input
stringlengths
2.65k
237k
output
stringclasses
1 value
# Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. { 'variables': { 'chromium_code': 1, # Define the common dependencies that contain all the actual # Chromium functionality. This list gets pulled in below by # the link of the actual chrome (or chromium) executable on # Linux or Mac, and into chrome.dll on Windows. # NOTE: Most new includes should go in the OS!="ios" condition below. 'chromium_browser_dependencies': [ 'common', 'browser', '../sync/sync.gyp:sync', ], 'chromium_child_dependencies': [ 'common', '../sync/sync.gyp:sync', ], 'allocator_target': '../base/allocator/allocator.gyp:allocator', 'grit_out_dir': '<(SHARED_INTERMEDIATE_DIR)/chrome', 'protoc_out_dir': '<(SHARED_INTERMEDIATE_DIR)/protoc_out', 'repack_locales_cmd': ['python', 'tools/build/repack_locales.py'], 'conditions': [ ['OS!="ios"', { 'chromium_browser_dependencies': [ '../ppapi/ppapi_internal.gyp:ppapi_host', ], 'chromium_child_dependencies': [ 'debugger', 'plugin', 'renderer', 'utility', '../content/content.gyp:content_gpu', '../content/content.gyp:content_ppapi_plugin', '../content/content.gyp:content_worker', '../third_party/WebKit/public/blink_devtools.gyp:blink_devtools_frontend_resources', ], }], ['enable_printing!=0', { 'chromium_browser_dependencies': [ '../printing/printing.gyp:printing', ], }], ['OS=="win"', { 'platform_locale_settings_grd': 'app/resources/locale_settings_win.grd', },], ['enable_printing==1', { 'chromium_browser_dependencies': [ 'service', ], }], ['OS=="linux"', { 'conditions': [ ['chromeos==1', { 'conditions': [ ['branding=="Chrome"', { 'platform_locale_settings_grd': 'app/resources/locale_settings_google_chromeos.grd', }, { # branding!=Chrome 'platform_locale_settings_grd': 'app/resources/locale_settings_chromiumos.grd', }], ] }, { # chromeos==0 'platform_locale_settings_grd': 'app/resources/locale_settings_linux.grd', }], ], },], ['os_posix == 1 and OS != "mac" and OS != "ios" and OS != "linux"', { 'platform_locale_settings_grd': 'app/resources/locale_settings_linux.grd', },], ['OS=="mac"', { 'tweak_info_plist_path': '../build/mac/tweak_info_plist.py', 'platform_locale_settings_grd': 'app/resources/locale_settings_mac.grd', }], # OS=="mac" ], # conditions }, # variables 'includes': [ # Place some targets in gypi files to reduce contention on this file. # By using an include, we keep everything in a single xcodeproj file. # Note on Win64 targets: targets that end with win64 be used # on 64-bit Windows only. Targets that end with nacl_win64 should be used # by Native Client only. # NOTE: Most new includes should go in the OS!="ios" condition below. '../build/chrome_settings.gypi', '../build/util/version.gypi', '../build/win_precompile.gypi', 'chrome_browser.gypi', 'chrome_browser_ui.gypi', 'chrome_common.gypi', 'chrome_installer_util.gypi', '../components/nacl/nacl_defines.gypi', ], 'conditions': [ ['OS!="ios"', { 'includes': [ 'chrome_browser_extensions.gypi', 'chrome_dll.gypi', 'chrome_exe.gypi', 'chrome_installer.gypi', 'chrome_renderer.gypi', 'chrome_tests.gypi', 'chrome_tests_unit.gypi', 'policy_templates.gypi', '../apps/apps.gypi', ], 'targets': [ { 'target_name': 'default_extensions', 'type': 'none', 'conditions': [ ['OS=="win"', { 'copies': [ { 'destination': '<(PRODUCT_DIR)/extensions', 'files': [ 'browser/extensions/default_extensions/external_extensions.json' ] } ], }] ], }, { 'target_name': 'debugger', 'type': 'static_library', 'variables': { 'enable_wexit_time_destructors': 1, }, 'dependencies': [ 'chrome_resources.gyp:chrome_extra_resources', 'chrome_resources.gyp:chrome_resources', 'chrome_resources.gyp:chrome_strings', 'chrome_resources.gyp:theme_resources', 'common/extensions/api/api.gyp:chrome_api', '../base/base.gyp:base', '../content/content.gyp:content_browser', '../net/net.gyp:http_server', '../net/net.gyp:net', '../skia/skia.gyp:skia', '../third_party/icu/icu.gyp:icui18n', '../third_party/icu/icu.gyp:icuuc', '../third_party/leveldatabase/leveldatabase.gyp:leveldatabase', '../third_party/libusb/libusb.gyp:libusb', ], 'include_dirs': [ '..', ], 'sources': [ 'browser/devtools/adb/android_rsa.cc', 'browser/devtools/adb/android_rsa.h', 'browser/devtools/adb/android_usb_device.cc', 'browser/devtools/adb/android_usb_device.h', 'browser/devtools/adb/android_usb_socket.cc', 'browser/devtools/adb/android_usb_socket.h', 'browser/devtools/adb_client_socket.cc', 'browser/devtools/adb_client_socket.h', 'browser/devtools/adb_web_socket.cc', 'browser/devtools/adb_web_socket.h', 'browser/devtools/android_device.cc', 'browser/devtools/android_device.h', 'browser/devtools/browser_list_tabcontents_provider.cc', 'browser/devtools/browser_list_tabcontents_provider.h', 'browser/devtools/devtools_adb_bridge.cc', 'browser/devtools/devtools_adb_bridge.h', 'browser/devtools/devtools_contents_resizing_strategy.cc', 'browser/devtools/devtools_contents_resizing_strategy.h', 'browser/devtools/devtools_embedder_message_dispatcher.cc', 'browser/devtools/devtools_embedder_message_dispatcher.h', 'browser/devtools/devtools_file_helper.cc', 'browser/devtools/devtools_file_helper.h', 'browser/devtools/devtools_file_system_indexer.cc', 'browser/devtools/devtools_file_system_indexer.h', 'browser/devtools/devtools_protocol.cc', 'browser/devtools/devtools_protocol.h', 'browser/devtools/devtools_target_impl.cc', 'browser/devtools/devtools_target_impl.h', 'browser/devtools/devtools_targets_ui.cc', 'browser/devtools/devtools_targets_ui.h', 'browser/devtools/devtools_toggle_action.cc', 'browser/devtools/devtools_toggle_action.h', 'browser/devtools/devtools_window.cc', 'browser/devtools/devtools_window.h', 'browser/devtools/port_forwarding_controller.cc', 'browser/devtools/port_forwarding_controller.h', 'browser/devtools/refcounted_adb_thread.cc', 'browser/devtools/refcounted_adb_thread.h', 'browser/devtools/remote_debugging_server.cc', 'browser/devtools/remote_debugging_server.h', ], 'conditions': [ ['toolkit_uses_gtk == 1', { 'dependencies': [ '../build/linux/system.gyp:gtk', ], }], ['OS=="android"', { 'dependencies!': [ '../third_party/libusb/libusb.gyp:libusb', ], 'sources!': [ 'browser/devtools/adb/android_rsa.cc', 'browser/devtools/browser_list_tabcontents_provider.cc', 'browser/devtools/devtools_file_system_indexer.cc', 'browser/devtools/devtools_target_impl.cc', 'browser/devtools/devtools_window.cc', 'browser/devtools/remote_debugging_server.cc', ], }], ['debug_devtools==1', { 'defines': [ 'DEBUG_DEVTOOLS=1', ], }], ], # TODO(jschuh): crbug.com/167187 fix size_t to int truncations. 'msvs_disabled_warnings': [ 4267, ], }, { 'target_name': 'plugin', 'type': 'static_library', 'variables': { 'enable_wexit_time_destructors': 1, }, 'dependencies': [ 'chrome_resources.gyp:chrome_strings', '../base/base.gyp:base', '../content/content.gyp:content_plugin', ], 'sources': [ 'plugin/chrome_content_plugin_client.cc', 'plugin/chrome_content_plugin_client.h', ], 'include_dirs': [ '..', '<(grit_out_dir)', ], }, { 'target_name': 'utility', 'type': 'static_library', 'variables': { 'enable_wexit_time_destructors': 1, }, 'dependencies': [ 'common/extensions/api/api.gyp:chrome_api', '../base/base.gyp:base', '../content/content.gyp:content_utility', '../media/media.gyp:media', '../skia/skia.gyp:skia', '../third_party/libxml/libxml.gyp:libxml', 'common', '<(DEPTH)/chrome/chrome_resources.gyp:chrome_resources', '<(DEPTH)/chrome/chrome_resources.gyp:chrome_strings', ], 'sources': [ 'utility/chrome_content_utility_client.cc', 'utility/chrome_content_utility_client.h', 'utility/chrome_content_utility_ipc_whitelist.cc', 'utility/chrome_content_utility_ipc_whitelist.h', 'utility/cloud_print/bitmap_image.cc', 'utility/cloud_print/bitmap_image.h', 'utility/cloud_print/pwg_encoder.cc', 'utility/cloud_print/pwg_encoder.h', 'utility/extensions/unpacker.cc', 'utility/extensions/unpacker.h', 'utility/image_writer/error_messages.cc', 'utility/image_writer/error_messages.h', 'utility/image_writer/image_writer.cc', 'utility/image_writer/image_writer.h', 'utility/image_writer/image_writer_handler.cc', 'utility/image_writer/image_writer_handler.h', 'utility/importer/bookmark_html_reader.cc', 'utility/importer/bookmark_html_reader.h', 'utility/importer/bookmarks_file_importer.cc', 'utility/importer/bookmarks_file_importer.h', 'utility/importer/external_process_importer_bridge.cc', 'utility/importer/external_process_importer_bridge.h', 'utility/importer/favicon_reencode.cc', 'utility/importer/favicon_reencode.h', 'utility/importer/firefox_importer.cc', 'utility/importer/firefox_importer.h', 'utility/importer/ie_importer_win.cc', 'utility/importer/ie_importer_win.h', 'utility/importer/importer.cc', 'utility/importer/importer.h', 'utility/importer/importer_creator.cc', 'utility/importer/importer_creator.h', 'utility/importer/nss_decryptor.cc', 'utility/importer/nss_decryptor.h', 'utility/importer/nss_decryptor_mac.h', 'utility/importer/nss_decryptor_mac.mm', 'utility/importer/nss_decryptor_win.cc', 'utility/importer/nss_decryptor_win.h', 'utility/importer/safari_importer.h', 'utility/importer/safari_importer.mm', 'utility/media_galleries/ipc_data_source.cc', 'utility/media_galleries/ipc_data_source.h', 'utility/media_galleries/itunes_pref_parser_win.cc', 'utility/media_galleries/itunes_pref_parser_win.h', 'utility/media_galleries/media_metadata_parser.cc', 'utility/media_galleries/media_metadata_parser.h', 'utility/profile_import_handler.cc', 'utility/profile_import_handler.h', 'utility/utility_message_handler.h', 'utility/web_resource_unpacker.cc', 'utility/web_resource_unpacker.h', ], 'include_dirs': [ '..', '<(grit_out_dir)', ], 'conditions': [ ['toolkit_uses_gtk == 1', { 'dependencies': [ '../build/linux/system.gyp:gtk', ], }], ['OS=="win" or OS=="mac"', { 'sources': [ 'utility/media_galleries/iapps_xml_utils.cc', 'utility/media_galleries/iapps_xml_utils.h', 'utility/media_galleries/itunes_library_parser.cc', 'utility/media_galleries/itunes_library_parser.h', 'utility/media_galleries/picasa_album_table_reader.cc', 'utility/media_galleries/picasa_album_table_reader.h', 'utility/media_galleries/picasa_albums_indexer.cc', 'utility/media_galleries/picasa_albums_indexer.h', 'utility/media_galleries/pmp_column_reader.cc', 'utility/media_galleries/pmp_column_reader.h', ], }], ['OS=="mac"', { 'sources': [ 'utility/media_galleries/iphoto_library_parser.cc', 'utility/media_galleries/iphoto_library_parser.h', ], }], ['use_openssl==1', { 'sources!': [ 'utility/importer/nss_decryptor.cc', ] }], ['OS!="win" and OS!="mac" and use_openssl==0', { 'dependencies': [ '../crypto/crypto.gyp:crypto', ], 'sources': [ 'utility/importer/nss_decryptor_system_nss.cc', 'utility/importer/nss_decryptor_system_nss.h', ], }], ['OS=="android"', { 'sources/': [ ['exclude', '^utility/importer/'], ['exclude', '^utility/media_galleries/'], ['exclude', '^utility/profile_import_handler\.cc'], ], }], ['enable_mdns == 1', { 'sources': [ 'utility/local_discovery/service_discovery_client_impl.cc', 'utility/local_discovery/service_discovery_client_impl.h', 'utility/local_discovery/service_discovery_message_handler.cc', 'utility/local_discovery/service_discovery_message_handler.h', ] }], ], # TODO(jschuh): crbug.com/167187 fix size_t to int truncations. 'msvs_disabled_warnings': [ 4267, ], }, ], }], # OS!="ios" ['OS=="mac"', { 'includes': [ '../apps/app_shim/app_shim.gypi', ], 'targets': [ { 'target_name': 'helper_app', 'type': 'executable', 'variables': { 'enable_wexit_time_destructors': 1, }, 'product_name': '<(mac_product_name) Helper', 'mac_bundle': 1, 'dependencies': [ 'chrome_dll', 'infoplist_strings_tool', ], 'sources': [ # chrome_exe_main_mac.cc's main() is the entry point for # the "chrome" (browser app) target. All it does is jump # to chrome_dll's ChromeMain. This is appropriate for # helper processes too, because the logic to discriminate # between process types at run time is actually directed # by the --type command line argument processed by # ChromeMain. Sharing chrome_exe_main_mac.cc with the # browser app will suffice for now. 'app/chrome_exe_main_mac.cc', 'app/helper-Info.plist', ], # TODO(mark): Come up with a fancier way to do this. It should only # be necessary to list helper-Info.plist once, not the three times it # is listed here. 'mac_bundle_resources!': [ 'app/helper-Info.plist', ], # TODO(mark): For now, don't put any resources into this app. Its # resources directory will be a symbolic link to the browser app's # resources directory. 'mac_bundle_resources/': [ ['exclude', '.*'], ], 'xcode_settings': { 'CHROMIUM_BUNDLE_ID': '<(mac_bundle_id)', 'CHROMIUM_SHORT_NAME': '<(branding)', 'CHROMIUM_STRIP_SAVE_FILE': 'app/app.saves', 'INFOPLIST_FILE': 'app/helper-Info.plist', }, 'postbuilds': [ { # The helper doesn't have real localizations, it just has # empty .lproj directories, which is enough to convince Cocoa # that anything running out of the helper .app supports those # languages. 'postbuild_name': 'Make Empty Localizations', 'variables': { 'locale_dirs': [ '>!@(<(apply_locales_cmd) -d ZZLOCALE.lproj <(locales))', ], }, 'action': [ 'tools/build/mac/make_locale_dirs.sh', '<@(locale_dirs)', ], }, { # The framework (chrome_dll) defines its load-time path # (DYLIB_INSTALL_NAME_BASE) relative to the main executable # (chrome). A different relative path needs to be used in # helper_app. 'postbuild_name': 'Fix Framework Link', 'action': [ 'install_name_tool', '-change', '@executable_path/../Versions/<(version_full)/<(mac_product_name) Framework.framework/<(mac_product_name) Framework', '@executable_path/../../../<(mac_product_name) Framework.framework/<(mac_product_name) Framework', '${BUILT_PRODUCTS_DIR}/${EXECUTABLE_PATH}' ], }, { # Modify the Info.plist as needed. The script explains why this # is needed. This is also done in the chrome and chrome_dll # targets. In this case, --breakpad=0, --keystone=0, and --scm=0 # are used because Breakpad, Keystone, and SCM keys are # never placed into the helper. 'postbuild_name': 'Tweak Info.plist', 'action': ['<(tweak_info_plist_path)', '--breakpad=0', '--keystone=0', '--scm=0'], }, { # Make sure there isn't any Objective-C in the helper app's # executable. 'postbuild_name': 'Verify No Objective-C', 'action': [ '../build/mac/verify_no_objc.sh', ], }, ], 'conditions': [ ['mac_breakpad==1', { 'variables': { # A real .dSYM is needed for dump_syms to operate on. 'mac_real_dsym': 1, }, 'xcode_settings': { # With mac_real_dsym set, strip_from_xcode won't be used. # Specify CHROMIUM_STRIP_SAVE_FILE directly to Xcode. 'STRIPFLAGS': '-s $(CHROMIUM_STRIP_SAVE_FILE)', }, }], ['asan==1', { 'xcode_settings': { # Override the outer definition of CHROMIUM_STRIP_SAVE_FILE. 'CHROMIUM_STRIP_SAVE_FILE': 'app/app_asan.saves', }, }], ['component=="shared_library"', { 'xcode_settings': { 'LD_RUNPATH_SEARCH_PATHS': [ # Get back from Chromium.app/Contents/Versions/V/ # Helper.app/Contents/MacOS '@loader_path/../../../../../../..', ], }, }], ], }, # target helper_app { # A library containing the actual code for the app mode app, shared # by unit tests. 'target_name': 'app_mode_app_support', 'type': 'static_library', 'variables': { 'enable_wexit_time_destructors': 1, }, 'product_name': 'app_mode_app_support', 'dependencies': [ '../base/base.gyp:base', 'common_constants.gyp:common_constants', ], 'sources': [ 'common/mac/app_mode_chrome_locator.h', 'common/mac/app_mode_chrome_locator.mm', 'common/mac/app_mode_common.h', 'common/mac/app_mode_common.mm', ], 'include_dirs': [ '..', ], }, # target app_mode_app_support { # This produces the template for app mode loader bundles. It's a # template in the sense that parts of it need to be "filled in" by # Chrome before it can be executed. 'target_name': 'app_mode_app', 'type': 'executable', 'mac_bundle' : 1, 'variables': { 'enable_wexit_time_destructors': 1, }, 'product_name': 'app_mode_loader', 'dependencies': [ 'app_mode_app_support', 'infoplist_strings_tool', ], 'sources': [ 'app/app_mode_loader_mac.mm', 'app/app_mode-Info.plist', ], 'include_dirs': [ '..', ], 'link_settings': { 'libraries': [ '$(SDKROOT)/System/Library/Frameworks/CoreFoundation.framework', '$(SDKROOT)/System/Library/Frameworks/Foundation.framework', ], }, 'mac_bundle_resources!': [ 'app/app_mode-Info.plist', ], 'mac_bundle_resources/': [ ['exclude', '.*'], ], 'xcode_settings': { 'INFOPLIST_FILE': 'app/app_mode-Info.plist', 'APP_MODE_APP_BUNDLE_ID': '<(mac_bundle_id).app.@APP_MODE_SHORTCUT_ID@', }, 'postbuilds' : [ { # Modify the Info.plist as needed. The script explains why this # is needed. This is also done in the chrome and chrome_dll # targets. In this case, --breakpad=0, --keystone=0, and --scm=0 # are used because Breakpad, Keystone, and SCM keys
#!/usr/bin/env python3 ''' Tools for standardized saving/loading a class or dictionary to a .hdf5 file. Strings are saved as attributes of the file; lists of strings are saved as tab delimited strings; arrays are saved as datasets. Dicts are saved as a new folder, with data saved as numpy datasets. Other objects are saved as pickle dumps. Useage: * listing objects in an hdf5 file: f = hdf5manager(mypath) f.print() * saving data to file: f = hdf5manager(mypath) f.save(mydict) OR: f.save(myClass) * loading data from file: f = hdf5manager(mypath) data = f.load() Authors: <NAME> Date: 2017-01-13 ''' import h5py import numpy as np import os import pickle class hdf5manager: def __init__(self, path, verbose=False, create=True): assert (path.endswith('.hdf5') | path.endswith('.mat')) path = os.path.abspath(path) if not os.path.isfile(path) and create: # Create the file print('Creating file at:', path) f = h5py.File(path, 'w') f.close() else: assert os.path.isfile(path), 'File does not exist' self.path = path self.verbose = verbose if verbose: self.print() def print(self): path = self.path print() # If not saving or loading, open the file to read it if not hasattr(self, 'f'): print('Opening File to read...') f = h5py.File(path, 'r') else: f = self.f if len(list(f.keys())) > 0: print('{0} has the following keys:'.format(path)) for file in f.keys(): print('\t-', file) else: print('{0} has no keys.'.format(path)) if len(list(f.attrs)) > 0: print('{0} has the following attributes:'.format(path)) for attribute in f.attrs: print('\t-', attribute) else: print('{0} has no attributes.'.format(path)) # If not saving or loading, close the file after finished if not hasattr(self, 'f'): print('Closing file...') f.close() print() def keys(self): # If not saving or loading, open the file to read it if not hasattr(self, 'f'): f = h5py.File(self.path, 'r') else: f = self.f keys = [key for key in f.attrs] keys.extend([key for key in f.keys()]) if not hasattr(self, 'f'): f.close() return keys def open(self): path = self.path verbose = self.verbose f = h5py.File(path, 'a') self.f = f self.print() # print all variables if verbose: print( 'File is now open for manual accessing.\n' 'To access a file handle, assign hdf5manager.f.[key] to a handle' ' and pull slices: \n' '\t slice = np.array(handle[0,:,1:6])\n' 'It is also possible to write to a file this way\n' '\t handle[0,:,1:6] = np.zeros(x,y,z)\n') def close(self): self.f.close() del self.f def load(self, target=None, ignore=None): path = self.path verbose = self.verbose def loadDict(f, key): # Load dict to key from its folder if verbose: print('\t\t-', 'loading', key, 'from file...') g = f[key] if verbose: print('\t\t-', key, 'has the following keys:') if verbose: print('\t\t ', ', '.join([gkey for gkey in g.keys()])) data = {} if g.keys().__len__() > 0: for gkey in g.keys(): if type(g[gkey]) is h5py.Group: data[gkey] = loadDict(g, gkey) elif type(g[gkey]) is h5py.Dataset: if verbose: print('\t\t-', 'loading', key, 'from file...') data[gkey] = np.array(g[gkey]) else: if verbose: print('key was of unknown type', type(gkey)) if verbose: print('\t\t-', key, 'has the following attributes:') if verbose: print('\t\t ', ', '.join([gkey for gkey in g.attrs])) for gkey in g.attrs: if verbose: print('\t\t\t', gkey + ';', type(g.attrs[gkey]).__name__) if verbose: print('\t\t\t-', 'loading', gkey, 'from file...') if type(g.attrs[gkey]) is str: data[gkey] = g.attrs[gkey] elif type(g.attrs[gkey] is np.void): out = g.attrs[gkey] data[gkey] = pickle.loads(out.tobytes()) else: print('INVALID TYPE:', type(g.attrs[gkey])) return data f = h5py.File(path, 'a') # Open file for access self.f = f # set to variable so other functions know file is open if target is None: if verbose: print('No target key specified; loading all datasets') keys = f.keys() attrs = f.attrs else: assert (type(target) is str) or (type(target) is list), 'invalid target' if type(target) is str: target = [target] keys = [] attrs = [] for item in target: if (type(item) is str) & (item in f.keys()): if verbose: print('Target key found:', item) keys.append(item) elif (type(item) is str) & (item in f.attrs): if verbose: print('Target attribute found:', item) attrs.append(item) else: print('Target was not valid:', item) if verbose: print('\nLoading datasets from hdf5 file:') data = {} for key in keys: if verbose: print('\t', key + ';', type(f[key]).__name__) if key == ignore: if verbose: print('\t\t- ignoring key:', key) else: if type(f[key]) is h5py.Group: data[key] = loadDict(f, key) elif type(f[key]) is h5py.Dataset: if verbose: print('\t\t-', 'loading', key, 'from file...') if f[key].dtype.type is np.void: data[key] = pickle.loads(np.array(f[key]).tobytes()) else: data[key] = np.array(f[key]) else: if verbose: print('\t\t- attribute was unsupported type:', type(f[key]).__name__) for key in attrs: if verbose: print('\t', key + ';', type(f.attrs[key]).__name__) if key == ignore: if verbose: print('ignoring attribute:', key) else: if verbose: print('\t\t-', 'loading', key, 'from file...') if type(f.attrs[key]) is str: data[key] = f.attrs[key] elif type(f.attrs[key] is np.void): out = f.attrs[key] data[key] = pickle.loads(out.tobytes()) if verbose: print('Keys extracted from file:') if verbose: print('\t', ', '.join([key for key in data.keys()])) if verbose: print('\n\n') del self.f f.close() if (type(target) is list) and (len(target) == 1): data = data[target[0]] return data def delete(self, target): if type(target) is not list: target = [target] f = h5py.File(self.path, 'a') # Open file for access self.f = f # set to variable so other functions know file is open verbose = self.verbose for key in target: if key in self.keys(): if verbose: print('key found:', key) try: del f[key] except: del f.attrs[key] else: if verbose: print('key not found:', key) del self.f f.close() def save(self, data): # data is a class file or dict of keys/data path = self.path verbose = self.verbose ''' Saves a class or dict to hdf5 file. Note that lists of numbers are not supported, only np arrays or lists of strings. ''' # Functions to save each type of data: # -------------------------------------------------------------- def saveDict(f, fdict, key): # Write dict to key as its own folder if verbose: print('\t\t-', 'writing', key, 'to file...') # Delete if it exists if key in f: if verbose: print('\t\t-', 'Removing', key, 'from file') del f[key] g = f.create_group(key) data_d = fdict for dkey in fdict: if (type(fdict[dkey]) is str): saveString(g, fdict[dkey], dkey) elif type(fdict[dkey]) is np.ndarray: saveArray(g, fdict[dkey], dkey) elif type(fdict[dkey]) is dict: saveDict(g, fdict[dkey], dkey) else: if verbose: print('\t\t- attribute was unsupported type:', type(fdict[dkey]).__name__) if verbose: print('\t\tAttempting to save pickle dump of object') try: saveOther(g, fdict[dkey], dkey) if verbose: print('\t\tSaved succesfully!') except: if verbose: print('\t\tFailed..') if verbose: print('\t\t-', key, 'has the following keys:') if verbose: print('\t\t ', ', '.join([dkey for dkey in g.keys()])) if verbose: print('\t\t-', key, 'has the following attributes:') if verbose: print('\t\t ', ', '.join([dkey for dkey in g.attrs])) def saveString(f, string, key): # Write all strings as attributes of the dataset if verbose: print('\t\t-', 'writing', key, 'to file...') f.attrs[key] = string def saveArray(f, array, key): # Check if key exists, and if entry is the same as existing value if key in f.keys(): if (not np.array_equal(array, f[key])): if verbose: print( '\t\t-', key, 'in saved file is inconsistent ' 'with current version') if verbose: print('\t\t-', 'deleting', key, 'from file') del f[key] if verbose: print('\t\t-', 'writing', key, 'to file...') f.create_dataset(key, data=array, chunks=None) else: if verbose: print( '\t\t-', key, 'in saved file is the same as ' 'the current version') else: if verbose: print('\t\t-', 'writing', key, 'to file...') f.create_dataset(key, data=array, chunks=None) def saveOther(f, obj, key): # Compress to bytestring using pickle, save similar to string # Write all strings as attributes of the dataset if verbose: print('\t\t-', 'writing', key, 'to file...') bstring = np.void(pickle.dumps(obj)) try: f.attrs[key] = bstring except RuntimeError: if verbose: print('\t\t\tEncountered RuntimeError') if verbose: print('\t\t\tSaving pickle dump as data...') if key in f.keys(): if verbose: print('Deleting previous copy of', key) del f[key] f[key] = bstring # Check input data type, open file: # -------------------------------------------------------------- # If data is not a dictionary, assume if type(data) is not dict: # Get dictionary of all keys in class type data = data.__dict__ if verbose: print('Attributes found in data file:') for key in data.keys(): print('\t', key, ':', type(data[key])) f = h5py.File(path, 'a') self.f = f if verbose: self.print() # Loop through keys and save them in hdf5 file: # -------------------------------------------------------------- if verbose: print('\nSaving class attributes:') for key in data.keys(): if verbose: print('\t', key + ';', type(data[key]).__name__) if (type(data[key]) is str): saveString(f,
experiment Ids taken from csv file kappaEmt = [i.split('.')[0] for i in kappaEmt] kappaFrame_Cluster_1['Experiment_id'] = kappaEmt kappaFrame_Cluster_1.set_index('Experiment_id', drop=True, inplace=True) kappaEmt = [i.split('/')[-1] for i in kappaFrame_Cluster_2.index.values] ### Renaming the experiment Ids taken from csv file kappaEmt = ['_'.join(i.split(' ')) for i in kappaEmt] ### Renaming the experiment Ids taken from csv file kappaEmt = ['_'.join(i.split("'")) for i in kappaEmt] ### Renaming the experiment Ids taken from csv file kappaEmt = ['_'.join(i.split('(')) for i in kappaEmt] ### Renaming the experiment Ids taken from csv file kappaEmt = ['_'.join(i.split(')')) for i in kappaEmt] ### Renaming the experiment Ids taken from csv file kappaEmt = ['_'.join(i.split('&')) for i in kappaEmt] ### Renaming the experiment Ids taken from csv file kappaEmt = [i.split('.')[0] for i in kappaEmt] kappaFrame_Cluster_2['Experiment_id'] = kappaEmt kappaFrame_Cluster_2.set_index('Experiment_id', drop=True, inplace=True) for vidStim in summary_data_frame.index.values: try: "kappa", 'stats', "p_val", 'subjects', 'raters' summary_data_frame.loc[vidStim, 'K_kappa'] = kappaFrame.loc[vidStim, 'kappa'] summary_data_frame.loc[vidStim, 'K_stats'] = kappaFrame.loc[vidStim, 'stats'] summary_data_frame.loc[vidStim, 'K_pVal'] = kappaFrame.loc[vidStim, 'p_val'] summary_data_frame.loc[vidStim, 'K_subjects'] = kappaFrame.loc[vidStim, 'subjects'] summary_data_frame.loc[vidStim, 'K_raters'] = kappaFrame.loc[vidStim, 'raters'] summary_data_frame.loc[vidStim, 'K_kappa1'] = kappaFrame_Cluster_1.loc[vidStim, 'kappa'] summary_data_frame.loc[vidStim, 'K_stats1'] = kappaFrame_Cluster_1.loc[vidStim, 'stats'] summary_data_frame.loc[vidStim, 'K_pVal1'] = kappaFrame_Cluster_1.loc[vidStim, 'p_val'] summary_data_frame.loc[vidStim, 'K_subjects1'] = kappaFrame_Cluster_1.loc[vidStim, 'subjects'] summary_data_frame.loc[vidStim, 'K_raters1'] = kappaFrame_Cluster_1.loc[vidStim, 'raters'] summary_data_frame.loc[vidStim, 'K_kappa2'] = kappaFrame_Cluster_2.loc[vidStim, 'kappa'] summary_data_frame.loc[vidStim, 'K_stats2'] = kappaFrame_Cluster_2.loc[vidStim, 'stats'] summary_data_frame.loc[vidStim, 'K_pVal2'] = kappaFrame_Cluster_2.loc[vidStim, 'p_val'] summary_data_frame.loc[vidStim, 'K_subjects2'] = kappaFrame_Cluster_2.loc[vidStim, 'subjects'] summary_data_frame.loc[vidStim, 'K_raters2'] = kappaFrame_Cluster_2.loc[vidStim, 'raters'] except: continue''' ####################### No Dominance: Concordance Results ## This file is created using R Program: /mnt/7CBFA0EC210FC340/ExperimentRelatedData/FromUbuntuAcerSystem/Experiment/Survey/IRRTest_KendallVegan_StimulationWise.R '''CCCFile = 'NoDominance_AllStimuli_CCC_Test_Result_%s.csv' %(date.split('2018_')[1]) CCCFile_Cluster_1 = 'NoDominance_Cluster-1_CCC_Test_Result_%s.csv' %(date.split('2018_')[1]) CCCFile_Cluster_2 = 'NoDominance_Cluster-2_CCC_Test_Result_%s.csv' %(date.split('2018_')[1]) CCCFrame = pd.read_csv(os.path.join(_thisDir, 'NewTarget', videoPrefix, CCCFile), index_col = 0) CCCFrame_Cluster_1 = pd.read_csv(os.path.join(_thisDir, 'NewTarget', videoPrefix, CCCFile_Cluster_1), index_col = 0) CCCFrame_Cluster_2 = pd.read_csv(os.path.join(_thisDir, 'NewTarget', videoPrefix, CCCFile_Cluster_2), index_col = 0) CCCEmt = CCCFrame.index.values CCCEmt = [i.split('/')[-1] for i in CCCFrame.index.values] ### Renaming the experiment Ids taken from csv file CCCEmt = ['_'.join(i.split(' ')) for i in CCCEmt] ### Renaming the experiment Ids taken from csv file CCCEmt = ['_'.join(i.split("'")) for i in CCCEmt] ### Renaming the experiment Ids taken from csv file CCCEmt = ['_'.join(i.split('(')) for i in CCCEmt] ### Renaming the experiment Ids taken from csv file CCCEmt = ['_'.join(i.split(')')) for i in CCCEmt] ### Renaming the experiment Ids taken from csv file CCCEmt = ['_'.join(i.split('&')) for i in CCCEmt] ### Renaming the experiment Ids taken from csv file CCCEmt = [i.split('.')[0] for i in CCCEmt] CCCFrame['Experiment_id'] = CCCEmt CCCFrame.set_index('Experiment_id', drop=True, inplace=True) CCCEmt = [i.split('/')[-1] for i in CCCFrame_Cluster_1.index.values] ### Renaming the experiment Ids taken from csv file CCCEmt = ['_'.join(i.split(' ')) for i in CCCEmt] ### Renaming the experiment Ids taken from csv file CCCEmt = ['_'.join(i.split("'")) for i in CCCEmt] ### Renaming the experiment Ids taken from csv file CCCEmt = ['_'.join(i.split('(')) for i in CCCEmt] ### Renaming the experiment Ids taken from csv file CCCEmt = ['_'.join(i.split(')')) for i in CCCEmt] ### Renaming the experiment Ids taken from csv file CCCEmt = ['_'.join(i.split('&')) for i in CCCEmt] ### Renaming the experiment Ids taken from csv file CCCEmt = [i.split('.')[0] for i in CCCEmt] CCCFrame_Cluster_1['Experiment_id'] = CCCEmt CCCFrame_Cluster_1.set_index('Experiment_id', drop=True, inplace=True) CCCEmt = [i.split('/')[-1] for i in CCCFrame_Cluster_2.index.values] ### Renaming the experiment Ids taken from csv file CCCEmt = ['_'.join(i.split(' ')) for i in CCCEmt] ### Renaming the experiment Ids taken from csv file CCCEmt = ['_'.join(i.split("'")) for i in CCCEmt] ### Renaming the experiment Ids taken from csv file CCCEmt = ['_'.join(i.split('(')) for i in CCCEmt] ### Renaming the experiment Ids taken from csv file CCCEmt = ['_'.join(i.split(')')) for i in CCCEmt] ### Renaming the experiment Ids taken from csv file CCCEmt = ['_'.join(i.split('&')) for i in CCCEmt] ### Renaming the experiment Ids taken from csv file CCCEmt = [i.split('.')[0] for i in CCCEmt] CCCFrame_Cluster_2['Experiment_id'] = CCCEmt CCCFrame_Cluster_2.set_index('Experiment_id', drop=True, inplace=True) for vidStim in summary_data_frame.index.values: try: summary_data_frame.loc[vidStim, 'NpDom_W'] = CCCFrame.loc[vidStim, 'Concord_W'] summary_data_frame.loc[vidStim, 'NpDom_F'] = CCCFrame.loc[vidStim, 'Concord_F'] summary_data_frame.loc[vidStim, 'NpDom_Prob.F'] = CCCFrame.loc[vidStim, 'Concord_Prob.F'] summary_data_frame.loc[vidStim, 'NpDom_Chi2'] = CCCFrame.loc[vidStim, 'Concord_Chi2'] summary_data_frame.loc[vidStim, 'NpDom_Prob.perm'] = CCCFrame.loc[vidStim, 'Concord_Prob.perm'] summary_data_frame.loc[vidStim, 'NpDom_Dimension'] = CCCFrame.loc[vidStim, 'Concord_Dimension'] summary_data_frame.loc[vidStim, 'NpDom_Categ'] = CCCFrame.loc[vidStim, 'ConcordCateg'] summary_data_frame.loc[vidStim, 'NpDom_W1'] = CCCFrame_Cluster_1.loc[vidStim, 'Concord_W'] summary_data_frame.loc[vidStim, 'NpDom_F1'] = CCCFrame_Cluster_1.loc[vidStim, 'Concord_F'] summary_data_frame.loc[vidStim, 'NpDom_Prob.F1'] = CCCFrame_Cluster_1.loc[vidStim, 'Concord_Prob.F'] summary_data_frame.loc[vidStim, 'NpDom_Chi21'] = CCCFrame_Cluster_1.loc[vidStim, 'Concord_Chi2'] summary_data_frame.loc[vidStim, 'NpDom_Prob.perm1'] = CCCFrame_Cluster_1.loc[vidStim, 'Concord_Prob.perm'] summary_data_frame.loc[vidStim, 'NpDom_Dimension1'] = CCCFrame_Cluster_1.loc[vidStim, 'Concord_Dimension'] summary_data_frame.loc[vidStim, 'NpDomCateg1'] = CCCFrame_Cluster_1.loc[vidStim, 'ConcordCateg'] summary_data_frame.loc[vidStim, 'NpDom_W2'] = CCCFrame_Cluster_2.loc[vidStim, 'Concord_W'] summary_data_frame.loc[vidStim, 'NpDom_F2'] = CCCFrame_Cluster_2.loc[vidStim, 'Concord_F'] summary_data_frame.loc[vidStim, 'NpDom_Prob.F2'] = CCCFrame_Cluster_2.loc[vidStim, 'Concord_Prob.F'] summary_data_frame.loc[vidStim, 'NpDom_Chi22'] = CCCFrame_Cluster_2.loc[vidStim, 'Concord_Chi2'] summary_data_frame.loc[vidStim, 'NpDom_Prob.perm2'] = CCCFrame_Cluster_2.loc[vidStim, 'Concord_Prob.perm'] summary_data_frame.loc[vidStim, 'NpDom_Dimension2'] = CCCFrame_Cluster_2.loc[vidStim, 'Concord_Dimension'] summary_data_frame.loc[vidStim, 'NpDomCateg2'] = CCCFrame_Cluster_2.loc[vidStim, 'ConcordCateg'] except: continue ####################### No Dominance: kappam.fleiss Statistics ## This file is created using R Program: /mnt/7CBFA0EC210FC340/ExperimentRelatedData/FromUbuntuAcerSystem/Experiment/Survey/IRRTest_KendallVegan_StimulationWise.R kappaFile = 'NoDominance_AllStimuli_Kappa_Test_Result_%s.csv' %(date.split('2018_')[1]) kappaFile_Cluster_1 = 'NoDominance_Cluster-1_Kappa_Test_Result_%s.csv' %(date.split('2018_')[1]) kappaFile_Cluster_2 = 'NoDominance_Cluster-2_Kappa_Test_Result_%s.csv' %(date.split('2018_')[1]) kappaFrame = pd.read_csv(os.path.join(_thisDir, 'NewTarget', videoPrefix, kappaFile), index_col = 0) kappaFrame_Cluster_1 = pd.read_csv(os.path.join(_thisDir, 'NewTarget', videoPrefix, kappaFile_Cluster_1), index_col = 0) kappaFrame_Cluster_2 = pd.read_csv(os.path.join(_thisDir, 'NewTarget', videoPrefix, kappaFile_Cluster_2), index_col = 0) kappaEmt = kappaFrame.index.values kappaEmt = [i.split('/')[-1] for i in kappaFrame.index.values] ### Renaming the experiment Ids taken from csv file kappaEmt = ['_'.join(i.split(' ')) for i in kappaEmt] ### Renaming the experiment Ids taken from csv file kappaEmt = ['_'.join(i.split("'")) for i in kappaEmt] ### Renaming the experiment Ids taken from csv file kappaEmt = ['_'.join(i.split('(')) for i in kappaEmt] ### Renaming the experiment Ids taken from csv file kappaEmt = ['_'.join(i.split(')')) for i in kappaEmt] ### Renaming the experiment Ids taken from csv file kappaEmt = ['_'.join(i.split('&')) for i in kappaEmt] ### Renaming the experiment Ids taken from csv file kappaEmt = [i.split('.')[0] for i in kappaEmt] kappaFrame['Experiment_id'] = kappaEmt kappaFrame.set_index('Experiment_id', drop=True, inplace=True) kappaEmt = [i.split('/')[-1] for i in kappaFrame_Cluster_1.index.values] ### Renaming the experiment Ids taken from csv file kappaEmt = ['_'.join(i.split(' ')) for i in kappaEmt] ### Renaming the experiment Ids taken from csv file kappaEmt = ['_'.join(i.split("'")) for i in kappaEmt] ### Renaming the experiment Ids taken from csv file kappaEmt = ['_'.join(i.split('(')) for i in kappaEmt] ### Renaming the experiment Ids taken from csv file kappaEmt = ['_'.join(i.split(')')) for i in kappaEmt] ### Renaming the experiment Ids taken from csv file kappaEmt = ['_'.join(i.split('&')) for i in kappaEmt] ### Renaming the experiment Ids taken from csv file kappaEmt = [i.split('.')[0] for i in kappaEmt] kappaFrame_Cluster_1['Experiment_id'] = kappaEmt kappaFrame_Cluster_1.set_index('Experiment_id', drop=True, inplace=True) kappaEmt = [i.split('/')[-1] for i in kappaFrame_Cluster_2.index.values] ### Renaming the experiment Ids taken from csv file kappaEmt = ['_'.join(i.split(' ')) for i in kappaEmt] ### Renaming the experiment Ids taken from csv file kappaEmt = ['_'.join(i.split("'")) for i in kappaEmt] ### Renaming the experiment Ids taken from csv file kappaEmt = ['_'.join(i.split('(')) for i in kappaEmt] ### Renaming the experiment Ids taken from csv file kappaEmt = ['_'.join(i.split(')')) for i in kappaEmt] ### Renaming the experiment Ids taken from csv file kappaEmt = ['_'.join(i.split('&')) for i in kappaEmt] ### Renaming the experiment Ids taken from csv file kappaEmt = [i.split('.')[0] for i in kappaEmt] kappaFrame_Cluster_2['Experiment_id'] = kappaEmt kappaFrame_Cluster_2.set_index('Experiment_id', drop=True, inplace=True) for vidStim in summary_data_frame.index.values: try: #"kappa", 'stats', "p_val", 'subjects', 'raters' summary_data_frame.loc[vidStim, 'NpDom_kappa'] = kappaFrame.loc[vidStim, 'kappa'] summary_data_frame.loc[vidStim, 'NpDom_stats'] = kappaFrame.loc[vidStim, 'stats'] summary_data_frame.loc[vidStim, 'NpDom_pVal'] = kappaFrame.loc[vidStim, 'p_val'] summary_data_frame.loc[vidStim, 'NpDom_subjects'] = kappaFrame.loc[vidStim, 'subjects'] summary_data_frame.loc[vidStim, 'NpDom_raters'] = kappaFrame.loc[vidStim, 'raters'] summary_data_frame.loc[vidStim, 'NpDom_kappa1'] = kappaFrame_Cluster_1.loc[vidStim, 'kappa'] summary_data_frame.loc[vidStim, 'NpDom_stats1'] = kappaFrame_Cluster_1.loc[vidStim, 'stats'] summary_data_frame.loc[vidStim, 'NpDom_pVal1'] = kappaFrame_Cluster_1.loc[vidStim, 'p_val'] summary_data_frame.loc[vidStim, 'NpDom_subjects1'] = kappaFrame_Cluster_1.loc[vidStim, 'subjects'] summary_data_frame.loc[vidStim, 'NpDom_raters1'] = kappaFrame_Cluster_1.loc[vidStim, 'raters'] summary_data_frame.loc[vidStim, 'NpDom_kappa2'] = kappaFrame_Cluster_2.loc[vidStim, 'kappa'] summary_data_frame.loc[vidStim, 'NpDom_stats2'] = kappaFrame_Cluster_2.loc[vidStim, 'stats'] summary_data_frame.loc[vidStim, 'NpDom_pVal2'] = kappaFrame_Cluster_2.loc[vidStim, 'p_val'] summary_data_frame.loc[vidStim, 'NpDom_subjects2'] = kappaFrame_Cluster_2.loc[vidStim, 'subjects'] summary_data_frame.loc[vidStim, 'NpDom_raters2'] = kappaFrame_Cluster_2.loc[vidStim, 'raters'] except: continue''' pdb.set_trace() summary_data_frame.to_csv(os.path.join(_thisDir, 'NewTarget', 'WithCCC_kappa_WithClustering_summary_data_frame_'+cleaning_flag+date+'_withClusterInformation.csv')) '''for vidStim in VideosWithEmotions.keys(): emts = np.unique(VideosWithEmotions[vidStim]) tmp = 0 for _emt in emts: factor = np.sum(np.array(VideosWithEmotions[vidStim])==_emt)/len(VideosWithEmotions[vidStim]) if tmp < factor: tmp = factor overallStats.loc[vidStim, 'emtFactor'] = round(factor,2) overallStats.loc[vidStim, 'MostRated'] = _emt overallStats.loc[vidStim, 'NRatedEmotions'] = len(VideosWithEmotions[vidStim]) if len(MADFrame.loc[vidStim, ['VMAD', 'AMAD', 'DMAD', 'LMAD', 'FMAD']]) == 1: overallStats.loc[vidStim, ['VMAD', 'AMAD', 'DMAD', 'LMAD', 'FMAD']] = MADFrame.loc[vidStim, ['VMAD', 'AMAD', 'DMAD', 'LMAD', 'FMAD']] else: overallStats.loc[vidStim, ['VMAD', 'AMAD', 'DMAD', 'LMAD', 'FMAD']] = MADFrame.loc[vidStim, ['VMAD', 'AMAD', 'DMAD', 'LMAD', 'FMAD']].values[0]''' def VAD_Plotting(file_name =
a bundle of transcripts, find intervals matching retained introns. A retained intron is defined as an interval from an exon/intron boundary to the next where both boundaries are in the same exon of another transcript''' intron_intervals = [GTF.toIntronIntervals(transcript) for transcript in gene] intron_intervals = list(set( itertools.chain.from_iterable(intron_intervals))) intron_intervals.sort() for transcript in gene: exons = iter(sorted(GTF.asRanges(transcript))) introns = iter(intron_intervals) retained_introns = [] try: intron = introns.next() exon = exons.next() while True: if exon[1] < intron[0]: exon = exons.next() continue if intron[0] >= exon[0] and intron[1] <= exon[1]: E.debug("exon %s of transcript %s contains intron %s" % (exon, transcript[0].transcript_id, intron)) retained_introns.append(intron) intron = introns.next() except StopIteration: pass retained_introns = Intervals.combine(retained_introns) for intron in retained_introns: entry = GTF.Entry() entry = entry.copy(transcript[0]) entry.start = intron[0] entry.end = intron[1] yield entry def gene_to_blocks(gene): '''Given a bundle of all exons in a gene, create a seperate exon for each unqiue part of a exon, as well as one for introns. ''' exons = [(e.start, e.end) for e in gene if e.feature == "exon"] exons = list(set(sum(exons, ()))) exons.sort() entry = GTF.Entry() entry = entry.copy(gene[0]) entry.transcript_id = "merged" entry.feature = "exon" entry.source = "merged" for i in range(len(exons)-1): entry.start = exons[i] entry.end = exons[i+1] entry.attributes["exon_id"] = str(i + 1) yield entry def main(argv=None): if not argv: argv = sys.argv parser = E.OptionParser(version="%prog version: $Id$", usage=globals()["__doc__"]) parser.add_option("--merge-exons-distance", dest="merge_exons_distance", type="int", help="distance in nucleotides between " "exons to be merged [%default].") parser.add_option("--pattern-identifier", dest="pattern", type="string", help="pattern to use for renaming genes/transcripts. " "The pattern should contain a %i, for example " "--pattern-identifier=ENSG%010i [%default].") parser.add_option("--sort-order", dest="sort_order", type="choice", choices=("gene", "gene+transcript", "transcript", "position", "contig+gene", "position+gene", "gene+position", "gene+exon"), help="sort input data [%default].") parser.add_option("--mark-utr", dest="mark_utr", action="store_true", help="mark utr for method --merge-exons. " "[%default].") parser.add_option( "--without-utr", dest="with_utr", action="store_false", help="exclude UTR in methods --merge-exons, merge-transcripts " "and intersect-transripts. Setting this option will remove " "non-coding transcripts. " "[%default].") parser.add_option( "--filter-method", dest="filter_method", type="choice", choices=("gene", "transcript", "longest-gene", "longest-transcript", "representative-transcript", "proteincoding", "lincrna"), help="Filter method to apply. Available filters are: " "'gene': filter by gene_id given in ``--map-tsv-file``, " "'transcript': filter by transcript_id given in ``--map-tsv-file``, " "'longest-gene': output the longest gene for overlapping genes ," "'longest-transcript': output the longest transcript per gene," "'representative-transcript': output the representative transcript " "per gene. The representative transcript is the transcript " "that shares most exons with other transcripts in a gene. " "The input needs to be sorted by gene. " "'proteincoding': only output protein coding features. " "'lincrna': only output lincRNA features. " "[%default].") parser.add_option("-a", "--map-tsv-file", dest="filename_filter", type="string", metavar="tsv", help="filename of ids to map/filter [%default].") parser.add_option( "--gff-file", dest="filename_gff", type="string", metavar="GFF", help="second filename of features (see --remove-overlapping) " "[%default]") parser.add_option("--invert-filter", dest="invert_filter", action="store_true", help="when using --filter, invert selection " "(like grep -v). " "[%default].") parser.add_option("--sample-size", dest="sample_size", type="int", help="extract a random sample of size # if the option " "'--method=filter --filter-method' is set " "[%default].") parser.add_option( "--intron-min-length", dest="intron_min_length", type="int", help="minimum length for introns (for --exons-file2introns) " "[%default].") parser.add_option("--min-exons-length", dest="min_exons_length", type="int", help="minimum length for gene (sum of exons) " "(--sam-fileple-size) [%default].") parser.add_option( "--intron-border", dest="intron_border", type="int", help="number of residues to exclude at intron at either end " "(--exons-file2introns) [%default].") parser.add_option("--ignore-strand", dest="ignore_strand", action="store_true", help="remove strandedness of features (set to '.') when " "using ``transcripts2genes`` or ``filter``" "[%default].") parser.add_option("--permit-duplicates", dest="strict", action="store_false", help="permit duplicate genes. " "[%default]") parser.add_option( "--duplicate-feature", dest="duplicate_feature", type="choice", choices=("gene", "transcript", "both", "ucsc", "coordinates"), help="remove duplicates by gene/transcript. " "If ``ucsc`` is chosen, transcripts ending on _dup# are " "removed. This is necessary to remove duplicate entries " "that are next to each other in the sort order " "[%default]") parser.add_option("--use-gene-id", dest="use_geneid", action="store_true", help="when merging transcripts, exons or introns, use " "the parent gene_id as the transcript id.") parser.add_option("-m", "--method", dest="method", type="choice", action="append", choices=( "add-protein-id", "exons2introns", "filter", "find-retained-introns", "genes-to-unique-chunks", "intersect-transcripts", "join-exons", "merge-exons", "merge-transcripts", "merge-genes", "merge-introns", "remove-overlapping", "remove-duplicates", "rename-genes", "rename-transcripts", "rename-duplicates", "renumber-genes", "renumber-transcripts", "set-transcript-to-gene", "set-gene-to-transcript", "set-protein-to-transcript", "set-score-to-distance", "set-gene_biotype-to-source", "set-source-to-transcript_biotype", "sort", "transcript2genes", "unset-genes"), help="Method to apply [%default]." "Please only select one.") parser.set_defaults( sort_order="gene", filter_method="gene", pattern="%i", merge_exons_distance=0, filename_filter=None, intron_border=None, intron_min_length=None, sample_size=0, min_exons_length=0, ignore_strand=False, mark_utr=False, with_utr=True, invert_filter=False, duplicate_feature=None, strict=True, method=None, use_geneid=False, ) (options, args) = E.Start(parser, argv=argv) ninput, noutput, nfeatures, ndiscarded = 0, 0, 0, 0 if options.method is None: raise ValueError("please specify a --method") if len(options.method) > 1: raise ValueError("multiple --method arguements specified") else: options.method = options.method[0] if options.method == "set-transcript-to-gene": for gff in GTF.iterator(options.stdin): ninput += 1 gff.setAttribute("transcript_id", gff.gene_id) options.stdout.write("%s\n" % str(gff)) noutput += 1 nfeatures += 1 elif options.method == "set-gene_biotype-to-source": for gff in GTF.iterator(options.stdin): ninput += 1 if "gene_biotype" not in gff.attributes: gff.setAttribute("gene_biotype", gff.source) options.stdout.write("%s\n" % str(gff)) noutput += 1 nfeatures += 1 elif options.method == "set-source-to-transcript_biotype": for gff in GTF.iterator(options.stdin): ninput += 1 try: gff.source = gff.transcript_biotype except AttributeError: pass options.stdout.write("%s\n" % str(gff)) noutput += 1 nfeatures += 1 elif options.method == "remove-duplicates": counts = collections.defaultdict(int) if options.duplicate_feature == "ucsc": store = [] remove = set() f = lambda x: x[0].transcript_id gffs = GTF.transcript_iterator( GTF.iterator(options.stdin), strict=False) outf = lambda x: "\n".join([str(y) for y in x]) for entry in gffs: ninput += 1 store.append(entry) id = f(entry) if "_dup" in id: remove.add(re.sub("_dup\d+", "", id)) remove.add(id) for entry in store: id = f(entry) if id not in remove: options.stdout.write(outf(entry) + "\n") noutput += 1 else: ndiscarded += 1 E.info("discarded duplicates for %s" % (id)) else: if options.duplicate_feature == "gene": gffs = GTF.gene_iterator( GTF.iterator(options.stdin), strict=False) f = lambda x: x[0][0].gene_id outf = lambda x: "\n".join( ["\n".join([str(y) for y in xx]) for xx in x]) elif options.duplicate_feature == "transcript": gffs = GTF.transcript_iterator( GTF.iterator(options.stdin), strict=False) f = lambda x: x[0].transcript_id outf = lambda x: "\n".join([str(y) for y in x]) elif options.duplicate_feature == "coordinates": gffs = GTF.chunk_iterator(GTF.iterator(options.stdin)) f = lambda x: x[0].contig + "_" + \ str(x[0].start) + "-" + str(x[0].end) outf = lambda x: "\n".join([str(y) for y in x]) store = [] for entry in gffs: ninput += 1 store.append(entry) id = f(entry) counts[id] += 1 # Assumes GTF file sorted by contig then start last_id = "" if options.duplicate_feature == "coordinates": for entry in store: id = f(entry) if id == last_id: ndiscarded += 1 E.info("discarded duplicates for %s: %i" % (id, counts[id])) else: options.stdout.write(outf(entry) + "\n") noutput += 1 last_id = id else: for entry in store: id = f(entry) if counts[id] == 1: options.stdout.write(outf(entry) + "\n") noutput += 1 else: ndiscarded += 1 E.info("discarded duplicates for %s: %i" % (id, counts[id])) elif "sort" == options.method: for gff in GTF.iterator_sorted(GTF.iterator(options.stdin), sort_order=options.sort_order): ninput += 1 options.stdout.write("%s\n" % str(gff)) noutput += 1 nfeatures += 1 elif "set-gene-to-transcript" == options.method: for gff in GTF.iterator(options.stdin): ninput += 1 gff.setAttribute("gene_id", gff.transcript_id) options.stdout.write("%s\n" % str(gff)) noutput += 1 nfeatures += 1 elif "set-protein-to-transcript" == options.method: for gff in GTF.iterator(options.stdin): ninput += 1 gff.setAttribute("protein_id", gff.transcript_id) options.stdout.write("%s\n" % str(gff)) noutput += 1 nfeatures += 1 elif "add-protein-id" == options.method: transcript2protein = IOTools.readMap( IOTools.openFile(options.filename_filter, "r")) missing = set() for gff in GTF.iterator(options.stdin): ninput += 1 if gff.transcript_id not in transcript2protein: if gff.transcript_id not in missing: E.debug( ("removing transcript '%s' due to " "missing protein id") % gff.transcript_id) missing.add(gff.transcript_id) ndiscarded += 1 continue gff.setAttribute( "protein_id", transcript2protein[gff.transcript_id]) options.stdout.write("%s\n" % str(gff)) noutput += 1 nfeatures += 1 E.info("transcripts removed due to missing protein ids: %i" % len(missing)) elif "join-exons" == options.method: for exons in GTF.transcript_iterator(GTF.iterator(options.stdin)): ninput += 1 strand = Genomics.convertStrand(exons[0].strand) contig = exons[0].contig transid = exons[0].transcript_id geneid = exons[0].gene_id biotype = exons[0].source all_start, all_end = min([x.start for x in exons]), max( [x.end for x in exons]) y = GTF.Entry() y.contig = contig y.source = biotype y.feature = "transcript" y.start = all_start y.end = all_end y.strand = strand y.transcript_id = transid y.gene_id = geneid options.stdout.write("%s\n" % str(y)) elif "merge-genes" == options.method: # merges overlapping genes # gffs = GTF.iterator_sorted_chunks( GTF.flat_gene_iterator(GTF.iterator(options.stdin)), sort_by="contig-strand-start") def iterate_chunks(gff_chunks): last = gff_chunks.next() to_join = [last] for gffs in gff_chunks: d = gffs[0].start - last[-1].end if gffs[0].contig == last[0].contig and \ gffs[0].strand == last[0].strand: assert gffs[0].start >= last[0].start, \ ("input file should be sorted by contig, strand " "and position: d=%i:\nlast=\n%s\nthis=\n%s\n") % \ (d,
<reponame>rockychen-dpaw/resource_tracking<gh_stars>0 import traceback import os import logging import requests import itertools import json from datetime import timedelta from django.utils import timezone from django.conf import settings from django.contrib.gis.db import models from django.contrib.auth.models import User from django.core import validators from django.db import connection from django.core.exceptions import ObjectDoesNotExist from django.dispatch import receiver from django.db.models.signals import post_save,pre_save,post_delete from django.contrib.postgres.fields import ArrayField,JSONField from django.core.files.storage import FileSystemStorage logger = logging.getLogger(__name__) _programmatic_user = None def get_user_program(): """ """ global _programmatic_user if not _programmatic_user: try: _programmatic_user = User.objects.get(username='Programmatic') except ObjectDoesNotExist as ex: with connection.cursor() as cursor: try: cursor.execute(""" INSERT INTO auth_user (username,first_name,last_name,email,is_staff,is_active,is_superuser,password,date_joined) VALUES ('Programmatic','Programmatic','System','<EMAIL>',false,true,false,'','{}') """.format(timezone.now().strftime('%Y-%m-%d %H:%M:%S %Z'))) except: pass _programmatic_user = User.objects.get(username='Programmatic') return _programmatic_user # Create your models here. class Option(models.Model): _tvalue = None name = models.CharField(max_length=32,unique=True) comments = models.TextField(max_length=512,null=True,blank=True) value = models.CharField(max_length=64,null=True,blank=True) @property def tvalue(self): """ typed value """ if self.value is None or self.value == "": return None if self._tvalue is None: try: self._tvalue = json.loads(self.value) except: self._tvalue = self.value return self._tvalue @classmethod def get_option(cls,key,default=None): try: return Option.objects.get(name=key).tvalue except: return default def __str__(self): return "Option({})".format(self.name) class Meta: ordering = ["name"] class District(models.Model): name = models.CharField(max_length=64,unique=True,null=False,editable=False) def clean(self): if self.value: self.value = self.value.strip() def __str__(self): return self.name class Meta: ordering = ["name"] class Network(models.Model): name = models.CharField(max_length=64,unique=True,null=False) comments = models.CharField(max_length=512,null=True,blank=True) creator = models.ForeignKey( settings.AUTH_USER_MODEL, blank=True, null=True, on_delete=models.PROTECT, related_name='+', editable=False) modifier = models.ForeignKey( settings.AUTH_USER_MODEL, blank=True, null=True, on_delete=models.PROTECT, related_name='+', editable=False) created = models.DateTimeField(default=timezone.now, editable=False) modified = models.DateTimeField(auto_now=True, editable=False) def __str__(self): return self.name class Meta: ordering = ["name"] class Repeater(models.Model): site_name = models.CharField(max_length=128,unique=True) network = models.ForeignKey(Network,on_delete=models.SET_NULL,null=True,blank=True,editable=False) last_inspected = models.DateField(default=timezone.now, null=True,blank=True) sss_display = models.BooleanField(default=True,verbose_name="SSS Display Enabled") sss_description = models.CharField(max_length=512,null=True,blank=True) district = models.ForeignKey(District,on_delete=models.PROTECT,null=True,blank=True) channel_number = models.SmallIntegerField(null=True,blank=True) point = models.PointField(null=True,blank=True) link_description = models.CharField(max_length=512,null=True,blank=True) link_point = models.PointField(null=True,blank=True) tx_frequency = models.DecimalField(max_digits=16,decimal_places=8,null=True,blank=True,verbose_name="TX Frequency (mHz)") rx_frequency = models.DecimalField(max_digits=16,decimal_places=8,null=True,blank=True,verbose_name="RX Frequency (mHz)") ctcss_tx = models.DecimalField(max_digits=16,decimal_places=8,null=True,blank=True,verbose_name="CTCSS TX (Hz)") ctcss_rx = models.DecimalField(max_digits=16,decimal_places=8,null=True,blank=True,verbose_name="CTCSS RX (Hz)") nac_tx = models.CharField(max_length=32,null=True,blank=True,verbose_name="NAC TX (P25)") nac_rx = models.CharField(max_length=32,null=True,blank=True,verbose_name="NAC RX (P25)") tx_antenna_height = models.FloatField(null=True,blank=True,verbose_name="TX Antenna Height (M)") rx_antenna_height = models.FloatField(null=True,blank=True,verbose_name="RX Antenna Height (M)") tx_power = models.FloatField(null=True,blank=True,verbose_name="TX Transmitter RF power in Watts,20dBm=0.1w") rx_power = models.FloatField(null=True,blank=True,verbose_name="RX Transmitter RF power in Watts,20dBm=0.1w") tx_antenna_gain = models.FloatField(null=True,blank=True,verbose_name="TX Transmitter antenna gain in dBi") rx_antenna_gain = models.FloatField(null=True,blank=True,verbose_name="RX Transmitter antenna gain in dBi") output_color = models.CharField(max_length=32,null=True,blank=True) output_radius = models.FloatField(null=True,blank=True,verbose_name="Output Radius (Km)") output_clutter = models.FloatField(null=True,blank=True,verbose_name="Output Clutter (M)") creator = models.ForeignKey( settings.AUTH_USER_MODEL, blank=True, null=True, on_delete=models.PROTECT, related_name='+', editable=False) modifier = models.ForeignKey( settings.AUTH_USER_MODEL, blank=True, null=True, on_delete=models.PROTECT, related_name='+', editable=False) created = models.DateTimeField(default=timezone.now, editable=False) modified = models.DateTimeField(auto_now=True, editable=False) @property def longitude(self): return self.point.x if self.point else None @property def latitude(self): return self.point.y if self.point else None @property def link_longitude(self): return self.link_point.x if self.link_point else None @property def link_latitude(self): return self.link_point.x if self.link_point else None @property def is_complete(self): return True if (self.point and self.channel_number and self.tx_frequency and self.rx_frequency and self.tx_antenna_height and self.rx_antenna_height) else False def __str__(self): return "{} - {}".format(self.district,self.site_name) class Meta: ordering = ["district__name","site_name"] class OverwriteStorage(FileSystemStorage): def get_available_name(self, name): """Returns a filename that's free on the target storage system, and available for new content to be written to. Found at http://djangosnippets.org/snippets/976/ This file storage solves overwrite on upload problem. Another proposed solution was to override the save method on the model like so (from https://code.djangoproject.com/ticket/11663): def save(self, *args, **kwargs): try: this = MyModelName.objects.get(id=self.id) if this.MyImageFieldName != self.MyImageFieldName: this.MyImageFieldName.delete() except: pass super(MyModelName, self).save(*args, **kwargs) """ # If the filename already exists, remove it as if it was a true file system if self.exists(name): os.remove(os.path.join(settings.MEDIA_ROOT, name)) return name def network_file_path(instance,filename,suffix=None): if isinstance(instance,NetworkTXAnalysis): folder = "tx" else: folder = "rx" ext = os.path.splitext(filename)[1] name = instance.network.name.lower().replace(" ","_") if suffix : return os.path.join("radio","networks",name,folder,"{}_{}_{}{}".format(name,folder,suffix,ext)) else: return os.path.join("radio","networks",name,folder,"{}_{}{}".format(name,folder,ext)) def network_4326_file_path(instance,filename): return network_file_path(instance,filename,suffix="4326") def network_mercator_file_path(instance,filename): return network_file_path(instance,filename,suffix="mercator") class CoverageAnalysis(models.Model): IDLE = 0 WAITING = 110 WAITING_TO_DELETE = 120 DELETING = 121 DELETE_FAILED = -122 DELETED = 129 WAITING_TO_ANALYSE = 130 ANALYSING = 131 ANALYSE_FAILED = -132 ANALYSED = 139 WAITING_TO_DOWNLOAD = 140 DOWNLOADING = 141 DOWNLOAD_FAILED = -142 DOWNLOADED = 149 WAITING_TO_EXTRACT = 150 EXTRACTING = 151 EXTRACT_FAILED = -152 EXTRACT_REQUIRED = -153 EXTRACTED = 159 #Failed statuses TIMEOUT = -9998 FAILED = -9999 PROCESS_STATUS_CHOICES = ( (IDLE,"Idle"), (WAITING,"Waiting to process"), (DELETE_FAILED ,"Delete Failed"), (WAITING_TO_DELETE ,"Waiting to delete"), (DELETING,"Deleting Calculation"), (DELETED,"Deleted Calculation"), (ANALYSE_FAILED,"Analyse Failed"), (WAITING_TO_ANALYSE ,"Waiting to analyse"), (ANALYSING,"Analysing"), (ANALYSED,"Analysed"), (DOWNLOAD_FAILED,"Download Failed"), (WAITING_TO_DOWNLOAD ,"Waiting to download"), (DOWNLOADING,"Downloading"), (DOWNLOADED,"Downloaded"), (EXTRACT_FAILED,"Extracting Failed"), (EXTRACT_REQUIRED,"Extract Required"), (WAITING_TO_EXTRACT ,"Waiting to extract"), (EXTRACTING,"Extrating Spatial Data"), (TIMEOUT,"Timeout"), (FAILED,"Failed"), ) PROCESS_STATUS_MAPPING = dict(PROCESS_STATUS_CHOICES) WAITING_STATUS_MAPPING = { IDLE:WAITING, WAITING:WAITING, WAITING_TO_DELETE:WAITING_TO_DELETE, DELETING:WAITING_TO_DELETE, DELETE_FAILED:WAITING_TO_DELETE, DELETED:WAITING_TO_ANALYSE, WAITING_TO_ANALYSE:WAITING_TO_ANALYSE, ANALYSING:WAITING_TO_ANALYSE, ANALYSE_FAILED:WAITING_TO_ANALYSE, ANALYSED:WAITING_TO_DOWNLOAD, WAITING_TO_DOWNLOAD:WAITING_TO_DOWNLOAD, DOWNLOADING:WAITING_TO_DOWNLOAD, DOWNLOAD_FAILED:WAITING_TO_DOWNLOAD, DOWNLOADED:WAITING_TO_EXTRACT, WAITING_TO_EXTRACT:WAITING_TO_EXTRACT, EXTRACTING:WAITING_TO_EXTRACT, #EXTRACT_FAILED:WAITING_TO_DOWNLOAD, EXTRACT_FAILED:WAITING_TO_EXTRACT, EXTRACT_REQUIRED:WAITING_TO_EXTRACT, TIMEOUT:WAITING, FAILED:WAITING } PROCESS_TIMEOUT = timedelta(hours=6) process_status = models.SmallIntegerField(default=IDLE,choices=PROCESS_STATUS_CHOICES,editable=False) process_msg = models.TextField(editable=False,null=True) process_start = models.DateTimeField(editable=False,null=True) process_end = models.DateTimeField(editable=False,null=True) @property def process_status_name(self): if self.process_status > self.IDLE and timezone.now() - self.process_start > self.PROCESS_TIMEOUT: return "Timeout" else: return self.PROCESS_STATUS_CHOICES[self.process_status] @property def status_name(self): status = self.process_status if self.process_status > self.IDLE and timezone.now() - self.process_start > self.PROCESS_TIMEOUT: status = self.IDLE if status == self.IDLE: if not self.last_analysed: return "Outdated" elif self.last_analysed < self.analyse_requested: return "Outdated" else: return "Latest" else: return self.PROCESS_STATUS_MAPPING[status] @property def is_outdated(self): if not self.last_analysed: return True elif self.last_analysed < self.analyse_requested: return True else: return False class Meta: abstract = True class NetworkAnalysis(CoverageAnalysis): analyse_requested = models.DateTimeField(editable=False) last_analysed = models.DateTimeField(editable=False,null=True) analyse_result = JSONField(null=True,editable=False) raster_4326 = models.FileField(max_length=512,null=True,editable=False,upload_to=network_4326_file_path, storage=OverwriteStorage()) world_file_4326 = models.FileField(max_length=512,null=True,editable=False,upload_to=network_4326_file_path, storage=OverwriteStorage()) #raster_mercator = models.FileField(max_length=512,null=True,editable=False,upload_to=network_mercator_file_path, storage=OverwriteStorage()) #world_file_mercator = models.FileField(max_length=512,null=True,editable=False,upload_to=network_mercator_file_path, storage=OverwriteStorage()) bbox = ArrayField(base_field=models.FloatField(),size=4,null=True,editable=False) #left bottom lon,left bottom lon,upper right lon,upper right lat class Meta: abstract = True class NetworkTXAnalysis(NetworkAnalysis): network = models.OneToOneField(Network,on_delete=models.CASCADE,primary_key=True,editable=False,related_name="tx_analysis") class NetworkRXAnalysis(NetworkAnalysis): network = models.OneToOneField(Network,on_delete=models.CASCADE,primary_key=True,editable=False,related_name="rx_analysis") def repeater_file_path(instance,filename,suffix=None,ext=None): if isinstance(instance,RepeaterTXAnalysis): folder = "tx" else: folder = "rx" if not ext: ext = os.path.splitext(filename)[1] site_name = instance.repeater.site_name.lower().replace(" ","_") if suffix : return os.path.join("radio","repeaters",site_name,folder,"{}_{}_{}{}".format(site_name,folder,suffix,ext)) else: return os.path.join("radio","repeaters",site_name,folder,"{}_{}{}".format(site_name,folder,ext)) def repeater_4326_file_path(instance,filename): return repeater_file_path(instance,filename,suffix="4326",ext=".tiff") def repeater_mercator_file_path(instance,filename): return repeater_file_path(instance,filename,suffix="mercator") def repeater_shp_file_path(instance,filename): return repeater_file_path(instance,filename,ext=".shp.zip") COMPRESS_FILE_SETTINGS = [ (".7z",lambda f,output:["7za","-y","x",f,"-o{}".format(output)]), (".zip",lambda f,output:["unzip","-o","-q",f,"-d",output]), (".tar",lambda f,output:["tar","--overwrite","-x","-f",f,"-C",output]), (".tar.gz",lambda f,output:["tar","--overwrite","-x","-z","-f",f,"-C",output]), (".tgz",lambda f,output:["tar","--overwrite","-x","-z","-f",f,"-C",output]), (".tar.xz",lambda f,output:["tar","--overwrite","-x","-J","-f",f,"-C",output]), (".tar.bz2",lambda f,output:["tar","--overwrite","-x","-j","-f",f,"-C",output]), (".tar.bz",lambda f,output:["tar","--overwrite","-x","-j","-f",f,"-C",output]) ] class RepeaterAnalysis(CoverageAnalysis): network = models.CharField(max_length=64,null=True,editable=False) analyse_requested = models.DateTimeField(editable=False) last_analysed = models.DateTimeField(editable=False,null=True) last_merged = models.DateTimeField(editable=False,null=True) last_resolved = models.DateTimeField(editable=False,null=True) last_simplified = models.DateTimeField(editable=False,null=True) analyse_result = JSONField(null=True,editable=False) raster_4326 = models.FileField(max_length=512,null=True,editable=False,upload_to=repeater_4326_file_path, storage=OverwriteStorage()) world_file_4326 = models.FileField(max_length=512,null=True,editable=False,upload_to=repeater_4326_file_path, storage=OverwriteStorage()) #raster_mercator = models.FileField(max_length=512,null=True,editable=False,upload_to=repeater_mercator_file_path, storage=OverwriteStorage()) #world_file_mercator = models.FileField(max_length=512,null=True,editable=False,upload_to=repeater_mercator_file_path, storage=OverwriteStorage()) shp_file = models.FileField(max_length=512,null=True,editable=False,upload_to=repeater_shp_file_path, storage=OverwriteStorage()) bbox = ArrayField(base_field=models.FloatField(),size=4,null=True,editable=False) #left bottom lon,left bottom lon,upper right lon,upper right lat @property def raster_4326_path(self): return os.path.join(settings.MEDIA_ROOT,self.raster_4326.name) if self.raster_4326 else None @property def raster_4326_filename(self): return os.path.split(self.raster_4326.name)[1] if self.raster_4326 else None @property def raster_4326_basename(self): return os.path.splitext(os.path.split(self.raster_4326.name)[1])[0] if self.raster_4326 else None class Meta: abstract = True class RepeaterTXAnalysis(RepeaterAnalysis): repeater = models.OneToOneField(Repeater,on_delete=models.CASCADE,primary_key=True,editable=False,related_name="tx_analysis") class RepeaterRXAnalysis(RepeaterAnalysis): repeater = models.OneToOneField(Repeater,on_delete=models.CASCADE,primary_key=True,editable=False,related_name="rx_analysis") class RepeaterCoverage(models.Model): repeater = models.ForeignKey(Repeater,on_delete=models.CASCADE,editable=False,related_name="+") site_name = models.CharField(max_length=128) district = models.CharField(max_length=64,null=False,editable=False) dn= models.IntegerField(null=True,editable=False) geom = models.MultiPolygonField(null=True,editable=False) class Meta: abstract = True class RepeaterTXCoverage(RepeaterCoverage): pass class RepeaterRXCoverage(RepeaterCoverage): pass class RepeaterTXCoverageSimplified(RepeaterCoverage): color = models.CharField(max_length=16,null=True,editable=False) pass class RepeaterRXCoverageSimplified(RepeaterCoverage): color = models.CharField(max_length=16,null=True,editable=False) pass class AnalysisListener(object): @staticmethod @receiver(pre_save, sender=Repeater) def update_analysis_4_existing_repeater(sender,instance,**kwargs): if instance.pk is None: #new repeater,process in post_save return existing_repeater = Repeater.objects.get(pk=instance.pk) AnalysisListener._update_analysis(existing_repeater,instance) @staticmethod @receiver(post_save, sender=Repeater) def update_analysis_4_new_repeater(sender,instance,created,**kwargs): if created: #new repeater AnalysisListener._update_analysis(None,instance) @staticmethod @receiver(post_delete, sender=Repeater) def update_analysis_4_deleted_repeater(sender,instance,**kwargs): AnalysisListener._update_analysis(instance,None) @staticmethod @receiver(post_save, sender=Network) def create_network_analysis(sender,instance,created,**kwargs): if created: #new network,create related network analysis object now = timezone.now() NetworkTXAnalysis(network=instance,analyse_requested=now).save() NetworkRXAnalysis(network=instance,analyse_requested=now).save() @staticmethod @receiver(pre_save, sender=Network) def create_network_analysis(sender,instance,**kwargs): if not instance.pk: #new network return existing_network = Network.objects.get(pk=instance.pk) if instance.name != existing_network.name: #network name changed. now = timezone.now() for rep in Repeater.objects.filter(network=instance): RepeaterTXAnalysis.objects.update_or_create(repeater=r,defaults={"analyse_requested":now}) RepeaterRXAnalysis.objects.update_or_create(repeater=r,defaults={"analyse_requested":now}) @staticmethod def _update_analysis(existing_repeater,repeater): #update repeater analysis data tx_changed = False rx_changed = False now = timezone.now() if repeater: #update or create repeater if existing_repeater: try: tx_analysis = RepeaterTXAnalysis.objects.get(repeater=existing_repeater) except ObjectDoesNotExist as ex: tx_analysis = None try: rx_analysis = RepeaterRXAnalysis.objects.get(repeater=existing_repeater) except ObjectDoesNotExist as ex: rx_analysis = None else: tx_analysis = None rx_analysis = None if tx_analysis is None: RepeaterTXAnalysis(repeater=repeater,analyse_requested=now).save() tx_changed = True else: for key in ["network","point","output_radius","output_clutter","tx_frequency","tx_antenna_height"]: if getattr(existing_repeater,key) != getattr(repeater,key): tx_analysis.analyse_requested = now tx_analysis.save(update_fields=["analyse_requested"]) tx_changed = True break if rx_analysis is None: RepeaterRXAnalysis(repeater=repeater,analyse_requested=now).save() rx_cahnged = True else: for key in ["network","point","output_radius","output_clutter","rx_frequency","rx_antenna_height"]: if getattr(existing_repeater,key) != getattr(repeater,key): rx_analysis.analyse_requested = now rx_analysis.save(update_fields=["analyse_requested"]) rx_changed = True break #update network analysis data previous_network_tx_changed = False previous_network_rx_changed = False network_tx_changed = False network_rx_changed = False if existing_repeater: previous_network = existing_repeater.network else: previous_network = None if repeater: network = repeater.network else: network = None if previous_network != network: if previous_network: previous_network_tx_changed = True previous_network_rx_changed = True if network: network_tx_changed = True network_rx_changed = True elif network: network_tx_changed = tx_changed network_rx_changed = rx_changed if previous_network_tx_changed:
"""Code for extracting geometry data from ETABS text files (*.E2K & *.$ET). Functions exist for pushing the data out to a GSA text file. TODO: - openings in floor diaphragms - revise default parsing so that two keys at the beginning become nested keys of nested dictionaries. Also, single key and value become a dictionary but that when parsing a subsequent line, a check is carried out for a dictionary with a single value as well as looking for sub-keys. - calculate floor area for frame without slabs (99%) (add strategy for choice) - create a list of floor slabs that have the `DIAPH` parameter. - set up analyses and combinations (50%) - coordinate systems (25%) - grid layouts (0%) - functions (response spectra, ground motions etc) (0%) - wind loads (0%) - seismic loads (0%) - logs (0%) - add filled steel tubes / pipes (MATERIAL & FILLMATERIAL props & quantities) (10%) - add section pools (20%) - add buckling restrained beams (10%) - embedded sections (80%) - check deck properties - add logging: At the moment there is no log kept of elements that do not "make sense". This could be useful for identifying how complete the record is. - LINECURVEDATA - just found it and I didn't know what it was... - sort out situation where embed is an SD section DONE: - split beams at intersections (100%) - add point and area loads (including point loads on beams) (100%) - NONE sections -> dummy """ #from os import listdir from os.path import exists, isfile, join, basename, splitext import pickle from eng_utilities.general_utilities import is_numeric, try_numeric from eng_utilities.geometry_utilities import * from eng_utilities.section_utilities import build_section_dict from eng_utilities.E2K_postprocessing import * from collections import namedtuple LoadKey = namedtuple('LoadKey', 'MEMBER STORY LOADCASE') def is_key(string): """Checking whether element functions as a 'key' in the file >>> [is_key(x) for x in ['RELEASE', '"PINNED"', 'CARDINALPT', '8', 8, 8.8, '"32"']] [True, False, True, False, False, False, False] """ return (not(is_numeric(string)) and (string.find('"') == -1)) def line_split(line): """Fastest line-splitter (should be fast for IronPython)""" line_list = [] [line_list.append('"' + chunk + '"') if i%2==1 else line_list.extend(chunk.split()) for i, chunk in enumerate(line.split('"'))] return line_list def gather(data): """Does a reverse generation of tuples for an E2K line """ # This could be the location to sort out the POINT data format data_list = [] temp_list = [] for datum in data[::-1]: if is_key(datum): if len(temp_list) < 1: out = None elif len(temp_list) == 1: out = temp_list[0] else: out = tuple(temp_list) data_list.append((datum, out)) temp_list = [] else: #print(try_numeric(datum.replace('"',''))) temp_list = [try_numeric(datum.replace('"',''))] + temp_list return data_list[::-1] # If top-level dict matches first item and sub-dict doesn't, then def try_branch(a_dict, data_coll, debug=False, keyword=''): """When provided with a bunched line, it sets up dictionaries and subdictionaries in a tree structure based on branching. If this is not appropriate, it merges the entries into a single dictionary""" # pick first pair a, b = data_coll[0] try_1 = a_dict.get(a) if try_1 is None: # if there isn't an entry already #print(f'{a} Not found, add {a}:, {b}: & {data_coll[1:]}') a_dict[a] = {b:{k:v for k, v in data_coll[1:]}} elif a_dict[a].get(b) is not None: # try_merge #print(f'{a} found') #print(f'OK : {a_dict[a]} {b} -> {a_dict[a].get(b)} therefore, try_merge') b_dict = a_dict[a][b] if b_dict == dict(data_coll[1:]): # ignore repeated lines pass else: try_merge(b_dict, data_coll[1:], debug=debug, keyword=keyword) a_dict[a][b] = b_dict.copy() else: # try_branch (tested) #print(f'{a} found') #print(f'Not: {a_dict[a]} {b} -> {a_dict[a].get(b)}') a_dict[a][b] = {k:v for k, v in data_coll[1:]} def try_merge(a_dict, data_coll, debug=False, keyword=''): """When the line of data has a key that matches an existing one it merges the data into the dictionary under the existing key""" try: ## - Snip start if not isinstance(data_coll, (list, tuple)): if debug: print(f'In try_merge ({keyword}), data_coll is {data_coll} (type: {type(data_coll)})') elif not isinstance(data_coll[0], (list, tuple)): if debug: print(f'In try_merge ({keyword}), data_coll[0] is {data_coll} (type: {type(data_coll[0])})') elif data_coll[0][0] == 'SHAPE': # c_dict = a_dict.copy() try_branch(a_dict, data_coll, debug=debug, keyword=keyword) return ## - Snip end except: print(f'WARNING: ** In try_merge ({keyword}), data_coll is {data_coll} (type: {type(data_coll)})') print('WARNING: (cont\'d)) Possibly a case of "IndexError: tuple index out of range" **') for data in data_coll: try_1 = a_dict.get(data[0], None) if try_1 is not None: # --- if isinstance(try_1, list): try_1.append(data[1]) else: try_1 = [try_1] + [data[1]] a_dict[data[0]] = try_1 # --- # --- the following has been removed from the corresponding location just above """# if try_1 == data[1]: # data is two levels deep #print('data is two levels deep') pass else: if isinstance(try_1, list): try_1.append(data[1]) else: try_1 = [try_1] + [data[1]] a_dict[data[0]] = try_1""" # --- else: a_dict[data[0]] = data[1] def load_func(the_dict, line, debug=False): # a_dict is loadclass = line[0][0] member, story = line[0][1] line_dict = dict(line) key = tuple([member, story, line_dict.get('LC')]) if the_dict.get(loadclass) is None: the_dict[loadclass] = dict() if debug: print(f'Starting to parse {loadclass}') a_dict = the_dict[loadclass] #print('a_dict', a_dict) a_dict[key] = a_dict.get(key, []) + list(load_parser(line_dict)) def load_parser(d): """ For loadclass = 'POINTLOAD', 'LINELOAD' or 'AREALOAD' LINELOAD "B2141" "5F" TYPE "POINTF" DIR "GRAV" LC "LL_0.5" FVAL 15 RDIST 0.4 LINELOAD "B2109" "6F" TYPE "UNIFF" DIR "GRAV" LC "DL" FVAL 0.7 LINELOAD "C7" "GF" TYPE "TEMP" LC "THN" T -10 AREALOAD "A1" "MEZZ" TYPE "TEMP" LC "THP" T 10' AREALOAD "F1" "G/F" TYPE "UNIFF" DIR "GRAV" LC "LL" FVAL 0.005' AREALOAD "F34" "L1" TYPE "UNIFLOADSET" "BOH" """ ltype = d.get('TYPE') direction = d.get('DIR', None) ldict = {'TYPE': ltype, 'DIR': direction} if ltype == 'TRAPF': load_values = [try_numeric(d.get(item)) for item in ('FSTART', 'FEND', 'RDSTART', 'RDEND')] load_data = (load_values[2], load_values[0]), (load_values[3], load_values[1]) ave_load = 0.5 * (load_values[0] + load_values[1]) * (load_values[3] - load_values[2]) ldict.update({'DATA': load_data, 'AVE_LOAD': ave_load}) elif ltype == 'UNIFF': load_value = try_numeric(d.get('FVAL')) load_data = ((0, load_value), (1, load_value)) ave_load = load_value ldict.update({'DATA': load_data, 'AVE_LOAD': ave_load}) elif ltype == 'POINTF': # This is for beams load_data = [try_numeric(d.get(item)) for item in ('FVAL', 'RDIST')][::-1] ldict.update({'DATA': tuple(load_data)}) elif ltype == 'FORCE': # This is for nodes forces = ('FX', 'FY', 'FZ', 'MX', 'MY', 'MZ') load_data = [try_numeric(d.get(item)) for item in forces] ldict.update({'DATA': tuple(load_data)}) elif ltype == 'TEMP': # This is for lines and shells with uniform temperature load temp_data = try_numeric(d.get('T',0)) ldict.update({'DATA': temp_data}) #return {key:[ldict]} return [ldict] def combo_func(the_dict, line): line_key = line[0][0] combo_name = line[0][1] data_type = line[1][0] # e.g. 'LOAD', 'SPEC', 'COMBO', 'LOADCASE', 'DESIGN' line_dict = dict(line[1:]) # if the line key is not already in the dictionary, add it if not the_dict.get(line_key): the_dict[line_key] = dict() # the_dict['COMBO'] #print(f'...adding {line_key} to COMBO_dict') # make the line key the current reference a_dict = the_dict[line_key] # a_dict is the_dict['COMBO'] # if the combination is not already in the dictionary, add it if not a_dict.get(combo_name): a_dict[combo_name] = dict() #print(f'...adding {combo_name} to {line_key} to COMBO_dict') # make the combination name the current reference b_dict = a_dict[combo_name] # b_dict is the_dict['COMBO']['COMBO1'] # if the combination name is not already in the dictionary, add it if data_type == 'TYPE': # add type to the combination dictionary b_dict['TYPE'] = line_dict['TYPE'] elif data_type == 'DESIGN': # add type to the combination dictionary # b_dict['DESIGN'] = line_dict['DESIGN'] b_dict.update({k:v for k,v in line_dict.items()}) else: # add the different load cases with their load factor for each datatype #c_dict.get(data_type, []) + list(tuple([line_dict[data_type], line_dict['SF']])) if not b_dict.get(data_type): # if there is no datatype 'SPEC' b_dict[data_type] = [tuple([line_dict[data_type], line_dict['SF']])] else: # add the new data to the existing the_list = b_dict[data_type] the_list.append(tuple([line_dict[data_type], line_dict['SF']])) b_dict[data_type] = the_list def add_to_dict_list(the_dict, key, value): value_list = the_dict.get(key,[]) value_list.append(value) the_dict[key] = value_list def story_func(the_dict, line, debug=False): """ One of the challenges is that if a Tower has been defined this needs to be carried over from any previous lines (it is only defined once for each line and that then applies to all following ones) NB `current_tower` needs to be defined in the current namespace""" # Keep a list of stories if not the_dict.get('Story_Lists'): the_dict['Story_Lists'] = dict() line_key = line[0][0] # 'STORY' story_basic_name = str(line[0][1]) story_type = line[1][0] # e.g. 'HEIGHT', 'ELEV' line_dict = dict(line) # NB STORY is retained as a key-value
# -*- coding: utf-8 -*- # # || ____ _ __ # +------+ / __ )(_) /_______________ _____ ___ # | 0xBC | / __ / / __/ ___/ ___/ __ `/_ / / _ \ # +------+ / /_/ / / /_/ /__/ / / /_/ / / /_/ __/ # || || /_____/_/\__/\___/_/ \__,_/ /___/\___/ # # Copyright (C) 2014 Bitcraze AB # # Crazyflie Nano Quadcopter Client # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, # MA 02110-1301, USA. """ Simple example that connects to the first Crazyflie found, logs the Stabilizer and prints it to the console. After 10s the application disconnects and exits. """ from __future__ import division import logging import threading import cflib.crtp # noqa from drone_quaternion import Quadcopter from cflib.crazyflie import Crazyflie from cflib.crazyflie.log import LogConfig # Only output errors from the logging framework logging.basicConfig(level=logging.ERROR) # Keypress import pygame, sys, time from pygame.locals import * SCREEN_WIDTH = 400 SCREEN_HEIGHT = 310 FONT_SIZE = 30 from numpy import * from math import * stop = False logger = False crazyflie = False positionIndex = 0 ONLINE_CONTROLLER = True MANUAL_TRAJECTORY = False # Variabili atterraggio land = False land_altitude = False # 10cm land_altitude_step = 0.1 # 10cm uri = 'radio://0/120/2M' # uri = 'radio://0/40/250K' x = 1.5 y = 1.4 z = 1.6 # x y z YAW sequence = [(x, y, z, 0), (1.5*x, y, z, 0), (1.5*x, 0.5*y, z, 0), (x, 0.5*y, z, 0), (x, y, z, 0), (x, y, 0.5, 0) ] # Manual Trajectory trajectoryStep = 0.10 # 10cm manual = {'x': x, 'y': y, 'z': z} positionLogger = False quadcopter = Quadcopter(0.01) def start_sequence(cf): pygame.event.pump() keys = pygame.key.get_pressed() if keys[K_RETURN]: print 'Sequence Started!' cf.commander.send_setpoint(0, 0, 0, 0) #for i in range(0, 500): #cf.param.set_value('lqrCtrl.tM', '{}'.format(1.01)) #cf.param.set_value('lqrCtrl.rM', '{}'.format(-1)) #cf.param.set_value('lqrCtrl.pM', '{}'.format(-1)) # cf.param.set_value('flightmode.posSet', '1') # cf.param.set_value('flightmode.poshold', '1') return True return False def emergency_stop(cf): pygame.event.pump() keys = pygame.key.get_pressed() if keys[K_ESCAPE]: print 'Emergency Stop!' cf.commander.send_setpoint(0, 0, 0, 0) #for i in range(0, 500): #cf.param.set_value('lqrCtrl.tM', '{}'.format(1.01)) #cf.param.set_value('lqrCtrl.rM', '{}'.format(-1)) #cf.param.set_value('lqrCtrl.pM', '{}'.format(-1)) # cf.param.set_value('flightmode.posSet', '1') # cf.param.set_value('flightmode.poshold', '1') return True return False def text_to_screen(screen, text, x, y, size=50, color=(200, 000, 000)): try: basicfont = pygame.font.SysFont(None, size) text = basicfont.render(text, True, color, (255, 255, 255)) text_rect = text.get_rect(center=(SCREEN_WIDTH / 2, y+10)) screen.blit(text, text_rect) pygame.display.update() except Exception, e: print 'Font Error, saw it coming' raise e class LoggingExample: """ Simple logging example class that logs the Stabilizer from a supplied link uri and disconnects after 5s. """ def __init__(self, link_uri, maxLen): # Attitude self.q0 = 1.0 self.q1 = 0.0 self.q2 = 0.0 self.q3 = 0.0 self.wx = 0.0 self.wy = 0.0 self.wz = 0.0 # Linear self.px = 0.0 self.py = 0.0 self.pz = 0.0 self.vx = 0.0 self.vy = 0.0 self.vz = 0.0 self.maxLen = maxLen self.data = [] # Create a Crazyflie object without specifying any cache dirs self._cf = Crazyflie() # Initialize the low-level drivers (don't list the debug drivers) cflib.crtp.init_drivers(enable_debug_driver=False) # Scan for Crazyflies and use the first one found print('Scanning interfaces for Crazyflies...') available = cflib.crtp.scan_interfaces() print('Crazyflies found:') for i in available: print i[0] if len(available) <= 0: print('No Crazyflies found, cannot run example') # Connect some callbacks from the Crazyflie API self._cf.connected.add_callback(self._connected) self._cf.disconnected.add_callback(self._disconnected) self._cf.connection_failed.add_callback(self._connection_failed) self._cf.connection_lost.add_callback(self._connection_lost) print('Connecting to %s' % link_uri) # Try to connect to the Crazyflie self._cf.open_link(link_uri) # Variable used to keep main loop occupied until disconnect self.is_connected = True self.status = False self.landing = False def crazyflie(self): return self._cf def close_link(self): self._cf.close_link() def getData(self): return self.data def log_status(self): return self.status def state(self): return self.q0, self.q1, self.q2, self.q3, self.wx, self.wy, self.wz, self.px, self.py, self.pz, self.vx, self.vy, self.vz def getLanding(self): return self.landing def enable_landing(self): self.landing = True def _connected(self, link_uri): """ This callback is called form the Crazyflie API when a Crazyflie has been connected and the TOCs have been downloaded.""" print('Connected to %s' % link_uri) self.log_config1 = LogConfig(name='StateAngular1', period_in_ms=10) self.log_config1.add_variable('state.q0', 'float') self.log_config1.add_variable('state.q1', 'float') self.log_config1.add_variable('state.q2', 'float') self.log_config1.add_variable('state.q3', 'float') self.log_config2 = LogConfig(name='StateAngular2', period_in_ms=10) self.log_config2.add_variable('state.wx', 'float') self.log_config2.add_variable('state.wy', 'float') self.log_config2.add_variable('state.wz', 'float') self.log_config3 = LogConfig(name='StateLinear', period_in_ms=10) #self.log_config3.add_variable('state.px', 'float') #self.log_config3.add_variable('state.py', 'float') #self.log_config3.add_variable('state.pz', 'float') #self.log_config3.add_variable('state.vx', 'float') #self.log_config3.add_variable('state.vy', 'float') #self.log_config3.add_variable('state.vz', 'float') #self.log_config3.add_variable('ctrltarget.px', 'float') #self.log_config3.add_variable('ctrltarget.py', 'float') #self.log_config3.add_variable('ctrltarget.pz', 'float') #self.log_config3.add_variable('ctrltarget.vx', 'float') #self.log_config3.add_variable('ctrltarget.vy', 'float') #self.log_config3.add_variable('ctrltarget.vz', 'float') #self.log_config3.add_variable('ctrltarget.ax', 'float') #self.log_config3.add_variable('ctrltarget.ay', 'float') #self.log_config3.add_variable('ctrltarget.az', 'float') self.log_config3.add_variable('Bks.dx', 'float') self.log_config3.add_variable('Bks.dy', 'float') self.log_config3.add_variable('Bks.dz', 'float') self.log_config3.add_variable('Bks.dwx', 'float') self.log_config3.add_variable('Bks.dwy', 'float') self.log_config3.add_variable('Bks.dwz', 'float') # Adding the configuration cannot be done until a Crazyflie is # connected, since we need to check that the variables we # would like to log are in the TOC. try: self._cf.log.add_config(self.log_config1) self._cf.log.add_config(self.log_config2) self._cf.log.add_config(self.log_config3) # This callback will receive the data self.log_config1.data_received_cb.add_callback(self._log_data_quaternion) self.log_config2.data_received_cb.add_callback(self._log_data_angular) self.log_config3.data_received_cb.add_callback(self._log_data_linear) # This callback will be called on errors self.log_config1.error_cb.add_callback(self._log_error) self.log_config2.error_cb.add_callback(self._log_error) self.log_config3.error_cb.add_callback(self._log_error) # Start the logging if not ONLINE_CONTROLLER: self.log_config1.start() self.log_config2.start() self.log_config3.start() print "Log succesfully started!" self.status = True except KeyError as e: print('Could not start log configuration, {} not found in TOC'.format(str(e))) except AttributeError: print('Could not add Stabilizer log config, bad configuration.') def _log_error(self, logconf, msg): """Callback from the log API when an error occurs""" print('Error when logging %s: %s' % (logconf.name, msg)) def _log_data_quaternion(self, timestamp, data, logconf): """Callback froma the log API when data arrives""" #self.plot.drawNow(np.random.random(self.plot.X.shape)) self.q0 = data['state.q0'] self.q1 = data['state.q1'] self.q2 = data['state.q2'] self.q3 = data['state.q3'] def _log_data_angular(self, timestamp, data, logconf): """Callback froma the log API when data arrives""" self.wx = data['state.wx'] self.wy = data['state.wy'] self.wz = data['state.wz'] def _log_data_linear(self, timestamp, data, logconf): """Callback froma the log API when data arrives""" #self.px = data['state.px'] #self.py = data['state.py'] #self.pz = data['state.pz'] #self.vx = data['state.vx'] #self.vy = data['state.vy'] #self.vz = data['state.vz'] self.data = data print data def _connection_failed(self, link_uri, msg): """Callback when connection initial connection fails (i.e no Crazyflie at the speficied address)""" print('Connection to %s failed: %s' % (link_uri, msg)) self.is_connected = False def _connection_lost(self, link_uri, msg): """Callback when disconnected after a connection has been made (i.e Crazyflie moves out of range)""" print('Connection to %s lost: %s' % (link_uri, msg)) self._cf.open_link(link_uri) def _disconnected(self, link_uri): """Callback when the Crazyflie is disconnected (called in all cases)""" print('Disconnected from %s' % link_uri) self.is_connected = False # Control main loop def control(interval, function, iterations=0): global stop if not stop: if iterations != 1: threading.Timer(interval, control, [interval, function, 0 if iterations == 0 else iterations-1]).start() function() t = 0 X = False Xd = 0 Xdd = 0 Y = False Yd = 0 Ydd = 0 step = 0 def set_point(): global positionIndex global sequence global quadcopter global crazyflie global logger global stop global land global land_altitude global land_altitude_step global ONLINE_CONTROLLER global t global X global Xd global Xdd global Y global Yd global Ydd global step if not logger.getLanding(): if not stop: position = sequence[0] ''' if not X: X = position[0] if not Y: Y = position[0] if t >= 10: step = step + 1 if step == 3: step = 0 t = 0 dt = 0.0001 if step == 0: #Traiettoria X if X < position[0]*1.5: X = X + dt Xd = dt Xdd = 0 else: X = position[0] * 1.5 Xd = 0 # Traiettoria Y if Y > position[1] * 3 / 4: Y = Y - dt Yd = -dt Ydd = 0 else: Y = position[1] * 3 / 4 Yd = 0 elif step == 1: if X > position[0]: X = X - dt Xd = -dt Xdd = 0 else: X = position[0] Xd = 0 if Y >= position[1] * 0.5: Y = Y - dt Yd = -dt Ydd = 0 else: Y = position[1] * 0.5 Yd = 0 else: X = position[0] Xd = 0 Y = Y + dt Yd = dt Ydd =
is None or existing_policy.window is None or (existing_policy.window.dailyMaintenanceWindow is None and existing_policy.window.recurringWindow is None)): raise util.Error(NOTHING_TO_UPDATE_ERROR_MSG) existing_policy.window.dailyMaintenanceWindow = None existing_policy.window.recurringWindow = None return self._SendMaintenancePolicyRequest(cluster_ref, existing_policy) def _NormalizeMaintenanceExclusionsForPolicy(self, policy): """Given a maintenance policy (can be None), return a normalized form. This makes it easier to add and remove blackouts because the blackouts list will definitely exist. Args: policy: The policy to normalize. Returns: The modified policy (note: modifies in place, but there might not have even been an existing policy). """ empty_excl = self.messages.MaintenanceWindow.MaintenanceExclusionsValue() if policy is None: policy = self.messages.MaintenancePolicy( window=self.messages.MaintenanceWindow( maintenanceExclusions=empty_excl)) elif policy.window is None: # Shouldn't happen due to defaulting on the server, but easy enough to # handle. policy.window = self.messages.MaintenanceWindow( maintenanceExclusions=empty_excl) elif policy.window.maintenanceExclusions is None: policy.window.maintenanceExclusions = empty_excl return policy def _GetMaintenanceExclusionNames(self, maintenance_policy): """Returns a list of maintenance exclusion names from the policy.""" return [ p.key for p in maintenance_policy.window.maintenanceExclusions.additionalProperties ] def AddMaintenanceExclusion(self, cluster_ref, existing_policy, window_name, window_start, window_end): """Adds a maintenance exclusion to the cluster's maintenance policy. Args: cluster_ref: The cluster to update. existing_policy: The existing maintenance policy, if any. window_name: Unique name for the exclusion. Can be None (will be autogenerated if so). window_start: Start time of the window as a datetime.datetime. Can be None. window_end: End time of the window as a datetime.datetime. Returns: Operation from this cluster update. Raises: Error if a maintenance exclusion of that name already exists. """ existing_policy = self._NormalizeMaintenanceExclusionsForPolicy( existing_policy) if window_start is None: window_start = times.Now(times.UTC) if window_name is None: # Collisions from this shouldn't be an issue because this has millisecond # resolution. window_name = 'generated-exclusion-' + times.Now(times.UTC).isoformat() if window_name in self._GetMaintenanceExclusionNames(existing_policy): raise util.Error( 'A maintenance exclusion named {0} already exists.'.format( window_name)) # Note: we're using external/python/gcloud_deps/apitools/base/protorpclite # which does *not* handle maps very nicely. We actually have a # MaintenanceExclusionsValue field that has a repeated additionalProperties # field that has key and value fields. See # third_party/apis/container/v1alpha1/container_v1alpha1_messages.py. exclusions = existing_policy.window.maintenanceExclusions window = self.messages.TimeWindow( startTime=window_start.isoformat(), endTime=window_end.isoformat()) exclusions.additionalProperties.append( exclusions.AdditionalProperty(key=window_name, value=window)) return self._SendMaintenancePolicyRequest(cluster_ref, existing_policy) def RemoveMaintenanceExclusion(self, cluster_ref, existing_policy, exclusion_name): """Removes a maintenance exclusion from the maintenance policy by name.""" existing_policy = self._NormalizeMaintenanceExclusionsForPolicy( existing_policy) existing_exclusions = self._GetMaintenanceExclusionNames(existing_policy) if exclusion_name not in existing_exclusions: message = ('No maintenance exclusion with name {0} exists. Existing ' 'exclusions: {1}.').format(exclusion_name, ', '.join(existing_exclusions)) raise util.Error(message) props = [] for ex in existing_policy.window.maintenanceExclusions.additionalProperties: if ex.key != exclusion_name: props.append(ex) existing_policy.window.maintenanceExclusions.additionalProperties = props return self._SendMaintenancePolicyRequest(cluster_ref, existing_policy) def ListUsableSubnets(self, project_ref, network_project, filter_arg): """List usable subnets for a given project. Args: project_ref: project where clusters will be created. network_project: project ID where clusters will be created. filter_arg: value of filter flag. Returns: Response containing the list of subnetworks and a next page token. """ filters = [] if network_project is not None: filters.append('networkProjectId=' + network_project) if filter_arg is not None: filters.append(filter_arg) filters = ' AND '.join(filters) req = self.messages.ContainerProjectsAggregatedUsableSubnetworksListRequest( # parent example: 'projects/abc' parent=project_ref.RelativeName(), # max pageSize accepted by GKE pageSize=500, filter=filters) return self.client.projects_aggregated_usableSubnetworks.List(req) class V1Adapter(APIAdapter): """APIAdapter for v1.""" class V1Beta1Adapter(V1Adapter): """APIAdapter for v1beta1.""" def CreateCluster(self, cluster_ref, options): cluster = self.CreateClusterCommon(cluster_ref, options) if options.addons: # CloudRun is disabled by default. if CLOUDRUN in options.addons: if not options.enable_stackdriver_kubernetes: raise util.Error(CLOUDRUN_STACKDRIVER_KUBERNETES_DISABLED_ERROR_MSG) if INGRESS not in options.addons: raise util.Error(CLOUDRUN_INGRESS_KUBERNETES_DISABLED_ERROR_MSG) cluster.addonsConfig.cloudRunConfig = self.messages.CloudRunConfig( disabled=False) # CloudBuild is disabled by default. if CLOUDBUILD in options.addons: cluster.addonsConfig.cloudBuildConfig = self.messages.CloudBuildConfig( enabled=True) # Istio is disabled by default. if ISTIO in options.addons: istio_auth = self.messages.IstioConfig.AuthValueValuesEnum.AUTH_NONE mtls = self.messages.IstioConfig.AuthValueValuesEnum.AUTH_MUTUAL_TLS istio_config = options.istio_config if istio_config is not None: auth_config = istio_config.get('auth') if auth_config is not None: if auth_config == 'MTLS_STRICT': istio_auth = mtls cluster.addonsConfig.istioConfig = self.messages.IstioConfig( disabled=False, auth=istio_auth) if (options.enable_autoprovisioning is not None or options.autoscaling_profile is not None): cluster.autoscaling = self.CreateClusterAutoscalingCommon( None, options, False) if options.boot_disk_kms_key: for pool in cluster.nodePools: pool.config.bootDiskKmsKey = options.boot_disk_kms_key if options.identity_namespace is not None: cluster.workloadIdentityConfig = self.messages.WorkloadIdentityConfig( identityNamespace=options.identity_namespace) _AddReleaseChannelToCluster(cluster, options, self.messages) req = self.messages.CreateClusterRequest( parent=ProjectLocation(cluster_ref.projectId, cluster_ref.zone), cluster=cluster) operation = self.client.projects_locations_clusters.Create(req) return self.ParseOperation(operation.name, cluster_ref.zone) def UpdateCluster(self, cluster_ref, options): update = self.UpdateClusterCommon(cluster_ref, options) if options.identity_namespace: update = self.messages.ClusterUpdate( desiredWorkloadIdentityConfig=self.messages.WorkloadIdentityConfig( identityNamespace=options.identity_namespace)) elif options.disable_workload_identity: update = self.messages.ClusterUpdate( desiredWorkloadIdentityConfig=self.messages.WorkloadIdentityConfig( identityNamespace='')) if options.enable_shielded_nodes is not None: update = self.messages.ClusterUpdate( desiredShieldedNodes=self.messages.ShieldedNodes( enabled=options.enable_shielded_nodes)) if options.release_channel is not None: update = self.messages.ClusterUpdate( desiredReleaseChannel=_GetReleaseChannelForClusterUpdate( options, self.messages)) if not update: # if reached here, it's possible: # - someone added update flags but not handled # - none of the update flags specified from command line # so raise an error with readable message like: # Nothing to update # to catch this error. raise util.Error(NOTHING_TO_UPDATE_ERROR_MSG) if options.disable_addons is not None: if options.disable_addons.get(ISTIO) is not None: istio_auth = self.messages.IstioConfig.AuthValueValuesEnum.AUTH_NONE mtls = self.messages.IstioConfig.AuthValueValuesEnum.AUTH_MUTUAL_TLS istio_config = options.istio_config if istio_config is not None: auth_config = istio_config.get('auth') if auth_config is not None: if auth_config == 'MTLS_STRICT': istio_auth = mtls update.desiredAddonsConfig.istioConfig = self.messages.IstioConfig( disabled=options.disable_addons.get(ISTIO), auth=istio_auth) if options.disable_addons.get(CLOUDRUN) is not None: update.desiredAddonsConfig.cloudRunConfig = ( self.messages.CloudRunConfig( disabled=options.disable_addons.get(CLOUDRUN))) if options.disable_addons.get(APPLICATIONMANAGER) is not None: update.desiredAddonsConfig.kalmConfig = ( self.messages.KalmConfig( enabled=(not options.disable_addons.get(APPLICATIONMANAGER)))) if options.disable_addons.get(CLOUDBUILD) is not None: update.desiredAddonsConfig.cloudBuildConfig = ( self.messages.CloudBuildConfig( enabled=(not options.disable_addons.get(CLOUDBUILD)))) op = self.client.projects_locations_clusters.Update( self.messages.UpdateClusterRequest( name=ProjectLocationCluster(cluster_ref.projectId, cluster_ref.zone, cluster_ref.clusterId), update=update)) return self.ParseOperation(op.name, cluster_ref.zone) def CreateClusterAutoscalingCommon(self, cluster_ref, options, for_update): """Create cluster's autoscaling configuration. Args: cluster_ref: Cluster reference. options: Either CreateClusterOptions or UpdateClusterOptions. for_update: Is function executed for update operation. Returns: Cluster's autoscaling configuration. """ # Patch cluster autoscaling if cluster_ref is provided. autoscaling = self.messages.ClusterAutoscaling() cluster = self.GetCluster(cluster_ref) if cluster_ref else None if cluster and cluster.autoscaling: autoscaling.enableNodeAutoprovisioning = \ cluster.autoscaling.enableNodeAutoprovisioning resource_limits = [] if options.autoprovisioning_config_file is not None: # Create using config file only. config = yaml.load(options.autoprovisioning_config_file) resource_limits = config.get(RESOURCE_LIMITS) service_account = config.get(SERVICE_ACCOUNT) scopes = config.get(SCOPES) max_surge_upgrade = None max_unavailable_upgrade = None upgrade_settings = config.get(UPGRADE_SETTINGS) if upgrade_settings: max_surge_upgrade = upgrade_settings.get(MAX_SURGE_UPGRADE) max_unavailable_upgrade = upgrade_settings.get(MAX_UNAVAILABLE_UPGRADE) management_settings = config.get(NODE_MANAGEMENT) enable_autoupgrade = None enable_autorepair = None if management_settings: enable_autoupgrade = management_settings.get(ENABLE_AUTO_UPGRADE) enable_autorepair = management_settings.get(ENABLE_AUTO_REPAIR) autoprovisioning_locations = \ config.get(AUTOPROVISIONING_LOCATIONS) else: resource_limits = self.ResourceLimitsFromFlags(options) service_account = options.autoprovisioning_service_account scopes = options.autoprovisioning_scopes autoprovisioning_locations = options.autoprovisioning_locations max_surge_upgrade = options.autoprovisioning_max_surge_upgrade max_unavailable_upgrade = options.autoprovisioning_max_unavailable_upgrade enable_autoupgrade = options.enable_autoprovisioning_autoupgrade enable_autorepair = options.enable_autoprovisioning_autorepair if options.enable_autoprovisioning is not None: autoscaling.enableNodeAutoprovisioning = options.enable_autoprovisioning autoscaling.resourceLimits = resource_limits or [] if scopes is None: scopes = [] management = None upgrade_settings = None if max_surge_upgrade is not None or max_unavailable_upgrade is not None: upgrade_settings = self.messages.UpgradeSettings() upgrade_settings.maxUnavailable = max_unavailable_upgrade upgrade_settings.maxSurge = max_surge_upgrade if enable_autorepair is not None or enable_autoupgrade is not None: management = (self.messages.NodeManagement( autoUpgrade=enable_autoupgrade, autoRepair=enable_autorepair)) autoscaling.autoprovisioningNodePoolDefaults = self.messages \ .AutoprovisioningNodePoolDefaults(serviceAccount=service_account, oauthScopes=scopes, upgradeSettings=upgrade_settings, management=management) if autoprovisioning_locations: autoscaling.autoprovisioningLocations = \ sorted(autoprovisioning_locations) if options.autoscaling_profile is not None: autoscaling.autoscalingProfile = \ self.CreateAutoscalingProfileCommon(options) self.ValidateClusterAutoscaling(autoscaling, for_update) return autoscaling def CreateAutoscalingProfileCommon(self, options): """Create and validate cluster's autoscaling profile configuration. Args: options: Either CreateClusterOptions or UpdateClusterOptions. Returns: Cluster's autoscaling profile configuration. """ profiles_enum = \ self.messages.ClusterAutoscaling.AutoscalingProfileValueValuesEnum valid_choices = [arg_utils.EnumNameToChoice(n) for n in profiles_enum.names() if n != 'profile-unspecified'] return arg_utils.ChoiceToEnum( choice=arg_utils.EnumNameToChoice(options.autoscaling_profile), enum_type=profiles_enum, valid_choices=valid_choices) def ValidateClusterAutoscaling(self, autoscaling, for_update): """Validate cluster autoscaling configuration. Args: autoscaling: autoscaling configuration to be validated. for_update: Is function executed for update operation. Raises: Error if the new configuration is invalid. """ if autoscaling.enableNodeAutoprovisioning: if not for_update or autoscaling.resourceLimits: cpu_found = any( limit.resourceType == 'cpu' for limit in autoscaling.resourceLimits) mem_found = any(limit.resourceType == 'memory' for limit in autoscaling.resourceLimits) if not cpu_found or not mem_found: raise util.Error(NO_AUTOPROVISIONING_LIMITS_ERROR_MSG) defaults = autoscaling.autoprovisioningNodePoolDefaults if defaults: if defaults.upgradeSettings: max_surge_found = defaults.upgradeSettings.maxSurge is not None max_unavailable_found = defaults.upgradeSettings.maxUnavailable is not None if max_unavailable_found != max_surge_found: raise util.Error(BOTH_AUTOPROVISIONING_UPGRADE_SETTINGS_ERROR_MSG) if defaults.management: auto_upgrade_found = defaults.management.autoUpgrade is not None auto_repair_found = defaults.management.autoRepair is not None if auto_repair_found != auto_upgrade_found: raise util.Error( BOTH_AUTOPROVISIONING_MANAGEMENT_SETTINGS_ERROR_MSG) elif autoscaling.resourceLimits: raise util.Error(LIMITS_WITHOUT_AUTOPROVISIONING_MSG) elif autoscaling.autoprovisioningNodePoolDefaults and \ (autoscaling.autoprovisioningNodePoolDefaults.serviceAccount or autoscaling.autoprovisioningNodePoolDefaults.oauthScopes or autoscaling.autoprovisioningNodePoolDefaults.management or autoscaling.autoprovisioningNodePoolDefaults.upgradeSettings): raise util.Error(DEFAULTS_WITHOUT_AUTOPROVISIONING_MSG) def UpdateNodePoolRequest(self, node_pool_ref, options): """Creates an UpdateNodePoolRequest from the provided options. Arguments: node_pool_ref: The node pool to act on. options: UpdateNodePoolOptions with the user-specified options. Returns: An UpdateNodePoolRequest. """ update_request = self.messages.UpdateNodePoolRequest( name=ProjectLocationClusterNodePool( node_pool_ref.projectId, node_pool_ref.zone, node_pool_ref.clusterId, node_pool_ref.nodePoolId, )) if options.workload_metadata_from_node is not None: _AddWorkloadMetadataToNodeConfig(update_request, options, self.messages) elif options.node_locations is not None: update_request.locations = sorted(options.node_locations) elif (options.max_surge_upgrade is not None or options.max_unavailable_upgrade is not None): update_request.upgradeSettings = self.UpdateUpgradeSettings( node_pool_ref, options) return update_request def UpdateNodePool(self, node_pool_ref, options):
<reponame>100kimch/ros_galapagos #!/usr/bin/env python3 # from lib_line_tracing # ! Deprecated # from lib_signal_recognition # ! Deprecated # NOTE: using rospy library unrecommended in processor.py import rospy # NOTE: python 3.5^ needed to use asyncio import asyncio from lib_frontcam import * from lib_fishcam import * from lib_lidar import * from lib_eye import * from lib_parking import * from turtlebot import TURTLE from constants import IS_DEBUG_MODE, SELECTED_STATE # NOTE: to check time: import timeit import math # * Variables ################ Variables by minsoo ####################### CURRENT_STATE = 'inter_curving' #CURRENT_STATE = 'intersection' MOVING_POSITION = False SEEN_PARKING_SIGN = False SEEN_TUNNEL_SIGN = False IS_IN_TUNNEL = False # # HAS_OBJECT_IN_50 = False # HAS_OBJECT_IN_20 = False straight_cnt = 0 curving_cnt = 0 LIDAR_FLAG = False ############################################################ GALAPAGOS_STATE = "view" ''' if SELECTED_STATE == '': CURRENT_STATE = 'traffic_light' else: CURRENT_STATE = SELECTED_STATE ''' LINE_BASE = 'both' MOVING_POSITION = False # ! Deprecated DIRECTION = 'left' SEEN_LEFT_SIGN = False SEEN_PARKING_SIGN = False # ! Deprecated SEEN_TUNNEL_SIGN = False # ! Deprecated IS_IN_TUNNEL = False SEEN_STOPPING_SIGN = False SIGN_CORNER = None # DISTANCE_FRONT = 0.00 # ! Deprecated # HAS_OBJECT_IN_50 = False # HAS_OBJECT_IN_20 = False HAS_BOTH_LINES = False IS_TURNING = False TRACKING = "fish" TURNING_TO = False TEST_ANGULAR = 0 TEST_ONCE = True # STATE_CONSTRUCTION = "start" STATE_CONSTRUCTION = "searching" STATE_TUNNEL = "inside" TURN_COUNT = 0 # * Methods def initialize(): EYE.calibrate() TURTLE.set_speed('normal') def reset_front_image_flags(): global LINE_BASE global MOVING_POSITION global SEEN_PARKING_SIGN global SEEN_TUNNEL_SIGN global SEEN_STOPPING_SIGN LINE_BASE = 'both' MOVING_POSITION = False SEEN_PARKING_SIGN = False SEEN_TUNNEL_SIGN = False SEEN_STOPPING_SIGN = False def reverse_direction(): global DIRECTION if DIRECTION == 'right': DIRECTION = 'left' else: DIRECTION = 'right' rospy.loginfo('\n[PROC] direction changed to ' + DIRECTION) def track_front(event=None): global TRACKING EYE.reset_state() TRACKING = "front" # rospy.loginfo("\n[PROC] tracking changed to " + TRACKING) return def track_fish(event=None): global TRACKING TRACKING = "fish" # rospy.loginfo("\n[PROC] tracking changed to " + TRACKING) return def process_frontcam(image): """ process the image of raspicam """ global CURRENT_STATE global MOVING_POSITION global SEEN_PARKING_SIGN global SEEN_TUNNEL_SIGN global LIDAR_FLAG raw_data = np.fromstring(image.data, np.uint8) cv_img = cv2.imdecode(raw_data, cv2.IMREAD_COLOR) #### ROI SETTING ###### blob_ROI = cv_img[100:, :] ####################### if CURRENT_STATE == 'traffic_light': if is_light_green(cv_img): TURTLE.enable() #TURTLE.set_speed('fast') print("detected green") CURRENT_STATE = 'intersection' #TURTLE.set_weight(0.8) return else: print("no green") TURTLE.enable() #TURTLE.set_speed('fast') print("detected green") CURRENT_STATE = 'intersection' #TURTLE.set_weight(0.8) return if CURRENT_STATE == 'intersection': cv2.imshow("blob_ROI",blob_ROI) # cv2.waitKey(1) print("intersection state") if is_intersection(cv_img): TURTLE.set_weight(0.8) CURRENT_STATE = 'left_or_right' print("intersection detected!!") return else: return if CURRENT_STATE == 'left_or_right': print("left or right state") cv2.imshow("blob_ROI",blob_ROI) # cv2.waitKey(1) tmp_state = check_left_right_sign(blob_ROI) print("tmp state: ",tmp_state) if tmp_state == 'right': #print("11tmp state: ",tmp_state, ", right cnt: ",inter_right_cnt) TURTLE.LINE_BASE = 2 #print("11tmp state: ",tmp_state, ", right cnt: ",inter_right_cnt) CURRENT_STATE = 'inter_curving' TURTLE.set_weight(1.0) elif tmp_state == 'left': #print("11tmp state: ",tmp_state, ", left cnt: ",inter_left_cnt) TURTLE.LINE_BASE = 1 #print("22tmp state: ",tmp_state, ", left cnt: ",inter_left_cnt) CURRENT_STATE = 'inter_curving' TURTLE.set_weight(1.0) elif tmp_state == 'none': return if CURRENT_STATE == 'inter_curving': print("#################################################") print("########### inter_curving state #################") print("#################################################") global straight_cnt if abs(TURTLE.weight*TURTLE._angular) < 0.1: straight_cnt += 1 print("straight counting : ",straight_cnt," is counted") if straight_cnt > 5: straight_cnt = 0 TURTLE.LINE_BASE = 2 CURRENT_STATE = 'construction' return else: return else: straight_cnt = 0 return if CURRENT_STATE == 'construct_recog': tmp_state = is_construction(blob_ROI) print(tmp_state) if tmp_state is True: TURTLE.LINE_BASE = 2 CURRENT_STATE = 'construction' #LIDAR_FLAG = True else: return if CURRENT_STATE == 'construction': return # if CURRENT_STATE == 'construction': # ''' # task for Ji-hyung # ''' # TURTLE.LINE_BASE = 1 # CURRENT_STATE = 'parking' # pass ''' if CURRENT_STATE == 'stop_sign': if stop_sign_flag == False: sign_stop = is_stopping_sign(image) if sign_stop == True: stop_sign_flag = True return else: return else: sign_stop = is_stopping_sign(image) if sign_stop == False: stop_false_cnt = stop_false_cnt + 1 if stop_false_cnt > 6 : CURRENT_STATE = 'construction' return else: return else: stop_false_cnt = 0 return # if CURRENT_STATE == 'construction': # TURTLE.set_speed("slow") # if HAS_OBJECT_IN_20: TURTLE.turn(MOVING_POSITION, 15, 3) if MOVING_POSITION == 'left': MOVING_POSITION = 'right' else: MOVING_POSITION = 'left' return else: if has_crossing_line(image): if MOVING_POSITION == 'left': moving_to = 'right' else: moving_to = 'left' TURTLE.turn(moving_to, 15, 3) else: # TODO: combine trace_line() + trace_blocking() if get_num_of_lines(image) == 2: CURRENT_STATE = 'normal' else: return if CURRENT_STATE == 'parking': # TODO: finish code of parking state TURTLE.set_speed('normal') return if CURRENT_STATE == 'blocking_bar': # TODO: finish code of blocking_bar state TURTLE.set_speed('normal') return if CURRENT_STATE == 'tunnel': # TODO: finish code of tunnel state TURTLE.set_speed('normal') return # ending the normal state: if CURRENT_STATE == 'normal': reset_front_image_flags() TURTLE.set_speed('fast') return ''' ''' def process_frontcam(image): """ process the image of raspicam """ global CURRENT_STATE global MOVING_POSITION global SEEN_PARKING_SIGN global SEEN_TUNNEL_SIGN global LINE_BASE global SEEN_STOPPING_SIGN if CURRENT_STATE == 'traffic_light': if is_light_green(image): if IS_DEBUG_MODE == True: TURTLE.set_speed('fast') rospy.loginfo('\n[PROC] Current state: normal') CURRENT_STATE = 'normal' else: rospy.logdebug('Debug mode finished') raise rospy.ROSInterruptException else: return if CURRENT_STATE == 'normal': LINE_BASE = 'both' sign = check_sign(image) if sign == 'intersection': TURTLE.set_speed('normal') rospy.loginfo('\n[PROC] Current state: intersection') CURRENT_STATE = 'intersection' elif sign == 'construction': TURTLE.set_speed('slow') rospy.loginfo('\n[PROC] Current state: construction') DIRECTION = 'right' LINE_BASE = 'left' CURRENT_STATE = 'construction' elif sign == 'parking': # SEEN_PARKING_SIGN = True # ! Deprecated TURTLE.set_speed('normal') rospy.loginfo('\n[PROC] Current state: parking') CURRENT_STATE = 'parking' # return elif HAS_OBJECT_IN_50: TURTLE.set_speed('slow') rospy.loginfo('\n[PROC] Current state: blocking_bar') CURRENT_STATE = 'blocking_bar' elif sign == 'tunnel': # SEEN_TUNNEL_SIGN = True # ! Deprecated TURTLE.set_speed('normal') rospy.loginfo('\n[PROC] Current state: tunnel') TURTLE.turn_by_degree(45, 0) # TODO: support integer deg value # return elif is_straight_in(10, image): if is_straight_in(50, image): TURTLE.increase_speed() else: TURTLE.decrease_speed() return else: TURTLE.set_speed('normal') return if CURRENT_STATE == 'intersection': sign_corner = check_sign(image) if sign_corner == None: if SEEN_STOPPING_SIGN: TURTLE if sign_corner == None: LINE_BASE = 'both' else: if sign_corner == 'left': LINE_BASE = 'left' elif sign_corner == 'right': LINE_BASE = 'right' if is_stopping_sign(image): SEEN_STOPPING_SIGN = True else: if SEEN_STOPPING_SIGN: CURRENT_STATE = 'normal' else: return # if CURRENT_STATE == 'construction': # TURTLE.set_speed('slow') # if HAS_OBJECT_IN_20: TURTLE.turn(MOVING_POSITION, 15, 3) if MOVING_POSITION == 'left': MOVING_POSITION = 'right' else: MOVING_POSITION = 'left' return else: if has_crossing_line(image): if MOVING_POSITION == 'left': moving_to = 'right' else: moving_to = 'left' TURTLE.turn(moving_to, 15, 3) else: # TODO: combine trace_line() + trace_blocking() if get_num_of_lines(image) == 2: CURRENT_STATE = 'normal' else: return if CURRENT_STATE == 'parking': # TODO: finish code of parking state TURTLE.set_speed('normal') return if CURRENT_STATE == 'blocking_bar': # TODO: finish code of blocking_bar state TURTLE.set_speed('normal') return if CURRENT_STATE == 'tunnel': # TODO: finish code of tunnel state TURTLE.set_speed('normal') return # ending the normal state: if CURRENT_STATE == 'normal': if IS_DEBUG_MODE == True: rospy.logdebug('Debug mode finished') raise rospy.ROSInterruptException else: rospy.loginfo('\n[PROC] Current state: normal') reset_front_image_flags() TURTLE.set_speed('fast') return ''' def idle(event=None): """ idle process """ global TRACKING rospy.loginfo("\n[PROC] idle executed") TRACKING = "idle" # TURTLE.disable() rospy.spin() # while True: # rospy.loginfo('tracking:' + TRACKING) return def process_fishcam(image): """ trace side lines by base if base is 'left: trace left line if base is 'both': trace both lines if base is 'right': trace right lne return value is not needed. """ if TURTLE._enable_running is False: return if TURTLE.enable_fish is False: return if TURTLE.LINE_BASE == 3: trace_line(image) elif TURTLE.LINE_BASE == 1 or TURTLE.LINE_BASE == 2: # rospy.loginfo("[LINE] trace_one_line(" + str(LINE_BASE) + ")") trace_one_line(image, TURTLE.LINE_BASE) # use TURTLE.set_ # use TURTLE.set_angular(angular) return ''' def process_fishcam(image): """ process the fisheye lens image """ start = timeit.default_timer() global LINE_BASE global TRACKING global TURNING_TO global TEST_ANGULAR global TEST_ONCE if TRACKING is not "fish": return if not EYE.is_fish_occupied(): # if True: info = EYE.see_bottom(image) # rospy.Timer(rospy.Duration(0.04), EYE.release_fish_occupied, oneshot=True, reset=True) if info is None: print("NO INFO!") # TURTLE.set_angular_smooth(0.12) # pass else: # rospy.loginfo("\n[PROC] info: " + str(info)) # TURTLE.set_speed('slow') # if info["slope"]: # TURTLE.set_speed_by_percentage(-abs(info["slope"] / 6)) # else: TURTLE.set_speed('normal') if info["right"] < 640: rospy.loginfo("\n[PROC] info: " + str(info)) TURTLE.set_angular(0.75 + abs(info["slope"]) * 1.8) TURTLE.set_angular_smooth(-0.1) else: if TEST_ANGULAR is not 1: if info["left"] is 0: if TEST_ONCE: TURTLE.set_angular(0.12) TURTLE.set_angular_smooth(0.05) else: TURTLE.set_angular(0.12) TURTLE.set_angular_smooth(0.05) TEST_ONCE = False # elif info["left"] < 7 and info["left"] > 0: # TURTLE.set_angular_smooth(0.1) TEST_ANGULAR = 1 if info["left"] > 0 and info["left"] <= 10: TURTLE.set_angular(0) TEST_ANGULAR = 0 # if TEST_ANGULAR is not -1: if info["left"] > 10: TURTLE.set_angular(-0.75 + -abs(info["slope"]) * 1.8) TURTLE.set_angular_smooth(-0.1) TEST_ANGULAR = -1 rospy.Timer(rospy.Duration(0.05), EYE.release_fish_occupied, oneshot=True, reset=True) # EYE.release_fish_occupied() end = timeit.default_timer() print("l: {:d}".format(info["left"]) + " s: {:.01f}".format(info["slope"]) + " time: {:.02f}".format(end - start)) # print(end - start) # print("turning to: " + str(TURNING_TO)) # if TURNING_TO: # TURTLE.turn(TURNING_TO, 2.3) # TURNING_TO = None # rospy.Timer(rospy.Duration(2.3), track_front,
at the moment because it is optimized for power!' # arm extension during toss if user.get_average_data('shoulder2wrist_left')[1] < (playerleft_arm.get_average_data()[1] * 0.80): arm_tip_load_left_first = 'Non-dominant arm extention throughout the toss is significantly inconsistent. Try to keep your left arm a lot straighter on the takeback and load.' arm_tip_load_left_second = 'the extension of your non-dominant arm throughout the toss is significantly inconsistent. Try to keep your left arm a lot straighter on the takeback and load.' score += 7 elif user.get_average_data('shoulder2wrist_left')[1] < (playerleft_arm.get_average_data()[1] * 0.90): arm_tip_load_left_first = 'Non-dominant arm extention throughout the toss is inconsistent. Try to keep your left arm straighter on the takeback and load.' arm_tip_load_left_second = 'the extension of your non-dominant arm throughout the toss is inconsistent. Try to keep your left arm a lot straighter on the takeback and load.' score += 4 elif user.get_average_data('shoulder2wrist_left')[1] < (playerleft_arm.get_average_data()[1] * 0.95): arm_tip_load_left_first = 'Non-dominant arm extention throughout the toss is slightly inconsistent. Try to keep your left arm a bit straighter on the takeback and load.' arm_tip_load_left_second = 'the extension of your non-dominant arm throughout the toss is slightly inconsistent. Try to keep your left arm a lot straighter on the takeback and load.' score += 2 else: arm_tip_load_left_first = 'Your tossing arm looks very fluid and consistent!' arm_tip_load_left_second = 'Great work on the tossing arm in the load! it looks very fluid and consistent' pick_from_this_right = [arm_tip_load_right_first, arm_tip_load_right_second] pick_from_this_left = [arm_tip_load_left_first, arm_tip_load_left_second] arm_tip_load_right = random.choice(pick_from_this_right) arm_tip_load_left = random.choice(pick_from_this_left) arm_tips_load = [arm_tip_load_right, arm_tip_load_left, score] return arm_tips_load def arms_tips_extend(user, playerright_arm): arm_tip_extend_right_first = 'None' arm_tip_extend_right_second = 'None' score = 0 if user.get_max_data('shoulder2wrist_right')[2] < (playerright_arm.get_max_data()[2] * 0.80): arm_tip_extend_right_first = 'Dominant arm is significantly not extending enough during contact. Make sure to either toss the ball a lot higher and/or make contact at its apex.' arm_tip_extend_right_second = 'When you make contact at the ball flights apex, make sure that your arm is extended out signficantly more.' score += 7 elif user.get_max_data('shoulder2wrist_right')[2] < (playerright_arm.get_max_data()[2] * 0.90): arm_tip_extend_right_first = 'Dominant arm is not extending enough during contact. Make sure to either toss the ball higher and/or make contact at its apex.' arm_tip_extend_right_second = 'When you make contact at the ball flights apex, make sure that your arm is extended out more.' score += 4 elif user.get_max_data('shoulder2wrist_right')[2] < (playerright_arm.get_max_data()[2] * 0.95): arm_tip_extend_right_first = 'Dominant arm is slightly not extending enough during contact. Make sure to either toss the ball a bit higher and/or make contact at its apex.' arm_tip_extend_right_second = 'When you make contact at the ball flights apex, make sure that your arm is extended out slightly more.' score += 2 else: arm_tip_extend_right_first = 'Good job, your dominant arm is optimally extended on contact!' arm_tip_extend_right_second = 'Nice, your dominant arm is extended the perfect amout!' pick_from_this_right = [arm_tip_extend_right_first, arm_tip_extend_right_second] arm_tip_extend_right = random.choice(pick_from_this_right) arm_tips_extend = [arm_tip_extend_right, score] return arm_tips_extend def arms_tips_finish(user, playerleft_arm): arm_tip_finish_left_first = 'None' arm_tip_finish_left_second = 'None' score = 0 if user.get_min_data('shoulder2wrist_left')[3] > (playerleft_arm.get_min_data()[3] * 1.20): arm_tip_finish_left_first = 'Your non-dominant arm should be significantly closer to your body in preparation for an easier recovery of the racquet.' arm_tip_finish_left_second = 'Recovery is much easier if your non-dominant arm is closer to your body. Try brining your non-dominant arm significantly closer to your body on the finish.' score += 7 elif user.get_min_data('shoulder2wrist_left')[3] > (playerleft_arm.get_min_data()[3] * 1.10): arm_tip_finish_left_first = 'Your non-dominant arm should be closer to your body in preparation for an easier recovery of the racquet.' arm_tip_finish_left_second = 'Recovery is much easier if your non-dominant arm is closer to your body. Try brining your non-dominant arm closer to your body on the finish.' score += 4 elif user.get_min_data('shoulder2wrist_left')[3] > (playerleft_arm.get_min_data()[3] * 1.05): arm_tip_finish_left_first = 'Your non-dominant arm should be slightly closer to your body in preparation for an easier recovery of the racquet.' arm_tip_finish_left_second = 'Recovery is much easier if your non-dominant arm is closer to your body. Try brining your non-dominant arm slightly closer to your body on the finish.' score += 2 else: arm_tip_finish_left_first = 'Nice, your arms seem to be positioned correctly on the finish! Racquet recovery is much easier with optimal arm placement.' arm_tip_finish_left_second = 'Good job, your arms seem to be positioned correctly on the finish! Racquet recovery is much easier with optimal arm placement.' pick_from_this_left = [arm_tip_finish_left_first, arm_tip_finish_left_second] arm_tip_finish_left = random.choice(pick_from_this_left) arm_tips_finish = [arm_tip_finish_left, score] return arm_tips_finish def arm_tip_summary(user, playerright_arm, playerleft_arm): full_arm_list = [] arm_start = arms_tips_start(user, playerright_arm, playerleft_arm) arm_load = arms_tips_load(user, playerright_arm, playerleft_arm) arm_extend = arms_tips_extend(user, playerright_arm) arm_finish = arms_tips_finish(user, playerleft_arm) arm_tip_list = [arm_start, arm_load, arm_extend, arm_finish] for i in arm_tip_list: for j in i: if type(j) != int: full_arm_list.append(j) return full_arm_list def arm_score_quant(user, playerright_arm, playerleft_arm): arm_start = arms_tips_start(user, playerright_arm, playerleft_arm) arm_load = arms_tips_load(user, playerright_arm, playerleft_arm) arm_extend = arms_tips_extend(user, playerright_arm) arm_finish = arms_tips_finish(user, playerleft_arm) arm_tip_list = [arm_start, arm_load, arm_extend, arm_finish] score = [] for i in arm_tip_list: score.append(i[-1]) return score # body def body_tips_start(user, playerright_body): body_tip_start_first = 'None' body_tip_start_second = 'None' score_lost = 0 # less than the pro angles if user.get_min_data('elbow2hip_right')[0] < (playerright_body.get_min_data()[0] * 0.80): body_tip_start_first = 'Your dominant arm is hanging significantly too low on the starting position. Try raising your are by a large amount.' body_tip_start_second = 'Raise your dominant arm by a significant amount because it is hanging too low on the starting position' score_lost += 7 elif user.get_min_data('elbow2hip_right')[0] < (playerright_body.get_min_data()[0] * 0.90): body_tip_start_first = 'Your dominant arm is hanging too low on the starting position. Try raising your amount.' body_tip_start_second = 'Raise your dominant arm because it is hanging too low on the starting position' score_lost += 4 elif user.get_min_data('elbow2hip_right')[0] < (playerright_body.get_min_data()[0] * 0.95): body_tip_start_first = 'Your dominant arm is hanging slightly too low on the starting position. Try raising your are by a small amount.' body_tip_start_second = 'Raise your dominant arm by a slight amount because it is hanging too low on the starting position' score_lost += 2 # grater than the pro angles elif user.get_min_data('elbow2hip_right')[0] > (playerright_body.get_max_data()[0] * 1.20): body_tip_start_first = 'Your dominant arm is raised significantly too high on the starting position. Try lowering your are by a large amount.' body_tip_start_second = 'Lower your dominant arm by a large amount because it is hanging significantly too high on the starting position' score_lost += 7 elif user.get_min_data('elbow2hip_right')[0] > (playerright_body.get_max_data()[0] * 1.10): body_tip_start_first = 'Your dominant arm is raised too high on the starting position. Try lowering your amount.' body_tip_start_second = 'Lower your dominant arm because it is hanging too high on the starting position' score_lost += 4 elif user.get_min_data('elbow2hip_right')[0] > (playerright_body.get_max_data()[0] * 1.05): body_tip_start_first = 'Your dominant arm is raised slightly too high on the starting position. Try lowering your are by a small amount.' body_tip_start_second = 'Lower your dominant arm by a small amount because it is hanging slightly too high on the starting position' score_lost += 2 else: body_tip_start_first = 'Your upper arms are the perfect distance from your body!' body_tip_start_second = 'Nice job, Your upper arms are the perfect distance from your body!' pick_from_this_body = [body_tip_start_first, body_tip_start_second] body_tip_start = random.choice(pick_from_this_body) return [body_tip_start, score_lost] def body_tips_load(user, playerleft_body): score_lost = 0 body_tip_load_left_first = 'None' body_tip_load_left_second = 'None' if user.get_max_data('elbow2hip_left')[1] < (playerleft_body.get_max_data()[1] * 0.80): body_tip_load_left_first = 'The tossing side of your body is significantly under stretching during the load. Try to reach up with your tossing arm a lot more.' body_tip_load_left_second = 'Make sure to reach up with your tossing arm a lot more during the load because your tossing side of the body is significantly under stretching.' score_lost += 7 elif user.get_min_data('elbow2hip_left')[1] < (playerleft_body.get_min_data()[1] * 0.90): body_tip_load_left_first = 'The tossing side of your body is under stretching during the load. Try to reach up with your tossing arm more.' body_tip_load_left_second = 'Make sure to reach up with your tossing arm more during the load because your tossing side of the body is under stretching.' score_lost += 4 elif user.get_min_data('elbow2hip_left')[1] < (playerleft_body.get_min_data()[1] * 0.95): body_tip_load_left_first = 'The tossing side of your
<filename>tools/utils/losses.py """ source code: x https://github.com/chtaal/pystoi """ import tensorflow.keras.backend as K import numpy as np import tensorflow as tf import functools from TrialsOfNeuralVocalRecon.tools.utils.OBM import OBM as oooooo import TrialsOfNeuralVocalRecon.tools.utils.pmsqe as pmsqe import TrialsOfNeuralVocalRecon.tools.utils.perceptual_constants as perceptual_constants tf.keras.backend.set_floatx('float32') if tf.__version__[:2] == '1.': window_fn = functools.partial(tf.signal.hann_window, periodic=True) tf_signal = tf.signal tf_log = tf.log elif tf.__version__[:2] == '2.': window_fn = functools.partial(tf.signal.hann_window, periodic=True) tf_signal = tf.signal tf_log = tf.math.log else: raise NotImplementedError def thirdoct(fs, nfft, num_bands, min_freq): """ Returns the 1/3 octave band matrix and its center frequencies # Arguments : fs : sampling rate nfft : FFT size num_bands : number of 1/3 octave bands min_freq : center frequency of the lowest 1/3 octave band # Returns : obm : Octave Band Matrix cf : center frequencies """ f = np.linspace(0, fs, nfft + 1) f = f[:int(nfft / 2 + 1)] k = np.array(range(num_bands)).astype(float) cf = np.power(2. ** (1. / 3), k) * min_freq freq_low = min_freq * np.power(2., (2 * k - 1) / 6) freq_high = min_freq * np.power(2., (2 * k + 1) / 6) obm = np.zeros((num_bands, len(f))) # a verifier for i in range(len(cf)): # Match 1/3 oct band freq with fft frequency bin f_bin = np.argmin(np.square(f - freq_low[i])) freq_low[i] = f[f_bin] fl_ii = f_bin f_bin = np.argmin(np.square(f - freq_high[i])) freq_high[i] = f[f_bin] fh_ii = f_bin # Assign to the octave band matrix obm[i, fl_ii:fh_ii] = 1 return obm.astype(np.float32), cf def log10(x): numerator = tf_log(x) denominator = tf_log(tf.constant(10, dtype=numerator.dtype)) return numerator / denominator ''' """ This is Luca's version. it was wrong?""" def random_segSNR_loss(fs=15000): # proper definition: Speech enhancement using super-Gaussian speech models and noncausal a priori SNR estimation # half window of 32ms, N in the paper, eq (27) w = tf.cast(32/1000*fs/2, tf.int32) def rsSNR(y_true, y_pred): sound_len = tf.shape(y_true)[1] nw = tf.cast(sound_len/w, tf.int32) random_downsampling = tf.random.uniform(shape=[], minval=1, maxval=nw, dtype=tf.int32) print(random_downsampling) ds_true = y_true[:, ::random_downsampling*w] ds_pred = y_pred[:, ::random_downsampling*w] print(y_pred.shape) print(ds_pred.shape) num = tf.reduce_sum(tf.square(ds_pred), axis=1) den = tf.reduce_sum(tf.square(ds_pred - ds_true), axis=1) loss = 10 * log10(num) - 10 * log10(den) return tf.reduce_mean(loss) return rsSNR ''' def threshold(x): x_max=tf.math.maximum(x,-20) return tf.math.minimum(x_max,35) def segSNR_loss(fs=15000): # proper definition: Speech enhancement using super-Gaussian speech models and noncausal a priori SNR estimation # half window of 32ms, N in the paper, eq (27) w = tf.cast(32/1000*fs, tf.int32) #windows of 32ms #shift=tf.cast(16/1000*fs, tf.int32) #shift half a window def rsSNR(y_true, y_pred): ##both have to be the same type of float sound_len = tf.shape(y_true)[1] nw = tf.cast((sound_len/w), tf.int32)#/shift, tf.int32) y_true = tf.squeeze(y_true, axis=-1) y_pred = tf.squeeze(y_pred, axis=-1) loss=0.0 for l in range(0,nw): num = tf.reduce_sum(tf.square(tf.slice(y_true,[0,int(l*w)],[-1,w-1])), axis=1)#int(l*w/2)],[-1,w-1])), axis=1) den = tf.reduce_sum(tf.square(tf.slice(y_true,[0,int(l*w)],[-1,w-1]) - tf.slice(y_pred,[0,int(l*w)],[-1,w-1])), axis=1) loss_i= 10 * log10(num) - 10 * log10(den) loss_i=threshold(loss_i) loss=loss+loss_i return -loss/tf.cast(nw,tf.float32) return rsSNR def si_sdr_loss(y_true, y_pred): # print("######## SI-SDR LOSS ########") x = tf.squeeze(y_true, axis=-1) y = tf.squeeze(y_pred, axis=-1) smallVal = 1e-9 # To avoid divide by zero a = K.sum(y * x, axis=-1, keepdims=True) / (K.sum(x * x, axis=-1, keepdims=True) + smallVal) xa = a * x xay = xa - y d = K.sum(xa * xa, axis=-1, keepdims=True) / (K.sum(xay * xay, axis=-1, keepdims=True) + smallVal) # d1=tf.zeros(d.shape) d1 = d == 0 d1 = 1 - tf.cast(d1, tf.float32) d = -K.mean(10 * d1 * log10(d + smallVal)) return d def calc_sdr(estimation, origin): """ batch-wise SDR caculation for one audio file. estimation: (batch, nsample) origin: (batch, nsample) """ origin_power = tf.reduce_sum(origin ** 2, 1, keepdims=True) + 1e-12 # (batch, 1) scale = tf.reduce_sum(origin * estimation, 1, keepdims=True) / origin_power # (batch, 1) est_true = scale * origin # (batch, nsample) est_res = estimation - est_true # (batch, nsample) # est_true = est_true.T # est_res = est_res.T true_power = tf.reduce_sum(est_true ** 2, 1) res_power = tf.reduce_sum(est_res ** 2, 1) return 10 * log10(true_power) - 10 * log10(res_power) # (batch, 1) def estoi_sisdr_loss(batch_size=8, nbf=200, fs=10000, nfft=512, N=30, J=15, min_freq=150): estoi = estoi_loss(batch_size=batch_size, nbf=nbf, fs=fs, nfft=nfft, N=N, J=J, min_freq=min_freq) def esloss(y_true, y_pred): loss = si_sdr_loss(y_true, y_pred) + 50 * estoi(y_true, y_pred) return tf.reduce_mean(loss) return esloss def audio_to_mfcc(audio, sample_rate, frame_length=1024, frame_step=256, fft_length=1024): # from https://www.tensorflow.org/api_docs/python/tf/signal/mfccs_from_log_mel_spectrograms stfts = tf.signal.stft(audio, frame_length=frame_length, frame_step=frame_step, fft_length=fft_length) spectrograms = tf.abs(stfts) # Warp the linear scale spectrograms into the mel-scale. num_spectrogram_bins = stfts.shape[-1] # .value lower_edge_hertz, upper_edge_hertz, num_mel_bins = 80.0, 7350.0, 80 linear_to_mel_weight_matrix = tf.signal.linear_to_mel_weight_matrix( num_mel_bins, num_spectrogram_bins, sample_rate, lower_edge_hertz, upper_edge_hertz) mel_spectrograms = tf.tensordot(spectrograms, linear_to_mel_weight_matrix, 1) mel_spectrograms.set_shape(spectrograms.shape[:-1].concatenate(linear_to_mel_weight_matrix.shape[-1:])) # Compute a stabilized log to get log-magnitude mel-scale spectrograms. log_mel_spectrograms = tf.math.log(mel_spectrograms + 1e-6) # Compute MFCCs from log_mel_spectrograms and take the first 13. mfccs = tf.signal.mfccs_from_log_mel_spectrograms(log_mel_spectrograms)[..., 1:13] return mfccs def mfcc_loss(sample_rate, frame_length=1024, frame_step=256, fft_length=1024): def mfccloss(y_true, y_pred): # to make sure the signal is a tensor of [batch_size, num_samples] y_true = tf.reduce_mean(y_true, axis=2) y_pred = tf.reduce_mean(y_pred, axis=2) mfcc_true = audio_to_mfcc(y_true, sample_rate, frame_length=frame_length, frame_step=frame_step, fft_length=fft_length) mfcc_pred = audio_to_mfcc(y_pred, sample_rate, frame_length=frame_length, frame_step=frame_step, fft_length=fft_length) mse = tf.reduce_mean(tf.square(mfcc_true - mfcc_pred)) return mse return mfccloss def estoi_loss(batch_size=8, nbf=200, fs=10000, nfft=512, N=30, # 30 # length of temporal envelope vectors J=15, # Number of one-third octave bands (cannot be varied) min_freq=150 # 1050 ): def estoi_loss_inner(y_true, y_pred): # print("######## ESTOI LOSS ########") M = int(nbf - (N - 1)) # number of temporal envelope vectors epsilon = 1e-9 # To avoid divide by zero OBM, _ = thirdoct(fs, nfft, J, min_freq) y_true = tf.squeeze(y_true, axis=-1) y_pred = tf.squeeze(y_pred, axis=-1) y_pred_shape = K.shape(y_pred) stft_true = tf_signal.stft(y_true, 256, 128, 512, window_fn, pad_end=False) stft_pred = tf_signal.stft(y_pred, 256, 128, 512, window_fn, pad_end=False) OBM1 = tf.convert_to_tensor(OBM) # oooooo Luca # OBM1 = tf.convert_to_tensor(oooooo) # Maryam OBM1 = K.tile(OBM1, [y_pred_shape[0], 1, ]) # OBM1 = K.reshape(OBM1, [y_pred_shape[0], J, -1, ]) OBM1 = K.reshape(OBM1, [y_pred_shape[0], J, 257, ]) OCT_pred = K.sqrt(tf.matmul(OBM1, K.square(K.abs(tf.transpose(stft_pred, perm=[0, 2, 1]))))) OCT_true = K.sqrt(tf.matmul(OBM1, K.square(K.abs(tf.transpose(stft_true, perm=[0, 2, 1]))))) d = 0.0 # K.variable(0.0, 'float32') for i in range(0, batch_size): for m in range(0, M): x = K.squeeze(tf.slice(OCT_true, [i, 0, m], [1, J, N]), axis=0) y = K.squeeze(tf.slice(OCT_pred, [i, 0, m], [1, J, N]), axis=0) xn = x - K.mean(x, axis=-1, keepdims=True) yn = y - K.mean(y, axis=-1, keepdims=True) xn = xn / (K.sqrt(K.sum(xn * xn, axis=-1, keepdims=True)) + epsilon) yn = yn / (K.sqrt(K.sum(yn * yn, axis=-1, keepdims=True)) + epsilon) xn = xn - K.tile(K.mean(xn, axis=-2, keepdims=True), [J, 1, ]) yn = yn - K.tile(K.mean(yn, axis=-2, keepdims=True), [J, 1, ]) xn = xn / (K.sqrt(K.sum(xn * xn, axis=-2, keepdims=True)) + epsilon) yn = yn / (K.sqrt(K.sum(yn * yn, axis=-2, keepdims=True)) + epsilon) di = K.sum(xn * yn, axis=-1, keepdims=True) di = 1 / N * K.sum(di, axis=0, keepdims=False) d = d + di return 1 - (d / K.cast(batch_size * M, dtype='float')) return estoi_loss_inner def stoi_loss(batch_size=8, nbf=200): def stoi_loss_inner(y_true, y_pred): # print("######## STOI LOSS ########") y_true = K.squeeze(y_true, axis=-1) y_pred = K.squeeze(y_pred, axis=-1) y_pred_shape = K.shape(y_pred) stft_true = tf_signal.stft(y_true, 256, 128, 512, window_fn, pad_end=False) stft_pred = tf_signal.stft(y_pred, 256, 128, 512, window_fn, pad_end=False) N = 44 # 230 # 30 # length of temporal envelope vectors J = 15 # Number of one-third octave bands (cannot be varied) M = int(nbf - (N - 1)) # number of temporal envelope vectors smallVal = 1e-9 # To avoid divide by zero fs = 10000 # 97656.25 nfft = 512 # 256 min_freq = 150 # 1150 # 1050 print(oooooo.shape) OBM, _ = thirdoct(fs, nfft, J, min_freq) print(OBM.shape) OBM1 = tf.convert_to_tensor(oooooo) OBM1 = K.tile(OBM1, [y_pred_shape[0], 1, ]) OBM1 = K.reshape(OBM1, [y_pred_shape[0], 15, 257, ]) OCT_pred = K.sqrt(tf.matmul(OBM1, K.square(K.abs(tf.transpose(stft_pred, perm=[0, 2, 1]))))) OCT_true = K.sqrt(tf.matmul(OBM1, K.square(K.abs(tf.transpose(stft_true, perm=[0, 2, 1]))))) doNorm = True c = K.constant(5.62341325, 'float') # 10^(-Beta/20) with Beta = -15 d = K.variable(0.0, 'float') for i in range(0, batch_size): # Run over mini-batches for m in range(0, M): # Run over temporal envelope vectors x = K.squeeze(tf.slice(OCT_true, [i, 0, m], [1, J, N]), axis=0) y = K.squeeze(tf.slice(OCT_pred, [i, 0, m], [1, J, N]), axis=0) if doNorm: alpha = K.sqrt(K.sum(K.square(x), axis=-1, keepdims=True) / ( K.sum(K.square(y), axis=-1, keepdims=True)) + smallVal) alpha = K.tile(alpha, [1, N, ]) ay = y * alpha y = K.minimum(ay, x + x * c)
<filename>sphinx/ext/autosummary/__init__.py # -*- coding: utf-8 -*- """ sphinx.ext.autosummary ~~~~~~~~~~~~~~~~~~~~~~ Sphinx extension that adds an autosummary:: directive, which can be used to generate function/method/attribute/etc. summary lists, similar to those output eg. by Epydoc and other API doc generation tools. An :autolink: role is also provided. autosummary directive --------------------- The autosummary directive has the form:: .. autosummary:: :nosignatures: :toctree: generated/ module.function_1 module.function_2 ... and it generates an output table (containing signatures, optionally) ======================== ============================================= module.function_1(args) Summary line from the docstring of function_1 module.function_2(args) Summary line from the docstring ... ======================== ============================================= If the :toctree: option is specified, files matching the function names are inserted to the toctree with the given prefix: generated/module.function_1 generated/module.function_2 ... Note: The file names contain the module:: or currentmodule:: prefixes. .. seealso:: autosummary_generate.py autolink role ------------- The autolink role functions as ``:obj:`` when the name referred can be resolved to a Python object, and otherwise it becomes simple emphasis. This can be used as the default role to make links 'smart'. :copyright: Copyright 2007-2018 by the Sphinx team, see AUTHORS. :license: BSD, see LICENSE for details. """ import inspect import os import posixpath import re import sys import warnings from types import ModuleType from docutils import nodes from docutils.parsers.rst import directives from docutils.parsers.rst.states import RSTStateMachine, state_classes from docutils.statemachine import ViewList from six import string_types from six import text_type import sphinx from sphinx import addnodes from sphinx.deprecation import RemovedInSphinx20Warning from sphinx.environment.adapters.toctree import TocTree from sphinx.ext.autodoc import get_documenters from sphinx.ext.autodoc.directive import DocumenterBridge, Options from sphinx.ext.autodoc.importer import import_module from sphinx.locale import __ from sphinx.pycode import ModuleAnalyzer, PycodeError from sphinx.util import import_object, rst, logging from sphinx.util.docutils import ( NullReporter, SphinxDirective, new_document, switch_source_input ) if False: # For type annotation from typing import Any, Dict, List, Tuple, Type, Union # NOQA from docutils.utils import Inliner # NOQA from sphinx.application import Sphinx # NOQA from sphinx.environment import BuildEnvironment # NOQA from sphinx.ext.autodoc import Documenter # NOQA logger = logging.getLogger(__name__) periods_re = re.compile(r'\.(?:\s+)') literal_re = re.compile(r'::\s*$') # -- autosummary_toc node ------------------------------------------------------ class autosummary_toc(nodes.comment): pass def process_autosummary_toc(app, doctree): # type: (Sphinx, nodes.Node) -> None """Insert items described in autosummary:: to the TOC tree, but do not generate the toctree:: list. """ env = app.builder.env crawled = {} def crawl_toc(node, depth=1): # type: (nodes.Node, int) -> None crawled[node] = True for j, subnode in enumerate(node): try: if (isinstance(subnode, autosummary_toc) and isinstance(subnode[0], addnodes.toctree)): TocTree(env).note(env.docname, subnode[0]) continue except IndexError: continue if not isinstance(subnode, nodes.section): continue if subnode not in crawled: crawl_toc(subnode, depth + 1) crawl_toc(doctree) def autosummary_toc_visit_html(self, node): # type: (nodes.NodeVisitor, autosummary_toc) -> None """Hide autosummary toctree list in HTML output.""" raise nodes.SkipNode def autosummary_noop(self, node): # type: (nodes.NodeVisitor, nodes.Node) -> None pass # -- autosummary_table node ---------------------------------------------------- class autosummary_table(nodes.comment): pass def autosummary_table_visit_html(self, node): # type: (nodes.NodeVisitor, autosummary_table) -> None """Make the first column of the table non-breaking.""" try: tbody = node[0][0][-1] for row in tbody: col1_entry = row[0] par = col1_entry[0] for j, subnode in enumerate(list(par)): if isinstance(subnode, nodes.Text): new_text = text_type(subnode.astext()) new_text = new_text.replace(u" ", u"\u00a0") par[j] = nodes.Text(new_text) except IndexError: pass # -- autodoc integration ------------------------------------------------------- # current application object (used in `get_documenter()`). _app = None # type: Sphinx class FakeDirective(DocumenterBridge): def __init__(self): # type: () -> None super(FakeDirective, self).__init__({}, None, Options(), 0) # type: ignore def get_documenter(*args): # type: (Any) -> Type[Documenter] """Get an autodoc.Documenter class suitable for documenting the given object. *obj* is the Python object to be documented, and *parent* is an another Python object (e.g. a module or a class) to which *obj* belongs to. """ from sphinx.ext.autodoc import DataDocumenter, ModuleDocumenter if len(args) == 3: # new style arguments: (app, obj, parent) app, obj, parent = args else: # old style arguments: (obj, parent) app = _app obj, parent = args warnings.warn('the interface of get_documenter() has been changed. ' 'Please give application object as first argument.', RemovedInSphinx20Warning) if inspect.ismodule(obj): # ModuleDocumenter.can_document_member always returns False return ModuleDocumenter # Construct a fake documenter for *parent* if parent is not None: parent_doc_cls = get_documenter(app, parent, None) else: parent_doc_cls = ModuleDocumenter if hasattr(parent, '__name__'): parent_doc = parent_doc_cls(FakeDirective(), parent.__name__) else: parent_doc = parent_doc_cls(FakeDirective(), "") # Get the corrent documenter class for *obj* classes = [cls for cls in get_documenters(app).values() if cls.can_document_member(obj, '', False, parent_doc)] if classes: classes.sort(key=lambda cls: cls.priority) return classes[-1] else: return DataDocumenter # -- .. autosummary:: ---------------------------------------------------------- class Autosummary(SphinxDirective): """ Pretty table containing short signatures and summaries of functions etc. autosummary can also optionally generate a hidden toctree:: node. """ required_arguments = 0 optional_arguments = 0 final_argument_whitespace = False has_content = True option_spec = { 'toctree': directives.unchanged, 'nosignatures': directives.flag, 'template': directives.unchanged, } def warn(self, msg): # type: (unicode) -> None self.warnings.append(self.state.document.reporter.warning( msg, line=self.lineno)) def run(self): # type: () -> List[nodes.Node] self.genopt = Options() self.warnings = [] # type: List[nodes.Node] self.result = ViewList() names = [x.strip().split()[0] for x in self.content if x.strip() and re.search(r'^[~a-zA-Z_]', x.strip()[0])] items = self.get_items(names) nodes = self.get_table(items) if 'toctree' in self.options: dirname = posixpath.dirname(self.env.docname) tree_prefix = self.options['toctree'].strip() docnames = [] for name, sig, summary, real_name in items: docname = posixpath.join(tree_prefix, real_name) docname = posixpath.normpath(posixpath.join(dirname, docname)) if docname not in self.env.found_docs: self.warn('toctree references unknown document %r' % docname) docnames.append(docname) tocnode = addnodes.toctree() tocnode['includefiles'] = docnames tocnode['entries'] = [(None, docn) for docn in docnames] tocnode['maxdepth'] = -1 tocnode['glob'] = None tocnode = autosummary_toc('', '', tocnode) nodes.append(tocnode) return self.warnings + nodes def get_items(self, names): # type: (List[unicode]) -> List[Tuple[unicode, unicode, unicode, unicode]] """Try to import the given names, and return a list of ``[(name, signature, summary_string, real_name), ...]``. """ prefixes = get_import_prefixes_from_env(self.env) items = [] # type: List[Tuple[unicode, unicode, unicode, unicode]] max_item_chars = 50 for name in names: display_name = name if name.startswith('~'): name = name[1:] display_name = name.split('.')[-1] try: real_name, obj, parent, modname = import_by_name(name, prefixes=prefixes) except ImportError: self.warn('failed to import %s' % name) items.append((name, '', '', name)) continue self.result = ViewList() # initialize for each documenter full_name = real_name if not isinstance(obj, ModuleType): # give explicitly separated module name, so that members # of inner classes can be documented full_name = modname + '::' + full_name[len(modname) + 1:] # NB. using full_name here is important, since Documenters # handle module prefixes slightly differently documenter = get_documenter(self.env.app, obj, parent)(self, full_name) if not documenter.parse_name(): self.warn('failed to parse name %s' % real_name) items.append((display_name, '', '', real_name)) continue if not documenter.import_object(): self.warn('failed to import object %s' % real_name) items.append((display_name, '', '', real_name)) continue if documenter.options.members and not documenter.check_module(): continue # try to also get a source code analyzer for attribute docs try: documenter.analyzer = ModuleAnalyzer.for_module( documenter.get_real_modname()) # parse right now, to get PycodeErrors on parsing (results will # be cached anyway) documenter.analyzer.find_attr_docs() except PycodeError as err: logger.debug('[autodoc] module analyzer failed: %s', err) # no source file -- e.g. for builtin and C modules documenter.analyzer = None # -- Grab the signature sig = documenter.format_signature() if not sig: sig = '' else: max_chars = max(10, max_item_chars - len(display_name)) sig = mangle_signature(sig, max_chars=max_chars) # -- Grab the summary documenter.add_content(None) summary = extract_summary(self.result.data[:], self.state.document) items.append((display_name, sig, summary, real_name)) return items def get_table(self, items): # type: (List[Tuple[unicode, unicode, unicode, unicode]]) -> List[Union[addnodes.tabular_col_spec, autosummary_table]] # NOQA """Generate a proper list of table nodes for autosummary:: directive. *items* is a list produced by :meth:`get_items`. """ table_spec = addnodes.tabular_col_spec() table_spec['spec'] = r'\X{1}{2}\X{1}{2}' table = autosummary_table('') real_table = nodes.table('', classes=['longtable']) table.append(real_table) group = nodes.tgroup('', cols=2) real_table.append(group) group.append(nodes.colspec('', colwidth=10)) group.append(nodes.colspec('', colwidth=90)) body = nodes.tbody('') group.append(body) def append_row(*column_texts): # type: (unicode) -> None row = nodes.row('') source, line = self.state_machine.get_source_and_line() for text in column_texts: node = nodes.paragraph('') vl = ViewList() vl.append(text, '%s:%d:<autosummary>' % (source, line)) with switch_source_input(self.state, vl): self.state.nested_parse(vl, 0, node) try: if isinstance(node[0], nodes.paragraph): node = node[0] except IndexError: pass row.append(nodes.entry('', node)) body.append(row) for name, sig, summary, real_name in items: qualifier = 'obj' if 'nosignatures' not in self.options: col1 = ':%s:`%s <%s>`\\ %s' % (qualifier, name, real_name, rst.escape(sig)) # type: unicode # NOQA else: col1 = ':%s:`%s <%s>`' % (qualifier, name, real_name) col2 = summary append_row(col1, col2) return [table_spec, table] def strip_arg_typehint(s): # type: (unicode) -> unicode """Strip a type hint from argument definition.""" return s.split(':')[0].strip() def mangle_signature(sig, max_chars=30): # type: (unicode, int) -> unicode """Reformat a function signature to a more compact form.""" #
<filename>cltwit/main.py #!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Cltwit is a command line twitter utility Author : <NAME> Date : 2013 """ import os import sys import re import getopt import gettext import sqlite3 import webbrowser import ConfigParser from sqlite2csv import sqlite2csv from cltwitdb import cltwitdb from utils import LocalTimezone from cltwitreport import TweetsReport APP_NAME = 'cltwit' LOC_PATH = os.path.dirname(__file__) + '/locale' gettext.find(APP_NAME, LOC_PATH) gettext.install(APP_NAME, LOC_PATH, True) try: import tweepy except ImportError: print(_("Veuillez installer tweetpy https://github.com/tweepy/tweepy")) sys.exit() # Répertoire pour conf et bdd __cltwitdir__ = os.path.expanduser("~/.config/cltwit") # Fichier de configuration __configfile__ = __cltwitdir__ + "/cltwit.conf" # base de données et table sqlite __dblocation__ = __cltwitdir__ + '/data.db' __tablename__ = 'twitter' __Local__ = LocalTimezone() # gestion des couleurs sur le terminal BLACK, RED, GREEN, YELLOW, BLUE, MAGENTA, CYAN, WHITE = range(8) def has_colours(stream): """Vérifier la prise en charge des couleurs par le terminal""" if not hasattr(stream, "isatty"): return False if not stream.isatty(): return False # couleurs auto sur un TTY try: import curses curses.setupterm() return curses.tigetnum("colors") > 2 except: # Si erreur on suppose false return False __has_colours__ = has_colours(sys.stdout) def printout(text, colour=WHITE): """Print en couleur""" if __has_colours__: seq = "\x1b[1;%dm" % (30 + colour) + text + "\x1b[0m" sys.stdout.write(seq) else: sys.stdout.write(text.encode("Utf-8")) def checkdb(): """ Vérifier la présence de la bdd sqlite et la créer si absente """ if (not os.path.exists(__dblocation__)): printout(_(u"Vous devez d'abord lancer la commande --database create \ pour créer une base de données de vos tweets."), RED) sys.exit() def checkconfig(): """Récupérer la configuration ou la créer""" # On ouvre le fichier de conf config = ConfigParser.RawConfigParser() try: config.read(__configfile__) if config.has_option('twitterapi', 'access_token'): access_token = config.get('twitterapi', 'access_token') if config.has_option('twitterapi', 'access_password'): access_password = config.get('twitterapi', 'access_password') except: pass auth = tweepy.OAuthHandler("Jus1rnqM6S0WojJfOH1kQ", "AHQ5sTC8YYArHilXmqnsstOivY6ygQ2N27L1zBwk") # Si aucune conf , autorisation de connexion à twitter via OAuth if not(config.has_option('twitterapi', 'access_token') and config.has_option('twitterapi', 'access_password')): # On ouvre le navigateur web pour récupếrer le numéro d'autorisation while True: try: webbrowser.open(auth.get_authorization_url()) var = raw_input(_("Entrez le token !\n")) auth.get_access_token(var) except Exception, e: print(str(e)) continue break var = auth.access_token # On récupère le token et le password access_password = str(var).split("&")[0].split("=")[1] access_token = str(var).split("&")[1].split("=")[1] # écrire le fichier de conf avec les informations récupérées try: cfgfile = open(__configfile__, 'w') if not(config.has_section('twitterapi')): config.add_section('twitterapi') config.set('twitterapi', 'access_token', access_token) config.set('twitterapi', 'access_password', access_password) config.write(cfgfile) except IOError: pass finally: cfgfile.close() else: # Si un fichier de conf existait déjà auth.set_access_token(access_token, access_password) return auth def login(): """ Se connecter à l'api twitter via tweepy """ auth = checkconfig() api = tweepy.API(auth) # On vérifie la connexion à l'api en récupérant le user name try: twittername = api.me().screen_name except Exception, e: if 'Unable to get username' in (str(e)): printout(_(u"Impossible de s'authentifier avec l'api Twitter.\ Fonctionne en mode déconnecté"), RED) print("\n") twittername = "offline_mode" printout(_(u"Authentifié avec le user twitter {0}").format(twittername.decode('utf-8')), GREEN) print("\n") return api, auth, twittername def get_friends_followers(api): """Renvoie la liste des id des friends et followers""" friend_id = [] follower_id = [] printout(_(u"Récupération des Followers..."), YELLOW) print("\n") for follower in tweepy.Cursor(api.followers).items(): follower_id.append(follower.id) printout((u"Récupération des Friends..."), YELLOW) print("\n") for friend in tweepy.Cursor(api.friends).items(): friend_id.append(friend.id) return friend_id, follower_id def get_diff(liste1, liste2): """Renvoie les objets de liste1 qui ne sont pas dans liste2""" return list(set(liste1).difference(set(liste2))) def follow_users(api, user): """Suivre une personne""" try: api.create_friendship(user) printout(_(u"Vous suivez maintenant {0}").format(api.get_user(user).screen_name.decode('utf-8')), GREEN) except Exception, e: print(e) def unfollow_user(api, user): """Cesser de suivre une personne""" try: api.destroy_friendship(user) printout(_(u"Vous ne suivez plus {0}").format(api.get_user(user).screen_name.decode('utf-8')), GREEN) except Exception, e: print(e) def main(argv=None): """ Point d'entrée """ # Si le répertoire pour la conf et la base de données n'existe pas le créer if not os.path.exists(__cltwitdir__): os.makedirs(__cltwitdir__) #~ twittername = "offline_mode" # Traitement des arguments if argv is None: argv = sys.argv if len(argv) == 1: help() try: opts, args = getopt.getopt(sys.argv[1:], "r:ahfut:o:s:d:", ["report", "api", "help", "follow", "unfollow", "tweet=", "output=", "search=", "database="]) except getopt.GetoptError, err: print(err) help() sys.exit() # traitement des options for option, value in opts: if option in ('-a', '--api'): api, auth, twittername = login() res = api.rate_limit_status() rtime = res['reset_time'] rhits = res['remaining_hits'] hlimit = res['hourly_limit'] from dateutil.parser import parse drtime = parse(rtime) printout(_("Informations sur l'utilisation de l'api Twitter"), YELLOW) print("\n") # Définir l'heure locale qui correspond à l'heure renvoyée # par l'api Twitter rlocaltime = drtime.astimezone(__Local__) printout(_("Maximum d'appels par heure: "), BLUE) print hlimit printout(_("Nombre d'appels restants: "), BLUE) print rhits printout(_("Heure du prochain reset: "), BLUE) print rlocaltime.strftime("%H:%M %Y-%m-%d") if option in ('-r', '--report'): api, auth, twittername = login() checkdb() conn = sqlite3.connect(__dblocation__) c = conn.cursor() c.execute("select substr(date, 1,4) from twitter order by date asc limit 1") dmois = c.fetchone()[0] c.execute("select substr(date, 1,4) from twitter order by date desc limit 1") fmois = c.fetchone()[0] # Requête des données à exporter dd = dict() for a in range(int(dmois), int(fmois) + 1): result = [] for m in range(1, 13): mois = ('{num:02d}'.format(num=m)) c.execute("select count(*) from twitter where substr(date, 1,4) = '{0}' and substr(date, 6,2) = '{1}'".format(a, mois)) result.append(c.fetchone()[0]) dd[a] = result c.close() conn.close() treport = TweetsReport(value) # twittername = "offline" treport.ecrireTitre(twittername) nb = 0 for annee, donnees in dd.items(): nb += 1 if nb == 4: treport.NextPage() nb = 1 saut = 0 if nb == 1: saut = 0 if nb == 2: saut = 200 if nb == 3: saut = 400 treport.ecrireLegende(saut, annee, donnees) treport.addPie(saut, donnees) treport.save() printout(_(u"Report {0} créé !").format(value), GREEN) print("\n") sys.exit(0) if option in ('-d', '--database'): if value in ('u', 'update'): # Se connecter à l'api twitter api, auth, twittername = login() # Mettre à jour la base de données db = cltwitdb(__dblocation__, __tablename__) printout(_(u"Mise à jour de la base de données de {0}").format(twittername.decode('utf-8')), YELLOW) print("\n") nb = db.update(api, twittername) printout(_(u"Ajout de {0} tweet(s) dans la base de données.").format(nb), GREEN) if value in ('c', 'create'): # Se connecter à l'api twitter api, auth, twittername = login() # Créer la base de données db = cltwitdb(__dblocation__, __tablename__) printout(_(u"Création de la liste des tweets de ") + twittername.decode('utf-8'), YELLOW) db.create(api, twittername) printout(_(u"Base de données crée"), GREEN) sys.exit() #~ database_create(api,twittername) if option in ("-o", "--output"): # Exporter en csv checkdb() conn = sqlite3.connect(__dblocation__) c = conn.cursor() # Requête des données à exporter c.execute('select date, tweet, url from {0} order by date desc'.format(__tablename__)) # On appelle la classe sqlite2csv qui se charge de l'export export = sqlite2csv(open(value, "wb")) # Entête du fichier csv export.writerow(["Date", "Tweet", "URL"]) # Lignes du fichier csv export.writerows(c) # On ferme la connexion sqlite et le curseur c.close() conn.close() printout(_(u"Fichier csv {0} créé.").format(value.decode('utf-8')), GREEN) sys.exit() if option in ("-s", "--search"): # Rechercher un motif dans la base des tweets checkdb() printout(_(u"Recherche de {0} dans vos anciens tweets...") .format(value.decode('utf-8')), YELLOW) print("\n") # la méthode search retourne un tuple avec les champs # qui contiennent le motif db = cltwitdb(__dblocation__, __tablename__) results = db.search(value, "tweet") for result in results: print((u"{0} -> {1}\n{2}\n\n").format(result[1].decode('utf-8'), result[4].decode('utf-8'), result[2].decode('utf-8'))) if option in ("-u", "--unfollow"): # Se connecter à l'api twitter api, auth, twittername = login() # Créer les liste friend et followers (par id) friend_id, follower_id = get_friends_followers(api) # Création des listes follow et unfollow follow_liste = get_diff(follower_id, friend_id) unfollow_liste = get_diff(friend_id, follower_id) # Un-follow printout(_("Vous suivez {0} personnes qui ne vous suivent pas.") .format(len(unfollow_liste)), YELLOW) print("\n") printout(_("Voulez changer cela ? (o/N)"), BLUE) print("\n") reponse = raw_input("> ") if (reponse.lower() == 'o' or reponse.lower() == 'y'): for user in unfollow_liste: printout(_("Voulez-vous cesser de suivre {0} ? (o/N)") .format(api.get_user(user).screen_name), BLUE) print("\n") reponse = raw_input("> ") if (reponse.lower() == 'o' or reponse.lower() == 'y'): unfollow_user(api, user) if option in ("-f", "--follow"): # Se connecter à l'api twitter api, auth, twittername = login() # Créer les liste friend et followers (par id) friend_id, follower_id = get_friends_followers(api) # Création des listes follow et unfollow follow_liste = get_diff(follower_id, friend_id) unfollow_liste = get_diff(friend_id, follower_id) # follow printout(_("{0} personnes vous suivent alors que vous ne les suivez pas.") .format(len(follow_liste)), YELLOW) print("\n") printout(_("Voulez changer cela ? (o/N)"), BLUE) print("\n") reponse = raw_input("> ") if (reponse.lower() == 'o' or reponse.lower() == 'y'): for user in follow_liste: printout(_("Voulez-vous suivre {0} ? (o/N)" .format(api.get_user(user).screen_name)), BLUE) print("\n") reponse = raw_input("> ") if (reponse.lower() == 'o' or reponse.lower() == 'y'): follow_users(api, user) if option in ("-t", "--tweet"): # Se connecter à l'api twitter api, auth, twittername = login() #
#!/usr/bin/env python3 # This software was developed at the National Institute of Standards # and Technology in whole or in part by employees of the Federal # Government in the course of their official duties. Pursuant to # title 17 Section 105 of the United States Code portions of this # software authored by NIST employees are not subject to copyright # protection and are in the public domain. For portions not authored # by NIST employees, NIST has been granted unlimited rights. NIST # assumes no responsibility whatsoever for its use by other parties, # and makes no guarantees, expressed or implied, about its quality, # reliability, or any other characteristic. # # We would appreciate acknowledgement if the software is used. """ make_differential_dfxml.py Takes two DFXML files as input. Produces a differential DFXML file as output. This program's main purpose is matching files correctly. It only performs enough analysis to determine that a fileobject has changed at all. (This is half of the work done by idifference.py.) """ __version__ = "0.12.1" import dfxml.objects as Objects import logging import xml.etree.ElementTree as ET import os import sys import collections import dfxml _logger = logging.getLogger(os.path.basename(__file__)) def _lower_ftype_str(vo): """The string labels of file system names might differ by something small like the casing. Normalize the labels by lower-casing them.""" Objects._typecheck(vo, Objects.VolumeObject) f = vo.ftype_str if isinstance(f, str): f = f.lower() return f def ignorable_name(fn): """Filter out recognized pseudo-file names.""" if fn is None: return False return os.path.basename(fn) in [".", "..", "$FAT1", "$FAT2", "$OrphanFiles"] def make_differential_dfxml(pre, post, **kwargs): """ Takes as input two paths to DFXML files. Returns a DFXMLObject. @param pre String. @param post String. @param diff_mode Optional. One of "all" or "idifference". @param retain_unchanged Optional. Boolean. @param ignore_properties Optional. Set. @param annotate_matches Optional. Boolean. True -> matched file objects get a "delta:matched='1'" attribute. @param rename_requires_hash Optional. Boolean. True -> all matches require matching SHA-1's, if present. @param ignore_filename_function Optional. Function, string -> Boolean. Returns True if a file name (which can be null) should be ignored. @param glom_byte_runs Optional. Boolean. Joins contiguous-region byte runs together in FileObject byte run lists. """ diff_mode = kwargs.get("diff_mode", "all") retain_unchanged = kwargs.get("retain_unchanged", False) ignore_properties = kwargs.get("ignore_properties", set()) annotate_matches = kwargs.get("annotate_matches", False) rename_requires_hash = kwargs.get("rename_requires_hash", False) ignore_filename_function = kwargs.get("ignore_filename_function", ignorable_name) glom_byte_runs = kwargs.get("glom_byte_runs", False) _expected_diff_modes = ["all", "idifference"] if diff_mode not in _expected_diff_modes: raise ValueError("Differencing mode should be in: %r." % _expected_diff_modes) diff_mask_set = set() if diff_mode == "idifference": diff_mask_set |= set([ "atime", "byte_runs", "crtime", "ctime", "filename", "filesize", "md5", "mtime", "sha1" ]) _logger.debug("diff_mask_set = " + repr(diff_mask_set)) #d: The container DFXMLObject, ultimately returned. d = Objects.DFXMLObject(version="1.2.0") if sys.argv[0] == os.path.basename(__file__): d.program = sys.argv[0] d.program_version = __version__ d.command_line = " ".join(sys.argv) d.add_namespace("delta", dfxml.XMLNS_DELTA) d.dc["type"] = "Disk image difference set" d.add_creator_library("Python", ".".join(map(str, sys.version_info[0:3]))) #A bit of a bend, but gets the major version information out. d.add_creator_library("Objects.py", Objects.__version__) d.add_creator_library("dfxml.py", Objects.dfxml.__version__) d.diff_file_ignores |= ignore_properties _logger.debug("d.diff_file_ignores = " + repr(d.diff_file_ignores)) #The list most of this function is spent on building fileobjects_changed = [] #Unmodified files; only retained if requested. fileobjects_unchanged = [] #Key: (partition, inode, filename); value: FileObject old_fis = None new_fis = None #Key: (partition, inode, filename); value: FileObject list old_fis_unalloc = None new_fis_unalloc = None #Key: Partition byte offset within the disk image, paired with the file system type #Value: VolumeObject old_volumes = None new_volumes = None matched_volumes = dict() #Populated in distinct (offset, file system type as string) encounter order volumes_encounter_order = dict() for infile in [pre, post]: _logger.debug("infile = %r" % infile) old_fis = new_fis new_fis = dict() old_volumes = new_volumes new_volumes = dict() #Fold in the matched volumes - we're just discarding the deleted volumes for k in matched_volumes: old_volumes[k] = matched_volumes[k] matched_volumes = dict() old_fis_unalloc = new_fis_unalloc new_fis_unalloc = collections.defaultdict(list) d.sources.append(infile) for (i, (event, new_obj)) in enumerate(Objects.iterparse(infile)): if isinstance(new_obj, Objects.DFXMLObject): #Inherit desired properties from the source DFXMLObject. #Inherit namespaces for (prefix, url) in new_obj.iter_namespaces(): d.add_namespace(prefix, url) continue elif isinstance(new_obj, Objects.VolumeObject): if event == "end": #This algorithm doesn't yet need to know when a volume is concluded. On to the next object. continue offset = new_obj.partition_offset if offset is None: raise AttributeError("To perform differencing with volumes, the <volume> elements must have a <partition_offset>. Either re-generate your DFXML with partition offsets, or run this program again with the --ignore-volumes flag.") #Use the lower-case volume spelling ftype_str = _lower_ftype_str(new_obj) #Re-capping the general differential analysis algorithm: #0. If the volume is in the new list, something's gone wrong. if (offset, ftype_str) in new_volumes: _logger.debug("new_obj.partition_offset = %r." % offset) _logger.warning("Encountered a volume that starts at an offset as another volume, in the same disk image. This analysis is based on the assumption that that doesn't happen. Check results that depend on partition mappings.") #1. If the volume is in the old list, pop it out of the old list - it's matched. if old_volumes and (offset, ftype_str) in old_volumes: _logger.debug("Found a volume in post image, at offset %r." % offset) old_obj = old_volumes.pop((offset, ftype_str)) new_obj.original_volume = old_obj new_obj.compare_to_original() matched_volumes[(offset, ftype_str)] = new_obj #2. If the volume is NOT in the old list, add it to the new list. else: _logger.debug("Found a new volume, at offset %r." % offset) new_volumes[(offset, ftype_str)] = new_obj volumes_encounter_order[(offset, ftype_str)] = len(new_volumes) + ((old_volumes and len(old_volumes)) or 0) + len(matched_volumes) #3. Afterwards, the old list contains deleted volumes. #Record the ID new_obj.id = volumes_encounter_order[(offset, ftype_str)] #Move on to the next object continue elif not isinstance(new_obj, Objects.FileObject): #The rest of this loop compares only file objects. continue if ignore_filename_function(new_obj.filename): continue #Simplify byte runs if requested if glom_byte_runs: if new_obj.byte_runs: temp_byte_runs = Objects.ByteRuns() for run in new_obj.byte_runs: temp_byte_runs.glom(run) new_obj.byte_runs = temp_byte_runs #Normalize the partition number if new_obj.volume_object is None: new_obj.partition = None else: vo = new_obj.volume_object fts = _lower_ftype_str(vo) new_obj.partition = volumes_encounter_order[(vo.partition_offset, fts)] #Define the identity key of this file -- affected by the --ignore argument _key_partition = None if "partition" in ignore_properties else new_obj.partition _key_inode = None if "inode" in ignore_properties else new_obj.inode _key_filename = None if "filename" in ignore_properties else new_obj.filename key = (_key_partition, _key_inode, _key_filename) #Ignore unallocated content comparisons until a later loop. The unique identification of deleted files needs a little more to work. if not new_obj.alloc: new_fis_unalloc[key].append(new_obj) continue #The rest of this loop is irrelevant until the second DFXML file. if old_fis is None: new_fis[key] = new_obj continue if key in old_fis: #Extract the old fileobject and check for changes old_obj = old_fis.pop(key) new_obj.original_fileobject = old_obj new_obj.compare_to_original(file_ignores=d.diff_file_ignores) #_logger.debug("Diffs: %r." % _diffs) _diffs = new_obj.diffs - d.diff_file_ignores #_logger.debug("Diffs after ignore-set: %r." % _diffs) if diff_mask_set: _diffs &= diff_mask_set #_logger.debug("Diffs after mask-set: %r." % _diffs) if len(_diffs) > 0: #_logger.debug("Remaining diffs: " + repr(_diffs)) fileobjects_changed.append(new_obj) else: #Unmodified file; only keep if requested. if retain_unchanged: fileobjects_unchanged.append(new_obj) else: #Store the new object new_fis[key] = new_obj #The rest of the files loop is irrelevant until the second file. if old_fis is None: continue _logger.debug("len(old_fis) = %d" % len(old_fis)) _logger.debug("len(old_fis_unalloc) = %d" % len(old_fis_unalloc)) _logger.debug("len(new_fis) = %d" % len(new_fis)) _logger.debug("len(new_fis_unalloc) = %d" % len(new_fis_unalloc)) _logger.debug("len(fileobjects_changed) = %d" % len(fileobjects_changed)) #Identify renames - only possible if 1-to-1. Many-to-many renames are just left as new and deleted files. _logger.debug("Detecting renames...") fileobjects_renamed = [] def _make_name_map(d): """Returns a dictionary, mapping (partition, inode) -> {filename}.""" retdict = collections.defaultdict(lambda: set()) for (partition, inode, filename) in d.keys(): retdict[(partition, inode)].add(filename) return retdict old_inode_names = _make_name_map(old_fis) new_inode_names = _make_name_map(new_fis) for key in new_inode_names.keys(): (partition, inode) = key if len(new_inode_names[key]) != 1: continue if not key in old_inode_names: continue if len(old_inode_names[key]) != 1: continue if rename_requires_hash: #Peek at the set elements by doing a quite-ephemeral list cast old_obj = old_fis[(partition, inode, list(old_inode_names[key])[0])] new_obj = new_fis[(partition, inode, list(new_inode_names[key])[0])] if old_obj.sha1 != new_obj.sha1: continue #Found a match if we're at this point in the loop old_name = old_inode_names[key].pop() new_name = new_inode_names[key].pop() old_obj = old_fis.pop((partition, inode, old_name)) new_obj = new_fis.pop((partition, inode, new_name)) new_obj.original_fileobject = old_obj new_obj.compare_to_original(file_ignores=d.diff_file_ignores) fileobjects_renamed.append(new_obj) _logger.debug("len(old_fis) -> %d" % len(old_fis)) _logger.debug("len(new_fis) -> %d" % len(new_fis)) _logger.debug("len(fileobjects_changed) -> %d" % len(fileobjects_changed)) _logger.debug("len(fileobjects_renamed) = %d" % len(fileobjects_renamed)) #Identify files that just
<<<<<<< HEAD #!/usr/bin/env python import inspect import re from pprint import pprint # require pip install --upgrade pandas import pandas as pd # ██╗ ██╗███████╗██████╗ ██████╗ ██████╗ ███████╗██╗████████╗██╗ ██╗ # ██║ ██║██╔════╝██╔══██╗██╔══██╗██╔═══██╗██╔════╝██║╚══██╔══╝╚██╗ ██╔╝ # ██║ ██║█████╗ ██████╔╝██████╔╝██║ ██║███████╗██║ ██║ ╚████╔╝ # ╚██╗ ██╔╝██╔══╝ ██╔══██╗██╔══██╗██║ ██║╚════██║██║ ██║ ╚██╔╝ # ╚████╔╝ ███████╗██║ ██║██████╔╝╚██████╔╝███████║██║ ██║ ██║ # ╚═══╝ ╚══════╝╚═╝ ╚═╝╚═════╝ ╚═════╝ ╚══════╝╚═╝ ╚═╝ ╚═╝ class Verbosity: ''' class Verbosity Provide a colorfull output to make it better visible ''' # Private variables __red = '\033[31m' __green = '\033[32m' __orange = '\033[33m' __blue = '\033[34m' __purple = '\033[35m' __cyan = '\033[36m' __lightgrey = '\033[37m' __darkgrey = '\033[90m' __lightred = '\033[91m' __lightgreen = '\033[92m' __yellow = '\033[93m' __lightblue = '\033[94m' __pink = '\033[95m' __lightcyan = '\033[96m' __reset = '\033[0m' def __init__(self, **args): ''' Constructor Is a reserved method in Python classes. This method called when an object is created from the class and it allow the class to initialize the attributes of a class ''' self.message = None self.error = False super(Verbosity, self).__init__() ''' End of def __init__(self, **args): ''' def v_debug(self, message): ''' Display an error message ''' print(self.__purple + '[DEBUG] ' + self.__reset + message) def v_error(self, message): ''' Display an error message ''' print(self.__red + '[ERROR] ' + self.__reset + message) # ███████╗██╗██╗ ████████╗███████╗██████╗ # ██╔════╝██║██║ ╚══██╔══╝██╔════╝██╔══██╗ # █████╗ ██║██║ ██║ █████╗ ██████╔╝ # ██╔══╝ ██║██║ ██║ ██╔══╝ ██╔══██╗ # ██║ ██║███████╗██║ ███████╗██║ ██║ # ╚═╝ ╚═╝╚══════╝╚═╝ ╚══════╝╚═╝ ╚═╝ # ███╗ ███╗ ██████╗ ██████╗ ██╗ ██╗██╗ ███████╗ # ████╗ ████║██╔═══██╗██╔══██╗██║ ██║██║ ██╔════╝ # ██╔████╔██║██║ ██║██║ ██║██║ ██║██║ █████╗ # ██║╚██╔╝██║██║ ██║██║ ██║██║ ██║██║ ██╔══╝ # ██║ ╚═╝ ██║╚██████╔╝██████╔╝╚██████╔╝███████╗███████╗ # ╚═╝ ╚═╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚══════╝╚══════╝ class FilterModule(object): def __init__(self): self.dp = Verbosity() self.debug = False self.error = False def filters(self): return { 'filter_model': self.filter_model, 'find_commands': self.find_commands, 'find_image_file': self.find_image_file, 'find_image_folder': self.find_image_folder, 'parse_data_for_deletion': self.parse_data_for_deletion, 'parse_filesystem_list': self.parse_filesystem_list, 'parse_show_switch': self.parse_show_switch, 'parse_show_version': self.parse_show_version, } # ------------------------------------------------------------------------- # ___ _ _ ___ _ ___ ___ __ __ ___ _____ _ _ ___ ___ ___ # | _ \ | | | _ ) | |_ _/ __| | \/ | __|_ _| || |/ _ \| \/ __| # | _/ |_| | _ \ |__ | | (__ | |\/| | _| | | | __ | (_) | |) \__ \ # |_| \___/|___/____|___\___| |_| |_|___| |_| |_||_|\___/|___/|___/ # # ------------------------------------------------------------------------- def filter_model(self, model_arg, debug=False): ''' filter_model Matches the characters from keyword value at the start of each newline. Args: model: Cisco model debug: passing Boolean to enable/disable debug ''' model = "" self.debug = debug if self.debug: self.dp.v_debug(">>> Start of " + self.__who_am_i()) # End of if self.debug: if isinstance(model_arg, str): # The passed argument is a string if self.debug: message = "(" + self.__who_am_i() + ") The argument " + \ "model_arg is a string." self.dp.v_debug(message) # End of if self.debug: # Split a string into a list using character minus (-) as separator # but only keep the first 2 elements of the list. stripped_model = model_arg.split('-')[0:2] if stripped_model[0].upper() == 'WS': # The first element has the string 'WS', which stands for # Workgroup Switch. if self.debug: message = "(" + self.__who_am_i() + ") Detected that " + \ "the string starts with the string 'WS'" self.dp.v_debug(message) # End of if self.debug: model = '-'.join(stripped_model) # End of if stripped_model[0].upper() == 'WS': else: # The first element doesn't have the string 'WS'. # Most routers will start with the string CISCO or ISR but most # likely have the character slash '/'. if self.debug: message = "(" + self.__who_am_i() + ") Detected that " + \ "the string doesn't start with string 'WS'" self.dp.v_debug(message) # End of if self.debug: # Split string into a list using the character slash '/' as # separator and return with the first element of the list. model = stripped_model[0].split('/')[0] # End of else: # End of if isinstance(model_arg, str): else: # The passed argument is NOT a string message = "(" + self.__who_am_i() + ") The passed model " + \ "argument isn't a string." self.dp.v_error(message) return model # End of else: if self.debug: message = "(" + self.__who_am_i() + ") model = '" + model + "'" self.dp.v_debug(message) self.dp.v_debug("<<< End of " + self.__who_am_i()) # End of if self.debug: return model.upper() ''' End of def filter_model(self,model_arg, debug=False): ''' def find_commands(self, data, command, debug=False): ''' find_commands Build a dictionary of Cisco exisiting upgrade commands that can be used. Args: data: contains the output from exec command '?' command: command string debug: passing Boolean to enable/disable debug ''' flag = False self.debug = debug if self.debug: self.dp.v_debug(">>> Start of " + self.__who_am_i()) # End of if self.debug: raw_list = self.__stdout(data, 'find_commands') if self.error: return False # End of if error: if not isinstance(command, str): message = "(" + self.__who_am_i() + \ ") The passed command isn't a string." self.dp.error(message) return False # End of if not isinstance(command, str): # Split string into a list. command_list = command.split() if len(command_list) == 0: message = "(" + self.__who_am_i() + \ ") The passed command is empty." self.dp.error(message) return False # End of if len(command_list) == 0: elif len(command_list) == 1: set_cmd = command_list[0].strip() # End of elif len(command_list) == 1: else: set_cmd = command_list[-1].strip() # End of else: for line in raw_list: # Loop through each output line line = line.strip() # Remove leading and trailing spaces cond = re.match('^(' + re.escape(set_cmd) + ')\\s+', line) if cond: if self.debug: message = "(" + self.__who_am_i() + ") Found line: " + \ line self.dp.v_debug(message) # End of if self.debug: flag = True # End of if cond: # End of for line in raw_list: if self.debug: message = "(" + self.__who_am_i() + ") flag = " + \ str(flag) + " <" + str(type(flag)) message += ">" self.dp.v_debug(message) self.dp.v_debug("<<< End of def " + self.__who_am_i()) # End of if self.debug: return flag ''' End of def find_commands(self, data, command, debug=False): ''' def find_image_file(self, data, alist, binfile, debug=False): ''' find_image_file Args: data: contains the output from the running IOS command alist: passing list to append data into it binfile: passing string with name of binary file debug: passing Boolean to enable/disable debug ''' data_list = [] self.debug = debug if self.debug: self.dp.v_debug(">>> Start of " + self.__who_am_i()) message = "(" + self.__who_am_i() + ") The passed argument " + \ "'data' is a " + str(type(data)) self.dp.v_debug(message) message = "(" + self.__who_am_i() + ") The passed argument " + \ "'alist' is a " + str(type(alist)) self.dp.v_debug(message) message = "(" + self.__who_am_i() + ") The passed argument " + \ "'binfile' is a " + str(type(binfile)) self.dp.v_debug(message) # End of if self.debug: cond = (not isinstance(data, list) or not isinstance( alist, list) or not isinstance(binfile, str)) if cond: message = "(" + self.__who_am_i() + ") One or both passed " + \ "arguments wasn't able to pass the condition. " + \ "'data' = <<list>>, 'folder' = <<string>>" self.dp.v_error(message) return data_list # End of if cond: for item in data: new_dict = {'filesystem': None, 'filename': None} if "item" in item: key = "item" label = "filesystem" new_dict['filesystem'] = self.__parse_find_file( item, key, label) if "stdout" in item: key = "stdout" label = None if self.debug: message = "(" + self.__who_am_i() + ") Found " + \ "dictionary key 'stdout'." self.dp.v_debug(message) lines = self.__parse_find_file(item, key, label) new_dict['filename'] = self.__parse_filefolder( lines, binfile, '-rw', self.__who_am_i()) # End of if "item" in item: data_list.append(new_dict) # End of for item in data: df1 = pd.DataFrame(alist).set_index('filesystem') df2 = pd.DataFrame(data_list).set_index('filesystem') df = df1.merge(df2, left_index=True, right_index=True) data_list = df.T.to_dict() if self.debug: self.dp.v_debug("<<< End of " + self.__who_am_i()) # End of if self.debug: return data_list ''' End of def find_image_file(data, alist, binfile, debug=False): ''' def find_image_folder(self, data, folder, debug=False): ''' find_image_folder Args: data: contains the output from the running IOS command source: passing string with name of folder debug: passing Boolean to enable/disable debug ''' data_list = []
import gc import os import sys import utime from uhttp_signature.authed_urequests import make_validated_request, RequestError, SignatureException from pozetron_config import * from credentials import KEY_ID, HMAC_SECRET from logger import log, exc_logline if isinstance(KEY_ID, bytes): KEY_ID = KEY_ID.decode('utf-8') debug = False # Module name for references pozetron = sys.modules[__name__] # Was POST checkin successful? # See also post_checkin _on_startup_checkin_done = False last_refreshed_scripts = None last_checked_commands = None forget_network_time = None # Some commands must be executed before others (when processed as a batch) COMMAND_ORDER = { 'log_mode': 0, 'forget_network': 1, 'reboot': 2 } one_second = const(1000) one_minute = const(60000) five_minutes = const(300000) one_day = const(24*60*60*1000) def epilog(): # We're trying to be cooperative here. utime.sleep_ms(0) now = utime.ticks_ms() # In the case of an signature error (client or server) try update the system time in # case the clock has skewed significantly for attempt in range(3): try: # Check commands before refreshing scripts so reboot remains a viable failsafe if utime.ticks_diff(now, pozetron.last_checked_commands) > one_minute or pozetron.last_checked_commands is None: try: check_commands() pozetron.last_checked_commands = now flush_logs() except SignatureException as ex: raise ex except RequestError: pass if utime.ticks_diff(now, pozetron.last_refreshed_scripts) > one_minute or pozetron.last_refreshed_scripts is None: try: refresh_scripts() pozetron.last_refreshed_scripts = now flush_logs() except SignatureException as ex: raise ex except RequestError: pass except SignatureException: # Try to set the time through NTP, but not too hard try: import ntptime ntptime.settime() except: pass finally: ntptime = None del(ntptime) else: break # Wrapper for make_validated_request, for brevity def request(url, **kw): result = make_validated_request(url, KEY_ID, HMAC_SECRET, debug=debug, **kw) # Successful request -> we can disable backoff reset_backoff() return result # We must write "Failure sending logs..." message only once # until the next flush_logs success _logs_lost = False # This function does not raise def flush_logs(): global _logs_lost import logger url = API_BASE + '/logs/' try: if should_backoff(): return # If log is empty, then we don't have to flush anything if not logger.file_size: logs = logger._logs if len(logs) == 0: return else: try: if os.stat(logger._LOG_FILE)[6] == 0: # size == 0 return except OSError: # No file = no logs = no problem return # Post logs to API try: try: # NOTE: when API is available again after failure, this will not execute # if log is empty, until some other message is logged. if _logs_lost: request(url, method='POST', json=[{'text': 'Failure sending logs, truncated logs have been lost'}]) _logs_lost = False # TODO: In the future, find a way to compute the HMAC on the file rather piece by piece than after # loading the list to memory. if not logger.file_size: json = [{'text': x} for x in logger._logs] if logger._overflow_errors: json.append({'text': '{} failed writes to log file due to logger.file_size={}'.format(logger._overflow_errors, logger.file_size)}) request(url, method='POST', json=json) del json else: # If there are overflow errors we send them separately to make sure they get there. if logger._overflow_errors: json = [{'text': '{} failed writes to log file due to logger.file_size={}'.format(logger._overflow_errors, logger.file_size)}] request(url, method='POST', json=json) del json logger._overflow_errors = 0 # If there were no overflow errors we just send the log file. request(url, method='POST', in_file=logger._LOG_FILE) # Success - clear logs logger._overflow_errors = 0 logger._send_fails = 0 if not logger.file_size: logger._logs.clear() else: _truncate_file(logger._LOG_FILE) except RequestError as ex: # NOTE: API will accept logs even if they are corrupted print(ex) set_backoff() raise ex #finally: # Delete variable # The follow call to del causes: # MemoryError: memory allocation failed, allocating 1073672184 bytes #del logs except Exception as ex: log(exc_logline.format('send logs', ex)) logger._send_fails += 1 # If too many fails, reset log if logger._send_fails >= 3: clear_logs() _logs_lost = True except Exception as o: sys.print_exception(o) finally: del url del logger # No truncate() so we use a workaround. # Don't physically write if file is already empty, to save flash. def _truncate_file(filename): try: if os.stat(filename)[6] > 0: with open(filename, 'w'): pass except OSError: pass def clear_logs(): import logger logger._overflow_errors = 0 logger._send_fails = 0 logger._logs.clear() _truncate_file(logger._LOG_FILE) del logger # Exponential backoff: don't do requests to API for some time, # increasing that time after every subsequent failure. _backoff_until = None _backoff_factor = 0 _backoff_factor_max = 7 # max wait depends on this and on timeout below _backoff_timeout_ms = const(10000) # max wait is about 20 minutes def set_backoff(timeout=None): global _backoff_until, _backoff_factor if not timeout: # We randomize backoff period by 25% to avoid "thundering herd" problem import urandom timeout = (_backoff_timeout_ms * 2**_backoff_factor) * (1024 + (256 - urandom.getrandbits(9))) // 1024 del urandom # Increase backoff factor _backoff_factor = min(_backoff_factor + 1, _backoff_factor_max) # next try at (now + timeout) _backoff_until = utime.ticks_add(utime.ticks_ms(), timeout) # Return True if backoff is in effect and we should come later def should_backoff(): global _backoff_until if _backoff_until is None: return False diff = utime.ticks_diff(_backoff_until, utime.ticks_ms()) # Check for wrap around if not (-one_day < diff < one_day): diff = 0 # Are we still waiting? if diff > 0: return True # Reset wait, but don't reset factor. Factor is reset on first successful request. _backoff_until = None return False # Reset back-off mechanism after successful request. def reset_backoff(): global _backoff_factor _backoff_factor = 0 def makesubdir(path, subdir): # Replacement for os.makedirs if path[-1] != '/': path += '/' items = subdir.strip('/').split('/') for x in items: path += x + '/' try: os.mkdir(path) except OSError: pass del x, items def autocollect(function): def autocollect_decorator(*args, **kwargs): try: return function(*args, **kwargs) finally: gc.collect() return autocollect_decorator def post_checkin(): # Returns True if checkin is successful, False otherwise. global _on_startup_checkin_done if should_backoff(): return False try: request(API_BASE + '/checkin/', method='POST', data=' ') except RequestError as ex: print(exc_logline.format('post checkin', ex)) set_backoff() return False _on_startup_checkin_done = True return True @autocollect def on_startup(): # This function MUST be called once on device startup. post_checkin() #log('on_startup completed') def _reboot(): log('Rebooting') flush_logs() import machine machine.reset() @autocollect def check_commands(debug=pozetron.debug): # Get list of commands from server and execute them. global _on_startup_checkin_done, forget_network_time if not _on_startup_checkin_done: if not post_checkin(): return if should_backoff(): return try: commands = request(API_BASE + '/checkin/') # Because SignatureException is a type of RequestError we have to # catch it here and raise it explicitly. except SignatureException as ex: raise ex except RequestError as ex: print(ex) set_backoff() return commands = commands.json() import logger try: # Commands must be executed in a particular order if len(commands) > 1: commands.sort(key=lambda x: COMMAND_ORDER.get(x['type'], 0)) for command in commands: # set error=<str> and it will be reported to server error = '' if command['type'] == 'log_mode': # Log enable/disable old_send_logs = logger._send_logs logger._send_logs = command['data']['enable'] # If being disabled, flush remaining lines if old_send_logs and not logger._send_logs: flush_logs() # Change log mode new_size = None if command['data'].get('mode') == 'memory': new_size = 0 elif command['data'].get('mode') == 'file' and 'file_size' in command['data']: new_size = command['data']['file_size'] if new_size is not None and new_size != logger.file_size: # Flush unconditionally, to keep it simple. flush_logs() # Flush failed? Force clear. # (this is not relevant if mode is still "file") if logger._send_fails and (logger.file_size == 0 or new_size == 0): # memory <-> file clear_logs() logger.file_size = new_size # so that following line goes to new destination global _logs_lost _logs_lost = True logger.file_size = new_size del new_size if logger._send_logs != old_send_logs: log('Log mode enabled' if logger._send_logs else 'Log mode disabled') # Save log mode to file, to be used on next reboot _save_log_mode() elif command['type'] == 'reboot': # Make sure there is 1 second delay between forget-network and reboot if forget_network_time is not None: utime.sleep_ms(one_second - utime.ticks_diff(utime.ticks_ms(), forget_network_time)) _reboot() continue # reboot is special, we send confirmation AFTER reboot elif command['type'] == 'forget_network' and forget_network_time is None: try: os.remove('/network_config.py') forget_network_time = utime.ticks_ms() log('Removed network config') except OSError: # no file = do nothing print('forget-network is a no-op') else: error = 'Unknown command' # Confirm command execution request(API_BASE + '/command/', method='POST', json={ 'command': command, 'success': error == '', 'error': error }) finally: del logger def check_file_signature(in_file, signature, secret): try: from ubinascii import unhexlify import uhmac try: # Try and just read the entire file into memory to HMAC it hmac_instance = uhmac.new(unhexlify(secret), digestmod="sha256") content = in_file.read() hmac_instance.update(content) except MemoryError: try: del(hmac_instance) del(content) except NameError: pass hmac_instance = uhmac.new(unhexlify(secret), digestmod="sha256") # If we don't have enough memory to
an array or a tuple containing an array and a mask, depending on the value of ``filtered``. """ ids = origin['pore._id'][pores] return self._map(element='pore', ids=ids, filtered=filtered) def map_throats(self, throats, origin, filtered=True): r""" Given a list of throats on a target object, finds indices of those throats on the calling object Parameters ---------- throats : array_like The indices of the throats on the object specified in ``origin`` origin : OpenPNM Base object The object corresponding to the indices given in ``throats`` filtered : boolean (default is ``True``) If ``True`` then a ND-array of indices is returned with missing indices removed, otherwise a named-tuple containing both the ``indices`` and a boolean ``mask`` with ``False`` indicating which locations were not found. Returns ------- Throat indices on the calling object corresponding to the same throats on the target object. Can be an array or a tuple containing an array and a mask, depending on the value of ``filtered``. """ ids = origin['throat._id'][throats] return self._map(element='throat', ids=ids, filtered=filtered) def _tomask(self, indices, element): r""" This is a generalized version of tomask that accepts a string of 'pore' or 'throat' for programmatic access. """ element = self._parse_element(element, single=True) indices = self._parse_indices(indices) N = sp.shape(self[element + '.all'])[0] ind = sp.array(indices, ndmin=1) mask = sp.zeros((N, ), dtype=bool) mask[ind] = True return mask def tomask(self, pores=None, throats=None): r""" Convert a list of pore or throat indices into a boolean mask of the correct length Parameters ---------- pores or throats : array_like List of pore or throat indices. Only one of these can be specified at a time, and the returned result will be of the corresponding length. Returns ------- A boolean mask of length Np or Nt with True in the specified pore or throat locations. See Also -------- toindices Examples -------- >>> import openpnm as op >>> pn = op.network.Cubic(shape=[5, 5, 5]) >>> mask = pn.tomask(pores=[0, 10, 20]) >>> sum(mask) # 3 non-zero elements exist in the mask (0, 10 and 20) 3 >>> len(mask) # Mask size is equal to the number of pores in network 125 >>> mask = pn.tomask(throats=[0, 10, 20]) >>> len(mask) # Mask is now equal to number of throats in network 300 """ if (pores is not None) and (throats is None): mask = self._tomask(element='pore', indices=pores) elif (throats is not None) and (pores is None): mask = self._tomask(element='throat', indices=throats) else: raise Exception('Cannot specify both pores and throats') return mask def toindices(self, mask): r""" Convert a boolean mask to a list of pore or throat indices Parameters ---------- mask : array_like booleans A boolean array with True at locations where indices are desired. The appropriate indices are returned based an the length of mask, which must be either Np or Nt long. Returns ------- A list of pore or throat indices corresponding the locations where the received mask was True. See Also -------- tomask Notes ----- This behavior could just as easily be accomplished by using the mask in ``pn.pores()[mask]`` or ``pn.throats()[mask]``. This method is just a convenience function and is a complement to ``tomask``. """ if sp.amax(mask) > 1: raise Exception('Received mask is invalid, with values above 1') mask = sp.array(mask, dtype=bool) indices = self._parse_indices(mask) return indices def interleave_data(self, prop): r""" Retrieves requested property from associated objects, to produce a full Np or Nt length array. Parameters ---------- prop : string The property name to be retrieved Returns ------- A full length (Np or Nt) array of requested property values. Notes ----- This makes an effort to maintain the data 'type' when possible; however when data are missing this can be tricky. Data can be missing in two different ways: A set of pores is not assisgned to a geometry or the network contains multiple geometries and data does not exist on all. Float and boolean data is fine, but missing ints are converted to float when nans are inserted. Examples -------- >>> import openpnm as op >>> pn = op.network.Cubic(shape=[2, 2, 2]) >>> Ps = pn['pore.top'] >>> Ts = pn.find_neighbor_throats(pores=Ps) >>> g1 = op.geometry.GenericGeometry(network=pn, pores=Ps, throats=Ts) >>> Ts = ~pn.tomask(throats=Ts) >>> g2 = op.geometry.GenericGeometry(network=pn, pores=~Ps, throats=Ts) >>> g1['pore.value'] = 1 >>> print(g1['pore.value']) [1 1 1 1] >>> print(g2['pore.value']) # 'pore.value' is defined on g1, not g2 [nan nan nan nan] >>> print(pn['pore.value']) [nan 1. nan 1. nan 1. nan 1.] >>> g2['pore.value'] = 20 >>> print(pn['pore.value']) [20 1 20 1 20 1 20 1] >>> pn['pore.label'] = False >>> print(g1['pore.label']) # 'pore.label' is defined on pn, not g1 [False False False False] """ element = self._parse_element(prop.split('.')[0], single=True) N = self.project.network._count(element) # Fetch sources list depending on object type? proj = self.project if self._isa() in ['network', 'geometry']: sources = list(proj.geometries().values()) elif self._isa() in ['phase', 'physics']: sources = list(proj.find_physics(phase=self)) elif self._isa() in ['algorithm', 'base']: sources = [self] else: raise Exception('Unrecognized object type, cannot find dependents') # Attempt to fetch the requested array from each object arrs = [item.get(prop, None) for item in sources] locs = [self._get_indices(element, item.name) for item in sources] sizes = [sp.size(a) for a in arrs] if sp.all([item is None for item in arrs]): # prop not found anywhere raise KeyError(prop) # Check the general type of each array atype = [] for a in arrs: if a is not None: t = a.dtype.name if t.startswith('int') or t.startswith('float'): atype.append('numeric') elif t.startswith('bool'): atype.append('boolean') else: atype.append('other') if not all([item == atype[0] for item in atype]): raise Exception('The array types are not compatible') else: dummy_val = {'numeric': sp.nan, 'boolean': False, 'other': None} # Create an empty array of the right type and shape for item in arrs: if item is not None: if len(item.shape) == 1: temp_arr = sp.zeros((N, ), dtype=item.dtype) else: temp_arr = sp.zeros((N, item.shape[1]), dtype=item.dtype) temp_arr.fill(dummy_val[atype[0]]) # Convert int arrays to float IF NaNs are expected if temp_arr.dtype.name.startswith('int') and \ (sp.any([i is None for i in arrs]) or sp.sum(sizes) != N): temp_arr = temp_arr.astype(float) temp_arr.fill(sp.nan) # Fill new array with values in the corresponding locations for vals, inds in zip(arrs, locs): if vals is not None: temp_arr[inds] = vals else: temp_arr[inds] = dummy_val[atype[0]] # Check if any arrays have units, if so then apply them to result if any([hasattr(a, 'units') for a in arrs]): [a.convert_to_mks() for a in arrs if hasattr(a, 'units')] units = [a.units.__str__() for a in arrs if hasattr(a, 'units')] if len(units) > 0: if len(set(units)) == 1: temp_arr *= sp.array([1])*getattr(unyt, units[0]) else: raise Exception('Units on the interleaved array are not equal') return temp_arr def interpolate_data(self, propname): r""" Determines a pore (or throat) property as the average of it's neighboring throats (or pores) Parameters ---------- propname: string The dictionary key to the values to be interpolated. Returns ------- An array containing interpolated pore (or throat) data Notes ----- This uses an unweighted average, without attempting to account for distances or sizes of pores and throats. Examples -------- >>> import openpnm as op >>> pn = op.network.Cubic(shape=[3, 1, 1]) >>> pn['pore.value'] = [1, 2, 3] >>> pn.interpolate_data('pore.value') array([1.5, 2.5]) """ boss = self.project.find_full_domain(self) net = self.project.network if boss is self: Ts = boss.throats() Ps = boss.pores() label = 'all' else: Ts = boss.throats(self.name) Ps = boss.pores(self.name) label = self.name if propname.startswith('throat'): # Upcast data to full network size temp = sp.ones((boss.Nt,))*sp.nan temp[Ts] = self[propname] data = temp temp = sp.ones((boss.Np,))*sp.nan for pore in Ps: neighborTs = net.find_neighbor_throats(pore) neighborTs = net.filter_by_label(throats=neighborTs, labels=label) temp[pore] = sp.mean(data[neighborTs]) values = temp[Ps] elif propname.startswith('pore'): # Upcast data to full network size data = sp.ones((net.Np, ))*sp.nan data[Ps] = self[propname] Ps12 = net['throat.conns'][Ts] values = sp.mean(data[Ps12], axis=1) if hasattr(self[propname], 'units'): values *= self[propname].units return values def filter_by_label(self, pores=[], throats=[], labels=None, mode='or'): r""" Returns which of the supplied pores (or throats) has the specified label Parameters ---------- pores, or throats : array_like List of pores or throats to be filtered labels : list of strings The labels to apply as a filter
<gh_stars>0 from ..util import make_list from ..optimizers import LayerOptimizer from ..graphs import Link import numpy as np class Input(Link): def __init__(self, shape, name=None): self.Shape = shape # tensor shape without the minibatch dimension self.Values = None self.XGradSum = None self.Inputs = [] self.Layer = None self.Name = name def __str__(self): name = self.Name or "(unnamed)" return f"[Input {name} {self.Shape}]" def set(self, values): assert len(values.shape)-1 == len(self.Shape) # remove the minibatch dimension assert all(s is None or s == n for s, n in zip(self.Shape, values.shape[1:])), "Incompatible shape for input layer. Expected %s, got %s" % (('*',)+self.Shape, values.shape) self.Values = values self.XGradSum = np.zeros(values.shape) def compute(self): return self.Values def backprop(self, grads): self.XGradSum[...] += grads def reset_gradsients(self): self.XGradSum = None class Constant(Link): def __init__(self, value=None, name=None): self.Values = np.ones((1,)) if value is None else value self.Inputs = [] self.Layer = None self.Name = name def __str__(self): name = self.Name or "(unnamed)" return f"[Constant {name} {self.Value}]" def compute(self): return self.Value def backprop(self, grads): pass def reset_gradsients(self): pass class Layer(object): params = [] def __init__(self, name=None, activation=None): self.Name = name self.PGradSum = None self.NSamples = 0 self.Configured = False self.Params = [] self.StateInGradients = self.XGradients = self.WeightsGradients = None # saved for inofrmation purposes. Not used by the Layer itself if isinstance(activation, str): from ..activations import get_activation self.Activation = get_activation(activation) else: self.Activation = activation def __str__(self): return "[Layer %s %s]" % (self.__class__.__name__, self.Name or "") def link(self, *inputs): from ..graphs import Link if len(inputs) == 1: if isinstance(inputs[0], (list, tuple)): inputs = list(inputs[0]) else: inputs = [inputs[0]] else: inputs = list(inputs) #print(self, ".link(): inputs:", inputs) if not self.Configured: shape = self.configure(inputs) #print(" self.Shape -> ", self.Shape) self.Configured = True else: shape = self.check_configuration(inputs) lnk = Link(self, shape, inputs) if self.Activation is not None: assert isinstance(self.Activation, Layer) lnk = self.Activation.link([lnk]) return lnk __call__ = link def set_optimizer(self, param_optimizer): assert self.Configured, f"Layer {self}: Can not set layer optimizer before it is configured" self.Optimizer = LayerOptimizer(self.params, param_optimizer) def reset_gradients(self): #print("Layer.reset_gradients:", self) self.PGradSum = None self.NSamples = 0 def ____compute(self, xs, in_state): y, out_state, context = self.call(xs, in_state) if self.Activation is not None: z, _, a_context = self.Activation.call(y, None) # assume activation is stateless context = (context, y, a_context) y = z return y, out_state, context def ____backprop(self, ygrads, sgrads, xs, y, context): if self.Activation is not None: z = y y_context, y, a_context = context ygrads, _, _ = self.Activation.grads(ygrads, None, [y], z, a_context) # assumes activation is a stateless and param-less ygrads = ygrads[0] x_grads, p_grads, s_in_grads = self.grads(ygrads, sgrads, xs, y, y_context) else: x_grads, p_grads, s_in_grads = self.grads(ygrads, sgrads, xs, y, context) #print(self,".backprop: ygrads:", ygrads.shape, " pgrads:", [g.shape for g in p_grads] if p_grads else "-") nsamples = len(ygrads) if self.PGradSum is None: self.PGradSum = p_grads self.NSamples = nsamples else: for g, g1 in zip(self.PGradSum, p_grads): g[...] += g1 self.NSamples += nsamples return x_grads, s_in_grads def backprop(self, ygrads, sgrads, xs, y, context): x_grads, p_grads, s_in_grads = self.grads(ygrads, sgrads, xs, y, context) #print(self,".backprop: ygrads:", ygrads.shape, " pgrads:", [g.shape for g in p_grads] if p_grads else "-") nsamples = len(ygrads) if self.PGradSum is None: self.PGradSum = p_grads self.NSamples = nsamples else: for g, g1 in zip(self.PGradSum, p_grads): g[...] += g1 self.NSamples += nsamples #print(self, ".backprop: pgardsum:", self.PGradSum) #print(self, ".backprop: ygrads:", ygrads, " -> x_grads:", x_grads) self.XGradients = x_grads # saved for inofrmation purposes. Not used by the Layer itself self.StateInGradients = s_in_grads # saved for inofrmation purposes. Not used by the Layer itself return x_grads, s_in_grads def apply_deltas(self): deltas = None self.WeightsGradients = None if self.PGradSum is None else [g.copy() for g in self.PGradSum] # saved for inofrmation purposes. Not used by the Layer itself if self.PGradSum is not None and self.NSamples > 0: #grads = [g/self.NSamples for g in self.PGradSum] deltas = self.Optimizer.apply_deltas(self.PGradSum, self.params) self.reset_gradients() self.Deltas = deltas return deltas def set_weights(self, weights): if not self.Configured: raise RuntimeError("Layer is not configured") self._set_weights(weights) # overridables def _set_weights(self, weights): raise NotImplementedError() def get_weights(self): return [w.copy() for w in self.params] def configure(self, inputs): raise NotImplementedError() pass # return shape def check_configuration(self, inputs): pass # return shape def compute(self, inputs, in_state): raise NotImplementedError(f"Layer {self.__class__.__name__} does not implement compute() method") return y, out_state, context def grads(self, y_grads, s_out_grads, xs, y, context): # y_grads: [mb, ...] - dL/dy[j] # returns: # x_grads : [mb, ...] - grad per sample # p_grad : [...] - sum of grad over the minibatch # s_in_grads : [mb, ...] - grad per sample raise NotImplementedError() return x_grads, p_grads, s_in_grads def check_gradients(self, input_shapes, minibatch=1, attempts=1000, xs = None, state_in="init", include_state=True, include_value=True, tolerance=0.001, relative_tolerance = 0.01, delta = 1.0e-4): import numpy as np import random def tolerated(g1, g2): g12 = (g1+g2)/2 return abs(g1-g2) < tolerance or \ g12 != 0 and abs(g1-g2)/g12 < relative_tolerance def loss_y_and_s(y, s): if s is None: return np.sum(y), np.ones(y.shape), None else: s_is_list = isinstance(s, (list, tuple)) if s_is_list: ssum = sum(np.sum(si) for si in s) sgrads = [np.ones(si.shape) for si in s] else: ssum = np.sum(s) sgrads = np.ones(s.shape) return np.sum(y) + ssum, np.ones(y.shape), sgrads def loss_s_only(y, s): s_is_list = isinstance(s, (list, tuple)) if s_is_list: ssum = sum(np.sum(si) for si in s) sgrads = [np.ones(si.shape) for si in s] else: ssum = np.sum(s) sgrads = np.ones(s.shape) return ssum, np.zeros(y.shape), sgrads def loss_y_only(y, s): return np.sum(y), np.ones(y.shape), None from gradnet import Input # input shapes are shapes without the minibatch dimension input_shapes = make_list(input_shapes) inputs = [Input(s) for s in input_shapes] link = self.link(inputs) out_shape = link.Shape weights = self.get_weights() #print("check_grads: weights:", weights) xs = make_list(xs) if xs is None: x0s = [np.random.random((minibatch,)+s)*2-1 for s in input_shapes] else: x0s = xs #x0s = [np.ones((1,)+s) for s in input_shapes] w0s = [w.copy() for w in weights] if state_in == "init": _, s_in_0, _ = self.compute(x0s, None) # just to get a sample of a possible input state else: s_in_0 = state_in #s_in_0[...] = 0.0 y0, s_out_0, context = self.compute(x0s, s_in_0) #print("y0=", y0) #print("s_out_0=", s_out_0) loss = loss_y_only if not include_state else \ (loss_s_only if not include_value else loss_y_and_s) l0, dldy, dlds = loss(y0, s_out_0) #print("check_gradients: dldy:", dldy.shape) #print("check_gradients: x0s:", [x.shape for x in x0s]) # # have the layer colculate gradients # x_grads, w_grads, s_in_grads = self.grads(dldy, dlds, x0s, y0, context) #print("check_grads: point gradients:") #print(" x:", x_grads) #print(" w:", w_grads) #print(" s:", s_in_grads) x_errors = w_errors = s_errors = 0 # # X gradients # for t in range(attempts): x1s = [x.copy() for x in x0s] i = random.randint(0, len(x1s)-1) xi = x1s[i] xif = xi.reshape((-1,)) n = xif.shape[-1] j = random.randint(0, n-1) inx = np.unravel_index(j, xi.shape) xif[j] += delta y1, s_out, _ = self.compute(x1s, s_in_0) l1, _, _ = loss(y1, s_out) #print("y1:", y1) #print("x1s:", x1s) #print("Loss values", l0, l1) dldx = (l1-l0)/delta # compare to the gradients returned by the layer grad_i = x_grads[i] dldx_l = grad_i[inx] if not tolerated(dldx_l,dldx): print(f"==== Detected difference in dL/dx[{i}][{inx}]: computed:{dldx_l}, numericaly calculated:{dldx}") x_errors += 1 # # Weights gradients # if w_grads: for t in range(attempts): w1s = [w.copy() for w in w0s] i = random.randint(0, len(w1s)-1) wi = w1s[i] wif = wi.reshape((-1,)) n = wif.shape[-1] j = random.randint(0, n-1) inx = np.unravel_index(j, wi.shape) wif[j] += delta self.set_weights(w1s) y1, s_out, _ = self.compute(x0s, s_in_0) l1, _, _ = loss(y1, s_out) self.set_weights(w0s) dldw = (l1-l0)/delta # compare to the gradients returned by the layer grad_i = w_grads[i] #print("check_grads: i=",i," grad_i=", grad_i.shape, " inx=", inx) dldw_l = grad_i[inx] if not tolerated(dldw_l, dldw): print(f"==== Detected difference in dL/dw[{i}][{inx}]: computed:{dldw_l}, numericaly calculated:{dldw}") w_errors += 1 # # Input state gradients # if s_in_0 is not None and s_in_grads
from __future__ import annotations import logging import os import pytest zict = pytest.importorskip("zict") from packaging.version import parse as parse_version from dask.sizeof import sizeof from distributed.compatibility import WINDOWS from distributed.protocol import serialize_bytelist from distributed.spill import SpillBuffer from distributed.utils_test import captured_logger def psize(*objs) -> tuple[int, int]: return ( sum(sizeof(o) for o in objs), sum(len(frame) for obj in objs for frame in serialize_bytelist(obj)), ) def test_spillbuffer(tmpdir): buf = SpillBuffer(str(tmpdir), target=300) # Convenience aliases assert buf.memory is buf.fast assert buf.disk is buf.slow assert not buf.slow.weight_by_key assert buf.slow.total_weight == (0, 0) assert buf.spilled_total == (0, 0) a, b, c, d = "a" * 100, "b" * 99, "c" * 98, "d" * 97 # Test assumption made by this test, mostly for non CPython implementations assert 100 < sizeof(a) < 200 assert psize(a)[0] != psize(a)[1] buf["a"] = a assert not buf.slow assert buf.fast.weights == {"a": sizeof(a)} assert buf.fast.total_weight == sizeof(a) assert buf.slow.weight_by_key == {} assert buf.slow.total_weight == (0, 0) assert buf["a"] == a buf["b"] = b assert not buf.slow assert not buf.slow.weight_by_key assert buf.slow.total_weight == (0, 0) buf["c"] = c assert set(buf.slow) == {"a"} assert buf.slow.weight_by_key == {"a": psize(a)} assert buf.slow.total_weight == psize(a) assert buf["a"] == a assert set(buf.slow) == {"b"} assert buf.slow.weight_by_key == {"b": psize(b)} assert buf.slow.total_weight == psize(b) buf["d"] = d assert set(buf.slow) == {"b", "c"} assert buf.slow.weight_by_key == {"b": psize(b), "c": psize(c)} assert buf.slow.total_weight == psize(b, c) # Deleting an in-memory key does not automatically move spilled keys back to memory del buf["a"] assert set(buf.slow) == {"b", "c"} assert buf.slow.weight_by_key == {"b": psize(b), "c": psize(c)} assert buf.slow.total_weight == psize(b, c) with pytest.raises(KeyError): buf["a"] # Deleting a spilled key updates the metadata del buf["b"] assert set(buf.slow) == {"c"} assert buf.slow.weight_by_key == {"c": psize(c)} assert buf.slow.total_weight == psize(c) with pytest.raises(KeyError): buf["b"] # Updating a spilled key moves it to the top of the LRU and to memory buf["c"] = c * 2 assert set(buf.slow) == {"d"} assert buf.slow.weight_by_key == {"d": psize(d)} assert buf.slow.total_weight == psize(d) # Single key is larger than target and goes directly into slow e = "e" * 500 buf["e"] = e assert set(buf.slow) == {"d", "e"} assert buf.slow.weight_by_key == {"d": psize(d), "e": psize(e)} assert buf.slow.total_weight == psize(d, e) # Updating a spilled key with another larger than target updates slow directly d = "d" * 500 buf["d"] = d assert set(buf.slow) == {"d", "e"} assert buf.slow.weight_by_key == {"d": psize(d), "e": psize(e)} assert buf.slow.total_weight == psize(d, e) requires_zict_210 = pytest.mark.skipif( parse_version(zict.__version__) <= parse_version("2.0.0"), reason="requires zict version > 2.0.0", ) @requires_zict_210 def test_spillbuffer_maxlim(tmpdir): buf = SpillBuffer(str(tmpdir), target=200, max_spill=600, min_log_interval=0) a, b, c, d, e = "a" * 200, "b" * 100, "c" * 99, "d" * 199, "e" * 98 # size of a is bigger than target and is smaller than max_spill; # key should be in slow buf["a"] = a assert not buf.fast assert not buf.fast.weights assert set(buf.slow) == {"a"} assert buf.slow.weight_by_key == {"a": psize(a)} assert buf.slow.total_weight == psize(a) assert buf["a"] == a # size of b is smaller than target key should be in fast buf["b"] = b assert set(buf.fast) == {"b"} assert buf.fast.weights == {"b": sizeof(b)} assert buf["b"] == b assert buf.fast.total_weight == sizeof(b) # size of c is smaller than target but b+c > target, c should stay in fast and b # move to slow since the max_spill limit has not been reached yet buf["c"] = c assert set(buf.fast) == {"c"} assert buf.fast.weights == {"c": sizeof(c)} assert buf["c"] == c assert buf.fast.total_weight == sizeof(c) assert set(buf.slow) == {"a", "b"} assert buf.slow.weight_by_key == {"a": psize(a), "b": psize(b)} assert buf.slow.total_weight == psize(a, b) # size of e < target but e+c > target, this will trigger movement of c to slow # but the max spill limit prevents it. Resulting in e remaining in fast with captured_logger(logging.getLogger("distributed.spill")) as logs_e: buf["e"] = e assert "disk reached capacity" in logs_e.getvalue() assert set(buf.fast) == {"c", "e"} assert buf.fast.weights == {"c": sizeof(c), "e": sizeof(e)} assert buf["e"] == e assert buf.fast.total_weight == sizeof(c) + sizeof(e) assert set(buf.slow) == {"a", "b"} assert buf.slow.weight_by_key == {"a": psize(a), "b": psize(b)} assert buf.slow.total_weight == psize(a, b) # size of d > target, d should go to slow but slow reached the max_spill limit then # d will end up on fast with c (which can't be move to slow because it won't fit # either) with captured_logger(logging.getLogger("distributed.spill")) as logs_d: buf["d"] = d assert "disk reached capacity" in logs_d.getvalue() assert set(buf.fast) == {"c", "d", "e"} assert buf.fast.weights == {"c": sizeof(c), "d": sizeof(d), "e": sizeof(e)} assert buf["d"] == d assert buf.fast.total_weight == sizeof(c) + sizeof(d) + sizeof(e) assert set(buf.slow) == {"a", "b"} assert buf.slow.weight_by_key == {"a": psize(a), "b": psize(b)} assert buf.slow.total_weight == psize(a, b) # Overwrite a key that was in slow, but the size of the new key is larger than # max_spill a_large = "a" * 500 assert psize(a_large)[1] > 600 # size of max_spill with captured_logger(logging.getLogger("distributed.spill")) as logs_alarge: buf["a"] = a_large assert "disk reached capacity" in logs_alarge.getvalue() assert set(buf.fast) == {"a", "d", "e"} assert set(buf.slow) == {"b", "c"} assert buf.fast.total_weight == sizeof(d) + sizeof(a_large) + sizeof(e) assert buf.slow.total_weight == psize(b, c) # Overwrite a key that was in fast, but the size of the new key is larger than # max_spill d_large = "d" * 501 with captured_logger(logging.getLogger("distributed.spill")) as logs_dlarge: buf["d"] = d_large assert "disk reached capacity" in logs_dlarge.getvalue() assert set(buf.fast) == {"a", "d", "e"} assert set(buf.slow) == {"b", "c"} assert buf.fast.total_weight == sizeof(a_large) + sizeof(d_large) + sizeof(e) assert buf.slow.total_weight == psize(b, c) class MyError(Exception): pass class Bad: def __init__(self, size): self.size = size def __getstate__(self): raise MyError() def __sizeof__(self): return self.size @requires_zict_210 def test_spillbuffer_fail_to_serialize(tmpdir): buf = SpillBuffer(str(tmpdir), target=200, max_spill=600, min_log_interval=0) # bad data individually larger than spill threshold target 200 a = Bad(size=201) # Exception caught in the worker with pytest.raises(TypeError, match="Could not serialize"): with captured_logger(logging.getLogger("distributed.spill")) as logs_bad_key: buf["a"] = a # spill.py must remain silent because we're already logging in worker.py assert not logs_bad_key.getvalue() assert not set(buf.fast) assert not set(buf.slow) b = Bad(size=100) # this is small enough to fit in memory/fast buf["b"] = b assert set(buf.fast) == {"b"} c = "c" * 100 with captured_logger(logging.getLogger("distributed.spill")) as logs_bad_key_mem: # This will go to fast and try to kick b out, # but keep b in fast since it's not pickable buf["c"] = c # worker.py won't intercept the exception here, so spill.py must dump the traceback logs_value = logs_bad_key_mem.getvalue() assert "Failed to pickle" in logs_value # from distributed.spill assert "Traceback" in logs_value # from distributed.spill assert set(buf.fast) == {"b", "c"} assert buf.fast.total_weight == sizeof(b) + sizeof(c) assert not set(buf.slow) @requires_zict_210 @pytest.mark.skipif(WINDOWS, reason="Needs chmod") def test_spillbuffer_oserror(tmpdir): buf = SpillBuffer(str(tmpdir), target=200, max_spill=800, min_log_interval=0) a, b, c, d = ( "a" * 200, "b" * 100, "c" * 201, "d" * 101, ) # let's have something in fast and something in slow buf["a"] = a buf["b"] = b assert set(buf.fast) == {"b"} assert set(buf.slow) == {"a"} # modify permissions of disk to be read only. # This causes writes to raise OSError, just like in case of disk full. os.chmod(tmpdir, 0o555) # Add key > than target with captured_logger(logging.getLogger("distributed.spill")) as logs_oserror_slow: buf["c"] = c assert "Spill to disk failed" in logs_oserror_slow.getvalue() assert set(buf.fast) == {"b", "c"} assert set(buf.slow) == {"a"} assert buf.slow.weight_by_key == {"a": psize(a)} assert buf.fast.weights == {"b": sizeof(b), "c": sizeof(c)} del buf["c"] assert set(buf.fast) == {"b"} assert set(buf.slow) == {"a"} # add key to fast which is smaller than target but when added it triggers spill, # which triggers OSError with captured_logger(logging.getLogger("distributed.spill")) as logs_oserror_evict: buf["d"] = d assert "Spill to disk failed" in logs_oserror_evict.getvalue() assert set(buf.fast) == {"b", "d"} assert set(buf.slow) == {"a"} assert buf.slow.weight_by_key == {"a": psize(a)} assert buf.fast.weights == {"b": sizeof(b), "d": sizeof(d)} @requires_zict_210 def test_spillbuffer_evict(tmpdir): buf = SpillBuffer(str(tmpdir), target=300, min_log_interval=0) a_bad = Bad(size=100) a = "a" * 100 buf["a"] = a assert set(buf.fast) == {"a"} assert not set(buf.slow) assert buf.fast.weights == {"a": sizeof(a)} # successful eviction weight = buf.evict() assert weight == sizeof(a) assert not buf.fast
<filename>tests/staticfiles_tests/test_storage.py<gh_stars>1-10 import json import os import shutil import sys import tempfile import unittest from io import StringIO from pathlib import Path from unittest import mock from django.conf import settings from django.contrib.staticfiles import finders, storage from django.contrib.staticfiles.management.commands.collectstatic import ( Command as CollectstaticCommand, ) from django.core.management import call_command from django.test import SimpleTestCase, override_settings from .cases import CollectionTestCase from .settings import TEST_ROOT def hashed_file_path(test, path): fullpath = test.render_template(test.static_template_snippet(path)) return fullpath.replace(settings.STATIC_URL, '') class TestHashedFiles: hashed_file_path = hashed_file_path def tearDown(self): # Clear hashed files to avoid side effects among tests. storage.staticfiles_storage.hashed_files.clear() def assertPostCondition(self): """ Assert post conditions for a test are met. Must be manually called at the end of each test. """ pass def test_template_tag_return(self): self.assertStaticRaises(ValueError, "does/not/exist.png", "/static/does/not/exist.png") self.assertStaticRenders("test/file.txt", "/static/test/file.dad0999e4f8f.txt") self.assertStaticRenders("test/file.txt", "/static/test/file.dad0999e4f8f.txt", asvar=True) self.assertStaticRenders("cached/styles.css", "/static/cached/styles.5e0040571e1a.css") self.assertStaticRenders("path/", "/static/path/") self.assertStaticRenders("path/?query", "/static/path/?query") self.assertPostCondition() def test_template_tag_simple_content(self): relpath = self.hashed_file_path("cached/styles.css") self.assertEqual(relpath, "cached/styles.5e0040571e1a.css") with storage.staticfiles_storage.open(relpath) as relfile: content = relfile.read() self.assertNotIn(b"cached/other.css", content) self.assertIn(b"other.d41d8cd98f00.css", content) self.assertPostCondition() def test_path_ignored_completely(self): relpath = self.hashed_file_path("cached/css/ignored.css") self.assertEqual(relpath, "cached/css/ignored.554da52152af.css") with storage.staticfiles_storage.open(relpath) as relfile: content = relfile.read() self.assertIn(b'#foobar', content) self.assertIn(b'http:foobar', content) self.assertIn(b'https:foobar', content) self.assertIn(b'data:foobar', content) self.assertIn(b'chrome:foobar', content) self.assertIn(b'//foobar', content) self.assertPostCondition() def test_path_with_querystring(self): relpath = self.hashed_file_path("cached/styles.css?spam=eggs") self.assertEqual(relpath, "cached/styles.5e0040571e1a.css?spam=eggs") with storage.staticfiles_storage.open("cached/styles.5e0040571e1a.css") as relfile: content = relfile.read() self.assertNotIn(b"cached/other.css", content) self.assertIn(b"other.d41d8cd98f00.css", content) self.assertPostCondition() def test_path_with_fragment(self): relpath = self.hashed_file_path("cached/styles.css#eggs") self.assertEqual(relpath, "cached/styles.5e0040571e1a.css#eggs") with storage.staticfiles_storage.open("cached/styles.5e0040571e1a.css") as relfile: content = relfile.read() self.assertNotIn(b"cached/other.css", content) self.assertIn(b"other.d41d8cd98f00.css", content) self.assertPostCondition() def test_path_with_querystring_and_fragment(self): relpath = self.hashed_file_path("cached/css/fragments.css") self.assertEqual(relpath, "cached/css/fragments.a60c0e74834f.css") with storage.staticfiles_storage.open(relpath) as relfile: content = relfile.read() self.assertIn(b'fonts/font.b9b105392eb8.eot?#iefix', content) self.assertIn(b'fonts/font.b8d603e42714.svg#webfontIyfZbseF', content) self.assertIn(b'fonts/font.b8d603e42714.svg#path/to/../../fonts/font.svg', content) self.assertIn(b'data:font/woff;charset=utf-8;base64,d09GRgABAAAAADJoAA0AAAAAR2QAAQAAAAAAAAAAAAA', content) self.assertIn(b'#default#VML', content) self.assertPostCondition() def test_template_tag_absolute(self): relpath = self.hashed_file_path("cached/absolute.css") self.assertEqual(relpath, "cached/absolute.eb04def9f9a4.css") with storage.staticfiles_storage.open(relpath) as relfile: content = relfile.read() self.assertNotIn(b"/static/cached/styles.css", content) self.assertIn(b"/static/cached/styles.5e0040571e1a.css", content) self.assertNotIn(b"/static/styles_root.css", content) self.assertIn(b"/static/styles_root.401f2509a628.css", content) self.assertIn(b'/static/cached/img/relative.acae32e4532b.png', content) self.assertPostCondition() def test_template_tag_absolute_root(self): """ Like test_template_tag_absolute, but for a file in STATIC_ROOT (#26249). """ relpath = self.hashed_file_path("absolute_root.css") self.assertEqual(relpath, "absolute_root.f821df1b64f7.css") with storage.staticfiles_storage.open(relpath) as relfile: content = relfile.read() self.assertNotIn(b"/static/styles_root.css", content) self.assertIn(b"/static/styles_root.401f2509a628.css", content) self.assertPostCondition() def test_template_tag_relative(self): relpath = self.hashed_file_path("cached/relative.css") self.assertEqual(relpath, "cached/relative.c3e9e1ea6f2e.css") with storage.staticfiles_storage.open(relpath) as relfile: content = relfile.read() self.assertNotIn(b"../cached/styles.css", content) self.assertNotIn(b'@import "styles.css"', content) self.assertNotIn(b'url(img/relative.png)', content) self.assertIn(b'url("img/relative.acae32e4532b.png")', content) self.assertIn(b"../cached/styles.5e0040571e1a.css", content) self.assertPostCondition() def test_import_replacement(self): "See #18050" relpath = self.hashed_file_path("cached/import.css") self.assertEqual(relpath, "cached/import.f53576679e5a.css") with storage.staticfiles_storage.open(relpath) as relfile: self.assertIn(b"""import url("styles.5e0040571e1a.css")""", relfile.read()) self.assertPostCondition() def test_template_tag_deep_relative(self): relpath = self.hashed_file_path("cached/css/window.css") self.assertEqual(relpath, "cached/css/window.5d5c10836967.css") with storage.staticfiles_storage.open(relpath) as relfile: content = relfile.read() self.assertNotIn(b'url(img/window.png)', content) self.assertIn(b'url("img/window.acae32e4532b.png")', content) self.assertPostCondition() def test_template_tag_url(self): relpath = self.hashed_file_path("cached/url.css") self.assertEqual(relpath, "cached/url.902310b73412.css") with storage.staticfiles_storage.open(relpath) as relfile: self.assertIn(b"https://", relfile.read()) self.assertPostCondition() def test_module_import(self): relpath = self.hashed_file_path('cached/module.js') self.assertEqual(relpath, 'cached/module.91b9cf9935da.js') tests = [ # Relative imports. b'import testConst from "./module_test.d489af3cf882.js";', b'import relativeModule from "../nested/js/nested.866475c46bb4.js";', b'import { firstConst, secondConst } from "./module_test.d489af3cf882.js";', # Absolute import. b'import rootConst from "/static/absolute_root.5586327fe78c.js";', # Dynamic import. b'const dynamicModule = import("./module_test.d489af3cf882.js");', # Creating a module object. b'import * as NewModule from "./module_test.d489af3cf882.js";', # Aliases. b'import { testConst as alias } from "./module_test.d489af3cf882.js";', b'import {\n' b' firstVar as firstVarAlias,\n' b' secondVar as secondVarAlias\n' b'} from "./module_test.d489af3cf882.js";', ] with storage.staticfiles_storage.open(relpath) as relfile: content = relfile.read() for module_import in tests: with self.subTest(module_import=module_import): self.assertIn(module_import, content) self.assertPostCondition() def test_aggregating_modules(self): relpath = self.hashed_file_path('cached/module.js') self.assertEqual(relpath, 'cached/module.91b9cf9935da.js') tests = [ b'export * from "./module_test.d489af3cf882.js";', b'export { testConst } from "./module_test.d489af3cf882.js";', b'export {\n' b' firstVar as firstVarAlias,\n' b' secondVar as secondVarAlias\n' b'} from "./module_test.d489af3cf882.js";', ] with storage.staticfiles_storage.open(relpath) as relfile: content = relfile.read() for module_import in tests: with self.subTest(module_import=module_import): self.assertIn(module_import, content) self.assertPostCondition() @override_settings( STATICFILES_DIRS=[os.path.join(TEST_ROOT, 'project', 'loop')], STATICFILES_FINDERS=['django.contrib.staticfiles.finders.FileSystemFinder'], ) def test_import_loop(self): finders.get_finder.cache_clear() err = StringIO() with self.assertRaisesMessage(RuntimeError, 'Max post-process passes exceeded'): call_command('collectstatic', interactive=False, verbosity=0, stderr=err) self.assertEqual("Post-processing 'All' failed!\n\n", err.getvalue()) self.assertPostCondition() def test_post_processing(self): """ post_processing behaves correctly. Files that are alterable should always be post-processed; files that aren't should be skipped. collectstatic has already been called once in setUp() for this testcase, therefore we check by verifying behavior on a second run. """ collectstatic_args = { 'interactive': False, 'verbosity': 0, 'link': False, 'clear': False, 'dry_run': False, 'post_process': True, 'use_default_ignore_patterns': True, 'ignore_patterns': ['*.ignoreme'], } collectstatic_cmd = CollectstaticCommand() collectstatic_cmd.set_options(**collectstatic_args) stats = collectstatic_cmd.collect() self.assertIn(os.path.join('cached', 'css', 'window.css'), stats['post_processed']) self.assertIn(os.path.join('cached', 'css', 'img', 'window.png'), stats['unmodified']) self.assertIn(os.path.join('test', 'nonascii.css'), stats['post_processed']) # No file should be yielded twice. self.assertCountEqual(stats['post_processed'], set(stats['post_processed'])) self.assertPostCondition() def test_css_import_case_insensitive(self): relpath = self.hashed_file_path("cached/styles_insensitive.css") self.assertEqual(relpath, "cached/styles_insensitive.3fa427592a53.css") with storage.staticfiles_storage.open(relpath) as relfile: content = relfile.read() self.assertNotIn(b"cached/other.css", content) self.assertIn(b"other.d41d8cd98f00.css", content) self.assertPostCondition() def test_js_source_map(self): relpath = self.hashed_file_path('cached/source_map.js') self.assertEqual(relpath, 'cached/source_map.9371cbb02a26.js') with storage.staticfiles_storage.open(relpath) as relfile: content = relfile.read() self.assertNotIn(b'//# sourceMappingURL=source_map.js.map', content) self.assertIn( b'//# sourceMappingURL=source_map.js.99914b932bd3.map', content, ) self.assertPostCondition() def test_js_source_map_sensitive(self): relpath = self.hashed_file_path('cached/source_map_sensitive.js') self.assertEqual(relpath, 'cached/source_map_sensitive.5da96fdd3cb3.js') with storage.staticfiles_storage.open(relpath) as relfile: content = relfile.read() self.assertIn(b'//# sOuRcEMaPpInGURL=source_map.js.map', content) self.assertNotIn( b'//# sourceMappingURL=source_map.js.99914b932bd3.map', content, ) self.assertPostCondition() @override_settings( STATICFILES_DIRS=[os.path.join(TEST_ROOT, 'project', 'faulty')], STATICFILES_FINDERS=['django.contrib.staticfiles.finders.FileSystemFinder'], ) def test_post_processing_failure(self): """ post_processing indicates the origin of the error when it fails. """ finders.get_finder.cache_clear() err = StringIO() with self.assertRaises(Exception): call_command('collectstatic', interactive=False, verbosity=0, stderr=err) self.assertEqual("Post-processing 'faulty.css' failed!\n\n", err.getvalue()) self.assertPostCondition() @override_settings(STATICFILES_STORAGE='staticfiles_tests.storage.ExtraPatternsStorage') class TestExtraPatternsStorage(CollectionTestCase): def setUp(self): storage.staticfiles_storage.hashed_files.clear() # avoid cache interference super().setUp() def cached_file_path(self, path): fullpath = self.render_template(self.static_template_snippet(path)) return fullpath.replace(settings.STATIC_URL, '') def test_multi_extension_patterns(self): """ With storage classes having several file extension patterns, only the files matching a specific file pattern should be affected by the substitution (#19670). """ # CSS files shouldn't be touched by JS patterns. relpath = self.cached_file_path("cached/import.css") self.assertEqual(relpath, "cached/import.f53576679e5a.css") with storage.staticfiles_storage.open(relpath) as relfile: self.assertIn(b'import url("styles.5e0040571e1a.css")', relfile.read()) # Confirm JS patterns have been applied to JS files. relpath = self.cached_file_path("cached/test.js") self.assertEqual(relpath, "cached/test.388d7a790d46.js") with storage.staticfiles_storage.open(relpath) as relfile: self.assertIn(b'JS_URL("import.f53576679e5a.css")', relfile.read()) @override_settings( STATICFILES_STORAGE='django.contrib.staticfiles.storage.ManifestStaticFilesStorage', ) class TestCollectionManifestStorage(TestHashedFiles, CollectionTestCase): """ Tests for the Cache busting storage """ def setUp(self): super().setUp() temp_dir = tempfile.mkdtemp() os.makedirs(os.path.join(temp_dir, 'test')) self._clear_filename = os.path.join(temp_dir, 'test', 'cleared.txt') with open(self._clear_filename, 'w') as f: f.write('to be deleted in one test') self.patched_settings = self.settings( STATICFILES_DIRS=settings.STATICFILES_DIRS + [temp_dir], ) self.patched_settings.enable() self.addCleanup(shutil.rmtree, temp_dir) self._manifest_strict = storage.staticfiles_storage.manifest_strict def tearDown(self): self.patched_settings.disable() if os.path.exists(self._clear_filename): os.unlink(self._clear_filename) storage.staticfiles_storage.manifest_strict = self._manifest_strict super().tearDown() def assertPostCondition(self): hashed_files = storage.staticfiles_storage.hashed_files # The in-memory version of the manifest matches the one on disk # since a properly created manifest should cover all filenames. if hashed_files: manifest = storage.staticfiles_storage.load_manifest() self.assertEqual(hashed_files, manifest) def test_manifest_exists(self): filename = storage.staticfiles_storage.manifest_name path = storage.staticfiles_storage.path(filename) self.assertTrue(os.path.exists(path)) def test_manifest_does_not_exist(self): storage.staticfiles_storage.manifest_name = 'does.not.exist.json' self.assertIsNone(storage.staticfiles_storage.read_manifest()) def test_manifest_does_not_ignore_permission_error(self): with mock.patch('builtins.open', side_effect=PermissionError): with self.assertRaises(PermissionError): storage.staticfiles_storage.read_manifest() def test_loaded_cache(self): self.assertNotEqual(storage.staticfiles_storage.hashed_files, {}) manifest_content = storage.staticfiles_storage.read_manifest() self.assertIn( '"version": "%s"' % storage.staticfiles_storage.manifest_version, manifest_content ) def test_parse_cache(self): hashed_files = storage.staticfiles_storage.hashed_files manifest = storage.staticfiles_storage.load_manifest() self.assertEqual(hashed_files, manifest) def test_clear_empties_manifest(self): cleared_file_name = storage.staticfiles_storage.clean_name(os.path.join('test', 'cleared.txt')) # collect the additional file self.run_collectstatic() hashed_files = storage.staticfiles_storage.hashed_files self.assertIn(cleared_file_name, hashed_files) manifest_content = storage.staticfiles_storage.load_manifest() self.assertIn(cleared_file_name, manifest_content) original_path = storage.staticfiles_storage.path(cleared_file_name) self.assertTrue(os.path.exists(original_path)) # delete the original file form the app, collect with clear os.unlink(self._clear_filename) self.run_collectstatic(clear=True) self.assertFileNotFound(original_path) hashed_files = storage.staticfiles_storage.hashed_files self.assertNotIn(cleared_file_name, hashed_files) manifest_content = storage.staticfiles_storage.load_manifest() self.assertNotIn(cleared_file_name, manifest_content) def test_missing_entry(self): missing_file_name = 'cached/missing.css' configured_storage = storage.staticfiles_storage self.assertNotIn(missing_file_name, configured_storage.hashed_files) # File name not found in manifest with self.assertRaisesMessage(ValueError, "Missing staticfiles manifest entry for '%s'" % missing_file_name): self.hashed_file_path(missing_file_name) configured_storage.manifest_strict = False # File doesn't exist on disk err_msg = "The file '%s' could not be found with %r." % (missing_file_name, configured_storage._wrapped) with self.assertRaisesMessage(ValueError, err_msg): self.hashed_file_path(missing_file_name) content = StringIO() content.write('Found') configured_storage.save(missing_file_name, content) # File exists on disk self.hashed_file_path(missing_file_name) def test_intermediate_files(self): cached_files = os.listdir(os.path.join(settings.STATIC_ROOT, 'cached')) # Intermediate files shouldn't be created for reference. self.assertEqual( len([ cached_file for cached_file in cached_files if cached_file.startswith('relative.') ]), 2, ) @override_settings(STATICFILES_STORAGE='staticfiles_tests.storage.NoneHashStorage') class TestCollectionNoneHashStorage(CollectionTestCase): hashed_file_path = hashed_file_path def test_hashed_name(self): relpath = self.hashed_file_path('cached/styles.css') self.assertEqual(relpath, 'cached/styles.css') @override_settings( STATICFILES_STORAGE='staticfiles_tests.storage.NoPostProcessReplacedPathStorage' ) class TestCollectionNoPostProcessReplacedPaths(CollectionTestCase): run_collectstatic_in_setUp = False def test_collectstatistic_no_post_process_replaced_paths(self): stdout = StringIO() self.run_collectstatic(verbosity=1, stdout=stdout) self.assertIn('post-processed', stdout.getvalue()) @override_settings(STATICFILES_STORAGE='staticfiles_tests.storage.SimpleStorage') class TestCollectionSimpleStorage(CollectionTestCase): hashed_file_path = hashed_file_path def setUp(self): storage.staticfiles_storage.hashed_files.clear() # avoid cache interference super().setUp() def test_template_tag_return(self): self.assertStaticRaises(ValueError, "does/not/exist.png", "/static/does/not/exist.png") self.assertStaticRenders("test/file.txt", "/static/test/file.deploy12345.txt") self.assertStaticRenders("cached/styles.css", "/static/cached/styles.deploy12345.css") self.assertStaticRenders("path/", "/static/path/") self.assertStaticRenders("path/?query", "/static/path/?query") def test_template_tag_simple_content(self): relpath = self.hashed_file_path("cached/styles.css") self.assertEqual(relpath, "cached/styles.deploy12345.css") with storage.staticfiles_storage.open(relpath) as relfile: content = relfile.read() self.assertNotIn(b"cached/other.css", content) self.assertIn(b"other.deploy12345.css", content) class CustomManifestStorage(storage.ManifestStaticFilesStorage): def __init__(self, *args, manifest_storage=None, **kwargs): manifest_storage = storage.StaticFilesStorage( location=kwargs.pop('manifest_location'), ) super().__init__(*args, manifest_storage=manifest_storage, **kwargs) class TestCustomManifestStorage(SimpleTestCase): def setUp(self): self.manifest_path = Path(tempfile.mkdtemp()) self.addCleanup(shutil.rmtree, self.manifest_path) self.staticfiles_storage = CustomManifestStorage( manifest_location=self.manifest_path, ) self.manifest_file = self.manifest_path / self.staticfiles_storage.manifest_name # Manifest without paths. self.manifest = {'version': self.staticfiles_storage.manifest_version} with self.manifest_file.open('w') as manifest_file: json.dump(self.manifest, manifest_file) def test_read_manifest(self): self.assertEqual( self.staticfiles_storage.read_manifest(), json.dumps(self.manifest), ) def test_read_manifest_nonexistent(self): os.remove(self.manifest_file) self.assertIsNone(self.staticfiles_storage.read_manifest()) def test_save_manifest_override(self): self.assertIs(self.manifest_file.exists(), True) self.staticfiles_storage.save_manifest() self.assertIs(self.manifest_file.exists(), True) new_manifest = json.loads(self.staticfiles_storage.read_manifest()) self.assertIn('paths', new_manifest) self.assertNotEqual(new_manifest, self.manifest) def test_save_manifest_create(self): os.remove(self.manifest_file) self.staticfiles_storage.save_manifest() self.assertIs(self.manifest_file.exists(), True) new_manifest = json.loads(self.staticfiles_storage.read_manifest()) self.assertIn('paths', new_manifest) self.assertNotEqual(new_manifest, self.manifest) class CustomStaticFilesStorage(storage.StaticFilesStorage): """ Used in TestStaticFilePermissions """ def __init__(self, *args, **kwargs): kwargs['file_permissions_mode'] = 0o640 kwargs['directory_permissions_mode'] = 0o740 super().__init__(*args, **kwargs) @unittest.skipIf(sys.platform == 'win32', "Windows only partially supports chmod.") class TestStaticFilePermissions(CollectionTestCase): command_params = { 'interactive': False, 'verbosity': 0, 'ignore_patterns': ['*.ignoreme'], } def setUp(self): self.umask = 0o027 self.old_umask = os.umask(self.umask) super().setUp() def tearDown(self): os.umask(self.old_umask) super().tearDown() # Don't run
= self.axial_data neck_rot_vert, neck_rot_horz = self.neck_rot truk_rot_vert, truk_rot_horz = self.trunk_rot center = self.MapVar.center lumbar = center sacrum = lumbar - FNS.vert_up(truk_rot_horz, truk_rot_vert, 10) thorax = lumbar + FNS.vert_up(truk_rot_horz, truk_rot_vert, 30) cervic = thorax + FNS.vert_up(truk_rot_horz, truk_rot_vert, 10) base = cervic + FNS.vert_up(truk_rot_horz + neck_rot_horz, truk_rot_vert + neck_rot_vert, 5) left_pectoral = thorax + FNS.latr_left(truk_rot_horz, 0, 10) right_pectoral = thorax + FNS.latr_right(truk_rot_horz, 0, 10) left_pelvic = sacrum + FNS.latr_left(0, 0, 5) right_pelvic = sacrum + FNS.latr_right(0, 0, 5) column = np.transpose(np.array((base, cervic, thorax, lumbar, sacrum)), (1, 0)) pectoral = np.transpose(np.array((left_pectoral, thorax, right_pectoral)), (1, 0)) pelvic = np.transpose(np.array((left_pelvic, sacrum, right_pelvic)), (1, 0)) return column, pectoral, pelvic # draw positions of column segments def column_plt(self, column, pectoral, pelvic): self.MapVar.column.set_data(column[0], column[1]) self.MapVar.column.set_3d_properties(column[2]) self.MapVar.pectoral.set_data(pectoral[0], pectoral[1]) self.MapVar.pectoral.set_3d_properties(pectoral[2]) self.MapVar.pelvic.set_data(pelvic[0], pelvic[1]) self.MapVar.pelvic.set_3d_properties(pelvic[2]) cervic = (column[0][1], column[1][1], column[2][1]) sacrum = (column[0][4], column[1][4], column[2][4]) CoM = (column[0][3], column[1][3], column[2][3]) column_jnt = np.transpose(np.array((cervic, sacrum)), (1, 0)) self.MapVar.column_jnt.set_data(column_jnt[0], column_jnt[1]) self.MapVar.column_jnt.set_3d_properties(column_jnt[2]) self.MapVar.CoM.set_data(CoM[0], CoM[1]) self.MapVar.CoM.set_3d_properties(CoM[2]) # compute positions of shoulders elbows and wrists of upper limbs def uplimb_cpt(self, shift): FNS = self.FNS pectoral = self.column_cpt(shift)[1] left_shoulder = np.array((pectoral[0][0], pectoral[1][0], pectoral[2][0])) right_shoulder = np.array((pectoral[0][2], pectoral[1][2], pectoral[2][2])) if shift == 0: (left_shoul_rot_vert, left_shoul_rot_horz), (left_elbow_rot_vert, left_elbow_rot_horz), \ (left_wrist_rot_vert, left_wrist_rot_horz) = self.uplimb_rot[0] (right_shoul_rot_vert, right_shoul_rot_horz), (right_elbow_rot_vert, right_elbow_rot_horz), \ (right_wrist_rot_vert, right_wrist_rot_horz) = self.uplimb_rot[1] else: self.uplimb_rot = self.append_data[0] (left_shoul_rot_vert, left_shoul_rot_horz), (left_elbow_rot_vert, left_elbow_rot_horz), \ (left_wrist_rot_vert, left_wrist_rot_horz) = self.uplimb_rot[0] (right_shoul_rot_vert, right_shoul_rot_horz), (right_elbow_rot_vert, right_elbow_rot_horz), \ (right_wrist_rot_vert, right_wrist_rot_horz) = self.uplimb_rot[1] left_elbow = left_shoulder + FNS.vert_down(left_shoul_rot_horz, left_shoul_rot_vert, 15) left_wrist = left_elbow + FNS.vert_down(left_shoul_rot_horz, left_shoul_rot_vert + left_elbow_rot_vert, 10) left_hand = left_wrist + FNS.vert_down(left_shoul_rot_horz, left_shoul_rot_vert + left_elbow_rot_vert + left_wrist_rot_vert, 5) right_elbow = right_shoulder + FNS.vert_down(right_shoul_rot_horz, right_shoul_rot_vert, 15) right_wrist = right_elbow + FNS.vert_down(right_shoul_rot_horz, right_shoul_rot_vert + right_elbow_rot_vert, 10) right_hand = right_wrist + FNS.vert_down(right_shoul_rot_horz, right_shoul_rot_vert + right_elbow_rot_vert + right_wrist_rot_vert, 5) left_limb = np.transpose(np.array((left_shoulder, left_elbow, left_wrist, left_hand)), (1, 0)) right_limb = np.transpose(np.array((right_shoulder, right_elbow, right_wrist, right_hand)), (1, 0)) return left_limb, right_limb # draw positions of upper limbs def uplimb_plt(self, left_uplimb, right_uplimb): self.MapVar.left_uplimb.set_data(left_uplimb[0], left_uplimb[1]) self.MapVar.left_uplimb.set_3d_properties(left_uplimb[2]) left_shoul = (left_uplimb[0][0], left_uplimb[1][0], left_uplimb[2][0]) left_elbow = (left_uplimb[0][1], left_uplimb[1][1], left_uplimb[2][1]) left_wrist = (left_uplimb[0][2], left_uplimb[1][2], left_uplimb[2][2]) left_uplimb_jnt = np.transpose(np.array((left_shoul, left_elbow, left_wrist)), (1, 0)) self.MapVar.left_uplimb_jnt.set_data(left_uplimb_jnt[0], left_uplimb_jnt[1]) self.MapVar.left_uplimb_jnt.set_3d_properties(left_uplimb_jnt[2]) self.MapVar.right_uplimb.set_data(right_uplimb[0], right_uplimb[1]) self.MapVar.right_uplimb.set_3d_properties(right_uplimb[2]) right_shoul = (right_uplimb[0][0], right_uplimb[1][0], right_uplimb[2][0]) right_elbow = (right_uplimb[0][1], right_uplimb[1][1], right_uplimb[2][1]) right_wrist = (right_uplimb[0][2], right_uplimb[1][2], right_uplimb[2][2]) right_uplimb_jnt = np.transpose(np.array((right_shoul, right_elbow, right_wrist)), (1, 0)) self.MapVar.right_uplimb_jnt.set_data(right_uplimb_jnt[0], right_uplimb_jnt[1]) self.MapVar.right_uplimb_jnt.set_3d_properties(right_uplimb_jnt[2]) # compute positions of hips, knees and ankles of lower limbs def lowlimb_cpt(self, shift): FNS = self.FNS pelvic = self.column_cpt(shift)[2] left_hip = np.array((pelvic[0][0], pelvic[1][0], pelvic[2][0])) right_hip = np.array((pelvic[0][2], pelvic[1][2], pelvic[2][2])) if shift == 0: (left_hip_rot_vert, left_hip_rot_horz), (left_knee_rot_vert, left_knee_rot_horz), \ (left_ankle_rot_vert, left_ankle_rot_horz) = self.lowlimb_rot[0] (right_hip_rot_vert, right_hip_rot_horz), (right_knee_rot_vert, right_knee_rot_horz), \ (right_ankle_rot_vert, right_ankle_rot_horz) = self.lowlimb_rot[1] else: self.lowlimb_rot = self.append_data[1] (left_hip_rot_vert, left_hip_rot_horz), (left_knee_rot_vert, left_knee_rot_horz), \ (left_ankle_rot_vert, left_ankle_rot_horz) = self.lowlimb_rot[0] (right_hip_rot_vert, right_hip_rot_horz), (right_knee_rot_vert, right_knee_rot_horz), \ (right_ankle_rot_vert, right_ankle_rot_horz) = self.lowlimb_rot[1] left_knee = left_hip + FNS.vert_down(left_hip_rot_horz, left_hip_rot_vert, 20) left_ankle = left_knee + FNS.vert_down(left_hip_rot_horz, left_hip_rot_vert + left_knee_rot_vert, 15) left_foot = left_ankle + FNS.vert_down(left_hip_rot_horz, left_hip_rot_vert + left_knee_rot_vert + left_ankle_rot_vert + np.pi / 2, 5) left_limb = np.transpose(np.array((left_hip, left_knee, left_ankle, left_foot)), (1, 0)) right_knee = right_hip + FNS.vert_down(right_hip_rot_horz, right_hip_rot_vert, 20) right_ankle = right_knee + FNS.vert_down(right_hip_rot_horz, right_hip_rot_vert + right_knee_rot_vert, 15) right_foot = right_ankle + FNS.vert_down(right_hip_rot_horz, right_hip_rot_vert + right_knee_rot_vert + right_ankle_rot_vert + np.pi / 2, 5) right_limb = np.transpose(np.array((right_hip, right_knee, right_ankle, right_foot)), (1, 0)) return left_limb, right_limb # draw positions of lower limbs def lowlimb_plt(self, left_lowlimb, right_lowlimb): self.MapVar.left_lowlimb.set_data(left_lowlimb[0], left_lowlimb[1]) self.MapVar.left_lowlimb.set_3d_properties(left_lowlimb[2]) left_hip = (left_lowlimb[0][0], left_lowlimb[1][0], left_lowlimb[2][0]) left_knee = (left_lowlimb[0][1], left_lowlimb[1][1], left_lowlimb[2][1]) left_ankle = (left_lowlimb[0][2], left_lowlimb[1][2], left_lowlimb[2][2]) left_lowlimb_jnt = np.transpose(np.array((left_hip, left_knee, left_ankle)), (1, 0)) self.MapVar.left_lowlimb_jnt.set_data(left_lowlimb_jnt[0], left_lowlimb_jnt[1]) self.MapVar.left_lowlimb_jnt.set_3d_properties(left_lowlimb_jnt[2]) self.MapVar.right_lowlimb.set_data(right_lowlimb[0], right_lowlimb[1]) self.MapVar.right_lowlimb.set_3d_properties(right_lowlimb[2]) right_hip = (right_lowlimb[0][0], right_lowlimb[1][0], right_lowlimb[2][0]) right_knee = (right_lowlimb[0][1], right_lowlimb[1][1], right_lowlimb[2][1]) right_ankle = (right_lowlimb[0][2], right_lowlimb[1][2], right_lowlimb[2][2]) right_lowlimb_jnt = np.transpose(np.array((right_hip, right_knee, right_ankle)), (1, 0)) self.MapVar.right_lowlimb_jnt.set_data(right_lowlimb_jnt[0], right_lowlimb_jnt[1]) self.MapVar.right_lowlimb_jnt.set_3d_properties(right_lowlimb_jnt[2]) # test if shift of CoM would cause either feet into ground def lowlimb_tst(self, shift): FNS = self.FNS neck_rot_vert, neck_rot_horz = self.axial_data[0] truk_rot_vert, truk_rot_horz = self.axial_data[1] center = self.MapVar.origin - shift sacrum = center - FNS.vert_up(truk_rot_horz, truk_rot_vert, 10) lumbar = center thorax = center + FNS.vert_up(truk_rot_horz, truk_rot_vert, 30) cervic = thorax + FNS.vert_up(truk_rot_horz, truk_rot_vert, 10) base = cervic + FNS.vert_up(truk_rot_horz + neck_rot_horz, truk_rot_vert + neck_rot_vert, 5) left_hip = sacrum + FNS.latr_left(0, 0, 5) right_hip = sacrum + FNS.latr_right(0, 0, 5) (left_hip_rot_vert, left_hip_rot_horz), (left_knee_rot_vert, left_knee_rot_horz), \ (left_ankle_rot_vert, left_ankle_rot_horz) = self.append_data[1][0] (right_hip_rot_vert, right_hip_rot_horz), (right_knee_rot_vert, right_knee_rot_horz), \ (right_ankle_rot_vert, right_ankle_rot_horz) = self.append_data[1][1] left_knee = left_hip + FNS.vert_down(left_hip_rot_horz, left_hip_rot_vert, 20) left_ankle = left_knee + FNS.vert_down(left_hip_rot_horz, left_hip_rot_vert + left_knee_rot_vert, 15) left_foot = left_ankle + FNS.vert_down(left_hip_rot_horz, left_hip_rot_vert + left_knee_rot_vert + left_ankle_rot_vert + np.pi / 2, 5) right_knee = right_hip + FNS.vert_down(right_hip_rot_horz, right_hip_rot_vert, 20) right_ankle = right_knee + FNS.vert_down(right_hip_rot_horz, right_hip_rot_vert + right_knee_rot_vert, 15) right_foot = right_ankle + FNS.vert_down(right_hip_rot_horz, right_hip_rot_vert + right_knee_rot_vert + right_ankle_rot_vert + np.pi / 2, 5) return left_foot, right_foot # compute external torque for force of gravity and ground reaction force from joint positions of lower limbs def ext_forc(self, shift): FNS = self.FNS dep = 0.2 * self.default fof = np.zeros((2, 3, 2)) grf = np.zeros((2, 3, 2)) base, cervic, thorax, lumbar, sacrum = np.transpose(self.column_cpt(shift)[0], (1, 0)) left_hip, left_knee, left_ankle, left_foot = np.transpose(self.lowlimb_cpt(shift)[0], (1, 0)) right_hip, right_knee, right_ankle, right_foot = np.transpose(self.lowlimb_cpt(shift)[1], (1, 0)) # magnitude of external force mass = (50 + 5 + 20) * 0.001 # moment arm of force of gravity CoM = np.array((lumbar[0], lumbar[1], left_hip[2])) moment = np.linalg.norm(left_hip - CoM) fof[0][0][0] = moment * mass CoM = np.array((lumbar[0], lumbar[1], left_knee[2])) moment = np.linalg.norm(left_knee - CoM) fof[0][1][0] = moment * mass CoM = np.array((lumbar[0], lumbar[1], left_ankle[2])) moment = np.linalg.norm(left_ankle - CoM) fof[0][2][0] = moment * mass CoM = np.array((lumbar[0], lumbar[1], right_hip[2])) moment = np.linalg.norm(right_hip - CoM) fof[1][0][0] = moment * mass CoM = np.array((lumbar[0], lumbar[1], right_knee[2])) moment = np.linalg.norm(right_knee - CoM) fof[1][1][0] = moment * mass CoM = np.array((lumbar[0], lumbar[1], right_ankle[2])) moment = np.linalg.norm(right_ankle - CoM) fof[1][2][0] = moment * mass self.MapVar.fof = fof # moment arm of ground reaction force left_cond = FNS.delta_fn(FNS.cond_fn(left_ankle[2], -dep), 1) right_cond = FNS.delta_fn(FNS.cond_fn(right_ankle[2], -dep), 1) # both feet on ground if left_cond == 1 and right_cond == 1: mid_dist = np.linalg.norm(left_ankle - right_ankle) / 2 cent = left_ankle + 0.5 * (right_ankle - left_ankle) CoP = np.array((cent[0], cent[1], left_ankle[2])) moment = np.linalg.norm(left_ankle - CoP) grf[0][2][0] = moment * mass CoP = np.array((cent[0], cent[1], left_knee[2])) moment = np.linalg.norm(left_knee - CoP) grf[0][1][0] = moment * mass CoP = np.array((cent[0], cent[1], left_hip[2])) moment = np.linalg.norm(left_hip - CoP) grf[0][0][0] = moment * mass CoP = np.array((cent[0], cent[1], right_ankle[2])) moment = np.linalg.norm(right_ankle - CoP) grf[1][2][0] = moment * mass CoP = np.array((cent[0], cent[1], right_knee[2])) moment = np.linalg.norm(right_knee - CoP) grf[1][1][0] = moment * mass CoP = np.array((cent[0], cent[1], right_hip[2])) moment = np.linalg.norm(right_hip - CoP) grf[1][0][0] = moment * mass # only left foot on ground if left_cond == 1 and right_cond != 1: CoP = np.array((left_ankle[0], left_ankle[1], left_ankle[2])) moment = np.linalg.norm(left_ankle - CoP) grf[0][2][0] = moment * mass CoP = np.array((left_ankle[0], left_ankle[1], left_knee[2])) moment = np.linalg.norm(left_knee - CoP) grf[0][1][0] = moment * mass CoP = np.array((left_ankle[0], left_ankle[1], left_hip[2])) moment = np.linalg.norm(left_hip - CoP) grf[0][0][0] = moment * mass # only right foot on ground if left_cond != 1 and right_cond == 1: CoP = np.array((right_ankle[0], right_ankle[1], right_ankle[2])) moment = np.linalg.norm(right_ankle - CoP) grf[1][2][0] = moment * mass CoP = np.array((right_ankle[0], right_ankle[1], right_knee[2])) moment = np.linalg.norm(right_knee - CoP) grf[1][1][0] = moment * mass CoP = np.array((right_ankle[0], right_ankle[1], right_hip[2])) moment = np.linalg.norm(right_hip - CoP) grf[1][0][0] = moment * mass self.MapVar.grf = grf # compute muscle origins and insertions of column muscles def col_cpt(self, shift): FNS = self.FNS if shift == 0: neck_rot_vert, neck_rot_horz = self.neck_rot truk_rot_vert, truk_rot_horz = self.trunk_rot else: self.neck_rot, self.trunk_rot = self.axial_data neck_rot_vert, neck_rot_horz = self.neck_rot truk_rot_vert, truk_rot_horz = self.trunk_rot base, cervic, thorax, lumbar, sacrum = np.transpose(self.column_cpt(shift)[0], (1, 0)) # compute muscle origins of neck muscles base_plane = FNS.transv_plane(base, truk_rot_horz + neck_rot_horz, truk_rot_vert + neck_rot_vert, 2) base_left = base + FNS.latr_left(truk_rot_horz + neck_rot_horz, 0, 2) base_right = base + FNS.latr_right(truk_rot_horz + neck_rot_horz, 0, 2) base_front = base + FNS.latr_front(truk_rot_horz + neck_rot_horz, truk_rot_vert + neck_rot_vert, 2) base_back = base
vbox.Add( self._test_script_management, CC.FLAGS_EXPAND_PERPENDICULAR ) vbox.Add( self._test_arg, CC.FLAGS_EXPAND_PERPENDICULAR ) vbox.Add( self._fetch_data, CC.FLAGS_EXPAND_PERPENDICULAR ) vbox.Add( self._example_data, CC.FLAGS_EXPAND_BOTH_WAYS ) vbox.Add( self._test_parsing, CC.FLAGS_EXPAND_PERPENDICULAR ) vbox.Add( self._results, CC.FLAGS_EXPAND_BOTH_WAYS ) test_panel.SetSizer( vbox ) # vbox = wx.BoxSizer( wx.VERTICAL ) vbox.Add( info_st, CC.FLAGS_EXPAND_BOTH_WAYS ) info_panel.SetSizer( vbox ) # notebook.AddPage( edit_panel, 'edit', select = True ) notebook.AddPage( test_panel, 'test', select = False ) notebook.AddPage( info_panel, 'info', select = False ) vbox = wx.BoxSizer( wx.VERTICAL ) vbox.Add( notebook, CC.FLAGS_EXPAND_SIZER_BOTH_WAYS ) self.SetSizer( vbox ) def EventFetchData( self, event ): script = self.GetValue() test_arg = self._test_arg.GetValue() file_identifier_type = self._file_identifier_type.GetChoice() if file_identifier_type == ClientParsing.FILE_IDENTIFIER_TYPE_FILE: if not os.path.exists( test_arg ): wx.MessageBox( 'That file does not exist!' ) return file_identifier = test_arg elif file_identifier_type == ClientParsing.FILE_IDENTIFIER_TYPE_USER_INPUT: file_identifier = test_arg else: file_identifier = test_arg.decode( 'hex' ) try: stop_time = HydrusData.GetNow() + 30 job_key = ClientThreading.JobKey( cancellable = True, stop_time = stop_time ) self._test_script_management.SetJobKey( job_key ) example_data = script.FetchData( job_key, file_identifier ) try: self._example_data.SetValue( example_data ) except UnicodeDecodeError: self._example_data.SetValue( 'The fetched data, which had length ' + HydrusData.ConvertIntToBytes( len( example_data ) ) + ', did not appear to be displayable text.' ) except Exception as e: HydrusData.ShowException( e ) message = 'Could not fetch data!' message += os.linesep * 2 message += HydrusData.ToUnicode( e ) wx.MessageBox( message ) finally: job_key.Finish() def EventTestParse( self, event ): def wx_code( results ): if not self: return result_lines = [ '*** ' + HydrusData.ConvertIntToPrettyString( len( results ) ) + ' RESULTS BEGIN ***' ] result_lines.extend( ( ClientParsing.ConvertParseResultToPrettyString( result ) for result in results ) ) result_lines.append( '*** RESULTS END ***' ) results_text = os.linesep.join( result_lines ) self._results.SetValue( results_text ) def do_it( script, job_key, data ): try: results = script.Parse( job_key, data ) wx.CallAfter( wx_code, results ) except Exception as e: HydrusData.ShowException( e ) message = 'Could not parse!' wx.CallAfter( wx.MessageBox, message ) finally: job_key.Finish() script = self.GetValue() stop_time = HydrusData.GetNow() + 30 job_key = ClientThreading.JobKey( cancellable = True, stop_time = stop_time ) self._test_script_management.SetJobKey( job_key ) data = self._example_data.GetValue() HG.client_controller.CallToThread( do_it, script, job_key, data ) def GetExampleData( self ): return self._example_data.GetValue() def GetExampleURL( self ): return self._url.GetValue() def GetValue( self ): name = self._name.GetValue() url = self._url.GetValue() query_type = self._query_type.GetChoice() file_identifier_type = self._file_identifier_type.GetChoice() file_identifier_string_converter = self._file_identifier_string_converter.GetValue() file_identifier_arg_name = self._file_identifier_arg_name.GetValue() static_args = self._static_args.GetValue() children = self._children.GetValue() script = ClientParsing.ParseRootFileLookup( name, url = url, query_type = query_type, file_identifier_type = file_identifier_type, file_identifier_string_converter = file_identifier_string_converter, file_identifier_arg_name = file_identifier_arg_name, static_args = static_args, children = children ) return script class EditStringConverterPanel( ClientGUIScrolledPanels.EditPanel ): def __init__( self, parent, string_converter, example_string_override = None ): ClientGUIScrolledPanels.EditPanel.__init__( self, parent ) transformations_panel = ClientGUIListCtrl.BetterListCtrlPanel( self ) self._transformations = ClientGUIListCtrl.BetterListCtrl( transformations_panel, 'string_converter_transformations', 7, 35, [ ( '#', 3 ), ( 'transformation', 30 ), ( 'result', -1 ) ], self._ConvertTransformationToListCtrlTuple, delete_key_callback = self._DeleteTransformation, activation_callback = self._EditTransformation ) transformations_panel.SetListCtrl( self._transformations ) transformations_panel.AddButton( 'add', self._AddTransformation ) transformations_panel.AddButton( 'edit', self._EditTransformation, enabled_only_on_selection = True ) transformations_panel.AddButton( 'delete', self._DeleteTransformation, enabled_only_on_selection = True ) transformations_panel.AddSeparator() transformations_panel.AddButton( 'move up', self._MoveUp, enabled_check_func = self._CanMoveUp ) transformations_panel.AddButton( 'move down', self._MoveDown, enabled_check_func = self._CanMoveDown ) self._example_string = wx.TextCtrl( self ) # self._transformations.AddDatas( [ ( i + 1, transformation_type, data ) for ( i, ( transformation_type, data ) ) in enumerate( string_converter.transformations ) ] ) if example_string_override is None: self._example_string.SetValue( string_converter.example_string ) else: self._example_string.SetValue( example_string_override ) self._transformations.UpdateDatas() # to refresh, now they are all in the list self._transformations.Sort( 0 ) # rows = [] rows.append( ( 'example string: ', self._example_string ) ) gridbox = ClientGUICommon.WrapInGrid( self, rows ) vbox = wx.BoxSizer( wx.VERTICAL ) vbox.Add( transformations_panel, CC.FLAGS_EXPAND_BOTH_WAYS ) vbox.Add( gridbox, CC.FLAGS_EXPAND_PERPENDICULAR ) self.SetSizer( vbox ) # self._example_string.Bind( wx.EVT_TEXT, self.EventUpdate ) def _AddTransformation( self ): transformation_type = ClientParsing.STRING_TRANSFORMATION_APPEND_TEXT data = ' extra text' with ClientGUITopLevelWindows.DialogEdit( self, 'edit transformation', frame_key = 'deeply_nested_dialog' ) as dlg: panel = self._TransformationPanel( dlg, transformation_type, data ) dlg.SetPanel( panel ) if dlg.ShowModal() == wx.ID_OK: number = self._transformations.GetItemCount() + 1 ( transformation_type, data ) = panel.GetValue() enumerated_transformation = ( number, transformation_type, data ) self._transformations.AddDatas( ( enumerated_transformation, ) ) self._transformations.UpdateDatas() # need to refresh string after the insertion, so the new row can be included in the parsing calcs self._transformations.Sort() def _CanMoveDown( self ): selected_data = self._transformations.GetData( only_selected = True ) if len( selected_data ) == 1: ( number, transformation_type, data ) = selected_data[0] if number < self._transformations.GetItemCount(): return True return False def _CanMoveUp( self ): selected_data = self._transformations.GetData( only_selected = True ) if len( selected_data ) == 1: ( number, transformation_type, data ) = selected_data[0] if number > 1: return True return False def _ConvertTransformationToListCtrlTuple( self, transformation ): ( number, transformation_type, data ) = transformation pretty_number = HydrusData.ConvertIntToPrettyString( number ) pretty_transformation = ClientParsing.StringConverter.TransformationToUnicode( ( transformation_type, data ) ) string_converter = self._GetValue() try: pretty_result = ClientParsing.MakeParsedTextPretty( string_converter.Convert( self._example_string.GetValue(), number ) ) except HydrusExceptions.StringConvertException as e: pretty_result = str( e ) display_tuple = ( pretty_number, pretty_transformation, pretty_result ) sort_tuple = ( number, number, number ) return ( display_tuple, sort_tuple ) def _DeleteTransformation( self ): if len( self._transformations.GetData( only_selected = True ) ) > 0: with ClientGUIDialogs.DialogYesNo( self, 'Delete all selected?' ) as dlg: if dlg.ShowModal() == wx.ID_YES: self._transformations.DeleteSelected() # now we need to shuffle up any missing numbers num_rows = self._transformations.GetItemCount() i = 1 search_i = i while i <= num_rows: try: transformation = self._GetTransformation( search_i ) if search_i != i: self._transformations.DeleteDatas( ( transformation, ) ) ( search_i, transformation_type, data ) = transformation transformation = ( i, transformation_type, data ) self._transformations.AddDatas( ( transformation, ) ) i += 1 search_i = i except HydrusExceptions.DataMissing: search_i += 1 self._transformations.UpdateDatas() self._transformations.Sort() def _EditTransformation( self ): selected_data = self._transformations.GetData( only_selected = True ) for enumerated_transformation in selected_data: ( number, transformation_type, data ) = enumerated_transformation with ClientGUITopLevelWindows.DialogEdit( self, 'edit transformation', frame_key = 'deeply_nested_dialog' ) as dlg: panel = self._TransformationPanel( dlg, transformation_type, data ) dlg.SetPanel( panel ) if dlg.ShowModal() == wx.ID_OK: self._transformations.DeleteDatas( ( enumerated_transformation, ) ) ( transformation_type, data ) = panel.GetValue() enumerated_transformation = ( number, transformation_type, data ) self._transformations.AddDatas( ( enumerated_transformation, ) ) else: break self._transformations.UpdateDatas() self._transformations.Sort() def _GetTransformation( self, desired_number ): for transformation in self._transformations.GetData(): ( number, transformation_type, data ) = transformation if number == desired_number: return transformation raise HydrusExceptions.DataMissing() def _GetValue( self ): enumerated_transformations = list( self._transformations.GetData() ) enumerated_transformations.sort() transformations = [ ( transformation_type, data ) for ( number, transformation_type, data ) in enumerated_transformations ] example_string = self._example_string.GetValue() string_converter = ClientParsing.StringConverter( transformations, example_string ) return string_converter def _MoveDown( self ): selected_transformation = self._transformations.GetData( only_selected = True )[0] ( number, transformation_type, data ) = selected_transformation swap_transformation = self._GetTransformation( number + 1 ) self._SwapTransformations( selected_transformation, swap_transformation ) self._transformations.UpdateDatas() self._transformations.Sort()
= [] for topic in topic_names: topic_prefix = '/rostopic_pub%s_' % topic node_names = self.master_info.node_names for n in node_names: if n.startswith(topic_prefix): nodes2stop.append(n) self.stop_nodes_by_name(nodes2stop) def _show_topic_output(self, show_hz_only, use_ssh=False, topics=[]): ''' Shows the output of the topic in a terminal. ''' selected_topics = topics if not selected_topics: selected_topics = self.topicsFromIndexes(self.ui.topicsView.selectionModel().selectedIndexes()) ret = True if len(selected_topics) > 5: ret = MessageBox.question(self, "Show echo", "You are going to open the echo of " + utf8(len(selected_topics)) + " topics at once\nContinue?", buttons=MessageBox.Ok | MessageBox.Cancel) ret = (ret == MessageBox.Ok) if ret: for topic in selected_topics: self._add_topic_output2queue(topic, show_hz_only, use_ssh) def show_topic_output(self, topic_name, show_hz_only, use_ssh=False): ''' Shows the topic output in a new window. ''' if self.master_info is not None: topic = self.master_info.getTopic("%s" % topic_name) if topic is not None: self._add_topic_output2queue(topic, show_hz_only, use_ssh) else: rospy.logwarn("topic not found: %s" % topic_name) def _add_topic_output2queue(self, topic, show_hz_only, use_ssh=False): try: namespace = rospy.names.namespace(topic.name) nodename = os.path.basename(topic.name) namespace = '/echo_%s%s%s%s' % ('hz_' if show_hz_only else '', 'ssh_' if use_ssh else '', utf8(get_hostname(self.masteruri)), namespace) args = [] # subscription parameter args.append("--echo %s %s %s %s" % (topic.name, topic.type, '--hz' if show_hz_only else '', '--ssh' if use_ssh else '')) args.append("__ns:=%s" % namespace) self._progress_queue.add2queue(utf8(uuid.uuid4()), 'start subcriber for %s' % topic.name, nm.starter().runNodeWithoutConfig, {'host': 'localhost', 'package': 'fkie_node_manager', 'binary': 'node_manager', 'name': nodename, 'args': args, 'masteruri': self.masteruri, 'use_nmd': False, 'auto_pw_request': False, 'user': self.current_user }) self._start_queue(self._progress_queue) self.__echo_topics_dialogs.add(rospy.names.ns_join(namespace, nodename)) except Exception as e: rospy.logwarn("Echo topic '%s' failed: %s" % (topic.name, utf8(e))) MessageBox.warning(self, "Echo of topic error", 'Echo of topic %s failed!' % topic.name, '%s' % utf8(e)) def on_service_call_clicked(self, services=[]): ''' calls a service. ''' selected_services = services if not selected_services: selected_services = self.servicesFromIndexes(self.ui.servicesView.selectionModel().selectedIndexes()) try: for service in selected_services: param = ServiceDialog(service, self) param.show() except Exception as e: rospy.logwarn("Call service '%s' failed: %s" % (service.name, utf8(e))) MessageBox.warning(self, "Call service error", 'Call service %s failed!' % service.name, '%s' % utf8(e)) def service_call(self, service_name): service = self.master_info.getService(utf8(service_name)) if service is not None: try: param = ServiceDialog(service, self) param.show() except Exception as e: rospy.logwarn("Call service '%s' failed: %s" % (service.name, utf8(e))) MessageBox.warning(self, "Call service error", 'Call service %s failed!' % service.name, '%s' % utf8(e)) def _restore_expand_state(self, tree_view, proxy_model): ''' Expand the first item and all selected items. ''' tree_view.collapseAll() for selected in tree_view.selectionModel().selectedIndexes(): index = selected while index is not None and index.isValid(): item = proxy_model.sourceModel().itemFromIndex(index) tree_view.setExpanded(index, True) index = index.parent() # expand the root item. NodesView has on sync also other hosts. In this case only local host will expanded. for root_idx in range(proxy_model.sourceModel().rowCount()): source_index = proxy_model.sourceModel().index(root_idx, 0) item = proxy_model.sourceModel().itemFromIndex(source_index) if type(item) in [HostItem] and not item._local: continue mapped_index = proxy_model.mapFromSource(source_index) tree_view.setExpanded(mapped_index, True) def on_node_filter_changed(self, text): ''' Filter the displayed nodes ''' self.node_proxy_model.setFilterRegExp(QRegExp(text, Qt.CaseInsensitive, QRegExp.Wildcard)) if text: self.ui.nodeTreeView.expandAll() else: self._restore_expand_state(self.ui.nodeTreeView, self.node_proxy_model) def on_topic_filter_changed(self, text): ''' Filter the displayed topics ''' self.topic_proxyModel.setFilterRegExp(QRegExp(text, Qt.CaseInsensitive, QRegExp.Wildcard)) if text: self.ui.topicsView.expandAll() else: self._restore_expand_state(self.ui.topicsView, self.topic_proxyModel) def on_service_filter_changed(self, text): ''' Filter the displayed services ''' self.service_proxyModel.setFilterRegExp(QRegExp(text, Qt.CaseInsensitive, QRegExp.Wildcard)) if text: self.ui.servicesView.expandAll() else: self._restore_expand_state(self.ui.servicesView, self.service_proxyModel) def on_parameter_filter_changed(self, text): ''' Filter the displayed parameter ''' self.parameter_proxyModel.setFilterRegExp(QRegExp(text, Qt.CaseInsensitive, QRegExp.Wildcard)) def on_get_parameter_clicked(self): ''' Requests parameter list from the ROS parameter server. ''' self.parameterHandler.requestParameterList(self.masteruri) def on_add_parameter_clicked(self): ''' Adds a parameter to the ROS parameter server. ''' selectedParameter = self.parameterFromIndexes(self.ui.parameterView.selectionModel().selectedIndexes()) ns = '/' if selectedParameter: ns = roslib.names.namespace(selectedParameter[0][0]) fields = {'name': {':value': ns}, 'type': {':type': 'string', ':value': ['string', 'int', 'float', 'bool', 'list']}, 'value': {':value': ''}} newparamDia = ParameterDialog(fields, parent=self, store_geometry="add_parameter_dialog") newparamDia.setWindowTitle('Add new parameter') newparamDia.setFilterVisible(False) newparamDia.accepted.connect(self._on_add_parameter_accepted) newparamDia.setFocusField('name') newparamDia.show() newparamDia.raise_() newparamDia.activateWindow() def _on_add_parameter_accepted(self): if isinstance(self.sender(), ParameterDialog): params = self.sender().getKeywords() try: if params['type'] == 'int': value = int(params['value']) elif params['type'] == 'float': value = float(params['value']) elif params['type'] == 'bool': value = bool(params['value'].lower() in ("yes", "true", "t", "1")) elif params['type'] == 'list': try: value = [ruamel.yaml.load(params['value'], Loader=ruamel.yaml.Loader)] # if there is no YAML, load() will return an # empty string. We want an empty dictionary instead # for our representation of empty. if value is None: value = [] except ruamel.yaml.MarkedYAMLError as e: MessageBox.warning(self, self.tr("Warning"), "yaml error: %s" % utf8(e), buttons=MessageBox.Ok) return else: value = params['value'] self.parameterHandler.deliverParameter(self.masteruri, {params['name']: value}) self.parameterHandler.requestParameterList(self.masteruri) self.sender().close() except (KeyError, ValueError) as e: MessageBox.warning(self, "Warning", 'Error while add a parameter to the ROS parameter server', utf8(e)) def on_delete_parameter_clicked(self): ''' Deletes the parameter from the ROS parameter server. ''' selectedParameter = self.parameterFromIndexes(self.ui.parameterView.selectionModel().selectedIndexes()) try: socket.setdefaulttimeout(15) name = rospy.get_name() master = xmlrpcclient.ServerProxy(self.masteruri) master_multi = xmlrpcclient.MultiCall(master) for (key, _) in selectedParameter: # _ := value master_multi.deleteParam(name, key) r = master_multi() for code, msg, parameter in r: if code != 1: rospy.logwarn("Error on delete parameter '%s': %s", parameter, msg) except Exception: rospy.logwarn("Error on delete parameter: %s", utf8(traceback.format_exc(1))) MessageBox.warning(self, "Warning", 'Error while delete a parameter to the ROS parameter server', utf8(traceback.format_exc(1))) else: self.on_get_parameter_clicked() finally: socket.setdefaulttimeout(None) def on_save_parameter_clicked(self): ''' Stores selected parameter to a file. ''' selectedParameter = self.parameterFromIndexes(self.ui.parameterView.selectionModel().selectedIndexes()) if selectedParameter: # (fileName, filter) (fileName, _) = QFileDialog.getSaveFileName(self, "Save parameter", nm.settings().current_dialog_path, "YAML files (*.yaml);;All files (*)") if fileName: nm.settings().current_dialog_path = os.path.dirname(fileName) try: with open(fileName, 'w+') as f: values = dict() # convert ROS namespaces of parameters to YAML namespaces for (key, value) in selectedParameter: keys = key.strip(rospy.names.SEP).split(rospy.names.SEP) curr_v = values for k in keys: if k in curr_v: curr_v = curr_v[k] elif k != keys[-1]: curr_v[k] = dict() curr_v = curr_v[k] else: curr_v[k] = value buf = ruamel.yaml.compat.StringIO() ruamel.yaml.dump(values, buf, Dumper=ruamel.yaml.RoundTripDumper) f.write(buf.getvalue()) except Exception as e: print(utf8(traceback.format_exc(1))) MessageBox.warning(self, "Save parameter Error", 'Error while save parameter', utf8(e)) def on_transfer_parameter_clicked(self): ''' Copy selected parameter to local ROS-Master. ''' selectedParameter = self.parameterFromIndexes(self.ui.parameterView.selectionModel().selectedIndexes()) if selectedParameter: try: params = {} for (key, value) in selectedParameter: params[key] = value if params: dia_params = {'master': {':value': masteruri_from_ros()}} dia = ParameterDialog(dia_params, store_geometry="transfer_param_dialog") dia.setFilterVisible(False) dia.setWindowTitle('Copy parameter') dia.setFocusField('master') if dia.exec_(): dia_params = dia.getKeywords() url = dia_params['master'] rospy.loginfo("Copy %d parameter to %s" % (len(params), url)) self.parameterHandler.deliverParameter(url, params) except Exception as e: MessageBox.warning(self, "Copy parameter Error", 'Error while transfer parameter', utf8(e)) def _replaceDoubleSlash(self, liste): ''' used to avoid the adding of \\ for each \ in a string of a list ''' if liste and isinstance(liste, list): result = [] for l in liste: val = l if isstring(l): val = l.replace("\\n", "\n") # result.append("".join([val])) elif isinstance(l, list): val = self._replaceDoubleSlash(l) result.append(val) return result return liste def _on_parameter_item_changed(self, item): ''' add changes to the ROS parameter server ''' if isinstance(item, ParameterValueItem): try: if isinstance(item.value, bool): value = bool(item.text().lower() in ("yes", "true", "t", "1")) elif isinstance(item.value, int): value = int(item.text()) elif isinstance(item.value, float): value = float(item.text()) elif isinstance(item.value, list): try: value = ruamel.yaml.load(item.text(), Loader=ruamel.yaml.Loader) # if there is no YAML, load() will return an # empty string. We want an empty dictionary instead # for our representation of empty. if value is None: value = [] value = self._replaceDoubleSlash(value) except ruamel.yaml.MarkedYAMLError as e: MessageBox.warning(self, self.tr("Warning"), "yaml error: %s" % utf8(e), buttons=MessageBox.Ok) item.setText(utf8(item.value)) return else: value = item.text() self.parameterHandler.deliverParameter(self.masteruri, {item.name: value}) item.value = value except ValueError as e: MessageBox.warning(self, "Warning", 'Error while add changes to the ROS parameter server', utf8(e)) item.setText(item.value) def _on_param_list(self, masteruri, code, msg, params): ''' :param str masteruri: The URI of the ROS parameter server :param int code: The return code of the request. If not 1, the message is set and the list can be ignored. :param str msg: The message of the result. :param params: The list the parameter names. :type params: list(str) ''' if code == 1: params.sort() self.parameterHandler.requestParameterValues(masteruri, params) def _on_param_values(self, masteruri, code, msg, params): ''' :param str masteruri: The URI of the ROS parameter server :param int code: The return code of the request. If not 1, the message is set and the list can be ignored. :param str msg: The message of the result. :param params: The dictionary the parameter names and request result. :type params: dict(paramName : (code, statusMessage, parameterValue)) ''' if code == 1: result = {} for p, (code_n, _, val) in params.items(): # _ := msg_n if code_n == 1: result[p] = val else: result[p] = '' if p == '/use_sim_time': self.__use_sim_time = (code_n == 1 and
}, { "value": 24, "color": "#6ee100" }, { "value": 28, "color": "#39a500" }, { "value": 30, "color": "#026900", "legend": { "prefix": ">" } } ], "legend": { "radix_point": 0, "scale_by": 1, "major_ticks": 10, "axes_position": [0.05, 0.5, 0.89, 0.15] } }, ], # Default style (if request does not specify style) # MUST be defined in the styles list above. # (Looks like Terria assumes this is the first style in the list, but this is # not required by the standard.) "default_style": "annual_clear_observations", }, { # Included as a keyword for the layer "label": "WOfS Annual Statistics", # Included as a keyword for the layer "type": "Water Summary", # Included as a keyword for the layer "variant": "25m", # The WMS name for the layer "name": "wofs_annual_summary_statistics", # The Datacube name for the associated data product "product_name": "wofs_annual_summary", "abstract": """ Water Observations from Space - Annual Statistics is a set of annual statistical summaries of the water observations contained in WOfS. The layers available are: the count of clear observations; the count of wet observations; the percentage of wet observations over time. This product is Water Observations from Space - Annual Statistics, a set of annual statistical summaries of the WOfS product that combines the many years of WOfS observations into summary products that help the understanding of surface water across Australia. As no confidence filtering is applied to this product, it is affected by noise where misclassifications have occurred in the WOfS water classifications, and hence can be difficult to interpret on its own. The confidence layer and filtered summary are contained in the Water Observations from Space Statistics - Filtered Summary product, which provide a noise-reduced view of the water summary. This layer contains Water Summary: what percentage of clear observations were detected as wet (ie. the ratio of wet to clear as a percentage). No clear observations of water causes an area to appear transparent, few clear observations of water correlate with red and yellow colours, deep blue and purple correspond to an area being wet through 90%-100% of clear observations. For more information please see: https://data.dea.ga.gov.au/WOfS/annual_summary/v2.1.5/Product%20Description.pdf For service status information, see https://status.dea.ga.gov.au""", "min_zoom_factor": 15.0, # The fill-colour of the indicative polygons when zoomed out. # Triplets (rgb) or quadruplets (rgba) of integers 0-255. "zoomed_out_fill_colour": [150, 180, 200, 160], # Time Zone. In hours added to UTC (maybe negative) # Used for rounding off scene times to a date. # 9 is good value for imagery of Australia. "time_zone": 9, # Extent mask function # Determines what portions of dataset is potentially meaningful data. "extent_mask_func": lambda data, band: (data[band] != data[band].attrs['nodata']), # Flags listed here are ignored in GetFeatureInfo requests. # (defaults to empty list) "ignore_info_flags": [], "legend": { # "url": "" "styles": ["annual_WOfS_frequency", "annual_WOfS_frequency_blues_transparent"] }, "wcs_default_bands": ["frequency"], "styles": [ { "name": "annual_WOfS_frequency", "title": " Water Summary", "abstract": "WOfS annual summary showing the frequency of Wetness", "needed_bands": ["frequency"], "color_ramp": [ { "value": 0.0, "color": "#000000", "alpha": 0.0 }, { "value": 0.02, "color": "#000000", "alpha": 0.0 }, { "value": 0.05, "color": "#8e0101", "alpha": 0.25 }, { "value": 0.1, "color": "#cf2200", "alpha": 0.75 }, { "value": 0.2, "color": "#e38400" }, { "value": 0.3, "color": "#e3df00" }, { "value": 0.4, "color": "#62e300" }, { "value": 0.5, "color": "#00e32d" }, { "value": 0.6, "color": "#00e3c8" }, { "value": 0.7, "color": "#0097e3" }, { "value": 0.8, "color": "#005fe3" }, { "value": 0.9, "color": "#000fe3" }, { "value": 1.0, "color": "#5700e3" } ], "legend": { "units": "%", "radix_point": 0, "scale_by": 100.0, "major_ticks": 0.1 } }, { "name": "annual_WOfS_frequency_blues_transparent", "title": "Water Summary (Blue)", "abstract": "WOfS annual summary showing the frequency of Wetness", "needed_bands": ["frequency"], "color_ramp": [ { "value": 0.0, "color": "#ffffff", "alpha": 0.0, }, { "value": 0.001, "color": "#d5fef9", "alpha": 0.0, }, { "value": 0.02, "color": "#d5fef9", }, { "value": 0.2, "color": "#71e3ff" }, { "value": 0.4, "color": "#01ccff" }, { "value": 0.6, "color": "#0178ff" }, { "value": 0.8, "color": "#2701ff" }, { "value": 1.0, "color": "#5700e3" } ], "legend": { "units": "%", "radix_point": 0, "scale_by": 100.0, "major_ticks": 0.1 } }, ], # Default style (if request does not specify style) # MUST be defined in the styles list above. # (Looks like Terria assumes this is the first style in the list, but this is # not required by the standard.) "default_style": "annual_WOfS_frequency", }, { # Included as a keyword for the layer "label": "WOfS April - October Statistics", # Included as a keyword for the layer "type": "Wet Count", # Included as a keyword for the layer "variant": "25m", # The WMS name for the layer "name": "wofs_apr_oct_summary_wet", # The Datacube name for the associated data product "product_name": "wofs_apr_oct_summary", "abstract": """ Water Observations from Space - April to October Statistics is a set of seasonal statistical summaries of the water observations contained in WOfS. The layers available are: the count of clear observations; the count of wet observations; the percentage of wet observations over time. This product is Water Observations from Space - April to October Statistics, a set of seasonal statistical summaries of the WOfS product that combines the many years of WOfS observations into summary products that help the understanding of surface water across Australia. As no confidence filtering is applied to this product, it is affected by noise where misclassifications have occurred in the WOfS water classifications, and hence can be difficult to interpret on its own. The confidence layer and filtered summary are contained in the Water Observations from Space Statistics - Filtered Summary product, which provide a noise-reduced view of the water summary. This layer contains Water Summary: what percentage of clear observations were detected as wet (ie. the ratio of wet to clear as a percentage). No clear observations of water causes an area to appear transparent, 1-50 total clear observations of water correlate with red and yellow colours, 100 clear observations of water correlate with green, 200 clear observations of water correlates with light blue, 300 clear observations of water correlates to deep blue and 400 and over observations of clear water correlate to purple. For service status information, see https://status.dea.ga.gov.au""", "min_zoom_factor": 15.0, # The fill-colour of the indicative polygons when zoomed out. # Triplets (rgb) or quadruplets (rgba) of integers 0-255. "zoomed_out_fill_colour": [150, 180, 200, 160], # Time Zone. In hours added to UTC (maybe negative) # Used for rounding off scene times to a date. # 9 is good value for imagery of Australia. "time_zone": 9, # Extent mask function # Determines what portions of dataset is potentially meaningful data. "extent_mask_func": lambda data, band: (data[band] != data[band].attrs['nodata']), # Flags listed here are ignored in GetFeatureInfo requests. # (defaults to empty list) "ignore_info_flags": [], "legend": { # "url": "" "styles": ["seasonal_water_observations"] }, "wcs_default_bands": ["count_wet"], "styles": [ { "name": "seasonal_water_observations", "title": "Wet Count", "abstract": "WOfS seasonal summary showing the count of water observations", "needed_bands": ["count_wet"], "color_ramp": [ { "value": 0, "color": "#666666", "alpha": 0 }, { # purely for legend display # we should not get fractional # values in this styles "value": 0.2, "color": "#990000", "alpha": 1 }, { "value": 2, "color": "#990000" }, { "value": 4, "color": "#E38400" }, { "value": 6, "color": "#E3DF00" }, { "value": 8, "color": "#00E32D" }, { "value": 10, "color": "#00E3C8" }, { "value": 12, "color": "#0097E3" }, { "value": 14, "color": "#005FE3" }, { "value": 16, "color": "#000FE3" }, { "value": 18, "color": "#000EA9" }, { "value": 20, "color": "#5700E3", "legend": { "prefix": ">" } } ], "legend": { "radix_point": 0, "scale_by": 1, "major_ticks": 10 } } ], # Default style (if request does not specify style) # MUST be defined in the styles list above. # (Looks like Terria assumes this is the first style in the list, but this is # not required by the standard.) "default_style": "seasonal_water_observations", }, { # Included as a keyword for
buyPointsOn='%.4f CMN'%(random.uniform(100000.0000, 200000.0000))) community.voteLeader(point, bob, leader2, 7000, providebw=bob+'/tech', keys=[bobKey,techKey]) self.accounts[bob] = 'Bob' alicePoints = community.getPointBalance(point, alice) bobPoints = community.getPointBalance(point, bob) transferPoints = alicePoints * random.uniform(0.1, 0.9) feePoints = max(transferPoints*pointParam['transfer_fee']//10000, Asset(pointParam['min_transfer_fee_points'], pointParam['max_supply'].symbol)) alicePointsAfter = alicePoints - transferPoints - feePoints bobPointsAfter = bobPoints + transferPoints self.assertGreaterEqual(alicePointsAfter.amount, 0) leaders = self.getLeadersWeights(point) leaders[leader1] += 3*alicePointsAfter.amount//10 - 3*alicePoints.amount//10 leaders[leader2] += 2*alicePointsAfter.amount//10 - 2*alicePoints.amount//10 leader2AfterAlice = leaders[leader2] leaders[leader2] += 7*bobPointsAfter.amount//10 - 7*bobPoints.amount//10 with log_action("Alice transfer to Bob some points"): args = {'from':alice, 'to':bob, 'quantity':str(transferPoints), 'memo':''} trxResult = testnet.pushAction('c.point', 'transfer', alice, args, providebw=alice+'/tech', keys=[aliceKey,techKey], output=True) trxId = trxResult['transaction_id'] trxBlock = trxResult['processed']['block_num'] trxTrace = [ { 'receiver': 'c.point', 'code': 'c.point', 'action': 'transfer', 'auth': [{'actor': alice, 'permission': 'active'}], 'args': args, },{ 'receiver': 'c.ctrl', 'code': 'c.ctrl', 'action': 'changepoints', 'auth': [{'actor': 'c.ctrl', 'permission': 'changepoints'}], 'args': {'who': alice, 'diff': str(-transferPoints-feePoints)}, 'events': ee.AllItems( { 'code': 'c.ctrl', 'event': 'leaderstate', 'args': {'commun_code': point, 'leader': leader1, 'weight': leaders[leader1]}, },{ 'code': 'c.ctrl', 'event': 'leaderstate', 'args': {'commun_code': point, 'leader': leader2, 'weight': leader2AfterAlice}, } ), },{ 'receiver': 'c.ctrl', 'code': 'c.ctrl', 'action': 'changepoints', 'args': {'who': bob, 'diff': str(transferPoints)}, 'auth': [{'actor': 'c.ctrl', 'permission': 'changepoints'}], 'events': ee.AllItems( { 'code': 'c.ctrl', 'event': 'leaderstate', 'args': {'commun_code': point, 'leader': leader2, 'weight': leaders[leader2]}, } ), }, ] self.eeHelper.waitEvents( [ ({'msg_type':'ApplyTrx', 'id':trxId}, {'block_num':trxBlock, 'actions':trxTrace, 'except':ee.Missing()}), ], trxBlock) self.assertEqual(leaders, self.getLeadersWeights(point)) def test_voterBuyPoints(self): (point, leader) = (self.point, self.leader1) (alice, aliceKey) = community.createCommunityUser( creator='tech', creatorKey=techKey, clientKey=clientKey, community=point, buyPointsOn='%.4f CMN'%(random.uniform(100000.0000, 200000.0000))) community.voteLeader(point, alice, leader, 3000, providebw=alice+'/tech', keys=[aliceKey,techKey]) self.accounts[alice] = 'Alice' pointParam = community.getPointParam(self.point) pointStat = community.getPointStat(self.point) alicePoints = community.getPointBalance(self.point, alice) tokenQuantity = Asset.fromstr('%.4f CMN'%(random.uniform(100000.0000, 200000.0000))) if pointParam['fee'] != 0: totalQuantity = tokenQuantity tokenQuantity = totalQuantity * (10000-pointParam['fee']) // 10000 feeQuantity = totalQuantity - tokenQuantity else: feeQuantity = Asset(0, CMN) newReserve = pointStat['reserve'] + tokenQuantity q = pow(1.0 + tokenQuantity.amount/pointStat['reserve'].amount, pointParam['cw']/10000) newSupply = pointStat['supply'] * q pointQuantity = newSupply - pointStat['supply'] leaders = self.getLeadersWeights(point) leaders[leader] += 3*(alicePoints+pointQuantity).amount//10 - 3*alicePoints.amount//10 appLeaders = self.getLeadersWeights('') appLeaders[self.appLeader2] += 4*(pointStat['reserve']+tokenQuantity).amount//10 - 4*pointStat['reserve'].amount//10 with log_action("Alice vote for leader then buy some point"): trxResult = community.buyCommunityPoints(alice, tokenQuantity+feeQuantity, point, aliceKey, clientKey, output=True) trxId = trxResult['transaction_id'] trxBlock = trxResult['processed']['block_num'] args = {'from': alice, 'to': 'c.point', 'quantity': str(tokenQuantity+feeQuantity), 'memo': point} trxTrace = [ { 'receiver': 'cyber.token', 'code': 'cyber.token', 'action': 'transfer', 'auth': [{'actor': alice, 'permission': 'active'}], 'args': args, },{ 'receiver': 'c.point', 'code': 'cyber.token', 'action': 'transfer', 'auth': [{'actor': alice,'permission': 'active'}], 'args': args, },{ 'receiver': 'c.ctrl', 'action': 'changepoints', 'code': 'c.ctrl', 'auth': [{'actor': 'c.ctrl', 'permission': 'changepoints'}], 'args': {'who': alice, 'diff': str(pointQuantity)}, 'events': ee.AllItems( { 'code': 'c.ctrl','event': 'leaderstate', 'args': {'commun_code': point, 'leader': leader, 'weight': leaders[leader]}, } ), },{ 'receiver': 'c.ctrl', 'action': 'changepoints', 'code': 'c.ctrl', 'auth': [{'actor': 'c.ctrl','permission': 'changepoints'}], 'args': {'who': self.owner, 'diff': '%d '%tokenQuantity.amount}, 'events': ee.AllItems( { 'code': 'c.ctrl','event': 'leaderstate', 'args': {'commun_code': '', 'leader': self.appLeader2, 'weight': str(appLeaders[self.appLeader2])}, } ), }, ] self.eeHelper.waitEvents( [ ({'msg_type':'ApplyTrx', 'id':trxId}, {'block_num':trxBlock, 'actions':trxTrace, 'except':ee.Missing()}), ], trxBlock) self.assertEqual(leaders, self.getLeadersWeights(point)) self.assertEqual(appLeaders, self.getLeadersWeights('')) def test_voterSellPoints(self): (point, leader) = (self.point, self.leader1) (alice, aliceKey) = community.createCommunityUser( creator='tech', creatorKey=techKey, clientKey=clientKey, community=self.point, buyPointsOn='%.4f CMN'%(random.uniform(1000.0000, 2000.0000))) community.voteLeader(point, alice, leader, 3000, providebw=alice+'/tech', keys=[aliceKey,techKey]) self.accounts[alice] = 'Alice' # Calculate CT/CP-quantities after transaction pointParam = community.getPointParam(self.point) pointStat = community.getPointStat(self.point) alicePoints = community.getPointBalance(self.point, alice) sellPoints = alicePoints * random.uniform(0.1, 0.9) q = 1.0 - pow(1.0 - sellPoints.amount/pointStat['supply'].amount, 10000/pointParam['cw']) totalQuantity = pointStat['reserve'] * q tokenQuantity = totalQuantity * (10000-pointParam['fee']) // 10000 feeQuantity = totalQuantity - tokenQuantity leaders = self.getLeadersWeights(point) leaders[self.leader1] += 3*(alicePoints-sellPoints).amount//10 - 3*alicePoints.amount//10 appLeaders = self.getLeadersWeights('') appLeaders[self.appLeader2] += 4*(pointStat['reserve']-totalQuantity).amount//10 - 4*pointStat['reserve'].amount//10 with log_action("Sell community points through transfer them to 'c.point' account"): trxArgs = {'from':alice, 'to':'c.point', 'quantity':str(sellPoints), 'memo':''} trxResult = testnet.pushAction('c.point', 'transfer', alice, trxArgs, providebw=alice+'/c@providebw', keys=[aliceKey, clientKey], output=True) trxTrx = trxResult['transaction_id'] trxBlock = trxResult['processed']['block_num'] trxTrace = [ { 'receiver': 'c.point', 'code': 'c.point', 'action': 'transfer', 'auth': [{'actor': alice, 'permission': 'active'}], 'args': trxArgs, }, { 'receiver': 'c.ctrl', 'code': 'c.ctrl', 'action': 'changepoints', 'auth': [{'actor': 'c.ctrl', 'permission': 'changepoints'}], 'args': {'who': alice, 'diff': str(-sellPoints)}, 'events': ee.AllItems( { 'code': 'c.ctrl','event': 'leaderstate', 'args': {'commun_code': point, 'leader': leader, 'weight': leaders[leader]}, } ) }, { 'receiver': 'c.ctrl', 'code': 'c.ctrl', 'action': 'changepoints', 'auth': [{'actor': 'c.ctrl', 'permission': 'changepoints'}], 'args': {'who': pointParam['issuer'], 'diff': '-%d '%(tokenQuantity.amount+feeQuantity.amount)}, 'events': ee.AllItems( { 'code': 'c.ctrl','event': 'leaderstate', 'args': {'commun_code': '', 'leader': self.appLeader2, 'weight': str(appLeaders[self.appLeader2])}, } ), }, ] self.eeHelper.waitEvents( [ ({'msg_type':'ApplyTrx', 'id':trxTrx}, {'block_num':trxBlock, 'actions':trxTrace, 'except':ee.Missing()}), ], trxBlock) def test_voterStakeTokens(self): appLeader = self.appLeader1 (alice, aliceKey) = community.createCommunityUser( creator='tech', creatorKey=techKey, clientKey=clientKey, community='', buyPointsOn='%.4f CMN'%(random.uniform(100000.0000, 200000.0000))) community.voteLeader('', alice, appLeader, 3000, providebw=alice+'/tech', keys=[aliceKey,techKey]) self.accounts[alice] = 'Alice' aliceTokens = community.getPointBalance('', alice) tokenQuantity = Asset.fromstr('%.4f CMN'%(random.uniform(1000.0000, 10000.0000))) print("Alice: %s, %s"%(aliceTokens,tokenQuantity)) appLeaders = self.getLeadersWeights('') appLeaders[appLeader] += 3*(aliceTokens.amount + tokenQuantity.amount)//10 - 3*aliceTokens.amount//10 with log_action("Voter stake some CMN tokens"): trxResult = community.buyCommunityPoints(alice, tokenQuantity, '', aliceKey, clientKey, output=True) trxId = trxResult['transaction_id'] trxBlock = trxResult['processed']['block_num'] args = {'from': alice, 'to': 'c.point', 'quantity': str(tokenQuantity), 'memo': ''} trxTrace = [ { 'receiver': 'cyber.token', 'code': 'cyber.token', 'action': 'transfer', 'auth': [{'actor': alice, 'permission': 'active'}], 'args': args, },{ 'receiver': 'c.point', 'code': 'cyber.token', 'action': 'transfer', 'auth': [{'actor': alice,'permission': 'active'}], 'args': args, 'events': ee.AllItems( { 'code': 'c.point', 'event': 'balance', 'args': {'account': alice, 'balance': '%d '%(aliceTokens.amount + tokenQuantity.amount)} } ) },{ 'receiver': 'c.ctrl', 'action': 'changepoints', 'code': 'c.ctrl', 'auth': [{'actor': 'c.ctrl', 'permission': 'changepoints'}], 'args': {'who': alice, 'diff': '%d '%tokenQuantity.amount}, 'events': ee.AllItems( { 'code': 'c.ctrl','event': 'leaderstate', 'args': {'commun_code': '', 'leader': appLeader, 'weight': appLeaders[appLeader]}, } ), }, ] self.eeHelper.waitEvents( [ ({'msg_type':'ApplyTrx', 'id':trxId}, {'block_num':trxBlock, 'actions':trxTrace, 'except':ee.Missing()}), ], trxBlock) self.assertEqual(appLeaders, self.getLeadersWeights('')) def test_voterWithdrawTokens(self): appLeader = self.appLeader1 (alice, aliceKey) = community.createCommunityUser( creator='tech', creatorKey=techKey, clientKey=clientKey, community='', buyPointsOn='%.4f CMN'%(random.uniform(100000.0000, 200000.0000))) community.voteLeader('', alice, appLeader, 3000, providebw=alice+'/tech', keys=[aliceKey,techKey]) self.accounts[alice] = 'Alice' aliceTokens = community.getPointBalance('', alice) tokenQuantity = Asset.fromstr('%.4f CMN'%(aliceTokens.amount/10000*random.uniform(0.3, 0.7))) print("Alice: %s, %s"%(aliceTokens,tokenQuantity)) appLeaders = self.getLeadersWeights('') appLeaders[appLeader] += 3*(aliceTokens.amount - tokenQuantity.amount)//10 - 3*aliceTokens.amount//10 with log_action("Alice withdraw some staked CMN-tokens"): args = {'owner': alice, 'quantity': str(tokenQuantity)} trxResult = testnet.pushAction('c.point', 'withdraw', alice, args, providebw=alice+'/tech', keys=[aliceKey,techKey], output=True) trxId = trxResult['transaction_id'] trxBlock = trxResult['processed']['block_num'] trxTrace = [ { 'receiver': 'c.point', 'code': 'c.point', 'action': 'withdraw', 'auth': [{'actor': alice,'permission': 'active'}], 'args': args, 'events': ee.AllItems( { 'code': 'c.point', 'event': 'balance', 'args': {'account': alice, 'balance': '%d '%(aliceTokens.amount - tokenQuantity.amount)} } ) },{ 'receiver': 'c.ctrl', 'action': 'changepoints', 'code': 'c.ctrl', 'auth': [{'actor': 'c.ctrl', 'permission': 'changepoints'}], 'args': {'who': alice, 'diff': '-%d '%tokenQuantity.amount}, 'events': ee.AllItems( { 'code': 'c.ctrl','event': 'leaderstate', 'args': {'commun_code': '', 'leader': appLeader, 'weight': appLeaders[appLeader]}, } ), }, ] self.eeHelper.waitEvents( [ ({'msg_type':'ApplyTrx', 'id':trxId}, {'block_num':trxBlock, 'actions':trxTrace, 'except':ee.Missing()}), ], trxBlock) self.assertEqual(appLeaders, self.getLeadersWeights('')) class RecoverTestCase(TestCase): @classmethod def setUpClass(self): super().setUpClass() with log_action("Initialize RecoverTestCase"): self.recover_delay = 3 result = json.loads(testnet.cleos('get table c.recover c.recover params')) if len(result['rows']) == 0 or result['rows'][0]['recover_delay'] != self.recover_delay: testnet.pushAction('c.recover', 'setparams', 'c.recover', { 'recover_delay': self.recover_delay }, providebw='c.recover/tech', keys=[techKey]) testnet.updateAuth('c.recover', 'recover', 'active', [recoverPublic], [], providebw='c.recover/tech', keys=[techKey]) self.point = community.getUnusedPointSymbol() self.owner = community.createCommunity( community_name = self.point, creator_auth = client, creator_key = clientKey, maximum_supply = Asset.fromstr('100000000.000 %s'%self.point), reserve_amount = Asset.fromstr('1000000.0000 CMN')) self.accounts[self.owner] = 'Owner' def setUp(self): super().setUp() with log_action("Initialize RecoverTestCase test environment"): (private, public) = testnet.createKey() (self.alice, self.aliceKey) = community.createCommunityUser( creator='tech', creatorKey=techKey, clientKey=clientKey, community=self.point, buyPointsOn='%.4f CMN'%(random.uniform(10000.0000, 200000.0000))) testnet.updateAuth(self.alice, 'owner', '', [public], ['<EMAIL>'], providebw=self.alice+'/tech', keys=[techKey, self.aliceKey]) self.aliceOwner = private self.accounts[self.alice] = 'Alice' def test_unavailableRecover(self): "Recovery is not available for accounts that did not allow it" (bobKey, bobPublic) = testnet.createKey() bob = testnet.createRandomAccount(bobPublic, keys=[techKey]) (private2, public2) = testnet.createKey() with self.assertRaisesRegex(Exception, 'Key recovery for this account is not available'): community.recover(bob, active_key=public2, provider='tech', keys=[recoverKey,techKey], output=True) def test_recoverActiveAuthority(self): "Recovery active authority" globalLockItems = DataItems('scope', 'rev').add('unlocks').others(hide=True) (alice, aliceKey) = (self.alice, self.aliceKey) globalLock = community.getPointGlobalLock(alice) self.assertEqual(None, globalLock) print("Alice global lock:", self.jsonPrinter.format(globalLockItems, globalLock)) with log_action("Set new active key using recovery"): (private2, public2) = testnet.createKey() result = community.recover(alice, active_key=public2, provider='tech', keys=[recoverKey,techKey], output=True) recover_time = from_time_point_sec(result['processed']['block_time']) with log_action("Check new active key with `checkwin` action"): testnet.pushAction('cyber', 'checkwin', alice, {}, providebw=alice+'/tech', keys=[techKey, private2], output=True) globalLock = community.getPointGlobalLock(alice) globalLockTo = from_time_point_sec(globalLock['unlocks']) self.assertEqual(globalLockTo, recover_time + timedelta(seconds=self.recover_delay)) print("Alice global lock:", self.jsonPrinter.format(globalLockItems, globalLock)) def test_applyOwnerRecover(self): "Recovery and apply owner authority" (alice, aliceKey) = (self.alice, self.aliceKey) with log_action("Set new owner key using recover"): (private2, public2) = testnet.createKey() community.recover(alice, owner_key=public2, provider='tech', keys=[recoverKey,techKey], output=True) with log_action("Wait for 4 sec and apply owner key recovery"): time.sleep(4) community.applyOwner(alice, providebw=alice+'/tech', keys=[aliceKey,techKey], output=True) with log_action("Check new owner key with `checkwin` action"): testnet.pushAction('cyber', 'checkwin', alice+'@owner', {}, providebw=alice+'/tech', keys=[techKey, private2], output=True) def test_cancelOwnerRecover(self): "Recovery and cancel owner authority" (alice, aliceKey) = (self.alice, self.aliceKey) with log_action("Set
load step data at tInd = {0} in file {1}'.format(tInd,get_outfile_path(options,'stats.p')) if not options.mpi: print '\n\ntInd = {0}, t = {2}, obst = {1}'.format(tInd,yt.T,t) # Read the posterior if baseData['mpi']: for (frameRef,pfile) in izip(stepData['post_pos_ref'],post_pkl_files): if not firstReadDone: pfile.seek(frameRef) post.update(pickle.load(pfile)) else: if not firstReadDone: post_pkl_file.seek(stepData['post_pos_ref'][0]) post = pickle.load(post_pkl_file) firstReadDone = True # Compute the modes topModes = post.roadSegmentModes(mapgraph,mapdynamics,nmsNumModes,nmsSegmentLength,nmsRadius,nmsCutoffPct) # Dump the modes pickle.dump(topModes,modes_pkl_file) modes_pkl_file.close() stats_pkl_file.close() if baseData['mpi']: for pfile in post_pkl_files: pfile.close() else: post_pkl_file.close() def do_display_gt(options,args): assert(len(args) == 1) load_config_file(options,args[0]) import matplotlib if options.img_format == 'pdf': matplotlib.use('pdf') else: matplotlib.use('agg') import matplotlib.pyplot as plt mapgraph,mapVersion = load_mapgraph(options) mapSz = mapgraph.posMax - mapgraph.posMin dpi = 100 sortedStreets = mapgraph.nodes() sortedStreets.sort() assert(options.gps_data != None) if options.gps_data != None: stateIter = open(options.gps_data,'rt') projScale = mapgraph.graph['mercator_scale'] ptCoordOrigin = mapgraph.graph['position_offset'] latlon = np.empty(2) fig = plt.figure() fig.set_dpi(dpi) fig.set_size_inches(10,10) ax = fig.add_subplot(111) for (tInd,statet) in enumerate(stateIter): lineParts = statet.split() latlon[0] = float(lineParts[0]) latlon[1] = float(lineParts[1]) gtPos = mercatorProj(latlon,projScale) - ptCoordOrigin fig.clf() ax = fig.add_subplot(111) ax.set_xlim(gtPos[0] - 0.125,gtPos[0] + 0.125) ax.set_ylim(gtPos[1] - 0.125,gtPos[1] + 0.125) mapgraph.display(fig, ax, gtPos = gtPos) fname = get_outfile_path(options,'gtDisplay{0:04}.{1}'.format(tInd+1,options.img_format)) extent = ax.get_window_extent().transformed(fig.dpi_scale_trans.inverted()) fig.savefig(fname,bbox_inches=extent.expanded(1.1, 1.1),dpi=dpi) # fig.savefig(fname,dpi=dpi) def do_plot_data(options): import matplotlib.pyplot as plt baseData = pickle.load(open(get_datafile_path(options),'rb')) states = baseData['states'] mapdynamics = baseData['mapdynamics'] Astate_vel = mapdynamics.get_state_vel_matrix() time_mat = np.zeros((len(states))) states_mat = np.zeros((len(states),4)) streets_mat = np.zeros((len(states))) vtranslp_mat = np.zeros((len(states)-1)) prevStreet = None for i in range(len(states)): states_mat[i,:] = np.dot(Astate_vel,states[i]['state']).T streets_mat[i] = states[i]['street'] == prevStreet time_mat[i] = states[i]['time'] prevStreet = states[i]['street'] if i > 0: vtranslp_mat[i-1] = mapdynamics.street_transition_logprob(mapgraph,prevStreet,states[i-1]['street'],states[i-1]['state']) labels = ('$d$','$\dot{d}$',r'$\theta$',r'$\dot{\theta}$') scales = (1,1,180.0/np.pi,180.0/np.pi) plt.figure(1) for i in range(4): plt.subplot(2,2,i+1) plt.plot(time_mat,scales[i]*states_mat[:,i]) plt.title(labels[i]) plt.figure(2) plt.subplot(2,1,1) plt.plot(time_mat,streets_mat,'--') plt.subplot(2,1,2) plt.plot(time_mat[1:],np.exp(vtranslp_mat)) plt.show() def convert_gps_trajectory(mapgraph,mapdynamics,statefile,dt,data_skip): debugPrint = False roadPosThresh = 1.0/1000.0 nbhdThresh = 10.0/1000.0 dirThresh = np.pi/2.0 transAngleThresh = np.pi transDistThresh = 30.0/1000.0 errAngW = 1.0/(np.pi/8.0) errDistW = 1.0 projScale = mapgraph.graph['mercator_scale'] ptCoordOrigin = mapgraph.graph['position_offset'] latlon = np.empty(2) instVel = np.empty(2) avgInstVel = np.zeros(2) pos = None roadSetSeq = {} posInfos = {} #print 'Parsing GPS data and finding nearest streets...', stateFile = open(statefile,'rt') for (tInd,line) in enumerate(stateFile): lineParts = line.split() latlon[0] = float(lineParts[0]) latlon[1] = float(lineParts[1]) instVF = float(lineParts[9])/1000.0 instVel[0] = float(lineParts[7])/1000.0 instVel[1] = float(lineParts[6])/1000.0 pos = mercatorProj(latlon,projScale) - ptCoordOrigin heading = float(lineParts[5]) headingDir = np.array([np.cos(heading),np.sin(heading)]) if tInd == 0: currRoads = None nbhdRdSet = None else: currRoads = roadSetSeq[tInd-1] nbhdRdSet = set() for prevStreet in currRoads.iterkeys(): for nextStreet in mapgraph.successors_iter(prevStreet): # if nextStreet == SINK_ROAD or np.abs(mapgraph[prevStreet][nextStreet]['transition_angle']) > transAngleThresh or mapgraph[prevStreet][nextStreet]['transition_distance'] > mapgraph.node[prevStreet]['length'] + transDistThresh: if nextStreet == SINK_ROAD or (mapgraph[prevStreet][nextStreet]['transition_distance'] - mapgraph.node[prevStreet]['length']) > transDistThresh: # if nextStreet == SINK_ROAD: continue nbhdRdSet.add(nextStreet) if len(nbhdRdSet) == 0: print '\nERROR: no roads found in neighbourhood set at tInd = {0}'.format(tInd) print ' Transition Angle Threshold: {0}'.format((180.0/np.pi)*transAngleThresh) print 'Previous Streets:' for prevStreet in currRoads.iterkeys(): print '{0}:'.format(prevStreet) for nextStreet in mapgraph.successors_iter(prevStreet): if nextStreet == SINK_ROAD: continue print ' -> {0}:\n transAngle = {1}, transDistExcess = {2} '.format(nextStreet,(180.0/np.pi)*mapgraph[prevStreet][nextStreet]['transition_angle'],mapgraph[prevStreet][nextStreet]['transition_distance'] - mapgraph.node[prevStreet]['length']) assert(len(nbhdRdSet) > 0) (nbhdRds,distDataFoo) = mapgraph.getNearbyRoads(pos,headingDir,nbhdThresh,dirThresh,roadPosThresh,nbhdRdSet) if debugPrint: print '\n\ntInd = {0}'.format(tInd) print ' Distance Threshold: {0}, Direction Threshold: {1}, Alpha Threshold: {2}'.format(nbhdThresh,(180.0/np.pi)*dirThresh,roadPosThresh) if len(nbhdRds) == 0: print '\nERROR: no nearby roads found in neighbourhood set at tInd = {0}'.format(tInd) if (debugPrint or len(nbhdRds) == 0) and currRoads != None: print '\nCandidate Roads at previous frame:' for (prevRd,distInfo) in currRoads.iteritems(): print ' {0}: dist = {1}, relAngle = {2}, alpha = {3} (len = {4})'.format(prevRd,distInfo[0],(180.0/np.pi)*distInfo[1],distInfo[3],mapgraph.node[prevRd]['length']) mapgraph.printNode(prevRd) print '\nNeighbourhood roads:' for nbRd in nbhdRdSet: distInfo = mapgraph.distanceToRoad(nbRd,pos,headingDir) print ' {0}: dist = {1}, relAngle = {2}, alpha = {3} (len = {4})'.format(nbRd,distInfo[0],(180.0/np.pi)*distInfo[1],distInfo[3],mapgraph.node[nbRd]['length']) if debugPrint: print '\nCurrent candidate roads:' for (prevRd,distInfo) in nbhdRds.iteritems(): print ' {0}: dist = {1}, relAngle = {2}, alpha = {3} (len = {4})'.format(prevRd,distInfo[0],(180.0/np.pi)*distInfo[1],distInfo[3],mapgraph.node[prevRd]['length']) assert(len(nbhdRds) > 0) roadSetSeq[tInd] = deepcopy(nbhdRds) posInfos[tInd] = (pos,np.copy(latlon),np.copy(instVF),np.copy(instVel),heading) # Prune roads at previous time steps which don't connect to the current set of road possibilities for ctInd in range(tInd,0,-1): if len(roadSetSeq[ctInd-1]) == 1: break rmRoads = set() for prevStreet in roadSetSeq[ctInd-1].iterkeys(): connected = False for nextStreet in roadSetSeq[ctInd].iterkeys(): if mapgraph.has_edge(prevStreet,nextStreet) and (mapgraph[prevStreet][nextStreet]['transition_distance'] - mapgraph.node[prevStreet]['length']) <= transDistThresh: connected = True break if not connected: rmRoads.add(prevStreet) # print 'back pruning {1} at {0}'.format(ctInd-1,len(rmRoads)) for delStreet in rmRoads: del (roadSetSeq[ctInd-1])[delStreet] if len(rmRoads) == 0: break stateFile.close() #print 'done.' #print 'Disambiguating nearby roads...', while True: # Find least ambiguous street. minErr = np.inf minErrInd = None minErrRoad = None for (tInd,currRoads) in roadSetSeq.iteritems(): if len(currRoads) == 1: continue for (currStreet,distInfo) in currRoads.iteritems(): currErr = errDistW*distInfo[0] + errAngW*np.abs(distInfo[1]) if currErr < minErr: minErr = currErr minErrInd = tInd minErrRoad = currStreet minErrDistInfo = distInfo # No more ambiguous roads. if minErrInd == None: break # Prune other possibilities #print 'Selecting {0} at {1}'.format(minErrRoad,minErrInd) roadSetSeq[minErrInd] = {minErrRoad:minErrDistInfo} # Prune forwards for tInd in range(minErrInd,len(roadSetSeq)-1,1): prevRoads = roadSetSeq[tInd] nextRoads = roadSetSeq[tInd+1] if len(nextRoads) == 1: break rmRoads = set() for nextStreet in nextRoads.iterkeys(): connected = False for prevStreet in prevRoads.iterkeys(): if mapgraph.has_edge(prevStreet,nextStreet) and (mapgraph[prevStreet][nextStreet]['transition_distance'] - mapgraph.node[prevStreet]['length']) <= transDistThresh: connected = True break if not connected: rmRoads.add(nextStreet) # print 'forward pruning {1} at {0}'.format(tInd+1,len(rmRoads)) for delStreet in rmRoads: del roadSetSeq[tInd+1][delStreet] if len(rmRoads) == 0: break # Prune backwards for tInd in range(minErrInd,0,-1): prevRoads = roadSetSeq[tInd-1] nextRoads = roadSetSeq[tInd] if len(prevRoads) == 1: break rmRoads = set() for prevStreet in prevRoads.iterkeys(): connected = False for nextStreet in nextRoads.iterkeys(): if mapgraph.has_edge(prevStreet,nextStreet) and (mapgraph[prevStreet][nextStreet]['transition_distance'] - mapgraph.node[prevStreet]['length']) <= transDistThresh: connected = True break if not connected: rmRoads.add(prevStreet) # print 'back pruning {1} at {0}'.format(tInd-1,len(rmRoads)) for delStreet in rmRoads: del roadSetSeq[tInd-1][delStreet] if len(rmRoads) == 0: break #print 'done.' prevStreet = None prevPosition = None prevOrient = None currStreet = None currPosition = None currOrient = None if data_skip == None or data_skip < 1: data_skip = 1 else: mapdynamics.setParameters({'dt':dt*data_skip,'dt_1':dt*data_skip}) debugStreet = None states = [] headingErrSum = 0 posErrSum = 0 numErrs = 0 #print 'Converting to street state...' for tInd in range(len(roadSetSeq)): # if debugStreet != currRoads.keys()[0]: # print '{0}: -> {1}'.format(tInd,debugStreet) # debugStreet = currRoads.keys()[0] if (tInd+1)%data_skip != 0: continue # print tInd currRoads = roadSetSeq[tInd] (gpsPos,latlon,instVF,instVel,heading) = posInfos[tInd] assert(len(currRoads) == 1) prev2Position = prevPosition prev2Orient = prevOrient prev2Street = prevStreet prevStreet = currStreet prevPosition = currPosition prevOrient = currOrient currStreet = currRoads.keys()[0] currOrient = currRoads[currStreet][2] currPosition = currRoads[currStreet][3] projPos = mapgraph.get_road_position(currStreet,np.array([currPosition])) posErrSum += np.sqrt(np.sum(np.power(projPos.reshape(2) - gpsPos.reshape(2),2.0))) numErrs += 1 if prevStreet != None and not mapgraph.has_edge(prevStreet,currStreet): print 'ERROR: missing link at tInd = {0}'.format(tInd) print 'prevStreet:' mapgraph.printNode(prevStreet) print '\ncurrStreet:' mapgraph.printNode(currStreet) assert(prevStreet == None or mapgraph.has_edge(prevStreet,currStreet)) if currStreet != prevStreet: if prevStreet != None: prevOrient = prevOrient - mapgraph[prevStreet][currStreet]['angle'] prevPosition = prevPosition - mapgraph.node[prevStreet]['length'] prev2Orient = prev2Orient - mapgraph[prevStreet][currStreet]['angle'] prev2Position = prev2Position - mapgraph.node[prevStreet]['length'] else: prevOrient = currOrient prevPosition = currPosition - mapdynamics.dt*instVF prev2Orient = currOrient prev2Position = currPosition - 2*mapdynamics.dt*instVF stateVec = mapdynamics.convert_posorient_sequence(mapgraph,[(prev2Street,prev2Position,prev2Orient),(prevStreet,prevPosition,prevOrient),(currStreet,currPosition,currOrient)]) states.append({'street':currStreet,'state':stateVec[-1],'gps_position':gpsPos,'gps_heading':heading,'map_position':projPos,'latlon':latlon}) # print 'Map projection error: {0}m'.format(1000.0*posErrSum/numErrs) return states def do_convert_gps_data(options,cfgFile): load_config_file(options,cfgFile) mapgraph,mapVersion = load_mapgraph(options) mapdynamics = load_mapdynamics(options) states = convert_gps_trajectory(mapgraph,mapdynamics,options.gps_data,options.dt,options.data_skip) outName = get_mapsequencedyn_outfile_path(options,'gt_states.p',includeCrop = False) pickle.dump(states, open(outName,'wb')) def do_synthesize_odometry(options,args): if options.mpi: comm = MPI.COMM_WORLD size = comm.Get_size() rank = comm.Get_rank() else: size = 1 rank = 0 if size > 1: if rank == 0: print 'Warning: synthesize_odometry does not exploit MPI parallelization' else: return assert len(args) == 4, 'Wrong number of arguments for synthesize_odometry.' obsFile = args[0] assert obsFile.endswith('.obs') cfgFile = args[1] assert cfgFile.endswith('.dcfg') posSigma = float(args[2]) angSigma = float(args[3]) load_config_file(options,cfgFile) mapgraph,mapVersion = load_mapgraph(options) mapdynamics = load_mapdynamics(options) # These signal parameters are specific to the data we're currently using signalMag = (0.01067254, 0.16930674) # obs = np.array([float(splitLine[0])/options.dt, float(splitLine[1])/options.dt]).reshape(2,1) # int_pos = np.array([float(splitLine[2]), float(splitLine[3])]).reshape(2,1) # int_ang = splitLine[4] projScale = mapgraph.graph['mercator_scale'] ptCoordOrigin = mapgraph.graph['position_offset'] latlon = np.empty(2) obsFile = open(obsFile,'wt') gpsFile = open(options.gps_data,'rt') for (tInd,line) in enumerate(gpsFile): lineParts = line.split() latlon[0] = float(lineParts[0]) latlon[1] = float(lineParts[1]) pos = mercatorProj(latlon,projScale) - ptCoordOrigin heading = float(lineParts[5]) if tInd == 0: basePos = copy(pos) baseHeading = copy(heading) baseR = np.array([[np.cos(heading - np.pi/2.0),
<reponame>njes9701/poe-archnemesis-scanner import configparser from email.mime import image from re import I, T import sys from dataclasses import dataclass from configparser import ConfigParser import win32gui from win32clipboard import * import tkinter as tk from tkinter import messagebox from typing import Callable, Any, Tuple, List, Dict import cv2 import numpy as np from PIL import ImageTk, Image, ImageGrab COLOR_BG = 'grey19' COLOR_FG_WHITE = 'snow' COLOR_FG_GREEN = 'green3' COLOR_FG_LIGHT_GREEN = 'DarkOliveGreen3' COLOR_FG_ORANGE = 'orange2' FONT_BIG = ('Consolas', '14') FONT_SMALL = ('Consolas', '9') @dataclass class RecipeItemNode: item: str components: list class ArchnemesisItemsMap: """ Holds the information about all archnemesis items, recipes, images and map them together """ def __init__(self, scale: float): # Put everything into the list so we could maintain the display order zh_tw = [ ('奇塔弗之觸', ['圖克哈瑪之觸', '艾貝拉斯之觸', '腐化者', '陰屍爆破']), ('善之觸', ['月神之觸', '日神之觸', '鏡像幻影', '魔靈吸取']), ('夏卡莉之觸', ['尾隨魔', '嗜魂者', '乾旱先鋒']), ('艾貝拉斯之觸', ['炎行者', '喪心病狂', '振興']), ('圖克哈瑪之觸', ['裂骨者', '劊子手', '熔岩屏障']), ('海洋王之觸', ['冰牢', '風行者', '先鋒召喚物']), ('艾爾卡莉之觸', ['陰屍爆破', '尾隨魔', '刺客']), ('日神之觸', ['刀槍不入', '熔岩屏障', '增幅召喚物']), ('月神之觸', ['刀槍不入', '霜行者', '增幅召喚物']), ('雕像', ['咒術師', '憎惡', '腐化者']), ('強化元素', ['招魂師', '鑄鋼', '混沌編織']), ('晶瑩剔透', ['永凍土', '振興', '狂戰士']), ('刀槍不入', ['哨兵', '勇士', '奉獻使徒']), ('腐化者', ['放血者', '混沌編織']), ('魔靈吸取', ['奉獻使徒', '發電機']), ('風行者', ['風暴編織', '急速']), ('鏡像幻影', ['回聲者', '魂靈牽引']), ('熔岩屏障', ['縱火', '裂骨者']), ('招魂師', ['烈焰編織', '冰霜編織', '風暴編織']), ('陰屍爆破', ['死靈師', '縱火']), ('炎行者', ['烈焰編織', '急速']), ('嗜魂者', ['魂靈牽引', '死靈師', '龐然大物']), ('冰牢', ['永凍土', '哨兵']), ('霜行者', ['冰霜編織', '急速']), ('樹人部落', ['毒素', '哨兵', '鑄鋼']), ('短暫幻想', ['勇士', '咒術師', '奧術緩衝']), ('尾隨魔', ['毒素', '放血者']), ('乾旱先鋒', ['憎惡', '銳眼']), ('咒術師', ['混沌編織', '回聲者']), ('劊子手', ['喪心病狂', '狂戰士']), ('振興', ['龐然大物', '吸血魔']), ('死靈師', ['投彈手', '超負荷']), ('詐欺師', ['超負荷', '刺客', '回聲者']), ('刺客', ['銳眼', '吸血魔']), ('增幅召喚物', ['死靈師', '劊子手', '龐然大物']), ('先鋒召喚物', ['發電機', '奧術緩衝']), ('奧術緩衝', []), ('狂戰士', []), ('放血者', []), ('投彈手', []), ('裂骨者', []), ('混沌編織', []), ('奉獻使徒', []), ('銳眼', []), ('發電機', []), ('回聲者', []), ('烈焰編織', []), ('喪心病狂', []), ('冰霜編織', []), ('龐然大物', []), ('急速', []), ('縱火', []), ('勇士', []), ('憎惡', []), ('豐饒', []), ('超負荷', []), ('永凍土', []), ('哨兵', []), ('魂靈牽引', []), ('鑄鋼', []), ('風暴編織', []), ('毒素', []), ('吸血魔', []) ] eng = [ ('Kitava-Touched', ['Tukohama-Touched', 'Abberath-Touched', 'Corrupter', 'Corpse Detonator']), ('Innocence-Touched', ['Lunaris-Touched', 'Solaris-Touched', 'Mirror Image', 'Mana Siphoner']), ('Shakari-Touched', ['Entangler', 'Soul Eater', 'Drought Bringer']), ('Abberath-Touched', ['Flame Strider', 'Frenzied', 'Rejuvenating']), ('Tukohama-Touched', ['Bonebreaker', 'Executioner', 'Magma Barrier']), ('Brine King-Touched', ['Ice Prison', 'Storm Strider', 'Heralding Minions']), ('Arakaali-Touched', ['Corpse Detonator', 'Entangler', 'Assassin']), ('Solaris-Touched', ['Invulnerable', 'Magma Barrier', 'Empowered Minions']), ('Lunaris-Touched', ['Invulnerable', 'Frost Strider', 'Empowered Minions']), ('Effigy', ['Hexer', 'Malediction', 'Corrupter']), ('Empowered Elements', ['Evocationist', 'Steel-Infused', 'Chaosweaver']), ('Crystal-Skinned', ['Permafrost', 'Rejuvenating', 'Berserker']), ('Invulnerable', ['Sentinel', 'Juggernaut', 'Consecrator']), ('Corrupter', ['Bloodletter', 'Chaosweaver']), ('Mana Siphoner', ['Consecrator', 'Dynamo']), ('Storm Strider', ['Stormweaver', 'Hasted']), ('Mirror Image', ['Echoist', 'Soul Conduit']), ('Magma Barrier', ['Incendiary', 'Bonebreaker']), ('Evocationist', ['Flameweaver', 'Frostweaver', 'Stormweaver']), ('Corpse Detonator', ['Necromancer', 'Incendiary']), ('Flame Strider', ['Flameweaver', 'Hasted']), ('Soul Eater', ['Soul Conduit', 'Necromancer', 'Gargantuan']), ('Ice Prison', ['Permafrost', 'Sentinel']), ('Frost Strider', ['Frostweaver', 'Hasted']), ('Treant Horder', ['Toxic', 'Sentinel', 'Steel-Infused']), ('Temporal Bubble', ['Juggernaut', 'Hexer', 'Arcane Buffer']), ('Entangler', ['Toxic', 'Bloodletter']), ('Drought Bringer', ['Malediction', 'Deadeye']), ('Hexer', ['Chaosweaver', 'Echoist']), ('Executioner', ['Frenzied', 'Berserker']), ('Rejuvenating', ['Gargantuan', 'Vampiric']), ('Necromancer', ['Bombardier', 'Overcharged']), ('Trickster', ['Overcharged', 'Assassin', 'Echoist']), ('Assassin', ['Deadeye', 'Vampiric']), ('Empowered Minions', ['Necromancer', 'Executioner', 'Gargantuan']), ('Heralding Minions', ['Dynamo', 'Arcane Buffer']), ('Arcane Buffer', []), ('Berserker', []), ('Bloodletter', []), ('Bombardier', []), ('Bonebreaker', []), ('Chaosweaver', []), ('Consecrator', []), ('Deadeye', []), ('Dynamo', []), ('Echoist', []), ('Flameweaver', []), ('Frenzied', []), ('Frostweaver', []), ('Gargantuan', []), ('Hasted', []), ('Incendiary', []), ('Juggernaut', []), ('Malediction', []), ('Opulent', []), ('Overcharged', []), ('Permafrost', []), ('Sentinel', []), ('Soul Conduit', []), ('Steel-Infused', []), ('Stormweaver', []), ('Toxic', []), ('Vampiric', []) ] langs = configparser.ConfigParser() langs.read('settings.ini') langs_bool = langs['settings'].get('change_to_chinese') langs_bool = True if langs_bool is not None and langs_bool == 'True' else False if langs_bool: self._arch_items = zh_tw else: self._arch_items = eng self._images = dict() self._small_image_size = 30 self._update_images(scale) def _update_images(self, scale): self._scale = scale for item, _ in self._arch_items: self._images[item] = dict() image = self._load_image(item, scale) self._image_size = image.size self._images[item]['scan-image'] = self._create_scan_image(image) # Convert the image to Tk image because we're going to display it self._images[item]['display-image'] = ImageTk.PhotoImage(image=image) image = image.resize((self._small_image_size, self._small_image_size)) self._images[item]['display-small-image'] = ImageTk.PhotoImage(image=image) def _load_image(self, item: str, scale: float): langs = configparser.ConfigParser() langs.read('settings.ini') langs_bool = langs['settings'].get('change_to_chinese') langs_bool = True if langs_bool is not None and langs_bool == 'True' else False if langs_bool: image = Image.open(f'pictures_zh_tw/{item}.png') else: image = Image.open(f'pictures_eng/{item}.png') # Scale the image according to the input parameter return image.resize((int(image.width * scale), int(image.height * scale))) def _create_scan_image(self, image): # Remove alpha channel and replace it with predefined background color background = Image.new('RGBA', image.size, (10, 10, 32)) image_without_alpha = Image.alpha_composite(background, image) scan_template = cv2.cvtColor(np.array(image_without_alpha), cv2.COLOR_RGB2BGR) w, h, _ = scan_template.shape # Crop the image to help with scanning return scan_template[int(h * 1.0 / 10):int(h * 2.3 / 3), int(w * 1.0 / 6):int(w * 5.5 / 6)] def get_scan_image(self, item): return self._images[item]['scan-image'] def get_display_image(self, item): return self._images[item]['display-image'] def get_display_small_image(self, item): return self._images[item]['display-small-image'] def items(self): for item, _ in self._arch_items: yield item def recipes(self): for item, recipe in self._arch_items: if recipe: yield (item, recipe) def get_subtree_for(self, item: str): tree = RecipeItemNode(item, []) nodes = [tree] while len(nodes) > 0: node = nodes.pop(0) children = self._get_item_components(node.item) if len(children) > 0: node.components = [RecipeItemNode(c, []) for c in children] nodes.extend(node.components) return tree def get_parent_recipes_for(self, item: str) -> []: parents = list() for parent, components in self._arch_items: if item in components: parents.append(parent) return parents def _get_item_components(self, item) -> List[str]: return next(l for x, l in self._arch_items if x == item) @property def image_size(self): return self._image_size @property def scale(self) -> float: return self._scale @scale.setter def scale(self, scale: float) -> None: self._update_images(scale) @property def small_image_size(self): return self._small_image_size @dataclass class PoeWindowInfo: x: int = 0 y: int = 0 width: int = 0 height: int = 0 client_width: int = 0 client_height: int = 0 title_bar_height: int = 0 class ImageScanner: """ Implements scanning algorithm with OpenCV. Maintans the scanning window to speed up the scanning. """ def __init__(self, info: PoeWindowInfo, items_map: ArchnemesisItemsMap): self._scanner_window_size = ( info.x, info.y + int(info.client_height / 4), int(info.client_width / 3), int(info.client_height * 2 / 3) ) self._items_map = items_map self._confidence_threshold = 0.94 def scan(self) -> Dict[str, List[Tuple[int, int]]]: bbox = ( self._scanner_window_size[0], self._scanner_window_size[1], self._scanner_window_size[0] + self._scanner_window_size[2], self._scanner_window_size[1] + self._scanner_window_size[3] ) screen = ImageGrab.grab(bbox=bbox) screen = np.array(screen) screen = cv2.cvtColor(screen, cv2.COLOR_RGB2BGR) results = dict() for item in self._items_map.items(): template = self._items_map.get_scan_image(item) heat_map = cv2.matchTemplate(screen, template, cv2.TM_CCOEFF_NORMED) _, confidence, _, (x, y) = cv2.minMaxLoc(heat_map) print(f'Best match for {item}: x={x}, y={y} confidence={confidence}', 'too low' if confidence < self._confidence_threshold else '') findings = np.where(heat_map >= self._confidence_threshold) if len(findings[0]) > 0: rectangles = [] ht, wt = template.shape[0], template.shape[1] for (x, y) in zip(findings[1], findings[0]): # Add every box to the list twice in order to retain single (non-overlapping) boxes rectangles.append([int(x), int(y), int(wt), int(ht)]) rectangles.append([int(x), int(y), int(wt), int(ht)]) rectangles, _ = cv2.groupRectangles(rectangles, 1, 0.1) results[item] = [(rect[0], rect[1]) for rect in rectangles] print(results) return results @property def scanner_window_size(self) -> Tuple[int, int, int, int]: return self._scanner_window_size @scanner_window_size.setter def scanner_window_size(self, value: Tuple[int, int, int, int]) -> None: self._scanner_window_size = value @property def confidence_threshold(self) -> float: return self._confidence_threshold @confidence_threshold.setter def confidence_threshold(self, value) -> None: self._confidence_threshold = value class UIOverlay: """ Overlay window using tkinter '-topmost' property """ def __init__(self, root, info: PoeWindowInfo, items_map: ArchnemesisItemsMap, image_scanner: ImageScanner): self._window_info = info self._items_map = items_map self._image_scanner = image_scanner self._root = root self._scan_results_window = None self._recipe_browser_window = None self._recipe_browser_current_root = '' self._tooltip_window = None self._highlight_windows_to_show = list() self._scan_results_window_saved_position = (-1, 0) self._settings = Settings(root, items_map, image_scanner) self._create_controls() self._root.configure(bg='') self._root.overrideredirect(True) self._root.geometry(f'+{info.x + 5}+{info.y + info.title_bar_height + 5}') self._root.wm_attributes('-topmost', True) self._root.deiconify() @staticmethod def create_toplevel_window(bg=''): w = tk.Toplevel() w.configure(bg=bg) # Hide window outline/controls w.overrideredirect(True) # Make sure the window is always on top w.wm_attributes('-topmost', True) return w def _create_controls(self) -> None: l = tk.Button(self._root, text='[X]', fg=COLOR_FG_GREEN, bg=COLOR_BG, font=FONT_SMALL) l.bind('<Button-1>', sys.exit) l.bind('<B3-Motion>', lambda event: self._drag(self._root, -5, -5, event)) l.grid(row=0, column=0) settings = tk.Button(self._root, text='Settings', fg=COLOR_FG_GREEN, bg=COLOR_BG, font=FONT_SMALL) settings.bind('<Button-1>', lambda _: self._settings.show()) settings.bind('<B3-Motion>', lambda event: self._drag(self._root, -5, -5, event)) settings.grid(row=0, column=1) self._scan_label_text = tk.StringVar(self._root, value='Scan') self._scan_label = tk.Button(self._root, textvariable=self._scan_label_text, fg=COLOR_FG_GREEN, bg=COLOR_BG, font=FONT_SMALL) self._scan_label.bind("<Button-1>", self._scan) self._scan_label.bind('<B3-Motion>', lambda event: self._drag(self._root, -5, -5, event)) self._scan_label.grid(row=0, column=3) def _drag(self, window, offset_x: int, offset_y: int, event) -> Tuple[int, int]: x = offset_x + event.x + window.winfo_x() y = offset_y + event.y + window.winfo_y() window.geometry(f'+{x}+{y}') return (x, y) def _scan(self, _) -> None: self._scan_label_text.set('Scanning...') self._root.update() results = self._image_scanner.scan() if len(results) > 0:
# # Stripped version of "hookenv.py" (By <NAME>, 2020 <EMAIL>) # # # Copyright 2014-2015 Canonical Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. "Interactions with the Juju environment" # Copyright 2013 Canonical Ltd. # # Authors: # <NAME> <<EMAIL>> from __future__ import print_function from enum import Enum from functools import wraps import os import json import yaml import subprocess import sys import errno import tempfile from subprocess import CalledProcessError import six if not six.PY3: from UserDict import UserDict else: from collections import UserDict CRITICAL = "CRITICAL" ERROR = "ERROR" WARNING = "WARNING" INFO = "INFO" DEBUG = "DEBUG" TRACE = "TRACE" MARKER = object() SH_MAX_ARG = 131071 class WORKLOAD_STATES(Enum): ACTIVE = 'active' BLOCKED = 'blocked' MAINTENANCE = 'maintenance' WAITING = 'waiting' cache = {} def cached(func): """Cache return values for multiple executions of func + args For example:: @cached def unit_get(attribute): pass unit_get('test') will cache the result of unit_get + 'test' for future calls. """ @wraps(func) def wrapper(*args, **kwargs): global cache key = json.dumps((func, args, kwargs), sort_keys=True, default=str) try: return cache[key] except KeyError: pass # Drop out of the exception handler scope. res = func(*args, **kwargs) cache[key] = res return res wrapper._wrapped = func return wrapper def flush(key): """Flushes any entries from function cache where the key is found in the function+args """ flush_list = [] for item in cache: if key in item: flush_list.append(item) for item in flush_list: del cache[item] def log(message, level=None): """Write a message to the juju log""" command = ['juju-log'] if level: command += ['-l', level] if not isinstance(message, six.string_types): message = repr(message) command += [message[:SH_MAX_ARG]] # Missing juju-log should not cause failures in unit tests # Send log output to stderr try: subprocess.call(command) except OSError as e: if e.errno == errno.ENOENT: if level: message = "{}: {}".format(level, message) message = "juju-log: {}".format(message) print(message, file=sys.stderr) else: raise def relation_type(): """The scope for the current relation hook""" return os.environ.get('JUJU_RELATION', None) @cached def relation_id(relation_name=None, service_or_unit=None): """The relation ID for the current or a specified relation""" if not relation_name and not service_or_unit: return os.environ.get('JUJU_RELATION_ID', None) elif relation_name and service_or_unit: service_name = service_or_unit.split('/')[0] for relid in relation_ids(relation_name): remote_service = remote_service_name(relid) if remote_service == service_name: return relid else: raise ValueError('Must specify neither or both of relation_name and service_or_unit') def local_unit(): """Local unit ID""" return os.environ['JUJU_UNIT_NAME'] def remote_unit(): """The remote unit for the current relation hook""" return os.environ.get('JUJU_REMOTE_UNIT', None) @cached def remote_service_name(relid=None): """The remote service name for a given relation-id (or the current relation)""" if relid is None: unit = remote_unit() else: units = related_units(relid) unit = units[0] if units else None return unit.split('/')[0] if unit else None @cached def relation_get(attribute=None, unit=None, rid=None): """Get relation information""" _args = ['relation-get', '--format=json'] if rid: _args.append('-r') _args.append(rid) _args.append(attribute or '-') if unit: _args.append(unit) try: return json.loads(subprocess.check_output(_args).decode('UTF-8')) except ValueError: return None except CalledProcessError as e: if e.returncode == 2: return None raise def relation_set(relation_id=None, relation_settings=None, **kwargs): """Set relation information for the current unit""" relation_settings = relation_settings if relation_settings else {} relation_cmd_line = ['relation-set'] accepts_file = "--file" in subprocess.check_output( relation_cmd_line + ["--help"], universal_newlines=True) if relation_id is not None: relation_cmd_line.extend(('-r', relation_id)) settings = relation_settings.copy() settings.update(kwargs) for key, value in settings.items(): # Force value to be a string: it always should, but some call # sites pass in things like dicts or numbers. if value is not None: settings[key] = "{}".format(value) if accepts_file: # --file was introduced in Juju 1.23.2. Use it by default if # available, since otherwise we'll break if the relation data is # too big. Ideally we should tell relation-set to read the data from # stdin, but that feature is broken in 1.23.2: Bug #1454678. with tempfile.NamedTemporaryFile(delete=False) as settings_file: settings_file.write(yaml.safe_dump(settings).encode("utf-8")) subprocess.check_call( relation_cmd_line + ["--file", settings_file.name]) os.remove(settings_file.name) else: for key, value in settings.items(): if value is None: relation_cmd_line.append('{}='.format(key)) else: relation_cmd_line.append('{}={}'.format(key, value)) subprocess.check_call(relation_cmd_line) # Flush cache of any relation-gets for local unit flush(local_unit()) def relation_clear(r_id=None): ''' Clears any relation data already set on relation r_id ''' settings = relation_get(rid=r_id, unit=local_unit()) for setting in settings: if setting not in ['public-address', 'private-address']: settings[setting] = None relation_set(relation_id=r_id, **settings) @cached def relation_ids(reltype=None): """A list of relation_ids""" reltype = reltype or relation_type() relid_cmd_line = ['relation-ids', '--format=json'] if reltype is not None: relid_cmd_line.append(reltype) return json.loads( subprocess.check_output(relid_cmd_line).decode('UTF-8')) or [] return [] @cached def related_units(relid=None): """A list of related units""" relid = relid or relation_id() units_cmd_line = ['relation-list', '--format=json'] if relid is not None: units_cmd_line.extend(('-r', relid)) return json.loads( subprocess.check_output(units_cmd_line).decode('UTF-8')) or [] def function_get(key=None): """Gets the value of an action parameter, or all key/value param pairs""" cmd = ['function-get'] # Fallback for older charms. if not cmd_exists('function-get'): cmd = ['action-get'] if key is not None: cmd.append(key) cmd.append('--format=json') function_data = json.loads(subprocess.check_output(cmd).decode('UTF-8')) return function_data def expected_related_units(reltype=None): """Get a generator for units we expect to join relation based on goal-state. Note that you can not use this function for the peer relation, take a look at expected_peer_units() for that. This function will raise KeyError if you request information for a relation type for which juju goal-state does not have information. It will raise NotImplementedError if used with juju versions without goal-state support. Example usage: log('participant {} of {} joined relation {}' .format(len(related_units()), len(list(expected_related_units())), relation_type())) :param reltype: Relation type to list data for, default is to list data for the realtion type we are currently executing a hook for. :type reltype: str :returns: iterator :rtype: types.GeneratorType :raises: KeyError, NotImplementedError """ if not has_juju_version("2.4.4"): # goal-state existed in 2.4.0, but did not list individual units to # join a relation in 2.4.1 through 2.4.3. (LP: #1794739) raise NotImplementedError("goal-state relation unit count") reltype = reltype or relation_type() _goal_state = goal_state() return (key for key in _goal_state['relations'][reltype] if '/' in key) @cached def relation_for_unit(unit=None, rid=None): """Get the json represenation of a unit's relation""" unit = unit or remote_unit() relation = relation_get(unit=unit, rid=rid) for key in relation: if key.endswith('-list'): relation[key] = relation[key].split() relation['__unit__'] = unit return relation @cached def relations_for_id(relid=None): """Get relations of a specific relation ID""" relation_data = [] relid = relid or relation_ids() for unit in related_units(relid): unit_data = relation_for_unit(unit, relid) unit_data['__relid__'] = relid relation_data.append(unit_data) return relation_data @cached def metadata(): """Get the current charm metadata.yaml contents as a python object""" with open(os.path.join(charm_dir(), 'metadata.yaml')) as md: return yaml.safe_load(md) @cached def relation_types(): """Get a list of relation types supported by this charm""" rel_types = [] md = metadata() for key in ('provides', 'requires', 'peers'): section = md.get(key) if section: rel_types.extend(section.keys()) return rel_types @cached def role_and_interface_to_relations(role, interface_name): """ Given a role and interface name, return a list of relation names for the current charm that use that interface under that role (where role is one of ``provides``, ``requires``, or ``peers``). :returns: A list of relation names. """ _metadata = metadata() results = [] for relation_name, relation in _metadata.get(role, {}).items(): if relation['interface'] == interface_name: results.append(relation_name) return results @cached def interface_to_relations(interface_name): """ Given an interface, return a list of relation names for the current charm that use that interface. :returns: A list of relation names. """ results = [] for role in ('provides', 'requires', 'peers'): results.extend(role_and_interface_to_relations(role, interface_name)) return results @cached def unit_get(attribute): """Get the unit ID for the remote unit""" _args = ['unit-get', '--format=json', attribute] try: return json.loads(subprocess.check_output(_args).decode('UTF-8')) except ValueError: return None def charm_dir(): """Return the root directory of the current charm""" d = os.environ.get('JUJU_CHARM_DIR') if d is not None: return d return os.environ.get('CHARM_DIR') def cmd_exists(cmd): """Return True if the specified cmd exists in the path""" return any( os.access(os.path.join(path, cmd), os.X_OK) for path in os.environ["PATH"].split(os.pathsep) ) def status_set(workload_state, message, application=False): """Set the workload state with a message Use status-set to set the workload state with a message which is visible to the user via juju status. If the status-set command is not found then assume this is juju < 1.23 and juju-log the message instead. workload_state -- valid juju workload state. str or WORKLOAD_STATES message -- status update message application -- Whether this is
# Copyright The Linux Foundation and each contributor to CommunityBridge. # SPDX-License-Identifier: MIT import logging import unittest import cla from cla.controllers.github import get_org_name_from_installation_event, get_github_activity_action class TestGitHubController(unittest.TestCase): example_1 = { 'action': 'created', 'installation': { 'id': 2, 'account': { 'login': 'Linux Foundation', 'id': 1, 'node_id': 'MDQ6VXNlcjE=', 'avatar_url': 'https://github.com/images/error/octocat_happy.gif', 'gravatar_id': '', 'url': 'https://api.github.com/users/octocat', 'html_url': 'https://github.com/octocat', 'followers_url': 'https://api.github.com/users/octocat/followers', 'following_url': 'https://api.github.com/users/octocat/following{/other_user}', 'gists_url': 'https://api.github.com/users/octocat/gists{/gist_id}', 'starred_url': 'https://api.github.com/users/octocat/starred{/owner}{/repo}', 'subscriptions_url': 'https://api.github.com/users/octocat/subscriptions', 'organizations_url': 'https://api.github.com/users/octocat/orgs', 'repos_url': 'https://api.github.com/users/octocat/repos', 'events_url': 'https://api.github.com/users/octocat/events{/privacy}', 'received_events_url': 'https://api.github.com/users/octocat/received_events', 'type': 'User', 'site_admin': False }, 'repository_selection': 'selected', 'access_tokens_url': 'https://api.github.com/installations/2/access_tokens', 'repositories_url': 'https://api.github.com/installation/repositories', 'html_url': 'https://github.com/settings/installations/2', 'app_id': 5725, 'target_id': 3880403, 'target_type': 'User', 'permissions': { 'metadata': 'read', 'contents': 'read', 'issues': 'write' }, 'events': [ 'push', 'pull_request' ], 'created_at': 1525109898, 'updated_at': 1525109899, 'single_file_name': 'config.yml' } } example_2 = { "action": "created", "comment": { "url": "https://api.github.com/repos/grpc/grpc/pulls/comments/134346", "pull_request_review_id": 134346, "id": 134346, "node_id": "MDI0OlB1bGxSZXF1ZXN0UmVredacted==", "path": "setup.py", "position": 16, "original_position": 17, "commit_id": "4bc9820redacted", "original_commit_id": "d5515redacted", "user": { "login": "redacted", "id": 134566, "node_id": "MDQ6VXNlcjI3OTMyODI=", "avatar_url": "https://avatars3.githubusercontent.com/u/2793282?v=4", "gravatar_id": "", "url": "https://api.github.com/users/veblush", "html_url": "https://github.com/veblush", "followers_url": "https://api.github.com/users/veblush/followers", "following_url": "https://api.github.com/users/veblush/following{/other_user}", "gists_url": "https://api.github.com/users/veblush/gists{/gist_id}", "starred_url": "https://api.github.com/users/veblush/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/veblush/subscriptions", "organizations_url": "https://api.github.com/users/veblush/orgs", "repos_url": "https://api.github.com/users/veblush/repos", "events_url": "https://api.github.com/users/veblush/events{/privacy}", "received_events_url": "https://api.github.com/users/veblush/received_events", "type": "User", "site_admin": False }, "pull_request_url": "https://api.github.com/repos/grpc/grpc/pulls/134566", "author_association": "CONTRIBUTOR", "_links": { "self": { "href": "https://api.github.com/repos/grpc/grpc/pulls/comments/134566" }, "html": { "href": "https://github.com/grpc/grpc/pull/20414#discussion_r134566" }, "pull_request": { "href": "https://api.github.com/repos/grpc/grpc/pulls/134566" } }, "in_reply_to_id": 1345667 }, "pull_request": { "url": "https://api.github.com/repos/grpc/grpc/pulls/20414", "id": 134566, "node_id": "MDExxxxxxxxxxxxxxxxxxxxxxxxxxxxx", "html_url": "https://github.com/grpc/grpc/pull/20414", "diff_url": "https://github.com/grpc/grpc/pull/20414.diff", "patch_url": "https://github.com/grpc/grpc/pull/20414.patch", "issue_url": "https://api.github.com/repos/grpc/grpc/issues/20414", "number": 134566, "state": "open", "locked": False, "title": "Added lib to gRPC python", "user": { "login": "redacted", "id": 12345677, "node_id": "MDQ6666666666666666=", "avatar_url": "https://avatars3.githubusercontent.com/u/2793282?v=4", "gravatar_id": "", "url": "https://api.github.com/users/veblush", "html_url": "https://github.com/veblush", "followers_url": "https://api.github.com/users/veblush/followers", "following_url": "https://api.github.com/users/veblush/following{/other_user}", "gists_url": "https://api.github.com/users/veblush/gists{/gist_id}", "starred_url": "https://api.github.com/users/veblush/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/veblush/subscriptions", "organizations_url": "https://api.github.com/users/veblush/orgs", "repos_url": "https://api.github.com/users/veblush/repos", "events_url": "https://api.github.com/users/veblush/events{/privacy}", "received_events_url": "https://api.github.com/users/veblush/received_events", "type": "User", "site_admin": False }, "body": "Try to fix #20400 and #20174", "created_at": "2019-10-01T06:08:53Z", "updated_at": "2019-10-07T18:19:12Z", "closed_at": None, "merged_at": None, "merge_commit_sha": "5bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb", "assignee": None, "assignees": [], "requested_reviewers": [], "requested_teams": [], "labels": [ { "id": 12345, "node_id": "MDU66llllllllllllllllll=", "url": "https://api.github.com/repos/grpc/grpc/labels/area/build", "name": "area/build", "color": "efdb40", "default": False }, { "id": 12345, "node_id": "MDU66666666666666666666=", "url": "https://api.github.com/repos/grpc/grpc/labels/lang/Python", "name": "lang/Python", "color": "fad8c7", "default": False }, { "id": 12345677, "node_id": "MDUuuuuuuuuuuuuuuuuuuuu=", "url": "https://api.github.com/repos/grpc/grpc/labels/release%20notes:%20no", "name": "release notes: no", "color": "0f5f75", "default": False } ], "milestone": None, "commits_url": "https://api.github.com/repos/grpc/grpc/pulls/1234/commits", "review_comments_url": "https://api.github.com/repos/grpc/grpc/pulls/12345/comments", "review_comment_url": "https://api.github.com/repos/grpc/grpc/pulls/comments{/number}", "comments_url": "https://api.github.com/repos/grpc/grpc/issues/12345/comments", "statuses_url": "https://api.github.com/repos/grpc/grpc/statuses/4444444444444444444444444444444444444444", "head": { "label": "redacted:fix-xyz", "ref": "fix-xyz", "sha": "4444444444444444444444444444444444444444", "user": { "login": "redacted", "id": 1234556, "node_id": "MDQ66llllllllllllll=", "avatar_url": "https://avatars3.githubusercontent.com/u/2793282?v=4", "gravatar_id": "", "url": "https://api.github.com/users/veblush", "html_url": "https://github.com/veblush", "followers_url": "https://api.github.com/users/veblush/followers", "following_url": "https://api.github.com/users/veblush/following{/other_user}", "gists_url": "https://api.github.com/users/veblush/gists{/gist_id}", "starred_url": "https://api.github.com/users/veblush/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/veblush/subscriptions", "organizations_url": "https://api.github.com/users/veblush/orgs", "repos_url": "https://api.github.com/users/veblush/repos", "events_url": "https://api.github.com/users/veblush/events{/privacy}", "received_events_url": "https://api.github.com/users/veblush/received_events", "type": "User", "site_admin": False }, "repo": { "id": 123456789, "node_id": "MDEwwwwwwwwwwwwwwwwwwwwwwwwwwww=", "name": "grpc", "full_name": "redacted/grpc", "private": False, "owner": { "login": "redacted", "id": 1234567, "node_id": "MDQ6666666666666666=", "avatar_url": "https://avatars3.githubusercontent.com/u/2793282?v=4", "gravatar_id": "", "url": "https://api.github.com/users/veblush", "html_url": "https://github.com/veblush", "followers_url": "https://api.github.com/users/veblush/followers", "following_url": "https://api.github.com/users/veblush/following{/other_user}", "gists_url": "https://api.github.com/users/veblush/gists{/gist_id}", "starred_url": "https://api.github.com/users/veblush/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/veblush/subscriptions", "organizations_url": "https://api.github.com/users/veblush/orgs", "repos_url": "https://api.github.com/users/veblush/repos", "events_url": "https://api.github.com/users/veblush/events{/privacy}", "received_events_url": "https://api.github.com/users/veblush/received_events", "type": "User", "site_admin": False }, "html_url": "https://github.com/veblush/grpc", "description": "The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#)", "fork": True, "url": "https://api.github.com/repos/veblush/grpc", "forks_url": "https://api.github.com/repos/veblush/grpc/forks", "keys_url": "https://api.github.com/repos/veblush/grpc/keys{/key_id}", "collaborators_url": "https://api.github.com/repos/veblush/grpc/collaborators{/collaborator}", "teams_url": "https://api.github.com/repos/veblush/grpc/teams", "hooks_url": "https://api.github.com/repos/veblush/grpc/hooks", "issue_events_url": "https://api.github.com/repos/veblush/grpc/issues/events{/number}", "events_url": "https://api.github.com/repos/veblush/grpc/events", "assignees_url": "https://api.github.com/repos/veblush/grpc/assignees{/user}", "branches_url": "https://api.github.com/repos/veblush/grpc/branches{/branch}", "tags_url": "https://api.github.com/repos/veblush/grpc/tags", "blobs_url": "https://api.github.com/repos/veblush/grpc/git/blobs{/sha}", "git_tags_url": "https://api.github.com/repos/veblush/grpc/git/tags{/sha}", "git_refs_url": "https://api.github.com/repos/veblush/grpc/git/refs{/sha}", "trees_url": "https://api.github.com/repos/veblush/grpc/git/trees{/sha}", "statuses_url": "https://api.github.com/repos/veblush/grpc/statuses/{sha}", "languages_url": "https://api.github.com/repos/veblush/grpc/languages", "stargazers_url": "https://api.github.com/repos/veblush/grpc/stargazers", "contributors_url": "https://api.github.com/repos/veblush/grpc/contributors", "subscribers_url": "https://api.github.com/repos/veblush/grpc/subscribers", "subscription_url": "https://api.github.com/repos/veblush/grpc/subscription", "commits_url": "https://api.github.com/repos/veblush/grpc/commits{/sha}", "git_commits_url": "https://api.github.com/repos/veblush/grpc/git/commits{/sha}", "comments_url": "https://api.github.com/repos/veblush/grpc/comments{/number}", "issue_comment_url": "https://api.github.com/repos/veblush/grpc/issues/comments{/number}", "contents_url": "https://api.github.com/repos/veblush/grpc/contents/{+path}", "compare_url": "https://api.github.com/repos/veblush/grpc/compare/{base}...{head}", "merges_url": "https://api.github.com/repos/veblush/grpc/merges", "archive_url": "https://api.github.com/repos/veblush/grpc/{archive_format}{/ref}", "downloads_url": "https://api.github.com/repos/veblush/grpc/downloads", "issues_url": "https://api.github.com/repos/veblush/grpc/issues{/number}", "pulls_url": "https://api.github.com/repos/veblush/grpc/pulls{/number}", "milestones_url": "https://api.github.com/repos/veblush/grpc/milestones{/number}", "notifications_url": "https://api.github.com/repos/veblush/grpc/notifications{?since,all,participating}", "labels_url": "https://api.github.com/repos/veblush/grpc/labels{/name}", "releases_url": "https://api.github.com/repos/veblush/grpc/releases{/id}", "deployments_url": "https://api.github.com/repos/veblush/grpc/deployments", "created_at": "2019-04-12T16:55:24Z", "updated_at": "2019-10-03T17:32:29Z", "pushed_at": "2019-10-05T03:41:45Z", "git_url": "git://github.com/veblush/grpc.git", "ssh_url": "[email protected]:veblush/grpc.git", "clone_url": "https://github.com/veblush/grpc.git", "svn_url": "https://github.com/veblush/grpc", "homepage": "https://grpc.io", "size": 218962, "stargazers_count": 0, "watchers_count": 0, "language": "C++", "has_issues": False, "has_projects": True, "has_downloads": False, "has_wiki": True, "has_pages": False, "forks_count": 0, "mirror_url": None, "archived": False, "disabled": False, "open_issues_count": 0, "license": { "key": "apache-2.0", "name": "Apache License 2.0", "spdx_id": "Apache-2.0", "url": "https://api.github.com/licenses/apache-2.0", "node_id": "MDccccccccccccc=" }, "forks": 0, "open_issues": 0, "watchers": 0, "default_branch": "master" } }, "base": { "label": "grpc:master", "ref": "master", "sha": "9999999999999999999999999999999999999999", "user": { "login": "grpc", "id": 7802525, "node_id": "MDEyyyyyyyyyyyyyyyyyyyyyyyyyyyy=", "avatar_url": "https://avatars1.githubusercontent.com/u/7802525?v=4", "gravatar_id": "", "url": "https://api.github.com/users/grpc", "html_url": "https://github.com/grpc", "followers_url": "https://api.github.com/users/grpc/followers", "following_url": "https://api.github.com/users/grpc/following{/other_user}", "gists_url": "https://api.github.com/users/grpc/gists{/gist_id}", "starred_url": "https://api.github.com/users/grpc/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/grpc/subscriptions", "organizations_url": "https://api.github.com/users/grpc/orgs", "repos_url": "https://api.github.com/users/grpc/repos", "events_url": "https://api.github.com/users/grpc/events{/privacy}", "received_events_url": "https://api.github.com/users/grpc/received_events", "type": "Organization", "site_admin": False }, "repo": { "id": 27729880, "node_id": "MDEwwwwwwwwwwwwwwwwwwwwwwwwwww==", "name": "grpc", "full_name": "grpc/grpc", "private": False, "owner": { "login": "grpc", "id": 7802525, "node_id": "MDEyyyyyyyyyyyyyyyyyyyyyyyyyyyy=", "avatar_url": "https://avatars1.githubusercontent.com/u/7802525?v=4", "gravatar_id": "", "url": "https://api.github.com/users/grpc", "html_url": "https://github.com/grpc", "followers_url": "https://api.github.com/users/grpc/followers", "following_url": "https://api.github.com/users/grpc/following{/other_user}", "gists_url": "https://api.github.com/users/grpc/gists{/gist_id}", "starred_url": "https://api.github.com/users/grpc/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/grpc/subscriptions", "organizations_url": "https://api.github.com/users/grpc/orgs", "repos_url": "https://api.github.com/users/grpc/repos", "events_url": "https://api.github.com/users/grpc/events{/privacy}", "received_events_url": "https://api.github.com/users/grpc/received_events", "type": "Organization", "site_admin": False }, "html_url": "https://github.com/grpc/grpc", "description": "The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#)", "fork": False, "url": "https://api.github.com/repos/grpc/grpc", "forks_url": "https://api.github.com/repos/grpc/grpc/forks", "keys_url": "https://api.github.com/repos/grpc/grpc/keys{/key_id}", "collaborators_url": "https://api.github.com/repos/grpc/grpc/collaborators{/collaborator}", "teams_url": "https://api.github.com/repos/grpc/grpc/teams", "hooks_url": "https://api.github.com/repos/grpc/grpc/hooks", "issue_events_url": "https://api.github.com/repos/grpc/grpc/issues/events{/number}", "events_url": "https://api.github.com/repos/grpc/grpc/events", "assignees_url": "https://api.github.com/repos/grpc/grpc/assignees{/user}", "branches_url": "https://api.github.com/repos/grpc/grpc/branches{/branch}", "tags_url": "https://api.github.com/repos/grpc/grpc/tags", "blobs_url": "https://api.github.com/repos/grpc/grpc/git/blobs{/sha}", "git_tags_url": "https://api.github.com/repos/grpc/grpc/git/tags{/sha}", "git_refs_url": "https://api.github.com/repos/grpc/grpc/git/refs{/sha}", "trees_url": "https://api.github.com/repos/grpc/grpc/git/trees{/sha}", "statuses_url": "https://api.github.com/repos/grpc/grpc/statuses/{sha}", "languages_url": "https://api.github.com/repos/grpc/grpc/languages", "stargazers_url": "https://api.github.com/repos/grpc/grpc/stargazers", "contributors_url": "https://api.github.com/repos/grpc/grpc/contributors", "subscribers_url": "https://api.github.com/repos/grpc/grpc/subscribers", "subscription_url": "https://api.github.com/repos/grpc/grpc/subscription", "commits_url": "https://api.github.com/repos/grpc/grpc/commits{/sha}", "git_commits_url": "https://api.github.com/repos/grpc/grpc/git/commits{/sha}", "comments_url": "https://api.github.com/repos/grpc/grpc/comments{/number}", "issue_comment_url": "https://api.github.com/repos/grpc/grpc/issues/comments{/number}", "contents_url": "https://api.github.com/repos/grpc/grpc/contents/{+path}", "compare_url": "https://api.github.com/repos/grpc/grpc/compare/{base}...{head}", "merges_url": "https://api.github.com/repos/grpc/grpc/merges", "archive_url": "https://api.github.com/repos/grpc/grpc/{archive_format}{/ref}", "downloads_url": "https://api.github.com/repos/grpc/grpc/downloads", "issues_url": "https://api.github.com/repos/grpc/grpc/issues{/number}", "pulls_url": "https://api.github.com/repos/grpc/grpc/pulls{/number}", "milestones_url": "https://api.github.com/repos/grpc/grpc/milestones{/number}", "notifications_url": "https://api.github.com/repos/grpc/grpc/notifications{?since,all,participating}", "labels_url": "https://api.github.com/repos/grpc/grpc/labels{/name}", "releases_url": "https://api.github.com/repos/grpc/grpc/releases{/id}", "deployments_url": "https://api.github.com/repos/grpc/grpc/deployments", "created_at": "2014-12-08T18:58:53Z", "updated_at": "2019-10-07T16:10:54Z", "pushed_at": "2019-10-07T17:24:21Z", "git_url": "git://github.com/grpc/grpc.git", "ssh_url": "<EMAIL>:grpc/grpc.git", "clone_url": "https://github.com/grpc/grpc.git", "svn_url": "https://github.com/grpc/grpc", "homepage": "https://grpc.io", "size": 240231, "stargazers_count": 23364, "watchers_count": 23364, "language": "C++", "has_issues": True, "has_projects": True, "has_downloads": False, "has_wiki": True, "has_pages": True, "forks_count": 5530, "mirror_url": None, "archived": False, "disabled": False, "open_issues_count": 886, "license": { "key": "apache-2.0", "name": "Apache License 2.0", "spdx_id": "Apache-2.0", "url": "https://api.github.com/licenses/apache-2.0", "node_id": "MDccccccccccccc=" }, "forks": 5530, "open_issues": 886, "watchers": 23364, "default_branch": "master" } }, "_links": { "self": { "href": "https://api.github.com/repos/grpc/grpc/pulls/20414" }, "html": { "href": "https://github.com/grpc/grpc/pull/20414" }, "issue": { "href": "https://api.github.com/repos/grpc/grpc/issues/20414" }, "comments": { "href": "https://api.github.com/repos/grpc/grpc/issues/20414/comments" }, "review_comments": { "href": "https://api.github.com/repos/grpc/grpc/pulls/20414/comments" }, "review_comment": { "href": "https://api.github.com/repos/grpc/grpc/pulls/comments{/number}" }, "commits": { "href": "https://api.github.com/repos/grpc/grpc/pulls/20414/commits" }, "statuses": { "href": "https://api.github.com/repos/grpc/grpc/statuses/4bc982024113a7c2ced7d19af23c913adcb6bf08" } }, "author_association": "CONTRIBUTOR" }, "repository": { "id": 27729880, "node_id": "MDEwwwwwwwwwwwwwwwwwwwwwwwwwww==", "name": "grpc", "full_name": "grpc/grpc", "private": False, "owner": { "login": "grpc", "id": 7802525, "node_id": "MDEyyyyyyyyyyyyyyyyyyyyyyyyyyyy=", "avatar_url": "https://avatars1.githubusercontent.com/u/7802525?v=4", "gravatar_id": "", "url": "https://api.github.com/users/grpc", "html_url": "https://github.com/grpc", "followers_url": "https://api.github.com/users/grpc/followers", "following_url": "https://api.github.com/users/grpc/following{/other_user}", "gists_url": "https://api.github.com/users/grpc/gists{/gist_id}", "starred_url": "https://api.github.com/users/grpc/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/grpc/subscriptions", "organizations_url": "https://api.github.com/users/grpc/orgs", "repos_url": "https://api.github.com/users/grpc/repos", "events_url": "https://api.github.com/users/grpc/events{/privacy}", "received_events_url": "https://api.github.com/users/grpc/received_events", "type": "Organization", "site_admin": False }, "html_url": "https://github.com/grpc/grpc", "description": "The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#)", "fork": False, "url": "https://api.github.com/repos/grpc/grpc", "forks_url": "https://api.github.com/repos/grpc/grpc/forks", "keys_url": "https://api.github.com/repos/grpc/grpc/keys{/key_id}", "collaborators_url": "https://api.github.com/repos/grpc/grpc/collaborators{/collaborator}", "teams_url": "https://api.github.com/repos/grpc/grpc/teams", "hooks_url": "https://api.github.com/repos/grpc/grpc/hooks", "issue_events_url": "https://api.github.com/repos/grpc/grpc/issues/events{/number}", "events_url": "https://api.github.com/repos/grpc/grpc/events", "assignees_url": "https://api.github.com/repos/grpc/grpc/assignees{/user}", "branches_url": "https://api.github.com/repos/grpc/grpc/branches{/branch}", "tags_url": "https://api.github.com/repos/grpc/grpc/tags", "blobs_url": "https://api.github.com/repos/grpc/grpc/git/blobs{/sha}", "git_tags_url": "https://api.github.com/repos/grpc/grpc/git/tags{/sha}", "git_refs_url": "https://api.github.com/repos/grpc/grpc/git/refs{/sha}", "trees_url": "https://api.github.com/repos/grpc/grpc/git/trees{/sha}", "statuses_url": "https://api.github.com/repos/grpc/grpc/statuses/{sha}", "languages_url": "https://api.github.com/repos/grpc/grpc/languages", "stargazers_url": "https://api.github.com/repos/grpc/grpc/stargazers", "contributors_url": "https://api.github.com/repos/grpc/grpc/contributors", "subscribers_url": "https://api.github.com/repos/grpc/grpc/subscribers", "subscription_url": "https://api.github.com/repos/grpc/grpc/subscription", "commits_url": "https://api.github.com/repos/grpc/grpc/commits{/sha}", "git_commits_url": "https://api.github.com/repos/grpc/grpc/git/commits{/sha}", "comments_url": "https://api.github.com/repos/grpc/grpc/comments{/number}", "issue_comment_url": "https://api.github.com/repos/grpc/grpc/issues/comments{/number}", "contents_url": "https://api.github.com/repos/grpc/grpc/contents/{+path}", "compare_url": "https://api.github.com/repos/grpc/grpc/compare/{base}...{head}", "merges_url": "https://api.github.com/repos/grpc/grpc/merges", "archive_url": "https://api.github.com/repos/grpc/grpc/{archive_format}{/ref}", "downloads_url": "https://api.github.com/repos/grpc/grpc/downloads", "issues_url": "https://api.github.com/repos/grpc/grpc/issues{/number}", "pulls_url": "https://api.github.com/repos/grpc/grpc/pulls{/number}", "milestones_url": "https://api.github.com/repos/grpc/grpc/milestones{/number}", "notifications_url": "https://api.github.com/repos/grpc/grpc/notifications{?since,all,participating}", "labels_url": "https://api.github.com/repos/grpc/grpc/labels{/name}", "releases_url": "https://api.github.com/repos/grpc/grpc/releases{/id}", "deployments_url": "https://api.github.com/repos/grpc/grpc/deployments", "created_at": "2014-12-08T18:58:53Z", "updated_at": "2019-10-07T16:10:54Z", "pushed_at": "2019-10-07T17:24:21Z", "git_url": "git://github.com/grpc/grpc.git", "ssh_url": "[email protected]:grpc/grpc.git", "clone_url": "https://github.com/grpc/grpc.git", "svn_url": "https://github.com/grpc/grpc", "homepage": "https://grpc.io", "size": 240231, "stargazers_count": 23364, "watchers_count": 23364, "language": "C++", "has_issues": True, "has_projects": True, "has_downloads": False, "has_wiki": True, "has_pages": True, "forks_count": 5530, "mirror_url": None, "archived": False, "disabled": False, "open_issues_count": 886, "license": { "key": "apache-2.0", "name": "Apache License 2.0", "spdx_id": "Apache-2.0", "url": "https://api.github.com/licenses/apache-2.0", "node_id": "MDccccccccccccc=" }, "forks": 5530, "open_issues": 886, "watchers": 23364, "default_branch": "master" }, "organization": { "login": "grpc", "id": 7802525, "node_id": "MDEEEEEEEEEEEEEEEEEEEEEEEEEEEEE=", "url": "https://api.github.com/orgs/grpc", "repos_url": "https://api.github.com/orgs/grpc/repos", "events_url": "https://api.github.com/orgs/grpc/events", "hooks_url": "https://api.github.com/orgs/grpc/hooks", "issues_url": "https://api.github.com/orgs/grpc/issues", "members_url": "https://api.github.com/orgs/grpc/members{/member}", "public_members_url": "https://api.github.com/orgs/grpc/public_members{/member}", "avatar_url": "https://avatars1.githubusercontent.com/u/7802525?v=4", "description": "A high performance, open source, general-purpose RPC framework" }, "sender": { "login": "redacted", "id": 12345692, "node_id": "MDQVVVVVVVVVVVVVVVV=", "avatar_url": "https://avatars3.githubusercontent.com/u/2793282?v=4", "gravatar_id": "", "url": "https://api.github.com/users/veblush", "html_url": "https://github.com/veblush", "followers_url": "https://api.github.com/users/veblush/followers", "following_url": "https://api.github.com/users/veblush/following{/other_user}", "gists_url": "https://api.github.com/users/veblush/gists{/gist_id}", "starred_url": "https://api.github.com/users/veblush/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/veblush/subscriptions", "organizations_url": "https://api.github.com/users/veblush/orgs", "repos_url": "https://api.github.com/users/veblush/repos", "events_url": "https://api.github.com/users/veblush/events{/privacy}", "received_events_url": "https://api.github.com/users/veblush/received_events", "type": "User", "site_admin": False }, "installation": { "id": 1656153, "node_id": "zzzzzzzzzzzzzz==" } } example_3 = { "action": "deleted", "comment": { "url": "https://api.github.com/repos/grpc/grpc/pulls/comments/134346", "pull_request_review_id": 134346, "id": 134346, "node_id": "MDI0OlB1bGxSZXF1ZXN0UmVredacted==", "path": "setup.py", "position": 16, "original_position": 17, "commit_id": "4bc9820redacted", "original_commit_id": "d5515redacted", "user": { "login": "redacted", "id": 134566, "node_id": "MDQ6VXNlcjI3OTMyODI=", "avatar_url": "https://avatars3.githubusercontent.com/u/2793282?v=4", "gravatar_id": "", "url": "https://api.github.com/users/veblush", "html_url": "https://github.com/veblush", "followers_url": "https://api.github.com/users/veblush/followers", "following_url": "https://api.github.com/users/veblush/following{/other_user}", "gists_url": "https://api.github.com/users/veblush/gists{/gist_id}", "starred_url": "https://api.github.com/users/veblush/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/veblush/subscriptions", "organizations_url": "https://api.github.com/users/veblush/orgs", "repos_url": "https://api.github.com/users/veblush/repos", "events_url": "https://api.github.com/users/veblush/events{/privacy}", "received_events_url": "https://api.github.com/users/veblush/received_events", "type": "User", "site_admin": False } } } @classmethod def setUpClass(cls) -> None: pass @classmethod def tearDownClass(cls) -> None: pass def setUp(self) -> None: # Only show critical logging stuff
-4 as might be expected - binary.gt where left=N/A and right=4 yields True - binary.gt where left=N/A and right=0 yields False The behavior is caused by grabbing the non-empty value and using it directly without performing any operation. In the case of `gt`, the non-empty value is cast to a boolean. For these reasons, users are required to be explicit when choosing this surprising behavior. """ method_name = "ewise_add" self._expect_type(other, (Matrix, TransposedMatrix), within=method_name, argname="other") op = get_typed_op(op, self.dtype, other.dtype) # Per the spec, op may be a semiring, but this is weird, so don't. if require_monoid: if op.opclass != "BinaryOp" or op.monoid is None: self._expect_op( op, "Monoid", within=method_name, argname="op", extra_message="A BinaryOp may be given if require_monoid keyword is False", ) else: self._expect_op(op, ("BinaryOp", "Monoid"), within=method_name, argname="op") expr = MatrixExpression( method_name, f"GrB_Matrix_eWiseAdd_{op.opclass}", [self, other], op=op, at=self._is_transposed, bt=other._is_transposed, ) if self.shape != other.shape: expr.new(name="") # incompatible shape; raise now return expr def ewise_mult(self, other, op=binary.times): """ GrB_Matrix_eWiseMult Result will contain the intersection of indices from both Matrices Default op is binary.times """ method_name = "ewise_mult" self._expect_type(other, (Matrix, TransposedMatrix), within=method_name, argname="other") op = get_typed_op(op, self.dtype, other.dtype) # Per the spec, op may be a semiring, but this is weird, so don't. self._expect_op(op, ("BinaryOp", "Monoid"), within=method_name, argname="op") expr = MatrixExpression( method_name, f"GrB_Matrix_eWiseMult_{op.opclass}", [self, other], op=op, at=self._is_transposed, bt=other._is_transposed, ) if self.shape != other.shape: expr.new(name="") # incompatible shape; raise now return expr def mxv(self, other, op=semiring.plus_times): """ GrB_mxv Matrix-Vector multiplication. Result is a Vector. Default op is semiring.plus_times """ method_name = "mxv" self._expect_type(other, Vector, within=method_name, argname="other") op = get_typed_op(op, self.dtype, other.dtype) self._expect_op(op, "Semiring", within=method_name, argname="op") expr = VectorExpression( method_name, "GrB_mxv", [self, other], op=op, size=self._nrows, at=self._is_transposed, ) if self._ncols != other._size: expr.new(name="") # incompatible shape; raise now return expr def mxm(self, other, op=semiring.plus_times): """ GrB_mxm Matrix-Matrix multiplication. Result is a Matrix. Default op is semiring.plus_times """ method_name = "mxm" self._expect_type(other, (Matrix, TransposedMatrix), within=method_name, argname="other") op = get_typed_op(op, self.dtype, other.dtype) self._expect_op(op, "Semiring", within=method_name, argname="op") expr = MatrixExpression( method_name, "GrB_mxm", [self, other], op=op, nrows=self._nrows, ncols=other._ncols, at=self._is_transposed, bt=other._is_transposed, ) if self._ncols != other._nrows: expr.new(name="") # incompatible shape; raise now return expr def kronecker(self, other, op=binary.times): """ GrB_kronecker Kronecker product or sum (depending on op used) Default op is binary.times """ method_name = "kronecker" self._expect_type(other, (Matrix, TransposedMatrix), within=method_name, argname="other") op = get_typed_op(op, self.dtype, other.dtype) # Per the spec, op may be a semiring, but this is weird, so don't. self._expect_op(op, ("BinaryOp", "Monoid"), within=method_name, argname="op") return MatrixExpression( method_name, f"GrB_Matrix_kronecker_{op.opclass}", [self, other], op=op, nrows=self._nrows * other._nrows, ncols=self._ncols * other._ncols, at=self._is_transposed, bt=other._is_transposed, ) def apply(self, op, *, left=None, right=None): """ GrB_Matrix_apply Apply UnaryOp to each element of the calling Matrix A BinaryOp can also be applied if a scalar is passed in as `left` or `right`, effectively converting a BinaryOp into a UnaryOp """ method_name = "apply" extra_message = ( "apply only accepts UnaryOp with no scalars or BinaryOp with `left` or `right` scalar." ) if left is None and right is None: op = get_typed_op(op, self.dtype) self._expect_op( op, "UnaryOp", within=method_name, argname="op", extra_message=extra_message, ) cfunc_name = "GrB_Matrix_apply" args = [self] expr_repr = None elif right is None: if type(left) is not Scalar: try: left = Scalar.from_value(left) except TypeError: self._expect_type( left, Scalar, within=method_name, keyword_name="left", extra_message="Literal scalars also accepted.", ) op = get_typed_op(op, self.dtype, left.dtype) if op.opclass == "Monoid": op = op.binaryop else: self._expect_op( op, "BinaryOp", within=method_name, argname="op", extra_message=extra_message, ) cfunc_name = f"GrB_Matrix_apply_BinaryOp1st_{left.dtype}" args = [_CScalar(left), self] expr_repr = "{1.name}.apply({op}, left={0})" elif left is None: if type(right) is not Scalar: try: right = Scalar.from_value(right) except TypeError: self._expect_type( right, Scalar, within=method_name, keyword_name="right", extra_message="Literal scalars also accepted.", ) op = get_typed_op(op, self.dtype, right.dtype) if op.opclass == "Monoid": op = op.binaryop else: self._expect_op( op, "BinaryOp", within=method_name, argname="op", extra_message=extra_message, ) cfunc_name = f"GrB_Matrix_apply_BinaryOp2nd_{right.dtype}" args = [self, _CScalar(right)] expr_repr = "{0.name}.apply({op}, right={1})" else: raise TypeError("Cannot provide both `left` and `right` to apply") return MatrixExpression( method_name, cfunc_name, args, op=op, nrows=self._nrows, ncols=self._ncols, expr_repr=expr_repr, at=self._is_transposed, ) def reduce_rows(self, op=monoid.plus): """ GrB_Matrix_reduce Reduce all values in each row, converting the matrix to a vector Default op is monoid.lor for boolean and monoid.plus otherwise """ method_name = "reduce_rows" op = get_typed_op(op, self.dtype) self._expect_op(op, ("BinaryOp", "Monoid"), within=method_name, argname="op") # Using a monoid may be more efficient, so change to one if possible. # Also, SuiteSparse doesn't like user-defined binarops here. if op.opclass == "BinaryOp" and op.monoid is not None: op = op.monoid return VectorExpression( method_name, f"GrB_Matrix_reduce_{op.opclass}", [self], op=op, size=self._nrows, at=self._is_transposed, ) def reduce_columns(self, op=monoid.plus): """ GrB_Matrix_reduce Reduce all values in each column, converting the matrix to a vector Default op is monoid.lor for boolean and monoid.plus otherwise """ method_name = "reduce_columns" op = get_typed_op(op, self.dtype) self._expect_op(op, ("BinaryOp", "Monoid"), within=method_name, argname="op") # Using a monoid may be more efficient, so change to one if possible. # Also, SuiteSparse doesn't like user-defined binarops here. if op.opclass == "BinaryOp" and op.monoid is not None: op = op.monoid return VectorExpression( method_name, f"GrB_Matrix_reduce_{op.opclass}", [self], op=op, size=self._ncols, at=not self._is_transposed, ) def reduce_scalar(self, op=monoid.plus): """ GrB_Matrix_reduce Reduce all values into a scalar Default op is monoid.lor for boolean and monoid.plus otherwise """ method_name = "reduce_scalar" op = get_typed_op(op, self.dtype) if op.opclass == "BinaryOp" and op.monoid is not None: op = op.monoid else: self._expect_op(op, "Monoid", within=method_name, argname="op") return ScalarExpression( method_name, "GrB_Matrix_reduce_{output_dtype}", [self], op=op, # to be determined later ) ################################## # Extract and Assign index methods ################################## def _extract_element(self, resolved_indexes, dtype=None, name="s_extract"): if dtype is None: dtype = self.dtype else: dtype = lookup_dtype(dtype) row, _ = resolved_indexes.indices[0] col, _ = resolved_indexes.indices[1] if self._is_transposed: row, col = col, row result = Scalar.new(dtype, name=name) if ( call(f"GrB_Matrix_extractElement_{dtype}", [_Pointer(result), self, row, col]) is not NoValue ): result._is_empty = False return result def _prep_for_extract(self, resolved_indexes): method_name = "__getitem__" rows, rowsize = resolved_indexes.indices[0] cols, colsize = resolved_indexes.indices[1] if rowsize is None: # Row-only selection; GraphBLAS doesn't have this method, so we hack it using transpose row_index = rows return VectorExpression( method_name, "GrB_Col_extract", [self, cols, colsize, row_index], expr_repr="{0.name}[{3}, [{2} cols]]", size=colsize, dtype=self.dtype, at=not self._is_transposed, ) elif colsize is None: # Column-only selection col_index = cols return VectorExpression( method_name, "GrB_Col_extract", [self, rows, rowsize, col_index], expr_repr="{0.name}[[{2} rows], {3}]", size=rowsize, dtype=self.dtype, at=self._is_transposed, ) else: return MatrixExpression( method_name, "GrB_Matrix_extract", [self, rows, rowsize, cols, colsize], expr_repr="{0.name}[[{2} rows], [{4} cols]]", nrows=rowsize, ncols=colsize, dtype=self.dtype, at=self._is_transposed, ) def _assign_element(self, resolved_indexes, value): row, _ = resolved_indexes.indices[0] col, _ = resolved_indexes.indices[1] if type(value) is not Scalar: try: value = Scalar.from_value(value) except TypeError: self._expect_type( value, Scalar, within="__setitem__", argname="value", extra_message="Literal scalars also accepted.", ) # should we cast? call(f"GrB_Matrix_setElement_{value.dtype}", [self, _CScalar(value), row, col]) def _prep_for_assign(self, resolved_indexes, value, mask=None, is_submask=False): method_name = "__setitem__" rows, rowsize = resolved_indexes.indices[0] cols, colsize = resolved_indexes.indices[1] extra_message = "Literal scalars also accepted." if type(value) is Vector: if rowsize is None and colsize is not None: # Row-only selection row_index = rows if mask is not None and type(mask.mask) is Matrix: if is_submask: # C[i, J](M) << v raise TypeError( "Indices for subassign imply Vector submask, " "but got Matrix mask instead" ) else: # C(M)[i, J] << v # Upcast v to a Matrix and use Matrix_assign rows = _CArray([rows.scalar.value]) rowsize = _CScalar(1) new_value = Matrix.new( value.dtype, nrows=1, ncols=value.size, name=f"{value.name}_as_matrix" ) new_value[0, :] = value delayed = MatrixExpression( method_name, "GrB_Matrix_assign", [new_value, rows, rowsize, cols, colsize], expr_repr="[[{2} rows], [{4} cols]] = {0.name}", nrows=self._nrows, ncols=self._ncols, dtype=self.dtype, ) else: if is_submask: # C[i, J](m) << v # SS, SuiteSparse-specific: subassign cfunc_name = "GrB_Row_subassign" expr_repr = "[{1}, [{3} cols]](%s) << {0.name}" % mask.name else: # C(m)[i, J] << v # C[i, J] << v cfunc_name = "GrB_Row_assign" expr_repr = "[{1}, [{3} cols]] = {0.name}" delayed = MatrixExpression( method_name, cfunc_name, [value, row_index, cols, colsize], expr_repr=expr_repr, nrows=self._nrows, ncols=self._ncols, dtype=self.dtype, ) elif colsize is None and rowsize is not None: # Column-only selection col_index = cols if mask is not None and type(mask.mask) is Matrix: if is_submask: # C[I, j](M) << v raise TypeError( "Indices for subassign imply Vector submask, " "but got Matrix mask instead"
from __future__ import annotations from contextlib import contextmanager import dataclasses from dataclasses import dataclass import functools import itertools import ply.lex from typing import List, Union, Tuple, Optional, Dict, Iterator, \ Callable, Any, Set, TypeVar, Generic, Iterable, Mapping, cast from typing_extensions import Protocol import utils from utils import OrderedSet import z3 Token = ply.lex.LexToken Span = Tuple[Token, Token] B = TypeVar('B') class Denotable: def __init__(self) -> None: self._hash: Optional[int] = None def _denote(self) -> Tuple: raise Exception('Unexpected denotable object %s does not implement _denote method' % repr(self)) def __getstate__(self) -> Any: return dict( self.__dict__, _hash=None, ) def __hash__(self) -> int: if self._hash is None: self._hash = hash((type(self), self._denote())) return self._hash def __eq__(self, other: object) -> bool: if not isinstance(other, Denotable): return False return (type(self) is type(other) and self._denote() == other._denote()) class Sort(Denotable): def __init__(self) -> None: super().__init__() def __repr__(self) -> str: raise Exception('Unexpected sort %s does not implement __repr__ method' % type(self)) def __str__(self) -> str: raise Exception('Unexpected sort %s does not implement __str__ method' % repr(self)) def __ne__(self, other: object) -> bool: return not (self == other) class HasSortField(Protocol): sort: InferenceSort class SortInferencePlaceholder: def __init__(self, d: Optional[HasSortField] = None) -> None: self.backpatches: List[HasSortField] = [] self.sort: Optional[Sort] = None self.parent: Optional[SortInferencePlaceholder] = None if d is not None: self.add(d) def add(self, d: HasSortField) -> None: self.backpatches.append(d) def root(self) -> SortInferencePlaceholder: if self.parent is not None: return self.parent.root() else: return self def solve(self, sort: Sort) -> None: assert self.parent is None assert self.sort is None self.sort = sort for d in self.backpatches: d.sort = sort def merge(self, other: SortInferencePlaceholder) -> None: assert self.parent is None assert other.parent is None assert self.sort is None assert other.sort is None if self == other: return other.parent = self self.backpatches.extend(other.backpatches) InferenceSort = Union[Sort, SortInferencePlaceholder, None] # Returns a set describing the *mutable* symbols used by an expression. # Immutable symbols and bound variables are *not* included. # In the returned set, each element is a tuple (i, ts, s), where # - s is the name of the symbol used # - ts is a non-empty tuple of tokens describing the sequence of definitions by which # expr refers to the symbol s (useful for locating error messages). the tuple is ordered # from expr to the direct reference to s. if expr directly refers to s, then the tuple # has length one. # - i is the "state index" of the usage. in a single-vocabulary formula, this will # always be 0, but in a multi-vocabulary formula, it indicates how many new() operators # the usage is under. def symbols_used(scope: Scope, expr: Expr, state_index: int = 0) -> Set[Tuple[int, Tuple[Optional[Span], ...], str]]: def add_caller_span( s: Set[Tuple[int, Tuple[Optional[Span], ...], str]] ) -> Set[Tuple[int, Tuple[Optional[Span], ...], str]]: return set((i, (expr.span,) + l, sym) for (i, l, sym) in s) if isinstance(expr, Bool) or isinstance(expr, Int): return set() elif isinstance(expr, UnaryExpr): if expr.op == 'NEW': return symbols_used(scope, expr.arg, state_index=state_index + 1) else: return symbols_used(scope, expr.arg, state_index) elif isinstance(expr, BinaryExpr): return symbols_used(scope, expr.arg1, state_index) | symbols_used(scope, expr.arg2, state_index) elif isinstance(expr, NaryExpr): ans: Set[Tuple[int, Tuple[Optional[Span], ...], str]] = set() for arg in expr.args: ans |= symbols_used(scope, arg, state_index) return ans elif isinstance(expr, AppExpr): args: Set[Tuple[int, Tuple[Optional[Span], ...], str]] = set() for arg in expr.args: args |= symbols_used(scope, arg, state_index) d = scope.get(expr.callee) assert d is not None and not isinstance(d, tuple), (d, expr.callee, expr) if isinstance(d, DefinitionDecl): with scope.fresh_stack(): with scope.in_scope(d.binder, [None for i in range(len(d.binder.vs))]): callee_symbols = symbols_used(scope, d.expr, state_index) return args | add_caller_span(callee_symbols) elif d.mutable: return args | {(state_index, (expr.span,), expr.callee)} else: return args elif isinstance(expr, QuantifierExpr): with scope.in_scope(expr.binder, [None for i in range(len(expr.binder.vs))]): return symbols_used(scope, expr.body, state_index) elif isinstance(expr, Id): d = scope.get(expr.name) assert d is not None, expr.name if isinstance(d, RelationDecl) or \ isinstance(d, ConstantDecl) or \ isinstance(d, FunctionDecl): return {(state_index, (expr.span,), expr.name)} if d.mutable else set() elif isinstance(d, DefinitionDecl): with scope.fresh_stack(): return add_caller_span(symbols_used(scope, d.expr, state_index)) else: return set() elif isinstance(expr, IfThenElse): return symbols_used(scope, expr.branch, state_index) | \ symbols_used(scope, expr.then, state_index) | \ symbols_used(scope, expr.els, state_index) elif isinstance(expr, Let): s1 = symbols_used(scope, expr.val, state_index) with scope.in_scope(expr.binder, [None for i in range(len(expr.binder.vs))]): return s1 | symbols_used(scope, expr.body, state_index) else: assert False def subst_vars_simple(expr: Expr, subst: Mapping[Id, Expr]) -> Expr: if isinstance(expr, Bool) or isinstance(expr, Int): return expr elif isinstance(expr, UnaryExpr): return UnaryExpr(op=expr.op, arg=subst_vars_simple(expr.arg, subst)) elif isinstance(expr, BinaryExpr): return BinaryExpr(op=expr.op, arg1=subst_vars_simple(expr.arg1, subst), arg2=subst_vars_simple(expr.arg2, subst)) elif isinstance(expr, AppExpr): return AppExpr(callee=expr.callee, args=tuple(subst_vars_simple(a, subst) for a in expr.args)) elif isinstance(expr, Id): return subst.get(expr, expr) else: print(expr) assert False # NOTE(capture-avoiding-substitution) # This function is carefully written to avoid capture by following a strategy taught in CSE 490P. # See the first 10 slides here: https://drive.google.com/file/d/1jFGF3snnC2_4N7cqpH_c0D_S6NPFknWg/view # When going under a binding form, we avoid clashes with three kinds of names: # - names otherwise free in the body of the binding form # - names in the domain of the substitution gamma # - names free in expressions in the codomain of the substitution gamma # This strategy has undergone substantial testing and trial and error in the context of the course. # Deviation is not recommended. def subst(scope: Scope, e: Expr, gamma: Mapping[Id, Expr]) -> Expr: if isinstance(e, (Bool, Int)): return e elif isinstance(e, UnaryExpr): return UnaryExpr(e.op, subst(scope, e.arg, gamma)) elif isinstance(e, BinaryExpr): return BinaryExpr(e.op, subst(scope, e.arg1, gamma), subst(scope, e.arg2, gamma)) elif isinstance(e, NaryExpr): return NaryExpr(e.op, tuple(subst(scope, arg, gamma) for arg in e.args)) elif isinstance(e, AppExpr): return AppExpr(e.callee, tuple(subst(scope, arg, gamma) for arg in e.args)) elif isinstance(e, QuantifierExpr): # luv too avoid capture avoid = free_ids(e) avoid |= set(v.name for v in gamma) for v in gamma: avoid |= free_ids(gamma[v]) renaming: Dict[Id, Expr] = {} fresh_svs = [] for sv in e.binder.vs: fresh_name = scope.fresh(sv.name, also_avoid=list(avoid)) renaming[Id(sv.name)] = Id(fresh_name) assert not isinstance(sv.sort, SortInferencePlaceholder) fresh_svs.append(SortedVar(fresh_name, sv.sort)) fresh_body = subst(scope, e.body, renaming) return QuantifierExpr(e.quant, tuple(fresh_svs), subst(scope, fresh_body, gamma)) elif isinstance(e, Id): if e in gamma: return gamma[e] else: return e elif isinstance(e, IfThenElse): return IfThenElse(subst(scope, e.branch, gamma), subst(scope, e.then, gamma), subst(scope, e.els, gamma)) elif isinstance(e, Let): # luv too avoid capture avoid = free_ids(e) avoid |= set(v.name for v in gamma) for v in gamma: avoid |= free_ids(gamma[v]) assert len(e.binder.vs) == 1 sv = e.binder.vs[0] fresh_name = scope.fresh(sv.name, also_avoid=list(avoid)) assert not isinstance(sv.sort, SortInferencePlaceholder) fresh_sv = SortedVar(fresh_name, sv.sort) fresh_body = subst(scope, e.body, {Id(sv.name): Id(fresh_name)}) return Let(fresh_sv, subst(scope, e.val, gamma), subst(scope, fresh_body, gamma)) else: assert False, (type(e), e) def as_clauses_body(expr: Expr, negated: bool = False) -> List[List[Expr]]: ''' Convert a quantifier-free formula to CNF ''' if isinstance(expr, Bool): return [[Bool(expr.val != negated)]] elif isinstance(expr, UnaryExpr): assert expr.op == 'NOT' return as_clauses_body(expr.arg, not negated) elif isinstance(expr, BinaryExpr): if expr.op in ['EQUAL', 'NOTEQ']: op = 'NOTEQ' if (expr.op == 'NOTEQ') != negated else 'EQUAL' return [[BinaryExpr(op, expr.arg1, expr.arg2)]] elif expr.op == 'IMPLIES': return as_clauses_body(Or(Not(expr.arg1), expr.arg2), negated=negated) elif expr.op == 'IFF': return as_clauses_body( And(Or(Not(expr.arg1), expr.arg2), Or(expr.arg1, Not(expr.arg2))), negated=negated ) else: assert False, f'{expr.op}\n{expr}' elif isinstance(expr, NaryExpr): assert expr.op != 'DISTINCT', 'CNF normalization does not support "distinct" expressions' assert expr.op in ('AND', 'OR'), expr if negated: other_op = 'AND' if expr.op == 'OR' else 'OR' return as_clauses_body(NaryExpr(other_op, tuple(Not(arg) for arg in expr.args)), negated=False) elif expr.op == 'AND': return list(itertools.chain(*(as_clauses_body(arg, negated=False) for arg in expr.args))) elif expr.op == 'OR': return [list(itertools.chain(*tup)) for tup in itertools.product(*(as_clauses_body(arg, negated=False) for arg in expr.args))] else: assert False, expr elif isinstance(expr, AppExpr) or isinstance(expr, Id): if negated: return [[Not(expr)]] else: return [[expr]] else: assert False, f'unsupported expressions in as_clauses_body: {expr}' def as_clauses_quant(expr: Expr, negated: bool = False) -> Tuple[Tuple[SortedVar, ...], List[List[Expr]]]: if isinstance(expr, QuantifierExpr): if negated: other_quant = 'EXISTS' if expr.quant == 'FORALL' else 'FORALL' return as_clauses_quant(QuantifierExpr(other_quant, expr.binder.vs, Not(expr.body)), negated=False) else: assert expr.quant == 'FORALL' new_vs, new_body = as_clauses_quant(expr.body, negated=False) return expr.binder.vs + tuple(new_vs), new_body elif isinstance(expr, UnaryExpr) and expr.op == 'NOT': return as_clauses_quant(expr.arg, not negated) else: return (), as_clauses_body(expr, negated) def as_clauses(expr: Expr) -> List[Expr]: '''Conver expr to CNF (must be universally quantified, see as_clauses_quant''' vs, clauses = as_clauses_quant(expr) ans = [] for clause in clauses: if len(clause) == 1: clause += [Bool(False)] e = Forall(vs, Or(*clause)) # TODO: should we typecheck here? Also, can we
self.state.func_ir, axis_var) if labels != '' and axis is not None: if axis != 1: raise ValueError("only dropping columns (axis=1) supported") columns = labels else: columns_var = self._get_arg('drop', rhs.args, kws, 3, 'columns', '') err_msg = ("columns argument (constant string list) " "or labels and axis required") columns = self._get_str_or_list(columns_var, err_msg=err_msg) inplace_var = self._get_arg('drop', rhs.args, kws, 5, 'inplace', '') inplace = guard(find_const, self.state.func_ir, inplace_var) if inplace is not None and inplace: df_label = self.df_labels[df_var.name] cfg = compute_cfg_from_blocks(self.state.func_ir.blocks) # dropping columns inplace possible only when it dominates the df # creation to keep schema consistent if label not in cfg.backbone() and label not in cfg.post_dominators()[df_label]: raise ValueError("dropping dataframe columns inplace inside " "conditionals and loops not supported yet") # TODO: rename df name # TODO: support dropping columns of input dfs (reflection) for cname in columns: self.df_vars[df_var.name].pop(cname) return [] in_df_map = self._get_df_cols(df_var) nodes = [] out_df_map = {c: _gen_arr_copy(in_df_map[c], nodes) for c in in_df_map.keys() if c not in columns} self._create_df(lhs.name, out_df_map, label) return nodes def _get_reverse_copies(self, body): for inst in body: if isinstance(inst, ir.Assign) and isinstance(inst.value, ir.Var): self.reverse_copies[inst.value.name] = inst.target.name return def _handle_pd_DataFrame(self, assign, lhs, rhs, label): """transform pd.DataFrame({'A': A}) call """ kws = dict(rhs.kws) if 'data' in kws: data = kws['data'] if len(rhs.args) != 0: # pragma: no cover raise ValueError( "only data argument suppoted in pd.DataFrame()") else: if len(rhs.args) != 1: # pragma: no cover raise ValueError( "data argument in pd.DataFrame() expected") data = rhs.args[0] arg_def = guard(get_definition, self.state.func_ir, data) if (not isinstance(arg_def, ir.Expr) or arg_def.op != 'build_map'): # pragma: no cover raise ValueError( "Invalid DataFrame() arguments (constant dict of columns expected)") nodes, items = self._fix_df_arrays(arg_def.items) # HACK replace build_map to avoid inference errors arg_def.op = 'build_list' arg_def.items = [v[0] for v in arg_def.items] n_cols = len(items) data_args = ", ".join('data{}'.format(i) for i in range(n_cols)) col_args = ", ".join('col{}'.format(i) for i in range(n_cols)) func_text = "def _init_df({}, index, {}):\n".format(data_args, col_args) func_text += " return sdc.hiframes.pd_dataframe_ext.init_dataframe({}, index, {})\n".format( data_args, col_args) loc_vars = {} exec(func_text, {'sdc': sdc}, loc_vars) _init_df = loc_vars['_init_df'] # TODO: support index var index = ir.Var(lhs.scope, mk_unique_var('df_index_none'), lhs.loc) nodes.append(ir.Assign(ir.Const(None, lhs.loc), index, lhs.loc)) data_vars = [a[1] for a in items] col_vars = [a[0] for a in items] args = data_vars + [index] + col_vars return self._replace_func(_init_df, args, pre_nodes=nodes ) # df_nodes, col_map = self._process_df_build_map(items) # nodes += df_nodes # self._create_df(lhs.name, col_map, label) # # remove DataFrame call # return nodes def _handle_pd_read_csv(self, assign, lhs, rhs, label): """transform pd.read_csv(names=[A], dtype={'A': np.int32}) call """ # schema: pd.read_csv(filepath_or_buffer, sep=',', delimiter=None, # header='infer', names=None, index_col=None, usecols=None, # squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, # engine=None, converters=None, true_values=None, false_values=None, # skipinitialspace=False, skiprows=None, nrows=None, na_values=None, # keep_default_na=True, na_filter=True, verbose=False, # skip_blank_lines=True, parse_dates=False, # infer_datetime_format=False, keep_date_col=False, date_parser=None, # dayfirst=False, iterator=False, chunksize=None, compression='infer', # thousands=None, decimal=b'.', lineterminator=None, quotechar='"', # quoting=0, escapechar=None, comment=None, encoding=None, # dialect=None, tupleize_cols=None, error_bad_lines=True, # warn_bad_lines=True, skipfooter=0, doublequote=True, # delim_whitespace=False, low_memory=True, memory_map=False, # float_precision=None) kws = dict(rhs.kws) fname = self._get_arg('read_csv', rhs.args, kws, 0, 'filepath_or_buffer') sep = self._get_str_arg('read_csv', rhs.args, kws, 1, 'sep', ',') sep = self._get_str_arg('read_csv', rhs.args, kws, 2, 'delimiter', sep) # TODO: header arg names_var = self._get_arg('read_csv', rhs.args, kws, 4, 'names', '') dtype_var = self._get_arg('read_csv', rhs.args, kws, 10, 'dtype', '') skiprows = self._get_str_arg('read_csv', rhs.args, kws, 16, 'skiprows', 0) col_names = self._get_str_or_list(names_var, default=0) if dtype_var is '': # infer column names and types from constant filename fname_const = guard(find_const, self.state.func_ir, fname) if fname_const is None: raise ValueError("pd.read_csv() requires explicit type" "annotation using 'dtype' if filename is not constant") rows_to_read = 100 # TODO: tune this df = pd.read_csv(fname_const, nrows=rows_to_read, skiprows=skiprows) # TODO: string_array, categorical, etc. dtypes = [types.Array(numba.typeof(d).dtype, 1, 'C') for d in df.dtypes.values] cols = df.columns.to_list() # overwrite column names like Pandas if explicitly provided if col_names != 0: cols[-len(col_names):] = col_names else: # a row is used for names if not provided skiprows += 1 col_names = cols dtype_map = {c: d for c, d in zip(col_names, dtypes)} else: dtype_map = guard(get_definition, self.state.func_ir, dtype_var) if (not isinstance(dtype_map, ir.Expr) or dtype_map.op != 'build_map'): # pragma: no cover # try single type for all columns case dtype_map = self._get_const_dtype(dtype_var) else: new_dtype_map = {} for n_var, t_var in dtype_map.items: # find constant column name c = guard(find_const, self.state.func_ir, n_var) if c is None: # pragma: no cover raise ValueError("dtype column names should be constant") new_dtype_map[c] = self._get_const_dtype(t_var) # HACK replace build_map to avoid inference errors dtype_map.op = 'build_list' dtype_map.items = [v[0] for v in dtype_map.items] dtype_map = new_dtype_map if col_names == 0: raise ValueError("pd.read_csv() names should be constant list") usecols_var = self._get_arg('read_csv', rhs.args, kws, 6, 'usecols', '') usecols = list(range(len(col_names))) if usecols_var != '': err_msg = "pd.read_csv() usecols should be constant list of ints" usecols = self._get_str_or_list(usecols_var, err_msg=err_msg, typ=int) # TODO: support other args date_cols = [] if 'parse_dates' in kws: err_msg = "pd.read_csv() parse_dates should be constant list" date_cols = self._get_str_or_list(kws['parse_dates'], err_msg=err_msg, typ=int) columns, data_arrs, out_types = self._get_csv_col_info( dtype_map, date_cols, col_names, lhs) nodes = [csv_ext.CsvReader( fname, lhs.name, sep, columns, data_arrs, out_types, usecols, lhs.loc, skiprows)] n_cols = len(columns) data_args = ", ".join('data{}'.format(i) for i in range(n_cols)) func_text = "def _init_df({}):\n".format(data_args) func_text += " return sdc.hiframes.pd_dataframe_ext.init_dataframe({}, None, {})\n".format( data_args, ", ".join("'{}'".format(c) for c in columns)) loc_vars = {} exec(func_text, {'sdc': sdc}, loc_vars) _init_df = loc_vars['_init_df'] f_block = compile_to_numba_ir( _init_df, {'sdc': sdc}).blocks.popitem()[1] replace_arg_nodes(f_block, data_arrs) nodes += f_block.body[:-2] nodes[-1].target = lhs return nodes def _get_csv_col_info(self, dtype_map, date_cols, col_names, lhs): if isinstance(dtype_map, types.Type): typ = dtype_map data_arrs = [ir.Var(lhs.scope, mk_unique_var(cname), lhs.loc) for cname in col_names] return col_names, data_arrs, [typ] * len(col_names) columns = [] data_arrs = [] out_types = [] for i, (col_name, typ) in enumerate(dtype_map.items()): columns.append(col_name) # get array dtype if i in date_cols: typ = types.Array(types.NPDatetime('ns'), 1, 'C') out_types.append(typ) # output array variable data_arrs.append( ir.Var(lhs.scope, mk_unique_var(col_name), lhs.loc)) return columns, data_arrs, out_types def _get_const_dtype(self, dtype_var): dtype_def = guard(get_definition, self.state.func_ir, dtype_var) if isinstance(dtype_def, ir.Const) and isinstance(dtype_def.value, str): typ_name = dtype_def.value if typ_name == 'str': return string_array_type typ_name = 'int64' if typ_name == 'int' else typ_name typ_name = 'float64' if typ_name == 'float' else typ_name typ = getattr(types, typ_name) typ = types.Array(typ, 1, 'C') return typ # str case if isinstance(dtype_def, ir.Global) and dtype_def.value == str: return string_array_type # categorical case if isinstance(dtype_def, ir.Expr) and dtype_def.op == 'call': if (not guard(find_callname, self.state.func_ir, dtype_def) == ('category', 'pandas.core.dtypes.dtypes')): raise ValueError("pd.read_csv() invalid dtype " "(built using a call but not Categorical)") cats_var = self._get_arg('CategoricalDtype', dtype_def.args, dict(dtype_def.kws), 0, 'categories') err_msg = "categories should be constant list" cats = self._get_str_or_list(cats_var, list_only=True, err_msg=err_msg) typ = PDCategoricalDtype(cats) return CategoricalArray(typ) if not isinstance(dtype_def, ir.Expr) or dtype_def.op != 'getattr': raise ValueError("pd.read_csv() invalid dtype") glob_def = guard(get_definition, self.state.func_ir, dtype_def.value) if not isinstance(glob_def, ir.Global) or glob_def.value != np: raise ValueError("pd.read_csv() invalid dtype") # TODO: extend to other types like string and date, check error typ_name = dtype_def.attr typ_name = 'int64' if typ_name == 'int' else typ_name typ_name = 'float64' if typ_name == 'float' else typ_name typ = getattr(types, typ_name) typ = types.Array(typ, 1, 'C') return typ def _handle_pd_Series(self, assign, lhs, rhs): """transform pd.Series(A) call """ kws = dict(rhs.kws) data = self._get_arg('pd.Series', rhs.args, kws, 0, 'data') # match flatmap pd.Series(list(itertools.chain(*A))) and flatten data_def = guard(get_definition, self.state.func_ir, data) if (is_call(data_def) and guard(find_callname, self.state.func_ir, data_def) == ('list', 'builtins') and len(data_def.args) == 1): arg_def = guard(get_definition, self.state.func_ir, data_def.args[0]) if (is_call(arg_def) and guard(find_callname, self.state.func_ir, arg_def) == ('chain', 'itertools')): in_data = arg_def.vararg arg_def.vararg = None # avoid typing error return self._replace_func( lambda l: sdc.hiframes.api.flatten_to_series(l), [in_data] ) # pd.Series() is handled in typed pass now # return self._replace_func(lambda arr: sdc.hiframes.api.init_series( # sdc.hiframes.api.fix_df_array(arr)), # [data]) return [assign] def _handle_pd_to_numeric(self, assign, lhs, rhs): """transform pd.to_numeric(A, errors='coerce') call here since dtype has to be specified in locals and applied """ kws = dict(rhs.kws) if 'errors' not in kws or guard(find_const, self.state.func_ir, kws['errors']) != 'coerce': raise ValueError("pd.to_numeric() only supports errors='coerce'") if lhs.name not in self.reverse_copies or (self.reverse_copies[lhs.name]) not in self.state.locals: raise ValueError("pd.to_numeric() requires annotation of output type") typ = self.state.locals.pop(self.reverse_copies[lhs.name]) dtype = numba.numpy_support.as_dtype(typ.dtype) arg = rhs.args[0]
# Copyright (C) 2010 Google Inc. All rights reserved. # Copyright (C) 2010 <NAME> (<EMAIL>), University of Szeged # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import collections import logging import time from blinkpy.web_tests.models import test_expectations from blinkpy.web_tests.models import test_failures from blinkpy.web_tests.models.typ_types import ResultType _log = logging.getLogger(__name__) class TestRunException(Exception): def __init__(self, code, msg): self.code = code self.msg = msg class TestRunResults(object): def __init__(self, expectations, num_tests, result_sink): self.total = num_tests self.remaining = self.total self.expectations = expectations self.result_sink = result_sink # Various counters: self.expected = 0 self.expected_failures = 0 self.expected_skips = 0 self.total_failures = 0 self.unexpected = 0 self.unexpected_crashes = 0 self.unexpected_failures = 0 self.unexpected_timeouts = 0 # The wall clock time spent running the tests (web_test_runner.run()). self.run_time = 0 # Map of test name to the *last* result for the test. self.results_by_name = {} # Map of test name to the *last* unexpected result for the test. self.unexpected_results_by_name = {} # All results from a run except SKIP, including all iterations. self.all_results = [] # Map of test name to the *last* failures for the test. self.failures_by_name = {} self.tests_by_expectation = {} for expected_result in \ test_expectations.EXPECTATION_DESCRIPTIONS.keys(): self.tests_by_expectation[expected_result] = set() self.slow_tests = set() self.interrupted = False self.keyboard_interrupted = False def add(self, test_result, expected, test_is_slow): result_type_for_stats = test_result.type self.tests_by_expectation[result_type_for_stats].add( test_result.test_name) if self.result_sink: self.result_sink.sink(expected, test_result) self.results_by_name[test_result.test_name] = test_result if test_result.type != ResultType.Skip: self.all_results.append(test_result) self.remaining -= 1 if len(test_result.failures): self.total_failures += 1 self.failures_by_name[test_result.test_name] = test_result.failures if expected: self.expected += 1 if test_result.type == ResultType.Skip: self.expected_skips += 1 elif test_result.type != ResultType.Pass: self.expected_failures += 1 else: self.unexpected_results_by_name[test_result.test_name] = \ test_result self.unexpected += 1 if len(test_result.failures): self.unexpected_failures += 1 if test_result.type == ResultType.Crash: self.unexpected_crashes += 1 elif test_result.type == ResultType.Timeout: self.unexpected_timeouts += 1 if test_is_slow: self.slow_tests.add(test_result.test_name) class RunDetails(object): def __init__(self, exit_code, summarized_full_results=None, summarized_failing_results=None, initial_results=None, all_retry_results=None): self.exit_code = exit_code self.summarized_full_results = summarized_full_results self.summarized_failing_results = summarized_failing_results self.initial_results = initial_results self.all_retry_results = all_retry_results or [] def _interpret_test_failures(failures): test_dict = {} failure_types = [type(failure) for failure in failures] # FIXME: get rid of all this is_* values once there is a 1:1 map between # TestFailure type and test_expectations.EXPECTATION. if test_failures.FailureMissingAudio in failure_types: test_dict['is_missing_audio'] = True if test_failures.FailureMissingResult in failure_types: test_dict['is_missing_text'] = True if (test_failures.FailureMissingImage in failure_types or test_failures.FailureMissingImageHash in failure_types or test_failures.FailureReftestNoImageGenerated in failure_types or test_failures.FailureReftestNoReferenceImageGenerated in failure_types): test_dict['is_missing_image'] = True if test_failures.FailureTestHarnessAssertion in failure_types: test_dict['is_testharness_test'] = True return test_dict def summarize_results(port_obj, expectations, initial_results, all_retry_results, only_include_failing=False): """Returns a dictionary containing a summary of the test runs, with the following fields: 'version': a version indicator 'fixable': The number of fixable tests (NOW - PASS) 'skipped': The number of skipped tests (NOW & SKIPPED) 'num_regressions': The number of non-flaky failures 'num_flaky': The number of flaky failures 'num_passes': The number of expected and unexpected passes 'tests': a dict of tests -> {'expected': '...', 'actual': '...'} """ results = {} results['version'] = 3 all_retry_results = all_retry_results or [] tbe = initial_results.tests_by_expectation results['skipped'] = len(tbe[ResultType.Skip]) # TODO(dpranke): Some or all of these counters can be removed. num_passes = 0 num_flaky = 0 num_regressions = 0 # Calculate the number of failures by types (only in initial results). num_failures_by_type = {} for expected_result in initial_results.tests_by_expectation: tests = initial_results.tests_by_expectation[expected_result] num_failures_by_type[expected_result] = len(tests) results['num_failures_by_type'] = num_failures_by_type # Combine all iterations and retries together into a dictionary with the # following structure: # { test_name: [ (result, is_unexpected), ... ], ... } # where result is a single TestResult, is_unexpected is a boolean # representing whether the result is unexpected in that run. merged_results_by_name = collections.defaultdict(list) for test_run_results in [initial_results] + all_retry_results: # all_results does not include SKIP, so we need results_by_name. for test_name, result in test_run_results.results_by_name.items(): if result.type == ResultType.Skip: is_unexpected = test_name in test_run_results.unexpected_results_by_name merged_results_by_name[test_name].append((result, is_unexpected)) # results_by_name only includes the last result, so we need all_results. for result in test_run_results.all_results: test_name = result.test_name is_unexpected = test_name in test_run_results.unexpected_results_by_name merged_results_by_name[test_name].append((result, is_unexpected)) # Finally, compute the tests dict. tests = {} for test_name, merged_results in merged_results_by_name.items(): initial_result = merged_results[0][0] if only_include_failing and initial_result.type == ResultType.Skip: continue exp = expectations.get_expectations(test_name) expected_results, bugs = exp.results, exp.reason expected = ' '.join(expected_results) actual = [] actual_types = [] crash_sites = [] all_pass = True has_expected = False has_unexpected = False has_unexpected_pass = False has_stderr = False for result, is_unexpected in merged_results: actual.append(result.type) actual_types.append(result.type) crash_sites.append(result.crash_site) if result.type != ResultType.Pass: all_pass = False if result.has_stderr: has_stderr = True if is_unexpected: has_unexpected = True if result.type == ResultType.Pass: has_unexpected_pass = True else: has_expected = True # TODO(crbug.com/855255): This code calls a test flaky if it has both # expected and unexpected runs (NOT pass and failure); this is generally # wrong (really it should just be if there are multiple kinds of results), # but this works in the normal case because a test will only be retried # if a result is unexpected, and if you get an expected result on the # retry, then you did get multiple results. This fails if you get # one kind of unexpected failure initially and another kind of # unexpected failure on the retry (e.g., TIMEOUT CRASH), or if you # explicitly run a test multiple times and get multiple expected results. is_flaky = has_expected and has_unexpected test_dict = {} test_dict['expected'] = expected test_dict['actual'] = ' '.join(actual) # If a flag was added then add flag specific test expectations to the per test field flag_exp = expectations.get_flag_expectations(test_name) if flag_exp: base_exp = expectations.get_base_expectations(test_name) test_dict['flag_expectations'] = list(flag_exp.results) test_dict['base_expectations'] = list(base_exp.results) # Fields below are optional. To avoid bloating the output results json # too much, only add them when they are True or non-empty. if is_flaky: num_flaky += 1 test_dict['is_flaky'] = True elif all_pass or has_unexpected_pass: # We count two situations as a "pass": # 1. All test runs pass (which is obviously non-flaky, but does not # imply whether the runs are expected, e.g. they can be all # unexpected passes). # 2. The test isn't flaky and has at least one unexpected pass # (which implies all runs are unexpected). One tricky example # that doesn't satisfy #1 is that if a test is expected to # crash but in fact fails and then passes, it will be counted # as "pass". num_passes += 1 if not has_stderr and only_include_failing: continue elif has_unexpected: # Either no retries or all retries failed unexpectedly. num_regressions += 1 rounded_run_time = round(initial_result.test_run_time, 1) if rounded_run_time: test_dict['time'] = rounded_run_time if exp.is_slow_test: test_dict['is_slow_test'] = True if has_stderr: test_dict['has_stderr'] = True if bugs: test_dict['bugs'] = bugs.split() if initial_result.reftest_type: test_dict.update(reftest_type=list(initial_result.reftest_type)) crash_sites = [site for site in crash_sites if site] if len(crash_sites) > 0: test_dict['crash_site'] = crash_sites[0] if test_failures.has_failure_type(test_failures.FailureTextMismatch, initial_result.failures): for failure in initial_result.failures: if isinstance(failure, test_failures.FailureTextMismatch): test_dict['text_mismatch'] = \
#define the rows and cols rows = [ [7,3,1,1,7], [1,1,2,2,1,1], [1,3,1,3,1,1,3,1], [1,3,1,1,6,1,3,1], [1,3,1,5,2,1,3,1], [1,1,2,1,1], [7,1,1,1,1,1,7], [3,3], [1,2,3,1,1,3,1,1,2], [1,1,3,2,1,1], [4,1,4,2,1,2], [1,1,1,1,1,4,1,3], [2,1,1,1,2,5], [3,2,2,6,3,1], [1,9,1,1,2,1], [2,1,2,2,3,1], [3,1,1,1,1,5,1], [1,2,2,5], [7,1,2,1,1,1,3], [1,1,2,1,2,2,1], [1,3,1,4,5,1], [1,3,1,3,10,2], [1,3,1,1,6,6], [1,1,2,1,1,2], [7,2,1,2,5]] cols = [ [7,2,1,1,7], [1,1,2,2,1,1], [1,3,1,3,1,3,1,3,1], [1,3,1,1,5,1,3,1], [1,3,1,1,4,1,3,1], [1,1,1,2,1,1], [7,1,1,1,1,1,7], [1,1,3], [2,1,2,1,8,2,1], [2,2,1,2,1,1,1,2], [1,7,3,2,1], [1,2,3,1,1,1,1,1], [4,1,1,2,6], [3,3,1,1,1,3,1], [1,2,5,2,2], [2,2,1,1,1,1,1,2,1], [1,3,3,2,1,8,1], [6,2,1], [7,1,4,1,1,3], [1,1,1,1,4], [1,3,1,3,7,1], [1,3,1,1,1,2,1,1,4], [1,3,1,4,3,3], [1,1,2,2,2,6,1], [7,1,3,2,1,1]] partialSolvedRows = { 3 : [0,0,0,1,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0], 8 : [0,0,0,0,0,0,1,1,0,0,1,0,0,0,1,1,0,0,1,0,0,0,0,0,0], 16 : [0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0], 21 : [0,0,0,1,1,0,0,0,0,1,1,0,0,0,0,1,0,0,0,0,1,1,0,0,0] } partialSolvedCols = { 3 : [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], 4 : [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], 6 : [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], 7 : [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], 9 : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], 10 : [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], 11 : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], 12 : [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], 13 : [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], 14 : [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], 15 : [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], 16 : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], 18 : [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], 20 : [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0], 21 : [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] } import time import copy def groupCombination(numTiles, rowSize): acc = [] for i in xrange(0,rowSize): current = ([0]*i) + [1]*numTiles + [0]*(rowSize - (i+numTiles)) if len(current) > rowSize: return acc acc.append(current) return acc def groupCombination1(numTiles, rowSize): acc = [] if len(numTiles) == 0: return [] newNumTiles = [] if len(numTiles) == 1: return groupCombination(numTiles[0], rowSize) currentNumTiles = numTiles[0] if len(numTiles) >= 2: newNumTiles = numTiles[1:] nextNumTiles = 0 if len(numTiles) >= 1: nextNumTiles = numTiles[1] for i in xrange(0,rowSize): current = ([0]*i) + [1]*currentNumTiles leftSides = groupCombination1(newNumTiles, rowSize - (i+currentNumTiles+1)) for ls in leftSides: whole = current + [0] + ls if len(whole) > rowSize: break acc.append(whole) return acc def getRaw(): startTime = time.time() rawRows = [] rawCols = [] for row in rows: rawRows.append(groupCombination1(row,25)) for col in cols: rawCols.append(groupCombination1(col,25)) endTime = time.time() print "total time: " + str(endTime - startTime) return rawRows, rawCols def writeSolutionToFile(m): writeStr = '' for row in m: for col in row: writeStr += str(col) writeStr += '\n' writeStr += '\n\n' f = open('solutions.txt', 'a') f.write(writeStr) f.close() def writeToFile(rawRows, rawCols): toRowFile = '' toColFile = '' for i in range(0,len(rawRows)): toRowFile += "row " + str(i) + " " + str(rows[i]) + "\n" toColFile += "col " + str(i) + " " + str(cols[i]) + "\n" for rcombo in rawRows[i]: toRowFile += "\t" + str(rcombo) + "\n" for ccombo in rawCols[i]: toColFile += "\t" + str(ccombo) + "\n" f = open("rowOut.txt",'w') f.write(toRowFile) f.close() f = open("colOut.txt",'w') f.write(toColFile) f.close() def getCount(possibleDict): count = 0 for index in possibleDict: for possible in possibleDict[index]: count += 1 return count def getDicts(rawRows, rawCols): rowDict = {} colDict = {} for i in range(0,len(rawRows)): rowDict[i] = rawRows[i] colDict[i] = rawCols[i] return rowDict, colDict def initSolutionMatrix(n): m = [] for i in xrange(0,n): m.append([]) for j in xrange(0,n): m[i].append(0) return m def addRowToMatrix(m,rowNum,row): m[rowNum] = row #print "adding row: " + str(row) #printSolutionMatrix(m) return m def addColToMatrix(m,colNum,col): n = len(m) for i in xrange(0,n): m[i][colNum] = col[i] #print "adding col: " + str(col) #printSolutionMatrix(m) return m def addSingleSolutionsToMatrix(m, solutionsDict, solutionsLenDict, sortedSolutionsLenCount, isRow): if(sortedSolutionsLenCount[0] == 1): for index in solutionsLenDict[1]: if isRow: m = addRowToMatrix(m, index, solutionsDict[index][0]) else: m = addColToMatrix(m, index, solutionsDict[index][0]) del solutionsDict[index] del solutionsLenDict[1] sortedSolutionsLenCount.pop(0) return m, solutionsDict, solutionsLenDict, sortedSolutionsLenCount def sortPossibleSolutions(rowColDict): lenDict = {} for index in rowColDict: rowColLen = len(rowColDict[index]) temp = lenDict.get(rowColLen,[]) temp.append(index) lenDict[rowColLen] = temp rowColLens = [] for numPossibleSolutions in lenDict: rowColLens.append(numPossibleSolutions) return lenDict, sorted(rowColLens) def printSolutionMatrix(m): for row in m: print row print '' def isSolved(rowsSolutionsDict, colsSolutionsDict): #print rowsSolutionsDict, colsSolutionsDict return len(rowsSolutionsDict) == 0 and len(colsSolutionsDict) == 0 def rowCanWork(mRow, row): for i in xrange(0,len(row)): if mRow[i] == 1 and row[i] != 1: return False return True def colCanWork(n, m,colIndex, col): for i in xrange(0,n): if m[i][colIndex] == 1 and col[i] != 1: return False return True def filterByPartials(partialDict, possibleDict): counter = 0 for index in partialDict: possibleList = possibleDict.get(index, []) if len(possibleList) == 0: continue currentPartial = partialDict[index] for i in xrange(0,len(currentPartial)): for j in xrange(len(possibleList)-1, -1,-1): if currentPartial[i] == 1 and possibleList[j][i] != 1: #print "item filtered! " + str() counter += 1 possibleList.pop(j) possibleDict[index] = possibleList print "\tfiltered " + str(counter) + " items" return possibleDict def filterByMatrix(m, rowsDict, colsDict): deleteLater = [] for index in rowsDict: for i in xrange(len(rowsDict[index])-1, -1, -1): if not rowCanWork(m[index], rowsDict[index][i]): rowsDict[index].pop(i) if len(rowsDict[index]) == 1: m = addRowToMatrix(m,index,rowsDict[index][0]) deleteLater.append(index) for i in deleteLater: del colsDict[i] deleteLater = [] for index in colsDict: for i in xrange(len(colsDict[index])-1, -1, -1): if not colCanWork(len(m), m,index, colsDict[index][i]): colsDict[index].pop(i) if len(colsDict[index]) == 1: m = addColToMatrix(m,index,colsDict[index][0]) deleteLater.append(index) for i in deleteLater: del colsDict[i] return m, rowsDict, colsDict def solve3(mO, rowsDictO, colsDictO, rowsLenDictO, sortedRowLenKeysO, colsLenDictO, sortedColLenKeysO): m = copy.deepcopy(mO) rowsDict = copy.deepcopy(rowsDictO) colsDict = copy.deepcopy(colsDictO) rowsLenDict = copy.deepcopy(rowsLenDictO) sortedRowLenKeys = copy.deepcopy(sortedRowLenKeysO) colsLenDict = copy.deepcopy(colsLenDictO) sortedColLenKeys = copy.deepcopy(sortedColLenKeysO) if isSolved(rowsDict, colsDict): print "found solution!" print m writeSolutionToFile(m) return print "Rows left: " + str(getCount(rowsDict)) print "Cols left: " + str(getCount(colsDict)) + '\n' rowIndexList = [] colIndexList = [] if len(sortedRowLenKeys) > 0: rowIndexList = rowsLenDict[sortedRowLenKeys[0]] if len(sortedColLenKeys) > 0: colIndexList = colsLenDict[sortedColLenKeys[0]] if len(rowIndexList) > 0 and len(colIndexList) > 0: for rowIndex in rowIndexList: for colIndex in colIndexList: for row in rowsDict[rowIndex]: newRowsDict = copy.deepcopy(rowsDict) newRowsDict[rowIndex] = [row] newRowLenDict, newRowLenList = sortPossibleSolutions(newRowsDict) newM = copy.deepcopy(m) newM, newRowsDict, newRowLenDict, newRowLenList = addSingleSolutionsToMatrix(newM, newRowsDict, newRowLenDict, newRowLenList, True) for col in colsDict[colIndex]: newColsDict = copy.deepcopy(colsDict) newColsDict[colIndex] = [col] newColLenDict, newColLenList = sortPossibleSolutions(newColsDict) newNewM = copy.deepcopy(newM) newNewM, newColsDict, newColLenDict, newColLenList = addSingleSolutionsToMatrix(newNewM, newColsDict, newColLenDict, newColLenList, False) newNewM,newRowsDict,newColsDict = filterByMatrix(newNewM, newRowsDict, newColsDict) solve3(newNewM, newRowsDict, newColsDict, newRowLenDict, newRowLenList, newColLenDict, newColLenList) elif len(rowIndexList) > 0 and len(colIndexList) <= 0: for rowIndex in rowIndexList: for row in rowsDict[rowIndex]: newRowsDict = copy.deepcopy(rowsDict) newRowsDict[rowIndex] = [row] newRowLenDict, newRowLenList = sortPossibleSolutions(newRowsDict) newM = copy.deepcopy(m) newM, newRowsDict, newRowLenDict, newRowLenList = addSingleSolutionsToMatrix(newM, newRowsDict, newRowLenDict, newRowLenList, True) newM,newRowsDict,colsDict = filterByMatrix(newM, newRowsDict, colsDict) solve3(newM, newRowsDict, colsDict, newRowLenDict, newRowLenList, colsLenDict, sortedColLenKeys) elif len(rowIndexList) <= 0 and len(colIndexList) > 0: for colIndex in colIndexList: for col in colsDict[colIndex]: newColsDict = copy.deepcopy(colsDict) newColsDict[colIndex] = [col] newColLenDict, newColLenList = sortPossibleSolutions(newColsDict) newM = copy.deepcopy(newM) newM, newColsDict, newColLenDict, newColLenList = addSingleSolutionsToMatrix(newM, newColsDict, newColLenDict, newColLenList, False) newM,newRowsDict,colsDict = filterByMatrix(newM, rowsDict, newColsDict) solve3(newM, rowsDict, newColsDict, rowsLenDict, sortedRowLenKeys, newColLenDict, newColLenList) def solve2(m, rowsDict, colsDict, rowsLenDict, sortedRowLenKeys, colsLenDict, sortedColLenKeys): if isSolved(rowsDict, colsDict): print "found solution!" print m return rowsLenDict, sortedRowLenKeys = sortPossibleSolutions(rowsDict) colsLenDict, sortedColLenKeys = sortPossibleSolutions(colsDict) m, rowsDict, rowsLenDict, sortedRowLenKeys = addSingleSolutionsToMatrix(m, rowsDict, rowsLenDict, sortedRowLenKeys, True) m, colsDict, colsLenDict, sortedColLenKeys = addSingleSolutionsToMatrix(m, colsDict, colsLenDict, sortedColLenKeys, False) #print "filtering Rows by hints! " + str(getCount(rowsDict)) rowsDict = filterByPartials(partialSolvedRows, rowsDict) #print "Rows left: " + str(getCount(rowsDict)) + '\n' #print "filtering Cols by hints! " + str(getCount(colsDict)) colsDict = filterByPartials(partialSolvedCols, colsDict) #print "Cols left: " + str(getCount(colsDict)) + '\n' #print "filtering by solution matrix!", "rows:", str(getCount(rowsDict)), "cols:",str(getCount(colsDict)) m,rowsDict,colsDict = filterByMatrix(m,rowsDict,colsDict) #print "Rows left: " + str(getCount(rowsDict)) #print "Cols left: " + str(getCount(colsDict)) + '\n' print "Rows left: " + str(getCount(rowsDict)) print "Cols left: " + str(getCount(colsDict)) + '\n' if len(sortedRowLenKeys) > 0: lenDict = rowsLenDict[sortedRowLenKeys.pop(0)] for index in lenDict: for row in rowsDict[index]: rowsDict2 = copy.deepcopy(rowsDict) rowsDict2[index] = [row] #print rowsDict2[index] solve2(copy.deepcopy(m), rowsDict2, copy.deepcopy(colsDict), copy.deepcopy(rowsLenDict), copy.deepcopy(sortedRowLenKeys), copy.deepcopy(colsLenDict), copy.deepcopy(sortedColLenKeys)) if len(sortedColLenKeys) > 0: lenDict = colsLenDict[sortedColLenKeys.pop(0)] for index in lenDict: for col in colsDict[index]: colsDict2 = copy.deepcopy(colsDict) colsDict2[index] = [col] solve2(copy.deepcopy(m), copy.deepcopy(rowsDict), colsDict2, copy.deepcopy(rowsLenDict), copy.deepcopy(sortedRowLenKeys), copy.deepcopy(colsLenDict), copy.deepcopy(sortedColLenKeys)) def solve(m, rowsDict, colsDict, rowsLenDict, sortedRowLenKeys, colsLenDict, sortedColLenKeys): print "filtering Rows by hints! " + str(getCount(rowsDict)) rowsDict = filterByPartials(partialSolvedRows, rowsDict) print "Rows left: " + str(getCount(rowsDict)) + '\n' print "filtering Cols by hints! " + str(getCount(colsDict)) colsDict = filterByPartials(partialSolvedCols, colsDict) print "Cols left: " + str(getCount(colsDict)) + '\n' print "filtering by solution matrix!", "rows:", str(getCount(rowsDict)), "cols:",str(getCount(colsDict)) m,rowsDict,colsDict = filterByMatrix(m,rowsDict,colsDict) print "Rows left: " + str(getCount(rowsDict)) print "Cols left: " + str(getCount(colsDict)) + '\n' rowsLenDict, sortedRowLenKeys = sortPossibleSolutions(rowsDict) colsLenDict, sortedColLenKeys = sortPossibleSolutions(colsDict) m, rowsDict, rowsLenDict, sortedRowLenKeys = addSingleSolutionsToMatrix(m, rowsDict, rowsLenDict, sortedRowLenKeys, True) m, colsDict, colsLenDict, sortedColLenKeys = addSingleSolutionsToMatrix(m, colsDict, colsLenDict, sortedColLenKeys, False) print "Rows left: " + str(getCount(rowsDict)) print "Cols left: " + str(getCount(colsDict)) + '\n' print sortedRowLenKeys, sortedColLenKeys print rowsLenDict[sortedRowLenKeys[0]] print "starting to solve!" prevRowsCount = getCount(rowsDict) prevColsCount = getCount(colsDict) retryCounter = 0 while getCount(colsDict) != 0 and getCount(rowsDict) != 0: if(prevRowsCount == getCount(rowsDict) or prevColsCount
<filename>radarly/publication.py """ Publications are all documents which match the query you have defined in your projects. """ from os import getcwd from os.path import abspath from reprlib import repr as trunc_repr import requests from .api import RadarlyApi from .constants import PLATFORM, TONE from .exceptions import PublicationUpdateFailed from .metadata import Metadata from .model import GeneratorModel, SourceModel from .utils.misc import parse_image_url from .utils.jsonparser import snake_dict from .utils.checker import check_geocode, check_language, check_list class Publication(SourceModel): """Object base on ``SourceModel`` storing information about the publication. The structure of the model can be drawn with the ``draw_structure`` method. Args: uid (str): unique identifier of the publication origin (dict): dictionary which contains information about the platform where the publication comes from. permalink (str): link to the publication lang (str): lang of the publication date (datetime.datetime): creation date of the publication impression (int): number of impressions on the publication reach (int): estimated number of people reached by the publication tone (str): tone of the publication category (str): category of the publications user (dict): information about the author of the publication """ def __init__(self, data, project_id): super().__init__() self.pid = project_id data = snake_dict(data, blacklist=[['radar', 'tag']]) super().add_data(data) def __repr__(self): try: publication_uid = trunc_repr(self['uid']) except KeyError: publication_uid = None return '<Publication.uid={}>'.format(publication_uid) @classmethod def fetch(cls, project_id, parameter, api=None): """ Get publications stored inside a project. Args: project_id (int): identifier of a project parameter (SearchPublicationParameter): parameters object made with the SearchPublicationParameter instance, which will be used as payload data in POST request. See ``SearchPublicationParameter`` to know how to build this object. api (RadarlyApi, optional): API object used to perform request. If None, it will use the default API. Returns: list[Publication]: """ api = api or RadarlyApi.get_default_api() url = api.router.publication['search'].format(project_id=project_id) data = api.post(url, data=parameter) return [ Publication(item, project_id) for item in data['hits'] ] @classmethod def fetch_all(cls, project_id, parameter, api=None): """Get all publications matching given parameters. It yields publications. Args: project_id (int): identifier of your project parameter (SearchPublicationParameter): parameters object made with the SearchPublicationParameter instance, which will be used as payload data in POST request. See ``SearchPublicationParameter`` to know how to build this object. api (RadarlyApi, optional): API object used to perform request. If None, it will use the default API. Returns: PublicationsGenerator: list of publications. On each iterations, a Publication is yielded until there is no more publication. """ api = api or RadarlyApi.get_default_api() return PublicationsGenerator(parameter, project_id=project_id, api=api) def get_metadata(self, params=None, api=None): """This method allows users to get document’s metadata. Args: params (dict, optional): parameter sent in the GET request. Default to None. Returns: Metadata: object storing metadata information """ api = api or RadarlyApi.get_default_api() url = api.router.publication['metadata'].format(project_id=self.pid) params = {} if params is None else params params.update(dict( platform=self['origin']['platform'], uid=self['uid'], )) res_data = api.get(url, params=params) return Metadata(res_data, self['uid']) def get_raw(self, params=None, api=None): """Get the raw content of the publication. Args: params (dict, optional): parameter sent in the GET request. Default to None. Returns: dict: dictionary storing the raw content of the publication """ api = api or RadarlyApi.get_default_api() doc_platform = self['origin']['platform'] available_platform = [ PLATFORM.FORUM, PLATFORM.BLOG, ] assert doc_platform in available_platform, \ "{} is not compatible with raw content".format(doc_platform) url = api.router.publication['raw'].format(project_id=self.pid) params = {} if params is None else params params.update(dict( platform=doc_platform, uid=self['uid'], )) res_data = api.get(url, params=params) return res_data def set_tags(self, *args, **kwargs): """Update some information about a publication in Radarly. This method is based on the ``set_publication_tags`` function defined in the same module. .. warning:: Unlike the ``set_publication_tags``, this function returns None in case of success (the ``set_publication_tags`` returns a ``Publication`` object). Args: tone (str): tone of the publication. Can be `positive`, `negative`, `mixed` or `neutral`. language (str): alpha-2, alpha-3, or name of the language country (str): alpha-2, alpha-3 or name of the country keywords (list[str]): list of keywords for the publication custom_tags (dict[str -> list[str]]): value of the custom tags to set. The template for this argument is:: {<label of the custom_tag>: [<label of the subtag>]}. Example: Given two tags (the first one named ``Product`` with ``Shoes``, ``T-Shirt`` and ``Clothes`` as subtags and the second one named ``Price`` with ``High``, ``Medium`` and ``Low`` as subtags), a valid value for the ``custom_tags`` could be:: {'Product': ['Clothes', 'T-Shirt'], 'Price': ['High']} Raises: PublicationUpdateFailed: error raised if the publication failed Returns: None """ publication = set_publication_tags( *args, project_id=getattr(self, 'pid'), uid=getattr(self, 'uid'), platform=getattr(self, 'origin')['platform'], **kwargs ) self.add_data(publication.__dict__) return None def download(self, output_dir=None, chunk_size=1024): """Download the publication if it is an image or video. .. warning:: This function will not raised an error even if the download fails. To know if all the download succeed, compare the media object of a publication with the response of the function. Args: output_dir (str, optional): folder where the downloaded images must be saved. The folder must already exists. Default to the current working directory. chunk_size (int, optional): chunk size used during the file download with ``requests``. Default to 1024. Returns: dict[str]: filepath of the downloaded medias. This dictionary has quite the same structure of the ``media`` attribute of the publication. """ def download_content(content_link, output_dir): """Download the content of a media and save it in a existing directory. Args: content_link (str): output_dir (str): Returns: dict: local version of the media object """ if content_link is None: return None res = requests.get(content_link, stream=True) try: res.raise_for_status() except requests.exceptions.HTTPError: return None img_name, img_format = parse_image_url(res.url) filepath = '{}/{}.{}'.format(output_dir, img_name, img_format) with open(filepath, mode='wb') as image_file: for chunk in res.iter_content(chunk_size=chunk_size): image_file.write(chunk) return abspath(filepath) output_dir = output_dir or getcwd() media_links = dict( image=[], video=[] ) if self['media'] and self['media']['image']: downloaded_images = [ download_content(item, output_dir) for item in self['media']['image'] ] media_links['image'].extend(list(filter(None, downloaded_images))) if self['media'] and self['media']['video']: downloaded_videos = [ { 'url': download_content(item['url'], output_dir), 'thumbnail': download_content(item['thumbnail'], output_dir) } for item in self['media']['video'] ] media_links['video'].extend( filter(lambda x: x['url'] and x['thumbnail'], downloaded_videos) ) return media_links class PublicationsGenerator(GeneratorModel): """Generator which yields all publications matching some payload. Args: search_param (SearchPublicationParameter): project_id (int): identifier of the project api (RadarlyApi): api to use to perform requests Yields: Publication: """ def _fetch_items(self): """Get next range of publications""" url = self._api.router.publication['search'].format( project_id=self.project_id ) res_data = self._api.post(url, data=self.search_param) self.total = res_data['total'] self._items = ( Publication(item, self.project_id) for item in res_data['hits'] ) div = self.total // self.search_param['limit'] reste = self.total % self.search_param['limit'] self.total_page = div if reste != 0: self.total_page += 1 self.search_param = self.search_param.next_page() def __repr__(self): return '<PublicationsGenerator.total={}.total_page={}>'.format( self.total, self.total_page ) def set_publication_tags(project_id, uid, platform, tone=None, language=None, country=None, keyword=None, custom_tags=None, api=None): """Update some fields in a publication in Radarly. Only specific field can be updated. This function is outside the ``Publication`` class in order to give you the opportunity to update a publication without having the full object. The ``set_tags`` method of ``Publication`` uses this function so there is no big differences between theses two functions. Args: tone (str): tone of the publication. Can be `positive`, `negative`, `mixed` or `neutral`. language (str): alpha-2, alpha-3, or name of the language country (str): alpha-2, alpha-3 or name of the country keywords (list[str]): list of keywords for the publication custom_tags (dict[str -> list[str]]): value of the custom tags to set. The tags must already exist. The template for this argument is:: {<label of the custom_tag>: [<label of the subtag>]}. Example: Given two tags (the first one named ``Product`` with ``Shoes``, ``T-Shirt`` and ``Clothes`` as subtags and the second one named ``Price`` with ``High``, ``Medium`` and ``Low`` as subtags), a valid value for the ``custom_tags`` could be:: {'Product': ['Clothes', 'T-Shirt'], 'Price': ['High']} Raises: PublicationUpdateFailed: error raised if the publication failed Returns: Publication: publication which was updated """ def check_update(pub, tone, language, country, keyword, custom_tags): """Check the publication's update.""" not_updated_fields = [] if tone and pub['tone'] != tone: not_updated_fields.append('tone') if keyword and pub['keyword'] != keyword: not_updated_fields.append('keyword') if language and pub['lang'] != language: not_updated_fields.append('lang') if country and pub['geo']['inferred']['country'] != country: not_updated_fields.append('geo.inferred.country') if custom_tags: _ = [ not_updated_fields.append('radar.tag.custom.{}'.format(key)) for key in custom_tags if pub['radar']['tag']['custom'][key] != custom_tags[key] ] if not_updated_fields: raise PublicationUpdateFailed(fields=not_updated_fields) return None payload = {} if tone: _ = TONE.check(tone) payload['tone'] = tone if language: language = check_language(language)[0].lower() payload['lang'] = language
<gh_stars>0 # encoding: utf-8 # module renderdoc # from P:\1-Scripts\_Python\Py-Autocomplete\renderdoc.pyd # by generator 1.146 # no doc # imports import enum as __enum from .CaptureAccess import CaptureAccess class CaptureFile(CaptureAccess): """ A handle to a capture file. Used for simple cheap processing and meta-data fetching without opening the capture for analysis. """ def Convert(self, filename, filetype, file, progress): # real signature unknown; restored from __doc__ """ Convert(filename, filetype, file, progress) Converts the currently loaded file to a given format and saves it to disk. This allows converting a native RDC to another representation, or vice-versa converting another representation back to native RDC. :param str filename: The filename to save to. :param str filetype: The format to convert to. :param SDFile file: An optional :class:`SDFile` with the structured data to source from. This is useful in case the format specifies that it doesn't need buffers, and you already have a :class:`ReplayController` open with the structured data. This saves the need to load the file again. If ``None`` then structured data will be fetched if not already present and used. :param ProgressCallback progress: A callback that will be repeatedly called with an updated progress value for the conversion. Can be ``None`` if no progress is desired. :return: The status of the conversion operation, whether it succeeded or failed (and how it failed). :rtype: ReplayStatus """ pass def CopyFileTo(self, filename): # real signature unknown; restored from __doc__ """ CopyFileTo(filename) When a capture file is opened, an exclusive lock is held on the file on disk. This makes it impossible to copy the file to another location at the user's request. Calling this function will copy the file on disk to a new location but otherwise won't affect the capture handle. The new file will be locked, the old file will be unlocked - to allow deleting if necessary. It is invalid to call this function if :meth:`OpenFile` has not previously been called to open the file. :param str filename: The filename to copy to. :return: ``True`` if the operation succeeded. :rtype: ``bool`` """ pass def ErrorString(self): # real signature unknown; restored from __doc__ """ ErrorString() Returns the human-readable error string for the last error received. The error string is not reset by calling this function so it's safe to call multiple times. However any other function call may reset the error string to empty. :return: The error string, if one exists, or an empty string. :rtype: ``str`` """ pass def GetCaptureFileFormats(self): # real signature unknown; restored from __doc__ """ GetCaptureFileFormats() Returns the list of capture file formats. :return: The list of capture file formats available. :rtype: ``list`` of :class:`CaptureFileFormat` """ pass def GetStructuredData(self): # real signature unknown; restored from __doc__ """ GetStructuredData() Returns the structured data for this capture. The lifetime of this data is scoped to the lifetime of the capture handle, so it cannot be used after the handle is destroyed. :return: The structured data representing the file. :rtype: SDFile """ pass def GetThumbnail(self, type, maxsize): # real signature unknown; restored from __doc__ """ GetThumbnail(type, maxsize) Retrieves the embedded thumbnail from the capture. .. note:: The only supported values for :paramref:`GetThumbnail.type` are :attr:`FileType.JPG`, :attr:`FileType.PNG`, :attr:`FileType.TGA`, and :attr:`FileType.BMP`. :param FileType type: The image format to convert the thumbnail to. :param int maxsize: The largest width or height allowed. If the thumbnail is larger, it's resized. :return: The raw contents of the thumbnail, converted to the desired type at the desired max resolution. :rtype: Thumbnail """ pass def LocalReplaySupport(self): # real signature unknown; restored from __doc__ """ LocalReplaySupport() Queries for how well a particular capture is supported on the local machine. If the file was opened with a format other than native ``rdc`` this will always return no replay support. :return: How much support for replay exists locally. :rtype: ReplaySupport """ pass def OpenBuffer(self, buffer, filetype, progress): # real signature unknown; restored from __doc__ """ OpenBuffer(buffer, filetype, progress) Initialises the file handle from a raw memory buffer. This may be useful if you don't want to parse the whole file or already have the file in memory. For the :paramref:`OpenBuffer.filetype` parameter, see :meth:`OpenFile`. :param bytes buffer: The buffer containing the data to process. :param str filetype: The format of the given file. :param ProgressCallback progress: A callback that will be repeatedly called with an updated progress value if an import step occurs. Can be ``None`` if no progress is desired. :return: The status of the open operation, whether it succeeded or failed (and how it failed). :rtype: ReplayStatus """ pass def OpenCapture(self, opts, progress): # real signature unknown; restored from __doc__ """ OpenCapture(opts, progress) Opens a capture for replay locally and returns a handle to the capture. Only supported for handles opened with a native ``rdc`` capture, otherwise this will fail. This function will block until the capture is fully loaded and ready. Once the replay is created, this :class:`CaptureFile` can be shut down, there is no dependency on it by the :class:`ReplayController`. :param ReplayOptions opts: The options controlling how the capture should be replayed. :param ProgressCallback progress: A callback that will be repeatedly called with an updated progress value for the opening. Can be ``None`` if no progress is desired. :return: A tuple containing the status of opening the capture, whether success or failure, and the resulting :class:`ReplayController` handle if successful. :rtype: ``tuple`` of :class:`ReplayStatus` and :class:`ReplayController`. """ pass def OpenFile(self, filename, filetype, progress): # real signature unknown; restored from __doc__ """ OpenFile(filename, filetype, progress) Initialises the capture handle from a file. This method supports converting from non-native representations via structured data, by specifying the input format in the :paramref:`OpenFile.filetype` parameter. The list of supported formats can be retrieved by calling :meth:`GetCaptureFileFormats`. ``rdc`` is guaranteed to always be a supported filetype, and will be assumed if the filetype is empty or unrecognised. :param str filename: The filename of the file to open. :param str filetype: The format of the given file. :param ProgressCallback progress: A callback that will be repeatedly called with an updated progress value if an import step occurs. Can be ``None`` if no progress is desired. :return: The status of the open operation, whether it succeeded or failed (and how it failed). :rtype: ReplayStatus """ pass def RecordedMachineIdent(self): # real signature unknown; restored from __doc__ """ RecordedMachineIdent() Retrieves the identifying string describing what type of machine created this capture. :return: A string identifying the machine ident used to make the capture. :rtype: ``str`` """ pass def SetMetadata(self, driverName, machineIdent, thumbType, thumbWidth, thumbHeight, thumbData): # real signature unknown; restored from __doc__ """ SetMetadata(driverName, machineIdent, thumbType, thumbWidth, thumbHeight, thumbData) Sets the matadata for this capture handle. This function may only be called if the handle is 'empty' - i.e. no file has been opened with :meth:`OpenFile` or :meth:`OpenBuffer`. .. note:: The only supported values for :paramref:`SetMetadata.thumbType` are :attr:`FileType.JPG`, :attr:`FileType.PNG`, :attr:`FileType.TGA`, and :attr:`FileType.BMP`. :param str driverName: The name of the driver. Must be a recognised driver name (even if replay support for that driver is not compiled in locally. :param int machineIdent: The encoded machine identity value. Optional value and can be left to 0, as the bits to set are internally defined, so only generally useful if copying a machine ident from an existing capture. :param FileType thumbType: The file type of the thumbnail. Ignored if :paramref:`SetMetadata.thumbData` is empty. :param int thumbWidth: The width of the thumbnail. Ignored if :paramref:`SetMetadata.thumbData` is empty. :param int thumbHeight: The height of the thumbnail. Ignored if :paramref:`SetMetadata.thumbData` is empty. :param bytes thumbData: The raw data of the thumbnail. If empty, no thumbnail is set. """ pass def
numpy if version >= (1, 18, 3): module.store_in_file_system = True def load_numpy_core_multiarray(finder: ModuleFinder, module: Module) -> None: """ The numpy.core.multiarray module is an extension module and the numpy module imports * from this module; define the list of global names available to this module in order to avoid spurious errors about missing modules. """ module.AddGlobalName("arange") def load_numpy_core_numerictypes(finder: ModuleFinder, module: Module) -> None: """ The numpy.core.numerictypes module adds a number of items to itself dynamically; define these to avoid spurious errors about missing modules. """ module.AddGlobalName("bool_") module.AddGlobalName("cdouble") module.AddGlobalName("complexfloating") module.AddGlobalName("csingle") module.AddGlobalName("double") module.AddGlobalName("float64") module.AddGlobalName("float_") module.AddGlobalName("inexact") module.AddGlobalName("intc") module.AddGlobalName("int32") module.AddGlobalName("number") module.AddGlobalName("single") def load_numpy_core_umath(finder: ModuleFinder, module: Module) -> None: """ The numpy.core.umath module is an extension module and the numpy module imports * from this module; define the list of global names available to this module in order to avoid spurious errors about missing modules. """ module.AddGlobalName("add") module.AddGlobalName("absolute") module.AddGlobalName("arccos") module.AddGlobalName("arccosh") module.AddGlobalName("arcsin") module.AddGlobalName("arcsinh") module.AddGlobalName("arctan") module.AddGlobalName("arctanh") module.AddGlobalName("bitwise_and") module.AddGlobalName("bitwise_or") module.AddGlobalName("bitwise_xor") module.AddGlobalName("ceil") module.AddGlobalName("conj") module.AddGlobalName("conjugate") module.AddGlobalName("cosh") module.AddGlobalName("divide") module.AddGlobalName("fabs") module.AddGlobalName("floor") module.AddGlobalName("floor_divide") module.AddGlobalName("fmod") module.AddGlobalName("greater") module.AddGlobalName("hypot") module.AddGlobalName("invert") module.AddGlobalName("isfinite") module.AddGlobalName("isinf") module.AddGlobalName("isnan") module.AddGlobalName("less") module.AddGlobalName("left_shift") module.AddGlobalName("log") module.AddGlobalName("logical_and") module.AddGlobalName("logical_not") module.AddGlobalName("logical_or") module.AddGlobalName("logical_xor") module.AddGlobalName("maximum") module.AddGlobalName("minimum") module.AddGlobalName("multiply") module.AddGlobalName("negative") module.AddGlobalName("not_equal") module.AddGlobalName("power") module.AddGlobalName("remainder") module.AddGlobalName("right_shift") module.AddGlobalName("sign") module.AddGlobalName("sinh") module.AddGlobalName("sqrt") module.AddGlobalName("tan") module.AddGlobalName("tanh") module.AddGlobalName("true_divide") def load_numpy_distutils_command_scons( finder: ModuleFinder, module: Module ) -> None: """ The numpy.distutils.command.scons module optionally imports the numscons module; ignore the error if the module cannot be found. """ module.IgnoreName("numscons") def load_numpy_distutils_misc_util( finder: ModuleFinder, module: Module ) -> None: """ The numpy.distutils.misc_util module optionally imports the numscons module; ignore the error if the module cannot be found. """ module.IgnoreName("numscons") def load_numpy_distutils_system_info( finder: ModuleFinder, module: Module ) -> None: """ The numpy.distutils.system_info module optionally imports the Numeric module; ignore the error if the module cannot be found. """ module.IgnoreName("Numeric") def load_numpy_f2py___version__(finder: ModuleFinder, module: Module) -> None: """ The numpy.f2py.__version__ module optionally imports the __svn_version__ module; ignore the error if the module cannot be found. """ module.IgnoreName("__svn_version__") def load_numpy_linalg(finder: ModuleFinder, module: Module) -> None: """ The numpy.linalg module implicitly loads the lapack_lite module; make sure this happens. """ finder.IncludeModule("numpy.linalg.lapack_lite") def load_numpy_random_mtrand(finder: ModuleFinder, module: Module) -> None: """ The numpy.random.mtrand module is an extension module and the numpy module imports * from this module; define the list of global names available to this module in order to avoid spurious errors about missing modules. """ module.AddGlobalName("rand") module.AddGlobalName("randn") def load_Numeric(finder: ModuleFinder, module: Module) -> None: """ The Numeric module optionally loads the dotblas module; ignore the error if this modules does not exist. """ module.IgnoreName("dotblas") def load_pikepdf(finder: ModuleFinder, module: Module) -> None: """The pikepdf must be loaded as a package.""" finder.IncludePackage("pikepdf") def load_PIL(finder: ModuleFinder, module: Module) -> None: """The Pillow must be loaded as a package.""" finder.IncludePackage("PIL") def load_pkg_resources(finder: ModuleFinder, module: Module) -> None: """ The pkg_resources must be loaded as a package; dynamically loaded modules in subpackages is growing. """ finder.IncludePackage("pkg_resources") def load_postgresql_lib(finder: ModuleFinder, module: Module) -> None: """ The postgresql.lib module requires the libsys.sql file to be included so make sure that file is included. """ filename = os.path.join(module.path[0], "libsys.sql") finder.IncludeFiles(filename, os.path.basename(filename)) def load_pty(finder: ModuleFinder, module: Module) -> None: """The sgi module is not needed for this module to function.""" module.IgnoreName("sgi") def load_pycparser(finder: ModuleFinder, module: Module) -> None: """ These files are missing which causes permission denied issues on windows when they are regenerated. """ finder.IncludeModule("pycparser.lextab") finder.IncludeModule("pycparser.yacctab") def load_pygments(finder: ModuleFinder, module: Module) -> None: """The pygments package dynamically load styles.""" finder.IncludePackage("pygments.styles") finder.IncludePackage("pygments.lexers") finder.IncludePackage("pygments.formatters") def load_pytest(finder: ModuleFinder, module: Module) -> None: pytest = __import__("pytest") for mod in pytest.freeze_includes(): finder.IncludeModule(mod) def load_pythoncom(finder: ModuleFinder, module: Module) -> None: """ The pythoncom module is actually contained in a DLL but since those cannot be loaded directly in Python 2.5 and higher a special module is used to perform that task; simply use that technique directly to determine the name of the DLL and ensure it is included as a file in the target directory. """ pythoncom = __import__("pythoncom") finder.IncludeFiles( pythoncom.__file__, os.path.join("lib", os.path.basename(pythoncom.__file__)), copy_dependent_files=False, ) def load_pytz(finder: ModuleFinder, module: Module) -> None: """ The pytz module requires timezone data to be found in a known directory or in the zip file where the package is written. """ target_path = os.path.join("lib", "pytz", "zoneinfo") data_path = os.path.join(module.path[0], "zoneinfo") if not os.path.isdir(data_path): # Fedora (and possibly other systems) use a separate location to # store timezone data so look for that here as well pytz = __import__("pytz") data_path = ( getattr(pytz, "_tzinfo_dir", None) or os.getenv("PYTZ_TZDATADIR") or "/usr/share/zoneinfo" ) if data_path.endswith(os.sep): data_path = data_path[:-1] if os.path.isdir(data_path): finder.AddConstant("PYTZ_TZDATADIR", target_path) if os.path.isdir(data_path): if module.in_file_system: finder.IncludeFiles( data_path, target_path, copy_dependent_files=False ) else: finder.ZipIncludeFiles(data_path, "pytz/zoneinfo") def load_pywintypes(finder: ModuleFinder, module: Module) -> None: """ The pywintypes module is actually contained in a DLL but since those cannot be loaded directly in Python 2.5 and higher a special module is used to perform that task; simply use that technique directly to determine the name of the DLL and ensure it is included as a file in the target directory. """ pywintypes = __import__("pywintypes") finder.IncludeFiles( pywintypes.__file__, os.path.join("lib", os.path.basename(pywintypes.__file__)), copy_dependent_files=False, ) # cache the QtCore module _qtcore = None def _qt_implementation(module: Module) -> Tuple[str, Any]: """Helper function to get name (PyQt5) and the QtCore module.""" global _qtcore name = module.name.split(".")[0] if _qtcore is None: try: _qtcore = __import__(name, fromlist=["QtCore"]).QtCore except RuntimeError: print( "WARNING: Tried to load multiple incompatible Qt wrappers. " "Some incorrect files may be copied." ) return name, _qtcore def copy_qt_plugins(plugins, finder, qtcore): """Helper function to find and copy Qt plugins.""" # Qt Plugins can either be in a plugins directory next to the Qt libraries, # or in other locations listed by QCoreApplication.libraryPaths() dir0 = os.path.join(os.path.dirname(qtcore.__file__), "plugins") for libpath in qtcore.QCoreApplication.libraryPaths() + [dir0]: sourcepath = os.path.join(str(libpath), plugins) if os.path.exists(sourcepath): finder.IncludeFiles(sourcepath, plugins) def load_PyQt5_phonon(finder: ModuleFinder, module: Module) -> None: """ In Windows, phonon5.dll requires an additional dll phonon_ds94.dll to be present in the build directory inside a folder phonon_backend. """ if module.in_file_system: return _, qtcore = _qt_implementation(module) if WIN32: copy_qt_plugins("phonon_backend", finder, qtcore) def sip_module_name(qtcore) -> str: """ Returns the name of the sip module to import. (As of 5.11, the distributed wheels no longer provided for the sip module outside of the PyQt5 namespace). """ version_string = qtcore.PYQT_VERSION_STR try: pyqt_version_ints = tuple(int(c) for c in version_string.split(".")) if pyqt_version_ints >= (5, 11): return "PyQt5.sip" except Exception: pass return "sip" def load_PyQt5_QtCore(finder: ModuleFinder, module: Module) -> None: """ The PyQt5.QtCore module implicitly imports the sip module and, depending on configuration, the PyQt5._qt module. """ if module.in_file_system: return name, qtcore = _qt_implementation(module) finder.IncludeModule(sip_module_name(qtcore)) try: finder.IncludeModule(f"{name}._qt") except ImportError: pass def load_PyQt5_Qt(finder: ModuleFinder, module: Module) -> None: """ The PyQt5.Qt module is an extension module which imports a number of other modules and injects their namespace into its own. It seems a foolish way of doing things but perhaps there is some hidden advantage to this technique over pure Python; ignore the absence of some of the modules since not every installation includes all of them. """ if module.in_file_system: return name, _ = _qt_implementation(module) finder.IncludeModule(f"{name}.QtCore") finder.IncludeModule(f"{name}.QtGui") for mod in ( "_qt", "QtSvg", "Qsci", "QtAssistant", "QtNetwork", "QtOpenGL", "QtScript", "QtSql", "QtSvg", "QtTest", "QtXml", ): try: finder.IncludeModule(f"{name}.{mod}") except ImportError: pass def load_PyQt5_uic(finder: ModuleFinder, module: Module) -> None: """ The uic module makes use of "plugins" that need to be read directly and cannot be frozen; the PyQt5.QtWebKit and PyQt5.QtNetwork modules are also implicity loaded. """ if module.in_file_system: return name, _ = _qt_implementation(module) source_dir = os.path.join(module.path[0], "widget-plugins") finder.IncludeFiles(source_dir, f"{name}.uic.widget-plugins") finder.IncludeModule(f"{name}.QtNetwork") try: finder.IncludeModule(f"{name}.QtWebKit") except ImportError: pass def _QtGui(finder, module, version_str): name, qtcore = _qt_implementation(module) finder.IncludeModule(f"{name}.QtCore") copy_qt_plugins("imageformats", finder, qtcore) if version_str >= "5": # On Qt5, we need the platform plugins. For simplicity, we just copy # any that are installed. copy_qt_plugins("platforms", finder, qtcore) def load_PyQt5_QtGui(finder: ModuleFinder, module: Module) -> None: """ There is a chance that GUI will use some image formats add the image format plugins. """ if module.in_file_system: return _, qtcore = _qt_implementation(module) _QtGui(finder, module, qtcore.QT_VERSION_STR) def load_PyQt5_QtWidgets(finder: ModuleFinder, module: Module) -> None: if module.in_file_system: return finder.IncludeModule("PyQt5.QtGui") def load_PyQt5_QtWebKit(finder: ModuleFinder, module: Module) -> None: if module.in_file_system: return name, _ = _qt_implementation(module) finder.IncludeModule(f"{name}.QtNetwork") finder.IncludeModule(f"{name}.QtGui") def load_PyQt5_QtMultimedia(finder: ModuleFinder, module: Module) -> None: if module.in_file_system: return name, qtcore = _qt_implementation(module) finder.IncludeModule(f"{name}.QtCore") finder.IncludeModule(f"{name}.QtMultimediaWidgets")
pairs. Each set of 2 pairs are interpreted as the control point at the end of the curve and the endpoint of the curve. The control point at the beginning of the curve is assumed to be the reflection of the control point at the end of the last curve relative to the starting point of the curve. If the previous curve is not a cubic Bezier, the control point is coincident with the starting point. Returns ------- out : `Curve` This curve. """ self.last_q = None if self.last_c is None: self.last_c = self.points[-1] i = 0 while i < len(xy): ctrl = numpy.empty((4, 2)) ctrl[0] = self.points[-1] ctrl[1] = 2 * ctrl[0] - self.last_c for j in range(2, 4): if isinstance(xy[i], complex): ctrl[j, 0] = xy[i].real ctrl[j, 1] = xy[i].imag i += 1 else: ctrl[j, 0] = xy[i] ctrl[j, 1] = xy[i + 1] i += 2 f = _func_bezier(ctrl) uu = [0, 0.2, 0.5, 0.8, 1] fu = [f(u) for u in uu] iu = 1 while iu < len(fu): test_u = 0.5 * (uu[iu - 1] + uu[iu]) test_pt = f(test_u) test_err = 0.5 * (fu[iu - 1] + fu[iu]) - test_pt if test_err[0] ** 2 + test_err[1] ** 2 > self.tol: uu.insert(iu, test_u) fu.insert(iu, test_pt) else: iu += 1 self.points.extend(xy for xy in fu[1:]) self.last_c = ctrl[2] return self def s(self, *xy): """ Add smooth cubic Bezier curves to the curve. Parameters ---------- xy : numbers Coordinate pairs. Each set of 2 pairs are interpreted as the control point at the end of the curve and the endpoint of the curve. The control point at the beginning of the curve is assumed to be the reflection of the control point at the end of the last curve relative to the starting point of the curve. If the previous curve is not a cubic Bezier, the control point is coincident with the starting point. All coordinates are relative to the current end point. Returns ------- out : `Curve` This curve. """ self.last_q = None if self.last_c is None: self.last_c = self.points[-1] x0, y0 = self.points[-1] i = 0 while i < len(xy): ctrl = numpy.empty((4, 2)) ctrl[0, 0] = x0 ctrl[0, 1] = y0 ctrl[1] = 2 * ctrl[0] - self.last_c for j in range(2, 4): if isinstance(xy[i], complex): ctrl[j, 0] = x0 + xy[i].real ctrl[j, 1] = y0 + xy[i].imag i += 1 else: ctrl[j, 0] = x0 + xy[i] ctrl[j, 1] = y0 + xy[i + 1] i += 2 f = _func_bezier(ctrl) uu = [0, 0.2, 0.5, 0.8, 1] fu = [f(u) for u in uu] iu = 1 while iu < len(fu): test_u = 0.5 * (uu[iu - 1] + uu[iu]) test_pt = f(test_u) test_err = 0.5 * (fu[iu - 1] + fu[iu]) - test_pt if test_err[0] ** 2 + test_err[1] ** 2 > self.tol: uu.insert(iu, test_u) fu.insert(iu, test_pt) else: iu += 1 self.points.extend(xy for xy in fu[1:]) self.last_c = ctrl[2] return self def Q(self, *xy): """ Add quadratic Bezier curves to the curve. Parameters ---------- xy : numbers Coordinate pairs. Each set of 2 pairs are interpreted as the control point and the endpoint of the curve. Returns ------- out : `Curve` This curve. """ self.last_c = None i = 0 while i < len(xy): ctrl = numpy.empty((3, 2)) ctrl[0] = self.points[-1] for j in range(1, 3): if isinstance(xy[i], complex): ctrl[j, 0] = xy[i].real ctrl[j, 1] = xy[i].imag i += 1 else: ctrl[j, 0] = xy[i] ctrl[j, 1] = xy[i + 1] i += 2 f = _func_bezier(ctrl) uu = [0, 0.2, 0.5, 0.8, 1] fu = [f(u) for u in uu] iu = 1 while iu < len(fu): test_u = 0.5 * (uu[iu - 1] + uu[iu]) test_pt = f(test_u) test_err = 0.5 * (fu[iu - 1] + fu[iu]) - test_pt if test_err[0] ** 2 + test_err[1] ** 2 > self.tol: uu.insert(iu, test_u) fu.insert(iu, test_pt) else: iu += 1 self.points.extend(xy for xy in fu[1:]) self.last_q = ctrl[1] return self def q(self, *xy): """ Add quadratic Bezier curves to the curve. Parameters ---------- xy : numbers Coordinate pairs. Each set of 2 pairs are interpreted as the control point and the endpoint of the curve. All coordinates are relative to the current end point. Returns ------- out : `Curve` This curve. """ self.last_c = None x0, y0 = self.points[-1] i = 0 while i < len(xy): ctrl = numpy.empty((3, 2)) ctrl[0, 0] = x0 ctrl[0, 1] = y0 for j in range(1, 3): if isinstance(xy[i], complex): ctrl[j, 0] = x0 + xy[i].real ctrl[j, 1] = y0 + xy[i].imag i += 1 else: ctrl[j, 0] = x0 + xy[i] ctrl[j, 1] = y0 + xy[i + 1] i += 2 f = _func_bezier(ctrl) uu = [0, 0.2, 0.5, 0.8, 1] fu = [f(u) for u in uu] iu = 1 while iu < len(fu): test_u = 0.5 * (uu[iu - 1] + uu[iu]) test_pt = f(test_u) test_err = 0.5 * (fu[iu - 1] + fu[iu]) - test_pt if test_err[0] ** 2 + test_err[1] ** 2 > self.tol: uu.insert(iu, test_u) fu.insert(iu, test_pt) else: iu += 1 self.points.extend(xy for xy in fu[1:]) self.last_q = ctrl[1] return self def T(self, *xy): """ Add smooth quadratic Bezier curves to the curve. Parameters ---------- xy : numbers Coordinates of the endpoints of the curves. The control point is assumed to be the reflection of the control point of the last curve relative to the starting point of the curve. If the previous curve is not a quadratic Bezier, the control point is coincident with the starting point. Returns ------- out : `Curve` This curve. """ self.last_c = None if self.last_q is None: self.last_q = self.points[-1] i = 0 while i < len(xy): ctrl = numpy.empty((3, 2)) ctrl[0] = self.points[-1] ctrl[1] = 2 * ctrl[0] - self.last_q if isinstance(xy[i], complex): ctrl[2, 0] = xy[i].real ctrl[2, 1] = xy[i].imag i += 1 else: ctrl[2, 0] = xy[i] ctrl[2, 1] = xy[i + 1] i += 2 f = _func_bezier(ctrl) uu = [0, 0.2, 0.5, 0.8, 1] fu = [f(u) for u in uu] iu = 1 while iu < len(fu): test_u = 0.5 * (uu[iu - 1] + uu[iu]) test_pt = f(test_u) test_err = 0.5 * (fu[iu - 1] + fu[iu]) - test_pt if test_err[0] ** 2 + test_err[1] ** 2 > self.tol: uu.insert(iu, test_u) fu.insert(iu, test_pt) else: iu += 1 self.points.extend(xy for xy in fu[1:]) self.last_q = ctrl[1] return self def t(self, *xy): """ Add smooth quadratic Bezier curves to the curve. Parameters ---------- xy : numbers Coordinates of the endpoints of the curves. The control point is assumed to be the reflection of the control point of the last curve relative to the starting point of the curve. If the previous curve is not a quadratic Bezier, the control point is coincident with the starting point. All coordinates are relative to the current end point. Returns ------- out : `Curve` This curve. """ self.last_c = None if self.last_q is None: self.last_q = self.points[-1] x0, y0 = self.points[-1] i = 0 while i < len(xy): ctrl = numpy.empty((3, 2)) ctrl[0, 0] = x0 ctrl[0, 1] = y0 ctrl[1] = 2 * ctrl[0] - self.last_q if isinstance(xy[i], complex): ctrl[2, 0] = x0 + xy[i].real ctrl[2, 1] = y0 + xy[i].imag i += 1 else: ctrl[2, 0] = x0 + xy[i] ctrl[2, 1] = y0 + xy[i + 1] i += 2 f = _func_bezier(ctrl) uu = [0, 0.2, 0.5, 0.8, 1] fu = [f(u) for u in uu] iu = 1 while iu < len(fu): test_u = 0.5 * (uu[iu - 1] + uu[iu]) test_pt = f(test_u) test_err = 0.5 * (fu[iu - 1] + fu[iu]) - test_pt if test_err[0] ** 2 + test_err[1] ** 2 > self.tol: uu.insert(iu, test_u)
# =========================================================================== # # ____________________ |Importation des lib/packages| ____________________ # # =========================================================================== # from tokens import Token # =========================================================================== # # _____________________ |Definition des constantes| _____________________ # # =========================================================================== # from constants import YELLOW, END prec = 1e-7 # =========================================================================== # # ______________________ |Definition des classes | ______________________ # # =========================================================================== # class MyMonomial(Token): def __init__(self, coefficient, exponent): value = str(coefficient) + 'X^' + str(exponent) Token.__init__(self, value) self.coefficient = coefficient self.exponent = exponent def __repr__(self): s_coef, s_var, s_exp = '', '', '' if abs(self.exponent) >= 1: s_var = 'X' if self.exponent > 1 or self.exponent <= -1: s_exp = '^' + str(self.exponent) if abs(self.coefficient) != 1 or self.exponent == 0 : s_coef = str(self.coefficient) elif self.coefficient == -1: s_coef = '-' if self.coefficient == 0: return '0' return '' + s_coef + s_var + s_exp def __add__(self, other): if isinstance(other, MyMonomial): if self.exponent == other.exponent: res = MyMonomial(self.coefficient + other.coefficient, self.exponent) return (res) else: res = Polynomial(_conv_tokens_2_lst_(self, other)) return res elif isinstance(other, Polynomial): return other + self else: raise TypeError() def __radd__(self, other): if isinstance(other, MyMonomial): if self.exponent == other.exponent: res = MyMonomial(other.coefficient + self.coefficient, self.exponent) else: res = Polynomial(_conv_tokens_2_lst_(other, self)) return res else: raise TypeError() def __sub__(self, other): if isinstance(other, MyMonomial): if self.exponent == other.exponent: res = MyMonomial(self.coefficient - other.coefficient, self.exponent) else: other.coefficient = - other.coefficient res = Polynomial(_conv_tokens_2_lst_(self, other)) return res elif isinstance(other, Polynomial): other.coefs = [-c for c in other.coefs] return other + self else: raise TypeError() def __rsub__(self, other): if isinstance(other, MyMonomial): if self.exponent == other.exponent: res = MyMonomial(-other.coefficient + self.coefficient, self.exponent) else: self.coefficient = - self.coefficient res = Polynomial(_conv_tokens_2_lst_(other, self)) return res else: raise TypeError() def __mul__(self, other): if isinstance(other, MyMonomial): res = MyMonomial(other.coefficient * self.coefficient, self.exponent + other.exponent) return res elif isinstance(other, Polynomial): return other * self else: raise TypeError() def __rmul__(self, other): if isinstance(other, MyMonomial): res = MyMonomial(other.coefficient * self.coefficient, other.exponent + self.exponent) return res def __truediv__(self, other): if isinstance(other, MyMonomial): if other.coefficient != 0: res = MyMonomial(self.coefficient / other.coefficient, self.exponent - other.exponent) return res else: raise ZeroDivisionError() else: raise TypeError() def __rtruediv__(self, other): if isinstance(other, MyMonomial): if self.coefficient != 0: res = MyMonomial(other.coefficient / self.coefficient, other.exponent - self.exponent) return res else: raise ZeroDivisionError() else: raise TypeError() def __pow__(self, other): if isinstance(other, MyMonomial): if other.exponent == 0 and isinstance(other.coefficient, int): res = MyMonomial(power(self.coefficient,other.coefficient), self.exponent * other.coefficient) return res else: raise ValueError() else: raise TypeError() #def __rpow__(self, other): # pass class Polynomial(): def __init__(self, lst_coefs): """Creates the polynomial instance based on the list of coefficients. Remark: ------- Coefficients in the list are ordered from the coef of the highest MyMonomial degree to the MyMonomial of degree 0 (i.e. scalar constant) Example: -------- polynomial expr: a.Xˆ3 + b.X ˆ2 + c.X + d => [a, b, c, d] Note: ----- There is no gap in coefficient, meaning that a polynomial expr without a specific MyMonomial of degree i has still its coefficient in list_coeff but it is set to zero. a.X^3 + b => [b, 0, 0, a] """ self.coefs = lst_coefs while len(self.coefs) > 1 and self.coefs[-1] == 0: self.coefs = self.coefs[:-1] self.degree = len(self.coefs) - 1 def _zero_degree_resolution_(self): """Calculates the roots of polynomial of degree 0. Return: ------- * r [floats]: roots of the polynomial. """ if self.degree == 0: a = self.coefs[0] if a == 0: r = 0 if a != 0: r = None return [r] else: s_raise = "Polynomial is not of 0th degree." def _first_degree_resolution_(self): """Calculates the roots of polynomial of degree 1. Return: ------- * r [floats]: roots of the polynomial. """ if self.degree == 1: a = self.coefs[1] b = self.coefs[0] r = -b / a return [r] else: s_raise = "Polynomial is not of 1st degree." raise Exception(s_raise) def discriminant(self) -> float: """ Calculates the discriminant of the polynomial. Parameters: ----------- * self [SecondOrderPolynomial class object]: ... Return: ------- delta [float]: value of the discriminant constituted of tkn_m1/2/3. """ if self.degree == 2: a = self.coefs[2] b = self.coefs[1] c = self.coefs[0] delta = b * b - 4 * a * c return delta elif self.degree == 3: a = self.coefs[3] b = self.coefs[2] c = self.coefs[1] d = self.coefs[0] delta = 18 * a * b * c * d - 4 * power(b, 3) * d + power(b * c, 2) \ - 4 * a * power(c, 3) - 27 * power(a * d, 2) return delta else: s_raise = "discriminant implementation for 2nd degree polynomial." raise Exception(s_raise) def _second_degree_resolution_(self): """Calculates the roots of polynomial of degree 2. Return: ------- * r1, r2 / r [floats/complexes]: roots of the polynomial. """ if self.degree == 2: delta = self.discriminant() a = self.coefs[2] b = self.coefs[1] if delta > 0: r1 = 0.5 * (-b - babylonian_sqrt(delta)) / a r2 = 0.5 * (-b + babylonian_sqrt(delta)) / a return [r1, r2] elif delta == 0: return [(- 0.5 * b / a)] else: real = - 0.5 * b / a imaginary = 0.5 * babylonian_sqrt(-delta) / a r1 = complex(real, -imaginary) r2 = complex(real, imaginary) return [r1, r2] else: s_raise = "Polynomial is not of 2nd degree." raise Exception(s_raise) def _third_degree_resolution_(self): """ Calculates the roots of polynomial of degree 3. The function is here for the completeness of the class and avoid the redefinition of the some methods in the class PolynomialBonus. """ # reference: https://fr.wikiversity.org/wiki/Équation_du_troisième_degré/Méthode_de_Cardan if self.degree == 3: msg = "3rd degree resolution is a project's bonus. " \ + "Use instance of class PolynomialBonus to have access to " \ + "to the resolution of 3rd degree polynomial." print(YELLOW + msg + END) return [] else: print("Polynomial is not of 3rd degree.") def polynomial_roots(self): """Calculates the roots of the polynomial. Return: ------- delta [float]: value of the discriminant constituted of tkn_m1/2/3. """ roots = None if self.degree == 0: roots = self._zero_degree_resolution_() if self.degree == 1: roots = self._first_degree_resolution_() if self.degree == 2: roots = self._second_degree_resolution_() if self.degree == 3: roots = self._third_degree_resolution_() self.roots = roots return roots def lambda_polynom(self): """ Constructs the lambda function f corresponding to the polynomial. Return: ------- f [lambda function]: polynomial function. """ lst_p = list(range(len(self.coefs))) f = lambda x: sum([a * power(x, p) for a, p in zip(self.coefs, lst_p)]) self.lambda_p = f return f def lambda_first_derivative(self): """ Constructs the lambda function df corresponding to the polynomial first derivative. Return: ------- df [lambda function]: polynomial derivative function. """ lst_p = list(range(len(self.coefs))) lst_p = lst_p[1:] d_coefs = self.coefs[1:] print(f"valeurs de coeffs: {self.coeffs} --- valeurs de d_coeffs = {d_coefs}") print(f"valeurs de lst_p = {lst_p}") df = lambda x: sum([a * p * power(x, p - 1) for a, p in zip(d_coefs, lst_p)]) self.lambda_dp = df return df def lambda_second_derivative(self): """ Constructs the lambda function d2f corresponding to the polynomial second derivative. Return: ------- d2f [lambda function : polynomial second derivative function. """ lst_p = list(range(len(self.coefs))) lst_p = lst_p[2:] d2_coefs = self.coefs[2:] d2f = lambda x: sum([a * p * (p - 1) * power(x, p - 2) for a, p in zip(d2_coefs, lst_p)]) self.lambda_d2p = d2f return d2f @staticmethod def _print_roots(roots): """ Displays the number in the parameter roots as string. roots parameter is expected to be the list of the root of a Polynomial object. Parameters: ----------- * roots [list(float/complex)]: list of all the roots of a polynomial expression. """ for r in roots: if isinstance(r, (int, float)): print(r) if isinstance(r, complex): if r.imag > 0: print(r.real, '+', f"{r.imag}.i") else: print(r.real, '-', f"{-r.imag}.i") def _summarize_degree_other(self): """ Displays type function. Function prints: * reduced form of the Polynomial instance. * natural form of the Polynomial instance. * degree of the Polynomial instance. * message that computor does not manage the roots seach for polynomial degree greater than 3. """ print("Reduced form:".ljust(20), self.__repr__() + "= 0") print("Natural form:".ljust(20), self.natural_form() + "= 0") print("Polynomial degree:".ljust(20), self.degree) msg = "Resolution
<reponame>whywhs/Detection_and_Recognition_in_Remote_Sensing_Image # -------------------------------------------------------- # Deformable Convolutional Networks # Copyright (c) 2017 Microsoft # Licensed under The Apache-2.0 License [see LICENSE for details] # Written by <NAME> # Modified by <NAME> # -------------------------------------------------------- import cPickle import mxnet as mx from utils.symbol import Symbol from operator_py.proposal import * from operator_py.proposal_quadrangle import * from operator_py.proposal_target import * from operator_py.proposal_target_quadrangle import * from operator_py.box_annotator_ohem import * from operator_py.focal_loss import * from symbol_dpn import * class resnet_v1_101_rcnn_quadrangle(Symbol): def __init__(self): """ Use __init__ to define parameter network needs """ self.eps = 1e-5 self.use_global_stats = True self.workspace = 512 self.units = (3, 4, 23, 3) # use for 101 self.filter_list = [256, 512, 1024, 2048] self.k_R = 200 self.G = 50 self.k_sec = { 2: 4, \ 3: 8, \ 4: 20, \ 5: 3 } self.inc_sec= { 2: 20, \ 3: 64, \ 4: 64, \ 5: 128 } def get_resnet_v1_conv4(self, data): # conv1 = (data+1)/2 stride2 conv1 = mx.symbol.Convolution(name='conv1', data=data, num_filter=64, pad=(3, 3), kernel=(7, 7), stride=(2, 2), no_bias=True) bn_conv1 = mx.symbol.BatchNorm(name='bn_conv1', data=conv1, use_global_stats=True, fix_gamma=False, eps=self.eps) scale_conv1 = bn_conv1 conv1_relu = mx.symbol.Activation(name='conv1_relu', data=scale_conv1, act_type='relu') # pool1 = (conv1+1)/2 stride4 pool1 = mx.symbol.Pooling(name='pool1', data=conv1_relu, pooling_convention='full', pad=(0, 0), kernel=(3, 3), stride=(2, 2), pool_type='max') res2a_branch1 = mx.symbol.Convolution(name='res2a_branch1', data=pool1, num_filter=256, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn2a_branch1 = mx.symbol.BatchNorm(name='bn2a_branch1', data=res2a_branch1, use_global_stats=True, fix_gamma=False, eps=self.eps) scale2a_branch1 = bn2a_branch1 res2a_branch2a = mx.symbol.Convolution(name='res2a_branch2a', data=pool1, num_filter=64, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn2a_branch2a = mx.symbol.BatchNorm(name='bn2a_branch2a', data=res2a_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale2a_branch2a = bn2a_branch2a res2a_branch2a_relu = mx.symbol.Activation(name='res2a_branch2a_relu', data=scale2a_branch2a, act_type='relu') res2a_branch2b = mx.symbol.Convolution(name='res2a_branch2b', data=res2a_branch2a_relu, num_filter=64, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn2a_branch2b = mx.symbol.BatchNorm(name='bn2a_branch2b', data=res2a_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale2a_branch2b = bn2a_branch2b res2a_branch2b_relu = mx.symbol.Activation(name='res2a_branch2b_relu', data=scale2a_branch2b, act_type='relu') res2a_branch2c = mx.symbol.Convolution(name='res2a_branch2c', data=res2a_branch2b_relu, num_filter=256, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn2a_branch2c = mx.symbol.BatchNorm(name='bn2a_branch2c', data=res2a_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale2a_branch2c = bn2a_branch2c res2a = mx.symbol.broadcast_add(name='res2a', *[scale2a_branch1, scale2a_branch2c]) res2a_relu = mx.symbol.Activation(name='res2a_relu', data=res2a, act_type='relu') res2b_branch2a = mx.symbol.Convolution(name='res2b_branch2a', data=res2a_relu, num_filter=64, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn2b_branch2a = mx.symbol.BatchNorm(name='bn2b_branch2a', data=res2b_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale2b_branch2a = bn2b_branch2a res2b_branch2a_relu = mx.symbol.Activation(name='res2b_branch2a_relu', data=scale2b_branch2a, act_type='relu') res2b_branch2b = mx.symbol.Convolution(name='res2b_branch2b', data=res2b_branch2a_relu, num_filter=64, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn2b_branch2b = mx.symbol.BatchNorm(name='bn2b_branch2b', data=res2b_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale2b_branch2b = bn2b_branch2b res2b_branch2b_relu = mx.symbol.Activation(name='res2b_branch2b_relu', data=scale2b_branch2b, act_type='relu') res2b_branch2c = mx.symbol.Convolution(name='res2b_branch2c', data=res2b_branch2b_relu, num_filter=256, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn2b_branch2c = mx.symbol.BatchNorm(name='bn2b_branch2c', data=res2b_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale2b_branch2c = bn2b_branch2c res2b = mx.symbol.broadcast_add(name='res2b', *[res2a_relu, scale2b_branch2c]) res2b_relu = mx.symbol.Activation(name='res2b_relu', data=res2b, act_type='relu') res2c_branch2a = mx.symbol.Convolution(name='res2c_branch2a', data=res2b_relu, num_filter=64, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn2c_branch2a = mx.symbol.BatchNorm(name='bn2c_branch2a', data=res2c_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale2c_branch2a = bn2c_branch2a res2c_branch2a_relu = mx.symbol.Activation(name='res2c_branch2a_relu', data=scale2c_branch2a, act_type='relu') res2c_branch2b = mx.symbol.Convolution(name='res2c_branch2b', data=res2c_branch2a_relu, num_filter=64, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn2c_branch2b = mx.symbol.BatchNorm(name='bn2c_branch2b', data=res2c_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale2c_branch2b = bn2c_branch2b res2c_branch2b_relu = mx.symbol.Activation(name='res2c_branch2b_relu', data=scale2c_branch2b, act_type='relu') res2c_branch2c = mx.symbol.Convolution(name='res2c_branch2c', data=res2c_branch2b_relu, num_filter=256, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn2c_branch2c = mx.symbol.BatchNorm(name='bn2c_branch2c', data=res2c_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale2c_branch2c = bn2c_branch2c res2c = mx.symbol.broadcast_add(name='res2c', *[res2b_relu, scale2c_branch2c]) res2c_relu = mx.symbol.Activation(name='res2c_relu', data=res2c, act_type='relu') # res3a_branch1 = (res2c_reslu+1)/2 stride8 res3a_branch1 = mx.symbol.Convolution(name='res3a_branch1', data=res2c_relu, num_filter=512, pad=(0, 0), kernel=(1, 1), stride=(2, 2), no_bias=True) bn3a_branch1 = mx.symbol.BatchNorm(name='bn3a_branch1', data=res3a_branch1, use_global_stats=True, fix_gamma=False, eps=self.eps) scale3a_branch1 = bn3a_branch1 res3a_branch2a = mx.symbol.Convolution(name='res3a_branch2a', data=res2c_relu, num_filter=128, pad=(0, 0), kernel=(1, 1), stride=(2, 2), no_bias=True) bn3a_branch2a = mx.symbol.BatchNorm(name='bn3a_branch2a', data=res3a_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale3a_branch2a = bn3a_branch2a res3a_branch2a_relu = mx.symbol.Activation(name='res3a_branch2a_relu', data=scale3a_branch2a, act_type='relu') res3a_branch2b = mx.symbol.Convolution(name='res3a_branch2b', data=res3a_branch2a_relu, num_filter=128, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn3a_branch2b = mx.symbol.BatchNorm(name='bn3a_branch2b', data=res3a_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale3a_branch2b = bn3a_branch2b res3a_branch2b_relu = mx.symbol.Activation(name='res3a_branch2b_relu', data=scale3a_branch2b, act_type='relu') res3a_branch2c = mx.symbol.Convolution(name='res3a_branch2c', data=res3a_branch2b_relu, num_filter=512, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn3a_branch2c = mx.symbol.BatchNorm(name='bn3a_branch2c', data=res3a_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale3a_branch2c = bn3a_branch2c res3a = mx.symbol.broadcast_add(name='res3a', *[scale3a_branch1, scale3a_branch2c]) res3a_relu = mx.symbol.Activation(name='res3a_relu', data=res3a, act_type='relu') res3b1_branch2a = mx.symbol.Convolution(name='res3b1_branch2a', data=res3a_relu, num_filter=128, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn3b1_branch2a = mx.symbol.BatchNorm(name='bn3b1_branch2a', data=res3b1_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale3b1_branch2a = bn3b1_branch2a res3b1_branch2a_relu = mx.symbol.Activation(name='res3b1_branch2a_relu', data=scale3b1_branch2a, act_type='relu') res3b1_branch2b = mx.symbol.Convolution(name='res3b1_branch2b', data=res3b1_branch2a_relu, num_filter=128, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn3b1_branch2b = mx.symbol.BatchNorm(name='bn3b1_branch2b', data=res3b1_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale3b1_branch2b = bn3b1_branch2b res3b1_branch2b_relu = mx.symbol.Activation(name='res3b1_branch2b_relu', data=scale3b1_branch2b, act_type='relu') res3b1_branch2c = mx.symbol.Convolution(name='res3b1_branch2c', data=res3b1_branch2b_relu, num_filter=512, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn3b1_branch2c = mx.symbol.BatchNorm(name='bn3b1_branch2c', data=res3b1_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale3b1_branch2c = bn3b1_branch2c res3b1 = mx.symbol.broadcast_add(name='res3b1', *[res3a_relu, scale3b1_branch2c]) res3b1_relu = mx.symbol.Activation(name='res3b1_relu', data=res3b1, act_type='relu') res3b2_branch2a = mx.symbol.Convolution(name='res3b2_branch2a', data=res3b1_relu, num_filter=128, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn3b2_branch2a = mx.symbol.BatchNorm(name='bn3b2_branch2a', data=res3b2_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale3b2_branch2a = bn3b2_branch2a res3b2_branch2a_relu = mx.symbol.Activation(name='res3b2_branch2a_relu', data=scale3b2_branch2a, act_type='relu') res3b2_branch2b = mx.symbol.Convolution(name='res3b2_branch2b', data=res3b2_branch2a_relu, num_filter=128, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn3b2_branch2b = mx.symbol.BatchNorm(name='bn3b2_branch2b', data=res3b2_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale3b2_branch2b = bn3b2_branch2b res3b2_branch2b_relu = mx.symbol.Activation(name='res3b2_branch2b_relu', data=scale3b2_branch2b, act_type='relu') res3b2_branch2c = mx.symbol.Convolution(name='res3b2_branch2c', data=res3b2_branch2b_relu, num_filter=512, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn3b2_branch2c = mx.symbol.BatchNorm(name='bn3b2_branch2c', data=res3b2_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale3b2_branch2c = bn3b2_branch2c res3b2 = mx.symbol.broadcast_add(name='res3b2', *[res3b1_relu, scale3b2_branch2c]) res3b2_relu = mx.symbol.Activation(name='res3b2_relu', data=res3b2, act_type='relu') res3b3_branch2a = mx.symbol.Convolution(name='res3b3_branch2a', data=res3b2_relu, num_filter=128, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn3b3_branch2a = mx.symbol.BatchNorm(name='bn3b3_branch2a', data=res3b3_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale3b3_branch2a = bn3b3_branch2a res3b3_branch2a_relu = mx.symbol.Activation(name='res3b3_branch2a_relu', data=scale3b3_branch2a, act_type='relu') res3b3_branch2b = mx.symbol.Convolution(name='res3b3_branch2b', data=res3b3_branch2a_relu, num_filter=128, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn3b3_branch2b = mx.symbol.BatchNorm(name='bn3b3_branch2b', data=res3b3_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale3b3_branch2b = bn3b3_branch2b res3b3_branch2b_relu = mx.symbol.Activation(name='res3b3_branch2b_relu', data=scale3b3_branch2b, act_type='relu') res3b3_branch2c = mx.symbol.Convolution(name='res3b3_branch2c', data=res3b3_branch2b_relu, num_filter=512, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn3b3_branch2c = mx.symbol.BatchNorm(name='bn3b3_branch2c', data=res3b3_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale3b3_branch2c = bn3b3_branch2c res3b3 = mx.symbol.broadcast_add(name='res3b3', *[res3b2_relu, scale3b3_branch2c]) res3b3_relu = mx.symbol.Activation(name='res3b3_relu', data=res3b3, act_type='relu') # res4a_branch1 : stride16 res4a_branch1 = mx.symbol.Convolution(name='res4a_branch1', data=res3b3_relu, num_filter=1024, pad=(0, 0), kernel=(1, 1), stride=(2, 2), no_bias=True) bn4a_branch1 = mx.symbol.BatchNorm(name='bn4a_branch1', data=res4a_branch1, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4a_branch1 = bn4a_branch1 res4a_branch2a = mx.symbol.Convolution(name='res4a_branch2a', data=res3b3_relu, num_filter=256, pad=(0, 0), kernel=(1, 1), stride=(2, 2), no_bias=True) bn4a_branch2a = mx.symbol.BatchNorm(name='bn4a_branch2a', data=res4a_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4a_branch2a = bn4a_branch2a res4a_branch2a_relu = mx.symbol.Activation(name='res4a_branch2a_relu', data=scale4a_branch2a, act_type='relu') res4a_branch2b = mx.symbol.Convolution(name='res4a_branch2b', data=res4a_branch2a_relu, num_filter=256, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn4a_branch2b = mx.symbol.BatchNorm(name='bn4a_branch2b', data=res4a_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4a_branch2b = bn4a_branch2b res4a_branch2b_relu = mx.symbol.Activation(name='res4a_branch2b_relu', data=scale4a_branch2b, act_type='relu') res4a_branch2c = mx.symbol.Convolution(name='res4a_branch2c', data=res4a_branch2b_relu, num_filter=1024, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4a_branch2c = mx.symbol.BatchNorm(name='bn4a_branch2c', data=res4a_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4a_branch2c = bn4a_branch2c res4a = mx.symbol.broadcast_add(name='res4a', *[scale4a_branch1, scale4a_branch2c]) res4a_relu = mx.symbol.Activation(name='res4a_relu', data=res4a, act_type='relu') res4b1_branch2a = mx.symbol.Convolution(name='res4b1_branch2a', data=res4a_relu, num_filter=256, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b1_branch2a = mx.symbol.BatchNorm(name='bn4b1_branch2a', data=res4b1_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b1_branch2a = bn4b1_branch2a res4b1_branch2a_relu = mx.symbol.Activation(name='res4b1_branch2a_relu', data=scale4b1_branch2a, act_type='relu') res4b1_branch2b = mx.symbol.Convolution(name='res4b1_branch2b', data=res4b1_branch2a_relu, num_filter=256, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn4b1_branch2b = mx.symbol.BatchNorm(name='bn4b1_branch2b', data=res4b1_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b1_branch2b = bn4b1_branch2b res4b1_branch2b_relu = mx.symbol.Activation(name='res4b1_branch2b_relu', data=scale4b1_branch2b, act_type='relu') res4b1_branch2c = mx.symbol.Convolution(name='res4b1_branch2c', data=res4b1_branch2b_relu, num_filter=1024, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b1_branch2c = mx.symbol.BatchNorm(name='bn4b1_branch2c', data=res4b1_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b1_branch2c = bn4b1_branch2c res4b1 = mx.symbol.broadcast_add(name='res4b1', *[res4a_relu, scale4b1_branch2c]) res4b1_relu = mx.symbol.Activation(name='res4b1_relu', data=res4b1, act_type='relu') res4b2_branch2a = mx.symbol.Convolution(name='res4b2_branch2a', data=res4b1_relu, num_filter=256, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b2_branch2a = mx.symbol.BatchNorm(name='bn4b2_branch2a', data=res4b2_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b2_branch2a = bn4b2_branch2a res4b2_branch2a_relu = mx.symbol.Activation(name='res4b2_branch2a_relu', data=scale4b2_branch2a, act_type='relu') res4b2_branch2b = mx.symbol.Convolution(name='res4b2_branch2b', data=res4b2_branch2a_relu, num_filter=256, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn4b2_branch2b = mx.symbol.BatchNorm(name='bn4b2_branch2b', data=res4b2_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b2_branch2b = bn4b2_branch2b res4b2_branch2b_relu = mx.symbol.Activation(name='res4b2_branch2b_relu', data=scale4b2_branch2b, act_type='relu') res4b2_branch2c = mx.symbol.Convolution(name='res4b2_branch2c', data=res4b2_branch2b_relu, num_filter=1024, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b2_branch2c = mx.symbol.BatchNorm(name='bn4b2_branch2c', data=res4b2_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b2_branch2c = bn4b2_branch2c res4b2 = mx.symbol.broadcast_add(name='res4b2', *[res4b1_relu, scale4b2_branch2c]) res4b2_relu = mx.symbol.Activation(name='res4b2_relu', data=res4b2, act_type='relu') res4b3_branch2a = mx.symbol.Convolution(name='res4b3_branch2a', data=res4b2_relu, num_filter=256, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b3_branch2a = mx.symbol.BatchNorm(name='bn4b3_branch2a', data=res4b3_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b3_branch2a = bn4b3_branch2a res4b3_branch2a_relu = mx.symbol.Activation(name='res4b3_branch2a_relu', data=scale4b3_branch2a, act_type='relu') res4b3_branch2b = mx.symbol.Convolution(name='res4b3_branch2b', data=res4b3_branch2a_relu, num_filter=256, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn4b3_branch2b = mx.symbol.BatchNorm(name='bn4b3_branch2b', data=res4b3_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b3_branch2b = bn4b3_branch2b res4b3_branch2b_relu = mx.symbol.Activation(name='res4b3_branch2b_relu', data=scale4b3_branch2b, act_type='relu') res4b3_branch2c = mx.symbol.Convolution(name='res4b3_branch2c', data=res4b3_branch2b_relu, num_filter=1024, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b3_branch2c = mx.symbol.BatchNorm(name='bn4b3_branch2c', data=res4b3_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b3_branch2c = bn4b3_branch2c res4b3 = mx.symbol.broadcast_add(name='res4b3', *[res4b2_relu, scale4b3_branch2c]) res4b3_relu = mx.symbol.Activation(name='res4b3_relu', data=res4b3, act_type='relu') res4b4_branch2a = mx.symbol.Convolution(name='res4b4_branch2a', data=res4b3_relu, num_filter=256, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b4_branch2a = mx.symbol.BatchNorm(name='bn4b4_branch2a', data=res4b4_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b4_branch2a = bn4b4_branch2a res4b4_branch2a_relu = mx.symbol.Activation(name='res4b4_branch2a_relu', data=scale4b4_branch2a, act_type='relu') res4b4_branch2b = mx.symbol.Convolution(name='res4b4_branch2b', data=res4b4_branch2a_relu, num_filter=256, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn4b4_branch2b = mx.symbol.BatchNorm(name='bn4b4_branch2b', data=res4b4_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b4_branch2b = bn4b4_branch2b res4b4_branch2b_relu = mx.symbol.Activation(name='res4b4_branch2b_relu', data=scale4b4_branch2b, act_type='relu') res4b4_branch2c = mx.symbol.Convolution(name='res4b4_branch2c', data=res4b4_branch2b_relu, num_filter=1024, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b4_branch2c = mx.symbol.BatchNorm(name='bn4b4_branch2c', data=res4b4_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b4_branch2c = bn4b4_branch2c res4b4 = mx.symbol.broadcast_add(name='res4b4', *[res4b3_relu, scale4b4_branch2c]) res4b4_relu
the bit that puts in strings like py27np111 in the filename. It would be # nice to get rid of this, since the hash supercedes that functionally, but not clear # whether anyone's tools depend on this file naming right now. for s, names, places in (('py', 'python', 2), ('np', 'numpy', 2), ('pl', 'perl', 2), ('lua', 'lua', 2), ('r', ('r', 'r-base'), 3)): for ms in metadata.ms_depends('run'): for name in ensure_list(names): if ms.name == name and name in build_pkg_names: # only append numpy when it is actually pinned if name == 'numpy' and (not hasattr(ms, 'version') or not ms.version): continue log.warn("Deprecation notice: computing build string (like pyXY). This " "functionality has been replaced with the hash (h????), which" " can be readily inpsected with `conda inspect hash-inputs " "<pkg-name>`. pyXY, npXYY and the like will go away in " "conda-build 4.0. Please adapt any code that depends on filenames" " with pyXY, npXYY, etc.") if metadata.noarch == name or (metadata.get_value('build/noarch_python') and name == 'python'): res.append(s) else: variant_version = metadata.config.variant.get(name, "") res.append(''.join([s] + variant_version.split('.')[:places])) features = ensure_list(metadata.get_value('build/features', [])) if res: res.append('_') if features: res.extend(('_'.join(features), '_')) res.append('{0}'.format(metadata.build_number() if metadata.build_number() else 0)) build_str = "".join(res) return build_str # This really belongs in conda, and it is int conda.cli.common, # but we don't presently have an API there. def _get_env_path(env_name_or_path): if not os.path.isdir(env_name_or_path): for envs_dir in list(envs_dirs) + [os.getcwd()]: path = os.path.join(envs_dir, env_name_or_path) if os.path.isdir(path): env_name_or_path = path break bootstrap_metadir = os.path.join(env_name_or_path, 'conda-meta') if not os.path.isdir(bootstrap_metadir): print("Bootstrap environment '%s' not found" % env_name_or_path) sys.exit(1) return env_name_or_path def _get_dependencies_from_environment(env_name_or_path): path = _get_env_path(env_name_or_path) # construct build requirements that replicate the given bootstrap environment # and concatenate them to the build requirements from the recipe bootstrap_metadata = get_installed_packages(path) bootstrap_requirements = [] for package, data in bootstrap_metadata.items(): bootstrap_requirements.append("%s %s %s" % (package, data['version'], data['build'])) return {'requirements': {'build': bootstrap_requirements}} class MetaData(object): def __init__(self, path, config=None, variant=None): self.undefined_jinja_vars = [] # decouple this config from whatever was fed in. People must change config by # accessing and changing this attribute. self.config = copy.copy(get_or_merge_config(config, variant=variant)) if isfile(path): self.meta_path = path self.path = os.path.dirname(path) else: self.meta_path = find_recipe(path) self.path = os.path.dirname(self.meta_path) self.requirements_path = join(self.path, 'requirements.txt') # Start with bare-minimum contents so we can call environ.get_dict() with impunity # We'll immediately replace these contents in parse_again() self.meta = dict() # This is the 'first pass' parse of meta.yaml, so not all variables are defined yet # (e.g. GIT_FULL_HASH, etc. are undefined) # Therefore, undefined jinja variables are permitted here # In the second pass, we'll be more strict. See build.build() # Primarily for debugging. Ensure that metadata is not altered after "finalizing" self.parse_again(permit_undefined_jinja=True) if 'host' in self.get_section('requirements'): self.config.has_separate_host_prefix = True self.config.disable_pip = self.disable_pip @property def final(self): return self.get_value('extra/final') @final.setter def final(self, boolean): extra = self.meta.get('extra', {}) extra['final'] = boolean self.meta['extra'] = extra @property def disable_pip(self): return self.config.disable_pip or ('build' in self.meta and 'disable_pip' in self.meta['build']) @disable_pip.setter def disable_pip(self, value): self.config.disable_pip = value build = self.meta.get('build', {}) build['disable_pip'] = value self.meta['build'] = build def append_metadata_sections(self, sections_file_or_dict, merge, raise_on_clobber=False): """Append to or replace subsections to meta.yaml This is used to alter input recipes, so that a given requirement or setting is applied without manually altering the input recipe. It is intended for vendors who want to extend existing recipes without necessarily removing information. pass merge=False to replace sections. """ if hasattr(sections_file_or_dict, 'keys'): build_config = sections_file_or_dict else: with open(sections_file_or_dict) as configfile: build_config = parse(configfile.read(), config=self.config) _merge_or_update_values(self.meta, build_config, self.path, merge=merge, raise_on_clobber=raise_on_clobber) def parse_again(self, permit_undefined_jinja=False): """Redo parsing for key-value pairs that are not initialized in the first pass. config: a conda-build Config object. If None, the config object passed at creation time is used. permit_undefined_jinja: If True, *any* use of undefined jinja variables will evaluate to an emtpy string, without emitting an error. """ assert not self.final, "modifying metadata after finalization" log = utils.get_logger(__name__) log.addFilter(filt) if isfile(self.requirements_path) and not self.get_value('requirements/run'): self.meta.setdefault('requirements', {}) run_requirements = specs_from_url(self.requirements_path) self.meta['requirements']['run'] = run_requirements os.environ["CONDA_BUILD_STATE"] = "RENDER" append_sections_file = None clobber_sections_file = None try: # we sometimes create metadata from dictionaries, in which case we'll have no path if self.meta_path: self.meta = parse(self._get_contents(permit_undefined_jinja), config=self.config, path=self.meta_path) if (isfile(self.requirements_path) and not self.meta.get('requirements', {}).get('run', [])): self.meta.setdefault('requirements', {}) run_requirements = specs_from_url(self.requirements_path) self.meta['requirements']['run'] = run_requirements append_sections_file = os.path.join(self.path, 'recipe_append.yaml') clobber_sections_file = os.path.join(self.path, 'recipe_clobber.yaml') append_sections_file = self.config.append_sections_file or append_sections_file if append_sections_file and not os.path.isfile(append_sections_file): log.debug('input append sections file did not exist: %s', append_sections_file) append_sections_file = None clobber_sections_file = self.config.clobber_sections_file or clobber_sections_file if clobber_sections_file and not os.path.isfile(clobber_sections_file): log.debug('input clobber sections file did not exist: %s', clobber_sections_file) clobber_sections_file = None if append_sections_file: self.append_metadata_sections(append_sections_file, merge=True) if clobber_sections_file: self.append_metadata_sections(clobber_sections_file, merge=False) if self.config.bootstrap: dependencies = _get_dependencies_from_environment(self.config.bootstrap) self.append_metadata_sections(dependencies, merge=True) except: raise finally: del os.environ["CONDA_BUILD_STATE"] self.validate_features() self.ensure_no_pip_requirements() def ensure_no_pip_requirements(self): keys = 'requirements/build', 'requirements/run', 'test/requires' for key in keys: if any(hasattr(item, 'keys') for item in self.get_value(key)): raise ValueError("Dictionaries are not supported as values in requirements sections" ". Note that pip requirements as used in conda-env " "environment.yml files are not supported by conda-build.") self.append_requirements() def append_requirements(self): """For dynamic determination of build or run reqs, based on configuration""" reqs = self.meta.get('requirements', {}) run_reqs = reqs.get('run', []) if bool(self.get_value('build/osx_is_app', False)) and self.config.platform == 'osx': run_reqs.append('python.app') self.meta['requirements'] = reqs def parse_until_resolved(self): """variant contains key-value mapping for additional functions and values for jinja2 variables""" # undefined_jinja_vars is refreshed by self.parse again undefined_jinja_vars = () # always parse again at least once. self.parse_again(permit_undefined_jinja=True) while set(undefined_jinja_vars) != set(self.undefined_jinja_vars): undefined_jinja_vars = self.undefined_jinja_vars self.parse_again(permit_undefined_jinja=True) if undefined_jinja_vars: sys.exit("Undefined Jinja2 variables remain ({}). Please enable " "source downloading and try again.".format(self.undefined_jinja_vars)) # always parse again at the end, too. self.parse_again(permit_undefined_jinja=False) @classmethod def fromstring(cls, metadata, config=None, variant=None): m = super(MetaData, cls).__new__(cls) if not config: config = Config() m.meta = parse(metadata, config=config, path='', variant=variant) m.config = config m.parse_again(permit_undefined_jinja=True) return m @classmethod def fromdict(cls, metadata, config=None, variant=None): """ Create a MetaData object from metadata dict directly. """ m = super(MetaData, cls).__new__(cls) m.path = '' m.meta_path = '' m.requirements_path = '' m.meta = sanitize(metadata) if not config: config = Config(variant=variant) m.config = config m.undefined_jinja_vars = [] m.final = False return m def get_section(self, section): return self.meta.get(section, {}) def get_value(self, field, default=None, autotype=True): """ Get a value from a meta.yaml. :param field: Field to return :param default: Default object to return if field doesn't exist :param autotype: If True, return the default type of field if one exists. False will return the default object. :return: """ section, key = field.split('/') # get correct default if autotype and default is None and field in default_structs: default = default_structs[field]() value = self.get_section(section).get(key, default) # handle yaml 1.1 boolean values if isinstance(value, text_type): if value.lower() in trues: value = True elif value.lower() in falses: value = False return value def check_fields(self): for section, submeta in iteritems(self.meta): # anything goes in the extra section if section == 'extra': continue if section not in FIELDS: raise ValueError("unknown section: %s" % section) for key in submeta: if key not in FIELDS[section]: raise ValueError("in section %r: unknown key %r" % (section, key)) return True def name(self): res = self.get_value('package/name') if not res: sys.exit('Error: package/name missing in: %r' % self.meta_path) res = text_type(res) if res != res.lower(): sys.exit('Error: package/name must be lowercase, got: %r' % res) check_bad_chrs(res, 'package/name') return res def version(self): res = str(self.get_value('package/version')) if res is None: sys.exit("Error: package/version missing in: %r" % self.meta_path) check_bad_chrs(res, 'package/version') if self.final and res.startswith('.'): raise ValueError("Fully-rendered version can't start with period - got %s", res) return res def build_number(self): number = self.get_value('build/number') # build number can come back as None if no setting (or jinja intermediate) try: build_int = int(number) except (ValueError, TypeError): build_int = "" return build_int def ms_depends(self, typ='run'): res = [] names = ('python', 'numpy', 'perl', 'lua') name_ver_list = [(name, self.config.variant[name]) for name in names if self.config.variant.get(name)] if self.config.variant.get('r_base'): # r is kept for legacy installations, r-base deprecates it. name_ver_list.extend([('r', self.config.variant['r_base']), ('r-base', self.config.variant['r_base']), ]) for spec in self.get_value('requirements/' + typ, []): try: ms = MatchSpec(spec) except
#!/usr/bin/env python """ Tests for the deploy module, which is used to configure and execute Overwatch scripts. .. codeauthor:: <NAME> <<EMAIL>>, Yale University """ from future.utils import iteritems import pytest import copy import os try: # For whatever reason, import StringIO from io doesn't behave nicely in python 2. from StringIO import StringIO except ImportError: from io import StringIO import signal import stat import inspect import subprocess import collections import pkg_resources import logging logger = logging.getLogger(__name__) import ruamel.yaml as yaml from overwatch.base import deploy def testExpandEnvironmentVars(loggingMixin): """ Test the YAML constructor to expand environment vars. """ testYaml = """ normalVar: 3 normalWithDollarSign: "$ Hello World" environmentVar: !expandVars $HOME expandedWithoutVar: !expandVars "Hello world" """ # Setup the YAML to be read from a stream s = StringIO() s.write(testYaml) s.seek(0) config = deploy.configModule.yaml.load(s, Loader = yaml.SafeLoader) assert config["normalVar"] == 3 # Should have no impact because it explicitly needs to be tagged (a `$` on it's own is not enough) assert config["normalWithDollarSign"] == "$ Hello World" assert config["environmentVar"] == os.environ["HOME"] # Should have no impact because there are no environment ars assert config["expandedWithoutVar"] == "Hello world" def testRetrieveExecutable(loggingMixin): """ Tests for retrieving executables. """ e = deploy.retrieveExecutable("zodb", config = {}) assert isinstance(e, deploy._available_executables["zodb"]) with pytest.raises(KeyError) as exceptionInfo: e = deploy.retrieveExecutable("helloWorld", config = {}) assert exceptionInfo.value.args[0] == "Executable helloWorld is invalid." #: Simple named tuple to contain the execution expectations. executableExpected = collections.namedtuple("executableExpected", ["name", "description", "args", "config"]) @pytest.fixture def setupBasicExecutable(loggingMixin, mocker): """ Setup an executable object. Returns: tuple: (executable, expected) where executable is an executable object and expected are the expected parameters. """ # Mock folder creation. We want to make it a noop so we don't make a bunch of random empty folders. mMakedirs = mocker.MagicMock() mocker.patch("overwatch.base.deploy.os.makedirs", mMakedirs) expected = { "name": "{label}Executable", "description": "Basic executable for {label}ing", "args": ["execTest", "arg1", "arg2", "test{hello}"], "config": {"hello": "world", "label": "test"}, } executable = deploy.executable(**expected) for k in ["name", "description"]: expected[k] = expected[k].format(**expected["config"]) expected["args"] = [arg.format(**expected["config"]) for arg in expected["args"]] expected = executableExpected(**expected) return executable, expected @pytest.mark.parametrize("processIdentifier", [ "", "unique process identifier", ], ids = ["Default process identifier", "Unique process identifier"]) def testSetupExecutable(setupBasicExecutable, processIdentifier): """ Test setting up a basic executable. """ executable, expected = setupBasicExecutable executable.processIdentifier = processIdentifier executable.setup() assert executable.name == expected.name assert executable.description == expected.description assert executable.args == expected.args assert executable.config == expected.config assert executable.processIdentifier == (processIdentifier if processIdentifier else " ".join(expected.args)) def testExecutableFromConfig(loggingMixin): """ Test for configuring an executable via a config. This duplicates some code from ``setupBasicExecutable``, but it's necessary because we need to create the executable in the test function to properly test the initialization. """ expected = { "name": "{label}Executable", "description": "Basic executable for {label}ing", "args": ["execTest", "arg1", "arg2", "test{hello}"], "config": {"runInBackground": True, "enabled": True, "label": "test", "hello": "world"}, } executable = deploy.executable(**expected) # Run setup so names are properly formatted executable.setup() # Determine the expected values for k in ["name", "description"]: expected[k] = expected[k].format(**expected["config"]) expected["args"] = [arg.format(**expected["config"]) for arg in expected["args"]] expected = executableExpected(**expected) assert executable.runInBackground == expected.config["runInBackground"] assert executable.executeTask == expected.config["enabled"] assert executable.logFilename == os.path.join("exec", "logs", "{name}.log".format(name = expected.name)) @pytest.mark.parametrize("pid", [ [], [1234], ], ids = ["No PIDs", "One PID"]) def testGetProcessPID(setupBasicExecutable, pid, mocker): """ Test of getting the process PID identified by the executable properties. """ executable, expected = setupBasicExecutable executable.setup() # Pre-process the PID input. We don't do it above so it's easier to read here. inputPID = "\n".join((str(p) for p in pid)) + "\n" # Mock opening the process m = mocker.MagicMock(return_value = inputPID) mocker.patch("overwatch.base.deploy.subprocess.check_output", m) outputPID = executable.getProcessPID() assert outputPID == pid @pytest.mark.parametrize("returnCode", [ 1, 3, ], ids = ["No process found", "Unknown error"]) def testGetProcessPIDSubprocessFailure(setupBasicExecutable, mocker, returnCode): """ Test for subprocess failure when getting the process PID. """ executable, expected = setupBasicExecutable executable.setup() # Test getting a process ID. We mock it up. m = mocker.MagicMock() m.side_effect = subprocess.CalledProcessError(returncode = returnCode, cmd = executable.args) mocker.patch("overwatch.base.deploy.subprocess.check_output", m) if returnCode == 1: outputPID = executable.getProcessPID() assert outputPID == [] else: with pytest.raises(subprocess.CalledProcessError) as exceptionInfo: outputPID = executable.getProcessPID() assert exceptionInfo.value.returncode == returnCode def testGetProcessPIDFailure(setupBasicExecutable, mocker): """ Test failure modes of getting the process PID. """ pid = [1234, 5678] executable, expected = setupBasicExecutable executable.setup() # Pre-process the PID input. We don't do it above so it's easier to read here. inputPID = "\n".join((str(p) for p in pid)) + "\n" # Test getting a process ID. We mock it up. m = mocker.MagicMock(return_value = inputPID) mocker.patch("overwatch.base.deploy.subprocess.check_output", m) with pytest.raises(ValueError) as exceptionInfo: executable.getProcessPID() # We don't need to check the exact message. assert "Multiple PIDs" in exceptionInfo.value.args[0] @pytest.fixture def setupKillProcess(setupBasicExecutable, mocker): """ Setup for tests of killing a process. Returns: tuple: (executable, expected, mGetProcess, mKill) where executable is an executable object and expected are the expected parameters, mGetProcess is the mock for ``executable.getProcessPID()``, and mKill is the mock for ``executable.killExistingProcess()``. """ executable, expected = setupBasicExecutable # First we return the PID to kill, then we return nothing (as if the kill worked) mGetProcessPID = mocker.MagicMock() mocker.patch("overwatch.base.deploy.executable.getProcessPID", mGetProcessPID) # Also need to mock the kill command itself. mKill = mocker.MagicMock() mocker.patch("overwatch.base.deploy.os.kill", mKill) # Setup executable.setup() return executable, expected, mGetProcessPID, mKill # Intentionally select non-existent PID (above 65535) just in case the mocking doesn't work properly. @pytest.mark.parametrize("pidsToKill", [ [], [1234567], [1234567, 1234568], ], ids = ["No PIDs", "One PID", "Multiple PIDs"]) def testKillingProcess(setupKillProcess, pidsToKill): """ Test killing the process identified by the executable. """ executable, expected, mGetProcess, mKill = setupKillProcess mGetProcess.side_effect = [pidsToKill, []] # Perform the actual method that we want to test nKilled = executable.killExistingProcess() # Check the calls if len(pidsToKill) == 0: mKill.assert_not_called() else: for pid in pidsToKill: if len(pidsToKill) == 1: mKill.assert_called_once_with(pid, signal.SIGINT) else: mKill.assert_any_call(pid, signal.SIGINT) # Check that the number of processes assert nKilled == len(pidsToKill) def testFailedKillingProces(setupKillProcess): """ Test for the various error modes when killing a process. """ executable, expected, mGetProcess, mKill = setupKillProcess # Setup the PIDs to always return, such that it appears as if the kill didn't work. pidsToKill = [1234567] mGetProcess.side_effect = [pidsToKill, pidsToKill] with pytest.raises(RuntimeError) as exceptionInfo: # Call the actual method that we want to test executable.killExistingProcess() # We don't need to check the exact message. assert "found PIDs {PIDs} after killing the processes.".format(PIDs = pidsToKill) in exceptionInfo.value.args[0] @pytest.fixture def setupStartProcessWithLog(setupBasicExecutable, mocker): """ Setup required for testing startProcessWithLog. It mocks: - Writing a ConfigParser configuration - ``subprocess.Popen`` - Opening files Returns: tuple: (mFile, mPopen, mConfigParserWrite) where ``mFile`` is the mock for opening a file, ``mPopen`` is the mock for ``subprocess.Popen(...)``, and ``mConfigParserWrite`` is the mock for writing a ``configparser`` config. """ # For standard processes # Mock the subprocess command mPopen = mocker.MagicMock(return_value = "Fake value") mocker.patch("overwatch.base.deploy.subprocess.Popen", mPopen) # For supervisor processes # Mock write with the config parser mConfigParserWrite = mocker.MagicMock() mocker.patch("overwatch.base.deploy.ConfigParser.write", mConfigParserWrite) # Shared by both # Mock opening the log or config file mFile = mocker.mock_open() mocker.patch("overwatch.base.deploy.open", mFile) return mFile, mPopen, mConfigParserWrite def testStandardStartProcessWithLogs(setupStartProcessWithLog, setupBasicExecutable): """ Tests for starting a process with logs in the standard manner ("Popen"). """ # Setup mocks mFile, mPopen, mConfigParserWrite = setupStartProcessWithLog # Setup executable executable, expected = setupBasicExecutable executable.setup() # Execute process = executable.startProcessWithLog() # Check that it was called successfully mFile.assert_called_once_with(os.path.join("exec", "logs", "{}.log".format(expected.name)), "a") mPopen.assert_called_once_with(expected.args, stderr = subprocess.STDOUT, stdout = mFile()) # No need to actually mock up a subprocess.Popen class object. assert process == "Fake value" def testSupervisorStartProcessWithLogs(setupStartProcessWithLog, setupBasicExecutable): """ Tests for starting a process with logs in supervisor. """ # Setup mocks mFile, mPopen, mConfigParserWrite = setupStartProcessWithLog # Setup executable executable, expected = setupBasicExecutable executable.supervisor = True executable.setup() # Execute process = executable.startProcessWithLog() mFile.assert_called_once_with("supervisord.conf", "a") # We don't check the output itself because that would basically be testing ConfigParser, which isn't our goal. mConfigParserWrite.assert_called_once_with(mFile()) assert process is None @pytest.mark.parametrize("supervisor, runInBackground", [ (False, False), (False, True), (True, False), ], ids = ["Standard process", "Standard process run in background", "Supervisor"]) @pytest.mark.parametrize("executeTask, shortExecutionTime", [ (False, False), (True, False), (True, True) ], ids = ["No execute task", "Execute task", "Execute with short executable time"]) @pytest.mark.parametrize("forceRestart", [ False, True, ], ids = ["No force restart", "Force restart"]) @pytest.mark.parametrize("returnProcessPID", [ False, True, ], ids = ["Do not return process PID", "Return process PID"]) def testRunExecutable(setupBasicExecutable, setupStartProcessWithLog, supervisor, runInBackground, executeTask, shortExecutionTime, forceRestart, returnProcessPID, mocker): """ Test
<filename>core/map_.py # -*- coding: utf-8 -*- # @Author: Administrator # @Date: 2019-04-24 23:48:49 # @Last Modified by: Administrator # @Last Modified time: 2019-05-29 18:41:17 """ 地图类 """ __all__ = [ "Tank2Map", ] from .const import DEBUG_MODE, COMPACT_MAP, SIDE_COUNT, TANKS_PER_SIDE, GAME_STATUS_NOT_OVER,\ GAME_STATUS_DRAW, GAME_STATUS_BLUE_WIN, GAME_STATUS_RED_WIN from .global_ import np, functools, contextmanager from .utils import CachedProperty, SingletonMeta, debug_print from .action import Action from .field import Field, EmptyField, BaseField, BrickField, SteelField, WaterField, TankField #{ BEGIN }# class Map(object): def __init__(self, width, height): self._width = width self._height = height self._content = [ [[] for x in range(width)] for y in range(height) ] @property def width(self): return self._width @property def height(self): return self._height @property def size(self): return (self._width, self._height) def in_map(self, x, y): """ 判断 (x, y) 坐标是否位于地图内 """ return 0 <= x < self._width and 0 <= y < self._height def __getitem__(self, xy): """ 获得 xy: (x, y) 的内容 """ x, y = xy if not self.in_map(x, y): raise Exception("(%s, %s) is not in map" % (x, y) ) return self._content[y][x] def get_fields(self, x, y): return self[x, y] class Tank2Map(Map, metaclass=SingletonMeta): class _Counter(object): """ 一个用于回滚计数的内部类 """ def __init__(self): self._counter = 0 def increase(self): self._counter += 1 def __iter__(self): return iter(range(self._counter)) def __repr__(self): return self._counter.__repr__() def __int__(self): return self._counter def __init__(self, width, height): super().__init__(width, height) self._tanks = [ [ None for _ in range(TANKS_PER_SIDE) ] for __ in range(SIDE_COUNT) ] self._bases = [ None for _ in range(SIDE_COUNT) ] self._turn = 0 self._destroyedRecords = [] # Stack([Record]) 记录被摧毁的 fields 用于回滚 # struct Record: ( # turn: int, # xy: (int, int), # field: Field, # ) self._previousActions = [] # Stack([ [[int, int], [int, int]] ]) 所有坦克的历史动作记录,用于回滚 self._performedActionsRecord = {} # turn -> [[int, int], [int, int]] 记录 perform 所执行过的动作,用于 undo_revert self._init_bases() self._init_tanks() # ----------------------- #self._revertStack = [] # [debug] 保存需要 revert 的行为 #self._revertIdx = 0 # [debug] 当前 revert 的编号 def reset(self): # 重置整个地图 self.__clean_cache() width, height = self.size self.__init__(width, height) def __clean_cache(self): # 清除缓存属性 #CachedProperty.clean(self, "matrix") #CachedProperty.clean(self, "matrix_T") pass # 不再使用缓存啦 @property def turn(self): # 当前回合数 return self._turn @property def tanks(self): return self._tanks @property def bases(self): return self._bases #@CachedProperty # 缓存效果不明显 @property def matrix(self): """ 缓存 to_type_matrix 的值 WARNING: - 因为 list 是可变对象,因此不要对返回值进行修改,以免缓存的属性值改变 - 如需修改,需要首先调用 np.copy(matrix) 获得一个副本,然后对副本进行修改 """ return self.to_type_matrix() #@CachedProperty # 缓存效果不明显 @property def matrix_T(self): return self.matrix.T def _init_bases(self): """ 初始化基地和基地前的钢墙 """ assert self._width % 2 == 1, "Map width must be odd" xc = self._width // 2 # x-center y1 = 0 y2 = self._height - 1 basePoints = [ (xc, y1), # side 1 蓝方 (xc, y2), # side 2 红方 ] for side, (x, y) in enumerate(basePoints): base = BaseField(x, y, side) self._bases[side] = base self.insert_field(base) def _init_tanks(self): """ 初始化坦克 """ x1, x2 = (2, 6) y1, y2 = (0, self._height-1) tankPoints = [ [ (x1, y1), (x2, y1) ], # side 1 蓝方 左 0 右 1 [ (x2, y2), (x1, y2) ], # side 2 红方 左 1 右 0 ] for side, points in enumerate(tankPoints): tanks = self._tanks[side] for idx, (x, y) in enumerate(points): tank = TankField(x, y, side, idx) self.insert_field(tank) tanks[idx] = tank def insert_field(self, field): self[field.xy].append(field) field.destroyed = False def remove_field(self, field, record=True): self[field.xy].remove(field) field.destroyed = True if record: # 记录被清楚的对象 r = ( self._turn, field.xy, field ) self._destroyedRecords.append(r) def to_type_matrix(self): """ 转化成以 field.type 值表示的地图矩阵 Return: - matrix np.array( [[int]] ) 二维的 type 值矩阵 WARNING: - 矩阵的索引方法为 (y, x) ,实际使用时通常需要转置一下,使用 matrix.T """ width, height = self.size matrix = np.full((height, width), Field.DUMMY, dtype=np.int8) for y in range(height): for x in range(width): fields = self.get_fields(x, y) if len(fields) == 0: matrix[y, x] = Field.EMPTY elif len(fields) > 2: matrix[y, x] = Field.MULTI_TANK # 重合视为一个坦克 else: field = fields[0] if isinstance(field, (BaseField, TankField) ): matrix[y, x] = field.type + 1 + field.side # 遵循 Field 中常数定义的算法 else: matrix[y, x] = field.type return matrix def has_multi_tanks(self, x, y): """ 判断某坐标点是否有多辆坦克堆叠 """ return len( self.get_fields(x, y) ) > 1 def is_valid_move_action(self, tank, action): """ 判断是否为合法的移动行为 """ #assert Action.is_move(action), "action %s is not a move-action" % action if not Action.is_move(action): # 因为模拟地图导致了一些不可测的结果,这个地方不能 assert return False # 只要打一个补丁,开发的时候自己注意一下就好,记得 action % 4 _FIELDS_CAN_MOVE_TO = ( Field.DUMMY, Field.EMPTY ) # 遇到坦克不能移动! x, y = tank.xy dx, dy = Action.DIRECTION_OF_ACTION_XY[action] x += dx y += dy if not self.in_map(x, y): return False fields = self.get_fields(x, y) if len(fields) == 0: return True elif len(fields) == 1: _type = fields[0].type if _type in _FIELDS_CAN_MOVE_TO: return True return False def is_valid_shoot_action(self, tank, action): """ 判断是否为合法的设计行为 """ # assert Action.is_shoot(action), "action %s is not a shoot-action" % action if not Action.is_shoot(action): return False return not Action.is_shoot(tank.previousAction) # 只要不连续两回合射击都合理 def is_valid_action(self, tank, action): """ 判断是否为合法行为 """ if not Action.is_valid(action): return False elif Action.is_stay(action): return True elif Action.is_move(action): return self.is_valid_move_action(tank, action) elif Action.is_shoot(action): return self.is_valid_shoot_action(tank, action) else: # 未知的行为 raise Exception("unexpected action %s" % action) def perform(self, blue_actions, red_actions): """ 执行一回合的行为 Input: - blue_actions [int, int] 蓝方 0, 1 号坦克将执行的动作 - red_actions [int, int] 红方 0, 1 号坦克将执行的动作 """ self._turn += 1 self.__clean_cache() #debug_print("Start Turn: %s" % self._turn) #self.debug_print_out("") _dx = Action.DIRECTION_OF_ACTION_X _dy = Action.DIRECTION_OF_ACTION_Y _actions = [ blue_actions, red_actions ] self._performedActionsRecord[self._turn] = _actions _fieldsToBeDestroyed = set() # 使用 set 避免重复 # 记录老的 previous actions _oldPreviousActions = [ [ tank.previousAction for tank in tanks ] for tanks in self._tanks ] self._previousActions.append(_oldPreviousActions) # 记录 # 检查 actions 合理性,修改 tank 缓存 for tanks in self._tanks: for tank in tanks: action = _actions[tank.side][tank.id] if not self.is_valid_action(tank, action): raise Exception("%s will perform an invalid action %s" % (tank, action) ) tank.previousAction = action # 缓存本次行为,不考虑坦克是否已经挂掉 # 处理停止和移动 for tanks in self._tanks: for tank in tanks: action = _actions[tank.side][tank.id] if not tank.destroyed and Action.is_move(action): self.remove_field(tank) tank.x += _dx[action] tank.y += _dy[action] self.insert_field(tank) # 处理射击行为 for tanks in self._tanks: for tank in tanks: action = _actions[tank.side][tank.id] if not tank.destroyed and Action.is_shoot(action): x, y = tank.xy action -= 4 # 使之与 dx, dy 的 idx 对应 while True: x += _dx[action] y += _dy[action] if not self.in_map(x, y): break currentFields = self.get_fields(x, y) if len(currentFields) == 0: continue elif len(currentFields) > 1: # 必定都是 tank pass else: # len(currentFields) == 1 field = currentFields[0] if isinstance(field, (WaterField, EmptyField)): continue # 跳过水路和空格 elif ( isinstance(field, TankField) and not self.has_multi_tanks(x, y) and not self.has_multi_tanks(*field.xy) ): # 对射判断,此时两方所在格子均都只有一架坦克 oppTank = field oppAction = _actions[oppTank.side][oppTank.id] if ( Action.is_shoot(oppAction) and Action.is_opposite(action, oppAction) ): break # 对射抵消 else: pass # 坦克被摧毁 elif isinstance(field, SteelField): break # 钢墙无法摧毁 elif isinstance(field, (BrickField, BaseField) ): pass # 基地和土墙可以被摧毁 else: raise Exception("unexpected field type") _fieldsToBeDestroyed.update(currentFields) break # 摧毁了第一个遇到的 fields for field in _fieldsToBeDestroyed: self.remove_field(field) #debug_print("End Turn: %s" % self._turn) #self.debug_print_out() def single_simulate(self, tank, action): """ 模拟一回合: 其中一架 tank 执行一个特定行为,其他 tank 均不动 模拟结束后,会自动回滚 Input: - tank TankField/BattleTank 能表明坐标的 tank 对象 - action int 下回合的行动 """ actions = [ [Action.STAY for _ in range(TANKS_PER_SIDE) ] for __ in range(SIDE_COUNT) ] actions[tank.side][tank.id] = action self.perform(*actions) def multi_simulate(self, *actions): """ 模拟一回合: 其中指定的多架坦克执行特定行为,其他 tank 均不动 模拟结束后,会自动回滚 Input: - *args 格式为 ( (Tank, action), (Tank, action), ... ) Tank 对象要求包含 side/id 属性 """ performedActions = [ [Action.STAY for _ in range(TANKS_PER_SIDE) ] for __ in range(SIDE_COUNT) ] for tank, action in actions: performedActions[tank.side][tank.id] = action self.perform(*performedActions) def revert(self): """ 回滚一回合的行为 Return: - success bool """ if self._turn <= 0: # 可以为 1 ,此时回滚到 Turn 0 的结束点 return False # 这表示回到地图最初的状态 currentTurn = self._turn records = self._destroyedRecords _actions = self._previousActions.pop() for side, tanks in enumerate(self._tanks): # 回滚历史动作 for id_, tank in enumerate(tanks): tank.previousAction = _actions[side][id_] while len(records) > 0: if records[-1][0] == currentTurn: turn, (x, y), field = records.pop() if isinstance(field, TankField): tank = field if not tank.destroyed: # tank 发生移动 self.remove_field(tank, record=False) tank.x = x tank.y = y self.insert_field(tank) else: self.insert_field(field) else: break self._turn -= 1 self.__clean_cache() #debug_print("Revert to Turn: %s" % self._turn) # 至 turn 的结束状态 #self.debug_print_out() return True def undo_revert(self): """ 从当前回合主动回滚到之前回合后,再将 revert 这个动作撤销 """ nextTurn = self._turn + 1 assert nextTurn in self._performedActionsRecord, "no previously revert operation found" actions = self._performedActionsRecord[nextTurn] self.perform(*actions) @contextmanager def simulate_one_action(self, tank, action):
to database folder if copy_files: _copy_db_file(params, dbname, inpath, abs_outpath, log=True) # ------------------------------------------------------------------ # update database with key if dbname.lower() == 'telluric': # get object name if hasattr(outfile, 'get_key'): objname = outfile.get_key('KW_OBJNAME', dtype=str) else: objname = 'None' # update telluric database update_telludb(params, dbname, dbkey, outfile, night, objname, log) elif dbname.lower() == 'calibration': # update calibration database update_calibdb(params, dbname, dbkey, outfile, night, log) def copy_calibrations(params, header, **kwargs): # set function name func_name = display_func(params, 'copy_calibrations', __NAME__) # get parameters from params/kwargs mode = pcheck(params, 'CALIB_DB_MATCH', 'mode', kwargs, func_name) # set the dbname dbname = 'calibration' # get the output filename directory outpath = os.path.join(params['OUTPATH'], params['NIGHTNAME']) # ---------------------------------------------------------------------- # get calibration database cdb = get_full_database(params, dbname) # get shortname dbshort = cdb.dbshort # ---------------------------------------------------------------------- # get each unique key get the entry entry_tables = [] # loop around unique keys and add to list gkwargs = dict(database=cdb, header=header, n_ent=1, required=False, mode=mode) for key in cdb.unique_keys: # get closest key entry_table = get_key_from_db(params, key, **gkwargs) # append to list of tables if we have rows if len(entry_table) > 0: entry_tables.append(entry_table) # ---------------------------------------------------------------------- # stack the tables vertically ctable = vstack(entry_tables) # get the filenames filecol = cdb.file_col infilenames = ctable[filecol] # ---------------------------------------------------------------------- # loop around file names and copy for infilename in infilenames: # get absolute paths inpath = _get_outpath(params, dbname) inabspath = os.path.join(inpath, infilename) outabspath = os.path.join(outpath, infilename) # debug message dargs = [dbname, inabspath, outabspath] WLOG(params, 'debug',TextEntry('90-002-00001', args=dargs)) # if file exists do not copy it if os.path.exists(outabspath): # log copying skipped wargs = [dbshort, infilename] WLOG(params, '', TextEntry('40-006-00002', args=wargs)) # else copy it else: # log copying wargs = [dbshort, infilename, outpath] WLOG(params, '', TextEntry('40-006-00003', args=wargs)) # copy the database file _copy_db_file(params, dbname, inabspath, outabspath, log=False) def get_header_time(params, database, header): # set function name func_name = display_func(params, 'get_header_time', __NAME__) # get time from header return _get_time(params, database.dbname, header=header) # ============================================================================= # Define database get functions # ============================================================================= def get_key_from_db(params, key, database, header, n_ent=1, required=True, mode=None, **kwargs): """ :param params: :param key: :param database: :param header: :param n_ent: :param required: :param mode: should be None, 'TELLU_DB_MATCH', 'CALIB_DB_MATCH', 'DB_MATCH' or 'ALL' :param kwargs: :return: """ # set function name func_name = display_func(params, 'get_key_from_db', __NAME__) # ---------------------------------------------------------------------- # deal with no mode set (assume from calibDB) if mode is None: if database.dbname == 'telluric': mode = pcheck(params, 'TELLU_DB_MATCH', 'mode', kwargs, func_name) elif database.dbname == 'calibration': mode = pcheck(params, 'CALIB_DB_MATCH', 'mode', kwargs, func_name) else: mode = pcheck(params, 'DB_MATCH', 'mode', kwargs, func_name) # debug print mode using dargs = [mode, func_name] WLOG(params, 'debug', TextEntry('90-002-00002', args=dargs)) # ---------------------------------------------------------------------- # get time from header if mode != 'ALL': header_time = _get_time(params, database.dbname, header=header) else: header_time = None # get the correct entry from database gkwargs = dict(mode=mode, usetime=header_time, n_entries=n_ent, required=required) # return the database entries (in astropy.table format) return database.get_entry(key, **gkwargs) def get_full_database(params, dbname): # set function name func_name = display_func(params, 'get_full_database', __NAME__) # get databse short name dbshort = _get_dbshort(params, dbname) # check for calibDB in params if dbshort in params: return params[dbshort] # get all lines from calibration database else: database = Database(params, dbname) database.read_database() return database def get_db_abspath(params, filename=None, where='guess'): # set function name func_name = display_func(params, 'get_db_abspath', __NAME__) # ------------------------------------------------------------------ # get the calibration path and telluric path cal_path = os.path.join(params['DRS_CALIB_DB'], filename) tel_path = os.path.join(params['DRS_TELLU_DB'], filename) # ------------------------------------------------------------------ # deal with where file is located if where == 'calibration': abspath = cal_path elif where == 'telluric': abspath = tel_path elif where == 'guess': # check full path if os.path.exists(filename): abspath = str(filename) # check cal path elif os.path.exists(cal_path): abspath = cal_path # check tellu path elif os.path.exists(tel_path): abspath = tel_path else: # raise error that defined filename does not exist eargs = ['\n\t\t'.join([filename, cal_path, tel_path]), func_name] WLOG(params, 'error', TextEntry('00-001-00036', args=eargs)) abspath = None else: # raise error that 'where' was not valid eargs = [' or '.join(['calibration', 'telluric', 'guess']), func_name] WLOG(params, 'error', TextEntry('00-001-00037', args=eargs)) abspath = None # return the absolute path return abspath def get_db_file(params, abspath, ext=0, fmt='fits', kind='image', get_image=True, get_header=False): # set function name func_name = display_func(params, 'get_db_file', __NAME__) # don't lock if we aren't getting image or header if not get_image and not get_header: return None, None # ------------------------------------------------------------------ # define a synchoronized lock for indexing (so multiple instances do not # run at the same time) lockfile = os.path.basename(abspath) # start a lock lock = drs_lock.Lock(params, lockfile) # ------------------------------------------------------------------ # make locked read function @drs_lock.synchronized(lock, params['PID']) def locked_db(): # ------------------------------------------------------------------ # deal with npy files if abspath.endswith('.npy'): image = drs_path.numpy_load(abspath) return image, None # ------------------------------------------------------------------ # get db fits file if (not get_image) or (not abspath.endswith('.fits')): image = None elif kind == 'image': image = drs_fits.readfits(params, abspath, ext=ext) elif kind == 'table': image = drs_table.read_table(params, abspath, fmt=fmt) else: # raise error is kind is incorrect eargs = [' or '.join(['image', 'table']), func_name] WLOG(params, 'error', TextEntry('00-001-00038', args=eargs)) image = None # ------------------------------------------------------------------ # get header if required (and a fits file) if get_header and abspath.endswith('.fits'): header = drs_fits.read_header(params, abspath, ext=ext) else: header = None # return the image and header return image, header # ------------------------------------------------------------------ # try to run locked read function try: return locked_db() except KeyboardInterrupt as e: lock.reset() raise e except Exception as e: # reset lock lock.reset() raise e # ============================================================================= # Define calibration database functions # ============================================================================= # TODO: Redo to use Database class def update_calibdb(params, dbname, dbkey, outfile, night=None, log=True): # set function name func_name = display_func(params, 'update_calibdb', __NAME__) # deal with no night name if night is None: night = drs_log.find_param(params, 'NIGHTNAME', func=func_name) if night == '' or night is None: night = 'None' # get whether recipe is master is_master = params['IS_MASTER'] # ---------------------------------------------------------------------- # get the hdict hdict, header = _get_hdict(params, dbname, outfile) # ---------------------------------------------------------------------- # get time from header header_time = _get_time(params, dbname, header=header, hdict=hdict) # ---------------------------------------------------------------------- # get properties for database key = str(dbkey).strip() nightname = str(night).strip() filename = str(outfile.basename).strip() human_time = str(header_time.iso).replace(' ', '_').strip() unix_time = str(header_time.unix).strip() # get master key if is_master: master = '1' else: master = '0' # ---------------------------------------------------------------------- # push into list largs = [key, master, nightname, filename, human_time, unix_time] # construct the line line = '\n{0} {1} {2} {3} {4} {5}'.format(*largs) # ---------------------------------------------------------------------- # write to file _write_line_to_database(params, key, dbname, outfile, line, log) # ============================================================================= # Define telluric database functions # ============================================================================= # TODO: Redo to use Database class def update_telludb(params, dbname, dbkey, outfile, night=None, objname=None, log=True): # set function name func_name = display_func(params, 'update_telludb', __NAME__) # deal with no night name if night is None: night = drs_log.find_param(params, 'NIGHTNAME', func=func_name) if night == '' or night is None: night = 'None' # deal with no object name if objname is None: objname = 'Unknown' # ---------------------------------------------------------------------- # get the hdict hdict, header = _get_hdict(params, dbname, outfile) # ---------------------------------------------------------------------- # get time from header header_time = _get_time(params, dbname, header=header, hdict=hdict) # ---------------------------------------------------------------------- # get properties for database key = str(dbkey).strip() nightname = str(night).strip() filename = str(outfile.basename).strip() human_time = str(header_time.iso).replace(' ', '_').strip() unix_time = str(header_time.unix).strip() # ---------------------------------------------------------------------- # push into list largs = [key, nightname, filename, human_time, unix_time, objname] # construct the line line = '\n{0} {1} {2} {3} {4} {5}'.format(*largs) # ---------------------------------------------------------------------- # write to file _write_line_to_database(params, key, dbname, outfile, line, log) # ============================================================================= # Define worker functions # ============================================================================= def get_dbkey(params, outfile): # set function name func_name = display_func(params, 'get_dbkey', __NAME__) # get database key (if it exists) if hasattr(outfile, 'dbkey'): dbkey = outfile.get_dbkey() else: eargs = [outfile.name, func_name] WLOG(params, 'error', TextEntry('00-008-00012', args=eargs)) dbkey = '' # return dbkey return dbkey def _get_dbname(params, outfile): # set function name func_name = display_func(params, '_get_dbname', __NAME__) # get database names dbnames = ['telluric', 'calibration'] # deal with each database name if hasattr(outfile, 'dbname'): dbname = outfile.dbname.capitalize() else: eargs = [outfile.name, ', '.join(dbnames), func_name] WLOG(params, 'error', TextEntry('00-002-00012', args=eargs)) dbname = None return dbname def _get_dbshort(params, dbname): # set function name func_name = display_func(params, '_get_dbshort', __NAME__) # get database names dbnames = ['telluric', 'calibration']
boxes are zero rotated_boxes = rotated_boxes.T rotated_boxes = convert_coordinates_axis_aligned(rotated_boxes[:4].T, 0, 'centroids2minmax') b1 = convert_coordinates_axis_aligned(b1[:4], 0, 'centroids2minmax') rotated_boxes = rotated_boxes.T # get the greater xmin and ymin values. min_xy = np.maximum(rotated_boxes[[xmin, ymin]].T, b1[[xmin, ymin]]) # get the smaller xmax and ymax values. max_xy = np.minimum(rotated_boxes[[xmax, ymax]].T, b1[[xmax, ymax]]) # Compute the side lengths of the intersection rectangles. side_lengths = np.maximum(0, max_xy - min_xy) side_lengths = side_lengths.T inter_areas[i, :] = (side_lengths[0] * side_lengths[1]).T return inter_areas class Vector: ''' Class representing a point ''' def __init__(self, x, y): self.x = x self.y = y def __add__(self, v): return Vector(self.x + v.x, self.y + v.y) def __sub__(self, v): return Vector(self.x - v.x, self.y - v.y) def cross(self, v): return self.x * v.y - self.y * v.x class Line: ''' Class representing an edge of a bounding box ''' # ax + by + c = 0 def __init__(self, v1, v2): self.a = v2.y - v1.y self.b = v1.x - v2.x self.c = v2.cross(v1) def __call__(self, p): ''' Computes ax + by + c for a new point p Determines on wich side of the line the point is. Any point p with line(p) <= 0 is on the "inside" (or on the boundary), any point p with line(p) > 0 is on the "outside". ''' return self.a * p.x + self.b * p.y + self.c def intersection(self, other): ''' Get intersection point between this line and another line ''' w = self.a * other.b - self.b * other.a return Vector( (self.b * other.c - self.c * other.b) / w, (self.c * other.a - self.a * other.c) / w ) def rectangle_vertices(cx, cy, w, h, r): ''' Compute the angles of a bounding box and returns objects of the class Vector ''' angle = r dx = w / 2 dy = h / 2 dxcos = dx * np.cos(angle) dxsin = dx * np.sin(angle) dycos = dy * np.cos(angle) dysin = dy * np.sin(angle) return ( Vector(cx, cy) + Vector(-dxcos - -dysin, -dxsin + -dycos), Vector(cx, cy) + Vector(dxcos - -dysin, dxsin + -dycos), Vector(cx, cy) + Vector(dxcos - dysin, dxsin + dycos), Vector(cx, cy) + Vector(-dxcos - dysin, -dxsin + dycos) ) def intersection_area_(r1, r2): ''' Computes the real intersection area of two rotated bounding boxes Used during decoding in intersection_area_decoding. Arguments: r1 (array): a 1D Numpy array of shape `(5, )` containing the coordinates for one box in the format (cx, cy, w, h, angle) r2 (array): a 1D Numpy array of shape `(5, )` containing the coordinates for one box in the format (cx, cy, w, h, angle) Returns: a float representing the intersection area of r1 and r2 ''' # First convert r1 and r2 into a sequence of vertices rect1 = rectangle_vertices(*r1) rect2 = rectangle_vertices(*r2) # Use the vertices of the first rectangle as # starting vertices of the intersection polygon. intersection = rect1 # Loop over the edges of the second rectangle for p, q in zip(rect2, rect2[1:] + rect2[:1]): if len(intersection) <= 2: break # No intersection line = Line(p, q) # Any point p with line(p) <= 0 is on the "inside" (or on the boundary), # Any point p with line(p) > 0 is on the "outside". # Loop over the edges of the intersection polygon, # and determine which part is inside and which is outside. new_intersection = [] line_values = [line(t) for t in intersection] for s, t, s_value, t_value in zip( intersection, intersection[1:] + intersection[:1], line_values, line_values[1:] + line_values[:1]): if s_value <= 0: new_intersection.append(s) if s_value * t_value < 0: # Points are on opposite sides. # Add the intersection of the lines to new_intersection. intersection_point = line.intersection(Line(s, t)) new_intersection.append(intersection_point) intersection = new_intersection # Calculate area if len(intersection) <= 2: return 0 # return intersection area return 0.5 * sum(p.x * q.y - p.y * q.x for p, q in zip(intersection, intersection[1:] + intersection[:1])) def intersection_area_decoding(boxes1, boxes2): ''' Computes the intersection areas of two sets of 2D rectangular boxes. The function is used for decoding raw predictions with non-maximum suppression (NMS) Let `boxes1` and `boxes2` contain `m` and `n` boxes, respectively. returns an `(m,n)` matrix with the intersection areas for all possible combinations of the boxes in `boxes1` and `boxes2`. Arguments: boxes1 (array): Either a 1D Numpy array of shape `(5, )` containing the coordinates for one box in the format centroids or a 2D Numpy array of shape `(m, 5)` containing the coordinates for `m` boxes. boxes2 (array): Either a 1D Numpy array of shape `(5, )` containing the coordinates for one box in the format centroids or a 2D Numpy array of shape `(n, 5)` containing the coordinates for `n` boxes. Returns: A 2D Numpy array of dtype float containing values with the intersection areas of the boxes in `boxes1` and `boxes2`. ''' # Make sure the boxes have the right shapes. if boxes1.ndim > 2: raise ValueError("boxes1 must have rank either 1 or 2, but has rank {}.".format(boxes1.ndim)) if boxes2.ndim > 2: raise ValueError("boxes2 must have rank either 1 or 2, but has rank {}.".format(boxes2.ndim)) if boxes1.ndim == 1: boxes1 = np.expand_dims(boxes1, axis=0) if boxes2.ndim == 1: boxes2 = np.expand_dims(boxes2, axis=0) if not (boxes1.shape[1] == boxes2.shape[1] == 5): raise ValueError( "All boxes must consist of 5 coordinates, but the boxes in `boxes1` and `boxes2` have {} and {} coordinates, respectively.".format( boxes1.shape[1], boxes2.shape[1])) m = boxes1.shape[0] # The number of boxes in `boxes1` n = boxes2.shape[0] # The number of boxes in `boxes2` inter_areas = np.zeros((m, n)) for i, b1 in enumerate(boxes1): for j, b2 in enumerate(boxes2): inter_areas[i, j] = intersection_area_(b1, b2) return inter_areas def sum_area_(boxes1, boxes2): ''' Computes the sum of areas of two sets of axis-aligned 2D rectangular boxes. Let `boxes1` and `boxes2` contain `m` and `n` boxes, respectively. returns an `(m,n)` matrix with the sum of the areas for all possible combinations of the boxes in `boxes1` and `boxes2`. Arguments: boxes1 (array): Either a 1D Numpy array of shape `(5, )` containing the coordinates for one box in the format centroids or a 2D Numpy array of shape `(m, 5)` containing the coordinates for `m` boxes. boxes2 (array): Either a 1D Numpy array of shape `(5, )` containing the coordinates for one box in the format centroids or a 2D Numpy array of shape `(n, 5)` containing the coordinates for `n` boxes. Returns: A 2D Numpy array of dtype float containing values with the sum of the areas of the boxes in `boxes1` and `boxes2`. ''' # Make sure the boxes have the right shapes. if boxes1.ndim > 2: raise ValueError("boxes1 must have rank either 1 or 2, but has rank {}.".format(boxes1.ndim)) if boxes2.ndim > 2: raise ValueError("boxes2 must have rank either 1 or 2, but has rank {}.".format(boxes2.ndim)) if boxes1.ndim == 1: boxes1 = np.expand_dims(boxes1, axis=0) if boxes2.ndim == 1: boxes2 = np.expand_dims(boxes2, axis=0) if not (boxes1.shape[1] == boxes2.shape[1] == 5): raise ValueError( "All boxes must consist of 5 coordinates, but the boxes in `boxes1` and `boxes2` have {} and {} coordinates, respectively.".format( boxes1.shape[1], boxes2.shape[1])) m = boxes1.shape[0] # The number of boxes in `boxes1` n = boxes2.shape[0] # The number of boxes in `boxes2` areas1 = boxes1[:, 2] * boxes1[:, 3] # w*h areas2 = boxes2[:, 2] * boxes2[:, 3] # w*h s1 = np.tile(np.expand_dims(areas1, axis=1), reps=(1, n)) s2 = np.tile(np.expand_dims(areas2, axis=0), reps=(m, 1)) return s1 + s2 def ARiou180(boxes1, boxes2): ''' Computes the modified version of intersection-over-union similarity, ARIou180, of two sets of rotated 2D rectangular boxes. Used only for training. Let `boxes1` and `boxes2` contain `m` and `n` boxes, respectively. returns an `(m,n)` matrix with the ARIoU180s for all possible combinations of the boxes in `boxes1` and `boxes2`. Arguments: boxes1 (array): Either a 1D Numpy array of shape `(5, )` containing the coordinates for one box
# coding: utf-8 """ Simulate low level RFI We are interested in the effects of RFI signals that cannot be detected in the visibility data. Therefore, in our simulations we add attenuation selected to give SNR about 1 in the unaveraged time-frequency data. This is about 180dB for a DTV station in Perth. The scenario is: * There is a TV station at a remote location (e.g. Perth), emitting a broadband signal (7MHz) of known power (50kW). * The emission from the TV station arrives at LOW stations with phase delay and attenuation. Neither of these are well known but they are probably static. * The RFI enters LOW stations in a sidelobe of the station beam. Calculations by <NAME> indicate that this provides attenuation of about 55 - 60dB for a source close to the horizon. * The RFI enters each LOW station with fixed delay and zero fringe rate (assuming no e.g. ionospheric ducting or reflection from a plane) * In tracking a source on the sky, the signal from one station is delayed and fringe-rotated to stop the fringes for one direction on the sky. * The fringe rotation stops the fringe from a source at the phase tracking centre but phase rotates the RFI, which now becomes time-variable. * The correlation data are time- and frequency-averaged over a timescale appropriate for the station field of view. This averaging decorrelates the RFI signal. * We want to study the effects of this RFI on statistics of the visibilities, and on images made on source and at the pole. The simulate_low_rfi_visibility.py script averages the data producing baseline-dependent decorrelation. The effect of averaging is not more than about -20dB but it does vary with baseline giving the radial power spectrum we see. The 55-60 dB is part of the 180dB. To give a signal to noise on 1 or less, the terrain propagation must be about 100dB. The simulation is implemented in some functions in ARL, and the script simulate_low_rfi_visibility is available in the SKA Github repository sim-lowlevel-rfi. Distributed processing is implemented via Dask. The outputs are fits file and plots of the images: on signal channels and on pure noise channels, and for the source of interest and the Southern Celestial Pole. The unaveraged MeasurementSets are also output, one per time chunk. """ import os import pprint import time import matplotlib.pyplot as plt import numpy from astropy import units as u from astropy.coordinates import SkyCoord, EarthLocation import astropy.constants as const from data_models.polarisation import PolarisationFrame from processing_components.simulation.rfi import calculate_averaged_correlation, simulate_rfi_block from processing_library.image.operations import create_image from processing_library.util.array_functions import average_chunks from processing_components.visibility.base import export_blockvisibility_to_ms from workflows.arlexecute.imaging.imaging_arlexecute import invert_list_arlexecute_workflow, \ sum_invert_results_arlexecute from wrappers.arlexecute.execution_support.arlexecute import arlexecute from wrappers.arlexecute.execution_support.dask_init import get_dask_Client from wrappers.arlexecute.image.operations import show_image, export_image_to_fits from wrappers.arlexecute.simulation.configurations import create_named_configuration from wrappers.arlexecute.visibility.base import create_blockvisibility from wrappers.arlexecute.visibility.coalesce import convert_blockvisibility_to_visibility def add_noise(bvis): # The specified sensitivity (effective area / T_sys) is roughly 610 m ^ 2 / K in the range 160 - 200MHz # sigma_vis = 2 k T_sys / (area * sqrt(tb)) = 2 k 512 / (610 * sqrt(tb) sens = 610 bt = bvis.channel_bandwidth[0] * bvis.integration_time[0] sigma = 2 * 1e26 * const.k_B.value / ((sens/512) * (numpy.sqrt(bt))) sshape = bvis.vis.shape bvis.data['vis'] += numpy.random.normal(0.0, sigma, sshape) + 1j * numpy.random.normal(0.0, sigma, sshape) return bvis def simulate_rfi_image(config, times, frequency, channel_bandwidth, phasecentre, polarisation_frame, time_average, channel_average, attenuation, noise, emitter_location, emitter_power, use_pole, waterfall, write_ms): averaged_frequency = numpy.array(average_chunks(frequency, numpy.ones_like(frequency), channel_average))[0] averaged_channel_bandwidth, wts = numpy.array( average_chunks(channel_bandwidth, numpy.ones_like(frequency), channel_average)) averaged_channel_bandwidth *= wts averaged_times = numpy.array(average_chunks(times, numpy.ones_like(times), time_average))[0] s2r = numpy.pi / 43200.0 bvis = create_blockvisibility(config, s2r * times, frequency, channel_bandwidth=channel_bandwidth, phasecentre=phasecentre, polarisation_frame=polarisation_frame, zerow=False) bvis = simulate_rfi_block(bvis, emitter_location=emitter_location, emitter_power=emitter_power, attenuation=attenuation, use_pole=use_pole) if noise: bvis = add_noise(bvis) if waterfall: plot_waterfall(bvis) if write_ms: msname = "simulate_rfi_%.1f.ms" % (times[0]) export_blockvisibility_to_ms(msname, [bvis], "RFI") averaged_bvis = create_blockvisibility(config, s2r * averaged_times, averaged_frequency, channel_bandwidth=averaged_channel_bandwidth, phasecentre=phasecentre, polarisation_frame=polarisation_frame, zerow=False) npol = 1 for itime, _ in enumerate(averaged_times): atime = itime * time_average for ant2 in range(nants): for ant1 in range(ant2, nants): for ichan, _ in enumerate(averaged_frequency): achan = ichan * channel_average for pol in range(npol): averaged_bvis.data['vis'][itime, ant2, ant1, ichan, pol] = \ calculate_averaged_correlation( bvis.data['vis'][atime:(atime+time_average), ant2, ant1, achan:(achan+channel_average), pol], time_average, channel_average)[0,0] averaged_bvis.data['vis'][itime, ant1, ant2, ichan, pol] = \ numpy.conjugate(averaged_bvis.data['vis'][itime, ant2, ant1, ichan, pol]) achan += 1 atime += 1 del bvis if noise: averaged_bvis = add_noise(averaged_bvis) return averaged_bvis def plot_waterfall(bvis): print(bvis.uvw.shape) uvdist = numpy.hypot(bvis.uvw[0,:,:,0], bvis.uvw[0,:,:,1]) print(uvdist.shape) uvdistmax = 0.0 max_ant1=0 max_ant2=0 for ant2 in range(bvis.nants): for ant1 in range(ant2+1): if uvdist[ant2, ant1] > uvdistmax: uvdistmax = uvdist[ant2, ant1] max_ant1 = ant1 max_ant2 = ant2 basename = os.path.basename(os.getcwd()) fig=plt.figure() fig.suptitle('%s: Baseline [%d, %d], ha %.2f' % (basename, max_ant1, max_ant2, bvis.time[0])) plt.subplot(121) plt.gca().set_title("Amplitude") plt.gca().imshow(numpy.abs(bvis.vis[: , max_ant1, max_ant2, :, 0]), origin='bottom') plt.gca().set_xlabel('Channel') plt.gca().set_ylabel('Time') plt.subplot(122) plt.gca().imshow(numpy.angle(bvis.vis[: , max_ant1, max_ant2, :, 0]), origin='bottom') plt.gca().set_title("Phase") plt.gca().set_xlabel('Channel') plt.gca().set_ylabel('Time') plt.savefig('waterfall_%d_%d_ha_%.2f.png' % (max_ant1, max_ant2, bvis.time[0])) plt.show(block=False) if __name__ == '__main__': start_epoch = time.asctime() print("\nSKA LOW RFI simulation using ARL\nStarted at %s\n" % start_epoch) pp = pprint.PrettyPrinter() import argparse parser = argparse.ArgumentParser(description='Simulate DTV RFI') parser.add_argument('--use_dask', type=str, default='True', help='Use Dask to distribute processing?') parser.add_argument('--context', type=str, default='DTV', help='DTV') parser.add_argument('--rmax', type=float, default=3e3, help='Maximum distance of station from centre (m)') parser.add_argument('--seed', type=int, default=18051955, help='Random number seed') parser.add_argument('--station_skip', type=int, default=33, help='Decimate stations by this factor') parser.add_argument('--show', type=str, default='False', help='Show images?') parser.add_argument('--attenuation', type=float, default=1.0, help='Attenuation factor') parser.add_argument('--noise', type=str, default='False', help='Add noise?') parser.add_argument('--ngroup_visibility', type=int, default=8, help='Process in visibility groups this large') parser.add_argument('--do_psf', type=str, default="False", help='Make the PSF?') parser.add_argument('--use_agg', type=str, default="False", help='Use Agg matplotlib backend?') parser.add_argument('--write_fits', type=str, default="True", help='Write fits files?') parser.add_argument('--declination', type=float, default=-45.0, help='Declination (degrees)') parser.add_argument('--npixel', type=int, default=1025, help='Number of pixel per axis in image') parser.add_argument('--nchannels_per_chunk', type=int, default=1024, help='Number of channels in a chunk') parser.add_argument('--channel_average', type=int, default=16, help="Number of channels in a chunk to average") parser.add_argument('--frequency_range', type=float, nargs=2, default=[170.5e6, 184.5e6], help="Frequency range (Hz)") parser.add_argument('--nintegrations_per_chunk', type=int, default=64, help='Number of integrations in a time chunk') parser.add_argument('--time_average', type=int, default=16, help="Number of integrations in a chunk to average") parser.add_argument('--integration_time', type=float, default=0.25, help="Integration time (s)") parser.add_argument('--time_range', type=float, nargs=2, default=[-6.0, 6.0], help="Hourangle range (hours)") parser.add_argument('--emitter_longitude', type=float, default=115.8605, help="Emitter longitude") parser.add_argument('--emitter_latitude', type=float, default=-31.9505, help="Emitter latitude") parser.add_argument('--emitter_power', type=float, default=5e4, help="Emitter power (W)]") parser.add_argument('--use_pole', type=str, default="False", help='Set RFI source at pole?') parser.add_argument('--waterfall', type=str, default="False", help='Plot waterfalls?') parser.add_argument('--write_ms', type=str, default="False", help='Write measurmentsets?') args = parser.parse_args() print("Starting LOW low level RFI simulation") pp.pprint(vars(args)) write_ms = args.write_ms == "True" numpy.random.seed(args.seed) if args.use_dask == "True": client = get_dask_Client(threads_per_worker=1, processes=True, memory_limit=32 * 1024 * 1024 * 1024, n_workers=8) arlexecute.set_client(client=client) print(arlexecute.client) else: print("Running in serial mode") arlexecute.set_client(use_dask=False) emitter_location = EarthLocation(lon=args.emitter_longitude, lat=args.emitter_latitude, height=0.0) emitter_power = args.emitter_power print("Emitter is %.1f kW at location %s" % (1e-3 * emitter_power, emitter_location.geodetic)) if args.waterfall == "True": waterfall = True else: waterfall = False if args.noise == "True": noise = True print("Adding noise to simulated data") else: noise = False if args.use_pole == "True": print("Placing emitter at the southern celestial pole") use_pole= True else: use_pole = False rmax = args.rmax low = create_named_configuration('LOWR3', rmax=rmax) nants = len(low.names) print("There are %d stations" % nants) station_skip = args.station_skip low.data = low.data[::station_skip] nants = len(low.names) print("There are %d stations after decimation" % nants) npixel = args.npixel declination = args.declination phasecentre = SkyCoord(ra=+0.0 * u.deg, dec=declination * u.deg, frame='icrs', equinox='J2000') pole = SkyCoord(ra=+0.0 * u.deg, dec=-90.0 * u.deg, frame='icrs', equinox='J2000') # Number of integrations in a time chunk nintegrations_per_chunk = args.nintegrations_per_chunk # Integration time within a chunk integration_time = args.integration_time # Number of integrations to average time_average = args.time_average # Integration time after averaging average_integration_time = time_average * integration_time print("Each chunk has %d integrations of duration %.2f (s)" % (args.nintegrations_per_chunk, integration_time)) frequency = numpy.linspace(args.frequency_range[0], args.frequency_range[1], args.nchannels_per_chunk) channel_bandwidth = (frequency[-1] - frequency[0]) / (args.nchannels_per_chunk - 1) channel_average = args.channel_average print("Each chunk has %d frequency channels of width %.3f (MHz)" % (args.nchannels_per_chunk, channel_bandwidth * 1e-6)) channel_bandwidth = numpy.ones_like(frequency) * channel_bandwidth start_times = numpy.arange(args.time_range[0] * 3600.0, args.time_range[1] * 3600.0, nintegrations_per_chunk * integration_time) print("Start times", start_times) results = list() pole_results = list() chunk_start_times = [start_times[i:i + args.ngroup_visibility] for i in range(0, len(start_times), args.ngroup_visibility)] print("Chunk start times", [c[0] for c in chunk_start_times]) dopsf = args.do_psf == "True" #
<filename>scripts/iscsictl.py #! /usr/bin/env python # Copyright (c) 2015 SUSE LINUX GmbH, Nuernberg, Germany. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. import argparse import os import re import sys import sh # # Example of use # ============== # # If we have a network with three nodes (N1, N2, N3), we can use # iscsictl script to deploy different iscsi configuations. # # Use case 1: Single device # ------------------------- # # Create the target service in N1 # ./iscsictl.py --service target --host N1 # # Discover and connect both initiators # ./iscsictl.py --service initiator --target_host N1 --host N2 # ./iscsictl.py --service initiator --target_host N1 --host N3 # # # Use case 2: Add a new target # ---------------------------- # # Create second target in N1 # ./iscsictl.py --service target --host N1 --device /dev/loop1 --id id02 # # Discover and connect both initiators # ./iscsictl.py --service initiator --target_host N1 --host N2 --id id02 # ./iscsictl.py --service initiator --target_host N1 --host N3 --id id02 # # # Use case 3: Share a block device # -------------------------------- # # Create a target for a existent block device: # ./iscsictl.py --service target --host N1 --device /dev/sdc --id id03 # # Discover and connect both initiators # ./iscsictl.py --service initiator --target_host N1 --host N2 --id id03 # ./iscsictl.py --service initiator --target_host N1 --host N3 --id id03 # # open stdout in unbuffered mode sys.stdout = os.fdopen(sys.stdout.fileno(), "wb", 0) class Key(object): """Class used to create and reuse temporal SSH keys.""" def __init__(self, name=None): """Create a new key without passphrase if there is any.""" if not name: name = '.iscsi_fake_id_dsa' self.name = name if not os.path.exists(self.name): sh.ssh_keygen('-t', 'dsa', '-f', self.name, '-N', '') os.chmod(self.key(), 0o600) os.chmod(self.pub_key(), 0o600) def key(self): """Return the private key filename.""" return self.name def pub_key(self): """Return the public key filename.""" return self.name + '.pub' def clean_key(self): """Remove private and public temporal keys.""" if os.path.exists(self.key()): os.remove(self.key()) os.remove(self.pub_key()) class SSH(object): """Simplify SSH connections to a remote machine.""" def __init__(self, host, user, password, new_key=True, key=None): if new_key and not key: key = Key(name='.%s_iscsi_fake_id_dsa' % host) self.host = host self.user = user self.password = password self.key = key self._copy_id = False self._connect = None def ssh_copy_id(self): """Copy a fake key (key without passphrase) into a node.""" # If the ID is already there, do nothing if not self.key or self._copy_id: return def _interact(char, stdin): sys.stdout.write(char.encode()) _interact.aggregated += char if _interact.aggregated.endswith("Password: "): stdin.put('%s\n' % self.password) elif char == '\n': _interact.aggregated = '' _interact.aggregated = '' sh.ssh_copy_id('-i', self.key.pub_key(), '-o', 'StrictHostKeyChecking=no', '-o', 'UserKnownHostsFile=/dev/null', '%s@%s' % (self.user, self.host), _out=_interact, _out_bufsize=0, _tty_in=True) def clean_key(self): """Remove key from the remote server.""" if not self._connect or not self.key: return key = "'%s'" % open(self.key.pub_key()).read().strip() self._connect.grep('-v', key, '~/.ssh/authorized_keys', '> ~/.ssh/authorized_keys.TMP') self._connect.cp('-a', '~/.ssh/authorized_keys', '~/.ssh/authorized_keys.BAK') self._connect.mv('~/.ssh/authorized_keys.TMP', '~/.ssh/authorized_keys') self._connect = None # Remove locally generated keys self.key.clean_key() def connect(self): """Create an SSH connection to the remote host.""" if not self._copy_id: self.ssh_copy_id() params = ['-o', 'StrictHostKeyChecking=no', '-o', 'UserKnownHostsFile=/dev/null', '%s@%s' % (self.user, self.host)] if self.key: params = ['-i', self.key.key()] + params self._connect = sh.ssh.bake(*params) return self._connect def __getattr__(self, name): """Delegate missing attributes to local connection.""" if not self._connect: self.connect() if self._connect: return getattr(self._connect, name) class ISCSI(object): """Class for basic iSCSI management.""" START = 'start' STOP = 'stop' RESTART = 'restart' def __init__(self, ssh): self.ssh = ssh def service(self, service, action): if action == ISCSI.START: self.ssh.systemctl('enable', '%s.service' % service) self.ssh.systemctl('start', '%s.service' % service) elif action == ISCSI.STOP: self.ssh.systemctl('stop', '%s.service' % service) self.ssh.systemctl('disable', '%s.service' % service) elif action == ISCSI.RESTART: self.ssh.systemctl('restart', '%s.service' % service) else: raise Exception('Service action not recognized.') def zypper(self, package): self.ssh.zypper('--non-interactive', 'install', '--no-recommends', package) def append_cfg(self, fname, lines): """Append only new lines in a configuration file.""" cfg = str(self.ssh.cat(fname)) # Only append the line if is not there for line in lines: if not re.search('^%s$' % re.escape(line), cfg, re.MULTILINE): self.ssh.echo('-e', "'%s'" % line, '>> %s' % fname) def remove_cfg(self, fname, lines): """Remove lines in a configuration file.""" cfg = str(self.ssh.cat(fname)) # Remove all matching lines, appending and EOL for line in lines: cfg = cfg.replace(line + '\n', '') # Make a backup of the configuration file and replace the # content. Check that the new content is the expected and if # so, remove the backup. fbackup = fname + '.BACKUP' self.ssh.cp('-a', fname, fbackup) self.ssh.echo('-e', '-n', '"%s"' % cfg, '> %s' % fname) new_cfg = str(self.ssh.cat(fname)) if cfg != new_cfg: fedit = fname + '.EDIT' self.ssh.cp('-a', fname, fedit) self.ssh.mv(fbackup, fname) raise Exception('Configuration file reverted. ' 'Check %s for more details' % fedit) else: self.ssh.rm(fbackup) def deploy(self): raise NotImplementedError('Deploy method not implemented') class Target(ISCSI): """Define and manage an iSCSI target node.""" def __init__(self, ssh, device, path, iqn_id, size=1, reuse=False): super(Target, self).__init__(ssh) self.device = device self.path = path self.iqn_id = iqn_id # `size` is expressed in mega (M) self.size = size self.reuse = reuse def find_loop(self, loop): """Find an attached loop devide.""" pattern = re.compile(r'^(/dev/loop\d+):.*\((.*)\)') for line in self.ssh.losetup('-a'): ldev, lfile = pattern.match(line).groups() if loop == ldev: return (ldev, lfile) def destroy_loop(self, loop): """Destroy loopback devices.""" is_in = self.find_loop(loop) if is_in: _, path = is_in out = str(self.ssh.losetup('-d', loop)) if "can't delete" in out: raise Exception(out) self.ssh.rm(path) def create_loop(self, loop, path, size): """Create a new loopback device.""" is_in = self.find_loop(loop) if is_in and self.reuse: return elif is_in: raise Exception('loop device already installed: %s / %s' % is_in) self.ssh.dd('if=/dev/zero', 'of=%s' % path, 'bs=1M', 'count=%d' % size) self.ssh.fdisk(sh.echo('-e', r'o\nn\np\n1\n\n\nw'), path) self.ssh.losetup(loop, path) is_in = self.find_loop(loop) if not is_in: raise Exception('fail to create loop device: %s / %s' % is_in) def deploy(self): """Deploy, configure and launch iSCSI target.""" print("Installing lio-utils ...") self.zypper('lio-utils') self.service('target', ISCSI.START) if self.device.startswith('/dev/loop'): if self.path: print("Creating loopback ...") self.create_loop(self.device, self.path, self.size) else: raise Exception('Please, provide a path for a loop device') # Detecting IP print("Looking for host IP ...") ip = str(self.ssh.ip('a', 's', 'eth0')) ip = re.findall(r'inet (\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})/\d+', ip) if ip: ip = ip[0] else: raise Exception('IP address not found') iqn = 'iqn.2015-01.qa.cloud.suse.de:%s' % self.iqn_id print("Registering target for %s ..." % iqn) self.ssh.tcm_node('--block', 'iblock_0/%s' % self.iqn_id, self.device) self.ssh.lio_node('--addlun', iqn, '1', '0', 'iscsi_port', 'iblock_0/%s' % self.iqn_id) self.ssh.lio_node('--addnp', iqn, '1', '%s:3260' % ip) self.ssh.lio_node('--disableauth', iqn, '1') self.ssh.lio_node('--enabletpg', iqn, '1') # Add in /etc/target/tcm_start.sh if self.device.startswith('/dev/loop'): print("Adding loopback to target service startup ...") lines = ( '[[ $(losetup -j %s) == "%s"* ]] || losetup %s %s' % ( self.path, self.device, self.device, self.path), ) self.append_cfg('/etc/target/tcm_start.sh', lines) # Check if the device is exported print("Checking that the target is exported ...") result = str(self.ssh.lio_node('--listtargetnames')) if iqn not in result: raise Exception('Unable to deploy the iSCSI target') class Initiator(ISCSI): """Define and manage an iSCSI initiator node.""" # For now, we are going to use the discovery option for iSCSI to # populate the database. This simplify the deployment of a basic # iSCSI scenario, with a single target point and multiple # initiators. def __init__(self, ssh, target_ssh, iqn_id): """Initialize the Initiator instance with an ip and a mount point.""" super(Initiator, self).__init__(ssh) self.target_ssh = target_ssh self.iqn_id = iqn_id self.name = None def deploy(self): """Deploy, configure and persist an iSCSI initiator.""" print("Installing open-iscsi ...") self.zypper('open-iscsi') # Default configuration only takes care of autentication print("Configuring open-iscsi for automatic startup ...") lines = ( 'node.startup = automatic', ) self.append_cfg('/etc/iscsid.conf', lines) # Persist and start the service print("Reloading the configuration ...") self.service('iscsid', ISCSI.START) self.service('iscsid', ISCSI.RESTART) iqn = 'iqn.2015-01.qa.cloud.suse.de:%s' % self.iqn_id # Get the initiator name for the ACL print("Detecting initiator name ...") initiator = str(self.ssh.cat('/etc/iscsi/initiatorname.iscsi')) initiator = re.findall(r'InitiatorName=(iqn.*)', initiator) if initiator: initiator = initiator[0] else: raise Exception('Initiator name not found') # Add the initiator name in the target ACL
h_alkyl=kwargs.get('r_h_alkyl', 1.22), cl=kwargs.get('r_cl', 1.77), na=kwargs.get('r_na', 0.95), # fe=kwargs.get('r_fe', 0.74), fe=kwargs.get('r_fe', 0.6), zn=kwargs.get('r_zn', 0.71)) def set_atom_types(self): self.atom_types_dfq = set(self.dfq.atom_type_label) self.atom_types_dft = set(self.dft.atom_type_label) def split_dfs_to_atom_types(self): for atom_type in self.atom_types_dfq: self.dfq_atom_type[atom_type] = self.dfq[self.dfq.atom_type_label.isin([atom_type])] for atom_type in self.atom_types_dft: self.dft_atom_type[atom_type] = self.dft[self.dft.atom_type_label.isin([atom_type])] @staticmethod def make_tree(dfq_): return BallTree(dfq_[['c_x', 'c_y', 'c_z']].values) def make_trees(self): for atom_type, dfq_ in self.dfq_atom_type.items(): self._balltrees[atom_type] = self.make_tree(dfq_) @staticmethod def prune_empty(dists, inds): t_inds = [] dists_ = [] q_inds = [] for t_ind, (dist, q_ind) in enumerate(zip(dists, inds)): if dist.size > 0: t_inds.append([t_ind]) dists_.append(dist) q_inds.append(q_ind) return t_inds, q_inds, dists_ @staticmethod def partition_contacts_hb_hard_cutoff(dists, q_inds, t_inds, cc_low, cc_low_hb, cc_high, wc_high, hb_hard_cutoff): q_inds_clashes = [] t_inds_clashes = [] q_inds_cc = [] t_inds_cc = [] q_inds_wc = [] t_inds_wc = [] q_inds_poss_hbonds_cl = [] t_inds_poss_hbonds_cl = [] q_inds_poss_hbonds_cc = [] t_inds_poss_hbonds_cc = [] for d, i_q, i_t in zip(dists, q_inds, t_inds): clashing = d < hb_hard_cutoff poss_hbonds_cl_test = (d >= hb_hard_cutoff) & (d < cc_low) poss_hbonds_cc_test = (d >= cc_low) & (d < cc_low_hb) clashes = i_q[clashing] cc_test = (d >= cc_low_hb) & (d < cc_high) wc_test = (d >= cc_high) & (d < wc_high) ccs = i_q[cc_test] wcs = i_q[wc_test] poss_hbonds_cl = i_q[poss_hbonds_cl_test] poss_hbonds_cc = i_q[poss_hbonds_cc_test] if clashes.size > 0: q_inds_clashes.append(clashes) t_inds_clashes.append(i_t) if ccs.size > 0: q_inds_cc.append(ccs) t_inds_cc.append(i_t) if wcs.size > 0: q_inds_wc.append(wcs) t_inds_wc.append(i_t) if poss_hbonds_cl.size > 0: q_inds_poss_hbonds_cl.append(poss_hbonds_cl) t_inds_poss_hbonds_cl.append(i_t) if poss_hbonds_cc.size > 0: q_inds_poss_hbonds_cc.append(poss_hbonds_cc) t_inds_poss_hbonds_cc.append(i_t) return q_inds_clashes, t_inds_clashes, q_inds_cc, t_inds_cc, \ q_inds_wc, t_inds_wc, q_inds_poss_hbonds_cl, t_inds_poss_hbonds_cl, \ q_inds_poss_hbonds_cc, t_inds_poss_hbonds_cc @staticmethod def partition_contacts_no_hb(dists, q_inds, t_inds, cc_low, cc_high, wc_high): q_inds_clashes = [] t_inds_clashes = [] q_inds_cc = [] t_inds_cc = [] q_inds_wc = [] t_inds_wc = [] for d, i_q, i_t in zip(dists, q_inds, t_inds): clashing = d < cc_low clashes = i_q[clashing] cc_test = (d >= cc_low) & (d < cc_high) wc_test = (d >= cc_high) & (d < wc_high) ccs = i_q[cc_test] wcs = i_q[wc_test] if clashes.size > 0: q_inds_clashes.append(clashes) t_inds_clashes.append(i_t) if ccs.size > 0: q_inds_cc.append(ccs) t_inds_cc.append(i_t) if wcs.size > 0: q_inds_wc.append(wcs) t_inds_wc.append(i_t) return q_inds_clashes, t_inds_clashes, q_inds_cc, t_inds_cc, \ q_inds_wc, t_inds_wc, [], [] def _angle_test(self, dfq, dft, q_inds_poss_hbonds): t_is_don = ~np.isnan(dft.c_D_x.values) t_is_acc = ~np.isnan(dft.c_A1_x.values) if ~t_is_don and ~t_is_acc: # dft is only 1 row, so .values produces a scalar return list(q_inds_poss_hbonds), [] q_is_don = ~np.isnan(dfq.c_D_x.values) q_is_acc = ~np.isnan(dfq.c_A1_x.values) if (~q_is_don).all() and (~q_is_acc).all(): return list(q_inds_poss_hbonds), [] clashing = set(q_inds_poss_hbonds) hbonds = set() if t_is_acc and (q_is_don).any(): # q is donor, t is acceptor donor_inds = q_inds_poss_hbonds[q_is_don] donor = dfq[q_is_don] d_arr = donor[coords[3:18]].values s = d_arr.shape if len(s) == 1: m = 1 else: m = s[0] a_arr = np.tile(dft[coords[18:]].values, (m, 1)) X = np.hstack((d_arr, a_arr)) is_hb = is_hbond(X) is_hb = is_hb.astype(bool) hbonds |= set(donor_inds[is_hb]) if t_is_don and (q_is_acc).any(): # q is acceptor, t is donor acc_inds = q_inds_poss_hbonds[q_is_acc] acc = dfq[q_is_acc] a_arr = acc[coords[18:]].values s = a_arr.shape if len(s) == 1: m = 1 else: m = s[0] d_arr = np.tile(dft[coords[3:18]].values, (m, 1)) X = np.hstack((d_arr, a_arr)) is_hb = is_hbond(X) is_hb = is_hb.astype(bool) hbonds |= set(acc_inds[is_hb]) clashing -= hbonds return list(clashing), list(hbonds) def _angle_test_S_acceptor(self, dfq, dft, q_inds_poss_hbonds): t_is_don = ~np.isnan(dft.c_D_x.values) t_is_acc = ~np.isnan(dft.c_A1_x.values) if ~t_is_don and ~t_is_acc: # dft is only 1 row, so .values produces a scalar return list(q_inds_poss_hbonds), [] q_is_don = ~np.isnan(dfq.c_D_x.values) q_is_acc = ~np.isnan(dfq.c_A1_x.values) if (~q_is_don).all() and (~q_is_acc).all(): return list(q_inds_poss_hbonds), [] clashing = set(q_inds_poss_hbonds) hbonds = set() if t_is_acc and (q_is_don).any(): # q is donor, t is acceptor donor_inds = q_inds_poss_hbonds[q_is_don] donor = dfq[q_is_don] d_arr = donor[coords[3:18]].values s = d_arr.shape if len(s) == 1: m = 1 else: m = s[0] a_arr = np.tile(dft[coords[18:]].values, (m, 1)) X = np.hstack((d_arr, a_arr)) is_hb = is_hbond_S_acceptor(X) is_hb = is_hb.astype(bool) hbonds |= set(donor_inds[is_hb]) if t_is_don and (q_is_acc).any(): # q is acceptor, t is donor acc_inds = q_inds_poss_hbonds[q_is_acc] acc = dfq[q_is_acc] a_arr = acc[coords[18:]].values s = a_arr.shape if len(s) == 1: m = 1 else: m = s[0] d_arr = np.tile(dft[coords[3:18]].values, (m, 1)) X = np.hstack((d_arr, a_arr)) is_hb = is_hbond_S_acceptor(X) is_hb = is_hb.astype(bool) hbonds |= set(acc_inds[is_hb]) clashing -= hbonds return list(clashing), list(hbonds) def angle_test(self, q_inds_poss_hbonds, t_inds_poss_hbonds, dfq_, dft_): q_inds_clash = [] t_inds_clash = [] q_inds_hbond = [] t_inds_hbond = [] for q_inds_poss_hbond, t_ind_poss_hbond in zip(q_inds_poss_hbonds, t_inds_poss_hbonds): df_poss_hb_t = dft_.iloc[t_ind_poss_hbond] df_poss_hb_q = dfq_.iloc[q_inds_poss_hbond] q_inds_clash_, q_inds_hbond_ = self._angle_test(df_poss_hb_q, df_poss_hb_t, q_inds_poss_hbond) if q_inds_clash_: q_inds_clash.append(q_inds_clash_) t_inds_clash.append(t_ind_poss_hbond) if q_inds_hbond_: q_inds_hbond.append(q_inds_hbond_) t_inds_hbond.append(t_ind_poss_hbond) return q_inds_clash, t_inds_clash, q_inds_hbond, t_inds_hbond def angle_test_S_acceptor(self, q_inds_poss_hbonds, t_inds_poss_hbonds, dfq_, dft_): q_inds_clash = [] t_inds_clash = [] q_inds_hbond = [] t_inds_hbond = [] for q_inds_poss_hbond, t_ind_poss_hbond in zip(q_inds_poss_hbonds, t_inds_poss_hbonds): df_poss_hb_t = dft_.iloc[t_ind_poss_hbond] df_poss_hb_q = dfq_.iloc[q_inds_poss_hbond] q_inds_clash_, q_inds_hbond_ = self._angle_test_S_acceptor(df_poss_hb_q, df_poss_hb_t, q_inds_poss_hbond) if q_inds_clash_: q_inds_clash.append(q_inds_clash_) t_inds_clash.append(t_ind_poss_hbond) if q_inds_hbond_: q_inds_hbond.append(q_inds_hbond_) t_inds_hbond.append(t_ind_poss_hbond) return q_inds_clash, t_inds_clash, q_inds_hbond, t_inds_hbond def _find_contact_indices(self, atom_type_q, atom_type_t): tree = self._balltrees[atom_type_q] dft_ = self.dft_atom_type[atom_type_t] vdw_sum = self.vdw_radii[atom_type_q] + self.vdw_radii[atom_type_t] cc_low = vdw_sum # - self.tol cc_high = vdw_sum + self.gap_close_contact cutoff = wc_high = vdw_sum + self.gap_wide_contact i, d = tree.query_radius(dft_[['c_x', 'c_y', 'c_z']].values, r=cutoff, return_distance=True) t_inds, q_inds, dists = self.prune_empty(d, i) if t_inds: D_q = atom_type_q in hbond_donor_types A_t = atom_type_t in hbond_acceptor_types A_q = atom_type_q in hbond_acceptor_types D_t = atom_type_t in hbond_donor_types if not ((D_q and A_t) or (D_t and A_q)): return self.partition_contacts_no_hb(dists, q_inds, t_inds, cc_low, cc_high, wc_high) # This returns q_inds_clashes, t_inds_clashes, q_inds_cc, t_inds_cc, # q_inds_wc, t_inds_wc, q_inds_hb, t_inds_hb (hb are empty lists) if (atom_type_q in {'n', 'p', 's'}) and (atom_type_t in {'n', 'p', 's'}): hb_hard_cutoff = cc_low - self.overlap_hb_heavy_nn elif (atom_type_q in {'o', 'f'}) and (atom_type_t in {'f', 'n', 'p', 's'}): hb_hard_cutoff = cc_low - self.overlap_hb_heavy_no elif (atom_type_t in {'o', 'f'}) and (atom_type_q in {'f', 'n', 'p', 's'}): hb_hard_cutoff = cc_low - self.overlap_hb_heavy_no elif (atom_type_q in {'o', 'f'}) and (atom_type_t in {'o', 'f'}): hb_hard_cutoff = cc_low - self.overlap_hb_heavy_oo if (atom_type_q in {'n', 'o', 'p', 's', 'f'}) and (atom_type_t in {'n', 'o', 'p', 's', 'f'}): cc_low_hb = max(3.3, cc_low) cc_high = max(3.6, cc_low + 0.3) wc_high = max(4.0, cc_high + 0.4) else: hb_hard_cutoff = cc_low - self.overlap_hb - self.tol cc_low_hb = max(2.5, cc_low) cc_high = max(2.8, cc_low + 0.3) wc_high = max(3.2, cc_high + 0.4) q_inds_clashes, t_inds_clashes, q_inds_cc, t_inds_cc, \ q_inds_wc, t_inds_wc, q_inds_poss_hbonds_cl, t_inds_poss_hbonds_cl, \ q_inds_poss_hbonds_cc, t_inds_poss_hbonds_cc = \ self.partition_contacts_hb_hard_cutoff(dists, q_inds, t_inds, cc_low, cc_low_hb, cc_high, wc_high, hb_hard_cutoff) q_inds_hbond = [] t_inds_hbond = [] if q_inds_poss_hbonds_cl: dfq_ = self.dfq_atom_type[atom_type_q] if atom_type_q in {'s'} or atom_type_t in {'s'}: q_inds_clash, t_inds_clash, q_inds_hbond_cl, t_inds_hbond_cl \ = self.angle_test_S_acceptor(q_inds_poss_hbonds_cl, t_inds_poss_hbonds_cl, dfq_, dft_) else: q_inds_clash, t_inds_clash, q_inds_hbond_cl, t_inds_hbond_cl \ = self.angle_test(q_inds_poss_hbonds_cl, t_inds_poss_hbonds_cl, dfq_, dft_) q_inds_clashes.extend(q_inds_clash) t_inds_clashes.extend(t_inds_clash) q_inds_hbond.extend(q_inds_hbond_cl) t_inds_hbond.extend(t_inds_hbond_cl) if q_inds_poss_hbonds_cc: dfq_ = self.dfq_atom_type[atom_type_q] if atom_type_q in {'s'} or atom_type_t in {'s'}: q_inds_cc_, t_inds_cc_, q_inds_hbond_cc, t_inds_hbond_cc \ = self.angle_test_S_acceptor(q_inds_poss_hbonds_cc, t_inds_poss_hbonds_cc, dfq_, dft_) else: q_inds_cc_, t_inds_cc_, q_inds_hbond_cc, t_inds_hbond_cc \ = self.angle_test(q_inds_poss_hbonds_cc, t_inds_poss_hbonds_cc, dfq_, dft_) q_inds_cc.extend(q_inds_cc_) t_inds_cc.extend(t_inds_cc_) q_inds_hbond.extend(q_inds_hbond_cc) t_inds_hbond.extend(t_inds_hbond_cc) return q_inds_clashes, t_inds_clashes, q_inds_cc, t_inds_cc, \ q_inds_wc, t_inds_wc, q_inds_hbond, t_inds_hbond else: return q_inds_clashes, t_inds_clashes, q_inds_cc, t_inds_cc, \ q_inds_wc, t_inds_wc, q_inds_hbond, t_inds_hbond else: return [[]] * 8 def extend_global_indices(self, atom_type_q, atom_type_t, q_inds, t_inds, contact_type): q_global_inds = list() t_global_inds = list() dfq = self.dfq_atom_type[atom_type_q] dft = self.dft_atom_type[atom_type_t] for q_inds_, t_ind in zip(q_inds, t_inds): q_global_inds.extend(dfq['num_tag'].iloc[q_inds_].values) t_global_inds.extend([dft['num_tag'].iat[t_ind[0]]] * len(q_inds_)) self.q_global_indices.extend(q_global_inds) self.t_global_indices.extend(t_global_inds) self.contact_types.extend([contact_type] * len(q_global_inds)) def _find(self): for atom_type_q in self.atom_types_dfq: for atom_type_t in self.atom_types_dft: q_inds_clashes, t_inds_clashes, q_inds_cc, t_inds_cc, \ q_inds_wc, t_inds_wc, q_inds_hbond, t_inds_hbond \ = self._find_contact_indices(atom_type_q, atom_type_t) if q_inds_clashes: self.extend_global_indices(atom_type_q, atom_type_t, q_inds_clashes, t_inds_clashes, 'cl') if q_inds_cc: self.extend_global_indices(atom_type_q, atom_type_t, q_inds_cc, t_inds_cc, 'cc') if q_inds_wc: self.extend_global_indices(atom_type_q, atom_type_t, q_inds_wc, t_inds_wc, 'wc') if q_inds_hbond: self.extend_global_indices(atom_type_q, atom_type_t, q_inds_hbond, t_inds_hbond, 'hb') dfq_ = self.dfq.iloc[self.q_global_indices] dft_ = self.dft.iloc[self.t_global_indices] df = dfq_.reset_index(drop=True).join(dft_.reset_index(drop=True), how='outer', lsuffix='_q', rsuffix='_t') df.loc[:, 'contact_type'] = self.contact_types self.df_contacts = df def find(self): if self.atom_types_dfq is None: self.set_atom_types() if not self.dfq_atom_type: self.split_dfs_to_atom_types() if not self._balltrees: self.make_trees() self._find() class ClashVDM: '''Do Cbeta, do non-Cbeta, combine results''' def __init__(self, dfq, dft): self.dfq = dfq self.dft = dft self.exclude = None self.q_grouping = None self.dfq_cb_clash_free = None self.dfq_non_cb_clash_free = None self.dfq_clash_free = None self.dft_for_non_cb = None self.dft_for_cb = None self.dfq_non_cb = None self.dfq_cb = None def set_grouping(self, grouping): self.q_grouping = grouping def set_exclude(self, exclude): self.exclude = exclude def setup(self): df = self.dft resnum = self.exclude[0] chain = self.exclude[1]
self.timed_command(command,4,10) status, response, delta = self.timed_command(command,4,60) if status != 0: E=4 message = "QUERY_CLEAN %i: %s => %i,%s" % \ (E, command, status, response) Trace.log(e_errors.ERROR, message) return ("ERROR", E, response, "", message) else: #Get the information from the robot. for line in response: if line.find("ACSSA") >= 0 or \ line.find("Cleaning Cartridge Status") >= 0 or \ line.find("Identifier") >= 0 \ or len(line) == 0: #This is some other information. continue # The returned line of interest looks like: # For ACSLS version 7: # CLN179 1, 5,12, 8, 1 50 0 home LTO-CLNU # # For ACSLS version 8: # CLN565 0, 1, 6, 0, 0 100 0 home STK2W # get rid of extra whitespaces tline = ' '.join(line.translate(None, string.whitespace[:5]).split()) # now it looks like: # CLN565 0, 1, 6, 0, 0 100 0 home STK2W # get rid of space before number in address tline2 = tline.replace(", ", ",") # now it looks like: # CLN565 0,1,6,0,0 100 0 home STK2W s_line = tline2.split(' ') Trace.trace(21, "line %s"%(s_line,)) volume = s_line[0] location = s_line[1] max_usage = int(s_line[2]) current_usage = int(s_line[3]) status = s_line[4] media_type = s_line[5] remaining_usage = max_usage - current_usage #AML2 compatibility clean_list.append({"volume" : volume, "location" : location, "max_usage" : max_usage, "current_usage" : current_usage, "remaining_usage" : remaining_usage, "status" : status, "type" : media_type, }) #Put the list of cleaning tapes into the reply ticket. reply['clean_list'] = clean_list #Send the information. (success or failure) try: r = callback.write_tcp_obj(sock, reply) sock.close() if r: Trace.log(e_errors.ERROR, "Error calling write_tcp_obj. Callback addr. %s" % (ticket['callback_addr'],)) except: Trace.handle_error() Trace.log(e_errors.ERROR, "Callback address %s" % (ticket['callback_addr'],)) E=6 return (e_errors.NET_ERROR, E, str(sys.exc_info()[1]), "", "") return (e_errors.OK, 0, None, "", "") ######################################################################### # These functions are internal functions specific to STK media changer. ######################################################################### #Query a volume. def query(self, volume, media_type=""): __pychecker__ = "unusednames=media_type" # build the command, and what to look for in the response command = "query vol %s" % (volume,) answer_lookfor = "%s " % (volume,) # execute the command and read the response # efb (dec 22, 2005) - up timeout from 10 to 60 as the queries are hanging #status,response, delta = self.timed_command(command,4,10) status,response, delta = self.timed_command(command,4,60) if status != 0: E=1 msg = "QUERY %i: %s => %i,%s" % (E,command,status,response) Trace.log(e_errors.ERROR, msg) return ("ERROR", E, response, '', msg) # got response, parse it and put it into the standard form answer = string.strip(response[3]) if string.find(answer, answer_lookfor, 0) != 0: E=2 msg = "QUERY %i: %s => %i,%s" % (E,command,status,response) Trace.log(e_errors.ERROR, msg) return ("ERROR", E, response, '', msg) elif string.find(answer,' home ') != -1: msg = "%s => %i,%s" % (command,status,answer) Trace.log(e_errors.INFO, msg) return (e_errors.OK,0,answer, 'O', msg) # occupied elif string.find(answer,' in drive ') != -1: msg = "%s => %i,%s" % (command,status,answer) Trace.log(e_errors.INFO, msg) return (e_errors.OK,0,answer, 'M', msg) # mounted elif string.find(answer,' in transit ') != -1: msg = "%s => %i,%s" % (command,status,answer) Trace.log(e_errors.INFO, msg) return (e_errors.OK,0,answer, 'T', msg) # transit else: E=3 msg = "QUERY %i: %s => %i,%s" % (E,command,status,response) Trace.log(e_errors.ERROR, msg) return ("ERROR", E, answer, '', msg) def query_drive(self,drive): # build the command, and what to look for in the response command = "query drive %s" % (drive,) answer_lookfor = "%s " % (drive,) # execute the command and read the response # FIXME - what if this hangs? # efb (dec 22, 2005) - up timeout from 10 to 60 as the queries are hanging #status,response, delta = self.timed_command(command,4,10) status,response, delta = self.timed_command(command,4,60) if status != 0: E=4 msg = "QUERY_DRIVE %i: %s => %i,%s" % (E,command,status,response) Trace.log(e_errors.ERROR, msg) return ("ERROR", E, response, '', msg) # got response, parse it and put it into the standard form answer = string.strip(response[3]) answer = string.replace(answer,', ',',') # easier to part drive id if string.find(answer, answer_lookfor,0) != 0: E=5 msg = "QUERY_DRIVE %i: %s => %i,%s" % (E,command,status,answer) Trace.log(e_errors.ERROR, msg) return ("ERROR", E, answer, '', msg) elif string.find(answer,' online ') == -1: E=6 msg = "QUERY_DRIVE %i: %s => %i,%s" % (E,command,status,answer) Trace.log(e_errors.ERROR, msg) return ("ERROR", E, answer, '', msg) elif string.find(answer,' available ') != -1: msg = "%s => %i,%s" % (command,status,answer) Trace.log(e_errors.INFO, msg) return (e_errors.OK,0,answer, '', msg) # empty elif string.find(answer,' in use ') != -1: loc = string.find(answer,' in use ') volume = string.split(answer[loc+8:])[0] msg = "%s => %i,%s" % (command,status,answer) Trace.log(e_errors.INFO, msg) return (e_errors.OK,0,answer, volume, msg) # mounted and in use else: E=7 msg = "QUERY_DRIVE %i: %s => %i,%s" % (E,command,status,answer) Trace.log(e_errors.ERROR, msg) return ("ERROR", E, answer, '', msg) def display_drive(self,drive): # build the command, and what to look for in the response command = "display drive %s -f wwn" % (drive,) answer_lookfor = "%s " % (drive,) # execute the command and read the response status,response, delta = self.timed_command(command,4,60) if status != 0: E=4 msg = "DISPLAY_DRIVE %i: %s => %i,%s" % (E,command,status,response) Trace.log(e_errors.ERROR, msg) return ("ERROR", E, response, '', msg) # got response, parse it and put it into the standard form answer = string.strip(response[3]) if 'No records found' in answer: E=6 msg = "DISPLAY_DRIVE %i: %s => %i,%s" % (E,command,status,response) Trace.log(e_errors.ERROR, msg) return ("ERROR", E, response, '', msg) answer = string.replace(answer,', ',',') # easier to part drive id # the format of the answer is like: # 2 2 1 12 50.01.04.f0.00.a2.b5.06 # convert it to what we expect answer = ' '.join(answer.translate(None, string.whitespace[:5]).split()).replace(' ', ',',3) if answer.find(answer_lookfor,0) != 0: E=5 msg = "DISPLAY_DRIVE %i: %s => %i,%s" % (E,command,status,answer) Trace.log(e_errors.ERROR, msg) return ("ERROR", E, answer, '', msg) else: msg='' Trace.log(e_errors.INFO, msg) return (e_errors.OK,0,answer, '', msg) # mounted and in use def mount(self, volume, drive, media_type="", view_first=1, ticket = {}): ############################################################# # ok, this is a test only - see if we can mount readonly for # 9840 and 9940 tapes if media_type in ('9840', '9940', '9940B'): vol_ticket = ticket.get('vol_ticket', {}) si = vol_ticket.get('system_inhibit', ('none', 'none')) ui = vol_ticket.get('user_inhibit', ('none', 'none')) if enstore_functions2.is_readonly_state(si[1]) or \ enstore_functions2.is_readonly_state(ui[1]): readonly = 1 else: readonly = 0 else: readonly = 0 ############################################################# # build the command, and what to look for in the response command = "mount %s %s" % (volume,drive) if readonly: command = command + " readonly" answer_lookfor = "Mount: %s mounted on " % (volume,) # check if tape is in the storage location or somewhere else if view_first: status,stat,response,attrib,com_sent = self.query(volume, media_type) if stat!=0: E=e_errors.MC_FAILCHKVOL msg = "MOUNT %i: %s => %i,%s" % (E,command,stat,response) Trace.log(e_errors.ERROR, msg) return ("ERROR", E, response, "", msg) if attrib != "O": # look for tape in tower (occupied="O") E=e_errors.MC_VOLNOTHOME msg = "MOUNT %i: Tape is not in home position. %s => %s,%s" % (E,command,status,response) Trace.log(e_errors.ERROR, msg) return ("ERROR", E, response, "", msg) # check if any tape is mounted in this drive status,stat,response,volser,com_sent = self.query_drive(drive) if stat!=0: E=e_errors.MC_FAILCHKDRV msg = "MOUNT %i: %s => %i,%s" % (E,command,stat,response) Trace.log(e_errors.ERROR, msg) return ("ERROR", E, response, "", msg) if volser != "": # look for any tape mounted in this drive E=e_errors.MC_DRVNOTEMPTY msg = "MOUNT %i: Drive %s is not empty =>. %s => %s,%s" % (E,drive,command,status,response) Trace.log(e_errors.ERROR, msg) return ("ERROR", E, response, "", msg) # execute the command and read the response status,response, delta = self.timed_command(command,2,60*10) if status != 0: E=12 msg = "MOUNT %i: %s => %i,%s" % (E,command,status,response) Trace.log(e_errors.ERROR, msg) return ("ERROR", E, response, "", msg) # got response, parse it and put it into the standard form answer = string.strip(response[1]) if string.find(answer, answer_lookfor,0) != 0: # during cap operations acsls returns an error message containing the information that the volume was actually mounted # if this is a case, process it compared = 0 try: Trace.log(e_errors.INFO, "Ckecking ASCLS message %s %s"%(response, answer_lookfor)) # remove after debugging AM for l in response: if answer_lookfor in l: # ok the volume is actually mounted # but in what drive? requeseted_drive=drive.split(',') l=l.replace(',',' ') ar=l.split() Trace.log(e_errors.INFO, "Requested Drive %s. Comparing to %s"%(requeseted_drive, ar)) # remove after debugging AM same_drive = 0 for i in range(len(requeseted_drive)): if int(requeseted_drive[-(i+1)]) != int(ar[-(i+1)]): break else: same_drive = 1 if same_drive: compared = 1 Trace.log(e_errors.INFO, "The error was
<filename>postprocessedtracer/frame.py from dataclasses import dataclass, field from typing import Tuple, Callable import numba as nb import numpy as np def _convert_type(x): if isinstance(x, np.integer): return int(x) if isinstance(x, np.floating): return float(x) if isinstance(x, bytes): return x.decode('ascii', 'replace') if isinstance(x, np.ndarray): if issubclass(np.obj2sctype(x.dtype), bytes): return _convert_type(x.tolist()) return x.astype(np.obj2sctype(x.dtype)) if isinstance(x, list): return list(map(_convert_type, x)) return x @dataclass(init=False, order=True) class Frame: filename: str = field(compare=False) time: float = field(repr=False) header: dict = field(compare=False, repr=False) data: dict = field(compare=False, repr=False) num_ghost: int = field(compare=False, repr=False) num_dimension: int = field(compare=False, repr=False) boundaries: Tuple[Tuple[str, str], Tuple[str, str], Tuple[str, str]] = field(compare=False, repr=False) mesh_position_to_fractional_position_root: Callable = field(compare=False, repr=False) mesh_position_to_fractional_position_meshblock: Callable = field(compare=False, repr=False) mesh_position_to_meshblock_id: Callable = field(compare=False, repr=False) mesh_position_to_global_indices: Callable = field(compare=False, repr=False) mesh_position_to_local_indices: Callable = field(compare=False, repr=False) global_indices_to_mesh_position: Callable = field(compare=False, repr=False) velocity_to_derivatives: Callable = field(compare=False, repr=False) interpolate_cell_centered: Callable = field(compare=False, repr=False) apply_boundaries: Callable = field(compare=False, repr=False) get_finite_volume: Callable = field(compare=False, repr=False) def __init__(self, filename, boundaries=None): self.filename = filename if boundaries is None: self.boundaries = (('none',) * 2,) * 3 else: try: (ix1, ox1), (ix2, ox2), (ix3, ox3) = boundaries self.boundaries = ((str(ix1), str(ox1)), (str(ix2), str(ox2)), (str(ix3), str(ox3))) except ValueError: raise ValueError('boundaries has to be in the form: ((ix1, ox1), (ix2, ox2), (ix3, ox3))') self._load_header() self.time = self.header['Time'] self.data = {} self._prepare_functions() def load(self, quantities=None): import h5py if quantities is None: quantities = list(self.header['VariableNames']) num_variables = self.header['NumVariables'] dataset_prefix = np.cumsum(num_variables) dataset_offsets = dataset_prefix - dataset_prefix[0] with h5py.File(self.filename, 'r') as f: dataset_names = self.header['DatasetNames'] variable_names = self.header['VariableNames'] for q in quantities: if q in self.data: continue if q not in variable_names: raise RuntimeError(f'Quantity "{q}" not found, ' f'available quantities include {variable_names}') variable_index = variable_names.index(q) dataset_index = np.searchsorted(dataset_prefix, variable_index) variable_index -= dataset_offsets[dataset_index] self.data[q] = _convert_type(f[dataset_names[dataset_index]][variable_index]) def unload(self): self.data = {} def _load_header(self): import h5py with h5py.File(self.filename, 'r') as f: self.header = {} for key in f.attrs: self.header[key] = _convert_type(f.attrs[key]) dataset_names = self.header['DatasetNames'] for key in f.keys(): if key in dataset_names: continue self.header[key] = _convert_type(f[key][:]) def _prepare_functions(self): nx_root = self.header['RootGridSize'] nx_meshblock = self.header['MeshBlockSize'] maxlevel = self.header['MaxLevel'] llocs = self.header['LogicalLocations'] levels = self.header['Levels'] x1f = self.header['x1f'] x2f = self.header['x2f'] x3f = self.header['x3f'] x1v = self.header['x1v'] x2v = self.header['x2v'] x3v = self.header['x3v'] nx1rt, nx2rt, nx3rt = nx_root x1minrt, x1maxrt, x1ratrt = self.header['RootGridX1'] x2minrt, x2maxrt, x2ratrt = self.header['RootGridX2'] x3minrt, x3maxrt, x3ratrt = self.header['RootGridX3'] x1ratnxrt, x2ratnxrt, x3ratnxrt = x1ratrt ** nx1rt, x2ratrt ** nx2rt, x3ratrt ** nx3rt nx1mb, nx2mb, nx3mb = nx_meshblock x1minmb, x1maxmb, x1ratmb = x1f[:, 0], x1f[:, -1], x1ratrt ** (1 / (1 << levels)) x2minmb, x2maxmb, x2ratmb = x2f[:, 0], x2f[:, -1], x2ratrt ** (1 / (1 << levels)) x3minmb, x3maxmb, x3ratmb = x3f[:, 0], x3f[:, -1], x3ratrt ** (1 / (1 << levels)) x1ratnxmb, x2ratnxmb, x3ratnxmb = x1ratmb ** nx1mb, x2ratmb ** nx2mb, x3ratmb ** nx3mb coordinates = self.header['Coordinates'] ndim = int(np.sum(nx_root > 1)) self.num_dimension = ndim (ix1, ox1), (ix2, ox2), (ix3, ox3) = self.boundaries # detect the number of ghost zone, assume the first meshblock has the logical location (0, 0, 0) ngh = np.searchsorted(x1v[0], x1minrt) self.num_ghost = ngh # calculate the numbers of finest meshblock needed nmb = [nx_root[d] // (nx_meshblock[d] - 2 * ngh) << maxlevel if nx_root[d] > 1 else 1 for d in range(3)] # assign meshblock ids to table mbtable = np.empty(nmb, dtype=int) for mb in range(self.header['NumMeshBlocks']): rngs = tuple(slice(llocs[mb, d] << levels[mb], llocs[mb, d] + 1 << levels[mb]) if nx_root[d] > 1 else 0 for d in range(3)) mbtable[tuple(rngs)] = mb # start preparing functions... # given mesh position, return fractional position in root grid @nb.njit(fastmath=True) def mesh_position_to_fractional_position_root(x1_, x2_, x3_): if x1ratrt == 1.0: frac1_ = (x1_ - x1minrt) / (x1maxrt - x1minrt) else: frac1_ = np.log2(1 - (x1_ - x1minrt) / (x1maxrt - x1minrt) * (1 - x1ratnxrt)) / np.log2(x1ratnxrt) if x2ratrt == 1.0: frac2_ = (x2_ - x2minrt) / (x2maxrt - x2minrt) else: frac2_ = np.log2(1 - (x2_ - x2minrt) / (x2maxrt - x2minrt) * (1 - x2ratnxrt)) / np.log2(x2ratnxrt) if x3ratrt == 1.0: frac3_ = (x3_ - x3minrt) / (x3maxrt - x3minrt) else: frac3_ = np.log2(1 - (x3_ - x3minrt) / (x3maxrt - x3minrt) * (1 - x3ratnxrt)) / np.log2(x3ratnxrt) return frac1_, frac2_, frac3_ self.mesh_position_to_fractional_position_root = mesh_position_to_fractional_position_root # given mesh position, return fractional position in meshblock @nb.njit(fastmath=True) def mesh_position_to_fractional_position_meshblock(mb_, x1_, x2_, x3_): x1min_, x1max_, x1rat_ = x1minmb[mb_], x1maxmb[mb_], x1ratmb[mb_] x2min_, x2max_, x2rat_ = x2minmb[mb_], x2maxmb[mb_], x2ratmb[mb_] x3min_, x3max_, x3rat_ = x3minmb[mb_], x3maxmb[mb_], x3ratmb[mb_] x1ratnx_, x2ratnx_, x3ratnx_ = x1ratnxmb[mb_], x2ratnxmb[mb_], x3ratnxmb[mb_] if x1rat_ == 1.0: frac1_ = (x1_ - x1min_) / (x1max_ - x1min_) else: frac1_ = np.log2(1 - (x1_ - x1min_) / (x1max_ - x1min_) * (1 - x1ratnx_)) / np.log2(x1ratnx_) if x2rat_ == 1.0: frac2_ = (x2_ - x2min_) / (x2max_ - x2min_) else: frac2_ = np.log2(1 - (x2_ - x2min_) / (x2max_ - x2min_) * (1 - x1ratnx_)) / np.log2(x1ratnx_) if x3rat_ == 1.0: frac3_ = (x3_ - x3min_) / (x3max_ - x3min_) else: frac3_ = np.log2(1 - (x3_ - x3min_) / (x3max_ - x3min_) * (1 - x3ratnx_)) / np.log2(x3ratnx_) return frac1_, frac2_, frac3_ self.mesh_position_to_fractional_position_meshblock = mesh_position_to_fractional_position_meshblock # given mesh position, return meshblock id of the meshblock that contains the position @nb.njit(fastmath=True) def mesh_position_to_meshblock_id(x1_, x2_, x3_): frac1_, frac2_, frac3_ = mesh_position_to_fractional_position_root(x1_, x2_, x3_) mb1_ = min(max(0, int(frac1_ * mbtable.shape[0])), mbtable.shape[0] - 1) mb2_ = min(max(0, int(frac2_ * mbtable.shape[1])), mbtable.shape[1] - 1) mb3_ = min(max(0, int(frac3_ * mbtable.shape[2])), mbtable.shape[2] - 1) return mbtable[mb1_, mb2_, mb3_] self.mesh_position_to_meshblock_id = mesh_position_to_meshblock_id # given mesh position, return indices in root grid @nb.njit(fastmath=True) def mesh_position_to_global_indices(x1_, x2_, x3_): frac1_, frac2_, frac3_ = mesh_position_to_fractional_position_root(x1_, x2_, x3_) gidx1_ = frac1_ * nx1rt gidx2_ = frac2_ * nx2rt gidx3_ = frac3_ * nx3rt return gidx1_, gidx2_, gidx3_ self.mesh_position_to_global_indices = mesh_position_to_global_indices # given mesh position, return indices in root grid @nb.njit(fastmath=True) def mesh_position_to_local_indices(mb_, x1_, x2_, x3_): frac1_, frac2_, frac3_ = mesh_position_to_fractional_position_meshblock(mb_, x1_, x2_, x3_) lidx1_ = frac1_ * nx1mb lidx2_ = frac2_ * nx2mb lidx3_ = frac3_ * nx3mb return lidx1_, lidx2_, lidx3_ self.mesh_position_to_local_indices = mesh_position_to_local_indices # given indices in root grid, return mesh position @nb.njit(fastmath=True) def global_indices_to_mesh_position(gidx1_, gidx2_, gidx3_): if x1ratrt == 1.0: x1_ = x1minrt + (x1maxrt - x1minrt) * gidx1_ / nx1rt else: x1_ = x1minrt + (x1maxrt - x1minrt) * (1 - x1ratrt ** gidx1_) / (1 - x1ratnxrt) if x2ratrt == 1.0: x2_ = x2minrt + (x2maxrt - x2minrt) * gidx2_ / nx2rt else: x2_ = x2minrt + (x2maxrt - x2minrt) * (1 - x2ratrt ** gidx2_) / (1 - x2ratnxrt) if x3ratrt == 1.0: x3_ = x3minrt + (x3maxrt - x3minrt) * gidx3_ / nx3rt else: x3_ = x3minrt + (x3maxrt - x3minrt) * (1 - x3ratrt ** gidx3_) / (1 - x3ratnxrt) return x1_, x2_, x3_ self.global_indices_to_mesh_position = global_indices_to_mesh_position # given mesh positions and velocities, return derivatives in mesh position @nb.njit(fastmath=True) def velocity_to_derivatives(x1_, x2_, _x3_, v1_, v2_, v3_): if coordinates == 'cartesian': dx1_ = v1_ dx2_ = v2_ dx3_ = v3_ elif coordinates == 'cylindrical': dx1_ = v1_ dx2_ = v2_ / x1_ dx3_ = v3_ elif coordinates == 'spherical_polar': dx1_ = v1_ dx2_ = v2_ / x1_ dx3_ = v3_ / (x1_ * np.sin(x2_)) else: raise RuntimeError('Unrecognized coordinates: ' + coordinates) return dx1_, dx2_, dx3_ self.velocity_to_derivatives = velocity_to_derivatives # given mesh position, return the interpolated cell-centered quantities @nb.njit(fastmath=True) def interpolate_cell_centered(quantities_, mb_, x1_, x2_, x3_): if ndim == 1: w_ = np.ones((1, 1, 2), dtype=np.float64) elif ndim == 2: w_ = np.ones((1, 2, 2), dtype=np.float64) elif ndim == 3: w_ = np.ones((2, 2, 2), dtype=np.float64) else: raise RuntimeError('Unrecognized number of dimension: ' + str(ndim)) lidx1_, lidx2_, lidx3_ = mesh_position_to_local_indices(mb_, x1_, x2_, x3_) l1s_ = int(lidx1_) if x1_ < x1v[mb_, l1s_]: w1_ = 0.5 + 0.5 * (x1_ - x1f[mb_, l1s_]) / (x1v[mb_, l1s_] - x1f[mb_, l1s_]) l1s_, l1e_ = l1s_ - 1, l1s_ + 1 else: w1_ = 0.5 * (x1_ - x1v[mb_, l1s_]) / (x1f[mb_, l1s_ + 1] - x1v[mb_, l1s_]) l1s_, l1e_ = l1s_,
high ## ($\lfloor \texttt{OH}_k(\mathbf{M}_{(j - 1) / 2}) / 2^{64}\rfloor$) ## 64-bit halves from `OH`'s outputs. ## The polynomial hash is parameterised on a single multiplier $f \in ## \mathbb{F}$ and evaluates to ## ## $$ ## CW_f(y) = \left(\sum_{j=0}^{d - 1} y_j \cdot f^{d - j}\right) \bmod 2^{61} - 1, ## $$ ## ## a polynomial of degree $d = 2n$, twice the number of `OH` blocks. ## ## The last step is a finalizer that reversibly mixes the mod $2^{64} ## - 8$ polynomial hash value to improve its distribution and pass ## SMHasher. ## ## # Where do collisions come from? ## ## For strings of 8 or fewer bytes, UMASH uses a different ## parameterised mixing routine for each input size $s \in [0, 8].$ ## Each of these routines is invertible, and the random parameter ## ensures any input value can be mapped to any output value with ## probability $2^{-64}$ (i.e., they're universal hash functions) This ## means the short-string mixers never collide values of the same ## length, and otherwise collides with probability ## $\varepsilon_{\textrm{short}} \approx 2^{-64},$ ## ## For strings of 9 or more bytes, we will show that the second-level ## Carter-Wegman polynomial quickly becomes the dominant source of ## collisions: each block of 256 bytes (except the last, which may be ## short) is compressed to 16 bytes, which increases the polynomial's ## degree by *two*, one for each 64-bit half of the compressed output. ## ## The polynomial is in in $\mathbb{F} = \mathbb{Z}/(2^{61} - 1)\mathbb{Z},$ ## so the collision probability for two polynomials of degree at most ## $d$ is $\approx d \cdot 2^{-61}$, i.e., $\lceil s / 256\rceil 2^{-60}$ ## for strings of $s$ or fewer bytes. ## ## We now have to show that the probability of collision when ## compressing two blocks, a constant, is much smaller than ## the polynomial's, for reasonably sized $s$ (asymptotically, ## that clearly holds). ## ## Let's do so by casting the first-level block compressor as the XOR ## composition of independently sampled mixers, one for each 16-byte ## chunk. For any block, the last mixer is a member of the [`ENH` family](https://eprint.iacr.org/2004/319.pdf#page=4), ## and takes into account both the last 16-byte chunk, and the original ## (pre-extension) size of the block in bytes. ## ## This ENH mixer is $2^{-64}-$almost-universal: the probability that ## two different tuples $(\texttt{chunk}, \texttt{size})$ mix to ## the same value is at most $2^{-64}$. ## ## All other chunks are mixed with [functions from the `PH` family](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.105.9929&rep=rep1&type=pdf#page=3), ## which is $2^{-64}$-almost-XOR-universal: not only will two ## different chunks collide with probability at most $2^{-64}$, ## but, in fact, the bitwise XOR of their mixed values will not take ## any specific value with probability greater than $2^{-64}$. ## ## We can snow show that xor-ing together the output of these mixers ## is $2^{-64}-$almost-universal, by induction on the number of ## chunks. Clearly, that's the case for blocks of one chunk: the ENH ## mixer is $2^{-64}-$almost-universal. Assume two blocks $x$ and $y$ ## of $n > 1$ chunks differ. If their first chunk is identical, they ## only collide if xoring the mixers for the remaining chunks (and ## length tag) collides, and the induction hypothesis says that ## happens with probability at most $2^{-64}.$ If their first chunk ## differs, they'll be mixed with a `PH` function $g$, and they will ## only collide if $g(x_1) \oplus g(y_1)$ matches the difference ## between the hash for the remainder of the chunks. We know `PH` is ## $2^{-64}-$almost-XOR-universal, so that happens with probability at ## most $2^{-64}.$ ## ## If the blocks are identical except for the length tag, the inputs ## to the ENH mixer still differ, so the proof of ## $2^{-64}-$almost-universality holds. ## ## Finally, if one block contains more chunks than the other, the two ## blocks only collide if the longer block's final `ENH` hash matches ## exactly the difference between the two compressed outputs so far. ## This happens for only one `NH` value $x$, and any one value ## occurs with probability at most $2^{-63}$ ($x=0$, the worst case). ## Collisions thus occur between blocks with different chunk counts ## with probability at most $2^{-63}$. ## ## In all cases, the probability of collisions between different blocks ## is at most $2^{-63}.$ However, we feed the 128-bit compressed output ## to the polynomial hash as two values in $\mathbb{F} = \mathbb{Z}/(2^{61} - 1)\mathbb{Z},$ ## which loses less than 7 bits of entropy. In short, the first-level ## block compressor introduces collisions with probability less than ## $2^{-56}.$ ## ## The second-level polynomial hash starts with collision probability ## $\approx 2^{-60},$ but, already at 16 blocks (4096 bytes), we find ## $d = 32,$ and thus a collision probability $\varepsilon_{poly} < ## 2^{-56};$ let's conservatively bump that to $\varepsilon < 2^{-55}$ ## to take the block compressor's collisions into account. Longer ## strings will follow the same progression, so we can claim a ## collision probability $\varepsilon < \lceil s/4096\rceil \cdot 2^{-55}.$ ## ## # What if that's not enough? ## ## We could use a Toeplitz extension to reuse most of the random ## parameters. However, we don't actually need double the ## entropy: in practice, anything stronger than $\approx 2^{-70}$ is ## dominated by hardware failure, incinerated datacenters, or war. ## ## The plan is to apply nearly-reversible *public* shufflers $xs_i$ to ## each `PH` output, and to generate an additional chunk for each ## block by xoring together the chunks and the corresponding `PH` ## parameters. In other words, we will derive an additional ## "checksum" chunk for each block with $\bigoplus m_i \oplus k_i.$ ## This checksum ensures that any two blocks that differ now differ in ## at least two chunks, and is mixed with ## $\mathtt{PH}_{\mathrm{checksum}}$ (i.e., parameterised with an ## independently sampled 128-bit value) before xoring it in the ## secondary compressor's output. ## ## The shuffler $xs$ is the identity for the `ENH` value, and for the ## checksum `PH` mixed value. For the last `PH` value in a block of $n$ chunks, ## $xs_{n - 1}(x) = x \texttt{<<} 1,$ where the bit shift is computed ## independently over $x$'s two 64-bit halves. For other `PH` ## values, $xs_{n - i}(x) = (x \texttt{<<} 1) \oplus (x \texttt{<<} i).$ ## ## What's the quality of this secondary compressor? ## ## The $xs$ shufflers are *nearly* reversible: they only lose two bits to ## the $\texttt{<<} 1$ (a plain xor-shift is fully reversible). The ## composition of $xs$ and `PH` is thus ## $2^{-62}-$almost-XOR-universal. The checksum's plain `PH` is ## $2^{-64}-$almost-XOR-universal, and the `ENH` mixer is still ## $2^{-64}-$almost-universal (and still collides blocks of different ## length with probability at most $2^{-63}$). ## ## After accounting for the bits lost when converting each 64-bit half ## to $\mathbb{F}$ for the polynomial hash, the new block compressor ## collides different blocks with probability at most $2^{-55}.$ Combined ## with an independently sampled second-level polynomial string hash, ## we find an end-to-end collision probability ## $\varepsilon_{\mathrm{secondary}} < \lceil s/8192\rceil \cdot 2^{-54}.$ ## For large enough strings, the new secondary hash is just as good as ## the original UMASH. ## ## However, the real question is what's the probability of collision ## for the secondary UMASH hash when the original collides? The two ## hashes clearly aren't independent, since the secondary hash reuses ## *all* the `PH` and `ENH` outputs, and merely shuffles some of them ## before xoring with each other and with the new checksum chunk's own ## `PH` value. ## ## In the common case, the collision in the primary UMASH is ## introduced by the polynomial hash (i.e., the block compressor ## doesn't collide). In that case, the secondary UMASH's polynomial ## hash is fully independent, so the probability of a collision ## in the secondary hash is still $\varepsilon_{\mathrm{secondary}} < \lceil s/8192\rceil \cdot 2^{-54}.$ ## ## Now, what's the probability that both the secondary block compressor ## collides when the primary compressor already collides? ## ## When the derived checksums differ, `PH`'s ## $2^{-64}-$almost-XOR-universality means that the secondary compressor ## collides with probability at most $2^{-64},$ regardless of what ## happened to the primary compressor. ## ## For blocks of different chunk counts, the checksums match with ## probability at most $2^{-128}$: the checksums $\bigoplus m_i ## \oplus k_i$ include different random 128-bit parameters $k_i$ (the longer ## block includes more random parameters). This leaves ## a collision probability less than $2^{-63}$ for the secondary ## compressor, even when the primary compressor collides. ## ## Otherwise, we have two blocks with identical chunk count $n$, and ##
12 - 12: Oo0Ooo . o0oOOo0O0Ooo - i1IIi - oO0o % IiII . I11i if 17 - 17: i1IIi % OoO0O00 + i11iIiiIii % I1Ii111 * ooOoO0o . I1ii11iIi11i if 64 - 64: O0 - iII111i if 82 - 82: O0 if 37 - 37: I1Ii111 if 98 - 98: iII111i - OoOoOO00 / I1Ii111 . OOooOOo - OOooOOo - ooOoO0o if 84 - 84: OOooOOo * ooOoO0o / O0 def lisp_get_any_translated_port ( ) : for I11i111 in lisp_db_list : for IIiO0Ooo in I11i111 . rloc_set : if ( IIiO0Ooo . translated_rloc . is_null ( ) ) : continue return ( IIiO0Ooo . translated_port ) if 96 - 96: I11i . I11i % II111iiii if 14 - 14: iII111i / OoooooooOO return ( None ) if 8 - 8: OOooOOo + I1IiiI - Oo0Ooo + i1IIi . Ii1I . I1Ii111 if 38 - 38: I1IiiI / II111iiii * OoOoOO00 / I1Ii111 if 80 - 80: I1ii11iIi11i / ooOoO0o * ooOoO0o . Oo0Ooo if 44 - 44: Ii1I * i1IIi % OoOoOO00 . OoOoOO00 if 16 - 16: Oo0Ooo / i1IIi / iIii1I11I1II1 / iIii1I11I1II1 % o0oOOo0O0Ooo / I1ii11iIi11i if 11 - 11: I1IiiI if 45 - 45: OOooOOo / i1IIi * IiII * I1Ii111 if 34 - 34: ooOoO0o / iIii1I11I1II1 . iII111i if 91 - 91: OoO0O00 def lisp_get_any_translated_rloc ( ) : for I11i111 in lisp_db_list : for IIiO0Ooo in I11i111 . rloc_set : if ( IIiO0Ooo . translated_rloc . is_null ( ) ) : continue return ( IIiO0Ooo . translated_rloc ) if 8 - 8: oO0o if 96 - 96: IiII return ( None ) if 37 - 37: Ii1I % i11iIiiIii + iIii1I11I1II1 % Oo0Ooo - iIii1I11I1II1 if 26 - 26: o0oOOo0O0Ooo . i1IIi if 62 - 62: IiII * I1ii11iIi11i % iIii1I11I1II1 / II111iiii - OoO0O00 if 52 - 52: iII111i . I11i - I11i + oO0o + iIii1I11I1II1 if 83 - 83: I11i * iIii1I11I1II1 + OoOoOO00 if 81 - 81: ooOoO0o * OOooOOo / OoO0O00 + I1ii11iIi11i % I1Ii111 if 37 - 37: i11iIiiIii - OoooooooOO - OoOoOO00 * oO0o / Ii1I def lisp_get_all_translated_rlocs ( ) : OooOo = [ ] for I11i111 in lisp_db_list : for IIiO0Ooo in I11i111 . rloc_set : if ( IIiO0Ooo . is_rloc_translated ( ) == False ) : continue o0o0O00 = IIiO0Ooo . translated_rloc . print_address_no_iid ( ) OooOo . append ( o0o0O00 ) if 82 - 82: i11iIiiIii * OoOoOO00 . i1IIi + IiII * ooOoO0o if 75 - 75: iIii1I11I1II1 / IiII / II111iiii . I11i return ( OooOo ) if 23 - 23: OOooOOo . ooOoO0o - iII111i % Ii1I . I1ii11iIi11i + IiII if 81 - 81: I11i if 5 - 5: OoooooooOO if 5 - 5: iII111i + oO0o % O0 . OoooooooOO + i1IIi if 55 - 55: I1ii11iIi11i if 34 - 34: OoO0O00 * iIii1I11I1II1 . iIii1I11I1II1 if 39 - 39: o0oOOo0O0Ooo if 29 - 29: Oo0Ooo . Oo0Ooo * OoO0O00 % Ii1I - ooOoO0o def lisp_update_default_routes ( map_resolver , iid , rtr_list ) : OOOoOO = ( os . getenv ( "LISP_RTR_BEHIND_NAT" ) != None ) if 67 - 67: I1IiiI % O0 + I1IiiI * I1Ii111 * OoOoOO00 * II111iiii oOoO0 = { } for oOOoo0O00 in rtr_list : if ( oOOoo0O00 == None ) : continue o0o0O00 = rtr_list [ oOOoo0O00 ] if ( OOOoOO and o0o0O00 . is_private_address ( ) ) : continue oOoO0 [ oOOoo0O00 ] = o0o0O00 if 76 - 76: i11iIiiIii . I1IiiI - I1Ii111 rtr_list = oOoO0 if 6 - 6: I1IiiI / i1IIi + IiII / iIii1I11I1II1 iIi1i = [ ] for oOo00Oo0o00oo in [ LISP_AFI_IPV4 , LISP_AFI_IPV6 , LISP_AFI_MAC ] : if ( oOo00Oo0o00oo == LISP_AFI_MAC and lisp_l2_overlay == False ) : break if 5 - 5: OoOoOO00 . iIii1I11I1II1 + iII111i if 63 - 63: i1IIi if 24 - 24: i11iIiiIii % iII111i . oO0o if 44 - 44: II111iiii - OoO0O00 + i11iIiiIii if 34 - 34: I1ii11iIi11i % ooOoO0o / II111iiii * O0 % OOooOOo OOoOOoo = lisp_address ( oOo00Oo0o00oo , "" , 0 , iid ) OOoOOoo . make_default_route ( OOoOOoo ) Iii1 = lisp_map_cache . lookup_cache ( OOoOOoo , True ) if ( Iii1 ) : if ( Iii1 . checkpoint_entry ) : lprint ( "Updating checkpoint entry for {}" . format ( green ( Iii1 . print_eid_tuple ( ) , False ) ) ) if 9 - 9: I1ii11iIi11i / I1ii11iIi11i - OOooOOo . iIii1I11I1II1 elif ( Iii1 . do_rloc_sets_match ( rtr_list . values ( ) ) ) : continue if 33 - 33: I1IiiI + oO0o % I1IiiI / iII111i - ooOoO0o - i11iIiiIii Iii1 . delete_cache ( ) if 39 - 39: i11iIiiIii / oO0o if 71 - 71: I1Ii111 * iIii1I11I1II1 - I1Ii111 iIi1i . append ( [ OOoOOoo , "" ] ) if 87 - 87: I1IiiI / Ii1I if 54 - 54: OoooooooOO / Ii1I if 26 - 26: o0oOOo0O0Ooo + OoO0O00 if 59 - 59: Ii1I * IiII ii1I1 = lisp_address ( oOo00Oo0o00oo , "" , 0 , iid ) ii1I1 . make_default_multicast_route ( ii1I1 ) o0OiiI1iiI11 = lisp_map_cache . lookup_cache ( ii1I1 , True ) if ( o0OiiI1iiI11 ) : o0OiiI1iiI11 = o0OiiI1iiI11 . source_cache . lookup_cache ( OOoOOoo , True ) if ( o0OiiI1iiI11 ) : o0OiiI1iiI11 . delete_cache ( ) if 3 - 3: I11i iIi1i . append ( [ OOoOOoo , ii1I1 ] ) if 55 - 55: OoO0O00 . i11iIiiIii . o0oOOo0O0Ooo % iIii1I11I1II1 . I1ii11iIi11i * I11i if ( len ( iIi1i ) == 0 ) : return if 7 - 7: OoOoOO00 * iII111i - i11iIiiIii if 79 - 79: OOooOOo if 2 - 2: I11i % I1Ii111 - OoO0O00 % OoO0O00 % OOooOOo - OoO0O00 if 3 - 3: iIii1I11I1II1 + iIii1I11I1II1 + OoO0O00 iii1Ii1i1i1I = [ ] for iI11I1I in rtr_list : oo00OOo000o0 = rtr_list [ iI11I1I ] IIiO0Ooo = lisp_rloc ( ) IIiO0Ooo . rloc . copy_address ( oo00OOo000o0 ) IIiO0Ooo . priority = 254 IIiO0Ooo . mpriority = 255 IIiO0Ooo . rloc_name = "RTR" iii1Ii1i1i1I . append ( IIiO0Ooo ) if 82 - 82: OoOoOO00 - OoOoOO00 + iIii1I11I1II1 + o0oOOo0O0Ooo + IiII - o0oOOo0O0Ooo if 65 - 65: I1Ii111 + OOooOOo for OOoOOoo in iIi1i : Iii1 = lisp_mapping ( OOoOOoo [ 0 ] , OOoOOoo [ 1 ] , iii1Ii1i1i1I ) Iii1 . mapping_source = map_resolver Iii1 . map_cache_ttl = LISP_MR_TTL * 60 Iii1 . add_cache ( ) lprint ( "Add {} to map-cache with RTR RLOC-set: {}" . format ( green ( Iii1 . print_eid_tuple ( ) , False ) , rtr_list . keys ( ) ) ) if 97 - 97: oO0o % OoOoOO00 * oO0o % II111iiii + iIii1I11I1II1 iii1Ii1i1i1I = copy . deepcopy ( iii1Ii1i1i1I ) if 11 - 11: ooOoO0o . o0oOOo0O0Ooo return if 94 - 94: ooOoO0o . oO0o * OoooooooOO % oO0o if 77 - 77: ooOoO0o % I1IiiI if 26 - 26: o0oOOo0O0Ooo if 72 - 72: I1IiiI if 90 - 90: ooOoO0o if 67 - 67: iIii1I11I1II1 + i1IIi * I1IiiI * OoooooooOO if 23 - 23: IiII if 32 - 32: OoOoOO00 - iII111i % oO0o / I1ii11iIi11i - o0oOOo0O0Ooo if 52 - 52: Ii1I / OoooooooOO % i11iIiiIii + iII111i if 59 - 59: Ii1I / o0oOOo0O0Ooo / oO0o + iII111i * I1ii11iIi11i - o0oOOo0O0Ooo def lisp_process_info_reply ( source , packet , store ) : if 70 - 70: O0 / I1ii11iIi11i + ooOoO0o . OoO0O00 - OoO0O00 / i11iIiiIii if 1 - 1: iIii1I11I1II1 % I1ii11iIi11i if 49 - 49: iII111i + o0oOOo0O0Ooo % I1ii11iIi11i . O0 % OoooooooOO . o0oOOo0O0Ooo if 3 - 3: i11iIiiIii - i1IIi * o0oOOo0O0Ooo / OoOoOO00 % Oo0Ooo i1iii11iiiI1I = lisp_info ( )
<reponame>flare561/berry # -*- coding: utf-8 -*- import HTMLParser import random import requests import datetime import socket import oembed import urllib2 import urllib import threading import functools import lxml.html import lxml.etree as etree from lxml import html import wikipedia as wiki import re import arrow import string import romkan from googletrans import Translator from urlparse import urlparse from evaluate_function import solve_equation def register(tag, value): def wrapped(fn): @functools.wraps(fn) def wrapped_f(*args, **kwargs): return fn(*args, **kwargs) setattr(wrapped_f, tag, value) return wrapped_f return wrapped def is_str_allowed(str, bannedwords): for pattern in bannedwords: escapedv = re.escape(pattern) escapedv = escapedv.replace('\\*', '.*') matches = re.search(escapedv, str) if matches: return False return True def is_all_str_allowed(strs, bannedwords): for str in strs: if not is_str_allowed(str, bannedwords): return False return True class commands: def __init__(self, send_message, send_action, banned_words, config): self.send_message = send_message self.config = config self.send_action = send_action self.banned_words = banned_words def regex_yt(self, event): ytmatch = re.compile( "https?:\/\/(?:[0-9A-Z-]+\.)?(?:youtu\.be\/|youtube\.com\S*[^\w\-\s" "])([\w\-]{11})(?=[^\w\-]|$)(?![?=&+%\w]*(?:['\"][^<>]*>|<\/a>))[?=" "&+%\w-]*", flags=re.I) matches = ytmatch.findall(event.message) for x in matches: try: t = requests.get( 'https://www.googleapis.com/youtube/v3/videos', params=dict( part='statistics,contentDetails,snippet', fields='items/snippet/title,' 'items/snippet/channelTitle,' 'items/contentDetails/duration,' 'items/statistics/viewCount,' 'items/statistics/likeCount,' 'items/statistics/dislikeCount,' 'items/snippet/publishedAt', maxResults='1', key=self.config['googleKey'], id=x)) t = t.json()['items'][0] title = t['snippet']['title'] uploader = t['snippet']['channelTitle'] viewcount = t['statistics']['viewCount'] timediff = arrow.get(t['snippet']['publishedAt']).humanize() if 'likeCount' in t['statistics'] and 'dislikeCount' in t['statistics']: likes = float(t['statistics']['likeCount']) dislikes = float(t['statistics']['dislikeCount']) if (dislikes > 0): rating = str(int((likes / (likes + dislikes)) * 100)) + '%' elif dislikes == 0 and likes == 0: rating = 'unrated' else: rating = "100%" else: rating = 'unrated' durationregex = re.compile( 'PT(?:(\d+)H)?(?:(\d+)M)?(?:(\d+)S)?', re.I) matches = durationregex.findall( t['contentDetails']['duration']) if matches: matches = matches[0] hours = int(matches[0]) if matches[0] != '' else 0 minutes = int(matches[1]) if matches[1] != '' else 0 seconds = int(matches[2]) if matches[2] != '' else 0 duration = str( datetime.timedelta( hours=hours, minutes=minutes, seconds=seconds)) else: duration = 'Ongoing' viewcount = format(int(viewcount), ',') self.send_message(event.respond, u'{} | {} | {} | {} | {} | {}'.format( title, uploader, viewcount, timediff, rating, duration).encode( 'utf-8', 'replace')) except: raise def command_yt(self, event): '''Usage: ~yt <terms> Used to search youtube with the given terms''' try: j = requests.get( 'https://www.googleapis.com/youtube/v3/search', params=dict( part='snippet', fields='items/id', safeSearch='none', maxResults='1', key=self.config['googleKey'], type='video', q=event.params)).json() vidid = j['items'][0]['id']['videoId'] t = requests.get( 'https://www.googleapis.com/youtube/v3/videos', params=dict( part='statistics,contentDetails,snippet', fields='items/snippet/title,' 'items/snippet/channelTitle,' 'items/contentDetails/duration,' 'items/statistics/viewCount,' 'items/statistics/likeCount,' 'items/statistics/dislikeCount,' 'items/snippet/publishedAt', maxResults='1', key=self.config['googleKey'], id=vidid)).json()['items'][0] title = t['snippet']['title'] uploader = t['snippet']['channelTitle'] viewcount = t['statistics']['viewCount'] timediff = arrow.get(t['snippet']['publishedAt']).humanize() if 'likeCount' in t['statistics'] and 'dislikeCount' in t['statistics']: likes = float(t['statistics']['likeCount']) dislikes = float(t['statistics']['dislikeCount']) if (dislikes > 0): rating = str(int((likes / (likes + dislikes)) * 100)) + '%' else: rating = "100%" else: rating = 'unrated' durationregex = re.compile('PT(?:(\d+)H)?(?:(\d+)M)?(?:(\d+)S)?', re.I) matches = durationregex.findall(t['contentDetails']['duration'])[0] hours = int(matches[0]) if matches[0] != '' else 0 minutes = int(matches[1]) if matches[1] != '' else 0 seconds = int(matches[2]) if matches[2] != '' else 0 duration = str( datetime.timedelta( hours=hours, minutes=minutes, seconds=seconds)) viewcount = format(int(viewcount), ',') self.send_message( event.respond, u'https://youtu.be/{} > {} | {} | {} | {} | {} | {}'.format( vidid, title, uploader, viewcount, timediff, rating, duration).encode('utf-8', 'replace')) except: self.send_message(event.respond, "No results") raise def command_g(self, event): '''Usage: ~g <terms> Used to search google with the given terms''' try: t = requests.get( 'https://www.googleapis.com/customsearch/v1', params=dict( q=event.params, cx=self.config['googleengine'], key=self.config['googleKey'], safe='off')).json() index = 0 while (len(t['items']) > index + 1 and not is_all_str_allowed([ t['items'][index]['title'], t['items'][index]['link'] ], self.banned_words)): index += 1 t = t['items'][index] self.send_message(event.respond, u'{}: {}'.format( t['title'], t['link']).encode('utf-8', 'replace')) except: self.send_message(event.respond, "No results") raise def command_tvtropes(self, event): '''Usage: ~tvtropes <terms> Searches TvTropes for a given trope.''' event.params = 'site:tvtropes.org ' + event.params self.command_g(event) @register('nsfw', True) def command_rande621(self, event): '''Usage: ~rande621 <tags> Used to search e621.net for a random picture with the given tags''' try: j = requests.get( "https://e621.net/posts.json", params=dict(limit="100", tags=event.params), headers={'User-Agent': 'Raribot IRC Bot github.com/flare561/berry'}).json()['posts'] if (len(j) > 0): try: selection = random.choice(j) if selection['tags']['artist'] != []: artist = " & ".join(selection['tags']['artist']) else: artist = 'N/A' if selection['rating'] == 'e': rating = 'Explicit' elif selection['rating'] == 's': rating = 'Safe' else: rating = 'Questionable' self.send_message( event.respond, u'http://e621.net/posts/{0[id]} | Artist(s): {1} | Score: {0[score][total]} | Rating: {2} | Post Date: {3}'. format(selection, artist, rating, arrow.get(selection['created_at']).format( 'YYYY-MM-DD')).encode('utf-8', 'replace')) except: self.send_message( event.respond, "An error occurred while fetching your post.") raise else: self.send_message(event.respond, "No Results") except: self.send_message(event.respond, "An error occurred while fetching your post.") raise def command_randdev(self, event): '''Usage: ~randdev Returns a random image from Deviant Art''' try: if event.params != '': search_for = event.params source = requests.get('https://www.deviantart.com/newest/?q={}'.format(search_for)).text else: for _ in range(10): search_for = ''.join(random.choice(string.ascii_lowercase) for _ in range(3)) source = requests.get('https://www.deviantart.com/newest/?q={}'.format(search_for)).text if 'Sorry, we found no relevant results.' not in source: break parsed = html.fromstring(source) results = parsed.xpath('//*[@id="page-1-results"]//*[@data-super-alt and @href]') final = random.choice(results) self.send_message(event.respond, '{} | {}'.format(final.attrib['data-super-alt'], final.attrib['href'])) except: self.send_message(event.respond, 'Something is a little fucky wucky!') @register('nsfw', True) def command_randgel(self, event): '''Usage: ~randgel <tags> Used to search gelbooru.com for a random picture with the given tags''' try: ratings = {'e': 'Explicit', 's': 'Safe', 'q': 'Questionable'} params = dict( page='dapi', s='post', q='index', json='1', limit='100', api_key="anonymous", user_id="9455", tags=event.params) resp = requests.get('https://gelbooru.com/index.php', params=params, cookies={"fringeBenefits":"yep"}).json() if len(resp) > 0: select = random.choice(resp) response = [] response.append('https://gelbooru.com/index.php?page=post&s=view&id=%s' % select[u'id']) params['s'] = 'tag' params['names'] = select[u'tags'] del params['tags'] resp = requests.get('https://gelbooru.com/index.php', params=params, cookies={"fringeBenefits":"yep"}).json() for tag in resp: if tag[u'type'].lower() == 'artist': response.append('Artist: %s' % tag[u'tag']) break response.append('Rating: %s' % ratings[select[u'rating']]) response.append('Score: %s' % select[u'score']) if 'loli' in select[u'tags'] or 'shota' in select[u'tags']: response.append('Direct: %s' % select[u'file_url']) self.send_message( event.respond, " | ".join(response).encode('utf-8', 'replace')) else: self.send_message(event.respond, 'No Results') except: self.send_message(event.respond, 'An error occurred while fetching your post.') raise @register('nsfw', True) def command_clop(self, event): '''Usage: ~clop <optional extra tags> Searches e621 for a random image with the tags rating:e and my_little_pony''' event.params += ' rating:e my_little_pony' self.command_rande621(event) def command_git(self, event): '''Usage: Links to the repository for lazy fucks. ~git <arg> will link to the line for that command, if applicable.''' if not event.params: self.send_message(event.respond, 'https://github.com/flare561/berry') else: try: code = requests.get("https://raw.githubusercontent.com/flare561/berry/master/commands.py").text for i, line in enumerate(code.split("\n")): if "def command_{}".format(event.params) in line: self.send_message(event.respond, 'https://github.com/flare561/berry/blob/master/commands.py#L{}'.format(i+1)) break else: self.send_message(event.respond, 'Command not found! Try checking your spelling?') except: self.send_message(event.respond, 'Command not found! Maybe github is down?') def command_ja(self, event): '''Usage: ~ja <k/h/r> <arg> displays katakana/hiragana/romaji for a given argument, converting between romaji and kana''' try: dest, phrase = event.params.split(' ', 1) dest = dest.lower() if dest == 'k': resp = romkan.to_katakana(phrase) elif dest == 'h': resp = romkan.to_hiragana(phrase) elif dest == 'r': resp = romkan.to_roma(phrase.decode('utf-8')) else: raise self.send_message(event.respond, resp) except: self.send_message(event.respond, 'Invalid input, please check syntax.') raise def command_translate(self, event): '''Usage: Just use the right fucking command.''' self.command_tr(event) def command_tr(self, event): '''Usage: ~tr <languageTo> <phrase> The bot will auto-detect the language of the targeted text.''' try: translator = Translator() phrase = event.params.split() translated = translator.translate(' '.join(phrase[1:]),dest= phrase[0]) text = 'Translated from {}: {}'.format(translated.src,translated.text.encode('utf-8', 'replace')) if len(text) > 397: text = text[0:396] + '...' self.send_message(event.respond, text) except: self.send_message( event.respond, 'Translation unsuccessful! Maybe the service is down?') def command_trs(self, event): '''Usage: It's like ~tr, but more specific. Use it by doing ~trs <languageFrom> <languageTo> <phrase>''' try: translator = Translator() phrase = event.params.split() translated = translator.translate(' '.join(phrase[2:]),dest=phrase[1],src=phrase[0]) text = 'Translated from {} to {}: {}'.format(translated.src,translated.dest,translated.text.encode('utf-8', 'replace')) if len(text) > 397: text = text[0:396] + '...' self.send_message(event.respond, text) except: self.send_message( event.respond, 'Translation unsuccessful! Maybe the service is down?') raise def command_wolf(self, event): '''Usage: ~wolf <query> Searches wolfram alpha for your query''' try: s = requests.get( "http://api.wolframalpha.com/v2/query", params=dict( input=event.params, appid=self.config['wolframKey'])).text x = etree.fromstring(s.encode('UTF-8', 'replace')) d = x.xpath('//pod[@primary="true"]/subpod/plaintext') results = [ o.text.replace('\n', ' ').encode('utf-8', 'replace') for o in d ] search_url = "http://www.wolframalpha.com/input/?i={}".format( urllib.quote(event.params, '')) if len(results) < 1: responseStr = "No results available, try the query page:" else: responseStr = '; '.join(results) if (len(responseStr) + len(search_url)) > 390: responseStr = responseStr[:(390 - len(search_url))] + "..." responseStr += " " + search_url self.send_message(event.respond, responseStr) except: self.send_message(event.respond, "Error with the service") raise def command_weather(self, event): '''Usage: ~weather <location> Gets the weather for a location from wolfram alpha''' event.params = 'weather ' + event.params self.command_wolf(event) def command_define(self, event): '''Usage: ~define <word> Gets the definition of a word from wolfram alpha''' event.params = 'define ' + event.params self.command_wolf(event) def command_imdb(self, event): '''Usage: ~imdb <movie title> Provides basic information of a given movie,
<filename>ndrive/client.py # -*- coding: utf-8 -*- """ ==================================== ndrive ==================================== What is ndrive ============== ndrive is a Naver Ndrive wrapper for python Getting started =============== git clone https://github.com/carpedm20/pyndrive.git Copyright ========= Copyright 2014 <NAME> """ import os, sys from os.path import expanduser import urllib, urllib2 import requests import simplejson as json import magic import datetime import re from .auth import getCookie from .urls import ndrive_urls as nurls from .utils import byte_readable ############################################################################### class Ndrive(object): """Initialize ``NdriveClient`` instance. Using given user information, login to ndrive server and create a session :param bool debug: (optional) print all metadata of http requests :param str NID_AUT: (optional) Naver account authentication info :param str NID_SES: (optional) Naver account session info Usage:: >>> from ndrive import Ndrive >>> nd = Ndrive() """ debug = False session = requests.session() def __init__(self, debug = False, NID_AUT = None, NID_SES= None): self.debug = debug self.session.headers["User-Agent"] = \ "Mozilla/5.0 (Windows NT 6.2; WOW64) Chrome/32.0.1700.76 Safari/537.36" self.session.cookies.set('NID_AUT', NID_AUT) self.session.cookies.set('NID_SES', NID_SES) def login(self, user_id, password, svctype = "Android NDrive App ver", auth = 0): """Log in Naver and get cookie >>> s = nd.login("YOUR_ID", "YOUR_PASSWORD") :param str user_id: Naver account's login id :param str password: Naver account's login password :param str svctype: Service type :param auth: ??? :return: ``True`` when success to login or ``False`` """ self.user_id = user_id self.password = password if self.user_id == None or self.password == None: print "[*] Error __init__: user_id and password is needed" return False try: cookie = getCookie(user_id, password) except: print "[*] Error getCookie: failed" return False self.session.cookies.set('NID_AUT', cookie["NID_AUT"]) self.session.cookies.set('NID_SES', cookie["NID_SES"]) s, metadata = self.getRegisterUserInfo(svctype, auth) if s is True: return True else: print "[*] Error getRegisterUserInfo: " + metadata['message'] return False def checkAccount(self): if self.useridx is None: return False, "Error checkStatus: useridx is not defined" elif self.user_id is None: return False, "Error checkStatus: userId is not defined" else: return True, None def GET(self, func, data): """Send GET request to execute Ndrive API :param func: The function name you want to execute in Ndrive API. :param params: Parameter data for HTTP request. :returns: metadata when success or False when failed """ if func not in ['getRegisterUserInfo']: s, message = self.checkAccount() if s is False: return False, message url = nurls[func] r = self.session.get(url, params = data) r.encoding = 'utf-8' if self.debug: print r.text try: try: metadata = json.loads(r.text) except: metadata = json.loads(r.text[r.text.find('{'):-1]) message = metadata['message'] if message == 'success': return True, metadata['resultvalue'] else: return False, message except: for e in sys.exc_info(): print e sys.exit(1) return False, "Error %s: Failed to send GET request" %func def POST(self, func, data): """Send POST request to execute Ndrive API :param func: The function name you want to execute in Ndrive API. :param params: Parameter data for HTTP request. :returns: ``metadata`` when success or ``False`` when failed """ s, message = self.checkAccount() if s is False: return False, message url = nurls[func] r = self.session.post(url, data = data) r.encoding = 'utf-8' if self.debug: print r.text.encode("utf-8") try: metadata = json.loads(r.text) message = metadata['message'] if message == 'success': try: return True, metadata['resultvalue'] except: return True, metadata['resultcode'] else: return False, "Error %s: %s" %(func, message) except: #for e in sys.exc_info(): # print e #sys.exit(1) return False, "Error %s: Failed to send POST request" %func def getRegisterUserInfo(self, svctype = "Android NDrive App ver", auth = 0): """Retrieve information about useridx :param svctype: Information about the platform you are using right now. :param auth: Authentication type :return: ``True`` when success or ``False`` when failed """ data = {'userid': self.user_id, 'svctype': svctype, 'auth': auth } s, metadata = self.GET('getRegisterUserInfo', data) if s is True: self.useridx = metadata['useridx'] return True, metadata else: return False, metadata def checkStatus(self): """Check status Check whether it is possible to access Ndrive or not. :return: ``True`` when success or ``False`` when failed. """ self.checkAccount() data = {'userid': self.user_id, 'useridx': self.useridx } r = self.session.post(nurls['checkStatus'], data = data) r.encoding = 'utf-8' p = re.compile(r'\<message\>(?P<message>.+)\</message\>') message = p.search(r.text).group('message') if message == 'success': return True else: return False def uploadFile(self, file_obj, full_path, overwrite = False): """Upload a file as Ndrive really do. >>> nd.uploadFile('~/flower.png','/Picture/flower.png',True) This function imitates the process when Ndrive uploads a local file to its server. The process follows 7 steps: 1. POST /CheckStatus.ndrive 2. POST /GetDiskSpace.ndrive 3. POST /CheckUpload.ndrive 4. PUT /FILE_PATH 5. POST /GetList.ndrive 6. POST /GetWasteInfo.ndrive 7. POST /GetDiskSpace.ndrive nd.uploadFile('./flower.png','/Picture/flower.png') :param file_obj: A file-like object to check whether possible to upload. You can pass a string as a file_obj or a real file object. :param full_path: The full path to upload the file to, *including the file name*. If the destination directory does not yet exist, it will be created. :param overwrite: Whether to overwrite an existing file at the given path. (Default ``False``.) """ s = self.checkStatus() s = self.getDiskSpace() s = self.checkUpload(file_obj, full_path, overwrite) if s is True: self.put(file_obj, full_path, overwrite) def getDiskSpace(self): """Get disk space information. >>> disk_info = nd.getDiskSpace() :return: ``metadata`` if success or ``error message`` :metadata: - expandablespace - filemaxsize - largefileminsize - largefileunusedspace - largefileusedspace - paymentspace - totallargespace - totalspace - unusedspace - usedspace """ data = {'userid': self.user_id, 'useridx': self.useridx, } s, metadata = self.POST('getDiskSpace',data) if s is True: usedspace = byte_readable(metadata['usedspace']) totalspace = byte_readable(metadata['totalspace']) print "Capacity: %s / %s" % (usedspace, totalspace) return metadata else: print message def checkUpload(self, file_obj, full_path = '/', overwrite = False): """Check whether it is possible to upload a file. >>> s = nd.checkUpload('~/flower.png','/Picture/flower.png') :param file_obj: A file-like object to check whether possible to upload. You can pass a string as a file_obj or a real file object. :param str full_path: The full path to upload the file to, *including the file name*. If the destination directory does not yet exist, it will be created. :param overwrite: Whether to overwrite an existing file at the given path. (Default ``False``.) :return: ``True`` if possible to upload or ``False`` if impossible to upload. """ try: file_obj = file_obj.name except: file_obj = file_obj # do nothing file_size = os.stat(file_obj).st_size now = datetime.datetime.now().isoformat() data = {'uploadsize': file_size, 'overwrite': 'T' if overwrite else 'F', 'getlastmodified': now, 'dstresource': full_path, 'userid': self.user_id, 'useridx': self.useridx, } s, metadata = self.POST('checkUpload', data) if not s: print metadata return s def downloadFile(self, from_path, to_path = ''): """Download a file. >>> nd.downloadFile('/Picture/flower.png', '~/flower.png') :param from_path: The full path to download the file to, *including the file name*. If the destination directory does not yet exist, it will be created. :param to_path: The full path of a file to be saved in local directory. :returns: File object """ if to_path == '': file_name = os.path.basename(from_path) to_path = os.path.join(os.getcwd(), file_name) url = nurls['download'] + from_path data = {'attachment':2, 'userid': self.user_id, 'useridx': self.useridx, 'NDriveSvcType': "NHN/ND-WEB Ver", } if '~' in to_path: to_path = expanduser(to_path) with open(to_path, 'wb') as handle: request = self.session.get(url, params = data, stream=True) for block in request.iter_content(1024): if not block: break handle.write(block) return handle def put(self, file_obj, full_path, overwrite = False): """Upload a file. >>> nd.put('./flower.png','/Picture/flower.png') >>> nd.put(open('./flower.png','r'),'/Picture/flower.png') :param file_obj: A file-like object to check whether possible to upload. You can pass a string as a file_obj or a real file object. :param full_path: The full path to upload the file to, *including the file name*. If the destination directory does not yet exist, it will be created. :return: ``True`` when succcess to upload a file or ``False`` """ try: file_obj = open(file_obj, 'r') except: file_obj = file_obj # do nothing content = file_obj.read() file_name = os.path.basename(full_path) now = datetime.datetime.now().isoformat() url = nurls['put'] + full_path if overwrite: overwrite = 'T' else: overwrite = 'F' headers = {'userid': self.user_id, 'useridx': self.useridx, 'MODIFYDATE': now, 'Content-Type': magic.from_file(file_obj.name, mime=True), 'charset': 'UTF-8', 'Origin': 'http://ndrive2.naver.com', 'OVERWRITE': overwrite, 'X-Requested-With': 'XMLHttpRequest', 'NDriveSvcType': 'NHN/DRAGDROP Ver', } r = self.session.put(url = url, data = content, headers = headers) r.encoding = 'utf-8' message = json.loads(r.text)['message'] if message != 'success': print "Error put: " + message return False else: print "Success put: " + file_obj.name return True def delete(self, full_path): """Delete a file
<reponame>cgruber/make-open-easy<filename>moe/scrubber/scrubber.py #!/usr/bin/env python # Copyright 2009 Google Inc. All Rights Reserved. """Scrubber scrubs. Usage: scrubber [DIRECTORY] Args: directory: a directory to scan """ __author__ = '<EMAIL> (<NAME>)' import locale import os import re import shutil import stat import subprocess import sys import tempfile from google.apputils import app from google.apputils import file_util import gflags as flags from google.apputils import resources from google.apputils import stopwatch from moe import config_utils from moe.scrubber import base from moe.scrubber import c_include_scrubber from moe.scrubber import comment_scrubber from moe.scrubber import gwt_xml_scrubber from moe.scrubber import java_scrubber from moe.scrubber import line_scrubber from moe.scrubber import python_scrubber from moe.scrubber import renamer from moe.scrubber import replacer from moe.scrubber import sensitive_string_scrubber from moe.scrubber import usernames from moe.scrubber import whitelist FLAGS = flags.FLAGS flags.DEFINE_bool('modify', False, 'Modify files to scrub information') flags.DEFINE_bool('stopwatch', True, 'Detail where time went (for debugging)') flags.DEFINE_string('output_tar', '', 'Path of where to write a tar of scrubbed codebase') flags.DEFINE_string('config_file', '', 'Path to config file') flags.DEFINE_string('config_data', '', 'Text of the scrubber config') flags.DEFINE_string('explicit_inputfile_list', '', 'List of files (with same base directory) to scrub') flags.DEFINE_string('temp_dir', '', 'Path of a temporary directory to use') DIFFS_DIR = 'diffs' ORIGINAL_DIR = 'originals' OUTPUT_DIR = 'output' MODIFIED_DIR = 'modified' MAIN_USAGE_STRING = ( 'List exactly one directory to scrub and, if you want, set ' '--explicit_inputfile_list to provide a list of input files.') class ScrubberConfig(object): """The config for a run of the scrubber. ScrubberConfig holds all immutable config, so the only members in ScrubberContext should be mutated or derived data. This allows other scrubbing-binaries to replace all the configuration. """ def __init__(self, codebase, input_files, extension_to_scrubber_map, default_scrubbers, modify, output_tar, temp_dir): # Other object state. self.codebase = os.path.abspath(codebase) self.input_files = input_files self.modify = modify self.output_tar = output_tar self.temp_dir = temp_dir self._comment_scrubbers = None self._sensitive_string_scrubbers = None # General options. #If no ignore_files_re given, then we want to ignore no files, # which means matching no strings. Simiarly for # do_not_scrub_files. '$a' is a regex that matches no strings. self.ignore_files_re = re.compile('$a') self.do_not_scrub_files_re = re.compile('$a') self.extension_map = [] self.sensitive_words = [] self.sensitive_res = [] self.whitelist = whitelist.Whitelist([]) self.scrub_sensitive_comments = True self.rearranging_config = {} self.string_replacements = [] self.regex_replacements = [] # Username options. self.scrubbable_usernames = None self.publishable_usernames = None self.usernames_file = None self.scrub_unknown_users = False self.scrub_authors = True self.scrub_proto_comments = False self.scrub_non_documentation_comments = False self.scrub_all_comments = False # C/C++-specific options. self.c_includes_config_file = None # Java-specific options. self.scrub_java_testsize_annotations = False self.maximum_blank_lines = 0 self.empty_java_file_action = base.ACTION_IGNORE self.java_renames = [] # Javascript-specific options. self.js_directory_renames = [] # Python-specific options. self.python_module_renames = [] self.python_module_removes = [] self.python_shebang_replace = None # GWT-specific options. self.scrub_gwt_inherits = [] # TODO(dborowitz): Make this a config option. self.known_filenames = set([ '.gitignore', 'AUTHORS', 'CONTRIBUTORS', 'COPYING', 'LICENSE', 'Makefile', 'README']) self.ResetScrubbers(extension_to_scrubber_map, default_scrubbers) def ResetScrubbers(self, extension_to_scrubber_map, default_scrubbers): """Reset scrubbers in this config given the arguments.""" self._sensitive_string_scrubbers = None self._comment_scrubbers = None self.username_filter = usernames.UsernameFilter( usernames_file=self.usernames_file, publishable_usernames=self.publishable_usernames, scrubbable_usernames=self.scrubbable_usernames, scrub_unknown_users=self.scrub_unknown_users) if extension_to_scrubber_map is not None: self.extension_to_scrubber_map = extension_to_scrubber_map else: self._comment_scrubbers = None go_and_c_scrubbers = self._PolyglotFileScrubbers() if self.c_includes_config_file: go_and_c_scrubbers.append( c_include_scrubber.IncludeScrubber(self.c_includes_config_file)) # See also _ResetBatchScrubbers() for other scrubbers by extension. self.extension_to_scrubber_map = { '.go': go_and_c_scrubbers, '.h': go_and_c_scrubbers, '.c': go_and_c_scrubbers, '.cc': go_and_c_scrubbers, '.hgignore': self._MakeShellScrubbers(), '.gitignore': self._MakeShellScrubbers(), '.html': self._MakeHtmlScrubbers(), '.java': self._MakeJavaScrubbers(), '.jj': self._MakeJavaScrubbers(), '.js': self._MakeJsScrubbers(), # .jslib is an output from a js_library build rule '.jslib': self._MakeJsScrubbers(), '.l': go_and_c_scrubbers, '.php': self._MakePhpScrubbers(), '.php4': self._MakePhpScrubbers(), '.php5': self._MakePhpScrubbers(), '.proto': self._MakeProtoScrubbers(), '.protodevel': self._MakeProtoScrubbers(), '.py': self._MakePythonScrubbers(), '.css': self._PolyglotFileScrubbers(), '.yaml': self._MakeShellScrubbers(), '.sh': self._MakeShellScrubbers(), '.json': self._PolyglotFileScrubbers(), '.swig': go_and_c_scrubbers, # Jars often have short sensitive strings in them based only on the # byte sequences these are. We might still like to scan jars, but a # way to reduce the false-positive rate is needed. '.jar': [], '.gif': [], '.png': [], '.jpg': [], '.xml': self._MakeGwtXmlScrubbers(), } self._ResetBatchScrubbers() if default_scrubbers is not None: self.default_scrubbers = default_scrubbers else: self.default_scrubbers = self._PolyglotFileScrubbers() # NB(yparghi): The "pre- and post-" batch scrubbing flow isn't natural, but # suits our current use cases. Ideally, batch and non-batch scrubbing would # be arranged by an optimized execution graph, where, for example, all the # by-file scrubbers prerequisite to batch scrubber A are executed, then A is # executed, then the next by-file or batch scrubber... def _ResetBatchScrubbers(self): """Set batch scrubbers to run before and after by-file scrubbing. See ScrubberContext.Scan below. First, the pre-batch scrubbers are run for applicable files, then by-file scrubbers, then post-batch scrubbers. ("Pre-batch" and "post-batch" are misnomers, but used for simplicity. Respectively, they're really "pre-(by-file)" and "post-(by-file)".) """ c_like_comment_pre_batch_scrubbers = [ comment_scrubber.CommentScrubber( comment_scrubber.CLikeCommentExtractor(), self._CommentScrubbers()) ] java_pre_batch_scrubbers = [] java_pre_batch_scrubbers.extend(c_like_comment_pre_batch_scrubbers) proto_pre_batch_scrubbers = (self.scrub_proto_comments and c_like_comment_pre_batch_scrubbers or []) self.extension_to_pre_batch_scrubbers_map = { '.c': c_like_comment_pre_batch_scrubbers, '.cc': c_like_comment_pre_batch_scrubbers, '.go': c_like_comment_pre_batch_scrubbers, '.h': c_like_comment_pre_batch_scrubbers, '.java': java_pre_batch_scrubbers, '.jj': java_pre_batch_scrubbers, '.js': c_like_comment_pre_batch_scrubbers, '.jslib': c_like_comment_pre_batch_scrubbers, '.l': c_like_comment_pre_batch_scrubbers, '.php': c_like_comment_pre_batch_scrubbers, '.php4': c_like_comment_pre_batch_scrubbers, '.php5': c_like_comment_pre_batch_scrubbers, '.proto': proto_pre_batch_scrubbers, '.protodevel': proto_pre_batch_scrubbers, '.swig': c_like_comment_pre_batch_scrubbers, } java_post_batch_scrubbers = [] if self.empty_java_file_action != base.ACTION_IGNORE: java_post_batch_scrubbers.append( java_scrubber.EmptyJavaFileScrubber(self.empty_java_file_action)) self.extension_to_post_batch_scrubbers_map = { '.java': java_post_batch_scrubbers, '.jj': java_post_batch_scrubbers, } def _SensitiveStringScrubbers(self): if not self._sensitive_string_scrubbers: self._sensitive_string_scrubbers = [ sensitive_string_scrubber.SensitiveWordScrubber(self.sensitive_words), sensitive_string_scrubber.SensitiveReScrubber(self.sensitive_res), ] return self._sensitive_string_scrubbers def _PolyglotFileScrubbers(self): result = [] if self.string_replacements: r = replacer.ReplacerScrubber( (r['original'], r['replacement']) for r in self.string_replacements) result.append(r) if self.regex_replacements: r = replacer.RegexReplacerScrubber( (r['original'], r['replacement']) for r in self.regex_replacements) result.append(r) result += self._SensitiveStringScrubbers() return result def _CommentScrubbers(self): if not self._comment_scrubbers: self._comment_scrubbers = [] if self.scrub_all_comments: self._comment_scrubbers.append(comment_scrubber.AllCommentScrubber()) elif self.scrub_non_documentation_comments: self._comment_scrubbers.append( comment_scrubber.AllNonDocumentationCommentScrubber()) self._comment_scrubbers.append( comment_scrubber.TodoScrubber(self.username_filter)) if self.scrub_authors: self._comment_scrubbers.append( comment_scrubber.AuthorDeclarationScrubber(self.username_filter)) if self.scrub_sensitive_comments: for s in self._SensitiveStringScrubbers(): scrubber = comment_scrubber.SensitiveStringCommentScrubber( self.whitelist, s) self._comment_scrubbers.append(scrubber) return self._comment_scrubbers def _PolyglotLineOrientedScrubbers(self): scrubbers = [] return scrubbers def _MakeGwtXmlScrubbers(self): gwt_scrubbers = [] if self.scrub_gwt_inherits: to_scrub = set(self.scrub_gwt_inherits) gwt_scrubbers.append(gwt_xml_scrubber.GwtXmlScrubber(to_scrub)) return gwt_scrubbers def _MakeHtmlScrubbers(self): html_scrubbers = [] html_scrubbers.append( comment_scrubber.CommentScrubber( comment_scrubber.HtmlCommentExtractor(), self._CommentScrubbers())) line_scrubbers = self._PolyglotLineOrientedScrubbers() for js_directory_rename in self.js_directory_renames: line_scrubbers.append(js_directory_rename) html_scrubbers.append(line_scrubber.LineScrubber(line_scrubbers)) html_scrubbers.extend(self._PolyglotFileScrubbers()) return html_scrubbers def _MakeJavaScrubbers(self): java_scrubbers = [] line_scrubbers = self._PolyglotLineOrientedScrubbers() java_scrubbers.append(line_scrubber.LineScrubber(line_scrubbers)) java_scrubbers.extend(self.java_renames) if self.scrub_java_testsize_annotations: java_scrubbers.append(java_scrubber.TestSizeAnnotationScrubber()) java_scrubbers.append(java_scrubber.UnusedImportStrippingScrubber()) if self.maximum_blank_lines: java_scrubbers.append( java_scrubber.CoalesceBlankLinesScrubber(self.maximum_blank_lines)) java_scrubbers.extend(self._PolyglotFileScrubbers()) return java_scrubbers def _MakeJsScrubbers(self): js_scrubbers = [] line_scrubbers = self._PolyglotLineOrientedScrubbers() for js_directory_rename in self.js_directory_renames: line_scrubbers.append(js_directory_rename) js_scrubbers.append(line_scrubber.LineScrubber(line_scrubbers)) js_scrubbers.extend(self._PolyglotFileScrubbers()) return js_scrubbers def _MakePhpScrubbers(self): php_scrubbers = [] php_scrubbers.append(line_scrubber.LineScrubber( self._PolyglotLineOrientedScrubbers())) php_scrubbers.extend(self._PolyglotFileScrubbers()) return php_scrubbers def _MakePythonScrubbers(self): py_scrubbers = [] py_scrubbers.append( comment_scrubber.CommentScrubber( comment_scrubber.PythonCommentExtractor(), self._CommentScrubbers())) line_scrubbers = [] line_scrubbers.extend(self.python_module_renames) line_scrubbers.extend(self.python_module_removes) if self.scrub_authors: line_scrubbers.append( line_scrubber.PythonAuthorDeclarationScrubber(self.username_filter)) if self.python_shebang_replace: py_scrubbers.append(self.python_shebang_replace) line_scrubbers += self._PolyglotLineOrientedScrubbers() py_scrubbers.append(line_scrubber.LineScrubber(line_scrubbers)) py_scrubbers.extend(self._PolyglotFileScrubbers()) return py_scrubbers def _MakeProtoScrubbers(self): proto_scrubbers = [] proto_scrubbers.append( line_scrubber.LineScrubber(self._PolyglotLineOrientedScrubbers())) proto_scrubbers.extend(self._PolyglotFileScrubbers()) return proto_scrubbers def _MakeShellScrubbers(self): shell_scrubbers = [] shell_scrubbers.append( comment_scrubber.CommentScrubber( comment_scrubber.ShellLikeCommentExtractor(), comment_scrubbers=self._CommentScrubbers())) shell_scrubbers.extend(self._PolyglotFileScrubbers()) return shell_scrubbers class ScrubberContext(object): """The ScrubberContext collects the context for a scrub. Right now, this only includes errors. In the next iteration, it will also be possible to add a revision. At the end of the run, based on a flag, the revisions will either be applied in-place or just have their diffs saved somewhere. """ def __init__(self, scrubber_config): locale.setlocale(locale.LC_ALL, 'en_US.utf-8') os.environ['LANG'] = 'en_US.UTF-8' self.config = scrubber_config self._errors = [] self.CreateTempDir() self.files = self.FindFiles(scrubber_config) self._unscrubbed_file_extensions = set() self._unscrubbed_files = set() def CreateTempDir(self): self._temp_dir = self.config.temp_dir or tempfile.mkdtemp(prefix='scrubber') base.MakeDirs(self._temp_dir) def GetScratchDir(self): """Return a temp directory suitable for writing temporary output.""" return os.path.join(self._temp_dir, 'scratch') def AddError(self, error): """Add base.ScrubberError or str error to the list of errors.""" # First, check if it's in our whitelist if self.config.whitelist.Allows(error): return self._errors.append(error) def Report(self): """Report on this run of scrubber to stdout.""" print 'Scanned %d files' % len(self.files) print 'Found %d files to modify' % len(self.ModifiedFiles()) username_to_count_map = {} unknown_username_instances = 0 for error in self._errors: if isinstance(error, comment_scrubber.TodoError): username_to_count_map[error.username] = username_to_count_map.get( error.username, 0) + 1 unknown_username_instances += 1 else: if isinstance(error, str): report_string = str else: report_string = ( 'ERROR[entry:<filter:"%s" trigger:"%s" filename:"%s">]: %s' % ( error.filter, error.trigger, error.file_obj.relative_filename, error.ReportText())) print report_string if unknown_username_instances: print 'Found unknown usernames %d times' % unknown_username_instances for username, count in username_to_count_map.iteritems(): print u' %s %d' % (username, count) print 'Wrote results into %s' % self._temp_dir if self._unscrubbed_file_extensions: print 'Did not know how to scan the following extensions:' for extension in self._unscrubbed_file_extensions: print ' ', extension if self._unscrubbed_files: print 'Did not know how to scan the following files:' for filename in self._unscrubbed_files: print ' ', filename def Status(self): """Return a status code suitable for process exit status.""" if self._errors: return 1 return 0 def ModifiedFiles(self): return [f for f in self.files if f.is_modified] def WriteOutput(self): """Write out the output of this ScrubberContext. Side Effects: Always: output, original, and modified files are written to temporary directory If self.config.modify Files are scrubbed in place. If self.config.output_tar: Modified output
error occurred. Please check the asset configuration and|or action parameters." message = "Status Code: {0}. Data from server:\n{1}\n".format(status_code, error_text) message = message.replace('{', '{{').replace('}', '}}') return RetVal(action_result.set_status(phantom.APP_ERROR, message), None) def _process_json_response(self, r, action_result): # Try a json parse try: resp_json = r.json() except Exception as e: error_code, error_msg = _get_error_message_from_exception(self._python_version, e, self) error_txt = "Error Code: {0}. Error Message: {1}".format(error_code, error_msg) return RetVal(action_result.set_status(phantom.APP_ERROR, "Unable to parse JSON response. {0}".format(error_txt)), None) # Please specify the status codes here if 200 <= r.status_code < 399: return RetVal(phantom.APP_SUCCESS, resp_json) try: error_code = "" error_text = "" error_message = "" error = resp_json.get('error', '') error_desc = resp_json.get('error_description', '') if isinstance(error, dict): error_code = error.get('code') error_message = error.get('message') if error_message: try: soup = BeautifulSoup(resp_json.get('error', {}).get('message'), "html.parser") # Remove the script, style, footer and navigation part from the HTML message for element in soup(["script", "style", "footer", "nav"]): element.extract() error_text = soup.text split_lines = error_text.split('\n') split_lines = [x.strip() for x in split_lines if x.strip()] error_text = '\n'.join(split_lines) if len(error_text) > 500: error_text = 'Error while connecting to a server (Please check input parameters or asset configuration parameters)' except: error_text = "Cannot parse error details" try: error_text = _handle_py_ver_compat_for_input_str(self._python_version, error_text, self) except TypeError: error_text = "Error occurred while handling python 2to3 compatibility for the error message" except: error_text = "Unknown error occurred while parsing the error message" if error_code: error_text = "{}. {}".format(error_code, error_text) if error_desc: try: error_desc = _handle_py_ver_compat_for_input_str(self._python_version, error_desc, self) except TypeError: error_desc = "Error occurred while handling python 2to3 compatibility for the error_description" except: error_desc = "Unknown error occurred while parsing the error_description" error_text = "{}. {}".format(error_desc, error_text) if not error_text: error_text = r.text.replace('{', '{{').replace('}', '}}') except: error_text = r.text.replace('{', '{{').replace('}', '}}') try: error_text = _handle_py_ver_compat_for_input_str(self._python_version, error_text, self) except TypeError: error_text = "Error occurred while handling python 2to3 compatibility for the error string" except: error_text = "Unknown error occurred. Please check the asset configuration and|or action parameters." # You should process the error returned in the json message = "Error from server. Status Code: {0} Data from server: {1}".format( r.status_code, error_text) return RetVal(action_result.set_status(phantom.APP_ERROR, message), None) def _process_response(self, r, action_result): # store the r_text in debug data, it will get dumped in the logs if the action fails if hasattr(action_result, 'add_debug_data'): action_result.add_debug_data({'r_status_code': r.status_code}) action_result.add_debug_data({'r_text': r.text}) action_result.add_debug_data({'r_headers': r.headers}) # Process each 'Content-Type' of response separately # Process a json response content_type = r.headers.get('Content-Type', '') if 'json' in content_type or 'javascript' in content_type: return self._process_json_response(r, action_result) # Process an HTML resonse, Do this no matter what the api talks. # There is a high chance of a PROXY in between phantom and the rest of # world, in case of errors, PROXY's return HTML, this function parses # the error and adds it to the action_result. if 'html' in r.headers.get('Content-Type', ''): return self._process_html_response(r, action_result) if r.status_code == 404: return RetVal(action_result.set_status(phantom.APP_ERROR, "Email not found"), None) if 200 <= r.status_code <= 204: return RetVal(phantom.APP_SUCCESS, None) # it's not content-type that is to be parsed, handle an empty response if not r.text: return self._process_empty_reponse(r, action_result) # everything else is actually an error at this point message = "Can't process response from server. Status Code: {0} Data from server: {1}".format( r.status_code, r.text.replace('{', '{{').replace('}', '}}')) return RetVal(action_result.set_status(phantom.APP_ERROR, message), None) def _make_rest_call(self, action_result, url, verify=True, headers={}, params=None, data=None, method="get"): resp_json = None try: request_func = getattr(requests, method) except AttributeError: return RetVal(action_result.set_status(phantom.APP_ERROR, "Invalid method: {0}".format(method)), resp_json) try: r = request_func( url, data=data, headers=headers, verify=verify, params=params) except Exception as e: error_code, error_msg = _get_error_message_from_exception(self._python_version, e, self) return RetVal(action_result.set_status(phantom.APP_ERROR, "Error connecting to server. Error Code: {0}. Error Message: {1}".format( error_code, error_msg)), resp_json) return self._process_response(r, action_result) def _get_asset_name(self, action_result): asset_id = self.get_asset_id() rest_endpoint = PHANTOM_ASSET_INFO_URL.format(url=self.get_phantom_base_url(), asset_id=asset_id) ret_val, resp_json = self._make_rest_call(action_result, rest_endpoint, False) if phantom.is_fail(ret_val): return (ret_val, None) asset_name = resp_json.get('name') if not asset_name: return (action_result.set_status(phantom.APP_ERROR, "Asset Name for ID: {0} not found".format(asset_id), None)) return (phantom.APP_SUCCESS, asset_name) def _get_phantom_base_url(self, action_result): ret_val, resp_json = self._make_rest_call(action_result, PHANTOM_SYS_INFO_URL.format(url=self.get_phantom_base_url()), False) if phantom.is_fail(ret_val): return (ret_val, None) phantom_base_url = resp_json.get('base_url').rstrip("/") if not phantom_base_url: return (action_result.set_status(phantom.APP_ERROR, "Phantom Base URL not found in System Settings. Please specify this value in System Settings"), None) return (phantom.APP_SUCCESS, phantom_base_url) def _get_url_to_app_rest(self, action_result=None): if not action_result: action_result = ActionResult() # get the phantom ip to redirect to ret_val, phantom_base_url = self._get_phantom_base_url(action_result) if phantom.is_fail(ret_val): return (action_result.get_status(), None) # get the asset name ret_val, asset_name = self._get_asset_name(action_result) if phantom.is_fail(ret_val): return (action_result.get_status(), None) self.save_progress('Using Phantom base URL as: {0}'.format(phantom_base_url)) app_json = self.get_app_json() app_name = app_json['name'] app_dir_name = _get_dir_name_from_app_name(app_name) url_to_app_rest = "{0}/rest/handler/{1}_{2}/{3}".format(phantom_base_url, app_dir_name, app_json['appid'], asset_name) return (phantom.APP_SUCCESS, url_to_app_rest) def _make_rest_call_helper(self, action_result, endpoint, verify=True, headers=None, params=None, data=None, method="get", nextLink=None): if nextLink: url = nextLink else: url = "{0}{1}".format(MSGRAPH_API_URL, endpoint) if headers is None: headers = {} headers.update({ 'Authorization': 'Bearer {0}'.format(self._access_token), 'Accept': 'application/json', 'Content-Type': 'application/json'}) ret_val, resp_json = self._make_rest_call(action_result, url, verify, headers, params, data, method) # If token is expired, generate a new token msg = action_result.get_message() if msg and 'token is invalid' in msg or ('Access token has expired' in msg) or ('ExpiredAuthenticationToken' in msg) or ('AuthenticationFailed' in msg): ret_val = self._get_token(action_result) headers.update({ 'Authorization': 'Bearer {0}'.format(self._access_token)}) ret_val, resp_json = self._make_rest_call(action_result, url, verify, headers, params, data, method) if phantom.is_fail(ret_val): return action_result.get_status(), None return phantom.APP_SUCCESS, resp_json def _handle_attachment(self, attachment, container_id, artifact_json=None): try: if hasattr(Vault, "create_attachment"): vault_ret = Vault.create_attachment(base64.b64decode(attachment.pop('contentBytes')), container_id, file_name=attachment['name']) else: if hasattr(Vault, 'get_vault_tmp_dir'): temp_dir = Vault.get_vault_tmp_dir() else: temp_dir = '/opt/phantom/vault/tmp' temp_dir = temp_dir + '/{}'.format(uuid.uuid4()) os.makedirs(temp_dir) file_path = os.path.join(temp_dir, attachment['name']) with open(file_path, 'w') as f: f.write(base64.b64decode(attachment.pop('contentBytes'))) vault_ret = Vault.add_attachment(file_path, container_id, file_name=attachment['name']) except Exception as e: error_code, error_msg = _get_error_message_from_exception(self._python_version, e, self) error_txt = "Error Code: {0}. Error Message: {1}".format(error_code, error_msg) self.debug_print("Error saving file to vault: {0}".format(error_txt)) return phantom.APP_ERROR if not vault_ret.get('succeeded'): self.debug_print("Error saving file to vault: ", vault_ret.get('message', "Could not save file to vault")) return phantom.APP_ERROR if artifact_json is None: attachment['vaultId'] = vault_ret[phantom.APP_JSON_HASH] return phantom.APP_SUCCESS artifact_json['name'] = 'Vault Artifact' artifact_json['label'] = 'attachment' artifact_json['container_id'] = container_id artifact_json['source_data_identifier'] = attachment['id'] artifact_cef = {} artifact_cef['size'] = attachment['size'] artifact_cef['lastModified'] = attachment['lastModifiedDateTime'] artifact_cef['filename'] = attachment['name'] artifact_cef['mimeType'] = attachment['contentType'] artifact_cef['vault_id'] = vault_ret[phantom.APP_JSON_HASH] artifact_json['cef'] = artifact_cef return phantom.APP_SUCCESS def _create_email_artifacts(self, container_id, email): artifacts = [] email_artifact = {} artifacts.append(email_artifact) email_artifact['label'] = 'email' email_artifact['name'] = 'Email Artifact' email_artifact['container_id'] = container_id email_artifact['cef_types'] = {'id': ['email id']} email_artifact['source_data_identifier'] = email['id'] cef = {} email_artifact['cef'] = cef try: email_items = email.iteritems() except: email_items = email.items() for k, v in email_items: if v is not None: # self.save_progress("Key: {}\r\nValue: {}".format(k, v)) if k == 'from': from_obj = v.get('emailAddress', {}) cef[k] = from_obj cef['fromEmail'] = from_obj.get('address', '') elif k == 'toRecipients': cef[k] = v # add first email to To recipients = v if len(recipients): cef['toEmail'] = recipients[0].get('emailAddress', {}).get('address', '') else: cef[k] = v body = email['body']['content'] ips = [] self._process_email._get_ips(body, ips) for ip in ips: ip_artifact = {} artifacts.append(ip_artifact) ip_artifact['name'] = 'IP Artifact' ip_artifact['label'] = 'artifact' ip_artifact['cef'] = ip ip_artifact['container_id'] = container_id ip_artifact['source_data_identifier'] = email['id'] urls = [] domains = [] self._process_email._extract_urls_domains(body, urls, domains) for url in urls: url_artifact = {} artifacts.append(url_artifact) url_artifact['name'] = 'URL Artifact' url_artifact['label'] = 'artifact' url_artifact['cef'] = url url_artifact['container_id'] = container_id url_artifact['source_data_identifier'] = email['id'] for domain in domains: domain_artifact = {} artifacts.append(domain_artifact) domain_artifact['name'] = 'Domain Artifact' domain_artifact['label'] = 'artifact' domain_artifact['cef'] = domain domain_artifact['container_id'] = container_id domain_artifact['source_data_identifier'] = email['id'] return artifacts def _handle_test_connectivity(self, param): """ Function that handles the test connectivity action, it is much simpler than other action handlers.""" action_result = self.add_action_result(ActionResult(param)) if not self._admin_access or not self._admin_consent: self.save_progress("Getting App REST endpoint URL") # Get the URL to the app's REST Endpiont, this is the url that the TC dialog # box will ask the user to connect to ret_val, app_rest_url = self._get_url_to_app_rest(action_result) app_state = {} if phantom.is_fail(ret_val): self.save_progress("Unable to get the URL to the app's REST Endpoint. Error: {0}".format( action_result.get_message())) return self.set_status(phantom.APP_ERROR) # create the url that the oauth server should re-direct to after the auth is completed # (success and failure), this is added to the state so that the request handler will access
Descriptors for\n' ' another way in which attributes of a class retrieved via its\n' ' instances may differ from the objects actually stored in the\n' ' class\'s "__dict__". If no class attribute is found, and the\n' ' object\'s class has a "__getattr__()" method, that is called to\n' ' satisfy the lookup.\n' '\n' " Attribute assignments and deletions update the instance's\n" " dictionary, never a class's dictionary. If the class has a\n" ' "__setattr__()" or "__delattr__()" method, this is called ' 'instead\n' ' of updating the instance dictionary directly.\n' '\n' ' Class instances can pretend to be numbers, sequences, or ' 'mappings\n' ' if they have methods with certain special names. See section\n' ' Special method names.\n' '\n' ' Special attributes: "__dict__" is the attribute dictionary;\n' ' "__class__" is the instance\'s class.\n' '\n' 'Files\n' ' A file object represents an open file. File objects are created ' 'by\n' ' the "open()" built-in function, and also by "os.popen()",\n' ' "os.fdopen()", and the "makefile()" method of socket objects ' '(and\n' ' perhaps by other functions or methods provided by extension\n' ' modules). The objects "sys.stdin", "sys.stdout" and ' '"sys.stderr"\n' ' are initialized to file objects corresponding to the ' "interpreter's\n" ' standard input, output and error streams. See File Objects for\n' ' complete documentation of file objects.\n' '\n' 'Internal types\n' ' A few types used internally by the interpreter are exposed to ' 'the\n' ' user. Their definitions may change with future versions of the\n' ' interpreter, but they are mentioned here for completeness.\n' '\n' ' Code objects\n' ' Code objects represent *byte-compiled* executable Python ' 'code,\n' ' or *bytecode*. The difference between a code object and a\n' ' function object is that the function object contains an ' 'explicit\n' " reference to the function's globals (the module in which it " 'was\n' ' defined), while a code object contains no context; also the\n' ' default argument values are stored in the function object, ' 'not\n' ' in the code object (because they represent values calculated ' 'at\n' ' run-time). Unlike function objects, code objects are ' 'immutable\n' ' and contain no references (directly or indirectly) to ' 'mutable\n' ' objects.\n' '\n' ' Special read-only attributes: "co_name" gives the function ' 'name;\n' ' "co_argcount" is the number of positional arguments ' '(including\n' ' arguments with default values); "co_nlocals" is the number ' 'of\n' ' local variables used by the function (including arguments);\n' ' "co_varnames" is a tuple containing the names of the local\n' ' variables (starting with the argument names); "co_cellvars" ' 'is a\n' ' tuple containing the names of local variables that are\n' ' referenced by nested functions; "co_freevars" is a tuple\n' ' containing the names of free variables; "co_code" is a ' 'string\n' ' representing the sequence of bytecode instructions; ' '"co_consts"\n' ' is a tuple containing the literals used by the bytecode;\n' ' "co_names" is a tuple containing the names used by the ' 'bytecode;\n' ' "co_filename" is the filename from which the code was ' 'compiled;\n' ' "co_firstlineno" is the first line number of the function;\n' ' "co_lnotab" is a string encoding the mapping from bytecode\n' ' offsets to line numbers (for details see the source code of ' 'the\n' ' interpreter); "co_stacksize" is the required stack size\n' ' (including local variables); "co_flags" is an integer ' 'encoding a\n' ' number of flags for the interpreter.\n' '\n' ' The following flag bits are defined for "co_flags": bit ' '"0x04"\n' ' is set if the function uses the "*arguments" syntax to accept ' 'an\n' ' arbitrary number of positional arguments; bit "0x08" is set ' 'if\n' ' the function uses the "**keywords" syntax to accept ' 'arbitrary\n' ' keyword arguments; bit "0x20" is set if the function is a\n' ' generator.\n' '\n' ' Future feature declarations ("from __future__ import ' 'division")\n' ' also use bits in "co_flags" to indicate whether a code ' 'object\n' ' was compiled with a particular feature enabled: bit "0x2000" ' 'is\n' ' set if the function was compiled with future division ' 'enabled;\n' ' bits "0x10" and "0x1000" were used in earlier versions of\n' ' Python.\n' '\n' ' Other bits in "co_flags" are reserved for internal use.\n' '\n' ' If a code object represents a function, the first item in\n' ' "co_consts" is the documentation string of the function, or\n' ' "None" if undefined.\n' '\n' ' Frame objects\n' ' Frame objects represent execution frames. They may occur in\n' ' traceback objects (see below).\n' '\n' ' Special read-only attributes: "f_back" is to the previous ' 'stack\n' ' frame (towards the caller), or "None" if this is the bottom\n' ' stack frame; "f_code" is the code object being executed in ' 'this\n' ' frame; "f_locals" is the dictionary used to look up local\n' ' variables; "f_globals" is used for global variables;\n' ' "f_builtins" is used for built-in (intrinsic) names;\n' ' "f_restricted" is a flag indicating whether the function is\n' ' executing in restricted execution mode; "f_lasti" gives the\n' ' precise instruction (this is an index into the bytecode ' 'string\n' ' of the code object).\n' '\n' ' Special writable attributes: "f_trace", if not "None", is a\n' ' function called at the start of each source code line (this ' 'is\n' ' used by the debugger); "f_exc_type", "f_exc_value",\n' ' "f_exc_traceback" represent the last exception raised in the\n' ' parent frame provided another exception was ever raised in ' 'the\n' ' current frame (in all other cases they are "None"); ' '"f_lineno"\n' ' is the current line number of the frame --- writing to this ' 'from\n' ' within a trace function jumps to the given line (only for ' 'the\n' ' bottom-most frame). A debugger can implement a Jump command\n' ' (aka Set Next Statement) by writing to f_lineno.\n' '\n' ' Traceback objects\n' ' Traceback objects represent a stack trace of an exception. ' 'A\n' ' traceback object is created when an exception occurs. When ' 'the\n' ' search for an exception handler unwinds the execution stack, ' 'at\n' ' each unwound level a traceback object is inserted in front ' 'of\n' ' the current traceback. When an exception handler is ' 'entered,\n' ' the stack trace is made available to the program. (See ' 'section\n' ' The try statement.) It is accessible as "sys.exc_traceback", ' 'and\n' ' also as the third item of the tuple returned by\n' ' "sys.exc_info()". The latter is the preferred interface, ' 'since\n' ' it works correctly when the program is using multiple ' 'threads.\n' ' When the program contains no suitable handler, the stack ' 'trace\n' ' is written (nicely formatted) to the standard error stream; ' 'if\n' ' the interpreter is interactive, it is also made available to ' 'the\n' ' user as "sys.last_traceback".\n' '\n' ' Special read-only attributes: "tb_next" is the next level in ' 'the\n' ' stack trace (towards the frame where the exception occurred), ' 'or\n' ' "None" if there is no next level; "tb_frame" points to the\n' ' execution frame of the current level; "tb_lineno" gives the ' 'line\n' ' number where the exception occurred; "tb_lasti" indicates ' 'the\n' ' precise instruction. The line number and last instruction ' 'in\n' ' the traceback may differ from the line number of its frame\n' ' object if the exception occurred in a "try" statement with ' 'no\n' ' matching except clause or with a finally clause.\n' '\n' ' Slice objects\n' ' Slice objects are used to represent slices when *extended ' 'slice\n' ' syntax* is used. This is a slice using two colons, or ' 'multiple\n' ' slices or ellipses separated by commas, e.g., "a[i:j:step]",\n' ' "a[i:j, k:l]", or "a[..., i:j]". They are also created by ' 'the\n' ' built-in "slice()" function.\n' '\n' ' Special read-only attributes: "start" is
- 2)): for c in range(my_head["x"], width - 1): if (snake_head_test(data, c, my_head["y"] + 1)): test = (c, my_head["y"] + 1) if (test not in hazards): if ("left" not in preferred_moves_modified): preferred_moves_modified.append("left") if ("right" in possible_moves): if (my_head["y"] == 1): for c in range(0, my_head["x"] ): if (snake_head_test(data, c, 0)): test = (c, 0) if (test not in hazards): if ("right" not in preferred_moves_modified): preferred_moves_modified.append("right") if (my_head["y"] == (height - 2)): for c in range(0, my_head["x"]): if (snake_head_test(data, c, my_head["y"] + 1)): test = (c, my_head["y"] + 1) if (test not in hazards): if ("right" not in preferred_moves_modified): preferred_moves_modified.append("right") if ("down" in possible_moves): if (my_head["x"] == 1): for c in range(my_head["y"] + 1, height - 1): if (snake_head_test(data, 0, c)): test = (0, c) if (test not in hazards): if ("down" not in preferred_moves_modified): preferred_moves_modified.append("down") if (my_head["x"] == (width - 2)): for c in range(my_head["y"], height - 1): if (snake_head_test(data, my_head["x"] + 1, c)): test = (my_head["x"] + 1, c) if (test not in hazards): if ("down" not in preferred_moves_modified): preferred_moves_modified.append("down") if ("up" in possible_moves): if (my_head["x"] == 1): for c in range(0, my_head["y"]): if (snake_head_test(data, 0, c)): test = (0, c) if (test not in hazards): if ("up" not in preferred_moves_modified): preferred_moves_modified.append("up") if (my_head["x"] == (width - 2)): for c in range(0, my_head["y"]): if (snake_head_test(data, my_head["x"], c)): test = (my_head["x"], c) if (test not in hazards): if ("up" not in preferred_moves_modified): preferred_moves_modified.append("up") if (len(preferred_moves_modified) > 0): print("DEBUG: Attempting straight line kill of snake: {}".format(preferred_moves_modified)) return preferred_moves_modified for pm in preferred_moves: if pm == "down": if (((my_head["y"] - 1) != 0) or (my_head["x"] != 0) or (my_head["x"] != (width - 1)) or (hungry == True)): if ("down" not in preferred_moves_modified): preferred_moves_modified.append("down") if pm == "up": if (((my_head["y"] + 1) != (height - 1)) or (my_head["x"] != 0) or (my_head["x"] != (width - 1)) or (hungry == True)): if ("up" not in preferred_moves_modified): preferred_moves_modified.append("up") if pm == "left": if (((my_head["x"] - 1) != 0) or (my_head["y"] != 0) or (my_head["y"] != (height - 1)) or (hungry == True)): if ("left" not in preferred_moves_modified): preferred_moves_modified.append("left") if pm == "right": if (((my_head["x"] - 1) != (width - 1)) or (my_head["y"] != 0) or (my_head["y"] != (height - 1)) or (hungry == True)): if ("right" not in preferred_moves_modified): preferred_moves_modified.append("right") return preferred_moves_modified def which_directions_are_away_from_snake_heads(my_head, snake_heads, data): retval = [] for sh in snake_heads: if (is_snake_longer_than_me(data, sh)): x = my_head["x"] - sh[0] if (x > 0): if ("right" not in snake_heads): retval.append("right") if (x < 0): if ("left" not in snake_heads): retval.append("left") y = my_head["y"] - sh[1] if (y < 0): if ("down" not in snake_heads): retval.append("down") if (y > 0): if ("up" not in snake_heads): retval.append("up") return retval def get_risk_score(move, risk_moves): risk_score = 999999 for lrm in risk_moves: if (lrm[0] == move): risk_score = lrm[1] break return risk_score def get_directions_of_my_tail(my_head, my_tail, possible_moves): directions = [] x = my_head["x"] - my_tail["x"] y = my_head["y"] - my_tail["y"] if (x > 0): if ("left" in possible_moves): directions.append("left") if (x < 0): if ("right" in possible_moves): directions.append("right") if (y > 0): if ("up" in possible_moves): directions.append("up") if (y < 0): if ("down" in possible_moves): directions.append("down") print("DEBUG: directions of my tail: {}".format(directions)) return directions def validate_direction(move, matrix, risk_moves, ff_moves, ff_moves_no_tails, data, tail_moves, hungry): good_direction = None my_head = data["you"]["body"][0] my_size = len(data["you"]["body"]) tails = get_snake_array(-1, data) risk_score = get_risk_score(move, risk_moves) if (risk_score > 0.0): good_direction = check_ff_size(move, ff_moves, my_size) if (good_direction == None): good_direction = check_ff_size(move, ff_moves_no_tails, my_size) if (good_direction == None): print("DEBUG: validate_direction: floodfill size with and without tails NOT sufficient: {}".format(move)) cp = check_for_clear_path(matrix, move, my_head["x"], my_head["y"], tails) if (cp == True): good_direction = move print("DEBUG: validate_direction: found a clear path to a tail: {}".format(move)) else: print("DEBUG: validate_direction: no clear path to a tail: {}".format(move)) if (move in tail_moves and hungry == False): good_direction = move print("DEBUG: validate_direction: no clear path, but a tail move: {}".format(move)) else: good_direction = check_ff_size(move, ff_moves, my_size) if (good_direction != None): print("DEBUG: validate_direction: risk score is zero: {}".format(move)) else: print("DEBUG: validate_direction: risk score is zero, but not enough room: {}".format(move)) cp = check_for_clear_path(matrix, move, my_head["x"], my_head["y"], tails) if (cp == True): good_direction = move print("DEBUG: validate_direction: risk score zero, found a clear path to a tail: {}".format(move)) if (good_direction != None): bad_move = check_for_bad_move(move, my_head["x"], my_head["y"], get_snake_array(0, data), data) if (bad_move == True): print("DEBUG: validate_direction: Determined BAD move: {}".format(move)) good_direction = None return good_direction # make_decision: logic to pick the desired move of the snake # preferred_moves: array of the preffered directions to move to get to target # last_ditch_possible_moves: array of possible moves before they have been filtered to use as last resort # risk_moves: array of riskiest moves sorted least to most # ff_moves: array of flood fill moves sorted best to worst # my_size: length of my snake # returns: final direction to move def make_decision(preferred_moves, possible_moves, last_ditch_possible_moves, risk_moves, ff_moves, ff_moves_no_tails, my_size, data, m, snake_heads, snake_tails, hungry): # final decision direction = None my_head = data["you"]["body"][0] my_size = len(data["you"]["body"]) my_tail = data["you"]["body"][my_size-1] preferred_moves_modified = modify_preferred_moves(preferred_moves, possible_moves, data, hungry) print("DEBUG: Modified Preferred Moves: {}".format(preferred_moves_modified)) for pmm in preferred_moves_modified: if pmm not in preferred_moves: print("DEBUG: Adjusting preferred move risk: {}".format(pmm)) risk_moves.append((pmm, -1.0)) tail_moves = is_move_a_tail(my_head, data["board"]["snakes"], my_size) if (my_size > 3): for tm in tail_moves: if tm not in possible_moves: possible_moves.append(tm) if tm not in extract_1(risk_moves): risk_moves.append((tm, 0.0)) if tm not in extract_1(ff_moves): ff_moves.append((tm, 999999)) print("DEBUG: Tail Moves!: {}".format(tail_moves)) # preferred direction ordered_preferred = get_common_elements(extract_1(risk_moves), preferred_moves_modified) away_from_heads = which_directions_are_away_from_snake_heads(my_head, get_snake_array(0, data), data) directions_of_my_tail = get_directions_of_my_tail(my_head, my_tail, possible_moves) print("DEBUG: Directions away snake heads = {}".format(away_from_heads)) ordered_preferred_refined = get_common_elements(ordered_preferred, away_from_heads) # ordered_preferred_refined = get_common_elements(ordered_preferred_refined, directions_of_my_tail) for op in ordered_preferred_refined: temp_direction = validate_direction(op, m, risk_moves, ff_moves, ff_moves_no_tails, data, tail_moves, hungry) if (temp_direction != None): risk_score = get_risk_score(temp_direction, risk_moves) if (risk_score <= 3.0): direction = temp_direction print("DEBUG: Preferred direction GOOD = {}".format(temp_direction)) break if (direction == None): for rm in risk_moves: temp_direction = validate_direction(rm[0], m, risk_moves, ff_moves, ff_moves_no_tails, data, tail_moves, hungry) if (temp_direction != None): direction = temp_direction print("DEBUG: Least risk direction GOOD = {}".format(temp_direction)) break else: print("DEBUG: Least risk direction NOT GOOD = {}".format(temp_direction)) if (direction == None): for pm in possible_moves: if pm in tail_moves: if (hungry == False): print("DEBUG: Simply taking tail move = {}".format(pm)) direction = pm break if (direction == None): for ff in ff_moves_no_tails: print("DEBUG: Simply taking largest ff = {}".format(ff[0])) direction = ff[0] break if (direction == None): for dt in directions_of_my_tail: print("DEBUG: Direction of my tail = {}".format(dt[0])) direction = dt[0] break if (direction == None): for domt in last_ditch_possible_moves: direction = domt print("DEBUG: Last ditch direction = {}".format(direction)) break # in trouble now - pick a random direction if (direction == None): direction = random.choice(["left", "right", "up", "down"]) print("DEBUG: No options left - choose RANDOM direction: {}".format(direction)) print("DEBUG: Direction={}".format(direction)) return direction @bottle.post('/move') def move(): data = bottle.request.json print(json.dumps(data)) # Make a list of all the bad coordinates and try to avoid them height = data["board"]["height"] width = data["board"]["width"] # build list of bad coordinates bad_coords = populate_bad_coords(width, height) # build list of all snake coordinates on the board snakes = data["board"]["snakes"] snake_coords = populate_snake_coords(data, False) snake_coords_no_tails = populate_snake_coords(data, True) num_snakes = len(snakes) # obtain information about my snake my_size = len(data["you"]["body"]) my_health = data["you"]["health"] my_head = data["you"]["body"][0] my_tail = data["you"]["body"][my_size-1] # snake bodies snake_heads = get_snake_array(0, data) snake_tails = get_snake_array(-1, data) # get details on the shortest snake on the board shortest_snake = get_shortest_snake(data) shortest_length = len(shortest_snake) # check if we have a longer snake on the board longer_snake = is_there_a_longer_snake(data) # get number of active snakes number_of_active_snakes = len(data["board"]["snakes"]) hazards = get_hazard_array(data) # specify health threshold to go get food health_threshold = 30 amount_of_food = len(data["board"]["food"]) if (amount_of_food > 10): if (num_snakes > 2): health_threshold = 5 hungry =
repository.targets.add_verification_key(new_targets_public_key) repository.timestamp.remove_verification_key(old_timestamp_public_key) repository.timestamp.add_verification_key(new_timestamp_public_key) repository.snapshot.remove_verification_key(old_snapshot_public_key) repository.snapshot.add_verification_key(new_snapshot_public_key) # Unload the old signing keys so that the new metadata only contains # signatures produced by the new signing keys. Since this is based on # keyid, the public key can be used. repository.targets.unload_signing_key(old_targets_public_key) repository.snapshot.unload_signing_key(old_snapshot_public_key) repository.timestamp.unload_signing_key(old_timestamp_public_key) # Load the new signing keys to write metadata. The root key is unchanged, # and in the demo it is already loaded. repository.targets.load_signing_key(new_targets_private_key) repository.snapshot.load_signing_key(new_snapshot_private_key) repository.timestamp.load_signing_key(new_timestamp_private_key) # The root role is not automatically marked as dirty when the verification # keys are updated via repository.<non-root-role>.add_verification_key(). # TODO: Verify this behavior with the latest version of the TUF codebase. repository.mark_dirty(['root']) # Push the changes to "live". write_to_live() def sign_with_compromised_keys_attack(vin=None): """ <Purpose> Re-generate Timestamp, Snapshot, and Targets metadata for all vehicles and sign each of these roles with its previously revoked key. The default key names (director, directorsnapshot, directortimestamp, etc.) of the key files are used if prefix_of_previous_keys is None, otherwise 'prefix_of_previous_keys' is prepended to them. This is a high-level version of the common function to update a role key. The director service instance is also updated with the key changes. <Arguments> vin (optional) If not provided, all known vehicles will be attacked. You may also provide a single VIN (string) indicating one vehicle to attack. <Side Effects> None. <Exceptions> None. <Returns> None. """ global director_service_instance print(LOG_PREFIX + 'ATTACK: arbitrary metadata, old key, all vehicles') # Start by backing up the repository before the attack occurs so that we # can restore it afterwards in undo_sign_with_compromised_keys_attack. backup_repositories(vin) # Load the now-revoked keys. old_targets_private_key = demo.import_private_key('director') old_timestamp_private_key = demo.import_private_key('directortimestamp') old_snapshot_private_key = demo.import_private_key('directorsnapshot') current_targets_private_key = director_service_instance.key_dirtarg_pri current_timestamp_private_key = director_service_instance.key_dirtime_pri current_snapshot_private_key = director_service_instance.key_dirsnap_pri # Ensure the director service uses the old (now-revoked) keys. director_service_instance.key_dirtarg_pri = old_targets_private_key director_service_instance.key_dirtime_pri = old_timestamp_private_key director_service_instance.key_dirsnap_pri = old_snapshot_private_key repo_dir = None if vin is None: vehicles_to_attack = director_service_instance.vehicle_repositories.keys() else: vehicles_to_attack = [vin] for vin in vehicles_to_attack: repository = director_service_instance.vehicle_repositories[vin] repo_dir = repository._repository_directory repository.targets.unload_signing_key(current_targets_private_key) repository.snapshot.unload_signing_key(current_snapshot_private_key) repository.timestamp.unload_signing_key(current_timestamp_private_key) # Load the old signing keys to generate the malicious metadata. The root # key is unchanged, and in the demo it is already loaded. repository.targets.load_signing_key(old_targets_private_key) repository.snapshot.load_signing_key(old_snapshot_private_key) repository.timestamp.load_signing_key(old_timestamp_private_key) repository.timestamp.version = repository.targets.version + 1 repository.timestamp.version = repository.snapshot.version + 1 repository.timestamp.version = repository.timestamp.version + 1 # Metadata must be partially written, otherwise write() will throw # a UnsignedMetadata exception due to the invalid signing keys (i.e., # we are using the old signing keys, which have since been revoked. repository.write(write_partial=True) # Copy the staged metadata to a temp directory we'll move into place # atomically in a moment. shutil.copytree(os.path.join(repo_dir, 'metadata.staged'), os.path.join(repo_dir, 'metadata.livetemp')) # Empty the existing (old) live metadata directory (relatively fast). if os.path.exists(os.path.join(repo_dir, 'metadata')): shutil.rmtree(os.path.join(repo_dir, 'metadata')) # Atomically move the new metadata into place. os.rename(os.path.join(repo_dir, 'metadata.livetemp'), os.path.join(repo_dir, 'metadata')) print(LOG_PREFIX + 'COMPLETED ATTACK') def undo_sign_with_compromised_keys_attack(vin=None): """ <Purpose> Undo the actions executed by sign_with_compromised_keys_attack(). Namely, move the valid metadata into the live and metadata.staged directories, and reload the valid keys for each repository. <Arguments> vin (optional) If not provided, all known vehicles will be reverted to normal state from attacked state. You may also provide a single VIN (string) indicating one vehicle to undo the attack for. <Side Effects> None. <Exceptions> None. <Returns> None. """ # Re-load the valid keys, so that the repository objects can be updated to # reference them and replace the compromised keys set. valid_targets_private_key = demo.import_private_key('new_director') valid_timestamp_private_key = demo.import_private_key('new_directortimestamp') valid_snapshot_private_key = demo.import_private_key('new_directorsnapshot') current_targets_private_key = director_service_instance.key_dirtarg_pri current_timestamp_private_key = director_service_instance.key_dirtime_pri current_snapshot_private_key = director_service_instance.key_dirsnap_pri # Set the new private keys in the director service. These keys are shared # between all vehicle repositories. director_service_instance.key_dirtarg_pri = valid_targets_private_key director_service_instance.key_dirtime_pri = valid_timestamp_private_key director_service_instance.key_dirsnap_pri = valid_snapshot_private_key # Revert to the last backup for all metadata in the Director repositories. restore_repositories(vin) if vin is None: vehicles_to_attack = director_service_instance.vehicle_repositories.keys() else: vehicles_to_attack = [vin] for vin in vehicles_to_attack: repository = director_service_instance.vehicle_repositories[vin] repo_dir = repository._repository_directory # Load the new signing keys to write metadata. repository.targets.load_signing_key(valid_targets_private_key) repository.snapshot.load_signing_key(valid_snapshot_private_key) repository.timestamp.load_signing_key(valid_timestamp_private_key) print(LOG_PREFIX + 'COMPLETED UNDO ATTACK') def add_target_to_director(target_fname, filepath_in_repo, vin, ecu_serial): """ For use in attacks and more specific demonstration. Given the filename of the file to add, the path relative to the repository root to which to copy it, the VIN of the vehicle whose repository it should be added to, and the ECU's serial directory, adds that file as a target file (calculating its cryptographic hash and length) to the appropriate repository for the given VIN. <Arguments> target_fname The full filename of the file to be added as a target to the Director's targets role metadata. This file doesn't have to be in any particular place; it will be copied into the repository directory structure. filepath_in_repo The path relative to the root of the repository's targets directory where this file will be kept and accessed by clients. (e.g. 'file1.txt' or 'brakes/firmware.tar.gz') ecu_serial The ECU to assign this target to in the targets metadata. Complies with uptane.formats.ECU_SERIAL_SCHEMA """ uptane.formats.VIN_SCHEMA.check_match(vin) uptane.formats.ECU_SERIAL_SCHEMA.check_match(ecu_serial) tuf.formats.RELPATH_SCHEMA.check_match(target_fname) tuf.formats.RELPATH_SCHEMA.check_match(filepath_in_repo) if vin not in director_service_instance.vehicle_repositories: raise uptane.UnknownVehicle('The VIN provided, ' + repr(vin) + ' is not ' 'that of a vehicle known to this Director.') repo = director_service_instance.vehicle_repositories[vin] repo_dir = repo._repository_directory print(LOG_PREFIX + 'Copying target file into place.') destination_filepath = os.path.join(repo_dir, 'targets', filepath_in_repo) # TODO: This should probably place the file into a common targets directory # that is then softlinked to all repositories. shutil.copy(target_fname, destination_filepath) print(LOG_PREFIX + 'Adding target ' + repr(target_fname) + ' for ECU ' + repr(ecu_serial)) # This calls the appropriate vehicle repository. director_service_instance.add_target_for_ecu( vin, ecu_serial, destination_filepath) def host(): """ Hosts the Director repository (http serving metadata files) as a separate process. Should be stopped with kill_server(). Note that you must also run listen() to start the Director services (run on xmlrpc). If this module already started a server process to host the repo, nothing will be done. """ global repo_server_process if repo_server_process is not None: print(LOG_PREFIX + 'Sorry: there is already a server process running.') return # Prepare to host the director repo contents. os.chdir(demo.DIRECTOR_REPO_DIR) command = [] if sys.version_info.major < 3: # Python 2 compatibility command = ['python', '-m', 'SimpleHTTPServer', str(demo.DIRECTOR_REPO_PORT)] else: command = ['python3', '-m', 'http.server', str(demo.DIRECTOR_REPO_PORT)] # Begin hosting the director's repository. repo_server_process = subprocess.Popen(command, stderr=subprocess.PIPE) os.chdir(uptane.WORKING_DIR) print(LOG_PREFIX + 'Director repo server process started, with pid ' + str(repo_server_process.pid) + ', serving on port ' + str(demo.DIRECTOR_REPO_PORT) + '. Director repo URL is: ' + demo.DIRECTOR_REPO_HOST + ':' + str(demo.DIRECTOR_REPO_PORT) + '/') # Kill server process after calling exit(). atexit.register(kill_server) # Wait / allow any exceptions to kill the server. # try: # time.sleep(1000000) # Stop hosting after a while. # except: # print('Exception caught') # pass # finally: # if repo_server_process.returncode is None: # print('Terminating Director repo server process ' + str(repo_server_process.pid)) # repo_server_process.kill() # Restrict director requests to a particular path. # Must specify RPC2 here for the XML-RPC interface to work. class RequestHandler(xmlrpc_server.SimpleXMLRPCRequestHandler): rpc_paths = ('/RPC2',) def register_vehicle_manifest_wrapper( vin, primary_ecu_serial, signed_vehicle_manifest): """ This function is a wrapper for director.Director::register_vehicle_manifest(). The purpose of this wrapper is to make sure that the data that goes to director.register_vehicle_manifest is what is expected. In the demo, there are two scenarios: - If we're using ASN.1/DER, then the vehicle manifest is a binary object and signed_vehicle_manifest had to be wrapped in an XMLRPC Binary() object. The reference implementation has no notion of XMLRPC (and should not), so the vehicle manifest has to be extracted from the XMLRPC Binary() object that is signed_vehicle_manifest in this case. - If we're using any other data format / encoding (e.g. JSON), then the vehicle manifest was transfered as an object that the reference implementation can already understand, and we just pass the argument along to the director module. """ if tuf.conf.METADATA_FORMAT == 'der': director_service_instance.register_vehicle_manifest( vin, primary_ecu_serial, signed_vehicle_manifest.data) else: director_service_instance.register_vehicle_manifest( vin, primary_ecu_serial, signed_vehicle_manifest) def listen(): """ Listens on DIRECTOR_SERVER_PORT for xml-rpc calls to functions: - submit_vehicle_manifest - register_ecu_serial Note that you must also run host() in order to serve the metadata files
, u'絞' : [u'x', u'j'] , u'䇡' : [u'z'] , u'烫' : [u't'] , u'鉬' : [u'm'] , u'啮' : [u'n'] , u'㿵' : [u'r'] , u'棻' : [u'f'] , u'詼' : [u'h'] , u'䵾' : [u'f'] , u'粈' : [u'r'] , u'茍' : [u'j'] , u'䘏' : [u'x'] , u'醖' : [u'y'] , u'甙' : [u'd'] , u'咘' : [u'b'] , u'覦' : [u'y'] , u'洩' : [u'x'] , u'䲨' : [u'h'] , u'箲' : [u'x'] , u'舷' : [u'x'] , u'䔹' : [u's'] , u'郀' : [u'k'] , u'参' : [u'c', u's', u'd'] , u'裐' : [u'j'] , u'汓' : [u'q'] , u'䯒' : [u'h'] , u'竜' : [u'l'] , u'腡' : [u'l', u'g'] , u'獭' : [u't'] , u'勬' : [u'j'] , u'蟺' : [u'c', u's', u'd', u't'] , u'歽' : [u'z'] , u'䫼' : [u'x'] , u'傁' : [u's'] , u'鮇' : [u'w'] , u'搎' : [u's'] , u'䢑' : [u'd'] , u'尞' : [u'l'] , u'斣' : [u'c'] , u'蜤' : [u's'] , u'礰' : [u'l'] , u'嶳' : [u'd'] , u'㨲' : [u'c'] , u'蒹' : [u'j'] , u'兀' : [u'w'] , u'盅' : [u'c', u'z'] , u'㯇' : [u'b'] , u'顆' : [u'k'] , u'䥐' : [u'm'] , u'滕' : [u't'] , u'駛' : [u's'] , u'扢' : [u'x', u'g'] , u'䛥' : [u'x'] , u'揷' : [u'c'] , u'蕸' : [u'x'] , u'送' : [u's'] , u'瞄' : [u'm'] , u'㢆' : [u'c'] , u'䄋' : [u'y'] , u'蠑' : [u'r'] , u'澔' : [u'h'] , u'隚' : [u't'] , u'稝' : [u'p'] , u'㼟' : [u'b'] , u'䞤' : [u'q'] , u'躪' : [u'l'] , u'刭' : [u'j'] , u'鴳' : [u'y'] , u'悶' : [u'm'] , u'䨽' : [u'f'] , u'壆' : [u'b'] , u'菌' : [u'j'] , u'杏' : [u'x'] , u'痘' : [u'd'] , u'㛚' : [u't'] , u'彟' : [u'h'] , u'虥' : [u'z'] , u'淨' : [u'j'] , u'铮' : [u'z'] , u'硱' : [u'k'] , u'㵳' : [u'l'] , u'賾' : [u'z'] , u'隃' : [u'y'] , u'焂' : [u's'] , u'喅' : [u'y'] , u'躓' : [u'z'] , u'椒' : [u'j'] , u'䶕' : [u'p'] , u'㞙' : [u'n'] , u'粟' : [u's'] , u'舠' : [u'd'] , u'䄢' : [u'q'] , u'醭' : [u'p', u'b'] , u'瀬' : [u'l'] , u'咯' : [u'k', u'l', u'g'] , u'覽' : [u'l'] , u'格' : [u'g'] , u'䲿' : [u'c'] , u'㛃' : [u'j'] , u'翉' : [u'p'] , u'鵊' : [u'j'] , u'䁌' : [u'y'] , u'郗' : [u'x', u'c'] , u'獖' : [u'b', u'f'] , u'埙' : [u'x'] , u'裧' : [u'c'] , u'武' : [u'w'] , u'俩' : [u'l'] , u'绳' : [u'y', u's', u'm'] , u'鱴' : [u'm'] , u'䍶' : [u'd'] , u'犀' : [u'x'] , u'锅' : [u'g'] , u'堇' : [u'j'] , u'檐' : [u'y', u'd'] , u'贕' : [u'd'] , u'㨛' : [u's'] , u'龞' : [u'b'] , u'挡' : [u'd', u't'] , u'䊠' : [u'x'] , u'鐯' : [u'z'] , u'嬱' : [u'c'] , u'㲴' : [u'z'] , u'斺' : [u'x'] , u'谿' : [u'q', u'x'] , u'㕅' : [u'j'] , u'黈' : [u't'] , u'手' : [u's'] , u'巊' : [u'y'] , u'静' : [u'j'] , u'婛' : [u'j'] , u'㿞' : [u'm'] , u'擤' : [u'x'] , u'轩' : [u'x'] , u'㑯' : [u'x'] , u'絵' : [u'h'] , u'峴' : [u'x'] , u'稆' : [u'l'] , u'庉' : [u'd'] , u'㼈' : [u'l'] , u'薏' : [u'y'] , u'刖' : [u'y'] , u'箛' : [u'g'] , u'餜' : [u'g'] , u'䨦' : [u'p'] , u'厫' : [u'a'] , u'骱' : [u'x', u'j', u'g'] , u'朸' : [u'l'] , u'䮻' : [u'c', u'd'] , u'彈' : [u'd', u't'] , u'惍' : [u'j'] , u'虎' : [u'h'] , u'瑚' : [u'h'] , u'壝' : [u'w'] , u'㥜' : [u'w'] , u'蟣' : [u'q', u'j'] , u'汪' : [u'h', u'w'] , u'痯' : [u'g'] , u'㫱' : [u'n'] , u'魰' : [u'w'] , u'淿' : [u'm'] , u'圃' : [u'p'] , u'鸉' : [u'y'] , u'憌' : [u'c'] , u'伓' : [u'b'] , u'妜' : [u'y'] , u'肢' : [u's', u'z'] , u'搥' : [u'c'] , u'錫' : [u'x', u't'] , u'皮' : [u'p'] , u'㮰' : [u'p', u'b'] , u'尵' : [u't'] , u'謻' : [u'y', u'c'] , u'溾' : [u'w'] , u'闄' : [u'y'] , u'祇' : [u'q', u'c', u'z'] , u'㹉' : [u'y'] , u'䛎' : [u'y', u'h', u'x'] , u'跔' : [u'j'] , u'兗' : [u'y'] , u'顝' : [u'k'] , u'揠' : [u'y'] , u'䥧' : [u'h', u'x'] , u'寰' : [u'h'] , u'苶' : [u'n'] , u'晹' : [u'y'] , u'蒋' : [u'j'] , u'笊' : [u'z'] , u'䞍' : [u'q'] , u'皗' : [u'c'] , u'逘' : [u'y'] , u'匚' : [u'f'] , u'溧' : [u'l'] , u'蠨' : [u'x'] , u'䬪' : [u'b', u'f'] , u'鮵' : [u'd'] , u'稴' : [u'l'] , u'䚷' : [u'y', u'x'] , u'痁' : [u's', u'd'] , u'靂' : [u'l'] , u'剄' : [u'j'] , u'淑' : [u's', u'c'] , u'轒' : [u'f'] , u'䩔' : [u'd'] , u'髟' : [u'p', u's', u'b'] , u'神' : [u's'] , u'䗡' : [u'y'] , u'瓫' : [u'p'] , u'陬' : [u'z'] , u'兮' : [u'x'] , u'泻' : [u'x'] , u'蹼' : [u'p'] , u'䥾' : [u'x'] , u'㞂' : [u't'] , u'碈' : [u'm'] , u'蜍' : [u'y', u'c', u's'] , u'䈏' : [u'b'] , u'焙' : [u'b'] , u'傘' : [u's'] , u'趦' : [u'z'] , u'羲' : [u'x'] , u'蘷' : [u'k'] , u'䄹' : [u't', u'n'] , u'铀' : [u'y'] , u'灃' : [u'f'] , u'埂' : [u'g'] , u'賐' : [u'x'] , u'桓' : [u'h'] , u'俒' : [u'h'] , u'㗖' : [u'd'] , u'络' : [u'l'] , u'蕡' : [u'f'] , u'䁣' : [u'c'] , u'睭' : [u'z'] , u'囬' : [u'h'] , u'菺' : [u'j'] , u'潽' : [u'p'] , u'仼' : [u'w'] , u'㔀' : [u'q', u'l'] , u'龇' : [u'z'] , u'怎' : [u'z'] , u'䲑' : [u'y'] , u'堞' : [u'd'] , u'憣' : [u'f'] , u'茤' : [u'j', u'd'] , u'細' : [u'x'] , u'妳' : [u'n'] , u'㸲' : [u'z'] , u'肹' : [u'x', u'b'] , u'啀' : [u'a'] , u'狅' : [u'q'] , u'㿇' : [u'x'] , u'鱆' : [u'z'] , u'䵐' : [u'c'] , u'櫕' : [u'c'] , u'鷛' : [u'y', u'r'] , u'晢' : [u'x', u'z'] , u'䋥' : [u'l'] , u'干' : [u'h', u'g'] , u'柷' : [u'z'] , u'腸' : [u'c'] , u'鐁' : [u's'] , u'玄' : [u'x'] , u'㲆' : [u'l'] , u'谑' : [u'x', u'n'] , u'殔' : [u'y'] , u'銚' : [u'y', u'q', u'd', u't'] , u'縝' : [u'c', u'z'] , u'䎤' : [u'c', u'j'] , u'說' : [u'y', u's', u't'] , u'嘭' : [u'p'] , u'餳' : [u'x', u't'] , u'丽' : [u'l'] , u'㑁' : [u'z'] , u'峆' : [u'h'] , u'蟌' : [u'c'] , u'捏' : [u'n'] , u'燘' : [u'm'] , u'孟' : [u'm'] , u'艥' : [u'j'] , u'槨' : [u'g'] , u'籱' : [u'z'] , u'㥳' : [u'y'] , u'䇸' : [u'c', u'z', u's'] , u'裾' : [u'j'] , u'銃' : [u'c'] , u'甂' : [u'p', u'b'] , u'内' : [u'n'] , u'誓' : [u's'] , u'洒' : [u'x', u's', u'c'] , u'碟' : [u's', u'd'] , u'蘠' : [u'q'] , u'䔢' : [u'h'] , u'閭' : [u'l'] , u'琬' : [u'w'] , u'傯' : [u'z'] , u'趽' : [u'f'] , u'氼' : [u'n'] , u'築' : [u'z'] , u'饊' : [u's'] , u'䑌' : [u'l'] , u'铗' : [u'j'] , u'睖' : [u'l'] , u'叙' : [u'x'] , u'賧' : [u't'] , u'潦' : [u'l'] , u'竳' : [u'd'] , u'顴' : [u'q'] , u'䝶' : [u'l'] , u'皀' : [u'b', u'j'] , u'鄅' : [u'y'] , u'將' : [u'q', u'j'] , u'㦊' : [u'h'] , u'源' : [u'y'] , u'褕' : [u'y'] , u'㸛' : [u's'] , u'鮞' : [u'e'] , u'朡' : [u'z'] , u'䚠' : [u'h'] , u'逯' : [u'l', u'd'] , u'弱' : [u'r'] , u'憺' : [u'd'] , u'蠿' : [u'z'] , u'髈' : [u'p', u'b'] , u'晋' : [u'j'] , u'姊' : [u'z'] , u'鍙' : [u'h'] , u'幛' : [u'z'] , u'㯞' : [u'y', u'j'] , u'惤' : [u'j'] , u'譩' : [u'y'] , u'鷲' : [u'j'] , u'祵' : [u'h', u'k'] , u'壴' : [u'z'] , u'縆' : [u'g'] , u'媉' : [u'w'] , u'膏' : [u'g'] , u'嘖' : [u'z'] , u'羛' : [u'y', u'x'] , u'㲝' : [u'r'] , u'鴜' : [u'z'] , u'並' : [u'b'] , u'垫' : [u'd'] , u'麱' : [u'f'] , u'挸' : [u'j'] , u'侻' : [u't'] , u'孈' : [u's'] , u'操' : [u'c'] , u'艎' : [u'h'] , u'灚' : [u'j'] , u'峝' : [u't', u'd'] , u'菣' : [u'q'] , u'桪' : [u'x'] , u'燯' : [u'l'] , u'齰' : [u'c', u'z'] , u'䁺' : [u's'] , u'槿' : [u'q', u'j'] , u'匃' : [u'g'] , u'騉' : [u'k'] , u'斌' : [u'b'] , u'䬓' : [u'a'] , u'㔗' : [u'f'] , u'嶜' : [u'j'] , u'蒢' : [u'c'] , u'急' : [u'j'] , u'霫' : [u'x'] , u'犮' : [u'b'] , u'㾰' : [u'h'] , u'堵' : [u'd'] , u'輻' : [u'f'] , u'檾' : [u'q', u'j'] , u'釄' : [u'm'] , u'絇' : [u'q', u'j'] , u'㩉' : [u'x'] , u'䋎' : [u'z'] , u'觔' : [u'j'] , u'啗' : [u'd'] , u'鱝' : [u'f'] , u'柠' : [u'n'] , u'䵧' : [u'z'] , u'㝫' : [u'l'] , u'忰' : [u'c'] , u'蛶' : [u'l'] , u'批' : [u'p'] , u'㸄' : [u'j'] , u'袋' : [u'd'] , u'眊' : [u'm'] , u'䮍' : [u'x', u'n'] , u'窗' : [u'c'] , u'弚' : [u't'] , u'抧' : [u'z'] , u'萨' : [u's'] , u'䜪' : [u'q'] , u'㴮' : [u'x'] , u'鞵' : [u'x'] , u'瘴' : [u'z'] , u'䪷' : [u'h'] , u'私' : [u's'] , u'魂' : [u'h'] , u'幄' : [u'w'] , u'懑' : [u'm']
<reponame>tillbiskup/aspecd<gh_stars>1-10 """ Plotting: Graphical representations of data extracted from datasets. Plotting relies on `matplotlib <https://matplotlib.org/>`_, and mainly its object-oriented interface should be used for the actual plotting. Each plotter contains references to the respective figure and axes created usually by a call similar to:: fig, ax = matplotlib.pyplot.subplots() For convenience, short hands for the :attr:`figure` and :attr:`axes` properties of a plotter are available, named :attr:`fig` and :attr:`ax`, respectively. For details on handling (own) figure and axes objects, see below. Generally, two types of plotters can be distinguished: * Plotters for handling single datasets Shall be derived from :class:`aspecd.plotting.SinglePlotter`. * Plotters for handling multiple datasets Shall be derived from :class:`aspecd.plotting.MultiPlotter`. In the first case, the plot is usually handled using the :meth:`plot` method of the respective :obj:`aspecd.dataset.Dataset` object. Additionally, those plotters always only operate on the data of a single dataset, and the plot can easily be attached as a representation to the respective dataset. Plotters handling single datasets should always inherit from the :class:`aspecd.plotting.SinglePlotter` class. In the second case, the plot is handled using the :meth:`plot` method of the :obj:`aspecd.plotting.Plotter` object, and the datasets are stored as a list within the plotter. As these plots span several datasets, there is no easy connection between a single dataset and such a plot in sense of representations stored in datasets. Plotters handling multiple datasets should always inherit from the :class:`aspecd.plotting.MultiPlotter` class. In a certain sense, there is a third type of plotters: * Plotters consisting of more than one axes Shall be derived from :class:`aspecd.plotting.CompositePlotter`. However, practically mostly these composite plotters will behave like plotters handling either single or multiple datasets. Generally, these composite plotters will use other types of plotters to perform the actual plot tasks. This modular approach allows for great flexibility. Regardless of the type of plotter, **saving plots** is always done using objects of the :class:`aspecd.plotting.Saver` class. The actual task of saving a plot is as easy as calling the :meth:`save` method of a plotter with a saver object as its argument. A note on array dimensions and axes =================================== Something often quite confusing is the apparent inconsistency between the order of array dimensions and the order of axes. While we are used to assign axes in the order *x*, *y*, *z*, and assuming *x* to be horizontal, *y* vertical (and *z* sticking out of the paper plane), arrays are usually indexed row-first, column-second. That means, however, that if you simply plot a 2D array in axes, your *first* dimension is along the *y* axis, the *second* dimension along the *x* axis. Therefore, as the axes of your datasets will always correspond to the array dimensions of your data, in case of 2D plots you will need to *either* use the information contained in the second axis object for your *x* axis label, and the information from the first axis object for your *y* axis label, *or* to transpose the data array. Another aspect to have in mind is the position of the origin. Usually, in a Cartesian coordinate system, convention is to have the origin (0, 0) in the *lower left* of the axes (for the positive quadrant). However, for images, convention is to have the corresponding (0, 0) pixel located in the *upper left* edge of your image. Therefore, those plotting methods dealing with images will usually *revert* the direction of your *y* axis. Most probably, eventually you will have to check with real data and ensure the plotters to plot data and axes in a consistent fashion. Types of concrete plotters ========================== The ASpecD framework comes with a series of concrete plotters included ready to be used. As stated above, plotters can generally be divided into two types: plotters operating on single datasets and plotters combining the data of multiple datasets into a single figure. Additionally, plotters can be categorised with regard to creating figures consisting of a single or multiple axes. The latter are plotters inheriting from the :class:`aspecd.plotting.CompositePlotter` class. The latter can be thought of as templates for the other plotters to operate on, *i.e.* they provide the axes for other plotters to display their results. Concrete plotters for single datasets ------------------------------------- * :class:`aspecd.plotting.SinglePlotter1D` Basic line plots for single datasets, allowing to plot a series of line-type plots, including (semi)log plots * :class:`aspecd.plotting.SinglePlotter2D` Basic 2D plots for single datasets, allowing to plot a series of 2D plots, including contour plots and image-type display * :class:`aspecd.plotting.SinglePlotter2DStacked` Stacked plots of 2D data, converting a 2D display into a series of 1D line plots stacked on top of each other. * :class:`aspecd.plotting.SingleCompositePlotter` Composite plotter for single datasets, allowing to plot different views of one and the same datasets by using existing plotters for single datasets. Concrete plotters for multiple datasets --------------------------------------- * :class:`aspecd.plotting.MultiPlotter1D` Basic line plots for multiple datasets, allowing to plot a series of line-type plots, including (semi)log plots * :class:`aspecd.plotting.MultiPlotter1DStacked` Stacked line plots for multiple datasets, allowing to plot a series of line-type plots, including (semi)log plots Plotting to existing axes ========================= Figure and axes properties of a plotter object will only be populated upon calling the method :meth:`aspecd.plotting.Plotter.plot`, therefore by using the :meth:`plot` method of the respective plotter class. Furthermore, figure and axes properties will only be populated if both are not existing already. Therefore, if you like to use a plotter to plot to an existing axis, set its figure and axes properties before calling the :meth:`aspecd.plotting.Plotter.plot` method. .. important:: If you do so, make sure to set *both*, figure and axes properties, as failing to set a valid figure property will cause matplotlib to throw exceptions. A simple example may look like this:: import matplotlib.pyplot as plt fig, ax = plt.subplots() plotter = aspecd.plotting.SinglePlotter1D() plotter.figure = fig plotter.axes = ax plotter.plot() In this case, the plotter will plot to the axis specified before calling its :meth:`plot` method. Thus, it should be straight-forward to write plotter classes that create complex plots consisting of several subplots by reusing available plotter classes. This is what the :class:`aspecd.plotting.CompositePlotter` class is for, and how it basically works. Module API documentation ======================== """ import copy import logging import os import matplotlib as mpl # pylint: disable=unused-import import matplotlib.collections import matplotlib.pyplot as plt import matplotlib.ticker as ticker import numpy as np import aspecd.dataset import aspecd.exceptions import aspecd.history import aspecd.utils logger = logging.getLogger(__name__) logger.addHandler(logging.NullHandler()) class Plotter: """Base class for plots. Each class actually plotting data should inherit from this class. Furthermore, all parameters, implicit and explicit, necessary to perform the plot, should eventually be stored in the property :attr:`parameters` (currently a dictionary). Further things that need to be changed upon inheriting from this class are the string stored in :attr:`description`, being basically a one-liner. The actual implementation of the plotting is done in the private method :meth:`_create_plot` that in turn gets called by :meth:`plot`. .. note:: Usually, you will never implement an instance of this class for actual plotting tasks, but rather one of the child classes. Attributes ---------- name : :class:`str` Name of the plotter. Defaults always to the full class name, don't change! parameters : :class:`dict` All parameters necessary for the plot, implicit and explicit The following keys exist: show_legend : :class:`bool` Whether to show a legend in the plot Default: False show_zero_lines : :class:`bool` Whether to show zero lines in the plot Regardless of whether you set this to true, zero lines will only be added to the final plot if the zero value is within the current axes limits. Zero line properties can be set via the :attr:`aspecd.plotting.Plotter.properties` attribute. Default: True properties : :class:`aspecd.plotting.PlotProperties` Properties of the plot, defining its appearance description : :class:`str` Short description, to be set in class definition figure : :class:`matplotlib.figure.Figure` Reference to figure object axes : :class:`matplotlib.axes.Axes` Reference to axes object used for actual plotting filename : :class:`str` Name of file to save the plot to Actual saving is done using an :obj:`aspecd.plotting.Saver` object. caption : :class:`aspecd.plotting.Caption` User-supplied information for the figure. legend : :class:`matplotlib.legend.Legend` Legend object style : :class:`str` plotting style to use You can use all plotting styles understood by matplotlib. See :mod:`matplotlib.style` for details. .. note:: If you set the style via :attr:`aspecd.plotting.Plotter.style`, all following figures will use this style, until you set another style. As it seems, there is no way in matplotlib to find out the current style, and hence reset to it. One way to fix this problem would be to revert to the default style by
# coding: utf-8 # # Optimization Methods # # Until now, you've always used Gradient Descent to update the parameters and minimize the cost. In this notebook, you will learn more advanced optimization methods that can speed up learning and perhaps even get you to a better final value for the cost function. Having a good optimization algorithm can be the difference between waiting days vs. just a few hours to get a good result. # # Gradient descent goes "downhill" on a cost function $J$. Think of it as trying to do this: # <img src="images/cost.jpg" style="width:650px;height:300px;"> # <caption><center> <u> **Figure 1** </u>: **Minimizing the cost is like finding the lowest point in a hilly landscape**<br> At each step of the training, you update your parameters following a certain direction to try to get to the lowest possible point. </center></caption> # # **Notations**: As usual, $\frac{\partial J}{\partial a } = $ `da` for any variable `a`. # # To get started, run the following code to import the libraries you will need. # In[1]: import numpy as np import matplotlib.pyplot as plt import scipy.io import math import sklearn import sklearn.datasets from opt_utils import load_params_and_grads, initialize_parameters, forward_propagation, backward_propagation from opt_utils import compute_cost, predict, predict_dec, plot_decision_boundary, load_dataset from testCases import * get_ipython().magic('matplotlib inline') plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' # ## 1 - Gradient Descent # # A simple optimization method in machine learning is gradient descent (GD). When you take gradient steps with respect to all $m$ examples on each step, it is also called Batch Gradient Descent. # # **Warm-up exercise**: Implement the gradient descent update rule. The gradient descent rule is, for $l = 1, ..., L$: # $$ W^{[l]} = W^{[l]} - \alpha \text{ } dW^{[l]} \tag{1}$$ # $$ b^{[l]} = b^{[l]} - \alpha \text{ } db^{[l]} \tag{2}$$ # # where L is the number of layers and $\alpha$ is the learning rate. All parameters should be stored in the `parameters` dictionary. Note that the iterator `l` starts at 0 in the `for` loop while the first parameters are $W^{[1]}$ and $b^{[1]}$. You need to shift `l` to `l+1` when coding. # In[2]: # GRADED FUNCTION: update_parameters_with_gd def update_parameters_with_gd(parameters, grads, learning_rate): """ Update parameters using one step of gradient descent Arguments: parameters -- python dictionary containing your parameters to be updated: parameters['W' + str(l)] = Wl parameters['b' + str(l)] = bl grads -- python dictionary containing your gradients to update each parameters: grads['dW' + str(l)] = dWl grads['db' + str(l)] = dbl learning_rate -- the learning rate, scalar. Returns: parameters -- python dictionary containing your updated parameters """ L = len(parameters) // 2 # number of layers in the neural networks # Update rule for each parameter for l in range(L): ### START CODE HERE ### (approx. 2 lines) parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - (learning_rate * grads["dW" + str(l+1)]) parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - (learning_rate * grads["db" + str(l+1)]) ### END CODE HERE ### return parameters # In[3]: parameters, grads, learning_rate = update_parameters_with_gd_test_case() parameters = update_parameters_with_gd(parameters, grads, learning_rate) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) # **Expected Output**: # # <table> # <tr> # <td > **W1** </td> # <td > [[ 1.63535156 -0.62320365 -0.53718766] # [-1.07799357 0.85639907 -2.29470142]] </td> # </tr> # # <tr> # <td > **b1** </td> # <td > [[ 1.74604067] # [-0.75184921]] </td> # </tr> # # <tr> # <td > **W2** </td> # <td > [[ 0.32171798 -0.25467393 1.46902454] # [-2.05617317 -0.31554548 -0.3756023 ] # [ 1.1404819 -1.09976462 -0.1612551 ]] </td> # </tr> # # <tr> # <td > **b2** </td> # <td > [[-0.88020257] # [ 0.02561572] # [ 0.57539477]] </td> # </tr> # </table> # # A variant of this is Stochastic Gradient Descent (SGD), which is equivalent to mini-batch gradient descent where each mini-batch has just 1 example. The update rule that you have just implemented does not change. What changes is that you would be computing gradients on just one training example at a time, rather than on the whole training set. The code examples below illustrate the difference between stochastic gradient descent and (batch) gradient descent. # # - **(Batch) Gradient Descent**: # # ``` python # X = data_input # Y = labels # parameters = initialize_parameters(layers_dims) # for i in range(0, num_iterations): # # Forward propagation # a, caches = forward_propagation(X, parameters) # # Compute cost. # cost = compute_cost(a, Y) # # Backward propagation. # grads = backward_propagation(a, caches, parameters) # # Update parameters. # parameters = update_parameters(parameters, grads) # # ``` # # - **Stochastic Gradient Descent**: # # ```python # X = data_input # Y = labels # parameters = initialize_parameters(layers_dims) # for i in range(0, num_iterations): # for j in range(0, m): # # Forward propagation # a, caches = forward_propagation(X[:,j], parameters) # # Compute cost # cost = compute_cost(a, Y[:,j]) # # Backward propagation # grads = backward_propagation(a, caches, parameters) # # Update parameters. # parameters = update_parameters(parameters, grads) # ``` # # In Stochastic Gradient Descent, you use only 1 training example before updating the gradients. When the training set is large, SGD can be faster. But the parameters will "oscillate" toward the minimum rather than converge smoothly. Here is an illustration of this: # # <img src="images/kiank_sgd.png" style="width:750px;height:250px;"> # <caption><center> <u> <font color='purple'> **Figure 1** </u><font color='purple'> : **SGD vs GD**<br> "+" denotes a minimum of the cost. SGD leads to many oscillations to reach convergence. But each step is a lot faster to compute for SGD than for GD, as it uses only one training example (vs. the whole batch for GD). </center></caption> # # **Note** also that implementing SGD requires 3 for-loops in total: # 1. Over the number of iterations # 2. Over the $m$ training examples # 3. Over the layers (to update all parameters, from $(W^{[1]},b^{[1]})$ to $(W^{[L]},b^{[L]})$) # # In practice, you'll often get faster results if you do not use neither the whole training set, nor only one training example, to perform each update. Mini-batch gradient descent uses an intermediate number of examples for each step. With mini-batch gradient descent, you loop over the mini-batches instead of looping over individual training examples. # # <img src="images/kiank_minibatch.png" style="width:750px;height:250px;"> # <caption><center> <u> <font color='purple'> **Figure 2** </u>: <font color='purple'> **SGD vs Mini-Batch GD**<br> "+" denotes a minimum of the cost. Using mini-batches in your optimization algorithm often leads to faster optimization. </center></caption> # # <font color='blue'> # **What you should remember**: # - The difference between gradient descent, mini-batch gradient descent and stochastic gradient descent is the number of examples you use to perform one update step. # - You have to tune a learning rate hyperparameter $\alpha$. # - With a well-turned mini-batch size, usually it outperforms either gradient descent or stochastic gradient descent (particularly when the training set is large). # ## 2 - Mini-Batch Gradient descent # # Let's learn how to build mini-batches from the training set (X, Y). # # There are two steps: # - **Shuffle**: Create a shuffled version of the training set (X, Y) as shown below. Each column of X and Y represents a training example. Note that the random shuffling is done synchronously between X and Y. Such that after the shuffling the $i^{th}$ column of X is the example corresponding to the $i^{th}$ label in Y. The shuffling step ensures that examples will be split randomly into different mini-batches. # # <img src="images/kiank_shuffle.png" style="width:550px;height:300px;"> # # - **Partition**: Partition the shuffled (X, Y) into mini-batches of size `mini_batch_size` (here 64). Note that the number of training examples is not always divisible by `mini_batch_size`. The last mini batch might be smaller, but you don't need to worry about this. When the final mini-batch is smaller than the full `mini_batch_size`, it will look like this: # # <img src="images/kiank_partition.png" style="width:550px;height:300px;"> # # **Exercise**: Implement `random_mini_batches`. We coded the shuffling part for you. To help you with the partitioning step, we give you the following code that selects the indexes for the $1^{st}$ and $2^{nd}$ mini-batches: # ```python # first_mini_batch_X = shuffled_X[:, 0 : mini_batch_size] # second_mini_batch_X = shuffled_X[:, mini_batch_size
#!/usr/bin/env python3 import functools import re import subprocess import sys import packaging.version import pkg_resources import requests import urllib3 urllib3.disable_warnings() verbose = len([arg for arg in sys.argv[1:] if arg == '-v']) Packages = { 'advancecomp': { 'git': 'https://github.com/amadvance/advancecomp.git', 're': r'v([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'armadillo': { 'filelist': 'https://sourceforge.net/projects/arma/files/', 're': r'armadillo-([0-9]+\.[0-9]+(|\.[0-9]+)).tar.(gz|xz)/download$', 'session': False, }, 'blosc': { 'git': 'https://github.com/Blosc/c-blosc.git', 're': r'v([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'boost': { 'git': 'https://github.com/boostorg/boost.git', 're': r'boost-([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'cairo': { 'git': 'https://gitlab.freedesktop.org/cairo/cairo.git', 're': r'([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'charls': { 'gitsha': 'https://github.com/team-charls/charls.git', 'branch': '1.x-master' }, 'charls-release': { 'git': 'https://github.com/team-charls/charls.git', 're': r'([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'cmake': { 'git': 'https://github.com/Kitware/CMake.git', 're': r'v([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'curl': { 'git': 'https://github.com/curl/curl.git', 're': r'curl-([0-9]+_[0-9]+(|_[0-9]+))$' }, 'fitsio': { 'filelist': 'https://heasarc.gsfc.nasa.gov/FTP/software/fitsio/c/', 're': r'^cfitsio([0-9]+).tar.(gz|xz)$', 'session': False, 'insecure': True, }, 'fontconfig': { 'git': 'https://gitlab.freedesktop.org/fontconfig/fontconfig.git', 're': r'([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'fossil': { 'json': 'https://www.fossil-scm.org/index.html/juvlist', 'keys': lambda data: [entry['name'] for entry in data], 're': r'fossil-linux-x64-([0-9]+\.[0-9]+(|\.[0-9]+)).tar.(gz|xz)$' }, 'freetype': { 'filelist': 'https://download.savannah.gnu.org/releases/freetype', 're': r'freetype-([0-9]+\.[0-9]+(|\.[0-9]+)).tar.(gz|xz)$' }, 'freexl': { 'fossil': 'https://www.gaia-gis.it/fossil/freexl/timeline?n=10&r=trunk&ss=x', # 'filelist': 'https://www.gaia-gis.it/fossil/freexl/', # 're': r'freexl-([0-9]+\.[0-9]+(|\.[0-9]+)).tar.(gz|xz)$' }, 'fyba': { 'gitsha': 'https://github.com/kartverket/fyba.git', }, 'fyba-release': { 'git': 'https://github.com/kartverket/fyba.git', 're': r'([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'gdal': { 'gitsha': 'https://github.com/OSGeo/gdal.git', }, 'gdal-pypi': { 'pypi': 'GDAL', }, 'gdal-release': { 'git': 'https://github.com/OSGeo/gdal.git', 're': r'v([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'gdk-pixbuf': { 'json': 'https://download.gnome.org/sources/gdk-pixbuf/cache.json', 'keys': lambda data: list(data[1]['gdk-pixbuf']), 're': r'^([0-9]+\.[0-9]+(|\.[0-9]+)(|\.[0-9]+))$' }, 'geos': { 'git': 'https://github.com/libgeos/geos.git', 're': r'([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'gettext': { 'filelist': 'https://ftp.gnu.org/pub/gnu/gettext/', 're': r'gettext-([0-9]+\.[0-9]+(|\.[0-9]+)).tar.(gz|xz)$' }, 'giflib': { 'filelist': 'https://sourceforge.net/projects/giflib/files/', 're': r'giflib-([0-9]+\.[0-9]+(|\.[0-9]+)).tar.gz\/download' }, 'glib': { 'json': 'https://download.gnome.org/sources/glib/cache.json', 'keys': lambda data: list(data[1]['glib']), 're': r'^([0-9]+\.[0-9]+(|\.[0-9]+)(|\.[0-9]+))$' }, 'glymur': { 'git': 'https://github.com/quintusdias/glymur.git', 're': r'v([0-9]+\.[0-9]+(|\.[0-9]+)(|-[0-9]+))$' }, 'glymur-pypi': { 'pypi': 'glymur' }, 'gobject-introspection': { 'json': 'https://download.gnome.org/sources/gobject-introspection/cache.json', 'keys': lambda data: list(data[1]['gobject-introspection']), 're': r'^([0-9]+\.[0-9]+(|\.[0-9]+)(|\.[0-9]+))$' }, 'harfbuzz': { 'git': 'https://github.com/harfbuzz/harfbuzz.git', 're': r'([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'hdf4': { 'git': 'https://github.com/HDFGroup/hdf4.git', 're': r'hdf-([0-9]+_[0-9]+(|_[0-9]+))$', }, 'hdf5': { 'git': 'https://github.com/HDFGroup/hdf5.git', 're': r'hdf5-([0-9]+_[0-9]+(|_[0-9]+))$', }, 'icu4c': { 'git': 'https://github.com/unicode-org/icu.git', 're': r'release-([0-9]+-[0-9]+(|-[0-9]+))$', }, 'imagemagick': { 'git': 'https://github.com/ImageMagick/ImageMagick.git', 're': r'([0-9]+\.[0-9]+(|\.[0-9]+)(|-[0-9]+))$' }, 'jasper': { 'git': 'https://github.com/mdadams/jasper.git', 're': r'version-([0-9]+\.[0-9]+(|\.[0-9]+)(|-[0-9]+))$' }, 'javabridge': { 'git': 'https://github.com/CellProfiler/python-javabridge.git', 're': r'([0-9]+\.[0-9]+(|\.[0-9]+))$', }, 'javabridge-pypi': { 'pypi': 'python-javabridge', }, 'jbigkit': { 'filelist': 'https://www.cl.cam.ac.uk/~mgk25/jbigkit/download/', 're': r'jbigkit-([0-9]+\.[0-9]+(|\.[0-9]+)).tar.(gz|xz)$' }, 'jpeg-xl': { 'git': 'https://gitlab.com/wg1/jpeg-xl.git', 're': r'v([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'krb5': { 'filelist': 'https://kerberos.org/dist/', 're': r'krb5-([0-9]+\.[0-9]+(|\.[0-9]+)).tar.(gz|xz)$' }, 'lapack': { 'git': 'https://github.com/Reference-LAPACK/lapack.git', 're': r'v([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'lerc': { 'git': 'https://github.com/Esri/lerc.git', 're': r'v([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'libbrotli': { 'git': 'https://github.com/google/brotli.git', 're': r'v([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'libcroco': { 'json': 'https://download.gnome.org/sources/libcroco/cache.json', 'keys': lambda data: list(data[1]['libcroco']), 're': r'^([0-9]+\.[0-9]+(|\.[0-9]+)(|\.[0-9]+))$' }, 'libdap': { 'git': 'https://github.com/OPENDAP/libdap4.git', 're': r'version-([0-9]+\.[0-9]+(|\.[0-9]+))$', }, 'libde265': { 'git': 'https://github.com/strukturag/libde265.git', 're': r'v([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'libdeflate': { 'git': 'https://github.com/ebiggers/libdeflate.git', 're': r'v([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'libexpat': { 'git': 'https://github.com/libexpat/libexpat.git', 're': r'R_([0-9]+_[0-9]+(|_[0-9]+))$' }, 'libffi': { 'git': 'https://github.com/libffi/libffi.git', 're': r'v([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'libgeotiff': { 'git': 'https://github.com/OSGeo/libgeotiff.git', 're': r'([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'libgsf': { 'json': 'https://download.gnome.org/sources/libgsf/cache.json', 'keys': lambda data: list(data[1]['libgsf']), 're': r'^([0-9]+\.[0-9]+(|\.[0-9]+)(|\.[0-9]+))$' }, 'libgta': { 'git': 'https://github.com/marlam/gta-mirror.git', 're': r'libgta-([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'libheif': { 'git': 'https://github.com/strukturag/libheif.git', 're': r'v([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'libhwy': { 'git': 'https://github.com/google/highway.git', 're': r'([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'libiconv': { 'filelist': 'https://ftp.gnu.org/pub/gnu/libiconv/', 're': r'libiconv-([0-9]+\.[0-9]+(|\.[0-9]+)).tar.(gz|xz)$' }, 'libimagequant': { 'git': 'https://github.com/ImageOptim/libimagequant.git', 're': r'([0-9]+\.[0-9]+(|\.[0-9]+)(|\.[0-9]+))$' }, 'libjpeg-turbo': { 'git': 'https://github.com/libjpeg-turbo/libjpeg-turbo.git', 're': r'([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'libmemcached': { 'filelist': 'https://launchpad.net/libmemcached/+download', 're': r'libmemcached-([0-9]+\.[0-9]+(|\.[0-9]+)).tar.(gz|xz)$' }, 'libpng': { 'filelist': 'https://sourceforge.net/projects/libpng/files/libpng16/', 're': r'libpng16\/([0-9]+\.[0-9]+(|\.[0-9]+))\/$' }, 'librasterlite2': { 'fossil': 'https://www.gaia-gis.it/fossil/librasterlite2/timeline?n=10&r=trunk&ss=x', # 'filelist': 'https://www.gaia-gis.it/fossil/librasterlite2/', # 're': r'librasterlite2-([0-9]+\.[0-9]+(|\.[0-9]+)(|-beta[0-9]+)).tar.(gz|xz)$' }, 'librsvg': { 'json': 'https://download.gnome.org/sources/librsvg/cache.json', 'keys': lambda data: list(data[1]['librsvg']), 're': r'^([0-9]+\.[0-9]+(|\.[0-9]+)(|\.[0-9]+))$' }, 'libspatialite': { 'fossil': 'https://www.gaia-gis.it/fossil/libspatialite/timeline?n=10&r=trunk&ss=x', # 'filelist': 'https://www.gaia-gis.it/fossil/libspatialite/', # 're': r'libspatialite-([0-9]+\.[0-9]+(|\.[0-9]+)(|[a-z])).tar.(gz|xz)$' }, 'libssh2': { 'git': 'https://github.com/libssh2/libssh2.git', 're': r'libssh2-([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'libtiff': { 'filelist': 'https://download.osgeo.org/libtiff/', 're': r'tiff-([0-9]+\.[0-9]+(|\.[0-9]+)).tar.(gz|xz)$' }, 'libvips': { 'git': 'https://github.com/libvips/libvips.git', 're': r'v([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'libwebp': { 'git': 'https://github.com/webmproject/libwebp.git', 're': r'v([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'libxcrypt': { 'git': 'https://github.com/besser82/libxcrypt.git', 're': r'v([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'libxml2': { 'filelist': 'http://xmlsoft.org/sources/', 're': r'libxml2-([0-9]+\.[0-9]+(|\.[0-9]+)(|[a-z])).tar.(gz|xz)$' }, 'libzip': { 'git': 'https://github.com/nih-at/libzip.git', 're': r'v([0-9]+\.[0-9]+(|\.[0-9]+))$', }, 'lz4': { 'git': 'https://github.com/lz4/lz4.git', 're': r'v([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'm4': { 'filelist': 'https://ftp.gnu.org/gnu/m4/', 're': r'm4-([0-9]+\.[0-9]+(|\.[0-9]+)).tar.(gz|xz)$' }, 'manylinux2014': { # See also https://github.com/pypa/manylinux 'json': 'https://quay.io/api/v1/repository/pypa/manylinux2014_x86_64?includeTags=true', 'keys': lambda data: [data['tags']['latest']['manifest_digest']], 're': r':([0-9a-fA-F]+)$' }, 'mapnik': { 'gitsha': 'https://github.com/mapnik/mapnik.git', }, 'mapnik-release': { 'git': 'https://github.com/mapnik/mapnik.git', 're': r'v([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'minizip': { 'git': 'https://github.com/nmoinvaz/minizip.git', 're': r'([0-9]+\.[0-9]+(|\.[0-9]+))$' }, # MrSID's listing of versions is behind an agreement page, which prevents # easily checking the version. # 'mrsid': { # 'filelist': 'https://www.extensis.com/support/developers', # 're': r'MrSID_DSDK-([0-9]+\.[0-9]+(|\.[0-9]+(|\.[0-9]+)))-rhel6.x86-64.gcc531.tar.gz$' # }, 'mysql': { 'filelist': 'https://dev.mysql.com/downloads/mysql/?tpl=version&os=src', 're': r'mysql-boost-([0-9]+\.[0-9]+(|\.[0-9]+)).tar.(gz|xz)(&|$)' }, 'netcdf': { 'git': 'https://github.com/Unidata/netcdf-c.git', 're': r'v([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'nifti': { 'filelist': 'https://sourceforge.net/projects/niftilib/files/nifticlib/', 're': r'nifticlib_([0-9]+_[0-9]+(|_[0-9]+))\/$' }, 'ogdi': { 'git': 'https://github.com/libogdi/ogdi.git', 're': r'ogdi_([0-9]+_[0-9]+(|_[0-9]+))$' }, 'openblas': { 'git': 'https://github.com/xianyi/OpenBLAS.git', 're': r'v([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'openexr': { 'git': 'https://github.com/AcademySoftwareFoundation/openexr.git', 're': r'v([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'openjpeg': { 'git': 'https://github.com/uclouvain/openjpeg.git', 're': r'v([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'openldap': { 'git': 'https://git.openldap.org/openldap/openldap.git', 're': r'OPENLDAP_REL_ENG_([0-9]+_[0-9]+(|_[0-9]+))$' }, 'openmpi': { 'filelist': 'https://www.open-mpi.org/software/ompi/v4.1/', 're': r'openmpi-([0-9]+\.[0-9]+(|\.[0-9]+)).tar.(gz|xz)$' }, 'openslide': { 'gitsha': 'https://github.com/openslide/openslide.git', }, 'openslide-release': { 'git': 'https://github.com/openslide/openslide.git', 're': r'v([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'openslide-python': { 'gitsha': 'https://github.com/openslide/openslide-python.git', }, 'openslide-python-pypi': { 'pypi': 'openslide-python', }, 'openssl-1.x': { 'git': 'https://github.com/openssl/openssl.git', 're': r'OpenSSL_(1_[0-9]+_[0-9]+[a-z])$', }, 'orc': { 'git': 'https://github.com/GStreamer/orc.git', 're': r'([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'pango': { 'json': 'https://download.gnome.org/sources/pango/cache.json', 'keys': lambda data: list(data[1]['pango']), 're': r'^([0-9]+\.[0-9]+(|\.[0-9]+)(|\.[0-9]+))$' }, 'patchelf': { 'git': 'https://github.com/NixOS/patchelf.git', 're': r'([0-9]+\.[0-9]+(|\.[0-9]+))$', }, 'pcre': { 'filelist': 'https://ftp.pcre.org/pub/pcre/', 're': r'pcre-([0-9]+\.[0-9]+(|\.[0-9]+)).tar.(gz|xz)$' }, 'pixman': { 'git': 'https://gitlab.freedesktop.org/pixman/pixman.git', 're': r'pixman-([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'pkgconfig': { 'git': 'https://gitlab.freedesktop.org/pkg-config/pkg-config.git', 're': r'pkg-config-([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'pnetcdf': { 'git': 'https://github.com/Parallel-NetCDF/PnetCDF.git', 're': r'checkpoint\.([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'poppler': { 'git': 'https://gitlab.freedesktop.org/poppler/poppler.git', 're': r'poppler-([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'postgresql': { 'filelist': 'https://ftp.postgresql.org/pub/source/', 're': r'v([0-9]+\.[0-9]+(|\.[0-9]+))\/$' }, 'proj.4': { 'gitsha': 'https://github.com/OSGeo/proj.4.git', }, 'proj.4-release': { 'git': 'https://github.com/OSGeo/proj.4.git', 're': r'([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'proj-datumgrid': { 'filelist': 'http://download.osgeo.org/proj/', 're': r'proj-datumgrid-([0-9]+\.[0-9]+(|\.[0-9]+)).(tgz|zip)$' }, 'psutil': { 'git': 'https://github.com/giampaolo/psutil.git', 're': r'release-([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'pylibmc': { 'git': 'https://github.com/lericson/pylibmc.git', 're': r'([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'pylibtiff': { 'gitsha': 'https://github.com/pearu/pylibtiff.git', }, 'pylibtiff-pypi': { 'pypi': 'libtiff', }, # 'pyproj4': { # 'gitsha': 'https://github.com/pyproj4/pyproj.git', # }, 'pyproj4-release': { 'git': 'https://github.com/pyproj4/pyproj.git', 're': r'v([0-9]+\.[0-9]+(|\.[0-9]+))rel$' }, 'pyproj4-pypi': { 'pypi': 'pyproj', }, 'python-mapnik': { 'gitsha': 'https://github.com/mapnik/python-mapnik.git', }, 'python-mapnik-pypi': { 'pypi': 'mapnik', }, 'pyvips': { 'gitsha': 'https://github.com/libvips/pyvips.git', }, 'pyvips-pypi': { 'pypi': 'pyvips', }, 'sqlite': { 'text': 'https://www.sqlite.org/download.html', 'keys': lambda data: [re.search(r'sqlite-autoconf-([0-9]+).tar.(gz|xz)', data).group(1)] }, 'superlu': { 'git': 'https://github.com/xiaoyeli/superlu.git', 're': r'v([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'ultrajson': { 'gitsha': 'https://github.com/esnme/ultrajson.git', }, 'ultrajson-release': { 'git': 'https://github.com/esnme/ultrajson.git', 're': r'([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'ultrajson-pypi': { 'pypi': 'ujson', }, 'util-linux': { 'git': 'https://github.com/karelzak/util-linux.git', 're': r'v([0-9]+\.[0-9]+(|\.[0-9]+))$' }, 'xerces-c': { 'filelist': 'http://xerces.apache.org/xerces-c/download.cgi', 're': r'xerces-c-([0-9]+\.[0-9]+(|\.[0-9]+)).tar.(gz|xz)$' }, # 'xz': { # 'filelist': 'https://sourceforge.net/projects/lzmautils/files/', # 're': r'xz-([0-9]+\.[0-9]+(|\.[0-9]+)).tar.gz\/download' # }, 'zlib': { 'filelist': 'https://zlib.net/', 're': r'zlib-([0-9]+\.[0-9]+(|\.[0-9]+)).tar.(gz|xz)$' }, 'zstd': { 'git': 'https://github.com/facebook/zstd.git', 're': r'v([0-9]+\.[0-9]+(|\.[0-9]+))$' }, } def compareVersions(a, b): if packaging.version.parse(a) < packaging.version.parse(b): return -1 if packaging.version.parse(a) > packaging.version.parse(b): return 1 return 0 session = requests.Session() retries = urllib3.util.retry.Retry( total=10, backoff_factor=0.1, status_forcelist=[104, 500, 502, 503, 504]) session.mount('http://', requests.adapters.HTTPAdapter(max_retries=retries)) session.mount('https://', requests.adapters.HTTPAdapter(max_retries=retries)) for pkg in sorted(Packages): # noqa try: pkginfo = Packages[pkg] entries = None versions = None if 'filelist' in pkginfo: data = (session if pkginfo.get('session') is not False else requests).get( pkginfo['filelist'], **({'verify': False} if pkginfo.get('insecure') else {})).text if verbose >= 2: print(pkg, 'filelist data', data) data = data.replace('<A ', '<a ').replace('HREF="', 'href="') entries = [ entry.split('href="', 1)[-1].split('"')[0] for entry in data.split('<a ')[1:]] if verbose >= 1: print(pkg, 'filelist entries', entries) elif 'git' in pkginfo: cmd = ['git', 'ls-remote', '--refs', '--tags', pkginfo['git']] entries = [entry for entry in subprocess.check_output(cmd).decode('utf8').split('\n') if '/' in entry] if verbose >= 1: print(pkg, 'git entries', entries) elif 'gitsha' in pkginfo: cmd = ['git', 'ls-remote', pkginfo['gitsha'], pkginfo.get('branch', 'HEAD')] versions = [subprocess.check_output(cmd).decode('utf8').split()[0]] if verbose >= 1: print(pkg, 'gitsha versions', versions) elif 'json' in pkginfo: data = session.get(pkginfo['json']).json() if verbose >= 2: print(pkg, 'json data', data) entries = pkginfo['keys'](data) if verbose >= 1: print(pkg, 'json entries', entries) elif 'pypi' in pkginfo: url = 'https://pypi.python.org/pypi/%s/json' % pkginfo['pypi'] releases = session.get(url).json()['releases'] if verbose >= 2: print(pkg, 'pypi releases', entries) versions = sorted(releases, key=pkg_resources.parse_version) if verbose >= 1: print(pkg, 'pypi versions', versions) elif 'text' in pkginfo: data = session.get(pkginfo['text']).content.decode('utf8') if verbose >= 2: print(pkg, 'text data', data) entries = pkginfo['keys'](data) if verbose >= 1: print(pkg, 'text entries', entries) elif 'fossil' in pkginfo: data = session.get(pkginfo['fossil']).text if verbose >= 2: print(pkg, 'fossil data', data) entries = [entry.split(']<')[0] for entry in data.split('<span class="timelineHistDsp">[')[1:]] if verbose >= 1: print(pkg, 'fossil entries', entries) if 're' in pkginfo: entries = [entry for entry in entries if re.search(pkginfo['re'], entry)] if verbose >= 2: print(pkg, 're entries', entries) versions = [re.search(pkginfo['re'], entry).group(1) for entry in entries] if verbose >= 2: print(pkg, 're versions', versions) versions.sort(key=functools.cmp_to_key(compareVersions)) if 'subre' in pkginfo: pversions = versions for pos in range(-1, -len(pversions) - 1, -1): data = session.get(pkginfo['filelist'] + pkginfo['sub'](pversions[pos])).text if verbose >= 2: print(pkg, 'subre data', data) data = data.replace('<A ', '<a ').replace('HREF="', 'href="') entries = [entry.split('href="', 1)[-1].split('"')[0] for entry in data.split('<a ')[1:]] if verbose >= 2: print(pkg, 'subre entries', entries) entries =
<filename>heat/optim/dp_optimizer.py import torch import torch.distributed from torch.nn.parallel import DistributedDataParallel as tDDP from ..core.communication import MPICommunication from ..core.communication import MPI from ..core.communication import MPI_WORLD from .utils import DetectMetricPlateau from typing import Union, List, Tuple, Dict import time import math import queue import threading import gc # gc.enable() __all__ = ["DataParallelOptimizer", "SkipBatches"] def print0(*args, **kwargs): if MPI_WORLD.rank == 0: print(*args, **kwargs) def queue_thread(q: queue.Queue): while True: items = q.get() if isinstance(items, tuple): func = items[0] args = items[1:] func(*args) else: items() q.task_done() def __sum_f16_cb(buffer_a, buffer_b, _): tens_a = torch.HalfTensor().set_(torch.HalfStorage.from_buffer(buffer_a, "native")) tens_b = torch.HalfTensor().set_(torch.HalfStorage.from_buffer(buffer_b, "native")) tens_b += tens_a nelem = torch.prod(torch.tensor(tens_b.shape)).item() new_buff = MPI.memory.fromaddress(tens_b.data_ptr(), nbytes=tens_b.element_size() * nelem) buffer_b[:] = new_buff def __sum_bfloat_cb(buffer_a, buffer_b, _): tens_a = torch.BFloat16Tensor().set_(torch.BFloat16Storage.from_buffer(buffer_a, "native")) tens_b = torch.BFloat16Tensor().set_(torch.BFloat16Storage.from_buffer(buffer_b, "native")) tens_b += tens_a nelem = int(tens_b.numel()) new_buff = MPI.memory.fromaddress(tens_b.data_ptr(), nbytes=nelem * tens_b.element_size()) buffer_b[:] = new_buff # create new OP mpi_sum_f16 = MPI.Op.Create(__sum_f16_cb, commute=True) mpi_sum_bfloat = MPI.Op.Create(__sum_bfloat_cb, commute=True) class DataParallelOptimizer: """ Uses a Torch.optim.Optimizer for data parallelism. It should be used in combination with DataParallel (DP) class. To optimize a DP module, DP optimizer has to be passed to DP module during its initialization. See :func:`..nn.DataParallel` for a basic example of usage. Attributes ---------- torch_optimizer : torch.optim.Optimizer the wrapped Torch optimizer blocking : bool use blocking communications or not. will typically be overwritten by heat.nn.DataParallel """ def __init__(self, torch_optimizer: torch.optim.Optimizer, blocking: bool = False): self.torch_optimizer = torch_optimizer if not isinstance(blocking, bool): raise TypeError(f"blocking parameter must be a boolean, currently {type(blocking)}") # flag indicating if communication during parameter updates is blocking. self.blocking_parameter_updates = blocking # flag indicating if optimizer should take a step during next iteration (only relevant for non-blocking) self.update_next = False # reference of optimizer's params self.params_ref = torch_optimizer.param_groups[0]["params"] def step(self) -> None: """ Force torch optimizer to update model parameters. For blocking, optimizer immediately updates parameters. For non-blocking, optimizer will update parameters during next forward. """ if self.blocking_parameter_updates: self.torch_optimizer.step() else: self.update_next = True def zero_grad(self) -> None: """ Reset gradients of optimizer's params. """ # reset view onto params in order to reset all gradients self.torch_optimizer.param_groups[0]["params"] = self.params_ref[:] self.torch_optimizer.zero_grad() class SkipBatches: """ Optimizer which skips batches """ def __init__( self, local_optimizer: torch.optim.Optimizer, total_epochs: int, comm: MPICommunication = MPI_WORLD, warmup_epochs: int = 4, finalize_epochs: int = 5, scheduler: torch.optim.lr_scheduler = None, stablitiy_level: float = 0.05, # originally (imagenet: 0.075) max_global_skips: int = 8, loc_gpus: int = None, ): self.comm = comm self.lcl_optimizer = local_optimizer self.params_ref = local_optimizer.param_groups[0]["params"] # reference of optimizer's params self.scheduler = scheduler rank = comm.rank loc_gpus = torch.cuda.device_count() if loc_gpus is None else loc_gpus self.loc_gpus = loc_gpus local_rank = rank % loc_gpus self.local_skip = 1 if loc_gpus > 1: base_loc_ranks = list(range(0, comm.size, loc_gpus)) reduced_comms, reduced_ranks = [], [] for i in range(loc_gpus): lp_ranks = [j + i for j in base_loc_ranks] newGroup = MPI_WORLD.group.Incl(lp_ranks) newComm = MPI_WORLD.Create_group(newGroup) reduced_comms.append(MPICommunication(newComm, group=True)) reduced_ranks.append(tuple(lp_ranks)) self.reduced_comms, self.reduced_ranks = reduced_comms, reduced_ranks self.base_loc_ranks = base_loc_ranks if loc_gpus != torch.cuda.device_count(): self.device = "cuda:0" else: self.device = "cuda:" + str(local_rank) torch.cuda.set_device(device=self.device) self.current_batch, self.last_batch = 0, None self._prev_params = [] self.epoch = 0 self._send_mod, self._send_mod_m1 = 0, None self.global_skip = 0 self.local_skip = 0 self.batches_to_wait = 0 self.epochs_to_wait = 3 self.max_gs = max_global_skips self.warmup_epochs = warmup_epochs self.finalize_epochs = finalize_epochs self.total_epochs = total_epochs # used in the sending of the params self._param_send_buffer_shape = None self.param_dict, self.shapes = None, None self._param_send_shp = None self.split = None self.stability = DetectMetricPlateau( mode="min", patience=2, # running : 3 threshold=stablitiy_level, # working well at -0.0125 and -0.025 threshold_mode="rel", eps=1e-8, ) self._gs8_waits = 3 self._gs8_waited = 0 self.split_val = 10_000_000 # 5? # TODO: add these to the class params self.split_inds = None self.amp = False def set_model(self, model): self.module = model def _stop_local_sync(self): # stop local synchronizations for tDDP if not isinstance(self.module, tDDP) or not self.module.require_backward_grad_sync: # this has no effect if the module is not locally distributed in torch return self.module.require_backward_grad_sync = False def _start_local_sync(self): # *start* local synchronizations for tDDP if not isinstance(self.module, tDDP) or self.module.require_backward_grad_sync: # this has no effect if the module is not locally distributed in torch return self.module.require_backward_grad_sync = True @torch.no_grad() def epoch_loss_logic(self, loss, loss_globally_averaged=False): if not loss_globally_averaged: loss_send = torch.zeros(self.comm.size) # loss.data -> this will get the raw number from the lass value and nothing else loss_send[self.comm.rank] = loss.data if isinstance(loss, torch.Tensor) else loss self.comm.Allreduce(MPI.IN_PLACE, loss_send, MPI.SUM) avg_loss = torch.mean(loss_send) else: avg_loss = torch.tensor(loss) if self.epoch < self.warmup_epochs: self.global_skip = 0 self.local_skip = 0 self.batches_to_wait = 0 print0("\t\t", self.global_skip, self.local_skip, self.batches_to_wait) return elif self.warmup_epochs == self.epoch: self.global_skip = 4 self.local_skip = 1 self.batches_to_wait = 1 # self.stability.reset() print0("\t\t", self.global_skip, self.local_skip, self.batches_to_wait) if self.epoch >= self.total_epochs - self.finalize_epochs: self.global_skip = 0 self.local_skip = 0 self.batches_to_wait = 0 print0("\t\t", self.global_skip, self.local_skip, self.batches_to_wait) return if self.global_skip == self.max_gs and self.max_gs > 4: self._gs8_waited += 1 print0( "current best:", self.stability.best * (1.0 - self.stability.threshold), "avg loss", avg_loss, "bad epochs", self.stability.num_bad_epochs, ) stable = self.stability.test_if_improving(avg_loss) if (stable and self.global_skip > 1) or (self._gs8_waited == self._gs8_waits): # drop gs by factor of 2 self.global_skip //= 2 self.local_skip //= 2 self.batches_to_wait -= 1 # old was //= 2 # self.epochs_to_wait += 1 # self._prev_losses_mean = [] print0("dropping skips") if self.global_skip > 0: if self.batches_to_wait == 0: self.batches_to_wait = 1 if self.local_skip == 0: self.local_skip = 1 # if self._gs8_waited == self._gs8_waits: # self.stability.reset() self._gs8_waited = 0 elif self.global_skip == 1 and stable and (self._gs8_waited != self._gs8_waits): self.global_skip = self.max_gs self.local_skip = self.max_gs // 4 self.batches_to_wait = self.max_gs // 4 # + 1 # 2 self._gs8_waited = 0 # self._prev_losses_mean = [] # self.epochs_to_wait = 3 print0( "\t\t", self.global_skip, self.local_skip, self.batches_to_wait, "\t", avg_loss, self.stability.num_bad_epochs, ) def add_scaler(self, scaler): self.scaler = scaler self.amp = True def step(self): # TODO: raise error is last batch is not set # collect the parameters from the current batch -> save + (non?)blocking send # test for receive from last batch, # if yes: receive, update parameters with rcved stuff # copy and send the parameter dictionary if self.amp: self.scaler.step(self.lcl_optimizer) # todo: add something to tell if the grads have infs or nans # Updates the scale for next iteration. self.scaler.update() elif self.scheduler is None: self.lcl_optimizer.step() else: self.scheduler.step() # gc.collect() # print("step start") batch = self.current_batch next_batch = batch + 1 gs = self.global_skip ls = self.local_skip gmod = batch % gs if gs > 0 else 0 lmod = batch % ls if ls > 0 else 0 batches_to_wait = self.batches_to_wait btw = ( batches_to_wait if batches_to_wait + batch <= self.last_batch else self.last_batch - batch ) # do full synce on global skips and on the last batch if batch == self.last_batch or gmod == 0: return self._full_global_sync(btw) if next_batch % gs == 0: self._start_local_sync() self.current_batch += 1 return if gmod < btw: # do nothing on these batches self.current_batch += 1 if next_batch == self.last_batch: self._start_local_sync() return elif gmod == btw: # local updates should be on before this is called! self._update_parameters() self._local_torch_param_update(self._send_mod_m1) if ls > 1: self._stop_local_sync() if ls == 1 and next_batch != self.last_batch: self.current_batch += 1 self._start_local_sync() return if lmod == 0: self._stop_local_sync() elif next_batch % ls == 0: self._start_local_sync() if next_batch == self.last_batch: self._start_local_sync() self.current_batch += 1 @torch.no_grad() def _full_global_sync(self, batches_to_wait): # print("top of full global sync") current_comm = self.reduced_comms[self._send_mod] current_ranks = self.reduced_ranks[self._send_mod] if self.comm.rank in current_ranks: self._global_send_update(current_comm, batches_to_wait) if self.batches_to_wait != 0: # update parameters from the last sending (if there) self._update_parameters() # -> splits off irrelevant ranks # needs to happen on all ranks: self._local_torch_param_update(self._send_mod_m1) if self.current_batch == self.last_batch or self.batches_to_wait == 0: # todo: abstract last batch? # receive the sent data to sync params across all ranks if self.comm.rank in current_ranks: self._update_last_batch(current_ranks) else: if len(self._prev_params) > 0: raise ValueError( f"DEBUG: OFF RANKS! len(prev_params) > 0! {len(self._prev_params)}" f" batch number {self.current_batch}" ) # self.comm.Barrier() self._local_torch_param_update(self._send_mod) self._send_mod_m1 = None if self.current_batch == self.last_batch: self._send_mod = 0 self.epoch += 1 self.current_batch = 0 else: self.current_batch += 1 self._send_mod = self._send_mod + 1 if self._send_mod <= self.loc_gpus - 2 else 0 else: self.current_batch += 1 self._send_mod_m1 =
#!/usr/bin/python # Copyright 2008,2009 <NAME> # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License version 2 # as published by the Free Software Foundation; # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA # # # # Analyze Apache logfiles in order to count downloads # # # This script parses a MirrorBrain-enhanced access_log and does the following: # - select lines on that the log analysis is supposed to run # (StatsLogMask directive, which defaults to a regexp suitable for a MirrorBrain logfile) # The expression also selects data from the log line, for example the # country where a client request originated from. # - a little ring buffer filters requests recurring within a sliding time # window (keyed by ip+url+referer+user-agent # length of the sliding window: StatsDupWindow # - arbitrary log lines can be ignored by regexp (StatsIgnoreMask) # - IP addresses can be ignored by string prefix match (StatsIgnoreIP) # - apply prefiltering to the request (regular expressions with substitution) # with one or more StatsPrefilter directives # - parse the remaining request url into the values to be logged # (StatsCount directive) # - apply optional post-filtering to the parsed data (StatsPostfilter) # # # The script should serve as model implementation for the Apache module which # does the same in realtime. # # # Usage: # ./dlcount.py /var/log/apache2/download.services.openoffice.org/2009/11/download.services.openoffice.org-20091123-access_log.bz2 | sort -u # # Uncompressed, gzip or bzip2 compressed files are transparently opened. # # # This script uses Python generators, which means that it doesn't allocate # memory according to the log size. It rather works like a Unix pipe. # (The implementation of the generator pipeline is based on David Beazley's # PyCon UK 08 great talk about generator tricks for systems programmers.) # __version__ = '0.91' __author__ = '<NAME> <<EMAIL>>' __copyright__ = 'Peter poeml <<EMAIL>>' __license__ = 'GPLv2' __url__ = 'http://mirrorbrain.org/' try: import sys import os import os.path import re import hashlib import time from datetime import datetime from optparse import OptionParser set except NameError: from sets import Set as set # Python 2.3 fallback try: sorted except NameError: def sorted(in_value): # Python 2.3 fallback "A naive implementation of sorted" out_value = list(in_value) out_value.sort() return out_value def gen_open(filenames): """Open a sequence of filenames""" import gzip import bz2 for name in filenames: if name.endswith(".gz"): yield gzip.open(name) elif name.endswith(".bz2"): yield bz2.BZ2File(name) else: yield open(name) def gen_cat(sources): """Concatenate items from one or more source into a single sequence of items""" for s in sources: for item in s: yield item def gen_grep(pat, lines): import re patc = re.compile(pat) for line in lines: if patc.search(line): yield line def gen_fragments(lines, pat): """Generate a sequence of line fragments, according to a given regular expression""" for line in lines: m = pat.match(line) if m: yield m.groups() # else: # print 'no match for:' # print line class RingBuffer: """Here is a simple circular buffer, or ring buffer, implementation in Python. It is a first-in, first-out (FIFO) buffer with a fixed size. Here is an example where the buffer size is 4. Ten integers, 0-9, are inserted, one at a time, at the end of the buffer. Each iteration, the first element is removed from the front of the buffer. buf = RingBuffer(4) for i in xrange(10): buf.append(i) print buf.get() Here are the results: [None, None, None, 0] [None, None, 0, 1] [None, 0, 1, 2] [0, 1, 2, 3] [1, 2, 3, 4] [2, 3, 4, 5] [3, 4, 5, 6] [4, 5, 6, 7] [5, 6, 7, 8] [6, 7, 8, 9] from http://www.saltycrane.com/blog/2007/11/python-circular-buffer/ """ def __init__(self, size): self.data = [None for i in xrange(size)] def append(self, x): self.data.pop(0) self.data.append(x) def get(self): return self.data def readconf(filename): """we'd need Apache's config parser here...""" known_directives = ['StatsLogMask', 'StatsIgnoreMask', 'StatsIgnoreIP', 'StatsDupWindow', 'StatsPreFilter', 'StatsCount', 'StatsPostFilter'] known_directives_lower = [i.lower() for i in known_directives] # regular expressions to parse arguments parse_1_in_quotes = re.compile(r'"(.*)"') parse_2_in_quotes = re.compile(r'"(.*)"\s+"(.*)"') # create a dictionary to hold the config # each item is a list (because the directives could occur more than once) # each list item will correspond to one directive occurrence conf = {} for i in known_directives_lower: conf[i] = list() conf['statsdupwindow'] = 200 for line in open(filename): # remove trailing and leading whitespace and newlines line = line.strip() # ignore comment lines if line.startswith('#'): continue # and empty lines if not line: continue # split line into 1st word plus rest # will fail if it's not a valid config line try: word, val = line.split(None, 1) except: sys.exit('error: can\'t parse the line %r' % line) if word.lower() not in known_directives_lower: sys.exit('unknown config directive: %r' % word) directive = word.lower() val = val # this is just a single integer if directive in ['statsdupwindow']: conf[directive] = int(val) # directives with one argument: a regexp elif directive in ['statslogmask', 'statsignoremask']: m = parse_1_in_quotes.match(val) regex = m.group(1).replace('\\"', '"') regex_compiled = re.compile(regex) conf[directive].append((regex_compiled, regex)) # these come with two args: a regexp and a substitution rule elif directive in ['statsprefilter', 'statscount', 'statspostfilter']: m = parse_2_in_quotes.match(val) # print 'substitute %s by %s' % (m.group(1), m.group(2)) regex = m.group(1).replace('\\"', '"') subst = m.group(2).replace('\\"', '"') regex_compiled = re.compile(regex) conf[directive].append((regex_compiled, subst, regex)) elif directive in ['statsignoreip']: conf[directive].append(val) else: sys.exit('unparsed directive (implementation needed)', directive) # set defaults for directives that didn't occur in the config if not len(conf['statslogmask']): regex = '^(\S+).+\[(.*?)\] "GET (\S*) HTTP.*" (200|302) [^"]+ "([^"]*)" "([^"]*)".* \w\w:(\w\w) ASN:' regex_compiled = re.compile(regex) conf['statslogmask'] = [(regex_compiled, regex)] #import pprint # pprint.pprint(conf) # sys.exit(0) return conf # class Countable(): # """This holds a result from a parsed log line # which consists of a date and 5 attributes""" # #def __init__(self, date, a0, a1, a2, a3, a4): # def __init__(self, (date, a0, a1, a2, a3, a4, a5)): # self.date = date # self.a0 = a0 # self.a1 = a1 # self.a2 = a2 # self.a3 = a3 # self.a4 = a4 # self.a5 = a5 class Req(): """This helps us in housekeeping while parsing a log line""" def __init__(self): # url_raw contains the original url, if needed self.url_raw = None self.tstamp = None self.tstamp_raw = None self.date = None self.status = None self.referer = None self.ua = None self.country = None # this is the processed URL, after running through all the regexps self.url = None self.countable = False def __str__(self): return '%-80s' % self.url def as_tuple(self): return self.tuple # def as_obj(self): # return Countable(self.tuple) def gen_processreqs(reqs, conf, options): """process a tuple of request data, and return the parsed in the form of a generator""" known = RingBuffer(conf['statsdupwindow']) for req in reqs: rq = Req() if len(req) == 7: (ip, tstamp_raw, url, status, referer, ua, country) = req elif len(req) == 6: (ip, tstamp_raw, url, status, referer, ua) = req country = '' skip = False for r, mreg in conf['statsignoremask']: if r.match(url): # print 'ignoring req %s because it matches %s' %(url, mreg) skip = True break if skip: continue for i in conf['statsignoreip']: if ip.startswith(i): # print 'ignoring ip %s because it matches %s' %(ip, i) skip = True break if skip: continue # over a window of StatsDupWindow last requests, the same request must # not have occured already. If it did, ignore it. If it didn't, put # it into the ring buffer. if conf['statsdupwindow'] > 0: m = hashlib.md5() m.update(ip) m.update(url) m.update(referer) m.update(ua) md = m.digest() if md in known.data: continue known.append(md) rq.url_raw = url rq.status = status rq.referer = referer rq.ua = ua rq.country = country.lower() tstamp_raw = tstamp_raw.split()[0] # split off timezone offset - we ignore it rq.tstamp = time.strptime(tstamp_raw, '%d/%b/%Y:%H:%M:%S') rq.tstamp_raw = tstamp_raw # apply the prefiltering rules for r, s, mreg in conf['statsprefilter']: url = r.sub(s, url) matched = False for r, s, mreg in conf['statscount']: if r.match(url): if matched: # FIXME: eventually, we want to allow multiple matches. But
<reponame>crwsr124/GANsNRoses<gh_stars>0 import argparse import math import random import os from util import * import numpy as np import torch torch.backends.cudnn.benchmark = True from torch import nn, autograd from torch import optim from torch.nn import functional as F from torch.utils import data import torch.distributed as dist from torchvision import transforms, utils from tqdm import tqdm from torch.optim import lr_scheduler import copy import kornia.augmentation as K import kornia import lpips from model_cr import * from dataset import ImageFolder from distributed import ( get_rank, synchronize, reduce_loss_dict, reduce_sum, get_world_size, ) mse_criterion = nn.MSELoss() smooth_l1 = nn.SmoothL1Loss() @torch.no_grad() def getGaussianKernel(ksize, sigma=0): if sigma <= 0: # 根据 kernelsize 计算默认的 sigma,和 opencv 保持一致 sigma = 0.3 * ((ksize - 1) * 0.5 - 1) + 0.8 center = ksize // 2 xs = (np.arange(ksize, dtype=np.float32) - center) # 元素与矩阵中心的横向距离 kernel1d = np.exp(-(xs ** 2) / (2 * sigma ** 2)) # 计算一维卷积核 # 根据指数函数性质,利用矩阵乘法快速计算二维卷积核 kernel = kernel1d[..., None] @ kernel1d[None, ...] kernel = torch.from_numpy(kernel) kernel = kernel / kernel.sum() # 归一化 return kernel def bilateralFilter(batch_img, ksize, sigmaColor=None, sigmaSpace=None): device = batch_img.device if sigmaSpace is None: sigmaSpace = 0.15 * ksize + 0.35 # 0.3 * ((ksize - 1) * 0.5 - 1) + 0.8 if sigmaColor is None: sigmaColor = sigmaSpace pad = (ksize - 1) // 2 batch_img_pad = F.pad(batch_img, pad=[pad, pad, pad, pad], mode='reflect') # batch_img 的维度为 BxcxHxW, 因此要沿着第 二、三维度 unfold # patches.shape: B x C x H x W x ksize x ksize patches = batch_img_pad.unfold(2, ksize, 1).unfold(3, ksize, 1) patch_dim = patches.dim() # 6 # 求出像素亮度差 diff_color = patches - batch_img.unsqueeze(-1).unsqueeze(-1) # 根据像素亮度差,计算权重矩阵 weights_color = torch.exp(-(diff_color ** 2) / (2 * sigmaColor ** 2)) # 归一化权重矩阵 weights_color = weights_color / weights_color.sum(dim=(-1, -2), keepdim=True) # 获取 gaussian kernel 并将其复制成和 weight_color 形状相同的 tensor weights_space = getGaussianKernel(ksize, sigmaSpace).to(device) weights_space_dim = (patch_dim - 2) * (1,) + (ksize, ksize) weights_space = weights_space.view(*weights_space_dim).expand_as(weights_color) # 两个权重矩阵相乘得到总的权重矩阵 weights = weights_space * weights_color # 总权重矩阵的归一化参数 weights_sum = weights.sum(dim=(-1, -2)) # 加权平均 weighted_pix = (weights * patches).sum(dim=(-1, -2)) / weights_sum return weighted_pix def test(args, genA2B, genB2A, testA_loader, testB_loader, name, step, A_bg, B_bg): testA_loader = iter(testA_loader) testB_loader = iter(testB_loader) with torch.no_grad(): test_sample_num = 16 genA2B.eval(), genB2A.eval() A2B = [] B2A = [] for i in range(test_sample_num): real_A = testA_loader.next() real_B = testB_loader.next() real_A, real_B = real_A.cuda(), real_B.cuda() A2B_content, A2B_style = genA2B.encode(real_A) B2A_content, B2A_style = genB2A.encode(real_B) if i % 2 == 0: A2B_mod1 = torch.randn([1, args.latent_dim]).cuda() B2A_mod1 = torch.randn([1, args.latent_dim]).cuda() A2B_mod2 = torch.randn([1, args.latent_dim]).cuda() B2A_mod2 = torch.randn([1, args.latent_dim]).cuda() a_c, a_s = G_A2B.encode(real_A) fake_A2A, alphaA2A = G_B2A.decode(a_c, a_s) b_c, b_s = G_B2A.encode(real_B) fake_B2B, alphaB2B = G_A2B.decode(b_c, b_s) # fake_B2B, _, _ = genA2B(real_B) # fake_A2A, _, _ = genB2A(real_A) colsA = [real_A, fake_A2A] alphaA2A = alphaA2A.repeat(1, 3, 1, 1) colsA.append(alphaA2A) colsB = [real_B, fake_B2B] alphaB2B = alphaB2B.repeat(1, 3, 1, 1) colsB.append(alphaB2B) fake_A2B_1, alpha = genA2B.decode(A2B_content, A2B_mod1) fake_B2A_1, alpha = genB2A.decode(B2A_content, B2A_mod1) fake_A2B_2, alpha = genA2B.decode(A2B_content, A2B_mod2) fake_B2A_2, alpha = genB2A.decode(B2A_content, B2A_mod2) fake_A2B_3, alpha1 = genA2B.decode(A2B_content, B2A_style) fake_B2A_3, alpha2 = genB2A.decode(B2A_content, A2B_style) fake_A2B_3 = fake_A2B_3*alpha1 + (1-alpha1)*B_bg[0:1, :, :, :] fake_B2A_3 = fake_B2A_3*alpha2 + (1-alpha2)*A_bg[0:1, :, :, :] fake_A2B_2[:, 0:1, :, :] = alpha1 fake_A2B_2[:, 1:2, :, :] = alpha1 fake_A2B_2[:, 2:3, :, :] = alpha1 fake_B2A_2[:, 0:1, :, :] = alpha2 fake_B2A_2[:, 1:2, :, :] = alpha2 fake_B2A_2[:, 2:3, :, :] = alpha2 colsA += [fake_A2B_3, fake_A2B_1, fake_A2B_2] colsB += [fake_B2A_3, fake_B2A_1, fake_B2A_2] fake_A2B2A, _, _, alpha = genB2A(fake_A2B_3, A2B_style) fake_B2A2B, _, _, alpha = genA2B(fake_B2A_3, B2A_style) colsA.append(fake_A2B2A) colsB.append(fake_B2A2B) fake_A2B2A, _, _, alpha = genB2A(fake_A2B_1, A2B_style) fake_B2A2B, _, _, alpha = genA2B(fake_B2A_1, B2A_style) colsA.append(fake_A2B2A) colsB.append(fake_B2A2B) # fake_A2B2A, _, _, alpha = genB2A(fake_A2B_2, A2B_style) # fake_B2A2B, _, _, alpha = genA2B(fake_B2A_2, B2A_style) # colsA.append(fake_A2B2A) # colsB.append(fake_B2A2B) fake_A2B2A, _, _, alpha = genB2A(fake_A2B_1, B2A_mod1) fake_B2A2B, _, _, alpha = genA2B(fake_B2A_1, A2B_mod1) colsA.append(fake_A2B2A) colsB.append(fake_B2A2B) colsA = torch.cat(colsA, 2).detach().cpu() colsB = torch.cat(colsB, 2).detach().cpu() A2B.append(colsA) B2A.append(colsB) A2B = torch.cat(A2B, 0) B2A = torch.cat(B2A, 0) utils.save_image(A2B, f'{im_path}/{name}_A2B_{str(step).zfill(6)}.jpg', normalize=True, range=(-1, 1), nrow=16) utils.save_image(B2A, f'{im_path}/{name}_B2A_{str(step).zfill(6)}.jpg', normalize=True, range=(-1, 1), nrow=16) genA2B.train(), genB2A.train() def train(args, trainA_loader, trainB_loader, testA_loader, testB_loader, G_A2B, G_B2A, D_A, D_B, G_optim, D_optim, device, trainA_bg_loader, trainB_bg_loader): G_A2B.train(), G_B2A.train(), D_A.train(), D_B.train() trainA_loader = sample_data(trainA_loader) trainB_loader = sample_data(trainB_loader) trainA_bg_loader = sample_data(trainA_bg_loader) trainB_bg_loader = sample_data(trainB_bg_loader) G_scheduler = lr_scheduler.StepLR(G_optim, step_size=100000, gamma=0.5) D_scheduler = lr_scheduler.StepLR(D_optim, step_size=100000, gamma=0.5) pbar = range(args.iter) if get_rank() == 0: pbar = tqdm(pbar, initial=args.start_iter, dynamic_ncols=True, smoothing=0.1) loss_dict = {} mean_path_length_A2B = 0 mean_path_length_B2A = 0 path_loss = torch.tensor(0.0, device=device) path_lengths = torch.tensor(0.0, device=device) mean_path_length = 0 if args.distributed: G_A2B_module = G_A2B.module G_B2A_module = G_B2A.module D_A_module = D_A.module D_B_module = D_B.module D_L_module = D_L.module else: G_A2B_module = G_A2B G_B2A_module = G_B2A D_A_module = D_A D_B_module = D_B D_L_module = D_L for idx in pbar: i = idx + args.start_iter if i > args.iter: print('Done!') break #G_A2B.train(), G_A2B.encoder.eval(), G_B2A.eval(), D_A.train(), D_B.train() #for p_i in G_A2B.encoder.parameters(): # p_i.requires_grad=False #for p_i in G_B2A.parameters(): # p_i.requires_grad=False ori_A = next(trainA_loader) ori_B = next(trainB_loader) A_bg = next(trainA_bg_loader) B_bg = next(trainB_bg_loader) if isinstance(ori_A, list): ori_A = ori_A[0] if isinstance(ori_B, list): ori_B = ori_B[0] if isinstance(A_bg, list): A_bg = A_bg[0] if isinstance(B_bg, list): B_bg = B_bg[0] ori_A = ori_A.to(device) ori_B = ori_B.to(device) A_bg = augA2(A_bg.to(device)) B_bg = augB2(B_bg.to(device)) #aug_A = augA2(ori_A) # aug_A_smooth = bilateralFilter(aug_A, 15, 0.15, 5).detach() #aug_B = augB2(ori_B) aug_A = augA(ori_A) aug_B = augB(ori_B) # aug_A = DiffAugment(ori_A, policy='color,translation,cutout') # aug_B = DiffAugment(ori_B, policy='color,translation,cutout') # A = augA(ori_A[[np.random.randint(args.batch)]].expand_as(ori_A)) # B = augB(ori_B[[np.random.randint(args.batch)]].expand_as(ori_B)) # A = augA(ori_A) # B = augB(ori_B) # A = ori_A # B = ori_B batch_id = np.random.randint(args.batch) single_A_batch = ori_A[[batch_id]].expand_as(ori_A) single_B_batch = ori_B[[batch_id]].expand_as(ori_B) # single_A_batch = ori_A[[batch_id]].expand(ori_A.shape[0]+1, ori_A.shape[1], ori_A.shape[2], ori_A.shape[3]) # single_B_batch = ori_B[[batch_id]].expand(ori_B.shape[0]+1, ori_B.shape[1], ori_B.shape[2], ori_B.shape[3]) #A = augA3(single_A_batch) A = augA(single_A_batch) A[1] = torch.flip(A[0],[2]) # B = augB3(single_B_batch) B = augB(single_B_batch) B[1] = torch.flip(B[0],[2]) # A = augA2(ori_A) # B = augB2(ori_B) if i % args.d_reg_every == 0: aug_A.requires_grad = True aug_B.requires_grad = True # if i % args.d_reg_every == 0: # A.requires_grad = True # B.requires_grad = True A2B_content, A2B_style = G_A2B.encode(A) B2A_content, B2A_style = G_B2A.encode(B) A_aug_style = G_A2B.style_encode(augA(single_A_batch)) B_aug_style = G_B2A.style_encode(augB(single_B_batch)) # get new style aug_A2B_style = G_B2A.style_encode(aug_B) aug_B2A_style = G_A2B.style_encode(aug_A) rand_A2B_style = torch.randn([args.batch, args.latent_dim]).to(device).requires_grad_() rand_B2A_style = torch.randn([args.batch, args.latent_dim]).to(device).requires_grad_() #print(rand_A2B_style.shape) # styles idx = torch.randperm(2*args.batch) #print(idx) #print(rand_A2B_style) #print(aug_A2B_style) input_A2B_style = torch.cat([rand_A2B_style, aug_A2B_style], 0)[idx][:args.batch] #print(A2B_style.shape) #print(input_A2B_style) idx = torch.randperm(2*args.batch) input_B2A_style = torch.cat([rand_B2A_style, aug_B2A_style], 0)[idx][:args.batch] fake_A2B, fake_A2B_alpha = G_A2B.decode(A2B_content, input_A2B_style) fake_B2A, fake_B2A_alpha = G_B2A.decode(B2A_content, input_B2A_style) b_c, b_s = G_B2A.encode(B_bg) B_bg, _ = G_A2B.decode(b_c, input_A2B_style) a_c, a_s = G_A2B.encode(A_bg) A_bg, _ = G_B2A.decode(a_c, input_B2A_style) B_bg = B_bg.detach() A_bg = A_bg.detach() if i % 2 == 0: A_bg[1] = torch.flip(A_bg[0],[2]) B_bg[1] = torch.flip(B_bg[0],[2]) fake_A2B_detach = fake_A2B.detach() fake_B2A_detach = fake_B2A.detach() fake_A2B = fake_A2B_detach*fake_A2B_alpha + (1.0-fake_A2B_alpha)*(B_bg) fake_B2A = fake_B2A_detach*fake_B2A_alpha + (1.0-fake_B2A_alpha)*(A_bg) # train disc # aug_A_smooth = bilateralFilter(aug_A, 15, 0.15, 5) real_A_logit = D_A(aug_A) real_B_logit = D_B(aug_B) # A_smooth = bilateralFilter(A, 15, 0.15, 5) # real_A_logit = D_A(A_smooth) # real_B_logit = D_B(B) real_L_logit1 = D_L(rand_A2B_style) real_L_logit2 = D_L(rand_B2A_style) fake_B_logit = D_B(fake_A2B.detach()) fake_A_logit = D_A(fake_B2A.detach()) # fake_B_logit = D_B(DiffAugment(fake_A2B.detach(), policy='color,translation,cutout')) # fake_A_logit = D_A(DiffAugment(fake_B2A.detach(), policy='color,translation,cutout')) fake_L_logit1 = D_L(aug_A2B_style.detach()) fake_L_logit2 = D_L(aug_B2A_style.detach()) # global loss D_loss = d_logistic_loss(real_A_logit, fake_A_logit) +\ d_logistic_loss(real_B_logit, fake_B_logit) +\ d_logistic_loss(real_L_logit1, fake_L_logit1) +\ d_logistic_loss(real_L_logit2, fake_L_logit2) loss_dict['D_adv'] = D_loss if i % args.d_reg_every == 0: # r1_A_loss = d_r1_loss(real_A_logit, A) # r1_B_loss = d_r1_loss(real_B_logit, B) r1_A_loss = d_r1_loss(real_A_logit, aug_A) r1_B_loss = d_r1_loss(real_B_logit, aug_B) r1_L_loss = d_r1_loss(real_L_logit1, rand_A2B_style) + d_r1_loss(real_L_logit2, rand_B2A_style) r1_loss = r1_A_loss + r1_B_loss + r1_L_loss D_r1_loss = (args.r1 / 2 * r1_loss * args.d_reg_every) D_loss += D_r1_loss D_optim.zero_grad() D_loss.backward() D_optim.step() #Generator # adv loss fake_B_logit = D_B(fake_A2B) fake_A_logit = D_A(fake_B2A) # fake_B_logit = D_B(DiffAugment(fake_A2B, policy='color,translation,cutout')) # fake_A_logit = D_A(DiffAugment(fake_B2A, policy='color,translation,cutout')) fake_L_logit1 = D_L(aug_A2B_style) fake_L_logit2 = D_L(aug_B2A_style) lambda_adv = (1, 1, 1) G_adv_loss = 1 * (g_nonsaturating_loss(fake_A_logit, lambda_adv) +\ g_nonsaturating_loss(fake_B_logit, lambda_adv) +\ 2*g_nonsaturating_loss(fake_L_logit1, (1,)) +\ 2*g_nonsaturating_loss(fake_L_logit2, (1,))) # style consis loss G_con_loss = 50 * (A2B_style.var(0, unbiased=False).sum() + B2A_style.var(0, unbiased=False).sum()) # G_con_loss = 50 * (cosine_distance(A2B_style).sum() + cosine_distance(B2A_style).sum()) # cycle recon A2B2A_content, A2B2A_style = G_B2A.encode(fake_A2B) #print(A2B2A_content.shape) B2A2B_content, B2A2B_style = G_A2B.encode(fake_B2A) # fake_A2B2A = G_B2A.decode(A2B2A_content, shuffle_batch(A2B_style)) # fake_B2A2B = G_A2B.decode(B2A2B_content, shuffle_batch(B2A_style)) fake_A2B2A, fake_A2B2A_alpha = G_B2A.decode(A2B2A_content, shuffle_batch(A_aug_style)) fake_B2A2B,
#!/usr/bin/env python # Licensed to Cloudera, Inc. under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. Cloudera, Inc. licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import getpass import argparse import readline import os import cmd from prettytable import PrettyTable from cm_api.api_client import ApiResource, ApiException from urllib2 import URLError # Config CONFIG = {'cluster': None, 'output_type': 'table', 'seperator': None} # Initial Prompt INIT_PROMPT = "cloudera> " # Banner shown at interactive shell login BANNER = "Welcome to the Cloudera Manager Console\nSelect a cluster using 'show clusters' and 'use'" # If true, than the user is running a non-interactive shell (ie: scripting) EXECUTE = False # Readline fix for hyphens readline.set_completer_delims(readline.get_completer_delims().replace('-', '')) # Global API object api = None class ClouderaShell(cmd.Cmd): """ Interactive shell for communicating with your Cloudera Cluster making use of the cm_api """ # Set initial cloudera prompt prompt = INIT_PROMPT # Set login banner intro = BANNER # Help headers doc_header = "Cloudera Manager Commands" undoc_header = "Other Commands" # Initial cache is blank # when autocomplete for one of these components # is triggered, it will automatically cache them CACHED_ROLES = {} CACHED_SERVICES = None CACHED_CLUSTERS = None def preloop(self): "Checks if the cluster was pre-defined" if CONFIG['cluster']: self.set_cluster(CONFIG['cluster']) else: self.cluster_object = None def generate_output(self, headers, rows, align=None): if CONFIG['output_type'] == "table": table = PrettyTable(headers) if align: for h in align: table.align[h] = 'l' for r in rows: table.add_row(r) print(table) if CONFIG['output_type'] == "csv": print(','.join(headers)) for r in rows: print(','.join(r)) if CONFIG['output_type'] == "custom": SEP = CONFIG['seperator'] print(SEP.join(headers)) for r in rows: print(SEP.join(r)) def emptyline(self): """Called each time a user hits enter, by default it will redo the last command, this is an extension so it does nothing.""" pass def set_cluster(self, cluster): try: cluster = api.get_cluster(cluster) except ApiException: print("Cluster Not Found!") return None self.cluster_object = cluster if not EXECUTE: print("Connected to %s" % (cluster.name)) self.prompt = cluster.name + "> " return True @property def cluster(self): if EXECUTE: if not self.set_cluster(CONFIG['cluster']): sys.exit(1) return self.cluster_object.name if self.cluster_object: return self.cluster_object.name else: return None def has_cluster(self): if not self.cluster: print("Error: No cluster currently selected") return None else: return True def get_log(self, role, log_type=None): if not role: return None if not self.has_cluster(): return None if '-' not in role: print("Please enter a valid role name") return None try: service = api.get_cluster(self.cluster).get_service(role.split('-')[0]) role = service.get_role(role) try: if EXECUTE: output = sys.stdout else: output = os.popen("less", "w") if log_type == "full": output.write(role.get_full_log()) if log_type == "stdout": output.write(role.get_stdout()) if log_type == "stderr": output.write(role.get_stderr()) if not EXECUTE: output.close() except IOError: pass except ApiException: print("Error: Role or Service Not Found") def do_status(self, service): """ List all services on the cluster Usage: > status """ if service: self.do_show("services", single=service) else: self.do_show("services") def do_log(self, role): """ Download log file for role Usage: > log <role> Download log """ self.get_log(role, log_type="full") def do_stdout(self, role): """ Download stdout file for role Usage: > stdout <role> Download stdout """ self.get_log(role, log_type="stdout") def do_stderr(self, role): """ Download stderr file for role Usage: > stderr <role> Download stderr """ self.get_log(role, log_type="stderr") def do_show(self, option, single=None): """ General System Information Usage: > show clusters list of clusters this CM manages > show hosts list of all hosts CM manages > show services list of all services on this cluster including their health. """ headers = [] rows = [] align = None # show clusters if option == "clusters": "Display list of clusters on system" headers = ["CLUSTER NAME"] clusters = api.get_all_clusters() for cluster in clusters: rows.append([cluster.name]) # show hosts if option == "hosts": "Display a list of hosts avaiable on the system" headers = ["HOSTNAME", "IP ADDRESS", "RACK"] align = ["HOSTNAME", "IP ADDRESS", "RACK"] for host in api.get_all_hosts(): rows.append([host.hostname, host.ipAddress, host.rackId]) # show services if option == "services": "Show list of services on the cluster" headers = ["NAME", "SERVICE", "STATUS", "HEALTH", "CONFIG"] align = ["NAME", "SERVICE"] # Check if the user has selected a cluster if not self.has_cluster(): print("Error: Please select a cluster first") return None if not single: for s in api.get_cluster(self.cluster).get_all_services(): if s.configStale: config = "STALE" else: config = "UP TO DATE" rows.append([s.name, s.type, s.serviceState, s.healthSummary, config]) else: s = api.get_cluster(self.cluster).get_service(single) if s.configStale: config = "STALE" else: config = "UP TO DATE" rows.append([s.name, s.type, s.serviceState, s.healthSummary, config]) self.generate_output(headers, rows, align=align) def complete_log(self, text, line, start_index, end_index): return self.roles_autocomplete(text, line, start_index, end_index) def complete_stdout(self, text, line, start_index, end_index): return self.roles_autocomplete(text, line, start_index, end_index) def complete_stderr(self, text, line, start_index, end_index): return self.roles_autocomplete(text, line, start_index, end_index) def complete_show(self, text, line, start_index, end_index): show_commands = ["clusters", "hosts", "services"] if text: return [c for c in show_commands if c.startswith(text)] else: return show_commands def service_action(self, service, action): "Perform given action on service for the selected cluster" try: service = api.get_cluster(self.cluster).get_service(service) except ApiException: print("Service not found") return None if action == "start": service.start() if action == "restart": service.restart() if action == "stop": service.stop() return True def services_autocomplete(self, text, line, start_index, end_index, append=[]): if not self.cluster: return None else: if not self.CACHED_SERVICES: services = [s.name for s in api.get_cluster(self.cluster).get_all_services()] self.CACHED_SERVICES = services if text: return [s for s in self.CACHED_SERVICES + append if s.startswith(text)] else: return self.CACHED_SERVICES + append def do_start_service(self, service): """ Start a service Usage: > start_service <service> """ if not self.has_cluster(): return None if self.service_action(service=service, action="start"): print("%s is being started" % (service)) else: print("Error starting service") return None def complete_start_service(self, text, line, start_index, end_index): return self.services_autocomplete(text, line, start_index, end_index) def do_restart_service(self, service): """ Restart a service Usage: > restart_service <service> """ if not self.has_cluster(): return None if self.service_action(service=service, action="restart"): print("%s is being restarted" % (service)) else: print("Error restarting service") return None def complete_restart_service(self, text, line, start_index, end_index): return self.services_autocomplete(text, line, start_index, end_index) def do_stop_service(self, service): """ Stop a service Usage: > stop_service <service> """ if not self.has_cluster(): return None if self.service_action(service=service, action="stop"): print("%s is being stopped" % (service)) else: print("Error stopping service") return None def complete_stop_service(self, text, line, start_index, end_index): return self.services_autocomplete(text, line, start_index, end_index) def do_use(self, cluster): """ Connect to Cluster Usage: > use <cluster> """ if not self.set_cluster(cluster): print("Error setting cluster") def cluster_autocomplete(self, text, line, start_index, end_index): "autocomplete for the use command, obtain list of clusters first" if not self.CACHED_CLUSTERS: clusters = [cluster.name for cluster in api.get_all_clusters()] self.CACHED_CLUSTERS = clusters if text: return [cluster for cluster in self.CACHED_CLUSTERS if cluster.startswith(text)] else: return self.CACHED_CLUSTERS def complete_use(self, text, line, start_index, end_index): return self.cluster_autocomplete(text, line, start_index, end_index) def do_roles(self, service): """ Role information Usage: > roles <servicename> Display role information for service > roles all Display all role information for cluster """ if not self.has_cluster(): return None if not service: return None if service == "all": if not self.CACHED_SERVICES: self.services_autocomplete('', service, 0, 0) for s in self.CACHED_SERVICES: print("= " + s.upper() + " =") self.do_roles(s) return None try: service = api.get_cluster(self.cluster).get_service(service) headers = ["ROLE TYPE", "HOST", "ROLE NAME", "STATE", "HEALTH", "CONFIG"] align = ["ROLE TYPE", "ROLE NAME", "HOST"] rows = [] for roletype in service.get_role_types(): for role in service.get_roles_by_type(roletype): if role.configStale: config = "STALE" else: config = "UP TO DATE" rows.append([role.type, role.hostRef.hostId, role.name, role.roleState, role.healthSummary, config]) self.generate_output(headers, rows, align=align) except ApiException: print("Service not found") def complete_roles(self, text, line, start_index, end_index): return self.services_autocomplete(text, line, start_index, end_index, append=["all"]) def roles_autocomplete(self, text, line, start_index, end_index): "Return full list of roles" if '-' not in line: # Append a dash to each service, makes for faster autocompletion of # roles return [s + '-' for s in self.services_autocomplete(text, line, start_index, end_index)] else: key, role = line.split()[1].split('-',
Works for both packed and unpacked inputs. atten_idx = tf.reshape(tf.transpose(atten_idx), [-1]) input_embs += self.task_emb.EmbLookup(theta.task_emb, targets.task_ids) if p.model_dim != self._token_emb_dim: input_embs = self.emb_proj.FProp(theta.emb_proj, input_embs) input_embs = tf.transpose(input_embs, [1, 0, 2]) input_embs = self.input_dropout.FProp(theta.input_dropout, input_embs) if not p.packed_input: src_enc_len = tf.reduce_sum(1 - source_paddings, axis=0) num_hyps_per_beam = tf.div( py_utils.GetShape(target_paddings)[1], py_utils.GetShape(source_paddings)[1]) src_enc_len = self._ExpandToNumHyps(src_enc_len, num_hyps_per_beam) layer_in = input_embs per_layer_attn_probs = [] for i, (layer, layer_theta) in enumerate(zip(self.trans, theta.trans)): # [time, batch, model_dim] layer_out, probs = layer.FProp( layer_theta, layer_in, target_paddings, source_encs[i], source_paddings, source_segment_id=target_segment_id, aux_segment_id=src_segment_id, atten_idx=atten_idx) layer_in = layer_out pl_probs = tf.transpose(probs, [1, 0, 2]) if p.packed_input: # For packed inputs we are currently not removing the EOS token. per_layer_attn_probs.append(pl_probs) else: # Remove attention weight on last (EOS) token and re-normalize # so that last dimension sums to 1. See b/129097156. # Original probs shape: [trg time, batch, src time] norma_atten_probs_3d = self._RemoveEOSProbs(p, pl_probs, src_enc_len) per_layer_attn_probs.append(norma_atten_probs_3d) # per_layer_attn_probs shape: [batch, trg time, src time] self._AddAttenProbsSummary(source_paddings, targets, per_layer_attn_probs) # Aggregate per-layer attention probs. aggregated_atten_probs = ( tf.math.add_n(per_layer_attn_probs) / len(per_layer_attn_probs)) attention_map = py_utils.NestedMap(probs=aggregated_atten_probs) return py_utils.NestedMap( softmax_input=layer_out, attention=attention_map) def AddExtraDecodingInfo(self, encoder_outputs, targets): """Adds extra decoding information to encoded_outputs. Args: encoder_outputs: a NestedMap computed by encoder. targets: a NestedMap containing target input fields. Returns: encoder_ouputs with extra information used for decoding. """ p = self.params if p.task_emb: encoder_outputs['target_task_ids'] = targets.task_ids[:, 0] if p.init_step_ids: encoder_outputs['init_step_ids'] = targets.ids[:, 0] return encoder_outputs def ExtendStep(self, theta, encoder_outputs, new_ids, t, prefix_states): """Extend prefix as represented by `prefix_states` by one more step. This function is expected to be called during fast decoding of Transformer models. Args: theta: A `.NestedMap` object containing weights' values of this layer and its children layers. encoder_outputs: a NestedMap computed by encoder, containing: - encoded: source encoding, of shape [time, batch, depth]. Can be [time, bs, depth, num_trans_layers] if is_transparent is set. - padding: source encoding's padding, of shape [time, batch]. new_ids: new input ids, of shape [batch]. t: a scalar, the current time step, 0-based. prefix_states: a `.NestedMap` representing the prefix that has already been decoded. Returns: A tuple (last_decoder_out, prefix_states, atten_probs), where last_decoder_out is the output of the last decoder layer of shape [batch, model_dim], `prefix_states` is the update prefix states, and atten_probs contains attention in shape [batch, src_len] for the given target position. """ p = self.params source_paddings = encoder_outputs.padding time, batch = py_utils.GetShape(source_paddings, 2) if p.is_transparent: source_encs = py_utils.HasShape( encoder_outputs.encoded, [time, batch, p.source_dim, p.num_trans_layers]) source_encs = tf.unstack(source_encs, axis=3) else: source_encs = py_utils.HasShape(encoder_outputs.encoded, [time, batch, p.source_dim]) source_encs = [source_encs] * p.num_trans_layers with tf.name_scope(p.name): # Embedding layer # [batch, time, model_dim] if not self._share_sm_emb: token_embs = self.token_emb.EmbLookup(theta.token_emb, new_ids) else: token_embs = self.softmax.EmbLookup(theta.softmax, new_ids) # [time, model_dim] posit_embs = tf.slice( self.position_emb.FProp(theta.position_emb, p.target_seq_len), [t, 0], [1, p.model_dim]) input_embs = token_embs + posit_embs # Infer num_hyps_per_beam: new_ids has orig_batch_size * num_hyps_per_beam # source_paddings has orig_batch_size. num_hyps_per_beam = tf.div( py_utils.GetShape(new_ids)[0], py_utils.GetShape(source_paddings)[1]) atten_idx = None if p.task_emb: task_ids = self._ExpandToNumHyps(encoder_outputs.target_task_ids, num_hyps_per_beam) if p.use_lang_dependent_atten: atten_idx = task_ids input_embs += self.task_emb.EmbLookup(theta.task_emb, task_ids) if p.model_dim != self._token_emb_dim: input_embs = self.emb_proj.FProp(theta.emb_proj, input_embs) input_embs = self.input_dropout.FProp(theta.input_dropout, input_embs) # Make a copy of the input. out_prefix_states = prefix_states.Pack(prefix_states.Flatten()) layer_in = input_embs # Infer true source encoder length from the padding. src_enc_len = tf.reduce_sum(1 - source_paddings, axis=0) # Need to expand src_enc_len to reflect multiple hypotheses. src_enc_len = self._ExpandToNumHyps(src_enc_len, num_hyps_per_beam) atten_probs = [] for i, (layer, layer_theta) in enumerate(zip(self.trans, theta.trans)): # [time, batch, model_dim] layer_prefix_states = prefix_states['layer_%i' % i] layer_out, probs, updated_prefix_states = layer.ExtendStep( layer_theta, layer_in, layer_prefix_states, source_encs[i], source_paddings, t if p.beam_search.name == 'tpu_beam_search' else None, atten_idx=atten_idx) out_prefix_states['layer_%i' % i] = updated_prefix_states layer_in = layer_out # Enforce shape: [batch, src_len] probs = tf.squeeze(probs) # Remove attention weight on last (EOS) token and re-normalize # so that last dimension sums to 1. See b/129097156. probs_3d = tf.expand_dims(probs, axis=1) probs_3d = self._RemoveEOSProbs(p, probs_3d, src_enc_len) probs = tf.squeeze(probs_3d, axis=1) atten_probs.append(probs) # Aggregate per-layer attention probs. aggregated_atten_probs = tf.math.add_n(atten_probs) / len(atten_probs) return layer_out, out_prefix_states, aggregated_atten_probs def ComputePredictions(self, theta, encoder_outputs, targets): """Decodes `targets` given encoded source. Args: theta: A `.NestedMap` object containing weights' values of this layer and its children layers. encoder_outputs: a NestedMap computed by encoder. Expected to contain: encoded - source encoding, of shape [time, batch, depth]. Can be [time, batch, depth, num_layers] if is_transparent is set. padding - source encoding's padding, of shape [time, batch]. segment_id - source segment id, of shape [time, batch]. targets: A dict of string to tensors representing the targets one try to predict. Each tensor in targets is of shape [batch, time]. Returns: A `.NestedMap` containing output of last decoder layer and attention probs - softmax_input: Tensor of shape [time, batch, params.softmax.input_dim]. - attention: `.NestedMap` of attention distributions of shape [batch, time, source_len]. """ return self._FProp(theta, encoder_outputs, targets) def SampleSequenceDecode(self, encoder_outputs): """Decode via sampling from softmax at each step. Args: encoder_outputs: the outputs of the encoder. Returns: BeamSearchDecodeOutput, same as what BeamSearchDecode returns. """ p = self.params non_tpu = p.beam_search.name != 'tpu_beam_search' def InitCallback(theta, encoder_outputs, num_hyps_per_beam=1): """Wrapper for _InitBeamSearchStateCallback for sequence sampler. The main change is to ensure state tensors have fixed shapes. Args: theta: A `.NestedMap` object containing weights' values of this layer and its children layers. encoder_outputs: a NestedMap computed by encoder. num_hyps_per_beam: An int, number hyps to keep for source sentence. Returns: A NestedMap of - initial_results: a `.NestedMap` of initial results. - states: a `.NestedMap` of initial model states. """ init_results, states = self._InitBeamSearchStateCallback( theta, encoder_outputs, num_hyps_per_beam) if non_tpu: prefix_states = states['prefix_states'] for layer in range(p.num_trans_layers): key = prefix_states['layer_%d' % layer]['key'] value = prefix_states['layer_%d' % layer]['value'] bs = key.shape[1] atten_dim = key.shape[2] zeros = tf.zeros([p.target_seq_len, bs, atten_dim], dtype=py_utils.FPropDtype(p)) prefix_states['layer_%d' % layer]['key'] = tf.concat([key, zeros], 0) prefix_states['layer_%d' % layer]['value'] = tf.concat([value, zeros], 0) return init_results, states def PreBeamSearchCallback(theta, encoder_outputs, step_ids, states, num_hyps_per_beam=1): """Wrapper for _PreBeamSearchStepCallback for sequence sampler. The main change is to ensure state tensors have fixed shapes. Args: theta: A `.NestedMap` object containing weights' values of this layer and its children layers. encoder_outputs: a NestedMap computed by encoder. step_ids: A tensor of shape [tgt_batch, 1]. states: A `.NestedMap` of tensors representing states that the clients would like to keep track of for each of the active hyps. num_hyps_per_beam: Beam size. Returns: A NestedMap of - results: A `.NestedMap` of beam search results. - out_states: A `.NestedMap`. The updated states. """ if non_tpu: # Strip off paddings. prefix_states = states['prefix_states'] target_time = states.time_step for layer in range(p.num_trans_layers): key = prefix_states['layer_%d' % layer]['key'] val = prefix_states['layer_%d' % layer]['value'] prefix_states['layer_%d' % layer]['key'] = tf.slice( key, [0, 0, 0], [target_time, -1, -1]) prefix_states['layer_%d' % layer]['value'] = tf.slice( val, [0, 0, 0], [target_time, -1, -1]) bs_results, new_states = self._PreBeamSearchStepCallback( theta, encoder_outputs, step_ids, states, num_hyps_per_beam) if non_tpu: # Add back paddings (to maintain paddings shape). bs = tf.shape(new_states.prefix_states['layer_0']['key'])[1] dim = tf.shape(new_states.prefix_states['layer_0']['key'])[2] pad = tf.zeros([p.target_seq_len - new_states.time_step, bs, dim], dtype=py_utils.FPropDtype(p)) for layer in range(p.num_trans_layers): key = new_states.prefix_states['layer_%d' % layer]['key'] val = new_states.prefix_states['layer_%d' % layer]['value'] new_states.prefix_states['layer_%d' % layer]['key'] = tf.concat( [key, pad], axis=0) new_states.prefix_states['layer_%d' % layer]['value'] = tf.concat( [val, pad], axis=0) return bs_results, new_states random_seed = tf.random_uniform( shape=[], maxval=(2**31 - 1), dtype=tf.int32, seed=p.random_seed) sample = self.target_sequence_sampler.Sample( self.theta, encoder_outputs, random_seed, InitCallback, PreBeamSearchCallback, self._PostBeamSearchStepCallback) bs = tf.shape(sample.ids)[0] # Only need to make sure topk_hyps has the right shape # [bs, num_hyps_per_beam], where num_hyps_per_beam=1 for sampling. # TODO(yuancao): Support sampling multiple sequences and remove # num_hyps_per_beam constraint. assert self.params.beam_search.num_hyps_per_beam == 1 sample.topk_hyps = tf.zeros([bs, 1], dtype=tf.string) sample.topk_ids = sample.ids weights = 1 - sample.paddings sample.topk_lens = tf.to_int32(tf.reduce_sum(weights, axis=1)) sample.topk_scores = tf.reduce_sum( tf.log(tf.reduce_max(tf.nn.softmax(sample.logits), axis=2)) * weights, axis=1) return sample def _InitBeamSearchStateCallback(self, theta, encoder_outputs, num_hyps_per_beam): """Returns initial beams search states. Args: theta: A `.NestedMap` object containing weights' values of this layer and its children layers. encoder_outputs: a NestedMap computed by encoder. num_hyps_per_beam: An int, number hyps to keep for source sentence. Returns: A tuple (initial_results, states). initial_results: a `.NestedMap` of initial results. atten_probs: The initial attention probs, of shape [tgt_batch, src_len]. states: a `.NestedMap` of initial model
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 import json import logging import uuid from datetime import datetime from typing import ClassVar, Dict, Iterator, List, Optional, Sequence, Set, Tuple, Type, Union, cast import boto3 from botocore.exceptions import ClientError from intelliflow.core.platform.definitions.aws.cw.client_wrapper import put_composite_alarm from intelliflow.core.platform.definitions.aws.cw.dashboard import ( CW_DASHBOARD_WIDTH_MAX, create_alarm_status_widget, create_metric_widget, create_text_widget, ) from intelliflow.core.platform.definitions.aws.sns.client_wrapper import find_subscription from intelliflow.core.platform.definitions.common import ActivationParams from intelliflow.core.signal_processing import Signal from intelliflow.core.signal_processing.definitions.metric_alarm_defs import ( AlarmDimension, AlarmRule, AlarmRuleOperator, AlarmState, CompositeAlarmParams, MetricDimension, MetricExpression, MetricStatisticData, MetricStatType, MetricValueCountPairData, ) from intelliflow.core.signal_processing.dimension_constructs import AnyVariant, DimensionVariant from intelliflow.core.signal_processing.routing_runtime_constructs import Route from intelliflow.core.signal_processing.signal import SignalType from intelliflow.core.signal_processing.signal_source import ( CWAlarmSignalSourceAccessSpec, CWCompositeAlarmSignalSourceAccessSpec, CWMetricSignalSourceAccessSpec, InternalAlarmSignalSourceAccessSpec, InternalCompositeAlarmSignalSourceAccessSpec, InternalDatasetSignalSourceAccessSpec, InternalMetricSignalSourceAccessSpec, MetricSignalSourceAccessSpec, SignalSourceAccessSpec, SignalSourceType, ) from ...constructs import ( BaseConstruct, ConstructInternalMetricDesc, ConstructParamsDict, ConstructPermission, ConstructPermissionGroup, ConstructSecurityConf, Diagnostics, EncryptionKeyAllocationLevel, UpstreamGrants, UpstreamRevokes, ) from ...definitions.aws.aws_lambda.client_wrapper import add_permission, remove_permission from ...definitions.aws.common import CommonParams as AWSCommonParams from ...definitions.aws.common import exponential_retry, generate_statement_id from ...definitions.aws.kms.client_wrapper import ( KMS_MIN_DELETION_WAITING_PERIOD_IN_DAYS, create_alias, create_cmk, create_default_policy, delete_alias, enable_key_rotation, get_cmk, put_cmk_policy, schedule_cmk_deletion, update_alias, ) from ...definitions.aws.s3.bucket_wrapper import ( bucket_exists, create_bucket, delete_bucket, get_bucket, put_notification, put_policy, update_policy, ) from ...definitions.aws.s3.object_wrapper import ( build_object_key, delete_objects, empty_bucket, get_object, list_objects, object_exists, put_object, ) from ..aws_common import AWSConstructMixin module_logger = logging.getLogger(__name__) class AWSCloudWatchDiagnostics(AWSConstructMixin, Diagnostics): INTERNAL_ALARM_NAME_PREFIX: ClassVar[str] = "if-{0}-" TOPIC_NAME_FORMAT: ClassVar[str] = "if-{0}-{1}" """Diagnostics hub impl based on CloudWatch. Trade-offs: Pros: Cons: """ def __init__(self, params: ConstructParamsDict) -> None: super().__init__(params) self._cw = self._session.client(service_name="cloudwatch", region_name=self._region) self._sns = self._session.client(service_name="sns", region_name=self._region) self._topic_name = None self._topic_arn = None self._topic_root_policy = None def get_event_channel_type(self) -> str: return "SNS" def get_event_channel_resource_path(self) -> str: return self._topic_arn def _get_internal_alarm_name_prefix(self) -> str: unique_context_id = self._params[ActivationParams.UNIQUE_ID_FOR_CONTEXT] return self.INTERNAL_ALARM_NAME_PREFIX.format(unique_context_id) # overrides def get_unique_internal_alarm_name(self, alarm_name: str) -> str: """To guarantee that a given alarm_name for an internal alarm will have no conflict within the same account, we use context_uuid as a prefix to make it unique. """ return self._get_internal_alarm_name_prefix() + alarm_name def map_incoming_event(self, source_type: SignalSourceType, resource_path: str) -> Optional[SignalSourceAccessSpec]: """Map an external diagnostics event to its internal representation (if it is actually governed by this driver). This is necessary for the abstraction of diagnostics impl from routing where internal signals are always kept in generic internal format. Returns a new access spec with the internal version of the 'source_type' and the internal representation of the resource_path (if different). If the external event does not map to an internal signal, then this method return None. """ if source_type == SignalSourceType.CW_METRIC: context_id = MetricSignalSourceAccessSpec.extract_context_id(resource_path) if context_id == self._params[ActivationParams.UNIQUE_ID_FOR_CONTEXT]: return SignalSourceAccessSpec(SignalSourceType.INTERNAL_METRIC, resource_path, None) elif source_type == SignalSourceType.CW_ALARM: cw_alarm_spec = CWAlarmSignalSourceAccessSpec.from_resource_path(resource_path) if cw_alarm_spec.account_id == self.account_id and cw_alarm_spec.region_id == self.region: if cw_alarm_spec.name.startswith(self._get_internal_alarm_name_prefix()): mapped_resource_path = cw_alarm_spec.name.replace(self._get_internal_alarm_name_prefix(), "") + resource_path.replace( cw_alarm_spec.arn, "" ) return SignalSourceAccessSpec(SignalSourceType.INTERNAL_ALARM, mapped_resource_path, None) elif source_type == SignalSourceType.CW_COMPOSITE_ALARM: cw_alarm_spec = CWCompositeAlarmSignalSourceAccessSpec.from_resource_path(resource_path) if cw_alarm_spec.account_id == self.account_id and cw_alarm_spec.region_id == self.region: if cw_alarm_spec.name.startswith(self._get_internal_alarm_name_prefix()): mapped_resource_path = ( InternalCompositeAlarmSignalSourceAccessSpec.PATH_PREFIX + InternalAlarmSignalSourceAccessSpec.path_delimiter() + cw_alarm_spec.name.replace(self._get_internal_alarm_name_prefix(), "") + resource_path.replace(cw_alarm_spec.arn, "") ) return SignalSourceAccessSpec(SignalSourceType.INTERNAL_COMPOSITE_ALARM, mapped_resource_path, None) return None def map_external_access_spec(self, access_spec: Optional[SignalSourceAccessSpec] = None) -> Optional[SignalSourceAccessSpec]: """Map an external diagnostic signal to its internal version (if it is actually internal and governed by this driver).""" if access_spec.source == SignalSourceType.CW_METRIC: if access_spec.context_id == self._params[ActivationParams.UNIQUE_ID_FOR_CONTEXT]: return InternalMetricSignalSourceAccessSpec(access_spec.sub_dimensions, **access_spec.attrs) elif access_spec.source == SignalSourceType.CW_ALARM: if access_spec.account_id == self.account_id and access_spec.region_id == self.region: if access_spec.name.startswith(self._get_internal_alarm_name_prefix()): mapped_id = access_spec.name.replace(self._get_internal_alarm_name_prefix(), "") return InternalAlarmSignalSourceAccessSpec(mapped_id, access_spec.alarm_params, **access_spec.attrs) elif access_spec.source == SignalSourceType.CW_COMPOSITE_ALARM: if access_spec.account_id == self.account_id and access_spec.region_id == self.region: if access_spec.name.startswith(self._get_internal_alarm_name_prefix()): mapped_id = access_spec.name.replace(self._get_internal_alarm_name_prefix(), "") return InternalCompositeAlarmSignalSourceAccessSpec(mapped_id, access_spec.alarm_params, **access_spec.attrs) return None def map_internal_access_spec(self, data_access_spec: SignalSourceAccessSpec) -> SignalSourceAccessSpec: """Map an internal diagnostic signal to its external/raw version""" if data_access_spec.source == SignalSourceType.INTERNAL_ALARM: return CWAlarmSignalSourceAccessSpec( self.get_unique_internal_alarm_name(data_access_spec.alarm_id), self.account_id, self.region, data_access_spec.alarm_params, **data_access_spec.attrs, ) elif data_access_spec.source == SignalSourceType.INTERNAL_COMPOSITE_ALARM: return CWAlarmSignalSourceAccessSpec( self.get_unique_internal_alarm_name(data_access_spec.alarm_id), self.account_id, self.region, data_access_spec.alarm_params, **data_access_spec.attrs, ) elif data_access_spec.source == SignalSourceType.INTERNAL_METRIC: return CWMetricSignalSourceAccessSpec(data_access_spec.context_id, data_access_spec.sub_dimensions, **data_access_spec.attrs) else: raise ValueError( f"Input diagnostic data access spec is not of type Internal! Problematic access spec: " f" {data_access_spec!r}" ) def map_internal_signal(self, signal: Signal) -> Signal: mapped_resource_spec = self.map_internal_access_spec(signal.resource_access_spec) signal_type = None if signal.resource_access_spec.source in [SignalSourceType.INTERNAL_ALARM, SignalSourceType.INTERNAL_COMPOSITE_ALARM]: signal_type = SignalType.CW_ALARM_STATE_CHANGE elif signal.resource_access_spec.source == SignalSourceType.INTERNAL_METRIC: signal_type = SignalType.CW_METRIC_DATA_CREATION return Signal( signal_type, mapped_resource_spec, signal.domain_spec, signal.alias, signal.is_reference, signal.range_check_required, signal.nearest_the_tip_in_range, signal.is_termination, signal.is_inverted, ) def _do_emit( self, metric_signal: Signal, value: Union[float, MetricStatisticData, List[Union[float, MetricValueCountPairData]]], timestamp: Optional[datetime] = None, ) -> None: """Refer https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/cloudwatch.html#CloudWatch.Client.put_metric_data - dynamic handling of 'StorageResolution' based on the period value of the metric to be emitted. If it is less than 60 seconds, set it as 1 or 60. Also, if it is not specified, then we default to 1. - Use 'alias' as the MetricName if left as '*'. """ period = metric_signal.domain_spec.dimension_filter_spec.find_dimension_by_name(MetricDimension.PERIOD).value storage_resolution = 60 if period == AnyVariant.ANY_DIMENSION_VALUE_SPECIAL_CHAR or period < 60: storage_resolution = 1 metric_access_spec = cast("MetricSignalSourceAccessSpec", metric_signal.resource_access_spec) # Metric emission in IF chooses the first materialized path. metric_stat: MetricStatType = metric_access_spec.create_stats_from_filter(metric_signal.domain_spec.dimension_filter_spec)[0] metric_data = { "MetricName": metric_stat["Metric"]["MetricName"], "Dimensions": metric_stat["Metric"]["Dimensions"], "Timestamp": timestamp if timestamp else datetime.utcnow(), # RheocerOS does not use Unit ! "Unit": "None", "StorageResolution": storage_resolution, } if isinstance(value, float) or isinstance(value, int): metric_data.update({"Value": float(value)}) elif isinstance(value, MetricStatisticData): metric_data.update( { "StatisticValues": { "SampleCount": float(value.SampleCount), "Sum": float(value.Sum), "Minimum": float(value.Minimum), "Maximum": float(value.Maximum), } } ) elif isinstance(value, list): if not value or any([not isinstance(pair, (MetricValueCountPairData, float)) for pair in value]): raise ValueError( f"Cannot emit metric {metric_signal.alias!r}! Value list should not be empty and " f"it should contain only entities of type float or " f"{MetricValueCountPairData.__class__.__name__!r}" ) metric_data.update( { "Values": [float(val) if isinstance(val, float) or isinstance(val, int) else val.Value for val in value], "Counts": [1.0 if isinstance(val, float) or isinstance(val, int) else val.Count for val in value], } ) else: raise ValueError(f"Value type {type(value)!r} is not supported for metric emission! MetricData={metric_data!r}") exponential_retry( self._cw.put_metric_data, {"InternalServiceFault"}, Namespace=metric_stat["Metric"]["Namespace"], MetricData=[metric_data] ) def is_internal(self, source_type: SignalSourceType, resource_path: str) -> bool: if source_type == SignalSourceType.CW_METRIC: context_id = MetricSignalSourceAccessSpec.extract_context_id(resource_path) if context_id == self._params[ActivationParams.UNIQUE_ID_FOR_CONTEXT]: return True elif source_type in SignalSourceType.CW_ALARM: cw_alarm_spec = CWAlarmSignalSourceAccessSpec.from_resource_path(resource_path) if cw_alarm_spec.account_id == self.account_id and cw_alarm_spec.region_id == self.region: if cw_alarm_spec.name.startswith(self._get_internal_alarm_name_prefix()): return True elif source_type in SignalSourceType.CW_COMPOSITE_ALARM: cw_alarm_spec = CWCompositeAlarmSignalSourceAccessSpec.from_resource_path(resource_path) if cw_alarm_spec.account_id == self.account_id and cw_alarm_spec.region_id == self.region: if cw_alarm_spec.name.startswith(self._get_internal_alarm_name_prefix()): return True return False def dev_init(self, platform: "DevelopmentPlatform") -> None: super().dev_init(platform) self._topic_name = self.TOPIC_NAME_FORMAT.format(self._dev_platform.context_id, self.__class__.__name__) self._topic_arn = f"arn:aws:sns:{self._region}:{self._account_id}:{self._topic_name}" def _deserialized_init(self, params: ConstructParamsDict) -> None: super()._deserialized_init(params) self._cw = self._session.client(service_name="cloudwatch", region_name=self._region) self._sns = self._session.client(service_name="sns", region_name=self._region) def _serializable_copy_init(self, org_instance: "BaseConstruct") -> None: AWSConstructMixin._serializable_copy_init(self, org_instance) self._cw = None self._sns = None def runtime_init(self, platform: "RuntimePlatform", context_owner: "BaseConstruct") -> None: """Whole platform got bootstrapped at runtime. For other runtime services, this construct should be initialized (ex: context_owner: Lambda, Glue, etc)""" AWSConstructMixin.runtime_init(self, platform, context_owner) self._cw = boto3.client(service_name="cloudwatch", region_name=self._region) self._sns = boto3.client(service_name="sns", region_name=self._region) def provide_runtime_trusted_entities(self) -> List[str]: # Is there any scenario when any of the AWS services (s3) from this impl should assume our exec role? # No return [] def provide_runtime_default_policies(self) -> List[str]: return [] def provide_runtime_permissions(self) -> List[ConstructPermission]: # allow exec-role (post-activation, cumulative list of all trusted entities [AWS services]) to do the following; permissions = [ ConstructPermission( [self._topic_arn], # our exec-role might need to reply back to SNS once a token is received at runtime # following a 'subscribe' call. ["sns:ConfirmSubscription", "sns:Receive"], ), # no need to be picky about resources here since the only action that requires 'resource type' is # DescribeAlarmHistory and we are ok to allow '*' with it. # ref # https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncloudwatch.html ConstructPermission(["*"], ["cloudwatch:DescribeAlarmHistory", "cloudwatch:PutMetricData", "cloudwatch:GetMetricData"]), ] return permissions @classmethod def provide_devtime_permissions(cls, params: ConstructParamsDict) -> List[ConstructPermission]: # dev-role should be able to do the following. return [ ConstructPermission(["*"], ["sns:*"]), ConstructPermission( ["*"], [ "cloudwatch:DeleteAlarms", "cloudwatch:DescribeAlarmHistory", "cloudwatch:DescribeAlarms", "cloudwatch:PutCompositeAlarm", "cloudwatch:PutMetricAlarm", "cloudwatch:PutMetricData", # particular for testing (integ-tests, etc) "cloudwatch:GetMetricData", "cloudwatch:TagResource", "cloudwatch:PutDashboard", ], ), ] def _provide_route_metrics(self, route: Route) -> List[ConstructInternalMetricDesc]: # TODO return [] def _provide_internal_metrics(self) -> List[ConstructInternalMetricDesc]: """Provide internal metrics (of type INTERNAL_METRIC) that should be managed by RheocerOS and emitted by this driver via Diagnostics::emit. These metrics are logical metrics generated by the driver (with no assumption on other drivers and other details about the underlying platform). So as a driver impl, you want Diagnostics driver to manage those metrics and bind them to alarms, etc. Example: Routing metrics. """ return [] def _provide_internal_alarms(self) -> List[Signal]: """Provide internal alarms (of type INTERNAL_ALARM OR INTERNAL_COMPOSITE_ALARM) managed/emitted by this driver impl""" return [] def _provide_system_metrics(self) -> List[Signal]: """Provide metrics auto-generated by the underlying system
which should be considered arbitrary. To retrieve a transcoded fixed-size jpeg version of the thumbnail, use :meth:`ShotgunDataRetriever.download_thumbnail` instead. This is a helper method meant to make it easy to port over synchronous legacy code - for a better solution, we recommend using the thumbnail retrieval that runs in a background thread. :param str entity_type: Shotgun entity type with which the thumb is associated. :param int entity_id: Shotgun entity id with which the thumb is associated. :param bundle: App, Framework or Engine object requesting the download. :returns: A path to the thumbnail on disk. """ thumb_source_url = urlparse.urlunparse(( bundle.shotgun.config.scheme, bundle.shotgun.config.server, "/thumbnail/full/%s/%s" % (urllib.quote(str(entity_type)), urllib.quote(str(entity_id))), None, None, None )) path_to_cached_thumb, thumb_exists = ShotgunDataRetriever._get_thumbnail_path( thumb_source_url, bundle ) if not thumb_exists: # create folders on disk bundle.ensure_folder_exists(os.path.dirname(path_to_cached_thumb)) # download using standard core method. This will ensure that # proxy and connection settings as set in the SG API are used. # Allow the core method to determine the file type extension # for the url about to be downloaded. Capture the full path to the # thumbnail file as returned by sgtk.util.download_url(). try: full_path = sgtk.util.download_url( bundle.shotgun, thumb_source_url, path_to_cached_thumb, True ) path_to_cached_thumb = full_path except TypeError, e: # This may be raised if an older version of core is in use # that doesn't have the final `use_url_extension` arg implemented # in sgtk.util.download_url() (set to True above). Since the source # thumbnail url spec does not contain the file type extension, there # is no way to determine the proper file name to download to. # Raise a TankError indicating that a newer version of core must be # used in conjunction with this method. raise TankError( "Caught error: \n%s\n" "Unable to download source thumbnail URL '%s' because the " "file type extension cannot be determined. Must update to a " "newer version of core to use ShotgunDataRetriever." "download_thumbnail_source()." % (e, thumb_source_url) ) # modify the permissions of the file so it's writeable by others old_umask = os.umask(0) try: os.chmod(path_to_cached_thumb, 0666) finally: os.umask(old_umask) return path_to_cached_thumb def start(self): """ Start the retriever thread. :raises: TankError if there is no :class:`~task_manager.BackgroundTaskManager` associated with this instance """ if not self._task_manager: raise TankError("Unable to start the ShotgunDataRetriever as it has no BackgroundTaskManager!") self._task_manager.start_processing() def stop(self): """ Gracefully stop the receiver. Once stop() has been called, the object needs to be discarded. This is a blocking call. It will synchronously wait until any potential currently processing item has completed. Note that once stopped the data retriever can't be restarted as the handle to the :class:`~task_manager.BackgroundTaskManager` instance is released. """ if not self._task_manager: return if self._owns_task_manager: # we own the task manager so we'll need to completely shut it down before # returning self._task_manager.shut_down() self._task_manager = None else: # we don't own the task manager so just stop any tasks we might be running # and disconnect from it: self._task_manager.stop_task_group(self._bg_tasks_group) # make sure we don't get exceptions trying to disconnect if the # signals were never connected or somehow disconnected externally. try: self._task_manager.task_completed.disconnect(self._on_task_completed) except (TypeError, RuntimeError), e: # was never connected self._bundle.log_warning( "Could not disconnect '_on_task_completed' slot from the " "task manager's 'task_completed' signal: %s" % (e,) ) try: self._task_manager.task_failed.disconnect(self._on_task_failed) except (TypeError, RuntimeError), e: # was never connected self._bundle.log_debug( "Could not disconnect '_on_task_failed' slot from the " "task manager's 'task_failed' signal: %s" % (e,) ) self._task_manager = None def clear(self): """ Clears the queue. Any currently processing item will complete without interruption, and signals will be sent out for these items. """ if not self._task_manager: return # stop any tasks running in the task group: self._task_manager.stop_task_group(self._bg_tasks_group) def stop_work(self, task_id): """ Stop the specified task :param task_id: The task to stop """ if not self._task_manager: return # stop the task: self._task_manager.stop_task(task_id) def get_schema(self, project_id=None): """ Execute the schema_read and schema_entity_read methods asynchronously :param project_id: If specified, the schema listing returned will be constrained by the schema settings for the given project. :returns: A unique identifier representing this request. This identifier is also part of the payload sent via the work_completed and work_failure signals, making it possible to match them up. """ return self._add_task(self._task_get_schema, priority = ShotgunDataRetriever._SG_DOWNLOAD_SCHEMA_PRIORITY, task_kwargs = {"project_id":project_id}) def execute_find(self, *args, **kwargs): """ Executes a Shotgun find query asynchronously. This method takes the same parameters as the Shotgun find() call. The query will be queued up and once processed, either a work_completed or work_failure signal will be emitted. :param ``*args``: args to be passed to the Shotgun find() call :param ``**kwargs``: Named parameters to be passed to the Shotgun find() call :returns: A unique identifier representing this request. This identifier is also part of the payload sent via the work_completed and work_failure signals, making it possible to match them up. """ return self._add_task(self._task_execute_find, priority = ShotgunDataRetriever._SG_CALL_PRIORITY, task_args = args, task_kwargs = kwargs) def execute_find_one(self, *args, **kwargs): """ Executes a Shotgun find_one query asynchronously. This method takes the same parameters as the Shotgun find_one() call. The query will be queued up and once processed, either a work_completed or work_failure signal will be emitted. :param ``*args``: args to be passed to the Shotgun find_one() call :param ``**kwargs``: Named parameters to be passed to the Shotgun find_one() call :returns: A unique identifier representing this request. This identifier is also part of the payload sent via the work_completed and work_failure signals, making it possible to match them up. """ return self._add_task(self._task_execute_find_one, priority = ShotgunDataRetriever._SG_CALL_PRIORITY, task_args = args, task_kwargs = kwargs) def execute_update(self, *args, **kwargs): """ Execute a Shotgun update call asynchronously This method takes the same parameters as the Shotgun update() call. The query will be queued up and once processed, either a work_completed or work_failure signal will be emitted. :param ``*args``: args to be passed to the Shotgun update() call :param ``**kwargs``: Named parameters to be passed to the Shotgun update() call :returns: A unique identifier representing this request. This identifier is also part of the payload sent via the work_completed and work_failure signals, making it possible to match them up. """ return self._add_task(self._task_execute_update, priority = ShotgunDataRetriever._SG_CALL_PRIORITY, task_args = args, task_kwargs = kwargs) def execute_create(self, *args, **kwargs): """ Execute a Shotgun create call asynchronously The query will be queued up and once processed, either a work_completed or work_failure signal will be emitted. This method takes the same parameters as the Shotgun create() call. :param ``*args``: args to be passed to the Shotgun create() call :param ``**kwargs``: Named parameters to be passed to the Shotgun create() call :returns: A unique identifier representing this request. This identifier is also part of the payload sent via the work_completed and work_failure signals, making it possible to match them up. """ return self._add_task(self._task_execute_create, priority = ShotgunDataRetriever._SG_CALL_PRIORITY, task_args = args, task_kwargs = kwargs) def execute_delete(self, *args, **kwargs): """ Execute a Shotgun delete call asynchronously This method takes the same parameters as the Shotgun delete() call. The query will be queued up and once processed, either a work_completed or work_failure signal will be emitted. :param ``*args``: args to be passed to the Shotgun delete() call :param ``**kwargs``: Named parameters to be passed to the Shotgun delete() call :returns: A unique identifier representing this request. This identifier is also part of the payload sent via the work_completed and work_failure signals, making it possible to match them up. """ return self._add_task(self._task_execute_delete, priority = ShotgunDataRetriever._SG_CALL_PRIORITY, task_args = args, task_kwargs = kwargs) def execute_method(self, method, *args, **kwargs): """ Executes a generic execution of a method asynchronously. This is pretty much a wrapper for executing a task through the :class:`~task_manager.BackgroundTaskManager`. The specified method will be called on the following form:: method(sg, data) Where sg is a shotgun API instance. Data is typically a dictionary with specific data that the method needs. The query will be queued up and once processed, either a work_completed
639 MFn_kNurbsCircular2PtArc = 638 MFn_kCurveCurveIntersect = 636 MFn_kManipContainer = 148 MFn_kCurveFromMeshEdge = 635 MFn_kScript = 634 MFn_kDistanceManip = 633 MFn_kNumericData = 587 MFn_kSoftModManip = 632 MFn_kOffsetCosManip = 171 MFn_kDeformWaveManip = 631 MFn_kDeformSineManip = 630 MFn_kReverse = 464 MFn_kRenderUtilityList = 463 MFn_kRecord = 462 MFn_kProjection = 461 MFn_kPostProcessList = 460 MFn_kPolySeparate = 459 MFn_kPlusMinusAverage = 457 MFn_kPolyCreateToolManip = 140 MFn_kNComponent = 987 MFn_kPluginLocatorNode = 456 MFn_kPluginDependNode = 455 MFn_kPlace3dTexture = 454 MFn_kPlace2dTexture = 453 MFn_kPartition = 452 MFn_kParticleTransparencyMapper = 451 MFn_kParticleColorMapper = 449 MFn_kParticleCloud = 448 MFn_kParticleAgeMapper = 447 MFn_kOpticalFX = 446 MFn_kOldGeometryConstraint = 445 MFn_kMultiplyDivide = 444 MFn_kMultilisterLight = 443 MFn_kMotionPath = 441 MFn_kPolyUnite = 440 MFn_kPolyCreateFacet = 439 MFn_kPolyTorus = 438 MFn_kPolySphere = 437 MFn_kPolyMesh = 436 MFn_kPolyCylinder = 435 MFn_kPolyCone = 433 MFn_kPolyPrimitive = 432 MFn_kPolyCreator = 431 MFn_kPolyTriangulate = 430 MFn_kPolySubdFacet = 429 MFn_kSubdProjectionManip = 879 MFn_kLatticeGeom = 280 MFn_kPolySubdEdge = 428 MFn_kPolySplit = 427 MFn_kPolySoftEdge = 425 MFn_kPluginBlendShape = 1114 MFn_kPolySmooth = 424 MFn_kPolyQuad = 423 MFn_kPolyProj = 422 MFn_kPolyPlanProj = 421 MFn_kPolyNormal = 420 MFn_kPolyMoveVertex = 418 MFn_kSubdivGeom = 807 MFn_kPolyMoveUV = 417 MFn_kPolyMoveFacetUV = 416 MFn_kPolyMoveFacet = 415 MFn_kPolyMoveEdge = 414 MFn_kPolyMergeFacet = 413 MFn_kDrag = 258 MFn_kPolyMergeEdge = 412 MFn_kPolyMapDel = 410 MFn_kPolyMapCut = 409 MFn_kPolyExtrudeFacet = 408 MFn_kPolyDelVertex = 407 MFn_kImageRender = 653 MFn_kPolyDelFacet = 406 MFn_kPolyDelEdge = 405 MFn_kContainer = 1006 MFn_kPolyCylProj = 404 MFn_kPolyCollapseF = 403 MFn_kPhong = 372 MFn_kPolyCollapseEdge = 402 MFn_kPolyCloseBorder = 401 MFn_kPolyChipOff = 400 MFn_kPolyAppend = 399 MFn_kPolyTweak = 398 MFn_kPolyBevel = 397 MFn_kMidModifierWithMatrix = 396 MFn_kDeformSquash = 622 MFn_kMatrixWtAdd = 394 MFn_kMatrixPass = 393 MFn_kMatrixMult = 392 MFn_kMatrixHold = 391 MFn_kMatrixAdd = 390 MFn_kMaterialInfo = 389 MFn_kLightSourceMaterial = 388 MFn_kBlinnMaterial = 386 MFn_kLambertMaterial = 385 MFn_kDiffuseMaterial = 384 MFn_kMaterial = 383 MFn_kSubdAddTopology = 887 MFn_kModifyEdgeBaseManip = 833 MFn_kCreateBPManip = 832 MFn_kCurveFromSubdivEdge = 831 MFn_kSymmetryMapCurve = 830 MFn_kSymmetryMapVector = 829 MFn_kSymmetryLocator = 828 MFn_kTransformBoxManip = 827 MFn_kScalePointManip = 826 MFn_kModifyEdgeManip = 825 MFn_kModifyEdgeCrvManip = 824 MFn_kSubdBoolean = 822 MFn_kDropOffFunction = 821 MFn_kCrossSectionEditManip = 820 MFn_kCreateSectionManip = 819 MFn_kCrossSectionManager = 818 MFn_kEditCurveManip = 817 MFn_kEditCurve = 816 MFn_kObjectBinFilter = 938 MFn_kXsectionSubdivEdit = 814 MFn_kSectionManip = 813 MFn_kMeshMapComponent = 812 MFn_kSubdivReverseFaces = 811 MFn_kPolySplitEdge = 810 MFn_kInt64ArrayData = 809 MFn_kUInt64ArrayData = 808 MFn_kSubdivData = 806 MFn_kWriteToVectorBuffer = 1038 MFn_kGuide = 356 MFn_kPolySplitVert = 805 MFn_kClip = 804 MFn_kCreateUVSet = 803 MFn_kCopyUVSet = 802 MFn_kParticleSamplerInfo = 801 MFn_kSubdivCollapse = 800 MFn_kCharacterMap = 798 MFn_kSubdBlindData = 797 MFn_kSubdHierBlind = 796 MFn_kDeleteUVSet = 795 MFn_kVolumeAxis = 794 MFn_kSubdivCompId = 793 MFn_kNurbsCircular3PtArc = 637 MFn_kMeshComponent = 546 MFn_kDecayRegionComponent = 545 MFn_kDecayRegionCapComponent = 544 MFn_kSurfaceRangeComponent = 543 MFn_kLatticeComponent = 542 MFn_kEdgeComponent = 541 MFn_kSurfaceKnotComponent = 540 MFn_kSurfaceEPComponent = 539 MFn_kPivotComponent = 537 MFn_kPluginMotionPathNode = 442 MFn_kIsoparmComponent = 536 MFn_kCurveParamComponent = 535 MFn_kCurveKnotComponent = 534 MFn_kCurveEPComponent = 533 MFn_kCurveCVComponent = 532 MFn_kComponent = 531 MFn_kVectorProduct = 529 kMFnNurbsEpsilon = 0.001 MFn_kUnknown = 528 MFn_kUseBackground = 527 MFn_kUnitToTimeConversion = 526 MFn_kUnitConversion = 525 MFn_kArrayMapper = 524 MFn_kHardwareRenderGlobals = 523 MFn_kRenderQuality = 521 MFn_kRenderGlobalsList = 520 MFn_kRenderGlobals = 519 MFn_kRenderSetup = 518 MFn_kTimeToUnitConversion = 517 MFn_kTime = 516 MFn_kWood = 515 MFn_kStucco = 513 MAngle_kLast = 5 MFn_kSolidFractal = 512 MFn_kSnow = 511 MFn_kRock = 510 MFn_kMarble = 509 MFn_kLeather = 508 MDagMessage_kTranslateZ = 2048 MFn_kGranite = 507 MFn_kNoise = 874 MFn_kSubdSubdivideFace = 873 MFn_kSubdAutoProj = 872 MFn_kVolumeNoise = 871 MFn_kOcean = 870 MFn_kSubdMapSewMove = 869 MFn_kSubdMapCut = 867 MFn_kSubdTweakUV = 866 MFn_kVolumeFog = 865 MFn_kSubdSplitFace = 864 MFn_kRenderBox = 863 MFn_kBox = 862 MFn_kBoxData = 861 MFn_kSubdMergeVert = 860 MFn_kSubdCloseBorder = 859 MFn_kDiskCache = 858 MFn_kGlobalCacheControls = 857 MFn_kJiggleDeformer = 856 MFn_kSubdivMapComponent = 855 MFn_kSnapshotShape = 854 MFn_kSubdDelFace = 853 MFn_kSubdMoveEdge = 851 MFn_kSubdMoveVertex = 850 MFn_kSubdModifier = 849 MFn_kPolyMapSewMove = 848 MFn_kPolyLayoutUV = 847 MFn_kPolyAutoProj = 846 MFn_kPolyAverageVertex = 845 MFn_kUnused6 = 843 MFn_kUnused5 = 842 MFn_kUnused4 = 841 MFn_kUnused3 = 840 MFn_kUnused2 = 839 MFn_kUnused1 = 838 MFn_kCurveFromSubdivFace = 837 MFn_kSubdivSurfaceVarGroup = 835 MFn_kSubdExtrudeFace = 834 MFn_kFluidEmitter = 915 MFn_kStudioClearCoat = 914 MFn_kMidModifier = 395 MFn_kStringShadingSwitch = 913 MFn_kSmear = 912 MFn_kFluidData = 911 MFn_kFluidGeom = 910 MFn_kFluid = 909 MFn_kPluginTransformNode = 908 MFn_kAlignManip = 907 MFn_kPolyStraightenUVBorder = 906 MFn_kPolyMergeUV = 905 MFn_kFluidTexture2D = 904 MFn_kPolyPokeManip = 902 MFn_kPolyMirrorManipContainer = 901 MFn_kPolyCutManip = 900 MFn_kPolyCutManipContainer = 899 MFn_kPolyWedgeFace = 898 MFn_kPolyPoke = 897 MFn_kPolyCut = 896 MFn_kLayeredTexture = 799 MFn_kBevelPlus = 894 MFn_kOceanShader = 893 MFn_kVolumeLight = 892 MFn_kRampShader = 891 MFn_kComponentListData = 579 MFn_kImplicitSphere = 890 MFn_kImplicitCone = 889 MFn_kSubdCleanTopology = 888 MFn_kPluginHwShaderNode = 886 MFn_kPluginHardwareShader = 885 MFn_kHwShaderNode = 884 MFn_kPolyFlipUV = 883 MFn_kFilter = 329 MFn_kPolyNormalizeUV = 882 MFn_kHardwareReflectionMap = 881 MFn_kSubdMappingManip = 880 MFn_kSubdTweak = 878 MFn_kSubdPlanProj = 877 MFn_kData4Double = 876 MFn_kAttribute4Double = 875 MFn_kCurveNormalizerLinear = 997 MFn_kCurveNormalizerAngle = 996 MFn_kCacheTrack = 994 MFn_kCacheBlend = 993 MFn_kCacheBase = 992 MFn_kNBase = 991 MFn_kNucleus = 990 MFn_kCacheableNode = 989 MFn_kPolyBridgeEdge = 988 MFn_kDynamicConstraint = 986 MFn_kTransferAttributes = 985 MFn_kClosestPointOnMesh = 984 cvar = None MFn_kHistorySwitch = 983 MFn_kCacheFile = 982 MFn_kPolyHelix = 981 MFn_kPolyComponentData = 980 MFn_kHikFloorContactMarker = 978 MFn_kPolyPipe = 977 MFn_kPolyPlatonicSolid = 976 MFn_kHikEffector = 956 MFn_kPolyPrimitiveMisc = 975 MFn_kPolyPinUV = 955 MFn_kPolyArrow = 974 MFn_kPolyCreaseEdge = 954 MFn_kKeyframeRegionManip = 995 MFn_kLineModifier = 973 MFn_kNurbsCurve = 267 MFn_kPolyMirror = 953 MFn_kAISEnvFacade = 972 MFn_kKeyframeDeltaBreakdown = 952 MFn_kKeyframeDeltaWeighted = 951 MFn_kMaterialFacade = 970 MFn_kKeyframeDeltaTangent = 950 MFn_kFacade = 969 MFn_kKeyframeDeltaInfType = 949 MFn_kPolyDuplicateEdge = 968 MFn_kKeyframeDeltaBlockAddRemove = 948 MFn_kToonLineAttributes = 967 MFn_kKeyframeDeltaAddRemove = 947 MFn_kPfxToon = 966 MFn_kPolySplitRing = 965 MFn_kKeyframeDeltaMove = 945 MFn_kPolyPyramid = 964 MFn_kKeyframeDelta = 944 MFn_kPsdFileTexture = 943 MFn_kSpotCylinderManip = 187 MFn_kPolyAutoProjManip = 962 MFn_kHairTubeShader = 942 MFn_kProxyManager = 961 MFn_kPfxHair = 941 MFn_kHikHandle = 960 MFn_kPfxGeometry = 940 MFn_kHikSolver = 959 MFn_kPolySmoothProxy = 939 MFn_kHikFKJoint = 958 MFn_kHikIKEffector = 957 MFn_kMentalRayTexture = 937 MFn_kTimeFunction = 936 MFn_kHairConstraint = 935 MFn_kWriteToColorBuffer = 1037 MFn_kRemapHsv = 934 MFn_kWriteToFrameBuffer = 1036 MFn_kRemapColor = 933 MFn_kPolySelectEditFeedbackManip = 1035 MFn_kRemapValue = 932 MFn_kPolyToolFeedbackManip = 1034 MFn_kHairSystem = 931 MFn_kUint64SingleIndexedComponent = 1033 MFn_kTwoPointArcManip = 645 MFn_kMergeVertsToolManip = 1032 MFn_kCurveFromMeshCoM = 929 MFn_kMembrane = 1031 MFn_kRotateBoxManip = 214 MFn_kTrimWithBoundaries = 928 MFn_kConstraint = 927 MFn_kNId = 1029 MFn_kMute = 926 MFn_kNIdData = 1028 MFn_kXformManip = 925 MFn_kPluginManipulatorNode = 1027 MFn_kViewManip = 924 MFn_kBlendNodeAdditiveRotation = 1026 MFn_kTextManip = 923 MFn_kBlendNodeAdditiveScale = 1025 MFn_kBlendNodeInt32 = 1024 MFn_kPolyExtrudeVertex = 921 MFn_kBlendNodeInt16 = 1023 MFn_kQuadShadingSwitch = 920 MFn_kPluginObjectSet = 919 MFn_kBlendNodeFloatAngle = 1021 MFn_kSnapshotPath = 918 MFn_kBlendNodeFloat = 1020 MFn_kInsertKnotSrf = 76 MFn_kGeoConnector = 917 MFn_kBlendNodeEnum = 1019 MFn_kHeightField = 916 MFn_kBlendNodeDoubleLinear = 1018 MFn_kBlendNodeDoubleAngle = 1017 MFn_kBlendNodeDouble = 1016 MFn_kBlendNodeBoolean = 1015 MFn_kAnimLayer = 1013 MFn_kPolyEdgeToCurve = 1012 MFn_kAsset = 1011 MFn_kPluginConstraintNode = 1010 MFn_kCombinationShape = 337 MFn_kNObject = 1009 MFn_kNObjectData = 1008 MFn_kFloatVectorArrayData = 1007 MFn_kPluginCameraSet = 1005 MFn_kCameraSet = 1004 MFn_kPluginParticleAttributeMapperNode = 1003 MFn_kNRigid = 1002 MFn_kNParticle = 1001 MFn_kNCloth = 1000 MFn_kPluginImagePlaneNode = 999 MFileIO_kVersion2014 = 179 MFn_kPoseInterpolatorManager = 1120 MFn_kOceanDeformer = 1119 MFn_kShapeEditorManager = 1118 MDagMessage_kRotateZ = 256 MFn_kPolyClean = 1117 MFn_kTrackInfoManager = 1116 MFn_kDummy = 254 MFn_kPolyPassThru = 1115 MFn_kCollision = 253 MFn_kPolyMoveVertexUV = 419 MFn_kSoftMod = 252 MFn_kPluginGeometryFilter = 1113 MFn_kCluster = 251 MFn_kPluginSkinCluster = 1112 MFn_kCamera = 250 MFn_kNodeGraphEditorBookmarkInfo = 1111 MFn_kBaseLattice = 249 MFn_kNodeGraphEditorBookmarks = 1110 MFn_kShape = 248 MFn_kNodeGraphEditorInfo = 1109 MFn_kDoubleShadingSwitch = 614 MFn_kContourProjectionManip = 1108 MFn_kUnknownTransform = 246 MFn_kPolyContourProj = 1107 MFn_kTangentConstraint = 245 MFn_kScaleConstraint = 244 MFn_kPolyModifierManipContainer = 1105 MFn_kPoleVectorConstraint = 243 MFn_kFloatArrayData = 1030 MFn_kPolyCaddyManip = 1104 MFn_kParentConstraint = 242 MFn_kCaddyManipBase = 1103 MFn_kSymmetryConstraint = 241 MFn_kTimeEditorAnimSource = 1102 MFn_kTimeEditorInterpolator = 1101 MFn_kTimeEditorTracks = 1100 MFn_kTimeEditor = 1099 MFn_kGreasePlane = 1079 MFn_kMandelbrot3D = 1078 MFn_kTimeEditorClipEvaluator = 1097 MFn_kMandelbrot = 1077 MFn_kTimeEditorClipBase = 1096 MFn_kClipToGhostData = 1076 MFn_kPolyBevel3 = 1095 MFn_kClipGhostShape = 1075 MFn_kColorMgtGlobals = 1094 MFn_kAssembly = 1074 MFn_kGeomBind = 1093 MFn_kCrater = 506 MFn_kPolyCBoolOp = 1092 MFn_kPluginThreadedDevice = 1072 MFn_kPolyBevel2 = 1091 MFn_kPluginClientDevice = 1071 MFn_kClientDevice = 1070 MFn_kShrinkWrapFilter = 1089 MFn_kThreadedDevice = 1069 MFn_kNLE = 1088 MFn_kPolyExtrudeManipContainer = 1068 MFn_kToolContext = 1087 MFn_kPolyExtrudeManip = 1067 MFn_kSnapUVManip2D = 1086 MFn_kRenderingList = 1066 MFn_kFosterParent = 1085 MFn_kWrapFilter = 739 MFn_kPolyEditEdgeFlow = 1084 MFn_kHardwareRenderingGlobals = 1064 MFn_kCreaseSet = 1083 MFn_kPolyUVRectangle = 1063 MFn_kDagContainer = 1062 MFn_kGreasePencilSequence = 1081 MFn_kPolyCube = 434 MFn_kContainerBase = 1061 MFn_kGreasePlaneRenderShape = 1080 MFn_kAdskMaterial = 1060 MFn_kColorProfile = 1059 MFn_kNearestPointOnCurve = 1058 MFn_kVolumeBindManip = 1056 MFn_kSkinBinding = 1055 MFn_kStereoCameraMaster = 1041 MFn_kPolyConnectComponents = 1054 MFn_kPointOnPolyConstraint = 1053 MFn_kPolyHoleFace = 1052 MFn_kPolySpinEdge = 1051 MFn_kBezierCurveToNurbs = 1050 MFn_kBezierCurveData = 1048 MFn_kBlendNodeFloatLinear = 1022 MFn_kBezierCurve = 1047 MFn_kCreateBezierManip = 1046 MFn_kBlendNodeTime = 1045 MFn_kShot = 1044 MFn_kSequencer = 1043 MFn_kSequenceManager = 1042 MFn_kWriteToLabelBuffer = 1040 MFn_kWriteToDepthBuffer = 1039 MFn_kBlindData = 751 MFn_kReference = 750 MFn_kObjectTypeFilter = 674 MFn_kRevolvedPrimitive = 95 MFn_kAttribute3Int = 749 MFn_kAttribute3Short = 748 MFn_kAttribute3Double = 746 MFn_kLast = 1127 MFn_kAttribute2Int = 745 MFn_kAttribute2Short = 744 MFn_kAttribute2Float = 743 MFn_kAttribute2Double = 742 MFn_kBinaryData = 741 MFn_kMeshVtxFaceComponent = 740 MFn_kFFblendSrf = 68 MFn_kDynSweptGeometryData = 738 MFn_kCharacterMappingData = 737 MFn_kPolyColorDel = 736 MNodeMessage_kOtherPlugSet = 16384 MFn_kPolyColorMod = 735 MNodeMessage_kAttributeArrayRemoved = 8192 MFn_kBlendColorSet = 734 MNodeMessage_kAttributeArrayAdded = 4096 MFn_kCopyColorSet = 733 MNodeMessage_kIncomingDirection = 2048 MFn_kDeleteColorSet = 732 MFn_kCreateColorSet = 731 MFn_kPolyColorPerVertex = 730 MFn_kDisplayLayerManager = 729 MFn_kDisplayLayer = 728 MFn_kPluginSpringNode = 727 MFn_kPluginEmitterNode = 726 MFn_kPluginFieldNode = 725 MFn_kDynArrayAttrsData = 724 MFn_kDynAttenuationManip = 723 MFn_kPolyRemesh = 1106 MFn_kDynSpreadManip = 722 MFn_kDynTurbulenceManip = 721 MFn_kDynNewtonManip = 720 MFn_kDynAirManip = 719 MFn_kDynBaseFieldManip = 718 MFn_kDynFieldsManip = 717 MFn_kDynEmitterManip = 716 MFn_kSubdivToPoly = 714 MFn_kSquareSrfManip = 713 MFn_kSquareSrf = 712 MFn_kExtendSurfaceDistanceManip = 711 MVector_kTol = 1e-10 MTransformationMatrix_kTol = 1e-10 kQuaternionEpsilon = 1e-10 MPoint_kTol = 1e-10 MMatrix_kTol = 1e-10 kMFnSubdPointTolerance = 1e-10 kMFnSubdTolerance = 0.001 MFn_kPhongMaterial = 387 kMFnMeshPointTolerance = 1e-10 kMFnMeshTolerance = 0.001 MFloatVector_kTol = 1e-05 MFloatPoint_kTol = 1e-05 MFloatMatrix_kTol = 1e-05 kEulerRotationEpsilon = 1e-10 MFn_kStoryBoard = 479 MFn_kLodThresholds = 766 MFn_kSphericalProjectionManip = 222 kUnknownParameter = 'unknown' MFn_kCompoundAttribute = 571 MFn_kPairBlend = 922 MFn_kPlane = 288 MFn_kManipulator = 230 MFn_kCommEdgeOperManip = 606 MFn_kSoftModFilter = 348 MFn_kSubdivToNurbs = 815 MNodeMessage_kAttributeUnkeyable = 1024 MNodeMessage_kAttributeKeyable = 512 MDagMessage_kRotatePivotTrans = 14680064 MDagMessage_kScalePivotTrans = 1835008 MDagMessage_kRotatePivot = 229376 MDagMessage_kScalePivot = 28672 MDagMessage_kTranslation = 3584 MDagMessage_kRotation = 448 MDagMessage_kAll = 268435455 MDagMessage_kRotateOrder = 134217728 MDagMessage_kRotateOrientZ = 67108864 MDagMessage_kRotateOrientY = 33554432 MDagMessage_kRotateOrientX = 16777216 MDagMessage_kRotateTransZ = 8388608 MDagMessage_kRotateTransY = 4194304 MDagMessage_kRotateTransX = 2097152 MDagMessage_kScaleTransZ = 1048576 MDagMessage_kScaleTransX = 262144 MDagMessage_kRotatePivotZ = 131072 MDagMessage_kRotatePivotY = 65536 MDagMessage_kRotatePivotX = 32768 MDagMessage_kScalePivotZ = 16384 MDagMessage_kScalePivotY = 8192 MDagMessage_kScalePivotX = 4096 MDagMessage_kTranslateY = 1024 MFn_kPolySphProj = 426 MDagMessage_kTranslateX = 512 MAYA_API_VERSION = 20180000 MFn_kImageFilter = 661 MFn_kData3Long = 594 MFn_kData2Long = 590 MFn_kAttribute3Long = 749 MFn_kAttribute2Long = 745 MFn_kAttribute3Float = 747 MFn_kReorderUVSet = 1126 MFn_kArubaTesselate = 1125 MFn_kPolyCircularize = 1124 MFn_kCustomEvaluatorClusterNode = 1123 MFn_kReForm = 1122 MFn_kKeyingGroup = 682 MFn_kControllerTag = 1121 MFn_kSurfaceInfo = 103 MFn_kEnvBall = 487 MFn_kPolyModifierManip = 195 MFn_kMoveUVShellManip2D = 705 MFn_kMeshEdgeComponent = 547 MFn_kStyleCurve = 895 MFn_kFluidTexture3D = 903 MFn_kAttachSurface = 44 MFn_kMoveVertexManip = 758 MFn_kDoubleAngleAttribute = 563 MFn_kForceUpdateManip = 690 MFn_kHikGroundPlane = 979 MFn_kSurfaceCVComponent = 538 MFn_kDeformFlareManip = 629 MFn_kTimeWarp = 1073 MFn_kMatrixArrayData = 598 MFn_kTimeEditorClip = 1098 MDagMessage_kRotateOrient = 117440512 MFn_kBlendNodeBase = 1014 MFn_kEditsManager = 1090 MFn_kAxesActionManip = 124 kDefaultNodeType = 'dependNode' MFn_kNurbsCurveToBezier = 1049 MFnDagNode_kNextPos = 255 MFn_kSCsolver = 364 MFileIO_kVersion2011 = 156 MFn_kSubdivEdgeComponent = 698 MFn_kEditMetadata = 1082 MFnData_kSubdSurface = 21 MFn_kMesh = 296 MFn_kSubdModifyEdge = 823 MFn_kResolution = 522 MFn_kPassContributionMap = 782 MFn_kComponentManip = 669 MFn_kTexture3d = 503 MFn_kSetGroupComponent = 555 MFn_kDropoffManip = 163 MFn_kTxSl = 514 MNodeMessage_kLast = 32768 MFn_kVolumeShader = 530 MFn_kCurveFromSurfaceCoS = 60 MFn_kDiscManip = 132 MFn_kPointMatrixMult = 458 MFn_kPolyProjectCurve = 1065 MFn_kUniform = 263 MFn_kVortex = 264 MFn_kGeometric = 265 MFn_kSPbirailSrf = 52 MFn_kRigidConstraint = 313 MFn_kCreateEPManip = 158 MFn_kEnvFacade = 971 MFn_kCreateCVManip = 157 MFn_kCoiManip = 155 MFn_kCameraManip = 154 MFn_kButtonManip = 153 MFileIO_kVersion2010 = 152 MFn_kBevelManip = 151 MFn_kBarnDoorManip = 150 MFn_kAverageCurveManip = 149 MFileIO_kVersion2009 = 147 MFn_kIsoparmManip =
= self.GetPatchSeries() patch1, patch2, patch3, patch4 = patches = self.GetPatches(4) self.SetPatchDeps(patch1) self.SetPatchDeps(patch2, [patch1.id]) self.SetPatchDeps(patch3) self.SetPatchDeps(patch4) self.SetPatchApply(patch1).AndRaise( cros_patch.ApplyPatchException(patch1)) self.SetPatchApply(patch3) self.SetPatchApply(patch4).AndRaise( cros_patch.ApplyPatchException(patch1, inflight=True)) self.mox.ReplayAll() self.assertResults(series, patches, [patch3], [patch2, patch1], [patch4]) self.mox.VerifyAll() def testApplyMissingChangeId(self): """Test that applies changes correctly with a dep with missing changeid.""" series = self.GetPatchSeries() patch1, patch2 = patches = self.GetPatches(2) git_repo = os.path.join(self.build_root, patch1.project) patch1.Fetch(git_repo) patch1.GerritDependencies( git_repo, 'refs/remotes/cros/master').AndRaise( cros_patch.BrokenChangeID(patch1, 'Could not find changeid')) self.SetPatchDeps(patch2) self.SetPatchApply(patch2) self.mox.ReplayAll() self.assertResults(series, patches, [patch2], [patch1], []) self.mox.VerifyAll() def testComplexApply(self): """More complex deps test. This tests a total of 2 change chains where the first change we see only has a partial chain with the 3rd change having the whole chain i.e. 1->2, 3->1->2, 4->nothing. Since we get these in the order 1,2,3,4 the order we should apply is 2,1,3,4. This test also checks the patch order to verify that Apply re-orders correctly based on the chain. """ series = self.GetPatchSeries() patch1, patch2, patch3, patch4, patch5 = patches = self.GetPatches(5) self.SetPatchDeps(patch1, [patch2.id]) self.SetPatchDeps(patch2) self.SetPatchDeps(patch3, [patch1.id, patch2.id]) self.SetPatchDeps(patch4, cq=[patch5.id]) self.SetPatchDeps(patch5) for patch in (patch2, patch1, patch3, patch4, patch5): self.SetPatchApply(patch) self.mox.ReplayAll() self.assertResults( series, patches, [patch2, patch1, patch3, patch4, patch5]) self.mox.VerifyAll() def testApplyStandalonePatches(self): """Simple apply of two changes with no dependent CL's.""" series = self.GetPatchSeries() patches = self.GetPatches(3) for patch in patches: self.SetPatchDeps(patch) for patch in patches: self.SetPatchApply(patch) self.mox.ReplayAll() self.assertResults(series, patches, patches) self.mox.VerifyAll() # pylint: disable=W0212,R0904 class TestCoreLogic(base): """Tests the core resolution and applying logic of validation_pool.ValidationPool.""" def setUp(self): self.mox.StubOutWithMock(gerrit.GerritHelper, 'FindContentMergingProjects') def MakePool(self, overlays=constants.PUBLIC_OVERLAYS, build_number=1, builder_name='foon', is_master=True, dryrun=True, **kwds): handlers = kwds.pop('handlers', False) kwds.setdefault('helper_pool', validation_pool.HelperPool.SimpleCreate()) kwds.setdefault('changes', []) pool = validation_pool.ValidationPool( overlays, self.build_root, build_number, builder_name, is_master, dryrun, **kwds) self.mox.StubOutWithMock(pool, '_SendNotification') if handlers: self.mox.StubOutWithMock(pool, '_HandleApplySuccess') self.mox.StubOutWithMock(pool, '_HandleApplyFailure') self.mox.StubOutWithMock(pool, '_HandleCouldNotApply') self.mox.StubOutWithMock(pool, '_patch_series') return pool def MakeFailure(self, patch, inflight=True): return cros_patch.ApplyPatchException(patch, inflight=inflight) def GetPool(self, changes, applied=(), tot=(), inflight=(), dryrun=True, **kwds): pool = self.MakePool(changes=changes, **kwds) applied = list(applied) tot = [self.MakeFailure(x, inflight=False) for x in tot] inflight = [self.MakeFailure(x, inflight=True) for x in inflight] # pylint: disable=E1123 pool._patch_series.Apply( changes, dryrun=dryrun, manifest=mox.IgnoreArg() ).AndReturn((applied, tot, inflight)) for patch in applied: pool._HandleApplySuccess(patch).AndReturn(None) if tot: pool._HandleApplyFailure(tot).AndReturn(None) # We stash this on the pool object so we can reuse it during validation. # We could stash this in the test instances, but that would break # for any tests that do multiple pool instances. pool._test_data = (changes, applied, tot, inflight) return pool def runApply(self, pool, result): self.assertEqual(result, pool.ApplyPoolIntoRepo()) self.assertEqual(pool.changes, pool._test_data[1]) failed_inflight = pool.changes_that_failed_to_apply_earlier expected_inflight = set(pool._test_data[3]) # Intersect the results, since it's possible there were results failed # results that weren't related to the ApplyPoolIntoRepo call. self.assertEqual(set(failed_inflight).intersection(expected_inflight), expected_inflight) self.assertEqual(pool.changes, pool._test_data[1]) def testPatchSeriesInteraction(self): """Verify the interaction between PatchSeries and ValidationPool. Effectively, this validates data going into PatchSeries, and coming back out; verifies the hand off to _Handle* functions, but no deeper. """ patches = self.GetPatches(3) apply_pool = self.GetPool(patches, applied=patches, handlers=True) all_inflight = self.GetPool(patches, inflight=patches, handlers=True) all_tot = self.GetPool(patches, tot=patches, handlers=True) mixed = self.GetPool(patches, tot=patches[0:1], inflight=patches[1:2], applied=patches[2:3], handlers=True) self.mox.ReplayAll() self.runApply(apply_pool, True) self.runApply(all_inflight, False) self.runApply(all_tot, False) self.runApply(mixed, True) self.mox.VerifyAll() def testHandleApplySuccess(self): """Validate steps taken for successfull application.""" patch = self.GetPatches(1) pool = self.MakePool() pool._SendNotification(patch, mox.StrContains('has picked up your change')) self.mox.ReplayAll() pool._HandleApplySuccess(patch) self.mox.VerifyAll() def testHandleApplyFailure(self): failures = [cros_patch.ApplyPatchException(x) for x in self.GetPatches(4)] notified_patches = failures[:2] unnotified_patches = failures[2:] master_pool = self.MakePool(dryrun=False) slave_pool = self.MakePool(is_master=False) self.mox.StubOutWithMock(gerrit.GerritHelper, 'RemoveCommitReady') for failure in notified_patches: master_pool._SendNotification( failure.patch, mox.StrContains('failed to apply your change'), failure=mox.IgnoreArg()) # This pylint suppressin shouldn't be necessary, but pylint is invalidly # thinking that the first arg isn't passed in; we suppress it to suppress # the pylnt bug. # pylint: disable=E1120 gerrit.GerritHelper.RemoveCommitReady(failure.patch, dryrun=False) self.mox.ReplayAll() master_pool._HandleApplyFailure(notified_patches) slave_pool._HandleApplyFailure(unnotified_patches) self.mox.VerifyAll() def testSubmitPoolFailures(self): pool = self.MakePool(dryrun=False) patch1, patch2, patch3 = patches = self.GetPatches(3) failed = self.GetPatches(3) pool.changes = patches[:] # While we don't do anything w/ these patches, that's # intentional; we're verifying that it isn't submitted # if there is a failure. pool.changes_that_failed_to_apply_earlier = failed[:] self.mox.StubOutWithMock(pool, '_SubmitChange') self.mox.StubOutWithMock(pool, '_HandleCouldNotSubmit') self.mox.StubOutWithMock(gerrit.GerritHelper, 'IsChangeCommitted') pool._SubmitChange(patch1).AndReturn(None) gerrit.GerritHelper.IsChangeCommitted( str(patch1.gerrit_number), False).AndReturn(True) pool._SubmitChange(patch2).AndReturn(None) gerrit.GerritHelper.IsChangeCommitted( str(patch2.gerrit_number), False).InAnyOrder().AndReturn(False) pool._HandleCouldNotSubmit(patch2).InAnyOrder() pool._SubmitChange(patch3).AndRaise( cros_build_lib.RunCommandError('blah', None)) pool._HandleCouldNotSubmit(patch3).InAnyOrder().AndReturn(None) cros_build_lib.TreeOpen( validation_pool.ValidationPool.STATUS_URL, validation_pool.ValidationPool.SLEEP_TIMEOUT).AndReturn(True) self.mox.ReplayAll() self.assertRaises(validation_pool.FailedToSubmitAllChangesException, pool.SubmitPool) self.mox.VerifyAll() def testSubmitPool(self): pool = self.MakePool(dryrun=False) passed = self.GetPatches(3) failed = self.GetPatches(3) pool.changes = passed pool.changes_that_failed_to_apply_earlier = failed[:] self.mox.StubOutWithMock(pool, '_SubmitChange') self.mox.StubOutWithMock(pool, '_HandleCouldNotSubmit') self.mox.StubOutWithMock(pool, '_HandleApplyFailure') self.mox.StubOutWithMock(gerrit.GerritHelper, 'IsChangeCommitted') for patch in passed: pool._SubmitChange(patch).AndReturn(None) gerrit.GerritHelper.IsChangeCommitted( str(patch.gerrit_number), False).AndReturn(True) pool._HandleApplyFailure(failed) cros_build_lib.TreeOpen( validation_pool.ValidationPool.STATUS_URL, validation_pool.ValidationPool.SLEEP_TIMEOUT).AndReturn(True) self.mox.ReplayAll() pool.SubmitPool() self.mox.VerifyAll() def testSubmitNonManifestChanges(self): """Simple test to make sure we can submit non-manifest changes.""" pool = self.MakePool(dryrun=False) patch1, patch2 = passed = self.GetPatches(2) pool.non_manifest_changes = passed[:] self.mox.StubOutWithMock(pool, '_SubmitChange') self.mox.StubOutWithMock(pool, '_HandleCouldNotSubmit') self.mox.StubOutWithMock(gerrit.GerritHelper, 'IsChangeCommitted') pool._SubmitChange(patch1).AndReturn(None) gerrit.GerritHelper.IsChangeCommitted( str(patch1.gerrit_number), False).AndReturn(True) pool._SubmitChange(patch2).AndReturn(None) gerrit.GerritHelper.IsChangeCommitted( str(patch2.gerrit_number), False).AndReturn(True) cros_build_lib.TreeOpen( validation_pool.ValidationPool.STATUS_URL, validation_pool.ValidationPool.SLEEP_TIMEOUT).AndReturn(True) self.mox.ReplayAll() pool.SubmitNonManifestChanges() self.mox.VerifyAll() def testGerritSubmit(self): """Tests submission review string looks correct.""" pool = self.MakePool(dryrun=False) patch = self.GetPatches(1) # Force int conversion of gerrit_number to ensure the test is sane. cmd = ('ssh -p 29418 gerrit.chromium.org gerrit review ' '--submit %i,%i' % (int(patch.gerrit_number), patch.patch_number)) validation_pool._RunCommand(cmd.split(), False).AndReturn(None) self.mox.ReplayAll() pool._SubmitChange(patch) self.mox.VerifyAll() def testUnhandledExceptions(self): """Test that CQ doesn't loop due to unhandled Exceptions.""" pool = self.MakePool(dryrun=False) patches = self.GetPatches(2) pool.changes = patches[:] class MyException(Exception): pass self.mox.StubOutWithMock(pool._patch_series, 'Apply') # pylint: disable=E1123 pool._patch_series.Apply( patches, dryrun=False, manifest=mox.IgnoreArg()).AndRaise( MyException) def _ValidateExceptioN(changes): for patch in changes: self.assertTrue(isinstance(patch, validation_pool.InternalCQError), msg="Expected %s to be type InternalCQError, got %r" % (patch, type(patch))) self.assertEqual(set(patches), set(x.patch for x in changes)) self.mox.ReplayAll() self.assertRaises(MyException, pool.ApplyPoolIntoRepo) self.mox.VerifyAll() def testFilterDependencyErrors(self): """Verify that dependency errors are correctly filtered out.""" failures = [cros_patch.ApplyPatchException(x) for x in self.GetPatches(2)] failures += [cros_patch.DependencyError(x, y) for x, y in zip(self.GetPatches(2), failures)] failures[0].patch.approval_timestamp = time.time() failures[-1].patch.approval_timestamp = time.time() self.mox.ReplayAll() result = validation_pool.ValidationPool._FilterDependencyErrors(failures) self.assertEquals(set(failures[:-1]), set(result)) self.mox.VerifyAll() def testFilterNonCrosProjects(self): """Runs through a filter of own manifest and fake changes. This test should filter out the tacos/chromite project as its not real. """ base_func = itertools.cycle(['chromiumos', 'chromeos']).next patches = self.GetPatches(8) for patch in patches: patch.project = '%s/%i' % (base_func(), _GetNumber()) patch.tracking_branch = str(_GetNumber()) non_cros_patches = self.GetPatches(2) for patch in non_cros_patches: patch.project = str(_GetNumber()) filtered_patches = patches[:4] allowed_patches = [] projects = {} for idx, patch in enumerate(patches[4:]): fails = bool(idx % 2) # Vary the revision so we can validate that it checks the branch. revision = ('monkeys' if fails else 'refs/heads/%s' % patch.tracking_branch) if fails: filtered_patches.append(patch) else: allowed_patches.append(patch) projects.setdefault(patch.project, {})['revision'] = revision manifest = MockManifest(self.build_root, projects=projects) self.mox.ReplayAll() results = validation_pool.ValidationPool._FilterNonCrosProjects( patches + non_cros_patches, manifest) def compare(list1, list2): mangle = lambda c:(c.id, c.project, c.tracking_branch) self.assertEqual(list1, list2, msg="Comparison failed:\n list1: %r\n list2: %r" % (map(mangle, list1), map(mangle, list2))) compare(results[0], allowed_patches) compare(results[1], filtered_patches) class TestPickling(cros_test_lib.TempDirTestCase): """Tests to validate pickling of ValidationPool, covering CQ's needs""" def testSelfCompatibility(self): """Verify compatibility of current git HEAD against itself.""" self._CheckTestData(self._GetTestData()) def testToTCompatibility(self): """Validate that ToT can use our pickles, and that we can use ToT's data.""" repo = os.path.join(self.tempdir, 'chromite') reference = os.path.abspath(__file__) reference = os.path.normpath(os.path.join(reference, '../../')) repository.CloneGitRepo(repo, '%s/chromiumos/chromite' % constants.GIT_HTTP_URL, reference=reference) code = """ import sys from chromite.buildbot import validation_pool_unittest if not hasattr(validation_pool_unittest, 'TestPickling'): sys.exit(0) sys.stdout.write(validation_pool_unittest.TestPickling.%s) """ # Verify ToT can take our pickle. cros_build_lib.RunCommandCaptureOutput( ['python', '-c', code % '_CheckTestData(sys.stdin.read())'], cwd=self.tempdir, print_cmd=False, input=self._GetTestData()) # Verify we can handle ToT's pickle. ret = cros_build_lib.RunCommandCaptureOutput( ['python', '-c', code % '_GetTestData()'], cwd=self.tempdir, print_cmd=False) self._CheckTestData(ret.output) @staticmethod def _GetCrosInternalPatch(patch_info): return cros_patch.GerritPatch( patch_info, constants.INTERNAL_REMOTE, constants.GERRIT_INT_SSH_URL) @staticmethod def _GetCrosPatch(patch_info): return cros_patch.GerritPatch( patch_info, constants.EXTERNAL_REMOTE, constants.GERRIT_SSH_URL) @classmethod def _GetTestData(cls): ids = [cros_patch.MakeChangeId() for _ in xrange(3)] changes = [cls._GetCrosInternalPatch(GetTestJson(ids[0]))] non_os = [cls._GetCrosPatch(GetTestJson(ids[1]))] conflicting = [cls._GetCrosInternalPatch(GetTestJson(ids[2]))] conflicting = [cros_patch.PatchException(x)for x in conflicting] pool = validation_pool.ValidationPool( constants.PUBLIC_OVERLAYS, '/fake/pathway', 1, 'testing', True, True, changes=changes, non_os_changes=non_os, conflicting_changes=conflicting) return pickle.dumps([pool, changes, non_os, conflicting]) @staticmethod def _CheckTestData(data): results = pickle.loads(data) pool, changes, non_os, conflicting = results def _f(source, value, getter=lambda x:x): assert len(source) == len(value) for s_item, v_item in zip(source, value): assert getter(s_item).id == getter(v_item).id assert getter(s_item).remote == getter(v_item).remote _f(pool.changes, changes) _f(pool.non_manifest_changes, non_os) _f(pool.changes_that_failed_to_apply_earlier, conflicting, getter=lambda s:getattr(s, 'patch', s)) return '' class TestFindSuspects(base): """Tests validation_pool.ValidationPool._FindSuspects""" def setUp(self): overlay = 'chromiumos/overlays/chromiumos-overlay' self.overlay_patch = self.GetPatches(project=overlay) self.power_manager = 'chromiumos/platform/power_manager' self.power_manager_pkg = 'chromeos-base/power_manager' self.power_manager_patch = self.GetPatches(project=self.power_manager) self.kernel = 'chromiumos/third_party/kernel' self.kernel_pkg = 'sys-kernel/chromeos-kernel' self.kernel_patch = self.GetPatches(project=self.kernel) self.secret = 'chromeos/secret' self.secret_patch = self.GetPatches(project=self.secret, remote=constants.INTERNAL_REMOTE) @staticmethod def _GetBuildFailure(pkg): """Create a PackageBuildFailure for the specified |pkg|. Args: pkg: Package that failed to build. """ ex = cros_build_lib.RunCommandError('foo', cros_build_lib.CommandResult()) return results_lib.PackageBuildFailure(ex,
+= area.sum()*0 continue bbox_gt = gt_bboxes[i] cls_score = flatten_cls_scores1[i, pos_inds, labels[pos_inds] - 1].sigmoid().detach() cls_score = cls_score[area>1.0] pos_inds = pos_inds[area > 1.0] ious = bbox_overlaps(bbox_gt[idx_gt]/2, bbox_dt, is_aligned=True) with torch.no_grad(): weighting = cls_score * ious weighting = weighting/(torch.sum(weighting)+0.0001)*len(weighting) gt_mask = F.interpolate(gt_masks[i].unsqueeze(0), scale_factor=0.5, mode='bilinear', align_corners=False).squeeze(0) shape = np.minimum(feat_masks[i].shape, gt_mask.shape) gt_mask_new = gt_mask.new_zeros(gt_mask.shape[0], mask_h, mask_w) gt_mask_new[:gt_mask.shape[0], :shape[1], :shape[2]] = gt_mask[:gt_mask.shape[0], :shape[1], :shape[2]] gt_mask_new = gt_mask_new.gt(0.5).float() gt_mask_new = torch.index_select(gt_mask_new,0,idx_gt).permute(1, 2, 0).contiguous() #######spp########################### img_mask1 = img_mask.permute(1,2,0) pos_masks00 = torch.sigmoid(img_mask1 @ cof_pred[:, 0:32].t()) pos_masks01 = torch.sigmoid(img_mask1 @ cof_pred[:, 32:64].t()) pos_masks10 = torch.sigmoid(img_mask1 @ cof_pred[:, 64:96].t()) pos_masks11 = torch.sigmoid(img_mask1 @ cof_pred[:, 96:128].t()) pred_masks = torch.stack([pos_masks00, pos_masks01, pos_masks10, pos_masks11], dim=0) pred_masks = self.crop_cuda(pred_masks, bbox_dt) gt_mask_crop = self.crop_gt_cuda(gt_mask_new, bbox_dt) # pred_masks, gt_mask_crop = crop_split(pos_masks00, pos_masks01, pos_masks10, pos_masks11, bbox_dt, # gt_mask_new) pre_loss = F.binary_cross_entropy(pred_masks, gt_mask_crop, reduction='none') pos_get_csize = center_size(bbox_dt) gt_box_width = pos_get_csize[:, 2] gt_box_height = pos_get_csize[:, 3] pre_loss = pre_loss.sum(dim=(0, 1)) / gt_box_width / gt_box_height / pos_get_csize.shape[0] loss_mask += torch.sum(pre_loss*weighting.detach()) if self.rescoring_flag: pos_labels = labels[pos_inds] - 1 input_iou = pred_masks.detach().unsqueeze(0).permute(3, 0, 1, 2) pred_iou = self.convs_scoring(input_iou) pred_iou = self.relu(self.mask_scoring(pred_iou)) pred_iou = F.max_pool2d(pred_iou, kernel_size=pred_iou.size()[2:]).squeeze(-1).squeeze(-1) pred_iou = pred_iou[range(pred_iou.size(0)), pos_labels] with torch.no_grad(): mask_pred = (pred_masks > 0.4).float() mask_pred_areas = mask_pred.sum((0, 1)) overlap_areas = (mask_pred * gt_mask_new).sum((0, 1)) gt_full_areas = gt_mask_new.sum((0, 1)) iou_targets = overlap_areas / (mask_pred_areas + gt_full_areas - overlap_areas + 0.1) iou_weights = ((iou_targets > 0.1) & (iou_targets <= 1.0) & (gt_full_areas >= 10 * 10)).float() loss_iou += self.loss_iou(pred_iou.view(-1, 1), iou_targets.view(-1, 1), iou_weights.view(-1, 1)) num_iou += torch.sum(iou_weights.detach()) loss_mask = loss_mask/num_imgs if self.rescoring_flag: loss_iou = loss_iou * 10 / num_iou.detach() return dict( loss_cls=loss_cls, loss_bbox=loss_bbox, loss_centerness=loss_centerness, loss_mask=loss_mask, loss_iou=loss_iou) else: return dict( loss_cls=loss_cls, loss_bbox=loss_bbox, loss_centerness=loss_centerness, loss_mask=loss_mask) @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'centernesses')) def get_bboxes(self, cls_scores, bbox_preds, centernesses, cof_preds, feat_masks, img_metas, cfg, rescale=None): assert len(cls_scores) == len(bbox_preds) num_levels = len(cls_scores) featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] mlvl_points, mlvl_strides = self.get_points(featmap_sizes, bbox_preds[0].dtype, bbox_preds[0].device) result_list = [] for img_id in range(len(img_metas)): cls_score_list = [ cls_scores[i][img_id].detach() for i in range(num_levels) ] bbox_pred_list = [ bbox_preds[i][img_id].detach() for i in range(num_levels) ] centerness_pred_list = [ centernesses[i][img_id].detach() for i in range(num_levels) ] cof_pred_list = [ cof_preds[i][img_id].detach() for i in range(num_levels) ] feat_mask_list = feat_masks[img_id] img_shape = img_metas[img_id]['img_shape'] ori_shape = img_metas[img_id]['ori_shape'] scale_factor = img_metas[img_id]['scale_factor'] det_bboxes = self.get_bboxes_single(cls_score_list, bbox_pred_list, centerness_pred_list, cof_pred_list, feat_mask_list, mlvl_points, img_shape, ori_shape, scale_factor, cfg, rescale) result_list.append(det_bboxes) return result_list def get_bboxes_single(self, cls_scores, bbox_preds, centernesses, cof_preds, feat_mask, mlvl_points, img_shape, ori_shape, scale_factor, cfg, rescale=False): assert len(cls_scores) == len(bbox_preds) == len(mlvl_points) mlvl_bboxes = [] mlvl_scores = [] mlvl_centerness = [] mlvl_cofs = [] for cls_score, bbox_pred, cof_pred, centerness, points in zip( cls_scores, bbox_preds, cof_preds, centernesses, mlvl_points): assert cls_score.size()[-2:] == bbox_pred.size()[-2:] scores = cls_score.permute(1, 2, 0).reshape( -1, self.cls_out_channels).sigmoid() centerness = centerness.permute(1, 2, 0).reshape(-1).sigmoid() bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4) cof_pred = cof_pred.permute(1,2,0).reshape(-1,32*4) nms_pre = cfg.get('nms_pre', -1) if nms_pre > 0 and scores.shape[0] > nms_pre: max_scores, _ = (scores * centerness[:, None]).max(dim=1) _, topk_inds = max_scores.topk(nms_pre) points = points[topk_inds, :] bbox_pred = bbox_pred[topk_inds, :] cof_pred = cof_pred[topk_inds, :] scores = scores[topk_inds, :] centerness = centerness[topk_inds] bboxes = distance2bbox(points, bbox_pred, max_shape=img_shape) mlvl_cofs.append(cof_pred) mlvl_bboxes.append(bboxes) mlvl_scores.append(scores) mlvl_centerness.append(centerness) mlvl_bboxes = torch.cat(mlvl_bboxes) mlvl_cofs = torch.cat(mlvl_cofs) if rescale: mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor) mlvl_scores = torch.cat(mlvl_scores) padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1) mlvl_scores = torch.cat([padding, mlvl_scores], dim=1) mlvl_centerness = torch.cat(mlvl_centerness) if self.ssd_flag is False: det_bboxes, det_labels, idxs_keep = multiclass_nms_idx( mlvl_bboxes, mlvl_scores, cfg.score_thr, cfg.nms, cfg.max_per_img, score_factors=mlvl_centerness) else: mlvl_scores = mlvl_scores*mlvl_centerness.view(-1,1) det_bboxes, det_labels, det_cofs = self.fast_nms(mlvl_bboxes, mlvl_scores[:, 1:].transpose(1, 0).contiguous(), mlvl_cofs, iou_threshold=cfg.nms.iou_thr, score_thr=cfg.score_thr) cls_segms = [[] for _ in range(self.num_classes - 1)] mask_scores = [[] for _ in range(self.num_classes - 1)] if det_bboxes.shape[0]>0: scale = 2 if self.ssd_flag is False: det_cofs = mlvl_cofs[idxs_keep] #####spp######################## img_mask1 = feat_mask.permute(1,2,0) pos_masks00 = torch.sigmoid(img_mask1 @ det_cofs[:, 0:32].t()) pos_masks01 = torch.sigmoid(img_mask1 @ det_cofs[:, 32:64].t()) pos_masks10 = torch.sigmoid(img_mask1 @ det_cofs[:, 64:96].t()) pos_masks11 = torch.sigmoid(img_mask1 @ det_cofs[:, 96:128].t()) pos_masks = torch.stack([pos_masks00,pos_masks01,pos_masks10,pos_masks11],dim=0) pos_masks = self.crop_cuda(pos_masks, det_bboxes[:,:4] * det_bboxes.new_tensor(scale_factor) / scale) # pos_masks = crop_split(pos_masks00, pos_masks01, pos_masks10, pos_masks11, # det_bboxes * det_bboxes.new_tensor(scale_factor) / scale) pos_masks = pos_masks.permute(2, 0, 1) # masks = F.interpolate(pos_masks.unsqueeze(0), scale_factor=scale/scale_factor, mode='bilinear', align_corners=False).squeeze(0) if self.ssd_flag: masks = F.interpolate(pos_masks.unsqueeze(0), scale_factor=scale / scale_factor[3:1:-1], mode='bilinear', align_corners=False).squeeze(0) else: masks = F.interpolate(pos_masks.unsqueeze(0), scale_factor=scale / scale_factor, mode='bilinear', align_corners=False).squeeze(0) masks.gt_(0.4) if self.rescoring_flag: pred_iou = pos_masks.unsqueeze(1) pred_iou = self.convs_scoring(pred_iou) pred_iou = self.relu(self.mask_scoring(pred_iou)) pred_iou = F.max_pool2d(pred_iou, kernel_size=pred_iou.size()[2:]).squeeze(-1).squeeze(-1) pred_iou = pred_iou[range(pred_iou.size(0)), det_labels].squeeze() mask_scores = pred_iou*det_bboxes[:, -1] mask_scores = mask_scores.cpu().numpy() mask_scores = [mask_scores[det_labels.cpu().numpy() == i] for i in range(self.num_classes - 1)] for i in range(det_bboxes.shape[0]): label = det_labels[i] mask = masks[i].cpu().numpy() im_mask = np.zeros((ori_shape[0], ori_shape[1]), dtype=np.uint8) shape = np.minimum(mask.shape, ori_shape[0:2]) im_mask[:shape[0],:shape[1]] = mask[:shape[0],:shape[1]] rle = mask_util.encode( np.array(im_mask[:, :, np.newaxis], order='F'))[0] cls_segms[label].append(rle) if self.rescoring_flag: return det_bboxes, det_labels, (cls_segms, mask_scores) else: return det_bboxes, det_labels, cls_segms def get_points(self, featmap_sizes, dtype, device): """Get points according to feature map sizes. Args: featmap_sizes (list[tuple]): Multi-level feature map sizes. dtype (torch.dtype): Type of points. device (torch.device): Device of points. Returns: tuple: points of each image. """ mlvl_points = [] mlvl_strides = [] for i in range(len(featmap_sizes)): points, strides = self.get_points_single(featmap_sizes[i], self.strides[i], dtype, device) mlvl_points.append(points) mlvl_strides.append(strides) return mlvl_points, mlvl_strides def get_points_single(self, featmap_size, stride, dtype, device): h, w = featmap_size x_range = torch.arange( 0, w * stride, stride, dtype=dtype, device=device) y_range = torch.arange( 0, h * stride, stride, dtype=dtype, device=device) y, x = torch.meshgrid(y_range, x_range) points = torch.stack( (x.reshape(-1), y.reshape(-1)), dim=-1) + stride // 2 strides = points[:,0]*0+stride return points, strides def center_target(self, gt_bboxes_raw, gt_masks_raw, featmap_size): stride = 8 h, w = featmap_size x_range = torch.arange(0, w, 1, dtype=gt_bboxes_raw[0].dtype, device=gt_bboxes_raw[0].device) y_range = torch.arange(0, h, 1, dtype=gt_bboxes_raw[0].dtype, device=gt_bboxes_raw[0].device) y, x = torch.meshgrid(y_range, x_range) center_targets = [] labels = [] for n in range(len(gt_bboxes_raw)): center_target = gt_bboxes_raw[n].new(featmap_size[0], featmap_size[1],4) + 0 label = gt_bboxes_raw[n].new_zeros(featmap_size) gt_bboxes = gt_bboxes_raw[n]/stride gt_masks = gt_masks_raw[n] mask_size = gt_masks.shape pos_left = torch.floor(gt_bboxes[:, 0]).long().clamp(0, gt_masks.shape[2]//stride - 1) pos_right = torch.ceil(gt_bboxes[:, 2]).long().clamp(0, gt_masks.shape[2]//stride - 1) pos_top = torch.floor(gt_bboxes[:, 1]).long().clamp(0, gt_masks.shape[1]//stride - 1) pos_down = torch.ceil(gt_bboxes[:, 3]).long().clamp(0, gt_masks.shape[1]//stride - 1) for px1, py1, px2, py2, gt_mask, (x1, y1, x2, y2) in \ zip(pos_left, pos_top, pos_right, pos_down, gt_masks, gt_bboxes): gt_mask = mmcv.imrescale(gt_mask, scale=1. / stride) gt_mask = torch.Tensor(gt_mask) label[py1:py2 + 1, px1:px2 + 1] = gt_mask[py1:py2 + 1, px1:px2 + 1] center_target[py1:py2 + 1, px1:px2 + 1, 0] = x1 / w center_target[py1:py2 + 1, px1:px2 + 1, 1] = y1 / h center_target[py1:py2 + 1, px1:px2 + 1, 2] = x2 / w center_target[py1:py2 + 1, px1:px2 + 1, 3] = y2 / h center_targets.append(center_target.reshape(-1, 4)) labels.append(label.reshape(-1, 1)) labels = torch.cat(labels) center_targets = torch.cat(center_targets) return labels, center_targets def fcos_target(self, points, gt_bboxes_list, gt_labels_list): assert len(points) == len(self.regress_ranges) num_levels = len(points) # expand regress ranges to align with points expanded_regress_ranges = [ points[i].new_tensor(self.regress_ranges[i])[None].expand_as( points[i]) for i in range(num_levels) ] # concat all levels points and regress ranges concat_regress_ranges = torch.cat(expanded_regress_ranges, dim=0) concat_points = torch.cat(points, dim=0) # the number of points per img, per lvl num_points = [center.size(0) for center in points] # get labels and bbox_targets of each image labels_list, bbox_targets_list, gt_inds = multi_apply( self.fcos_target_single, gt_bboxes_list, gt_labels_list, points=concat_points, regress_ranges=concat_regress_ranges, num_points_per_lvl=num_points) # split to per img, per level labels_list = [labels.split(num_points, 0) for labels in labels_list] bbox_targets_list = [ bbox_targets.split(num_points, 0) for bbox_targets in bbox_targets_list ] # concat per level image concat_lvl_labels = [] concat_lvl_bbox_targets = [] for i in range(num_levels): concat_lvl_labels.append( torch.cat([labels[i] for labels in labels_list])) concat_lvl_bbox_targets.append( torch.cat( [bbox_targets[i] for bbox_targets in bbox_targets_list])) return concat_lvl_labels, concat_lvl_bbox_targets, labels_list, bbox_targets_list, gt_inds def fcos_target_single(self, gt_bboxes, gt_labels, points, regress_ranges, num_points_per_lvl): num_points = points.size(0) num_gts = gt_labels.size(0) if num_gts == 0: return gt_labels.new_zeros(num_points), \ gt_bboxes.new_zeros((num_points, 4)) areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0] + 1) * ( gt_bboxes[:, 3] - gt_bboxes[:, 1] + 1) # TODO: figure out why these two are different # areas = areas[None].expand(num_points, num_gts) areas = areas[None].repeat(num_points, 1) regress_ranges = regress_ranges[:, None, :].expand( num_points, num_gts, 2) gt_bboxes = gt_bboxes[None].expand(num_points, num_gts, 4) xs, ys = points[:, 0], points[:, 1] xs = xs[:, None].expand(num_points, num_gts) ys = ys[:, None].expand(num_points, num_gts) left = xs - gt_bboxes[..., 0] right = gt_bboxes[..., 2] - xs top = ys - gt_bboxes[..., 1] bottom = gt_bboxes[..., 3] - ys bbox_targets =
<reponame>mir-group/CiderPress from pyscf import scf, dft, gto, ao2mo, df, lib, cc from pyscf.dft.numint import eval_ao, eval_rho from pyscf.dft.gen_grid import Grids from pyscf.pbc.tools.pyscf_ase import atoms_from_ase import numpy as np import logging CALC_TYPES = { 'RHF' : scf.hf.RHF, 'UHF' : scf.uhf.UHF, 'RKS' : dft.rks.RKS, 'UKS' : dft.uks.UKS, 'CCSD' : cc.ccsd.CCSD, 'UCCSD' : cc.uccsd.UCCSD } SCF_TYPES = { 'RHF' : scf.hf.RHF, 'ROHF' : scf.rohf.ROHF, 'UHF' : scf.uhf.UHF, 'RKS' : dft.RKS, 'UKS' : dft.UKS } ######################################################## # BASIC HELPER ROUTINES FOR RUNNING PYSCF CALCULATIONS # ######################################################## def mol_from_ase(atoms, basis, spin=0, charge=0): """ Get a pyscf gto.Mole object from an ase Atoms object (atoms). Assign it the atomic basis set (basis). Return the Mole object. """ mol = gto.Mole() mol.atom = atoms_from_ase(atoms) mol.basis = basis mol.spin = spin mol.charge = charge mol.build() return mol def setup_rks_calc(mol, xc, grid_level=3, vv10=False, **kwargs): """ Set up a PySCF RKS calculation with sensible defaults. """ rks = dft.RKS(mol) rks.xc = xc rks.grids.level = grid_level rks.grids.build() logging.warning('xc: {}, grid level: {}'.format(xc, grid_level)) if vv10: logging.warning('Using VV10 in UKS setup') rks.nlc = 'VV10' if np.array([gto.charge(mol.atom_symbol(i)) <= 18 for i in range(mol.natm)]).all(): rks.nlcgrids.prune = dft.gen_grid.sg1_prune else: rks.nlcgrids.prune = None rks.nlcgrids.level = 1 return rks def setup_uks_calc(mol, xc, grid_level=3, vv10=False, **kwargs): """ Set up a PySCF UKS calculation with sensible defaults. """ uks = dft.UKS(mol) uks.xc = xc uks.grids.level = grid_level uks.grids.build() logging.warning('xc: {}, grid level: {}'.format(xc, grid_level)) if vv10: logging.warning('Using VV10 in UKS setup') uks.nlc = 'VV10' if np.array([gto.charge(mol.atom_symbol(i)) <= 18 for i in range(mol.natm)]).all(): uks.nlcgrids.prune = dft.gen_grid.sg1_prune else: uks.nlcgrids.prune = None uks.nlcgrids.level = 1 return uks def run_scf(mol, calc_type, functional=None, remove_ld=False, dm0=None): """ Run an SCF calculation on a gto.Mole object (Mole) of a given calc_type in SCF_TYPES. Return the calc object. Note, if RKS or UKS is the calc_type, default functional is used. """ if not calc_type in SCF_TYPES: raise ValueError('Calculation type must be in {}'.format(list(SCF_TYPES.keys()))) calc = SCF_TYPES[calc_type](mol) if remove_ld: logging.info("Removing linear dependence from overlap matrix") calc = scf.addons.remove_linear_dep_(calc) if 'KS' in calc_type and functional is not None: calc.xc = functional if 'MN' in functional: logging.info('MN grid level 4') calc.grids.level = 4 if functional == 'wB97M_V': logging.info('Using Specialized wB97M-V params') calc.nlc = 'VV10' calc.grids.prune = None calc.grids.level = 4 if np.array([gto.charge(mol.atom_symbol(i)) <= 18 for i in range(mol.natm)]).all(): calc.nlcgrids.prune = dft.gen_grid.sg1_prune else: calc.nlcgrids.prune = None calc.nlcgrids.level = 1 calc.kernel(dm0 = dm0) return calc def run_cc(hf): """ Run and return a restricted CCSD calculation on mol, with HF molecular orbital coefficients in the RHF object hf. """ if type(hf) == SCF_TYPES['RHF']: calc_cls = cc.CCSD elif type(hf) == SCF_TYPES['UHF']: calc_cls = cc.UCCSD else: raise NotImplementedError('HF type {} not supported'.format(type(hf)) +\ '\nSupported Types: {}'.format(SCF_TYPES['RHF'], SCF_TYPES['UHF'])) calc = calc_cls(hf) calc.kernel() return calc ############################################# # HELPER FUNCTIONS FOR THE analyzers MODULE # ############################################# def get_grid(mol, level=3): """ Get the real-space grid of a molecule for numerical integration. """ grid = Grids(mol) grid.level = level grid.kernel() return grid def get_ha_total(rdm1, eeint): return np.sum(np.sum(eeint * rdm1, axis=(2,3)) * rdm1) def get_hf_coul_ex_total(mol, hf): rdm1 = hf.make_rdm1() jmat, kmat = hf.get_jk(mol, rdm1) return np.sum(jmat * rdm1) / 2, -np.sum(kmat * rdm1) / 4 def get_hf_coul_ex_total2(rdm1, jmat, kmat): if len(rdm1.shape) == 2: return np.sum(jmat * rdm1) / 2, -np.sum(kmat * rdm1) / 4 else: return np.sum(jmat * np.sum(rdm1, axis=0)) / 2, -np.sum(kmat * rdm1) / 2 def get_hf_coul_ex_total_unrestricted(mol, hf): rdm1 = hf.make_rdm1() jmat, kmat = hf.get_jk(mol, rdm1) return np.sum(jmat * np.sum(rdm1, axis=0)) / 2, -np.sum(kmat * rdm1) / 2 def transform_basis_1e(mat, coeff): """ Transforms the 1-electron matrix mat into the basis described by coeff (with the basis vectors being the columns). To transform AO operator to MO operator, pass mo_coeff. To transform MO operator to AO operator, pass inv(mo_coeff). To transform AO density matrix to MO density matrix, pass inv(transpose(mo_coeff)). To transform MO density matrix to AO density matrix, pass transpose(mo_coeff). """ if len(coeff.shape) == 2: return np.matmul(coeff.transpose(), np.matmul(mat, coeff)) else: if len(coeff) != 2 or len(mat) != 2: raise ValueError('Need two sets of orbitals, two mats for unrestricted case.') part0 = np.matmul(coeff[0].transpose(), np.matmul(mat[0], coeff[0])) part1 = np.matmul(coeff[1].transpose(), np.matmul(mat[1], coeff[1])) return np.array([part0, part1]) def make_rdm2_from_rdm1(rdm1): """ For an RHF calculation, return the 2-RDM from a given 1-RDM. Given D2(ijkl)=<psi| i+ k+ l j |psi>, and D(ij)=<psi| i+ j |psi>, then D2(ijkl) = D(ij) * D(kl) - 0.5 * D(lj) * D(ki) """ rdm1copy = rdm1.copy() part1 = np.einsum('ij,kl->ijkl', rdm1, rdm1copy) part2 = np.einsum('lj,ki->ijkl', rdm1, rdm1copy) return part1 - 0.5 * part2 def make_rdm2_from_rdm1_unrestricted(rdm1): """ For a UHF calculation, return the 2-RDM from a given 1-RDM. Given D2(ijkl)=<psi| i+ k+ l j |psi>, and D(ij)=<psi| i+ j |psi>, then: For like spin, D2(ijkl) = D(ij) * D(kl) - D(lj) * D(ki). For opposite spin, D2(ijkl) = D(ij) * D(kl) Return D(uu,ijkl), D(ud,ijkl), D(dd,ijkl) """ spinparts = [] rdm1copy = rdm1.copy() for s in [0,1]: part1 = np.einsum('ij,kl->ijkl', rdm1[s], rdm1copy[s]) part2 = np.einsum('lj,ki->ijkl', rdm1[s], rdm1copy[s]) spinparts.append(part1 - part2) mixspinpart = np.einsum('ij,kl->ijkl', rdm1[0], rdm1copy[1]) return np.array([spinparts[0], mixspinpart, spinparts[1]]) def get_ao_vals(mol, points): return eval_ao(mol, points) def get_mgga_data(mol, grid, rdm1): """ Get atomic orbital and density data. See eval_ao and eval_rho docs for details. Briefly, returns 0-3 derivatives of the atomic orbitals in ao_data; and the density, first derivatives of density, Laplacian of density, and kinetic energy density in rho_data. """ ao_data = eval_ao(mol, grid.coords, deriv=3) if len(rdm1.shape) == 2: rho_data = eval_rho(mol, ao_data, rdm1, xctype='mGGA') else: part0 = eval_rho(mol, ao_data, rdm1[0], xctype='mGGA') part1 = eval_rho(mol, ao_data, rdm1[1], xctype='mGGA') rho_data = np.array([part0, part1]) return ao_data, rho_data def get_tau_and_grad_helper(mol, grid, rdm1, ao_data): """ Passes the derivatives of the atomic orbitals to eval_rho to get the kinetic energy density and its derivatives. Not sure if this works. """ # 0 1 2 3 4 5 6 7 8 9 # 0 x y z xx xy xz yy yz zz aox = ao_data[[1, 4, 5, 6]] aoy = ao_data[[2, 5, 7, 8]] aoz = ao_data[[3, 6, 8, 9]] tau = eval_rho(mol, aox, rdm1, xctype='GGA') tau += eval_rho(mol, aoy, rdm1, xctype='GGA') tau += eval_rho(mol, aoz, rdm1, xctype='GGA') return 0.5 * tau def get_tau_and_grad(mol, grid, rdm1, ao_data): if len(rdm1.shape) == 2: return get_tau_and_grad_helper(mol, grid, rdm1, ao_data) else: return np.array([get_tau_and_grad_helper(mol, grid, rdm1[0], ao_data),\ get_tau_and_grad_helper(mol, grid, rdm1[1], ao_data)]) def get_rho_second_deriv_helper(mol, grid, dm, ao): from pyscf.dft.numint import _contract_rho, _dot_ao_dm from pyscf.dft.gen_grid import make_mask, BLKSIZE nao = mol.nao_nr() N = grid.weights.shape[0] non0tab = np.ones(((N+BLKSIZE-1)//BLKSIZE, mol.nbas), dtype=np.uint8) shls_slice = (0, mol.nbas) ao_loc = mol.ao_loc_nr() c0 = _dot_ao_dm(mol, ao[0], dm, non0tab, shls_slice, ao_loc) c1 = np.zeros((3, N, nao)) # 0 1 2 3 4 5 6 7 8 9 # 0 x y z xx xy xz yy yz zz # - - - - 0 1 2 3 4 5 # - - - - 11 12 13 22 23 33 ddrho = np.zeros((6, N)) alphas = [0, 0, 0, 1, 1, 2] betas = [0, 1, 2, 1, 2, 2] for i in range(3): c1[i] = _dot_ao_dm(mol, ao[i+1], dm.T, non0tab, shls_slice, ao_loc) for i in range(6): term1 = _contract_rho(c0, ao[i + 4]) term2 = _contract_rho(c1[alphas[i]], ao[betas[i]+1]) total = term1 + term2 ddrho[i] = total + total.conj() return ddrho def get_rho_second_deriv(mol, grid, rdm1, ao_data): if len(rdm1.shape) == 2: return get_rho_second_deriv_helper(mol, grid, rdm1, ao_data) else: return np.array([get_rho_second_deriv_helper(mol, grid, rdm1[0], ao_data),\ get_rho_second_deriv_helper(mol, grid, rdm1[1], ao_data)]) def get_vele_mat(mol, points): """ Return shape (N, nao, nao) """ auxmol = gto.fakemol_for_charges(points) vele_mat = df.incore.aux_e2(mol, auxmol) return np.ascontiguousarray(np.transpose(vele_mat, axes=(2,0,1))) def get_mo_vals(ao_vals, mo_coeff): """ Args: ao_vals shape (N,nao) mo_coeff shape (nao,nao) Returns shape (N,nao) """ return np.matmul(ao_vals, mo_coeff) def get_mo_vele_mat(vele_mat, mo_coeff): """ Convert the return value of get_vele_mat to the MO basis. """ if len(mo_coeff.shape) == 2: return np.matmul(mo_coeff.transpose(), np.matmul(vele_mat, mo_coeff)) else: tmp = np.einsum('puv,svj->spuj', vele_mat, mo_coeff) return np.einsum('sui,spuj->spij', mo_coeff, tmp) def get_vele_mat_chunks(mol, points, num_chunks, orb_vals, mo_coeff=None): """ Generate chunks of vele_mat on the fly to reduce memory load. """ num_pts = points.shape[0] for i in range(num_chunks): start = (i * num_pts) // num_chunks end = ((i+1) * num_pts) // num_chunks auxmol = gto.fakemol_for_charges(points[start:end]) orb_vals_chunk = orb_vals[start:end] vele_mat_chunk = df.incore.aux_e2(mol, auxmol) vele_mat_chunk = np.ascontiguousarray(np.transpose( vele_mat_chunk, axes=(2,0,1))) if mo_coeff is not None: vele_mat_chunk = get_mo_vele_mat(vele_mat_chunk, mo_coeff) yield vele_mat_chunk, orb_vals_chunk def get_vele_mat_generator(mol, points,
<filename>baguette/app.py import inspect import ssl import typing from . import rendering from .config import Config from .headers import make_headers from .httpexceptions import BadRequest from .middleware import Middleware from .middlewares import DefaultHeadersMiddleware, ErrorMiddleware from .request import Request from .responses import FileResponse, Response, make_response from .router import Route, Router from .types import Handler, HeadersType, Receive, Result, Scope, Send from .view import View class Baguette: """Implements an ASGI application. This class is the main class for any application written with the baguette framework. Keyword Arguments ----------------- config : :class:`Config` Config to use for the application. This replaces the other keyword arguments except ``middlewares``. Default: see :class:`Config` defaults. debug : :class:`bool` Whether to run the application in debug mode. Default: ``False``. default_headers : :class:`list` of ``(str, str)`` tuples, \ :class:`dict` or :class:`Headers` Default headers to include in every response. Default: No headers. static_url_path : :class:`str` URL path for the static file handler. Default: ``"static"``. static_directory : :class:`str` Path to the folder containing static files. Default: ``"static"``. templates_directory : :class:`str` Path to the folder containing the HTML templates. Default: ``"templates"``. error_response_type : :class:`str` Type of response to use in case of error. One of: ``"plain"``, ``"json"``, ``"html"``. Default: ``"plain"``. error_include_description : :class:`bool` Whether to include the error description in the response in case of error. If debug is ``True``, this will also be ``True``. Default: ``True``. middlewares : :class:`list` of middleware classes The middlewares to add to the application. Default: ``[]``. Attributes ---------- config : :class:`Config` The configuration of the app. router : :class:`~baguette.router.Router` The URL router of the app. renderer : :class:`~baguette.rendering.Renderer` Class that renders the templates. debug : :class:`bool` Whether the application is running in debug mode. default_headers : :class:`Headers` Default headers included in every response. static_url_path : :class:`str` URL path for the static file handler. static_directory : :class:`str` Path to the folder containing static files. templates_directory : :class:`str` Path to the folder containing the HTML templates. error_response_type : :class:`str` Type of response to use in case of error. One of: ``"plain"``, ``"json"``, ``"html"`` error_include_description : :class:`bool` Whether the error description is included in the response in case of error. If debug is ``True``, this will also be ``True``. middlewares : :class:`list` of middlewares The middlewares of the application. """ def __init__( self, *, config: Config = None, debug: bool = False, default_headers: HeadersType = None, static_url_path: str = "static", static_directory: str = "static", templates_directory: str = "static", error_response_type: str = "plain", error_include_description: bool = True, middlewares: typing.List[typing.Type[Middleware]] = [], ): self.router = Router() self.config = config or Config( debug=debug, default_headers=default_headers, static_url_path=static_url_path, static_directory=static_directory, templates_directory=templates_directory, error_response_type=error_response_type, error_include_description=error_include_description, ) self.renderer = rendering.init(self.config.templates_directory) self.add_route( path=f"{self.config.static_url_path}/<filename:path>", handler=self.handle_static_file, name="static", ) self.build_middlewares( [ErrorMiddleware, *middlewares, DefaultHeadersMiddleware] ) def __getattr__(self, name): return getattr(self.config, name) # -------------------------------------------------------------------------- # ASGI stuff async def __call__(self, scope: Scope, receive: Receive, send: Send): """Entry point of the ASGI application.""" asgi_handlers = { "http": self._handle_http, "lifespan": self._handle_lifespan, } asgi_handler = asgi_handlers.get(scope["type"]) if asgi_handler is None: raise NotImplementedError( "{0!r} scope is not supported".format(scope["type"]) ) await asgi_handler(scope, receive, send) async def _handle_http(self, scope: Scope, receive: Receive, send: Send): """Handles rquests where ``scope["type"] == "http"``.""" request = Request(self, scope, receive) response = await self.handle_request(request) await response._send(send) async def _handle_lifespan( self, scope: Scope, receive: Receive, send: Send ): """Handles rquests where ``scope["type"] == "lifespan"``.""" while True: message = await receive() if message["type"] == "lifespan.startup": try: await self.startup() except Exception as e: await send( { "type": "lifespan.startup.failed", "message": str(e), } ) else: await send({"type": "lifespan.startup.complete"}) elif message["type"] == "lifespan.shutdown": try: await self.shutdown() except Exception as e: await send( { "type": "lifespan.shutdown.failed", "message": str(e), } ) else: await send({"type": "lifespan.shutdown.complete"}) return # -------------------------------------------------------------------------- # Lifespan async def startup(self): """Runs on application startup. This will be executed when you start the application. For example, you can connect to a database. .. versionadded:: 0.1.0 """ async def shutdown(self): """Runs on application shutdown. This will be executed when you stop the application. For example, you can disconnect from a database. .. versionadded:: 0.1.0 """ # -------------------------------------------------------------------------- # HTTP async def handle_request(self, request: Request) -> Response: """Handles a request and returns a response. Arguments --------- request: :class:`Request` The request to handle. Returns ------- :class:`Response` A response. """ return await self.middlewares[0](request) async def dispatch(self, request: Request) -> Response: """Dispatches a request to the correct handler and return its result. Arguments --------- request: :class:`Request` The request to handle. Returns ------- :class:`Response` The handler response. .. versionchanged:: 0.3.0 The return value isn't the handler return value anymore, but instead a :class:`Response`. """ route: Route = self.router.get(request.path, request.method) handler: Handler = route.handler try: kwargs = route.convert(request.path) except ValueError: raise BadRequest(description="Failed to convert URL parameters") kwargs["request"] = request if not route.handler_is_class: kwargs = { k: v for k, v in kwargs.items() if k in route.handler_kwargs } result: Result = await handler(**kwargs) return make_response(result) # -------------------------------------------------------------------------- # Routes def add_route( self, path: str, handler: Handler, methods: typing.List[str] = None, name: str = None, defaults: dict = None, ) -> Route: """Adds a route to the application router. Arguments --------- handler: Async callable An asynchronous callable (function or class) that can handle a request. path: :class:`str` The path that the handler will handle. Can be dynamic, see :ref:`dynamic_routing`. methods: :class:`list` of :class:`str` Allowed methods for this path. Default: ``["GET", "HEAD"]``. name: :class:`str` Name of the route. Default: handler function name. defaults: Optional :class:`dict` Default arguments to give to your handler. Default: ``{}``. Returns ------- :class:`~baguette.router.Route` The created route. """ return self.router.add_route( path=path, name=name, handler=handler, methods=methods or ["GET", "HEAD"], defaults=defaults or {}, ) def route( self, path: str, methods: typing.List[str] = None, name: str = None, defaults: dict = None, ): """Decorator to add a handler function to the router with the given path. Arguments --------- path: :class:`str` The path that the handler will handle. Can be dynamic, see :ref:`dynamic_routing`. methods: Optional :class:`list` of :class:`str` Allowed methods for this path. Default: ``["GET", "HEAD"]``. name: Optional :class:`str` Name of the route. Default: handler function name. defaults: Optional :class:`dict` Default arguments to give to your handler. Default: ``{}``. .. versionchanged:: 0.0.3 Renamed from ``Baguette.endpoint`` to :meth:`Baguette.route` """ def decorator(func_or_class): if inspect.isclass(func_or_class) and issubclass( func_or_class, View ): handler: Handler = func_or_class(self) allowed_methods = handler.methods else: allowed_methods = methods handler: Handler = func_or_class self.add_route( path=path, name=name or func_or_class.__name__, handler=handler, methods=allowed_methods, defaults=defaults or {}, ) return func_or_class return decorator # -------------------------------------------------------------------------- # Middleware def build_middlewares( self, middlewares: typing.List[typing.Type[Middleware]] = [] ): """Builds the middleware stack from a list of middleware classes. .. note:: The first middleware in the list will be the first called on a request. .. seealso:: There are middlewares included by default. See :ref:`default_middlewares`. Arguments --------- middlewares: :class:`list` of :class:`Middleware` The middlewares to add. .. versionadded:: 0.3.0 """ # first in the list, first called self._raw_middlewares = middlewares self.middlewares: typing.List[Middleware] = [] last = self.dispatch for middleware in reversed(middlewares): last = middleware(last, self.config) self.middlewares.insert(0, last) def add_middleware( self, middleware: typing.Type[Middleware], index: int = 1 ): """Adds a middleware to the middleware stack. Arguments --------- middleware: :class:`Middleware` The middleware to add. index: Optional :class:`int` The index to add the middlware to. Default: ``1`` (second middleware, called after :class:`~baguette.middlewares.ErrorMiddleware`) .. versionadded:: 0.3.0 """ middlewares = self._raw_middlewares.copy() middlewares.insert(index, middleware) self.build_middlewares(middlewares) def remove_middleware(self, middleware: typing.Type[Middleware]): """Removes a middleware from the middleware stack. Arguments --------- middleware: :class:`Middleware` The middleware to remove. .. versionadded:: 0.3.0 """ middlewares = self._raw_middlewares.copy() middlewares.remove(middleware) self.build_middlewares(middlewares) def middleware( self, index: int = 1, ): """Decorator to add a middleware to the app. Arguments --------- index: Optional :class:`int` The index to add the middlware to. Default: ``1`` (second middleware, called after :class:`~baguette.middlewares.ErrorMiddleware`) .. versionadded:: 0.3.0 """ def decorator(func_or_class): if inspect.isclass(func_or_class): middleware: typing.Type[Middleware] = func_or_class else: class middleware(Middleware): async def __call__(self, request: Request) -> Response: return await func_or_class( self.next_middleware, request ) self.add_middleware(middleware, index) return middleware return decorator # -------------------------------------------------------------------------- # Other methods async def handle_static_file(self, filename: str) -> FileResponse: return FileResponse(self.config.static_directory, filename) def run( self, *, host: str = "127.0.0.1", port: int = 8000, uds:
software overlay method simulates the effect of hardware overlay.BLEND, specifying a hint of blend method. The blend method combines the color of the underlying pixel with the desired color producing an approximation of the transient graphics.The default value is (HARDWARE_OVERLAY, XOR, SOFTWARE_OVERLAY, BLEND).The values of this sequence are applied by Abaqus when you start a session in first to last order. The first successful value becomes the default highlight method. Not all graphics adapters support the HARDWARE_OVERLAY value and you must use the *highlightMethodHint* argument to provide an alternative.You can use a single value to set the first element of the list, or you can use a tuple with one to four unique values. Abaqus sets any remaining elements of the tuple to unique values based on the default order. dragMode A SymbolicConstant specifying which rendering is used during dynamic rotations of the view. Possible values are:FAST, specifying a rendering mode where the image is rendered in wireframe.AS_IS, specifying a rendering mode where the image is rendered as is.The default value is AS_IS.When set to *dragMode*=FAST, a wireframe outline is drawn during view changes by rotation, pan, or zoom. When *dragMode*=AS_IS, everything displayed in the window will be drawn during view changes; however, the display may lag behind the mouse movement when the model is complex especially if you are using an older or slower system. For newer systems with graphics hardware acceleration the AS_IS setting can be accommodated without significant loss of performance. antiAlias A Boolean specifying whether lines will be smoothed to reduce the jagged effect of rasterization. The default value is ON. autoFitAfterRotate A Boolean specifying whether the model is automatically resized to fit the viewport after each view rotation. The default value is OFF. polygonOffsetConstant A Float specifying the offset added when drawing the faces of a polygon. The *polygonOffsetConstant* argument affects the behavior of only the OpenGL driver. Possible values are 0.0 ≤≤ *polygonOffsetConstant* ≤≤ 100.0. The default value is platform dependent and is typically between 0.0 and 2.0. polygonOffsetSlope A Float specifying the factor that multiplies the slope of each line before the line is added to the vertexes of a polygon face. The *polygonOffsetSlope* argument affects the behavior of only the OpenGL driver. Possible values are 0.0 ≤≤ *polygonOffsetSlope* ≤≤ 100.0. The default value is platform dependent and is typically between 0.0 and 2.0. printPolygonOffsetConstant A Float specifying the offset added when drawing the faces of a polygon. *printPolygonOffsetConstant* is similar to *polygonOffsetConstant*; however, *printPolygonOffsetConstant* is used when printing and *polygonOffsetConstant* is used for display. Some systems, especially Windows, use different OpenGL drivers for printing and display, and you may have to use different offset values for each driver. printPolygonOffsetSlope A Float specifying the factor that multiplies the slope of each line before the line is added to the vertexes of a polygon face. *printPolygonOffsetSlope* is similar to *polygonOffsetSlope*; however, *printPolygonOffsetSlope* is used when printing and *polygonOffsetSlope* is used for display. Some systems, especially Windows, use different OpenGL drivers for printing and display, and you may have to use different offset values for each driver. vertexArrays A Boolean specifying how the three-dimensional vertices of the model are processed. When *vertexArrays*=OFF, each vertex of the model is processed separately. When *vertexArrays*=ON, the vertices are processed in large blocks resulting in faster display. Not all graphics adapters support this capability correctly. An indicator that the graphics adapters is not processing three-dimensional vertices correctly is the absence of graphics during rubber banding operations. For example, when dynamically dragging the radius of a circle in the Sketcher, the circle should be visible. The default value is ON. vertexArraysInDisplayLists A Boolean specifying whether the *vertexArrays* setting should temporarily be set to OFF when building a display list. The default value is ON.Some graphics adapters do not properly support using vertex arrays inside a display list. Setting *vertexArraysInDisplayLists* to OFF has a smaller impact on graphics performance than setting *vertexArrays* or *displayLists* to OFF. viewManipDisplayListThreshold An Int specifying how large a display list may be created in order to accelerate view manipulation operations. Increasing this value when viewing large models will increase the delay before a view manipulation operation begins in order to obtain improved graphics performance during the view manipulation. If set high with a large model, the delay can be many seconds. In excessive cases, graphics memory can be exceeded and the result may be an empty display list (no visible model) for the view manipulation. This setting is treated as 0 if *displayLists*=OFF. Possible values are 0 ≤≤ *viewManipDisplayListThreshold* ≤≤ 20000. The default value is 40. directRendering A Boolean specifying how Abaqus renders X11 graphics operations. When *directRendering*=OFF, the graphics are rendered through the X Server. When *directRendering*=ON, the graphics operations are sent directly to the graphics adapter producing faster displays. For maximum performance, the initial value is ON. This argument is used only when you first start Abaqus/CAE; you cannot configure *directRendering* during a session. hardwareAcceleration A Boolean specifying whether a hardware accelerated OpenGL graphics driver will be used on Windows platforms. The default value is ON.When *hardwareAcceleration*=OFF, the graphics driver uses a software implementation of OpenGL that is included with the operating system. This results in slower drawing on most systems; however, you may have to use the software implementation of OpenGL if the hardware graphics driver is incompatible with Abaqus/CAE.*hardwareAcceleration* is used only when you first start Abaqus/CAE on a Windows platform; you cannot configure *hardwareAcceleration* during a session.*hardwareAcceleration* is not used when you start Abaqus/CAE on an X-Windows platform and display to a Windows platform running Exceed or any other X-Windows server. hardwareOverlay A Boolean specifying whether hardware overlay planes will be used if available. The default value is the same value as the *hardwareOverlayAvailable* member.When *hardwareOverlayAvailable*=OFF, it will not be possible to set *hardwareOverlay* to ON and the HARDWARE_OVERLAY highlight method will not be available. If viewports display a solid color and will not display the model, it will be necessary to inhibit hardware overlay completely by setting the ABAQUS_EMULATE_OVERLAYS environment variable (to any value) before starting Abaqus/CAE.*hardwareOverlay* is used only when you first start Abaqus/CAE; you cannot configure *hardwareOverlay* during a session. textureMapping A Boolean specifying whether textures will be used to display contour plots. The default value is ON.Turning off texture mapping is necessary only if viewports will not correctly display a contour plot of your model. printTextureMapping A Boolean specifying whether textures will be used to display contour plots. The default value is ON.Turning off texture mapping for printing is necessary only if printed output does not correctly display a contour plot of your model. *printTextureMapping* is similar to *textureMapping*; however, *printTextureMapping* is used when printing and *textureMapping* is used for display. Some systems, especially Windows, use different OpenGL drivers for printing and display, and you may have to use different settings for each driver. backgroundStyle A SymbolicConstant specifying the background style to be used for all viewport windows. Possible values are SOLID and GRADIENT. The default value is SOLID.If *backgroundStyle*=SOLID, the viewport background will appear as a solid color as specified by *backgroundColor*. If *backgroundStyle*=GRADIENT, the viewport
*, as_dict: bool, ) -> Union[List[DF], Dict[Any, DF]]: ... def partition_by( self: DF, groups: Union[str, List[str]], maintain_order: bool = True, *, as_dict: bool = False, ) -> Union[List[DF], Dict[Any, DF]]: """ Split into multiple DataFrames partitioned by groups. Parameters ---------- groups Groups to partition by maintain_order Keep predictable output order. This is slower as it requires and extra sort operation. as_dict Return as dictionary Examples -------- >>> df = pl.DataFrame( ... { ... "foo": ["A", "A", "B", "B", "C"], ... "N": [1, 2, 2, 4, 2], ... "bar": ["k", "l", "m", "m", "l"], ... } ... ) >>> df.partition_by(groups="foo", maintain_order=True) [shape: (2, 3) ┌─────┬─────┬─────┐ │ foo ┆ N ┆ bar │ │ --- ┆ --- ┆ --- │ │ str ┆ i64 ┆ str │ ╞═════╪═════╪═════╡ │ A ┆ 1 ┆ k │ ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤ │ A ┆ 2 ┆ l │ └─────┴─────┴─────┘, shape: (2, 3) ┌─────┬─────┬─────┐ │ foo ┆ N ┆ bar │ │ --- ┆ --- ┆ --- │ │ str ┆ i64 ┆ str │ ╞═════╪═════╪═════╡ │ B ┆ 2 ┆ m │ ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤ │ B ┆ 4 ┆ m │ └─────┴─────┴─────┘, shape: (1, 3) ┌─────┬─────┬─────┐ │ foo ┆ N ┆ bar │ │ --- ┆ --- ┆ --- │ │ str ┆ i64 ┆ str │ ╞═════╪═════╪═════╡ │ C ┆ 2 ┆ l │ └─────┴─────┴─────┘] """ if isinstance(groups, str): groups = [groups] if as_dict: out: Dict[Any, DF] = dict() if len(groups) == 1: for _df in self._df.partition_by(groups, maintain_order): df = self._from_pydf(_df) out[df[groups][0, 0]] = df else: for _df in self._df.partition_by(groups, maintain_order): df = self._from_pydf(_df) out[df[groups].row(0)] = df return out else: return [ self._from_pydf(_df) for _df in self._df.partition_by(groups, maintain_order) ] def shift(self: DF, periods: int) -> DF: """ Shift the values by a given period and fill the parts that will be empty due to this operation with `Nones`. Parameters ---------- periods Number of places to shift (may be negative). Examples -------- >>> df = pl.DataFrame( ... { ... "foo": [1, 2, 3], ... "bar": [6, 7, 8], ... "ham": ["a", "b", "c"], ... } ... ) >>> df.shift(periods=1) shape: (3, 3) ┌──────┬──────┬──────┐ │ foo ┆ bar ┆ ham │ │ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ str │ ╞══════╪══════╪══════╡ │ null ┆ null ┆ null │ ├╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌┤ │ 1 ┆ 6 ┆ a │ ├╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌┤ │ 2 ┆ 7 ┆ b │ └──────┴──────┴──────┘ >>> df.shift(periods=-1) shape: (3, 3) ┌──────┬──────┬──────┐ │ foo ┆ bar ┆ ham │ │ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ str │ ╞══════╪══════╪══════╡ │ 2 ┆ 7 ┆ b │ ├╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌┤ │ 3 ┆ 8 ┆ c │ ├╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌┤ │ null ┆ null ┆ null │ └──────┴──────┴──────┘ """ return self._from_pydf(self._df.shift(periods)) def shift_and_fill( self: DF, periods: int, fill_value: Union[int, str, float] ) -> DF: """ Shift the values by a given period and fill the parts that will be empty due to this operation with the result of the `fill_value` expression. Parameters ---------- periods Number of places to shift (may be negative). fill_value fill None values with this value. Examples -------- >>> df = pl.DataFrame( ... { ... "foo": [1, 2, 3], ... "bar": [6, 7, 8], ... "ham": ["a", "b", "c"], ... } ... ) >>> df.shift_and_fill(periods=1, fill_value=0) shape: (3, 3) ┌─────┬─────┬─────┐ │ foo ┆ bar ┆ ham │ │ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ str │ ╞═════╪═════╪═════╡ │ 0 ┆ 0 ┆ 0 │ ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤ │ 1 ┆ 6 ┆ a │ ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤ │ 2 ┆ 7 ┆ b │ └─────┴─────┴─────┘ """ return ( self.lazy() .shift_and_fill(periods, fill_value) .collect(no_optimization=True, string_cache=False) ) def is_duplicated(self) -> "pli.Series": """ Get a mask of all duplicated rows in this DataFrame. Examples -------- >>> df = pl.DataFrame( ... { ... "a": [1, 2, 3, 1], ... "b": ["x", "y", "z", "x"], ... } ... ) >>> df.is_duplicated() shape: (4,) Series: '' [bool] [ true false false true ] """ return pli.wrap_s(self._df.is_duplicated()) def is_unique(self) -> "pli.Series": """ Get a mask of all unique rows in this DataFrame. Examples -------- >>> df = pl.DataFrame( ... { ... "a": [1, 2, 3, 1], ... "b": ["x", "y", "z", "x"], ... } ... ) >>> df.is_unique() shape: (4,) Series: '' [bool] [ false true true false ] """ return pli.wrap_s(self._df.is_unique()) def lazy(self: DF) -> "pli.LazyFrame[DF]": """ Start a lazy query from this point. This returns a `LazyFrame` object. Operations on a `LazyFrame` are not executed until this is requested by either calling: * `.fetch()` (run on a small number of rows) * `.collect()` (run on all data) * `.describe_plan()` (print unoptimized query plan) * `.describe_optimized_plan()` (print optimized query plan) * `.show_graph()` (show (un)optimized query plan) as graphviz graph) Lazy operations are advised because they allow for query optimization and more parallelization. """ return self._lazyframe_class._from_pyldf(self._df.lazy()) def select( self: DF, exprs: Union[ str, "pli.Expr", Sequence[Union[str, "pli.Expr", bool, int, float, "pli.Series"]], "pli.Series", ], ) -> DF: """ Select columns from this DataFrame. Parameters ---------- exprs Column or columns to select. Examples -------- >>> df = pl.DataFrame( ... { ... "foo": [1, 2, 3], ... "bar": [6, 7, 8], ... "ham": ["a", "b", "c"], ... } ... ) >>> df.select("foo") shape: (3, 1) ┌─────┐ │ foo │ │ --- │ │ i64 │ ╞═════╡ │ 1 │ ├╌╌╌╌╌┤ │ 2 │ ├╌╌╌╌╌┤ │ 3 │ └─────┘ """ return ( self.lazy() .select(exprs) # type: ignore .collect(no_optimization=True, string_cache=False) ) def with_columns(self: DF, exprs: Union["pli.Expr", List["pli.Expr"]]) -> DF: """ Add or overwrite multiple columns in a DataFrame. Parameters ---------- exprs List of Expressions that evaluate to columns. """ if not isinstance(exprs, list): exprs = [exprs] return ( self.lazy() .with_columns(exprs) .collect(no_optimization=True, string_cache=False) ) def n_chunks(self) -> int: """ Get number of chunks used by the ChunkedArrays of this DataFrame. """ return self._df.n_chunks() @overload def max(self: DF, axis: Literal[0] = ...) -> DF: ... @overload def max(self, axis: Literal[1]) -> "pli.Series": ... @overload def max(self: DF, axis: int = 0) -> Union[DF, "pli.Series"]: ... def max(self: DF, axis: int = 0) -> Union[DF, "pli.Series"]: """ Aggregate the columns of this DataFrame to their maximum value. Examples -------- >>> df = pl.DataFrame( ... { ... "foo": [1, 2, 3], ... "bar": [6, 7, 8], ... "ham": ["a", "b", "c"], ... } ... ) >>> df.max() shape: (1, 3) ┌─────┬─────┬──────┐ │ foo ┆ bar ┆ ham │ │ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ str │ ╞═════╪═════╪══════╡ │ 3 ┆ 8 ┆ null │ └─────┴─────┴──────┘ """ if axis == 0: return self._from_pydf(self._df.max()) if axis == 1: return pli.wrap_s(self._df.hmax()) raise ValueError("Axis should be 0 or 1.") # pragma: no cover @overload def min(self: DF, axis: Literal[0] = ...) -> DF: ... @overload def min(self, axis: Literal[1]) -> "pli.Series": ... @overload def min(self: DF, axis: int = 0) -> Union[DF, "pli.Series"]: ... def min(self: DF, axis: int = 0) -> Union[DF, "pli.Series"]: """ Aggregate the columns of this DataFrame to their minimum value. Examples -------- >>> df = pl.DataFrame( ... { ... "foo": [1, 2, 3], ... "bar": [6, 7, 8], ... "ham": ["a", "b", "c"], ... } ... ) >>> df.min() shape: (1, 3) ┌─────┬─────┬──────┐ │ foo ┆ bar ┆ ham │ │ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ str │ ╞═════╪═════╪══════╡ │ 1 ┆ 6 ┆ null │ └─────┴─────┴──────┘ """ if axis == 0: return self._from_pydf(self._df.min()) if axis == 1: return pli.wrap_s(self._df.hmin()) raise ValueError("Axis should be 0 or 1.") # pragma: no cover @overload def sum(self: DF, *, axis: Literal[0] = ..., null_strategy: str = "ignore") -> DF: ... @overload def sum(self, *, axis: Literal[1], null_strategy: str = "ignore") -> "pli.Series": ... @overload def sum( self: DF, *, axis: int = 0, null_strategy: str = "ignore" ) -> Union[DF, "pli.Series"]: ... def sum( self: DF, *, axis: int
element matching each trial start if take == 'last': iall, iu = np.unique(np.flip(ind), return_index=True) t_event_nans[iall] = t_event[- (iu - ind.size + 1)] elif take == 'first': iall, iu = np.unique(ind, return_index=True) t_event_nans[iall] = t_event[iu] else: # if the index is arbitrary, needs to be numeric (could be negative if from the end) iall = np.unique(ind) minsize = take + 1 if take >= 0 else - take # for each trial, take the takenth element if there are enough values in trial for iu in iall: match = t_event[iu == ind] if len(match) >= minsize: t_event_nans[iu] = match[take] return t_event_nans def _get_sync_fronts(sync, channel_nb, tmin=None, tmax=None): selection = sync['channels'] == channel_nb selection = np.logical_and(selection, sync['times'] <= tmax) if tmax else selection selection = np.logical_and(selection, sync['times'] >= tmin) if tmin else selection return Bunch({'times': sync['times'][selection], 'polarities': sync['polarities'][selection]}) def _clean_frame2ttl(frame2ttl, display=False): """ Frame 2ttl calibration can be unstable and the fronts may be flickering at an unrealistic pace. This removes the consecutive frame2ttl pulses happening too fast, below a threshold of F2TTL_THRESH """ dt = np.diff(frame2ttl['times']) iko = np.where(np.logical_and(dt < F2TTL_THRESH, frame2ttl['polarities'][:-1] == -1))[0] iko = np.unique(np.r_[iko, iko + 1]) frame2ttl_ = {'times': np.delete(frame2ttl['times'], iko), 'polarities': np.delete(frame2ttl['polarities'], iko)} if iko.size > (0.1 * frame2ttl['times'].size): _logger.warning(f'{iko.size} ({iko.size / frame2ttl["times"].size * 100} %) ' f'frame to TTL polarity switches below {F2TTL_THRESH} secs') if display: from ibllib.plots import squares plt.figure() squares(frame2ttl['times'] * 1000, frame2ttl['polarities'], yrange=[0.1, 0.9]) squares(frame2ttl_['times'] * 1000, frame2ttl_['polarities'], yrange=[1.1, 1.9]) import seaborn as sns sns.displot(dt[dt < 0.05], binwidth=0.0005) return frame2ttl_ def extract_wheel_sync(sync, chmap=None): """ Extract wheel positions and times from sync fronts dictionary for all 16 chans Output position is in radians, mathematical convention :param sync: dictionary 'times', 'polarities' of fronts detected on sync trace :param chmap: dictionary containing channel indices. Default to constant. chmap = {'rotary_encoder_0': 13, 'rotary_encoder_1': 14} :return: timestamps (np.array) :return: positions (np.array) """ wheel = {} channela = _get_sync_fronts(sync, chmap['rotary_encoder_0']) channelb = _get_sync_fronts(sync, chmap['rotary_encoder_1']) wheel['re_ts'], wheel['re_pos'] = _rotary_encoder_positions_from_fronts( channela['times'], channela['polarities'], channelb['times'], channelb['polarities'], ticks=WHEEL_TICKS, radius=1, coding='x4') return wheel['re_ts'], wheel['re_pos'] def extract_behaviour_sync(sync, chmap=None, display=False, bpod_trials=None, tmax=np.inf): """ Extract wheel positions and times from sync fronts dictionary :param sync: dictionary 'times', 'polarities' of fronts detected on sync trace for all 16 chans :param chmap: dictionary containing channel index. Default to constant. chmap = {'bpod': 7, 'frame2ttl': 12, 'audio': 15} :param display: bool or matplotlib axes: show the full session sync pulses display defaults to False :return: trials dictionary """ bpod = _get_sync_fronts(sync, chmap['bpod'], tmax=tmax) if bpod.times.size == 0: raise err.SyncBpodFpgaException('No Bpod event found in FPGA. No behaviour extraction. ' 'Check channel maps.') frame2ttl = _get_sync_fronts(sync, chmap['frame2ttl'], tmax=tmax) frame2ttl = _clean_frame2ttl(frame2ttl) audio = _get_sync_fronts(sync, chmap['audio'], tmax=tmax) # extract events from the fronts for each trace t_trial_start, t_valve_open, t_iti_in = _assign_events_bpod(bpod['times'], bpod['polarities']) # one issue is that sometimes bpod pulses may not have been detected, in this case # perform the sync bpod/FPGA, and add the start that have not been detected if bpod_trials: bpod_start = bpod_trials['intervals_bpod'][:, 0] fcn, drift, ibpod, ifpga = dsp.utils.sync_timestamps( bpod_start, t_trial_start, return_indices=True) # if it's drifting too much if drift > 200 and bpod_start.size != t_trial_start.size: raise err.SyncBpodFpgaException("sync cluster f*ck") missing_bpod = fcn(bpod_start[np.setxor1d(ibpod, np.arange(len(bpod_start)))]) t_trial_start = np.sort(np.r_[t_trial_start, missing_bpod]) else: _logger.warning("Deprecation Warning: calling FPGA trials extraction without a bpod trials" " dictionary will result in an error.") t_ready_tone_in, t_error_tone_in = _assign_events_audio( audio['times'], audio['polarities']) trials = Bunch({ 'goCue_times': _assign_events_to_trial(t_trial_start, t_ready_tone_in, take='first'), 'errorCue_times': _assign_events_to_trial(t_trial_start, t_error_tone_in), 'valveOpen_times': _assign_events_to_trial(t_trial_start, t_valve_open), 'stimFreeze_times': _assign_events_to_trial(t_trial_start, frame2ttl['times'], take=-2), 'stimOn_times': _assign_events_to_trial(t_trial_start, frame2ttl['times'], take='first'), 'stimOff_times': _assign_events_to_trial(t_trial_start, frame2ttl['times']), 'itiIn_times': _assign_events_to_trial(t_trial_start, t_iti_in) }) # feedback times are valve open on good trials and error tone in on error trials trials['feedback_times'] = np.copy(trials['valveOpen_times']) ind_err = np.isnan(trials['valveOpen_times']) trials['feedback_times'][ind_err] = trials['errorCue_times'][ind_err] trials['intervals'] = np.c_[t_trial_start, trials['itiIn_times']] if display: width = 0.5 ymax = 5 if isinstance(display, bool): plt.figure("Ephys FPGA Sync") ax = plt.gca() else: ax = display r0 = _get_sync_fronts(sync, chmap['rotary_encoder_0']) plots.squares(bpod['times'], bpod['polarities'] * 0.4 + 1, ax=ax, color='k') plots.squares(frame2ttl['times'], frame2ttl['polarities'] * 0.4 + 2, ax=ax, color='k') plots.squares(audio['times'], audio['polarities'] * 0.4 + 3, ax=ax, color='k') plots.squares(r0['times'], r0['polarities'] * 0.4 + 4, ax=ax, color='k') plots.vertical_lines(t_ready_tone_in, ymin=0, ymax=ymax, ax=ax, label='goCue_times', color='b', linewidth=width) plots.vertical_lines(t_trial_start, ymin=0, ymax=ymax, ax=ax, label='start_trial', color='m', linewidth=width) plots.vertical_lines(t_error_tone_in, ymin=0, ymax=ymax, ax=ax, label='error tone', color='r', linewidth=width) plots.vertical_lines(t_valve_open, ymin=0, ymax=ymax, ax=ax, label='valveOpen_times', color='g', linewidth=width) plots.vertical_lines(trials['stimFreeze_times'], ymin=0, ymax=ymax, ax=ax, label='stimFreeze_times', color='y', linewidth=width) plots.vertical_lines(trials['stimOff_times'], ymin=0, ymax=ymax, ax=ax, label='stim off', color='c', linewidth=width) plots.vertical_lines(trials['stimOn_times'], ymin=0, ymax=ymax, ax=ax, label='stimOn_times', color='tab:orange', linewidth=width) c = _get_sync_fronts(sync, chmap['left_camera']) plots.squares(c['times'], c['polarities'] * 0.4 + 5, ax=ax, color='k') c = _get_sync_fronts(sync, chmap['right_camera']) plots.squares(c['times'], c['polarities'] * 0.4 + 6, ax=ax, color='k') c = _get_sync_fronts(sync, chmap['body_camera']) plots.squares(c['times'], c['polarities'] * 0.4 + 7, ax=ax, color='k') ax.legend() ax.set_yticklabels(['', 'bpod', 'f2ttl', 'audio', 're_0', '']) ax.set_yticks([0, 1, 2, 3, 4, 5]) ax.set_ylim([0, 5]) return trials def extract_sync(session_path, overwrite=False, ephys_files=None): """ Reads ephys binary file (s) and extract sync within the binary file folder Assumes ephys data is within a `raw_ephys_data` folder :param session_path: '/path/to/subject/yyyy-mm-dd/001' :param overwrite: Bool on re-extraction, forces overwrite instead of loading existing files :return: list of sync dictionaries """ session_path = Path(session_path) if not ephys_files: ephys_files = spikeglx.glob_ephys_files(session_path) syncs = [] outputs = [] for efi in ephys_files: bin_file = efi.get('ap', efi.get('nidq', None)) if not bin_file: continue alfname = dict(object='sync', namespace='spikeglx') if efi.label: alfname['extra'] = efi.label file_exists = alf.io.exists(bin_file.parent, **alfname) if not overwrite and file_exists: _logger.warning(f'Skipping raw sync: SGLX sync found for probe {efi.label} !') sync = alf.io.load_object(bin_file.parent, **alfname) out_files, _ = alf.io._ls(bin_file.parent, **alfname) else: sr = spikeglx.Reader(bin_file) sync, out_files = _sync_to_alf(sr, bin_file.parent, save=True, parts=efi.label) outputs.extend(out_files) syncs.extend([sync]) return syncs, outputs def _get_all_probes_sync(session_path, bin_exists=True): # round-up of all bin ephys files in the session, infer revision and get sync map ephys_files = spikeglx.glob_ephys_files(session_path, bin_exists=bin_exists) version = spikeglx.get_neuropixel_version_from_files(ephys_files) # attach the sync information to each binary file found for ef in ephys_files: ef['sync'] = alf.io.load_object(ef.path, 'sync', namespace='spikeglx', short_keys=True) ef['sync_map'] = get_ibl_sync_map(ef, version) return ephys_files def get_main_probe_sync(session_path, bin_exists=False): """ From 3A or 3B multiprobe session, returns the main probe (3A) or nidq sync pulses with the attached channel map (default chmap if none) :param session_path: :return: """ ephys_files = _get_all_probes_sync(session_path, bin_exists=bin_exists) if not ephys_files: raise FileNotFoundError(f"No ephys files found in {session_path}") version = spikeglx.get_neuropixel_version_from_files(ephys_files) if version == '3A': # the sync master is the probe with the most sync pulses sync_box_ind = np.argmax([ef.sync.times.size for ef in ephys_files]) elif version == '3B': # the sync master is the nidq breakout box sync_box_ind = np.argmax([1 if ef.get('nidq') else 0 for ef in ephys_files]) sync = ephys_files[sync_box_ind].sync sync_chmap = ephys_files[sync_box_ind].sync_map return sync, sync_chmap class ProbaContrasts(extractors_base.BaseBpodTrialsExtractor): """ Bpod pre-generated values for probabilityLeft, contrastLR, phase, quiescence """ save_names = ('_ibl_trials.contrastLeft.npy', '_ibl_trials.contrastRight.npy', None, None, '_ibl_trials.probabilityLeft.npy', None) var_names = ('contrastLeft', 'contrastRight', 'phase', 'position', 'probabilityLeft', 'quiescence') def _extract(self, **kwargs): """Extracts positions, contrasts, quiescent delay, stimulus phase and probability left from pregenerated session files. Optional: saves alf contrastLR and probabilityLeft npy files""" pe = self.get_pregenerated_events(self.bpod_trials, self.settings) return [pe[k] for k in sorted(pe.keys())] @staticmethod def get_pregenerated_events(bpod_trials, settings): num = settings.get("PRELOADED_SESSION_NUM", None) if num is None: num = settings.get("PREGENERATED_SESSION_NUM", None) if num is None: fn = settings.get('SESSION_LOADED_FILE_PATH', '') fn = PureWindowsPath(fn).name num = ''.join([d for d in fn if d.isdigit()]) if num == '': raise ValueError("Can't extract left probability behaviour.") # Load the pregenerated file ntrials = len(bpod_trials) sessions_folder = Path(raw_data_loaders.__file__).parent.joinpath( "extractors", "ephys_sessions") fname = f"session_{num}_ephys_pcqs.npy" pcqsp = np.load(sessions_folder.joinpath(fname)) pos = pcqsp[:, 0] con = pcqsp[:, 1] pos = pos[: ntrials] con = con[: ntrials] contrastRight = con.copy() contrastLeft = con.copy() contrastRight[pos < 0] = np.nan contrastLeft[pos > 0] = np.nan qui = pcqsp[:, 2] qui = qui[: ntrials] phase = pcqsp[:, 3] phase = phase[: ntrials] pLeft = pcqsp[:, 4] pLeft = pLeft[: ntrials] phase_path = sessions_folder.joinpath(f"session_{num}_stim_phase.npy") is_patched_version = parse_version( settings.get('IBLRIG_VERSION_TAG', 0)) > parse_version('6.4.0') if phase_path.exists() and is_patched_version: phase = np.load(phase_path)[:ntrials] return {'position': pos, 'quiescence': qui, 'phase': phase, 'probabilityLeft': pLeft, 'contrastRight': contrastRight, 'contrastLeft': contrastLeft} class FpgaTrials(extractors_base.BaseExtractor): save_names = ('_ibl_trials.feedbackType.npy', '_ibl_trials.choice.npy', '_ibl_trials.rewardVolume.npy', '_ibl_trials.intervals_bpod.npy', '_ibl_trials.intervals.npy', '_ibl_trials.response_times.npy', '_ibl_trials.goCueTrigger_times.npy', None, None, None, None, None, '_ibl_trials.feedback_times.npy', '_ibl_trials.goCue_times.npy', None, None, '_ibl_trials.stimOff_times.npy', '_ibl_trials.stimOn_times.npy', None, '_ibl_trials.firstMovement_times.npy', '_ibl_wheel.timestamps.npy', '_ibl_wheel.position.npy', '_ibl_wheelMoves.intervals.npy', '_ibl_wheelMoves.peakAmplitude.npy') var_names =
from CommonServerPython import * """ IMPORTS """ import requests import ast from datetime import datetime # disable insecure warnings requests.packages.urllib3.disable_warnings() # remove proxy if not set to true in params if not demisto.params().get("proxy"): del os.environ["HTTP_PROXY"] del os.environ["HTTPS_PROXY"] del os.environ["http_proxy"] del os.environ["https_proxy"] """ GLOBAL VARS """ CONTEXT = demisto.getIntegrationContext() USE_SSL = not demisto.params().get("unsecure", False) DEMISTOBOT = "https://demistobot.demisto.com/azuresc-token" SUBSCRIPTION_ID = CONTEXT.get("subscription_id") SUBSCRIPTION_URL = "/subscriptions/{}".format(SUBSCRIPTION_ID) TOKEN = demisto.params().get("token") TENANT_ID = demisto.params().get("tenant_id") BASE_URL = demisto.params().get("server_url") RESOURCE = "https://management.azure.com/" AUTH_GRANT_TYPE = "client_credentials" # API Versions ALERT_API_VERSION = "2015-06-01-preview" LOCATION_API_VERSION = "2015-06-01-preview" ATP_API_VERSION = "2017-08-01-preview" APS_API_VERSION = "2017-08-01-preview" IPP_API_VERSION = "2017-08-01-preview" JIT_API_VERSION = "2015-06-01-preview" STORAGE_API_VERSION = "2018-07-01" """ HELPER FUNCTIONS """ def set_subscription_id(): """ Setting subscription ID to the context and returning it """ headers = {"Authorization": TOKEN, "Accept": "application/json"} params = {"tenant": TENANT_ID, "product": "AzureSecurityCenter"} r = requests.get(DEMISTOBOT, headers=headers, params=params, verify=USE_SSL) try: data = r.json() if r.status_code != requests.codes.ok: return_error( "Error in API call to Azure Security Center [{}] - {}".format( r.status_code, r.text ) ) sub_id = data.get("subscription_id") demisto.setIntegrationContext( { "token": data.get("token"), "stored": epoch_seconds(), "subscription_id": sub_id, } ) return sub_id except ValueError: return_error("There was problem with your request: {}".format(r.content)) def epoch_seconds(d=None): """ Return the number of seconds for given date. If no date, return current. """ if not d: d = datetime.utcnow() return int((d - datetime.utcfromtimestamp(0)).total_seconds()) def get_token(): """ Check if we have a valid token and if not get one """ token = CONTEXT.get("token") stored = CONTEXT.get("stored") if token and stored: if epoch_seconds() - stored < 60 * 60 - 30: return token headers = {"Authorization": TOKEN, "Accept": "application/json"} r = requests.get( DEMISTOBOT, headers=headers, params={"tenant": TENANT_ID, "product": "AzureSecurityCenter"}, verify=USE_SSL, ) data = r.json() if r.status_code != requests.codes.ok: return_error( "Error in API call to Azure Security Center [{}] - {}".format( r.status_code, r.text ) ) demisto.setIntegrationContext( { "token": data.get("token"), "stored": epoch_seconds(), "subscription_id": data.get("subscription_id"), } ) return data.get("token") def http_request(method, url_suffix, body=None, params=None, add_subscription=True): """ Generic request to the graph """ token = get_token() headers = { "Authorization": "Bearer " + token, "Content-Type": "application/json", "Accept": "application/json", } if add_subscription: url = BASE_URL + SUBSCRIPTION_URL + url_suffix else: url = BASE_URL + url_suffix r = requests.request(method, url, json=body, params=params, headers=headers) if r.status_code not in {200, 201, 202, 204}: return_error( "Error in API call to Azure Security Center [{}] - {}".format( r.status_code, r.text ) ) try: r = r.json() return r except ValueError: return dict() # Format ports in JIT access policy rule to (portNum, protocol, allowedAddress, maxDuration) def format_jit_port_rule(ports): port_array = list() for port in ports: # for each item in unicode, has to use str to decode to ascii p_num = str(port.get("number")) p_src_addr = ( str(port.get("allowedSourceAddressPrefix")) if port.get("allowedSourceAddressPrefix") != "*" else "any" ) p_protocol = str(port.get("protocol")) if port.get("protocol") != "*" else "any" p_max_duration = str(port.get("maxRequestAccessDuration")) port_array.append(str((p_num, p_protocol, p_src_addr, p_max_duration))) return ", ".join(port_array) # Format ports in JIT access request to (portNum, allowedAddress, endTime, status) def format_jit_port_request(ports): port_array = list() for port in ports: # for each item in unicode, has to use str to decode to ascii p_num = str(port.get("number")) p_src_addr = ( str(port.get("allowedSourceAddressPrefix")) if port.get("allowedSourceAddressPrefix") != "*" else "any" ) p_status = str(port.get("status")) p_end_time = str(port.get("endTimeUtc")) port_array.append(str((p_num, p_src_addr, p_end_time, p_status))) return ", ".join(port_array) def normalize_context_key(string): """Normalize context keys Function will normalize the string (remove white spaces and tailings) Args: string (str): Returns: Normalized string """ tmp = string[:1].upper() + string[1:] return tmp.replace(" ", "") """ FUNCTIONS """ """ Alert Start """ def get_alert_command(args): """Getting specified alert from API Args args (dict): dictionary containing commands args """ resource_group_name = args.get("resource_group_name") asc_location = args.get("asc_location") alert_id = args.get("alert_id") alert = get_alert(resource_group_name, asc_location, alert_id) final_output = list() # Basic Property Table properties = alert.get("properties") if properties: basic_table_output = [ { "DisplayName": properties.get("alertDisplayName"), "CompromisedEntity": properties.get("compromisedEntity"), "Description": properties.get("description"), "DetectedTime": properties.get("detectedTimeUtc"), "ReportedTime": properties.get("reportedTimeUtc"), "ReportedSeverity": properties.get("reportedSeverity"), "ConfidenceScore": properties.get("confidenceScore", "None"), "State": properties.get("state"), "ActionTaken": properties.get("actionTaken"), "CanBeInvestigated": properties.get("canBeInvestigated"), "RemediationSteps": properties.get("remediationSteps"), "VendorName": properties.get("vendorName"), "AssociatedResource": properties.get("associatedResource"), "AlertName": properties.get("alertName"), "InstanceID": properties.get("instanceId", "None"), "ID": alert.get("name"), "ExtendedProperties": properties.get("extendedProperties"), "Entities": properties.get("entities"), "SubscriptionID": properties.get("subscriptionId"), } ] md = tableToMarkdown( "Azure Security Center - Get Alert - Basic Property", basic_table_output, [ "DisplayName", "CompromisedEntity", "Description", "DetectedTime", "ReportedTime", "ReportedSeverity", "ConfidenceScore", "State", "ActionTaken", "CanBeInvestigated", "RemediationSteps", "VendorName", "AssociatedResource", "AlertName", "InstanceID", "ID", ], removeNull=True, ) ec = { "AzureSecurityCenter.Alert(val.ID && val.ID === obj.ID)": basic_table_output } basic_table_entry = { "Type": entryTypes["note"], "Contents": alert, "ContentsFormat": formats["json"], "ReadableContentsFormat": formats["markdown"], "HumanReadable": md, "EntryContext": ec, } final_output.append(basic_table_entry) # Extended Properties Table if ( alert.get("properties") and alert.get("properties") and alert.get("properties").get("extendedProperties") ): extended_properties = dict() properties = alert.get("properties") if isinstance(properties.get("extendedProperties"), dict): for key, value in alert["properties"]["extendedProperties"].items(): extended_properties[normalize_context_key(key)] = value extended_table_entry = { "Type": entryTypes["note"], "Contents": alert["properties"]["extendedProperties"], "ContentsFormat": formats["json"], "ReadableContentsFormat": formats["markdown"], "HumanReadable": tableToMarkdown( "Azure Security Center - Get Alert - Extended Property", extended_properties, removeNull=True, ), } final_output.append(extended_table_entry) # Entities Table entities = properties.get("entities") if entities: if isinstance(entities, dict): entities_table_output = list() for entity in entities: entities_table_output.append( { "Content": ast.literal_eval(str(entity)), "Type": entity["type"], } ) md = tableToMarkdown( "Azure Security Center - Get Alert - Entity", entities_table_output, removeNull=True, ) entities_table_entry = { "Type": entryTypes["note"], "Contents": alert.get("properties").get("entities"), "ContentsFormat": formats["json"], "ReadableContentsFormat": formats["markdown"], "HumanReadable": md, } final_output.append(entities_table_entry) demisto.results(final_output) def get_alert(resource_group_name, asc_location, alert_id): """Building query Args: resource_group_name (str): ResourceGroupName asc_location (str): Azure Security Center location alert_id (str): Alert ID Returns: response body (dict) """ cmd_url = "" if resource_group_name: cmd_url += "/resourceGroups/{}".format(resource_group_name) cmd_url += "/providers/Microsoft.Security/locations/{}/alerts/{}?api-version={}".format( asc_location, alert_id, ALERT_API_VERSION ) response = http_request("GET", cmd_url) return response def list_alerts_command(args): """Getting all alerts Args: args (dict): usually demisto.args() """ resource_group_name = args.get("resource_group_name") asc_location = args.get("asc_location") filter_query = args.get("filter") select_query = args.get("select") expand_query = args.get("expand") alerts = list_alerts( resource_group_name, asc_location, filter_query, select_query, expand_query ).get("value") outputs = list() for alert in alerts: properties = alert.get("properties") if properties: outputs.append( { "DisplayName": properties.get("alertDisplayName"), "CompromisedEntity": properties.get("compromisedEntity"), "DetectedTime": properties.get("detectedTimeUtc"), "ReportedSeverity": properties.get("reportedSeverity"), "State": properties.get("state"), "ActionTaken": properties.get("actionTaken"), "Description": properties.get("description"), "ID": alert.get("name"), } ) md = tableToMarkdown( "Azure Security Center - List Alerts", outputs, [ "DisplayName", "CompromisedEntity", "DetectedTime", "ReportedSeverity", "State", "ActionTaken", "Description", "ID", ], removeNull=True, ) ec = {"AzureSecurityCenter.Alert(val.ID && val.ID === obj.ID)": outputs} entry = { "Type": entryTypes["note"], "Contents": alerts, "ContentsFormat": formats["json"], "ReadableContentsFormat": formats["markdown"], "HumanReadable": md, "EntryContext": ec, } demisto.results(entry) def get_alerts( resource_group_name, asc_location, filter_query, select_query, expand_query ): """Building query Args: resource_group_name (str): ResourceGroupName asc_location (str): Azure Security Center location filter_query (str): what to filter select_query (str): what to select expand_query (str): what to expand Returns: dict: contains response body """ cmd_url = "" if resource_group_name: cmd_url += "/resourceGroups/{}/providers/Microsoft.Security".format( resource_group_name ) # ascLocation muse be using with specifying resourceGroupName if asc_location: cmd_url += "/locations/{}".format(asc_location) else: cmd_url += "/providers/Microsoft.Security" cmd_url += "/alerts?api-version={}".format(ALERT_API_VERSION) if filter_query: cmd_url += "&$filter={}".format(filter_query) if select_query: cmd_url += "&$select={}".format(select_query) if expand_query: cmd_url += "&$expand={}".format(expand_query) response = http_request("GET", cmd_url) return response def list_alerts( resource_group_name, asc_location, filter_query, select_query, expand_query ): """Listing alerts Args: resource_group_name (str): ResourceGroupName asc_location (str): Azure Security Center location filter_query (str): what to filter select_query (str): what to select expand_query (str): what to expand Returns: dict: contains response body """ cmd_url = "" if resource_group_name: cmd_url += "/resourceGroups/{}/providers/Microsoft.Security".format( resource_group_name ) # ascLocation must be using with specifying resourceGroupName if asc_location: cmd_url += "/locations/{}".format(asc_location) else: cmd_url += "/providers/Microsoft.Security" cmd_url += "/alerts?api-version={}".format(ALERT_API_VERSION) if filter_query: cmd_url += "&$filter={}".format(filter_query) if select_query: cmd_url += "&$select={}".format(select_query) if expand_query: cmd_url += "&$expand={}".format(expand_query) response = http_request("GET", cmd_url) return response def update_alert_command(args): """Update given alert Args: args (dict): usually demisto.args() """ resource_group_name = args.get("resource_group_name") asc_location = args.get("asc_location") alert_id = args.get("alert_id") alert_update_action_type = args.get("alert_update_action_type") response = update_alert( resource_group_name, asc_location, alert_id, alert_update_action_type ) outputs = {"ID": response.get("id"), "ActionTaken": alert_update_action_type} ec = {"AzureSecurityCenter.Alert(val.ID && val.ID === obj.ID)": outputs} demisto.results( { "Type": entryTypes["note"], "Contents": "Alert - {} has been set to {}.".format( alert_id, alert_update_action_type ), "ContentsFormat": formats["text"], "EntryContext": ec, } ) def update_alert(resource_group_name, asc_location, alert_id, alert_update_action_type): """Building query Args: resource_group_name (str): Resource Name Group asc_location (str): Azure Security Center Location alert_id (str): Alert ID alert_update_action_type (str): What update type need to update Returns: dict: response body """ cmd_url = "" if resource_group_name: cmd_url += "/resourceGroups/{}".format(resource_group_name) cmd_url += "/providers/Microsoft.Security/locations/{}/alerts/{}/{}?api-version={}".format( asc_location, alert_id, alert_update_action_type, ALERT_API_VERSION ) return http_request("POST", cmd_url) """ Alert End """ """ Location Start """ def list_locations_command(): """Getting all locations """ locations = list_locations().get("value") outputs = list() if locations: for location in locations: if location.get("properties") and location.get("properties").get( "homeRegionName" ): home_region_name = location.get("properties").get("homeRegionName") else: home_region_name = None outputs.append( { "HomeRegionName": home_region_name, "Name": location.get("name"), "ID": location.get("id"), } ) md =
heights : np.array or list heights along flowline climate_type : str either 'monthly' or 'annual', if annual floor of year is used, if monthly float year is converted into month and year Returns ------- (temp, tempformelt, prcp, prcpsol) """ y, m = floatyear_to_date(year) if self.repeat: y = self.ys + (y - self.ys) % (self.ye - self.ys + 1) if y < self.ys or y > self.ye: raise ValueError('year {} out of the valid time bounds: ' '[{}, {}]'.format(y, self.ys, self.ye)) if self.mb_type == 'mb_real_daily' or climate_type == 'annual': if climate_type == 'annual': #if type(year) == float: # raise InvalidParamsError('') pok = np.where(self.years == year)[0] if len(pok) < 1: raise ValueError('Year {} not in record'.format(int(year))) else: pok = np.where((self.years == y) & (self.months == m))[0] if len(pok) < 28: warnings.warn('something goes wrong with amount of entries\ per month for mb_real_daily') else: pok = np.where((self.years == y) & (self.months == m))[0][0] # Read time series # (already temperature bias and precipitation factor corrected!) itemp = self.temp[pok] iprcp = self.prcp[pok] igrad = self.grad[pok] # For each height pixel: # Compute temp and tempformelt (temperature above melting threshold) heights = np.asarray(heights) npix = len(heights) if self.mb_type == 'mb_real_daily' or climate_type == 'annual': grad_temp = np.atleast_2d(igrad).repeat(npix, 0) if len(pok) != 12 and self.mb_type != 'mb_real_daily': warnings.warn('something goes wrong with amount of entries' 'per year') grad_temp *= (heights.repeat(len(pok)).reshape(grad_temp.shape) - self.ref_hgt) temp2d = np.atleast_2d(itemp).repeat(npix, 0) + grad_temp # temp_for_melt is computed separately depending on mb_type temp2dformelt = self._get_tempformelt(temp2d, pok) # Compute solid precipitation from total precipitation prcp = np.atleast_2d(iprcp).repeat(npix, 0) fac = 1 - (temp2d - self.t_solid) / (self.t_liq - self.t_solid) prcpsol = prcp * clip_array(fac, 0, 1) return temp2d, temp2dformelt, prcp, prcpsol else: temp = np.ones(npix) * itemp + igrad * (heights - self.ref_hgt) # temp_for_melt is computed separately depending on mb_type tempformelt = self._get_tempformelt(temp, pok) prcp = np.ones(npix) * iprcp fac = 1 - (temp - self.t_solid) / (self.t_liq - self.t_solid) prcpsol = prcp * clip_array(fac, 0, 1) return temp, tempformelt, prcp, prcpsol def get_2d_avg_annual_air_hydro_temp(self, heights, year=None, avg_climate = False, hs = 15, hydro_m = 10): raise NotImplementedError('not tested and only useful' ' for estimating refreezing') # WIP # (I won't work on this for the next half a year, but leave # it inside as atemplate) # only computes avg annual air temperature in hydrological years, # this is necessary for the refreezing estimate of Woodward et al.1997 # only tested for NH here # IMPORTANT: this does not take into account that months # have different amount of days (should I include the weighting as # it is inside of PyGEM??? [see: https://github.com/drounce/PyGEM/blob/ac619bd1fd862b93a01068a0887efa2a97478b99/pygem/utils/_funcs.py#L10 ) #pok = np.where(self.years == year)[0] if avg_climate: year0 = year - hs year1 = year + hs else: year0 = year year1 = year if self.mb_type != 'mb_real_daily': pok_begin = np.where((self.years == year0-1) & (self.months == hydro_m))[0] pok_end = np.where((self.years == year1) & (self.months == hydro_m-1))[0] pok_hydro = np.arange(pok_begin, pok_end + 1, 1) else: pok_begin = np.where((self.years == year0-1) & (self.months == hydro_m))[0][0] pok_end = np.where((self.years == year1) & (self.months == hydro_m-1))[0][-1] pok_hydro = np.arange(pok_begin, pok_end + 1, 1) assert self.months[pok_hydro[0]] == hydro_m assert self.months[pok_hydro[-1]] == hydro_m - 1 if len(pok_hydro) < 1: raise ValueError('Year {} not in record'.format(int(year))) # Read time series # (already temperature bias and precipitation factor corrected!) itemp = self.temp[pok_hydro] igrad = self.grad[pok_hydro] heights = np.asarray(heights) npix = len(heights) grad_temp = np.atleast_2d(igrad).repeat(npix, 0) if self.mb_type != 'mb_real_daily' and hydro_m == 10 and not avg_climate: assert np.all(self.months[pok_hydro] == np.array([10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9])) if len(pok_hydro) != 12 and self.mb_type != 'mb_real_daily' and not avg_climate: warnings.warn('something goes wrong with amount of entries' 'per year') grad_temp *= (heights.repeat(len(pok_hydro)).reshape(grad_temp.shape) - self.ref_hgt) temp2d = np.atleast_2d(itemp).repeat(npix, 0) + grad_temp return temp2d def _get_2d_monthly_climate(self, heights, year=None): # first get the climate data #warnings.warn('Attention: this has not been tested enough to be sure that ' # 'it works') if self.mb_type == 'mb_real_daily': return self._get_climate(heights, 'monthly', year=year) else: raise InvalidParamsError('_get_2d_monthly_climate works only\ with mb_real_daily as mb_type!!!') def get_monthly_climate(self, heights, year=None): # first get the climate data #warnings.warn('Attention: this has not been tested enough to be sure that \ # it works') if self.mb_type == 'mb_real_daily': t, tfmelt, prcp, prcpsol = self._get_climate(heights, 'monthly', year=year) return (t.mean(axis=1), tfmelt.sum(axis=1), prcp.sum(axis=1), prcpsol.sum(axis=1)) else: return self._get_climate(heights, 'monthly', year=year) # if it is mb_real_daily, the data has daily resolution (2d array then) def get_daily_climate(self, heights, year=None): raise NotImplementedError('look at _get_2d_daily_climate instead') def _get_2d_annual_climate(self, heights, year): return self._get_climate(heights, 'annual', year=year) def _get_2d_daily_climate(self, heights, year = None): return self._get_climate(heights, 'annual', year=year) # If I also want to use this outside of the class because # (e.g. in climate.py), I have to change this again and remove the self... # and somehow there is a problem if I put not self in # _get_tempformelt when it is inside the class def _get_tempformelt(self, temp, pok): """ Helper function to compute tempformelt to avoid code duplication in get_monthly_climate() and _get2d_annual_climate() If using this again outside of this class, need to remove the "self", such as for 'mb_climate_on_height' in climate.py, that has no self.... (would need to change temp, t_melt ,temp_std, mb_type, N, loop) Input: stuff that is different for the different methods temp: temperature time series pok: indices of time series Returns ------- (tempformelt) """ tempformelt_without_std = temp - self.t_melt # computations change only if 'mb_pseudo_daily' as mb_type! if self.mb_type == 'mb_monthly' or self.mb_type == 'mb_real_daily': tempformelt = tempformelt_without_std elif self.mb_type == 'mb_pseudo_daily': itemp_std = self.temp_std[pok] # matrix with N values that are distributed around 0 # showing how much fake 'daily' values vary from the mean z_scores_mean = stats.norm.ppf(np.arange(1/self.N-1/(2*self.N), 1, 1/self.N)) z_std = np.matmul(np.atleast_2d(z_scores_mean).T, np.atleast_2d(itemp_std)) # there are two possibilities, # not using the loop is most of the times faster if self.loop is False: # without the loop: but not much faster .. tempformelt_daily = np.atleast_3d(tempformelt_without_std).T + \ np.atleast_3d(z_std) clip_min(tempformelt_daily, 0, out=tempformelt_daily) tempformelt_with_std = tempformelt_daily.mean(axis=0).T else: shape_tfm = np.shape(tempformelt_without_std) tempformelt_with_std = np.full(shape_tfm, np.NaN) for h in np.arange(0, np.shape(tempformelt_without_std)[0]): h_tfm_daily_ = np.atleast_2d(tempformelt_without_std[h, :]) h_tempformelt_daily = h_tfm_daily_ + z_std clip_min(h_tempformelt_daily, 0, out=h_tempformelt_daily) h_tempformelt_monthly = h_tempformelt_daily.mean(axis=0) tempformelt_with_std[h, :] = h_tempformelt_monthly tempformelt = tempformelt_with_std else: raise InvalidParamsError('mb_type can only be "mb_monthly,\ mb_pseudo_daily or mb_real_daily" ') # replace all values below zero to zero clip_min(tempformelt, 0, out=tempformelt) return tempformelt # same as in OGGM default def get_annual_climate(self, heights, year=None): """Annual climate information at given heights. Note that prcp is corrected with the precipitation factor and that all other model biases (temp and prcp) are applied. Returns ------- (temp, tempformelt, prcp, prcpsol) """ t, tfmelt, prcp, prcpsol = self._get_2d_annual_climate(heights, year) return (t.mean(axis=1), tfmelt.sum(axis=1), prcp.sum(axis=1), prcpsol.sum(axis=1)) class TIModel(TIModel_Parent): """ child class of TIMOdel_Parent that does not use surface type distinction! """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def get_monthly_mb(self, heights, year=None, add_climate=False, **kwargs): """ computes annual mass balance in m of ice per second! Attention year is here in hydro float year year has to be given as float hydro year from what the month is taken, hence year 2000 -> y=2000, m = 1, & year = 2000.09, y=2000, m=2 ... which corresponds to the real year 1999 an months October or November if hydro year starts in October """ # get_monthly_mb and get_annual_mb are only different # to OGGM default for mb_real_daily if self.mb_type == 'mb_real_daily': # get 2D values, dependencies on height and time (days) out = self._get_2d_monthly_climate(heights, year) t, temp2dformelt, prcp, prcpsol = out #(days per month) #dom = 365.25/12 # len(prcpsol.T) fact = 12/365.25 # attention, I should not use the days of years as the melt_f is # per month ~mean days of that year 12/daysofyear # to have the same unit of melt_f, which is # the monthly temperature sensitivity (kg /m² /mth /K), mb_daily = prcpsol - self.melt_f * temp2dformelt * fact mb_month = np.sum(mb_daily, axis=1)
= None v_0, h_0, v_k, h_k = self.contrastive_divergence( v, k=k, beta=betas[r], h_0=h ) res.append((v_k, h_k)) if include_negative_shift: neg_res.append((v_0, h_0)) # 3. Simulated Annealing to perform swaps ("exchange particles") for r in range(R - 1, 0, -1): a = np.exp((betas[r] - betas[r - 1]) * (self.energy(*res[r]) - self.energy(*res[r - 1]))) u = np.random.random(batch_size) # acceptance mask acc_mask = (u < a).reshape(batch_size, 1) # reject mask rej_mask = ~acc_mask v = res[r][0] * acc_mask + res[r - 1][0] * rej_mask h = res[r][1] * acc_mask + res[r - 1][1] * rej_mask res[r - 1] = v, h # TODO: this is useless, right? We're not ever using `res[r]` again # in this iteration v = res[r - 1][0] * acc_mask + res[r][0] * rej_mask h = res[r - 1][1] * acc_mask + res[r][1] * rej_mask res[r] = v, h # warn user if very small/large number of samples rejected/accepted # but don't if the `batch_size` is super small.. if r == 1 and batch_size > 2 and self._warned_acceptance < 10: num_acc = acc_mask[acc_mask].shape[0] if num_acc >= 0.9 * batch_size: _log.warn(f"Large portion of tempered samples accepted ({num_acc} / {batch_size})") self._warned_acceptance += 1 elif num_acc <= 0.1 * batch_size: _log.warn(f"Small portion of tempered samples accepted ({num_acc} / {batch_size})") self._warned_acceptance += 1 # possibly perform same for the negative shift if include_negative_shift: for r in range(R - 1, 0, -1): a = np.exp((betas[r] - betas[r - 1]) * (self.energy(*neg_res[r]) - self.energy(*neg_res[r - 1]))) u = np.random.random(batch_size) # acceptance mask acc_mask = (u < a).reshape(batch_size, 1) # reject mask rej_mask = ~acc_mask v = neg_res[r][0] * acc_mask + neg_res[r - 1][0] * rej_mask h = neg_res[r][1] * acc_mask + neg_res[r - 1][1] * rej_mask neg_res[r - 1] = v, h v = neg_res[r - 1][0] * acc_mask + neg_res[r][0] * rej_mask h = neg_res[r - 1][1] * acc_mask + neg_res[r][1] * rej_mask neg_res[r] = v, h res_v = [r[0] for r in res] res_h = [r[1] for r in res] # return final state if include_negative_shift: neg_res_v = [r[0] for r in neg_res] neg_res_h = [r[1] for r in neg_res] return neg_res_v, neg_res_h, res_v, res_h else: return res_v, res_h def _update(self, grad, lr=0.1): # in case using `cupy`, can't use `np.shape` # to obtain "shape" of single element; this is a fix lr = np.asarray(lr) gamma = lr for i in range(len(self.variables)): if lr.shape: gamma = lr[i] self.variables[i] -= gamma * grad[i] def _apply_weight_decay(self, lmbda=0.01): for i in range(len(self.variables)): # default is gradient DEscent, so weight-decay also switches signs self.variables[i] += lmbda * self.variables[i] def step(self, v, k=1, lr=0.1, lmbda=0.0, **sampler_kwargs): "Performs a single gradient DEscent step on the batch `v`." # compute gradient for each observed visible configuration grad = self.grad(v, k=k, **sampler_kwargs) # update parameters self._update(grad, lr=lr) # possibly apply weight-decay if lmbda > 0.0: self._apply_weight_decay(lmbda=lmbda) def reconstruct(self, v, num_samples=100): samples = self.sample_visible(self.sample_hidden(v)) for _ in range(num_samples - 1): samples += self.sample_visible(self.sample_hidden(v)) probs = samples / num_samples return probs def grad(self, v, burnin=-1, persist=False, **sampler_kwargs): if self.sampler_method.lower() == 'cd': v_0, h_0, v_k, h_k = self.contrastive_divergence( v, **sampler_kwargs ) elif self.sampler_method.lower() == 'pcd': # Persistent Contrastive Divergence if self._prev is not None: v_0, h_0 = self._prev else: # ``burnin`` specified, we perform this to initialize the chain if burnin > 0: _log.info(f"Performing burnin of {burnin} steps to initialize PCD") _, _, h_0, v_0 = self.contrastive_divergence(v, k=burnin, **sampler_kwargs) else: h_0 = self.sample_hidden(v, **sampler_kwargs) v_0 = v v_0, h_0, v_k, h_k = self.contrastive_divergence( v, h_0=h_0, **sampler_kwargs ) # persist self._prev = (v_k, h_k) elif self.sampler_method.lower() == 'pt': h_0 = None if self._prev is not None: v_0, h_0 = self._prev else: _log.info("Initializing PT chain...") v_0 = self._init_parallel_tempering(v, **sampler_kwargs) # FIXME: make compatible with `parallel_tempering` returning # all the states if h_0 is None: v_0, h_0, v_k, h_k = self.parallel_tempering( v_0, hs=h_0, include_negative_shift=True, **sampler_kwargs ) elif sampler_kwargs.get("include_negative_shift", False): v_0, h_0, v_k, h_k = self.parallel_tempering( v_0, hs=h_0, **sampler_kwargs ) else: # FIXME: make compatible with `parallel_tempering` returning # all the states v_k, h_k = self.parallel_tempering( v_0, hs=h_0, **sampler_kwargs ) if persist: self._prev = (v_k, h_k) # take the first tempered distribution, i.e. the one corresponding # the target distribution v_0 = v_0[0] h_0 = h_0[0] v_k = v_k[0] h_k = v_k[0] else: raise ValueError(f"{self.sampler_method} is not supported") # all expressions below using `v` or `mean_h` will contain # AT LEAST one factor of `1 / v_sigma` and `1 / h_sigma`, respectively # so we include those right away v_0 = v_0 / self.v_sigma v_k = v_k / self.v_sigma mean_h_0 = self.mean_hidden(v_0) / self.h_sigma mean_h_k = self.mean_hidden(v_k) / self.h_sigma # Recall: `v_sigma` and `h_sigma` has no affect if they are set to 1 # v_0 / (v_sigma^2) - v_k / (v_sigma^2) delta_v_bias = (v_0 - v_k) / self.v_sigma # E[h_0 | v_0] / (h_sigma^2) - E[h_k | v_k] / (h_sigma^2) delta_h_bias = (mean_h_0 - mean_h_k) / self.h_sigma # Gradient wrt. W # (v_0 / v_sigma) (1 / h_sigma) E[h_0 | v_0] - (v_k / v_sigma) (1 / h_sigma) E[h_k | v_k] x = mean_h_0.reshape(mean_h_0.shape[0], 1, mean_h_0.shape[1]) y = v_0.reshape(v_0.shape[0], v_0.shape[1], 1) z_0 = np.matmul(y, x) x = mean_h_k.reshape(mean_h_k.shape[0], 1, mean_h_k.shape[1]) y = v_k.reshape(v_k.shape[0], v_k.shape[1], 1) z_k = np.matmul(y, x) delta_W = z_0 - z_k # average over batch take the negative delta_v_bias = - np.mean(delta_v_bias, axis=0) delta_h_bias = - np.mean(delta_h_bias, axis=0) delta_W = - np.mean(delta_W, axis=0) grads = [delta_v_bias, delta_h_bias, delta_W] # variances if self.visible_type == UnitType.GAUSSIAN \ and self.estimate_visible_sigma: # in `GaussianRBM`, where only VISIBLE units Gaussian, # we only compute `v_sigma` # (((v_0 - b)^2 / (v_sigma^2)) - (v / (v_sigma)) \sum_{\mu} E[h_{\mu} | v] / sigma_{\mu}) / v_sigma delta_v_sigma_data = (((v_0 - (self.v_bias / self.v_sigma)) ** 2) - v_0 * (np.matmul(mean_h_0, self.W.T))) delta_v_sigma_model = (((v_k - (self.v_bias / self.v_sigma)) ** 2) - v_k * (np.matmul(mean_h_k, self.W.T))) delta_v_sigma = (delta_v_sigma_data - delta_v_sigma_model) / self.v_sigma # average over batch take the negative delta_v_sigma = - np.mean(delta_v_sigma, axis=0) grads.append(delta_v_sigma) if self.hidden_type == UnitType.GAUSSIAN \ and self.estimate_hidden_sigma: # TODO: Implement raise NotImplementedError("gradients for gaussian hidden" " units not yet implemented") delta_h_sigma_data = (((h_0 - (self.h_bias / self.h_sigma)) ** 2) - h_0 * (np.matmul(mean_h_0, self.W.T))) delta_h_sigma_model = (((h_k - (self.h_bias / self.h_sigma)) ** 2) - h_k * (np.matmul(mean_h_k, self.W.T))) delta_h_sigma = delta_h_sigma_data - delta_h_sigma_model # average over batch take the negative delta_h_sigma = - np.mean(delta_h_sigma, axis=0) grads.append(delta_h_sigma) return grads def fit(self, train_data, k=1, learning_rate=0.01, num_epochs=5, batch_size=64, test_data=None, show_progress=True, weight_decay=0.0, early_stopping=-1, callbacks={}, **sampler_kwargs): """ Parameters ---------- train_data: array-like Data to fit RBM on. k: int, default=1 Number of sampling steps to perform. Used by CD-k, PCD-k and PT. learning_rate: float or array, default=0.01 Learning rate used when updating the parameters. Can also be array of same length as `self.variables`, in which case the learning rate at index `i` will be used to to update ``RBM.variables[i]``. num_epochs: int, default=5 Number of epochs to train. batch_size: int, default=64 Batch size to within the epochs. test_data: array-like, default=None Data similar to ``train_data``, but this will only be used as validation data, not trained on. If specified, will compute and print the free energy / negative log-likelihood on this dataset after each epoch. show_progress: bool, default=True If true, will display progress bar for each epoch. weight_decay: float, default=0.0 If greater than 0.0, weight decay will be applied to the parameter updates. See :func:`RBM.step` for more information. early_stopping: int, default=-1 If ``test_data`` is given and ``early_stopping > 0``, training will terminate after epoch if the free energy of the ``test_data`` did not improve over the fast ``early_stopping`` epochs. Returns ------- nlls_train, nlls_test : array-like, array-like Returns the free energy of both ``train_data`` and ``test_data`` as computed at each epoch. """ num_samples = train_data.shape[0] indices = np.arange(num_samples) np.random.shuffle(indices) nlls_train = [] nlls = [] prev_best = None for epoch in range(1, num_epochs + 1): if "pre_epoch" in callbacks: for
<filename>keras_text_summarization/library/attention.py from __future__ import division, print_function import abc from collections import OrderedDict from warnings import warn import numpy as np from keras import backend as K from keras.engine import InputSpec from keras.layers import Dense, concatenate from keras.layers.recurrent import Recurrent from keras_text_summarization.library.children_layers_mixin import ChildLayersMixin from keras_text_summarization.library.distribution import ( MixtureDistributionABC, DistributionOutputLayer ) class RecurrentAttention(ChildLayersMixin, Recurrent): """Abstract base class for recurrent attention layers. Do not use in a model -- it's not a valid layer! Use its children classes `X`, `Y` and `Z` instead. All recurrent attention layers (`X`, `Y`, `Z`) also follow the specifications of this class and accept the keyword arguments listed below. # TODO add general description, example, and references. Attention implementations extending this class should implement the following methods: attention_build attention_step as well as the property: attention_output_dim If the attention implementation requires state(s) to be passed between attention computations at each timestep (apart from previous attention representation `attention_h` which is passed by default) the following method an properties should also be modified accordingly: get_attention_initial_state attention_states attention_state_specs See docs of respective method/property for further details. # Arguments recurrent_layer: layers.recurrent.Recurrent. The recurrent layer to wrap with attention implemented by this class (see attention_step). The following keyword arguments [return_sequences, return_state, go_backwards, stateful] should be set to their default value False, will otherwise be overwritten. The corresponding keyword argument should be passed to this class instead. Moreover it is required that recurrent_layer.implementation == 1, i.e. preprocessed_inputs should be identical to inputs after calling: preprocessed_inputs = recurrent_layer.preprocess_input(inputs). return_attention: Boolean (default False). Whether to return attention representation `attention_h` besides wrapped recurrent layers output or just the output. concatenate_input: Boolean (default True). Whether to pass the concatenation of the attention representation and input at each timestep to the wrapped recurrent_layer.step() or just the attention representation `attention_h`. attend_after: Boolean (default False). Whether to compute attention representation `attention_h` after recurrent_layer.step operation (based on states_t and used as input for recurrent_layer.step at t+1) or before (based on states_{t-1} and used as input for recurrent_layer.step at t). See methods `attend_after_step` and `attend_before_step` for more details. # Keyword Arguments passed to superclass Recurrent return_sequences: Boolean (default False). Whether to return the last output in the output sequence, or the full sequence. Same goes for attention representation `attention_h` if return_attention = True. return_state: Boolean (default False). Whether to return the last state in addition to the output. This includes attention states. Apart from these arguments, this layer also accept all keyword arguments of its superclass Recurrent. """ def __init__(self, recurrent_layer, return_attention=False, concatenate_input=True, attend_after=False, **kwargs): super(RecurrentAttention, self).__init__(**kwargs) self.recurrent_layer = self.add_child( 'recurrent_layer', recurrent_layer ) self.return_attention = return_attention self.concatenate_input = concatenate_input self.attend_after = attend_after self.input_spec = [InputSpec(ndim=3), None] self._attended_spec = InputSpec(ndim=2) self._attention_step_output_spec = InputSpec(ndim=2) self._attention_state_spec = [InputSpec(ndim=2)] self._attention_states = [None] # will be set in call, then passed to step by get_constants self._attended = None @abc.abstractmethod def attention_build( self, attended_shape, step_input_shape, recurrent_state_shapes ): """Build transformations related to attention mechanism, will be called in build method. # Arguments attended_shape: Tuple. Shape of attended. step_input_shape: Tuple. Shape of input at _one_ timestep recurrent_state_shapes: [Tuple]. shape of wrapped recurrent states """ pass @abc.abstractproperty def attention_output_dim(self): """Must be defined after attention_build is called, _independently_ of input shape. Normally we would pass input_shape to compute_output_shape but this would lead to infinite recursion as the output from the wrapped recurrent layer is passed as input to the attention mechanism, and the output of the attention mechanism is passed as input to the wrapped recurrent layer. This should normally not cause any problems as attention_output_dim should be completely defined after attention_build is called. # Returns dimension of attention output (int) """ pass @abc.abstractmethod def attention_step( self, attended, attention_states, step_input, recurrent_states, ): """This method implements the core logic for computing the attention representation. # Arguments attended: the same tensor at each timestep attention_states: states from previous attention step, by default attention from last step but can be extended step_input: the input at current timesteps recurrent_states: states for recurrent layer (excluding constants like dropout tensors) from previous state if attend_after=False otherwise from current time step. # Returns attention_h: the computed attention representation at current timestep attention_states: states to be passed to next attention_step, by default this is just [attention_h]. NOTE if more states are used, these should be _appeded_ to attention states, attention_states[0] should always be attention_h. """ pass def get_attention_initial_state(self, inputs): """Creates initial state for attention mechanism. By default the attention representation `attention_h` computed by attention_step is passed as attention state between timesteps. Extending attention implementations that requires additional states must modify over implement this method accordingly. # Arguments inputs: layer inputs # Returns list (length one) of initial state (zeros) """ # build an all-zero tensor of shape (samples, output_dim) initial_state = K.zeros_like(inputs) # (samples, timesteps, input_dim) initial_state = K.sum(initial_state, axis=(1, 2)) # (samples,) initial_state = K.expand_dims(initial_state) # (samples, 1) initial_state = K.tile(initial_state, [1, self.attention_output_dim]) # (samples, output_dim) return [initial_state] def _validate_wrapped_recurrent(self, recurrent_layer): """Only default keyword arguments should be used for wrapped recurrent layer for keywords listed below. """ wrapped_recurrent_expected_attrs = dict( return_sequences=False, return_state=False, go_backwards=False, stateful=False ) for attr, expected_value in wrapped_recurrent_expected_attrs.items(): if not getattr(recurrent_layer, attr) == expected_value: warn( 'non default value for {recurrent_class}.{attr}, ' 'found {existing}, expected {expected}. This attribute ' 'will be overwritten with expected value. The ' 'corresponding argument should instead be passed to the ' '{self_class}'.format( recurrent_class=recurrent_layer.__class__.__name__, attr=attr, existing=getattr(recurrent_layer, attr), expected=expected_value, self_class=self.__class__.__name__ ) ) setattr(recurrent_layer, attr, expected_value) @property def attended_spec(self): return self._attended_spec @property def attention_step_output_spec(self): return self._attention_step_output_spec @property def attention_state_spec(self): return self._attention_state_spec @property def attention_states(self): return self._attention_states @property def n_attention_states(self): return len(self.attention_states) @property def n_recurrent_states(self): return len(self.recurrent_layer.states) @property def states(self): return self.attention_states + self.recurrent_layer.states @property def state_specs(self): recurrent_state_spec = self.recurrent_layer.state_spec if not isinstance(recurrent_state_spec, list): recurrent_state_spec = [recurrent_state_spec] return self.attention_state_spec + recurrent_state_spec def compute_output_shape(self, input_shape): """""" [input_shape, attention_shape] = input_shape recurrent_output_shape = self._compute_recurrent_step_output_shape( input_shape ) if self.return_sequences: if self.return_attention: output_shape = [ (input_shape[0], input_shape[1], self.attention_output_dim), input_shape[:2] + recurrent_output_shape[1:] ] else: output_shape = input_shape[:2] + recurrent_output_shape[1:] else: if self.return_attention: output_shape = [ (input_shape[0], self.attention_output_dim), recurrent_output_shape ] else: output_shape = recurrent_output_shape if self.return_state: if not isinstance(output_shape, list): output_shape = [output_shape] attention_state_shape = [ (input_shape[0], spec.shape[-1]) for spec in self.attention_state_spec ] recurrent_state_shape = [ (input_shape[0], self.recurrent_layer.units) for _ in self.recurrent_layer.states ] return output_shape + attention_state_shape + recurrent_state_shape else: return output_shape def _compute_recurrent_step_output_shape( self, recurrent_input_shape, ): """Computes wrapped recurrent "step" output shape (no time/sequence dimension). Normally this output shape is simply: (input_shape[0], wrapped_recurrent.units) However the approach in this method is more safe for custom recurrent layers where this might not be the case. # Returns The wrapped recurrent (step) output shape (int, int) """ wrapped_recurrent_input_shape = ( recurrent_input_shape[0], recurrent_input_shape[1], self.attention_output_dim + recurrent_input_shape[-1] if self.concatenate_input else self.attention_output_dim ) return self.recurrent_layer.compute_output_shape( wrapped_recurrent_input_shape ) # it is verified that this will return the step output shape # since return sequences must be False in recurrent layer def build(self, input_shape): [input_shape, attended_shape] = input_shape self.input_spec = [ # TODO remove? InputSpec(shape=input_shape), InputSpec(shape=attended_shape) ] step_input_shape = (input_shape[0], input_shape[-1]) # TODO for existing keras recurrent layers state size is always units # but that is not very general... recurrent_state_shapes = [ input_shape[:1] + spec.shape[1:] for spec in self.recurrent_layer.state_spec ] if isinstance(self.recurrent_layer.state_spec, list) else [( input_shape[:1] + self.recurrent_layer.state_spec.shape[1:] )] self.attention_build( attended_shape, step_input_shape, recurrent_state_shapes ) self._attended_spec = InputSpec(shape=attended_shape) wrapped_recurrent_input_shape = ( input_shape[0], input_shape[1], self.attention_output_dim + input_shape[-1] if self.concatenate_input else self.attention_output_dim ) self.recurrent_layer.build(wrapped_recurrent_input_shape) self.built = True def __call__(self, inputs, initial_state=None, **kwargs): """ # Arguments inputs: list of [recurrent_input, attended] TODO separate keyword for attended? """ outputs = super(RecurrentAttention, self).__call__( inputs, initial_state=initial_state, **kwargs ) if self.return_attention: output = outputs[0][:self.recurrent_layer.units] attention = output[0][self.recurrent_layer.units:] outputs = [output, attention] + outputs[1:] return outputs def call( self, inputs, mask=None, training=None, initial_state=None, ): inputs, self._attended = inputs return super(RecurrentAttention, self).call( inputs, mask=mask, training=training, initial_state=initial_state, ) def get_constants(self, inputs, training=None): constants = self.recurrent_layer.get_constants( inputs, training=training ) constants.append(self._attended) return constants def step(self, inputs, states): state_components = self.get_states_components(states) if self.attend_after: return self.attend_after_step(inputs, *state_components) else: return self.attend_before_step(inputs, *state_components) def attend_before_step( self, inputs, attended, attention_states_tm1, recurrent_states_tm1,
4, 3, 1, 1) for r in range(4, 5): self.main_tab_grid_layout_0.setRowStretch(r, 1) for c in range(3, 4): self.main_tab_grid_layout_0.setColumnStretch(c, 1) def _phase_rad_probe(): while True: val = self.phase_probe.level() try: self.set_phase_rad(val) except AttributeError: pass time.sleep(1.0 / (10)) _phase_rad_thread = threading.Thread(target=_phase_rad_probe) _phase_rad_thread.daemon = True _phase_rad_thread.start() self._phase_label_tool_bar = Qt.QToolBar(self) if None: self._phase_label_formatter = None else: self._phase_label_formatter = lambda x: eng_notation.num_to_str(x) self._phase_label_tool_bar.addWidget(Qt.QLabel("phase_label"+": ")) self._phase_label_label = Qt.QLabel(str(self._phase_label_formatter(self.phase_label))) self._phase_label_tool_bar.addWidget(self._phase_label_label) self.main_tab_grid_layout_3.addWidget(self._phase_label_tool_bar, 4, 0, 1, 1) for r in range(4, 5): self.main_tab_grid_layout_3.setRowStretch(r, 1) for c in range(0, 1): self.main_tab_grid_layout_3.setColumnStretch(c, 1) self._phase_deg_tool_bar = Qt.QToolBar(self) self._phase_deg_tool_bar.addWidget(Qt.QLabel("phase_deg"+": ")) self._phase_deg_line_edit = Qt.QLineEdit(str(self.phase_deg)) self._phase_deg_tool_bar.addWidget(self._phase_deg_line_edit) self._phase_deg_line_edit.returnPressed.connect( lambda: self.set_phase_deg(eng_notation.str_to_num(str(self._phase_deg_line_edit.text().toAscii())))) self.main_tab_grid_layout_3.addWidget(self._phase_deg_tool_bar, 4, 4, 1, 1) for r in range(4, 5): self.main_tab_grid_layout_3.setRowStretch(r, 1) for c in range(4, 5): self.main_tab_grid_layout_3.setColumnStretch(c, 1) self.low_pass_filter_1 = filter.fir_filter_ccf(1, firdes.low_pass( 1, samp_rate, lpf_cut, 1e3, firdes.WIN_HAMMING, 6.76)) self.low_pass_filter_0 = filter.fir_filter_ccf(1, firdes.low_pass( 1, samp_rate, lpf_cut, 1e3, firdes.WIN_HAMMING, 6.76)) self._idx_label_tool_bar = Qt.QToolBar(self) if None: self._idx_label_formatter = None else: self._idx_label_formatter = lambda x: eng_notation.num_to_str(x) self._idx_label_tool_bar.addWidget(Qt.QLabel("idx_label"+": ")) self._idx_label_label = Qt.QLabel(str(self._idx_label_formatter(self.idx_label))) self._idx_label_tool_bar.addWidget(self._idx_label_label) self.main_tab_grid_layout_2.addWidget(self._idx_label_tool_bar, 4, 3, 1, 1) for r in range(4, 5): self.main_tab_grid_layout_2.setRowStretch(r, 1) for c in range(3, 4): self.main_tab_grid_layout_2.setColumnStretch(c, 1) self.fft_vxx_2 = fft.fft_vcc(nfft, True, (window.blackmanharris(nfft)), True, 4) self.fft_vxx_1 = fft.fft_vcc(nfft, True, (window.blackmanharris(nfft)), True, 4) self.fft_vxx_0 = fft.fft_vcc(nfft, True, (window.blackmanharris(nfft)), True, 4) self.blocks_vector_to_stream_0_0 = blocks.vector_to_stream(gr.sizeof_gr_complex*1, nfft) self.blocks_throttle_1 = blocks.throttle(gr.sizeof_gr_complex*1, samp_rate,True) self.blocks_throttle_0 = blocks.throttle(gr.sizeof_gr_complex*1, samp_rate,True) self.blocks_sub_xx_1_0 = blocks.sub_ff(1) self.blocks_sub_xx_1 = blocks.sub_ff(1) self.blocks_sub_xx_0_0 = blocks.sub_ff(1) self.blocks_sub_xx_0 = blocks.sub_ff(1) self.blocks_stream_to_vector_1 = blocks.stream_to_vector(gr.sizeof_gr_complex*1, nfft) self.blocks_stream_to_vector_0 = blocks.stream_to_vector(gr.sizeof_gr_complex*1, nfft) self.blocks_skiphead_0 = blocks.skiphead(gr.sizeof_gr_complex*1, 95) self.blocks_short_to_float_0 = blocks.short_to_float(1, 1) self.blocks_null_sink_0 = blocks.null_sink(gr.sizeof_short*1) self.blocks_multiply_const_vxx_2_0 = blocks.multiply_const_vff((samp_rate/(2*math.pi), )) self.blocks_multiply_const_vxx_2 = blocks.multiply_const_vff((samp_rate/(2*math.pi), )) self.blocks_multiply_const_vxx_1_1_0 = blocks.multiply_const_vff((180.0/math.pi, )) self.blocks_multiply_const_vxx_1_1 = blocks.multiply_const_vff((180.0/math.pi, )) self.blocks_multiply_const_vxx_1_0_2_0 = blocks.multiply_const_vff((180.0/math.pi, )) self.blocks_multiply_const_vxx_1_0_2 = blocks.multiply_const_vff((180.0/math.pi, )) self.blocks_multiply_const_vxx_1_0_1 = blocks.multiply_const_vcc((complex(0,1), )) self.blocks_multiply_const_vxx_1_0_0_2_0 = blocks.multiply_const_vff((180.0/math.pi, )) self.blocks_multiply_const_vxx_1_0_0_2 = blocks.multiply_const_vff((180.0/math.pi, )) self.blocks_multiply_const_vxx_1_0_0_1 = blocks.multiply_const_vcc((complex(math.cos(-1*phase_rad2),math.sin(-1*phase_rad2)), )) self.blocks_multiply_const_vxx_1_0_0_0 = blocks.multiply_const_vcc((complex(0,-1), )) self.blocks_multiply_const_vxx_1_0_0 = blocks.multiply_const_vff((180.0/math.pi, )) self.blocks_multiply_const_vxx_1_0 = blocks.multiply_const_vff((180.0/math.pi, )) self.blocks_multiply_const_vxx_1 = blocks.multiply_const_vff((180.0/math.pi, )) self.blocks_multiply_conjugate_cc_0 = blocks.multiply_conjugate_cc(nfft) self.blocks_moving_average_xx_0_1 = blocks.moving_average_ff(int(avg_len), 1.0/avg_len, 4000, 1) self.blocks_moving_average_xx_0_0_0 = blocks.moving_average_ff(int(avg_len), 1.0/avg_len, 4000, 1) self.blocks_moving_average_xx_0_0 = blocks.moving_average_ff(int(avg_len), 1.0/avg_len, 4000, 1) self.blocks_moving_average_xx_0 = blocks.moving_average_ff(int(avg_len), 1.0/avg_len, 4000, 1) self.blocks_keep_m_in_n_0_0_0 = blocks.keep_m_in_n(gr.sizeof_float, 1, nfft, int(idx_max)) self.blocks_delay_0_0 = blocks.delay(gr.sizeof_gr_complex*1, int(ew_delay)) self.blocks_delay_0 = blocks.delay(gr.sizeof_gr_complex*1, int(ns_delay)) self.blocks_complex_to_mag_0 = blocks.complex_to_mag(nfft) self.blocks_complex_to_arg_0_0_0_2 = blocks.complex_to_arg(1) self.blocks_complex_to_arg_0_0_0_1 = blocks.complex_to_arg(1) self.blocks_complex_to_arg_0_0_0_0_1 = blocks.complex_to_arg(1) self.blocks_complex_to_arg_0_0_0_0_0 = blocks.complex_to_arg(1) self.blocks_complex_to_arg_0_0_0_0 = blocks.complex_to_arg(1) self.blocks_complex_to_arg_0_0_0 = blocks.complex_to_arg(1) self.blocks_complex_to_arg_0 = blocks.complex_to_arg(1) self.blocks_argmax_xx_0 = blocks.argmax_fs(nfft) self.blocks_add_xx_0_0 = blocks.add_vcc(1) self.blocks_add_xx_0 = blocks.add_vcc(1) self.blocks_add_const_vxx_0 = blocks.add_const_vff((-nfft/2.0, )) self.analog_pll_freqdet_cf_0_0 = analog.pll_freqdet_cf(math.pi/pll_lbw, math.pi/pll_freq, -1*math.pi/pll_freq) self.analog_pll_freqdet_cf_0 = analog.pll_freqdet_cf(math.pi/pll_lbw, math.pi/pll_freq, -1*math.pi/pll_freq) self.analog_pll_carriertracking_cc_0_0 = analog.pll_carriertracking_cc(math.pi/pll_lbw, math.pi/pll_freq, -math.pi/pll_freq) self.analog_pll_carriertracking_cc_0 = analog.pll_carriertracking_cc(math.pi/pll_lbw, math.pi/pll_freq, -math.pi/pll_freq) ################################################## # Connections ################################################## self.connect((self.analog_pll_carriertracking_cc_0, 0), (self.qtgui_freq_sink_x_0_0_0_0, 1)) self.connect((self.analog_pll_carriertracking_cc_0, 0), (self.qtgui_waterfall_sink_x_0_0_0_0_0, 0)) self.connect((self.analog_pll_carriertracking_cc_0_0, 0), (self.qtgui_freq_sink_x_0_0_0_0, 0)) self.connect((self.analog_pll_carriertracking_cc_0_0, 0), (self.qtgui_waterfall_sink_x_0_1_0_0, 0)) self.connect((self.analog_pll_freqdet_cf_0, 0), (self.blocks_multiply_const_vxx_2, 0)) self.connect((self.analog_pll_freqdet_cf_0_0, 0), (self.blocks_multiply_const_vxx_2_0, 0)) self.connect((self.blocks_add_const_vxx_0, 0), (self.max_idx_probe1, 0)) self.connect((self.blocks_add_const_vxx_0, 0), (self.qtgui_histogram_sink_x_0, 0)) self.connect((self.blocks_add_const_vxx_0, 0), (self.qtgui_number_sink_0, 0)) self.connect((self.blocks_add_xx_0, 0), (self.analog_pll_carriertracking_cc_0_0, 0)) self.connect((self.blocks_add_xx_0, 0), (self.analog_pll_freqdet_cf_0, 0)) self.connect((self.blocks_add_xx_0, 0), (self.blocks_complex_to_arg_0_0_0_2, 0)) self.connect((self.blocks_add_xx_0, 0), (self.qtgui_freq_sink_x_0_0_0, 0)) self.connect((self.blocks_add_xx_0, 0), (self.qtgui_waterfall_sink_x_0_1_0, 0)) self.connect((self.blocks_add_xx_0_0, 0), (self.analog_pll_carriertracking_cc_0, 0)) self.connect((self.blocks_add_xx_0_0, 0), (self.analog_pll_freqdet_cf_0_0, 0)) self.connect((self.blocks_add_xx_0_0, 0), (self.blocks_complex_to_arg_0_0_0_0_1, 0)) self.connect((self.blocks_add_xx_0_0, 0), (self.qtgui_freq_sink_x_0_0_0, 1)) self.connect((self.blocks_add_xx_0_0, 0), (self.qtgui_waterfall_sink_x_0_0_0_0, 0)) self.connect((self.blocks_argmax_xx_0, 1), (self.blocks_null_sink_0, 0)) self.connect((self.blocks_argmax_xx_0, 0), (self.blocks_short_to_float_0, 0)) self.connect((self.blocks_complex_to_arg_0, 0), (self.blocks_keep_m_in_n_0_0_0, 0)) self.connect((self.blocks_complex_to_arg_0_0_0, 0), (self.blocks_multiply_const_vxx_1_1, 0)) self.connect((self.blocks_complex_to_arg_0_0_0, 0), (self.blocks_sub_xx_0, 0)) self.connect((self.blocks_complex_to_arg_0_0_0_0, 0), (self.blocks_multiply_const_vxx_1_0, 0)) self.connect((self.blocks_complex_to_arg_0_0_0_0, 0), (self.blocks_sub_xx_0, 1)) self.connect((self.blocks_complex_to_arg_0_0_0_0_0, 0), (self.blocks_multiply_const_vxx_1_0_0, 0)) self.connect((self.blocks_complex_to_arg_0_0_0_0_0, 0), (self.blocks_sub_xx_0_0, 1)) self.connect((self.blocks_complex_to_arg_0_0_0_0_1, 0), (self.blocks_multiply_const_vxx_1_0_0_2_0, 0)) self.connect((self.blocks_complex_to_arg_0_0_0_1, 0), (self.blocks_multiply_const_vxx_1_1_0, 0)) self.connect((self.blocks_complex_to_arg_0_0_0_1, 0), (self.blocks_sub_xx_0_0, 0)) self.connect((self.blocks_complex_to_arg_0_0_0_2, 0), (self.blocks_multiply_const_vxx_1_0_0_2, 0)) self.connect((self.blocks_complex_to_mag_0, 0), (self.blocks_argmax_xx_0, 0)) self.connect((self.blocks_complex_to_mag_0, 0), (self.qtgui_vector_sink_f_0, 0)) self.connect((self.blocks_delay_0, 0), (self.blocks_throttle_0, 0)) self.connect((self.blocks_delay_0_0, 0), (self.low_pass_filter_1, 0)) self.connect((self.blocks_delay_0_0, 0), (self.qtgui_freq_sink_x_0, 1)) self.connect((self.blocks_delay_0_0, 0), (self.qtgui_waterfall_sink_x_0_0, 0)) self.connect((self.blocks_keep_m_in_n_0_0_0, 0), (self.blocks_multiply_const_vxx_1, 0)) self.connect((self.blocks_moving_average_xx_0, 0), (self.blocks_sub_xx_1, 0)) self.connect((self.blocks_moving_average_xx_0, 0), (self.qtgui_histogram_sink_x_1, 0)) self.connect((self.blocks_moving_average_xx_0, 0), (self.qtgui_time_sink_x_2, 0)) self.connect((self.blocks_moving_average_xx_0_0, 0), (self.blocks_sub_xx_1, 1)) self.connect((self.blocks_moving_average_xx_0_0, 0), (self.qtgui_histogram_sink_x_1, 1)) self.connect((self.blocks_moving_average_xx_0_0, 0), (self.qtgui_time_sink_x_2, 1)) self.connect((self.blocks_moving_average_xx_0_0_0, 0), (self.blocks_sub_xx_1_0, 1)) self.connect((self.blocks_moving_average_xx_0_1, 0), (self.blocks_sub_xx_1_0, 0)) self.connect((self.blocks_multiply_conjugate_cc_0, 0), (self.fft_vxx_2, 0)) self.connect((self.blocks_multiply_const_vxx_1, 0), (self.qtgui_histogram_sink_x_0_0, 0)) self.connect((self.blocks_multiply_const_vxx_1, 0), (self.qtgui_number_sink_0, 1)) self.connect((self.blocks_multiply_const_vxx_1_0, 0), (self.qtgui_time_sink_x_0, 1)) self.connect((self.blocks_multiply_const_vxx_1_0_0, 0), (self.qtgui_time_sink_x_0_1, 1)) self.connect((self.blocks_multiply_const_vxx_1_0_0_0, 0), (self.blocks_add_xx_0_0, 1)) self.connect((self.blocks_multiply_const_vxx_1_0_0_1, 0), (self.blocks_complex_to_arg_0_0_0_0_0, 0)) self.connect((self.blocks_multiply_const_vxx_1_0_0_1, 0), (self.blocks_multiply_const_vxx_1_0_0_0, 0)) self.connect((self.blocks_multiply_const_vxx_1_0_0_1, 0), (self.blocks_multiply_const_vxx_1_0_1, 0)) self.connect((self.blocks_multiply_const_vxx_1_0_0_1, 0), (self.qtgui_time_sink_x_1, 1)) self.connect((self.blocks_multiply_const_vxx_1_0_0_2, 0), (self.blocks_moving_average_xx_0_1, 0)) self.connect((self.blocks_multiply_const_vxx_1_0_0_2_0, 0), (self.blocks_moving_average_xx_0_0_0, 0)) self.connect((self.blocks_multiply_const_vxx_1_0_1, 0), (self.blocks_add_xx_0, 1)) self.connect((self.blocks_multiply_const_vxx_1_0_2, 0), (self.qtgui_time_sink_x_0, 2)) self.connect((self.blocks_multiply_const_vxx_1_0_2_0, 0), (self.qtgui_time_sink_x_0_1, 2)) self.connect((self.blocks_multiply_const_vxx_1_1, 0), (self.qtgui_time_sink_x_0, 0)) self.connect((self.blocks_multiply_const_vxx_1_1_0, 0), (self.qtgui_time_sink_x_0_1, 0)) self.connect((self.blocks_multiply_const_vxx_2, 0), (self.blocks_moving_average_xx_0, 0)) self.connect((self.blocks_multiply_const_vxx_2_0, 0), (self.blocks_moving_average_xx_0_0, 0)) self.connect((self.blocks_short_to_float_0, 0), (self.blocks_add_const_vxx_0, 0)) self.connect((self.blocks_skiphead_0, 0), (self.blocks_delay_0, 0)) self.connect((self.blocks_stream_to_vector_0, 0), (self.fft_vxx_0, 0)) self.connect((self.blocks_stream_to_vector_1, 0), (self.fft_vxx_1, 0)) self.connect((self.blocks_sub_xx_0, 0), (self.blocks_multiply_const_vxx_1_0_2, 0)) self.connect((self.blocks_sub_xx_0, 0), (self.phase_probe, 0)) self.connect((self.blocks_sub_xx_0_0, 0), (self.blocks_multiply_const_vxx_1_0_2_0, 0)) self.connect((self.blocks_sub_xx_1, 0), (self.qtgui_time_sink_x_2, 2)) self.connect((self.blocks_sub_xx_1_0, 0), (self.qtgui_histogram_sink_x_1_0, 0)) self.connect((self.blocks_throttle_0, 0), (self.low_pass_filter_0, 0)) self.connect((self.blocks_throttle_0, 0), (self.qtgui_freq_sink_x_0, 0)) self.connect((self.blocks_throttle_0, 0), (self.qtgui_waterfall_sink_x_0, 0)) self.connect((self.blocks_throttle_1, 0), (self.blocks_delay_0_0, 0)) self.connect((self.blocks_vector_to_stream_0_0, 0), (self.blocks_complex_to_arg_0, 0)) self.connect((self.fft_vxx_0, 0), (self.blocks_multiply_conjugate_cc_0, 0)) self.connect((self.fft_vxx_1, 0), (self.blocks_multiply_conjugate_cc_0, 1)) self.connect((self.fft_vxx_2, 0), (self.blocks_complex_to_mag_0, 0)) self.connect((self.fft_vxx_2, 0), (self.blocks_vector_to_stream_0_0, 0)) self.connect((self.low_pass_filter_0, 0), (self.blocks_add_xx_0, 0)) self.connect((self.low_pass_filter_0, 0), (self.blocks_add_xx_0_0, 0)) self.connect((self.low_pass_filter_0, 0), (self.blocks_complex_to_arg_0_0_0, 0)) self.connect((self.low_pass_filter_0, 0), (self.blocks_complex_to_arg_0_0_0_1, 0)) self.connect((self.low_pass_filter_0, 0), (self.blocks_stream_to_vector_0, 0)) self.connect((self.low_pass_filter_0, 0), (self.qtgui_time_sink_x_1, 0)) self.connect((self.low_pass_filter_0, 0), (self.qtgui_time_sink_x_1_0, 0)) self.connect((self.low_pass_filter_0, 0), (self.rational_resampler_xxx_0, 0)) self.connect((self.low_pass_filter_1, 0), (self.blocks_complex_to_arg_0_0_0_0, 0)) self.connect((self.low_pass_filter_1, 0), (self.blocks_multiply_const_vxx_1_0_0_1, 0)) self.connect((self.low_pass_filter_1, 0), (self.blocks_stream_to_vector_1, 0)) self.connect((self.low_pass_filter_1, 0), (self.qtgui_time_sink_x_1_0, 1)) self.connect((self.low_pass_filter_1, 0), (self.rational_resampler_xxx_0_0, 0)) self.connect((self.rational_resampler_xxx_0, 0), (self.qtgui_freq_sink_x_0_0, 0)) self.connect((self.rational_resampler_xxx_0, 0), (self.qtgui_waterfall_sink_x_0_1, 0)) self.connect((self.rational_resampler_xxx_0_0, 0), (self.qtgui_freq_sink_x_0_0, 1)) self.connect((self.rational_resampler_xxx_0_0, 0), (self.qtgui_waterfall_sink_x_0_0_0, 0)) self.connect((self.sigmf_source_0, 0), (self.blocks_skiphead_0, 0)) self.connect((self.sigmf_source_1, 0), (self.blocks_throttle_1, 0)) def closeEvent(self, event): self.settings = Qt.QSettings("GNU Radio", "rtlsdr_v3_dual_WWV_1") self.settings.setValue("geometry", self.saveGeometry()) event.accept() def get_path(self): return self.path def set_path(self, path): self.path = path self.set_fp_1("{:s}/{:s}".format(self.path, self.fn_1)) self.set_fp_0("{:s}/{:s}".format(self.path, self.fn_0)) def get_signal_type(self): return self.signal_type def set_signal_type(self, signal_type): self.signal_type = signal_type def get_ts_str(self): return self.ts_str def set_ts_str(self, ts_str): self.ts_str = ts_str self.set_fn_wav("{:s}_{:s}_{:s}.wav".format(signal_type.upper(), pol.upper(),self.ts_str)) self.set_fn_1("{:s}_{:s}_{:s}".format(signal_type.upper(), antenna_1.upper(),self.ts_str)) self.set_fn_0("{:s}_{:s}_{:s}".format(signal_type.upper(), antenna_0.upper(),self.ts_str)) def get_interp_1(self): return self.interp_1 def set_interp_1(self, interp_1): self.interp_1 = interp_1 self.set_samp_rate(2048000/self.decim_1*self.interp_1) def get_decim_1(self): return self.decim_1 def set_decim_1(self, decim_1): self.decim_1 = decim_1 self.set_samp_rate(2048000/self.decim_1*self.interp_1) def get_antenna_1(self): return self.antenna_1 def set_antenna_1(self, antenna_1): self.antenna_1 = antenna_1 def get_antenna_0(self): return self.antenna_0 def set_antenna_0(self, antenna_0): self.antenna_0 = antenna_0 def get_samp_rate(self): return self.samp_rate def set_samp_rate(self, samp_rate): self.samp_rate = samp_rate self.qtgui_waterfall_sink_x_0_1_0_0.set_frequency_range(0, self.samp_rate) self.qtgui_waterfall_sink_x_0_1_0.set_frequency_range(0, self.samp_rate) self.qtgui_waterfall_sink_x_0_1.set_frequency_range(0, self.samp_rate/5) self.qtgui_waterfall_sink_x_0_0_0_0_0.set_frequency_range(0, self.samp_rate) self.qtgui_waterfall_sink_x_0_0_0_0.set_frequency_range(0, self.samp_rate) self.qtgui_waterfall_sink_x_0_0_0.set_frequency_range(0, self.samp_rate/5) self.qtgui_waterfall_sink_x_0_0.set_frequency_range(self.rx_freq, self.samp_rate) self.qtgui_waterfall_sink_x_0.set_frequency_range(self.rx_freq, self.samp_rate) self.qtgui_time_sink_x_2.set_samp_rate(self.samp_rate) self.qtgui_time_sink_x_1_0.set_samp_rate(self.samp_rate) self.qtgui_time_sink_x_1.set_samp_rate(self.samp_rate) self.qtgui_time_sink_x_0_1.set_samp_rate(self.samp_rate) self.qtgui_time_sink_x_0.set_samp_rate(self.samp_rate) self.qtgui_freq_sink_x_0_0_0_0.set_frequency_range(0, self.samp_rate) self.qtgui_freq_sink_x_0_0_0.set_frequency_range(0, self.samp_rate) self.qtgui_freq_sink_x_0_0.set_frequency_range(0, self.samp_rate/5) self.qtgui_freq_sink_x_0.set_frequency_range(self.rx_freq*0, self.samp_rate) self.set_offset(self.samp_rate/4) self.low_pass_filter_1.set_taps(firdes.low_pass(1, self.samp_rate, self.lpf_cut, 1e3, firdes.WIN_HAMMING, 6.76)) self.low_pass_filter_0.set_taps(firdes.low_pass(1, self.samp_rate, self.lpf_cut, 1e3, firdes.WIN_HAMMING, 6.76)) self.blocks_throttle_1.set_sample_rate(self.samp_rate) self.blocks_throttle_0.set_sample_rate(self.samp_rate) self.blocks_multiply_const_vxx_2_0.set_k((self.samp_rate/(2*math.pi), )) self.blocks_multiply_const_vxx_2.set_k((self.samp_rate/(2*math.pi), )) def get_pol(self): return self.pol def set_pol(self, pol): self.pol = pol def get_phase_rad(self): return self.phase_rad def set_phase_rad(self, phase_rad): self.phase_rad = phase_rad self.set_phase_label(self._phase_label_formatter(self.phase_rad*180.0/math.pi)) def get_phase_deg(self): return self.phase_deg def set_phase_deg(self, phase_deg): self.phase_deg = phase_deg self.set_phase_rad2(self.phase_deg*math.pi/180.0) Qt.QMetaObject.invokeMethod(self._phase_deg_line_edit, "setText", Qt.Q_ARG("QString", eng_notation.num_to_str(self.phase_deg))) def get_idx_max(self): return self.idx_max def set_idx_max(self, idx_max): self.idx_max = idx_max self.set_idx_label(self._idx_label_formatter(self.idx_max)) self.blocks_keep_m_in_n_0_0_0.set_offset(int(self.idx_max)) def get_fn_1(self): return self.fn_1 def set_fn_1(self, fn_1): self.fn_1 = fn_1 self.set_fp_1("{:s}/{:s}".format(self.path, self.fn_1)) def get_fn_0(self): return self.fn_0 def set_fn_0(self, fn_0): self.fn_0 = fn_0 self.set_fp_0("{:s}/{:s}".format(self.path, self.fn_0)) def get_rx_gain(self): return self.rx_gain def set_rx_gain(self, rx_gain): self.rx_gain = rx_gain Qt.QMetaObject.invokeMethod(self._rx_gain_line_edit, "setText", Qt.Q_ARG("QString", eng_notation.num_to_str(self.rx_gain))) def get_rx_freq(self): return self.rx_freq def set_rx_freq(self, rx_freq): self.rx_freq = rx_freq Qt.QMetaObject.invokeMethod(self._rx_freq_line_edit, "setText", Qt.Q_ARG("QString", eng_notation.num_to_str(self.rx_freq))) self.qtgui_waterfall_sink_x_0_0.set_frequency_range(self.rx_freq, self.samp_rate) self.qtgui_waterfall_sink_x_0.set_frequency_range(self.rx_freq, self.samp_rate) self.qtgui_freq_sink_x_0.set_frequency_range(self.rx_freq*0, self.samp_rate) def get_ppm(self): return self.ppm def set_ppm(self, ppm): self.ppm = ppm Qt.QMetaObject.invokeMethod(self._ppm_line_edit, "setText", Qt.Q_ARG("QString", eng_notation.num_to_str(self.ppm))) def get_pll_lbw(self): return self.pll_lbw def set_pll_lbw(self, pll_lbw): self.pll_lbw = pll_lbw Qt.QMetaObject.invokeMethod(self._pll_lbw_line_edit, "setText", Qt.Q_ARG("QString", eng_notation.num_to_str(self.pll_lbw))) self.analog_pll_freqdet_cf_0_0.set_loop_bandwidth(math.pi/self.pll_lbw) self.analog_pll_freqdet_cf_0.set_loop_bandwidth(math.pi/self.pll_lbw) self.analog_pll_carriertracking_cc_0_0.set_loop_bandwidth(math.pi/self.pll_lbw) self.analog_pll_carriertracking_cc_0.set_loop_bandwidth(math.pi/self.pll_lbw) def get_pll_freq(self): return self.pll_freq def set_pll_freq(self, pll_freq): self.pll_freq = pll_freq Qt.QMetaObject.invokeMethod(self._pll_freq_line_edit, "setText", Qt.Q_ARG("QString", eng_notation.num_to_str(self.pll_freq))) self.analog_pll_freqdet_cf_0_0.set_max_freq(math.pi/self.pll_freq) self.analog_pll_freqdet_cf_0_0.set_min_freq(-1*math.pi/self.pll_freq) self.analog_pll_freqdet_cf_0.set_max_freq(math.pi/self.pll_freq) self.analog_pll_freqdet_cf_0.set_min_freq(-1*math.pi/self.pll_freq) self.analog_pll_carriertracking_cc_0_0.set_max_freq(math.pi/self.pll_freq) self.analog_pll_carriertracking_cc_0_0.set_min_freq(-math.pi/self.pll_freq) self.analog_pll_carriertracking_cc_0.set_max_freq(math.pi/self.pll_freq) self.analog_pll_carriertracking_cc_0.set_min_freq(-math.pi/self.pll_freq) def get_phase_rad2(self): return self.phase_rad2 def set_phase_rad2(self, phase_rad2): self.phase_rad2 = phase_rad2 self.blocks_multiply_const_vxx_1_0_0_1.set_k((complex(math.cos(-1*self.phase_rad2),math.sin(-1*self.phase_rad2)), )) def get_phase_label(self): return self.phase_label def set_phase_label(self, phase_label): self.phase_label = phase_label Qt.QMetaObject.invokeMethod(self._phase_label_label, "setText", Qt.Q_ARG("QString", self.phase_label)) def get_offset(self): return self.offset def set_offset(self, offset): self.offset = offset def get_ns_delay(self): return self.ns_delay def set_ns_delay(self, ns_delay): self.ns_delay = ns_delay Qt.QMetaObject.invokeMethod(self._ns_delay_line_edit, "setText", Qt.Q_ARG("QString", eng_notation.num_to_str(self.ns_delay))) self.blocks_delay_0.set_dly(int(self.ns_delay)) def get_nfft(self): return self.nfft def set_nfft(self, nfft): self.nfft = nfft self.qtgui_histogram_sink_x_0.set_bins(self.nfft) self.qtgui_histogram_sink_x_0.set_bins(self.nfft) self.blocks_keep_m_in_n_0_0_0.set_n(self.nfft) self.blocks_add_const_vxx_0.set_k((-self.nfft/2.0, )) def get_lpf_cut(self): return self.lpf_cut def set_lpf_cut(self, lpf_cut): self.lpf_cut = lpf_cut Qt.QMetaObject.invokeMethod(self._lpf_cut_line_edit, "setText", Qt.Q_ARG("QString", eng_notation.num_to_str(self.lpf_cut))) self.low_pass_filter_1.set_taps(firdes.low_pass(1, self.samp_rate, self.lpf_cut, 1e3, firdes.WIN_HAMMING, 6.76)) self.low_pass_filter_0.set_taps(firdes.low_pass(1, self.samp_rate, self.lpf_cut, 1e3, firdes.WIN_HAMMING, 6.76)) def get_idx_label(self): return self.idx_label def set_idx_label(self, idx_label): self.idx_label = idx_label Qt.QMetaObject.invokeMethod(self._idx_label_label, "setText", Qt.Q_ARG("QString", self.idx_label)) def get_fp_1(self): return self.fp_1 def set_fp_1(self, fp_1): self.fp_1 = fp_1 def get_fp_0(self): return self.fp_0 def set_fp_0(self, fp_0): self.fp_0 = fp_0 def get_fn_wav(self): return self.fn_wav def set_fn_wav(self, fn_wav): self.fn_wav = fn_wav def get_ew_delay(self): return self.ew_delay def set_ew_delay(self, ew_delay): self.ew_delay = ew_delay Qt.QMetaObject.invokeMethod(self._ew_delay_line_edit, "setText", Qt.Q_ARG("QString", eng_notation.num_to_str(self.ew_delay))) self.blocks_delay_0_0.set_dly(int(self.ew_delay)) def get_avg_len(self): return self.avg_len def set_avg_len(self, avg_len): self.avg_len = avg_len Qt.QMetaObject.invokeMethod(self._avg_len_line_edit, "setText", Qt.Q_ARG("QString", eng_notation.num_to_str(self.avg_len))) self.blocks_moving_average_xx_0_1.set_length_and_scale(int(self.avg_len),
= RobotState() def setup_multiple_action_clients(self, action_topics, wait_duration=2.0): """ Tries to set up a MoveIt MoveGroup action client for calling it later. @param action_topics : list of tuples of Action type and topic names @param wait_duration: Defines how long to wait for the given client if it is not available right now. """ if action_topics is not None: print "ProxyMoveItClient: setup_multiple_action_clients ..." for action_type, topics in action_topics: print "Action type: ",action_type," : ",topics for topic in topics: self.setup_action_client(topic, action_type, wait_duration) else: print "ProxyMoveItClient: no additional action clients" def setup_action_client(self, action_topic, action_type, wait_duration): """ Tries to set up a MoveIt MoveGroup action client for calling it later. @param action_topic : string - The topic of the action to call. @param action_type : string - class definition name for interface @param wait_duration : Defines how long to wait for the given client if it is not available right now. """ if not isinstance(action_topic,str): raise Exception(" ProxyMoveItClient - Invalid action topic %s " % ( action_topic )) if action_topic not in ProxyMoveItClient._action_clients: # We have not initialized this client yet Logger.loginfo("Initializing proxy MoveIt client for "+action_topic+" ...") try: ProxyMoveItClient._action_clients[action_topic] = ProxyActionClient({action_topic: eval(action_type) }, wait_duration) except Exception as e: Logger.logwarn("ProxyMoveItClient setup error - %s"% (str(e))) raise e def dump_moveit_client(self): ''' This dumps the ProxyMoveItClient data for debugging and status ''' data = "\n*******************************\n" data += "------ ProxyMoveItClient ------\n" data += " Robot: "+ProxyMoveItClient._robot_description+"\n" data += " --- Action Clients ---\n" for topic in ProxyMoveItClient._action_clients: data += " client: "+topic+"\n" data += "----------------------------\n" for group in ProxyMoveItClient._move_group_list: data += str(self.dump_moveit_goal(group)) data += "----------------------------\n\n" data += "--------------------------------\n" data += "################################\n" return data def dump_moveit_goal(self, group): ''' This dumps the current MoveGroupGoal data for debugging and status @param group : string for a specific move group or ''' data = " group: "+group+"\n" data += " --- MotionPlanRequest ---\n" data += " "+str(ProxyMoveItClient._motion_plan_requests[group]) data += "\n ----------------------------\n" data += " --- PlanningOption ---\n" data += " "+str(ProxyMoveItClient._planning_options[group]) data += "\n ----------------------------\n" return data def get_error_msg(self, error_code): ''' Returns error message string based on @param error_code : code returned from MoveIt! ''' for key, value in MoveItErrorCodes.__dict__.items(): if value == error_code.val and key[0] != "_": return key + (" (%s)" % str(error_code.val)) return "unknown error (%s)" % str(error_code.val) def is_available(self, action_topic): """ Checks if the client on the given action topic is available. @param topic: string The topic of interest. """ if(not action_topic in ProxyMoveItClient._action_clients): raise Exception("ProxyMoveItClient - topic %s is not initialized yet!" % (action_topic)) return ProxyMoveItClient._action_clients[action_topic].is_available(action_topic) def get_state(self, action_topic): """ Returns current state of the ActionLib client. @param topic: string The topic of interest. """ if(not action_topic in ProxyMoveItClient._action_clients): raise Exception("ProxyMoveItClient - topic %s is not initialized yet!" % (action_topic)) return ProxyMoveItClient._action_clients[action_topic].get_state(action_topic) def has_result(self, action_topic): """ Checks if the client on the given action topic has an active result. @param topic: string The topic of interest. """ if(not action_topic in ProxyMoveItClient._action_clients): raise Exception("ProxyMoveItClient - topic %s is not initialized yet!" % (action_topic)) return ProxyMoveItClient._action_clients[action_topic].has_result(action_topic) def get_result(self, action_topic): """ Gets that latest result from the given action topic. @param topic: string The topic of interest. """ if(not action_topic in ProxyMoveItClient._action_clients): raise Exception("ProxyMoveItClient - topic %s is not initialized yet!" % (action_topic)) return ProxyMoveItClient._action_clients[action_topic].get_result(action_topic) def cancel(self, action_topic): """ Cancel any active goals on the given action topic @param topic: string The topic of interest. """ if(not action_topic in ProxyMoveItClient._action_clients): raise Exception("ProxyMoveItClient - topic %s is not initialized yet!" % (action_topic)) return ProxyMoveItClient._action_clients[action_topic].cancel(action_topic) def connect_action_server(self, action_topic, action_type, wait_duration=0.0): """ Checks if the client on the given action topic is available. @param action_topic: string The topic of interest. @param action_type: string The interface type @param wait_duration : float How long to wait for a connection """ if not action_topic in ProxyMoveItClient._action_clients: raise Exception("ProxyMoveItClient - topic %s is not initialized yet!" % (action_topic)) ProxyMoveItClient._action_clients[action_topic].setupClient(action_topic, eval(action_type) , wait_duration) return ProxyMoveItClient._action_clients[action_topic].is_available(action_topic) def is_active(self, action_topic): """ Determines if an action request is already being processed on the given topic. @type topic: string @param topic: The topic of interest. """ if not action_topic in ProxyMoveItClient._action_clients: raise Exception("ProxyMoveItClient - is_active topic %s is not initialized yet!" % (action_topic)) return ProxyMoveItClient._action_clients[action_topic].is_active(action_topic) def reset_motion_plan_request(self, move_group=None): ''' Clears the specified dictionary for move group @param move_group : string or list specifying a particular move group(s) (default: None - change all relevant ) ''' flag = False if move_group is None: for group in self._move_group_list: try: ret = self.reset_motion_plan_request(group) if ret: flag=ret except: pass # Check to see that something was reset if flag: return flag else: raise Exception(" Failed to reset dictionary for any relevant topic for move_group=(%s) !" % (str(move_group))) elif bool(move_group) and all([isinstance(elem,basestring) for elem in move_group]): # List of strings for group in move_group: try: ret = self.reset_motion_plan_request(group) if ret: flag=ret except: pass # Check to see that something was reset if flag: return flag else: raise Exception(" Failed to reset dictionary for any relevant topic for move_group=(%s) !" % (str(move_group))) else: # Base case to reset specified motion plan requests options try: # Reset the planning options for a given move group ProxyMoveItClient._motion_plan_requests[move_group] = copy.deepcopy(ProxyMoveItClient._default_motion_plan_requests[move_group]) return True except Exception as e: Logger.logerr(" Invalid move group %s for motion plan request - not configured yet!" % (str(move_group))) return False def reset_planning_options(self, move_group=None): ''' Reset the planning options to match the defaults @param move_group : string or list specifying a particular move group(s) (default: None - change all relevant ) ''' flag = False if move_group is None: for group in self._move_group_list: try: ret = self.reset_planning_options(group) if ret: flag=ret except: pass # Check to see that something was reset if flag: return flag else: raise Exception(" Failed to reset planning options for any relevant topic for move_group=(%s) !" % (str(move_group))) elif bool(move_group) and all([isinstance(elem,basestring) for elem in move_group]): # List of strings for group in move_group: try: ret = self.reset_planning_options(group) if ret: flag=ret except: pass # Check to see that something was reset if flag: return flag else: raise Exception(" Failed to reset planning options for any relevant topic for move_group=(%s) !" % (str(move_group))) else: # Base case to reset specified motion plan requests options try: # Reset the planning options for a given move group ProxyMoveItClient._planning_options[move_group] = copy.deepcopy(ProxyMoveItClient._default_planning_options[move_group]) return True except Exception as e: Logger.logerr(" Invalid move group %s for planning options - not configured yet!" % (str(move_group))) return False def reset_joint_constraints(self, move_group=None): ''' Reset the planning options to match the defaults @param move_group : string or list specifying a particular move group(s) (default: None - change all relevant ) ''' flag = False if move_group is None: for group in self._move_group_list: try: ret = self.reset_joint_constraints(group) if ret: flag=ret except: pass # Check to see that something was reset if flag: return flag else: raise Exception(" Failed to reset joint constraints for any relevant topic for move_group=(%s) !" % (str(move_group))) elif bool(move_group) and all([isinstance(elem,basestring) for elem in move_group]): # List of strings for group in move_group: try: ret = self.reset_joint_constraints(group) if ret: flag=ret except: pass # Check to see that something was reset if flag: return flag else: raise Exception(" Failed to reset joint constraints for any relevant topic for move_group=(%s) !" % (str(move_group))) else: # Base case to reset specified motion plan requests options try: # Reset the planning options for a given move group ProxyMoveItClient._joint_constraints[move_group] = copy.deepcopy(ProxyMoveItClient._default_joint_constraints[move_group]) return True except Exception as e: Logger.logerr(" Invalid move group %s for joint constraints - not configured yet!" % (str(move_group))) return False def reset_position_constraints(self, move_group): ''' Reset the current position constraints to the defaults @param move_group : string specifying a particular move group ''' #@TODO - handle reset all as with joints ProxyMoveItClient._position_constraints[move_group] = copy.deepcopy(ProxyMoveItClient._default_position_constraints[move_group]) def reset_orientation_constraints(self, move_group): ''' Reset the current orientation constraints to the defaults @param move_group : string specifying a particular move group ''' #@TODO - handle reset all as with joints ProxyMoveItClient._orientation_constraints[move_group] = copy.deepcopy(ProxyMoveItClient._default_orientation_constraints[move_group]) def
'seven teen' or 'Seven teen' or 'Seven Teen' or 'seven-teen' or 'Seven-Teen' or 'Seven-teen': correct += 1 else: wrong += 1 Cedric_Diggory["age"] = q6 q7 = input(f"{name.title()}, what is Cedric's dad's name? ") if q7 == 'Amos Diggory' or 'amos diggory' or 'Amos diggory' or 'amos Diggory': correct += 1 else: wrong += 1 Cedric_Diggory["parents"] = q7 print(F"{name.title()}, that is the end. Note: Since Cedric's mother's name is unknown and Cedric doesn't have a middle name/middle name unknown, there will be no question on that.") print('Here is what you put in earlier, you will get a confirmation message.') for key, value in Cedric_Diggory.items(): print(f'\tHis {key} is {value}\n') Cedric_Diggory_correct = {"species":"human", "gender":"male", "house":"Hufflepuff", "blood status":"half-blood", "eye color":"gray", "age":"17", "parents":"<NAME>, mother name unknown"} print(f"Here are your results:\nYou got {correct} correct and {wrong} wrong out of 7") print('Here are the correct answers:') for key, value in Cedric_Diggory_correct.items(): print(f'\tHis {key} is {value}\n') q8 = input(f"{name.title()}, would you like to do the last quiz, or do this again? [L]ast quiz, [D]o this again ") if q8 == 'l' or 'L': Luna_Lovegood() # Questions: Name, species, gender, house, blood status, eye color, age, parents. def Voldemort(): status = True while status: correct = 0 wrong = 0 voldemort = {} q1 = input(f"{name.title()}, what is Voldemort's real and full name? ") if q1 == '<NAME>' or '<NAME>' or '<NAME>' or '<NAME>': correct += 1 else: wrong += 1 voldemort["name"] = q1 q2 = input(f"{name.title()}, what is Voldemort's species? ") if q2 == 'human' or 'Human': correct += 1 else: wrong += 1 voldemort["species"] = q2 q3 = input(f"{name.title()}, what is Voldemort's gender?") if q3 == 'male' or 'Male': correct += 1 else: wrong += 1 voldemort["gender"] = q3 q4 = input(f"{name.title()}, what is Voldemort's house? ") if q4 == 'Slytherin' or 'slytherin': correct += 1 else: wrong += 1 voldemort["house"] = q4 q5 = input(f"{name.title()}, what is Voldemort's blood status? ") if q5 == 'half blood' or 'Half Blood' or 'Half blood' or 'half Blood' or 'Half-Blood' or 'Half-blood' or 'half-blood': correct += 1 else: wrong += 1 voldemort["blood status"] = q5 q6 = input(f"{name.title()}, what is Voldemort's eye color? ") if q6 == 'red' or 'Red': correct += 1 else: wrong += 1 voldemort["eye color"] = q6 q7 = input(f"{name.title()}, what is Voldemort's age (at death)? ") if q7 == '71' or 'seventy-one' or 'Seventy-One' or 'Seventy-one' or 'Seventy one' or 'Seventy one' or 'Seventy One': correct += 1 else: wrong += 1 voldemort["age"] = q7 q8 = input(f"{name.title()}, what are Voldemort's parent's names? ") if q8 == 'Merope and <NAME>' or 'merope and tom riddle' or 'Merope and <NAME>' or 'Merope And <NAME>' or 'Tom and M<NAME>iddle' or 'tom and merope riddle': correct += 1 else: wrong += 1 voldemort["parents"] = q8 print(f'Here is what you put in earlier. You will get a confirmation message. ') for key, value in voldemort.items(): print(f'\tHis {key} is {value}.\n') print(f'Here are your results:\nYou got {correct} right and {wrong} wrong out of 8.') voldemort_correct_answers = {"name":"<NAME>", "species":"human", "gender":"male", "house":"Slytherin", "blood status":"half-blood", "eye color":"red", "age":"71 at death", "parents":"Merope and <NAME>" } print('here are the correct answers:') for key, value in voldemort_correct_answers.items(): print(f'His {key} is {value}') q0 = input(f"{name.title()}, what would you like to do? [D]o this again, or [N]ext quiz? ") if q0 == 'N' or 'n': Cedric_Diggory() # Questions: Name, species, gender, house, blood status, eye color, age, parents. def hermione_granger(): status = True while status: correct = 0 wrong = 0 hermione_granger = {} q1 = input(f'{name.title()}, what is Hermione' + "'s full name? ") if q1 == 'Hermione Jean Granger' or 'Hermione jean granger' or 'hermione jean granger': correct += 1 else: wrong += 1 hermione_granger["name"] = q1 q2 = input(f"{name.title()}, what is Hermione's species? ") if q2 == 'human' or 'Human': correct += 1 else: wrong += 1 hermione_granger["species"] = q2 q3 = input(f"{name.title()}, what is Hermione's gender? ") if q3 == 'female' or 'Female' or 'girl' or 'Girl' or 'woman' or 'Woman': correct += 1 else: wrong += 1 hermione_granger["gender"] = q3 q4 = input(f"{name}, what is Hermione's house? ") if q4 == 'gryffindor' or 'Gryffindor': correct += 1 else: wrong += 1 hermione_granger["house"] = q4 q5 = input(f"{name.title()}, what is Hermione's blood status? ") if q5 == 'Muggle Born' or 'muggle born' or 'Muggle born' or 'muggle-born' or 'Muggle-Born' or 'Muggle-born': correct += 1 elif q5 == 'mudblood' or 'Mudblood' or 'mud blood' or 'Mud Blood' or 'Mud blood': print(f"{name}, that is very offensive, you may not continue!".upper()) e(0) else: wrong += 1 hermione_granger["blood status"] = q5 q6 = input(f"{name.title()}, what is Hermione's eye color? ") if q6 == 'brown' or 'Brown': correct += 1 else: wrong += 1 hermione_granger["eye color"] = q6 q7 = input(f"{name.title()}, what is Hermione's age? ") if q7 == '41' or 'forty one' or 'Forty one' or 'Forty One' or 'forty-one' or 'Forty-one' or 'Forty-One': correct += 1 else: wrong += 1 hermione_granger["age"] = q7 print(f'{name.title()}, that was the last question. NOTE: Since Hermione' + "'s parent's names are unknown, I will not do a question on them.") print("Here is what you put in earlier:") for key, value in hermione_granger.items(): print(f'\tHer {key} is {value}.\n') print(f'Here are your results:\nYou got {correct} right and {wrong} wrong out of 7.') hermione_granger_correct_answers = {"name":"<NAME>", "species":"human", "gender":"female", "house":"Gryffindor", "blood status":"muggle-born", "eye color":"brown", "age":"41" } print('Here are the correct answers:\n') for key, value in hermione_granger_correct_answers.items(): print(f'\tHer {key} is {value}.\n') q10 = input(f"{name.title()}, what would you like to do? [D]o this quiz again, or [N]ext quiz? ") if q10 == 'N' or 'n': Voldemort() # Questions: Name, species, gender, house, blood status, eye color, age, parents. def ron_Weasley(): status = True wrong = 0 correct = 0 while status: # Questions: Name, species, ron_Weasley = {} q1 = input(f"What is Ron's full name? ") if q1 == '<NAME>' or '<NAME>': correct += 1 else: wrong += 1 ron_Weasley["name"] = q1 q2 = input(F"{name.title()}, what is Ron's species? ") if q2 == 'human' or 'Human': correct += 1 else: wrong += 1 ron_Weasley["species"] = q2 q3 = input(f"{name.title()}, what is Ron's gender? ") if q3 == 'male' or 'Male' or 'boy' or 'Boy' or 'man' or 'Man': correct += 1 else: wrong += 1 ron_Weasley["gender"] = q3 q4 = input(f"{name.title()}, what is Ron's house? ") if q4 == 'gryffindor' or 'Gryffindor': correct += 1 else: wrong += 1 ron_Weasley["house"] = q4 q5 = input(f"{name.title()}, what is Ron's blood status? ") if q5 == 'pure blood' or 'Pure Blood' or 'Pure blood' or 'Pure-blood' or 'pure-blood' or 'pureblood': correct += 1 else: wrong += 1 ron_Weasley["blood status"] = q5 q6 = input(f"{name.title()}, what is Ron's eye color? ") if q6 == 'blue' or 'Blue': correct += 1 else: wrong += 1 ron_Weasley["eye color"] = q6 q7 = input(f"{name.title()}, what is Ron's age? ") if q7 == '40' or 'forty' or 'Forty': correct += 1 else: wrong += 1 ron_Weasley["age"] = q7 q8 = input(f"{name.title()}, what are Ron's parents? ") if q8 == 'Molly and Arthur Weasley' or 'molly and arthur weasley' or 'Molly and arthur weasley' or 'arthur and molly Weasley' or 'Arthur and Molly Weasley': correct += 1 else: wrong += 1 ron_Weasley["parents"] = q7 print("What you put in will appear shortly.") for key, value in ron_Weasley.items(): print(f'\tHis {key} is {value}\n') q9 = input(f'{name.title()}, is this info correct? y/n ') if q9 == 'y': print("Awesome, here are the results:") else: print(f'{name.title()}, try again. ') status = False print(f'You got {correct} correct and {wrong} wrong out of 8.') ron_Weasley_correct_answers = {"name":"<NAME>", "species":"human", "gender":"male", "house":"Gryffindor", "blood status":"pure-blood"} print('Here are the correct answers:') for key, value in ron_Weasley_correct_answers.items(): print(f'His {key} is {value}.\n\t') q10 = input(f'What would you like to do? [D]o the quiz again, or [N]ext quiz? ') if q10 == 'N' or 'n': hermione_granger() def harry_potter(): status = True correct = 0 wrong = 0 while status: Harry_Potter = {} # Questions: Name, species, gender, house, blood status, eye color, age, parents. q1 = input(f"What is Harry's full name? ") if q1 == '<NAME>': correct += 1 else: wrong += 1 Harry_Potter["name"] = q1 q2 = input(F"{name.title()}, what is Harry's species? ") if q2 == 'human' or 'Human': correct += 1 else: wrong += 1 Harry_Potter["species"] = q2 q3 = input(f"{name.title()}, what is Harry's gender? ") if q3 == 'male' or 'Male' or 'boy' or 'Boy' or 'man' or 'Man': correct += 1 else: wrong += 1 Harry_Potter["gender"] = q3 q4 = input(f"{name.title()}, what is Harry's house? ") if q4 == 'gryffindor' or 'Gryffindor': correct += 1 else: wrong += 1 Harry_Potter["house"] = q4 q5 = input(f"{name.title()}, what is Harry's blood status? ") if q5 == 'pure blood' or 'Pure Blood' or 'Pure blood' or 'Pure-blood' or 'pure-blood' or 'pureblood': correct += 1 else: wrong += 1 Harry_Potter["blood status"] = q5 q6 = input(f"{name.title()}, what is Harry's eye color? ") if q6 == 'blue' or 'Blue': correct += 1 else: wrong += 1 Harry_Potter["eye color"] = q6 q7 = input(f"{name.title()}, what is Harry's age? ") if q7 == '40' or 'forty' or 'Forty': correct += 1 else: wrong += 1 Harry_Potter["age"] = q7 q8 = input(f"{name.title()}, what are Harry's parents? ") if q8 == 'James and <NAME>': correct += 1 else: wrong += 1 Harry_Potter["parents"] = q7 print("What you put in will appear shortly.") for key, value in Harry_Potter.items(): print(f'\tHis {key} is {value}\n') q9 = input(f'{name.title()}, is this info correct? y/n ') if q9 == 'y': print("Awesome, here are the results:") else: print(f'{name.title()}, try again. ') status = False print(f'You got {correct} correct and {wrong} wrong out of 8.') Harry_Potter_correct_answers = {"name":"<NAME>", "species":"human", "gender":"male", "house":"Gryffindor", "blood status":"half-blood"} print('Here are the correct answers:') for key, value in Harry_Potter_correct_answers.items(): print(f'His {key}
from netapp.connection import NaConnection from extension_list_info import ExtensionListInfo # 1 properties from event_name import EventName # 0 properties from fpolicy_policy_get_iter_key_td import FpolicyPolicyGetIterKeyTd # 2 properties from monitored_operation_info import MonitoredOperationInfo # 1 properties from fpolicy_event_options_config import FpolicyEventOptionsConfig # 6 properties from secondary_server_info import SecondaryServerInfo # 1 properties from fpolicy_policy_event_get_iter_key_td import FpolicyPolicyEventGetIterKeyTd # 2 properties from fpolicy_proto import FpolicyProto # 0 properties from fpolicy_policy_status_info import FpolicyPolicyStatusInfo # 4 properties from fpolicy_volumes_list_info import FpolicyVolumesListInfo # 1 properties from fpolicy_filter import FpolicyFilter # 0 properties from fpolicy_policy_info import FpolicyPolicyInfo # 7 properties from engine_name import EngineName # 0 properties from policy_info import PolicyInfo # 10 properties from fpolicy_policy_external_engine_get_iter_key_td import FpolicyPolicyExternalEngineGetIterKeyTd # 2 properties from fpolicy_external_engine_info import FpolicyExternalEngineInfo # 17 properties from fpolicy_server_status_info import FpolicyServerStatusInfo # 9 properties from fpolicy_operation import FpolicyOperation # 0 properties from server_info import ServerInfo # 11 properties from fpolicy_server_type import FpolicyServerType # 0 properties from fpolicy_policy_status_get_iter_key_td import FpolicyPolicyStatusGetIterKeyTd # 2 properties from common_name import CommonName # 0 properties from fpolicy_ssl_opts import FpolicySslOpts # 0 properties from fpolicy_scope_config import FpolicyScopeConfig # 11 properties from fpolicy_server_status_get_iter_key_td import FpolicyServerStatusGetIterKeyTd # 4 properties from monitored_protocol_info import MonitoredProtocolInfo # 1 properties from fpolicy_policy_scope_get_iter_key_td import FpolicyPolicyScopeGetIterKeyTd # 2 properties from fpolicy_server_status import FpolicyServerStatus # 0 properties from external_engine_type import ExternalEngineType # 0 properties class FpolicyConnection(NaConnection): def fpolicy_server_disconnect(self, node, policy_name, server): """ Terminate connection to FPolicy server :param node: Cluster node name. :param policy_name: Name of the policy. :param server: FPolicy server. """ return self.request( "fpolicy-server-disconnect", { 'node': [ node, 'node', [ basestring, 'None' ], False ], 'policy_name': [ policy_name, 'policy-name', [ basestring, 'policy-name' ], False ], 'server': [ server, 'server', [ basestring, 'ip-address' ], False ], }, { } ) def fpolicy_volume_list_set(self, policy_name, list_type, volumes): """ Manipulate a list of volumes in an exclude or include set. This limits the set of volumes for which client requests trigger (include) or suppress (exclude) fpolicy processing for the provided policy. The list provided will replace the list currently in place, if any. Note that if a policy has both an exclude list and an include list, the include list is ignored by the filer. :param policy_name: Name of the policy. :param list_type: Defines to which set (exclude or include) a list will be applied. Possible values: "exclude", "include". :param volumes: List of volume specifications. """ return self.request( "fpolicy-volume-list-set", { 'policy_name': [ policy_name, 'policy-name', [ basestring, 'None' ], False ], 'list_type': [ list_type, 'list-type', [ basestring, 'None' ], False ], 'volumes': [ volumes, 'volumes', [ FpolicyVolumesListInfo, 'None' ], True ], }, { } ) def fpolicy_set_required(self, policy_name, required): """ Sets policy's "required" option to on/off. :param policy_name: Name of the policy. :param required: Indicator if the policy is required. If set to true, the request will fail if there is no server to evaluate it. If it's false, the request will succeed. """ return self.request( "fpolicy-set-required", { 'policy_name': [ policy_name, 'policy-name', [ basestring, 'None' ], False ], 'required': [ required, 'required', [ bool, 'None' ], False ], }, { } ) def fpolicy_enable(self): """ Sets options fpolicy enable to on. """ return self.request( "fpolicy-enable", { }, { } ) def fpolicy_server_stop(self, server_ip, policy_name): """ Stops specific primary server serving the policy. Effectively, this will unregister the fpolicy server. :param server_ip: The ip address, in dotted-decimal format, of the server. :param policy_name: Name of the policy. """ return self.request( "fpolicy-server-stop", { 'server_ip': [ server_ip, 'server-ip', [ basestring, 'ip-address' ], False ], 'policy_name': [ policy_name, 'policy-name', [ basestring, 'None' ], False ], }, { } ) def fpolicy_server_connect(self, node, policy_name, server): """ Make a connection to FPolicy server :param node: Cluster node name. :param policy_name: Name of the policy. :param server: FPolicy server. """ return self.request( "fpolicy-server-connect", { 'node': [ node, 'node', [ basestring, 'None' ], False ], 'policy_name': [ policy_name, 'policy-name', [ basestring, 'policy-name' ], False ], 'server': [ server, 'server', [ basestring, 'ip-address' ], False ], }, { } ) def fpolicy_get_required_info(self, policy_name): """ Shows current options for the policy. :param policy_name: Name of the policy. """ return self.request( "fpolicy-get-required-info", { 'policy_name': [ policy_name, 'policy-name', [ basestring, 'None' ], False ], }, { 'is-required': [ bool, False ], } ) def fpolicy_disable_policy(self, policy_name): """ Disables a specific named policy. :param policy_name: Name of the policy. """ return self.request( "fpolicy-disable-policy", { 'policy_name': [ policy_name, 'policy-name', [ basestring, 'None' ], False ], }, { } ) def fpolicy_enable_policy(self, policy_name, sequence_number): """ Enables a specific named policy. The operation will fail if the policy doesn't exist. :param policy_name: Name of the policy. :param sequence_number: Policy Sequence Number """ return self.request( "fpolicy-enable-policy", { 'policy_name': [ policy_name, 'policy-name', [ basestring, 'None' ], False ], 'sequence_number': [ sequence_number, 'sequence-number', [ int, 'None' ], False ], }, { } ) def fpolicy_policy_modify(self, policy_name, engine_name=None, privileged_user_name=None, events=None, is_mandatory=None, allow_privileged_access=None): """ Modify a policy. :param policy_name: Name of the policy. :param engine_name: Name of the Engine. Default Engine is 'native'. :param privileged_user_name: User name for privileged access. No default value is set for this attribute. :param events: Events for file access monitoring. :param is_mandatory: Indicator if the screening with this policy is required, i.e. it will fail if no servers are able process the notification registered as a part of external engine. If set to true, the request will fail if there is no server to evaluate it. If it's false, the request will succeed. Default value is true. :param allow_privileged_access: Indicator if privileged access should be given to FPolicy servers registered for the policy. Default Value is no. """ return self.request( "fpolicy-policy-modify", { 'engine_name': [ engine_name, 'engine-name', [ basestring, 'engine-name' ], False ], 'privileged_user_name': [ privileged_user_name, 'privileged-user-name', [ basestring, 'None' ], False ], 'policy_name': [ policy_name, 'policy-name', [ basestring, 'policy-name' ], False ], 'events': [ events, 'events', [ basestring, 'event-name' ], True ], 'is_mandatory': [ is_mandatory, 'is-mandatory', [ bool, 'None' ], False ], 'allow_privileged_access': [ allow_privileged_access, 'allow-privileged-access', [ bool, 'None' ], False ], }, { } ) def fpolicy_policy_create(self, engine_name, policy_name, events, privileged_user_name=None, return_record=None, is_mandatory=None, allow_privileged_access=None): """ Create a policy. :param engine_name: Name of the Engine. Default Engine is 'native'. :param policy_name: Name of the policy. :param events: Events for file access monitoring. :param privileged_user_name: User name for privileged access. No default value is set for this attribute. :param return_record: If set to true, returns the fpolicy-policy on successful creation. Default: false :param is_mandatory: Indicator if the screening with this policy is required, i.e. it will fail if no servers are able process the notification registered as a part of external engine. If set to true, the request will fail if there is no server to evaluate it. If it's false, the request will succeed. Default value is true. :param allow_privileged_access: Indicator if privileged access should be given to FPolicy servers registered for the policy. Default Value is no. """ return self.request( "fpolicy-policy-create", { 'engine_name': [ engine_name, 'engine-name', [ basestring, 'engine-name' ], False ], 'privileged_user_name': [ privileged_user_name, 'privileged-user-name', [ basestring, 'None' ], False ], 'policy_name': [ policy_name, 'policy-name', [ basestring, 'policy-name' ], False ], 'return_record': [ return_record, 'return-record', [ bool, 'None' ], False ], 'events': [ events, 'events', [ basestring, 'event-name' ], True ], 'is_mandatory': [ is_mandatory, 'is-mandatory', [ bool, 'None' ], False ], 'allow_privileged_access': [ allow_privileged_access, 'allow-privileged-access', [ bool, 'None' ], False ], }, { 'result': [ FpolicyPolicyInfo, False ], } ) def fpolicy_policy_event_modify(self, event_name, volume_operation=None, protocol=None, file_operations=None, filter_string=None): """ Set FPolicy event options. FPolicy event is consist of protocol, file operation, volume operation and f ilters. :param event_name: Name of the Event. :param volume_operation: Indicator if the volume operation required for the event.Default Value is false. :param protocol: Name of protocol for which event is created. By default no protocol is selected. Possible values: <ul> <li> "cifs" - CIFS protocol,
""" return {self.name: getattr(obj, self.attname)} def get_attname(self): return self.name def get_attname_column(self): attname = self.get_attname() column = self.db_column or attname return attname, column def get_cache_name(self): return '_%s_cache' % self.name def get_internal_type(self): return self.__class__.__name__ def pre_save(self, model_instance, add): """Return field's value just before saving.""" return getattr(model_instance, self.attname) def get_prep_value(self, value): """Perform preliminary non-db specific value checks and conversions.""" if isinstance(value, Promise): value = value._proxy____cast() return value def get_db_prep_value(self, value, connection, prepared=False): """ Return field's value prepared for interacting with the database backend. Used by the default implementations of get_db_prep_save(). """ if not prepared: value = self.get_prep_value(value) return value def get_db_prep_save(self, value, connection): """Return field's value prepared for saving into a database.""" return self.get_db_prep_value(value, connection=connection, prepared=False) def has_default(self): """Return a boolean of whether this field has a default value.""" return self.default is not NOT_PROVIDED def get_default(self): """Return the default value for this field.""" return self._get_default() @cached_property def _get_default(self): if self.has_default(): if callable(self.default): return self.default return lambda: self.default if not self.empty_strings_allowed or self.null and not connection.features.interprets_empty_strings_as_nulls: return return_None return str # return empty string def get_choices(self, include_blank=True, blank_choice=BLANK_CHOICE_DASH, limit_choices_to=None): """ Return choices with a default blank choices included, for use as <select> choices for this field. """ blank_defined = False choices = list(self.choices) if self.choices else [] named_groups = choices and isinstance(choices[0][1], (list, tuple)) if not named_groups: for choice, __ in choices: if choice in ('', None): blank_defined = True break first_choice = (blank_choice if include_blank and not blank_defined else []) if self.choices: return first_choice + choices rel_model = self.remote_field.model limit_choices_to = limit_choices_to or self.get_limit_choices_to() if hasattr(self.remote_field, 'get_related_field'): lst = [(getattr(x, self.remote_field.get_related_field().attname), smart_text(x)) for x in rel_model._default_manager.complex_filter( limit_choices_to)] else: lst = [(x._get_pk_val(), smart_text(x)) for x in rel_model._default_manager.complex_filter( limit_choices_to)] return first_choice + lst def value_to_string(self, obj): """ Return a string value of this field from the passed obj. This is used by the serialization framework. """ return force_text(self.value_from_object(obj)) def _get_flatchoices(self): """Flattened version of choices tuple.""" flat = [] for choice, value in self.choices: if isinstance(value, (list, tuple)): flat.extend(value) else: flat.append((choice, value)) return flat flatchoices = property(_get_flatchoices) def save_form_data(self, instance, data): setattr(instance, self.name, data) def formfield(self, form_class=None, choices_form_class=None, **kwargs): """Return a django.forms.Field instance for this field.""" defaults = {'required': not self.blank, 'label': capfirst(self.verbose_name), 'help_text': self.help_text} if self.has_default(): if callable(self.default): defaults['initial'] = self.default defaults['show_hidden_initial'] = True else: defaults['initial'] = self.get_default() if self.choices: # Fields with choices get special treatment. include_blank = (self.blank or not (self.has_default() or 'initial' in kwargs)) defaults['choices'] = self.get_choices(include_blank=include_blank) defaults['coerce'] = self.to_python if self.null: defaults['empty_value'] = None if choices_form_class is not None: form_class = choices_form_class else: form_class = forms.TypedChoiceField # Many of the subclass-specific formfield arguments (min_value, # max_value) don't apply for choice fields, so be sure to only pass # the values that TypedChoiceField will understand. for k in list(kwargs): if k not in ('coerce', 'empty_value', 'choices', 'required', 'widget', 'label', 'initial', 'help_text', 'error_messages', 'show_hidden_initial'): del kwargs[k] defaults.update(kwargs) if form_class is None: form_class = forms.CharField return form_class(**defaults) def value_from_object(self, obj): """Return the value of this field in the given model instance.""" return getattr(obj, self.attname) class AutoField(Field): description = _("Integer") empty_strings_allowed = False default_error_messages = { 'invalid': _("'%(value)s' value must be an integer."), } def __init__(self, *args, **kwargs): kwargs['blank'] = True super().__init__(*args, **kwargs) def check(self, **kwargs): errors = super().check(**kwargs) errors.extend(self._check_primary_key()) return errors def _check_primary_key(self): if not self.primary_key: return [ checks.Error( 'AutoFields must set primary_key=True.', obj=self, id='fields.E100', ), ] else: return [] def deconstruct(self): name, path, args, kwargs = super().deconstruct() del kwargs['blank'] kwargs['primary_key'] = True return name, path, args, kwargs def get_internal_type(self): return "AutoField" def to_python(self, value): if value is None: return value try: return int(value) except (TypeError, ValueError): raise exceptions.ValidationError( self.error_messages['invalid'], code='invalid', params={'value': value}, ) def rel_db_type(self, connection): return IntegerField().db_type(connection=connection) def validate(self, value, model_instance): pass def get_db_prep_value(self, value, connection, prepared=False): if not prepared: value = self.get_prep_value(value) value = connection.ops.validate_autopk_value(value) return value def get_prep_value(self, value): value = super().get_prep_value(value) if value is None: return None return int(value) def contribute_to_class(self, cls, name, **kwargs): assert not cls._meta.auto_field, "A model can't have more than one AutoField." super().contribute_to_class(cls, name, **kwargs) cls._meta.auto_field = self def formfield(self, **kwargs): return None class BigAutoField(AutoField): description = _("Big (8 byte) integer") def get_internal_type(self): return "BigAutoField" def rel_db_type(self, connection): return BigIntegerField().db_type(connection=connection) class BooleanField(Field): empty_strings_allowed = False default_error_messages = { 'invalid': _("'%(value)s' value must be either True or False."), } description = _("Boolean (Either True or False)") def __init__(self, *args, **kwargs): kwargs['blank'] = True super().__init__(*args, **kwargs) def check(self, **kwargs): errors = super().check(**kwargs) errors.extend(self._check_null(**kwargs)) return errors def _check_null(self, **kwargs): if getattr(self, 'null', False): return [ checks.Error( 'BooleanFields do not accept null values.', hint='Use a NullBooleanField instead.', obj=self, id='fields.E110', ) ] else: return [] def deconstruct(self): name, path, args, kwargs = super().deconstruct() del kwargs['blank'] return name, path, args, kwargs def get_internal_type(self): return "BooleanField" def to_python(self, value): if value in (True, False): # if value is 1 or 0 than it's equal to True or False, but we want # to return a true bool for semantic reasons. return bool(value) if value in ('t', 'True', '1'): return True if value in ('f', 'False', '0'): return False raise exceptions.ValidationError( self.error_messages['invalid'], code='invalid', params={'value': value}, ) def get_prep_value(self, value): value = super().get_prep_value(value) if value is None: return None return self.to_python(value) def formfield(self, **kwargs): # Unlike most fields, BooleanField figures out include_blank from # self.null instead of self.blank. if self.choices: include_blank = not (self.has_default() or 'initial' in kwargs) defaults = {'choices': self.get_choices(include_blank=include_blank)} else: defaults = {'form_class': forms.BooleanField} defaults.update(kwargs) return super().formfield(**defaults) class CharField(Field): description = _("String (up to %(max_length)s)") def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.validators.append(validators.MaxLengthValidator(self.max_length)) def check(self, **kwargs): errors = super().check(**kwargs) errors.extend(self._check_max_length_attribute(**kwargs)) return errors def _check_max_length_attribute(self, **kwargs): if self.max_length is None: return [ checks.Error( "CharFields must define a 'max_length' attribute.", obj=self, id='fields.E120', ) ] elif not isinstance(self.max_length, int) or self.max_length <= 0: return [ checks.Error( "'max_length' must be a positive integer.", obj=self, id='fields.E121', ) ] else: return [] def get_internal_type(self): return "CharField" def to_python(self, value): if isinstance(value, str) or value is None: return value return force_text(value) def get_prep_value(self, value): value = super().get_prep_value(value) return self.to_python(value) def formfield(self, **kwargs): # Passing max_length to forms.CharField means that the value's length # will be validated twice. This is considered acceptable since we want # the value in the form field (to pass into widget for example). defaults = {'max_length': self.max_length} # TODO: Handle multiple backends with different feature flags. if self.null and not connection.features.interprets_empty_strings_as_nulls: defaults['empty_value'] = None defaults.update(kwargs) return super().formfield(**defaults) class CommaSeparatedIntegerField(CharField): default_validators = [validators.validate_comma_separated_integer_list] description = _("Comma-separated integers") system_check_removed_details = { 'msg': ( 'CommaSeparatedIntegerField is removed except for support in ' 'historical migrations.' ), 'hint': ( 'Use CharField(validators=[validate_comma_separated_integer_list]) ' 'instead.' ), 'id': 'fields.E901', } class DateTimeCheckMixin: def check(self, **kwargs): errors = super().check(**kwargs) errors.extend(self._check_mutually_exclusive_options()) errors.extend(self._check_fix_default_value()) return errors def _check_mutually_exclusive_options(self): # auto_now, auto_now_add, and default are mutually exclusive # options. The use of more than one of these options together # will trigger an Error mutually_exclusive_options = [self.auto_now_add, self.auto_now, self.has_default()] enabled_options = [option not in (None, False) for option in mutually_exclusive_options].count(True) if enabled_options > 1: return [ checks.Error( "The options auto_now, auto_now_add, and default " "are mutually exclusive. Only one of these options " "may be present.", obj=self, id='fields.E160', ) ] else: return [] def _check_fix_default_value(self): return [] class DateField(DateTimeCheckMixin, Field): empty_strings_allowed = False default_error_messages = { 'invalid': _("'%(value)s' value has an invalid date format. It must be " "in YYYY-MM-DD format."), 'invalid_date': _("'%(value)s' value has the correct format (YYYY-MM-DD) " "but it is an invalid date."), } description = _("Date (without time)") def __init__(self, verbose_name=None, name=None, auto_now=False, auto_now_add=False, **kwargs): self.auto_now, self.auto_now_add = auto_now, auto_now_add if auto_now or auto_now_add: kwargs['editable'] = False kwargs['blank'] = True super().__init__(verbose_name, name, **kwargs) def _check_fix_default_value(self): """ Warn that using an actual date or datetime value is probably wrong; it's only evaluated on server startup. """ if not self.has_default(): return [] now = timezone.now() if not timezone.is_naive(now): now = timezone.make_naive(now, timezone.utc) value = self.default if isinstance(value, datetime.datetime): if not timezone.is_naive(value): value = timezone.make_naive(value, timezone.utc) value = value.date() elif isinstance(value, datetime.date): # Nothing to
import copy import glob import os import gym import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.autograd import Variable from torch.utils.data.sampler import BatchSampler, SubsetRandomSampler from arguments import get_args from common.vec_env.subproc_vec_env import SubprocVecEnvMt from envs import make_env from kfac import KFACOptimizer from model import CNNPolicy, MLPPolicy from storage import RolloutStorage from visualize import visdom_plot from arguments import debugging, gtn_M from arguments import exp, title, title_html is_use_afs = True args = get_args() assert args.algo in ['a2c', 'ppo', 'acktr'] if args.algo == 'ppo': assert args.num_processes * args.num_steps % args.batch_size == 0 '''num_frames: number of frames to train (default: 10e6) num_steps: agent every time updata need steps ''' num_updates = int(args.num_frames) // args.num_steps // args.num_processes torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) mt_env_id_dic_all = { 'mt test pong':[ 'PongNoFrameskip-v4', 'BreakoutNoFrameskip-v4', ], 'mt high performance':[ 'BeamRiderNoFrameskip-v4', 'BreakoutNoFrameskip-v4', 'PongNoFrameskip-v4', 'QbertNoFrameskip-v4', 'SpaceInvadersNoFrameskip-v4', 'SeaquestNoFrameskip-v4', ], 'mt_as_ewc_test':[ 'CrazyClimberNoFrameskip-v4', 'RiverraidNoFrameskip-v4', 'BreakoutNoFrameskip-v4', 'PongNoFrameskip-v4', 'StarGunnerNoFrameskip-v4', 'DemonAttackNoFrameskip-v4', 'AsteroidsNoFrameskip-v4', 'SpaceInvadersNoFrameskip-v4', ], 'mt shooting':[ 'BeamRiderNoFrameskip-v4', 'PhoenixNoFrameskip-v4', 'AtlantisNoFrameskip-v4', 'CentipedeNoFrameskip-v4', 'RiverraidNoFrameskip-v4', 'DemonAttackNoFrameskip-v4', 'GravitarNoFrameskip-v4', 'SeaquestNoFrameskip-v4', 'ChopperCommandNoFrameskip-v4', 'AssaultNoFrameskip-v4', 'AsteroidsNoFrameskip-v4', 'SpaceInvadersNoFrameskip-v4', 'YarsRevengeNoFrameskip-v4', 'CarnivalNoFrameskip-v4', 'CrazyClimberNoFrameskip-v4', 'ZaxxonNoFrameskip-v4', 'PooyanNoFrameskip-v4', 'StarGunnerNoFrameskip-v4', ], 'mt all atari':[ 'CarnivalNoFrameskip-v4', 'AlienNoFrameskip-v4', 'AmidarNoFrameskip-v4', 'BankHeistNoFrameskip-v4', 'MsPacmanNoFrameskip-v4', 'TutankhamNoFrameskip-v4', 'VentureNoFrameskip-v4', 'WizardOfWorNoFrameskip-v4', 'AssaultNoFrameskip-v4', 'AsteroidsNoFrameskip-v4', 'BeamRiderNoFrameskip-v4', 'CentipedeNoFrameskip-v4', 'ChopperCommandNoFrameskip-v4', 'CrazyClimberNoFrameskip-v4', 'DemonAttackNoFrameskip-v4', 'AtlantisNoFrameskip-v4', 'GravitarNoFrameskip-v4', 'PhoenixNoFrameskip-v4', 'PooyanNoFrameskip-v4', 'RiverraidNoFrameskip-v4', 'SeaquestNoFrameskip-v4', 'SpaceInvadersNoFrameskip-v4', 'StarGunnerNoFrameskip-v4', 'TimePilotNoFrameskip-v4', 'ZaxxonNoFrameskip-v4', 'YarsRevengeNoFrameskip-v4', 'AsterixNoFrameskip-v4', 'ElevatorActionNoFrameskip-v4', 'BerzerkNoFrameskip-v4', 'FreewayNoFrameskip-v4', 'FrostbiteNoFrameskip-v4', 'JourneyEscapeNoFrameskip-v4', 'KangarooNoFrameskip-v4', 'KrullNoFrameskip-v4', 'PitfallNoFrameskip-v4', 'SkiingNoFrameskip-v4', 'UpNDownNoFrameskip-v4', 'QbertNoFrameskip-v4', 'RoadRunnerNoFrameskip-v4', 'DoubleDunkNoFrameskip-v4', 'IceHockeyNoFrameskip-v4', 'MontezumaRevengeNoFrameskip-v4', 'GopherNoFrameskip-v4', 'BreakoutNoFrameskip-v4', 'PongNoFrameskip-v4', 'PrivateEyeNoFrameskip-v4', 'TennisNoFrameskip-v4', 'VideoPinballNoFrameskip-v4', 'FishingDerbyNoFrameskip-v4', 'NameThisGameNoFrameskip-v4', 'BowlingNoFrameskip-v4', 'BattleZoneNoFrameskip-v4', 'BoxingNoFrameskip-v4', 'JamesbondNoFrameskip-v4', 'RobotankNoFrameskip-v4', 'SolarisNoFrameskip-v4', 'EnduroNoFrameskip-v4', 'KungFuMasterNoFrameskip-v4', ], } mt_env_id_dic_selected = mt_env_id_dic_all[args.env_name] for env_id in mt_env_id_dic_selected: log_dir = args.log_dir+env_id+'/' try: os.makedirs(log_dir) except OSError: files = glob.glob(os.path.join(log_dir, '*.monitor.json')) for f in files: os.remove(f) afs_offset = [0.0, 0.0, 0.0, 0.0, 0.0] reward_dict={} def rec_last_100_epi_reward(reward,done_list): # num = 0 ''' arguments statement: reward :episode reward done_list: the finished signal from env ''' for index,done in enumerate(done_list): env_name = mt_env_id_dic_selected[index // args.num_processes] # print (env_name) if done: try: reward_dict["{}_entire".format(env_name)].append(reward[index]) try: reward_dict["{}_average".format(env_name)].append(np.mean(np.asarray(reward_dict["{}_entire".format(env_name)]))) except: reward_dict["{}_average".format(env_name)] =[] if len(reward_dict["{}_entire".format(env_name)])>100: try: reward_dict["{}_last_100".format(env_name)].append(np.mean(np.asarray(reward_dict["{}_entire".format(env_name)][-100:]))) except: reward_dict["{}_last_100".format(env_name)]=[] except Exception as e: reward_dict["{}_entire".format(env_name)]=[] reward_dict["{}_average".format(env_name)] =[] reward[index] = 0 return reward def break_line_html(string): for x in range(0,len(string),40): string = string[:x] + '<br>' + string[x:] return string def main(): print("#######") print("WARNING: All rewards are clipped so you need to use a monitor (see envs.py) or visdom plot to get true rewards") print("#######") os.environ['OMP_NUM_THREADS'] = '1' if args.vis: from visdom import Visdom viz = Visdom() win = [] win_dic ={} for i in range(len(mt_env_id_dic_selected)): win += [None] win_afs_per_m = None win_afs_loss = None win_basic_loss = None plot_dic = {} envs = [] ''' Because the oral program has only one game per model, so Song add loop i So whatever you wanna run , just put in SubprocVecEnvMt! ''' for i in range(len(mt_env_id_dic_selected)): log_dir = args.log_dir+mt_env_id_dic_selected[i]+'/' for j in range(args.num_processes): envs += [make_env(mt_env_id_dic_selected[i], args.seed, j, log_dir)] ''' This envs is an intergration of all the running env''' envs = SubprocVecEnvMt(envs) num_processes_total = args.num_processes * len(mt_env_id_dic_selected) '''(1,128,128)''' obs_shape = envs.observation_space.shape #num_stack :number of frames to stack obs_shape = (obs_shape[0] * args.num_stack, *obs_shape[1:]) from arguments import is_restore if is_restore and args.save_dir: load_path = os.path.join(args.save_dir, args.algo) actor_critic =torch.load(os.path.join(load_path, args.env_name + ".pt")) # print ("restored previous model!") # print (actor_critic.Variable) # print (sss) else: if len(envs.observation_space.shape) == 3: actor_critic = CNNPolicy(obs_shape[0], envs.action_space) else: actor_critic = MLPPolicy(obs_shape[0], envs.action_space) if envs.action_space.__class__.__name__ == "Discrete": action_shape = 1 else: action_shape = envs.action_space.shape[0] if args.cuda: actor_critic.cuda() if args.algo == 'a2c': optimizer = optim.RMSprop(actor_critic.parameters(), args.lr, eps=args.eps, alpha=args.alpha) elif args.algo == 'ppo': optimizer = optim.Adam(actor_critic.parameters(), args.lr, eps=args.eps) elif args.algo == 'acktr': optimizer = KFACOptimizer(actor_critic) #'args.num_steps: number of forward steps in A2C #rollouts is an intergration of state\ reward\ next state\action and so on rollouts = RolloutStorage(args.num_steps, num_processes_total, obs_shape, envs.action_space) current_state = torch.zeros(num_processes_total, *obs_shape) ''' not sure about it''' def update_current_state(state): shape_dim0 = envs.observation_space.shape[0] # print (shape_dim0) # print (sss) state = torch.from_numpy(state).float() if args.num_stack > 1: current_state[:, :-shape_dim0] = current_state[:, shape_dim0:] current_state[:, -shape_dim0:] = state state = envs.reset() update_current_state(state) rollouts.states[0].copy_(current_state) # These variables are used to compute average rewards for all processes. episode_rewards = torch.zeros([num_processes_total, 1]) final_rewards = torch.zeros([num_processes_total, 1]) if args.cuda: current_state = current_state.cuda() rollouts.cuda() if args.algo == 'ppo': old_model = copy.deepcopy(actor_critic) from arguments import ewc, ewc_lambda, ewc_interval afs_per_m = [] afs_offset = [0.0]*gtn_M afs_loss_list = [] basic_loss_list = [] episode_reward_rec = 0.0 one = torch.FloatTensor([1]).cuda() mone = one * -1 '''for one whole game ''' for j in range(num_updates): for step in range(args.num_steps): if ewc == 1: try: states_store = torch.cat([states_store, rollouts.states[step].clone()], 0) except Exception as e: states_store = rollouts.states[step].clone() # Sample actions '''act fun refer to "observe it!"''' value, action = actor_critic.act(Variable(rollouts.states[step], volatile=True)) cpu_actions = action.data.squeeze(1).cpu().numpy() # Obser reward and next state state, reward, done = envs.step(cpu_actions) '''record the last 100 episodes rewards''' episode_reward_rec += reward episode_reward_rec = rec_last_100_epi_reward(episode_reward_rec,done) reward = torch.from_numpy(np.expand_dims(np.stack(reward), 1)).float() '''reward is shape of process_num_total, not batch-size''' # print ((reward).size()) # print (done) # print (sss) episode_rewards += reward ################ # rec_last_100_epi_reward(reward,done) # episode_reward_ppo += reward[0] # If done then clean the history of observations. final_rewards is used for compute after one whole num_step masks = torch.FloatTensor([[0.0] if done_ else [1.0] for done_ in done]) final_rewards *= masks final_rewards += (1 - masks) * episode_rewards episode_rewards *= masks if args.cuda: masks = masks.cuda() if current_state.dim() == 4: current_state *= masks.unsqueeze(2).unsqueeze(2) else: current_state *= masks update_current_state(state) rollouts.insert(step, current_state, action.data, value.data, reward, masks) next_value = actor_critic(Variable(rollouts.states[-1], volatile=True))[0].data if hasattr(actor_critic, 'obs_filter'): actor_critic.obs_filter.update(rollouts.states[:-1].view(-1, *obs_shape)) rollouts.compute_returns(next_value, args.use_gae, args.gamma, args.tau) if args.algo in ['a2c', 'acktr']: # reset gradient optimizer.zero_grad() # forward values, action_log_probs, dist_entropy, conv_list = actor_critic.evaluate_actions(Variable(rollouts.states[:-1].view(-1, *obs_shape)), Variable(rollouts.actions.view(-1, action_shape))) # pre-process values = values.view(args.num_steps, num_processes_total, 1) action_log_probs = action_log_probs.view(args.num_steps, num_processes_total, 1) # compute afs loss afs_per_m_temp, afs_loss = actor_critic.get_afs_per_m( action_log_probs=action_log_probs, conv_list=conv_list, ) if len(afs_per_m_temp)>0: afs_per_m += [afs_per_m_temp] if (afs_loss is not None) and (afs_loss.data.cpu().numpy()[0]!=0.0): afs_loss.backward(mone, retain_graph=True) afs_loss_list += [afs_loss.data.cpu().numpy()[0]] advantages = Variable(rollouts.returns[:-1]) - values value_loss = advantages.pow(2).mean() action_loss = -(Variable(advantages.data) * action_log_probs).mean() final_loss_basic = value_loss * args.value_loss_coef + action_loss - dist_entropy * args.entropy_coef ewc_loss = None if j != 0: if ewc == 1: ewc_loss = actor_critic.get_ewc_loss(lam=ewc_lambda) if ewc_loss is None: final_loss = final_loss_basic else: final_loss = final_loss_basic + ewc_loss # print (final_loss_basic.data.cpu().numpy()[0]) # final_loss_basic basic_loss_list += [final_loss_basic.data.cpu().numpy()[0]] final_loss.backward() if args.algo == 'a2c': nn.utils.clip_grad_norm(actor_critic.parameters(), args.max_grad_norm) optimizer.step() elif args.algo == 'ppo': advantages = rollouts.returns[:-1] - rollouts.value_preds[:-1] advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-5) old_model.load_state_dict(actor_critic.state_dict()) if hasattr(actor_critic, 'obs_filter'): old_model.obs_filter = actor_critic.obs_filter for _ in range(args.ppo_epoch): sampler = BatchSampler(SubsetRandomSampler(range(num_processes_total * args.num_steps)), args.batch_size * num_processes_total, drop_last=False) for indices in sampler: indices = torch.LongTensor(indices) if args.cuda: indices = indices.cuda() states_batch = rollouts.states[:-1].view(-1, *obs_shape)[indices] actions_batch = rollouts.actions.view(-1, action_shape)[indices] return_batch = rollouts.returns[:-1].view(-1, 1)[indices] # Reshape to do in a single forward pass for all steps values, action_log_probs, dist_entropy, conv_list = actor_critic.evaluate_actions(Variable(states_batch), Variable(actions_batch)) _, old_action_log_probs, _, old_conv_list= old_model.evaluate_actions(Variable(states_batch, volatile=True), Variable(actions_batch, volatile=True)) ratio = torch.exp(action_log_probs - Variable(old_action_log_probs.data)) adv_targ = Variable(advantages.view(-1, 1)[indices]) surr1 = ratio * adv_targ surr2 = torch.clamp(ratio, 1.0 - args.clip_param, 1.0 + args.clip_param) * adv_targ action_loss = -torch.min(surr1, surr2).mean() # PPO's pessimistic surrogate (L^CLIP) value_loss = (Variable(return_batch) - values).pow(2).mean() optimizer.zero_grad() final_loss_basic = (value_loss + action_loss - dist_entropy * args.entropy_coef) basic_loss_list += [final_loss_basic.data.cpu().numpy()[0]] final_loss_basic.backward() optimizer.step() rollouts.states[0].copy_(rollouts.states[-1]) # if j % int(num_updates/2-10) == 0 and args.save_dir != "": if j % args.save_interval == 0 and args.save_dir != "": save_path = os.path.join(args.save_dir, args.algo) try: os.makedirs(save_path) except OSError: pass # A really ugly way to save a model to CPU save_model = actor_critic if args.cuda: save_model = copy.deepcopy(actor_critic).cpu() torch.save(save_model, os.path.join(save_path, args.env_name + ".pt")) import pickle with open(os.path.join(save_path, args.env_name + "_last_100_reward"), "wb") as f: pickle.dump(reward_dict, f) if j % args.log_interval == 0: print("Updates {}, num frames {}, mean/median reward {:.1f}/{:.1f}, min/max reward {:.1f}/{:.1f}, entropy {:.5f}, value loss {:.5f}, policy loss {:.5f}". format(j, (j + 1) * args.num_processes * args.num_steps, final_rewards.mean(), final_rewards.median(), final_rewards.min(), final_rewards.max(), -dist_entropy.data[0], value_loss.data[0], action_loss.data[0])) try: print("ewc loss {:.5f}". format(ewc_loss.data.cpu().numpy()[0])) except Exception as e: pass if j > 5 and j % args.vis_interval == 0 and args.vis: ''' load from the folder''' for ii in range(len(mt_env_id_dic_selected)): log_dir = args.log_dir+mt_env_id_dic_selected[ii]+'/' win[ii] = visdom_plot(viz, win[ii], log_dir, mt_env_id_dic_selected[ii], args.algo) plot_dic = reward_dict for plot_name in plot_dic.keys(): # if
what user entered if doStaircase: if len(thisInfo[dlgLabelsOrdered.index('staircaseTrials')]) >0: staircaseTrials = int( thisInfo[ dlgLabelsOrdered.index('staircaseTrials') ] ) #convert string to integer print('staircaseTrials entered by user=',staircaseTrials) logging.info('staircaseTrials entered by user=',staircaseTrials) if len(thisInfo[dlgLabelsOrdered.index('easyTrials')]) >0: prefaceStaircaseTrialsN = int( thisInfo[ dlgLabelsOrdered.index('easyTrials') ] ) #convert string to integer print('prefaceStaircaseTrialsN entered by user=',thisInfo[dlgLabelsOrdered.index('easyTrials')]) logging.info('prefaceStaircaseTrialsN entered by user=',prefaceStaircaseTrialsN) else: #not doing staircase group = thisInfo[dlgLabelsOrdered.index('group')] trialsPerCondition = int( thisInfo[ dlgLabelsOrdered.index('trialsPerCondition') ] ) #convert string to integer print('trialsPerCondition=',trialsPerCondition) logging.info('trialsPerCondition =',trialsPerCondition) defaultNoiseLevel = 0 #int (thisInfo[ dlgLabelsOrdered.index('defaultNoiseLevel') ]) else: print('User cancelled from dialog box.') logging.flush() core.quit() if not demo: allowGUI = False print(group) test = '0' speedSeq = ['slow','fast','slow','fast'] if (group=='1'): conditionSeq = ['short','short','long','long'] whichWordsSeq = ['1','3','5','7'] if (group=='2'): conditionSeq = ['short','short','long','long'] whichWordsSeq = ['3','5','7','1'] if (group=='3'): conditionSeq = ['long','long','short','short'] whichWordsSeq = ['5','7','1','3'] if (group=='4'): conditionSeq = ['long','long','short','short'] whichWordsSeq = ['7','1','3','5'] if (group=='5'): conditionSeq = ['short','short','long','long'] whichWordsSeq = ['2','4','6','8'] if (group=='6'): conditionSeq = ['short','short','long','long'] whichWordsSeq = ['4','6','8','2'] if (group=='7'): conditionSeq = ['long','long','short','short'] whichWordsSeq = ['6','8','2','4'] if (group=='8'): conditionSeq = ['long','long','short','short'] whichWordsSeq = ['8','2','4','6'] if (group=='9'): conditionSeq = ['long','long','short','short'] whichWordsSeq = ['1','3','5','7'] if (group=='10'): conditionSeq = ['long','long','short','short'] whichWordsSeq = ['3','5','7','1'] if (group=='11'): conditionSeq = ['short','short','long','long'] whichWordsSeq = ['5','7','1','3'] if (group=='12'): conditionSeq = ['short','short','long','long'] whichWordsSeq = ['7','1','3','5'] if (group=='13'): conditionSeq = ['long','long','short','short'] whichWordsSeq = ['2','4','6','8'] if (group=='14'): conditionSeq = ['long','long','short','short'] whichWordsSeq = ['4','6','8','2'] if (group=='15'): conditionSeq = ['short','short','long','long'] whichWordsSeq = ['6','8','2','4'] if (group=='16'): conditionSeq = ['short','short','long','long'] whichWordsSeq = ['8','2','4','6'] for counter in range(4): condition = conditionSeq[counter] whichWords = whichWordsSeq[counter] speed = speedSeq[counter] #condition = 'long' #whichWords = '1' #speed = 'slow' if (condition == 'short'): rec_duration = 2 else: rec_duration = 4 if (whichWords == '1'): wordFile1 = "W1.txt" wordFile2 = "W2.txt" targetFile = "TargetList1.txt" if (whichWords == '2'): wordFile1 = "W2.txt" wordFile2 = "W1.txt" targetFile = "TargetList2.txt" if (whichWords == '3'): wordFile1 = "W3.txt" wordFile2 = "W4.txt" targetFile = "TargetList3.txt" if (whichWords == '4'): wordFile1 = "W4.txt" wordFile2 = "W3.txt" targetFile = "TargetList4.txt" if (whichWords == '5'): wordFile1 = "W5.txt" wordFile2 = "W6.txt" targetFile = "TargetList5.txt" if (whichWords == '6'): wordFile1 = "W6.txt" wordFile2 = "W5.txt" targetFile = "TargetList6.txt" if (whichWords == '7'): wordFile1 = "W7.txt" wordFile2 = "W8.txt" targetFile = "TargetList7.txt" if (whichWords == '8'): wordFile1 = "W8.txt" wordFile2 = "W7.txt" targetFile = "TargetList8.txt" if (test!='0'): condition = 'short' rec_duration = 1.8 wordFile1 = "test" + test + ".txt" wordFile2 = "test" + test + "b.txt" targetFile = "TestTargets" + test +".txt" print(wordFile1) # reads word in from external source wordList1 = open(wordFile1) wordList2 = open(wordFile2) TargetList = open(targetFile) wordList1 = [x.rstrip() for x in wordList1.readlines()] wordList2 = [x.rstrip() for x in wordList2.readlines()] TargetList = [x.rstrip() for x in TargetList.readlines()] lettersUnparsed = "a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z".upper() for i in range(len(wordList1)): wordList1[i] = wordList1[i].replace(" ", "") #delete spaces for i in range(len(wordList2)): wordList2[i] = wordList2[i].replace(" ", "") #delete spaces for i in range(len(TargetList)): TargetList[i] = TargetList[i].replace(" ", "") #delete spaces if (test=='0'): if (speed == 'fast'): #wordList1 = wordList1[0:int((len(wordList1)/2))] #wordList2 = wordList2[0:int((len(wordList2)/2))] #TargetList = TargetList[0:int((len(TargetList)/2))] #print(wordList1) #print(len(wordList1)) wordDur = wordDur1 elif (speed == 'slow'): #wordList1 = wordList1[int((len(wordList1)/2)):len(wordList1)] #wordList2 = wordList2[int((len(wordList2)/2)):len(wordList2)] #TargetList = TargetList[int((len(TargetList)/2)):len(TargetList)] wordDur = wordDur2 #####shuffles wordlist for each participant. print(wordList1) print(wordList2) print(TargetList) print(len(wordList1)) print(len(TargetList)) tl = np.column_stack((wordList1, wordList2,TargetList)) np.random.shuffle(tl[10:,:]) print(tl) wordList1 = tl[:,0] wordList2 = tl[:,1] TargetList = tl[:,2] print(wordList1) print(wordList2) print(TargetList) #set location of stimuli #letter size 2.5 deg SOAms = wordDur #Battelli, Agosta, Goodbourn, Holcombe mostly using 133 #KR: was 233 #Minimum SOAms should be 84 because any shorter, I can't always notice the second ring when lag1. 71 in Martini E2 and E1b (actually he used 66.6 but that's because he had a crazy refresh rate of 90 Hz) letterDurMs = wordDur #85 #Was 17. 23.6 in Martini E2 and E1b (actually he used 22.2 but that's because he had a crazy refresh rate of 90 Hz = 0 ISIms = SOAms - letterDurMs letterDurFrames = int( np.floor(letterDurMs / (1000./refreshRate)) ) cueDurFrames = letterDurFrames ISIframes = int( np.floor(ISIms / (1000./refreshRate)) ) #have set ISIframes and letterDurFrames to integer that corresponds as close as possible to originally intended ms rateInfo = 'total SOA=' + str(round( (ISIframes + letterDurFrames)*1000./refreshRate, 2)) + ' or ' + str(ISIframes + letterDurFrames) + ' frames, comprising\n' rateInfo+= 'ISIframes ='+str(ISIframes)+' or '+str(ISIframes*(1000./refreshRate))+' ms and letterDurFrames ='+str(letterDurFrames)+' or '+str(round( letterDurFrames*(1000./refreshRate), 2))+'ms' logging.info(rateInfo); print(rateInfo) trialDurFrames = int( numWordsInStream*(ISIframes+letterDurFrames) ) #trial duration in frames onsets = []; offsets = []; inferredOnsets = [] #rec_duration = 3.8 #1.8 for short #2.8 for both #3.8 for long stimClock = core.Clock() durs=list() if counter== 0: myWin = openMyStimWindow() #set up output data file, log file, copy of program code, and logging infix = '' if doStaircase: infix = 'staircase_' fileName = subject + '_' + infix+ timeAndDateStr+ '_' + str(counter) fileNameWithPath = os.path.join(dataPath, fileName) if not demo and not exportImages: dataFile = open(fileNameWithPath+'.txt', 'w') saveCodeCmd = 'cp \'' + sys.argv[0] + '\' '+ fileNameWithPath + '.py' os.system(saveCodeCmd) #save a copy of the code as it was when that subject was run logFname = fileNameWithPath+'.log' ppLogF = logging.LogFile(logFname, filemode='w',#if you set this to 'a' it will append instead of overwriting level=logging.INFO)#errors, data and warnings will be sent to this logfile if demo or exportImages: dataFile = sys.stdout; logF = sys.stdout logging.console.setLevel(logging.ERROR) #only show this level messages and higher logging.console.setLevel(logging.ERROR) #DEBUG means set console to receive nearly all messges, INFO next level, EXP, DATA, WARNING and ERROR if fullscr and not demo and not exportImages: runInfo = psychopy.info.RunTimeInfo( # if you specify author and version here, it overrides the automatic detection of __author__ and __version__ in your script #author='<your name goes here, plus whatever you like, e.g., your lab or contact info>', #version="<your experiment version info>", win=myWin, ## a psychopy.visual.Window() instance; None = default temp window used; False = no win, no win.flips() refreshTest='grating', ## None, True, or 'grating' (eye-candy to avoid a blank screen) verbose=False, ## True means report on everything userProcsDetailed=True, ## if verbose and userProcsDetailed, return (command, process-ID) of the user's processes #randomSeed='set:42', ## a way to record, and optionally set, a random seed of type str for making reproducible random sequences ## None -> default ## 'time' will use experimentRuntime.epoch as the value for the seed, different value each time the script is run ##'set:time' --> seed value is set to experimentRuntime.epoch, and initialized: random.seed(info['randomSeed']) ##'set:42' --> set & initialize to str('42'), and will give the same sequence of random.random() for all runs of the script ) logging.info(runInfo) logging.flush() textStimuliStream1 = list() textStimuliStream2 = list() #used for second, simultaneous RSVP stream def calcAndPredrawStimuli(wordList1,wordList2,nDoneMain): global textStimuliStream1, textStimuliStream2 del textStimuliStream1[:] del textStimuliStream2[:] if len(wordList1) < numWordsInStream: print('Error! Your word list must have at least ',numWordsInStream,'strings') #for i in (0): #draw the words that will be used on this trial, the first numWordsInStream of the shuffled list word1 = wordList1[ nDoneMain ]# #[ idxsIntoWordList[i] ] word2 = wordList2[ nDoneMain ] textStimulusStream1 = visual.TextStim(myWin,text=word1,height=ltrHeight,colorSpace='rgb',color=letterColor,alignHoriz='right',alignVert='center',units='deg',font='Arial',autoLog=autoLogging) textStimulusStream2 = visual.TextStim(myWin,text=word2,height=ltrHeight,colorSpace='rgb',color=letterColor,alignHoriz='left',alignVert='center',units='deg',font='Arial',autoLog=autoLogging) textStimulusStream1.setPos([-wordEccentricity,0]) #left textStimuliStream1.append(textStimulusStream1) textStimulusStream2.setPos([wordEccentricity,0]) #right textStimuliStream2.append(textStimulusStream2) #create click sound for keyboard try: click=sound.Sound('406__tictacshutup__click-1-d.wav') except: #in case file missing, create inferiro click manually logging.warn('Could not load the desired click sound file, instead using manually created inferior click') click=sound.Sound('D',octave=4, sampleRate=22050, secs=0.015, bits=8) if showRefreshMisses: fixSizePix = 32 #2.6 #make fixation bigger so flicker more conspicuous else: fixSizePix = 32 fixColor = [1,1,1] redfixColor = [0,1,1] if exportImages: fixColor= [0,0,0] fixatnNoiseTexture = np.round( np.random.rand(fixSizePix/4,fixSizePix/4) ,0 ) *2.0-1 #Can counterphase flicker noise texture to create salient flicker if you break fixation fixation= visual.PatchStim(myWin, tex=fixatnNoiseTexture, size=(fixSizePix,fixSizePix), units='pix', mask='circle', interpolate=False, autoLog=False) fixationBlank= visual.PatchStim(myWin, tex= -1*fixatnNoiseTexture, size=(fixSizePix,fixSizePix), units='pix', mask='circle', interpolate=False, autoLog=False) #reverse contrast fixationPoint= visual.PatchStim(myWin,tex='none',colorSpace='rgb',color=(letterColor),size=2,units='pix',autoLog=autoLogging) redfixationPoint= visual.PatchStim(myWin,tex='none',colorSpace='rgb',color=('white'),size=2,units='pix',autoLog=autoLogging) respPromptStim = visual.TextStim(myWin,pos=(0, -.9),colorSpace='rgb',color=(letterColor),alignHoriz='center', alignVert='center',height=.05,units='norm',autoLog=autoLogging) acceptTextStim = visual.TextStim(myWin,pos=(0, -.8),colorSpace='rgb',color=(letterColor),alignHoriz='center', alignVert='center',height=.05,units='norm',autoLog=autoLogging) acceptTextStim.setText('Hit ENTER to accept. Backspace to edit') respStim = visual.TextStim(myWin,pos=(0,0),colorSpace='rgb',color=(letterColor),alignHoriz='center', alignVert='center',height=1,units='deg',autoLog=autoLogging) #clickSound, badKeySound = stringResponse.setupSoundsForResponse() requireAcceptance = False nextText = visual.TextStim(myWin,pos=(0, .1),colorSpace='rgb',color = (letterColor),alignHoriz='center', alignVert='center',height=.1,units='norm',autoLog=autoLogging) NextRemindCountText = visual.TextStim(myWin,pos=(0,.2),colorSpace='rgb',color=
#!/usr/bin/env python3 import os import pandas as pd from scattertable import scattertable import numpy as np import glob import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from matplotlib import markers def subtract_era(datadi, era5di, file_dict,r, model_name): ''' maxtrix hist - matrix era5 hist is a matrix, ERA5 just one value ''' for parameter in file_dict.keys(): df_name = file_dict[parameter][0] MIP = file_dict[parameter][1][:] var = file_dict[parameter][2][:] timeslice=file_dict[parameter][5] reg = file_dict[parameter][3][:] sce = file_dict[parameter][4][:] vartitel=file_dict[parameter][6] kind=file_dict[parameter][7] FileName=df_name+MIP[0]+'_'+r+'_'+sce[0]+timeslice+var[0]+'.csv' print(FileName) FileEra= df_name+MIP[1]+'_'+r+'_'+sce[1]+timeslice+var[1]+'.csv' print(FileEra) InFile=os.path.join(datadi,FileName) InEra=os.path.join(era5di,FileEra) print('InEra:',era5di) dfhist=pd.read_csv(InFile,index_col='model_member') df_era5 =pd.read_csv(InEra ,index_col='model_member') dfdiffm=pd.DataFrame() colm=['ANN','DJF','MAM','JJA','SON'] for c in range(5): diff=pd.DataFrame() col=colm[c] value=df_era5.iloc[0][col] print('value= ', value) dfhist.loc[dfhist[col]> 1e+19 ] = np.nan diff=dfhist[col] - value if var[1] == 'tp': # change unit to mm/day value=value * 86400 diff=(dfhist[col] * 86400) - value print('value= ', value) print('precipitation') if kind == '%': diff=diff * (100 / value) dfdiffm=pd.concat([dfdiffm,diff],axis=1,join='outer',sort=False) dfdiffm.columns = colm # Alphabethical Order dfdiffm=dfdiffm.sort_index() # MEAN diff dfdiffmm=dfdiffm.copy() dfdiffmm.loc['MEAN']=dfdiffmm.mean(numeric_only=True, axis=0) # if MIP[0] == 'CMIP5': t2=pd.DataFrame() for i in model_name: t=dfdiffm.loc[(dfdiffm.index == i)] t2=pd.concat([t2,t],axis=0) t2m=t2.copy() t2m.loc['MEAN-CMIP5-CORDEX']=t2m.mean(numeric_only=True, axis=0) EC=t2m.loc[(t2m.index == 'MEAN-CMIP5-CORDEX')] # append to dfdiffmm dfdiffmm=pd.concat([dfdiffmm,EC],axis=0) return dfdiffmm def add_mean_hm(InData,MIP,model_name): ''' add MEAN per month or season over all models for heatmap''' InDatam=InData.copy() InDatam.loc['MEAN']=InDatam.mean(numeric_only=True, axis=0) # if MIP == 'CMIP5': t2=pd.DataFrame() for i in model_name: t=InDatam.loc[(InDatam.index == i)] t2=pd.concat([t2,t],axis=0) t2m=t2.copy() t2m.loc['MEAN-CMIP5-CORDEX']=t2m.mean(numeric_only=True, axis=0) #print(t2m) EC=t2m.loc[(t2m.index == 'MEAN-CMIP5-CORDEX')] # append InDatam=pd.concat([InDatam,EC],axis=0) #print(InDatam) return InDatam def add_mean(df): ''' mean over df.Scenario ''' MeanData=pd.DataFrame() for s in df['Scenario'].unique(): print(s) sel=df.loc[(df['Scenario'] == s)] selm=sel.copy() selm.loc['MEAN']=selm.mean(numeric_only=True, axis=0) selm.at['MEAN','experiment'] = 'MEAN' selm.at['MEAN','Scenario'] = s MeanData=pd.concat([MeanData,selm],axis=0) dfm=MeanData.loc[(MeanData['experiment'] == 'MEAN')] print(dfm) return dfm # ****************************************************************** # ToDo die add columns in eine funktion zusammen fassen irgendwie # ****************************************************************** def add_column_for_plot(df): ''' add column for CMIP-mini-ensembel ...''' eurocordex = scattertable('cordex-gcm') cmip6_lbc = scattertable('cmip6-gcm-lbc') # Create column with names, which equal the names in list CMIP5-CORDEX : df['model_member_experiment_id'] = df['model_member'].str.cat(df['experiment_id'],sep="_") df['experimentn'] = df['model_member_experiment_id'].map(eurocordex) df['experiment1'] = [x if x == 'CMIP5-CORDEX' else z for x,z in zip(df['experimentn'],df['project_id'])] # clean up df.drop(['experimentn'], inplace=True, axis=1) # A simulation of the CMIP5-CORDEX ensemble is also a memebr of CMIP5 Ensemble and needs to added again sel=df.loc[(df['experiment1'] == 'CMIP5-CORDEX')] sel=sel.replace({'experiment1':'CMIP5-CORDEX'},{'experiment1':'CMIP5'}, regex=True) dfn=df.append(sel) # CMIP6: Create column with names , which equal the names in list CMIP6-LBC : dfn['experimentn'] = dfn['model_member_experiment_id'].map(cmip6_lbc) dfn['experiment'] = [x if x == 'CMIP6-LBC' else z for x,z in zip(dfn['experimentn'],dfn['experiment1'])] # clean up dfn.drop(['experimentn'], inplace=True, axis=1) dfn.drop(['experiment1'], inplace=True, axis=1) # the runs which are in the Ensemble with LBC are also in the ensemble of CMIP, so they have to occure twice sel=dfn.loc[(dfn['experiment'] == 'CMIP6-LBC')] sel=sel.replace({'experiment':'CMIP6-LBC'},{'experiment':'CMIP6'}, regex=True) df=dfn.append(sel) df['xcategory']=df['experiment'].str.cat(df['experiment_id'],sep="-") return(df) def add_column_for_plot_season(df): ''' add column for CMIP-mini-ensembel ...''' eurocordex = scattertable('cordex-gcm') cmip6_lbc = scattertable('cmip6-gcm-lbc') # CMIP5: Create column with names , which equal the names in list CORDEX_GCM /cmip6-gcm-lbc : df['model_member_experiment_id'] = df['model_member'].str.cat(df['experiment_id'],sep="_") df['experimentn'] = df['model_member_experiment_id'].map(eurocordex) df['experiment1'] = [x if x == 'CMIP5-CORDEX' else z for x,z in zip(df['experimentn'],df['project_id'])] # clean up df.drop(['experimentn'], inplace=True, axis=1) # the runs which are in the Ensemble with LBC are also in the ensemble of CMIP, so they have to occure twice sel=df.loc[(df['experiment1'] == 'CMIP5-CORDEX')] sel['experiment1']= 'CMIP5' dfn=df.append(sel) # CMIP6: Create column with names , which equal the names in list CORDEX_GCM /cmip6-gcm-lbc : dfn['experimentn'] = dfn['model_member_experiment_id'].map(cmip6_lbc) dfn['experiment'] = [x if x == 'CMIP6-LBC' else z for x,z in zip(dfn['experimentn'],dfn['experiment1'])] # clean up dfn.drop(['experimentn'], inplace=True, axis=1) dfn.drop(['experiment1'], inplace=True, axis=1) # the runs which are in the Ensemble with LBC are also in the ensemble of CMIP, so they have to occure twice sel=dfn.loc[(dfn['experiment'] == 'CMIP6-LBC')] sel['experiment']= 'CMIP6' df=dfn.append(sel) df['xcategory']=df['season'].str.cat(df['experiment'],sep="-") return(df) def add_column_for_plot_cordex(df): ''' the CORDEX name of GCM and RCM needs to be splitt first''' # CORDEX df_tmp= df['model_member'].str.split(pat="_",expand=True) column_name=['RCM','GCMn','CORDEX','member'] df_tmp.columns = column_name df=pd.concat([df,df_tmp],axis=1) df['GCM']=df['GCMn'].str.cat(df['member'],sep="_") #replace project_id with rcm name df=df.drop(['project_id'], axis=1) df=df.drop(['GCMn'], axis=1) df=df.drop(['CORDEX'], axis=1) df=df.drop(['member'], axis=1) df['project_id']=df['RCM'] # sometimes the same model has a different name df['project_id'].replace('CLMcom-BTU-CCLM4-8-17','CLMcom-CCLM4-8-17',inplace=True) df['project_id'].replace('IPSL-INERIS-WRF381P','IPSL-WRF381P',inplace=True) # this looks silly, but some institutes have two names and some on df['GCM'].replace('CNRM-CERFACS-CNRM-CM5_r1i1p1','CNRM-CM5_r1i1p1', inplace=True) df['GCM'].replace('MIROC-MIROC5_r1i1p1','MIROC5_r1i1p1', inplace=True) df['GCM'].replace('NCC-NorESM1-M_r1i1p1','NorESM1-M_r1i1p1', inplace=True) df['GCM'].replace('CCCma-CanESM2_r1i1p1','CanESM2_r1i1p1', inplace=True) df['GCM'].replace('MPI-M-MPI-ESM-LR_r1i1p1','MPI-ESM-LR_r1i1p1', inplace=True) df['GCM'].replace('MPI-M-MPI-ESM-LR_r2i1p1','MPI-ESM-LR_r2i1p1', inplace=True) df['GCM'].replace('MPI-M-MPI-ESM-LR_r3i1p1','MPI-ESM-LR_r3i1p1', inplace=True) df['GCM'].replace('IPSL-IPSL-CM5A-LR_r1i1p1','IPSL-CM5A-LR_r1i1p1', inplace=True) df['GCM'].replace('IPSL-IPSL-CM5A-MR_r1i1p1','IPSL-CM5A-MR_r1i1p1', inplace=True) df['GCM'].replace('NOAA-GFDL-GFDL-ESM2G_r1i1p1','GFDL-ESM2G_r1i1p1', inplace=True) df['GCM'].replace('ICHEC-EC-EARTH_r12i1p1','EC-EARTH_r12i1p1', inplace=True) df['GCM'].replace('ICHEC-EC-EARTH_r1i1p1','EC-EARTH_r1i1p1', inplace=True) df['GCM'].replace('ICHEC-EC-EARTH_r3i1p1','EC-EARTH_r3i1p1', inplace=True) df['GCM'].replace('MOHC-HadGEM2-ES_r1i1p1','HadGEM2-ES_r1i1p1', inplace=True) return(df) def add_column_for_plot_cmip_cordex(df): ''' add column for color ...''' eurocordex = scattertable('cordex-gcm') #Create column with names , which equal the names in list CORDEX_GCM : df['model_member_experiment_id'] = df['model_member'].str.cat(df['experiment_id'],sep="_") df['experimentn'] = df['model_member_experiment_id'].map(eurocordex) df['GCM'] = [z if x == 'CMIP5-CORDEX' else y for x,y,z in zip(df['experimentn'],df['project_id'],df['model_member'])] df=df.drop(['experimentn'], axis=1) return(df) def add_column_for_plot_rcp(df,rcp): ''' add column for color ...''' eurocordex = scattertable('cordex-gcm') # Create column with names , which equal the names in list CORDEX_GCM : # this will eventually determine the shape df['model_member_experiment_id'] = df['model_member'].str.cat(df['experiment_id'],sep="_") df['experimentn'] = df['model_member_experiment_id'].map(eurocordex) df['experiment'] = [x if x == 'CMIP5-CORDEX' else z for x,z in zip(df['experimentn'],df['project_id'])] # if all scenarios are plotted, the color of CORDEX should not change see else print('rcp fuer if =',rcp) if rcp != 'all': #df['experimentnn'] = df['model_member_experiment_id'].map(eurocordex) #df['experimentnnn'] = df['experiment_id'].str.cat(df['experimentnn'],sep="-") df['experimentnnn'] = df['experiment_id'].str.cat(df['experimentn'],sep="-") df['Scenario'] = [x if x == 'CMIP5-CORDEX' else z for x,z in zip(df['experimentn'],df['experiment_id'])] #df['Scenario'] = [z if x == 'CMIP5-CORDEX' else y for x,y,z in zip(df['experimentn'],df['experiment_id'],df['experimentnnn'])] # clean up df.drop(['experimentnnn'], axis=1) else: df['Scenario'] = df['experiment_id'] #Kevin: 3 special models pickt for Kevin, geht auch einfacher #kevin=scattertable('cmip6-gcm-lbc-kevin') #kevin2=scattertable('cmip6-gcm-lbc-kevin2') #df['experimentnk'] = df['model_member_experiment_id'].map(kevin) #kevin #df['experimentnk2'] = df['model_member_experiment_id'].map(kevin2) #kevin #df['Scenario'] = [z if x == 'ssp370_LBC' else y for x,y,z in zip(df['experimentnk2'],df['experiment_id'],df['experimentnk'])] # clean up df=df.drop(['experimentn'], axis=1) return(df) def plot_heatmap_season_1x3(reg,dataframes, plotname, var_dict,plot_titel, model_name, model_mean): print ('reg: ', reg) for parameter in var_dict.keys(): Einheit = var_dict[parameter][0] # y-range: lim_min = var_dict[parameter][1][0] lim_max = var_dict[parameter][1][1] color = var_dict[parameter][2] format = var_dict[parameter][3] #fmt=".1f" for s in range(0,len(reg)): print('shape: ',dataframes[s].shape) # figsize is important, make a reasonable choice fig, (ax1, ax2, ax3) = plt.subplots(3, 1, sharex=True, sharey=True, figsize=(25,7)) #First df=dataframes[0] mask = df.isna() ax1=sns.heatmap(df.T, mask=mask.T, ax=ax1, square=True, annot=True,fmt=format, annot_kws={"size": 8}, cmap=color,cbar_kws=dict(pad=0.003,shrink= 1,label= Einheit,),vmin=lim_min, vmax=lim_max,linewidths=0.5, linecolor='white' ,xticklabels=False, yticklabels=True) ax1.set_facecolor('lightgrey') ax1.tick_params(bottom=False) ## other options are left,right and top ax1.set_ylabel(reg[0]) ax1.set_xlabel(' ') ax1.set_title(plot_titel, color='k', fontsize=12) #Second df=dataframes[1] mask = df.isna() ax2=sns.heatmap(df.T, mask=mask.T, ax=ax2, square=True, annot=True,fmt=format, annot_kws={"size": 8}, cmap=color,cbar_kws=dict(pad=0.003,shrink= 1,label= Einheit),vmin=lim_min, vmax=lim_max,linewidths=0.5, linecolor='white' ,xticklabels=False, yticklabels=True) ax2.set_facecolor('lightgrey') ax2.tick_params(bottom=False) ax2.set_ylabel('WCE') #reg[1]) ax2.set_xlabel(' ') #Third df=dataframes[2] mask = df.isna() ax3=sns.heatmap(df.T, mask=mask.T,ax=ax3, square=True, annot=True,fmt=format, annot_kws={"size": 8}, cmap=color,cbar_kws=dict(pad=0.003,shrink= 1,label= Einheit), vmin=lim_min, vmax=lim_max,linewidths=0.5, linecolor='white' ,xticklabels=True, yticklabels=True) # no cbar: cbar=False ax3.set_facecolor('lightgrey') ax3.set_ylabel(reg[2]) ax3.set_xlabel(' ') plt.tight_layout() for label in ax3.get_xticklabels(): if label.get_text() in model_name: #label.set_size(13) label.set_weight("bold") label.set_color("red") for label in ax3.get_xticklabels(): if label.get_text() in model_mean: label.set_weight("bold") print('hier ist der file:' ,plotname) #plt.show() plt.savefig(plotname, bbox_inches="tight") return def rename(reg): print('replace:',reg) reg=reg.replace('1','BI') # prudence regions are sometimes only Numbers reg=reg.replace('2','IP') reg=reg.replace('3','FR') reg=reg.replace('4','ME') reg=reg.replace('5','SC') reg=reg.replace('6','AL') reg=reg.replace('7','MD') reg=reg.replace('8','EA') reg=reg.replace('CEU','WCE') # central Europe CEU has changed its name WCE print ('reg=',reg) return reg def plot_heatmap_sce_1x3(sce, dataframes, plotname, var_dict,plot_titel, model_name, dt): #Name df for parameter in var_dict.keys(): Einheit = var_dict[parameter][0] # y-range: lim_min = var_dict[parameter][1][0] lim_max = var_dict[parameter][1][1] color = var_dict[parameter][2] format = var_dict[parameter][3] #fmt=".1f" for s in range(0,len(sce)): print('shape: ',dataframes[s].shape) # figsize is important, make a reasonable choice if dt == 'mon': fig, (ax1, ax2, ax3) = plt.subplots(3, 1, sharex=True, sharey=True, figsize=(30,10)) else: fig, (ax1, ax2, ax3) = plt.subplots(3, 1, sharex=True, sharey=True, figsize=(25,7)) #First df=dataframes[0] mask = df.isna() im=sns.heatmap(df.T, mask=mask.T, ax=ax1, square=True, annot=True,fmt=format, annot_kws={"size": 6}, cmap=color,cbar_kws=dict(pad=0.003,shrink= 1,label= Einheit,),vmin=lim_min, vmax=lim_max,linewidths=0.5, linecolor='white' ,xticklabels=False, yticklabels=True) ax1.set_facecolor('lightgrey') ax1.tick_params(bottom=False) ## other options are left,right and top ax1.set_ylabel(sce[0]) ax1.set_xlabel(' ') ax1.set_title(plot_titel, color='k', fontsize=12) #ax1.text(32,-0.5,Einheit) #Second df=dataframes[1] mask = df.isna() ax2=sns.heatmap(df.T, mask=mask.T, ax=ax2, square=True, annot=True,fmt=format, annot_kws={"size": 6}, cmap=color,cbar_kws=dict(pad=0.003,shrink= 1,label= Einheit),vmin=lim_min, vmax=lim_max,linewidths=0.5, linecolor='white' ,xticklabels=False, yticklabels=True) ax2.set_facecolor('lightgrey') ax2.tick_params(bottom=False) ax2.set_ylabel(sce[1]) ax2.set_xlabel(' ') #Third df=dataframes[2] mask = df.isna() ax3=sns.heatmap(df.T, mask=mask.T,ax=ax3, square=True, annot=True,fmt=format, annot_kws={"size": 6}, cmap=color,cbar_kws=dict(pad=0.003,shrink= 1,label= Einheit), vmin=lim_min, vmax=lim_max,linewidths=0.5, linecolor='white' ,xticklabels=True, yticklabels=True) # no cbar: cbar=False ax3.set_facecolor('lightgrey') ax3.set_ylabel(sce[2]) ax3.set_xlabel(' ') plt.tight_layout() model_mean=("MEAN","MEAN-CMIP5-CORDEX") for label in ax3.get_xticklabels(): if label.get_text() in model_name: #== "MPI-ESM-LR_r3i1p1": #label.set_size(13) label.set_weight("bold")
<filename>Project_final_ver/admin/heuristics.py """ COMP30024 Artificial Intelligence, Semester 1, 2021 Project Part B: Playing the Game Team Name: Admin Team Member: <NAME> (955797) & <NAME> (693241) This module contain functions of our searching strategy to make decisions for player's next action based on evaluation function. """ import math from copy import deepcopy from admin.pathfinding import * INITIAL_WEIGHT = 5 def eval_board(my_token_array, opponent_token_array, enemy_throws_left, my_throw_range, op_throw_range, num_of_my_defeated_throws, enemies_defeated, player_faction, my_throws_left): ''' Evaluate the board based on our evaluation function. ''' sum_score = 0 if player_faction == "upper": allowed_r_coord = [i for i in range(4 - my_throw_range, 5)] allowed_r_coord_opp = [i for i in range(-4 , -3 + op_throw_range)] else: allowed_r_coord = [i for i in range(-4 , -3 + my_throw_range)] allowed_r_coord_opp = [i for i in range(4 - op_throw_range, 5)] allowed_q_coordinate = [i for i in range(-4 , 5)] overlap_adjust_coef = 1 for i in range(len(my_token_array)): for j in range(len(my_token_array)): if i != j: if (my_token_array[i][1] == my_token_array[j][1]) and (my_token_array[i][0] == my_token_array[j][0]): overlap_adjust_coef = overlap_adjust_coef/10 raw_coordinates = [] raw_coordinates_opp = [] for r in allowed_r_coord: for q in allowed_q_coordinate: raw_coordinates.append((r,q)) for r in allowed_r_coord_opp: for q in allowed_q_coordinate: raw_coordinates_opp.append((r,q)) allowed_coordinates = raw_coordinates.copy() allowed_coordinates_opp = raw_coordinates_opp.copy() for coordinate in raw_coordinates: if not boarder_check(coordinate): allowed_coordinates.remove(coordinate) for coordinate in raw_coordinates_opp: if not boarder_check(coordinate): allowed_coordinates_opp.remove(coordinate) exposed_to_throw = 1 for my_token in my_token_array: exposed_to_enemy_num = 0.5 weight_coef = INITIAL_WEIGHT if my_token[2]: closest_goal = gen_closest_goal(my_token[1], my_token[2]) closest_dist_goal = calculate_distance(my_token[1], closest_goal) if closest_dist_goal == 1.0: weight_coef *= 5 weight_coef -= 1 else: closest_dist_goal = 0 weight_coef += 1 if my_token[3]: closest_threat = gen_closest_goal(my_token[1], my_token[3]) closest_dist_threat = calculate_distance(my_token[1], closest_threat) for threat in my_token[3]: if calculate_distance(my_token[1], threat) == 1: exposed_to_enemy_num += 1 weight_coef -= 1 else: closest_dist_threat = 1000 if player_faction == "upper": if ((my_token[1][0] - max(allowed_r_coord_opp)) < closest_dist_threat) and ((my_token[1][0] - max(allowed_r_coord_opp)) > 0): closest_dist_threat = my_token[1][0] - max(allowed_r_coord_opp) if closest_dist_threat == 1.0: weight_coef /= 10 elif (my_token[1][0] - max(allowed_r_coord_opp)) <= 0 : exposed_to_throw += 1 exposed_to_enemy_num += 0.5 closest_dist_threat = 0.1 else: if (-(my_token[1][0] - min(allowed_r_coord_opp)) < closest_dist_threat) and (-(my_token[1][0] - min(allowed_r_coord_opp)) > 0): closest_dist_threat = -(my_token[1][0] - min(allowed_r_coord_opp)) if closest_dist_threat == 1.0: weight_coef /= 10 elif (-(my_token[1][0] - min(allowed_r_coord_opp))) <= 0 : exposed_to_throw += 1 exposed_to_enemy_num += 0.5 closest_dist_threat = 0.1 cover = 0 for friendly in my_token_array: if friendly[0] == protective_type(my_token[0]): adjancent_tokens = get_token_adjacency(friendly[1],my_token_array) potential_movements = gen_next_all_potential_moves(friendly[1]) truly_adjacent = adjancent_tokens.copy() if len(adjancent_tokens) != 0: for adjacent_pos in adjancent_tokens: if calculate_distance(friendly[1], adjacent_pos) != 1.0: truly_adjacent.remove(adjacent_pos) if len(truly_adjacent) != 0: potential_swing_moves = gen_all_potential_swing_moves(friendly[1], truly_adjacent) in_swing = set(potential_swing_moves) in_move = set(potential_movements) in_swing_but_not_in_move = in_swing - in_move potential_movements = potential_movements + list(in_swing_but_not_in_move) for move in potential_movements: if move == my_token[1]: cover = 1 weight_coef += cover enemy_covered = 0 if my_token[2]: for enemy in opponent_token_array: if enemy[1] == closest_goal: target_info = enemy break for enemy in opponent_token_array: if enemy[0] == protective_type(target_info[0]): adjancent_tokens = get_token_adjacency(enemy[1],opponent_token_array) potential_movements = gen_next_all_potential_moves(enemy[1]) truly_adjacent = adjancent_tokens.copy() if len(adjancent_tokens) != 0: for adjacent_pos in adjancent_tokens: if calculate_distance(enemy[1], adjacent_pos) != 1.0: truly_adjacent.remove(adjacent_pos) if len(truly_adjacent) != 0: potential_swing_moves = gen_all_potential_swing_moves(enemy[1], truly_adjacent) in_swing = set(potential_swing_moves) in_move = set(potential_movements) in_swing_but_not_in_move = in_swing - in_move potential_movements = potential_movements + list(in_swing_but_not_in_move) for move in potential_movements: if move == target_info[1]: enemy_covered = -1 weight_coef += enemy_covered covering_friendly = 0 adjancent_tokens = get_token_adjacency(my_token[1],my_token_array) potential_movements = gen_next_all_potential_moves(my_token[1]) truly_adjacent = adjancent_tokens.copy() if len(adjancent_tokens) != 0: for adjacent_pos in adjancent_tokens: if calculate_distance(my_token[1], adjacent_pos) != 1.0: truly_adjacent.remove(adjacent_pos) if len(truly_adjacent) != 0: potential_swing_moves = gen_all_potential_swing_moves(my_token[1], truly_adjacent) in_swing = set(potential_swing_moves) in_move = set(potential_movements) in_swing_but_not_in_move = in_swing - in_move potential_movements = potential_movements + list(in_swing_but_not_in_move) for friendly in my_token_array: if friendly[1] in potential_movements: if friendly[0] == protective_type(my_token[0]): covering_friendly = +1 weight_coef += covering_friendly if (my_token[1] in allowed_coordinates_opp) and (enemy_throws_left > 0) : weight_coef -= 1 else: weight_coef += 1 sum_score = sum_score + weight_coef * ((((enemy_throws_left + len(opponent_token_array) + 1)/(enemy_throws_left + 1)) / exposed_to_throw) * closest_dist_threat / (exposed_to_enemy_num * 2) - closest_dist_goal * exposed_to_enemy_num) penal_coef = 1 my_token_type = [] op_token_type = [] for my_token in my_token_array: my_token_type.append(my_token[0]) for opponent_token in opponent_token_array: op_token_type.append(opponent_token[0]) for opponent_token in opponent_token_array: if counter_type(opponent_token[0]) not in my_token_type: penal_coef = penal_coef/4 winning_coef = 1 if ("s" in my_token_type) and ("p" not in op_token_type): winning_coef += 1 if ("p" in my_token_type) and ("s" not in op_token_type): winning_coef += 1 if ("r" in my_token_type) and ("p" not in op_token_type): winning_coef += 1 num_of_s = 0 num_of_p = 0 num_of_r = 0 for types in my_token_type: if types == "s": num_of_s += 1 elif types == "p": num_of_p += 1 elif types == "r": num_of_r += 1 if num_of_s > 1: winning_coef /= num_of_s if num_of_p > 1: winning_coef /= num_of_p if num_of_r > 1: winning_coef /= num_of_r if enemy_throws_left < my_throws_left: winning_coef *= (my_throws_left - enemy_throws_left + 1) elif enemy_throws_left > my_throws_left: winning_coef /= (enemy_throws_left - my_throws_left + 1) sum_score = sum_score - enemies_defeated + num_of_my_defeated_throws - my_throws_left sum_score = sum_score * overlap_adjust_coef * penal_coef * winning_coef return sum_score def if_score(player_action, opponent_action, my_token_array, opponent_token_array, enemy_throws_left, my_throw_range, op_throw_range, num_of_my_defeated_throws, enemies_defeated, player_faction, my_throws_left): penal_coef = 1 enemy_throws_left_if = enemy_throws_left my_throws_left_if = my_throws_left token_types =[] my_throw_range_if = my_throw_range op_throw_range_if = op_throw_range for token in my_token_array: token_types.append(token[0]) if player_action == None: return 0 if player_action[0] == "THROW": if enemy_throws_left_if == 0: penal_coef *= 2 else: penal_coef = penal_coef/8 if (len(my_token_array) > 3) and (player_action[1] in token_types): penal_coef /= 100 else: if player_action[1] == player_action[2]: penal_coef = 0 my_token_array_if = deepcopy(my_token_array) opponent_token_array_if = deepcopy(opponent_token_array) num_of_my_defeated_throws_if = num_of_my_defeated_throws enemies_defeated_if = enemies_defeated if player_action[0] == "THROW": my_throw_range_if += 1 my_throws_left_if -= 1 my_token_array_if.append([player_action[1], (player_action[2][0],player_action[2][1]),[],[]]) else: for position in my_token_array_if: if position[1] == player_action[1]: position[1] = player_action[2] if opponent_action: if opponent_action[0] == "THROW": op_throw_range_if += 1 enemy_throws_left_if -= 1 opponent_token_array_if.append([opponent_action[1],(opponent_action[2][0],opponent_action[2][1]),[],[]]) # a list ['token_type',(r,q),[list_of_goal_pos],[list_of_threat_pos]] else: for position in opponent_token_array_if: if position[1] == opponent_action[1]: position[1] = opponent_action[2] # Check for s-p-r dies together situation my_token_array_if_copy = my_token_array_if.copy() opponent_token_array_if_copy = opponent_token_array_if.copy() for i in range(len(my_token_array_if_copy)): for j in range(len(opponent_token_array_if_copy)): for k in range(len(my_token_array_if_copy)): if i != k: if my_token_array_if_copy[i][1] == my_token_array_if_copy[k][1] == opponent_token_array_if_copy[j][1]: if (my_token_array_if_copy[i][0] != opponent_token_array_if_copy[j][0]) and (my_token_array_if_copy[k][0] != opponent_token_array_if_copy[j][0]) and (my_token_array_if_copy[i][0] != my_token_array_if_copy[k][0]): if my_token_array_if_copy[i] in my_token_array_if: num_of_my_defeated_throws_if += 1 my_token_array_if.remove(my_token_array_if_copy[i]) if my_token_array_if_copy[k] in my_token_array_if: num_of_my_defeated_throws_if += 1 my_token_array_if.remove(my_token_array_if_copy[k]) if opponent_token_array_if_copy[j] in opponent_token_array_if: enemies_defeated_if += 1 opponent_token_array_if.remove(opponent_token_array_if_copy[j]) my_token_array_if_copy = my_token_array_if.copy() opponent_token_array_if_copy = opponent_token_array_if.copy() for i in range(len(opponent_token_array_if_copy)): for j in range(len(my_token_array_if_copy)): for k in range(len(opponent_token_array_if_copy)): if i != k: if opponent_token_array_if_copy[i][1] == opponent_token_array_if_copy[k][1] == my_token_array_if_copy[j][1]: if (opponent_token_array_if_copy[i][0] != my_token_array_if_copy[j][0]) and (opponent_token_array_if_copy[k][0] != my_token_array_if_copy[j][0]) and (opponent_token_array_if_copy[i][0] != opponent_token_array_if_copy[k][0]): if opponent_token_array_if_copy[i] in opponent_token_array_if: enemies_defeated_if += 1 opponent_token_array_if.remove(opponent_token_array_if_copy[i]) if opponent_token_array_if_copy[k] in opponent_token_array_if: enemies_defeated_if += 1 opponent_token_array_if.remove(opponent_token_array_if_copy[k]) if my_token_array_if_copy[j] in my_token_array_if: num_of_my_defeated_throws_if += 1 my_token_array_if.remove(my_token_array_if_copy[j]) my_token_array_if_copy = my_token_array_if.copy() opponent_token_array_if_copy = opponent_token_array_if.copy() for my_token in my_token_array_if_copy: my_token_type = my_token[0] my_token_pos = my_token[1] for enemy_token in opponent_token_array_if_copy: enemy_token_type = enemy_token[0] enemy_token_pos = enemy_token[1] if my_token_pos == enemy_token_pos: if (enemy_token_type == "r") and (my_token_type == "s"): if my_token in my_token_array_if: my_token_array_if.remove(my_token) penal_coef = penal_coef/3 num_of_my_defeated_throws_if += 1 break elif (enemy_token_type == "s") and (my_token_type == "p"): num_of_my_defeated_throws_if += 1 penal_coef = penal_coef/3 if my_token in my_token_array_if: my_token_array_if.remove(my_token) break elif (enemy_token_type == "p") and (my_token_type == "r"): num_of_my_defeated_throws_if += 1 penal_coef = penal_coef/3 if my_token in my_token_array_if: my_token_array_if.remove(my_token) break elif (enemy_token_type == "s") and (my_token_type == "r"): enemies_defeated_if += 1 penal_coef = penal_coef * 5 if enemy_token in opponent_token_array_if: opponent_token_array_if.remove(enemy_token) break elif (enemy_token_type == "p") and (my_token_type == "s"): enemies_defeated_if += 1 penal_coef = penal_coef * 5 if enemy_token in opponent_token_array_if: opponent_token_array_if.remove(enemy_token) break elif (enemy_token_type == "r") and (my_token_type == "p"): enemies_defeated_if += 1 penal_coef = penal_coef * 5 if enemy_token in opponent_token_array_if: opponent_token_array_if.remove(enemy_token) break my_token_array_if_copy = my_token_array_if.copy() for token_1 in my_token_array_if_copy: token_1_type = token_1[0] token_1_pos = token_1[1] for token_2 in my_token_array_if_copy: token_2_type = token_2[0] token_2_pos = token_2[1] if token_1_pos == token_2_pos: if (token_1_type == "r") and (token_2_type == "s"): num_of_my_defeated_throws_if += 1 penal_coef = penal_coef/3 if token_2 in my_token_array_if: my_token_array_if.remove(token_2) break elif (token_1_type == "s") and (token_2_type == "p"): num_of_my_defeated_throws_if +=
<filename>SpaDecon/DEC.py from __future__ import division import os #import tensorflow as tf #tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) from . SAE import SAE # load Stacked autoencoder from . preprocessing import change_to_continuous from time import time import numpy as np from keras.engine.topology import Layer, InputSpec from keras.callbacks import TensorBoard, ModelCheckpoint, EarlyStopping, ReduceLROnPlateau,History from keras.layers import Dense, Input from keras.models import Model from keras.optimizers import SGD from keras import callbacks from keras.initializers import VarianceScaling from sklearn.cluster import KMeans import scanpy as sc import pandas as pd from sklearn.metrics import normalized_mutual_info_score,adjusted_rand_score import keras.backend as K from scipy.spatial import distance from scipy.stats import entropy import warnings warnings.filterwarnings('ignore') class ClusteringLayer(Layer): # Re-define lot of build in functions for Keras """ Clustering layer converts input sample (feature) to soft label, i.e. a vector that represents the probability of the sample belonging to each cluster. The probability is calculated with student's t-distribution. # Example ``` model.add(ClusteringLayer(n_clusters=10)) ``` # Arguments n_clusters: number of clusters. weights: list of Numpy array with shape `(n_clusters, n_features)` witch represents the initial cluster centers. alpha: parameter in Student's t-distribution. Default to 1.0. # Input shape 2D tensor with shape: `(n_samples, n_features)`. # Output shape 2D tensor with shape: `(n_samples, n_clusters)`. """ def __init__(self, n_clusters, weights=None, alpha=1.0, **kwargs): if 'input_shape' not in kwargs and 'input_dim' in kwargs: kwargs['input_shape'] = (kwargs.pop('input_dim'),) super(ClusteringLayer, self).__init__(**kwargs) self.n_clusters = n_clusters self.alpha = alpha self.initial_weights = weights self.input_spec = InputSpec(ndim=2) def build(self, input_shape): assert len(input_shape) == 2 input_dim = input_shape[1] self.input_spec = InputSpec(dtype=K.floatx(), shape=(None, input_dim)) self.clusters = self.add_weight((self.n_clusters, input_dim), initializer='glorot_uniform', name='clustering') if self.initial_weights is not None: self.set_weights(self.initial_weights) del self.initial_weights self.built = True def call(self, inputs, **kwargs): # The activation function for clustering layer """ student t-distribution, as same as used in t-SNE algorithm. q_ij = 1/(1+dist(x_i, u_j)^2), then normalize it. Arguments: inputs: the variable containing data, shape=(n_samples, n_features) Return: q: student's t-distribution, or soft labels for each sample. shape=(n_samples, n_clusters) """ q = 1.0 / (1.0 + (K.sum(K.square(K.expand_dims(inputs, axis=1) - self.clusters), axis=2) / self.alpha)) q **= (self.alpha + 1.0) / 2.0 q = K.transpose(K.transpose(q) / K.sum(q, axis=1)) return q def compute_output_shape(self, input_shape): assert input_shape and len(input_shape) == 2 return input_shape[0], self.n_clusters def get_config(self): config = {'n_clusters': self.n_clusters} base_config = super(ClusteringLayer, self).get_config() return dict(list(base_config.items()) + list(config.items())) class DEC(object): def __init__(self, dims, x_all, x_train, # input matrix, row sample, col predictors y=None, # if provided will trained with supervised alpha=1.0, init='glorot_uniform', #initialization method n_clusters=None, # Number of Clusters, if provided, the clusters center will be initialized by K-means, louvain_resolution=1.0, # resolution for louvain n_neighbors=10, # the pretrain_epochs=200, # epoch for autoencoder ae_weights=None, #ae_ actinlayer1="tanh",# activation for the last layer in encoder, and first layer in the decoder is_stacked=True, transfer_feature=None, model_weights=None, y_trans=None, softmax=False, ): super(DEC, self).__init__() self.dims = dims self.x_all=x_all #feature n*p, n:number of cells, p: number of genes self.x_train = x_train self.y=y # for supervised self.y_trans=y_trans self.input_dim = dims[0] self.n_stacks = len(self.dims) - 1 self.is_stacked=is_stacked self.resolution=louvain_resolution self.alpha = alpha self.actinlayer1=actinlayer1 self.transfer_feature=transfer_feature self.model_weights=model_weights self.softmax=softmax self.pretrain_epochs=pretrain_epochs if self.transfer_feature is None: self.pretrain(n_neighbors=n_neighbors,epochs=self.pretrain_epochs,n_clusters=n_clusters) else: self.pretrain_transfer(n_neighbors=n_neighbors,model_weights=self.model_weights,features=transfer_feature,epochs=self.pretrain_epochs,n_clusters=n_clusters,y_trans=self.y_trans) def pretrain(self, optimizer='adam', epochs=200, n_neighbors=10,batch_size=256,n_clusters=None): #print("Doing DEC: pretrain") sae=SAE(dims=self.dims,drop_rate=0.2,batch_size=batch_size,actinlayer1=self.actinlayer1)# batch_size #print('...Pretraining source network...') # begin pretraining t0 = time() if self.is_stacked: sae.fit(self.x_all,epochs=epochs) else: sae.fit2(self.x_all,epochs=epochs) self.autoencoder=sae.autoencoders self.encoder=sae.encoder #print(' ...Pretraining time: ', time() - t0, 'seconds...') self.pretrained = True #build dec model and initialize model features=self.extract_features(self.x_train) features=np.asarray(features) if self.y is None: # Train data not labeled if isinstance(n_clusters,int): # Number of clusters known, use k-means print("...number of clusters have been specified, Initializing Cluster centroid using K-Means") kmeans = KMeans(n_clusters=n_clusters, n_init=20) Y_pred_init = kmeans.fit_predict(features) self.init_pred= np.copy(Y_pred_init) self.n_clusters=n_clusters cluster_centers=kmeans.cluster_centers_ self.init_centroid=cluster_centers else: # Number of clustered unknow, use unsupervised method print("...number of clusters does not know, Initialize Cluster centroid using louvain") adata=sc.AnnData(features) sc.pp.neighbors(adata, n_neighbors=n_neighbors) sc.tl.louvain(adata,resolution=self.resolution) Y_pred_init=adata.obs['louvain'] self.init_pred=np.asarray(Y_pred_init,dtype=int) features=pd.DataFrame(features,index=np.arange(0,features.shape[0])) Group=pd.Series(self.init_pred,index=np.arange(0,features.shape[0]),name="Group") Mergefeature=pd.concat([features,Group],axis=1) cluster_centers=np.asarray(Mergefeature.groupby("Group").mean()) self.n_clusters=cluster_centers.shape[0] self.init_centroid=cluster_centers print("The shape of cluster_centers",cluster_centers.shape) else: # train data is labeled #print("y known, initilize Cluster centroid using y") # build dec model features=pd.DataFrame(features,index=np.arange(0,features.shape[0])) Group=pd.Series(self.y.values,index=np.arange(0,features.shape[0]),name="Group") Mergefeature=pd.concat([features,Group],axis=1) cluster_centers=np.asarray(Mergefeature.groupby("Group").mean()) self.n_clusters=cluster_centers.shape[0] self.init_centroid=cluster_centers #print("The shape of cluster_center is",cluster_centers.shape) if not self.softmax: # Use dec method to do clustering clustering_layer = ClusteringLayer(self.n_clusters, name='clustering')(self.encoder.output) else: # Use softmax to do clustering clustering_layer=Dense(self.n_clusters,kernel_initializer="glorot_uniform",name="clustering",activation='softmax')(self.encoder.output) self.model = Model(inputs=self.encoder.input, outputs=clustering_layer) def pretrain_transfer(self,features,model_weights,y_trans=None,optmizer="adam",n_neighbors=10,epochs=200,batch_size=32,n_clusters=None): #y_trans is a numpy array #print("Doing DEC: pretrain_transfer") if isinstance(n_clusters,int): print("...number of clusters have been specified, Initializing Cluster centroid using K-Means") kmeans = KMeans(n_clusters=n_clusters, n_init=20) Y_pred_init = kmeans.fit_predict(features) self.init_pred= np.copy(Y_pred_init) self.n_clusters=n_clusters cluster_centers=kmeans.cluster_centers_ self.init_centroid=[cluster_centers] else: #print("The shape of features is",features.shape) if y_trans is not None and y_trans.shape[0]==features.shape[0]: #print("The shape of y_trans is",y_trans.shape) #print("...predicted y_test known, use it to get n_cliusters and init_centroid") self.init_pred=y_trans features=pd.DataFrame(features,index=np.arange(0,features.shape[0])) Group=pd.Series(y_trans,index=np.arange(0,features.shape[0]),name="Group") Mergefeature=pd.concat([features,Group],axis=1) cluster_centers=np.asarray(Mergefeature.groupby("Group").mean()) self.n_clusters=cluster_centers.shape[0] self.init_centroid=cluster_centers else: print("...number of clusters does not know, Initialize Cluster centroid using louvain") #can be replaced by other clustering methods adata=sc.AnnData(features) sc.pp.neighbors(adata, n_neighbors=n_neighbors) #louvain step1 sc.tl.louvain(adata,resolution=self.resolution) #louvain step2 Y_pred_init=adata.obs['louvain'] self.init_pred=np.asarray(Y_pred_init,dtype=int) features=pd.DataFrame(features,index=np.arange(0,features.shape[0])) Group=pd.Series(self.init_pred,index=np.arange(0,features.shape[0]),name="Group") Mergefeature=pd.concat([features,Group],axis=1) cluster_centers=np.asarray(Mergefeature.groupby("Group").mean()) self.n_clusters=cluster_centers.shape[0] self.init_centroid=cluster_centers print("The shape of cluster_centers",cluster_centers.shape[0]) sae=SAE(dims=self.dims,drop_rate=0.2,batch_size=batch_size,actinlayer1=self.actinlayer1)# batch_size self.autoencoder=sae.autoencoders self.encoder=sae.encoder clustering_layer=ClusteringLayer(self.n_clusters, name='clustering')(self.encoder.output) # use dec to do clustering self.model=Model(self.encoder.input,outputs=clustering_layer) #print("The length layers of self.model",len(self.model.layers)) for i in range(len(self.model.layers)-2): self.model.layers[i+1].set_weights(model_weights[i+1]) self.model.get_layer("clustering").set_weights([self.init_centroid]) #fine tunning def load_weights(self, weights): # load weights of DEC model self.model.load_weights(weights) def extract_features(self, x): return self.encoder.predict(x) def predict(self, x): # predict cluster labels using the output of clustering layer q = self.model.predict(x, verbose=0) return q.argmax(1) @staticmethod def target_distribution(q): weight = q ** 2 / q.sum(0) return (weight.T / weight.sum(1)).T def compile(self, optimizer='sgd', loss='kld'): self.model.compile(optimizer=optimizer, loss=loss) def fit(self,x, maxiter=2e3, epochs_fit=10,batch_size=256, tol=1e-3): # unsupervised print("Doing DEC: fit") #step1 initial weights by louvain,or Kmeans self.model.get_layer(name='clustering').set_weights([self.init_centroid]) y_pred_last = np.copy(self.init_pred) # Step 2: deep clustering # logging file #y_pred_last=self.init_pred loss = 0 index = 0 index_array = np.arange(x.shape[0]) for ite in range(int(maxiter)): q = self.model.predict(x, verbose=0) p = self.target_distribution(q) # update the auxiliary target distribution p # evaluate the clustering performance y_pred = q.argmax(1) # check stop criterion delta_label = np.sum(y_pred != y_pred_last).astype(np.float32) / y_pred.shape[0] y_pred_last = np.copy(y_pred) if ite > 0 and delta_label < tol: print('delta_label ', delta_label, '< tol ', tol) print('Reached tolerance threshold. Stopped training.') break print("The value of delta_label of current",str(ite+1),"th iteration is",delta_label,">= tol",tol) #train on whole dataset on prespecified batch_size callbacks=[EarlyStopping(monitor='loss',min_delta=10e-4,patience=4,verbose=0,mode='auto')] self.model.fit(x=x,y=p,epochs=epochs_fit,batch_size=batch_size,callbacks=callbacks,shuffle=True,verbose=False) y0=pd.Series(y_pred) print("The final prediction cluster is:") print(y0.value_counts()) Embeded_z=self.encoder.predict(x) return Embeded_z,q #Show the trajectory of the centroid during iterations def fit_trajectory(self,x, maxiter=2e3, epochs_fit=10,batch_size=256, tol=1e-2, celltypes = None, threshold=1/30): # unsupervised #print("Doing DEC: fit_trajectory") #step1 initial weights by louvain,or Kmeans self.model.get_layer(name='clustering').set_weights([self.init_centroid]) y_pred_last = np.copy(self.init_pred) # Step 2: deep clustering # logging file #y_pred_last=self.init_pred loss = 0 index = 0 index_array = np.arange(x.shape[0]) trajectory_z=[] #trajectory embedding trajectory_l=[] #trajectory label js = [] centroids_first = self.model.layers[-1].get_weights() centroids_diff_all = [] for i in range(len(centroids_first[0])-1): for j in range(i+1, len(centroids_first[0])): centroids_diff_all.append(np.sqrt(((centroids_first[0][i]-centroids_first[0][j])**2).sum())) print('centroids_diff_all', centroids_diff_all) print(len(centroids_diff_all)) print(self.init_centroid) # print(centroids_first) # self.model.layers[-1].trainable = False # print(self.model.summary()) # print(self.model.layers[-1].trainable == False) weights = self.model.get_weights() for ite in range(int(maxiter)): old_weights = weights.copy() weights = self.model.get_weights() # print(weights) # print(self.model.layers[-1].trainable == False) centroids = self.model.layers[-1].get_weights() # print(centroids) q = self.model.predict(x, verbose=0) # for i in range(len(q)): # if sum(q[i]>threshold)==0: # continue # for j in range(len(q[i])): # #if q[i][j]<0.1: # if q[i][j]<threshold: # q[i][j]=0 # q[i] = q[i]/q[i].sum() p = self.target_distribution(q) # update the auxiliary target distribution p # evaluate the clustering performance #kl = np.array([[np.where(p[i]!=0, p[i]*np.log(p[i]/q[i]),0) for i in range(len(p))][j].sum() for j in range(len(p))]).sum() #print(kl) # print(entropy(p,q).sum()) #print(q.shape) #q = pd.DataFrame(q) #q.columns = list(celltypes) y_pred = q.argmax(1) #celltypes = list(np.sort(np.unique(y_pred))) celltypes = [celltypes[i] for i in list(np.sort(np.unique(y_pred)))] #print(celltypes) # check stop criterion #delta_label = np.sum(y_pred != y_pred_last).astype(np.float32) / y_pred.shape[0] #y_pred_last = np.copy(y_pred) #if ite > 0 and delta_label < tol: # print('delta_label ', delta_label, '< tol ', tol) # print('Reached tolerance threshold. Stopped training.') # break #print("The value of delta_label of current",str(ite+1),"th iteration is",delta_label,">= tol",0.01) ##train on whole dataset on prespecified batch_size if ite == 0: q_last = np.copy(q) js_last = 1000000 callbacks=[EarlyStopping(monitor='loss',min_delta=10e-4,patience=4,verbose=0,mode='auto')] self.model.fit(x=x,y=p,epochs=epochs_fit,batch_size=batch_size,callbacks=callbacks,shuffle=True,verbose=False) #if ite < 10: # js.append(distance.jensenshannon(q_last, q).sum()) # q_last = np.copy(q) #print(js) # callbacks=[EarlyStopping(monitor='loss',min_delta=10e-4,patience=4,verbose=0,mode='auto')] # self.model.fit(x=x,y=p,epochs=epochs_fit,batch_size=batch_size,callbacks=callbacks,shuffle=True,verbose=False) # continue if ite>0: centroids_diff = [np.sqrt(((centroids[0][i]-centroids_first[0][i])**2).sum()) for i in range(len(centroids[0]))] print('centroids_diff: ', centroids_diff) #js.append(distance.jensenshannon(q_last, q).sum()) js = distance.jensenshannon(q_last, q).sum() delta_js = js_last-js q_last = np.copy(q) #print(js_last) #print(js) js_last = np.copy(js) #print(js[ite-10:ite-5]) #print(js[ite-5:]) #delta_js = np.mean(js[ite-10:ite-5]) - np.mean(js[ite-5:]) #delta_js = js[ite-1]-js[ite-2] #if delta_js < 0.001 and delta_js>0 and np.mean(js[ite-2:])<np.mean(js[0:3]): #if delta_js < 0.01 and delta_js>0 and
if the etag you provide matches the resource's current etag value. :param obj retry_strategy: (optional) A retry strategy to apply to this specific operation/call. This will override any retry strategy set at the client-level. This should be one of the strategies available in the :py:mod:`~oci.retry` module. A convenience :py:data:`~oci.retry.DEFAULT_RETRY_STRATEGY` is also available. The specifics of the default retry strategy are described `here <https://oracle-cloud-infrastructure-python-sdk.readthedocs.io/en/latest/sdk_behaviors/retries.html>`__. To have this operation explicitly not perform any retries, pass an instance of :py:class:`~oci.retry.NoneRetryStrategy`. :return: A :class:`~oci.response.Response` object with data of type None :rtype: :class:`~oci.response.Response` """ resource_path = "/users/{userId}" method = "DELETE" # Don't accept unknown kwargs expected_kwargs = [ "retry_strategy", "if_match" ] extra_kwargs = [_key for _key in six.iterkeys(kwargs) if _key not in expected_kwargs] if extra_kwargs: raise ValueError( "delete_user got unknown kwargs: {!r}".format(extra_kwargs)) path_params = { "userId": user_id } path_params = {k: v for (k, v) in six.iteritems(path_params) if v is not missing} for (k, v) in six.iteritems(path_params): if v is None or (isinstance(v, six.string_types) and len(v.strip()) == 0): raise ValueError('Parameter {} cannot be None, whitespace or empty string'.format(k)) header_params = { "accept": "application/json", "content-type": "application/json", "if-match": kwargs.get("if_match", missing) } header_params = {k: v for (k, v) in six.iteritems(header_params) if v is not missing and v is not None} retry_strategy = self.retry_strategy if kwargs.get('retry_strategy'): retry_strategy = kwargs.get('retry_strategy') if retry_strategy: return retry_strategy.make_retrying_call( self.base_client.call_api, resource_path=resource_path, method=method, path_params=path_params, header_params=header_params) else: return self.base_client.call_api( resource_path=resource_path, method=method, path_params=path_params, header_params=header_params) def generate_totp_seed(self, user_id, mfa_totp_device_id, **kwargs): """ Generate seed for the MFA TOTP device. :param str user_id: (required) The OCID of the user. :param str mfa_totp_device_id: (required) The OCID of the MFA TOTP device. :param str if_match: (optional) For optimistic concurrency control. In the PUT or DELETE call for a resource, set the `if-match` parameter to the value of the etag from a previous GET or POST response for that resource. The resource will be updated or deleted only if the etag you provide matches the resource's current etag value. :param obj retry_strategy: (optional) A retry strategy to apply to this specific operation/call. This will override any retry strategy set at the client-level. This should be one of the strategies available in the :py:mod:`~oci.retry` module. A convenience :py:data:`~oci.retry.DEFAULT_RETRY_STRATEGY` is also available. The specifics of the default retry strategy are described `here <https://oracle-cloud-infrastructure-python-sdk.readthedocs.io/en/latest/sdk_behaviors/retries.html>`__. To have this operation explicitly not perform any retries, pass an instance of :py:class:`~oci.retry.NoneRetryStrategy`. :return: A :class:`~oci.response.Response` object with data of type :class:`~oci.identity.models.MfaTotpDevice` :rtype: :class:`~oci.response.Response` """ resource_path = "/users/{userId}/mfaTotpDevices/{mfaTotpDeviceId}/actions/generateSeed" method = "POST" # Don't accept unknown kwargs expected_kwargs = [ "retry_strategy", "if_match" ] extra_kwargs = [_key for _key in six.iterkeys(kwargs) if _key not in expected_kwargs] if extra_kwargs: raise ValueError( "generate_totp_seed got unknown kwargs: {!r}".format(extra_kwargs)) path_params = { "userId": user_id, "mfaTotpDeviceId": mfa_totp_device_id } path_params = {k: v for (k, v) in six.iteritems(path_params) if v is not missing} for (k, v) in six.iteritems(path_params): if v is None or (isinstance(v, six.string_types) and len(v.strip()) == 0): raise ValueError('Parameter {} cannot be None, whitespace or empty string'.format(k)) header_params = { "accept": "application/json", "content-type": "application/json", "if-match": kwargs.get("if_match", missing) } header_params = {k: v for (k, v) in six.iteritems(header_params) if v is not missing and v is not None} retry_strategy = self.retry_strategy if kwargs.get('retry_strategy'): retry_strategy = kwargs.get('retry_strategy') if retry_strategy: return retry_strategy.make_retrying_call( self.base_client.call_api, resource_path=resource_path, method=method, path_params=path_params, header_params=header_params, response_type="MfaTotpDevice") else: return self.base_client.call_api( resource_path=resource_path, method=method, path_params=path_params, header_params=header_params, response_type="MfaTotpDevice") def get_authentication_policy(self, compartment_id, **kwargs): """ Gets the authentication policy for the given tenancy. You must specify your tenant\u2019s OCID as the value for the compartment ID (remember that the tenancy is simply the root compartment). :param str compartment_id: (required) The OCID of the compartment. :param obj retry_strategy: (optional) A retry strategy to apply to this specific operation/call. This will override any retry strategy set at the client-level. This should be one of the strategies available in the :py:mod:`~oci.retry` module. A convenience :py:data:`~oci.retry.DEFAULT_RETRY_STRATEGY` is also available. The specifics of the default retry strategy are described `here <https://oracle-cloud-infrastructure-python-sdk.readthedocs.io/en/latest/sdk_behaviors/retries.html>`__. To have this operation explicitly not perform any retries, pass an instance of :py:class:`~oci.retry.NoneRetryStrategy`. :return: A :class:`~oci.response.Response` object with data of type :class:`~oci.identity.models.AuthenticationPolicy` :rtype: :class:`~oci.response.Response` """ resource_path = "/authenticationPolicies/{compartmentId}" method = "GET" expected_kwargs = ["retry_strategy"] extra_kwargs = [_key for _key in six.iterkeys(kwargs) if _key not in expected_kwargs] if extra_kwargs: raise ValueError( "get_authentication_policy got unknown kwargs: {!r}".format(extra_kwargs)) path_params = { "compartmentId": compartment_id } path_params = {k: v for (k, v) in six.iteritems(path_params) if v is not missing} for (k, v) in six.iteritems(path_params): if v is None or (isinstance(v, six.string_types) and len(v.strip()) == 0): raise ValueError('Parameter {} cannot be None, whitespace or empty string'.format(k)) header_params = { "accept": "application/json", "content-type": "application/json" } retry_strategy = self.retry_strategy if kwargs.get('retry_strategy'): retry_strategy = kwargs.get('retry_strategy') if retry_strategy: return retry_strategy.make_retrying_call( self.base_client.call_api, resource_path=resource_path, method=method, path_params=path_params, header_params=header_params, response_type="AuthenticationPolicy") else: return self.base_client.call_api( resource_path=resource_path, method=method, path_params=path_params, header_params=header_params, response_type="AuthenticationPolicy") def get_compartment(self, compartment_id, **kwargs): """ Gets the specified compartment's information. This operation does not return a list of all the resources inside the compartment. There is no single API operation that does that. Compartments can contain multiple types of resources (instances, block storage volumes, etc.). To find out what's in a compartment, you must call the \"List\" operation for each resource type and specify the compartment's OCID as a query parameter in the request. For example, call the :func:`list_instances` operation in the Cloud Compute Service or the :func:`list_volumes` operation in Cloud Block Storage. :param str compartment_id: (required) The OCID of the compartment. :param obj retry_strategy: (optional) A retry strategy to apply to this specific operation/call. This will override any retry strategy set at the client-level. This should be one of the strategies available in the :py:mod:`~oci.retry` module. A convenience :py:data:`~oci.retry.DEFAULT_RETRY_STRATEGY` is also available. The specifics of the default retry strategy are described `here <https://oracle-cloud-infrastructure-python-sdk.readthedocs.io/en/latest/sdk_behaviors/retries.html>`__. To have this operation explicitly not perform any retries, pass an instance of :py:class:`~oci.retry.NoneRetryStrategy`. :return: A :class:`~oci.response.Response` object with data of type :class:`~oci.identity.models.Compartment` :rtype: :class:`~oci.response.Response` """ resource_path = "/compartments/{compartmentId}" method = "GET" expected_kwargs = ["retry_strategy"] extra_kwargs = [_key for _key in six.iterkeys(kwargs) if _key not in expected_kwargs] if extra_kwargs: raise ValueError( "get_compartment got unknown kwargs: {!r}".format(extra_kwargs)) path_params = { "compartmentId": compartment_id } path_params = {k: v for (k, v) in six.iteritems(path_params) if v is not missing} for (k, v) in six.iteritems(path_params): if v is None or (isinstance(v, six.string_types) and len(v.strip()) == 0): raise ValueError('Parameter {} cannot be None, whitespace or empty string'.format(k)) header_params = { "accept": "application/json", "content-type": "application/json" } retry_strategy = self.retry_strategy if kwargs.get('retry_strategy'): retry_strategy = kwargs.get('retry_strategy') if retry_strategy: return retry_strategy.make_retrying_call( self.base_client.call_api, resource_path=resource_path, method=method, path_params=path_params, header_params=header_params, response_type="Compartment") else: return self.base_client.call_api( resource_path=resource_path, method=method, path_params=path_params, header_params=header_params, response_type="Compartment") def get_dynamic_group(self, dynamic_group_id, **kwargs): """ Gets the specified dynamic group's information. :param str dynamic_group_id: (required) The OCID of the dynamic group. :param obj retry_strategy: (optional) A retry strategy to apply to this specific operation/call. This will override any retry strategy set at the client-level. This should be one of the strategies available in the :py:mod:`~oci.retry` module. A convenience :py:data:`~oci.retry.DEFAULT_RETRY_STRATEGY` is also available. The specifics of the default retry strategy are described `here <https://oracle-cloud-infrastructure-python-sdk.readthedocs.io/en/latest/sdk_behaviors/retries.html>`__. To have this operation explicitly not perform any retries, pass an instance of :py:class:`~oci.retry.NoneRetryStrategy`. :return: A :class:`~oci.response.Response` object with data of type :class:`~oci.identity.models.DynamicGroup` :rtype: :class:`~oci.response.Response` """ resource_path = "/dynamicGroups/{dynamicGroupId}" method = "GET" expected_kwargs = ["retry_strategy"] extra_kwargs = [_key for _key in six.iterkeys(kwargs) if _key not in expected_kwargs] if extra_kwargs: raise ValueError( "get_dynamic_group got unknown kwargs: {!r}".format(extra_kwargs)) path_params = { "dynamicGroupId": dynamic_group_id } path_params = {k: v for (k, v) in six.iteritems(path_params) if v is not missing} for (k, v) in six.iteritems(path_params): if v is None or (isinstance(v, six.string_types) and len(v.strip()) == 0): raise ValueError('Parameter {} cannot be None, whitespace or empty string'.format(k)) header_params = { "accept": "application/json", "content-type": "application/json" } retry_strategy = self.retry_strategy if kwargs.get('retry_strategy'): retry_strategy = kwargs.get('retry_strategy') if retry_strategy: return retry_strategy.make_retrying_call( self.base_client.call_api, resource_path=resource_path, method=method, path_params=path_params, header_params=header_params, response_type="DynamicGroup") else: return self.base_client.call_api( resource_path=resource_path, method=method, path_params=path_params, header_params=header_params, response_type="DynamicGroup") def get_group(self, group_id, **kwargs): """ Gets the specified group's information. This operation does
<reponame>wuyongwen/XX-Net # -*- coding: utf-8 -*- """ port from hyper/http20/stream for async remove push support increase init window size to improve performance ~~~~~~~~~~~~~~~~~~~ Objects that make up the stream-level abstraction of hyper's HTTP/2 support. Conceptually, a single HTTP/2 connection is made up of many streams: each stream is an independent, bi-directional sequence of HTTP headers and data. Each stream is identified by a monotonically increasing integer, assigned to the stream by the endpoint that initiated the stream. """ import threading from hyper.common.headers import HTTPHeaderMap from hyper.packages.hyperframe.frame import ( FRAME_MAX_LEN, FRAMES, HeadersFrame, DataFrame, PushPromiseFrame, WindowUpdateFrame, ContinuationFrame, BlockedFrame, RstStreamFrame ) from hyper.http20.exceptions import ProtocolError, StreamResetError from hyper.http20.util import h2_safe_headers from hyper.http20.response import strip_headers from hyper.common.util import to_host_port_tuple, to_native_string, to_bytestring import simple_http_client from http_common import * # Define a set of states for a HTTP/2 stream. STATE_IDLE = 0 STATE_OPEN = 1 STATE_HALF_CLOSED_LOCAL = 2 STATE_HALF_CLOSED_REMOTE = 3 STATE_CLOSED = 4 class Stream(object): """ A single HTTP/2 stream. A stream is an independent, bi-directional sequence of HTTP headers and data. Each stream is identified by a single integer. From a HTTP perspective, a stream _approximately_ matches a single request-response pair. """ def __init__(self, logger, config, connection, ip, stream_id, task, send_cb, close_cb, encoder, decoder, receive_window_manager, remote_window_size, max_frame_size): self.logger = logger self.config = config self.connection = connection self.ip = ip self.stream_id = stream_id self.task = task self.state = STATE_IDLE self.get_head_time = None # There are two flow control windows: one for data we're sending, # one for data being sent to us. self.receive_window_manager = receive_window_manager self.remote_window_size = remote_window_size self.max_frame_size = max_frame_size # This is the callback handed to the stream by its parent connection. # It is called when the stream wants to send data. It expects to # receive a list of frames that will be automatically serialized. self._send_cb = send_cb # This is the callback to be called when the stream is closed. self._close_cb = close_cb # A reference to the header encoder and decoder objects belonging to # the parent connection. self._encoder = encoder self._decoder = decoder self.request_headers = HTTPHeaderMap() # Convert the body to bytes if needed. self.request_body = to_bytestring(self.task.body) # request body not send blocked by send window # the left body will send when send window opened. self.request_body_left = len(self.request_body) self.request_body_sended = False # data list before decode self.response_header_datas = [] # Set to a key-value set of the response headers once their # HEADERS..CONTINUATION frame sequence finishes. self.response_headers = None # Unconsumed response data chunks self.response_body = [] self.response_body_len = 0 def start_request(self): """ Open the stream. Does this by encoding and sending the headers: no more calls to ``add_header`` are allowed after this method is called. The `end` flag controls whether this will be the end of the stream, or whether data will follow. """ # Strip any headers invalid in H2. #headers = h2_safe_headers(self.request_headers) host = self.connection.get_host(self.task.host) self.add_header(":Method", self.task.method) self.add_header(":Scheme", "https") self.add_header(":Authority", host) self.add_header(":Path", self.task.path) default_headers = (':method', ':scheme', ':authority', ':path') #headers = h2_safe_headers(self.task.headers) for name, value in self.task.headers.items(): is_default = to_native_string(name) in default_headers self.add_header(name, value, replace=is_default) # Encode the headers. encoded_headers = self._encoder(self.request_headers) # It's possible that there is a substantial amount of data here. The # data needs to go into one HEADERS frame, followed by a number of # CONTINUATION frames. For now, for ease of implementation, let's just # assume that's never going to happen (16kB of headers is lots!). # Additionally, since this is so unlikely, there's no point writing a # test for this: it's just so simple. if len(encoded_headers) > FRAME_MAX_LEN: # pragma: no cover raise ValueError("Header block too large.") header_frame = HeadersFrame(self.stream_id) header_frame.data = encoded_headers # If no data has been provided, this is the end of the stream. Either # way, due to the restriction above it's definitely the end of the # headers. header_frame.flags.add('END_HEADERS') # Send the header frame. self.task.set_state("start send header") self._send_cb(header_frame) # Transition the stream state appropriately. self.state = STATE_OPEN self.task.set_state("start send left body") threading.Thread(target=self.left_work).start() def left_work(self): self.send_left_body() self.timeout_response() def add_header(self, name, value, replace=False): """ Adds a single HTTP header to the headers to be sent on the request. """ if not replace: self.request_headers[name] = value else: self.request_headers.replace(name, value) def send_left_body(self): while self.remote_window_size and not self.request_body_sended: send_size = min(self.remote_window_size, self.request_body_left, self.max_frame_size) f = DataFrame(self.stream_id) data_start = len(self.request_body) - self.request_body_left f.data = self.request_body[data_start:data_start+send_size] self.remote_window_size -= send_size self.request_body_left -= send_size # If the length of the data is less than MAX_CHUNK, we're probably # at the end of the file. If this is the end of the data, mark it # as END_STREAM. if self.request_body_left == 0: f.flags.add('END_STREAM') # Send the frame and decrement the flow control window. self._send_cb(f) # If no more data is to be sent on this stream, transition our state. if self.request_body_left == 0: self.request_body_sended = True self._close_local() self.task.set_state("end send left body") def receive_frame(self, frame): """ Handle a frame received on this stream. called by connection. """ # self.logger.debug("stream %d recved frame %r", self.stream_id, frame) if frame.type == WindowUpdateFrame.type: self.remote_window_size += frame.window_increment self.send_left_body() elif frame.type == HeadersFrame.type: # Begin the header block for the response headers. #self.response_header_datas = [frame.data] self.response_header_datas.append(frame.data) elif frame.type == PushPromiseFrame.type: self.logger.error("%s receive PushPromiseFrame:%d", self.ip, frame.stream_id) elif frame.type == ContinuationFrame.type: # Continue a header block begun with either HEADERS or PUSH_PROMISE. self.response_header_datas.append(frame.data) elif frame.type == DataFrame.type: # Append the data to the buffer. if not self.task.finished: self.task.put_data(frame.data) if 'END_STREAM' not in frame.flags: # Increase the window size. Only do this if the data frame contains # actual data. # don't do it if stream is closed. size = frame.flow_controlled_length increment = self.receive_window_manager._handle_frame(size) #if increment: # self.logger.debug("stream:%d frame size:%d increase win:%d", self.stream_id, size, increment) #content_len = int(self.request_headers.get("Content-Length")[0]) #self.logger.debug("%s get:%d s:%d", self.ip, self.response_body_len, size) if increment and not self._remote_closed: w = WindowUpdateFrame(self.stream_id) w.window_increment = increment self._send_cb(w) elif frame.type == BlockedFrame.type: # If we've been blocked we may want to fixup the window. increment = self.receive_window_manager._blocked() if increment: w = WindowUpdateFrame(self.stream_id) w.window_increment = increment self._send_cb(w) elif frame.type == RstStreamFrame.type: # Rest Frame send from server is not define in RFC inactive_time = time.time() - self.connection.last_active_time self.logger.debug("%s Stream %d Rest by server, inactive:%d. error code:%d", self.ip, self.stream_id, inactive_time, frame.error_code) self.connection.close("RESET") elif frame.type in FRAMES: # This frame isn't valid at this point. #raise ValueError("Unexpected frame %s." % frame) self.logger.error("%s Unexpected frame %s.", self.ip, frame) else: # pragma: no cover # Unknown frames belong to extensions. Just drop it on the # floor, but log so that users know that something happened. self.logger.error("%s Received unknown frame, type %d", self.ip, frame.type) pass if 'END_HEADERS' in frame.flags: if self.response_headers is not None: raise ProtocolError("Too many header blocks.") # Begin by decoding the header block. If this fails, we need to # tear down the entire connection. if len(self.response_header_datas) == 1: header_data = self.response_header_datas[0] else: header_data = b''.join(self.response_header_datas) try: headers = self._decoder.decode(header_data) except Exception as e: self.logger.exception("decode h2 header %s fail:%r", header_data, e) raise e self.response_headers = HTTPHeaderMap(headers) # We've handled the headers, zero them out. self.response_header_datas = None self.get_head_time = time.time() length = self.response_headers.get("Content-Length", None) if isinstance(length, list): length = int(length[0]) if not self.task.finished: self.task.content_length = length self.task.set_state("h2_get_head") self.send_response() if 'END_STREAM' in frame.flags: #self.logger.debug("%s Closing remote side of stream:%d", self.ip, self.stream_id) time_now = time.time() time_cost = time_now - self.get_head_time if time_cost > 0 and \ isinstance(self.task.content_length, int) and \ not self.task.finished: speed = self.task.content_length / time_cost self.task.set_state("h2_finish[SP:%d]" % speed) self._close_remote() self.close("end stream") if not self.task.finished: self.connection.continue_timeout = 0 def send_response(self): if self.task.responsed: self.logger.error("http2_stream send_response but responsed.%s", self.task.url) self.close("h2 stream send_response but sended.") return self.task.responsed = True status = int(self.response_headers[b':status'][0]) strip_headers(self.response_headers) response = simple_http_client.BaseResponse(status=status, headers=self.response_headers) response.ssl_sock = self.connection.ssl_sock response.worker = self.connection response.task = self.task self.task.queue.put(response) if status in self.config.http2_status_to_close: self.connection.close("status %d" % status) def close(self, reason="close"): if not self.task.responsed: self.connection.retry_task_cb(self.task, reason) else: self.task.finish() # empty block means fail or closed. self._close_remote() self._close_cb(self.stream_id, reason) @property def _local_closed(self): return self.state in (STATE_CLOSED, STATE_HALF_CLOSED_LOCAL) @property def _remote_closed(self): return self.state in (STATE_CLOSED, STATE_HALF_CLOSED_REMOTE) @property def _local_open(self): return self.state in (STATE_OPEN, STATE_HALF_CLOSED_REMOTE) def _close_local(self): self.state = ( STATE_HALF_CLOSED_LOCAL if self.state ==
<reponame>MikalaiMikalalai/ggrc-core # -*- coding: utf-8 -*- # Copyright (C) 2020 Google Inc. # Licensed under http://www.apache.org/licenses/LICENSE-2.0 <see LICENSE file> # pylint: disable=invalid-name,too-many-lines """Tests for notifications for models with assignable mixin.""" import unittest from collections import OrderedDict from datetime import datetime import ddt from freezegun import freeze_time from mock import patch from ggrc import db from ggrc.models import Assessment from ggrc.models import CustomAttributeDefinition from ggrc.models import CustomAttributeValue from ggrc.models import Revision from ggrc.models import all_models from ggrc.utils import errors from integration.ggrc import api_helper, generator from integration.ggrc.models import factories from integration.ggrc.models.factories import \ CustomAttributeDefinitionFactory as CAD from integration.ggrc.notifications import TestNotifications class TestAssignableNotification(TestNotifications): """Base class for testing notification creation for assignable mixin.""" def setUp(self): super(TestAssignableNotification, self).setUp() self.client.get("/login") self._fix_notification_init() factories.AuditFactory(slug="Audit") class TestAssignableNotificationUsingImports(TestAssignableNotification): """Tests for notifications when interacting with objects through imports.""" @patch("ggrc.notifications.common.send_email") def test_assessment_created_notifications(self, send_email): """Test if importing new assessments results in notifications for all.""" self.assertEqual(self._get_notifications().count(), 0) self.import_file("assessment_template_no_warnings.csv", safe=False) self.import_file("assessment_with_templates.csv") titles = [asmt.title for asmt in Assessment.query] query = self._get_notifications(notif_type="assessment_open") self.assertEqual(query.count(), 6) # check email content self.client.get("/_notifications/send_daily_digest") recipient, _, content = send_email.call_args[0] self.assertEqual(recipient, u"<EMAIL>") self.assertIn(u"New assessments were created", content) for asmt_title in titles: self.assertIn(asmt_title, content) @patch("ggrc.notifications.common.send_email") def test_assessment_updated_notifications(self, send_email): """Test if updating an assessment results in a notification.""" self.import_file("assessment_template_no_warnings.csv", safe=False) self.import_file("assessment_with_templates.csv") asmts = {asmt.slug: asmt for asmt in Assessment.query} asmt = Assessment.query.get(asmts["A 1"].id) asmt_id, asmt_slug = asmt.id, asmt.slug asmt.status = Assessment.PROGRESS_STATE db.session.commit() self.client.get("/_notifications/send_daily_digest") self.assertEqual(self._get_notifications().count(), 0) asmt = Assessment.query.get(asmt_id) self.import_data(OrderedDict([ (u"object_type", u"Assessment"), (u"Code*", asmt.slug), (u"Title", u"New Assessment 1 title"), ])) query = self._get_notifications(notif_type="assessment_updated") self.assertEqual(query.count(), 1) # check email content self.client.get("/_notifications/send_daily_digest") recipient, _, content = send_email.call_args[0] self.assertEqual(recipient, u"<EMAIL>") self.assertIn(u"Assessments have been updated", content) # the assessment updated notification should be sent even if there exists a # status change notification , regardless of the order of actions self.import_data(OrderedDict([ (u"object_type", u"Assessment"), (u"Code*", asmt_slug), (u"Title", u"New Assessment 1 title 2"), ])) query = self._get_notifications(notif_type="assessment_updated") self.assertEqual(query.count(), 1) self.import_data(OrderedDict([ (u"object_type", u"Assessment"), (u"Code*", asmt_slug), (u"State*", Assessment.DONE_STATE), ])) self.import_data(OrderedDict([ (u"object_type", u"Assessment"), (u"Code*", asmt_slug), (u"Title", u"New Assessment 1 title 3"), ])) self.client.get("/_notifications/send_daily_digest") recipient, _, content = send_email.call_args[0] self.assertIn(u"Assessments have been updated", content) @unittest.skip("An issue needs to be fixed.") @patch("ggrc.notifications.common.send_email") def test_assessment_ca_updated_notifications(self, send_email): """Test if updating assessment custom attr. results in a notification.""" CAD(definition_type="assessment", title="CA_misc_remarks") self.import_file("assessment_template_no_warnings.csv") self.import_file("assessment_with_templates.csv") self.client.get("/_notifications/send_daily_digest") self.assertEqual(self._get_notifications().count(), 0) asmts = {asmt.slug: asmt for asmt in Assessment.query} asmt = Assessment.query.get(asmts["A 1"].id) self.import_data(OrderedDict([ (u"object_type", u"Assessment"), (u"Code*", asmt.slug), (u"CA_misc_remarks", u"CA new value"), ])) asmt = Assessment.query.get(asmts["A 1"].id) query = self._get_notifications(notif_type="assessment_updated") self.assertEqual(query.count(), 1) # check email content self.client.get("/_notifications/send_daily_digest") recipient, _, content = send_email.call_args[0] self.assertEqual(recipient, u"<EMAIL>") self.assertIn(u"Assessments have been updated", content) @unittest.skip("An issue needs to be fixed.") @patch("ggrc.notifications.common.send_email") def test_assessment_url_updated_notifications(self, send_email): """Test if updating assessment URLs results in a notification.""" self.import_file("assessment_template_no_warnings.csv") self.import_file("assessment_with_templates.csv") asmts = {asmt.slug: asmt for asmt in Assessment.query} asmt = Assessment.query.get(asmts["A 1"].id) asmt_id = asmt.id asmt.status = Assessment.PROGRESS_STATE db.session.commit() self.client.get("/_notifications/send_daily_digest") self.assertEqual(self._get_notifications().count(), 0) asmt = Assessment.query.get(asmt_id) self.import_data(OrderedDict([ (u"object_type", u"Assessment"), (u"Code*", asmt.slug), (u"Evidence Url", u"www.foo-url.bar"), ])) query = self._get_notifications(notif_type="assessment_updated") self.assertEqual(query.count(), 1) # check email content self.client.get("/_notifications/send_daily_digest") recipient, _, content = send_email.call_args[0] self.assertEqual(recipient, u"<EMAIL>") self.assertIn(u"Assessments have been updated", content) @unittest.skip("An issue needs to be fixed.") @patch("ggrc.notifications.common.send_email") def test_attaching_assessment_evidence_notifications(self, send_email): """Test if attaching assessment evidence results in a notification.""" self.import_file("assessment_template_no_warnings.csv") self.import_file("assessment_with_templates.csv") asmts = {asmt.slug: asmt for asmt in Assessment.query} asmt = Assessment.query.get(asmts["A 1"].id) asmt_id = asmt.id asmt.status = Assessment.PROGRESS_STATE db.session.commit() self.client.get("/_notifications/send_daily_digest") self.assertEqual(self._get_notifications().count(), 0) asmt = Assessment.query.get(asmt_id) self.import_data(OrderedDict([ (u"object_type", u"Assessment"), (u"Code*", asmt.slug), (u"Evidence File", u"https://gdrive.com/qwerty1/view evidence.txt"), ])) query = self._get_notifications(notif_type="assessment_updated") self.assertEqual(query.count(), 1) # check email content self.client.get("/_notifications/send_daily_digest") recipient, _, content = send_email.call_args[0] self.assertEqual(recipient, u"<EMAIL>") self.assertIn(u"Assessments have been updated", content) @unittest.skip("An issue needs to be fixed.") @patch("ggrc.notifications.common.send_email") def test_assessment_person_updated_notifications(self, send_email): """Test if updating assessment people results in a notification.""" self.import_file("assessment_template_no_warnings.csv") self.import_file("assessment_with_templates.csv") asmts = {asmt.slug: asmt for asmt in Assessment.query} asmt = Assessment.query.get(asmts["A 1"].id) asmt_id = asmt.id asmt.status = Assessment.PROGRESS_STATE db.session.commit() self.client.get("/_notifications/send_daily_digest") self.assertEqual(self._get_notifications().count(), 0) asmt = Assessment.query.get(asmt_id) # change assignee self.import_data(OrderedDict([ (u"object_type", u"Assessment"), (u"Code*", asmt.slug), (u"Assignee*", u"<EMAIL>"), ])) query = self._get_notifications(notif_type="assessment_updated") self.assertEqual(query.count(), 1) # clear notifications self.client.get("/_notifications/send_daily_digest") self.assertEqual(self._get_notifications().count(), 0) asmt = Assessment.query.get(asmt_id) # change verifier asmt = Assessment.query.get(asmt_id) self.import_data(OrderedDict([ (u"object_type", u"Assessment"), (u"Code*", asmt.slug), (u"Verifiers", u"<EMAIL>"), ])) query = self._get_notifications(notif_type="assessment_updated") self.assertEqual(query.count(), 1) # check email content self.client.get("/_notifications/send_daily_digest") recipient, _, content = send_email.call_args[0] self.assertEqual(recipient, u"<EMAIL>") self.assertIn(u"Assessments have been updated", content) @patch("ggrc.notifications.common.send_email") def test_assessment_state_change_notifications(self, send_email): """Test if updating assessment state results in notifications.""" # pylint: disable=too-many-statements self.import_file("assessment_template_no_warnings.csv", safe=False) self.import_file("assessment_with_templates.csv") asmts = {asmt.slug: asmt for asmt in Assessment.query} asmt = Assessment.query.get(asmts["A 1"].id) asmt_id, asmt_slug = asmt.id, asmt.slug # test starting an assessment self.import_data(OrderedDict([ (u"object_type", u"Assessment"), (u"Code*", asmt_slug), (u"State*", Assessment.PROGRESS_STATE), ])) self.client.get("/_notifications/send_daily_digest") recipient, _, content = send_email.call_args[0] self.assertEqual(recipient, u"<EMAIL>") self.assertRegexpMatches(content, ur"Assessment\s+has\s+been\s+started") # test submitting assessment for review self.client.get("/_notifications/send_daily_digest") self.assertEqual(self._get_notifications().count(), 0) self.import_data(OrderedDict([ (u"object_type", u"Assessment"), (u"Code*", asmt_slug), (u"State*", Assessment.DONE_STATE), ])) query = self._get_notifications(notif_type="assessment_ready_for_review") self.assertEqual(query.count(), 1) self.client.get("/_notifications/send_daily_digest") recipient, _, content = send_email.call_args[0] self.assertEqual(recipient, u"<EMAIL>") self.assertIn(u"Assessments in review", content) # test verifying an assessment self.assertEqual(self._get_notifications().count(), 0) self.import_data(OrderedDict([ (u"object_type", u"Assessment"), (u"Code*", asmt_slug), (u"State*", Assessment.FINAL_STATE), # (will get verified, because there is a verifier assigned) ])) query = self._get_notifications(notif_type="assessment_verified") self.assertEqual(query.count(), 1) self.client.get("/_notifications/send_daily_digest") recipient, _, content = send_email.call_args[0] self.assertEqual(recipient, u"<EMAIL>") self.assertIn(u"Verified assessments", content) # test reopening a verified assessment self.assertEqual(self._get_notifications().count(), 0) self.import_data(OrderedDict([ (u"object_type", u"Assessment"), (u"Code*", asmt_slug), (u"State*", Assessment.PROGRESS_STATE), ])) query = self._get_notifications(notif_type="assessment_reopened") self.assertEqual(query.count(), 1) self.client.get("/_notifications/send_daily_digest") recipient, _, content = send_email.call_args[0] self.assertEqual(recipient, u"<EMAIL>") self.assertIn(u"Reopened assessments", content) # sending an assessment back to "in review" (i.e. the undo action) asmt = Assessment.query.get(asmt_id) asmt.status = Assessment.VERIFIED_STATE db.session.commit() self.assertEqual(self._get_notifications().count(), 0) self.import_data(OrderedDict([ (u"object_type", u"Assessment"), (u"Code*", asmt_slug), (u"State*", Assessment.DONE_STATE), ])) query = self._get_notifications() self.assertEqual(query.count(), 0) # there should be no notification! # test declining an assessment asmt = Assessment.query.get(asmt_id) asmt.status = Assessment.DONE_STATE db.session.commit() self.client.get("/_notifications/send_daily_digest") self.assertEqual(self._get_notifications().count(), 0) self.import_data(OrderedDict([ (u"object_type", u"Assessment"), (u"Code*", asmt_slug), (u"State*", Assessment.PROGRESS_STATE), ])) query = self._get_notifications(notif_type="assessment_declined") self.assertEqual(query.count(), 1) query = self._get_notifications(notif_type="assessment_reopened") self.assertEqual(query.count(), 1) self.client.get("/_notifications/send_daily_digest") recipient, _, content = send_email.call_args[0] self.assertEqual(recipient, u"<EMAIL>") self.assertIn(u"Declined assessments", content) self.assertIn(u"Reopened assessments", content) # directly submitting a not started assessment for review asmt = Assessment.query.get(asmt_id) asmt.status = Assessment.START_STATE db.session.commit() self.client.get("/_notifications/send_daily_digest") self.assertEqual(self._get_notifications().count(), 0) self.import_data(OrderedDict([ (u"object_type", u"Assessment"), (u"Code*", asmt_slug), (u"State*", Assessment.DONE_STATE), ])) query = self._get_notifications(notif_type="assessment_ready_for_review") self.assertEqual(query.count(), 1) self.client.get("/_notifications/send_daily_digest") recipient, _, content = send_email.call_args[0] self.assertEqual(recipient, u"<EMAIL>") self.assertIn(u"Assessments in review", content) # directly completing a not started assessment self.import_data(OrderedDict([ (u"object_type", u"Assessment"), (u"Code*", asmt_slug), (u"Verifiers", None), (u"State*", Assessment.START_STATE), ])) self.client.get("/_notifications/send_daily_digest") self.assertEqual(self._get_notifications().count(), 0) self.import_data(OrderedDict([ (u"object_type", u"Assessment"), (u"Code*", asmt_slug), (u"State*", Assessment.FINAL_STATE), ])) query = self._get_notifications(notif_type="assessment_completed") self.assertEqual(query.count(), 1) self.client.get("/_notifications/send_daily_digest") recipient, _, content = send_email.call_args[0] self.assertEqual(recipient, u"<EMAIL>") self.assertIn(u"Completed assessments", content) # test reopening a completed assessment self.assertEqual(self._get_notifications().count(), 0) self.import_data(OrderedDict([ (u"object_type", u"Assessment"), (u"Code*", asmt_slug), (u"State*", Assessment.PROGRESS_STATE), ])) query = self._get_notifications(notif_type="assessment_reopened") self.assertEqual(query.count(), 1) self.client.get("/_notifications/send_daily_digest") recipient, _, content = send_email.call_args[0] self.assertEqual(recipient, u"<EMAIL>") self.assertIn(u"Reopened assessments", content) # completing an assessment in progress self.assertEqual(self._get_notifications().count(), 0) self.import_data(OrderedDict([ (u"object_type", u"Assessment"), (u"Code*", asmt_slug), (u"State*", Assessment.FINAL_STATE), ])) query = self._get_notifications(notif_type="assessment_completed") self.assertEqual(query.count(), 1) self.client.get("/_notifications/send_daily_digest") recipient, _, content = send_email.call_args[0] self.assertEqual(recipient, u"<EMAIL>") self.assertIn(u"Completed assessments", content) @patch("ggrc.notifications.common.send_email") def test_multiple_assessment_state_changes_notification(self, send_email): """Test if several assessment state changes result in a single notification. Users should only be notificed about the last state change, and not about every state change that happened. """ self.import_file("assessment_template_no_warnings.csv", safe=False) self.import_file("assessment_with_templates.csv") asmts = {asmt.slug: asmt for asmt in Assessment.query} asmt = Assessment.query.get(asmts["A 1"].id) asmt_slug = asmt.slug asmt.status = Assessment.START_STATE db.session.commit() self.client.get("/_notifications/send_daily_digest") self.assertEqual(self._get_notifications().count(), 0) # make multiple state transitions and check that only the last one is # actually retained states = ( Assessment.PROGRESS_STATE, Assessment.DONE_STATE, Assessment.PROGRESS_STATE, Assessment.FINAL_STATE, ) for new_state in states: self.import_data(OrderedDict([ (u"object_type", u"Assessment"), (u"Code*", asmt_slug), (u"State*", new_state), ])) self.client.get("/_notifications/send_daily_digest") recipient, _, content = send_email.call_args[0] self.assertEqual(recipient, u"<EMAIL>") self.assertNotIn(u"Assessments in review", content) self.assertNotIn(u"Declined assessments", content) self.assertNotIn(u"Reopened assessments", content) self.assertIn(u"Completed assessments", content) @patch("ggrc.notifications.common.send_email") def test_assessment_reopen_notifications_on_edit(self, send_email): """Test if updating assessment results in reopen notification.""" self.import_file("assessment_template_no_warnings.csv", safe=False) self.import_file("assessment_with_templates.csv") asmts = {asmt.slug: asmt for asmt in Assessment.query} asmt = Assessment.query.get(asmts["A 1"].id) asmt_id, asmt_slug = asmt.id, asmt.slug for i, new_state in enumerate(Assessment.DONE_STATES): asmt = Assessment.query.get(asmt_id) asmt.status = new_state db.session.commit() self.client.get("/_notifications/send_daily_digest") self.assertEqual(self._get_notifications().count(), 0) self.import_data(OrderedDict([ (u"object_type", u"Assessment"), (u"Code*", asmt_slug), (u"Title", u"New Assessment 1 title - " + unicode(i)), ])) query = self._get_notifications(notif_type="assessment_reopened") self.assertEqual(query.count(), 1) self.client.get("/_notifications/send_daily_digest") recipient, _, content = send_email.call_args[0] self.assertEqual(recipient, u"<EMAIL>") self.assertIn(u"Reopened assessments", content) @unittest.skip("An issue needs to be fixed.") @patch("ggrc.notifications.common.send_email") def test_assessment_reopen_notifications_on_ca_edit(self, send_email): """Test if updating assessment's CA value in reopen notification.""" CAD(definition_type="assessment", title="CA_misc_remarks") self.import_file("assessment_template_no_warnings.csv") self.import_file("assessment_with_templates.csv") asmts = {asmt.slug: asmt for asmt in Assessment.query} asmt = Assessment.query.get(asmts["A 1"].id) asmt_id, asmt_slug = asmt.id, asmt.slug
from __future__ import absolute_import, division, print_function from collections import Iterable, defaultdict, deque from functools import reduce import numbers import operator import numpy as np import scipy.sparse try: # Windows compatibility int = long except NameError: pass class COO(object): """ A Sparse Multidimensional Array This is stored in COO format. It depends on NumPy and Scipy.sparse for computation, but supports arrays of arbitrary dimension. Parameters ---------- coords: np.ndarray (ndim, nnz) An array holding the index locations of every value Should have shape (number of dimensions, number of non-zeros) data: np.array (nnz,) An array of Values shape: tuple (ndim,), optional The shape of the array Examples -------- >>> x = np.eye(4) >>> x[2, 3] = 5 >>> s = COO(x) >>> s <COO: shape=(4, 4), dtype=float64, nnz=5, sorted=True, duplicates=False> >>> s.data array([ 1., 1., 1., 5., 1.]) >>> s.coords array([[0, 1, 2, 2, 3], [0, 1, 2, 3, 3]], dtype=uint8) >>> s.dot(s.T).sum(axis=0).todense() array([ 1., 1., 31., 6.]) Make a sparse array by passing in an array of coordinates and an array of values. >>> coords = [[0, 0, 0, 1, 1], ... [0, 1, 2, 0, 3], ... [0, 3, 2, 0, 1]] >>> data = [1, 2, 3, 4, 5] >>> y = COO(coords, data, shape=(3, 4, 5)) >>> y <COO: shape=(3, 4, 5), dtype=int64, nnz=5, sorted=False, duplicates=True> >>> tensordot(s, y, axes=(0, 1)) <COO: shape=(4, 3, 5), dtype=float64, nnz=6, sorted=False, duplicates=False> Following scipy.sparse conventions you can also pass these as a tuple with rows and columns >>> rows = [0, 1, 2, 3, 4] >>> cols = [0, 0, 0, 1, 1] >>> data = [10, 20, 30, 40, 50] >>> z = COO((data, (rows, cols))) >>> z.todense() array([[10, 0], [20, 0], [30, 0], [ 0, 40], [ 0, 50]]) You can also pass a dictionary or iterable of index/value pairs. Repeated indices imply summation: >>> d = {(0, 0, 0): 1, (1, 2, 3): 2, (1, 1, 0): 3} >>> COO(d) <COO: shape=(2, 3, 4), dtype=int64, nnz=3, sorted=False, duplicates=False> >>> L = [((0, 0), 1), ... ((1, 1), 2), ... ((0, 0), 3)] >>> COO(L).todense() array([[4, 0], [0, 2]]) See Also -------- COO.from_numpy COO.from_scipy_sparse """ __array_priority__ = 12 def __init__(self, coords, data=None, shape=None, has_duplicates=True, sorted=False, cache=False): self._cache = None if cache: self.enable_caching() if data is None: # {(i, j, k): x, (i, j, k): y, ...} if isinstance(coords, dict): coords = list(coords.items()) has_duplicates = False if isinstance(coords, np.ndarray): result = COO.from_numpy(coords) self.coords = result.coords self.data = result.data self.has_duplicates = result.has_duplicates self.sorted = result.sorted self.shape = result.shape return # [] if not coords: data = [] coords = [] # [((i, j, k), value), (i, j, k), value), ...] elif isinstance(coords[0][0], Iterable): if coords: assert len(coords[0]) == 2 data = [x[1] for x in coords] coords = [x[0] for x in coords] coords = np.asarray(coords).T # (data, (row, col, slab, ...)) else: data = coords[0] coords = np.stack(coords[1], axis=0) self.data = np.asarray(data) self.coords = np.asarray(coords) if self.coords.ndim == 1: self.coords = self.coords[None, :] if shape and not np.prod(self.coords.shape): self.coords = np.zeros((len(shape), 0), dtype=np.uint64) if shape is None: if self.coords.nbytes: shape = tuple((self.coords.max(axis=1) + 1).tolist()) else: shape = () self.shape = tuple(shape) if self.shape: dtype = np.min_scalar_type(max(self.shape)) else: dtype = np.int_ self.coords = self.coords.astype(dtype) assert not self.shape or len(data) == self.coords.shape[1] self.has_duplicates = has_duplicates self.sorted = sorted def enable_caching(self): """ Enable caching of reshape, transpose, and tocsr/csc operations This enables efficient iterative workflows that make heavy use of csr/csc operations, such as tensordot. This maintains a cache of recent results of reshape and transpose so that operations like tensordot (which uses both internally) store efficiently stored representations for repeated use. This can significantly cut down on computational costs in common numeric algorithms. However, this also assumes that neither this object, nor the downstream objects will have their data mutated. Examples -------- >>> x.enable_caching() # doctest: +SKIP >>> csr1 = x.transpose((2, 0, 1)).reshape((100, 120)).tocsr() # doctest: +SKIP >>> csr2 = x.transpose((2, 0, 1)).reshape((100, 120)).tocsr() # doctest: +SKIP >>> csr1 is csr2 # doctest: +SKIP True """ self._cache = defaultdict(lambda: deque(maxlen=3)) return self @classmethod def from_numpy(cls, x): if x.shape: coords = np.where(x) data = x[coords] coords = np.vstack(coords) else: coords = [] data = x return cls(coords, data, shape=x.shape, has_duplicates=False, sorted=True) def todense(self): self = self.sum_duplicates() x = np.zeros(shape=self.shape, dtype=self.dtype) coords = tuple([self.coords[i, :] for i in range(self.ndim)]) x[coords] = self.data return x @classmethod def from_scipy_sparse(cls, x): x = scipy.sparse.coo_matrix(x) coords = np.empty((2, x.nnz), dtype=x.row.dtype) coords[0, :] = x.row coords[1, :] = x.col return COO(coords, x.data, shape=x.shape, has_duplicates=not x.has_canonical_format, sorted=x.has_canonical_format) @property def dtype(self): return self.data.dtype @property def ndim(self): return len(self.shape) @property def nnz(self): return self.coords.shape[1] @property def nbytes(self): return self.data.nbytes + self.coords.nbytes def __sizeof__(self): return self.nbytes def __getitem__(self, index): if not isinstance(index, tuple): index = (index,) index = tuple(ind + self.shape[i] if isinstance(ind, numbers.Integral) and ind < 0 else ind for i, ind in enumerate(index)) if (all(ind == slice(None) or ind == slice(0, d) for ind, d in zip(index, self.shape))): return self mask = np.ones(self.nnz, dtype=bool) for i, ind in enumerate([i for i in index if i is not None]): if ind == slice(None, None): continue mask &= _mask(self.coords[i], ind) n = mask.sum() coords = [] shape = [] i = 0 for ind in index: if isinstance(ind, numbers.Integral): i += 1 continue elif isinstance(ind, slice): start = ind.start or 0 stop = ind.stop if ind.stop is not None else self.shape[i] shape.append(min(stop, self.shape[i]) - start) coords.append(self.coords[i][mask] - start) i += 1 elif isinstance(ind, list): old = self.coords[i][mask] new = np.empty(shape=old.shape, dtype=old.dtype) for j, item in enumerate(ind): new[old == item] = j coords.append(new) shape.append(len(ind)) i += 1 elif ind is None: coords.append(np.zeros(n)) shape.append(1) for j in range(i, self.ndim): coords.append(self.coords[j][mask]) shape.append(self.shape[j]) coords = np.stack(coords, axis=0) shape = tuple(shape) data = self.data[mask] return COO(coords, data, shape=shape, has_duplicates=self.has_duplicates, sorted=self.sorted) def __str__(self): return "<COO: shape=%s, dtype=%s, nnz=%d, sorted=%s, duplicates=%s>" % ( self.shape, self.dtype, self.nnz, self.sorted, self.has_duplicates) __repr__ = __str__ def reduction(self, method, axis=None, keepdims=False, dtype=None): if axis is None: axis = tuple(range(self.ndim)) kwargs = {} if dtype: kwargs['dtype'] = dtype if isinstance(axis, numbers.Integral): axis = (axis,) if set(axis) == set(range(self.ndim)): result = getattr(self.data, method)(**kwargs) else: axis = tuple(axis) neg_axis = list(range(self.ndim)) for ax in axis: neg_axis.remove(ax) neg_axis = tuple(neg_axis) a = self.transpose(axis + neg_axis) a = a.reshape((np.prod([self.shape[d] for d in axis]), np.prod([self.shape[d] for d in neg_axis]))) a = a.to_scipy_sparse() a = getattr(a, method)(axis=0, **kwargs) if isinstance(a, scipy.sparse.spmatrix): a = COO.from_scipy_sparse(a) a.sorted = self.sorted a.has_duplicates = False elif isinstance(a, np.matrix): a = np.asarray(a)[0] a = COO.from_numpy(a) a = a.reshape([self.shape[d] for d in neg_axis]) result = a if keepdims: result = _keepdims(self, result, axis) return result def sum(self, axis=None, keepdims=False, dtype=None, out=None): return self.reduction('sum', axis=axis, keepdims=keepdims, dtype=dtype) def max(self, axis=None, keepdims=False, out=None): x = self.reduction('max', axis=axis, keepdims=keepdims) # TODO: verify that there are some missing elements in each entry if isinstance(x, COO): x.data[x.data < 0] = 0 return x elif isinstance(x, np.ndarray): x[x < 0] = 0 return x else: return np.max(x, 0) def transpose(self, axes=None): if axes is None: axes = reversed(range(self.ndim)) axes = tuple(axes) if axes == tuple(range(self.ndim)): return self if self._cache is not None: for ax, value in self._cache['transpose']: if ax == axes: return value shape = tuple(self.shape[ax] for ax in axes) result = COO(self.coords[axes, :], self.data, shape, has_duplicates=self.has_duplicates, cache=self._cache is not None) if self._cache is not None: self._cache['transpose'].append((axes, result)) return result @property def T(self): return self.transpose(list(range(self.ndim))[::-1]) def dot(self, other): return dot(self, other) def __matmul__(self, other): try: return dot(self, other) except NotImplementedError: return NotImplemented def __rmatmul__(self, other): try: return dot(other, self) except NotImplementedError: return NotImplemented def __numpy_ufunc__(self, ufunc, method, i, inputs, **kwargs): return NotImplemented def linear_loc(self, signed=False): """ Index location of every piece of data in a flattened array This is used internally to check for duplicates, re-order, reshape, etc.. """ n = reduce(operator.mul, self.shape) if signed: n = -n dtype = np.min_scalar_type(n) out = np.zeros(self.nnz, dtype=dtype)
<reponame>Kelketek/evennia """ OOBHandler - Out Of Band Handler The OOBHandler.execute_cmd is called by the sessionhandler when it detects an OOB instruction (exactly how this looked depends on the protocol; at this point all oob calls should look the same) The handler pieces of functionality: function execution - the oob protocol can execute a function directly on the server. The available functions must be defined as global functions in settings.OOB_PLUGIN_MODULES. repeat func execution - the oob protocol can request a given function be executed repeatedly at a regular interval. This uses an internal script pool. tracking - the oob protocol can request Evennia to track changes to fields on objects, as well as changes in Attributes. This is done by dynamically adding tracker-objects on entities. The behaviour of those objects can be customized by adding new tracker classes in settings.OOB_PLUGIN_MODULES. What goes into the OOB_PLUGIN_MODULES is a (list of) modules that contains the working server-side code available to the OOB system: oob functions and tracker classes. oob functions have the following call signature: function(caller, session, *args, **kwargs) oob trackers should inherit from the OOBTracker class (in this module) and implement a minimum of the same functionality. If a function named "oob_error" is given, this will be called with error messages. """ from inspect import isfunction from twisted.internet.defer import inlineCallbacks from django.conf import settings from src.server.models import ServerConfig from src.server.sessionhandler import SESSIONS #from src.scripts.scripts import Script #from src.utils.create import create_script from src.scripts.tickerhandler import Ticker, TickerPool, TickerHandler from src.utils.dbserialize import dbserialize, dbunserialize, pack_dbobj, unpack_dbobj from src.utils import logger from src.utils.utils import all_from_module, make_iter, to_str _SA = object.__setattr__ _GA = object.__getattribute__ _DA = object.__delattr__ # load resources from plugin module _OOB_FUNCS = {} for mod in make_iter(settings.OOB_PLUGIN_MODULES): _OOB_FUNCS.update(dict((key.lower(), func) for key, func in all_from_module(mod).items() if isfunction(func))) # get custom error method or use the default _OOB_ERROR = _OOB_FUNCS.get("oob_error", None) if not _OOB_ERROR: # create default oob error message function def oob_error(oobhandler, session, errmsg, *args, **kwargs): "Error wrapper" session.msg(oob=("err", ("ERROR ", errmsg))) _OOB_ERROR = oob_error # # TrackerHandler is assigned to objects that should notify themselves to # the OOB system when some property changes. This is never assigned manually # but automatically through the OOBHandler. # class TrackerHandler(object): """ This object is dynamically assigned to objects whenever one of its fields are to be tracked. It holds an internal dictionary mapping to the fields on that object. Each field can be tracked by any number of trackers (each tied to a different callback). """ def __init__(self, obj): """ This is initiated and stored on the object as a property _trackerhandler. """ try: obj = obj.dbobj except AttributeError: pass self.obj = obj self.ntrackers = 0 # initiate store only with valid on-object fieldnames self.tracktargets = dict((key, {}) for key in _GA(_GA(self.obj, "_meta"), "get_all_field_names")()) def add(self, fieldname, tracker): """ Add tracker to the handler. Raises KeyError if fieldname does not exist. """ trackerkey = tracker.__class__.__name__ self.tracktargets[fieldname][trackerkey] = tracker self.ntrackers += 1 def remove(self, fieldname, trackerclass, *args, **kwargs): """ Remove identified tracker from TrackerHandler. Raises KeyError if tracker is not found. """ trackerkey = trackerclass.__name__ tracker = self.tracktargets[fieldname][trackerkey] try: tracker.at_remove(*args, **kwargs) except Exception: logger.log_trace() del self.tracktargets[fieldname][trackerkey] self.ntrackers -= 1 if self.ntrackers <= 0: # if there are no more trackers, clean this handler del self def update(self, fieldname, new_value): """ Called by the field when it updates to a new value """ for tracker in self.tracktargets[fieldname].values(): try: tracker.update(new_value) except Exception: logger.log_trace() # On-object Trackers to load with TrackerHandler class TrackerBase(object): """ Base class for OOB Tracker objects. Inherit from this to define custom trackers. """ def __init__(self, *args, **kwargs): pass def update(self, *args, **kwargs): "Called by tracked objects" pass def at_remove(self, *args, **kwargs): "Called when tracker is removed" pass class ReportFieldTracker(TrackerBase): """ Tracker that passively sends data to a stored sessid whenever a named database field changes. The TrackerHandler calls this with the correct arguments. """ def __init__(self, oobhandler, fieldname, sessid, *args, **kwargs): """ name - name of entity to track, such as "db_key" sessid - sessid of session to report to """ self.oobhandler = oobhandler self.fieldname = fieldname self.sessid = sessid def update(self, new_value, *args, **kwargs): "Called by cache when updating the tracked entitiy" # use oobhandler to relay data try: # we must never relay objects across the amp, only text data. new_value = new_value.key except AttributeError: new_value = to_str(new_value, force_string=True) kwargs[self.fieldname] = new_value # this is a wrapper call for sending oob data back to session self.oobhandler.msg(self.sessid, "report", *args, **kwargs) class ReportAttributeTracker(TrackerBase): """ Tracker that passively sends data to a stored sessid whenever the Attribute updates. Since the field here is always "db_key", we instead store the name of the attribute to return. """ def __init__(self, oobhandler, fieldname, sessid, attrname, *args, **kwargs): """ attrname - name of attribute to track sessid - sessid of session to report to """ self.oobhandler = oobhandler self.attrname = attrname self.sessid = sessid def update(self, new_value, *args, **kwargs): "Called by cache when attribute's db_value field updates" try: new_value = new_value.dbobj except AttributeError: new_value = to_str(new_value, force_string=True) kwargs[self.attrname] = new_value # this is a wrapper call for sending oob data back to session self.oobhandler.msg(self.sessid, "report", *args, **kwargs) # Ticker of auto-updating objects class OOBTicker(Ticker): """ Version of Ticker that executes an executable rather than trying to call a hook method. """ @inlineCallbacks def _callback(self): "See original for more info" for key, (_, args, kwargs) in self.subscriptions.items(): # args = (sessid, callback_function) session = SESSIONS.session_from_sessid(args[0]) try: # execute the oob callback yield args[1](OOB_HANDLER, session, *args[2:], **kwargs) except Exception: logger.log_trace() class OOBTickerPool(TickerPool): ticker_class = OOBTicker class OOBTickerHandler(TickerHandler): ticker_pool_class = OOBTickerPool # Main OOB Handler class OOBHandler(object): """ The OOBHandler maintains all dynamic on-object oob hooks. It will store the creation instructions and and re-apply them at a server reload (but not after a server shutdown) """ def __init__(self): """ Initialize handler """ self.sessionhandler = SESSIONS self.oob_tracker_storage = {} self.tickerhandler = OOBTickerHandler("oob_ticker_storage") def save(self): """ Save the command_storage as a serialized string into a temporary ServerConf field """ if self.oob_tracker_storage: #print "saved tracker_storage:", self.oob_tracker_storage ServerConfig.objects.conf(key="oob_tracker_storage", value=dbserialize(self.oob_tracker_storage)) self.tickerhandler.save() def restore(self): """ Restore the command_storage from database and re-initialize the handler from storage.. This is only triggered after a server reload, not after a shutdown-restart """ # load stored command instructions and use them to re-initialize handler tracker_storage = ServerConfig.objects.conf(key="oob_tracker_storage") if tracker_storage: self.oob_tracker_storage = dbunserialize(tracker_storage) for (obj, sessid, fieldname, trackerclass, args, kwargs) in self.oob_tracker_storage.values(): #print "restoring tracking:",obj, sessid, fieldname, trackerclass self._track(unpack_dbobj(obj), sessid, fieldname, trackerclass, *args, **kwargs) # make sure to purge the storage ServerConfig.objects.conf(key="oob_tracker_storage", delete=True) self.tickerhandler.restore() def _track(self, obj, sessid, propname, trackerclass, *args, **kwargs): """ Create an OOB obj of class _oob_MAPPING[tracker_key] on obj. args, kwargs will be used to initialize the OOB hook before adding it to obj. If propname is not given, but the OOB has a class property named as propname, this will be used as the property name when assigning the OOB to obj, otherwise tracker_key is used as the property name. """ try: obj = obj.dbobj except AttributeError: pass if not "_trackerhandler" in _GA(obj, "__dict__"): # assign trackerhandler to object _SA(obj, "_trackerhandler", TrackerHandler(obj)) # initialize object tracker = trackerclass(self, propname, sessid, *args, **kwargs) _GA(obj, "_trackerhandler").add(propname, tracker) # store calling arguments as a pickle for retrieval later obj_packed = pack_dbobj(obj) storekey = (obj_packed, sessid, propname) stored = (obj_packed, sessid, propname, trackerclass, args, kwargs) self.oob_tracker_storage[storekey] = stored #print "_track:", obj, id(obj), obj.__dict__ def _untrack(self, obj, sessid, propname, trackerclass, *args, **kwargs): """ Remove the OOB from obj. If oob implements an at_delete hook, this will be called with args, kwargs """ try: obj = obj.dbobj except AttributeError: pass try: # call at_remove hook on the trackerclass _GA(obj, "_trackerhandler").remove(propname, trackerclass, *args, **kwargs) except AttributeError: pass # remove the pickle from storage store_key = (pack_dbobj(obj), sessid, propname) self.oob_tracker_storage.pop(store_key, None) def get_all_tracked(self, session): """ Get the names of all variables this session is tracking. """ sessid = session.sessid return [stored for key, stored in self.oob_tracker_storage.items() if key[1] == sessid] def track_field(self, obj, sessid, field_name, trackerclass=ReportFieldTracker): """ Shortcut wrapper method for specifically tracking a database field. Takes the tracker class as argument. """ # all database field
Asks user clarifying questions if an invalid number is provided. Returns None if user says any of the terminal answers.""" answer = await self.ask_freeform_question( recipient, question_text, require_first_device ) answer_text = answer # This checks to see if the answer is a valid candidate for float by replacing # the first comma or decimal point with a number to see if the resulting string .isnumeric() # does the same for negative signs if answer_text and not ( answer_text.replace("-", "1", 1).replace(".", "1", 1).isnumeric() or answer_text.replace("-", "1", 1).replace(",", "1", 1).isnumeric() ): # cancel if user replies with any of the terminal answers "stop, cancel, quit, etc. defined above" if answer.lower() in self.TERMINAL_ANSWERS: return None # Check to see if the original question already specified wanting the answer as a decimal. # If not asks the question again and adds "as a decimal" to clarify if question_text and "as a decimal" in question_text: return await self.ask_floatable_question(recipient, question_text) return await self.ask_floatable_question( recipient, (question_text or "") + " (as a decimal, ie 1.01 or 2,02)" ) if answer_text: return float(answer.replace(",", ".", 1)) return None async def ask_intable_question( self, recipient: str, question_text: Optional[str] = "How many years old do you wish you were?", require_first_device: bool = False, ) -> Optional[int]: """Asks a question answered with an integer or whole number. Asks user clarifying questions if an invalid number is provided. Returns None if user says any of the terminal answers.""" answer = await self.ask_freeform_question( recipient, question_text, require_first_device ) if answer and not answer.isnumeric(): # cancel if user replies with any of the terminal answers "stop, cancel, quit, etc. defined above" if answer.lower() in self.TERMINAL_ANSWERS: return None # Check to see if the original question already specified wanting the answer as a decimal. # If not asks the question again and adds "as a whole number, ie '1' or '2000'" to clarify if question_text and "as a whole number" in question_text: return await self.ask_intable_question(recipient, question_text) return await self.ask_intable_question( recipient, (question_text or "") + " (as a whole number, ie '1' or '2000')", ) if answer: return int(answer) return None async def ask_yesno_question( self, recipient: str, question_text: str = "Are you sure? yes/no", require_first_device: bool = False, ) -> Optional[bool]: """Asks a question that expects a yes or no answer. Returns a Boolean: True if Yes False if No. None if cancelled""" # ask the question as a freeform question answer = await self.ask_freeform_question( recipient, question_text, require_first_device ) answer = answer.lower().rstrip(string.punctuation) # if there is an answer and it is negative or positive if answer and answer in (self.AFFIRMATIVE_ANSWERS + self.NEGATIVE_ANSWERS): # return true if it's in affirmative answers otherwise assume it was negative and return false if answer in self.AFFIRMATIVE_ANSWERS: return True return False # return none if user answers cancel, etc if answer and answer in self.TERMINAL_ANSWERS: return None # if the answer is not a terminal answer but also not a match, add clarifier and ask again if "Please answer yes or no" not in question_text: question_text = "Please answer yes or no, or cancel:\n \n" + question_text return await self.ask_yesno_question( recipient, question_text, require_first_device ) async def ask_address_question( self, recipient: str, question_text: str = "What's your shipping address?", require_first_device: bool = False, require_confirmation: bool = False, ) -> Optional[str]: """Asks user for their address and verifies through the google maps api Can ask User for confirmation, returns string with formatted address or none""" # get google maps api key from secrets api = utils.get_secret("GOOGLE_MAPS_API") if not api: logging.error("Error, missing Google Maps API in secrets configuration") return None # ask for the address as a freeform question address = await self.ask_freeform_question( recipient, question_text, require_first_device ) # we take the answer provided by the user, format it nicely as a request to google maps' api # It returns a JSON object from which we can ascertain if the address is valid async with self.client_session.get( "https://maps.googleapis.com/maps/api/geocode/json", params={"address": address, "key": api}, ) as resp: address_json = await resp.json() # if google can't find the address results will be empty if not (address_json["results"]): # break out if user replied cancel, exit, stop, etc. if address.lower() in self.TERMINAL_ANSWERS: return None # Otherwise, apologize and ask again await self.send_message( recipient, "Sorry, I couldn't find that. \nPlease try again or reply cancel to cancel \n", ) return await self.ask_address_question( recipient, question_text, require_first_device, require_confirmation ) # if maps does return a formatted address if address_json["results"] and address_json["results"][0]["formatted_address"]: if require_confirmation: # Tell user the address we got and ask them to confirm # Give them a google Maps link so they can check maybe_address = address_json["results"][0]["formatted_address"] maps_url = f"https://www.google.com/maps/search/?api=1&query={urllib.parse.quote_plus(maybe_address)}&query_place_id={address_json['results'][0]['place_id']}" confirmation = await self.ask_yesno_question( recipient, f"Got: \n{maybe_address} \n\n{maps_url} \n\nIs this your address? (yes/no)", require_first_device, ) # If not, ask again if not confirmation: return await self.ask_address_question( recipient, question_text, require_first_device, require_confirmation, ) return address_json["results"][0]["formatted_address"] # If we made it here something unexpected probably went wrong. # Google returned something but didn't have a formatted address return None async def ask_multiple_choice_question( # pylint: disable=too-many-arguments self, recipient: str, question_text: Optional[str], options: Union[dict[str, str], list[str]], require_confirmation: bool = True, require_first_device: bool = False, ) -> Optional[str]: """Prompts the user to select from a series of options. Behaviour alters slightly based on options: options as list -> we write labels for you with "1,2,3,...." options as dict -> dict keys are the labels options as dict with all values "" -> the labels are the options, and only labels are printed""" ## TODO: allow fuzzy answers or lowercase answers. Needs design discussion. # Check to ensure that user is on their first device as opposed to a linked device # Important for certain questions involving payment addresses if require_first_device: self.requires_first_device[recipient] = True if question_text is None: question_text = "Pick one from these options:" options_text = "" # User can pass just a list of options and we generate labels for them using enumerate # User can provide their own labels for the options by passing a dict # Create a question with just labels by having all values be "" # This will format the options text and check for a just labels question if isinstance(options, list): dict_options: dict[Any, str] = { str(i): value for i, value in enumerate(options, start=1) } else: dict_options = options # Put ) between labels and text, if dict is all empty values leave blank spacer = ") " if any(dict_options.values()) else "" # We use a generator object to join all the options # into one text that can be sent to the user options_text = " \n".join( f"{label}{spacer}{body}" for label, body in dict_options.items() ) # for the purposes of making it case insensitive, make sure no options are the same when lowercased lower_dict_options = {k.lower(): v for (k, v) in dict_options.items()} if len(lower_dict_options) != len(dict_options): raise ValueError("Need to ensure unique options when lower-cased!") # send user the formatted question as a freeform question and process their response answer = await self.ask_freeform_question( recipient, question_text + "\n" + options_text, require_first_device ) # when there is a match if answer and answer.lower() in lower_dict_options.keys(): # if confirmation is required ask for it as a yes/no question if require_confirmation: confirmation_text = ( "You picked: \n" + answer + spacer + lower_dict_options[answer.lower()] + "\n\nIs this correct? (yes/no)" ) confirmation = await self.ask_yesno_question( recipient, confirmation_text ) # if no, ask the question again if not confirmation: return await self.ask_multiple_choice_question( recipient, question_text, dict_options, require_confirmation, require_first_device, ) # if the answer given does not match a label if answer and not answer.lower() in lower_dict_options.keys(): # return none and exit if user types cancel, stop, exit, etc... if answer.lower() in self.TERMINAL_ANSWERS: return None # otherwise reminder to type the label exactly as it appears and restate the question if "Please reply" not in question_text: question_text = ( "Please reply with just the label exactly
to kill me- 'banished'? O friar, the damned use that word in hell; Howling attends it! How hast thou the heart, Being a divine, a ghostly confessor, A sin-absolver, and my friend profess'd, To mangle me with that word 'banished'? Friar. Thou fond mad man, hear me a little speak. Rom. O, thou wilt speak again of banishment. Friar. I'll give thee armour to keep off that word; Adversity's sweet milk, philosophy, To comfort thee, though thou art banished. Rom. Yet 'banished'? Hang up philosophy! Unless philosophy can make a Juliet, Displant a town, reverse a prince's doom, It helps not, it prevails not. Talk no more. Friar. O, then I see that madmen have no ears. Rom. How should they, when that wise men have no eyes? Friar. Let me dispute with thee of thy estate. Rom. Thou canst not speak of that thou dost not feel. Wert thou as young as I, Juliet thy love, An hour but married, Tybalt murdered, Doting like me, and like me banished, Then mightst thou speak, then mightst thou tear thy hair, And fall upon the ground, as I do now, Taking the measure of an unmade grave. Knock [within]. Friar. Arise; one knocks. Good Romeo, hide thyself. Rom. Not I; unless the breath of heartsick groans, Mist-like infold me from the search of eyes. Knock. Friar. Hark, how they knock! Who's there? Romeo, arise; Thou wilt be taken.- Stay awhile!- Stand up; Knock. Run to my study.- By-and-by!- God's will, What simpleness is this.- I come, I come! Knock. Who knocks so hard? Whence come you? What's your will Nurse. [within] Let me come in, and you shall know my errand. I come from L<NAME>. Friar. Welcome then. Enter Nurse. Nurse. O holy friar, O, tell me, holy friar Where is my lady's lord, where's Romeo? Friar. There on the ground, with his own tears made drunk. Nurse. O, he is even in my mistress' case, Just in her case! Friar. O woeful sympathy! Piteous predicament! Nurse. Even so lies she, Blubb'ring and weeping, weeping and blubbering. Stand up, stand up! Stand, an you be a man. For Juliet's sake, for her sake, rise and stand! Why should you fall into so deep an O? Rom. (rises) Nurse- Nurse. Ah sir! ah sir! Well, death's the end of all. Rom. Spakest thou of Juliet? How is it with her? Doth not she think me an old murtherer, Now I have stain'd the childhood of our joy With blood remov'd but little from her own? Where is she? and how doth she! and what says My conceal'd lady to our cancell'd love? Nurse. O, she says nothing, sir, but weeps and weeps; And now falls on her bed, and then starts up, And Tybalt calls; and then on Romeo cries, And then down falls again. Rom. As if that name, Shot from the deadly level of a gun, Did murther her; as that name's cursed hand Murder'd her kinsman. O, tell me, friar, tell me, In what vile part of this anatomy Doth my name lodge? Tell me, that I may sack The hateful mansion. [Draws his dagger.] Friar. Hold thy desperate hand. Art thou a man? Thy form cries out thou art; Thy tears are womanish, thy wild acts denote The unreasonable fury of a beast. Unseemly woman in a seeming man! Or ill-beseeming beast in seeming both! Thou hast amaz'd me. By my holy order, I thought thy disposition better temper'd. Hast thou slain Tybalt? Wilt thou slay thyself? And slay thy lady that in thy life lives, By doing damned hate upon thyself? Why railest thou on thy birth, the heaven, and earth? Since birth and heaven and earth, all three do meet In thee at once; which thou at once wouldst lose. Fie, fie, thou shamest thy shape, thy love, thy wit, Which, like a usurer, abound'st in all, And usest none in that true use indeed Which should bedeck thy shape, thy love, thy wit. Thy noble shape is but a form of wax Digressing from the valour of a man; Thy dear love sworn but hollow perjury, Killing that love which thou hast vow'd to cherish; Thy wit, that ornament to shape and love, Misshapen in the conduct of them both, Like powder in a skilless soldier's flask, is get afire by thine own ignorance, And thou dismemb'red with thine own defence. What, rouse thee, man! Thy Juliet is alive, For whose dear sake thou wast but lately dead. There art thou happy. Tybalt would kill thee, But thou slewest Tybalt. There art thou happy too. The law, that threat'ned death, becomes thy friend And turns it to exile. There art thou happy. A pack of blessings light upon thy back; Happiness courts thee in her best array; But, like a misbhav'd and sullen wench, Thou pout'st upon thy fortune and thy love. Take heed, take heed, for such die miserable. Go get thee to thy love, as was decreed, Ascend her chamber, hence and comfort her. But look thou stay not till the watch be set, For then thou canst not pass to Mantua, Where thou shalt live till we can find a time To blaze your marriage, reconcile your friends, Beg pardon of the Prince, and call thee back With twenty hundred thousand times more joy Than thou went'st forth in lamentation. Go before, nurse. Commend me to thy lady, And bid her hasten all the house to bed, Which heavy sorrow makes them apt unto. Romeo is coming. Nurse. O Lord, I could have stay'd here all the night To hear good counsel. O, what learning is! My lord, I'll tell my lady you will come. Rom. Do so, and bid my sweet prepare to chide. Nurse. Here is a ring she bid me give you, sir. Hie you, make haste, for it grows very late. Exit. Rom. How well my comfort is reviv'd by this! Friar. Go hence; good night; and here stands all your state: Either be gone before the watch be set, Or by the break of day disguis'd from hence. Sojourn in Mantua. I'll find out your man, And he shall signify from time to time Every good hap to you that chances here. Give me thy hand. 'Tis late. Farewell; good night. Rom. But that a joy past joy calls out on me, It were a grief so brief to part with thee. Farewell. Exeunt. Scene IV. Capulet's house Enter Old Capulet, his Wife, and Paris. Cap. Things have fall'n out, sir, so unluckily That we have had no time to move our daughter. Look you, she lov'd her kinsman Tybalt dearly, And so did I. Well, we were born to die. 'Tis very late; she'll not come down to-night. I promise you, but for your company, I would have been abed an hour ago. Par. These times of woe afford no tune to woo. Madam, good night. Commend me to your daughter. Lady. I will, and know her mind early to-morrow; To-night she's mew'd up to her heaviness. Cap. Sir Paris, I will make a desperate tender Of my child's love. I think she will be rul'd In all respects by me; nay more, I doubt it not. Wife, go you to her ere you go to bed; Acquaint her here of my son Paris' love And bid her (mark you me?) on Wednesday next- But, soft! what day is this? Par. Monday, my lord. Cap. Monday! ha, ha! Well, Wednesday is too soon. Thursday let it be- a Thursday, tell her She shall be married to this noble earl. Will you be ready? Do you like this haste? We'll
2, 3]) s2 = _handle_zeros_in_scale(s1, copy=True) assert_allclose(s1, np.array([0, 1e-16, 1, 2, 3])) assert_allclose(s2, np.array([1, 1, 1, 2, 3])) def test_minmax_scaler_partial_fit(): # Test if partial_fit run over many batches of size 1 and 50 # gives the same results as fit X = X_2d n = X.shape[0] for chunk_size in [1, 2, 50, n, n + 42]: # Test mean at the end of the process scaler_batch = MinMaxScaler().fit(X) scaler_incr = MinMaxScaler() for batch in gen_batches(n_samples, chunk_size): scaler_incr = scaler_incr.partial_fit(X[batch]) assert_array_almost_equal(scaler_batch.data_min_, scaler_incr.data_min_) assert_array_almost_equal(scaler_batch.data_max_, scaler_incr.data_max_) assert scaler_batch.n_samples_seen_ == scaler_incr.n_samples_seen_ assert_array_almost_equal(scaler_batch.data_range_, scaler_incr.data_range_) assert_array_almost_equal(scaler_batch.scale_, scaler_incr.scale_) assert_array_almost_equal(scaler_batch.min_, scaler_incr.min_) # Test std after 1 step batch0 = slice(0, chunk_size) scaler_batch = MinMaxScaler().fit(X[batch0]) scaler_incr = MinMaxScaler().partial_fit(X[batch0]) assert_array_almost_equal(scaler_batch.data_min_, scaler_incr.data_min_) assert_array_almost_equal(scaler_batch.data_max_, scaler_incr.data_max_) assert scaler_batch.n_samples_seen_ == scaler_incr.n_samples_seen_ assert_array_almost_equal(scaler_batch.data_range_, scaler_incr.data_range_) assert_array_almost_equal(scaler_batch.scale_, scaler_incr.scale_) assert_array_almost_equal(scaler_batch.min_, scaler_incr.min_) # Test std until the end of partial fits, and scaler_batch = MinMaxScaler().fit(X) scaler_incr = MinMaxScaler() # Clean estimator for i, batch in enumerate(gen_batches(n_samples, chunk_size)): scaler_incr = scaler_incr.partial_fit(X[batch]) assert_correct_incr(i, batch_start=batch.start, batch_stop=batch.stop, n=n, chunk_size=chunk_size, n_samples_seen=scaler_incr.n_samples_seen_) def test_standard_scaler_partial_fit(): # Test if partial_fit run over many batches of size 1 and 50 # gives the same results as fit X = X_2d n = X.shape[0] for chunk_size in [1, 2, 50, n, n + 42]: # Test mean at the end of the process scaler_batch = StandardScaler(with_std=False).fit(X) scaler_incr = StandardScaler(with_std=False) for batch in gen_batches(n_samples, chunk_size): scaler_incr = scaler_incr.partial_fit(X[batch]) assert_array_almost_equal(scaler_batch.mean_, scaler_incr.mean_) assert scaler_batch.var_ == scaler_incr.var_ # Nones assert scaler_batch.n_samples_seen_ == scaler_incr.n_samples_seen_ # Test std after 1 step batch0 = slice(0, chunk_size) scaler_incr = StandardScaler().partial_fit(X[batch0]) if chunk_size == 1: assert_array_almost_equal(np.zeros(n_features, dtype=np.float64), scaler_incr.var_) assert_array_almost_equal(np.ones(n_features, dtype=np.float64), scaler_incr.scale_) else: assert_array_almost_equal(np.var(X[batch0], axis=0), scaler_incr.var_) assert_array_almost_equal(np.std(X[batch0], axis=0), scaler_incr.scale_) # no constants # Test std until the end of partial fits, and scaler_batch = StandardScaler().fit(X) scaler_incr = StandardScaler() # Clean estimator for i, batch in enumerate(gen_batches(n_samples, chunk_size)): scaler_incr = scaler_incr.partial_fit(X[batch]) assert_correct_incr(i, batch_start=batch.start, batch_stop=batch.stop, n=n, chunk_size=chunk_size, n_samples_seen=scaler_incr.n_samples_seen_) assert_array_almost_equal(scaler_batch.var_, scaler_incr.var_) assert scaler_batch.n_samples_seen_ == scaler_incr.n_samples_seen_ def test_standard_scaler_partial_fit_numerical_stability(): # Test if the incremental computation introduces significative errors # for large datasets with values of large magniture rng = np.random.RandomState(0) n_features = 2 n_samples = 100 offsets = rng.uniform(-1e15, 1e15, size=n_features) scales = rng.uniform(1e3, 1e6, size=n_features) X = rng.randn(n_samples, n_features) * scales + offsets scaler_batch = StandardScaler().fit(X) scaler_incr = StandardScaler() for chunk in X: scaler_incr = scaler_incr.partial_fit(chunk.reshape(1, n_features)) # Regardless of abs values, they must not be more diff 6 significant digits tol = 10 ** (-6) assert_allclose(scaler_incr.mean_, scaler_batch.mean_, rtol=tol) assert_allclose(scaler_incr.var_, scaler_batch.var_, rtol=tol) assert_allclose(scaler_incr.scale_, scaler_batch.scale_, rtol=tol) # NOTE Be aware that for much larger offsets std is very unstable (last # assert) while mean is OK. # Sparse input size = (100, 3) scale = 1e20 X = rng.randint(0, 2, size).astype(np.float64) * scale X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) for X in [X_csr, X_csc]: # with_mean=False is required with sparse input scaler = StandardScaler(with_mean=False).fit(X) scaler_incr = StandardScaler(with_mean=False) for chunk in X: # chunk = sparse.csr_matrix(data_chunks) scaler_incr = scaler_incr.partial_fit(chunk) # Regardless of magnitude, they must not differ more than of 6 digits tol = 10 ** (-6) assert scaler.mean_ is not None assert_allclose(scaler_incr.var_, scaler.var_, rtol=tol) assert_allclose(scaler_incr.scale_, scaler.scale_, rtol=tol) @pytest.mark.parametrize("sample_weight", [True, None]) def test_partial_fit_sparse_input(sample_weight): # Check that sparsity is not destroyed X = np.array([[1.], [0.], [0.], [5.]]) X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) if sample_weight: sample_weight = rng.rand(X_csc.shape[0]) null_transform = StandardScaler(with_mean=False, with_std=False, copy=True) for X in [X_csr, X_csc]: X_null = null_transform.partial_fit( X, sample_weight=sample_weight).transform(X) assert_array_equal(X_null.toarray(), X.toarray()) X_orig = null_transform.inverse_transform(X_null) assert_array_equal(X_orig.toarray(), X_null.toarray()) assert_array_equal(X_orig.toarray(), X.toarray()) @pytest.mark.parametrize("sample_weight", [True, None]) def test_standard_scaler_trasform_with_partial_fit(sample_weight): # Check some postconditions after applying partial_fit and transform X = X_2d[:100, :] if sample_weight: sample_weight = rng.rand(X.shape[0]) scaler_incr = StandardScaler() for i, batch in enumerate(gen_batches(X.shape[0], 1)): X_sofar = X[:(i + 1), :] chunks_copy = X_sofar.copy() if sample_weight is None: scaled_batch = StandardScaler().fit_transform(X_sofar) scaler_incr = scaler_incr.partial_fit(X[batch]) else: scaled_batch = StandardScaler().fit_transform( X_sofar, sample_weight=sample_weight[:i + 1]) scaler_incr = scaler_incr.partial_fit( X[batch], sample_weight=sample_weight[batch]) scaled_incr = scaler_incr.transform(X_sofar) assert_array_almost_equal(scaled_batch, scaled_incr) assert_array_almost_equal(X_sofar, chunks_copy) # No change right_input = scaler_incr.inverse_transform(scaled_incr) assert_array_almost_equal(X_sofar, right_input) zero = np.zeros(X.shape[1]) epsilon = np.finfo(float).eps assert_array_less(zero, scaler_incr.var_ + epsilon) # as less or equal assert_array_less(zero, scaler_incr.scale_ + epsilon) if sample_weight is None: # (i+1) because the Scaler has been already fitted assert (i + 1) == scaler_incr.n_samples_seen_ else: assert ( np.sum(sample_weight[:i + 1]) == pytest.approx(scaler_incr.n_samples_seen_) ) def test_min_max_scaler_iris(): X = iris.data scaler = MinMaxScaler() # default params X_trans = scaler.fit_transform(X) assert_array_almost_equal(X_trans.min(axis=0), 0) assert_array_almost_equal(X_trans.max(axis=0), 1) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # not default params: min=1, max=2 scaler = MinMaxScaler(feature_range=(1, 2)) X_trans = scaler.fit_transform(X) assert_array_almost_equal(X_trans.min(axis=0), 1) assert_array_almost_equal(X_trans.max(axis=0), 2) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # min=-.5, max=.6 scaler = MinMaxScaler(feature_range=(-.5, .6)) X_trans = scaler.fit_transform(X) assert_array_almost_equal(X_trans.min(axis=0), -.5) assert_array_almost_equal(X_trans.max(axis=0), .6) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # raises on invalid range scaler = MinMaxScaler(feature_range=(2, 1)) with pytest.raises(ValueError): scaler.fit(X) def test_min_max_scaler_zero_variance_features(): # Check min max scaler on toy data with zero variance features X = [[0., 1., +0.5], [0., 1., -0.1], [0., 1., +1.1]] X_new = [[+0., 2., 0.5], [-1., 1., 0.0], [+0., 1., 1.5]] # default params scaler = MinMaxScaler() X_trans = scaler.fit_transform(X) X_expected_0_1 = [[0., 0., 0.5], [0., 0., 0.0], [0., 0., 1.0]] assert_array_almost_equal(X_trans, X_expected_0_1) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) X_trans_new = scaler.transform(X_new) X_expected_0_1_new = [[+0., 1., 0.500], [-1., 0., 0.083], [+0., 0., 1.333]] assert_array_almost_equal(X_trans_new, X_expected_0_1_new, decimal=2) # not default params scaler = MinMaxScaler(feature_range=(1, 2)) X_trans = scaler.fit_transform(X) X_expected_1_2 = [[1., 1., 1.5], [1., 1., 1.0], [1., 1., 2.0]] assert_array_almost_equal(X_trans, X_expected_1_2) # function interface X_trans = minmax_scale(X) assert_array_almost_equal(X_trans, X_expected_0_1) X_trans = minmax_scale(X, feature_range=(1, 2)) assert_array_almost_equal(X_trans, X_expected_1_2) def test_minmax_scale_axis1(): X = iris.data X_trans = minmax_scale(X, axis=1) assert_array_almost_equal(np.min(X_trans, axis=1), 0) assert_array_almost_equal(np.max(X_trans, axis=1), 1) def test_min_max_scaler_1d(): # Test scaling of dataset along single axis for X in [X_1row, X_1col, X_list_1row, X_list_1row]: scaler = MinMaxScaler(copy=True) X_scaled = scaler.fit(X).transform(X) if isinstance(X, list): X = np.array(X) # cast only after scaling done if _check_dim_1axis(X) == 1: assert_array_almost_equal(X_scaled.min(axis=0), np.zeros(n_features)) assert_array_almost_equal(X_scaled.max(axis=0), np.zeros(n_features)) else: assert_array_almost_equal(X_scaled.min(axis=0), .0) assert_array_almost_equal(X_scaled.max(axis=0), 1.) assert scaler.n_samples_seen_ == X.shape[0] # check inverse transform X_scaled_back = scaler.inverse_transform(X_scaled) assert_array_almost_equal(X_scaled_back, X) # Constant feature X = np.ones((5, 1)) scaler = MinMaxScaler() X_scaled = scaler.fit(X).transform(X) assert X_scaled.min() >= 0. assert X_scaled.max() <= 1. assert scaler.n_samples_seen_ == X.shape[0] # Function interface X_1d = X_1row.ravel() min_ = X_1d.min() max_ = X_1d.max() assert_array_almost_equal((X_1d - min_) / (max_ - min_), minmax_scale(X_1d, copy=True)) @pytest.mark.parametrize("sample_weight", [True, None]) def test_scaler_without_centering(sample_weight): rng = np.random.RandomState(42) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) if sample_weight: sample_weight = rng.rand(X.shape[0]) with pytest.raises(ValueError): StandardScaler().fit(X_csr) with pytest.raises(ValueError): StandardScaler().fit(X_csc) null_transform = StandardScaler(with_mean=False, with_std=False, copy=True) X_null = null_transform.fit_transform(X_csr) assert_array_equal(X_null.data, X_csr.data) X_orig = null_transform.inverse_transform(X_null) assert_array_equal(X_orig.data, X_csr.data) scaler = StandardScaler(with_mean=False).fit( X, sample_weight=sample_weight) X_scaled = scaler.transform(X, copy=True) assert not np.any(np.isnan(X_scaled)) scaler_csr = StandardScaler(with_mean=False).fit( X_csr, sample_weight=sample_weight) X_csr_scaled = scaler_csr.transform(X_csr, copy=True) assert not np.any(np.isnan(X_csr_scaled.data)) scaler_csc = StandardScaler(with_mean=False).fit( X_csc, sample_weight=sample_weight) X_csc_scaled = scaler_csc.transform(X_csc, copy=True) assert not np.any(np.isnan(X_csc_scaled.data)) assert_array_almost_equal(scaler.mean_, scaler_csr.mean_) assert_array_almost_equal(scaler.var_, scaler_csr.var_) assert_array_almost_equal(scaler.scale_, scaler_csr.scale_) assert_array_almost_equal(scaler.n_samples_seen_, scaler_csr.n_samples_seen_) assert_array_almost_equal(scaler.mean_, scaler_csc.mean_) assert_array_almost_equal(scaler.var_, scaler_csc.var_) assert_array_almost_equal(scaler.scale_, scaler_csc.scale_) assert_array_almost_equal(scaler.n_samples_seen_, scaler_csc.n_samples_seen_) if sample_weight is None: assert_array_almost_equal( X_scaled.mean(axis=0), [0., -0.01, 2.24, -0.35, -0.78], 2) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) X_csr_scaled_mean, X_csr_scaled_var = \ mean_variance_axis(X_csr_scaled, 0) assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0)) assert_array_almost_equal(X_csr_scaled_var, X_scaled.var(axis=0)) # Check that X has not been modified (copy) assert X_scaled is not X assert X_csr_scaled is not X_csr X_scaled_back = scaler.inverse_transform(X_scaled) assert X_scaled_back is not X assert X_scaled_back is not X_scaled assert_array_almost_equal(X_scaled_back, X) X_csr_scaled_back = scaler_csr.inverse_transform(X_csr_scaled) assert X_csr_scaled_back is not X_csr assert X_csr_scaled_back is not X_csr_scaled assert_array_almost_equal(X_csr_scaled_back.toarray(), X) X_csc_scaled_back = scaler_csr.inverse_transform(X_csc_scaled.tocsc()) assert X_csc_scaled_back is not X_csc assert X_csc_scaled_back is not X_csc_scaled assert_array_almost_equal(X_csc_scaled_back.toarray(), X) @pytest.mark.parametrize("with_mean", [True, False]) @pytest.mark.parametrize("with_std", [True, False]) @pytest.mark.parametrize("array_constructor", [np.asarray, sparse.csc_matrix, sparse.csr_matrix]) def test_scaler_n_samples_seen_with_nan(with_mean, with_std, array_constructor): X = np.array([[0, 1, 3], [np.nan, 6, 10], [5, 4, np.nan], [8, 0, np.nan]], dtype=np.float64) X = array_constructor(X) if sparse.issparse(X) and with_mean: pytest.skip("'with_mean=True' cannot be used with sparse matrix.") transformer = StandardScaler(with_mean=with_mean, with_std=with_std) transformer.fit(X) assert_array_equal(transformer.n_samples_seen_, np.array([3, 4, 2])) def _check_identity_scalers_attributes(scaler_1, scaler_2): assert scaler_1.mean_ is scaler_2.mean_ is None assert scaler_1.var_ is scaler_2.var_ is None assert scaler_1.scale_ is scaler_2.scale_ is None assert scaler_1.n_samples_seen_ == scaler_2.n_samples_seen_ def test_scaler_return_identity(): # test that the scaler return identity when with_mean and with_std are # False X_dense = np.array([[0, 1, 3], [5, 6, 0], [8, 0, 10]], dtype=np.float64) X_csr = sparse.csr_matrix(X_dense) X_csc = X_csr.tocsc()