying {0} to {1}..'.format(source, destination)) destination_dir = os.path.dirname(destination) if not os.path.exists(destination_dir): ctx.logger.debug( 'Path does not exist: {0}. Creating it...'.format( destination_dir)) sudo(['mkdir', '-p', destination_dir]) sudo(['cp', '-rp', source, destination]) def sudo(command, user=None, ignore_failures=False): if isinstance(command, str): command = shlex.split(command) if user is not None: command = ['sudo', '-u', user] + command else: command.insert(0, 'sudo') return run(command=command, ignore_failures=ignore_failures) def run(command, ignore_failures=False, redirect_output_path=None, cwd=None): if isinstance(command, str): command = shlex.split(command) command_str = ' '.join(command) ctx.logger.debug('Running command: {0}'.format(command_str)) stderr = subprocess.PIPE stdout = subprocess.PIPE if redirect_output_path: ctx.logger.debug('Command: {0} Redirect output to: {1}'. format(' '.join(command), redirect_output_path)) with open(redirect_output_path, 'a') as output: proc = subprocess.Popen(command, stdout=output, stderr=stderr, cwd=cwd) else: proc = subprocess.Popen(command, stdout=stdout, stderr=stderr, cwd=cwd) proc.aggr_stdout, proc.aggr_stderr = proc.communicate() if proc and proc.returncode != 0: if not ignore_failures: msg = 'Failed running command: {0} ({1}).'.format( command_str, proc.aggr_stderr) raise RuntimeError(msg) return proc def get_manager_version(client): return ManagerVersion(client.manager.get_version()['version']) def get_tenants_list(): client = manager.get_rest_client(snapshot_constants.DEFAULT_TENANT_NAME) version = client.manager.get_version() if version['edition'] != 'premium': return [snapshot_constants.DEFAULT_TENANT_NAME] tenants = client.tenants.list(_include=['name'], _get_all_results=True) return [tenant.name for tenant in tenants] def get_dep_contexts(version): deps = {} tenants = [get_tenant_name()] if version < snapshot_constants.V_4_0_0 \ else get_tenants_list() for tenant_name in tenants: # Temporarily assign the context a different tenant name so that # we can retrieve that tenant's deployment contexts with internal_utils._change_tenant(ctx, tenant_name): # We have to zero this out each time or the cached version for # the previous tenant will be used ctx._dep_contexts = None # Get deployment contexts for this tenant deps[tenant_name] = ctx.deployments_contexts return deps.items() def is_compute(node): return constants.COMPUTE_NODE_TYPE in node.type_hierarchy def make_zip64_archive(zip_filename, directory): """Create zip64 archive that contains all files in a directory. zip64 is a set of extensions on top of the zip file format that allows to have files larger than 2GB. This is important in snapshots where the amount of data to backup might be huge. Note that `shutil` provides a method to register new formats based on the extension of the target file, since a `.zip` extension is still desired, using such an extension mechanism is not an option to avoid patching the already registered zip format. In any case, this function is heavily inspired in stdlib's `shutil._make_zipfile`. :param zip_filename: Path to the zip file to be created :type zip_filename: str :path directory: Path to directory where all files to compress are located :type directory: str """ zip_context_manager = zipfile.ZipFile( zip_filename, 'w', compression=zipfile.ZIP_DEFLATED, allowZip64=True, ) with zip_context_manager as zip_file: path = os.path.normpath(directory) ctx.logger.debug('Creating zip archive of: {0}'.format(path)) base_dir = path for dirpath, dirnames, filenames in os.walk(directory): for dirname in sorted(dirnames): path = os.path.normpath(os.path.join(dirpath, dirname)) zip_file.write(path, os.path.relpath(path, base_dir)) for filename in filenames: path = os.path.normpath(os.path.join(dirpath, filename)) # Not sure why this check is needed, # but it's in the original stdlib's implementation if os.path.isfile(path): zip_file.write(path, os.path.relpath(path, base_dir)) @contextlib.contextmanager def db_schema(revision, config=None): """Downgrade schema to desired revision to perform operation and upgrade. Used when restoring a snapshot to make sure the restore operation happens whith the same version of the schema that was used when the snapshot was created. :param revision: Revision to downgrade to before performing any operation. :type revision: str """ db_schema_downgrade(revision, config=config) yield db_schema_upgrade(config=config) def db_schema_downgrade(revision='-1', config=None): """Downgrade database schema. Used before restoring a snapshot to make sure that the schema matches the one that was used when the snapshot was created. :param revision: Revision to downgrade to. :type revision: str """ _schema(config, ['downgrade', revision]) def db_schema_upgrade(revision='head', config=None): """Upgrade database schema. Used after restoring snapshot to get an up-to-date schema. :param revision: Revision to upgrade to. :type revision: str """ _schema(config, ['upgrade',
<gh_stars>1-10 ############################################################################# # # # webGen module to BFA c7 # # ############################################################################# """ This is a simple HTML/JS/CSS generator/framework mainly for the purpose of maintaining the webclient of bfa. It's borrowing some ideas from the model-view-presenter scheme to produce 'views' containing html, css, js. This package is still under heavy-development and will continue to change a lot. The next concept that should be integrated is that of 'subviews', not actually served from the webservice on their own but, that can concatenate together to produce 'views' actually served from the webservice. Dependencies: webgen -> framework note:: Author(s): Mitch last-check: 07.07.2021 """ from __future__ import annotations from os.path import exists from bfassist.webgen.framework import * from bfassist.webgen.framework.html import HTML_Node from bfassist.webgen.framework.css import CSS_Style from bfassist.webgen.framework.js import JS_Function # noinspection PyUnusedLocal def __preload__(forClient: bool = True): pass # noinspection PyUnusedLocal def __postload__(forClient: bool = True): pass class View: """ Represents a specific view from the browser at the webclient. :param Name: Name and importantly also the name of the folder/package that's used for production. :param DisplayName: Name of the view when displayed e.g. in the navigation. :param Description: A description of this view. :param HTML_DOCUMENT: HTML document to produce this view. :param STYLE_SHEET: "Private" CSS style sheet of this view. :param SCRIPT: "Private" JS script of this view. :param Stylesheets: Dictionary of stylesheets used in this view with the view the stylesheets originally belong to as keys. :param Scripts: Dictionary of scripts used in this view with names as keys. :param cached: A cached version of the view. A list containing the html, css and js. :param exported: An exported version of the view. A list containing the paths to the html, css and js. note:: Author(s): Mitch """ def __init__(self, Name: str, DisplayName: str, Description: str = "", HTML_DOCUMENT: HTML_Document = None, STYLE_SHEET: CSS_Stylesheet = None, SCRIPT: JS_Script = None, Stylesheets: dict = None, Scripts: dict = None, cached: list = None, exported: list = None): self.Name = Name self.DisplayName = DisplayName self.Description = Description if HTML_DOCUMENT is None: self.HTML_DOCUMENT = HTML_Document() else: self.HTML_DOCUMENT = HTML_DOCUMENT if STYLE_SHEET is None: self.STYLE_SHEET = CSS_Stylesheet(self.Name + 'Styles.css') else: self.STYLE_SHEET = STYLE_SHEET if SCRIPT is None: self.SCRIPT = JS_Script(self.Name + 'Script.js') else: self.SCRIPT = SCRIPT if Stylesheets is None: self.Stylesheets = {self: self.STYLE_SHEET} else: self.Stylesheets = Stylesheets for view in self.Stylesheets: if view == self: self.HTML_DOCUMENT.addStyleSheet(self.styleSheetToNode()) else: self.addScriptFromForeignView(view) if Scripts is None: self.Scripts = {self: self.SCRIPT} else: self.Scripts = Scripts for view in self.Scripts: if view == self: self.HTML_DOCUMENT.addScript(self.scripToNode()) else: self.addScriptFromForeignView(view) self.cached = cached self.exported = exported def setTitle(self, title: str): self.HTML_DOCUMENT.setTitle(title) def __iadd__(self, other): """ Truly magic function that can receive a single HTML_Node, CSS_Style or JS_Function and correctly append it to the HTML, CSS or JS of this view. It can also receive tuples of valid inner HTML or JS functions as well as sets of CSS styles and even tuples containing 3 of these in a random order. :param other: Value as specified in the description. :return: The return value of the respective __iadd__ called. note:: Author(s): Mitch """ if isinstance(other, HTML_Node): self.HTML_DOCUMENT.__iadd__(other) return self elif isinstance(other, CSS_Style): self.STYLE_SHEET.__iadd__(other) return self elif isinstance(other, JS_Function): self.SCRIPT.__iadd__(other) return self elif isinstance(other, tuple): if HTML_Node.isValidInnerHTML(other): self.HTML_DOCUMENT.__iadd__(other) return self elif JS_Script.allFunctionsAreFunctions(other): self.SCRIPT.__iadd__(other) return self else: if 1 <= len(other) <= 3: try: for elem in other: self.__iadd__(elem) return self except TypeError: raise TypeError("Can only += tuples containing HTML_Node, CSS_Style, JS_Function or tuples" "containing tuples of valid inner HTML or exclusively JS functions or sets of" "CSS styles. But " + str(other) + " is not.") else: raise TypeError("Can only += tuples with valid innerHTML or containing only JS_Function but " + str(other) + " is neither.") elif isinstance(other, set): if CSS_Stylesheet.allStylesAreStyles(other): self.STYLE_SHEET.__iadd__(other) return self else: raise TypeError("Can only += sets containing only CSS_Style but " + str(other) + " is not.") else: raise TypeError("Can only += values of type HTML_Node, CSS_Style or JS_Function but value was of type " + str(type(other))) @staticmethod def build(): """ Function to be overridden for building the view so its code can be read after the rest of the application was loaded. note:: Author(s): Mitch """ pass def styleSheetToNode(self): """ Function to turn the style sheet of this view into a node for linking it in the head of its HTML document. :return: The node that links to the style sheet. note:: Author(s): Mitch """ return self.STYLE_SHEET.toNode(self.Name + '/' + self.STYLE_SHEET.filename) def asForeignStyleSheetToNode(self, foreignView: View): """ Function to turn the sheet of this view into a node for a foreign view. :param foreignView: The foreign view that wants to link this style sheet. :return: The node links to the style sheet. note:: Author(s): Mitch """ depth = foreignView.Name.count('/') + 1 return self.STYLE_SHEET.toNode('../'*depth + self.Name + '/' + self.STYLE_SHEET.filename) def addStyleSheetFromForeignView(self, foreignView: View): """ Function to add a foreign stylesheet to this view. :param foreignView: The view to add the stylesheet from. note:: Author(s): Mitch """ self.Stylesheets[foreignView] = foreignView.STYLE_SHEET self.HTML_DOCUMENT.addStyleSheet(foreignView.asForeignStyleSheetToNode(self)) def scripToNode(self): """ Function to turn the script of this view into a node for linking it in the head of a HTML document. :return: The node that links to the script. note:: Author(s): Mitch """ return self.SCRIPT.toNode(self.Name + '/' + self.SCRIPT.filename) def asForeignScriptToNode(self, foreignView: View): """ Function to turn the script of this view into a node for a foreign view. :param foreignView: The foreign view that wants to link this script. :return: The node links to the script. note:: Author(s): Mitch """ depth = foreignView.Name.count('/') + 1 return self.SCRIPT.toNode('../' * depth + self.Name + '/' + self.SCRIPT.filename) def addScriptFromForeignView(self, foreignView: View): """ Function to add a foreign already exported script to this view. :param foreignView: The view to add the script from. note:: Author(s): Mitch """ self.Scripts[foreignView] = foreignView.SCRIPT self.HTML_DOCUMENT.addScript(foreignView.asForeignScriptToNode(self)) def exportHTML(self): """ Function to export the HTML document of this view. note:: Author(s): Mitch """ with open('bfassist/standalone/webclient/' + self.Name + '/' + self.HTML_DOCUMENT.filename, 'w') as htmlFile: htmlFile.write(self.HTML_DOCUMENT.toString()) def exportStyleSheet(self): """ Function to export the stylesheets attached to this view. note:: Author(s): Mitch """ with open('bfassist/standalone/webclient/' + self.Name + '/' + self.STYLE_SHEET.filename, 'w') as cssFile: cssFile.write(self.STYLE_SHEET.toString()) def exportScript(self): """ Function to export the scripts attached to this view. note:: Author(s): Mitch """ with open('bfassist/standalone/webclient/' + self.Name + '/' + self.SCRIPT.filename, 'w') as jsFile: jsFile.write(self.SCRIPT.toString()) def export(self): """ Function to export all documents attached to this view. note:: Author(s): Mitch """ try: if not exists('bfassist/standalone/webclient/' + self.Name + '/' + self.HTML_DOCUMENT.filename): self.exportHTML() else: with open('bfassist/standalone/webclient/' + self.Name + '/' + self.HTML_DOCUMENT.filename, 'r') \ as htmlFile: HTML = htmlFile.read() if len(HTML) != len(self.HTML_DOCUMENT.toString()): self.exportHTML() if self.exported: self.exported[0] = 'bfassist/standalone/webclient/' + self.Name + '/' + self.HTML_DOCUMENT.filename else: self.exported = ['bfassist/standalone/webclient/' + self.Name + '/' + self.HTML_DOCUMENT.filename, None, None] if not exists('bfassist/standalone/webclient/' + self.Name + '/' + self.STYLE_SHEET.filename): self.exportStyleSheet() else: with open('bfassist/standalone/webclient/' + self.Name + '/' + self.STYLE_SHEET.filename, 'r') \ as cssFile: CSS = cssFile.read() if len(CSS) != len(self.STYLE_SHEET.toString()): self.exportStyleSheet() if self.exported: self.exported[1] = 'bfassist/standalone/webclient/' + self.Name + '/' + self.STYLE_SHEET.filename else: self.exported = [None, 'bfassist/standalone/webclient/' + self.Name + '/' + self.STYLE_SHEET.filename, None] if not exists('bfassist/standalone/webclient/' + self.Name + '/' + self.SCRIPT.filename): self.exportScript() else: with open('bfassist/standalone/webclient/' + self.Name + '/' + self.SCRIPT.filename, 'r') as jsFile: JS = jsFile.read() if len(JS) != len(self.SCRIPT.toString()): self.exportScript() if self.exported: self.exported[2] = 'bfassist/standalone/webclient/' + self.Name + '/' + self.SCRIPT.filename else: self.exported = [None, None, 'bfassist/standalone/webclient/' + self.Name + '/' + self.SCRIPT.filename] except FileNotFoundError: print("Using module outside of valid bfa environment. Commencing without exporting the " + self.DisplayName + " view.") def cacheExported(self): """ Function to cache the exported documents of this view. note:: Author(s): Mitch """ with open(self.exported[0], 'r') as htmlFile: HTML = htmlFile.read() with open(self.exported[1], 'r') as cssFile: CSS = cssFile.read() with open(self.exported[2], 'r') as jsFile: JS = jsFile.read() self.cached = [HTML, CSS, JS] def serveHTML(self): """ Function to serve the HTML document of this view. :return: The HTML document of this view as string. note:: Author(s): Mitch """ if self.cached:
14 - 14: iIii1I11I1II1 - iIii1I11I1II1 I1IiIiiIiIII = lisp_core_commands [ "lisp debug" ] I1IiIiiIiIII = I1IiIiiIiIII [ 1 ] if 5 - 5: IiII if 84 - 84: II111iiii * oO0o * II111iiii % IiII / I1IiiI if 100 - 100: IiII . Ii1I - iIii1I11I1II1 . i11iIiiIii / II111iiii if 71 - 71: I1Ii111 * Oo0Ooo . I11i if 49 - 49: IiII * O0 . IiII o0O0O0ooo0oOO , iI11 , I1IiIiiIiIII = lisp_syntax_check ( I1IiIiiIiIII , clause ) if 19 - 19: II111iiii - IiII if 59 - 59: o0oOOo0O0Ooo * OoO0O00 - Ii1I . OOooOOo if 89 - 89: OOooOOo if 69 - 69: ooOoO0o - OoooooooOO * O0 if ( o0O0O0ooo0oOO == True ) : return ( iI11 ) if 84 - 84: ooOoO0o + i11iIiiIii - OOooOOo * ooOoO0o O0O0oo = { "itr" : "lisp-itr" , "etr" : "lisp-etr" , "rtr" : "lisp-rtr" , "map-resolver" : "lisp-mr" , "map-server" : "lisp-ms" , "ddt-node" : "lisp-ddt" , "core" : "" } if 33 - 33: ooOoO0o % i1IIi - oO0o . O0 / O0 for oo00o0 in I1IiIiiIiIII : Oo0 = O0O0oo [ oo00o0 ] if ( single_process and single_process != Oo0 ) : continue if 17 - 17: Ii1I / iIii1I11I1II1 - OoO0O00 + I1IiiI % OOooOOo OOOO0o0 = I1IiIiiIiIII [ oo00o0 ] oOOI11I = ( "lisp debug {\n" + " {} = {}\n" . format ( oo00o0 , OOOO0o0 ) + "}\n" ) if 14 - 14: o0oOOo0O0Ooo % IiII + I1ii11iIi11i + OoO0O00 if 76 - 76: OoO0O00 - i11iIiiIii + OoOoOO00 + OOooOOo / OoooooooOO if 50 - 50: II111iiii - I1Ii111 + iIii1I11I1II1 + iIii1I11I1II1 if 91 - 91: II111iiii - O0 . iIii1I11I1II1 . O0 + I1ii11iIi11i - II111iiii if 26 - 26: o0oOOo0O0Ooo if ( oo00o0 == "core" ) : lisp_process_command ( None , None , oOOI11I , None , [ None ] ) continue if 12 - 12: OoooooooOO / O0 + II111iiii * I1ii11iIi11i if 46 - 46: II111iiii - IiII * OoooooooOO / oO0o % IiII oOOI11I = lisp . lisp_command_ipc ( oOOI11I , "lisp-core" ) lisp . lisp_ipc ( oOOI11I , lisp_socket , Oo0 ) if ( single_process ) : break if 11 - 11: iIii1I11I1II1 . OoOoOO00 / IiII % ooOoO0o return ( iI11 ) if 61 - 61: ooOoO0o - OOooOOo + OOooOOo if 40 - 40: i11iIiiIii . iIii1I11I1II1 if 2 - 2: i1IIi * oO0o - oO0o + OoooooooOO % OoOoOO00 / OoOoOO00 if 3 - 3: OoooooooOO if 71 - 71: IiII + i1IIi - iII111i - i11iIiiIii . I11i - ooOoO0o if 85 - 85: I1ii11iIi11i - OoOoOO00 / I1ii11iIi11i + OOooOOo - iII111i if 49 - 49: OoO0O00 - O0 / OoO0O00 * OoOoOO00 + I1Ii111 def lisp_replace_password_in_clause ( clause , keyword_string ) : O0OO0O = clause . find ( keyword_string ) if 35 - 35: II111iiii . I1IiiI / i1IIi / I1IiiI * oO0o if 85 - 85: II111iiii . ooOoO0o % OOooOOo % I11i if 80 - 80: oO0o * I11i / iIii1I11I1II1 % oO0o / iIii1I11I1II1 if 42 - 42: i1IIi / i11iIiiIii . Oo0Ooo * iII111i . i11iIiiIii * O0 if ( O0OO0O == - 1 ) : return ( clause ) if 44 - 44: i1IIi . I1IiiI / i11iIiiIii + IiII if 27 - 27: OOooOOo if 52 - 52: I1Ii111 % OoOoOO00 + iIii1I11I1II1 * oO0o . Ii1I if 95 - 95: iIii1I11I1II1 . IiII - OoooooooOO * OoO0O00 / o0oOOo0O0Ooo O0OO0O += len ( keyword_string ) o0o0O0O00oOOo = clause [ O0OO0O : : ] . find ( "\n" ) o0o0O0O00oOOo += O0OO0O Ii1IIi = clause [ O0OO0O : o0o0O0O00oOOo ] . replace ( " " , "" ) if 74 - 74: oO0o if ( len ( Ii1IIi ) != 0 and Ii1IIi [ 0 ] == "=" ) : return ( clause ) if 34 - 34: iII111i if 44 - 44: i1IIi % I1IiiI % o0oOOo0O0Ooo if 9 - 9: Oo0Ooo % OoooooooOO - Ii1I if 43 - 43: OoO0O00 % OoO0O00 if 46 - 46: Oo0Ooo % iIii1I11I1II1 . iII111i . O0 * ooOoO0o / OoooooooOO if 7 - 7: oO0o - O0 * I11i - o0oOOo0O0Ooo - II111iiii Ii1IIi = Ii1IIi . replace ( " " , "" ) Ii1IIi = Ii1IIi . replace ( "\t" , "" ) Ii1IIi = lisp_hash_password ( Ii1IIi ) clause = clause [ 0 : O0OO0O ] + " =" + Ii1IIi + clause [ o0o0O0O00oOOo : : ] if 41 - 41: I1IiiI - I1Ii111 % II111iiii . I1Ii111 - I11i if 45 - 45: Ii1I - OOooOOo if 70 - 70: OoO0O00 % I1IiiI / I1IiiI . I11i % ooOoO0o . II111iiii if 10 - 10: Ii1I - i11iIiiIii . I1ii11iIi11i % i1IIi return ( clause ) if 78 - 78: iIii1I11I1II1 * Oo0Ooo . Oo0Ooo - OOooOOo . iIii1I11I1II1 if 30 - 30: ooOoO0o + ooOoO0o % IiII - o0oOOo0O0Ooo - I1ii11iIi11i if 36 - 36: I11i % OOooOOo if 72 - 72: I1IiiI / iII111i - O0 + I11i if 83 - 83: O0 if 89 - 89: Oo0Ooo + I1ii11iIi11i - o0oOOo0O0Ooo if 40 - 40: OoO0O00 + OoO0O00 if 94 - 94: iII111i * iIii1I11I1II1 . I11i if 13 - 13: iIii1I11I1II1 * OoOoOO00 / I1Ii111 % ooOoO0o + oO0o def lisp_user_account_command ( clause ) : if 41 - 41: I1ii11iIi11i oOOI11I = clause . split ( " " ) oOOI11I = oOOI11I [ 0 ] + " " + oOOI11I [ 1 ] if 5 - 5: Oo0Ooo I1IiIiiIiIII = lisp_core_commands [ "lisp user-account" ] I1IiIiiIiIII = I1IiIiiIiIII [ 1 ] if 100 - 100: Ii1I + iIii1I11I1II1 if 59 - 59: IiII if 89 - 89: OoOoOO00 % iIii1I11I1II1 if 35 - 35: I1ii11iIi11i + I1Ii111 - OoOoOO00 % oO0o % o0oOOo0O0Ooo % OoOoOO00 if 45 - 45: I1IiiI * OOooOOo % OoO0O00 o0O0O0ooo0oOO , iI11 , I1IiIiiIiIII = lisp_syntax_check ( I1IiIiiIiIII , clause ) if 24 - 24: ooOoO0o - I11i * oO0o if 87 - 87: Ii1I - I1ii11iIi11i % I1ii11iIi11i . oO0o / I1ii11iIi11i if 6 - 6: OoOoOO00 / iIii1I11I1II1 * OoooooooOO * i11iIiiIii if 79 - 79: IiII % OoO0O00 if ( o0O0O0ooo0oOO == False ) : iI11 = lisp_replace_password_in_clause ( iI11 , "password =" ) if 81 - 81: i11iIiiIii + i11iIiiIii * OoO0O00 + IiII return ( iI11 ) if 32 - 32: O0 . OoooooooOO if 15 - 15: I1IiiI . OoO0O00 if 17 - 17: i11iIiiIii / Oo0Ooo . OoO0O00 / I1IiiI if 38 - 38: i1IIi . I1ii11iIi11i % Ii1I + iIii1I11I1II1 + O0 if 47 - 47: OoO0O00 + IiII / II111iiii if 97 - 97: I1ii11iIi11i / I1IiiI % O0 + i1IIi - ooOoO0o if 38 - 38: o0oOOo0O0Ooo % I1Ii111 + i11iIiiIii + iII111i + ooOoO0o / i11iIiiIii def lisp_rtr_list_command ( clause ) : oOOI11I = clause . split ( " " ) oOOI11I = oOOI11I [ 0 ] + " " + oOOI11I [ 1 ] if 94 - 94: iII111i - Oo0Ooo + oO0o I1IiIiiIiIII = lisp_core_commands [ "lisp rtr-list" ] I1IiIiiIiIII = I1IiIiiIiIII [ 1 ] if 59 - 59: I11i . I1IiiI - iIii1I11I1II1 + iIii1I11I1II1 if 56 - 56: oO0o + ooOoO0o if 32 - 32: II111iiii + OoOoOO00 % ooOoO0o / OoOoOO00 + I1ii11iIi11i if 2 - 2: i11iIiiIii - I1Ii111 + OoO0O00 % I11i * Ii1I if 54 - 54: O0 - iII111i . OOooOOo % iII111i + iII111i o0O0O0ooo0oOO , iI11 , I1IiIiiIiIII = lisp_syntax_check ( I1IiIiiIiIII , clause ) if 36 - 36: OOooOOo % i11iIiiIii if ( o0O0O0ooo0oOO ) : return ( iI11 ) if 47 - 47: i1IIi + II111iiii .
+ eY**2 + fXY BiQuadratic solution requires a minimum of 6 data pairs QuadraticLinear Table Equation: Output = a + bX + cX**2 + dY + eXY + fX**2Y QuadraticLinear solution requires a minimum of 6 data pairs """ _schema = {'extensible-fields': OrderedDict([(u'x value', {'name': u'X Value', 'pyname': u'x_value', 'required-field': True, 'autosizable': False, 'autocalculatable': False, 'type': u'real'}), (u'y value', {'name': u'Y Value', 'pyname': u'y_value', 'required-field': True, 'autosizable': False, 'autocalculatable': False, 'type': u'real'}), (u'output value', {'name': u'Output Value', 'pyname': u'output_value', 'required-field': True, 'autosizable': False, 'autocalculatable': False, 'type': u'real'})]), 'fields': OrderedDict([(u'name', {'name': u'Name', 'pyname': u'name', 'required-field': True, 'autosizable': False, 'autocalculatable': False, 'type': u'alpha'}), (u'curve type', {'name': u'Curve Type', 'pyname': u'curve_type', 'required-field': True, 'autosizable': False, 'accepted-values': [u'BiQuadratic', u'QuadraticLinear'], 'autocalculatable': False, 'type': 'alpha'}), (u'interpolation method', {'name': u'Interpolation Method', 'pyname': u'interpolation_method', 'default': u'LagrangeInterpolationLinearExtrapolation', 'required-field': False, 'autosizable': False, 'accepted-values': [u'LinearInterpolationOfTable', u'EvaluateCurveToLimits', u'LagrangeInterpolationLinearExtrapolation'], 'autocalculatable': False, 'type': 'alpha'}), (u'minimum value of x', {'name': u'Minimum Value of X', 'pyname': u'minimum_value_of_x', 'required-field': False, 'autosizable': False, 'autocalculatable': False, 'type': u'real'}), (u'maximum value of x', {'name': u'Maximum Value of X', 'pyname': u'maximum_value_of_x', 'required-field': False, 'autosizable': False, 'autocalculatable': False, 'type': u'real'}), (u'minimum value of y', {'name': u'Minimum Value of Y', 'pyname': u'minimum_value_of_y', 'required-field': False, 'autosizable': False, 'autocalculatable': False, 'type': u'real'}), (u'maximum value of y', {'name': u'Maximum Value of Y', 'pyname': u'maximum_value_of_y', 'required-field': False, 'autosizable': False, 'autocalculatable': False, 'type': u'real'}), (u'minimum table output', {'name': u'Minimum Table Output', 'pyname': u'minimum_table_output', 'required-field': False, 'autosizable': False, 'autocalculatable': False, 'type': u'real'}), (u'maximum table output', {'name': u'Maximum Table Output', 'pyname': u'maximum_table_output', 'required-field': False, 'autosizable': False, 'autocalculatable': False, 'type': u'real'}), (u'input unit type for x', {'name': u'Input Unit Type for X', 'pyname': u'input_unit_type_for_x', 'default': u'Dimensionless', 'required-field': False, 'autosizable': False, 'accepted-values': [u'Dimensionless', u'Temperature', u'VolumetricFlow', u'MassFlow', u'Power', u'Distance'], 'autocalculatable': False, 'type': 'alpha'}), (u'input unit type for y', {'name': u'Input Unit Type for Y', 'pyname': u'input_unit_type_for_y', 'default': u'Dimensionless', 'required-field': False, 'autosizable': False, 'accepted-values': [u'Dimensionless', u'Temperature', u'VolumetricFlow', u'MassFlow', u'Power', u'Distance'], 'autocalculatable': False, 'type': 'alpha'}), (u'output unit type', {'name': u'Output Unit Type', 'pyname': u'output_unit_type', 'default': u'Dimensionless', 'required-field': False, 'autosizable': False, 'accepted-values': [u'Dimensionless', u'Capacity', u'Power'], 'autocalculatable': False, 'type': 'alpha'}), (u'normalization reference', {'name': u'Normalization Reference', 'pyname': u'normalization_reference', 'required-field': False, 'autosizable': False, 'autocalculatable': False, 'type': u'real'})]), 'format': None, 'group': u'Performance Tables', 'min-fields': 22, 'name': u'Table:TwoIndependentVariables', 'pyname': u'TableTwoIndependentVariables', 'required-object': False, 'unique-object': False} @property def name(self): """field `Name` Args: value (str): value for IDD Field `Name` Raises: ValueError: if `value` is not a valid value Returns: str: the value of `name` or None if not set """ return self["Name"] @name.setter def name(self, value=None): """Corresponds to IDD field `Name`""" self["Name"] = value @property def curve_type(self): """field `Curve Type` Args: value (str): value for IDD Field `Curve Type` Raises: ValueError: if `value` is not a valid value Returns: str: the value of `curve_type` or None if not set """ return self["Curve Type"] @curve_type.setter def curve_type(self, value=None): """Corresponds to IDD field `Curve Type`""" self["Curve Type"] = value @property def interpolation_method(self): """field `Interpolation Method` | Default value: LagrangeInterpolationLinearExtrapolation Args: value (str): value for IDD Field `Interpolation Method` Raises: ValueError: if `value` is not a valid value Returns: str: the value of `interpolation_method` or None if not set """ return self["Interpolation Method"] @interpolation_method.setter def interpolation_method( self, value="LagrangeInterpolationLinearExtrapolation"): """Corresponds to IDD field `Interpolation Method`""" self["Interpolation Method"] = value @property def minimum_value_of_x(self): """field `Minimum Value of X` | Units are based on field `A4` Args: value (float): value for IDD Field `Minimum Value of X` Raises: ValueError: if `value` is not a valid value Returns: float: the value of `minimum_value_of_x` or None if not set """ return self["Minimum Value of X"] @minimum_value_of_x.setter def minimum_value_of_x(self, value=None): """Corresponds to IDD field `Minimum Value of X`""" self["Minimum Value of X"] = value @property def maximum_value_of_x(self): """field `Maximum Value of X` | Units are based on field `A4` Args: value (float): value for IDD Field `Maximum Value of X` Raises: ValueError: if `value` is not a valid value Returns: float: the value of `maximum_value_of_x` or None if not set """ return self["Maximum Value of X"] @maximum_value_of_x.setter def maximum_value_of_x(self, value=None): """Corresponds to IDD field `Maximum Value of X`""" self["Maximum Value of X"] = value @property def minimum_value_of_y(self): """field `Minimum Value of Y` | Units are based on field `A5` Args: value (float): value for IDD Field `Minimum Value of Y` Raises: ValueError: if `value` is not a valid value Returns: float: the value of `minimum_value_of_y` or None if not set """ return self["Minimum Value of Y"] @minimum_value_of_y.setter def minimum_value_of_y(self, value=None): """Corresponds to IDD field `Minimum Value of Y`""" self["Minimum Value of Y"] = value @property def maximum_value_of_y(self): """field `Maximum Value of Y` | Units are based on field `A5` Args: value (float): value for IDD Field `Maximum Value of Y` Raises: ValueError: if `value` is not a valid value Returns: float: the value of `maximum_value_of_y` or None if not set """ return self["Maximum Value of Y"] @maximum_value_of_y.setter def maximum_value_of_y(self, value=None): """Corresponds to IDD field `Maximum Value of Y`""" self["Maximum Value of Y"] = value @property def minimum_table_output(self): """field `Minimum Table Output` | Specify the minimum value calculated by this table lookup object | Units are based on field `A6` Args: value (float): value for IDD Field `Minimum Table Output` Raises: ValueError: if `value` is not a valid value Returns: float: the value of `minimum_table_output` or None if not set """ return self["Minimum Table Output"] @minimum_table_output.setter def minimum_table_output(self, value=None): """Corresponds to IDD field `Minimum Table Output`""" self["Minimum Table Output"] = value @property def maximum_table_output(self): """field `Maximum Table Output` | Specify the maximum value calculated by this table lookup object | Units are based on field `A6` Args: value (float): value for IDD Field `Maximum Table Output` Raises: ValueError: if `value` is not a valid value Returns: float: the value of `maximum_table_output` or None if not set """ return self["Maximum Table Output"] @maximum_table_output.setter def maximum_table_output(self, value=None): """Corresponds to IDD field `Maximum Table Output`""" self["Maximum Table Output"] = value @property def input_unit_type_for_x(self): """field `Input Unit Type for X` | Default value: Dimensionless Args: value (str): value for IDD Field `Input Unit Type for X` Raises: ValueError: if `value` is not a valid value Returns: str: the value of `input_unit_type_for_x` or None if not set """ return self["Input Unit Type for X"] @input_unit_type_for_x.setter def input_unit_type_for_x(self, value="Dimensionless"): """Corresponds to IDD field `Input Unit Type for X`""" self["Input Unit Type for X"] = value @property def input_unit_type_for_y(self): """field `Input Unit Type for Y` | Default value: Dimensionless Args: value (str): value for IDD Field `Input Unit Type for Y` Raises: ValueError: if `value` is not a valid value Returns: str: the value of `input_unit_type_for_y` or None if not set """ return self["Input Unit Type for Y"] @input_unit_type_for_y.setter def input_unit_type_for_y(self, value="Dimensionless"): """Corresponds to IDD field `Input Unit Type for Y`""" self["Input Unit Type for Y"] = value @property def output_unit_type(self): """field `Output Unit Type` | Default value: Dimensionless Args: value (str): value for IDD Field `Output Unit Type` Raises: ValueError: if `value` is not a valid value Returns: str: the value of `output_unit_type` or None if not set """ return self["Output Unit Type"] @output_unit_type.setter def output_unit_type(self, value="Dimensionless"): """Corresponds to IDD field `Output Unit Type`""" self["Output Unit Type"] = value @property def normalization_reference(self): """field `Normalization Reference` | This field is used to normalize the following output data. | The minimum and maximum table output fields are also normalized. | If this field is blank or 1, the table data presented below will be used. Args: value (float): value for IDD Field `Normalization Reference` Raises: ValueError: if `value` is not a valid value Returns: float: the value of `normalization_reference` or None if not set """ return self["Normalization Reference"] @normalization_reference.setter def normalization_reference(self, value=None): """Corresponds to IDD field `Normalization Reference`""" self["Normalization Reference"] = value def add_extensible(self, x_value=None, y_value=None, output_value=None, ): """Add values for extensible fields. Args: x_value (float): value for IDD Field `X Value` if `value` is None it will not be checked
stoptimestamp timestamp without time zone, startremarks character varying(256), stopremarks character varying(256), dbupdatedtimestamp timestamp without time zone NOT NULL, logfile character varying(256) NOT NULL); """)) op.execute(textwrap.dedent(""" CREATE TABLE tier2_switch_history ( lctn character varying(25) NOT NULL, state character varying(1) NOT NULL, sernum character varying(20), type character varying(20), owner character varying(1) NOT NULL, dbupdatedtimestamp timestamp without time zone NOT NULL, lastchgtimestamp timestamp without time zone NOT NULL); """)) op.execute(textwrap.dedent(""" CREATE TABLE tier2_wlmreservation_history ( reservationname character varying(35) NOT NULL, users character varying(100) NOT NULL, nodes character varying(100), starttimestamp timestamp without time zone NOT NULL, endtimestamp timestamp without time zone, deletedtimestamp timestamp without time zone, lastchgtimestamp timestamp without time zone NOT NULL, dbupdatedtimestamp timestamp without time zone NOT NULL, lastchgadaptertype character varying(20) NOT NULL, lastchgworkitemid bigint NOT NULL); """)) op.execute(textwrap.dedent(""" CREATE TABLE tier2_workitem_history ( queue character varying(20) NOT NULL, workingadaptertype character varying(20) NOT NULL, id bigint NOT NULL, worktobedone character varying(40) NOT NULL, parameters character varying(15000), notifywhenfinished character varying(1) NOT NULL, state character varying(1) NOT NULL, requestingworkitemid bigint NOT NULL, requestingadaptertype character varying(20) NOT NULL, workingadapterid bigint, workingresults character varying(15000), results character varying(262144), starttimestamp timestamp without time zone NOT NULL, dbupdatedtimestamp timestamp without time zone NOT NULL, endtimestamp timestamp without time zone, rowinsertedintohistory character varying(1) NOT NULL); """)) op.execute(textwrap.dedent(""" ALTER TABLE ONLY tier2_aggregatedenvdata ADD CONSTRAINT tier2_aggregatedenvdata_pkey PRIMARY KEY (lctn, type, "timestamp"); """)) op.execute(textwrap.dedent(""" ALTER TABLE ONLY tier2_diag ADD CONSTRAINT tier2_diag_pkey PRIMARY KEY (diagid); """)) op.execute(textwrap.dedent(""" ALTER TABLE ONLY tier2_inventorysnapshot ADD CONSTRAINT tier2_inventorysnapshot_pkey PRIMARY KEY (lctn, snapshottimestamp); """)) op.execute(textwrap.dedent(""" ALTER TABLE ONLY tier2_rasmetadata ADD CONSTRAINT tier2_rasmetadata_pkey PRIMARY KEY (eventtype); """)) op.execute(textwrap.dedent(""" CREATE INDEX aggregatedenvdata_timelctn ON tier2_aggregatedenvdata USING btree ("timestamp", lctn); """)) op.execute(textwrap.dedent(""" CREATE INDEX computenode_dbupdatedtime ON tier2_computenode_history USING btree (dbupdatedtimestamp); """)) op.execute(textwrap.dedent(""" CREATE INDEX computenode_lastchgtimelctn ON tier2_computenode_history USING btree (lastchgtimestamp, lctn); """)) op.execute(textwrap.dedent(""" CREATE INDEX computenode_seqnumdbupdatedtime ON tier2_computenode_history USING btree (sequencenumber, dbupdatedtimestamp); """)) op.execute(textwrap.dedent(""" CREATE INDEX diag_endtimediagid ON tier2_diag USING btree (endtimestamp, diagid); """)) op.execute(textwrap.dedent(""" CREATE INDEX diag_startendtimediagid ON tier2_diag USING btree (starttimestamp, endtimestamp, diagid); """)) op.execute(textwrap.dedent(""" CREATE INDEX jobhistory_dbupdatedtime ON tier2_job_history USING btree (dbupdatedtimestamp); """)) op.execute(textwrap.dedent(""" CREATE INDEX jobhistory_lastchgtime ON tier2_job_history USING btree (lastchgtimestamp); """)) op.execute(textwrap.dedent(""" CREATE INDEX rasevent_dbupdatedtime ON tier2_rasevent USING btree (dbupdatedtimestamp); """)) op.execute(textwrap.dedent(""" CREATE INDEX rasevent_dbupdatedtimeeventtypeid ON tier2_rasevent USING btree (dbupdatedtimestamp desc, eventtype, id); """)) op.execute(textwrap.dedent(""" CREATE INDEX rasmetadata_eventtype ON tier2_rasmetadata USING btree (eventtype); """)) def create_functions(): op.execute(textwrap.dedent(""" CREATE OR REPLACE FUNCTION aggregatedenvdatalistattime(p_start_time timestamp without time zone, p_end_time timestamp without time zone) RETURNS SETOF tier2_aggregatedenvdata LANGUAGE plpgsql AS $$ BEGIN if (p_start_time is not null) then return query select * from Tier2_AggregatedEnvData where Timestamp <= coalesce(p_end_time, current_timestamp) and Timestamp >= p_start_time order by Lctn, Timestamp desc LIMIT 200; else return query select * from Tier2_AggregatedEnvData where Timestamp <= coalesce(p_end_time, current_timestamp) order by Timestamp desc LIMIT 200; end if; return; END $$; """)) op.execute(textwrap.dedent(""" CREATE OR REPLACE FUNCTION aggregatedenvdatastore(p_location character varying, p_timestamp timestamp without time zone, p_type character varying, p_max_value double precision, p_min_value double precision, p_avg_value double precision, p_adapter_type character varying, p_work_item_id bigint) RETURNS void LANGUAGE sql AS $$ insert into Tier2_AggregatedEnvData( Lctn, Timestamp, Type, MaximumValue, MinimumValue, AverageValue, AdapterType, WorkItemId) values( p_location, p_timestamp, p_type, p_max_value, p_min_value, p_avg_value, p_adapter_type, p_work_item_id); $$; """)) op.execute(textwrap.dedent(""" CREATE OR REPLACE FUNCTION computenodehistorylistofstateattime(p_start_time timestamp without time zone, p_end_time timestamp without time zone) RETURNS TABLE(lctn character varying, state character varying) LANGUAGE plpgsql AS $$ DECLARE prev_lctn varchar(20) := ''; BEGIN if (p_end_time is null) then for Lctn, State in select CN.Lctn, CN.State from Tier2_ComputeNode_History CN order by Lctn, LastChgTimestamp desc loop if (Lctn <> prev_lctn) then prev_lctn := Lctn; return next; end if; end loop; elsif (p_start_time is null) then for Lctn, State in select CN.Lctn, CN.State from Tier2_ComputeNode_History CN where LastChgTimestamp <= p_end_time order by Lctn, LastChgTimestamp desc loop if (Lctn <> prev_lctn) then prev_lctn := Lctn; return next; end if; end loop; else for Lctn, State in select CN.Lctn, CN.State from Tier2_ComputeNode_History CN where LastChgTimestamp <= p_end_time and LastChgTimestamp >= p_start_time order by Lctn, LastChgTimestamp desc loop if (Lctn <> prev_lctn) then prev_lctn := Lctn; return next; end if; end loop; end if; return; END $$; """)) op.execute(textwrap.dedent(""" CREATE OR REPLACE FUNCTION computenodehistoryoldesttimestamp() RETURNS timestamp without time zone LANGUAGE sql AS $$ select min(LastChgTimestamp) from Tier2_ComputeNode_History; $$; """)) op.execute(textwrap.dedent(""" CREATE OR REPLACE FUNCTION computenodeinventorylist(p_sequence_num integer) RETURNS SETOF tier2_computenode_history LANGUAGE sql AS $$ select DISTINCT ON (sequencenumber) lctn, sequencenumber, state, hostname, sernum, bootimageid, environment, ipaddr, macaddr, type, bmcipaddr, bmcmacaddr, bmchostname, dbupdatedtimestamp, lastchgtimestamp, lastchgadaptertype, lastchgworkitemid, owner, inventoryinfo from tier2_computenode_history where sequencenumber > p_sequence_num order by sequencenumber, dbupdatedtimestamp desc limit 500; $$; """)) op.execute(textwrap.dedent(""" CREATE OR REPLACE FUNCTION dbchgtimestamps() RETURNS TABLE(key character varying, value timestamp without time zone) LANGUAGE plpgsql AS $$ BEGIN return query select 'Node_Max_LastChgTimestamp'::varchar, max(LastChgTimestamp) from Tier2_ComputeNode_History; return query select 'Node_Max_DbUpdatedTimestamp'::varchar, max(DbUpdatedTimestamp) from Tier2_ComputeNode_History; return query select 'Ras_Max_DbUpdatedTimestamp'::varchar, max(DbUpdatedTimestamp) from Tier2_RasEvent; return query select 'Job_Max_LastChgTimestamp'::varchar, max(LastChgTimestamp) from Tier2_Job_History; return query select 'Job_Max_DbUpdatedTimestamp'::varchar, max(DbUpdatedTimestamp) from Tier2_Job_History; return query select 'Reservation_Max_DbUpdatedTimestamp'::varchar, max(DbUpdatedTimestamp) from Tier2_wlmreservation_history; return query select 'Env_Max_Timestamp'::varchar, max("timestamp") from Tier2_aggregatedenvdata; return query select 'Inv_Max_Timestamp'::varchar, max(dbupdatedtimestamp) from Tier2_computenode_history; return query select 'InvSS_Max_Timestamp'::varchar, max(snapshottimestamp) from Tier2_inventorysnapshot; return query select 'Diags_Max_Timestamp'::varchar, max(starttimestamp) from Tier2_diag; return query select 'Replacement_Max_Timestamp'::varchar, max(dbupdatedtimestamp) from Tier2_replacement_history; return; END $$; """)) op.execute(textwrap.dedent(""" CREATE OR REPLACE FUNCTION diaglistofactivediagsattime(p_end_time timestamp without time zone) RETURNS SETOF tier2_diag LANGUAGE sql AS $$ select * from Tier2_Diag where StartTimestamp <= coalesce(p_end_time, current_timestamp) and (EndTimestamp is null or EndTimestamp > coalesce(p_end_time, current_timestamp)) order by DiagId desc; $$; """)) op.execute(textwrap.dedent(""" CREATE OR REPLACE FUNCTION diaglistofnonactivediagsattime(p_end_time timestamp without time zone) RETURNS SETOF tier2_diag LANGUAGE sql AS $$ select * from Tier2_Diag where EndTimestamp <= coalesce(p_end_time, current_timestamp) order by DiagId desc; $$; """)) op.execute(textwrap.dedent(""" CREATE OR REPLACE FUNCTION getlistnodelctns(p_job_nodes bytea) RETURNS character varying LANGUAGE plpgsql AS $$ DECLARE v_lctn varchar; v_list varchar; v_first boolean := true; v_num_bits integer; v_bit_index integer; BEGIN v_num_bits := length(p_job_nodes) * 8; for i in 0 .. v_num_bits - 1 loop v_bit_index := v_num_bits - 1 - i; if get_bit(p_job_nodes, v_bit_index) = 1 then select Lctn into v_lctn from Tier2_ComputeNode_History where SequenceNumber = i order by DbUpdatedTimestamp limit 1; if v_lctn is null then raise exception 'GetListNodeLctns - can''t find corresponding Lctn string for node sequence number = %!', i; end if; if v_first then v_list := v_lctn; v_first := false; else v_list := v_list || ' ' || v_lctn; end if; end if; end loop; return v_list; END $$; """)) op.execute(textwrap.dedent(""" CREATE OR REPLACE FUNCTION getmanifestcontent(OUT manifestcontent character varying) RETURNS character varying LANGUAGE sql AS $$ select manifestcontent from tier2_machine_history order by dbupdatedtimestamp desc limit 1; $$; """)) op.execute(textwrap.dedent(""" CREATE OR REPLACE FUNCTION insertorupdaterasmetadata(p_eventtype character varying, p_descriptivename character varying, p_severity character varying, p_category character varying, p_component character varying, p_controloperation character varying, p_msg character varying, p_dbupdatedtimestamp timestamp without time zone) RETURNS void LANGUAGE sql AS $$ insert into Tier2_RasMetaData( EventType, DescriptiveName, Severity, Category, Component, ControlOperation, Msg, DbUpdatedTimestamp) values( p_eventtype, p_descriptivename, p_severity, p_category, p_component, p_controloperation, p_msg, p_dbupdatedtimestamp) on conflict(EventType) do update set DescriptiveName = p_descriptivename, Severity = p_severity, Category = p_category, Component = p_component, ControlOperation = p_controloperation, Msg = p_msg, DbUpdatedTimestamp = p_dbupdatedtimestamp; $$; """)) op.execute(textwrap.dedent(""" CREATE OR REPLACE FUNCTION jobhistorylistofactivejobsattime(p_end_time timestamp without time zone) RETURNS SETOF jobactivetype LANGUAGE plpgsql AS $$ DECLARE v_prev_job_id varchar := ''; v_node_list varchar; v_job Tier2_Job_History; v_rec JobActiveType%rowtype; BEGIN for v_job in select * from Tier2_Job_History where LastChgTimestamp <= coalesce(p_end_time, current_timestamp) order by JobId desc, LastChgTimestamp desc, DbUpdatedTimestamp desc loop if v_job.JobId <> v_prev_job_id then v_prev_job_id := v_job.JobId; if v_job.State = 'S' then v_rec.JobId := v_job.JobId; v_rec.JobName := v_job.JobName; v_rec.State := v_job.State; v_rec.Bsn := v_job.Bsn; v_rec.UserName := v_job.UserName; v_rec.StartTimestamp := v_job.StartTimestamp; v_rec.NumNodes := v_job.NumNodes; v_rec.Nodes := GetListNodeLctns(v_job.Nodes); v_rec.Wlmjobstate := v_job.Wlmjobstate; return next v_rec; end if; end if; end loop; return; END $$; """)) op.execute(textwrap.dedent(""" CREATE OR REPLACE FUNCTION jobhistorylistofnonactivejobsattime(p_end_time timestamp without time zone) RETURNS SETOF jobnonactivetype LANGUAGE plpgsql AS $$ DECLARE v_prev_job_id varchar := ''; v_job Tier2_Job_History; v_rec JobNonActiveType%rowtype; BEGIN for v_job in select * from Tier2_Job_History where LastChgTimestamp <= coalesce(p_end_time,
Bit direction [0,1], # top-left position contains white cell [0,1], # top-center position contains white cell [0,1], # top-right position contains white cell [0,1], # mid-left position contains white cell [0,1], # mid-center position contains white cell [0,1], # mid-right position contains white cell [0,1], # bottom-left position contains white cell [0,1], # bottom-center position contains white cell [0,1], # bottom-right position contains white cell range(len(self.y_classes)+3), # Target color range(len(self.y_classes)+3), # Action color [0,1,2,3], # Target layer [0,1,2,3]] # Action layer i = 0 for y in range(self.size[0]): for x in range(self.size[1]): # Only mutate if the self.mutate_proba event is picked. chance_to_mutate = random.random() < self.mutate_proba if chance_to_mutate == 1: child.world[y][x] = random.choice(mutate_map[x]) i += 1 child_len = child.world.shape[0] * child.world.shape[1] assert i == child_len,\ 'All data points were not iterated over. Got: {} Expected: {}'\ .format(i, parent_len) return child def birth_child(self, child): ''' Add a child to the next population generation. ''' self.next_pop.append(child) return self def update_pop(self): ''' Replace the current pop with nextGen pop. ''' self.current_pop = self.next_pop self.next_pop = [] return self def run(self): if not self.intitialized: self.initialize() while True: self.selection() self.reproduction() # Save self.best_child self.best_child = self.current_pop[np.argmax( self.current_pop_fitness)] self.generation_list.append(self.best_child) # Get fitness of best child gen = len(self.generation_list) # Gen is used to determine bag for sampling random.seed(gen) bag_index = random.choice(range(len(self.bags))) selected_bag = self.bags[bag_index] f = Fitness(self.best_child, json_data=self.json_data, gen=gen, data=selected_bag, y_classes=self.y_classes, fitness_func=self.fitness_func) f.run() best_child_fitness = round(f.fitness_value, 2) self.generation_fitness.append(best_child_fitness) if len(self.generation_list) % 1 == 0: if not self.silent: print('Generation: {} Fitness: {}'.format( len(self.generation_list), best_child_fitness)) if self.auto_plot: # Plays through data in a pygame window Viewer.Playback(f.fitness_data_array, text='Generation: {} Fitness: {}'.\ format(len(self.generation_list),best_child_fitness), dna=f.world.world).run() # Update to the next generation self.update_pop() # If the max_epochs is met, then stop. if self.max_epochs != -1: if len(self.generation_list) > self.max_epochs: break return self class ProbSpace(): ''' Builds a LIST of each LIST of problem spaces in the shuffle split bag to be used by cellular automata. Expects: X np.ndarray int32|int64|float64 training data features y np.ndarray int64|int32 training data labels training BOOL (default: True) if False, return single space quantize_size TUPLE x,y dim of the problem space class_weight STR "auto" preserves strafication of classes in population splits ''' def __init__(self, X=np.array([]), y=np.array([]), training=True, quantize_size=(15,15), # INHERIT THIS ONCE FIT class_weight='auto', splits=None): assert isinstance(X, np.ndarray),\ 'Expected X type np.array, got: {}'.format(type(X)) assert X.shape[0] >= 1, \ 'Expected X to have at least 1 sample.' assert training in [True, False], \ 'Expected training to be type BOOL' if X.dtype not in ['int32', 'int64', 'float32', 'float64']: raise TypeError('X is incorrect dtype') assert isinstance(quantize_size,tuple),\ 'Expected quantize_size to be tuple. e.g. (15,15)' assert len(quantize_size) == 2,\ 'Expected quantize_size to have len 2, got: {}'\ .format(len(quantize_size)) if training: assert isinstance(y, np.ndarray), \ 'Expected y type np.adarry, got: {}'.format(type(y)) assert y.shape[0] >= 1, 'y was an empty array' assert y.shape[1] == 1, 'y must use the shape ({},1)'.format(y.shape[1]) if y.dtype not in ['int32', 'int64']: raise TypeError('y must be type INT, got TYPE {}'.format(y.dtype)) assert len(np.unique(y)) > 1, \ 'There was a single class in y. Expected more than 1, ({})' \ .format(np.unique(y)) assert class_weight in ['balanced', 'auto'], \ 'Expected class weight to be in ["balanced","auto"], got {}' \ .format(class_weight) assert isinstance(splits, int), \ 'Expected splits INT to be set, got: {}'.format(splits) assert splits > 0, \ 'Expected number of splits to be greater than 0' assert X.shape[0] == y.shape[0], \ 'X and y have incompatible shapes {},{}'.format(X.shape, y.shape) self.X = X self.y = y self.training = training self.quantize_size = quantize_size self.class_weight = class_weight self.splits = splits def generate_space(self, X=np.array([]), y=None): ''' Expects: X np.ndarray a single X sample y is ignored Returns a LIST of problem spaces for all X samples. ''' # X,y are assumed to have a shape of (,1) assert len(X.shape) == 1,\ 'Expected single sample of X, got dimensions {}'.format(X.shape) numFeatures = X.shape[0] width = (numFeatures * 4) + 3 # Initialize 2d space d = [np.zeros((width,self.quantize_size[1], 3)) for i in range(4)] # Set starting whites # Layer 0 for i in range(numFeatures): xPos = int(i * 4)-1 d[0][3+int(i *4)-1][0] = (255, 255, 255) d[0][3+int(i * 4)][0] = (255, 255, 255) d[0][3 + int(i * 4)+1][0] = (255, 255, 255) d[0][3+int(i * 4) - 1][-1] = (255, 255, 255) d[0][3+int(i * 4)][-1] = (255, 255, 255) d[0][3 + int(i * 4)+1][-1] = (255, 255, 255) d[0][3 + int(i * 4) - 1][-2] = (255, 255, 255) d[0][3 + int(i * 4)][-2] = (255, 255, 255) d[0][3 + int(i * 4) + 1][-2] = (255, 255, 255) # Layer 1 # for i in range(7): # for ii in range(5): # d[1][0 + i][0 + ii] = (255, 255, 255) for i in range(numFeatures): d[1][3 + int(i * 4) - 1][1] = (255, 255, 255) d[1][3 + int(i * 4)][1] = (255, 255, 255) d[1][3 + int(i * 4) + 1][1] = (255, 255, 255) d[1][3 + int(i * 4) - 1][0] = (255, 255, 255) d[1][3 + int(i * 4)][0] = (255, 255, 255) d[1][3 + int(i * 4) + 1][0] = (255, 255, 255) d[1][3 + int(i * 4) - 1][-1] = (255, 255, 255) d[1][3 + int(i * 4)][-1] = (255, 255, 255) d[1][3 + int(i * 4) + 1][-1] = (255, 255, 255) # Layer 2 for i in range(4): for ii in range(5): d[2][0 + i][0 + ii] = (255, 255, 255) # Layer 3 for i in range(5): for ii in range(7): d[3][0 + i][0 + ii] = (255, 255, 255) # Assert that there are 4 layers assert len(d) == 4, 'Expected 4 layers in d' # For each feature, attempt to fill layer 0 for i in range(numFeatures): xPos = int(i * 4) # If value is outside problem space range (i.e. # value was not seen in training data), set to # max value of y-axis self.quantize_size. if X[i] > (self.quantize_size[1] - 3): d[0][xPos+3,2:int(self.quantize_size[1])] = (0, 255, 0) # or min value elif X[i] < 0: d[0][xPos+3,0:3] = (0, 255, 0) else: d[0][xPos+3,3:int(3+X[i])] = (0, 255, 0) return d def stratified_training_bags(self, X=np.array([]), y=np.array([])): ''' Creates bags of training data which transform X,y into the expected {'space','label'} format used in the Fitness() and CellularAutomata() classes. Works best when there are at least 100 samples per 2 classes Expects: X np.ndarray int32|int64|float64 training data features y np.ndarray int64|int32 training data labels Returns: bags LIST has a shape (max_epochs, X.shape[0],2) bags format: [bag_1 LIST, bag_2 LIST, ... bag_n LIST] bag_n format: {'space': np.ndarray, 'label': np.ndarray} ''' bags = [] if self.splits: for i in range(self.splits): training_bag = [] if self.class_weight == 'auto': # Use class weights to determine how samples are stratified. X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.30, random_state=i, stratify=y) else: X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.30, random_state=i) for ii in range(X_test.shape[0]): space = self.generate_space(X_test[ii]) assert isinstance(space,list) training_bag.append({'space':space, 'label':y_test[ii]}) bags.append(training_bag) assert bags, 'training bags were empty' else: for i in range(X.shape[0]): space = self.generate_space(X[i]) bags.append({'space':space,'label':y}) bags = [bags] if not self.training: assert bags, 'space was not generated for X' return bags class Fitness(): ''' Defines an viewer object which is able to move through the world. Expects: world np.ndarray Containing the DNA of the current child json_data OBJECT Containing some of the metadata used in model (e.g. color maps) gen INT The generation of the current child data LIST A LIST of samples in the DICT form {'space',LIST,'label',np.ndarray} fitness_func STR accuracy | accuracy_proba for determining fitness ''' def __init__(self, world, json_data=None, gen=None, data=[], y_classes=[], fitness_func='accuracy'): try: self.world = copy.deepcopy(world) except NotImplementedError: self.world = copy.copy(world) assert json_data, 'Requires valid json_data for running CellularA()' assert isinstance(data,list),\ ' Expected data to be type LIST, got {}'.format(type(data)) assert data, 'data was empty' assert 'space' in data[0] assert y_classes, \ 'y_classes must be set in Fitness()' assert isinstance(fitness_func,str),\ 'Expected fitness_func to be type
sol18 = Eq(f(x), C1 + C2 * x + C3 * x ** 2 + C4 * exp(-3 * x)) sol19 = Eq(f(x), C1 + C2 * x + C3 * exp(x * sqrt(2)) + C4 * exp(-x * sqrt(2))) sol20 = Eq(f(x), (C1 + C2 * x) * exp(-3 * x) + (C3 + C4 * x) * exp(2 * x)) sol21 = Eq( f(x), C1 * exp(x / 2) + C2 * exp(-x) + C3 * exp(-x / 3) + C4 * exp(x * Rational(5, 6)), ) sol22 = Eq(f(x), (C1 + C2 * x) * exp(-2 * x) + (C3 + C4 * x) * exp(2 * x)) sol23 = Eq(f(x), (C1 * sin(2 * x) + C2 * cos(2 * x)) * exp(x)) sol24 = Eq( f(x), (C1 * sin(x * sqrt(3) / 2) + C2 * cos(x * sqrt(3) / 2)) * exp(x / 2) ) sol25 = Eq( f(x), C1 * cos(x * sqrt(3)) + C2 * sin(x * sqrt(3)) + C3 * sin(x * sqrt(2)) + C4 * cos(x * sqrt(2)), ) sol26 = Eq(f(x), (C1 * sin(4 * x) + C2 * cos(4 * x)) * exp(2 * x)) sol27 = Eq( f(x), (C1 + C2 * x) * sin(x * sqrt(2)) + (C3 + C4 * x) * cos(x * sqrt(2)) ) sol28 = Eq( f(x), (C1 * sin(x * sqrt(3)) + C2 * cos(x * sqrt(3))) * exp(x) + C3 * exp(-2 * x), ) sol29 = Eq(f(x), C1 + C2 * sin(2 * x) + C3 * cos(2 * x) + C4 * x) sol30 = Eq(f(x), C1 + (C2 + C3 * x) * sin(x) + (C4 + C5 * x) * cos(x)) sol31 = Eq( f(x), (C1 * sin(sqrt(3) * x / 2) + C2 * cos(sqrt(3) * x / 2)) / sqrt(exp(x)) + (C3 * sin(sqrt(3) * x / 2) + C4 * cos(sqrt(3) * x / 2)) * sqrt(exp(x)), ) sol32 = Eq( f(x), C1 * sin(x * sqrt(-sqrt(3) + 2)) + C2 * sin(x * sqrt(sqrt(3) + 2)) + C3 * cos(x * sqrt(-sqrt(3) + 2)) + C4 * cos(x * sqrt(sqrt(3) + 2)), ) sol1s = constant_renumber(sol1) sol2s = constant_renumber(sol2) sol3s = constant_renumber(sol3) sol4s = constant_renumber(sol4) sol5s = constant_renumber(sol5) sol6s = constant_renumber(sol6) sol7s = constant_renumber(sol7) sol8s = constant_renumber(sol8) sol9s = constant_renumber(sol9) sol10s = constant_renumber(sol10) sol11s = constant_renumber(sol11) sol12s = constant_renumber(sol12) sol13s = constant_renumber(sol13) sol14s = constant_renumber(sol14) sol15s = constant_renumber(sol15) sol16s = constant_renumber(sol16) sol17s = constant_renumber(sol17) sol18s = constant_renumber(sol18) sol19s = constant_renumber(sol19) sol20s = constant_renumber(sol20) sol21s = constant_renumber(sol21) sol22s = constant_renumber(sol22) sol23s = constant_renumber(sol23) sol24s = constant_renumber(sol24) sol25s = constant_renumber(sol25) sol26s = constant_renumber(sol26) sol27s = constant_renumber(sol27) sol28s = constant_renumber(sol28) sol29s = constant_renumber(sol29) sol30s = constant_renumber(sol30) assert dsolve(eq1) in (sol1, sol1s) assert dsolve(eq2) in (sol2, sol2s) assert dsolve(eq3) in (sol3, sol3s) assert dsolve(eq4) in (sol4, sol4s) assert dsolve(eq5) in (sol5, sol5s) assert dsolve(eq6) in (sol6, sol6s) assert dsolve(eq7) in (sol7, sol7s) assert dsolve(eq8) in (sol8, sol8s) assert dsolve(eq9) in (sol9, sol9s) assert dsolve(eq10) in (sol10, sol10s) assert dsolve(eq11) in (sol11, sol11s) assert dsolve(eq12) in (sol12, sol12s) assert dsolve(eq13) in (sol13, sol13s) assert dsolve(eq14) in (sol14, sol14s) assert dsolve(eq15) in (sol15, sol15s) assert dsolve(eq16) in (sol16, sol16s) assert dsolve(eq17) in (sol17, sol17s) assert dsolve(eq18) in (sol18, sol18s) assert dsolve(eq19) in (sol19, sol19s) assert dsolve(eq20) in (sol20, sol20s) assert dsolve(eq21) in (sol21, sol21s) assert dsolve(eq22) in (sol22, sol22s) assert dsolve(eq23) in (sol23, sol23s) assert dsolve(eq24) in (sol24, sol24s) assert dsolve(eq25) in (sol25, sol25s) assert dsolve(eq26) in (sol26, sol26s) assert dsolve(eq27) in (sol27, sol27s) assert dsolve(eq28) in (sol28, sol28s) assert dsolve(eq29) in (sol29, sol29s) assert dsolve(eq30) in (sol30, sol30s) assert dsolve(eq31) in (sol31,) assert dsolve(eq32) in (sol32,) assert checkodesol(eq1, sol1, order=2, solve_for_func=False)[0] assert checkodesol(eq2, sol2, order=2, solve_for_func=False)[0] assert checkodesol(eq3, sol3, order=2, solve_for_func=False)[0] assert checkodesol(eq4, sol4, order=3, solve_for_func=False)[0] assert checkodesol(eq5, sol5, order=2, solve_for_func=False)[0] assert checkodesol(eq6, sol6, order=2, solve_for_func=False)[0] assert checkodesol(eq7, sol7, order=3, solve_for_func=False)[0] assert checkodesol(eq8, sol8, order=4, solve_for_func=False)[0] assert checkodesol(eq9, sol9, order=4, solve_for_func=False)[0] assert checkodesol(eq10, sol10, order=4, solve_for_func=False)[0] assert checkodesol(eq11, sol11, order=2, solve_for_func=False)[0] assert checkodesol(eq12, sol12, order=2, solve_for_func=False)[0] assert checkodesol(eq13, sol13, order=4, solve_for_func=False)[0] assert checkodesol(eq14, sol14, order=2, solve_for_func=False)[0] assert checkodesol(eq15, sol15, order=3, solve_for_func=False)[0] assert checkodesol(eq16, sol16, order=3, solve_for_func=False)[0] assert checkodesol(eq17, sol17, order=2, solve_for_func=False)[0] assert checkodesol(eq18, sol18, order=4, solve_for_func=False)[0] assert checkodesol(eq19, sol19, order=4, solve_for_func=False)[0] assert checkodesol(eq20, sol20, order=4, solve_for_func=False)[0] assert checkodesol(eq21, sol21, order=4, solve_for_func=False)[0] assert checkodesol(eq22, sol22, order=4, solve_for_func=False)[0] assert checkodesol(eq23, sol23, order=2, solve_for_func=False)[0] assert checkodesol(eq24, sol24, order=2, solve_for_func=False)[0] assert checkodesol(eq25, sol25, order=4, solve_for_func=False)[0] assert checkodesol(eq26, sol26, order=2, solve_for_func=False)[0] assert checkodesol(eq27, sol27, order=4, solve_for_func=False)[0] assert checkodesol(eq28, sol28, order=3, solve_for_func=False)[0] assert checkodesol(eq29, sol29, order=4, solve_for_func=False)[0] assert checkodesol(eq30, sol30, order=5, solve_for_func=False)[0] assert checkodesol(eq31, sol31, order=4, solve_for_func=False)[0] assert checkodesol(eq32, sol32, order=4, solve_for_func=False)[0] # Issue #15237 eqn = Derivative(x * f(x), x, x, x) hint = "nth_linear_constant_coeff_homogeneous" raises(ValueError, lambda: dsolve(eqn, f(x), hint, prep=True)) raises(ValueError, lambda: dsolve(eqn, f(x), hint, prep=False)) def test_nth_linear_constant_coeff_homogeneous_rootof(): # One real root, two complex conjugate pairs eq = f(x).diff(x, 5) + 11 * f(x).diff(x) - 2 * f(x) r1, r2, r3, r4, r5 = [rootof(x ** 5 + 11 * x - 2, n) for n in range(5)] sol = Eq( f(x), C5 * exp(r1 * x) + exp(re(r2) * x) * (C1 * sin(im(r2) * x) + C2 * cos(im(r2) * x)) + exp(re(r4) * x) * (C3 * sin(im(r4) * x) + C4 * cos(im(r4) * x)), ) assert dsolve(eq) == sol # FIXME: assert checkodesol(eq, sol) == (True, [0]) # Hangs... # Three real roots, one complex conjugate pair eq = f(x).diff(x, 5) - 3 * f(x).diff(x) + f(x) r1, r2, r3, r4, r5 = [rootof(x ** 5 - 3 * x + 1, n) for n in range(5)] sol = Eq( f(x), C3 * exp(r1 * x) + C4 * exp(r2 * x) + C5 * exp(r3 * x) + exp(re(r4) * x) * (C1 * sin(im(r4) * x) + C2 * cos(im(r4) * x)), ) assert dsolve(eq) == sol # FIXME: assert checkodesol(eq, sol) == (True, [0]) # Hangs... # Five distinct real roots eq = f(x).diff(x, 5) - 100 * f(x).diff(x, 3) + 1000 * f(x).diff(x) + f(x) r1, r2, r3, r4, r5 = [ rootof(x ** 5 - 100 * x ** 3 + 1000 * x + 1, n) for n in range(5) ] sol = Eq( f(x), C1 * exp(r1 * x) + C2 * exp(r2 * x) + C3 * exp(r3 * x) + C4 * exp(r4 * x) + C5 * exp(r5 * x), ) assert dsolve(eq) == sol # FIXME: assert checkodesol(eq, sol) == (True, [0]) # Hangs... # Rational root and unsolvable quintic eq = ( f(x).diff(x, 6) - 6 * f(x).diff(x, 5) + 5 * f(x).diff(x, 4) + 10 * f(x).diff(x) - 50 * f(x) ) r2, r3, r4, r5, r6 = [rootof(x ** 5 - x ** 4 + 10, n) for n in range(5)] sol = Eq( f(x), C5 * exp(5 * x) + C6 * exp(x * r2) + exp(re(r3) * x) * (C1 * sin(im(r3) * x) + C2 * cos(im(r3) * x)) + exp(re(r5) * x) * (C3 * sin(im(r5) * x) + C4 * cos(im(r5) * x)), ) assert dsolve(eq) == sol # FIXME: assert checkodesol(eq, sol) == (True, [0]) # Hangs... # Five double roots (this is (x**5 - x + 1)**2) eq = ( f(x).diff(x, 10) - 2 * f(x).diff(x, 6) + 2 * f(x).diff(x, 5) + f(x).diff(x, 2) - 2 * f(x).diff(x, 1) + f(x) ) r1, r2, r3, r4, r5 = [rootof(x ** 5 - x + 1, n) for n in range(5)] sol = Eq( f(x), (C1 + C2 * x) * exp(r1 * x) + exp(re(r2) * x) * ((C3 + C4 * x) * sin(im(r2) * x) + (C5 + C6 * x) * cos(im(r2)
import abc import asyncio import enum import json import logging import re import ssl from base64 import b64encode from collections import defaultdict from collections.abc import AsyncIterator, Callable, Iterable, Sequence from contextlib import suppress from dataclasses import dataclass, field, replace from datetime import datetime from enum import Enum from math import ceil from pathlib import Path, PurePath from types import TracebackType from typing import Any, ClassVar, NoReturn, Optional, Union from urllib.parse import urlsplit import aiohttp import iso8601 from aiohttp import WSMsgType from async_timeout import timeout from multidict import MultiDict from yarl import URL from platform_api.utils.stream import Stream from .job_request import ( Container, ContainerResources, ContainerTPUResource, ContainerVolume, DiskContainerVolume, JobError, JobNotFoundException, JobRequest, Secret, SecretContainerVolume, ) from .kube_config import KubeClientAuthType logger = logging.getLogger(__name__) class ServiceType(str, enum.Enum): CLUSTER_IP = "ClusterIP" NODE_PORT = "NodePort" LOAD_BALANCER = "LoadBalancer" class KubeClientException(Exception): pass class StatusException(KubeClientException): pass class AlreadyExistsException(StatusException): pass class NotFoundException(StatusException): pass class ResourceGoneException(KubeClientException): pass def _raise_status_job_exception(pod: dict[str, Any], job_id: Optional[str]) -> NoReturn: if pod["code"] == 409: raise AlreadyExistsException(pod.get("reason", "job already exists")) elif pod["code"] == 404: raise JobNotFoundException(f"job {job_id} was not found") elif pod["code"] == 422: raise JobError(f"cant create job with id {job_id}") else: raise JobError("unexpected") class GroupVersion(str, Enum): NETWORKING_V1 = "networking.k8s.io/v1" @dataclass(frozen=True) class APIResource: group_version: str resources: Sequence[str] @property def has_ingress(self) -> bool: return self.has_resource("ingresses") def has_resource(self, resource_name: str) -> bool: return resource_name in self.resources @classmethod def from_primitive(cls, payload: dict[str, Any]) -> "APIResource": return cls( group_version=payload["groupVersion"], resources=[p["name"] for p in payload["resources"]], ) class APIResources(dict[str, APIResource]): group_versions: list[str] = [GroupVersion.NETWORKING_V1] @property def networking_v1(self) -> Optional[APIResource]: return self.get(GroupVersion.NETWORKING_V1) @property def has_networking_v1_ingress(self) -> bool: return self.networking_v1 is not None and self.networking_v1.has_ingress @dataclass(frozen=True) class Volume(metaclass=abc.ABCMeta): name: str def create_mount( self, container_volume: ContainerVolume, mount_sub_path: Optional[PurePath] = None, ) -> "VolumeMount": raise NotImplementedError("Cannot create mount for abstract Volume type.") def to_primitive(self) -> dict[str, Any]: raise NotImplementedError @dataclass(frozen=True) class PathVolume(Volume): # None for cluster storage. # /org for organization/additional storage. path: Optional[PurePath] def create_mount( self, container_volume: ContainerVolume, mount_sub_path: Optional[PurePath] = None, ) -> "VolumeMount": try: sub_path = container_volume.src_path.relative_to( "/" if self.path is None else str(self.path) ) except ValueError: sub_path = container_volume.src_path.relative_to("/") mount_sub_path = mount_sub_path or PurePath("") return VolumeMount( volume=self, mount_path=container_volume.dst_path / mount_sub_path, sub_path=sub_path, read_only=container_volume.read_only, ) @dataclass(frozen=True) class HostVolume(PathVolume): host_path: PurePath def to_primitive(self) -> dict[str, Any]: return { "name": self.name, "hostPath": {"path": str(self.host_path), "type": "Directory"}, } @dataclass(frozen=True) class SharedMemoryVolume(Volume): def to_primitive(self) -> dict[str, Any]: return {"name": self.name, "emptyDir": {"medium": "Memory"}} def create_mount( self, container_volume: ContainerVolume, mount_sub_path: Optional[PurePath] = None, ) -> "VolumeMount": mount_sub_path = mount_sub_path or PurePath("") return VolumeMount( volume=self, mount_path=container_volume.dst_path / mount_sub_path, sub_path=PurePath(""), read_only=container_volume.read_only, ) @dataclass(frozen=True) class NfsVolume(PathVolume): server: str export_path: PurePath def to_primitive(self) -> dict[str, Any]: return { "name": self.name, "nfs": {"server": self.server, "path": str(self.export_path)}, } @dataclass(frozen=True) class PVCVolume(PathVolume): claim_name: str def to_primitive(self) -> dict[str, Any]: return { "name": self.name, "persistentVolumeClaim": {"claimName": self.claim_name}, } @dataclass(frozen=True) class SecretEnvVar: name: str secret: Secret @classmethod def create(cls, name: str, secret: Secret) -> "SecretEnvVar": return cls(name=name, secret=secret) def to_primitive(self) -> dict[str, Any]: return { "name": self.name, "valueFrom": { "secretKeyRef": { "name": self.secret.k8s_secret_name, "key": self.secret.secret_key, } }, } @dataclass(frozen=True) class VolumeMount: volume: Volume mount_path: PurePath sub_path: PurePath = PurePath("") read_only: bool = False def to_primitive(self) -> dict[str, Any]: sub_path = str(self.sub_path) raw = { "name": self.volume.name, "mountPath": str(self.mount_path), "readOnly": self.read_only, } if sub_path: raw["subPath"] = sub_path return raw @dataclass(frozen=True) class SecretVolume(Volume): k8s_secret_name: str def create_secret_mount(self, sec_volume: SecretContainerVolume) -> "VolumeMount": return VolumeMount( volume=self, mount_path=sec_volume.dst_path, sub_path=PurePath(sec_volume.secret.secret_key), read_only=True, ) def to_primitive(self) -> dict[str, Any]: return { "name": self.name, "secret": {"secretName": self.k8s_secret_name, "defaultMode": 0o400}, } @dataclass(frozen=True) class PVCDiskVolume(Volume): claim_name: str def create_disk_mount(self, disk_volume: DiskContainerVolume) -> "VolumeMount": return VolumeMount( volume=self, mount_path=disk_volume.dst_path, read_only=disk_volume.read_only, ) def to_primitive(self) -> dict[str, Any]: return { "name": self.name, "persistentVolumeClaim": {"claimName": self.claim_name}, } @dataclass(frozen=True) class Resources: cpu: float memory: int memory_request: Optional[int] = None gpu: Optional[int] = None shm: Optional[bool] = None tpu_version: Optional[str] = None tpu_cores: Optional[int] = None gpu_key: ClassVar[str] = "nvidia.com/gpu" tpu_key_prefix: ClassVar[str] = "cloud-tpus.google.com/" def __post_init__(self) -> None: if bool(self.tpu_version) ^ bool(self.tpu_cores): raise ValueError("invalid TPU configuration") @property def cpu_mcores(self) -> int: return int(self.cpu * 1000) @property def memory_mib(self) -> str: return f"{self.memory}Mi" @property def memory_request_mib(self) -> str: return f"{self.memory_request}Mi" @property def tpu_key(self) -> str: assert self.tpu_version return self.tpu_key_prefix + self.tpu_version def to_primitive(self) -> dict[str, Any]: payload: dict[str, Any] = { "requests": {"cpu": f"{self.cpu_mcores}m", "memory": self.memory_mib}, "limits": {"cpu": f"{self.cpu_mcores}m", "memory": self.memory_mib}, } if self.gpu: payload["requests"][self.gpu_key] = self.gpu payload["limits"][self.gpu_key] = self.gpu if self.tpu_version: payload["requests"][self.tpu_key] = self.tpu_cores payload["limits"][self.tpu_key] = self.tpu_cores if self.memory_request: payload["requests"]["memory"] = self.memory_request_mib return payload @classmethod def from_primitive(cls, payload: dict[str, Any]) -> "Resources": requests = payload.get("requests", {}) gpu = None if cls.gpu_key in requests: gpu = int(requests[cls.gpu_key]) tpu_version, tpu_cores = cls._parse_tpu(requests) return cls( cpu=cls.parse_cpu(requests.get("cpu", "0")), memory=cls.parse_memory(requests.get("memory", "0Mi")), gpu=gpu, tpu_version=tpu_version, tpu_cores=tpu_cores, ) @classmethod def parse_cpu(cls, cpu: str) -> float: try: return float(cpu) except ValueError: return float(cpu[:-1]) / 1000 @classmethod def parse_memory(cls, memory: str) -> int: try: memory_b = int(memory) except ValueError: if memory.endswith("Ki"): memory_b = int(memory[:-2]) * 1024 elif memory.endswith("K"): memory_b = int(memory[:-1]) * 1000 elif memory.endswith("Mi"): return int(memory[:-2]) elif memory.endswith("M"): memory_b = int(memory[:-1]) * 1000**2 elif memory.endswith("Gi"): memory_b = int(memory[:-2]) * 1024**3 elif memory.endswith("G"): memory_b = int(memory[:-1]) * 1000**3 else: raise ValueError(f"{memory!r} memory format is not supported") return ceil(memory_b / 1024**2) @classmethod def _parse_tpu(cls, payload: dict[str, Any]) -> tuple[Optional[str], Optional[int]]: for key, value in payload.items(): if key.startswith(cls.tpu_key_prefix): return key.split("/")[-1], int(value) return None, None @classmethod def _parse_tpu_resource(cls, tpu: ContainerTPUResource) -> tuple[str, int]: try: tpu_version, tpu_cores = tpu.type.rsplit("-", 1) return tpu_version, int(tpu_cores) except (ValueError, TypeError): raise ValueError(f"invalid TPU type format: '{tpu.type}'") @classmethod def from_container_resources(cls, resources: ContainerResources) -> "Resources": kwargs: dict[str, Any] = {} if resources.tpu: kwargs["tpu_version"], kwargs["tpu_cores"] = cls._parse_tpu_resource( resources.tpu ) return cls( cpu=resources.cpu, memory=resources.memory_mb, gpu=resources.gpu, shm=resources.shm, **kwargs, ) @dataclass(frozen=True) class Service: name: str target_port: Optional[int] uid: Optional[str] = None selector: dict[str, str] = field(default_factory=dict) port: int = 80 service_type: ServiceType = ServiceType.CLUSTER_IP cluster_ip: Optional[str] = None labels: dict[str, str] = field(default_factory=dict) def _add_port_map( self, port: Optional[int], target_port: Optional[int], port_name: str, ports: list[dict[str, Any]], ) -> None: if target_port: ports.append({"port": port, "targetPort": target_port, "name": port_name}) def to_primitive(self) -> dict[str, Any]: service_descriptor: dict[str, Any] = { "metadata": {"name": self.name}, "spec": { "type": self.service_type.value, "ports": [], "selector": self.selector, }, } if self.cluster_ip: service_descriptor["spec"]["clusterIP"] = self.cluster_ip if self.labels: service_descriptor["metadata"]["labels"] = self.labels.copy() self._add_port_map( self.port, self.target_port, "http", service_descriptor["spec"]["ports"] ) return service_descriptor @classmethod def create_for_pod(cls, pod: "PodDescriptor") -> "Service": return cls( name=pod.name, selector=pod.labels, target_port=pod.port, labels=pod.labels, ) @classmethod def create_headless_for_pod(cls, pod: "PodDescriptor") -> "Service": http_port = pod.port or cls.port return cls( name=pod.name, selector=pod.labels, cluster_ip="None", target_port=http_port, labels=pod.labels, ) def make_named(self, name: str) -> "Service": return replace(self, name=name) @classmethod def _find_port_by_name( cls, name: str, port_mappings: list[dict[str, Any]] ) -> dict[str, Any]: for port_mapping in port_mappings: if port_mapping.get("name", None) == name: return port_mapping return {} @classmethod def from_primitive(cls, payload: dict[str, Any]) -> "Service": http_payload = cls._find_port_by_name("http", payload["spec"]["ports"]) service_type = payload["spec"].get("type", Service.service_type.value) return cls( name=payload["metadata"]["name"], uid=payload["metadata"]["uid"], selector=payload["spec"].get("selector", {}), target_port=http_payload.get("targetPort", None), port=http_payload.get("port", Service.port), service_type=ServiceType(service_type), cluster_ip=payload["spec"].get("clusterIP"), labels=payload["metadata"].get("labels", {}), ) @dataclass(frozen=True) class IngressRule: host: str service_name: Optional[str] = None service_port: Optional[int] = None @classmethod def from_v1beta1_primitive(cls, payload: dict[str, Any]) -> "IngressRule": http_paths = payload.get("http", {}).get("paths", []) http_path = http_paths[0] if http_paths else {} backend = http_path.get("backend", {}) service_name = backend.get("serviceName") service_port = backend.get("servicePort") return cls( host=payload.get("host", ""), service_name=service_name, service_port=service_port, ) @classmethod def from_v1_primitive(cls, payload: dict[str, Any]) -> "IngressRule": http_paths = payload.get("http", {}).get("paths", []) http_path = http_paths[0] if http_paths else {} service = http_path.get("backend", {}).get("service", {}) service_name = service.get("name") service_port = service.get("port", {}).get("number") return cls( host=payload.get("host", ""), service_name=service_name, service_port=service_port, ) def to_v1beta1_primitive(self) -> dict[str, Any]: payload: dict[str, Any] = {"host": self.host} if self.service_name: payload["http"] = { "paths": [ { "backend": { "serviceName": self.service_name, "servicePort": self.service_port, } } ] } return payload def to_v1_primitive(self) -> dict[str, Any]: payload: dict[str, Any] = {"host": self.host} if self.service_name: payload["http"] = { "paths": [ { "pathType": "ImplementationSpecific", "backend": { "service": { "name": self.service_name, "port": {"number": self.service_port}, } }, } ] } return payload @classmethod def from_service(cls, host: str, service: Service) -> "IngressRule": return cls(host=host, service_name=service.name, service_port=service.port) @dataclass(frozen=True) class Ingress: name: str ingress_class: Optional[str] = None rules: list[IngressRule] = field(default_factory=list) annotations: dict[str, str] = field(default_factory=dict) labels: dict[str, str] = field(default_factory=dict) def to_v1beta1_primitive(self) -> dict[str, Any]: rules: list[Any] = [rule.to_v1beta1_primitive() for rule in self.rules] or [ None ] annotations = self.annotations.copy() if self.ingress_class: annotations["kubernetes.io/ingress.class"] = self.ingress_class metadata = {"name": self.name, "annotations": annotations} if self.labels: metadata["labels"] = self.labels.copy() primitive = {"metadata": metadata, "spec": {"rules": rules}} return primitive def to_v1_primitive(self) -> dict[str, Any]:
await delete_article_response.release() async def metadata(self, path, **kwargs): """Return metadata for entity identified by ``path`` under the parent project. :param FigsharePath path: entity whose metadata will be returned :rtype: FigshareFileMetadata obj or list of Metadata objs """ if path.is_root: path.is_public = False contents = await asyncio.gather(*[ # TODO: collections may need to use each['url'] for correct URN # Use _get_url_super ? figshare API needs to get fixed first. self._get_article_metadata(str(each['id']), path.is_public) for each in await self._get_all_articles() ]) return [each for each in contents if each] if not path.parts[-1].identifier: raise exceptions.NotFoundError(str(path)) if len(path.parts) > 3: raise exceptions.NotFoundError(str(path)) article_response = await self.make_request( 'GET', self.build_url(path.is_public, *self.root_path_parts, 'articles', path.parts[1].identifier), expects=(200, 404), ) if article_response.status == 404: raise exceptions.NotFoundError(str(path)) article_json = await article_response.json() if len(path.parts) == 2: if article_json['defined_type'] not in settings.FOLDER_TYPES: raise exceptions.NotFoundError(str(path)) contents = [] for file in article_json['files']: contents.append(metadata.FigshareFileMetadata(article_json, raw_file=file)) return contents elif len(path.parts) == 3: for file in article_json['files']: if file['id'] == int(path.parts[2].identifier): return metadata.FigshareFileMetadata(article_json, raw_file=file) raise exceptions.NotFoundError(path.path) else: raise exceptions.NotFoundError('{} is not a valid path.'.format(path)) async def _get_article_metadata(self, article_id, is_public: bool): """Return Figshare*Metadata object for given article_id. Returns a FolderMetadata object for filesets, a FileMetadat object for other article types, and ``None`` if the article is not a fileset and has no files attached. Defined separately to allow for taking advantage of ``asyncio.gather``. :param str article_id: id of article whose metadata is requested :param bool is_public: ``True`` if article is accessed through public URN """ response = await self.make_request( 'GET', self.build_url(is_public, *self.root_path_parts, 'articles', article_id), expects=(200, ), ) article_json = await response.json() if article_json['defined_type'] in settings.FOLDER_TYPES: return metadata.FigshareFolderMetadata(article_json) elif article_json['files']: return metadata.FigshareFileMetadata(article_json) return None # article without attached file async def _delete_container_contents(self): """Delete all articles within this Project or Collection.""" # TODO: Needs logic for skipping public articles in collections articles = await self._get_all_articles() for article in articles: delete_article_response = await self.make_request( 'DELETE', self.build_url(False, *self.root_path_parts, 'articles', str(article['id'])), expects=(204, ), ) await delete_article_response.release() async def _get_all_articles(self): """Get all articles under a project or collection. This endpoint is paginated and does not provide limit metadata, so we keep querying until we receive an empty array response. See https://docs.figshare.com/api/#searching-filtering-and-pagination for details. :return: list of article json objects :rtype: `list` """ all_articles, keep_going, page = [], True, 1 while keep_going: resp = await self.make_request( 'GET', self.build_url(False, *self.root_path_parts, 'articles'), params={'page': str(page), 'page_size': str(settings.MAX_PAGE_SIZE)}, expects=(200, ), ) articles = await resp.json() all_articles.extend(articles) page += 1 keep_going = len(articles) > 0 return all_articles async def _create_article(self, data): """Create an article placeholder with the properties given in ``data``. Returns the id of the new article. See https://docs.figshare.com/api/articles/#create-a-new-article for valid properties. :param dict data: properties to set for new article :return: the id of the newly created article :rtype: `str` """ resp = await self.make_request( 'POST', self.build_url(False, *self.root_path_parts, 'articles'), data=data, expects=(201, ), throws=exceptions.CreateFolderError, ) articles_json = await resp.json() article_id = articles_json['location'].rsplit('/', 1)[1] return article_id class FigshareArticleProvider(BaseFigshareProvider): def __init__(self, auth, credentials, settings, child=False): super().__init__(auth, credentials, settings) async def validate_v1_path(self, path, **kwargs): """Take a string path from the url and attempt to map it to an entity within this article. If the entity is found, returns a FigsharePath object with the entity identifiers included. Otherwise throws a 404 Not Found. Will also assert that the entity type inferred from the path matches the type of the entity at that url. :param str path: entity path from the v1 API :rtype FigsharePath: """ if path == '/': return FigsharePath('/', _ids=('', ), folder=True, is_public=False) path_parts = self._path_split(path) if len(path_parts) != 2: raise exceptions.InvalidPathError('{} is not a valid Figshare path.'.format(path)) file_id = path_parts[1] resp = await self.make_request( 'GET', self.build_url(False, *self.root_path_parts, 'files', file_id), expects=(200, ), ) file_json = await resp.json() return FigsharePath('/' + file_json['name'], _ids=('', file_id), folder=False, is_public=False) async def validate_path(self, path, **kwargs): """Take a string path from the url and attempt to map it to an entity within this article. If the entity is found, returns a FigsharePath object with the entity identifiers included. Otherwise returns a FigsharePath with empty identifiers. :param str path: identifier path URN as passed through the v0 API :rtype FigsharePath: Quirks: * v0 may pass an identifier_path whose last part is a name and not an identifier, in the case of file/folder creation calls. * validate_path validates parent and returns a FigsharePath as accurately as possible. """ if path == '/': return FigsharePath('/', _ids=('', ), folder=True, is_public=False) path_parts = self._path_split(path) if len(path_parts) != 2: raise exceptions.InvalidPathError('{} is not a valid Figshare path.'.format(path)) file_id = path_parts[1] resp = await self.make_request( 'GET', self.build_url(False, *self.root_path_parts, 'files', file_id), expects=(200, 404, ), ) if resp.status == 200: file_json = await resp.json() file_name = file_json['name'] return FigsharePath('/' + file_name, _ids=('', file_id), folder=False, is_public=False) # catch for create file in article root await resp.release() return FigsharePath('/' + file_id, _ids=('', ''), folder=False, is_public=False) async def revalidate_path(self, parent_path, child_name, folder: bool): """Attempt to get child's id and return FigsharePath of child. ``revalidate_path`` is used to check for the existance of a child_name/folder within the parent. Returning a FigsharePath of child. Child will have _id if conflicting child_name/folder exists otherwise _id will be ''. :param FigsharePath parent_path: Path of parent :param str child_name: Name of child :param bool folder: ``True`` if child is folder Code notes: Due to the fact that figshare allows duplicate titles/names for articles/files, revalidate_path can not be relied on to always return the correct id of an existing child_name. will return the first id that matches the folder and child_name arguments or '' if no match. """ parent_is_folder = False urn_parts = self.root_path_parts if not parent_path.is_root: if folder: raise exceptions.NotFoundError( '{} is not a valid parent path of folder={}. Folders can only exist at the ' 'root level.'.format(parent_path.identifier_path, str(folder))) else: urn_parts = (*urn_parts, (parent_path.identifier)) list_children_response = await self.make_request( 'GET', self.build_url(False, *urn_parts), expects=(200, ), ) child_id = '' article_json = await list_children_response.json() for file in article_json['files']: if file['name'] == child_name: child_id = str(file['id']) break return parent_path.child(child_name, _id=child_id, folder=folder, parent_is_folder=parent_is_folder) async def upload(self, stream, path, conflict='replace', **kwargs): """Upload a file to provider root or to an article whose defined_type is configured to represent a folder. :param asyncio.StreamReader stream: stream to upload :param FigsharePath path: FigsharePath to upload the file to. :param dict \*\*kwargs: Will be passed to returned metadata object """ path, exists = await self.handle_name_conflict(path, conflict=conflict) if not path.parent.is_root: parent_resp = await self.make_request( 'GET', self.build_url(False, *self.root_path_parts, 'articles', path.parent.identifier), expects=(200, ), ) parent_json = await parent_resp.json() if not parent_json['defined_type'] in settings.FOLDER_TYPES: del path._parts[1] file_id = await self._upload_file(self.container_id, path.name, stream) # Build new file path and return metadata path = FigsharePath('/' + file_id, _ids=('', file_id), folder=False, is_public=False) return (await self.metadata(path, **kwargs)), True async def create_folder(self, path, **kwargs): raise exceptions.CreateFolderError('Cannot create folders within articles.', code=400) async def delete(self, path, confirm_delete=0, **kwargs): """Delete the file at ``path``. If ``path`` is ``/`` and ``confirm_delete`` is ``1``, then delete all of the files within the article, but not the article itself. :param FigsharePath path: Path to be deleted :param int confirm_delete: Must be 1 to confirm root folder delete :rtype: None :raises: :class:`waterbutler.core.exceptions.NotFoundError` :raises: :class:`waterbutler.core.exceptions.DeleteError` Quirks: * If the FigsharePath given is for the provider root path, then the contents of the provider root path will be deleted, but not the provider root itself. """ if path.is_root: if confirm_delete == 1: return await self._delete_container_contents() raise exceptions.DeleteError( 'confirm_delete=1 is required for deleting root provider folder', code=400 ) await self._delete_file(path.parts[-1]._id) async def metadata(self, path, **kwargs): """Return metadata for entity identified by ``path``. May be the containing article or a file in a fileset article. :param FigsharePath path: entity whose metadata will be returned :rtype FigshareFileMetadata obj or list of Metadata objs: """ article = await self._get_article(not path.is_public) if path.is_root: # list files in article contents = [] for file in article['files']: contents.append(metadata.FigshareFileMetadata(article, raw_file=file)) return contents elif len(path.parts) == 2: # metadata for a particular file for file in article['files']: if str(file['id']) == path.parts[1].identifier: return metadata.FigshareFileMetadata(article, raw_file=file) # Invalid
'--use-old-getter-setter': self.UseOldGetterSetter = 1 elif option[0] in ('-u', '--user-methods'): UserMethodsPath = option[1] elif option[0] == '--no-process-includes': self.processIncludes = 0 elif option[0] == "--silence": self.outputText = False elif option[0] == "--namespacedef": self.namespacedef = option[1] elif option[0] == '--external-encoding': self.ExternalEncoding = option[1] elif option[0] in ('-q', '--no-questions'): self.NoQuestions = True elif option[0] == '--version': showVersion = True elif option[0] == '--member-specs': MemberSpecs = option[1] if MemberSpecs not in ('list', 'dict', ): raise RuntimeError('Option --member-specs must be "list" or "dict".') elif option[0] in ('-l', '--generated-language'): self.genLang = option[1] if self.genLang not in ('py', 'c++'): raise RuntimeError('Option --generated-language must be "py" or "c++".') elif option[0] in ('-g', '--generator-category'): self.genCategory = option[1] if self.genCategory not in ('type', 'service', 'ifmap-frontend', 'ifmap-backend', 'device-api', 'java-api', 'golang-api', 'contrail-json-schema', 'json-schema'): raise RuntimeError('Option --generator-category must be "type", service", "ifmap-frontend", "ifmap-backend", "device-api", "java-api", "golang-api", "contrail-json-schema" or "json-schema".') if showVersion: print('generateDS.py version %s' % VERSION) sys.exit(0) def countChildren(self, element, count): count += len(element.getChildren()) base = element.getBase() if base and base in self.ElementDict: parent = self.ElementDict[base] count = self.countChildren(parent, count) return count def getParentName(self, element): base = element.getBase() rBase = element.getRestrictionBaseObj() parentName = None parentObj = None if base and base in self.ElementDict: parentObj = self.ElementDict[base] parentName = self.cleanupName(parentObj.getName()) elif rBase: base = element.getRestrictionBase() parentObj = self.ElementDict[base] parentName = self.cleanupName(parentObj.getName()) return parentName, parentObj def makeFile(self, outFileName, outAppend = False): outFile = None if ((not self.Force) and os.path.exists(outFileName) and not outAppend): if self.NoQuestions: sys.stderr.write('File %s exists. Change output file or use -f (force).\n' % outFileName) sys.exit(1) else: reply = eval(input('File %s exists. Overwrite? (y/n): ' % outFileName)) if reply == 'y': outFile = file(outFileName, 'w') else: if (outAppend): outFile = file(outFileName, 'a') else: outFile = file(outFileName, 'w') return outFile def mapName(self, oldName): newName = oldName if self.NameTable: if oldName in self.NameTable: newName = self.NameTable[oldName] return newName def cleanupName(self, oldName): newName = oldName.replace(':', '_') newName = newName.replace('-', '_') newName = newName.replace('.', '_') return newName def make_gs_name(self, oldName): if self.UseOldGetterSetter: newName = oldName.capitalize() else: newName = '_%s' % oldName return newName def is_builtin_simple_type(self, type_val): if type_val in self.StringType or \ type_val == self.TokenType or \ type_val == self.DateTimeType or \ type_val == self.TimeType or \ type_val == self.DateType or \ type_val in self.IntegerType or \ type_val == self.DecimalType or \ type_val == self.PositiveIntegerType or \ type_val == self.NonPositiveIntegerType or \ type_val == self.NegativeIntegerType or \ type_val == self.NonNegativeIntegerType or \ type_val == self.BooleanType or \ type_val == self.FloatType or \ type_val == self.DoubleType or \ type_val in self.OtherSimpleTypes: return True else: return False def set_type_constants(self, nameSpace): self.CurrentNamespacePrefix = nameSpace self.AttributeGroupType = nameSpace + 'attributeGroup' self.AttributeType = nameSpace + 'attribute' self.BooleanType = nameSpace + 'boolean' self.ChoiceType = nameSpace + 'choice' self.SimpleContentType = nameSpace + 'simpleContent' self.ComplexContentType = nameSpace + 'complexContent' self.ComplexTypeType = nameSpace + 'complexType' self.GroupType = nameSpace + 'group' self.SimpleTypeType = nameSpace + 'simpleType' self.RestrictionType = nameSpace + 'restriction' self.WhiteSpaceType = nameSpace + 'whiteSpace' self.AnyAttributeType = nameSpace + 'anyAttribute' self.DateTimeType = nameSpace + 'dateTime' self.TimeType = nameSpace + 'time' self.DateType = nameSpace + 'date' self.IntegerType = (nameSpace + 'integer', nameSpace + 'unsignedShort', nameSpace + 'unsignedLong', nameSpace + 'unsignedInt', nameSpace + 'unsignedByte', nameSpace + 'byte', nameSpace + 'short', nameSpace + 'long', nameSpace + 'int', ) self.DecimalType = nameSpace + 'decimal' self.PositiveIntegerType = nameSpace + 'positiveInteger' self.NegativeIntegerType = nameSpace + 'negativeInteger' self.NonPositiveIntegerType = nameSpace + 'nonPositiveInteger' self.NonNegativeIntegerType = nameSpace + 'nonNegativeInteger' self.DoubleType = nameSpace + 'double' self.ElementType = nameSpace + 'element' self.ExtensionType = nameSpace + 'extension' self.FloatType = nameSpace + 'float' self.IDREFSType = nameSpace + 'IDREFS' self.IDREFType = nameSpace + 'IDREF' self.IDType = nameSpace + 'ID' self.IDTypes = (self.IDREFSType, self.IDREFType, self.IDType, ) self.SchemaType = nameSpace + 'schema' self.SequenceType = nameSpace + 'sequence' self.StringType = (nameSpace + 'string', nameSpace + 'duration', nameSpace + 'anyURI', nameSpace + 'base64Binary', nameSpace + 'hexBinary', nameSpace + 'normalizedString', nameSpace + 'NMTOKEN', nameSpace + 'ID', nameSpace + 'Name', nameSpace + 'language', ) self.TokenType = nameSpace + 'token' self.NameType = nameSpace + 'Name' self.NCNameType = nameSpace + 'NCName' self.QNameType = nameSpace + 'QName' self.NameTypes = (self.NameType, self.NCNameType, self.QNameType, ) self.ListType = nameSpace + 'list' self.EnumerationType = nameSpace + 'enumeration' self.MinInclusiveType = nameSpace + 'minInclusive' self.MaxInclusiveType = nameSpace + 'maxInclusive' self.UnionType = nameSpace + 'union' self.AnnotationType = nameSpace + 'annotation' self.DocumentationType = nameSpace + 'documentation' self.AnyType = nameSpace + 'any' self.OtherSimpleTypes = ( nameSpace + 'ENTITIES', nameSpace + 'ENTITY', nameSpace + 'ID', nameSpace + 'IDREF', nameSpace + 'IDREFS', nameSpace + 'NCName', nameSpace + 'NMTOKEN', nameSpace + 'NMTOKENS', nameSpace + 'NOTATION', nameSpace + 'Name', nameSpace + 'QName', nameSpace + 'anyURI', nameSpace + 'base64Binary', nameSpace + 'hexBinary', nameSpace + 'boolean', nameSpace + 'byte', nameSpace + 'date', nameSpace + 'dateTime', nameSpace + 'time', nameSpace + 'decimal', nameSpace + 'double', nameSpace + 'duration', nameSpace + 'float', nameSpace + 'gDay', nameSpace + 'gMonth', nameSpace + 'gMonthDay', nameSpace + 'gYear', nameSpace + 'gYearMonth', nameSpace + 'int', nameSpace + 'integer', nameSpace + 'language', nameSpace + 'long', nameSpace + 'negativeInteger', nameSpace + 'nonNegativeInteger', nameSpace + 'nonPositiveInteger', nameSpace + 'normalizedString', nameSpace + 'positiveInteger', nameSpace + 'short', nameSpace + 'string', nameSpace + 'time', nameSpace + 'token', nameSpace + 'unsignedByte', nameSpace + 'unsignedInt', nameSpace + 'unsignedLong', nameSpace + 'unsignedShort', nameSpace + 'anySimpleType', ) self.SchemaToPythonTypeMap = { self.BooleanType : 'bool', self.DecimalType : 'float', self.DoubleType : 'float', self.FloatType : 'float', self.NegativeIntegerType : 'int', self.NonNegativeIntegerType : 'int', self.NonPositiveIntegerType : 'int', self.PositiveIntegerType : 'int', self.DateTimeType.lower() : 'str', self.TimeType.lower() : 'str', self.DateType.lower() : 'str' } self.SchemaToPythonTypeMap.update(dict((x, 'int') for x in self.IntegerType)) self.SchemaToPythonTypeMap.update(dict((x.lower(), 'int') for x in self.IntegerType)) self.SchemaToPythonTypeMap.update(dict((x, 'str') for x in self.StringType)) self.SchemaToCppTypeMap = { self.BooleanType : 'bool', self.DecimalType : 'float', self.DoubleType : 'float', self.FloatType : 'float', self.NegativeIntegerType : 'int', self.NonNegativeIntegerType : 'int', self.NonPositiveIntegerType : 'int', self.PositiveIntegerType : 'int', self.StringType : 'string', } self.SchemaToCppTypeMap.update(dict((x, 'int') for x in self.IntegerType)) self.SchemaToCppTypeMap.update(dict((x, 'string') for x in self.StringType)) def init_with_args(self): global TEMPLATE_SUBCLASS_FOOTER self.XsdNameSpace = self.nameSpace self.Namespacedef = self.namespacedef self.set_type_constants(self.nameSpace) if self.behaviorFilename and not self.subclassFilename: err_msg(USAGE_TEXT) err_msg('\n*** Error. Option -b requires -s\n') if self.xschemaFileName is None: if len(self.args) != 1: usage() else: self.xschemaFileName = self.args[0] silent = not self.outputText self.TEMPLATE_MAIN = fixSilence(self.TEMPLATE_MAIN, silent) TEMPLATE_SUBCLASS_FOOTER = fixSilence(TEMPLATE_SUBCLASS_FOOTER, silent) self._load_config() if self.genCategory == 'type': self._Generator = TypeGenerator(self) elif self.genCategory == 'service': self._Generator = ServiceGenerator(self) elif (self.genCategory == 'ifmap-backend' or self.genCategory == 'ifmap-frontend' or self.genCategory == 'device-api' or self.genCategory == 'java-api' or self.genCategory == 'golang-api' or self.genCategory == 'contrail-json-schema' or self.genCategory == 'json-schema'): self._Generator = IFMapGenerator(self, self.genCategory) self._Generator.setLanguage(self.genLang) def _load_config(self): try: #print '1. updating NameTable' import generateds_config NameTable.update(generateds_config.NameTable) #print '2. updating NameTable' except ImportError as exp: pass def parseAndGenerate(self): self.DelayedElements = [] self.DelayedElements_subclass = [] self.AlreadyGenerated = [] self.AlreadyGenerated_subclass = [] if self.UserMethodsPath: # UserMethodsModule = __import__(UserMethodsPath) path_list = self.UserMethodsPath.split('.') mod_name = path_list[-1] mod_path = os.sep.join(path_list[:-1]) module_spec = imp.find_module(mod_name, [mod_path, ]) self.UserMethodsModule = imp.load_module(mod_name, *module_spec) ## parser = saxexts.make_parser("xml.sax.drivers2.drv_pyexpat") parser = make_parser() dh = XschemaHandler(self) ## parser.setDocumentHandler(dh) parser.setContentHandler(dh) infile = self.getInfile() parser.parse(infile) # on MacOS parser.parse closes infile if infile.closed: infile = self.getInfile() root = dh.getRoot() root.annotate() ## print '-' * 60 ## root.show(sys.stdout, 0) ## print '-' * 60 #debug_show_elements(root) infile.seek(0) self._Generator.generate(root, infile, self.outFilename) def getInfile(self): if self.xschemaFileName == '-': infile = sys.stdin else: infile = open(self.xschemaFileName, 'r') if self.processIncludes: import process_includes outfile = io.BytesIO() process_includes.process_include_files(infile, outfile, inpath=self.xschemaFileName) outfile.seek(0) infile = outfile return infile def showLevel(outfile, level): for idx in range(level): outfile.write(' ') class XschemaElementBase(object): def __init__(self): pass class SimpleTypeElement(XschemaElementBase): def __init__(self, name): XschemaElementBase.__init__(self) self.name = name self.base = None self.collapseWhiteSpace = 0 # Attribute definitions for the current attributeGroup, if there is one. self.attributeGroup = None # Attribute definitions for the currect element. self.attributeDefs = {} self.complexType = 0 # Enumeration values for the current element. self.values = list() # The other simple types this is a union of. self.unionOf = list() self.simpleType = 0 self.listType = 0 self.documentation = '' self.default = None self.restrictionAttrs = None def setName(self, name): self.name = name def getName(self): return self.name def setBase(self, base): self.base = base def getBase(self): return self.base def getDefault(self): return self.default
<filename>tests/test_editor_api.py import os import json from django.test import TestCase import libs.track as track import TrackApp.models as models import tests.testing_utils as testing_utils class EditorTestUtils(TestCase): def create_user(self, username='default_user', password='<PASSWORD>', email='<EMAIL>'): user = testing_utils.create_user(username=username, password=password, email=email) self.user, self.username, self.password = user, username, password return user, username, password def login(self): self.client.login(username=self.username, password=self.password) def create_session(self): """ Get request to the /editor endpoint to generate track in session """ response = self.client.get('/editor/') session = self.client.session return response, session def get_sample_file(self, filename='simple_numbers.gpx'): """ Get a file to be used as input """ return os.path.join(self.test_path, 'samples', filename) def compare_tracks(self, session_track, reference_track): """ Comparison of tracks is encapsulated in this function. It can be particularly sensitive for segment_names since suffix may be added according to the loaded name file in /media """ for k in session_track: if k == 'segment_names': for s, r in zip(session_track[k], reference_track[k]): self.assertIn(os.path.splitext(r)[0], s) else: self.assertEqual(session_track[k], reference_track[k]) class EditorTest(EditorTestUtils): """ Test the editor API functions from views. """ def setUp(self): self.test_path = os.path.dirname(__file__) self.user, self.username, self.password = self.create_user() self.login() def test_create_session(self): """ Check that empty session is created """ response, session = self.create_session() self.assertEqual(response.status_code, 200) self.assertIn('json_track', session.keys()) self.assertIn('index_db', session.keys()) def test_add_gpx(self): """ Add one gpx file and check it is included in session """ self.create_session() # Add file sample_file = self.get_sample_file() with open(sample_file, 'r') as f: self.client.post('/editor/', {'document': f}) session_track = json.loads(self.client.session['json_track']) # Create expected output obj_track = track.Track() obj_track.add_gpx(sample_file) reference_track = json.loads(obj_track.to_json()) self.compare_tracks(session_track, reference_track) self.assertIsNone(self.client.session['index_db']) # not saved session def test_load_session(self): """ Create a session with one track, save it and load it """ self.create_session() sample_file = self.get_sample_file() with open(sample_file, 'r') as f: self.client.post('/editor/', {'document': f}) self.client.post('/editor/save_session') # Add another file to force that the last active session is not # the same than the loaded one with open(sample_file, 'r') as f: self.client.post('/editor/', {'document': f}) # Load track response = self.client.get( f'/editor/{self.client.session["index_db"]}') session_track = json.loads(self.client.session['json_track']) # Create expected output obj_track = track.Track() obj_track.add_gpx(sample_file) reference_track = json.loads(obj_track.to_json()) self.compare_tracks(session_track, reference_track) self.assertEqual(response.status_code, 200) self.assertIsNotNone(self.client.session['index_db']) class GetSummaryTest(EditorTestUtils): """ Test the get_summary view of the editor api """ def setUp(self): self.test_path = os.path.dirname(__file__) self.user, self.username, self.password = self.create_user() self.login() def test_get_summary(self): """ Call the get_summary endpoint to check the return JSON """ self.create_session() sample_file = self.get_sample_file() with open(sample_file, 'r') as f: self.client.post('/editor/', {'document': f}) response = self.client.get('/editor/get_summary') summary = json.loads(response.content)['summary'] self.assertEqual(summary[list(summary.keys())[0]], {'distance': '445.2 km', 'uphill': '+20 m', 'downhill': '-20 m'}) self.assertEqual(summary['total'], {'distance': '445.2 km', 'uphill': '+20 m', 'downhill': '-20 m'}) self.assertEqual(response.status_code, 200) def test_get_summary_no_track(self): """ Try to rename a non existing session """ response = self.client.get('/editor/get_summary') self.assertEqual(response.status_code, 520) def test_get_summary_wrong_request(self): """ Use post request instead of get and check response """ response = self.client.post('/editor/get_summary') self.assertEqual(response.status_code, 405) class SaveSessionTest(EditorTestUtils): """ Test the save_session view of the editor api """ def setUp(self): self.test_path = os.path.dirname(__file__) self.user, self.username, self.password = self.create_user() self.login() def test_save_session(self): """ Create a session with one track and save it """ self.create_session() # Add file sample_file = self.get_sample_file() with open(sample_file, 'r') as f: self.client.post('/editor/', {'document': f}) session_track = json.loads(self.client.session['json_track']) # Save session response = self.client.post('/editor/save_session') # Get reference data saved_track = models.Track.objects.\ get(id=self.client.session['index_db']) saved_track = json.loads(saved_track.track) self.assertEqual(session_track, saved_track) self.assertEqual(response.status_code, 201) self.assertIsNotNone(self.client.session['index_db']) def test_save_add_save(self): """ Create and save session with one gpx file. Add a new one, save and check that the db record is properly updated. """ self.create_session() sample_file = self.get_sample_file() with open(sample_file, 'r') as f: self.client.post('/editor/', {'document': f}) self.client.post('/editor/save_session') with open(sample_file, 'r') as f: self.client.post('/editor/', {'document': f}) self.client.post('/editor/save_session') # Load track response = self.client.get( f'/editor/{self.client.session["index_db"]}') session_track = json.loads(self.client.session['json_track']) # Create expected output obj_track = track.Track() obj_track.add_gpx(sample_file) obj_track.add_gpx(sample_file) reference_track = json.loads(obj_track.to_json()) self.compare_tracks(session_track, reference_track) self.assertEqual(response.status_code, 200) self.assertIsNotNone(self.client.session['index_db']) def test_save_remove_save(self): """ Create and save session with five gpx file. Remove some, save and check that the db record is properly updated. """ self.create_session() # Load files and save session for i in range(1, 6): sample_file = self.get_sample_file(f'island_{i}.gpx') with open(sample_file, 'r') as f: self.client.post('/editor/', {'document': f}) self.client.post( '/editor/rename_segment', json.dumps({'index': i - 1, 'new_name': os.path.basename(sample_file)}), content_type='application/json') self.client.post('/editor/rename_session', json.dumps({'new_name': 'test_save_remove_save'}), content_type='application/json') self.client.post('/editor/save_session') # Remove segments and save self.client.post('/editor/remove_segment/2') self.client.post('/editor/remove_segment/4') self.client.post('/editor/save_session') # Load db record track_db = json.loads( models.Track.objects.get(id=self.client.session['index_db']).track) segments_names = track_db['segment_names'] self.assertEqual(set(track_db['segment']), {1, 3, 5}) self.assertRegex(segments_names[0], 'island_1.*.gpx') self.assertIsNone(segments_names[1]) self.assertRegex(segments_names[2], 'island_3.*.gpx') self.assertIsNone(segments_names[3]) self.assertRegex(segments_names[4], 'island_5.*.gpx') def test_save_rename_save(self): """ Create and save session with one gpx file. Add a new one, save an check that the db record is properly updated. """ self.create_session() self.client.post('/editor/save_session') self.client.post('/editor/rename_session/test_save_rename_save') self.client.post('/editor/save_session') # Load db record record = models.Track.objects.get(id=self.client.session['index_db']) self.assertEqual(record.title, 'test_save_rename_save') self.assertEqual(json.loads(record.track)['title'], 'test_save_rename_save') def test_save_session_wrong_request(self): """ Use get request instead of post and check response """ self.create_session() response = self.client.get('/editor/save_session') self.assertEqual(response.status_code, 405) def test_save_session_no_track(self): """ Try to save a non existing session """ response = self.client.post('/editor/save_session') self.assertEqual(response.status_code, 520) class RemoveSessionTest(EditorTestUtils): """ Test the remove_session view of the editor api """ def setUp(self): self.test_path = os.path.dirname(__file__) self.user, self.username, self.password = self.create_user() self.login() def test_remove_session(self): """ Create a session, save and remove it from db """ self.create_session() self.client.post('/editor/save_session') before = models.Track.objects.\ filter(id=self.client.session['index_db']).count() response = self.client.post( f'/editor/remove_session/{self.client.session["index_db"]}') after = models.Track.objects.\ filter(id=self.client.session['index_db']).count() self.assertEqual(response.status_code, 201) self.assertEqual(before, 1) self.assertEqual(after, 0) def test_remove_session_no_track(self): """ Try to save a non existing session """ response = self.client.post('/editor/remove_session/25') self.assertEqual(response.status_code, 520) def test_remove_session_wrong_request(self): """ Use get request instead of post and check response """ response = self.client.get('/editor/remove_session/25') self.assertEqual(response.status_code, 405) class RenameSessionTest(EditorTestUtils): """ Test the rename_session view of the editor api """ def setUp(self): self.test_path = os.path.dirname(__file__) self.user, self.username, self.password = self.create_user() self.login() def test_rename_session(self): """ Create a session, rename and save """ self.create_session() self.client.post('/editor/save_session') response = self.client.post( '/editor/rename_session/test_rename_session') self.client.post('/editor/save_session') track_db = models.Track.objects.get(id=self.client.session['index_db']) self.assertEqual(response.status_code, 201) self.assertEqual(track_db.title, 'test_rename_session') def test_rename_session_no_track(self): """ Try to rename a non existing session """ response = self.client.post( '/editor/rename_session/test_rename_session_no_track') self.assertEqual(response.status_code, 520) def test_rename_session_wrong_request(self): """ Use get request instead of post and check response """ response = self.client.get('/editor/rename_session/new_name') self.assertEqual(response.status_code, 405) def test_rename_session_invalid_endpoint(self): """ Do not provide new_name in request """ response = self.client.post('/editor/rename_session/') self.assertEqual(response.status_code, 404) class DownloadSessionTest(EditorTestUtils): """ Test the download_session view of the editor api """ def setUp(self): self.test_path = os.path.dirname(__file__) self.user, self.username, self.password = self.create_user() self.login() def test_download_session(self): """ Load a gpx and download the session """ self.create_session() sample_file = self.get_sample_file() with open(sample_file, 'r') as f: self.client.post('/editor/', {'document': f}) self.client.post('/editor/rename_session/test_download_session') response = self.client.post('/editor/download_session') resp_json = json.loads(response.content) self.assertRegex(resp_json['url'], '/media/test_download_session_.{8}.gpx') self.assertRegex(resp_json['filename'], 'test_download_session_.{8}.gpx') self.assertEqual(os.path.basename(resp_json['url']), resp_json['filename']) self.assertEqual(response.status_code, 200) def test_download_session_wrong_request(self): """ Use get request instead of post and check response """ self.create_session() sample_file = self.get_sample_file() with open(sample_file, 'r') as f: self.client.post('/editor/', {'document': f}) response = self.client.get('/editor/download_session') self.assertEqual(response.status_code, 405) def test_download_session_no_session(self): """ Test download session with no available session """ response = self.client.post('/editor/download_session') self.assertEqual(response.status_code, 520) def test_download_session_no_track(self): """ Test download session with no available track """ self.create_session() response = self.client.post('/editor/download_session') self.assertEqual(response.status_code, 200) class GetSegmentsLinksTest(EditorTestUtils): """ Test the get_segments_links view of the editor api """ def setUp(self): self.test_path = os.path.dirname(__file__) self.user, self.username, self.password = self.create_user() self.login() def test_get_segments_links(self): """ Test download session with no available track """ self.create_session() for file in ['simple_numbers.gpx', 'simple_numbers_down.gpx', 'simple_numbers_left.gpx', 'simple_numbers_up.gpx']: sample_file = self.get_sample_file(file) with open(sample_file, 'r') as f: self.client.post('/editor/', {'document': f}) response = self.client.get('/editor/get_segments_links') resp_json = json.loads(response.content) links = eval(resp_json['links']) self.assertEqual(links, [[[1.0, 5.0], [1.0, 6.0]], [[-3.0, 6.0], [-3.0, 5.0]], [[-3.0, 1.0], [-3.0, 0.0]]]) self.assertEqual(response.status_code, 200) def test_get_segments_links_no_track(self): """ Try to get segments with no available track """ response = self.client.get('/editor/get_segments_links') self.assertEqual(response.status_code, 520) def test_get_segments_links_wrong_request(self): """ Send post instead of get """ response = self.client.post('/editor/get_segments_links') self.assertEqual(response.status_code, 405) class ReverseSegmentTest(EditorTestUtils): """ Test the reverse segment view of the editor api """ def setUp(self): self.test_path = os.path.dirname(__file__) self.user, self.username, self.password = self.create_user() self.login() def test_reverse_segment(self): """ Test reverse segments """ self.create_session() for file in ['simple_numbers.gpx', 'simple_numbers_down.gpx', 'simple_numbers_left.gpx']: sample_file = self.get_sample_file(file) with open(sample_file, 'r') as f: self.client.post('/editor/', {'document': f}) response_1 = self.client.post('/editor/reverse_segment/1') response_2 = self.client.post('/editor/reverse_segment/2') response_3 = self.client.post('/editor/reverse_segment/3') json_track = json.loads(self.client.session['json_track']) simple_numbers = {'lat': [1] * 5, 'lon': list(range(1, 6))} simple_numbers_down = {'lat': list(range(1, -4, -1)), 'lon': [6] * 5} simple_numbers_left = {'lat': [-3] * 5, 'lon': list(range(5, 0, -1))} self.assertEqual(response_1.status_code, 200) self.assertEqual(response_2.status_code, 200) self.assertEqual(response_3.status_code, 200) self.assertEqual(json_track['lat'], simple_numbers['lat'][::-1] + simple_numbers_down['lat'][::-1] + simple_numbers_left['lat'][::-1]) self.assertEqual(json_track['lon'], simple_numbers['lon'][::-1] + simple_numbers_down['lon'][::-1] + simple_numbers_left['lon'][::-1]) def test_reverse_segment_get_no_track(self): """ Try to get segments with no available track """ response = self.client.post('/editor/reverse_segment/1') self.assertEqual(response.status_code, 520) def test_reverse_segment_get_no_index(self): """ Do not
<reponame>h3dema/deepwifi #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Environment implementation (abstract class) that represents the experiment using Video This class implements the basic functions to control the APs, but it does not implement the QoE """ import time import logging import pickle from abc import abstractmethod import socket import numpy as np import http.client import urllib.parse from Environment.interface_env import Interface_Env from Environment.common import kill_aps from Environment.common import change_channel_hostapd from Environment.common import start_hostapd def decode_txpower(t): """ convert the data in info['txpower'] which is, for example, '15.00 dBm' into 15.0 @return: the value of the tx power @rtype: float """ r = float(t.split()[0].strip()) return r class Generic_AP(Interface_Env): NUM_CHANNELS = 11 NUM_TXPOWER_LEVELS = 15 DEFAULT_C = 0.4 # used in the reward hossfeld def __init__(self, aps, # List[AP_Config] model_filename, # filename that contains the trained model mac_mapping={}, # {'hostname':'mac'} log_level=logging.DEBUG, log_name='AP Controller', wait_for_states=10, execute_action=False, ): """ initialize the environment @param aps: list of aps controlled in the experiment @param model_filename: name of the file that contains the trained model @type model_filename: str @param mac_mapping: a dictionary that maps the hostname to its mac address @param execute_action: if True send the selected actions to the devices """ super().__init__(LOG_NAME=log_name, log_level=log_level) self.aps = aps # load model from json self.mos_model = self.get_model(model_filename=model_filename) # num_states is inf because there are continuous dimensions self.num_states = None self.dim_states = 20 # (None, 20) self.num_actions = self.NUM_CHANNELS * self.NUM_TXPOWER_LEVELS self.station_data = dict() # used to inform command_ap the mapping between the station name and its MACs self.mac_mapping = mac_mapping self.wait_for_states = wait_for_states self.execute_action = execute_action self.last_channnel = [1 for _ in range(len(aps))] def command_ap(self, server, port, iface, cmd, extra_params=None): """ @return: returns true if receive the response, also returns the data or an empty dict (if error) @rtype bool, dict """ conn = http.client.HTTPConnection(server, port) params = {'iface': iface} if extra_params is not None: params.update(extra_params) q = urllib.parse.urlencode(params) url = "{}?{}".format(cmd, q) try: conn.request(method='GET', url=url) except (ConnectionRefusedError, http.client.RemoteDisconnected, socket.gaierror): return False, {} # Got an error resp = conn.getresponse() self.log.info("cmd: {} @ {} status:{}".format(cmd, server, resp.status)) try: data = pickle.loads(resp.read()) except (EOFError, pickle.UnpicklingError): data = {} conn.close() return resp.status == 200, data def restart_aps(self, run_id): """ this is done because our ap sometimes crashes. the hostapd continues to run, but does not provide a channel """ aps_to_change = [] chans = [] for ap, channel in zip(self.aps, self.last_channnel): _, data = self.command_ap(ap.name, ap.port, ap.iface, '/get_info') ch = data.get('channel', -1) if ch != -1: continue aps_to_change.append(ap) chans.append(ch) if len(aps_to_change) == 0: # nothing to do return # alter the hostapd.conf file change_channel_hostapd(aps_to_change, chans) # restart the hostapd kill_aps(aps_to_change) # start hostapd start_hostapd(aps_to_change, [run_id for i in len(aps_to_change)]) def valid_actions(self, state=None): """ return a list with all valid actions for a specific state, if state == None, return all possible states @param state: current state @return: list(int) """ # TODO: check for valid actions when states is not None valid = list(range(self.num_actions)) # now we always return all actions return valid def one_hot(self, channel): """ code the channel using one-hot encoding @param channel: @type channel: int @return: the channel hot encoded @rtype: list(int) """ assert channel > 0 and channel <= self.NUM_CHANNELS, "Wrong channel = {}".format(channel) cs = [0 for i in range(self.NUM_CHANNELS)] cs[channel - 1] = 1 self.log.debug("one-hot {} = {}".format(channel, cs)) return cs def get_states(self): """ get the states, one for each AP the state contains: - ( #stations, ch1, ch2, ch3, ch4, ch5, ch6, ch7, ch8, ch9, ch10, ch11, tx_power, #num_neighbors, ch_noise_max, perc_phy_busy_time, sta_signal_avg, rec_bitrate_min, tx_byte_avg, rx_byte_avg ) @return: return the value that represent the state of all APs. Returns None if an error occurs. """ known_macs = set([ap.mac for ap in self.aps]) try: states = [] for ap in self.aps: self.log.info("Data from {} @ {}".format(ap.name, ap.iface)) _, info = self.command_ap(ap.name, ap.port, ap.iface, '/get_info') self.log.info("Info: {}".format(info)) ch = int(info['channel']) self.log.info("Channel: {}".format(ch)) _, stations = self.command_ap(ap.name, ap.port, ap.iface, '/get_stations') self.log.info("Stations: {}".format(stations)) num_stations = len(stations) # number of stations now self.log.info("n: {}".format(num_stations)) # check #num_neighbors _, scan = self.command_ap(ap.name, ap.port, ap.iface, '/get_scan_mac') self.log.info("Scan: {}".format(scan)) macs = set([k for k in scan]) # the dictionary key is the mac of the detected AP num_neighbors = len(macs.intersection(known_macs)) self.log.info("num_neighbors: {}".format(num_neighbors)) _, survey = self.command_ap(ap.name, ap.port, ap.iface, '/get_survey') self.log.info("survey: {}".format(survey)) chann_in_use = [v for v in survey if survey[v].get('in use', False)][0] # we need only the channel in use self.log.info("survey (in use): {}".format(chann_in_use)) survey_in_use = survey[chann_in_use] ch_noise_max = survey_in_use['noise'] perc_phy_busy_time = (survey_in_use['channel busy time'] + survey_in_use['channel receive time'] + survey_in_use['channel transmit time']) \ / survey_in_use['channel active time'] # obtain the state: one state per AP, so consolidate signal_avg = np.average([stations[s]['signal avg'] for s in stations]) rx_bitrate = np.average([stations[s]['rx bitrate'] for s in stations]) # detrend tx_bytes and rx_bytes tx_bytes = 0 rx_bytes = 0 for k in stations: if k not in self.station_data: self.station_data[k] = dict() self.station_data[k]['tx bytes'] = stations[k]['tx bytes'] self.station_data[k]['rx bytes'] = stations[k]['rx bytes'] tx_bytes = stations[k]['tx bytes'] - self.station_data[k]['tx bytes'] rx_bytes = stations[k]['rx bytes'] - self.station_data[k]['rx bytes'] # save to use in the next round self.station_data[k]['tx bytes'] = stations[k]['tx bytes'] self.station_data[k]['rx bytes'] = stations[k]['rx bytes'] # save the AP's state state = [num_stations] + \ self.one_hot(ch) + \ [decode_txpower(info['txpower']), num_neighbors, # num_neighbors ch_noise_max, perc_phy_busy_time, signal_avg, rx_bitrate, tx_bytes, rx_bytes, ] if np.any(np.isnan(state)): # some reading got nan == error states = None break states.append(state) # get the final state for the AP except (KeyError, ValueError, IndexError): # IndexError: can occur in chann_in_use # KeyError: can occur in ch, survey_in_use, ch_noise_max, perc_phy_busy_time states = None # trigger an Error self.log.info("States: {}".format(states)) return states def encode_action(self, txpower, channel): """ @param action: an integer that represents the action @return: decoded values of txpower (1 to 15 dBm) and channel (1 to 11) """ assert channel > 0 and txpower > 0 action = (channel - 1) * self.NUM_TXPOWER_LEVELS + (txpower - 1) return action def decode_action(self, action): """ @param action: an integer that represents the action @return: decoded values of txpower (1 to 15 dBm) and channel (1 to 11) """ channel = action // self.NUM_TXPOWER_LEVELS + 1 txpower = action % self.NUM_TXPOWER_LEVELS + 1 return txpower, channel def setup_device(self, ap, txpower, channel): """ change the tx power and the ap's channel @param ap: the ap @param txpower: tx power (from 1 to 15 dBm) @param channel: the 2.4GHz channel number (1 to 11) """ assert txpower in range(1, 16) assert channel in range(1, 12) _, data = self.command_ap(ap.name, ap.port, ap.iface, '/get_info') ch = data.get('channel', -1) if ch not in [-1, channel]: # send command to change channel, if the channel is different self.log.info("last_channnel {} ==> new channel {}".format(ch, channel)) self.command_ap(ap.name, ap.port, ap.iface, '/set_channel', extra_params={'new_channel': channel}) else: return False self.command_ap(ap.name, ap.port, ap.iface, '/set_power', extra_params={'new_power': txpower}) self.log.info("setup_device ** ap {} txpower {} channel {}".format(ap.name, txpower, channel)) return True def make_step(self, actions, retries=5): """send commands to aps @param actions: is a list of number (int) that represents the action to be taken for each AP @type actions: list(int) @param retries: number of times this function tries to get the next_state from the devices, if unsuccessful then return None in next_state @int retries: int @return: next_state: a (list of) number (int) that represents the next state @return: reward: a real number (reward feedback). Reward contains np.nan if an error occurs @rtype: list(int), float """ assert retries > 0, "At least one try" self.log.info("make_step ** actions {} - type {}".format(actions, type(actions))) if self.execute_action: # make the move defined in action i = 0 for ap, action in zip(self.aps, actions): # decode the number into the actual set of commands # send the commands to the ap txpower, channel = self.decode_action(action) self.setup_device(ap, txpower, channel) self.last_channnel[i] = channel i += 1 else: # use this to just grab the data from a execution without the interference of the algorithm self.log.info("******************") self.log.info("******************") self.log.info("** NO STEP DONE **") self.log.info("******************") self.log.info("******************") # check the new state i = 0 while i <
<reponame>UBC-MDS/mindthegap from dash import Dash, html, dcc, Input, Output import numpy as np import pandas as pd import altair as alt from vega_datasets import data import dash_bootstrap_components as dbc import os app = Dash( __name__, title="Mindthegap Dashboard", external_stylesheets=[dbc.themes.BOOTSTRAP] ) server = app.server # read in gapminder and continent data current_dir = os.path.abspath(os.path.dirname(__file__)) country_ids = pd.read_csv(os.path.join(current_dir, "../data/country_ids.csv")) gap = pd.read_csv(os.path.join(current_dir, "../data/gapminder.csv")) gap = gap.merge(country_ids, how="outer", on=["country"]) gap["log_income"] = gap["income"].apply(np.log) # dictionary to generate dynamic metrics in altair metrics = { "life_expectancy": "Life Expectancy", "child_mortality": "Child Mortality", "pop_density": "Population Density", } ############################## CONTROL PANEL FILTERS ############################## FILTER_STYLE = {"background-color": "#f8f9fa", "width": "18rem", "height": "100%"} filter_panel = dbc.Card( dbc.Col( [ html.Br(), html.Br(), html.Br(), # control panel title html.H2("Control Panel", className="text-center"), html.Br(), html.Br(), # metric radio button dbc.Row( [ html.H5("1. Metric", className="text-left"), dbc.RadioItems( id="metric", value="life_expectancy", labelStyle={"display": "block"}, options=[{"label": v, "value": k} for k, v in metrics.items()], ), ] ), html.Br(), html.Br(), # continent drop down dbc.Row( [ html.H5("2. Continent", className="text-left"), dcc.Dropdown( id="region", options=[ {"label": reg, "value": reg} for reg in gap["region"].dropna().unique() ], value=None, ), ] ), html.Br(), html.Br(), # sub-region drop down dbc.Row( [ html.H5("3. Sub Continent", className="text-left"), dcc.Dropdown(id="sub_region", value=None), ] ), html.Br(), html.Br(), html.Br(), html.Br(), html.Br(), dbc.Row( [ html.H5("Data Source", className="text-left"), dcc.Markdown("""Dataset for visualization of this dashbaord can be downloaded from [here](https://github.com/UBC-MDS/mindthegap/blob/main/data/gapminder.csv) """ ), ] ), html.Br(), html.Br(), html.P("Note: If a plot is empty, this means that there is no data based on your selections.") ], ), style=FILTER_STYLE, body=True, ) ############################## PLOT OBJECTS ####################################### boxplot = html.Iframe( id="boxplot", style={"border-width": "0", "width": "100%", "min-height": "400px"}, ) bubblechart = html.Iframe( id="bubblechart", style={"border-width": "0", "width": "100%", "height": "400px"}, ) barchart = html.Iframe( id="barchart", style={ "border-width": "0", "width": "100%", "height": "400px", }, ) worldmap = html.Iframe( id="worldmap", style={"border-width": "4px", "width": "100%", "min-height": "400px"} ) ############################## DASHBOARD LAYOUT ################################### app.layout = dbc.Container( [ # title html.Div( style={"textAlign": "center", "color": "black", "font-size": "26px"}, children=[ html.H1("Mindthegap Dashboard"), ], ), html.Br(), dbc.Row( [ # control panel dbc.Col(filter_panel, md=5, lg=3, sm=3), dbc.Col( [ dbc.Row( [ dbc.Col( [ html.H5("Select Year", className="text-left"), dcc.Slider( min=1970, max=2010, step=5, value=2010, id="yr", marks={ str(i): { "label": str(i), "style": {"color": "black"}, } for i in range(1970, 2015, 5) }, ), ], md=10, lg=10 ), dbc.Row(), html.Br(), dbc.Row([ html.H5("World Map view by Metric", style={"width": "fit-content"}), dbc.Col( [ dbc.Button( id="map_tooltip", color="secondary", children=html.Strong("?"), size="sm", outline=True, ), dbc.Tooltip( "Choose metric from the control panel, drag and select the year to view the change of metric in the world using the slide bar. Select a continent to view a zoomed version of continent. You can hover over the plot for more details", target="map_tooltip", placement="bottom", ), ] ) ], style={"padding": "3vh 0"}), dbc.Col([ dbc.Card( dbc.Col( dbc.Row( [dbc.Col( [ worldmap ], md=10, lg=12, ), ] ), ), style={"border":"0px"}), html.Br(), html.Br(), dbc.Row( [ dbc.Col( [ dbc.Row([ html.H5("Top/Bottom countries by Metric", style={"width": "fit-content"}), dbc.Col( [ dbc.Button( id="bar_tooltip", color="secondary", children=html.Strong("?"), size="sm", outline=True, ), dbc.Tooltip( "Choose metric from the control panel, drag and select the year using the slide bar. Select a continent and/or sub-continent to view the top/bottom countries for that metric", target="bar_tooltip", placement="bottom", ), ] ) ], style={"padding": "3vh 0"}), dbc.Card([ dbc.Card( html.Div( [ # dbc.Label("Choose Top/Bottom by country"), dbc.RadioItems( options=[ {"label": "Top Countries", "value": "Top"}, {"label": "Bottom Countries", "value": "Bottom"}, ], value="Top", id="radio", inline=True, style={"align":"center"}, labelStyle={"align":"center"} ), ] ), style={"height":"43px"} ), html.Div(barchart) ]) ], md=6,lg=6 ), dbc.Col( [ dbc.Row([ html.H5("GDP/Income by Metric", style={"width": "fit-content"}), dbc.Col( [ dbc.Button( id="tab_tooltip", color="secondary", children=html.Strong("?"), size="sm", outline=True, ), dbc.Tooltip( "Choose metric from the control panel, drag and select the year using the slide bar. Select a continent and/or sub continent to view the changes in GDP w.r.t to population size and the changes in income by the parameters selected. You can hover over regions on the map", target="tab_tooltip", placement="bottom", ), ] ) ], style={"padding": "3vh 0"}), dbc.Card([ html.Div( dbc.Tabs( id="tabs", active_tab="gdp", children=[ dbc.Tab( label="GDP", tab_id="gdp", ), dbc.Tab( label="Income", tab_id="income", ), ], ), ), html.Div(id="tab-content") ]) ], md=6, lg=6), ] ), ], md=10, lg=10 ), ] ) ] ), ] ), ], fluid=True, ) ############################## HELPER FUNCTIONS ################################### @app.callback(Output("tab-content", "children"), Input("tabs", "active_tab")) def render_graph(tabs): if tabs == "gdp": return html.Div([bubblechart]) elif tabs == "income": return html.Div([boxplot]) def filter_data(region, sub_region, country, yr): """ Filter data based on region, sub region and country selection Parameters -------- region: string Selection from the Region filter sub_region: string Selection from Sub Region filter country: string Selection from Country filter yr: string Selection from Year Returns -------- data dataset that has been filtered on region, sub region and country selection Example -------- > filter_data("Asia", "Western Asia", "Yemen", 2015) """ # Filter by region, sub-region, country if country: data = gap.query(f"country == '{country}'") elif sub_region: data = gap.query(f"sub_region == '{sub_region}'") elif region: data = gap.query(f"region == '{region}'") else: data = gap # Filter by year if yr: data = data.query(f"year == {yr}") return data @app.callback( Output("sub_region", "options"), Input("region", "value"), ) def get_sub_region(region): """Get a sub region value(s) based on a region value in gapminder Parameters ---------- region : string The region to get subregions for Returns ------- options Dict of subregion label/values """ if region is None: options = [ {"label": sub_region, "value": sub_region} for sub_region in gap["sub_region"].dropna().unique() ] else: sub_regions = list(gap[gap["region"] == region]["sub_region"].unique()) options = [] for sr in sub_regions: options.append({"label": sr, "value": sr}) return options @app.callback( Output("country", "options"), Input("region", "value"), Input("sub_region", "value"), ) def get_country(region, sub_region): """Get a sub region value(s) based on a region value in gapminder Parameters ---------- region : string The region to get subregions for Returns ------- options Dict of subregion label/values """ options = [ {"label": cntry, "value": cntry} for cntry in gap["country"].dropna().unique() ] return options ############################## PLOTTING FUNCTIONS ################################# @app.callback( Output("worldmap", "srcDoc"), Input("metric", "value"), Input("region", "value"), Input("yr", "value"), ) def plot_world_map(metric, region, yr): """ Create world heatmap for statsitic of interest based on selected year filter. Parameters -------- metric: string Selection from statistic of interest filter yr: integer Year for which the data is displayed, from Year filter Returns -------- chart World heatmap for statistic of interest based on year filter Example -------- > plot_world_map("child_mortality", "Asia", 2015) """ world = data.world_110m() world_map = alt.topo_feature(data.world_110m.url, "countries") alt.data_transformers.disable_max_rows() df = filter_data(region, None, None, yr) if region is None: chart = ( alt.Chart(world_map, title=f"{metrics[metric]} by country for year {yr}") .mark_geoshape(stroke="black") .transform_lookup( lookup="id", from_=alt.LookupData(df, key="id", fields=["country", metric]), ) .encode( tooltip=["country:O", metric + ":Q"], color=alt.Color(metric + ":Q", title=metrics[metric]), ) .properties(width=900, height=350) ) else: scl = None trans = None if region == "Europe": scl = 800 trans = [150, 1010] elif region == "Asia": scl = 500 trans = [-100, 500] elif region == "Africa": scl = 500 trans = [400, 300] elif region == "Americas": scl = 300 trans = [1000, 350] elif region == "Oceania": scl = 500 trans = [-400, 0] chart = ( alt.Chart(world_map, title=f"{metrics[metric]} by country for year {yr}") .mark_geoshape(stroke="black") .transform_lookup( lookup="id", from_=alt.LookupData(df, key="id", fields=["country", metric]), ) .encode( tooltip=["country:O", metric + ":Q"], color=alt.Color(metric + ":Q", title=metrics[metric]), ) .project(type="naturalEarth1", scale=scl, translate=trans) .properties(width=900, height=350) ) return chart.to_html() @app.callback( Output("boxplot", "srcDoc"), Input("metric", "value"), Input("region", "value"), Input("sub_region", "value"), Input("yr", "value"), ) def plot_box_plot(metric, region, sub_region, yr): """ Create box chart for statsitic of interested based on selected filters for income groups Parameters -------- metric: string Selection from statistic of interest filter region: string Selection from the region filter sub_region: string Selection from sub region filter yr: integer Year for which the data is displayed, from Year filter Returns -------- chart Bar chart showing statistic of interest for income groups, in specific region, subregion and year Example -------- > plot_box_plot("child_mortality", "Asia", "Western Asia", 2015) """ alt.data_transformers.disable_max_rows() # filter by region, sub-region & year data = filter_data(region, sub_region, None, yr) data = data[data["income_group"].notnull()] chart = ( alt.Chart( data, title=f"{metrics[metric]} by Income Group for year {yr}", ) .mark_boxplot(size=50) .encode( alt.X("income_group", sort="-x", title="Income Group"), alt.Y(metric, title=metrics[metric], scale=alt.Scale(zero=False)), color=alt.Color( "income_group", sort=alt.EncodingSortField("income_group", order="descending"), title="Income Group", ), tooltip=("name:O", "child_mortality:Q"), ) .configure_axis(labelFontSize=12, titleFontSize=14) .configure_legend(labelFontSize=12) .properties(width=450, height=300) .configure_legend(gradientLength=900, gradientThickness=400) ) return chart.to_html() @app.callback( Output("bubblechart", "srcDoc"), Input("metric", "value"), Input("region", "value"), Input("sub_region", "value"), Input("yr", "value"), ) def plot_bubble_chart(metric, region, sub_region, yr): """ Create bubble chart for statsitic of interested based on selected
0x0000408f, 0x08b80000, 0xc800204788b80000, b"c800204788b80000", b"C", b"T"), (b"mt", 25, 16528, 0x00004090, 0x08e80000, 0xc800204808e80000, b"c800204808e80000", b"t", b"c"), (b"MT", 25, 19870, 0x00004d9e, 0x0d636362, 0xc80026cf0d636362, b"c80026cf0d636362", b"T", b"ACGTACGTAC"), (b"MT", 25, 19871, 0x00004d9f, 0x508d8d8e, 0xc80026cfd08d8d8e, b"c80026cfd08d8d8e", b"ACGTACGTAC", b"T"), ]) class TestFunctions(TestCase): @classmethod def setUpClass(cls): global npvk try: npvk = pyvk.VariantKey( os.path.realpath(os.path.dirname(os.path.realpath(__file__)) + "/../../c/test/data/genoref.bin"), os.path.realpath(os.path.dirname(os.path.realpath(__file__)) + "/../../c/test/data/nrvk.10.bin"), os.path.realpath(os.path.dirname(os.path.realpath(__file__)) + "/../../c/test/data/rsvk.10.bin"), os.path.realpath(os.path.dirname(os.path.realpath(__file__)) + "/../../c/test/data/vkrs.10.bin")) except Exception as err: assert False, "Unable to initialize the class: {0}".format(err) @classmethod def tearDownClass(cls): global npvk npvk.close() def test_encode_chrom(self): data = np.array([ ["", "NA", "XY", "1X", "1Y", "1M", "1MT", "chr", " 1", "1 "], ["1", "01", "001", "0001", "chr1", "CHR1", "chr01", "CHR01", "chr001", "CHR001"], ["2", "02", "002", "0002", "chr2", "CHR2", "chr02", "CHR02", "chr002", "CHR002"], ["3", "03", "003", "0003", "chr3", "CHR3", "chr03", "CHR03", "chr003", "CHR003"], ["4", "04", "004", "0004", "chr4", "CHR4", "chr04", "CHR04", "chr004", "CHR004"], ["5", "05", "005", "0005", "chr5", "CHR5", "chr05", "CHR05", "chr005", "CHR005"], ["6", "06", "006", "0006", "chr6", "CHR6", "chr06", "CHR06", "chr006", "CHR006"], ["7", "07", "007", "0007", "chr7", "CHR7", "chr07", "CHR07", "chr007", "CHR007"], ["8", "08", "008", "0008", "chr8", "CHR8", "chr08", "CHR08", "chr008", "CHR008"], ["9", "09", "009", "0009", "chr9", "CHR9", "chr09", "CHR09", "chr009", "CHR009"], ["10", "010", "0010", "00010", "chr10", "CHR10", "chr010", "CHR010", "chr0010", "CHR0010"], ["11", "011", "0011", "00011", "chr11", "CHR11", "chr011", "CHR011", "chr0011", "CHR0011"], ["12", "012", "0012", "00012", "chr12", "CHR12", "chr012", "CHR012", "chr0012", "CHR0012"], ["13", "013", "0013", "00013", "chr13", "CHR13", "chr013", "CHR013", "chr0013", "CHR0013"], ["14", "014", "0014", "00014", "chr14", "CHR14", "chr014", "CHR014", "chr0014", "CHR0014"], ["15", "015", "0015", "00015", "chr15", "CHR15", "chr015", "CHR015", "chr0015", "CHR0015"], ["16", "016", "0016", "00016", "chr16", "CHR16", "chr016", "CHR016", "chr0016", "CHR0016"], ["17", "017", "0017", "00017", "chr17", "CHR17", "chr017", "CHR017", "chr0017", "CHR0017"], ["18", "018", "0018", "00018", "chr18", "CHR18", "chr018", "CHR018", "chr0018", "CHR0018"], ["19", "019", "0019", "00019", "chr19", "CHR19", "chr019", "CHR019", "chr0019", "CHR0019"], ["20", "020", "0020", "00020", "chr20", "CHR20", "chr020", "CHR020", "chr0020", "CHR0020"], ["21", "021", "0021", "00021", "chr21", "CHR21", "chr021", "CHR021", "chr0021", "CHR0021"], ["22", "022", "0022", "00022", "chr22", "CHR22", "chr022", "CHR022", "chr0022", "CHR0022"], ["X", "x", "chrX", "chrx", "CHRX", "CHRx", "X", "X", "X", "X"], ["Y", "y", "chrY", "chry", "CHRY", "CHRy", "Y", "Y", "Y", "Y"], ["M", "m", "MT", "mt", "chrM", "chrm", "chrMT", "chrmt", "CHRMt", "CHRmT"], ]) for i in range(0, 26): e = np.repeat(i, 10) c = npvk.encode_chrom(data[i]) np.testing.assert_array_equal(c, e) chrom = npvk.encode_chrom(b"WRONG") self.assertEqual(chrom, 0) def test_encode_chrom_input_type(self): self.assertEqual(npvk.encode_chrom(b"chr01"), npvk.encode_chrom("chr01")) def test_decode_chrom(self): code = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25] e = np.array([b"NA", b"1", b"2", b"3", b"4", b"5", b"6", b"7", b"8", b"9", b"10", b"11", b"12", b"13", b"14", b"15", b"16", b"17", b"18", b"19", b"20", b"21", b"22", b"X", b"Y", b"MT"], dtype='|S2') c = npvk.decode_chrom(code) np.testing.assert_array_equal(c, e) def test_encode_refalt_input_type(self): self.assertEqual(npvk.encode_refalt(b"AC", b"GT"), npvk.encode_refalt("AC", "GT")) self.assertEqual(npvk.encode_refalt(b"ACGTACGT", b"GTACGTAC"), npvk.encode_refalt("ACGTACGT", "GTACGTAC")) def test_encode_refalt(self): base = [b"A", b"C", b"N", b"GT", b"ACG", b"ACGTa", b"ACGTac", b"ACGTacg", b"ACGTacgt", b"ACGTACGTAC", b"ACGTacgtACGT"] e = np.array([ 142606336, 142606336, 143130624, 144703488, 726812453, 330097465, 152436736, 282591232, 159580160, 411828224, 176381952, 680361984, 184771072, 814581760, 193159936, 948800512, 201548640, 1083018624, 218325858, 1351454088, 1057675291, 1369359907, 145227776, 145227776, 1375594857, 1513805153, 154533888, 282722304, 161677312, 411860992, 178479104, 680364032, 186868224, 814582272, 195257088, 948800640, 203645792, 1083018656, 220423010, 1351454090, 1398628389, 1358766431, 1969243823, 1969243823, 971081273, 1771898065, 776945419, 1002621441, 1754088851, 1261827981, 1010241683, 1792303827, 1458585093, 1889528781, 273848339, 1684605733, 1654748801, 1190621367, 785406155, 2000763481, 291340288, 291340288, 299417600, 420306944, 316200960, 688756224, 324589696, 822971776, 332978368, 957189472, 341367000, 1091407320, 636483075, 1776551723, 1695405603, 1483277935, 428617728, 428617728, 445396480, 697139968, 453785120, 831359168, 462173744, 965577776, 470562358, 1099795852, 191755869, 1887943745, 1415691159, 303875507, 713917280, 713917280, 722305890, 848136408, 723621645, 1783965747, 508782503, 458890457, 581191723, 141156817, 1430489581, 628679603, 1225091505, 1225091505, 1071275181, 1218465497, 1052062435, 681734883, 1735823055, 1173846073, 528456553, 1747209651, 859706021, 859706021, 1597496643, 1378980139, 1362028185, 1471164791, 1267233551, 573285289, 284858523, 284858523, 1987610005, 378861315, 644679011, 912925615, 1451695617, 1451695617, 1610695323, 2076346979, 976842551, 976842551, ], dtype=np.uint32) iref = [] ialt = [] for i in range(0, 11): for j in range(i, 11): ri = i rj = j for r in range(0, 2): iref.append(base[ri]) ialt.append(base[rj]) tmp = ri ri = rj rj = tmp h = npvk.encode_refalt(iref, ialt) np.testing.assert_array_equal(h, e) def test_decode_refalt(self): d = np.array([ 142606336, 142606336, 143130624, 144703488, 726812453, 330097465, 152436736, 282591232, 159580160, 411828224, 176381952, 680361984, 184771072, 814581760, 193159936, 948800512, 201548640, 1083018624, 218325858, 1351454088, 1057675291, 1369359907, 145227776, 145227776, 1375594857, 1513805153, 154533888, 282722304, 161677312, 411860992, 178479104, 680364032, 186868224, 814582272, 195257088, 948800640, 203645792, 1083018656, 220423010, 1351454090, 1398628389, 1358766431, 1969243823, 1969243823, 971081273, 1771898065, 776945419, 1002621441, 1754088851, 1261827981, 1010241683, 1792303827, 1458585093, 1889528781, 273848339, 1684605733, 1654748801, 1190621367, 785406155, 2000763481, 291340288, 291340288, 299417600, 420306944, 316200960, 688756224, 324589696, 822971776, 332978368, 957189472, 341367000, 1091407320, 636483075, 1776551723, 1695405603, 1483277935, 428617728, 428617728, 445396480, 697139968, 453785120, 831359168, 462173744, 965577776, 470562358, 1099795852, 191755869, 1887943745, 1415691159, 303875507, 713917280, 713917280, 722305890, 848136408, 723621645, 1783965747, 508782503, 458890457, 581191723, 141156817, 1430489581, 628679603, 1225091505, 1225091505, 1071275181, 1218465497, 1052062435, 681734883, 1735823055, 1173846073, 528456553, 1747209651, 859706021, 859706021, 1597496643, 1378980139, 1362028185, 1471164791, 1267233551, 573285289, 284858523, 284858523, 1987610005, 378861315, 644679011, 912925615, 1451695617, 1451695617, 1610695323, 2076346979, 976842551, 976842551, ], dtype=np.uint32) eref = np.array([b'A', b'A', b'A', b'C', b'', b'', b'A', b'GT', b'A', b'ACG', b'A', b'ACGTA', b'A', b'ACGTAC', b'A', b'ACGTACG', b'A', b'ACGTACGT', b'A', b'ACGTACGTAC', b'', b'', b'C', b'C', b'', b'', b'C', b'GT', b'C', b'ACG', b'C', b'ACGTA', b'C', b'ACGTAC', b'C', b'ACGTACG', b'C', b'ACGTACGT', b'C', b'ACGTACGTAC', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'GT', b'GT', b'GT', b'ACG', b'GT', b'ACGTA', b'GT', b'ACGTAC', b'GT', b'ACGTACG', b'GT', b'ACGTACGT', b'', b'', b'', b'', b'ACG', b'ACG', b'ACG', b'ACGTA', b'ACG', b'ACGTAC', b'ACG', b'ACGTACG', b'ACG', b'ACGTACGT', b'', b'', b'', b'', b'ACGTA', b'ACGTA', b'ACGTA', b'ACGTAC', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b''], dtype=np.string_) ealt = np.array([b'A', b'A', b'C', b'A', b'', b'', b'GT', b'A', b'ACG', b'A', b'ACGTA', b'A', b'ACGTAC', b'A', b'ACGTACG', b'A', b'ACGTACGT', b'A', b'ACGTACGTAC', b'A', b'', b'', b'C', b'C', b'', b'', b'GT', b'C', b'ACG', b'C', b'ACGTA', b'C', b'ACGTAC', b'C', b'ACGTACG', b'C', b'ACGTACGT', b'C', b'ACGTACGTAC', b'C', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'GT', b'GT', b'ACG', b'GT', b'ACGTA', b'GT', b'ACGTAC', b'GT', b'ACGTACG', b'GT', b'ACGTACGT', b'GT', b'', b'', b'', b'', b'ACG', b'ACG', b'ACGTA', b'ACG', b'ACGTAC', b'ACG', b'ACGTACG', b'ACG', b'ACGTACGT', b'ACG', b'', b'', b'', b'', b'ACGTA', b'ACGTA', b'ACGTAC', b'ACGTA', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'', b''], dtype=np.string_) esizeref = np.array([1, 1, 1, 1, 0, 0, 1, 2, 1, 3, 1, 5, 1, 6, 1, 7, 1, 8, 1, 10, 0, 0, 1, 1, 0, 0, 1, 2, 1, 3, 1, 5, 1, 6, 1, 7, 1, 8, 1, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 3, 2, 5, 2, 6, 2, 7, 2, 8, 0, 0, 0, 0, 3, 3, 3, 5, 3, 6, 3, 7, 3, 8, 0, 0, 0, 0, 5, 5, 5, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=np.uint8) esizealt = np.array([1, 1, 1, 1, 0, 0, 2, 1, 3, 1, 5, 1, 6, 1, 7, 1, 8, 1, 10, 1, 0, 0, 1, 1, 0, 0, 2, 1, 3, 1, 5, 1, 6, 1, 7, 1, 8, 1, 10, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 3, 2, 5, 2, 6, 2, 7, 2, 8, 2, 0, 0, 0, 0, 3, 3, 5, 3, 6, 3, 7, 3, 8, 3, 0, 0, 0, 0, 5, 5, 6, 5, 0, 0, 0, 0, 0, 0,
<filename>dfxapiclient/simpleclient.py import asyncio import copy import json import os import uuid from .measurements import Measurement from .measurements_pb2 import SubscribeResultsRequest from .organizations import Organization from .users import User from .websocketHelper import WebsocketHandler class SimpleClient(): """The DFX API SimpleClient simplifies the process of using the DFX API, by providing the following set of core API functionalities: Registering a device, creating a user, user login, creating a measurement, subscribing to results, adding measurement data and retrieving results In subsequent updates, more DFX API endpoints will be added. For more information on the DFX API, please see https://dfxapiversion10.docs.apiary.io """ def __init__(self, license_key: str, study_id: str, email: str, password: <PASSWORD>, server: str = "prod", device_name: str = "DFX desktop", firstname: str = None, lastname: str = None, phonenum: str = None, gender: str = None, dateofbirth: str = None, height: str = None, weight: str = None, config_file: str = None, add_method: str = "REST", measurement_mode: str = "DISCRETE", chunk_length: float = 15, video_length: float = 60): """[summary] Arguments: license_key {str} -- DFX API License study_id {str} -- Study ID email {str} -- Email address password {str} -- Password Keyword Arguments: server {str} -- Server to use (default: {"prod"}) device_name {str} -- Device name (default: {"DFX desktop"}) firstname {str} -- First name (default: {None}) lastname {str} -- Last name (default: {None}) phonenum {str} -- Phone number (default: {None}) gender {str} -- Gender (default: {None}) dateofbirth {str} -- Date of birth (default: {None}) height {str} -- Height (cm) (default: {None}) weight {str} -- Weight (kg) (default: {None}) config_file {str} -- Path to save local configuration (default: {None}) add_method {str} -- Chunk add backend used Websocket or REST (default: {"REST"}) measurement_mode {str} -- Measurement mode (only DISCRETE supported for now) (default: {"DISCRETE"}) chunk_length {float} -- Chunk length in seconds (default: {15}) video_length {float} -- Video length in seconds (default: {60}) """ # License key and study ID needs to be provided by the admin self.license_key = license_key self.study_id = study_id self.device_name = device_name self.server = server.lower() self.conn_method = add_method.lower() self.video_length = video_length self.chunk_length = chunk_length self.measurement_mode = measurement_mode.upper() self.config_file = config_file self.chunks = None self.device_token = '' self.device_id = '' self.user_id = '' self.user_token = '' self.measurement_id = '' self.received_data = asyncio.Queue(30) # Queue for storing results self.__valid_servers = {} self.__measurement_modes = {} self.__get_urls() self.__measurement_mode() self.user = User(self.server_url, firstname, lastname, email, password, gender, dateofbirth, height, weight) self.organization = Organization(license_key, self.server_url) # Some boolean variables (flags) and floats (time in seconds) for # asynchronous signalling purposes. self.addData_done = True # Can only close websocket after all tasks are done self.subscribe_done = True self.sub_cycle_complete = True # Can only create measurement after subscribe is done for previous one self.complete = False self.subscribe_poll = 0.2 # Time values for signalling and polling self.subscribe_signal = 0.5 self.__setup() # Register license, create user and login user self.ws_obj = WebsocketHandler(self.user_token, self.websocket_url) self.measurement = Measurement(self.study_id, self.server_url, self.ws_obj, self.num_chunks, self.max_chunks, mode=self.measurement_mode, token=self.user_token) self.received_data = self.measurement.received_data def __get_urls(self): """`Get the REST, websocket, or gRPC urls. Raises: KeyError: if server key was not in list """ self.__valid_servers = { "qa": { "server_url": "https://qa.api.deepaffex.ai:9443", "websocket_url": "wss://qa.api.deepaffex.ai:9080" }, "dev": { "server_url": "https://dev.api.deepaffex.ai:9443", "websocket_url": "wss://dev.api.deepaffex.ai:9080" }, "demo": { "server_url": "https://demo.api.deepaffex.ai:9443", "websocket_url": "wss://demo.api.deepaffex.ai:9080" }, "prod": { "server_url": "https://api.deepaffex.ai:9443", "websocket_url": "wss://api.deepaffex.ai:9080" }, "prod-cn": { "server_url": "https://api.deepaffex.cn:9443", "websocket_url": "wss://api.deepaffex.cn:9080" }, "demo-cn": { "server_url": "https://demo.api.deepaffex.cn:9443", "websocket_url": "wss://demo.api.deepaffex.cn:9080" } } try: self.server_url = self.__valid_servers[self.server]["server_url"] self.websocket_url = self.__valid_servers[self.server]["websocket_url"] except KeyError: raise KeyError("Invalid server ID given") def __measurement_mode(self): """Setup the measurement mode selected by the user. Determines the maximum number of chunks for each measurement etc. Raises: KeyError: if unknown mode was passed """ self.__measurement_modes = {"DISCRETE": 120, "BATCH": 1200, "VIDEO": 1200, "STREAMING": 1200} try: max_len = self.__measurement_modes[self.measurement_mode] except KeyError: raise KeyError("Invalid measurement mode given") self.num_chunks = int(self.video_length / self.chunk_length) self.max_chunks = int(max_len / self.chunk_length) def __record(self, data={}): """Record and cache all important parameters in a config file For this method, if the `data` parameter is not passed in, the new values are directly overwritten into the config file. If `data` is passed in, it creates a copy. The handling for recycling previous values are now implemented in `__setup()` below. Keyword Arguments: data {dict} -- The data to record(default: {{}}) """ # Create a config file if not self.config_file: self.config_file = "./default.config" # Create empty config json file if not there if not os.path.isfile(self.config_file): with open(self.config_file, 'w') as f: d = json.dumps({}) f.write(d) # This structure ensures that for different servers, there can exist # multiple licenses (`license_key`), which contains one `device_token` # each and multiple users (identified by `user_email`), each with its # own `user_token`. # Overwrite values with current values if not data or data == {}: with open(self.config_file, 'r') as f: data = json.load(f) data[self.server] = {} if self.license_key != '': data[self.server][self.license_key] = {} if self.device_token != '': data[self.server][self.license_key]["device_token"] = self.device_token if self.user.email != '': data[self.server][self.license_key][self.user.email] = {} if self.user_token != '': data[self.server][self.license_key][self.user.email]["user_token"] = self.user_token else: data = data # Clean up the remaining values (i.e. get rid of it if it's empty) copied = copy.deepcopy(data) for server in copied.keys(): if server not in self.__valid_servers.keys(): data.pop(server, None) for key in copied[server].keys(): data[server].pop('', None) data[server].pop(' ', None) if copied[server][key] == {}: data[server].pop(key, None) for k in copied[server][key].keys(): if k != "device_token": data[server][key].pop('', None) data[server][key].pop(' ', None) if copied[server][key][k] == {} or copied[server][key][k] == "": data[server][key].pop(k, None) with open(self.config_file, 'w') as f: d = json.dumps(data) f.write(d) def __setup(self): """Performs the activities necessary for setting up the client. Register license, create user, and authentication / login. Recycling and saving the values in configuration file. Raises: PermissionError: if server error due to permissions. """ # Create empty config json file if not there. if not self.config_file: self.config_file = "./default.config" if not os.path.isfile(self.config_file): with open(self.config_file, 'w') as f: json.dump({}, f) # Recycle and replace values in the config file with open(self.config_file, 'r') as json_file: data = json.load(json_file) # Records the `server`, `license_key`, and `user_email` if they don't exist. # Server if (self.server not in data.keys() or data[self.server] == {}): data[self.server] = {} # License key if (self.license_key not in data[self.server].keys() or data[self.server][self.license_key] == {}): data[self.server][self.license_key] = {} # User email if self.user.email not in data[self.server][self.license_key].keys(): data[self.server][self.license_key][self.user.email] = {} # Next, if a `device_token` doesn't exist for this server and # license, call the `Organization.registerLicense()` endpoint to # obtain a device token. On the other hand, if the device token # already exists, it takes the existing token to prevent # redundantly registering the same license. # Device token if ("device_token" not in data[self.server][self.license_key].keys() or data[self.server][self.license_key]["device_token"] == ''): out = self.organization.registerLicense(self.device_name) if 'Token' not in out: self.__record(data=data) # Save current state raise PermissionError( "Registration error. Make sure your license key is valid for the selected server.") self.device_token = out['Token'] data[self.server][self.license_key]["device_token"] = self.device_token elif (self.device_token == '' and data[self.server][self.license_key]["device_token"] != ''): self.device_token = data[self.server][self.license_key]["device_token"] # Next, if a `user_token` does not exist for the current user on # this license and server, it tries to log in (`User.login()`) the # user first using the device token. If cannot be logged in, it # needs to create a new user (`User.create()`) before logging in. # The user information and credentials are already handled in the # `User` class, so it only needs to pass in the `device_token`. # User token if ("user_token" not in data[self.server][self.license_key][self.user.email].keys() or data[self.server][self.license_key][self.user.email]["user_token"] == ''): res = self.user.login(self.device_token) if res == "INVALID_USER": res = self.user.create(self.device_token) if res == 'INTERNAL_ERROR': self.__record(data=data) raise PermissionError("Cannot create new user. Check your license permissions.") self.user_id = res res = self.user.login(self.device_token) elif res == "INVALID_PASSWORD": self.__record(data=data) raise PermissionError("Incorrect login password.") self.user_token = self.user.user_token if self.user_token != '': data[self.server][self.license_key][self.user.email]["user_token"] = self.user_token else: self.user_token = data[self.server][self.license_key][self.user.email]["user_token"] self.user.user_token = self.user_token # Record updated data into the config file. self.__record(data=data) def create_new_measurement(self) -> str: """Create a new measurement by calling to the `create` endpoint under `Measurement`. Returns: str -- Measurement ID """ try: self.measurement.create() except ValueError: # Handling if
<reponame>sail-sg/mugs<filename>src/vision_transformer.py # Copyright 2022 Garena Online Private Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ ViT backbones, including ViT-small, ViT-base, ViT-large Mostly copy-paste from timm library. https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py """ import math from functools import partial import torch import torch.nn as nn def _no_grad_trunc_normal_(tensor, mean, std, a, b): # Cut & paste from PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): # Computes standard normal cumulative distribution function return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn( "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " "The distribution of values may be incorrect.", stacklevel=2, ) with torch.no_grad(): # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values lower = norm_cdf((a - mean) / std) upper = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * lower - 1, 2 * upper - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.0)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0): # type: (torch.tensor, float, float, float, float) -> torch.tensor return _no_grad_trunc_normal_(tensor, mean, std, a, b) def drop_path(x, drop_prob: float = 0.0, training: bool = False): """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ if drop_prob == 0.0 or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * ( x.ndim - 1 ) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() # binarize output = x.div(keep_prob) * random_tensor return output class DropPath(nn.Module): """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) class Mlp(nn.Module): """ MLP module in ViT """ def __init__( self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0, ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): """ Attention module in ViT """ def __init__( self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0, ): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads) reshaped_qkv = qkv.permute(2, 0, 3, 1, 4) q, k, v = reshaped_qkv[0], reshaped_qkv[1], reshaped_qkv[2] attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x, attn class Block(nn.Module): """ ViT block, including Attention, MLP, etc. """ def __init__( self, dim, num_heads, mlp_ratio=4.0, qkv_bias=False, qk_scale=None, drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, ): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, ) self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp( in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop, ) def forward(self, x, return_attention=False): y, attn = self.attn(self.norm1(x)) if return_attention: return attn x = x + self.drop_path(y) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): """Image to Patch Embedding""" def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() num_patches = (img_size // patch_size) * (img_size // patch_size) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d( in_chans, embed_dim, kernel_size=patch_size, stride=patch_size ) def forward(self, x): x = self.proj(x).flatten(2).transpose(1, 2) return x class VisionTransformer(nn.Module): """Vision Transformer""" def __init__( self, img_size=[224, 224], patch_size=16, in_chans=3, num_classes=0, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.0, qkv_bias=False, qk_scale=None, drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.0, norm_layer=nn.LayerNorm, num_relation_blocks=0, **kwargs ): super().__init__() self.num_features = self.embed_dim = embed_dim self.patch_size = patch_size self.num_classes = num_classes self.depth = depth self.patch_embed = PatchEmbed( img_size=img_size[0], patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, ) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) trunc_normal_(self.pos_embed, std=0.02) self.pos_drop = nn.Dropout(p=drop_rate) dpr = [ x.item() for x in torch.linspace(0, drop_path_rate, depth) ] # stochastic depth decay rule self.blocks = nn.ModuleList( [ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, ) for i in range(depth) ] ) self.norm = norm_layer(embed_dim) # Classifier head self.head = ( nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() ) self.num_relation_blocks = num_relation_blocks if num_relation_blocks > 0: self.relation_blocks = nn.ModuleList( [ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, ) for i in range(int(num_relation_blocks)) ] ) trunc_normal_(self.cls_token, std=0.02) self.apply(self._init_weights) def add_pos_emb_for_cls_token(self): pe_cls_token = torch.zeros([1, 1, self.embed_dim], dtype=torch.float32) self.pos_embed = nn.Parameter(torch.cat([pe_cls_token, self.pos_embed], dim=1)) self.pos_embed.requires_grad = False def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def interpolate_pos_encoding(self, x, w, h): npatch = x.shape[1] - 1 N = self.pos_embed.shape[1] - 1 if npatch == N and w == h: return self.pos_embed class_pos_embed = self.pos_embed[:, 0] patch_pos_embed = self.pos_embed[:, 1:] dim = x.shape[-1] w0 = w // self.patch_embed.patch_size h0 = h // self.patch_embed.patch_size # we add a small number to avoid floating point error in the interpolation # see discussion at https://github.com/facebookresearch/dino/issues/8 w0, h0 = w0 + 0.1, h0 + 0.1 patch_pos_embed = nn.functional.interpolate( patch_pos_embed.reshape( 1, int(math.sqrt(N)), int(math.sqrt(N)), dim ).permute(0, 3, 1, 2), scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)), mode="bicubic", ) assert ( int(w0) == patch_pos_embed.shape[-2] and int(h0) == patch_pos_embed.shape[-1] ) patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) def prepare_tokens(self, x): B, nc, w, h = x.shape x = self.patch_embed(x) # patch linear embedding # add the [CLS] token to the embed patch tokens cls_tokens = self.cls_token.expand(B, -1, -1) x = torch.cat((cls_tokens, x), dim=1) # add positional encoding to each token x = x + self.interpolate_pos_encoding(x, w, h) return self.pos_drop(x) def forward(self, x, return_all=False, local_group_memory_inputs=None, **kwargs): x = self.prepare_tokens(x) for blk in self.blocks: x = blk(x) if self.num_relation_blocks > 0: mem = local_group_memory_inputs.get("mem") if mem is not None: m, _ = mem(x.mean(1)) rx = torch.cat((x.mean(1).unsqueeze(1), m), dim=1) else: rx = x for i, blk in enumerate(self.relation_blocks): rx = blk(rx) relation_out = self.norm(rx[:, 0]) x = self.norm(x) if self.num_classes > 0: return self.head(x[:, 0]) if return_all: return x, relation_out else: return x[:, 0], relation_out def forward_knn(self, x): x = self.prepare_tokens(x) for blk in self.blocks: x = blk(x) x = self.norm(x) return x[:, 0] def get_last_selfattention(self, x): x = self.prepare_tokens(x) for i, blk in enumerate(self.blocks): if i < len(self.blocks) - 1: x = blk(x) else: # return attention of the last block return blk(x, return_attention=True) def get_intermediate_layers(self, x, n=1): x = self.prepare_tokens(x) # we return the output tokens from the `n` last blocks output = [] for i, blk in enumerate(self.blocks): x = blk(x) if len(self.blocks) - i <= n: output.append(self.norm(x)) return output def get_num_layers(self): return self.depth @torch.jit.ignore def no_weight_decay(self): return {"pos_embed", "cls_token"} def vit_tiny(patch_size=16, **kwargs): model = VisionTransformer( patch_size=patch_size, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs ) return model def vit_small(patch_size=16, **kwargs): model =
""" Tests of Tax-Calculator using puf.csv input. Note that the puf.csv file that is required to run this program has been constructed by the Tax-Calculator development team by merging information from the most recent publicly available IRS SOI PUF file and from the Census CPS file for the corresponding year. If you have acquired from IRS the most recent SOI PUF file and want to execute this program, contact the Tax-Calculator development team to discuss your options. Read Tax-Calculator/TESTING.md for details. """ # CODING-STYLE CHECKS: # pycodestyle test_pufcsv.py # pylint --disable=locally-disabled test_pufcsv.py import os import json import pytest import numpy as np import pandas as pd # pylint: disable=import-error from taxcalc import Policy, Records, Calculator START_YEAR = 2017 @pytest.mark.requires_pufcsv def test_agg(tests_path, puf_fullsample): """ Test Tax-Calculator aggregate taxes with no policy reform using the full-sample puf.csv and a small sub-sample of puf.csv """ # pylint: disable=too-many-locals,too-many-statements nyrs = 10 # create a baseline Policy object with current-law policy parameters baseline_policy = Policy() # create a Records object (rec) containing all puf.csv input records recs = Records(data=puf_fullsample) # create a Calculator object using baseline policy and puf records calc = Calculator(policy=baseline_policy, records=recs) calc.advance_to_year(START_YEAR) calc_start_year = calc.current_year # create aggregate diagnostic table (adt) as a Pandas DataFrame object adt = calc.diagnostic_table(nyrs).round(1) # column labels are int taxes_fullsample = adt.loc["Combined Liability ($b)"] # compare actual DataFrame, adt, with the expected DataFrame, edt aggres_path = os.path.join(tests_path, 'pufcsv_agg_expect.csv') edt = pd.read_csv(aggres_path, index_col=False) # column labels are str edt.drop('Unnamed: 0', axis='columns', inplace=True) assert len(adt.columns.values) == len(edt.columns.values) diffs = False for icol in adt.columns.values: if not np.allclose(adt[icol], edt[str(icol)]): diffs = True if diffs: new_filename = '{}{}'.format(aggres_path[:-10], 'actual.csv') adt.to_csv(new_filename, float_format='%.1f') msg = 'PUFCSV AGG RESULTS DIFFER FOR FULL-SAMPLE\n' msg += '-------------------------------------------------\n' msg += '--- NEW RESULTS IN pufcsv_agg_actual.csv FILE ---\n' msg += '--- if new OK, copy pufcsv_agg_actual.csv to ---\n' msg += '--- pufcsv_agg_expect.csv ---\n' msg += '--- and rerun test. ---\n' msg += '--- (both are in taxcalc/tests) ---\n' msg += '-------------------------------------------------\n' raise ValueError(msg) # create aggregate diagnostic table using unweighted sub-sample of records fullsample = puf_fullsample rn_seed = 2222 # to ensure sub-sample is always the same subfrac = 0.05 # sub-sample fraction subsample = fullsample.sample(frac=subfrac, random_state=rn_seed) recs_subsample = Records(data=subsample) calc_subsample = Calculator(policy=baseline_policy, records=recs_subsample) calc_subsample.advance_to_year(START_YEAR) adt_subsample = calc_subsample.diagnostic_table(nyrs) # compare combined tax liability from full and sub samples for each year taxes_subsample = adt_subsample.loc["Combined Liability ($b)"] msg = '' for cyr in range(calc_start_year, calc_start_year + nyrs): reltol = 0.01 # maximum allowed relative difference in tax liability if not np.allclose(taxes_subsample[cyr], taxes_fullsample[cyr], atol=0.0, rtol=reltol): reldiff = (taxes_subsample[cyr] / taxes_fullsample[cyr]) - 1. line1 = '\nPUFCSV AGG SUB-vs-FULL RESULTS DIFFER IN {}' line2 = '\n when subfrac={:.3f}, rtol={:.4f}, seed={}' line3 = '\n with sub={:.3f}, full={:.3f}, rdiff={:.4f}' msg += line1.format(cyr) msg += line2.format(subfrac, reltol, rn_seed) msg += line3.format(taxes_subsample[cyr], taxes_fullsample[cyr], reldiff) if msg: raise ValueError(msg) MTR_TAX_YEAR = 2013 MTR_NEG_DIFF = False # set True to subtract (rather than add) small amount # specify payrolltax mtr histogram bin boundaries (or edges): PTAX_MTR_BIN_EDGES = [0.0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18, 1.0] # the bin boundaries above are arbitrary, so users # may want to experiment with alternative boundaries # specify incometax mtr histogram bin boundaries (or edges): ITAX_MTR_BIN_EDGES = [-1.0, -0.30, -0.20, -0.10, 0.0, 0.10, 0.20, 0.30, 0.40, 0.50, 1.0] # the bin boundaries above are arbitrary, so users # may want to experiment with alternative boundaries def mtr_bin_counts(mtr_data, bin_edges, recid): """ Compute mtr histogram bin counts and return results as a string. """ res = '' (bincount, _) = np.histogram(mtr_data.round(decimals=4), bins=bin_edges) sum_bincount = np.sum(bincount) res += '{} :'.format(sum_bincount) for idx in range(len(bin_edges) - 1): res += ' {:6d}'.format(bincount[idx]) res += '\n' if sum_bincount < mtr_data.size: res += 'WARNING: sum of bin counts is too low\n' recinfo = ' mtr={:.2f} for recid={}\n' mtr_min = mtr_data.min() mtr_max = mtr_data.max() bin_min = min(bin_edges) bin_max = max(bin_edges) if mtr_min < bin_min: res += ' min(mtr)={:.2f}\n'.format(mtr_min) for idx in range(mtr_data.size): if mtr_data[idx] < bin_min: res += recinfo.format(mtr_data[idx], recid[idx]) if mtr_max > bin_max: res += ' max(mtr)={:.2f}\n'.format(mtr_max) for idx in range(mtr_data.size): if mtr_data[idx] > bin_max: res += recinfo.format(mtr_data[idx], recid[idx]) return res def nonsmall_diffs(linelist1, linelist2, small=0.0): """ Return True if line lists differ significantly; otherwise return False. Significant numerical difference means one or more numbers differ (between linelist1 and linelist2) by more than the specified small amount. """ # embedded function used only in nonsmall_diffs function def isfloat(value): """ Return True if value can be cast to float; otherwise return False. """ try: float(value) return True except ValueError: return False # begin nonsmall_diffs logic assert isinstance(linelist1, list) assert isinstance(linelist2, list) if len(linelist1) != len(linelist2): return True assert 0.0 <= small <= 1.0 epsilon = 1e-6 smallamt = small + epsilon for line1, line2 in zip(linelist1, linelist2): if line1 == line2: continue else: tokens1 = line1.replace(',', '').split() tokens2 = line2.replace(',', '').split() for tok1, tok2 in zip(tokens1, tokens2): tok1_isfloat = isfloat(tok1) tok2_isfloat = isfloat(tok2) if tok1_isfloat and tok2_isfloat: if abs(float(tok1) - float(tok2)) <= smallamt: continue else: return True elif not tok1_isfloat and not tok2_isfloat: if tok1 == tok2: continue else: return True else: return True return False @pytest.mark.requires_pufcsv def test_mtr(tests_path, puf_path): """ Test Tax-Calculator marginal tax rates with no policy reform using puf.csv Compute histograms for each marginal tax rate income type using sample input from the puf.csv file and writing output to a string, which is then compared for differences with EXPECTED_MTR_RESULTS. """ # pylint: disable=too-many-locals,too-many-statements assert len(PTAX_MTR_BIN_EDGES) == len(ITAX_MTR_BIN_EDGES) # construct actual results string, res res = '' if MTR_NEG_DIFF: res += 'MTR computed using NEGATIVE finite_diff ' else: res += 'MTR computed using POSITIVE finite_diff ' res += 'for tax year {}\n'.format(MTR_TAX_YEAR) # create a Policy object (clp) containing current-law policy parameters clp = Policy() clp.set_year(MTR_TAX_YEAR) # create a Records object (puf) containing puf.csv input records puf = Records(data=puf_path) recid = puf.RECID # pylint: disable=no-member # create a Calculator object using clp policy and puf records calc = Calculator(policy=clp, records=puf) res += '{} = {}\n'.format('Total number of data records', puf.array_length) res += 'PTAX mtr histogram bin edges:\n' res += ' {}\n'.format(PTAX_MTR_BIN_EDGES) res += 'ITAX mtr histogram bin edges:\n' res += ' {}\n'.format(ITAX_MTR_BIN_EDGES) variable_header = 'PTAX and ITAX mtr histogram bin counts for' # compute marginal tax rate (mtr) histograms for each mtr variable for var_str in Calculator.MTR_VALID_VARIABLES: zero_out = (var_str == 'e01400') (mtr_ptax, mtr_itax, _) = calc.mtr(variable_str=var_str, negative_finite_diff=MTR_NEG_DIFF, zero_out_calculated_vars=zero_out, wrt_full_compensation=False) if zero_out: # check that calculated variables are consistent assert np.allclose((calc.array('iitax') + calc.array('payrolltax')), calc.array('combined')) assert np.allclose((calc.array('ptax_was') + calc.array('setax') + calc.array('ptax_amc')), calc.array('payrolltax')) assert np.allclose(calc.array('c21060') - calc.array('c21040'), calc.array('c04470')) assert np.allclose(calc.array('taxbc') + calc.array('c09600'), calc.array('c05800')) assert np.allclose((calc.array('c05800') + calc.array('othertaxes') - calc.array('c07100')), calc.array('c09200')) assert np.allclose(calc.array('c09200') - calc.array('refund'), calc.array('iitax')) if var_str == 'e00200s': # only MARS==2 filing units have valid MTR values mtr_ptax = mtr_ptax[calc.array('MARS') == 2] mtr_itax = mtr_itax[calc.array('MARS') == 2] res += '{} {}:\n'.format(variable_header, var_str) res += mtr_bin_counts(mtr_ptax, PTAX_MTR_BIN_EDGES, recid) res += mtr_bin_counts(mtr_itax, ITAX_MTR_BIN_EDGES, recid) # check for differences between actual and expected results mtrres_path = os.path.join(tests_path, 'pufcsv_mtr_expect.txt') with open(mtrres_path, 'r') as expected_file: txt = expected_file.read() expected_results = txt.rstrip('\n\t ') + '\n' # cleanup end of file txt if nonsmall_diffs(res.splitlines(True), expected_results.splitlines(True)): new_filename = '{}{}'.format(mtrres_path[:-10], 'actual.txt') with open(new_filename, 'w') as new_file: new_file.write(res) msg = 'PUFCSV MTR RESULTS DIFFER\n' msg += '-------------------------------------------------\n' msg += '--- NEW RESULTS IN pufcsv_mtr_actual.txt FILE ---\n' msg += '--- if new OK, copy pufcsv_mtr_actual.txt to ---\n' msg += '--- pufcsv_mtr_expect.txt ---\n' msg += '--- and rerun test. ---\n' msg += '-------------------------------------------------\n' raise ValueError(msg) @pytest.mark.requires_pufcsv def test_mtr_pt_active(puf_subsample): """ Test whether including wages in active income causes MTRs on e00900p and e26270 to be less than -1 (i.e., -100%) """ # pylint: disable=too-many-locals rec = Records(data=puf_subsample) reform_year = 2018 # create current-law Calculator object, calc1 pol1 = Policy() calc1 = Calculator(policy=pol1, records=rec) calc1.advance_to_year(reform_year) calc1.calc_all() mtr1_e00900p = calc1.mtr('e00900p')[2] mtr1_e26270 = calc1.mtr('e26270')[2] assert min(mtr1_e00900p) > -1 assert min(mtr1_e26270) > -1 # change PT rates, calc2 reform2 = {'PT_rt7': {reform_year: 0.35}} pol2 = Policy() pol2.implement_reform(reform2) calc2 = Calculator(policy=pol2, records=rec) calc2.advance_to_year(reform_year) calc2.calc_all() mtr2_e00900p = calc2.mtr('e00900p')[2] mtr2_e26270 = calc2.mtr('e26270')[2] assert min(mtr2_e00900p) > -1 assert min(mtr2_e26270) > -1 # change PT_wages_active_income reform3 =
# Copyright (c) Facebook, Inc. and its affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections from typing import Any, Dict, Optional, Tuple import gym import torch from nle import nethack from minihack.agent.common.models.embed import GlyphEmbedding from minihack.agent.common.models.transformer import TransformerEncoder from omegaconf import DictConfig from ray.rllib.models import ModelCatalog from ray.rllib.models.torch.torch_modelv2 import TorchModelV2 from ray.rllib.utils.annotations import override from torch import nn from torch.nn import functional as F NUM_GLYPHS = nethack.MAX_GLYPH NUM_FEATURES = nethack.BLSTATS_SHAPE[0] PAD_CHAR = 0 NUM_CHARS = 128 class RLLibGlyphEmbedding(GlyphEmbedding): def glyphs_to_idgroup(self, glyphs): B, H, W = glyphs.shape ids_groups = self.id_pairs_table.index_select( 0, glyphs.contiguous().view(-1).long() ) ids = ids_groups.select(1, 0).view(B, H, W).long() groups = ids_groups.select(1, 1).view(B, H, W).long() return (ids, groups) def prepare_input(self, inputs): """Take the inputs to the network as dictionary and return a namedtuple of the input/index tensors to be embedded (GlyphTuple)""" embeddable_data = {} # Only flatten the data we want for key, value in inputs.items(): if key in self.embeddings: # -- [ B x ...] -> [ B' x ... ] # embeddable_data[key] = torch.flatten(value, 0, 1).long() embeddable_data[key] = value.long() # add our group id and subgroup id if we want them if self.requires_id_pairs_table: ids, groups = self.glyphs_to_idgroup(inputs["glyphs"]) embeddable_data["groups"] = groups embeddable_data["subgroup_ids"] = ids # convert embeddable_data to a named tuple return self.GlyphTuple(**embeddable_data) class NetHackNet(nn.Module): AgentOutput = collections.namedtuple( "AgentOutput", "action policy_logits baseline chosen_option teacher_logits pot_sm", ) def __init__(self): super(NetHackNet, self).__init__() self.register_buffer("reward_sum", torch.zeros(())) self.register_buffer("reward_m2", torch.zeros(())) self.register_buffer("reward_count", torch.zeros(()).fill_(1e-8)) def forward(self, inputs, core_state): raise NotImplementedError def initial_state(self, batch_size=1): return () def prepare_input(self, inputs): # -- [B x H x W] glyphs = inputs["glyphs"] # -- [B x F] features = inputs["blstats"] B, *_ = glyphs.shape return glyphs, features def embed_state(self, inputs): raise NotImplementedError @torch.no_grad() def update_running_moments(self, reward_batch): """Maintains a running mean of reward.""" new_count = len(reward_batch) new_sum = torch.sum(reward_batch) new_mean = new_sum / new_count curr_mean = self.reward_sum / self.reward_count new_m2 = torch.sum((reward_batch - new_mean) ** 2) + ( (self.reward_count * new_count) / (self.reward_count + new_count) * (new_mean - curr_mean) ** 2 ) self.reward_count += new_count self.reward_sum += new_sum self.reward_m2 += new_m2 @torch.no_grad() def get_running_std(self): """Returns standard deviation of the running mean of the reward.""" return torch.sqrt(self.reward_m2 / self.reward_count) class Crop(nn.Module): def __init__(self, height, width, height_target, width_target): super(Crop, self).__init__() self.width = width self.height = height self.width_target = width_target self.height_target = height_target width_grid = self._step_to_range( 2 / (self.width - 1), self.width_target )[None, :].expand(self.height_target, -1) height_grid = self._step_to_range( 2 / (self.height - 1), height_target )[:, None].expand(-1, self.width_target) # "clone" necessary, https://github.com/pytorch/pytorch/issues/34880 self.register_buffer("width_grid", width_grid.clone()) self.register_buffer("height_grid", height_grid.clone()) def _step_to_range(self, step, num_steps): return torch.tensor( [step * (i - num_steps // 2) for i in range(num_steps)] ) def forward(self, inputs, coordinates): """Calculates centered crop around given x,y coordinates. Args: inputs [B x H x W] or [B x H x W x C] coordinates [B x 2] x,y coordinates Returns: [B x H' x W'] inputs cropped and centered around x,y coordinates. """ assert inputs.shape[1] == self.height, "expected %d but found %d" % ( self.height, inputs.shape[1], ) assert inputs.shape[2] == self.width, "expected %d but found %d" % ( self.width, inputs.shape[2], ) permute_results = False if inputs.dim() == 3: inputs = inputs.unsqueeze(1) else: permute_results = True inputs = inputs.permute(0, 2, 3, 1) inputs = inputs.float() x = coordinates[:, 0] y = coordinates[:, 1] x_shift = 2 / (self.width - 1) * (x.float() - self.width // 2) y_shift = 2 / (self.height - 1) * (y.float() - self.height // 2) grid = torch.stack( [ self.width_grid[None, :, :] + x_shift[:, None, None], self.height_grid[None, :, :] + y_shift[:, None, None], ], dim=3, ) crop = ( torch.round(F.grid_sample(inputs, grid, align_corners=True)) .squeeze(1) .long() ) if permute_results: # [B x C x H x W] -> [B x H x W x C] crop = crop.permute(0, 2, 3, 1) return crop class Flatten(nn.Module): def forward(self, input): return input.view(input.size(0), -1) class BaseNet(NetHackNet): def __init__(self, processed_observation_shape, flags: DictConfig): super(BaseNet, self).__init__() self.observation_space = processed_observation_shape.original_space self.H = self.observation_space["glyphs"].shape[0] self.W = self.observation_space["glyphs"].shape[1] self.k_dim = flags.embedding_dim self.h_dim = flags.hidden_dim self.crop_model = flags.crop_model self.crop_dim = flags.crop_dim self.num_features = NUM_FEATURES self.crop = Crop(self.H, self.W, self.crop_dim, self.crop_dim) self.glyph_type = flags.glyph_type self.glyph_embedding = RLLibGlyphEmbedding( flags.glyph_type, flags.embedding_dim, None, flags.use_index_select, ) K = flags.embedding_dim # number of input filters F = 3 # filter dimensions S = 1 # stride P = 1 # padding M = 16 # number of intermediate filters self.Y = 8 # number of output filters L = flags.layers # number of convnet layers in_channels = [K] + [M] * (L - 1) out_channels = [M] * (L - 1) + [self.Y] def interleave(xs, ys): return [val for pair in zip(xs, ys) for val in pair] conv_extract = [ nn.Conv2d( in_channels=in_channels[i], out_channels=out_channels[i], kernel_size=(F, F), stride=S, padding=P, ) for i in range(L) ] self.extract_representation = nn.Sequential( *interleave(conv_extract, [nn.ELU()] * len(conv_extract)) ) if self.crop_model == "transformer": self.extract_crop_representation = TransformerEncoder( K, N=L, heads=8, height=self.crop_dim, width=self.crop_dim, device=None, ) elif self.crop_model == "cnn": conv_extract_crop = [ nn.Conv2d( in_channels=in_channels[i], out_channels=out_channels[i], kernel_size=(F, F), stride=S, padding=P, ) for i in range(L) ] self.extract_crop_representation = nn.Sequential( *interleave(conv_extract_crop, [nn.ELU()] * len(conv_extract)) ) # MESSAGING MODEL if "msg" not in flags: self.msg_model = "none" else: self.msg_model = flags.msg.model self.msg_hdim = flags.msg.hidden_dim self.msg_edim = flags.msg.embedding_dim if self.msg_model in ("gru", "lstm", "lt_cnn"): # character-based embeddings self.char_lt = nn.Embedding( NUM_CHARS, self.msg_edim, padding_idx=PAD_CHAR ) else: # forward will set up one-hot inputs for the cnn, no lt needed pass if self.msg_model.endswith("cnn"): # from Zhang et al, 2016 # Character-level Convolutional Networks for Text Classification # https://arxiv.org/abs/1509.01626 if self.msg_model == "cnn": # inputs will be one-hot vectors, as done in paper self.conv1 = nn.Conv1d(NUM_CHARS, self.msg_hdim, kernel_size=7) elif self.msg_model == "lt_cnn": # replace one-hot inputs with learned embeddings self.conv1 = nn.Conv1d( self.msg_edim, self.msg_hdim, kernel_size=7 ) else: raise NotImplementedError("msg.model == %s", flags.msg.model) # remaining convolutions, relus, pools, and a small FC network self.conv2_6_fc = nn.Sequential( nn.ReLU(), nn.MaxPool1d(kernel_size=3, stride=3), # conv2 nn.Conv1d(self.msg_hdim, self.msg_hdim, kernel_size=7), nn.ReLU(), nn.MaxPool1d(kernel_size=3, stride=3), # conv3 nn.Conv1d(self.msg_hdim, self.msg_hdim, kernel_size=3), nn.ReLU(), # conv4 nn.Conv1d(self.msg_hdim, self.msg_hdim, kernel_size=3), nn.ReLU(), # conv5 nn.Conv1d(self.msg_hdim, self.msg_hdim, kernel_size=3), nn.ReLU(), # conv6 nn.Conv1d(self.msg_hdim, self.msg_hdim, kernel_size=3), nn.ReLU(), nn.MaxPool1d(kernel_size=3, stride=3), # fc receives -- [ B x h_dim x 5 ] Flatten(), nn.Linear(5 * self.msg_hdim, 2 * self.msg_hdim), nn.ReLU(), nn.Linear(2 * self.msg_hdim, self.msg_hdim), ) # final output -- [ B x h_dim x 5 ] elif self.msg_model in ("gru", "lstm"): def rnn(flag): return nn.LSTM if flag == "lstm" else nn.GRU self.char_rnn = rnn(self.msg_model)( self.msg_edim, self.msg_hdim // 2, batch_first=True, bidirectional=True, ) elif self.msg_model != "none": raise NotImplementedError("msg.model == %s", flags.msg.model) self.embed_features = nn.Sequential( nn.Linear(self.num_features, self.k_dim), nn.ReLU(), nn.Linear(self.k_dim, self.k_dim), nn.ReLU(), ) self.equalize_input_dim = flags.equalize_input_dim if not self.equalize_input_dim: # just added up the output dimensions of the input featurizers # feature / status dim out_dim = self.k_dim # CNN over full glyph map out_dim += self.H * self.W * self.Y if self.crop_model == "transformer": out_dim += self.crop_dim ** 2 * K elif self.crop_model == "cnn": out_dim += self.crop_dim ** 2 * self.Y # messaging model if self.msg_model != "none": out_dim += self.msg_hdim else: # otherwise, project them all to h_dim NUM_INPUTS = 4 if self.msg_model != "none" else 3 project_hdim = flags.equalize_factor * self.h_dim out_dim = project_hdim * NUM_INPUTS # set up linear layers for projections self.project_feature_dim = nn.Linear(self.k_dim, project_hdim) self.project_glyph_dim = nn.Linear( self.H * self.W * self.Y, project_hdim ) c__2 = self.crop_dim ** 2 if self.crop_model == "transformer": self.project_crop_dim = nn.Linear(c__2 * K, project_hdim) elif self.crop_model == "cnn": self.project_crop_dim = nn.Linear(c__2 * self.Y, project_hdim) if self.msg_model != "none": self.project_msg_dim = nn.Linear(self.msg_hdim, project_hdim) self.fc = nn.Sequential( nn.Linear(out_dim, self.h_dim), nn.ReLU(), nn.Linear(self.h_dim, self.h_dim), nn.ReLU(), ) def prepare_input(self, inputs): # -- [B x H x W] B, H, W = inputs["glyphs"].shape # take our chosen
) projection_tensor = self.projection_layer(inputs=Z) print_obj( "\n" + func_name, "projection_tensor", projection_tensor ) # Reshape projection into "image". # shape = ( # cur_batch_size, # projection_height, # projection_width, # projection_depth # ) projection_tensor_reshaped = tf.reshape( tensor=projection_tensor, shape=[-1] + params["{}_projection_dims".format(self.kind)], name="{}_projection_reshaped".format(self.name) ) print_obj( func_name, "projection_tensor_reshaped", projection_tensor_reshaped ) # shape = ( # cur_batch_size, # projection_height, # projection_width, # projection_depth # ) projection_tensor_leaky = tf.nn.leaky_relu( features=projection_tensor_reshaped, alpha=params["{}_leaky_relu_alpha".format(self.kind)], name="{}_projection_tensor_reshaped_leaky_relu".format(self.kind) ) print_obj( func_name, "projection_tensor_leaky", projection_tensor_leaky ) # shape = ( # cur_batch_size, # projection_height, # projection_width, # projection_depth # ) pixel_norm_output = self.use_pixel_norm( X=projection_tensor_leaky, params=params, epsilon=params["pixel_norm_epsilon"] ) print_obj(func_name, "pixel_norm_output", pixel_norm_output) return pixel_norm_output def fused_conv2d_pixel_norm(self, input_image, conv2d_layer, params): """Fused `Conv2D` layer and pixel norm operation. Args: input_image: tensor, input image of rank 4. conv2d_layer: `Conv2D` layer. params: dict, user passed parameters. Returns: New image tensor of rank 4. """ func_name = "fused_conv2d_pixel_norm" conv_output = conv2d_layer(inputs=input_image) print_obj("\n" + func_name, "conv_output", conv_output) conv_output_leaky = tf.nn.leaky_relu( features=conv_output, alpha=params["{}_leaky_relu_alpha".format(self.kind)], name="{}_fused_conv2d_pixel_norm_leaky_relu".format(self.kind) ) print_obj(func_name, "conv_output_leaky", conv_output_leaky) pixel_norm_output = self.use_pixel_norm( X=conv_output_leaky, params=params, epsilon=params["pixel_norm_epsilon"] ) print_obj(func_name, "pixel_norm_output", pixel_norm_output) return pixel_norm_output def upsample_vec_to_img_image(self, image, orig_img_size, block_idx): """Upsamples vec_to_img image. Args: image: tensor, image created by vec_to_img conv block. orig_img_size: list, the height and width dimensions of the original image before any growth. block_idx: int, index of the current vec_to_img growth block. Returns: Upsampled image tensor. """ func_name = "upsample_{}_image".format(self.kind) # Upsample from s X s to 2s X 2s image. upsampled_image = tf.image.resize( images=image, size=tf.convert_to_tensor( value=orig_img_size, dtype=tf.int32, name="{}_upsample_{}_image_orig_img_size".format( self.name, self.kind ) ) * 2 ** block_idx, method="nearest", name="{}_growth_upsampled_image_{}_{}x{}_{}x{}".format( self.name, block_idx, orig_img_size[0] * 2 ** (block_idx - 1), orig_img_size[1] * 2 ** (block_idx - 1), orig_img_size[0] * 2 ** block_idx, orig_img_size[1] * 2 ** block_idx ) ) print_obj("\n" + func_name, "upsampled_image", upsampled_image) return upsampled_image def create_base_vec_to_img_network(self, Z, params): """Creates base vec_to_img network. Args: Z: tensor, latent vectors of shape [cur_batch_size, latent_size]. projection_layer: `Dense` layer for projection of noise into image. to_rgb_conv_layers: list, toRGB 1x1 conv layers. blocks: list, lists of block layers for each block. params: dict, user passed parameters. Returns: Final network block conv tensor. """ func_name = "create_base_{}_network".format(self.kind) print_obj("\n" + func_name, "Z", Z) with tf.variable_scope(name_or_scope=self.name, reuse=tf.AUTO_REUSE): # Project latent noise vectors into image. projection = self.use_vec_to_img_projection_layer( Z=Z, params=params ) print_obj(func_name, "projection", projection) # Only need the first block and toRGB conv layer for base network. block_layers = self.conv_layer_blocks[0] to_rgb_conv_layer = self.to_rgb_conv_layers[0] # Pass inputs through layer chain. block_conv = projection for i in range(0, len(block_layers)): block_conv = self.fused_conv2d_pixel_norm( input_image=block_conv, conv2d_layer=block_layers[i], params=params ) print_obj(func_name, "block_conv_{}".format(i), block_conv) # Convert convolution to RGB image. to_rgb_conv = to_rgb_conv_layer(inputs=block_conv) print_obj(func_name, "to_rgb_conv", to_rgb_conv) return to_rgb_conv def create_growth_transition_vec_to_img_network( self, Z, orig_img_size, alpha_var, params, trans_idx): """Creates growth transition vec_to_img network. Args: Z: tensor, latent vectors of shape [cur_batch_size, latent_size]. orig_img_size: list, the height and width dimensions of the original image before any growth. alpha_var: variable, alpha for weighted sum of fade-in of layers. params: dict, user passed parameters. trans_idx: int, index of current growth transition. Returns: Weighted sum tensor of growing and shrinking network paths. """ func_name = "create_growth_transition_{}_network".format(self.kind) print_obj("\nEntered {}".format(func_name), "trans_idx", trans_idx) print_obj(func_name, "Z", Z) with tf.variable_scope(name_or_scope=self.name, reuse=tf.AUTO_REUSE): # Project latent noise vectors into image. projection = self.use_vec_to_img_projection_layer( Z=Z, params=params ) print_obj(func_name, "projection", projection) # Permanent blocks. permanent_blocks = self.conv_layer_blocks[0:trans_idx + 1] # Base block doesn't need any upsampling so handle differently. base_block_conv_layers = permanent_blocks[0] # Pass inputs through layer chain. block_conv = projection for i in range(0, len(base_block_conv_layers)): block_conv = self.fused_conv2d_pixel_norm( input_image=block_conv, conv2d_layer=base_block_conv_layers[i], params=params ) print_obj( func_name, "base_block_conv_{}_{}".format(trans_idx, i), block_conv ) # Growth blocks require first prev conv layer's image upsampled. for i in range(1, len(permanent_blocks)): # Upsample previous block's image. block_conv = self.upsample_vec_to_img_image( image=block_conv, orig_img_size=orig_img_size, block_idx=i ) print_obj( func_name, "upsample_vec_to_img_image_block_conv_{}_{}".format( trans_idx, i ), block_conv ) block_conv_layers = permanent_blocks[i] for j in range(0, len(block_conv_layers)): block_conv = self.fused_conv2d_pixel_norm( input_image=block_conv, conv2d_layer=block_conv_layers[j], params=params ) print_obj( func_name, "block_conv_{}_{}_{}".format(trans_idx, i, j), block_conv ) # Upsample most recent block conv image for both side chains. upsampled_block_conv = self.upsample_vec_to_img_image( image=block_conv, orig_img_size=orig_img_size, block_idx=len(permanent_blocks) ) print_obj( func_name, "upsampled_block_conv_{}".format(trans_idx), upsampled_block_conv ) # Growing side chain. growing_block_layers = self.conv_layer_blocks[trans_idx + 1] growing_to_rgb_conv_layer = self.to_rgb_conv_layers[trans_idx + 1] # Pass inputs through layer chain. block_conv = upsampled_block_conv for i in range(0, len(growing_block_layers)): block_conv = self.fused_conv2d_pixel_norm( input_image=block_conv, conv2d_layer=growing_block_layers[i], params=params ) print_obj( func_name, "growing_block_conv_{}_{}".format(trans_idx, i), block_conv ) growing_to_rgb_conv = growing_to_rgb_conv_layer(inputs=block_conv) print_obj( func_name, "growing_to_rgb_conv_{}".format(trans_idx), growing_to_rgb_conv ) # Shrinking side chain. shrinking_to_rgb_conv_layer = self.to_rgb_conv_layers[trans_idx] # Pass inputs through layer chain. shrinking_to_rgb_conv = shrinking_to_rgb_conv_layer( inputs=upsampled_block_conv ) print_obj( func_name, "shrinking_to_rgb_conv_{}".format(trans_idx), shrinking_to_rgb_conv ) # Weighted sum. weighted_sum = tf.add( x=growing_to_rgb_conv * alpha_var, y=shrinking_to_rgb_conv * (1.0 - alpha_var), name="growth_transition_weighted_sum_{}".format(trans_idx) ) print_obj( func_name, "weighted_sum_{}".format(trans_idx), weighted_sum ) return weighted_sum def create_growth_stable_vec_to_img_network( self, Z, orig_img_size, params, trans_idx): """Creates final vec_to_img network. Args: Z: tensor, latent vectors of shape [cur_batch_size, latent_size]. orig_img_size: list, the height and width dimensions of the original image before any growth. params: dict, user passed parameters. trans_idx: int, index of current growth transition. Returns: Final network block conv tensor. """ func_name = "create_growth_stable_{}_network".format(self.kind) print_obj("\n" + func_name, "Z", Z) with tf.variable_scope(name_or_scope=self.name, reuse=tf.AUTO_REUSE): # Project latent noise vectors into image. projection = self.use_vec_to_img_projection_layer( Z=Z, params=params ) print_obj(func_name, "projection", projection) # Permanent blocks. permanent_blocks = self.conv_layer_blocks[0:trans_idx + 2] # Base block doesn't need any upsampling so handle differently. base_block_conv_layers = permanent_blocks[0] # Pass inputs through layer chain. block_conv = projection for i in range(len(base_block_conv_layers)): block_conv = self.fused_conv2d_pixel_norm( input_image=block_conv, conv2d_layer=base_block_conv_layers[i], params=params ) print_obj( func_name, "base_block_conv_{}".format(i), block_conv ) # Growth blocks require first prev conv layer's image upsampled. for i in range(1, len(permanent_blocks)): # Upsample previous block's image. block_conv = self.upsample_vec_to_img_image( image=block_conv, orig_img_size=orig_img_size, block_idx=i ) print_obj( func_name, "upsample_vec_to_img_image_block_conv_{}".format(i), block_conv ) # Get layers from ith permanent block. block_conv_layers = permanent_blocks[i] # Loop through `Conv2D` layers now of permanent block. for j in range(len(block_conv_layers)): block_conv = self.fused_conv2d_pixel_norm( input_image=block_conv, conv2d_layer=block_conv_layers[j], params=params ) print_obj( func_name, "block_conv_{}_{}".format(i, j), block_conv ) # Get transition index toRGB conv layer. to_rgb_conv_layer = self.to_rgb_conv_layers[trans_idx + 1] # Pass inputs through layer chain. to_rgb_conv = to_rgb_conv_layer(inputs=block_conv) print_obj(func_name, "to_rgb_conv", to_rgb_conv) return to_rgb_conv ########################################################################## ########################################################################## ########################################################################## def unknown_switch_case_vec_to_img_outputs( self, Z, orig_img_size, alpha_var, params, growth_index): """Uses switch case to use the correct network to generate images. Args: Z: tensor, latent vectors of shape [cur_batch_size, latent_size]. orig_img_size: list, the height and width dimensions of the original image before any growth. alpha_var: variable, alpha for weighted sum of fade-in of layers. params: dict, user passed parameters. growth_index: tensor, current growth stage. Returns: Generated image output tensor. """ func_name = "unknown_switch_case_{}_outputs".format(self.kind) # Switch to case based on number of steps for gen outputs. generated_outputs = tf.switch_case( branch_index=growth_index, branch_fns=[ # 4x4 lambda: self.create_base_vec_to_img_network( Z=Z, params=params ), # 8x8 lambda: self.create_growth_transition_vec_to_img_network( Z=Z, orig_img_size=orig_img_size, alpha_var=alpha_var, params=params, trans_idx=min(0, len(params["conv_num_filters"]) - 2) ), # 8x8 lambda: self.create_growth_stable_vec_to_img_network( Z=Z, orig_img_size=orig_img_size, params=params, trans_idx=min(0, len(params["conv_num_filters"]) - 2) ), # 16x16 lambda: self.create_growth_transition_vec_to_img_network( Z=Z, orig_img_size=orig_img_size, alpha_var=alpha_var, params=params, trans_idx=min(1, len(params["conv_num_filters"]) - 2) ), # 16x16 lambda: self.create_growth_stable_vec_to_img_network( Z=Z, orig_img_size=orig_img_size, params=params, trans_idx=min(1, len(params["conv_num_filters"]) - 2) ), # 32x32 lambda: self.create_growth_transition_vec_to_img_network( Z=Z, orig_img_size=orig_img_size, alpha_var=alpha_var, params=params, trans_idx=min(2, len(params["conv_num_filters"]) - 2) ), # 32x32 lambda: self.create_growth_stable_vec_to_img_network( Z=Z, orig_img_size=orig_img_size, params=params, trans_idx=min(2, len(params["conv_num_filters"]) - 2) ), # 64x64 lambda: self.create_growth_transition_vec_to_img_network( Z=Z, orig_img_size=orig_img_size, alpha_var=alpha_var, params=params, trans_idx=min(3, len(params["conv_num_filters"]) - 2) ), # 64x64 lambda: self.create_growth_stable_vec_to_img_network( Z=Z, orig_img_size=orig_img_size, params=params, trans_idx=min(3, len(params["conv_num_filters"]) - 2) ), # 128x128 lambda: self.create_growth_transition_vec_to_img_network( Z=Z, orig_img_size=orig_img_size, alpha_var=alpha_var, params=params, trans_idx=min(4, len(params["conv_num_filters"]) - 2) ), # 128x128 lambda: self.create_growth_stable_vec_to_img_network( Z=Z, orig_img_size=orig_img_size, params=params, trans_idx=min(4, len(params["conv_num_filters"]) - 2) ), # 256x256 lambda: self.create_growth_transition_vec_to_img_network( Z=Z, orig_img_size=orig_img_size, alpha_var=alpha_var, params=params, trans_idx=min(5, len(params["conv_num_filters"]) - 2) ), # 256x256 lambda: self.create_growth_stable_vec_to_img_network( Z=Z, orig_img_size=orig_img_size, params=params, trans_idx=min(5, len(params["conv_num_filters"]) - 2) ), # 512x512 lambda: self.create_growth_transition_vec_to_img_network( Z=Z, orig_img_size=orig_img_size, alpha_var=alpha_var, params=params, trans_idx=min(6, len(params["conv_num_filters"]) - 2) ), # 512x512 lambda: self.create_growth_stable_vec_to_img_network( Z=Z, orig_img_size=orig_img_size, params=params, trans_idx=min(6, len(params["conv_num_filters"]) - 2) ), # 1024x1024 lambda: self.create_growth_transition_vec_to_img_network( Z=Z, orig_img_size=orig_img_size, alpha_var=alpha_var, params=params, trans_idx=min(7, len(params["conv_num_filters"]) - 2) ), # 1024x1024 lambda: self.create_growth_stable_vec_to_img_network( Z=Z, orig_img_size=orig_img_size, params=params, trans_idx=min(7, len(params["conv_num_filters"]) - 2) ) ], name="{}_switch_case_generated_outputs".format(self.name) ) print_obj(func_name, "generated_outputs", generated_outputs) return generated_outputs def known_switch_case_vec_to_img_outputs( self, Z, orig_img_size, alpha_var, params): """Uses switch case to use the correct network to generate images. Args:
= timeSeriesPosition else: logEvent("ERROR! Wavetools.py: Location vector for timeSeries must have three-components",level=0) sys.exit(1) # Mean water level self.mwl = mwl # Wave direction self.waveDir = setDirVector(waveDir) # Gravity self.g = np.array(g) # Derived variables # Gravity magnitude self.gAbs = sqrt(sum(g * g)) # Definition of gravity direction self.vDir = setVertDir(g) dirCheck(self.waveDir,self.vDir) #Reading time series if(arrayData): tdata = seriesArray else: filetype = timeSeriesFile[-4:] fid = open(timeSeriesFile,"r") if (filetype !=".txt") and (filetype != ".csv"): logEvent("ERROR! Wavetools.py: File %s must be given in .txt or .csv format" % (timeSeriesFile),level=0) sys.exit(1) elif (filetype == ".csv"): tdata = np.loadtxt(fid,skiprows=skiprows,delimiter=",") else: tdata = np.loadtxt(fid,skiprows=skiprows) fid.close() #Checks for tseries file # Only 2 columns: time & eta ncols = len(tdata[0,:]) if ncols != 2: logEvent("ERROR! Wavetools.py: Timeseries file (%s) must have only two columns [time, eta]" % (timeSeriesFile),level=0) sys.exit(1) time_temp = tdata[:,0] self.dt = old_div((time_temp[-1]-time_temp[0]),(len(time_temp)-1)) # If necessary, perform interpolation doInterp = False for i in range(1,len(time_temp)): dt_temp = time_temp[i]-time_temp[i-1] #check if time is at first column if time_temp[i]<=time_temp[i-1]: logEvent("ERROR! WaveTools.py: Found not consistent time entry between %s and %s row in %s file. Time variable must be always at the first column of the file and increasing monotonically" %(i-1,i,timeSeriesFile) ) sys.exit(1) #check if sampling rate is constant if dt_temp!=self.dt: doInterp = True if(doInterp): logEvent("INFO WaveTools.py: Not constant sampling rate found, proceeding to signal interpolation to a constant sampling rate",level=0) self.time = np.linspace(time_temp[0],time_temp[-1],len(time_temp)) self.etaS = np.interp(self.time,time_temp,tdata[:,1]) else: self.time = time_temp self.etaS = tdata[:,1] self.t0 = self.time[0] # Remove mean level from raw data self.etaS -= np.mean(self.etaS) # Filter out first 2.5 % and last 2.5% to make the signal periodic self.etaS *= costap(len(self.time),cutoff=cutoffTotal) # clear tdata from memory del tdata # Calculate time lenght self.tlength = (self.time[-1]-self.time[0]) # Matrix initialisation self.windows_handover = [] self.windows_rec = [] self.Twindow = 10. # Direct decomposition of the time series for using at reconstruct_direct if (self.rec_direct): Nf = self.N nfft=len(self.time) logEvent("INFO: WaveTools.py: performing a direct series decomposition") decomp = decompose_tseries(self.time,self.etaS,self.dt) self.ai = decomp[1] ipeak = np.where(self.ai == max(self.ai))[0][0] imax = min(ipeak + old_div(Nf,2),len(self.ai)) imin = max(0,ipeak - old_div(Nf,2)) self.ai = self.ai[imin:imax] self.omega = decomp[0][imin:imax] self.phi = - decomp[2][imin:imax] self.ki = dispersion(self.omega,self.depth,g=self.gAbs) self.Nf = imax - imin self.setup = decomp[3] self.kDir = np.zeros((len(self.ki),3),"d") for ii in range(len(self.ki)): self.kDir[ii,:] = self.ki[ii]*self.waveDir[:] for ij in range(self.Nf): self.omega_c[ij] = self.omega[ij] self.ki_c[ij] =self.ki[ij] self.tanh_c[ij] = np.tanh(self.ki[ij]*self.depth) self.ai_c[ij] = self.ai[ij] self.phi_c[ij] = self.phi[ij] for kk in range(3): self.kDir_c[3*ij+kk] = self.kDir[ij,kk] self.kDir_ = self.kDir_c self.omega_ = self.omega_c self.ki_ =self.ki_c self.ai_ = self.ai_c self.tanh_ = self.tanh_c self.phi_ = self.phi_c # Spectral windowing else: if (window_params is None): logEvent("ERROR! WaveTools.py: Set parameters for spectral windowing. Argument window_params must be a dictionary") sys.exit(1) try: self.Nwaves = window_params["Nwaves"] except: logEvent("ERROR! WaveTools.py: Dictionary key 'Nwaves' (waves per window) not found in window_params dictionary") sys.exit(1) try: self.Tm = window_params["Tm"] except: logEvent("ERROR! WaveTools.py: Dictionary key 'Tm' (mean or characteristic wave period) not found in window_params dictionary") sys.exit(1) try: windowName = window_params["Window"] except: logEvent("ERROR! WaveTools.py: Dictionary key 'Window' (window function type) not found in window_params dictionary") sys.exit(1) if(self.Nwaves > 0.5*self.tlength / self.Tm): logEvent("ERROR! WaveTools.py: Reconstruction is expected to have two windows or more. Plese reduce the number of waves per window or switch to direct decomposition )") sys.exit(1) validWindows = [costap, tophat] wind_filt = loadExistingFunction(windowName, validWindows) logEvent("INFO WaveTools.py: performing series decomposition with spectral windows") # Portion of overlap, compared to window time try: self.overlap = window_params["Overlap"] except: self.overlap = 0.7 logEvent("INFO WaveTools.py: Overlap entry in window_params dictionary not found. Setting default value of 0.7 (70% of the window length)") try: self.cutoff = window_params["Cutoff"] except: self.cutoff= 0.1 logEvent("INFO WaveTools.py: Cutoff entry in window_params dictionary not found. Setting default value of 0.1 (1/10 of the window length)") # Portion of window filtered with the Costap filter # Setting the handover time, either at the middle of the overlap or just after the filter self.handover = max(1.1 *self.cutoff, old_div(self.overlap, 2.)) if (self.handover > 0.9 * self.overlap): logEvent("ERROR! Wavetools.py: Window handover is not optimal as the cutoff is too close to the overlap. Decrease cutoff or increase overlap") sys.exit(1) self.Twindow = self.Tm * self.Nwaves # setting the window duration (approx.). Twindow = Tmean * Nwaves self.Toverlap = self.overlap * self.Twindow self.Nwindows = int( old_div((self.tlength - self.Twindow ), (self.Twindow - self.Toverlap)) ) + 1 #Getting the actual number of windows (N-1) * (Twindow - Toverlap) + Twindow = total time self.Twindow = old_div(self.tlength,(1. + (1. - self.overlap)*(self.Nwindows-1))) # Correct Twindow and Toverlap for duration and integer number of windows self.Toverlap = self.overlap*self.Twindow logEvent("INFO: Wavetools.py: Correcting window duration for matching the exact time range of the series. Window duration correspond to %s waves approx." %(old_div(self.Twindow, self.Tm)) ) diff = (self.Nwindows-1.)*(self.Twindow -self.Toverlap)+self.Twindow - self.tlength logEvent("INFO: Wavetools.py: Checking duration of windowed time series: %s per cent difference from original duration" %(100*diff) ) logEvent("INFO: Wavetools.py: Using %s windows for reconstruction with %s sec duration and %s per cent overlap" %(self.Nwindows, self.Twindow,100*self.overlap )) # Setting where each window starts and ends for jj in range(self.Nwindows): span = np.zeros(2,"d") tfirst = self.time[0] + self.Twindow tlast = self.time[-1] - self.Twindow if jj == 0: ispan1 = 0 ispan2 = np.where(self.time> tfirst)[0][0] elif jj == self.Nwindows-1: ispan1 = np.where(self.time > tlast)[0][0] ispan2 = len(self.time)-1 else: tstart = self.time[ispan2] - self.Toverlap ispan1 = np.where(self.time > tstart)[0][0] ispan2 = np.where(self.time > tstart + self.Twindow )[0][0] span[0] = ispan1 span[1] = ispan2 # Storing time series in windows and handover times self.windows_handover.append( self.time[ispan2] - self.handover*self.Twindow ) self.windows_rec.append(np.array(list(zip(self.time[ispan1:ispan2],self.etaS[ispan1:ispan2])))) # Decomposing windows to frequency domain self.decompose_window = [] # style = "k-" # ii = 0 for wind in self.windows_rec: nfft=len(wind[:,0]) wind[:,1] *=wind_filt(nfft,cutoff = self.cutoff) decomp = decompose_tseries(wind[:,0],wind[:,1],self.dt) self.N = min(self.N, len(decomp[0])) Nftemp = self.N ipeak = np.where(decomp[1] == max(decomp[1]))[0][0] imax = min(ipeak + old_div(Nftemp,2),len(decomp[1])) imin = max(0,ipeak - old_div(Nftemp,2)) self.Nf = imax-imin if (self.Nf < self.N): if imin == 0: imax = imax + (self.N - self.Nf) else: imin = imin - (self.N - self.Nf) self.Nf = self.N decomp[1] = decomp[1][imin:imax] decomp[0] = decomp[0][imin:imax] decomp[2] = -decomp[2][imin:imax] ki = dispersion(decomp[0],self.depth,g=self.gAbs) kDir = np.zeros((len(ki),3),"d") Tlag = np.zeros(ki.shape,) for ii in range(len(ki)): kDir[ii,:] = ki[ii]*self.waveDir[:] Tlag[ii] = old_div(sum(Lgen[:]*kDir[ii,:]),decomp[0][ii]) self.Tlag = max(Tlag) if self.Tlag > (old_div(self.Toverlap,2.) - self.cutoff*self.Twindow): logEvent("ERROR!: WaveTools.py: Relaxation zone lenght does not allow for spatial coherency in the windows method.Please a) increase number of waves per window or b) increase overlap or c) decrease lenght of the relaxation zone") sys.exit(1) decomp.append(kDir) decomp.append(ki) self.decompose_window.append(decomp) #c++ declarations for ii in range(len(self.windows_handover)): self.whand_c[ii] = self.windows_handover[ii] self.T0[ii] = self.windows_rec[ii][0,0] self.whand_ = self.whand_c self.T0_ = self.T0 for ii in range(self.Nwindows): for jj in range(self.N): ij = ii*self.N + jj if(jj <len(self.decompose_window[ii][0])): self.omega_c[ij] = self.decompose_window[ii][0][jj] self.ki_c[ij] = self.decompose_window[ii][5][jj] self.tanh_c[ij] = np.tanh(self.ki_c[ij]*self.depth) self.ai_c[ij] = self.decompose_window[ii][1][jj] self.phi_c[ij] =self.decompose_window[ii][2][jj] for kk in range(3): self.kDir_c[3*ij+kk] = self.decompose_window[ii][4][jj,kk] else: self.omega_c[ij] =1. self.ki_c[ij] = 1. self.tanh_c[ij] = 1. self.ai_c[ij] = 0. self.phi_c[ij] =0. for kk in range(3): self.kDir_c[3*ij+kk] = 1. self.kDir_ = self.kDir_c self.omega_ = self.omega_c self.ki_ =self.ki_c self.ai_ = self.ai_c self.tanh_ = self.tanh_c self.phi_ = self.phi_c self.Nall = self.Nf*self.Nwindows for ii in range(3): self.x0_c[ii] = self.x0[ii] self.waveDir_c[ii] = self.waveDir[ii] self.vDir_c[ii] = self.vDir[ii] self.x0_ = self.x0_c self.waveDir_ = self.waveDir_c self.vDir_ = self.vDir_c if(self.rec_direct): self.eta = self.etaDirect self.u = self.uDirect self._cpp_eta = self._cpp_etaDirect self._cpp_u = self._cpp_uDirect else: self.eta = self.etaWindow self.u = self.uWindow self._cpp_eta = self._cpp_etaWindow self._cpp_u = self._cpp_uWindow def windOut(self): return {"TWindow":self.Twindow,"TOverlap":self.Toverlap,"Tlag":self.Tlag, "rec_direct":self.rec_direct} def _cpp_etaDirect(self,x,t): return __cpp_etaDirect(x,self.x0_,t,self.kDir_,self.omega_,self.phi_,self.ai_,self.Nf, self.fast) def _cpp_uDirect(self,U,x,t): __cpp_uDirect(U,x,self.x0_,t,self.kDir_,self.ki_,self.omega_,self.phi_,self.ai_,self.mwl,self.depth,self.Nf,self.waveDir_, self.vDir_, self.tanh_, self.gAbs, self.fast) def etaDirect(self, x, t): """Calculates free surface elevation(Timeseries class-direct method Parameters ---------- x : numpy.ndarray Position vector t : float Time variable Returns -------- float Free-surface elevation as a float """ cython.declare(xx=cython.double[3]) xx[0] = x[0] xx[1] = x[1] xx[2] = x[2] return self._cpp_etaDirect(xx,t) def uDirect(self, x, t): """Calculates wave velocity vector (Timeseries class-direct method) Parameters ---------- x : numpy.ndarray Position vector t : float Time variable Returns -------- numpy.ndarray Velocity vector as 1D array """ cython.declare(xx=cython.double[3]) cython.declare(cppU=cython.double[3]) for ii in range(3):
b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b + let a = b in a + b +
<reponame>ntaagarwal/indoorInverse []# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import random import PIL import torch import torchvision from torchvision.transforms import functional as F from torchvision.transforms.transforms import Lambda from torch.nn.functional import interpolate, pad # from torchvision.transforms import RandomCrop from torch import Tensor from typing import Tuple, List, Optional import numpy as np from utils.utils_misc import checkEqual1 import numbers def _get_image_size(img): if F._is_pil_image(img): return img.size elif isinstance(img, torch.Tensor) and img.dim() > 2: return img.shape[-2:][::-1] else: raise TypeError("Unexpected type {}".format(type(img))) class Compose(object): def __init__(self, transforms): self.transforms = transforms def __call__(self, image, target=None): if target is not None: for t in self.transforms: image, target = t(image, target) return image, target else: for t in self.transforms: image = t(image) return image def __repr__(self): format_string = self.__class__.__name__ + "(" for t in self.transforms: format_string += "\n" format_string += " {0}".format(t) format_string += "\n)" return format_string class Resize(object): def __init__(self, min_size, max_size, interpolation='BILINEAR'): # interpolation: 'BILINEAR', 'NEAREST', ... if not isinstance(min_size, (list, tuple)): min_size = (min_size,) self.min_size = min_size self.max_size = max_size assert interpolation in ['BILINEAR', 'NEAREST'], 'interpolation option not supported!' if interpolation=='BILINEAR': self.PIL_interpolation = PIL.Image.BILINEAR # https://pytorch.org/docs/stable/torchvision/transforms.html#torchvision.transforms.Resize self.F_interpolation = 'bilinear' elif interpolation=='NEAREST': self.PIL_interpolation = PIL.Image.NEAREST self.F_interpolation = 'nearest' # modified from torchvision to add support for max size def get_size(self, image_size): w, h = image_size size = random.choice(self.min_size) max_size = self.max_size if max_size is not None: min_original_size = float(min((w, h))) max_original_size = float(max((w, h))) if max_original_size / min_original_size * size > max_size: size = int(round(max_size * min_original_size / max_original_size)) if (w <= h and w == size) or (h <= w and h == size): return (h, w) if w < h: ow = size oh = int(size * h / w) else: oh = size ow = int(size * w / h) return (oh, ow) def __call__(self, images, target=None): if isinstance(images, list): size = self.get_size(images[0].size) image_size = images[0].size assert checkEqual1([X.size for X in images]), 'sizes of an image list should all equal!' images = [F.resize(X, size, interpolation=self.PIL_interpolation) for X in images] else: size = self.get_size(images.size) image_size = images.size images = F.resize(images, size, interpolation=self.PIL_interpolation) if target is None: return images # target = target.resize((image.size[0], image.size[1], -1)) target.unsqueeze_(0) target = interpolate(target, size=(image_size[1], image_size[0]), mode=self.F_interpolation) # https://pytorch.org/docs/stable/nn.functional.html#torch.nn.functional.interpolate target.squeeze_(0) return image, target # class RandomCrop(object): # def __init__(self, min_size, max_size): # if not isinstance(min_size, (list, tuple)): # min_size = (min_size,) # self.min_size = min_size # self.max_size = max_size # # modified from torchvision to add support for max size # def get_size(self, image_size): # w, h = image_size # size = random.choice(self.min_size) # max_size = self.max_size # if max_size is not None: # min_original_size = float(min((w, h))) # max_original_size = float(max((w, h))) # if max_original_size / min_original_size * size > max_size: # size = int(round(max_size * min_original_size / max_original_size)) # if (w <= h and w == size) or (h <= w and h == size): # return (h, w) # if w < h: # ow = size # oh = int(size * h / w) # else: # oh = size # ow = int(size * w / h) # return (oh, ow) # @staticmethod # def get_params(img: Tensor, output_size: Tuple[int, int]) -> Tuple[int, int, int, int]: # """Get parameters for ``crop`` for a random crop. # Taken from https://pytorch.org/docs/stable/_modules/torchvision/transforms/transforms.html#RandomCrop # Args: # img (PIL Image or Tensor): Image to be cropped. # output_size (tuple): Expected output size of the crop. # Returns: # tuple: params (i, j, h, w) to be passed to ``crop`` for random crop. # """ # w, h = _get_image_size(img) # th, tw = output_size # if w == tw and h == th: # return 0, 0, h, w # i = torch.randint(0, h - th + 1, size=(1, )).item() # j = torch.randint(0, w - tw + 1, size=(1, )).item() # return i, j, th, tw # def __call__(self, image, target=None): # crop_size = self.get_size(image.size) # (h, w) # assert image.size[0] > crop_size[1] # im_W > crop_W # assert image.size[1] > crop_size[0] # im_H > crop_H # i, j, h, w = self.get_params(image, crop_size) # # image = F.resize(image, size, interpolation=self.PIL_interpolation) # image = F.crop(image, i, j, h, w) # if target is None: # return image # # target = target.resize((image.size[0], image.size[1], -1)) # # target.unsqueeze_(0) # # print('--0', target.shape) # # target = F.crop(image, i, j, h, w) # ONLY FOR PYTORCH>=1.6.0 # # print('--1', target.shape) # # target.squeeze_(0) # return image, target[..., i:i+h, j:j+w] class RandomCrop(object): def __init__(self, H_cropto, W_cropto): # if not isinstance(min_size, (list, tuple)): # min_size = (min_size,) self.H_cropto = H_cropto self.W_cropto = W_cropto # # modified from torchvision to add support for max size # def get_size(self, image_size): # w, h = image_size # size = random.choice(self.min_size) # max_size = self.max_size # if max_size is not None: # min_original_size = float(min((w, h))) # max_original_size = float(max((w, h))) # if max_original_size / min_original_size * size > max_size: # size = int(round(max_size * min_original_size / max_original_size)) # if (w <= h and w == size) or (h <= w and h == size): # return (h, w) # if w < h: # ow = size # oh = int(size * h / w) # else: # oh = size # ow = int(size * w / h) # return (oh, ow) @staticmethod def get_params(img: Tensor, output_size: Tuple[int, int]) -> Tuple[int, int, int, int]: """Get parameters for ``crop`` for a random crop. Taken from https://pytorch.org/docs/stable/_modules/torchvision/transforms/transforms.html#RandomCrop Args: img (PIL Image or Tensor): Image to be cropped. output_size (tuple): Expected output size of the crop. Returns: tuple: params (i, j, h, w) to be passed to ``crop`` for random crop. """ w, h = _get_image_size(img) th, tw = output_size if w == tw and h == th: return 0, 0, h, w i = torch.randint(0, h - th + 1, size=(1, )).item() j = torch.randint(0, w - tw + 1, size=(1, )).item() return i, j, th, tw def __call__(self, images, target=None): # crop_size = self.get_size(image.size) # (h, w) crop_size = (self.H_cropto, self.W_cropto) if isinstance(images, list): image_size = images[0].size assert checkEqual1([X.size for X in images]), 'sizes of an image list should all equal!' sample_image = images[0] else: image_size = images.size sample_image = images assert image_size[0] >= crop_size[1] # im_W > crop_W assert image_size[1] >= crop_size[0] # im_H > crop_H i, j, h, w = self.get_params(sample_image, crop_size) if isinstance(images, list): images = [F.crop(X, i, j, h, w) for X in images] else: images = F.crop(images, i, j, h, w) if target is None: return images # target = target.resize((image.size[0], image.size[1], -1)) # target.unsqueeze_(0) # print('--0', target.shape) # target = F.crop(image, i, j, h, w) # ONLY FOR PYTORCH>=1.6.0 # print('--1', target.shape) # target.squeeze_(0) return images, target[..., i:i+h, j:j+w] class CenterCrop(object): def __init__(self, min_size, max_size): if not isinstance(min_size, (list, tuple)): min_size = (min_size,) self.min_size = min_size self.max_size = max_size # modified from torchvision to add support for max size def get_size(self, image_size): w, h = image_size size = random.choice(self.min_size) max_size = self.max_size if max_size is not None: min_original_size = float(min((w, h))) max_original_size = float(max((w, h))) if max_original_size / min_original_size * size > max_size: size = int(round(max_size * min_original_size / max_original_size)) if (w <= h and w == size) or (h <= w and h == size): return (h, w) if w < h: ow = size oh = int(size * h / w) else: oh = size ow = int(size * w / h) return (oh, ow) def __call__(self, images, target=None): if isinstance(images, list): image_size = images[0].size assert checkEqual1([X.size for X in images]), 'sizes of an image list should all equal!' sample_image = images[0] else: image_size = images.size sample_image = images crop_size = self.get_size(sample_image.size) # (h, w) assert image_size[0] > crop_size[1] # im_W > crop_W assert image_size[1] > crop_size[0] # im_H > crop_H # image = F.resize(image, size, interpolation=self.PIL_interpolation) if isinstance(images, list): images = [F.center_crop(X, crop_size) for X in images] else: images = F.center_crop(images, crop_size) if target is None: return images image_height = sample_image.size[1] image_width = sample_image.size[0] crop_top = int(round((image_height - crop_size[0]) / 2.)) crop_left = int(round((image_width - crop_size[1]) / 2.)) return images, target[..., crop_top:crop_top+crop_size[0], crop_left:crop_left+crop_size[1]] class Pad(object): def __init__(self, H_padto, W_padto): # if not isinstance(min_size, (list, tuple)): # min_size = (min_size,) self.H_padto = H_padto self.W_padto = W_padto def __call__(self, images, target=None): if
<filename>http_auth/passive_datapool.py # Data pool with passive reclaim # A part of the httpauth-lib derived from DOORMEN controller. # (c) 2018 National Institute of Advanced Industrial Science and Technology. import weakref import threading import collections import types import sys wr = weakref.ref wr_None = lambda: None # pseudo weak reference to None or an expired object c_true = lambda x: True __all__ = ('DataPool', 'PooledDataMixin', 'PooledDataBase') IN_POOL = [True] DEAD = [False] DEBUG = False class _Handle: __slots__ = ('watch_target', 'datapool', 'refback', 'finalizer') def __init__(self, watch_target, datapool, refback, finalizer): self.watch_target = watch_target self.datapool = datapool self.refback = refback self.finalizer = finalizer class _Rref(wr): __slots__ = ('o', '__weakref__') self_wr = None def __new__(klass, ref, o): def _cb(arg): self = self_wr() if self and self.o: o = self.o self.o = None DataPool._reclaim(o) self = weakref.ref.__new__(klass, ref, _cb) self_wr = weakref.ref(self) return self def __init__(self, ref, o): super().__init__(ref) self.o = o def __del__(self): if self.o: o = self.o self.o = None DataPool._reclaim_dead(o) def detach(self): # intentionally coincide name with weakref.finalize self.o = None _identity = lambda x: x _ignore = lambda x: None class DataPool: """A data pool which will reclaim unused data in a passive manner. One of more data can be put to pool, and leased out one-by-one using `get()`. Each leased data is internally associated to a referent object `ref`, provided as an argument to `get`. If the referent is discarded from memory, the data will be automatically recraimed and returned to the pool. The data can also be returned to pool by calling `DataPool.return_to_pool(data)`. The referent object `ref` must be alive during the data is used. Other methods in this class must not be called on the data when the corresponding referent is lost. It is OK to lose both ref and data at the same time, however. This class is useful when some resource is used with callbacks for some another library, and the usual `with` or `try-finally` pattern cannot be used to reclaim a resource in case of abnormal exits. Methods regarding managed data are static methods: these are called like `DataPool.method(data, ...)`. The leased data MUST NOT have a permanent strong reference to the referent: circular dependency will eliminate possibility of returning object to pool, and cause memory leaks (such garbage cannot be collected by cycle-detecting GC.) Having a weak reference is fine, or DataPool.get_referent(data) will serve as a replacement. Alternative approach (with a side effect) can be enabled with the `gc_recovery` hook parameter. See more description in the bottom of the source code for more details and possible workarounds. The pool is thread safe, and the leased data is also safe with background GC behavior. However, methods working on a leased data must not be called concurrently on a single data, otherwise the behavior is undefined. """ def __init__(self, *, factory=None, type=None, gc_recovery=None): """Create a data pool. Optional Parameters: `factory`: generator function for new data, used when the pool cannot serve request by existing data. `type`: limit pooled data to subtype of the given type. `gc_recovery`: hook for rescue from cyclic data condition. See documentation in the bottom of the source code for details. """ self._queue = collections.deque() self._lock = threading.Lock() self._factory = factory self._type = type self._gc_recovery = (_identity if gc_recovery == True else _ignore if gc_recovery == False else gc_recovery) self._reclaimed = [] # Public APIs def get(self, ref, pred=c_true, factory=None): """Retrieve one of stored data from pool. Parameters: `ref` (mandatory): the referent object to be tracked. It must be weak-referencible. If `ref` object vanishes, the retrieved data will automatically be returned to this pool. `pred` (optional): predicate function to choose data to be retrieved. `factory` (optional): function returning new data when existing data is not available. If it is not supplied for both `get()` and `DataPool()`, `get()` will return None. See `put()` for requirements on the data returned from factory. """ factory = factory or self._factory if len(self._reclaimed) > 0: while True: # intentionally racing with producer _reclaim_dead(): # Both list.append and list.pop are atomic. # Use of self._lock will cause deadlock inside GC. l = [] try: l.append(self._reclaimed.pop()) except IndexError: break for i in reversed(l): self._append_to_queue(i) with self._lock: d = None n = len(self._queue) for _ in range(n): d = self._queue.popleft() if pred(d): break self._queue.append(d) else: d = None if factory and not d: d = factory() if d: self._setup_lease(d, ref) if DEBUG: print("data {} leased from pool {}".format(d, self)) return d def put(self, data): """Store a new data to pool. If stored data have slots restriction, it must either inherit from `PooledDataBase` or have slots shown in `DataPool.required_slot_names`. """ if (self._type and not isinstance(data, self._type)): raise ValueError("Datapool accepts only {!s} but put {!s}". format(self._type, type(data))) self._check_cleanness(data) self._append_to_queue(data) if DEBUG: print("data {} put to pool {}".format(d, self)) def put_and_use(self, data, ref): """Register data to be used with the given pool. The data is already `leased out`: it can be used in the current context. It is mostly equivalent to put-get pair, but `put_and_use` ensures that the same data is always returned. The data has the same restriction as put. """ if (self._type and not isinstance(data, self._type)): raise ValueError("Datapool accepts only {} but put {}". format(self._type, type(data))) self._check_cleanness(data) self._setup_lease(data, ref) if DEBUG: print("data {} put_and_use for pool {}".format(data, self)) return data @staticmethod def replace_data(old, new): """Replace the data `old`, associated to some DataPool, with the `new` data. The old data must be retrieved from some pool. The data `new` will be returned to pool instead of `old` in future. It is almost equivalent to `remove_from_pool(old)` followed by `put_and_use(new, ...)`, but inheriting associated pool and referent object from `old`. """ handle, ref, pool = DataPool._check_alive_leased_data(old) # inhibit finalizer assert(ref) assert(handle.refback[0] is old) # holding ref alive is important! # BEGIN CRITICAL SECTION regarding to finalizer old.__handle = DEAD handle.refback[0] = new new.__handle = handle # END CRITICAL SECTION if not ref or not old: raise AssertionError(str(ref)+str(old)) # for doubly sure ref is not optimized out in any way in future return new @staticmethod def update_referent(d, ref): """Update referent object of d to ref. Both old and new referents must be alive at this moment. """ handle, old_ref, pool = DataPool._check_alive_leased_data(d) # inhibit old finalizer assert(old_ref) assert(ref) assert(handle.watch_target() == old_ref) handle.finalizer.detach() pool._setup_lease(d, ref, forced=True) DataPool._clear_handle_content(handle, finalizer_detach=False) @staticmethod def return_to_pool(d): """Return the data `d` immediately to the associated DataPool. """ handle, ref, pool = DataPool._check_alive_leased_data(d) # inhibit finalizer if DEBUG: print("data {} returned to pool {}".format(d, pool)) DataPool._clear_handle_content(handle) d.__handle = IN_POOL if pool: pool._append_to_queue(d) finished = return_to_pool @staticmethod def remove_from_pool(d): """Declare `d` should not be returned to pool. the data d must not be returned to pool already.""" handle, ref, pool = DataPool._check_alive_leased_data(d) # inhibit finalizer DataPool._clear_handle_content(handle) d.__handle = DEAD kill = remove_from_pool @staticmethod def get_referent(d): """Get a (strong) referece to the referent object currently associated to the argument. """ handle, ref, pool = DataPool._check_alive_leased_data(d) return ref # debug method def __len__(self): return len(self._queue) + len(self._reclaimed) def __bool__(self): return True def _dump(self): l = [*iter(self._queue), *iter(self._reclaimed)] return("DataPool({!r})".format(l)) def _debug_peeklist(self): l = [*iter(self._queue), *iter(self._reclaimed)] return l # internal methods @staticmethod def _reclaim(refback): # called either from finalizer or as weakref callback if sys.is_finalizing(): # meaningless to return objects to pools upon exit return d = refback[0] if not d: return handle = d.__handle if type(handle) is not _Handle: return assert(d.__handle.watch_target() == None) pool = handle.datapool() DataPool._clear_handle_content(handle, finalizer_detach=False) d.__handle = IN_POOL if pool: pool._append_to_queue(d) @staticmethod def _reclaim_dead(refback): # be careful: data is dead and we're in GC! if sys.is_finalizing(): return d = refback[0] if not d: return handle = d.__handle if type(handle) is not _Handle: return #assert(d.__handle.watch_target() == None) # d is dead: if watch_target is live, it have lost a reference to d. # It means that d is safe to be returned to pool. pool = handle.datapool() DataPool._clear_handle_content(handle, finalizer_detach=False) d.__handle = IN_POOL if not pool: return if pool._gc_recovery: new_d = pool._gc_recovery(d) if new_d: pool._check_cleanness(new_d, in_pool_ok=True)
# -*- coding: utf-8 -*- """ """ import logging import pkg_resources import time from mingus.containers import Note, NoteContainer, Bar, Track from mingus.midi.fluidsynth import FluidSynthSequencer from mingus.midi import pyfluidsynth as globalfs from typing import Union from pathlib import Path from .keyboard import PianoKeyboard, PianoKey from .utils import ( note_to_string, note_container_to_note_string_list, bar_to_note_string_list, track_to_note_string_list, ) DEFAULT_SOUND_FONTS = Path(pkg_resources.resource_filename("pypiano", "/sound_fonts/FluidR3_GM.sf2")) # Valid audio driver are taken from docstring of mingus.midi.fluidsynth.FluidSynthSequencer.start_audio_output() method # https://github.com/bspaans/python-mingus/blob/f131620eb7353bcfbf1303b24b951a95cad2ac20/mingus/midi/fluidsynth.py#L57 VALID_AUDIO_DRIVERS = ( None, "alsa", "oss", "jack", "portaudio", "sndmgr", "coreaudio", "Direct Sound", "dsound", "pulseaudio", ) # See a list of General Midi instruments here https://en.wikipedia.org/wiki/General_MIDI. Pianos are in section one DEFAULT_INSTRUMENTS = { "Acoustic Grand Piano": 0, "Bright Acoustic Piano": 1, "Electric Grand Piano": 2, "Honky-tonk Piano": 3, "Electric Piano 1": 4, "Electric Piano 2": 5, "Harpsichord": 6, "Clavi": 7, } # Initialize module logger logger = logging.getLogger("pypiano") logger.addHandler(logging.NullHandler()) class Piano(object): """Class representing a Piano with 88 keys based on mingus Class to programmatically play piano via audio output or record music to a wav file. Abstraction layer on top of mingus.midi.fluidsynth.FluidSynthSequencer. Attributes sound_fonts_path: Optional string or Path object pointing to a *.sf2 files. PyPiano ships sound fonts by default audio_driver: Optional argument specifying audio driver to use. Following audio drivers could be used: (None, "alsa", "oss", "jack", "portaudio", "sndmgr", "coreaudio","Direct Sound", "dsound", "pulseaudio"). Not all drivers will be available for every platform instrument: Optional argument to set the instrument that should be used. If default sound fonts are used you can choose one of the following pianos sounds: ("Acoustic Grand Piano", "Bright Acoustic Piano", "Electric Grand Piano", "Honky-tonk Piano", "Electric Piano 1", "Electric Piano 2", "Harpsichord", "Clavi"). If different sound fonts are provided you should also pass an integer with the instrument number """ def __init__( self, sound_fonts_path: Union[str, Path] = DEFAULT_SOUND_FONTS, audio_driver: Union[str, None] = None, instrument: Union[str, int] = "Acoustic Grand Piano", ) -> None: self.__fluid_synth_sequencer = FluidSynthSequencer() self._sound_fonts_path = Path(sound_fonts_path) # Set variable to track if sound fonts are loaded self._sound_fonts_loaded = False self.load_sound_fonts(self._sound_fonts_path) # Audio output is lazily loaded when self.play method is called the first time without recording self._current_audio_driver = audio_driver # Set a variable to track if audio output is currently active self._audio_driver_is_active = False # Set instrument self.instrument = instrument self.load_instrument(self.instrument) # Initialize a piano keyboard self.keyboard = PianoKeyboard() def load_sound_fonts(self, sound_fonts_path: Union[str, Path]) -> None: """Load sound fonts from a given path""" logger.debug("Attempting to load sound fonts from {file}".format(file=sound_fonts_path)) if self._sound_fonts_loaded: self._unload_sound_fonts() if not self.__fluid_synth_sequencer.load_sound_font(str(sound_fonts_path)): raise Exception("Could not load sound fonts from {file}".format(file=sound_fonts_path)) self._sound_fonts_loaded = True self._sound_fonts_path = Path(sound_fonts_path) logger.debug("Successfully initialized sound fonts from {file_path}".format(file_path=sound_fonts_path)) def _unload_sound_fonts(self) -> None: """Unload a given sound font file Safely unload current sound font file. Method controls if a sound font file is already loaded via self._sound_fonts_loaded. """ logger.debug("Unloading current active sound fonts from file: {0}".format(self._sound_fonts_path)) if self._sound_fonts_loaded: self.__fluid_synth_sequencer.fs.sfunload(self.__fluid_synth_sequencer.sfid) self._sound_fonts_loaded = False self._sound_fonts_path = None else: logger.debug("No active sound fonts") def _start_audio_output(self) -> None: """Private method to start audio output This method in conjunction with self._stop_audio_output should be used to safely start and stop audio output, for example when there is switch between audio output and recording audio to a file (check doc string of self._stop_audio_output for more details why this necessary). This method replaces mingus.midi.fluidsynth.FluidSynthSequencer """ logger.debug("Starting audio output using driver: {driver}".format(driver=self._current_audio_driver)) # That is actually already done by the low level method and is included here again for transparency if self._current_audio_driver not in VALID_AUDIO_DRIVERS: raise ValueError( "{driver} is not a valid audio driver. Must be one of: {allowed_drivers}".format( driver=self._current_audio_driver, allowed_drivers=VALID_AUDIO_DRIVERS, ) ) if not self._audio_driver_is_active: self.__fluid_synth_sequencer.start_audio_output(self._current_audio_driver) # It seems to be necessary to reset the program after starting audio output # mingus.midi.pyfluidsynth.program_reset() is calling fluidsynth fluid_synth_program_reset() # https://www.fluidsynth.org/api/group__midi__messages.html#ga8a0e442b5013876affc685b88a6e3f49 self.__fluid_synth_sequencer.fs.program_reset() self._audio_driver_is_active = True else: logger.debug("Audio output seems to be already active") def _stop_audio_output(self) -> None: """Private method to stop audio output Method is used to safely stop audio output via deleting an active audio driver, for example if there is a switch between audio output and recording. This method should be used in conjunction with self._start_audio_output(). It is a thin wrapper around the mingus.midi.pyfluidsynth.delete_fluid_audio_driver and ensures that mingus.midi.pyfluidsynth.delete_fluid_audio_driver is not called twice because this seems to result in segmentation fault: [1] 4059 segmentation fault python3 Tracking is done via checking and setting self._audio_driver_is_active attribute. This method basically replaces mingus.midi.pyfluidsynth.delete() (which is also basically a wrapper for mingus.midi.pyfluidsynth.delete_fluid_audio_driver), because the delete method from the mingus package seems not safe to use and results in a crash if for some reason is called after an audio driver was already deleted and there isn't currently an active one. Despite the mingus.midi.pyfluidsynth.delete method seems to attempt to check if an audio driver is present and tries to avoid such a scenario via checking mingus.midi.pyfluidsynth.audio_driver argument for None. However once an audio driver was initialized the audio_driver argument seems to be never set back to None and therefore it seems you can't rely on checking that argument to know if an audio is active. I am not sure if it is a good way to do it that way and if it has any side effects, but it seems to work so far and enables switching between recording to a file and playing audio output without initializing a new object. """ if self._audio_driver_is_active: globalfs.delete_fluid_audio_driver(self.__fluid_synth_sequencer.fs.audio_driver) # It seems to be necessary to reset the program after starting audio output # mingus.midi.pyfluidsynth.program_reset() is calling fluidsynth fluid_synth_program_reset() # https://www.fluidsynth.org/api/group__midi__messages.html#ga8a0e442b5013876affc685b88a6e3f49 self.__fluid_synth_sequencer.fs.program_reset() self._audio_driver_is_active = False else: logger.debug("Audio output seems to be already inactive") def load_instrument(self, instrument: Union[str, int]) -> None: """Method to change the piano instrument Load an instrument that should be used for playing or recording music. If PyPiano default sound fonts are used you can choose one of the following instruments: ("Acoustic Grand Piano", "Bright Acoustic Piano", "Electric Grand Piano", "Honky-tonk Piano", "Electric Piano 1", "Electric Piano 2", "Harpsichord", "Clavi") Args instrument: String with the name of the instrument to be used for default sound founts. If different sound fonts are used an integer with the instrument number should be provided. """ logger.info("Setting instrument: {0}".format(instrument)) # If default sound fonts are used, check if the provided instrument string is contained in the valid # instruments. If different sound fonts are provided, checks are disabled if self._sound_fonts_path == DEFAULT_SOUND_FONTS: if isinstance(instrument, int): raise TypeError("When using default sound fonts you must pass a string for instrument parameter") if instrument not in tuple(DEFAULT_INSTRUMENTS.keys()): raise ValueError( "Unknown instrument parameter. Instrument must be one of: {instrument}".format( instrument=tuple(DEFAULT_INSTRUMENTS.keys()) ) ) self.__fluid_synth_sequencer.set_instrument(channel=1, instr=DEFAULT_INSTRUMENTS[instrument], bank=0) self.instrument = instrument else: if isinstance(instrument, str): raise TypeError("When using non default sound fonts you must pass an integer for instrument parameter") self.__fluid_synth_sequencer.set_instrument(channel=1, instr=instrument, bank=0) self.instrument = instrument def play( self, music_container: Union[str, int, Note, NoteContainer, Bar, Track, PianoKey], recording_file: Union[str, None] = None, record_seconds: int = 4, ) -> None: """Function to play a provided music container and control recording settings Central user facing method of Piano class to play or record a given music container. Handles setting up audio output or recording to audio file and handles switching between playing audio and recording to wav file. Args music_container: A music container such as Notes, NoteContainers, etc. describing a piece of music recording_file: Path to a wav file where audio should be saved to. If passed music_container will be recorded record_seconds: The duration of recording in seconds """ # Check a given music container for invalid notes. See docstring of self._lint_music_container for more details self._lint_music_container(music_container) if recording_file is None: logger.info("Playing music container: {music_container} via audio".format(music_container=music_container)) self._start_audio_output() self._play_music_container(music_container) else: logger.info( "Recording music container: {music_container} to file {recording_file}".format( music_container=music_container, recording_file=recording_file ) ) self._stop_audio_output() self.__fluid_synth_sequencer.start_recording(recording_file) self._play_music_container(music_container) WAV_SAMPLE_FREQUENCY = 44100 samples = globalfs.raw_audio_string( self.__fluid_synth_sequencer.fs.get_samples(int(record_seconds * WAV_SAMPLE_FREQUENCY)) ) self.__fluid_synth_sequencer.wav.writeframes(bytes(samples)) self.__fluid_synth_sequencer.wav.close() # It seems we have to delete the wav attribute after recording in order to enable switching between # audio output and recording for all music containers. The # mingus.midi.fluidsynth.FluidSynthSequencer.play_Bar and # mingus.midi.fluidsynth.FluidSynthSequencer.play_Track use the # mingus.midi.fluidsynth.FluidSynthSequencer.sleep methods internally which is for some reason also
# Copyright 2020 The TensorFlow Ranking Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Defines ranking losses as TF ops. The losses here are used to learn TF ranking models. It works with listwise Tensors only. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow_ranking.python import losses_impl from tensorflow_ranking.python import utils class RankingLossKey(object): """Ranking loss key strings.""" # Names for the ranking based loss functions. PAIRWISE_HINGE_LOSS = 'pairwise_hinge_loss' PAIRWISE_LOGISTIC_LOSS = 'pairwise_logistic_loss' PAIRWISE_SOFT_ZERO_ONE_LOSS = 'pairwise_soft_zero_one_loss' SOFTMAX_LOSS = 'softmax_loss' SIGMOID_CROSS_ENTROPY_LOSS = 'sigmoid_cross_entropy_loss' MEAN_SQUARED_LOSS = 'mean_squared_loss' LIST_MLE_LOSS = 'list_mle_loss' APPROX_NDCG_LOSS = 'approx_ndcg_loss' APPROX_MRR_LOSS = 'approx_mrr_loss' GUMBEL_APPROX_NDCG_LOSS = 'gumbel_approx_ndcg_loss' NEURAL_SORT_CROSS_ENTROPY_LOSS = 'neural_sort_cross_entropy_loss' GUMBEL_NEURAL_SORT_CROSS_ENTROPY_LOSS = 'gumbel_neural_sort_cross_entropy_loss' def make_loss_fn(loss_keys, loss_weights=None, weights_feature_name=None, lambda_weight=None, reduction=tf.compat.v1.losses.Reduction.SUM_BY_NONZERO_WEIGHTS, name=None, extra_args=None): """Makes a loss function using a single loss or multiple losses. Args: loss_keys: A string or list of strings representing loss keys defined in `RankingLossKey`. Listed loss functions will be combined in a weighted manner, with weights specified by `loss_weights`. If `loss_weights` is None, default weight of 1 will be used. loss_weights: List of weights, same length as `loss_keys`. Used when merging losses to calculate the weighted sum of losses. If `None`, all losses are weighted equally with weight being 1. weights_feature_name: A string specifying the name of the weights feature in `features` dict. lambda_weight: A `_LambdaWeight` object created by factory methods like `create_ndcg_lambda_weight()`. reduction: One of `tf.losses.Reduction` except `NONE`. Describes how to reduce training loss over batch. name: A string used as the name for this loss. extra_args: A string-keyed dictionary that contains any other loss-specific arguments. Returns: A function _loss_fn(). See `_loss_fn()` for its signature. Raises: ValueError: If `reduction` is invalid. ValueError: If `loss_keys` is None or empty. ValueError: If `loss_keys` and `loss_weights` have different sizes. """ if (reduction not in tf.compat.v1.losses.Reduction.all() or reduction == tf.compat.v1.losses.Reduction.NONE): raise ValueError('Invalid reduction: {}'.format(reduction)) if not loss_keys: raise ValueError('loss_keys cannot be None or empty.') if not isinstance(loss_keys, list): loss_keys = [loss_keys] if loss_weights: if len(loss_keys) != len(loss_weights): raise ValueError('loss_keys and loss_weights must have the same size.') def _loss_fn(labels, logits, features): """Computes a single loss or weighted combination of losses. Args: labels: A `Tensor` of the same shape as `logits` representing relevance. logits: A `Tensor` with shape [batch_size, list_size]. Each value is the ranking score of the corresponding item. features: Dict of Tensors of shape [batch_size, list_size, ...] for per-example features and shape [batch_size, ...] for non-example context features. Returns: An op for a single loss or weighted combination of multiple losses. Raises: ValueError: If `loss_keys` is invalid. """ weights = None if weights_feature_name: weights = tf.convert_to_tensor(value=features[weights_feature_name]) # Convert weights to a 2-D Tensor. weights = utils.reshape_to_2d(weights) gbl_labels, gbl_logits, gbl_weights = losses_impl.gumbel_softmax_sample( labels, logits, weights) loss_kwargs = { 'labels': labels, 'logits': logits, 'weights': weights, 'reduction': reduction, 'name': name, } gbl_loss_kwargs = { 'labels': gbl_labels, 'logits': gbl_logits, 'weights': gbl_weights, 'reduction': reduction, 'name': name, } if extra_args is not None: loss_kwargs.update(extra_args) gbl_loss_kwargs.update(extra_args) loss_kwargs_with_lambda_weight = loss_kwargs.copy() loss_kwargs_with_lambda_weight['lambda_weight'] = lambda_weight key_to_fn = { RankingLossKey.PAIRWISE_HINGE_LOSS: (_pairwise_hinge_loss, loss_kwargs_with_lambda_weight), RankingLossKey.PAIRWISE_LOGISTIC_LOSS: (_pairwise_logistic_loss, loss_kwargs_with_lambda_weight), RankingLossKey.PAIRWISE_SOFT_ZERO_ONE_LOSS: (_pairwise_soft_zero_one_loss, loss_kwargs_with_lambda_weight), RankingLossKey.SOFTMAX_LOSS: (_softmax_loss, loss_kwargs_with_lambda_weight), RankingLossKey.SIGMOID_CROSS_ENTROPY_LOSS: (_sigmoid_cross_entropy_loss, loss_kwargs), RankingLossKey.MEAN_SQUARED_LOSS: (_mean_squared_loss, loss_kwargs), RankingLossKey.LIST_MLE_LOSS: (_list_mle_loss, loss_kwargs_with_lambda_weight), RankingLossKey.APPROX_NDCG_LOSS: (_approx_ndcg_loss, loss_kwargs), RankingLossKey.APPROX_MRR_LOSS: (_approx_mrr_loss, loss_kwargs), RankingLossKey.GUMBEL_APPROX_NDCG_LOSS: (_approx_ndcg_loss, gbl_loss_kwargs), RankingLossKey.NEURAL_SORT_CROSS_ENTROPY_LOSS: (_neural_sort_cross_entropy_loss, loss_kwargs), RankingLossKey.GUMBEL_NEURAL_SORT_CROSS_ENTROPY_LOSS: (_neural_sort_cross_entropy_loss, gbl_loss_kwargs), } # Obtain the list of loss ops. loss_ops = [] for loss_key in loss_keys: if loss_key not in key_to_fn: raise ValueError('Invalid loss_key: {}.'.format(loss_key)) loss_fn, kwargs = key_to_fn[loss_key] loss_ops.append(loss_fn(**kwargs)) # Compute weighted combination of losses. if loss_weights: weighted_losses = [] for loss_op, loss_weight in zip(loss_ops, loss_weights): weighted_losses.append(tf.multiply(loss_op, loss_weight)) else: weighted_losses = loss_ops return tf.add_n(weighted_losses) return _loss_fn def make_loss_metric_fn(loss_key, weights_feature_name=None, lambda_weight=None, name=None): """Factory method to create a metric based on a loss. Args: loss_key: A key in `RankingLossKey`. weights_feature_name: A `string` specifying the name of the weights feature in `features` dict. lambda_weight: A `_LambdaWeight` object. name: A `string` used as the name for this metric. Returns: A metric fn with the following Args: * `labels`: A `Tensor` of the same shape as `predictions` representing graded relevance. * `predictions`: A `Tensor` with shape [batch_size, list_size]. Each value is the ranking score of the corresponding example. * `features`: A dict of `Tensor`s that contains all features. """ metric_dict = { RankingLossKey.PAIRWISE_HINGE_LOSS: losses_impl.PairwiseHingeLoss(name, lambda_weight=lambda_weight), RankingLossKey.PAIRWISE_LOGISTIC_LOSS: losses_impl.PairwiseLogisticLoss(name, lambda_weight=lambda_weight), RankingLossKey.PAIRWISE_SOFT_ZERO_ONE_LOSS: losses_impl.PairwiseSoftZeroOneLoss( name, lambda_weight=lambda_weight), RankingLossKey.SOFTMAX_LOSS: losses_impl.SoftmaxLoss(name, lambda_weight=lambda_weight), RankingLossKey.SIGMOID_CROSS_ENTROPY_LOSS: losses_impl.SigmoidCrossEntropyLoss(name), RankingLossKey.MEAN_SQUARED_LOSS: losses_impl.MeanSquaredLoss(name), RankingLossKey.LIST_MLE_LOSS: losses_impl.ListMLELoss(name, lambda_weight=lambda_weight), RankingLossKey.APPROX_NDCG_LOSS: losses_impl.ApproxNDCGLoss(name), RankingLossKey.APPROX_MRR_LOSS: losses_impl.ApproxMRRLoss(name), RankingLossKey.GUMBEL_APPROX_NDCG_LOSS: losses_impl.ApproxNDCGLoss(name), RankingLossKey.NEURAL_SORT_CROSS_ENTROPY_LOSS: losses_impl.NeuralSortCrossEntropyLoss(name), RankingLossKey.GUMBEL_NEURAL_SORT_CROSS_ENTROPY_LOSS: losses_impl.NeuralSortCrossEntropyLoss(name), } def _get_weights(features): """Get weights tensor from features and reshape it to 2-D if necessary.""" weights = None if weights_feature_name: weights = tf.convert_to_tensor(value=features[weights_feature_name]) # Convert weights to a 2-D Tensor. weights = utils.reshape_to_2d(weights) return weights def metric_fn(labels, predictions, features): """Defines the metric fn.""" weights = _get_weights(features) loss = metric_dict.get(loss_key, None) if loss is None: raise ValueError('loss_key {} not supported.'.format(loss_key)) return loss.eval_metric(labels, predictions, weights) return metric_fn def create_ndcg_lambda_weight(topn=None, smooth_fraction=0.): """Creates _LambdaWeight for NDCG metric.""" return losses_impl.DCGLambdaWeight( topn, gain_fn=lambda labels: tf.pow(2.0, labels) - 1., rank_discount_fn=lambda rank: 1. / tf.math.log1p(rank), normalized=True, smooth_fraction=smooth_fraction) def create_reciprocal_rank_lambda_weight(topn=None, smooth_fraction=0.): """Creates _LambdaWeight for MRR-like metric.""" return losses_impl.DCGLambdaWeight( topn, gain_fn=lambda labels: labels, rank_discount_fn=lambda rank: 1. / rank, normalized=True, smooth_fraction=smooth_fraction) def create_p_list_mle_lambda_weight(list_size): """Creates _LambdaWeight based on Position-Aware ListMLE paper. Produces a weight based on the formulation presented in the "Position-Aware ListMLE" paper (Lan et al.) and available using create_p_list_mle_lambda_weight() factory function above. Args: list_size: Size of the input list. Returns: A _LambdaWeight for Position-Aware ListMLE. """ return losses_impl.ListMLELambdaWeight( rank_discount_fn=lambda rank: tf.pow(2., list_size - rank) - 1.) def _pairwise_hinge_loss( labels, logits, weights=None, lambda_weight=None, reduction=tf.compat.v1.losses.Reduction.SUM_BY_NONZERO_WEIGHTS, name=None): """Computes the pairwise hinge loss for a list. The hinge loss is defined as Hinge(l_i > l_j) = max(0, 1 - (s_i - s_j)). So a correctly ordered pair has 0 loss if (s_i - s_j >= 1). Otherwise the loss increases linearly with s_i - s_j. When the list_size is 2, this reduces to the standard hinge loss. Args: labels: A `Tensor` of the same shape as `logits` representing graded relevance. logits: A `Tensor` with shape [batch_size, list_size]. Each value is the ranking score of the corresponding item. weights: A scalar, a `Tensor` with shape [batch_size, 1] for list-wise weights, or a `Tensor` with shape [batch_size, list_size] for item-wise weights. lambda_weight: A `_LambdaWeight` object. reduction: One of `tf.losses.Reduction` except `NONE`. Describes how to reduce training loss over batch. name: A string used as the name for this loss. Returns: An op for the pairwise hinge loss. """ loss = losses_impl.PairwiseHingeLoss(name, lambda_weight) with tf.compat.v1.name_scope(loss.name, 'pairwise_hinge_loss', (labels, logits, weights)): return loss.compute(labels, logits, weights, reduction) def _pairwise_logistic_loss( labels, logits, weights=None, lambda_weight=None, reduction=tf.compat.v1.losses.Reduction.SUM_BY_NONZERO_WEIGHTS, name=None): """Computes the pairwise logistic loss for a list. The preference probability of each pair is computed as the sigmoid function: P(l_i > l_j) = 1 / (1 + exp(s_j - s_i)) and the logistic loss is log(P(l_i > l_j)) if l_i > l_j and 0 otherwise. Args: labels: A `Tensor` of the same shape as `logits` representing graded relevance. logits: A `Tensor` with shape [batch_size, list_size]. Each value is the ranking score of the corresponding item. weights: A scalar, a `Tensor` with shape [batch_size, 1] for list-wise weights, or a `Tensor` with shape [batch_size, list_size] for item-wise weights. lambda_weight: A `_LambdaWeight` object. reduction: One of `tf.losses.Reduction` except `NONE`. Describes how to reduce training loss over batch. name: A string used as the name for this loss. Returns: An op for the pairwise logistic loss. """ loss = losses_impl.PairwiseLogisticLoss(name, lambda_weight) with tf.compat.v1.name_scope(loss.name, 'pairwise_logistic_loss', (labels, logits, weights)): return loss.compute(labels, logits, weights, reduction) def _pairwise_soft_zero_one_loss( labels, logits, weights=None, lambda_weight=None, reduction=tf.compat.v1.losses.Reduction.SUM_BY_NONZERO_WEIGHTS, name=None): """Computes the pairwise soft zero-one loss. Note this is different from sigmoid cross entropy in that soft
<gh_stars>0 # SPDX-License-Identifier: BSD-3-Clause # Copyright Contributors to the OpenColorIO Project. class Config: """ Config """ def __init__(self): pass def CreateFromEnv(self): """ CreateFromEnv() Create a :py:class:`PyOpenColorIO.Config` object using the environment variable. :returns: Config object """ pass def CreateFromFile(self, filename): """ CreateFromFile(filename) Create a :py:class:`PyOpenColorIO.Config` object using the information in a file. :param filename: name of file :type filename: string :return: Config object """ pass def CreateFromStream(self, istream): pass def isEditable(self): """ isEditable() Returns whether Config is editable. The configurations returned from :py:func:`PyOpenColorIO.GetCurrentConfig` are not editable, and if you want to edit them you can use :py:meth:`PyOpenColorIO.Config.createEditableCopy`. If you attempt to call any of the set functions on a noneditable Config, an exception will be thrown. :return: state of :py:class:`PyOpenColorIO.Config`'s editability :rtype: bool """ pass def createEditableCopy(self): """ createEditableCopy() Returns an editable copy of :py:class:`PyOpenColorIO.Config`. :return: editable copy of :py:class:`PyOpenColorIO.Config` :rtype: Config object """ pass def sanityCheck(self): """ sanityCheck() This will throw an exception if :py:class:`PyOpenColorIO.Config` is malformed. The most common error occurs when references are made to colorspaces that do not exist. """ pass def getDescription(self): """ getDescription() Returns the stored description of :py:class:`PyOpenColorIO.Config`. :return: stored description of :py:class:`PyOpenColorIO.Config` :rtype: string """ pass def setDescription(self, desc): """ setDescription(desc) Sets the description of :py:class:`PyOpenColorIO.Config`. :param desc: description of :py:class:`PyOpenColorIO.Config` :type desc: string """ pass def serialize(self): """ serialize() Returns the string representation of :py:class:`PyOpenColorIO.Config` in YAML text form. This is typically stored on disk in a file with the .ocio extension. :return: :py:class:`PyOpenColorIO.Config` in YAML text form :rtype: string """ pass def getCacheID(self, pycontext=None): """ getCacheID([, pycontext]) This will produce a hash of the all colorspace definitions, etc. All external references, such as files used in FileTransforms, etc., will be incorporated into the cacheID. While the contents of the files are not read, the file system is queried for relevant information (mtime, inode) so that the :py:class:`PyOpenColorIO.Config`'s cacheID will change when the underlying LUTs are updated. If a context is not provided, the current Context will be used. If a null context is provided, file references will not be taken into account (this is essentially a hash of :py:meth:`PyOpenColorIO.Config.serialize`). :param pycontext: optional :type pycontext: object :return: hash of :py:class:`PyOpenColorIO.Config` :rtype: string """ pass def getCurrentContext(self): """ getCurrentContext() Return the current context, which is essentially a record of all the environment variables that are available for use in file path lookups. :return: context :rtype: pycontext """ pass def addEnvironmentVar(self, name, defaultValue): """ """ pass def getNumEnvironmentVars(self): """ """ pass def getEnvironmentVarNameByIndex(self, index): """ """ pass def getEnvironmentVarDefault(self, name): """ """ pass def getEnvironmentVarDefaults(self): """ """ pass def clearEnvironmentVars(self): """ """ pass def getSearchPath(self): """ getSearchPath() Returns the search path as a concatenated string (see getSearchPathByIndex for a more platform agnostic function). :return: search path :rtype: string """ pass def setSearchPath(self, searchpath): """ setSearchPath(path) Sets the search path as a concatenated string (see addSearchPath for a more platform agnostic function). :param path: the search path :type path: string """ pass def getNumSearchPaths(self): """ getNumSearchPaths() Return the number of search paths. :return: the number of search paths :rtype: int """ pass def getSearchPathByIndex(self, index): """ getSearchPathByIndex(index) Return one of the search paths. :param index: the index of the search path :type index: int :return: the search path at index :rtype: string """ pass def clearSearchPaths(self): """ clearSearchPaths() Clear the search path list. """ pass def addSearchPath(self, path): """ addSearchPath(path) Add a search path to the end of the list. :param path: the search path to add :type path: string """ pass def getWorkingDir(self): """ getWorkingDir() Returns the working directory. :return: the working directory :rtype path: string """ pass def setWorkingDir(self, dirname): """ setWorkingDir(path) Sets the working directory. :param path: the working directory :type path: string """ pass def getNumColorSpaces(self): pass def getColorSpaceNameByIndex(self, index): pass def getColorSpaces(self): """ getColorSpaces() Returns all the ColorSpaces defined in :py:class:`PyOpenColorIO.Config`. :return: ColorSpaces in :py:class:`PyOpenColorIO.Config` :rtype: tuple """ pass def getColorSpace(self, name): """ getColorSpace(name) Returns the data for the specified color space in :py:class:`PyOpenColorIO.Config`. This will return null if the specified name is not found. :param name: name of color space :type name: string :return: data for specified color space :rtype: pyColorSpace object """ pass def getIndexForColorSpace(self, name): pass def addColorSpace(self, colorSpace): """ addColorSpace(pyColorSpace) Add a specified color space to :py:class:`PyOpenColorIO.Config`. :param pyColorSpace: color space :type pyColorSpace: object .. note:: If another color space is already registered with the same name, this will overwrite it. """ pass def clearColorSpaces(self): """ clearColorSpaces() Clear the color spaces in :py:class:`PyOpenColorIO.Config`. """ pass def parseColorSpaceFromString(self, str): """ parseColorSpaceFromString(str) Parses out the color space from a string. Given the specified string, gets the longest, right-most color space substring. * If strict parsing is enabled, and no color space is found, return an empty string. * If strict parsing is disabled, return the default role, if defined. * If the default role is not defined, return an empty string. :param str: ColorSpace data :type str: string :return: parsed data :rtype: string """ pass def isStrictParsingEnabled(self): pass def setStrictParsingEnabled(self, enable): pass def setRole(self, role, csname): """ setRole(role, csname) Set a role's ColorSpace. Setting the colorSpaceName name to a null string unsets it. :param role: role whose ColorSpace will be set :type role: string :param csname: name of ColorSpace :type csname: string """ pass def getNumRoles(self): pass def hasRole(self, role): pass def getRoleName(self, index): pass def getDefaultDisplay(self): """ getDefaultDisplay() Returns the default display set in :py:class:`PyOpenColorIO.Config`. :return: default display :rtype: string """ pass def getNumDisplays(self): pass def getDisplay(self, index): pass def getDisplays(self): """ getDisplays() Returns all the displays defined in :py:class:`PyOpenColorIO.Config`. :return: displays in :py:class:`PyOpenColorIO.Config` :rtype: list of strings """ pass def getDefaultView(self, display): """ getDefaultView(display) Returns the default view of :py:class:`PyOpenColorIO.Config`. :param display: default view :type display: string :return: view :rtype: string """ pass def getNumViews(self, display): pass def getView(self, display, index): pass def getViews(self, display): """ getViews(display) Returns all the views defined in :py:class:`PyOpenColorIO.Config`. :param display: views in :py:class:`PyOpenColorIO.Config` :type display: string :return: views in :py:class:`PyOpenColorIO.Config`. :rtype: list of strings """ pass def getDisplayColorSpaceName(self, display, view): """ getDisplayColorSpaceName(display, view) Returns the ColorSpace name corresponding to the display and view combination in :py:class:`PyOpenColorIO.Config`. :param display: display :type display: string :param view: view :type view: string :return: display color space name :rtype: string """ pass def getDisplayLooks(self, display, view): """ getDisplayLooks(display, view) Returns the looks corresponding to the display and view combination in :py:class:`PyOpenColorIO.Config`. :param display: display :type display: string :param view: view :type view: string :return: looks :rtype: string """ pass def addDisplay(self, display, view, csname, looks=None): """ addDisplay(display, view, colorSpaceName[, looks]) NEEDS WORK :param display: :type display: string :param view: :type view: string :param colorSpaceName: :type colorSpaceName: string :param looks: optional :type looks: string """ pass def clearDisplays(self): """ clearDisplays() """ pass def setActiveDisplays(self, displays): """ setActiveDisplays(displays) Sets the active displays in :py:class:`PyOpenColorIO.Config`. :param displays: active displays :type displays: string """ pass def getActiveDisplays(self): """ getActiveDisplays() Returns the active displays in :py:class:`PyOpenColorIO.Config`. :return: active displays :rtype: string """ pass def setActiveViews(self, views): """ setActiveViews(views) Sets the active views in :py:class:`PyOpenColorIO.Config`. :param views: active views :type views: string """ pass def getActiveViews(self): """ getActiveViews() Returns the active views in :py:class:`PyOpenColorIO.Config`. :return: active views :rtype: string """ pass def getDefaultLumaCoefs(self): """ getDefaultLumaCoefs() Returns the default luma coefficients in
= enemy_formation enemy = enemies_not_dead_already[0] if len(enemies_not_dead_already) > 0 else None blinding_stun_chance, disorienting_stun_chance, plague_poison_dmg = None, None, None if 'blinding_gas' in hero.skills: blinding_stun_level = hero.skills['blinding_gas'] blinding_stun_chance = AttackSkills['blinding_gas'][2][blinding_stun_level] if 'disorienting_blast' in hero.skills: disorienting_stun_level = hero.skills['disorienting_blast'] disorienting_stun_chance = AttackSkills['disorienting_blast'][2][disorienting_stun_level] if 'plague_grenade' in hero.skills: plague_skill_level = hero.skills['plague_grenade'] plague_poison_dmg = AttackSkills['plague_grenade'][2][plague_skill_level] # use battlefield medicine to heal target in danger of dying or with large blight/bleed if 'battlefield_medicine' in hero.skills and (hero.rank == 3 or hero.rank == 4): target = next((ally for ally in party if ally.currentHp == 0 and ally.effectiveHp < 0), None) if target is None: target = next((ally for ally in party if ally.percentHp <= 30 and ally.damageOnNextTurn > 0), None) if target is None: target = next((ally for ally in party if ally.damageOverTime >= 20), None) if target is not None: attack = 'battlefield_medicine' # stall if only one weak enemy left and need to heal or stress heal if (len(enemies_not_dead_already) == 0 or (len(enemies_not_dead_already) == 1 and (stall or (enemy.canBeKilledIn1Hit and any(ally is not hero and not ally.already_moved and not ally.stunned and (((ally.rank == 1 or ally.rank == 2) and (ally.heroClass in FrontLineClasses)) or (ally.heroClass not in BackLineClasses and ally.rank != 4)) for ally in party))) and current_round < 8)) \ and ((any(ally.percentHp < 80 for ally in party) and any(ally.healer for ally in party)) or (any(ally.stress > 0 for ally in party) and any(ally.stressHealer for ally in party))): if enemy is not None and not enemy.stunned and 'disorienting_blast' in hero.skills \ and hero.rank in AttackSkills['disorienting_blast'][0] \ and disorienting_stun_chance - enemy.stunResist >= 50 \ and any(rank in AttackSkills['disorienting_blast'][1] for rank in enemy.rank): attack = 'disorienting_blast' target = enemy elif enemy is not None and not enemy.stunned and 'blinding_gas' in hero.skills \ and hero.rank in AttackSkills['blinding_gas'][0] \ and blinding_stun_chance - enemy.stunResist >= 50 \ and any(rank in AttackSkills['blinding_gas'][1] for rank in enemy.rank) and hero.blinding_gas_count < 3: attack = 'blinding_gas' target = enemy elif enemy is None or enemy.threat < 4 or (enemy.stunned and enemy.canBeKilledIn1Hit): attack, target = plague_doctor_stall_helper(hero, party) if target is None and hero.rank == 1: if 'incision' in hero.skills: if party[1].heroClass not in BackLineClasses: attack = 'swap' elif party[1].heroClass in BackLineClasses: attack = 'incision' elif target is None and hero.rank == 2: enemy_in_rank2 = True if (len(enemy_formation) == 1 and 2 in enemy_formation[0].rank) \ or len(enemy_formation) > 1 else False if 'disorienting_blast' in hero.skills: stun_targets = [enemy for enemy in enemies_not_dead_already if (2 in enemy.rank or 3 in enemy.rank or 4 in enemy.rank) and (disorienting_stun_chance - enemy.stunResist >= 50 and not enemy.stunned)] if len(stun_targets) > 0: attack = 'disorienting_blast' potential_targets = stun_targets stun_chance = disorienting_stun_chance elif party[2].heroClass == 'highwayman' or party[2].heroClass == 'shield_breaker' \ or (party[2].heroClass == 'crusader' and enemy_in_rank2): attack = 'noxious_blast' else: attack = 'swap' if party[2].heroClass not in BackLineClasses else None elif target is None and (hero.rank == 3 or hero.rank == 4): rank3_enemy = next((enemy for enemy in enemy_formation if 3 in enemy.rank), None) rank4_enemy = next((enemy for enemy in enemy_formation if 4 in enemy.rank and 3 not in enemy.rank), None) # two enemies on ranks 3 & 4 and at least 1 very high threat or skeleton archer if rank3_enemy is not None and rank4_enemy is not None: back_rank_targets = [rank3_enemy, rank4_enemy] priority_target = next((enemy for enemy in back_rank_targets if enemy.threat >= 7 and not enemy.alreadyGoingToDie and not enemy.alreadyMoved), None) if priority_target is None: priority_target = next((enemy for enemy in back_rank_targets if enemy.threat >= 7 and not enemy.alreadyGoingToDie), None) if priority_target is None: priority_target = next((enemy for enemy in back_rank_targets if enemy.name == 'Bone Arbalist' and not enemy.alreadyGoingToDie and not enemy.alreadyMoved), None) if priority_target is None: priority_target = next((enemy for enemy in back_rank_targets if enemy.name == 'Bone Arbalist' and not enemy.alreadyGoingToDie), None) if priority_target is not None and not rank3_enemy.alreadyGoingToDie and not rank4_enemy.alreadyGoingToDie: # can stun the priority target with blinding gas and possibly another if 'blinding_gas' in hero.skills and not rank3_enemy.stunned and not rank4_enemy.stunned \ and hero.blinding_gas_count < 3 and (blinding_stun_chance - priority_target.stunResist >= 35) \ and any(blinding_stun_chance - enemy.stunResist >= 50 for enemy in back_rank_targets): attack = 'blinding_gas' stun_chance = blinding_stun_chance target = priority_target # can kill or stun a very high threat enemy that hasn't moved (>= 7) if attack is None and len(very_high_threat_not_moved) > 0: attack, stun_chance, potential_targets = plague_doctor_attack_helper(hero, very_high_threat_not_moved) # can kill or stun a very high threat enemy (>= 7) if attack is None and len(very_high_threat_enemies) > 0: attack, stun_chance, potential_targets = plague_doctor_attack_helper(hero, very_high_threat_enemies) # can pull or stun a skeleton archer on rank 3 or 4 if attack is None: skeleton_archer = next((enemy for enemy in enemies_not_dead_already if enemy.name == 'Bone Arbalist' and (3 in enemy.rank or 4 in enemy.rank) and not enemy.alreadyMoved), None) if skeleton_archer is None: skeleton_archer = next((enemy for enemy in enemies_not_dead_already if enemy.name == 'Bone Arbalist' and (3 in enemy.rank or 4 in enemy.rank)), None) if skeleton_archer is not None: if 'disorienting_blast' in hero.skills: attack = 'disorienting_blast' stun_chance = disorienting_stun_chance target = skeleton_archer elif 'blinding_gas' in hero.skills and blinding_stun_chance - skeleton_archer.stunResist > 50 \ and not skeleton_archer.stunned and hero.blinding_gas_count < 3: attack = 'blinding_gas' stun_chance = blinding_stun_chance # two enemies on ranks 3 & 4 if attack is None and rank3_enemy is not None and rank4_enemy is not None \ and not rank3_enemy.alreadyGoingToDie and not rank4_enemy.alreadyGoingToDie: # can stun two enemies with blinding gas if 'blinding_gas' in hero.skills and not rank3_enemy.stunned and not rank4_enemy.stunned \ and hero.blinding_gas_count < 3 and (blinding_stun_chance - rank3_enemy.stunResist >= 50 or blinding_stun_chance - rank4_enemy.stunResist >= 50): attack = 'blinding_gas' stun_chance = blinding_stun_chance potential_targets = [rank3_enemy, rank4_enemy] # can kill one of them elif 'plague_grenade' in hero.skills and (rank3_enemy.effectiveHp <= plague_poison_dmg + 1 or rank4_enemy.effectiveHp <= plague_poison_dmg + 1): attack = 'plague_grenade' # can kill or stun a high threat enemy that hasn't moved (>= 4) if attack is None and len(high_threat_not_moved) > 0: attack, stun_chance, potential_targets = plague_doctor_attack_helper(hero, high_threat_not_moved) # can kill or stun a high threat enemy (>= 4) if attack is None and len(high_threat_enemies) > 0: attack, stun_chance, potential_targets = plague_doctor_attack_helper(hero, high_threat_enemies) # can kill or stun enemy if attack is None and len(enemies_not_dead_already) > 0: attack, stun_chance, potential_targets = plague_doctor_attack_helper(hero, enemies_not_dead_already) # swap if beneficial if attack is None and hero.rank == 3 and party[3].heroClass != 'vestal': attack = 'swap' # cure bleed/blight if attack is None and 'battlefield_medicine' in hero.skills and (hero.rank == 3 or hero.rank == 4) \ and len(high_threat_enemies) == 0 and any(ally.percentHp < 90 for ally in party): heal_targets = list(hero for hero in party if hero.bleedAmount > 0 or hero.blightAmount > 0) if len(heal_targets) > 0: heal_targets.sort(key=lambda k: k.damageOverTime, reverse=True) target = heal_targets[0] attack = 'battlefield_medicine' if attack == 'swap': target = -1 if target is None else target swap_hero(hero, swap_distance=target, party_order=UpdatedPartyOrder, debug=Debug) elif attack == 'blinding_gas' or attack == 'disorienting_blast': find_target_and_stun(hero, potential_targets, attack, stun_chance, UpdatedPartyOrder, target) elif attack == 'battlefield_medicine' or attack == 'emboldening_vapours': heal_target(hero, target, attack, Debug) else: # Find target and attack enemy if attack is not None: list_of_attacks.insert(0, attack) find_target_and_attack(raid_info, potential_targets, hero, party, list_of_attacks, UpdatedPartyOrder) # heal, buff, or swap if can't hit enemies with any attacks if not attack_completed and attack != 'swap' and attack != 'blinding_gas' and attack != 'disorienting_blast' \ and attack != 'battlefield_medicine' and attack != 'emboldening_vapours': attack, target = plague_doctor_stall_helper(hero, party_sorted_by_rank) if attack == 'swap': swap_hero(hero, swap_distance=target, party_order=UpdatedPartyOrder, debug=Debug) elif attack == 'blinding_gas' or attack == 'disorienting_blast': find_target_and_stun(hero, potential_targets, attack, stun_chance, UpdatedPartyOrder, target) elif attack == 'battlefield_medicine' or attack == 'emboldening_vapours': heal_target(hero, target, attack, Debug) def plague_doctor_stall_helper(hero, party_sorted_by_rank): if 'battlefield_medicine' in hero.skills and (hero.rank == 3 or hero.rank == 4): attack = 'battlefield_medicine' party_sorted_by_rank.sort(key=lambda k: k.damageOverTime, reverse=True) if party_sorted_by_rank[0].damageOverTime <= 2: party_sorted_by_rank.sort(key=lambda k: k.percentHp) return attack, party_sorted_by_rank[0] elif 'emboldening_vapours' in hero.skills and hero.emboldening_vapours_count < 2: attack = 'emboldening_vapours' target = next(hero for hero in party_sorted_by_rank if hero.heroClass == 'vestal')
B1, B2] idxs = [ (-3, 1, 2), (-4, 2, 3), (-1, 1, 4), (-2, 4, 3) ] rholoc = scon(to_contract, idxs).reshape((d**2, d**2)) return rholoc # def DMRG_superblock(left, right, hL, h, hR): # theta = twositecontract(left, right, h) # theta = thetaleft(theta, hL) # theta = thetaright(theta, hR) # return theta """ 2--left-right--4 |__| |U | ---- | | 1 3 """ def twositecontract(left, right, U=None): if U is None: return np.dot(left, right) else: to_contract = (left, right, U) idxs = [ (2, -2, 1), (3, 1, -4), (-1, -3, 2, 3)] return scon(to_contract, idxs) """ 2--th--4 |__| |U | ---- | | 1 3 """ def twositecontracttheta(theta, U): to_contract = (theta, U) idxs = [ (1, -2, 3, -4), (-1, 1, -3, 3) ] return scon(to_contract, idxs) """ --theta--4 |__| | |hL| 3 ---- | | 2 1 """ def thetaleft(theta, hL): to_contract = (theta, hL) idxs = [ (2, 1, -3, -4), (-2, -1, 1, 2) ] try: ans = scon(to_contract, idxs) except ValueError: errstr = "Theta shape: " + str(theta.shape) + "\n" errstr += "hL shape: " + str(hL.shape) + "\n" raise ValueError(errstr) return ans """ 2--theta | |__| 1 |hR| ---- | | 3 4 """ def thetaright(theta, hR): to_contract = (theta, hR) idxs = [ (-1, -2, 1, 2), (-3, -4, 1, 2) ] return scon(to_contract, idxs) """ A--3 4 |_| | |H| | --- | | | | A*--1 2 """ def DMRG_hL1(A, Adag, hL): d = A.shape[0] I = np.eye(d, dtype=A.dtype) to_contract = (A, Adag, hL, I) A_idxs = (4, 3, -3) Adag_idxs = (2, 1, -1) h_idxs = (1, 2, 3, 4) I_idxs = (-2, -4) answer = scon(to_contract, (A_idxs, Adag_idxs, h_idxs, I_idxs)) return answer """ --A--3 4 | |____| | |_H__| | | | --A*-1 2 """ def DMRG_hL2(A, Adag, h): to_contract = (A, Adag, h) A_idxs = (2, 1, -3) Adag_idxs = (3, 1, -1) h_idxs = (3, -2, 2, -4) answer = scon(to_contract, (A_idxs, Adag_idxs, h_idxs)) return answer def DMRG_hL(A, hL, h, Adag=None): if Adag is None: Adag = np.conj(A) term1 = DMRG_hL1(A, Adag, hL) term2 = DMRG_hL2(A, Adag, h) answer = term1 + term2 return answer """ 3 4-B----- | |____| | |_H__| | | | 1 2-B*---| """ def DMRG_hR1(B, Bdag, hR): d = B.shape[0] I = np.eye(d, dtype=B.dtype) to_contract = (B, Bdag, hR, I) B_idxs = (4, -4, 2) Bdag_idxs = (3, -2, 1) h_idxs = (3, 1, 4, 2) I_idxs = (-1, -3) answer = scon(to_contract, (B_idxs, Bdag_idxs, h_idxs, I_idxs)) return answer """ 3 4-B- |____| | |_H__| | | | | 1 2-B* """ def DMRG_hR2(B, Bdag, h): to_contract = (B, Bdag, h) B_idxs = (3, -4, 1) Bdag_idxs = (2, -2, 1) h_idxs = (-1, 2, -3, 3) answer = scon(to_contract, (B_idxs, Bdag_idxs, h_idxs)) return answer def DMRG_hR(B, hR, h, Bdag=None): if Bdag is None: Bdag = np.conj(B) term1 = DMRG_hR1(B, Bdag, hR) term2 = DMRG_hR2(B, Bdag, h) answer = term1 + term2 return answer # LR = np.dot(left, right) # if U is None: # return LR # d, chiL, d, chiR = LR.shape # U.shape = (d,d,d**2) # #U = U.reshape((d,d,d**2)) # LR = LR.transpose((1,0,2,3)) # #LR.shape = (chiL, d**2, chiR) # LR = LR.reshape((chiL, d**2, chiR)) # ans = np.dot(U, LR).reshape((d, d, chiL, chiR)) # ans = ans.transpose((0,2,1,3)) # return ans # if U is None: # else: # ans = np.einsum('jbi, kid, jkac', left, right, U) #return ans def H_times_psi(H, left, right, HL=None, HR=None): """ Serves as matvec for the DMRG eigensolver. """ d = H.shape[0] Hmat = H.reshape((d*d, d*d)) Hnorm = npla.norm(Hmat) Hshift = (Hmat - Hnorm*np.eye(d*d)).reshape((d,d,d,d)) if HL is not None: left = leftmult(HL, left) if HR is not None: right = rightmult(right, HR) answer = twositecontract(left, right, U=Hshift) return answer def DMRGeigs(left, right, H, HL=None, HR=None): """ Eigensolver for DMRG. """ Hshift = Hbig - Hnorm * np.eye(d1*chi1*d2*chi2) Es, Vs = sp.sparse.linalg.eigs(Hshift, v0=thvec, k=1) print(Es) E0 = Es[0] + Hnorm thnew = Vs[:, 0] thnew = thnew / npla.norm(thnew) thnew = thnew.reshape((d1, chi1, d2, chi2)) return (E0, thnew) def svd(th, minlam=1E-13, maxchi=None, normalize=True, fixed=False): """Computes the singular value decomposition of the input matrix 'th', which should be the (chi*d x chi*d) result of a contraction between two nodes (and, possibly, a two-site operator). """ d1, chi1, d2, chi2 = th.shape newshp = (d1*chi1, d2*chi2) #th.shape = newshp # thview = th.view() # thview.shape = newshp th = th.reshape(newshp) #note - this does a copy and should be optimized try: U, s, V = npla.svd(th, full_matrices=False, compute_uv=True) except: print("Divide-and-conquer SVD failed. Trying gesvd...") U, s, V = spla.svd(th, full_matrices=False, overwrite_a=False, check_finite=True, lapack_driver='gesvd') #print(s) if maxchi is None or maxchi > s.size: maxchi = s.size truncidx = maxchi S = s[:truncidx] if minlam is not None and S[-1] < minlam: toosmallidx = maxchi - np.searchsorted(S[::-1], minlam) if toosmallidx==0: print("Warning: very small singular values: ", s) truncidx = 1 #raise ValueError("Could not truncate because there were no singular " # "values greater than the minimum ", minlam, ". s was: ", s) if fixed: S[toosmallidx:] = minlam else: truncidx = toosmallidx S = S[:truncidx] X = U[:, :truncidx] X = X.reshape((d1, chi1, truncidx)) Y = V[:truncidx, :] Y = Y.reshape((truncidx, d2, chi2)) Y = Y.transpose((1,0,2)) truncerror = npla.norm(s[truncidx:]) #truncerror = np.sqrt(np.sum(s2[truncidx:])) #print(S) if normalize: S /= npla.norm(S) #print(S) #print("**") #print(S[:-1]) return X, Y, S, truncidx, truncerror def truncateandreshape(U, s, V, truncidx, d, chi1, chi2): """ U, s, V are the output of an SVD. s will be truncated to 'truncidx', and U and V will be similarly truncated so that UsV remains well-defined. U and Y will then be reshaped into gamma tensors; this involves transposing Y. This function turns out to be surprisingly expensive for some reason. """ X = U[:, :truncidx] X = X.reshape((d, chi1, truncidx)) #V = np.conj(V) Y = V[:truncidx, :] Y = Y.reshape((truncidx, d, chi2)) Y = Y.transpose((1,0,2)) #S = s[:truncidx] truncerror = npla.norm(s[truncidx:]) # if truncerror > 1E-8: # print("Warning - large truncation error: ", truncerror) return X, s[:truncidx], Y, truncerror def newsvd(th, err=1E-12, minlam=1E-13, maxchi=None, normalize=True): """Computes the singular value decomposition of the input matrix 'th', which should be the (chi*d x chi*d) result of a contraction between two nodes (and, possibly, a two-site operator). """ d1, chi1, d2, chi2 = th.shape newshp = (d1*chi1, d2*chi2) th = th.reshape(newshp) if maxchi is None: maxchi = max(newshp) US = svd.fit_transform(th) S = svd.singular_values_ V = svd.components_ #We still need to truncate any poorly conditioned values toosmall = S<minlam if toosmall[0] == True: raise ValueError("No nonzero singular values!") truncidx = np.argmax(toosmall) if truncidx == 0: truncidx = len(S) #reshape the dimension which is shared with S XS = US[:, :truncidx]#.reshape((d1, chi1, truncidx)) s = S[:truncidx] X = XS*(1./s)#.reshape((d1,chi1,truncidx)) X = X.reshape((d1,chi1,truncidx)) Y = V[:truncidx, :].reshape((truncidx, d2, chi2)) Y = np.transpose(Y, (1,0,2)) error = 1.0-np.sum(svd.explained_variance_ratio_) if error > err: print("Warning - large error: ", error) if normalize: s /= npla.norm(s) return X, Y, s, truncidx def makechis(d, N, maxchi): """Create the vector of chis for the chain. This is a length-N+1 list of exponents of d. The exponents are of the form [0, 1, 2, 1, 0] (if N+1 is odd) [0, 1, 2, 2, 1, 0] (if N+1 is even) Any numbers in the above exceeding ln(maxchi) / ln(d) are replaced with maxchi. """ last = N maxexp = int(np.log(maxchi) // np.log(d)) exp = list(range(0, (last+1)//2)) reverse = exp[::-1] if last % 2 != 1: exp = exp + [last//2] exp = exp + reverse for i in range(0, len(exp)): if exp[i] > maxexp: exp[i] = maxexp chis = np.power(d, exp, dtype=int) return chis def randommps(d, n, maxchi, minlam=1E-13): chis = makechis(d, n, maxchi) lams = [] for i in range(len(chis)): lamshape = (chis[i]) thislam = utils.random_rng(lamshape, 0., 1.) thislam /= npla.norm(thislam)
or array_like): Slippage in percentage of price. Will broadcast. Note that 0.01 = 1%. min_size (float or array_like): Minimum size for an order to be accepted. Will broadcast. max_size (float or array_like): Maximum size for an order. Will broadcast. Will be partially filled if exceeded. You might not be able to properly close the position if accumulation is enabled and `max_size` is too low. reject_prob (float or array_like): Order rejection probability. Will broadcast. lock_cash (bool or array_like): Whether to lock cash when shorting. Will broadcast. allow_partial (bool or array_like): Whether to allow partial fills. Will broadcast. Does not apply when size is `np.inf`. raise_reject (bool or array_like): Whether to raise an exception if order gets rejected. Will broadcast. log (bool or array_like): Whether to log orders. Will broadcast. accumulate (bool or array_like): Whether to accumulate signals. Will broadcast. Behaves similarly to `Portfolio.from_orders`. conflict_mode (ConflictMode or array_like): See `vectorbt.portfolio.enums.ConflictMode`. Will broadcast. close_first (bool or array_like): Whether to close the position first before reversal. Will broadcast. Otherwise reverses the position with a single order and within the same tick. Takes only effect under `Direction.All`. Requires a second signal to enter the opposite position. This allows to define parameters such as `fixed_fees` for long and short positions separately. val_price (array_like of float): Asset valuation price. See `val_price` in `Portfolio.from_orders`. init_cash (InitCashMode, float or array_like of float): Initial capital. See `init_cash` in `Portfolio.from_orders`. cash_sharing (bool): Whether to share cash within the same group. See `cash_sharing` in `Portfolio.from_orders`. call_seq (CallSeqType or array_like of int): Default sequence of calls per row and group. See `call_seq` in `Portfolio.from_orders`. update_value (bool): Whether to update group value after each filled order. max_orders (int): Size of the order records array. See `max_orders` in `Portfolio.from_orders`. max_logs (int): Size of the log records array. See `max_logs` in `Portfolio.from_orders`. seed (int): Seed to be set for both `call_seq` and at the beginning of the simulation. group_by (any): Group columns. See `vectorbt.base.column_grouper.ColumnGrouper`. broadcast_kwargs (dict): Keyword arguments passed to `vectorbt.base.reshape_fns.broadcast`. wrapper_kwargs (dict): Keyword arguments passed to `vectorbt.base.array_wrapper.ArrayWrapper`. freq (any): Index frequency in case `close.index` is not datetime-like. **kwargs: Keyword arguments passed to the `__init__` method. All broadcastable arguments will broadcast using `vectorbt.base.reshape_fns.broadcast` but keep original shape to utilize flexible indexing and to save memory. For defaults, see `portfolio` in `vectorbt._settings.settings`. !!! hint If you generated signals using close price, don't forget to shift your signals by one tick forward, for example, with `signals.vbt.fshift(1)`. In general, make sure to use a price that comes after the signal. Also see notes and hints for `Portfolio.from_orders`. ## Example Entry opens long, exit closes long: ```python-repl >>> import pandas as pd >>> import vectorbt as vbt >>> close = pd.Series([1, 2, 3, 4, 5]) >>> entries = pd.Series([True, True, True, False, False]) >>> exits = pd.Series([False, False, True, True, True]) >>> portfolio = vbt.Portfolio.from_signals( ... close, entries, exits, size=1., direction='longonly') >>> portfolio.asset_flow() 0 1.0 1 0.0 2 0.0 3 -1.0 4 0.0 dtype: float64 ``` Entry opens short, exit closes short: ```python-repl >>> portfolio = vbt.Portfolio.from_signals( ... close, entries, exits, size=1., direction='shortonly') >>> portfolio.asset_flow() 0 -1.0 1 0.0 2 0.0 3 1.0 4 0.0 dtype: float64 ``` Reversal within one tick. Entry opens long and closes short, exit closes long and opens short: ```python-repl >>> portfolio = vbt.Portfolio.from_signals( ... close, entries, exits, size=1., direction='all') >>> portfolio.asset_flow() 0 1.0 1 0.0 2 0.0 3 -2.0 4 0.0 dtype: float64 ``` Reversal within two ticks. First signal closes position, second signal opens the opposite one: ```python-repl >>> portfolio = vbt.Portfolio.from_signals( ... close, entries, exits, size=1., direction='all', ... close_first=True) >>> portfolio.asset_flow() 0 1.0 1 0.0 2 0.0 3 -1.0 4 -1.0 dtype: float64 ``` If entry and exit, chooses exit: ```python-repl >>> portfolio = vbt.Portfolio.from_signals( ... close, entries, exits, size=1., direction='all', ... close_first=True, conflict_mode='exit') >>> portfolio.asset_flow() 0 1.0 1 0.0 2 -1.0 3 -1.0 4 0.0 dtype: float64 ``` Entry means long order, exit means short order (acts similar to `from_orders`): ```python-repl >>> portfolio = vbt.Portfolio.from_signals( ... close, entries, exits, size=1., direction='all', ... accumulate=True) >>> portfolio.asset_flow() 0 1.0 1 1.0 2 0.0 3 -1.0 4 -1.0 dtype: float64 ``` Testing multiple parameters (via broadcasting): ```python-repl >>> from vectorbt.portfolio.enums import Direction >>> portfolio = vbt.Portfolio.from_signals( ... close, entries, exits, direction=[list(Direction)], ... broadcast_kwargs=dict(columns_from=Direction._fields)) >>> portfolio.asset_flow() Long Short All 0 100.0 -100.0 100.0 1 0.0 0.0 0.0 2 0.0 0.0 0.0 3 -100.0 50.0 -200.0 4 0.0 0.0 0.0 ``` Specifying information in a more granular way thanks to broadcasting. Reverse the first long position by first closing it, and all other immediately: ```python-repl >>> entries = pd.Series([True, False, False, True, False]) >>> exits = pd.Series([False, True, True, False, True]) >>> close_first = pd.Series([False, True, False, False, False]) >>> portfolio = vbt.Portfolio.from_signals( ... close, entries, exits, size=1., direction='all', ... close_first=close_first) >>> portfolio.asset_flow() 0 1.0 1 -1.0 2 -1.0 3 2.0 4 -2.0 dtype: float64 ``` Combine multiple exit conditions. Exit early if the price hits some threshold before an actual exit: ```python-repl >>> close = pd.Series([10, 11, 12, 13, 14, 15]) >>> entries = pd.Series([True, True, True, False, False, False]) >>> exits = pd.Series([False, False, False, True, True, True]) >>> # 1. Remove adjacent entries and exits >>> # since stop condition refers only to the first signal >>> entries, exits = entries.vbt.signals.clean(exits) >>> entries 0 True 1 False 2 False 3 False 4 False 5 False dtype: bool >>> exits 0 False 1 False 2 False 3 True 4 False 5 False dtype: bool >>> # 2. Find stop exits >>> stop_exits = entries.vbt.signals.generate_stop_exits(close, 0.1) >>> stop_exits 0 False 1 True 2 False 3 False 4 False 5 False dtype: bool >>> # 3. Combine exits >>> exits = exits | stop_exits >>> exits 0 False 1 True 2 False 3 True 4 False 5 False dtype: bool >>> # 4. Pick the first exit after each entry >>> exits = exits.vbt.signals.first(reset_by=entries, allow_gaps=True) >>> exits 0 False 1 True 2 False 3 False 4 False 5 False dtype: bool >>> # 5. Simulate portfolio >>> portfolio = vbt.Portfolio.from_signals(close, entries, exits) >>> portfolio.asset_flow() 0 10.0 1 -10.0 2 0.0 3 0.0 4 0.0 5 0.0 dtype: float64 ``` !!! note By cleaning signals, you lose information. Moreover, this automatically assumes that each entry/signal signal succeeds (= order gets filled). Use this with caution, and consider rewriting your strategy with `Portfolio.from_order_func`, which is a preferred way of defining complex logic in vectorbt. """ # Get defaults from vectorbt._settings import settings portfolio_cfg = settings['portfolio'] if size is None: size = portfolio_cfg['size'] if size_type is None: size_type = portfolio_cfg['signal_size_type'] size_type = prepare_enum_value(SizeType, size_type) if direction is None: direction = portfolio_cfg['signal_direction'] direction = prepare_enum_value(Direction, direction) if price is None: price = close if fees is None: fees = portfolio_cfg['fees'] if fixed_fees is None: fixed_fees = portfolio_cfg['fixed_fees'] if slippage is None: slippage = portfolio_cfg['slippage'] if min_size is None: min_size = portfolio_cfg['min_size'] if max_size is None: max_size = portfolio_cfg['max_size'] if reject_prob is None: reject_prob = portfolio_cfg['reject_prob'] if lock_cash is None: lock_cash = portfolio_cfg['lock_cash'] if allow_partial is None: allow_partial = portfolio_cfg['allow_partial'] if raise_reject is None: raise_reject = portfolio_cfg['raise_reject'] if log is None: log = portfolio_cfg['log'] if accumulate is None: accumulate = portfolio_cfg['accumulate'] if conflict_mode is None: conflict_mode = portfolio_cfg['conflict_mode'] conflict_mode = prepare_enum_value(ConflictMode, conflict_mode) if close_first is None: close_first = portfolio_cfg['close_first'] if val_price is None: val_price = price if init_cash is None: init_cash = portfolio_cfg['init_cash'] init_cash = prepare_enum_value(InitCashMode, init_cash) if isinstance(init_cash, int) and init_cash in InitCashMode: init_cash_mode = init_cash init_cash = np.inf else: init_cash_mode = None if cash_sharing is None: cash_sharing = portfolio_cfg['cash_sharing'] if call_seq is None: call_seq = portfolio_cfg['call_seq'] call_seq = prepare_enum_value(CallSeqType, call_seq) auto_call_seq = False if isinstance(call_seq, int): if call_seq == CallSeqType.Auto: call_seq = CallSeqType.Default auto_call_seq = True if update_value is None: update_value = portfolio_cfg['update_value'] if seed is None: seed =
<reponame>Bruce979527682/ProjectHelper<gh_stars>0 #!/usr/bin/python # -*- coding: UTF-8 -*- import xlrd # 读 import xlwt # 写 import math import datetime import os def GetDesktopPath(): return os.path.join(os.path.expanduser("~"), 'Desktop') deskPath = GetDesktopPath() cdate = datetime.datetime.now().strftime('%Y-%m-%d') filepath = deskPath + '\\' +cdate isExists=os.path.exists(filepath) if not isExists: os.makedirs(filepath) workbook = xlrd.open_workbook(r''+deskPath+'\\shop.xlsx') excels = workbook.sheet_by_index(0) tables = {} tnames = {} key = '' for rows in excels._cell_values: if rows != excels._cell_values[0]: if rows[0] == '': tables[key].append(rows) else: key = rows[1] tnames.setdefault(key, rows[0]) tables.setdefault(key, [rows]) i = 0 def entity(rows, key): sb = [] sb.append('using SqlSugar;'+'\n') sb.append('using System;'+'\n') sb.append(''+'\n') sb.append('namespace Entity.Api'+'\n') sb.append('{'+'\n') sb.append(' /// <summary>'+'\n') sb.append(' /// ' + tnames[key]+'表\n') sb.append(' /// </summary>'+'\n') sb.append(' public class ' + key + '\n') sb.append(' {'+'\n') for row in rows: sb.append(' /// <summary>'+'\n') sb.append(' /// ' + row[2]+'\n') sb.append(' /// </summary>'+'\n') if row[6] == 'y' and row[7] == 'y': sb.append(' [SugarColumn(IsPrimaryKey = true, IsIdentity = true)]'+'\n') elif row[6] == 'y': sb.append(' [SugarColumn(IsPrimaryKey = true)]'+'\n') elif row[7] == 'y': sb.append(' [SugarColumn(IsIdentity = true)]'+'\n') if row[11] != '': if str(row[4]) == 'varchar': sb.append(' public string ' + str(row[3]) + ' { get; set; } = ' + str(row[11]) + ';'+'\n') elif str(row[4]) == 'datetime': sb.append(' public DateTime ' + str(row[3]) + ' { get; set; } = ' + str(row[11]) + ';'+'\n') elif str(row[4]) == 'text': sb.append(' public string ' + str(row[3]) + ' { get; set; } = ' + str(row[11]) + ';'+'\n') elif str(row[4]) == 'int': sb.append(' public int ' + str(row[3]) + ' { get; set; } = ' + str(int(row[11])) + ';'+'\n') else: sb.append(' public ' + str(row[4]) + ' ' + str(row[3]) + ' { get; set; } = ' + str(row[11]) + ';'+'\n') else: if str(row[4]) == 'varchar': sb.append(' public string ' + str(row[3]) + ' { get; set; }'+'\n') elif str(row[4]) == 'datetime': sb.append(' public DateTime ' + str(row[3]) + ' { get; set; }'+'\n') elif str(row[4]) == 'text': sb.append(' public string ' + str(row[3]) + ' { get; set; }'+'\n') elif str(row[4]) == 'int': sb.append(' public int ' + str(row[3]) + ' { get; set; }'+'\n') else: sb.append(' public ' + str(row[4]) + ' ' + str(row[3]) + ' { get; set; }'+'\n') sb.append(''+'\n') sb.append(' #region 扩展字段'+'\n') sb.append(''+'\n') sb.append(' //[SugarColumn(IsIgnore = true)]'+'\n') sb.append(' //public string AddTimeStr { get; set; }'+'\n') sb.append(''+'\n') sb.append(' #endregion 扩展字段'+'\n') sb.append(''+'\n') sb.append(' }'+'\n') sb.append('}'+'\n') fout = open(filepath + '/'+key+'.cs', "w", encoding='utf-8') fout.writelines(sb) fout.close() def bll(rows, key): sb = [] sb.append('using Entity.Api;'+'\n') sb.append('using System.Collections.Generic;'+'\n') sb.append(''+'\n') sb.append('namespace BLL.Api'+'\n') sb.append('{'+'\n') sb.append(' /// <summary>'+'\n') sb.append(' /// ' + tnames[key]+'表BLL\n') sb.append(' /// </summary>'+'\n') sb.append(' public class ' + key + 'BLL: BaseSqlSugar<' + key + '>\n') sb.append(' {'+'\n') sb.append(' private string _cacheKey = "'+key+'_{0}";'+'\n') sb.append(' #region 单例'+'\n') sb.append(' private static ' + key + 'BLL _singleton;'+'\n') sb.append(' private static readonly object LockObject = new object();'+'\n') sb.append(' '+'\n') sb.append(' private ' + key + 'BLL()'+'\n') sb.append(' {'+'\n') sb.append(' '+'\n') sb.append(' }'+'\n') sb.append(' '+'\n') sb.append(' public static ' + key + 'BLL Singleton'+'\n') sb.append(' {'+'\n') sb.append(' get'+'\n') sb.append(' {'+'\n') sb.append(' if (_singleton == null)'+'\n') sb.append(' {'+'\n') sb.append(' lock (LockObject)'+'\n') sb.append(' {'+'\n') sb.append(' if (_singleton == null)'+'\n') sb.append(' {'+'\n') sb.append(' _singleton = new ' + key + 'BLL();'+'\n') sb.append(' }'+'\n') sb.append(' }'+'\n') sb.append(' }'+'\n') sb.append(' return _singleton;'+'\n') sb.append(' }'+'\n') sb.append(' }'+'\n') sb.append(' #endregion 单例'+'\n') sb.append(' '+'\n') sb.append(' /// <summary>'+'\n') sb.append(' /// 获取' + tnames[key] +'数据'+'\n') sb.append(' /// </summary>'+'\n') sb.append(' /// <param name="cityInfoId">同城ID</param>'+'\n') sb.append(' /// <param name="pageIndex"></param>'+'\n') sb.append(' /// <param name="pageSize"></param>'+'\n') sb.append(' /// <returns></returns>'+'\n') sb.append(' public List<' + key + '> Get' + key + 'List(int pageIndex = 1, int pageSize = 10)'+'\n') sb.append(' {'+'\n') sb.append(' var where = $"Status<>-4";'+'\n') sb.append(' var totalCount = 0;'+'\n') sb.append(' return GetList(where, ref totalCount, pageIndex, pageSize);'+'\n') sb.append(' }'+'\n') sb.append(' '+'\n') sb.append(' /// <summary>'+'\n') sb.append(' /// 修改' + tnames[key] +'状态'+'\n') sb.append(' /// </summary>'+'\n') sb.append(' /// <param name="cityInfoId">同城ID</param>'+'\n') sb.append(' /// <param name="id"></param>'+'\n') sb.append(' /// <param name="status">状态</param>'+'\n') sb.append(' /// <returns></returns>'+'\n') sb.append(' public bool UpdateStatus(int id, int status)'+'\n') sb.append(' {'+'\n') sb.append(' var model = GetModel(id);'+'\n') sb.append(' if (model != null)'+'\n') sb.append(' {'+'\n') sb.append(' model.Status = status;'+'\n') sb.append(' return Update(model, new string[] { "Status" });'+'\n') sb.append(' }'+'\n') sb.append(' return false;'+'\n') sb.append(' }'+'\n') sb.append(''+'\n') sb.append(''+'\n') sb.append(' }'+'\n') sb.append('}'+'\n') fout = open(filepath + '/'+key+'BLL.cs', "w", encoding='utf-8') fout.writelines(sb) fout.close() def database(rows): sb = [] sb.append('CREATE TABLE `' + key + '` ('+'\n') for row in rows: if row[4] == 'int' or row[4] == 'varchar': if row[4] == 'int' and row[7] == 'y': sb.append(' `' + row[3] + '` ' + row[4] + '(' + str(int(row[5])) + ') ' + ( 'NOT NULL' if row[9] == 'y' else '') + ' ' + ('AUTO_INCREMENT' if row[7] == 'y' else '')+' COMMENT \''+ row[2] +'\',' + '\n') else: sb.append(' `' + row[3] + '` ' + row[4] + '(' + str(int(row[5])) + ') ' + ( 'NOT NULL' if row[9] == 'y' else '') + 'COMMENT \''+ row[2] +'\',' + '\n') else: sb.append(' `' + row[3] + '` ' + row[4] + ' ' + ('NOT NULL' if row[9] == 'y' else '') + 'COMMENT \''+ row[2] +'\','+'\n') pkeycol = list(filter(lambda x: x[6] == 'y', rows)) indexcol = list(filter(lambda x: x[8] == 'y', rows)) ukeycol = list(filter(lambda x: x[10] == 'y', rows)) if pkeycol != None and len(pkeycol) > 0: if len(indexcol) > 0: sb.append(' PRIMARY KEY (`' + pkeycol[0][3] + '`),'+'\n') else: sb.append(' PRIMARY KEY (`' + pkeycol[0][3] + '`)'+'\n') else: print( rows[0][0] + 'PRIMARY KEY null') ikey = [] for ic in indexcol: ikey.append(' `' + ic[3] + '`') ukey = [] for uc in ukeycol: ukey.append(' `' + uc[3] + '`') if ukeycol != None: sb.append(' UNIQUE KEY `Key_Unique` (' + str(ukey).replace('[', '').replace(']', '').replace("'", '')+') USING BTREE,'+'\n') sb.append(' KEY `Key_Index` (' + str(ikey).replace('[', '').replace(']', '').replace("'", '')+')'+'\n') sb.append(') ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;'+'\n') fout = open(filepath + '/'+key+'-database.txt', "w", encoding='utf-8') fout.writelines(sb) fout.close() def htmllist(rows, key): sb = [] sb.append('<template>'+'\n') sb.append(' <div :style="{padding:"15px"}">'+'\n') sb.append(' <div style="margin:20px 0 10px;">'+'\n') sb.append(' <el-button type="primary" @click="editClick(0)">新增'+ tnames[key] +'</el-button>'+'\n') sb.append(' </div>'+'\n') sb.append(' <div>'+'\n') sb.append(' <el-table :data="list" border style="width: 100%">'+'\n') for row in rows: sb.append(' <el-table-column prop="' + str(row[3]) + '" label="' + str(row[2]) + '" width="120"></el-table-column>'+'\n') sb.append(' <el-table-column fixed="right" label="操作" width="100">'+'\n') sb.append(' <template slot-scope="scope">'+'\n') sb.append(' <el-button type="text" size="small" @click="editClick(1,scope.row)">编辑</el-button>'+'\n') sb.append(' <el-button type="text" size="small" @click="delService(scope.row.Id)">删除</el-button>'+'\n') sb.append(' </template>'+'\n') sb.append(' </el-table-column>'+'\n') sb.append(' </el-table>'+'\n') sb.append(' <el-pagination'+'\n') sb.append(' layout="prev, pager, next"'+'\n') sb.append(' :current-page="query.pageIndex"'+'\n') sb.append(' :page-size="query.pageSize"'+'\n') sb.append(' :total="count"'+'\n') sb.append(' ></el-pagination>'+'\n') sb.append(' <el-dialog title="添加修改'+ tnames[key] +'" :visible.sync="dialogVisible" width="30%" center>'+'\n') sb.append(' <div class="div_box">'+'\n') sb.append(' <el-form ref="elform" :model="editModel" label-width="120px" @submit.native.prevent>'+'\n') for row in rows: sb.append(' <el-form-item label="' + str(row[2]) + '">'+'\n') sb.append(' <el-input v-model="editModel.' + str(row[3]) + '"></el-input>'+'\n') sb.append(' </el-form-item>'+'\n') sb.append(' </el-form>'+'\n') sb.append(' </div>'+'\n') sb.append(' <span slot="footer" class="dialog-footer">'+'\n') sb.append(' <el-button @click="dialogVisible = false">取 消</el-button>'+'\n') sb.append(' <el-button type="primary" @click="saveModel()">确 定</el-button>'+'\n') sb.append(' </span>'+'\n') sb.append(' </el-dialog>'+'\n') sb.append(' </div>'+'\n') sb.append(' </div>'+'\n') sb.append('</template>'+'\n') sb.append(''+'\n') sb.append('<script>'+'\n') sb.append('export default {'+'\n') sb.append(' components: {},'+'\n') sb.append(' props: {},'+'\n') sb.append(' data() {'+'\n') sb.append(' return {'+'\n') sb.append(' query: {'+'\n') sb.append(' pageIndex: 1,'+'\n') sb.append(' pageSize: 10,'+'\n') sb.append(' },'+'\n') sb.append(' list: [],'+'\n') sb.append(' count: 0,'+'\n') sb.append(' dialogVisible: false,'+'\n') sb.append(' editModel: {'+'\n') for row in rows: sb.append(' ' + str(row[3]) + ': "",'+'\n') sb.append(' },'+'\n') sb.append(' typeList: ['+'\n') sb.append(' { Id: 0, Name: "网页类型" },'+'\n') sb.append(' { Id: 1, Name: "接口类型" },'+'\n') sb.append(' ],'+'\n') sb.append(' };'+'\n') sb.append(' },'+'\n') sb.append(' watch: {},'+'\n') sb.append(' computed: {},'+'\n') sb.append(' methods: {'+'\n') sb.append(' loadData() {'+'\n') sb.append(' var self = this;'+'\n') sb.append(' this.$HttpGet("/Admin/Get' + key + 'List", self.query)'+'\n') sb.append(' .then(function (response) {'+'\n') sb.append(' if (response.data.code === 1) {'+'\n') sb.append(' self.list = response.data.obj.list;'+'\n') sb.append(' self.count = response.data.obj.count;'+'\n') sb.append(' } else {'+'\n') sb.append(' self.$message(response.data.msg);'+'\n') sb.append(' }'+'\n') sb.append(' })'+'\n') sb.append(' .catch(function (error) {'+'\n') sb.append(' console.log(error);'+'\n') sb.append(' });'+'\n') sb.append(' },'+'\n') sb.append(' saveModel() {'+'\n') sb.append(' var self = this;'+'\n') sb.append(' this.$HttpPostJson("/Admin/Save' + key + '", this.editModel)'+'\n') sb.append(' .then(function (response) {'+'\n') sb.append(' if (response.data.code == 1) {'+'\n') sb.append(' self.$message(response.data.msg);'+'\n') sb.append(' self.loadData();'+'\n') sb.append(' } else {'+'\n') sb.append(' self.$message(response.data.msg);'+'\n') sb.append(' }'+'\n') sb.append(' })'+'\n') sb.append(' .catch(function (error) {'+'\n') sb.append(' console.log(error);'+'\n') sb.append(' });'+'\n') sb.append(' self.dialogVisible = false;'+'\n') sb.append(' },'+'\n') sb.append(' editClick(type, row) {'+'\n') sb.append(' if (type ==
""" This file contains classes and functions for representing, solving, and simulating agents who must allocate their resources among consumption, saving in a risk-free asset (with a low return), and saving in a risky asset (with higher average return). """ import numpy as np from copy import deepcopy from HARK import MetricObject, NullFunc # Basic HARK features from HARK.ConsumptionSaving.ConsIndShockModel import ( utility, # CRRA utility function utility_inv, # Inverse CRRA utility function utilityP, # CRRA marginal utility function utilityP_inv, # Inverse CRRA marginal utility function init_lifecycle, ) from HARK.ConsumptionSaving.ConsRiskyAssetModel import ( RiskyAssetConsumerType, risky_asset_parms, init_risky_asset, ) from HARK.distribution import calc_expectation from HARK.interpolation import ( LinearInterp, # Piecewise linear interpolation BilinearInterp, # 2D interpolator TrilinearInterp, # 3D interpolator ConstantFunction, # Interpolator-like class that returns constant value IdentityFunction, # Interpolator-like class that returns one of its arguments ValueFuncCRRA, MargValueFuncCRRA, DiscreteInterp, ) from HARK.utilities import make_grid_exp_mult class RiskyContribConsumerType(RiskyAssetConsumerType): """ A consumer type with idiosyncratic shocks to permanent and transitory income, who can save in both a risk-free and a risky asset but faces frictions to moving funds between them. The agent can only consume out of his risk-free asset. The frictions are: - A proportional tax on funds moved from the risky to the risk-free asset. - A stochastic inability to move funds between his accounts. To partially avoid the second friction, the agent can commit to have a fraction of his labor income, which is usually deposited in his risk-free account, diverted to his risky account. He can change this fraction only in periods where he is able to move funds between accounts. """ time_inv_ = deepcopy(RiskyAssetConsumerType.time_inv_) time_inv_ = time_inv_ + ["DiscreteShareBool"] # The new state variables (over those in ConsIndShock) are: # - nMrm: start-of-period risky resources. # - mNrmTilde: post-rebalancing risk-free resources. # - nNrmTilde: post-rebalancing risky resources. # - Share: income-deduction share. # For details, see # https://github.com/Mv77/RiskyContrib/blob/main/RiskyContrib.pdf state_vars = RiskyAssetConsumerType.state_vars + [ "gNrm", "nNrm", "mNrmTilde", "nNrmTilde", "Share", ] shock_vars_ = RiskyAssetConsumerType.shock_vars_ def __init__(self, verbose=False, quiet=False, **kwds): params = init_risky_contrib.copy() params.update(kwds) kwds = params # Initialize a basic consumer type RiskyAssetConsumerType.__init__(self, verbose=verbose, quiet=quiet, **kwds) # The model is solved and simulated spliting each of the agent's # decisions into its own "stage". The stages in chronological order # are # - Reb: asset-rebalancing stage. # - Sha: definition of the income contribution share. # - Cns: consumption stage. self.stages = ["Reb", "Sha", "Cns"] # Each stage has its own states and controls, and its methods # to find them. self.get_states = { "Reb": self.get_states_Reb, "Sha": self.get_states_Sha, "Cns": self.get_states_Cns, } self.get_controls = { "Reb": self.get_controls_Reb, "Sha": self.get_controls_Sha, "Cns": self.get_controls_Cns, } # Set the solver for the portfolio model, and update various constructed attributes self.solve_one_period = solveRiskyContrib self.update() def pre_solve(self): self.update_solution_terminal() def update(self): RiskyAssetConsumerType.update(self) self.update_share_grid() self.update_dfrac_grid() self.update_nNrm_grid() self.update_mNrm_grid() self.update_tau() def update_solution_terminal(self): """ Solves the terminal period. The solution is trivial. Cns: agent will consume all of his liquid resources. Sha: irrelevant as there is no "next" period. Reb: agent will shift all of his resources to the risk-free asset. Parameters ---------- None Returns ------- None """ # Construct the terminal solution backwards. # Start with the consumption stage. All liquid resources are consumed. cFunc_term = IdentityFunction(i_dim=0, n_dims=3) vFunc_Cns_term = ValueFuncCRRA(cFunc_term, CRRA=self.CRRA) # Marginal values dvdmFunc_Cns_term = MargValueFuncCRRA(cFunc_term, CRRA=self.CRRA) dvdnFunc_Cns_term = ConstantFunction(0.0) dvdsFunc_Cns_term = ConstantFunction(0.0) Cns_stage_sol = RiskyContribCnsSolution( # Consumption stage vFunc=vFunc_Cns_term, cFunc=cFunc_term, dvdmFunc=dvdmFunc_Cns_term, dvdnFunc=dvdnFunc_Cns_term, dvdsFunc=dvdsFunc_Cns_term, ) # Share stage # It's irrelevant because there is no future period. Set share to 0. # Create a dummy 2-d consumption function to get value function and marginal c2d = IdentityFunction(i_dim=0, n_dims=2) Sha_stage_sol = RiskyContribShaSolution( # Adjust vFunc_Adj=ValueFuncCRRA(c2d, CRRA=self.CRRA), ShareFunc_Adj=ConstantFunction(0.0), dvdmFunc_Adj=MargValueFuncCRRA(c2d, CRRA=self.CRRA), dvdnFunc_Adj=ConstantFunction(0.0), # Fixed vFunc_Fxd=vFunc_Cns_term, ShareFunc_Fxd=IdentityFunction(i_dim=2, n_dims=3), dvdmFunc_Fxd=dvdmFunc_Cns_term, dvdnFunc_Fxd=dvdnFunc_Cns_term, dvdsFunc_Fxd=dvdsFunc_Cns_term, ) # Rebalancing stage # Adjusting agent: # Withdraw everything from the pension fund and consume everything dfracFunc_Adj_term = ConstantFunction(-1.0) # Find the withdrawal penalty. If it is time-varying, assume it takes # the same value as in the last non-terminal period if type(self.tau) is list: tau = self.tau[-1] else: tau = self.tau # Value and marginal value function of the adjusting agent vFunc_Reb_Adj_term = ValueFuncCRRA(lambda m, n: m + n / (1 + tau), self.CRRA) dvdmFunc_Reb_Adj_term = MargValueFuncCRRA( lambda m, n: m + n / (1 + tau), self.CRRA ) # A marginal unit of n will be withdrawn and put into m. Then consumed. dvdnFunc_Reb_Adj_term = lambda m, n: dvdmFunc_Reb_Adj_term(m, n) / (1 + tau) Reb_stage_sol = RiskyContribRebSolution( # Rebalancing stage vFunc_Adj=vFunc_Reb_Adj_term, dfracFunc_Adj=dfracFunc_Adj_term, dvdmFunc_Adj=dvdmFunc_Reb_Adj_term, dvdnFunc_Adj=dvdnFunc_Reb_Adj_term, # Adjusting stage vFunc_Fxd=vFunc_Cns_term, dfracFunc_Fxd=ConstantFunction(0.0), dvdmFunc_Fxd=dvdmFunc_Cns_term, dvdnFunc_Fxd=dvdnFunc_Cns_term, dvdsFunc_Fxd=dvdsFunc_Cns_term, ) # Construct the terminal period solution self.solution_terminal = RiskyContribSolution( Reb_stage_sol, Sha_stage_sol, Cns_stage_sol ) def update_tau(self): """ Checks that the tax rate on risky-to-risk-free flows has the appropriate length adds it to time_(in)vary Returns ------- None. """ if type(self.tau) is list and (len(self.tau) == self.T_cycle): self.add_to_time_vary("tau") elif type(self.tau) is list: raise AttributeError( "If tau is time-varying, it must have length of T_cycle!" ) else: self.add_to_time_inv("tau") def update_share_grid(self): """ Creates grid for the income contribution share. Parameters ---------- None Returns ------- None """ self.ShareGrid = np.linspace(0.0, self.ShareMax, self.ShareCount) self.add_to_time_inv("ShareGrid") def update_dfrac_grid(self): """ Creates grid for the rebalancing flow between assets. This flow is normalized as a ratio. - If d > 0, d*mNrm flows towards the risky asset. - If d < 0, d*nNrm (pre-tax) flows towards the risk-free asset. Returns ------- None. """ self.dfracGrid = np.linspace(0, 1, self.dCount) self.add_to_time_inv("dfracGrid") def update_nNrm_grid(self): """ Updates the agent's iliquid assets grid by constructing a multi-exponentially spaced grid of nNrm values. Parameters ---------- None Returns ------- None. """ # Extract parameters nNrmMin = self.nNrmMin nNrmMax = self.nNrmMax nNrmCount = self.nNrmCount exp_nest = self.nNrmNestFac # Create grid nNrmGrid = make_grid_exp_mult( ming=nNrmMin, maxg=nNrmMax, ng=nNrmCount, timestonest=exp_nest ) # Assign and set it as time invariant self.nNrmGrid = nNrmGrid self.add_to_time_inv("nNrmGrid") def update_mNrm_grid(self): """ Updates the agent's liquid assets exogenous grid by constructing a multi-exponentially spaced grid of mNrm values. Parameters ---------- None Returns ------- None. """ # Extract parameters mNrmMin = self.mNrmMin mNrmMax = self.mNrmMax mNrmCount = self.mNrmCount exp_nest = self.mNrmNestFac # Create grid mNrmGrid = make_grid_exp_mult( ming=mNrmMin, maxg=mNrmMax, ng=mNrmCount, timestonest=exp_nest ) # Assign and set it as time invariant self.mNrmGrid = mNrmGrid self.add_to_time_inv("mNrmGrid") def initialize_sim(self): """ Initialize the state of simulation attributes. Parameters ---------- None Returns ------- None """ RiskyAssetConsumerType.initialize_sim(self) self.state_now["Share"] = np.zeros(self.AgentCount) def sim_birth(self, which_agents): """ Create new agents to replace ones who have recently died; takes draws of initial aNrm and pLvl, as in ConsIndShockModel, then sets Share, Adjust and post-rebalancing risky asset nNrmTilde to zero as initial values. Parameters ---------- which_agents : np.array Boolean array of size AgentCount indicating which agents should be "born". Returns ------- None """ RiskyAssetConsumerType.sim_birth(self, which_agents) self.state_now["Share"][which_agents] = 0.0 self.state_now["nNrmTilde"][which_agents] = 0.0 def sim_one_period(self): """ Simulates one period for this type. Has to be re-defined instead of using AgentType.sim_one_period() because of the "stages" structure. Parameters ---------- None Returns ------- None """ if not hasattr(self, "solution"): raise Exception( "Model instance does not have a solution stored. To simulate, it is necessary" " to run the `solve()` method of the class first." ) # Mortality adjusts the agent population self.get_mortality() # Replace some agents with "newborns" # Make state_now into state_prev, clearing state_now for var in self.state_now: self.state_prev[var] = self.state_now[var] if isinstance(self.state_now[var], np.ndarray): self.state_now[var] = np.empty(self.AgentCount) else: # Probably an aggregate variable. It may be getting set by the Market. pass if self.read_shocks: # If shock histories have been pre-specified, use those self.read_shocks_from_history() else: # Otherwise, draw shocks as usual according to subclass-specific method self.get_shocks() # Sequentially get states and controls of every stage for s in self.stages: self.get_states[s]() self.get_controls[s]() self.get_post_states() # Advance time for all agents self.t_age = self.t_age + 1 # Age all consumers by one period self.t_cycle = self.t_cycle + 1 # Age all consumers within their cycle self.t_cycle[ self.t_cycle == self.T_cycle ] = 0 # Resetting to zero for those who have reached
+ toGuess[6:] if word[1] != "Z" and word[1] != "z" and word[2] != "Z" and word[2] != "z" and word[3] != "Z" and word[3] != "z" and word[4] != "Z" and word[4] != "z" and word[5] != "Z" and word[5] != "z" : print("\nWrong!\n") numberOfErrors = numberOfErrors + 1 wrongChars = wrongChars + "z" + ", " if numberOfErrors == 0 : print("\t___________") print("\t| |") print("\t|") print("\t|") print("\t|") print("\t|") print("\t|") if numberOfErrors == 1 : print("\t___________") print("\t| |") print("\t| O") print("\t|") print("\t|") print("\t|") print("\t|") if numberOfErrors == 2 : print("\t___________") print("\t| |") print("\t| O") print("\t| |") print("\t|") print("\t|") print("\t|") print("\n\tWord: " + toGuess) print("\tMisses: " + wrongChars) if "_" in toGuess and not loser : guessChar = "" while not guessChar.isalpha() : guessChar = input("\n---------------------------------\nEnter your letter: ") _ = os.system('cls' if os.name=='nt' else 'clear') if guessChar == "A" or guessChar == "a" : if word[1] == "A" or word[1] == "a" : toGuess = toGuess[:1] + "a" + toGuess[2:] if word[2] == "A" or word[2] == "a" : toGuess = toGuess[:2] + "a" + toGuess[3:] if word[3] == "A" or word[3] == "a" : toGuess = toGuess[:3] + "a" + toGuess[4:] if word[4] == "A" or word[4] == "a" : toGuess = toGuess[:4] + "a" + toGuess[5:] if word[5] == "A" or word[5] == "a" : toGuess = toGuess[:5] + "a" + toGuess[6:] if word[1] != "A" and word[1] != "a" and word[2] != "A" and word[2] != "a" and word[3] != "A" and word[3] != "a" and word[4] != "A" and word[4] != "a" and word[5] != "A" and word[5] != "a" : print("\nWrong!\n") numberOfErrors = numberOfErrors + 1 wrongChars = wrongChars + "a" + ", " if guessChar == "B" or guessChar == "b" : if word[1] == "B" or word[1] == "b" : toGuess = toGuess[:1] + "b" + toGuess[2:] if word[2] == "B" or word[2] == "b" : toGuess = toGuess[:2] + "b" + toGuess[3:] if word[3] == "B" or word[3] == "b" : toGuess = toGuess[:3] + "b" + toGuess[4:] if word[4] == "B" or word[4] == "b" : toGuess = toGuess[:4] + "b" + toGuess[5:] if word[5] == "B" or word[5] == "b" : toGuess = toGuess[:5] + "b" + toGuess[6:] if word[1] != "B" and word[1] != "b" and word[2] != "B" and word[2] != "b" and word[3] != "B" and word[3] != "b" and word[4] != "B" and word[4] != "b" and word[5] != "B" and word[5] != "b" : print("\nWrong!\n") numberOfErrors = numberOfErrors + 1 wrongChars = wrongChars + "b" + ", " if guessChar == "C" or guessChar == "c" : if word[1] == "C" or word[1] == "c" : toGuess = toGuess[:1] + "c" + toGuess[2:] if word[2] == "C" or word[2] == "c" : toGuess = toGuess[:2] + "c" + toGuess[3:] if word[3] == "C" or word[3] == "c" : toGuess = toGuess[:3] + "c" + toGuess[4:] if word[4] == "C" or word[4] == "c" : toGuess = toGuess[:4] + "c" + toGuess[5:] if word[5] == "C" or word[5] == "c" : toGuess = toGuess[:5] + "c" + toGuess[6:] if word[1] != "C" and word[1] != "c" and word[2] != "C" and word[2] != "c" and word[3] != "C" and word[3] != "c" and word[4] != "C" and word[4] != "c" and word[5] != "C" and word[5] != "c" : print("\nWrong!\n") numberOfErrors = numberOfErrors + 1 wrongChars = wrongChars + "c" + ", " if guessChar == "D" or guessChar == "d" : if word[1] == "D" or word[1] == "d" : toGuess = toGuess[:1] + "d" + toGuess[2:] if word[2] == "D" or word[2] == "d" : toGuess = toGuess[:2] + "d" + toGuess[3:] if word[3] == "D" or word[3] == "d" : toGuess = toGuess[:3] + "d" + toGuess[4:] if word[4] == "D" or word[4] == "d" : toGuess = toGuess[:4] + "d" + toGuess[5:] if word[5] == "D" or word[5] == "d" : toGuess = toGuess[:5] + "d" + toGuess[6:] if word[1] != "D" and word[1] != "d" and word[2] != "D" and word[2] != "d" and word[3] != "D" and word[3] != "d" and word[4] != "D" and word[4] != "d" and word[5] != "D" and word[5] != "d" : print("\nWrong!\n") numberOfErrors = numberOfErrors + 1 wrongChars = wrongChars + "d" + ", " if guessChar == "E" or guessChar == "e" : if word[1] == "E" or word[1] == "e" : toGuess = toGuess[:1] + "e" + toGuess[2:] if word[2] == "E" or word[2] == "e" : toGuess = toGuess[:2] + "e" + toGuess[3:] if word[3] == "E" or word[3] == "e" : toGuess = toGuess[:3] + "e" + toGuess[4:] if word[4] == "E" or word[4] == "e" : toGuess = toGuess[:4] + "e" + toGuess[5:] if word[5] == "E" or word[5] == "e" : toGuess = toGuess[:5] + "e" + toGuess[6:] if word[1] != "E" and word[1] != "e" and word[2] != "E" and word[2] != "e" and word[3] != "E" and word[3] != "e" and word[4] != "E" and word[4] != "e" and word[5] != "E" and word[5] != "e" : print("\nWrong!\n") numberOfErrors = numberOfErrors + 1 wrongChars = wrongChars + "e" + ", " if guessChar == "F" or guessChar == "f" : if word[1] == "F" or word[1] == "f" : toGuess = toGuess[:1] + "f" + toGuess[2:] if word[2] == "F" or word[2] == "f" : toGuess = toGuess[:2] + "f" + toGuess[3:] if word[3] == "F" or word[3] == "f" : toGuess = toGuess[:3] + "f" + toGuess[4:] if word[4] == "F" or word[4] == "f" : toGuess = toGuess[:4] + "f" + toGuess[5:] if word[5] == "F" or word[5] == "f" : toGuess = toGuess[:5] + "f" + toGuess[6:] if word[1] != "F" and word[1] != "f" and word[2] != "F" and word[2] != "f" and word[3] != "F" and word[3] != "f" and word[4] != "F" and word[4] != "f" and word[5] != "F" and word[5] != "f" : print("\nWrong!\n") numberOfErrors = numberOfErrors + 1 wrongChars = wrongChars + "f" + ", " if guessChar == "G" or guessChar == "g" : if word[1] == "G" or word[1] == "g" : toGuess = toGuess[:1] + "g" + toGuess[2:] if word[2] == "G" or word[2] == "g" : toGuess = toGuess[:2] + "g" + toGuess[3:] if word[3] == "G" or word[3] == "g" : toGuess = toGuess[:3] + "g" + toGuess[4:] if word[4] == "G" or word[4] == "g" : toGuess = toGuess[:4] + "g" + toGuess[5:] if word[5] == "G" or word[5] == "g" : toGuess = toGuess[:5] + "g" + toGuess[6:] if word[1] != "G" and word[1] != "g" and word[2] != "G" and word[2] != "g" and word[3] != "G" and word[3] != "g" and word[4] != "G" and word[4] != "g" and word[5] != "G" and word[5] != "g" : print("\nWrong!\n") numberOfErrors = numberOfErrors + 1 wrongChars = wrongChars + "g" + ", " if guessChar == "H" or guessChar == "h" : if word[1] == "H" or word[1] == "h" : toGuess = toGuess[:1] + "h" + toGuess[2:] if word[2] == "H" or word[2] == "h" : toGuess = toGuess[:2] + "h" + toGuess[3:] if word[3] == "H" or word[3] == "h" : toGuess = toGuess[:3] + "h" + toGuess[4:] if word[4] == "H" or word[4] == "h" : toGuess = toGuess[:4] + "h" + toGuess[5:] if word[5] == "H" or word[5] == "h" : toGuess = toGuess[:5] + "h" + toGuess[6:] if word[1] != "H" and word[1] != "h" and word[2] != "H" and word[2] != "h" and word[3] != "H" and word[3] != "h" and word[4] != "H" and word[4] != "h" and word[5] != "H" and word[5] != "h" : print("\nWrong!\n") numberOfErrors = numberOfErrors + 1 wrongChars = wrongChars + "h" + ", " if guessChar == "I" or guessChar == "i" : if word[1] == "I" or word[1] == "i" : toGuess = toGuess[:1] + "i" + toGuess[2:] if word[2] == "I" or word[2] == "i" : toGuess = toGuess[:2] + "i" + toGuess[3:] if word[3] == "I" or word[3] == "i" : toGuess = toGuess[:3] + "i" + toGuess[4:] if word[4] == "I" or word[4] == "i" : toGuess = toGuess[:4] + "i" + toGuess[5:] if word[5] == "I" or word[5] == "i" : toGuess = toGuess[:5] + "i" + toGuess[6:] if word[1] != "I" and word[1] != "i" and word[2] != "I" and word[2] != "i" and word[3] != "I" and word[3] != "i" and word[4] != "I" and word[4] != "i" and word[5] != "I" and word[5] != "i" : print("\nWrong!\n") numberOfErrors = numberOfErrors + 1 wrongChars = wrongChars + "i" + ", " if guessChar == "J" or guessChar == "j" : if word[1] == "J" or word[1] == "j" : toGuess = toGuess[:1] +
## Automatically adapted for numpy.oldnumeric Jul 23, 2007 by ############################################################################# # # Author: <NAME> # # Copyright: <NAME> TSRI 2000 # ############################################################################# # # $Header: /opt/cvs/DejaVu2/povray3.py,v 1.1.1.1 2014/06/19 19:41:03 sanner Exp $ # # $Id: povray3.py,v 1.1.1.1 2014/06/19 19:41:03 sanner Exp $ # """ Povray module: driver to generate PovRay scenes form a DejaVu2 scene The driver currently handles: camera parameters (background color, perpective parameters, position), light sources, and Spheres, IndexedPolygons and IndexedPolylines geometries. The projection is still somewhat approximative ! still a 10 translation that is not explained :(. """ from opengltk.OpenGL import GL #from opengltk.extent.utillib import glTriangleNormals from geomutils.geomalgorithms import TriangleNormals from DejaVu2 import viewerConst import numpy.oldnumeric as Numeric class PovRay: """Driver for Povray v3.x """ def __init__(self, includes = []): """Create a PovRay file generator class for a given camera""" self.camera = None self.entries = [""" // // Povray scene file written by Pmv version 0.1 // // POV-Ray can be retrieved at: http://www.povray.org // N.Guex, 1995-1999 // """] for i in includes: self.entries.append('#include "%s"\n'%i) def write(self, filename): """void <- write(filename) dumps povray scene description""" self.filename = filename f = open(filename, 'w') for entry in self.entries: f.write(entry) f.close() def clear(self): """void <- clear() empties povray scene description""" self.entries = [] def coord3(self, x, y=None, z=None): """string <- coord3(x, y=None, z=None) returns a povray vector string this function inverts the z coordinates. It can be called with a sequence of 3 or with 3 values. """ if y is None: return ' <%f, %f, %f> '% (x[0],x[1],-x[2]) else: return ' <%f, %f, %f> '% (x, y, -z) def vec3(self, x, y=None, z=None): """string <- vec3(x, y=None, z=None) returns a povray vector string this function does not invert the z coordinates. It can be called with a sequence of 3 or with 3 values. """ if y is None: return ' <%.2f, %.2f, %.2f> '% (x[0],x[1],x[2]) else: return ' <%.2f, %.2f, %.2f> '% (x, y, z) def vec4(self, x, y=None, z=None, t=None): """string <- vec4(x, y=None, z=None, t=None) returns a povray 4-vector this function does not invert the z coordinates. It can be called with a sequence of 3 and a y-value or with 4 values. """ if z is None: return ' <%.2f, %.2f, %.2f, %.2f> '% (x[0],x[1],x[2],y) else: return ' <%.2f, %.2f, %.2f, %.2f> '% (x, y, z, t) def matrix(self, mat): """string <- matrix(mat) returns a 4x4 matrix as a povray matrix""" str = 'matrix < %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f >\n' % ( mat[0][0], mat[0][1], mat[0][2], mat[1][0], mat[1][1], mat[1][2], mat[2][0], mat[2][1], mat[2][2], mat[0][3], mat[1][3], mat[2][3] ) return str def addCamera(self, camera, scaleLight=2.0): """void <- addCamera(camera) adds the given camera to the povray scene handles: camera background color projection matrix (only perspective currently light sources """ # doesn't handle camera transformation yet str = 'background { color rgb ' + self.vec3(camera.backgroundColor) str = str + '}\n\n' self.entries.append( str ) str = 'camera { perspective' # I can't remember why I have to move 10 more than direction vector # but it seems familiar str = str + '\n location' + self.coord3(camera.lookFrom[0], camera.lookFrom[1], camera.lookFrom[2]+10) str = str + '\n look_at' + self.coord3(camera.lookAt) str = str + '\n angle %f'% ( camera.fovy+10.0, ) str = str + '\n up <0,1,0> // required for 1/1 aspect ratio p 277' str = str + '\n right <%d/%d,0,0>'%(camera.width,camera.height) str = str + '\n}\n\n' self.entries.append( str ) for l in camera.viewer.lights: if l.enabled: self.addLight(l, scaleLight) def addLight(self, light, scale=2.0): """void <- addLight(light) add a light source to the povray scene """ # doesn't handle light transformation yet d = light.direction str = 'light_source {' + self.coord3(d[0], d[1], d[2]) # str = str + 'color rgb' + self.vec3(light.diffuse) + '}\n\n' str = str + 'color rgb ' + self.vec3(scale*light.diffuse[0], scale*light.diffuse[1], scale*light.diffuse[2]) str += 'parallel ' str = str + '}\n\n' self.entries.append( str ) def addTexture(self, texture, col): """void <- addTexture(texture, col) Add texture to an object. texture is a dictionnary of texture properties, col is used as pigment is pimgment is not in textures """ str = ' texture {\n' if not 'pigment' in texture.keys(): str = str + ' pigment { color rgb %s }\n' %self.vec3( col ) elif texture['pigment']=='': str = str + ' pigment { color rgb %s }\n' %self.vec3( col ) else: str = str + ' pigment { %s }\n' % texture['pigment'] for k,v in texture.items(): if k=='pigment': continue if v is None: str = str + ' %s\n' % (k,) else: str = str + ' %s { %s }\n' % (k,v) str = str + ' }\n' self.entries.append( str ) def endShape(self): self.entries.append( '}\n' ); def addGeoms(self, geometries, texture = {'finish':'specular 1 roughness 0.001 ambient 0.3'}, bondRad = 0.15): """void <- addGeoms(geometries, texture) adds a list of geometries to the povray scene only visible geometries are added """ for g in geometries: if g.visible and len(g.vertexSet): self.entries.append('// geometry %s\n//\n'%g.name) self.addGeom(g, texture, bondRad) def addGeom(self, geom, texture = {'finish':'specular 1 roughness 0.001 ambient 0.3'}, bondRad = 0.15): """void <- addGeom(geometry, texture) adds a geometries to the povray scene Spheres, IndexedPolygons and IndexedPolylines are handled """ from DejaVu2.Spheres import Spheres from DejaVu2.IndexedPolygons import IndexedPolygons from DejaVu2.IndexedPolylines import IndexedPolylines from DejaVu2.Cylinders import Cylinders if isinstance(geom, Spheres): self.entries.append('// Object %s\n//\n' % geom.name) self.addSpheres(geom, texture) elif isinstance(geom, IndexedPolygons) and len(geom.faceSet): self.entries.append('// Object %s\n//\n' % geom.name) self.addIndexedPolgygons(geom, texture) elif isinstance(geom, IndexedPolylines) and len(geom.faceSet): self.entries.append('// Object %s\n//\n' % geom.name) self.addIndexedPolylines(geom, texture, bondRad) elif isinstance(geom, Cylinders) and len(geom.faceSet): self.entries.append('// Object %s\n//\n' % geom.name) self.addCylinders(geom, texture) else: print 'WARNING: %s the geometry is not yet supported'%geom.__class__ def addIndexedPolylines(self, geom, texture, bondRad): """void <- addIndexedPolylines(geom, texture) """ mat = geom.GetMatrix() v = geom.vertexSet.vertices*mat c = geom.materials[GL.GL_FRONT].prop[1] lines = geom.faceSet.faces.array for i in xrange(len(v)): if len(c)==len(v): col = c[i] else: col = c[0] self.entries.append('sphere{%s,%f\n' % (self.coord3(v[i]), bondRad) ) self.addTexture( texture, col ) self.endShape() for j in xrange(len(lines)): l = lines[j] if len(c) == len(v): col1 = c[l[0]] col2 = c[l[1]] else: col1 = col2 = c[0] if Numeric.sum(col1-col2) < 0.0001: p2 = v[l[1]] oneCyl = 1 else: p2 = (v[l[1]]+v[l[0]])/2. oneCyl = 0 self.entries.append('cylinder{%s,%s, %f open\n' % \ (self.coord3(v[l[0]]), self.coord3(p2), bondRad) ) self.addTexture( texture, col1 ) self.endShape() if not oneCyl: self.entries.append('cylinder{%s, %s, %f open\n' % \ (self.coord3(p2), self.coord3(v[l[1]]), bondRad)) self.addTexture( texture, col2 ) self.endShape() def addIndexedPolgygons(self, geom, texture): """void <- addIndexedPolgygons(geom, texture) """ mat = geom.GetMatrix() vt = geom.vertexSet.vertices*mat # FIXME need to add instance # FIXME need to handle flat shading # add vertices lines = ["mesh2 {\n\tvertex_vectors {\n\t\t%d,\n"%len(vt)] for v in vt: lines.append("\t\t%s,\n"%self.coord3(v)) lines.append("\t}\n") # add normals normals = geom.getVNormals() lines.append("\tnormal_vectors {\n\t\t%d,\n"%len(normals)) for n in normals: lines.append("\t\t%s,\n"%(self.coord3(n))) lines.append("\t}\n") # handle colors colors = geom.materials[GL.GL_FRONT].prop[1] colBinding = 'Overall' faces = geom.getFaces() if len(colors)==len(vt): colBinding = 'Per Vertex' elif len(colors)==len(faces): colBinding = 'Per Face' print len(colors), len(faces), len(vt), colBinding if colBinding!='Overall': lines.append("\ttexture_list {\n\t\t%d,\n"%len(colors)) for c in colors: lines.append( "\t\ttexture { pigment { color rgb<%6.3f, %6.3f, %6.3f> }\n"% tuple(c[:3])) lines.append("\t\t\tfinish { specular 1 roughness 0.001 ambient 0.3 } }\n") lines.append("\t}\n") # add faces lines.append("\tface_indices {\n\t\t%d,\n"%len(faces)) faceNumberLine = len(lines)-1 nbfaces = 0 if colBinding=='Overall': for t in faces: for ti in range(len(t)-2): lines.append("\t\t<%d,%d,%d>\n"%(t[0], t[ti+1], t[ti+2])) nbfaces += 1 elif colBinding=='Per Face': for fn,t in enumerate(faces): for ti in range(len(t)-2): lines.append("\t\t<%d,%d,%d>,%d\n"%( t[0], t[ti+1], t[ti+2], fn)) nbfaces += 1 elif colBinding=='Per Vertex': for t in faces: for ti in range(len(t)-2): lines.append("\t\t<%d,%d,%d>,%d,%d,%d\n"%( t[0], t[ti+1], t[ti+2], t[0], t[ti+1], t[ti+2])) nbfaces += 1 lines.append("\t}\n") lines[faceNumberLine] = "\tface_indices {\n\t\t%d,\n"%nbfaces if colBinding=='Overall': lines.append("\tpigment { color rgb<%6.3f, %6.3f, %6.3f> }\n"% tuple(colors[0][:3])) lines.append("\t\tfinish { specular 1 roughness 0.001 ambient 0.3 }\n") lines.append("}\n") self.entries.extend(lines) ## mat = geom.GetMatrix() ## v = geom.vertexSet.vertices*mat ## #v = geom.vertexSet.vertices.array ## c = geom.materials[GL.GL_FRONT].prop[1] ## n = geom.normals ## tri = geom.faceSet.faces.array ## fn = TriangleNormals( v, tri, 'PER_FACE') ## colBinding = 0 #Overall ## if not color: ## if len(c)==len(v): colBinding = 1 # Per Vertex ## elif len(c)==len(tri): colBinding = 2 # Per Face ## else: ## col = c[0] # Overall ## else: ## col =
from __future__ import print_function, division, absolute_import from llvm.core import Type, Constant import llvm.core as lc import llvm.ee as le from llvm import LLVMException from numba.config import PYVERSION import numba.ctypes_support as ctypes from numba import types, utils, cgutils, _helperlib, assume _PyNone = ctypes.c_ssize_t(id(None)) class NativeError(RuntimeError): pass @utils.runonce def fix_python_api(): """ Execute once to install special symbols into the LLVM symbol table """ le.dylib_add_symbol("Py_None", ctypes.addressof(_PyNone)) le.dylib_add_symbol("numba_native_error", id(NativeError)) # Add C helper functions c_helpers = _helperlib.c_helpers for py_name in c_helpers: c_name = "numba_" + py_name c_address = c_helpers[py_name] le.dylib_add_symbol(c_name, c_address) # Add all built-in exception classes for obj in utils.builtins.__dict__.values(): if isinstance(obj, type) and issubclass(obj, BaseException): le.dylib_add_symbol("PyExc_%s" % (obj.__name__), id(obj)) class PythonAPI(object): """ Code generation facilities to call into the CPython C API (and related helpers). """ def __init__(self, context, builder): """ Note: Maybe called multiple times when lowering a function """ fix_python_api() self.context = context self.builder = builder self.module = builder.basic_block.function.module # Initialize types self.pyobj = self.context.get_argument_type(types.pyobject) self.voidptr = Type.pointer(Type.int(8)) self.long = Type.int(ctypes.sizeof(ctypes.c_long) * 8) self.ulonglong = Type.int(ctypes.sizeof(ctypes.c_ulonglong) * 8) self.longlong = self.ulonglong self.double = Type.double() self.py_ssize_t = self.context.get_value_type(types.intp) self.cstring = Type.pointer(Type.int(8)) self.gil_state = Type.int(_helperlib.py_gil_state_size * 8) # ------ Python API ----- # # Basic object API # def incref(self, obj): fnty = Type.function(Type.void(), [self.pyobj]) fn = self._get_function(fnty, name="Py_IncRef") self.builder.call(fn, [obj]) def decref(self, obj): fnty = Type.function(Type.void(), [self.pyobj]) fn = self._get_function(fnty, name="Py_DecRef") self.builder.call(fn, [obj]) # # Argument unpacking # def parse_tuple_and_keywords(self, args, kws, fmt, keywords, *objs): charptr = Type.pointer(Type.int(8)) charptrary = Type.pointer(charptr) argtypes = [self.pyobj, self.pyobj, charptr, charptrary] fnty = Type.function(Type.int(), argtypes, var_arg=True) fn = self._get_function(fnty, name="PyArg_ParseTupleAndKeywords") return self.builder.call(fn, [args, kws, fmt, keywords] + list(objs)) def parse_tuple(self, args, fmt, *objs): charptr = Type.pointer(Type.int(8)) argtypes = [self.pyobj, charptr] fnty = Type.function(Type.int(), argtypes, var_arg=True) fn = self._get_function(fnty, name="PyArg_ParseTuple") return self.builder.call(fn, [args, fmt] + list(objs)) # # Exception handling # def err_occurred(self): fnty = Type.function(self.pyobj, ()) fn = self._get_function(fnty, name="PyErr_Occurred") return self.builder.call(fn, ()) def err_clear(self): fnty = Type.function(Type.void(), ()) fn = self._get_function(fnty, name="PyErr_Clear") return self.builder.call(fn, ()) def err_set_string(self, exctype, msg): fnty = Type.function(Type.void(), [self.pyobj, self.cstring]) fn = self._get_function(fnty, name="PyErr_SetString") if isinstance(exctype, str): exctype = self.get_c_object(exctype) if isinstance(msg, str): msg = self.context.insert_const_string(self.module, msg) return self.builder.call(fn, (exctype, msg)) def err_set_object(self, exctype, excval): fnty = Type.function(Type.void(), [self.pyobj, self.pyobj]) fn = self._get_function(fnty, name="PyErr_SetObject") return self.builder.call(fn, (exctype, excval)) def raise_native_error(self, msg): cstr = self.context.insert_const_string(self.module, msg) self.err_set_string(self.native_error_type, cstr) def raise_exception(self, exctype, excval): # XXX This produces non-reusable bitcode: the pointer's value # is specific to this process execution. exctypeaddr = self.context.get_constant(types.intp, id(exctype)) excvaladdr = self.context.get_constant(types.intp, id(excval)) self.err_set_object(exctypeaddr.inttoptr(self.pyobj), excvaladdr.inttoptr(self.pyobj)) def get_c_object(self, name): """ Get a Python object through its C-accessible *name*. (e.g. "PyExc_ValueError"). """ try: gv = self.module.get_global_variable_named(name) except LLVMException: gv = self.module.add_global_variable(self.pyobj.pointee, name) return gv @property def native_error_type(self): return self.get_c_object("numba_native_error") def raise_missing_global_error(self, name): msg = "global name '%s' is not defined" % name cstr = self.context.insert_const_string(self.module, msg) self.err_set_string("PyExc_NameError", cstr) def raise_missing_name_error(self, name): msg = "name '%s' is not defined" % name cstr = self.context.insert_const_string(self.module, msg) self.err_set_string("PyExc_NameError", cstr) # # Concrete dict API # def dict_getitem_string(self, dic, name): """Returns a borrowed reference """ fnty = Type.function(self.pyobj, [self.pyobj, self.cstring]) fn = self._get_function(fnty, name="PyDict_GetItemString") cstr = self.context.insert_const_string(self.module, name) return self.builder.call(fn, [dic, cstr]) def dict_new(self, presize=0): if presize == 0: fnty = Type.function(self.pyobj, ()) fn = self._get_function(fnty, name="PyDict_New") return self.builder.call(fn, ()) else: fnty = Type.function(self.pyobj, [self.py_ssize_t]) fn = self._get_function(fnty, name="_PyDict_NewPresized") return self.builder.call(fn, [Constant.int(self.py_ssize_t, presize)]) def dict_setitem(self, dictobj, nameobj, valobj): fnty = Type.function(Type.int(), (self.pyobj, self.pyobj, self.pyobj)) fn = self._get_function(fnty, name="PyDict_SetItem") return self.builder.call(fn, (dictobj, nameobj, valobj)) def dict_setitem_string(self, dictobj, name, valobj): fnty = Type.function(Type.int(), (self.pyobj, self.cstring, self.pyobj)) fn = self._get_function(fnty, name="PyDict_SetItemString") cstr = self.context.insert_const_string(self.module, name) return self.builder.call(fn, (dictobj, cstr, valobj)) def dict_pack(self, keyvalues): """ Args ----- keyvalues: iterable of (str, llvm.Value of PyObject*) """ dictobj = self.dict_new() not_null = cgutils.is_not_null(self.builder, dictobj) with cgutils.if_likely(self.builder, not_null): for k, v in keyvalues: self.dict_setitem_string(dictobj, k, v) return dictobj # # Concrete number APIs # def float_from_double(self, fval): fnty = Type.function(self.pyobj, [self.double]) fn = self._get_function(fnty, name="PyFloat_FromDouble") return self.builder.call(fn, [fval]) def number_as_ssize_t(self, numobj): fnty = Type.function(self.py_ssize_t, [self.pyobj]) fn = self._get_function(fnty, name="PyNumber_AsSsize_t") return self.builder.call(fn, [numobj]) def number_long(self, numobj): fnty = Type.function(self.pyobj, [self.pyobj]) fn = self._get_function(fnty, name="PyNumber_Long") return self.builder.call(fn, [numobj]) def long_as_ulonglong(self, numobj): fnty = Type.function(self.ulonglong, [self.pyobj]) fn = self._get_function(fnty, name="PyLong_AsUnsignedLongLong") return self.builder.call(fn, [numobj]) def long_as_longlong(self, numobj): fnty = Type.function(self.ulonglong, [self.pyobj]) fn = self._get_function(fnty, name="PyLong_AsLongLong") return self.builder.call(fn, [numobj]) def _long_from_native_int(self, ival, func_name, native_int_type, signed): fnty = Type.function(self.pyobj, [native_int_type]) fn = self._get_function(fnty, name=func_name) resptr = cgutils.alloca_once(self.builder, self.pyobj) if PYVERSION < (3, 0): # Under Python 2, we try to return a PyInt object whenever # the given number fits in a C long. pyint_fnty = Type.function(self.pyobj, [self.long]) pyint_fn = self._get_function(pyint_fnty, name="PyInt_FromLong") long_max = Constant.int(native_int_type, _helperlib.long_max) if signed: long_min = Constant.int(native_int_type, _helperlib.long_min) use_pyint = self.builder.and_( self.builder.icmp(lc.ICMP_SGE, ival, long_min), self.builder.icmp(lc.ICMP_SLE, ival, long_max), ) else: use_pyint = self.builder.icmp(lc.ICMP_ULE, ival, long_max) with cgutils.ifelse(self.builder, use_pyint) as (then, otherwise): with then: downcast_ival = self.builder.trunc(ival, self.long) res = self.builder.call(pyint_fn, [downcast_ival]) self.builder.store(res, resptr) with otherwise: res = self.builder.call(fn, [ival]) self.builder.store(res, resptr) else: fn = self._get_function(fnty, name=func_name) self.builder.store(self.builder.call(fn, [ival]), resptr) return self.builder.load(resptr) def long_from_long(self, ival): if PYVERSION < (3, 0): func_name = "PyInt_FromLong" else: func_name = "PyLong_FromLong" fnty = Type.function(self.pyobj, [self.long]) fn = self._get_function(fnty, name=func_name) return self.builder.call(fn, [ival]) def long_from_ssize_t(self, ival): return self._long_from_native_int(ival, "PyLong_FromSsize_t", self.py_ssize_t, signed=True) def long_from_longlong(self, ival): return self._long_from_native_int(ival, "PyLong_FromLongLong", self.longlong, signed=True) def long_from_ulonglong(self, ival): return self._long_from_native_int(ival, "PyLong_FromUnsignedLongLong", self.ulonglong, signed=False) def _get_number_operator(self, name): fnty = Type.function(self.pyobj, [self.pyobj, self.pyobj]) fn = self._get_function(fnty, name="PyNumber_%s" % name) return fn def _call_number_operator(self, name, lhs, rhs, inplace=False): if inplace: name = "InPlace" + name fn = self._get_number_operator(name) return self.builder.call(fn, [lhs, rhs]) def number_add(self, lhs, rhs, inplace=False): return self._call_number_operator("Add", lhs, rhs, inplace=inplace) def number_subtract(self, lhs, rhs, inplace=False): return self._call_number_operator("Subtract", lhs, rhs, inplace=inplace) def number_multiply(self, lhs, rhs, inplace=False): return self._call_number_operator("Multiply", lhs, rhs, inplace=inplace) def number_divide(self, lhs, rhs, inplace=False): assert PYVERSION < (3, 0) return self._call_number_operator("Divide", lhs, rhs, inplace=inplace) def number_truedivide(self, lhs, rhs, inplace=False): return self._call_number_operator("TrueDivide", lhs, rhs, inplace=inplace) def number_floordivide(self, lhs, rhs, inplace=False): return self._call_number_operator("FloorDivide", lhs, rhs, inplace=inplace) def number_remainder(self, lhs, rhs, inplace=False): return self._call_number_operator("Remainder", lhs, rhs, inplace=inplace) def number_lshift(self, lhs, rhs, inplace=False): return self._call_number_operator("Lshift", lhs, rhs, inplace=inplace) def number_rshift(self, lhs, rhs, inplace=False): return self._call_number_operator("Rshift", lhs, rhs, inplace=inplace) def number_and(self, lhs, rhs, inplace=False): return self._call_number_operator("And", lhs, rhs, inplace=inplace) def number_or(self, lhs, rhs, inplace=False): return self._call_number_operator("Or", lhs, rhs, inplace=inplace) def number_xor(self, lhs, rhs, inplace=False): return self._call_number_operator("Xor", lhs, rhs, inplace=inplace) def number_power(self, lhs, rhs, inplace=False): fnty = Type.function(self.pyobj, [self.pyobj] * 3) fname = "PyNumber_InPlacePower" if inplace else "PyNumber_Power" fn = self._get_function(fnty, fname) return self.builder.call(fn, [lhs, rhs, self.borrow_none()]) def number_negative(self, obj): fnty = Type.function(self.pyobj, [self.pyobj]) fn = self._get_function(fnty, name="PyNumber_Negative") return self.builder.call(fn, (obj,)) def number_positive(self, obj): fnty = Type.function(self.pyobj, [self.pyobj]) fn = self._get_function(fnty, name="PyNumber_Positive") return self.builder.call(fn, (obj,)) def number_float(self, val): fnty = Type.function(self.pyobj, [self.pyobj]) fn = self._get_function(fnty, name="PyNumber_Float") return self.builder.call(fn, [val]) def number_invert(self, obj): fnty = Type.function(self.pyobj, [self.pyobj]) fn = self._get_function(fnty, name="PyNumber_Invert") return self.builder.call(fn, (obj,)) def float_as_double(self, fobj): fnty = Type.function(self.double, [self.pyobj]) fn = self._get_function(fnty, name="PyFloat_AsDouble") return self.builder.call(fn, [fobj]) def bool_from_bool(self, bval): """ Get a Python bool from a LLVM boolean. """ longval = self.builder.zext(bval, self.long) return self.bool_from_long(longval) def bool_from_long(self, ival): fnty = Type.function(self.pyobj, [self.long]) fn = self._get_function(fnty, name="PyBool_FromLong") return self.builder.call(fn, [ival]) def complex_from_doubles(self, realval, imagval): fnty = Type.function(self.pyobj, [Type.double(), Type.double()]) fn = self._get_function(fnty, name="PyComplex_FromDoubles") return self.builder.call(fn, [realval, imagval]) def complex_real_as_double(self, cobj): fnty = Type.function(Type.double(), [self.pyobj]) fn = self._get_function(fnty, name="PyComplex_RealAsDouble") return self.builder.call(fn, [cobj]) def complex_imag_as_double(self, cobj): fnty = Type.function(Type.double(), [self.pyobj]) fn = self._get_function(fnty, name="PyComplex_ImagAsDouble") return self.builder.call(fn, [cobj]) # # List and sequence APIs # def sequence_getslice(self, obj, start, stop): fnty = Type.function(self.pyobj, [self.pyobj, self.py_ssize_t, self.py_ssize_t]) fn = self._get_function(fnty, name="PySequence_GetSlice") return self.builder.call(fn, (obj, start, stop)) def sequence_tuple(self, obj): fnty = Type.function(self.pyobj, [self.pyobj]) fn = self._get_function(fnty, name="PySequence_Tuple") return self.builder.call(fn, [obj]) def list_new(self, szval): fnty = Type.function(self.pyobj, [self.py_ssize_t]) fn = self._get_function(fnty, name="PyList_New") return self.builder.call(fn, [szval]) def list_setitem(self, seq, idx, val): """ Warning: Steals reference to ``val`` """ fnty = Type.function(Type.int(), [self.pyobj, self.py_ssize_t, self.pyobj]) fn = self._get_function(fnty, name="PyList_SetItem") return self.builder.call(fn, [seq, idx, val]) def list_getitem(self, lst, idx): """ Returns a borrowed reference. """ fnty = Type.function(self.pyobj, [self.pyobj, self.py_ssize_t]) fn =
4).permute(0, 1, 4, 2, 3).contiguous() sample_feats = sample_feats.view((n, -1, h, w)) return sample_feats def forward(self, x): ret = {} center_feat = self.center_conv(x) center_map = self.center_head(center_feat) corner_feat = self.corner_conv(x) corner_map = self.corner_head(corner_feat) fg_feat = self.fg_conv(x) fg_map = self.fg_head(fg_feat) fusion_feat = self.fusion_module( orig_feat=x, center_feat=torch.cat([center_feat, center_map], dim=1), corner_feat=torch.cat([corner_feat, corner_map], dim=1), foreground_feat=torch.cat([fg_feat, fg_map], dim=1) ) final_feat = torch.cat([x, fusion_feat], dim=1) ret['center_map'] = center_map ret['corner_map'] = corner_map ret['foreground_map'] = fg_map ret['final_feat'] = final_feat context = {} pred_feats = self.cls_conv(final_feat) pred_logits = self.cls_head(pred_feats) theta_feat = torch.cat([final_feat, pred_feats], dim=1) theta_feat = self.theta_conv(theta_feat) theta = self.theta_head(theta_feat) theta = torch.clamp(theta, min=-2, max=2) theta_feat = self.get_theta_sampled_feat(theta, theta_feat, context) wlh_feat = torch.cat([final_feat, theta_feat], dim=1) wlh_feat = self.wlh_conv(wlh_feat) wlh = self.wlh_head(wlh_feat) wlh = torch.clamp(wlh, min=-2, max=3) wlh_feat = self.get_wlh_sampled_feat(wlh, wlh_feat, context) xyz_feat = torch.cat([final_feat, wlh_feat], dim=1) xyz_feat = self.xyz_conv(xyz_feat) xyz = self.xyz_head(xyz_feat) xyz = torch.clamp(xyz, min=-4, max=4) ret['pred_logits'] = pred_logits ret['pred_boxes'] = torch.cat([xyz, wlh, theta], dim=1) return ret class OneNetSeqFusionHeadCLSSTC(nn.Module): def __init__(self, in_channels, heads, **kwargs): super().__init__(**kwargs) ks = heads['kernel_size'] num_cls = heads['num_classes'] head_ch = heads['head_channels'] init_bias = heads['init_bias'] self.register_buffer('template_box', torch.tensor(heads['template_box'])) self.pc_range = heads['pc_range'] self.voxel_size = heads['voxel_size'] self.register_buffer('xy_offset', heads['offset_grid']) self.naive = heads.get('naive', False) # heatmap prediction head self.center_conv = Sequential( nn.Conv2d(in_channels, head_ch, kernel_size=3, padding=1, bias=True), nn.BatchNorm2d(head_ch), nn.ReLU(inplace=True) ) self.center_head = nn.Conv2d(head_ch, num_cls, kernel_size=3, stride=1, padding=1, bias=True) # corner_map prediction head self.corner_conv = Sequential( nn.Conv2d(in_channels, head_ch, kernel_size=3, padding=1, bias=True), nn.BatchNorm2d(head_ch), nn.ReLU(inplace=True) ) self.corner_head = nn.Conv2d(head_ch, num_cls * 4, kernel_size=3, stride=1, padding=1, bias=True) self.fg_conv = Sequential( nn.Conv2d(in_channels, head_ch, kernel_size=3, padding=1, bias=True), nn.ReLU(inplace=True), ) self.fg_head = nn.Conv2d(head_ch, num_cls, kernel_size=3, stride=1, padding=1, bias=True) self.fusion_module = DCNV2Fusion(head_ch, num_cls, in_channels, head_ch, naive=self.naive) self.cls_conv = nn.Sequential( nn.Conv2d(in_channels + (1 * head_ch), head_ch, kernel_size=ks, stride=1, padding=ks // 2), nn.BatchNorm2d(head_ch), nn.ReLU(inplace=True), ) self.cls_head = nn.Conv2d(head_ch, num_cls, kernel_size=ks, stride=1, padding=ks // 2) self.wlh_conv = nn.Sequential( nn.Conv2d(in_channels + (2 * head_ch), head_ch, kernel_size=ks, stride=1, padding=ks // 2), nn.BatchNorm2d(head_ch), nn.ReLU(inplace=True), ) self.wlh_head = nn.Conv2d(head_ch, 3, kernel_size=ks, stride=1, padding=ks // 2) self.theta_conv = nn.Sequential( nn.Conv2d(in_channels + (5 * head_ch), head_ch, kernel_size=ks, stride=1, padding=ks // 2), nn.BatchNorm2d(head_ch), nn.ReLU(inplace=True), ) self.theta_head = nn.Conv2d(head_ch, 2, kernel_size=ks, stride=1, padding=ks // 2) self.xyz_conv = nn.Sequential( nn.Conv2d(in_channels + (5 * head_ch), head_ch, kernel_size=ks, stride=1, padding=ks // 2), nn.BatchNorm2d(head_ch), nn.ReLU(inplace=True), ) self.xyz_head = nn.Conv2d(head_ch, 3, kernel_size=ks, stride=1, padding=ks // 2) self._reset_parameters() self.cls_head.bias.data.fill_(init_bias) self.fg_head.bias.data.fill_(init_bias) self.corner_head.bias.data.fill_(init_bias) self.center_head.bias.data.fill_(init_bias) def _reset_parameters(self): for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def to_grid_coord(self, global_x, global_y): xmin, ymin, _, xmax, ymax, _ = self.pc_range x_v, y_v, _ = self.voxel_size xall = xmax - xmin - x_v yall = ymax - ymin - y_v grid_x = (global_x - (xmin + (x_v / 2))) / xall * 2 - 1 grid_y = (global_y - (ymin + (y_v / 2))) / yall * 2 - 1 return grid_x.contiguous(), grid_y.contiguous() def get_center_sampled_feat(self, xy, xy_feat, context): n, _, h, w = xy.shape raw_xy = xy[:, :2] + self.xy_offset # n, 2, h, w grid_x, grid_y = self.to_grid_coord(raw_xy[:, 0], raw_xy[:, 1]) sample_grids = torch.stack([grid_x, grid_y], dim=-1) sample_feats = F.grid_sample(xy_feat, sample_grids) return sample_feats def get_theta_sampled_feat(self, theta, theta_feat, context): n, _, h, w = theta.shape wlh = context['wlh'] sint, cost = theta[:, 1, :, :].contiguous(), theta[:, 0, :, :].contiguous() theta = torch.atan2(sint, cost).view(-1) # N, h, w - > n*h*w tmp_xy = self.xy_offset.permute(0, 2, 3, 1).repeat(n, 1, 1, 1).contiguous().view(n * h * w, 2) context['theta'] = theta sample_point = box_utils.box_to_surface_bev(wlh, theta, tmp_xy) sample_point = sample_point.view(n, h, w, 4, 2) grid_x, grid_y = self.to_grid_coord(sample_point[..., 0], sample_point[..., 1]) sample_grids = torch.stack([grid_x, grid_y], dim=-1).view(n, h, w * 4, 2) # n, 2, 4, h, w sample_feats = F.grid_sample(theta_feat, sample_grids).view(n, -1, h, w, 4).permute(0, 1, 4, 2, 3).contiguous() sample_feats = sample_feats.view((n, -1, h, w)) return sample_feats def get_wlh_sampled_feat(self, wlh, wlh_feat, context): n, _, h, w = wlh.shape tmp_xy = self.xy_offset.permute(0, 2, 3, 1).repeat(n, 1, 1, 1).contiguous().view(n * h * w, 2) wlh = torch.exp(wlh).permute(0, 2, 3, 1).contiguous().view(n * h * w, -1) context['wlh'] = wlh # wlh = torch.clamp(wlh, min=0, max=9.4) sample_point = box_utils.box_to_surface_bev(wlh, torch.zeros_like(wlh[:, 0]), tmp_xy) sample_point = sample_point.view(n, h, w, 4, 2) grid_x, grid_y = self.to_grid_coord(sample_point[..., 0], sample_point[..., 1]) sample_grids = torch.stack([grid_x, grid_y], dim=-1).view(n, h, w * 4, 2) # n, 2, 4, h, w sample_feats = F.grid_sample(wlh_feat, sample_grids).view(n, -1, h, w, 4).permute(0, 1, 4, 2, 3).contiguous() sample_feats = sample_feats.view((n, -1, h, w)) return sample_feats def forward(self, x): ret = {} center_feat = self.center_conv(x) center_map = self.center_head(center_feat) corner_feat = self.corner_conv(x) corner_map = self.corner_head(corner_feat) fg_feat = self.fg_conv(x) fg_map = self.fg_head(fg_feat) fusion_feat = self.fusion_module( orig_feat=x, center_feat=torch.cat([center_feat, center_map], dim=1), corner_feat=torch.cat([corner_feat, corner_map], dim=1), foreground_feat=torch.cat([fg_feat, fg_map], dim=1) ) final_feat = torch.cat([x, fusion_feat], dim=1) ret['center_map'] = center_map ret['corner_map'] = corner_map ret['foreground_map'] = fg_map ret['final_feat'] = final_feat context = {} pred_feats = self.cls_conv(final_feat) pred_logits = self.cls_head(pred_feats) wlh_feat = torch.cat([final_feat, pred_feats], dim=1) wlh_feat = self.wlh_conv(wlh_feat) wlh = self.wlh_head(wlh_feat) wlh = torch.clamp(wlh, min=-2, max=3) wlh_feat = self.get_wlh_sampled_feat(wlh, wlh_feat, context) theta_feat = torch.cat([final_feat, wlh_feat], dim=1) theta_feat = self.theta_conv(theta_feat) theta = self.theta_head(theta_feat) theta = torch.clamp(theta, min=-2, max=2) theta_feat = self.get_theta_sampled_feat(theta, theta_feat, context) xyz_feat = torch.cat([final_feat, theta_feat], dim=1) xyz_feat = self.xyz_conv(xyz_feat) xyz = self.xyz_head(xyz_feat) xyz = torch.clamp(xyz, min=-4, max=4) ret['pred_logits'] = pred_logits ret['pred_boxes'] = torch.cat([xyz, wlh, theta], dim=1) return ret class OneNetSeqFusionHeadCLSTCS(nn.Module): def __init__(self, in_channels, heads, **kwargs): super().__init__(**kwargs) ks = heads['kernel_size'] num_cls = heads['num_classes'] head_ch = heads['head_channels'] init_bias = heads['init_bias'] self.register_buffer('template_box', torch.tensor(heads['template_box'])) self.pc_range = heads['pc_range'] self.voxel_size = heads['voxel_size'] self.register_buffer('xy_offset', heads['offset_grid']) self.naive = heads.get('naive', False) # heatmap prediction head self.center_conv = Sequential( nn.Conv2d(in_channels, head_ch, kernel_size=3, padding=1, bias=True), nn.BatchNorm2d(head_ch), nn.ReLU(inplace=True) ) self.center_head = nn.Conv2d(head_ch, num_cls, kernel_size=3, stride=1, padding=1, bias=True) # corner_map prediction head self.corner_conv = Sequential( nn.Conv2d(in_channels, head_ch, kernel_size=3, padding=1, bias=True), nn.BatchNorm2d(head_ch), nn.ReLU(inplace=True) ) self.corner_head = nn.Conv2d(head_ch, num_cls * 4, kernel_size=3, stride=1, padding=1, bias=True) self.fg_conv = Sequential( nn.Conv2d(in_channels, head_ch, kernel_size=3, padding=1, bias=True), nn.ReLU(inplace=True), ) self.fg_head = nn.Conv2d(head_ch, num_cls, kernel_size=3, stride=1, padding=1, bias=True) self.fusion_module = DCNV2Fusion(head_ch, num_cls, in_channels, head_ch, naive=self.naive) self.theta_conv = nn.Sequential( nn.Conv2d(in_channels + (2 * head_ch), head_ch, kernel_size=ks, stride=1, padding=ks // 2), nn.BatchNorm2d(head_ch), nn.ReLU(inplace=True), ) self.theta_head = nn.Conv2d(head_ch, 2, kernel_size=ks, stride=1, padding=ks // 2) self.xyz_conv = nn.Sequential( nn.Conv2d(in_channels + (5 * head_ch), head_ch, kernel_size=ks, stride=1, padding=ks // 2), nn.BatchNorm2d(head_ch), nn.ReLU(inplace=True), ) self.xyz_head = nn.Conv2d(head_ch, 3, kernel_size=ks, stride=1, padding=ks // 2) self.wlh_conv = nn.Sequential( nn.Conv2d(in_channels + (2 * head_ch), head_ch, kernel_size=ks, stride=1, padding=ks // 2), nn.BatchNorm2d(head_ch), nn.ReLU(inplace=True), ) self.wlh_head = nn.Conv2d(head_ch, 3, kernel_size=ks, stride=1, padding=ks // 2) self.cls_conv = nn.Sequential( nn.Conv2d(in_channels + (1 * head_ch), head_ch, kernel_size=ks, stride=1, padding=ks // 2), nn.BatchNorm2d(head_ch), nn.ReLU(inplace=True), ) self.cls_head = nn.Conv2d(head_ch, num_cls, kernel_size=ks, stride=1, padding=ks // 2) self._reset_parameters() self.cls_head.bias.data.fill_(init_bias) self.fg_head.bias.data.fill_(init_bias) self.corner_head.bias.data.fill_(init_bias) self.center_head.bias.data.fill_(init_bias) def _reset_parameters(self): for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def to_grid_coord(self, global_x, global_y): xmin, ymin, _, xmax, ymax, _ = self.pc_range x_v, y_v, _ = self.voxel_size xall = xmax - xmin - x_v yall = ymax - ymin - y_v grid_x = (global_x - (xmin + (x_v / 2))) / xall * 2 - 1 grid_y = (global_y - (ymin + (y_v / 2))) / yall * 2 - 1 return grid_x.contiguous(), grid_y.contiguous() def get_center_sampled_feat(self, xy, xy_feat, context): n, _, h, w = xy.shape raw_xy = xy[:, :2] + self.xy_offset # n, 2, h, w grid_x, grid_y = self.to_grid_coord(raw_xy[:, 0], raw_xy[:, 1]) sample_grids = torch.stack([grid_x, grid_y], dim=-1) sample_feats = F.grid_sample(xy_feat, sample_grids) context['flatten_xy'] = raw_xy.permute(0, 2, 3, 1).contiguous().view(n * h * w, 2) return sample_feats def get_theta_sampled_feat(self, theta, theta_feat, context): n, _, h, w = theta.shape sint, cost = theta[:, 1, :, :].contiguous(), theta[:, 0, :, :].contiguous() theta = torch.atan2(sint, cost).view(-1) # N, h, w - > n*h*w tmp_xy = self.xy_offset.permute(0, 2, 3, 1).repeat(n, 1, 1, 1).contiguous().view(n * h * w, 2) context['theta'] = theta sample_point = box_utils.template_to_surface_bev(self.template_box, theta, tmp_xy) sample_point = sample_point.view(n, h, w, 4, 2) grid_x, grid_y = self.to_grid_coord(sample_point[..., 0], sample_point[..., 1]) sample_grids = torch.stack([grid_x, grid_y], dim=-1).view(n, h, w * 4, 2) # n, 2, 4, h, w sample_feats = F.grid_sample(theta_feat, sample_grids).view(n, -1, h, w, 4).permute(0, 1, 4, 2, 3).contiguous() sample_feats = sample_feats.view((n, -1, h, w)) return sample_feats def get_wlh_sampled_feat(self, wlh, wlh_feat, context): theta = context['theta'] flatten_xy = context['flatten_xy'] n, _, h, w =
import numpy as np from calciumflexanalysis import calcium_flex as cal from collections import defaultdict import pandas as pd import matplotlib.pyplot as plt from datetime import date import copy class CaFlexGroup: """Class used for the analysis of multiple Calcium Flex well plates. :param caflexplates: List of caflexplates to combine, generated from CaFlexPlate class :type caflexplates: list of calciumflexanalysis.calcium_flex.CaFlexPlates """ def __init__(self, caflexplates = []): self.caflexplates = caflexplates self.grouplist = ['Protein', 'Type', 'Compound', 'Concentration', 'Concentration Units'] self.titles = {} self.plate_maps = {} self.data = {'ratio':{}} inject_list = [] # iterate through each plate and update attributes using predefined caflexanalysis methods for key, val in enumerate(self.caflexplates): # titles (nice ref for the user) self.titles["plate_{}".format(key+1)] = val.title # update processed data w/ ratios self.data['ratio']["plate_{}".format(key+1)] = val.processed_data['ratio'] # dictionary of plate maps for each plate self.plate_maps["plate_{}".format(key+1)] = val.plate_map # append list with injection times for each plate inject_list.append(val.inject) # mean inject across all plates (this might be changed) self.inject = np.array(inject_list).mean() def visualise_plates(self, share_y, export = False, title = "", colormap = 'Dark2_r', colorby = 'Type', labelby = 'Type', dpi = 200): """Returns color-coded and labelled plots of the data collected for each well of each well plate. :param share_y: 'True' sets y axis the same for all plots :type share_y: bool :param export: If 'True' a .png file of the figure is saved, default = False :type export: bool :param title: Sets the title of the figure, optional :type title: str :param colormap: Sets the colormap for the color-coding, default = 'Dark2_r' :type colormap: str :param colorby: Chooses the parameter to color code by, for example 'Type', 'Contents', 'Concentration', 'Compound', 'Protein', 'Concentration Units', default = 'Type' :type colorby: str :param labelby: Chooses the parameter to label code by, for example 'Type', 'Contents', 'Concentration', 'Compound', 'Protein', 'Concentration Units', default = 'Type' :type labelby: str :param dpi: Size of the figure, default = 200 :type dpi: int :return: Figure of plotted data for each well of the well plate described in plate_map_file :rtype: figure """ plates = self.caflexplates for key, val in enumerate(plates): if title == "": Title = "Plate {}\n{}".format(key+1, val.title) else: Title = "Plate {}\n{}".format(key+1, title) val.visualise_assay(share_y, export, title, colormap, colorby, labelby, dpi) def see_plates(self, title = "", export = False, colormap = 'Paired', colorby = 'Type', labelby = 'Type', dpi = 100): """Returns a visual representation of each plate map. The label and colour for each well can be customised to be a variable, for example 'Compound', 'Protein', 'Concentration', 'Concentration Units', 'Contents' or 'Type'. The size of the plate map used to generate the figure can be either 6, 12, 24, 48, 96 or 384. :param size: Size of platemap, 6, 12, 24, 48, 96 or 384, default = 96 :type size: int :param export: If 'True' a .png file of the figure is saved, default = False :type export: bool :param title: Sets the title of the figure, optional :type title: str :param colormap: Sets the colormap for the color-coding, default = 'Paired' :type colormap: str :param colorby: Chooses the parameter to color code by, for example 'Type', 'Contents', 'Concentration', 'Compound', 'Protein', 'Concentration Units', default = 'Type' :type colorby: str :param labelby: Chooses the parameter to label code by, for example 'Type', 'Contents', 'Concentration', 'Compound', 'Protein', 'Concentration Units', default = 'Type' :type labelby: str :param dpi: Size of the figure, default = 150 :type dpi: int :return: Visual representation of the plate map. :rtype: figure """ plates = self.caflexplates for key, val in enumerate(plates): if title == "": Title = "Plate {}\n{}".format(key+1, val.title) else: Title = "Plate {}\n{}".format(key+1, title) try: val.see_plate(Title, export, colormap, colorby, labelby, dpi) except: print("Check plate {}".format(key+1)) def baseline_correct(self): """Baseline corrects 'ratio' data for each well using the pre-injection time points.""" self.data['baseline_corrected'] = {} for key, val in enumerate(self.caflexplates): try: val.baseline_correct() print("Plate {}".format(key+1)) self.data['baseline_corrected']["plate_{}".format(key+1)] = val.processed_data['baseline_corrected'] except: print("Baseline correction for plate {} failed".format(key+1)) def get_window(self, data_type): """Finds the lowest overall mean gradient for across the ten time point window post injection for the plates :param data_type: Data series to calculate plateau, either 'ratio' or 'baseline_corrected' :type data_type: str :return: Tuple containing start and end index of plateau window :rtype: (int, int) """ plates = self.caflexplates gradients = {} for key, val in enumerate(plates): g = val.get_gradients(data_type) # keys for each plate are numbered by key this time - easier for unpacking gradients[key] = g # collect gradients for each window in each plate into single dictionary using default dict windows = defaultdict(list) for key, val in gradients.items(): for k, v in val.items(): # unpack dictionary of dictionaries windows[k].append(v) # where multiple plates have the same window, the resulting dict value will be a list of those gradients # take means of each window mean_windows = {} for key, val in windows.items(): mean_windows[key] = np.array(val).mean() # get minimum gradient index window across all plates and update self.window self.window = (min(mean_windows, key = mean_windows.get)) # update windows for each plate for key, val in enumerate(plates): val.window = self.window return self.window def def_window(self, time, data_type): """Manually sets each plateau window. :param time: Time point at start of window :type time: int :param data_type: Data to set window on, either 'ratio' or 'baseline_corrected' :type data_type: str :return: Tuple containing start and end index of plateau window :rtype: (int, int) """ plates = self.caflexplates temp = [] for key, val in enumerate(plates): val.def_window(time, data_type) temp.append(val.window) if all(x == temp[0] for x in temp) == True: self.window = temp[0] print("all windows equal, self.window updated") return self.window else: raise ValueError("Time points are not equal") def group_data(self, data_type): """Groups data from each plate of desired type (either ratio or baseline_corrected) into single dataframe. :param data_type: Data to be groupe, either 'ratio' or 'baseline_corrected' :type data_type: str :return: Dictionary of dataframes :rtype: {str:pandas.DataFrame, str:pandas.DataFrame} """ plates = self.caflexplates group_list = self.caflexplates data_list = [] # collect all data in list, then concatenate dfs, take means for each condition time_list = [] # same for time (sem not required) # get data for each plate in plates_list for key, val in enumerate(plates): plate_map = val.plate_map # extract data, combine with the plate's plate map, append data_list mapped = plate_map.fillna('none').join(val.processed_data[data_type]['data']) data_list.append(mapped) # repeat for time: for key, val in enumerate(plates): plate_map = val.plate_map # extract data, combine with the plate's plate map, append data_list mapped = plate_map.fillna('none').join(val.processed_data[data_type]['time']) time_list.append(mapped) # concat data and time - all data for every well now in one df for data and time all_data = pd.concat(data_list, ignore_index = True) all_time = pd.concat(time_list, ignore_index = True) self.data[data_type]['grouped'] = {'data':all_data, 'time': all_time} print("self.data updated. See self.data[{}]['grouped']".format(data_type)) def plot_conditions(self, data_type, plate_number = True, activator = " ", show_window = False, dpi = 120, title = "", error = False, control = ['control'], cmap = "winter_r", window_color = 'hotpink', proteins = [], compounds = [], marker = 'o', unique_markers = False, marker_list = ["o", "^", "s", "D", "p", "*", "v"], show_control = True): """Plots each mean condition versus time, for either each plate or over all plates, for each compound and protein. If no title is desired, set title to " ". :param plate_number: If True, plate number is added to each plot title, default = True :type plate_number: bool :param data_type: Data to be plotted, either 'ratio' or 'baseline_corrected' :type data_type: str :param show_window: If 'True', shows the window from which the plateau for each condition is calculated, default = False :type show_window: bool :param dpi: Size of figure, default = 120 :type dpi: int :param title: Title of plot ADD LIST OF TITLES? :type title: str :param error: If True, plots error bars for each mean condition, default =
not in kwargs.keys(): e.code.CodingError( msgs=[ f"The yaml_state dict loaded from file_or_text " f"does has parent_folder set to `..`", f"This means we do not have access to " f"parent_folder instance so please supply it " f"while Folder syncs files/folders inside it.", f"Note that if you are using from_yaml then also " f"you can supply the extra kwarg so that " f"from_dict receives it." ] ) else: yaml_state["parent_folder"] = kwargs["parent_folder"] # noinspection PyArgumentList return cls(**yaml_state) def as_dict( self ) -> t.Dict[str, m.SUPPORTED_HASHABLE_OBJECTS_TYPE]: # get dict from super _dict = super().as_dict() # if uses parent_folder if self.uses_parent_folder: # get parent folder _parent_folder = getattr(self, 'parent_folder') # if there is parent_folder update it to .. if _parent_folder == _DOT_DOT: e.code.CodingError( msgs=[ f"If loading from yaml on disk make sure that a " f"Folder is doing that un sync so that parent_folder " f"is set appropriately before calling __post_init__ on " f"StorageHashable" ] ) # modify dict so that representation is change on disc # note that this does not modify self.__dict__ ;) # we do this only when parent_folder is available _dict['parent_folder'] = _DOT_DOT # return return _dict def create_pre_runner(self): # check if already created if self.is_created: e.code.NotAllowed( msgs=[ f"Things related to hashable class {self.__class__} " f"with name `{self.name}` has already been created ...", ] ) def create(self) -> t.Any: e.code.CodingError( msgs=[ f"There is nothing to create for class {self.__class__}", F"You might need to override this method if you have " F"something to create ...", f"If you override this method make sure you override " f"corresponding `delete()` too ..." ] ) # noinspection PyUnusedLocal def create_post_runner( self, *, hooked_method_return_value: t.Any ): # ----------------------------------------------------------- 01 # The below call will create state manager files on the disk # check if .info and .config file exists i.e. state exists if self.config.is_available: e.code.CodingError( msgs=[ f"Looks like you have updated config before this parent " f"create_post_runner was called.", f"Try to make updates to config after the config is " f"created the parent create_post_runner by calling sync()" ] ) if self.info.is_available: e.code.CodingError( msgs=[ f"looks like info file for this StorageHashable is " f"already present", f"As files were just created we expect that this state " f"file should not be present ..." ] ) # redundant _ = self.is_created # ----------------------------------------------------------- 02 # sync to disk ... note that from here on state files will be on the # disc and the child methods that will call super can take over and # modify state files like config self.info.sync() self.config.sync() # ----------------------------------------------------------- 03 # also sync the created on ... note that config can auto sync on # update to its fields self.config.created_on = datetime.datetime.now() # ----------------------------------------------------------- 04 # check if property updated if not self.is_created: e.code.NotAllowed( msgs=[ f"Did you forget to update appropriately the things in " f"`create()` method of {self.__class__}", f"Property `self.is_created` should return `True` as " f"things are now created." ] ) # noinspection PyUnusedLocal def delete_pre_runner(self, *, force: bool = False): # check if already created if not self.is_created: e.code.NotAllowed( msgs=[ f"Things related to hashable class {self.__class__} are " f"not created ..." ] ) def delete(self, *, force: bool = False) -> t.Any: e.code.CodingError( msgs=[ f"There is nothing to delete for class {self.__class__}", F"You might need to override this method if you have " F"something to delete ...", f"You only `delete()` if you create something in `create()`" ] ) # noinspection PyUnusedLocal def delete_post_runner( self, *, hooked_method_return_value: t.Any ): # delete state files as they were created along with the # files for this StorageHashable in create_post_runner self.info.delete() self.config.delete() # also delete the empty path folder if util.io_is_dir_empty(self.path): self.path.rmdir() else: e.code.CodingError( msgs=[ f"All the files inside folder should be deleted by now ...", f"Expected path dir to be empty", f"Check path {self.path}" ] ) # check if property updated if self.is_created: e.code.NotAllowed( msgs=[ f"Did you forget to update appropriately the things in " f"`delete()` method of {self.__class__}", f"Property `self.is_created` should return `False` as " f"things are now deleted." ] ) # if parent_folder is there try to remove item from the tracking dict # items if self.uses_parent_folder: # get parent folder _parent_folder = getattr(self, 'parent_folder') # if parent folder can track then delete items that it has tracked if _parent_folder.contains is not None: # just do sanity check if we are having same item if id(self) != id(_parent_folder.items[self.name]): e.code.CodingError( msgs=[ f"We expect these objects to be same ... " f"make sure to add item using " f"parent_folder.add_item() method for integrity" ] ) # in init() we added self by calling # self.parent_folder.add_item(self) ... now we just remove the # item from tracking dict items so that parent folder is in sync del _parent_folder.items[self.name] # now we have removed strong reference to self in parent_folder.items # dict ... let us make this instance useless as files are deleted # hence we want to make sure any other references will fail to use # this instance ... # To achieve this we just clear out the internal __dict__ if not settings.FileHash.DEBUG_HASHABLE_STATE: self.__dict__.clear() @dataclasses.dataclass(frozen=True) class Folder(StorageHashable): """ A folder for hashable instance like Dataset or Model. Name of the folder: The name of folder is the name of the hashable it represents. The dataclass field `for_hashable` signifies the uniqueness of the folder while the `paren_folder` field super class does not affect uniqueness as the folder represented by this class is saved under it ;) Deviation from `HashableClass.name` behaviour: You might be thinking why not have have folder hex_hash as folder name. That sounds fine. But the name of folder using hashables name can in future let us use via external utilities to pick up folders only by knowing hashable and the path must be provided only once. Also parent_folder is required only to get parent folder info we can get away just by knowing the path. Note that for FileGroup the parent_folder is considered as they have even more fields and here we ignore parent_folder so that for_hashable decides the folder name We do not allow to add fields in subclass: In order that *.info files do not pollute with more info we do not allow to add fields to Folder class while subclassing. In case you want more info please use *.config file via Folder.config property The contains property: Indicates what will stored in this Folder When parent_folder is None override path This behaviour is borrowed from super class and well suits the requirement for Folder class Made up of three things + <hash>.info - when loaded gives out Folder object with hashable instance object + <hash>.config - the access info + <hash> folder - A folder inside which you can have folder's or file_group's """ for_hashable: t.Union[str, m.HashableClass] @property def name(self) -> str: """ Do not override. NOTE this also happens to be name of the folder Note that for Folder the uniqueness is completely decided by self.for_hashable field. If self.for_hashable is str then the user is not using hashable and simply wants to create folder with some specific name We use self.for_hashable.name as name of the folder. Remember that name is to be unique across hashable. By default the name returns hex_hash but when you override it to return string the user need to take care that it is unique for each instance of that class. Note that FileGroup considers parent_folder while creating name but here we ignore as there are no extra fields we will define here. Also we want fo_hashable to dictate things in Folder like the name of folder created on disk. """ # the name is dictated by for_hashable as we will not allow any # fields in Folder (check validation) # This is unlike FileGroup where all fields decide name ... this si # because in FileGroup we intend to have more fields
<reponame>inkmonk/flask-sqlalchemy-plus # from sqlalchemy import func from __future__ import absolute_import from toolspy import subdict, remove_and_mark_duplicate_dicts, merge from sqlalchemy.ext.associationproxy import AssociationProxyInstance from sqlalchemy.ext.orderinglist import OrderingList from sqlalchemy.orm import class_mapper from sqlalchemy.sql.schema import UniqueConstraint import six from six.moves import range from ..utils import cast_as_column_type class QueryableMixin(object): """Contains all querying methods. Used for common ORM operations Attributes: _no_overwrite_(list): The list of attributes that should not be overwritten. """ _no_overwrite_ = [] _prevent_primary_key_initialization_ = True _prevent_primary_key_updation_ = True _fields_forbidden_from_being_set_ = None allow_updation_based_on_unique_keys = False @classmethod def is_a_to_many_rel(cls, attr): return attr in cls.__mapper__.relationships and cls.__mapper__.relationships[attr].uselist @classmethod def is_a_to_one_rel(cls, attr): return attr in cls.__mapper__.relationships and not cls.__mapper__.relationships[attr].uselist @classmethod def columns(cls): return [c for c in class_mapper(cls).columns] @classmethod def unique_columns(cls): return [c for c in cls.columns() if c.unique] @classmethod def unique_column_names(cls): return [c.key for c in cls.unique_columns()] @classmethod def table(cls): return cls.__table__ @classmethod def constraints(cls): return cls.table().constraints @classmethod def unique_constraints(cls): return [ c for c in cls.constraints() if isinstance(c, UniqueConstraint)] @classmethod def unique_constraint_col_name_tuples(cls): return [c.columns.keys() for c in cls.unique_constraints()] @classmethod def primary_key_name(cls): return cls.__mapper__.primary_key[0].key @classmethod def primary_key(cls): return getattr(cls, cls.primary_key_name()) def primary_key_value(self): return getattr(self, self.primary_key().name) @classmethod def column_names(cls): return list(cls.__mapper__.columns.keys()) @classmethod def is_the_primary_key(cls, attr): return attr == cls.primary_key_name() @classmethod def mapped_rel_class(cls, attr): mapped_rel = next( r for r in cls.__mapper__.relationships if r.key == attr) return mapped_rel.mapper.class_ def update_without_commit(self, **kwargs): cls = type(self) kwargs = cls.pre_save_adapter(kwargs, existing_instance=self) kwargs = self._prepare_data_for_saving(kwargs) for key, value in six.iteritems(kwargs): if key not in cls.all_settable_keys(): continue if not hasattr(cls, key) or isinstance(getattr(cls, key), property): continue if key not in self._no_overwrite_: try: setattr(self, key, value) except Exception as e: print(key, value, e.message) raise if isinstance(getattr(self, key), OrderingList): getattr(self, key).reorder() elif isinstance(getattr(cls, key), AssociationProxyInstance): target_name = getattr(cls, key).target_collection target_rel = getattr(self, target_name) if isinstance(target_rel, OrderingList): target_rel.reorder() return self def commit(self): """Commits a transaction. """ self.session.commit() def save(self): """Saves a model instance to db. Examples: >>> customer = Customer.new(name="hari") >>> customer.save() """ self.session.add(self) self.session.commit() def delete(self, commit=True): """Deletes a model instance. Examples: >>> customer.delete() """ self.session.delete(self) if commit: self.session.commit() def _isinstance(self, model, raise_error=True): """Checks if the specified model instance matches the class model. By default this method will raise a `ValueError` if the model is not of expected type. Args: model (Model) : The instance to be type checked raise_error (bool) : Flag to specify whether to raise error on type check failure Raises: ValueError: If `model` is not an instance of the respective Model class """ rv = isinstance(model, self.__model__) if not rv and raise_error: raise ValueError('%s is not of type %s' % (model, self.__model__)) return rv @classmethod def rollback_session(cls): cls.session.rollback() @classmethod def _prepare_data_for_saving(cls, kwargs): """Returns a preprocessed dictionary of parameters. Use this to filter the kwargs passed to `new`, `create`, `build` methods. Args: **kwargs: a dictionary of parameters """ # kwargs.pop('csrf_token', None) attrs_to_delete = [] for attr, val in kwargs.items(): if cls.is_the_primary_key(attr) and cls._prevent_primary_key_initialization_: attrs_to_delete.append(attr) # del kwargs[attr] continue if val == "": # Making an assumption that there is no good usecase # for setting an empty string. This will help prevent # cases where empty string is sent because of client # not clearing form fields to null kwargs[attr] = None continue if attr in class_mapper(cls).relationships and attr not in cls._no_overwrite_: rel = class_mapper(cls).relationships[attr] if rel.uselist: if isinstance(val, list): if all(isinstance(v, dict) for v in val): rel_cls = cls.mapped_rel_class(attr) kwargs[attr] = rel_cls.update_or_new_all( list_of_kwargs=val, keys=None if rel_cls.allow_updation_based_on_unique_keys else [ rel_cls.primary_key_name()] ) elif isinstance(val, dict): rel_cls = cls.mapped_rel_class(attr) mapping_col = rel.collection_class().keyfunc.name list_of_kwargs = [ merge(v, {mapping_col: k}) for k, v in val.items()] kwargs[attr] = { getattr(obj, mapping_col): obj for obj in rel_cls.update_or_new_all( list_of_kwargs=list_of_kwargs, keys=None if rel_cls.allow_updation_based_on_unique_keys else [ rel_cls.primary_key_name()] )} elif isinstance(val, dict): rel_cls = cls.mapped_rel_class(attr) if not rel_cls.allow_updation_based_on_unique_keys: val['keys'] = [rel_cls.primary_key_name()] kwargs[attr] = rel_cls.update_or_new(**val) for attr in attrs_to_delete: del kwargs[attr] return kwargs @classmethod def pre_save_adapter(cls, data, existing_instance=None): return data def clone(self, dict_struct=None, commit=True): def remove_primary_keys_from_dict_struct(klass, ds): pk = klass.primary_key_name() if "attrs" not in ds: ds['attrs'] = list(class_mapper(klass).columns.keys()) if 'attrs' in ds and pk in ds['attrs']: ds['attrs'].remove(pk) if 'rels' in ds: for rel_name in ds['rels']: mapped_rel = next( r for r in class_mapper(klass).relationships if r.key == rel_name) rel_class = mapped_rel.mapper.class_ ds['rels'][rel_name] = remove_primary_keys_from_dict_struct( rel_class, ds['rels'][rel_name]) return ds cls = self.__class__ if dict_struct is None: dict_struct = {} dict_struct = remove_primary_keys_from_dict_struct(cls, dict_struct) return cls.add( cls.new(**self.todict(dict_struct=dict_struct)), commit=commit) def update(self, **kwargs): """Updates an instance. Args: **kwargs : Arbitrary keyword arguments. Column names are keywords and their new values are the values. Examples: >>> customer.update(email="<EMAIL>", name="new") """ cls = type(self) kwargs = cls.pre_save_adapter(kwargs, existing_instance=self) kwargs = self._prepare_data_for_saving(kwargs) for key, value in six.iteritems(kwargs): if not hasattr(cls, key) or isinstance(getattr(cls, key), property): continue if key not in self._no_overwrite_: try: setattr(self, key, value) except Exception as e: print(key, value, e.message) raise if isinstance(getattr(self, key), OrderingList): getattr(self, key).reorder() elif isinstance(getattr(cls, key), AssociationProxyInstance): target_name = getattr(cls, key).target_collection target_rel = getattr(self, target_name) if isinstance(target_rel, OrderingList): target_rel.reorder() try: self.session.commit() return self except Exception as e: self.session.rollback() raise e @classmethod def filter_by(cls, **kwargs): """Same as SQLAlchemy's filter_by. Additionally this accepts two special keyword arguments `limit` and `reverse` for limiting the results and reversing the order respectively. Args: **kwargs: filter parameters Examples: >>> user = User.filter_by(email="<EMAIL>") >>> shipments = Shipment.filter_by(country="India", limit=3, reverse=True) """ limit = kwargs.pop('limit', None) reverse = kwargs.pop('reverse', False) q = cls.query.filter_by(**kwargs) if reverse: q = q.order_by(cls.id.desc()) if limit: q = q.limit(limit) return q @classmethod def filter(cls, *criterion, **kwargs): """Same as SQLAlchemy's filter. Additionally this accepts two special keyword arguments `limit` and `reverse` for limiting the results and reversing the order respectively. Args: **kwargs: filter parameters Examples: >>> user = User.filter(User.email=="<EMAIL>") >>> shipments = Order.filter(Order.price < 500, limit=3, reverse=True) """ limit = kwargs.pop('limit', None) reverse = kwargs.pop('reverse', False) q = cls.query.filter_by(**kwargs).filter(*criterion) if reverse: q = q.order_by(cls.id.desc()) if limit: q = q.limit(limit) return q @classmethod def count(cls, *criterion, **kwargs): """Returns a count of the instances meeting the specified filter criterion and kwargs. Examples: >>> User.count() 500 >>> User.count(country="India") 300 >>> User.count(User.age > 50, country="India") 39 """ if criterion or kwargs: return cls.filter( *criterion, **kwargs).count() else: return cls.query.count() @classmethod def all(cls, *criterion, **kwargs): """Returns all the instances which fulfil the filtering criterion and kwargs if any given. Examples: >>> Tshirt.all() [tee1, tee2, tee4, tee5] >> Tshirt.all(reverse=True, limit=3) [tee5, tee4, tee2] >> Tshirt.all(color="Red") [tee4, tee2] """ return cls.filter(*criterion, **kwargs).all() @classmethod def first(cls, *criterion, **kwargs): """Returns the first instance found of the model class filtered by the specified criterion and/or key word arguments. Return None if no result found. Examples: >>> will = User.first(name="Will") """ return cls.filter(*criterion, **kwargs).first() @classmethod def one(cls, *criterion, **kwargs): """Similar to `first`. But throws an exception if no result is found. Examples: >>> user = User.one(name="here") Raises: NoResultFound: No row was found for one() """ return cls.filter(*criterion, **kwargs).one() @classmethod def last(cls, *criterion, **kwargs): """Returns the last instance matching the criterion and/or keyword arguments. Examples: last_male_user = User.last(gender="male") """ kwargs['reverse'] = True return cls.first(*criterion, **kwargs) @classmethod def new(cls, **kwargs): """Returns a new, unsaved instance of the model class. """ kwargs = cls.pre_save_adapter(kwargs) if cls.__mapper__.polymorphic_on is not None: discriminator_key = cls.__mapper__.polymorphic_on.name discriminator_val = kwargs.get(discriminator_key) if discriminator_val is not None and discriminator_val in cls.__mapper__.polymorphic_map: actual_cls = cls.__mapper__.polymorphic_map[discriminator_val].class_ return actual_cls( **subdict( actual_cls._prepare_data_for_saving(kwargs), actual_cls.all_settable_keys()) ) return cls(**subdict(cls._prepare_data_for_saving(kwargs), cls.all_settable_keys())) @classmethod def add(cls, model, commit=True): """Adds a model instance to session and commits the transaction. Args: model: The instance to add. Examples: >>> customer = Customer.new(name="hari", email="<EMAIL>") >>> Customer.add(customer) <EMAIL> """ if not isinstance(model, cls): raise ValueError('%s is not of type %s' % (model, cls)) cls.session.add(model) try: if commit: cls.session.commit() return model except: cls.session.rollback() raise @classmethod def add_all(cls, models, commit=True, check_type=False): """Batch method for adding a list of model instances to the db in one get_or_404. Args: models (list): A list of the instances to add. commit (bool, optional): Defaults to True. If False, the transaction won't get committed. check_type (bool, optional) : If True, each instance is type checked and exception is thrown if it is not an instance of the model. By default, False. Returns: list: A list of
# check the standard deviation of the transformed feature # we set ddof to 1 so that np.std gave the same result as pandas .std # we also set the tolerance limit to account for cases where std # is computed as a very low decimal rather than 0 # We only do this for the training set. if exclude_zero_sd: feature_sd = np.std(transformed_feature, ddof=1) if np.isclose(feature_sd, 0, atol=1e-07): raise ValueError("The standard deviation for " "feature {} is 0 after pre-processing. " "Please exclude this feature and re-run " "the experiment.".format(feature_name)) return transformed_feature def preprocess_features(self, df_train, df_test, df_feature_specs, standardize_features=True, use_truncations=False): """ Pre-process those features in the given training and testing data frame `df` whose specifications are contained in `feature_specs`. Also return a third data frame containing the feature specs themselves. Parameters ---------- df_train : pandas DataFrame Data frame containing the raw feature values for the training set. df_test : pandas DataFrame Data frame containing the raw feature values for the test set. df_feature_specs : pandas DataFrame Data frame containing the various specifications from the feature file. standardize_features : bool, optional Whether to standardize the features Defaults to True. use_truncations : bool, optional Whether we should use the truncation set for removing outliers. Defaults to False. Returns ------- df_train_preprocessed : pd.DataFrame DataFrame with preprocessed training data df_test_preprocessed : pd.DataFrame DataFrame with preprocessed test data df_feature_info : pd.DataFrame DataFrame with feature information """ # keep the original data frames and make copies # that only include features used in the model df_train_preprocessed = df_train.copy() df_test_preprocessed = df_test.copy() # we also need to create a data frame that includes # all relevant information about each feature df_feature_info = pd.DataFrame() # make feature the index of df_feature_specs df_feature_specs.index = df_feature_specs['feature'] # if we are should be using truncations, then we create the truncations # set from the feature specifications if use_truncations: truncations = df_feature_specs[['feature', 'min', 'max']].set_index('feature') else: truncations = None # now iterate over each feature for feature_name in df_feature_specs['feature']: feature_transformation = df_feature_specs.at[feature_name, 'transform'] feature_sign = df_feature_specs.at[feature_name, 'sign'] train_feature_mean = df_train[feature_name].mean() train_feature_sd = df_train[feature_name].std() training_feature_values = df_train[feature_name].values df_train_preprocessed[feature_name] = self.preprocess_feature(training_feature_values, feature_name, feature_transformation, train_feature_mean, train_feature_sd, exclude_zero_sd=True, truncations=truncations) testing_feature_values = df_test[feature_name].values df_test_preprocessed[feature_name] = self.preprocess_feature(testing_feature_values, feature_name, feature_transformation, train_feature_mean, train_feature_sd, truncations=truncations) # Standardize the features using the mean and sd computed on the # training set. These are computed separately because we need to # get the mean of transformed feature before standardization. train_transformed_mean = df_train_preprocessed[feature_name].mean() train_transformed_sd = df_train_preprocessed[feature_name].std() if standardize_features: df_train_without_mean = (df_train_preprocessed[feature_name] - train_transformed_mean) df_train_preprocessed[feature_name] = df_train_without_mean / train_transformed_sd df_test_without_mean = (df_test_preprocessed[feature_name] - train_transformed_mean) df_test_preprocessed[feature_name] = df_test_without_mean / train_transformed_sd # Multiply both train and test feature by sign. df_train_preprocessed[feature_name] = (df_train_preprocessed[feature_name] * feature_sign) df_test_preprocessed[feature_name] = (df_test_preprocessed[feature_name] * feature_sign) # update the feature preprocessing metadata frame df_feature = pd.DataFrame([{"feature": feature_name, "transform": feature_transformation, "sign": feature_sign, "train_mean": train_feature_mean, "train_sd": train_feature_sd, "train_transformed_mean": train_transformed_mean, "train_transformed_sd": train_transformed_sd}]) df_feature_info = df_feature_info.append(df_feature) # reset the index for the feature metadata frame # since we built it up row by row df_feature_info = df_feature_info.reset_index().drop('index', 1) # return the three data frames return (df_train_preprocessed, df_test_preprocessed, df_feature_info) def filter_data(self, df, label_column, id_column, length_column, second_human_score_column, candidate_column, requested_feature_names, reserved_column_names, given_trim_min, given_trim_max, flag_column_dict, subgroups, exclude_zero_scores=True, exclude_zero_sd=False, feature_subset_specs=None, feature_subset=None, min_candidate_items=None, use_fake_labels=False): """ Filter the data to remove rows that have zero/non-numeric values for `label_column`. If feature_names are specified, check whether any features that are specifically requested in `feature_names` are missing from the data. If no feature_names are specified, these are generated based on column names and subset information, if available. The function then excludes non-numeric values for any feature. If the user requested to exclude candidates with less than min_items_per_candidates, such candidates are excluded. It also generates fake labels between 1 and 10 if `use_fake_parameters` is set to True. Finally, it renames the id and label column and splits the data into the data frame with feature values and score label, the data frame with information about subgroup and candidate (metadata) and the data frame with all other columns. Parameters ---------- df : pd.DataFrame The DataFrame to filter. label_column : str The label column in the data. id_column : str The ID column in the data. length_column : str The length column in the data. second_human_score_column : str The second human score column in the data. candidate_column : str The candidate column in the data. requested_feature_names : list A list of requested feature names. reserved_column_names : list A list of reserved column names. given_trim_min : float The minimum trim value. given_trim_max : float The maximum trim value. flag_column_dict : dict A dictionary of flag columns. subgroups : list, optional A list of subgroups, if any. exclude_zero_scores : bool Whether to exclude zero scores. Defaults to True. exclude_zero_sd : bool, optional Whether to exclude zero standard deviation. Defaults to False. feature_subset_specs : pd.DataFrame, optional The feature_subset_specs DataFrame Defaults to None. feature_subset : str, optional The feature subset group (e.g. 'A'). Defaults to None. min_candidate_items : int, optional The minimum number of items needed to include candidate. Defaults to None use_fake_labels : bool, optional Whether to use fake labels. Defaults to None. Returns ------- df_filtered_features : pd.DataFrame DataFrame with filtered features df_filtered_metadata : pd.DataFrame DataFrame with filtered metadata df_filtered_other_columns : pd.DataFrame DataFrame with other columns filtered df_excluded : pd.DataFrame DataFrame with excluded records df_filtered_length : pd.DataFrame DataFrame with length column(s) filtered df_filtered_human_scores : pd.DataFrame DataFrame with human scores filtered df_responses_with_excluded_flags : pd.DataFrame A DataFrame containing responses with excluded flags trim_min : float The maximum trim value trim_max : float The minimum trim value feature_names : list A list of feature names """ # make sure that the columns specified in the # config file actually exist columns_to_check = [id_column, label_column] if length_column: columns_to_check.append(length_column) if second_human_score_column: columns_to_check.append(second_human_score_column) if candidate_column: columns_to_check.append(candidate_column) missing_columns = set(columns_to_check).difference(df.columns) if missing_columns: raise KeyError("Columns {} from the config file " "do not exist in the data.".format(missing_columns)) # it is possible for the `id_column` and `candidate_column` to be # set to the same column name in the CSV file, e.g., if there is # only one response per candidate. If this happens, we neeed to # create a duplicate column for candidates or id for the downstream # processing to work as usual. if id_column == candidate_column: # if the name for both columns is `candidate`, we need to # create a separate id_column name if id_column == 'candidate': df['spkitemid'] = df['candidate'].copy() id_column = 'spkitemid' # else we create a separate `candidate` column else: df['candidate'] = df[id_column].copy() candidate_column = 'candidate' df = self.rename_default_columns(df, requested_feature_names, id_column, label_column, second_human_score_column, length_column, None, candidate_column) # check that the id_column contains unique values if df['spkitemid'].size != df['spkitemid'].unique().size: raise ValueError("The data contains duplicate response IDs in " "'{}'. Please make sure all response IDs are " "unique and re-run the tool.".format(id_column)) # Generate feature names if no specific features were requested by the user if len(requested_feature_names) == 0: feature_names = self.generate_feature_names(df, reserved_column_names, feature_subset_specs=feature_subset_specs, feature_subset=feature_subset) else: feature_names = requested_feature_names # make sure that feature names do not contain reserved column names illegal_feature_names = set(feature_names).intersection(reserved_column_names) if illegal_feature_names: raise ValueError("The following reserved " "column names cannot be " "used as feature names: '{}'. " "Please rename these columns " "and re-run the " "experiment.".format(', '.join(illegal_feature_names))) # check to make sure that the subgroup columns are all present df = FeaturePreprocessor.check_subgroups(df, subgroups) # filter out the responses based on flag columns (df_responses_with_requested_flags, df_responses_with_excluded_flags) = self.filter_on_flag_columns(df, flag_column_dict) # filter out the rows that have non-numeric or zero labels # unless we are going to generate fake labels in the first place if not use_fake_labels: (df_filtered, df_excluded) = self.filter_on_column(df_responses_with_requested_flags, 'sc1', 'spkitemid', exclude_zeros=exclude_zero_scores) # make sure that the remaining data frame is not empty if len(df_filtered) == 0: raise ValueError("No responses remaining after filtering out " "non-numeric human scores. No further analysis " "can be run. ") trim_min = given_trim_min if given_trim_min else df_filtered['sc1'].min() trim_max =
<gh_stars>10-100 import time import random import glob import argparse import logging import sys import os from PIL import Image import uuid import copy import numpy as np import carla_utils import pickle import dynamic_weather as weather import datetime import csv try: import queue except ImportError: import Queue as queue # import ipdb # st = ipdb.set_trace try: sys.path.append(glob.glob('/hdd/carla97/PythonAPI/carla/dist/carla-*%d.%d-%s.egg' % ( sys.version_info.major, sys.version_info.minor, 'win-amd64' if os.name == 'nt' else 'linux-x86_64'))[0]) except IndexError: pass import carla import carla_utils from carla_utils import ClientSideBoundingBoxes import image_converter from carla import ColorConverter as cc from carla_sync_mode import CarlaSyncMode def save_npy(data, filename): np.save(filename, data) # Built on carla_two_unique.py # can be used to spawn 2-3 vehicles ''' camR ranges: 8-14, -5,5, 1-3 ''' class CarlaMultiviewRunner(): def __init__(self, start_episode, end_episode, mod, save_dir): logging.basicConfig(format='%(levelname)s: %(message)s', level=logging.INFO) self.base_path = os.path.join(save_dir, "surveil_{}".format(mod)) if not os.path.exists(self.base_path): os.mkdir(self.base_path) self.randomize_each_camera = True self.start_frame = 0 self.start_episode = start_episode self.end_episode = end_episode self.frames_per_episode = 1 self.num_vehicles = 2 self.today = str(datetime.date.today()) self.episode_path_format = '{:s}_episode_{:0>4d}_vehicles_{:0>3d}' self.out_filename_format = '{:s}_episode_{:0>4d}_vehicles_{:0>3d}/{:s}/{:0>6d}' self.nearest_x = 2.0 self.dis_to_center = 15.0#5.0 self.height = 0.65 self.d_height = 1.0 # Camera specific params self.image_size_x = 768 self.image_size_y = 256 self.fov = 90 self.focal = self.image_size_x/(2.0*np.tan(self.fov*np.pi/360.0)) self.fps = 10 self.half_sqrt2 = np.sqrt(2)/2 self.host = "127.0.0.1" self.port = 2000 self.filterv = "vehicle.*" self.sensor_types = ['sensor.camera.rgb', 'sensor.camera.depth', 'sensor.camera.semantic_segmentation'] self.sensor_names_format = ['CameraRGB{}', 'CameraDepth{}', 'CameraSemantic{}'] self.category = {'vehicle': 0} self.calculate_camera_locations() self.visualize = True self.visual_dir = 'visual' if self.visualize and not os.path.exists(self.visual_dir): os.mkdir(self.visual_dir) def calculate_camera_locations(self): self.center = np.array([self.nearest_x+self.dis_to_center, 0.0, self.height]) self.positions = [] self.rotations = [] #hori_rs = [self.dis_to_center, self.dis_to_center, self.dis_to_center] verti_hs = [self.height+self.d_height, self.height, self.height+2*self.d_height] pitches = [-0.08/np.pi*180 for i in range(3)] #for i in [0]: #range(len(hori_rs)): #hori_r = hori_rs[0] h = 1.65 # verti_hs[1] p_angle = pitches[0] #theta = 15.0 # for angle in np.arange(5.0, 355.0, 20.0):#np.arange(0.0, 359.0, 30.0): # a_rad = angle/180.0*np.pi # scale = 1. # trans = np.zeros(3) # #pos = self.center + scale*np.array([-hori_r*np.cos(a_rad), hori_r*np.sin(a_rad), h]) + trans # pos = scale*np.array([-hori_r*np.cos(a_rad), hori_r*np.sin(a_rad), h]) + trans # self.positions.append(pos) # self.rotations.append([p_angle, -angle, 0]) # specify angles to rotate around bin_angle_size = 20.0 num_views_per_bin = 2 angles = np.arange(0, 360.0, bin_angle_size) angles = np.tile(angles, num_views_per_bin) #hori_rs = [10.0, 15.0, 20.0] # pick radii for each angle hori_rs = np.random.uniform(low=3.0, high=15.0, size=angles.shape[0]) ind = 0 for angle in angles: #np.arange(0.0, 359.0, 30.0): a_rad = angle/180.0*np.pi scale = 1. trans = np.zeros(3) hori_r = hori_rs[ind] #pos = self.center + scale*np.array([-hori_r*np.cos(a_rad), hori_r*np.sin(a_rad), h]) + trans pos = scale*np.array([-hori_r*np.cos(a_rad), hori_r*np.sin(a_rad), h]) + trans self.positions.append(pos) self.rotations.append([p_angle, -angle, 0]) ind += 1 self.K = np.identity(3) self.K[0, 2] = self.image_size_x / 2.0 self.K[1, 2] = self.image_size_y / 2.0 # use -focal to be the same as the previous version self.K[0, 0] = self.K[1, 1] = self.image_size_x / \ (2.0 * np.tan(self.fov * np.pi / 360.0)) def destroy_actors(self): print('Destroying actors.') for actor in self.vehicles_list: if actor.is_alive: actor.destroy() for actor in self.sensors_list: if actor.is_alive: actor.destroy() print("Destroyed all actors") def run_carla_client(self): # print(self.positions) # print(self.rotations) # print(self.start_episode, self.end_episode) client = carla.Client(self.host, self.port) client.set_timeout(20.0) try: self.available_maps = client.get_available_maps() print('loaded available maps') logging.info('listening to server %s:%s', self.host, self.port) num_batches = 2 for episode in range(self.start_episode, self.end_episode): print("Starting episode number %d" % episode) uuid_run = str(uuid.uuid1()) cur_map = random.choice(self.available_maps) print("About to load the map %s" %cur_map) map_name = cur_map.split('/')[-1] episode_path = os.path.join(self.base_path, self.episode_path_format.format(map_name, episode, self.num_vehicles)) if not os.path.exists(episode_path): os.mkdir(episode_path) self.world = client.load_world(cur_map) self.world.tick() # Initialize the actor lists self.vehicles_list = [] # self.sensors_list = [] # self.sensors_name = [] self.vehicle_dir_paths = [] self.actors = [] # self.position_list = [] # self.rotation_list = [] self.camR_sensor_indices = [] self.vehicle_bbox_list = [] self.vehicle_extrinsics = [] self.vehicle_names = [] world_T_agents_f = open(os.path.join(episode_path, 'world_T_agent.txt'), 'w') world_T_agents_f.write('roll,pitch,yaw\n') fcsv = open(os.path.join(episode_path, 'bboxes.csv'), 'w') csv_writer = csv.writer(fcsv) csv_writer.writerow(['episode', 'frame', 'obj_id', 'category','x','y','z','l','w','h','r','x1','y1','x2','y2','depth', 'occluded']) # Get all the blueprints blueprints = self.world.get_blueprint_library().filter(self.filterv) # remove bikes cars = [x for x in blueprints if int(x.get_attribute('number_of_wheels')) == 4] blueprints = cars #for blueprint in blueprints: #print(blueprint) # for blueprint in blueprints: # print(blueprint.id) # for attr in blueprint: # print(' - {}'.format(attr)) weather = carla.WeatherParameters( cloudiness=np.random.randint(0, 70), precipitation=np.random.randint(0, 75), sun_altitude_angle=np.random.randint(30, 90)) self.world.set_weather(weather) self.world.tick() # Get all the spawn points spawn_points = self.world.get_map().get_spawn_points() random.shuffle(spawn_points) self.spawn_vehicles(blueprints, episode_path, spawn_points) batches = list(np.floor(np.linspace(0, len(self.positions), num_batches)).astype(int)) print("BATCH INDICES: ", batches) self.idx = 0 # for naming self.positions_ = [] # actual rotations of agents self.rotations_ = [] # actual rotations of agents self.first_batch = True for batch in range(len(batches)-1): print("BATCH #", batches[batch], " to ", batches[batch+1]) self.sensors_list = [] self.sensors_name = [] self.position_list = [] self.rotation_list = [] # if batch == len(batches)-2: # positions_batch = self.positions[batches[batch]:] # rotations_batch = self.rotations[batches[batch]:] # else: positions_batch = self.positions[batches[batch]:batches[batch+1]] rotations_batch = self.rotations[batches[batch]:batches[batch+1]] print(positions_batch) print(rotations_batch) # print("SPAWN POINT: ", spawn_points[0]) self.spawn_sensors(positions_batch, rotations_batch, spawn_points[0], episode_path) # set the position relative to the first spawn point print("Done with actor creation") print("Total number of sensors are: ", len(self.sensors_list)) self.world.tick() last_saved_frame = 0 # Create a synchronous mode context. with CarlaSyncMode(self.world, self.sensors_list, fps=self.fps) as sync_mode: cnt = 0 for v in self.vehicles_list: # print("Bounding box for this vehicle is: ", v.bounding_box.location, v.bounding_box.extent) bbox_loc, bbox_ext = v.bounding_box.location, v.bounding_box.extent bbox = [bbox_loc.x - bbox_ext.x, bbox_loc.y - bbox_ext.y, bbox_loc.z - bbox_ext.z, bbox_loc.x + bbox_ext.x, bbox_loc.y + bbox_ext.y, bbox_loc.z + bbox_ext.z] self.vehicle_bbox_list.append(bbox) print("bbox coords are: ", bbox) # v.set_autopilot(False) v.set_simulate_physics(False) print("VEHICLES: ", self.vehicles_list) # print("All vehicles put to autopilot") # set weather while True: print(cnt) if cnt == self.frames_per_episode + self.start_frame: print("Done with episode %d." %episode) time.sleep(5) break # self.world.tick() # print("Getting the data") # Advance the simulation and wait for the data. data, frame = sync_mode.tick(timeout=12.0) # print('Got the data :))') if self.first_batch: frame_a = frame #frame += batches[batch] print("FRAME ", frame_a) if cnt >= self.start_frame: data = data[1:] # Remove the world tick datapoint valid = self.save_data(data, episode, frame_a, episode_path, world_T_agents_f, csv_writer) if not valid: print("throwing out view ", cnt, " due to depth") cnt += 1 for actor in self.sensors_list: if actor.is_alive: # print("ALIVE! ", actor) actor.destroy() self.first_batch = False # these are the translation relative to the first spawn point # print("ALL POSITIONS", self.positions_) # print("LENGTH ", len(self.positions_)) # print("ALL ROTATIONS", self.rotations_) # print("LENGTH ", len(self.rotations_)) save_npy(np.array(self.positions_), os.path.join(episode_path, 'all_cam_positions')) save_npy(np.array(self.rotations_), os.path.join(episode_path, 'all_cam_rotations')) except Exception as e: print(e) finally: #self.world.destroy() # for actor in self.world.get_actors().filter("vehicle*"): # if actor.is_alive: # #print("2", actor) # #sys.stdout.write('2') # actor.destroy() # for actor in self.sensors_list: # if actor.is_alive: # #print("5", actor) # #sys.stdout.write('5') # actor.destroy() client.apply_batch([carla.command.DestroyActor(x) for x in self.world.get_actors().filter("vehicle*")]) client.apply_batch([carla.command.DestroyActor(x) for x in self.sensors_list]) # self.destroy_actors() def save_data(self, data, episode, framenum, episode_path, world_T_agents_f, csv_writer): # Check if too many occlusions (e.g. in a wall) # for idx, name in enumerate(self.sensors_name): # if "Depth" in name: # data_instance = data[idx] # processed_data = image_converter.depth_in_meters(data_instance) # valid = self.check_depth(processed_data) # if valid == 0: # return False # Save data #print("SENSOR LENGTH:", len(self.sensors_name)) #print("SENSOR NAMES:", self.sensors_name) for idx, name in enumerate(self.sensors_name): camera_path = os.path.join(episode_path, name) if not os.path.exists(camera_path): os.mkdir(camera_path) if not os.path.exists(os.path.join(episode_path, 'boxes')): os.mkdir(os.path.join(episode_path, 'boxes')) data_instance = data[idx] if "RGB" in name: processed_data = image_converter.to_rgb_array(data_instance) elif "Depth" in name: processed_data = image_converter.depth_in_meters(data_instance) #valid = self.get_valid_view(processed_data) # print("DEPTH") # print(processed_data.shape) #print(processed_data) elif "Semantic" in name: # TODO: handle R channel properly here. print("SEMANTIC") # print(data_instance.shape) # print(data_instance) #print(np.unique(data_instance, axis=0)) processed_data = image_converter.to_rgb_array(data_instance) print(processed_data.shape) print(np.unique(processed_data[:,:,0])) # data_instance.convert(cc.CityScapesPalette) # #data_instance.save_to_disk(os.path.join(self.visual_dir, 'img_e{:0>4d}_{:s}_f{:0>4d}.png'.format(0, name, framenum)),carla.ColorConverter.CityScapesPalette) # #processed_data = image_converter.to_rgb_array(data_instance) # print(processed_data.shape) # print(np.unique(processed_data[:,:,0])) # get segmentation sensor = self.sensors_list[idx] corners_cam, corners_cam_unproject, w2c, v2w = ClientSideBoundingBoxes.get_bounding_boxes(self.vehicles_list, sensor, self.K) c2w = np.linalg.inv(w2c) v2w = np.concatenate(v2w, axis=0) masks = [] for obj_ind in range(len(corners_cam)): # get 2D bounding box xmin = int(np.min(corners_cam[obj_ind][:,0])) xmax = int(np.max(corners_cam[obj_ind][:,0])) ymin = int(np.min(corners_cam[obj_ind][:,1])) ymax = int(np.max(corners_cam[obj_ind][:,1])) if ymin < 0: ymin = 0 elif ymax > self.image_size_y: ymax = self.image_size_y if xmin < 0: xmin = 0 elif xmax > self.image_size_x: xmax = self.image_size_x veh_id = 10 # vehicle segmentation ID for semantic sensor # get segmentation mask img = processed_data.copy() img2 = processed_data.copy() img2 = img2[ymin:ymax, xmin:xmax, :] #print(np.unique(img2[:,:,0])) img2[img2!=veh_id] = 0.0 #print(np.sum(img2[:,:,:]==10)) img2[img2[:,:,0]==veh_id, :] = 1.0 #print(np.sum(img2==255)) img[:,:,:] = 0.0 img[ymin:ymax, xmin:xmax,
<reponame>sunny-shu/libgo # Status: being ported by Steven Watanabe # Base revision: 47077 # TODO: common.jam needs to be ported # TODO: generators.jam needs to have register_c_compiler. # # Copyright 2001 <NAME>. # Copyright 2002-2006 <NAME>. # Copyright 2002-2003 <NAME>. # Copyright (c) 2005 <NAME>. # Copyright 2006 <NAME>. # Copyright 2007 <NAME> # Copyright 2007 <NAME>. # Copyright 2008 <NAME> # # Distributed under the Boost Software License, Version 1.0. # (See accompanying file LICENSE_1_0.txt or copy at # http://www.boost.org/LICENSE_1_0.txt) import os import subprocess import re import bjam from b2.tools import unix, common, rc, pch, builtin from b2.build import feature, type, toolset, generators, property_set from b2.build.property import Property from b2.util.utility import os_name, on_windows from b2.manager import get_manager from b2.build.generators import Generator from b2.build.toolset import flags from b2.util.utility import to_seq __debug = None def debug(): global __debug if __debug is None: __debug = "--debug-configuration" in bjam.variable("ARGV") return __debug feature.extend('toolset', ['gcc']) toolset.inherit_generators('gcc', [], 'unix', ['unix.link', 'unix.link.dll']) toolset.inherit_flags('gcc', 'unix') toolset.inherit_rules('gcc', 'unix') generators.override('gcc.prebuilt', 'builtin.prebuilt') generators.override('gcc.searched-lib-generator', 'searched-lib-generator') # Target naming is determined by types/lib.jam and the settings below this # comment. # # On *nix: # libxxx.a static library # libxxx.so shared library # # On windows (mingw): # libxxx.lib static library # xxx.dll DLL # xxx.lib import library # # On windows (cygwin) i.e. <target-os>cygwin # libxxx.a static library # xxx.dll DLL # libxxx.dll.a import library # # Note: user can always override by using the <tag>@rule # This settings have been choosen, so that mingw # is in line with msvc naming conventions. For # cygwin the cygwin naming convention has been choosen. # Make the "o" suffix used for gcc toolset on all # platforms type.set_generated_target_suffix('OBJ', ['<toolset>gcc'], 'o') type.set_generated_target_suffix('STATIC_LIB', ['<toolset>gcc', '<target-os>cygwin'], 'a') type.set_generated_target_suffix('IMPORT_LIB', ['<toolset>gcc', '<target-os>cygwin'], 'dll.a') type.set_generated_target_prefix('IMPORT_LIB', ['<toolset>gcc', '<target-os>cygwin'], 'lib') __machine_match = re.compile('^([^ ]+)') __version_match = re.compile('^([0-9.]+)') def init(version = None, command = None, options = None): """ Initializes the gcc toolset for the given version. If necessary, command may be used to specify where the compiler is located. The parameter 'options' is a space-delimited list of options, each one specified as <option-name>option-value. Valid option names are: cxxflags, linkflags and linker-type. Accepted linker-type values are gnu, darwin, osf, hpux or sun and the default value will be selected based on the current OS. Example: using gcc : 3.4 : : <cxxflags>foo <linkflags>bar <linker-type>sun ; """ options = to_seq(options) command = to_seq(command) # Information about the gcc command... # The command. command = to_seq(common.get_invocation_command('gcc', 'g++', command)) # The root directory of the tool install. root = feature.get_values('<root>', options) ; # The bin directory where to find the command to execute. bin = None # The flavor of compiler. flavor = feature.get_values('<flavor>', options) # Autodetect the root and bin dir if not given. if command: if not bin: bin = common.get_absolute_tool_path(command[-1]) if not root: root = os.path.dirname(bin) # Autodetect the version and flavor if not given. if command: machine_info = subprocess.Popen(command + ['-dumpmachine'], stdout=subprocess.PIPE).communicate()[0] machine = __machine_match.search(machine_info).group(1) version_info = subprocess.Popen(command + ['-dumpversion'], stdout=subprocess.PIPE).communicate()[0] version = __version_match.search(version_info).group(1) if not flavor and machine.find('mingw') != -1: flavor = 'mingw' condition = None if flavor: condition = common.check_init_parameters('gcc', None, ('version', version), ('flavor', flavor)) else: condition = common.check_init_parameters('gcc', None, ('version', version)) if command: command = command[0] common.handle_options('gcc', condition, command, options) linker = feature.get_values('<linker-type>', options) if not linker: if os_name() == 'OSF': linker = 'osf' elif os_name() == 'HPUX': linker = 'hpux' ; else: linker = 'gnu' init_link_flags('gcc', linker, condition) # If gcc is installed in non-standard location, we'd need to add # LD_LIBRARY_PATH when running programs created with it (for unit-test/run # rules). if command: # On multilib 64-bit boxes, there are both 32-bit and 64-bit libraries # and all must be added to LD_LIBRARY_PATH. The linker will pick the # right onces. Note that we don't provide a clean way to build 32-bit # binary with 64-bit compiler, but user can always pass -m32 manually. lib_path = [os.path.join(root, 'bin'), os.path.join(root, 'lib'), os.path.join(root, 'lib32'), os.path.join(root, 'lib64')] if debug(): print 'notice: using gcc libraries ::', condition, '::', lib_path toolset.flags('gcc.link', 'RUN_PATH', condition, lib_path) # If it's not a system gcc install we should adjust the various programs as # needed to prefer using the install specific versions. This is essential # for correct use of MinGW and for cross-compiling. # - The archive builder. archiver = common.get_invocation_command('gcc', 'ar', feature.get_values('<archiver>', options), [bin], path_last=True) toolset.flags('gcc.archive', '.AR', condition, [archiver]) if debug(): print 'notice: using gcc archiver ::', condition, '::', archiver # - Ranlib ranlib = common.get_invocation_command('gcc', 'ranlib', feature.get_values('<ranlib>', options), [bin], path_last=True) toolset.flags('gcc.archive', '.RANLIB', condition, [ranlib]) if debug(): print 'notice: using gcc archiver ::', condition, '::', ranlib # - The resource compiler. rc_command = common.get_invocation_command_nodefault('gcc', 'windres', feature.get_values('<rc>', options), [bin], path_last=True) rc_type = feature.get_values('<rc-type>', options) if not rc_type: rc_type = 'windres' if not rc_command: # If we can't find an RC compiler we fallback to a null RC compiler that # creates empty object files. This allows the same Jamfiles to work # across the board. The null RC uses the assembler to create the empty # objects, so configure that. rc_command = common.get_invocation_command('gcc', 'as', [], [bin], path_last=True) rc_type = 'null' rc.configure(rc_command, condition, '<rc-type>' + rc_type) ###if [ os.name ] = NT ###{ ### # This causes single-line command invocation to not go through .bat files, ### # thus avoiding command-line length limitations. ### JAMSHELL = % ; ###} #FIXME: when register_c_compiler is moved to # generators, these should be updated builtin.register_c_compiler('gcc.compile.c++', ['CPP'], ['OBJ'], ['<toolset>gcc']) builtin.register_c_compiler('gcc.compile.c', ['C'], ['OBJ'], ['<toolset>gcc']) builtin.register_c_compiler('gcc.compile.asm', ['ASM'], ['OBJ'], ['<toolset>gcc']) # pch support # The compiler looks for a precompiled header in each directory just before it # looks for the include file in that directory. The name searched for is the # name specified in the #include directive with ".gch" suffix appended. The # logic in gcc-pch-generator will make sure that BASE_PCH suffix is appended to # full name of the header. type.set_generated_target_suffix('PCH', ['<toolset>gcc'], 'gch') # GCC-specific pch generator. class GccPchGenerator(pch.PchGenerator): # Inherit the __init__ method def run_pch(self, project, name, prop_set, sources): # Find the header in sources. Ignore any CPP sources. header = None for s in sources: if type.is_derived(s.type(), 'H'): header = s # Error handling: Base header file name should be the same as the base # precompiled header name. header_name = header.name() header_basename = os.path.basename(header_name).rsplit('.', 1)[0] if header_basename != name: location = project.project_module ###FIXME: raise Exception() ### errors.user-error "in" $(location)": pch target name `"$(name)"' should be the same as the base name of header file `"$(header-name)"'" ; pch_file = Generator.run(self, project, name, prop_set, [header]) # return result of base class and pch-file property as usage-requirements # FIXME: what about multiple results from generator.run? return (property_set.create([Property('pch-file', pch_file[0]), Property('cflags', '-Winvalid-pch')]), pch_file) # Calls the base version specifying source's name as the name of the created # target. As result, the PCH will be named whatever.hpp.gch, and not # whatever.gch. def generated_targets(self, sources, prop_set, project, name = None): name = sources[0].name() return Generator.generated_targets(self, sources, prop_set, project, name) # Note: the 'H' source type will catch both '.h' header and '.hpp' header. The # latter have HPP type, but HPP type is derived from H. The type of compilation # is determined entirely by the destination type. generators.register(GccPchGenerator('gcc.compile.c.pch', False, ['H'], ['C_PCH'], ['<pch>on', '<toolset>gcc' ])) generators.register(GccPchGenerator('gcc.compile.c++.pch', False, ['H'], ['CPP_PCH'], ['<pch>on', '<toolset>gcc' ])) # Override default do-nothing generators. generators.override('gcc.compile.c.pch', 'pch.default-c-pch-generator') generators.override('gcc.compile.c++.pch', 'pch.default-cpp-pch-generator') flags('gcc.compile', 'PCH_FILE', ['<pch>on'], ['<pch-file>']) # Declare flags and action for compilation flags('gcc.compile', 'OPTIONS', ['<optimization>off'], ['-O0']) flags('gcc.compile', 'OPTIONS', ['<optimization>speed'], ['-O3']) flags('gcc.compile', 'OPTIONS', ['<optimization>space'], ['-Os']) flags('gcc.compile', 'OPTIONS', ['<inlining>off'], ['-fno-inline']) flags('gcc.compile', 'OPTIONS', ['<inlining>on'], ['-Wno-inline']) flags('gcc.compile', 'OPTIONS', ['<inlining>full'], ['-finline-functions', '-Wno-inline']) flags('gcc.compile', 'OPTIONS', ['<warnings>off'], ['-w']) flags('gcc.compile', 'OPTIONS', ['<warnings>on'], ['-Wall']) flags('gcc.compile', 'OPTIONS', ['<warnings>all'], ['-Wall', '-pedantic']) flags('gcc.compile', 'OPTIONS', ['<warnings-as-errors>on'], ['-Werror']) flags('gcc.compile', 'OPTIONS', ['<debug-symbols>on'], ['-g']) flags('gcc.compile', 'OPTIONS', ['<profiling>on'], ['-pg']) flags('gcc.compile.c++', 'OPTIONS', ['<rtti>off'], ['-fno-rtti']) flags('gcc.compile.c++', 'OPTIONS', ['<exception-handling>off'], ['-fno-exceptions']) # On cygwin and mingw, gcc generates position independent code by default, and # warns if -fPIC is specified. This might not be the right way of checking if # we're using cygwin. For example, it's possible to run cygwin gcc from NT # shell, or using crosscompiling. But we'll solve that problem when it's time. # In that case we'll just add another parameter to 'init' and move this login # inside 'init'. if not os_name () in ['CYGWIN', 'NT']: # This logic will add -fPIC for all compilations: # # lib a : a.cpp b ; # obj b : b.cpp ; # exe c : c.cpp a d ; # obj d : d.cpp ; # # This all is fine, except that 'd' will be compiled with
""" Data objects in group "Performance Tables" """ from collections import OrderedDict import logging from pyidf.helper import DataObject logger = logging.getLogger("pyidf") logger.addHandler(logging.NullHandler()) class TableOneIndependentVariable(DataObject): """ Corresponds to IDD object `Table:OneIndependentVariable` Allows entry of tabular data pairs as alternate input for performance curve objects. Performance curve objects can be created using these inputs. Linear Table Equation: Output = a + bX Linear solution requires a minimum of 2 data pairs Quadratic Table Equation: Output = a + b*X + c*X**2 Quadratic solution requires a minimum of 3 data pairs Cubic Table Equation: Output = a + b*X + c* X**2 + d*X**3 Cubic solution requires a minimum of 4 data pairs Quartic Table Equation: Output = a + b*X + c* X**2 + d*X**3 + e*X**4 Quartic solution requires a minimum of 5 data pairs Exponent Table Equation: Output = a + b*X**c Exponent solution requires a minimum of 4 data pairs """ _schema = {'extensible-fields': OrderedDict([(u'x value', {'name': u'X Value', 'pyname': u'x_value', 'required-field': False, 'autosizable': False, 'autocalculatable': False, 'type': u'real'}), (u'output value', {'name': u'Output Value', 'pyname': u'output_value', 'required-field': False, 'autosizable': False, 'autocalculatable': False, 'type': u'real'})]), 'fields': OrderedDict([(u'name', {'name': u'Name', 'pyname': u'name', 'required-field': True, 'autosizable': False, 'autocalculatable': False, 'type': u'alpha'}), (u'curve type', {'name': u'Curve Type', 'pyname': u'curve_type', 'required-field': True, 'autosizable': False, 'accepted-values': [u'Linear', u'Quadratic', u'Cubic', u'Quartic', u'Exponent'], 'autocalculatable': False, 'type': 'alpha'}), (u'interpolation method', {'name': u'Interpolation Method', 'pyname': u'interpolation_method', 'required-field': False, 'autosizable': False, 'accepted-values': [u'LinearInterpolationOfTable', u'EvaluateCurveToLimits', u'LagrangeInterpolationLinearExtrapolation'], 'autocalculatable': False, 'type': 'alpha'}), (u'minimum value of x', {'name': u'Minimum Value of X', 'pyname': u'minimum_value_of_x', 'required-field': False, 'autosizable': False, 'autocalculatable': False, 'type': u'real'}), (u'maximum value of x', {'name': u'Maximum Value of X', 'pyname': u'maximum_value_of_x', 'required-field': False, 'autosizable': False, 'autocalculatable': False, 'type': u'real'}), (u'minimum table output', {'name': u'Minimum Table Output', 'pyname': u'minimum_table_output', 'required-field': False, 'autosizable': False, 'autocalculatable': False, 'type': u'real'}), (u'maximum table output', {'name': u'Maximum Table Output', 'pyname': u'maximum_table_output', 'required-field': False, 'autosizable': False, 'autocalculatable': False, 'type': u'real'}), (u'input unit type for x', {'name': u'Input Unit Type for X', 'pyname': u'input_unit_type_for_x', 'default': u'Dimensionless', 'required-field': False, 'autosizable': False, 'accepted-values': [u'Dimensionless', u'Temperature', u'VolumetricFlow', u'MassFlow', u'Power', u'Distance'], 'autocalculatable': False, 'type': 'alpha'}), (u'output unit type', {'name': u'Output Unit Type', 'pyname': u'output_unit_type', 'default': u'Dimensionless', 'required-field': False, 'autosizable': False, 'accepted-values': [u'Dimensionless', u'Capacity', u'Power'], 'autocalculatable': False, 'type': 'alpha'}), (u'normalization reference', {'name': u'Normalization Reference', 'pyname': u'normalization_reference', 'required-field': False, 'autosizable': False, 'autocalculatable': False, 'type': u'real'})]), 'format': None, 'group': u'Performance Tables', 'min-fields': 14, 'name': u'Table:OneIndependentVariable', 'pyname': u'TableOneIndependentVariable', 'required-object': False, 'unique-object': False} @property def name(self): """field `Name` Args: value (str): value for IDD Field `Name` Raises: ValueError: if `value` is not a valid value Returns: str: the value of `name` or None if not set """ return self["Name"] @name.setter def name(self, value=None): """Corresponds to IDD field `Name`""" self["Name"] = value @property def curve_type(self): """field `Curve Type` Args: value (str): value for IDD Field `Curve Type` Raises: ValueError: if `value` is not a valid value Returns: str: the value of `curve_type` or None if not set """ return self["Curve Type"] @curve_type.setter def curve_type(self, value=None): """Corresponds to IDD field `Curve Type`""" self["Curve Type"] = value @property def interpolation_method(self): """field `Interpolation Method` Args: value (str): value for IDD Field `Interpolation Method` Raises: ValueError: if `value` is not a valid value Returns: str: the value of `interpolation_method` or None if not set """ return self["Interpolation Method"] @interpolation_method.setter def interpolation_method(self, value=None): """Corresponds to IDD field `Interpolation Method`""" self["Interpolation Method"] = value @property def minimum_value_of_x(self): """field `Minimum Value of X` | used only when Interpolation Type is Evaluate Curve | to Limits | Units are based on field `A4` Args: value (float): value for IDD Field `Minimum Value of X` Raises: ValueError: if `value` is not a valid value Returns: float: the value of `minimum_value_of_x` or None if not set """ return self["Minimum Value of X"] @minimum_value_of_x.setter def minimum_value_of_x(self, value=None): """Corresponds to IDD field `Minimum Value of X`""" self["Minimum Value of X"] = value @property def maximum_value_of_x(self): """field `Maximum Value of X` | used only when Interpolation Type is Evaluate Curve | to Limits | Units are based on field `A4` Args: value (float): value for IDD Field `Maximum Value of X` Raises: ValueError: if `value` is not a valid value Returns: float: the value of `maximum_value_of_x` or None if not set """ return self["Maximum Value of X"] @maximum_value_of_x.setter def maximum_value_of_x(self, value=None): """Corresponds to IDD field `Maximum Value of X`""" self["Maximum Value of X"] = value @property def minimum_table_output(self): """field `Minimum Table Output` | Specify the minimum value calculated by this table | lookup object | used only when Interpolation Type is Evaluate Curve | to Limits | Units are based on field `A5` Args: value (float): value for IDD Field `Minimum Table Output` Raises: ValueError: if `value` is not a valid value Returns: float: the value of `minimum_table_output` or None if not set """ return self["Minimum Table Output"] @minimum_table_output.setter def minimum_table_output(self, value=None): """Corresponds to IDD field `Minimum Table Output`""" self["Minimum Table Output"] = value @property def maximum_table_output(self): """field `Maximum Table Output` | Specify the maximum value calculated by this table | lookup object | used only when Interpolation Type is Evaluate Curve | to Limits | Units are based on field `A5` Args: value (float): value for IDD Field `Maximum Table Output` Raises: ValueError: if `value` is not a valid value Returns: float: the value of `maximum_table_output` or None if not set """ return self["Maximum Table Output"] @maximum_table_output.setter def maximum_table_output(self, value=None): """Corresponds to IDD field `Maximum Table Output`""" self["Maximum Table Output"] = value @property def input_unit_type_for_x(self): """field `Input Unit Type for X` | Default value: Dimensionless Args: value (str): value for IDD Field `Input Unit Type for X` Raises: ValueError: if `value` is not a valid value Returns: str: the value of `input_unit_type_for_x` or None if not set """ return self["Input Unit Type for X"] @input_unit_type_for_x.setter def input_unit_type_for_x(self, value="Dimensionless"): """Corresponds to IDD field `Input Unit Type for X`""" self["Input Unit Type for X"] = value @property def output_unit_type(self): """field `Output Unit Type` | Default value: Dimensionless Args: value (str): value for IDD Field `Output Unit Type` Raises: ValueError: if `value` is not a valid value Returns: str: the value of `output_unit_type` or None if not set """ return self["Output Unit Type"] @output_unit_type.setter def output_unit_type(self, value="Dimensionless"): """Corresponds to IDD field `Output Unit Type`""" self["Output Unit Type"] = value @property def normalization_reference(self): """field `Normalization Reference` | This field is used to normalize the following ouput data. | The minimum and maximum table output fields are also normalized. | If this field is blank or 1, the table data presented | in the following fields will be used with normalization | reference set to 1. Args: value (float): value for IDD Field `Normalization Reference` Raises: ValueError: if `value` is not a valid value Returns: float: the value of `normalization_reference` or None if not set """ return self["Normalization Reference"] @normalization_reference.setter def normalization_reference(self, value=None): """Corresponds to IDD field `Normalization Reference`""" self["Normalization Reference"] = value def add_extensible(self, x_value=None, output_value=None, ): """Add values for extensible fields. Args: x_value (float): value for IDD Field `X Value` if `value` is None it will not be checked against the specification and is assumed to be a missing value output_value (float): value for IDD Field `Output Value` if `value` is None it will not be checked against the specification and is assumed to be a missing value """ vals = [] x_value = self.check_value("X Value", x_value) vals.append(x_value) output_value = self.check_value("Output Value", output_value) vals.append(output_value) self._extdata.append(vals) @property def extensibles(self): """Get list of all extensibles.""" return self._extdata @extensibles.setter def extensibles(self, extensibles): """Replaces extensible fields with `extensibles` Args: extensibles (list): nested list of extensible values """ self._extdata = [] for ext in extensibles: self.add_extensible(*ext) class TableTwoIndependentVariables(DataObject): """ Corresponds to IDD object `Table:TwoIndependentVariables` Allows entry of tabular data pairs as alternate input for performance curve objects. Performance curve objects can be created using these inputs. BiQuadratic Table Equation: Output = a + bX + cX**2 + dY
self.args[1].value = (self.args[0].value * self.args[0].value) % program.P @base.gf2n @base.vectorize class inverse(base.DataInstruction): r""" Load secret variables $s_i$, $s_j$ and $s_k$ with the next inverse triple. """ __slots__ = [] code = base.opcodes['INV'] arg_format = ['sw','sw'] data_type = 'inverse' def execute(self): self.args[0].value = randint(0,program.P) import gmpy self.args[1].value = int(gmpy.invert(self.args[0].value, program.P)) @base.gf2n @base.vectorize class inputmask(base.Instruction): r""" Load secret $s_i$ with the next input mask for player $p$ and write the mask on player $p$'s private output. """ __slots__ = [] code = base.opcodes['INPUTMASK'] arg_format = ['sw', 'p'] field_type = 'modp' def add_usage(self, req_node): req_node.increment((self.field_type, 'input', self.args[1]), \ self.get_size()) @base.gf2n @base.vectorize class prep(base.Instruction): r""" Custom preprocessed data """ __slots__ = [] code = base.opcodes['PREP'] arg_format = tools.chain(['str'], itertools.repeat('sw')) gf2n_arg_format = tools.chain(['str'], itertools.repeat('sgw')) field_type = 'modp' def add_usage(self, req_node): req_node.increment((self.field_type, self.args[0]), 1) def has_var_args(self): return True ### ### I/O ### @base.gf2n @base.vectorize class asm_input(base.IOInstruction): r""" Receive input from player $p$ and put in register $s_i$. """ __slots__ = [] code = base.opcodes['INPUT'] arg_format = ['sw', 'p'] field_type = 'modp' def add_usage(self, req_node): req_node.increment((self.field_type, 'input', self.args[1]), \ self.get_size()) def execute(self): self.args[0].value = _python_input("Enter player %d's input:" % self.args[1]) % program.P @base.gf2n class startinput(base.RawInputInstruction): r""" Receive inputs from player $p$. """ __slots__ = [] code = base.opcodes['STARTINPUT'] arg_format = ['p', 'int'] field_type = 'modp' def add_usage(self, req_node): req_node.increment((self.field_type, 'input', self.args[0]), \ self.args[1]) class stopinput(base.RawInputInstruction): r""" Receive inputs from player $p$ and put in registers. """ __slots__ = [] code = base.opcodes['STOPINPUT'] arg_format = tools.chain(['p'], itertools.repeat('sw')) def has_var_args(self): return True class gstopinput(base.RawInputInstruction): r""" Receive inputs from player $p$ and put in registers. """ __slots__ = [] code = 0x100 + base.opcodes['STOPINPUT'] arg_format = tools.chain(['p'], itertools.repeat('sgw')) def has_var_args(self): return True @base.gf2n @base.vectorize class print_mem(base.IOInstruction): r""" Print value in clear memory \verb|C[ci]| to stdout. """ __slots__ = [] code = base.opcodes['PRINTMEM'] arg_format = ['c'] def execute(self): pass @base.gf2n @base.vectorize class print_reg(base.IOInstruction): r""" Print value of register \verb|ci| to stdout and optional 4-char comment. """ __slots__ = [] code = base.opcodes['PRINTREG'] arg_format = ['c','i'] def __init__(self, reg, comment=''): super(print_reg_class, self).__init__(reg, self.str_to_int(comment)) def execute(self): pass @base.gf2n @base.vectorize class print_reg_plain(base.IOInstruction): r""" Print only the value of register \verb|ci| to stdout. """ __slots__ = [] code = base.opcodes['PRINTREGPLAIN'] arg_format = ['c'] <EMAIL> @base.vectorize class e_print_fixed_plain(base.IOInstruction): r""" Print only the fixed value of register \verb|ci| to stdout. """ __slots__ = [] code = base.opcodes['E_PRINTFIXEDPLAIN'] arg_format = ['c', 'int'] @base.vectorize class print_float_plain(base.IOInstruction): __slots__ = [] code = base.opcodes['PRINTFLOATPLAIN'] arg_format = ['c', 'c', 'c', 'c'] class print_int(base.IOInstruction): r""" Print only the value of register \verb|ci| to stdout. """ __slots__ = [] code = base.opcodes['PRINTINT'] arg_format = ['ci'] class print_char(base.IOInstruction): r""" Print a single character to stdout. """ code = base.opcodes['PRINTCHR'] arg_format = ['int'] def __init__(self, ch): super(print_char, self).__init__(ord(ch)) class print_char4(base.IOInstruction): r""" Print a 4 character string. """ code = base.opcodes['PRINTSTR'] arg_format = ['int'] def __init__(self, val): super(print_char4, self).__init__(self.str_to_int(val)) @base.vectorize class print_char_regint(base.IOInstruction): r""" Print register $ci_i$ as a single character to stdout. """ code = base.opcodes['PRINTCHRINT'] arg_format = ['ci'] @base.vectorize class print_char4_regint(base.IOInstruction): r""" Print register $ci_i$ as a four character string to stdout. """ code = base.opcodes['PRINTSTRINT'] arg_format = ['ci'] @base.vectorize class pubinput(base.PublicFileIOInstruction): __slots__ = [] code = base.opcodes['PUBINPUT'] arg_format = ['ciw'] @base.vectorize class readsocketc(base.IOInstruction): """Read a variable number of clear GF(p) values from socket for a specified client id and store in registers""" __slots__ = [] code = base.opcodes['READSOCKETC'] arg_format = tools.chain(['ci'], itertools.repeat('cw')) def has_var_args(self): return True @base.vectorize class readsockets(base.IOInstruction): """Read a variable number of secret shares + MACs from socket for a client id and store in registers""" __slots__ = [] code = base.opcodes['READSOCKETS'] arg_format = tools.chain(['ci'], itertools.repeat('sw')) def has_var_args(self): return True @base.vectorize class readsocketint(base.IOInstruction): """Read variable number of 32-bit int from socket for a client id and store in registers""" __slots__ = [] code = base.opcodes['READSOCKETINT'] arg_format = tools.chain(['ci'], itertools.repeat('ciw')) def has_var_args(self): return True @base.vectorize class writesocketc(base.IOInstruction): """ Write a variable number of clear GF(p) values from registers into socket for a specified client id, message_type """ __slots__ = [] code = base.opcodes['WRITESOCKETC'] arg_format = tools.chain(['ci', 'int'], itertools.repeat('c')) def has_var_args(self): return True @base.vectorize class writesockets(base.IOInstruction): """ Write a variable number of secret shares + MACs from registers into a socket for a specified client id, message_type """ __slots__ = [] code = base.opcodes['WRITESOCKETS'] arg_format = tools.chain(['ci', 'int'], itertools.repeat('s')) def has_var_args(self): return True @base.vectorize class writesocketshare(base.IOInstruction): """ Write a variable number of secret shares (without MACs) from registers into socket for a specified client id, message_type """ __slots__ = [] code = base.opcodes['WRITESOCKETSHARE'] arg_format = tools.chain(['ci', 'int'], itertools.repeat('s')) def has_var_args(self): return True @base.vectorize class writesocketint(base.IOInstruction): """ Write a variable number of 32-bit ints from registers into socket for a specified client id, message_type """ __slots__ = [] code = base.opcodes['WRITESOCKETINT'] arg_format = tools.chain(['ci', 'int'], itertools.repeat('ci')) def has_var_args(self): return True class listen(base.IOInstruction): """Open a server socket on a party specific port number and listen for client connections (non-blocking)""" __slots__ = [] code = base.opcodes['LISTEN'] arg_format = ['int'] class acceptclientconnection(base.IOInstruction): """Wait for a connection at the given port and write socket handle to register """ __slots__ = [] code = base.opcodes['ACCEPTCLIENTCONNECTION'] arg_format = ['ciw', 'int'] class connectipv4(base.IOInstruction): """Connect to server at IPv4 address in register \verb|cj| at given port. Write socket handle to register \verb|ci|""" __slots__ = [] code = base.opcodes['CONNECTIPV4'] arg_format = ['ciw', 'ci', 'int'] class readclientpublickey(base.IOInstruction): """Read a client public key as 8 32-bit ints for a specified client id""" __slots__ = [] code = base.opcodes['READCLIENTPUBLICKEY'] arg_format = tools.chain(['ci'], itertools.repeat('ci')) def has_var_args(self): return True class initsecuresocket(base.IOInstruction): """Read a client public key as 8 32-bit ints for a specified client id, negotiate a shared key via STS and use it for replay resistant comms""" __slots__ = [] code = base.opcodes['INITSECURESOCKET'] arg_format = tools.chain(['ci'], itertools.repeat('ci')) def has_var_args(self): return True class respsecuresocket(base.IOInstruction): """Read a client public key as 8 32-bit ints for a specified client id, negotiate a shared key via STS and use it for replay resistant comms""" __slots__ = [] code = base.opcodes['RESPSECURESOCKET'] arg_format = tools.chain(['ci'], itertools.repeat('ci')) def has_var_args(self): return True class writesharestofile(base.IOInstruction): """Write shares to a file""" __slots__ = [] code = base.opcodes['WRITEFILESHARE'] arg_format = itertools.repeat('s') def has_var_args(self): return True class readsharesfromfile(base.IOInstruction): """ Read shares from a file. Pass in start posn, return finish posn, shares. Finish posn will return: -2 file not found -1 eof reached position in file after read finished """ __slots__ = [] code = base.opcodes['READFILESHARE'] arg_format = tools.chain(['ci', 'ciw'], itertools.repeat('sw')) def has_var_args(self): return True @base.gf2n @base.vectorize class raw_output(base.PublicFileIOInstruction): r""" Raw output of register \verb|ci| to file. """ __slots__ = [] code = base.opcodes['RAWOUTPUT'] arg_format = ['c'] @base.gf2n @base.vectorize class startprivateoutput(base.Instruction): r""" Initiate private output to $n$ of $s_j$ via $s_i$. """ __slots__ = [] code = base.opcodes['STARTPRIVATEOUTPUT'] arg_format = ['sw','s','p'] @base.gf2n @base.vectorize class stopprivateoutput(base.Instruction): r""" Previously iniated private output to $n$ via $c_i$. """ __slots__ = [] code = base.opcodes['STOPPRIVATEOUTPUT'] arg_format = ['c','p'] @base.vectorize class rand(base.Instruction): __slots__ = [] code = base.opcodes['RAND'] arg_format = ['ciw','ci'] ### ### Integer operations ### @base.vectorize class ldint(base.Instruction): __slots__ = [] code = base.opcodes['LDINT'] arg_format = ['ciw', 'i'] @base.vectorize class addint(base.IntegerInstruction): __slots__ = [] code = base.opcodes['ADDINT'] @base.vectorize class subint(base.IntegerInstruction): __slots__ = [] code = base.opcodes['SUBINT'] @base.vectorize class mulint(base.IntegerInstruction): __slots__ = [] code = base.opcodes['MULINT'] @base.vectorize class divint(base.IntegerInstruction): __slots__ = [] code = base.opcodes['DIVINT'] ### ### Clear comparison instructions ### @base.vectorize class eqzc(base.UnaryComparisonInstruction): r""" Clear comparison $c_i = (c_j \stackrel{?}{==} 0)$. """ __slots__ = [] code = base.opcodes['EQZC'] def execute(self): if self.args[1].value == 0: self.args[0].value = 1 else: self.args[0].value = 0 @base.vectorize class ltzc(base.UnaryComparisonInstruction): r""" Clear comparison $c_i = (c_j \stackrel{?}{<} 0)$. """ __slots__ = [] code = base.opcodes['LTZC'] @base.vectorize class ltc(base.IntegerInstruction): r""" Clear comparison $c_i = (c_j \stackrel{?}{<} c_k)$. """ __slots__ = [] code = base.opcodes['LTC'] @base.vectorize class gtc(base.IntegerInstruction): r""" Clear comparison $c_i = (c_j \stackrel{?}{>} c_k)$. """ __slots__ = [] code = base.opcodes['GTC'] @base.vectorize class eqc(base.IntegerInstruction): r""" Clear comparison $c_i = (c_j \stackrel{?}{==} c_k)$. """ __slots__ = [] code = base.opcodes['EQC'] ### ### Jumps etc ### class jmp(base.JumpInstruction): """ Unconditional relative jump of $n+1$ instructions. """ __slots__ = [] code = base.opcodes['JMP'] arg_format = ['int'] jump_arg = 0 def execute(self): pass class jmpi(base.JumpInstruction): """ Unconditional relative jump of $c_i+1$ instructions. """ __slots__ = [] code = base.opcodes['JMPI'] arg_format = ['ci'] jump_arg = 0 class jmpnz(base.JumpInstruction): r""" Jump $n+1$ instructions if $c_i \neq 0$. e.g. jmpnz(c, n) : advance n+1 instructions if c is non-zero jmpnz(c, 0) : do nothing jmpnz(c, -1): infinite loop if c is non-zero """ __slots__ = [] code
import torch import nrrd import sys from PIL import Image from torchvision.transforms import ToTensor from torch.utils import data from torch.utils.data.sampler import SequentialSampler from torch.utils.tensorboard import SummaryWriter from torch.cuda.amp import autocast import torchvision as tv import torch.nn as nn import matplotlib.pyplot as plt import subprocess import glob, os import numpy as np from datetime import datetime import argparse import zipfile from shutil import copyfile from tifffile import imsave import utils.pytorch_shot_noise as pytorch_shot_noise from utils.XLFMDataset import XLFMDatasetFull from utils.misc_utils import * from utils.XLFMDeconv import * from nets.SLNet import * # Arguments parser = argparse.ArgumentParser() parser.add_argument('--data_folder', nargs='?', default="", help='Input images path in format /XLFM_image/XLFM_image_stack.tif and XLFM_image_stack_S.tif in case of a sparse GT stack.') parser.add_argument('--volume_raw_reference_path', nargs='?', default= '*tif', help='For augmentation the volumes must be computed, perhaps this volumes where arleady computed?. use: path + *tif') parser.add_argument('--volume_sparse_reference_path', nargs='?', default= '*tif', help='For augmentation the volumes must be computed, perhaps this volumes where arleady computed?.') parser.add_argument('--lenslet_file', nargs='?', default= "lenslet_centers_python.txt") parser.add_argument('--files_to_store', nargs='+', default=[], help='Relative paths of files to store in a zip when running this script, for backup.') parser.add_argument('--prefix', nargs='?', default= "fishy", help='Prefix string for the output folder.') parser.add_argument('--checkpoint', nargs='?', default= "", help='File path of checkpoint of SLNet.') parser.add_argument('--psf_file', nargs='?', default= "PSF_2.5um_processed.mat", help='.mat matlab file with PSF stack, used for deconvolution.') # Images related arguments parser.add_argument('--images_to_use', nargs='+', type=int, default=list(range(0,193,1)), help='Indeces of images to train on.') parser.add_argument('--n_simulations', type=int, default=50, help='Number of samples to generate.') # Noise arguments parser.add_argument('--add_noise', type=int, default=0, help='Apply noise to images? 0 or 1') parser.add_argument('--signal_power_max', type=float, default=30**2, help='Max signal value to control signal to noise ratio when applyting noise.') parser.add_argument('--signal_power_min', type=float, default=60**2, help='Min signal value to control signal to noise ratio when applyting noise.') parser.add_argument('--dark_current', type=float, default=106, help='Dark current value of camera.') parser.add_argument('--dark_current_sparse', type=float, default=0, help='Dark current value of camera.') # z Roll augmentation parser.add_argument('--max_z_roll_augm', type=int, default=80, help='Max roll posible for random roll') # Sparse decomposition arguments parser.add_argument('--temporal_shifts', nargs='+', type=int, default=[0,49,99], help='Which frames to use for training and testing.') parser.add_argument('--SD_iterations', type=int, default=0, help='Number of iterations for Sparse Decomposition, 0 to disable.') parser.add_argument('--frame_to_grab', type=int, default=0, help='Which frame to show from the sparse decomposition?') # 3D deconvolution arguments parser.add_argument('--deconv_iterations', type=int, default=50, help='Number of iterations for 3D deconvolution, for GT volume generation.') parser.add_argument('--deconv_n_depths', type=int, default=120, help='Number of depths to create in 3D deconvolution.') parser.add_argument('--n_depths', type=int, default=120, help='Number of depths to create in 3D deconvolution.') parser.add_argument('--deconv_limit', type=float, default=10000, help='Maximum intensity allowed from doconvolution.') parser.add_argument('--deconv_depth_split', type=int, default=6, help='Number of depths to simultaneously deconvolve in the gpu.') parser.add_argument('--deconv_gpu', type=int, default=1, help='GPU to use for deconvolution, -1 to use CPU, this is very memory intensive.') parser.add_argument('--output_path', nargs='?', default='') # parser.add_argument('--output_path', nargs='?', default=runs_dir + '/garbage/') parser.add_argument('--main_gpu', nargs='+', type=int, default=[0], help='List of GPUs to use: [0,1]') # Set to zero if debuging n_threads = 0 args = parser.parse_args() # Select which devices to use if len(args.main_gpu)>0: device = "cuda:" + str(args.main_gpu[0]) else: if args.main_gpu==-1: device = "cpu" else: device = "cuda" args.main_gpu = [0] # Deconvolution can be heavy on the GPU, and sometimes it doesn't fit, so use -1 for CPU if args.deconv_gpu==-1: device_deconv = "cpu" else: device_deconv = "cuda:" + str(args.deconv_gpu) if n_threads!=0: torch.set_num_threads(n_threads) checkpoint_path = None if len(args.checkpoint)>0: checkpoint = torch.load(args.checkpoint, map_location=device) currArgs = args argsModel = checkpoint['args'] # Get images dataset = XLFMDatasetFull(args.data_folder, args.lenslet_file, argsModel.subimage_shape, img_shape=2*[argsModel.img_size], images_to_use=args.images_to_use, divisor=1, isTiff=True, n_frames_net=argsModel.n_frames, load_all=True, load_sparse=False, load_vols=False, temporal_shifts=args.temporal_shifts, eval_video=True) # Get normalization values max_images,max_images_sparse,max_volumes = dataset.get_max() # Normalization from SLNet mean_imgs,std_images,mean_vols,std_vols = checkpoint['statistics'] mean_imgs = mean_imgs.to(device) std_images = std_images.to(device) mean_vols = mean_vols.to(device) std_vols = std_vols.to(device) n_images = len(dataset) # Get volume desired shape output_shape = argsModel.output_shape + [args.n_depths] if len(output_shape)==2: output_shape = argsModel.output_shape + [args.n_depths] # Creating data indices for training and validation splits: dataset_size = len(dataset) # Create dataloader train_sampler = SequentialSampler(dataset) # Create output directory head, tail = os.path.split(args.checkpoint) output_dir = head + '/Dataset_' + datetime.now().strftime('%Y_%m_%d__%H:%M:%S') + '_' + str(args.n_depths) + 'nD__' + str(args.n_simulations) + 'nS__' + args.prefix print('Output directory: ' + output_dir) # Create directories # XLFM_image: Raw XLFM image # XLFM_stack: Deconvolution of raw images (not computed here) # XLFM_stack_S: Deconvolution of sparse image generated by SD algorithm # XLFM_stack_SL: Deconvolution of sparse image generated by SLNet if not os.path.exists(output_dir): os.mkdir(output_dir) os.mkdir(output_dir + '/XLFM_image') os.mkdir(output_dir + '/XLFM_stack') os.mkdir(output_dir + '/XLFM_stack_S') os.mkdir(output_dir + '/XLFM_stack_S_SL') # Tensorboard logger writer = SummaryWriter(output_dir) writer.add_text('arguments',str(vars(args)),0) writer.add_text('arguments_model',str(vars(checkpoint['args'])),0) writer.flush() # Copy files and model to output folder try: copyfile(os.path.dirname(args.checkpoint)+'/files.zip', output_dir+'/files.zip') copyfile(args.checkpoint, output_dir + '/' + tail) # Extract the files used for training SLNet, a different type of version control with zipfile.ZipFile(os.path.dirname(args.checkpoint)+'/files.zip', "r") as zip_ref: os.makedirs('tmp_files', exist_ok=True) zip_ref.extractall('tmp_files/') from tmp_files.nets.SLNet import * except: pass # Create net and load checkpoint net = SLNet(dataset.n_frames, mu_sum_constraint=argsModel.SL_mu_sum_constraint, alpha_l1=argsModel.SL_alpha_l1).to(device) net.eval() if 'module' in list(checkpoint['model_state_dict'])[0]: net = nn.DataParallel(net) net.load_state_dict(checkpoint['model_state_dict']) net = net.module else: net.load_state_dict(checkpoint['model_state_dict']) # timers start = torch.cuda.Event(enable_timing=True) end = torch.cuda.Event(enable_timing=True) end_time_deconv_SL = 0 end_time_deconv_net = 0 # Load measured PSF from matlab file and compute OTF # The computetion can be splited to fit it into the GPU, spliting n_depths/n_split psf_shape = 2*[argsModel.img_size] if currArgs.deconv_iterations > 0: n_split = 20 OTF,psf_shape = load_PSF_OTF(currArgs.psf_file, output_shape, n_depths=args.deconv_n_depths, n_split=n_split, lenslet_centers_file_out="", compute_transpose=True) # OTF = OTF[:,OTF.shape[1]//2,...].unsqueeze(1).repeat(1,OTF.shape[1],1,1,1) # If augmentation desired, check if the deconvolved volumes are already computed if args.max_z_roll_augm > 0: precomputed_volume_path = {'raw' : os.path.split(args.volume_raw_reference_path)[0], 'sparse': os.path.split(args.volume_sparse_reference_path)[0]} precomputed_volume_path_list = {'raw' : sorted(glob.glob(args.volume_raw_reference_path)), 'sparse': sorted(glob.glob(args.volume_sparse_reference_path)) } # Create array to gather all images, which contains: # 0: input # 1: dense SLNet # 2: sparse SLNet # 3: dense SL # 4: sparse SL tmp = 3 if args.SD_iterations > 0: tmp = 5 all_images = np.zeros((tmp, args.n_simulations*len(args.temporal_shifts)) + tuple(psf_shape), 'float16') # Compute images with torch.no_grad(): mean_time = 0 mean_time_SL = 0 min_time = 10000.0 # Training for nSimul in range(args.n_simulations): print('Simulating ' + str(nSimul) + ' / ' + str(args.n_simulations) ) curr_index = nSimul%n_images # fetch current pair curr_img_stack, local_volumes = dataset.__getitem__(curr_index) curr_img_stack = curr_img_stack.unsqueeze(0) curr_img_stack = curr_img_stack.float() # curr_img_stack = curr_img_stack / curr_img_stack.max() * 3000.0 curr_img_stack = curr_img_stack.half() curr_img_stack = curr_img_stack.to(device) if len(curr_img_stack.shape)>=5: # assert len(curr_img_stack.shape)>=5, "If sparse is used curr_img_stack should contain both images, dense and sparse stacked in the last dim." curr_img_sparse = curr_img_stack[...,-1].clone().to(device) curr_img_stack = curr_img_stack[...,0].clone() else: curr_img_sparse = curr_img_stack.clone() raw_image_stack = curr_img_stack.clone() # Remove dark current from images curr_img_stack -= args.dark_current curr_img_stack = F.relu(curr_img_stack).detach() curr_img_sparse -= args.dark_current_sparse curr_img_sparse = F.relu(curr_img_sparse).detach() if args.add_noise==1: curr_max = curr_img_stack.max() # Update new signal power signal_power = (args.signal_power_min + (args.signal_power_max-args.signal_power_min) * torch.rand(1)).item() curr_img_stack = signal_power/curr_max * curr_img_stack # Add noise curr_img_stack = pytorch_shot_noise.add_camera_noise(curr_img_stack) curr_img_stack = curr_max/signal_power * curr_img_stack.to(device) # Normalize images with the same settings as the SLNet was trained curr_img_stack, local_volumes = normalize_type(curr_img_stack, local_volumes, argsModel.norm_type, mean_imgs, std_images, mean_vols, std_vols, max_images, max_volumes) with autocast(): # torch.cuda.synchronize() start.record() # Run batch of predicted images in discriminator dense_part = net(curr_img_stack) # Record training time end.record() torch.cuda.synchronize() end_time = start.elapsed_time(end) / curr_img_stack.shape[0] mean_time += end_time min_time = min(min_time, end_time) sparse_part = F.relu(curr_img_stack - dense_part) # Renormalize images dense_part, _ = normalize_type(dense_part.float(), local_volumes, argsModel.norm_type, mean_imgs, std_images, mean_vols, std_vols, max_images, max_volumes, inverse=True) sparse_part, _ = normalize_type(sparse_part.float(), local_volumes, argsModel.norm_type, mean_imgs, std_images, mean_vols, std_vols, max_images, max_volumes, inverse=True) curr_img_stack, _ = normalize_type(curr_img_stack.float(), local_volumes, argsModel.norm_type, mean_imgs, std_images, mean_vols, std_vols, max_images, max_volumes, inverse=True) sparse_part = F.relu(curr_img_stack-dense_part.detach()) # Deconvolve the SLNet sparse image and store the 3D stack if currArgs.deconv_iterations > 0: img_shape = sparse_part.shape[-2:] try: deconv_vol = dataset.read_tiff_stack(precomputed_volume_path_list['sparse'][curr_index], out_datatype=np.float32).permute(2,0,1).unsqueeze(0) print('Loaded sparse deconvolution') except: start.record() img_to_deconv_net = sparse_part[:,currArgs.frame_to_grab].unsqueeze(1).float() deconv_vol,proj_net,forward_net,_ = XLFMDeconv(OTF, img_to_deconv_net, currArgs.deconv_iterations, device=device_deconv, all_in_device=0, nSplitFourier=args.deconv_depth_split,max_allowed=args.deconv_limit) end.record() torch.cuda.synchronize() end_time_deconv_net = start.elapsed_time(end) / curr_img_stack.shape[0] deconv_vol = deconv_vol[:, currArgs.deconv_n_depths//2-currArgs.n_depths//2 : currArgs.deconv_n_depths//2+currArgs.n_depths//2,...] print(end_time_deconv_net,'s ',str(deconv_vol.max())) # Augmentation needed? We need 3 volumes for this, then shift in z then compute their forward projections if args.max_z_roll_augm > 0: # Create new image storages augmented_images = {'raw' : sparse_part.clone(), 'sparse' : sparse_part.clone()} augmented_raw_image_stack = raw_image_stack.clone() # Temprarly store augmented volumes augmented_sparse_volumes = deconv_vol.clone().unsqueeze(-1).repeat(1,1,1,1,len(args.temporal_shifts)) # Roll volume roll_amount = torch.randint(-args.max_z_roll_augm, args.max_z_roll_augm, [1])[0] for img_id in range(len(args.temporal_shifts)): vol_id = args.temporal_shifts[img_id] + curr_index # Select image to deconvolve curr_image = {'raw':raw_image_stack[:,img_id,...].clone().unsqueeze(1), 'sparse':sparse_part[:,img_id,...].clone().unsqueeze(1)} # Is it the raw or the sparse image? we need both for type_volume in ['raw','sparse']: volume_exists = False # Check if volumes exist try: curr_vol = dataset.read_tiff_stack(precomputed_volume_path_list[type_volume][vol_id], out_datatype=np.float32).permute(2,0,1).unsqueeze(0) volume_exists = True print('Loaded augmented ' + type_volume + ' deconvolution') except: # Deconvolve them curr_vol,_,_,_ = XLFMDeconv(OTF, curr_image[type_volume].float(), currArgs.deconv_iterations, device=device_deconv, all_in_device=0, nSplitFourier=args.deconv_depth_split,max_allowed=args.deconv_limit) if not volume_exists: imsave(precomputed_volume_path[type_volume] + '/XLFM_stack_'+ "%03d" % vol_id + '.tif', curr_vol.cpu().numpy()) curr_vol = torch.roll(curr_vol, (roll_amount.item()), 1) # Compute new forward projection new_img = XLFM_forward_projection(OTF, curr_vol, [1,1,OTF.shape[2],OTF.shape[2]], nSplitFourier=args.deconv_depth_split) # Crop center to match original image new_img = new_img[:,:,new_img.shape[2]//2-img_shape[0]//2 : new_img.shape[2]//2+img_shape[0]//2, \ new_img.shape[3]//2-img_shape[1]//2 : new_img.shape[3]//2+img_shape[1]//2] # Update sparse image and store it augmented_images[type_volume][:,img_id,...] = new_img[:,0,...]/new_img.sum() * curr_image[type_volume].cpu().float().sum() # Store augmented volumes augmented_sparse_volumes[...,img_id] = curr_vol.clone() # Overwrite output images
<filename>scripts/base_network.py<gh_stars>1-10 # SPDX-FileCopyrightText: : 2017-2020 The PyPSA-Eur Authors # # SPDX-License-Identifier: MIT # coding: utf-8 """ Creates the network topology from a `ENTSO-E map extract <https://github.com/PyPSA/GridKit/tree/master/entsoe>`_ (March 2022) as a PyPSA network. Relevant Settings ----------------- .. code:: yaml snapshots: countries: electricity: voltages: lines: types: s_max_pu: under_construction: links: p_max_pu: under_construction: include_tyndp: transformers: x: s_nom: type: .. seealso:: Documentation of the configuration file ``config.yaml`` at :ref:`snapshots_cf`, :ref:`toplevel_cf`, :ref:`electricity_cf`, :ref:`load_cf`, :ref:`lines_cf`, :ref:`links_cf`, :ref:`transformers_cf` Inputs ------ - ``data/entsoegridkit``: Extract from the geographical vector data of the online `ENTSO-E Interactive Map <https://www.entsoe.eu/data/map/>`_ by the `GridKit <https://github.com/martacki/gridkit>`_ toolkit dating back to March 2022. - ``data/parameter_corrections.yaml``: Corrections for ``data/entsoegridkit`` - ``data/links_p_nom.csv``: confer :ref:`links` - ``data/links_tyndp.csv``: List of projects in the `TYNDP 2018 <https://tyndp.entsoe.eu/tyndp2018/>`_ that are at least *in permitting* with fields for start- and endpoint (names and coordinates), length, capacity, construction status, and project reference ID. - ``resources/country_shapes.geojson``: confer :ref:`shapes` - ``resources/offshore_shapes.geojson``: confer :ref:`shapes` - ``resources/europe_shape.geojson``: confer :ref:`shapes` Outputs ------- - ``networks/base.nc`` .. image:: ../img/base.png :scale: 33 % Description ----------- """ import logging from _helpers import configure_logging import pypsa import yaml import pandas as pd import geopandas as gpd import numpy as np import networkx as nx from scipy import spatial from scipy.sparse import csgraph from itertools import product from shapely.geometry import Point, LineString import shapely, shapely.prepared, shapely.wkt logger = logging.getLogger(__name__) def _get_oid(df): if "tags" in df.columns: return df.tags.str.extract('"oid"=>"(\d+)"', expand=False) else: return pd.Series(np.nan, df.index) def _get_country(df): if "tags" in df.columns: return df.tags.str.extract('"country"=>"([A-Z]{2})"', expand=False) else: return pd.Series(np.nan, df.index) def _find_closest_links(links, new_links, distance_upper_bound=1.5): treecoords = np.asarray([np.asarray(shapely.wkt.loads(s).coords)[[0, -1]].flatten() for s in links.geometry]) querycoords = np.vstack([new_links[['x1', 'y1', 'x2', 'y2']], new_links[['x2', 'y2', 'x1', 'y1']]]) tree = spatial.KDTree(treecoords) dist, ind = tree.query(querycoords, distance_upper_bound=distance_upper_bound) found_b = ind < len(links) found_i = np.arange(len(new_links)*2)[found_b] % len(new_links) return pd.DataFrame(dict(D=dist[found_b], i=links.index[ind[found_b] % len(links)]), index=new_links.index[found_i]).sort_values(by='D')\ [lambda ds: ~ds.index.duplicated(keep='first')]\ .sort_index()['i'] def _load_buses_from_eg(eg_buses, europe_shape, config_elec): buses = (pd.read_csv(eg_buses, quotechar="'", true_values=['t'], false_values=['f'], dtype=dict(bus_id="str")) .set_index("bus_id") .drop(['station_id'], axis=1) .rename(columns=dict(voltage='v_nom'))) buses['carrier'] = buses.pop('dc').map({True: 'DC', False: 'AC'}) buses['under_construction'] = buses['under_construction'].fillna(False).astype(bool) # remove all buses outside of all countries including exclusive economic zones (offshore) europe_shape = gpd.read_file(europe_shape).loc[0, 'geometry'] europe_shape_prepped = shapely.prepared.prep(europe_shape) buses_in_europe_b = buses[['x', 'y']].apply(lambda p: europe_shape_prepped.contains(Point(p)), axis=1) buses_with_v_nom_to_keep_b = buses.v_nom.isin(config_elec['voltages']) | buses.v_nom.isnull() logger.info("Removing buses with voltages {}".format(pd.Index(buses.v_nom.unique()).dropna().difference(config_elec['voltages']))) return pd.DataFrame(buses.loc[buses_in_europe_b & buses_with_v_nom_to_keep_b]) def _load_transformers_from_eg(buses, eg_transformers): transformers = (pd.read_csv(eg_transformers, quotechar="'", true_values=['t'], false_values=['f'], dtype=dict(transformer_id='str', bus0='str', bus1='str')) .set_index('transformer_id')) transformers = _remove_dangling_branches(transformers, buses) return transformers def _load_converters_from_eg(buses, eg_converters): converters = (pd.read_csv(eg_converters, quotechar="'", true_values=['t'], false_values=['f'], dtype=dict(converter_id='str', bus0='str', bus1='str')) .set_index('converter_id')) converters = _remove_dangling_branches(converters, buses) converters['carrier'] = 'B2B' return converters def _load_links_from_eg(buses, eg_links): links = (pd.read_csv(eg_links, quotechar="'", true_values=['t'], false_values=['f'], dtype=dict(link_id='str', bus0='str', bus1='str', under_construction="bool")) .set_index('link_id')) links['length'] /= 1e3 # Skagerrak Link is connected to 132kV bus which is removed in _load_buses_from_eg. # Connect to neighboring 380kV bus links.loc[links.bus1=='6396', 'bus1'] = '6398' links = _remove_dangling_branches(links, buses) # Add DC line parameters links['carrier'] = 'DC' return links def _add_links_from_tyndp(buses, links, links_tyndp, europe_shape): links_tyndp = pd.read_csv(links_tyndp) # remove all links from list which lie outside all of the desired countries europe_shape = gpd.read_file(europe_shape).loc[0, 'geometry'] europe_shape_prepped = shapely.prepared.prep(europe_shape) x1y1_in_europe_b = links_tyndp[['x1', 'y1']].apply(lambda p: europe_shape_prepped.contains(Point(p)), axis=1) x2y2_in_europe_b = links_tyndp[['x2', 'y2']].apply(lambda p: europe_shape_prepped.contains(Point(p)), axis=1) is_within_covered_countries_b = x1y1_in_europe_b & x2y2_in_europe_b if not is_within_covered_countries_b.all(): logger.info("TYNDP links outside of the covered area (skipping): " + ", ".join(links_tyndp.loc[~ is_within_covered_countries_b, "Name"])) links_tyndp = links_tyndp.loc[is_within_covered_countries_b] if links_tyndp.empty: return buses, links has_replaces_b = links_tyndp.replaces.notnull() oids = dict(Bus=_get_oid(buses), Link=_get_oid(links)) keep_b = dict(Bus=pd.Series(True, index=buses.index), Link=pd.Series(True, index=links.index)) for reps in links_tyndp.loc[has_replaces_b, 'replaces']: for comps in reps.split(':'): oids_to_remove = comps.split('.') c = oids_to_remove.pop(0) keep_b[c] &= ~oids[c].isin(oids_to_remove) buses = buses.loc[keep_b['Bus']] links = links.loc[keep_b['Link']] links_tyndp["j"] = _find_closest_links(links, links_tyndp, distance_upper_bound=0.20) # Corresponds approximately to 20km tolerances if links_tyndp["j"].notnull().any(): logger.info("TYNDP links already in the dataset (skipping): " + ", ".join(links_tyndp.loc[links_tyndp["j"].notnull(), "Name"])) links_tyndp = links_tyndp.loc[links_tyndp["j"].isnull()] if links_tyndp.empty: return buses, links tree = spatial.KDTree(buses[['x', 'y']]) _, ind0 = tree.query(links_tyndp[["x1", "y1"]]) ind0_b = ind0 < len(buses) links_tyndp.loc[ind0_b, "bus0"] = buses.index[ind0[ind0_b]] _, ind1 = tree.query(links_tyndp[["x2", "y2"]]) ind1_b = ind1 < len(buses) links_tyndp.loc[ind1_b, "bus1"] = buses.index[ind1[ind1_b]] links_tyndp_located_b = links_tyndp["bus0"].notnull() & links_tyndp["bus1"].notnull() if not links_tyndp_located_b.all(): logger.warning("Did not find connected buses for TYNDP links (skipping): " + ", ".join(links_tyndp.loc[~links_tyndp_located_b, "Name"])) links_tyndp = links_tyndp.loc[links_tyndp_located_b] logger.info("Adding the following TYNDP links: " + ", ".join(links_tyndp["Name"])) links_tyndp = links_tyndp[["bus0", "bus1"]].assign( carrier='DC', p_nom=links_tyndp["Power (MW)"], length=links_tyndp["Length (given) (km)"].fillna(links_tyndp["Length (distance*1.2) (km)"]), under_construction=True, underground=False, geometry=(links_tyndp[["x1", "y1", "x2", "y2"]] .apply(lambda s: str(LineString([[s.x1, s.y1], [s.x2, s.y2]])), axis=1)), tags=('"name"=>"' + links_tyndp["Name"] + '", ' + '"ref"=>"' + links_tyndp["Ref"] + '", ' + '"status"=>"' + links_tyndp["status"] + '"') ) links_tyndp.index = "T" + links_tyndp.index.astype(str) links = pd.concat([links, links_tyndp], sort=True) return buses, links def _load_lines_from_eg(buses, eg_lines): lines = (pd.read_csv(eg_lines, quotechar="'", true_values=['t'], false_values=['f'], dtype=dict(line_id='str', bus0='str', bus1='str', underground="bool", under_construction="bool")) .set_index('line_id') .rename(columns=dict(voltage='v_nom', circuits='num_parallel'))) lines['length'] /= 1e3 lines = _remove_dangling_branches(lines, buses) return lines def _apply_parameter_corrections(n, parameter_corrections): with open(parameter_corrections) as f: corrections = yaml.safe_load(f) if corrections is None: return for component, attrs in corrections.items(): df = n.df(component) oid = _get_oid(df) if attrs is None: continue for attr, repls in attrs.items(): for i, r in repls.items(): if i == 'oid': r = oid.map(repls["oid"]).dropna() elif i == 'index': r = pd.Series(repls["index"]) else: raise NotImplementedError() inds = r.index.intersection(df.index) df.loc[inds, attr] = r[inds].astype(df[attr].dtype) def _set_electrical_parameters_lines(lines, config): v_noms = config['electricity']['voltages'] linetypes = config['lines']['types'] for v_nom in v_noms: lines.loc[lines["v_nom"] == v_nom, 'type'] = linetypes[v_nom] lines['s_max_pu'] = config['lines']['s_max_pu'] return lines def _set_lines_s_nom_from_linetypes(n): n.lines['s_nom'] = ( np.sqrt(3) * n.lines['type'].map(n.line_types.i_nom) * n.lines['v_nom'] * n.lines.num_parallel ) def _set_electrical_parameters_links(links, config, links_p_nom): if links.empty: return links p_max_pu = config['links'].get('p_max_pu', 1.) links['p_max_pu'] = p_max_pu links['p_min_pu'] = -p_max_pu links_p_nom = pd.read_csv(links_p_nom) # filter links that are not in operation anymore removed_b = links_p_nom.Remarks.str.contains('Shut down|Replaced', na=False) links_p_nom = links_p_nom[~removed_b] # find closest link for all links in links_p_nom links_p_nom['j'] = _find_closest_links(links, links_p_nom) links_p_nom = links_p_nom.groupby(['j'],as_index=False).agg({'Power (MW)': 'sum'}) p_nom = links_p_nom.dropna(subset=["j"]).set_index("j")["Power (MW)"] # Don't update p_nom if it's already set p_nom_unset = p_nom.drop(links.index[links.p_nom.notnull()], errors='ignore') if "p_nom" in links else p_nom links.loc[p_nom_unset.index, "p_nom"] = p_nom_unset return links def _set_electrical_parameters_converters(converters, config): p_max_pu = config['links'].get('p_max_pu', 1.) converters['p_max_pu'] = p_max_pu converters['p_min_pu'] = -p_max_pu converters['p_nom'] = 2000 # Converters are combined with links converters['under_construction'] = False converters['underground'] = False return converters def _set_electrical_parameters_transformers(transformers, config): config = config['transformers'] ## Add transformer parameters transformers["x"] = config.get('x', 0.1) transformers["s_nom"] = config.get('s_nom', 2000) transformers['type'] = config.get('type', '') return transformers def _remove_dangling_branches(branches, buses): return pd.DataFrame(branches.loc[branches.bus0.isin(buses.index) & branches.bus1.isin(buses.index)]) def _remove_unconnected_components(network): _, labels = csgraph.connected_components(network.adjacency_matrix(), directed=False) component = pd.Series(labels, index=network.buses.index) component_sizes = component.value_counts() components_to_remove = component_sizes.iloc[1:] logger.info("Removing {} unconnected network components with less than {} buses. In total {} buses." .format(len(components_to_remove), components_to_remove.max(), components_to_remove.sum())) return network[component == component_sizes.index[0]] def _set_countries_and_substations(n, config, country_shapes, offshore_shapes): buses = n.buses def buses_in_shape(shape): shape = shapely.prepared.prep(shape) return pd.Series( np.fromiter((shape.contains(Point(x, y)) for x, y in buses.loc[:,["x", "y"]].values), dtype=bool, count=len(buses)), index=buses.index ) countries = config['countries'] country_shapes = gpd.read_file(country_shapes).set_index('name')['geometry'] offshore_shapes = gpd.read_file(offshore_shapes).set_index('name')['geometry'] substation_b = buses['symbol'].str.contains('substation|converter station', case=False) def prefer_voltage(x, which): index = x.index if len(index) == 1: return pd.Series(index, index) key = (x.index[0] if x['v_nom'].isnull().all() else getattr(x['v_nom'], 'idx' + which)()) return pd.Series(key, index) gb = buses.loc[substation_b].groupby(['x', 'y'], as_index=False, group_keys=False, sort=False) bus_map_low = gb.apply(prefer_voltage, 'min') lv_b = (bus_map_low == bus_map_low.index).reindex(buses.index, fill_value=False) bus_map_high = gb.apply(prefer_voltage, 'max') hv_b = (bus_map_high == bus_map_high.index).reindex(buses.index, fill_value=False) onshore_b = pd.Series(False, buses.index) offshore_b = pd.Series(False, buses.index) for country in countries: onshore_shape = country_shapes[country] onshore_country_b = buses_in_shape(onshore_shape) onshore_b |= onshore_country_b buses.loc[onshore_country_b, 'country'] = country if country not in offshore_shapes.index: continue offshore_country_b = buses_in_shape(offshore_shapes[country]) offshore_b |= offshore_country_b buses.loc[offshore_country_b, 'country'] = country # Only accept buses as low-voltage substations (where load is attached), if # they have at least one connection which is not under_construction has_connections_b = pd.Series(False, index=buses.index) for b, df in product(('bus0', 'bus1'), (n.lines, n.links)): has_connections_b |= ~ df.groupby(b).under_construction.min() buses['substation_lv'] = lv_b & onshore_b & (~ buses['under_construction']) & has_connections_b buses['substation_off'] = (offshore_b | (hv_b & onshore_b)) & (~ buses['under_construction']) c_nan_b = buses.country.isnull() if c_nan_b.sum() > 0: c_tag = _get_country(buses.loc[c_nan_b]) c_tag.loc[~c_tag.isin(countries)] = np.nan n.buses.loc[c_nan_b, 'country'] = c_tag c_tag_nan_b = n.buses.country.isnull() # Nearest country in path length defines country of still homeless buses # Work-around until commit 705119 lands in pypsa release n.transformers['length'] = 0. graph = n.graph(weight='length') n.transformers.drop('length', axis=1, inplace=True) for b in n.buses.index[c_tag_nan_b]: df = (pd.DataFrame(dict(pathlength=nx.single_source_dijkstra_path_length(graph, b, cutoff=200))) .join(n.buses.country).dropna()) assert not df.empty, "No buses with defined country within 200km of bus `{}`".format(b) n.buses.at[b, 'country'] = df.loc[df.pathlength.idxmin(), 'country'] logger.warning("{} buses are not in any country or offshore shape," " {} have been assigned from the tag of the entsoe map," " the rest from the next bus in terms of pathlength." .format(c_nan_b.sum(), c_nan_b.sum() - c_tag_nan_b.sum()))
# coding: utf-8 import numpy as np import tensorflow as tf from tensorflow.contrib.rnn import RNNCell from tensorflow.python.ops import rnn_cell_impl #from tensorflow.contrib.data.python.util import nest from tensorflow.contrib.framework import nest from tensorflow.contrib.seq2seq.python.ops.attention_wrapper import _bahdanau_score, _BaseAttentionMechanism, BahdanauAttention, \ AttentionWrapperState, AttentionMechanism, _BaseMonotonicAttentionMechanism,_maybe_mask_score,_prepare_memory,_monotonic_probability_fn from tensorflow.python.layers.core import Dense from .modules import prenet import functools _zero_state_tensors = rnn_cell_impl._zero_state_tensors class AttentionWrapper(RNNCell): """Wraps another `RNNCell` with attention. """ def __init__(self, cell, attention_mechanism, is_manual_attention, # 추가된 argument manual_alignments, # 추가된 argument attention_layer_size=None, alignment_history=False, cell_input_fn=None, output_attention=True, initial_cell_state=None, name=None): """Construct the `AttentionWrapper`. **NOTE** If you are using the `BeamSearchDecoder` with a cell wrapped in `AttentionWrapper`, then you must ensure that: - The encoder output has been tiled to `beam_width` via @{tf.contrib.seq2seq.tile_batch} (NOT `tf.tile`). - The `batch_size` argument passed to the `zero_state` method of this wrapper is equal to `true_batch_size * beam_width`. - The initial state created with `zero_state` above contains a `cell_state` value containing properly tiled final state from the encoder. An example: ``` tiled_encoder_outputs = tf.contrib.seq2seq.tile_batch( encoder_outputs, multiplier=beam_width) tiled_encoder_final_state = tf.conrib.seq2seq.tile_batch( encoder_final_state, multiplier=beam_width) tiled_sequence_length = tf.contrib.seq2seq.tile_batch( sequence_length, multiplier=beam_width) attention_mechanism = MyFavoriteAttentionMechanism( num_units=attention_depth, memory=tiled_inputs, memory_sequence_length=tiled_sequence_length) attention_cell = AttentionWrapper(cell, attention_mechanism, ...) decoder_initial_state = attention_cell.zero_state( dtype, batch_size=true_batch_size * beam_width) decoder_initial_state = decoder_initial_state.clone( cell_state=tiled_encoder_final_state) ``` Args: cell: An instance of `RNNCell`. attention_mechanism: A list of `AttentionMechanism` instances or a single instance. attention_layer_size: A list of Python integers or a single Python integer, the depth of the attention (output) layer(s). If None (default), use the context as attention at each time step. Otherwise, feed the context and cell output into the attention layer to generate attention at each time step. If attention_mechanism is a list, attention_layer_size must be a list of the same length. alignment_history: Python boolean, whether to store alignment history from all time steps in the final output state (currently stored as a time major `TensorArray` on which you must call `stack()`). cell_input_fn: (optional) A `callable`. The default is: `lambda inputs, attention: tf.concat([inputs, attention], -1)`. output_attention: Python bool. If `True` (default), the output at each time step is the attention value. This is the behavior of Luong-style attention mechanisms. If `False`, the output at each time step is the output of `cell`. This is the behavior of Bhadanau-style attention mechanisms. In both cases, the `attention` tensor is propagated to the next time step via the state and is used there. This flag only controls whether the attention mechanism is propagated up to the next cell in an RNN stack or to the top RNN output. initial_cell_state: The initial state value to use for the cell when the user calls `zero_state()`. Note that if this value is provided now, and the user uses a `batch_size` argument of `zero_state` which does not match the batch size of `initial_cell_state`, proper behavior is not guaranteed. name: Name to use when creating ops. Raises: TypeError: `attention_layer_size` is not None and (`attention_mechanism` is a list but `attention_layer_size` is not; or vice versa). ValueError: if `attention_layer_size` is not None, `attention_mechanism` is a list, and its length does not match that of `attention_layer_size`. """ super(AttentionWrapper, self).__init__(name=name) self.is_manual_attention = is_manual_attention self.manual_alignments = manual_alignments rnn_cell_impl.assert_like_rnncell("cell", cell) if isinstance(attention_mechanism, (list, tuple)): self._is_multi = True attention_mechanisms = attention_mechanism for attention_mechanism in attention_mechanisms: if not isinstance(attention_mechanism, AttentionMechanism): raise TypeError( "attention_mechanism must contain only instances of " "AttentionMechanism, saw type: %s" % type(attention_mechanism).__name__) else: self._is_multi = False if not isinstance(attention_mechanism, AttentionMechanism): raise TypeError( "attention_mechanism must be an AttentionMechanism or list of " "multiple AttentionMechanism instances, saw type: %s" % type(attention_mechanism).__name__) attention_mechanisms = (attention_mechanism,) if cell_input_fn is None: cell_input_fn = ( lambda inputs, attention: tf.concat([inputs, attention], -1)) else: if not callable(cell_input_fn): raise TypeError( "cell_input_fn must be callable, saw type: %s" % type(cell_input_fn).__name__) if attention_layer_size is not None: attention_layer_sizes = tuple( attention_layer_size if isinstance(attention_layer_size, (list, tuple)) else (attention_layer_size,)) if len(attention_layer_sizes) != len(attention_mechanisms): raise ValueError( "If provided, attention_layer_size must contain exactly one " "integer per attention_mechanism, saw: %d vs %d" % (len(attention_layer_sizes), len(attention_mechanisms))) self._attention_layers = tuple( layers_core.Dense( attention_layer_size, name="attention_layer", use_bias=False, dtype=attention_mechanisms[i].dtype) for i, attention_layer_size in enumerate(attention_layer_sizes)) self._attention_layer_size = sum(attention_layer_sizes) else: self._attention_layers = None self._attention_layer_size = sum( attention_mechanism.values.get_shape()[-1].value for attention_mechanism in attention_mechanisms) self._cell = cell self._attention_mechanisms = attention_mechanisms self._cell_input_fn = cell_input_fn self._output_attention = output_attention self._alignment_history = alignment_history with tf.name_scope(name, "AttentionWrapperInit"): if initial_cell_state is None: self._initial_cell_state = None else: final_state_tensor = nest.flatten(initial_cell_state)[-1] state_batch_size = ( final_state_tensor.shape[0].value or tf.shape(final_state_tensor)[0]) error_message = ( "When constructing AttentionWrapper %s: " % self._base_name + "Non-matching batch sizes between the memory " "(encoder output) and initial_cell_state. Are you using " "the BeamSearchDecoder? You may need to tile your initial state " "via the tf.contrib.seq2seq.tile_batch function with argument " "multiple=beam_width.") with tf.control_dependencies( self._batch_size_checks(state_batch_size, error_message)): self._initial_cell_state = nest.map_structure( lambda s: tf.identity(s, name="check_initial_cell_state"), initial_cell_state) def _batch_size_checks(self, batch_size, error_message): return [tf.assert_equal(batch_size, attention_mechanism.batch_size, message=error_message) for attention_mechanism in self._attention_mechanisms] def _item_or_tuple(self, seq): """Returns `seq` as tuple or the singular element. Which is returned is determined by how the AttentionMechanism(s) were passed to the constructor. Args: seq: A non-empty sequence of items or generator. Returns: Either the values in the sequence as a tuple if AttentionMechanism(s) were passed to the constructor as a sequence or the singular element. """ t = tuple(seq) if self._is_multi: return t else: return t[0] @property def output_size(self): if self._output_attention: return self._attention_layer_size else: return self._cell.output_size @property def state_size(self): """The `state_size` property of `AttentionWrapper`. Returns: An `AttentionWrapperState` tuple containing shapes used by this object. """ return AttentionWrapperState( cell_state=self._cell.state_size, time=tf.TensorShape([]), attention=self._attention_layer_size, alignments=self._item_or_tuple( a.alignments_size for a in self._attention_mechanisms), attention_state=self._item_or_tuple( a.state_size for a in self._attention_mechanisms), alignment_history=self._item_or_tuple( a.alignments_size if self._alignment_history else () for a in self._attention_mechanisms)) # sometimes a TensorArray def zero_state(self, batch_size, dtype): """Return an initial (zero) state tuple for this `AttentionWrapper`. **NOTE** Please see the initializer documentation for details of how to call `zero_state` if using an `AttentionWrapper` with a `BeamSearchDecoder`. Args: batch_size: `0D` integer tensor: the batch size. dtype: The internal state data type. Returns: An `AttentionWrapperState` tuple containing zeroed out tensors and, possibly, empty `TensorArray` objects. Raises: ValueError: (or, possibly at runtime, InvalidArgument), if `batch_size` does not match the output size of the encoder passed to the wrapper object at initialization time. """ with tf.name_scope(type(self).__name__ + "ZeroState", values=[batch_size]): if self._initial_cell_state is not None: cell_state = self._initial_cell_state else: cell_state = self._cell.zero_state(batch_size, dtype) error_message = ( "When calling zero_state of AttentionWrapper %s: " % self._base_name + "Non-matching batch sizes between the memory " "(encoder output) and the requested batch size. Are you using " "the BeamSearchDecoder? If so, make sure your encoder output has " "been tiled to beam_width via tf.contrib.seq2seq.tile_batch, and " "the batch_size= argument passed to zero_state is " "batch_size * beam_width.") with tf.control_dependencies( self._batch_size_checks(batch_size, error_message)): cell_state = nest.map_structure( lambda s: tf.identity(s, name="checked_cell_state"), cell_state) initial_alignments = [ attention_mechanism.initial_alignments(batch_size, dtype) for attention_mechanism in self._attention_mechanisms] return AttentionWrapperState( cell_state=cell_state, time=tf.zeros([], dtype=tf.int32), attention=_zero_state_tensors(self._attention_layer_size, batch_size, dtype), alignments=self._item_or_tuple(initial_alignments), attention_state=self._item_or_tuple( attention_mechanism.initial_state(batch_size, dtype) for attention_mechanism in self._attention_mechanisms), alignment_history=self._item_or_tuple( tf.TensorArray( dtype, size=0, dynamic_size=True, element_shape=alignment.shape) if self._alignment_history else () for alignment in initial_alignments)) def call(self, inputs, state): """Perform a step of attention-wrapped RNN. - Step 1: Mix the `inputs` and previous step's `attention` output via `cell_input_fn`. - Step 2: Call the wrapped `cell` with this input and its previous state. - Step 3: Score the cell's output with `attention_mechanism`. - Step 4: Calculate the alignments by passing the score through the `normalizer`. - Step 5: Calculate the context vector as the inner product between the alignments and the attention_mechanism's values (memory). - Step 6: Calculate the attention output by concatenating the cell output and context through the attention layer (a linear layer with `attention_layer_size` outputs). Args: inputs: (Possibly nested tuple of) Tensor, the input at this time step. state: An instance of `AttentionWrapperState` containing tensors from the previous time step. Returns: A tuple `(attention_or_cell_output, next_state)`, where: - `attention_or_cell_output` depending on `output_attention`. - `next_state` is an instance of `AttentionWrapperState` containing the state calculated at this time step. Raises: TypeError: If `state` is not an instance of `AttentionWrapperState`. """ if not isinstance(state, AttentionWrapperState): raise TypeError("Expected state to be instance of AttentionWrapperState. " "Received type %s instead."
<reponame>brianhuey/vissim<filename>vissim_v5/vissim_v5.py<gh_stars>10-100 #!/usr/bin/env python """ VISSIM Tools v2.0 """ from re import findall as _findall, match as _match, search as _search from re import split as _split from math import sqrt as _sqrt from copy import copy as _copy def _median(lst): """ Stock median function from: http://stackoverflow. com/questions/24101524/finding-median-of-list-in-python """ lst = sorted(lst) if len(lst) < 1: return None if len(lst) % 2 == 1: return lst[((len(lst) + 1) / 2) - 1] else: return float(sum(lst[(len(lst) / 2) - 1:(len(lst) / 2) + 1])) / 2.0 def _flatten(coll): """ Flatten list and convert elements to int """ if isinstance(coll, list): return [int(a) for i in coll for a in _flatten(i)] else: return [coll] def _importSection(obj, filename): """ Imports section's syntax into dictionary. """ name = obj.name try: with open(filename, 'r') as data: section = None for row in data: found = _findall(r'(?<=\- )(.*?)(?=\: -)', row) if row in ['\n', '\r\n']: continue elif found: section = found[0] elif section == name and row[0] is not '-': obj._readSection(row) else: continue except IOError: print 'cannot open', filename def _updateFile(orgFile, newFile, name, printData): """ Update a section of a VISSIM .INP file. Inputs: filename, object type(Inputs, Routing Decision, etc.) and list of strings with VISSIM syntax. Outputs: new file """ search = '-- ' + name + ': --' f = open(orgFile, 'r') lines = f.readlines() f.close() f = open(newFile, 'w') startDelete = False print 'Writing %s to %s ...' % (name, newFile) for line in lines: if startDelete is True and line[:3] == '-- ': startDelete = False f.write('\n\n\n') if line[:len(search)] == search: startDelete = True for newLine in printData: f.write(str(newLine) + '\n') if startDelete is False: f.write(line) f.close() def _exportSection(obj, filename): """ Prepare for export all dictionaries within a given object Input: Dict object Output: List of all items for a given class in VISSIM syntax """ first_line = '-- ' + obj.name + ': --\n' second_line = '-' * (len(first_line) - 1) + '\n' print_data = [first_line + second_line] print 'Reading %s ...' % obj.name for value in obj.data.values(): print_data += obj._output(value) print 'Updating %s ...' % obj.name _updateFile(obj.filename, filename, obj.name, print_data) def _checkKeyData(obj, key, label): """ Checks whether key and label exist """ if key is not None: if key not in obj.data: raise KeyError('%s not a valid key for object %s' % (key, obj.name)) if label not in obj.types: raise KeyError('%s not a valid label for object %s' % (label, obj.name)) return True def _getData(obj, key, label): """ Returns requested value from vissim object """ _checkKeyData(obj, key, label) if key is None: new = obj.data[label] else: new = obj.data[key][label] return _copy(new) def _setData(obj, key, label, value): """ Sets given value in vissim object """ _checkKeyData(obj, key, label) if not isinstance(value, obj.types[label]): value = obj.types[label](value) if key is None: obj.data[label] = value else: obj.data[key][label] = value def _updateData(obj, key, label, value, pos=None, newKey=None): """ Updates vissim object Input: object, key, label and value Output: adds value to object. """ _checkKeyData(obj, key, label) if key is None: if (isinstance(obj.data[label], list) is True) and (pos is None): obj.data[label].append(value) obj.data[label] = list(_flatten(obj.data[label])) elif isinstance(obj.data[label], list) and pos: obj.data[label].insert(pos, value) obj.data[label] = list(_flatten(obj.data[label])) else: if isinstance(obj.data[key][label], dict): obj.data[key][label][newKey] = value if (isinstance(obj.data[key][label], list) is True) and (pos is None): obj.data[label].append(value) obj.data[label] = list(_flatten(obj.data[label])) elif isinstance(obj.data[key][label], list) and pos: obj.data[label].insert(pos, value) obj.data[label] = list(_flatten(obj.data[label])) def _convertType(iterable, newType): """ Converts element type within iterable. """ iterType = type(iterable) return iterType([newType(i) for i in iterable]) class Inputs: """ Handles Inputs section of .INP file. """ def __init__(self, filename): self.filename = filename self.name = 'Inputs' self.data = {} self.currData = None self.types = {'composition': int, 'exact': bool, 'from': float, 'input': int, 'label': tuple, 'link': int, 'name': str, 'q': float, 'until': float} _importSection(self, filename) def get(self, inputNum, label, string=True): """ Get value from Input. Input: Input number, Value label Output: Value """ if string: return str(_getData(self, inputNum, label)) else: return _getData(self, inputNum, label) def set(self, inputNum, label, value): """ Set value from Input. Input: Input number, Value label, value Output: Change is made in place """ _setData(self, inputNum, label, value) def getInputNumByLink(self, linkNum): """ Get value from Input by link number Input: Link number Output: List of input numbers """ result = [k for k, v in self.data.items() if v['link'] == linkNum] if len(result) == 0: raise KeyError('%s not in data' % (linkNum)) else: return result def create(self, linkNum, demand, comp, **kwargs): """ Create new Input Input: link number, demand, vehicle composition Output: Creates Input object """ if self.data.keys(): num = max(self.data.keys()) + 1 else: num = 1 inputNum = kwargs.get('input', num) self.data[inputNum] = {} self.set(inputNum, 'input', inputNum) self.set(inputNum, 'q', demand) self.set(inputNum, 'link', linkNum) self.set(inputNum, 'composition', comp) # Default values self.set(inputNum, 'name', kwargs.get('name', '""')) self.set(inputNum, 'label', kwargs.get('label', ('0.00', '0.00'))) self.set(inputNum, 'from', kwargs.get('from', '0.0')) self.set(inputNum, 'until', kwargs.get('until', '3600.0')) self.set(inputNum, 'exact', kwargs.get('exact', False)) def _readSection(self, line): """ Process the Input section of the INP file. """ if _match('^INPUT\s+\d+', line): inputNum = self.types['input'](_findall('INPUT\s+(\d+)', line)[0]) self.currData = {'input': inputNum} elif _match('^\s+NAME', line): self.currData['name'] = _findall('NAME\s+(".+"|"")', line)[0] self.currData['label'] = _findall('LABEL\s+(-?\d+.\d+)\s(-?\d+.\d+)', line)[0] elif _match('^\s+LINK', line): self.currData['link'] = _findall('LINK\s+(\d+)', line)[0] if _search('EXACT', line): self.currData['exact'] = True self.currData['q'] = _findall('Q EXACT (.+) COMPOSITION', line)[0] else: self.currData['exact'] = False self.currData['q'] = _findall('Q (.+) COMPOSITION', line)[0] self.currData['composition'] = _findall('COMPOSITION (\d)', line)[0] elif _match('^\s+TIME', line): self.currData['from'] = _findall('FROM (\d+.\d+)', line)[0] self.currData['until'] = _findall('UNTIL (\d+.\d+)', line)[0] # Last line, create Input object self.create(self.currData['link'], self.currData['q'], self.currData['composition'], **self.currData) else: print 'Non-Input data provided: %s' % line def _output(self, inputs): """ Outputs Inputs syntax to VISSIM. Input: A single Inputs dictionary Output: Inputs back into VISSIM syntax """ vissimOut = [] inputNum = inputs['input'] def _out(label, s=True): return self.get(inputNum, label, string=s) vissimOut.append('INPUT ' + _out('input').rjust(6)) vissimOut.append('NAME '.rjust(10) + _out('name') + ' LABEL ' + _out('label', s=False)[0] + ' ' + _out('label', s=False)[1]) if _out('exact', s=False) is True: vissimOut.append('LINK '.rjust(10) + _out('link') + ' Q EXACT ' + _out('q') + ' COMPOSITION ' + _out('composition')) else: vissimOut.append('LINK '.rjust(10) + _out('link') + ' Q ' + _out('q') + ' COMPOSITION ' + _out('composition')) vissimOut.append('TIME FROM '.rjust(15) + _out('from') + ' UNTIL ' + _out('until')) return vissimOut def export(self, filename): """ Prepare for export all inputs in a given inputs object Input: Inputs object Output: List of all inputs in VISSIM syntax """ _exportSection(self, filename) class Links: """ Handles Links section of .INP file. """ def __init__(self, filename): self.filename = filename self.name = 'Links' self.data = {} self.over = None self.currData = None self.closed = None self.types = {'link': int, 'name': str, 'label': tuple, 'behaviortype': int, 'displaytype': int, 'length': float, 'lanes': int, 'lane_width': list, 'gradient': float, 'cost': float, 'surcharges': list, 'segment_length': float, 'evaluation': bool, 'from': list, 'over': list, 'to': list, 'closed': dict} _importSection(self, filename) def get(self, linkNum, label, string=True): """ Get value from Link. Input: Link number, Value label Output: Value """ if string: return str(_getData(self, linkNum, label)) else: return _getData(self, linkNum, label) def set(self, linkNum, label, value): """ Set value from Link. Input: Link number, Value label, value Output: Change is made in place """ _setData(self, linkNum, label, value) def create(self, coordFrom, coordTo, **kwargs): if self.data.keys(): num = max(self.data.keys()) + 1 else: num = 1 linkNum = kwargs.get('link', num) self.data[linkNum] = {} self.set(linkNum, 'link', linkNum) self.set(linkNum, 'from', coordFrom) self.set(linkNum, 'to', coordTo) # Default values self.set(linkNum, 'name', kwargs.get('name', '""')) self.set(linkNum, 'behaviortype', kwargs.get('behaviortype', 1)) self.set(linkNum, 'cost', kwargs.get('cost', 0.00000)) self.set(linkNum, 'displaytype', kwargs.get('displaytype', 1)) self.set(linkNum, 'gradient', kwargs.get('gradient', 0.00000)) self.set(linkNum, 'label', kwargs.get('label', ('0.00', '0.00'))) self.set(linkNum, 'lane_width', kwargs.get('lane_width', [3.66])) self.set(linkNum, 'lanes', kwargs.get('lanes', 1)) self.set(linkNum, 'segment_length', kwargs.get('segment_length', 10.000)) self.set(linkNum, 'surcharges', kwargs.get('surcharges', [0.00000, 0.00000])) self.set(linkNum, 'evaluation', kwargs.get('evaluation', False)) self.set(linkNum, 'over', kwargs.get('over', [])) self.set(linkNum, 'length', kwargs.get('length', 0)) if self.get(linkNum, 'over') and self.get(linkNum, 'length') == 0: x1, y1 = self.get(linkNum, 'from') z1 = 0 length = 0 for coord in self.get(linkNum, 'over'): x2, y2, z2 = _convertType(coord, float) dx, dy, dz = x2 - x1, y2 - y1, z2 - z1 length += _sqrt(dx**2 + dy**2 + dz**2) x1, y1, z1 = x2, y2, z2 self.set(linkNum,
reaction dataset. processed_dataset = pd.read_pickle(args.dataset_config.output_folder + "final_training_dataset.pkl") folds = [[] for _ in range(args.dataset_config.num_folds)] for cls in np.unique(processed_dataset["reaction_class"].values): # Select the subset of data with the respective class label. class_subset = processed_dataset.loc[processed_dataset["reaction_class"] == cls] # Shuffle this subset with a specified seed value. class_subset = class_subset.sample(frac=1, random_state=args.dataset_config.random_seed) # Split the subset into multiple folds and save the indices of the rows. for fold_index, current_fold in enumerate(np.array_split(class_subset.index.values, args.dataset_config.num_folds)): folds[fold_index].extend(current_fold.tolist()) # Generate training and validation data and save all of the datasets. for fold_index, test_indices in enumerate(folds): print("Generating data for fold {}...".format(fold_index + 1), end="", flush=True) # If a fold directory does nto exist for a specific fold, create it. directory_path = args.dataset_config.output_folder + "fold_{}/".format(fold_index + 1) if not os.path.exists(directory_path): os.makedirs(directory_path) # Split the remaining indices into training and validation sets. training_indices = set(processed_dataset.index.values).difference(test_indices) validation_indices = random.sample(training_indices, k=round(len(processed_dataset) * args.dataset_config.validation_split)) training_indices = list(training_indices.difference(validation_indices)) # Save all of the datasets for each respective fold. processed_dataset.iloc[training_indices, :].sort_values("reaction_class"). \ to_pickle(directory_path + "training_data.pkl".format(fold_index + 1)) processed_dataset.iloc[validation_indices, :].sort_values("reaction_class"). \ to_pickle(directory_path + "validation_data.pkl".format(fold_index + 1)) processed_dataset.iloc[test_indices, :].sort_values("reaction_class"). \ to_pickle(directory_path + "test_data.pkl".format(fold_index + 1)) print("done.") def generate_fps_from_reaction_products(reaction_smiles, fp_data_configs): """ Generates specified fingerprints for the both reactive and non-reactive substructures of the reactant and product molecules that are the participating in the chemical reaction. """ # Generate the RDKit Mol representations of the product molecules and generate the reaction cores. reactants, _, products = parse_reaction_roles(reaction_smiles, as_what="mol_no_maps") reaction_cores = get_reaction_core_atoms(reaction_smiles) # Separate the reaction cores if they consist out of multiple non-neighbouring parts. separated_cores = get_separated_cores(reaction_smiles, reaction_cores) # Define variables which will be used for storing the results. total_reactive_fps, total_non_reactive_fps = [], [] # Iterate through the product molecules and generate fingerprints for all reactive and non-reactive substructures. for p_ind, product in enumerate(products): # Iterate through all of the dataset configurations. for fp_config in fp_data_configs: reactive_fps, non_reactive_fps = [], [] # Generate fingerprints from the reactive substructures i.e. the reaction core(s). for core in separated_cores[1][p_ind]: # Generate reactive EC fingerprints and add them to the list. if fp_config["type"] == "ecfp": reactive_fps.append(construct_ecfp(product, radius=fp_config["radius"], bits=fp_config["bits"], from_atoms=core, output_type="np_array", as_type="np_float")) # Generate reactive HS fingerprints and add them to the list. else: reactive_fps.append(construct_hsfp(product, radius=fp_config["radius"], bits=fp_config["bits"], from_atoms=core, neighbourhood_ext=fp_config["ext"])) # Generate the extended environment of the reaction core. extended_core_env = get_atom_environment(reaction_cores[1][p_ind], product, degree=1) # Generate fingerprints from the non-reactive substructures i.e. non-reaction core substructures. for bond in product.GetBonds(): # Generate the extended environment of the focus bond. extended_bond_env = get_bond_environment(bond, product, degree=1) # If the extended environment of the non-reactive substructure does not overlap with the extended # reaction core, generate a non-reactive fingerprint representation. if not extended_bond_env.intersection(extended_core_env): # Generate non-reactive EC fingerprints and add them to the list. if fp_config["type"] == "ecfp": non_reactive_fps.append( construct_ecfp(product, radius=fp_config["radius"], bits=fp_config["bits"], from_atoms=[bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()], output_type="np_array", as_type="np_float")) # Generate non-reactive HS fingerprints and add them to the list. else: non_reactive_fps.append( construct_hsfp(product, radius=fp_config["radius"], bits=fp_config["bits"], from_atoms=[bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()], neighbourhood_ext=fp_config["ext"])) # Append the generated fingerprints to the final list. total_reactive_fps.append(reactive_fps) total_non_reactive_fps.append(non_reactive_fps) # Return all of the generated fingerprints and labels. return total_reactive_fps, total_non_reactive_fps def save_fingerprints_to_file(output_folder_path, fp_parameters, file_name, file_role, file_ext, fp_content, mode="w"): """ Generates a descriptive name and saves the file to the specified output location. """ # Generate the name for the file. file_name = "{}_{}_{}_{}_{}.{}".format(fp_parameters["type"], fp_parameters["radius"], fp_parameters["bits"], file_name[0:-4], file_role, file_ext) \ if fp_parameters["type"] == "ecfp" else "{}_{}_{}_{}_{}_{}.{}".format(fp_parameters["type"], fp_parameters["radius"], fp_parameters["ext"], fp_parameters["bits"], file_name[0:-4], file_role, file_ext) # Save the new file in the specified format. if mode == "w": if file_ext == "pkl": pd.DataFrame(fp_content).to_pickle(output_folder_path + "/" + file_name) elif file_ext == "csv": pd.DataFrame(fp_content).to_csv(output_folder_path + "/" + file_name) else: raise Exception("Extension needs to be either 'pkl' or 'csv'.") # Append the content to an already existing dataset. else: old_dataset = pd.read_pickle(output_folder_path + "/" + file_name) \ if file_ext == "pkl" else pd.read_csv(output_folder_path + "/" + file_name) old_dataset = old_dataset.append(pd.DataFrame(fp_content)) old_dataset.to_pickle(output_folder_path + "/" + file_name) def generate_fingerprint_datasets(args): """ Generates fingerprint representations for all of the previously constructed data splits. """ # Iterate through all of the generated 'n-fold' folders. for directory_name in os.listdir(args.dataset_config.output_folder): if "fold" in directory_name: # Create folder for the type of fingerprints dataset which is specified in the input parameters. fold_dir_path = args.dataset_config.output_folder + directory_name + "/" # Create folders for all of the fingerprint configurations. for fp_config in args.descriptor_config.model_training: if not os.path.exists(fold_dir_path + fp_config["folder_name"]): os.makedirs(fold_dir_path + fp_config["folder_name"]) # Read all of the dataset splits for the current fold. for file_name in os.listdir(fold_dir_path): if file_name.endswith(".pkl"): current_dataset = pd.read_pickle(fold_dir_path + file_name) reactive_fps = [[] for _ in range(0, len(args.descriptor_config.model_training))] non_reactive_fps = [[] for _ in range(0, len(args.descriptor_config.model_training))] mc_lab = [] # Iterate through all of the rows of each dataset. for row_ind, row in tqdm(current_dataset.iterrows(), total=len(current_dataset.index), ascii=True, desc="Generating data for '{}' - '{}'".format(directory_name, file_name)): # Fetch the reactive and non-reactive substructures from the products of this reaction. r_fps, nr_fps = generate_fps_from_reaction_products(row["reaction_smiles"], args.descriptor_config.model_training) # Generate multi-class labels because they are the same for every fingerprint. mc_lab.extend(np.array([encode_one_hot(row["reaction_class"], args.dataset_config.final_classes), ] * len(r_fps[0]))) # Iterate through all of the specified configurations. for fpc_ind, fp_config in enumerate(args.descriptor_config.model_training): # Append the reactive data and an equal amount of multi-class labels for the configuration. reactive_fps[fpc_ind].extend(r_fps[fpc_ind]) # Append the non-reactive data for the configuration. non_reactive_fps[fpc_ind].extend(nr_fps[fpc_ind]) # Save the reactive data and the labels, as well as the rest of the non-reactive data. for fpc_ind, fp_config in enumerate(args.descriptor_config.model_training): # Save the reactive data. save_fingerprints_to_file(fold_dir_path + fp_config["folder_name"], fp_config, file_name, "r", "pkl", reactive_fps[fpc_ind]) # Save the non-reactive data. save_fingerprints_to_file(fold_dir_path + fp_config["folder_name"], fp_config, file_name, "nr", "pkl", non_reactive_fps[fpc_ind]) # Save the binary and multi-class labels for the reactive parts of the data. save_fingerprints_to_file(fold_dir_path + fp_config["folder_name"], fp_config, file_name, "bc", "pkl", np.full((len(reactive_fps[fpc_ind]), 1), 1, np.float)) save_fingerprints_to_file(fold_dir_path + fp_config["folder_name"], fp_config, file_name, "mc", "pkl", mc_lab) def create_model_training_datasets(args): """ Aggregates the reactive and non-reactive parts to create the final input dataset for the network. """ # Iterate through all of the generated 'n-fold' folders. for fold_dir in os.listdir(args.dataset_config.output_folder): if "fold" in fold_dir: fold_dir_path = args.dataset_config.output_folder + fold_dir + "/" # Iterate through all of the generated dataset variant folders in the current fold. for data_dir in os.listdir(fold_dir_path): if not data_dir.endswith(".pkl"): data_dir_path = fold_dir_path + data_dir + "/" print("Reading datasets from the '{}' folder.".format("/" + fold_dir + "/" + data_dir + "/")) # Finally, iterate through all of the files in the current dataset variant folder and read the # reactive and non-reactive parts. for dataset_split in ["training", "validation", "test"]: r_fp, nr_fp, r_bc, r_mc = None, None, None, None for file_name in os.listdir(data_dir_path): if dataset_split in file_name and "data_r" in file_name: r_fp = pd.read_pickle(data_dir_path + file_name).values if dataset_split in file_name and "data_nr" in file_name: nr_fp = pd.read_pickle(data_dir_path + file_name).values if dataset_split in file_name and "data_bc" in file_name: r_bc = pd.read_pickle(data_dir_path + file_name).values if dataset_split in file_name and "data_mc" in file_name: r_mc = pd.read_pickle(data_dir_path + file_name).values # Filter the negative samples to the amount of the highest populated positive class. print("Filtering negative samples for the {} set...".format(dataset_split), end="", flush=True) nr_samples = sorted(Counter([np.argmax(r) for r in r_mc]).values(), reverse=True)[0] nr_fp = nr_fp[get_n_most_frequent_rows(nr_fp, nr_samples)] # Generate the labels for the saved non-reactive fingerprints. nr_bc = np.full((len(nr_fp), 1), 0, np.float) nr_mc = np.full((len(nr_fp), 11), 0, np.float) nr_mc[:, 0] = 1. print("done.") # Aggregate the reactive and non-reactive fingerprints. print("Aggregating and saving {} set data...".format(dataset_split), end="", flush=True) x_fp = np.vstack((r_fp, nr_fp)) pd.to_pickle(pd.DataFrame(x_fp), data_dir_path + "x_{}.pkl".format(dataset_split)) print("done. Shape: {}".format(str(x_fp.shape))) # Aggregate the reactive and non-reactive labels. print("Aggregating and saving {} set labels...".format(dataset_split), end="", flush=True) y_bc = np.vstack((r_bc, nr_bc)) pd.to_pickle(pd.DataFrame(y_bc), data_dir_path + "y_bc_{}.pkl".format(dataset_split)) y_mc = np.vstack((r_mc, nr_mc)) pd.to_pickle(pd.DataFrame(y_mc), data_dir_path + "y_mc_{}.pkl".format(dataset_split)) print("done. Shapes: {} and {}.".format(str(y_mc.shape), str(y_bc.shape))) def create_final_evaluation_dataset(args): """ Creates a version of the test dataset where the non-reactive substructures are not filtered out and the compounds are treated like real unknown input compounds without mapping or known reaction class. """ # Read the test dataset from the specified fold. test_dataset = pd.read_pickle(args.dataset_config.output_folder + "fold_{}/test_data.pkl".format(args.evaluation_config.best_fold)) final_data_tuples = [] # Iterate through the test dataset and generate the necessary data. for row_ind, row in tqdm(test_dataset.iterrows(), total=len(test_dataset.index), ascii=True, desc="Generating the non-filtered version
71);\n" "border-radius: 8px;") self.generate3.setIconSize(QtCore.QSize(30, 30)) self.generate3.setObjectName("generate3") self.insert3 = QtWidgets.QPushButton(self.frame_4) self.insert3.setGeometry(QtCore.QRect(20, 150, 161, 41)) font = QtGui.QFont() font.setFamily("Open Sans") font.setPointSize(12) self.insert3.setFont(font) self.insert3.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.insert3.setStyleSheet("background-color: rgb(226, 250, 254);\n" "color: rgb(0, 0, 71);\n" "border-radius: 8px;") self.insert3.setIconSize(QtCore.QSize(30, 30)) self.insert3.setObjectName("insert3") self.manage3 = QtWidgets.QPushButton(self.frame_4) self.manage3.setGeometry(QtCore.QRect(20, 210, 161, 41)) font = QtGui.QFont() font.setFamily("Open Sans") font.setPointSize(12) self.manage3.setFont(font) self.manage3.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.manage3.setStyleSheet("background-color: #4866c4;\n" "color: rgb(226, 250, 254);\n" "border-radius: 8px;") self.manage3.setIconSize(QtCore.QSize(30, 30)) self.manage3.setObjectName("manage3") self.setting3 = QtWidgets.QPushButton(self.frame_4) self.setting3.setGeometry(QtCore.QRect(20, 270, 161, 41)) font = QtGui.QFont() font.setFamily("Open Sans") font.setPointSize(12) self.setting3.setFont(font) self.setting3.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.setting3.setStyleSheet("background-color: rgb(226, 250, 254);\n" "color: rgb(0, 0, 71);\n" "border-radius: 8px;") self.setting3.setIconSize(QtCore.QSize(30, 30)) self.setting3.setObjectName("setting3") self.about3 = QtWidgets.QPushButton(self.frame_4) self.about3.setGeometry(QtCore.QRect(20, 330, 161, 41)) font = QtGui.QFont() font.setFamily("Open Sans") font.setPointSize(12) self.about3.setFont(font) self.about3.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.about3.setStyleSheet("background-color: rgb(226, 250, 254);\n" "color: rgb(0, 0, 71);\n" "border-radius: 8px;") self.about3.setIconSize(QtCore.QSize(30, 30)) self.about3.setObjectName("about3") self.logout3 = QtWidgets.QPushButton(self.frame_4) self.logout3.setGeometry(QtCore.QRect(20, 390, 161, 41)) font = QtGui.QFont() font.setFamily("Open Sans") font.setPointSize(12) self.logout3.setFont(font) self.logout3.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.logout3.setStyleSheet("background-color: rgb(226, 250, 254);\n" "color: rgb(0, 0, 71);\n" "border-radius: 8px;") self.logout3.setIconSize(QtCore.QSize(30, 30)) self.logout3.setObjectName("logout3") self.mode3 = QtWidgets.QPushButton(self.frame_4) self.mode3.setGeometry(QtCore.QRect(20, 450, 161, 41)) font = QtGui.QFont() font.setFamily("Open Sans") font.setPointSize(12) self.mode3.setFont(font) self.mode3.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.mode3.setStyleSheet("background-color: rgb(226, 250, 254);\n" "color: rgb(0, 0, 71);\n" "border-radius: 8px;") self.mode3.setText("") self.mode3.setIconSize(QtCore.QSize(30, 30)) self.mode3.setObjectName("mode3") self.mode_dr3 = QtWidgets.QPushButton(self.frame_4) self.mode_dr3.setGeometry(QtCore.QRect(20, 450, 51, 41)) self.mode_dr3.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.mode_dr3.setStyleSheet("background-color: none;") self.mode_dr3.setText("") self.mode_dr3.setIcon(icon) self.mode_dr3.setIconSize(QtCore.QSize(27, 27)) self.mode_dr3.setObjectName("mode_dr3") self.mode_light11_3 = QtWidgets.QPushButton(self.frame_4) self.mode_light11_3.setGeometry(QtCore.QRect(70, 450, 111, 41)) self.mode_light11_3.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.mode_light11_3.setStyleSheet("background-color: #4866c4;\n" "border-radius: 8px;\n" "border-top-left-radius: 0px;\n" "border-bottom-left-radius: 0px;") self.mode_light11_3.setText("") self.mode_light11_3.setIcon(icon1) self.mode_light11_3.setIconSize(QtCore.QSize(31, 32)) self.mode_light11_3.setObjectName("mode_light11_3") self.label_3 = QtWidgets.QLabel(self.three) self.label_3.setGeometry(QtCore.QRect(230, 30, 451, 41)) font = QtGui.QFont() font.setFamily("Barlow Condensed ExtraBold") font.setPointSize(20) font.setBold(True) font.setWeight(75) self.label_3.setFont(font) self.label_3.setStyleSheet("background-color: none;\n" "color: #4866c4;") self.label_3.setObjectName("label_3") self.label_20 = QtWidgets.QLabel(self.three) self.label_20.setGeometry(QtCore.QRect(230, 100, 141, 31)) font = QtGui.QFont() font.setFamily("Open Sans") font.setPointSize(11) self.label_20.setFont(font) self.label_20.setStyleSheet("background-color: rgba(224, 224, 224, 60);") self.label_20.setAlignment(QtCore.Qt.AlignCenter) self.label_20.setObjectName("label_20") self.label_21 = QtWidgets.QLabel(self.three) self.label_21.setGeometry(QtCore.QRect(390, 100, 141, 31)) font = QtGui.QFont() font.setFamily("Open Sans") font.setPointSize(11) self.label_21.setFont(font) self.label_21.setStyleSheet("background-color: rgba(224, 224, 224, 60);") self.label_21.setAlignment(QtCore.Qt.AlignCenter) self.label_21.setObjectName("label_21") self.label_22 = QtWidgets.QLabel(self.three) self.label_22.setGeometry(QtCore.QRect(540, 100, 211, 31)) font = QtGui.QFont() font.setFamily("Open Sans") font.setPointSize(11) self.label_22.setFont(font) self.label_22.setStyleSheet("background-color: rgba(224, 224, 224, 60);") self.label_22.setAlignment(QtCore.Qt.AlignCenter) self.label_22.setObjectName("label_22") self.a0 = QtWidgets.QLabel(self.three) self.a0.setGeometry(QtCore.QRect(390, 150, 141, 31)) font = QtGui.QFont() font.setFamily("Open Sans Light") font.setPointSize(11) self.a0.setFont(font) self.a0.setStyleSheet("background-color: rgba(224, 224, 224, 60);") self.a0.setText("") self.a0.setAlignment(QtCore.Qt.AlignCenter) self.a0.setObjectName("a0") self.n0 = QtWidgets.QLabel(self.three) self.n0.setGeometry(QtCore.QRect(230, 150, 141, 31)) font = QtGui.QFont() font.setFamily("Open Sans Light") font.setPointSize(11) self.n0.setFont(font) self.n0.setStyleSheet("background-color: rgba(224, 224, 224, 60);") self.n0.setText("") self.n0.setAlignment(QtCore.Qt.AlignCenter) self.n0.setObjectName("n0") self.no0 = QtWidgets.QLabel(self.three) self.no0.setGeometry(QtCore.QRect(540, 150, 211, 31)) font = QtGui.QFont() font.setFamily("Open Sans Light") font.setPointSize(11) self.no0.setFont(font) self.no0.setStyleSheet("background-color: rgba(224, 224, 224, 60);") self.no0.setText("") self.no0.setAlignment(QtCore.Qt.AlignCenter) self.no0.setObjectName("no0") self.no2 = QtWidgets.QLabel(self.three) self.no2.setGeometry(QtCore.QRect(540, 250, 211, 31)) font = QtGui.QFont() font.setFamily("Open Sans Light") font.setPointSize(11) self.no2.setFont(font) self.no2.setStyleSheet("background-color: rgba(224, 224, 224, 60);") self.no2.setText("") self.no2.setAlignment(QtCore.Qt.AlignCenter) self.no2.setObjectName("no2") self.a1 = QtWidgets.QLabel(self.three) self.a1.setGeometry(QtCore.QRect(390, 200, 141, 31)) font = QtGui.QFont() font.setFamily("Open Sans Light") font.setPointSize(11) self.a1.setFont(font) self.a1.setStyleSheet("background-color: rgba(224, 224, 224, 60);") self.a1.setText("") self.a1.setAlignment(QtCore.Qt.AlignCenter) self.a1.setObjectName("a1") self.a2 = QtWidgets.QLabel(self.three) self.a2.setGeometry(QtCore.QRect(390, 250, 141, 31)) font = QtGui.QFont() font.setFamily("Open Sans Light") font.setPointSize(11) self.a2.setFont(font) self.a2.setStyleSheet("background-color: rgba(224, 224, 224, 60);") self.a2.setText("") self.a2.setAlignment(QtCore.Qt.AlignCenter) self.a2.setObjectName("a2") self.n1 = QtWidgets.QLabel(self.three) self.n1.setGeometry(QtCore.QRect(230, 200, 141, 31)) font = QtGui.QFont() font.setFamily("Open Sans Light") font.setPointSize(11) self.n1.setFont(font) self.n1.setStyleSheet("background-color: rgba(224, 224, 224, 60);") self.n1.setText("") self.n1.setAlignment(QtCore.Qt.AlignCenter) self.n1.setObjectName("n1") self.n2 = QtWidgets.QLabel(self.three) self.n2.setGeometry(QtCore.QRect(230, 250, 141, 31)) font = QtGui.QFont() font.setFamily("Open Sans Light") font.setPointSize(11) self.n2.setFont(font) self.n2.setStyleSheet("background-color: rgba(224, 224, 224, 60);") self.n2.setText("") self.n2.setAlignment(QtCore.Qt.AlignCenter) self.n2.setObjectName("n2") self.no1 = QtWidgets.QLabel(self.three) self.no1.setGeometry(QtCore.QRect(540, 200, 211, 31)) font = QtGui.QFont() font.setFamily("Open Sans Light") font.setPointSize(11) self.no1.setFont(font) self.no1.setStyleSheet("background-color: rgba(224, 224, 224, 60);") self.no1.setText("") self.no1.setAlignment(QtCore.Qt.AlignCenter) self.no1.setObjectName("no1") self.no4 = QtWidgets.QLabel(self.three) self.no4.setGeometry(QtCore.QRect(540, 350, 211, 31)) font = QtGui.QFont() font.setFamily("Open Sans Light") font.setPointSize(11) self.no4.setFont(font) self.no4.setStyleSheet("background-color: rgba(224, 224, 224, 60);") self.no4.setText("") self.no4.setAlignment(QtCore.Qt.AlignCenter) self.no4.setObjectName("no4") self.a3 = QtWidgets.QLabel(self.three) self.a3.setGeometry(QtCore.QRect(390, 300, 141, 31)) font = QtGui.QFont() font.setFamily("Open Sans Light") font.setPointSize(11) self.a3.setFont(font) self.a3.setStyleSheet("background-color: rgba(224, 224, 224, 60);") self.a3.setText("") self.a3.setAlignment(QtCore.Qt.AlignCenter) self.a3.setObjectName("a3") self.n5 = QtWidgets.QLabel(self.three) self.n5.setGeometry(QtCore.QRect(230, 400, 141, 31)) font = QtGui.QFont() font.setFamily("Open Sans Light") font.setPointSize(11) self.n5.setFont(font) self.n5.setStyleSheet("background-color: rgba(224, 224, 224, 60);") self.n5.setText("") self.n5.setAlignment(QtCore.Qt.AlignCenter) self.n5.setObjectName("n5") self.a4 = QtWidgets.QLabel(self.three) self.a4.setGeometry(QtCore.QRect(390, 350, 141, 31)) font = QtGui.QFont() font.setFamily("Open Sans Light") font.setPointSize(11) self.a4.setFont(font) self.a4.setStyleSheet("background-color: rgba(224, 224, 224, 60);") self.a4.setText("") self.a4.setAlignment(QtCore.Qt.AlignCenter) self.a4.setObjectName("a4") self.a5 = QtWidgets.QLabel(self.three) self.a5.setGeometry(QtCore.QRect(390, 400, 141, 31)) font = QtGui.QFont() font.setFamily("Open Sans Light") font.setPointSize(11) self.a5.setFont(font) self.a5.setStyleSheet("background-color: rgba(224, 224, 224, 60);") self.a5.setText("") self.a5.setAlignment(QtCore.Qt.AlignCenter) self.a5.setObjectName("a5") self.no6 = QtWidgets.QLabel(self.three) self.no6.setGeometry(QtCore.QRect(540, 450, 211, 31)) font = QtGui.QFont() font.setFamily("Open Sans Light") font.setPointSize(11) self.no6.setFont(font) self.no6.setStyleSheet("background-color: rgba(224, 224, 224, 60);") self.no6.setText("") self.no6.setAlignment(QtCore.Qt.AlignCenter) self.no6.setObjectName("no6") self.n3 = QtWidgets.QLabel(self.three) self.n3.setGeometry(QtCore.QRect(230, 300, 141, 31)) font = QtGui.QFont() font.setFamily("Open Sans Light") font.setPointSize(11) self.n3.setFont(font) self.n3.setStyleSheet("background-color: rgba(224, 224, 224, 60);") self.n3.setText("") self.n3.setAlignment(QtCore.Qt.AlignCenter) self.n3.setObjectName("n3") self.no5 = QtWidgets.QLabel(self.three) self.no5.setGeometry(QtCore.QRect(540, 400, 211, 31)) font = QtGui.QFont() font.setFamily("Open Sans Light") font.setPointSize(11) self.no5.setFont(font) self.no5.setStyleSheet("background-color: rgba(224, 224, 224, 60);") self.no5.setText("") self.no5.setAlignment(QtCore.Qt.AlignCenter) self.no5.setObjectName("no5") self.n6 = QtWidgets.QLabel(self.three) self.n6.setGeometry(QtCore.QRect(230, 450, 141, 31)) font = QtGui.QFont() font.setFamily("Open Sans Light") font.setPointSize(11) self.n6.setFont(font) self.n6.setStyleSheet("background-color: rgba(224, 224, 224, 60);") self.n6.setText("") self.n6.setAlignment(QtCore.Qt.AlignCenter) self.n6.setObjectName("n6") self.n4 = QtWidgets.QLabel(self.three) self.n4.setGeometry(QtCore.QRect(230, 350, 141, 31)) font = QtGui.QFont() font.setFamily("Open Sans Light") font.setPointSize(11) self.n4.setFont(font) self.n4.setStyleSheet("background-color: rgba(224, 224, 224, 60);") self.n4.setText("") self.n4.setAlignment(QtCore.Qt.AlignCenter) self.n4.setObjectName("n4") self.a6 = QtWidgets.QLabel(self.three) self.a6.setGeometry(QtCore.QRect(390, 450, 141, 31)) font = QtGui.QFont() font.setFamily("Open Sans Light") font.setPointSize(11) self.a6.setFont(font) self.a6.setStyleSheet("background-color: rgba(224, 224, 224, 60);") self.a6.setText("") self.a6.setAlignment(QtCore.Qt.AlignCenter) self.a6.setObjectName("a6") self.no3 = QtWidgets.QLabel(self.three) self.no3.setGeometry(QtCore.QRect(540, 300, 211, 31)) font = QtGui.QFont() font.setFamily("Open Sans Light") font.setPointSize(11) self.no3.setFont(font) self.no3.setStyleSheet("background-color: rgba(224, 224, 224, 60);") self.no3.setText("") self.no3.setAlignment(QtCore.Qt.AlignCenter) self.no3.setObjectName("no3") self.copy_manage1 = QtWidgets.QPushButton(self.three) self.copy_manage1.setGeometry(QtCore.QRect(760, 150, 31, 31)) self.copy_manage1.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.copy_manage1.setStyleSheet("background-color: rgba(255, 255, 255, 100);\n" "border-radius: 10px;\n" "") self.copy_manage1.setText("") self.copy_manage1.setIcon(icon2) self.copy_manage1.setIconSize(QtCore.QSize(32, 30)) self.copy_manage1.setObjectName("copy_manage1") self.copy_manage2 = QtWidgets.QPushButton(self.three) self.copy_manage2.setGeometry(QtCore.QRect(760, 200, 31, 31)) self.copy_manage2.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.copy_manage2.setStyleSheet("background-color: rgba(255, 255, 255, 100);\n" "border-radius: 10px;\n" "") self.copy_manage2.setText("") self.copy_manage2.setIcon(icon2) self.copy_manage2.setIconSize(QtCore.QSize(30, 30)) self.copy_manage2.setObjectName("copy_manage2") self.copy_manage3 = QtWidgets.QPushButton(self.three) self.copy_manage3.setGeometry(QtCore.QRect(760, 250, 31, 31)) self.copy_manage3.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.copy_manage3.setStyleSheet("background-color: rgba(255, 255, 255, 100);\n" "border-radius: 10px;\n" "") self.copy_manage3.setText("") self.copy_manage3.setIcon(icon2) self.copy_manage3.setIconSize(QtCore.QSize(30, 30)) self.copy_manage3.setObjectName("copy_manage3") self.copy_manage4 = QtWidgets.QPushButton(self.three) self.copy_manage4.setGeometry(QtCore.QRect(760, 300, 31, 31)) self.copy_manage4.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.copy_manage4.setStyleSheet("background-color: rgba(255, 255, 255, 100);\n" "border-radius: 10px;\n" "") self.copy_manage4.setText("") self.copy_manage4.setIcon(icon2) self.copy_manage4.setIconSize(QtCore.QSize(30, 30)) self.copy_manage4.setObjectName("copy_manage4") self.copy_manage5 = QtWidgets.QPushButton(self.three) self.copy_manage5.setGeometry(QtCore.QRect(760, 350, 31, 31)) self.copy_manage5.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.copy_manage5.setStyleSheet("background-color: rgba(255, 255, 255, 100);\n" "border-radius: 10px;\n" "") self.copy_manage5.setText("") self.copy_manage5.setIcon(icon2) self.copy_manage5.setIconSize(QtCore.QSize(30, 30)) self.copy_manage5.setObjectName("copy_manage5") self.copy_manage6 = QtWidgets.QPushButton(self.three) self.copy_manage6.setGeometry(QtCore.QRect(760, 400, 31, 31)) self.copy_manage6.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.copy_manage6.setStyleSheet("background-color: rgba(255, 255, 255, 100);\n" "border-radius: 10px;\n" "") self.copy_manage6.setText("") self.copy_manage6.setIcon(icon2) self.copy_manage6.setIconSize(QtCore.QSize(30, 30)) self.copy_manage6.setObjectName("copy_manage6") self.copy_manage7 = QtWidgets.QPushButton(self.three) self.copy_manage7.setGeometry(QtCore.QRect(760, 450, 31, 31)) self.copy_manage7.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.copy_manage7.setStyleSheet("background-color: rgba(255, 255, 255, 100);\n" "border-radius: 10px;\n" "") self.copy_manage7.setText("") self.copy_manage7.setIcon(icon2) self.copy_manage7.setIconSize(QtCore.QSize(30, 30)) self.copy_manage7.setObjectName("copy_manage7") self.showall = QtWidgets.QPushButton(self.three) self.showall.setGeometry(QtCore.QRect(410, 500, 161, 41)) font = QtGui.QFont() font.setFamily("Open Sans") font.setPointSize(13) self.showall.setFont(font) self.showall.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.showall.setStyleSheet("background-color: qlineargradient(spread:pad, x1:0.518, y1:0, x2:0.487562, y2:1, stop:0 #2a66ff, stop:1 #4c6bff);\n" "color: rgb(255, 255, 255);\n" "border-radius: 8px;") self.showall.setIconSize(QtCore.QSize(30, 30)) self.showall.setObjectName("showall") self.closegradient_3 = QtWidgets.QPushButton(self.three) self.closegradient_3.setGeometry(QtCore.QRect(770, 10, 31, 21)) self.closegradient_3.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.closegradient_3.setStyleSheet("background-color: none;\n" "") self.closegradient_3.setText("") self.closegradient_3.setIcon(icon3) self.closegradient_3.setIconSize(QtCore.QSize(36, 37)) self.closegradient_3.setObjectName("closegradient_3") self.mingradient_3 = QtWidgets.QPushButton(self.three) self.mingradient_3.setGeometry(QtCore.QRect(730, 0, 41, 31)) self.mingradient_3.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.mingradient_3.setStyleSheet("background-color: none;\n" "") self.mingradient_3.setText("") self.mingradient_3.setIcon(icon4) self.mingradient_3.setIconSize(QtCore.QSize(31, 37)) self.mingradient_3.setObjectName("mingradient_3") self.stackedWidget.addWidget(self.three) self.for_2 = QtWidgets.QWidget() self.for_2.setStyleSheet("background-color: qlineargradient(spread:pad, x1:0, y1:0.488636, x2:1, y2:0.483, stop:0 #e2fcfe, stop:0.5 #ffffff, stop:1 #e2f7fe);\n" "border-radius: 15px;") self.for_2.setObjectName("for_2") self.frame_5 = QtWidgets.QFrame(self.for_2) self.frame_5.setGeometry(QtCore.QRect(0, 0, 201, 561)) self.frame_5.setStyleSheet("border-radius:15px;\n" "background-color: qlineargradient(spread:pad, x1:0, y1:0, x2:1, y2:0, stop:0 #C9D6FF, stop:1 #E2E2E2);") self.frame_5.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_5.setFrameShadow(QtWidgets.QFrame.Raised) self.frame_5.setObjectName("frame_5") self.label_23 = QtWidgets.QLabel(self.frame_5) self.label_23.setGeometry(QtCore.QRect(0, 0, 201, 51)) font = QtGui.QFont() font.setFamily("Bauhaus 93") font.setPointSize(16) font.setUnderline(False) self.label_23.setFont(font) self.label_23.setStyleSheet("color: qlineargradient(spread:pad, x1:0.518, y1:0, x2:0.487562, y2:1, stop:0 rgba(0, 63, 225, 200), stop:1 rgba(17, 84, 255, 200));\n" "border-radius: 8px;") self.label_23.setAlignment(QtCore.Qt.AlignCenter) self.label_23.setObjectName("label_23") self.generate4 = QtWidgets.QPushButton(self.frame_5) self.generate4.setGeometry(QtCore.QRect(20, 90, 161, 41)) font = QtGui.QFont() font.setFamily("Open Sans") font.setPointSize(12) self.generate4.setFont(font) self.generate4.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.generate4.setStyleSheet("background-color: rgb(226, 250, 254);\n" "color: rgb(0, 0, 71);\n" "border-radius: 8px;") self.generate4.setIconSize(QtCore.QSize(30, 30)) self.generate4.setObjectName("generate4") self.insert4 = QtWidgets.QPushButton(self.frame_5) self.insert4.setGeometry(QtCore.QRect(20, 150, 161, 41)) font = QtGui.QFont() font.setFamily("Open Sans") font.setPointSize(12) self.insert4.setFont(font) self.insert4.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.insert4.setStyleSheet("background-color: rgb(226, 250, 254);\n" "color: rgb(0, 0, 71);\n" "border-radius: 8px;") self.insert4.setIconSize(QtCore.QSize(30, 30)) self.insert4.setObjectName("insert4") self.manage4 = QtWidgets.QPushButton(self.frame_5) self.manage4.setGeometry(QtCore.QRect(20, 210, 161, 41)) font = QtGui.QFont() font.setFamily("Open Sans") font.setPointSize(12) self.manage4.setFont(font) self.manage4.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.manage4.setStyleSheet("background-color: rgb(226, 250, 254);\n" "color: rgb(0, 0, 71);\n" "border-radius: 8px;") self.manage4.setIconSize(QtCore.QSize(30, 30)) self.manage4.setObjectName("manage4") self.setting4 = QtWidgets.QPushButton(self.frame_5) self.setting4.setGeometry(QtCore.QRect(20, 270, 161, 41)) font = QtGui.QFont() font.setFamily("Open Sans") font.setPointSize(12) self.setting4.setFont(font) self.setting4.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.setting4.setStyleSheet("background-color: #4866c4;\n" "color: rgb(226, 250, 254);\n" "border-radius: 8px;") self.setting4.setIconSize(QtCore.QSize(30, 30)) self.setting4.setObjectName("setting4") self.about4 = QtWidgets.QPushButton(self.frame_5) self.about4.setGeometry(QtCore.QRect(20, 330, 161, 41)) font = QtGui.QFont() font.setFamily("Open Sans") font.setPointSize(12) self.about4.setFont(font) self.about4.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.about4.setStyleSheet("background-color: rgb(226, 250, 254);\n" "color: rgb(0, 0, 71);\n" "border-radius: 8px;") self.about4.setIconSize(QtCore.QSize(30, 30)) self.about4.setObjectName("about4") self.logout4 = QtWidgets.QPushButton(self.frame_5) self.logout4.setGeometry(QtCore.QRect(20, 390, 161, 41)) font = QtGui.QFont() font.setFamily("Open Sans") font.setPointSize(12) self.logout4.setFont(font) self.logout4.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.logout4.setStyleSheet("background-color: rgb(226, 250, 254);\n" "color: rgb(0, 0, 71);\n" "border-radius: 8px;") self.logout4.setIconSize(QtCore.QSize(30, 30)) self.logout4.setObjectName("logout4") self.mode4 = QtWidgets.QPushButton(self.frame_5) self.mode4.setGeometry(QtCore.QRect(20, 450, 161, 41)) font = QtGui.QFont() font.setFamily("Open Sans") font.setPointSize(12) self.mode4.setFont(font) self.mode4.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.mode4.setStyleSheet("background-color: rgb(226, 250, 254);\n" "color: rgb(0, 0, 71);\n" "border-radius: 8px;") self.mode4.setText("") self.mode4.setIconSize(QtCore.QSize(30, 30)) self.mode4.setObjectName("mode4") self.mode_dr4 = QtWidgets.QPushButton(self.frame_5) self.mode_dr4.setGeometry(QtCore.QRect(20, 450, 51, 41)) self.mode_dr4.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.mode_dr4.setStyleSheet("background-color: none;") self.mode_dr4.setText("") self.mode_dr4.setIcon(icon) self.mode_dr4.setIconSize(QtCore.QSize(27, 27)) self.mode_dr4.setObjectName("mode_dr4") self.mode_light11_4 = QtWidgets.QPushButton(self.frame_5) self.mode_light11_4.setGeometry(QtCore.QRect(70, 450, 111, 41)) self.mode_light11_4.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.mode_light11_4.setStyleSheet("background-color: #4866c4;\n" "border-radius: 8px;\n" "border-top-left-radius: 0px;\n" "border-bottom-left-radius: 0px;") self.mode_light11_4.setText("") self.mode_light11_4.setIcon(icon1) self.mode_light11_4.setIconSize(QtCore.QSize(31, 32)) self.mode_light11_4.setObjectName("mode_light11_4") self.label_createquick = QtWidgets.QLabel(self.for_2) self.label_createquick.setGeometry(QtCore.QRect(230, 30, 451, 41)) font = QtGui.QFont() font.setFamily("Barlow Condensed ExtraBold") font.setPointSize(20) font.setBold(True) font.setWeight(75) self.label_createquick.setFont(font) self.label_createquick.setStyleSheet("background-color: none;\n" "color: #4866c4;") self.label_createquick.setObjectName("label_createquick") self.lineEdit_confirmid = QtWidgets.QLineEdit(self.for_2) self.lineEdit_confirmid.setGeometry(QtCore.QRect(330, 160, 471, 41)) font = QtGui.QFont() font.setFamily("Open Sans Light") font.setPointSize(10) self.lineEdit_confirmid.setFont(font) self.lineEdit_confirmid.setStyleSheet("background-color: rgba(224, 224,
"""Utilities for creating XDMF metadata from results stored in HDF5. XDMF utilities are separate from the core xdmf to reduce core dependencies. See: - core.xdmf license: HDF5Application/license.txt """ import xml.etree.ElementTree as ET import os import warnings from itertools import chain from contextlib import contextmanager import re import KratosMultiphysics import KratosMultiphysics.HDF5Application as KratosHDF5 from KratosMultiphysics.HDF5Application.core.xdmf import SpatialGrid from KratosMultiphysics.HDF5Application.core.xdmf import HDF5UniformDataItem from KratosMultiphysics.HDF5Application.core.xdmf import Geometry from KratosMultiphysics.HDF5Application.core.xdmf import TopologyCellType from KratosMultiphysics.HDF5Application.core.xdmf import UniformMeshTopology from KratosMultiphysics.HDF5Application.core.xdmf import UniformGrid from KratosMultiphysics.HDF5Application.core.xdmf import NodalData from KratosMultiphysics.HDF5Application.core.xdmf import ElementData from KratosMultiphysics.HDF5Application.core.xdmf import ConditionData from KratosMultiphysics.HDF5Application.core.xdmf import TemporalGrid from KratosMultiphysics.HDF5Application.core.xdmf import Time from KratosMultiphysics.HDF5Application.core.xdmf import Domain from KratosMultiphysics.HDF5Application.core.xdmf import Xdmf try: with warnings.catch_warnings(): # suppressing an import-related warning from h5py # problem appears when using it in a test with python >=3.6 warnings.simplefilter('ignore', category=ImportWarning) import h5py except ModuleNotFoundError: # If h5py is not found, then we delay the exception until name lookup is # performed on the module. This allows the current module to still be used # for testing purposes. Otherwise the tests must be skipped. warn_msg = "h5py module was not found!" KratosMultiphysics.Logger.PrintWarning(__name__, warn_msg) class NonExistingModule(object): def __init__(self, module_name): self.module_name = module_name def __getattr__(self, name): raise ModuleNotFoundError( "No module named '" + self.module_name + "'") h5py = NonExistingModule('h5py') @contextmanager def TryOpenH5File(name, mode=None, driver=None, **kwds): """A context manager wrapper for the opened file. In case the file cannot be opened, yield None rather than raise an exception. This can be the case if the file is already opened. """ try: with h5py.File(name, mode, driver=driver, **kwds) as f: yield f except OSError: warn_msg = 'No xdmf-data was written for file:\n"' + name + '"' KratosMultiphysics.Logger.PrintWarning("XDMF", warn_msg) yield None def RenumberConnectivitiesForXdmf(filename_or_list_of_filenames, h5path_to_mesh): """Renumber mesh connectivities for XDMF. Keyword arguments: filename_or_list_of_filenames -- the HDF5 file(s) to renumber h5path_to_mesh -- the internal HDF5 file path to the mesh The mesh connectivities must be renumbered for XDMF by the node's array index rather than its ID. The renumbered connectivities are stored in HDF5 and referenced by the XDMF Grid. If a file cannot be opened, it is skipped. See: - XdmfConnectivitiesWriterProcess. """ for path in list(filename_or_list_of_filenames): skip = True with TryOpenH5File(path, "r") as f: if not f: continue if h5path_to_mesh in f: skip = "Xdmf" in f[h5path_to_mesh] if not skip: KratosHDF5.HDF5XdmfConnectivitiesWriterProcess( path, h5path_to_mesh).Execute() def GetListOfSpatialGrids(spatial_grids_list, h5_model_part, current_path): for key in h5_model_part.keys(): if (key == "Conditions" or key == "Elements"): spatial_grids_list.append([str(h5_model_part.name) + "/" + str(key), current_path + "." + str(key)]) else: GetListOfSpatialGrids(spatial_grids_list, h5_model_part[key], current_path + "." + str(key)) def CreateXdmfSpatialGrid(h5_model_part): """Return an XDMF Grid object corresponding to a mesh in an HDF5 file. Keyword arguments: h5_model_part -- the HDF5 group containing the model part Expects: - element connectivities in h5_model_part["Xdmf/Elements/<element-name>"]. Each connectivities has attributes "Dimension" and "NumberOfNodes". For example, "Element2D3N" has "Dimension" 2 and "NumberOfNodes" 3. The connectivities differ from the normal mdpa connectivities in that they directly index the array of nodal coordinates. Currently there is no other way to post-process the mesh with Xdmf. See: - core.operations.ModelPartOutput, - core.operations.PartitionedModelPartOutput, - RenumberConnectivitiesForXdmf. """ sgrid = SpatialGrid() geom = Geometry(HDF5UniformDataItem( h5_model_part["Nodes/Local/Coordinates"])) spatial_grids_list = [] GetListOfSpatialGrids(spatial_grids_list, h5_model_part["Xdmf"], "RootModelPart") for spatial_grid in spatial_grids_list: spatial_grid_location = spatial_grid[0] spatial_grid_name = spatial_grid[1] for name, value in h5_model_part[spatial_grid_location].items(): cell_type = TopologyCellType( value.attrs["Dimension"], value.attrs["NumberOfNodes"]) connectivities = HDF5UniformDataItem(value["Connectivities"]) topology = UniformMeshTopology(cell_type, connectivities) sgrid.add_grid(UniformGrid(spatial_grid_name + "." + name, geom, topology)) KratosMultiphysics.Logger.PrintInfo("XDMF", "Added " + spatial_grid_name + "." + name + " spatial grid.") return sgrid def Has_dtype(item): return hasattr(item[1], 'dtype') def XdmfNodalResults(h5_results): """Return a list of XDMF Attribute objects for nodal results in an HDF5 file. Keyword arguments: h5_results -- the HDF5 group containing the results Checks for results stored in data sets by variable name in: - h5_results["NodalSolutionStepData/<variable-name>"] - h5_results["NodalDataValues/<variable-name>"] Expects: - each result variable occurs only once If no results are found, returns an empty list. See: - core.operations.NodalSolutionStepDataOutput, - core.operations.NodalDataValueOutput. """ results = {} for path in ["NodalSolutionStepData", "NodalDataValues"]: try: grp = h5_results[path] except KeyError: continue for variable, data in filter(Has_dtype, grp.items()): if variable in results: # A variable can exist in the nodal solution step data or # non-historical nodal data value container, but not both. raise RuntimeError('Nodal result variable "' + variable + '" already exists.') results[variable] = NodalData(variable, HDF5UniformDataItem(data)) return list(results.values()) def XdmfNodalFlags(h5_results): """Return a list of XDMF Attribute objects for nodal flags in an HDF5 file. Keyword arguments: h5_results -- the HDF5 group containing the flags Checks for flags stored in data sets by variable name in: - h5_flags["NodalFlagValues/<flag-name>"] Expects: - each flag variable occurs only once If no flags are found, returns an empty list. See: - core.operations.NodalFlagsValueOutput. """ results_path = "NodalFlagValues" results = [] try: grp = h5_results[results_path] except KeyError: return results for variable, data in filter(Has_dtype, grp.items()): r = NodalData(variable, HDF5UniformDataItem(data)) results.append(r) return results def XdmfElementResults(h5_results): """Return a list of XDMF Attribute objects for element results in an HDF5 file. Keyword arguments: h5_results -- the HDF5 group containing the results Checks for results stored by variable name in: - h5_results["ElementDataValues/<variable>"] If no results are found, returns an empty list. See: - core.operations.ElementDataValueOutput. """ results_path = "ElementDataValues" results = [] try: grp = h5_results[results_path] except KeyError: return results for variable, data in filter(Has_dtype, grp.items()): r = ElementData(variable, HDF5UniformDataItem(data)) results.append(r) return results def XdmfElementFlags(h5_results): """Return a list of XDMF Attribute objects for element flags in an HDF5 file. Keyword arguments: h5_flags -- the HDF5 group containing the flags Checks for flags stored by variable name in: - h5_flags["ElementFlagValues/<flag-name>"] If no flags are found, returns an empty list. See: - core.operations.ElementFlagValueOutput. """ results_path = "ElementFlagValues" results = [] try: grp = h5_results[results_path] except KeyError: return results for variable, data in filter(Has_dtype, grp.items()): r = ElementData(variable, HDF5UniformDataItem(data)) results.append(r) return results def XdmfElementGaussPointValues(h5_results): """Return a list of XDMF Attribute objects for element integration point values in an HDF5 file. Keyword arguments: h5_results -- the HDF5 group containing the results Checks for results stored by variable name in: - h5_results["ElementGaussPointValues/<variable>"] If no results are found, returns an empty list. See: - core.operations.ElementGaussPointOutput. """ results_path = "ElementGaussPointValues" results = [] try: grp = h5_results[results_path] except KeyError: return results for variable, data in filter(Has_dtype, grp.items()): r = ElementData(variable, HDF5UniformDataItem(data)) results.append(r) return results def XdmfConditionResults(h5_results): """Return a list of XDMF Attribute objects for element results in an HDF5 file. Keyword arguments: h5_results -- the HDF5 group containing the results Checks for results stored by variable name in: - h5_results["ConditionDataValues/<variable>"] If no results are found, returns an empty list. See: - core.operations.ConditionDataValueOutput. """ results_path = "ConditionDataValues" results = [] try: grp = h5_results[results_path] except KeyError: return results for variable, data in filter(Has_dtype, grp.items()): r = ConditionData(variable, HDF5UniformDataItem(data)) results.append(r) return results def XdmfConditionFlags(h5_results): """Return a list of XDMF Attribute objects for element flags in an HDF5 file. Keyword arguments: h5_flags -- the HDF5 group containing the flags Checks for flags stored by variable name in: - h5_flags["ConditionFlagValues/<flag-name>"] If no flags are found, returns an empty list. See: - core.operations.ConditionFlagValueOutput. """ results_path = "ConditionFlagValues" results = [] try: grp = h5_results[results_path] except KeyError: return results for variable, data in filter(Has_dtype, grp.items()): r = ConditionData(variable, HDF5UniformDataItem(data)) results.append(r) return results def XdmfConditionGaussPointValues(h5_results): """Return a list of XDMF Attribute objects for element integration point values in an HDF5 file. Keyword arguments: h5_results -- the HDF5 group containing the results Checks for results stored by variable name in: - h5_results["ConditionGaussPointValues/<variable>"] If no results are found, returns an empty list. See: - core.operations.ConditionGaussPointOutput. """ results_path = "ConditionGaussPointValues" results = [] try: grp = h5_results[results_path] except KeyError: return results for variable, data in filter(Has_dtype, grp.items()): r = ElementData(variable, HDF5UniformDataItem(data)) results.append(r) return results def XdmfResults(h5_results): """Return a list of XDMF Attribute objects for results in an HDF5 file. Keyword arguments: h5_results -- the HDF5 group containing the results """ return list( chain( XdmfNodalResults(h5_results), XdmfNodalFlags(h5_results), XdmfElementResults(h5_results), XdmfElementFlags(h5_results), XdmfElementGaussPointValues(h5_results), XdmfConditionResults(h5_results), XdmfConditionFlags(h5_results), XdmfConditionGaussPointValues(h5_results) ) ) def TimeLabel(file_path): """Return the time string from the file name. E.g.: 'kratos-123.h5' -> '123' 'kratos-1.2.h5' -> '1.2' 'kratos-1.2e+00.h5' -> '1.2e+00' Returns empty string if not found. """ # Is there a better way to do this? temp_file_path = file_path.replace("E-", "E*") temp_file_path = temp_file_path.replace("e-", "e*") dash_split = temp_file_path[:temp_file_path.rfind(".")].split("-") dash_split[-1] = dash_split[-1].replace("E*", "E-")
VM roles \"" _msg += ','.join(_required_imageid_list[_imageid]) + "\": \"" _msg += _imageid + "\" " if _imageid in map_id_to_name : _msg += "(\"" + map_id_to_name[_imageid].strip() + "\") " _msg += "is NOT registered " _msg += "(attaching VMs with any of these roles will result in error).\n" if not len(_detected_imageids) : _msg = "WARNING! None of the image ids used by any VM \"role\" were detected" _msg += " in this " + self.get_description() + " !" # _msg += "of the following images: " + ','.join(_undetected_imageids.keys()) cbwarn(_msg, True) else : _msg = _msg.replace("yx",'') _msg = _msg.replace("x "," ") _msg = _msg[:-2] if len(_msg) : cbdebug(_msg, True) return _detected_imageids @trace def populate_cloudconfig(self, obj_attr_list) : ''' TBD ''' if ("userdata" not in obj_attr_list or str(obj_attr_list["userdata"]).lower() == "false") and obj_attr_list["use_vpn_ip"].lower() == "false" : #cbdebug("Skipping userdata: " + str(obj_attr_list["userdata"]), True) return None obj_attr_list["cloudinit_keys"] += ',' + obj_attr_list["pubkey_contents"] obj_attr_list["cloudinit_keys"] = obj_attr_list["cloudinit_keys"].replace("____",' ').split(',') cloudconfig = "#cloud-config\n" cloudconfig += "ssh_pwauth: true\n" cloudconfig += "disable_root: false\n" cloudconfig += "\nusers:\n" cloudconfig += "- name: " + obj_attr_list["login"] + "\n" if str(obj_attr_list["password"]).lower() != "false" : cloudconfig += " lock-passwd: false\n" cloudconfig += " lock_passwd: <PASSWORD>\n" cloudconfig += " passwd: " + obj_attr_list["password"].replace("<PASSWORD>", "$") + "\n" else : cloudconfig += " lock-passwd: true\n" cloudconfig += " home: /home/" + obj_attr_list["login"] + "\n" cloudconfig += " shell: /bin/bash\n" cloudconfig += " sudo: ALL=(ALL) NOPASSWD:ALL\n" if obj_attr_list["userdata_ssh"].lower() == "true" : cloudconfig += " ssh_authorized_keys:\n" for _k in obj_attr_list["cloudinit_keys"] : if len(_k) > 370 : cloudconfig += " - " + _k + '\n' if obj_attr_list["userdata_ssh"].lower() == "true" : cloudconfig += "\n\n" cloudconfig += " ssh_authorized_keys:\n" for _k in obj_attr_list["cloudinit_keys"] : if len(_k) > 370 : cloudconfig += " - " + _k + '\n' cloudconfig += "\n" cloudconfig += "\nwrite_files:\n" cloudconfig += " - path: /tmp/cb_post_boot.sh\n" cloudconfig += " content: |\n" if obj_attr_list["userdata_post_boot"].lower() == "true" : cloudconfig += self.create_bootstrap_script(obj_attr_list) else : cloudconfig += " #!/bin/bash\n" cloudconfig += " /bin/true\n" if obj_attr_list["use_vpn_ip"].lower() == "true" : if "cloudinit_packages" in obj_attr_list and obj_attr_list["cloudinit_packages"].lower() != "false" : obj_attr_list["cloudinit_packages"] += ";openvpn;redis-tools" else : obj_attr_list["cloudinit_packages"] = "openvpn;redis-tools" conf_destination = "/etc/openvpn/" + obj_attr_list["cloud_name"] + "_client-cb-openvpn-cloud.conf" targets = [] targets.append(("/configs/generated/" + obj_attr_list["cloud_name"] + "_client-cb-openvpn.conf", conf_destination)) targets.append(("/util/openvpn/client_connected.sh", "/etc/openvpn/client_connected.sh")) for target in targets : (src, dest) = target cbdebug("src: " + src + " dest: " + dest) cloudconfig += """ - path: """ + dest + """ content: | """ fhname = cwd + src cbdebug("Opening: " + fhname) fh = open(fhname, 'r') while True : line = fh.readline() if not line : break line = line.replace("USER", obj_attr_list["username"]) line = line.replace("CLOUD_NAME", obj_attr_list["cloud_name"]) line = line.replace("SERVER_BOOTSTRAP", obj_attr_list["vpn_server_bootstrap"]) line = line.replace("UUID", obj_attr_list["uuid"]) line = line.replace("OSCI_PORT", str(self.osci.port)) line = line.replace("OSCI_DBID", str(self.osci.dbid)) if line.count("remote ") : line = "remote " + obj_attr_list["vpn_server_ip"] + " " + obj_attr_list["vpn_server_port"] + "\n" cloudconfig += " " + line if line.count("remote ") : cloudconfig += " up /etc/openvpn/client_connected.sh\n" fh.close() if obj_attr_list["userdata_post_boot"].lower() == "true" or obj_attr_list["use_vpn_ip"].lower() != "false" or obj_attr_list["cloudinit_commands"].lower() != "false" : cloudconfig += "\nruncmd:\n" cloudconfig += " - chmod +x /tmp/cb_post_boot.sh\n" if obj_attr_list["cloudinit_commands"].lower() != "false" : for _cmd in obj_attr_list["cloudinit_commands"].split(';') : cloudconfig += " - " + _cmd.replace("____",' ') + '\n' # We can't run the userdata from cloudbench until the VPN is connected, # so only run it if we're not using the VPN. # Otherwise, /etc/openvpn/client_connected.sh will do it. if obj_attr_list["use_vpn_ip"].lower() == "false" : cloudconfig += " - /tmp/cb_post_boot.sh\n" else : cloudconfig += " - chmod +x /etc/openvpn/client_connected.sh\n" cloudconfig += " - mv " + conf_destination + " /tmp/cbvpn.conf\n" cloudconfig += " - rm -f /etc/openvpn/*.conf /etc/openvpn/*.ovpn\n" cloudconfig += " - mv /tmp/cbvpn.conf " + conf_destination + "\n" cloudconfig += " - mkdir -p /var/log/openvpn\n" #cloudconfig += " - openvpn --daemon --config " + conf_destination + "\n" cloudconfig += " - systemctl start openvpn@" + obj_attr_list["cloud_name"] + "_client-cb-openvpn-cloud.service\n" cloudconfig += " - service openvpn start\n" # Check to see if the user requested packages to be installed for this VM role via cloud-init if obj_attr_list["cloudinit_packages"].lower() != "false" : cbdebug("Will instruct cloud-init to install: " + obj_attr_list["cloudinit_packages"] + " on " + obj_attr_list["log_string"], True) cloudconfig += """ packages:""" for package in obj_attr_list["cloudinit_packages"].split(";") : cloudconfig += """ - """ + package #cbdebug("Final userdata: \n" + str(cloudconfig)) return cloudconfig def create_bootstrap_script(self, obj_attr_list) : ''' TBD ''' _attempts = str(5) _sleep = str(2) _fshn = obj_attr_list["filestore_host"] _fspn = obj_attr_list["filestore_port"] _fsun = obj_attr_list["filestore_username"] _ldn = obj_attr_list["local_dir_name"] _rln = obj_attr_list["login"] _ohn = obj_attr_list["objectstore_host"] _opn = obj_attr_list["objectstore_port"] _odb = obj_attr_list["objectstore_dbid"] _cn = obj_attr_list["cloud_name"] _ohn = obj_attr_list["vpn_server_bootstrap"] _fshn = obj_attr_list["vpn_server_bootstrap"] _pad = " " _bootstrap_script = _pad + "#!/bin/bash\n\n" _bootstrap_script += _pad + "# This VM is part of experiment id \"" + obj_attr_list["experiment_id"] + "\"" _bootstrap_script += _pad + "\n" _bootstrap_script += _pad + "mkdir -p /var/log/cloudbench\n" _bootstrap_script += _pad + "\n" _bootstrap_script += _pad + "chmod 777 /var/log/cloudbench\n" _bootstrap_script += _pad + "\n" _bootstrap_script += get_boostrap_command(obj_attr_list, True) _bootstrap_script += _pad + "if [[ $(cat " + obj_attr_list["remote_dir_home"] + "/cb_os_parameters.txt | grep -c \"#OSOI-" + "TEST_" + obj_attr_list["username"] + ":" + obj_attr_list["cloud_name"] + "\") -ne 0 ]]\n" _bootstrap_script += _pad + "then\n" _bootstrap_script += _pad + " redis-cli -h " + _ohn + " -n " + str(_odb) + " -p " + str(_opn) + " hset TEST_" + _fsun + ':' + obj_attr_list["cloud_name"] + ":VM:PENDING:" + obj_attr_list["uuid"] + " cloud_init_bootstrap true\n" _bootstrap_script += _pad + "fi\n" _bootstrap_script += _pad + "\n" _bootstrap_script += _pad + "counter=0\n\n" _bootstrap_script += _pad + "while [[ \"$counter\" -le " + _attempts + " ]]\n" _bootstrap_script += _pad + "do\n" _bootstrap_script += _pad + " rsync -az --delete --no-o --no-g --inplace rsync://" + _fshn + ':' + _fspn + '/' + _fsun + "_cb" + "/exclude_list.txt /tmp/exclude_list\n" _bootstrap_script += _pad + " if [[ $? -eq 0 ]]\n" _bootstrap_script += _pad + " then\n" _bootstrap_script += _pad + " break\n" _bootstrap_script += _pad + " else\n" _bootstrap_script += _pad + " sleep " + _sleep + "\n" _bootstrap_script += _pad + " counter=\"$(( $counter + 1 ))\"\n" _bootstrap_script += _pad + " fi\n" _bootstrap_script += _pad + "done\n" _bootstrap_script += _pad + "counter=0\n\n" _bootstrap_script += _pad + "while [[ \"$counter\" -le " + _attempts + " ]]\n" _bootstrap_script += _pad + "do\n" _bootstrap_script += _pad + " rsync -az --exclude-from '/tmp/exclude_list' --delete --no-o --no-g --inplace rsync://" + _fshn + ':' + _fspn + '/' + _fsun + "_cb/ " + obj_attr_list["remote_dir_path"] + "/\n" _bootstrap_script += _pad + " if [[ $? -eq 0 ]]\n" _bootstrap_script += _pad + " then\n" _bootstrap_script += _pad + " redis-cli -h " + _ohn + " -n " + str(_odb) + " -p " + str(_opn) + " hset TEST_" + _fsun + ':' + obj_attr_list["cloud_name"] + ":VM:PENDING:" + obj_attr_list["uuid"] + " cloud_init_rsync true\n" _bootstrap_script += _pad + " break\n" _bootstrap_script += _pad + " else\n" _bootstrap_script += _pad + " sleep " + _sleep + "\n" _bootstrap_script += _pad + " counter=\"$(( $counter + 1 ))\"\n" _bootstrap_script += _pad + " fi\n" _bootstrap_script += _pad + "done\n" _bootstrap_script += _pad + "chown -R " + _rln + ':' + _rln + ' ' + obj_attr_list["remote_dir_path"] + "/\n" _bootstrap_script += _pad + "\n" _bootstrap_script += _pad + "\n" _bootstrap_script += _pad + "VMUUID=$(grep -ri " + obj_attr_list["experiment_id"] + " /var/lib/cloud/ | grep user-data | cut -d '/' -f 6 | head -n 1)\n" _bootstrap_script += _pad + "redis-cli -h " + _ohn + " -n " + str(_odb) + " -p " + str(_opn) + " publish TEST_" + _fsun + ':' + obj_attr_list["cloud_name"] + ":VM:BOOT " + "\"VM $VMUUID is booted\"\n" _bootstrap_script
SystemService(self.com_object.SystemService) @property def top(self) -> float: """ .. note:: :class: toggle CAA V5 Visual Basic Help (2020-06-11 12:40:47.360445) | o Property Top() As float | | Returns or sets the distance from the application'si frame window top to | the top of the screen. This distance is expressed in | pixels. | | Example: | This example sets the distance from the CATIA application's frame | window top to the top of the screen to 50 pixels. | | CATIA.Top = 50 :return: float :rtype: float """ return self.com_object.Top @top.setter def top(self, value: float): """ :param float value: """ self.com_object.Top = value @property def undo_redo_lock(self) -> bool: """ .. note:: :class: toggle CAA V5 Visual Basic Help (2020-06-11 12:40:47.360445) | o Property UndoRedoLock() As boolean | | Returns or sets the application status about Undo/Redo. | True if the Undo/Redo mechanism is locked. | False is the default. Since Undo/Redo mechanism uses lots of memory, it can | be useful to disable it during consuming operations. Then Undo and Redo stacks | are flushed and no model modification is kept until the Undo/Redo mechanism is | unlocked. It is mandatory to unlock it before the end of the | macro. | | Example: | | This example disables Undo/Redo mechanism until it is | unlocked. | | | CATIA.UndoRedoLock = True :return: bool :rtype: bool """ return self.com_object.UndoRedoLock @undo_redo_lock.setter def undo_redo_lock(self, value: bool): """ :param bool value: """ self.com_object.UndoRedoLock = value @property def visible(self) -> bool: """ .. note:: :class: toggle CAA V5 Visual Basic Help (2020-06-11 12:40:47.360445) | o Property Visible() As boolean | | Returns or sets the application's window visibility. | True if the application's window is visible to the end | user. | | Example: | This example makes the CATIA application's window | visible. | | CATIA.Visibility = True :return: bool :rtype: bool """ return self.com_object.Visible @visible.setter def visible(self, value: bool): """ :param bool value: """ self.com_object.Visible = value @property def width(self) -> float: """ .. note:: :class: toggle CAA V5 Visual Basic Help (2020-06-11 12:40:47.360445) | o Property Width() As float | | Returns or sets the width of the application's frame window. The width is | expressed in pixels. | | Example: | This example sets the width of the CATIA application's frame window to | 350 pixels. | | CATIA.Width = 350 :return: float :rtype: float """ return self.com_object.Width @width.setter def width(self, value: float): """ :param float value: """ self.com_object.Width = value @property def windows(self) -> Windows: """ .. note:: :class: toggle CAA V5 Visual Basic Help (2020-06-11 12:40:47.360445) | o Property Windows() As Windows (Read Only) | | Returns the collection of windows currently managed by the | application. | | Example: | This example retrieves in WinCollection the collection of windows | currently managed by the CATIA application. | | Dim WinCollection As Windows | Set WinCollection = CATIA.Windows :return: Windows :rtype: Windows """ return Windows(self.com_object.Windows) def create_send_to(self) -> SendToService: """ .. note:: :class: toggle CAA V5 Visual Basic Help (2020-06-11 12:40:47.360445)) | o Func CreateSendTo() As SendToService | | Creates a Send TO. | Role:This method creates a SendToService instance. | Warning : CATIASendToService interface requires the | installation of CATIA - PPR xPDM Gateway 1 Product (PX1) | In case this product is not granted, the first invocation | to one of CATIASendToService methods will fail. :return: SendToService :rtype: SendToService """ return SendToService(self.com_object.CreateSendTo()) def disable_new_undo_redo_transaction(self) -> None: """ .. note:: :class: toggle CAA V5 Visual Basic Help (2020-06-11 12:40:47.360445)) | o Sub DisableNewUndoRedoTransaction() | | Prevents new Undo/Redo transaction creation. | If too many Undo/Redo transactions are created during macro execution, it | may affect performance. So it is valuable to prevent Undo/Redo transaction | creation during macro execution when lots of data are created, deleted or | modified. | Note: preventing Undo/Redo transaction creation must not be done when a | selection is required in the macro | Do not forget to call EnableNewUndoRedoTransaction at the end of the macro | or before selection to restore the common behavior. | | Example: | This example prevents new transactions to be created, which may | increase performance. | | CATIA.DisableNewUndoRedoTransaction() :return: None :rtype: None """ return self.com_object.DisableNewUndoRedoTransaction() def enable_new_undo_redo_transaction(self) -> None: """ .. note:: :class: toggle CAA V5 Visual Basic Help (2020-06-11 12:40:47.360445)) | o Sub EnableNewUndoRedoTransaction() | | Allows new Undo/Redo transaction creation. | | Example: | This example restores the common behavior after | DisableNewUndoRedoTransaction has been called. | | CATIA.EnableNewUndoRedoTransaction() :return: None :rtype: None """ return self.com_object.EnableNewUndoRedoTransaction() def file_selection_box(self, i_title: str, i_extension: str, i_mode: int) -> str: """ .. note:: :class: toggle CAA V5 Visual Basic Help (2020-06-11 12:40:47.360445)) | o Func FileSelectionBox(CATBSTR iTitle, | CATBSTR iExtension, | CatFileSelectionMode iMode) As CATBSTR | | Displays a modal dialog box which can be used to select / enter the name of | a file to open / save. | | Parameters: | | iTitle | The title of the dialog box. | iExtension | A file extension filter. | iMode | The mode in which to run the dialog box (either | CatFileSelectionModeOpen or CatFileSelectionModeSave. | | oFilePath | The return string containing the full path of the selected file, or | a zero-length string if the user selects Cancel. | | Example: | This example asks the user to select a text file and prints the | path of the selected file. | | filepath = CATIA.FileSelectionBox("Select a text file", | "\\*.txt", CatFileSelectionModeOpen) | CATIA.SystemServices.Print "The selected file is " & | filepath :param str i_title: :param str i_extension: :param CatFileSelectionMode i_mode: :return: str :rtype: str """ return self.com_object.FileSelectionBox(i_title, i_extension, i_mode) def get_workbench_id(self) -> str: """ .. note:: :class: toggle CAA V5 Visual Basic Help (2020-06-11 12:40:47.360445)) | o Func GetWorkbenchId() As CATBSTR | | Returns the identifier of the CATIA current workbench. | | Parameters: | | oworkbenchId | The id of the current workbench. :return: str :rtype: str """ return self.com_object.GetWorkbenchId() def help(self, i_help_id: str) -> None: """ .. note:: :class: toggle CAA V5 Visual Basic Help (2020-06-11 12:40:47.360445)) | o Sub Help(CATBSTR iHelpID) | | Displays application's online help. | | Parameters: | | iHelpID | Identifier of the help message to display | | Example: | This example displays the string referred to by the HelpKey message key | in the message catalog concatenation. | | CATIA.Help("HelpKey") :param str i_help_id: :return: None :rtype: None """ return self.com_object.Help(i_help_id) def message_box(self, message_text: str, buttons: int = 0, title: str = ""): """ The button values ===================== ======= ======================================== Constant Value Description --------------------- ------- ---------------------------------------- vbOKOnly 0 Display OK button only. vbOKCancel 1 Display OK and Cancel buttons. vbAbortRetryIgnore 2 Display Abort, Retry, and Ignore buttons vbYesNoCancel 3 Display Yes, No, and Cancel buttons. vbYesNo 4 Display Yes and No buttons. vbRetryCancel 5 Display Retry and Cancel buttons. vbCritical 16 Display Critical Message icon. vbQuestion 32 Display Warning Query icon. vbExclamation 48 Display Warning Message icon. vbInformation 64 Display Information Message icon. vbDefaultButton1 0 First button is default. vbDefaultButton2 256 Second button is default. vbDefaultButton3 512 Third button is default. vbDefaultButton4 768 Fourth button is default. vbApplicationModal 0 Application modal; the user must respond to the message box before continuing work in the current application. vbSystemModal 4096 System modal; all applications are suspended until the user responds to the message box. vbMsgBoxHelpButton 16384 Adds Help button to the message box. vbMsgBoxSetForeground 65536 Specifies the message box window as the foreground window. vbMsgBoxRight 524288 Text is right-aligned. vbMsgBoxRtlReading 1048576 Specifies text should appear as right-to-left reading on Hebrew and Arabic systems. ===================== ======= ======================================== Return values ======== ===== =========== Constant Value Description -------- ----- ----------- vbOK 1 OK
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: """ Reports builder for BIDS-Apps. Generalizes report generation across BIDS-Apps """ from pathlib import Path import re from itertools import product from collections import defaultdict from pkg_resources import resource_filename as pkgrf from bids.layout import BIDSLayout, add_config_paths import jinja2 from nipype.utils.filemanip import copyfile # Add a new figures spec try: add_config_paths(figures=pkgrf('niworkflows', 'reports/figures.json')) except ValueError as e: if "Configuration 'figures' already exists" != str(e): raise PLURAL_SUFFIX = defaultdict(str('s').format, [('echo', 'es')]) SVG_SNIPPET = ["""\ <object class="svg-reportlet" type="image/svg+xml" data="./{0}"> Problem loading figure {0}. If the link below works, please try \ reloading the report in your browser.</object> </div> <div class="elem-filename"> Get figure file: <a href="./{0}" target="_blank">{0}</a> </div> """, """\ <img class="svg-reportlet" src="./{0}" style="width: 100%" /> </div> <div class="elem-filename"> Get figure file: <a href="./{0}" target="_blank">{0}</a> </div> """] class Element(object): """Just a basic component of a report""" def __init__(self, name, title=None): self.name = name self.title = title class Reportlet(Element): """ A reportlet has title, description and a list of components with either an HTML fragment or a path to an SVG file, and possibly a caption. This is a factory class to generate Reportlets reusing the layout from a ``Report`` object. .. testsetup:: >>> cwd = os.getcwd() >>> os.chdir(tmpdir) >>> from pkg_resources import resource_filename >>> from shutil import copytree >>> from bids.layout import BIDSLayout >>> test_data_path = resource_filename('niworkflows', 'data/tests/work') >>> testdir = Path(tmpdir) >>> data_dir = copytree(test_data_path, str(testdir / 'work')) >>> out_figs = testdir / 'out' / 'fmriprep' >>> bl = BIDSLayout(str(testdir / 'work' / 'reportlets'), ... config='figures', validate=False) .. doctest:: >>> bl.get(subject='01', desc='reconall') # doctest: +ELLIPSIS [<BIDSFile filename='.../fmriprep/sub-01/anat/sub-01_desc-reconall_T1w.svg'>] >>> len(bl.get(subject='01', space='.*', regex_search=True)) 2 >>> r = Reportlet(bl, out_figs, config={ ... 'title': 'Some Title', 'bids': {'datatype': 'anat', 'desc': 'reconall'}, ... 'description': 'Some description'}) >>> r.name 'datatype-anat_desc-reconall' >>> r.components[0][0].startswith('<img') True >>> r = Reportlet(bl, out_figs, config={ ... 'title': 'Some Title', 'bids': {'datatype': 'anat', 'desc': 'reconall'}, ... 'description': 'Some description', 'static': False}) >>> r.name 'datatype-anat_desc-reconall' >>> r.components[0][0].startswith('<object') True >>> r = Reportlet(bl, out_figs, config={ ... 'title': 'Some Title', 'bids': {'datatype': 'anat', 'desc': 'summary'}, ... 'description': 'Some description'}) >>> r.components[0][0].startswith('<h3') True >>> r.components[0][1] is None True >>> r = Reportlet(bl, out_figs, config={ ... 'title': 'Some Title', ... 'bids': {'datatype': 'anat', 'space': '.*', 'regex_search': True}, ... 'caption': 'Some description {space}'}) >>> sorted(r.components)[0][1] 'Some description MNI152NLin2009cAsym' >>> sorted(r.components)[1][1] 'Some description MNI152NLin6Asym' >>> r = Reportlet(bl, out_figs, config={ ... 'title': 'Some Title', ... 'bids': {'datatype': 'fmap', 'space': '.*', 'regex_search': True}, ... 'caption': 'Some description {space}'}) >>> r.is_empty() True .. testcleanup:: >>> os.chdir(cwd) """ def __init__(self, layout, out_dir, config=None): if not config: raise RuntimeError('Reportlet must have a config object') # PY35: Sorted config dict for consistent behavior self.name = config.get( 'name', '_'.join('%s-%s' % i for i in sorted(config['bids'].items()))) self.title = config.get('title') self.subtitle = config.get('subtitle') self.description = config.get('description') # Query the BIDS layout of reportlets files = layout.get(**config['bids']) self.components = [] for bidsfile in files: src = Path(bidsfile.path) ext = ''.join(src.suffixes) desc_text = config.get('caption') contents = None if ext == '.html': contents = src.read_text().strip() elif ext == '.svg': entities = dict(bidsfile.entities) if desc_text: desc_text = desc_text.format(**entities) entities['extension'] = 'svg' entities['datatype'] = 'figures' linked_svg = layout.build_path(entities) if linked_svg is None: raise ValueError("Could not generate SVG path to copy {src}" " to. Entities: {entities}".format(src=src, entities=entities)) out_file = out_dir / linked_svg out_file.parent.mkdir(parents=True, exist_ok=True) # PY35: Coerce to str to pacify os.* functions that don't take Paths until 3.6 copyfile(str(src), str(out_file), copy=True, use_hardlink=True) is_static = config.get('static', True) contents = SVG_SNIPPET[is_static].format(linked_svg) # Our current implementations of dynamic reportlets do this themselves, # however I'll leave the code here since this is potentially something we # will want to transfer from every figure generator to this location. # The following code misses setting preserveAspecRatio="xMidYMid meet" # if not is_static: # # Remove height and width attributes from initial <svg> tag # svglines = out_file.read_text().splitlines() # expr = re.compile(r' (height|width)=["\'][0-9]+(\.[0-9]*)?[a-z]*["\']') # for l, line in enumerate(svglines[:6]): # if line.strip().startswith('<svg'): # newline = expr.sub('', line) # svglines[l] = newline # out_file.write_text('\n'.join(svglines)) # break if contents: self.components.append((contents, desc_text)) def is_empty(self): return len(self.components) == 0 class SubReport(Element): """SubReports are sections within a Report.""" def __init__(self, name, isnested=False, reportlets=None, title=''): self.name = name self.title = title self.reportlets = reportlets or [] self.isnested = isnested class Report(object): """ The full report object. This object maintains a BIDSLayout to index all reportlets. .. testsetup:: >>> cwd = os.getcwd() >>> os.chdir(tmpdir) >>> from pkg_resources import resource_filename >>> from shutil import copytree >>> from bids.layout import BIDSLayout >>> test_data_path = resource_filename('niworkflows', 'data/tests/work') >>> testdir = Path(tmpdir) >>> data_dir = copytree(test_data_path, str(testdir / 'work')) >>> out_figs = testdir / 'out' / 'fmriprep' .. doctest:: >>> robj = Report(testdir / 'work' / 'reportlets', testdir / 'out', ... 'madeoutuuid', subject_id='01', packagename='fmriprep') >>> robj.layout.get(subject='01', desc='reconall') # doctest: +ELLIPSIS [<BIDSFile filename='.../anat/sub-01_desc-reconall_T1w.svg'>] >>> robj.generate_report() 0 >>> len((testdir / 'out' / 'fmriprep' / 'sub-01.html').read_text()) 19369 .. testcleanup:: >>> os.chdir(cwd) """ def __init__(self, reportlets_dir, out_dir, run_uuid, config=None, subject_id=None, out_filename='report.html', packagename=None): self.root = reportlets_dir # Initialize structuring elements self.sections = [] self.errors = [] self.out_dir = Path(out_dir) self.out_filename = out_filename self.run_uuid = run_uuid self.template_path = None self.packagename = packagename self.subject_id = subject_id if subject_id is not None and subject_id.startswith('sub-'): self.subject_id = self.subject_id[4:] if self.subject_id is not None: self.out_filename = 'sub-{}.html'.format(self.subject_id) if config is None: config = pkgrf('niworkflows', 'reports/fmriprep.yml') self._load_config(Path(config)) def _load_config(self, config): from yaml import safe_load as load settings = load(config.read_text()) self.packagename = self.packagename or settings.get('package', None) if self.packagename is not None: self.root = self.root / self.packagename self.out_dir = self.out_dir / self.packagename if self.subject_id is not None: self.root = self.root / 'sub-{}'.format(self.subject_id) template_path = Path(settings.get('template_path', 'report.tpl')) if not template_path.is_absolute(): template_path = config.parent / template_path self.template_path = template_path.resolve() self.index(settings['sections']) def index(self, config): """ Traverse the reports config definition and instantiate reportlets. This method also places figures in their final location. """ # Initialize a BIDS layout self.layout = BIDSLayout(self.root, config='figures', validate=False) for subrep_cfg in config: # First determine whether we need to split by some ordering # (ie. sessions / tasks / runs), which are separated by commas. orderings = [s for s in subrep_cfg.get('ordering', '').strip().split(',') if s] queries = [] for key in orderings: values = getattr(self.layout, 'get_%s%s' % (key, PLURAL_SUFFIX[key]))() if values: queries.append((key, values)) if not queries: # E.g. this is an anatomical reportlet reportlets = [Reportlet(self.layout, self.out_dir, config=cfg) for cfg in subrep_cfg['reportlets']] else: # Do not use dictionary for queries, as we need to preserve ordering # of ordering columns. reportlets = [] entities, values = zip(*queries) combinations = list(product(*values)) # e.g.: [('rest', 1), ('rest', 2)] for c in combinations: # Set a common title for this particular combination c title = 'Reports for: %s.' % ', '.join( ['%s <span class="bids-entity">%s</span>' % (entities[i], c[i]) for i in range(len(c))]) for cfg in subrep_cfg['reportlets']: cfg['bids'].update({entities[i]: c[i] for i in range(len(c))}) rlet = Reportlet(self.layout, self.out_dir, config=cfg) if not rlet.is_empty(): rlet.title = title title = None reportlets.append(rlet) # Filter out empty reportlets reportlets = [r for r in reportlets if not r.is_empty()] if reportlets: sub_report = SubReport( subrep_cfg['name'], isnested=len(queries) > 0, reportlets=reportlets, title=subrep_cfg.get('title')) self.sections.append(sub_report) # Populate errors section error_dir = self.out_dir / 'sub-{}'.format(self.subject_id) / 'log' / self.run_uuid if error_dir.is_dir(): from ..utils.misc import read_crashfile self.errors = [read_crashfile(str(f)) for f in error_dir.glob('crash*.*')] def generate_report(self): """Once the Report has been indexed, the final HTML can be generated""" logs_path = self.out_dir / 'logs' boilerplate = [] boiler_idx = 0 if (logs_path / 'CITATION.html').exists(): text = (logs_path / 'CITATION.html').read_text(encoding='UTF-8') text = '<div class="boiler-html">%s</div>' % re.compile( '<body>(.*?)</body>', re.DOTALL | re.IGNORECASE).findall(text)[0].strip() boilerplate.append((boiler_idx, 'HTML', text)) boiler_idx += 1 if (logs_path / 'CITATION.md').exists(): text = '<pre>%s</pre>\n' % (logs_path / 'CITATION.md').read_text(encoding='UTF-8') boilerplate.append((boiler_idx, 'Markdown', text)) boiler_idx += 1 if (logs_path / 'CITATION.tex').exists(): text = (logs_path / 'CITATION.tex').read_text(encoding='UTF-8') text = re.compile( r'\\begin{document}(.*?)\\end{document}', re.DOTALL | re.IGNORECASE).findall(text)[0].strip() text = '<pre>%s</pre>\n' % text text += '<h3>Bibliography</h3>\n' text += '<pre>%s</pre>\n' % Path( pkgrf(self.packagename, 'data/boilerplate.bib')).read_text(encoding='UTF-8') boilerplate.append((boiler_idx, 'LaTeX', text)) boiler_idx += 1 env = jinja2.Environment( loader=jinja2.FileSystemLoader(searchpath=str(self.template_path.parent)), trim_blocks=True, lstrip_blocks=True ) report_tpl = env.get_template(self.template_path.name) report_render = report_tpl.render(sections=self.sections, errors=self.errors, boilerplate=boilerplate) # Write out report (self.out_dir / self.out_filename).write_text(report_render, encoding='UTF-8') return len(self.errors) def run_reports(reportlets_dir, out_dir, subject_label, run_uuid, config=None, packagename=None): """
<gh_stars>0 ''' CFFI interface to libpq the library ''' from __future__ import print_function from distutils import sysconfig import os.path import re import sys import subprocess from cffi import FFI PLATFORM_IS_WINDOWS = sys.platform.lower().startswith('win') LIBRARY_NAME = 'pq' if not PLATFORM_IS_WINDOWS else 'libpq' class PostgresConfig: def __init__(self): try: from psycopg2cffi import _config except ImportError: self.pg_config_exe = None if not self.pg_config_exe: self.pg_config_exe = self.autodetect_pg_config_path() if self.pg_config_exe is None: # FIXME - do we need some way to set it? sys.stderr.write("""\ Error: pg_config executable not found. Please add the directory containing pg_config to the PATH. """) sys.exit(1) self.libpq_include_dir = self.query('includedir') or None self.libpq_lib_dir = self.query('libdir') or None self.libpq_version = self.find_version() else: self.libpq_include_dir = _config.PG_INCLUDE_DIR self.libpq_lib_dir = _config.PG_LIB_DIR self.libpq_version = _config.PG_VERSION def query(self, attr_name): """Spawn the pg_config executable, querying for the given config name, and return the printed value, sanitized. """ try: pg_config_process = subprocess.Popen( [self.pg_config_exe, "--" + attr_name], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) except OSError: raise Warning("Unable to find 'pg_config' file in '%s'" % self.pg_config_exe) pg_config_process.stdin.close() result = pg_config_process.stdout.readline().strip() if not result: raise Warning(pg_config_process.stderr.readline()) if not isinstance(result, str): result = result.decode('ascii') return result def find_on_path(self, exename, path_directories=None): if not path_directories: path_directories = os.environ['PATH'].split(os.pathsep) for dir_name in path_directories: fullpath = os.path.join(dir_name, exename) if os.path.isfile(fullpath): return fullpath return None def autodetect_pg_config_path(self): """Find and return the path to the pg_config executable.""" if PLATFORM_IS_WINDOWS: return self.autodetect_pg_config_path_windows() else: return self.find_on_path('pg_config') def autodetect_pg_config_path_windows(self): """Attempt several different ways of finding the pg_config executable on Windows, and return its full path, if found.""" # This code only runs if they have not specified a pg_config option # in the config file or via the commandline. # First, check for pg_config.exe on the PATH, and use that if found. pg_config_exe = self.find_on_path('pg_config.exe') if pg_config_exe: return pg_config_exe # Now, try looking in the Windows Registry to find a PostgreSQL # installation, and infer the path from that. pg_config_exe = self._get_pg_config_from_registry() if pg_config_exe: return pg_config_exe return None def _get_pg_config_from_registry(self): try: import winreg except ImportError: import _winreg as winreg reg = winreg.ConnectRegistry(None, winreg.HKEY_LOCAL_MACHINE) try: pg_inst_list_key = winreg.OpenKey(reg, 'SOFTWARE\\PostgreSQL\\Installations') except EnvironmentError: # No PostgreSQL installation, as best as we can tell. return None try: # Determine the name of the first subkey, if any: try: first_sub_key_name = winreg.EnumKey(pg_inst_list_key, 0) except EnvironmentError: return None pg_first_inst_key = winreg.OpenKey(reg, 'SOFTWARE\\PostgreSQL\\Installations\\' + first_sub_key_name) try: pg_inst_base_dir = winreg.QueryValueEx( pg_first_inst_key, 'Base Directory')[0] finally: winreg.CloseKey(pg_first_inst_key) finally: winreg.CloseKey(pg_inst_list_key) pg_config_path = os.path.join( pg_inst_base_dir, 'bin', 'pg_config.exe') if not os.path.exists(pg_config_path): return None # Support unicode paths, if this version of Python provides the # necessary infrastructure: if sys.version_info[0] < 3 \ and hasattr(sys, 'getfilesystemencoding'): pg_config_path = pg_config_path.encode( sys.getfilesystemencoding()) return pg_config_path def find_version(self): try: # Here we take a conservative approach: we suppose that # *at least* PostgreSQL 7.4 is available (this is the only # 7.x series supported by psycopg 2) pgversion = self.query('version').split()[1] except: pgversion = '7.4.0' verre = re.compile( r'(\d+)\.(\d+)(?:(?:\.(\d+))|(devel|(alpha|beta|rc)\d+)?)') m = verre.match(pgversion) if m: pgmajor, pgminor, pgpatch = m.group(1, 2, 3) if pgpatch is None or not pgpatch.isdigit(): pgpatch = 0 else: sys.stderr.write( "Error: could not determine PostgreSQL version from '%s'" % pgversion) sys.exit(1) return int( '%02X%02X%02X' % (int(pgmajor), int(pgminor), int(pgpatch)), 16) _config = PostgresConfig() ffi = FFI() # order and comments taken from libpq (ctypes impl) ffi.cdef(''' static int const _PG_VERSION; // postgres_ext.h typedef unsigned int Oid; // See comment below. static int const LIBPQ_DIAG_SEVERITY; static int const LIBPQ_DIAG_SQLSTATE; static int const LIBPQ_DIAG_MESSAGE_PRIMARY; static int const LIBPQ_DIAG_MESSAGE_DETAIL; static int const LIBPQ_DIAG_MESSAGE_HINT; static int const LIBPQ_DIAG_STATEMENT_POSITION; static int const LIBPQ_DIAG_INTERNAL_POSITION; static int const LIBPQ_DIAG_INTERNAL_QUERY; static int const LIBPQ_DIAG_CONTEXT; static int const LIBPQ_DIAG_SOURCE_FILE; static int const LIBPQ_DIAG_SCHEMA_NAME; static int const LIBPQ_DIAG_TABLE_NAME; static int const LIBPQ_DIAG_COLUMN_NAME; static int const LIBPQ_DIAG_DATATYPE_NAME ; static int const LIBPQ_DIAG_CONSTRAINT_NAME; static int const LIBPQ_DIAG_SOURCE_LINE; static int const LIBPQ_DIAG_SOURCE_FUNCTION; // libpq-fe.h typedef enum { /* * Although it is okay to add to this list, values which become unused * should never be removed, nor should constants be redefined - that would * break compatibility with existing code. */ CONNECTION_OK, CONNECTION_BAD, /* Non-blocking mode only below here */ /* * The existence of these should never be relied upon - they should only * be used for user feedback or similar purposes. */ CONNECTION_STARTED, /* Waiting for connection to be made. */ CONNECTION_MADE, /* Connection OK; waiting to send. */ CONNECTION_AWAITING_RESPONSE, /* Waiting for a response from the * postmaster. */ CONNECTION_AUTH_OK, /* Received authentication; waiting for * backend startup. */ CONNECTION_SETENV, /* Negotiating environment. */ CONNECTION_SSL_STARTUP, /* Negotiating SSL. */ CONNECTION_NEEDED /* Internal state: connect() needed */ } ConnStatusType; typedef enum { PGRES_POLLING_FAILED = 0, PGRES_POLLING_READING, /* These two indicate that one may */ PGRES_POLLING_WRITING, /* use select before polling again. */ PGRES_POLLING_OK, PGRES_POLLING_ACTIVE /* unused; keep for awhile for backwards * compatibility */ } PostgresPollingStatusType; typedef enum { PGRES_EMPTY_QUERY = 0, /* empty query string was executed */ PGRES_COMMAND_OK, /* a query command that doesn't return * anything was executed properly by the * backend */ PGRES_TUPLES_OK, /* a query command that returns tuples was * executed properly by the backend, PGresult * contains the result tuples */ PGRES_COPY_OUT, /* Copy Out data transfer in progress */ PGRES_COPY_IN, /* Copy In data transfer in progress */ PGRES_BAD_RESPONSE, /* an unexpected response was recv'd from the * backend */ PGRES_NONFATAL_ERROR, /* notice or warning message */ PGRES_FATAL_ERROR, /* query failed */ } ExecStatusType; typedef enum { PQTRANS_IDLE, /* connection idle */ PQTRANS_ACTIVE, /* command in progress */ PQTRANS_INTRANS, /* idle, within transaction block */ PQTRANS_INERROR, /* idle, within failed transaction */ PQTRANS_UNKNOWN /* cannot determine status */ } PGTransactionStatusType; typedef ... PGconn; typedef ... PGresult; typedef ... PGcancel; typedef struct pgNotify { char *relname; /* notification condition name */ int be_pid; /* process ID of notifying server process */ char *extra; /* notification parameter */ ...; } PGnotify; // Database connection control functions extern PGconn *PQconnectdb(const char *conninfo); extern PGconn *PQconnectStart(const char *conninfo); extern /*PostgresPollingStatusType*/ int PQconnectPoll(PGconn *conn); extern void PQfinish(PGconn *conn); // Connection status functions extern /*ConnStatusType*/ int PQstatus(const PGconn *conn); extern /*PGTransactionStatusType*/ int PQtransactionStatus(const PGconn *conn); extern const char *PQparameterStatus(const PGconn *conn, const char *paramName); extern int PQprotocolVersion(const PGconn *conn); extern int PQserverVersion(const PGconn *conn); extern char *PQerrorMessage(const PGconn *conn); extern int PQsocket(const PGconn *conn); extern int PQbackendPID(const PGconn *conn); // Command execution functions extern PGresult *PQexec(PGconn *conn, const char *query); extern /*ExecStatusType*/ int PQresultStatus(const PGresult *res); extern char *PQresultErrorMessage(const PGresult *res); extern char *PQresultErrorField(const PGresult *res, int fieldcode); extern void PQclear(PGresult *res); // Retrieving query result information extern int PQntuples(const PGresult *res); extern int PQnfields(const PGresult *res); extern char *PQfname(const PGresult *res, int field_num); extern Oid PQftype(const PGresult *res, int field_num); extern int PQfsize(const PGresult *res, int field_num); extern int PQfmod(const PGresult *res, int field_num); extern int PQgetisnull(const PGresult *res, int tup_num, int field_num); extern int PQgetlength(const PGresult *res, int tup_num, int field_num); extern char *PQgetvalue(const PGresult *res, int tup_num, int field_num); // direct parsers - not part of libpq int PQEgetlong(int64_t *val, const PGresult *res, int tup_num, int field_num); int PQEgetint(int32_t *val, const PGresult *res, int tup_num, int field_num); int PQEgetfloat(float *val, const PGresult *res, int tup_num, int field_num); int PQEgetdouble(double *val, const PGresult *res, int tup_num, int field_num); // Retrieving other result information extern char *PQcmdStatus(PGresult *res); extern char *PQcmdTuples(PGresult *res); extern Oid PQoidValue(const PGresult *res); /* new and improved */ ''') if _config.libpq_version >= 0x090000: ffi.cdef(''' // Escaping string for inclusion in sql commands extern char *PQescapeLiteral(PGconn *conn, const char *str, size_t len); ''') ffi.cdef(''' // Escaping string for inclusion in sql commands extern size_t PQescapeStringConn(PGconn *conn, char *to, const char *from, size_t length, int *error); extern size_t PQescapeString(char *to, const char *from, size_t length); extern unsigned char *PQescapeByteaConn(PGconn *conn, const unsigned char *from, size_t from_length, size_t *to_length); extern unsigned char *PQescapeBytea(const unsigned char *from, size_t from_length, size_t *to_length); extern unsigned char *PQunescapeBytea(const unsigned char *strtext, size_t *retbuflen); // Asynchronous Command Processing extern int PQsendQuery(PGconn *conn, const char *query); extern PGresult *PQgetResult(PGconn *conn); extern int PQconsumeInput(PGconn *conn); extern int PQisBusy(PGconn *conn); extern int PQsetnonblocking(PGconn *conn, int arg); extern int PQflush(PGconn *conn); // Cancelling queries in progress extern PGcancel *PQgetCancel(PGconn *conn); extern void PQfreeCancel(PGcancel *cancel); extern int PQcancel(PGcancel *cancel, char *errbuf, int errbufsize); extern int PQrequestCancel(PGconn *conn); // Functions Associated with the COPY Command extern int PQgetCopyData(PGconn *conn, char **buffer, int async); extern int PQputCopyEnd(PGconn *conn, const char *errormsg); extern int PQputCopyData(PGconn *conn, const char *buffer, int nbytes); // Miscellaneous functions extern void PQfreemem(void *ptr); // Notice processing typedef void (*PQnoticeProcessor) (void *arg, const char *message); extern PQnoticeProcessor PQsetNoticeProcessor(PGconn *conn, PQnoticeProcessor proc, void *arg); extern PGnotify *PQnotifies(PGconn *conn); // Large object extern int lo_open(PGconn *conn, Oid lobjId, int mode); extern Oid lo_create(PGconn *conn,
#! /usr/bin/env python3 import argparse import cmd import csv import glob import json import os import platform import re import sys import textwrap import traceback from collections import OrderedDict import configparser import subprocess import tempfile try: import readline import atexit except ImportError: readline = None try: import prettytable except: print('\nPlease install python pretty table (pip3 install ptable)\n') sys.exit(1) #--senzing python classes try: import G2Paths from G2Product import G2Product from G2Database import G2Database from G2Diagnostic import G2Diagnostic from G2Engine import G2Engine from G2IniParams import G2IniParams from G2ConfigMgr import G2ConfigMgr from G2Exception import G2Exception except: print('\nPlease export PYTHONPATH=<path to senzing python directory>\n') sys.exit(1) # ============================== class colors: code = {} #--styles code['reset'] = '\033[0m' code['bold'] ='\033[01m' code['dim'] = '\033[02m' code['italics'] = '\033[03m' code['underline'] = '\033[04m' code['blink'] = '\033[05m' code['reverse'] = '\033[07m' code['strikethrough'] = '\033[09m' code['invisible'] = '\033[08m' #--foregrounds code['fg.black'] = '\033[30m' code['fg.red'] = '\033[31m' code['fg.green'] = '\033[32m' code['fg.yellow'] = '\033[33m' code['fg.blue'] = '\033[34m' code['fg.magenta'] = '\033[35m' code['fg.cyan'] = '\033[36m' code['fg.lightgrey'] = '\033[37m' code['fg.darkgrey'] = '\033[90m' code['fg.lightred'] = '\033[91m' code['fg.lightgreen'] = '\033[92m' code['fg.lightyellow'] = '\033[93m' code['fg.lightblue'] = '\033[94m' code['fg.lightmagenta'] = '\033[95m' code['fg.lightcyan'] = '\033[96m' code['fg.white'] = '\033[97m' #--backgrounds code['bg.black'] = '\033[40m' code['bg.red'] = '\033[41m' code['bg.green'] = '\033[42m' code['bg.orange'] = '\033[43m' code['bg.blue'] = '\033[44m' code['bg.magenta'] = '\033[45m' code['bg.cyan'] = '\033[46m' code['bg.lightgrey'] = '\033[47m' code['bg.darkgrey'] = '\033[100m' code['bg.lightred'] = '\033[101m' code['bg.lightgreen'] = '\033[102m' code['bg.yellow'] = '\033[103m' code['bg.lightblue'] = '\033[104m' code['bg.lightmagenta'] = '\033[105m' code['bg.lightcyan'] = '\033[106m' code['bg.white'] = '\033[107m' def colorize(string, colorList = None): if colorList: prefix = ''.join([colors.code[i.strip().lower()] for i in colorList.split(',')]) suffix = colors.code['reset'] return '{}{}{}'.format(prefix, string, suffix) return string # ============================== class ColoredTable(prettytable.PrettyTable): def __init__(self, field_names=None, **kwargs): new_options = ['title_color', 'header_color', 'title_justify'] super(ColoredTable, self).__init__(field_names, **kwargs) self._title_color = kwargs['title_color'] or None self._header_color = kwargs['header_color'] or None self._title_justify = kwargs['title_justify'] or 'c' self._options.extend(new_options) # hrule styles self.FRAME = 0 self.ALL = 1 def _stringify_title(self, title, options): lines = [] lpad, rpad = self._get_padding_widths(options) if options["border"]: if options["vrules"] == self.ALL: options["vrules"] = self.FRAME lines.append(self._stringify_hrule(options)) options["vrules"] = self.ALL elif options["vrules"] == self.FRAME: lines.append(self._stringify_hrule(options)) bits = [] endpoint = options["vertical_char"] if options["vrules"] in (self.ALL, self.FRAME) else " " bits.append(endpoint) title = " " * lpad + title + " " * rpad if options['title_color']: bits.append(colorize(self._justify(title, len(self._hrule) - 2, options['title_justify']), options['title_color'])) else: bits.append(self._justify(title, len(self._hrule) - 2, options['title_justify'])) bits.append(endpoint) lines.append("".join(bits)) return "\n".join(lines) def _stringify_header(self, options): bits = [] lpad, rpad = self._get_padding_widths(options) if options["border"]: if options["hrules"] in (self.ALL, self.FRAME): bits.append(self._hrule) bits.append("\n") if options["vrules"] in (self.ALL, self.FRAME): bits.append(options["vertical_char"]) else: bits.append(" ") # For tables with no data or field names if not self._field_names: if options["vrules"] in (self.ALL, self.FRAME): bits.append(options["vertical_char"]) else: bits.append(" ") for field, width, in zip(self._field_names, self._widths): if options["fields"] and field not in options["fields"]: continue if self._header_style == "cap": fieldname = field.capitalize() elif self._header_style == "title": fieldname = field.title() elif self._header_style == "upper": fieldname = field.upper() elif self._header_style == "lower": fieldname = field.lower() else: fieldname = field #if options['header_color']: # fieldname = colorify(fieldname, options['header_color']) if options['header_color']: bits.append(colorize(" " * lpad + self._justify(fieldname, width, self._align[field]) + " " * rpad, options['header_color'])) else: bits.append(" " * lpad + self._justify(fieldname, width, self._align[field]) + " " * rpad) if options["border"]: if options["vrules"] == self.ALL: bits.append(options["vertical_char"]) else: bits.append(" ") # If vrules is FRAME, then we just appended a space at the end # of the last field, when we really want a vertical character if options["border"] and options["vrules"] == self.FRAME: bits.pop() bits.append(options["vertical_char"]) if options["border"] and options["hrules"] is not None: bits.append("\n") bits.append(self._hrule) return "".join(bits) # ============================== class G2CmdShell(cmd.Cmd): #Override function from cmd module to make command completion case insensitive def completenames(self, text, *ignored): dotext = 'do_'+text return [a[3:] for a in self.get_names() if a.lower().startswith(dotext.lower())] #Hide functions from available list of Commands. Seperate help sections for some def get_names(self): return [n for n in dir(self.__class__) if n not in self.__hidden_methods] def __init__(self): cmd.Cmd.__init__(self) readline.set_completer_delims(' ') self.intro = '\nType help or ? to list commands.\n' self.prompt = prompt #--store config dicts for fast lookup self.cfgData = cfgData self.dsrcLookup = {} for cfgRecord in self.cfgData['G2_CONFIG']['CFG_DSRC']: self.dsrcLookup[cfgRecord['DSRC_ID']] = cfgRecord self.dsrcCodeLookup = {} for cfgRecord in self.cfgData['G2_CONFIG']['CFG_DSRC']: self.dsrcCodeLookup[cfgRecord['DSRC_CODE']] = cfgRecord self.etypeLookup = {} for cfgRecord in self.cfgData['G2_CONFIG']['CFG_ETYPE']: self.etypeLookup[cfgRecord['ETYPE_ID']] = cfgRecord self.erruleLookup = {} for cfgRecord in self.cfgData['G2_CONFIG']['CFG_ERRULE']: self.erruleLookup[cfgRecord['ERRULE_ID']] = cfgRecord self.erruleCodeLookup = {} for cfgRecord in self.cfgData['G2_CONFIG']['CFG_ERRULE']: self.erruleCodeLookup[cfgRecord['ERRULE_CODE']] = cfgRecord self.ftypeLookup = {} for cfgRecord in self.cfgData['G2_CONFIG']['CFG_FTYPE']: self.ftypeLookup[cfgRecord['FTYPE_ID']] = cfgRecord self.ftypeCodeLookup = {} for cfgRecord in self.cfgData['G2_CONFIG']['CFG_FTYPE']: self.ftypeCodeLookup[cfgRecord['FTYPE_CODE']] = cfgRecord self.cfuncLookup = {} for cfgRecord in self.cfgData['G2_CONFIG']['CFG_CFUNC']: self.cfuncLookup[cfgRecord['CFUNC_ID']] = cfgRecord self.cfrtnLookup = {} for cfgRecord in self.cfgData['G2_CONFIG']['CFG_CFRTN']: self.cfrtnLookup[cfgRecord['CFUNC_ID']] = cfgRecord self.scoredFtypeCodes = {} for cfgRecord in self.cfgData['G2_CONFIG']['CFG_CFCALL']: cfgRecord['FTYPE_CODE'] = self.ftypeLookup[cfgRecord['FTYPE_ID']]['FTYPE_CODE'] cfgRecord['CFUNC_CODE'] = self.cfuncLookup[cfgRecord['CFUNC_ID']]['CFUNC_CODE'] self.scoredFtypeCodes[cfgRecord['FTYPE_CODE']] = cfgRecord self.ambiguousFtypeID = self.ftypeCodeLookup['AMBIGUOUS_ENTITY']['FTYPE_ID'] #--set feature display sequence self.featureSequence = {} self.featureSequence[self.ambiguousFtypeID] = 1 #--ambiguous is first featureSequence = 2 #--scored features second for cfgRecord in sorted(self.cfgData['G2_CONFIG']['CFG_CFCALL'], key=lambda k: k['FTYPE_ID']): if cfgRecord['FTYPE_ID'] not in self.featureSequence: self.featureSequence[cfgRecord['FTYPE_ID']] = featureSequence featureSequence += 1 #--then the rest for cfgRecord in sorted(self.cfgData['G2_CONFIG']['CFG_FTYPE'], key=lambda k: k['FTYPE_ID']): if cfgRecord['FTYPE_ID'] not in self.featureSequence: self.featureSequence[cfgRecord['FTYPE_ID']] = featureSequence featureSequence += 1 #--misc self.sqlCommitSize = 1000 self.__hidden_methods = ('do_shell') self.doDebug = False self.searchMatchLevels = {1: 'Match', 2: 'Possible Match', 3: 'Possibly Related', 4: 'Name Only'} self.relatedMatchLevels = {1: 'Ambiguous Match', 2: 'Possible Match', 3: 'Possibly Related', 4: 'Name Only', 11: 'Disclosed Relation'} self.validMatchLevelParameters = {} self.validMatchLevelParameters['0'] = 'SINGLE_SAMPLE' self.validMatchLevelParameters['1'] = 'DUPLICATE_SAMPLE' self.validMatchLevelParameters['2'] = 'AMBIGUOUS_MATCH_SAMPLE' self.validMatchLevelParameters['3'] = 'POSSIBLE_MATCH_SAMPLE' self.validMatchLevelParameters['4'] = 'POSSIBLY_RELATED_SAMPLE' self.validMatchLevelParameters['SINGLE'] = 'SINGLE_SAMPLE' self.validMatchLevelParameters['DUPLICATE'] = 'DUPLICATE_SAMPLE' self.validMatchLevelParameters['AMBIGUOUS'] = 'AMBIGUOUS_MATCH_SAMPLE' self.validMatchLevelParameters['POSSIBLE'] = 'POSSIBLE_MATCH_SAMPLE' self.validMatchLevelParameters['POSSIBLY'] = 'POSSIBLY_RELATED_SAMPLE' self.validMatchLevelParameters['RELATED'] = 'POSSIBLY_RELATED_SAMPLE' self.validMatchLevelParameters['S'] = 'SINGLE_SAMPLE' self.validMatchLevelParameters['D'] = 'DUPLICATE_SAMPLE' self.validMatchLevelParameters['A'] = 'AMBIGUOUS_MATCH_SAMPLE' self.validMatchLevelParameters['P'] = 'POSSIBLE_MATCH_SAMPLE' self.validMatchLevelParameters['R'] = 'POSSIBLY_RELATED_SAMPLE' self.lastSearchResult = [] self.usePrettyTable = True self.currentReviewList = None #--get settings settingsFileName = '.' + os.path.basename(sys.argv[0].lower().replace('.py','')) + '_settings' self.settingsFileName = os.path.join(os.path.expanduser("~"), settingsFileName) try: self.settingsFileData = json.load(open(self.settingsFileName)) except: self.settingsFileData = {} #--set the color scheme self.colors = {} if not ('colorScheme' in self.settingsFileData and self.settingsFileData['colorScheme'].upper() in ('DARK', 'LIGHT')): self.settingsFileData['colorScheme'] = 'dark' self.do_setColorScheme(self.settingsFileData['colorScheme']) #--default last snapshot/audit file from parameters if args.snapshot_file_name: self.settingsFileData['snapshotFile'] = args.snapshot_file_name if args.audit_file_name: self.settingsFileData['auditFile'] = args.audit_file_name #--load prior snapshot file if 'snapshotFile' in self.settingsFileData and os.path.exists(self.settingsFileData['snapshotFile']): self.do_load(self.settingsFileData['snapshotFile']) else: self.snapshotFile = None self.snapshotData = {} #--load prior audit file if 'auditFile' in self.settingsFileData and os.path.exists(self.settingsFileData['auditFile']): self.do_load(self.settingsFileData['auditFile']) else: self.auditFile = None self.auditData = {} #--history self.readlineAvail = True if 'readline' in sys.modules else False self.histDisable = hist_disable self.histCheck() # ----------------------------- def do_quit(self, arg): return True # ----------------------------- def emptyline(self): return # ----------------------------- def cmdloop(self): while True: try: cmd.Cmd.cmdloop(self) break except KeyboardInterrupt: ans = input('\n\nAre you sure you want to exit? ') if ans in ['y','Y', 'yes', 'YES']: break except TypeError as ex: printWithNewLines("ERROR: " + str(ex)) type_, value_, traceback_ = sys.exc_info() for item in traceback.format_tb(traceback_): printWithNewLines(item) def postloop(self): try: with open(self.settingsFileName, 'w') as f: json.dump(self.settingsFileData, f) except: pass #Hide do_shell from list of APIs. Seperate help section for it def get_names(self): return [n for n in dir(self.__class__) if n not in self.__hidden_methods] def help_KnowledgeCenter(self): printWithNewLines('Senzing Knowledge Center: https://senzing.zendesk.com/hc/en-us', 'B') def help_Support(self): printWithNewLines('Senzing Support Request: https://senzing.zendesk.com/hc/en-us/requests/new', 'B') def help_Arguments(self): print( '\nWhere you see <value> in the help output replace <value> with your value.\n' \ '\nFor example the help for addAttribute is: \n' \ '\taddAttribute {"attribute": "<attribute_name>"}\n' \ '\nReplace <attribute_name> to be the name of your new attribute\n' \ '\taddAttribute {"attribute": "myNewAttribute"}\n' \ ) def help_Shell(self): printWithNewLines('Run OS shell commands: ! <command>', 'B') def help_History(self): printWithNewLines(textwrap.dedent(f'''\ - Use shell like history, requires Python readline module. - Tries to create a history file in the users home directory for use across instances of G2ConfigTool. - If a history file can't be created in the users home, /tmp is tried for temporary session history. - Ctrl-r can be used to search history when history is available - Commands to manage history - histClear = Clears the current working session history and the history file. This deletes all history, be careful! - histDedupe = The history can accumulate duplicate entries over time, use this to remove them - histShow = Display all history - History Status:
in idxs}) return nhyd_dct # # # charge layers def charge(chi): """ Determine charge from the ChI string :param chi: ChI string :type chi: str :rtype: int """ char_lyr_dct = charge_layers(chi) char = int(char_lyr_dct['q']) return char # # # stereo layers def bond_stereo_parities(chi, one_indexed=False): """ Parse the bond stereo parities from the stereochemistry layers. :param chi: ChI string :type chi: str :param one_indexed: Return indices in one-indexing? :type one_indexed: bool :returns: A dictionary mapping bond keys onto parities :rtype: dict[frozenset[int]: bool] """ ste_lyr_dct = stereo_layers(chi) bnd_ste_dct = _bond_stereo_parities(ste_lyr_dct, one_indexed=one_indexed) return bnd_ste_dct def atom_stereo_parities(chi, one_indexed=False): """ Parse the atom stereo parities from the stereochemistry layers. :param chi: ChI string :type chi: str :param one_indexed: Return indices in one-indexing? :type one_indexed: bool :returns: A dictionary mapping atom keys onto parities :rtype: dict[int: bool] """ ste_lyr_dct = stereo_layers(chi) atm_ste_dct = _atom_stereo_parities(ste_lyr_dct, one_indexed=one_indexed) return atm_ste_dct def is_inverted_enantiomer(chi): """ Determine enantiomer inversion from the stereo layers. :param chi: ChI string :type chi: str :param iso: Include isotope stereochemistry? :type iso: bool :returns: whether or not the ChI is inverted; returns None if not an enantiomer :rtype: bool """ ste_lyr_dct = stereo_layers(chi) is_inv = _is_inverted_enantiomer(ste_lyr_dct) return is_inv # # # isotope layers def bond_isotope_stereo_parities(chi, one_indexed=False): """ Parse the bond stereo parities from the isotope layers. :param chi: ChI string :type chi: str :param one_indexed: Return indices in one-indexing? :type one_indexed: bool :returns: A dictionary mapping bond keys onto parities :rtype: dict[frozenset[int]: bool] """ iso_lyr_dct = isotope_layers(chi) bnd_ste_dct = _bond_stereo_parities(iso_lyr_dct, one_indexed=one_indexed) return bnd_ste_dct def atom_isotope_stereo_parities(chi, one_indexed=False): """ Parse the atom stereo parities from the isotope layers. :param chi: ChI string :type chi: str :param one_indexed: Return indices in one-indexing? :type one_indexed: bool :returns: A dictionary mapping atom keys onto parities :rtype: dict[int: bool] """ iso_lyr_dct = isotope_layers(chi) atm_ste_dct = _atom_stereo_parities(iso_lyr_dct, one_indexed=one_indexed) return atm_ste_dct def is_inverted_isotope_enantiomer(chi): """ Determine enantiomer inversion from the isotope layers. :param chi: ChI string :type chi: str :returns: whether or not the ChI is inverted; returns None if not an enantiomer :rtype: bool """ iso_lyr_dct = isotope_layers(chi) is_inv = _is_inverted_enantiomer(iso_lyr_dct) return is_inv # # other properties def has_stereo(chi): """ Determine if the ChI string has stereochemistry information. :param chi: ChI string :type chi: str :rtype: bool """ ste_dct = stereo_layers(chi) iso_dct = isotope_layers(chi) return bool(ste_dct or any(pfx in iso_dct for pfx in STE_PFXS)) def has_multiple_components(chi): """ Determine if the ChI string has multiple components. :param chi: ChI string :type chi: str :rtype: bool """ return len(split(chi)) > 1 def low_spin_multiplicity(chi): """ Guess spin multiplicity based on the number of electrons. :param chi: ChI string :type chi: str :rtype: int """ fml = formula(chi) nelec = automol.formula.electron_count(fml) - charge(chi) if (nelec % 2) == 0: mult = 1 else: mult = 2 return mult # # split/join def split(chi): """ Split a multi-component ChI into ChIs for each of its components. :param chi: ChI string :type chi: str :returns: the split ChI strings :rtype: tuple[str] """ fml_str = formula_string(chi) main_dct = main_layers(chi) char_dct = charge_layers(chi) ste_dct = stereo_layers(chi) iso_dct = isotope_layers(chi) fml_strs = _split_layer_string( fml_str, count_sep_ptt='', sep_ptt=app.escape('.')) count = len(fml_strs) main_dcts = _split_layers(main_dct, count) char_dcts = _split_layers(char_dct, count) ste_dcts = _split_layers(ste_dct, count) iso_dcts = _split_layers(iso_dct, count) chis = tuple(from_data(fml_str=fml_str, main_lyr_dct=main_dct, char_lyr_dct=char_dct, ste_lyr_dct=ste_dct, iso_lyr_dct=iso_dct) for fml_str, main_dct, char_dct, ste_dct, iso_dct in zip(fml_strs, main_dcts, char_dcts, ste_dcts, iso_dcts)) return chis def join(chis): """ Join separate ChI strings into one multi-component ChI string. :param chis: sequence of ChI strings :type chis: tuple[str] :returns: the joined ChI string :rtype: str """ # first, make sure they are completely split up chis = list(itertools.chain(*map(split, chis))) fml_strs = list(map(formula_string, chis)) fml_str = _join_layer_strings(fml_strs, count_sep='', sep='.') main_dct = _join_layers(list(map(main_layers, chis))) char_dct = _join_layers(list(map(charge_layers, chis))) ste_dct = _join_layers(list(map(stereo_layers, chis))) iso_dct = _join_layers(list(map(isotope_layers, chis))) return from_data(fml_str=fml_str, main_lyr_dct=main_dct, char_lyr_dct=char_dct, ste_lyr_dct=ste_dct, iso_lyr_dct=iso_dct) # # common multilayer properties def _bond_stereo_parities(lyr_dct, one_indexed=False): """ Parse bond stereo parities from a given layer dictionary """ if 'b' not in lyr_dct: bnd_ste_dct = {} else: lyr = lyr_dct['b'] # Set up the parser integer = pp.Word(pp.nums) bond = integer + pp.Suppress('-') + integer parity = pp.Or(['+', '-']) term = pp.Group(pp.Group(bond) + parity) parser = pp.Opt(pp.delimitedList(term, delim=',')) # Do the parsing lst = ap_cast(parser.parseString(lyr).asList()) # Interpret the list shift = 0 if one_indexed else -1 bnd_ste_dct = {frozenset({k1+shift, k2+shift}): (p == '+') for (k1, k2), p in lst} return bnd_ste_dct def _atom_stereo_parities(lyr_dct, one_indexed=False): """ Parse atom stereo parities from a given layer dictionary """ if 't' not in lyr_dct: atm_ste_dct = {} else: lyr = lyr_dct['t'] # Set up the parser integer = pp.Word(pp.nums) parity = pp.Or(['+', '-']) term = pp.Group(integer + parity) parser = pp.Opt(pp.delimitedList(term, delim=',')) # Do the parsing lst = ap_cast(parser.parseString(lyr).asList()) # Interpret the list shift = 0 if one_indexed else -1 atm_ste_dct = {k+shift: (p == '+') for k, p in lst} return atm_ste_dct def _is_inverted_enantiomer(lyr_dct): """ Determine enantiomer inversion from a given layer dictionary. """ is_inv = None if 'm' in lyr_dct: if lyr_dct['m'] == '1': is_inv = True else: assert lyr_dct['m'] == '0' is_inv = False return is_inv # # parsing helpers def _layers(lyrs_str): """ Parse the layers of the specified layer of a ChI string to a dictionary, keyed by prefix. :param lyrs_str: a string containing one or more ChI layers :type lyrs_str: str :returns: a dictionary of layers, keyed by layer prefix :rtype: dict[str: str] """ if lyrs_str: ptt = _layer_pattern(key_ptt=app.capturing(app.LOWERCASE_LETTER), val_ptt=app.capturing(NONSLASHES)) dct = dict(apf.all_captures(ptt, lyrs_str)) else: dct = {} return dct # # parsing patterns def _version_pattern(): """ Build the autoparse regex pattern for the ChI string version. :rtype: str """ ptt = app.preceded_by('=') + _layer_pattern() return ptt def _formula_pattern(): """ Build the autoparse regex pattern for the chemical formual layer. :rtype: str """ ptt = _layer_pattern(key_ptt=app.not_followed_by(app.LOWERCASE_LETTER)) return ptt def _main_layers_pattern(): """ Build the autoparse regex pattern for the connectivity layer. :rtype: str """ c_lyr_ptt = _layer_pattern(key_ptt='c') h_lyr_ptt = _layer_pattern(key_ptt='h') ptt = (app.one_of_these([c_lyr_ptt, h_lyr_ptt]) + app.maybe(SLASH + h_lyr_ptt)) return ptt def _charge_layers_pattern(): """ Build the autoparse regex pattern for the charge layer. :rtype: str """ q_lyr_ptt = _layer_pattern(key_ptt='q') p_lyr_ptt = _layer_pattern(key_ptt='p') ptt = (app.one_of_these([q_lyr_ptt, p_lyr_ptt]) + app.maybe(SLASH + p_lyr_ptt)) return ptt def _stereo_layers_pattern(): """ Build the autoparse regex pattern for the stereochemistry layer. :rtype: str """ b_lyr_ptt = _layer_pattern(key_ptt='b') t_lyr_ptt = _layer_pattern(key_ptt='t') m_lyr_ptt = _layer_pattern(key_ptt='m') s_lyr_ptt = _layer_pattern(key_ptt='s') ptt = (app.one_of_these([b_lyr_ptt, t_lyr_ptt]) + app.maybe(SLASH + t_lyr_ptt) + app.maybe(SLASH + m_lyr_ptt) + app.maybe(SLASH + s_lyr_ptt)) return ptt def _isotope_layers_pattern(): """ Build the autoparse regex pattern for the isotope layer. :rtype: str """ i_lyr_ptt = _layer_pattern(key_ptt='i') h_lyr_ptt = _layer_pattern(key_ptt='h') ptt = (i_lyr_ptt + app.maybe(SLASH + h_lyr_ptt) + app.maybe(SLASH + _stereo_layers_pattern())) return ptt def _layer_pattern(key_ptt='', val_ptt=NONSLASHES): """ Build the autoparse regex pattern for an arbitrary ChI layer. :rtype: str """ return key_ptt + val_ptt # # split/join helpers def _join_layers(dcts): """ Join all of the components of a ChI layer. :param dcts: layer components, grouped by prefix :type dct: dict[str: str] :rtype: dict[str: str] """ pfxs = sorted(functools.reduce(set.union, map(set, dcts))) if 's' in pfxs: pfxs.remove('s') dcts = [dict_.by_key(dct, pfxs, fill_val='') for dct in dcts] lyrs_lst = [[dct[pfx] for dct in dcts] for pfx in pfxs] dct = {pfx: (_join_layer_strings(lyrs) if pfx != 'm' else _join_m_layer_strings(lyrs)) for pfx, lyrs in zip(pfxs, lyrs_lst)} return dct def _join_m_layer_strings(m_lyrs): m_lyrs = [m_lyr if m_lyr else '.' for m_lyr in m_lyrs] return ''.join(m_lyrs) def _join_layer_strings(lyrs, count_sep='*', sep=';'): """ Join layer strings into one multi-component layer string. :param lyrs: layers to join :type lyrs: tuple(str)? :param count_sep: delimiter for ??? :type count_sep: str :param sep: delimiter for ??? :type sep: str """ def _s(count, lyr): if count > 1 and lyr: ret = ('{:d}' + count_sep + '{:s}').format(count, lyr) elif lyr: ret = lyr else: ret = sep * (count - 1) return ret counts, lyrs = zip(*[ (len(list(g)), lyr) for lyr, g in itertools.groupby(lyrs)]) lyr = sep.join([_s(count, lyr) for count, lyr in zip(counts, lyrs)]) return lyr def _split_layers(dct, count): """ split a multi-component layer dictionary into separate ones """ if dct: pfxs = sorted(dct.keys()) if 's' in pfxs: pfxs.remove('s') lyrs_lst = [ _split_layer_string(dct[pfx]) if pfx != 'm' else
state", b'PROP AUTO FEATHER ARMED:index', b'Bool', 'N'], "PROP_FEATHER_SWITCH:index": ["Prop feather switch", b'PROP FEATHER SWITCH:index', b'Bool', 'N'], "PANEL_AUTO_FEATHER_SWITCH:index": ["Auto-feather arming switch", b'PANEL AUTO FEATHER SWITCH:index', b'Bool', 'N'], "PROP_SYNC_ACTIVE:index": ["True if prop sync is active", b'PROP SYNC ACTIVE:index', b'Bool', 'N'], "PROP_DEICE_SWITCH:index": ["True if prop deice switch on", b'PROP DEICE SWITCH:index', b'Bool', 'N'], "ENG_COMBUSTION": ["True if the engine is running", b'ENG COMBUSTION', b'Bool', 'N'], "ENG_N1_RPM:index": ["Engine N1 rpm", b'ENG N1 RPM:index', b'Rpm (0 to 16384 = 0 to 100%)', 'N'], "ENG_N2_RPM:index": ["Engine N2 rpm", b'ENG N2 RPM:index', b'Rpm(0 to 16384 = 0 to 100%)', 'N'], "ENG_FUEL_FLOW_GPH:index": ["Engine fuel flow", b'ENG FUEL FLOW GPH:index', b'Gallons per hour', 'N'], "ENG_FUEL_FLOW_PPH:index": ["Engine fuel flow", b'ENG FUEL FLOW PPH:index', b'Pounds per hour', 'N'], "ENG_TORQUE:index": ["Torque", b'ENG TORQUE:index', b'Foot pounds', 'N'], "ENG_ANTI_ICE:index": ["Anti-ice switch", b'ENG ANTI ICE:index', b'Bool', 'N'], "ENG_PRESSURE_RATIO:index": ["Engine pressure ratio", b'ENG PRESSURE RATIO:index', b'Ratio (0-16384)', 'N'], "ENG_EXHAUST_GAS_TEMPERATURE:index": ["Exhaust gas temperature", b'ENG EXHAUST GAS TEMPERATURE:index', b'Rankine', 'N'], "ENG_EXHAUST_GAS_TEMPERATURE_GES:index": ["Governed engine setting", b'ENG EXHAUST GAS TEMPERATURE GES:index', b'Percent over 100', 'N'], "ENG_CYLINDER_HEAD_TEMPERATURE:index": ["Engine cylinder head temperature", b'ENG CYLINDER HEAD TEMPERATURE:index', b'Rankine', 'N'], "ENG_OIL_TEMPERATURE:index": ["Engine oil temperature", b'ENG OIL TEMPERATURE:index', b'Rankine', 'N'], "ENG_OIL_PRESSURE:index": ["Engine oil pressure", b'ENG OIL PRESSURE:index', b'foot pounds', 'N'], "ENG_OIL_QUANTITY:index": ["Engine oil quantitiy as a percentage of full capacity", b'ENG OIL QUANTITY:index', b'Percent over 100', 'N'], "ENG_HYDRAULIC_PRESSURE:index": ["Engine hydraulic pressure", b'ENG HYDRAULIC PRESSURE:index', b'foot pounds', 'N'], "ENG_HYDRAULIC_QUANTITY:index": ["Engine hydraulic fluid quantity, as a percentage of total capacity", b'ENG HYDRAULIC QUANTITY:index', b'Percent over 100', 'N'], "ENG_MANIFOLD_PRESSURE:index": ["Engine manifold pressure.", b'ENG MANIFOLD PRESSURE:index', b'inHG.', 'N'], "ENG_VIBRATION:index": ["Engine vibration", b'ENG VIBRATION:index', b'Number', 'N'], "ENG_RPM_SCALER:index": ["Obsolete", b'ENG RPM SCALER:index', b'Scalar', 'N'], "ENG_MAX_RPM": ["Maximum rpm", b'ENG MAX RPM', b'Rpm', 'N'], "GENERAL_ENG_STARTER_ACTIVE": ["True if engine starter is active", b'GENERAL ENG STARTER ACTIVE', b'Bool', 'N'], "GENERAL_ENG_FUEL_USED_SINCE_START": ["Fuel used since the engines were last started", b'GENERAL ENG FUEL USED SINCE START', b'Pounds', 'N'], "TURB_ENG_PRIMARY_NOZZLE_PERCENT:index": ["Percent thrust of primary nozzle", b'TURB ENG PRIMARY NOZZLE PERCENT:index', b'Percent over 100', 'N'], "TURB_ENG_IGNITION_SWITCH": ["True if the turbine engine ignition switch is on", b'TURB ENG IGNITION SWITCH', b'Bool', 'N'], "TURB_ENG_MASTER_STARTER_SWITCH": ["True if the turbine engine master starter switch is on", b'TURB ENG MASTER STARTER SWITCH', b'Bool', 'N'], "TURB_ENG_AFTERBURNER_STAGE_ACTIVE": ["The stage of the afterburner, or 0 if the afterburner is not active.", b'TURB ENG AFTERBURNER STAGE ACTIVE', b'Number', 'N'], } class __FuelTankSelection(RequestHelper): list = { } class __AircraftFuelData(RequestHelper): list = { "FUEL_TANK_CENTER_LEVEL": ["Percent of maximum capacity", b'FUEL TANK CENTER LEVEL', b'Percent Over 100', 'Y'], "FUEL_TANK_CENTER2_LEVEL": ["Percent of maximum capacity", b'FUEL TANK CENTER2 LEVEL', b'Percent Over 100', 'Y'], "FUEL_TANK_CENTER3_LEVEL": ["Percent of maximum capacity", b'FUEL TANK CENTER3 LEVEL', b'Percent Over 100', 'Y'], "FUEL_TANK_LEFT_MAIN_LEVEL": ["Percent of maximum capacity", b'FUEL TANK LEFT MAIN LEVEL', b'Percent Over 100', 'Y'], "FUEL_TANK_LEFT_AUX_LEVEL": ["Percent of maximum capacity", b'FUEL TANK LEFT AUX LEVEL', b'Percent Over 100', 'Y'], "FUEL_TANK_LEFT_TIP_LEVEL": ["Percent of maximum capacity", b'FUEL TANK LEFT TIP LEVEL', b'Percent Over 100', 'Y'], "FUEL_TANK_RIGHT_MAIN_LEVEL": ["Percent of maximum capacity", b'FUEL TANK RIGHT MAIN LEVEL', b'Percent Over 100', 'Y'], "FUEL_TANK_RIGHT_AUX_LEVEL": ["Percent of maximum capacity", b'FUEL TANK RIGHT AUX LEVEL', b'Percent Over 100', 'Y'], "FUEL_TANK_RIGHT_TIP_LEVEL": ["Percent of maximum capacity", b'FUEL TANK RIGHT TIP LEVEL', b'Percent Over 100', 'Y'], "FUEL_TANK_EXTERNAL1_LEVEL": ["Percent of maximum capacity", b'FUEL TANK EXTERNAL1 LEVEL', b'Percent Over 100', 'Y'], "FUEL_TANK_EXTERNAL2_LEVEL": ["Percent of maximum capacity", b'FUEL TANK EXTERNAL2 LEVEL', b'Percent Over 100', 'Y'], "FUEL_TANK_CENTER_CAPACITY": ["Maximum capacity in volume", b'FUEL TANK CENTER CAPACITY', b'Gallons', 'N'], "FUEL_TANK_CENTER2_CAPACITY": ["Maximum capacity in volume", b'FUEL TANK CENTER2 CAPACITY', b'Gallons', 'N'], "FUEL_TANK_CENTER3_CAPACITY": ["Maximum capacity in volume", b'FUEL TANK CENTER3 CAPACITY', b'Gallons', 'N'], "FUEL_TANK_LEFT_MAIN_CAPACITY": ["Maximum capacity in volume", b'FUEL TANK LEFT MAIN CAPACITY', b'Gallons', 'N'], "FUEL_TANK_LEFT_AUX_CAPACITY": ["Maximum capacity in volume", b'FUEL TANK LEFT AUX CAPACITY', b'Gallons', 'N'], "FUEL_TANK_LEFT_TIP_CAPACITY": ["Maximum capacity in volume", b'FUEL TANK LEFT TIP CAPACITY', b'Gallons', 'N'], "FUEL_TANK_RIGHT_MAIN_CAPACITY": ["Maximum capacity in volume", b'FUEL TANK RIGHT MAIN CAPACITY', b'Gallons', 'N'], "FUEL_TANK_RIGHT_AUX_CAPACITY": ["Maximum capacity in volume", b'FUEL TANK RIGHT AUX CAPACITY', b'Gallons', 'N'], "FUEL_TANK_RIGHT_TIP_CAPACITY": ["Maximum capacity in volume", b'FUEL TANK RIGHT TIP CAPACITY', b'Gallons', 'N'], "FUEL_TANK_EXTERNAL1_CAPACITY": ["Maximum capacity in volume", b'FUEL TANK EXTERNAL1 CAPACITY', b'Gallons', 'N'], "FUEL_TANK_EXTERNAL2_CAPACITY": ["Maximum capacity in volume", b'FUEL TANK EXTERNAL2 CAPACITY', b'Gallons', 'N'], "FUEL_LEFT_CAPACITY": ["Maximum capacity in volume", b'FUEL LEFT CAPACITY', b'Gallons', 'N'], "FUEL_RIGHT_CAPACITY": ["Maximum capacity in volume", b'FUEL RIGHT CAPACITY', b'Gallons', 'N'], "FUEL_TANK_CENTER_QUANTITY": ["Current quantity in volume", b'FUEL TANK CENTER QUANTITY', b'Gallons', 'Y'], "FUEL_TANK_CENTER2_QUANTITY": ["Current quantity in volume", b'FUEL TANK CENTER2 QUANTITY', b'Gallons', 'Y'], "FUEL_TANK_CENTER3_QUANTITY": ["Current quantity in volume", b'FUEL TANK CENTER3 QUANTITY', b'Gallons', 'Y'], "FUEL_TANK_LEFT_MAIN_QUANTITY": ["Current quantity in volume", b'FUEL TANK LEFT MAIN QUANTITY', b'Gallons', 'Y'], "FUEL_TANK_LEFT_AUX_QUANTITY": ["Current quantity in volume", b'FUEL TANK LEFT AUX QUANTITY', b'Gallons', 'Y'], "FUEL_TANK_LEFT_TIP_QUANTITY": ["Current quantity in volume", b'FUEL TANK LEFT TIP QUANTITY', b'Gallons', 'Y'], "FUEL_TANK_RIGHT_MAIN_QUANTITY": ["Current quantity in volume", b'FUEL TANK RIGHT MAIN QUANTITY', b'Gallons', 'Y'], "FUEL_TANK_RIGHT_AUX_QUANTITY": ["Current quantity in volume", b'FUEL TANK RIGHT AUX QUANTITY', b'Gallons', 'Y'], "FUEL_TANK_RIGHT_TIP_QUANTITY": ["Current quantity in volume", b'FUEL TANK RIGHT TIP QUANTITY', b'Gallons', 'Y'], "FUEL_TANK_EXTERNAL1_QUANTITY": ["Current quantity in volume", b'FUEL TANK EXTERNAL1 QUANTITY', b'Gallons', 'Y'], "FUEL_TANK_EXTERNAL2_QUANTITY": ["Current quantity in volume", b'FUEL TANK EXTERNAL2 QUANTITY', b'Gallons', 'Y'], "FUEL_LEFT_QUANTITY": ["Current quantity in volume", b'FUEL LEFT QUANTITY', b'Gallons', 'N'], "FUEL_RIGHT_QUANTITY": ["Current quantity in volume", b'FUEL RIGHT QUANTITY', b'Gallons', 'N'], "FUEL_TOTAL_QUANTITY": ["Current quantity in volume", b'FUEL TOTAL QUANTITY', b'Gallons', 'N'], "FUEL_WEIGHT_PER_GALLON": ["Fuel weight per gallon", b'FUEL WEIGHT PER GALLON', b'Pounds', 'N'], "FUEL_TANK_SELECTOR:index": ["Which tank is selected. See fuel tank list.", b'FUEL TANK SELECTOR:index', b'Enum', 'N'], "FUEL_CROSS_FEED": ["Cross feed valve:; 0 = Closed; 1 = Open", b'FUEL CROSS FEED', b'Enum', 'N'], "FUEL_TOTAL_CAPACITY": ["Total capacity of the aircraft", b'FUEL TOTAL CAPACITY', b'Gallons', 'N'], "FUEL_SELECTED_QUANTITY_PERCENT": ["Percent or capacity for selected tank", b'FUEL SELECTED QUANTITY PERCENT', b'Percent Over 100', 'N'], "FUEL_SELECTED_QUANTITY": ["Quantity of selected tank", b'FUEL SELECTED QUANTITY', b'Gallons', 'N'], "FUEL_TOTAL_QUANTITY_WEIGHT": ["Current total fuel weight of the aircraft", b'FUEL TOTAL QUANTITY WEIGHT', b'Pounds', 'N'], "NUM_FUEL_SELECTORS": ["Number of selectors on the aircraft", b'NUM FUEL SELECTORS', b'Number', 'N'], "UNLIMITED_FUEL": ["Unlimited fuel flag", b'UNLIMITED FUEL', b'Bool', 'N'], "ESTIMATED_FUEL_FLOW": ["Estimated fuel flow at cruise", b'ESTIMATED FUEL FLOW', b'Pounds per hour', 'N'], } class __AircraftLightsData(RequestHelper): list = { "LIGHT_STROBE": ["Light switch state", b'LIGHT STROBE', b'Bool', 'N'], "LIGHT_PANEL": ["Light switch state", b'LIGHT PANEL', b'Bool', 'N'], "LIGHT_LANDING": ["Light switch state", b'LIGHT LANDING', b'Bool', 'N'], "LIGHT_TAXI": ["Light switch state", b'LIGHT TAXI', b'Bool', 'N'], "LIGHT_BEACON": ["Light switch state", b'LIGHT BEACON', b'Bool', 'N'], "LIGHT_NAV": ["Light switch state", b'LIGHT NAV', b'Bool', 'N'], "LIGHT_LOGO": ["Light switch state", b'LIGHT LOGO', b'Bool', 'N'], "LIGHT_WING": ["Light switch state", b'LIGHT WING', b'Bool', 'N'], "LIGHT_RECOGNITION": ["Light switch state", b'LIGHT RECOGNITION', b'Bool', 'N'], "LIGHT_CABIN": ["Light switch state", b'LIGHT CABIN', b'Bool', 'N'], "LIGHT_ON_STATES": ["Bit mask:; 0x0001: Nav; 0x0002: Beacon; 0x0004: Landing; 0x0008: Taxi; 0x0010: Strobe; 0x0020: Panel; 0x0040: Recognition; 0x0080: Wing; 0x0100: Logo; 0x0200: Cabin", b'LIGHT ON STATES', b'Mask', 'N'], "LIGHT_STATES": ["Same as LIGHT ON STATES", b'LIGHT STATES', b'Mask', 'N'], # "LANDING_LIGHT_PBH": ["Landing light pitch bank and heading", b'LANDING LIGHT PBH', b'SIMCONNECT_DATA_XYZ', 'N'], "LIGHT_TAXI_ON": ["Return true if the light is on.", b'LIGHT TAXI ON', b'Bool', 'N'], "LIGHT_STROBE_ON": ["Return true if the light is on.", b'LIGHT STROBE ON', b'Bool', 'N'], "LIGHT_PANEL_ON": ["Return true if the light is on.", b'LIGHT PANEL ON', b'Bool', 'N'], "LIGHT_RECOGNITION_ON": ["Return true if the light is on.", b'LIGHT RECOGNITION ON', b'Bool', 'N'], "LIGHT_WING_ON": ["Return true if the light is on.", b'LIGHT WING ON', b'Bool', 'N'], "LIGHT_LOGO_ON": ["Return true if the light is on.", b'LIGHT LOGO ON', b'Bool', 'N'], "LIGHT_CABIN_ON": ["Return true if the light is on.", b'LIGHT CABIN ON', b'Bool', 'N'], "LIGHT_HEAD_ON": ["Return true if the light is on.", b'LIGHT HEAD ON', b'Bool', 'N'], "LIGHT_BRAKE_ON": ["Return true if the light is on.", b'LIGHT BRAKE ON', b'Bool', 'N'], "LIGHT_NAV_ON": ["Return true if the light is on.", b'LIGHT NAV ON', b'Bool', 'N'], "LIGHT_BEACON_ON": ["Return true if the light is on.", b'LIGHT BEACON ON', b'Bool', 'N'], "LIGHT_LANDING_ON": ["Return true if the light is on.", b'LIGHT LANDING ON', b'Bool', 'N'], } class __AircraftPositionandSpeedData(RequestHelper): list = { "GROUND_VELOCITY": ["Speed relative to the earths surface", b'GROUND VELOCITY', b'Knots', 'N'], "TOTAL_WORLD_VELOCITY": ["Speed relative to the earths center", b'TOTAL WORLD VELOCITY', b'Feet per second', 'N'], "VELOCITY_BODY_Z": ["True longitudinal speed, relative to aircraft axis", b'VELOCITY BODY Z', b'Feet per second', 'Y'], "VELOCITY_BODY_X": ["True lateral speed, relative to aircraft axis", b'VELOCITY BODY X', b'Feet per second', 'Y'], "VELOCITY_BODY_Y": ["True vertical speed, relative to aircraft axis", b'VELOCITY BODY Y', b'Feet per second', 'Y'], "VELOCITY_WORLD_Z": ["Speed relative to earth, in North/South direction", b'VELOCITY WORLD Z', b'Feet per second', 'Y'], "VELOCITY_WORLD_X": ["Speed relative to earth, in East/West direction", b'VELOCITY WORLD X', b'Feet per second', 'Y'], "VELOCITY_WORLD_Y": ["Speed relative to earth, in vertical direction", b'VELOCITY WORLD Y', b'Feet per second', 'Y'], "ACCELERATION_WORLD_X": ["Acceleration relative to earth, in east/west direction", b'ACCELERATION WORLD X', b'Feet per second squared', 'Y'], "ACCELERATION_WORLD_Y": ["Acceleration relative to earch, in vertical direction", b'ACCELERATION WORLD Y', b'Feet per second squared', 'Y'], "ACCELERATION_WORLD_Z": ["Acceleration
3) OP '.' (1, 3) (1, 4) NAME 'async' (1, 4) (1, 9) OP '+' (1, 10) (1, 11) NUMBER '1' (1, 12) (1, 13) >>> dump_tokens("async def foo(): dalej") ENCODING 'utf-8' (0, 0) (0, 0) ASYNC 'async' (1, 0) (1, 5) NAME 'def' (1, 6) (1, 9) NAME 'foo' (1, 10) (1, 13) OP '(' (1, 13) (1, 14) OP ')' (1, 14) (1, 15) OP ':' (1, 15) (1, 16) NAME 'pass' (1, 17) (1, 21) >>> dump_tokens('''async def foo(): ... def foo(await): ... await = 1 ... jeżeli 1: ... await ... async += 1 ... ''') ENCODING 'utf-8' (0, 0) (0, 0) ASYNC 'async' (1, 0) (1, 5) NAME 'def' (1, 6) (1, 9) NAME 'foo' (1, 10) (1, 13) OP '(' (1, 13) (1, 14) OP ')' (1, 14) (1, 15) OP ':' (1, 15) (1, 16) NEWLINE '\\n' (1, 16) (1, 17) INDENT ' ' (2, 0) (2, 2) NAME 'def' (2, 2) (2, 5) NAME 'foo' (2, 6) (2, 9) OP '(' (2, 9) (2, 10) AWAIT 'await' (2, 10) (2, 15) OP ')' (2, 15) (2, 16) OP ':' (2, 16) (2, 17) NEWLINE '\\n' (2, 17) (2, 18) INDENT ' ' (3, 0) (3, 4) AWAIT 'await' (3, 4) (3, 9) OP '=' (3, 10) (3, 11) NUMBER '1' (3, 12) (3, 13) NEWLINE '\\n' (3, 13) (3, 14) DEDENT '' (4, 2) (4, 2) NAME 'if' (4, 2) (4, 4) NUMBER '1' (4, 5) (4, 6) OP ':' (4, 6) (4, 7) NEWLINE '\\n' (4, 7) (4, 8) INDENT ' ' (5, 0) (5, 4) AWAIT 'await' (5, 4) (5, 9) NEWLINE '\\n' (5, 9) (5, 10) DEDENT '' (6, 0) (6, 0) DEDENT '' (6, 0) (6, 0) NAME 'async' (6, 0) (6, 5) OP '+=' (6, 6) (6, 8) NUMBER '1' (6, 9) (6, 10) NEWLINE '\\n' (6, 10) (6, 11) >>> dump_tokens('''async def foo(): ... async dla i w 1: dalej''') ENCODING 'utf-8' (0, 0) (0, 0) ASYNC 'async' (1, 0) (1, 5) NAME 'def' (1, 6) (1, 9) NAME 'foo' (1, 10) (1, 13) OP '(' (1, 13) (1, 14) OP ')' (1, 14) (1, 15) OP ':' (1, 15) (1, 16) NEWLINE '\\n' (1, 16) (1, 17) INDENT ' ' (2, 0) (2, 2) ASYNC 'async' (2, 2) (2, 7) NAME 'for' (2, 8) (2, 11) NAME 'i' (2, 12) (2, 13) NAME 'in' (2, 14) (2, 16) NUMBER '1' (2, 17) (2, 18) OP ':' (2, 18) (2, 19) NAME 'pass' (2, 20) (2, 24) DEDENT '' (3, 0) (3, 0) >>> dump_tokens('''async def foo(async): await''') ENCODING 'utf-8' (0, 0) (0, 0) ASYNC 'async' (1, 0) (1, 5) NAME 'def' (1, 6) (1, 9) NAME 'foo' (1, 10) (1, 13) OP '(' (1, 13) (1, 14) ASYNC 'async' (1, 14) (1, 19) OP ')' (1, 19) (1, 20) OP ':' (1, 20) (1, 21) AWAIT 'await' (1, 22) (1, 27) >>> dump_tokens('''def f(): ... ... def baz(): dalej ... async def bar(): dalej ... ... await = 2''') ENCODING 'utf-8' (0, 0) (0, 0) NAME 'def' (1, 0) (1, 3) NAME 'f' (1, 4) (1, 5) OP '(' (1, 5) (1, 6) OP ')' (1, 6) (1, 7) OP ':' (1, 7) (1, 8) NEWLINE '\\n' (1, 8) (1, 9) NL '\\n' (2, 0) (2, 1) INDENT ' ' (3, 0) (3, 2) NAME 'def' (3, 2) (3, 5) NAME 'baz' (3, 6) (3, 9) OP '(' (3, 9) (3, 10) OP ')' (3, 10) (3, 11) OP ':' (3, 11) (3, 12) NAME 'pass' (3, 13) (3, 17) NEWLINE '\\n' (3, 17) (3, 18) ASYNC 'async' (4, 2) (4, 7) NAME 'def' (4, 8) (4, 11) NAME 'bar' (4, 12) (4, 15) OP '(' (4, 15) (4, 16) OP ')' (4, 16) (4, 17) OP ':' (4, 17) (4, 18) NAME 'pass' (4, 19) (4, 23) NEWLINE '\\n' (4, 23) (4, 24) NL '\\n' (5, 0) (5, 1) NAME 'await' (6, 2) (6, 7) OP '=' (6, 8) (6, 9) NUMBER '2' (6, 10) (6, 11) DEDENT '' (7, 0) (7, 0) >>> dump_tokens('''async def f(): ... ... def baz(): dalej ... async def bar(): dalej ... ... await = 2''') ENCODING 'utf-8' (0, 0) (0, 0) ASYNC 'async' (1, 0) (1, 5) NAME 'def' (1, 6) (1, 9) NAME 'f' (1, 10) (1, 11) OP '(' (1, 11) (1, 12) OP ')' (1, 12) (1, 13) OP ':' (1, 13) (1, 14) NEWLINE '\\n' (1, 14) (1, 15) NL '\\n' (2, 0) (2, 1) INDENT ' ' (3, 0) (3, 2) NAME 'def' (3, 2) (3, 5) NAME 'baz' (3, 6) (3, 9) OP '(' (3, 9) (3, 10) OP ')' (3, 10) (3, 11) OP ':' (3, 11) (3, 12) NAME 'pass' (3, 13) (3, 17) NEWLINE '\\n' (3, 17) (3, 18) ASYNC 'async' (4, 2) (4, 7) NAME 'def' (4, 8) (4, 11) NAME 'bar' (4, 12) (4, 15) OP '(' (4, 15) (4, 16) OP ')' (4, 16) (4, 17) OP ':' (4, 17) (4, 18) NAME 'pass' (4, 19) (4, 23) NEWLINE '\\n' (4, 23) (4, 24) NL '\\n' (5, 0) (5, 1) AWAIT 'await' (6, 2) (6, 7) OP '=' (6, 8) (6, 9) NUMBER '2' (6, 10) (6, 11) DEDENT '' (7, 0) (7, 0) """ z test zaimportuj support z tokenize zaimportuj (tokenize, _tokenize, untokenize, NUMBER, NAME, OP, STRING, ENDMARKER, ENCODING, tok_name, detect_encoding, open jako tokenize_open, Untokenizer) z io zaimportuj BytesIO z unittest zaimportuj TestCase, mock zaimportuj os zaimportuj token def dump_tokens(s): """Print out the tokens w s w a table format. The ENDMARKER jest omitted. """ f = BytesIO(s.encode('utf-8')) dla type, token, start, end, line w tokenize(f.readline): jeżeli type == ENDMARKER: przerwij type = tok_name[type] print("%(type)-10.10s %(token)-13.13r %(start)s %(end)s" % locals()) def roundtrip(f): """ Test roundtrip dla `untokenize`. `f` jest an open file albo a string. The source code w f jest tokenized to both 5- oraz 2-tuples. Both sequences are converted back to source code via tokenize.untokenize(), oraz the latter tokenized again to 2-tuples. The test fails jeżeli the 3 pair tokenizations do nie match. When untokenize bugs are fixed, untokenize przy 5-tuples should reproduce code that does nie contain a backslash continuation following spaces. A proper test should test this. This function would be more useful dla correcting bugs jeżeli it reported the first point of failure, like assertEqual, rather than just returning Nieprawda -- albo jeżeli it were only used w unittests oraz nie doctest oraz actually used assertEqual. """ # Get source code oraz original tokenizations jeżeli isinstance(f, str): code = f.encode('utf-8') inaczej: code = f.read() f.close() readline = iter(code.splitlines(keepends=Prawda)).__next__ tokens5 = list(tokenize(readline)) tokens2 = [tok[:2] dla tok w tokens5] # Reproduce tokens2 z pairs bytes_from2 = untokenize(tokens2) readline2 = iter(bytes_from2.splitlines(keepends=Prawda)).__next__ tokens2_from2 = [tok[:2] dla tok w tokenize(readline2)] # Reproduce tokens2 z 5-tuples bytes_from5 = untokenize(tokens5) readline5 = iter(bytes_from5.splitlines(keepends=Prawda)).__next__ tokens2_from5 = [tok[:2] dla tok w tokenize(readline5)] # Compare 3 versions zwróć tokens2 == tokens2_from2 == tokens2_from5 # This jest an example z the docs, set up jako a doctest. def decistmt(s): """Substitute Decimals dla floats w a string of statements. >>> z decimal zaimportuj Decimal >>> s = 'print(+21.3e-5*-.1234/81.7)' >>> decistmt(s) "print (+Decimal ('21.3e-5')*-Decimal ('.1234')/Decimal ('81.7'))" The format of the exponent jest inherited z the platform C library. Known cases are "e-007" (Windows) oraz "e-07" (nie Windows). Since we're only showing 11 digits, oraz the 12th isn't close to 5, the rest of the output should be platform-independent. >>> exec(s) #doctest: +ELLIPSIS -3.2171603427...e-0...7 Output z calculations przy Decimal should be identical across all platforms. >>> exec(decistmt(s)) -3.217160342717258261933904529E-7 """ result = [] g = tokenize(BytesIO(s.encode('utf-8')).readline) # tokenize the string dla toknum, tokval, _, _, _ w g: jeżeli toknum == NUMBER oraz '.' w tokval: # replace NUMBER tokens result.extend([ (NAME, 'Decimal'),
<filename>EP4/ep4.py """ AO PREENCHER ESSE CABECALHO COM O MEU NOME E O MEU NUMERO USP, DECLARO QUE SOU A UNICA PESSOA AUTORA E RESPONSAVEL POR ESSE PROGRAMA. TODAS AS PARTES ORIGINAIS DESSE EXERCICIO PROGRAMA (EP) FORAM DESENVOLVIDAS E IMPLEMENTADAS POR MIM SEGUINDO AS INSTRUCOES DESSE EP E, PORTANTO, NAO CONSTITUEM ATO DE DESONESTIDADE ACADEMICA, FALTA DE ETICA OU PLAGIO. DECLARO TAMBEM QUE SOU A PESSOA RESPONSAVEL POR TODAS AS COPIAS DESSE PROGRAMA E QUE NAO DISTRIBUI OU FACILITEI A SUA DISTRIBUICAO. ESTOU CIENTE QUE OS CASOS DE PLAGIO E DESONESTIDADE ACADEMICA SERAO TRATADOS SEGUNDO OS CRITERIOS DIVULGADOS NA PAGINA DA DISCIPLINA. ENTENDO QUE EPS SEM ASSINATURA NAO SERAO CORRIGIDOS E, AINDA ASSIM, PODERAO SER PUNIDOS POR DESONESTIDADE ACADEMICA. Nome : <NAME> NUSP : 10295429 Referencias: Com excecao das rotinas fornecidas no enunciado e em sala de aula, caso voce tenha utilizado alguma referencia, liste-as abaixo para que o seu programa nao seja considerado plagio ou irregular. Exemplo: - O algoritmo Quicksort foi baseado em: https://pt.wikipedia.org/wiki/Quicksort http://www.ime.usp.br/~pf/algoritmos/aulas/quick.html - Slides de aula - Conversas entre colegas de turma discutindo valores de batch size, learning rate e outras constantes que usaram no EP - Video sobre redes neurais, explicando o problema da parte 3: https://www.youtube.com/watch?v=aircAruvnKk """ import nn class PerceptronModel(object): def __init__(self, dimensions): """ Initialize a new Perceptron instance. A perceptron classifies data points as either belonging to a particular class (+1) or not (-1). `dimensions` is the dimensionality of the data. For example, dimensions=2 would mean that the perceptron must classify 2D points. """ self.w = nn.Parameter(1, dimensions) def get_weights(self): """ Return a Parameter instance with the current weights of the perceptron. """ return self.w def run(self, x): """ Calculates the score assigned by the perceptron to a data point x. Inputs: x: a node with shape (1 x dimensions) Returns: a node containing a single number (the score) """ return nn.DotProduct(x, self.get_weights()) def get_prediction(self, x): """ Calculates the predicted class for a single data point `x`. Returns: 1 or -1 """ score = nn.as_scalar(self.run(x)) if score < 0: return -1 return 1 def train(self, dataset): """ Train the perceptron until convergence. """ w = self.get_weights() converged = False while not converged: converged = True for x, y in dataset.iterate_once(1): if self.get_prediction(x) != nn.as_scalar(y): converged = False w.update(x, self.get_prediction(x)) class RegressionModel(object): """ A neural network model for approximating a function that maps from real numbers to real numbers. The network should be sufficiently large to be able to approximate sin(x) on the interval [-2pi, 2pi] to reasonable precision. """ def __init__(self): # Initialize your model parameters here self.w1 = nn.Parameter(1, 50) self.b1 = nn.Parameter(1, 50) self.w2 = nn.Parameter(50, 1) self.b2 = nn.Parameter(1, 1) def run(self, x): """ Runs the model for a batch of examples. Inputs: x: a node with shape (batch_size x 1) Returns: A node with shape (batch_size x 1) containing predicted y-values """ xw1 = nn.Linear(x, self.w1) xw1b1 = nn.AddBias(xw1, self.b1) relu1 = nn.ReLU(xw1b1) xw2 = nn.Linear(relu1, self.w2) return nn.AddBias(xw2, self.b2) def get_loss(self, x, y): """ Computes the loss for a batch of examples. Inputs: x: a node with shape (batch_size x 1) y: a node with shape (batch_size x 1), containing the true y-values to be used for training Returns: a loss node """ return nn.SquareLoss(self.run(x), y) def train(self, dataset): """ Trains the model. """ acceptable_loss = False multiplier = 0.05 while not acceptable_loss: for x, y in dataset.iterate_once(50): loss = self.get_loss(x, y) gradients = nn.gradients( loss, [self.w1, self.b1, self.w2, self.b2]) self.w1.update(gradients[0], multiplier) self.b1.update(gradients[1], multiplier) self.w2.update(gradients[2], multiplier) self.b2.update(gradients[3], multiplier) new_loss = self.get_loss(nn.Constant( dataset.x), nn.Constant(dataset.y)) if nn.as_scalar(new_loss) < 0.02: acceptable_loss = True class DigitClassificationModel(object): """ A model for handwritten digit classification using the MNIST dataset. Each handwritten digit is a 28x28 pixel grayscale image, which is flattened into a 784-dimensional vector for the purposes of this model. Each entry in the vector is a floating point number between 0 and 1. The goal is to sort each digit into one of 10 classes (number 0 through 9). (See RegressionModel for more information about the APIs of different methods here. We recommend that you implement the RegressionModel before working on this part of the project.) """ def __init__(self): # Initialize your model parameters here self.w1 = nn.Parameter(784, 50) self.b1 = nn.Parameter(1, 50) self.w2 = nn.Parameter(50, 10) self.b2 = nn.Parameter(1, 10) def run(self, x): """ Runs the model for a batch of examples. Your model should predict a node with shape (batch_size x 10), containing scores. Higher scores correspond to greater probability of the image belonging to a particular class. Inputs: x: a node with shape (batch_size x 784) Output: A node with shape (batch_size x 10) containing predicted scores (also called logits) """ xw1 = nn.Linear(x, self.w1) xw1b1 = nn.AddBias(xw1, self.b1) relu1 = nn.ReLU(xw1b1) xw2 = nn.Linear(relu1, self.w2) return nn.AddBias(xw2, self.b2) def get_loss(self, x, y): """ Computes the loss for a batch of examples. The correct labels `y` are represented as a node with shape (batch_size x 10). Each row is a one-hot vector encoding the correct digit class (0-9). Inputs: x: a node with shape (batch_size x 784) y: a node with shape (batch_size x 10) Returns: a loss node """ return nn.SoftmaxLoss(self.run(x), y) def train(self, dataset): """ Trains the model. """ acceptable_acc = False multiplier = 0.1 while not acceptable_acc: for x, y in dataset.iterate_once(50): loss = self.get_loss(x, y) gradients = nn.gradients( loss, [self.w1, self.b1, self.w2, self.b2]) self.w1.update(gradients[0], multiplier) self.b1.update(gradients[1], multiplier) self.w2.update(gradients[2], multiplier) self.b2.update(gradients[3], multiplier) new_accuracy = dataset.get_validation_accuracy() print(new_accuracy) if new_accuracy >= 0.96: acceptable_acc = True class LanguageIDModel(object): """ A model for language identification at a single-word granularity. (See RegressionModel for more information about the APIs of different methods here. We recommend that you implement the RegressionModel before working on this part of the project.) """ def __init__(self): # Our dataset contains words from five different languages, and the # combined alphabets of the five languages contain a total of 47 unique # characters. # You can refer to self.num_chars or len(self.languages) in your code self.num_chars = 47 self.languages = ["English", "Spanish", "Finnish", "Dutch", "Polish"] # Initialize your model parameters here "*** YOUR CODE HERE ***" def run(self, xs): """ Runs the model for a batch of examples. Although words have different lengths, our data processing guarantees that within a single batch, all words will be of the same length (L). Here `xs` will be a list of length L. Each element of `xs` will be a node with shape (batch_size x self.num_chars), where every row in the array is a one-hot vector encoding of a character. For example, if we have a batch of 8 three-letter words where the last word is "cat", then xs[1] will be a node that contains a 1 at position (7, 0). Here the index 7 reflects the fact that "cat" is the last word in the batch, and the index 0 reflects the fact that the letter "a" is the inital (0th) letter of our combined alphabet for this task. Your model should use a Recurrent Neural Network to summarize the list `xs` into a single node of shape (batch_size x hidden_size), for your choice of hidden_size. It should then calculate a node of shape (batch_size x 5) containing scores, where higher scores correspond to greater probability of the word originating from a particular language. Inputs: xs: a list with L elements (one per character), where each element is a node with shape (batch_size x self.num_chars) Returns: A node with shape (batch_size x 5) containing predicted scores (also called logits) """ "*** YOUR CODE HERE ***" def get_loss(self, xs, y): """ Computes the loss for a batch of examples. The correct labels `y` are represented as a node with shape (batch_size x 5). Each row is a one-hot vector encoding the correct language. Inputs: xs: a list with
# -------------------------------------------------------- # Swin Transformer # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by <NAME> # -------------------------------------------------------- import os import time import datetime import numpy as np import torch import torch.backends.cudnn as cudnn import torch.distributed as dist from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy from timm.utils import accuracy, AverageMeter from config import get_config from models import build_model from data import build_loader from lr_scheduler import build_scheduler from optimizer import build_optimizer from logger import create_logger from utils.storage import load_checkpoint, save_checkpoint, get_grad_norm, auto_resume_helper, reduce_tensor from config import config from utils.net_utils import constrainScoreByWhole, freeze_model_subnet, freeze_model_weights from utils.compute_flops import print_model_param_flops_sparse, print_model_param_flops import copy try: # noinspection PyUnresolvedReferences from apex import amp except ImportError: amp = None def main(config): config.defrost() dataset_train, dataset_val, data_loader_train, data_loader_val, mixup_fn = build_loader(config) logger.info(f"Creating model:{config.MODEL.TYPE}/{config.MODEL.NAME}") model = build_model(config) model.cuda() logger.info(str(model)) weight_opt, score_opt, weight_params = build_optimizer(config, model) if config.AMP_OPT_LEVEL != "O0": model, opt_l = amp.initialize(model, [weight_opt, score_opt], opt_level=config.AMP_OPT_LEVEL) weight_opt = opt_l[0] score_opt = opt_l[1] model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[config.LOCAL_RANK], broadcast_buffers=False, find_unused_parameters=True) model_without_ddp = model.module n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) logger.info(f"number of params: {n_parameters}") if hasattr(model_without_ddp, 'flops'): flops = model_without_ddp.flops() logger.info(f"number of GFLOPs: {flops / 1e9}") lr_scheduler1, lr_scheduler2 = build_scheduler(config, weight_opt, score_opt, len(data_loader_train)) if config.AUG.MIXUP > 0.: # smoothing is handled with mixup label transform criterion = SoftTargetCrossEntropy() elif config.MODEL.LABEL_SMOOTHING > 0.: criterion = LabelSmoothingCrossEntropy(smoothing=config.MODEL.LABEL_SMOOTHING) else: criterion = torch.nn.CrossEntropyLoss() max_accuracy = 0.0 if config.TRAIN.AUTO_RESUME: resume_file = auto_resume_helper(config.OUTPUT) if resume_file: if config.MODEL.RESUME: logger.warning(f"auto-resume changing resume file from {config.MODEL.RESUME} to {resume_file}") config.MODEL.RESUME = resume_file logger.info(f'auto resuming from {resume_file}') else: logger.info(f'no checkpoint found in {config.OUTPUT}, ignoring auto resume') if config.MODEL.RESUME: max_accuracy = load_checkpoint(config, model_without_ddp, weight_opt, score_opt, lr_scheduler1, lr_scheduler2, logger) acc1, acc5, loss = validate(config, data_loader_val, model) logger.info(f"Accuracy of the network on the {len(dataset_val)} test images: {acc1:.1f}%") if config.EVAL_MODE: return if config.THROUGHPUT_MODE: throughput(data_loader_val, model, logger) return logger.info("Start training") start_time = time.time() flops_reduction_list = [] config.finetuning = False for epoch in range(config.TRAIN.START_EPOCH, config.TRAIN.EPOCHS): data_loader_train.sampler.set_epoch(epoch) train_one_epoch(config, model, criterion, data_loader_train, weight_opt, score_opt, epoch, mixup_fn, lr_scheduler1, lr_scheduler2) if dist.get_rank() == 0 and (epoch % config.SAVE_FREQ == 0 or epoch == (config.TRAIN.EPOCHS - 1)): save_checkpoint(config, epoch, model_without_ddp, max_accuracy, weight_opt, score_opt, lr_scheduler1, lr_scheduler2, logger) if epoch % 1 == 0 and "Dense" in config.conv_type: print_model_param_flops(model, c=3, input_res=224, multiply_adds=False) if epoch % 1 == 0 and "Dense" not in config.conv_type: print("=> compute model params and flops") flops_reduction = print_model_param_flops_sparse(model, c=3, input_res=224, multiply_adds=False) flops_reduction_list.append(flops_reduction.item()) print("avg train cost/ savings", sum(flops_reduction_list)/len(flops_reduction_list), 3/(4*sum(flops_reduction_list)/len(flops_reduction_list))) torch.cuda.empty_cache() acc1, acc5, loss = validate(config, data_loader_val, model) logger.info(f"Accuracy of the network on the {len(dataset_val)} test images: {acc1:.1f}%") max_accuracy = max(max_accuracy, acc1) logger.info(f'Max accuracy: {max_accuracy:.2f}%') total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) logger.info('Training time {}'.format(total_time_str)) if config.finetune: print("continue finetune") max_accuracy = 0 config.K = 1 config.finetuning = True freeze_model_subnet(model) fix_model_subnet(model) finetune_optimizer = torch.optim.AdamW(weight_params, eps=config.TRAIN.OPTIMIZER.EPS, betas=config.TRAIN.OPTIMIZER.BETAS, lr=config.TRAIN.BASE_LR*1e-2, weight_decay=config.TRAIN.WEIGHT_DECAY) if config.sample_from_training_set: config.use_running_stats = False i = 0 BESTACC1, BESTIDX = 0, 0 BESTSTATEDICT = None BESTMODEL = copy.deepcopy(model) while i < 10: i += 1 acc1, acc5, loss = validate(config, data_loader_train, model) print(acc1, BESTACC1, i) if acc1 > BESTACC1: BESTACC1 = acc1 BESTIDX = i BESTMODEL = copy.deepcopy(model) print(BESTACC1, BESTIDX) for n, m in model.named_modules(): if hasattr(m, "scores") and m.prune: m.subnet = (torch.rand_like(m.scores) < m.clamped_scores).float() model = copy.deepcopy(BESTMODEL) config.use_running_stats = True for epoch in range(0, 40): data_loader_train.sampler.set_epoch(epoch) train_one_epoch(config, model, criterion, data_loader_train, finetune_optimizer, None, epoch, mixup_fn, None, None) acc1, acc5, loss = validate(config, data_loader_val, model) logger.info(f"Accuracy of the network on the {len(dataset_val)} test images: {acc1:.1f}%") max_accuracy = max(max_accuracy, acc1) logger.info(f'Max accuracy: {max_accuracy:.2f}%') def master_params(optimizer1, optimizer2): """ Generator expression that iterates over the params owned by ``optimizer``s. Args: optimizer1: An optimizer previously returned from ``amp.initialize``. optimizer2: An optimizer previously returned from ``amp.initialize``. """ for group in optimizer1.param_groups: for p in group['params']: yield p for group in optimizer2.param_groups: for p in group['params']: yield p def perform_backward(loss, weight_opt, score_opt): if config.AMP_OPT_LEVEL != "O0": with amp.scale_loss(loss, [weight_opt, score_opt]) as scaled_loss: scaled_loss.backward() else: loss.backward() def get_grad_norm(model, weight_opt, score_opt): if config.AMP_OPT_LEVEL != "O0": if config.TRAIN.CLIP_GRAD: grad_norm = torch.nn.utils.clip_grad_norm_(master_params(weight_opt, score_opt), config.TRAIN.CLIP_GRAD) else: grad_norm = get_grad_norm(master_params(weight_opt, score_opt)) else: if config.TRAIN.CLIP_GRAD: grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), config.TRAIN.CLIP_GRAD) else: grad_norm = get_grad_norm(model.parameters()) return grad_norm def calculateGrad(model, fn_avg, fn_list, args): for n, m in model.named_modules(): if hasattr(m, "scores") and m.prune: m.scores.grad.data += 1/(args.K-1)*(fn_list[0] - fn_avg)*getattr(m, 'stored_mask_0') + 1/(args.K-1)*(fn_list[1] - fn_avg)*getattr(m, 'stored_mask_1') def calculateGrad_pge(model, fn_list, args): for n, m in model.named_modules(): if hasattr(m, "scores") and m.prune: m.scores.grad.data += 1/args.K*(fn_list[0]*getattr(m, 'stored_mask_0')) + 1/args.K*(fn_list[1]*getattr(m, 'stored_mask_1')) def train_one_epoch(config, model, criterion, data_loader, weight_opt, score_opt, epoch, mixup_fn, lr_scheduler1, lr_scheduler2): model.train() num_steps = len(data_loader) batch_time = AverageMeter() loss_meter = AverageMeter() norm_meter = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() v_meter = AverageMeter() max_score_meter = AverageMeter() start = time.time() end = time.time() for idx, (samples, targets) in enumerate(data_loader): samples = samples.cuda(non_blocking=True) targets = targets.cuda(non_blocking=True) original_targets = targets.clone() l, ol, gl, al, a1, a5, ll = 0, 0, 0, 0, 0, 0, 0 if weight_opt is not None: weight_opt.zero_grad() if score_opt is not None: score_opt.zero_grad() if mixup_fn is not None: samples, targets = mixup_fn(samples, targets) fn_list = [] for j in range(config.K): config.j = j outputs = model(samples) original_loss = criterion(outputs, targets) loss = original_loss/config.K fn_list.append(loss.item()*config.K) perform_backward(loss, weight_opt, score_opt) acc1, acc5 = accuracy(outputs, original_targets, topk=(1, 5)) l = l + loss.item() ol = ol + original_loss.item() / config.K a1 = a1 + acc1.item() / config.K a5 = a5 + acc5.item() / config.K fn_avg = l if not config.finetuning: if config.conv_type == "ReinforceLOO" or config.conv_type == "ReinforceLOOVR" or config.conv_type == "ReinforceLOOVRWeight": calculateGrad(model, fn_avg, fn_list, config) if config.conv_type == "Reinforce": calculateGrad_pge(model, fn_list, config) grad_norm = get_grad_norm(model, weight_opt, score_opt) if weight_opt is not None: weight_opt.step() if score_opt is not None: score_opt.step() if lr_scheduler1 is not None: lr_scheduler1.step_update(epoch * num_steps + idx) if lr_scheduler2 is not None: lr_scheduler2.step_update(epoch * num_steps + idx) torch.cuda.synchronize() loss_meter.update(l, targets.size(0)) norm_meter.update(grad_norm) batch_time.update(time.time() - end) top1.update(a1, targets.size(0)) top5.update(a5, targets.size(0)) end = time.time() if config.conv_type == "ReinforceLOO" or config.conv_type == "ReinforceLOOVR" or config.conv_type == "Reinforce" or config.conv_type == "ReinforceLOOVRWeight": if not config.finetuning: with torch.no_grad(): constrainScoreByWhole(model, v_meter, max_score_meter) if idx % config.PRINT_FREQ == 0: lr1 = weight_opt.param_groups[0]['lr'] if weight_opt is not None else 0 lr2 = score_opt.param_groups[0]['lr'] if score_opt is not None else 0 etas = batch_time.avg * (num_steps - idx) logger.info( f'Train: [{epoch}/{config.TRAIN.EPOCHS}][{idx}/{num_steps}]\t' f'eta {datetime.timedelta(seconds=int(etas))} w_lr {lr1:.6f} s_lr {lr2:.6f}\t' f'time {batch_time.val:.4f} ({batch_time.avg:.4f})\t' f'loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t' f'top1 {top1.val:.4f} ({top1.avg:.4f})\t' f'top5 {top5.val:.4f} ({top5.avg:.4f})\t' f'v_meter {v_meter.val:.4f} ({v_meter.avg:.4f})\t' f'max_score_meter {max_score_meter.val:.4f} ({max_score_meter.avg:.4f})\t' ) epoch_time = time.time() - start logger.info(f"EPOCH {epoch} training takes {datetime.timedelta(seconds=int(epoch_time))}") @torch.no_grad() def validate(config, data_loader, model): criterion = torch.nn.CrossEntropyLoss() loss_meter = AverageMeter() acc1_meter = AverageMeter() acc5_meter = AverageMeter() if config.use_running_stats: model.eval() with torch.no_grad(): for idx, (images, target) in enumerate(data_loader): images = images.cuda(non_blocking=True) target = target.cuda(non_blocking=True) output = model(images) loss = criterion(output, target) acc1, acc5 = accuracy(output, target, topk=(1, 5)) acc1 = reduce_tensor(acc1) acc5 = reduce_tensor(acc5) loss = reduce_tensor(loss) loss_meter.update(loss.item(), target.size(0)) acc1_meter.update(acc1.item(), target.size(0)) acc5_meter.update(acc5.item(), target.size(0)) if idx % config.PRINT_FREQ == 0: logger.info( f'Test: [{idx}/{len(data_loader)}]\t' f'Loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t' f'Acc@1 {acc1_meter.val:.3f} ({acc1_meter.avg:.3f})\t' f'Acc@5 {acc5_meter.val:.3f} ({acc5_meter.avg:.3f})\t' ) logger.info(f' * Acc@1 {acc1_meter.avg:.3f} Acc@5 {acc5_meter.avg:.3f}') return acc1_meter.avg, acc5_meter.avg, loss_meter.avg @torch.no_grad() def throughput(data_loader, model, logger): model.eval() for idx, (images, _) in enumerate(data_loader): images = images.cuda(non_blocking=True) batch_size = images.shape[0] for i in range(50): model(images) torch.cuda.synchronize() logger.info(f"throughput averaged with 30 times") tic1 = time.time() for i in range(30): model(images) torch.cuda.synchronize() tic2 = time.time() logger.info(f"batch_size {batch_size} throughput {30 * batch_size / (tic2 - tic1)}") return if __name__ == '__main__': if config.AMP_OPT_LEVEL != "O0": assert amp is not None, "amp not installed!" if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: rank = int(os.environ["RANK"]) world_size = int(os.environ['WORLD_SIZE']) print(f"RANK and WORLD_SIZE in environ: {rank}/{world_size}") else: rank = -1 world_size = -1 torch.cuda.set_device(config.LOCAL_RANK) torch.distributed.init_process_group(backend='nccl', init_method='env://', world_size=world_size, rank=rank) torch.distributed.barrier() seed = config.SEED + dist.get_rank() torch.manual_seed(seed) np.random.seed(seed) cudnn.benchmark = True # linear scale the learning rate according to total batch size, may not be optimal linear_scaled_lr = config.TRAIN.BASE_LR * config.DATA.BATCH_SIZE * dist.get_world_size() / 512.0 linear_scaled_warmup_lr = config.TRAIN.WARMUP_LR * config.DATA.BATCH_SIZE * dist.get_world_size() / 512.0 linear_scaled_min_lr = config.TRAIN.MIN_LR * config.DATA.BATCH_SIZE * dist.get_world_size() / 512.0 # gradient accumulation also need to scale the learning rate if config.TRAIN.ACCUMULATION_STEPS > 1: linear_scaled_lr = linear_scaled_lr * config.TRAIN.ACCUMULATION_STEPS linear_scaled_warmup_lr = linear_scaled_warmup_lr * config.TRAIN.ACCUMULATION_STEPS linear_scaled_min_lr = linear_scaled_min_lr * config.TRAIN.ACCUMULATION_STEPS config.TRAIN.BASE_LR = linear_scaled_lr config.TRAIN.WARMUP_LR = linear_scaled_warmup_lr config.TRAIN.MIN_LR =
from taskinit import * import time import os import re import json import numpy as np import matplotlib.pyplot as plt from scipy.interpolate import interp1d import partitionhelper as ph from mpi4casa.MPICommandClient import MPICommandClient # pieflag is released under a BSD 3-Clause License # See LICENSE for details # HISTORY: # 1.0 2005 Initial version by <NAME>, designed # for use with customized UVLIST in MIRIAD # 1.1 Jan2006 Various upgrades by Enno Middelberg # 2.0 31Oct2014 Release of updated and CASA-compatible version # written by <NAME> # 2.1 26Nov2014 Fixed subscan bug (only operate on '0') and # logger default value printout # 2.2 25Mar2015 Updated handling for pre-flagged baselines and # hid unimportant runtime display messages # 3.0 28Mar2015 Enabled parallel processing # 3.1 10Jun2015 Added error messages for SEFD extrapolation # and integration time rounding problem, and # fixed default numthreads # 3.2 19Feb2016 Fixed parallel processing bug, enabled # operation using DATA column, and removed # lock file deletion # 4.0 4Aug2016 Upgraded to use MPI parallelism in CASA 4.6.0+ # 4.1 13Oct2016 Fixed license, no changes to code # 4.2 24Oct2016 Updated code category, no changes to code # 4.3 25Oct2016 Fixed version number (affects 4.1, 4.2) # 4.4 26Oct2016 Removed flag_row check, CASA does not # currently respect this column properly # # See additional information in pieflag function below def pieflag_getflagstats(vis,field,spw,npol,feedbasis): #casalog.filter('WARN') af.open(msname=vis) af.selectdata(field=str(field),spw=str(spw)) ag0={'mode':'summary','action':'calculate'} af.parseagentparameters(ag0) af.init() temp=af.run(writeflags=False) af.done() #casalog.filter('INFO') if feedbasis: RRf=temp['report0']['correlation']['RR']['flagged'] RRt=temp['report0']['correlation']['RR']['total'] LLf=temp['report0']['correlation']['LL']['flagged'] LLt=temp['report0']['correlation']['LL']['total'] else: RRf=temp['report0']['correlation']['XX']['flagged'] RRt=temp['report0']['correlation']['XX']['total'] LLf=temp['report0']['correlation']['YY']['flagged'] LLt=temp['report0']['correlation']['YY']['total'] TOTf=temp['report0']['flagged'] TOTt=temp['report0']['total'] flagstats=np.array([RRf,RRt,LLf,LLt,TOTf,TOTt]) if npol == 4: if feedbasis: RLf=temp['report0']['correlation']['RL']['flagged'] RLt=temp['report0']['correlation']['RL']['total'] LRf=temp['report0']['correlation']['LR']['flagged'] LRt=temp['report0']['correlation']['LR']['total'] else: RLf=temp['report0']['correlation']['XY']['flagged'] RLt=temp['report0']['correlation']['XY']['total'] LRf=temp['report0']['correlation']['YX']['flagged'] LRt=temp['report0']['correlation']['YX']['total'] flagstats=np.append(flagstats,[RLf,RLt,LRf,LRt]) return flagstats def pieflag_flag(vis,datacol,nthreads,field, vtbleLIST,inttime,nant, ddid,spw,refchan,nchan,npol,feedbasis, fitorderLIST,sefdLIST, staticflag,madmax,binsamples, dynamicflag,chunktime,stdmax,maxoffset, extendflag,boxtime,boxthresh): # Go through each baseline, spw, channel, and polarization and compare to reference channel # while accounting for a spectral fit and the SEFD. # Perform static, dynamic, and extend operations if requested casalog.filter('INFO') if nthreads > 1: threadID = MPIEnvironment.mpi_processor_rank casalog.post(' thread '+str(threadID)+'/'+str(nthreads)+' status: 0% complete (updates delivered every 10%)') else: casalog.post(' status: 0% complete (updates delivered every 10%)') vtble = np.array(vtbleLIST) sefd = np.array(sefdLIST) fitorder = np.array(fitorderLIST) tb.open(vis) temp_ant1 = tb.getcol('ANTENNA1') temp_ant2 = tb.getcol('ANTENNA2') tb.close() ant1 = temp_ant1[0] ant2 = temp_ant2[0] # get number of baselines from unique antenna combinations nb = np.vstack(set(map(tuple, np.transpose(np.array([temp_ant1,temp_ant2])) ))).shape[0] nspw=len(spw) if feedbasis: pSTR = ['RR'] if npol == 2: pSTR.append('LL') elif npol == 4: pSTR.append('RL') pSTR.append('LR') pSTR.append('LL') else: pSTR = ['XX'] if npol == 2: pSTR.append('YY') elif npol == 4: pSTR.append('XY') pSTR.append('YX') pSTR.append('YY') # dim0 --> npol=2: 0=RR, 1=LL # npol=4: 0=RR, 1=RL, 2=LR, 3=LL specfitcoeffS=np.zeros((npol,max(fitorder)+1)) # rc = reference channel # rcx = frequency in Hz for static flagging rcx=np.zeros(nspw) for i in range(nspw): rcx[i] = vtble[refchan[i]][spw[i]] # S = static # Srcy: dim2=(median visibility amplitude, median absolute deviation) Srcy=np.zeros((nspw,npol,2)) if extendflag: kernellen = int(boxtime/inttime) #kernel = np.ones(kernellen) tb.open(vis) ms.open(vis,nomodify=False) printupdate=np.ones(9).astype(bool) printcounter=1 checkprint=True for b in range(nb): if checkprint: if printupdate[printcounter-1] and b+1>nb/10*printcounter: if nthreads > 1: casalog.post(' thread '+str(threadID)+'/'+str(nthreads)+' status: '+str(10*printcounter)+'% complete') else: casalog.post(' status: '+str(10*printcounter)+'% complete') printupdate[printcounter-1]=False printcounter+=1 if printcounter > 9: checkprint=False # get reference channel median and MAD for static flagging validspw = np.zeros((npol,nspw)) for s in range(nspw): for p in range(npol): tempstr1 = '([select from '+vis+' where ANTENNA1=='+str(ant1)+' && ANTENNA2=='+str(ant2)+\ ' && FIELD_ID=='+str(field)+' && DATA_DESC_ID=='+str(ddid[s])+\ ' && FLAG['+str(p)+','+str(refchan[s])+']==False giving ' # ' && WEIGHT['+str(p)+']>0 giving ' tempstr2 = '[abs('+datacol.upper()+'['+str(p)+','+str(refchan[s])+'])]])' tempval = tb.calc('count'+tempstr1+tempstr2)[0] if tempval > 0: validspw[p][s] = 1 if staticflag: Srcy[s][p][0] = tb.calc('median'+tempstr1+tempstr2)[0] tempstr3 = '[abs(abs('+datacol.upper()+'['+str(p)+','+str(refchan[s])+'])-'+\ str(Srcy[s][p][0])+')]])' Srcy[s][p][1] = tb.calc('median'+tempstr1+tempstr3)[0] else: # If the reference channel for any one polarization isn't present, # flag all data on this baseline in this spw. # You won't be able to do static or dynamic flagging (nor extend flagging as a result). # This part of the loop shouldn't get activated much on unflagged data because the # user should have picked a suitable reference channel in each spw. validspw[0][s] = 0 casalog.filter('WARN') ms.reset() try: ms.msselect({'field':str(field),'baseline':str(ant1)+'&&'+str(ant2),'spw':str(spw[s])}) tempflag = ms.getdata('flag') tempflag['flag'][:]=True ms.putdata(tempflag) casalog.filter('INFO') except: # this gets triggered if the entire baseline is already flagged casalog.filter('INFO') break # get static spectral fits for each polarization if staticflag: tempfitorderS = np.copy(fitorder) for p in range(npol): # check that there are enough spw's to fit the requested spectral order if sum(validspw[p]) > 0: if tempfitorderS[p] > sum(validspw[p])-1: if sum(validspw[p]) == 2: tempfitorderS[p] = 1 else: tempfitorderS[p] = 0 casalog.post('*** WARNING: staticflag fitorder for baseline ant1='+str(ant1)+' ant2='+str(ant2)+\ ' pol='+pSTR[p]+' has been reduced to '+str(int(tempfitorderS[p])),'WARN') # use MAD to weight the points # (not mathematically correct, should be standard error, but OK approximation) specfitcoeffS[p,0:tempfitorderS[p]+1] = np.polyfit(np.log10(rcx[validspw[p]>0]),\ np.log10(Srcy[0:,p,0][validspw[p]>0]),\ tempfitorderS[p],w=1.0/np.log10(Srcy[0:,p,1][validspw[p]>0])) if dynamicflag and sum(validspw[0]) > 0: # Don't assume that the same number of integrations (dump times) are present in each spw. # This requirement makes the code messy casalog.filter('WARN') ms.reset() ms.msselect({'field':str(field),'baseline':str(ant1)+'&&'+str(ant2)}) ms.iterinit(interval=chunktime,columns=['TIME'],adddefaultsortcolumns=False) # get number of chunks and initialize arrays ms.iterorigin() moretodo=True nchunks = 0 while moretodo: nchunks += 1 moretodo = ms.iternext() # start and end timestamp for each chunk timestamps = np.zeros((nchunks,2)) # D = dynamic # dim3 (per chunk) --> 0=reference channel median, 1=reference channel standard deviation Drcy=np.zeros((nspw,npol,nchunks,2)) validspwD = np.zeros((npol,nchunks,nspw)) ms.iterorigin() moretodo=True chunk = 0 while moretodo: tempflagD = ms.getdata('flag')['flag'] tempdataD = abs(ms.getdata(datacol.lower())[datacol.lower()]) tempddidD = ms.getdata('data_desc_id')['data_desc_id'] for s in range(nspw): for p in range(npol): # messy... messydata1 = tempdataD[p,refchan[s]][tempflagD[p,refchan[s]]==False] if len(messydata1) > 0: messyddid = tempddidD[tempflagD[p,refchan[s]]==False] messydata2 = messydata1[messyddid==ddid[s]] if len(messydata2) > 0: validspwD[p,chunk,s] = 1 Drcy[s,p,chunk,0] = np.median(messydata2) Drcy[s,p,chunk,1] = np.std(messydata2) # Get start and end timestamps so the data can be matched up later. # The overall timespan reported here will be equal to or greater # than the timespan reported below when ms.getdata is run on an # individual spw, because we need to account for the possible # presence of some spw's with less integrations. Messy... temptimeD = ms.getdata('time')['time'] timestamps[chunk,0] = min(temptimeD) timestamps[chunk,1] = max(temptimeD) chunk += 1 moretodo = ms.iternext() # get dynamic spectral fits for each polarization tempfitorderD = np.zeros((nchunks,len(fitorder))) for i in range(len(fitorder)): tempfitorderD[:,i] = fitorder[i] # dim0 --> npol=2: 0=RR, 1=LL # npol=4: 0=RR, 1=RL, 2=LR, 3=LL specfitcoeffD=np.zeros((npol,nchunks,max(fitorder)+1)) ms.iterorigin() moretodo=True chunk = 0 while moretodo: for p in range(npol): # check that there are enough spw's to fit the requested spectral order if sum(validspwD[p,chunk]) > 0: if tempfitorderD[chunk,p] > sum(validspwD[p,chunk])-1: if sum(validspwD[p,chunk]) == 2: tempfitorderD[chunk,p] = 1 else: tempfitorderD[chunk,p] = 0 # native time is MJD seconds t1=qa.time(qa.quantity(timestamps[chunk,0],'s'),form='ymd')[0] t2=qa.time(qa.quantity(timestamps[chunk,1],'s'),form='d')[0] casalog.post('*** WARNING: dynamicflag fitorder for baseline ant1='+str(ant1)+' ant2='+str(ant2)+\ ' pol='+pSTR[p]+' time='+t1+'-'+t2+\ ' has been reduced to '+str(int(tempfitorderD[chunk,p])),'WARN') # prevent numerical warning when MAD=0 (ie single sample) tempDrcy = Drcy[0:,p,chunk,1][validspwD[p,chunk]>0] tempDrcy[tempDrcy==0] = 1e-200 specfitcoeffD[p,chunk,0:tempfitorderD[chunk,p]+1] = \ np.polyfit(np.log10(rcx[validspwD[p,chunk]>0]),np.log10(Drcy[0:,p,chunk,0][validspwD[p,chunk]>0]),\ tempfitorderD[chunk,p],w=1.0/np.log10(tempDrcy)) chunk += 1 moretodo = ms.iternext() casalog.filter('INFO') for s in range(nspw): if validspw[0,s] > 0: casalog.filter('WARN') ms.reset() ms.msselect({'field':str(field),'baseline':str(ant1)+'&&'+str(ant2),'spw':str(spw[s])}) # get data for this spw, accounting for existing flags tempflag = ms.getdata('flag') tempdata = abs(ms.getdata(datacol.lower())[datacol.lower()]) tempflagpf = np.zeros(tempdata.shape) temptime = ms.getdata('time')['time'] casalog.filter('INFO') if staticflag: windowtime = binsamples * inttime window = [] casalog.filter('WARN') ms.iterinit(interval=windowtime) ms.iterorigin() # get number of time steps moretodo=True while moretodo: # select from dummy column with small data size, eg int 'antenna1' # (could also have used float 'time'...) window.append(len(ms.getdata('antenna1')['antenna1'])) moretodo = ms.iternext() casalog.filter('INFO') for f in range(nchan): # this shouldn't matter, but enforce that flagging # doesn't take place on the reference channel if f == refchan[s]: continue for p in range(npol): if tempfitorderS[p] > 0: specfit = 10.0**(np.poly1d(specfitcoeffS[p,0:tempfitorderS[p]+1])(np.log10(vtble[f][spw[s]]))) else: specfit = Srcy[s][p][0] # difference to median of reference channel, accounting for spectrum and sefd tempdatachan = np.multiply(abs((tempdata[p][f]-specfit)/sefd[s][f]),np.invert(tempflag['flag'][p][f])) tempbad = np.zeros(tempdatachan.shape) tempbad[tempdatachan>=Srcy[s,p,1]*madmax] = 1 tempbad[tempdatachan>=Srcy[s,p,1]*madmax*2] += 1 # iterate in units of binsamples*inttime # flag entire window if sum of badness values >=2 # if flagging needs to take place in one polarization, just flag them all j=0 for w in window: if sum(tempbad[j:j+w]) >= 2: tempflagpf[0:npol,f,j:j+w] = 1 tempflag['flag'][0:npol,f,j:j+w] = True
import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.lines import Line2D from modpy.random import normal_pdf, UniformDist, JointDistribution from modpy.design import kennard_stone_design from modpy.optimize import mmo, nlprog, cma_es, bayesian_proposal, NonlinearConstraint from modpy.optimize._bayesian import _expected_improvement, _probability_of_improvement, _upper_confidence_bound from modpy.proxy import OrdinaryKrigingModel from modpy.stats import hamiltonian_mc, posterior_ensemble from modpy.plot.plot_util import subplot_layout, cm_parula, default_color, set_font_sizes from modpy.illustration.illustration_util import CASE_PATH, test_function_2d def _configure_axes_1D(ax, lim): ax.set_xlim(*lim) ax.set_ylim([-0.03, 0.15]) ax.set_xlabel('$\\theta$') ax.set_ylabel('$f_{obj}(\\theta)$') ax.grid(True) ax.legend() def _configure_axes_2D(ax): ax.set_xlim([-5., 5.]) ax.set_ylim([-5., 5.]) ax.set_xlabel('$\\theta_1$') ax.set_ylabel('$\\theta_2$') def _plot_acquisition_functions(): seed = 1234 def obj(x): return normal_pdf(x, 15., 5.) + normal_pdf(x, 30., 4.) + normal_pdf(x, 40., 5.) # initial design of experiment x_doe = np.array([5., 18., 25., 44.]) y_doe = obj(x_doe) # for illustration of underlying objective function x_true = np.linspace(0., 50., 500) y_true = obj(x_true) # set up optimizer ------------------------------------------------------------------------------------------------- # set bounds x_min = 0. x_max = 50. # set up proxy model ----------------------------------------------------------------------------------------------- proxy = OrdinaryKrigingModel(x_doe, y_doe, 'gaussian', seed=seed) theta0 = np.array([10.]) proxy.initialize_ML(theta0) proxy.define_weights(x_true) mu = proxy.mean() sigma = proxy.std() # plot figure ------------------------------------------------------------------------------------------------------ r, c = subplot_layout(4) fig, axes = plt.subplots(r, c, figsize=(20, 14)) axes = axes.flatten() def plot_problem(ax): # plot true objective function ax.plot(x_true, y_true, color='gray', lw=2, label='True', zorder=2.5) ax.scatter(x_doe, y_doe, 20, color='k', label='DoE', zorder=5) ax.plot(x_true, mu, color='m', label='Proxy', zorder=3) # plot the problem ax = axes[0] plot_problem(ax) ax.plot(x_true, mu + 2. * sigma, color='m', ls='--', label='95% conf.', zorder=3) ax.plot(x_true, mu - 2. * sigma, color='m', ls='--', zorder=3) ax.set_title('Optimization Problem') _configure_axes_1D(ax, [x_min, x_max]) set_font_sizes(ax, 13) # calculate acquisition functions kappa = 3. xi = 0.01 y_max = np.amax(y_doe) a_ei = _expected_improvement(mu, sigma, y_max, xi) a_pi = _probability_of_improvement(mu, sigma, y_max, xi) a_ucb = _upper_confidence_bound(mu, sigma, kappa=kappa) # plot expected improvement ax = axes[1] plot_problem(ax) axt = ax.twinx() axt.plot(x_true, a_ei, color='b', label='Acquisition', zorder=4) _configure_axes_1D(ax, [x_min, x_max]) ax.set_title('Expected Improvement') ax.legend(handles=[Line2D([], [], color='gray', label='True'), Line2D([], [], color='m', label='Proxy'), Line2D([], [], color='b', label='Bayesian'), Line2D([], [], color='k', label='DoE', marker='o', ls='')], loc='upper left') axt.yaxis.set_visible(False) axt.yaxis.set_ticks([]) set_font_sizes(ax, 13) # plot probability of improvement ax = axes[2] plot_problem(ax) axt = ax.twinx() axt.plot(x_true, a_pi, color='b', label='Acquisition', zorder=4) _configure_axes_1D(ax, [x_min, x_max]) ax.set_title('Probability of Improvement') ax.legend(handles=[Line2D([], [], color='gray', label='True'), Line2D([], [], color='m', label='Proxy'), Line2D([], [], color='b', label='Bayesian'), Line2D([], [], color='k', label='DoE', marker='o', ls='')], loc='upper left') axt.yaxis.set_visible(False) axt.yaxis.set_ticks([]) set_font_sizes(ax, 13) # plot ubber confidence bounds ax = axes[3] plot_problem(ax) ax.plot(x_true, a_ucb, color='b', label='Acquisition', zorder=4) _configure_axes_1D(ax, [x_min, x_max]) ax.set_title('Upper Confidence Bound') set_font_sizes(ax, 13) fig.savefig(CASE_PATH + 'acquisition_functions_1D.png') def _plot_bayesian_sequential_1D(): seed = 1234 def obj(x): return normal_pdf(x, 15., 5.) + normal_pdf(x, 30., 4.) + normal_pdf(x, 40., 5.) # initial design of experiment x_doe = np.array([5., 18., 25., 44.]) y_doe = obj(x_doe) # for illustration of underlying objective function x_true = np.linspace(0., 50., 500) y_true = obj(x_true) # set up optimizer ------------------------------------------------------------------------------------------------- # set bounds x_min = 0. x_max = 50. bounds_ = ((x_min, x_max),) # set up optimization algorithm x0 = np.array([25.]) def opt(obj_): return (cma_es(obj_, x0, bounds=bounds_, constraints=(), sigma0=10., lam=100, lbound=-1e-5, max_restart=10),) # set up proxy model ----------------------------------------------------------------------------------------------- proxy = OrdinaryKrigingModel(x_doe, y_doe, 'gaussian', seed=seed) theta0 = np.array([10.]) proxy.initialize_ML(theta0) # prepare figure --------------------------------------------------------------------------------------------------- loops = 4 r, c = subplot_layout(loops + 2) fig, axes = plt.subplots(r, c, figsize=(20, 14)) axes = axes.flatten() # plot true objective function ax = axes[0] ax.plot(x_true, y_true, color='gray', lw=2, label='True', zorder=2.5) ax.scatter(x_doe, y_doe, 20, color='k', label='Initial DoE', zorder=5) _configure_axes_1D(ax, [x_min, x_max]) ax.set_title('Design of Experiment') # main optimization loop ------------------------------------------------------------------------------------------- x_all = np.array(x_doe) y_all = np.array(y_doe) for i in range(loops): n_sim = y_all.size # prepare proxy model function def model(x): proxy.define_weights(x) return proxy.mean(), proxy.std() # find new simulation parameters based on bayesian proposal y_max = np.amax(y_all) xi = 0.01 proposals = bayesian_proposal(model, opt, acq='EI', args=(y_max, xi)) # create progress chart ax = axes[i + 1] axt = ax.twinx() # plot true objective function ax.plot(x_true, y_true, color='gray', lw=2, label='True', zorder=2.5) # plot proxy model and +- 2 sigma bounds proxy.define_weights(x_true) mu = proxy.mean() sigma = proxy.std() ax.plot(x_true, mu, color='m', label='Proxy', zorder=3) # plot objective function y_obj = _expected_improvement(mu, sigma, y_max, xi) axt.plot(x_true, y_obj, color='b', label='Bayesian', zorder=4) # plot all existing sample points ax.scatter(x_all, y_all, 20, color='k', label='Samples', zorder=5) if proposals: # extract proposal points and associated objective value x_pro = proposals[0].x y_pro_obj = proposals[0].f # simulate new proposals y_pro = obj(x_pro) # plot proposed samples axt.scatter(x_pro, y_pro_obj, 20, color='g', label='Proposal', zorder=6) # update proxy-model proxy.update(x_pro, y_pro) # add proposals to all samples x_all = np.append(x_all, x_pro) y_all = np.append(y_all, y_pro) # configure figure _configure_axes_1D(ax, [x_min, x_max]) ax.legend(handles=[Line2D([], [], color='gray', label='True'), Line2D([], [], color='m', label='Proxy'), Line2D([], [], color='b', label='Bayesian'), Line2D([], [], color='k', label='DoE', marker='o', ls='')], loc='upper left') axt.yaxis.set_visible(False) axt.yaxis.set_ticks([]) ax.set_title('Iteration {} (points: {}, proposals: {})'.format(i + 1, n_sim, len(proposals))) # prepare proxy-model for sampling def log_like(x): proxy.define_weights(x) return np.sum(np.log(proxy.mean())) par0 = np.array([(x_min + x_max) / 2.]) mcmc = hamiltonian_mc(log_like, par0, 2000, df='3-point', burn=1000, bounds=bounds_, seed=seed) k = 10 xp, fp = posterior_ensemble(mcmc, k, alpha=0.3) # plot sampling of proxy model ax = axes[-1] ax.plot(x_true, y_true, color='gray', lw=2, label='True', zorder=2.5) ax.scatter(xp, np.exp(fp), 20, color='g', label='Posterior Ensemble', zorder=6) _configure_axes_1D(ax, [x_min, x_max]) ax.set_title('Posterior Samples') # save figure fig.savefig(CASE_PATH + 'SBO_1D.png') def _plot_bayesian_1D(): # example from: https://towardsdatascience.com/a-parallel-implementation-of-bayesian-optimization-2ffcdb2733a2 dim = 1 seed = 1234 # constraint options use_constraints = True nl_r = 3. def obj(x): return normal_pdf(x, 15., 5.) + normal_pdf(x, 30., 4.) + normal_pdf(x, 40., 5.) # initial design of experiment x_doe = np.array([5., 18., 25., 44.]) y_doe = obj(x_doe) # for illustration of underlying objective function x_true = np.linspace(0., 50., 500) y_true = obj(x_true) # set up optimizer ------------------------------------------------------------------------------------------------- # set bounds x_min = 0. x_max = 50. bounds_ = ((x_min, x_max),) # define population sampler of MMO using prior probability assumption prior = UniformDist(x_min, x_max, seed=seed) def population(N): return prior.sample((N, dim)) # set up underlying optimization algorithm of the MMO def opt_core(obj_, x0, bounds, constraints): return nlprog(obj_, x0, bounds=bounds, constraints=constraints) # set up proxy model ----------------------------------------------------------------------------------------------- proxy = OrdinaryKrigingModel(x_doe, y_doe, 'gaussian', seed=seed) theta0 = np.array([10.]) proxy.initialize_ML(theta0) # prepare figure --------------------------------------------------------------------------------------------------- loops = 4 r, c = subplot_layout(loops + 2) fig, axes = plt.subplots(r, c, figsize=(20, 14)) axes = axes.flatten() # plot true objective function ax = axes[0] ax.plot(x_true, y_true, color='gray', lw=2, label='True', zorder=2.5) ax.scatter(x_doe, y_doe, 20, color='k', label='Initial DoE', zorder=5) _configure_axes_1D(ax, [x_min, x_max]) ax.set_title('Design of Experiment') # main optimization loop ------------------------------------------------------------------------------------------- x_all = np.array(x_doe) y_all = np.array(y_doe) for i in range(loops): n_sim = y_all.size # constraint problem to reduce clustering if use_constraints: # update constraints to include all points def nl_con(x): return (x - x_all) ** 2. nl_lb = np.array([nl_r ** 2. for _ in y_all]) nl_ub = np.array([np.inf for _ in y_all]) constraints = NonlinearConstraint(nl_con, lb=nl_lb, ub=nl_ub) else: constraints = () def opt(obj_): return mmo(obj_, opt_core, population, dim, bounds=bounds_, constraints=constraints, maxit=5).results # prepare proxy model function def model(x): proxy.define_weights(x) return proxy.mean(), proxy.std() # find new simulation parameters based on bayesian proposal # y_max = np.amax(y_all) kappa = 3. proposals = bayesian_proposal(model, opt, acq='UCB', thresh=0.5, args=(kappa,)) # create progress chart ax = axes[i + 1] # plot true objective function ax.plot(x_true, y_true, color='gray', lw=2, label='True', zorder=2.5) # plot proxy model and +- 2 sigma bounds proxy.define_weights(x_true) mu = proxy.mean() sigma = proxy.std() ax.plot(x_true, mu, color='m', label='Proxy', zorder=3) ax.plot(x_true, mu + 2. * sigma, color='m', ls='--', label='95% conf.', zorder=3) ax.plot(x_true, mu - 2. * sigma, color='m', ls='--', zorder=3) # plot objective function y_obj = _upper_confidence_bound(mu, sigma, kappa=kappa) ax.plot(x_true, y_obj, color='b', label='Bayesian', zorder=4) # plot all existing sample points ax.scatter(x_all, y_all, 20, color='k', label='Samples', zorder=5) if proposals: # extract proposal points and associated objective value x_pro = np.block([res.x for res in proposals]) y_pro_obj = np.block([res.f for res in proposals]) # simulate new proposals y_pro = obj(x_pro) # plot proposed samples ax.scatter(x_pro, y_pro_obj, 20, color='g', label='Proposals', zorder=6) # update proxy-model proxy.update(x_pro, y_pro) # add proposals to all samples x_all = np.append(x_all, x_pro) y_all = np.append(y_all, y_pro) # configure figure _configure_axes_1D(ax, [x_min, x_max]) ax.set_title('Iteration {} (points: {}, proposals: {})'.format(i + 1, n_sim, len(proposals))) # prepare proxy-model for sampling def log_like(x): proxy.define_weights(x) return np.sum(np.log(proxy.mean())) par0 = np.array([(x_min + x_max) / 2.])
= bytearray(enc_msg[:-32]) encrypted_data[-1] ^= 1 # Bad padding enc_msg = bytes(encrypted_data) + hmac_digest(key_m, encrypted_data, _sha256) with pytest.raises(DecryptionError) as e: priv.decrypt_message(enc_msg) assert 'padding' in str(e.value) enc_msg = bytes.fromhex( '4249453102e5cde5b5924d745958ba05c87d6d8930c6314481fbdefa02d8f4bafc8a2e1dee7d9c3e9d704' '8d72c63fc3e7b76f7f0d0b99c9b75ac78af43442e5926ea9fbaab1d4d32d71a4237e432bc2bbf7808fcd3' ) with pytest.raises(DecryptionError) as e: priv.decrypt_message(enc_msg) assert 'inconsistent padding bytes' in str(e.value) # A valid encrypted message but for the wrong key; should give hmac mismatch enc_msg = P.add(one).encrypt_message(msg) with pytest.raises(DecryptionError) as e: priv.decrypt_message(enc_msg) assert 'bad HMAC' in str(e.value) def test_str(self): p = PrivateKey.from_random() assert str(p) == sha256(p.to_bytes()).hex() class TestPublicKey: @pytest.mark.parametrize("bad_key", ( 1, bytes.fromhex('036d6caac248af96f6afa7f904f550253a0f3ef3f5aa2fe6838a95b216691468e2'), 'g', )) def test_bad_type(self, bad_key): with pytest.raises(TypeError): PublicKey(bad_key, True) def test_good(self): pub = PrivateKey.from_random().public_key PublicKey(pub._public_key, False) def test_eq(self): secret = os.urandom(32) priv = PrivateKey(secret) pub1 = priv.public_key pub2 = PublicKey(pub1._public_key, False) assert pub1 is not pub2 assert pub1 == pub2 assert PrivateKey.from_random().public_key != pub1 # Other types assert pub1 != 0 assert pub1 != 'foo' def test_hashable(self): secret = os.urandom(32) p1 = PrivateKey(secret, True, Bitcoin) p2 = PrivateKey(secret, False, BitcoinTestnet) pub1 = p1.public_key pub2 = p2.public_key assert pub1.is_compressed() != pub2.is_compressed() assert pub1.coin() != pub2.coin() assert len({pub1, pub2}) == 1 def test_to_bytes(self): priv = PrivateKey(bytes(range(32))) pub = priv.public_key assert pub.to_bytes().hex() == pub.to_bytes(compressed=True).hex() == ( '036d6caac248af96f6afa7f904f550253a0f3ef3f5aa2fe6838a95b216691468e2' ) assert pub.to_bytes(compressed=False).hex() == ( '046d6caac248af96f6afa7f904f550253a0f3ef3f5aa2fe6838a95b216691468e' '2487e6222a6664e079c8edf7518defd562dbeda1e7593dfd7f0be285880a24dab' ) def test_from_bytes(self): priv = PrivateKey.from_random() for compressed in (False, True): pub = PublicKey.from_bytes(priv.public_key.to_bytes(compressed=compressed)) assert pub == priv.public_key assert pub.coin() is Bitcoin assert pub.is_compressed() is compressed def test_from_bytes_bad(self): priv = PrivateKey(bytes(range(32))) pub = priv.public_key data = pub.to_bytes(compressed=False)[:-1] + bytes(1) with pytest.raises(ValueError): PublicKey.from_bytes(data) def test_to_hex(self): priv = PrivateKey(bytes(range(32))) pub = priv.public_key assert pub.to_hex() == pub.to_hex(compressed=True) == ( '036d6caac248af96f6afa7f904f550253a0f3ef3f5aa2fe6838a95b216691468e2' ) assert pub.to_hex(compressed=False) == ( '046d6caac248af96f6afa7f904f550253a0f3ef3f5aa2fe6838a95b216691468e' '2487e6222a6664e079c8edf7518defd562dbeda1e7593dfd7f0be285880a24dab' ) def test_from_hex(self): priv = PrivateKey(bytes(range(32))) pub = priv.public_key assert pub == PublicKey.from_hex( '046d6caac248af96f6afa7f904f550253a0f3ef3f5aa2fe6838a95b216691468e2' '487e6222a6664e079c8edf7518defd562dbeda1e7593dfd7f0be285880a24dab' ) assert pub == PublicKey.from_hex( '036d6caac248af96f6afa7f904f550253a0f3ef3f5aa2fe6838a95b216691468e2' ) def test_from_hex_bad(self): with pytest.raises(ValueError): PublicKey.from_hex( '046d6caac248af96f6afa7f904f550253a0f3ef3f5aa2fe6838a95b216691468e2' '487e6222a6664e079c8edf7518defd562dbeda1e7593dfd7f0be285880a24daa' ) def test_to_point(self): priv = PrivateKey(bytes(range(32))) pub = priv.public_key assert pub.to_point() == ( 49494098513335428077054975730806467664514612540321453185917289738417036617954, 32789825133461354718917898111687295334475538855588308840542926904654395755947 ) def test_from_point(self): priv = PrivateKey(bytes(range(32))) pub = priv.public_key x = 49494098513335428077054975730806467664514612540321453185917289738417036617954 y = 32789825133461354718917898111687295334475538855588308840542926904654395755947 assert PublicKey.from_point(x, y) == pub def test_from_point_bad(self): x = 49494098513335428077054975730806467664514612540321453185917289738417036617954 y = 32789825133461354718917898111687295334475538855588308840542926904654395755948 with pytest.raises(ValueError): PublicKey.from_point(x, y) def test_to_address(self): priv = PrivateKey(bytes(range(32))) pub = priv.public_key assert pub.to_address() == Address.from_string('<KEY>', Bitcoin) assert pub.to_address(compressed=False) == Address.from_string( '1G9f5Kdd5A8MeBN8jduUNfcAXUVvtFxVhP', Bitcoin) assert pub.to_address(coin=Bitcoin) == Address.from_string( '<KEY>', Bitcoin) assert pub.to_address(coin=Bitcoin, compressed=False) == Address.from_string( '1G9f5Kdd5A8MeBN8jduUNfcAXUVvtFxVhP', Bitcoin) assert pub.to_address(coin=BitcoinTestnet, compressed=True) == Address.from_string( 'mm5Yiba1U2odgUskxnXMJGQMV1DSAXVPib', BitcoinTestnet) assert pub.to_address(coin=BitcoinTestnet, compressed=False) == Address.from_string( 'mvfcNNibtBZcRHqkTCsrCapVPU6dpCoKjp', BitcoinTestnet) def test_add(self): priv = PrivateKey.from_random() value = os.urandom(32) P = priv.public_key priv2 = priv.add(value) P2 = P.add(value) assert P2 == priv2.public_key assert P == priv.public_key @pytest.mark.parametrize("coin,WIF,hex_str,compressed", WIF_tests) def test_add_preserves_attributes(self, coin, WIF, hex_str, compressed): P = PrivateKey.from_WIF(WIF).public_key.add(one) assert P.coin() is coin assert P.is_compressed() is compressed def test_add_bad(self): priv = PrivateKey.from_random() P = priv.public_key value = int_to_be_bytes(CURVE_ORDER - priv.to_int()) with pytest.raises(ValueError): P.add(value) with pytest.raises(ValueError): P.add(bytes(33)) with pytest.raises(ValueError): P.add(b'1' * 31) with pytest.raises(TypeError): P.add('') def test_multiply(self): priv = PrivateKey.from_random() value = os.urandom(32) priv2 = priv.multiply(value) P = priv.public_key P2 = P.multiply(value) assert P2 == priv2.public_key assert P == priv.public_key @pytest.mark.parametrize("coin,WIF,hex_str,compressed", WIF_tests) def test_multiply_preserves_attributes(self, coin, WIF, hex_str, compressed): P = PrivateKey.from_WIF(WIF).public_key.multiply(one) assert P.coin() is coin assert P.is_compressed() is compressed def test_multiply_bad(self): priv = PrivateKey.from_random() P = priv.public_key with pytest.raises(ValueError): P.multiply(bytes(32)) with pytest.raises(ValueError): P.multiply(bytes(33)) with pytest.raises(ValueError): P.multiply(b'1' * 31) with pytest.raises(TypeError): P.multiply('') def test_combine_keys_none(self): with pytest.raises(ValueError): PublicKey.combine_keys([]) def test_combine_keys_self(self): priv = PrivateKey.from_random() P = priv.public_key P2 = PublicKey.combine_keys([P]) assert P is not P2 assert P == P2 priv2 = priv.add(priv._secret) assert PublicKey.combine_keys([P, P]) == priv2.public_key @pytest.mark.parametrize("compressed,coin", ( (True, Bitcoin), (False, Bitcoin), (True, BitcoinTestnet), (False, BitcoinTestnet), )) def test_combine_keys(self, compressed, coin): priv_keys = [PrivateKey.from_random() for n in range(5)] priv_keys[0]._compressed = compressed priv_keys[0]._coin = coin pub_keys = [priv_key.public_key for priv_key in priv_keys] pk = priv_keys[0] for n in range(1, len(priv_keys)): pk = pk.add(priv_keys[n]._secret) combined = PublicKey.combine_keys(pub_keys) assert pk.public_key == combined assert combined.coin() is coin assert combined.is_compressed() is compressed def test_combine_keys_bad(self): priv = PrivateKey.from_random() priv2 = PrivateKey(int_to_be_bytes(CURVE_ORDER - priv.to_int())) with pytest.raises(ValueError): PublicKey.combine_keys([priv.public_key, priv2.public_key]) def test_combine_keys_bad_intermediate(self): priv = PrivateKey.from_random() priv2 = PrivateKey(int_to_be_bytes(CURVE_ORDER - priv.to_int())) # But combining with bad intermediate result but good final is fine P = PublicKey.combine_keys([priv.public_key, priv2.public_key, priv.public_key]) assert P == priv.public_key def test_verify_der_signature(self): priv = PrivateKey.from_random() message = b'BitcoinSV' sig = priv.sign(message) P = priv.public_key assert P.verify_der_signature(sig, message) assert P.verify_der_signature(sig, message, sha256) assert P.verify_der_signature(sig, sha256(message), None) assert not P.verify_der_signature(sig, message[:-1]) def test_verify_der_signature_bad(self): priv = PrivateKey.from_random() message = b'BitcoinSV' sig_der = priv.sign(message) sig_rec = priv.sign_recoverable(message) P = priv.public_key with pytest.raises(InvalidSignatureError): P.verify_der_signature(sig_rec, message) for n in (10, 20, 30, 40): bad_der = bytearray(sig_der) bad_der[n] ^= 0x10 try: assert not P.verify_der_signature(bytes(bad_der), message) except InvalidSignatureError: pass def test_verify_recoverable_signature(self): priv = PrivateKey.from_random() message = b'BitcoinSV' sig = priv.sign_recoverable(message) P = priv.public_key assert P.verify_recoverable_signature(sig, message) assert P.verify_recoverable_signature(sig, message, sha256) assert P.verify_recoverable_signature(sig, sha256(message), None) assert not P.verify_recoverable_signature(sig, message[:-1]) def test_verify_recoverable_signature_bad(self): priv = PrivateKey.from_random() message = b'BitcoinSV' sig = priv.sign(message) P = priv.public_key # Bad recid bad_sig = bytes([0x01]) * 64 + bytes([4]) with pytest.raises(InvalidSignatureError): P.verify_recoverable_signature(bad_sig, message) # Overflow bad_sig = bytes([0xff]) * 64 + bytes([1]) with pytest.raises(InvalidSignatureError): P.verify_recoverable_signature(bad_sig, message) # Invalid sig bad_sig = bytes([sig[0] ^ 1]) + sig[1:] with pytest.raises(InvalidSignatureError): P.verify_recoverable_signature(bad_sig, message) def test_from_recoverable_signature(self): priv = PrivateKey.from_random() message = b'BitcoinSV' rec_sig = priv.sign_recoverable(message) pub = PublicKey.from_recoverable_signature(rec_sig, message) assert priv.public_key == pub assert pub.coin() is Bitcoin def test_from_recoverable_signature_bad(self): message = b'BitcoinSV' with pytest.raises(InvalidSignatureError): PublicKey.from_recoverable_signature(b'1' * 64, message) def test_from_recoverable_signature_bad_r(self): priv = PrivateKey.from_random() message = b'BitcoinSV' rec_sig = priv.sign_recoverable(message) bad_sig = bytes(32) + rec_sig[32:] with pytest.raises(InvalidSignatureError): PublicKey.from_recoverable_signature(bad_sig, message) def test_from_signed_message(self): priv = PrivateKey.from_random() P = priv.public_key msg = b'BitcoinSV' msg_sig = priv.sign_message(msg) P2 = PublicKey.from_signed_message(msg_sig, msg) assert P == P2 assert P2.coin() is Bitcoin def test_from_signed_message_base64(self): priv = PrivateKey.from_random() message = b'BitcoinSV' message_sig = priv.sign_message(message) P1 = PublicKey.from_signed_message(message_sig, message) P2 = PublicKey.from_signed_message(b64encode(message_sig).decode(), message) assert P1 == P2 == priv.public_key with pytest.raises(InvalidSignatureError): PublicKey.from_signed_message('abcd%', message) def test_from_signed_message_no_hasher(self): priv = PrivateKey.from_random() message = bytes(32) message_sig = priv.sign_message(message) PublicKey.from_signed_message(message_sig, message) with pytest.raises(ValueError): PublicKey.from_signed_message(message_sig, message, None) @pytest.mark.parametrize("msg", ( b'BitcoinSV', 'BitcoinSV', # Test longer messages are prefix-encoded correctly b'BitcoinSV * 100', )) def test_verify_message(self, msg): priv = PrivateKey.from_random() P = priv.public_key address_comp = P.to_address() address_uncomp = P.to_address(compressed=False) assert address_comp != address_uncomp base_msg = b'BitcoinSV' msg_sig = priv.sign_message(msg) msg_sig2 = bytearray(msg_sig) msg_sig2[3] ^= 79 msg_sig2 = bytes(msg_sig2) assert P.verify_message(msg_sig, msg) assert PublicKey.verify_message_and_address(msg_sig, msg, address_comp) assert PublicKey.verify_message_and_address(msg_sig, msg, address_uncomp) msg_sig = priv.sign_message_to_base64(msg) assert P.verify_message(msg_sig, msg) assert PublicKey.verify_message_and_address(msg_sig, msg, address_comp) assert PublicKey.verify_message_and_address(msg_sig, msg, address_uncomp) assert not PublicKey.verify_message_and_address(msg_sig, msg, '1A1zP1eP5QGefi2DMPTfTL5SLmv7DivfNa') assert not P.verify_message(msg_sig2, msg) assert not PublicKey.verify_message_and_address(msg_sig2, msg, address_comp) assert not PublicKey.verify_message_and_address(msg_sig2, msg, address_uncomp) def test_verify_message_no_hasher(self): priv = PrivateKey.from_random() message = bytes(32) message_sig = priv.sign_message(message) priv.public_key.verify_message(message_sig, message) with pytest.raises(ValueError): priv.public_key.verify_message(message_sig, message, hasher=None) def test_verify_message_sig_base64(self): priv = PrivateKey.from_random() P = priv.public_key message = bytes(32) message_sig = priv.sign_message(message) P.verify_message(message_sig, message) P.verify_message(b64encode(message_sig).decode(), message) with pytest.raises(InvalidSignatureError): P.verify_message('abcd%', message) def test_verify_message_and_address_coin(self): priv = PrivateKey.from_random() P = priv.public_key msg = b'BitcoinSV' msg_sig = priv.sign_message(msg) assert P.verify_message_and_address(msg_sig, msg, P.to_address(coin=Bitcoin)) assert P.verify_message_and_address(msg_sig, msg, P.to_address(coin=BitcoinTestnet)) def test_verify_message_and_address_bad(self): priv1 = PrivateKey.from_random() priv2 = PrivateKey.from_random() P1, P2 = priv1.public_key, priv2.public_key msg = b'BitcoinSV' msg_sig = priv1.sign_message(msg) assert P1.verify_message_and_address(msg_sig, msg, P1.to_address()) assert not P1.verify_message_and_address(msg_sig, msg, P2.to_address()) with pytest.raises(TypeError): P1.verify_message_and_address(msg_sig, msg, b'foobar') @pytest.mark.parametrize("hasher", (double_sha256, sha256)) def test_verify_message_and_address_hasher(self, hasher): priv = PrivateKey.from_random() P = priv.public_key msg = b'BitcoinSV' msg_sig = priv.sign_message(msg, hasher=hasher) assert P.verify_message_and_address(msg_sig, msg, P.to_address(), hasher=hasher) def test_verify_message_bad(self): priv = PrivateKey.from_random() P = priv.public_key msg = b'BitcoinSV' msg_sig = priv.sign_message(msg) with pytest.raises(InvalidSignatureError): P.verify_message(b'bar', msg) with pytest.raises(InvalidSignatureError): P.verify_message(msg_sig[:-1], msg) msg_sig = bytearray(msg_sig) for n in (26, 35): msg_sig[0] = n with pytest.raises(InvalidSignatureError): P.verify_message(bytes(msg_sig), msg) def test_encrypt_message_and_to_base64(self, AES_impl): bmsg = b'BitcoinSV' # Test both compressed and uncompressed pubkeys for msg in (bmsg, bmsg.decode()): for compressed in (False, True): priv = PrivateKey.from_random() priv._compressed = compressed P = priv.public_key enc_msg = P.encrypt_message(msg) assert isinstance(enc_msg, bytes) assert priv.decrypt_message(enc_msg) == bmsg # This tests the default magic of both functions is b'BIE1' assert priv.decrypt_message(enc_msg, magic=b'BIE1') == bmsg # Now base64 enc_msg = P.encrypt_message_to_base64(msg) assert isinstance(enc_msg, str) assert priv.decrypt_message(enc_msg) == bmsg # This tests the default magic of both functions is b'BIE1' assert priv.decrypt_message(enc_msg, magic=b'BIE1') == bmsg def test_encrypt_message_magic(self, AES_impl): priv = PrivateKey.from_random() P
RichardHufford" player = axl.SecondByRichardHufford expected_classifier = { "memory_depth": float("inf"), "stochastic": False, "makes_use_of": set(), "long_run_time": False, "inspects_source": False, "manipulates_source": False, "manipulates_state": False, } def test_strategy(self): actions = [(C, C)] * 19 + [(D, C), (C, C), (C, C)] self.versus_test( axl.Cooperator(), expected_actions=actions, attrs={"streak_needed": 14} ) actions = [(C, C)] * 19 + [(D, C), (C, C)] actions += [ (C, C) ] # This is the first Cooperation that gets counted on the new streak actions += [(C, C)] * 13 + [(D, C), (C, C), (C, C)] self.versus_test( axl.Cooperator(), expected_actions=actions, attrs={"streak_needed": 11} ) opponent_actions = [C] * 20 + [D] BoredCooperator = axl.MockPlayer(actions=opponent_actions) actions = [(C, C)] * 19 + [(D, C), (C, D), (C, C)] self.versus_test( BoredCooperator, expected_actions=actions, attrs={"streak_needed": 31} ) actions = [(C, D)] # "Disagreement" actions += [(D, C)] # TFT. Disagreement actions += [(C, C)] # TFT. actions += [(C, D)] # TFT. Disagreement actions += [(D, C)] # Three of last four are disagreements. actions += [(C, C)] # TFT. Disagreement actions += [(D, D)] # Three of last four are disagreements. Disagreement actions += [(D, D)] # Three of last four are disagreements. actions += [(D, D)] # Now there are 5/9 disagreements, so Defect. self.versus_test( axl.WinShiftLoseStay(), expected_actions=actions, attrs={"num_agreements": 5}, ) class TestYamachi(TestPlayer): name = "<NAME>" player = axl.SecondByYamachi expected_classifier = { "memory_depth": float("inf"), "stochastic": False, "makes_use_of": set(), "long_run_time": False, "inspects_source": False, "manipulates_source": False, "manipulates_state": False, } def test_strategy(self): actions = [(C, C)] * 100 self.versus_test(axl.Cooperator(), expected_actions=actions) actions = [ (C, D) ] * 2 # Also Cooperate in first two moves (until we update `count_them_us_them`.) actions += [ (C, D) ] # them_three_ago defaults to C, so that (C, C, *) gets updated, then (D, C, *) get checked. # It's actually impossible to Defect on the third move. actions += [(D, D)] # (D, C, *) gets updated, then checked. actions += [(C, D)] # (D, C, *) gets updated, but (D, D, *) checked. actions += [(D, D)] * 30 # (D, D, *) gets updated and checked from here on. self.versus_test(axl.Defector(), expected_actions=actions) actions = [(C, C), (C, D)] actions += [(C, C)] # Increment (C, C, C). Check (C, C, *). Cooperate. # Reminder that first C is default value and last C is opponent's first move. actions += [(C, D)] # Increment (C, C, D). Check (D, C, *) = 0. Cooperate. actions += [(C, C)] # Increment (D, C, C). Check (C, C, *) = 0. Cooperate. # There is one Defection and one Cooperation in this scenario, # but the Cooperation was due to a default value only. We can see where this is going. actions += [(C, D)] # Increment (C, C, D). Check (D, C, *) = 1. Cooperate. actions += [(D, C)] # Increment (D, C, C). Check (C, C, *) = -1. Defect. actions += [ (C, D) ] # Increment (C, C, D). Check (D, D, *) = 0 (New). Cooperate. actions += [(D, C)] # Increment (D, D, C). Check (C, C, *) < 0. Defect. actions += [(C, D)] # Increment (C, C, D). Check (D, D, *) > 0. Cooperate. actions += [(D, C), (C, D)] * 15 # This pattern continues for a while. actions += [ (D, C), (D, D), ] * 30 # Defect from turn 41 on, since near 50% Defections. self.versus_test(axl.Alternator(), expected_actions=actions) # Rip-off is the most interesting interaction. actions = [ (C, D), (C, C), (C, D), (D, C), (C, C), (D, C), (C, D), (D, C), (C, D), (D, C), (C, D), (D, C), (C, D), (D, C), (C, D), (D, C), (C, D), (D, C), (C, D), (D, C), (C, D), (D, C), (C, D), (D, C), (C, D), (D, C), (C, D), (D, C), (C, D), (D, C), (C, D), (D, C), (C, D), (D, C), (C, D), (D, C), (C, D), (D, C), (C, D), (D, C), ] my_dict = { (C, C, C): 1, (C, C, D): 18, (C, D, C): 1, (C, D, D): 0, (D, C, C): 1, (D, C, D): 0, (D, D, C): 17, (D, D, D): 0, } RipoffPlayer = axl.Ripoff() self.versus_test( RipoffPlayer, expected_actions=actions, attrs={"count_them_us_them": my_dict}, ) self.assertEqual( RipoffPlayer.defections, 19 ) # Next turn, `portion_defect` = 0.4756 # The pattern (C, D), (D, C) will continue indefintely unless overriden. actions += [(D, D)] # Next turn, `portion_defect` = 0.4881 actions += [(D, D)] # Next turn, `portion_defect` = 0.5 actions += [(D, D)] # Next turn, `portion_defect` = 0.5114 actions += [(D, D)] # Next turn, `portion_defect` = 0.5222 actions += [(D, D)] # Next turn, `portion_defect` = 0.5326 actions += [(D, D)] # Next turn, `portion_defect` = 0.5426 actions += [(D, D)] # Next turn, `portion_defect` = 0.5521 actions += [ (D, D), (C, D), (D, C), (C, D), ] # Takes a turn to fall back into the cycle. self.versus_test(axl.Ripoff(), expected_actions=actions) class TestColbert(TestPlayer): name = "<NAME> Colbert" player = axl.SecondByColbert expected_classifier = { "memory_depth": 4, "stochastic": False, "makes_use_of": set(), "long_run_time": False, "inspects_source": False, "manipulates_source": False, "manipulates_state": False, } def test_strategy(self): actions = [(C, C)] * 5 + [(D, C)] + [(C, C)] * 30 self.versus_test(axl.Cooperator(), expected_actions=actions) actions = [(C, D)] * 5 + [(D, D)] + [(C, D)] * 2 actions += [(D, D), (D, D), (C, D), (C, D)] * 20 self.versus_test(axl.Defector(), expected_actions=actions) opponent_actions = [C] * 8 + [C, C, D, C, C, C, C, C] OddBall = axl.MockPlayer(actions=opponent_actions) actions = [(C, C)] * 5 + [(D, C)] + [(C, C)] * 4 actions += [(C, D)] + [(D, C), (D, C), (C, C), (C, C)] + [(C, C)] self.versus_test(OddBall, expected_actions=actions) class TestMikkelson(TestPlayer): name = "<NAME>" player = axl.SecondByMikkelson expected_classifier = { "memory_depth": float("inf"), "stochastic": False, "makes_use_of": set(), "long_run_time": False, "inspects_source": False, "manipulates_source": False, "manipulates_state": False, } def test_strategy(self): actions = [(C, C)] * 30 self.versus_test( axl.Cooperator(), expected_actions=actions, attrs={"credit": 8} ) actions = [(C, D), (C, D), (C, D), (C, D)] self.versus_test( axl.Defector(), expected_actions=actions, attrs={"credit": 1} ) # Defect then reset to 4 actions += [(D, D)] self.versus_test( axl.Defector(), expected_actions=actions, attrs={"credit": 4} ) # Repeat actions += [(C, D), (D, D)] * 2 self.versus_test( axl.Defector(), expected_actions=actions, attrs={"credit": 4} ) # With ten turns passed, keep defecting now actions += [(C, D), (D, D)] self.versus_test( axl.Defector(), expected_actions=actions, attrs={"credit": 0} ) # With ten turns passed, keep defecting now actions += [(D, D)] * 30 self.versus_test( axl.Defector(), expected_actions=actions, attrs={"credit": -7} ) actions = [(C, D), (C, D), (C, C)] self.versus_test( axl.Cycler("DDC"), expected_actions=actions, attrs={"credit": 3} ) actions += [(C, D), (C, D)] self.versus_test( axl.Cycler("DDC"), expected_actions=actions, attrs={"credit": 2} ) actions += [(D, C)] self.versus_test( axl.Cycler("DDC"), expected_actions=actions, attrs={"credit": 4} ) actions += [(C, D)] self.versus_test( axl.Cycler("DDC"), expected_actions=actions, attrs={"credit": 5} ) actions += [(C, D)] self.versus_test( axl.Cycler("DDC"), expected_actions=actions, attrs={"credit": 3} ) opponent_actions = [C] * 100 + [D] * 10 Change_of_Heart = axl.MockPlayer(actions=opponent_actions) actions = [(C, C)] * 100 + [(C, D)] * 4 self.versus_test(Change_of_Heart, expected_actions=actions, attrs={"credit": 2}) Change_of_Heart = axl.MockPlayer(actions=opponent_actions) actions += [(C, D)] * 2 self.versus_test( Change_of_Heart, expected_actions=actions, attrs={"credit": -2} ) # Still Cooperate, because Defect rate is low class TestRowsam(TestPlayer): name = "<NAME>" player = axl.SecondByRowsam expected_classifier = { "memory_depth": float("inf"), "stochastic": False, "makes_use_of": set("game"), "long_run_time": False, "inspects_source": False, "manipulates_source": False, "manipulates_state": False, } def test_strategy(self): # Should always cooperate with Cooperator actions = [(C, C)] * 100 self.versus_test(axl.Cooperator(), expected_actions=actions) # Against a Defector should eventually enter Defect mode actions = [(C, D)] * 5 actions += [(D, D), (C, D), (D, D)] # Do a Coop-Def cycle self.versus_test(axl.Defector(), expected_actions=actions, attrs={ "distrust_points": 5}) actions += [(C, D)] * 3 # Continue for now actions += [(D, D)] * 100 # Now Defect mode self.versus_test(axl.Defector(), expected_actions=actions, attrs={ "distrust_points": 10, "mode": "Defect"}) # Test specific score scenarios # 5 Defects opponent_actions = [D] * 5 + [C] * 100
map["tiles"][0]["img"]) ): if os.path.exists( os.path.splitext( urllib.parse.unquote(map["img"] or map["tiles"][0]["img"]) )[0] + args.jpeg ): map["img"] = os.path.splitext(map["img"])[0] + args.jpeg elif os.path.exists( os.path.splitext( urllib.parse.unquote(map["img"] or map["tiles"][0]["img"]) )[0] + ".jpg" ): map["img"] = os.path.splitext(map["img"])[0] + ".jpg" if os.path.exists(map["img"]): randomok = True if args.gui: worker.outputLog("Generating cover image") print("\rGenerating cover image", file=sys.stderr, end="") if randomok: with PIL.Image.open(map["img"] or map["tiles"][0]["img"]) as img: if img.width <= img.height: img = img.crop((0, 0, img.width, img.width)) else: img = img.crop((0, 0, img.height, img.height)) if img.width > 1024: img = img.resize((1024, 1024)) if args.jpeg == ".jpg" and img.mode in ("RGBA", "P"): img = img.convert("RGB") img.save(os.path.join(tempdir, "module_cover" + args.jpeg)) modimage.text = "module_cover" + args.jpeg # write to file sys.stderr.write("\033[K") if args.gui: worker.updateProgress(70) if args.packdir: worker.outputLog("Generating pack.xml") else: worker.outputLog("Generating module.xml") print("\rWriting XML", file=sys.stderr, end="") tree = ET.ElementTree(indent(module, 1)) tree.write( os.path.join( packdir if args.packdir else tempdir, "pack.xml" if args.packdir else "module.xml", ), xml_declaration=True, short_empty_elements=False, encoding="utf-8", ) if "styles" in mod: if not os.path.exists(os.path.join(tempdir, "assets")): os.mkdir(os.path.join(tempdir, "assets")) if not os.path.exists(os.path.join(tempdir, "assets", "css")): os.mkdir(os.path.join(tempdir, "assets", "css")) for style in mod["styles"]: if os.path.exists(os.path.join(moduletmp, mod["name"], style)): with open( os.path.join(tempdir, "assets", "css", "custom.css"), "a" ) as f: with open(os.path.join(moduletmp, mod["name"], style)) as css: for l in css: f.write(l) if os.path.exists(os.path.join(moduletmp, mod["name"], "fonts")): os.rename( os.path.join(moduletmp, mod["name"], "fonts"), os.path.join(tempdir, "assets", "fonts"), ) if args.compendium and (len(items) + len(actors)) > 0: if args.gui: worker.updateProgress(75) worker.outputLog("Generating compendium data") def fixHTMLContent(text): text = re.sub( r'<a(.*?)data-entity="?(.*?)"? (.*?)data-id="?(.*?)"?( .*?)?>', fixLink, text, ) text = re.sub(r"@(.*?)\[(.*?)\](?:\{(.*?)\})?", fixFTag, text) text = re.sub(r"<h([0-9]).*?>(.*?)</h\1>", r"<b>\2</b>\n", text) text = re.sub(r"<em.*?>(.*?)</em>", r"<i>\1</i>", text) text = re.sub(r"<strong.*?>(.*?)</strong>", r"<b>\1</b>", text) text = re.sub( r"<blockquote.*?>(.*?)</blockquote>", r"-------------\n\1-------------\n", text, ) text = re.sub( r'<img(.*?)src="?(.*?)"?( .*?)?>', r'<a\1href="\2"\3>Image</a>', text ) text = re.sub(r"<tr.*?><td.*?>(.*?)</td>", r"\1", text) text = re.sub(r"<td.*?>(.*?)</td>", r" | \1", text) text = re.sub(r"</tr>", "\n", text) text = re.sub(r"</?p.*?>", "", text) text = re.sub(r"<br.*?>", "\n", text) text = re.sub(r"<hr.*?>", "------------------------\n", text) text = re.sub(r"<!--.*?-->", "", text) text = re.sub( r"\[\[(?:/(?:gm)?r(?:oll)? )?(.*?)(?: ?# ?(.*?))?\]\]", fixRoll, text ) text = re.sub( r"<section .*?class=.secret..*?>(.*?)</section>.*", r"\1", text, flags=re.S, ) return html.unescape(text.strip()) compendium = ET.Element("compendium") os.mkdir(os.path.join(tempdir, "items")) os.mkdir(os.path.join(tempdir, "spells")) os.mkdir(os.path.join(tempdir, "monsters")) itemnumber = 0 for i in items: itemnumber += 1 if args.gui: worker.updateProgress( 75 + (itemnumber / (len(items) + len(actors))) * 10 ) print( "\rGenerating compendium [{}/{}]".format( itemnumber, len(items) + len(actors) ), file=sys.stderr, end="", ) if i["type"] in ["feat"]: continue d = i["data"] if i["type"] == "spell": spell = ET.SubElement( compendium, "spell", {"id": str(uuid.uuid5(moduuid, i["_id"]))} ) ET.SubElement(spell, "name").text = i["name"] ET.SubElement(spell, "slug").text = slugify(i["name"]) ET.SubElement(spell, "level").text = str(d["level"]) ET.SubElement(spell, "school").text = ( schools[d["school"]] if d["school"] in schools else d["school"] ) ET.SubElement(spell, "ritual").text = ( "YES" if d["components"]["ritual"] else "NO" ) ET.SubElement(spell, "time").text = "{} {}".format( d["activation"]["cost"], d["activation"]["type"] ) ET.SubElement(spell, "range").text = "{} {}".format( "{}/{}".format(d["range"]["value"], d["range"]["long"]) if d["range"]["long"] else d["range"]["value"], d["range"]["units"] ) components = [] for component in d["components"].keys(): if component in ["value", "ritual", "concentration"]: continue elif d["components"][component]: comp = component[0].upper() if ( comp == "M" and "value" in d["materials"] and d["materials"]["value"] ): if d["materials"]["consumed"]: d["materials"]["value"] += ", which the spell consumes" comp += " ({})".format(d["materials"]["value"]) components.append(comp) ET.SubElement(spell, "components").text = ",".join(components) ET.SubElement(spell, "duration").text = ( ("Concentration" if d["components"]["concentration"] else "") + "Instantaneous" if d["duration"]["units"] == "inst" else "{} {}".format(d["duration"]["value"], d["duration"]["units"]) ) ET.SubElement(spell, "source").text = d["source"] ET.SubElement(spell, "text").text = ( d["description"]["value"] + "\n<i>Source: " + d["source"] + "</i>" ) continue item = ET.SubElement( compendium, "item", {"id": str(uuid.uuid5(moduuid, i["_id"]))} ) ET.SubElement(item, "name").text = i["name"] ET.SubElement(item, "slug").text = slugify(i["name"]) if "weight" in d and d["weight"]: ET.SubElement(item, "weight").text = str(d["weight"]) if "rarity" in d and d["rarity"]: ET.SubElement(item, "rarity").text = d["rarity"].title() if "price" in d and d["price"]: value = ET.SubElement(item, "value") if d["price"] >= 100: value.text = "{:g} gp".format(d["price"] / 100) elif d["price"] >= 10: value.text = "{:g} sp".format(d["price"] / 10) else: value.text = "{:g} cp".format(d["price"]) if i["type"] in ["consumable"]: if d["consumableType"] == "potion": ET.SubElement(item, "type").text = "P" elif d["consumableType"] == "wand": ET.SubElement(item, "type").text = "WD" elif d["consumableType"] == "scroll": ET.SubElement(item, "type").text = "SC" elif d["consumableType"] in ["food", "trinket"]: ET.SubElement(item, "type").text = "G" elif d["consumableType"] == "ammo": ET.SubElement(item, "type").text = "A" else: print("Dont know consumable:", d["consumableType"]) ET.SubElement(item, "type").text = "G" elif i["type"] in ["equipment"]: if d["armor"]["type"] in ["clothing", "light"]: ET.SubElement(item, "type").text = "LA" elif d["armor"]["type"] in ["medium"]: ET.SubElement(item, "type").text = "MA" elif d["armor"]["type"] in ["heavy"]: ET.SubElement(item, "type").text = "HA" elif d["armor"]["type"] in ["shield"]: ET.SubElement(item, "type").text = "S" elif d["armor"]["type"] in ["trinket"]: ET.SubElement(item, "type").text = "G" else: print("Dont know armor type:", d["armor"]["type"]) ET.SubElement(item, "type").text = "AA" if d["armor"]["value"]: ET.SubElement(item, "ac").text = str(d["armor"]["value"]) elif i["type"] == "weapon": if d["weaponType"] in ["simpleR", "martialR"]: ET.SubElement(item, "type").text = "R" elif d["weaponType"] in ["simpleM", "martialM"]: ET.SubElement(item, "type").text = "M" elif "staff" in d and d["staff"]: ET.SubElement(item, "type").text = "ST" else: if d["weaponType"] not in ["natural"]: print("Dont know weapon:", d["weaponType"]) ET.SubElement(item, "type").text = "WW" props = [] for prop in d["properties"].keys(): if not d["properties"][prop]: continue if prop == "amm": props.append("A") if prop == "fin": props.append("F") if prop == "hvy": props.append("H") if prop == "lgt": props.append("L") if prop == "lod": props.append("LD") if prop == "rch": props.append("R") if prop == "spc": props.append("S") if prop == "thr": props.append("T") if prop == "two": props.append("2H") if prop == "ver": props.append("V") ET.SubElement(item, "property").text = ",".join(props) if d["damage"]["parts"]: ET.SubElement(item, "dmg1").text = re.sub( r"[ ]?\+[ ]?@mod", r"", d["damage"]["parts"][0][0], re.I ) if d["damage"]["parts"][0][1]: ET.SubElement(item, "dmgType").text = d["damage"]["parts"][0][ 1 ][0].upper() if d["damage"]["versatile"]: ET.SubElement(item, "dmg2").text = re.sub( r"\[\[a-z]*\]?[ ]?\+[ ]?(@mod)?", r"", d["damage"]["versatile"], re.I ) if "range" in d: ET.SubElement(item, "range").text = "{} {}".format( "{}/{}".format(d["range"]["value"], d["range"]["long"]) if d["range"]["long"] else d["range"]["value"], d["range"]["units"] ) elif i["type"] in ["loot", "backpack", "tool"]: ET.SubElement(item, "type").text = "G" else: print("Dont know item type", i["type"]) ET.SubElement(item, "text").text = fixHTMLContent(d["description"]["value"]) if i["img"]: i["img"] = urllib.parse.unquote(i["img"]) if i["img"] and os.path.exists(i["img"]): ET.SubElement(item, "image").text = ( slugify(i["name"]) + "_" + os.path.basename(i["img"]) ) shutil.copy( i["img"], os.path.join( tempdir, "items", slugify(i["name"]) + "_" + os.path.basename(i["img"]), ), ) for a in actors: itemnumber += 1 if args.gui: worker.updateProgress( 75 + (itemnumber / (len(items) + len(actors))) * 10 ) print( "\rGenerating compendium [{}/{}]".format( itemnumber, len(items) + len(actors) ), file=sys.stderr, end="", ) monster = ET.SubElement( compendium, "monster", {"id": str(uuid.uuid5(moduuid, a["_id"]))} ) d = a["data"] ET.SubElement(monster, "name").text = a["name"] ET.SubElement(monster, "slug").text = slugify(a["name"]) ET.SubElement(monster, "size").text = d["traits"]["size"][0].upper() if "type" in d["details"]: if type(d["details"]["type"]) == dict: monstertype = d["details"]["type"]["value"] if d["details"]["type"]["swarm"]: monstertype = "swarm of {} {}s".format(d["details"]["type"]["swarm"].title(), monstertype) if d["details"]["type"]["subtype"]: monstertype += " ({})".format(d["details"]["type"]["subtype"]) ET.SubElement(monster, "type").text = d["details"]["type"]["custom"] or monstertype else: ET.SubElement(monster, "type").text = d["details"]["type"] if "alignment" in d["details"]: ET.SubElement(monster, "alignment").text = d["details"]["alignment"] ET.SubElement(monster, "ac").text = str(d["attributes"]["ac"]["value"] if "value" in d["attributes"]["ac"] else d["attributes"]["ac"]["flat"]) if "formula" in d["attributes"]["hp"] and d["attributes"]["hp"]["formula"]: ET.SubElement(monster, "hp").text = "{} ({})".format( d["attributes"]["hp"]["value"], d["attributes"]["hp"]["formula"] ) else: ET.SubElement(monster, "hp").text = "{}".format( d["attributes"]["hp"]["value"] ) if "speed" in d["attributes"] and "_deprecated" not in d["attributes"]["speed"]: if d["attributes"]["speed"]["special"]: ET.SubElement(monster, "speed").text = ( d["attributes"]["speed"]["value"] + ", " + d["attributes"]["speed"]["special"] ) else: ET.SubElement(monster, "speed").text = d["attributes"]["speed"][ "value" ] elif "movement" in d["attributes"]: speed = [] m = d["attributes"]["movement"] for k, v in m.items(): if not m[k]: continue if k == "walk": speed.insert(0, "{} {}".format(m[k], m["units"])) elif k != "units": speed.append("{} {} {}".format(k, m[k], m["units"])) ET.SubElement(monster, "speed").text = ", ".join(speed) ET.SubElement(monster, "str").text = str(d["abilities"]["str"]["value"]) ET.SubElement(monster, "dex").text = str(d["abilities"]["dex"]["value"]) ET.SubElement(monster, "con").text = str(d["abilities"]["con"]["value"]) ET.SubElement(monster, "int").text = str(d["abilities"]["int"]["value"]) ET.SubElement(monster, "wis").text = str(d["abilities"]["wis"]["value"]) ET.SubElement(monster, "cha").text = str(d["abilities"]["cha"]["value"]) ET.SubElement(monster, "save").text = ", ".join( [ "{} {:+d}".format(k.title(), v["save"]) for (k, v) in d["abilities"].items() if "save" in v and (v["save"] != v["mod"] and v["proficient"]) ] ) ET.SubElement(monster, "skill").text = ", ".join( [ "{} {:+d}".format( skills[k], v["total"] if "total" in v else v["mod"] + v["prof"] if "prof" in v else v["mod"], ) for (k, v) in d["skills"].items() if ("total" in v and v["mod"] != v["total"]) or ( "mod" in d["abilities"][v["ability"]] and "mod" in v and v["mod"] != d["abilities"][v["ability"]]["mod"] ) ] ) if "skills" in d else "" ET.SubElement(monster, "immune").text = "; ".join( d["traits"]["di"]["value"] ) + ( " {}".format(d["traits"]["di"]["special"]) if "special" in d["traits"]["di"] and d["traits"]["di"]["special"] else "" ) ET.SubElement(monster, "vulnerable").text = "; ".join( d["traits"]["dv"]["value"] ) + ( " {}".format(d["traits"]["dv"]["special"]) if "special" in d["traits"]["dv"] and d["traits"]["dv"]["special"] else "" ) ET.SubElement(monster, "resist").text =
table Description: The table name to use Type: str ######## Outputs ######## Variable: data Description: fetched maximum of chosen_key in odbc query Type: depend on column """ warnings.warn("get_min is deprecated, please use SQL in original", DeprecationWarning) if key==None: key=self.ts_chosen_key if database==None: database=self.database if table==None: table=self.ts_table execution_string = "SELECT MIN({}) AS {} FROM {}.{};".format( key, key, database, table) max_data = pd.read_sql(execution_string, con=self.connection).iloc[0,0] return max_data def get_max_number_data(self, start, format_string, database=None, table=None, key=None): """ get the maximal number of rows in database :param table_name: str : name of table :param key: str : name of chosen key column :param date_start: :param date_end: :param format_string: :return: """ if database==None: database=self.ts_database if table==None: table=self.ts_table if key==None: key=self.ts_chosen_key if isinstance(start, str): start = datetime.datetime.strptime(start, format_string) if isinstance(start, datetime.datetime): execution_string = "select count(*) from {}.{} where {} >= '{}';".format( database, table, key, start.strftime(format_string)) else: execution_string = "select count(*) from {}.{} where {} >= {};".format( database, table, key, start) number_of_data = pd.read_sql(execution_string, con=self.connection).iloc[0,0] return number_of_data def get_min_max(self, key, table): """get min and max of key""" warnings.warn("get_min_max is deprecated, please use SQL in original", DeprecationWarning) execution_string = "SELECT MIN({}) FROM {}".format(key, table) minimum = self.execute(execution_string).fetchone()[0] execution_string = "SELECT MAX({}) FROM {}".format(key, table) maximum = self.execute(execution_string).fetchone()[0] return minimum, maximum def get_last_value_before(self, ids=None, time_start=None, time_end=None, ts_database=None, ts_table=None, ts_time_column=None, ts_value_column=None, ts_itemid_column=None, ts_quality_id_column=None, ts_quality_id=None, not_null=True,#not used(only for copy+paste) sort_by=None, sort_order=None, additional_sql=None): """ function: get_last_value_before Description: get last value before time_start with various parameters Attention: if the standard parameters are not set, the function will take standard extra parameters ######## Inputs ######## Variable: ids Description: single or list of ids, which identify the timeseries Type: int, list, dict ######## Variable: time_start Description: Start time of timeseries Type: str Example: time_start="2015-12-20 00:00:00" Standard: time_start=(dt.now()-timedelta(hours=1)).strftime(self.time_format) ######## Variable: time_end Description: End time of timeseries Type: str Example: time_end="2015-12-21 00:00:00" Standard: time_end=dt.now().strftime(self.time_format) ######## Variable: ts_database Description: The database name to use Type: str ######## Variable: ts_table Description: The table name to use Type: str ######## Variable: ts_time_column Description: The column name of timestamp Type: str ######## Variable: ts_itemid_column Description: The column name of ids, which identify the timeseries Type: str ######## Variable: ts_value_column Description: The column name of values of timeseries Type: str ######## Variable: ts_quality_id_column Description: The column name of quality_id Type: str ######## Variable: ts_quality_id Description: The standard value of quality_id Type: int,str ######## Outputs ######## Variable: data Description: fetched timeseries data of database query Type: list """ "if some parameters are not handed over, take standard arguments" (time_start, time_end, ts_database, ts_table, ts_time_column, ts_value_column, ts_itemid_column, _, ts_quality_id_column, ts_quality_id, time_format) = self._get_ts_standard(time_start=time_start, time_end=time_end, ts_database=ts_database, ts_table=ts_table, ts_time_column=ts_time_column, ts_value_column=ts_value_column, ts_itemid_column=ts_itemid_column, ts_chosen_key="", ts_quality_id_column=ts_quality_id_column, ts_quality_id=ts_quality_id, time_format=None) (ids_keys, ids_values, ids_dict) = self._handle_ids(ids) sort_by = self._handle_sort_by(sort_by) # if sort_by == None: # sort_by = self.ts_time_column if additional_sql is not None: additional_sql = "{} {}".format(additional_sql, 'LIMIT 1') else: additional_sql = " LIMIT 1" if type(ids_keys) == int: execution_string = self.__get_ts_string(ids=ids_keys, time_start=None, time_end=time_start, ts_database=ts_database, ts_table=ts_table, ts_time_column=ts_time_column, ts_itemid_column=ts_itemid_column, ts_value_column=ts_value_column, ts_quality_id_column=ts_quality_id_column, ts_quality_id=ts_quality_id, not_null=True, sort_by=ts_time_column, sort_order="DESC", additional_sql=additional_sql) data = self.execute_fetchall(execution_string, ts_time_column) elif type(ids_keys) == list: data = pd.DataFrame(columns=[ts_itemid_column, ts_value_column]) for entry in ids_keys: execution_string = self.__get_ts_string(ids=entry, time_start=None, time_end=time_start, ts_database=ts_database, ts_table=ts_table, ts_time_column=ts_time_column, ts_itemid_column=ts_itemid_column, ts_value_column=ts_value_column, ts_quality_id_column=ts_quality_id_column, ts_quality_id=ts_quality_id, not_null=True, sort_by=ts_time_column, sort_order="DESC", additional_sql=additional_sql) temp_data = self.execute_fetchall(execution_string, ts_time_column) data = pd.concat([data, temp_data]) if sort_by: if sort_order == None: sort_order = "ASC" if sort_order == "ASC": ascending = True elif sort_order == "DESC": ascending = False data.sort_index(ascending=ascending, inplace=True) return data """custom made odbc commands""" def get_timeseries(self, ids=None, time_start=None, time_end=None, ts_database=None, ts_table=None, ts_time_column=None, ts_itemid_column=None, ts_value_column=None, ts_quality_id_column=None, ts_quality_id=None, not_null=True, sort_by=None, sort_order=None, additional_sql=None): """ function: get_timeseries Description: get timeseries with various parameters Attention: if the standard parameters are not set, the function will take standard extra parameters ######## Inputs ######## Variable: ids Description: single or list of ids, which identify the timeseries Type: int, list ######## Variable: time_start Description: Start time of timeseries Type: str Example: time_start="2015-12-20 00:00:00" Standard: time_start=(dt.now()-timedelta(hours=1)).strftime(self.time_format) ######## Variable: time_end Description: End time of timeseries Type: str Example: time_end="2015-12-21 00:00:00" Standard: time_end=dt.now().strftime(self.time_format) ######## Variable: ts_database Description: The database name to use Type: str ######## Variable: ts_table Description: The table name to use Type: str ######## Variable: ts_time_column Description: The column name of timestamp Type: str ######## Variable: ts_itemid_column Description: The column name of ids, which identify the timeseries Type: str ######## Variable: ts_value_column Description: The column name of values of timeseries Type: str ######## Variable: ts_quality_id_column Description: The column name of quality_id Type: str ######## Variable: ts_quality_id Description: The standard value of quality_id Type: int,str ######## Outputs ######## Variable: data Description: fetched timeseries data of odbc query Type: list """ "if some parameters are not handed over, take standard arguments" (time_start, time_end, ts_database, ts_table, ts_time_column, ts_value_column, ts_itemid_column, _, ts_quality_id_column, ts_quality_id, time_format) = self._get_ts_standard( time_start=time_start, time_end=time_end, ts_database=ts_database, ts_table=ts_table, ts_time_column=ts_time_column, ts_value_column=ts_value_column, ts_itemid_column=ts_itemid_column, ts_chosen_key="", ts_quality_id_column=ts_quality_id_column, ts_quality_id=ts_quality_id, time_format=None) (ids_keys, ids_values, ids_dict) = self._handle_ids(ids) sort_by = self._handle_sort_by(sort_by, ts_time_column, ts_itemid_column, ts_value_column) """get the string for SQL""" execution_string = self.__get_ts_string(ids=ids_keys, time_start=time_start, time_end=time_end, ts_database=ts_database, ts_table=ts_table, ts_time_column=ts_time_column, ts_itemid_column=ts_itemid_column, ts_value_column=ts_value_column, ts_quality_id_column=ts_quality_id_column, ts_quality_id=ts_quality_id, not_null=not_null, sort_by=sort_by, sort_order=sort_order, additional_sql=additional_sql) data = self.execute_fetchall(execution_string, ts_time_column) return data def get_timeseries_df(self, ids=None, time_start=None, time_end=None, ts_database=None, ts_table=None, ts_time_column=None, ts_itemid_column=None, ts_value_column=None, ts_quality_id_column=None, ts_quality_id=None, not_null=True, sort_by=None, sort_order="ASC", additional_sql=None, use_query=False, get_last_value_before=True, replace_first_index=True): """ :param ids: dict, list, string, int with different ids :param time_start: start time of sql query :param time_end: end time of sql query :param ts_database: database to use :param ts_table: table to use :param ts_time_column: time column of timeseries table :param ts_itemid_column: itemid column of timeseries table :param ts_value_column: value column of timeseries table :param ts_quality_id_column: qualityid column of timeseries table :param ts_quality_id: chosen qualityid :param not_null: if chosen column != null :param sort_by: column which will be sorted :param sort_order: sort order ("ASC" or "DESC") :param additional_sql: additional sql parameters :param use_query: if query function of :param get_last_value_before: if get_last_value_before function will be used :param replace_first_index: if first index will be set to time_start with elements of get_last_value_before :return: data :rtype: pandas.DataFrame """ """get standard parameters""" (time_start, time_end, ts_database, ts_table, ts_time_column, ts_value_column, ts_itemid_column, _, ts_quality_id_column, ts_quality_id, time_format) = self._get_ts_standard( time_start=time_start, time_end=time_end, ts_database=ts_database, ts_table=ts_table, ts_time_column=ts_time_column, ts_value_column=ts_value_column, ts_itemid_column=ts_itemid_column, ts_chosen_key="", ts_quality_id_column=ts_quality_id_column, ts_quality_id=ts_quality_id, time_format=None) (ids_keys, ids_values, ids_dict) = self._handle_ids(ids) sort_by = self._handle_sort_by(sort_by, ts_time_column, ts_itemid_column, ts_value_column) if use_query: raw_data = self.query(ids=ids_keys, time_start=time_start, time_end=time_end) else: raw_data = self.get_timeseries(ids=ids_keys, time_start=time_start, time_end=time_end, sort_by="ts_time_column", sort_order=sort_order) data = self._ts_to_df_matrix(raw_data, ids=ids_dict) if sort_order == "ASC": data.sort_index(ascending=True, inplace=True) data.fillna(method="ffill", inplace=True) elif sort_order == "DESC": data.sort_index(ascending=False, inplace=True) data.fillna(method="bfill", inplace=True) if get_last_value_before: if use_query: time_start_dt = dt.strptime(time_start, self.time_format) year = time_start_dt.year month = time_start_dt.month t_table = "measurement{}{:02d}".format(year, month) data2 = self.get_last_value_before(ids=ids_keys, time_start=time_start, ts_table=t_table) if sort_by: if sort_order == None: sort_order = "ASC" if sort_order == "ASC": ascending = True elif sort_order == "DESC": ascending = False data2.sort_index(ascending=ascending, inplace=True) else: data2 = self.get_last_value_before(ids=ids_keys, time_start=time_start) if sort_by: if sort_order == None: sort_order = "ASC" if sort_order == "ASC": ascending = True elif sort_order == "DESC": ascending = False data2.sort_index(ascending=ascending, inplace=True) if replace_first_index: data2 = self.__df_set_ts_index(data2, time_start) data2 = self._ts_to_df_matrix(data2, ids=ids) data2.index = pd.to_datetime(data2.index) data2.columns = ids_values if sort_order == "ASC": data = pd.concat([data2, data]) data.fillna(method="ffill", inplace=True) elif sort_order == "DESC": data = pd.concat([data, data2]) data.fillna(method="bfill", inplace=True) # data.sort_index() return data def query(self, ids, time_start, time_end=None): """ :param ids: dict, list, string, int with different ids, which identify the timeseries :param time_start: Start time of timeseries :param time_end: End time of timeseries :keyword engine: "pandas" or "odbc" :return data: pandas.DataFrame with queried data :rtype: pandas.DataFrame """ """ function: query Description: query for E.ON ERC main building with various parameters Attention: the function will take standard extra parameters, if not set, the function doesn't work ######## Inputs ######## Variable: ids Description: single or list of ids, which identify the timeseries Type: int, list ######## Variable: time_start Description: Start time of timeseries Type: str Example: time_start="2015-12-20 00:00:00" ######## Variable: time_end Description: End time of timeseries Type: str Example: time_end="2015-12-21 00:00:00" ######## Outputs ######## Variable: data Description: fetched
<reponame>OverLordGoldDragon/dev_tg<gh_stars>1-10 # -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # Copyright (c) 2022- <NAME> # # Distributed under the terms of the MIT License # (see wavespin/__init__.py for details) # ----------------------------------------------------------------------------- """Convenience utilities.""" import numpy as np import scipy.signal import warnings from scipy.fft import fft, ifft from itertools import zip_longest, chain from copy import deepcopy def drop_batch_dim_jtfs(Scx, sample_idx=0): """Index into dim0 with `sample_idx` for every JTFS coefficient, and drop that dimension. Doesn't modify input: - dict/list: new list/dict (with copied meta if applicable) - array: new object but shared storage with original array (so original variable reference points to unindexed array). """ fn = lambda x: x[sample_idx] return _iterate_apply(Scx, fn) def jtfs_to_numpy(Scx): """Convert PyTorch/TensorFlow tensors to numpy arrays, with meta copied, and without affecting original data structures. """ B = ExtendedUnifiedBackend(Scx) return _iterate_apply(Scx, B.numpy) def _iterate_apply(Scx, fn): def get_meta(s): return {k: v for k, v in s.items() if not hasattr(v, 'ndim')} if isinstance(Scx, dict): out = {} # don't modify source dict for pair in Scx: if isinstance(Scx[pair], list): out[pair] = [] for i, s in enumerate(Scx[pair]): out[pair].append(get_meta(s)) out[pair][i]['coef'] = fn(s['coef']) else: out[pair] = fn(Scx[pair]) elif isinstance(Scx, list): out = [] # don't modify source list for s in Scx: o = get_meta(s) o['coef'] = fn(s['coef']) out.append(o) elif isinstance(Scx, tuple): # out_type=='array' && out_3D==True out = (fn(Scx[0]), fn(Scx[1])) elif hasattr(Scx, 'ndim'): out = fn(Scx) else: raise ValueError(("unrecognized input type: {}; must be as returned by " "`jtfs(x)`.").format(type(Scx))) return out def normalize(X, mean_axis=(1, 2), std_axis=(1, 2), C=None, mu=1, C_mult=None): """Log-normalize + (optionally) standardize coefficients for learning algorithm suitability. Is a modification of Eq. 10 of https://arxiv.org/pdf/2007.10926.pdf For exact match (minus temporal global averaging), set `mean_axis=std_axis=(0, 2)`. Parameters ---------- X : tensor Nonnegative tensor with dimensions `(samples, features, spatial)`. If there's more than one `features` or `spatial` dimensions, flatten before passing. (Obtain tensor via e.g. `pack_coeffs_jtfs(Scx)`, or `out_type='array'`.) std_axis : tuple[int] / int / None If not None, will unit-variance after `rscaling` along specified axes. mean_axis : tuple[int] / int / None If not None, will zero-mean before `rscaling` along specified axes. C : float / None `log(1 + X * C / median)`. Greater will bring more disparate values closer. Too great will equalize too much, too low will have minimal effect. Defaults to `5 / sparse_mean(abs(X / mu))`, which should yield moderate contraction for a variety of signals. This was computed on a mixture of random processes, with outliers, and may not generalize to all signals. - `sparse_mean` takes mean over non-negligible points, aiding consistency between representations. A scalogram with an extra octave, for example, may capture nothing in the new octave, while a simple mean would lower the output, attenuating existing values. mu : float / None In case precomputed; See "Online computation". `mu=None` will compute `mu` for per-channel normalization, while `mu=1` essentially disables `mu` and preserves channels' relative scaling; see "Relative scaling". C_mult : float / None Multiplies `C`. Useful if the default `C` compute scheme is appropriate but needs adjusting. Defaults to `5` if `C` is None, else to `1`. Returns ------- Xnorm : tensor Normalized `X`. Relative scaling ---------------- Scaling `features` independently changes the relative norms bewteen them. - If a signal rarely has high frequencies and low are dominant, for example, then post-normalization this nuance is lost and highs and lows are brought to a common norm - which may be undesired. - SNR is lowered, as low signal contents that are dominated by noise or float inaccuracies are amplified. - Convolutions over `features` dims are invalidated (as it's akin to standardizing individual time steps in 1D convolution); e.g. if normalizing on per-`n1` basis, then we can no longer do 2D convs over the joint `(n1, time)` pairs. - To keep convs valid, all spatial dims that are convolved over must be standardized by the same factor - i.e. same `mean` and `std`. `rscaling` also accounts for rescaling due to log. Regardless, this "channel normalization" has been used with success in variuous settings; above are but points worth noting. To preserve relative scaling, set `mu=1`. Online computation ------------------ Any computation with `axis` that includes `0` requires simultaneous access to all samples. This poses a problem in two settings: 1. Insufficient RAM. The solution is to write an *equivalent* computation that aggregates statistics one sample at a time. E.g. for `mu`: Xsum = [] for x in dataset: Xsum.append(B.sum(x, axis=-1, keepdims=True)) mu = B.median(B.vstack(Xsum), axis=0, keepdims=True) 2. Streaming / new samples. In this case we must reuse parameters computed over e.g. entire train set. Computations over all axes *except* `0` are done on per-sample basis, which means not having to rely on other samples - but also an inability to do so (i.e. to precompute and reuse params). """ # validate args & set defaults ########################################### if X.ndim != 3: raise ValueError("input must be 3D, `(samples, features, spatial)` - " "got %s" % str(X.shape)) B = ExtendedUnifiedBackend(X) if B.backend_name == 'tensorflow' and mu is None: raise ValueError("mu=None with TensorFlow backend isn't supported, as " "TF's `median` doesn't support axis args") # check input values if B.min(X) < 0: warnings.warn("`X` must be non-negative; will take modulus.") X = B.abs(X) # convert axes to positive axes = [mean_axis, std_axis] for i, ax in enumerate(axes): if ax is None: continue ax = ax if isinstance(ax, (list, tuple)) else [ax] ax = list(ax) for j, a in enumerate(ax): if a < 0: ax[j] = X.ndim + a axes[i] = tuple(ax) mean_axis, std_axis = axes # check input dims dim_ones = tuple(d for d in range(X.ndim) if X.shape[d] == 1) if dim_ones != (): def check_dims(g, name): g = g if isinstance(g, (tuple, list)) else (g,) if all(dim in dim_ones for dim in g): raise ValueError("input dims cannot be `1` along same dims as " "`{}` (gives NaNs); got X.shape == {}, " "{} = {}".format(name, X.shape, name, mean_axis)) check_dims(mean_axis, 'mean_axis') check_dims(std_axis, 'std_axis') # check mu if mu is None and 0 in dim_ones and 2 in dim_ones: raise ValueError("input dims cannot be `1` along dims 0 and 2 " "if `mu` is None (gives NaNs); " "got X.shape == {}".format(X.shape)) # main transform ######################################################### if mu is None: # spatial sum (integral) Xsum = B.sum(X, axis=-1, keepdims=True) # sample median mu = B.median(Xsum, axis=0, keepdims=True) def sparse_mean(x, div=100, iters=4): """Mean of non-negligible points""" m = B.mean(x) for _ in range(iters - 1): m = B.mean(x[x > m / div]) return m # rescale Xnorm = X / mu # contraction factor if C_mult is None: C_mult = 5 if C is None else 1 if C is None: C = 1 / sparse_mean(B.abs(Xnorm), iters=4) C *= C_mult # log Xnorm = B.log(1 + Xnorm * C) # standardization ######################################################## if mean_axis is not None: Xnorm -= B.mean(Xnorm, axis=mean_axis, keepdims=True) if std_axis is not None: Xnorm /= B.std(Xnorm, axis=std_axis, keepdims=True) return Xnorm def pack_coeffs_jtfs(Scx, meta, structure=1, sample_idx=None, separate_lowpass=None, sampling_psi_fr=None, out_3D=None, reverse_n1=False, debug=False, recursive=False): """Packs efficiently JTFS coefficients into one of valid 4D structures. Parameters ---------- Scx : tensor/list/dict JTFS output. Must have `out_type` 'dict:array' or 'dict:list', and `average=True`. meta : dict JTFS meta. structure : int / None Structure to pack `Scx` into (see "Structures" below), integer 1 to 4. Will pack into a structure even if not suitable for convolution (as determined by JTFS parameters); see "Structures" if convs are relevant. - If can pack into one structure, can pack into any other (1 to 5). - 6 to 9 aren't implemented since they're what's already returned as output. - This method is only needed for 3D or 4D convolutions, for which only structure=5 with `out_3D=True` and `aligned=True` is fully valid (see below); 1D convolutions can be done on any JTFS with `average=True`, and 2D on any `out_3D=True`. sample_idx : int / None Index of sample in batched input to pack. If None (default), will pack all samples. Returns 5D
"""Pre-commit tests.""" from textwrap import dedent import pytest from testfixtures import compare from nitpick.constants import PRE_COMMIT_CONFIG_YAML, SETUP_CFG from nitpick.plugins.pre_commit import PreCommitHook from nitpick.violations import Fuss from tests.helpers import NBSP, ProjectMock def test_pre_commit_has_no_configuration(tmp_path): """No errors should be raised if pre-commit is not referenced in any style file. Also the file should not be deleted unless explicitly asked. """ ProjectMock(tmp_path).style("").pre_commit("").api_check_then_fix() def test_pre_commit_referenced_in_style(tmp_path): """Only check files if they have configured styles.""" ProjectMock(tmp_path).style( """ [".pre-commit-config.yaml"] fail_fast = true """ ).pre_commit("").api_check_then_fix(Fuss(False, PRE_COMMIT_CONFIG_YAML, 331, " doesn't have the 'repos' root key")) def test_suggest_initial_contents(tmp_path): """Suggest initial contents for missing pre-commit config file.""" ProjectMock(tmp_path).named_style( "isort", ''' ["setup.cfg".isort] line_length = 120 skip = ".tox,build" known_first_party = "tests" # The configuration below is needed for compatibility with black. # https://github.com/python/black#how-black-wraps-lines # https://github.com/PyCQA/isort#multi-line-output-modes multi_line_output = 3 include_trailing_comma = true force_grid_wrap = 0 combine_as_imports = true [[".pre-commit-config.yaml".repos]] yaml = """ - repo: https://github.com/PyCQA/isort rev: 5.8.0 hooks: - id: isort """ ''', ).named_style( "black", ''' ["pyproject.toml".tool.black] line-length = 120 [[".pre-commit-config.yaml".repos]] yaml = """ - repo: https://github.com/psf/black rev: 21.5b2 hooks: - id: black args: [--safe, --quiet] - repo: https://github.com/asottile/blacken-docs rev: v1.10.0 hooks: - id: blacken-docs additional_dependencies: [black==21.5b2] """ # TODO The toml library has issues loading arrays with multiline strings: # https://github.com/uiri/toml/issues/123 # https://github.com/uiri/toml/issues/230 # If they are fixed one day, remove this 'yaml' key and use only a 'repos' list with a single element: #[".pre-commit-config.yaml"] #repos = [""" #<YAML goes here> #"""] ''', ).pyproject_toml( """ [tool.nitpick] style = ["isort", "black"] """ ).api_check_then_fix( Fuss( False, PRE_COMMIT_CONFIG_YAML, 331, " was not found. Create it with this content:", """ repos: - repo: https://github.com/PyCQA/isort rev: 5.8.0 hooks: - id: isort - repo: https://github.com/psf/black rev: 21.5b2 hooks: - id: black args: [--safe, --quiet] - repo: https://github.com/asottile/blacken-docs rev: v1.10.0 hooks: - id: blacken-docs additional_dependencies: [black==21.5b2] """, ), partial_names=[PRE_COMMIT_CONFIG_YAML], ) def test_no_yaml_key(tmp_path): """Test an invalid repo config.""" ProjectMock(tmp_path).style( ''' [[".pre-commit-config.yaml".repos]] missing_yaml_key = """ - repo: https://github.com/PyCQA/isort rev: 5.8.0 hooks: - id: isort """ ''' ).api_check_then_fix( Fuss( False, PRE_COMMIT_CONFIG_YAML, 331, " was not found. Create it with this content:", """ repos: [] """, ) ) def test_root_values_on_missing_file(tmp_path): """Test values on the root of the config file when it's missing.""" ProjectMock(tmp_path).style( """ [".pre-commit-config.yaml"] bla_bla = "oh yeah" fail_fast = true whatever = "1" """ ).api_check_then_fix( Fuss( False, PRE_COMMIT_CONFIG_YAML, 331, " was not found. Create it with this content:", """ bla_bla: oh yeah fail_fast: true whatever: '1' """, ) ) def test_root_values_on_existing_file(tmp_path): """Test values on the root of the config file when there is a file.""" ProjectMock(tmp_path).style( """ [".pre-commit-config.yaml"] fail_fast = true blabla = "what" something = true another_thing = "yep" """ ).pre_commit( """ repos: - hooks: - id: whatever something: false another_thing: "nope" """ ).api_check_then_fix( Fuss( False, PRE_COMMIT_CONFIG_YAML, 338, " has missing values:", """ blabla: what fail_fast: true """, ), Fuss( False, PRE_COMMIT_CONFIG_YAML, 339, " has different values. Use this:", """ another_thing: yep something: true """, ), ) def test_missing_repos(tmp_path): """Test missing repos on file.""" ProjectMock(tmp_path).style( """ [".pre-commit-config.yaml"] fail_fast = true """ ).pre_commit( """ grepos: - hooks: - id: whatever """ ).api_check_then_fix( Fuss(False, PRE_COMMIT_CONFIG_YAML, 331, " doesn't have the 'repos' root key") ) def test_missing_repo_key(tmp_path): """Test missing repo key on the style file.""" ProjectMock(tmp_path).style( """ [[".pre-commit-config.yaml".repos]] grepo = "glocal" """ ).pre_commit( """ repos: - hooks: - id: whatever """ ).api_check_then_fix( Fuss(False, PRE_COMMIT_CONFIG_YAML, 332, ": style file is missing 'repo' key in repo #0") ) def test_repo_does_not_exist(tmp_path): """Test repo does not exist on the pre-commit file.""" ProjectMock(tmp_path).style( """ [[".pre-commit-config.yaml".repos]] repo = "local" """ ).pre_commit( """ repos: - hooks: - id: whatever """ ).api_check_then_fix( Fuss(False, PRE_COMMIT_CONFIG_YAML, 333, ": repo 'local' does not exist under 'repos'") ) def test_missing_hooks_in_repo(tmp_path): """Test missing hooks in repo.""" ProjectMock(tmp_path).style( """ [[".pre-commit-config.yaml".repos]] repo = "whatever" """ ).pre_commit( """ repos: - repo: whatever """ ).api_check_then_fix( Fuss(False, PRE_COMMIT_CONFIG_YAML, 334, ": missing 'hooks' in repo 'whatever'") ) def test_style_missing_hooks_in_repo(tmp_path): """Test style file is missing hooks in repo.""" ProjectMock(tmp_path).style( """ [[".pre-commit-config.yaml".repos]] repo = "another" """ ).pre_commit( """ repos: - repo: another hooks: - id: isort """ ).api_check_then_fix( Fuss(False, PRE_COMMIT_CONFIG_YAML, 335, ": style file is missing 'hooks' in repo 'another'") ) def test_style_missing_id_in_hook(tmp_path): """Test style file is missing id in hook.""" ProjectMock(tmp_path).style( f''' [[".pre-commit-config.yaml".repos]] repo = "another" hooks = """ - name: isort entry: isort -sp {SETUP_CFG} """ ''' ).pre_commit( """ repos: - repo: another hooks: - id: isort """ ).api_check_then_fix( Fuss( False, PRE_COMMIT_CONFIG_YAML, 336, ": style file is missing 'id' in hook:", f""" {NBSP*4}name: isort {NBSP*4}entry: isort -sp {SETUP_CFG} """, ) ) def test_missing_hook_with_id(tmp_path): """Test missing hook with specific id.""" ProjectMock(tmp_path).style( ''' [[".pre-commit-config.yaml".repos]] repo = "other" hooks = """ - id: black name: black entry: black """ ''' ).pre_commit( """ repos: - repo: other hooks: - id: isort """ ).api_check_then_fix( Fuss( False, PRE_COMMIT_CONFIG_YAML, 337, ": missing hook with id 'black':", f""" {NBSP * 2}- id: black {NBSP * 2} name: black {NBSP * 2} entry: black """, ) ) def test_get_all_hooks_from(): """Test if the get_all_hooks_from() method will split the YAML block in hooks and copy the repo info for each.""" data = """ - repo: https://github.com/user/repo rev: v0.4.5 hooks: - id: first additional_dependencies: [package==1.0.0] - id: second args: [1, 2, 3] - id: third - id: fourth args: [some, here] additional_dependencies: [another>=2.0.3] """ rv = PreCommitHook.get_all_hooks_from(dedent(data)) def assert_hook_yaml(key, yaml_string): expected = rv["https://github.com/user/repo_" + key].yaml.reformatted actual = yaml_string compare(dedent(actual).strip(), dedent(expected).strip()) assert_hook_yaml( "first", """ - repo: https://github.com/user/repo rev: v0.4.5 hooks: - id: first additional_dependencies: [package==1.0.0] """, ) assert_hook_yaml( "second", """ - repo: https://github.com/user/repo rev: v0.4.5 hooks: - id: second args: [1, 2, 3] """, ) assert_hook_yaml( "third", """ - repo: https://github.com/user/repo rev: v0.4.5 hooks: - id: third """, ) assert_hook_yaml( "fourth", """ - repo: https://github.com/user/repo rev: v0.4.5 hooks: - id: fourth args: [some, here] additional_dependencies: [another>=2.0.3] """, ) def test_missing_different_values(tmp_path): """Test missing and different values on the hooks.""" ProjectMock(tmp_path).named_style( "root", ''' [[".pre-commit-config.yaml".repos]] yaml = """ - repo: https://github.com/user/repo rev: 1.2.3 hooks: - id: my-hook args: [--expected, arguments] """ ''', ).named_style( "mypy", ''' # https://mypy.readthedocs.io/en/latest/config_file.html ["setup.cfg".mypy] ignore_missing_imports = true # Do not follow imports (except for ones found in typeshed) follow_imports = "skip" # Treat Optional per PEP 484 strict_optional = true # Ensure all execution paths are returning warn_no_return = true # Lint-style cleanliness for typing warn_redundant_casts = true warn_unused_ignores = true [[".pre-commit-config.yaml".repos]] yaml = """ - repo: https://github.com/pre-commit/mirrors-mypy rev: v0.812 hooks: - id: mypy """ ''', ).named_style( "pre-commit/python", ''' [[".pre-commit-config.yaml".repos]] yaml = """ - repo: https://github.com/pre-commit/pygrep-hooks rev: v1.8.0 hooks: - id: python-check-blanket-noqa - id: python-check-mock-methods - id: python-no-eval - id: python-no-log-warn - id: rst-backticks - repo: https://github.com/pre-commit/pre-commit-hooks rev: v4.0.1 hooks: - id: debug-statements - repo: https://github.com/asottile/pyupgrade hooks: - id: pyupgrade """ ''', ).named_style( "pre-commit/bash", ''' [[".pre-commit-config.yaml".repos]] yaml = """ - repo: https://github.com/openstack/bashate rev: 2.0.0 hooks: - id: bashate """ ''', ).pyproject_toml( """ [tool.nitpick] style = ["root", "mypy", "pre-commit/python", "pre-commit/bash"] """ ).pre_commit( """ repos: - repo: https://github.com/pre-commit/pygrep-hooks rev: v1.1.0 hooks: - id: python-check-blanket-noqa - id: missing-hook-in-this-position - id: python-no-eval - id: python-no-log-warn - id: rst-backticks - repo: https://github.com/pre-commit/pre-commit-hooks rev: v4.0.1 hooks: - id: debug-statements - repo: https://github.com/asottile/pyupgrade rev: v2.16.0 hooks: - id: pyupgrade - repo: https://github.com/openstack/bashate rev: 0.5.0 hooks: - id: extra-hook-before-should-be-ignored - id: bashate args: [extra, arguments, should, --not, --throw, errors] - id: extra-hook-after-should-be-ignored - repo: https://github.com/user/repo rev: 1.2.3 hooks: - id: my-hook args: [--different, args, --should, throw, errors] """ ).api_check_then_fix( Fuss( False, PRE_COMMIT_CONFIG_YAML, 332, ": hook 'mypy' not found. Use this:", f""" {NBSP * 2}- repo: https://github.com/pre-commit/mirrors-mypy rev: v0.812 hooks: - id: mypy """, ), Fuss( False, PRE_COMMIT_CONFIG_YAML, 332, ": hook 'python-check-mock-methods' not found. Use this:", f""" {NBSP * 2}- repo: https://github.com/pre-commit/pygrep-hooks rev: v1.8.0 hooks: - id: python-check-mock-methods """, ), Fuss( False, PRE_COMMIT_CONFIG_YAML, 339, ": hook 'bashate' (rev: 0.5.0) has different values. Use this:", "rev: 2.0.0", ), Fuss( False, PRE_COMMIT_CONFIG_YAML, 339, ": hook 'python-check-blanket-noqa' (rev: v1.1.0) has different values. Use this:", "rev: v1.8.0", ), Fuss( False, PRE_COMMIT_CONFIG_YAML, 339, ": hook 'python-no-eval' (rev: v1.1.0) has different values. Use this:", "rev: v1.8.0", ), Fuss( False, PRE_COMMIT_CONFIG_YAML, 339, ": hook 'python-no-log-warn' (rev: v1.1.0) has different values. Use this:", "rev: v1.8.0", ), Fuss( False, PRE_COMMIT_CONFIG_YAML, 339, ": hook 'my-hook' (rev:
#!/usr/bin/python # -*- coding: utf-8 -*- from argparse import Namespace import datetime, openpyxl as xl, os import code import operator, collections import re import unicodecsv as csv import math # Django imports from argparse import Namespace from django.core.management.base import BaseCommand, CommandError from django.db import models , connection from django.utils import timezone # Local imports import backend.models as back import contacts.models as cont import utils import report_utils from utils.xl import xl_add_header_row , xl_style_current_row , make_column , bold_font class Command(BaseCommand): help = 'Parse and import SMS data bank' def add_arguments(self,parser): # code.interact(local=locals()) subparsers = parser.add_subparsers(help='make reports') # The cmd argument is required for django.core.management.base.CommandParser print_parser = subparsers.add_parser('print',cmd=parser.cmd,help='report send time statistics') print_parser.add_argument('-t','--times',action='store_true',default=False,help='print send times') print_parser.add_argument('-f','--facilities',action='store_true',default=False,help='print registered totals per facility') print_parser.add_argument('-c','--validation-codes',action='store_true',default=False,help='print validation stats') print_parser.add_argument('-m','--messages',action='store_true',default=False,help='print message statistics') print_parser.add_argument('-a','--all',action='store_true',default=False,help='all report options') print_parser.add_argument('-o','--hours',action='store_true',default=False,help='print hist of message hours') print_parser.add_argument('-i','--hiv',action='store_true',default=False,help='print hiv messaging status') print_parser.add_argument('-l','--language',action='store_true',default=False,help='print language histogram') print_parser.add_argument('-s','--status',action='store_true',default=False,help='print status histogram') print_parser.add_argument('-e','--enrollment',action='store_true',default=False,help='print enrollment by site') print_parser.add_argument('-d','--delivery',action='store_true',default=False,help='print delivery statistics') print_parser.add_argument('-x', '--success-times', action='store_true', default=False, help='print success times report') print_parser.add_argument('-u', '--message-status', default=None, const='all', choices=('day','week','cur_week','month','year','all'),nargs='?', help='print message status') print_parser.add_argument('--delivery-source',action='store_true',default=False,help='print delivery source statistics') print_parser.add_argument('--topics',action='store_true',default=False,help='incoming message topics') print_parser.add_argument('--msg-counts',action='store_true',default=False,help='print counts by auto type') print_parser.add_argument('--sim-count', action='store_true', default=False, help='print information on sim count') print_parser.add_argument('--weeks',default=5,type=int,help='message history weeks (default 5)') print_parser.set_defaults(action='print_stats') xlsx_parser = subparsers.add_parser('xlsx',cmd=parser.cmd,help='create xlsx reports') xlsx_parser.add_argument('-t','--visit',action='store_true',default=False,help='create visit report') xlsx_parser.add_argument('-d','--detail',action='store_true',default=False,help='create detail report') xlsx_parser.add_argument('-a','--all',action='store_true',default=False,help='create all reports') xlsx_parser.add_argument('-i','--interaction',action='store_true',default=False,help='create participant interaction report') xlsx_parser.add_argument('-m','--messages',action='store_true',default=False,help='create system message dump') xlsx_parser.add_argument('-n','--anonymous',action='store_true',default=False,help='create anonymous message dump') xlsx_parser.add_argument('-w','--weekly',action='store_true',default=False,help='create weakly stats report') xlsx_parser.add_argument('-c','--conversations',action='store_true',default=False,help='create conversations report') xlsx_parser.add_argument('-s','--miss-streak',action='store_true',default=False,help='create miss streak report') xlsx_parser.add_argument('--dir',default='ignore',help='directory to save report in') xlsx_parser.add_argument('args',nargs='*',help='extra arguments in key:value pairs') xlsx_parser.set_defaults(action='make_xlsx') csv_parser = subparsers.add_parser('csv',cmd=parser.cmd,help='create csv reports') csv_parser.add_argument('--dir',default='ignore',help='directory to save csv in') csv_parser.add_argument('name',help='csv report type', choices=( 'hiv_messaging','enrollment','messages','edd','delivery', 'participant_week', 'sae','visits','msg_dump','hiv_statuschange','participant_dump','connection_info', 'sms_status','languages', ) ) csv_parser.set_defaults(action='make_csv_name') def handle(self,*args,**options): start_time = datetime.datetime.now() self.stdout.write( 'Reports Action: {}'.format(options['action']) ) self.printed = False self.options = options self.options['args'] = args getattr(self,options['action'])() time_delta = (datetime.datetime.now() - start_time).total_seconds() / 60 print "Quries: {} Min: {}".format( len(connection.queries), time_delta ) ######################################## # Commands ######################################## def print_stats(self): if self.options['facilities'] or self.options['all']: self.participants_by_facility() if self.options['times'] or self.options['all']: self.send_times() if self.options['status'] or self.options['all']: self.status_breakdown() if self.options['validation_codes'] or self.options['all']: self.validation_stats() if self.options['messages'] or self.options['all']: self.message_stats() if self.options['hiv'] or self.options['all']: self.hiv_messaging() if self.options['hours']: self.message_hours() if self.options['language']: self.print_languages() if self.options['enrollment']: self.print_enrollment() if self.options['delivery']: self.print_delivery_stats() if self.options['delivery_source'] and not self.options['delivery']: self.print_delivery_source() if self.options['topics']: self.print_report('msg_topics') if self.options['msg_counts']: self.print_report('msg_counts') if self.options['message_status'] is not None: self.print_message_status() if self.options['success_times']: self.print_success_times() if self.options['sim_count']: self.print_sim_counts() def print_report(self,report): report_modual = getattr(report_utils,report) report_modual.print_report(self) # SEC::XLSX Helper Functions def make_xlsx(self): kwargs = {'mode':'meta'} if self.options['args']: args = self.options['args'] kwargs.update({arg.split(':')[0]:arg.split(':')[1] for arg in args}) workbook_columns = {} if self.options['visit'] or self.options['all']: workbook_columns['visit'] = visit_columns if self.options['detail'] or self.options['all']: workbook_columns['detail'] = detail_columns if self.options['interaction']: workbook_columns['interaction'] = interaction_columns interaction_columns.queryset = make_interaction_columns() if self.options['messages']: # workbook_columns['messages'] = system_message_columns # system_message_columns.queryset = make_system_message_columns() make_message_wb(**kwargs) if self.options['weekly']: make_weekly_wb() if self.options['anonymous']: make_anonymous_wb() if self.options['conversations']: make_conversations_wb() if self.options['miss_streak']: make_miss_streak_count_wb() for name , columns in workbook_columns.items(): wb = xl.workbook.Workbook() today = datetime.date.today() file_name = today.strftime('mWaChX_{}_%Y-%m-%d.xlsx').format(name) xlsx_path_out = os.path.join(self.options['dir'],file_name) self.stdout.write( "Making xlsx file {}".format(xlsx_path_out) ) if hasattr(columns,'facility_sheet'): make_facility_worksheet(columns,wb.active,'ahero') make_facility_worksheet(columns,wb.create_sheet(),'bondo') make_facility_worksheet(columns,wb.create_sheet(),'mathare') make_facility_worksheet(columns,wb.create_sheet(),'siaya') make_facility_worksheet(columns,wb.create_sheet(),'rachuonyo') make_facility_worksheet(columns,wb.create_sheet(),'riruta') else: make_worksheet(columns,wb.active,columns.queryset) wb.save(xlsx_path_out) # SEC::Start CSV Functions def make_csv_name(self): file_path = getattr(self,'make_{}_csv'.format(self.options['name']))() print "Done:" , file_path ######################################## # Start Print Functions ######################################## def send_times(self): self.print_header("Participant Send Times") c_all = cont.Contact.objects_no_link.all().order_by('send_day','send_time') time_counts = c_all.filter(study_group='two-way').values('send_day','send_time') \ .annotate(count=models.Count('send_day')) times, day , counts = {} ,0 , [0,0,0] day_lookup = ['Mon','Tue','Wed','Thu','Fri','Sat','Sun'] time_map = {8:0,13:1,20:2} for c in time_counts: if c['send_day'] == day: counts[time_map[c['send_time']]] = c['count'] else: times[day] = counts day = c['send_day'] counts = [0,0,0] counts[time_map[c['send_time']]] = c['count'] times[day] = counts totals = [0,0,0] for i in range(7): t = times.get(i,[0,0,0]) totals = [t1+t2 for t1,t2 in zip(totals,t)] self.stdout.write( "{} {} {}".format(day_lookup[i],t,sum(t)) ) self.stdout.write( "Tot {} {}".format(totals,sum(totals)) ) def participants_by_facility(self): self.print_header("Participant By Facility") group_counts = cont.Contact.objects.values('facility','study_group') \ .annotate(count=models.Count('study_id',distinct=True)) # Piviot Group Counts counts = collections.defaultdict(GroupRowCount) for g in group_counts: counts[g['facility']][g['study_group']] = g['count'] # Print Group Counts self.stdout.write( "{:^12}{:^12}{:^12}{:^12}{:^12}".format("","Control","One-Way","Two-Way","Total") ) total_row = GroupRowCount() for facility, row in counts.items(): self.stdout.write( "{:^12}{:^12}{:^12}{:^12}{:^12}".format( facility.capitalize(), row['control'], row['one-way'], row['two-way'], row.total()) ) total_row += row self.stdout.write( "{:^12}{:^12}{:^12}{:^12}{:^12}".format( "Total", total_row['control'], total_row['one-way'], total_row['two-way'], total_row.total() ) ) def validation_stats(self): self.print_header('Validation Stats') c_all = cont.Contact.objects_no_link.all() stats = collections.OrderedDict( ( ('< 1h',0) , ('< 1d',0) ,('> 1d',0) , ('None',0) ) ) for c in c_all: seconds = c.validation_delta() if seconds is None: stats['None'] += 1 elif seconds <= 3600: stats['< 1h'] += 1 elif seconds <= 86400: stats['< 1d'] += 1 elif seconds > 86400: stats['> 1d'] += 1 else: stats['None'] += 1 counts = dict( c_all.values_list('is_validated').annotate(count=models.Count('is_validated')) ) total = sum(counts.values()) self.stdout.write( "Total: {} Valididated: {} ({:0.3f}) Not-Validated: {} ({:0.3f})\n".format( total , counts[True] , counts[True] / float(total) , counts[False] , counts[False] / float(total) ) ) for key , count in stats.items(): self.stdout.write( "\t{}\t{} ({:0.3f})".format(key,count, count/float(total) ) ) def message_stats(self): self.print_header('Message Statistics (system-participant-nurse)') # Get messages grouped by facility, system and outgoing m_all = cont.Message.objects.all() group_counts = m_all.order_by().values( 'contact__facility','contact__study_group','is_system','is_outgoing' ).annotate(count=models.Count('contact__facility')) # Piviot Group Counts based on facility counts = collections.defaultdict(MessageRow) for g in group_counts: facility = g['contact__facility'] if facility is None: continue study_group = g['contact__study_group'] sender = 'system' if not g['is_system']: sender = 'nurse' if g['is_outgoing'] else 'participant' counts[facility][study_group][sender] = g['count'] # Print Message Totals Table self.stdout.write( "{:^10}{:^18}{:^18}{:^18}{:^18}".format("","Control","One-Way","Two-Way","Total") ) total_row = MessageRow() for facility , row in counts.items(): total_row += row row['two-way'].replies = m_all.filter(parent__isnull=False,contact__facility=facility).count() self.stdout.write( '{:<10}{} {} ({})'.format(facility.capitalize(),row,row.total(),row.total().total() ) ) none_count = m_all.filter(contact__isnull=True).count() total_count = total_row.total() total_row['two-way'].replies = m_all.filter(parent__isnull=False).count() self.stdout.write( '{:<10}{} {} ({})'.format('Total',total_row,total_count,sum(total_count) ) ) self.stdout.write( '{:<10}{:04d} ({})'.format('None',none_count,none_count+sum(total_count)) ) # Print last 5 weeks of messaging self.stdout.write('') self.print_messages(self.options['weeks']) def print_messages(self,weeks=None): # Get all two-way messages m_all = cont.Message.objects.filter(contact__study_group='two-way') # Get start date study_start_date = timezone.make_aware(datetime.datetime(2015,11,23)) now = timezone.now() weeks_start_date = timezone.make_aware( datetime.datetime(now.year,now.month,now.day) - datetime.timedelta(days=now.weekday()) ) # Last Sunday start_date = study_start_date if weeks is not None and weeks_start_date > study_start_date: start_date = weeks_start_date - datetime.timedelta(days=weeks*7) total_row = MessageRowItem() while start_date < now: end_date = start_date + datetime.timedelta(days=7) m_range = m_all.filter(created__range=(start_date,end_date)) row = MessageRowItem() row['system'] = m_range.filter(is_system=True).count() row['participant'] = m_range.filter(is_system=False,is_outgoing=False).count() row['nurse'] = m_range.filter(is_system=False,is_outgoing=True).count() row.replies = m_range.filter(parent__isnull=False).count() total_row += row self.stdout.write( '{} {} ({})'.format(start_date.strftime('%Y-%m-%d'),row,sum(row) ) ) start_date = end_date self.stdout.write( "Total {} ({})".format(total_row,sum(total_row)) ) def message_hours(self): self.print_header('Histogram of message send hour (two-way only)') messages , hour_counts = {} , {} messages['p'] = cont.Message.objects.filter(is_outgoing=False,contact__study_group='two-way') messages['s'] = cont.Message.objects.filter(is_outgoing=True,is_system=True,contact__study_group='two-way') messages['n'] = cont.Message.objects.filter(is_outgoing=True,is_system=False,contact__study_group='two-way') for k in messages.keys(): hours = [0 for _ in range(24)] for m in messages[k]: hours[m.created.hour] += 1 hour_counts[k] = hours print " C S N" for h in range(24): print "{0:<5}{1:<5}{2:<5}{3:<5}".format((h+3)%24,hour_counts['p'][h],hour_counts['s'][h],hour_counts['n'][h]) print " {0:<5}{1:<5}{2:<5}".format(*map(sum,[hour_counts[k] for k in ('p','s','n')])) def hiv_messaging(self): self.print_header('HIV Messaging Preference (none-initiated-system)') hiv_messaging_groups = cont.Contact.objects.order_by().values('facility','study_group','hiv_messaging') \ .annotate(count=models.Count('study_id',distinct=True)) # Piviot Group Counts group_counts = collections.defaultdict(HivRowCount) for g in hiv_messaging_groups: group_counts[g['facility']][g['study_group']][g['hiv_messaging']] = g['count'] # Print Group Counts self.stdout.write( "{:^12}{:^12}{:^12}{:^12}{:^12}".format("","Control","One-Way","Two-Way","Total") ) total_row = HivRowCount() for facility, row in group_counts.items(): self.stdout.write( "{0:^12}{1[control]:^12}{1[one-way]:^12}{1[two-way]:^12}{2:^12}".format( facility.capitalize(), row, row.total() ) ) total_row += row self.stdout.write( "{0:^12}{1[control]:^12}{1[one-way]:^12}{1[two-way]:^12} {2:^12}".format( "Total", total_row, total_row.total() ) ) def print_languages(self): self.print_header('Language of Messages (participant,nurse)') message_groups = cont.Message.objects.order_by().filter(contact__study_group='two-way',is_system=False)\ .prefetch_related('contact').values('languages','contact__language','is_outgoing')\ .exclude(languages='').annotate(count=models.Count('id',distinct=True)) # Piviot Group Counts language_counts = collections.defaultdict(LanguageMessageRow) for g in message_groups: language_str = ','.join( sorted( s[0] if s!= 'sheng' else 'h' for s in g['languages'].split(';') ) ) # language_counts[g['languages']][g['contact__language']][g['is_outgoing']] += g['count'] language_counts[language_str][g['contact__language']][g['is_outgoing']] += g['count'] # Print Group Counts self.stdout.write( "{:^12}{:^12}{:^12}{:^12}{:^12}".format("","English","Swahili","Luo","Total") ) total_row = LanguageMessageRow() for language, row in language_counts.items(): self.stdout.write( "{0:^12}{1[english]:^12}{1[swahili]:^12}{1[luo]:^12}{2:^12}".format( language, row, row.total() ) ) total_row += row self.stdout.write( "{0:^12}{1[english]:^12}{1[swahili]:^12}{1[luo]:^12}{2:^12}".format( "Total", total_row, total_row.total() ) ) def status_breakdown(self): self.print_header('Participant Status (control,one-way,two-way)') status_groups = cont.Contact.objects.order_by().values('facility','status','study_group')\ .annotate(count=models.Count('study_id',distinct=True)) # Piviot Group Counts status_counts = collections.defaultdict(StatusRow) for g in status_groups: status_counts[g['facility']][g['status']][g['study_group']] = g['count'] # Print Group Counts self.stdout.write( StatusRow.header() ) total_row = StatusRow() for facility, row in status_counts.items(): self.stdout.write( row.row_str(facility) ) total_row += row self.stdout.write( total_row.row_str("Total") ) def print_delivery_stats(self): self.print_header('Participant Delivery Stats') today = datetime.date.today() c_all = cont.Contact.objects.all() edd = c_all.filter(status='pregnant').order_by('due_date') post = edd.filter(due_date__lt=today) self.stdout.write( 'Found {:d} pregnant participants with {:d} post edd'.format( edd.count(), post.count() ) ) future_edd = edd.order_by("-due_date") self.stdout.write( 'Furthest from EDD') for p in future_edd[:5]: self.stdout.write( "\t{0.study_id} {0.due_date} {0.study_group} (weeks {1:.0f})".format( p, p.delta_days() / 7 ) ) self.stdout.write( '\n') self.stdout.write( 'Furthest past EDD') for p in edd[:5]: self.stdout.write( "\t{0.study_id} {0.due_date} {0.study_group} (weeks {1:.0f})".format( p, p.delta_days() / 7 ) ) self.stdout.write( '\n') # Calculate EDD to Delivery Date offset delta dd = c_all.filter(delivery_date__isnull=False).order_by('delivery_date') self.stdout.write( 'Found {:d} post-partum participants'.format(dd.count()) ) self.stdout.write( 'Furthest from delivery
we use paired sample test. There are 2 types of paired sample test, one is comparing sample means coming from 2 different groups, known as Independent Paired Sample T-Test. On the other hand, when comparing 2 samples coming from same groups, we call it as Dependent Paired Sample T-Test. T-test is only applicable for 2 different samples only. Null & Alternate hypothesis: - :math:`H_0`: Means between 2 samples are the same - :math:`H_1`: Means between 2 samples are not the same Assumptions in T-Test: - Residuals (experimental error) are normally distributed (Shapiro Wilks Test) - Homogeneity of variances (variances are equal between treatment groups) (Levene or Bartlett Test) - Observations are sampled independently from each other Parameters ---------- data : object Dataframe to acquire the population mean and standard deviation for one-sample t-tests var : string Column name from dataframe for t-tests y1 : array-like One-dimensional array-like object (list, numpy array, pandas DataFrame or pandas Series) containing the observed sample values. y2 : array-like, optional One-dimensional array-like object (list, numpy array, pandas DataFrame or pandas Series) containing the observed sample values. Not necessary to include when performing one-sample t-tests. group : array-like or None The corresponding group vector denoting group sample membership. Will return :code:`None` if not passed. var_equal : bool, optional If True, the two samples are assumed to have equal variances and Student's t-test is performed. Defaults to False, which performs Welch's t-test for unequal sample variances. paired : bool, optional If True, performs a paired t-test. Raises ------ ValueError If :code:`paired` is True and a second sample, :code:`y2` is not passed. ValueError If :code:`paired` is True and the number of sample observations in :code:`y1` and :code:`y2` are not equal. Notes ----- Welch's t-test is an adaption of Student's t test and is more performant when the sample variances and size are unequal. The test still depends on the assumption of the underlying population distributions being normally distributed. Welch's t test is defined as: .. math:: t = \frac{\bar{X_1} - \bar{X_2}}{\sqrt{\frac{s_{1}^{2}}{N_1} + \frac{s_{2}^{2}}{N_2}}} where: :math:`\bar{X}` is the sample mean, :math:`s^2` is the sample variance, :math:`n` is the sample size If the :code:`var_equal` argument is True, Student's t-test is used, which assumes the two samples have equal variance. The t statistic is computed as: .. math:: t = \frac{\bar{X}_1 - \bar{X}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} where: .. math:: s_p = \sqrt{\frac{(n_1 - 1)s^2_{X_1} + (n_2 - 1)s^2_{X_2}}{n_1 + n_2 - 2} Examples -------- Similar to other inference methods, there are generally two ways of performing a t-test. The first is to pass a group vector with the :code:`group` parameter and the corresponding observation vector as below. The data used in this example is a subset of the professor salary dataset found in Fox and Weisberg (2011). >>> professor_discipline = ['B', 'B', 'B', 'B', 'B', ... 'A', 'A', 'A', 'A', 'A'] >>> professor_salary = [139750, 173200, 79750, 11500, 141500, ... 103450, 124750, 137000, 89565, 102580] >>> ttest = t_test(professor_salary, group=professor_discipline) >>> print(ttest) {'Sample 1 Mean': 111469.0, 'Sample 2 Mean': 109140.0, 'p-value': 0.9342936060799869, 't-statistic': 0.08695024086399619, 'test description': "Two-Sample Welch's t-test"} The other approach is to pass each group sample vector similar to the below. >>> sal_a = [139750, 173200, 79750, 11500, 141500] >>> sal_b = [103450, 124750, 137000, 89565, 102580] >>> ttest2 = t_test(sal_a, sal_b) >>> print(ttest) {'Sample 1 Mean': 109140.0, 'Sample 2 Mean': 111469.0, 'p-value': 0.9342936060799869, 't-statistic': -0.08695024086399619, 'test description': "Two-Sample Welch's t-test"} Returns ------- sample_statistics : dict Dictionary contains the statistical analysis on t-tests """ self.pop_mean = data[var].mean() self.pop_std = data[var].std() self.group = group self.paired = paired if self.paired and y2 is None: self.log.error("Second sample is missing for paired T-Tests ...") if var_equal: self.method = "Student's T-Test" self.var_equal = var_equal else: self.method = "Welch's T-Test" self.var_equal = False if self.paired == False and y2 is None: test_description = "One Sample T-Test" sample_1 = data.loc[(data[group]==y1) & (data[var].notnull())] self.sample_1_mean = sample_1[var].mean() self.sample_1_std = sample_1[var].std() self.ttest, self.p_value = ttest_1samp(sample_1[var].values, popmean=self.pop_mean) if p_value > Config.ANALYSIS_CONFIG["TEST_ALPHA"]: self.info = "Accept null hypothesis that the means are equal between sample and population ... \ Interpretation: The P-value obtained from 1-Sample T-Test analysis is not significant (P>0.05), \ and therefore, we conclude that there are no significant differences between samples." else: self.info = "Reject null hypothesis that the means are equal between sample and population ... \ Interpretation: The P-value obtained from 1-Sample T-Test analysis is significant (P<0.05), \ and therefore, we conclude that there are significant differences between samples." self.sample_statistics = { "Test Description" : "One-Sample T-Test", "No. of Observations" : int(len(sample_1)), "Population Mean" : self.pop_mean, "Sample Mean" : self.sample_1_mean, "P-Value" : self.p_value, "T-Statistic" : self.ttest, "Test Results" : self.info } elif self.paired == True and y2 is not None: sample_1 = data.loc[(data[group]==y1) & (data[group].notnull())] sample_1 = sample_1.loc[sample_1[var].notnull()] self.sample_1_mean = sample_1[var].mean() self.sample_1_std = sample_1[var].std() sample_2 = data.loc[(data[group]==y2) & (data[group].notnull())] sample_2 = sample_2.loc[sample_2[var].notnull()] self.sample_2_mean = sample_2[var].mean() self.sample_2_std = sample_2[var].std() sample_1, sample_2 = sample_1.sample(n=sample_size), sample_2.sample(n=sample_size) if len(sample_1) != len(sample_2): self.logger.error("Paired samples must have the same number of observations ...") self.ttest, self.p_value = ttest_ind(sample_1[var], sample_2[var]) if p_value > Config.ANALYSIS_CONFIG["TEST_ALPHA"]: self.info = "Accept null hypothesis that the means are equal between sample and population ... \ Interpretation: The P-value obtained from 2-Sample T-Test analysis is not significant (P>0.05), \ and therefore, we conclude that there are no significant differences between samples." else: self.info = "Reject null hypothesis that the means are equal between samples ... \ Interpretation: The P-value obtained from 2-Sample T-Test analysis is significant (P<0.05), \ and therefore, we conclude that there are significant differences between samples." self.sample_statistics = { "Test Description" : "One-Sample T-Test", "No. of Observations" : int(len(sample_1)), "Sample 1 Mean" : self.sample_1_mean, "Sample 2 Mean" : self.sample_2_mean, "P-Value" : self.p_value, "T-Statistic" : self.ttest, "Test Results" : self.info } return def anova(self, data, *args, y_var, type="one", var_equal=True): """Analysis of variance on one independent variable One-Way ANOVA is used to compare 2 means from 2 independent (unrelated) groups using F-distribution. With the null hypothesis for the test is that 2 means are equal. Therefore, a significant results means that the two means are unequal. How ANOVA works: - Check sample sizes: equal number of observations in each grou - Calculate Mean Square (MS) for each group (Sum of Square of Group / DOG); DOF is degree of freedom for the samples - Calculate the Mean Square Error (MSE) (Sum of Square of Error / DOF of residuals) - Calculate the F-Value (MS of Group / Mean Square Error (MSE)) Null & Alternate hypothesis: - :math:`H_0`: Groups means are equal (no variation in means of groups) - :math:`H_1`: At least, one group mean is different from other groups Assumptions in ANOVA: - Residuals (experimental error) are normally distributed (Shapiro Wilks Test) - Homogeneity of variances (variances are equal between treatment groups) (Levene or Bartlett Test) - Observations are sampled independently from each other Example ------- Return ------ """ sample_data = data[var] if type == "one": anova_model = ols('{y} ~ C({x})'.format(y=y_var, x=args), data=sample_data).fit() self.anova_table = sm.stats.anova_lm(anova_model, typ=1) if self.anova_table["PR(>F)"][0] > self.ANALYSIS_CONFIG["TEST_ALPHA"]: self.info = "Accept null hypothesis that the means are equal between samples ... \ Interpretation: The P-value obtained from One-Way ANOVA is not significant (P>0.05), \ and therefore, we conclude that there are no significant differences between samples." else: self.info = "Reject null hypothesis that the means are equal between samples ... \ Interpretation: The P-value obtained from One-Way ANOVA is significant (P<0.05), \ and therefore, we conclude that there are significant differences between samples." elif type == "two": anova_model = ols('{y} ~ C({x})'.format(y=y_var, x=var), data=sample_data).fit() self.anova_table = sm.stats.anova_lm(anova_model, typ=1) if self.anova_table["PR(>F)"][0] > self.ANALYSIS_CONFIG["TEST_ALPHA"]: self.info = "Accept null hypothesis that the means are equal between samples ... \ Interpretation: The P-value obtained from One-Way ANOVA is not significant (P>0.05), \ and
<gh_stars>0 # -*- coding: utf-8 -*- """ Created on Wed Jul 31 13:41:32 2019 @author: s146959 """ # ========================================================================== # # ========================================================================== # from __future__ import absolute_import, with_statement, absolute_import, \ division, print_function, unicode_literals # ========================================================================== # # ========================================================================== # import numpy as _np import os as _os import matplotlib.pyplot as _plt #import scipy.signal.correlate as xcorr from scipy import signal as _sig from FFT.fft_analysis import fftanal, ccf from pybaseutils.plt_utils import savefig from FFT.fft_analysis import butter_lowpass from FFT.notch_filter import iirnotch _plt.close("all") # =============================== # datafolder = _os.path.abspath(_os.path.join('..','..','..','..', 'Workshop')) #datafolder = _os.path.abspath(_os.path.join('W://','HJ','Data')) #datafolder = _os.path.join('/homea','weir','bin') print(datafolder) cmPerGHz = 1 Fs = 1e6 minFreq = 10e3 #minFreq = 15e3 #minFreq = 7.5e3 #minFreq = 0.1e3 fLPF=False f0 = False sepshots = False # separate the shots into different figures backgroundsubtract = True # use the method with _np.real(cc-ccbg) #backgroundsubtract = False # automatically set ccbg = 0.0, no background subtraction keepphase = True # preserve the phase, convert to phasor notation then subtract amplitude of background #keepphase = False # don't worry abotu the phase (assume small complex comp. of bg), just subtract off the whole background spectrum #keepphase only matters if we use oldstylesubtract = False oldstylesubtract = True # reproduce results from ECE paper and Creely, etc. (background subtract coherence within frequency limits) #oldstylesubtract = False # more "Physics based" (background subtract noise spectra as measured pre-plasma start-up) Bvid=0.5e6 Bif=200e6 #windowoverlap=0.5 # ============================================================== # # ============================================================== # fils = [] freqs = [] freq_ref = 60.0 # [GHz] intb = [10e3, 100e3] # good #intb = [40e3, 110e3] # good bg = [400e3, 500e6] # background for coherence subtraction - automatically selected with fallback #freq_ref = 60.0 # [GHz] #fils = ['CECE.69769','CECE.69770','CECE.69771','CECE.69772','CECE.69773','CECE.69777'] #freqs = [13.075, 13.075, 13.085, 13.095, 13.105, 13.08] #freqs = [4.0*freq+8.0 for freq in freqs] ##tb=[0.15,0.25] # background data #tbg = 0.25 # background #04-02-18 fix 1 #fils = ['CECE.69757','CECE.69758','CECE.69759','CECE.69760','CECE.69761','CECE.69762'] #freqs = [13.075, 13.095, 13.115, 13.055, 13.085, 13.045] #freqs = [4.0*freq+8.0 for freq in freqs] #tb=[0.32,0.40] # background data #tbg = 0.27 # background #07-02-18 fix 1 #fils = ['CECE.69884','CECE.69885','CECE.69886','CECE.69887','CECE.69888','CECE.69889','CECE.69890'] #freqs = [13.075, 13.062, 13.085, 13.050, 13.037, 13.025, 13.012] #freqs = [4.0*freq+8.0 for freq in freqs] #tb=[0.32,0.40] # background data #tbg = 0.27 # background #tb = [0.285, 0.315] ##intb = [10e3, 200e3] #intb = [10e3, 275e3] # good ##intb = [10e3, 400e3] ##bg = [200e3, 1e6] # background for coherence subtraction - automatically selected with fallback #bg = [275e3, 1e6] # background for coherence subtraction - automatically selected with fallback ##bg = [400e3, 1e6] # background for coherence subtraction - automatically selected with fallback #Bvid = intb[1] #txtstr = 'jan17_fix4' #fils = ['CECE.65642','CECE.65643','CECE.65644','CECE.65645','CECE.65646','CECE.65647'] #freqs = [68.0, 68.3, 68.2, 68.1, 68.15, 68.05] # #fils.extend(['CECE.65648','CECE.65649','CECE.65650','CECE.65651','CECE.65652']) #freqs.extend([67.95, 68.25, 68.125, 67.90, 67.80]) #tbg = 0.17 ##tb = [0.192, 0.370] # a little bit of saturation at beginning #tb = [0.20, 0.370] # a little bit of saturation at beginning ##tb = [0.20, 0.250] # ##tb = [0.25, 0.30] # we need to check the log for this shot to figure out timing ##tb = [0.32, 0.37] # we need to check the log for this shot to figure out timing ##tb=[0.3,0.39] # ##intb = [15e3, 400e3] # original ##bg = [400e3, 1e6] # background for coherence subtraction - automatically selected with fallback #intb = [375e3, 500e3] # much better! with Gavin's method of background subtraction #bg = [0.0e3, 375.0e3] # background for coherence subtraction - automatically selected with fallback ## January 17th, 2017 #txtstr = 'jan17_fix1' #freq_ref = 68.0 # [GHz] #fils = ['CECE.65624','CECE.65625'] #freqs = [68.3, 68.3] #tbg = 0.17 # background #tb = [0.20, 0.37] #time bounds ##intb = [10e3, 275e3] # good ##bg = [275e3, 1e6] # background for coherence subtraction - automatically selected with fallback #intb = [375e3, 500e3] # good #bg = [10e3, 375e6] # background for coherence subtraction - automatically selected with fallback ##Bvid = intb[1] #txtstr = 'jan17_fix2' freq_ref = 68.0 # [GHz] fils = ['CECE.65626','CECE.65627','CECE.65628','CECE.65629'] freqs = [68.0, 68.2, 68.1, 68.1] fils.extend(['CECE.65630','CECE.65631','CECE.65632','CECE.65633','CECE.65634']) freqs.extend([68.15, 68.05, 67.95, 67.90, 68.125]) tb=[0.37,0.395] # time bounds tbg = 0.17 # background #txtstr = 'jan17_fix3' #freq_ref = 68.0 # [GHz] #fils = ['CECE.65638','CECE.65639','CECE.65640','CECE.65641'] #freqs = [68.3, 68.3, 68.3, 68.3] #txtstr = 'Jan 27, ECH: 107 kW' #fils = ['CECE.65947','CECE.65948','CECE.65949','CECE.65950'] #freqs = [68.3, 68.3, 68.3, 68.3] #tbg = 0.180 # background #tb = [0.21, 0.315] # #txtstr = 'Jan. 27, ECH: 174 kW' #fils = ['CECE.65953','CECE.65954','CECE.65955','CECE.65956','CECE.65957','CECE.65958'] #freqs = [68.3, 68.3, 68.3, 68.3, 68.3, 68.3] #tbg = 0.170 # background #tb = [0.23, 0.30] # #txtstr = 'Jan. 27, ECH: 236 kW' #fils = ['CECE.65961','CECE.65962','CECE.65963','CECE.65964','CECE.65965'] #freqs = [68.3, 68.3, 68.3, 68.3, 68.3] #tbg = 0.170 # background #tb = [0.25, 0.34] # #txtstr = 'Jan. 27 ECH: 301 kW' #fils = ['CECE.65968','CECE.65969','CECE.65971','CECE.65973'] #freqs = [68.3, 68.3, 68.3, 68.3] #tbg = 0.170 # background #tb = [0.25, 0.34] #txtstr = 'Date unknown' #very quiescent data #fils = ['CECE.99103','CECE.99104','CECE.99105','CECE.99106','CECE.99107', # 'CECE.99108','CECE.99109','CECE.99110','CECE.99111','CECE.99112', # 'CECE.99113','CECE.99114'] #freqs = [68.3, 68.2, 68.2, 68.1, 68.0, 68.15, 68,05, 67.95, 67.90, 68.125, 68.25, 68.80] #tbg = 0.20 # background #tb = [0.20, 0.40] ## october, 2015 - fix 1 #fils = ['CECE.60342','CECE.60343','CECE.60344'] #freqs = [67.400, 67.400, 67.400] #tbg = 0.175 #tb = [0.24, 0.315] # ### october, 2015 - fix 2 ##fils = ['CECE.60349','CECE.60350','CECE.60351'] ##freqs = [67.400, 67.400, 67.400] ##tbg = 0.175 ##tb = [0.22, 0.350] # #intb = [15e3, 400e3] # original #bg = [400e3, 1e6] # background for coherence subtraction - automatically selected with fallback ##intb = [375e3, 500e3] # much better! with Gavin's method of background subtraction ##bg = [0.0e3, 375.0e3] # background for coherence subtraction - automatically selected with fallback # ============================================================== # # ============================================================== # if f0: # Make a band rejection / Notch filter for MHD or electronic noise f0 = 80.48e3 # [Hz], frequency to reject Q = 20.0 # Quality factor of digital filter w0 = f0/(0.5*Fs) # Normalized frequency # Design the notch #b, a = _sig.iirnotch(w0, Q) # scipy 0.19.1 b, a = iirnotch(w0, Q) # other # Frequency response w, h = _sig.freqz(b,a) freq = w*Fs/(2.0*_np.pi) # Frequency axis if fLPF: fLPF = max((min((2*intb[1], 400e3)), intb[1])) # [Hz], frequency to reject Bvid = fLPF # lpf_order = 1 # Order of low pass filter lpf_order = 3 # Order of low pass filter # lpf_order = 6 # Order of low pass filter w0 = f0/(0.5*Fs) # Normalized frequency # Design the LPF blpf, alpf = butter_lowpass(fLPF, 0.5*Fs, order=lpf_order) # blpf, alpf = _sig.butter(lpf_order, fLPF/(0.5*Fs), btype='low', analog=False) # Frequency response w, h = _sig.freqz(blpf,alpf) freq = w*Fs/(2.0*_np.pi) # Frequency axis nfils = len(fils) freqs = _np.asarray(freqs[0:nfils], dtype=_np.float64) Tefluct = [] sigmaTe = [] CC2 = [] _Pxx, _Pyy, _Pxy = 0.0, 0.0, 0.0 ylims = [0,0] for ii in range(nfils): filn = _os.path.abspath(_os.path.join(datafolder, fils[ii])) print(filn) _, shotno = filn.split('.') tt, tmpRF, tmpIF = \ _np.loadtxt(filn, dtype=_np.float64, unpack=True, usecols=(0,1,2)) tt = 1e-3*tt.copy() _plt.figure("raw data") _plt.plot(tt, tmpRF) _plt.plot(tt, tmpIF) if tbg>(tb[1]-tb[0]): dt = tb[1]-tb[0] # background signal part bgRF = tmpRF[_np.where((tt>tbg-dt)*(tt<tbg))].copy() bgIF = tmpIF[_np.where((tt>tbg-dt)*(tt<tbg))].copy() ttbg = tt[_np.where((tt>tbg-dt)*(tt<tbg))].copy() else: # background signal part bgRF = tmpRF[_np.where(tt<tbg)].copy() bgIF = tmpIF[_np.where(tt<tbg)].copy() ttbg = tt[_np.where(tt<tbg)].copy() # end if # signal part tt_tb=[_np.where(tt>=tb[0])[0][0],_np.where(tt>=tb[1])[0][0]] tt=tt[tt_tb[0]:tt_tb[1]+1].copy() tmpRF=tmpRF[tt_tb[0]:tt_tb[1]+1].copy() tmpIF=tmpIF[tt_tb[0]:tt_tb[1]+1].copy() _plt.axvline(x=tt[0]) _plt.axvline(x=tt[-1]) tmpRF -= _np.mean(tmpRF) tmpIF -= _np.mean(tmpIF) bgRF -= _np.mean(bgRF) bgIF -= _np.mean(bgIF) if fLPF: tmpRF = _sig.filtfilt(blpf, alpf, tmpRF.copy()) tmpIF = _sig.filtfilt(blpf, alpf, tmpIF.copy()) bgRF = _sig.filtfilt(blpf, alpf, bgRF.copy()) bgIF = _sig.filtfilt(blpf, alpf, bgIF.copy()) if f0: # Apply a zero-phase digital filter to both signals tmpRF = _sig.filtfilt(b, a, tmpRF.copy()) # padding with zeros tmpIF = _sig.filtfilt(b, a, tmpIF.copy()) # padding with zeros bgRF = _sig.filtfilt(b, a, bgRF.copy()) # padding with zeros bgIF = _sig.filtfilt(b, a, bgIF.copy()) # padding with zeros if tt[1]-tt[0]!=tt[2]-tt[1]: tt2=_np.linspace(tt[0],tt[-1],len(tt),endpoint=True) tmpRF=_np.interp(_np.asarray(tt2,dtype=float), tt, tmpRF.copy()) tmpIF=_np.interp(_np.asarray(tt2,dtype=float), tt, tmpIF.copy()) tt=tt2.copy() tt2 = _np.linspace(ttbg[0], ttbg[-1], len(ttbg), endpoint=True) bgRF=_np.interp(_np.asarray(tt2,dtype=float), ttbg, bgRF.copy()) bgIF=_np.interp(_np.asarray(tt2,dtype=float), ttbg, bgIF.copy()) ttbg=tt2.copy() # end if # fs=1/(((tt[len(tt)-1]-tt[0])/len(tt))) # SignalTime=tt[tt_tb][1]-tt[tt_tb][0] # you've already truncated the signal into time SignalTime=tt[-1]-tt[0] sig_anal = fftanal(tt.copy(), tmpRF.copy(), tmpIF.copy(), windowfunction='hanning', onesided=True, minFreq=minFreq, plotit=False) sig_anal.fftpwelch() bg_anal = fftanal(ttbg.copy(), bgRF.copy(), bgIF.copy(), windowfunction='hanning', onesided=True, minFreq=minFreq, plotit=False) # onesided=True, Navr=sig_anal.Navr, plotit=False) bg_anal.fftpwelch() nwins = sig_anal.nwins fs = sig_anal.Fs fr = fs/float(nwins) Navr = sig_anal.Navr freq = sig_anal.freq.copy() Pxy = sig_anal.Pxy.copy() Pxx = sig_anal.Pxx.copy() Pyy = sig_anal.Pyy.copy() siglags = sig_anal.fftinfo.lags.copy() sigcorrcoef = sig_anal.fftinfo.corrcoef.copy() MaxFreq=fs/2. MinFreq=2.0*fs/nwins #2*fr print('Maximal frequency: '+str(MaxFreq)+' Hz') print('Minimal frequency: '+str(MinFreq)+' Hz') # integration frequencies f1=max((MinFreq, intb[0])) f2=min((MaxFreq, intb[1])) if1 = _np.where(freq>=f1)[0] if2 = _np.where(freq>=f2)[0] if1 = 0 if len(if1) == 0 else if1[0] if2 = len(freq) if len(if2) == 0 else if2[0] ifreqs = _np.asarray(range(if1, if2), dtype=int) # =================== # cc=Pxy/_np.sqrt(Pxx.real*Pyy.real) if backgroundsubtract: if oldstylesubtract: # background subtraction indices / frequencies ibg1 = _np.where(freq>=min((MaxFreq,bg[0])))[0] ibg2 = _np.where(freq>=bg[1])[0] ibg1 = 0 if len(ibg1) == 0 else ibg1[0] ibg2 = -1 if len(ibg2) == 0 else ibg2[0] # ibg1 = _np.where(10*_np.log10(_np.abs(Pxy))<-85)[0][0] # ibg2 = _np.where(10*_np.log10(_np.abs(Pxy))<-85)[0][-1] if freq[ibg1]<f2: df = int( (min((bg[1],freq[-1]))-bg[0])//(freq[1]-freq[0])) ibg1 = _np.where(freq>=min((MaxFreq,bg[0])))[0] ibg1 = ibg2-df if len(ibg1)==0 else ibg1[0] #
{ "user-agent": "APIMATIC 2.0", "accept": "application/json", "X-Auth-Token": Configuration.x_auth_token, "X-Auth-Token": Configuration.x_auth_token } # Prepare the API call. http_request = self.http_client.post(query_url, headers=headers) # Invoke the API call to fetch the response. response = self.http_client.execute_as_string(http_request); # Endpoint error handling using HTTP status codes. if response.status_code == 403: raise APIException("User not authorized to perform the operation", 403, response.raw_body) elif response.status_code == 404: raise APIException("Resource not found", 404, response.raw_body) # Global error handling using HTTP status codes. self.validate_response(response) return response.raw_body def delete_cart(self, account_number, cart_id): """Does a DELETE request to /accounts/{account_number}/carts/{cart_id}. Delete a cart Args: account_number (string): Account number cart_id (string): Cart Id Returns: void: Response from the API. Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # The base uri for api requests query_builder = Configuration.BASE_URI # Prepare query string for API call query_builder += "/accounts/{account_number}/carts/{cart_id}" # Process optional template parameters query_builder = APIHelper.append_url_with_template_parameters(query_builder, { "account_number": account_number, "cart_id": cart_id }) # Validate and preprocess url query_url = APIHelper.clean_url(query_builder) # Prepare headers headers = { "user-agent": "APIMATIC 2.0", "X-Auth-Token": Configuration.x_auth_token, "X-Auth-Token": Configuration.x_auth_token } # Prepare the API call. http_request = self.http_client.delete(query_url, headers=headers) # Invoke the API call to fetch the response. response = self.http_client.execute_as_string(http_request); # Endpoint error handling using HTTP status codes. if response.status_code == 401: raise APIException("You are not authenticated", 401, response.raw_body) elif response.status_code == 403: raise APIException("This action needs a valid WSSE header", 403, response.raw_body) elif response.status_code == 404: raise APIException("Resource not found", 404, response.raw_body) # Global error handling using HTTP status codes. self.validate_response(response) def get_cart(self, account_number, cart_id): """Does a GET request to /accounts/{account_number}/carts/{cart_id}. Allow clients to get a specific cart. Args: account_number (string): Account number cart_id (string): Cart id Returns: mixed: Response from the API. Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # The base uri for api requests query_builder = Configuration.BASE_URI # Prepare query string for API call query_builder += "/accounts/{account_number}/carts/{cart_id}" # Process optional template parameters query_builder = APIHelper.append_url_with_template_parameters(query_builder, { "account_number": account_number, "cart_id": cart_id }) # Validate and preprocess url query_url = APIHelper.clean_url(query_builder) # Prepare headers headers = { "user-agent": "APIMATIC 2.0", "accept": "application/json", "X-Auth-Token": Configuration.x_auth_token, "X-Auth-Token": Configuration.x_auth_token } # Prepare the API call. http_request = self.http_client.get(query_url, headers=headers) # Invoke the API call to fetch the response. response = self.http_client.execute_as_string(http_request); # Endpoint error handling using HTTP status codes. if response.status_code == 401: raise APIException("You are not authenticated", 401, response.raw_body) elif response.status_code == 403: raise APIException("This action needs a valid WSSE header", 403, response.raw_body) elif response.status_code == 404: raise APIException("Resource not found", 404, response.raw_body) # Global error handling using HTTP status codes. self.validate_response(response) return response.raw_body def create_cart_checkout(self, account_number, cart_id, cart_checkout_form): """Does a POST request to /accounts/{account_number}/carts/{cart_id}/checkout. Checkout a cart and create an order Args: account_number (string): Account Number cart_id (string): Cart Id cart_checkout_form (CartCheckoutForm): TODO: type description here. Returns: mixed: Response from the API. Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # The base uri for api requests query_builder = Configuration.BASE_URI # Prepare query string for API call query_builder += "/accounts/{account_number}/carts/{cart_id}/checkout" # Process optional template parameters query_builder = APIHelper.append_url_with_template_parameters(query_builder, { "account_number": account_number, "cart_id": cart_id }) # Validate and preprocess url query_url = APIHelper.clean_url(query_builder) # Prepare headers headers = { "user-agent": "APIMATIC 2.0", "accept": "application/json", "content-type": "application/json; charset=utf-8", "X-Auth-Token": Configuration.x_auth_token, "X-Auth-Token": Configuration.x_auth_token } # Prepare the API call. http_request = self.http_client.post(query_url, headers=headers, parameters=APIHelper.json_serialize(cart_checkout_form)) # Invoke the API call to fetch the response. response = self.http_client.execute_as_string(http_request); # Endpoint error handling using HTTP status codes. if response.status_code == 403: raise APIException("User not authorized to perform the operation", 403, response.raw_body) elif response.status_code == 404: raise APIException("Resource not found", 404, response.raw_body) # Global error handling using HTTP status codes. self.validate_response(response) return response.raw_body def delete_items(self, account_number, cart_id): """Does a DELETE request to /accounts/{account_number}/carts/{cart_id}/items. Delete all carts items Args: account_number (string): Account Number cart_id (int): Cart Id Returns: string: Response from the API. Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # The base uri for api requests query_builder = Configuration.BASE_URI # Prepare query string for API call query_builder += "/accounts/{account_number}/carts/{cart_id}/items" # Process optional template parameters query_builder = APIHelper.append_url_with_template_parameters(query_builder, { "account_number": account_number, "cart_id": cart_id }) # Validate and preprocess url query_url = APIHelper.clean_url(query_builder) # Prepare headers headers = { "user-agent": "APIMATIC 2.0", "X-Auth-Token": Configuration.x_auth_token, "X-Auth-Token": Configuration.x_auth_token } # Prepare the API call. http_request = self.http_client.delete(query_url, headers=headers) # Invoke the API call to fetch the response. response = self.http_client.execute_as_string(http_request); # Endpoint error handling using HTTP status codes. if response.status_code == 401: raise APIException("You are not authenticated", 401, response.raw_body) elif response.status_code == 403: raise APIException("This action needs a valid WSSE header", 403, response.raw_body) elif response.status_code == 404: raise APIException("Resource not found", 404, response.raw_body) # Global error handling using HTTP status codes. self.validate_response(response) return str(response.raw_body) def get_items(self, account_number, cart_id, page=None, limit=None): """Does a GET request to /accounts/{account_number}/carts/{cart_id}/items. Allow clients to get the list of cart items. Args: account_number (string): Account Number cart_id (int): Cart Id page (int, optional): Zero based offset index for the results. e.g. 0 would start at the first result and 10 would start at the eleventh result. limit (int, optional): Maximum number of results to return in the response. Returns: mixed: Response from the API. Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # The base uri for api requests query_builder = Configuration.BASE_URI # Prepare query string for API call query_builder += "/accounts/{account_number}/carts/{cart_id}/items" # Process optional template parameters query_builder = APIHelper.append_url_with_template_parameters(query_builder, { "account_number": account_number, "cart_id": cart_id }) # Process optional query parameters query_parameters = { "page": page, "limit": limit } # Validate and preprocess url query_url = APIHelper.clean_url(query_builder) # Prepare headers headers = { "user-agent": "APIMATIC 2.0", "accept": "application/json", "X-Auth-Token": Configuration.x_auth_token, "X-Auth-Token": Configuration.x_auth_token } # Prepare the API call. http_request = self.http_client.get(query_url, headers=headers, query_parameters=query_parameters) # Invoke the API call to fetch the response. response = self.http_client.execute_as_string(http_request); # Endpoint error handling using HTTP status codes. if response.status_code == 401: raise APIException("You are not authenticated", 401, response.raw_body) elif response.status_code == 403: raise APIException("This action needs a valid WSSE header", 403, response.raw_body) elif response.status_code == 404: raise APIException("Resource not found", 404, response.raw_body) # Global error handling using HTTP status codes. self.validate_response(response) return response.raw_body def create_items(self, account_number, cart_id, item_form): """Does a POST request to /accounts/{account_number}/carts/{cart_id}/items. TODO: type endpoint description here. Args: account_number (string): Account Number cart_id (int): Cart Id item_form (ItemForm): TODO: type description here. Returns: mixed: Response from the API. Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # The base uri for api requests query_builder = Configuration.BASE_URI # Prepare query string for API call query_builder += "/accounts/{account_number}/carts/{cart_id}/items" # Process optional template parameters query_builder = APIHelper.append_url_with_template_parameters(query_builder, { "account_number": account_number, "cart_id": cart_id }) # Validate and preprocess url query_url = APIHelper.clean_url(query_builder) # Prepare headers headers = { "user-agent": "APIMATIC 2.0", "accept": "application/json", "content-type": "application/json; charset=utf-8", "X-Auth-Token": Configuration.x_auth_token, "X-Auth-Token": Configuration.x_auth_token
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import datetime import os from typing import Any, Callable, Dict, List, Optional, Union import uuid import airflow from airflow.exceptions import AirflowException if airflow.__version__ > "2.0": from airflow.hooks.base import BaseHook else: from airflow.hooks.base_hook import BaseHook from airflow.models import BaseOperator from airflow.utils.decorators import apply_defaults import great_expectations as ge from great_expectations.checkpoint import LegacyCheckpoint from great_expectations.checkpoint.types.checkpoint_result import CheckpointResult from great_expectations.data_context.types.base import ( DataContextConfig, GCSStoreBackendDefaults, ) from great_expectations.data_context import BaseDataContext class GreatExpectationsOperator(BaseOperator): """ An operator to leverage Great Expectations as a task in your Airflow DAG. Current list of expectations types: https://docs.greatexpectations.io/en/latest/reference/glossary_of_expectations.html How to create expectations files: https://docs.greatexpectations.io/en/latest/guides/tutorials/how_to_create_expectations.html :param run_name: Identifies the validation run (defaults to timestamp if not specified) :type run_name: Optional[str] :param data_context_root_dir: Path of the great_expectations directory :type data_context_root_dir: Optional[str] :param data_context: A great_expectations `DataContext` object :type data_context: Optional[BaseDataContext] :param expectation_suite_name: The name of the Expectation Suite to use for validation :type expectation_suite_name: Optional[str] :param batch_kwargs: The batch_kwargs to use for validation :type batch_kwargs: Optional[dict] :param assets_to_validate: A list of dictionaries of batch_kwargs + Expectation Suites to use for validation :type assets_to_validate: Optional[list[dict]] :param checkpoint_name: A Checkpoint name to use for validation :type checkpoint_name: Optional[str] :param validation_operator_name: name of a Great Expectations validation operator, defaults to action_list_operator :type validation_operator_name: Optional[str] :param fail_task_on_validation_failure: Fail the Airflow task if the Great Expectation validation fails :type fail_task_on_validation_failure: Optiopnal[bool] :param validation_failure_callback: Called when the Great Expectations validation fails :type validation_failure_callback: Callable[[CheckpointResult], None] :param **kwargs: kwargs :type **kwargs: Optional[dict] """ ui_color = "#AFEEEE" ui_fgcolor = "#000000" template_fields = ( "checkpoint_name", "batch_kwargs", "assets_to_validate", "data_context_root_dir", ) @apply_defaults def __init__( self, *, run_name: Optional[str] = None, data_context_root_dir: Optional[Union[str, bytes, os.PathLike]] = None, data_context: Optional[BaseDataContext] = None, expectation_suite_name: Optional[str] = None, batch_kwargs: Optional[Dict] = None, assets_to_validate: Optional[List[Dict]] = None, checkpoint_name: Optional[str] = None, validation_operator_name: Optional[str] = None, fail_task_on_validation_failure: Optional[bool] = True, validation_failure_callback: Optional[ Callable[[CheckpointResult], None] ] = None, **kwargs ): super().__init__(**kwargs) self.run_name: Optional[str] = run_name # Check that only one of the arguments is passed to set a data context (or none) if data_context_root_dir and data_context: raise ValueError( "Only one of data_context_root_dir or data_context can be specified." ) self.data_context_root_dir: Optional[str] = data_context_root_dir self.data_context: Optional[BaseDataContext] = data_context # Check that only the correct args to validate are passed # this doesn't cover the case where only one of expectation_suite_name or batch_kwargs is specified # along with one of the others, but I'm ok with just giving precedence to the correct one if ( sum( bool(x) for x in [ (expectation_suite_name and batch_kwargs), assets_to_validate, checkpoint_name, ] ) != 1 ): raise ValueError( "Exactly one of expectation_suite_name + batch_kwargs, " "assets_to_validate, or checkpoint_name is required to run validation." ) self.expectation_suite_name: Optional[str] = expectation_suite_name self.batch_kwargs: Optional[Dict] = batch_kwargs self.assets_to_validate: Optional[List[Dict]] = assets_to_validate self.checkpoint_name: Optional[str] = checkpoint_name self.validation_operator_name: Optional[str] = validation_operator_name self.fail_task_on_validation_failure = fail_task_on_validation_failure self.validation_failure_callback = validation_failure_callback def create_data_context(self) -> BaseDataContext: """Create and return the :class:`~ge.data_context.DataContext` to be used during validation. Subclasses should override this to provide custom logic around creating a `DataContext`. This is called at task execution time, which defers connecting to the meta database and allows for the use of templated variables. """ if self.data_context_root_dir: return ge.data_context.DataContext( context_root_dir=self.data_context_root_dir ) else: return ge.data_context.DataContext() def execute(self, context: Any) -> CheckpointResult: self.log.info("Ensuring data context exists...") if not self.data_context: self.log.info("Data context does not exist, creating now.") self.data_context: Optional[BaseDataContext] = self.create_data_context() self.log.info("Running validation with Great Expectations...") batches_to_validate = [] if self.batch_kwargs and self.expectation_suite_name: batch = { "batch_kwargs": self.batch_kwargs, "expectation_suite_names": [self.expectation_suite_name], } batches_to_validate.append(batch) elif self.checkpoint_name: checkpoint = self.data_context.get_checkpoint(self.checkpoint_name) for batch in checkpoint.batches: batch_kwargs = batch["batch_kwargs"] for suite_name in batch["expectation_suite_names"]: batch = { "batch_kwargs": batch_kwargs, "expectation_suite_names": [suite_name], } batches_to_validate.append(batch) elif self.assets_to_validate: for asset in self.assets_to_validate: batch = { "batch_kwargs": asset["batch_kwargs"], "expectation_suite_names": [asset["expectation_suite_name"]], } batches_to_validate.append(batch) result = LegacyCheckpoint( name="_temp_checkpoint", data_context=self.data_context, validation_operator_name=self.validation_operator_name, batches=batches_to_validate, ).run(run_name=self.run_name) self.handle_result(result) return result def handle_result(self, result: CheckpointResult) -> None: """Handle the given validation result. If the validation failed, this method will: - call :attr:`~validation_failure_callback`, if set - raise an :exc:`airflow.exceptions.AirflowException`, if :attr:`~fail_task_on_validation_failure` is `True`, otherwise, log a warning message If the validation succeeded, this method will simply log an info message. :param result: The validation result :type result: CheckpointResult """ if not result["success"]: if self.validation_failure_callback: self.validation_failure_callback(result) if self.fail_task_on_validation_failure: raise AirflowException("Validation with Great Expectations failed.") else: self.log.warning( "Validation with Great Expectations failed. " "Continuing DAG execution because " "fail_task_on_validation_failure is set to False." ) else: self.log.info("Validation with Great Expectations successful.") class GreatExpectationsBigQueryOperator(GreatExpectationsOperator): """ An operator that allows you to use Great Expectations to validate data Expectations against a BigQuery table or the result of a SQL query. The Expectations need to be stored in a JSON file sitting in an accessible GCS bucket. The validation results are output to GCS in both JSON and HTML formats. :param gcp_project: The GCP project of the bucket holding the Great Expectations artifacts. :type gcp_project: str :param gcs_bucket: GCS bucket holding the Great Expectations artifacts. :type gcs_bucket: str :param gcs_expectations_prefix: GCS prefix where the Expectations file can be found. For example, "ge/expectations". :type gcs_expectations_prefix: str :param gcs_validations_prefix: GCS prefix where the validation output files should be saved. For example, "ge/expectations". :type gcs_validations_prefix: str :param gcs_datadocs_prefix: GCS prefix where the validation datadocs files should be saved. For example, "ge/expectations". :type gcs_datadocs_prefix: str :param query: The SQL query that defines the set of data to be validated. If the query parameter is filled in then the `table` parameter cannot be. :type query: Optional[str] :param table: The name of the BigQuery table with the data to be validated. If the table parameter is filled in then the `query` parameter cannot be. :type table: Optional[str] :param bq_dataset_name: The name of the BigQuery data set where any temp tables will be created that are needed as part of the GE validation process. :type bq_dataset_name: str :param bigquery_conn_id: ID of the connection with the credentials info needed to connect to BigQuery. :type bigquery_conn_id: str """ ui_color = "#AFEEEE" ui_fgcolor = "#000000" template_fields = GreatExpectationsOperator.template_fields + ( "bq_dataset_name", "gcp_project", "gcs_bucket", ) @apply_defaults def __init__( self, *, gcp_project: str, gcs_bucket: str, gcs_expectations_prefix: str, gcs_validations_prefix: str, gcs_datadocs_prefix: str, query: Optional[str] = None, table: Optional[str] = None, bq_dataset_name: str, bigquery_conn_id: str = "bigquery_default", **kwargs ): self.query: Optional[str] = query self.table: Optional[str] = table self.bigquery_conn_id = bigquery_conn_id self.bq_dataset_name = bq_dataset_name self.gcp_project = gcp_project self.gcs_bucket = gcs_bucket self.gcs_expectations_prefix = gcs_expectations_prefix self.gcs_validations_prefix = gcs_validations_prefix self.gcs_datadocs_prefix = gcs_datadocs_prefix super().__init__(batch_kwargs=self.get_batch_kwargs(), **kwargs) def create_data_context(self) -> BaseDataContext: """Create and return the `DataContext` with a BigQuery `DataSource`.""" # Get the credentials information for the BigQuery data source from the BigQuery # Airflow connection conn = BaseHook.get_connection(self.bigquery_conn_id) connection_json = conn.extra_dejson credentials_path = connection_json.get("extra__google_cloud_platform__key_path") data_context_config = DataContextConfig( config_version=2, datasources={ "bq_datasource": { "credentials": { "url": "bigquery://" + self.gcp_project + "/" + self.bq_dataset_name + "?credentials_path=" + credentials_path }, "class_name": "SqlAlchemyDatasource", "module_name": "great_expectations.datasource", "data_asset_type": { "module_name": "great_expectations.dataset", "class_name": "SqlAlchemyDataset", }, } }, store_backend_defaults=GCSStoreBackendDefaults( default_bucket_name=self.gcs_bucket, default_project_name=self.gcp_project, validations_store_prefix=self.gcs_validations_prefix, expectations_store_prefix=self.gcs_expectations_prefix, data_docs_prefix=self.gcs_datadocs_prefix, ), ) return BaseDataContext(project_config=data_context_config) def get_batch_kwargs(self) -> Dict: # Tell GE where to fetch the batch of data to be validated. batch_kwargs = { "datasource": "bq_datasource", } # Check that only one of the arguments is passed to set a data context (or none) if self.query and self.table: raise ValueError("Only one of query or table can be specified.") if self.query: batch_kwargs["query"] = self.query batch_kwargs["data_asset_name"] = self.bq_dataset_name batch_kwargs["bigquery_temp_table"] = self.get_temp_table_name( "ge_" + datetime.datetime.now().strftime("%Y%m%d") + "_", 10 ) elif self.table: batch_kwargs["table"] = self.table batch_kwargs["data_asset_name"] =
observed samle rects2 = plt.bar(index, house_selling_model(chunks, r)[1], bar_width,alpha=opacity,color='black',label='Achieved') #Plot the minimum values of each observed sample rects1 = plt.bar(index + bar_width, house_selling_model(chunks, r)[0], bar_width, alpha=opacity,color='darkred',label='Optimal') #Label #Label plt.xlabel('Stops', size = 50) plt.ylabel('Load Values', size = 50) plt.title('Loads in each Run with N = {} for House Selling Model'.format(chunks), size = 60) plt.xticks(index + (bar_width/2), tuple(range(1,n_groups_house+1))) plt.xticks(fontsize= 30) plt.yticks(fontsize= 30) plt.xlim([0-bar_width/2,index.size]) plt.legend(prop={'size': 25}) plt.savefig('house_selling_figures/hs_{}_'.format(chunks) + time.strftime("%Y-%m-%d %H%M%S") + '.png') plt.figure(figsize=(30,25)) # Times Plot #Plot the achieved values of each observed sample rects2 = plt.bar(index, house_selling_model(chunks, r)[5], bar_width,alpha=opacity,color='darkblue',label='Time instance difference from optimal') plt.xlabel('Stops', size = 50) plt.ylabel('Time Instances', size = 50) plt.title('Times in each Run with N = {} for House Selling Model'.format(chunks), size = 60) plt.xticks(index, tuple(range(1,n_groups_house+1))) plt.xticks(fontsize= 30) plt.yticks(fontsize= 30) plt.xlim([0-bar_width/2,index.size]) plt.legend(prop={'size': 25}) plt.plot() plt.savefig('house_selling_figures/hs_times_{}_'.format(chunks) + time.strftime("%Y-%m-%d %H%M%S") + '.png') #Display the dataframe runs_data = {'Run': list(range(1,len(house_selling_model(chunks, r)[0])+1)),'Optimal': house_selling_model(chunks, r)[0],'Load when Offloading': house_selling_model(chunks, r)[1], 'Load Difference': house_selling_model(chunks, r)[2],} runs_frame = pd.DataFrame(runs_data, columns = ['Run','Optimal','Load when Offloading', 'Load Difference']) runs_frame.index += 1 display(runs_frame) runs_frame.to_csv('house_selling_figures/dataframes/hs_data_{}_'.format(chunks) + time.strftime("%Y-%m-%d %H%M%S") + '.csv') # # RANDOM AND SECRETARY MODELS Vs OPTIMAL # In[8]: #Plot the different models (random(P) for different probabilities and seecretary model) to compare with the optimal for each model #Set the rpb_model(eg. rpb_200) and the secretary model(eg. secretary model(200)) def avg_loads_by_stop(rpb_model, secretary_model, house_selling_model): fig, ax = plt.subplots(1, 1,figsize=(30,25)) bar_width = 0.4 opacity = 0.8 optimal_means = [np.mean(rpb_model[0][0]),np.mean(rpb_model[1][0]),np.mean(rpb_model[2][0]),np.mean(rpb_model[3][0]), np.mean(rpb_model[4][0]), np.mean(secretary_model[0]), np.mean(house_selling_model[0])] achieved_means = [np.mean(rpb_model[0][1]),np.mean(rpb_model[1][1]),np.mean(rpb_model[2][1]),np.mean(rpb_model[3][1]), np.mean(rpb_model[4][1]),np.mean(secretary_model[1]), np.mean(house_selling_model[1])] all_means = np.array([np.mean(rpb_model[0][0]), np.mean(rpb_model[0][1]),np.mean(rpb_model[1][1]),np.mean(rpb_model[2][1]),np.mean(rpb_model[3][1]), np.mean(rpb_model[4][1]),np.mean(secretary_model[1]), np.mean(house_selling_model[1])]) comparison = all_means - all_means[0][None] comp = list(comparison) comp.pop(0) #Plot the achieved values of each observed samle rects2 = plt.bar(np.arange(8) + bar_width, all_means, bar_width,alpha=opacity,color = '#99ccff',label='Means') rects2[0].set_color('g') #Label x_ticks_labels = ['Optimal', 'Random(P = 0.05)','Random(P = 0.1)','Random(P = 0.2)','Random(P = 0.3)','Random(P = 0.5)', 'Secretary', 'House Selling'] plt.xlabel('Models', size = 40) plt.ylabel('Load Values', size = 40) plt.title('Avg Loads by Stop for each Model for selected Chunk', size=50) plt.xticks(np.arange(8) + bar_width/2, ('Optimal','Random(P = 0.05)','Random(P = 0.1)','Random(P = 0.2)','Random(P = 0.3)','Random(P = 0.5)', 'Secretary', 'House Selling'), rotation=35) plt.xticks(fontsize= 35) plt.yticks(fontsize= 35) # for p in ax.patches: # ax.annotate("%.2f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.get_height()), # ha='center', va='center', rotation=0, xytext=(0, 20), textcoords='offset points') plt.legend(prop={'size': 25}) plt.savefig('averages/Averages for chosen N_' + time.strftime("%Y-%m-%d %H%M%S") + '.png') #Display the dataframe runs_data = {'Model': ['Random(P = 0.05)','Random(P = 0.1)','Random(P = 0.2)','Random(P = 0.3)','Random(P = 0.5)', 'Secretary', 'House Selling'], 'Optimal Means': optimal_means, 'Offloading Means': achieved_means, 'Mean Load Difference': comp} #np.array(achieved_means) - np.array(optimal_means)} runs_frame = pd.DataFrame(runs_data, columns = ['Model','Optimal Means', 'Offloading Means', 'Mean Load Difference']) runs_frame.index += 1 fig = plt.figure(figsize=(20,20)) ax1 = plt.subplot(111) ret = ax1.bar(runs_frame['Model'], runs_frame['Mean Load Difference'], color = '#99ccff') ret[np.where(runs_frame['Mean Load Difference'] == runs_frame['Mean Load Difference'].min())[0][0]].set_color('#404040') plt.xticks(fontsize= 30, rotation = 90) plt.yticks(fontsize= 30) plt.xlabel('Models', size = 40) plt.ylabel('Load Difference', size = 40) plt.title('Load Mean Differences', size = 50) for p in ax1.patches: ax1.annotate("%.2f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='center', rotation=0, xytext=(0, 20), textcoords='offset points') plt.savefig('averages/Best_Model_' + time.strftime("%Y-%m-%d %H%M%S") + '.png') display(runs_frame) runs_frame.to_csv('averages/dataframes/averages_data_' + time.strftime("%Y-%m-%d %H%M%S") + '.csv') # In[9]: #These are the Random(P) probability models #ALL COMBINATIONS OF CHUNKS AND PROBABILITIES #RUN THESE BEFORE PROCEEDING TO ANALYSIS # rpb_20 = [random_prob_model(20, 0.05), # random_prob_model(20, 0.1), # random_prob_model(20, 0.2), # random_prob_model(20, 0.3), # random_prob_model(20, 0.5)] # rpb_50 = [random_prob_model(50, 0.05), # random_prob_model(50, 0.1), # random_prob_model(50, 0.2), # random_prob_model(50, 0.3), # random_prob_model(50, 0.5)] # rpb_80 = [random_prob_model(80, 0.05), # random_prob_model(80, 0.1), # random_prob_model(80, 0.2), # random_prob_model(80, 0.3), # random_prob_model(80, 0.5)] # rpb_100 = [random_prob_model(100, 0.05), # random_prob_model(100, 0.1), # random_prob_model(100, 0.2), # random_prob_model(100, 0.3), # random_prob_model(100, 0.5)] # rpb_150 = [random_prob_model(150, 0.05), # random_prob_model(150, 0.1), # random_prob_model(150, 0.2), # random_prob_model(150, 0.3), # random_prob_model(150, 0.5)] # rpb_200 = [random_prob_model(200, 0.05), # random_prob_model(200, 0.1), # random_prob_model(200, 0.2), # random_prob_model(200, 0.3), # random_prob_model(200, 0.5)] #EXAMPLES, run the models by changing the chunk number (eg. rpb_200) and the square bracket value for the Probability #Probabilities # 0 = 0.05 # 1 = 0.1 # 2 = 0.2 # 3 = 0.3 # 4 = 0.5 #Chunks N # 20,50,80,100,150,200 #For the House Selling model define chunks and the factor r (eg r = 0.1) # #MODELS # randomP_simulation_run(rpb_200[1],200) # secretary_simulation_run(200) # house_selling_simulation_run(200, 0) # avg_loads_by_stop(rpb_200, secretary_model(200), house_selling_model(200, 0.015)) # 50 0.052 # 100 0.064 # 150 0.046 # 200 0.015 # In[13]: def main(): user_input = str(input("Please enter the name of the .csv file you want to view: ")) print(file(user_input)) #Generate the dataset for the Random(P) Model rpb_20 = [random_prob_model(20, 0.05),random_prob_model(20, 0.1),random_prob_model(20, 0.2),random_prob_model(20, 0.3),random_prob_model(20, 0.5)] rpb_50 = [random_prob_model(50, 0.05),random_prob_model(50, 0.1),random_prob_model(50, 0.2),random_prob_model(50, 0.3),random_prob_model(50, 0.5)] rpb_80 = [random_prob_model(80, 0.05),random_prob_model(80, 0.1),random_prob_model(80, 0.2),random_prob_model(80, 0.3),random_prob_model(80, 0.5)] rpb_100 = [random_prob_model(100, 0.05),random_prob_model(100, 0.1),random_prob_model(100, 0.2),random_prob_model(100, 0.3),random_prob_model(100, 0.5)] rpb_150 = [random_prob_model(150, 0.05),random_prob_model(150, 0.1),random_prob_model(150, 0.2),random_prob_model(150, 0.3),random_prob_model(150, 0.5)] rpb_200 = [random_prob_model(200, 0.05),random_prob_model(200, 0.1),random_prob_model(200, 0.2),random_prob_model(200, 0.3),random_prob_model(200, 0.5)] loop = True while(loop): selection = str(input("You can choose from:\n 1 = Random(P) Model\n 2 = Secretary Model\n 3 = House Selling Model\n 4 = Average of Models\nEnter your selection: ")) if selection == '1': chunk_selection = int(input("Please enter the number of chunks you want to analyze. You can choose from [20,50,80,100,150,200]: ")) if chunk_selection == 20: probability_selection = int(input("Please enter the probability you want.\n\nYou can choose from:\n 0 = 0.05\n 1 = 0.1\n 2 = 0.2\n 3 = 0.3\n 4 = 0.5\n\nEnter your selection: ")) randomP_simulation_run(rpb_20[probability_selection], chunk_selection) if chunk_selection == 50: probability_selection = int(input("Please enter the probability you want.\n\n\nYou can choose from:\n 0 = 0.05\n 1 = 0.1\n 2 = 0.2\n 3 = 0.3\n 4 = 0.5\n\nEnter your selection: ")) randomP_simulation_run(rpb_50[probability_selection], chunk_selection) if chunk_selection == 80: probability_selection = int(input("Please enter the probability you want.\n\n\nYou can choose from:\n 0 = 0.05\n 1 = 0.1\n 2 = 0.2\n 3 = 0.3\n 4 = 0.5\n\nEnter your selection: ")) randomP_simulation_run(rpb_80[probability_selection], chunk_selection) if chunk_selection == 100: probability_selection = int(input("Please enter the probability you want.\n\n\nYou can choose from:\n 0 = 0.05\n 1 = 0.1\n 2 = 0.2\n 3 = 0.3\n 4 = 0.5\n\nEnter your selection: ")) randomP_simulation_run(rpb_100[probability_selection], chunk_selection) if chunk_selection == 150: probability_selection = int(input("Please enter the probability you want.\n\n\nYou can choose from:\n 0 = 0.05\n 1 = 0.1\n 2 = 0.2\n 3 = 0.3\n 4 = 0.5\n\nEnter your selection: ")) randomP_simulation_run(rpb_150[probability_selection], chunk_selection) if chunk_selection == 200: probability_selection = int(input("Please enter the probability you want.\n\n\nYou can choose from:\n 0 = 0.05\n 1 = 0.1\n 2 = 0.2\n 3 = 0.3\n 4 = 0.5\n\nEnter your selection: ")) randomP_simulation_run(rpb_200[probability_selection], chunk_selection) print("\nYour result figures have been saved. You can view them in the /randomp_figures/ folder!\n\n") elif selection == '2': chunk_selection = int(input("Please enter the number of chunks you want to analyze. You can choose from [20,50,80,100,150,200]: ")) secretary_simulation_run(chunk_selection) print("\nYour result figures have been saved. You can view them in the /secretary_figures/ folder!\n\n") elif selection == '3': chunk_selection = int(input("Please enter the number of chunks you want to analyze. You can choose from [20,50,80,100,150,200]: ")) r_factor = float(input("Please enter the R factor you want to use: ")) house_selling_simulation_run(chunk_selection,r_factor) print("\nYour result figures have been saved. You can view them in the /house_selling_figures/ folder!\nDataframe .csv is in the /dataframes/ folder\n\n") elif selection == '4': chunk_selection = int(input("Please enter the number of chunks you want to analyze. You can choose from [20,50,80,100,150,200]: ")) if chunk_selection == 20: r_factor = float(input("Please enter the R factor you want to use: ")) avg_loads_by_stop(rpb_20, secretary_model(chunk_selection), house_selling_model(chunk_selection, r_factor)) if chunk_selection == 50: r_factor = float(input("Please enter the R factor you want to use: ")) avg_loads_by_stop(rpb_50, secretary_model(chunk_selection), house_selling_model(chunk_selection, r_factor)) if chunk_selection == 80: r_factor = float(input("Please enter the R factor you want to use: ")) avg_loads_by_stop(rpb_80, secretary_model(chunk_selection), house_selling_model(chunk_selection, r_factor)) if chunk_selection == 100: r_factor = float(input("Please enter the R factor you want to use: ")) avg_loads_by_stop(rpb_100, secretary_model(chunk_selection), house_selling_model(chunk_selection, r_factor)) if chunk_selection == 150: r_factor = float(input("Please enter the R factor you want to use: ")) avg_loads_by_stop(rpb_150, secretary_model(chunk_selection), house_selling_model(chunk_selection, r_factor)) if chunk_selection == 200: r_factor = float(input("Please enter the R factor you want to use: ")) avg_loads_by_stop(rpb_200, secretary_model(chunk_selection), house_selling_model(chunk_selection, r_factor)) print("\nYour result figures have been saved. You can view them in the /averages/ folder!\nDataframe .csv is in the /dataframes/ folder\n\n") else: print("Error! Please enter a valid selection!\n") repeat = str(input("Do you want to repeat? If not type 'exit' or 'N' to go back. Else enter 'Y' to continue: ")) while (repeat != 'Y' and repeat != 'N' and repeat != 'exit' ): print("Sorry! I didn't
<reponame>adgilbert/med-seg<gh_stars>0 import logging import os from abc import abstractmethod from typing import Callable, Tuple import cv2 import numpy as np import pandas as pd import scipy.stats as st import torch from scipy.spatial.distance import cosine as cosine_dist from scipy.spatial.distance import directed_hausdorff from torch.nn.functional import one_hot from seg_utils.post_process_masks import get_largest_contour from seg_utils.utils import convert_binary_output_to_classes, clean_dict from .Curvature.single_mask_processing import Mask2Contour try: from surface_distance.metrics import compute_surface_distances, compute_average_surface_distance except ImportError: print("Could not import surface distance metrics. Install from https://github.com/deepmind/surface-distance if " "surface distance metrics will be used.") def show_img(img): import matplotlib.pyplot as plt plt.imshow(img) plt.show() def convert_to_classes(inp): return torch.argmax(inp, dim=1) # convert an input array to class values def check_input_format(output, target): """ check input format of outpt and target output: BxCxHxW tensor where C is the number of classes target: Bx1xHxW tensor where every entry is an int in the range [0, C-1] """ try: assert len(output.shape) == 4 assert len(target.shape) == 4 assert target.shape[1] == 1 assert torch.max(target) <= output.shape[1] - 1 except AssertionError: raise ValueError(f"Shape error: \nOutput should be [B, C, H, W], found {output.shape} " f"\nTarget should be [B, 1, H, W], found {target.shape}. " f"\nMax target should be <= C-1, found {torch.max(target)}") class SliceMerger(object): def __init__(self, merge: tuple): """ merge is a tuple giving the slices along dimension 1 to merge""" assert len(merge) > 1, "must provide at least two slices to merge" self.merge = merge def __call__(self, output: torch.Tensor, target: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """ merges all slices given by merge in dimension 1 using max output and target should """ check_input_format(output, target) # create copies and detach from computation graph output = output.clone().detach() target = target.clone().detach() slices = np.arange(output.shape[1]) # all slices new_slice = self.merge[0] # save res in this slice output[:, new_slice] = torch.max(output[:, self.merge], 1)[0] # just want max_vals for s in slices: if s in self.merge: target[target == s] = new_slice # merge vals in target else: subtract_val = sum(s > self.merge[1:]) # subtract one for every removed slice target[target == s] -= subtract_val keep_slices = [s for s in slices if s not in self.merge or s == new_slice] output = output[:, keep_slices] return output, target def get_intersection_and_sums(output: torch.Tensor, target: torch.Tensor) -> tuple: """ Calculates the intersection between output and target as well as the individual sums of each Args: output: BxCxHxW tensor where C is the number of classes target: Bx1xHxW tensor where every entry is an int in the range [0, C-1] Returns: intersection: area of intersection between output and target [B, C] array output_sum: sum of output for each class [B, C] array target_sum: sump of target for each class [B, C] array """ check_input_format(output, target) num_classes = output.shape[1] # convert output and target to [C, B*H*W] tensors where every value is one-hot encoded and C is classes # for output have to first find chosen class then convert to one_hot output = one_hot(convert_to_classes(output), num_classes).type(torch.int).permute(3, 0, 1, 2).view(num_classes, -1) target = one_hot(target.squeeze(1), num_classes).type(torch.int).permute(3, 0, 1, 2).contiguous().view(num_classes, -1) assert output.shape == target.shape, f"output/target shape mismatch after processing ({output.shape}!={target.shape}" intersection = (output * target).sum(dim=1) output_sum = output.sum(dim=1) target_sum = target.sum(dim=1) return intersection, output_sum, target_sum class MetricBase: def __init__(self, out_type: str = "segs", modifier: Callable = None, lower_is_better: bool = False, requires_target=True, calculate_during_train=True): """ Abstract base class which all metrics should inherit from :param out_type: what key to use in output/target dictionary :param modifier: a callable function which should take (output, target) as input and return output/target :param lower_is_better: decides whether or lower or higher value of the metric is better """ self.best = {"train": None} self.phase = "train" self.results = list() self._type = out_type # which key in output/target dict to use self.target_name = out_type self.lower_is_better = lower_is_better self.modifier = modifier self.requires_target = requires_target self.calculate_during_train = calculate_during_train @property def type(self): return self._type def set_target(self, target_name: str): self.target_name = target_name def reset_target(self): self.target_name = self._type def check_best(self, res): if res is not None: if self.best[self.phase] is None or (not self.lower_is_better and res >= self.best[self.phase]) or \ (self.lower_is_better and res <= self.best[self.phase]): self.best[self.phase] = res return True return False def epoch_reset(self, phase): # reset results for next epoch self.results = list() self.phase = phase if phase not in self.best: self.best[phase] = None def reduce(self, method="median"): assert method in dir(self), f"reduction method {method} not found" if len(self.results) > 0: return self.__getattribute__(method)() else: logging.debug("0 results found. Returning None") return None def absmean(self): return np.mean(abs(np.array(self.results))) def mean(self): mean = np.mean(np.array(self.results)) if np.isnan(mean): logging.warning("Found NAN in results, using nanmean") mean = np.nanmean(np.array(self.results)) return mean def median(self): med = np.median(np.array(self.results)) if np.isnan(med): logging.warning("Found NAN in results, using nanmedian") med = np.nanmedian(np.array(self.results)) return med def absmedian(self): return np.median(abs(np.array(self.results))) def std(self): std = np.std(np.array(self.results)) if np.isnan(std): logging.warning("Found NAN in results, using nanstd") std = np.nanstd(np.array(self.results)) return std def ci_95(self): res = np.array(self.results) return st.t.interval(0.95, len(res) - 1, loc=np.mean(res), scale=st.sem(res)) def ci_low(self): return self.ci_95()[0] def ci_high(self): return self.ci_95()[1] def median_absolute_deviation(self): """ defined as median(|X_i - median(X)|)""" med = self.median() # will handle nan and print warning. res = np.array(self.results) res = res[~np.isnan(res)] return np.median(abs(res - med)) def set_best(self, phase, val): """ used for setting the best value when restoring""" self.best[phase] = val @abstractmethod def process_single(self, output, target=None): # implement here the actual metric, should return a val to add to self.results # a return value of None indicates that something went wrong in the processing. This class will ignore and # continue, but the subclass should log a warning message. pass def __call__(self, outputs: dict, targets: dict = None, confidence=None): if self.requires_target and (targets is None or self._type not in targets): return [] if not self.calculate_during_train and self.phase == "train": return [] self.batch_results = list() if confidence is None: confidence = [True] * outputs["segs"].shape[0] if targets is None or self._type not in targets: for o, c in zip(outputs[self._type], confidence): if c and o is not None: o = o.unsqueeze(0) res = self.process_single(o) if res is not None: self.results.append(res) self.batch_results.append(res) else: self.batch_results.append(None) else: for o, t, c in zip(outputs[self._type], targets[self._type], confidence): if c and o is not None: o, t = o.unsqueeze(0), t.unsqueeze(0) if self.modifier is not None: o, t = self.modifier(o, t) res = self.process_single(o, t) if res is not None: self.results.append(res) self.batch_results.append(res) else: self.batch_results.append(None) return self.batch_results class IoU(MetricBase): """ wrapper around kornia to keep everything in one place Matching cross-entropy loss format, output is a [B, C, H, W] float tensor where C is number of classes target is a [B, H, W] integer tensor where every entry is in the range [0, C-1] Function first converts output to match target and then uses kornia to compute mean_iou """ def __init__(self, num_classes: int, include_classes=None): MetricBase.__init__(self, out_type="segs") self.num_classes = num_classes self.include_classes = include_classes # which classes to include def process_single(self, output: torch.Tensor, target: torch.Tensor = None) -> float: intersection, output_sum, target_sum = get_intersection_and_sums(output, target) iou = intersection.type(torch.float) / (output_sum + target_sum - intersection).type(torch.float) if self.include_classes is None: return torch.mean(iou[1:]) # return mean of non-background classes. else: raise NotImplementedError("add handling for specific include classes") class DiceScore(MetricBase): def __init__(self, include_classes: list = None, modifier: Callable = None): """ dices score for a segmentation result Args: include_classes: (list) which classes to include in the output, default is [1:] excluding background modifier: (Callable) an optional function to apply to output before calculations """ MetricBase.__init__(self, out_type="segs", modifier=modifier) self.include_classes = include_classes # which classes to include in the DiceScore def process_single(self, output: torch.Tensor, target: torch.Tensor = None) -> float: """ Processes a single example Args: output: BxCxHxW tensor where C is the number of classes target: Bx1xHxW tensor where every entry is an int in the range [0, C-1] Returns: (float) the mean dice score """ if output.shape[1] == 1: output = convert_binary_output_to_classes(output) intersection, output_sum, target_sum = get_intersection_and_sums(output, target) dice = 2 * intersection.type(torch.float) / (output_sum + target_sum).type(torch.float) if self.include_classes is None: return torch.mean(dice[1:]) # same as iou, return mean of values for non-background classes else: return torch.mean(dice[self.include_classes]) # return mean of values for designated classes class Bias(MetricBase): def __init__(self, include_classes: list = None, modifier: Callable
#!/usr/bin/env python from collections import deque from geometry_msgs.msg import Pose, PoseStamped, TwistStamped import math import rospy from scipy.spatial import KDTree from std_msgs.msg import Int32 from styx_msgs.msg import Lane, Waypoint import sys import tf ''' This node will publish waypoints from the car's current position to some `x` distance ahead. ''' # Constants # Number of waypoints we will publish (reduced as suggested by "alangordon" in # the Udacity Self-Driving Car Slack on 04/05/2018, 8:28 AM, # https://carnd.slack.com/archives/C6NVDVAQ3/p1522909695000091, accessed # 04/05/2018) LOOKAHEAD_WPS = 50 # Undefined waypoint index WP_UNDEFINED = -1 # Update rate of the main loop (in Hz) UPDATE_RATE = 30 class WaypointUpdater(object): def __init__(self): """ Initialize the waypoint updater node: - Subscribe to relevant topics - Initialize members variables - Publish 'final_waypoints' topic """ rospy.init_node('waypoint_updater') # Set start time of the node self.start_time = rospy.Time.now().to_sec() # Subscribe to 'current pose' topic # (Current ego position) rospy.Subscriber('/current_pose', PoseStamped, self.pose_cb) self.ego_pose = PoseStamped() # Subscribe to 'base_waypoints' topic # (List of track waypoints; will only be send once) rospy.Subscriber('/base_waypoints', Lane, self.waypoints_cb) self.waypoints = None self.waypoint_velocities = [] self.num_waypoints = 0 self.is_init = False # From Udacity SDC-ND Programming a Real Self-Driving Car # Project Walkthrough (Term 3) self.waypoint_tree = None # Subscribe to 'traffic_waypoint' topic # (Index of waypoint closest to the next red traffic light. If the next # traffic light is not red, 'traffic_waypoint' is expected to be -1) rospy.Subscriber('/traffic_waypoint', Int32, self.traffic_cb) self.wp_traffic_light = WP_UNDEFINED # Subscribe to 'obstacle_waypoint' topic # (Index of waypoint closest to the next obstacle. If there is no # obstacle ahead, 'obstacle_waypoint' is expected to be -1) rospy.Subscriber('/obstacle_waypoint', Int32, self.obstacle_cb) self.wp_obstacle = WP_UNDEFINED # Subscribe to 'current_velocity' topic rospy.Subscriber('/current_velocity', TwistStamped, self.velocity_cb) self.current_velocity = 0.0 # Publish waypoints ahead of the vehicle # (Starting with the waypoint just ahead of the vehicle) self.final_waypoints_pub = rospy.Publisher('final_waypoints', Lane, queue_size = 1) self.final_waypoints = Lane() for i in range(LOOKAHEAD_WPS): self.final_waypoints.waypoints.append(Waypoint()) # Reset parameters self.decel_max = 0.0 self.accel_max = 0.0 self.velocity_max = 0.0 # Start node self.loop() def loop(self): """Main loop (publish waypoints at a fixed rate) (adapted from Udacity SDC-ND Programming a Real Self-Driving Car Project Walkthrough (Term 3)) """ rate = rospy.Rate(UPDATE_RATE) while not rospy.is_shutdown(): if (self.is_init): self.publish_waypoints() rate.sleep() def publish_waypoints(self): """ Publishes new waypoints for the waypoint follower node (starting with the next waypoint for the ego vehicle). """ # Get start position ego_pos = self.ego_pose.pose.position # Find waypoint closest to ego vehicle # (adapted from Udacity SDC-ND Programming a Real Self-Driving Car # Project Walkthrough (Term 3)) closest_id = self.waypoint_tree.query([ego_pos.x, ego_pos.y], 1)[1] # Determine vehicle yaw (from quarternion representation) # (adapted from https://answers.ros.org/question/69754/quaternion- # transformations-in-python/?answer=69799#post-id-69799, # accessed 03/26/2018) ego_orient = self.ego_pose.pose.orientation q = (ego_orient.x, ego_orient.y, ego_orient.z, ego_orient.w) euler_angles = tf.transformations.euler_from_quaternion(q) ego_yaw = euler_angles[2] # Check if the closest waypoint is in front or behind of ego # vehicle (consider only 2D (x, y) projection) # (adapted from Udacity Path Planning Project (Starter Code) and # code posted by <NAME> in the Udacity Self-Driving Car Slack on # 08/13/2017, 5:10 AM, https://carnd.slack.com/archives/C5ZS5SBA8/ # p1502593836232659, accessed: 03/10/2018). first_id = closest_id pos_closest = self.waypoints[closest_id].pose.pose.position heading = math.atan2(pos_closest.y - ego_pos.y, pos_closest.x - ego_pos.x) heading = math.fmod(heading + 2 * math.pi, 2 * math.pi) ego_yaw = math.fmod(ego_yaw + 2 * math.pi, 2 * math.pi) angle = math.fabs(ego_yaw - heading) if (angle > math.pi): angle = 2 * math.pi - angle; if (angle > math.pi / 2): # Waypoint is behind vehicle --> select next first_id = (first_id + 1) % self.num_waypoints # Create list of next waypoints (consider track wrap-around) # (update waypoint velocities in the process) self.final_waypoints.header.stamp = self.ego_pose.header.stamp self.calculate_velocities(self.final_waypoints.waypoints, first_id, self.current_velocity, ego_pos) # Publish next waypoints self.final_waypoints_pub.publish(self.final_waypoints) def calculate_velocities(self, waypoints, first_id, last_velocity, last_position): """ Set velocities for next waypoints for ego vehicle Arguments: waypoints -- Next waypoints for the ego vehicle (expected size: LOOKAHEAD_WPS) first_id -- ID (absolute) of next waypoint for ego vehicle last_velocity -- Current velocity of ego vehicle last_position -- Current position of ego vehicle """ stop_id = self.get_stop_point(waypoints, first_id) for i in xrange(LOOKAHEAD_WPS): # Set waypoint wp_id = (first_id + i) % self.num_waypoints waypoints[i] = self.waypoints[wp_id] # After stop point? if stop_id != WP_UNDEFINED and i >= stop_id: waypoints[i].twist.twist.linear.x = 0.0 continue # Get distance between last position and waypoint wp_position = waypoints[i].pose.pose.position dist = self.distance(last_position, wp_position) # Determine next velocity # (adapted from waypoint_loader.py) wp_velocity = self.waypoint_velocities[wp_id] velocity_diff = wp_velocity - last_velocity if velocity_diff < 0.0: # Decelerate min_velocity = max(0.0, last_velocity - math.sqrt(2 * self.decel_max * dist)) wp_velocity = max(min_velocity, wp_velocity) elif velocity_diff > 0.0: # Accelerate max_velocity = min(self.velocity_max, last_velocity + math.sqrt(2 * self.accel_max * dist)) wp_velocity = min(max_velocity, wp_velocity) # Consider stop point if stop_id != WP_UNDEFINED: dist = self.distance_path(waypoints, i, stop_id) v_decel = math.sqrt(self.decel_max / 2 * dist) if v_decel < 1.0: v_decel = 0.0 wp_velocity = min(wp_velocity, v_decel) # Set waypoint velocity waypoints[i].twist.twist.linear.x = wp_velocity # Next (consider track wrap-around) last_velocity = wp_velocity last_position = wp_position def get_stop_point(self, waypoints, first_id): """ Check if next traffic light/obstacle is in range of next set of waypoints for ego vehicle Arguments: waypoints -- Next waypoints for the ego vehicle (expected size: LOOKAHEAD_WPS) first_id -- ID (absolute) of next waypoint for ego vehicle Return: ID of stopping point in set of waypoints """ # Make IDs relative obstacle_id = self.waypoint_in_range(self.wp_obstacle, first_id) traffic_light_id = self.waypoint_in_range(self.wp_traffic_light, first_id) # Stop? stop_id = obstacle_id if (traffic_light_id != WP_UNDEFINED and (stop_id == WP_UNDEFINED or traffic_light_id < stop_id)): stop_id = traffic_light_id return stop_id def waypoint_in_range(self, wp_id, first_id): """ Check if a given waypoint (defined through its absolute ID) is in range of the list of next waypoints (where the first waypoint is defined through 'first_id') Arguments: wp_id -- Waypoint ID (absolute) first_id -- ID of first waypoint in 'waypoints' (absolute) Return: Relative position of the waypoint in the list of waypoints (when the waypoint is in range). WP_UNDEFINED, otherwise. """ if wp_id == WP_UNDEFINED: return WP_UNDEFINED # Make ID relative if wp_id < first_id: wp_id = self.num_waypoints + wp_id - first_id else: wp_id = wp_id - first_id # Request a full stop a few waypoints before the stop line # (to prevent driving over the stop line (e.g. due to latency from the # controllers, node update rates, etc.) at which point the traffic # light will not be detected in front of the car anymore) #wp_id = (wp_id - 4) if wp_id > 3 else 0 wp_id = (wp_id - 2) if wp_id > 1 else 0 # Is the waypoint in range? if wp_id >= LOOKAHEAD_WPS: return WP_UNDEFINED return wp_id def pose_cb(self, ego_pose): """ Callback function for ego vehicle pose (position, orientation) updates. Arguments: ego_pose: Current ego pose """ self.ego_pose = ego_pose def waypoints_cb(self, waypoints): """ Receives a list of track waypoints and stores them internally Arguments: waypoints -- List of track waypoints """ if self.waypoints: return self.waypoints = waypoints.waypoints self.num_waypoints = len(self.waypoints) for wp in waypoints.waypoints: self.waypoint_velocities.append(wp.twist.twist.linear.x) # Adapted from Udacity SDC-ND Programming a Real Self-Driving Car # Project Walkthrough (Term 3) waypoints_2d = [[wp.pose.pose.position.x, wp.pose.pose.position.y]\ for wp in self.waypoints] self.waypoint_tree = KDTree(waypoints_2d) # Get limits self.decel_max = -rospy.get_param('/dbw_node/decel_limit') self.accel_max = rospy.get_param('/dbw_node/accel_limit') self.velocity_max = rospy.get_param('/waypoint_loader/velocity') / 3.6 # Mark node as ready self.is_init = True def traffic_cb(self, wp_traffic_light): """ Receives the index of the waypoint that corresponds to the stopline of the next red traffic light. An index of 'WP_UNDEFINED' signals that no red traffic light (TL) is ahead (or close by) Arguments: wp_traffic_light -- Index of waypoint close to next TL stopline """ self.wp_traffic_light = wp_traffic_light.data #if self.wp_traffic_light != WP_UNDEFINED: # self.check_waypoint_id(self.waypoints, self.wp_traffic_light) def obstacle_cb(self, wp_obstacle): """ Receives the index of the waypoint that corresponds to the next obstacle. An index of 'WP_UNDEFINED' signals that no obstacle is ahead (or close by) Arguments: wp_obstacle -- Index of waypoint close to next obstacle """ self.wp_obstacle
format != b"tagdone" and ( line.startswith(b"Date: ") or line.startswith(b"date: ") ): date = line[6:] format = b"tag" elif format == b"tag" and line == b"": # when looking for tags (subject: from: etc) they # end once you find a blank line in the source format = b"tagdone" elif message or line: message.append(line) comments.append(line) eatdiff(message) eatdiff(comments) # Remember the exact starting line of the patch diffs before consuming # empty lines, for external use by TortoiseHg and others self.diffstartline = len(comments) eatempty(message) eatempty(comments) # make sure message isn't empty if format and format.startswith(b"tag") and subject: message.insert(0, subject) self.message = message self.comments = comments self.user = user self.date = date self.parent = parent # nodeid and branch are for external use by TortoiseHg and others self.nodeid = nodeid self.branch = branch self.haspatch = diffstart > 1 self.plainmode = ( plainmode or b'# HG changeset patch' not in self.comments and any( c.startswith(b'Date: ') or c.startswith(b'From: ') for c in self.comments ) ) def setuser(self, user): try: inserthgheader(self.comments, b'# User ', user) except ValueError: if self.plainmode: insertplainheader(self.comments, b'From', user) else: tmp = [b'# HG changeset patch', b'# User ' + user] self.comments = tmp + self.comments self.user = user def setdate(self, date): try: inserthgheader(self.comments, b'# Date ', date) except ValueError: if self.plainmode: insertplainheader(self.comments, b'Date', date) else: tmp = [b'# HG changeset patch', b'# Date ' + date] self.comments = tmp + self.comments self.date = date def setparent(self, parent): try: inserthgheader(self.comments, b'# Parent ', parent) except ValueError: if not self.plainmode: tmp = [b'# HG changeset patch', b'# Parent ' + parent] self.comments = tmp + self.comments self.parent = parent def setmessage(self, message): if self.comments: self._delmsg() self.message = [message] if message: if self.plainmode and self.comments and self.comments[-1]: self.comments.append(b'') self.comments.append(message) def __bytes__(self): s = b'\n'.join(self.comments).rstrip() if not s: return b'' return s + b'\n\n' __str__ = encoding.strmethod(__bytes__) def _delmsg(self): """Remove existing message, keeping the rest of the comments fields. If comments contains 'subject: ', message will prepend the field and a blank line.""" if self.message: subj = b'subject: ' + self.message[0].lower() for i in pycompat.xrange(len(self.comments)): if subj == self.comments[i].lower(): del self.comments[i] self.message = self.message[2:] break ci = 0 for mi in self.message: while mi != self.comments[ci]: ci += 1 del self.comments[ci] def newcommit(repo, phase, *args, **kwargs): """helper dedicated to ensure a commit respect mq.secret setting It should be used instead of repo.commit inside the mq source for operation creating new changeset. """ repo = repo.unfiltered() if phase is None: if repo.ui.configbool(b'mq', b'secret'): phase = phases.secret overrides = {(b'ui', b'allowemptycommit'): True} if phase is not None: overrides[(b'phases', b'new-commit')] = phase with repo.ui.configoverride(overrides, b'mq'): repo.ui.setconfig(b'ui', b'allowemptycommit', True) return repo.commit(*args, **kwargs) class AbortNoCleanup(error.Abort): pass class queue(object): def __init__(self, ui, baseui, path, patchdir=None): self.basepath = path try: with open(os.path.join(path, b'patches.queue'), 'rb') as fh: cur = fh.read().rstrip() if not cur: curpath = os.path.join(path, b'patches') else: curpath = os.path.join(path, b'patches-' + cur) except IOError: curpath = os.path.join(path, b'patches') self.path = patchdir or curpath self.opener = vfsmod.vfs(self.path) self.ui = ui self.baseui = baseui self.applieddirty = False self.seriesdirty = False self.added = [] self.seriespath = b"series" self.statuspath = b"status" self.guardspath = b"guards" self.activeguards = None self.guardsdirty = False # Handle mq.git as a bool with extended values gitmode = ui.config(b'mq', b'git').lower() boolmode = stringutil.parsebool(gitmode) if boolmode is not None: if boolmode: gitmode = b'yes' else: gitmode = b'no' self.gitmode = gitmode # deprecated config: mq.plain self.plainmode = ui.configbool(b'mq', b'plain') self.checkapplied = True @util.propertycache def applied(self): def parselines(lines): for l in lines: entry = l.split(b':', 1) if len(entry) > 1: n, name = entry yield statusentry(bin(n), name) elif l.strip(): self.ui.warn( _(b'malformated mq status line: %s\n') % stringutil.pprint(entry) ) # else we ignore empty lines try: lines = self.opener.read(self.statuspath).splitlines() return list(parselines(lines)) except IOError as e: if e.errno == errno.ENOENT: return [] raise @util.propertycache def fullseries(self): try: return self.opener.read(self.seriespath).splitlines() except IOError as e: if e.errno == errno.ENOENT: return [] raise @util.propertycache def series(self): self.parseseries() return self.series @util.propertycache def seriesguards(self): self.parseseries() return self.seriesguards def invalidate(self): for a in 'applied fullseries series seriesguards'.split(): if a in self.__dict__: delattr(self, a) self.applieddirty = False self.seriesdirty = False self.guardsdirty = False self.activeguards = None def diffopts(self, opts=None, patchfn=None, plain=False): """Return diff options tweaked for this mq use, possibly upgrading to git format, and possibly plain and without lossy options.""" diffopts = patchmod.difffeatureopts( self.ui, opts, git=True, whitespace=not plain, formatchanging=not plain, ) if self.gitmode == b'auto': diffopts.upgrade = True elif self.gitmode == b'keep': pass elif self.gitmode in (b'yes', b'no'): diffopts.git = self.gitmode == b'yes' else: raise error.Abort( _(b'mq.git option can be auto/keep/yes/no got %s') % self.gitmode ) if patchfn: diffopts = self.patchopts(diffopts, patchfn) return diffopts def patchopts(self, diffopts, *patches): """Return a copy of input diff options with git set to true if referenced patch is a git patch and should be preserved as such. """ diffopts = diffopts.copy() if not diffopts.git and self.gitmode == b'keep': for patchfn in patches: patchf = self.opener(patchfn, b'r') # if the patch was a git patch, refresh it as a git patch diffopts.git = any( line.startswith(b'diff --git') for line in patchf ) patchf.close() return diffopts def join(self, *p): return os.path.join(self.path, *p) def findseries(self, patch): def matchpatch(l): l = l.split(b'#', 1)[0] return l.strip() == patch for index, l in enumerate(self.fullseries): if matchpatch(l): return index return None guard_re = re.compile(br'\s?#([-+][^-+# \t\r\n\f][^# \t\r\n\f]*)') def parseseries(self): self.series = [] self.seriesguards = [] for l in self.fullseries: h = l.find(b'#') if h == -1: patch = l comment = b'' elif h == 0: continue else: patch = l[:h] comment = l[h:] patch = patch.strip() if patch: if patch in self.series: raise error.Abort( _(b'%s appears more than once in %s') % (patch, self.join(self.seriespath)) ) self.series.append(patch) self.seriesguards.append(self.guard_re.findall(comment)) def checkguard(self, guard): if not guard: return _(b'guard cannot be an empty string') bad_chars = b'# \t\r\n\f' first = guard[0] if first in b'-+': return _(b'guard %r starts with invalid character: %r') % ( guard, first, ) for c in bad_chars: if c in guard: return _(b'invalid character in guard %r: %r') % (guard, c) def setactive(self, guards): for guard in guards: bad = self.checkguard(guard) if bad: raise error.Abort(bad) guards = sorted(set(guards)) self.ui.debug(b'active guards: %s\n' % b' '.join(guards)) self.activeguards = guards self.guardsdirty = True def active(self): if self.activeguards is None: self.activeguards = [] try: guards = self.opener.read(self.guardspath).split() except IOError as err: if err.errno != errno.ENOENT: raise guards = [] for i, guard in enumerate(guards): bad = self.checkguard(guard) if bad: self.ui.warn( b'%s:%d: %s\n' % (self.join(self.guardspath), i + 1, bad) ) else: self.activeguards.append(guard) return self.activeguards def setguards(self, idx, guards): for g in guards: if len(g) < 2: raise error.Abort(_(b'guard %r too short') % g) if g[0] not in b'-+': raise error.Abort(_(b'guard %r starts with invalid char') % g) bad = self.checkguard(g[1:]) if bad: raise error.Abort(bad) drop = self.guard_re.sub(b'', self.fullseries[idx]) self.fullseries[idx] = drop + b''.join([b' #' + g for g in guards]) self.parseseries() self.seriesdirty = True def pushable(self, idx): if isinstance(idx, bytes): idx = self.series.index(idx) patchguards = self.seriesguards[idx] if not patchguards: return True, None guards = self.active() exactneg = [ g for g in patchguards if g.startswith(b'-') and g[1:] in guards ] if exactneg: return False, stringutil.pprint(exactneg[0]) pos = [g for g in patchguards if g.startswith(b'+')] exactpos = [g for g in pos if g[1:] in guards] if pos: if exactpos: return True, stringutil.pprint(exactpos[0]) return False, b' '.join([stringutil.pprint(p) for p in pos]) return True, b'' def explainpushable(self, idx, all_patches=False): if all_patches: write = self.ui.write else: write = self.ui.warn if all_patches or self.ui.verbose: if isinstance(idx, bytes): idx = self.series.index(idx) pushable, why = self.pushable(idx) if all_patches and pushable: if why is None: write( _(b'allowing %s - no guards in effect\n') % self.series[idx] ) else: if not why: write( _(b'allowing %s - no matching negative guards\n') % self.series[idx] ) else: write( _(b'allowing %s - guarded by %s\n') % (self.series[idx], why) ) if not pushable: if why: write( _(b'skipping %s - guarded by %s\n') % (self.series[idx], why) )
- I11i if 47 - 47: oO0o . i1IIi * I1ii11iIi11i % OOooOOo % IiII / Oo0Ooo if ( len ( self . registered_rlocs ) == 0 ) : self . registered = False return if 39 - 39: i11iIiiIii . OOooOOo + Oo0Ooo if 92 - 92: O0 * Oo0Ooo / o0oOOo0O0Ooo % OoO0O00 def merge_rles_in_site_eid ( self ) : if 87 - 87: OoooooooOO / I11i . O0 if 77 - 77: OOooOOo + oO0o * iIii1I11I1II1 / oO0o / OOooOOo . i11iIiiIii if 92 - 92: Oo0Ooo . o0oOOo0O0Ooo % OoooooooOO * i11iIiiIii * OoO0O00 * o0oOOo0O0Ooo if 48 - 48: iII111i * I1ii11iIi11i * oO0o % O0 . OoO0O00 i1I1I = { } for ii1I1i11 in self . registered_rlocs : if ( ii1I1i11 . rle == None ) : continue for i1ooOoO in ii1I1i11 . rle . rle_nodes : I1Iii1I = i1ooOoO . address . print_address_no_iid ( ) i1I1I [ I1Iii1I ] = i1ooOoO . address if 37 - 37: I11i . O0 - Oo0Ooo % iII111i break if 11 - 11: I11i % OoooooooOO if 96 - 96: i11iIiiIii * O0 + iIii1I11I1II1 . I11i * IiII + I1Ii111 if 84 - 84: I1ii11iIi11i / o0oOOo0O0Ooo * II111iiii . i11iIiiIii if 68 - 68: OOooOOo . ooOoO0o / OOooOOo + i1IIi / I1IiiI if 80 - 80: Oo0Ooo + Oo0Ooo + oO0o % i1IIi / ooOoO0o self . merge_rlocs_in_site_eid ( ) if 24 - 24: i11iIiiIii - ooOoO0o * iII111i - Ii1I . iIii1I11I1II1 . I1IiiI if 81 - 81: OoOoOO00 * OoOoOO00 + OOooOOo . I11i - oO0o if 85 - 85: O0 * I1IiiI . Oo0Ooo - IiII if 84 - 84: I1Ii111 . iIii1I11I1II1 . O0 * I1ii11iIi11i if 59 - 59: i1IIi . o0oOOo0O0Ooo . Oo0Ooo * I1Ii111 + OoooooooOO if 11 - 11: I11i * ooOoO0o % iIii1I11I1II1 - O0 if 68 - 68: ooOoO0o * OoooooooOO - OoooooooOO if 59 - 59: Ii1I / I11i / I1Ii111 + IiII * I1ii11iIi11i iIOOoo0 = [ ] for ii1I1i11 in self . registered_rlocs : if ( self . registered_rlocs . index ( ii1I1i11 ) == 0 ) : iIOOoo0 . append ( ii1I1i11 ) continue if 17 - 17: I1ii11iIi11i + OoooooooOO / iIii1I11I1II1 . II111iiii + Oo0Ooo if ( ii1I1i11 . rle == None ) : iIOOoo0 . append ( ii1I1i11 ) if 7 - 7: O0 - I1ii11iIi11i - iIii1I11I1II1 self . registered_rlocs = iIOOoo0 if 96 - 96: OoOoOO00 . I1IiiI . I11i * OoooooooOO + OoooooooOO * O0 if 90 - 90: I11i + I1ii11iIi11i + OoooooooOO + OoOoOO00 + IiII / iII111i if 75 - 75: i11iIiiIii if 27 - 27: I11i - IiII - I1Ii111 if 90 - 90: OoO0O00 . oO0o * O0 / I11i % O0 + I1Ii111 if 48 - 48: iIii1I11I1II1 . i11iIiiIii / OoooooooOO . i1IIi . o0oOOo0O0Ooo if 84 - 84: Ii1I O0OOOO0000O = lisp_rle ( "" ) oO0o00000o = { } O0O00O = None for IIII in self . individual_registrations . values ( ) : if ( IIII . registered == False ) : continue iIiIiiIII1I1 = IIII . registered_rlocs [ 0 ] . rle if ( iIiIiiIII1I1 == None ) : continue if 8 - 8: i11iIiiIii * i1IIi . Oo0Ooo + I11i * I11i . OoOoOO00 O0O00O = IIII . registered_rlocs [ 0 ] . rloc_name for ooOOo0O in iIiIiiIII1I1 . rle_nodes : I1Iii1I = ooOOo0O . address . print_address_no_iid ( ) if ( oO0o00000o . has_key ( I1Iii1I ) ) : break if 37 - 37: Ii1I * O0 - I1Ii111 i1ooOoO = lisp_rle_node ( ) i1ooOoO . address . copy_address ( ooOOo0O . address ) i1ooOoO . level = ooOOo0O . level i1ooOoO . rloc_name = O0O00O O0OOOO0000O . rle_nodes . append ( i1ooOoO ) oO0o00000o [ I1Iii1I ] = ooOOo0O . address if 33 - 33: iIii1I11I1II1 . I11i if 63 - 63: oO0o - iII111i if 13 - 13: I1Ii111 / i1IIi % OoooooooOO / I11i if 66 - 66: I1Ii111 % o0oOOo0O0Ooo . iII111i . ooOoO0o + OOooOOo * II111iiii if 33 - 33: oO0o if 64 - 64: OoO0O00 % Oo0Ooo % I11i . iII111i % I1IiiI if ( len ( O0OOOO0000O . rle_nodes ) == 0 ) : O0OOOO0000O = None if ( len ( self . registered_rlocs ) != 0 ) : self . registered_rlocs [ 0 ] . rle = O0OOOO0000O if ( O0O00O ) : self . registered_rlocs [ 0 ] . rloc_name = None if 50 - 50: i1IIi + ooOoO0o - iIii1I11I1II1 if 45 - 45: OoooooooOO / o0oOOo0O0Ooo / iII111i if 72 - 72: I1Ii111 if 94 - 94: ooOoO0o . IiII - Ii1I + I1ii11iIi11i / ooOoO0o if 10 - 10: ooOoO0o . OOooOOo * O0 % II111iiii if ( i1I1I . keys ( ) == oO0o00000o . keys ( ) ) : return ( False ) if 12 - 12: oO0o + I1IiiI * Oo0Ooo - iII111i lprint ( "{} {} from {} to {}" . format ( green ( self . print_eid_tuple ( ) , False ) , bold ( "RLE change" , False ) , # i11iIiiIii / OoO0O00 % I1Ii111 * OoOoOO00 . o0oOOo0O0Ooo / ooOoO0o i1I1I . keys ( ) , oO0o00000o . keys ( ) ) ) if 100 - 100: I1IiiI return ( True ) if 27 - 27: OoOoOO00 * O0 - I11i if 98 - 98: OoOoOO00 % I1ii11iIi11i / OoOoOO00 % o0oOOo0O0Ooo / I1ii11iIi11i def add_cache ( self ) : if ( self . group . is_null ( ) ) : lisp_sites_by_eid . add_cache ( self . eid , self ) else : iiiI1iI11i1i1 = lisp_sites_by_eid . lookup_cache ( self . group , True ) if ( iiiI1iI11i1i1 == None ) : iiiI1iI11i1i1 = lisp_site_eid ( self . site ) iiiI1iI11i1i1 . eid . copy_address ( self . group ) iiiI1iI11i1i1 . group . copy_address ( self . group ) lisp_sites_by_eid . add_cache ( self . group , iiiI1iI11i1i1 ) if 21 - 21: I1IiiI * IiII - Oo0Ooo % ooOoO0o * i1IIi if 23 - 23: I11i * II111iiii + OoooooooOO . i1IIi + OoO0O00 + OoOoOO00 if 52 - 52: iII111i * OoOoOO00 if 80 - 80: I1Ii111 / IiII * o0oOOo0O0Ooo - OoOoOO00 / iIii1I11I1II1 if 38 - 38: II111iiii / I11i + IiII % OoooooooOO iiiI1iI11i1i1 . parent_for_more_specifics = self . parent_for_more_specifics if 27 - 27: OoOoOO00 * OoO0O00 * OOooOOo % I1IiiI * o0oOOo0O0Ooo + I1ii11iIi11i if ( self . eid . is_null ( ) ) : self . eid . make_default_route ( iiiI1iI11i1i1 . group ) iiiI1iI11i1i1 . add_source_entry ( self ) if 73 - 73: i1IIi if 52 - 52: IiII / i11iIiiIii * O0 if 67 - 67: OOooOOo / I11i - I1Ii111 % i11iIiiIii def delete_cache ( self ) : if ( self . group . is_null ( ) ) : lisp_sites_by_eid . delete_cache ( self . eid ) else : iiiI1iI11i1i1 = lisp_sites_by_eid . lookup_cache ( self . group , True ) if ( iiiI1iI11i1i1 == None ) : return if 3 - 3: oO0o + iII111i + OOooOOo IIII = iiiI1iI11i1i1 . lookup_source_cache ( self . eid , True ) if ( IIII == None ) : return if 54 - 54: i11iIiiIii + OoO0O00 - IiII - iII111i / I11i if ( iiiI1iI11i1i1 . source_cache == None ) : return if 85 - 85: OOooOOo * OOooOOo * I1Ii111 - ooOoO0o . O0 % iII111i iiiI1iI11i1i1 . source_cache . delete_cache ( self . eid ) if ( iiiI1iI11i1i1 . source_cache . cache_size ( ) == 0 ) : lisp_sites_by_eid . delete_cache ( self . group ) if 5 - 5:
<filename>pymmFunctions.py #!/usr/bin/env python3 ''' This is a set of functions used by pymm scripts This file is organized into 4 main sections: * CONFIG CHECK STUFF * PYMM ADMIN / LOGGING STUFF * FILE CHECK STUFF * SYSTEM / ENVIRONMENT STUFF ''' import configparser from datetime import date import glob import hashlib import json import os import platform import re import subprocess import sys import shutil import time # nonstandard libraries: import Levenshtein # local modules: try: import dbReporters import loggers import makeMetadata import MySQLqueries import directoryScanner except: from . import dbReporters from . import loggers from . import makeMetadata from . import MySQLqueries from . import directoryScanner ################################################################ # # CONFIG CHECK STUFF # def read_config(): pymmDirectory = os.path.dirname(os.path.abspath(__file__)) configPath = os.path.join(pymmDirectory,'pymmconfig','config.ini') if not os.path.isfile(configPath): print(''' CONFIGURATION PROBLEM:\n YOU HAVE NOT YET SET CONFIG.INI OR IT IS MISSING.\n RUN pymmconfig.py TO CREATE CONFIG.INI AND CHOOSE YOUR DESIRED SETTINGS.\n NOW EXITING. ''') sys.exit() config = configparser.SafeConfigParser() config.read(configPath) return config def check_missing_ingest_paths(pymmConfig): requiredPaths = { 'outdir_ingestsip':'the ingestSip.py output path', 'aip_staging':'the AIP storage path', 'resourcespace_deliver':'the resourcespace output path' } missingPaths = 0 for path in requiredPaths.items(): if not os.path.isdir(pymmConfig['paths'][path[0]]): missingPaths += 1 print(''' CONFIGURATION PROBLEM: You have not yet set a valid directory for '{}.' Please run pymmConfig.py, edit the config file directly, or use '--{}' to set {}. HINT: Check that the filepath is entered correctly. '''.format(path[0],path[0],path[1]) ) if missingPaths > 0: print("\nYou are missing some required file paths and we have to quit. Sorry.") sys.exit() # # END CONFIG CHECK STUFF # ################################################################ ################################################################ # # PYMM ADMIN / LOGGING STUFF # # have to import dbAccess after init config to avoid circular error try: import dbAccess except: from . import dbAccess def cleanup_package(CurrentIngest,pathForDeletion,reason,outcome=None): # print(pathForDeletion) inputType = CurrentIngest.InputObject.inputType dontDelete = False if reason == "ABORTING": status = 'ABORTING' event = 'ingestion end' if not outcome: outcome = ( "Something went critically wrong... " "The ingest process was aborted." "\n{}\nand its contents have been deleted.".format( pathForDeletion ) ) # put the things back try: if inputType == 'file': _object = [ thing.path for thing in os.scandir(CurrentIngest.packageObjectDir) if thing.is_file() ][0] if os.path.isfile(CurrentIngest.InputObject.inputPath): pass else: shutil.move( _object, CurrentIngest.InputObject.inputParent ) else: if not os.path.isdir(CurrentIngest.InputObject.inputPath): os.mkdir(CurrentIngest.InputObject.inputPath) for _object in os.scandir(CurrentIngest.packageObjectDir): if _object.name not in ('resourcespace','prores'): shutil.move( _object.path, CurrentIngest.InputObject.inputPath ) except: dontDelete = True outcome = ("COULD NOT REPLACE ORIGINAL COPIES!! \ NOT DELETING {}!".format(pathForDeletion)) print(outcome) elif reason == 'done': status = 'OK' event = 'deletion' outcome = ( "Deleting original copies " "of object at {}".format(pathForDeletion) ) if os.path.isdir(pathForDeletion) and dontDelete == False: try: shutil.rmtree(pathForDeletion) except: outcome = ( "Could not delete the package at " +pathForDeletion+ ". Try deleting it manually?" ) print(outcome) CurrentIngest.caller = 'pymmFunctions.cleanup_package()' loggers.end_log( CurrentIngest, event, outcome, status ) def validate_SIP_structure(SIPpath): ''' Check that all the top-level stuff expected in a package exists. Don't go too deep... Current expected structure is: UUID/ UUID/ metadata/ objects_manifest_UUID_iso8601.txt objectCanonicalName_pbcore.xml logs/ ingestLog.txt ffmpeglog rsyncLog objects/ masterobject1_framemd5.md5 masterobject2_framemd5.md5 masterobject1_mediainfo.xml masterobject2_mediainfo.xml resourcespace/ resourcespace_mediainfo.xml objects/ masterobject1 masterobject2 resourcespace/ resourcespace1 resourcespace2 # (changed this 7/16/18) hashdeep_manifest_UUID_iso8601.txt ''' structureValidated = True status = "OK" _UUID = os.path.basename(SIPpath) # define the directories to check ingestDir = os.path.join(SIPpath,_UUID) metadataDir = os.path.join(ingestDir,'metadata') logDir = os.path.join(metadataDir,'logs') objectMetadataDir = os.path.join(metadataDir,'objects') objectDir = os.path.join(ingestDir,'objects') dirs = [ingestDir,metadataDir,logDir,objectMetadataDir,objectDir] reasonsFailed = [] # check that they exist # I should log the non-existence of any of these # maybe rename the SIP to FAILED-UUID? for thing in dirs: if not os.path.isdir(thing): structureValidated = False failure = "missing {}".format(os.path.basename(thing)) reasonsFailed.append(failure) print(failure) # use glob to search for the existence of # 1) hashdeep manifest # 2) pbcore xml file objectManifestPattern = os.path.join( metadataDir, 'objects_manifest_*' ) manifest = glob.glob(objectManifestPattern) if manifest == []: failure = "missing a hashdeep manifest for the SIP object directory" reasonsFailed.append(failure) print(failure) structureValidated = False pbcorePattern = os.path.join(metadataDir,'*_pbcore.xml') pbcore = glob.glob(pbcorePattern) if pbcore == []: failure = "missing a pbcore xml description for the object" reasonsFailed.append(failure) print(failure) structureValidated = False if structureValidated: outcome = "SIP validated against expected structure" else: outcome = "SIP failed to validate for these reasons:\n~ {}\n".format( "\n~ ".join(reasonsFailed) ) return structureValidated,outcome def database_connection(user): connection = dbAccess.DB(user) try: connection.connect() return connection except: print("DB connection problem...") return False def do_query(connection,sql,*args): ''' must be passed an open mysql.connector.connection.MySQLConnection object ''' cursor = connection.query(sql,*args) return cursor def parse_pbcore_xml(pbcoreFile): pbcoreString = '' with open(pbcoreFile,'r') as f: for line in f: pbcoreString += line return pbcoreString # # END PYMM ADMIN / LOGGING STUFF # ################################################################ ################################################################ # # FILE CHECK STUFF # def is_video(inputPath): # Look for a video stream with codec_type == 'video' ffprobe = [ 'ffprobe', '-v','error', '-i',inputPath, '-print_format','json', '-show_streams', '-select_streams','v' ] try: probe = subprocess.run(ffprobe,stdout=subprocess.PIPE) out = probe.stdout.decode('utf-8') output = json.loads(out) try: codec_type = output['streams'][0]['codec_type'] if codec_type == 'video': if not any([x in output['streams'][0]['codec_name'] for x in ('jpeg','jpg','png')]): return True else: return False except: return False except: return False def is_audio(inputPath): print("THIS ISN'T A VIDEO FILE\n" 'maybe this is an audio file?') # DO THE SAME AS ABOVE BUT codec_type == 'audio' ffprobe = [ 'ffprobe', '-v','error', '-i',inputPath, '-print_format','json', '-show_streams', '-select_streams','a' ] try: probe = subprocess.run(ffprobe,stdout=subprocess.PIPE) out = probe.stdout.decode('utf-8') output = json.loads(out) try: codec_type = output['streams'][0]['codec_type'] if codec_type == 'audio': print("This appears to be an audio file!") return True except: print("THIS DOESN'T SMELL LIKE AN AUDIO FILE EITHER") # print(output) return False except: print("INVALID FILE INPUT, NOT AUDIO EITHER") return False def is_av(inputPath): ''' run tests for video, then audio, then DPX seq, then give up. @FIXME - this should return a more verbose/useful explanation of failed tests. Currently the expected return value os Boolean when is_av() is called. ''' _is_video = is_video(inputPath) _is_audio = False _is_dpx = False _is_dpx_av = False if _is_video == True: return 'VIDEO' else: _is_audio = is_audio(inputPath) if _is_audio: return 'AUDIO' else: if os.path.isdir(inputPath): # if it's a folder, see if it's a DPX sequence try: # test for a valid folder structure _is_dpx,details = directoryScanner.main(inputPath) print(_is_dpx) print(details) except: print('error scanning input!') return False if _is_dpx: if _is_dpx == 'dpx': print('THIS IS AN IMAGE SEQUENCE!') return 'DPX' else: # if it passes the folder structure, run # mediainfo to check for dpx contents status, failedDirs = test_sequence_reel_dir(inputPath) if status == True: print('THIS IS AN IMAGE SEQUENCE!') return 'DPX' else: print( 'ERROR: check out this list of ' 'problem directories: {}'.format(failedDirs) ) return False else: return None else: return None def test_sequence_reel_dir(reelPath): ''' Take a directory that should contain only a wav file and a corresponding directory with an image sequence in it. If there's a problem with one or more of the directories return it/them in a list. ''' failedDirs = [] failures = 0 for item in os.scandir(reelPath): if item.name == 'documentation': break if item.is_dir(): print(item.path) if item.name.lower() == 'dpx': _is_dpx = is_dpx_sequence(item.path) if not _is_dpx: failedDirs.append(item.path) failures += 1 else: failedDirs.append(item.path) failures += 1 if failures > 0: return False, failedDirs else: return True, failedDirs def is_dpx_sequence(inputPath): ''' run mediainfo on the 'dpx' folder ''' _is_dpx_av = False try: format = get_mediainfo_value(inputPath,'General','Format') if any([('dpx','directory') for x in format.lower()]): _is_dpx_av = True else: pass except: _is_dpx_av = False return _is_dpx_av def check_policy(ingestType,inputPath): print('do policy check stuff') policyStatus = "result of check against mediaconch policy" return policyStatus def dir_or_file(inputPath): if os.path.isdir(inputPath): return 'dir' elif os.path.isfile(inputPath): return 'file' else: return False def get_base(inputPath,base='basename'): bases = {'basename':'','baseMinusExtension':'','ext_original':''} if not base in bases.keys(): return "_:(_" else: try: basename = os.path.basename(inputPath) bases['basename'] = basename baseAndExt = os.path.splitext(basename) baseMinusExtension = baseAndExt[0] bases['baseMinusExtension'] = baseMinusExtension ext_original = baseAndExt[1] bases['ext_original'] = ext_original return bases[base] except: print("error getting basename") return "_:(_" def abspath_list(directory): paths = [] for filename in os.listdir(directory): path = os.path.abspath(os.path.join(directory, filename)) # path = path.replace(' ','\\ ') paths.append(path) return paths def check_dir_filename_distances(directory): ''' Check a directory to be ingested for wildly divergent filenames. We will currently only want to allow single-level directories of files that represent parts of a whole and thus have fairly similar filenames. ''' _list = abspath_list(directory) names = [] for name in _list: if os.path.isfile(name): if not os.path.basename(name).startswith('.'): names.append(name) median = Levenshtein.median(names) # print(median) outliers = 0 # start a counter for the number of files that diverge from the median name outlierList = [] # and list them for name in names: distance = Levenshtein.distance(median,name) # print(distance) if distance > 15: outliers += 1 outlierList.append(name) return outliers,outlierList def check_for_outliers(inputPath): ''' Use distance check function to approve/deny viability of directory ingest. ''' goodNames = True outliers, outlierList = check_dir_filename_distances(inputPath) if outliers > 0: outlierListString = '\n'.join(outlierList) warning = ( "Hey, there are {} files that seem like they might not belong"\ " in the input directory. If you think this is incorrect, check"\ " the filenames below. Maybe make them more consistent.\n"\ "Here's a list of possible outliers:\n{}".format( str(outliers), outlierListString ) ) return False,outlierList else: return True,None def list_files(_input): ''' Take in an absolute path of a directory and return a list of the paths for everything in it. ''' if os.path.isdir(_input): source_list = [] for _file in os.listdir(_input): if os.path.isdir(_file) and not _file.lower() == 'documentation': print("you have unexpected subdirectories!") else: source_list.append(os.path.join(_input,_file)) source_list.sort() return source_list else: print("you're trying to list files but the input is a file. go away.") # sys.exit() pass def get_temp_id(_string): ''' Generate a hash of a string (i.e., of an input path) that can be used to produce a *locally* unique temporary ID during the ingestSIP process. For convenience (?) I'm cutting it down to 10 digits. example: ingestSIP -i 'foo.mov' --> tempID = a8bcd6d073 where: sha256 = a8bcd6d073c91f6132f6d64674ecaf658a33c4aedde4046b0b7bf64e9c723073 ''' pathHash = hashlib.sha256(_string.encode()).hexdigest() tempID = pathHash[:10] return tempID def rename_dir(_dir,newName): if os.path.isdir(_dir): path = os.path.dirname(_dir) newPath = os.path.join(path,newName) try: newDir = os.rename(_dir,newPath) return newPath except OSError as e: print("OOPS: {}".format(e)) else: print("{} is not a directory so go away.".format(_dir)) def convert_millis(milli): ''' Lifted directly from IFIscripts. Written by <NAME>. Requires an integer that is the number of milliseconds. For example mediainfo returns '00:51:58.824' as a string '3118.824' so you gotta remove the period, convert to integer, and parse here. Accepts milliseconds and returns this value as HH:MM:SS.NNN ''' # get the number of seconds and milliseconds a = datetime.timedelta(milliseconds=milli) # convert to a handy string that looks like '0:51:58.824000' # so we can check for milliseconds present b = str(a) # no millseconds are present if there is no remainder. We need milliseconds! if len(b) == 7: b += '.000000' # convert seconds-based tuple to H:M:S:ms tuple timestamp = datetime.datetime.strptime(b, "%H:%M:%S.%f").time() # turn that into a string like '0:51:58.824000' c = str(timestamp) if len(c) == 8: c += '.000000' # trim off the unneeded zeros return str(c)[:-3] def get_audio_sample_rate(inputPath): # get the sample rate for an audio file _type = 'Audio' fieldName = 'SamplingRate' rate = get_mediainfo_value( inputPath, _type, fieldName ) return rate def get_encoded_date(inputPath): encodedDate = get_mediainfo_value( inputPath, 'General', 'Encoded_Date' ) return encodedDate def get_mediainfo_value(inputPath,_type,fieldName): ''' inspired by IFIscripts and StackOverflow answer by <NAME>. Note: you don't
import os import obspy import pickle import numpy as np import scipy.integrate as ig import matplotlib.pyplot as plt from matplotlib.ticker import StrMethodFormatter, NullFormatter from mtspec import mtspec from . import utils as ut from . import config as cfg # VARIABLES READ FROM CONFIG SUPPORTED_SAVE_METHODS = ['pickle'] BW_METHOD=cfg.SPECTRAL["BW_METHOD"] PLOT_COLUMNS = cfg.SPECTRAL["PLOT_COLUMNS"] BINNING_PARAMS = cfg.SPECTRAL["BIN_PARS"] BIN = True SCALE_PARSEVAL = cfg.SPECTRAL["SCALE_PARSEVAL"] ROTATE_NOISE = cfg.SPECTRAL["ROTATE_NOISE"] ROT_METHOD = cfg.SPECTRAL["ROT_METHOD"] ROT_PARS = cfg.SPECTRAL['ROT_PARS'] SNR_TOLERENCE = cfg.SPECTRAL["SNR_TOLERENCE"] MIN_POINTS = cfg.SPECTRAL["MIN_POINTS"] ASSERT_BANDWIDTHS = cfg.SPECTRAL["ASSERT_BANDWIDTHS"] SBANDS = cfg.SPECTRAL["S_BANDS"] # classes class Spectrum(object): """ Spectrum class. """ freq=np.array([]) amp=np.array([]) meta={} id = " " kind = " " event = " " freq_lims = np.array([0.,0.]) __tr=obspy.Trace(np.array([])) bamp=np.array([]) bfreq=np.array([]) def __init__(self, kind, tr=None, **kwargs): # if a trace is passed assume it needs to be converted to frequency. if tr is not None: self.__set_metadata_from_trace(tr, kind) self.__calc_spectra(**kwargs) self.psd_to_amp() self.__bin_spectrum(**BINNING_PARAMS) def psd_to_amp(self): """ Converts Power Spectral Density (PSD) to spectral amplitude. amp = [PSD*fs*len(PSD)]^0.5 fs is sampling rate in Hz """ # self.amp = np.sqrt( # self.amp*self.meta['delta']*len(self.amp)) # if self.bamp.size > 0: # self.bamp = np.sqrt( # self.bamp*self.meta['delta']*len(self.amp)) self.amp = np.sqrt( (self.amp*len(self.freq))/self.meta['sampling_rate']) if self.bamp.size > 0: self.bamp = np.sqrt( (self.bamp*len(self.freq))/self.meta['sampling_rate']) def amp_to_psd(self): """ Converts Power Spectral Density (PSD) to spectral amplitude. amp = [PSD*fs*len(PSD)]^0.5 fs is sampling rate in Hz """ self.amp = np.power(self.amp, 2) / ( self.meta['sampling_rate'] * len(self.amp)) if self.bamp.size > 0: self.bamp = np.power(self.bamp, 2) / ( self.meta['sampling_rate'] * len(self.bamp)) def quick_vis(self, **kwargs): fig, ax = plt.subplots(1,1) ax.set_title("Event Id: {}".format(self.event)) ax.loglog(self.freq, self.amp, label=self.id, **kwargs) ax.legend() ax.set_xlabel('freq [Hz]') ax.set_ylabel('spectral amp') def integrate(self): self.amp /= (2*np.pi*self.freq) self.bamp /= (2*np.pi*self.bfreq) def differentiate(self): self.amp *= (2*np.pi*self.freq) self.bamp *= (2*np.pi*self.bfreq) def __set_metadata_from_trace(self, tr, kind): self.__tr = tr.copy() # make a copy so you dont delete original self.meta = self.__sanitise_trace_meta(dict(self.__tr.stats)) self.id = self.__tr.id self.kind = kind try: self.event = str(self.meta['otime']) except KeyError: self.event = None def __calc_spectra(self, **kwargs): amp, freq = mtspec(self.__tr.data, self.meta['delta'], 3, **kwargs) del self.__tr # forget the 0 frequency, probably just noise anyway self.amp, self.freq = amp[1:], freq[1:] def __sanitise_trace_meta(self, m): nm = {} for k, v in m.items(): if k not in ['processing', 'sac', 'calib', '__format']: if type(v) not in [float, int, str, np.float64, np.float32]: # print(k, type(v)) nm.update({k:str(v)}) else: nm.update({k:v}) return nm def __bin_spectrum(self, smin=0.001, smax=200, bins=101): # define the range of bins to use to average amplitudes and smooth spectrum space = np.logspace(np.log10(smin), np.log10(smax), bins) # initialise numpy arrays bamps = np.zeros(int(len(space)-1)); bfreqs = np.zeros(int(len(space)-1)); # iterate through bins to find mean log-amplitude and bin center (log space) for i, bbb in enumerate(zip(space[:-1], space[1:])): bb, bf = bbb a = 10**np.log10(self.amp[(self.freq>=bb)&(self.freq<=bf)]).mean() bamps[i] = a; bfreqs[i] = 10**(np.mean([np.log10(bb), np.log10(bf)])) # remove nan values self.bfreq = bfreqs[np.logical_not(np.isnan(bamps))] self.bamp = bamps[np.logical_not(np.isnan(bamps))] self.BAMP = bamps self.BFREQ = bfreqs class Signal(Spectrum): """ Signal is a subclass of spectrum intended to compute the spectrum of a signal trace. """ # Signal class has an additional model attributes with the model params # and a model function model = None pass_snr = True ubfreqs = np.array([]) def __init__(self, tr=None, **kwargs): super().__init__('signal', tr=tr, **kwargs) def set_model(self, model): self.model = model def get_model(self): return self.model def set_ubfreqs(self, ubfreqs): self.ubfreqs = ubfreqs def get_ubfreqs(self): return self.ubfreqs def set_pass_snr(self, p): self.pass_snr = p def get_pass_snr(self): return self.pass_snr class Noise(Spectrum): """ Noise is a subclass of spectrum intended to compute the spectrum of a noise trace. """ def __init__(self, tr=None, **kwargs): super().__init__('noise', tr=tr, **kwargs) class SNP(object): """ Lower level container class to associate signal and noise spectrum objects. """ signal = None noise = None bsnr = np.array([0.]) event = " " ubfreqs = np.array([]) itrpn = True ROTATED = False def __init__(self, signal, noise, interpolate_noise=True): self.__check_ids(signal, noise) self.signal = signal self.noise = noise self.pair = (self.signal, self.noise) self.__set_metadata(interpolate_noise) if SCALE_PARSEVAL: self.__scale_noise_parseval() if self.intrp: self.__interp_noise_to_signal() self.__get_snr() def integrate(self): for s in self.pair: s.integrate() # must recalculate usable frequency-bandwidth if self.intrp: self.__get_snr() def differentiate(self): for s in self.pair: s.differentiate() # must recalculate usable frequency-bandwidth if self.intrp: self.__get_snr() def psd_to_amp(self): for s in self.pair: s.psd_to_amp() def amp_to_psd(self): for s in self.pair: s.amp_to_psd() @property def bsnr(self): return self._bsnr @bsnr.setter def bsnr(self, arr): # assert type(arr) is type(np.array()) self._bsnr = arr def __scale_noise_parseval(self): self.noise.amp *= np.sqrt(len(self.signal.amp)/len(self.noise.amp)) self.noise.bamp *= np.sqrt(len(self.signal.amp)/len(self.noise.amp)) def __rotate_noise(self): if ROT_METHOD == 1: self.noise.bamp, th1, th2 = ut.rotate_noise_full( self.noise.bfreq, self.noise.bamp, self.signal.bamp, ret_angle=True, **ROT_PARS) if th1==0 or th2==0: print("th1={}, th2={}".format(th1, th2)) print("rotation failed for {}".format(self.signal.id)) self.noise.amp = ut.rotate_noise_full( self.noise.freq, self.noise.amp, self.signal.amp, th1=th1, th2=th2, **ROT_PARS) if ROT_METHOD == 2: rot = ut.non_lin_boost_noise_func(self.noise.bfreq, self.noise.bamp, self.signal.bamp, **ROT_PARS) self.noise.bamp *= rot self.noise.amp *= np.interp(self.noise.freq, self.noise.bfreq, rot) def __calc_bsnr(self): if ROTATE_NOISE and self.ROTATED == False: self.ROTATED = True self.__rotate_noise() # set bsnr to the object self.bsnr=self.signal.bamp/self.noise.bamp def __get_snr(self): self.__calc_bsnr() self.__find_bsnr_limits() self.__update_lims_to_meta() if ASSERT_BANDWIDTHS: self.__assert_bandwidths_test() def __assert_bandwidths_test(self): mns = np.zeros(len(SBANDS)) for i, bws in enumerate(SBANDS): inds = np.where((self.signal.freq >=bws[0]) & (self.signal.freq < bws[1]))[0] mns[i] = np.mean(self.signal.amp[inds])/np.mean(self.noise.amp[inds]) if np.any(mns < SNR_TOLERENCE): self.signal.set_pass_snr(False) def __update_lims_to_meta(self): if self.signal.ubfreqs.size > 0: self.signal.meta['lower-f-bound'] = self.signal.ubfreqs[0] self.signal.meta['upper-f-bound'] = self.signal.ubfreqs[1] else: self.signal.meta['lower-f-bound'] = None self.signal.meta['upper-f-bound'] = None self.signal.meta["pass_snr"] = self.signal.pass_snr def quick_vis(self, ax=None): if ax is None: fig, ax = plt.subplots(1,1) else: ret=True ax.set_title("Event Id: {}".format(self.event)) ax.loglog(self.noise.freq, self.noise.amp, 'b--',label='noise') ax.loglog(self.signal.freq, self.signal.amp, 'k', label=self.signal.id) if self.signal.model is not None: if self.signal.model.result is not None: ax.loglog(self.signal.model.mod_freq, 10**self.signal.model.result.best_fit, color='green', label='best fit model') if self.ubfreqs.size > 0: if self.signal.pass_snr: for lim in self.ubfreqs: ax.vlines(lim, np.min([self.noise.amp.min(), self.signal.amp.min()]), np.max([self.noise.amp.max(), self.signal.amp.max()]), color='r', linestyles='dashed') else: ax.set_title("SNR TEST FAILED") ax.xaxis.set_major_formatter(StrMethodFormatter('{x:.2f}')) ax.xaxis.set_minor_formatter(NullFormatter()) ax.legend() ax.set_xlabel('freq [Hz]') ax.set_ylabel('spectral amp') # if ret: # return ax def __set_metadata(self, intrp): # global setting self.intrp = intrp # exposing these attributes to the highest level *lazyprogrammer* self.event = self.signal.event self.id = self.signal.id def __find_bsnr_limits(self): """ Find the upper and lower frequncy limits of the bandwidth measure of signal-to-noise. """ blw = np.where(self.bsnr>=SNR_TOLERENCE)[0] if blw.size <= MIN_POINTS: self.signal.set_pass_snr(False) else: if BW_METHOD==1: self.set_ubfreqs(self.find_optimal_signal_bandwidth( self.signal.bfreq, self.bsnr, SNR_TOLERENCE)) if BW_METHOD==2: self.set_ubfreqs(self.find_optimal_signal_bandwidth_2()) def set_ubfreqs(self, ubfreqs): self.ubfreqs = ubfreqs self.signal.set_ubfreqs(ubfreqs) def find_optimal_signal_bandwidth(self, freq, bsnr, bsnr_thresh, pctl=0.99, plot=False): """ Attempts to find the largest signal bandwidth above an arbitraty signal-to-Noise. We first map the SNR function to a space between -1, 1 by subtracting the SNR threshold then taking the sign) taking the integral """ inte = ig.cumtrapz((np.sign(bsnr-bsnr_thresh))) inte /= inte.max() inte[inte<=0] = -1 fh = np.abs(inte-pctl).argmin() - 1 fl = np.abs(inte-(1-pctl)).argmin() tryCount=0 while (fl >= fh) or fl==0: inte[fl] = 1 fl = np.abs(inte+1-pctl).argmin() tryCount += 1 if tryCount == 3: print('WARNING: {} is too noisy.'.format(self.id)) self.signal.set_pass_snr(False) break # if fl > 1: # fl -= 2 if not plot: if fh-fl < 3: self.signal.set_pass_snr(False) return np.array([freq[fl], freq[fh]]) else: import matplotlib.pyplot as plt plt.plot(freq, np.sign(bsnr-bsnr_thresh), color='grey', label='sign(bsnr-bsnr limit)') plt.plot(freq[1:], inte, color='k', lw=2, label='int[sign(bsnr-bsnr limit)]') plt.vlines(freq[fl], inte.min(), inte.max(), linestyles='dashed', label='{}% & {}%'.format(100 -int(pctl*100), int(pctl*100))) plt.vlines(freq[fh], inte.min(), inte.max(), linestyles='dashed', color='g') plt.title('ID:{}, low f:{:.2f}, high f:{:.2f}'.format(str(self.id), freq[fl], freq[fh])) plt.legend() plt.ylabel("arb. units") plt.xlabel("freq [Hz]") def find_optimal_signal_bandwidth_2(self, plot=False): # get freq and ratio function f = self.signal.bfreq; a = self.bsnr # get index of freqs > peak bsnr and < peak bsnr indsgt = np.where(f>f[a==a.max()]) indslt = np.where(f<f[a==a.max()]) # get those freqs fh = f[indsgt]; fl = f[indslt] try: ufl = fh[np.where(a[indsgt]-SNR_TOLERENCE<=0)[0]-1][0] lfl = fl[np.where(a[indslt]-SNR_TOLERENCE<=0)[0]+1][-1] except IndexError as msg: print(msg) print('-'*20) print("Doesn't meet at one end") self.signal.pass_snr = False return np.array([]) if not plot: return np.array([lfl, ufl]) else: plt.loglog(f, a, label=name) plt.hlines(SNR_TOLERENCE, f.min(), f.max()) plt.vlines(f[a==a.max()], a.min(), a.max()) plt.vlines(fh[np.where(a[indsgt]-SNR_TOLERENCE<=0)[0]-1][0], a.min()*2, a.max()/2) plt.vlines(fl[np.where(a[indslt]-SNR_TOLERENCE<=0)[0]+1][-1], a.min()*2, a.max()/2) def __check_ids(self, signal, noise): if signal.id.upper() != noise.id.upper(): raise ValueError( "ID mismatch between signal: {} and noise: ".format( signal.id, noise.id)) if signal.kind.lower() == noise.kind.lower(): raise ValueError( "Cannot pair similar spectrum kinds: {} with {}".format( signal.kind, noise.kind)) def __interp_noise_to_signal(self): self.noise.amp = np.interp( self.signal.freq, self.noise.freq, self.noise.amp) #self.noise.diff_freq = self.noise.freq[np.where(self.noise.freq <= self.signal.freq.min())] self.noise.freq = self.signal.freq.copy() self.noise._Spectrum__bin_spectrum(**BINNING_PARAMS) # need to recalc bins after interp. def __str__(self): return 'SNP(id:{}, event:{})'.format(self.id, self.event) def __repr__(self): return 'SNP(id:' + self.id + ', event:' + self.event + ')' class Spectra(object): global PLOT_COLUMNS """ Higher order container class for a group of SNP objects from a single event. """ sorter=lambda x: x.signal.meta['repi'] group = dict() event = None def __init__(self, group=None): if group is not None: self.__check_group(group) self.__set_group_dict(group)
#!/usr/bin/env python """ NAME: sparser.py SYNOPSIS: sparser.py [options] filename DESCRIPTION: The sparser.py script is a Specified PARSER. It is unique (as far as I can tell) because it doesn't care about the delimiter(s). The user specifies what is expected, and the order, for each line of text. All of the heavy lifting is handled by pyparsing (http://pyparsing.sf.net). OPTIONS: -h,--help this message -v,--version version -d,--debug turn on debug messages EXAMPLES: 1. As standalone sparser.py myfile 2. As library import sparser ... #Copyright (C) 2006 <NAME> <EMAIL> # # # This program is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the Free # Software Foundation; either version 2 of the License, or (at your option) # any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY # or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License # for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 675 Mass Ave, Cambridge, MA 02139, USA. """ #===imports====================== import sys import os import getopt import re import gzip from pyparsing import * #===globals====================== modname = "sparser" __version__ = "0.1" #--option args-- debug_p = 0 #opt_b=None #string arg, default is undefined #---positional args, default is empty--- pargs = [] #---other--- #===utilities==================== def msg(txt): """Send message to stdout.""" sys.stdout.write(txt) sys.stdout.flush() def debug(ftn, txt): """Used for debugging.""" if debug_p: sys.stdout.write("%s.%s:%s\n" % (modname, ftn, txt)) sys.stdout.flush() def fatal(ftn, txt): """If can't continue.""" msg = "%s.%s:FATAL:%s\n" % (modname, ftn, txt) raise SystemExit(msg) def usage(): """Prints the docstring.""" print(__doc__) #==================================== class ToInteger(TokenConverter): """Converter to make token into an integer.""" def postParse( self, instring, loc, tokenlist ): return int(tokenlist[0]) class ToFloat(TokenConverter): """Converter to make token into a float.""" def postParse( self, instring, loc, tokenlist ): return float(tokenlist[0]) class ParseFileLineByLine: """ Bring data from text files into a program, optionally parsing each line according to specifications in a parse definition file. ParseFileLineByLine instances can be used like normal file objects (i.e. by calling readline(), readlines(), and write()), but can also be used as sequences of lines in for-loops. ParseFileLineByLine objects also handle compression transparently. i.e. it is possible to read lines from a compressed text file as if it were not compressed. Compression is deduced from the file name suffixes '.Z' (compress/uncompress), '.gz' (gzip/gunzip), and '.bz2' (bzip2). The parse definition file name is developed based on the input file name. If the input file name is 'basename.ext', then the definition file is 'basename_def.ext'. If a definition file specific to the input file is not found, then the program searches for the file 'sparse.def' which would be the definition file for all files in that directory without a file specific definition file. Finally, ParseFileLineByLine objects accept file names that start with '~' or '~user' to indicate a home directory, as well as URLs (for reading only). Constructor: ParseFileLineByLine(|filename|, |mode|='"r"'), where |filename| is the name of the file (or a URL) and |mode| is one of '"r"' (read), '"w"' (write) or '"a"' (append, not supported for .Z files). """ def __init__(self, filename, mode = 'r'): """Opens input file, and if available the definition file. If the definition file is available __init__ will then create some pyparsing helper variables. """ if mode not in ['r', 'w', 'a']: raise IOError(0, 'Illegal mode: ' + repr(mode)) if string.find(filename, ':/') > 1: # URL if mode == 'w': raise IOError("can't write to a URL") import urllib.request, urllib.parse, urllib.error self.file = urllib.request.urlopen(filename) else: filename = os.path.expanduser(filename) if mode == 'r' or mode == 'a': if not os.path.exists(filename): raise IOError(2, 'No such file or directory: ' + filename) filen, file_extension = os.path.splitext(filename) command_dict = { ('.Z', 'r'): "self.file = os.popen('uncompress -c ' + filename, mode)", ('.gz', 'r'): "self.file = gzip.GzipFile(filename, 'rb')", ('.bz2', 'r'): "self.file = os.popen('bzip2 -dc ' + filename, mode)", ('.Z', 'w'): "self.file = os.popen('compress > ' + filename, mode)", ('.gz', 'w'): "self.file = gzip.GzipFile(filename, 'wb')", ('.bz2', 'w'): "self.file = os.popen('bzip2 > ' + filename, mode)", ('.Z', 'a'): "raise IOError, (0, 'Can\'t append to .Z files')", ('.gz', 'a'): "self.file = gzip.GzipFile(filename, 'ab')", ('.bz2', 'a'): "raise IOError, (0, 'Can\'t append to .bz2 files')", } exec(command_dict.get((file_extension, mode), 'self.file = open(filename, mode)')) self.grammar = None # Try to find a parse ('*_def.ext') definition file. First try to find # a file specific parse definition file, then look for 'sparse.def' # that would be the definition file for all files within the directory. # The definition file is pure Python. The one variable that needs to # be specified is 'parse'. The 'parse' variable is a list of tuples # defining the name, type, and because it is a list, the order of # variables on each line in the data file. The variable name is a # string, the type variable is defined as integer, real, and qString. # parse = [ # ('year', integer), # ('month', integer), # ('day', integer), # ('value', real), # ] definition_file_one = filen + "_def" + file_extension definition_file_two = os.path.dirname(filen) + os.sep + "sparse.def" if os.path.exists(definition_file_one): self.parsedef = definition_file_one elif os.path.exists(definition_file_two): self.parsedef = definition_file_two else: self.parsedef = None return None # Create some handy pyparsing constructs. I kept 'decimal_sep' so that # could easily change to parse if the decimal separator is a ",". decimal_sep = "." sign = oneOf("+ -") # part of printables without decimal_sep, +, - special_chars = string.replace('!"#$%&\'()*,./:;<=>?@[\\]^_`{|}~', decimal_sep, "") integer = ToInteger( Combine(Optional(sign) + Word(nums))).setName("integer") positive_integer = ToInteger( Combine(Optional("+") + Word(nums))).setName("integer") negative_integer = ToInteger( Combine("-" + Word(nums))).setName("integer") real = ToFloat( Combine(Optional(sign) + Word(nums) + decimal_sep + Optional(Word(nums)) + Optional(oneOf("E e") + Word(nums)))).setName("real") positive_real = ToFloat( Combine(Optional("+") + Word(nums) + decimal_sep + Optional(Word(nums)) + Optional(oneOf("E e") + Word(nums)))).setName("real") negative_real = ToFloat( Combine("-" + Word(nums) + decimal_sep + Optional(Word(nums)) + Optional(oneOf("E e") + Word(nums)))).setName("real") qString = ( sglQuotedString | dblQuotedString ).setName("qString") # add other characters we should skip over between interesting fields integer_junk = Optional( Suppress( Word(alphas + special_chars + decimal_sep))).setName("integer_junk") real_junk = Optional( Suppress( Word(alphas + special_chars))).setName("real_junk") qString_junk = SkipTo(qString).setName("qString_junk") # Now that 'integer', 'real', and 'qString' have been assigned I can # execute the definition file. exec(compile(open(self.parsedef).read(), self.parsedef, 'exec')) # Build the grammar, combination of the 'integer', 'real, 'qString', # and '*_junk' variables assigned above in the order specified in the # definition file. grammar = [] for nam, expr in parse: grammar.append( eval(expr.name + "_junk")) grammar.append( expr.setResultsName(nam) ) self.grammar = And( grammar[1:] + [restOfLine] ) def __del__(self): """Delete (close) the file wrapper.""" self.close() def __getitem__(self, item): """Used in 'for line in fp:' idiom.""" line = self.readline() if not line: raise IndexError return line def readline(self): """Reads (and optionally parses) a single line.""" line = self.file.readline() if self.grammar and line: try: return self.grammar.parseString(line).asDict() except ParseException: return self.readline() else: return line def readlines(self): """Returns a list of all lines (optionally parsed) in the file.""" if self.grammar: tot = [] # Used this way instead of a 'for' loop against # self.file.readlines() so that there wasn't two copies of the file # in memory. while 1: line = self.file.readline() if not line: break tot.append(line) return tot return self.file.readlines() def write(self, data): """Write to a file.""" self.file.write(data) def writelines(self, list): """Write a list to a file. Each item in the list is a line in the file. """ for line in list: self.file.write(line) def close(self): """Close the file.""" self.file.close() def flush(self): """Flush in memory contents to file.""" self.file.flush() #============================= def main(pargs): """This should only be used for testing. The primary mode of operation is as an imported library. """ input_file = sys.argv[1] fp = ParseFileLineByLine(input_file) for i in fp: print(i) #------------------------- if __name__ == '__main__': ftn
<gh_stars>1-10 """ Copyright (c) 2018-2019 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import logging as log import numpy as np from extensions.middle.PartialInfer import PartialInfer from extensions.middle.TensorIterator_utils import delete_selects_from from extensions.ops.TensorIterator_ops import TensorIteratorCondition, TensorIteratorBackEdge from extensions.ops.elementwise import Mul from mo.graph.graph import Graph from mo.middle.replacement import MiddleReplacementPattern from mo.ops.const import Const def make_nodes_1D(nodes: list): """ Reshape every node from nodes from 0D to 1D (nodes should have shape attribute). """ for node in nodes: assert node.shape is None or len(node.shape) == 0 node.shape = np.array([1], dtype=np.int64) if node.value is not None: node.value = np.reshape(node.value, node.shape) def looking_for_op_in_list(nodes: list, op: str): for node in nodes: if node.has_valid('op') and node.op == op: return node return None class LoopConditionMatcher(MiddleReplacementPattern): """ This pattern match condition for TensorIterator in while loops in TF. The structure of pattern without Data nodes between ops. Every node is named as op attribute of this node (data nodes is marked by (data)): Const---- | v Const -> Enter -> Merge ---------------------> Switch -> Identity -> Add -> NextIteration | ^ ---> Less ----| | ^ | | Maximum -> Minimum -> Enter-| | | ^ v | Shape -> StridedSlice -> Enter -| LogicalAnd --> LoopCond (data) v ^ | ---> Less ----| | | v Const -> Enter -> Merge ---------------------> Switch -> Identity -> Add -> NextIteration ^ | Const---- """ enabled = True graph_condition = [lambda graph: graph.graph['is_cyclic']] def run_after(self): return [] def run_before(self): from extensions.middle.TensorIteratorMerge import TensorIteratorMerge return [TensorIteratorMerge] @staticmethod def pattern(): log.debug('+++++++++++++++ ConditionMatching ++++++++++++++++') return dict( nodes=[ ('Enter_1_less', dict(kind='op', op='Enter')), ('Strided_slice', dict(kind='op', op='StridedSlice')), ('Strided_slice_data', dict(kind='data')), ('Enter_1_less_data', dict(kind='data')), ('Less_1', dict(kind='op', op='Less')), ('Merge_1', dict(kind='op', op='Merge')), ('Merge_1_data', dict(kind='data')), ('Less_1_data', dict(kind='data')), ('Less_2', dict(kind='op', op='Less')), ('Merge_2', dict(kind='op', op='Merge')), ('Merge_2_data', dict(kind='data')), ('Less_2_data', dict(kind='data')), ('Enter_2_less', dict(kind='op', op='Enter')), ('Enter_2_less_data', dict(kind='data')), ('minimum_data', dict(kind='data')), ('and', dict(kind='op', op='LogicalAnd')), ('and_data', dict(kind='data')), ('loop_cond', dict(kind='op', op='LoopCond')), ('loop_cond_data', dict(kind='data')), ('init_1', dict(kind='op', op='Const')), ('init_1_data', dict(kind='data')), ('Enter_1', dict(kind='op', op='Enter')), ('Enter_1_data', dict(kind='data')), ('init_2', dict(kind='op', op='Const')), ('init_2_data', dict(kind='data')), ('Enter_2', dict(kind='op', op='Enter')), ('Enter_2_data', dict(kind='data')), ('Switch_1', dict(kind='op', op='Switch')), ('Switch_1_data', dict(kind='data')), ('Identity_1', dict(kind='op', op='Identity')), ('Identity_1_data', dict(kind='data')), ('add_1', dict(kind='op', op='Add')), ('add_1_y', dict(kind='op', op='Const')), ('add_1_y_data', dict(kind='data')), ('add_1_data', dict(kind='data')), ('NextIteration_1', dict(kind='op', op='NextIteration')), ('Switch_2', dict(kind='op', op='Switch')), ('Switch_2_data', dict(kind='data')), ('Identity_2', dict(kind='op', op='Identity')), ('Identity_2_data', dict(kind='data')), ('add_2', dict(kind='op', op='Add')), ('add_2_y', dict(kind='op', op='Const')), ('add_2_y_data', dict(kind='data')), ('add_2_data', dict(kind='data')), ('NextIteration_2', dict(kind='op', op='NextIteration')), ], edges=[ ('Strided_slice', 'Strided_slice_data'), ('Strided_slice_data', 'Enter_1_less'), ('Enter_1_less', 'Enter_1_less_data'), ('Enter_1_less_data', 'Less_1'), ('Less_1', 'Less_1_data'), ('Less_1_data', 'and'), ('and', 'and_data'), ('and_data', 'loop_cond'), ('loop_cond', 'loop_cond_data'), ('loop_cond_data', 'Switch_1'), ('loop_cond_data', 'Switch_2'), ('init_1', 'init_1_data'), ('init_1_data', 'Enter_1'), ('Enter_1', 'Enter_1_data'), ('Enter_1_data', 'Merge_1'), ('Merge_1', 'Merge_1_data'), ('Merge_1_data', 'Less_1'), ('Merge_1_data', 'Switch_1'), ('Switch_1', 'Switch_1_data'), ('Switch_1_data', 'Identity_1'), ('Identity_1', 'Identity_1_data'), ('Identity_1_data', 'add_1'), ('add_1_y', 'add_1_y_data'), ('add_1_y_data', 'add_1'), ('add_1', 'add_1_data'), ('add_1_data', 'NextIteration_1'), ('Merge_2_data', 'Switch_2'), ('Switch_2', 'Switch_2_data'), ('Switch_2_data', 'Identity_2'), ('Identity_2', 'Identity_2_data'), ('Identity_2_data', 'add_2'), ('add_2_y', 'add_2_y_data'), ('add_2_y_data', 'add_2'), ('add_2', 'add_2_data'), ('add_2_data', 'NextIteration_2'), ('minimum_data', 'Enter_2_less'), ('Enter_2_less', 'Enter_2_less_data'), ('Enter_2_less_data', 'Less_2'), ('init_2', 'init_2_data'), ('init_2_data', 'Enter_2'), ('Enter_2', 'Enter_2_data'), ('Enter_2_data', 'Merge_2'), ('Merge_2', 'Merge_2_data'), ('Merge_2_data', 'Less_2'), ('Less_2', 'Less_2_data'), ('Less_2_data', 'and'), ], ) @staticmethod def looking_for_iteration_counter(graph: Graph, match: dict): types = ['TensorIteratorInput', 'TensorIteratorOutput'] candidates = np.array([match['Identity_1_data'], match['Identity_2_data']]) results = np.array([False for i in range(len(candidates))]) for i, candidat in enumerate(candidates): for node in candidat.out_nodes(): if node['op'] in types: results[i] = True assert not np.all(results) assert sum(results) == 1 return candidates[results == True][0] @staticmethod def check_dynamic_seq_len(graph: Graph, match: dict): """ Cycle is dynamic if at least one of the boundaries isn't constant OR this boundaries is different from tensor shape. """ dynamic_seq_len = match['Enter_1_less_data'].value is None or match['Enter_2_less_data'].value is None or \ not np.array_equal(match['Enter_1_less_data'].value, match['Enter_2_less_data'].value) return dynamic_seq_len def replace_pattern(self, graph: Graph, match: dict): log.debug('================== ConditionFind ===============') # init_1 init_1 = match['init_1_data'].value assert init_1 is not None init_1 = int(init_1) # init_2 init_2 = match['init_2_data'].value assert init_2 is not None init_2 = int(init_2) # step_1 assert match['add_1_y_data'].value is not None step_1 = int(match['add_1_y_data'].value) # step_2 assert match['add_2_y_data'].value is not None step_2 = int(match['add_2_y_data'].value) dynamic_seq_len = self.check_dynamic_seq_len(graph, match) # Create condition node and delete all useless nodes from condition pattern loop_condition = match['loop_cond_data'] iterator_data = self.looking_for_iteration_counter(graph, match) condition_attrs = dict(time=dict(init=init_2, step=step_2), iter=dict(init=init_1, step=step_1), name=match['loop_cond'].name + '/TensorIteratorCondition_') condition = TensorIteratorCondition(graph, attrs=condition_attrs) condition_data = condition.create_node_with_data(inputs=[match['Strided_slice_data'], match['minimum_data']], data_nodes=[loop_condition, iterator_data]) safe_nodes = ['loop_cond_data', 'Identity_1_data', 'Identity_2_data', 'Strided_slice', 'Strided_slice_data', 'minimum', 'minimum_data'] identity_ops = [n.op for n in iterator_data.out_nodes()] if 'GreaterEqual' in identity_ops: greater_equal_id = [n.id for n in iterator_data.out_nodes() if n.op == 'GreaterEqual'][0] if dynamic_seq_len: # Add BackEdge for time iterator node backedge = TensorIteratorBackEdge(graph, dict(name='/TimeIterator/TensorIteratorBackEdge_')) backedge_data = backedge.create_node_with_data(inputs=[match['init_2_data'], match['add_2_data'], condition_data[0]],) graph.remove_edge(match['add_2'].in_node(0).id, match['add_2'].id) graph.add_edge(backedge_data.id, match['add_2'].id, **{'in': 0}) graph.remove_edge(iterator_data.id, greater_equal_id) graph.add_edge(backedge_data.id, greater_equal_id, **{'in': 0}) # nodes for time iterator safe_nodes += ['init_2_data', 'init_2', 'Identity_2_data', 'add_2_data', 'add_2', 'add_2_y', 'add_2_y_data'] # Manually reshape all iterator nodes (for time) from 0D to 1D iterator_data_nodes = [backedge_data, match['add_2_data'], match['add_2_y_data'], match['add_2_y'], match['init_2_data'], match['init_2']] make_nodes_1D(iterator_data_nodes) else: # Delete Selects from this cycle to make it not dynamic: greater_equal_idxs = [n.id for n in iterator_data.out_nodes() if n.op == 'GreaterEqual'] delete_selects_from(graph, greater_equal_idxs) # Delete useless nodes nodes_for_remove = [] for node in match.keys(): if node not in safe_nodes: nodes_for_remove.append(match[node].id) graph.remove_nodes_from(nodes_for_remove) class SimpleConditionMatcher(MiddleReplacementPattern): enabled = True graph_condition = [lambda graph: graph.graph['is_cyclic']] def run_after(self): return [LoopConditionMatcher] def run_before(self): from extensions.middle.TensorIteratorMerge import TensorIteratorMerge return [TensorIteratorMerge] @staticmethod def pattern(): log.debug('+++++++++++++++ SimpleConditionMatching ++++++++++++++++') return dict( nodes=[ ('Enter_1_less', dict(kind='op', op='Enter')), ('Strided_slice', dict(kind='op', op='StridedSlice')), ('Strided_slice_data', dict(kind='data')), ('Enter_1_less_data', dict(kind='data')), ('Less_1', dict(kind='op', op='Less')), ('Merge_1', dict(kind='op', op='Merge')), ('Merge_1_data', dict(kind='data')), ('Less_1_data', dict(kind='data')), ('loop_cond', dict(kind='op', op='LoopCond')), ('loop_cond_data', dict(kind='data')), ('init_1', dict(kind='op', op='Const')), ('init_1_data', dict(kind='data')), ('Enter_1', dict(kind='op', op='Enter')), ('Enter_1_data', dict(kind='data')), ('Switch_1', dict(kind='op', op='Switch')), ('Switch_1_data', dict(kind='data')), ('Identity_1', dict(kind='op', op='Identity')), ('Identity_1_data', dict(kind='data')), ('add_1', dict(kind='op', op='Add')), ('add_1_y', dict(kind='op', op='Const')), ('add_1_y_data', dict(kind='data')), ('add_1_data', dict(kind='data')), ('NextIteration_1', dict(kind='op', op='NextIteration')), ], edges=[ ('Strided_slice', 'Strided_slice_data'), ('Strided_slice_data', 'Enter_1_less'), ('Enter_1_less', 'Enter_1_less_data'), ('Enter_1_less_data', 'Less_1'), ('Less_1', 'Less_1_data'), ('Less_1_data', 'loop_cond'), ('loop_cond', 'loop_cond_data'), ('loop_cond_data', 'Switch_1'), ('init_1', 'init_1_data'), ('init_1_data', 'Enter_1'), ('Enter_1', 'Enter_1_data'), ('Enter_1_data', 'Merge_1'), ('Merge_1', 'Merge_1_data'), ('Merge_1_data', 'Less_1'), ('Merge_1_data', 'Switch_1'), ('Switch_1', 'Switch_1_data'), ('Switch_1_data', 'Identity_1'), ('Identity_1', 'Identity_1_data'), ('Identity_1_data', 'add_1'), ('add_1_y', 'add_1_y_data'), ('add_1_y_data', 'add_1'), ('add_1', 'add_1_data'), ('add_1_data', 'NextIteration_1'), ], ) @staticmethod def replace_pattern(graph: Graph, match: dict): log.debug('================== SimpleConditionFind ===============') # init_1 init_1 = match['init_1_data'].value assert init_1 is not None init_1 = int(init_1) # step_1 assert match['add_1_y_data'].value is not None step_1 = int(match['add_1_y_data'].value) match['loop_cond_data'].value = None # Create condition node and delete all useless nodes from condition pattern condition_attrs = dict(iter=dict(init=init_1, step=step_1), name=match['loop_cond'].name + '/TensorIteratorCondition_') condition = TensorIteratorCondition(graph, attrs=condition_attrs) condition.create_node_with_data(inputs=[match['Strided_slice_data']], data_nodes=[match['loop_cond_data'], match['Identity_1_data']]) # Delete useless nodes safe_nodes = ['loop_cond_data', 'Identity_1_data', 'Strided_slice', 'Strided_slice_data'] nodes_for_remove = [] for node in match.keys(): if node not in safe_nodes: nodes_for_remove.append(match[node].id) graph.remove_nodes_from(nodes_for_remove) class DynamicDecoderConditionMatcher(MiddleReplacementPattern): """ This pattern match condition for dynamic decoder and create TensorIteratorCondition node instead of it. """ enabled = True graph_condition = [lambda graph: graph.graph['is_cyclic']] def run_after(self): return [SimpleConditionMatcher] def run_before(self): from extensions.middle.TensorIteratorMerge import TensorIteratorMerge return [TensorIteratorMerge] @staticmethod def pattern(): log.debug('+++++++++++++++ DynamicDecoderConditionMatching ++++++++++++++++') return dict( nodes=[ ('loop_cond', dict(kind='op', op='LoopCond')), ('loop_cond_data', dict(kind='data')), ('logical_not', dict(kind='op', op='Not')), ('logical_not_data', dict(kind='data')), ('all', dict(kind='op', op='ReduceAnd')), ('all_data', dict(kind='data')), ('Merge_16', dict(kind='op', op='Merge')), ('merge_16_data', dict(kind='data')), ('NextIteration_16', dict(kind='op', op='NextIteration')), ('nextIteration_data', dict(kind='data')), ('Switch', dict(kind='op', op='Switch')), ('switch_data', dict(kind='data')), ('Identity', dict(kind='op', op='Identity')), ('identity_data', dict(kind='data')), ('add', dict(kind='op', op='Add')), ('add_data', dict(kind='data')), ('Less_enter', dict(kind='op', op='Enter')), ('Less_enter_data', dict(kind='data')), ('And', dict(kind='op', op='LogicalAnd')), ('And_data', dict(kind='data')), ('Less', dict(kind='op', op='Less')), ('Less_data', dict(kind='data')), ('TensorIteratorOutput', dict(kind='op', op='TensorIteratorOutput')), ('TensorIteratorOutput_1', dict(kind='op', op='TensorIteratorOutput')), ], edges=[ ('NextIteration_16', 'nextIteration_data'), ('nextIteration_data', 'Merge_16'), ('Merge_16', 'merge_16_data'), ('merge_16_data', 'all'), ('all', 'all_data'), ('all_data', 'logical_not'), ('logical_not', 'logical_not_data'), ('Less_enter', 'Less_enter_data'), ('Less_enter_data', 'Less'), ('Less', 'Less_data'), ('Less_data', 'And'), ('logical_not_data', 'And'), ('And', 'And_data'), ('And_data', 'loop_cond'), ('loop_cond', 'loop_cond_data'), ('loop_cond_data', 'Switch'), ('Switch', 'switch_data'), ('switch_data', 'Identity'), ('Identity', 'identity_data'), ('identity_data', 'add'), ('add', 'add_data'), ('identity_data', 'TensorIteratorOutput'), ('identity_data', 'TensorIteratorOutput_1'), ], ) @staticmethod def replace_pattern(graph: Graph, match: dict): """ Create condition node and delete all useless nodes (like Switch/Merge/Identity) from condition pattern """ log.debug('================== DynamicDecoderConditionFind ==================') # Create and connect condition node for dynamic decoder in TF loop_condiiton = match['loop_cond_data'] iterator_data = match['identity_data'] condition_attrs = dict(name=match['loop_cond'].name + '/TensorIteratorCondition_') condition = TensorIteratorCondition(graph, attrs=condition_attrs) condition.create_node_with_data(inputs=[match['Less_enter'].in_node()], data_nodes=[loop_condiiton, iterator_data])