issue_owner_repo
listlengths
2
2
issue_body
stringlengths
0
261k
issue_title
stringlengths
1
925
issue_comments_url
stringlengths
56
81
issue_comments_count
int64
0
2.5k
issue_created_at
stringlengths
20
20
issue_updated_at
stringlengths
20
20
issue_html_url
stringlengths
37
62
issue_github_id
int64
387k
2.46B
issue_number
int64
1
127k
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. I want to connect my ConversationChain to Metaphor. Please help me on how to do it! Thanks ### Suggestion: _No response_
How to connect an LLM Chain to Metaphor
https://api.github.com/repos/langchain-ai/langchain/issues/14112/comments
1
2023-12-01T06:47:10Z
2024-03-16T16:08:41Z
https://github.com/langchain-ai/langchain/issues/14112
2,020,223,271
14,112
[ "hwchase17", "langchain" ]
### Issue with current documentation: The link to subscribe to the "newsletter" at the bottom of Community page (`/docs/docs/community.md`) is no longer available. ![image](https://github.com/langchain-ai/langchain/assets/4020306/66fdefef-af05-4397-8ecf-14e45043e061) As the image above indicates, the "form has moved to a new address", and the new address (https://form.typeform.com/to/KjZB1auB?typeform-source=6w1pwbss0py.typeform.com) gives "This typeform is now closed", as the image shown below: ![image](https://github.com/langchain-ai/langchain/assets/4020306/00c65a2c-89f8-4147-a8f5-2d2f47d11a54) ### Idea or request for content: If the newsletter is still operating, replace the current link with a new one where people can subscribe to it. If the newsletter is no longer running, replace the text with something else (eg. the link to langchain blogs).
DOC: Link to subscribe to the "newsletter" on Community page is no longer valid
https://api.github.com/repos/langchain-ai/langchain/issues/14108/comments
1
2023-12-01T04:52:55Z
2024-02-25T15:14:52Z
https://github.com/langchain-ai/langchain/issues/14108
2,020,059,736
14,108
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. i am using load_qa_chain() chain=load_qa_chain(OpenAI(temperature=0.25,model_name="gpt-3.5-turbo-1106"), chain_type="stuff", prompt=PROMPT) i got the following error """ APIRemovedInV1: You tried to access openai.ChatCompletion, but this is no longer supported in openai>=1.0.0 - see the README at https://github.com/openai/openai-python for the API. You can run `openai migrate` to automatically upgrade your codebase to use the 1.0.0 interface. Alternatively, you can pin your installation to the old version, e.g. `pip install openai==0.28` A detailed migration guide is available here: https://github.com/openai/openai-python/discussions/742 """ and the line that raised the error is anaconda3/envs/Doc2/lib/site-packages/langchain/llms/openai.py:115 ### Suggestion: _No response_
Issue: openai.ChatCompletion is no longer supported in openai>=1.0.0
https://api.github.com/repos/langchain-ai/langchain/issues/14107/comments
4
2023-12-01T03:57:52Z
2023-12-11T05:58:02Z
https://github.com/langchain-ai/langchain/issues/14107
2,020,008,509
14,107
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. langchain_core.runnables.base.RunnableMap Im trying use this and i want to know is there any way that i can give different input for each chain ### Suggestion: _No response_
Runnablemap different input for each chain
https://api.github.com/repos/langchain-ai/langchain/issues/14098/comments
6
2023-12-01T01:09:07Z
2024-04-12T13:52:30Z
https://github.com/langchain-ai/langchain/issues/14098
2,019,840,343
14,098
[ "hwchase17", "langchain" ]
### System Info langchain 0.0.343 langchain-core 0.0.7 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` retriever = AzureCognitiveSearchRetriever(content_key="content", top_k=5) llm = AzureChatOpenAI( openai_api_version="2023-05-15", azure_deployment="larger-chat-35", ) template = """ I want you to act as a research assistant. you will answer questions about the context. Context: {context} Question: {question}? """ prompt = PromptTemplate( input_variables=["question", "context"], template=template, ) compressor = LLMChainExtractor.from_llm(llm) compression_retriever = ContextualCompressionRetriever(base_compressors=compressor, base_retriever=retriever) ``` ### Expected behavior I'd expect the compression_retriever to be instantiated. But instead I receive the following error: ``` pydantic.v1.error_wrappers.ValidationError: 1 validation error for ContextualCompressionRetriever base_compressor field required (type=value_error.missing) ```
Pydantic error field required (type=value_error.missing) in LLMChainExtractor or ContextualCompressionRetriever
https://api.github.com/repos/langchain-ai/langchain/issues/14088/comments
3
2023-11-30T20:53:24Z
2023-11-30T22:24:23Z
https://github.com/langchain-ai/langchain/issues/14088
2,019,492,749
14,088
[ "hwchase17", "langchain" ]
### Feature request The `invoke()` method for RunnableWithFallbacks is only raising the first_error caught in the runnables. I would like to have an option to choose whether to raise the first error or last error. Can this be a parameter for `invoke()`? ### Motivation When using fallbacks, the first error could be related to the first Runnable. However, the error I'm actually interested to handle is the last error from the end of my fallbacks. The last error is the most downstream error from my chains, and it's the error I want to handle in my app business logic. ### Your contribution N/A
RunnableWithFallbacks should have a parameter to choose whether to raise first error or last error
https://api.github.com/repos/langchain-ai/langchain/issues/14085/comments
1
2023-11-30T20:12:47Z
2024-03-16T16:08:31Z
https://github.com/langchain-ai/langchain/issues/14085
2,019,431,096
14,085
[ "hwchase17", "langchain" ]
### System Info langchain== 0.0.340 pydantic==2.4.2 pydantic_core==2.10.1 ### Who can help? @hwchase17 @eyur ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.schema import BaseOutputParser from pydantic import PrivateAttr class MyParser(BaseOutputParser[list[int]]): _list: list[int] = PrivateAttr(default_factory=list) def parse(self, text: str) -> list[int]: return self._list parser = MyParser() assert parser.parse("test") == [] ``` ### Expected behavior I expect `PrivateAttr` to still work within `BaseOutputParser`.
`BaseOutputParser` breaks pydantic `PrivateAttr`
https://api.github.com/repos/langchain-ai/langchain/issues/14084/comments
4
2023-11-30T19:56:09Z
2023-12-02T18:33:06Z
https://github.com/langchain-ai/langchain/issues/14084
2,019,400,383
14,084
[ "hwchase17", "langchain" ]
### System Info in AWS langchain Bedrock, how do I set temperature? ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Tried putting it as a parameter of Bedrock and gave error that such parameter does not exist. Then put is as paramenters of kwargs and it had no effect ### Expected behavior Expected this to be a direct parameter of Bedrock, but it seems that it is not
in AWS langchain Bedrock, how do I set temperature?
https://api.github.com/repos/langchain-ai/langchain/issues/14083/comments
19
2023-11-30T19:51:15Z
2024-05-23T10:16:06Z
https://github.com/langchain-ai/langchain/issues/14083
2,019,393,730
14,083
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. I am using ConversationalRetrievalChain. I have created two vector stores and I want the query from ConversationalRetrievalChain to be compared against both vector stores and results from both vector stores to be used to create the final answer. So I have decided to create two retrievers retriever1 = vectorstore1.as_retriever() retriever2 = vectorstore2.as_retriever() How can I now override the Retriever class so that when the query is compared against my custom_retriever, it is compared against documents from both retrievers, and documents from both retrievers are used to create the prompt. Note: i don't want to merge the vectorstores because that messes up the similarity search. ### Suggestion: _No response_
Combine langchain retrievers
https://api.github.com/repos/langchain-ai/langchain/issues/14082/comments
9
2023-11-30T19:39:09Z
2024-03-18T16:07:04Z
https://github.com/langchain-ai/langchain/issues/14082
2,019,376,935
14,082
[ "hwchase17", "langchain" ]
### System Info Mac OS ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [X] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction When I am using Agent, random seed doesn't work. model_kwargs = { "seed": 2139 } llm_agent = ChatOpenAI(temperature=0, openai_api_key='sk-', model_name='gpt-4-1106-preview', model_kwargs=model_kwargs) llm_cypher = ChatOpenAI(temperature=0, openai_api_key='sk-', model_name='gpt-4-1106-preview', model_kwargs=model_kwargs) llm_graph = ChatOpenAI(temperature=0, openai_api_key='sk-', model_name='gpt-4-1106-preview', model_kwargs=model_kwargs) tools = [ Tool( name="GraphDB Search tool", func=chain, description=tool_description ) ] chain = CustomGraphCypherQAChain.from_llm( top_k=100, llm=llm_graph, return_direct=True, # this return the observation from cypher query directly without rethinking over observation return_intermediate_steps=True, # this is only returned when it's call by chain() not by chain.run() cypher_llm=llm_cypher, graph=graph, verbose=True, cypher_prompt=CYPHER_GENERATION_PROMPT ) def init_agent(): agent = initialize_agent( tools, llm_agent, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True, handle_errors=True, handle_parsing_errors=True, return_intermediate_steps=True, max_iterations=10, ) return agent this agent don't reproduce for same input ### Expected behavior I expect Agent keep resulting in same answer for the same input prompt
Random Seed when using LLM Agent
https://api.github.com/repos/langchain-ai/langchain/issues/14080/comments
1
2023-11-30T18:56:50Z
2024-03-17T16:07:12Z
https://github.com/langchain-ai/langchain/issues/14080
2,019,317,039
14,080
[ "hwchase17", "langchain" ]
### Feature request Support for Perplexity's new [PPLX models](https://blog.perplexity.ai/blog/introducing-pplx-online-llms). ### Motivation Boosting online LLM support, particularly for Perplexity-based models, would be highly impactful and useful. ### Your contribution Currently working on a PR!
Support for Perplexity's PPLX models: `pplx-7b-online` and `pplx-70b-online`
https://api.github.com/repos/langchain-ai/langchain/issues/14079/comments
2
2023-11-30T18:41:11Z
2024-05-01T16:05:38Z
https://github.com/langchain-ai/langchain/issues/14079
2,019,294,151
14,079
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. Hello everyone, We are having request timeout on our calls and they are being getting retries after failing but we want to see how many times doing these retries and all their logs. When the requests are timing out, nothing has been sending callbackhandler and we want to see how many retries had been done under the ChatOpenAI LLM model. ### Suggestion: _No response_
MyCallbackHandler can't show logs explicitly
https://api.github.com/repos/langchain-ai/langchain/issues/14077/comments
1
2023-11-30T18:20:20Z
2024-03-16T16:08:11Z
https://github.com/langchain-ai/langchain/issues/14077
2,019,257,671
14,077
[ "hwchase17", "langchain" ]
### System Info Regardless of the text length, the QAGenerationChain consistently generates only one question. ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.chains import QAGenerationChain from langchain.llms import OpenAI # Initialize the language model lm = OpenAI() # Create the QA Generator Chain qa_chain = QAGenerationChain.from_llm(llm=lm) qa_chain.k = 4 # Example usage context = """ Introduction LangChain is a framework for developing applications powered by language models. It enables applications that: Are context-aware: connect a language model to sources of context (prompt instructions, few shot examples, content to ground its response in, etc.) Reason: rely on a language model to reason (about how to answer based on provided context, what actions to take, etc.) This framework consists of several parts. LangChain Libraries: The Python and JavaScript libraries. Contains interfaces and integrations for a myriad of components, a basic run time for combining these components into chains and agents, and off-the-shelf implementations of chains and agents. LangChain Templates: A collection of easily deployable reference architectures for a wide variety of tasks. LangServe: A library for deploying LangChain chains as a REST API. LangSmith: A developer platform that lets you debug, test, evaluate, and monitor chains built on any LLM framework and seamlessly integrates with LangChain. LangChain Diagram Together, these products simplify the entire application lifecycle: Develop: Write your applications in LangChain/LangChain.js. Hit the ground running using Templates for reference. Productionize: Use LangSmith to inspect, test and monitor your chains, so that you can constantly improve and deploy with confidence. Deploy: Turn any chain into an API with LangServe. LangChain Libraries The main value props of the LangChain packages are: Components: composable tools and integrations for working with language models. Components are modular and easy-to-use, whether you are using the rest of the LangChain framework or not Off-the-shelf chains: built-in assemblages of components for accomplishing higher-level tasks Off-the-shelf chains make it easy to get started. Components make it easy to customize existing chains and build new ones. Get started Here’s how to install LangChain, set up your environment, and start building. We recommend following our Quickstart guide to familiarize yourself with the framework by building your first LangChain application. Read up on our Security best practices to make sure you're developing safely with LangChain. NOTE These docs focus on the Python LangChain library. Head here for docs on the JavaScript LangChain library. LangChain Expression Language (LCEL) LCEL is a declarative way to compose chains. LCEL was designed from day 1 to support putting prototypes in production, with no code changes, from the simplest “prompt + LLM” chain to the most complex chains. Overview: LCEL and its benefits Interface: The standard interface for LCEL objects How-to: Key features of LCEL Cookbook: Example code for accomplishing common tasks Modules LangChain provides standard, extendable interfaces and integrations for the following modules: Model I/O Interface with language models Retrieval Interface with application-specific data Agents Let models choose which tools to use given high-level directives Examples, ecosystem, and resources Use cases Walkthroughs and techniques for common end-to-end use cases, like: Document question answering Chatbots Analyzing structured data and much more... Integrations LangChain is part of a rich ecosystem of tools that integrate with our framework and build on top of it. Check out our growing list of integrations. Guides Best practices for developing with LangChain. API reference Head to the reference section for full documentation of all classes and methods in the LangChain and LangChain Experimental Python packages. Developer's guide Check out the developer's guide for guidelines on contributing and help getting your dev environment set up. Community Head to the Community navigator to find places to ask questions, share feedback, meet other developers, and dream about the future of LLM’s. """ questions = qa_chain.run(context) print(questions) ``` output ``` [{'question': 'What are the main value props of the LangChain packages?', 'answer': 'The main value props of the LangChain packages are composable tools and integrations for working with language models, off-the-shelf chains for accomplishing higher-level tasks, and the ability to easily deploy chains as a REST API.'}] ``` ### Expected behavior I expect to specify the number of responses by setting the 'k' value.
Regardless of the text length, the QAGenerationChain consistently generates only one question.
https://api.github.com/repos/langchain-ai/langchain/issues/14074/comments
1
2023-11-30T17:21:42Z
2024-03-16T16:08:06Z
https://github.com/langchain-ai/langchain/issues/14074
2,019,146,581
14,074
[ "hwchase17", "langchain" ]
### System Info LangChain Version: 0.0.339 ChromaDB 0.4.18 sentence-transformers 2.2.1 Python 3.12.0 ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [X] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Create a requirements file with these entries: langchain chromadb sentence-transformers Run pip install -r requirements.txt ### Expected behavior I expect the install to complete correctly.
Dependency Issues with sentence-transformers and chromadb
https://api.github.com/repos/langchain-ai/langchain/issues/14073/comments
1
2023-11-30T15:52:09Z
2024-03-16T16:08:01Z
https://github.com/langchain-ai/langchain/issues/14073
2,018,961,211
14,073
[ "hwchase17", "langchain" ]
### System Info Python 3.11.5 langchain 0.0.343 langchain-core 0.0.7 sqlalchemy 2.0.21 ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` # make a little database import sqlite3 con = sqlite3.connect("test.db") cur = con.cursor() cur.execute("DROP TABLE IF EXISTS test_table") cur.execute("CREATE TABLE test_table(a, b, c, d)") cur.execute("INSERT INTO test_table VALUES (1,2,3,4)") cur.execute("INSERT INTO test_table VALUES (4,5,6,7)") cur.execute("INSERT INTO test_table VALUES (8,9,10,11)") con.commit() # then... from langchain.sql_database import SQLDatabase db = SQLDatabase.from_uri("sqlite:///test.db", include_tables=["test_table"], sample_rows_in_table_info=2) print(db.table_info) --------------------------------------------------------------------------- OperationalError Traceback (most recent call last) File ~/miniconda3/envs/forScience/lib/python3.11/site-packages/sqlalchemy/engine/base.py:1965, in Connection._exec_single_context(self, dialect, context, statement, parameters) 1964 if not evt_handled: -> 1965 self.dialect.do_execute( 1966 cursor, str_statement, effective_parameters, context 1967 ) 1969 if self._has_events or self.engine._has_events: File ~/miniconda3/envs/forScience/lib/python3.11/site-packages/sqlalchemy/engine/default.py:921, in DefaultDialect.do_execute(self, cursor, statement, parameters, context) 920 def do_execute(self, cursor, statement, parameters, context=None): --> 921 cursor.execute(statement, parameters) OperationalError: near "FROM": syntax error The above exception was the direct cause of the following exception: OperationalError Traceback (most recent call last) Cell In[23], line 3 1 from langchain.sql_database import SQLDatabase 2 db = SQLDatabase.from_uri("sqlite:///test.db", include_tables=["test_table"], sample_rows_in_table_info=2) ----> 3 print(db.table_info) File ~/miniconda3/envs/forScience/lib/python3.11/site-packages/langchain/utilities/sql_database.py:286, in SQLDatabase.table_info(self) 283 @property 284 def table_info(self) -> str: 285 """Information about all tables in the database.""" --> 286 return self.get_table_info() File ~/miniconda3/envs/forScience/lib/python3.11/site-packages/langchain/utilities/sql_database.py:334, in SQLDatabase.get_table_info(self, table_names) 332 table_info += f"\n{self._get_table_indexes(table)}\n" 333 if self._sample_rows_in_table_info: --> 334 table_info += f"\n{self._get_sample_rows(table)}\n" 335 if has_extra_info: 336 table_info += "*/" File ~/miniconda3/envs/forScience/lib/python3.11/site-packages/langchain/utilities/sql_database.py:357, in SQLDatabase._get_sample_rows(self, table) 354 try: 355 # get the sample rows 356 with self._engine.connect() as connection: --> 357 sample_rows_result = connection.execute(command) # type: ignore 358 # shorten values in the sample rows 359 sample_rows = list( 360 map(lambda ls: [str(i)[:100] for i in ls], sample_rows_result) 361 ) File ~/miniconda3/envs/forScience/lib/python3.11/site-packages/sqlalchemy/engine/base.py:1412, in Connection.execute(self, statement, parameters, execution_options) 1410 raise exc.ObjectNotExecutableError(statement) from err 1411 else: -> 1412 return meth( 1413 self, 1414 distilled_parameters, 1415 execution_options or NO_OPTIONS, 1416 ) File ~/miniconda3/envs/forScience/lib/python3.11/site-packages/sqlalchemy/sql/elements.py:516, in ClauseElement._execute_on_connection(self, connection, distilled_params, execution_options) 514 if TYPE_CHECKING: 515 assert isinstance(self, Executable) --> 516 return connection._execute_clauseelement( 517 self, distilled_params, execution_options 518 ) 519 else: 520 raise exc.ObjectNotExecutableError(self) File ~/miniconda3/envs/forScience/lib/python3.11/site-packages/sqlalchemy/engine/base.py:1635, in Connection._execute_clauseelement(self, elem, distilled_parameters, execution_options) 1623 compiled_cache: Optional[CompiledCacheType] = execution_options.get( 1624 "compiled_cache", self.engine._compiled_cache 1625 ) 1627 compiled_sql, extracted_params, cache_hit = elem._compile_w_cache( 1628 dialect=dialect, 1629 compiled_cache=compiled_cache, (...) 1633 linting=self.dialect.compiler_linting | compiler.WARN_LINTING, 1634 ) -> 1635 ret = self._execute_context( 1636 dialect, 1637 dialect.execution_ctx_cls._init_compiled, 1638 compiled_sql, 1639 distilled_parameters, 1640 execution_options, 1641 compiled_sql, 1642 distilled_parameters, 1643 elem, 1644 extracted_params, 1645 cache_hit=cache_hit, 1646 ) 1647 if has_events: 1648 self.dispatch.after_execute( 1649 self, 1650 elem, (...) 1654 ret, 1655 ) File ~/miniconda3/envs/forScience/lib/python3.11/site-packages/sqlalchemy/engine/base.py:1844, in Connection._execute_context(self, dialect, constructor, statement, parameters, execution_options, *args, **kw) 1839 return self._exec_insertmany_context( 1840 dialect, 1841 context, 1842 ) 1843 else: -> 1844 return self._exec_single_context( 1845 dialect, context, statement, parameters 1846 ) File ~/miniconda3/envs/forScience/lib/python3.11/site-packages/sqlalchemy/engine/base.py:1984, in Connection._exec_single_context(self, dialect, context, statement, parameters) 1981 result = context._setup_result_proxy() 1983 except BaseException as e: -> 1984 self._handle_dbapi_exception( 1985 e, str_statement, effective_parameters, cursor, context 1986 ) 1988 return result File ~/miniconda3/envs/forScience/lib/python3.11/site-packages/sqlalchemy/engine/base.py:2339, in Connection._handle_dbapi_exception(self, e, statement, parameters, cursor, context, is_sub_exec) 2337 elif should_wrap: 2338 assert sqlalchemy_exception is not None -> 2339 raise sqlalchemy_exception.with_traceback(exc_info[2]) from e 2340 else: 2341 assert exc_info[1] is not None File ~/miniconda3/envs/forScience/lib/python3.11/site-packages/sqlalchemy/engine/base.py:1965, in Connection._exec_single_context(self, dialect, context, statement, parameters) 1963 break 1964 if not evt_handled: -> 1965 self.dialect.do_execute( 1966 cursor, str_statement, effective_parameters, context 1967 ) 1969 if self._has_events or self.engine._has_events: 1970 self.dispatch.after_cursor_execute( 1971 self, 1972 cursor, (...) 1976 context.executemany, 1977 ) File ~/miniconda3/envs/forScience/lib/python3.11/site-packages/sqlalchemy/engine/default.py:921, in DefaultDialect.do_execute(self, cursor, statement, parameters, context) 920 def do_execute(self, cursor, statement, parameters, context=None): --> 921 cursor.execute(statement, parameters) OperationalError: (sqlite3.OperationalError) near "FROM": syntax error [SQL: SELECT FROM test_table LIMIT ? OFFSET ?] [parameters: (2, 0)] (Background on this error at: https://sqlalche.me/e/20/e3q8) ``` ### Expected behavior From https://python.langchain.com/docs/use_cases/qa_structured/sql I expect: ``` CREATE TABLE "test_table" ( "a" INTEGER, "b" INTEGER, "c" INTEGER, "d" INTEGER ) /* 2 rows from test_table table: a b c d 1 2 3 4 5 6 7 8 */ ```
SQLDatabase.get_table_info is not returning useful information
https://api.github.com/repos/langchain-ai/langchain/issues/14071/comments
5
2023-11-30T15:03:55Z
2023-12-03T10:30:35Z
https://github.com/langchain-ai/langchain/issues/14071
2,018,865,714
14,071
[ "hwchase17", "langchain" ]
### System Info When I use below snippet of code ``` import os from azure.identity import DefaultAzureCredential from azure.identity import get_bearer_token_provider from langchain.llms import AzureOpenAI from langchain.chat_models import AzureChatOpenAI credential = DefaultAzureCredential(interactive_browser_tenant_id=tenant_id, interactive_browser_client_id=client_id, client_secret=client_secret) token_provider = get_bearer_token_provider(credential, "https://cognitiveservices.azure.com/.default") endpoint = "https://xxxx.openai.azure.com" client = AzureOpenAI( azure_endpoint=endpoint, api_version="2023-05-15", azure_deployment="example-gpt-4", azure_ad_token_provider=token_provider) ``` I get error : ```--------------------------------------------------------------------------- KeyError Traceback (most recent call last) Cell In[36], line 21 18 # api_version = "2023-05-15" 19 endpoint = "https://xxxx.openai.azure.com" ---> 21 client = AzureOpenAI( 22 azure_endpoint=endpoint, 23 api_version="2023-05-15", 24 azure_deployment="example-gpt-4", 25 azure_ad_token_provider=token_provider, 26 ) File ~/PycharmProjects/aicc/env/lib/python3.9/site-packages/langchain_core/load/serializable.py:97, in Serializable.__init__(self, **kwargs) 96 def __init__(self, **kwargs: Any) -> None: ---> 97 super().__init__(**kwargs) 98 self._lc_kwargs = kwargs File ~/PycharmProjects/aicc/env/lib/python3.9/site-packages/pydantic/v1/main.py:339, in BaseModel.__init__(__pydantic_self__, **data) 333 """ 334 Create a new model by parsing and validating input data from keyword arguments. 335 336 Raises ValidationError if the input data cannot be parsed to form a valid model. 337 """ 338 # Uses something other than `self` the first arg to allow "self" as a settable attribute --> 339 values, fields_set, validation_error = validate_model(__pydantic_self__.__class__, data) 340 if validation_error: 341 raise validation_error File ~/PycharmProjects/aicc/env/lib/python3.9/site-packages/pydantic/v1/main.py:1102, in validate_model(model, input_data, cls) 1100 continue 1101 try: -> 1102 values = validator(cls_, values) 1103 except (ValueError, TypeError, AssertionError) as exc: 1104 errors.append(ErrorWrapper(exc, loc=ROOT_KEY)) File ~/PycharmProjects/aicc/env/lib/python3.9/site-packages/langchain/llms/openai.py:887, in AzureOpenAI.validate_environment(cls, values) 877 values["openai_api_base"] += ( 878 "/deployments/" + values["deployment_name"] 879 ) 880 values["deployment_name"] = None 881 client_params = { 882 "api_version": values["openai_api_version"], 883 "azure_endpoint": values["azure_endpoint"], 884 "azure_deployment": values["deployment_name"], 885 "api_key": values["openai_api_key"], 886 "azure_ad_token": values["azure_ad_token"], --> 887 "azure_ad_token_provider": values["azure_ad_token_provider"], 888 "organization": values["openai_organization"], 889 "base_url": values["openai_api_base"], 890 "timeout": values["request_timeout"], 891 "max_retries": values["max_retries"], 892 "default_headers": values["default_headers"], 893 "default_query": values["default_query"], 894 "http_client": values["http_client"], 895 } 896 values["client"] = openai.AzureOpenAI(**client_params).completions 897 values["async_client"] = openai.AsyncAzureOpenAI( 898 **client_params 899 ).completions KeyError: 'azure_ad_token_provider' ``` Ive also tried AzureChatOpenAI , and I get the same error back. The error is not reproduced when I use openai library AzureOpenAI . Also on openai the azure_ad_token_provider has type azure_ad_token_provider: 'AzureADTokenProvider | None' = None while in langchain it has type azure_ad_token_provider: Optional[str] = None which also makes me wonder if it would take as input a different type than string to work with. any ideas on how to fix this? Im actually using Azure Service principal authentication, and if I use as alternative field azure_ad_token = credential.get_token(“https://cognitiveservices.azure.com/.default”).token I get token expired after 60min which does not happen with a bearer token, so It is important to me to make the token_provider work. libraries : pydantic 1.10.12 pydantic_core 2.10.1 openai 1.2.0 langchain 0.0.342 langchain-core 0.0.7 ### Who can help? @hwchase17 @agola11 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction import os from azure.identity import DefaultAzureCredential from azure.identity import get_bearer_token_provider from langchain.llms import AzureOpenAI from langchain.chat_models import AzureChatOpenAI credential = DefaultAzureCredential(interactive_browser_tenant_id=tenant_id, interactive_browser_client_id=client_id, client_secret=client_secret) token_provider = get_bearer_token_provider(credential, "https://cognitiveservices.azure.com/.default") endpoint = "https://xxxx.openai.azure.com" client = AzureOpenAI( azure_endpoint=endpoint, api_version="2023-05-15", azure_deployment="example-gpt-4", azure_ad_token_provider=token_provider) ### Expected behavior client = AzureOpenAI( azure_endpoint=endpoint, api_version="2023-05-15", azure_deployment="example-gpt-4", azure_ad_token_provider=token_provider) should return a Runnable instance which I can use for LLMChain
AzureOpenAI azure_ad_token_provider Keyerror
https://api.github.com/repos/langchain-ai/langchain/issues/14069/comments
6
2023-11-30T13:39:55Z
2023-12-05T23:54:12Z
https://github.com/langchain-ai/langchain/issues/14069
2,018,694,209
14,069
[ "hwchase17", "langchain" ]
### Issue with current documentation: At end of [summarization documentation](https://python.langchain.com/docs/use_cases/summarization) the output is shown with a ValueError. Line that fail: ```python summarize_document_chain.run(docs[0]) ``` ### Idea or request for content: Looks like the docs[0] object is not what excepected.
DOC: Summarization output broken
https://api.github.com/repos/langchain-ai/langchain/issues/14066/comments
0
2023-11-30T11:35:27Z
2024-03-18T16:06:59Z
https://github.com/langchain-ai/langchain/issues/14066
2,018,460,541
14,066
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. When using `langchain.chat_models` such as `ChatAnthropic` and `ChatOpenAI`, I am seeing a bunch of HTTP logs that look like the following: `2023-11-30 16:43:09 httpx INFO: HTTP Request: POST https://api.anthropic.com/v1/complete "HTTP[/1.1] 200 OK"` Any suggestions on how to disable them? ### Suggestion: _No response_
Disable HTTP Request logging in Langchain
https://api.github.com/repos/langchain-ai/langchain/issues/14065/comments
3
2023-11-30T11:22:43Z
2024-07-26T11:15:51Z
https://github.com/langchain-ai/langchain/issues/14065
2,018,435,817
14,065
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. I've created a custom tool to query the equity daily quote, I would like to have two parameters in the tool function: stock_name and trade_date, and I would expect LLM Agent will automatically decide how many days quotes or which day's quote it should retrieve. ``` class SearchSchema(BaseModel): stock_name: str = Field(description="should be the name of the equity.") trade_date: str = Field(description="should be the trading date of the equity.") class DailyQuoteSearch(BaseTool): name = "equity daily quote search" description = "useful for equity daily quote retrieval" return_direct = False args_schema: Type[SearchSchema] = SearchSchema def _run(self, stock_name: str, trade_date: str) -> str: output = self.query_equity_daily_quote(stock_name, trade_date) return output ``` However, LLM doesn't seem to know how to pass in the trade date? Is it possible to have LLM think about the what trade_date should be passed? or I expect too much on agent intelligence? ``` pydantic_core._pydantic_core.ValidationError: 1 validation error for SearchSchema trade_date Field required [type=missing, input_value={'stock_name': 'xxxx'}, input_type=dict] ``` ### Suggestion: _No response_
How to have agent decide what param should be pass into a tool?
https://api.github.com/repos/langchain-ai/langchain/issues/14064/comments
2
2023-11-30T10:31:15Z
2024-03-17T16:06:57Z
https://github.com/langchain-ai/langchain/issues/14064
2,018,340,971
14,064
[ "hwchase17", "langchain" ]
### System Info I am using gpt-4 deployed on AzureOpenAI. I want to get the model used. From openai, I will get the model we used. But when I tried with langchain I got an older model. Basically, I am integrating with other services. So it is essential to get the model name intact for the cost calculations. What could be the issue with the langcahin? It works great with openai chat completion. ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [X] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Steps to reproduce: ``` import os from openai import AzureOpenAI client = AzureOpenAI( azure_endpoint = "{}", api_key="{}", api_version="{}", azure_deployment="gpt4", ) response = client.chat.completions.create( model="gpt4", messages=[{"role": "user", "content": "tell me a joke"}] ) response.model ``` > 'gpt-4' ``` from langchain.schema import HumanMessage from langchain.chat_models.azure_openai import AzureChatOpenAI llm = AzureChatOpenAI( azure_endpoint = "{}", openai_api_key="{}", openai_api_version="{}", azure_deployment="gpt4", model_version="0613", temperature=0 ) response = llm.generate(messages=[[HumanMessage(content="tell me a joke")]]) response.llm_output["model_name"] ``` > 'gpt-3.5-turbo' ``` from langchain.chains import LLMChain from langchain.prompts import PromptTemplate prompt = PromptTemplate( input_variables=["joke"], template="Tell me a {joke}?", ) chain = LLMChain(llm=llm, prompt=prompt) response = chain.generate([{"joke":"joke"}]) response.llm_output["model_name"] ``` > 'gpt-3.5-turbo' ### Expected behavior From all we should be getting gpt-4 as I have deployed only got-4 on azure openai
Azure OpenAI, gpt-4 model returns gpt-35-turbo
https://api.github.com/repos/langchain-ai/langchain/issues/14062/comments
3
2023-11-30T09:38:58Z
2023-12-01T07:08:48Z
https://github.com/langchain-ai/langchain/issues/14062
2,018,246,092
14,062
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. I want to customize a LLM (a GPT-3.5-turbo) for chatting but don't proceed with chatting until the user provides his name and his phone number and validates the count of his phone number. Please help me I tried many methods but without any significant result ### Suggestion: _No response_
Don't proceed with chatting until the user provides his name and phone number
https://api.github.com/repos/langchain-ai/langchain/issues/14057/comments
5
2023-11-30T03:53:16Z
2023-12-10T16:35:42Z
https://github.com/langchain-ai/langchain/issues/14057
2,017,823,760
14,057
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. Do you have a new url? https://python.langchain.com/docs/modules/chains/popular/ thank you ### Suggestion: _No response_
Issue: I can't visit the page of popular chains
https://api.github.com/repos/langchain-ai/langchain/issues/14054/comments
1
2023-11-30T02:16:12Z
2024-03-17T16:06:51Z
https://github.com/langchain-ai/langchain/issues/14054
2,017,743,973
14,054
[ "hwchase17", "langchain" ]
### System Info Python 3.11 running locally in PyCharm. ### Who can help? @hwchase17 @agola11 ### Information - [x] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [X] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` def research_tool(input, thread_id=None): # Initialize Tavily Search search = TavilySearchAPIWrapper() tavily_tool = TavilySearchResults(api_wrapper=search) salesforce_history_tool = create_pinecone_tool() # Initialize PlayWright Web Browser sync_browser = create_sync_playwright_browser() toolkit = PlayWrightBrowserToolkit.from_browser(sync_browser=sync_browser) # Initialize the Toolkit tools = toolkit.get_tools() tools.append(tavily_tool) # Add Tavily Search to the Toolkit tools.append(salesforce_history_tool) # Add Salesforce History to the Toolkit tools.extend(sf_tools) # Add Salesforce Tools to the Toolkit agent = OpenAIAssistantRunnable.create_assistant( name="Research Assistant", instructions="You are a personal research assistant on company information", tools=tools, model="gpt-4-1106-preview", as_agent=True, ) agent_executor = AgentExecutor(agent=agent, tools=tools) if thread_id: result = agent_executor.invoke({"content": input, "thread_id": thread_id}) else: result = agent_executor.invoke({"content": input}) output = result['output'] thread_id = result['thread_id'] return output, thread_id ``` ### Expected behavior I am looking to have my agent run using the Assistants API. Instead, I receive the following error: ``` [chain/start] [1:chain:AgentExecutor > 4:chain:OpenAIAssistantRunnable] Entering Chain run with input: [inputs] [chain/error] [1:chain:AgentExecutor > 4:chain:OpenAIAssistantRunnable] [315ms] Chain run errored with error: "BadRequestError(\"Error code: 400 - {'error': {'message': '1 validation error for Request\\\\nbody -> tool_outputs -> 0 -> output\\\\n str type expected (type=type_error.str)', 'type': 'invalid_request_error', 'param': None, 'code': None}}\")" ```
OpenAIAssistantRunnable input validation error
https://api.github.com/repos/langchain-ai/langchain/issues/14050/comments
2
2023-11-30T01:00:23Z
2024-04-05T16:06:49Z
https://github.com/langchain-ai/langchain/issues/14050
2,017,681,132
14,050
[ "hwchase17", "langchain" ]
### System Info Python 3.10, mac OS ### Who can help? @agola11 @hwchase17 ### Information - [X] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction With this script ``` from langchain.chains import RefineDocumentsChain, LLMChain from langchain.llms import OpenAI from langchain.prompts import PromptTemplate document_prompt = PromptTemplate.from_template("{page_content}") document_variable_name = "context" llm = OpenAI() # The prompt here should take as an input variable the # `document_variable_name` prompt = PromptTemplate.from_template( "Summarize this content: {context}" ) initial_llm_chain = LLMChain(llm=llm, prompt=prompt) initial_response_name = "prev_response" # The prompt here should take as an input variable the # `document_variable_name` as well as `initial_response_name` prompt_refine = PromptTemplate.from_template( "Here's your first summary: {prev_response}. " "Now add to it based on the following context: {context}" ) refine_llm_chain = LLMChain(llm=llm, prompt=prompt_refine) chain = RefineDocumentsChain( initial_llm_chain=initial_llm_chain, refine_llm_chain=refine_llm_chain, document_prompt=document_prompt, document_variable_name=document_variable_name, initial_response_name=initial_response_name, ) from langchain.schema import Document text = """Nuclear power in space is the use of nuclear power in outer space, typically either small fission systems or radioactive decay for electricity or heat. Another use is for scientific observation, as in a Mössbauer spectrometer. The most common type is a radioisotope thermoelectric generator, which has been used on many space probes and on crewed lunar missions. Small fission reactors for Earth observation satellites, such as the TOPAZ nuclear reactor, have also been flown.[1] A radioisotope heater unit is powered by radioactive decay and can keep components from becoming too cold to function, potentially over a span of decades.[2] The United States tested the SNAP-10A nuclear reactor in space for 43 days in 1965,[3] with the next test of a nuclear reactor power system intended for space use occurring on 13 September 2012 with the Demonstration Using Flattop Fission (DUFF) test of the Kilopower reactor.[4] After a ground-based test of the experimental 1965 Romashka reactor, which used uranium and direct thermoelectric conversion to electricity,[5] the USSR sent about 40 nuclear-electric satellites into space, mostly powered by the BES-5 reactor. The more powerful TOPAZ-II reactor produced 10 kilowatts of electricity.[3] Examples of concepts that use nuclear power for space propulsion systems include the nuclear electric rocket (nuclear powered ion thruster(s)), the radioisotope rocket, and radioisotope electric propulsion (REP).[6] One of the more explored concepts is the nuclear thermal rocket, which was ground tested in the NERVA program. Nuclear pulse propulsion was the subject of Project Orion.[7] """ docs = [ Document( page_content=split, metadata={"source": "https://en.wikipedia.org/wiki/Nuclear_power_in_space"}, ) for split in text.split("\n\n") ] ``` When I attach a callback that prints the [inputs](https://github.com/langchain-ai/langchain/blob/00a6e8962cc778cd8f6268cefc304465598c02cf/libs/core/langchain_core/callbacks/base.py#L197) in `on_chain_start`, even if every sub-chain only uses one Document, the `inputs` is always the full Document list. ### Expected behavior I expect the `inputs` in `on_chain_start` only includes the inputs that are used by this chain, not always the full list, otherwise it's totally meaningless to duplicate the same inputs many times.
Callback.on_chain_start has wrong "inputs" in RefineDocumentsChain
https://api.github.com/repos/langchain-ai/langchain/issues/14048/comments
1
2023-11-29T23:49:27Z
2023-11-30T19:01:31Z
https://github.com/langchain-ai/langchain/issues/14048
2,017,623,699
14,048
[ "hwchase17", "langchain" ]
### Issue with current documentation: The current [section on Amazon OpenSearch Serverless][1] (AOSS) vector store uses the `AWS4Auth` class to authenticate to AOSS, yet the official [OpenSearch documentation][2] suggests using the `AWS4SignerAuth` class instead. Further, the notebook lacks information on where to import the `AWS4Auth` class from and how to configure it with different AWS credentials (static access key/secret key, temporary credentials, etc.). It also lacks references on how to configure access policies (IAM, AOSS data access policies, etc.) [1]: https://github.com/langchain-ai/langchain/blob/master/docs/docs/integrations/vectorstores/opensearch.ipynb [2]: https://opensearch.org/docs/latest/clients/python-low-level/#connecting-to-amazon-opensearch-serverless ### Idea or request for content: Add installation instructions for the [requests_aws4auth][1] package and links to its [Github repo][2] in order to showcase configuration with different AWS credentials. Additionally reference [AWS documentation for AOSS][3] in order to get started [setting up permissions][4] [1]: https://pypi.org/project/requests-aws4auth/ [2]: https://github.com/tedder/requests-aws4auth#basic-usage [3]: https://docs.aws.amazon.com/opensearch-service/latest/developerguide/serverless-getting-started.html [4]: https://docs.aws.amazon.com/opensearch-service/latest/developerguide/serverless-data-access.html
DOC: Expand documentation on how to authenticate and connect to Amazon OpenSearch Serverless
https://api.github.com/repos/langchain-ai/langchain/issues/14042/comments
2
2023-11-29T20:15:29Z
2024-05-01T16:05:33Z
https://github.com/langchain-ai/langchain/issues/14042
2,017,348,030
14,042
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. I only see `metadata` as parameter for few callback handler methods, but I would like to have access to metadata in other methods such as `on_chain_error()` and `on_llm_error()`. Currently, I can only see the `tags` in these methods. I have error handling in my callback handler using `on_chain_error()` and I'd like to add information in my metadata dictionary to my exceptions (such as LLM name, model, things related to my chain, etc...). I can put a list of tags, but I'd much prefer to use a dictionary to get certain keys and have my exceptions instantiated properly. ### Suggestion: Please make both tags and metadata available for all callback handler methods.
Missing metadata in some callback handler methods
https://api.github.com/repos/langchain-ai/langchain/issues/14041/comments
2
2023-11-29T20:08:28Z
2024-03-13T21:58:22Z
https://github.com/langchain-ai/langchain/issues/14041
2,017,338,609
14,041
[ "hwchase17", "langchain" ]
### Feature request I notice the other functions, such as add_texts and add_embeddings allow you to pass a unique list of IDs that can get paired with your embedding. There is no such parameter for the add_documents function. This means when you delete a document and add an updated version of it using add_documents, its unique ID won't be added to the vector store. ### Motivation Inability to add unique ID to document after calling the add_documents function from FAISS ### Your contribution Not sure as far as I know. If I can, let me know what you need from me.
Add Optional Parameter for Unique IDs in FAISS.add_documents Function
https://api.github.com/repos/langchain-ai/langchain/issues/14038/comments
1
2023-11-29T18:48:20Z
2024-03-13T21:58:17Z
https://github.com/langchain-ai/langchain/issues/14038
2,017,209,201
14,038
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. Would be great to add the support for Azure GPT latest models in the get_openai_callback() --> https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/callbacks/openai_info.py https://github.com/langchain-ai/langchain/issues/12994 ### Suggestion: Please add the Azure GPT models (latest) https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/callbacks/openai_info.py
Issue: support for Azure Open AI latest GPT models like, GPT 4 turpo in the get_openai_callback()
https://api.github.com/repos/langchain-ai/langchain/issues/14036/comments
1
2023-11-29T18:08:30Z
2024-03-13T21:58:12Z
https://github.com/langchain-ai/langchain/issues/14036
2,017,151,134
14,036
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. Is it possible to convert a Conversation Chain into an Agent? ### Suggestion: _No response_
ConversationChain to Agent
https://api.github.com/repos/langchain-ai/langchain/issues/14034/comments
2
2023-11-29T17:07:22Z
2024-05-22T16:07:43Z
https://github.com/langchain-ai/langchain/issues/14034
2,017,049,508
14,034
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. I want to integrate ConversationalRetrievalChain with history into Gradio app. For now I have the following approach: ``` # Memory buffer memory = ConversationBufferWindowMemory(k=2,memory_key="chat_history", return_messages=True) # LLM chain chain = ConversationalRetrievalChain.from_llm(llm=llm, chain_type='stuff', retriever=vector_store.as_retriever( search_kwargs={"k": 2}), memory=memory) with gr.Blocks() as demo: gr.Markdown("# SageMaker Docs Chat 🤗") gr.Markdown("### Ask me question about Amazon SageMaker!") chatbot = gr.Chatbot(label="Chat history") message = gr.Textbox(label="Ask me a question!") clear = gr.Button("Clear") def user(user_message, chat_history): return gr.update(value="", interactive=False), chat_history + [[user_message, None]] def bot(chat_history): user_message = chat_history[-1][0] llm_response = qa({"question": user_message}) bot_message = llm_response["answer"] chat_history[-1][1] = "" for character in bot_message: chat_history[-1][1] += character time.sleep(0.005) yield chat_history response = message.submit(user, [message, chatbot], [message, chatbot], queue=False).then( bot, chatbot, chatbot ) response.then(lambda: gr.update(interactive=True), None, [message], queue=False) demo.queue() demo.launch() ``` which works fine for the simple question answer without history. I tried to implement something similar to this guide (https://github.com/facebookresearch/llama-recipes/blob/main/demo_apps/Llama2_Gradio.ipynb), but failed to do so. Do you have any solution for this use-case or any specific guide? ### Suggestion: _No response_
Optimal Integration of the ConversationalRetrievalChain (Open source llama-2) into gradio.
https://api.github.com/repos/langchain-ai/langchain/issues/14033/comments
1
2023-11-29T16:50:09Z
2024-03-13T20:00:16Z
https://github.com/langchain-ai/langchain/issues/14033
2,017,018,704
14,033
[ "hwchase17", "langchain" ]
### System Info langchain==0.0.330, python 3.9 ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [X] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction I created an agent as follows: ``` def batch_embedding(node_label:str, text_node_properties:list): vector_index = Neo4jVector.from_existing_graph( OpenAIEmbeddings(), url=URL_DB_GRAPH, username=USERNAME, password=PASSWORD, index_name= node_label, node_label= node_label, text_node_properties=text_node_properties, embedding_node_property='embedding', ) return vector_index ``` model_name= "gpt-4" llm= ChatOpenAI(temperature=0, model_name=model_name) vector_index = batch_embedding("Alarms", ["solution", "description", "type"]) vector_qa = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=vector_index.as_retriever()) ``` cypher_chain = GraphCypherQAChain.from_llm( cypher_llm = llm, qa_llm = ChatOpenAI(temperature=0), graph=graph, verbose=True, cypher_prompt=CYPHER_GENERATION_PROMPT ) ``` tools = [ Tool( name="Alarms", func=vector_qa.run, description=prompt_per_alarms, ), Tool( name="Graph", func=cypher_chain.run, description=prompt_per_Graph, ), ] mrkl = initialize_agent( tools, ChatOpenAI(temperature=0, model_name=model_name), agent=AgentType.OPENAI_FUNCTIONS, verbose=True, memory=memory ) message = request.form['message'] response = mrkl.run(message) When I receive an answer from cypher_chain.run I can see that I've a full context with an output but the finished chain says "I'm sorry, but I don't have the information.." (see the image attached) ![example](https://github.com/langchain-ai/langchain/assets/119319987/5d2e7308-e944-4c32-b2ad-9dd8643ef905) . I noticed that this issue come back when I have a full context with an array of data. ### Expected behavior Finished chain contains the full context and write the answer.
Finished chain without an answer but full context have results
https://api.github.com/repos/langchain-ai/langchain/issues/14031/comments
3
2023-11-29T16:24:00Z
2024-07-31T17:55:02Z
https://github.com/langchain-ai/langchain/issues/14031
2,016,963,828
14,031
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. I am currently piecing together some of the tutorials on the langchain documentation page to use a CustomOutputParser and a CustomPrompt Template similar to the ZeroShotReact Template. While parsing the actions, I have a scenario where, the model returns Action as None & Action Input as None. In that case, I would like access to the dynamically created prompt with in the CustomOutputParser to call another LLM and return the action as call to another LLM to complete the action. **Current Approach:** ```python # Set up a prompt template class CustomPromptTemplatePirate(StringPromptTemplate): # The template to use template: str # The list of tools available tools: List[Tool] def format(self, **kwargs) -> str: # Get the intermediate steps (AgentAction, Observation tuples) # Format them in a particular way intermediate_steps = kwargs.pop("intermediate_steps") thoughts = "" for action, observation in intermediate_steps: thoughts += action.log thoughts += f"\nObservation: {observation}\nThought: " # Set the agent_scratchpad variable to that value kwargs["agent_scratchpad"] = thoughts # Create a tools variable from the list of tools provided kwargs["tools"] = "\n".join([f"{tool.name}: {tool.description}" for tool in self.tools]) # Create a list of tool names for the tools provided kwargs["tool_names"] = ", ".join([tool.name for tool in self.tools]) return self.template.format(**kwargs) class CustomOutputParserPirate(AgentOutputParser): def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]: # Check if agent should finish if "Final Answer:" in llm_output: return AgentFinish( # Return values is generally always a dictionary with a single `output` key # It is not recommended to try anything else at the moment :) return_values={"output": llm_output.split("Final Answer:")[-1].strip()}, log=llm_output, ) # Parse out the action and action input regex = r"Action\s*\d*\s*:(.*?)\nAction\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)" match = re.search(regex, llm_output, re.DOTALL) if not match: raise OutputParserException(f"Could not parse LLM output: `{llm_output}`") action = match.group(1).strip() action_input = match.group(2) # Return the action and action input return AgentAction(tool=action, tool_input=action_input.strip(" ").strip('"'), log=llm_output) # Set up the base template template = """Complete the objective as best you can. You have access to the following tools: {tools} Use the following format: Question: the input question you must answer Thought: you should always think about what to do Action: the action to take, should be one of [{tool_names}] Action Input: the input to the action Observation: the result of the action ... (this Thought/Action/Action Input/Observation can repeat N times) Thought: I now know the final answer Final Answer: the final answer to the original input question These were previous tasks you completed: Begin! Question: {input} {agent_scratchpad}""" search = SerpAPIWrapper() tools= [Tool( name="Search", func=search.run, description="useful for when you need to answer questions about current events", )] prompt = CustomPromptTemplatePirate( template=template, tools=tools, # This omits the `agent_scratchpad`, `tools`, and `tool_names` variables because those are generated dynamically # This includes the `intermediate_steps` variable because that is needed input_variables=["input", "intermediate_steps"] ) output_parser = CustomOutputParserPirate() # LLM chain consisting of the LLM and a prompt llm_chain = LLMChain(llm=llm, prompt=prompt) tool_names = [tool.name for tool in tools] agent = LLMSingleActionAgent( llm_chain=llm_chain, output_parser=output_parser, stop=["\nObservation:"], allowed_tools=tool_names ) agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True) agent_executor.run("How many people live in canada as of 2023?") ``` **Challenges Faced:** I am unable to figure out how to access the callback or any other similar approach to use the complete Prompt/User Input with in the context of the CustomOutputParser **Desired Outcome:** ```python def parse(self, llm_output: str, prompt:start) -> Union[AgentAction, AgentFinish]: # Check if agent should finish ..... if not 'Action' & not 'Action Input' : call AgentAction with another llm fine_tuned defined as tool with the user question as input ex: Write a summary on Canada. I need a way to access the user question here. ``` I would greatly appreciate any advice, documentation, or examples that could assist me in accomplishing this task. Thank you very much for your time and support. ### Suggestion: _No response_
Issue: Request: Need Help with CustomAgentExecutor for Accessing Dynamically Created Prompts
https://api.github.com/repos/langchain-ai/langchain/issues/14027/comments
3
2023-11-29T15:19:25Z
2024-03-17T16:06:46Z
https://github.com/langchain-ai/langchain/issues/14027
2,016,824,570
14,027
[ "hwchase17", "langchain" ]
### System Info Python 3.10 Langchain 0.0.311 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.text_splitter import RecursiveCharacterTextSplitter url = "https://plato.stanford.edu/entries/goedel/" headers_to_split_on = [ ("h1", "Header 1"), ("h2", "Header 2"), ("h3", "Header 3"), ("h4", "Header 4"), ] html_splitter = HTMLHeaderTextSplitter(headers_to_split_on=headers_to_split_on) # for local file use html_splitter.split_text_from_file(<path_to_file>) html_header_splits = html_splitter.split_text_from_url(url) chunk_size = 500 chunk_overlap = 30 text_splitter = RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap ) # Split splits = text_splitter.split_documents(html_header_splits) splits[80:85] ``` [Reference](https://python.langchain.com/docs/modules/data_connection/document_transformers/text_splitters/HTML_header_metadata#2-pipelined-to-another-splitter-with-html-loaded-from-a-web-url) The bug seems to be in [etree](https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/text_splitter.py#L586). A simple fix is perhaps like below: ```python from lxml import etree from pathlib import Path path = Path(".../langchain/document_transformers/xsl/html_chunks_with_headers.xslt") # etree.parse(path) Throws etree.parse(str(path)) ``` ### Expected behavior The code in the reproducer should work.
HTMLHeaderTextSplitter throws TypeError: cannot parse from 'PosixPath'
https://api.github.com/repos/langchain-ai/langchain/issues/14024/comments
1
2023-11-29T13:17:28Z
2024-03-13T19:57:17Z
https://github.com/langchain-ai/langchain/issues/14024
2,016,575,594
14,024
[ "hwchase17", "langchain" ]
> langchain-experimental : 0.0.42 > langchain : 0.0.340 > gpt4all : 2.0.2 > PostgreSQL : 15.5 I am trying to query my postgres db using the following code: ``` from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain_experimental.sql import SQLDatabaseChain from langchain.memory import ConversationBufferMemory from langchain import SQLDatabase from langchain.llms import GPT4All from langchain.prompts import PromptTemplate from langchain.globals import set_verbose import os username = "postgres" password = "password" host = "127.0.0.1" # internal IP port = "5432" mydatabase = "reporting_db" pg_uri = f'postgresql://{username}:{password}@{host}:{port}/{mydatabase}' my_db = SQLDatabase.from_uri(pg_uri) _DEFAULT_TEMPLATE = '''Given an input question, first create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer. Use the following format: Question: "Question here" SQLQuery: "SQL Query to run" SQLResult: "Result of the SQLQuery" Answer: "Final answer here" Only use the following tables: {table_info} If someone asks for the book written, they really mean the work table. Question: {input}''' PROMPT = PromptTemplate( input_variables=["input", "table_info", "dialect"], template=_DEFAULT_TEMPLATE ) path = "/var/lib/postgresql/data/llama-2-7b.Q2_K.gguf" callbacks = [StreamingStdOutCallbackHandler()] llm = GPT4All(model = path, callbacks=callbacks, n_threads=8, max_tokens=81920, verbose=True ) set_verbose(True) db_chain = SQLDatabaseChain.from_llm(llm = llm, db = my_db, prompt = PROMPT, use_query_checker=True, verbose = True ) question = 'Count the rows on table Access' answer = db_chain(question) print(answer)``` but I am getting the following error: ```ERROR: sqlalchemy.exc.ProgrammingError: (psycopg2.errors.SyntaxError) syntax error at or near "```" LINE 1: ```sql ^ [SQL: ```sql SELECT * FROM ( SELECT * FROM ( SELECT * FROM ( SELECT * FROM ( SELECT * FROM ( SELECT * FROM ( SELECT * FROM ( SELECT * FROM ( SELECT * FROM ( SELECT * FROM ( SELECT * FROM ( SELECT * FROM ( SELECT * FROM ( SELECT * FROM ( SELECT * FROM ( SELECT * FROM ( SELECT * FROM ( SELECT * FROM ( SELECT * FROM ( SELECT * FROM ( SELECT * FROM ( SELECT * FROM ( SELECT * FROM ( SELECT * FROM ( SELECT * FROM ( SELECT * FROM ( SELECT * FROM (] ``` ### Suggestion: _No response_
Recursive query when connecting to postgres db
https://api.github.com/repos/langchain-ai/langchain/issues/14022/comments
1
2023-11-29T10:55:01Z
2024-03-13T19:55:54Z
https://github.com/langchain-ai/langchain/issues/14022
2,016,322,236
14,022
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. Hi, I'm looking for some implementation that's utilizing a ConversationChain and giving it access to Internet. I want to integrate duckduckgo or bing-api or serpapi into my ConversationChain. Would appreciate any help! Thanks ### Suggestion: _No response_
Unable to Integrate ConversationChain with Tools like duckduckgo or serp-api
https://api.github.com/repos/langchain-ai/langchain/issues/14021/comments
3
2023-11-29T10:47:49Z
2024-03-13T19:57:49Z
https://github.com/langchain-ai/langchain/issues/14021
2,016,308,490
14,021
[ "hwchase17", "langchain" ]
### System Info IPython : 8.15.0 ipykernel : 6.25.0 ipywidgets : 8.0.4 jupyter_client : 7.4.9 jupyter_core : 5.5.0 jupyter_server : 1.23.4 jupyterlab : 3.5.3 nbclient : 0.8.0 nbconvert : 7.10.0 nbformat : 5.9.2 notebook : 6.5.4 qtconsole : 5.4.2 traitlets : 5.7.1 Python 3.11.6 Langchain '0.0.340' ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction TypeError: object Document can't be used in 'await' expression translated_document = await qa_translator.atransform_documents(documents) from official documentation notebook : https://github.com/langchain-ai/langchain/blob/1cd9d5f3328e144cbe5d6ef52a22029d4fdf0cce/docs/docs/integrations/document_transformers/doctran_translate_document.ipynb ### Expected behavior The problem might be arise due to specific python version or asyncio .
Doctran translate documents
https://api.github.com/repos/langchain-ai/langchain/issues/14020/comments
2
2023-11-29T10:46:04Z
2024-03-16T16:07:25Z
https://github.com/langchain-ai/langchain/issues/14020
2,016,305,395
14,020
[ "hwchase17", "langchain" ]
### Feature request It would interesting to have the option tu run a OpenAIAssistantRunnable that has access to custom tools and OpenAI build in tools like code_intrepreter, vision and retrieval. ### Motivation It would increase the developers capabilty of creating even more powerful agents. ### Your contribution n/a
Ability to use custom tools and openai build in functions on OpenAIAssistantRunnable
https://api.github.com/repos/langchain-ai/langchain/issues/14019/comments
1
2023-11-29T10:41:57Z
2024-03-13T20:03:43Z
https://github.com/langchain-ai/langchain/issues/14019
2,016,297,886
14,019
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. I use the below code to load data and splitted it and embedded it and finally pushing it into vector store. during that process, I'm getting **openai.NotFoundError: Error code: 404 - {'error': {'code': '404', 'message': 'Resource not found'}}**. After this method failed, I also tried with AzurecosmosDBVectorsearch vector store it also failed and returned the same error. Kindly help on this. ``` from langchain.embeddings.azure_openai import AzureOpenAIEmbeddings from langchain.vectorstores.azure_cosmos_db import AzureCosmosDBVectorSearch from langchain.vectorstores.chroma import Chroma from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.document_loaders import PyPDFLoader # Load PDF loaders = [ PyPDFLoader("ai.pdf") ] docs = [] for loader in loaders: docs.extend(loader.load()) # Define the Text Splitter text_splitter = RecursiveCharacterTextSplitter( chunk_size=1500, chunk_overlap=150 ) # Create a split of the document using the text splitter res_splits = text_splitter.split_documents(docs) embedding = AzureOpenAIEmbeddings( openai_api_version="1699-02-30", openai_api_key="xxxxxxxxxxxxxxxxxxxxxxxxx", # model_name="gpt-35-turbo", azure_endpoint="https://ggggggggggggggggggggggg.openai.azure.com/") persist_directory = 'docs/chroma/' # Create the vector store vectordb = Chroma.from_documents( documents=res_splits, embedding=embedding, persist_directory=persist_directory ) print(vectordb._collection.count()) ``` ### Suggestion: _No response_
Issue: openai.NotFoundError: Error code: 404 - {'error': {'code': '404', 'message': 'Resource not found'}}
https://api.github.com/repos/langchain-ai/langchain/issues/14018/comments
8
2023-11-29T10:18:06Z
2024-06-08T16:07:41Z
https://github.com/langchain-ai/langchain/issues/14018
2,016,254,745
14,018
[ "hwchase17", "langchain" ]
### System Info Python 3.10.10 [email protected] langchain-core@ 0.0.7 ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction md_file = docs[0].page_content headers_to_split_on = [ ("###", "Section"), ] markdown_splitter = MarkdownHeaderTextSplitter(headers_to_split_on=headers_to_split_on) md_header_splits = markdown_splitter.split_text(md_file) chunk_size = 500 chunk_overlap = 0 text_splitter = RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap ) all_splits = text_splitter.split_documents(md_header_splits) vectorstore = Chroma.from_documents(documents=all_splits, embedding=OpenAIEmbeddings()) metadata_field_info = [ AttributeInfo( name="Section", description="Part of the document that the text comes from", type="string or list[string]", ), ] document_content_description = "Major sections of the document" # Define self query retriever llm = OpenAI(temperature=0) retriever = SelfQueryRetriever.from_llm( llm, vectorstore, document_content_description, metadata_field_info, verbose=True ) llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0) qa_chain = RetrievalQA.from_chain_type(llm, retriever=retriever) qa_chain.run("衰老有哪些因素?") ### Expected behavior how can I fix the problem
when I run the demo from the cookbook,I get error Error code: 404 - {'error': {'message': 'The model `text-davinci-003` does not exist1', 'type': 'invalid_request_error', 'param': None, 'code': 'model_not_found'}}
https://api.github.com/repos/langchain-ai/langchain/issues/14017/comments
1
2023-11-29T08:45:42Z
2024-03-13T20:00:32Z
https://github.com/langchain-ai/langchain/issues/14017
2,016,092,448
14,017
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. When I call Llam2-70b-chat model using conversation chain, I got very short response from the model. But if I use LLMChain to call the model, it can give me a long response. So, is there any thing cut off or limit the response length in conversation chain? The model parameter about max_new_tokens I set as 4096, so I don't think that is caused by the model. <img width="1589" alt="截屏2023-11-29 15 47 33" src="https://github.com/langchain-ai/langchain/assets/27841780/34eb62c5-ce1f-4296-9ff8-6298c0c031d6"> ### Suggestion: _No response_
Issue: how to increase the conversation chain response length?
https://api.github.com/repos/langchain-ai/langchain/issues/14015/comments
1
2023-11-29T07:49:03Z
2024-03-13T20:04:32Z
https://github.com/langchain-ai/langchain/issues/14015
2,016,008,120
14,015
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. Hi, I am using Langchain and LlamaCpp to load my models. I have set "`mirostat`" and "`repitition_penalty`" in my model params and recently I am getting the following UserWarning: ``` UserWarning: WARNING! repetition_penalty is not default parameter. repetition_penalty was transferred to model_kwargs. Please confirm that repetition_penalty is what you intended. ``` and ``` UserWarning: WARNING! mirostat is not default parameter. mirostat was transferred to model_kwargs. Please confirm that mirostat is what you intended. ``` Here is my code: ``` import box import yaml from langchain.llms import LlamaCpp from langchain.callbacks.manager import CallbackManager from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler def build_llm(model_path): callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]) n_gpu_layers = 1 # Metal set to 1 is enough. n_batch = 512 # Should be between 1 and n_ctx, consider the amount of RAM of your Apple Silicon Chip. if model_path == "/Users/mweissenba001/Documents/llama2/llama.cpp/models/7B/ggml-model-q4_0.bin": context_size = 4000 if model_path == "/Users/mweissenba001/Documents/rag_example/Modelle/llama-2-13b-german-assistant-v2.Q5_K_M.gguf": context_size = 4000 else: context_size = 7000 llm = LlamaCpp( max_tokens =cfg.MAX_TOKENS, model_path=model_path, temperature=cfg.TEMPERATURE, f16_kv=True, n_ctx=context_size, # 8k aber mann muss Platz lassen für Instruction, History etc. n_gpu_layers=n_gpu_layers, n_batch=n_batch, callback_manager=callback_manager, verbose=True, # Verbose is required to pass to the callback manager top_p=0.75, top_k=40, repetition_penalty=1.1, mirostat = 2, ) return llm llm = build_llm(model_path) ``` My current Langchain Version is: `langchain-0.0.339` Upgrading to `langchain-0.0.341` didn't help. So what do I have to do to prevent the warnings? Where in model_kwargs to I have to set mirostat and repitition_penalty? ### Suggestion: _No response_
UserWarning: WARNING! repetition_penalty is not default parameter.
https://api.github.com/repos/langchain-ai/langchain/issues/14014/comments
1
2023-11-29T07:43:04Z
2024-03-13T20:03:38Z
https://github.com/langchain-ai/langchain/issues/14014
2,016,000,077
14,014
[ "hwchase17", "langchain" ]
### Feature request [Rephrase and Respond: Let Large Language Models Ask Better Questions for Themselves](https://arxiv.org/abs/2311.04205) ",,,RaR is complementary to CoT and can be combined with CoT to achieve even better performance,,," - interesting prompt technique. Could be implemented with LangChain. ### Motivation to make LangChain more powerful? ### Your contribution I can help with documentation
`Rephrase and Respond`
https://api.github.com/repos/langchain-ai/langchain/issues/14003/comments
1
2023-11-29T03:12:45Z
2024-03-13T20:00:34Z
https://github.com/langchain-ai/langchain/issues/14003
2,015,715,132
14,003
[ "hwchase17", "langchain" ]
### Issue with current documentation: Streamlit tutorial suggests ``` from langchain.memory import ConversationBufferMemory from langchain.memory.chat_message_histories import StreamlitChatMessageHistory # Optionally, specify your own session_state key for storing messages msgs = StreamlitChatMessageHistory(key="special_app_key") memory = ConversationBufferMemory(memory_key="history", chat_memory=msgs) if len(msgs.messages) == 0: msgs.add_ai_message("How can I help you?") ``` but in version 0.340, definition of ConversationBufferMemory only includes parameter memory_key but not chat_history. I have noticed my model outputs being less accurate for the same script when streamlit is incorporated and I suspect this is the issue. ### Idea or request for content: Please clarify how to best implement Streamlit with chat history.
DOC: streamlit memory parameters - memory_key and chat_history
https://api.github.com/repos/langchain-ai/langchain/issues/13995/comments
2
2023-11-29T00:14:13Z
2024-04-23T16:55:13Z
https://github.com/langchain-ai/langchain/issues/13995
2,015,551,448
13,995
[ "hwchase17", "langchain" ]
### System Info Code db_chain = SQLDatabaseChain.from_llm(llm, db, verbose=True, return_sql=False, use_query_checker=True, prompt=prompt_template) db_chain.run("What are some recently added dockets and their title?") Verbose > Entering new SQLDatabaseChain chain... What are some recently added dockets and their title? SQLQuery:SELECT id, title, modifyDate FROM docket ORDER BY modifyDate DESC LIMIT 5; SQLResult: [('CMS-2023-0184', 'CY 2024 Inpatient Hospital Deductible and Hospital and Extended Care Services Coinsurance Amounts. CMS-8083-N', datetime.datetime(2023, 11, 1, 15, 34, 1)), ('CMS-2023-0183', '(CMS-10143) State Data for the Medicare Modernization Act (MMA)', datetime.datetime(2023, 11, 1, 10, 34, 24)), ('CMS-2023-0181', 'CHIP State Plan Eligibility (CMS-10398 #17)', datetime.datetime(2023, 11, 1, 10, 25, 35)), ('CMS-2023-0182', '(CMS-10434 #77) Medicaid and Continuous Eligibility for Children', datetime.datetime(2023, 11, 1, 10, 24, 56)), ('CMS-2023-0180', 'Virtual Groups for Merit Based Incentive Payment System (MIPS) (CMS-10652)', datetime.datetime(2023, 10, 31, 13, 8, 24))] Answer:SELECT id, title, modifyDate FROM docket ORDER BY modifyDate DESC LIMIT 5; > Finished chain. Output: 'SELECT id, title, modifyDate FROM docket ORDER BY modifyDate DESC LIMIT 5;' The chain is not returning the SQLResult in the chat format even though the query is executed correctly. ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction prompt_suffix = """ If asked for recent dockets, give 5 most recent ones. Make sure the table name is in the database. Table name: docket, Use only these columns when selecting: id, title, modifyDate """ prompt_template = PromptTemplate.from_template(prompt_suffix) db_chain = SQLDatabaseChain.from_llm(llm, db, verbose=True, return_sql=False, use_query_checker=True, prompt=prompt_template) db_chain.run("What are some recently added dockets and their title?") ### Expected behavior Example output: The recently added dockets with their dates are:\n\n* CMS-2023-0181 - CY 2024 Inpatient Hospital Deductible and Hospital and Extended Care Services Coinsurance Amounts (November 1st, 2023'
SQLDatabaseChain returning Question and SQL Query instead of answer
https://api.github.com/repos/langchain-ai/langchain/issues/13994/comments
4
2023-11-28T23:56:36Z
2024-06-24T12:26:33Z
https://github.com/langchain-ai/langchain/issues/13994
2,015,530,321
13,994
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. Hi there, Before I was using local pickle files as the source of storage of my PDFs and chat history. And now I am moving into next step where I want to using Pinecone as my vector database to store these. I have made couple changes and they are not working and giving my error message. Especially for the part where I check if the embeddings are already stored in Pinecone and only create new embeddings for new files. Here is my code: ## Imports import streamlit as st import os from apikey import apikey import pickle from PyPDF2 import PdfReader # Streamlit - user interface from streamlit_extras.add_vertical_space import add_vertical_space # Langchain from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import FAISS from langchain.llms import OpenAI from langchain.chains.question_answering import load_qa_chain from langchain.callbacks import get_openai_callback from langchain.chat_models.openai import ChatOpenAI from langchain.schema import (SystemMessage, HumanMessage, AIMessage) # Pinecone from langchain.vectorstores import Pinecone import pinecone os.environ['OPENAI_API_KEY'] = apikey ## User Interface # Side Bar with st.sidebar: st.title('🚀 Zi-GPT Version 2.0') st.markdown(''' ## About This app is an LLM-powered chatbot built using: - [Streamlit](https://streamlit.io/) - [LangChain](https://python.langchain.com/) - [OpenAI](https://platform.openai.com/docs/models) LLM model ''') add_vertical_space(5) st.write('Made with ❤️ by Zi') # Main Page def main(): st.header("Zi's PDF Helper: Chat with PDF") # upload a PDF file pdf = st.file_uploader("Please upload your PDF here", type='pdf') # st.write(pdf) # read PDF if pdf is not None: pdf_reader = PdfReader(pdf) # split document into chunks # also can use text split: good for PDFs that do not contains charts and visuals sections = [] for page in pdf_reader.pages: # Split the page text by paragraphs (assuming two newlines indicate a new paragraph) page_sections = page.extract_text().split('\n\n') sections.extend(page_sections) chunks = sections # st.write(chunks) ## embeddings # Set up Pinecone pinecone.init(api_key='d8d78cba-fbf1-42c6-a761-9e89a5ed24eb', environment='gcp-starter') index_name = 'langchainresearch' if index_name not in pinecone.list_indexes(): pinecone.create_index(index_name, dimension=1536, metric="cosine") # Adjust the dimension as per your embeddings index = pinecone.Index(index_name) file_name = pdf.name[:-4] # Check if embeddings are already stored in Pinecone if index.exists(id=file_name): # Fetch embeddings from Pinecone VectorStore = index.fetch(ids=[file_name])[file_name] st.write('Embeddings Loaded from Pinecone') else: # Compute embeddings embeddings = OpenAIEmbeddings(model="text-embedding-ada-002") VectorStore = FAISS.from_texts(chunks, embedding=embeddings) # Store embeddings in Pinecone vectors = VectorStore.get_all_vectors() index.upsert(vectors={(file_name, vectors)}) st.write('Embeddings Computation Completed and Stored in Pinecone') # Create chat history # Pinecone Setup for Chat History chat_history_index_name = 'chat_history' if chat_history_index_name not in pinecone.list_indexes(): pinecone.create_index(chat_history_index_name, dimension=1) # Dimension is 1 as we're not storing vectors here chat_history_index = pinecone.Index(chat_history_index_name) # Create or Load Chat History from Pinecone if pdf: # Check if chat history exists in Pinecone if chat_history_index.exists(id=pdf.name): # Fetch chat history from Pinecone chat_history = chat_history_index.fetch(ids=[pdf.name])[pdf.name] st.write('Chat History Loaded from Pinecone') else: # Initialize empty chat history chat_history = [] # Initialize chat_history in session_state if not present if 'chat_history' not in st.session_state: st.session_state.chat_history = [] # Check if 'prompt' is in session state if 'last_input' not in st.session_state: st.session_state.last_input = '' # User Input current_prompt = st.session_state.get('user_input', '') prompt_placeholder = st.empty() prompt = prompt_placeholder.text_area("Ask questions about your PDF:", value=current_prompt, placeholder="Send a message", key="user_input") submit_button = st.button("Submit") if submit_button and prompt: # Update the last input in session state st.session_state.last_input = prompt docs = VectorStore.similarity_search(query=prompt, k=3) #llm = OpenAI(temperature=0.9, model_name='gpt-3.5-turbo') chat = ChatOpenAI(model='gpt-4', temperature=0.7, max_tokens=3000) message = [ SystemMessage(content="You are a helpful assistant"), HumanMessage(content=prompt) ] chain = load_qa_chain(llm=chat, chain_type="stuff") with get_openai_callback() as cb: response = chain.run(input_documents=docs, question=message) print(cb) # st.write(response) # st.write(docs) # Process the response using AIMessage schema # ai_message = AIMessage(content="AI message content") # ai_message.content = response.generations[0].message.content # Add to chat history chat_entry = { "user_message": prompt, "bot_response": response } # Save chat history # Generate a unique ID for the chat entry, e.g., using a timestamp or a UUID chat_entry_id = generate_unique_id() pinecone_upsert(chat_history_index, {chat_entry_id: chat_entry}) # Clear the input after processing prompt_placeholder.text_area("Ask questions about your PDF:", value='', placeholder="Send a message", key="pdf_prompt") # Display the entire chat chat_history = pinecone_query(chat_history_index, query_params) chat_content = "" for entry in chat_history: user_msg = entry["user_message"] bot_resp = entry["bot_response"] chat_content += f"<div style='background-color: #222222; color: white; padding: 10px;'>**You:** {user_msg}</div>" chat_content += f"<div style='background-color: #333333; color: white; padding: 10px;'>**Zi GPT:** {bot_resp}</div>" st.markdown(chat_content, unsafe_allow_html=True) if __name__ == '__main__': main() ### Suggestion: _No response_
Issue: Introduce Pinecone into my PDF reader LLM
https://api.github.com/repos/langchain-ai/langchain/issues/13987/comments
2
2023-11-28T21:48:49Z
2024-01-24T14:59:06Z
https://github.com/langchain-ai/langchain/issues/13987
2,015,378,058
13,987
[ "hwchase17", "langchain" ]
I was working with a sqlite DB that I created for a large dataset (~150k rows). Code snippets: `db = SQLDatabase.from_uri("sqlite:///MLdata.sqlite")` `SQLITE_PROMPT_TEXT = '''You are a SQLite expert. Given an input question, first create a syntactically correct SQLite query to run, then look at the results of the query and return the answer to the input question. Unless the user specifies in the question a specific number of examples to obtain, query for at most {top_k} results using the LIMIT clause as per SQLite. You can order the results to return the most informative data in the database. Never query for all columns from a table. You must query only the columns that are needed to answer the question. Wrap each column name in double quotes (") to denote them as delimited identifiers. Pay attention to use only the column names you can see in the tables below. Be careful to not query for columns that do not exist. Also, pay attention to which column is in which table. Use the following format: Question: Question here SQLQuery: SQL Query to run SQLResult: Result of the SQLQuery Answer: Final answer here Only use the following tables: {table_info} Question: {input}'''` `SQLITE_PROMPT = PromptTemplate(input_variables=['input', 'table_info', 'top_k'], template=SQLITE_PROMPT_TEXT) sql_chain = SQLDatabaseChain(llm=local_llm, database=db, prompt=SQLITE_PROMPT, return_direct=False, return_intermediate_steps=False, verbose=False) res=sql_chain("How many rows is in this db?")` Response: 'There are 142321 rows in the input_table of this db.' Second query `res=sql_chain("Count rows with 'Abdominal pain', VAX_TYPE='COVID19', SEX= 'F' and HOSPITAL= 'Y' is in the input_table of this db")` Response: 'There are 115 rows in the input_table where Abdominal pain is present, VAX_TYPE is COVID19, Sex is Female, and Hospital is Yes.' Third query I was trying to find the patient ID only instead of the count. But I am not able to get the patient ID. `res=sql_chain("What is the VAERS_ID with 'Abdominal pain', VAX_TYPE='COVID19', SEX= 'F' and HOSPITAL= 'Y' in this db. ")` But the output generated is same as my second query. Seems like the counting is working fine but nothing more. Can anyone help me in displaying table like output from sqlDbchain via langchain and llama2?
Using langchain and LLaMA2 to QA with a large SQL DB
https://api.github.com/repos/langchain-ai/langchain/issues/13977/comments
2
2023-11-28T18:11:46Z
2024-03-13T19:55:37Z
https://github.com/langchain-ai/langchain/issues/13977
2,015,022,272
13,977
[ "hwchase17", "langchain" ]
### Feature request NVIDIA TensorRT is an open-source SDK for high-performance deep learning inference, includes a deep learning inference optimizer and runtime that delivers low latency and high throughput for inference applications. I propose that a connector be added to langchain allowing users to use TensorRT with minimal configuration. ### Motivation There are several implementations of this connector floating around the internet. Lots of folks seem to want this. Rather than have everyone need to add that connector manually it seems to make sense to natively include it in Langchain. ### Your contribution I am happy to open the PR for this and will do so shortly.
Nvidia TensorRT LLM Connector
https://api.github.com/repos/langchain-ai/langchain/issues/13975/comments
4
2023-11-28T16:24:31Z
2024-03-27T16:07:47Z
https://github.com/langchain-ai/langchain/issues/13975
2,014,825,307
13,975
[ "hwchase17", "langchain" ]
### Feature request Currently, the extraction chain only supports the extraction of an Array of object. For example ```python from typing import Optional from langchain.chains import create_extraction_chain_pydantic from langchain.pydantic_v1 import BaseModel # Pydantic data class class Properties(BaseModel): person_name: str person_height: int person_hair_color: str dog_breed: Optional[str] dog_name: Optional[str] # Extraction chain = create_extraction_chain_pydantic(pydantic_schema=Properties, llm=llm) # Run inp = """Alex is 5 feet tall. Claudia is 1 feet taller Alex and jumps higher than him. Claudia is a brunette and Alex is blonde.""" chain.run(inp) # Results in # # [Properties(person_name='Alex', person_height=5, person_hair_color='blonde', dog_breed=None, dog_name=None), # Properties(person_name='Claudia', person_height=6, person_hair_color='brunette', dog_breed=None, dog_name=None)] # ```` There is currently no option available to just get one `Properties` object. It would be nice if you could define at the beginning if you are interested in one object or an array of objects For example ```` python chain = create_extraction_chain_pydantic(pydantic_schema=List[Properties], llm=llm) -> Array of Properties chain = create_extraction_chain_pydantic(pydantic_schema=Properties] llm=llm) -> Just one Propertie ````` ### Motivation It would just make life easier when you knew that you were only dealing with one object. It might also improve the response and prevent wrong or incomplete responses. ### Your contribution I would create and submit a PR that contains this feature.
Singel object extraction
https://api.github.com/repos/langchain-ai/langchain/issues/13971/comments
2
2023-11-28T14:29:08Z
2024-03-08T16:40:14Z
https://github.com/langchain-ai/langchain/issues/13971
2,014,572,602
13,971
[ "hwchase17", "langchain" ]
### System Info hi! im getting this error 👍 `AttributeError Traceback (most recent call last) File <command-3819272873890469>, line 7 1 # gpt-3.5-turbo-0613 2 # gpt-3.5-turbo-1106 3 # gpt-4 4 # gpt-4-1106-preview 5 llm_model = "gpt-3.5-turbo-1106" ----> 7 llm = ChatOpenAI( 8 temperature=0, 9 model=llm_model 10 ) File /local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.10/site-packages/langchain/load/serializable.py:97, in Serializable.__init__(self, **kwargs) 96 def __init__(self, **kwargs: Any) -> None: ---> 97 super().__init__(**kwargs) 98 self._lc_kwargs = kwargs File /databricks/python/lib/python3.10/site-packages/pydantic/main.py:339, in pydantic.main.BaseModel.__init__() File /databricks/python/lib/python3.10/site-packages/pydantic/main.py:1102, in pydantic.main.validate_model() File /local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.10/site-packages/langchain/chat_models/openai.py:291, in ChatOpenAI.validate_environment(cls, values) 284 values["openai_proxy"] = get_from_dict_or_env( 285 values, 286 "openai_proxy", 287 "OPENAI_PROXY", 288 default="", 289 ) 290 try: --> 291 import openai 293 except ImportError: 294 raise ImportError( 295 "Could not import openai python package. " 296 "Please install it with `pip install openai`." 297 ) File /local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.10/site-packages/openai/__init__.py:11 9 from ._types import NoneType, Transport, ProxiesTypes 10 from ._utils import file_from_path ---> 11 from ._client import ( 12 Client, 13 OpenAI, 14 Stream, 15 Timeout, 16 Transport, 17 AsyncClient, 18 AsyncOpenAI, 19 AsyncStream, 20 RequestOptions, 21 ) 22 from ._version import __title__, __version__ 23 from ._exceptions import ( 24 APIError, 25 OpenAIError, (...) 37 APIResponseValidationError, 38 ) File /local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.10/site-packages/openai/_client.py:12 8 from typing_extensions import override 10 import httpx ---> 12 from . import resources, _exceptions 13 from ._qs import Querystring 14 from ._types import ( 15 NOT_GIVEN, 16 Omit, (...) 21 RequestOptions, 22 ) File /local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.10/site-packages/openai/resources/__init__.py:6 4 from .chat import Chat, AsyncChat, ChatWithRawResponse, AsyncChatWithRawResponse 5 from .audio import Audio, AsyncAudio, AudioWithRawResponse, AsyncAudioWithRawResponse ----> 6 from .edits import Edits, AsyncEdits, EditsWithRawResponse, AsyncEditsWithRawResponse 7 from .files import Files, AsyncFiles, FilesWithRawResponse, AsyncFilesWithRawResponse 8 from .images import ( 9 Images, 10 AsyncImages, 11 ImagesWithRawResponse, 12 AsyncImagesWithRawResponse, 13 ) File /local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.10/site-packages/openai/resources/edits.py:24 19 from .._client import OpenAI, AsyncOpenAI 21 __all__ = ["Edits", "AsyncEdits"] ---> 24 class Edits(SyncAPIResource): 25 with_raw_response: EditsWithRawResponse 27 def __init__(self, client: OpenAI) -> None: File /local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.10/site-packages/openai/resources/edits.py:31, in Edits() 28 super().__init__(client) 29 self.with_raw_response = EditsWithRawResponse(self) ---> 31 @typing_extensions.deprecated( 32 "The Edits API is deprecated; please use Chat Completions instead.\n\nhttps://openai.com/blog/gpt-4-api-general-availability#deprecation-of-the-edits-api\n" 33 ) 34 def create( 35 self, 36 *, 37 instruction: str, 38 model: Union[str, Literal["text-davinci-edit-001", "code-davinci-edit-001"]], 39 input: Optional[str] | NotGiven = NOT_GIVEN, 40 n: Optional[int] | NotGiven = NOT_GIVEN, 41 temperature: Optional[float] | NotGiven = NOT_GIVEN, 42 top_p: Optional[float] | NotGiven = NOT_GIVEN, 43 # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. 44 # The extra values given here take precedence over values defined on the client or passed to this method. 45 extra_headers: Headers | None = None, 46 extra_query: Query | None = None, 47 extra_body: Body | None = None, 48 timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, 49 ) -> Edit: 50 """ 51 Creates a new edit for the provided input, instruction, and parameters. 52 (...) 81 timeout: Override the client-level default timeout for this request, in seconds 82 """ 83 return self._post( 84 "/edits", 85 body=maybe_transform( (...) 99 cast_to=Edit, 100 ) AttributeError: module 'typing_extensions' has no attribute 'deprecated'` im using ChatOpenAI with the follwing libs: ![image](https://github.com/langchain-ai/langchain/assets/4071796/2569f6a9-924f-4a72-a933-221e43bfb48b) and python version is Python 3.10.12 until some days these worked great. and i didnt touch the code. so, whats happening here? thanks ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [X] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction llm_model = "gpt-4-1106-preview" llm = ChatOpenAI( temperature=0, model=llm_model ) -- using databricks, with langchain and openai ### Expected behavior just an ok and chatopenai working
AttributeError: module 'typing_extensions' has no attribute 'deprecated' when using ChatOpenAI
https://api.github.com/repos/langchain-ai/langchain/issues/13970/comments
1
2023-11-28T14:15:08Z
2024-03-13T20:01:42Z
https://github.com/langchain-ai/langchain/issues/13970
2,014,540,587
13,970
[ "hwchase17", "langchain" ]
### System Info Hi, i'm obtaining this error trace when performing a basic `create_extraction_chain` example.I'm using CTransformers (llama2 type), more specifically, this model here: https://huggingface.co/clibrain/Llama-2-13b-ft-instruct-es-gguf Python version: 3.11 Environment: ``` accelerate 0.24.1 aiofiles 22.1.0 aiohttp 3.9.0 aiosignal 1.3.1 aiosqlite 0.19.0 alembic 1.9.4 anyio 3.7.1 appnope 0.1.3 argilla 1.19.0 argon2-cffi 23.1.0 argon2-cffi-bindings 21.2.0 arrow 1.3.0 asttokens 2.4.1 async-lru 2.0.4 attrs 23.1.0 Babel 2.13.1 backoff 1.11.1 bcrypt 4.0.1 beautifulsoup4 4.12.2 bleach 6.1.0 Brotli 1.1.0 brotli-asgi 1.2.0 certifi 2023.11.17 cffi 1.16.0 charset-normalizer 3.3.2 click 8.1.7 coloredlogs 15.0.1 comm 0.2.0 commonmark 0.9.1 cryptography 41.0.5 ctransformers 0.2.27 dataclasses-json 0.6.3 datasets 2.15.0 debugpy 1.8.0 decorator 5.1.1 defusedxml 0.7.1 Deprecated 1.2.14 dill 0.3.7 diskcache 5.6.3 ecdsa 0.18.0 elastic-transport 8.10.0 elasticsearch8 8.7.0 executing 2.0.1 fastapi 0.104.1 fastjsonschema 2.19.0 filelock 3.13.1 fqdn 1.5.1 frozenlist 1.4.0 fsspec 2023.10.0 greenlet 3.0.1 h11 0.14.0 httpcore 0.16.3 httptools 0.6.1 httpx 0.23.3 huggingface-hub 0.19.4 humanfriendly 10.0 idna 3.4 ipykernel 6.27.0 ipython 8.17.2 isoduration 20.11.0 jedi 0.19.1 Jinja2 3.1.2 joblib 1.3.2 json5 0.9.14 jsonpatch 1.33 jsonpointer 2.4 jsonschema 4.20.0 jsonschema-specifications 2023.11.1 jupyter_client 8.6.0 jupyter_core 5.5.0 jupyter-events 0.9.0 jupyter-lsp 2.2.0 jupyter_server 2.11.0 jupyter_server_terminals 0.4.4 jupyterlab 4.0.9 jupyterlab-pygments 0.2.2 jupyterlab_server 2.25.2 langchain 0.0.341 langchain-core 0.0.6 langsmith 0.0.67 llama_cpp_python 0.2.20 Mako 1.3.0 markdown-it-py 3.0.0 MarkupSafe 2.1.3 marshmallow 3.20.1 matplotlib-inline 0.1.6 mdurl 0.1.2 mistune 3.0.2 monotonic 1.6 mpmath 1.3.0 multidict 6.0.4 multiprocess 0.70.15 mypy-extensions 1.0.0 nbclient 0.9.0 nbconvert 7.11.0 nbformat 5.9.2 nest-asyncio 1.5.8 networkx 3.2.1 nltk 3.8.1 notebook_shim 0.2.3 numpy 1.23.5 opensearch-py 2.0.1 optimum 1.14.1 overrides 7.4.0 packaging 23.2 pandas 1.5.3 pandocfilters 1.5.0 parso 0.8.3 passlib 1.7.4 pexpect 4.8.0 Pillow 10.1.0 pip 23.3.1 platformdirs 4.0.0 prometheus-client 0.19.0 prompt-toolkit 3.0.41 protobuf 4.25.1 psutil 5.9.6 ptyprocess 0.7.0 pure-eval 0.2.2 py-cpuinfo 9.0.0 pyarrow 14.0.1 pyarrow-hotfix 0.6 pyasn1 0.5.1 pycparser 2.21 pydantic 1.10.13 Pygments 2.17.2 python-dateutil 2.8.2 python-dotenv 1.0.0 python-jose 3.3.0 python-json-logger 2.0.7 python-multipart 0.0.6 pytz 2023.3.post1 PyYAML 6.0.1 pyzmq 25.1.1 referencing 0.31.0 regex 2023.10.3 requests 2.31.0 rfc3339-validator 0.1.4 rfc3986 1.5.0 rfc3986-validator 0.1.1 rich 13.0.1 rpds-py 0.13.1 rsa 4.9 safetensors 0.4.0 scikit-learn 1.3.2 scipy 1.11.4 segment-analytics-python 2.2.0 Send2Trash 1.8.2 sentence-transformers 2.2.2 sentencepiece 0.1.99 setuptools 68.2.2 six 1.16.0 smart-open 6.4.0 sniffio 1.3.0 soupsieve 2.5 SQLAlchemy 2.0.23 stack-data 0.6.3 starlette 0.27.0 sympy 1.12 tenacity 8.2.3 terminado 0.18.0 threadpoolctl 3.2.0 tinycss2 1.2.1 tokenizers 0.15.0 torch 2.1.1 torchvision 0.16.1 tornado 6.3.3 tqdm 4.66.1 traitlets 5.13.0 transformers 4.35.2 typer 0.9.0 types-python-dateutil 2.8.19.14 typing_extensions 4.8.0 typing-inspect 0.9.0 uri-template 1.3.0 urllib3 1.26.18 uvicorn 0.20.0 uvloop 0.19.0 watchfiles 0.21.0 wcwidth 0.2.12 webcolors 1.13 webencodings 0.5.1 websocket-client 1.6.4 websockets 12.0 wrapt 1.14.1 xxhash 3.4.1 yarl 1.9.3 ``` ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Hi, i'm obtaining this error trace when performing a basic `create_extraction_chain` example.I'm using CTransformers (llama2 type), more specifically, this model here: https://huggingface.co/clibrain/Llama-2-13b-ft-instruct-es-gguf ``` OutputParserException Traceback (most recent call last) Cell In[9], line 17 12 chain = create_extraction_chain(schema, llm) 14 inp = """Alex is 5 feet tall. Claudia is 1 feet taller Alex and jumps higher than him. Claudia is a brunette and Alex is blonde. 15 Willow is a German Shepherd that likes to play with other dogs and can always be found playing with Milo, a border collie that lives close by.""" ---> 17 chain.run(inp) File ~/Desktop/green-jobs/genv/lib/python3.11/site-packages/langchain/chains/base.py:507, in Chain.run(self, callbacks, tags, metadata, *args, **kwargs) 505 if len(args) != 1: 506 raise ValueError("`run` supports only one positional argument.") --> 507 return self(args[0], callbacks=callbacks, tags=tags, metadata=metadata)[ 508 _output_key 509 ] 511 if kwargs and not args: 512 return self(kwargs, callbacks=callbacks, tags=tags, metadata=metadata)[ 513 _output_key 514 ] File ~/Desktop/green-jobs/genv/lib/python3.11/site-packages/langchain/chains/base.py:312, in Chain.__call__(self, inputs, return_only_outputs, callbacks, tags, metadata, run_name, include_run_info) 310 except BaseException as e: 311 run_manager.on_chain_error(e) --> 312 raise e 313 run_manager.on_chain_end(outputs) 314 final_outputs: Dict[str, Any] = self.prep_outputs( 315 inputs, outputs, return_only_outputs 316 ) File ~/Desktop/green-jobs/genv/lib/python3.11/site-packages/langchain/chains/base.py:306, in Chain.__call__(self, inputs, return_only_outputs, callbacks, tags, metadata, run_name, include_run_info) 299 run_manager = callback_manager.on_chain_start( 300 dumpd(self), 301 inputs, 302 name=run_name, 303 ) 304 try: 305 outputs = ( --> 306 self._call(inputs, run_manager=run_manager) 307 if new_arg_supported 308 else self._call(inputs) 309 ) 310 except BaseException as e: 311 run_manager.on_chain_error(e) File ~/Desktop/green-jobs/genv/lib/python3.11/site-packages/langchain/chains/llm.py:104, in LLMChain._call(self, inputs, run_manager) 98 def _call( 99 self, 100 inputs: Dict[str, Any], 101 run_manager: Optional[CallbackManagerForChainRun] = None, 102 ) -> Dict[str, str]: 103 response = self.generate([inputs], run_manager=run_manager) --> 104 return self.create_outputs(response)[0] File ~/Desktop/green-jobs/genv/lib/python3.11/site-packages/langchain/chains/llm.py:258, in LLMChain.create_outputs(self, llm_result) 256 def create_outputs(self, llm_result: LLMResult) -> List[Dict[str, Any]]: 257 """Create outputs from response.""" --> 258 result = [ 259 # Get the text of the top generated string. 260 { 261 self.output_key: self.output_parser.parse_result(generation), 262 "full_generation": generation, 263 } 264 for generation in llm_result.generations 265 ] 266 if self.return_final_only: 267 result = [{self.output_key: r[self.output_key]} for r in result] File ~/Desktop/green-jobs/genv/lib/python3.11/site-packages/langchain/chains/llm.py:261, in <listcomp>(.0) 256 def create_outputs(self, llm_result: LLMResult) -> List[Dict[str, Any]]: 257 """Create outputs from response.""" 258 result = [ 259 # Get the text of the top generated string. 260 { --> 261 self.output_key: self.output_parser.parse_result(generation), 262 "full_generation": generation, 263 } 264 for generation in llm_result.generations 265 ] 266 if self.return_final_only: 267 result = [{self.output_key: r[self.output_key]} for r in result] File ~/Desktop/green-jobs/genv/lib/python3.11/site-packages/langchain/output_parsers/openai_functions.py:130, in JsonKeyOutputFunctionsParser.parse_result(self, result, partial) 129 def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any: --> 130 res = super().parse_result(result, partial=partial) 131 if partial and res is None: 132 return None File ~/Desktop/green-jobs/genv/lib/python3.11/site-packages/langchain/output_parsers/openai_functions.py:68, in JsonOutputFunctionsParser.parse_result(self, result, partial) 66 generation = result[0] 67 if not isinstance(generation, ChatGeneration): ---> 68 raise OutputParserException( 69 "This output parser can only be used with a chat generation." 70 ) 71 message = generation.message 72 try: OutputParserException: This output parser can only be used with a chat generation. ``` Im using the following example: ``` schema = { "properties": { "person_name": {"type": "string"}, "person_height": {"type": "integer"}, "person_hair_color": {"type": "string"}, "dog_name": {"type": "string"}, "dog_breed": {"type": "string"}, }, "required": [], } chain = create_extraction_chain(schema, llm) inp = """Alex is 5 feet tall. Claudia is 1 feet taller Alex and jumps higher than him. Claudia is a brunette and Alex is blonde. Willow is a German Shepherd that likes to play with other dogs and can always be found playing with Milo, a border collie that lives close by.""" chain.run(inp) ``` ### Expected behavior I expect not to get an error when executing the code
OutputParserException in extraction use case
https://api.github.com/repos/langchain-ai/langchain/issues/13969/comments
3
2023-11-28T14:13:25Z
2024-03-08T16:47:51Z
https://github.com/langchain-ai/langchain/issues/13969
2,014,537,056
13,969
[ "hwchase17", "langchain" ]
### System Info **python:** 3.11.6 **langchain:** 0.0.335 **openai:** 0.28.1 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [X] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction I tried to create custom tools for Agent type ZERO_SHOT_REACT_DESCRIPTION but after executing the first chain, it keeps getting error Caused by NewConnectionError on the next chain. The tools work fine because I tested them with Agent type OPENAI.FUNTIONS My first tool ``` def get_thing(u: str) -> str: c, l = get_thing_ori(u, True) r = c + '\n' + l return r class GetThingCheckInput(BaseModel): u: str = Field(..., description='thing to get') def get_thing_tool(): GetThingTool = StructuredTool.from_function( name="get_thing", description="Useful to get thing", func=get_thing, args_schema=GetThingCheckInput ) return GetThingTool ``` My second tool ``` def get_S(t: str, l=str, c=str) -> str: u_s, d_s = get_so() result = '' for u, d in zip(u_s, d_s): result += f'U: {u}\nD: {d}\n\n' return result def parsing_get_S(string: str): t, l, c = string.split(', ') return (get_S(t, l, c)) class ParsingGetSCheckInput(BaseModel): string: str = Field(..., description='A string contain a data in format: "T, L, C"') def get_parsing_get_S_tool(): ParsingGetSTool = StructuredTool.from_function( name = 'parsing_get_S', description="Useful to get S. Input is a comma-seperated list contain data in format: 'T, L, C'", func=parsing_get_S, args_schema=ParsingGetSCheckInput ) return ParsingGetSTool ``` This is my main ``` if __name__ == '__main__': llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0, max_retries=5, timeout=100) GetThingTool = get_thing_tool() ParsingGetSTool = get_parsing_get_S_tool() tools = [GetThingTool, ParsingGetSTool] agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True) agent.run("Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?") ``` I try to add both `os.environ["LANGCHAIN_TRACING"] = "true"` and `os.environ["LANGCHAIN_TRACING"] = "true"` but it not working. Full error is: ``` ERROR:root:download error: 'https://www.dailymail.co.uk/tvshowbiz/article-12792715/Leonardo-DiCaprio-low-key-glamorous-girlfriend-Vittoria-Ceretti-family-London.html' HTTPConnectionPool(host="'https", port=80): Max retries exceeded with url: //[www.dailymail.co.uk/tvshowbiz/article-12792715/Leonardo-DiCaprio-low-key-glamorous-girlfriend-Vittoria-Ceretti-family-London.html](https://file+.vscode-resource.vscode-cdn.net/d%3A/Python%20Project/www.dailymail.co.uk/tvshowbiz/article-12792715/Leonardo-DiCaprio-low-key-glamorous-girlfriend-Vittoria-Ceretti-family-London.html)' (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0x0000018BEA481B90>: Failed to establish a new connection: [Errno 11001] getaddrinfo failed')) ``` ### Expected behavior As I use Agent type OPENAI.FUNTIONS, it completely returns a full answer, so that means there is nothing wrong with the tools, i guess. It should work for agent type ZERO_SHOT_REACT_DESCRIPTION. The reason I use zero shot is because the thinking part works better in different languages than agent-type OPENAI.FUNTIONS.
Caused by NewConnectionError when using ZERO_SHOT_REACT_DESCRIPTION
https://api.github.com/repos/langchain-ai/langchain/issues/13968/comments
2
2023-11-28T13:57:21Z
2023-11-30T11:03:08Z
https://github.com/langchain-ai/langchain/issues/13968
2,014,504,640
13,968
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. Hello Team, We are finding a way to pass the context, previous question and answer to **create_pandas_dataframe_agent**. Can u please help me understand how i can pass the context(previous question and answer) to the **create_pandas_dataframe_agent**. it will be helpful if you have any such example implementation Thanks, Akash ### Suggestion: _No response_
Issue: Passing context(previous question and answer) to the create_pandas_dataframe_agent function.
https://api.github.com/repos/langchain-ai/langchain/issues/13967/comments
16
2023-11-28T13:30:17Z
2024-03-18T16:06:56Z
https://github.com/langchain-ai/langchain/issues/13967
2,014,447,411
13,967
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. **Summary:** The FAISS similarity search in LangChain is encountering difficulties when processing alpha-numeric queries that involve numeric integers. While the search performs well for queries like "What are resolutions to problems related to SAF," it exhibits suboptimal behavior when processing queries such as "Give me complete details of L2-resolution against ORA-14300," which involve alpha-numeric combinations. Note that we have already successfully embedded and indexed the above documents that includes alpha numeric key as well such as "ORA-14300". **Expected Behavior:** The FAISS similarity search should accurately and effectively retrieve relevant information for alpha-numeric queries, providing precise results even when numeric integers are included in the query. **Current Behavior:** The search is not functioning correctly when processing alpha-numeric queries with numeric integers. It fails to accurately identify and retrieve relevant documents, leading to a suboptimal user experience. ![correct](https://github.com/langchain-ai/langchain/assets/134971688/362451a6-981f-4edc-b7e0-790fc50b93de) ![wrong](https://github.com/langchain-ai/langchain/assets/134971688/9f169624-4079-489e-9303-e2b3c840a2ca) **Steps to Reproduce:** Index CSV data containing both text and numerical values, and subsequently execute a query that includes an alphanumeric question. **Additional Information:** Environment: Langchain version (0.0.284) **Impact:** This issue affects the accuracy and reliability of the FAISS similarity search, particularly when handling alpha-numeric queries that include numeric integers. Users relying on LangChain for information retrieval may experience challenges when seeking relevant documents related to such queries. **Priority:** High Are FAISS and Redis similarity searches capable of providing such high similarity search over the index? If not, please guide me on where I should turn to achieve better and more accurate results Thank you for your attention to this matter. Feel free to request additional information if needed. ### Suggestion: _No response_
Why does FAISS similarity search not fetch data with respect to alphanumeric keys like ORA-14300?
https://api.github.com/repos/langchain-ai/langchain/issues/13964/comments
1
2023-11-28T12:50:29Z
2024-03-13T20:03:49Z
https://github.com/langchain-ai/langchain/issues/13964
2,014,369,520
13,964
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. I create my vector db using the following code: ``` db = Chroma.from_documents( chunked_documents, embeddings, persist_directory=db_path + '/' + db_type, client_settings=chroma_settings,) ``` `chunked_documents` is a list of elements of type Document. I have added metadata which is a simple numerical id: `{'id': 1}` ``` embeddings = HuggingFaceInstructEmbeddings( model_name=args.embedding_model, model_kwargs={"device": args.device}, ) ``` ``` CHROMA_SETTINGS = Settings( anonymized_telemetry=False, is_persistent=True, ) ``` What happens is that I run `db.similarity_search(query, k=3)` and for part of the answers, the metadata dict is empty. Has anyone encountered such an issue? Just to point out, when I create the db using the `from_texts()` method where I add raw texts and metadata separately I do not encounter the issue and when running `db.similarity_search()` the returned answer, contains the respective metadata. ### Suggestion: _No response_
Issue: Chroma.from_documents does not save metadata properly
https://api.github.com/repos/langchain-ai/langchain/issues/13963/comments
5
2023-11-28T12:16:56Z
2024-05-02T16:04:54Z
https://github.com/langchain-ai/langchain/issues/13963
2,014,310,258
13,963
[ "hwchase17", "langchain" ]
### System Info I am using the SelfQueryRetriever class to make questions about a set of documents. It seems that there is an issue with the use of the `enable_limit` argument Versions: Langchain Version: 0.0.340 openai 1.3.5 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [X] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction enable_limit = False: ```python retriever = SelfQueryRetriever.from_llm( llm, vectorstore, document_content_description, metadata_field_info, enable_limit=False ) query = "I want indentify thousand repairs with xxxx" result = retriever.invoke(query) len(result) #Result: 4 ``` If change enable_limit = True: ```python retriever = SelfQueryRetriever.from_llm( llm, vectorstore, document_content_description, metadata_field_info, enable_limit=True ) query = "I want indentify thousand repairs with xxxx" result = retriever.invoke(query) len(result) #Result: 1000 ``` If enable_limit=True and change in query for "All": ```python retriever = SelfQueryRetriever.from_llm( llm, vectorstore, document_content_description, metadata_field_info, enable_limit=True ) query = "I want indentify All repairs with xxxx" result = retriever.invoke(query) len(result) #Result: 4 ``` ### Expected behavior The expected behaviour with "enable_limit = False" was to show more than 1000 documents. As there is no defined limit, all documents were expected as a result.
Enable Limit False in Self Query Retriever doesn't have the expected behavior
https://api.github.com/repos/langchain-ai/langchain/issues/13961/comments
1
2023-11-28T11:50:02Z
2024-03-13T20:01:17Z
https://github.com/langchain-ai/langchain/issues/13961
2,014,263,985
13,961
[ "hwchase17", "langchain" ]
### System Info Current LangChain master commit: https://github.com/langchain-ai/langchain/commits/391f200 ### Who can help? @hwchase17 @baskaryan ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Just run ``` from langchain.chat_models import BedrockChat ``` Stacktrace: ``` tests/e2e-tests/test_compatibility_matrix.py:10: in <module> from langchain.chat_models import ChatOpenAI, AzureChatOpenAI, ChatVertexAI, BedrockChat /tmp/venv/lib/python3.11/site-packages/langchain/chat_models/__init__.py:20: in <module> from langchain.chat_models.anthropic import ChatAnthropic /tmp/venv/lib/python3.11/site-packages/langchain/chat_models/anthropic.py:18: in <module> from langchain.chat_models.base import ( /tmp/venv/lib/python3.11/site-packages/langchain/chat_models/base.py:1: in <module> from langchain_core.language_models.chat_models import ( E ImportError: cannot import name 'agenerate_from_stream' from 'langchain_core.language_models.chat_models' (/tmp/venv/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py) ``` ### Expected behavior To being able to import the required modules
ImportError: cannot import name 'agenerate_from_stream' from 'langchain_core.language_models.chat_models'
https://api.github.com/repos/langchain-ai/langchain/issues/13958/comments
5
2023-11-28T09:40:11Z
2023-11-29T13:33:23Z
https://github.com/langchain-ai/langchain/issues/13958
2,014,030,020
13,958
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. I'm currently working on a project and have encountered an issue with the deletion functionality for Confluence Spaces. I've implemented a function delete_embeddings that is supposed to delete embeddings based on the Confluence space key, but it doesn't seem to be working as expected. Here's the relevant code snippet: def delete_embeddings(file_path, persist_directory): chroma_db = chromadb.PersistentClient(path=persist_directory) collection = chroma_db.get_or_create_collection(name="langchain") ids = collection.get(where={"source": file_path})['ids'] collection.delete(where={"source": file_path},ids=ids) # chroma_db.delete_collection(name="langchain") print("delete successfully") And I'm calling this function as follows: delete_embeddings(names, persist_directory) I want to delete embeddings of Confluence Spaces when user request deletion confluence space. ### Suggestion: _No response_
Issue: Question about Deletion of Embeddings for Confluence Spaces
https://api.github.com/repos/langchain-ai/langchain/issues/13956/comments
5
2023-11-28T08:26:59Z
2024-03-13T19:58:26Z
https://github.com/langchain-ai/langchain/issues/13956
2,013,904,967
13,956
[ "hwchase17", "langchain" ]
### Feature request PGVector in Langchain does not support advance metadata filtering such as "OR" clause. For now, there is no way to perform filters such as: ``` { "$or": [ {"uploaded_by": {"$eq": "USER1"}}, {"org": {"$eq": "ORG"}}, ] } ``` ### Motivation Our team is unable to use langchain with PGVector due to its lack of support for "OR" filter. Having advanced metadata filtering like that in Pinecone/Qdrant would really help https://docs.pinecone.io/docs/metadata-filtering ### Your contribution For now, I see existing PR: https://github.com/langchain-ai/langchain/pull/12977 This could possibly solve the issue.
Advance metadata filtering for PGVector
https://api.github.com/repos/langchain-ai/langchain/issues/13955/comments
4
2023-11-28T08:15:46Z
2024-07-04T16:07:13Z
https://github.com/langchain-ai/langchain/issues/13955
2,013,887,941
13,955
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. I'm currently working on a project and have encountered an issue with the deletion functionality for Confluence Spaces. I've implemented a function `delete_embeddings` that is supposed to delete embeddings based on the Confluence space key, but it doesn't seem to be working as expected. Here's the relevant code snippet: ```python def delete_embeddings(file_path, persist_directory): chroma_db = chromadb.PersistentClient(path=persist_directory) collection = chroma_db.get_or_create_collection(name="langchain") ids = collection.get(where={"source": file_path})['ids'] collection.delete(where={"source": file_path},ids=ids) # chroma_db.delete_collection(name="langchain") print("delete successfully") And I'm calling this function as follows: delete_embeddings(names, persist_directory) ### Suggestion: _No response_
Issue: Question about Deletion Functionality for Confluence Spaces
https://api.github.com/repos/langchain-ai/langchain/issues/13954/comments
2
2023-11-28T06:57:30Z
2024-03-13T20:01:58Z
https://github.com/langchain-ai/langchain/issues/13954
2,013,781,829
13,954
[ "hwchase17", "langchain" ]
### Issue with current documentation: I was hoping to use the Dropbox document loader for a large number of pdf and some docx documents, however I am not sure whether this loader supports these file types. I followed the instructions on https://python.langchain.com/docs/integrations/document_loaders/dropbox and installed the "unstructured[all-docs]" package but I keep getting the message that the loader skips these files. > xxx.docx could not be decoded as text. Skipping. > yyy.pdf could not be decoded as text. Skipping. Does this loader only support .txt files? Is there an alternative? I see the Unstructured loader only works for individual files, is that the best alternative? Many thanks! ### Idea or request for content: File formats the loader supports needs to be clarified unstructured package was given as a prerequisite for pdf files but I was getting missing package/method errors until I installed the "unstructured[all-docs]" package and still not able to load pdf files
DOC: Dropbox document loader functionality
https://api.github.com/repos/langchain-ai/langchain/issues/13952/comments
7
2023-11-28T06:18:48Z
2023-12-03T22:19:38Z
https://github.com/langchain-ai/langchain/issues/13952
2,013,737,662
13,952
[ "hwchase17", "langchain" ]
### System Info To train data in Pinecone, I used the function. _pinecone = Pinecone.from_documents(docs, self.embeddings, index_name=self.index_name) all the parameters have values always: ![image](https://github.com/langchain-ai/langchain/assets/47790805/da013cf4-a082-44d0-9505-0013835c4b90) ![image](https://github.com/langchain-ai/langchain/assets/47790805/6764a84c-a59c-43a5-9dfe-4ecea69e68ef) But, this error occurs often like this: ![image](https://github.com/langchain-ai/langchain/assets/47790805/9aee7fed-49c4-4e6e-941f-94c3f442244c) @hwchase17 , I am looking forward to fixing this issue asap. Thank you. ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction class PineConeIndexer: def __init__(self): self.embeddings = OpenAIEmbeddings() # initialize pinecone pinecone.init( api_key=os.environ.get('PINECONE_API_KEY'), environment=os.environ.get('PINECONE_ENV') ) self.index_name = os.environ.get('PINECONE_INDEX_NAME') def upsert_index_from_task(self, task): try: # get doc .... _pinecone = Pinecone.from_documents(docs, self.embeddings, index_name=self.index_name) return {"success": True, "error": None} except Exception as e: return {"success": False, "error": str(e)} ### Expected behavior sometimes, this error occurs: PineconeProtocolError Failed to connect; did you specify the correct index name? ProtocolError ('Connection aborted.', ConnectionResetError(104, 'Connection reset by peer'))
PineconeProtocolError: Failed to connect; did you specify the correct index name?
https://api.github.com/repos/langchain-ai/langchain/issues/13951/comments
3
2023-11-28T05:49:35Z
2024-06-08T16:07:35Z
https://github.com/langchain-ai/langchain/issues/13951
2,013,694,385
13,951
[ "hwchase17", "langchain" ]
### Issue with current documentation: this is intput token (import pandas as pd import json from IPython.display import Markdown, display from langchain.agents import create_csv_agent from langchain.chat_models import ChatOpenAI from langchain.llms import OpenAI import os os.environ["OPENAI_API_KEY"] = "" # Load the dataset df = pd.read_csv('Loan Collections - Sheet1.csv') # Function to convert date and time columns to float def convert_date_time_columns_to_float(df): for column in df.select_dtypes(include=['object']).columns: # Check if the column name contains 'date' or 'time' if 'date' in column.lower() or 'time' in column.lower(): try: # Convert the column to datetime df[column] = pd.to_datetime(df[column], errors='coerce') # Convert datetime to numerical representation (e.g., days since a reference date) reference_date = pd.to_datetime('1900-01-01') df[column] = (df[column] - reference_date).dt.total_seconds() / (24 * 60 * 60) except ValueError: # Handle errors during conversion print(f"Error converting column '{column}' to float.") # Convert 'date' and 'time' columns to float convert_date_time_columns_to_float(df) # Extract unique values for each column unique_values_per_column = {} for column in df.select_dtypes(include=['object']).columns: unique_values_per_column[column] = df[column].unique().tolist() # Convert the dictionary to JSON json_data_train = json.dumps(unique_values_per_column, indent=4) testData_fname = "Sample Retail Stores Data.csv" # Load the dataset df2 = pd.read_csv(testData_fname) convert_date_time_columns_to_float(df2) # Extract unique values for each column unique_values_per_column = {} for column in df2.select_dtypes(include=['object']).columns: unique_values_per_column[column] = df2[column].unique().tolist() # Convert the dictionary to JSON json_data_test = json.dumps(unique_values_per_column, indent=4) # Define user's question user_question = "Percentage share of State by Value?" # Define the prompt template prompt_template = f'''If the dataset has the following columns: {json_data_train}'''+''' Understand user questions with different column names and convert them to a JSON format. Question might not even mentioned column name at all, it would probably mention value of the column. so it has to figure it out columnn name based on that value. Example1: User Question1: top zone in the year 2019 with Loan Amt between 10k and 20k and tenure > 12 excluding Texas region? { "start_date": "01-01-2019", "end_date": "31-12-2019", "time_stamp_col": "Due Date", "agg_columns": [], "trend": "null", "to_start_date": "null", "to_end_date": "null", "growth": "null", "variables_grpby": ["Zone"], "filters": {}, "not_in": {"Region": ["Texas"]}, "num_filter": { "gt": [ ["Loan Tenure", 12], ["Loan Amount", 10000] ], "lt": [ ["Loan Amount", 20000] ] }, "percent": "false", "top": "1", "bottom": "null" } Note the following in the above example - The word "top" in the User Question made the "top" key have the value as "1". If "highest" is mentioned in the User Question, even then "top" would have the value as "1". If "top" is not mentioned or not implied in the User Question, then it takes on the value "null". Similarly for "bottom" key in the System Response. - The word "zone" in the User Question refers to a column "Zone" in the dataset and since it is a non-numeric column and we have to group by that column, the system response has it as one of the values of the list of the key "variables_grpby" - The key "start_date" and "end_date" Since it is mentioned 2019 in the User Question as the timeframe, the "start_date" assumes the beginning of the year 2019 and "end_date" assumes the end of the year 2019. If no date related words are mentioned in the question, "start_date" would be "null" and "end_date" would be "null". - The key "time_stamp_col" in the System Response should mention the relevant time related column name from the dataset according to the question if the question mentions a time related word. - The key "agg_columns" in the System Response is a list of columns to be aggregated which should mention the numeric column names on which the question wants us to aggregate on. - The key "trend" in the System Response, "trend" is set to "null" since the user question doesn't imply any trend analysis . If the question were about trends over time, this key would contain information about the trend, such as "upward," "downward," or "null" if no trend is specified. - The key "filters" An empty dictionary in this case, as there are no explicit filters mentioned in the user question. If the user asked to filter data based on certain conditions (e.g. excluding a specific region), this key would contain the relevant filters. - The key "to_start_date" and "to_end_date" Both set to "null" in this example because the user question specifies a single timeframe (2019). If the question mentioned a range (e.g. "from January 2019 to March 2019"), these keys would capture the specified range. - The key "growth" Set to "null" in this example as there is no mention of growth in the user question. If the user inquired about growth or change over time, this key would provide information about the type of growth (e.g."monthly","yearly"," "absolute") or be set to "null" if not applicable. - The key "not_in" Contains information about exclusion criteria based on the user's question. In this example, it excludes the "Texas" region. If the user question doesn't involve exclusions, this key would be an empty dictionary. - The key "num_filter" Specifies numerical filters based on conditions in the user question. In this example, it filters loans with a tenure greater than 12 and loan amounts between 10k and 20k. If the user question doesn't involve numerical filters, this key would be an empty dictionary. - The key "percent" Set to "false" in this example as there is no mention of percentage in the user question. If the user inquired about percentages, this key would contain information about the use of percentages in the response. Similarly, below are more examples of user questions and their corresponding expected System Responses. Example 2: User Question: What is the Highest Loan Amount and Loan Outstanding by RM Name James in January 2020 { "start_date": "01-01-2020", "end_date": "31-01-2020", "time_stamp_col": "Due Date", "agg_columns": ["Loan Amount", "Loan Outstanding"], "trend": "null", "to_start_date": "null", "to_end_date": "null", "growth": "null", "variables_grpby": [], "filters": {"RM Name": ["James"]}, "not_in": {}, "num_filter": {}, "percent": "false", "top": "1", "bottom": "null" } Example 3: User Question: Which RM Name with respect to Region has the Highest Interest Outstanding and Principal Outstanding in the year 2019 { "start_date": "01-01-2019", "end_date": "31-12-2019", "time_stamp_col": "Due Date", "agg_columns": ["Interest Outstanding", "Principal Outstanding"], "trend": "null", "to_start_date": "null", "to_end_date": "null", "growth": "null", "variables_grpby": ["RM Name", "Region"], "filters": {}, "not_in": {}, "num_filter": {}, "percent": "false", "top": "1", "bottom": "null" } Example 4: User Question: Which Branch in North Carolina with respect to Cibil Score Bucket has the Highest Cibil Score in 2019 { "start_date": "01-01-2019", "end_date": "31-12-2019", "time_stamp_col": "Due Date", "agg_columns": ["Cibil Score", "DPD Bucket"], "trend": "null", "to_start_date": "null", "to_end_date": "null", "growth": "null", "variables_grpby": ["Branch"], "filters": {"Region": ["North Carolina"]}, "not_in": {}, "num_filter": {}, "percent": "false", "top": "1", "bottom": "null" } '' Example 5: User Question: With respect to Zone, Region, Branch, RM Name what is the Highest Loan Amount, Loan Tenure, Loan Outstanding, EMI Pending, Principal Outstanding { "start_date": "null", "end_date": "null", "time_stamp_col": "null", "agg_columns": ["Loan Amount", "Loan Tenure", "Loan Outstanding", "EMI Pending", "Principal Outstanding"], "trend": "null", "to_start_date": "null", "to_end_date": "null", "growth": "null", "variables_grpby": ["Zone", "Region", "Branch", "RM Name"], "filters": {}, "not_in": {}, "num_filter": {}, "percent": "false", "top": "1", "bottom": "null" } Example 6: User Question: Top 2 zones by Housing Loan in the year 2019 { "start_date": "01-01-2019", "end_date": "31-12-2019", "time_stamp_col": "Due Date", "agg_columns": ["Housing Loan"], "trend": "null", "to_start_date": "null", "to_end_date": "null", "growth": "null", "variables_grpby": ["Zone"], "filters": {"Product": ["Home Loan"]}, "not_in": {}, "num_filter": {}, "percent": "false", "top": "2", "bottom": "null" } '''+ f'''Our test dataset has the following columns: {json_data_test} User Question (to be converted): {user_question}''' # Load the agent agent = create_csv_agent(OpenAI(temperature=0), testData_fname, verbose=True) gpt4_agent = create_csv_agent(ChatOpenAI(temperature=0, model_name="gpt-4-1106-preview"), testData_fname) # Use the formatted question as the input to your agent response = gpt4_agent.run(prompt_template) # Print the response print(user_question) print(response)) and this is output token ( Percentage share of State by Value? { "start_date": "null", "end_date": "null", "time_stamp_col": "null", "agg_columns": ["Value"], "trend": "null", "to_start_date": "null", "to_end_date": "null", "growth": "null", "variables_grpby": ["State"], "filters": {}, "not_in": {}, "num_filter": {}, "percent": "true", "top": "null", "bottom": "null" }) ### Idea or request for content: _No response_
can you tell me how to calculate what will be cost for this input tokens in prompt and output tokens in prompt
https://api.github.com/repos/langchain-ai/langchain/issues/13947/comments
1
2023-11-28T04:42:02Z
2024-03-13T20:00:27Z
https://github.com/langchain-ai/langchain/issues/13947
2,013,606,586
13,947
[ "hwchase17", "langchain" ]
### System Info machine: mackbook pro Sonoma 14.1.1 package: python = "3.10.13" openai = "^0.28.1" pandas = "^2.1.1" ipython = "^8.16.0" langchain = "^0.0.306" python-dotenv = "^1.0.0" seaborn = "^0.13.0" tqdm = "^4.66.1" torch = "^2.1.0" transformers = "^4.35.2" accelerate = "^0.24.1" sentencepiece = "^0.1.99" openllm = "^0.4.27" ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction follow the instruction https://python.langchain.com/docs/integrations/llms/openllm 1)openllm start dolly-v2 2) from langchain.llms import OpenLLM server_url = "http://localhost:3000" # Replace with remote host if you are running on a remote server llm = OpenLLM(server_url=server_url) llm("what is the meaning of life") error: line 229 /langchain/llms/openllm.py 220 AtrributionError: "HttpClient" object has not attribute 'configuration' ### Expected behavior return a response from LLM
'HTTPClient' object has no attribute 'configuration'
https://api.github.com/repos/langchain-ai/langchain/issues/13943/comments
3
2023-11-28T03:28:12Z
2024-03-13T20:01:59Z
https://github.com/langchain-ai/langchain/issues/13943
2,013,546,758
13,943
[ "hwchase17", "langchain" ]
### System Info langchain 0.0.340 ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [X] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction After openai v1 sdk the previous method openai.proxy = {xxx} is no longer supported. But langchain is still using it. It seems openai v1 sdk only support to set proxy on client level. see this issue on open ai sdk repo https://github.com/openai/openai-python/issues/825#issuecomment-1826047567 ### Expected behavior Should implement the way openai sdk required to set proxy
To support open v1 SDK proxy setting
https://api.github.com/repos/langchain-ai/langchain/issues/13939/comments
1
2023-11-28T02:12:10Z
2024-03-13T20:00:20Z
https://github.com/langchain-ai/langchain/issues/13939
2,013,460,359
13,939
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. It seems like that the agent can only take one variable "input". I would like to create an agent with a custom prompt template that takes multiple variables whenever a user types something. like agent_executor.invoke({"input": "what is my name", "example":example, "user_profile":user_profile}) the custom prompt template looks like """ user input: {input} example: {example} user_profile : {user_profile} ### Suggestion: _No response_
Issue: create agent takes multiple variables
https://api.github.com/repos/langchain-ai/langchain/issues/13937/comments
2
2023-11-28T01:27:57Z
2024-03-13T20:00:24Z
https://github.com/langchain-ai/langchain/issues/13937
2,013,425,511
13,937
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. trying building devcontainer following steps in doc ~/langchain/.devcontainer/README.md, but stuck at step10/11 <img width="876" alt="Screen Shot 2023-11-27 at 7 56 30 PM" src="https://github.com/langchain-ai/langchain/assets/97558871/3b8c803c-bdce-410d-8b7a-19fb0d1bc692"> ### Suggestion: _No response_
devcontainer fail to built
https://api.github.com/repos/langchain-ai/langchain/issues/13936/comments
3
2023-11-28T00:57:23Z
2023-11-29T04:10:15Z
https://github.com/langchain-ai/langchain/issues/13936
2,013,395,749
13,936
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. When utilizing the create_sql_agent module by LangChain to interact with a SQL database and generate SQL queries from natural language, I've encountered an issue with the responses. Currently, when I execute queries, the SQL Agent responds with placeholder information, citing security reasons for omitting the actual data. However, for my use case, it is crucial to receive the real information retrieved from the SQL database tables. Also, it limits the information as well even with `top_k=50`. The database return 50 records but in the output it only shows 10-12 with the following output: Please note that this is a partial list. There are more ... langchain == 0.0.313 langchain-experimental == 0.0.32 ``` dbmssql = SQLDatabase.from_uri( connection_url, include_tables=[ "table_1", "table_2", "table_3", "table_4", ], view_support=False ) chat_llm = ChatOpenAI( model="gpt-4", temperature=0, verbose=True, openai_api_key=openai_api_key, request_timeout=600 ) def create_mssql_db_agent(dbmssql): few_shot_docs = [ Document(page_content=question, metadata={ "sql_query": few_shots[question]}) for question in few_shots.keys() ] vector_db = FAISS.from_documents(few_shot_docs, embeddings) retriever = vector_db.as_retriever() tool_description = """ This tool will help you understand similar examples to adapt them to the user question. Input to this tool should be the user question. """ retriever_tool = create_retriever_tool( retriever, name="sql_get_similar_examples", description=tool_description ) custom_tool_list = [retriever_tool] custom_suffix = """ I should first get the similar examples I know. If the examples are enough to construct the query, I can build it. Otherwise, I can then look at the tables in the database to see what I can query. Then I should query the schema of the most relevant tables """ agent = create_sql_agent( agent_executor_kwargs={"return_intermediate_steps": True}, llm=chat_llm, toolkit=SQLDatabaseToolkit(db=dbmssql, llm=chat_llm), verbose=True, agent_type=AgentType.OPENAI_FUNCTIONS, extra_tools=custom_tool_list, suffix=custom_suffix, top_k=50, # return_intermediate_steps=True ) return agent ``` ### Suggestion: _No response_
Issue: create_sql_agent omits and limits actual information retrieved from SQL tables
https://api.github.com/repos/langchain-ai/langchain/issues/13931/comments
4
2023-11-27T22:16:47Z
2024-04-06T01:22:57Z
https://github.com/langchain-ai/langchain/issues/13931
2,013,215,135
13,931
[ "hwchase17", "langchain" ]
### Feature request Allow intercepting agents' final answers and reporting any feedback on the final answers to the agents without ending the agent execution chain. This will enable users to, for example, run validations on the final answer (e.g. whether the answer contains some keywords) or agent's state (whether agent has used a particular tool) and report issues to the agent so that it can fix the problems before ending the chain. ### Motivation Today, we don't have a way to run an analysis on final answers and report problems (if any) to the agents so that they can fix the problems without losing the thoughts and observations of the current chain (if there's a way to achieve that today, please feel free to point me to it and close this issue). This feature will allow self-correction of final answers, further enhancing the capabilities of agents. Some use cases I have in mind include 1. Validate the final answer to ensure that it conforms to some instructions, e.g. by making an LLM call. 2. Make sure the agent has used a set of tools to come up with the answer. 3. Apply some rules on the answer to determine whether answer is correct or not, e.g. whether the answer contains certain keywords. ### Your contribution I'm not able to contribute currently, however, I might be able to pick this up in coming weeks if it seems useful to others as well.
Allow intercepting agents' final answers and reporting feedback to them
https://api.github.com/repos/langchain-ai/langchain/issues/13929/comments
5
2023-11-27T18:23:38Z
2024-03-17T16:06:36Z
https://github.com/langchain-ai/langchain/issues/13929
2,012,847,820
13,929
[ "hwchase17", "langchain" ]
Hi everyone, I'm trying to do something and I haven´t found enough information on the internet to make it work properly with Langchain. Here it is: I want to develop a QA chat using pdfs as knowledge source, using as relevant documents the ones corresponding to a certain pdf that the user will choose with a select box. To achieve that: 1. I've built a Azure Search vector store in which all the embeddings of different documents are stored. Each document's metadata looks something like this: { "@odata.context": "https://blublu.search.windows.net/indexes('embeddings')/$metadata#docs(*)", "@search.nextPageParameters": { "search": "*", "top": null, "skip": 50 }, "value": [ { "@search.score": 1, "id": "doc_embeddings_7102233d903cd1ac7475a60c373a716b57bf1586", "title": "https://blahblah.blob.core.windows.net/documents/converted/100.pdf.txt", "content": " Officer | Immediate line manager | Region/Division head or VP of the corresponding vertical | KFSL HR | | CEO | \n|Assistant Manager | | \n|Manager | CEO.\nv", "content_vector": [ -0.0014578825, -0.0058897766], "tag": "", "metadata": "{\"source\": \"[https://ask}" },...} 3.With all this I'm using a ConversationalRetrievalChain to retrieve info from the vector store and using an llm to answer questions entered via prompt: class FilteredRetriever: def __init__(self, retriever, filter_prefix): self.retriever = retriever self.filter_prefix = filter_prefix def retrieve(self, *args, **kwargs): results = self.retriever.retrieve(*args, **kwargs) return [doc for doc in results if doc['value']['title'].startswith(self.filter_prefix)] source='https://blahblah.blob.core.windows.net/documents/converted/100.pdf.txt' filtered_retriever = FilteredRetriever(self.vector_store.as_retriever(), source) chain = ConversationalRetrievalChain( retriever=filtered_retriever, question_generator=question_generator, combine_docs_chain=doc_chain, return_source_documents=True, # top_k_docs_for_context= self.k ) But this is raising: instance of BaseRetriever expected (type=type_error.arbitrary_type; expected_arbitrary_type=BaseRetriever) ### Suggestion: Have already referred [Filtering retrieval with ConversationalRetrievalChain](https://github.com/langchain-ai/langchain/issues/7474#top) #7474
Filtering Issue with ConversationRetrievalChain
https://api.github.com/repos/langchain-ai/langchain/issues/13924/comments
2
2023-11-27T17:19:53Z
2024-03-13T20:02:28Z
https://github.com/langchain-ai/langchain/issues/13924
2,012,745,465
13,924
[ "hwchase17", "langchain" ]
-
-
https://api.github.com/repos/langchain-ai/langchain/issues/13923/comments
1
2023-11-27T17:04:38Z
2023-11-28T05:59:31Z
https://github.com/langchain-ai/langchain/issues/13923
2,012,721,002
13,923
[ "hwchase17", "langchain" ]
@dosu-bot I have a project where I need to extract product details from product links online. What is the best url loader for this use case? Also, for the previous links that I already appended to a csv file called "Lalal". How can I create embeddings only for the new URL link that I will extract so that I dont have to embed the entire document every single time. Please write the code for me in python.
Link to URL to load product details
https://api.github.com/repos/langchain-ai/langchain/issues/13920/comments
6
2023-11-27T16:38:20Z
2024-03-13T19:59:35Z
https://github.com/langchain-ai/langchain/issues/13920
2,012,673,073
13,920
[ "hwchase17", "langchain" ]
### System Info Langchain all versions ### Who can help? @hwchase17 @izzymsft ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Instantiate a new AzureCosmosDBVectorSearch with embeddings key different than vectorContent, and then you get this error `Similarity index was not found for a vector similarity search query.` This is because embeddings key is parametrised correctly https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/vectorstores/azure_cosmos_db.py#L75 https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/vectorstores/azure_cosmos_db.py#L92 , but not used on index creation https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/vectorstores/azure_cosmos_db.py#L224 ### Expected behavior The embedding_key param should be used to create the index properly
AzureCosmosDBVectorSearch index creation fixes document key
https://api.github.com/repos/langchain-ai/langchain/issues/13918/comments
2
2023-11-27T16:11:15Z
2024-03-13T20:01:29Z
https://github.com/langchain-ai/langchain/issues/13918
2,012,621,829
13,918
[ "hwchase17", "langchain" ]
### Feature request I propose the addition of a new feature, a BinaryPyPdf loader, to the existing Langchain document loaders. This loader is designed to handle PDF files in a binary format, providing a more efficient and effective way of processing PDF documents within the Langchain project. ### Motivation As a Langchain enthusiast, I noticed that the current document loaders lack a dedicated loader for handling PDF files in binary format. This often leads to inefficiencies and limitations when working with PDF documents. The addition of a BinaryPyPdf loader would address this gap and enhance the overall functionality and versatility of the Langchain document loaders. ### Your contribution I have already developed a BinaryPyPdf loader using `pypdf` that is ready for integration into the Langchain project. I am prepared to submit a PR for this feature, following the guidelines outlined in the [`CONTRIBUTING.MD`](https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md). I look forward to the opportunity to contribute to the project and enhance its capabilities.
Addition of BinaryPyPdf Loader for Langchain Document Loaders
https://api.github.com/repos/langchain-ai/langchain/issues/13916/comments
1
2023-11-27T16:04:01Z
2024-03-13T19:55:56Z
https://github.com/langchain-ai/langchain/issues/13916
2,012,607,901
13,916
[ "hwchase17", "langchain" ]
### System Info You cannot run `poetry install --with test` on a fresh build: ``` ╭─ username@comp ~/path/to/coding ╰─➤ cd langchain2 ls ╭─username@comp ~/path/to/langchain2 ‹master› ╰─➤ ls CITATION.cff Makefile cookbook libs pyproject.toml LICENSE README.md docker poetry.lock templates MIGRATE.md SECURITY.md docs poetry.toml ╭─username@comp ~/path/to/langchain2 ‹master› ╰─➤ poetry install --with test Creating virtualenv langchain-monorepo in /path/to/langchain2/.venv Installing dependencies from lock file Package operations: 165 installs, 1 update, 0 removals • Downgrading pip (23.3.1 -> 23.2.1) • Installing attrs (23.1.0) • Installing rpds-py (0.10.3) • Installing referencing (0.30.2) • Installing six (1.16.0) • Installing jsonschema-specifications (2023.7.1) • Installing platformdirs (3.11.0) • Installing python-dateutil (2.8.2) • Installing traitlets (5.11.1) • Installing types-python-dateutil (2.8.19.14) • Installing arrow (1.3.0) • Installing entrypoints (0.4) • Installing fastjsonschema (2.18.1) • Installing jsonschema (4.19.1) • Installing jupyter-core (5.3.2) • Installing nest-asyncio (1.5.8) • Installing pycparser (2.21) • Installing pyzmq (25.1.1) • Installing tornado (6.3.3) • Installing cffi (1.16.0) • Installing fqdn (1.5.1) • Installing idna (3.4) • Installing isoduration (20.11.0) • Installing jsonpointer (2.4) • Installing jupyter-client (7.4.9) • Installing markupsafe (2.1.3) • Installing nbformat (5.9.2) • Installing ptyprocess (0.7.0) • Installing rfc3339-validator (0.1.4) • Installing rfc3986-validator (0.1.1) • Installing soupsieve (2.5) • Installing uri-template (1.3.0) • Installing webcolors (1.13) • Installing webencodings (0.5.1) • Installing argon2-cffi-bindings (21.2.0): Pending... • Installing argon2-cffi-bindings (21.2.0) • Installing asttokens (2.4.0) • Installing beautifulsoup4 (4.12.2) • Installing bleach (6.0.0) • Installing defusedxml (0.7.1) • Installing executing (2.0.0) • Installing jinja2 (3.1.2) • Installing jupyterlab-pygments (0.2.2) • Installing mistune (3.0.2) • Installing nbclient (0.7.4) • Installing packaging (23.2) • Installing pandocfilters (1.5.0) • Installing parso (0.8.3) • Installing pure-eval (0.2.2) • Installing pygments (2.16.1) • Installing python-json-logger (2.0.7) • Installing pyyaml (6.0.1) • Installing sniffio (1.3.0) • Installing terminado (0.17.1) • Installing tinycss2 (1.2.1) • Installing wcwidth (0.2.8) • Installing anyio (3.7.1): Installing... • Installing appnope (0.1.3): Installing... • Installing anyio (3.7.1) • Installing appnope (0.1.3) • Installing argon2-cffi (23.1.0) • Installing backcall (0.2.0) • Installing certifi (2023.7.22) • Installing charset-normalizer (3.3.0) • Installing decorator (5.1.1) • Installing jedi (0.19.1) • Installing jupyter-events (0.7.0) • Installing jupyter-server-terminals (0.4.4) • Installing matplotlib-inline (0.1.6) • Installing nbconvert (7.8.0) • Installing overrides (7.4.0) • Installing pexpect (4.8.0) • Installing pickleshare (0.7.5) • Installing prometheus-client (0.17.1) • Installing prompt-toolkit (3.0.39) • Installing send2trash (1.8.2) • Installing stack-data (0.6.3) • Installing urllib3 (2.0.6) • Installing websocket-client (1.6.3) • Installing babel (2.13.0) • Installing comm (0.1.4) • Installing debugpy (1.8.0) • Installing ipython (8.12.3) • Installing json5 (0.9.14) • Installing jupyter-server (2.7.3) • Installing psutil (5.9.5) • Installing requests (2.31.0) • Installing async-lru (2.0.4) • Installing ipykernel (6.25.2) • Installing jupyter-lsp (2.2.0) • Installing jupyterlab-server (2.25.0) • Installing notebook-shim (0.2.3) • Installing fastcore (1.4.2) • Installing ipython-genutils (0.2.0) • Installing jupyterlab (4.0.6) • Installing jupyterlab-widgets (3.0.9) • Installing mdurl (0.1.2) • Installing qtpy (2.4.0) • Installing typing-extensions (4.8.0) • Installing widgetsnbextension (4.0.9) • Installing alabaster (0.7.13): Installing... • Installing annotated-types (0.5.0): Pending... • Installing alabaster (0.7.13) • Installing annotated-types (0.5.0) • Installing docutils (0.17.1) • Installing frozenlist (1.4.0) • Installing ghapi (0.1.22) • Installing imagesize (1.4.1) • Installing ipywidgets (8.1.1) • Installing jupyter-console (6.6.3) • Installing markdown-it-py (2.2.0) • Installing multidict (6.0.4) • Installing mypy-extensions (1.0.0) • Installing notebook (7.0.4) • Installing pydantic-core (2.10.1) • Installing qtconsole (5.4.4) • Installing sphinxcontrib-applehelp (1.0.4) • Installing snowballstemmer (2.2.0) • Installing sphinxcontrib-devhelp (1.0.2) • Installing sphinxcontrib-htmlhelp (2.0.1) • Installing sphinxcontrib-jsmath (1.0.1) • Installing sphinxcontrib-qthelp (1.0.3) • Installing sphinxcontrib-serializinghtml (1.1.5) • Installing zipp (3.17.0) • Installing aiosignal (1.3.1): Installing... • Installing async-timeout (4.0.3): Pending... • Installing aiosignal (1.3.1) • Installing async-timeout (4.0.3) • Installing click (8.1.7) • Installing fastrelease (0.1.17) • Installing importlib-metadata (6.8.0) • Installing jupyter (1.0.0) • Installing marshmallow (3.20.1) • Installing mdit-py-plugins (0.3.5) • Installing pathspec (0.11.2) • Installing pydantic (2.4.2) • Installing sphinx (4.5.0) • Installing sqlalchemy (2.0.21) • Installing tabulate (0.9.0) • Installing tokenize-rt (5.2.0) • Installing typing-inspect (0.9.0) • Installing yarl (1.9.2) • Installing aiohttp (3.8.5): Failed ChefBuildError Backend subprocess exited when trying to invoke build_wheel ********************* * Accelerated build * ********************* running bdist_wheel running build running build_py creating build creating build/lib.macosx-13-arm64-cpython-312 creating build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/web_ws.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/worker.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/multipart.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/web_response.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/client_ws.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/test_utils.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/tracing.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/web_exceptions.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/web_middlewares.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/web.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/http_exceptions.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/web_app.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/streams.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/web_protocol.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/log.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/client.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/web_urldispatcher.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/web_request.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/http_websocket.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/client_proto.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/locks.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/__init__.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/web_runner.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/web_server.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/base_protocol.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/payload.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/client_reqrep.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/http.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/web_log.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/resolver.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/formdata.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/payload_streamer.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/web_routedef.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/connector.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/client_exceptions.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/typedefs.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/hdrs.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/web_fileresponse.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/http_writer.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/tcp_helpers.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/helpers.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/http_parser.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/cookiejar.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/pytest_plugin.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/abc.py -> build/lib.macosx-13-arm64-cpython-312/aiohttp running egg_info writing aiohttp.egg-info/PKG-INFO writing dependency_links to aiohttp.egg-info/dependency_links.txt writing requirements to aiohttp.egg-info/requires.txt writing top-level names to aiohttp.egg-info/top_level.txt reading manifest file 'aiohttp.egg-info/SOURCES.txt' reading manifest template 'MANIFEST.in' warning: no files found matching 'aiohttp' anywhere in distribution warning: no previously-included files matching '*.pyc' found anywhere in distribution warning: no previously-included files matching '*.pyd' found anywhere in distribution warning: no previously-included files matching '*.so' found anywhere in distribution warning: no previously-included files matching '*.lib' found anywhere in distribution warning: no previously-included files matching '*.dll' found anywhere in distribution warning: no previously-included files matching '*.a' found anywhere in distribution warning: no previously-included files matching '*.obj' found anywhere in distribution warning: no previously-included files found matching 'aiohttp/*.html' no previously-included directories found matching 'docs/_build' adding license file 'LICENSE.txt' writing manifest file 'aiohttp.egg-info/SOURCES.txt' copying aiohttp/_cparser.pxd -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/_find_header.pxd -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/_headers.pxi -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/_helpers.pyi -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/_helpers.pyx -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/_http_parser.pyx -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/_http_writer.pyx -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/_websocket.pyx -> build/lib.macosx-13-arm64-cpython-312/aiohttp copying aiohttp/py.typed -> build/lib.macosx-13-arm64-cpython-312/aiohttp creating build/lib.macosx-13-arm64-cpython-312/aiohttp/.hash copying aiohttp/.hash/_cparser.pxd.hash -> build/lib.macosx-13-arm64-cpython-312/aiohttp/.hash copying aiohttp/.hash/_find_header.pxd.hash -> build/lib.macosx-13-arm64-cpython-312/aiohttp/.hash copying aiohttp/.hash/_helpers.pyi.hash -> build/lib.macosx-13-arm64-cpython-312/aiohttp/.hash copying aiohttp/.hash/_helpers.pyx.hash -> build/lib.macosx-13-arm64-cpython-312/aiohttp/.hash copying aiohttp/.hash/_http_parser.pyx.hash -> build/lib.macosx-13-arm64-cpython-312/aiohttp/.hash copying aiohttp/.hash/_http_writer.pyx.hash -> build/lib.macosx-13-arm64-cpython-312/aiohttp/.hash copying aiohttp/.hash/_websocket.pyx.hash -> build/lib.macosx-13-arm64-cpython-312/aiohttp/.hash copying aiohttp/.hash/hdrs.py.hash -> build/lib.macosx-13-arm64-cpython-312/aiohttp/.hash running build_ext building 'aiohttp._websocket' extension creating build/temp.macosx-13-arm64-cpython-312 creating build/temp.macosx-13-arm64-cpython-312/aiohttp clang -fno-strict-overflow -Wsign-compare -Wunreachable-code -fno-common -dynamic -DNDEBUG -g -O3 -Wall -isysroot /Library/Developer/CommandLineTools/SDKs/MacOSX13.sdk -I/private/var/folders/z4/nphh3sds4zsckwzc8kcht7h00000gn/T/tmpmjkdtpaa/.venv/include -I/opt/homebrew/opt/[email protected]/Frameworks/Python.framework/Versions/3.12/include/python3.12 -c aiohttp/_websocket.c -o build/temp.macosx-13-arm64-cpython-312/aiohttp/_websocket.o aiohttp/_websocket.c:1475:17: warning: 'Py_OptimizeFlag' is deprecated [-Wdeprecated-declarations] if (unlikely(!Py_OptimizeFlag)) { ^ /opt/homebrew/opt/[email protected]/Frameworks/Python.framework/Versions/3.12/include/python3.12/cpython/pydebug.h:13:1: note: 'Py_OptimizeFlag' has been explicitly marked deprecated here Py_DEPRECATED(3.12) PyAPI_DATA(int) Py_OptimizeFlag; ^ /opt/homebrew/opt/[email protected]/Frameworks/Python.framework/Versions/3.12/include/python3.12/pyport.h:317:54: note: expanded from macro 'Py_DEPRECATED' #define Py_DEPRECATED(VERSION_UNUSED) __attribute__((__deprecated__)) ^ aiohttp/_websocket.c:2680:27: warning: 'ma_version_tag' is deprecated [-Wdeprecated-declarations] return likely(dict) ? __PYX_GET_DICT_VERSION(dict) : 0; ^ aiohttp/_websocket.c:1118:65: note: expanded from macro '__PYX_GET_DICT_VERSION' #define __PYX_GET_DICT_VERSION(dict) (((PyDictObject*)(dict))->ma_version_tag) ^ /opt/homebrew/opt/[email protected]/Frameworks/Python.framework/Versions/3.12/include/python3.12/cpython/dictobject.h:22:5: note: 'ma_version_tag' has been explicitly marked deprecated here Py_DEPRECATED(3.12) uint64_t ma_version_tag; ^ /opt/homebrew/opt/[email protected]/Frameworks/Python.framework/Versions/3.12/include/python3.12/pyport.h:317:54: note: expanded from macro 'Py_DEPRECATED' #define Py_DEPRECATED(VERSION_UNUSED) __attribute__((__deprecated__)) ^ aiohttp/_websocket.c:2692:36: warning: 'ma_version_tag' is deprecated [-Wdeprecated-declarations] return (dictptr && *dictptr) ? __PYX_GET_DICT_VERSION(*dictptr) : 0; ^ aiohttp/_websocket.c:1118:65: note: expanded from macro '__PYX_GET_DICT_VERSION' #define __PYX_GET_DICT_VERSION(dict) (((PyDictObject*)(dict))->ma_version_tag) ^ /opt/homebrew/opt/[email protected]/Frameworks/Python.framework/Versions/3.12/include/python3.12/cpython/dictobject.h:22:5: note: 'ma_version_tag' has been explicitly marked deprecated here Py_DEPRECATED(3.12) uint64_t ma_version_tag; ^ /opt/homebrew/opt/[email protected]/Frameworks/Python.framework/Versions/3.12/include/python3.12/pyport.h:317:54: note: expanded from macro 'Py_DEPRECATED' #define Py_DEPRECATED(VERSION_UNUSED) __attribute__((__deprecated__)) ^ aiohttp/_websocket.c:2696:56: warning: 'ma_version_tag' is deprecated [-Wdeprecated-declarations] if (unlikely(!dict) || unlikely(tp_dict_version != __PYX_GET_DICT_VERSION(dict))) ^ aiohttp/_websocket.c:1118:65: note: expanded from macro '__PYX_GET_DICT_VERSION' #define __PYX_GET_DICT_VERSION(dict) (((PyDictObject*)(dict))->ma_version_tag) ^ /opt/homebrew/opt/[email protected]/Frameworks/Python.framework/Versions/3.12/include/python3.12/cpython/dictobject.h:22:5: note: 'ma_version_tag' has been explicitly marked deprecated here Py_DEPRECATED(3.12) uint64_t ma_version_tag; ^ /opt/homebrew/opt/[email protected]/Frameworks/Python.framework/Versions/3.12/include/python3.12/pyport.h:317:54: note: expanded from macro 'Py_DEPRECATED' #define Py_DEPRECATED(VERSION_UNUSED) __attribute__((__deprecated__)) ^ aiohttp/_websocket.c:2741:9: warning: 'ma_version_tag' is deprecated [-Wdeprecated-declarations] __PYX_PY_DICT_LOOKUP_IF_MODIFIED( ^ aiohttp/_websocket.c:1125:16: note: expanded from macro '__PYX_PY_DICT_LOOKUP_IF_MODIFIED' if (likely(__PYX_GET_DICT_VERSION(DICT) == __pyx_dict_version)) {\ ^ aiohttp/_websocket.c:1118:65: note: expanded from macro '__PYX_GET_DICT_VERSION' #define __PYX_GET_DICT_VERSION(dict) (((PyDictObject*)(dict))->ma_version_tag) ^ /opt/homebrew/opt/[email protected]/Frameworks/Python.framework/Versions/3.12/include/python3.12/cpython/dictobject.h:22:5: note: 'ma_version_tag' has been explicitly marked deprecated here Py_DEPRECATED(3.12) uint64_t ma_version_tag; ^ /opt/homebrew/opt/[email protected]/Frameworks/Python.framework/Versions/3.12/include/python3.12/pyport.h:317:54: note: expanded from macro 'Py_DEPRECATED' #define Py_DEPRECATED(VERSION_UNUSED) __attribute__((__deprecated__)) ^ aiohttp/_websocket.c:2741:9: warning: 'ma_version_tag' is deprecated [-Wdeprecated-declarations] __PYX_PY_DICT_LOOKUP_IF_MODIFIED( ^ aiohttp/_websocket.c:1129:30: note: expanded from macro '__PYX_PY_DICT_LOOKUP_IF_MODIFIED' __pyx_dict_version = __PYX_GET_DICT_VERSION(DICT);\ ^ aiohttp/_websocket.c:1118:65: note: expanded from macro '__PYX_GET_DICT_VERSION' #define __PYX_GET_DICT_VERSION(dict) (((PyDictObject*)(dict))->ma_version_tag) ^ /opt/homebrew/opt/[email protected]/Frameworks/Python.framework/Versions/3.12/include/python3.12/cpython/dictobject.h:22:5: note: 'ma_version_tag' has been explicitly marked deprecated here Py_DEPRECATED(3.12) uint64_t ma_version_tag; ^ /opt/homebrew/opt/[email protected]/Frameworks/Python.framework/Versions/3.12/include/python3.12/pyport.h:317:54: note: expanded from macro 'Py_DEPRECATED' #define Py_DEPRECATED(VERSION_UNUSED) __attribute__((__deprecated__)) ^ aiohttp/_websocket.c:3042:55: error: no member named 'ob_digit' in 'struct _longobject' const digit* digits = ((PyLongObject*)x)->ob_digit; ~~~~~~~~~~~~~~~~~~ ^ aiohttp/_websocket.c:3097:55: error: no member named 'ob_digit' in 'struct _longobject' const digit* digits = ((PyLongObject*)x)->ob_digit; ~~~~~~~~~~~~~~~~~~ ^ aiohttp/_websocket.c:3238:55: error: no member named 'ob_digit' in 'struct _longobject' const digit* digits = ((PyLongObject*)x)->ob_digit; ~~~~~~~~~~~~~~~~~~ ^ aiohttp/_websocket.c:3293:55: error: no member named 'ob_digit' in 'struct _longobject' const digit* digits = ((PyLongObject*)x)->ob_digit; ~~~~~~~~~~~~~~~~~~ ^ aiohttp/_websocket.c:3744:47: error: no member named 'ob_digit' in 'struct _longobject' const digit* digits = ((PyLongObject*)b)->ob_digit; ~~~~~~~~~~~~~~~~~~ ^ 6 warnings and 5 errors generated. error: command '/usr/bin/clang' failed with exit code 1 at ~/.local/pipx/venvs/poetry/lib/python3.12/site-packages/poetry/installation/chef.py:164 in _prepare 160│ 161│ error = ChefBuildError("\n\n".join(message_parts)) 162│ 163│ if error is not None: → 164│ raise error from None 165│ 166│ return path 167│ 168│ def _prepare_sdist(self, archive: Path, destination: Path | None = None) -> Path: Note: This error originates from the build backend, and is likely not a problem with poetry but with aiohttp (3.8.5) not supporting PEP 517 builds. You can verify this by running 'pip wheel --no-cache-dir --use-pep517 "aiohttp (==3.8.5)"'. • Installing black (23.10.1) • Installing colorama (0.4.6) • Installing dataclasses-json (0.6.1) • Installing dnspython (2.4.2) • Installing jsonpatch (1.33) • Installing jupyter-cache (0.6.1) • Installing langsmith (0.0.63) • Installing livereload (2.6.3) • Installing myst-parser (0.18.1) • Installing nbdev (1.2.0) • Installing numpy (1.24.4): Failed ChefBuildError Backend 'setuptools.build_meta:__legacy__' is not available. Traceback (most recent call last): File "/Users/username/.local/pipx/venvs/poetry/lib/python3.12/site-packages/pyproject_hooks/_in_process/_in_process.py", line 77, in _build_backend obj = import_module(mod_path) ^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/homebrew/Cellar/[email protected]/3.12.0/Frameworks/Python.framework/Versions/3.12/lib/python3.12/importlib/__init__.py", line 90, in import_module return _bootstrap._gcd_import(name[level:], package, level) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "<frozen importlib._bootstrap>", line 1381, in _gcd_import File "<frozen importlib._bootstrap>", line 1354, in _find_and_load File "<frozen importlib._bootstrap>", line 1304, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 488, in _call_with_frames_removed File "<frozen importlib._bootstrap>", line 1381, in _gcd_import File "<frozen importlib._bootstrap>", line 1354, in _find_and_load File "<frozen importlib._bootstrap>", line 1325, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 929, in _load_unlocked File "<frozen importlib._bootstrap_external>", line 994, in exec_module File "<frozen importlib._bootstrap>", line 488, in _call_with_frames_removed File "/private/var/folders/z4/nphh3sds4zsckwzc8kcht7h00000gn/T/tmphs3uy5rx/.venv/lib/python3.12/site-packages/setuptools/__init__.py", line 10, in <module> import distutils.core ModuleNotFoundError: No module named 'distutils' at ~/.local/pipx/venvs/poetry/lib/python3.12/site-packages/poetry/installation/chef.py:164 in _prepare 160│ 161│ error = ChefBuildError("\n\n".join(message_parts)) 162│ 163│ if error is not None: → 164│ raise error from None 165│ 166│ return path 167│ 168│ def _prepare_sdist(self, archive: Path, destination: Path | None = None) -> Path: Note: This error originates from the build backend, and is likely not a problem with poetry but with numpy (1.24.4) not supporting PEP 517 builds. You can verify this by running 'pip wheel --no-cache-dir --use-pep517 "numpy (==1.24.4)"'. • Installing numpydoc (1.2) • Installing pydata-sphinx-theme (0.8.1) • Installing sphinxcontrib-jquery (4.1) • Installing tenacity (8.2.3) Warning: The file chosen for install of executing 2.0.0 (executing-2.0.0-py2.py3-none-any.whl) is yanked. Reason for being yanked: Released 2.0.1 which is equivalent but added 'python_requires = >=3.5' so that pip install with Python 2 uses the previous version 1.2.0. ``` Here is my poetry info: ``` ╰─➤ poetry env info 1 ↵ Virtualenv Python: 3.12.0 Implementation: CPython Path: /Users/username/path/to/langchain2/.venv Executable: /Users/username/path/to/langchain2/.venv/bin/python Valid: True ``` ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction I believe you should be able to do: 1. git clone 2. poetry install --with test ### Expected behavior I would expect that all packages specified by the lockfile could be installed successfully.
poetry install --with test issue
https://api.github.com/repos/langchain-ai/langchain/issues/13912/comments
2
2023-11-27T14:07:30Z
2023-11-27T23:07:40Z
https://github.com/langchain-ai/langchain/issues/13912
2,012,359,254
13,912
[ "hwchase17", "langchain" ]
### Feature request MultiVectorRetriever is really helpful to add summary and hypothetical queries of our documents to improve the retrievers but only these two are stored in the vectorstore, instead the entire document is within a BaseStore (Memory or Local). The main issue is that: - the Memory one is not going to persist across restarts - the File one is going to create tons of files Why not keeping the original document in the vectorstore as well instead of using external file/memory? ### Motivation Keep documents, questions and summaries on the same vectorstore. ### Your contribution I could work on that but I would like to know your point of view.
MultiVector Retriever BaseStore
https://api.github.com/repos/langchain-ai/langchain/issues/13909/comments
12
2023-11-27T11:33:30Z
2024-07-24T05:23:56Z
https://github.com/langchain-ai/langchain/issues/13909
2,012,075,695
13,909
[ "hwchase17", "langchain" ]
### System Info Ubuntu 23.10 ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain import OpenAI, SQLDatabase from snowflake.snowpark import Session from langchain.chains import create_sql_query_chain from dotenv import load_dotenv import os from urllib.parse import quote load_dotenv() # use the env vars in comments above to set the vars below OpenAI_API_KEY = os.getenv("OPENAI_API_KEY") snowflake_account = os.getenv("ACCOUNT") username = os.getenv("USER") password = os.getenv("SNOWSQL_PWD") warehouse = os.getenv("WAREHOUSE") database = 'LANGCHAIN_DEMO_DB' #os.getenv("DATABASE") schema = 'PUBLIC' #os.getenv("SCHEMA") role = os.getenv("ROLE") # print out all env vars using f-strings each on a separate line but x out password print(f"OpenAI_API_KEY: {'x' * len(OpenAI_API_KEY)}") print(f"snowflake_account: {snowflake_account}") #print(f"username: {username}") #print(f"password: {password}") print(f"warehouse: {warehouse}") print(f"database: {database}") print(f"schema: {schema}") print(f"role: {role}") encoded_password = quote(password, safe='') ``` but it works in my Jupyter notebook ![image](https://github.com/langchain-ai/langchain/assets/25189545/5ef3caa3-747e-4622-9714-a96f8e10a5ad) https://medium.com/@muriithicliffernest/snowflake-langchain-generating-sql-queries-from-natural-language-queries-12c4e2918631 is the tutorial I followed for the .ipynb. ``` pip install --upgrade pip pip install "snowflake-snowpark-python[pandas]" snowflake-sqlalchemy pip install langchain openai langchain-experimental jupyter ``` are the instructions to install packages in that Medium article so I matched versions for both the conda env I'm using for the .py and .ipynb. Even if I use the same `langchain-snowlfake` env for both the error is still there. See the red line under `from langchain import OpenAI, SQLDatabase ` in the right half of the image which is showing `lanchain-sql.py` ### Expected behavior The import should work, no red line.
imports of OpenAI and SQLDatabase don't work in .py file
https://api.github.com/repos/langchain-ai/langchain/issues/13906/comments
3
2023-11-27T11:04:57Z
2024-02-09T02:11:48Z
https://github.com/langchain-ai/langchain/issues/13906
2,012,028,998
13,906
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. Sometimes when interacting with the bot using Retrieval QA chain, it just stops at Entering new RetrievalQA chain... No response, it doesn't give the response, it just stops, I am using qa.acall and using the async callback handler how to fix that, as that is unnacceptable ### Suggestion: _No response_
Issue: Retrieval QA Chain not giving response after Entering new RetrievalQA chain...
https://api.github.com/repos/langchain-ai/langchain/issues/13900/comments
1
2023-11-27T07:12:34Z
2024-03-13T20:02:37Z
https://github.com/langchain-ai/langchain/issues/13900
2,011,642,730
13,900
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. ```python llm = ChatOpenAI(model=gpt_4, temperature=0, api_key=os.environ['OPENAI_API_KEY']) llm_chain = LLMChain(llm=llm, prompt=react_prompt) tool_names = [tool.name] agent = LLMSingleActionAgent( llm_chain=llm_chain, output_parser=react_output_parser, stop=["\nObservation:"], allowed_tools=tool_names, max_execution_time=240, max_iterations=120, handle_parsing_errors=True ) agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=[tool], verbose=True) response = agent_executor.run(textual_description) ``` This is my setup for AgentExecutor. It is prompted to solve OpenAI gym's Taxi problem and only stop after the passenger is dropped off at the destination. But as the title suggests the AgentExecutor chain finishes before reaching the stopping limits or achieving the stopping condition. Also when I use GPT-3 model sometimes it stops following the ReAct template occasionally and raises errors as my output parser cannot process the output correctly. I wonder if there is a way to change that. ### Suggestion: _No response_
Issue: AgentExecutor stopping before reaching the set max_iteration and max_execution_time limits without meeting the stop condition
https://api.github.com/repos/langchain-ai/langchain/issues/13897/comments
4
2023-11-27T04:43:45Z
2023-11-29T13:52:34Z
https://github.com/langchain-ai/langchain/issues/13897
2,011,474,672
13,897
[ "hwchase17", "langchain" ]
### System Info langchain==0.0.316 python==3.10.13 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction i'm using the code here:https://python.langchain.com/docs/integrations/llms/chatglm Here is the full error output: Traceback (most recent call last): File "C:\Users\vic\Desktop\chatGLM\.conda\lib\site-packages\requests\models.py", line 971, in json return complexjson.loads(self.text, **kwargs) File "C:\Users\vic\Desktop\chatGLM\.conda\lib\json\__init__.py", line 346, in loads return _default_decoder.decode(s) File "C:\Users\vic\Desktop\chatGLM\.conda\lib\json\decoder.py", line 337, in decode obj, end = self.raw_decode(s, idx=_w(s, 0).end()) File "C:\Users\vic\Desktop\chatGLM\.conda\lib\json\decoder.py", line 355, in raw_decode raise JSONDecodeError("Expecting value", s, err.value) from None json.decoder.JSONDecodeError: Expecting value: line 1 column 1 (char 0) During handling of the above exception, another exception occurred: Traceback (most recent call last): File "C:\Users\vic\AppData\Roaming\Python\Python310\site-packages\langchain\llms\chatglm.py", line 107, in _call parsed_response = response.json() File "C:\Users\vic\Desktop\chatGLM\.conda\lib\site-packages\requests\models.py", line 975, in json raise RequestsJSONDecodeError(e.msg, e.doc, e.pos) requests.exceptions.JSONDecodeError: Expecting value: line 1 column 1 (char 0) During handling of the above exception, another exception occurred: Traceback (most recent call last): File "c:\Users\vic\Desktop\chatGLM\test_server.py", line 36, in <module> print(llm_chain.run(question)) File "C:\Users\vic\AppData\Roaming\Python\Python310\site-packages\langchain\chains\base.py", line 503, in run return self(args[0], callbacks=callbacks, tags=tags, metadata=metadata)[ File "C:\Users\vic\AppData\Roaming\Python\Python310\site-packages\langchain\chains\base.py", line 308, in __call__ raise e File "C:\Users\vic\AppData\Roaming\Python\Python310\site-packages\langchain\chains\base.py", line 302, in __call__ self._call(inputs, run_manager=run_manager) File "C:\Users\vic\AppData\Roaming\Python\Python310\site-packages\langchain\chains\llm.py", line 93, in _call response = self.generate([inputs], run_manager=run_manager) File "C:\Users\vic\AppData\Roaming\Python\Python310\site-packages\langchain\chains\llm.py", line 103, in generate return self.llm.generate_prompt( File "C:\Users\vic\AppData\Roaming\Python\Python310\site-packages\langchain\llms\base.py", line 497, in generate_prompt return self.generate(prompt_strings, stop=stop, callbacks=callbacks, **kwargs) File "C:\Users\vic\AppData\Roaming\Python\Python310\site-packages\langchain\llms\base.py", line 646, in generate output = self._generate_helper( File "C:\Users\vic\AppData\Roaming\Python\Python310\site-packages\langchain\llms\base.py", line 534, in _generate_helper raise e File "C:\Users\vic\AppData\Roaming\Python\Python310\site-packages\langchain\llms\base.py", line 521, in _generate_helper self._generate( File "C:\Users\vic\AppData\Roaming\Python\Python310\site-packages\langchain\llms\base.py", line 1043, in _generate self._call(prompt, stop=stop, run_manager=run_manager, **kwargs) File "C:\Users\vic\AppData\Roaming\Python\Python310\site-packages\langchain\llms\chatglm.py", line 120, in _call raise ValueError( ValueError: Error raised during decoding response from inference endpoint: Expecting value: line 1 column 1 (char 0). ### Expected behavior output of ChatGLM's response is missing print(response) <Response [200]>
Error raised during decoding response from inference endpoint when using ChatGLM
https://api.github.com/repos/langchain-ai/langchain/issues/13896/comments
2
2023-11-27T04:12:28Z
2024-03-13T20:03:46Z
https://github.com/langchain-ai/langchain/issues/13896
2,011,448,434
13,896
[ "hwchase17", "langchain" ]
### Feature request We are working on a way to add a multi-input tool to LangChain for searching Reddit posts. Integrating the API as a tool will allow agents to search for posts using a specific search query and some query parameters like sort, time_filter, subreddit etc. to respond to prompts. The tool will use search functionality provided by [the `praw` package](https://praw.readthedocs.io/en/stable/code_overview/models/subreddit.html#praw.models.Subreddit.search). ### Motivation Although LangChain currently has a document loader for Reddit (RedditPostsLoader), it is more centred around subreddit and username to load posts and we want to create our tool to provide more functionalities. Our tool will offer functionality for sorting and filtering by time, which is currently not handled by RedditPostsLoader. With this tool, agents can respond to prompts by interacting with the API without the user having to manually load the Reddit posts. The multi-input nature of the tool will make it useful for responding to more diverse prompts and we hope that users can use it to better leverage [multi-input tool](https://python.langchain.com/docs/modules/agents/tools/multi_input_tool) and [shared memory](https://python.langchain.com/docs/modules/agents/how_to/sharedmemory_for_tools) functionalities already provided by LangChain. ### Your contribution We have our code already prepared and we will be submitting a PR soon. As encouraged by contributing.md, we have added integration tests, a notebook example, and edits for documentation generation. `praw` has also been added as an optional dependency.
Adding a multi-input Reddit search tool
https://api.github.com/repos/langchain-ai/langchain/issues/13891/comments
2
2023-11-27T02:16:19Z
2023-12-11T03:21:33Z
https://github.com/langchain-ai/langchain/issues/13891
2,011,359,518
13,891
[ "hwchase17", "langchain" ]
### System Info langchain version 0.0.340 Python version: 3.11.5 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. Create an Obsidian template with a [template variable](https://help.obsidian.md/Plugins/Templates#Template+variables) in the [properties](https://help.obsidian.md/Editing+and+formatting/Properties#Property+format) section of the file. 2. Attempt to load a directory containing that template file using [ObsidianLoader](https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/document_loaders/obsidian.py). ```shell $ echo -e "---\nyear: {{date:YYYY}}\n---" > vault/template.md $ python >>> from langchain.document_loaders.obsidian import ObsidianLoader >>> loader = ObsidianLoader('vault') >>> loader.load() Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/user/.conda/envs/localai/lib/python3.11/site-packages/langchain/document_loaders/obsidian.py", line 115, in load front_matter = self._parse_front_matter(text) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/user/.conda/envs/localai/lib/python3.11/site-packages/langchain/document_loaders/obsidian.py", line 48, in _parse_front_matter front_matter = yaml.safe_load(match.group(1)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/user/.conda/envs/localai/lib/python3.11/site-packages/yaml/__init__.py", line 125, in safe_load return load(stream, SafeLoader) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/user/.conda/envs/localai/lib/python3.11/site-packages/yaml/__init__.py", line 81, in load return loader.get_single_data() ^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/user/.conda/envs/localai/lib/python3.11/site-packages/yaml/constructor.py", line 51, in get_single_data return self.construct_document(node) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/user/.conda/envs/localai/lib/python3.11/site-packages/yaml/constructor.py", line 60, in construct_document for dummy in generator: File "/home/user/.conda/envs/localai/lib/python3.11/site-packages/yaml/constructor.py", line 413, in construct_yaml_map value = self.construct_mapping(node) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/user/.conda/envs/localai/lib/python3.11/site-packages/yaml/constructor.py", line 218, in construct_mapping return super().construct_mapping(node, deep=deep) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/user/.conda/envs/localai/lib/python3.11/site-packages/yaml/constructor.py", line 141, in construct_mapping raise ConstructorError("while constructing a mapping", node.start_mark, yaml.constructor.ConstructorError: while constructing a mapping in "<unicode string>", line 1, column 7: year: {{date:YYYY}} ^ found unhashable key in "<unicode string>", line 1, column 8: year: {{date:YYYY}} ``` ### Expected behavior [Template variables](https://help.obsidian.md/Plugins/Templates#Template+variables) are a feature in Obsidian and including them in the properties section of a file is perfectly valid, so [ObsidianLoader](https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/document_loaders/obsidian.py) should have no issue loading a directory that includes a file that has template variable in its properties.
ObsidianLoader fails when encountering template variables in the properties frontmatter of a file
https://api.github.com/repos/langchain-ai/langchain/issues/13887/comments
1
2023-11-27T01:05:47Z
2024-03-13T20:01:25Z
https://github.com/langchain-ai/langchain/issues/13887
2,011,308,854
13,887
[ "hwchase17", "langchain" ]
### Feature request If I want to use VectorStoreRetrieverMemory to store my users' chat memories, I need to search and store them using user_id and session_id. However, memory.save_context doesn't have a 'metadata' option. ### Motivation I want to associate chat merory with single user ### Your contribution I can't submit PR
storing metadata with the VectorStoreRetrieverMemory memory module
https://api.github.com/repos/langchain-ai/langchain/issues/13876/comments
2
2023-11-26T15:14:26Z
2024-03-13T19:55:51Z
https://github.com/langchain-ai/langchain/issues/13876
2,011,079,659
13,876
[ "hwchase17", "langchain" ]
### System Info Python version: 3.11.5 Langchain version: 0.0.316 ### Who can help? @3coins @hw ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction I am using Amazon Kendra as vector store to retrieve relevant documents as part of a Q&A application. As `UserContext` I am using User token: ``` def get_kendra_json_token(user_name: str, groups: List[str]): kendra_json_token = { 'username': user_name, 'groups': groups } return kendra_json_token ``` This output is subsequently converted to: `'user_context': {'Token': json.dumps(kendra_json_token)}` Everything is fine when I build the Retriever: ``` def get_kendra_doc_retriever(inputs: KendraRequest) -> AmazonKendraRetriever: try: kendra_client = boto3.client("kendra", os.environ.get('AWS_REGION')) retriever = AmazonKendraRetriever( index_id=inputs.kendra_index_id, top_k=get_param(AIAssistantParam.NB_KENDRA_DOCS), client=kendra_client, attribute_filter=inputs.attribute_filter, user_context=inputs.user_context ) logger.info(f'Kendra retriever successfully instantiated') return retriever ``` But then, when I call `get_relevant_documents`: ``` def ask_question( chain: Chain, retriever: AmazonKendraRetriever, question: str ) -> Response: try: context = retriever.get_relevant_documents(question) ``` I get this exception: `An error occurred (AccessDeniedException) when calling the Retrieve operation: The provided JSON token isn't valid. The username couldn't be parsed. Generate a new token with username as an array of strings and try your request again.` Of course, `username` should be an string. If I change the code doing this (swapping the content of `user_name` and `groups` in the user token): ``` def get_kendra_json_token(user_name: List[str], groups: str): kendra_json_token = { 'username': groups, 'groups': user_name } return kendra_json_token ``` everything works fine. It is like `user_name` and `groups` inputs parameters are messed up somewhere. ### Expected behavior No exception should be raised when creating the user token as explained in the description above.
KENDRA: issue with user_context parameter when using get_relevant_documents method (langchain.retrievers.kendra.AmazonKendraRetriever)
https://api.github.com/repos/langchain-ai/langchain/issues/13870/comments
1
2023-11-26T09:55:33Z
2023-12-11T15:22:58Z
https://github.com/langchain-ai/langchain/issues/13870
2,010,975,800
13,870
[ "hwchase17", "langchain" ]
### Feature request Currently the `_search` function in `ElasticsearchStore` assumes that the `hit` object returned in the search has a `metadata` field under `_source`: ```python hit["_source"]["metadata"][field] = hit["_source"][field] ``` However, this is not the case in the index I work with - it does not have a `metadata` field. Due to that, an exception is raised. Note that the following code does not help - ```python if "metadata" not in fields: fields.append("metadata") ``` The index still does not return any `metadata`. I assume that in indexes created by `ElasticsearchStore` the `metadata` field is forced, and therefor there is no such issue. However, when using indexes created by external tools, it is better not to assume that the field exists, and support the case where it doesn't. ### Motivation I'd prefer to re-use the existing `ElasticsearchStore` instead of my own implementation of it. ### Your contribution I think I can contribute a PR handling this issue, if the admins confirm the feature request.
Support for elastic index without metadata field
https://api.github.com/repos/langchain-ai/langchain/issues/13869/comments
1
2023-11-26T09:33:34Z
2024-03-13T19:56:05Z
https://github.com/langchain-ai/langchain/issues/13869
2,010,969,350
13,869
[ "hwchase17", "langchain" ]
### System Info #### Environment variable ```bash BENTOML_DEBUG='' BENTOML_QUIET='' BENTOML_BUNDLE_LOCAL_BUILD='' BENTOML_DO_NOT_TRACK='' BENTOML_CONFIG='' BENTOML_CONFIG_OPTIONS='' BENTOML_PORT='' BENTOML_HOST='' BENTOML_API_WORKERS='' ``` #### System information `bentoml`: 1.1.10 `python`: 3.11.5 `platform`: Linux-6.2.0-37-generic-x86_64-with-glibc2.35 `uid_gid`: 1000:1000 `conda`: 23.7.4 `in_conda_env`: True <details><summary><code>conda_packages</code></summary> <br> ```yaml name: openllm channels: - defaults dependencies: - _libgcc_mutex=0.1=main - _openmp_mutex=5.1=1_gnu - bzip2=1.0.8=h7b6447c_0 - ca-certificates=2023.08.22=h06a4308_0 - ld_impl_linux-64=2.38=h1181459_1 - libffi=3.4.4=h6a678d5_0 - libgcc-ng=11.2.0=h1234567_1 - libgomp=11.2.0=h1234567_1 - libstdcxx-ng=11.2.0=h1234567_1 - libuuid=1.41.5=h5eee18b_0 - ncurses=6.4=h6a678d5_0 - openssl=3.0.12=h7f8727e_0 - pip=23.3.1=py311h06a4308_0 - python=3.11.5=h955ad1f_0 - readline=8.2=h5eee18b_0 - setuptools=68.0.0=py311h06a4308_0 - sqlite=3.41.2=h5eee18b_0 - tk=8.6.12=h1ccaba5_0 - wheel=0.41.2=py311h06a4308_0 - xz=5.4.2=h5eee18b_0 - zlib=1.2.13=h5eee18b_0 - pip: - accelerate==0.24.1 - aiohttp==3.9.0 - aiosignal==1.3.1 - anyio==3.7.1 - appdirs==1.4.4 - asgiref==3.7.2 - attrs==23.1.0 - beautifulsoup4==4.12.2 - bentoml==1.1.10 - bitsandbytes==0.41.2.post2 - build==0.10.0 - cattrs==23.1.2 - certifi==2023.11.17 - charset-normalizer==3.3.2 - circus==0.18.0 - click==8.1.7 - click-option-group==0.5.6 - cloudpickle==3.0.0 - coloredlogs==15.0.1 - contextlib2==21.6.0 - cuda-python==12.3.0 - dataclasses-json==0.6.2 - datasets==2.15.0 - deepmerge==1.1.0 - deprecated==1.2.14 - dill==0.3.7 - distlib==0.3.7 - distro==1.8.0 - einops==0.7.0 - fastapi==0.104.1 - fastcore==1.5.29 - filelock==3.13.1 - filetype==1.2.0 - frozenlist==1.4.0 - fs==2.4.16 - fsspec==2023.10.0 - ghapi==1.0.4 - greenlet==3.0.1 - h11==0.14.0 - httpcore==1.0.2 - httptools==0.6.1 - httpx==0.25.2 - huggingface-hub==0.19.4 - humanfriendly==10.0 - idna==3.6 - importlib-metadata==6.8.0 - inflection==0.5.1 - jinja2==3.1.2 - jsonpatch==1.33 - jsonpointer==2.4 - jsonschema==4.20.0 - jsonschema-specifications==2023.11.1 - langchain==0.0.340 - langsmith==0.0.66 - markdown-it-py==3.0.0 - markupsafe==2.1.3 - marshmallow==3.20.1 - mdurl==0.1.2 - mpmath==1.3.0 - msgpack==1.0.7 - multidict==6.0.4 - multiprocess==0.70.15 - mypy-extensions==1.0.0 - networkx==3.2.1 - ninja==1.11.1.1 - numpy==1.26.2 - nvidia-cublas-cu12==12.1.3.1 - nvidia-cuda-cupti-cu12==12.1.105 - nvidia-cuda-nvrtc-cu12==12.1.105 - nvidia-cuda-runtime-cu12==12.1.105 - nvidia-cudnn-cu12==8.9.2.26 - nvidia-cufft-cu12==11.0.2.54 - nvidia-curand-cu12==10.3.2.106 - nvidia-cusolver-cu12==11.4.5.107 - nvidia-cusparse-cu12==12.1.0.106 - nvidia-ml-py==11.525.150 - nvidia-nccl-cu12==2.18.1 - nvidia-nvjitlink-cu12==12.3.101 - nvidia-nvtx-cu12==12.1.105 - openllm==0.4.28 - openllm-client==0.4.28 - openllm-core==0.4.28 - opentelemetry-api==1.20.0 - opentelemetry-instrumentation==0.41b0 - opentelemetry-instrumentation-aiohttp-client==0.41b0 - opentelemetry-instrumentation-asgi==0.41b0 - opentelemetry-sdk==1.20.0 - opentelemetry-semantic-conventions==0.41b0 - opentelemetry-util-http==0.41b0 - optimum==1.14.1 - orjson==3.9.10 - packaging==23.2 - pandas==2.1.3 - pathspec==0.11.2 - pillow==10.1.0 - pip-requirements-parser==32.0.1 - pip-tools==7.3.0 - platformdirs==4.0.0 - prometheus-client==0.19.0 - protobuf==4.25.1 - psutil==5.9.6 - pyarrow==14.0.1 - pyarrow-hotfix==0.6 - pydantic==1.10.13 - pygments==2.17.2 - pyparsing==3.1.1 - pyproject-hooks==1.0.0 - python-dateutil==2.8.2 - python-dotenv==1.0.0 - python-json-logger==2.0.7 - python-multipart==0.0.6 - pytz==2023.3.post1 - pyyaml==6.0.1 - pyzmq==25.1.1 - ray==2.8.0 - referencing==0.31.0 - regex==2023.10.3 - requests==2.31.0 - rich==13.7.0 - rpds-py==0.13.1 - safetensors==0.4.0 - schema==0.7.5 - scipy==1.11.4 - sentencepiece==0.1.99 - simple-di==0.1.5 - six==1.16.0 - sniffio==1.3.0 - soupsieve==2.5 - sqlalchemy==2.0.23 - starlette==0.27.0 - sympy==1.12 - tenacity==8.2.3 - tokenizers==0.15.0 - torch==2.1.0 - tornado==6.3.3 - tqdm==4.66.1 - transformers==4.35.2 - triton==2.1.0 - typing-extensions==4.8.0 - typing-inspect==0.9.0 - tzdata==2023.3 - urllib3==2.1.0 - uvicorn==0.24.0.post1 - uvloop==0.19.0 - virtualenv==20.24.7 - vllm==0.2.2 - watchfiles==0.21.0 - websockets==12.0 - wrapt==1.16.0 - xformers==0.0.22.post7 - xxhash==3.4.1 - yarl==1.9.3 - zipp==3.17.0 prefix: /home/lolevsky/anaconda3/envs/openllm ``` </details> <details><summary><code>pip_packages</code></summary> <br> ``` accelerate==0.24.1 aiohttp==3.9.0 aiosignal==1.3.1 anyio==3.7.1 appdirs==1.4.4 asgiref==3.7.2 attrs==23.1.0 beautifulsoup4==4.12.2 bentoml==1.1.10 bitsandbytes==0.41.2.post2 build==0.10.0 cattrs==23.1.2 certifi==2023.11.17 charset-normalizer==3.3.2 circus==0.18.0 click==8.1.7 click-option-group==0.5.6 cloudpickle==3.0.0 coloredlogs==15.0.1 contextlib2==21.6.0 cuda-python==12.3.0 dataclasses-json==0.6.2 datasets==2.15.0 deepmerge==1.1.0 Deprecated==1.2.14 dill==0.3.7 distlib==0.3.7 distro==1.8.0 einops==0.7.0 fastapi==0.104.1 fastcore==1.5.29 filelock==3.13.1 filetype==1.2.0 frozenlist==1.4.0 fs==2.4.16 fsspec==2023.10.0 ghapi==1.0.4 greenlet==3.0.1 h11==0.14.0 httpcore==1.0.2 httptools==0.6.1 httpx==0.25.2 huggingface-hub==0.19.4 humanfriendly==10.0 idna==3.6 importlib-metadata==6.8.0 inflection==0.5.1 Jinja2==3.1.2 jsonpatch==1.33 jsonpointer==2.4 jsonschema==4.20.0 jsonschema-specifications==2023.11.1 langchain==0.0.340 langsmith==0.0.66 markdown-it-py==3.0.0 MarkupSafe==2.1.3 marshmallow==3.20.1 mdurl==0.1.2 mpmath==1.3.0 msgpack==1.0.7 multidict==6.0.4 multiprocess==0.70.15 mypy-extensions==1.0.0 networkx==3.2.1 ninja==1.11.1.1 numpy==1.26.2 nvidia-cublas-cu12==12.1.3.1 nvidia-cuda-cupti-cu12==12.1.105 nvidia-cuda-nvrtc-cu12==12.1.105 nvidia-cuda-runtime-cu12==12.1.105 nvidia-cudnn-cu12==8.9.2.26 nvidia-cufft-cu12==11.0.2.54 nvidia-curand-cu12==10.3.2.106 nvidia-cusolver-cu12==11.4.5.107 nvidia-cusparse-cu12==12.1.0.106 nvidia-ml-py==11.525.150 nvidia-nccl-cu12==2.18.1 nvidia-nvjitlink-cu12==12.3.101 nvidia-nvtx-cu12==12.1.105 openllm==0.4.28 openllm-client==0.4.28 openllm-core==0.4.28 opentelemetry-api==1.20.0 opentelemetry-instrumentation==0.41b0 opentelemetry-instrumentation-aiohttp-client==0.41b0 opentelemetry-instrumentation-asgi==0.41b0 opentelemetry-sdk==1.20.0 opentelemetry-semantic-conventions==0.41b0 opentelemetry-util-http==0.41b0 optimum==1.14.1 orjson==3.9.10 packaging==23.2 pandas==2.1.3 pathspec==0.11.2 Pillow==10.1.0 pip-requirements-parser==32.0.1 pip-tools==7.3.0 platformdirs==4.0.0 prometheus-client==0.19.0 protobuf==4.25.1 psutil==5.9.6 pyarrow==14.0.1 pyarrow-hotfix==0.6 pydantic==1.10.13 Pygments==2.17.2 pyparsing==3.1.1 pyproject_hooks==1.0.0 python-dateutil==2.8.2 python-dotenv==1.0.0 python-json-logger==2.0.7 python-multipart==0.0.6 pytz==2023.3.post1 PyYAML==6.0.1 pyzmq==25.1.1 ray==2.8.0 referencing==0.31.0 regex==2023.10.3 requests==2.31.0 rich==13.7.0 rpds-py==0.13.1 safetensors==0.4.0 schema==0.7.5 scipy==1.11.4 sentencepiece==0.1.99 simple-di==0.1.5 six==1.16.0 sniffio==1.3.0 soupsieve==2.5 SQLAlchemy==2.0.23 starlette==0.27.0 sympy==1.12 tenacity==8.2.3 tokenizers==0.15.0 torch==2.1.0 tornado==6.3.3 tqdm==4.66.1 transformers==4.35.2 triton==2.1.0 typing-inspect==0.9.0 typing_extensions==4.8.0 tzdata==2023.3 urllib3==2.1.0 uvicorn==0.24.0.post1 uvloop==0.19.0 virtualenv==20.24.7 vllm==0.2.2 watchfiles==0.21.0 websockets==12.0 wrapt==1.16.0 xformers==0.0.22.post7 xxhash==3.4.1 yarl==1.9.3 zipp==3.17.0 ``` </details> ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction I am following the example and wrote the code: ``` llm = OpenLLM(server_url=server_url, server_type='http') llm("What is the difference between a duck and a goose? And why there are so many Goose in Canada?") ``` Seems like First request is hitting the server ``` (scheme=http,method=POST,path=/v1/metadata,type=application/json,length=2) (status=200 ``` Till now its look promising, but then I am getting error ```TypeError: 'dict' object is not callable```. As attached in the trace: ``` Traceback (most recent call last): File "/home/lolevsky/Github/Zodiac/main.py", line 24, in <module> run_zodiac() File "/home/lolevsky/Github/Zodiac/main.py", line 9, in run_zodiac resA = llm("What is the difference between a duck and a goose? And why there are so many Goose in Canada?") File "/usr/local/lib/python3.10/dist-packages/langchain/llms/base.py", line 876, in __call__ self.generate( File "/usr/local/lib/python3.10/dist-packages/langchain/llms/base.py", line 626, in generate params = self.dict() File "/usr/local/lib/python3.10/dist-packages/langchain/llms/base.py", line 974, in dict starter_dict = dict(self._identifying_params) File "/usr/local/lib/python3.10/dist-packages/langchain/llms/openllm.py", line 220, in _identifying_params self.llm_kwargs.update(self._client._config()) TypeError: 'dict' object is not callable ``` ### To reproduce This is how I had setup the envirment: - conda create --name openllm python=3.11 - conda activate openllm - pip install openllm - pip install langchain ### Expected behavior Should not get errors, should hit the server for prompting
bug: When running by example getting error: TypeError: 'dict' object is not callable
https://api.github.com/repos/langchain-ai/langchain/issues/13867/comments
4
2023-11-26T08:25:23Z
2024-04-15T16:07:35Z
https://github.com/langchain-ai/langchain/issues/13867
2,010,950,164
13,867
[ "hwchase17", "langchain" ]
### Issue with current documentation: Hi, can we get more documentation on `langchain_experimental.rl_chain`? I'm having trouble wrapping my head around how it works, and the documentation is sparse. From the notebook intro, originally I thought it was going to tune the human written prompt template and then output a new and improved prompt template that it found was better. However it seems to be doing something else. ### Idea or request for content: _No response_
DOC: How langchain_experimental.rl_chain works
https://api.github.com/repos/langchain-ai/langchain/issues/13865/comments
3
2023-11-26T06:33:13Z
2024-03-13T19:55:36Z
https://github.com/langchain-ai/langchain/issues/13865
2,010,911,639
13,865
[ "hwchase17", "langchain" ]
### System Info RTX 3090 ``` Here is notebook for reference: https://colab.research.google.com/drive/1Rwdrji34CV4QJofVl9jAT7-EwodvphA4?usp=sharing ``` ### Who can help? @agola11 @ey ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` !wget -O /content/models/ggml-model-f16.gguf https://huggingface.co/mys/ggml_llava-v1.5-7b/resolve/main/ggml-model-f16.gguf !wget -O /content/models/ggml-model-q5_k.gguf https://huggingface.co/mys/ggml_llava-v1.5-7b/resolve/main/ggml-model-q5_k.gguf ``` ``` %%bash # Define the directory containing the images IMG_DIR=/content/LLAVA/ # Loop through each image in the directory for img in "${IMG_DIR}"*.jpg; do # Extract the base name of the image without extension base_name=$(basename "$img" .jpg) # Define the output file name based on the image name output_file="${IMG_DIR}${base_name}.txt" # Execute the command and save the output to the defined output file /content/llama.cpp/bin/llava -m /content/models/ggml-model-q5_k.gguf --mmproj /content/models//mmproj-model-f16.gguf --temp 0.1 -p "Describe the image in detail. Be specific about graphs, such as bar plots." --image "$img" > "$output_file" done ``` gives error: ``` bash: line 14: /content/llama.cpp/bin/llava: No such file or directory bash: line 14: /content/llama.cpp/bin/llava: No such file or directory bash: line 14: /content/llama.cpp/bin/llava: No such file or directory bash: line 14: /content/llama.cpp/bin/llava: No such file or directory bash: line 14: /content/llama.cpp/bin/llava: No such file or directory bash: line 14: /content/llama.cpp/bin/llava: No such file or directory bash: line 14: /content/llama.cpp/bin/llava: No such file or directory bash: line 14: /content/llama.cpp/bin/llava: No such file or directory bash: line 14: /content/llama.cpp/bin/llava: No such file or directory bash: line 14: /content/llama.cpp/bin/llava: No such file or directory --------------------------------------------------------------------------- CalledProcessError Traceback (most recent call last) [<ipython-input-51-e049cdfbb7ce>](https://localhost:8080/#) in <cell line: 1>() ----> 1 get_ipython().run_cell_magic('bash', '', '\n# Define the directory containing the images\nIMG_DIR=/content/LLAVA/\n\n# Loop through each image in the directory\nfor img in "${IMG_DIR}"*.jpg; do\n # Extract the base name of the image without extension\n base_name=$(basename "$img" .jpg)\n\n # Define the output file name based on the image name\n output_file="${IMG_DIR}${base_name}.txt"\n\n # Execute the command and save the output to the defined output file\n /content/llama.cpp/bin/llava -m /content/models/ggml-model-q5_k.gguf --mmproj /content/models//mmproj-model-f16.gguf --temp 0.1 -p "Describe the image in detail. Be specific about graphs, such as bar plots." --image "$img" > "$output_file"\n\ndone\n') 4 frames <decorator-gen-103> in shebang(self, line, cell) [/usr/local/lib/python3.10/dist-packages/IPython/core/magics/script.py](https://localhost:8080/#) in shebang(self, line, cell) 243 sys.stderr.flush() 244 if args.raise_error and p.returncode!=0: --> 245 raise CalledProcessError(p.returncode, cell, output=out, stderr=err) 246 247 def _run_script(self, p, cell, to_close): CalledProcessError: Command 'b'\n# Define the directory containing the images\nIMG_DIR=/content/LLAVA/\n\n# Loop through each image in the directory\nfor img in "${IMG_DIR}"*.jpg; do\n # Extract the base name of the image without extension\n base_name=$(basename "$img" .jpg)\n\n # Define the output file name based on the image name\n output_file="${IMG_DIR}${base_name}.txt"\n\n # Execute the command and save the output to the defined output file\n /content/llama.cpp/bin/llava -m /content/models/ggml-model-q5_k.gguf --mmproj /content/models//mmproj-model-f16.gguf --temp 0.1 -p "Describe the image in detail. Be specific about graphs, such as bar plots." --image "$img" > "$output_file"\n\ndone\n'' returned non-zero exit status 127. ``` ### Expected behavior it should run , but do not understand ``` from langchain.llms import LlamaCpp llm = LlamaCpp(model_path="/path/to/llama/model") ```
CalledProcessError: bash command for LLAVA in Multimodal giving error
https://api.github.com/repos/langchain-ai/langchain/issues/13863/comments
3
2023-11-26T02:43:06Z
2024-03-13T20:01:26Z
https://github.com/langchain-ai/langchain/issues/13863
2,010,867,450
13,863
[ "hwchase17", "langchain" ]
### System Info Hello, I am trying to use a Baseten base LLM in a RAG pipeline. ``` from operator import itemgetter from langchain.llms import Baseten from langchain.schema.runnable import RunnableMap llm = Baseten(model="MODEL_ID", verbose=True) rag_chain_from_docs = ( { "context": lambda input: format_docs(input["documents"]), "question": itemgetter("question"), } | rag_prompt_custom | llm | StrOutputParser() ) rag_chain_with_source = RunnableMap( {"documents": retriever, "question": RunnablePassthrough()} ) | { "documents": lambda input: [doc.metadata for doc in input["documents"]], "answer": rag_chain_from_docs, } rag_chain_with_source.invoke("What is Task Decomposition") ``` I am using a FAISS retriever and I am getting the following error on the `.invoke()` method: ``` File "/Users/usr/miniconda3/envs/langchain/lib/python3.11/site-packages/langchain/llms/baseten.py", line 69, in _call response = model.predict({"prompt": prompt, **kwargs}) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/usr/miniconda3/envs/langchain/lib/python3.11/site-packages/baseten/common/core.py", line 67, in wrapper return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/Users/usr/miniconda3/envs/langchain/lib/python3.11/site-packages/baseten/baseten_deployed_model.py", line 124, in predict raise TypeError('predict can be called with either a list, a pandas DataFrame, or a numpy array.') TypeError: predict can be called with either a list, a pandas DataFrame, or a numpy array. ``` It seems the `model.predict()` method is expecting a list. Does anyone already encountered this error? Thank you in advance ! ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from operator import itemgetter from langchain.llms import Baseten from langchain.schema.runnable import RunnableMap llm = Baseten(model="MODEL_ID", verbose=True) rag_chain_from_docs = ( { "context": lambda input: format_docs(input["documents"]), "question": itemgetter("question"), } | rag_prompt_custom | llm | StrOutputParser() ) rag_chain_with_source = RunnableMap( {"documents": retriever, "question": RunnablePassthrough()} ) | { "documents": lambda input: [doc.metadata for doc in input["documents"]], "answer": rag_chain_from_docs, } rag_chain_with_source.invoke("What is Task Decomposition") ``` ### Expected behavior It seems the `model.predict()` method is expecting a list. Could you fix this issue?
TypeError using Baseten in a RAG
https://api.github.com/repos/langchain-ai/langchain/issues/13861/comments
1
2023-11-25T23:39:12Z
2024-03-13T20:02:45Z
https://github.com/langchain-ai/langchain/issues/13861
2,010,829,835
13,861
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. ```# Load Tools tools = load_tools(["serpapi","langchain_experimental_python_repl"], llm=llm) ``` error ``` Exception has occurred: ImportError This tool has been moved to langchain experiment. This tool has access to a python REPL. For best practices make sure to sandbox this tool. Read To keep using this code as is, install langchain experimental and update relevant imports replacing 'langchain' with 'langchain_experimental' File "/home/isayahc/projects/buy-bot/react_agent.py", line 49, in create_agent_executor tools = load_tools(["serpapi","python_repl"], llm=llm) File "/home/isayahc/projects/buy-bot/react_agent.py", line 88, in <module> agent_executor = create_agent_executor() ImportError: This tool has been moved to langchain experiment. This tool has access to a python REPL. For best practices make sure to sandbox this tool. Read h To keep using this code as is, install langchain experimental and update relevant imports replacing 'langchain' with 'langchain_experimental' ``` how do i fix this? ### Suggestion: _No response_
Issue: <Please write a comprehensive title after the 'Issue: ' prefix>
https://api.github.com/repos/langchain-ai/langchain/issues/13859/comments
1
2023-11-25T23:18:35Z
2023-11-26T01:05:46Z
https://github.com/langchain-ai/langchain/issues/13859
2,010,826,017
13,859
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. Exception has occurred: ImportError This tool has been moved to langchain experiment. This tool has access to a python REPL. For best practices make sure to sandbox this tool. Read https://github.com/langchain-ai/langchain/blob/master/SECURITY.md To keep using this code as is, install langchain experimental and update relevant imports replacing 'langchain' with 'langchain_experimental' File "/home/isayahc/projects/buy-bot/react_agent.py", line 43, in create_agent_executor tools = load_tools(["serpapi","python_repl"], llm=llm) File "/home/isayahc/projects/buy-bot/react_agent.py", line 81, in agent_executor = create_agent_executor() ImportError: This tool has been moved to langchain experiment. This tool has access to a python REPL. For best practices make sure to sandbox this tool. Read https://github.com/langchain-ai/langchain/blob/master/SECURITY.md To keep using this code as is, install langchain experimental and update relevant imports replacing 'langchain' with 'langchain_experimental' I am trying to use the python repl, and load it to my tools ### Suggestion: _No response_
Issue: Load tools from experimental langchain module
https://api.github.com/repos/langchain-ai/langchain/issues/13858/comments
1
2023-11-25T22:57:56Z
2024-03-13T19:57:32Z
https://github.com/langchain-ai/langchain/issues/13858
2,010,821,824
13,858
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. Exception has occurred: ImportError This tool has been moved to langchain experiment. This tool has access to a python REPL. For best practices make sure to sandbox this tool. Read https://github.com/langchain-ai/langchain/blob/master/SECURITY.md To keep using this code as is, install langchain experimental and update relevant imports replacing 'langchain' with 'langchain_experimental' File "/home/isayahc/projects/buy-bot/react_agent.py", line 43, in create_agent_executor tools = load_tools(["serpapi","python_repl"], llm=llm) File "/home/isayahc/projects/buy-bot/react_agent.py", line 81, in <module> agent_executor = create_agent_executor() ImportError: This tool has been moved to langchain experiment. This tool has access to a python REPL. For best practices make sure to sandbox this tool. Read https://github.com/langchain-ai/langchain/blob/master/SECURITY.md To keep using this code as is, install langchain experimental and update relevant imports replacing 'langchain' with 'langchain_experimental' ### Suggestion: _No response_
Issue: what string works for experimental tool
https://api.github.com/repos/langchain-ai/langchain/issues/13856/comments
3
2023-11-25T22:34:55Z
2023-11-25T22:56:58Z
https://github.com/langchain-ai/langchain/issues/13856
2,010,817,039
13,856
[ "hwchase17", "langchain" ]
### System Info Python 3.9.18 ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [x] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Hi i try this example, but doesnt work ``` from llamaapi import LlamaAPI from langchain.chains import create_extraction_chain llama = LlamaAPI("My Api KEy") from langchain_experimental.llms import ChatLlamaAPI model = ChatLlamaAPI(client=llama) schema = { "properties": { "name": {"type": "string"}, "height": {"type": "integer"}, "hair_color": {"type": "string"}, }, "required": ["name", "height"], } inp = """ Alex is 5 feet tall. Claudia is 1 feet taller Alex and jumps higher than him. Claudia is a brunette and Alex is blonde. """ chain = create_extraction_chain(schema, model) chain.run(inp) ``` File "C:\mini\envs\py39\lib\site-packages\langchain\output_parsers\openai_func tions.py", line 136, in parse_result return res.get(self.key_name) if partial else res[self.key_name] TypeError: string indices must be integers ### Expected behavior Extraction from text
create_extraction_chain does not work with other LLMs?i try with llama_api
https://api.github.com/repos/langchain-ai/langchain/issues/13847/comments
4
2023-11-25T13:01:51Z
2024-03-17T16:06:32Z
https://github.com/langchain-ai/langchain/issues/13847
2,010,605,909
13,847
[ "hwchase17", "langchain" ]
### System Info I am write a code and i want to add history to my langchain agent. History is present in chats list ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [x] My own modified scripts ### Related Components - [x] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [x] Memory - [x] Agents / Agent Executors - [x] Tools / Toolkits - [x] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction `async def chat_with_agent(user_input, formatting_data, chats: list): """ Initiates a chat with the agent based on the user input. """ try: # Initialize the chat model llm_model = "gpt-4-1106-preview" llm = ChatOpenAI(temperature=0.3, model=llm_model) # Load necessary tools tool = StructuredTool.from_function(get_human_input) tools = load_tools(["serpapi"], llm=llm) tools_list = [tool, exposure, get_user_profile, get_user_risk_profile, get_stock_technical_analysis, get_stock_fundamental_analysis, get_mutual_fund_exposure, get_stock_based_news, user_agent_chat_history] # Initialize the agent agent = initialize_agent( tools + tools_list, llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, handle_parsing_errors=True, verbose=True, max_execution_time=1800, max_iterations=300, agent_kwargs={ 'prefix': "Answer the questions as best you can. Use tools when needed. First task is check user " "If the query requires and domain specific experts and mention it in response there are other" "experts in system like stock expert, tax expert, mutual fund expert " "First: you task is to answer only financial question only" }, return_intermediate_steps=True ) # Add additional prompt extra_prompt = ("You are Relationship Manager. All values are in Indian Rupees. Answers or tasks always lie " "in the capacity of the tools. So ensure you are not expecting anything outside of it." ) final_input = "This is user input " + user_input + " This is helping prompt " + extra_prompt try: logger.info(f"User input + extra prompt: {user_input + extra_prompt}") # Run the agent result = agent(final_input) except Exception as e: logger.exception(f"Error while running the agent: {e}") result = str(e) logger.info(f"Agent chat result: {result['output']}") response = personalised_response_from_ai(final_input, str(result['output']), str(result["intermediate_steps"]), formatting_data) """report = report_writing_tool(user_input, str(result['output']), str(result["intermediate_steps"]))""" logger.info(f"Response from GPT: {response}") # return f" {response}, Report: {report}" if response: return response else: return str(result['output']) except Exception as e: logger.error(f"Error while talking with RM Agent: {str(e)}") raise HTTPException(status_code=500, detail=str(e))` ### Expected behavior I want add history to my agent
Add memeory to langchain AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION agent
https://api.github.com/repos/langchain-ai/langchain/issues/13845/comments
2
2023-11-25T12:05:33Z
2024-03-13T19:55:41Z
https://github.com/langchain-ai/langchain/issues/13845
2,010,590,203
13,845
[ "hwchase17", "langchain" ]
### System Info None ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction My chat model is ERNIE-Bot, running the following code reported an error: ![image](https://github.com/langchain-ai/langchain/assets/45581281/8aee32db-9ca8-4fb3-aec4-4617219c375d) But after I removed SystemMessage it works fine. So I want to know, do all models support SystemMessage? ![image](https://github.com/langchain-ai/langchain/assets/45581281/df82fd89-944b-4e51-bdc4-1fc121106731) ### Expected behavior None
Does only openai support SystemMessage?
https://api.github.com/repos/langchain-ai/langchain/issues/13842/comments
1
2023-11-25T08:57:09Z
2024-03-13T20:00:32Z
https://github.com/langchain-ai/langchain/issues/13842
2,010,536,775
13,842
[ "hwchase17", "langchain" ]
### System Info im running it on google Collab ### Who can help? trying the example of mult-modal rag - I tried everything no matter what if still getting this error please tell if if there is any alternative way or how can we install it? @bas ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction just run it on collab & we will not able to get output from partitions https://github.com/langchain-ai/langchain/blob/master/cookbook/Multi_modal_RAG.ipynb ![image](https://github.com/langchain-ai/langchain/assets/62583018/2f10bb44-82e9-4dc9-9c66-e84b5a18c6e1) ### Expected behavior it should work normal without error on collab
Unable to get page count. Is poppler installed and in PATH
https://api.github.com/repos/langchain-ai/langchain/issues/13838/comments
3
2023-11-25T06:31:04Z
2024-07-03T17:15:16Z
https://github.com/langchain-ai/langchain/issues/13838
2,010,498,080
13,838
[ "hwchase17", "langchain" ]
Please help , I am blocked on it from many days . **I am trying to filter question of answer from pdf doc based on uploaded email filter . Only if email match happen answer the question from that document else just empty . I tried following code its not working rather even in case of OTHER email id also it give answer from my email uploaded document which is wrong , seems like filtering not working .** First i tried by putting email as metadata it did not work then i added as independent email field its not working there either . I am instantiating vector store like below , it has email field in it . I am able to create and successfully able to upload pdf doc with all the fields including email is populated . I checked created index and email field is filterable , searchable . - Creating azure instance as below : ` `self.vector_store = AzureSearch(azure_search_endpoint=endpoint, azure_search_key=admin_key, index_name=index_name, embedding_function=embedding_function,fields=fields)` - After doc uploaded as shown below it has email in it . ``` "@odata.context": "https://ops-documents.search.windows.net/indexes('index-new-5')/$metadata#docs(*)", "value": [ { "@search.score": 1, "id": "NjQ1YWViNWQtNDJkNy00NTcxLTlkMTktMDIzZTc0NTZlNDhm", "content": "ICAO TRIP 2023 – .", "metadata": "{\"source\": \"7-pl\", \"page\": 7, \"file_id\": \"65612fd773a9aa51a0939c96\", \"upload_document_name\": \"SITA Lab Furhat Backoffice IMM officer Dialog - v1.pdf\", \"email\": \"[email protected]\", \"company\": \"sita\"}", "email": "[email protected]" ``` - - Using following way to search : ``` my_retriever = self.vector_store.as_retriever(search_kwargs={'filter': { 'email': email }}) qa = RetrievalQA.from_chain_type(llm=self.llm,chain_type="stuff",retriever=my_retriever,chain_type_kwargs={"prompt": self.PROMPT}, return_source_documents=True, ) results = qa({"query": question}) ``` ``` Installations using as : **I am using OPENAI_API_VERSION="2023-10-01-preview" with gpt4 model** azure-common==1.1.28 azure-core==1.29.5 azure-identity==1.15.0 azure-search==1.0.0b2 azure-search-documents==11.4.0b8 langchain==0.0.326 ``` Kindly let me know if anything needed from me . Thanks so much for your help .
lang chain Azure vector search not working neither on its direct fields nor on its metadata fields
https://api.github.com/repos/langchain-ai/langchain/issues/13833/comments
4
2023-11-25T00:45:36Z
2024-05-08T22:59:31Z
https://github.com/langchain-ai/langchain/issues/13833
2,010,391,830
13,833
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. Hi I am trying to implement memory in an RAG agent and am following documentation, but I get the following error: ValueError: variable chat_history should be a list of base messages, got It seems that I should be passing in a chat_history, but all the notebook examples I have seen only pass the question. I have seen some implementations use initialize_agent(), while others use AgentExecutor(). Any help on how to implement memory with the agent would be greatly appreciated. this is my implementation: ```from langchain.vectorstores import Pinecone from langchain.llms import Cohere from langchain.retrievers.multi_query import MultiQueryRetriever from langchain.prompts import PromptTemplate import logging from langchain.chains import LLMChain, ConversationChain from langchain.chains.conversation.memory import ConversationBufferWindowMemory from langchain.chains import RetrievalQA from langchain.agents import Tool from langchain.retrievers import ContextualCompressionRetriever from langchain.retrievers.document_compressors import CohereRerank index = pinecone.Index(index_name) vectorstore = Pinecone(index, embeddings, "text") llm = Cohere(cohere_api_key=cohere_api_key) retriever_from_llm = MultiQueryRetriever.from_llm( retriever=vectorstore.as_retriever(search_kwargs={"k": 10, 'filter': {'user_id_str': '42', 'internal_mydocai_id_str': {"$in":["4", "5"]}}}), llm=llm ) from langchain.prompts import PromptTemplate QUERY_PROMPT = PromptTemplate( input_variables=["question"], template="""You are an AI language model assistant. Your task is to output the original query and four different versions of the given user query to retrieve relevant documents from a vector database. By generating multiple perspectives on the user question, your goal is to help the user overcome some of the limitations of the distance-based similarity search, while staying in the scope of the original question. Provide the original query and the alternative questions separated by newlines. Do not output anything else. Original question: {question}""", ) logging.basicConfig() logging.getLogger("langchain.retrievers.multi_query").setLevel(logging.INFO) compressor = CohereRerank(model= "rerank-multilingual-v2.0", cohere_api_key=cohere_api_key, client=co, user_agent="mydocument", top_n=5 ) compression_retriever = ContextualCompressionRetriever( base_compressor=compressor, base_retriever=retriever_from_llm ) compressed_docs = compression_retriever.get_relevant_documents( question memory = ConversationBufferWindowMemory(k=2, memory_key="chat_history", input_key='input', output_key="output") # retrieval qa chain qa = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=compression_retriever, ) tools = [ Tool( name='Knowledge Base', func=qa.run, description=( 'use this tool when answering general knowledge queries to get ' 'more information about the topic' ) ) ] agent = initialize_agent( agent='chat-conversational-react-description', tools=tools, llm=llm, verbose=True, max_iterations=3, early_stopping_method='generate', memory=memory ) agent(question) ``` Error: ``` ValueError: variable chat_history should be a list of base messages, got ### Suggestion: _No response_
Unable to implement memory in RAG agent, asking for chat_history
https://api.github.com/repos/langchain-ai/langchain/issues/13830/comments
1
2023-11-25T00:31:32Z
2024-03-13T20:02:47Z
https://github.com/langchain-ai/langchain/issues/13830
2,010,379,993
13,830
[ "hwchase17", "langchain" ]
I am using local LLM with langchain: openhermes-2.5-mistral-7b.Q8_0.gguf When using database agent this is how I am initiating things: `db = SQLDatabase.from_uri(sql_uri) model_path = "./openhermes-2.5-mistral-7b.Q8_0.gguf" n_gpu_layers = 1 # Change this value based on your model and your GPU VRAM pool. n_batch = 512 # Should be between 1 and n_ctx, consider the amount of VRAM in your GPU. n_ctx=50000 callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]) llm = LlamaCpp( model_path=model_path, #temperature=0, n_gpu_layers=n_gpu_layers, n_batch=n_batch, n_ctx=n_ctx, callback_manager=callback_manager, verbose=True, ) #toolkit = CustomSQLDatabaseToolkit(db=db, llm=llm) toolkit = SQLDatabaseToolkit(db=db, llm=llm) toolkit.get_tools() PREFIX = '''You are a SQL expert. You have access to a Microsoft SQL Server database. Identify which tables can be used to answer the user's question and write and execute a SQL query accordingly. ''' FORMAT_INSTRUCTIONS = """RESPONSE FORMAT INSTRUCTIONS ---------------------------- When responding please, please output a response in this format: thought: Reason about what action to take next, and whether to use a tool. action: The tool to use. Must be one of: {tool_names} action_input: The input to the tool For example: thought: I need to get all tables from database action: sql_db_list_tables action_input: Empty string """ agent_executor = create_sql_agent( llm=llm, toolkit=toolkit, agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True, handle_parsing_errors=True, agent_kwargs={ 'prefix': PREFIX, 'format_instructions': FORMAT_INSTRUCTIONS, } ) now = datetime.datetime.now() print("Starting executor : ") print(now.strftime("%Y-%m-%d %H:%M:%S")) agent_executor.run("Who is oldest user")` When Entering chain I usually get error "Could not parse LLM output" as despite the instructions Action Input part is not created by LLM. > Entering new AgentExecutor chain... Action: sql_db_list_tables Traceback (most recent call last): File "/Users/dino/Codings/python/LLM_test1/.venv/lib/python3.9/site-packages/langchain/agents/agent.py", line 1032, in _take_next_step output = self.agent.plan( File "/Users/dino/Codings/python/LLM_test1/.venv/lib/python3.9/site-packages/langchain/agents/agent.py", line 636, in plan return self.output_parser.parse(full_output) File "/Users/dino/Codings/python/LLM_test1/.venv/lib/python3.9/site-packages/langchain/agents/mrkl/output_parser.py", line 70, in parse raise OutputParserException( langchain.schema.output_parser.OutputParserException: Could not parse LLM output: `Action: sql_db_list_tables` Any Idea how to fix this ?
Langchain Database Agent with local LLM
https://api.github.com/repos/langchain-ai/langchain/issues/13826/comments
5
2023-11-24T21:49:25Z
2024-03-04T11:57:39Z
https://github.com/langchain-ai/langchain/issues/13826
2,010,243,906
13,826
[ "hwchase17", "langchain" ]
### System Info Hello! I got this error while trying to run code from [docs](https://python.langchain.com/docs/integrations/tools/dalle_image_generator). I have Python 3.11.3, openai 1.3.5 and langchain 0.0.340 . ``` You tried to access openai.Image, but this is no longer supported in openai>=1.0.0 - see the README at https://github.com/openai/openai-python for the API. You can run `openai migrate` to automatically upgrade your codebase to use the 1.0.0 interface. Alternatively, you can pin your installation to the old version, e.g. `pip install openai==0.28` A detailed migration guide is available here: https://github.com/openai/openai-python/discussions/742 ``` ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Write code from [docs](https://python.langchain.com/docs/integrations/tools/dalle_image_generator) and run it using python3. ```python from langchain.chains import LLMChain from langchain.llms import OpenAI from langchain.prompts import PromptTemplate from langchain.utilities.dalle_image_generator import DallEAPIWrapper llm = OpenAI(temperature=0.9) prompt = PromptTemplate( input_variables=["image_desc"], template="Generate a detailed prompt to generate an image based on the following description: {image_desc}", ) chain = LLMChain(llm=llm, prompt=prompt) image_url = DallEAPIWrapper().run(chain.run("halloween night at a haunted museum")) print(image_url) ``` ### Expected behavior get an image url
getting an error with DallEAPIWrapper
https://api.github.com/repos/langchain-ai/langchain/issues/13825/comments
3
2023-11-24T20:46:33Z
2024-03-13T20:03:04Z
https://github.com/langchain-ai/langchain/issues/13825
2,010,209,501
13,825
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. My ChatOpenAI usually takes a response time of 1000 ms. I want the model to switch to either GooglePalm or some other language model when the response time of ChatOpenAI is large. Is it possible? ### Suggestion: _No response_
Is it possible to switch language models if the ms in the first model is large?
https://api.github.com/repos/langchain-ai/langchain/issues/13821/comments
2
2023-11-24T17:25:34Z
2024-03-13T19:56:31Z
https://github.com/langchain-ai/langchain/issues/13821
2,010,029,887
13,821